Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__init__.py +2 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_collectives.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_init.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param_group.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_state.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/fully_shard.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_collectives.py +217 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_init.py +144 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param.py +438 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param_group.py +506 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_state.py +246 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/fully_shard.py +246 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__init__.py +15 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_dedup_save_plans.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_dedup_tensors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_fsspec_filesystem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_nested_dict.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_sharded_tensor_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_storage_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_traverse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/default_planner.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/filesystem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/format_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/fsspec.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/metadata.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/optimizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/planner.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/planner_helpers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/resharding.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict_loader.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict_saver.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/stateful.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/storage.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_dedup_save_plans.py +49 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_dedup_tensors.py +59 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_fsspec_filesystem.py +15 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_nested_dict.py +53 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_sharded_tensor_utils.py +103 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_storage_utils.py +50 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_traverse.py +167 -0
- venv/lib/python3.10/site-packages/torch/distributed/checkpoint/api.py +41 -0
ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa08d8aebd7e783ad6b9bfb1f029b49070b388941e8b783eeabed1b09c7107b9
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
2 |
+
from .fully_shard import FSDP, fully_shard
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (305 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_api.cpython-310.pyc
ADDED
Binary file (2.73 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_collectives.cpython-310.pyc
ADDED
Binary file (6.58 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_common.cpython-310.pyc
ADDED
Binary file (5.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_init.cpython-310.pyc
ADDED
Binary file (4.35 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_param_group.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/_fsdp_state.cpython-310.pyc
ADDED
Binary file (8.53 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/__pycache__/fully_shard.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_collectives.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, NamedTuple, Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
from torch.distributed.distributed_c10d import ReduceOp
|
6 |
+
from ._fsdp_common import (
|
7 |
+
_get_dim0_padded_size,
|
8 |
+
_raise_assert_with_print,
|
9 |
+
_to_dtype_if_needed,
|
10 |
+
)
|
11 |
+
from ._fsdp_param import FSDPParam
|
12 |
+
|
13 |
+
|
14 |
+
class AllGatherResult(NamedTuple):
|
15 |
+
all_gather_output: torch.Tensor
|
16 |
+
all_gather_event: Optional[torch.cuda.Event]
|
17 |
+
all_gather_work: Optional[dist.distributed_c10d.Work]
|
18 |
+
all_gather_input_numels: List[int]
|
19 |
+
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def foreach_all_gather(
|
23 |
+
fsdp_params: List[FSDPParam],
|
24 |
+
group: dist.ProcessGroup,
|
25 |
+
async_op: bool,
|
26 |
+
all_gather_copy_in_stream: torch.cuda.Stream,
|
27 |
+
all_gather_stream: torch.cuda.Stream,
|
28 |
+
device: torch.device,
|
29 |
+
) -> Optional[AllGatherResult]:
|
30 |
+
world_size, rank = group.size(), group.rank()
|
31 |
+
# - Copy in
|
32 |
+
with torch.cuda.stream(all_gather_copy_in_stream):
|
33 |
+
param_all_gather_inputs = [
|
34 |
+
fsdp_param.all_gather_input for fsdp_param in fsdp_params
|
35 |
+
]
|
36 |
+
dtype = param_all_gather_inputs[0].dtype
|
37 |
+
if not all(t.dtype == dtype for t in param_all_gather_inputs):
|
38 |
+
raise NotImplementedError(
|
39 |
+
f"Mixed dtype not supported yet: {[t.dtype for t in param_all_gather_inputs]}"
|
40 |
+
)
|
41 |
+
inp_split_sizes = [inp.numel() for inp in param_all_gather_inputs]
|
42 |
+
all_gather_input_numel = sum(inp_split_sizes)
|
43 |
+
all_gather_output = torch.empty(
|
44 |
+
(all_gather_input_numel * world_size,), dtype=dtype, device=device
|
45 |
+
)
|
46 |
+
all_gather_input = all_gather_output.narrow(
|
47 |
+
0, all_gather_input_numel * rank, all_gather_input_numel
|
48 |
+
)
|
49 |
+
foreach_copy_dsts = torch.split(all_gather_input, inp_split_sizes)
|
50 |
+
torch._foreach_copy_(foreach_copy_dsts, param_all_gather_inputs)
|
51 |
+
del param_all_gather_inputs
|
52 |
+
all_gather_stream.wait_stream(all_gather_copy_in_stream)
|
53 |
+
with torch.cuda.stream(all_gather_stream):
|
54 |
+
# - All-gather
|
55 |
+
all_gather_work = dist.all_gather_into_tensor(
|
56 |
+
output_tensor=all_gather_output,
|
57 |
+
input_tensor=all_gather_input,
|
58 |
+
group=group,
|
59 |
+
async_op=async_op,
|
60 |
+
)
|
61 |
+
all_gather_event = all_gather_stream.record_event()
|
62 |
+
return AllGatherResult(
|
63 |
+
all_gather_output, all_gather_event, all_gather_work, inp_split_sizes
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def foreach_all_gather_copy_out(
|
69 |
+
all_gather_result: AllGatherResult,
|
70 |
+
fsdp_params: List[FSDPParam],
|
71 |
+
group: dist.ProcessGroup,
|
72 |
+
) -> None:
|
73 |
+
(
|
74 |
+
all_gather_output,
|
75 |
+
all_gather_event,
|
76 |
+
all_gather_work,
|
77 |
+
all_gather_input_numels,
|
78 |
+
) = all_gather_result
|
79 |
+
if all_gather_event is not None: # sync op
|
80 |
+
torch.cuda.current_stream().wait_event(all_gather_event)
|
81 |
+
if all_gather_work is not None: # async op
|
82 |
+
all_gather_work.wait()
|
83 |
+
world_size = group.size()
|
84 |
+
dtype, device = all_gather_output.dtype, all_gather_output.device
|
85 |
+
for all_gather_input_numel, fsdp_param in zip(all_gather_input_numels, fsdp_params):
|
86 |
+
fsdp_param.init_all_gather_output(
|
87 |
+
all_gather_input_numel, world_size, dtype, device
|
88 |
+
) # no-op after 1st call
|
89 |
+
fsdp_param.alloc_all_gather_output()
|
90 |
+
all_gather_output = all_gather_output.view(world_size, -1)
|
91 |
+
out = [
|
92 |
+
fsdp_param.all_gather_output.view(world_size, -1) for fsdp_param in fsdp_params
|
93 |
+
]
|
94 |
+
torch.split_with_sizes_copy(
|
95 |
+
all_gather_output, all_gather_input_numels, dim=1, out=out
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def foreach_reduce_scatter(
|
101 |
+
fsdp_params: List[FSDPParam],
|
102 |
+
unsharded_grads: List[torch.Tensor],
|
103 |
+
group: dist.ProcessGroup,
|
104 |
+
reduce_scatter_stream: torch.cuda.Stream,
|
105 |
+
orig_dtype: torch.dtype,
|
106 |
+
reduce_dtype: Optional[torch.dtype],
|
107 |
+
device: torch.device,
|
108 |
+
divide_factors: Optional[Tuple[float, float]],
|
109 |
+
) -> torch.cuda.Event:
|
110 |
+
"""
|
111 |
+
``unsharded_grads`` owns the references to the gradients computed by
|
112 |
+
autograd, so clearing the list frees the gradients.
|
113 |
+
"""
|
114 |
+
grad_dtypes = {grad.dtype for grad in unsharded_grads}
|
115 |
+
if len(grad_dtypes) != 1:
|
116 |
+
# Check this at runtime since it could be a real runtime error if e.g.
|
117 |
+
# fp8 weights do not produce the correct higher precision gradients
|
118 |
+
_raise_assert_with_print(
|
119 |
+
f"FSDP reduce-scatter expects uniform gradient dtype but got {grad_dtypes}"
|
120 |
+
)
|
121 |
+
grad_dtype = unsharded_grads[0].dtype
|
122 |
+
reduce_dtype = reduce_dtype or grad_dtype
|
123 |
+
world_size = group.size()
|
124 |
+
padded_unsharded_sizes = tuple(
|
125 |
+
_get_dim0_padded_size(grad.size(), world_size) for grad in unsharded_grads
|
126 |
+
)
|
127 |
+
reduce_scatter_input_numel = sum(s.numel() for s in padded_unsharded_sizes)
|
128 |
+
reduce_scatter_output_numel = reduce_scatter_input_numel // world_size
|
129 |
+
current_stream = torch.cuda.current_stream()
|
130 |
+
reduce_scatter_stream.wait_stream(current_stream)
|
131 |
+
with torch.cuda.stream(reduce_scatter_stream):
|
132 |
+
reduce_scatter_input = torch.empty(
|
133 |
+
(reduce_scatter_input_numel,), dtype=reduce_dtype, device=device
|
134 |
+
)
|
135 |
+
foreach_reduce_scatter_copy_in(
|
136 |
+
unsharded_grads, reduce_scatter_input, world_size
|
137 |
+
)
|
138 |
+
# Only after the copy-in finishes can we free the gradients, which were
|
139 |
+
# computed in the default stream
|
140 |
+
current_stream.wait_stream(reduce_scatter_stream)
|
141 |
+
unsharded_grads.clear()
|
142 |
+
reduce_scatter_output = reduce_scatter_input.new_empty(
|
143 |
+
(reduce_scatter_output_numel,)
|
144 |
+
)
|
145 |
+
_reduce_scatter(
|
146 |
+
reduce_scatter_output, reduce_scatter_input, group, divide_factors
|
147 |
+
)
|
148 |
+
reduce_scatter_output = _to_dtype_if_needed(reduce_scatter_output, orig_dtype)
|
149 |
+
# - View out and accumulate
|
150 |
+
flat_grad_offset = 0 # [0, reduce_scatter_output_numel - 1]
|
151 |
+
for padded_unsharded_size, fsdp_param in zip(
|
152 |
+
padded_unsharded_sizes, fsdp_params
|
153 |
+
):
|
154 |
+
new_sharded_grad = torch.as_strided(
|
155 |
+
reduce_scatter_output,
|
156 |
+
size=fsdp_param.sharded_size,
|
157 |
+
stride=fsdp_param.contiguous_sharded_stride,
|
158 |
+
storage_offset=flat_grad_offset,
|
159 |
+
)
|
160 |
+
to_accumulate_grad = fsdp_param.sharded_param.grad is not None
|
161 |
+
new_sharded_dtensor_grad = fsdp_param.to_sharded_dtensor(new_sharded_grad)
|
162 |
+
if to_accumulate_grad:
|
163 |
+
fsdp_param.sharded_param.grad += new_sharded_dtensor_grad
|
164 |
+
else:
|
165 |
+
fsdp_param.sharded_param.grad = new_sharded_dtensor_grad
|
166 |
+
padded_sharded_numel = padded_unsharded_size.numel() // world_size
|
167 |
+
flat_grad_offset += padded_sharded_numel
|
168 |
+
reduce_scatter_view_out_event = reduce_scatter_stream.record_event()
|
169 |
+
# The RS output is allocated in the RS stream and used in the default
|
170 |
+
# stream (for optimizer). To ensure its memory is not reused for later
|
171 |
+
# RSs, we do not need extra synchronization since the sharded parameters
|
172 |
+
# hold refs through the end of backward.
|
173 |
+
return reduce_scatter_view_out_event
|
174 |
+
|
175 |
+
|
176 |
+
def foreach_reduce_scatter_copy_in(
|
177 |
+
unsharded_grads: List[torch.Tensor],
|
178 |
+
reduce_scatter_input: torch.Tensor,
|
179 |
+
world_size: int,
|
180 |
+
) -> None:
|
181 |
+
grad_views: List[torch.Tensor] = []
|
182 |
+
grads_to_copy: List[torch.Tensor] = []
|
183 |
+
padded_grad_slices: List[torch.Tensor] = []
|
184 |
+
for grad in unsharded_grads:
|
185 |
+
grad_size = grad.size()
|
186 |
+
dim0_padded_size = _get_dim0_padded_size(grad_size, world_size)
|
187 |
+
if dim0_padded_size != grad_size:
|
188 |
+
padded_grad = grad.new_empty(dim0_padded_size)
|
189 |
+
padded_grad_slices.append(padded_grad[: grad.size(0)])
|
190 |
+
grads_to_copy.append(grad)
|
191 |
+
grad = padded_grad
|
192 |
+
grad_views.append(grad.view(world_size, -1))
|
193 |
+
if padded_grad_slices:
|
194 |
+
torch._foreach_copy_(padded_grad_slices, grads_to_copy)
|
195 |
+
torch.cat(grad_views, dim=-1, out=reduce_scatter_input.view(world_size, -1))
|
196 |
+
|
197 |
+
|
198 |
+
def _reduce_scatter(
|
199 |
+
output: torch.Tensor,
|
200 |
+
input: torch.Tensor,
|
201 |
+
group: dist.ProcessGroup,
|
202 |
+
divide_factors: Optional[Tuple[float, float]],
|
203 |
+
) -> None:
|
204 |
+
if divide_factors:
|
205 |
+
predivide_factor, postdivide_factor = divide_factors
|
206 |
+
_div_if_needed(input, predivide_factor)
|
207 |
+
dist.reduce_scatter_tensor(output, input, group=group)
|
208 |
+
_div_if_needed(output, postdivide_factor)
|
209 |
+
else:
|
210 |
+
# Using NCCL's reduce-scatter to do the division by world size saves
|
211 |
+
# extra memory read/write from a separate division kernel
|
212 |
+
dist.reduce_scatter_tensor(output, input, op=ReduceOp.AVG, group=group)
|
213 |
+
|
214 |
+
|
215 |
+
def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
|
216 |
+
if div_factor > 1:
|
217 |
+
tensor.div_(div_factor)
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_init.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from typing import List, Optional, Set, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from torch.distributed._tensor import DeviceMesh, DTensor, init_device_mesh
|
9 |
+
from torch.distributed.device_mesh import _get_device_handle
|
10 |
+
from ._fsdp_common import _is_composable_with_fsdp, FSDPMeshInfo, HSDPMeshInfo
|
11 |
+
from ._fsdp_state import _get_module_fsdp_state
|
12 |
+
|
13 |
+
|
14 |
+
def _get_post_forward_mesh_info(
|
15 |
+
reshard_after_forward: Union[bool, int], mesh_info: FSDPMeshInfo
|
16 |
+
) -> Optional[FSDPMeshInfo]:
|
17 |
+
shard_mesh_size = mesh_info.shard_mesh_size
|
18 |
+
if not isinstance(reshard_after_forward, (bool, int)):
|
19 |
+
raise ValueError(
|
20 |
+
"reshard_after_forward should be a bool or an int representing the "
|
21 |
+
f"group size to reshard to, not {reshard_after_forward}"
|
22 |
+
)
|
23 |
+
# NOTE: `isinstance(False, int)` returns `True`.
|
24 |
+
if not isinstance(reshard_after_forward, bool) and isinstance(
|
25 |
+
reshard_after_forward, int
|
26 |
+
):
|
27 |
+
if (
|
28 |
+
reshard_after_forward < 1
|
29 |
+
or reshard_after_forward > shard_mesh_size
|
30 |
+
or shard_mesh_size % reshard_after_forward != 0
|
31 |
+
):
|
32 |
+
raise ValueError(
|
33 |
+
"If passing reshard_after_forward as an int, it should be a "
|
34 |
+
f"factor of {shard_mesh_size}, not {reshard_after_forward}"
|
35 |
+
)
|
36 |
+
elif reshard_after_forward == 1:
|
37 |
+
reshard_after_forward = False
|
38 |
+
elif reshard_after_forward == shard_mesh_size:
|
39 |
+
reshard_after_forward = True
|
40 |
+
post_forward_mesh_info = None
|
41 |
+
if reshard_after_forward is True:
|
42 |
+
post_forward_mesh_info = mesh_info
|
43 |
+
elif reshard_after_forward is not False: # int case
|
44 |
+
# For HSDP, we can flatten the two replicate dims into the 0th dim
|
45 |
+
post_forward_mesh_tensor = mesh_info.mesh.mesh.view(-1, reshard_after_forward)
|
46 |
+
post_forward_mesh = DeviceMesh(
|
47 |
+
mesh_info.mesh.device_type, post_forward_mesh_tensor
|
48 |
+
)
|
49 |
+
post_forward_mesh_info = HSDPMeshInfo(
|
50 |
+
post_forward_mesh, shard_mesh_dim=1, replicate_mesh_dim=0
|
51 |
+
)
|
52 |
+
return post_forward_mesh_info
|
53 |
+
|
54 |
+
|
55 |
+
def _init_default_fully_shard_mesh() -> DeviceMesh:
|
56 |
+
"""Default to global CUDA mesh if possible else global CPU mesh."""
