Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/4.input_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__init__.py +342 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/_collective_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/device_mesh.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/dispatch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/op_schema.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/placement_types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/random.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/redistribute.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/sharding_prop.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/tp_conv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/_collective_utils.py +313 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/_utils.py +204 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/api.py +760 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__init__.py +14 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/comm_mode.py +91 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/op_coverage.py +105 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/visualize_sharding.py +176 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/device_mesh.py +6 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/dispatch.py +393 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__init__.py +12 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__pycache__/tp_transform.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/tp_transform.py +547 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/op_schema.py +427 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/placement_types.py +620 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/random.py +372 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/redistribute.py +337 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/sharding_prop.py +410 -0
- venv/lib/python3.10/site-packages/torch/distributed/_tensor/tp_conv.py +277 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__init__.py +12 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/batchnorm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/checkpoint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/copy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/dependency.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/microbatch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/phony.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/pipe.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/pipeline.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/stream.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/worker.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d741ec339177bb2b66495f4c6fdbde2b4024c35c1473dc5f957082788e4be21
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a575846fbdbc06e7dd8134227ac7cecea4ee564c09b352156d82fe22db7909cf
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/15.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75dc3bb752cb92d344aeed81ae1a24a0bcf4aca44cb8dab7dd8e951ed0a672c1
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/4.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e497ea1e1441ff74a24f84984159fdbe127060190f52ed1efbe1773881c48d35
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__init__.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
from typing import Optional, Sequence
|
3 |
+
|
4 |
+
# Import all builtin dist tensor ops
|
5 |
+
import torch
|
6 |
+
import torch.distributed._tensor.ops
|
7 |
+
import torch.distributed._tensor.random as random
|
8 |
+
from torch.distributed._tensor._utils import compute_local_shape
|
9 |
+
from torch.distributed._tensor.api import distribute_module, distribute_tensor, DTensor
|
10 |
+
from torch.distributed._tensor.ops.utils import normalize_to_torch_size
|
11 |
+
from torch.distributed._tensor.placement_types import Placement, Replicate, Shard
|
12 |
+
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
|
13 |
+
|
14 |
+
# All public APIs from dtensor package
|
15 |
+
__all__ = [
|
16 |
+
"DTensor",
|
17 |
+
"DeviceMesh",
|
18 |
+
"distribute_tensor",
|
19 |
+
"distribute_module",
|
20 |
+
"init_device_mesh,",
|
21 |
+
"Shard",
|
22 |
+
"Replicate",
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
def _dtensor_init_helper(
|
27 |
+
init_op,
|
28 |
+
size: torch.Size,
|
29 |
+
device_mesh=None,
|
30 |
+
placements=None,
|
31 |
+
**kwargs,
|
32 |
+
) -> DTensor:
|
33 |
+
# if device_mesh is None, use the one from mesh resources
|
34 |
+
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
35 |
+
kwargs["device"] = device_mesh.device_type
|
36 |
+
|
37 |
+
# set default placements to replicated if not specified
|
38 |
+
placements = placements or tuple(Replicate() for _ in range(device_mesh.ndim))
|
39 |
+
|
40 |
+
# check device_mesh againts placements
|
41 |
+
assert device_mesh.ndim == len(
|
42 |
+
placements
|
43 |
+
), "mesh dimension does not match the length of placements"
|
44 |
+
|
45 |
+
assert kwargs["layout"] == torch.strided, "layout value not supported!"
|
46 |
+
torch_stride = torch._prims_common.make_contiguous_strides_for(size)
|
47 |
+
|
48 |
+
# get local tensor shape
|
49 |
+
local_shape = compute_local_shape(size, device_mesh, placements)
|
50 |
+
# initialize the local tensor
|
51 |
+
if init_op == torch.full:
|
52 |
+
fill_value = kwargs.pop("fill_value", 0)
|
53 |
+
local_tensor = init_op(local_shape, fill_value, **kwargs)
|
54 |
+
elif init_op == torch.rand or init_op == torch.randn:
|
55 |
+
# this tensor meta is not used except `shape`
|
56 |
+
dtype = kwargs.get("dtype", torch.get_default_dtype())
|
57 |
+
|
58 |
+
from torch.distributed._tensor.placement_types import DTensorSpec, TensorMeta
|
59 |
+
|
60 |
+
tensor_meta = TensorMeta(size, (0,), dtype)
|
61 |
+
spec = DTensorSpec(device_mesh, placements, tensor_meta=tensor_meta)
|
62 |
+
|
63 |
+
if random.is_rng_supported_mesh(device_mesh) and not random._rng_tracker:
|
64 |
+
random._rng_tracker = random.OffsetBasedRNGTracker()
|
65 |
+
|
66 |
+
assert random._rng_tracker is not None
|
67 |
+
with random._rng_tracker._distribute_region(spec):
|
68 |
+
local_tensor = init_op(local_shape, **kwargs)
|
69 |
+
else:
|
70 |
+
local_tensor = init_op(local_shape, **kwargs)
|
71 |
+
|
72 |
+
return DTensor(
|
73 |
+
local_tensor=local_tensor,
|
74 |
+
device_mesh=device_mesh,
|
75 |
+
placements=tuple(placements),
|
76 |
+
shape=size,
|
77 |
+
dtype=local_tensor.dtype,
|
78 |
+
stride=torch_stride,
|
79 |
+
requires_grad=kwargs["requires_grad"],
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
def ones(
|
84 |
+
*size,
|
85 |
+
dtype: Optional[torch.dtype] = None,
|
86 |
+
layout: torch.layout = torch.strided,
|
87 |
+
requires_grad: bool = False,
|
88 |
+
device_mesh: Optional[DeviceMesh] = None,
|
89 |
+
placements: Optional[Sequence[Placement]] = None,
|
90 |
+
) -> DTensor:
|
91 |
+
"""
|
92 |
+
Returns a :class:`DTensor` filled with the scalar value 1, with the shape defined
|
93 |
+
by the variable argument ``size``.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
97 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
98 |
+
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
99 |
+
|
100 |
+
Keyword args:
|
101 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
102 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
103 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
104 |
+
Default: ``torch.strided``.
|
105 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
106 |
+
returned :class:`DTensor`. Default: ``False``.
|
107 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
108 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
A :class:`DTensor` object on each rank
|
112 |
+
"""
|
113 |
+
torch_size = normalize_to_torch_size(size)
|
114 |
+
|
115 |
+
return _dtensor_init_helper(
|
116 |
+
torch.ones,
|
117 |
+
torch_size,
|
118 |
+
dtype=dtype,
|
119 |
+
layout=layout,
|
120 |
+
requires_grad=requires_grad,
|
121 |
+
device_mesh=device_mesh,
|
122 |
+
placements=placements,
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def empty(
|
127 |
+
*size,
|
128 |
+
dtype: Optional[torch.dtype] = None,
|
129 |
+
layout: torch.layout = torch.strided,
|
130 |
+
requires_grad: bool = False,
|
131 |
+
device_mesh: Optional[DeviceMesh] = None,
|
132 |
+
placements: Optional[Sequence[Placement]] = None,
|
133 |
+
) -> DTensor:
|
134 |
+
"""
|
135 |
+
Returns a :class:`DTensor` filled with uninitialized data. The shape of the :class:`DTensor`
|
136 |
+
is defined by the variable argument ``size``.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
140 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
141 |
+
E.g.: empty(1,2,3..) or empty([1,2,3..]) or empty((1,2,3..))
|
142 |
+
|
143 |
+
Keyword args:
|
144 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
145 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).\
|
146 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
147 |
+
Default: ``torch.strided``.
|
148 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
149 |
+
returned :class:`DTensor`. Default: ``False``.
|
150 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
151 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
A :class:`DTensor` object on each rank
|
155 |
+
"""
|
156 |
+
torch_size = normalize_to_torch_size(size)
|
157 |
+
|
158 |
+
return _dtensor_init_helper(
|
159 |
+
torch.empty,
|
160 |
+
torch_size,
|
161 |
+
dtype=dtype,
|
162 |
+
layout=layout,
|
163 |
+
requires_grad=requires_grad,
|
164 |
+
device_mesh=device_mesh,
|
165 |
+
placements=placements,
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
def full(
|
170 |
+
size,
|
171 |
+
fill_value,
|
172 |
+
*,
|
173 |
+
dtype: Optional[torch.dtype] = None,
|
174 |
+
layout: torch.layout = torch.strided,
|
175 |
+
requires_grad: bool = False,
|
176 |
+
device_mesh: Optional[DeviceMesh] = None,
|
177 |
+
placements: Optional[Sequence[Placement]] = None,
|
178 |
+
) -> DTensor:
|
179 |
+
"""
|
180 |
+
Returns a :class:`DTensor` filled with ``fill_value``. The scalar value type should match
|
181 |
+
``device_mesh.device_type``.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
185 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
186 |
+
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
187 |
+
fill_value(Scalar): the value to fill the output tensor with.
|
188 |
+
|
189 |
+
Keyword args:
|
190 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
191 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
192 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
193 |
+
Default: ``torch.strided``.
|
194 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
195 |
+
returned :class:`DTensor`. Default: ``False``.
|
196 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
197 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
A :class:`DTensor` object on each rank
|
201 |
+
"""
|
202 |
+
torch_size = normalize_to_torch_size(size)
|
203 |
+
|
204 |
+
return _dtensor_init_helper(
|
205 |
+
torch.full,
|
206 |
+
torch_size,
|
207 |
+
fill_value=fill_value,
|
208 |
+
dtype=dtype,
|
209 |
+
layout=layout,
|
210 |
+
requires_grad=requires_grad,
|
211 |
+
device_mesh=device_mesh,
|
212 |
+
placements=placements,
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
def rand(
|
217 |
+
*size,
|
218 |
+
requires_grad: bool = False,
|
219 |
+
dtype: Optional[torch.dtype] = None,
|
220 |
+
layout: torch.layout = torch.strided,
|
221 |
+
device_mesh: Optional[DeviceMesh] = None,
|
222 |
+
placements: Optional[Sequence[Placement]] = None,
|
223 |
+
) -> DTensor:
|
224 |
+
"""
|
225 |
+
Returns a :class:`DTensor` filled with random numbers from a uniform distribution
|
226 |
+
on the interval ``[0, 1)``. The shape of the tensor is defined by the variable
|
227 |
+
argument ``size``.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
231 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
232 |
+
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
233 |
+
|
234 |
+
Keyword args:
|
235 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
236 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
237 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
238 |
+
Default: ``torch.strided``.
|
239 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
240 |
+
returned :class:`DTensor`. Default: ``False``.
|
241 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
242 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
A :class:`DTensor` object on each rank
|
246 |
+
"""
|
247 |
+
torch_size = normalize_to_torch_size(size)
|
248 |
+
|
249 |
+
return _dtensor_init_helper(
|
250 |
+
torch.rand,
|
251 |
+
torch_size,
|
252 |
+
dtype=dtype,
|
253 |
+
layout=layout,
|
254 |
+
requires_grad=requires_grad,
|
255 |
+
device_mesh=device_mesh,
|
256 |
+
placements=placements,
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
def randn(
|
261 |
+
*size,
|
262 |
+
requires_grad: bool = False,
|
263 |
+
dtype: Optional[torch.dtype] = None,
|
264 |
+
layout: torch.layout = torch.strided,
|
265 |
+
device_mesh: Optional[DeviceMesh] = None,
|
266 |
+
placements: Optional[Sequence[Placement]] = None,
|
267 |
+
) -> DTensor:
|
268 |
+
"""
|
269 |
+
Returns a :class:`DTensor` filled with random numbers from a normal distribution
|
270 |
+
with mean 0 and variance 1. The shape of the tensor is defined by the variable
|
271 |
+
argument ``size``.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
275 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
276 |
+
E.g.: ones(1,2,3..) or ones([1,2,3..]) or ones((1,2,3..))
|
277 |
+
|
278 |
+
Keyword args:
|
279 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
280 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
281 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned DTensor.
|
282 |
+
Default: ``torch.strided``.
|
283 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
284 |
+
returned :class:`DTensor`. Default: ``False``.
|
285 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks.
|
286 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
A :class:`DTensor` object on each rank
|
290 |
+
"""
|
291 |
+
torch_size = normalize_to_torch_size(size)
|
292 |
+
|
293 |
+
return _dtensor_init_helper(
|
294 |
+
torch.randn,
|
295 |
+
torch_size,
|
296 |
+
dtype=dtype,
|
297 |
+
layout=layout,
|
298 |
+
requires_grad=requires_grad,
|
299 |
+
device_mesh=device_mesh,
|
300 |
+
placements=placements,
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
def zeros(
|
305 |
+
*size,
|
306 |
+
requires_grad: bool = False,
|
307 |
+
dtype: Optional[torch.dtype] = None,
|
308 |
+
layout: torch.layout = torch.strided,
|
309 |
+
device_mesh: Optional[DeviceMesh] = None,
|
310 |
+
placements: Optional[Sequence[Placement]] = None,
|
311 |
+
) -> DTensor:
|
312 |
+
"""
|
313 |
+
Returns a :class:`DTensor` filled with the scalar value 0.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
size (int...): a sequence of integers defining the shape of the output :class:`DTensor`.
|
317 |
+
Can be a variable number of arguments or a collection like a list or tuple.
|
318 |
+
E.g.: zeros(1,2,3..) or zeros([1,2,3..]) or zeros((1,2,3..))
|
319 |
+
Keyword args:
|
320 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
321 |
+
returned :class:`DTensor`. Default: ``False``.
|
322 |
+
dtype (:class:`torch.dtype`, optional): the desired data type of returned :class:`DTensor`.
|
323 |
+
Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`).
|
324 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned :class:`DTensor`.
|
325 |
+
Default: ``torch.strided``.
|
326 |
+
device_mesh: :class:`DeviceMesh` type, contains the mesh info of ranks
|
327 |
+
placements: a sequence of :class:`Placement` type: ``Shard``, ``Replicate``
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
A :class:`DTensor` object on each rank
|
331 |
+
"""
|
332 |
+
torch_size = normalize_to_torch_size(size)
|
333 |
+
|
334 |
+
return _dtensor_init_helper(
|
335 |
+
torch.zeros,
|
336 |
+
torch_size,
|
337 |
+
dtype=dtype,
|
338 |
+
layout=layout,
|
339 |
+
requires_grad=requires_grad,
|
340 |
+
device_mesh=device_mesh,
|
341 |
+
placements=placements,
|
342 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/_collective_utils.cpython-310.pyc
ADDED
Binary file (6.86 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (6.39 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/api.cpython-310.pyc
ADDED
Binary file (22.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/device_mesh.cpython-310.pyc
ADDED
Binary file (342 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/dispatch.cpython-310.pyc
ADDED
Binary file (8.94 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/op_schema.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/placement_types.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/random.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/redistribute.cpython-310.pyc
ADDED
Binary file (7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/sharding_prop.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/__pycache__/tp_conv.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/_collective_utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
from typing import List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.distributed._tensor.placement_types as placement_types
|
10 |
+
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
|
11 |
+
from torch.distributed.distributed_c10d import (
|
12 |
+
all_to_all,
|
13 |
+
broadcast,
|
14 |
+
get_global_rank,
|
15 |
+
get_rank,
|
16 |
+
get_world_size,
|
17 |
+
GroupMember,
|
18 |
+
ProcessGroup,
|
19 |
+
scatter,
|
20 |
+
Work,
|
21 |
+
)
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
# TODO: we need to migrate these APIs to be functional collectives
|
27 |
+
|
28 |
+
|
29 |
+
def mesh_scatter(
|
30 |
+
output: torch.Tensor,
|
31 |
+
scatter_list: List[torch.Tensor],
|
32 |
+
mesh: DeviceMesh,
|
33 |
+
mesh_dim: int = 0,
|
34 |
+
async_op: bool = False,
|
35 |
+
) -> Optional[Work]:
|
36 |
+
"""
|
37 |
+
scatter a list of tensors to a device mesh dimension. We by default
|
38 |
+
use the first rank of the mesh dimension as the source of truth, i.e
|
39 |
+
for a 2d mesh [[0, 1], [2, 3]], if we scatter on mesh_dim = 1, we will
|
40 |
+
scatter the tensor list on rank 0 to rank 0/1, and tensor list on rank
|
41 |
+
2 to rank 2/3.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
output (torch.Tensor): the tensor to receive the scattered list.
|
45 |
+
scatter_list (List[torch.Tensor]): the tensor list to be scattered.
|
46 |
+
mesh_dim (int, optional): indicate which mesh dimension we want
|
47 |
+
to scatter on, we by default choose the first rank on the
|
48 |
+
mesh dimension as source of truth.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
A :class:`Work` object
|
52 |
+
"""
|
53 |
+
# TODO: Ideally we should use the meta tensor way
|
54 |
+
# (to register a meta kernel for the collective op)
|
55 |
+
# so that it would avoid the communication. Need to
|
56 |
+
# remove the check below once that is done.
|
57 |
+
if output.is_meta:
|
58 |
+
return None
|
59 |
+
dim_group = mesh.get_group(mesh_dim)
|
60 |
+
assert isinstance(dim_group, ProcessGroup)
|
61 |
+
# src need to be global rank
|
62 |
+
src_for_dim = 0
|
63 |
+
|
64 |
+
if dim_group is not GroupMember.WORLD:
|
65 |
+
src_for_dim = get_global_rank(dim_group, 0)
|
66 |
+
|
67 |
+
if src_for_dim == get_rank():
|
68 |
+
fut = scatter(
|
69 |
+
output,
|
70 |
+
scatter_list=scatter_list,
|
71 |
+
src=src_for_dim,
|
72 |
+
group=dim_group,
|
73 |
+
async_op=async_op,
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
fut = scatter(
|
77 |
+
output,
|
78 |
+
scatter_list=None,
|
79 |
+
src=src_for_dim,
|
80 |
+
group=dim_group,
|
81 |
+
async_op=async_op,
|
82 |
+
)
|
83 |
+
|
84 |
+
return fut
|
85 |
+
|
86 |
+
|
87 |
+
def mesh_broadcast(
|
88 |
+
tensor: torch.Tensor,
|
89 |
+
mesh: DeviceMesh,
|
90 |
+
mesh_dim: int = 0,
|
91 |
+
async_op: bool = False,
|
92 |
+
) -> Optional[Work]:
|
93 |
+
"""
|
94 |
+
broadcast the tensor to a device mesh dimension. We by default
|
95 |
+
use the first rank of the mesh dimension as the source of truth, i.e
|
96 |
+
for a 2d mesh [[0, 1], [2, 3]], if we broadcast on mesh_dim = 1, we will
|
97 |
+
broadcast the tensor on rank 0 to rank 0/1, and tensor on rank 2
|
98 |
+
to rank 2/3.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
tensor (torch.Tensor): tensor to broadcast.
|
102 |
+
mesh_dim (int, optional): indicate which mesh dimension we want
|
103 |
+
to scatter on, we by default choose the first rank on the
|
104 |
+
mesh dimension as source of truth.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
A :class:`Work` object
|
108 |
+
"""
|
109 |
+
# TODO: Ideally we should use the meta tensor way
|
110 |
+
# (to register a meta kernel for the collective op)
|
111 |
+
# so that it would avoid the communication. Need to
|
112 |
+
# remove the check below once that is done.
|
113 |
+
if tensor.is_meta:
|
114 |
+
return None
|
115 |
+
dim_group = mesh.get_group(mesh_dim)
|
116 |
+
assert isinstance(dim_group, ProcessGroup)
|
117 |
+
# src need to be global rank
|
118 |
+
src_for_dim = 0
|
119 |
+
if dim_group is not GroupMember.WORLD:
|
120 |
+
src_for_dim = get_global_rank(dim_group, 0)
|
121 |
+
|
122 |
+
return broadcast(tensor, src=src_for_dim, group=dim_group, async_op=async_op)
|
123 |
+
|
124 |
+
|
125 |
+
# TODO: test uneven split on GLOO and NCCL
|
126 |
+
def mesh_all_to_all(
|
127 |
+
output_tensor_list: List[torch.Tensor],
|
128 |
+
input_tensor_list: List[torch.Tensor],
|
129 |
+
mesh: DeviceMesh,
|
130 |
+
mesh_dim: int = 0,
|
131 |
+
async_op: bool = False,
|
132 |
+
) -> Optional[Work]:
|
133 |
+
dim_group = mesh.get_group(mesh_dim)
|
134 |
+
assert isinstance(dim_group, ProcessGroup)
|
135 |
+
|
136 |
+
work = None
|
137 |
+
# no direct dist.all_to_all support on 'gloo' so we manually do scatters
|
138 |
+
if mesh.device_type == "cpu":
|
139 |
+
logger.warning(
|
140 |
+
"ProcessGroupGloo does not support all_to_all, falling back with scatters!"
|
141 |
+
)
|
142 |
+
# TODO: pull the handle of uneven case in #492
|
143 |
+
dim_group_size = get_world_size(dim_group)
|
144 |
+
for i in range(dim_group_size):
|
145 |
+
# src need to be global rank
|
146 |
+
src_for_dim = i
|
147 |
+
if dim_group is not GroupMember.WORLD:
|
148 |
+
src_for_dim = get_global_rank(dim_group, i)
|
149 |
+
|
150 |
+
work = scatter(
|
151 |
+
output_tensor_list[i],
|
152 |
+
input_tensor_list if mesh.get_rank() == src_for_dim else [],
|
153 |
+
group=dim_group,
|
154 |
+
src=src_for_dim,
|
155 |
+
async_op=async_op,
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
work = all_to_all(
|
159 |
+
output_tensor_list,
|
160 |
+
input_tensor_list,
|
161 |
+
dim_group,
|
162 |
+
async_op=async_op,
|
163 |
+
)
|
164 |
+
return work
|
165 |
+
|
166 |
+
|
167 |
+
def spec_to_bytes(spec: "placement_types.DTensorSpec") -> int:
|
168 |
+
assert spec.tensor_meta is not None, "spec should have tensor meta defined!"
|
169 |
+
return spec.tensor_meta.dtype.itemsize * math.prod(spec.shape)
|
170 |
+
|
171 |
+
|
172 |
+
@dataclass
|
173 |
+
class MeshTopoInfo:
|
174 |
+
"""
|
175 |
+
Mesh information for collective cost estimation
|
176 |
+
"""
|
177 |
+
|
178 |
+
mesh: DeviceMesh
|
179 |
+
mesh_dim_devices: List[int]
|
180 |
+
mesh_dim_bandwidth: List[float]
|
181 |
+
mesh_dim_latency: List[float]
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
@lru_cache(None)
|
185 |
+
def build_from_mesh(mesh: DeviceMesh) -> "MeshTopoInfo":
|
186 |
+
# Generate mesh topology info for intra-host/inter-host communication pattern
|
187 |
+
# Note that we made bunch of assumptions for simplicity:
|
188 |
+
# 1. we assume the mesh is homogeneous, and it's gpu/nccl model
|
189 |
+
# 2. we assume gpu arch is Ampere or Hopper
|
190 |
+
# 3. we assume collectives are all ring base algo for now
|
191 |
+
num_devices_per_host = _mesh_resources.num_devices_per_host(mesh.device_type)
|
192 |
+
# the base bw number (intra-node), GB/s
|
193 |
+
base_bw = 87.7
|
194 |
+
mesh_dim_bandwidth = [base_bw] * mesh.ndim
|
195 |
+
# the latency in terms of us (intra-node, nv-link)
|
196 |
+
mesh_dim_latency = [0.6] * mesh.ndim
|
197 |
+
mesh_dim_devices = [1] * mesh.ndim
|
198 |
+
|
199 |
+
total_num_devices = 1
|
200 |
+
for mesh_dim in reversed(range(mesh.ndim)):
|
201 |
+
num_devices = mesh.size(mesh_dim)
|
202 |
+
mesh_dim_devices[mesh_dim] = num_devices
|
203 |
+
total_num_devices *= num_devices
|
204 |
+
if total_num_devices > num_devices_per_host:
|
205 |
+
# magic number for inter-host communication bandwidth/latency factor
|
206 |
+
# This number assumes latest GPU arch, i.e. Ampere or Hopper
|
207 |
+
# TODO: see if we need to tweak this or offer a way for user
|
208 |
+
# to specify the bandwidths/latency
|
209 |
+
mesh_dim_bandwidth[mesh_dim] *= 0.22
|
210 |
+
# set to ethernet latency for inter-host
|
211 |
+
mesh_dim_latency[mesh_dim] = 2.7
|
212 |
+
|
213 |
+
return MeshTopoInfo(
|
214 |
+
mesh, mesh_dim_devices, mesh_dim_bandwidth, mesh_dim_latency
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
def allgather_cost(bytes_gb: float, mesh_topo: MeshTopoInfo, mesh_dim: int) -> float:
|
219 |
+
num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim]
|
220 |
+
mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim]
|
221 |
+
num_hops = num_devices_on_mesh_dim - 1
|
222 |
+
# base latency + comm latency
|
223 |
+
latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim] # us
|
224 |
+
bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth # s
|
225 |
+
return latency + bw * 1e6 # rescale to us
|
226 |
+
|
227 |
+
|
228 |
+
def allreduce_cost(bytes_gb: float, mesh_topo: MeshTopoInfo, mesh_dim: int) -> float:
|
229 |
+
num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim]
|
230 |
+
mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim]
|
231 |
+
# allreduce have almost 2x comm bytes compare to allgather/reduce_scatter
|
232 |
+
num_hops = 2 * num_devices_on_mesh_dim - 1
|
233 |
+
|
234 |
+
latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim]
|
235 |
+
bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth
|
236 |
+
return latency + bw * 1e6
|
237 |
+
|
238 |
+
|
239 |
+
def reduce_scatter_cost(
|
240 |
+
bytes_gb: float,
|
241 |
+
mesh_topo: MeshTopoInfo,
|
242 |
+
mesh_dim: int,
|
243 |
+
) -> float:
|
244 |
+
num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim]
|
245 |
+
mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim]
|
246 |
+
num_hops = num_devices_on_mesh_dim - 1
|
247 |
+
# base latency + comm latency
|
248 |
+
latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim]
|
249 |
+
bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth
|
250 |
+
return latency + bw * 1e6
|
251 |
+
|
252 |
+
|
253 |
+
def redistribute_cost(
|
254 |
+
current_spec: "placement_types.DTensorSpec",
|
255 |
+
target_spec: "placement_types.DTensorSpec",
|
256 |
+
) -> float:
|
257 |
+
"""
|
258 |
+
This function returns the cost of redistribute from current to target DTensorSpec.
|
259 |
+
|
260 |
+
NOTE:
|
261 |
+
1. Only consider communication cost here, since computation costs for redistribute
|
262 |
+
are quite trival (i.e. we only need to narrow or simple division)
|
263 |
+
2. Only consider redistribute cost on same mesh, cross mesh communication cost is
|
264 |
+
not quite needed for operator strategy estimation/selection.
|
265 |
+
"""
|
266 |
+
if current_spec.mesh != target_spec.mesh:
|
267 |
+
# make infinite cost if meshes are not same
|
268 |
+
# TODO: see if we want to support this once there's cross mesh communication
|
269 |
+
return float("inf")
|
270 |
+
|
271 |
+
if current_spec.is_replicated():
|
272 |
+
# short-cut:
|
273 |
+
# comm cost is 0 if current spec is already full replication
|
274 |
+
return 0.0
|
275 |
+
|
276 |
+
mesh_topo = MeshTopoInfo.build_from_mesh(current_spec.mesh)
|
277 |
+
cost = 0.0
|
278 |
+
comm_bytes_gb = (
|
279 |
+
spec_to_bytes(current_spec) / current_spec.num_shards / 1024 / 1024 / 1024
|
280 |
+
)
|
281 |
+
# Transformation that considered for redistribute cost:
|
282 |
+
# 1. allgather 2. alltoall
|
283 |
+
# 3. allreduce 4. reduce_scatter
|
284 |
+
for i, (current, target) in enumerate(
|
285 |
+
zip(current_spec.placements, target_spec.placements)
|
286 |
+
):
|
287 |
+
if current == target:
|
288 |
+
continue
|
289 |
+
|
290 |
+
num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[i]
|
291 |
+
if current.is_shard() and target.is_replicate():
|
292 |
+
# allgather gives larger comm bytes
|
293 |
+
comm_bytes_gb *= num_devices_on_mesh_dim
|
294 |
+
# add up allgather comm cost
|
295 |
+
cost += allgather_cost(comm_bytes_gb, mesh_topo, i)
|
296 |
+
elif current.is_shard() and target.is_shard():
|
297 |
+
# should be alltoall comm, since we haven't implement it yet, add penalty
|
298 |
+
# to favor allgather instead
|
299 |
+
cost += allgather_cost(comm_bytes_gb, mesh_topo, i) + 1.0
|
300 |
+
elif current.is_partial() and target.is_replicate():
|
301 |
+
# add up allreduce comm cost
|
302 |
+
cost += allreduce_cost(comm_bytes_gb, mesh_topo, i)
|
303 |
+
elif current.is_partial() and target.is_shard():
|
304 |
+
# add up reduce_scatter comm cost
|
305 |
+
cost += reduce_scatter_cost(comm_bytes_gb, mesh_topo, i)
|
306 |
+
# after reduce_scatter the comm bytes for further collectives halved.
|
307 |
+
comm_bytes_gb /= num_devices_on_mesh_dim
|
308 |
+
elif current.is_shard() and target.is_partial():
|
309 |
+
# ban shard -> partial as it does not make sense to perform
|
310 |
+
# this redistribute
|
311 |
+
return float("inf")
|
312 |
+
|
313 |
+
return cost
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/_utils.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import cast, List, Sequence, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed._tensor.api as dtensor
|
5 |
+
from torch._prims_common import ShapeType
|
6 |
+
from torch.distributed._tensor.placement_types import (
|
7 |
+
_Partial,
|
8 |
+
DTensorSpec,
|
9 |
+
Placement,
|
10 |
+
Replicate,
|
11 |
+
Shard,
|
12 |
+
)
|
13 |
+
from torch.distributed.device_mesh import DeviceMesh
|
14 |
+
|
15 |
+
|
16 |
+
# TODO: audit existing code base to see if we can safely remove this API.
|
17 |
+
def compute_local_shape(
|
18 |
+
global_shape: ShapeType, mesh: DeviceMesh, placements: Sequence[Placement]
|
19 |
+
) -> Tuple[int, ...]:
|
20 |
+
"""
|
21 |
+
Compute the shape of a local shard of the given DTensor on its current
|
22 |
+
coordinate of the mesh.
|
23 |
+
"""
|
24 |
+
my_coordinate = mesh.get_coordinate()
|
25 |
+
|
26 |
+
if my_coordinate is None:
|
27 |
+
# if rank not in the mesh, return empty shape
|
28 |
+
return (0,)
|
29 |
+
else:
|
30 |
+
local_shape = list(global_shape) # start with global shape
|
31 |
+
ndim = len(global_shape)
|
32 |
+
for idx, placement in enumerate(placements):
|
33 |
+
mesh_dim_size = mesh.size(idx)
|
34 |
+
if isinstance(placement, Shard):
|
35 |
+
shard_dim = placement.dim
|
36 |
+
assert (
|
37 |
+
shard_dim < ndim
|
38 |
+
), f"Sharding dim {shard_dim} greater than tensor ndim {ndim}"
|
39 |
+
local_shard_size, _ = placement._local_shard_size_on_dim(
|
40 |
+
local_shape[shard_dim], mesh_dim_size, my_coordinate[idx]
|
41 |
+
)
|
42 |
+
assert isinstance(local_shard_size, int)
|
43 |
+
local_shape[shard_dim] = local_shard_size
|
44 |
+
|
45 |
+
return tuple(local_shape)
|
46 |
+
|
47 |
+
|
48 |
+
def compute_local_shape_and_global_offset(
|
49 |
+
global_shape: ShapeType, mesh: DeviceMesh, placements: Sequence[Placement]
|
50 |
+
) -> Tuple[Tuple[int, ...], Tuple[int, ...]]:
|
51 |
+
"""
|
52 |
+
Compute the local tensor shape and the global offsets into the original tensor
|
53 |
+
of a DTensor on its current global rank. This is useful for checkpointing purpose.
|
54 |
+
|
55 |
+
Example (2 host with 4GPUs each):
|
56 |
+
# Below is a DeviceMesh with mesh_shape of (2, 4)
|
57 |
+
mesh = DeviceMesh(device_type="cuda",
|
58 |
+
mesh=[
|
59 |
+
[0, 1, 2, 3],
|
60 |
+
[4, 5, 6, 7]
|
61 |
+
],
|
62 |
+
)
|
63 |
+
|
64 |
+
Let's say we distribute a global_tensor of shape (8,4) over the above DeviceMesh
|
65 |
+
with a placements of [Shard(0), Shard(0)].
|
66 |
+
The local shape and global offset will be as follows:
|
67 |
+
rank0 -- local_shape:[1, 4], global_offset:[0, 0]
|
68 |
+
rank1 -- local_shape:[1, 4], global_offset:[1, 0]
|
69 |
+
rank2 -- local_shape:[1, 4], global_offset:[2, 0]
|
70 |
+
rank5 -- local_shape:[1, 4], global_offset:[5, 0]
|
71 |
+
rank3 -- local_shape:[1, 4], global_offset:[3, 0]
|
72 |
+
rank4 -- local_shape:[1, 4], global_offset:[4, 0]
|
73 |
+
rank6 -- local_shape:[1, 4], global_offset:[6, 0]
|
74 |
+
rank7 -- local_shape:[1, 4], global_offset:[7, 0]
|
75 |
+
|
76 |
+
Let's say we distribute a global_tensor of shape (2) over the above DeviceMesh with
|
77 |
+
a placements of [Shard(0)]. We will not have non-empty local tensor for all the ranks.
