applied-ai-018 commited on
Commit
d375727
·
verified ·
1 Parent(s): 9fe56d9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step120/zero/19.attention.dense.weight/exp_avg.pt +3 -0
  7. ckpts/universal/global_step120/zero/19.attention.dense.weight/exp_avg_sq.pt +3 -0
  8. ckpts/universal/global_step120/zero/19.attention.dense.weight/fp32.pt +3 -0
  9. ckpts/universal/global_step120/zero/4.input_layernorm.weight/exp_avg.pt +3 -0
  10. ckpts/universal/global_step120/zero/4.input_layernorm.weight/exp_avg_sq.pt +3 -0
  11. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/__init__.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_composable_state.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_functional_collectives.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_functional_collectives_impl.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_state_dict_utils.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/argparse_util.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/c10d_logger.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/collective_utils.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/constants.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/device_mesh.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/distributed_c10d.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/launch.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/logging_handlers.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/remote_device.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/rendezvous.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/run.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/torch/distributed/__pycache__/utils.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/torch/distributed/_composable/__init__.py +4 -0
  29. venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/__init__.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/checkpoint_activation.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/contract.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/fully_shard.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/replicate.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py +94 -0
  35. venv/lib/python3.10/site-packages/torch/distributed/_composable/contract.py +194 -0
  36. venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_api.py +52 -0
  37. venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_common.py +151 -0
  38. venv/lib/python3.10/site-packages/torch/distributed/_composable/fully_shard.py +133 -0
  39. venv/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py +154 -0
  40. venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/__init__.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/comm_mode.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/op_coverage.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/visualize_sharding.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__init__.py +10 -0
  45. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/__init__.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/basic_strategy.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/common_rules.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/conv_ops.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/embedding_ops.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/experimental_ops.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23df29fc283a4778362ca11878b726b106636e57f13cafdd3b7e8d152f7cd803
3
+ size 33555612
ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3536c32890a60ae164b6183fe9a28b27f077c525d28082130c1170ce3a102b66
3
+ size 33555612
ckpts/universal/global_step120/zero/14.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85850ddefde2ae71ef563fbe93a20541501ab97aa8bddcba877f75f88b477b49
3
+ size 33555627
ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9481d4fb12dce0ead4f14f9da839d0eee10d5a75575757b7d83941aff4daa47
3
+ size 33555627
ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68c64b8c5e27d75610444fb8d6c0c947755967dc23edb76508400582707ccc28
3
+ size 33555533
ckpts/universal/global_step120/zero/19.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98dd5fa13a50c5a826026c48b1dc8b5d5bcf612a6e3c73820746a66b9c37e117
3
+ size 16778396
ckpts/universal/global_step120/zero/19.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:925d12e782d3b4c723c33574c3e050f75f71219966d298f9e666fc6ff9a74092
3
+ size 16778411
ckpts/universal/global_step120/zero/19.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ad2fd75bd755ea7368b4b3c7ffd4939641bf426bd66fee5f584f0c1bc40969
3
+ size 16778317
ckpts/universal/global_step120/zero/4.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f6deb500a5774778a3f48fb763ff31bdabad47a2645e52c8ee5fd9b8f8393f8
3
+ size 9372
ckpts/universal/global_step120/zero/4.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f70fb651b3ec524d6c5654873f3b4ec8b5db182812412661ab7f6449776850
3
+ size 9387
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.7 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_composable_state.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_functional_collectives.cpython-310.pyc ADDED
Binary file (28.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_functional_collectives_impl.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/_state_dict_utils.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/argparse_util.cpython-310.pyc ADDED
Binary file (3.94 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/c10d_logger.cpython-310.pyc ADDED
Binary file (3.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/collective_utils.cpython-310.pyc ADDED
Binary file (5.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/constants.cpython-310.pyc ADDED
Binary file (558 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/device_mesh.cpython-310.pyc ADDED
Binary file (18.4 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/distributed_c10d.cpython-310.pyc ADDED
Binary file (133 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/launch.cpython-310.pyc ADDED
Binary file (7.12 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/logging_handlers.cpython-310.pyc ADDED
Binary file (403 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/remote_device.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/rendezvous.cpython-310.pyc ADDED
Binary file (8.48 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/run.cpython-310.pyc ADDED
Binary file (28.7 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/__pycache__/utils.cpython-310.pyc ADDED
Binary file (11.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .checkpoint_activation import checkpoint
2
+ from .contract import _get_registry, contract
3
+ from .fully_shard import fully_shard
4
+ from .replicate import replicate
venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (374 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/checkpoint_activation.cpython-310.pyc ADDED
Binary file (3.37 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/contract.cpython-310.pyc ADDED
Binary file (5.22 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/fully_shard.cpython-310.pyc ADDED
Binary file (3.84 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/__pycache__/replicate.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import contextmanager, nullcontext
2
+ from typing import Any, Tuple
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch.utils.checkpoint import (
7
+ _checkpoint_without_reentrant_generator,
8
+ _DEFAULT_DETERMINISM_MODE,
9
+ )
10
+
11
+ from .contract import contract
12
+
13
+
14
+ @contextmanager
15
+ def _no_hook(module: nn.Module):
16
+ r"""
17
+ Disable hooks installed by checkpoint to avoid unintentional recursion
18
+ during backward recomputation.
