Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/torch/distributed/autograd/__init__.py +52 -0
- venv/lib/python3.10/site-packages/torch/distributed/autograd/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__init__.py +38 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_common_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_debug_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_dynamo_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_exec_order_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_flat_param.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_fsdp_extensions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_init_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_limiter_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_optim_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_runtime_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_shard_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_state_dict_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_trace_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_traversal_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_unshard_param_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_wrap_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/fully_sharded_data_parallel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/sharded_grad_scaler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/wrap.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_common_utils.py +563 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_debug_utils.py +155 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_dynamo_utils.py +45 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_exec_order_utils.py +364 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_fsdp_extensions.py +179 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py +1182 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_limiter_utils.py +33 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_optim_utils.py +2086 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_runtime_utils.py +1630 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_shard_utils.py +127 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py +928 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_trace_utils.py +237 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_traversal_utils.py +113 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_unshard_param_utils.py +357 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/_wrap_utils.py +262 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/api.py +410 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py +2075 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py +388 -0
- venv/lib/python3.10/site-packages/torch/distributed/fsdp/wrap.py +606 -0
- venv/lib/python3.10/site-packages/torch/distributed/pipeline/__init__.py +7 -0
- venv/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/_utils.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:168239d5c9986edf1477aea746d7a585af7fcb44ef2ba21b9a4af0fb3deb77c3
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d136286fc913d4d5c781d50ac52854c98d16f8eb91aa58e5c6fbf22ea3c989ac
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f038fd7638035e27e4e966f0411a18d6a76603f60ad41884bb77024e3d4d123e
|
3 |
+
size 415237276
|
venv/lib/python3.10/site-packages/torch/distributed/autograd/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def is_available():
|
7 |
+
return hasattr(torch._C, "_dist_autograd_init")
|
8 |
+
|
9 |
+
|
10 |
+
if is_available() and not torch._C._dist_autograd_init():
|
11 |
+
raise RuntimeError("Failed to initialize torch.distributed.autograd")
|
12 |
+
|
13 |
+
if is_available():
|
14 |
+
from torch._C._distributed_autograd import (
|
15 |
+
get_gradients,
|
16 |
+
backward,
|
17 |
+
_init,
|
18 |
+
_new_context,
|
19 |
+
_release_context,
|
20 |
+
_get_max_id,
|
21 |
+
_is_valid_context,
|
22 |
+
_retrieve_context,
|
23 |
+
_current_context,
|
24 |
+
_get_debug_info,
|
25 |
+
DistAutogradContext,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
class context:
|
30 |
+
'''
|
31 |
+
Context object to wrap forward and backward passes when using
|
32 |
+
distributed autograd. The ``context_id`` generated in the ``with``
|
33 |
+
statement is required to uniquely identify a distributed backward pass
|
34 |
+
on all workers. Each worker stores metadata associated with this
|
35 |
+
``context_id``, which is required to correctly execute a distributed
|
36 |
+
autograd pass.
|
37 |
+
|
38 |
+
Example::
|
39 |
+
>>> # xdoctest: +SKIP
|
40 |
+
>>> import torch.distributed.autograd as dist_autograd
|
41 |
+
>>> with dist_autograd.context() as context_id:
|
42 |
+
>>> t1 = torch.rand((3, 3), requires_grad=True)
|
43 |
+
>>> t2 = torch.rand((3, 3), requires_grad=True)
|
44 |
+
>>> loss = rpc.rpc_sync("worker1", torch.add, args=(t1, t2)).sum()
|
45 |
+
>>> dist_autograd.backward(context_id, [loss])
|
46 |
+
'''
|
47 |
+
def __enter__(self):
|
48 |
+
self.autograd_context = _new_context()
|
49 |
+
return self.autograd_context._context_id()
|
50 |
+
|
51 |
+
def __exit__(self, type, value, traceback):
|
52 |
+
_release_context(self.autograd_context._context_id())
|
venv/lib/python3.10/site-packages/torch/distributed/autograd/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._flat_param import FlatParameter as FlatParameter
|
2 |
+
from .fully_sharded_data_parallel import (
|
3 |
+
BackwardPrefetch,
|
4 |
+
CPUOffload,
|
5 |
+
FullOptimStateDictConfig,
|
6 |
+
FullStateDictConfig,
|
7 |
+
FullyShardedDataParallel,
|
8 |
+
LocalOptimStateDictConfig,
|
9 |
+
LocalStateDictConfig,
|
10 |
+
MixedPrecision,
|
11 |
+
OptimStateDictConfig,
|
12 |
+
OptimStateKeyType,
|
13 |
+
ShardedOptimStateDictConfig,
|
14 |
+
ShardedStateDictConfig,
|
15 |
+
ShardingStrategy,
|
16 |
+
StateDictConfig,
|
17 |
+
StateDictSettings,
|
18 |
+
StateDictType,
|
19 |
+
)
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
"BackwardPrefetch",
|
23 |
+
"CPUOffload",
|
24 |
+
"FullOptimStateDictConfig",
|
25 |
+
"FullStateDictConfig",
|
26 |
+
"FullyShardedDataParallel",
|
27 |
+
"LocalOptimStateDictConfig",
|
28 |
+
"LocalStateDictConfig",
|
29 |
+
"MixedPrecision",
|
30 |
+
"OptimStateDictConfig",
|
31 |
+
"OptimStateKeyType",
|
32 |
+
"ShardedOptimStateDictConfig",
|
33 |
+
"ShardedStateDictConfig",
|
34 |
+
"ShardingStrategy",
|
35 |
+
"StateDictConfig",
|
36 |
+
"StateDictSettings",
|
37 |
+
"StateDictType",
|
38 |
+
]
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (774 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_common_utils.cpython-310.pyc
ADDED
Binary file (17.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_debug_utils.cpython-310.pyc
ADDED
Binary file (5.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_dynamo_utils.cpython-310.pyc
ADDED
Binary file (823 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_exec_order_utils.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_flat_param.cpython-310.pyc
ADDED
Binary file (71.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_fsdp_extensions.cpython-310.pyc
ADDED
Binary file (5.01 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_init_utils.cpython-310.pyc
ADDED
Binary file (31.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_limiter_utils.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_optim_utils.cpython-310.pyc
ADDED
Binary file (55.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_runtime_utils.cpython-310.pyc
ADDED
Binary file (39.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_shard_utils.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_state_dict_utils.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_trace_utils.cpython-310.pyc
ADDED
Binary file (9.54 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_traversal_utils.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_unshard_param_utils.cpython-310.pyc
ADDED
Binary file (8.53 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/_wrap_utils.cpython-310.pyc
ADDED
Binary file (7.32 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/api.cpython-310.pyc
ADDED
Binary file (19.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/fully_sharded_data_parallel.cpython-310.pyc
ADDED
Binary file (79.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/sharded_grad_scaler.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/__pycache__/wrap.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_common_utils.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file includes private common utilities for FSDP.
|
3 |
+
"""
|
4 |
+
import logging
|
5 |
+
import traceback
|
6 |
+
import warnings
|
7 |
+
import weakref
|
8 |
+
from enum import auto, Enum
|
9 |
+
from functools import partial
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Callable,
|
13 |
+
cast,
|
14 |
+
Dict,
|
15 |
+
Generator,
|
16 |
+
Iterable,
|
17 |
+
List,
|
18 |
+
no_type_check,
|
19 |
+
Optional,
|
20 |
+
Set,
|
21 |
+
Tuple,
|
22 |
+
Type,
|
23 |
+
TYPE_CHECKING,
|
24 |
+
)
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.distributed as dist
|
28 |
+
import torch.distributed.fsdp._flat_param as flat_param_file
|
29 |
+
import torch.nn as nn
|
30 |
+
from torch.distributed._composable_state import _get_module_state, _State
|
31 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
32 |
+
_CHECKPOINT_PREFIX,
|
33 |
+
)
|
34 |
+
from torch.distributed.device_mesh import DeviceMesh
|
35 |
+
from torch.distributed.fsdp._fsdp_extensions import FSDPExtensions
|
36 |
+
from torch.distributed.utils import _apply_to_tensors
|
37 |
+
from torch.utils._mode_utils import no_dispatch
|
38 |
+
|
39 |
+
from .api import (
|
40 |
+
FullOptimStateDictConfig,
|
41 |
+
FullStateDictConfig,
|
42 |
+
OptimStateDictConfig,
|
43 |
+
ShardingStrategy,
|
44 |
+
StateDictConfig,
|
45 |
+
StateDictType,
|
46 |
+
)
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from ._flat_param import FlatParamHandle
|
50 |
+
|
51 |
+
FSDP_WRAPPED_MODULE = "_fsdp_wrapped_module"
|
52 |
+
FSDP_PREFIX = FSDP_WRAPPED_MODULE + "."
|
53 |
+
FSDP_FLATTENED = "_fsdp_flattened"
|
54 |
+
|
55 |
+
# Save a global mapping from module to its input tensor dtype to be populated
|
56 |
+
# during the forward pre-hook and consumed in the forward post-hook when
|
57 |
+
# overriding a module's mixed precision
|
58 |
+
# NOTE: We currently take the last input tensor's dtype in the case of multiple
|
59 |
+
# floating-point input tensors, which may be incorrect. However, since there is
|
60 |
+
# not a 1:1 correspondence between input and output tensors, we must use *some*
|
61 |
+
# heuristic like this to predict the desired output dtype.
|
62 |
+
_MODULE_TO_INP_DTYPE: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
|
63 |
+
|
64 |
+
|
65 |
+
class _FSDPDeviceHandle:
|
66 |
+
"""
|
67 |
+
This is a simple abstraction for FSDP computing devices,
|
68 |
+
which enables custom backends that implement CUDA-like
|
69 |
+
semantics to be integrated with FSDP.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, device: torch.device, backend: Any = None):
|
73 |
+
if backend is None:
|
74 |
+
try:
|
75 |
+
self.__backend = getattr(torch, device.type)
|
76 |
+
self.__device = device
|
77 |
+
except AttributeError as exc:
|
78 |
+
raise AttributeError(
|
79 |
+
f"Device '{device}' does not have a corresponding backend registered as 'torch.{device.type}'."
|
80 |
+
) from exc
|
81 |
+
else:
|
82 |
+
self.__backend = backend
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def from_device(cls, device: torch.device) -> "_FSDPDeviceHandle":
|
86 |
+
"""
|
87 |
+
Return an device handle corresponding to the device, and through this handle,
|
88 |
+
operations with the same semantics as CUDA can be performed on the device.
|
89 |
+
Just return torch.cuda if the device is cuda to make attribute-access faster.
|
90 |
+
Custom backend must first register a module with the same name with {device.type} on torch.
|
91 |
+
"""
|
92 |
+
if device.type == "cuda":
|
93 |
+
return cast(_FSDPDeviceHandle, torch.cuda)
|
94 |
+
return cls(device)
|
95 |
+
|
96 |
+
def __getattr__(self, __name: str) -> Any:
|
97 |
+
try:
|
98 |
+
return getattr(self.__backend, __name)
|
99 |
+
except AttributeError as exc:
|
100 |
+
raise AttributeError(
|
101 |
+
f"Custom backend '{self.__device.type}' not implement 'torch.{self.__device.type}.{__name}'"
|
102 |
+
) from exc
|
103 |
+
|
104 |
+
|
105 |
+
class _UninitializedDeviceHandle(_FSDPDeviceHandle):
|
106 |
+
def __init__(self):
|
107 |
+
pass
|
108 |
+
|
109 |
+
def __getattribute__(self, __name: str) -> Any:
|
110 |
+
raise RuntimeError("Trying to use an uninitialized device handle.")
|
111 |
+
|
112 |
+
|
113 |
+
class _FSDPState(_State):
|
114 |
+
def __init__(self) -> None:
|
115 |
+
# TODO: Move all the attributes to this class to enable typing for
|
116 |
+
# FSDP/fully_shard.
|
117 |
+
self._ignored_modules: Set[nn.Module] = set()
|
118 |
+
self._ignored_params: Set[nn.Parameter] = set()
|
119 |
+
# Buffer names are cleaned (without wrapper prefixes)
|
120 |
+
self._ignored_buffer_names: Set[str] = set()
|
121 |
+
self.process_group: Optional[dist.ProcessGroup] = None
|
122 |
+
self.rank: int = -1
|
123 |
+
self.world_size: int = -1
|
124 |
+
self._device_mesh: Optional[DeviceMesh] = None
|
125 |
+
self.sharding_strategy = ShardingStrategy.FULL_SHARD
|
126 |
+
self._use_orig_params: bool = False
|
127 |
+
self.training_state = TrainingState.IDLE
|
128 |
+
self._unshard_params_ctx: Dict[nn.Module, Generator] = {}
|
129 |
+
self._state_dict_type: StateDictType = StateDictType.FULL_STATE_DICT
|
130 |
+
self._state_dict_config: StateDictConfig = FullStateDictConfig()
|
131 |
+
self._optim_state_dict_config: OptimStateDictConfig = FullOptimStateDictConfig()
|
132 |
+
self._is_root: Optional[bool] = None
|
133 |
+
self._handle: Optional[flat_param_file.FlatParamHandle] = None
|
134 |
+
self._fully_sharded_module_to_handle: Dict[
|
135 |
+
nn.Module, Optional[flat_param_file.FlatParamHandle]
|
136 |
+
] = {}
|
137 |
+
self.compute_device: Optional[torch.device] = None
|
138 |
+
self._gradient_predivide_factor: int = 0
|
139 |
+
self._gradient_postdivide_factor: int = 0
|
140 |
+
self._comm_hook: Optional[Callable] = None
|
141 |
+
self._comm_hook_state: Optional[Any] = None
|
142 |
+
# Abstract device handle for fsdp compute device. For now,
|
143 |
+
# the compute device must implement cuda semantics used by fsdp
|
144 |
+
self._device_handle: _FSDPDeviceHandle = _UninitializedDeviceHandle()
|
145 |
+
# All following attributes should only be used for root states:
|
146 |
+
# Save these static lists to avoid the repeated tree traversals
|
147 |
+
self._all_fsdp_states: List[_FSDPState] = []
|
148 |
+
self._all_handles: List[flat_param_file.FlatParamHandle] = []
|
149 |
+
self._fsdp_extension: Optional[FSDPExtensions] = None
|
150 |
+
|
151 |
+
|
152 |
+
def _get_module_fsdp_state(module: nn.Module) -> Optional[_FSDPState]:
|
153 |
+
state = _get_module_state(module)
|
154 |
+
if state is None or not isinstance(state, _FSDPState):
|
155 |
+
return None
|
156 |
+
return state
|
157 |
+
|
158 |
+
|
159 |
+
def _get_module_fsdp_state_if_fully_sharded_module(
|
160 |
+
module: nn.Module,
|
161 |
+
) -> Optional[_FSDPState]:
|
162 |
+
state = _get_module_fsdp_state(module)
|
163 |
+
if state is None:
|
164 |
+
return None
|
165 |
+
if state == module: # FullyShardedDataParallel module case.