|
78 |
+
The local shape and global offset will be as follows:
|
79 |
+
rank0 -- local_shape:[1,], global_offset:[0,]
|
80 |
+
rank1 -- local_shape:[1,], global_offset:[1,]
|
81 |
+
rank2 -- local_shape:[0,], global_offset:[2,]
|
82 |
+
rank5 -- local_shape:[0,], global_offset:[2,]
|
83 |
+
rank3 -- local_shape:[0,], global_offset:[2,]
|
84 |
+
rank4 -- local_shape:[0,], global_offset:[2,]
|
85 |
+
rank6 -- local_shape:[0,], global_offset:[2,]
|
86 |
+
rank7 -- local_shape:[0,], global_offset:[2,]
|
87 |
+
"""
|
88 |
+
my_coordinate = mesh.get_coordinate()
|
89 |
+
|
90 |
+
if my_coordinate is None:
|
91 |
+
# if rank not in the mesh, return empty offset
|
92 |
+
return ((), ())
|
93 |
+
else:
|
94 |
+
local_shape = list(global_shape)
|
95 |
+
global_offset = [0] * len(global_shape)
|
96 |
+
|
97 |
+
for idx, placement in enumerate(placements):
|
98 |
+
mesh_dim_size = mesh.size(idx)
|
99 |
+
if isinstance(placement, Shard):
|
100 |
+
shard_dim = placement.dim
|
101 |
+
local_offset = [0] * len(global_shape)
|
102 |
+
assert shard_dim < len(
|
103 |
+
local_shape
|
104 |
+
), f"Sharding dim {shard_dim} greater than tensor ndim {len(local_shape)}"
|
105 |
+
shard_size, shard_offset = placement._local_shard_size_on_dim(
|
106 |
+
local_shape[shard_dim],
|
107 |
+
mesh_dim_size,
|
108 |
+
my_coordinate[idx],
|
109 |
+
return_offset=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
local_shape[shard_dim] = shard_size
|
113 |
+
local_offset[shard_dim] = shard_offset
|
114 |
+
|
115 |
+
# On a given dimension, if the local_offset[shard_dim] is smaller than global_offset[shard_dim],
|
116 |
+
# it means that this dimension has been already sharded in previous placement.
|
117 |
+
# Therefore, we cannot simply replace the global_offset[shard_dim] with local_offset[shard_dim].
|
118 |
+
# Instead, for the given shard_dim, we need to add local_offset[shard_dim] to existing global_offset[shard_dim].
|
119 |
+
if global_offset[shard_dim] <= local_offset[shard_dim]:
|
120 |
+
global_offset[shard_dim] = local_offset[shard_dim]
|
121 |
+
else:
|
122 |
+
global_offset[shard_dim] += local_offset[shard_dim]
|
123 |
+
|
124 |
+
return tuple(local_shape), tuple(global_offset)
|
125 |
+
|
126 |
+
|
127 |
+
def compute_global_tensor_info(
|
128 |
+
tensor: torch.Tensor, mesh: DeviceMesh, placements: Sequence[Placement]
|
129 |
+
) -> Tuple[List[int], List[int]]:
|
130 |
+
"""
|
131 |
+
Compute the global size and stride of a DTensor from the given local tensor.
|
132 |
+
The local size is multiplited by `world_size` per Sharding dim.
|
133 |
+
The local stride is multiplited by `world_size` per Sharding dim, as long as the
|
134 |
+
dimension is outside sharding dim.
|
135 |
+
|
136 |
+
For example, if we have a local tensor with size (4, 8, 2) and stride (16, 1, 8).
|
137 |
+
If the DTensor placements are [Shard(2)] and world_size is 2;
|
138 |
+
then the global size is (4, 8, 4) and stride is (16 * 2, 1, 8).
|
139 |
+
|
140 |
+
Args:
|
141 |
+
tensor (:class:`torch.Tensor`):
|
142 |
+
Local tensor which DTensor will be constructed from.
|
143 |
+
mesh (:class:`DeviceMesh`):
|
144 |
+
Object which describes the mesh topology
|
145 |
+
of devices for the DTensor.
|
146 |
+
placements (Sequence[:class:`Placement`]]):
|
147 |
+
The attribute of the DTensor that describes its layout
|
148 |
+
on the mesh topology.
|
149 |
+
|
150 |
+
Return:
|
151 |
+
tensor_shape: A List of int which specifies the size of DTensor which build
|
152 |
+
on top of the local tensor.
|
153 |
+
tensor_stride: A List of int which specifies the stride of DTensor.
|
154 |
+
"""
|
155 |
+
tensor_shape = list(tensor.size())
|
156 |
+
tensor_stride = list(tensor.stride())
|
157 |
+
for idx, placement in enumerate(placements):
|
158 |
+
mesh_dim_size = mesh.size(idx)
|
159 |
+
if placement.is_shard():
|
160 |
+
shard_placement = cast(Shard, placement)
|
161 |
+
if shard_placement.dim < 0:
|
162 |
+
raise AssertionError(
|
163 |
+
"Shard placements should have negative dims normalized in "
|
164 |
+
f"the user-facing APIs: {shard_placement}"
|
165 |
+
)
|
166 |
+
shard_dim = shard_placement.dim
|
167 |
+
|
168 |
+
assert (
|
169 |
+
shard_dim < tensor.ndim
|
170 |
+
), f"Sharding dim {shard_dim} greater than tensor ndim {tensor.ndim} for placement number {idx}."
|
171 |
+
|
172 |
+
local_dim_size = tensor_shape[shard_dim]
|
173 |
+
tensor_shape[shard_dim] = local_dim_size * mesh_dim_size
|
174 |
+
|
175 |
+
# recover tensor stride by modifying the stride that larger than
|
176 |
+
# the current stride on the shard_dim
|
177 |
+
for i in range(len(tensor_stride)):
|
178 |
+
if i != shard_dim and tensor_stride[i] >= tensor_stride[shard_dim]:
|
179 |
+
# rescale the stride by the shard size
|
180 |
+
tensor_stride[i] = tensor_stride[i] * mesh_dim_size
|
181 |
+
elif not isinstance(placement, (Replicate, _Partial)):
|
182 |
+
raise RuntimeError(f"placement type {type(placement)} not supported!")
|
183 |
+
return tensor_shape, tensor_stride
|
184 |
+
|
185 |
+
|
186 |
+
def try_find_mesh_from_args(
|
187 |
+
op_call: torch._ops.OpOverload, args: Sequence[object]
|
188 |
+
) -> DeviceMesh:
|
189 |
+
"""
|
190 |
+
Find the device mesh object from args.
|
191 |
+
It returns None if no mesh is found.
|
192 |
+
NOTE: we can optimize this search if needed
|
193 |
+
"""
|
194 |
+
for arg in args:
|
195 |
+
if isinstance(arg, (dtensor.DTensor, DTensorSpec)):
|
196 |
+
return arg.device_mesh
|
197 |
+
elif (
|
198 |
+
isinstance(arg, (list, tuple))
|
199 |
+
and len(arg) > 0
|
200 |
+
and isinstance(arg[0], (dtensor.DTensor, DTensorSpec))
|
201 |
+
):
|
202 |
+
return arg[0].device_mesh
|
203 |
+
|
204 |
+
raise ValueError(f"Cannot find device mesh from args for op : {op_call}.")
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/api.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
import inspect
|
3 |
+
import warnings
|
4 |
+
from typing import Any, Callable, cast, Optional, Sequence, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import torch.distributed._tensor.dispatch as op_dispatch
|
9 |
+
import torch.distributed._tensor.random as random
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch.distributed._tensor._collective_utils import mesh_broadcast
|
12 |
+
from torch.distributed._tensor._utils import compute_global_tensor_info
|
13 |
+
from torch.distributed._tensor.placement_types import (
|
14 |
+
DTensorSpec,
|
15 |
+
Placement,
|
16 |
+
Replicate,
|
17 |
+
Shard,
|
18 |
+
TensorMeta,
|
19 |
+
)
|
20 |
+
from torch.distributed._tensor.random import (
|
21 |
+
is_rng_supported_mesh,
|
22 |
+
OffsetBasedRNGTracker,
|
23 |
+
)
|
24 |
+
from torch.distributed._tensor.redistribute import (
|
25 |
+
Redistribute,
|
26 |
+
redistribute_local_tensor,
|
27 |
+
)
|
28 |
+
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
|
29 |
+
|
30 |
+
|
31 |
+
__all__ = ["DTensor", "distribute_tensor", "distribute_module"]
|
32 |
+
|
33 |
+
aten = torch.ops.aten
|
34 |
+
|
35 |
+
|
36 |
+
# NOTE [Autograd interaction between torch.Tensor]
|
37 |
+
#
|
38 |
+
# The autograd functions defined below are being used by the public
|
39 |
+
# facing APIs (i.e. from_local, to_local) to ensure our DTensor
|
40 |
+
# works together with torch.Tensor within autograd engine. This
|
41 |
+
# allows DistributedTensor to exist on part of the module hierarchy
|
42 |
+
# and still able to calculate gradients across the torch.Tensor and
|
43 |
+
# DistributedTensor boundary.
|
44 |
+
# As an example, we have the a module that consists of submodules
|
45 |
+
# A, B, and C, the execution flow would be like:
|
46 |
+
# input(torch.Tensor) -> Module A -> Module B -> Module C -> output (torch.Tensor)
|
47 |
+
#
|
48 |
+
# Suppose I only want to make Module B be a sharded module with
|
49 |
+
# DistributedTensor params, we would need to make the following
|
50 |
+
# flow to work:
|
51 |
+
#
|
52 |
+
# input(torch.Tensor) -> Module A
|
53 |
+
# -> DTensor input -> Sharded Module B -> DTensor output
|
54 |
+
# -> output (torch.Tensor) -> Module C -> output (torch.Tensor)
|
55 |
+
#
|
56 |
+
# We need the conversion from Module A to DTensor input, which is
|
57 |
+
# `from_local`, and conversion from DTensor output to output, which
|
58 |
+
# is `to_local`, thus these two functions must be Autograd functions.
|
59 |
+
#
|
60 |
+
class _ToTorchTensor(torch.autograd.Function):
|
61 |
+
@staticmethod
|
62 |
+
def forward( # type: ignore[override]
|
63 |
+
ctx,
|
64 |
+
input: "DTensor",
|
65 |
+
grad_placements: Optional[Sequence[Placement]],
|
66 |
+
):
|
67 |
+
ctx.dtensor_spec = input._spec
|
68 |
+
ctx.grad_placements = grad_placements
|
69 |
+
local_tensor = input._local_tensor
|
70 |
+
|
71 |
+
# We need to return a fresh Tensor object there as autograd metadata
|
72 |
+
# will be inplaced into it. So we don't want to pollute the Tensor
|
73 |
+
# object stored in the _local_tensor of this DTensor.
|
74 |
+
return local_tensor.view_as(local_tensor)
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def backward(ctx, grad_output: torch.Tensor): # type: ignore[override]
|
78 |
+
dtensor_spec = ctx.dtensor_spec
|
79 |
+
mesh = dtensor_spec.mesh
|
80 |
+
grad_placements = ctx.grad_placements
|
81 |
+
dtensor_meta = dtensor_spec.tensor_meta
|
82 |
+
|
83 |
+
_, tensor_stride = compute_global_tensor_info(
|
84 |
+
grad_output, mesh, dtensor_spec.placements
|
85 |
+
)
|
86 |
+
tensor_stride = tuple(tensor_stride)
|
87 |
+
grad_placements = grad_placements or dtensor_spec.placements
|
88 |
+
|
89 |
+
return (
|
90 |
+
DTensor(
|
91 |
+
grad_output,
|
92 |
+
mesh,
|
93 |
+
grad_placements,
|
94 |
+
shape=dtensor_meta.shape,
|
95 |
+
dtype=dtensor_meta.dtype,
|
96 |
+
requires_grad=grad_output.requires_grad,
|
97 |
+
stride=tensor_stride,
|
98 |
+
),
|
99 |
+
None,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
class _FromTorchTensor(torch.autograd.Function):
|
104 |
+
@staticmethod
|
105 |
+
def forward( # type: ignore[override]
|
106 |
+
ctx, # pyre-ignore[2]: Parameter must be annotated.
|
107 |
+
input: torch.Tensor,
|
108 |
+
device_mesh: DeviceMesh,
|
109 |
+
placements: Tuple[Placement, ...],
|
110 |
+
run_check: bool,
|
111 |
+
shape: Optional[torch.Size] = None,
|
112 |
+
stride: Optional[Tuple[int, ...]] = None,
|
113 |
+
) -> "DTensor":
|
114 |
+
ctx.previous_placement = placements
|
115 |
+
ctx.previous_device_mesh = device_mesh
|
116 |
+
|
117 |
+
if shape and stride:
|
118 |
+
tensor_shape, tensor_stride = shape, stride
|
119 |
+
elif not shape and not stride:
|
120 |
+
# if it's not by default run_check, we assume user is certain that each
|
121 |
+
# rank has the same tensor shape, and we just use that to calculate the
|
122 |
+
# global shape
|
123 |
+
global_shape, global_stride = compute_global_tensor_info(
|
124 |
+
input, device_mesh, placements
|
125 |
+
)
|
126 |
+
tensor_shape, tensor_stride = torch.Size(global_shape), tuple(global_stride)
|
127 |
+
else:
|
128 |
+
raise RuntimeError(
|
129 |
+
f"Found shape:{shape}, stride:{stride}.",
|
130 |
+
"Please pass both shape and stride at the same time.",
|
131 |
+
)
|
132 |
+
|
133 |
+
if device_mesh.get_coordinate() is None:
|
134 |
+
# if the global rank is not participating in the device mesh, we
|
135 |
+
# simply set the local tensor to an empty tensor
|
136 |
+
input = input.new_empty(0, requires_grad=input.requires_grad)
|
137 |
+
elif run_check:
|
138 |
+
# TODO: by default check tensor metas across rank
|
139 |
+
# TODO: See if we need to make this run_check logic
|
140 |
+
# have a corresponding backward.
|
141 |
+
for idx, placement in enumerate(placements):
|
142 |
+
if placement.is_replicate():
|
143 |
+
# broadcast rank 0 tensor to all ranks
|
144 |
+
# only broadcast if run_check is True
|
145 |
+
input = input.contiguous()
|
146 |
+
mesh_broadcast(input, device_mesh, mesh_dim=idx)
|
147 |
+
|
148 |
+
# We want a fresh Tensor object that shares memory with the input tensor
|
149 |
+
dist_tensor = DTensor(
|
150 |
+
input.view_as(input),
|
151 |
+
device_mesh,
|
152 |
+
placements,
|
153 |
+
shape=tensor_shape,
|
154 |
+
dtype=input.dtype,
|
155 |
+
# requires_grad of the dist tensor depends on if input
|
156 |
+
# requires_grad or not
|
157 |
+
requires_grad=input.requires_grad,
|
158 |
+
stride=tensor_stride,
|
159 |
+
)
|
160 |
+
return dist_tensor
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def backward(ctx, grad_output: "DTensor"): # type: ignore[override]
|
164 |
+
previous_placement = ctx.previous_placement
|
165 |
+
previous_device_mesh = ctx.previous_device_mesh
|
166 |
+
|
167 |
+
# reshard to the placement when creating DistributedTensor
|
168 |
+
# so that the gradient layout matches, and we could return
|
169 |
+
# local gradients directly
|
170 |
+
if grad_output.placements != previous_placement:
|
171 |
+
current_spec = grad_output._spec
|
172 |
+
target_spec = DTensorSpec(
|
173 |
+
previous_device_mesh,
|
174 |
+
previous_placement,
|
175 |
+
tensor_meta=grad_output._spec.tensor_meta,
|
176 |
+
)
|
177 |
+
local_tensor = grad_output._local_tensor
|
178 |
+
output = redistribute_local_tensor(
|
179 |
+
local_tensor, current_spec, target_spec, is_backward=True
|
180 |
+
)
|
181 |
+
# TODO: return the redistributed local tensor directly without
|
182 |
+
# differentiable backward. see if this make sense for all cases.
|
183 |
+
return output, None, None, None, None, None
|
184 |
+
|
185 |
+
# TODO: backward is also differentiable now, add a test
|
186 |
+
# to test higher level gradients.
|
187 |
+
return grad_output.to_local(), None, None, None, None, None
|
188 |
+
|
189 |
+
|
190 |
+
class DTensor(torch.Tensor): # pyre-ignore[13]: pyre is bad at __new__
|
191 |
+
_local_tensor: torch.Tensor
|
192 |
+
_spec: DTensorSpec
|
193 |
+
__slots__ = ["_local_tensor", "_spec"]
|
194 |
+
|
195 |
+
# class attribute that handles operator placements propagation
|
196 |
+
# rules, keyed by aten op name, value is propagation func
|
197 |
+
_op_dispatcher: op_dispatch.OpDispatcher = op_dispatch.OpDispatcher()
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def __new__(
|
201 |
+
cls,
|
202 |
+
local_tensor: torch.Tensor,
|
203 |
+
device_mesh: DeviceMesh,
|
204 |
+
placements: Tuple[Placement, ...],
|
205 |
+
*,
|
206 |
+
shape: torch.Size,
|
207 |
+
dtype: torch.dtype,
|
208 |
+
requires_grad: bool,
|
209 |
+
stride: Tuple[int, ...],
|
210 |
+
) -> "DTensor":
|
211 |
+
"""
|
212 |
+
Construct a DTensor from a local tensor, device mesh, and placement and
|
213 |
+
other tensor properties (i.e. shape, requires_grad, strides, etc).
|
214 |
+
Note: This is not a public API and it's only supposed to be used by the
|
215 |
+
operator implementations and internals. If you want to construct a
|
216 |
+
DTensor from a local tensor, consider using `DTensor.from_local`, if
|
217 |
+
you want to construct a DTensor from a "global" tensor (where you
|
218 |
+
already have tensor initialized and want to shard this tensor),
|
219 |
+
consider using `distribute_tensor`.
|
220 |
+
"""
|
221 |
+
if local_tensor.requires_grad and not requires_grad:
|
222 |
+
warnings.warn(
|
223 |
+
"To construct DTensor from torch.Tensor, it's recommended to "
|
224 |
+
"use local_tensor.detach() and make requires_grad consistent."
|
225 |
+
)
|
226 |
+
|
227 |
+
# new method instruct wrapper tensor from local_tensor and add
|
228 |
+
# placement spec, it does not do actual distribution
|
229 |
+
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
230 |
+
cls,
|
231 |
+
shape,
|
232 |
+
strides=stride,
|
233 |
+
dtype=dtype,
|
234 |
+
device=local_tensor.device,
|
235 |
+
layout=local_tensor.layout,
|
236 |
+
requires_grad=requires_grad,
|
237 |
+
)
|
238 |
+
|
239 |
+
tensor_meta = TensorMeta(shape, stride, dtype)
|
240 |
+
# deepcopy and set spec
|
241 |
+
r._spec = DTensorSpec(device_mesh, placements, tensor_meta=tensor_meta)
|
242 |
+
r._local_tensor = local_tensor
|
243 |
+
return r
|
244 |
+
|
245 |
+
# pyre-fixme[14]: `__repr__` overrides method defined in `DTensor` inconsistently.
|
246 |
+
# pyre-fixme[3]: Return type must be annotated.
|
247 |
+
def __repr__(self):
|
248 |
+
# TODO: consider all_gather the local tensors for better debugging
|
249 |
+
return f"DTensor(local_tensor={self._local_tensor}, device_mesh={self._spec.mesh}, placements={self._spec.placements})"
|
250 |
+
|
251 |
+
def __tensor_flatten__(self):
|
252 |
+
"""
|
253 |
+
protocol to inform how to flatten a DTensor to local tensor
|
254 |
+
for PT2 tracing
|
255 |
+
"""
|
256 |
+
return ["_local_tensor"], (self._spec, self.requires_grad)
|
257 |
+
|
258 |
+
@staticmethod
|
259 |
+
def __tensor_unflatten__(inner_tensors, flatten_spec, outer_size, outer_stride):
|
260 |
+
assert (
|
261 |
+
flatten_spec is not None
|
262 |
+
), "Expecting spec to be not None from `__tensor_flatten__` return value!"
|
263 |
+
local_tensor = inner_tensors["_local_tensor"]
|
264 |
+
spec, requires_grad = flatten_spec
|
265 |
+
return DTensor(
|
266 |
+
local_tensor,
|
267 |
+
spec.mesh,
|
268 |
+
spec.placements,
|
269 |
+
shape=outer_size,
|
270 |
+
dtype=spec.tensor_meta.dtype,
|
271 |
+
requires_grad=requires_grad,
|
272 |
+
stride=outer_stride,
|
273 |
+
)
|
274 |
+
|
275 |
+
@classmethod
|
276 |
+
# pyre-fixme[3]: Return type must be annotated.
|
277 |
+
# pyre-fixme[2]: Parameter must be annotated.
|
278 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
279 |
+
return DTensor._op_dispatcher.dispatch(
|
280 |
+
func,
|
281 |
+
args,
|
282 |
+
kwargs or {},
|
283 |
+
)
|
284 |
+
|
285 |
+
@staticmethod
|
286 |
+
def from_local(
|
287 |
+
local_tensor: torch.Tensor,
|
288 |
+
device_mesh: Optional[DeviceMesh] = None,
|
289 |
+
placements: Optional[Sequence[Placement]] = None,
|
290 |
+
*,
|
291 |
+
run_check: bool = True,
|
292 |
+
shape: Optional[torch.Size] = None,
|
293 |
+
stride: Optional[Tuple[int, ...]] = None,
|
294 |
+
) -> "DTensor":
|
295 |
+
"""
|
296 |
+
Create a :class:`DTensor` from a local torch.Tensor on each rank
|
297 |
+
according to the `device_mesh` and `placements` specified.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
local_tensor (torch.Tensor): local torch.Tensor on each rank.
|
301 |
+
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to place the
|
302 |
+
tensor, if not specified, must be called under a DeviceMesh
|
303 |
+
context manager, default: None
|
304 |
+
placements (List[:class:`Placement`], optional): the placements that
|
305 |
+
describes how to place the local torch.Tensor on DeviceMesh, must
|
306 |
+
have the same number of elements as `device_mesh.ndim`. If not
|
307 |
+
specified, we will by default replicate the tensor across the
|
308 |
+
`device_mesh` from the first rank of each dimension of the `device_mesh`.
|
309 |
+
|
310 |
+
Keyword args:
|
311 |
+
run_check (bool, optional): indicate whether to run check across ranks
|
312 |
+
to check meta information and data. if have :class:`Replicate` in
|
313 |
+
`placements`, the data on first rank of the device mesh dimension
|
314 |
+
will be broadcasted to other ranks.
|
315 |
+
shape (torch.Size, optional): A List of int which specifies the size of
|
316 |
+
DTensor which build on top of `local_tensor`. Note this needs to be
|
317 |
+
provided if the shape of `local_tensor` are different across the ranks.
|
318 |
+
If not provided, `shape` will be computed assuming the given distributed
|
319 |
+
tensor is evenly sharded across ranks.
|
320 |
+
stride (tuple, optional): A List of int which specifies the stride of DTensor.
|
321 |
+
If not provided, `stride` will be computed assuming the given distributed
|
322 |
+
tensor is evenly sharded across ranks.
|
323 |
+
|
324 |
+
Returns:
|
325 |
+
A :class:`DTensor` object
|
326 |
+
|
327 |
+
.. note:: `from_local` is differentiable, the `requires_grad` of the created
|
328 |
+
`DTensor` object will depend on if `local_tensor` requires_grad or not.
|
329 |
+
"""
|
330 |
+
# if same shape/dtype, no need to run_check, if not, must allgather
|
331 |
+
# the metadatas to check the size/dtype across ranks
|
332 |
+
# There should be no data communication unless there's replication
|
333 |
+
# strategy, where we broadcast the replication from the first rank
|
334 |
+
# in the mesh dimension
|
335 |
+
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
336 |
+
device_type = device_mesh.device_type
|
337 |
+
|
338 |
+
# convert the local tensor to desired device base on device mesh's device_type
|
339 |
+
if device_type != local_tensor.device.type and not local_tensor.is_meta:
|
340 |
+
local_tensor = local_tensor.to(device_type)
|
341 |
+
|
342 |
+
# set default placements to replicated if not specified
|
343 |
+
if placements is None:
|
344 |
+
placements = [Replicate() for _ in range(device_mesh.ndim)]
|
345 |
+
else:
|
346 |
+
placements = list(placements)
|
347 |
+
for idx, placement in enumerate(placements):
|
348 |
+
# normalize shard dim to be positive
|
349 |
+
if placement.is_shard():
|
350 |
+
placement = cast(Shard, placement)
|
351 |
+
if placement.dim < 0:
|
352 |
+
placements[idx] = Shard(placement.dim + local_tensor.ndim)
|
353 |
+
|
354 |
+
# `from_local` is differentiable, and the gradient of the dist tensor this function
|
355 |
+
# created should flow back the gradients to the local_tensor, so we call an autograd
|
356 |
+
# function to construct the dist tensor instead.
|
357 |
+
return _FromTorchTensor.apply( # pyre-ignore[16]: autograd func
|
358 |
+
local_tensor,
|
359 |
+
device_mesh,
|
360 |
+
tuple(placements),
|
361 |
+
run_check,
|
362 |
+
shape,
|
363 |
+
stride,
|
364 |
+
)
|
365 |
+
|
366 |
+
def to_local(
|
367 |
+
self, *, grad_placements: Optional[Sequence[Placement]] = None
|
368 |
+
) -> torch.Tensor:
|
369 |
+
"""
|
370 |
+
Get the local tensor of this DTensor on its current rank. For sharding it returns
|
371 |
+
a local shard of the logical tensor view, for replication it returns the replica on
|
372 |
+
its current rank.
|
373 |
+
|
374 |
+
Keyword args:
|
375 |
+
grad_placements (List[:class:`Placement`], optional): the placements describes
|
376 |
+
the future layout of any gradient layout of the Tensor returned from this
|
377 |
+
function.
|
378 |
+
`to_local` converts DTensor to local tensor and the returned local tensor
|
379 |
+
might not be used as the original DTensor layout later in the code. This
|
380 |
+
argument is the hint that user can give to autograd in case the gradient
|
381 |
+
layout of the returned tensor does not match the original DTensor layout.
|
382 |
+
If not specified, we will assume the gradient layout remains the same
|
383 |
+
as the original DTensor and use that for gradient computation.
|
384 |
+
|
385 |
+
Returns:
|
386 |
+
A :class:`torch.Tensor` or `AsyncCollectiveTensor` object. it represents the
|
387 |
+
local tensor on its current rank.
|
388 |
+
|
389 |
+
.. note:: `to_local` is differentiable, the `requires_grad` of the local tensor returned
|
390 |
+
will depend on if the `DTensor` requires_grad or not.
|
391 |
+
"""
|
392 |
+
if grad_placements is not None and not isinstance(grad_placements, tuple):
|
393 |
+
grad_placements = tuple(grad_placements)
|
394 |
+
return _ToTorchTensor.apply(
|
395 |
+
self, grad_placements
|
396 |
+
) # pyre-ignore[16]: autograd func
|
397 |
+
|
398 |
+
def redistribute(
|
399 |
+
self,
|
400 |
+
device_mesh: Optional[DeviceMesh] = None,
|
401 |
+
placements: Optional[Sequence[Placement]] = None,
|
402 |
+
*,
|
403 |
+
async_op: bool = False,
|
404 |
+
) -> "DTensor":
|
405 |
+
"""
|
406 |
+
`redistribute` performs necessary collective operations that redistribute the current
|
407 |
+
DTensor from its current placements to a new placements, or from is current DeviceMesh
|
408 |
+
to a new DeviceMesh. i.e. we can turn a Sharded DTensor to a Replicated DTensor by
|
409 |
+
specifying a Replicate placement for each dimension of the DeviceMesh.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to place the
|
413 |
+
DTensor, if not specified, must be called under a DeviceMesh
|
414 |
+
context manager, default: None
|
415 |
+
placements (List[:class:`Placement`], optional): the new placements that
|
416 |
+
describes how to place the DTensor into the DeviceMesh, must
|
417 |
+
have the same number of elements as `device_mesh.ndim`.
|
418 |
+
|
419 |
+
Keyword args:
|
420 |
+
async_op (bool, optional): whether to perform the DTensor redistribute operation
|
421 |
+
asynchronously or not. Default: False
|
422 |
+
|
423 |
+
Returns:
|
424 |
+
A :class:`DTensor` object
|
425 |
+
|
426 |
+
.. note:: `redistribute` is differentiable.
|
427 |
+
"""
|
428 |
+
# NOTE: This redistribute API currently only supports out
|
429 |
+
# of place redistribution, i.e. it always create a new
|
430 |
+
# DTensor object and leave the original one unchanged.
|
431 |
+
|
432 |
+
# if device_mesh is not specified, use the current device_mesh
|
433 |
+
device_mesh = device_mesh or self.device_mesh
|
434 |
+
# raise error if new placements not specified
|
435 |
+
if placements is None:
|
436 |
+
raise RuntimeError("placements is needed for redistribute!")
|
437 |
+
|
438 |
+
placements = list(placements)
|
439 |
+
for i, placement in enumerate(placements):
|
440 |
+
if placement.is_partial():
|
441 |
+
raise RuntimeError(
|
442 |
+
"Can not redistribute to _Partial, _Partial is for internal use only!"
|
443 |
+
)
|
444 |
+
elif isinstance(placement, Shard) and placement.dim < 0:
|
445 |
+
# normalize shard dim to be positive
|
446 |
+
placements[i] = Shard(placement.dim + self.ndim)
|
447 |
+
placements = tuple(placements)
|
448 |
+
|
449 |
+
# Early return the original DTensor if the placements are the same.
|
450 |
+
if self._spec.placements == placements:
|
451 |
+
return self
|
452 |
+
|
453 |
+
# pyre-fixme[16]: `Redistribute` has no attribute `apply`.
|
454 |
+
return Redistribute.apply(self, device_mesh, placements, async_op)
|
455 |
+
|
456 |
+
def full_tensor(
|
457 |
+
self, *, grad_placements: Optional[Sequence[Placement]] = None
|
458 |
+
) -> torch.Tensor:
|
459 |
+
"""
|
460 |
+
Return the full tensor of this DTensor. It will perform necessary collectives
|
461 |
+
to gather the local tensors from other ranks in its DeviceMesh and concatenate
|
462 |
+
them together. It's a syntatic sugar of the following code:
|
463 |
+
|
464 |
+
`dtensor.redistribute(placements=[Replicate()] * mesh.ndim).to_local()`
|
465 |
+
|
466 |
+
Keyword args:
|
467 |
+
grad_placements (List[:class:`Placement`], optional): the placements describes
|
468 |
+
the future layout of any gradient layout of the full Tensor returned from this
|
469 |
+
function.
|
470 |
+
`full_tensor` converts DTensor to a full torch.Tensor and the returned torch.tensor
|
471 |
+
might not be used as the original replicated DTensor layout later in the code. This
|
472 |
+
argument is the hint that user can give to autograd in case the gradient
|
473 |
+
layout of the returned tensor does not match the original replicated DTensor layout.
|
474 |
+
If not specified, we will assume the gradient layout of the full tensor be replicated.
|
475 |
+
|
476 |
+
Returns:
|
477 |
+
A :class:`torch.Tensor` object that represents the full tensor of this DTensor.
|
478 |
+
|
479 |
+
.. note:: `full_tensor` is differentiable.
|
480 |
+
"""
|
481 |
+
|
482 |
+
redist_res = self.redistribute(
|
483 |
+
placements=[Replicate()] * self.device_mesh.ndim, async_op=False
|
484 |
+
)
|
485 |
+
return _ToTorchTensor.apply(redist_res, grad_placements)
|
486 |
+
|
487 |
+
@property
|
488 |
+
def device_mesh(self) -> DeviceMesh:
|
489 |
+
"""
|
490 |
+
The :class:`DeviceMesh` attribute that associates with this DTensor object.
|
491 |
+
|
492 |
+
.. note:: device_mesh is a read-only property, it can not be set.
|
493 |
+
"""
|
494 |
+
return self._spec.mesh
|
495 |
+
|
496 |
+
@property
|
497 |
+
def placements(self) -> Sequence[Placement]:
|
498 |
+
"""
|
499 |
+
The placements attribute of this DTensor that describes the layout of this
|
500 |
+
DTensor on the its DeviceMesh.
|
501 |
+
|
502 |
+
.. note:: placements is a read-only property, it can not be set.
|
503 |
+
"""
|
504 |
+
return self._spec.placements
|
505 |
+
|
506 |
+
|
507 |
+
def distribute_tensor(
|
508 |
+
tensor: torch.Tensor,
|
509 |
+
device_mesh: Optional[DeviceMesh] = None,
|
510 |
+
placements: Optional[Sequence[Placement]] = None,
|
511 |
+
) -> DTensor:
|
512 |
+
"""
|
513 |
+
Distribute a torch.Tensor to the `device_mesh` according to the `placements`
|
514 |
+
specified. The rank of `device_mesh` and `placements` must be the same.
|
515 |
+
|
516 |
+
Args:
|
517 |
+
tensor (torch.Tensor): torch.Tensor to be distributed. Note that if you
|
518 |
+
want to shard a tensor on a dimension that is not evenly divisible by
|
519 |
+
the number of devices in that mesh dimension, we use `torch.chunk`
|
520 |
+
semantic to shard the tensor and scatter the shards.