|
57 |
+
if not dist.distributed_c10d.is_initialized():
|
58 |
+
dist.distributed_c10d.init_process_group()
|
59 |
+
default_pg = dist.distributed_c10d._get_default_group()
|
60 |
+
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
mesh = init_device_mesh(device_type, mesh_shape=(default_pg.size(),))
|
62 |
+
return mesh
|
63 |
+
|
64 |
+
|
65 |
+
def _get_device_from_mesh(mesh: DeviceMesh) -> torch.device:
|
66 |
+
if mesh.device_type == "cpu":
|
67 |
+
return torch.device("cpu")
|
68 |
+
device_handle = _get_device_handle(mesh.device_type)
|
69 |
+
return torch.device(mesh.device_type, device_handle.current_device())
|
70 |
+
|
71 |
+
|
72 |
+
def _get_managed_modules(root_module: nn.Module) -> List[nn.Module]:
|
73 |
+
modules: List[nn.Module] = []
|
74 |
+
# Track visisted modules to avoid visiting shared modules multiple times
|
75 |
+
visited_modules: Set[nn.Module] = set()
|
76 |
+
|
77 |
+
def dfs(module: nn.Module) -> None:
|
78 |
+
"""
|
79 |
+
Runs a DFS to collect managed modules, not recursing into modules with
|
80 |
+
a non-composable API or ``fully_shard`` already applied.
|
81 |
+
"""
|
82 |
+
if not _is_composable_with_fsdp(module):
|
83 |
+
return
|
84 |
+
elif module is not root_module and _get_module_fsdp_state(module) is not None:
|
85 |
+
return # nested `fully_shard` module
|
86 |
+
visited_modules.add(module)
|
87 |
+
for submodule in module.children():
|
88 |
+
if submodule not in visited_modules:
|
89 |
+
dfs(submodule)
|
90 |
+
modules.append(module)
|
91 |
+
|
92 |
+
dfs(root_module)
|
93 |
+
return modules
|
94 |
+
|
95 |
+
|
96 |
+
def _get_managed_states(
|
97 |
+
modules: List[nn.Module],
|
98 |
+
) -> Tuple[List[nn.Parameter], List[torch.Tensor]]:
|
99 |
+
params: List[nn.Parameter] = []
|
100 |
+
buffers: List[torch.Tensor] = []
|
101 |
+
# Track visited parameters/buffers to avoid visiting shared parameters and
|
102 |
+
# buffers multiple times
|
103 |
+
visited_params: Set[nn.Parameter] = set()
|
104 |
+
visited_buffers: Set[torch.Tensor] = set()
|
105 |
+
for module in modules:
|
106 |
+
for param in module.parameters(recurse=False):
|
107 |
+
if param not in visited_params:
|
108 |
+
params.append(param)
|
109 |
+
visited_params.add(param)
|
110 |
+
for buffer in module.buffers(recurse=False):
|
111 |
+
if buffer not in visited_buffers:
|
112 |
+
buffers.append(buffer)
|
113 |
+
visited_buffers.add(buffer)
|
114 |
+
return params, buffers
|
115 |
+
|
116 |
+
|
117 |
+
def _move_states_to_device(
|
118 |
+
params: List[nn.Parameter],
|
119 |
+
buffers: List[torch.Tensor],
|
120 |
+
device: torch.device,
|
121 |
+
mesh_info: FSDPMeshInfo,
|
122 |
+
) -> None:
|
123 |
+
"""
|
124 |
+
We have FSDP move states to device for simpler and faster initialization
|
125 |
+
since FSDP almost always uses CUDA for training. We move parameters/buffers
|
126 |
+
rather than modules since modules to support ignoring parameters/buffers in
|
127 |
+
the future.
|
128 |
+
"""
|
129 |
+
# TODO: De-duplicate with `_apply` after `swap_tensors` path lands:
|
130 |
+
# https://github.com/pytorch/pytorch/issues/115792
|
131 |
+
for tensor in itertools.chain(params, buffers):
|
132 |
+
if tensor.device == device or tensor.device.type == "meta":
|
133 |
+
# Keep meta-device tensors on meta device for deferred init
|
134 |
+
continue
|
135 |
+
if isinstance(tensor, DTensor):
|
136 |
+
if (dtensor_mesh_type := tensor._spec.mesh.device_type) != device.type:
|
137 |
+
raise ValueError(
|
138 |
+
"Requires DTensor to have mesh of the same type as the FSDP mesh "
|
139 |
+
f"but got {dtensor_mesh_type} for DTensor and {device.type} for FSDP"
|
140 |
+
)
|
141 |
+
raise AssertionError(
|
142 |
+
f"Expects DTensor to be moved to {dtensor_mesh_type} but got {tensor.device}"
|
143 |
+
)
|
144 |
+
tensor.data = tensor.to(device)
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import cast, List, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from torch._prims_common import make_contiguous_strides_for
|
9 |
+
from torch.distributed._functional_collectives import AsyncCollectiveTensor
|
10 |
+
from torch.distributed._tensor import DTensor, Placement, Replicate, Shard
|
11 |
+
from torch.distributed._tensor.device_mesh import _mesh_resources
|
12 |
+
from torch.distributed._tensor.placement_types import DTensorSpec
|
13 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
14 |
+
from ._fsdp_common import (
|
15 |
+
_chunk_with_empty,
|
16 |
+
_from_local_no_grad,
|
17 |
+
_get_dim0_chunked_size,
|
18 |
+
_raise_assert_with_print,
|
19 |
+
_to_dtype_if_needed,
|
20 |
+
FSDPMeshInfo,
|
21 |
+
HSDPMeshInfo,
|
22 |
+
)
|
23 |
+
|
24 |
+
"""
|
25 |
+
[Note: FSDP tensors]
|
26 |
+
FSDP considers the following tensors:
|
27 |
+
- Original parameter: parameter passed to :class:`FSDPParam`, i.e. the one
|
28 |
+
on the module when applying FSDP
|
29 |
+
- Sharded parameter: sharding the original parameter on dim-0 as a DTensor
|
30 |
+
over the main mesh
|
31 |
+
- All-gather input: the ``torch.Tensor`` passed to all-gather, derived from the
|
32 |
+
sharded parameter
|
33 |
+
- All-gather output: the ``torch.Tensor`` resulting from all-gathering the
|
34 |
+
all-gather input
|
35 |
+
- Unsharded parameter: parameter used for forward/backward computation, derived
|
36 |
+
from the all-gather output; autograd leaf
|
37 |
+
|
38 |
+
We define these tensors to describe the general framework that can accomodate
|
39 |
+
extensions, where:
|
40 |
+
- all-gather-input = pre-all-gather-transform(sharded-parameter)
|
41 |
+
- unsharded-parameter = post-all-gather-transform(all-gather-output)
|
42 |
+
|
43 |
+
For the default ``torch.Tensor`` case, the sharded parameter and all-gather
|
44 |
+
input share the same underlying tensor data, meaning that they can be thought
|
45 |
+
of as the same tensors. The same applies for the all-gather output and
|
46 |
+
unsharded parameter. For non-``torch.Tensor`` extensions, these equivalences
|
47 |
+
may no longer hold due to the pre/post-all-gather transforms.
|
48 |
+
|
49 |
+
[Note: FSDP and autograd]
|
50 |
+
FSDP dynamically frees and allocates the unsharded parameter. Since autograd
|
51 |
+
can pack a reference to it or a view to save for backward, we use storage
|
52 |
+
resizing to implement the freeing/allocation since that preserves the aliasing.
|
53 |
+
This implies that we construct the unsharded parameter object once and write to
|
54 |
+
it in-place thereafter. For the default ``torch.Tensor` original parameter
|
55 |
+
case, the all-gather output and unsharded parameter share the same
|
56 |
+
data, so we use storage resizing on the all-gather output.
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
class ShardedState(Enum):
|
61 |
+
"""
|
62 |
+
- ``SHARDED``: The sharded parameter is registered to the module. It is the
|
63 |
+
only contributor to parameter memory.
|
64 |
+
- ``SHARDED_POST_FORWARD``: The unsharded parameter is resharded to a
|
65 |
+
smaller world size. Since this data should not be used for computation,
|
66 |
+
we do not register it to the module. Users should reshard the module
|
67 |
+
before any in-place modifications. Both it and the sharded parameter
|
68 |
+
contribute to parameter memory.
|
69 |
+
- ``UNSHARDED``: The unsharded parameter is registered to the module. Both
|
70 |
+
it and the sharded parameter contribute to parameter memory.
|
71 |
+
"""
|
72 |
+
|
73 |
+
SHARDED = auto()
|
74 |
+
SHARDED_POST_FORWARD = auto()
|
75 |
+
UNSHARDED = auto()
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class ParamModuleInfo:
|
80 |
+
"""
|
81 |
+
For a parameter, this stores the module and the parameter name to be able
|
82 |
+
to do a parameter swap via ``setattr(module, param_name, ...)`` or to get
|
83 |
+
the parameter via ``getattr(module, param_name)``. We additionally save
|
84 |
+
shared modules and shared parameter names to update them accordingly.
|
85 |
+
"""
|
86 |
+
|
87 |
+
# Parameter names are unprefixed, e.g. "weight", not "lin.weight"
|
88 |
+
module: nn.Module
|
89 |
+
param_name: str
|
90 |
+
shared_modules: List[nn.Module] = field(default_factory=list)
|
91 |
+
shared_param_names: List[str] = field(default_factory=list)
|
92 |
+
|
93 |
+
|
94 |
+
class FSDPParam:
|
95 |
+
"""
|
96 |
+
This class manages a parameter with FSDP or FSDP variants applied,
|
97 |
+
implementing dim-0 per-parameter sharding.
|
98 |
+
"""
|
99 |
+
|
100 |
+
orig_dtype: torch.dtype
|
101 |
+
param_dtype: Optional[torch.dtype]
|
102 |
+
reduce_dtype: Optional[torch.dtype]
|
103 |
+
_orig_size: torch.Size # ND
|
104 |
+
_contiguous_orig_stride: Tuple[int, ...]
|
105 |
+
sharded_size: torch.Size # ND
|
106 |
+
contiguous_sharded_stride: Tuple[int, ...]
|
107 |
+
padded_sharded_param_size: torch.Size # ND
|
108 |
+
sharded_post_forward_size: torch.Size # ND
|
109 |
+
contiguous_sharded_post_forward_stride: Tuple[int, ...]
|
110 |
+
_sharded_param_data: torch.Tensor # 1D
|
111 |
+
sharded_param: nn.Parameter # ND
|
112 |
+
_sharded_post_forward_param_data: Optional[torch.Tensor] # 1D
|
113 |
+
_sharded_post_forward_param: Optional[nn.Parameter] # ND
|
114 |
+
_unsharded_param: nn.Parameter # ND
|
115 |
+
_global_placements: Tuple[Placement, ...]
|
116 |
+
_global_size: torch.Size
|
117 |
+
_global_stride: Tuple[int, ...]
|
118 |
+
# DTensor attributes (only defined for DTensor `param`):
|
119 |
+
_tp_spec: DTensorSpec
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
param: nn.Parameter,
|
124 |
+
module_info: ParamModuleInfo,
|
125 |
+
mesh_info: FSDPMeshInfo,
|
126 |
+
post_forward_mesh_info: Optional[FSDPMeshInfo],
|
127 |
+
device: torch.device,
|
128 |
+
mp_policy: MixedPrecisionPolicy,
|
129 |
+
):
|
130 |
+
self._module_info: ParamModuleInfo = module_info
|
131 |
+
self.mesh_info = mesh_info
|
132 |
+
self.post_forward_mesh_info = post_forward_mesh_info
|
133 |
+
self.device = device
|
134 |
+
self._init_sharded_param(param, device)
|
135 |
+
if self.post_forward_mesh_info:
|
136 |
+
self._init_sharded_post_forward_param_metadata(param)
|
137 |
+
self.all_gather_output = torch.empty(0)
|
138 |
+
self._param_fqn: Optional[str] = None # prefixed from root module
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def _init_sharded_param(self, param: nn.Parameter, device: torch.device):
|
142 |
+
if param.device != device and param.device.type != "meta":
|
143 |
+
raise AssertionError(
|
144 |
+
f"Expects the parameter to already be moved to device {device} but got {param.device}"
|
145 |
+
)
|
146 |
+
# TODO: Replace the sharded DTensor parameter construction logic with
|
147 |
+
# `distribute_tensor` after https://github.com/pytorch/pytorch/issues/116101
|
148 |
+
# TODO: Simplify the following sharded parameter padding logic after
|
149 |
+
# https://github.com/pytorch/pytorch/issues/113045
|
150 |
+
self.is_dtensor = isinstance(param, DTensor)
|
151 |
+
if self.is_dtensor:
|
152 |
+
self._tp_spec = cast(DTensor, param)._spec
|
153 |
+
if (
|
154 |
+
self.mesh_info.shard_mesh_dim != 0
|
155 |
+
or self.mesh_info.replicate_mesh_dim is not None
|
156 |
+
):
|
157 |
+
raise NotImplementedError("Using TP with HSDP is not supported")
|
158 |
+
dp_mesh, tp_mesh = (self.mesh_info.mesh, self._tp_spec.mesh)
|
159 |
+
dp_global_mesh = _mesh_resources.get_parent_mesh(dp_mesh)
|
160 |
+
tp_global_mesh = _mesh_resources.get_parent_mesh(tp_mesh)
|
161 |
+
if dp_global_mesh != tp_global_mesh or (
|
162 |
+
dp_global_mesh is None or tp_global_mesh is None
|
163 |
+
):
|
164 |
+
raise AssertionError(
|
165 |
+
"FSDP requires the DP and TP mesh to have the same parent mesh but got: \n"
|
166 |
+
f"DP's global mesh: {dp_global_mesh}\nTP's global mesh: {tp_global_mesh}"
|
167 |
+
)
|
168 |
+
self._global_mesh = dp_global_mesh
|
169 |
+
if len(self._tp_spec.placements) != 1:
|
170 |
+
raise NotImplementedError(
|
171 |
+
f"FSDP only supports 1D TP, not {self._tp_spec.placements}"
|
172 |
+
)
|
173 |
+
global_placements: List[Placement] = [Replicate(), Replicate()]
|
174 |
+
global_dp_mesh_dim = _mesh_resources.get_parent_mesh_dim(dp_mesh)
|
175 |
+
global_tp_mesh_dim = _mesh_resources.get_parent_mesh_dim(tp_mesh)
|
176 |
+
assert global_dp_mesh_dim is not None # mypy
|
177 |
+
assert global_tp_mesh_dim is not None # mypy
|
178 |
+
# TODO: Hard code FSDP + TP; need to support HSDP + TP
|
179 |
+
global_placements[global_dp_mesh_dim] = Shard(0)
|
180 |
+
global_placements[global_tp_mesh_dim] = self._tp_spec.placements[0]
|
181 |
+
self._global_placements = tuple(global_placements)
|
182 |
+
self._global_size = param.size()
|
183 |
+
self._global_stride = param.stride()
|
184 |
+
param_data = cast(DTensor, param)._local_tensor
|
185 |
+
else:
|
186 |
+
self._global_mesh = self.mesh_info.mesh
|
187 |
+
self._global_placements = (Shard(0),)
|
188 |
+
self._global_size = param.size()
|
189 |
+
self._global_stride = param.stride()
|
190 |
+
param_data = param
|
191 |
+
self._orig_size = param_data.size()
|
192 |
+
self._contiguous_orig_stride = make_contiguous_strides_for(self._orig_size)
|
193 |
+
shard_rank = self.mesh_info.shard_mesh_rank
|
194 |
+