|
166 |
+
return state
|
167 |
+
if module in state._fully_sharded_module_to_handle: # fully_shard case.
|
168 |
+
return state
|
169 |
+
return None
|
170 |
+
|
171 |
+
|
172 |
+
class TrainingState(Enum):
|
173 |
+
"""
|
174 |
+
An enum that indicates the state of a ``FullyShardedDataParallel` instance.
|
175 |
+
"""
|
176 |
+
|
177 |
+
IDLE = auto()
|
178 |
+
FORWARD_BACKWARD = auto()
|
179 |
+
SUMMON_FULL_PARAMS = auto()
|
180 |
+
|
181 |
+
|
182 |
+
class HandleTrainingState(Enum):
|
183 |
+
"""
|
184 |
+
An enum that indicates the state of a ``FlatParamHandle`.
|
185 |
+
"""
|
186 |
+
|
187 |
+
IDLE = auto()
|
188 |
+
FORWARD = auto()
|
189 |
+
BACKWARD_PRE = auto()
|
190 |
+
BACKWARD_POST = auto()
|
191 |
+
SUMMON_FULL_PARAMS = auto()
|
192 |
+
|
193 |
+
|
194 |
+
def _is_composable(state: _FSDPState):
|
195 |
+
# TODO: This is a temporary hack for differentiate between code paths.
|
196 |
+
return not isinstance(state, nn.Module)
|
197 |
+
|
198 |
+
|
199 |
+
@no_type_check
|
200 |
+
def _module_handle(state: _FSDPState, module: nn.Module) -> Optional["FlatParamHandle"]:
|
201 |
+
"""
|
202 |
+
Returns the ``FlatParamHandle`` s corresponding to ``module``. This is
|
203 |
+
the handle that contains some parameter in ``module``.
|
204 |
+
"""
|
205 |
+
if _is_composable(state):
|
206 |
+
# A valid FSDP state may have no managed parameters and hence no
|
207 |
+
# handles, meaning no entry in `_fully_sharded_module_to_handles`
|
208 |
+
if state._handle is None:
|
209 |
+
return None
|
210 |
+
assert (
|
211 |
+
module in state._fully_sharded_module_to_handle
|
212 |
+
), f"Expects a fully sharded module but got {module} on rank {state.rank}"
|
213 |
+
return state._fully_sharded_module_to_handle[module]
|
214 |
+
else:
|
215 |
+
# NOTE: This assumes `module` is a `FullyShardedDataParallel` instance.
|
216 |
+
return module._handle
|
217 |
+
|
218 |
+
|
219 |
+
@no_type_check
|
220 |
+
def _has_fsdp_params(state: _FSDPState, module: nn.Module) -> bool:
|
221 |
+
"""Returns if ``module`` has parameters managed by FSDP."""
|
222 |
+
return _module_handle(state, module) is not None
|
223 |
+
|
224 |
+
|
225 |
+
def _get_sharding_strategy(handle):
|
226 |
+
"""
|
227 |
+
Returns the sharding strategy of the handle.
|
228 |
+
"""
|
229 |
+
return handle._sharding_strategy if handle else None
|
230 |
+
|
231 |
+
|
232 |
+
def clean_tensor_name(tensor_name: str) -> str:
|
233 |
+
"""
|
234 |
+
Cleans the parameter or buffer name by removing any module wrapper
|
235 |
+
prefixes.
|
236 |
+
"""
|
237 |
+
tensor_name = tensor_name.replace(FSDP_PREFIX, "")
|
238 |
+
# TODO: Explicitly replacing the checkpoint wrapper prefix is not ideal as
|
239 |
+
# it couples `CheckpointWrapper` and FSDP and also does not scale for more
|
240 |
+
# module wrappers.
|
241 |
+
tensor_name = tensor_name.replace(_CHECKPOINT_PREFIX, "")
|
242 |
+
return tensor_name
|
243 |
+
|
244 |
+
|
245 |
+
def _set_fsdp_flattened(tensor: torch.Tensor) -> None:
|
246 |
+
"""
|
247 |
+
Sets an attribute on ``tensor`` to mark it as flattened by FSDP. This is to
|
248 |
+
avoid re-flattening it during nested construction.
|
249 |
+
"""
|
250 |
+
setattr(tensor, FSDP_FLATTENED, True)
|
251 |
+
|
252 |
+
|
253 |
+
def _is_fsdp_flattened(tensor: torch.Tensor) -> bool:
|
254 |
+
"""Returns if ``tensor`` has been marked as flattened by FSDP."""
|
255 |
+
return getattr(tensor, FSDP_FLATTENED, False)
|
256 |
+
|
257 |
+
|
258 |
+
def _named_parameters_with_duplicates(
|
259 |
+
module: nn.Module, **kwargs: Any
|
260 |
+
) -> List[Tuple[str, nn.Parameter]]:
|
261 |
+
"""
|
262 |
+
This API is required as some modules overwrite `named_parameters()` but do not support
|
263 |
+
`remove_duplicate`.
|
264 |
+
"""
|
265 |
+
assert (
|
266 |
+
"remove_duplicate" not in kwargs
|
267 |
+
), "_named_parameters_with_duplicates cannot be used with `remove_duplicate` argument."
|
268 |
+
kwargs["remove_duplicate"] = False
|
269 |
+
try:
|
270 |
+
ret = list(module.named_parameters(**kwargs))
|
271 |
+
except AssertionError as e:
|
272 |
+
kwargs.pop("remove_duplicate")
|
273 |
+
ret = list(module.named_parameters(**kwargs))
|
274 |
+
return ret
|
275 |
+
|
276 |
+
|
277 |
+
def _get_param_to_fqns(
|
278 |
+
model: torch.nn.Module,
|
279 |
+
dedup_shared_params: bool = True,
|
280 |
+
) -> Dict[nn.Parameter, List[str]]:
|
281 |
+
"""
|
282 |
+
Constructs a mapping from parameter to a list of its \"canonical\" FQNs. Here,
|
283 |
+
we use canonical to mean the fully-qualified name assigned to the parameter
|
284 |
+
based on its position in the original nn.Module hierarchy before any wrapper
|
285 |
+
or parallelism has been applied to it. This is in contrast to FQNs that may be
|
286 |
+
generated after parallelisms or wrappers have been applied to the model.
|
287 |
+
|
288 |
+
Each normal parameter maps to a singleton list containing its FQN, while each
|
289 |
+
``FlatParameter`` maps to a list of its original parameter FQNs, which may
|
290 |
+
have length greater than one. All FQNs are prefixed starting from ``model``.
|
291 |
+
|
292 |
+
In the case where FSDP was applied with ``use_orig_params=True``, there should be no
|
293 |
+
``FlatParameter`` s registered to the model's modules and this mapping will only
|
294 |
+
contain mappings from ``nn.Parameter`` s to singleton FQN lists.
|
295 |
+
|
296 |
+
It is only in the case where FSDP was applied with ``use_orig_params=False`` where
|
297 |
+
a ``FlatParameter`` will be registered in place of the original parameters and there
|
298 |
+
will be mappings from each ``FlatParameter`` to lists of FQNs corresponding to the
|
299 |
+
original parameters.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
303 |
+
:class:`FullyShardedDataParallel` instance).
|
304 |
+
dedup_shared_params (bool): For shared parameters, if ``True``, only
|
305 |
+
includes the FQNs corresponding to the first encounter of the
|
306 |
+
shared parameter in the module traversal; if ``False``, then
|
307 |
+
includes the FQNs across all encounters. (Default: ``True``)
|
308 |
+
"""
|
309 |
+
|
310 |
+
def module_fn(module, prefix, tree_level, param_to_fqns):
|
311 |
+
for param_name, param in _named_parameters_with_duplicates(
|
312 |
+
module, recurse=False
|
313 |
+
):
|
314 |
+
local_fqns = (
|
315 |
+
param._fqns
|
316 |
+
if isinstance(param, flat_param_file.FlatParameter)
|
317 |
+
else [param_name]
|
318 |
+
) # prefixed from `module`
|
319 |
+
global_fqns = [
|
320 |
+
clean_tensor_name(prefix + name) for name in local_fqns
|
321 |
+
] # prefixed from the top level `model` (i.e. including `prefix`)
|
322 |
+
is_shared_param = param in param_to_fqns
|
323 |
+
if not is_shared_param:
|
324 |
+
param_to_fqns[param] = global_fqns
|
325 |
+
else:
|
326 |
+
if isinstance(param, flat_param_file.FlatParameter):
|
327 |
+
# DMP overwrites `named_parameters` and skip (advance to
|
328 |
+
# the next child module) the wrapped_module (e.g.,
|
329 |
+
# _dmp_wrapped_module and _fsdp_wrapped_module). When a user
|
330 |
+
# calls `named_child` to traverse the module recursively and
|
331 |
+
# calls `named_parameters` with `recurse=False`, parameters
|
332 |
+
# will be traversed more than once.
|
333 |
+
# This hack is specified designed for DMP + FSDP. We
|
334 |
+
# overwrite the flat_parameters traversal result to only obtain
|
335 |
+
# the last one, which happens to be the correct one.
|
336 |
+
#
|
337 |
+
# TODO: Remove this hack once DMP + FSDP is not supported.
|
338 |
+
warnings.warn(
|
339 |
+
"FlatParameter is being traversed more than once. "
|
340 |
+
"This case should only happen when using "
|
341 |
+
"DistributedModelParallel with FullyShardedDataParallel."
|
342 |
+
)
|
343 |
+
param_to_fqns[param] = global_fqns
|
344 |
+
elif not dedup_shared_params:
|
345 |
+
param_to_fqns[param].extend(global_fqns)
|
346 |
+
|
347 |
+
def return_fn(param_to_fqns):
|
348 |
+
return param_to_fqns
|
349 |
+
|
350 |
+
param_to_unflat_param_names: Dict[torch.nn.Parameter, List[str]] = {}
|
351 |
+
return _apply_to_modules(
|
352 |
+
model,
|
353 |
+
module_fn,
|
354 |
+
return_fn,
|
355 |
+
[key for key, _ in _named_parameters_with_duplicates(model)],
|
356 |
+
param_to_unflat_param_names,
|
357 |
+
)
|
358 |
+
|
359 |
+
|
360 |
+
@no_type_check
|
361 |
+
def _log_post_backward_hook(
|
362 |
+
state: _FSDPState, handle: "FlatParamHandle", log: logging.Logger
|
363 |
+
) -> None:
|
364 |
+
# Under TORCH_DISTRIBUTED_DEBUG=INFO, log the module names this hook fires for.
|
365 |
+
# Below logging of module names this post-bwd hook fires for can help debug certain
|
366 |
+
# cases where hooks don't fire, such as under certain activation checkpoint configs.
|
367 |
+
if state._use_orig_params and handle._debug_level == dist.DebugLevel.INFO:
|
368 |
+
param_fqns = _get_handle_fqns_from_root(state, handle)
|
369 |
+
log.warning("FSDP firing post-backward hooks for parameters %s", param_fqns)
|
370 |
+
|
371 |
+
|
372 |
+
@no_type_check
|
373 |
+
def _get_handle_fqns_from_root(
|
374 |
+
state: _FSDPState, handle: "FlatParamHandle"
|
375 |
+
) -> Optional[List[str]]:
|
376 |
+
if handle is None:
|
377 |
+
return None
|
378 |
+
param_to_fqn = state._exec_order_data.param_to_fqn
|
379 |
+
handle_params = handle.flat_param._params # only populated for use_orig_params
|
380 |
+
param_fqns = [
|
381 |
+
fqn for fqn_list in [param_to_fqn[p] for p in handle_params] for fqn in fqn_list
|
382 |
+
]
|
383 |
+
return param_fqns
|
384 |
+
|
385 |
+
|
386 |
+
def _apply_to_modules(
|
387 |
+
root_module: torch.nn.Module,
|
388 |
+
module_fn: Callable,
|
389 |
+
return_fn: Callable,
|
390 |
+
filter_fqns: Optional[List[str]] = None,
|
391 |
+
*args,
|
392 |
+
**kwargs,
|
393 |
+
):
|
394 |
+
"""
|
395 |
+
Performs a pre-order traversal of the modules in the hierarchy rooted at
|
396 |
+
``root_module``, applying ``module_fn`` at each module and finally
|
397 |
+
returning a value using ``return_fn``. The traversal constructs the full
|
398 |
+
module prefix name (e.g. "module.submodule." just like in model state dict)
|
399 |
+
and makes that available to ``module_fn``.
|
400 |
+
|
401 |
+
``filter_fqns`` is used because some module may have its own prefix similar
|
402 |
+
to ``FullyShardedDataParallel`` and the ``named_parameters()`` is overwritten
|
403 |
+
to remove the prefix.
|
404 |
+
"""
|
405 |
+
|
406 |
+
def f(module: torch.nn.Module, prefix: str, tree_level: int, *args, **kwargs):
|
407 |
+
# Call the module function before recursing over children (pre-order)
|
408 |
+
module_fn(module, prefix, tree_level, *args, **kwargs)
|
409 |
+
for submodule_name, submodule in module.named_children():
|
410 |
+
if submodule is None:
|
411 |
+
continue
|
412 |
+
new_prefix = prefix + submodule_name + "."
|
413 |
+
new_tree_level = tree_level + 1
|
414 |
+
if filter_fqns is not None:
|
415 |
+
for fqn in filter_fqns:
|
416 |
+
if fqn.startswith(new_prefix):
|
417 |
+
break
|
418 |
+
else:
|
419 |
+
# DMP's named_parameter() will mess up the traversal with
|
420 |
+
# ``named_children`` + `named_parameter(recurse=False)``.
|
421 |
+
# This hack is a must to make the traversal work.
|
422 |
+
# TODO: Remove this hack once DMP + FSDP is not supported.
|
423 |
+
if (
|
424 |
+
submodule_name == "_fsdp_wrapped_module"
|
425 |
+
or submodule_name == "_dmp_wrapped_module"
|
426 |
+
):
|
427 |
+
if (
|
428 |
+
not torch.distributed._functional_collectives.is_torchdynamo_compiling()
|
429 |
+
):
|
430 |
+
# TODO(voz): Don't graph break on this
|
431 |
+
warnings.warn(
|
432 |
+
"An unexpected prefix is detected. This case "
|
433 |
+
" should only happen when using DMP with FSDP. "
|
434 |
+
f"prefix = {prefix}, "
|
435 |
+
f"submodule_name = {submodule_name}"
|
436 |
+
)
|
437 |
+
new_prefix = prefix
|
438 |
+
elif submodule_name == "module":
|
439 |
+
warnings.warn(
|
440 |
+
"An unexpected prefix is detected. This case "
|
441 |
+
" should only happen when DDP wraps the outer "
|
442 |
+
" modules while FSDP wraps the inner ones."