|
521 |
+
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to distribute the
|
522 |
+
tensor, if not specified, must be called under a DeviceMesh context
|
523 |
+
manager, default: None
|
524 |
+
placements (List[:class:`Placement`], optional): the placements that
|
525 |
+
describes how to place the tensor on DeviceMesh, must have the same
|
526 |
+
number of elements as `device_mesh.ndim`. If not specified, we will
|
527 |
+
by default replicate the tensor across the `device_mesh` from the
|
528 |
+
first rank of each dimension of the `device_mesh`.
|
529 |
+
|
530 |
+
Returns:
|
531 |
+
A :class:`DTensor` or `XLAShardedTensor` object.
|
532 |
+
|
533 |
+
Note:
|
534 |
+
When initialize the DeviceMesh with the `xla` device_type, `distribute_tensor`
|
535 |
+
return `XLAShardedTensor` instead. see [link](https://github.com/pytorch/pytorch/issues/92909)
|
536 |
+
for more details. The XLA integration is experimental and subject to change.
|
537 |
+
"""
|
538 |
+
|
539 |
+
torch._C._log_api_usage_once("torch.dtensor.distribute_tensor")
|
540 |
+
|
541 |
+
# get default device mesh if there's nothing specified
|
542 |
+
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
543 |
+
device_type = device_mesh.device_type
|
544 |
+
if device_type == "xla":
|
545 |
+
try:
|
546 |
+
# call PyTorch/XLA SPMD for `xla` backend type device mesh.
|
547 |
+
# This returns XLAShardedTensor
|
548 |
+
from torch_xla.distributed.spmd import ( # type:ignore[import]
|
549 |
+
xla_distribute_tensor,
|
550 |
+
)
|
551 |
+
|
552 |
+
return xla_distribute_tensor(
|
553 |
+
tensor, device_mesh, placements
|
554 |
+
) # type:ignore[return-value]
|
555 |
+
except ImportError as e:
|
556 |
+
msg = "To use DTensor API with xla, you must install the torch_xla package!"
|
557 |
+
raise ImportError(msg) from e
|
558 |
+
|
559 |
+
# instantiate a RNG tracker if haven't. By default DTensor uses an
|
560 |
+
# OffsetBasedRNGTracker to perform random operators.
|
561 |
+
# TODO: the value assignment to global variable is not the ideal solution
|
562 |
+
# we can replace it in future.
|
563 |
+
if is_rng_supported_mesh(device_mesh) and not random._rng_tracker:
|
564 |
+
random._rng_tracker = OffsetBasedRNGTracker(device_type)
|
565 |
+
|
566 |
+
if not tensor.is_leaf:
|
567 |
+
raise RuntimeError(
|
568 |
+
"`distribute_tensor` should be used to distribute leaf tensors! but found non-leaf tensor!"
|
569 |
+
)
|
570 |
+
|
571 |
+
# convert tensor to the corresponding device type if it's not in that device type
|
572 |
+
if device_type != tensor.device.type and not tensor.is_meta:
|
573 |
+
tensor = tensor.to(device_type)
|
574 |
+
|
575 |
+
# set default placements to replicated if not specified
|
576 |
+
if placements is None:
|
577 |
+
placements = [Replicate() for _ in range(device_mesh.ndim)]
|
578 |
+
|
579 |
+
if len(placements) != device_mesh.ndim:
|
580 |
+
raise ValueError(
|
581 |
+
f"`placements` must have the same length as `device_mesh.ndim`! "
|
582 |
+
f"Found placements length: {len(placements)}, and device_mesh.ndim: {device_mesh.ndim}."
|
583 |
+
)
|
584 |
+
if isinstance(tensor, DTensor):
|
585 |
+
# if the tensor is already a DTensor, we just need to check if the
|
586 |
+
# device mesh and placements are the same
|
587 |
+
if tensor.device_mesh != device_mesh:
|
588 |
+
raise ValueError(
|
589 |
+
f"Cannot distribute a DTensor with device mesh {tensor.device_mesh} "
|
590 |
+
f"to a different device mesh {device_mesh}."
|
591 |
+
)
|
592 |
+
if tensor.placements != tuple(placements):
|
593 |
+
raise ValueError(
|
594 |
+
f"Cannot distribute a DTensor with placements {tensor.placements} "
|
595 |
+
f"to a different placements {placements}. do you want to call "
|
596 |
+
f"`redistribute` instead?"
|
597 |
+
)
|
598 |
+
return tensor
|
599 |
+
|
600 |
+
local_tensor = tensor
|
601 |
+
|
602 |
+
# distribute the tensor according to the placements.
|
603 |
+
placements = list(placements)
|
604 |
+
for idx, placement in enumerate(placements):
|
605 |
+
if placement.is_shard():
|
606 |
+
placement = cast(Shard, placement)
|
607 |
+
if placement.dim < 0:
|
608 |
+
# normalize shard placement dim
|
609 |
+
placement = Shard(placement.dim + tensor.ndim)
|
610 |
+
placements[idx] = placement
|
611 |
+
local_tensor = placement._shard_tensor(local_tensor, device_mesh, idx)
|
612 |
+
elif placement.is_replicate():
|
613 |
+
placement = cast(Replicate, placement)
|
614 |
+
local_tensor = placement._replicate_tensor(local_tensor, device_mesh, idx)
|
615 |
+
else:
|
616 |
+
raise RuntimeError(
|
617 |
+
f"Trying to distribute tensor with unsupported placements {placement} on device mesh dimension {idx}!"
|
618 |
+
)
|
619 |
+
placements = tuple(placements)
|
620 |
+
|
621 |
+
assert local_tensor is not None, "distributing a tensor should not be None"
|
622 |
+
# detach the local tensor passed to DTensor since after the construction
|
623 |
+
# of DTensor, autograd would work on top of DTensor instead of local tensor
|
624 |
+
return DTensor(
|
625 |
+
local_tensor.detach().requires_grad_(tensor.requires_grad),
|
626 |
+
device_mesh,
|
627 |
+
placements,
|
628 |
+
shape=tensor.size(),
|
629 |
+
dtype=tensor.dtype,
|
630 |
+
requires_grad=tensor.requires_grad,
|
631 |
+
stride=tensor.stride(),
|
632 |
+
)
|
633 |
+
|
634 |
+
|
635 |
+
def distribute_module(
|
636 |
+
module: nn.Module,
|
637 |
+
device_mesh: Optional[DeviceMesh] = None,
|
638 |
+
partition_fn: Optional[Callable[[str, nn.Module, DeviceMesh], None]] = None,
|
639 |
+
input_fn: Optional[Callable[[nn.Module, Any, DeviceMesh], None]] = None,
|
640 |
+
output_fn: Optional[Callable[[nn.Module, Any, DeviceMesh], None]] = None,
|
641 |
+
) -> nn.Module:
|
642 |
+
"""
|
643 |
+
This function converts all module parameters to :class:`DTensor` parameters
|
644 |
+
according to the `partition_fn` specified. It could also control the input or
|
645 |
+
output of the module by specifying the `input_fn` and `output_fn`. (i.e. convert
|
646 |
+
the input to :class:`DTensor`, convert the output back to torch.Tensor)
|
647 |
+
Args:
|
648 |
+
module (:class:`nn.Module`): user module to be partitioned.
|
649 |
+
device_mesh (:class:`DeviceMesh`): the device mesh to place the module.
|
650 |
+
partition_fn (Callable): the function to partition parameters (i.e. shard certain
|
651 |
+
parameters across the `device_mesh`). If `partition_fn` is not specified,
|
652 |
+
by default we replicate all module parameters of `module` across the mesh.
|
653 |
+
input_fn (Callable): specify the input distribution, i.e. could control how the
|
654 |
+
input of the module is sharded. `input_fn` will be installed as a module
|
655 |
+
`forward_pre_hook` (pre forward hook).
|
656 |
+
output_fn (Callable): specify the output distribution, i.e. could control how the
|
657 |
+
output is sharded, or convert it back to torch.Tensor. output_fn will be
|
658 |
+
installed as a module `forward_hook` (post forward hook).
|
659 |
+
|
660 |
+
Returns:
|
661 |
+
A module that contains parameters/buffers that are all `DTensor`s.
|
662 |
+
|
663 |
+
Note:
|
664 |
+
When initialize the DeviceMesh with the `xla` device_type, `distribute_module`
|
665 |
+
return nn.Module with PyTorch/XLA SPMD annotated parameters. See [link](https://github.com/pytorch/pytorch/issues/92909)
|
666 |
+
for more details. The XLA integration is experimental and subject to change.
|
667 |
+
"""
|
668 |
+
|
669 |
+
torch._C._log_api_usage_once("torch.dtensor.distribute_module")
|
670 |
+
|
671 |
+
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
672 |
+
device_type = device_mesh.device_type
|
673 |
+
if device_type == "xla":
|
674 |
+
try:
|
675 |
+
# This function annotates all module parameters for auto-partitioning with
|
676 |
+
# PyTorch/XLA SPMD or explicitly partition to :class:`XLAShardedTensor` parameters
|
677 |
+
# according to the `partition_fn` specified.
|
678 |
+
from torch_xla.distributed.spmd import ( # type:ignore[import]
|
679 |
+
xla_distribute_module,
|
680 |
+
)
|
681 |
+
|
682 |
+
return xla_distribute_module(
|
683 |
+
module, device_mesh, partition_fn, input_fn, output_fn
|
684 |
+
) # type:ignore[return-value]
|
685 |
+
except ImportError as e:
|
686 |
+
msg = "To use DTensor API with xla, you must install the torch_xla package!"
|
687 |
+
raise ImportError(msg) from e
|
688 |
+
|
689 |
+
def replicate_module_params_buffers(m: nn.Module, mesh: DeviceMesh) -> None:
|
690 |
+
# This function loop over the immediate module parameters and
|
691 |
+
# buffers, replicate all non DTensor params/buffers to DTensor
|
692 |
+
# parameters/buffers, if they have not been partitioned in the
|
693 |
+
# partition_fn, we can't easily use `module._apply` here
|
694 |
+
# because we don't know what happened inside partition_fn as
|
695 |
+
# user could do anything, i.e. install hooks, and we want to
|
696 |
+
# preserve those.
|
697 |
+
full_replicate = [Replicate()] * mesh.ndim
|
698 |
+
for key, param in m._parameters.items():
|
699 |
+
if param is not None and not isinstance(param, DTensor):
|
700 |
+
m.register_parameter(
|
701 |
+
key,
|
702 |
+
nn.Parameter(distribute_tensor(param.data, mesh, full_replicate)),
|
703 |
+
)
|
704 |
+
for key, buffer in m._buffers.items():
|
705 |
+
if buffer is not None and not isinstance(buffer, DTensor):
|
706 |
+
m._buffers[key] = distribute_tensor(buffer, mesh, full_replicate)
|
707 |
+
|
708 |
+
if partition_fn is None:
|
709 |
+
# if partition_fn not specified, we by default replicate
|
710 |
+
# all module params/buffers
|
711 |
+
for name, submod in module.named_modules():
|
712 |
+
replicate_module_params_buffers(submod, device_mesh)
|
713 |
+
else:
|
714 |
+
# apply partition_fun to submodules
|
715 |
+
for name, submod in module.named_modules():
|
716 |
+
partition_fn(name, submod, device_mesh)
|
717 |
+
replicate_module_params_buffers(submod, device_mesh)
|
718 |
+
|
719 |
+
# register input_fn as module forward pre hook
|
720 |
+
if input_fn is not None:
|
721 |
+
# check the input_fn signature
|
722 |
+
num_args = len(inspect.signature(input_fn).parameters)
|
723 |
+
if num_args == 2:
|
724 |
+
# input_fn only takes in inputs and device mesh
|
725 |
+
warnings.warn(
|
726 |
+
"Deprecating input_fn that takes two arguments (inputs, device_mesh), "
|
727 |
+
"please use input_fn that takes in (module, inputs, device_mesh) instead!",
|
728 |
+
)
|
729 |
+
module.register_forward_pre_hook(lambda _, inputs: input_fn(inputs, device_mesh)) # type: ignore[call-arg]
|
730 |
+
elif num_args == 3:
|
731 |
+
# input_fn takes in module, inputs, device mesh
|
732 |
+
module.register_forward_pre_hook(
|
733 |
+
lambda mod, inputs: input_fn(mod, inputs, device_mesh)
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
raise ValueError(
|
737 |
+
f"input_fn should take in 3 arguments, but got {num_args} arguments!"
|
738 |
+
)
|
739 |
+
# register output_fn as module forward hook
|
740 |
+
if output_fn is not None:
|
741 |
+
num_args = len(inspect.signature(output_fn).parameters)
|
742 |
+
if num_args == 2:
|
743 |
+
# output_fn only takes in outputs and device mesh
|
744 |
+
warnings.warn(
|
745 |
+
"Deprecating output_fn that takes two arguments (inputs, device_mesh), "
|
746 |
+
"please use output_fn that takes in (module, inputs, device_mesh) instead!",
|
747 |
+
)
|
748 |
+
module.register_forward_hook(
|
749 |
+
lambda mod, inputs, outputs: output_fn(outputs, device_mesh) # type: ignore[call-arg]
|
750 |
+
)
|
751 |
+
elif num_args == 3:
|
752 |
+
module.register_forward_hook(
|
753 |
+
lambda mod, inputs, outputs: output_fn(mod, outputs, device_mesh)
|
754 |
+
)
|
755 |
+
else:
|
756 |
+
raise ValueError(
|
757 |
+
f"output_fn should take in 3 arguments, but got {num_args} arguments!"
|
758 |
+
)
|
759 |
+
|
760 |
+
return module
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.distributed._tensor.api import DTensor
|
2 |
+
|
3 |
+
from torch.distributed._tensor.debug.comm_mode import CommDebugMode
|
4 |
+
|
5 |
+
|
6 |
+
def get_sharding_prop_cache_info():
|
7 |
+
"""
|
8 |
+
Get the cache info for the sharding propagation cache, used for debugging purpose only.
|
9 |
+
This would return a named tuple showing hits, misses, maxsize and cursize of the sharding
|
10 |
+
propagator cache.
|
11 |
+
"""
|
12 |
+
return (
|
13 |
+
DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding.cache_info() # type:ignore[attr-defined]
|
14 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/comm_mode.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.distributed._tensor.api import DTensor
|
6 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
7 |
+
|
8 |
+
|
9 |
+
funcol_native = torch.ops._c10d_functional
|
10 |
+
funcol_py = torch.ops.c10d_functional
|
11 |
+
|
12 |
+
NATIVE_TO_PY_MAPPING = {
|
13 |
+
funcol_native.all_gather_into_tensor: funcol_py.all_gather_into_tensor,
|
14 |
+
funcol_native.all_gather_into_tensor_coalesced: funcol_py.all_gather_into_tensor_coalesced,
|
15 |
+
funcol_native.all_reduce: funcol_py.all_reduce,
|
16 |
+
funcol_native.all_to_all_single: funcol_py.all_to_all_single,
|
17 |
+
funcol_native.broadcast: funcol_py.broadcast,
|
18 |
+
funcol_native.reduce_scatter_tensor: funcol_py.reduce_scatter_tensor,
|
19 |
+
funcol_native.reduce_scatter_tensor_coalesced: funcol_py.reduce_scatter_tensor_coalesced,
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class CommDebugMode(TorchDispatchMode):
|
24 |
+
"""
|
25 |
+
``CommDebugMode`` is a context manager that counts the number of
|
26 |
+
functional collectives within its context. It does this using a
|
27 |
+
``TorchDispatchMode``.
|
28 |
+
|
29 |
+
NOTE: this mode only works for functional collective atm and the
|
30 |
+
distributed_c10d collectives are not supported yet.
|
31 |
+
|
32 |
+
Example usage
|
33 |
+
|
34 |
+
.. code-block:: python
|
35 |
+
|
36 |
+
mod = ...
|
37 |
+
comm_mode = CommDebugMode()
|
38 |
+
with comm_mode:
|
39 |
+
mod.sum().backward()
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self):
|
44 |
+
self.comm_counts: Dict[Any, int] = defaultdict(int)
|
45 |
+
self.comm_registry = set()
|
46 |
+
for native_op, py_op in NATIVE_TO_PY_MAPPING.items():
|
47 |
+
self.comm_registry.add(native_op)
|
48 |
+
self.comm_registry.add(py_op)
|
49 |
+
|
50 |
+
def get_total_counts(self) -> int:
|
51 |
+
return sum(self.comm_counts.values())
|
52 |
+
|
53 |
+
def get_comm_counts(self) -> Dict[Any, int]:
|
54 |
+
"""Returns the communication counts as a dictionary.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Dict[Any, int]: The communication counts as a dictionary.
|
58 |
+
"""
|
59 |
+
return self.comm_counts
|
60 |
+
|
61 |
+
def __enter__(self):
|
62 |
+
self.comm_counts.clear()
|
63 |
+
super().__enter__()
|
64 |
+
return self
|
65 |
+
|
66 |
+
def __exit__(self, *args):
|
67 |
+
super().__exit__(*args)
|
68 |
+
|
69 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
70 |
+
# When running this mode with DTensor, ordinarily all modes will
|
71 |
+
# run **before** subclasses get a chance to run.
|
72 |
+
# Returning NotImplemented here gives us a chance to let DTensor
|
73 |
+
# run and desugar into comms ops, before CommDebugMode sees them.
|
74 |
+
if any(t == DTensor for t in types):
|
75 |
+
return NotImplemented
|
76 |
+
kwargs = kwargs if kwargs else {}
|
77 |
+
out = func(*args, **kwargs)
|
78 |
+
func_packet = func._overloadpacket
|
79 |
+
# We have many tests that use CommDebugMode to verify the occurrence of
|
80 |
+
# collectives. These tests do so by querying comm_counts with legacy
|
81 |
+
# funcol ops as key. For the purpose of native funcol migration, we
|
82 |
+
# need these tests to work for both legacy and native funcol. To avoid
|
83 |
+
# the need to modify all tests to accommodate the two implementations,
|
84 |
+
# we make CommDebugMode translate native funcol ops into legacy funcol
|
85 |
+
# ops until the migration finishes.
|
86 |
+
if func_packet in self.comm_registry:
|
87 |
+
if func_packet in NATIVE_TO_PY_MAPPING:
|
88 |
+
func_packet = NATIVE_TO_PY_MAPPING[func_packet]
|
89 |
+
self.comm_counts[func_packet] += 1
|
90 |
+
|
91 |
+
return out
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/op_coverage.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from operator import itemgetter
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from functorch.compile import make_boxed_func
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.fx
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch._functorch.compilers import aot_module
|
10 |
+
from torch._inductor.decomposition import select_decomp_table
|
11 |
+
from torch.distributed._tensor import DTensor
|
12 |
+
|
13 |
+
|
14 |
+
inductor_decomps = select_decomp_table()
|
15 |
+
|
16 |
+
graphs: List[torch.fx.GraphModule] = []
|
17 |
+
|
18 |
+
|
19 |
+
def fwd_bwd_compiler(fx_g, _):
|
20 |
+
graphs.append(fx_g)
|
21 |
+
return make_boxed_func(fx_g)
|
22 |
+
|
23 |
+
|
24 |
+
def get_inductor_decomp_graphs(model: nn.Module, args, kwargs):
|
25 |
+
"""
|
26 |
+
Obtain forward and backward graphs of a model with inductor decompositions using tracing and aot_module.
|
27 |
+
|
28 |
+
Convenient util to get the fwd and bwd graphs of an arbitrary model
|
29 |
+
with inductor decompositions. Note that this would simply do tracing
|
30 |
+
with aot_module and don't ensure correctness. This is useful to track
|
31 |
+
the ops needed in DTensor.
|
32 |
+
"""
|
33 |
+
compiled_mod = aot_module(
|
34 |
+
model, fw_compiler=fwd_bwd_compiler, decompositions=inductor_decomps
|
35 |
+
)
|
36 |
+
output = compiled_mod(*args, **kwargs)
|
37 |
+
|
38 |
+
if output.ndim != 0:
|
39 |
+
# if output is not a scalar tensor, by default sum it in order to
|
40 |
+
# run backward
|
41 |
+
output = output.sum()
|
42 |
+
|
43 |
+
output.backward()
|
44 |
+
|
45 |
+
# one fwd, one bwd graph
|
46 |
+
assert len(graphs) == 2
|
47 |
+
return graphs
|
48 |
+
|
49 |
+
|
50 |
+
def print_op_coverage_summary(model: nn.Module, args, kwargs, *, output_csv=False):
|
51 |
+
"""
|
52 |
+
Util to print the operator coverage summary of a certain model with tabulute.
|
53 |
+
|
54 |
+
Must have tabulate module installed.
|
55 |
+
"""
|
56 |
+
# python module required for summary
|
57 |
+
import csv
|
58 |
+
|
59 |
+
from tabulate import tabulate
|
60 |
+
|
61 |
+
fwd_graph, bwd_graph = get_inductor_decomp_graphs(model, args, kwargs)
|
62 |
+
|
63 |
+
op_counts = {}
|
64 |
+
|
65 |
+
for node in fwd_graph.graph.nodes:
|
66 |
+
if node.op == "call_function" and isinstance(
|
67 |
+
node.target, torch._ops.OpOverload
|
68 |
+
):
|
69 |
+
if node.target not in op_counts:
|
70 |
+
op_counts[node.target] = 0
|
71 |
+
|
72 |
+
op_counts[node.target] += 1
|
73 |
+
|
74 |
+
for node in bwd_graph.graph.nodes:
|
75 |
+
if node.op == "call_function" and isinstance(
|
76 |
+
node.target, torch._ops.OpOverload
|
77 |
+
):
|
78 |
+
if node.target not in op_counts:
|
79 |
+
op_counts[node.target] = 0
|
80 |
+
|
81 |
+
op_counts[node.target] += 1
|
82 |
+
|
83 |
+
op_infos = []
|
84 |
+
|
85 |
+
for op, count in op_counts.items():
|
86 |
+
supported = op in DTensor._op_dispatcher.sharding_propagator.op_to_rules
|
87 |
+
op_infos.append([op, str(op._schema), count, supported])
|
88 |
+
|
89 |
+
# sort the op info base on the total count index
|
90 |
+
count_idx = 2
|
91 |
+
op_infos.sort(key=itemgetter(count_idx), reverse=True)
|
92 |
+
|
93 |
+
headers = ["Operator", "Schema", "Total Count", "Supported"]
|
94 |
+
print(tabulate(op_infos, headers=headers))
|
95 |
+
|
96 |
+
if output_csv:
|
97 |
+
# Open a CSV file for writing
|
98 |
+
with open("op_summary.csv", "w", newline="") as csv_file:
|
99 |
+
# Create a CSV writer object
|
100 |
+
csv_writer = csv.writer(csv_file)
|
101 |
+
|
102 |
+
csv_writer.writerow(headers)
|
103 |
+
# Write each table row to the CSV file
|
104 |
+
for row in op_infos:
|
105 |
+
csv_writer.writerow(row)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/debug/visualize_sharding.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Sequence, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from torch._prims_common import ShapeType
|
6 |
+
from torch.distributed._tensor import DeviceMesh
|
7 |
+
|
8 |
+
from torch.distributed._tensor.placement_types import Placement, Shard
|
9 |
+
|
10 |
+
|
11 |
+
def _mesh_to_coordinate(mesh, device_type):
|
12 |
+
"""
|
13 |
+
Given a n-dimensional list of device mesh, this function creates a map of
|
14 |
+
device and its coordinate
|
15 |
+
"""
|
16 |
+
# Convert the n-dimensional list to a NumPy array
|
17 |
+
np_mesh = np.array(mesh.mesh.tolist())
|
18 |
+
|
19 |
+
# Create a dictionary to map each value to its coordinate
|
20 |
+
device_to_coordinate_map = {}
|
21 |
+
for coord, value in np.ndenumerate(np_mesh):
|
22 |
+
# device is unique in device_mesh
|
23 |
+
device_to_coordinate_map[f"{device_type}:{str(value)}"] = list(coord)
|
24 |
+
|
25 |
+
return device_to_coordinate_map
|
26 |
+
|
27 |
+
|
28 |
+
def _convert_offset_to_ranges(all_offsets):
|
29 |
+
"""
|
30 |
+
Using tabulate package to create a table is easier when we specify row and col ranges
|
31 |
+
This function converts offsets to ranges.
|
32 |
+
"""
|
33 |
+
converted_blocks = []
|
34 |
+
|
35 |
+
for offset in all_offsets:
|
36 |
+
shape, offset, value = offset
|
37 |
+
|
38 |
+
# Calculate row_range and column_range
|
39 |
+
row_range = (offset[0], offset[0] + shape[0] - 1)
|
40 |
+
column_range = (offset[1], offset[1] + shape[1] - 1)
|
41 |
+
|
42 |
+
# Convert value to string to match your desired format
|
43 |
+
converted_block = {
|
44 |
+
"row_range": row_range,
|
45 |
+
"column_range": column_range,
|
46 |
+
"value": str(value),
|
47 |
+
}
|
48 |
+
converted_blocks.append(converted_block)
|
49 |
+
|
50 |
+
return converted_blocks
|
51 |
+
|
52 |
+
|
53 |
+
def _create_table(blocks):
|
54 |
+
"""
|
55 |
+
Creates a tabulate table given row and column ranges with device name
|
56 |
+
"""
|
57 |
+
try:
|
58 |
+
from tabulate import tabulate
|
59 |
+
except ImportError as e:
|
60 |
+
raise ImportError("tabulate package is required to visualize sharding") from e
|
61 |
+
|
62 |
+
# Extract unique row and column ranges
|
63 |
+
row_ranges = sorted({block["row_range"] for block in blocks})
|
64 |
+
col_ranges = sorted({block["column_range"] for block in blocks})
|
65 |
+
|
66 |
+
# Create a matrix initialized with empty strings
|
67 |
+
matrix = [["" for _ in col_ranges] for _ in row_ranges]
|
68 |
+
|
69 |
+
# Fill the matrix with values
|
70 |
+
for block in blocks:
|
71 |
+
row_index = row_ranges.index(block["row_range"])
|
72 |
+
col_index = col_ranges.index(block["column_range"])
|
73 |
+
if matrix[row_index][col_index] == "":
|
74 |
+
matrix[row_index][col_index] = block["value"]
|
75 |
+
else:
|
76 |
+
matrix[row_index][col_index] += ", " + block["value"]
|
77 |
+
|
78 |
+
# Prepare headers
|
79 |
+
row_headers = [f"Row {r[0]}-{r[1]}" for r in row_ranges]
|
80 |
+
col_headers = [f"Col {c[0]}-{c[1]}" for c in col_ranges]
|
81 |
+
|
82 |
+
return tabulate(matrix, headers=col_headers, showindex=row_headers)
|
83 |
+
|
84 |
+
|
85 |
+
def compute_local_shape_and_global_offset(
|
86 |
+
global_shape: ShapeType,
|
87 |
+
mesh: DeviceMesh,
|
88 |
+
placements: Sequence[Placement],
|
89 |
+
my_coordinate: List[int],
|
90 |
+
) -> Tuple[Tuple[int, ...], Tuple[int, ...]]:
|
91 |
+
"""
|
92 |
+
Same as torch.distributed._tensor._utils.compute_local_shape_and_global_offset but
|
93 |
+
with custom my_coordinate input. This is the modified implementation for visualize_sharding.
|
94 |
+
"""
|
95 |
+
|
96 |
+
if my_coordinate is None:
|
97 |
+
# if rank not in the mesh, return empty offset
|
98 |
+
return ((), ())
|
99 |
+
else:
|
100 |
+
local_shape = list(global_shape)
|
101 |
+
global_offset = [0] * len(global_shape)
|
102 |
+
|
103 |
+
for idx, placement in enumerate(placements):
|
104 |
+
mesh_dim_size = mesh.size(idx)
|
105 |
+
if isinstance(placement, Shard):
|
106 |
+
shard_dim = placement.dim
|
107 |
+
local_offset = [0] * len(global_shape)
|
108 |
+
assert shard_dim < len(
|
109 |
+
local_shape
|
110 |
+
), f"Sharding dim {shard_dim} greater than tensor ndim {len(local_shape)}"
|
111 |
+
shard_size, shard_offset = placement._local_shard_size_on_dim(
|
112 |
+
local_shape[shard_dim],
|
113 |
+
mesh_dim_size,
|
114 |
+
my_coordinate[idx],
|
115 |
+
return_offset=True,
|
116 |
+
)
|
117 |
+
|
118 |
+
local_shape[shard_dim] = shard_size
|
119 |
+
local_offset[shard_dim] = shard_offset
|
120 |
+
|
121 |
+
# On a given dimension, if the local_offset[shard_dim] is smaller than global_offset[shard_dim],
|
122 |
+
# it means that this dimension has been already sharded in previous placement.
|
123 |
+
# Therefore, we cannot simply replace the global_offset[shard_dim] with local_offset[shard_dim].
|
124 |
+
# Instead, for the given shard_dim, we need to add local_offset[shard_dim] to existing global_offset[shard_dim].
|
125 |
+
if global_offset[shard_dim] <= local_offset[shard_dim]:
|
126 |
+
global_offset[shard_dim] = local_offset[shard_dim]
|
127 |
+
else:
|
128 |
+
global_offset[shard_dim] += local_offset[shard_dim]
|
129 |
+
|
130 |
+
return tuple(local_shape), tuple(global_offset)
|
131 |
+
|
132 |
+
|
133 |
+
def visualize_sharding(dtensor, header=""):
|
134 |
+
"""
|
135 |
+
Visualizes sharding in 1D-2D dtensors
|
136 |
+
Requires tabulate, install with `pip install tabulate`
|
137 |
+
|
138 |
+
note: no sharding info will be printed for empty tensors
|
139 |
+
"""
|
140 |
+
if dtensor.numel() == 0: # we do not print for empty dtensors
|
141 |
+
return
|
142 |
+
|
143 |
+
if len(dtensor.shape) >= 3:
|
144 |
+
raise RuntimeError(
|
145 |
+
"visualize sharding is only implemented for 1D or 2D dtensor"
|
146 |
+
)
|
147 |
+
placements = dtensor.placements
|
148 |
+
device_mesh = dtensor.device_mesh
|
149 |
+
device_type = dtensor.device_mesh.device_type
|
150 |
+
|
151 |
+
if device_mesh.get_coordinate() is None: # current rank is not in the mesh
|
152 |
+
return
|
153 |
+
|
154 |
+
# Only display the visualization once for each DTensor, on the rank whose
|
155 |
+
# coordinate is 0 on all dimensions. For example, if the mesh is a full mesh,
|
156 |
+
# we will only print on rank 0.
|
157 |
+
local_rank_zero_on_all_dim = all(
|
158 |
+
device_mesh.get_local_rank(mesh_dim=dim) == 0 for dim in range(device_mesh.ndim)
|
159 |
+
)
|
160 |
+
if not local_rank_zero_on_all_dim:
|
161 |
+
return
|
162 |
+
|
163 |
+
device_map = _mesh_to_coordinate(device_mesh, device_type)
|
164 |
+
all_offsets = []
|
165 |
+
for device in device_map:
|
166 |
+
local_shape, global_offset = compute_local_shape_and_global_offset(
|
167 |
+
dtensor.shape, device_mesh, placements, device_map[device]
|
168 |
+
)
|
169 |
+
all_offsets.append([local_shape, global_offset, device])
|
170 |
+
|
171 |
+
# Convert offsets to blocks with row_ranges for tabulate
|
172 |
+
blocks = _convert_offset_to_ranges(all_offsets)
|
173 |
+
|
174 |
+
# Print the table
|
175 |
+
print(header)
|
176 |
+
print(_create_table(blocks))
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/device_mesh.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.distributed.device_mesh import ( # noqa: F401
|
2 |
+
_get_device_handle,
|
3 |
+
_mesh_resources,
|
4 |
+
DeviceMesh,
|
5 |
+
init_device_mesh,
|
6 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/dispatch.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
import functools
|
3 |
+
import operator
|
4 |
+
from typing import cast, Dict, List, Optional, Sequence, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import torch.distributed as dist
|
9 |
+
import torch.distributed._tensor.api as dtensor
|
10 |
+
import torch.distributed._tensor.random as random
|
11 |
+
from torch.distributed._tensor._utils import try_find_mesh_from_args
|
12 |
+
from torch.distributed._tensor.op_schema import (
|
13 |
+
_is_inplace_op,
|
14 |
+
_is_out_variant_op,
|
15 |
+
OpInfo,
|
16 |
+
OpSchema,
|
17 |
+
OutputSpecType,
|
18 |
+
)
|
19 |
+
from torch.distributed._tensor.placement_types import DTensorSpec, Replicate, TensorMeta
|
20 |
+
from torch.distributed._tensor.random import is_rng_supported_mesh
|
21 |
+
from torch.distributed._tensor.redistribute import redistribute_local_tensor
|
22 |
+
from torch.distributed._tensor.sharding_prop import ShardingPropagator
|
23 |
+
from torch.distributed._tensor.tp_conv import (
|
24 |
+
convolution_backward_handler,
|
25 |
+
convolution_handler,
|
26 |
+
)
|
27 |
+
from torch.distributed.device_mesh import DeviceMesh
|
28 |
+
|
29 |
+
try:
|
30 |
+
from torch.utils import _cxx_pytree as pytree
|
31 |
+
except ImportError:
|
32 |
+
from torch.utils import _pytree as pytree # type: ignore[no-redef]
|
33 |
+
|
34 |
+
aten = torch.ops.aten
|
35 |
+
|
36 |
+
|
37 |
+
def decompose_handler(
|
38 |
+
op_call: torch._ops.OpOverload,
|
39 |
+
args: Tuple[object, ...],
|
40 |
+
kwargs: Dict[str, object],
|
41 |
+
) -> object:
|
42 |
+
"""
|
43 |
+
Decomposes a op to core ATen op, this handler is mostly here
|
44 |
+
for inference mode usage where the ops are not core aten ops.