shard_world_size = self.mesh_info.shard_mesh_size
|
195 |
+
chunks = _chunk_with_empty(param_data, shard_world_size, dim=0)
|
196 |
+
sharded_param = chunks[shard_rank]
|
197 |
+
self.sharded_size = _get_dim0_chunked_size(sharded_param, param_data.size())
|
198 |
+
self.contiguous_sharded_stride = make_contiguous_strides_for(self.sharded_size)
|
199 |
+
padded_sharded_size = chunks[0].size() # 0th always padded
|
200 |
+
padded_sharded_param = param_data.new_zeros(padded_sharded_size)
|
201 |
+
self.padded_sharded_param_size = padded_sharded_param.size()
|
202 |
+
if sharded_param.numel() > 0:
|
203 |
+
padded_sharded_param[: sharded_param.size(0)].copy_(sharded_param)
|
204 |
+
self._sharded_param_data = padded_sharded_param.view(-1)
|
205 |
+
self.sharded_param = nn.Parameter(
|
206 |
+
self.to_sharded_dtensor(padded_sharded_param[: sharded_param.size(0)])
|
207 |
+
)
|
208 |
+
self.sharded_param.requires_grad_(param.requires_grad)
|
209 |
+
# Let `param_data` be freed normally when its ref count reaches 0 when
|
210 |
+
# the `fully_shard` call returns to allow provided parameters to alias
|
211 |
+
self._setattr_on_modules(self.sharded_param)
|
212 |
+
self.sharded_state = ShardedState.SHARDED
|
213 |
+
|
214 |
+
def _init_sharded_post_forward_param_metadata(self, param: torch.Tensor) -> None:
|
215 |
+
mesh_info = self.post_forward_mesh_info
|
216 |
+
assert mesh_info is not None # mypy
|
217 |
+
param_data = param._local_tensor if isinstance(param, DTensor) else param
|
218 |
+
chunks = _chunk_with_empty(param_data, mesh_info.shard_mesh_size, dim=0)
|
219 |
+
self.sharded_post_forward_size = _get_dim0_chunked_size(
|
220 |
+
chunks[mesh_info.shard_mesh_rank], param_data.size()
|
221 |
+
)
|
222 |
+
self.contiguous_sharded_post_forward_stride = make_contiguous_strides_for(
|
223 |
+
self.sharded_post_forward_size
|
224 |
+
)
|
225 |
+
|
226 |
+
def init_dtype_attrs(self, mp_policy: MixedPrecisionPolicy):
|
227 |
+
param_dtype, reduce_dtype = (mp_policy.param_dtype, mp_policy.reduce_dtype)
|
228 |
+
self.orig_dtype = self.sharded_param.dtype
|
229 |
+
# Clamp `param_dtype` to `None` if no casting is required
|
230 |
+
if param_dtype == self.orig_dtype:
|
231 |
+
param_dtype = None
|
232 |
+
self.param_dtype = param_dtype
|
233 |
+
self.reduce_dtype = reduce_dtype
|
234 |
+
# None indicates that the mixed precision is not enabled
|
235 |
+
|
236 |
+
def init_all_gather_output(
|
237 |
+
self,
|
238 |
+
all_gather_input_numel: int,
|
239 |
+
world_size: int,
|
240 |
+
dtype: torch.dtype,
|
241 |
+
device: torch.device,
|
242 |
+
):
|
243 |
+
if self.all_gather_output.numel() > 0:
|
244 |
+
return # already initialized
|
245 |
+
all_gather_output_size = torch.Size([all_gather_input_numel * world_size])
|
246 |
+
self.all_gather_output = torch.empty(
|
247 |
+
all_gather_output_size, dtype=dtype, device=device
|
248 |
+
)
|
249 |
+
|
250 |
+
def init_unsharded_param(self):
|
251 |
+
if hasattr(self, "_unsharded_param"):
|
252 |
+
return # already initialized
|
253 |
+
# For the default path (no post-all-gather), the all-gather output
|
254 |
+
# gives the unsharded parameter data directly
|
255 |
+
unsharded_param = torch.as_strided(
|
256 |
+
self.all_gather_output,
|
257 |
+
self._orig_size,
|
258 |
+
self._contiguous_orig_stride,
|
259 |
+
storage_offset=0,
|
260 |
+
)
|
261 |
+
if self.is_dtensor:
|
262 |
+
unsharded_param = _from_local_no_grad(
|
263 |
+
unsharded_param,
|
264 |
+
self._tp_spec.mesh,
|
265 |
+
self._tp_spec.placements,
|
266 |
+
self._global_size,
|
267 |
+
self._global_stride,
|
268 |
+
)
|
269 |
+
self._unsharded_param = nn.Parameter(unsharded_param)
|
270 |
+
self._unsharded_param.requires_grad_(self.sharded_param.requires_grad)
|
271 |
+
|
272 |
+
def to_sharded(self) -> None:
|
273 |
+
self._setattr_on_modules(self.sharded_param)
|
274 |
+
self.free_all_gather_output()
|
275 |
+
self.sharded_state = ShardedState.SHARDED
|
276 |
+
|
277 |
+
def to_sharded_post_forward(self) -> None:
|
278 |
+
if self.is_dtensor:
|
279 |
+
raise NotImplementedError(
|
280 |
+
"Resharding to smaller mesh with TP is not supported yet"
|
281 |
+
)
|
282 |
+
self._assert_in_states(ShardedState.UNSHARDED)
|
283 |
+
assert self.post_forward_mesh_info is not None # mypy
|
284 |
+
shard_world_size = self.post_forward_mesh_info.shard_mesh_size
|
285 |
+
if (numel := self.all_gather_output.numel()) % shard_world_size != 0:
|
286 |
+
_raise_assert_with_print(
|
287 |
+
f"All-gather output size ({numel}) must be divisible by the shard "
|
288 |
+
f"world size ({shard_world_size})"
|
289 |
+
)
|
290 |
+
shard_rank = self.post_forward_mesh_info.shard_mesh_rank
|
291 |
+
sharded_numel = numel // shard_world_size
|
292 |
+
self._sharded_post_forward_param_data = (
|
293 |
+
self.all_gather_output.narrow(0, sharded_numel * shard_rank, sharded_numel)
|
294 |
+
).clone() # clone to be able to free all-gather output
|
295 |
+
sharded_post_forward_tensor = torch.as_strided(
|
296 |
+
self._sharded_post_forward_param_data,
|
297 |
+
size=self.sharded_post_forward_size,
|
298 |
+
stride=self.contiguous_sharded_post_forward_stride,
|
299 |
+
storage_offset=0,
|
300 |
+
)
|
301 |
+
self._sharded_post_forward_param = nn.Parameter(
|
302 |
+
self.to_sharded_post_forward_dtensor(sharded_post_forward_tensor)
|
303 |
+
)
|
304 |
+
self._setattr_on_modules(self._sharded_post_forward_param)
|
305 |
+
self.free_all_gather_output()
|
306 |
+
self.sharded_state = ShardedState.SHARDED_POST_FORWARD
|
307 |
+
|
308 |
+
def to_unsharded(self) -> None:
|
309 |
+
# Assume that the data has been allocated and all-gathered
|
310 |
+
set_requires_grad_if_needed(self.sharded_param, self._unsharded_param)
|
311 |
+
self._setattr_on_modules(self._unsharded_param)
|
312 |
+
if self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
|
313 |
+
# The data is allocated in the default stream via the post-forward
|
314 |
+
# reshard and must be kept alive for the next all-gather copy-in.
|
315 |
+
# Since we call this method after the copy-out, the data's lifetime
|
316 |
+
# is ensured without further synchronization.
|
317 |
+
self._sharded_post_forward_param = None
|
318 |
+
self._sharded_post_forward_param_data = None # free
|
319 |
+
self.sharded_state = ShardedState.UNSHARDED
|
320 |
+
|
321 |
+
def _setattr_on_modules(self, param: nn.Parameter) -> None:
|
322 |
+
unsafe_setattr_param(
|
323 |
+
self._module_info.module, self._module_info.param_name, param
|
324 |
+
)
|
325 |
+
for shared_module, shared_param_name in zip(
|
326 |
+
self._module_info.shared_modules, self._module_info.shared_param_names
|
327 |
+
):
|
328 |
+
unsafe_setattr_param(shared_module, shared_param_name, param)
|
329 |
+
|
330 |
+
def to_sharded_dtensor(self, tensor: torch.Tensor) -> DTensor:
|
331 |
+
"""
|
332 |
+
Converts a local tensor representing either the sharded parameter or
|
333 |
+
sharded gradient to DTensor.
|
334 |
+
"""
|
335 |
+
if tensor.shape != self.sharded_size:
|
336 |
+
_raise_assert_with_print(
|
337 |
+
f"Expects size {self.sharded_size} but got {tensor.shape}"
|
338 |
+
)
|
339 |
+
return _from_local_no_grad(
|
340 |
+
tensor,
|
341 |
+
self._global_mesh,
|
342 |
+
self._global_placements,
|
343 |
+
self._global_size,
|
344 |
+
self._global_stride,
|
345 |
+
)
|
346 |
+
|
347 |
+
def to_sharded_post_forward_dtensor(self, tensor: torch.Tensor) -> DTensor:
|
348 |
+
if tensor.shape != self.sharded_post_forward_size:
|
349 |
+
_raise_assert_with_print(
|
350 |
+
f"Expects size {self.sharded_post_forward_size} but got {tensor.shape}"
|
351 |
+
)
|
352 |
+
assert isinstance(self.post_forward_mesh_info, HSDPMeshInfo)
|
353 |
+
# TODO: Prefer this DTensor to be read-only and generalize the
|
354 |
+
# placement once we support TP.
|
355 |
+
return _from_local_no_grad(
|
356 |
+
tensor,
|
357 |
+
self.post_forward_mesh_info.mesh,
|
358 |
+
(Replicate(), Shard(0)),
|
359 |
+
self._global_size,
|
360 |
+
self._global_stride,
|
361 |
+
)
|
362 |
+
|
363 |
+
def alloc_all_gather_output(self) -> None:
|
364 |
+
unsafe_alloc_storage(self.all_gather_output)
|
365 |
+
|
366 |
+
def free_all_gather_output(self) -> None:
|
367 |
+
unsafe_free_storage(self.all_gather_output)
|
368 |
+
|
369 |
+
@property
|
370 |
+
def all_gather_input(self) -> torch.Tensor: # 1D
|
371 |
+
self._assert_in_states(ShardedState.SHARDED, ShardedState.SHARDED_POST_FORWARD)
|
372 |
+
if self.sharded_state == ShardedState.SHARDED:
|
373 |
+
return _to_dtype_if_needed(self._sharded_param_data, self.param_dtype)
|
374 |
+
elif self.sharded_state == ShardedState.SHARDED_POST_FORWARD:
|
375 |
+
return _to_dtype_if_needed(
|
376 |
+
cast(torch.Tensor, self._sharded_post_forward_param_data),
|
377 |
+
self.param_dtype,
|
378 |
+
)
|
379 |
+
return torch.empty(0) # mypy
|
380 |
+
|
381 |
+
@property
|
382 |
+
def unsharded_param(self) -> nn.Parameter: # ND
|
383 |
+
self._assert_in_states(ShardedState.UNSHARDED)
|
384 |
+
return self._unsharded_param
|
385 |
+
|
386 |
+
@property
|
387 |
+
def unsharded_grad_data(self) -> torch.Tensor:
|
388 |
+
grad = self.unsharded_param.grad
|
389 |
+
assert grad is not None, "Expects unsharded_param.grad to not be None"
|
390 |
+
return self._get_grad_inner_tensor(grad)
|
391 |
+
|
392 |
+
def _get_grad_inner_tensor(self, grad: torch.Tensor) -> torch.Tensor:
|
393 |
+
if self.is_dtensor:
|
394 |
+
if isinstance(grad, AsyncCollectiveTensor):
|
395 |
+
grad = grad.wait()
|
396 |
+
grad = cast(DTensor, grad)._local_tensor
|
397 |
+
return grad
|
398 |
+
|
399 |
+
def _assert_in_states(self, *states: ShardedState) -> None:
|
400 |
+
if self.sharded_state not in states:
|
401 |
+
_raise_assert_with_print(
|
402 |
+
f"Expects to be in one of {states}, not {self.sharded_state}"
|
403 |
+
)
|
404 |
+
|
405 |
+
|
406 |
+
# NOTE: Unsafe here refers to not checking whether the storage is already
|
407 |
+
# allocated or freed, respectively. We should be safe to use them since we
|
408 |
+
# explicitly manage the state transition.
|
409 |
+
def unsafe_alloc_storage(tensor: torch.Tensor) -> None:
|
410 |
+
# Skip the already-allocated check and assume that `tensor` is the base
|
411 |
+
# tensor to save CPU overhead
|
412 |
+
tensor.untyped_storage().resize_(tensor.numel() * tensor.itemsize)
|
413 |
+
|
414 |
+
|
415 |
+
def unsafe_free_storage(tensor: torch.Tensor) -> None:
|
416 |
+
# Skip the already-freed check to save CPU overhead
|
417 |
+
tensor.untyped_storage().resize_(0)
|
418 |
+
|
419 |
+
|
420 |
+
# NOTE: These bypass `nn.Module.__setattr__` checks, which incur non-trivial
|
421 |
+
# CPU overhead, if the module did not override it. For FSDP, we know we do not
|
422 |
+
# need those checks when transitioning between sharded/unsharded parameters.
|
423 |
+
def unsafe_setattr_param(
|
424 |
+
module: nn.Module, param_name: str, param: nn.Parameter
|
425 |
+
) -> None:
|
426 |
+
if getattr(module.__setattr__, "__func__", None) is nn.Module.__setattr__:
|
427 |
+
module._parameters[param_name] = param
|
428 |
+
else: # slow path
|
429 |
+
setattr(module, param_name, param)
|
430 |
+
|
431 |
+
|
432 |
+
def set_requires_grad_if_needed(
|
433 |
+
src_tensor: torch.Tensor, dst_tensor: torch.Tensor
|
434 |
+
) -> None:
|
435 |
+
# Only call `requires_grad_` if needed to avoid the Python <> C++ context
|
436 |
+
# switch overhead
|
437 |
+
if src_tensor.requires_grad != dst_tensor.requires_grad:
|
438 |
+
dst_tensor.requires_grad_(src_tensor.requires_grad)
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_param_group.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
|
3 |
+
from typing import Any, cast, Dict, List, NamedTuple, Optional, Set, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from torch.autograd.graph import Node
|
10 |
+
from torch.distributed.fsdp._common_utils import _named_parameters_with_duplicates
|
11 |
+
from torch.utils._pytree import tree_flatten, tree_unflatten
|
12 |
+
from torch.utils.hooks import RemovableHandle
|
13 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
14 |
+
from ._fsdp_collectives import (
|
15 |
+
AllGatherResult,
|
16 |
+
foreach_all_gather,
|
17 |
+
foreach_all_gather_copy_out,
|
18 |
+
foreach_reduce_scatter,
|
19 |
+
)
|
20 |
+
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo, TrainingState
|
21 |
+
from ._fsdp_param import FSDPParam, ParamModuleInfo, ShardedState
|
22 |
+
|
23 |
+
_ModuleToHandleDict = Dict[nn.Module, RemovableHandle] # for state dict
|
24 |
+
|
25 |
+
|
26 |
+
"""
|
27 |
+
[Note: Overlapping all-gather copy-in and all-gather]
|
28 |
+
For implicit forward prefetching, we want to overlap the next copy-in with the
|
29 |
+
current all-gather. We do so using a separate copy-in stream. However, since
|
30 |
+
we have the all-gather input as a view into the output, we must make sure to
|
31 |
+
copy into different memory from the current all-gather's output. Thus, we keep
|
32 |
+
a reference to the current all-gather's output and have the next FSDP parameter
|
33 |
+
group free it after its copy-in. Finally, we have the last FSDP state flush the
|
34 |
+
reference to avoid holding onto memory after forward.