|
443 |
+
f"prefix = {prefix}, "
|
444 |
+
f"submodule_name = {submodule_name}"
|
445 |
+
)
|
446 |
+
new_prefix = prefix
|
447 |
+
f(submodule, new_prefix, new_tree_level, *args, **kwargs)
|
448 |
+
|
449 |
+
f(root_module, "", 0, *args, **kwargs)
|
450 |
+
return return_fn(*args, **kwargs)
|
451 |
+
|
452 |
+
|
453 |
+
@no_type_check
|
454 |
+
def _assert_in_training_states(
|
455 |
+
state: _FSDPState,
|
456 |
+
training_states: List[TrainingState],
|
457 |
+
) -> None:
|
458 |
+
"""Asserts that FSDP is in the states ``_training_states``."""
|
459 |
+
# Raise a `ValueError` instead of using `assert` to ensure that these
|
460 |
+
# logical assertions run even if `assert`s are disabled
|
461 |
+
if state.training_state not in training_states:
|
462 |
+
msg = (
|
463 |
+
f"expected to be in states {training_states} but current state is "
|
464 |
+
f"{state.training_state}"
|
465 |
+
)
|
466 |
+
# Print the error on rank 0 in case this is called in the backward pass
|
467 |
+
if state.rank == 0:
|
468 |
+
if isinstance(state, nn.Module):
|
469 |
+
print(f"Asserting FSDP instance is: {state}")
|
470 |
+
print(f"ERROR: {msg}")
|
471 |
+
traceback.print_stack()
|
472 |
+
raise ValueError(msg)
|
473 |
+
|
474 |
+
|
475 |
+
def _get_root_modules(modules: Set[nn.Module]) -> Set[nn.Module]:
|
476 |
+
"""
|
477 |
+
Returns:
|
478 |
+
Set[nn.Module]: The subset of ``modules`` that are root modules (i.e.
|
479 |
+
parent-less) with respect to the modules in the set itself. In other
|
480 |
+
words, these are the modules in ``modules`` that are not the child of
|
481 |
+
any other module in ``modules``.
|
482 |
+
"""
|
483 |
+
root_modules: Set[nn.Module] = set()
|
484 |
+
module_to_submodules = {module: set(module.modules()) for module in modules}
|
485 |
+
for candidate_module in modules:
|
486 |
+
is_root_module = True
|
487 |
+
for module, submodules in module_to_submodules.items():
|
488 |
+
is_child_module = (
|
489 |
+
candidate_module is not module and candidate_module in submodules
|
490 |
+
)
|
491 |
+
if is_child_module:
|
492 |
+
is_root_module = False
|
493 |
+
break
|
494 |
+
if is_root_module:
|
495 |
+
root_modules.add(candidate_module)
|
496 |
+
return root_modules
|
497 |
+
|
498 |
+
|
499 |
+
def _override_module_mixed_precision(
|
500 |
+
root: torch.nn.Module,
|
501 |
+
module_classes_to_override: Iterable[Type[nn.Module]],
|
502 |
+
wrap_override_dict: Dict[str, Any] = {"mixed_precision": None}, # noqa: B006
|
503 |
+
) -> Set[Type[nn.Module]]:
|
504 |
+
module_classes_to_override = tuple(set(module_classes_to_override))
|
505 |
+
# Return a set of the actually overridden module classes
|
506 |
+
overridden_module_classes: Set[Type[nn.Module]] = set()
|
507 |
+
for mod in root.modules():
|
508 |
+
if isinstance(mod, module_classes_to_override):
|
509 |
+
overridden_module_classes.add(type(mod))
|
510 |
+
mod._wrap_overrides = wrap_override_dict # type: ignore[assignment]
|
511 |
+
# TODO: We need to run this mixed precision ignored module in fp32,
|
512 |
+
# but ensure subsequent modules, that may possibly be running with
|
513 |
+
# mixed precision, still receive the appropriate precision inputs
|
514 |
+
# without user having to adjust mixed precision config too much.
|
515 |
+
# As a result, we attach pre and post forward hooks to up / down
|
516 |
+
# cast. We should revisit this design.
|
517 |
+
|
518 |
+
def cast_fn(
|
519 |
+
dtype: torch.dtype, module: nn.Module, x: torch.Tensor
|
520 |
+
) -> torch.Tensor:
|
521 |
+
if not torch.is_floating_point(x) or x.dtype == dtype:
|
522 |
+
return x
|
523 |
+
_MODULE_TO_INP_DTYPE[module] = x.dtype
|
524 |
+
return x.to(dtype)
|
525 |
+
|
526 |
+
def forward_pre_hook(module, args):
|
527 |
+
return _apply_to_tensors(partial(cast_fn, torch.float32, module), args)
|
528 |
+
|
529 |
+
def forward_post_hook(module, args, output):
|
530 |
+
# NOTE: If the forward did not have any floating-point tensors,
|
531 |
+
# then the dtype will not be set for this module, and we do not
|
532 |
+
# upcast the dtype.
|
533 |
+
if module in _MODULE_TO_INP_DTYPE:
|
534 |
+
old_dtype = _MODULE_TO_INP_DTYPE[module]
|
535 |
+
return _apply_to_tensors(
|
536 |
+
partial(cast_fn, old_dtype, module), output
|
537 |
+
)
|
538 |
+
|
539 |
+
# We intentionally append both of these hooks so that they run after
|
540 |
+
# all other hooks.
|
541 |
+
mod.register_forward_pre_hook(forward_pre_hook, prepend=False)
|
542 |
+
mod.register_forward_hook(forward_post_hook, prepend=False)
|
543 |
+
return overridden_module_classes
|
544 |
+
|
545 |
+
|
546 |
+
def _no_dispatch_record_stream(tensor: torch.Tensor, stream: torch.Stream) -> None:
|
547 |
+
# FIXME record_stream doesn't work with non-cuda tensors
|
548 |
+
if tensor.device.type not in ["cuda", torch._C._get_privateuse1_backend_name()]:
|
549 |
+
return
|
550 |
+
|
551 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
552 |
+
return
|
553 |
+
# from @ezyang:
|
554 |
+
# The no_dispatch was added in https://github.com/pytorch/pytorch/pull/88014 cc @fegin
|
555 |
+
# Looking over the PR, it looks like this is because we don't actually support Stream arguments
|
556 |
+
# in torch dispatch, so it just chokes.
|
557 |
+
# If Dynamo is able to answer "are there any torch dispatch modes" active (it should answer False),
|
558 |
+
# a better version of this would just be to check if there are any modes before disabling dispatch.
|
559 |
+
# TODO(voz): Extend a dynamo util to answer the above, unify the codepaths here.
|
560 |
+
tensor.record_stream(stream)
|
561 |
+
else:
|
562 |
+
with no_dispatch():
|
563 |
+
tensor.record_stream(stream)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_debug_utils.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
from collections import defaultdict
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from enum import Enum
|
6 |
+
from typing import Dict, Iterator, List, Set, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.distributed as dist
|
10 |
+
import torch.distributed.fsdp._flat_param as flat_param_file
|
11 |
+
from torch.distributed.fsdp._common_utils import (
|
12 |
+
_apply_to_modules,
|
13 |
+
_get_module_fsdp_state,
|
14 |
+
clean_tensor_name,
|
15 |
+
)
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class SimpleProfiler:
|
21 |
+
class Type(str, Enum):
|
22 |
+
ALL = "all"
|
23 |
+
ALLGATHER = "all_gather"
|
24 |
+
ALLGATHER_OBJ = "all_gather_object"
|
25 |
+
RESHARDING = "resharding"
|
26 |
+
H2D = "H2D"
|
27 |
+
D2H = "D2H"
|
28 |
+
|
29 |
+
results: Dict[str, float] = defaultdict(float)
|
30 |
+
profiling: Set[str] = set()
|
31 |
+
|
32 |
+
@classmethod
|
33 |
+
def reset(cls) -> None:
|
34 |
+
cls.results.clear()
|
35 |
+
cls.profiling.clear()
|
36 |
+
|
37 |
+
@classmethod
|
38 |
+
@contextmanager
|
39 |
+
def profile(cls, profile_type: str) -> Iterator[None]:
|
40 |
+
assert profile_type not in cls.profiling, (
|
41 |
+
f"{profile_type} is already being profiled. "
|
42 |
+
"SimpleProfiler does not support profiling multiple instances at "
|
43 |
+
"the same time. "
|
44 |
+
)
|
45 |
+
|
46 |
+
cls.profiling.add(profile_type)
|
47 |
+
begin = time.monotonic()
|
48 |
+
try:
|
49 |
+
yield
|
50 |
+
finally:
|
51 |
+
end = time.monotonic()
|
52 |
+
cls.results[profile_type] += end - begin
|
53 |
+
cls.profiling.remove(profile_type)
|
54 |
+
|
55 |
+
@classmethod
|
56 |
+
def dump_and_reset(cls, msg: str) -> None:
|
57 |
+
# This cannot be combined with DETAIL distributed log
|
58 |
+
# as the profiling will be very incorrect.
|
59 |
+
if dist.get_rank() == 0 and dist.get_debug_level() == dist.DebugLevel.INFO:
|
60 |
+
logger.warning("%s %s", msg, cls.results)
|
61 |
+
cls.reset()
|
62 |
+
|
63 |
+
|
64 |
+
def _get_sharded_module_tree_with_module_name_to_fqns(
|
65 |
+
model: torch.nn.Module,
|
66 |
+
) -> Tuple[str, Dict[str, List[str]]]:
|
67 |
+
"""
|
68 |
+
It is used for composable fully_shard() code path, it returns
|
69 |
+
1. sharded module tree info: each line reprents a submodule name that contats the
|
70 |
+
submodule's FQN and its submodule class name, if the submodule is sharded by `fully_shard`,
|
71 |
+
the submodule name will add a postfix with ' FULLY SHARDED'. Each increased tree
|
72 |
+
level adds 4 spaces before the printed name. A printed sharded module tree info for a toy model
|
73 |
+
is like this:
|
74 |
+
[CompositeModel] FULLY SHARDED
|
75 |
+
l1[Linear]
|
76 |
+
u1[UnitModule] FULLY SHARDED
|
77 |
+
u1.l1[Linear]
|
78 |
+
u1.seq[Sequential]
|
79 |
+
u1.seq.0[ReLU]
|
80 |
+
u1.seq.1[Linear]
|
81 |
+
u1.seq.2[ReLU]
|
82 |
+
u1.l2[Linear]
|
83 |
+
u2[UnitModule] FULLY SHARDED
|
84 |
+
u2.l1[Linear]
|
85 |
+
u2.seq[Sequential]
|
86 |
+
u2.seq.0[ReLU]
|
87 |
+
u2.seq.1[Linear]
|
88 |
+
u2.seq.2[ReLU]
|
89 |
+
u2.l2[Linear]
|
90 |
+
l2[Linear]
|
91 |
+
2. a dict mapping from the concated module FQN and class name to a list of its managed
|
92 |
+
original parameters' FQNs. An example of the dict for the above toy sharded model is like this:
|
93 |
+
{'[CompositeModel]': ['l1.weight', 'l1.bias', 'l2.weight', 'l2.bias'],
|
94 |
+
'u1[UnitModule]': ['u1.l1.weight', 'u1.l1.bias', 'u1.seq.1.weight', 'u1.seq.1.bias', 'u1.l2.weight', 'u1.l2.bias'],
|
95 |
+
'u2[UnitModule]': ['u2.l1.weight', 'u2.l1.bias', 'u2.seq.1.weight', 'u2.seq.1.bias', 'u2.l2.weight', 'u2.l2.bias']
|
96 |
+
}
|
97 |
+
All FQNs are prefixed starting from ``model``.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
model (torch.nn.Module): Root module (which may or may not be passed to
|
101 |
+
composable `fully_shard()`).
|
102 |
+
"""
|
103 |
+
|
104 |
+
def module_fn(
|
105 |
+
module, prefix, tree_level, sharded_tree_info, sharded_module_name_to_fqns
|
106 |
+
):
|
107 |
+
num_spaces = tree_level * 4
|
108 |
+
trimed_prefix = (
|
109 |
+
prefix[:-1] if (len(prefix) > 0 and prefix[-1] == ".") else prefix
|
110 |
+
)
|
111 |
+
prefixed_module_name = trimed_prefix + "[" + module.__class__.__name__ + "]"
|
112 |
+
printed_prefixed_module_name = " " * num_spaces + prefixed_module_name
|
113 |
+
|
114 |
+
state = _get_module_fsdp_state(module)
|
115 |
+
if state is None:
|
116 |
+
sharded_tree_info[0] += printed_prefixed_module_name + "\n"
|
117 |
+
return
|
118 |
+
|
119 |
+
handle = state._fully_sharded_module_to_handle.get(module, None)
|
120 |
+
|
121 |
+
if handle:
|
122 |
+
sharded_tree_info[0] += (
|
123 |
+
printed_prefixed_module_name + " FULLY SHARDED" + "\n"
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
sharded_tree_info[0] += printed_prefixed_module_name + "\n"
|
127 |
+
|
128 |
+
if handle:
|
129 |
+
param = handle.flat_param
|
130 |
+
assert isinstance(param, flat_param_file.FlatParameter)
|
131 |
+
global_fqns = [
|
132 |
+
clean_tensor_name(prefix + name) for name in param._fqns
|
133 |
+
] # prefixed from the top level `model` (i.e. including `prefix`)
|
134 |
+
|
135 |
+
if prefixed_module_name in sharded_module_name_to_fqns:
|
136 |
+
sharded_module_name_to_fqns[prefixed_module_name].extend(global_fqns)
|
137 |
+
else:
|
138 |
+
sharded_module_name_to_fqns[prefixed_module_name] = global_fqns
|
139 |
+
|
140 |
+
def return_fn(sharded_tree_info, sharded_module_name_to_fqns):
|
141 |
+
return sharded_tree_info[0], sharded_module_name_to_fqns
|
142 |
+
|
143 |
+
# Use List to mutate its value in place while running the recursive functions
|
144 |
+
sharded_tree_info: List[str] = [
|
145 |
+
"",
|
146 |
+
]
|
147 |
+
sharded_module_name_to_fqns: Dict[str, List[str]] = {}
|
148 |
+
return _apply_to_modules(
|
149 |
+
model,
|
150 |
+
module_fn,
|
151 |
+
return_fn,
|
152 |
+
[key for key, _ in model.named_parameters()],
|
153 |
+
sharded_tree_info,
|
154 |
+
sharded_module_name_to_fqns,
|
155 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_dynamo_utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Set
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
def _annotate_modules_for_dynamo(
|
7 |
+
module: nn.Module,
|
8 |
+
ignored_modules: Set[nn.Module],
|
9 |
+
use_orig_params: bool,
|
10 |
+
):
|
11 |
+
"""
|
12 |
+
Annotates the submodules in ``module`` 's tree, except those in
|
13 |
+
``ignored_modules``, indicating that the submodules are FSDP-managed and
|
14 |
+
saving the ``use_orig_params`` setting passed to the FSDP constructor.