|
45 |
+
"""
|
46 |
+
r = op_call.decompose(*args, **kwargs)
|
47 |
+
if r is not NotImplemented:
|
48 |
+
return r
|
49 |
+
else:
|
50 |
+
raise RuntimeError("Decomposition failed")
|
51 |
+
|
52 |
+
|
53 |
+
def is_same_size_handler(
|
54 |
+
op_call: torch._ops.OpOverload,
|
55 |
+
args: Tuple[object, ...],
|
56 |
+
kwargs: Dict[str, object],
|
57 |
+
) -> bool:
|
58 |
+
lhs = cast(torch.Tensor, args[0])
|
59 |
+
rhs = cast(torch.Tensor, args[1])
|
60 |
+
return lhs.shape == rhs.shape
|
61 |
+
|
62 |
+
|
63 |
+
class OpDispatcher:
|
64 |
+
"""
|
65 |
+
Op dispatching class instance to handle args/kwargs pre-processing (un-wrapping), sharding
|
66 |
+
propagation, redistribute local args, local compute, and post-processing (re-wrapping). It
|
67 |
+
also handles any op specific logic if necessary.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self) -> None:
|
71 |
+
self.sharding_propagator = ShardingPropagator()
|
72 |
+
self._random_ops = {
|
73 |
+
aten.native_dropout.default,
|
74 |
+
aten.normal_.default,
|
75 |
+
aten.rand_like.default,
|
76 |
+
aten.randn_like.default,
|
77 |
+
aten.randint_like.default,
|
78 |
+
aten.randint_like.low_dtype,
|
79 |
+
aten.randint_like.low_dtype_out,
|
80 |
+
aten.uniform_.default,
|
81 |
+
aten.bernoulli.default,
|
82 |
+
aten.bernoulli_.float,
|
83 |
+
}
|
84 |
+
self._custom_op_handlers = {
|
85 |
+
aten.linear.default: decompose_handler,
|
86 |
+
aten.is_same_size.default: is_same_size_handler,
|
87 |
+
aten.convolution.default: convolution_handler,
|
88 |
+
aten.convolution_backward.default: convolution_backward_handler,
|
89 |
+
}
|
90 |
+
|
91 |
+
# This flag is used internally to control whether we treat the torch.Tensor(non-DTensor)
|
92 |
+
# as implicitly replicated or we throw error to user.
|
93 |
+
# NOTE: It is EXTREMELY UNSAFE to turn this flag on by default so we intentionally leave
|
94 |
+
# it as False by default.
|
95 |
+
self._allow_implicit_replication = False
|
96 |
+
|
97 |
+
def dispatch(
|
98 |
+
self,
|
99 |
+
op_call: torch._ops.OpOverload,
|
100 |
+
args: Tuple[object, ...],
|
101 |
+
kwargs: Dict[str, object],
|
102 |
+
) -> object:
|
103 |
+
"""
|
104 |
+
Main dispatching logic
|
105 |
+
"""
|
106 |
+
# operators that does not need to go through sharding propagation
|
107 |
+
if op_call in self._custom_op_handlers:
|
108 |
+
return self._custom_op_handlers[op_call](op_call, args, kwargs) # type: ignore[operator]
|
109 |
+
|
110 |
+
# extract local tensor and sharding infos to a OpInfo
|
111 |
+
op_info = self.unwrap_to_op_info(op_call, args, kwargs)
|
112 |
+
|
113 |
+
self.sharding_propagator.propagate(op_info)
|
114 |
+
output_sharding = op_info.output_sharding
|
115 |
+
assert output_sharding is not None, "output sharding should not be None"
|
116 |
+
|
117 |
+
mesh = op_info.mesh
|
118 |
+
if mesh.get_coordinate() is None:
|
119 |
+
# For a non-participating device, we do:
|
120 |
+
# 1. if the return type is scalar, set the local result to None.
|
121 |
+
# The local results from all devices will then be all-gathered
|
122 |
+
# and a reduce op will be performed on the list of results
|
123 |
+
# with appropriate operators:
|
124 |
+
# for bool type, we by default use AND to reduce;
|
125 |
+
# we can extend for more ops if necessary.
|
126 |
+
# 2. if the return type is Tensor or List[Tensor], return empty
|
127 |
+
# tensor(s) with correct dtype.
|
128 |
+
spec = output_sharding.output_spec
|
129 |
+
ret_list = op_info.schema.op._schema.returns
|
130 |
+
|
131 |
+
if spec is None:
|
132 |
+
# For a scalar return type, the non-participating device has None
|
133 |
+
# as its local result
|
134 |
+
local_results: object = None
|
135 |
+
else:
|
136 |
+
|
137 |
+
def default_tensor(spec: DTensorSpec) -> torch.Tensor:
|
138 |
+
if spec.tensor_meta is not None:
|
139 |
+
shape = spec.tensor_meta.shape
|
140 |
+
dtype = spec.tensor_meta.dtype
|
141 |
+
if len(shape) == 0:
|
142 |
+
# scalar tensor
|
143 |
+
return torch.zeros((), dtype=dtype)
|
144 |
+
else:
|
145 |
+
# non-scalar tensor
|
146 |
+
return torch.tensor([], dtype=dtype)
|
147 |
+
else:
|
148 |
+
raise RuntimeError(f"{spec} has no tensor metadata.")
|
149 |
+
|
150 |
+
if isinstance(spec, DTensorSpec):
|
151 |
+
# return a Tensor value
|
152 |
+
local_results = default_tensor(spec)
|
153 |
+
elif isinstance(spec, Sequence):
|
154 |
+
# return a List[Tensor] value
|
155 |
+
local_results = [
|
156 |
+
default_tensor(s) if s is not None else None for s in spec
|
157 |
+
]
|
158 |
+
assert isinstance(local_results, List)
|
159 |
+
if None in local_results:
|
160 |
+
ret_type = str(ret_list[0].type)
|
161 |
+
raise NotImplementedError(
|
162 |
+
f"return type {ret_type} in DTensor op is not supported"
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
if output_sharding.needs_redistribute:
|
166 |
+
# compute locally with redistribute first if needed
|
167 |
+
assert output_sharding.schema_suggestions is not None
|
168 |
+
self.redistribute_local_args(
|
169 |
+
op_info, output_sharding.schema_suggestions[0]
|
170 |
+
)
|
171 |
+
|
172 |
+
local_tensor_args = (
|
173 |
+
pytree.tree_unflatten(
|
174 |
+
cast(List[object], op_info.local_args), op_info.args_tree_spec
|
175 |
+
)
|
176 |
+
if op_info.args_tree_spec
|
177 |
+
else op_info.local_args
|
178 |
+
)
|
179 |
+
|
180 |
+
# run local op computation with potentially modified args/kwargs
|
181 |
+
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
|
182 |
+
if op_call in self._random_ops and is_rng_supported_mesh(mesh):
|
183 |
+
if not random._rng_tracker:
|
184 |
+
# Default to `OffsetBasedRNGTracker` if the parallelism API
|
185 |
+
# did not already construct one
|
186 |
+
random._rng_tracker = random.OffsetBasedRNGTracker(mesh.device_type)
|
187 |
+
# For DTensor random operator, run it within a distribute region
|
188 |
+
with random._rng_tracker._distribute_region(
|
189 |
+
cast(dtensor.DTensor, args[0])._spec
|
190 |
+
):
|
191 |
+
local_results = op_call(*local_tensor_args, **op_info.local_kwargs)
|
192 |
+
else:
|
193 |
+
local_results = op_call(*local_tensor_args, **op_info.local_kwargs)
|
194 |
+
|
195 |
+
# communicate the result to all ranks for some operators that return scalar value
|
196 |
+
if output_sharding.output_spec is None:
|
197 |
+
if op_call == aten.equal.default:
|
198 |
+
obj_list = [None for _ in range(dist.get_world_size())]
|
199 |
+
dist.all_gather_object(obj_list, local_results) # type: ignore[possibly-undefined]
|
200 |
+
obj_list = list(filter(lambda x: x is not None, obj_list))
|
201 |
+
# perform reduce on the collection with AND op
|
202 |
+
local_results = functools.reduce(operator.and_, obj_list, True)
|
203 |
+
|
204 |
+
if _is_inplace_op(op_call):
|
205 |
+
# inplace op should return self instead of re-wrapping
|
206 |
+
if output_sharding.output_spec is not None:
|
207 |
+
return args[0]
|
208 |
+
else:
|
209 |
+
return None
|
210 |
+
elif _is_out_variant_op(op_call):
|
211 |
+
# out variant could possibly have multiple out args (i.e. lu_unpack.out)
|
212 |
+
output_specs = (
|
213 |
+
(output_sharding.output_spec,)
|
214 |
+
if not isinstance(output_sharding.output_spec, tuple)
|
215 |
+
else output_sharding.output_spec
|
216 |
+
)
|
217 |
+
out_dts = []
|
218 |
+
spec_idx = 0
|
219 |
+
for argument in op_call._schema.arguments:
|
220 |
+
if argument.is_out:
|
221 |
+
out_dt = cast(dtensor.DTensor, kwargs[argument.name])
|
222 |
+
out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
|
223 |
+
out_dts.append(out_dt)
|
224 |
+
spec_idx += 1
|
225 |
+
|
226 |
+
assert len(out_dts) >= 1, "out variant should have at least one out arg"
|
227 |
+
return tuple(out_dts) if len(out_dts) > 1 else out_dts[0]
|
228 |
+
else:
|
229 |
+
return self.wrap(local_results, output_sharding.output_spec) # type: ignore[possibly-undefined]
|
230 |
+
|
231 |
+
@staticmethod
|
232 |
+
def redistribute_local_args(
|
233 |
+
op_info: OpInfo,
|
234 |
+
suggested_input_schema: OpSchema,
|
235 |
+
) -> None:
|
236 |
+
# NOTE: it's very rare that we need to reshard kwargs so we intentionally skip it
|
237 |
+
|
238 |
+
# TODO: the op schema should probably just remain flattened so that we can avoid this tree flatten
|
239 |
+
# Need to fix all the ops before doing this.
|
240 |
+
if op_info.args_tree_spec is not None:
|
241 |
+
flatten_args_schema_to_reshard = tuple(
|
242 |
+
pytree.tree_leaves(suggested_input_schema.args_schema)
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
flatten_args_schema_to_reshard = suggested_input_schema.args_schema
|
246 |
+
|
247 |
+
new_local_args: List[object] = []
|
248 |
+
for i, arg_spec in enumerate(op_info.flat_args_schema):
|
249 |
+
reshard_arg_spec = flatten_args_schema_to_reshard[i]
|
250 |
+
if isinstance(arg_spec, DTensorSpec):
|
251 |
+
local_tensor = cast(torch.Tensor, op_info.local_args[i])
|
252 |
+
if arg_spec != reshard_arg_spec:
|
253 |
+
resharded_local_tensor = redistribute_local_tensor(
|
254 |
+
local_tensor, arg_spec, reshard_arg_spec
|
255 |
+
)
|
256 |
+
new_local_args.append(resharded_local_tensor)
|
257 |
+
else:
|
258 |
+
new_local_args.append(local_tensor)
|
259 |
+
else:
|
260 |
+
new_local_args.append(reshard_arg_spec)
|
261 |
+
|
262 |
+
op_info.local_args = tuple(new_local_args)
|
263 |
+
|
264 |
+
def unwrap_to_op_info(
|
265 |
+
self,
|
266 |
+
op_call: torch._ops.OpOverload,
|
267 |
+
args: Tuple[object, ...],
|
268 |
+
kwargs: Dict[str, object],
|
269 |
+
) -> OpInfo:
|
270 |
+
# get runtime schema to determine whether to use pytree to flatten inputs
|
271 |
+
runtime_schema_info = self.sharding_propagator.op_to_schema_info.get(
|
272 |
+
op_call, None
|
273 |
+
)
|
274 |
+
|
275 |
+
if runtime_schema_info is not None and runtime_schema_info.needs_pytree:
|
276 |
+
# flatten args/kwargs when necessary
|
277 |
+
tree_args, args_spec = pytree.tree_flatten(args)
|
278 |
+
args_list: Sequence[object] = tree_args
|
279 |
+
else:
|
280 |
+
args_list, args_spec = args, None
|
281 |
+
|
282 |
+
args_schema: List[object] = []
|
283 |
+
kwargs_schema: Dict[str, object] = {}
|
284 |
+
local_args: List[object] = []
|
285 |
+
local_kwargs: Dict[str, object] = {}
|
286 |
+
mesh: Optional[DeviceMesh] = None
|
287 |
+
|
288 |
+
for arg in args_list:
|
289 |
+
if isinstance(arg, dtensor.DTensor):
|
290 |
+
args_schema.append(arg._spec)
|
291 |
+
local_args.append(arg._local_tensor)
|
292 |
+
if mesh is not None:
|
293 |
+
if mesh != arg.device_mesh:
|
294 |
+
raise NotImplementedError(
|
295 |
+
f"{op_call}: DTensor does not support cross-mesh operation yet!"
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
mesh = arg.device_mesh
|
299 |
+
elif isinstance(arg, torch.Tensor):
|
300 |
+
if arg.ndim == 0 or self._allow_implicit_replication:
|
301 |
+
mesh = mesh or try_find_mesh_from_args(op_call, args_list)
|
302 |
+
# scalar tensor can be safely treated as replicated
|
303 |
+
args_schema.append(
|
304 |
+
DTensorSpec(
|
305 |
+
mesh,
|
306 |
+
(Replicate(),) * mesh.ndim,
|
307 |
+
tensor_meta=TensorMeta(
|
308 |
+
shape=arg.shape, stride=arg.stride(), dtype=arg.dtype
|
309 |
+
),
|
310 |
+
)
|
311 |
+
)
|
312 |
+
local_args.append(arg)
|
313 |
+
else:
|
314 |
+
raise RuntimeError(
|
315 |
+
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
|
316 |
+
" torch.Tensor to DTensor before calling distributed operators!"
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
args_schema.append(arg)
|
320 |
+
local_args.append(arg)
|
321 |
+
|
322 |
+
for k, v in kwargs.items():
|
323 |
+
if isinstance(v, dtensor.DTensor):
|
324 |
+
kwargs_schema[k] = v._spec
|
325 |
+
local_kwargs[k] = v._local_tensor
|
326 |
+
if mesh is not None:
|
327 |
+
if mesh != v.device_mesh:
|
328 |
+
raise NotImplementedError(
|
329 |
+
f"{op_call}: DTensor does not support cross-mesh operation yet!"
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
mesh = v.device_mesh
|
333 |
+
elif isinstance(v, torch.Tensor):
|
334 |
+
raise RuntimeError(
|
335 |
+
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
|
336 |
+
" torch.Tensor to DTensor before calling distributed operators!"
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
kwargs_schema[k] = v
|
340 |
+
local_kwargs[k] = v
|
341 |
+
|
342 |
+
assert mesh is not None, f"found no DeviceMesh from dtensor args for {op_call}!"
|
343 |
+
op_info = OpInfo(
|
344 |
+
mesh,
|
345 |
+
OpSchema(
|
346 |
+
op_call,
|
347 |
+
pytree.tree_unflatten(args_schema, args_spec)
|
348 |
+
if args_spec
|
349 |
+
else tuple(args_schema),
|
350 |
+
kwargs_schema,
|
351 |
+
schema_info=runtime_schema_info,
|
352 |
+
),
|
353 |
+
args_schema,
|
354 |
+
tuple(local_args),
|
355 |
+
local_kwargs,
|
356 |
+
args_spec,
|
357 |
+
)
|
358 |
+
return op_info
|
359 |
+
|
360 |
+
@staticmethod
|
361 |
+
def wrap(res: object, spec: OutputSpecType) -> object:
|
362 |
+
if isinstance(res, torch.Tensor):
|
363 |
+
if spec is not None:
|
364 |
+
assert isinstance(
|
365 |
+
spec, DTensorSpec
|
366 |
+
), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
|
367 |
+
assert spec.tensor_meta is not None
|
368 |
+
return dtensor.DTensor(
|
369 |
+
res,
|
370 |
+
spec.mesh,
|
371 |
+
spec.placements,
|
372 |
+
shape=spec.tensor_meta.shape,
|
373 |
+
dtype=spec.tensor_meta.dtype,
|
374 |
+
requires_grad=res.requires_grad,
|
375 |
+
stride=spec.tensor_meta.stride,
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
# if output does not have a DTensorSpec due to specific ops, it must be a scalar tensor
|
379 |
+
assert res.ndim == 0, "output tensor should be scalar!"
|
380 |
+
return res
|
381 |
+
elif isinstance(res, (list, tuple)):
|
382 |
+
assert spec is not None and isinstance(
|
383 |
+
spec, (list, tuple)
|
384 |
+
), f"output spec does not match with output! Expected list/tuple, got {spec}."
|
385 |
+
res_list = []
|
386 |
+
for e, s in zip(res, spec):
|
387 |
+
res_list.append(OpDispatcher.wrap(e, s))
|
388 |
+
|
389 |
+
return tuple(res_list) if isinstance(res, tuple) else res_list
|
390 |
+
else:
|
391 |
+
# if the res contains only non tensor values (i.e. int/float/none), we simply return it
|
392 |
+
# without rewrapping to DTensor.
|
393 |
+
return res
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
|
3 |
+
from torch.distributed._tensor.api import DTensor
|
4 |
+
|
5 |
+
|
6 |
+
@contextmanager
|
7 |
+
def implicit_replication():
|
8 |
+
try:
|
9 |
+
DTensor._op_dispatcher._allow_implicit_replication = True
|
10 |
+
yield
|
11 |
+
finally:
|
12 |
+
DTensor._op_dispatcher._allow_implicit_replication = False
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (532 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/__pycache__/tp_transform.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/experimental/tp_transform.py
ADDED
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import operator
|
3 |
+
from typing import Any, cast, Dict, List, Optional, Sequence, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
7 |
+
from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor
|
8 |
+
from torch.distributed._tensor.op_schema import (
|
9 |
+
DTensorSpec,
|
10 |
+
OpSchema,
|
11 |
+
OutputSharding,
|
12 |
+
OutputSpecType,
|
13 |
+
PlacementStrategy,
|
14 |
+
)
|
15 |
+
from torch.distributed._tensor.placement_types import (
|
16 |
+
Placement,
|
17 |
+
Replicate,
|
18 |
+
Shard,
|
19 |
+
TensorMeta,
|
20 |
+
)
|
21 |
+
from torch.distributed._tensor.redistribute import redistribute_local_tensor
|
22 |
+
from torch.distributed.tensor.parallel.style import ColwiseParallel, ParallelStyle
|
23 |
+
from torch.export import ExportedProgram
|
24 |
+
from torch.export.exported_program import ExportGraphSignature
|
25 |
+
from torch.fx import GraphModule
|
26 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
27 |
+
from torch.fx.node import Node
|
28 |
+
from torch.fx.passes.infra.pass_base import PassBase, PassResult
|
29 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata
|
30 |
+
from torch.utils import _pytree as pytree
|
31 |
+
|
32 |
+
|
33 |
+
aten = torch.ops.aten
|
34 |
+
|
35 |
+
|
36 |
+
def tensor_parallel_transformation(
|
37 |
+
exported_program: ExportedProgram,
|
38 |
+
rank: int,
|
39 |
+
world_size: int,
|
40 |
+
device_type: str,
|
41 |
+
parallel_strategies: Dict[str, ParallelStyle],
|
42 |
+
) -> ExportedProgram:
|
43 |
+
"""
|
44 |
+
The entry point function to perform graph transformations on an exported program
|
45 |
+
to transform a single-device graph into a tensor parallel graph.
|
46 |
+
|
47 |
+
.. warning::
|
48 |
+
This API is experimental and subject to change.
|
49 |
+
"""
|
50 |
+
|
51 |
+
gm = exported_program.graph_module
|
52 |
+
sig = copy.deepcopy(exported_program.graph_signature)
|
53 |
+
state_dict = copy.copy(exported_program.state_dict)
|
54 |
+
|
55 |
+
with gm._set_replace_hook(sig.get_replace_hook()):
|
56 |
+
res = TensorParallelTransformPass(
|
57 |
+
rank,
|
58 |
+
world_size,
|
59 |
+
device_type,
|
60 |
+
state_dict,
|
61 |
+
exported_program.graph_signature,
|
62 |
+
parallel_strategies,
|
63 |
+
)(gm)
|
64 |
+
assert res is not None
|
65 |
+
gm = res.graph_module
|
66 |
+
|
67 |
+
return exported_program._update(gm, sig, state_dict)
|
68 |
+
|
69 |
+
|
70 |
+
class TensorParallelTransformPass(PassBase):
|
71 |
+
"""
|
72 |
+
This pass is responsible for transforming a single-device graph into a tensor parallel
|
73 |
+
graph. It will mark the placement strategy of each node in the graph,
|
74 |
+
partition the graph into distributed graph, then shard the parameters/buffers accordingly.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
rank: int,
|
80 |
+
world_size: int,
|
81 |
+
device_type: str,
|
82 |
+
state_dict: Dict[str, torch.Tensor],
|
83 |
+
graph_signature: ExportGraphSignature,
|
84 |
+
parallel_strategies: Dict[str, ParallelStyle],
|
85 |
+
) -> None:
|
86 |
+
super().__init__()
|
87 |
+
self.rank = rank
|
88 |
+
self.mesh = DeviceMesh(device_type, torch.arange(world_size))
|
89 |
+
self.state_dict: Dict[str, torch.Tensor] = state_dict
|
90 |
+
self.graph_signature = graph_signature
|
91 |
+
self.parallel_strategies = parallel_strategies
|
92 |
+
|
93 |
+
def call(self, graph_module) -> PassResult:
|
94 |
+
gm = copy.deepcopy(graph_module)
|
95 |
+
|
96 |
+
parameter_placements = _generate_parameter_and_buffer_placements(
|
97 |
+
list(self.state_dict.keys()), self.parallel_strategies
|
98 |
+
)
|
99 |
+
placement_strategies = _mark_sharding(
|
100 |
+
gm, self.graph_signature, self.mesh, parameter_placements
|
101 |
+
)
|
102 |
+
_partitioner(gm)
|
103 |
+
_shard_state_dict(
|
104 |
+
self.state_dict, placement_strategies, self.graph_signature, self.mesh
|
105 |
+
)
|
106 |
+
return PassResult(gm, True)
|
107 |
+
|
108 |
+
|
109 |
+
def _generate_parameter_and_buffer_placements(
|
110 |
+
params_and_buffers: List[str],
|
111 |
+
parallel_strategies: Dict[str, ParallelStyle],
|
112 |
+
) -> Dict[str, Placement]:
|
113 |
+
"""
|
114 |
+
Build parameter placements based on the give parallel style of linear layers.
|
115 |
+
"""
|
116 |
+
parameter_placements: Dict[str, Placement] = {}
|
117 |
+
for linear_fqn, parallel_style in parallel_strategies.items():
|
118 |
+
weight_fqn = f"{linear_fqn}.weight"
|
119 |
+
bias_fqn = f"{linear_fqn}.bias"
|
120 |
+
assert weight_fqn in params_and_buffers
|
121 |
+
parameter_placements[weight_fqn] = (
|
122 |
+
Shard(0) if parallel_style == ColwiseParallel else Shard(1)
|
123 |
+
)
|
124 |
+
if bias_fqn in params_and_buffers:
|
125 |
+
parameter_placements[bias_fqn] = (
|
126 |
+
Shard(0) if parallel_style == ColwiseParallel else Replicate()
|
127 |
+
)
|
128 |
+
return parameter_placements
|
129 |
+
|
130 |
+
|
131 |
+
def _mark_tensor_parallel_shardings(
|
132 |
+
gm: GraphModule,
|
133 |
+
graph_signature: ExportGraphSignature,
|
134 |
+
mesh: DeviceMesh,
|
135 |
+
parameter_placements: Dict[str, Placement],
|
136 |
+
) -> Dict[Node, PlacementStrategy]:
|
137 |
+
"""
|
138 |
+
Mark the placement strategies of the parameter and buffer placeholder nodes.
|
139 |
+
"""
|
140 |
+
placement_strategies: Dict[Node, PlacementStrategy] = {}
|
141 |
+
num_params_and_buffers = len(graph_signature.inputs_to_parameters) + len(
|
142 |
+
graph_signature.inputs_to_buffers
|
143 |
+
)
|
144 |
+
placeholder_idx: int = 0
|
145 |
+
for node in gm.graph.nodes:
|
146 |
+
if node.op == "placeholder":
|
147 |
+
if placeholder_idx < num_params_and_buffers:
|
148 |
+
fqn: str = _get_input_node_fqn(node.name, graph_signature)
|
149 |
+
placement: Placement = (
|
150 |
+
parameter_placements[fqn]
|
151 |
+
if fqn in parameter_placements
|
152 |
+
else Replicate()
|
153 |
+
)
|
154 |
+
placement_strategies[node] = _create_placement_strategy(
|
155 |
+
node,
|
156 |
+
mesh,
|
157 |
+
placements=(placement,),
|
158 |
+
)
|
159 |
+
placeholder_idx += 1
|
160 |
+
else:
|
161 |
+
placement_strategies[node] = _create_placement_strategy(
|
162 |
+
node,
|
163 |
+
mesh,
|
164 |
+
placements=(Replicate(),),
|
165 |
+
)
|
166 |
+
return placement_strategies
|
167 |
+
|
168 |
+
|
169 |
+
def _get_input_node_fqn(input_name: str, graph_signature: ExportGraphSignature) -> str:
|
170 |
+
"""
|
171 |
+
Return the FQN of an input node.
|
172 |
+
"""
|
173 |
+
if input_name in graph_signature.inputs_to_parameters:
|
174 |
+
return graph_signature.inputs_to_parameters[input_name]
|
175 |
+
elif input_name in graph_signature.inputs_to_buffers:
|
176 |
+
return graph_signature.inputs_to_buffers[input_name]
|
177 |
+
else:
|
178 |
+
raise ValueError(
|
179 |
+
f"{input_name} not found in inputs_to_parameters or inputs_to_buffers"
|
180 |
+
)
|
181 |
+
|
182 |
+
|
183 |
+
def _mark_sharding(
|
184 |
+
gm: GraphModule,
|
185 |
+
graph_signature: ExportGraphSignature,
|
186 |
+
mesh: DeviceMesh,
|
187 |
+
parameter_placements: Dict[str, Placement],
|
188 |
+
) -> Dict[Node, PlacementStrategy]:
|
189 |
+
"""
|
190 |
+
Mark the sharding strategy for each node in the graph module.
|
191 |
+
"""
|
192 |
+
placement_strategies: Dict[
|
193 |
+
Node, PlacementStrategy
|
194 |
+
] = _mark_tensor_parallel_shardings(gm, graph_signature, mesh, parameter_placements)
|
195 |
+
|
196 |
+
for node in gm.graph.nodes:
|
197 |
+
if node.op == "placeholder":
|
198 |
+
if node not in placement_strategies:
|
199 |
+
placement_strategies[node] = _create_placement_strategy(
|
200 |
+
node, mesh, placements=(Replicate(),)
|
201 |
+
)
|
202 |
+
node.meta["sharding"] = placement_strategies[node]
|
203 |
+
elif node.op == "call_function":
|
204 |
+
if node.target == operator.getitem:
|
205 |
+
input_nodes = node.all_input_nodes
|
206 |
+
assert (
|
207 |
+
len(input_nodes) == 1
|
208 |
+
), f"non-compute op only support one input now, found node: {node} with length of inputs: {len(node.args)}"
|
209 |
+
arg_strategy = placement_strategies[input_nodes[0]]
|
210 |
+
placement_strategies[node] = _create_placement_strategy(
|
211 |
+
node,
|
212 |
+
mesh,
|
213 |
+
placements=arg_strategy.output_spec.placements,
|
214 |
+
input_specs=_get_input_node_specs(node, placement_strategies),
|
215 |
+
)
|
216 |
+
node.meta["sharding"] = placement_strategies[node]
|
217 |
+
else:
|
218 |
+
op_schema = _get_op_schema(node, placement_strategies)
|
219 |
+
|
220 |
+
# get DTensor specs for inputs and outputs
|
221 |
+
if (
|
222 |
+
op_schema.op
|
223 |
+
not in DTensor._op_dispatcher.sharding_propagator.op_strategy_funcs
|
224 |
+
and op_schema.op
|
225 |
+
not in DTensor._op_dispatcher.sharding_propagator.op_to_rules
|
226 |
+
):
|
227 |
+
# Mark all as replicated
|
228 |
+
output_sharding = _generate_default_output_sharding(
|
229 |
+
node,
|
230 |
+
mesh,
|
231 |
+
op_schema,
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding(
|
235 |
+
op_schema,
|
236 |
+
)
|
237 |
+
placement_strategies[node] = PlacementStrategy(
|
238 |
+
output_specs=_get_output_spec_from_output_sharding(output_sharding),
|
239 |
+
input_specs=output_sharding.schema_suggestions[0].args_spec
|
240 |
+
if output_sharding.schema_suggestions is not None
|
241 |
+
else _get_input_node_specs(node, placement_strategies),
|
242 |
+
)
|
243 |
+
node.meta["sharding"] = placement_strategies[node]
|
244 |
+
elif node.op == "output":
|
245 |
+
node.meta["sharding"] = None
|
246 |
+
else:
|
247 |
+
raise RuntimeError(f"op code {node.op} not supported")
|
248 |
+
return placement_strategies
|
249 |
+
|
250 |
+
|
251 |
+
def _get_output_spec_from_output_sharding(
|
252 |
+
output_sharding: OutputSharding,
|
253 |
+
) -> DTensorSpec:
|
254 |
+
"""
|
255 |
+
Util function to extract output spec from output sharding.
|
256 |
+
"""
|
257 |
+
if isinstance(output_sharding.output_spec, DTensorSpec):
|
258 |
+
return output_sharding.output_spec
|
259 |
+
else:
|
260 |
+
# For ops that return multiple outputs, the outputs should have the same output spec
|
261 |
+
assert isinstance(output_sharding.output_spec, Sequence)
|
262 |
+
assert output_sharding.output_spec[0] is not None
|
263 |
+
output_sharding.output_spec[0].tensor_meta = None
|
264 |
+
return output_sharding.output_spec[0]
|
265 |
+
|
266 |
+
|
267 |
+
def _create_placement_strategy(
|
268 |
+
node: Node,
|
269 |
+
mesh: DeviceMesh,
|
270 |
+
placements: Tuple[Placement, ...],
|
271 |
+
input_specs: Optional[Sequence[DTensorSpec]] = None,
|
272 |
+
) -> PlacementStrategy:
|
273 |
+
"""
|
274 |
+
Util function to construct a placement strategy for a given node.
|
275 |
+
"""
|
276 |
+
placement = PlacementStrategy(
|
277 |
+
input_specs=input_specs,
|
278 |
+
output_specs=DTensorSpec(
|
279 |
+
mesh=mesh,
|
280 |
+
placements=placements,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
_populate_tensor_meta(node, placement.output_specs)
|
284 |
+
return placement
|
285 |
+
|
286 |
+
|
287 |
+
def _populate_tensor_meta(node: Node, output_spec: OutputSpecType) -> None:
|
288 |
+
"""
|
289 |
+
Util function to populate tensor meta of output_spec based on node metadata.
|
290 |
+
"""
|
291 |
+
if isinstance(node.meta["val"], Sequence):
|
292 |
+
assert isinstance(output_spec, Sequence)
|
293 |
+
for spec, fake_tensor in zip(output_spec, node.meta["val"]):
|
294 |
+
assert spec is not None
|
295 |
+
spec.tensor_meta = TensorMeta(
|
296 |
+
shape=fake_tensor.shape,
|
297 |
+
stride=fake_tensor.stride(),
|
298 |
+
dtype=fake_tensor.dtype,
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
assert isinstance(output_spec, DTensorSpec)
|
302 |
+
output_spec.tensor_meta = TensorMeta(
|
303 |
+
shape=node.meta["val"].shape,
|
304 |
+
stride=node.meta["val"].stride(),
|
305 |
+
dtype=node.meta["val"].dtype,
|
306 |
+
)
|
307 |
+
|
308 |
+
|
309 |
+
def _generate_default_output_sharding(
|
310 |
+
node: Node,
|
311 |
+
mesh: DeviceMesh,
|
312 |
+
op_schema: OpSchema,
|
313 |
+
) -> OutputSharding:
|
314 |
+
"""
|
315 |
+
Util function to create a default output sharding that suggests Replicate placement for both args and outputs.