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
class FSDPCommContext:
|
39 |
+
"""This has the communication state shared across FSDP states/parameter groups."""
|
40 |
+
|
41 |
+
def init(self):
|
42 |
+
# Setting the all-gather/reduce-scatter streams to be higher priority
|
43 |
+
# can help avoid some issues where their copies in/out are delayed and
|
44 |
+
# block computation
|
45 |
+
high_priority = -1
|
46 |
+
# All-gather state and copy-in stream allow overlapping the next
|
47 |
+
# copy-in with the current all-gather in forward; copy-in overlaps with
|
48 |
+
# reduce-scatter in backward without the separate copy-in stream
|
49 |
+
self.all_gather_copy_in_stream = torch.cuda.Stream(priority=high_priority)
|
50 |
+
self.all_gather_state: Optional[AllGatherState] = None
|
51 |
+
# All-gather stream allows overlapping next all-gather with current
|
52 |
+
# forward compute
|
53 |
+
self.all_gather_stream = torch.cuda.Stream(priority=high_priority)
|
54 |
+
# Reduce-scatter stream gives separate execution "thread" for post-
|
55 |
+
# backward logic like pre/post-gradient division and reduce-scatter
|
56 |
+
self.reduce_scatter_stream = torch.cuda.Stream(priority=high_priority)
|
57 |
+
# Post-forward order for explicit backward prefetching
|
58 |
+
self.post_forward_order: List[FSDPParamGroup] = [] # will cause ref cycles
|
59 |
+
|
60 |
+
def get_all_gather_streams(
|
61 |
+
self, training_state: TrainingState
|
62 |
+
) -> Tuple[torch.cuda.Stream, torch.cuda.Stream]:
|
63 |
+
if training_state in (TrainingState.FORWARD, TrainingState.PRE_BACKWARD):
|
64 |
+
# Use separate streams for implicit prefetching
|
65 |
+
return self.all_gather_copy_in_stream, self.all_gather_stream
|
66 |
+
current_stream = torch.cuda.current_stream()
|
67 |
+
return current_stream, current_stream
|
68 |
+
|
69 |
+
|
70 |
+
# See [Note: Overlapping all-gather copy-in and all-gather]
|
71 |
+
class AllGatherState(NamedTuple):
|
72 |
+
all_gather_result: AllGatherResult
|
73 |
+
event: torch.cuda.Event # all-gather copy-out
|
74 |
+
|
75 |
+
|
76 |
+
class FSDPParamGroup:
|
77 |
+
"""This class represents a parameter group to communicate together."""
|
78 |
+
|
79 |
+
_orig_dtype: torch.dtype
|
80 |
+
_reduce_dtype: Optional[torch.dtype]
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
params: List[nn.Parameter],
|
85 |
+
module: nn.Module,
|
86 |
+
mesh_info: FSDPMeshInfo,
|
87 |
+
post_forward_mesh_info: Optional[FSDPMeshInfo],
|
88 |
+
device: torch.device,
|
89 |
+
mp_policy: MixedPrecisionPolicy,
|
90 |
+
):
|
91 |
+
self.module = module # permit ref cycle because 1:1 lifetime
|
92 |
+
param_module_infos = _get_param_module_infos(params, module)
|
93 |
+
self.fsdp_params = [
|
94 |
+
FSDPParam(
|
95 |
+
param, module_info, mesh_info, post_forward_mesh_info, device, mp_policy
|
96 |
+
)
|
97 |
+
for param, module_info in zip(params, param_module_infos)
|
98 |
+
]
|
99 |
+
self.mesh_info = mesh_info
|
100 |
+
self.post_forward_mesh_info = post_forward_mesh_info
|
101 |
+
self.device = device
|
102 |
+
self.mp_policy = mp_policy
|
103 |
+
self._training_state = TrainingState.IDLE
|
104 |
+
# Group's sharded state always matches its parameters' sharded states
|
105 |
+
self._sharded_state = ShardedState.SHARDED
|
106 |
+
self._module_fqn: Optional[str] = None # prefixed from root module
|
107 |
+
|
108 |
+
# - Hook state
|
109 |
+
self._module_to_pre_save_state_dict_hook_handle: _ModuleToHandleDict = {}
|
110 |
+
self._module_to_pre_load_state_dict_hook_handle: _ModuleToHandleDict = {}
|
111 |
+
|
112 |
+
# - Communication and communication/computation overlap
|
113 |
+
self.comm_ctx = FSDPCommContext()
|
114 |
+
# Group's indices in the shared post-forward order
|
115 |
+
self._post_forward_indices: List[int] = []
|
116 |
+
# Used to avoid mistargeted backward prefetches when the module is used
|
117 |
+
# in forward but not in backward: for each forward, we record a tuple
|
118 |
+
# of the output's grad fns and later query the autograd engine whether
|
119 |
+
# any grad fn will execute in the current backward to know to prefetch.
|
120 |
+
self.all_forward_output_grad_fns: Set[Tuple[Node, ...]] = set()
|
121 |
+
# Whether to reduce-scatter or all-reduce gradients, respectively
|
122 |
+
# (can be set to false to save communication during gradient
|
123 |
+
# accumulation); all-reducing without reduce-scatter is disallowed
|
124 |
+
self.reduce_scatter_grads: bool = True
|
125 |
+
self.all_reduce_grads: bool = True
|
126 |
+
|
127 |
+
# - CUDA events for stream synchronization
|
128 |
+
# Holds the all-gather output buffer, sync objects, and metadata
|
129 |
+
self._all_gather_result: Optional[AllGatherResult] = None
|
130 |
+
# Holds the reduce-scatter view-out CUDA event that marks the end of
|
131 |
+
# the group's post-backward (e.g. reduce-scatter and div), which should
|
132 |
+
# be waited on at the end of backward
|
133 |
+
self._reduce_scatter_view_out_event: Optional[torch.cuda.Event] = None
|
134 |
+
# Holds the reshard-after-forward CUDA event when resharding to a
|
135 |
+
# different world size, which should be waited on in the next unshard
|
136 |
+
self._reshard_after_forward_event: Optional[torch.cuda.Event] = None
|
137 |
+
|
138 |
+
# Initialization #
|
139 |
+
def _init_mp_dtypes(self) -> None:
|
140 |
+
for fsdp_param in self.fsdp_params:
|
141 |
+
fsdp_param.init_dtype_attrs(self.mp_policy)
|
142 |
+
orig_dtypes = {fsdp_param.orig_dtype for fsdp_param in self.fsdp_params}
|
143 |
+
if len(orig_dtypes) != 1:
|
144 |
+
# This can be relaxed if we copy-out for the reduce-scatter
|
145 |
+
raise AssertionError(
|
146 |
+
f"FSDP expects uniform original parameter dtype but got {orig_dtypes}"
|
147 |
+
)
|
148 |
+
self._orig_dtype = next(iter(orig_dtypes))
|
149 |
+
reduce_dtypes = {fsdp_param.reduce_dtype for fsdp_param in self.fsdp_params}
|
150 |
+
if len(reduce_dtypes) != 1:
|
151 |
+
# This can be relaxed if we issue one reduce-scatter per reduce
|
152 |
+
# dtype (but we would need a way for users to specify multiple
|
153 |
+
# reduce dtypes)
|
154 |
+
raise AssertionError(
|
155 |
+
f"FSDP expects uniform reduce dtype but got {reduce_dtypes}"
|
156 |
+
)
|
157 |
+
self._reduce_dtype = next(iter(reduce_dtypes))
|
158 |
+
|
159 |
+
def _init_grad_divide_factors(self):
|
160 |
+
data_parallel_world_size = 1
|
161 |
+
data_parallel_world_size *= self.mesh_info.shard_mesh_size
|
162 |
+
if isinstance(self.mesh_info, HSDPMeshInfo):
|
163 |
+
data_parallel_world_size *= self.mesh_info.replicate_mesh_size
|
164 |
+
if self._reduce_dtype == torch.float32:
|
165 |
+
# Use NCCL's AVG op to divide after reduction since it is more
|
166 |
+
# performant and fp32 has sufficient precision
|
167 |
+
self._grad_divide_factors: Optional[Tuple[float, float]] = None
|
168 |
+
return
|
169 |
+
# For N data parallel workers, each worker computes g_i, and they
|
170 |
+
# collectively reduce (g_1 + ... + g_N) / N. To avoid overflow and
|
171 |
+
# underflow, we divide by ~sqrt(N) before and after the reduction.
|
172 |
+
factor: int = 1
|
173 |
+
while (
|
174 |
+
data_parallel_world_size % factor == 0
|
175 |
+
and data_parallel_world_size / factor > factor
|
176 |
+
):
|
177 |
+
factor *= 2
|
178 |
+
factor = float(factor)
|
179 |
+
self._grad_divide_factors = (factor, data_parallel_world_size / factor)
|
180 |
+
|
181 |
+
def lazy_init(self):
|
182 |
+
param_names_on_meta = [
|
183 |
+
fsdp_param._param_fqn
|
184 |
+
for fsdp_param in self.fsdp_params
|
185 |
+
if fsdp_param.sharded_param.device.type == "meta"
|
186 |
+
]
|
187 |
+
if param_names_on_meta:
|
188 |
+
raise RuntimeError(
|
189 |
+
"FSDP parameters should be materialized from meta device before training, "
|
190 |
+
f"but the following were still on meta device: {param_names_on_meta}\n"
|
191 |
+
"For example, call module.to_empty(device) to materialize to device and "
|
192 |
+
"call module.reset_parameters() on each module to initialize values."
|
193 |
+
)
|
194 |
+
# Initialize mixed precision attributes lazily in case the user changes
|
195 |
+
# the parameter dtypes after construction time but before forward
|
196 |
+
self._init_mp_dtypes()
|
197 |
+
self._init_grad_divide_factors()
|
198 |
+
self._register_state_dict_hooks()
|
199 |
+
|
200 |
+
# Runtime #
|
201 |
+
def unshard(self, async_op: bool = False):
|
202 |
+
if self._all_gather_result is not None: # already called, pending wait
|
203 |
+
return
|
204 |
+
if self.is_unsharded:
|
205 |
+
return # no-op
|
206 |
+
if self._reshard_after_forward_event is not None:
|
207 |
+
# Resharded parameter data is allocated in the default stream and
|
208 |
+
# used in the all-gather streams
|
209 |
+
self._wait_all_gather_streams_on_event(self._reshard_after_forward_event)
|
210 |
+
self._reshard_after_forward_event = None
|
211 |
+
self._all_gather_result = foreach_all_gather(
|
212 |
+
self.fsdp_params,
|
213 |
+
self._all_gather_process_group,
|
214 |
+
async_op,
|
215 |
+
*self.comm_ctx.get_all_gather_streams(self._training_state),
|
216 |
+
self.device,
|
217 |
+
)
|
218 |
+
|
219 |
+
def wait_for_unshard(self):
|
220 |
+
"""
|
221 |
+
1. In forward with implict prefetching, to overlap the current copy-out
|
222 |
+
with the next all-gather, we save a reference to the current all-gather
|
223 |
+
result to free after the next copy-out.
|
224 |
+
2. Otherwise (explicit prefetching or in backward), we free the
|
225 |
+
all-gather result immediately after the current copy-out since we can
|
226 |
+
already overlap the current copy-out with the previous reduce-scatter.
|
227 |
+
"""
|
228 |
+
if not self._all_gather_result:
|
229 |
+
return # no preceding unshard
|
230 |
+
if self._training_state == TrainingState.FORWARD: # implicit prefetch
|
231 |
+
if prev_all_gather_state := self.comm_ctx.all_gather_state:
|
232 |
+
self._wait_all_gather_streams_on_event(prev_all_gather_state.event)
|
233 |
+
self.comm_ctx.all_gather_state = None # free the all-gather result
|
234 |
+
foreach_all_gather_copy_out(
|
235 |
+
self._all_gather_result, self.fsdp_params, self._all_gather_process_group
|
236 |
+
)
|
237 |
+
for fsdp_param in self.fsdp_params:
|
238 |
+
fsdp_param.init_unsharded_param() # no-op after 1st call
|
239 |
+
self._to_unsharded()
|
240 |
+
all_gather_copy_out_event = torch.cuda.Event()
|
241 |
+
all_gather_copy_out_event.record()
|
242 |
+
if self._training_state == TrainingState.FORWARD:
|
243 |
+
self.comm_ctx.all_gather_state = AllGatherState(
|
244 |
+
self._all_gather_result, all_gather_copy_out_event
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
self._wait_all_gather_streams_on_event(all_gather_copy_out_event)
|
248 |
+
self._all_gather_result = None # free unless saved in `all_gather_state`
|
249 |
+
|
250 |
+
def _wait_all_gather_streams_on_event(self, event: torch.cuda.Event):
|
251 |
+
self.comm_ctx.all_gather_copy_in_stream.wait_event(event)
|
252 |
+
self.comm_ctx.all_gather_stream.wait_event(event)
|
253 |
+
|
254 |
+
def reshard(self):
|
255 |
+
if self._training_state == TrainingState.FORWARD:
|
256 |
+
if not self._reshard_after_forward:
|
257 |
+
return
|
258 |
+
if self._use_post_forward_mesh:
|
259 |
+
self._to_sharded_post_forward()
|
260 |
+
self._reshard_after_forward_event = torch.cuda.Event()
|
261 |
+
self._reshard_after_forward_event.record()
|
262 |
+
return
|
263 |
+
self._to_sharded()
|
264 |
+
|
265 |
+
def pre_forward(
|
266 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
267 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
268 |
+
with torch.profiler.record_function("FSDP::pre_forward"):
|
269 |
+
self._training_state = TrainingState.FORWARD
|
270 |
+
self.unshard()
|
271 |
+
self.wait_for_unshard()
|
272 |
+
args, kwargs = self._register_post_backward_hook(args, kwargs)
|
273 |
+
return args, kwargs
|
274 |
+
|
275 |
+
def post_forward(self, module: nn.Module, input: Any, output: Any):
|
276 |
+
with torch.profiler.record_function("FSDP::post_forward"):
|
277 |
+
self.reshard()
|
278 |
+
self._record_post_forward()
|
279 |
+
self._training_state = TrainingState.IDLE
|
280 |
+
return output
|
281 |
+
|
282 |
+
def _record_post_forward(self) -> None:
|
283 |
+
# Since a group has one pre-backward unshard for each forward call
|
284 |
+
# before the backward, we record each usage (with multiplicity)
|
285 |
+
post_forward_index = len(self.comm_ctx.post_forward_order)
|
286 |
+
self.comm_ctx.post_forward_order.append(self)
|
287 |
+
self._post_forward_indices.append(post_forward_index)
|
288 |
+
|
289 |
+
def pre_backward(self, forward_grad_fns: Tuple[Any, ...], *unused: Any):
|
290 |
+
with torch.profiler.record_function("FSDP::pre_backward"):
|
291 |
+
self._training_state = TrainingState.PRE_BACKWARD
|
292 |
+
self.unshard() # no-op if prefetched
|
293 |
+
self.wait_for_unshard()
|
294 |
+
# Can be already removed if running multiple `backward`s
|
295 |
+
self.all_forward_output_grad_fns.discard(forward_grad_fns)
|
296 |
+
self._prefetch_unshard()
|
297 |
+
|
298 |
+
def post_backward(self, *unused: Any):
|
299 |
+
self._training_state = TrainingState.POST_BACKWARD
|
300 |
+
with torch.profiler.record_function("FSDP::post_backward_reshard"):
|
301 |
+
if not self.reduce_scatter_grads:
|
302 |
+
self.reshard()
|
303 |
+
return
|
304 |
+
# Save the autograd-computed gradients before resharding to only
|
305 |
+
# access the unsharded parameters when their data is present
|
306 |
+
fsdp_params_with_grad: List[FSDPParam] = []
|
307 |
+
unsharded_grads: List[torch.Tensor] = []
|
308 |
+
for fsdp_param in self.fsdp_params:
|
309 |
+
if fsdp_param.unsharded_param.grad is not None:
|
310 |
+
fsdp_params_with_grad.append(fsdp_param)
|
311 |
+
unsharded_grads.append(fsdp_param.unsharded_grad_data)
|
312 |
+
fsdp_param.unsharded_param.grad = None
|
313 |
+