19
+ """
20
+ orig_enable_hook = checkpoint.state(module).enable_hook
21
+ checkpoint.state(module).enable_hook = False
22
+ try:
23
+ yield
24
+ finally:
25
+ checkpoint.state(module).enable_hook = orig_enable_hook
26
+
27
+
28
+ @contract()
29
+ def checkpoint(module: nn.Module) -> nn.Module:
30
+ r"""
31
+ This is a composable activation checkpointing API. Unlike functional
32
+ activation checkpointing APIs, this one does not require changing model
33
+ source code. Unlike ``nn.Module`` wrapper activation checkpointing APIs,
34
+ this one does not modify model structure or fully-qualified names either.
35
+ Under the hood, it registers activation checkpointing logic as pre- and
36
+ post-forward hooks. Hence, this API can be easily applied to any model or
37
+ sub-modules in the model.
38
+
39
+ Args:
40
+ module (nn.Module): the target model or sub-module to apply activation
41
+ checkpointing.
42
+
43
+ Example::
44
+ >>> # xdoctest: +SKIP
45
+ >>> import torch.nn as nn
46
+ >>>
47
+ >>> class MyModel(nn.Module):
48
+ >>> def __init__(self):
49
+ >>> super().__init__()
50
+ >>> self.l1 = nn.Linear(10, 10)
51
+ >>> self.l2 = nn.Linear(10, 10)
52
+ >>>
53
+ >>> def forward(self, x):
54
+ >>> return self.l2(self.l1(x))
55
+ >>>
56
+ >>> model = MyModel()
57
+ >>> checkpoint(model.l1) # apply activation checkpointing only to l1
58
+ >>> model(torch.zeros(2, 10)).sum().backward()
59
+
60
+ """
61
+ torch._C._log_api_usage_once("torch.distributed.checkpoint")
62
+
63
+ def forward_pre_hook(module: nn.Module, inputs: Tuple[Any, ...]) -> None:
64
+ if checkpoint.state(module).enable_hook:
65
+
66
+ def context_fns():
67
+ return nullcontext(), _no_hook(module)
68
+
69
+ checkpoint.state(
70
+ module
71
+ )._ac_generator = _checkpoint_without_reentrant_generator(
72
+ module, True, context_fns, _DEFAULT_DETERMINISM_MODE, False, *inputs
73
+ )
74
+ next(checkpoint.state(module)._ac_generator)
75
+
76
+ def forward_hook(module: nn.Module, inputs: Tuple[Any, ...], output: Any) -> Any:
77
+ if checkpoint.state(module).enable_hook:
78
+ try:
79
+ next(checkpoint.state(module)._ac_generator)
80
+ except StopIteration:
81
+ pass
82
+ else:
83
+ raise RuntimeError(
84
+ "Expected non-reentrant activation checkpoint generator to be exhausted, but it was not!"
85
+ )
86
+
87
+ # Ensure that we no longer hold on to the generator. always_call=True helps ensure we
88
+ # clear this even in the case of exception in fwd pass.
89
+ checkpoint.state(module)._ac_generator = None
90
+
91
+ checkpoint.state(module).enable_hook = True
92
+ module.register_forward_pre_hook(forward_pre_hook)
93
+ module.register_forward_hook(forward_hook, prepend=True, always_call=True)
94
+ return module
venv/lib/python3.10/site-packages/torch/distributed/_composable/contract.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import uuid
2
+ from collections import OrderedDict
3
+ from functools import wraps
4
+ from typing import Callable, Dict, List, Optional, Type
5
+
6
+ import torch.nn as nn
7
+ from torch.distributed._composable_state import _State
8
+
9
+
10
+ def generate_state_key(string="__composable_api_state_key"):
11
+ return f"{string}_{str(uuid.uuid4())}"
12
+
13
+
14
+ STATE_KEY = generate_state_key()
15
+ REGISTRY_KEY = generate_state_key()
16
+
17
+
18
+ # TODO: we can add additional info to RegistryItem to share across APIs. E.g.,
19
+ # we can add args and kwargs here, and then we can detect whether fully_shard
20
+ # is combined with reentrant activation checkpointing and error out with a clear
21
+ # message.