|
316 |
+
"""
|
317 |
+
|
318 |
+
def update_arg_spec(arg_spec: DTensorSpec) -> DTensorSpec:
|
319 |
+
return DTensorSpec(
|
320 |
+
mesh=arg_spec.mesh,
|
321 |
+
placements=(Replicate(),),
|
322 |
+
tensor_meta=arg_spec.tensor_meta,
|
323 |
+
)
|
324 |
+
|
325 |
+
new_op_schema = OpSchema(
|
326 |
+
op=op_schema.op,
|
327 |
+
args_schema=pytree.tree_map_only(
|
328 |
+
DTensorSpec, update_arg_spec, op_schema.args_schema
|
329 |
+
),
|
330 |
+
kwargs_schema=op_schema.kwargs_schema,
|
331 |
+
)
|
332 |
+
|
333 |
+
def create_output_spec(tensor: FakeTensor) -> DTensorSpec:
|
334 |
+
return DTensorSpec(
|
335 |
+
mesh=mesh,
|
336 |
+
placements=(Replicate(),),
|
337 |
+
tensor_meta=TensorMeta(
|
338 |
+
shape=tensor.shape,
|
339 |
+
stride=tensor.stride(),
|
340 |
+
dtype=tensor.dtype,
|
341 |
+
),
|
342 |
+
)
|
343 |
+
|
344 |
+
return OutputSharding(
|
345 |
+
output_spec=pytree.tree_map_only(
|
346 |
+
FakeTensor, create_output_spec, node.meta["val"]
|
347 |
+
),
|
348 |
+
schema_suggestions=[new_op_schema],
|
349 |
+
failed_reason=f"{node.op} does not have sharding strategy registered",
|
350 |
+
needs_redistribute=True,
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
def _partitioner(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
355 |
+
"""
|
356 |
+
Graph partitioner that partitions the single device graph
|
357 |
+
to distributed graph
|
358 |
+
"""
|
359 |
+
for node in gm.graph.nodes:
|
360 |
+
node_sharding = node.meta["sharding"]
|
361 |
+
if node.op == "placeholder":
|
362 |
+
out_spec = node_sharding.output_spec
|
363 |
+
local_val = _partition_val(node.meta["val"], out_spec)
|
364 |
+
# update node value
|
365 |
+
node.meta["val"] = local_val
|
366 |
+
elif node.op == "call_function":
|
367 |
+
out_spec = node_sharding.output_spec
|
368 |
+
# check if there's misaligned sharding, insert reshard if there is
|
369 |
+
expected_input_specs = node_sharding.input_specs
|
370 |
+
for idx, input_arg in enumerate(node.all_input_nodes):
|
371 |
+
input_arg_sharding = input_arg.meta["sharding"]
|
372 |
+
input_arg_spec = input_arg_sharding.output_spec
|
373 |
+
desired_spec = (
|
374 |
+
out_spec
|
375 |
+
if expected_input_specs is None
|
376 |
+
else expected_input_specs[idx]
|
377 |
+
)
|
378 |
+
if input_arg_spec != desired_spec:
|
379 |
+
_insert_reshard_gm(
|
380 |
+
gm, node, input_arg, input_arg_spec, desired_spec
|
381 |
+
)
|
382 |
+
# convert output val to its local component
|
383 |
+
output_val = node.meta["val"]
|
384 |
+
node.meta["val"] = _partition_val(output_val, out_spec)
|
385 |
+
elif node.op == "output":
|
386 |
+
for input_arg in node.all_input_nodes:
|
387 |
+
# input args of output should be Replicate, otherwise redistribution is needed.
|
388 |
+
input_args_to_check: Sequence[Node] = (
|
389 |
+
input_arg if isinstance(input_arg, Sequence) else [input_arg]
|
390 |
+
)
|
391 |
+
for arg in input_args_to_check:
|
392 |
+
arg_sharding = arg.meta["sharding"]
|
393 |
+
arg_spec = arg_sharding.output_spec
|
394 |
+
desired_spec = copy.copy(arg_spec)
|
395 |
+
desired_spec.placements = (Replicate(),)
|
396 |
+
if arg_spec != desired_spec:
|
397 |
+
_insert_reshard_gm(gm, node, arg, arg_spec, desired_spec)
|
398 |
+
else:
|
399 |
+
raise RuntimeError(f"op code {node} not supported")
|
400 |
+
|
401 |
+
_clean_up_graph_metadata(gm)
|
402 |
+
gm.graph.lint()
|
403 |
+
gm.recompile()
|
404 |
+
return gm
|
405 |
+
|
406 |
+
|
407 |
+
def _partition_val(val: Any, spec: DTensorSpec) -> Any:
|
408 |
+
"""
|
409 |
+
util function to convert a full tensor val to its local component
|
410 |
+
"""
|
411 |
+
if isinstance(val, torch.Tensor):
|
412 |
+
local_shard = val
|
413 |
+
if val.ndim == 0:
|
414 |
+
# If it's already a scalar tensor, it is already local, we don't
|
415 |
+
# need to do anything
|
416 |
+
return local_shard
|
417 |
+
|
418 |
+
for idx, placement in enumerate(spec.placements):
|
419 |
+
if placement.is_shard():
|
420 |
+
placement = cast(Shard, placement)
|
421 |
+
num_chunks = spec.mesh.size(mesh_dim=idx)
|
422 |
+
my_coord = spec.mesh.get_coordinate()
|
423 |
+
assert my_coord is not None, "current rank not in mesh!"
|
424 |
+
my_coord_on_mesh_dim = my_coord[idx]
|
425 |
+
local_shard = placement._split_tensor(
|
426 |
+
local_shard, num_chunks, with_padding=False, contiguous=True
|
427 |
+
)[0][my_coord_on_mesh_dim]
|
428 |
+
return local_shard
|
429 |
+
elif isinstance(val, (list, tuple)):
|
430 |
+
return val.__class__(_partition_val(v, spec) for v in val)
|
431 |
+
else:
|
432 |
+
raise RuntimeError(f"val type {type(val)} not supported")
|
433 |
+
|
434 |
+
|
435 |
+
def _insert_reshard_gm(
|
436 |
+
gm: torch.fx.GraphModule,
|
437 |
+
node: Node,
|
438 |
+
input_arg: Node,
|
439 |
+
input_arg_spec: DTensorSpec,
|
440 |
+
desired_spec: DTensorSpec,
|
441 |
+
) -> None:
|
442 |
+
"""
|
443 |
+
Transform the graph for tensor redistribution.
|
444 |
+
"""
|
445 |
+
input_arg_spec.tensor_meta = input_arg.meta["tensor_meta"]
|
446 |
+
desired_spec.tensor_meta = input_arg.meta["tensor_meta"]
|
447 |
+
input_arg_tensor = input_arg.meta["val"]
|
448 |
+
|
449 |
+
# insert reshard operation
|
450 |
+
def reshard_fn(local_tensor: torch.Tensor) -> torch.Tensor:
|
451 |
+
return redistribute_local_tensor(
|
452 |
+
local_tensor,
|
453 |
+
input_arg_spec,
|
454 |
+
desired_spec,
|
455 |
+
)
|
456 |
+
|
457 |
+
reshard_gm = make_fx(reshard_fn)(input_arg_tensor)
|
458 |
+
reshard_gm_nodes = list(reshard_gm.graph.nodes)
|
459 |
+
input_node = reshard_gm_nodes[0]
|
460 |
+
with gm.graph.inserting_before(node):
|
461 |
+
output_node = gm.graph.graph_copy(
|
462 |
+
reshard_gm.graph,
|
463 |
+
val_map={
|
464 |
+
input_node: input_arg,
|
465 |
+
},
|
466 |
+
)
|
467 |
+
node.replace_input_with(input_arg, output_node)
|
468 |
+
|
469 |
+
|
470 |
+
def _clean_up_graph_metadata(gm: torch.fx.GraphModule) -> None:
|
471 |
+
"""
|
472 |
+
Clean up the graph by removing sharding and partitioning related metadata
|
473 |
+
"""
|
474 |
+
for node in gm.graph.nodes:
|
475 |
+
if "sharding" in node.meta:
|
476 |
+
del node.meta["sharding"]
|
477 |
+
if "val" in node.meta and isinstance(node.meta["val"], torch.Tensor):
|
478 |
+
local_tensor_meta = _extract_tensor_metadata(node.meta["val"])
|
479 |
+
node.meta["tensor_meta"] = local_tensor_meta
|
480 |
+
|
481 |
+
|
482 |
+
def _get_input_node_specs(
|
483 |
+
node: Node, placement_strategies: Dict[Node, PlacementStrategy]
|
484 |
+
) -> Tuple[DTensorSpec, ...]:
|
485 |
+
"""
|
486 |
+
Get the input specs of a node.
|
487 |
+
"""
|
488 |
+
input_specs_list: List[DTensorSpec] = []
|
489 |
+
for input_arg in node.all_input_nodes:
|
490 |
+
if input_arg in placement_strategies:
|
491 |
+
output_spec = placement_strategies[input_arg].output_specs
|
492 |
+
assert isinstance(output_spec, DTensorSpec)
|
493 |
+
input_specs_list.append(output_spec)
|
494 |
+
else:
|
495 |
+
raise ValueError(f"{input_arg} does not have output_spec populated.")
|
496 |
+
return tuple(input_specs_list)
|
497 |
+
|
498 |
+
|
499 |
+
def _get_op_schema(
|
500 |
+
node: Node, placement_strategies: Dict[Node, PlacementStrategy]
|
501 |
+
) -> OpSchema:
|
502 |
+
"""
|
503 |
+
Util function to construct the operator schema of a node.
|
504 |
+
"""
|
505 |
+
args_schema_list = pytree.tree_map_only(
|
506 |
+
Node, lambda arg: placement_strategies[arg].output_specs, node.args
|
507 |
+
)
|
508 |
+
op_schema = OpSchema(
|
509 |
+
op=cast(torch._ops.OpOverload, node.target),
|
510 |
+
args_schema=tuple(args_schema_list),
|
511 |
+
kwargs_schema=cast(Dict[str, object], node.kwargs),
|
512 |
+
)
|
513 |
+
return op_schema
|
514 |
+
|
515 |
+
|
516 |
+
def _shard_state_dict(
|
517 |
+
state_dict: Dict[str, torch.Tensor],
|
518 |
+
placement_strategies: Dict[Node, PlacementStrategy],
|
519 |
+
graph_signature: ExportGraphSignature,
|
520 |
+
mesh: DeviceMesh,
|
521 |
+
) -> None:
|
522 |
+
"""
|
523 |
+
Inplace partition the weights based on the placement strategy
|
524 |
+
"""
|
525 |
+
for node, placement_strategy in placement_strategies.items():
|
526 |
+
if node.op != "placeholder":
|
527 |
+
continue
|
528 |
+
if node.name in graph_signature.inputs_to_parameters:
|
529 |
+
fqn = graph_signature.inputs_to_parameters[node.name]
|
530 |
+
elif node.name in graph_signature.inputs_to_buffers:
|
531 |
+
fqn = graph_signature.inputs_to_buffers[node.name]
|
532 |
+
else:
|
533 |
+
continue
|
534 |
+
assert fqn in state_dict, f"{fqn} not found in state dict: {state_dict.keys()}"
|
535 |
+
|
536 |
+
original_param = state_dict[fqn]
|
537 |
+
dtensor_param = distribute_tensor(
|
538 |
+
original_param,
|
539 |
+
mesh,
|
540 |
+
placement_strategy.output_spec.placements,
|
541 |
+
)
|
542 |
+
local_param = dtensor_param.to_local()
|
543 |
+
state_dict[fqn] = (
|
544 |
+
torch.nn.Parameter(local_param)
|
545 |
+
if isinstance(original_param, torch.nn.Parameter)
|
546 |
+
else local_param
|
547 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/op_schema.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from functools import cached_property
|
3 |
+
from typing import Dict, List, Optional, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._ops import OpOverload
|
7 |
+
from torch.distributed._tensor.placement_types import DTensorSpec
|
8 |
+
from torch.distributed.device_mesh import DeviceMesh
|
9 |
+
|
10 |
+
try:
|
11 |
+
from torch.utils._cxx_pytree import tree_map_only, TreeSpec
|
12 |
+
except ImportError:
|
13 |
+
from torch.utils._pytree import ( # type: ignore[no-redef, assignment]
|
14 |
+
tree_map_only,
|
15 |
+
TreeSpec,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
# Common type aliases
|
20 |
+
ArgsType = Tuple[object, ...]
|
21 |
+
KwargsType = Dict[str, object]
|
22 |
+
# ATen op schemas could have Tensor, Tuple[Tensor] and List[Tensor], so output type sould
|
23 |
+
# be the same set of possibilities.
|
24 |
+
OutputSpecType = Optional[Union[DTensorSpec, Sequence[Optional[DTensorSpec]]]]
|
25 |
+
|
26 |
+
|
27 |
+
def _rebuild_tensor_from_dtensor_meta(arg) -> object:
|
28 |
+
"""
|
29 |
+
This is used to propagate tensor metadata, must be under fake mode
|
30 |
+
"""
|
31 |
+
assert arg.tensor_meta is not None, "DTensorSpec does not contain tensor_meta."
|
32 |
+
return torch.empty_strided(
|
33 |
+
arg.tensor_meta.shape,
|
34 |
+
arg.tensor_meta.stride,
|
35 |
+
dtype=arg.tensor_meta.dtype,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def _is_inplace_op(op: OpOverload):
|
40 |
+
# simple analysis of function schema to determine
|
41 |
+
# if this is an inplace variant, it might not
|
42 |
+
# be entirely correct, but it's good enough for now.
|
43 |
+
return op._schema.name[-1] == "_"
|
44 |
+
|
45 |
+
|
46 |
+
def _is_out_variant_op(op: OpOverload):
|
47 |
+
# simple analysis of function schema to determine
|
48 |
+
# if this is an out variant, it might not
|
49 |
+
# be entirely correct, but it's good enough for now.
|
50 |
+
return "out" in op._schema.overload_name
|
51 |
+
|
52 |
+
|
53 |
+
def _pretty_print_spec(spec: object) -> str:
|
54 |
+
if spec is None:
|
55 |
+
return "None"
|
56 |
+
elif isinstance(spec, DTensorSpec):
|
57 |
+
return "".join([str(p) for p in spec.placements])
|
58 |
+
elif isinstance(spec, Sequence):
|
59 |
+
return "(" + ", ".join([_pretty_print_spec(s) for s in spec]) + ")"
|
60 |
+
else:
|
61 |
+
raise RuntimeError(f"Unknown spec type to print: spec={spec}")
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class PlacementStrategy:
|
66 |
+
"""
|
67 |
+
A placement strategy describes acceptable sharding placements of the output
|
68 |
+
and the tensor arguments of an operation.
|
69 |
+
|
70 |
+
note: when the op return value is a single DTensor object, output_specs is
|
71 |
+
DTensorSpec; when the return value is a tuple of Optional[DTensor],
|
72 |
+
output_specs is a tuple of Optional[DTensorSpec].
|
73 |
+
"""
|
74 |
+
|
75 |
+
output_specs: Union[DTensorSpec, Tuple[Optional[DTensorSpec], ...]]
|
76 |
+
input_specs: Optional[Sequence[DTensorSpec]] = None
|
77 |
+
|
78 |
+
# redistribute costs for this op placement strategy
|
79 |
+
# we need a nested list to record the cost for each
|
80 |
+
# operand of this operator, and for each operand of
|
81 |
+
# this operator it might have multiple placement strategies
|
82 |
+
redistribute_cost: Optional[List[List[float]]] = None
|
83 |
+
|
84 |
+
@cached_property
|
85 |
+
def output_spec(self) -> DTensorSpec:
|
86 |
+
"""
|
87 |
+
This function requires that the strategy have exactly one DTensorSpec as the
|
88 |
+
output spec. If the output_specs is a tuple, we throw an exception.
|
89 |
+
"""
|
90 |
+
if isinstance(self.output_specs, DTensorSpec):
|
91 |
+
return self.output_specs
|
92 |
+
else:
|
93 |
+
raise ValueError(
|
94 |
+
f"function output_spec expects a single DTensorSpec but got: {self.output_specs}"
|
95 |
+
)
|
96 |
+
|
97 |
+
def input_spec(self, index: int = 0) -> DTensorSpec:
|
98 |
+
assert self.input_specs is not None, "input_specs of PlacementStrategy is None!"
|
99 |
+
assert len(self.input_specs) > index, (
|
100 |
+
f"Invalid index {index} for input_specs of length "
|
101 |
+
f"{len(self.input_specs)}: {self.input_specs}"
|
102 |
+
)
|
103 |
+
return self.input_specs[index]
|
104 |
+
|
105 |
+
def __str__(self) -> str:
|
106 |
+
input_specs_str = _pretty_print_spec(self.input_specs)
|
107 |
+
output_spec_str = _pretty_print_spec(self.output_specs)
|
108 |
+
return f"{input_specs_str} -> {output_spec_str}"
|
109 |
+
|
110 |
+
|
111 |
+
class StrategyType:
|
112 |
+
"""
|
113 |
+
Base class type for op strategy, We have two StrategyType:
|
114 |
+
OpStrategy and TupleStrategy
|
115 |
+
"""
|
116 |
+
|
117 |
+
pass
|
118 |
+
|
119 |
+
|
120 |
+
class OpStrategy(StrategyType):
|
121 |
+
"""
|
122 |
+
OpStrategy that consists of a list of placement strategies associated with the op
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, strategies: List[PlacementStrategy]) -> None:
|
126 |
+
super().__init__()
|
127 |
+
self.strategies: List[PlacementStrategy] = strategies
|
128 |
+
|
129 |
+
def __str__(self) -> str:
|
130 |
+
strategy_list_str = ", ".join([str(strategy) for strategy in self.strategies])
|
131 |
+
mesh_shape = self.output_mesh_shape
|
132 |
+
return f"OpStrategy:[{strategy_list_str}] @ mesh: {mesh_shape}"
|
133 |
+
|
134 |
+
def max_num_shards(self) -> int:
|
135 |
+
"""
|
136 |
+
Returns the max number of shards across all placement strategies
|
137 |
+
"""
|
138 |
+
return max([strategy.output_spec.num_shards for strategy in self.strategies])
|
139 |
+
|
140 |
+
@property
|
141 |
+
def output_mesh_shape(self):
|
142 |
+
output_spec = self.strategies[0].output_specs
|
143 |
+
if isinstance(output_spec, DTensorSpec):
|
144 |
+
return output_spec.mesh.shape
|
145 |
+
else:
|
146 |
+
assert isinstance(
|
147 |
+
output_spec, tuple
|
148 |
+
), "found no DTensorSpec in the OpStrategy!"
|
149 |
+
assert output_spec[0] is not None
|
150 |
+
return output_spec[0].mesh.shape
|
151 |
+
|
152 |
+
@property
|
153 |
+
def output_ndim(self):
|
154 |
+
return self.strategies[0].output_spec.ndim
|
155 |
+
|
156 |
+
@property
|
157 |
+
def output_shape(self):
|
158 |
+
return self.strategies[0].output_spec.shape
|
159 |
+
|
160 |
+
|
161 |
+
class TupleStrategy(StrategyType):
|
162 |
+
"""
|
163 |
+
TupleStrategy represents the output strategy of this op is a tuple
|
164 |
+
of strategy, i.e. If the output of this op is a tuple of tensors or list of tensors
|
165 |
+
with possibly different placement strategies, we should return a TupleStrategy that
|
166 |
+
contains a tuple of OpStrategy, where each child represents the sharding strategy
|
167 |
+
of "each element" of the tuple/list of tensors the op returns.
|
168 |
+
|
169 |
+
NOTE: if the output of the op is a List[Tensor] and they share the same placement
|
170 |
+
strategy, then we should return a single OpStrategy instead of a TupleStrategy
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self, childs: Sequence[StrategyType]) -> None:
|
174 |
+
super().__init__()
|
175 |
+
self.childs: Sequence[StrategyType] = childs
|
176 |
+
|
177 |
+
def __str__(self) -> str:
|
178 |
+
child_strategies_str = ", ".join(
|
179 |
+
[f"{str(strat)}" for idx, strat in enumerate(self.childs)]
|
180 |
+
)
|
181 |
+
return f"TupleStrategy({child_strategies_str})"
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass
|
185 |
+
class RuntimeSchemaInfo:
|
186 |
+
"""
|
187 |
+
RuntimeSchemaInfo stores the operator schema related information for runtime (eager)
|
188 |
+
execution. This is mainly used for two ways: 1. to generate hash for args to determine
|
189 |
+
whether to re-run sharding prop or not 2. to determine if we need pytree
|
190 |
+
"""
|
191 |
+
|
192 |
+
# This static_argnum records static arg "starting index" for ops that have non-tensor
|
193 |
+
# args/kwargs which would affect sharding propagation results. All args starting from
|
194 |
+
# this index would be hashed to our sharding cache.
|
195 |
+
# Note that only a few ops need this information, e.g. view, transpose, var.dim, etc.
|
196 |
+
static_argnum: int = 100
|
197 |
+
# This static_kwargkey records static kwarg names which would affect sharding prop
|
198 |
+
static_kwargkey: Optional[List[str]] = None
|
199 |
+
# each op can decide if it wants to use pytree flatten/unflatten during operator
|
200 |
+
# eager execution, by default we don't need to do flatten/unflatten, only if the
|
201 |
+
# op indicate it needs to, this is to accelate eager performance.
|
202 |
+
needs_pytree: bool = False
|
203 |
+
|
204 |
+
|
205 |
+
@dataclass
|
206 |
+
class OpSchema:
|
207 |
+
"""
|
208 |
+
OpSchema is a data class that describes an operator input schemas, it
|
209 |
+
includes DTensor DTensorSpecs and non-tensor args/kwargs (positional order
|
210 |
+
preserved). It is mainly used by the dispatching logic below to run things like
|
211 |
+
sharding propagation.
|
212 |
+
|
213 |
+
NOTE: this should be used as a read only data class
|
214 |
+
TODO: make this a frozen dataclass
|
215 |
+
|
216 |
+
Args:
|
217 |
+
op: the operator overload we are intercepting
|
218 |
+
args_schema: contains args except that the DTensor args have been replaced
|
219 |
+
with its DTensorSpec
|
220 |
+
kwargs_schema: contains kwargs except that the DTensor kwargs have been replaced
|
221 |
+
with its DTensorSpec
|
222 |
+
"""
|
223 |
+
|
224 |
+
op: OpOverload
|
225 |
+
args_schema: ArgsType
|
226 |
+
kwargs_schema: KwargsType
|
227 |
+
|
228 |
+
schema_info: Optional[RuntimeSchemaInfo] = None
|
229 |
+
|
230 |
+
@property
|
231 |
+
def args_spec(self) -> Tuple[DTensorSpec, ...]:
|
232 |
+
"""
|
233 |
+
args_spec: Tuple[DTensorSpec, ...]: contains a clean list of args spec list
|
234 |
+
with NO non-DTensor positional arguments (i.e. int/float/tuple, etc)
|
235 |
+
mainly used by sharding propagation to propagate the output spec
|
236 |
+
"""
|
237 |
+
# filter out non-relevant values from args schema to get a clean spec list
|
238 |
+
# this would mainly be used by sharding propagation rules
|
239 |
+
return tuple(item for item in self.args_schema if isinstance(item, DTensorSpec))
|
240 |
+
|
241 |
+
def __repr__(self) -> str:
|
242 |
+
return (
|
243 |
+
f"OpSchema(op={self.op},"
|
244 |
+
f" args_schema={self.args_schema},"
|
245 |
+
f" kwargs_schema={self.kwargs_schema})"
|
246 |
+
)
|
247 |
+
|
248 |
+
def __str__(self) -> str:
|
249 |
+
args_sharding: List[str] = []
|
250 |
+
mesh_shape = None
|
251 |
+
for arg in self.args_schema:
|
252 |
+
if isinstance(arg, DTensorSpec):
|
253 |
+
args_sharding.append(str(arg))
|
254 |
+
mesh_shape = arg.mesh.shape
|
255 |
+
elif isinstance(arg, OpStrategy):
|
256 |
+
assert len(arg.strategies) == 1
|
257 |
+
args_sharding.append(_pretty_print_spec(arg.strategies[0].output_specs))
|
258 |
+
mesh_shape = arg.output_mesh_shape
|
259 |
+
elif isinstance(arg, TupleStrategy):
|
260 |
+
first_op_strtgy = arg.childs[0]
|
261 |
+
assert isinstance(first_op_strtgy, OpStrategy)
|
262 |
+
mesh_shape = first_op_strtgy.output_mesh_shape
|
263 |
+
args_sharding.append(str(arg))
|
264 |
+
else:
|
265 |
+
args_sharding.append(str(arg))
|
266 |
+
return f"Op(op={self.op}, args_sharding={', '.join(args_sharding)} @ mesh: {mesh_shape})"
|
267 |
+
|
268 |
+
def __post_init__(self) -> None:
|
269 |
+
has_symints = False
|
270 |
+
for a in self.args_schema:
|
271 |
+
if isinstance(a, DTensorSpec) and a.tensor_meta is not None:
|
272 |
+
if any(isinstance(s, torch.SymInt) for s in a.tensor_meta.shape):
|
273 |
+
has_symints = True
|
274 |
+
break
|
275 |
+
self.has_symints = has_symints
|
276 |
+
|
277 |
+
def arg_type_tensor_or_tensor_list_like(self, arg_idx: int) -> bool:
|
278 |
+
arg = self.args_schema[arg_idx]
|
279 |
+
is_tensor = isinstance(arg, DTensorSpec)
|
280 |
+
if is_tensor:
|
281 |
+
return True
|
282 |
+
|
283 |
+
if not isinstance(arg, list):
|
284 |
+
return False
|
285 |
+
|
286 |
+
return all(isinstance(e, DTensorSpec) or e is None for e in arg)
|
287 |
+
|
288 |
+
def return_type_tuple_tensor_like(self) -> bool:
|
289 |
+
# all dispatch ops could only return Tuple[Tensor] or have None/ints/floats
|
290 |
+
# in the tuple, but the first element must be a Tensor, so this check is enough
|
291 |
+
return_types = self.op._schema.returns
|
292 |
+
return len(return_types) > 1 and isinstance(
|
293 |
+
return_types[0].type, torch.TensorType
|
294 |
+
)
|
295 |
+
|
296 |
+
def return_type_tensor(self) -> bool:
|
297 |
+
return_types = self.op._schema.returns
|
298 |
+
# all dispatch ops only return Tensor or Tuple[Tensor] for tensor like
|
299 |
+
# return types, so this check is enough for tensor like types
|
300 |
+
return isinstance(return_types[0].type, torch.TensorType)
|
301 |
+
|
302 |
+
def __hash__(self) -> int:
|
303 |
+
# Only hash args and kwargs that op indicates to hash
|
304 |
+
if not self.schema_info:
|
305 |
+
static_argnum = len(self.args_schema)
|
306 |
+
static_kwargkey = None
|
307 |
+
else:
|
308 |
+
static_argnum = self.schema_info.static_argnum
|
309 |
+
static_kwargkey = self.schema_info.static_kwargkey
|
310 |
+
|
311 |
+
args_to_hash = tuple(
|
312 |
+
tuple(e) if isinstance(e, list) else e
|
313 |
+
for i, e in enumerate(self.args_schema)
|
314 |
+
if self.arg_type_tensor_or_tensor_list_like(i) or i >= static_argnum
|
315 |
+
)
|
316 |
+
if static_kwargkey is not None:
|
317 |
+
kwargs_to_hash = tuple(
|
318 |
+
self.kwargs_schema.get(k, None) for k in static_kwargkey
|
319 |
+
)
|
320 |
+
return hash((self.op, args_to_hash, kwargs_to_hash))
|
321 |
+
else:
|
322 |
+
return hash((self.op, args_to_hash))
|
323 |
+
|
324 |
+
def __eq__(self, other: object) -> bool:
|
325 |
+
# early return checks
|
326 |
+
if not isinstance(other, OpSchema):
|
327 |
+
return False
|
328 |
+
|
329 |
+
if self.op != other.op:
|
330 |
+
return False
|
331 |
+
|
332 |
+
if len(self.args_schema) != len(other.args_schema):
|
333 |
+
return False
|
334 |
+
|
335 |
+
# compare each element and early return if any of them is different
|
336 |
+
if not self.schema_info:
|
337 |
+
static_argnum = len(self.args_schema)
|
338 |
+
static_kwargkey = None
|
339 |
+
else:
|
340 |
+
static_argnum = self.schema_info.static_argnum
|
341 |
+
static_kwargkey = self.schema_info.static_kwargkey
|
342 |
+
|
343 |
+
for i, (self_arg, other_arg) in enumerate(
|
344 |
+
zip(self.args_schema, other.args_schema)
|
345 |
+
):
|
346 |
+
if isinstance(self_arg, DTensorSpec) and self_arg != other_arg:
|
347 |
+
return False
|
348 |
+
elif i >= static_argnum and self_arg != other_arg:
|
349 |
+
return False
|
350 |
+
|
351 |
+
# check kwarg equality when there's a static kwarg key
|
352 |
+
if static_kwargkey:
|
353 |
+
for key in static_kwargkey:
|
354 |
+
if self.kwargs_schema.get(key, None) != other.kwargs_schema.get(
|
355 |
+
key, None
|
356 |
+
):
|
357 |
+
return False
|
358 |
+
|
359 |
+
return True
|
360 |
+
|
361 |
+
def gen_fake_args(self) -> ArgsType:
|
362 |
+
"""
|
363 |
+
gen_fake_args: generate fake args for the operator, this is mainly used
|
364 |
+
by sharding propagation rules to generate fake args for the operator
|
365 |
+
to run the local tensor operator and get the output spec.
|
366 |
+
"""
|
367 |
+
return tree_map_only(
|
368 |
+
DTensorSpec, _rebuild_tensor_from_dtensor_meta, self.args_schema
|
369 |
+
)
|
370 |
+
|
371 |
+
def gen_fake_kwargs(self) -> KwargsType:
|
372 |
+
"""
|
373 |
+
gen_fake_kwargs: generate fake kwargs for the operator, this is mainly used
|
374 |
+
by sharding propagation rules to generate fake kwargs for the operator
|
375 |
+
to run the local tensor operator and get the output spec.
|
376 |
+
"""
|
377 |
+
return tree_map_only(
|
378 |
+
DTensorSpec, _rebuild_tensor_from_dtensor_meta, self.kwargs_schema
|
379 |
+
)
|
380 |
+
|
381 |
+
def _inplace_rewrap_schema_suggestion(self, origin_schema: "OpSchema") -> None:
|
382 |
+
suggestion_args_spec = self.args_spec
|
383 |
+
new_arg_schema: List[object] = []
|
384 |
+
idx_of_args_spec = 0
|
385 |
+
for arg in origin_schema.args_schema:
|
386 |
+
if isinstance(arg, DTensorSpec):
|
387 |
+
new_arg_schema.append(suggestion_args_spec[idx_of_args_spec])
|
388 |
+
idx_of_args_spec += 1
|
389 |
+
else:
|
390 |
+
new_arg_schema.append(arg)
|
391 |
+
self.args_schema = tuple(new_arg_schema)
|
392 |
+
self.kwargs_schema = origin_schema.kwargs_schema
|
393 |
+
|
394 |
+
|
395 |
+
@dataclass
|
396 |
+
class OutputSharding:
|
397 |
+
"""
|
398 |
+
OutputSharding is a data class that is used by the sharding propagation
|
399 |
+
rules, it could set the output_spec upon successful propagation, and if
|
400 |
+
it failed, output_spec would become None and sharding propagation rules
|
401 |
+
could give a list of suggestions for inputs to reshard.
|
402 |
+
|
403 |
+
NOTE: the schema_suggestion generated by sharding propagation should be
|
404 |
+
exactly the same as the operator OpSchema, except the DTensor DTensorSpecs
|
405 |
+
"""
|
406 |
+
|
407 |
+
output_spec: OutputSpecType
|
408 |
+
schema_suggestions: Optional[List[OpSchema]] = None
|
409 |
+
failed_reason: Optional[str] = None
|
410 |
+
needs_redistribute: bool = False
|
411 |
+
|
412 |
+
|
413 |
+
@dataclass
|
414 |
+
class OpInfo:
|
415 |
+
"""
|
416 |
+
All Runtime Op execution info are packed here
|
417 |
+
"""
|
418 |
+
|
419 |
+
mesh: DeviceMesh
|
420 |
+
schema: OpSchema
|
421 |
+
flat_args_schema: List[object]
|
422 |
+
local_args: Sequence[object]
|
423 |
+
local_kwargs: Dict[str, object]
|
424 |
+
args_tree_spec: Optional[TreeSpec] = None
|
425 |
+
|
426 |
+
# the output sharding info
|
427 |
+
output_sharding: Optional[OutputSharding] = None
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/placement_types.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, cast, List, NamedTuple, Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed._functional_collectives as funcol
|
8 |
+
import torch.distributed.distributed_c10d as c10d
|
9 |
+
|
10 |
+
from torch.distributed._tensor._collective_utils import mesh_broadcast, mesh_scatter
|
11 |
+
from torch.distributed.device_mesh import DeviceMesh
|
12 |
+
|
13 |
+
|
14 |
+
class Placement:
|
15 |
+
# base class Placement type
|
16 |
+
|
17 |
+
# convenient utils to check for placement types
|
18 |
+
def is_shard(self, dim: Optional[int] = None) -> bool:
|
19 |
+
is_shard_instance = isinstance(self, Shard)
|
20 |
+
if dim is not None and is_shard_instance:
|
21 |
+
return cast(Shard, self).dim == dim
|
22 |
+
else:
|
23 |
+
return is_shard_instance
|
24 |
+
|
25 |
+
def is_replicate(self) -> bool:
|
26 |
+
return isinstance(self, Replicate)
|
27 |
+
|
28 |
+
def is_partial(self) -> bool:
|
29 |
+
return isinstance(self, _Partial)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass(frozen=True)
|
33 |
+
class Shard(Placement):
|
34 |
+
# shard placement, shard on a dim
|
35 |
+
dim: int
|
36 |
+
|
37 |
+
def _split_tensor(
|
38 |
+
self,
|
39 |
+
tensor: torch.Tensor,
|
40 |
+
num_chunks: int,
|
41 |
+
*,
|
42 |
+
with_padding: bool = True,
|
43 |
+
contiguous: bool = True,
|
44 |
+
) -> Tuple[List[torch.Tensor], List[int]]:
|
45 |
+
"""
|
46 |
+
This function uses torch.chunk to split a tensor into num_chunks shards along
|
47 |
+
the Shard placement dimension, and return a list of shards with their pad sizes.