self.reshard()
|
314 |
+
if len(fsdp_params_with_grad) == 0:
|
315 |
+
return
|
316 |
+
with torch.profiler.record_function("FSDP::post_backward_reduce"):
|
317 |
+
self._reduce_scatter_view_out_event = foreach_reduce_scatter(
|
318 |
+
fsdp_params_with_grad,
|
319 |
+
unsharded_grads,
|
320 |
+
self._reduce_scatter_process_group,
|
321 |
+
self.comm_ctx.reduce_scatter_stream,
|
322 |
+
self._orig_dtype,
|
323 |
+
self._reduce_dtype,
|
324 |
+
self.device,
|
325 |
+
self._grad_divide_factors,
|
326 |
+
)
|
327 |
+
|
328 |
+
def finalize_backward(self):
|
329 |
+
if self._reduce_scatter_view_out_event is not None:
|
330 |
+
torch.cuda.current_stream().wait_event(self._reduce_scatter_view_out_event)
|
331 |
+
self._reduce_scatter_view_out_event = None
|
332 |
+
self._training_state = TrainingState.IDLE
|
333 |
+
self._post_forward_indices.clear()
|
334 |
+
self.all_forward_output_grad_fns.clear()
|
335 |
+
|
336 |
+
def _prefetch_unshard(self):
|
337 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
338 |
+
if not self._post_forward_indices:
|
339 |
+
# Can be cleared if running multiple `backward`s
|
340 |
+
return
|
341 |
+
curr_index = self._post_forward_indices.pop()
|
342 |
+
if (target_index := curr_index - 1) < 0:
|
343 |
+
return
|
344 |
+
target_fsdp_param_group = self.comm_ctx.post_forward_order[target_index]
|
345 |
+
if any(
|
346 |
+
torch._C._will_engine_execute_node(grad_fn) # type: ignore[attr-defined]
|
347 |
+
for grad_fns in target_fsdp_param_group.all_forward_output_grad_fns
|
348 |
+
for grad_fn in grad_fns
|
349 |
+
):
|
350 |
+
with torch.profiler.record_function(
|
351 |
+
"FSDP::backward_prefetch"
|
352 |
+
), target_fsdp_param_group.use_training_state(
|
353 |
+
TrainingState.PRE_BACKWARD
|
354 |
+
):
|
355 |
+
target_fsdp_param_group.unshard()
|
356 |
+
|
357 |
+
# Utilities #
|
358 |
+
def _to_sharded(self):
|
359 |
+
if not self.is_sharded:
|
360 |
+
for fsdp_param in self.fsdp_params:
|
361 |
+
fsdp_param.to_sharded()
|
362 |
+
self._sharded_state = ShardedState.SHARDED
|
363 |
+
|
364 |
+
def _to_sharded_post_forward(self):
|
365 |
+
if not self.is_sharded_post_forward:
|
366 |
+
for fsdp_param in self.fsdp_params:
|
367 |
+
fsdp_param.to_sharded_post_forward()
|
368 |
+
self._sharded_state = ShardedState.SHARDED_POST_FORWARD
|
369 |
+
|
370 |
+
def _to_unsharded(self):
|
371 |
+
if not self.is_unsharded:
|
372 |
+
for fsdp_param in self.fsdp_params:
|
373 |
+
fsdp_param.to_unsharded()
|
374 |
+
self._sharded_state = ShardedState.UNSHARDED
|
375 |
+
|
376 |
+
@property
|
377 |
+
def is_sharded(self) -> bool:
|
378 |
+
return self._sharded_state == ShardedState.SHARDED
|
379 |
+
|
380 |
+
@property
|
381 |
+
def is_sharded_post_forward(self) -> bool:
|
382 |
+
return self._sharded_state == ShardedState.SHARDED_POST_FORWARD
|
383 |
+
|
384 |
+
@property
|
385 |
+
def is_unsharded(self) -> bool:
|
386 |
+
return self._sharded_state == ShardedState.UNSHARDED
|
387 |
+
|
388 |
+
@contextlib.contextmanager
|
389 |
+
def use_training_state(self, training_state: TrainingState):
|
390 |
+
old_training_state = self._training_state
|
391 |
+
self._training_state = training_state
|
392 |
+
try:
|
393 |
+
yield
|
394 |
+
finally:
|
395 |
+
self._training_state = old_training_state
|
396 |
+
|
397 |
+
# Hook Registration #
|
398 |
+
def _register_post_backward_hook(
|
399 |
+
self, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
400 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
401 |
+
if not torch.is_grad_enabled():
|
402 |
+
return args, kwargs
|
403 |
+
args_list, args_spec = tree_flatten(args)
|
404 |
+
kwargs_list, kwargs_spec = tree_flatten(kwargs)
|
405 |
+
args_kwargs_list = list(args_list) + list(kwargs_list)
|
406 |
+
inp_tensor_indices: List[int] = []
|
407 |
+
inp_tensors: List[torch.Tensor] = []
|
408 |
+
for i, obj in enumerate(args_kwargs_list):
|
409 |
+
if torch.is_tensor(obj) and obj.requires_grad:
|
410 |
+
inp_tensor_indices.append(i)
|
411 |
+
inp_tensors.append(obj)
|
412 |
+
if len(inp_tensors) == 0:
|
413 |
+
return args, kwargs # no tensors that require gradients
|
414 |
+
inp_tensors = RegisterPostBackwardFunction.apply(self, *inp_tensors)
|
415 |
+
for inp_tensor_idx, inp_tensor in zip(inp_tensor_indices, inp_tensors):
|
416 |
+
args_kwargs_list[inp_tensor_idx] = inp_tensor
|
417 |
+
args_list = args_kwargs_list[: len(args_list)]
|
418 |
+
kwargs_list = args_kwargs_list[len(args_list) :]
|
419 |
+
args = tree_unflatten(args_list, args_spec)
|
420 |
+
kwargs = tree_unflatten(kwargs_list, kwargs_spec)
|
421 |
+
return args, kwargs
|
422 |
+
|
423 |
+
def _register_state_dict_hooks(self) -> None:
|
424 |
+
assert len(self._module_to_pre_save_state_dict_hook_handle) == 0
|
425 |
+
assert len(self._module_to_pre_load_state_dict_hook_handle) == 0
|
426 |
+
modules_with_fsdp_params: Set[nn.Module] = {
|
427 |
+
fsdp_param._module_info.module for fsdp_param in self.fsdp_params
|
428 |
+
}
|
429 |
+
|
430 |
+
def to_sharded_hook(*args: Any, **kwargs: Any) -> None:
|
431 |
+
self._to_sharded()
|
432 |
+
|
433 |
+
for module in modules_with_fsdp_params:
|
434 |
+
self._module_to_pre_save_state_dict_hook_handle[
|
435 |
+
module
|
436 |
+
] = module.register_state_dict_pre_hook(to_sharded_hook)
|
437 |
+
self._module_to_pre_load_state_dict_hook_handle[
|
438 |
+
module
|
439 |
+
] = module._register_load_state_dict_pre_hook(to_sharded_hook)
|
440 |
+
|
441 |
+
# Properties #
|
442 |
+
@property
|
443 |
+
def _reshard_after_forward(self) -> bool:
|
444 |
+
return self.post_forward_mesh_info is not None
|
445 |
+
|
446 |
+
@property
|
447 |
+
def _use_post_forward_mesh(self) -> bool:
|
448 |
+
return (
|
449 |
+
self._reshard_after_forward
|
450 |
+
and self.mesh_info != self.post_forward_mesh_info
|
451 |
+
)
|
452 |
+
|
453 |
+
@property
|
454 |
+
def _all_gather_process_group(self) -> dist.ProcessGroup:
|
455 |
+
mesh_info = (
|
456 |
+
cast(FSDPMeshInfo, self.post_forward_mesh_info)
|
457 |
+
if self.is_sharded_post_forward
|
458 |
+
else self.mesh_info
|
459 |
+
)
|
460 |
+
assert isinstance(mesh_info, FSDPMeshInfo)
|
461 |
+
return mesh_info.shard_process_group
|
462 |
+
|
463 |
+
@property
|
464 |
+
def _reduce_scatter_process_group(self) -> dist.ProcessGroup:
|
465 |
+
mesh_info = self.mesh_info
|
466 |
+
assert isinstance(mesh_info, FSDPMeshInfo)
|
467 |
+
return mesh_info.shard_process_group
|
468 |
+
|
469 |
+
|
470 |
+
def _get_param_module_infos(
|
471 |
+
params: List[nn.Parameter], module: nn.Module
|
472 |
+
) -> List[ParamModuleInfo]:
|
473 |
+
"""
|
474 |
+
Shared parameter: lin1.weight = lin2.weight
|
475 |
+
Shared module: mlp.lin1 = mlp.lin2
|
476 |
+
We do not remove duplicates when traversing both modules and parameters to
|
477 |
+
find shared modules' parameters and shared parameters within a module.
|
478 |
+
"""
|
479 |
+
params_set = set(params)
|
480 |
+
param_to_module_info: Dict[nn.Parameter, ParamModuleInfo] = {}
|
481 |
+
for _, submodule in module.named_modules(remove_duplicate=False):
|
482 |
+
for param_name, param in _named_parameters_with_duplicates(
|
483 |
+
submodule, recurse=False
|
484 |
+
):
|
485 |
+
if param in params_set:
|
486 |
+
if param not in param_to_module_info:
|
487 |
+
param_to_module_info[param] = ParamModuleInfo(submodule, param_name)
|
488 |
+
else:
|
489 |
+
param_to_module_info[param].shared_modules.append(submodule)
|
490 |
+
param_to_module_info[param].shared_param_names.append(param_name)
|
491 |
+
if len(param_to_module_info) != len(params):
|
492 |
+
raise AssertionError(f"Some parameters are not in the module tree of {module}")
|
493 |
+
return [param_to_module_info[param] for param in params]
|
494 |
+
|
495 |
+
|
496 |
+
class RegisterPostBackwardFunction(torch.autograd.Function):
|
497 |
+
@staticmethod
|
498 |
+
def forward(ctx, param_group: FSDPParamGroup, *inputs: torch.Tensor):
|
499 |
+
# All tensors in `inputs` should require gradient
|
500 |
+
ctx.param_group = param_group
|
501 |
+
return inputs
|
502 |
+
|
503 |
+
@staticmethod
|
504 |
+
def backward(ctx, *grads: torch.Tensor):
|
505 |
+
ctx.param_group.post_backward()
|
506 |
+
return (None,) + grads
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_state.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.autograd import Variable
|
8 |
+
from torch.autograd.graph import Node, register_multi_grad_hook
|
9 |
+
from torch.distributed._composable_state import (
|
10 |
+
_get_module_state,
|
11 |
+
_insert_module_state,
|
12 |
+
_State,
|
13 |
+
)
|
14 |
+
from torch.distributed.utils import _to_kwargs
|
15 |
+
from torch.utils._pytree import tree_flatten, tree_map
|
16 |
+
from torch.utils.hooks import RemovableHandle
|
17 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
18 |
+
from ._fsdp_common import _cast_fp_tensor, TrainingState
|
19 |
+
from ._fsdp_param import FSDPParam
|
20 |
+
from ._fsdp_param_group import FSDPCommContext, FSDPParamGroup
|
21 |
+
|
22 |
+
|
23 |
+
class FSDPStateContext:
|
24 |
+
"""This has state shared across FSDP states."""
|
25 |
+
|
26 |
+
def __init__(self):
|
27 |
+
# All FSDP states in the root state's module tree
|
28 |
+
self.all_states: List[FSDPState] = []
|
29 |
+
# Iteration's forward root runs the once-per-forward logic; this root
|
30 |
+
# may not be the overall root set by lazy initialization in cases where
|
31 |
+
# only a submodule runs forward (e.g. encoder-only for eval)
|
32 |
+
self.iter_forward_root: Optional[FSDPState] = None
|
33 |
+
# Final callback should only be queued once per backward
|
34 |
+
self.post_backward_final_callback_queued: bool = False
|
35 |
+
# Whether to finalize backward in this backward's final callback
|
36 |
+
self.is_last_backward: bool = True
|
37 |
+
|
38 |
+
|
39 |
+
class FSDPState(_State):
|
40 |
+
def __init__(self):
|
41 |
+
super().__init__()
|
42 |
+
self._fsdp_param_group: Optional[FSDPParamGroup] = None
|
43 |
+
self._is_root: Optional[bool] = None # root set during lazy init
|
44 |
+
self._state_ctx = FSDPStateContext()
|
45 |
+
self._comm_ctx = FSDPCommContext()
|
46 |
+
self._training_state: TrainingState = TrainingState.IDLE
|
47 |
+
self._pre_backward_hook_handles: List[RemovableHandle] = []
|
48 |
+
|
49 |
+
# Define a separate init since `__init__` is called in the contract
|
50 |
+
def init(
|
51 |
+
self, module: nn.Module, device: torch.device, mp_policy: MixedPrecisionPolicy
|
52 |
+
) -> None:
|
53 |
+
_insert_module_state(module, self)
|
54 |
+
self._module = module
|
55 |
+
self._device = device
|
56 |
+
self._mp_policy = mp_policy
|
57 |
+
self._pre_forward_hook_handle = module.register_forward_pre_hook(
|
58 |
+
self._pre_forward, prepend=True, with_kwargs=True
|
59 |
+
)
|
60 |
+
self._post_forward_hook_handle = module.register_forward_hook(
|
61 |
+
self._post_forward, prepend=False
|
62 |
+
)
|
63 |
+
|
64 |
+
def _root_pre_forward(
|
65 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
66 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
67 |
+
self._lazy_init()
|
68 |
+
if self._state_ctx.iter_forward_root is not None:
|
69 |
+
return args, kwargs
|
70 |
+
self._state_ctx.iter_forward_root = self
|
71 |
+
with torch.profiler.record_function("FSDP::root_pre_forward"):
|
72 |
+
# Wait for optimizer before implicitly prefetched all-gathers
|
73 |
+
current_stream = torch.cuda.current_stream()
|
74 |
+
self._comm_ctx.all_gather_copy_in_stream.wait_stream(current_stream)
|
75 |
+
self._comm_ctx.all_gather_stream.wait_stream(current_stream)
|
76 |
+
if self._device.type == "cuda":
|
77 |
+
with torch.profiler.record_function("FSDP::inputs_to_device"):
|
78 |
+
args_tuple, kwargs_tuple = _to_kwargs(
|
79 |
+
args, kwargs, self._device, False
|
80 |
+
) # same as DDP
|
81 |
+
args, kwargs = args_tuple[0], kwargs_tuple[0]
|
82 |
+
return args, kwargs
|
83 |
+
|
84 |
+
def _lazy_init(self) -> None:
|
85 |
+
"""
|
86 |
+
Lazy initialization represents when all modules' parallelisms have
|
87 |
+
finalized (e.g. FSDP has been applied to all desired modules). This
|
88 |
+
means that we can determine which state is the root, and we do so by
|
89 |
+
the 1st state to run forward.
|
90 |
+
"""
|
91 |
+
if self._is_root is not None:
|
92 |
+
return # no-op: already initialized
|
93 |
+
self._is_root = True
|
94 |
+
root_module = self._module
|
95 |
+
for module_name, module in root_module.named_modules():
|
96 |
+
if (state := _get_module_fsdp_state(module)) is None:
|
97 |
+
continue
|
98 |
+
if module is not root_module:
|
99 |
+
if state._is_root is not None:
|
100 |
+
raise RuntimeError(
|
101 |
+
"FSDP state has already been lazily initialized for "
|
102 |
+
f"{module_name}\nFSDP requires running forward through "
|
103 |
+
"the root module first"
|
104 |
+
)
|
105 |
+
state._is_root = False
|
106 |
+
self._state_ctx.all_states.append(state)
|
107 |
+
if self._fsdp_param_group:
|
108 |
+
# For the root, do not reshard after forward since for training,
|
109 |
+
# the parameters would be freed and all-gathered immediately
|
110 |
+
self._fsdp_param_group.post_forward_mesh_info = None
|
111 |
+
self._init_fqns()
|
112 |
+
self._init_shared_state()
|
113 |
+
# Run parameter group lazy inits after initializing FQNs for improved
|
114 |
+
# error messages
|
115 |
+
for state in self._state_ctx.all_states:
|
116 |
+
if state._fsdp_param_group:
|
117 |
+
state._fsdp_param_group.lazy_init()
|
118 |
+
|
119 |
+
def _init_shared_state(self) -> None:
|
120 |
+
self._comm_ctx.init()
|
121 |
+
for state in self._state_ctx.all_states:
|
122 |
+
state._state_ctx = self._state_ctx
|
123 |
+
state._comm_ctx = self._comm_ctx
|
124 |
+
if fsdp_param_group := state._fsdp_param_group:
|
125 |
+
fsdp_param_group.comm_ctx = self._comm_ctx
|
126 |
+
|
127 |
+
def _init_fqns(self) -> None:
|
128 |
+
"""Sets module and parameter FQN attributes for debugging."""