22
+ class RegistryItem:
23
+ pass
24
+
25
+
26
+ def contract(state_cls: Type[_State] = _State):
27
+ r"""
28
+ Decorate a function as a composable distributed API, where the first
29
+ argument of the function must be an :class:`nn.Module` instance. The
30
+ decorator verifies that the wrapped function does not modify parameter,
31
+ buffer or sub-module fully-qualified names (FQN).
32
+
33
+ When a function ``func`` is decorated by ``@contract()``, a
34
+ ``.state(module: nn.Module)`` method will be installed to the decorated
35
+ function. Then you can retrieve and modify the state on a module by calling
36
+ ``func.state(module)``.
37
+
38
+ Example::
39
+ >>> # xdoctest: +SKIP
40
+ >>> import torch.nn as nn
41
+ >>>
42
+ >>> class MyModel(nn.Module):
43
+ >>> def __init__(self):
44
+ >>> super().__init__()
45
+ >>> self.l1 = nn.Linear(10, 10)
46
+ >>> self.l2 = nn.Linear(10, 10)
47
+ >>>
48
+ >>> def forward(self, x):
49
+ >>> return self.l2(self.l1(x))
50
+ >>>
51
+ >>> @contract()
52
+ >>> def my_feature(module: nn.Module) -> nn.Module:
53
+ >>> my_feature.state(module).some_state = "any value"
54
+ >>> return module
55
+ >>>
56
+ >>> model = MyModel()
57
+ >>> my_feature(model.l1)
58
+ >>> assert my_feature.state(model.l1).some_state == "any value"
59
+ >>> my_feature(model.l2)
60
+ >>> model(torch.randn(2, 10)).sum().backward()
61
+ """
62
+
63
+ # wraps will make functions decorated with contract() pickleable - needed for integration with torch.package
64
+ @wraps(state_cls)
65
+ def inner(func):
66
+ @wraps(func)
67
+ def wrapper(module: nn.Module, *args, **kwargs) -> Optional[nn.Module]:
68
+ # get existing global states
69
+ default_all_state: Dict[Callable, _State] = OrderedDict()
70
+ all_state: Dict[Callable, _State] = module.__dict__.setdefault( # type: ignore[call-overload]
71
+ STATE_KEY, default_all_state
72
+ )
73
+ assert isinstance(
74
+ all_state, dict
75
+ ), "Distributed composable API states corrupted"
76
+
77
+ # get global registry
78
+ default_registry: Dict[str, RegistryItem] = OrderedDict()
79
+ registry: Dict[str, RegistryItem] = module.__dict__.setdefault( # type: ignore[call-overload]
80
+ REGISTRY_KEY, default_registry
81
+ )
82
+
83
+ assert isinstance(
84
+ registry, dict
85
+ ), "Distributed composable API registry corrupted"
86
+
87
+ # make sure the API func has not been applied to the input module yet.
88
+ assert func not in all_state and func.__name__ not in registry, (
89
+ "Each distinct composable distributed API can only be applied to a "
90
+ f"module once. {func.__name__} has already been applied to the "
91
+ f"following module.\n{module}"
92
+ )
93
+
94
+ # install states specific to the wrapped ``func``
95
+ all_state.setdefault(func, state_cls())
96
+ # register ``func`` in the global registry by name
97
+ registry.setdefault(func.__name__, RegistryItem())
98
+
99
+ orig_named_params = OrderedDict(module.named_parameters())
100
+ orig_named_buffers = OrderedDict(
101
+ module.named_buffers(remove_duplicate=False)
102
+ )
103
+ orig_named_modules = OrderedDict(
104
+ module.named_modules(remove_duplicate=False)
105
+ )
106
+
107
+ updated = func(module, *args, **kwargs)
108
+
109
+ if updated is None:
110
+ updated = module
111
+
112
+ new_named_params = OrderedDict(updated.named_parameters())
113
+ new_named_buffers = OrderedDict(
114
+ updated.named_buffers(remove_duplicate=False)
115
+ )
116
+ new_named_modules = OrderedDict(
117
+ updated.named_modules(remove_duplicate=False)
118
+ )
119
+
120
+ assert isinstance(updated, nn.Module), (
121
+ "Output of composable distributed APIs must be either None or "
122
+ f"nn.Module, but got {type(updated)}"
123
+ )
124
+
125
+ def check_fqn(orig_fqns: List[str], new_fqns: List[str], check_key: str):
126
+ if orig_fqns == new_fqns:
127
+ return
128
+
129
+ orig_fqn_set, new_fqn_set = set(orig_fqns), set(new_fqns)
130
+ orig_only = orig_fqn_set - new_fqn_set
131
+ new_only = new_fqn_set - orig_fqn_set
132
+ if len(orig_only) or len(new_only):
133
+ raise RuntimeError(
134
+ f"{check_key}"
135
+ "Composable distributed API implementations cannot modify "
136
+ "FQNs.\n"
137
+ f"Only in original FQNs: {orig_only},\n"
138
+ f"Only in new FQNs: {new_only}"
139
+ )
140
+ else:
141
+ raise RuntimeError(
142
+ f"{check_key}"
143
+ "Composable distributed API implementations cannot modify "
144
+ "the order of FQNs.\n"
145
+ f"Original FQNs: {orig_only}\n"
146
+ f"New FQNs: {new_only}"
147
+ )
148
+
149
+ check_fqn(
150
+ list(orig_named_params.keys()),
151
+ list(new_named_params.keys()),
152
+ "Check parameters, ",
153
+ )
154
+ check_fqn(
155
+ list(orig_named_buffers.keys()),
156
+ list(new_named_buffers.keys()),
157
+ "Check buffer, ",
158
+ )
159
+ check_fqn(
160
+ list(orig_named_modules.keys()),
161
+ list(new_named_modules.keys()),
162
+ "Check modules, ",
163
+ )
164
+
165
+ # TODO: a stricter verification should also reject changing module
166
+ # types and monkey-patching forward() method implementations.