|
15 |
+
"""
|
16 |
+
for submodule in module.modules():
|
17 |
+
if submodule not in ignored_modules:
|
18 |
+
"""[note: Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
|
19 |
+
|
20 |
+
Dynamo doesn't get to see this instance (FullyShardedDataParallel) during tracing, since
|
21 |
+
it skips tracing all the torch.distributed.fsdp code.
|
22 |
+
- Why? Running the FSDP code eagerly avoids lots of issues trying to trace complex hooks, and also
|
23 |
+
gets us graph-breaks on FSDP module boundaries which we want anyway for comm ops.
|
24 |
+
- However, we _also_ want dynamo to treat the wrapped module inside FSDP 'unspecially' (*),
|
25 |
+
and we need a way to indicate to dynamo which modules are wrapped by FSDP.
|
26 |
+
|
27 |
+
(*) UnspecializedNNModules in dynamo are traced-through without any assumptions, and with thorough
|
28 |
+
guards. NNModules otherwise are 'specialized', meaning there is less overhead due to assuming
|
29 |
+
their code is well-behaved.
|
30 |
+
|
31 |
+
One particular issue with specialized NNModules for FSDP is that the
|
32 |
+
views created for orig_params are captured into the compiled graph on the first iteration, and while
|
33 |
+
they are always going to point to the correct flatparameter and give correct results, their order
|
34 |
+
of creation influences the order of backward execution, preventing overlap of comm and computation
|
35 |
+
during backward. We need to _use_ the new parameter views created on each forward iteration, in
|
36 |
+
order for backward to interleave hooks with compute per layer. UnspecializedNNModule lets us achieve
|
37 |
+
this by capturing the module code more 'functionally' and passing parameters in as inputs each time.
|
38 |
+
"""
|
39 |
+
submodule._is_fsdp_managed_module = True # type: ignore[assignment]
|
40 |
+
|
41 |
+
# Dynamo only supports FSDP with use_orig_params=True.
|
42 |
+
# This is hacky, but I could not think of another way to add an assertion to dynamo
|
43 |
+
# for this, since Dynamo skips all the FSDP code frames and thus can't inspect the
|
44 |
+
# FSDP module directly
|
45 |
+
submodule._fsdp_use_orig_params = use_orig_params # type: ignore[assignment]
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_exec_order_utils.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import warnings
|
3 |
+
from enum import auto, Enum
|
4 |
+
from typing import Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.distributed.fsdp._common_utils import _FSDPState, _get_param_to_fqns
|
11 |
+
from torch.distributed.fsdp._flat_param import FlatParamHandle
|
12 |
+
|
13 |
+
|
14 |
+
class _ExecOrderWarnStatus(Enum):
|
15 |
+
"""Used internally for execution order validation."""
|
16 |
+
|
17 |
+
NONE = auto() # no deviation yet
|
18 |
+
WARNING = auto() # deviated this iteration; currently issuing warnings
|
19 |
+
WARNED = auto() # deviated in a previous iteration
|
20 |
+
|
21 |
+
|
22 |
+
class _ExecOrderData:
|
23 |
+
"""
|
24 |
+
This contains the data structures to track the execution order. We track
|
25 |
+
the pre-forward order on the *first* iteration for forward prefetching
|
26 |
+
(which thus assumes static graph) and the post-forward order on *every*
|
27 |
+
iteration for backward prefetching (which thus does not assume static
|
28 |
+
graph but may be provide an incorrect order).
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
debug_level: dist.DebugLevel,
|
34 |
+
backward_prefetch_limit: int,
|
35 |
+
forward_prefetch_limit: int,
|
36 |
+
) -> None:
|
37 |
+
# Tracks the (static) pre-forward order for execution order validation
|
38 |
+
# and forward prefetching
|
39 |
+
self.handles_pre_forward_order: List[FlatParamHandle] = []
|
40 |
+
# Tracks the post-forward order for pre-backward prefetching
|
41 |
+
self.handles_post_forward_order: List[Optional[FlatParamHandle]] = []
|
42 |
+
self._iter = 0
|
43 |
+
|
44 |
+
# Gives the max number of backward/forward prefetched all-gathers by a
|
45 |
+
# single module
|
46 |
+
self._backward_prefetch_limit = backward_prefetch_limit
|
47 |
+
self._forward_prefetch_limit = forward_prefetch_limit
|
48 |
+
|
49 |
+
# Data structures for execution order validation
|
50 |
+
self._checking_order: bool = debug_level == dist.DebugLevel.DETAIL
|
51 |
+
self.process_group: Optional[dist.ProcessGroup] = None
|
52 |
+
self.world_size: Optional[int] = None
|
53 |
+
self.all_handles: List[FlatParamHandle] = []
|
54 |
+
# Names are prefixed from the root module
|
55 |
+
self.param_to_fqn: Dict[nn.Parameter, List[str]] = {}
|
56 |
+
# Current index in the pre-forward execution order
|
57 |
+
self.current_order_index = 0
|
58 |
+
self.warn_status = _ExecOrderWarnStatus.NONE
|
59 |
+
|
60 |
+
def init(
|
61 |
+
self,
|
62 |
+
state: _FSDPState,
|
63 |
+
root_module: nn.Module,
|
64 |
+
process_group: dist.ProcessGroup,
|
65 |
+
) -> None:
|
66 |
+
"""
|
67 |
+
Initializes the data structures needed for checking the forward order.
|
68 |
+
This should be called after a root FSDP instance has been set during
|
69 |
+
lazy initialization.
|
70 |
+
"""
|
71 |
+
self.process_group = process_group
|
72 |
+
self.rank = process_group.rank()
|
73 |
+
self.world_size = process_group.size()
|
74 |
+
# Fix an order over the handles, which should be the same across ranks
|
75 |
+
for handle in traversal_utils._get_fsdp_handles(root_module):
|
76 |
+
index = len(self.all_handles)
|
77 |
+
self.all_handles.append(handle)
|
78 |
+
handle._handle_index = index
|
79 |
+
self.param_to_fqn = _get_param_to_fqns(root_module)
|
80 |
+
# TODO (awgu): We can broadcast the metadata of rank 0's `all_handles`
|
81 |
+
# to check that all ranks have the same handles in the same order.
|
82 |
+
# https://github.com/pytorch/pytorch/issues/79620
|
83 |
+
|
84 |
+
@property
|
85 |
+
def is_first_iter(self) -> bool:
|
86 |
+
return self._iter == 0
|
87 |
+
|
88 |
+
def get_handle_to_backward_prefetch(
|
89 |
+
self,
|
90 |
+
current_handle: FlatParamHandle,
|
91 |
+
) -> Optional[FlatParamHandle]:
|
92 |
+
"""
|
93 |
+
Returns a :class:`list` of the handles keys of the handles to backward
|
94 |
+
prefetch given the current handles key. If there are no valid handles
|
95 |
+
keys to prefetch, then this returns an empty :class:`list`.
|
96 |
+
"""
|
97 |
+
current_index = current_handle._post_forward_index
|
98 |
+
if current_index is None:
|
99 |
+
return None
|
100 |
+
target_index = current_index - 1
|
101 |
+
target_handle: Optional[FlatParamHandle] = None
|
102 |
+
for _ in range(self._backward_prefetch_limit):
|
103 |
+
if target_index < 0:
|
104 |
+
break
|
105 |
+
target_handle = self.handles_post_forward_order[target_index]
|
106 |
+
target_index -= 1
|
107 |
+
return target_handle
|
108 |
+
|
109 |
+
def get_handle_to_forward_prefetch(
|
110 |
+
self,
|
111 |
+
current_handle: FlatParamHandle,
|
112 |
+
) -> Optional[FlatParamHandle]:
|
113 |
+
"""
|
114 |
+
Returns a :class:`list` of the handles keys of the handles to forward
|
115 |
+
prefetch given the current handles key. If there are no valid handles
|
116 |
+
keys to prefetch, then this returns an empty :class:`list`.
|
117 |
+
"""
|
118 |
+
current_index = current_handle._pre_forward_order_index
|
119 |
+
if current_index is None:
|
120 |
+
return None
|
121 |
+
target_index = current_index + 1
|
122 |
+
target_handle: Optional[FlatParamHandle] = None
|
123 |
+
for _ in range(self._forward_prefetch_limit):
|
124 |
+
if target_index >= len(self.handles_pre_forward_order):
|
125 |
+
break
|
126 |
+
target_handle = self.handles_pre_forward_order[target_index]
|
127 |
+
target_index += 1
|
128 |
+
return target_handle
|
129 |
+
|
130 |
+
def record_post_forward(self, handle: Optional[FlatParamHandle]) -> None:
|
131 |
+
"""
|
132 |
+
Records ``handles`` in the post-forward order, where ``handles`` should
|
133 |
+
be a group of handles used in the same module's forward. If ``handles``
|
134 |
+
is empty, then it is omitted.
|
135 |
+
|
136 |
+
Unlike :meth:`record_pre_forward`, this records the order *every*
|
137 |
+
iteration with the expectation that the recorded order is reset in
|
138 |
+
:meth:`next_iter`.
|
139 |
+
"""
|
140 |
+
if not handle:
|
141 |
+
return
|
142 |
+
# Only record the first usage of a handles key
|
143 |
+
if handle._post_forward_index:
|
144 |
+
self.handles_post_forward_order.append(handle)
|
145 |
+
return
|
146 |
+
index = len(self.handles_post_forward_order)
|
147 |
+
handle._post_forward_index = index
|
148 |
+
self.handles_post_forward_order.append(handle)
|
149 |
+
|
150 |
+
def record_pre_forward(
|
151 |
+
self, handle: Optional[FlatParamHandle], is_training: bool
|
152 |
+
) -> None:
|
153 |
+
"""
|
154 |
+
Records ``handles`` in the pre-forward order, where ``handles`` should
|
155 |
+
be a group of handles used in the same module's forward. If ``handles``
|
156 |
+
is empty, then it is omitted.
|
157 |
+
|
158 |
+
On the first iteration, this checks the execution order across ranks.
|
159 |
+
See :meth:`_check_order` for details.
|
160 |
+
"""
|
161 |
+
if not handle:
|
162 |
+
return
|
163 |
+
self._check_order(handle, is_training)
|
164 |
+
# Fix the order after the first iteration and only record the first
|
165 |
+
# usage of a handles key
|
166 |
+
if not self.is_first_iter or handle._pre_forward_order_index is not None:
|
167 |
+
return
|
168 |
+
index = len(self.handles_pre_forward_order)
|
169 |
+
handle._pre_forward_order_index = index
|
170 |
+
self.handles_pre_forward_order.append(handle)
|
171 |
+
|
172 |
+
def _check_order(self, handle: FlatParamHandle, is_training: bool) -> None:
|
173 |
+
"""
|
174 |
+
Checks the forward execution order as long as ``is_training`` is
|
175 |
+
``True`` since checking in eval mode is not supported. This only checks
|
176 |
+
if the distributed debug level is DETAIL.
|
177 |
+
|
178 |
+
- On the first iteration, this uses all-gathers to check that all ranks
|
179 |
+
are all-gathering the same handles and hence ``FlatParameter`` s,
|
180 |
+
raising an error if not.
|
181 |
+
- On subsequent iterations, this checks that each rank is locally
|
182 |
+
consistent with its own forward order from the first iteration, issuing
|
183 |
+
a warning if not. This issues a warning on the first deviating
|
184 |
+
iteration and stops warning thereafter.
|
185 |
+
"""
|
186 |
+
# Do not check order in eval mode since the post-backward callback does
|
187 |
+
# not run so it cannot be used to mark the end of an iteration
|
188 |
+
if not is_training or not self._checking_order:
|
189 |
+
return
|
190 |
+
if self.is_first_iter:
|
191 |
+
msg_prefix = "Forward order differs across ranks:"
|
192 |
+
optional_local_indices: Tuple[
|
193 |
+
Optional[int], ...
|
194 |
+
] = self._get_handle_indices(handle)
|
195 |
+
device = handle.device # guaranteed to be non-CPU
|
196 |
+
num_valid_indices = sum(
|
197 |
+
(index is not None) for index in optional_local_indices
|
198 |
+
)
|
199 |
+
tensor_kwargs: Dict[str, Union[torch.dtype, torch.device]] = {
|
200 |
+
"dtype": torch.int32,
|
201 |
+
"device": device,
|
202 |
+
}
|
203 |
+
world_num_valid_indices = torch.zeros(self.world_size, **tensor_kwargs) # type: ignore[arg-type, call-overload]
|
204 |
+
local_num_valid_indices = torch.tensor([num_valid_indices], **tensor_kwargs) # type: ignore[arg-type, call-overload]
|
205 |
+
dist.all_gather_into_tensor(
|
206 |
+
world_num_valid_indices,
|
207 |
+
local_num_valid_indices,
|
208 |
+
group=self.process_group,
|
209 |
+
)
|
210 |
+
# Copy entire tensor from D2H once to avoid per element D2H copies
|
211 |
+
world_num_valid_indices = world_num_valid_indices.cpu()
|
212 |
+
# Check that all ranks plan to all-gather the same number of
|
213 |
+
# parameters
|
214 |
+
# TODO (awgu): Since every module has at most one handle in the
|
215 |
+
# current implementation, this should never raise the error.
|
216 |
+
assert self.world_size is not None # mypy
|
217 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
218 |
+
# TODO(voz): Don't graph break on this - dynamo hates the n1 != n2
|
219 |
+
# tensor comparison control flow.
|
220 |
+
# https://github.com/pytorch/pytorch/issues/107055
|
221 |
+
for (r1, n1), (r2, n2) in itertools.combinations(
|
222 |
+
(
|
223 |
+
(rank, world_num_valid_indices[rank])
|
224 |
+
for rank in range(self.world_size)
|
225 |
+
),
|
226 |
+
2,
|
227 |
+
):
|
228 |
+
if n1 != n2:
|
229 |
+
raise RuntimeError(
|
230 |
+
f"{msg_prefix} rank {r1} is all-gathering {n1} parameters "
|
231 |
+
f"while rank {r2} is all-gathering {n2} parameters"
|
232 |
+
)
|
233 |
+
world_indices = torch.zeros( # type: ignore[call-overload]
|
234 |
+
self.world_size * num_valid_indices, **tensor_kwargs
|
235 |
+
)
|
236 |
+
local_indices = torch.tensor(optional_local_indices, **tensor_kwargs) # type: ignore[arg-type]
|
237 |
+
dist.all_gather_into_tensor(
|
238 |
+
world_indices, local_indices, group=self.process_group
|
239 |
+
)
|
240 |
+
# Copy entire tensor from D2H once to avoid per element D2H copies
|
241 |
+
world_indices = world_indices.cpu()