|
129 |
+
assert self._is_root
|
130 |
+
root_module = self._module
|
131 |
+
param_to_fsdp_param: Dict[nn.Parameter, FSDPParam] = {}
|
132 |
+
module_to_fsdp_param_group: Dict[nn.Module, FSDPParamGroup] = {}
|
133 |
+
for state in self._state_ctx.all_states:
|
134 |
+
if fsdp_param_group := state._fsdp_param_group:
|
135 |
+
for fsdp_param in fsdp_param_group.fsdp_params:
|
136 |
+
param_to_fsdp_param[fsdp_param.sharded_param] = fsdp_param
|
137 |
+
module_to_fsdp_param_group[fsdp_param_group.module] = fsdp_param_group
|
138 |
+
for param_name, param in root_module.named_parameters():
|
139 |
+
if param in param_to_fsdp_param:
|
140 |
+
param_to_fsdp_param[param]._param_fqn = param_name
|
141 |
+
for module_name, module in root_module.named_modules():
|
142 |
+
if module in module_to_fsdp_param_group:
|
143 |
+
module_to_fsdp_param_group[module]._module_fqn = module_name
|
144 |
+
|
145 |
+
def _pre_forward(
|
146 |
+
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
147 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
148 |
+
# When composing with module-hook-based activation checkpointing, the
|
149 |
+
# the pre-backward hook is responsible for the unshard
|
150 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
151 |
+
return args, kwargs
|
152 |
+
self._training_state = TrainingState.FORWARD
|
153 |
+
args, kwargs = self._root_pre_forward(module, args, kwargs)
|
154 |
+
if self._mp_policy.cast_forward_inputs and self._mp_policy.param_dtype:
|
155 |
+
with torch.profiler.record_function("FSDP::cast_forward_inputs"):
|
156 |
+
cast_fn = functools.partial(
|
157 |
+
_cast_fp_tensor, self._mp_policy.param_dtype
|
158 |
+
)
|
159 |
+
args, kwargs = tree_map(cast_fn, args), tree_map(cast_fn, kwargs)
|
160 |
+
if self._fsdp_param_group:
|
161 |
+
args, kwargs = self._fsdp_param_group.pre_forward(module, args, kwargs)
|
162 |
+
return args, kwargs
|
163 |
+
|
164 |
+
def _post_forward(self, module: nn.Module, input: Any, output: Any) -> Any:
|
165 |
+
# When composing with module-hook-based activation checkpointing, the
|
166 |
+
# post-backward hook is responsible for the reshard
|
167 |
+
if self._training_state == TrainingState.PRE_BACKWARD:
|
168 |
+
return output
|
169 |
+
if self._fsdp_param_group:
|
170 |
+
output = self._fsdp_param_group.post_forward(module, input, output)
|
171 |
+
output = self._register_pre_backward_hook(output)
|
172 |
+
self._training_state = TrainingState.IDLE
|
173 |
+
if self._state_ctx.iter_forward_root is self:
|
174 |
+
if all_gather_state := self._comm_ctx.all_gather_state:
|
175 |
+
# Free the last all-gather result if needed; refer to
|
176 |
+
# [Note: Overlapping all-gather copy-in and all-gather]
|
177 |
+
self._comm_ctx.all_gather_copy_in_stream.wait_event(
|
178 |
+
all_gather_state.event
|
179 |
+
)
|
180 |
+
self._comm_ctx.all_gather_stream.wait_event(all_gather_state.event)
|
181 |
+
self._comm_ctx.all_gather_state = None # free the all-gather result
|
182 |
+
self._state_ctx.iter_forward_root = None
|
183 |
+
if self._mp_policy.output_dtype is not None:
|
184 |
+
with torch.profiler.record_function("FSDP::cast_forward_outputs"):
|
185 |
+
output = tree_map(
|
186 |
+
functools.partial(_cast_fp_tensor, self._mp_policy.output_dtype),
|
187 |
+
output,
|
188 |
+
)
|
189 |
+
return output
|
190 |
+
|
191 |
+
def _pre_backward(self, forward_grad_fns: Tuple[Node, ...], *unused: Any) -> None:
|
192 |
+
self._training_state = TrainingState.PRE_BACKWARD
|
193 |
+
self._register_root_post_backward_final_callback()
|
194 |
+
if self._fsdp_param_group:
|
195 |
+
self._fsdp_param_group.pre_backward(forward_grad_fns, *unused)
|
196 |
+
|
197 |
+
def _root_post_backward_final_callback(self) -> None:
|
198 |
+
with torch.profiler.record_function("FSDP::root_post_backward_callback"):
|
199 |
+
for state in self._state_ctx.all_states:
|
200 |
+
if state._fsdp_param_group and state._fsdp_param_group.is_unsharded:
|
201 |
+
# Run post-backward in case forward inputs did not require
|
202 |
+
# gradient so the autograd backward did not run
|
203 |
+
state._fsdp_param_group.post_backward()
|
204 |
+
if self._state_ctx.is_last_backward:
|
205 |
+
state._finalize_backward()
|
206 |
+
if self._state_ctx.is_last_backward:
|
207 |
+
self._comm_ctx.post_forward_order.clear()
|
208 |
+
self._state_ctx.post_backward_final_callback_queued = False
|
209 |
+
|
210 |
+
def _finalize_backward(self) -> None:
|
211 |
+
self._training_state = TrainingState.IDLE
|
212 |
+
for handle in self._pre_backward_hook_handles:
|
213 |
+
handle.remove()
|
214 |
+
self._pre_backward_hook_handles.clear()
|
215 |
+
if self._fsdp_param_group:
|
216 |
+
self._fsdp_param_group.finalize_backward()
|
217 |
+
|
218 |
+
def _register_pre_backward_hook(self, output: Any) -> Any:
|
219 |
+
if not torch.is_grad_enabled():
|
220 |
+
return output
|
221 |
+
|
222 |
+
flat_outputs, _ = tree_flatten(output)
|
223 |
+
tensors = tuple(t for t in flat_outputs if t.requires_grad)
|
224 |
+
if tensors:
|
225 |
+
grad_fns = tuple(t.grad_fn for t in tensors if t.grad_fn is not None)
|
226 |
+
pre_backward = functools.partial(self._pre_backward, grad_fns)
|
227 |
+
handle = register_multi_grad_hook(tensors, pre_backward, mode="any")
|
228 |
+
self._pre_backward_hook_handles.append(handle)
|
229 |
+
if self._fsdp_param_group:
|
230 |
+
self._fsdp_param_group.all_forward_output_grad_fns.add(grad_fns)
|
231 |
+
return output
|
232 |
+
|
233 |
+
def _register_root_post_backward_final_callback(self):
|
234 |
+
if self._state_ctx.post_backward_final_callback_queued:
|
235 |
+
return
|
236 |
+
self._state_ctx.post_backward_final_callback_queued = True
|
237 |
+
Variable._execution_engine.queue_callback(
|
238 |
+
self._root_post_backward_final_callback
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
def _get_module_fsdp_state(module: nn.Module) -> Optional[FSDPState]:
|
243 |
+
state = _get_module_state(module)
|
244 |
+
if isinstance(state, FSDPState):
|
245 |
+
return state
|
246 |
+
return None
|
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/fully_shard.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, cast, Optional, Union
|
2 |
+
|
3 |
+
import typing_extensions
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from torch.distributed._composable import contract
|
9 |
+
from torch.distributed._tensor import DeviceMesh, DTensor
|
10 |
+
|
11 |
+
from ._fsdp_api import MixedPrecisionPolicy
|
12 |
+
from ._fsdp_common import FSDPMeshInfo, HSDPMeshInfo
|
13 |
+
from ._fsdp_init import (
|
14 |
+
_get_device_from_mesh,
|
15 |
+
_get_managed_modules,
|
16 |
+
_get_managed_states,
|
17 |
+
_get_post_forward_mesh_info,
|
18 |
+
_init_default_fully_shard_mesh,
|
19 |
+
_move_states_to_device,
|
20 |
+
)
|
21 |
+
from ._fsdp_param_group import FSDPParamGroup
|
22 |
+
from ._fsdp_state import _get_module_fsdp_state, FSDPState
|
23 |
+
|
24 |
+
|
25 |
+
# The decorator adds a state object to `module` that can be accessed via
|
26 |
+
# `fully_shard.state(module)`. The state object and module are 1:1.
|
27 |
+
@contract(state_cls=FSDPState)
|
28 |
+
def fully_shard(
|
29 |
+
module: nn.Module,
|
30 |
+
*,
|
31 |
+
mesh: Optional[DeviceMesh] = None,
|
32 |
+
reshard_after_forward: Union[bool, int] = True,
|
33 |
+
mp_policy: MixedPrecisionPolicy = MixedPrecisionPolicy(),
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Shard module parameters across data parallel workers.
|
37 |
+
|
38 |
+
This function applies fully sharded data parallelism (FSDP) or a variant to
|
39 |
+
``module``, a technique for memory savings at the cost of communication.
|
40 |
+
Parameters are sharded across ``mesh``, and in turn, so are their gradients
|
41 |
+
and optimizer states.
|
42 |
+
|
43 |
+
The sharded parameters are all-gathered to construct the unsharded
|
44 |
+
parameters for forward or backward computation. The unsharded parameters
|
45 |
+
are freed after computation to save memory. The gradients are reduced
|
46 |
+
across the mesh and divided by the mesh size for data parallelism. The
|
47 |
+
optimizer step runs on the sharded parameters.
|
48 |
+
|
49 |
+
Each call to ``fully_shard`` constructs one communication group that
|
50 |
+
includes the parameters in ``module.parameters()`` except those already
|
51 |
+
assigned to a group from a nested call. Each group's parameters and its
|
52 |
+
gradients are communicated together in one collective, respectively.
|
53 |
+
Constructing multiple groups across the model (e.g. "layer by layer")
|
54 |
+
allows for peak memory savings and communication/computation overlap.
|
55 |
+
|
56 |
+
Implementation-wise, the sharded parameters are represented as
|
57 |
+
:class:`DTensor` s, sharded on dim-0, and the unsharded parameters are
|
58 |
+
represented as :class:`Tensor` s. A module forward pre-hook all-gathers the
|
59 |
+
parameters, and a module forward hook frees them. Similar backward hooks
|
60 |
+
gather parameters and later free parameters/reduce gradients.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
mesh (Optional[DeviceMesh]): This data parallel mesh defines the
|
64 |
+
sharding and device. If 1D, then parameters are fully sharded
|
65 |
+
across the 1D mesh (FSDP). If 2D, then parameters are sharded
|
66 |
+
across the 0th dim and replicated across the 1st dim (HSDP). The
|
67 |
+
mesh's device type gives the device type used for communication;
|
68 |
+
if a CUDA or CUDA-like device type, then we use the current device.
|
69 |
+
reshard_after_forward (Union[bool, int]): This controls the parameter
|
70 |
+
behavior after forward and can trade off memory and communication:
|
71 |
+
- If ``True``, then this reshards parameters after forward and
|
72 |
+
all-gathers in backward.
|
73 |
+
- If ``False``, then this keeps the unsharded parameters in memory
|
74 |
+
after forward and avoids the all-gather in backward.
|
75 |
+
- If an ``int``, then this represents the world size to reshard to
|
76 |
+
after forward. It should be a non-trivial divisor of the ``mesh``
|
77 |
+
shard dim size (i.e. excluding 1 and the dim size itself). A choice
|
78 |
+
may be the intra-node size (e.g. ``torch.cuda.device_count()``).
|
79 |
+
This allows the all-gather in backward to be over a smaller world
|
80 |
+
size at the cost of higher memory usage than setting to ``True``.
|
81 |
+
- The root FSDP state has its value specially set to ``False`` as a
|
82 |
+
heuristic since its parameters would typically be immediately
|
83 |
+
all-gathered for backward.
|
84 |
+
- After forward, the parameters registered to the module depend on
|
85 |
+
to this: The registered parameters are the sharded parameters if
|
86 |
+
``True``; unsharded parameters if ``False``; and the paramters
|
87 |
+
resharded to the smaller mesh otherwise. To modify the parameters
|
88 |
+
between forward and backward, the registered parameters must be the
|
89 |
+
sharded parameters. For ``False`` or an ``int``, this can be done
|
90 |
+
by manually resharding via :meth:`reshard`.
|
91 |
+
mp_policy (MixedPrecisionPolicy): This controls the mixed precision
|
92 |
+
policy, which offers parameter/reduction mixed precision for this
|
93 |
+
module. See :class:`MixedPrecisionPolicy` for details.
|
94 |
+
"""
|
95 |
+
if isinstance(module, (nn.ModuleList, nn.ModuleDict)):
|
96 |
+
raise ValueError(
|
97 |
+
f"fully_shard does not support containers that do not implement forward: {module}"
|
98 |
+
)
|
99 |
+
mesh = mesh or _init_default_fully_shard_mesh()
|
100 |
+
if mesh.ndim not in (1, 2):
|
101 |
+
raise ValueError(f"fully_shard expects a 1D or 2D DeviceMesh but got {mesh}")
|
102 |
+
elif mesh.ndim == 1:
|
103 |
+
mesh_info = FSDPMeshInfo(mesh, shard_mesh_dim=0)
|
104 |
+
else:
|
105 |
+
mesh_info = HSDPMeshInfo(mesh, shard_mesh_dim=1, replicate_mesh_dim=0)
|
106 |
+
device = _get_device_from_mesh(mesh)
|
107 |
+
post_forward_mesh_info = _get_post_forward_mesh_info(
|
108 |
+
reshard_after_forward, mesh_info
|
109 |
+
)
|
110 |
+
|
111 |
+
state = fully_shard.state(module)
|
112 |
+
state.init(module, device, mp_policy)
|
113 |
+
|
114 |
+
managed_modules = _get_managed_modules(module)
|
115 |
+
params, buffers = _get_managed_states(managed_modules)
|
116 |
+
_move_states_to_device(params, buffers, device, mesh_info)
|
117 |
+
if params:
|
118 |
+
state._fsdp_param_group = FSDPParamGroup(
|
119 |
+
params, module, mesh_info, post_forward_mesh_info, device, mp_policy
|
120 |
+
)
|
121 |
+
|
122 |
+
# for dynamo
|
123 |
+
for module in managed_modules:
|
124 |
+
module._is_fsdp_managed_module = True # type: ignore[assignment]
|
125 |
+
module._fsdp_use_orig_params = True # type: ignore[assignment]
|
126 |
+
|
127 |
+
# Place FSDP leftmost for highest priority in the method resolution order
|
128 |
+
cls = module.__class__
|
129 |
+
dct = {"__deepcopy__": unimplemented_deepcopy}
|
130 |
+
new_cls = type(f"FSDP{cls.__name__}", (FSDP, cls), dct)
|
131 |
+
module.__class__ = new_cls
|
132 |
+
return module
|
133 |
+
|
134 |
+
|
135 |
+
def unimplemented_deepcopy(*args: Any, **kwargs: Any) -> typing_extensions.Never:
|
136 |
+
raise AssertionError(
|
137 |
+
"FSDP does not support deepcopy. Please use state dict for serialization."