167
+
168
+ # TODO: verify that installed distributed paradigms are compatible with
169
+ # each other.
170
+
171
+ return updated
172
+
173
+ def get_state(module: nn.Module) -> Optional[_State]:
174
+ return module.__dict__.setdefault( # type: ignore[call-overload]
175
+ STATE_KEY,
176
+ {}, # TODO(@yhcharles): this is a temporary fix, need a better way
177
+ ).get(
178
+ func
179
+ ) # type: ignore[call-overload]
180
+
181
+ wrapper.state = get_state # type: ignore[attr-defined]
182
+
183
+ return wrapper
184
+
185
+ return inner
186
+
187
+
188
+ def _get_registry(module: nn.Module) -> Optional[Dict[str, RegistryItem]]:
189
+ r"""
190
+ Get an ``OrderedDict`` of composable APIs that have been applied to the
191
+ ``module``, indexed by the API name. If no API has been applied, then this
192
+ returns ``None``.
193
+ """
194
+ return getattr(module, REGISTRY_KEY, None)
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_api.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Optional
3
+
4
+ import torch
5
+
6
+
7
+ @dataclass(frozen=True)
8
+ class MixedPrecisionPolicy:
9
+ """
10
+ This configures FSDP's mixed precision. Unlike autocast, this applies mixed
11
+ precision at the module level, not op level, which means low-precision
12
+ activations are saved for backward and high-to-low-precision casts are
13
+ incurred only at module boundaries.
14
+
15
+ FSDP works well with module-level mixed precision since it keeps the
16
+ high-precision sharded parameters in memory anyway. In other words, FSDP
17
+ does not require any extra memory to keep a high-precision copy of the
18
+ parameters for the optimizer step.
19
+
20
+ Attributes:
21
+ param_dtype (Optional[torch.dtype]): This specifies the dtype for
22
+ the unsharded parameter and hence the dtype for forward/backward
23
+ computation and the parameter all-gather. If this is ``None``, then
24
+ the unsharded parameter uses the original dtype. The optimizer step
25
+ uses the sharded parameter in the original dtype. (Default:
26
+ ``None``)
27
+ reduce_dtype (Optional[torch.dtype]): This specifies the dtype for
28
+ gradient reduction (i.e. reduce-scatter or all-reduce). If this is
29
+ ``None`` but ``param_dtype`` is not ``None``, then the reduction
30
+ uses the compute dtype. This can be used to run gradient reduction
31
+ in full precision while using low precision for compute. (Default:
32
+ ``None``)
33
+ output_dtype (Optional[torch.dtype]): This specifies the dtype for
34
+ casting floating-point forward outputs. This can be used to
35
+ help implement cases where different modules have different mixed
36
+ precision policies. (Default: ``None``)
37
+ cast_forward_inputs (bool): This specifies whether FSDP should cast the
38
+ forward's floating-point input tensors to ``param_dtype`` or not.