|
242 |
+
# Check that all ranks plan to all-gather the same index parameters
|
243 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
244 |
+
# TODO(voz): Don't graph break on this - dynamo hates the i1 != i2
|
245 |
+
# tensor comparison control flow.
|
246 |
+
# https://github.com/pytorch/pytorch/issues/107055
|
247 |
+
for (r1, i1), (r2, i2) in itertools.combinations(
|
248 |
+
(
|
249 |
+
(
|
250 |
+
rank,
|
251 |
+
world_indices[
|
252 |
+
rank
|
253 |
+
* num_valid_indices : (rank + 1)
|
254 |
+
* num_valid_indices
|
255 |
+
],
|
256 |
+
)
|
257 |
+
for rank in range(self.world_size)
|
258 |
+
),
|
259 |
+
2,
|
260 |
+
):
|
261 |
+
if i1 != i2:
|
262 |
+
r1_param_names = self._get_names_from_handle_indices(i1)
|
263 |
+
r2_param_names = self._get_names_from_handle_indices(i2)
|
264 |
+
raise RuntimeError(
|
265 |
+
f"{msg_prefix} rank {r1} is all-gathering parameters "
|
266 |
+
f"for {r1_param_names} while rank {r2} is all-gathering "
|
267 |
+
f"parameters for {r2_param_names}"
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
# Only issue warnings on the first deviating iteration and stop
|
271 |
+
# checking thereafter to avoid flooding the console
|
272 |
+
if self.warn_status == _ExecOrderWarnStatus.WARNED:
|
273 |
+
return
|
274 |
+
msg_prefix = None # non-`None` means we should warn
|
275 |
+
if self.current_order_index >= len(self.handles_pre_forward_order):
|
276 |
+
# This iteration sees extra all-gather(s) compared to the first
|
277 |
+
msg_prefix = (
|
278 |
+
"Expected to not all-gather any more parameters in the "
|
279 |
+
"forward but trying to all-gather parameters for "
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
expected_handle = self.handles_pre_forward_order[
|
283 |
+
self.current_order_index
|
284 |
+
]
|
285 |
+
if expected_handle != handle:
|
286 |
+
expected_param_names = self._get_names_from_handles(expected_handle)
|
287 |
+
msg_prefix = (
|
288 |
+
f"Expected to all-gather for {expected_param_names} "
|
289 |
+
"but trying to all-gather parameters for "
|
290 |
+
)
|
291 |
+
if msg_prefix is not None:
|
292 |
+
param_names = self._get_names_from_handles(handle)
|
293 |
+
msg_suffix = (
|
294 |
+
f"{param_names}"
|
295 |
+
if param_names
|
296 |
+
else "a newly-added parameter since construction time"
|
297 |
+
)
|
298 |
+
warnings.warn(
|
299 |
+
"Forward order differs from that of the first iteration "
|
300 |
+
f"on rank {self.rank}. Collectives are unchecked and may "
|
301 |
+
f"give incorrect results or hang.\n{msg_prefix}{msg_suffix}"
|
302 |
+
)
|
303 |
+
self.warn_status = _ExecOrderWarnStatus.WARNING
|
304 |
+
self.current_order_index += 1
|
305 |
+
|
306 |
+
def _get_handle_indices(
|
307 |
+
self,
|
308 |
+
handle: FlatParamHandle,
|
309 |
+
) -> Tuple[Optional[int], ...]:
|
310 |
+
"""
|
311 |
+
Returns the handle indices (i.e. indices into ``self.all_handles``)
|
312 |
+
corresponding to the handles in ``handle``. An entry in the
|
313 |
+
returned tuple is ``None`` if the handle is invalid.
|
314 |
+
"""
|
315 |
+
indices: List[Optional[int]] = []
|
316 |
+
if handle:
|
317 |
+
indices.append(handle._handle_index)
|
318 |
+
return tuple(indices)
|
319 |
+
|
320 |
+
def _get_names_from_handle_indices(
|
321 |
+
self,
|
322 |
+
handle_indices: Tuple[int, ...],
|
323 |
+
) -> List[List[str]]:
|
324 |
+
"""
|
325 |
+
Returns a list of FQNs for each handle in ``handle_indices``. If a
|
326 |
+
handle index is invalid, then its FQNs are omitted from the returned
|
327 |
+
list.
|
328 |
+
"""
|
329 |
+
fqns: List[List[str]] = []
|
330 |
+
for index in handle_indices:
|
331 |
+
if index is None or index < 0 or index >= len(self.all_handles):
|
332 |
+
continue
|
333 |
+
handle = self.all_handles[index]
|
334 |
+
flat_param = handle.flat_param
|
335 |
+
fqns.append(self.param_to_fqn[flat_param])
|
336 |
+
return fqns
|
337 |
+
|
338 |
+
def _get_names_from_handles(
|
339 |
+
self,
|
340 |
+
handle: FlatParamHandle,
|
341 |
+
) -> List[List[str]]:
|
342 |
+
"""
|
343 |
+
Returns a list of FQNs for each handle in ``handles_key``. If a handle
|
344 |
+
is invalid, then its FQNs are omitted from the returned list.
|
345 |
+
"""
|
346 |
+
fqns: List[List[str]] = []
|
347 |
+
if handle:
|
348 |
+
flat_param = handle.flat_param
|
349 |
+
if flat_param in self.param_to_fqn:
|
350 |
+
fqns.append(self.param_to_fqn[flat_param])
|
351 |
+
return fqns
|
352 |
+
|
353 |
+
def next_iter(self):
|
354 |
+
"""
|
355 |
+
Advances the internal data structures per iteration. This should be
|
356 |
+
called in the post-backward callback since that marks the true end of
|
357 |
+
an iteration.
|
358 |
+
"""
|
359 |
+
self._iter += 1
|
360 |
+
self.handles_post_forward_order.clear()
|
361 |
+
if self._checking_order:
|
362 |
+
self.current_order_index = 0
|
363 |
+
if self.warn_status == _ExecOrderWarnStatus.WARNING:
|
364 |
+
self.warn_status = _ExecOrderWarnStatus.WARNED
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_flat_param.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_fsdp_extensions.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Any, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
|
7 |
+
from torch.distributed._shard.sharded_tensor.shard import Shard
|
8 |
+
from torch.distributed._tensor import DeviceMesh, DTensor
|
9 |
+
from torch.distributed.fsdp._shard_utils import (
|
10 |
+
_all_gather_dtensor,
|
11 |
+
_create_chunk_dtensor,
|
12 |
+
_create_chunk_sharded_tensor,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class FSDPExtensions(ABC):
|
17 |
+
"""
|
18 |
+
This enables some customizable hooks to enable composability with tensor
|
19 |
+
parallelism. To activate these hooks, use :func:`_set_fsdp_extensions` to
|
20 |
+
set a custom :class:`FSDPExtensions` that implements the hooks.
|
21 |
+
"""
|
22 |
+
|
23 |
+
@abstractmethod
|
24 |
+
def pre_flatten_transform(
|
25 |
+
self,
|
26 |
+
tensor: torch.Tensor,
|
27 |
+
) -> Tuple[torch.Tensor, Optional[Any]]:
|
28 |
+
"""E.g. converting ``DistributedTensor`` to local tensor."""
|
29 |
+
...
|
30 |
+
|
31 |
+
@abstractmethod
|
32 |
+
def post_unflatten_transform(
|
33 |
+
self,
|
34 |
+
tensor: torch.Tensor,
|
35 |
+
param_extension: Any,
|
36 |
+
) -> torch.Tensor:
|
37 |
+
"""E.g. converting local tensor to ``DistributedTensor``."""
|
38 |
+
...
|
39 |
+
|
40 |
+
@abstractmethod
|
41 |
+
def chunk_tensor(
|
42 |
+
self,
|
43 |
+
tensor: torch.Tensor,
|
44 |
+
rank: int,
|
45 |
+
world_size: int,
|
46 |
+
num_devices_per_node: int,
|
47 |
+
pg: dist.ProcessGroup,
|
48 |
+
device: Optional[torch.device] = None,
|
49 |
+
) -> torch.Tensor:
|
50 |
+
"""Shards a tensor to chunks and returns the local chunk."""
|
51 |
+
...
|
52 |
+
|
53 |
+
@abstractmethod
|
54 |
+
def chunk_dtensor(
|
55 |
+
self,
|
56 |
+
tensor: torch.Tensor,
|
57 |
+
rank: int,
|
58 |
+
device_mesh: DeviceMesh,
|
59 |
+
) -> torch.Tensor:
|
60 |
+
"""Shards a tensor/DTensor to DTensor and returns the local DTensor."""
|
61 |
+
...
|
62 |
+
|
63 |
+
@abstractmethod
|
64 |
+
def pre_load_state_dict_transform(
|
65 |
+
self,
|
66 |
+
tensor: torch.Tensor,
|
67 |
+
) -> Tuple[torch.Tensor, List[Shard]]:
|
68 |
+
"""
|
69 |
+
This is to be called before loading a *sharded* model state dict and
|
70 |
+
should return the tensor and list of shards from which to load data.
|
71 |
+
"""
|
72 |
+
...
|
73 |
+
|
74 |
+
@abstractmethod
|
75 |
+
def all_gather_dtensor(
|
76 |
+
self,
|
77 |
+
tensor: DTensor,
|
78 |
+
parent_mesh: Optional[DeviceMesh],
|
79 |
+
) -> torch.Tensor:
|
80 |
+
"""
|
81 |
+
This is to be called before loading a *sharded* DTensor state dict.
|
82 |
+
This gathers tensor in FSDP dimension and returns local tensor of
|
83 |
+
TP DTensor.
|
84 |
+
"""
|
85 |
+
...
|
86 |
+
|
87 |
+
|
88 |
+
_extensions: Optional[FSDPExtensions] = None
|
89 |
+
|
90 |
+
|
91 |
+
def _set_fsdp_extensions(flattener: FSDPExtensions) -> None:
|
92 |
+
global _extensions
|
93 |
+
_extensions = flattener
|
94 |
+
|
95 |
+
|
96 |
+
def _ext_pre_flatten_transform(
|
97 |
+
tensor: torch.Tensor,
|
98 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
99 |
+
) -> Tuple[torch.Tensor, Optional[Any]]:
|
100 |
+
if fsdp_extension is not None:
|
101 |
+
new_tensor, param_extension = fsdp_extension.pre_flatten_transform(tensor)
|
102 |
+
if param_extension is not None:
|
103 |
+
return new_tensor, param_extension
|
104 |
+
return tensor, None
|
105 |
+
|
106 |
+
|
107 |
+
def _ext_post_unflatten_transform(
|
108 |
+
tensor: torch.Tensor,
|
109 |
+
param_extension: Any,
|
110 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
111 |
+
) -> torch.Tensor:
|
112 |
+
if fsdp_extension is not None and param_extension is not None:
|
113 |
+
return fsdp_extension.post_unflatten_transform(tensor, param_extension)
|
114 |
+
return tensor
|
115 |
+
|
116 |
+
|
117 |
+
def _ext_chunk_tensor(
|
118 |
+
tensor: torch.Tensor,
|
119 |
+
rank: int,
|
120 |
+
world_size: int,
|
121 |
+
num_devices_per_node: int,
|
122 |
+
pg: dist.ProcessGroup,
|
123 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
124 |
+
) -> torch.Tensor:
|
125 |
+
chunk_tensor_fn = (
|
126 |
+
fsdp_extension.chunk_tensor
|
127 |
+
if fsdp_extension is not None
|
128 |
+
else _create_chunk_sharded_tensor
|
129 |
+
)
|
130 |
+
return chunk_tensor_fn(
|
131 |
+
tensor,
|
132 |
+
rank,
|
133 |
+
world_size,
|
134 |
+
num_devices_per_node,
|
135 |
+
pg,
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
def _ext_chunk_dtensor(
|
140 |
+
tensor: torch.Tensor,
|
141 |
+
rank: int,
|
142 |
+
device_mesh: DeviceMesh,
|
143 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
144 |
+
) -> torch.Tensor:
|
145 |
+
chunk_dtensor_fn = (
|
146 |
+
fsdp_extension.chunk_dtensor
|
147 |
+
if fsdp_extension is not None
|
148 |
+
else _create_chunk_dtensor
|
149 |
+
)
|
150 |
+
return chunk_dtensor_fn(
|
151 |
+
tensor,
|
152 |
+
rank,
|
153 |
+
device_mesh,
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
def _ext_pre_load_state_dict_transform(
|
158 |
+
tensor: torch.Tensor,
|
159 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
160 |
+
) -> Tuple[torch.Tensor, List[Shard]]:
|
161 |
+
if fsdp_extension is not None:
|
162 |
+
return fsdp_extension.pre_load_state_dict_transform(tensor)
|
163 |
+
|
164 |
+
assert type(tensor) is ShardedTensor
|
165 |
+
shards = tensor.local_shards()
|
166 |
+
return (tensor, shards)
|
167 |
+
|
168 |
+
|
169 |
+
def _ext_all_gather_dtensor(
|
170 |
+
tensor: DTensor,
|
171 |
+
parent_mesh: Optional[DeviceMesh],
|
172 |
+
fsdp_extension: Optional[FSDPExtensions] = None,
|
173 |
+
) -> torch.Tensor:
|
174 |
+
all_gather_dtensor_fn = (
|
175 |
+
fsdp_extension.all_gather_dtensor
|
176 |
+
if fsdp_extension is not None
|
177 |
+
else _all_gather_dtensor
|
178 |
+
)
|
179 |
+
return all_gather_dtensor_fn(tensor, parent_mesh)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py
ADDED
@@ -0,0 +1,1182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import itertools
|
3 |
+
import os
|
4 |
+
import warnings
|
5 |
+
from typing import (
|
6 |
+
Any,
|
7 |
+
Callable,
|
8 |
+
Deque,
|
9 |
+
Dict,
|
10 |
+
Generator,
|
11 |
+
Iterable,
|
12 |
+
Iterator,
|
13 |
+
List,
|
14 |
+
no_type_check,
|
15 |
+
Optional,
|
16 |
+
Set,
|
17 |
+
Tuple,
|
18 |
+
Union,
|
19 |
+
)
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
import torch.distributed.fsdp._exec_order_utils as exec_order_utils
|
24 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
25 |
+
import torch.distributed.fsdp.fully_sharded_data_parallel as fsdp_file
|
26 |
+
import torch.nn as nn
|
27 |
+
from torch.distributed.algorithms._comm_hooks import default_hooks
|
28 |
+
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
|
29 |
+
from torch.distributed.distributed_c10d import _get_default_group
|
30 |
+
from torch.distributed.fsdp._common_utils import (
|
31 |
+
_FSDPDeviceHandle,
|
32 |
+
_FSDPState,
|
33 |
+
_get_module_fsdp_state,
|
34 |
+
_is_fsdp_flattened,
|
35 |
+
_named_parameters_with_duplicates,
|
36 |
+
clean_tensor_name,
|
37 |
+
TrainingState,
|
38 |
+
)
|
39 |
+
from torch.distributed.fsdp._flat_param import (
|
40 |
+
_FSDP_USE_FULL_PREC_IN_EVAL,
|
41 |
+
FlatParameter,
|
42 |
+
FlatParamHandle,
|
43 |
+
HandleShardingStrategy,
|
44 |
+
)
|
45 |
+
from torch.distributed.fsdp._limiter_utils import _FreeEventQueue
|
46 |
+
from torch.distributed.fsdp.api import (
|
47 |
+
BackwardPrefetch,
|
48 |
+
CPUOffload,
|
49 |
+
FullOptimStateDictConfig,
|
50 |
+
FullStateDictConfig,
|
51 |
+
MixedPrecision,
|
52 |
+
ShardingStrategy,
|
53 |
+
StateDictConfig,
|
54 |
+
StateDictType,
|
55 |
+
)
|
56 |
+
from torch.distributed.fsdp.wrap import _Policy
|
57 |
+
from torch.distributed.tensor.parallel.fsdp import DTensorExtensions
|
58 |
+
from torch.distributed.utils import _sync_params_and_buffers
|
59 |
+
|
60 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
61 |
+
from torch.utils.hooks import RemovableHandle
|
62 |
+
|
63 |
+
_TORCHDISTX_AVAIL = True
|
64 |
+
try:
|
65 |
+
from torchdistx import deferred_init, fake # type: ignore[import]
|
66 |
+
except ImportError:
|
67 |
+
_TORCHDISTX_AVAIL = False
|
68 |
+
|
69 |
+
PARAM_BROADCAST_BUCKET_SIZE = int(250 * 1024 * 1024)
|
70 |
+
FSDP_SYNCED = "_fsdp_synced"