|
48 |
+
|
49 |
+
Keyword args:
|
50 |
+
with_padding (bool, optional): when True, we pad the tensor on the last
|
51 |
+
few ranks before calling the collectives (i.e. scatter/all_gather, etc.).
|
52 |
+
This is because collectives usually require equal size tensor inputs
|
53 |
+
"""
|
54 |
+
assert (
|
55 |
+
self.dim <= tensor.ndim
|
56 |
+
), f"Sharding dim {self.dim} greater than tensor ndim {tensor.ndim}"
|
57 |
+
|
58 |
+
# chunk tensor over dimension `dim` into n slices with padding if necessary
|
59 |
+
tensor_list = list(torch.chunk(tensor, num_chunks, dim=self.dim))
|
60 |
+
# compute the chunk size inline with ``torch.chunk``
|
61 |
+
full_chunk_size = (tensor.size(self.dim) + num_chunks - 1) // num_chunks
|
62 |
+
|
63 |
+
# Compute chunk size for each chunk for ``self.dim``
|
64 |
+
chunk_sizes = [
|
65 |
+
tensor_list[idx].size(self.dim) if idx < len(tensor_list) else 0
|
66 |
+
for idx in range(num_chunks)
|
67 |
+
]
|
68 |
+
# Compute pad size on each chunk
|
69 |
+
pad_sizes = [full_chunk_size - chunk_size for chunk_size in chunk_sizes]
|
70 |
+
|
71 |
+
# Reuse tensor to fill empty chunk with empty tensor
|
72 |
+
num_empty_tensors = num_chunks - len(tensor_list)
|
73 |
+
tensor_size = list(tensor_list[0].size())
|
74 |
+
tensor_size = [
|
75 |
+
size if idx != self.dim else 0 for idx, size in enumerate(tensor_size)
|
76 |
+
]
|
77 |
+
tensor = tensor.new_zeros(tensor_size)
|
78 |
+
for _ in range(num_empty_tensors):
|
79 |
+
tensor_list.append(tensor)
|
80 |
+
|
81 |
+
if with_padding or contiguous:
|
82 |
+
shard_list = []
|
83 |
+
for shard, pad_size in zip(tensor_list, pad_sizes):
|
84 |
+
# Fill the empty tensor with zeroes with padding.
|
85 |
+
if with_padding and pad_size > 0:
|
86 |
+
shard = self._pad_tensor(shard, pad_size)
|
87 |
+
shard = shard.contiguous() if contiguous else shard
|
88 |
+
shard_list.append(shard)
|
89 |
+
return shard_list, pad_sizes
|
90 |
+
else:
|
91 |
+
return tensor_list, pad_sizes
|
92 |
+
|
93 |
+
def _pad_tensor(
|
94 |
+
self,
|
95 |
+
tensor: torch.Tensor,
|
96 |
+
pad_size: int,
|
97 |
+
) -> torch.Tensor:
|
98 |
+
if pad_size == 0:
|
99 |
+
return tensor
|
100 |
+
pad = [0, 0] * (tensor.ndim - self.dim)
|
101 |
+
pad[-1] = pad_size
|
102 |
+
return torch.nn.functional.pad(tensor, pad)
|
103 |
+
|
104 |
+
def _unpad_tensor(
|
105 |
+
self,
|
106 |
+
tensor: torch.Tensor,
|
107 |
+
pad_size: int,
|
108 |
+
) -> torch.Tensor:
|
109 |
+
if pad_size == 0:
|
110 |
+
return tensor
|
111 |
+
return tensor.narrow(
|
112 |
+
self.dim,
|
113 |
+
start=0,
|
114 |
+
length=tensor.size(self.dim) - pad_size,
|
115 |
+
)
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def _local_shard_size_on_dim(
|
119 |
+
size_on_dim: int,
|
120 |
+
num_chunks: int,
|
121 |
+
rank: int,
|
122 |
+
return_offset: bool = False,
|
123 |
+
) -> Tuple[int, int]:
|
124 |
+
"""
|
125 |
+
returns the local shard size and offset on a given tensor dim
|
126 |
+
"""
|
127 |
+
# Compute the chunk size inline with ``torch.chunk``
|
128 |
+
if size_on_dim % num_chunks == 0:
|
129 |
+
full_chunk_size = size_on_dim // num_chunks
|
130 |
+
return full_chunk_size, full_chunk_size * rank if return_offset else -1
|
131 |
+
|
132 |
+
# uneven sharding case
|
133 |
+
full_chunk_size = (size_on_dim + num_chunks - 1) // num_chunks
|
134 |
+
shard_starting_idx = full_chunk_size * rank
|
135 |
+
|
136 |
+
if size_on_dim < shard_starting_idx:
|
137 |
+
return 0, size_on_dim if return_offset else -1
|
138 |
+
else:
|
139 |
+
local_shard_size = (
|
140 |
+
min(size_on_dim, shard_starting_idx + full_chunk_size)
|
141 |
+
- shard_starting_idx
|
142 |
+
)
|
143 |
+
return local_shard_size, shard_starting_idx if return_offset else -1
|
144 |
+
|
145 |
+
def _shard_tensor(
|
146 |
+
self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
|
147 |
+
) -> torch.Tensor:
|
148 |
+
"""
|
149 |
+
shard and scatter a tensor on a mesh dimension (use coordinate
|
150 |
+
0 on the mesh dimension as source of truth)
|
151 |
+
"""
|
152 |
+
my_coordinate = mesh.get_coordinate()
|
153 |
+
num_chunks = mesh.size(mesh_dim=mesh_dim)
|
154 |
+
|
155 |
+
if my_coordinate is None:
|
156 |
+
# if rank is not part of mesh, we simply return an empty tensor
|
157 |
+
return tensor.new_empty(0, requires_grad=tensor.requires_grad)
|
158 |
+
|
159 |
+
scatter_list, pad_sizes = self._split_tensor(
|
160 |
+
tensor, num_chunks, with_padding=True, contiguous=True
|
161 |
+
)
|
162 |
+
|
163 |
+
output = torch.empty_like(scatter_list[my_coordinate[mesh_dim]])
|
164 |
+
mesh_scatter(output, scatter_list, mesh, mesh_dim=mesh_dim)
|
165 |
+
|
166 |
+
# Only unpad if the local_tensor was padded on the dimension.
|
167 |
+
pad_size = pad_sizes[my_coordinate[mesh_dim]]
|
168 |
+
if pad_size > 0:
|
169 |
+
output = self._unpad_tensor(output, pad_size)
|
170 |
+
return output
|
171 |
+
|
172 |
+
def _reduce_shard_tensor(
|
173 |
+
self,
|
174 |
+
tensor: torch.Tensor,
|
175 |
+
mesh: DeviceMesh,
|
176 |
+
reduce_op: c10d.ReduceOp.RedOpType,
|
177 |
+
mesh_dim: int,
|
178 |
+
) -> torch.Tensor:
|
179 |
+
"""
|
180 |
+
reduce and scatter a tensor on a mesh dimension
|
181 |
+
"""
|
182 |
+
my_coordinate = mesh.get_coordinate()
|
183 |
+
num_chunks = mesh.size(mesh_dim=mesh_dim)
|
184 |
+
|
185 |
+
if my_coordinate is None:
|
186 |
+
# if rank is not part of mesh, we simply return local_tensor,
|
187 |
+
# which should be an empty tensor
|
188 |
+
return tensor
|
189 |
+
|
190 |
+
is_padded = tensor.size(self.dim) % num_chunks != 0
|
191 |
+
if is_padded:
|
192 |
+
scattered_list, pad_sizes = self._split_tensor(
|
193 |
+
tensor, num_chunks, with_padding=True, contiguous=True
|
194 |
+
)
|
195 |
+
tensor = torch.cat(scattered_list, dim=self.dim)
|
196 |
+
elif not tensor.is_contiguous():
|
197 |
+
tensor = tensor.contiguous()
|
198 |
+
|
199 |
+
output = funcol.reduce_scatter_tensor(
|
200 |
+
tensor, reduce_op.name, scatter_dim=self.dim, group=(mesh, mesh_dim)
|
201 |
+
)
|
202 |
+
|
203 |
+
if is_padded:
|
204 |
+
output = self._unpad_tensor(output, pad_sizes[my_coordinate[mesh_dim]]) # type: ignore[possibly-undefined]
|
205 |
+
return output
|
206 |
+
|
207 |
+
def _to_replicate_tensor(
|
208 |
+
self,
|
209 |
+
local_tensor: torch.Tensor,
|
210 |
+
mesh: DeviceMesh,
|
211 |
+
mesh_dim: int,
|
212 |
+
current_logical_shape: List[int],
|
213 |
+
) -> torch.Tensor:
|
214 |
+
"""
|
215 |
+
This function all_gather all shards and return a tensor that
|
216 |
+
is replicated on the previously sharded mesh dimension
|
217 |
+
"""
|
218 |
+
num_chunks = mesh.size(mesh_dim=mesh_dim)
|
219 |
+
# check if it's uneven, so we need to pad input tensor before all_gather
|
220 |
+
local_shape = list(local_tensor.size())
|
221 |
+
|
222 |
+
logical_dim_size = current_logical_shape[self.dim]
|
223 |
+
is_padded = logical_dim_size % num_chunks != 0
|
224 |
+
|
225 |
+
if is_padded:
|
226 |
+
full_chunk_size = (logical_dim_size + num_chunks - 1) // num_chunks
|
227 |
+
pad_size = full_chunk_size - local_shape[self.dim]
|
228 |
+
local_tensor = self._pad_tensor(local_tensor, pad_size)
|
229 |
+
|
230 |
+
if not local_tensor.is_contiguous():
|
231 |
+
local_tensor = local_tensor.contiguous()
|
232 |
+
|
233 |
+
result = funcol.all_gather_tensor(
|
234 |
+
local_tensor,
|
235 |
+
gather_dim=self.dim,
|
236 |
+
group=(mesh, mesh_dim),
|
237 |
+
)
|
238 |
+
if is_padded:
|
239 |
+
unpad_size = full_chunk_size * num_chunks - logical_dim_size # type: ignore[possibly-undefined]
|
240 |
+
result = self._unpad_tensor(result, unpad_size)
|
241 |
+
return result
|
242 |
+
|
243 |
+
def _replicate_to_shard(
|
244 |
+
self,
|
245 |
+
local_tensor: torch.Tensor,
|
246 |
+
mesh: DeviceMesh,
|
247 |
+
mesh_dim: int,
|
248 |
+
shard_index: int,
|
249 |
+
) -> torch.Tensor:
|
250 |
+
"""
|
251 |
+
transform from replicated tensor to a sharded tensor on
|
252 |
+
the current rank, which would perform a local chunk
|
253 |
+
"""
|
254 |
+
num_chunks = mesh.size(mesh_dim=mesh_dim)
|
255 |
+
shards, _ = self._split_tensor(
|
256 |
+
local_tensor,
|
257 |
+
num_chunks,
|
258 |
+
with_padding=False,
|
259 |
+
contiguous=False,
|
260 |
+
)
|
261 |
+
return shards[shard_index].clone()
|
262 |
+
|
263 |
+
def __eq__(self, other: object) -> bool:
|
264 |
+
if not isinstance(other, Shard):
|
265 |
+
return False
|
266 |
+
return self.dim == other.dim
|
267 |
+
|
268 |
+
def __hash__(self) -> int:
|
269 |
+
return hash(self.dim)
|
270 |
+
|
271 |
+
def __repr__(self) -> str:
|
272 |
+
"""
|
273 |
+
machine readable representation of the Shard placement
|
274 |
+
"""
|
275 |
+
return f"Shard(dim={self.dim})"
|
276 |
+
|
277 |
+
def __str__(self) -> str:
|
278 |
+
"""human readable representation of the Shard placement"""
|
279 |
+
return f"S({self.dim})"
|
280 |
+
|
281 |
+
|
282 |
+
@dataclass(frozen=True)
|
283 |
+
class Replicate(Placement):
|
284 |
+
# replicate placement
|
285 |
+
def __eq__(self, other: object) -> bool:
|
286 |
+
if not isinstance(other, Replicate):
|
287 |
+
return False
|
288 |
+
return True
|
289 |
+
|
290 |
+
def __hash__(self) -> int:
|
291 |
+
# every replicate placement is the same
|
292 |
+
return -1
|
293 |
+
|
294 |
+
def __repr__(self) -> str:
|
295 |
+
"""
|
296 |
+
machine readable representation of the Replicate placement
|
297 |
+
"""
|
298 |
+
return "Replicate()"
|
299 |
+
|
300 |
+
def __str__(self) -> str:
|
301 |
+
"""
|
302 |
+
human readable representation of the Replicate placement
|
303 |
+
"""
|
304 |
+
return "R"
|
305 |
+
|
306 |
+
def _replicate_tensor(
|
307 |
+
self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
|
308 |
+
) -> torch.Tensor:
|
309 |
+
"""
|
310 |
+
Replicate (broadcast) a torch.Tensor on a mesh dimension (use
|
311 |
+
the first coordinate on the mesh dimension as source of truth)
|
312 |
+
"""
|
313 |
+
my_coordinate = mesh.get_coordinate()
|
314 |
+
if my_coordinate is None:
|
315 |
+
# if rank is not part of mesh, we simply return an empty tensor
|
316 |
+
return tensor.new_empty(0, requires_grad=tensor.requires_grad)
|
317 |
+
|
318 |
+
tensor = tensor.contiguous()
|
319 |
+
mesh_broadcast(tensor, mesh, mesh_dim=mesh_dim)
|
320 |
+
return tensor
|
321 |
+
|
322 |
+
|
323 |
+
@dataclass(frozen=True)
|
324 |
+
class _Partial(Placement):
|
325 |
+
# This is a default _Partial placement with element-wise reduce op
|
326 |
+
# _Partial define three contracts:
|
327 |
+
# 1. _reduce_value: reduce the value of the tensor on the mesh dimension
|
328 |
+
# 2. _reduce_shard_value: reduce_scatter the value of the tensor on the mesh dimension
|
329 |
+
# 3. _partition_value: partition the value of a replicated tensor on the mesh dimension
|
330 |
+
# We can implement custom reductions as needed by subclassing this
|
331 |
+
# class and override those contracts.
|
332 |
+
reduce_op: c10d.ReduceOp.RedOpType = c10d.ReduceOp.SUM
|
333 |
+
|
334 |
+
def _reduce_value(
|
335 |
+
self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
|
336 |
+
) -> torch.Tensor:
|
337 |
+
return funcol.all_reduce(
|
338 |
+
tensor, reduceOp=self.reduce_op.name, group=(mesh, mesh_dim)
|
339 |
+
)
|
340 |
+
|
341 |
+
def _reduce_shard_value(
|
342 |
+
self,
|
343 |
+
tensor: torch.Tensor,
|
344 |
+
mesh: DeviceMesh,
|
345 |
+
mesh_dim: int,
|
346 |
+
shard_spec: Placement,
|
347 |
+
) -> torch.Tensor:
|
348 |
+
# by default call reduce_shard_tensor of the shard_spec.
|
349 |
+
shard_spec = cast(Shard, shard_spec)
|
350 |
+
return shard_spec._reduce_shard_tensor(tensor, mesh, self.reduce_op, mesh_dim)
|
351 |
+
|
352 |
+
def _partition_value(
|
353 |
+
self, tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int
|
354 |
+
) -> torch.Tensor:
|
355 |
+
# _partition_value is the conjugate operation of _reduce_value
|
356 |
+
# - i.e. _partition_value on a sum reduce op is just a divison operation
|
357 |
+
# - the _reduce_value on a sum reduce op would just be a sum(allreduce) operation
|
358 |
+
# TODO: if the reduce_op is min/max, etc. the _partition_value should be a
|
359 |
+
# different operation
|
360 |
+
assert (
|
361 |
+
self.reduce_op == c10d.ReduceOp.SUM
|
362 |
+
), "only support replicate to PartialSUM for now!"
|
363 |
+
num_chunks = mesh.size(mesh_dim=mesh_dim)
|
364 |
+
return tensor / num_chunks
|
365 |
+
|
366 |
+
def __eq__(self, other: object) -> bool:
|
367 |
+
if not isinstance(other, _Partial):
|
368 |
+
return False
|
369 |
+
return self.reduce_op == other.reduce_op
|
370 |
+
|
371 |
+
def __hash__(self) -> int:
|
372 |
+
return 1 + hash(self.reduce_op)
|
373 |
+
|
374 |
+
def __repr__(self) -> str:
|
375 |
+
"""
|
376 |
+
machine readable representation of the Partial placement
|
377 |
+
"""
|
378 |
+
return f"_Partial(reduce_op={self.reduce_op})"
|
379 |
+
|
380 |
+
def __str__(self) -> str:
|
381 |
+
"""
|
382 |
+
human readable representation of the Partial placement
|
383 |
+
"""
|
384 |
+
return "P"
|
385 |
+
|
386 |
+
|
387 |
+
class TensorMeta(NamedTuple):
|
388 |
+
# simple named tuple to represent tensor metadata
|
389 |
+
# intentionally to stay simple only for sharding
|
390 |
+
# propagation purposes.
|
391 |
+
shape: torch.Size
|
392 |
+
stride: Tuple[int, ...]
|
393 |
+
dtype: torch.dtype
|
394 |
+
|
395 |
+
|
396 |
+
# used internally to propagate the placements
|
397 |
+
@dataclass
|
398 |
+
class DTensorSpec:
|
399 |
+
mesh: DeviceMesh
|
400 |
+
placements: Tuple[Placement, ...]
|
401 |
+
|
402 |
+
# tensor meta will only be set during sharding propagation
|
403 |
+
tensor_meta: Optional[TensorMeta] = None
|
404 |
+
|
405 |
+
def __post_init__(self):
|
406 |
+
if not isinstance(self.placements, tuple):
|
407 |
+
self.placements = tuple(self.placements)
|
408 |
+
self._hash: Optional[int] = None
|
409 |
+
|
410 |
+
def __setattr__(self, attr: str, value: Any):
|
411 |
+
super().__setattr__(attr, value)
|
412 |
+
# Make sure to recompute the hash in case any of the hashed attributes
|
413 |
+
# change (though we do not expect `mesh` or `placements` to change)
|
414 |
+
if hasattr(self, "_hash") and attr in ("mesh", "placements", "tensor_meta"):
|
415 |
+
self._hash = None
|
416 |
+
|
417 |
+
def _hash_impl(self) -> int:
|
418 |
+
# hashing and equality check for DTensorSpec are used to cache the sharding
|
419 |
+
# propagation results. We only need to consider the mesh, placements, shape
|
420 |
+
# dtype and stride.
|
421 |
+
# Caveat: we need to keep this in mind and sync hash and eq if we add more
|
422 |
+
# fields to them.
|
423 |
+
if self.tensor_meta is not None:
|
424 |
+
return hash(
|
425 |
+
(
|
426 |
+
self.mesh,
|
427 |
+
self.placements,
|
428 |
+
self.tensor_meta.shape,
|
429 |
+
self.tensor_meta.stride,
|
430 |
+
self.tensor_meta.dtype,
|
431 |
+
)
|
432 |
+
)
|
433 |
+
return hash((self.mesh, self.placements))
|
434 |
+
|
435 |
+
def __hash__(self) -> int:
|
436 |
+
# We lazily cache the spec to avoid recomputing the hash upon each
|
437 |
+
# use, where we make sure to update the hash when the `tensor_meta`
|
438 |
+
# changes by overriding `__setattr__`. This must be lazy so that Dynamo
|
439 |
+
# does not try to hash non-singleton `SymInt`s for the stride.
|
440 |
+
if self._hash is None:
|
441 |
+
self._hash = self._hash_impl()
|
442 |
+
return self._hash
|
443 |
+
|
444 |
+
def __eq__(self, __o: object) -> bool:
|
445 |
+
if not (
|
446 |
+
isinstance(__o, DTensorSpec)
|
447 |
+
and self.mesh == __o.mesh
|
448 |
+
and self.placements == __o.placements
|
449 |
+
):
|
450 |
+
return False
|
451 |
+
if self.tensor_meta is None or __o.tensor_meta is None:
|
452 |
+
return self.tensor_meta == __o.tensor_meta
|
453 |
+
|
454 |
+
return (
|
455 |
+
self.tensor_meta.shape == __o.tensor_meta.shape # type: ignore[union-attr]
|
456 |
+
and self.tensor_meta.stride == __o.tensor_meta.stride # type: ignore[union-attr]
|
457 |
+
and self.tensor_meta.dtype == __o.tensor_meta.dtype # type: ignore[union-attr]
|
458 |
+
)
|
459 |
+
|
460 |
+
def __str__(self) -> str:
|
461 |
+
"""
|
462 |
+
human readable representation of the DTensorSpec
|
463 |
+
"""
|
464 |
+
if len(self.placements) == 1:
|
465 |
+
placement_str = str(self.placements[0])
|
466 |
+
else:
|
467 |
+
placement_str = str(self.placements)
|
468 |
+
|
469 |
+
if self.tensor_meta is not None:
|
470 |
+
tensor_shape = str(tuple(self.tensor_meta.shape))
|
471 |
+
else:
|
472 |
+
tensor_shape = "unknown shape"
|
473 |
+
|
474 |
+
return f"Spec({placement_str} on {tensor_shape})"
|
475 |
+
|
476 |
+
@property
|
477 |
+
def shape(self) -> torch.Size:
|
478 |
+
if self.tensor_meta is None:
|
479 |
+
raise ValueError("tensor_meta is not set")
|
480 |
+
return self.tensor_meta.shape
|
481 |
+
|
482 |
+
@property
|
483 |
+
def stride(self) -> Tuple[int, ...]:
|
484 |
+
if self.tensor_meta is None:
|
485 |
+
raise ValueError("tensor_meta is not set")
|
486 |
+
return self.tensor_meta.stride
|
487 |
+
|
488 |
+
@property
|
489 |
+
def ndim(self) -> int:
|
490 |
+
if self.tensor_meta is None:
|
491 |
+
raise ValueError("tensor_meta is not set")
|
492 |
+
return len(self.tensor_meta.shape)
|
493 |
+
|
494 |
+
@property
|
495 |
+
def num_shards(self) -> int:
|
496 |
+
num_shards = 1
|
497 |
+
for i, placement in enumerate(self.placements):
|
498 |
+
if placement.is_shard():
|
499 |
+
num_shards *= self.mesh.size(i)
|
500 |
+
return num_shards
|
501 |
+
|
502 |
+
@property
|
503 |
+
def device_mesh(self) -> DeviceMesh:
|
504 |
+
# simple aliasing for the mesh field, make some
|
505 |
+
# checks that mixes DTensor/DTensorSpec easier
|
506 |
+
return self.mesh
|
507 |
+
|
508 |
+
@property
|
509 |
+
def dim_map(self) -> List[int]:
|
510 |
+
"""
|
511 |
+
dim_map is a property we derive from `placements` of
|
512 |
+
the distributed tensor. It simply return a list of ints
|
513 |
+
where dim_map[i] denotes the sharding mapping to the mesh
|
514 |
+
dimension, and len(dim_map) == dist_tensor.ndim
|
515 |
+
dim_map[i] = -1: means tensor dim i replicate on mesh
|
516 |
+
dim_map[i] = j: means tensor dim i shard on mesh dim j
|
517 |
+
|
518 |
+
For example, we have a dist tensor that have the shape of
|
519 |
+
[18, 20, 30], and device_mesh([0, 1, 2, 3]), placements:
|
520 |
+
[Shard(1)], the dim_map of this placement would be:
|
521 |
+
[-1, 0, -1]. This representation is pretty helpful during
|
522 |
+
sharding propagation where we could know exactly each
|
523 |
+
tensor dimension is sharded or not.
|
524 |
+
|
525 |
+
Note that if placements contains `_Partial`, we have to
|
526 |
+
explicitly deal with it, so that when we create a DTensorSpec
|
527 |
+
with dim_map, we could properly record the pending sums.
|
528 |
+
"""
|
529 |
+
# dims mapping of dist tensor sharding
|
530 |
+
# return size of tensor ndim, -1 represent replicate
|
531 |
+
# and int >=0 represent shard on that device mesh dim
|
532 |
+
r = [-1] * self.ndim
|
533 |
+
for i, placement in enumerate(self.placements):
|
534 |
+
if placement.is_shard():
|
535 |
+
shard_dim = cast(Shard, placement).dim
|
536 |
+
if r[shard_dim] > -1:
|
537 |
+
raise ValueError(
|
538 |
+
f"Tensor dim {shard_dim} is already sharded on mesh dim {r[shard_dim]},"
|
539 |
+
" DTensor operator implementation does not support things like hybrid"
|
540 |
+
" sharding strategies yet (i.e. [Shard(0), Shard(0)])"
|
541 |
+
)
|
542 |
+
r[shard_dim] = i
|
543 |
+
return r
|
544 |
+
|
545 |
+
@property
|
546 |
+
def sums(self) -> List[int]:
|
547 |
+
"""
|
548 |
+
sums is a property we derive from `placements` of the
|
549 |
+
distributed tensor. It simply return a list of ints where
|
550 |
+
sums[i] denotes the pending sum (partial) on mesh dim i
|
551 |
+
"""
|
552 |
+
return [
|
553 |
+
idx
|
554 |
+
for idx, placement in enumerate(self.placements)
|
555 |
+
if placement.is_partial()
|
556 |
+
]
|
557 |
+
|
558 |
+
@classmethod
|
559 |
+
def from_dim_map(
|
560 |
+
cls,
|
561 |
+
mesh: DeviceMesh,
|
562 |
+
dim_map: List[int],
|
563 |
+
sums: List[int],
|
564 |
+
tensor_meta: Optional[TensorMeta] = None,
|
565 |
+
) -> "DTensorSpec":
|
566 |
+
"""
|
567 |
+
Construct a DTensorSpec from dim_map list and pending sum.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
mesh (class:`DeviceMesh`): device mesh to be used in the DTensorSpec
|
571 |
+
dim_map (List[int]): a list of integer that represents sharding on each
|
572 |
+
tensor dimension, see `dim_map` property doc for details
|
573 |
+
sums (List[int]): a list of integer that represents the dist tensor have
|
574 |
+
pending sum on which device mesh dimension.
|
575 |
+
tensor meta (TensorMeta): DTensor metadata
|
576 |
+
|
577 |
+
Return:
|
578 |
+
a class:`DTensorSpec` object
|
579 |
+
"""
|
580 |
+
# by default replicate on device mesh dims
|
581 |
+
placements: List[Placement] = [Replicate() for _ in range(mesh.ndim)]
|
582 |
+
|
583 |
+
# find all mesh dims that need pending reductions
|
584 |
+
for s in sums:
|
585 |
+
placements[s] = _Partial()
|
586 |
+
|
587 |
+
for i, m in enumerate(dim_map):
|
588 |
+
if m >= 0:
|
589 |
+
placement = placements[m]
|
590 |
+
if placement.is_shard():
|
591 |
+
placement = cast(Shard, placement)
|
592 |
+
raise RuntimeError(
|
593 |
+
f"DeviceMesh dimension cann't be mapped to two dimension of the same tensor: {i} and {placement.dim}"
|
594 |
+
)
|
595 |
+
elif placement.is_partial():
|
596 |
+
raise RuntimeError(
|
597 |
+
f"DeviceMesh dimension {m} cannot be both shard and partial!"
|
598 |
+
)
|
599 |
+
placements[m] = Shard(i)
|
600 |
+
|
601 |
+
return cls(mesh, tuple(placements), tensor_meta=tensor_meta)
|
602 |
+
|
603 |
+
def is_replicated(self):
|
604 |
+
"""
|
605 |
+
return True if the current DTensorSpec replicates on all mesh dims (devices)
|
606 |
+
"""
|
607 |
+
return all(placement.is_replicate() for placement in self.placements)
|
608 |
+
|
609 |
+
def shallow_copy_with_tensor_meta(
|
610 |
+
self, tensor_meta: Optional[TensorMeta]
|
611 |
+
) -> "DTensorSpec":
|
612 |
+
"""
|
613 |
+
Shallow copy the DTensorSpec with a new tensor_meta.
|
614 |
+
"""
|
615 |
+
assert tensor_meta is not None, "shallow copy with no tensor_meta!"
|
616 |
+
return DTensorSpec(
|
617 |
+
self.mesh,
|
618 |
+
self.placements,
|
619 |
+
tensor_meta=tensor_meta,
|
620 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/random.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
import contextlib
|
3 |
+
import warnings
|
4 |
+
from typing import Dict, List, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.distributed._tensor.placement_types import DTensorSpec, Shard
|
11 |
+
from torch.distributed.device_mesh import _get_device_handle, DeviceMesh
|
12 |
+
|
13 |
+
|
14 |
+
_rng_tracker: Optional["RNGStateTracker"] = None
|
15 |
+
|
16 |
+
|
17 |
+
def is_rng_supported_mesh(device_mesh: DeviceMesh) -> bool:
|
18 |
+
"""Checks if the current device of `device_mesh` supports DTensor's random APIs.
|
19 |
+
Currently DTensor Random APIs only supports cuda/cuda-like devices. We suggest
|
20 |
+
users call this API to test the availability before using our random APIs.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
device_mesh (:class:`DeviceMesh`): The device mesh on which we check if the
|
24 |
+
random ops APIs are supported.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
A bool value. True if `device_mesh` supports DTensor Random APIs; False otherwise.
|
28 |
+
|
29 |
+
.. warning::
|
30 |
+
Currently we only support correct RNG on cuda/cuda-like devices.
|
31 |
+
"""
|
32 |
+
device_handle = _get_device_handle(device_mesh.device_type)
|
33 |
+
if device_handle and hasattr(device_handle, "set_rng_state"):
|
34 |
+
return True
|
35 |
+
else:
|
36 |
+
warnings.warn(
|
37 |
+
f"DTensor random operators may not have complete support on {device_mesh.device_type} device mesh"
|
38 |
+
)
|
39 |
+
return False
|
40 |
+
|
41 |
+
|
42 |
+
def manual_seed(seed: int, device_mesh: DeviceMesh) -> None:
|
43 |
+
"""Sets the seed for generating random numbers for the calling rank.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
seed (int): The desired seed.
|
47 |
+
device_mesh (:class:`DeviceMesh`): The device mesh to set the seed.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
None
|
51 |
+
|
52 |
+
.. warning::
|
53 |
+
When calling this function, :func:`manual_seed` must be called from all ranks of the
|
54 |
+
default `ProcessGroup` even if some ranks may not be a part of the `device_mesh`,
|
55 |
+
with the same `seed` value.
|
56 |
+
If ``device_mesh`` is a sub-mesh and the calling rank is not a part of it,
|
57 |
+
`manual_seed` will not set its GPU device's generator seed.
|
58 |
+
Current implementation only supports a GPU device mesh.
|
59 |
+
"""
|
60 |
+
device_handle = _get_device_handle(device_mesh.device_type)
|
61 |
+
if not device_handle:
|
62 |
+
raise NotImplementedError(
|
63 |
+
f"DTensor randomness only supports cuda/cuda-like device type, but got {device_mesh.device_type}"
|
64 |
+
)
|
65 |
+
|
66 |
+
# allgather the seed over the default PG
|
67 |
+
object_list = [seed] * dist.get_world_size()
|
68 |
+
dist.all_gather_object(object_list, seed)
|
69 |
+
for rank, object in enumerate(object_list):
|
70 |
+
if seed != int(object):
|
71 |
+
raise RuntimeError(
|
72 |
+
f"calling manual_seed function over {device_mesh} but received different seed values on ranks:",
|
73 |
+
f"seed on rank {dist.get_rank()} is {seed}, and seed on rank {rank} is {object}!",
|
74 |
+
)
|
75 |
+
# instantiate a RNG tracker if haven't. By default DTensor uses an
|
76 |
+
# OffsetBasedRNGTracker to perform random operators.
|
77 |
+
global _rng_tracker
|
78 |
+
if not _rng_tracker:
|
79 |
+
_rng_tracker = OffsetBasedRNGTracker(device_mesh.device_type)
|
80 |
+
|
81 |
+
# the current rank is in mesh
|
82 |
+
if device_mesh.get_coordinate() is not None:
|
83 |
+
if isinstance(_rng_tracker, TensorParallelRNGTracker):
|
84 |
+
_rng_tracker._manual_seed(device_mesh, seed)
|
85 |
+
elif isinstance(_rng_tracker, OffsetBasedRNGTracker):
|
86 |
+
_rng_tracker._manual_seed(seed)
|
87 |
+
else:
|
88 |
+
raise RuntimeError(
|
89 |
+
f"Unknown type of cuda RNG state tracker: _rng_tracker = {_rng_tracker}"
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
class RNGStateTracker:
|
94 |
+
"""
|
95 |
+
RNGStateTracker stores Random Number Generator (RNG) state (a ByteTensor object)
|
96 |
+
in a dict, mapping from a corresponding tag to each state tensor. It also provides
|
97 |
+
a set of convenient utility methods to help access/modify the state tensors. The most
|
98 |
+
important interface is _distribute_region which will be used when DTensor executes
|
99 |
+
a random op (an operator that calls RNG).