39
+ """
40
+
41
+ param_dtype: Optional[torch.dtype] = None
42
+ reduce_dtype: Optional[torch.dtype] = None
43
+ output_dtype: Optional[torch.dtype] = None
44
+ cast_forward_inputs: bool = True
45
+
46
+ def __post_init__(self):
47
+ # Clamp `reduce_dtype` to `None` if no casting is required: since
48
+ # gradients are computed in `param_dtype`, if `reduce_dtype` matches,
49
+ # then we do not need extra casting
50
+ if self.param_dtype == self.reduce_dtype:
51
+ # Bypass the frozen dataclass checks
52
+ object.__setattr__(self, "reduce_dtype", None)
venv/lib/python3.10/site-packages/torch/distributed/_composable/fsdp/_fsdp_common.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import traceback
3
+
4
+ from dataclasses import dataclass
5
+ from enum import auto, Enum
6
+ from typing import Any, cast, List, Optional, Tuple
7
+
8
+ import torch
9
+ import torch.distributed as dist
10
+ import torch.nn as nn
11
+ from torch.distributed._composable.contract import _get_registry
12
+ from torch.distributed._tensor import DeviceMesh, DTensor, Placement
13
+
14
+
15
+ @dataclass
16
+ class DataParallelMeshInfo:
17
+ mesh: DeviceMesh
18
+ shard_mesh_dim: Optional[int] = None
19
+ replicate_mesh_dim: Optional[int] = None
20
+
21
+ def __post_init__(self):
22
+ if self.shard_mesh_dim is None and self.replicate_mesh_dim is None:
23
+ raise AssertionError(
24
+ "At least one of shard_mesh_dim and replicate_mesh_dim must not be None"
25
+ )
26
+
27
+
28
+ @dataclass
29
+ class FSDPMeshInfo(DataParallelMeshInfo):
30
+ def __post_init__(self):
31
+ super().__post_init__()
32
+ if self.shard_mesh_dim is None:
33
+ raise AssertionError("Expects non-None shard_mesh_dim")
34
+ self.shard_mesh_size: int = self.mesh.size(self.shard_mesh_dim)
35
+ self.shard_process_group = cast(
36
+ dist.ProcessGroup, self.mesh.get_group(self.shard_mesh_dim)
37
+ )
38
+ self.shard_mesh_rank: int = self.shard_process_group.rank()
39
+
40
+
41
+ @dataclass
42
+ class DDPMeshInfo(DataParallelMeshInfo):
43
+ def __post_init__(self):
44
+ super().__post_init__()
45
+ if self.replicate_mesh_dim is None:
46
+ raise AssertionError("Expects non-None replicate_mesh_dim")
47
+ self.replicate_mesh_size: int = self.mesh.size(self.replicate_mesh_dim)
48
+ self.replicate_process_group = cast(
49
+ dist.ProcessGroup, self.mesh.get_group(self.replicate_mesh_dim)
50
+ )
51
+ self.replicate_mesh_rank: int = self.replicate_process_group.rank()
52
+
53
+
54
+ @dataclass
55
+ class HSDPMeshInfo(FSDPMeshInfo, DDPMeshInfo):
56
+ def __post_init__(self):
57
+ # Calls `FSDPMeshInfo` -> `DDPMeshInfo` -> `DataParallelMeshInfo`
58
+ super().__post_init__()
59
+
60
+
61
+ class TrainingState(Enum):
62
+ """Describes the training state of one FSDP state / parameter group."""
63
+
64
+ # Transition to forward starting pre-forward until post-forward
65
+ FORWARD = auto()
66
+ # Transition to pre-backward when unsharding in backward
67
+ PRE_BACKWARD = auto()
68
+ # Transition to post-backward when resharding and reducing gradients
69
+ POST_BACKWARD = auto()
70
+ # Idle before/after forward or before pre-backward/after post-backward
71
+ IDLE = auto()
72
+
73
+
74
+ def _raise_assert_with_print(*args: Any, **kwargs: Any):
75
+ print(f"[Rank {dist.get_rank()}] ", end="")
76
+ print(*args, **kwargs)
77
+ traceback.print_stack()
78
+ raise AssertionError(*args, **kwargs)
79
+
80
+
81
+ def _is_composable_with_fsdp(module: nn.Module) -> bool:
82
+ registry = _get_registry(module)
83
+ if registry is None:
84
+ return True
85
+ # Registry keys by function name
86
+ return "replicate" not in registry
87
+
88
+
89
+ def _get_dim0_padded_size(tensor_size: torch.Size, dim0_factor: int) -> torch.Size:
90
+ padded_dim0 = math.ceil(tensor_size[0] / dim0_factor) * dim0_factor
91
+ return cast(torch.Size, torch.Size([padded_dim0]) + tensor_size[1:])
92
+
93
+
94
+ def _chunk_with_empty(
95
+ tensor: torch.Tensor, num_chunks: int, dim: int
96
+ ) -> List[torch.Tensor]:
97
+ chunks = list(torch.chunk(tensor, num_chunks, dim=dim))
98
+ while len(chunks) < num_chunks:
99
+ chunks.append(chunks[0].new_empty(0))
100
+ return chunks
101
+
102
+
103
+ def _get_dim0_chunked_size(
104
+ chunk: torch.Tensor, unchunked_size: torch.Size
105
+ ) -> torch.Size:
106
+ if chunk.numel() > 0:
107
+ return chunk.size()
108
+ # For 0 numel, we need to preserve trailing dims for DTensor APIs
109
+ return cast(torch.Size, torch.Size([0]) + unchunked_size[1:])
110
+
111
+
112
+ def _from_local_no_grad(
113
+ local_tensor: torch.Tensor,
114
+ device_mesh: DeviceMesh,
115
+ placements: Tuple[Placement, ...],
116
+ global_size: torch.Size,
117
+ global_stride: Tuple[int, ...],
118
+ ) -> DTensor:
119
+ """
120
+ This method is similar to ``DTensor.from_local()`` except it avoids some
121
+ CPU overhead by avoiding default args and not being differentiable.