|
71 |
+
# Specification of process groups for hybrid sharding strategies.
|
72 |
+
HybridShardProcessGroupType = Tuple[dist.ProcessGroup, dist.ProcessGroup]
|
73 |
+
# Overall specification of process group.
|
74 |
+
ProcessGroupType = Optional[Union[dist.ProcessGroup, HybridShardProcessGroupType]]
|
75 |
+
|
76 |
+
|
77 |
+
# TODO (awgu): Refactor this later
|
78 |
+
SHARDING_STRATEGY_MAP = {
|
79 |
+
ShardingStrategy.NO_SHARD: HandleShardingStrategy.NO_SHARD,
|
80 |
+
ShardingStrategy.FULL_SHARD: HandleShardingStrategy.FULL_SHARD,
|
81 |
+
ShardingStrategy.SHARD_GRAD_OP: HandleShardingStrategy.SHARD_GRAD_OP,
|
82 |
+
ShardingStrategy.HYBRID_SHARD: HandleShardingStrategy.HYBRID_SHARD,
|
83 |
+
ShardingStrategy._HYBRID_SHARD_ZERO2: HandleShardingStrategy._HYBRID_SHARD_ZERO2,
|
84 |
+
}
|
85 |
+
HYBRID_SHARDING_STRATEGIES = [
|
86 |
+
ShardingStrategy.HYBRID_SHARD,
|
87 |
+
ShardingStrategy._HYBRID_SHARD_ZERO2,
|
88 |
+
]
|
89 |
+
NO_RESHARD_AFTER_FORWARD_STRATEGIES = (
|
90 |
+
ShardingStrategy.SHARD_GRAD_OP,
|
91 |
+
ShardingStrategy._HYBRID_SHARD_ZERO2,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# NOTE: Since non-self attributes cannot be type annotated, several attributes
|
96 |
+
# on `state` are defined first as local variables before being assigned.
|
97 |
+
|
98 |
+
|
99 |
+
@no_type_check
|
100 |
+
def _init_process_group_state(
|
101 |
+
state: _FSDPState,
|
102 |
+
process_group: ProcessGroupType,
|
103 |
+
sharding_strategy: ShardingStrategy,
|
104 |
+
policy: Optional[_Policy],
|
105 |
+
device_mesh: Optional[DeviceMesh] = None,
|
106 |
+
) -> _FSDPState:
|
107 |
+
if process_group is not None and device_mesh is not None:
|
108 |
+
raise ValueError(
|
109 |
+
"Cannot pass both process_group and device_mesh at the "
|
110 |
+
"same time. Please just pass only one of them."
|
111 |
+
)
|
112 |
+
is_hybrid_strategy = sharding_strategy in HYBRID_SHARDING_STRATEGIES
|
113 |
+
if is_hybrid_strategy:
|
114 |
+
if process_group is None and policy is None and device_mesh is None:
|
115 |
+
# Raise an error here, since this is manual wrapping with no process group
|
116 |
+
# passed in, there is no way to ensure all wrapped FSDP instances use the same
|
117 |
+
# process groups.
|
118 |
+
raise ValueError(
|
119 |
+
f"Manual wrapping with {sharding_strategy}",
|
120 |
+
"requires explicit specification of process group or device_mesh.",
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
state = _init_process_group_state_for_hybrid_shard(
|
124 |
+
state, process_group, device_mesh
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
if device_mesh:
|
128 |
+
state._device_mesh = device_mesh
|
129 |
+
state.process_group = device_mesh.get_group(mesh_dim=0)
|
130 |
+
else:
|
131 |
+
state.process_group = (
|
132 |
+
process_group if process_group is not None else _get_default_group()
|
133 |
+
)
|
134 |
+
|
135 |
+
state.rank = state.process_group.rank()
|
136 |
+
state.world_size = state.process_group.size()
|
137 |
+
data_parallel_world_size = state.world_size
|
138 |
+
if is_hybrid_strategy:
|
139 |
+
data_parallel_world_size *= state._inter_node_pg.size()
|
140 |
+
state._gradient_predivide_factor = (
|
141 |
+
default_hooks.DefaultState._get_gradient_predivide_factor(
|
142 |
+
data_parallel_world_size
|
143 |
+
)
|
144 |
+
)
|
145 |
+
state._gradient_postdivide_factor = (
|
146 |
+
data_parallel_world_size / state._gradient_predivide_factor
|
147 |
+
)
|
148 |
+
return state
|
149 |
+
|
150 |
+
|
151 |
+
@no_type_check
|
152 |
+
def _init_process_group_state_for_hybrid_shard(
|
153 |
+
state: _FSDPState,
|
154 |
+
process_group: ProcessGroupType,
|
155 |
+
device_mesh: DeviceMesh,
|
156 |
+
) -> _FSDPState:
|
157 |
+
if device_mesh:
|
158 |
+
if _is_valid_hybrid_shard_device_mesh(device_mesh):
|
159 |
+
state._device_mesh = device_mesh
|
160 |
+
# We currently only allow _inter_node_pg to be the outermost dimension, and the
|
161 |
+
# process_group(intra_node) to be the innermost dimension.
|
162 |
+
state._inter_node_pg = device_mesh.get_group(mesh_dim=0)
|
163 |
+
state.process_group = device_mesh.get_group(mesh_dim=1)
|
164 |
+
else:
|
165 |
+
raise ValueError(
|
166 |
+
"Expected device_mesh to have ndim=2 "
|
167 |
+
f"but got {len(device_mesh.get_group())}"
|
168 |
+
)
|
169 |
+
elif process_group is None:
|
170 |
+
default_group = _get_default_group()
|
171 |
+
intra_node_group, inter_node_group = _init_intra_and_inter_node_groups(
|
172 |
+
default_group, state._device_handle.device_count()
|
173 |
+
)
|
174 |
+
# we shard across intra-node
|
175 |
+
state.process_group = intra_node_group
|
176 |
+
# save _inter_node_pg to allreduce across.
|
177 |
+
state._inter_node_pg = inter_node_group
|
178 |
+
else:
|
179 |
+
# Check type and assign state.process_group and state._inter_node_pg.
|
180 |
+
if _is_valid_hybrid_shard_pg_type(process_group):
|
181 |
+
# Assuming that user passed in as intra node group and inter node group
|
182 |
+
# as documented.
|
183 |
+
state.process_group, state._inter_node_pg = process_group
|
184 |
+
else:
|
185 |
+
raise ValueError(
|
186 |
+
"Expected process_group to be passed in as either None or "
|
187 |
+
f"Tuple[dist.ProcessGroup, dist.ProcessGroup] but got {type(process_group)}"
|
188 |
+
)
|
189 |
+
# Create state for allreduce
|
190 |
+
state._inter_node_state = _get_default_comm_hook_state(
|
191 |
+
process_group=state._inter_node_pg,
|
192 |
+
)
|
193 |
+
return state
|
194 |
+
|
195 |
+
|
196 |
+
@no_type_check
|
197 |
+
def _is_valid_hybrid_shard_pg_type(process_group: Any) -> bool:
|
198 |
+
return (
|
199 |
+
isinstance(process_group, tuple)
|
200 |
+
and len(process_group) == 2
|
201 |
+
and all(isinstance(pg, dist.ProcessGroup) for pg in process_group)
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
@no_type_check
|
206 |
+
def _is_valid_hybrid_shard_device_mesh(device_mesh: DeviceMesh) -> bool:
|
207 |
+
return isinstance(device_mesh, DeviceMesh) and device_mesh.ndim == 2
|
208 |
+
|
209 |
+
|
210 |
+
@no_type_check
|
211 |
+
def _init_intra_node_process_group(num_devices_per_node: int) -> dist.ProcessGroup:
|
212 |
+
"""
|
213 |
+
Return a process group across the current node.
|
214 |
+
|
215 |
+
For example, given each row is a distinct node:
|
216 |
+
0 1 2 3 4 5 6 7 8
|
217 |
+
9 10 11 12 13 14 15
|
218 |
+
This API would return an intra-node subgroup across
|
219 |
+
[0, 7] or [8, 15] depending on the process's rank.
|
220 |
+
For example, rank 3 would get [0, 7].
|
221 |
+
"""
|
222 |
+
intra_node_subgroup, _ = dist.new_subgroups(num_devices_per_node)
|
223 |
+
return intra_node_subgroup
|
224 |
+
|
225 |
+
|
226 |
+
@no_type_check
|
227 |
+
def _init_inter_node_process_group(
|
228 |
+
global_process_group: dist.ProcessGroup,
|
229 |
+
num_devices_per_node: int,
|
230 |
+
) -> dist.ProcessGroup:
|
231 |
+
"""
|
232 |
+
Return an inter-node process group where each contained rank has the same local rank.
|
233 |
+
|
234 |
+
For example, given each row is a distinct node:
|
235 |
+
0 1 2 3 4 5 6 7 8
|
236 |
+
9 10 11 12 13 14 15
|
237 |
+
This API would return inter-node process group {0, 8}, {1, 9}, {2, 10}, and so forth
|
238 |
+
depending on the process's rank. For example, rank 1 would get {1, 9}, rank 5
|
239 |
+
would get {5, 13}.
|
240 |
+
"""
|
241 |
+
# the inter-node pg that is returned
|
242 |
+
inter_node_pg = None
|
243 |
+
sharding_backend = dist.get_backend(global_process_group)
|
244 |
+
world_size = dist.get_world_size(global_process_group)
|
245 |
+
# Assuming fully homogeneous setup
|
246 |
+
num_nodes = world_size // num_devices_per_node
|
247 |
+
my_local_rank = dist.get_rank(global_process_group) % num_devices_per_node
|
248 |
+
for local_rank in range(num_devices_per_node):
|
249 |
+
ranks_for_inter_group = [
|
250 |
+
local_rank + (i * num_devices_per_node) for i in range(num_nodes)
|
251 |
+
]
|
252 |
+
# every rank always needs to call dist.new_group
|
253 |
+
grp = dist.new_group(ranks=ranks_for_inter_group, backend=sharding_backend)
|
254 |
+
if local_rank == my_local_rank:
|
255 |
+
inter_node_pg = grp
|
256 |
+
|
257 |
+
assert (
|
258 |
+
inter_node_pg is not None
|
259 |
+
), f"{my_local_rank} expected to assign inter-node pg, but did not"
|
260 |
+
return inter_node_pg
|
261 |
+
|
262 |
+
|
263 |
+
def _init_intra_and_inter_node_groups(
|
264 |
+
global_process_group: dist.ProcessGroup,
|
265 |
+
num_devices_per_node: int,
|
266 |
+
) -> Tuple[dist.ProcessGroup, dist.ProcessGroup]:
|
267 |
+
"""
|
268 |
+
Initialize intra and inter-node process groups and return the ones corresponding to this process's rank.
|
269 |
+
|
270 |
+
This function can be used to initialize process groups for ``HYBRID_SHARD`` or
|
271 |
+
``_HYBRID_SHARD_ZERO2`` in FSDP.
|
272 |
+
This function assumes each node has an equal number of CUDA-enabled devices.
|
273 |
+
Returns:
|
274 |
+
Tuple[dist.ProcessGroup, dist.ProcessGroup]: Intra and inter-node process group.
|
275 |
+
"""
|
276 |
+
return (
|
277 |
+
_init_intra_node_process_group(num_devices_per_node),
|
278 |
+
_init_inter_node_process_group(global_process_group, num_devices_per_node),
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
@no_type_check
|
283 |
+
def _init_ignored_module_states(
|
284 |
+
state: _FSDPState,
|
285 |
+
module: nn.Module,
|
286 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]],
|
287 |
+
ignored_states: Union[
|
288 |
+
Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
|
289 |
+
] = None,
|
290 |
+
) -> _FSDPState:
|
291 |
+
if ignored_modules is not None and ignored_states is not None:
|
292 |
+
raise ValueError(
|
293 |
+
"Cannot pass both ignored_modules and ignored_states at the "
|
294 |
+
"same time. Please just pass ignored_states."