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, device_type: str = "cuda"):
|
103 |
+
self._device_type = device_type
|
104 |
+
self._device_handle = _get_device_handle(device_type)
|
105 |
+
if not (self._device_handle and self._device_handle.is_available()):
|
106 |
+
raise RuntimeError(
|
107 |
+
f"{self.__class__.__name__} instantiation requires the presence of CUDA/CUDA-like device"
|
108 |
+
)
|
109 |
+
|
110 |
+
self._states: Dict[str, Tensor] = {}
|
111 |
+
self._devices = [self._device_handle.current_device()]
|
112 |
+
self._use_distribute_region = True
|
113 |
+
|
114 |
+
@property
|
115 |
+
def rng_states(self) -> Dict[str, Tensor]:
|
116 |
+
return self._states
|
117 |
+
|
118 |
+
@property
|
119 |
+
def distribute_region_enabled(self) -> bool:
|
120 |
+
return self._use_distribute_region
|
121 |
+
|
122 |
+
@distribute_region_enabled.setter
|
123 |
+
def distribute_region_enabled(self, value) -> None:
|
124 |
+
self._use_distribute_region = value
|
125 |
+
|
126 |
+
def rng_state_is_sync(self, name) -> bool:
|
127 |
+
return name in self.rng_states
|
128 |
+
|
129 |
+
def get_seed(self, name: str) -> int:
|
130 |
+
if name not in self.rng_states:
|
131 |
+
raise RuntimeError(
|
132 |
+
f"{self.__class__.__name__} does not have random state for {name}"
|
133 |
+
)
|
134 |
+
|
135 |
+
seed_tensor = (self.rng_states[name])[0:8].view(dtype=torch.int64)
|
136 |
+
return int(seed_tensor.item())
|
137 |
+
|
138 |
+
def set_seed(self, name: str, seed: int) -> None:
|
139 |
+
seed_tensor = torch.tensor([seed]).view(torch.uint8)
|
140 |
+
offset_tensor = torch.tensor([0]).view(torch.uint8)
|
141 |
+
self.rng_states[name] = torch.cat([seed_tensor, offset_tensor])
|
142 |
+
|
143 |
+
def _distribute_region(self, spec: DTensorSpec):
|
144 |
+
pass
|
145 |
+
|
146 |
+
|
147 |
+
class OffsetBasedRNGTracker(RNGStateTracker):
|
148 |
+
"""
|
149 |
+
This subclass of `RNGStateTracker` defines the default policy of how RNG states
|
150 |
+
should be shared and synchronized among all ranks to respect the semantics of DTensor
|
151 |
+
random operators.
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, device_type: str = "cuda"):
|
155 |
+
super().__init__(device_type)
|
156 |
+
# synchronize RNG state using rank 0's current one
|
157 |
+
rng_state = self._device_handle.get_rng_state().to(device_type)
|
158 |
+
dist.broadcast(rng_state, 0)
|
159 |
+
self.rng_states["parallel-rng"] = rng_state.to("cpu")
|
160 |
+
|
161 |
+
def _manual_seed(self, parallel_seed: int) -> None:
|
162 |
+
self.set_seed("parallel-rng", parallel_seed)
|
163 |
+
|
164 |
+
@contextlib.contextmanager
|
165 |
+
def _distribute_region(self, spec: DTensorSpec):
|
166 |
+
# check if the parallel rng state has been synchronized or not
|
167 |
+
if not self.rng_state_is_sync("parallel-rng"):
|
168 |
+
raise RuntimeError(
|
169 |
+
"OffsetBasedRNGTracker requires the random state to be synchronized "
|
170 |
+
"before entering into a distribute region!"
|
171 |
+
)
|
172 |
+
|
173 |
+
if self.distribute_region_enabled:
|
174 |
+
old_offset = self.get_offset("parallel-rng")
|
175 |
+
self._set_pre_op_offset(spec)
|
176 |
+
with torch.random.fork_rng(self._devices, device_type=self._device_type):
|
177 |
+
self._device_handle.set_rng_state(self.rng_states["parallel-rng"])
|
178 |
+
try:
|
179 |
+
yield # execute the region code
|
180 |
+
finally:
|
181 |
+
# update offset to synchronize among ranks
|
182 |
+
self._set_post_op_offset(spec, old_offset)
|
183 |
+
else:
|
184 |
+
yield
|
185 |
+
|
186 |
+
def get_offset(self, name: str) -> int:
|
187 |
+
if name not in self.rng_states:
|
188 |
+
raise RuntimeError(
|
189 |
+
f"{self.__class__.__name__} does not have random state for {name}"
|
190 |
+
)
|
191 |
+
|
192 |
+
offset_tensor = (self.rng_states[name])[8:].view(dtype=torch.int64)
|
193 |
+
return int(offset_tensor.item())
|
194 |
+
|
195 |
+
def set_offset(self, name: str, offset: int) -> None:
|
196 |
+
if name not in self.rng_states:
|
197 |
+
raise RuntimeError(
|
198 |
+
f"{self.__class__.__name__} does not have random state for {name}"
|
199 |
+
)
|
200 |
+
|
201 |
+
seed_tensor = (self.rng_states[name])[0:8]
|
202 |
+
offset_tensor = torch.tensor([offset]).view(torch.uint8)
|
203 |
+
self.rng_states[name] = torch.cat([seed_tensor, offset_tensor])
|
204 |
+
|
205 |
+
def _set_pre_op_offset(self, spec: DTensorSpec) -> None:
|
206 |
+
"""Set the starting RNG offset for current device's local shard before actual
|
207 |
+
op execution. The pre_op_offset value should start from the current RNG offset
|
208 |
+
and increment by the size of local shard until it reaches the size of the whole
|
209 |
+
DTensor. For different ranks that hold the same DTensor shard, their pre_op_offset
|
210 |
+
will be the same.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
spec (:class:`DTensorSpec`): the spec of the DTensor object on which
|
214 |
+
we prepare the offset for running random ops.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
None
|
218 |
+
|
219 |
+
.. warning::
|
220 |
+
Note that, current implementation does not consider DTensor's continguity.
|
221 |
+
|
222 |
+
Example:
|
223 |
+
take a DTensor of shape [8, 16] as an example. Assume that the DTensor
|
224 |
+
is placed on a device mesh with placements ([Shard(1), Replicate(), Shard(0)]),
|
225 |
+
and the mesh is:
|
226 |
+
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]]
|
227 |
+
``spec.mesh.get_coordinate()`` provides the coordinate of the current rank
|
228 |
+
in the mesh. For example, the coordinate of rank 5 is (1, 0, 1).
|
229 |
+
|
230 |
+
Another concept to introduce besides rank coordinate is shard coordinate.
|
231 |
+
Each rank holds a local shard of the DTensor. In the example, the DTensor
|
232 |
+
is partitioned into 4 [4, 8] shards. The first shard has 2 replicas and
|
233 |
+
rank 0 (coord (0, 0, 0)) and rank 2 (coord (0, 1, 0)) have 1 replica each.
|
234 |
+
That being said, the local shard on rank 0 and rank 2 correspond to the same
|
235 |
+
shard of the DTensor. To denote each DTensor shard, we use a shard coordinate
|
236 |
+
(in the example, it will be a tuple (i, j) where shard (i, j) has the slice
|
237 |
+
DTensor[4 * i : 4 * (i + 1), 8 * j : 8 * (j + 1)], 0 <= i < 2, 0 <= j < 2).
|
238 |
+
|
239 |
+
Once we have rank coordinate and shard coordinate, we can calculate on each rank
|
240 |
+
what shard of the DTensor the rank holds, with the help of dim_map. The dim_map
|
241 |
+
of the above DTensor is [2, 0] so the shard coordinate of a rank with rank coord
|
242 |
+
(x, y, z) is simply (z, x) by taking(rank_coord[dim_map[0]],rank_coord[dim_map[1]]).
|
243 |
+
Following this calculation,
|
244 |
+
rank 0 and rank 2 holds the shard of coord (0, 0);
|
245 |
+
rank 1 and rank 3 holds the shard of coord (0, 1);
|
246 |
+
rank 4 and rank 6 holds the shard of coord (1, 0);
|
247 |
+
rank 5 and rank 7 holds the shard of coord (1, 1);
|
248 |
+
|
249 |
+
The last value to calculate before obtaining the starting offset is the shard linear index.
|
250 |
+
The starting offset for each rank will be its shard_linear_index * local_tensor_numel.
|
251 |
+
"""
|
252 |
+
dtensor_shape = spec.shape
|
253 |
+
mesh = spec.mesh
|
254 |
+
dim_map = spec.dim_map
|
255 |
+
|
256 |
+
# Compute shard coordinate:
|
257 |
+
# The coordinate on each tensor dim is a tuple (idx, range)
|
258 |
+
# If a DTensor is partitioned on its dim i into n shards, and the current rank
|
259 |
+
# holds the j-th, then its shard coordinate will be (idx=j, range=n) on dim i
|
260 |
+
coordinate = mesh.get_coordinate()
|
261 |
+
assert coordinate is not None
|
262 |
+
shard_coord = [
|
263 |
+
coordinate[mesh_dim] if mesh_dim >= 0 else 0 for mesh_dim in dim_map
|
264 |
+
]
|
265 |
+
shard_size = [
|
266 |
+
mesh.size(mesh_dim) if mesh_dim >= 0 else 1 for mesh_dim in dim_map
|
267 |
+
]
|
268 |
+
|
269 |
+
# compute shard linear index
|
270 |
+
shard_linear_idx = self._calc_shard_linear_idx(shard_coord, shard_size)
|
271 |
+
|
272 |
+
# compute starting offset using the first shard's size
|
273 |
+
local_size_on_rank_0 = list(dtensor_shape)
|
274 |
+
for idx, placement in enumerate(spec.placements):
|
275 |
+
if isinstance(placement, Shard):
|
276 |
+
mesh_dim_size = mesh.size(idx)
|
277 |
+
shard_dim = placement.dim
|
278 |
+
local_size_on_rank_0[shard_dim] = placement._local_shard_size_on_dim(
|
279 |
+
dtensor_shape[shard_dim],
|
280 |
+
mesh_dim_size,
|
281 |
+
0,
|
282 |
+
return_offset=False,
|
283 |
+
)[0]
|
284 |
+
|
285 |
+
from torch.distributed._tensor.ops.utils import prod
|
286 |
+
|
287 |
+
local_size = prod(local_size_on_rank_0)
|
288 |
+
|
289 |
+
# get current RNG offset
|
290 |
+
current_offset = self.get_offset("parallel-rng")
|
291 |
+
|
292 |
+
# pytorch: offset must be multiple of 4
|
293 |
+
# source: aten/src/ATen/cuda/CUDAGeneratorImpl.cpp
|
294 |
+
offset_incr = (shard_linear_idx * local_size + 3) // 4 * 4
|
295 |
+
self.set_offset("parallel-rng", current_offset + offset_incr)
|
296 |
+
|
297 |
+
def _set_post_op_offset(self, spec: DTensorSpec, old_offset: int) -> None:
|
298 |
+
"""Sets the RNG to a synchronized state after running the local random op. Every
|
299 |
+
rank should set its RNG offset to `old_offset + DTensor.numel()` where old_offset is
|
300 |
+
the offset before calling `set_pre_op_offset` i.e. the offset before running DTensor
|
301 |
+
random ops.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
spec (:class:`DTensorSpec`): the spec of the DTensor object on which
|
305 |
+
we post-process the offset for running random ops.
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
None
|
309 |
+
"""
|
310 |
+
dtensor_shape = spec.shape
|
311 |
+
|
312 |
+
from torch.distributed._tensor.ops.utils import prod
|
313 |
+
|
314 |
+
numel = prod(dtensor_shape)
|
315 |
+
# pytorch: offset must be multiple of 4
|
316 |
+
# source: aten/src/ATen/cuda/CUDAGeneratorImpl.cpp
|
317 |
+
numel = (numel + 3) // 4 * 4
|
318 |
+
self.set_offset("parallel-rng", old_offset + numel)
|
319 |
+
|
320 |
+
def _calc_shard_linear_idx(
|
321 |
+
self, shard_coord: List[int], shard_size: List[int]
|
322 |
+
) -> int:
|
323 |
+
# compute shard linear index
|
324 |
+
shard_linear_idx = 0
|
325 |
+
shard_coord_stride = 1
|
326 |
+
for idx, size in zip(reversed(shard_coord), reversed(shard_size)):
|
327 |
+
shard_linear_idx += idx * shard_coord_stride
|
328 |
+
shard_coord_stride *= size
|
329 |
+
|
330 |
+
return shard_linear_idx
|
331 |
+
|
332 |
+
|
333 |
+
class TensorParallelRNGTracker(RNGStateTracker):
|
334 |
+
def __init__(self, device_type: str = "cuda"):
|
335 |
+
super().__init__(device_type)
|
336 |
+
# copy the default RNG state
|
337 |
+
self.rng_states["tensor-parallel-rng"] = self._device_handle.get_rng_state()
|
338 |
+
|
339 |
+
def _manual_seed(
|
340 |
+
self,
|
341 |
+
tp_mesh: DeviceMesh,
|
342 |
+
base_seed: int = 1234,
|
343 |
+
):
|
344 |
+
tensor_parallel_rank = tp_mesh.get_local_rank()
|
345 |
+
# this magic number 2718 comes from Megatron's code
|
346 |
+
# (https://github.com/NVIDIA/Megatron-LM/blob/060415572f4365a2e895f8036c4e37dad0efbdf5/megatron/core/tensor_parallel/random.py#L162-L163)
|
347 |
+
MegatronMagicNum = 2718
|
348 |
+
tensor_parallel_seed = base_seed + MegatronMagicNum + tensor_parallel_rank
|
349 |
+
self.set_seed("tensor-parallel-rng", tensor_parallel_seed)
|
350 |
+
|
351 |
+
@contextlib.contextmanager
|
352 |
+
def _distribute_region(self, spec: DTensorSpec):
|
353 |
+
# check if the tensor parallel rng state has been synchronized or not
|
354 |
+
if not self.rng_state_is_sync("tensor-parallel-rng"):
|
355 |
+
raise RuntimeError(
|
356 |
+
"TensorParallelRNGTracker requires the random state to be synchronized "
|
357 |
+
"before entering into a distribute region!"
|
358 |
+
)
|
359 |
+
|
360 |
+
if self.distribute_region_enabled:
|
361 |
+
with torch.random.fork_rng(self._devices, device_type=self._device_type):
|
362 |
+
self._device_handle.set_rng_state(
|
363 |
+
self.rng_states["tensor-parallel-rng"]
|
364 |
+
)
|
365 |
+
try:
|
366 |
+
yield
|
367 |
+
finally:
|
368 |
+
self.rng_states[
|
369 |
+
"tensor-parallel-rng"
|
370 |
+
] = self._device_handle.get_rng_state()
|
371 |
+
else:
|
372 |
+
yield
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/redistribute.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
from functools import lru_cache
|
3 |
+
from typing import cast, Dict, List, NamedTuple, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed._functional_collectives as funcol
|
7 |
+
import torch.distributed._tensor.api as dtensor
|
8 |
+
from torch.distributed._tensor.device_mesh import DeviceMesh
|
9 |
+
from torch.distributed._tensor.placement_types import (
|
10 |
+
_Partial,
|
11 |
+
DTensorSpec,
|
12 |
+
Placement,
|
13 |
+
Replicate,
|
14 |
+
Shard,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class _TransformInfo(NamedTuple):
|
19 |
+
mesh_dim: int
|
20 |
+
src_dst_placements: Tuple[Placement, Placement]
|
21 |
+
# logical_shape on this mesh dimension
|
22 |
+
logical_shape: List[int]
|
23 |
+
|
24 |
+
|
25 |
+
def _replicate_then_shard(val: _TransformInfo) -> int:
|
26 |
+
"""
|
27 |
+
This is a helper function to allow reordering _TransformInfo list. The high level
|
28 |
+
idea is that we want to reorder the sharding redistributions so that the DTensor
|
29 |
+
redistribution is consistent with its full tensor. This is built on top of two simple
|
30 |
+
assumptions:
|
31 |
+
1. Replication happens from inner to outer dimension. i.e. Shard -> Replicate
|
32 |
+
2. Sharding happens from outer to inner dimension, i.e. Replicate -> Shard
|
33 |
+
|
34 |
+
So we always put the replication first and put sharding later.
|
35 |
+
"""
|
36 |
+
mesh_dim = val.mesh_dim
|
37 |
+
src, dst = val.src_dst_placements
|
38 |
+
if (dst.is_replicate() or dst.is_partial()) and src.is_shard():
|
39 |
+
return -mesh_dim
|
40 |
+
elif (src.is_replicate() or src.is_partial()) and dst.is_shard():
|
41 |
+
return mesh_dim
|
42 |
+
else:
|
43 |
+
return 0
|
44 |
+
|
45 |
+
|
46 |
+
@lru_cache(maxsize=None)
|
47 |
+
def _gen_transform_infos(
|
48 |
+
src_spec: DTensorSpec,
|
49 |
+
dst_spec: DTensorSpec,
|
50 |
+
) -> List[_TransformInfo]:
|
51 |
+
"""
|
52 |
+
Generate the transform infos from the source placements to the target placements, to
|
53 |
+
transform from source to target placement it might have multipl steps, i.e. it might
|
54 |
+
decompose Si -> Sj into Si -> R -> Sj.
|
55 |
+
This would detects if there're mis-aligned shardings between src/dst placements.
|
56 |
+
i.e. (Shard(0), Shard(0)) -> (Replicate(), Shard(0)), in this case Shard(0) -> Shard(0)
|
57 |
+
for mesh dimension 1 actually needs reshard, because in the first case it's a sub-sharding
|
58 |
+
of an already tensor dimension 0, and in the second case, it's the first sharding on tensor
|
59 |
+
dimension 0.
|
60 |
+
|
61 |
+
Note that we also currently handles sharding on different tensor dimensions, e.g.
|
62 |
+
Shard(0) -> Shard(1) in this pass
|
63 |
+
"""
|
64 |
+
src_dim_counts: Dict[int, int] = {}
|
65 |
+
dst_dim_counts: Dict[int, int] = {}
|
66 |
+
transform_infos: List[_TransformInfo] = []
|
67 |
+
|
68 |
+
src_placements = src_spec.placements
|
69 |
+
dst_placements = dst_spec.placements
|
70 |
+
device_mesh = src_spec.device_mesh
|
71 |
+
my_coordinate = device_mesh.get_coordinate()
|
72 |
+
assert my_coordinate is not None
|
73 |
+
|
74 |
+
# logical shape records the logic tensor shape on the mesh dimension
|
75 |
+
# this is useful to ensure uneven sharding gets correct output shape
|
76 |
+
initial_logical_shape = list(src_spec.shape)
|
77 |
+
mesh_dims_to_logical_shape = [initial_logical_shape]
|
78 |
+
mesh_ndim = len(src_placements)
|
79 |
+
|
80 |
+
for i, (src, dst) in enumerate(zip(src_placements, dst_placements)):
|
81 |
+
# detect mis-aligned sharding and build logical shapes
|
82 |
+
current_logical_shape = mesh_dims_to_logical_shape[i]
|
83 |
+
if isinstance(src, Shard):
|
84 |
+
src_dim_counts[src.dim] = src_dim_counts.get(src.dim, 0) + 1
|
85 |
+
|
86 |
+
if i < mesh_ndim - 1:
|
87 |
+
# calculate and save the logical shape for this sharding
|
88 |
+
mesh_dim_size = device_mesh.size(mesh_dim=i)
|
89 |
+
local_shard_size, _ = src._local_shard_size_on_dim(
|
90 |
+
current_logical_shape[src.dim],
|
91 |
+
mesh_dim_size,
|
92 |
+
my_coordinate[i],
|
93 |
+
)
|
94 |
+
new_logical_shape = list(current_logical_shape)
|
95 |
+
new_logical_shape[src.dim] = local_shard_size
|
96 |
+
mesh_dims_to_logical_shape.append(new_logical_shape)
|
97 |
+
else:
|
98 |
+
mesh_dims_to_logical_shape.append(current_logical_shape)
|
99 |
+
|
100 |
+
if isinstance(dst, Shard):
|
101 |
+
dst_dim_counts[dst.dim] = dst_dim_counts.get(dst.dim, 0) + 1
|
102 |
+
|
103 |
+
if (
|
104 |
+
isinstance(src, Shard)
|
105 |
+
and isinstance(dst, Shard)
|
106 |
+
and (
|
107 |
+
src.dim != dst.dim or src_dim_counts[src.dim] != dst_dim_counts[dst.dim]
|
108 |
+
)
|
109 |
+
):
|
110 |
+
# decompose Shard(i) -> Shard(j) into Shard(i) -> Replicate() -> Shard(j)
|
111 |
+
transform_infos.append(
|
112 |
+
_TransformInfo(
|
113 |
+
mesh_dim=i,
|
114 |
+
src_dst_placements=(src, Replicate()),
|
115 |
+
logical_shape=mesh_dims_to_logical_shape[i],
|
116 |
+
)
|
117 |
+
)
|
118 |
+
transform_infos.append(
|
119 |
+
_TransformInfo(
|
120 |
+
mesh_dim=i,
|
121 |
+
src_dst_placements=(Replicate(), dst),
|
122 |
+
logical_shape=mesh_dims_to_logical_shape[i],
|
123 |
+
)
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
transform_infos.append(
|
127 |
+
_TransformInfo(
|
128 |
+
mesh_dim=i,
|
129 |
+
src_dst_placements=(src, dst),
|
130 |
+
logical_shape=mesh_dims_to_logical_shape[i],
|
131 |
+
)
|
132 |
+
)
|
133 |
+
|
134 |
+
# sort the pairs by first perform replication then sharding
|
135 |
+
transform_infos.sort(key=_replicate_then_shard)
|
136 |
+
return transform_infos
|
137 |
+
|
138 |
+
|
139 |
+
def redistribute_local_tensor(
|
140 |
+
local_tensor: torch.Tensor,
|
141 |
+
current_spec: DTensorSpec,
|
142 |
+
target_spec: DTensorSpec,
|
143 |
+
*,
|
144 |
+
async_op: bool = False,
|
145 |
+
is_backward: bool = False,
|
146 |
+
) -> torch.Tensor:
|
147 |
+
"""
|
148 |
+
This redistribute the local tensor (torch.Tensor) from the current DTensorSpec to
|
149 |
+
the target DTensorSpec, which involves the necessary collective calls to transform
|
150 |
+
the local shard of the DTensor from its current spec to the target spec.
|
151 |
+
"""
|
152 |
+
|
153 |
+
if current_spec.mesh != target_spec.mesh:
|
154 |
+
# TODO: alltoall/permute reshuffling to change device_mesh if they are not the same
|
155 |
+
raise NotImplementedError("Cross device mesh comm not supported yet!")
|
156 |
+
|
157 |
+
new_local_tensor = None
|
158 |
+
device_mesh = current_spec.mesh
|
159 |
+
|
160 |
+
my_coordinate = device_mesh.get_coordinate()
|
161 |
+
|
162 |
+
if my_coordinate is None:
|
163 |
+
# if rank is not part of mesh, we skip redistribute and simply return local_tensor,
|
164 |
+
# which should be an empty tensor
|
165 |
+
return local_tensor
|
166 |
+
|
167 |
+
transform_infos = _gen_transform_infos(current_spec, target_spec)
|
168 |
+
|
169 |
+
for transform_info in transform_infos:
|
170 |
+
i = transform_info.mesh_dim
|
171 |
+
current, target = transform_info.src_dst_placements
|
172 |
+
num_chunks = device_mesh.size(mesh_dim=i)
|
173 |
+
|
174 |
+
if current == target:
|
175 |
+
# short cut, just use the original local tensor
|
176 |
+
new_local_tensor = local_tensor
|
177 |
+
continue
|
178 |
+
|
179 |
+
if target.is_replicate():
|
180 |
+
# Case 1: target is Replicate
|
181 |
+
if current.is_partial():
|
182 |
+
partial_spec = cast(_Partial, current)
|
183 |
+
new_local_tensor = partial_spec._reduce_value(
|
184 |
+
local_tensor, device_mesh, i
|
185 |
+
)
|
186 |
+
elif current.is_shard():
|
187 |
+
current_placement = cast(Shard, current)
|
188 |
+
new_local_tensor = current_placement._to_replicate_tensor(
|
189 |
+
local_tensor, device_mesh, i, transform_info.logical_shape
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
raise RuntimeError(
|
193 |
+
f"redistribute from {current} to {target} not supported yet"
|
194 |
+
)
|
195 |
+
elif target.is_shard():
|
196 |
+
# Case 2: target is Shard
|
197 |
+
target_placement = cast(Shard, target)
|
198 |
+
target_dim = target_placement.dim
|
199 |
+
if current.is_partial():
|
200 |
+
partial_spec = cast(_Partial, current)
|
201 |
+
new_local_tensor = partial_spec._reduce_shard_value(
|
202 |
+
local_tensor, device_mesh, i, target_placement
|
203 |
+
)
|
204 |
+
elif current.is_replicate():
|
205 |
+
# split the tensor and return the corresponding cloned local shard
|
206 |
+
new_local_tensor = target_placement._replicate_to_shard(
|
207 |
+
local_tensor, device_mesh, i, my_coordinate[i]
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
# NOTE: we don't support this case efficiently yet, the fallback path we are going here is
|
211 |
+
# to decompose Shard(0) -> Shard(1) into Shard(0) -> Replicate -> Shard(1)
|
212 |
+
# TODO: enable this with all_to_all
|
213 |
+
assert (
|
214 |
+
current.is_shard()
|
215 |
+
), f"Current placement should be shard but found {current}"
|
216 |
+
shard_spec = cast(Shard, current)
|
217 |
+
if shard_spec.dim != target_placement.dim:
|
218 |
+
new_local_tensor = shard_spec._to_replicate_tensor(
|
219 |
+
local_tensor, device_mesh, i, transform_info.logical_shape
|
220 |
+
)
|
221 |
+
shards, _ = target_placement._split_tensor(
|
222 |
+
new_local_tensor,
|
223 |
+
num_chunks,
|
224 |
+
with_padding=False,
|
225 |
+
contiguous=False,
|
226 |
+
)
|
227 |
+
new_local_tensor = shards[my_coordinate[i]]
|
228 |
+
elif target.is_partial():
|
229 |
+
if current.is_replicate():
|
230 |
+
partial_spec = cast(_Partial, target)
|
231 |
+
# skip the replicate to partial transformation when we are in backward pass
|
232 |
+
# In this case we keep the grad as replicate, this is because we don't
|
233 |
+
# want to convert the replicated gradients back to partial, although
|
234 |
+
# that's logically conform with the same layout, converting the gradients
|
235 |
+
# back to partial is actually useless as you would have to do reduce later
|
236 |
+
# which would be more expensive than keeping it replicate! For this reason,
|
237 |
+
# we keep the replicate grad here.
|
238 |
+
new_local_tensor = (
|
239 |
+
partial_spec._partition_value(local_tensor, device_mesh, i)
|
240 |
+
if not is_backward
|
241 |
+
else local_tensor
|
242 |
+
)
|
243 |
+
elif current.is_shard():
|
244 |
+
if not is_backward:
|
245 |
+
raise RuntimeError(
|
246 |
+
f"redistribute from {current} to {target} not supported yet"
|
247 |
+
)
|
248 |
+
# for backward shard -> partial, we just need to convert the shard to replicate
|
249 |
+
current_placement = cast(Shard, current)
|
250 |
+
new_local_tensor = current_placement._to_replicate_tensor(
|
251 |
+
local_tensor, device_mesh, i, transform_info.logical_shape
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
# partial -> partial no op, should never hit
|
255 |
+
new_local_tensor = local_tensor
|
256 |
+
|
257 |
+
assert new_local_tensor is not None
|
258 |
+
local_tensor = new_local_tensor
|
259 |
+
|
260 |
+
assert new_local_tensor is not None, "redistribute failed!"
|
261 |
+
|
262 |
+
if not async_op and isinstance(new_local_tensor, funcol.AsyncCollectiveTensor):
|
263 |
+
new_local_tensor = new_local_tensor.wait()
|
264 |
+
|
265 |
+
return new_local_tensor
|
266 |
+
|
267 |
+
|
268 |
+
class Redistribute(torch.autograd.Function):
|
269 |
+
@staticmethod
|
270 |
+
def forward( # type: ignore[override]
|
271 |
+
# pyre-fixme[2]: Parameter must be annotated.
|
272 |
+
ctx,
|
273 |
+
input: "dtensor.DTensor",
|
274 |
+
device_mesh: DeviceMesh,
|
275 |
+
placements: Tuple[Placement, ...],
|
276 |
+
async_op: bool = False,
|
277 |
+
):
|
278 |
+
current_spec = input._spec
|
279 |
+
ctx.current_spec = current_spec
|
280 |
+
ctx.async_op = async_op
|
281 |
+
target_spec = DTensorSpec(
|
282 |
+
device_mesh, placements, tensor_meta=input._spec.tensor_meta
|
283 |
+
)
|
284 |
+
|
285 |
+
local_tensor = input._local_tensor
|
286 |
+
output = redistribute_local_tensor(
|
287 |
+
local_tensor, current_spec, target_spec, async_op=async_op
|
288 |
+
)
|
289 |
+
|
290 |
+
return dtensor.DTensor(
|
291 |
+
output,
|
292 |
+
device_mesh,
|
293 |
+
target_spec.placements,
|
294 |
+
shape=input.shape,
|
295 |
+
dtype=input.dtype,
|
296 |
+
requires_grad=input.requires_grad,
|
297 |
+
stride=input.stride(),
|
298 |
+
)
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def backward(ctx, grad_output: "dtensor.DTensor"): # type: ignore[override]
|
302 |
+
previous_spec = ctx.current_spec
|
303 |
+
current_spec = grad_output._spec
|
304 |
+
async_op = ctx.async_op
|
305 |
+
|
306 |
+
local_tensor = grad_output._local_tensor
|
307 |
+
output = redistribute_local_tensor(
|
308 |
+
local_tensor,
|
309 |
+
current_spec,
|
310 |
+
previous_spec,
|
311 |
+
async_op=async_op,
|
312 |
+
is_backward=True,
|
313 |
+
)
|
314 |
+
# normalize the target placement to replicate if it is partial
|
315 |
+
normalized_placements: List[Placement] = []
|
316 |
+
for previous_placement in previous_spec.placements:
|
317 |
+
if previous_placement.is_partial():
|
318 |
+
# keep target placement to replicate instead of partial in this case
|
319 |
+
normalized_placements.append(Replicate())
|
320 |
+
else:
|
321 |
+
normalized_placements.append(previous_placement)
|
322 |
+
output_dtensor = dtensor.DTensor(
|
323 |
+
output,
|
324 |
+
previous_spec.mesh,
|
325 |
+
tuple(normalized_placements),
|
326 |
+
shape=grad_output.shape,
|
327 |
+
dtype=grad_output.dtype,
|
328 |
+
requires_grad=grad_output.requires_grad,
|
329 |
+
stride=grad_output.stride(),
|
330 |
+
)
|
331 |
+
|
332 |
+
return (
|
333 |
+
output_dtensor,
|
334 |
+
None,
|
335 |
+
None,
|
336 |
+
None,
|
337 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/sharding_prop.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import lru_cache
|
2 |
+
from itertools import chain
|
3 |
+
from typing import Callable, cast, Dict, List, Optional, Sequence, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._ops import OpOverload
|
7 |
+
from torch._subclasses import FakeTensorMode
|
8 |
+
from torch.distributed._tensor._utils import try_find_mesh_from_args
|
9 |
+
from torch.distributed._tensor.op_schema import (
|
10 |
+
DTensorSpec,
|
11 |
+
OpInfo,
|
12 |
+
OpSchema,
|
13 |
+
OpStrategy,
|
14 |
+
OutputSharding,
|
15 |
+
OutputSpecType,
|
16 |
+
PlacementStrategy,
|
17 |
+
RuntimeSchemaInfo,
|
18 |
+
StrategyType,
|
19 |
+
TupleStrategy,
|
20 |
+
)
|
21 |
+
from torch.distributed._tensor.placement_types import TensorMeta
|
22 |
+
from torch.distributed.device_mesh import DeviceMesh
|
23 |
+
|
24 |
+
aten = torch.ops.aten
|
25 |
+
|
26 |
+
|
27 |
+
def _length(obj) -> int:
|
28 |
+
if obj is None:
|
29 |
+
return 0
|
30 |
+
if not isinstance(obj, Sequence):
|
31 |
+
return 1
|
32 |
+
return len(obj)
|
33 |
+
|
34 |
+
|
35 |
+
class ShardingPropagator:
|
36 |
+
def __init__(self) -> None:
|
37 |
+
self.op_to_rules: Dict[OpOverload, Callable[[OpSchema], OutputSharding]] = {}
|
38 |
+
self.op_strategy_funcs: Dict[
|
39 |
+
OpOverload,
|
40 |
+
Callable[[DeviceMesh, OpSchema], StrategyType],
|
41 |
+
] = {}
|
42 |
+
# op map to save static argnum to decide to reuse sharding prop cache or re-run sharding prop
|
43 |
+
self.op_to_schema_info: Dict[OpOverload, RuntimeSchemaInfo] = {}
|
44 |
+
self.propagate_op_sharding = lru_cache(None)(self.propagate_op_sharding_non_cached) # type: ignore[method-assign]
|
45 |
+
|
46 |
+
def register_sharding_prop_rule(
|
47 |
+
self,
|
48 |
+
op_overload: OpOverload,
|
49 |
+
rule_func: Callable[[OpSchema], OutputSharding],
|
50 |
+
schema_info: Optional[RuntimeSchemaInfo] = None,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Register a sharding propagation rule for an operator.