122
+ """
123
+ return DTensor(
124
+ # Use the local tensor directly instead of constructing a new tensor
125
+ # variable, e.g. with `view_as()`, since this is not differentiable
126
+ local_tensor,
127
+ device_mesh,
128
+ placements,
129
+ shape=global_size,
130
+ dtype=local_tensor.dtype,
131
+ requires_grad=local_tensor.requires_grad,
132
+ stride=global_stride,
133
+ )
134
+
135
+
136
+ def _to_dtype_if_needed(
137
+ tensor: torch.Tensor, dtype: Optional[torch.dtype]
138
+ ) -> torch.Tensor:
139
+ if dtype is not None and tensor.dtype != dtype:
140
+ return tensor.to(dtype)
141
+ return tensor
142
+
143
+
144
+ def _cast_fp_tensor(dtype: torch.dtype, x: torch.Tensor) -> torch.Tensor:
145
+ if (
146
+ not isinstance(x, torch.Tensor)
147
+ or not torch.is_floating_point(x)
148
+ or x.dtype == dtype
149
+ ):
150
+ return x
151
+ return x.to(dtype)
venv/lib/python3.10/site-packages/torch/distributed/_composable/fully_shard.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from typing import Callable, Iterable, Optional, Union
3
+
4
+ import torch
5
+ import torch.distributed as dist
6
+ import torch.nn as nn
7
+ from torch.distributed._composable.contract import contract
8
+ from torch.distributed._composable_state import _get_module_state, _insert_module_state
9
+ from torch.distributed.fsdp._common_utils import _FSDPState
10
+ from torch.distributed.fsdp._dynamo_utils import _annotate_modules_for_dynamo
11
+
12
+ from torch.distributed.fsdp._init_utils import (
13
+ _init_buffer_state,
14
+ _init_core_state,
15
+ _init_device_handle,
16
+ _init_ignored_module_states,
17
+ _init_param_handle_from_module,
18
+ _init_prefetching_state,
19
+ _init_process_group_state,
20
+ _init_runtime_state,
21
+ _init_state_dict_state,
22
+ HYBRID_SHARDING_STRATEGIES,
23
+ )
24
+ from torch.distributed.fsdp._runtime_utils import (
25
+ _register_post_forward_hook,
26
+ _register_pre_forward_hook,
27
+ _register_root_pre_forward_hook,
28
+ )
29
+ from torch.distributed.fsdp._state_dict_utils import _register_all_state_dict_hooks
30
+ from torch.distributed.fsdp._wrap_utils import _auto_wrap
31
+ from torch.distributed.fsdp.api import (
32
+ BackwardPrefetch,
33
+ CPUOffload,
34
+ MixedPrecision,
35
+ ShardingStrategy,
36
+ )
37
+ from torch.distributed.fsdp.wrap import _Policy
38
+
39
+
40
+ @contract(state_cls=_FSDPState)
41
+ def fully_shard(
42
+ module: nn.Module,
43
+ *,
44
+ process_group: Optional[dist.ProcessGroup] = None,
45
+ policy: Optional[_Policy] = None,
46
+ strategy: Optional[ShardingStrategy] = None,
47
+ mixed_precision: Optional[MixedPrecision] = None,
48
+ cpu_offload: Optional[CPUOffload] = None,
49
+ ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
50
+ device_id: Optional[Union[int, torch.device]] = None,
51
+ param_init_fn: Optional[Callable[[nn.Module], None]] = None,
52
+ sync_module_states: bool = False,
53
+ forward_prefetch: bool = False,
54
+ ignored_states: Union[
55
+ Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
56
+ ] = None,
57
+ ) -> nn.Module:
58
+ """
59
+ Applies ``FullyShardedDataParallel` (FSDP) semantics to ``module``.
60
+ """
61
+ warnings.warn(
62
+ "``torch.distributed._composable.fully_shard`` is being deprecated."
63
+ "You can contintue to use the wrapper based FSDP."
64
+ "See usage in: https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/fully_sharded_data_parallel.py."
65
+ "``torch.distributed._composable.fully_shard`` will be removed after PyTorch 2.5."