|
295 |
+
)
|
296 |
+
ignored_parameters = None
|
297 |
+
passed_as_ignored_states = ignored_states is not None
|
298 |
+
if passed_as_ignored_states:
|
299 |
+
ignored_states_list = list(ignored_states)
|
300 |
+
_check_ignored_states(ignored_states_list, True)
|
301 |
+
else:
|
302 |
+
ignored_states_list = []
|
303 |
+
_check_ignored_states(
|
304 |
+
list(ignored_modules) if ignored_modules is not None else [], False
|
305 |
+
)
|
306 |
+
if len(ignored_states_list) > 0:
|
307 |
+
if isinstance(ignored_states_list[0], nn.Parameter):
|
308 |
+
ignored_parameters = ignored_states_list
|
309 |
+
else:
|
310 |
+
ignored_modules = ignored_states_list
|
311 |
+
state._ignored_modules = _get_ignored_modules(module, ignored_modules)
|
312 |
+
state._ignored_params = _get_ignored_params(
|
313 |
+
module,
|
314 |
+
state._ignored_modules,
|
315 |
+
ignored_parameters,
|
316 |
+
)
|
317 |
+
state._ignored_buffer_names = _get_ignored_buffer_names(
|
318 |
+
module,
|
319 |
+
state._ignored_modules,
|
320 |
+
)
|
321 |
+
# TODO: FSDP's contract for buffers is not well-defined. They are
|
322 |
+
# implicitly ignored for most functionality since they are not sharded;
|
323 |
+
# however, FSDP still imposes some semantics on buffers (e.g. buffer mixed
|
324 |
+
# precision). We should formalize this contract and decide if we need to
|
325 |
+
# compute and store `_ignored_buffers`.
|
326 |
+
return state
|
327 |
+
|
328 |
+
|
329 |
+
def _check_ignored_states(
|
330 |
+
ignored_states: List[Any], passed_as_ignored_states: bool
|
331 |
+
) -> None:
|
332 |
+
"""
|
333 |
+
Check that the ignored states are uniformly parameters or uniformly modules.
|
334 |
+
|
335 |
+
We may remove this check in the future if we permit mixing.
|
336 |
+
"""
|
337 |
+
if len(ignored_states) == 0:
|
338 |
+
return
|
339 |
+
if passed_as_ignored_states:
|
340 |
+
all_params = all(isinstance(state, nn.Parameter) for state in ignored_states)
|
341 |
+
all_modules = all(isinstance(state, nn.Module) for state in ignored_states)
|
342 |
+
if not all_params and not all_modules:
|
343 |
+
# Sort for consistent ordering for unit test regex matching
|
344 |
+
sorted_types = sorted({type(state) for state in ignored_states}, key=repr)
|
345 |
+
raise ValueError(
|
346 |
+
"ignored_states expects all nn.Parameter or all nn.Module list "
|
347 |
+
f"elements but got types {sorted_types}"
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
if not all(isinstance(state, nn.Module) for state in ignored_states):
|
351 |
+
sorted_types = sorted({type(state) for state in ignored_states}, key=repr)
|
352 |
+
raise ValueError(
|
353 |
+
"ignored_modules expects nn.Module list elements but got "
|
354 |
+
f"types {sorted_types}"
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
@no_type_check
|
359 |
+
def _init_device_handle(
|
360 |
+
state: _FSDPState,
|
361 |
+
module: nn.Module,
|
362 |
+
ignored_params: Set[nn.Parameter],
|
363 |
+
device_id: Optional[Union[int, torch.device]],
|
364 |
+
) -> _FSDPState:
|
365 |
+
"""
|
366 |
+
Determine device handle used for initializing FSDP.
|
367 |
+
|
368 |
+
If a device is specified by ``device_id``,
|
369 |
+
then returns device handle corresponds to that device type. Otherwise, If the
|
370 |
+
module is already on a non-CPU device, then the device type is that non-CPU device type.
|
371 |
+
If the module is on CPU or meta, then the device type is the current cuda device.
|
372 |
+
|
373 |
+
This method will be called once ignored paramters was determined, as the device handle maybe needed
|
374 |
+
for other initialization.
|
375 |
+
"""
|
376 |
+
determined_device = None
|
377 |
+
if device_id is not None:
|
378 |
+
determined_device = (
|
379 |
+
device_id
|
380 |
+
if isinstance(device_id, torch.device)
|
381 |
+
else torch.device(device_id)
|
382 |
+
)
|
383 |
+
if determined_device is None:
|
384 |
+
for param in _get_orig_params(module, ignored_params):
|
385 |
+
if param.device.type in {"cpu", "meta"}:
|
386 |
+
continue
|
387 |
+
if determined_device is None:
|
388 |
+
determined_device = param.device
|
389 |
+
else:
|
390 |
+
if param.device.type != determined_device.type:
|
391 |
+
raise RuntimeError(
|
392 |
+
f"FSDP does not support modules with different device types "
|
393 |
+
f"but got params on {determined_device.type} and {param.device.type}"
|
394 |
+
)
|
395 |
+
determined_device = determined_device or torch.device(
|
396 |
+
"cuda", torch.cuda.current_device()
|
397 |
+
)
|
398 |
+
|
399 |
+
state._device_handle = _FSDPDeviceHandle.from_device(determined_device)
|
400 |
+
return state
|
401 |
+
|
402 |
+
|
403 |
+
@no_type_check
|
404 |
+
def _init_buffer_state(
|
405 |
+
state: _FSDPState,
|
406 |
+
module: nn.Module,
|
407 |
+
) -> _FSDPState:
|
408 |
+
state._buffer_names = _get_buffer_names(module)
|
409 |
+
# Save a mapping from clean fully-qualified buffer name (starting from
|
410 |
+
# `module`) to its original dtype for restoring that dtype during model
|
411 |
+
# checkpointing when buffer mixed precision is enabled. The names should
|
412 |
+
# be clean since the casting happens in a `summon_full_params()` context.
|
413 |
+
_buffer_name_to_orig_dtype: Dict[str, torch.dtype] = {}
|
414 |
+
for buffer_name, buffer in module.named_buffers():
|
415 |
+
buffer_name = clean_tensor_name(buffer_name)
|
416 |
+
_buffer_name_to_orig_dtype[buffer_name] = buffer.dtype
|
417 |
+
state._buffer_name_to_orig_dtype = _buffer_name_to_orig_dtype
|
418 |
+
return state
|
419 |
+
|
420 |
+
|
421 |
+
@no_type_check
|
422 |
+
def _init_core_state(
|
423 |
+
state: _FSDPState,
|
424 |
+
sharding_strategy: Optional[ShardingStrategy],
|
425 |
+
mixed_precision: Optional[MixedPrecision],
|
426 |
+
cpu_offload: Optional[CPUOffload],
|
427 |
+
limit_all_gathers: bool,
|
428 |
+
use_orig_params: bool,
|
429 |
+
backward_prefetch_limit: int,
|
430 |
+
forward_prefetch_limit: int,
|
431 |
+
) -> _FSDPState:
|
432 |
+
# We clamp the strategy to `NO_SHARD` for world size of 1 since they are
|
433 |
+
# currently functionally equivalent. This may change if/when we integrate
|
434 |
+
# FSDP with MoE.
|
435 |
+
if state.world_size == 1:
|
436 |
+
if sharding_strategy != ShardingStrategy.NO_SHARD:
|
437 |
+
warnings.warn(
|
438 |
+
"FSDP is switching to use `NO_SHARD` instead of "
|
439 |
+
f"{sharding_strategy or ShardingStrategy.FULL_SHARD} since "
|
440 |
+
"the world size is 1."
|
441 |
+
)
|
442 |
+
sharding_strategy = ShardingStrategy.NO_SHARD
|
443 |
+
elif sharding_strategy == ShardingStrategy.NO_SHARD:
|
444 |
+
warnings.warn(
|
445 |
+
"The `NO_SHARD` sharding strategy is deprecated. If having issues, "
|
446 |
+
"please use DistributedDataParallel instead.",
|
447 |
+
# Level 1 is here, level 2 is from `FullyShardedDataParallel`, and
|
448 |
+
# level 3 is from the true caller
|
449 |
+
stacklevel=3,
|
450 |
+
)
|
451 |
+
state.sharding_strategy = sharding_strategy or ShardingStrategy.FULL_SHARD
|
452 |
+
state.mixed_precision = mixed_precision or MixedPrecision()
|
453 |
+
if mixed_precision is not None:
|
454 |
+
torch._C._log_api_usage_once(
|
455 |
+
f"torch.distributed.fsdp.mixed_precision.{str(state.mixed_precision)}"
|
456 |
+
)
|
457 |
+
state._use_full_prec_in_eval = (
|
458 |
+
os.environ.get(_FSDP_USE_FULL_PREC_IN_EVAL, "") == "1"
|
459 |
+
)
|
460 |
+
state.cpu_offload = cpu_offload or CPUOffload()
|
461 |
+
state.limit_all_gathers = limit_all_gathers
|
462 |
+
state._use_orig_params = use_orig_params
|
463 |
+
state.training_state = TrainingState.IDLE
|
464 |
+
state._is_root = None
|
465 |
+
state._free_event_queue = _FreeEventQueue()
|
466 |
+
state._debug_level = dist.get_debug_level()
|
467 |
+
state._exec_order_data = exec_order_utils._ExecOrderData(
|
468 |
+
state._debug_level,
|
469 |
+
backward_prefetch_limit,
|
470 |
+
forward_prefetch_limit,
|
471 |
+
)
|
472 |
+
# Mapping from fully sharded module to the handles it is responsible to
|
473 |
+
# unshard and reshard (see [Note: Fully Sharded Module])
|
474 |
+
_fully_sharded_module_to_handle: Dict[nn.Module, FlatParamHandle] = dict()
|
475 |
+
state._fully_sharded_module_to_handle = _fully_sharded_module_to_handle
|
476 |
+
# Invariant: `state.params` contains exactly the `FlatParameter`s of the
|
477 |
+
# handles in `state._handle`
|
478 |
+
_handle: FlatParamHandle = None
|
479 |
+
state._handle = _handle
|
480 |
+
params: List[FlatParameter] = []
|
481 |
+
state.params = params
|
482 |
+
return state
|
483 |
+
|
484 |
+
|
485 |
+
@no_type_check
|
486 |
+
def _init_runtime_state(
|
487 |
+
state: _FSDPState,
|
488 |
+
) -> _FSDPState:
|
489 |
+
_root_pre_forward_handles: List[RemovableHandle] = []
|
490 |
+
state._root_pre_forward_handles = _root_pre_forward_handles
|
491 |
+
_pre_forward_handles: List[RemovableHandle] = []
|
492 |
+
state._pre_forward_handles = _pre_forward_handles
|
493 |
+
_post_forward_handles: List[RemovableHandle] = []
|
494 |
+
state._post_forward_handles = _post_forward_handles
|
495 |
+
state._sync_gradients = True
|
496 |
+
state._comm_hook = None
|
497 |
+
state._comm_hook_state = None
|
498 |
+
# Used to prevent running the pre-backward hook multiple times
|
499 |
+
return state
|
500 |
+
|
501 |
+
|
502 |
+
@no_type_check
|
503 |
+
def _init_prefetching_state(
|
504 |
+
state: _FSDPState,
|
505 |
+
backward_prefetch: BackwardPrefetch,
|
506 |
+
forward_prefetch: bool,
|
507 |
+
) -> _FSDPState:
|
508 |
+
state.backward_prefetch = backward_prefetch
|
509 |
+
state.forward_prefetch = forward_prefetch
|
510 |
+
# The data structures use tuples of handles to generalize over the case
|
511 |
+
# where a module's forward involves multiple handles.
|
512 |
+
return state
|
513 |
+
|
514 |
+
|
515 |
+
@no_type_check
|
516 |
+
def _init_extension(state: _FSDPState, device_mesh: DeviceMesh = None) -> _FSDPState:
|
517 |
+
# TODO: we need to add additional check once we support FSDP + PiPPy.
|
518 |
+
# This check is currently sufficient, since we only support FSDP + TP.
|
519 |
+
if device_mesh and _mesh_resources.get_parent_mesh(state._device_mesh) is not None:
|
520 |
+
state._fsdp_extension = DTensorExtensions(state._device_handle)
|
521 |
+
else:
|
522 |
+
# We need to explicilty set _fsdp_extension to None.
|
523 |
+
# Otherwise, we will run into an infinite recursion when getting the attribute.
|
524 |
+
state._fsdp_extension = None
|
525 |
+
return state
|
526 |
+
|
527 |
+
|
528 |
+
@no_type_check
|
529 |
+
def _init_state_dict_state(state: _FSDPState) -> _FSDPState:
|
530 |
+
state._state_dict_type = StateDictType.FULL_STATE_DICT
|
531 |
+
state_dict_config: StateDictConfig = FullStateDictConfig()
|
532 |
+
state._optim_state_dict_config = FullOptimStateDictConfig()
|
533 |
+
state._state_dict_config = state_dict_config
|
534 |
+
unshard_params_ctx: Dict[nn.Module, Generator] = {}
|
535 |
+
state._unshard_params_ctx = unshard_params_ctx
|
536 |
+
|
537 |
+
return state
|
538 |
+
|
539 |
+
|
540 |
+
@no_type_check
|
541 |
+
def _init_param_handle_from_module(
|
542 |
+
state: _FSDPState,
|
543 |
+
fully_sharded_module: nn.Module,
|
544 |
+
device_id: Optional[Union[int, torch.device]],
|
545 |
+
param_init_fn: Optional[Callable[[nn.Module], None]],
|
546 |
+
sync_module_states: bool,
|
547 |
+
) -> _FSDPState:
|
548 |
+
"""Initialize a ``FlatParamHandle`` from a module ``fully_sharded_module``."""