|
54 |
+
"""
|
55 |
+
self.op_to_rules[op_overload] = rule_func
|
56 |
+
if schema_info is not None:
|
57 |
+
self.op_to_schema_info[op_overload] = schema_info
|
58 |
+
|
59 |
+
def register_op_strategy(
|
60 |
+
self,
|
61 |
+
op_overload: OpOverload,
|
62 |
+
strategy_func: Callable[[DeviceMesh, OpSchema], StrategyType],
|
63 |
+
schema_info: Optional[RuntimeSchemaInfo] = None,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
Register a sharding strategy generator for an operator.
|
67 |
+
"""
|
68 |
+
self.op_strategy_funcs[op_overload] = strategy_func
|
69 |
+
if schema_info is not None:
|
70 |
+
self.op_to_schema_info[op_overload] = schema_info
|
71 |
+
|
72 |
+
@lru_cache
|
73 |
+
def _propagate_tensor_meta(
|
74 |
+
self, op_schema: OpSchema
|
75 |
+
) -> Union[None, TensorMeta, Sequence[Optional[TensorMeta]]]:
|
76 |
+
"""
|
77 |
+
Propagate the tensor metadata, it could either return a TensorMeta
|
78 |
+
or a list/tuple of TensorMetas
|
79 |
+
"""
|
80 |
+
if op_schema.op == aten.equal.default:
|
81 |
+
# data dependent ops can't be used for fake propagation
|
82 |
+
return None
|
83 |
+
|
84 |
+
# NOTE: We must call the tracing in fake tensor mode so that it
|
85 |
+
# avoids materializing memory
|
86 |
+
with FakeTensorMode():
|
87 |
+
fake_args = op_schema.gen_fake_args()
|
88 |
+
fake_kwargs = op_schema.gen_fake_kwargs()
|
89 |
+
fake_out = op_schema.op(*fake_args, **fake_kwargs)
|
90 |
+
|
91 |
+
if isinstance(fake_out, torch.Tensor):
|
92 |
+
return TensorMeta(
|
93 |
+
shape=fake_out.shape, stride=fake_out.stride(), dtype=fake_out.dtype
|
94 |
+
)
|
95 |
+
|
96 |
+
elif isinstance(fake_out, (tuple, list)):
|
97 |
+
tensor_meta_list: List[Optional[TensorMeta]] = []
|
98 |
+
for fake_out_item in fake_out:
|
99 |
+
if isinstance(fake_out_item, torch.Tensor):
|
100 |
+
tensor_meta_list.append(
|
101 |
+
TensorMeta(
|
102 |
+
shape=fake_out_item.shape,
|
103 |
+
stride=fake_out_item.stride(),
|
104 |
+
dtype=fake_out_item.dtype,
|
105 |
+
)
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
tensor_meta_list.append(None)
|
109 |
+
return (
|
110 |
+
tuple(tensor_meta_list)
|
111 |
+
if isinstance(fake_out, tuple)
|
112 |
+
else tensor_meta_list
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
# if fake is not a tensor or tuple of tensor, return as none
|
116 |
+
return None
|
117 |
+
|
118 |
+
def _wrap_output_spec_tensor_meta(
|
119 |
+
self,
|
120 |
+
op: OpOverload,
|
121 |
+
output_specs: OutputSpecType,
|
122 |
+
output_tensor_meta: Union[None, TensorMeta, Sequence[Optional[TensorMeta]]],
|
123 |
+
) -> None:
|
124 |
+
"""
|
125 |
+
Wrap the output_specs with the tensor metadata from the output.
|
126 |
+
"""
|
127 |
+
|
128 |
+
if isinstance(output_specs, DTensorSpec):
|
129 |
+
if not isinstance(output_tensor_meta, TensorMeta):
|
130 |
+
# Either error due to ShardingPropagator or due to incorrect OutputSpec
|
131 |
+
if not isinstance(output_tensor_meta, (tuple, list)):
|
132 |
+
raise ValueError(
|
133 |
+
"ShardingPropagator error: output does not have an associated TensorMeta"
|
134 |
+
)
|
135 |
+
raise ValueError(
|
136 |
+
f"For the op {op.name()}, `output_specs` has 1 output which does not equal the "
|
137 |
+
f"number of op outputs: {len(output_tensor_meta)}."
|
138 |
+
)
|
139 |
+
output_specs.tensor_meta = output_tensor_meta
|
140 |
+
elif isinstance(output_specs, (tuple, list)):
|
141 |
+
if not isinstance(output_tensor_meta, (tuple, list)) or len(
|
142 |
+
output_specs
|
143 |
+
) != len(output_tensor_meta):
|
144 |
+
raise ValueError(
|
145 |
+
f"For the op {op.name()}, `output_specs` has {len(output_specs)} outputs which does not equal the "
|
146 |
+
f"number of op outputs {_length(output_tensor_meta)}."
|
147 |
+
)
|
148 |
+
for i, spec in enumerate(output_specs):
|
149 |
+
if isinstance(spec, DTensorSpec):
|
150 |
+
output_tensor_meta_i = output_tensor_meta[i]
|
151 |
+
if not isinstance(output_tensor_meta_i, TensorMeta):
|
152 |
+
raise ValueError(
|
153 |
+
f"ShardingPropagator error: output {i} does not have an associated TensorMeta"
|
154 |
+
)
|
155 |
+
spec.tensor_meta = output_tensor_meta_i
|
156 |
+
|
157 |
+
def propagate(self, op_info: OpInfo) -> None:
|
158 |
+
# We cannot use an lru cache if we know that inputs will have dynamic shapes,
|
159 |
+
# because SymInts are not hashable.
|
160 |
+
# This is generally ok because this only happens during tracing in torch.compile,
|
161 |
+
# and tracing does not need to be as fast as eagermode DTensor usages.
|
162 |
+
if op_info.schema.has_symints:
|
163 |
+
output_sharding = self.propagate_op_sharding_non_cached(op_info.schema)
|
164 |
+
else:
|
165 |
+
output_sharding = self.propagate_op_sharding(op_info.schema)
|
166 |
+
op_info.output_sharding = output_sharding
|
167 |
+
|
168 |
+
def propagate_op_sharding_non_cached(self, op_schema: OpSchema) -> OutputSharding:
|
169 |
+
"""
|
170 |
+
Propagate the sharding for an operator given the op_schema.
|
171 |
+
"""
|
172 |
+
# special case op, we don't need to propagate for local
|
173 |
+
# scalar. TODO: figure out a better way to handle this
|
174 |
+
if op_schema.op is aten._local_scalar_dense.default:
|
175 |
+
return OutputSharding(None, [op_schema])
|
176 |
+
|
177 |
+
out_tensor_meta = self._propagate_tensor_meta(op_schema)
|
178 |
+
|
179 |
+
def spec_to_strategy(spec: object) -> object:
|
180 |
+
if isinstance(spec, DTensorSpec):
|
181 |
+
return OpStrategy([PlacementStrategy(spec)])
|
182 |
+
elif (
|
183 |
+
isinstance(spec, (list, tuple))
|
184 |
+
and len(spec) > 0
|
185 |
+
and isinstance(spec[0], DTensorSpec)
|
186 |
+
):
|
187 |
+
# tensor list create tuple strategy
|
188 |
+
tuple_strategy = [spec_to_strategy(s) for s in spec]
|
189 |
+
tuple_strategy = cast(Sequence[StrategyType], tuple_strategy)
|
190 |
+
return TupleStrategy(
|
191 |
+
tuple(tuple_strategy) if isinstance(spec, tuple) else tuple_strategy
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
return spec
|
195 |
+
|
196 |
+
if op_schema.op in self.op_strategy_funcs:
|
197 |
+
# generate op strategy for the op.
|
198 |
+
mesh = try_find_mesh_from_args(op_schema.op, op_schema.args_schema)
|
199 |
+
# swap the args spec with args strategies
|
200 |
+
args_op_strategy = [spec_to_strategy(i) for i in op_schema.args_schema]
|
201 |
+
|
202 |
+
kwargs_op_strategy = {
|
203 |
+
k: spec_to_strategy(v) for k, v in op_schema.kwargs_schema.items()
|
204 |
+
}
|
205 |
+
|
206 |
+
# construct a new OpSchema on args for strategy based propagation
|
207 |
+
strategy_schema: OpSchema = OpSchema(
|
208 |
+
op=op_schema.op,
|
209 |
+
args_schema=tuple(args_op_strategy),
|
210 |
+
kwargs_schema=kwargs_op_strategy,
|
211 |
+
)
|
212 |
+
|
213 |
+
op_strategy = self.op_strategy_funcs[op_schema.op](mesh, strategy_schema)
|
214 |
+
|
215 |
+
if isinstance(op_strategy, OpStrategy):
|
216 |
+
# single Op strategy
|
217 |
+
output_strategy = self._select_strategy(op_strategy)
|
218 |
+
|
219 |
+
# check if we need to redistribute the input
|
220 |
+
needs_redistribute = False
|
221 |
+
expected_input_specs = []
|
222 |
+
|
223 |
+
# in case where the op does not specify input_specs and output_specs
|
224 |
+
# is a DTensorSpec, we use output_specs as the spec for each DTensor
|
225 |
+
# input arg.
|
226 |
+
if output_strategy.input_specs is None:
|
227 |
+
assert isinstance(output_strategy.output_specs, DTensorSpec)
|
228 |
+
|
229 |
+
for idx, input_spec in enumerate(op_schema.args_spec):
|
230 |
+
desired_spec = (
|
231 |
+
output_strategy.output_spec
|
232 |
+
if output_strategy.input_specs is None
|
233 |
+
else output_strategy.input_specs[idx]
|
234 |
+
)
|
235 |
+
expected_input_specs.append(desired_spec)
|
236 |
+
if input_spec.placements != desired_spec.placements:
|
237 |
+
needs_redistribute = True
|
238 |
+
|
239 |
+
suggestion_schema = None
|
240 |
+
if needs_redistribute:
|
241 |
+
reshard_schema = OpSchema(
|
242 |
+
op_schema.op, tuple(expected_input_specs), {}
|
243 |
+
)
|
244 |
+
reshard_schema._inplace_rewrap_schema_suggestion(op_schema)
|
245 |
+
suggestion_schema = [reshard_schema]
|
246 |
+
|
247 |
+
# construct output spec for the op
|
248 |
+
if op_schema.return_type_tuple_tensor_like():
|
249 |
+
# for ops that return multiple tensors and the output_specs is not
|
250 |
+
# a tuple, we use a tuple of that single output spec as the new
|
251 |
+
# output_specs
|
252 |
+
output_specs: OutputSpecType = output_strategy.output_specs
|
253 |
+
if isinstance(output_specs, DTensorSpec):
|
254 |
+
output_specs = tuple(
|
255 |
+
[
|
256 |
+
# create a new DTensorSpec with the same placement as the
|
257 |
+
# output_specs in output_strategy
|
258 |
+
DTensorSpec(
|
259 |
+
mesh=output_specs.mesh,
|
260 |
+
placements=output_specs.placements,
|
261 |
+
tensor_meta=output_specs.tensor_meta,
|
262 |
+
)
|
263 |
+
for _ in range(len(op_schema.op._schema.returns))
|
264 |
+
]
|
265 |
+
)
|
266 |
+
elif op_schema.return_type_tensor():
|
267 |
+
output_specs = output_strategy.output_specs
|
268 |
+
else:
|
269 |
+
output_specs = None
|
270 |
+
|
271 |
+
output_sharding = OutputSharding(
|
272 |
+
output_specs,
|
273 |
+
suggestion_schema,
|
274 |
+
needs_redistribute=needs_redistribute,
|
275 |
+
)
|
276 |
+
elif isinstance(op_strategy, TupleStrategy):
|
277 |
+
# tuple strategy output sharding processing
|
278 |
+
# runtime selected placement strategy for each TupleStrategy input arg
|
279 |
+
selected_strategies: List[PlacementStrategy] = []
|
280 |
+
out_spec_list: List[DTensorSpec] = []
|
281 |
+
for strategy in op_strategy.childs:
|
282 |
+
assert isinstance(strategy, OpStrategy)
|
283 |
+
selected_strategy = self._select_strategy(strategy)
|
284 |
+
selected_strategies.append(selected_strategy)
|
285 |
+
out_spec_list.append(selected_strategy.output_spec)
|
286 |
+
|
287 |
+
needs_redistribute = False
|
288 |
+
suggestion_args: List[object] = []
|
289 |
+
for arg_idx, arg in enumerate(op_schema.args_schema):
|
290 |
+
if isinstance(arg, (list, tuple)) and isinstance(
|
291 |
+
arg[0], DTensorSpec
|
292 |
+
):
|
293 |
+
expected_input_spec_list: List[DTensorSpec] = []
|
294 |
+
for idx, arg_spec in enumerate(arg):
|
295 |
+
expected_input_spec = selected_strategies[idx].input_spec(
|
296 |
+
arg_idx
|
297 |
+
)
|
298 |
+
expected_input_spec = (
|
299 |
+
expected_input_spec.shallow_copy_with_tensor_meta(
|
300 |
+
arg_spec.tensor_meta
|
301 |
+
)
|
302 |
+
)
|
303 |
+
if arg_spec.placements != expected_input_spec.placements:
|
304 |
+
needs_redistribute = True
|
305 |
+
expected_input_spec_list.append(expected_input_spec)
|
306 |
+
suggestion_args.append(
|
307 |
+
tuple(expected_input_spec_list)
|
308 |
+
if isinstance(arg, tuple)
|
309 |
+
else expected_input_spec_list
|
310 |
+
)
|
311 |
+
elif isinstance(arg, DTensorSpec):
|
312 |
+
expected_input_spec = selected_strategies[0].input_spec(arg_idx)
|
313 |
+
expected_input_spec = (
|
314 |
+
expected_input_spec.shallow_copy_with_tensor_meta(
|
315 |
+
arg.tensor_meta
|
316 |
+
)
|
317 |
+
)
|
318 |
+
if arg.placements != expected_input_spec.placements:
|
319 |
+
needs_redistribute = True
|
320 |
+
suggestion_args.append(expected_input_spec)
|
321 |
+
else:
|
322 |
+
suggestion_args.append(arg)
|
323 |
+
|
324 |
+
suggestion_schema = None
|
325 |
+
if needs_redistribute:
|
326 |
+
reshard_schema = OpSchema(
|
327 |
+
op_schema.op, tuple(suggestion_args), op_schema.kwargs_schema
|
328 |
+
)
|
329 |
+
suggestion_schema = [reshard_schema]
|
330 |
+
|
331 |
+
output_sharding = OutputSharding(
|
332 |
+
tuple(out_spec_list) if out_tensor_meta is not None else None,
|
333 |
+
suggestion_schema,
|
334 |
+
needs_redistribute=needs_redistribute,
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
raise ValueError("Unsupported op strategy type")
|
338 |
+
|
339 |
+
# associate the output sharding with the output tensor metadata
|
340 |
+
self._wrap_output_spec_tensor_meta(
|
341 |
+
op_schema.op, output_sharding.output_spec, out_tensor_meta
|
342 |
+
)
|
343 |
+
return output_sharding
|
344 |
+
elif op_schema.op in self.op_to_rules:
|
345 |
+
# propagate the sharding with rule
|
346 |
+
sharding_prop_func = self.op_to_rules[op_schema.op]
|
347 |
+
|
348 |
+
# step 1. there's sharding propagation rule, run
|
349 |
+
# sharding propagation to get the output sharding
|
350 |
+
try:
|
351 |
+
output_sharding = sharding_prop_func(op_schema)
|
352 |
+
except NotImplementedError as e:
|
353 |
+
raise e
|
354 |
+
except Exception as e:
|
355 |
+
raise RuntimeError(
|
356 |
+
f"Sharding propagation failed on op {op_schema}.\n" f"Error: {e}"
|
357 |
+
) from e
|
358 |
+
|
359 |
+
# step 2. if can't get output_spec from sharding
|
360 |
+
# propagation (i.e. no rules apply for input
|
361 |
+
# placements), we return the output sharding
|
362 |
+
# with schema suggestions, which can be used to
|
363 |
+
# decide how to do redistribute on inputs
|
364 |
+
if output_sharding.output_spec is None:
|
365 |
+
if output_sharding.schema_suggestions is None:
|
366 |
+
if output_sharding.failed_reason is not None:
|
367 |
+
raise RuntimeError(
|
368 |
+
f"Sharding propagation failed on op {op_schema}!"
|
369 |
+
f"Failed reason: {output_sharding.failed_reason}"
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
# we do auto redistribute on inputs if necessary
|
373 |
+
# to get an eligible input, which we will pick a
|
374 |
+
# schema suggestion base on the redistribute cost.
|
375 |
+
# For now we simply pick the first suggestion.
|
376 |
+
suggested_input_schema = output_sharding.schema_suggestions[0]
|
377 |
+
# run sharding propagation again with suggested schema
|
378 |
+
propagation_res = sharding_prop_func(suggested_input_schema)
|
379 |
+
# we set the output sharding with the new propagation result
|
380 |
+
# so that dispatching know both output_spec and schema_suggestions
|
381 |
+
# exist, which indicates a reshard is needed
|
382 |
+
output_sharding.output_spec = propagation_res.output_spec
|
383 |
+
output_sharding.needs_redistribute = True
|
384 |
+
|
385 |
+
# associate the output sharding with the output tensor metadata
|
386 |
+
self._wrap_output_spec_tensor_meta(
|
387 |
+
op_schema.op, output_sharding.output_spec, out_tensor_meta
|
388 |
+
)
|
389 |
+
|
390 |
+
return output_sharding
|
391 |
+
else:
|
392 |
+
raise NotImplementedError(
|
393 |
+
f"Operator {op_schema.op} does not have a sharding strategy registered."
|
394 |
+
)
|
395 |
+
|
396 |
+
def _select_strategy(self, strategy: OpStrategy) -> PlacementStrategy:
|
397 |
+
if len(strategy.strategies) == 1:
|
398 |
+
# short cut with only one possible strategy
|
399 |
+
return strategy.strategies[0]
|
400 |
+
|
401 |
+
strategy_costs: List[float] = []
|
402 |
+
for strtg in strategy.strategies:
|
403 |
+
assert (
|
404 |
+
strtg.redistribute_cost is not None
|
405 |
+
), "must set redistribute cost each strategy!"
|
406 |
+
redistribute_cost = sum(chain.from_iterable(strtg.redistribute_cost))
|
407 |
+
strategy_costs.append(redistribute_cost)
|
408 |
+
|
409 |
+
# for eager execution, we just select the one with the minimal redistribute cost
|
410 |
+
return strategy.strategies[strategy_costs.index(min(strategy_costs))]
|
venv/lib/python3.10/site-packages/torch/distributed/_tensor/tp_conv.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
# implement matrix related ops for distributed tensor
|
3 |
+
from typing import cast, Dict, List, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torch.distributed._tensor.api as dtensor
|
8 |
+
|
9 |
+
aten = torch.ops.aten
|
10 |
+
|
11 |
+
|
12 |
+
def _requires_data_exchange(padding):
|
13 |
+
# TODO: whether there requires data exchange is currently determined by padding
|
14 |
+
return padding[1] != 0
|
15 |
+
|
16 |
+
|
17 |
+
def _is_supported(input_size, kernel_size, stride, padding, dilation):
|
18 |
+
if dilation[1] != 1:
|
19 |
+
raise RuntimeError("Dilation must be 1 for tensor parallel convolution.")
|
20 |
+
if padding[1] != 0:
|
21 |
+
if stride[1] != 1:
|
22 |
+
raise RuntimeError(
|
23 |
+
"Stride must be 1 when there is padding for tensor parallel convolution."
|
24 |
+
)
|
25 |
+
if kernel_size[3] // 2 > input_size[3]:
|
26 |
+
raise RuntimeError(
|
27 |
+
"kernel_size[3] // 2 should be less than or equal to input_size[3] for tensor parallel convolution."
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
if not (input_size[3] % stride[1] == 0 and stride[1] == kernel_size[3]):
|
31 |
+
raise RuntimeError(
|
32 |
+
"It requires that input_size[3] is divisible by stride[1] and stride[1] equals kernel_size[3] "
|
33 |
+
"when there is padding for tensor parallel convolution."
|
34 |
+
)
|
35 |
+
return True
|
36 |
+
|
37 |
+
|
38 |
+
def _ring_send_recv_construct(in_tensor, d1, d2, left, right, rank, size):
|
39 |
+
# dist comms and reconstruct local input tensor
|
40 |
+
send_to_right = in_tensor[:, :, :, -d1:].contiguous()
|
41 |
+
send_to_left = in_tensor[:, :, :, :d2].contiguous()
|
42 |
+
recv_from_right = torch.zeros_like(send_to_left)
|
43 |
+
recv_from_left = torch.zeros_like(send_to_right)
|
44 |
+
|
45 |
+
send_op_right = dist.P2POp(dist.isend, send_to_right, right)
|
46 |
+
send_op_left = dist.P2POp(dist.isend, send_to_left, left)
|
47 |
+
recv_op_right = dist.P2POp(dist.irecv, recv_from_right, right)
|
48 |
+
recv_op_left = dist.P2POp(dist.irecv, recv_from_left, left)
|
49 |
+
|
50 |
+
reqs = dist.batch_isend_irecv(
|
51 |
+
[send_op_right, send_op_left, recv_op_left, recv_op_right]
|
52 |
+
)
|
53 |
+
for req in reqs:
|
54 |
+
req.wait()
|
55 |
+
|
56 |
+
if rank == 0:
|
57 |
+
in_tensor = torch.cat([in_tensor, recv_from_right], dim=-1)
|
58 |
+
elif rank == size - 1:
|
59 |
+
in_tensor = torch.cat([recv_from_left, in_tensor], dim=-1)
|
60 |
+
else:
|
61 |
+
in_tensor = torch.cat([recv_from_left, in_tensor, recv_from_right], dim=-1)
|
62 |
+
|
63 |
+
return in_tensor
|
64 |
+
|
65 |
+
|
66 |
+
def _ring_send_recv_aggregate(grad_in_tensor, d1, d2, left, right, rank, size):
|
67 |
+
# dist comms and aggregate gradients for edge pixels
|
68 |
+
send_to_right = grad_in_tensor[:, :, :, -d2:].contiguous()
|
69 |
+
send_to_left = grad_in_tensor[:, :, :, :d1].contiguous()
|
70 |
+
recv_from_right = torch.zeros_like(send_to_left)
|
71 |
+
recv_from_left = torch.zeros_like(send_to_right)
|
72 |
+
|
73 |
+
send_op_right = dist.P2POp(dist.isend, send_to_right, right)
|
74 |
+
send_op_left = dist.P2POp(dist.isend, send_to_left, left)
|
75 |
+
recv_op_right = dist.P2POp(dist.irecv, recv_from_right, right)
|
76 |
+
recv_op_left = dist.P2POp(dist.irecv, recv_from_left, left)
|
77 |
+
|
78 |
+
reqs = dist.batch_isend_irecv(
|
79 |
+
[send_op_right, send_op_left, recv_op_left, recv_op_right]
|
80 |
+
)
|
81 |
+
for req in reqs:
|
82 |
+
req.wait()
|
83 |
+
|
84 |
+
if rank == 0:
|
85 |
+
grad_in_tensor = grad_in_tensor[:, :, :, :-d2]
|
86 |
+
grad_in_tensor[:, :, :, -d1:] = torch.add(
|
87 |
+
grad_in_tensor[:, :, :, -d1:], recv_from_right
|
88 |
+
)
|
89 |
+
elif rank == size - 1:
|
90 |
+
grad_in_tensor = grad_in_tensor[:, :, :, d1:]
|
91 |
+
grad_in_tensor[:, :, :, :d2] = torch.add(
|
92 |
+
grad_in_tensor[:, :, :, :d2], recv_from_left
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
grad_in_tensor = grad_in_tensor[:, :, :, d1:-d2]
|
96 |
+
grad_in_tensor[:, :, :, -d1:] = torch.add(
|
97 |
+
grad_in_tensor[:, :, :, -d1:], recv_from_right
|
98 |
+
)
|
99 |
+
grad_in_tensor[:, :, :, :d2] = torch.add(
|
100 |
+
grad_in_tensor[:, :, :, :d2], recv_from_left
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def tp_convolution(
|
105 |
+
op_call: torch._ops.OpOverload,
|
106 |
+
local_tensor_args: Tuple[object, ...],
|
107 |
+
local_tensor_kwargs: Dict[str, object],
|
108 |
+
) -> object:
|
109 |
+
assert op_call == aten.convolution.default
|
110 |
+
assert len(local_tensor_args) == 9
|
111 |
+
|
112 |
+
rank = dist.get_rank()
|
113 |
+
size = dist.get_world_size()
|
114 |
+
in_tensor = cast(torch.Tensor, local_tensor_args[0])
|
115 |
+
weight = cast(torch.Tensor, local_tensor_args[1])
|
116 |
+
stride, padding, dilation = local_tensor_args[3:6]
|
117 |
+
|
118 |
+
assert _is_supported(in_tensor.shape, weight.shape, stride, padding, dilation)
|
119 |
+
assert isinstance(padding, List)
|
120 |
+
|
121 |
+
if not _requires_data_exchange(padding):
|
122 |
+
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
123 |
+
return local_results
|
124 |
+
else:
|
125 |
+
# step 0 compute the overlap pixels of the input tensor
|
126 |
+
d = weight.shape[3] - 1
|
127 |
+
d1 = d // 2
|
128 |
+
d2 = d - d1
|
129 |
+
assert d1 + d2 == d
|
130 |
+
right = (rank + 1) % size
|
131 |
+
left = (rank - 1 + size) % size
|
132 |
+
|
133 |
+
# step1 reconstruct local input tensor
|
134 |
+
in_tensor = _ring_send_recv_construct(
|
135 |
+
in_tensor, d1, d2, left, right, rank, size
|
136 |
+
)
|
137 |
+
|
138 |
+
# step2 feed local input tensor to op_call
|
139 |
+
local_tensor_args_list = list(local_tensor_args)
|
140 |
+
local_tensor_args_list[0] = in_tensor
|
141 |
+
local_tensor_args = cast(Tuple[object, ...], local_tensor_args_list)
|
142 |
+
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
143 |
+
|
144 |
+
# step3 remove extra outputs from the results
|
145 |
+
padding_w = padding[1]
|
146 |
+
w = local_results.size(3)
|
147 |
+
if rank == 0:
|
148 |
+
local_results = local_results[:, :, :, : w - padding_w]
|
149 |
+
elif rank == size - 1:
|
150 |
+
local_results = local_results[:, :, :, padding_w:]
|
151 |
+
else:
|
152 |
+
local_results = local_results[:, :, :, padding_w : w - padding_w]
|
153 |
+
|
154 |
+
return local_results
|
155 |
+
|
156 |
+
|
157 |
+
def tp_convolution_backward(
|
158 |
+
op_call: torch._ops.OpOverload,
|
159 |
+
local_tensor_args: Tuple[object, ...],
|
160 |
+
local_tensor_kwargs: Dict[str, object],
|
161 |
+
) -> object:
|
162 |
+
assert op_call == aten.convolution_backward.default
|
163 |
+
assert len(local_tensor_args) == 11
|
164 |
+
|
165 |
+
rank = dist.get_rank()
|
166 |
+
size = dist.get_world_size()
|
167 |
+
grad_out_tensor = cast(torch.Tensor, local_tensor_args[0])
|
168 |
+
in_tensor = cast(torch.Tensor, local_tensor_args[1])
|
169 |
+
weight = cast(torch.Tensor, local_tensor_args[2])
|
170 |
+
stride, padding, dilation = local_tensor_args[4:7]
|
171 |
+
|
172 |
+
assert _is_supported(in_tensor.shape, weight.shape, stride, padding, dilation)
|
173 |
+
assert isinstance(padding, List)
|
174 |
+
|
175 |
+
if not _requires_data_exchange(padding):
|
176 |
+
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
177 |
+
return local_results
|
178 |
+
else:
|
179 |
+
# step 0 compute the overlap pixels of the input tensor
|
180 |
+
d = weight.shape[3] - 1
|
181 |
+
d1 = d // 2
|
182 |
+
d2 = d - d1
|
183 |
+
assert d1 + d2 == d
|
184 |
+
right = (rank + 1) % size
|
185 |
+
left = (rank - 1 + size) % size
|
186 |
+
|
187 |
+
# step1 reconstruct local input tensor
|
188 |
+
in_tensor = _ring_send_recv_construct(
|
189 |
+
in_tensor, d1, d2, left, right, rank, size
|
190 |
+
)
|
191 |
+
|
192 |
+
# step2 reconstruct local gradient output tensor
|
193 |
+
N, C_out, H_out, _ = grad_out_tensor.shape
|
194 |
+
padding_w = padding[1]
|
195 |
+
if rank == 0:
|
196 |
+
grad_out_tensor = torch.nn.functional.pad(
|
197 |
+
grad_out_tensor, (0, padding_w), "constant", 0
|
198 |
+
)
|
199 |
+
elif rank == size - 1:
|
200 |
+
grad_out_tensor = torch.nn.functional.pad(
|
201 |
+
grad_out_tensor, (padding_w, 0), "constant", 0
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
grad_out_tensor = torch.nn.functional.pad(
|
205 |
+
grad_out_tensor, (padding_w, padding_w), "constant", 0
|
206 |
+
)
|
207 |
+
|
208 |
+
# step3 feed local input tensor to op_call
|
209 |
+
local_tensor_args_list = list(local_tensor_args)
|
210 |
+
local_tensor_args_list[0] = grad_out_tensor
|
211 |
+
local_tensor_args_list[1] = in_tensor
|
212 |
+
local_tensor_args = cast(Tuple[object, ...], local_tensor_args_list)
|
213 |
+
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
214 |
+
|
215 |
+
# step4 aggregate gradients for edge pixels
|
216 |
+
grad_in_tensor = local_results[0]
|
217 |
+
grad_in_tensor = _ring_send_recv_aggregate(
|
218 |
+
grad_in_tensor, d1, d2, left, right, rank, size
|
219 |
+
)
|
220 |
+
|
221 |
+
local_results = list(local_results)
|
222 |
+
local_results[0] = grad_in_tensor
|
223 |
+
local_results = cast(Tuple[object, ...], local_results)
|
224 |
+
|
225 |
+
return local_results
|
226 |
+
|
227 |
+
|
228 |
+
def convolution_handler(
|
229 |
+
op_call: torch._ops.OpOverload,
|
230 |
+
args: Tuple[object, ...],
|
231 |
+
kwargs: Dict[str, object],
|
232 |
+
) -> object:
|
233 |
+
# extract local tensor and sharding infos to a OpInfo
|
234 |
+
op_info = dtensor.DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
|
235 |
+
|
236 |
+
# sharding propagation
|
237 |
+
dtensor.DTensor._op_dispatcher.sharding_propagator.propagate(op_info)
|
238 |
+
output_sharding = op_info.output_sharding
|
239 |
+
assert output_sharding is not None, "output sharding should not be None"
|
240 |
+
|
241 |
+
# local propagation
|
242 |
+
local_results = tp_convolution(
|
243 |
+
op_call, tuple(op_info.local_args), op_info.local_kwargs
|
244 |
+
)
|
245 |
+
|
246 |
+
return dtensor.DTensor._op_dispatcher.wrap(
|
247 |
+
local_results, output_sharding.output_spec
|
248 |
+
)
|
249 |
+
|
250 |
+
|
251 |
+
def convolution_backward_handler(
|
252 |
+
op_call: torch._ops.OpOverload,
|
253 |
+
args: Tuple[object, ...],
|
254 |
+
kwargs: Dict[str, object],
|
255 |
+
) -> object:
|
256 |
+
# Redistribute grad_output tensor to the same placement as input tensor
|
257 |
+
args = list(args)
|
258 |
+
assert isinstance(args[0], dtensor.DTensor) and isinstance(args[1], dtensor.DTensor)
|
259 |
+
args[0] = args[0].redistribute(args[1].device_mesh, args[1].placements)
|
260 |
+
args = tuple(args)
|
261 |
+
|
262 |
+
# extract local tensor and sharding infos to a OpInfo
|
263 |
+
op_info = dtensor.DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
|
264 |
+
|
265 |
+
# sharding propagation
|
266 |
+
dtensor.DTensor._op_dispatcher.sharding_propagator.propagate(op_info)
|
267 |
+
output_sharding = op_info.output_sharding
|
268 |
+
assert output_sharding is not None, "output sharding should not be None"
|
269 |
+
|
270 |
+
# local propagation
|
271 |
+
local_results = tp_convolution_backward(
|
272 |
+
op_call, tuple(op_info.local_args), op_info.local_kwargs
|
273 |
+
)
|
274 |
+
|
275 |
+
return dtensor.DTensor._op_dispatcher.wrap(
|
276 |
+
local_results, output_sharding.output_spec
|
277 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (462 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Kakao Brain
|
2 |
+
#
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the BSD license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
"""A Pipe implementation in PyTorch."""
|
8 |
+
from .checkpoint import is_checkpointing, is_recomputing
|
9 |
+
from .pipe import Pipe, WithDevice
|
10 |
+
from .microbatch import NoChunk
|
11 |
+
|
12 |
+
__all__ = ["Pipe", "is_checkpointing", "is_recomputing"]
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (457 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/batchnorm.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/checkpoint.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/copy.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/dependency.cpython-310.pyc
ADDED
Binary file (2.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/microbatch.cpython-310.pyc
ADDED
Binary file (7.76 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/phony.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/pipe.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/pipeline.cpython-310.pyc
ADDED
Binary file (6.46 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/stream.cpython-310.pyc
ADDED
Binary file (3.36 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/sync/__pycache__/worker.cpython-310.pyc
ADDED
Binary file (4.14 kB). View file
|
|