66
+ )
67
+
68
+ torch._C._log_api_usage_once("torch.distributed.fully_shard")
69
+ # Enforce the new auto wrap policy
70
+ if policy is not None and not isinstance(policy, _Policy):
71
+ raise ValueError(f"Expects a `_Policy` but got {policy}")
72
+ state = fully_shard.state(module)
73
+ state = _init_ignored_module_states(state, module, ignored_modules, ignored_states)
74
+ state = _init_device_handle(state, module, state._ignored_params, device_id)
75
+ _annotate_modules_for_dynamo(module, state._ignored_modules, True)
76
+ state = _init_process_group_state(state, process_group, strategy, policy)
77
+ if policy is not None:
78
+ root_kwargs = {
79
+ "process_group": process_group,
80
+ "strategy": strategy,
81
+ "mixed_precision": mixed_precision,
82
+ "cpu_offload": cpu_offload,
83
+ "ignored_modules": ignored_modules,
84
+ "device_id": device_id,
85
+ "param_init_fn": param_init_fn,
86
+ "sync_module_states": sync_module_states,
87
+ "forward_prefetch": forward_prefetch,
88
+ "ignored_states": ignored_states,
89
+ }
90
+ if strategy in HYBRID_SHARDING_STRATEGIES:
91
+ root_kwargs["process_group"] = (state.process_group, state._inter_node_pg)
92
+ _auto_wrap(
93
+ module,
94
+ policy,
95
+ state._ignored_modules,
96
+ state._ignored_params,
97
+ root_kwargs,
98
+ fully_shard,
99
+ )
100
+ state = _init_core_state(
101
+ state,
102
+ strategy or ShardingStrategy.FULL_SHARD,
103
+ mixed_precision,
104
+ cpu_offload,
105
+ limit_all_gathers=True,
106
+ use_orig_params=True,
107
+ backward_prefetch_limit=1,
108
+ forward_prefetch_limit=1,
109
+ )
110
+ state = _init_runtime_state(state)
111
+ state = _init_prefetching_state(
112
+ state, BackwardPrefetch.BACKWARD_PRE, forward_prefetch=forward_prefetch
113
+ )
114
+ state = _init_buffer_state(state, module)
115
+ state = _init_param_handle_from_module(
116
+ state, module, device_id, param_init_fn, sync_module_states
117
+ )
118
+ state = _init_state_dict_state(state)
119
+ _register_all_state_dict_hooks(state)
120
+ _register_pre_forward_hook(state, module)
121
+ _register_post_forward_hook(state, module)
122
+ _register_root_pre_forward_hook(state, module) # prepend last
123
+ # Always insert the state for the passed-in module even if it has no
124
+ # managed parameters, in which case it has no handles and does not appear
125
+ # in `_fully_sharded_module_to_handles`
126
+ _insert_module_state(module, state)
127
+ for submodule in module.modules():
128
+ if (
129
+ submodule in state._fully_sharded_module_to_handle
130
+ and _get_module_state(submodule) is None
131
+ ):
132
+ _insert_module_state(submodule, state)
133
+ return module
venv/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import weakref
2
+ from typing import Any, Dict, Iterable, List, Optional, Set, Tuple
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch.distributed._composable_state import _State
7
+ from torch.nn.parallel import DistributedDataParallel
8
+
9
+ from .contract import _get_registry, contract
10
+
11
+ _ROOT_MODULE_PREFIX = ""
12
+
13
+
14
+ class _ReplicateState(_State):
15
+ def __init__(self) -> None:
16
+ super().__init__()
17
+ self.module: nn.Module = nn.ParameterList()
18
+ self.has_initialized: bool = False
19
+ self._param_list: nn.ParameterList = nn.ParameterList()
20
+ # TODO(@fegin): this variable is originally create for testing, we
21
+ # should remove this if possible.
22
+ self._param_names: List[str] = []
23
+
24
+ def _collect_params(
25
+ self,
26
+ module: nn.Module,
27
+ ignored_modules: Set[nn.Module],
28
+ ignored_params: Set[nn.Parameter],
29
+ prefix: str = _ROOT_MODULE_PREFIX,
30
+ ) -> None:
31
+ # skip if managed by fully_sharded API
32
+ if _is_fully_sharded(module):
33
+ return
34
+
35
+ # if a module is ignored, all descendants of the module are ignored.
36
+ if module in ignored_modules:
37
+ return
38
+
39
+ recurse_prefix = (
40
+ f"{prefix}." if prefix != _ROOT_MODULE_PREFIX else _ROOT_MODULE_PREFIX
41
+ )
42
+
43
+ for n, p in module.named_parameters(recurse=False):
44
+ if p not in ignored_params:
45
+ self._param_list.append(p)
46
+ self._param_names.append(f"{recurse_prefix}{n}")
47
+
48
+ for name, child_module in module.named_children():
49
+ self._collect_params(
50
+ child_module,
51
+ ignored_modules,
52
+ ignored_params,
53
+ prefix=f"{recurse_prefix}{name}",
54
+ )
55
+
56
+ def init(
57
+ self,
58
+ module: nn.Module,
59
+ ignored_modules: Set[nn.Module],
60
+ **kwargs,
61
+ ) -> None:
62
+ if _is_fully_sharded(module):
63
+ raise RuntimeError(
64
+ "Cannot apply `replicate()` on a Module already managed by `fully_shard`"
65
+ )
66
+
67
+ if self.has_initialized:
68
+ return
69
+
70
+ self.has_initialized = True
71
+ self.module = module
72
+ ignored_params = {p for m in ignored_modules for p in m.parameters()}
73
+ self._collect_params(module, ignored_modules, ignored_params)
74
+ module.register_forward_pre_hook(self.forward_pre_hook, with_kwargs=True)
75
+ module.register_forward_hook(self.forward_post_hook) # type: ignore[arg-type]
76
+
77
+ if "device_id" in kwargs:
78
+ # replicate() supports a small usability enhancement where
79
+ # user can pass in device_id as a Union[int, torch.device] even for
80
+ # CPU devices so users don't have to change code for CPU/GPU runs.