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
class FSDP:
|
142 |
+
def __new__(cls, *args, **kwargs):
|
143 |
+
"""
|
144 |
+
Override ``__new__`` to remove the FSDP class and directly construct
|
145 |
+
the original class for cases like indexing into a container module.
|
146 |
+
"""
|
147 |
+
# Use index 2 since 0 is the dynamically constructed `FSDP<...>` class
|
148 |
+
# and index 1 is the `FSDP` class itself
|
149 |
+
orig_cls = cls.__mro__[2]
|
150 |
+
self = orig_cls.__new__(orig_cls, *args, **kwargs)
|
151 |
+
self.__init__(*args, **kwargs)
|
152 |
+
return self
|
153 |
+
|
154 |
+
def reshard(self) -> None:
|
155 |
+
"""
|
156 |
+
Reshards the module's parameters, registering the sharded parameters
|
157 |
+
to the module and freeing the unsharded parameters if needed. This
|
158 |
+
method is *not* recursive.
|
159 |
+
"""
|
160 |
+
state = self._get_fsdp_state()
|
161 |
+
if fsdp_param_group := state._fsdp_param_group:
|
162 |
+
fsdp_param_group.reshard()
|
163 |
+
|
164 |
+
def set_is_last_backward(self, is_last_backward: bool) -> None:
|
165 |
+
"""
|
166 |
+
Sets whether the next backward is the last one, meaning that FSDP
|
167 |
+
should wait for gradient reduction to finish and clear internal data
|
168 |
+
structures used for explicit prefetching.
|
169 |
+
"""
|
170 |
+
state = self._get_fsdp_state()
|
171 |
+
state._state_ctx.is_last_backward = is_last_backward
|
172 |
+
|
173 |
+
def set_requires_gradient_sync(
|
174 |
+
self, requires_gradient_sync: bool, recurse: bool = True
|
175 |
+
) -> None:
|
176 |
+
"""
|
177 |
+
Sets if the module should sync gradients. This can be used to implement
|
178 |
+
gradient accumulation without communication. For HSDP, this controls
|
179 |
+
both reduce-scatter and all-reduce together.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
requires_gradient_sync (bool): Whether to reduce gradients for the
|
183 |
+
module's parameters.
|
184 |
+
recurse (bool): Whether to set for all submodules or just the
|
185 |
+
passed-in module.
|
186 |
+
"""
|
187 |
+
for module in cast(nn.Module, self).modules():
|
188 |
+
if isinstance(module, FSDP):
|
189 |
+
state = module._get_fsdp_state()
|
190 |
+
if fsdp_param_group := state._fsdp_param_group:
|
191 |
+
fsdp_param_group.reduce_scatter_grads = requires_gradient_sync
|
192 |
+
fsdp_param_group.all_reduce_grads = requires_gradient_sync
|
193 |
+
|
194 |
+
def set_requires_all_reduce(self, requires_all_reduce: bool, recurse: bool = True):
|
195 |
+
"""
|
196 |
+
Sets if the module should all-reduce gradients. This can be used to
|
197 |
+
implement gradient accumulation with only reduce-scatter but not
|
198 |
+
all-reduce for HSDP.
|
199 |
+
"""
|
200 |
+
for module in cast(nn.Module, self).modules():
|
201 |
+
if isinstance(module, FSDP):
|
202 |
+
state = module._get_fsdp_state()
|
203 |
+
if fsdp_param_group := state._fsdp_param_group:
|
204 |
+
fsdp_param_group.all_reduce_grads = requires_all_reduce
|
205 |
+
|
206 |
+
def _get_fsdp_state(self) -> FSDPState:
|
207 |
+
if (state := _get_module_fsdp_state(cast(nn.Module, self))) is None:
|
208 |
+
raise AssertionError(f"No FSDP state found on {self}")
|
209 |
+
return state
|
210 |
+
|
211 |
+
def _apply(self, *args: Any, **kwargs: Any) -> Any:
|
212 |
+
# Reshard to ensure that sharded parameters are registered
|
213 |
+
self.reshard()
|
214 |
+
ret = super()._apply(*args, **kwargs) # type: ignore[misc]
|
215 |
+
state = self._get_fsdp_state()
|
216 |
+
if not (fsdp_param_group := state._fsdp_param_group):
|
217 |
+
return ret
|
218 |
+
# TODO: Remove this padding logic once DTensor pads the local tensor:
|
219 |
+
# https://github.com/pytorch/pytorch/issues/113045
|
220 |
+
with torch.no_grad():
|
221 |
+
for fsdp_param in fsdp_param_group.fsdp_params:
|
222 |
+
module_info = fsdp_param._module_info
|
223 |
+
new_param = getattr(module_info.module, module_info.param_name)
|
224 |
+
if new_param is not fsdp_param.sharded_param:
|
225 |
+
if torch.__future__.get_swap_module_params_on_conversion():
|
226 |
+
raise AssertionError(
|
227 |
+
"Expects swap_tensors to preserve object but got "
|
228 |
+
f"{new_param} instead of {fsdp_param.sharded_param}"
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
raise AssertionError(
|
232 |
+
"Please set torch.__future__.set_swap_module_params_on_conversion(True) "
|
233 |
+
"to use _apply methods with FSDP"
|
234 |
+
)
|
235 |
+
local_tensor = new_param._local_tensor
|
236 |
+
padded_sharded_size = fsdp_param.padded_sharded_param_size
|
237 |
+
if local_tensor.size() != padded_sharded_size:
|
238 |
+
padded_local_tensor = local_tensor.new_zeros(padded_sharded_size)
|
239 |
+
padded_local_tensor[: local_tensor.size(0)].copy_(local_tensor)
|
240 |
+
local_tensor = padded_local_tensor
|
241 |
+
fsdp_param._sharded_param_data = local_tensor.view(-1)
|
242 |
+
assert isinstance(fsdp_param.sharded_param, DTensor) # mypy
|
243 |
+
fsdp_param.sharded_param._local_tensor = local_tensor[
|
244 |
+
: fsdp_param.sharded_size[0]
|
245 |
+
]
|
246 |
+
return ret
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .api import CheckpointException
|
2 |
+
from .default_planner import DefaultLoadPlanner, DefaultSavePlanner
|
3 |
+
from .filesystem import FileSystemReader, FileSystemWriter
|
4 |
+
from .fsspec import FsspecReader, FsspecWriter
|
5 |
+
from .metadata import (
|
6 |
+
BytesStorageMetadata,
|
7 |
+
ChunkStorageMetadata,
|
8 |
+
Metadata,
|
9 |
+
TensorStorageMetadata,
|
10 |
+
)
|
11 |
+
from .optimizer import load_sharded_optimizer_state_dict
|
12 |
+
from .planner import LoadPlan, LoadPlanner, ReadItem, SavePlan, SavePlanner, WriteItem
|
13 |
+
from .state_dict_loader import load, load_state_dict
|
14 |
+
from .state_dict_saver import async_save, save, save_state_dict
|
15 |
+
from .storage import StorageReader, StorageWriter
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_dedup_save_plans.cpython-310.pyc
ADDED
Binary file (1.87 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_dedup_tensors.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_fsspec_filesystem.cpython-310.pyc
ADDED
Binary file (482 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_nested_dict.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_sharded_tensor_utils.cpython-310.pyc
ADDED
Binary file (2.73 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_storage_utils.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/_traverse.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/api.cpython-310.pyc
ADDED
Binary file (2.03 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/default_planner.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/filesystem.cpython-310.pyc
ADDED
Binary file (20.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/format_utils.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/fsspec.cpython-310.pyc
ADDED
Binary file (4.87 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/metadata.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/optimizer.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/planner.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/planner_helpers.cpython-310.pyc
ADDED
Binary file (8.44 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/resharding.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict.cpython-310.pyc
ADDED
Binary file (29.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict_loader.cpython-310.pyc
ADDED
Binary file (7.36 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/state_dict_saver.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/stateful.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/storage.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_dedup_save_plans.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
import dataclasses
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import Dict, List, Set
|
5 |
+
|
6 |
+
from torch.distributed.checkpoint.metadata import MetadataIndex
|
7 |
+
from torch.distributed.checkpoint.planner import SavePlan, WriteItem
|
8 |
+
|
9 |
+
__all__ = ["dedup_save_plans"]
|
10 |
+
|
11 |
+
|
12 |
+
def dedup_save_plans(all_plans: List[SavePlan]) -> List[SavePlan]:
|
13 |
+
"""
|
14 |
+
Removes duplicate entries from appearing on multiple SavePlans. For each duplicate across
|
15 |
+
a set of SavePlans, only the smallest SavePlan in terms of planned storage keeps the entry.
|
16 |
+
"""
|
17 |
+
|
18 |
+
write_item_to_plan_indices: Dict[MetadataIndex, Set[int]] = defaultdict(set)
|
19 |
+
write_item_idx_to_write_item: Dict[MetadataIndex, WriteItem] = {}
|
20 |
+
for plan_idx, plan in enumerate(all_plans):
|
21 |
+
for write_item in plan.items:
|
22 |
+
# map each write item to its plan
|
23 |
+
write_item_to_plan_indices[write_item.index].add(plan_idx)
|
24 |
+
write_item_idx_to_write_item[write_item.index] = write_item
|
25 |
+
|
26 |
+
# put item in the plan with the smallest size and remove it from the other plan_indices
|
27 |
+
to_remove: List[Set] = [set() for _ in range(len(all_plans))]
|
28 |
+
plan_to_size = [0] * len(all_plans)
|
29 |
+
for write_item_idx, plan_indices in write_item_to_plan_indices.items():
|
30 |
+
select_plan_idx = min(plan_indices, key=lambda plan_idx: plan_to_size[plan_idx])
|
31 |
+
|
32 |
+
write_item = write_item_idx_to_write_item[write_item_idx]
|
33 |
+
# essentially ignores the storage size of anything that is not a tensor, since
|
34 |
+
# we don't know how much storage they represent
|
35 |
+
plan_to_size[select_plan_idx] += write_item.tensor_storage_size() or 1
|
36 |
+
|
37 |
+
plan_indices.remove(select_plan_idx)
|
38 |
+
for plan_idx in plan_indices:
|
39 |
+
to_remove[plan_idx].add(write_item_idx)
|
40 |
+
|
41 |
+
for plan_idx, remove_set in enumerate(to_remove):
|
42 |
+
new_items = [
|
43 |
+
write_item
|
44 |
+
for write_item in all_plans[plan_idx].items
|
45 |
+
if write_item.index not in remove_set
|
46 |
+
]
|
47 |
+
all_plans[plan_idx] = dataclasses.replace(all_plans[plan_idx], items=new_items)
|
48 |
+
|
49 |
+
return all_plans
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_dedup_tensors.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
import dataclasses
|
3 |
+
import logging
|
4 |
+
from typing import Dict, List
|
5 |
+
|
6 |
+
from torch.distributed.checkpoint.metadata import MetadataIndex
|
7 |
+
from torch.distributed.checkpoint.planner import SavePlan
|
8 |
+
|
9 |
+
__all__ = ["dedup_tensors"]
|
10 |
+
|
11 |
+
|
12 |
+
def init_logger() -> logging.Logger:
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
level = logging.INFO
|
15 |
+
logger.setLevel(level)
|
16 |
+
console = logging.StreamHandler()
|
17 |
+
formatter = logging.Formatter(
|
18 |
+
"%(asctime)s %(filename)s:%(lineno)s %(levelname)s p:%(processName)s t:%(threadName)s: %(message)s"
|
19 |
+
)
|
20 |
+
console.setFormatter(formatter)
|
21 |
+
console.setLevel(level)
|
22 |
+
logger.addHandler(console)
|
23 |
+
logger.propagate = False
|
24 |
+
return logger
|
25 |
+
|
26 |
+
|
27 |
+
logger = init_logger()
|
28 |
+
|
29 |
+
|
30 |
+
# TODO add docstring for dedup_tensors
|
31 |
+
def dedup_tensors(all_plans: List[SavePlan]) -> List[SavePlan]:
|
32 |
+
all_plans = list(all_plans)
|
33 |
+
key_to_plan: Dict[MetadataIndex, List[int]] = {}
|
34 |
+
for plan_idx, plan in enumerate(all_plans):
|
35 |
+
for write_item in plan.items:
|
36 |
+
key_to_plan.setdefault(write_item.index, []).append(plan_idx)
|
37 |
+
|
38 |
+
replicated_items = {k: v for k, v in key_to_plan.items() if len(v) > 1}
|
39 |
+
|
40 |
+
# Remove duplicates by always keeping the first entry.
|
41 |
+
# Compute the per-rank remove set.
|
42 |
+
plan_to_keys: Dict[int, List[MetadataIndex]] = {}
|
43 |
+
for key, plans in replicated_items.items():
|
44 |
+
for plan_idx in plans[1:]:
|
45 |
+
plan_to_keys.setdefault(plan_idx, []).append(key)
|
46 |
+
if len(plan_to_keys) > 0:
|
47 |
+
logger.info("Duplicate keys to remove: %s", plan_to_keys)
|
48 |
+
|
49 |
+
for plan_idx, keys in plan_to_keys.items():
|
50 |
+
key_set = set(keys)
|
51 |
+
# rewrite items and remove elements
|
52 |
+
new_items = [
|
53 |
+
write_item
|
54 |
+
for write_item in all_plans[plan_idx].items
|
55 |
+
if write_item.index not in key_set
|
56 |
+
]
|
57 |
+
all_plans[plan_idx] = dataclasses.replace(all_plans[plan_idx], items=new_items)
|
58 |
+
|
59 |
+
return all_plans
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_fsspec_filesystem.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Mypy will not try inferring the types of any 3rd party libraries installed.
|
2 |
+
# mypy: ignore-errors
|
3 |
+
|
4 |
+
import logging
|
5 |
+
|
6 |
+
from torch.distributed.checkpoint.fsspec import ( # noqa: F401 # noqa: F401
|
7 |
+
FsspecReader,
|
8 |
+
FsspecWriter,
|
9 |
+
)
|
10 |
+
|
11 |
+
log = logging.getLogger(__name__)
|
12 |
+
log.warning(
|
13 |
+
"FSSpec Filesystem has been made public, please update your "
|
14 |
+
"import to torch.distributed.checkpoint"
|
15 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_nested_dict.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
from typing import Dict, Tuple
|
3 |
+
|
4 |
+
from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
|
5 |
+
|
6 |
+
from ._traverse import OBJ_PATH, set_element, STATE_DICT_ITEM, traverse_state_dict
|
7 |
+
|
8 |
+
"""
|
9 |
+
TODO:
|
10 |
+
Need to add ability to handle tuple, OrderedDict, NamedTuple.
|
11 |
+
Update mappings from dict to a class.
|
12 |
+
Change set_element to recreate the right type for tuple, OrderedDict, and NamedTuple.
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
FLATTEN_MAPPING = Dict[str, OBJ_PATH]
|
17 |
+
|
18 |
+
|
19 |
+
# TODO: Update Docstring for nested_dict.py
|
20 |
+
def flatten_state_dict(
|
21 |
+
state_dict: STATE_DICT_TYPE,
|
22 |
+
) -> Tuple[STATE_DICT_TYPE, FLATTEN_MAPPING]:
|
23 |
+
"""
|
24 |
+
Flatten ``state_dict`` made of nested dicts and lists into a top level dictionary.
|
25 |
+
|
26 |
+
Use ``unflatten_state_dict`` to revert this process.
|
27 |
+
Returns:
|
28 |
+
A tuple with the flatten state_dict and a mapping from original to new state_dict.
|
29 |
+
N.B. The new keys are derived from the object paths, joined by dot.
|
30 |
+
For example: ``{ 'a': {'b':...}}`` results in the key `a.b`.
|
31 |
+
"""
|
32 |
+
flattened: STATE_DICT_TYPE = {}
|
33 |
+
mappings: FLATTEN_MAPPING = {}
|
34 |
+
|
35 |
+
def flat_copy(path: OBJ_PATH, value: STATE_DICT_ITEM) -> None:
|
36 |
+
new_fqn = ".".join(map(str, path))
|
37 |
+
if new_fqn in flattened:
|
38 |
+
raise ValueError(f"duplicated flatten key {new_fqn}")
|
39 |
+
flattened[new_fqn] = value
|
40 |
+
mappings[new_fqn] = path
|
41 |
+
|
42 |
+
traverse_state_dict(state_dict, flat_copy)
|
43 |
+
return flattened, mappings
|
44 |
+
|
45 |
+
|
46 |
+
def unflatten_state_dict(
|
47 |
+
state_dict: STATE_DICT_TYPE, mapping: FLATTEN_MAPPING
|
48 |
+
) -> STATE_DICT_TYPE:
|
49 |
+
"""Restore the original nested state_dict according to ``mapping`` and the flattened ``state_dict``."""
|
50 |
+
nested: STATE_DICT_TYPE = {}
|
51 |
+
for key, value in state_dict.items():
|
52 |
+
set_element(nested, mapping[key], value)
|
53 |
+
return nested
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_sharded_tensor_utils.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
|
3 |
+
import copy
|
4 |
+
|
5 |
+
import torch.distributed as dist
|
6 |
+
from torch.distributed._shard.sharded_tensor import Shard, ShardedTensor, ShardMetadata
|
7 |
+
from torch.distributed._shard.sharded_tensor.metadata import ShardedTensorMetadata
|
8 |
+
from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
|
9 |
+
from torch.distributed.remote_device import _remote_device
|
10 |
+
|
11 |
+
from ._traverse import OBJ_PATH, set_element, STATE_DICT_ITEM, traverse_state_dict
|
12 |
+
from .utils import _element_wise_add, _normalize_device_info
|
13 |
+
|
14 |
+
|
15 |
+
# TODO: We need to refactor this code.
|
16 |
+
def _flatten_sharded_tensors(state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE:
|
17 |
+
r"""
|
18 |
+
Transform ``state_dict`` by flattening all nested ShardedTensor instances found.
|
19 |
+
|
20 |
+
The resulting ShardedTensor instances are only correct regarding the local shard and
|
21 |
+
MUST not be used for any other purpose but checkpointing, as no operator will work with them.
|
22 |
+
|
23 |
+
This function should be used in conjunction with a state_dict produced by FSDP's
|
24 |
+
StateDictType.SHARDED_STATE_DICT methods.
|
25 |
+
"""
|
26 |
+
new_state_dict: STATE_DICT_TYPE = {}
|
27 |
+
|
28 |
+
def rewrite_dict(path: OBJ_PATH, value: STATE_DICT_ITEM) -> None:
|
29 |
+
if not isinstance(value, ShardedTensor):
|
30 |
+
set_element(new_state_dict, path, value)
|
31 |
+
return
|
32 |
+
shards = value.local_shards()
|
33 |
+
|
34 |
+
if len(shards) == 0:
|
35 |
+
return
|
36 |
+
if len(shards) != 1:
|
37 |
+
set_element(new_state_dict, path, value)
|
38 |
+
return
|
39 |
+
|
40 |
+
outer_shard = shards[0]
|
41 |
+
|
42 |
+
inner_st = outer_shard.tensor
|
43 |
+
if not isinstance(inner_st, ShardedTensor):
|
44 |
+
set_element(new_state_dict, path, value)
|
45 |
+
return
|
46 |
+
|
47 |
+
if len(inner_st.local_shards()) != 1:
|
48 |
+
raise ValueError("Cannot handle inner tensor with more than 1 shard")
|
49 |
+
inner_shard = inner_st.local_shards()[0]
|
50 |
+
|
51 |
+
local_shards = [
|
52 |
+
Shard(
|
53 |
+
tensor=inner_shard.tensor,
|
54 |
+
metadata=ShardMetadata(
|
55 |
+
shard_offsets=_element_wise_add(
|
56 |
+
outer_shard.metadata.shard_offsets,
|
57 |
+
inner_shard.metadata.shard_offsets,
|
58 |
+
),
|
59 |
+
shard_sizes=inner_shard.metadata.shard_sizes,
|
60 |
+
placement=f"rank:{dist.get_rank()}/{inner_shard.tensor.device}",
|
61 |
+
),
|
62 |
+
)
|
63 |
+
]
|
64 |
+
|
65 |
+
st_meta: ShardedTensorMetadata = copy.deepcopy(value.metadata())
|
66 |
+
other_rank = 0 if dist.get_rank() > 0 else 1
|
67 |
+
device_info = _normalize_device_info(inner_shard.tensor.device.type, 0)
|
68 |
+
|
69 |
+
# Remove the outer ST shard the inner ST covers
|
70 |
+
for i, shard_md in enumerate(st_meta.shards_metadata):
|
71 |
+
if shard_md.shard_offsets == outer_shard.metadata.shard_offsets:
|
72 |
+
st_meta.shards_metadata.pop(i)
|
73 |
+
break
|
74 |
+
|
75 |
+
# Attribute other rank for the other shards
|
76 |
+
for shard_md in st_meta.shards_metadata:
|
77 |
+
shard_md.placement = _remote_device(f"rank:{other_rank}/{device_info}")
|
78 |
+
|
79 |
+
# Add other inner shards from the inner tensor
|
80 |
+
for inner_md in inner_st.metadata().shards_metadata:
|
81 |
+
if inner_md.shard_offsets != inner_shard.metadata.shard_offsets:
|
82 |
+
st_meta.shards_metadata.append(
|
83 |
+
ShardMetadata(
|
84 |
+
shard_offsets=_element_wise_add(
|
85 |
+
outer_shard.metadata.shard_offsets,
|
86 |
+
inner_md.shard_offsets,
|
87 |
+
),
|
88 |
+
shard_sizes=inner_md.shard_sizes,
|
89 |
+
placement=f"rank:{other_rank}/{device_info}",
|
90 |
+
)
|
91 |
+
)
|
92 |
+
|
93 |
+
# Finally add this shard
|
94 |
+
st_meta.shards_metadata.append(local_shards[0].metadata)
|
95 |
+
|
96 |
+
st = ShardedTensor._init_from_local_shards_and_global_metadata(
|
97 |
+
local_shards=local_shards,
|
98 |
+
sharded_tensor_metadata=st_meta,
|
99 |
+
)
|
100 |
+
set_element(new_state_dict, path, st)
|
101 |
+
|
102 |
+
traverse_state_dict(state_dict, rewrite_dict)
|
103 |
+
return new_state_dict
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_storage_utils.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Type, Union
|
3 |
+
|
4 |
+
from .filesystem import FileSystemReader, FileSystemWriter
|
5 |
+
|
6 |
+
from .storage import StorageReader, StorageWriter
|
7 |
+
|
8 |
+
|
9 |
+
def _storage_setup(
|
10 |
+
storage: Union[StorageReader, StorageWriter, None],
|
11 |
+
checkpoint_id: Union[str, os.PathLike, None],
|
12 |
+
reader: bool = False,
|
13 |
+
) -> Union[None, StorageReader, StorageWriter]:
|
14 |
+
if storage:
|
15 |
+
if checkpoint_id is not None:
|
16 |
+
storage.reset(checkpoint_id)
|
17 |
+
return storage
|
18 |
+
|
19 |
+
if not checkpoint_id:
|
20 |
+
raise RuntimeError(
|
21 |
+
"`checkpoint_id` must be specificed if "
|
22 |
+
"storage_reader/storage_writer is None."
|
23 |
+
)
|
24 |
+
|
25 |
+
targets: List[Type[Union[StorageReader, StorageWriter]]] = []
|
26 |
+
if reader:
|
27 |
+
targets = [
|
28 |
+
FileSystemReader,
|
29 |
+
]
|
30 |
+
else:
|
31 |
+
targets = [
|
32 |
+
FileSystemWriter,
|
33 |
+
]
|
34 |
+
try:
|
35 |
+
from .fsspec import FsspecReader, FsspecWriter
|
36 |
+
|
37 |
+
targets.append(FsspecReader if reader else FsspecWriter)
|
38 |
+
except Exception:
|
39 |
+
pass
|
40 |
+
|
41 |
+
for target in targets:
|
42 |
+
if target.validate_checkpoint_id(checkpoint_id):
|
43 |
+
storage = target(checkpoint_id) # type: ignore[call-arg]
|
44 |
+
storage.reset(checkpoint_id)
|
45 |
+
return storage
|
46 |
+
|
47 |
+
raise RuntimeError(
|
48 |
+
"Cannot detect which StorageReader or StorageWriter to use. "
|
49 |
+
"Please specify the storage_reader/storage_writer."
|
50 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/_traverse.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
from typing import (
|
3 |
+
Callable,
|
4 |
+
cast,
|
5 |
+
Collection,
|
6 |
+
List,
|
7 |
+
Mapping,
|
8 |
+
MutableMapping,
|
9 |
+
Optional,
|
10 |
+
Tuple,
|
11 |
+
TypeVar,
|
12 |
+
Union,
|
13 |
+
)
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
|
17 |
+
from torch.distributed._tensor import DTensor
|
18 |
+
from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
|
19 |
+
|
20 |
+
PATH_ITEM = Union[str, int]
|
21 |
+
OBJ_PATH = Tuple[PATH_ITEM, ...]
|
22 |
+
T = TypeVar("T")
|
23 |
+
|
24 |
+
STATE_DICT_ITEM = object
|
25 |
+
CONTAINER_TYPE = MutableMapping[PATH_ITEM, STATE_DICT_ITEM]
|
26 |
+
|
27 |
+
__all__ = ["traverse_state_dict", "set_element", "get_element", "print_tensor"]
|
28 |
+
|
29 |
+
|
30 |
+
def _keep_visiting_tensors(value: STATE_DICT_ITEM) -> bool:
|
31 |
+
return isinstance(value, torch.Tensor)
|
32 |
+
|
33 |
+
|
34 |
+
# TODO: update docstring for traverse.py
|
35 |
+
def traverse_state_dict(
|
36 |
+
state_dict: STATE_DICT_TYPE,
|
37 |
+
visitor: Callable[[OBJ_PATH, STATE_DICT_ITEM], None],
|
38 |
+
keep_traversing: Callable[[STATE_DICT_ITEM], bool] = _keep_visiting_tensors,
|
39 |
+
) -> None:
|
40 |
+
"""
|
41 |
+
Invoke ``visitor`` for each value recursively in ``state_dict``.
|
42 |
+
|
43 |
+
Traversal is short-circuited when if finds a collection for which ``keep_visiting_tensors`` evaluates
|
44 |
+
to false for all elements.
|
45 |
+
By default, all collections with at least one ``torch.Tensor`` element are traversed.
|
46 |
+
Visitor takes a path argument that is a tuple of the keys used to reach it.
|
47 |
+
"""
|
48 |
+
|
49 |
+
# a value is terminal if it has no other containers values inside it
|
50 |
+
def _is_terminal(value: STATE_DICT_ITEM) -> bool:
|
51 |
+
values: Collection[STATE_DICT_ITEM]
|
52 |
+
if isinstance(value, Mapping):
|
53 |
+
values = value.values()
|
54 |
+
elif isinstance(value, list):
|
55 |
+
values = value
|
56 |
+
else:
|
57 |
+
return True
|
58 |
+
|
59 |
+
for entry in values:
|
60 |
+
if isinstance(entry, (Mapping, list)) and not _is_terminal(entry):
|
61 |
+
return False
|
62 |
+
if keep_traversing is not None and keep_traversing(entry):
|
63 |
+
return False
|
64 |
+
return True
|
65 |
+
|
66 |
+
def _traverse_obj(path: OBJ_PATH, value: STATE_DICT_ITEM) -> None:
|
67 |
+
if _is_terminal(value):
|
68 |
+
visitor(path, value)
|
69 |
+
elif isinstance(value, Mapping):
|
70 |
+
for k, v in value.items():
|
71 |
+
_traverse_obj(path + (str(k),), v)
|
72 |
+
elif isinstance(value, list):
|
73 |
+
for i, v in enumerate(value):
|
74 |
+
_traverse_obj(path + (i,), v)
|
75 |
+
|
76 |
+
for key, value in state_dict.items():
|
77 |
+
_traverse_obj((str(key),), value)
|
78 |
+
|
79 |
+
|
80 |
+
def set_element(
|
81 |
+
root_dict: STATE_DICT_TYPE, path: OBJ_PATH, value: STATE_DICT_ITEM
|
82 |
+
) -> None:
|
83 |
+
"""Set ``value`` in ``root_dict`` along the ``path`` object path."""
|
84 |
+
cur_container = cast(CONTAINER_TYPE, root_dict)
|
85 |
+
|
86 |
+
def extend_list(lst: List[STATE_DICT_ITEM], idx: int) -> None:
|
87 |
+
while len(lst) <= idx:
|
88 |
+
lst.append(None)
|
89 |
+
|
90 |
+
for i in range(1, len(path)):
|
91 |
+
prev_key = path[i - 1]
|
92 |
+
key = path[i]
|
93 |
+
def_val = cast(STATE_DICT_ITEM, {} if type(key) == str else [])
|
94 |
+
|
95 |
+
if isinstance(cur_container, Mapping):
|
96 |
+
cur_container = cast(
|
97 |
+
CONTAINER_TYPE, cur_container.setdefault(prev_key, def_val)
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
extend_list(cur_container, prev_key)
|
101 |
+
if cur_container[prev_key] is None:
|
102 |
+
cur_container[prev_key] = def_val
|
103 |
+
cur_container = cur_container[prev_key]
|
104 |
+
|
105 |
+
key = path[-1]
|
106 |
+
if type(key) == int:
|
107 |
+
extend_list(cast(List[STATE_DICT_ITEM], cur_container), key)
|
108 |
+
|
109 |
+
cur_container[key] = value
|
110 |
+
|
111 |
+
|
112 |
+
def get_element(
|
113 |
+
root_dict: STATE_DICT_TYPE,
|
114 |
+
path: OBJ_PATH,
|
115 |
+
default_value: Optional[T] = None,
|
116 |
+
) -> Optional[T]:
|
117 |
+
"""Retrieve the value at ``path``from ``root_dict``, returning ``default_value`` if not found."""
|
118 |
+
cur_value = cast(CONTAINER_TYPE, root_dict)
|
119 |
+
for part in path:
|
120 |
+
if type(part) is int:
|
121 |
+
if not isinstance(cur_value, list) or len(cur_value) < part:
|
122 |
+
return default_value
|
123 |
+
elif not isinstance(cur_value, Mapping) or part not in cur_value:
|
124 |
+
return default_value
|
125 |
+
|
126 |
+
cur_value = cast(CONTAINER_TYPE, cur_value[part])
|
127 |
+
return cast(Optional[T], cur_value)
|
128 |
+
|
129 |
+
|
130 |
+
def _print_nested(
|
131 |
+
value: STATE_DICT_ITEM,
|
132 |
+
prefix: str = "",
|
133 |
+
print_fun: Callable[[str], None] = print,
|
134 |
+
) -> None:
|
135 |
+
if type(value) is ShardedTensor:
|
136 |
+
print_fun(f"{prefix} ShardedTensor size: {value.size()}")
|
137 |
+
for shard in value.local_shards():
|
138 |
+
_print_nested(
|
139 |
+
shard.tensor,
|
140 |
+
f"{shard.metadata.shard_offsets} ",
|
141 |
+
print_fun=print_fun,
|
142 |
+
)
|
143 |
+
elif type(value) is (DTensor):
|
144 |
+
print_fun(f"{prefix} DistributedTensor size: {value.size()}")
|
145 |
+
# TODO: add local offset for _local_tensor in print_nested.
|
146 |
+
_print_nested(
|
147 |
+
value._local_tensor,
|
148 |
+
print_fun=print_fun,
|
149 |
+
)
|
150 |
+
elif isinstance(value, torch.Tensor):
|
151 |
+
print_fun(f"{prefix} Tensor size: {value.size()}")
|
152 |
+
else:
|
153 |
+
print_fun(f"{prefix} Type: {type(value)}")
|
154 |
+
|
155 |
+
|
156 |
+
def print_tensor(
|
157 |
+
path: OBJ_PATH,
|
158 |
+
value: STATE_DICT_ITEM,
|
159 |
+
print_fun: Callable[[str], None] = print,
|
160 |
+
) -> None:
|
161 |
+
"""
|
162 |
+
Use this callback with traverse_state_dict to print its content.
|
163 |
+
|
164 |
+
By default the content is printed using the builtin ``print`` but this can
|
165 |
+
be change by passing a different ``print_fun` callable.
|
166 |
+
"""
|
167 |
+
_print_nested(value, prefix=str(path), print_fun=print_fun)
|
venv/lib/python3.10/site-packages/torch/distributed/checkpoint/api.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import traceback as tb
|
2 |
+
from typing import Any, Dict, Tuple
|
3 |
+
|
4 |
+
WRAPPED_EXCEPTION = Tuple[BaseException, tb.StackSummary]
|
5 |
+
|
6 |
+
__all__ = ["CheckpointException"]
|
7 |
+
|
8 |
+
|
9 |
+
def _wrap_exception(exc: BaseException) -> WRAPPED_EXCEPTION:
|
10 |
+
return (exc, tb.extract_tb(exc.__traceback__))
|
11 |
+
|
12 |
+
|
13 |
+
def _is_wrapped_exception(obj: Any) -> bool:
|
14 |
+
if not isinstance(obj, tuple):
|
15 |
+
return False
|
16 |
+
if len(obj) != 2:
|
17 |
+
return False
|
18 |
+
return isinstance(obj[0], BaseException) and isinstance(obj[1], tb.StackSummary)
|
19 |
+
|
20 |
+
|
21 |
+
class CheckpointException(BaseException):
|
22 |
+
"""Exception raised if failure was detected as part of a checkpoint load or save."""
|
23 |
+
|
24 |
+
def __init__(self, msg: str, failures: Dict[int, WRAPPED_EXCEPTION]):
|
25 |
+
super().__init__(msg, failures)
|
26 |
+
self._failures = failures
|
27 |
+
|
28 |
+
@property
|
29 |
+
def failures(self) -> Dict[int, WRAPPED_EXCEPTION]:
|
30 |
+
"""Return a dictionary mapping node ranks to their associated exceptions in case of failure."""
|
31 |
+
return self._failures
|
32 |
+
|
33 |
+
def __str__(self):
|
34 |
+
str = f"CheckpointException ranks:{self._failures.keys()}\n"
|
35 |
+
for rank, exc_pair in self._failures.items():
|
36 |
+
exc, trace = exc_pair
|
37 |
+
str += f"Traceback (most recent call last): (RANK {rank})\n"
|
38 |
+
if trace is not None:
|
39 |
+
str += "".join(tb.format_list(trace))
|
40 |
+
str += "".join(tb.format_exception_only(type(exc), value=exc))
|
41 |
+
return str
|