81
+ # We derive the right device_ids to feed into DDP to support this.
82
+ if kwargs["device_id"] is not None:
83
+ device_id = kwargs["device_id"]
84
+ # Convert to device_ids that DDP expects.
85
+ if isinstance(device_id, torch.device) and device_id.type == "cpu":
86
+ # CPU modules receive device_ids None
87
+ kwargs["device_ids"] = None
88
+ else:
89
+ # GPU modules expect device_ids=[cuda_device]
90
+ kwargs["device_ids"] = [device_id]
91
+ else:
92
+ kwargs["device_ids"] = None
93
+ kwargs.pop("device_id")
94
+
95
+ self._ddp = DistributedDataParallel(self._param_list, **kwargs)
96
+ # Weakref to the DDP instance is currently only used for testing.
97
+ replicate.state(self.module)._ddp_weakref = weakref.ref(self._ddp)
98
+
99
+ def forward_pre_hook(
100
+ self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
101
+ ) -> Any:
102
+ return self._ddp._pre_forward(*args, **kwargs)
103
+
104
+ def forward_post_hook(
105
+ self,
106
+ module: nn.Module,
107
+ input: Tuple[torch.Tensor],
108
+ output: torch.Tensor,
109
+ ) -> torch.Tensor:
110
+ return self._ddp._post_forward(output)
111
+
112
+
113
+ @contract(state_cls=_ReplicateState)
114
+ def replicate(
115
+ module: nn.Module,
116
+ ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
117
+ **kwargs,
118
+ ) -> nn.Module:
119
+ r"""Replicates a module
120
+
121
+ Args:
122
+ module (torch.nn.Module): module to replicate
123
+
124
+ Example::
125
+ >>> # xdoctest: +REQUIRES(module:torch._C._distributed_c10d)
126
+ >>> module = nn.Linear(3, 3)
127
+ >>> replicate(module)
128
+ """
129
+ torch._C._log_api_usage_once("torch.distributed.replicate")
130
+
131
+ # TODO(fegin): using kwargs is not a good idea if we would like to make
132
+ # replicate a formal API to replace DDP.
133
+ if "device_id" in kwargs:
134
+ if not isinstance(kwargs["device_id"], (int, torch.device)):
135
+ raise RuntimeError(
136
+ "Expected device_id to be int or torch.device, "
137
+ f"but got {type(kwargs['device_id'])}"
138
+ )
139
+
140
+ if ignored_modules is None:
141
+ ignored_modules = {}
142
+ else:
143
+ ignored_modules = set(ignored_modules)
144
+ replicate.state(module).init(module, ignored_modules, **kwargs)
145
+
146
+ return module
147
+
148
+
149
+ def _is_fully_sharded(module: nn.Module) -> bool:
150
+ r"""Check if module is marked with fully_shard."""
151
+ registry = _get_registry(module)
152
+ if registry is None:
153
+ return False
154
+ return "fully_shard" in registry
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (762 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/comm_mode.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/op_coverage.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__pycache__/visualize_sharding.cpython-310.pyc ADDED
Binary file (4.93 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates
2
+ from .embedding_ops import * # noqa: F403
3
+ from .matrix_ops import * # noqa: F403
4
+ from .math_ops import * # noqa: F403
5
+ from .tensor_ops import * # noqa: F403
6
+ from .pointwise_ops import * # noqa: F403
7
+ from .random_ops import * # noqa: F403
8
+ from .view_ops import * # noqa: F403
9
+ from .conv_ops import * # noqa: F403
10
+ from .experimental_ops import * # noqa: F403
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (406 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/basic_strategy.cpython-310.pyc ADDED
Binary file (3.75 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/common_rules.cpython-310.pyc ADDED
Binary file (6.18 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/conv_ops.cpython-310.pyc ADDED
Binary file (2.32 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/embedding_ops.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributed/_tensor/ops/__pycache__/experimental_ops.cpython-310.pyc ADDED
Binary file (1.55 kB). View file