|
549 |
+
_check_single_device_module(fully_sharded_module, state._ignored_params, device_id)
|
550 |
+
device_from_device_id = _get_device_from_device_id(device_id, state.rank)
|
551 |
+
is_meta_module, is_torchdistX_deferred_init = _need_to_materialize_module(
|
552 |
+
fully_sharded_module, state._ignored_params, state._ignored_modules
|
553 |
+
)
|
554 |
+
# Materialize the module if needed
|
555 |
+
if (is_meta_module or is_torchdistX_deferred_init) and param_init_fn is not None:
|
556 |
+
_materialize_with_param_init_fn(
|
557 |
+
fully_sharded_module, param_init_fn, state._ignored_modules
|
558 |
+
)
|
559 |
+
elif is_meta_module:
|
560 |
+
_materialize_meta_module(
|
561 |
+
fully_sharded_module, device_id, state._ignored_modules
|
562 |
+
)
|
563 |
+
elif is_torchdistX_deferred_init:
|
564 |
+
deferred_init.materialize_module(
|
565 |
+
fully_sharded_module,
|
566 |
+
check_fn=lambda submodule: _get_module_fsdp_state(submodule) is None
|
567 |
+
and submodule not in state._ignored_modules,
|
568 |
+
)
|
569 |
+
|
570 |
+
ignored_buffers = {
|
571 |
+
buffer
|
572 |
+
for ignored_module in state._ignored_modules
|
573 |
+
for buffer in ignored_module.buffers()
|
574 |
+
}
|
575 |
+
|
576 |
+
_move_module_to_device(
|
577 |
+
fully_sharded_module,
|
578 |
+
state._ignored_params,
|
579 |
+
ignored_buffers,
|
580 |
+
device_from_device_id,
|
581 |
+
)
|
582 |
+
state.compute_device = _get_compute_device(
|
583 |
+
fully_sharded_module,
|
584 |
+
state._ignored_params,
|
585 |
+
device_from_device_id,
|
586 |
+
state.rank,
|
587 |
+
)
|
588 |
+
|
589 |
+
managed_params = list(_get_orig_params(fully_sharded_module, state._ignored_params))
|
590 |
+
if sync_module_states:
|
591 |
+
_sync_module_params_and_buffers(
|
592 |
+
fully_sharded_module, managed_params, state.process_group
|
593 |
+
)
|
594 |
+
if state.sharding_strategy in HYBRID_SHARDING_STRATEGIES:
|
595 |
+
_sync_module_params_and_buffers(
|
596 |
+
fully_sharded_module, managed_params, state._inter_node_pg
|
597 |
+
)
|
598 |
+
_init_param_handle_from_params(state, managed_params, fully_sharded_module)
|
599 |
+
return state
|
600 |
+
|
601 |
+
|
602 |
+
@no_type_check
|
603 |
+
def _init_param_handle_from_params(
|
604 |
+
state: _FSDPState,
|
605 |
+
params: List[nn.Parameter],
|
606 |
+
fully_sharded_module: nn.Module,
|
607 |
+
):
|
608 |
+
if len(params) == 0:
|
609 |
+
return
|
610 |
+
handle = FlatParamHandle(
|
611 |
+
params,
|
612 |
+
fully_sharded_module,
|
613 |
+
state.compute_device,
|
614 |
+
SHARDING_STRATEGY_MAP[state.sharding_strategy],
|
615 |
+
state.cpu_offload.offload_params,
|
616 |
+
state.mixed_precision.param_dtype,
|
617 |
+
state.mixed_precision.reduce_dtype,
|
618 |
+
state.mixed_precision.keep_low_precision_grads,
|
619 |
+
state.process_group,
|
620 |
+
state._use_orig_params,
|
621 |
+
fsdp_extension=state._fsdp_extension,
|
622 |
+
)
|
623 |
+
handle.shard()
|
624 |
+
assert not state._handle
|
625 |
+
state.params.append(handle.flat_param)
|
626 |
+
state._handle = handle
|
627 |
+
state._fully_sharded_module_to_handle[handle._fully_sharded_module] = handle
|
628 |
+
cpu_device = torch.device("cpu")
|
629 |
+
if state.cpu_offload.offload_params and handle.flat_param.device != cpu_device:
|
630 |
+
handle.flat_param_to(cpu_device)
|
631 |
+
|
632 |
+
|
633 |
+
def _get_ignored_modules(
|
634 |
+
root_module: nn.Module,
|
635 |
+
_ignored_modules: Optional[Iterable[torch.nn.Module]],
|
636 |
+
) -> Set[nn.Module]:
|
637 |
+
"""
|
638 |
+
Check that ``_ignored_modules`` is an iterable of ``nn.Module`` s without any FSDP instances.
|
639 |
+
|
640 |
+
Return the modules contained in their module
|
641 |
+
subtrees as a :class:`set`. Nested FSDP instances are excluded, but their
|
642 |
+
already-computed ignored modules are included.
|
643 |
+
|
644 |
+
``_ignored_modules`` represents the argument passed by the user to FSDP.
|
645 |
+
"""
|
646 |
+
msg_prefix = "`ignored_modules` should be an iterable of `torch.nn.Module`s "
|
647 |
+
try:
|
648 |
+
ignored_root_modules = (
|
649 |
+
set(_ignored_modules) if _ignored_modules is not None else set()
|
650 |
+
)
|
651 |
+
except TypeError as e:
|
652 |
+
raise TypeError(msg_prefix + f"but got {type(_ignored_modules)}") from e
|
653 |
+
for module in ignored_root_modules:
|
654 |
+
if not isinstance(module, torch.nn.Module):
|
655 |
+
raise TypeError(msg_prefix + f"but got an iterable with {type(module)}")
|
656 |
+
if _get_module_fsdp_state(module):
|
657 |
+
# TODO: We may relax this by taking the FSDP instance's wrapped
|
658 |
+
# module to provide more flexibility to the user.
|
659 |
+
raise ValueError("`ignored_modules` should not include FSDP modules")
|
660 |
+
# Treat modules that cannot compose with `fully_shard` as ignored modules,
|
661 |
+
# meaning that their subtrees are ignored
|
662 |
+
for module in root_module.modules():
|
663 |
+
if not traversal_utils._composable(module):
|
664 |
+
ignored_root_modules.add(module)
|
665 |
+
# NOTE: Even if `ignored_root_modules` is empty, do not return early so
|
666 |
+
# that this FSDP instance can get any ignored modules from its children.
|
667 |
+
|
668 |
+
# Include child modules and exclude nested FSDP modules themselves
|
669 |
+
ignored_modules = {
|
670 |
+
child
|
671 |
+
for module in ignored_root_modules
|
672 |
+
for child in module.modules()
|
673 |
+
if not isinstance(child, fsdp_file.FullyShardedDataParallel)
|
674 |
+
}
|
675 |
+
if root_module in ignored_modules:
|
676 |
+
warnings.warn(
|
677 |
+
"Trying to ignore the top-level module passed into the FSDP "
|
678 |
+
"constructor itself will result in all parameters being "
|
679 |
+
f"ignored and is not well-supported: {module}"
|
680 |
+
)
|
681 |
+
# Include nested FSDP modules' ignored modules
|
682 |
+
for submodule in root_module.modules():
|
683 |
+
optional_fsdp_state = _get_module_fsdp_state(submodule)
|
684 |
+
if optional_fsdp_state is not None:
|
685 |
+
assert hasattr(optional_fsdp_state, "_ignored_modules")
|
686 |
+
ignored_modules.update(optional_fsdp_state._ignored_modules)
|
687 |
+
return ignored_modules
|
688 |
+
|
689 |
+
|
690 |
+
def _get_ignored_params(
|
691 |
+
root_module: torch.nn.Module,
|
692 |
+
ignored_modules: Set[torch.nn.Module],
|
693 |
+
ignored_parameters: Optional[Iterable[torch.nn.Parameter]] = None,
|
694 |
+
) -> Set[torch.nn.Parameter]:
|
695 |
+
"""
|
696 |
+
Return the parameters of the modules in ``ignored_modules`` and the parameters in ``ignored_parameters``.
|
697 |
+
|
698 |
+
:class:`FlatParameter` s are excluded from the result.
|
699 |
+
"""
|
700 |
+
all_ignored_params: Set[torch.nn.Parameter] = set()
|
701 |
+
|
702 |
+
params_in_ignored_modules = {
|
703 |
+
p for m in ignored_modules for p in m.parameters() if not _is_fsdp_flattened(p)
|
704 |
+
}
|
705 |
+
|
706 |
+
all_ignored_params.update(params_in_ignored_modules)
|
707 |
+
|
708 |
+
if ignored_parameters is not None:
|
709 |
+
params_in_ignored_parameters = {
|
710 |
+
p for p in ignored_parameters if not _is_fsdp_flattened(p)
|
711 |
+
}
|
712 |
+
all_ignored_params.update(params_in_ignored_parameters)
|
713 |
+
|
714 |
+
# Always include nested FSDP modules' ignored parameters
|
715 |
+
for submodule in root_module.modules():
|
716 |
+
optional_fsdp_state = _get_module_fsdp_state(submodule)
|
717 |
+
if optional_fsdp_state is not None:
|
718 |
+
assert hasattr(optional_fsdp_state, "_ignored_params")
|
719 |
+
all_ignored_params.update(optional_fsdp_state._ignored_params)
|
720 |
+
|
721 |
+
return all_ignored_params
|
722 |
+
|
723 |
+
|
724 |
+
def _get_ignored_buffer_names(
|
725 |
+
root_module: torch.nn.Module,
|
726 |
+
ignored_modules: Set[torch.nn.Module],
|
727 |
+
) -> Set[str]:
|
728 |
+
"""Return the cleaned buffer FQNs in ``ignored_modules``."""
|
729 |
+
all_ignored_buffer_names: Set[str] = set()
|
730 |
+
|
731 |
+
buffers_in_ignored_modules = {
|
732 |
+
buffer for m in ignored_modules for buffer in m.buffers()
|
733 |
+
}
|
734 |
+
|
735 |
+
all_ignored_buffer_names.update(
|
736 |
+
{
|
737 |
+
clean_tensor_name(buffer_name)
|
738 |
+
for buffer_name, buffer in root_module.named_buffers()
|
739 |
+
if buffer in buffers_in_ignored_modules
|
740 |
+
}
|
741 |
+
)
|
742 |
+
|
743 |
+
# Always include nested FSDP modules' ignored buffer names
|
744 |
+
for submodule in root_module.modules():
|
745 |
+
optional_fsdp_state = _get_module_fsdp_state(submodule)
|
746 |
+
if optional_fsdp_state is not None:
|
747 |
+
assert hasattr(optional_fsdp_state, "_ignored_buffer_names")
|
748 |
+
all_ignored_buffer_names.update(optional_fsdp_state._ignored_buffer_names)
|
749 |
+
|
750 |
+
return all_ignored_buffer_names
|
751 |
+
|
752 |
+
|
753 |
+
def _get_buffer_names(root_module: nn.Module) -> Set[str]:
|
754 |
+
"""Return the fully prefixed names of all buffers in the module hierarchy rooted at ``root_module`` as a class:`set`."""
|
755 |
+
return {
|
756 |
+
clean_tensor_name(buffer_name) for buffer_name, _ in root_module.named_buffers()
|
757 |
+
}
|
758 |
+
|
759 |
+
|
760 |
+
def _check_single_device_module(
|
761 |
+
module: nn.Module,
|
762 |
+
ignored_params: Set[nn.Parameter],
|
763 |
+
device_id: Optional[Union[int, torch.device]],
|
764 |
+
) -> None:
|
765 |
+
"""
|
766 |
+
Raise an error if ``module`` has original parameters on multiple devices, ignoring the parameters in ``ignored_params``.
|
767 |
+
|
768 |
+
Thus, after this method, the
|
769 |
+
module must be either fully on the CPU or fully on a non-CPU device.
|
770 |
+
"""
|
771 |
+
devices = {param.device for param in _get_orig_params(module, ignored_params)}
|
772 |
+
# We allow module to be partially on CPU and partially on GPU if device_id is not
|
773 |
+
# None, since the device_id arg will result in the CPU portion being moved to
|
774 |
+
# GPU. This is useful in cases where part of the module may be parallelized
|
775 |
+
# by another algorithm and may already be on GPU. We'd like to enforce device_id
|
776 |
+
# to not be None, otherwise we'd flatten parameters in a mixed module which is
|
777 |
+
# not supported.
|
778 |
+
if len(devices) == 2 and torch.device("cpu") in devices:
|
779 |
+
if device_id is None:
|
780 |
+
raise RuntimeError(
|
781 |
+
"To support a module with both CPU and GPU params, "
|
782 |
+
"please pass in device_id argument."
|
783 |
+
)
|
784 |
+
elif len(devices) > 1:
|
785 |
+
raise RuntimeError(
|
786 |
+
f"FSDP only supports single device modules but got params on {devices}"
|
787 |
+
)
|
788 |
+
|
789 |
+
|
790 |
+
def _get_device_from_device_id(
|
791 |
+
device_id: Optional[Union[int, torch.device]],
|
792 |
+
rank: int,
|
793 |
+
) -> Optional[torch.device]:
|
794 |
+
"""
|
795 |
+
Return a ``torch.device`` for the specified ``device_id``.
|
796 |
+
|
797 |
+
Processes ``device_id`` and returns either the corresponding device or
|
798 |
+
``None`` if ``device_id`` is ``None``.
|
799 |
+
"""
|
800 |
+
if device_id is None:
|
801 |
+
return None
|
802 |
+
device = (
|
803 |
+
device_id if isinstance(device_id, torch.device) else torch.device(device_id)
|
804 |
+
)
|
805 |
+
if device == torch.device("cuda"):
|
806 |
+
warnings.warn(
|
807 |
+
f"FSDP got the argument `device_id` {device_id} on rank "
|
808 |
+
f"{rank}, which does not have an explicit index. "
|
809 |
+
f"FSDP will use the current device {torch.cuda.current_device()}. "
|
810 |
+
"If this is incorrect, please explicitly call `torch.cuda.set_device()` "
|
811 |
+
"before FSDP initialization or pass in the explicit device "
|
812 |
+
"index as the `device_id` argument."
|
813 |
+
)
|
814 |
+
device = torch.device("cuda", torch.cuda.current_device())
|
815 |
+
return device
|
816 |
+
|
817 |
+
|
818 |
+
def _need_to_materialize_module(
|
819 |
+
module: nn.Module,
|
820 |
+
ignored_params: Set[nn.Parameter],
|
821 |
+
ignored_modules: Set[nn.Module],
|
822 |
+
) -> Tuple[bool, bool]:
|
823 |
+
"""
|
824 |
+
Return if ``module`` has parameters on meta device and if ``module`` is using torchdistX deferred initialization.
|
825 |
+
|
826 |
+
At most of the returned bools can
|
827 |
+
be ``True``. If either is ``True``, then ``module`` needs to be
|
828 |
+
materialized.
|
829 |
+
"""
|
830 |
+
managed_params = list(_get_orig_params(module, ignored_params))
|
831 |
+
is_meta_module = any(param.is_meta for param in managed_params)
|
832 |
+
# TODO: We need to establish a contract for FSDP and buffers. For now, we
|
833 |
+
# skip checking for meta buffers from ignored modules. We should consider
|
834 |
+
# refactoring the initialization holistically to avoid so many traversals.
|
835 |
+
for submodule in module.modules():
|
836 |
+
if submodule in ignored_modules:
|
837 |
+
continue
|
838 |
+
for buf in submodule.buffers(recurse=False):
|
839 |
+
is_meta_module |= buf.is_meta
|
840 |
+
is_torchdistX_deferred_init = (
|
841 |
+
not is_meta_module
|
842 |
+
and _TORCHDISTX_AVAIL
|
843 |
+
and any(fake.is_fake(param) for param in managed_params)
|
844 |
+
)
|
845 |
+
return is_meta_module, is_torchdistX_deferred_init
|
846 |
+
|
847 |
+
|
848 |
+
def _materialize_with_param_init_fn(
|
849 |
+
root_module: nn.Module,
|
850 |
+
param_init_fn: Callable[[nn.Module], None],
|
851 |
+
ignored_modules: Set[nn.Module],
|
852 |
+
) -> None:
|
853 |
+
if not callable(param_init_fn):
|
854 |
+
raise ValueError(
|
855 |
+
f"Expected {param_init_fn} to be callable but got {type(param_init_fn)}"
|
856 |
+
)
|
857 |
+
modules_to_materialize = _get_modules_to_materialize(root_module, ignored_modules)
|
858 |
+
for module in modules_to_materialize:
|
859 |
+
param_init_fn(module)
|
860 |
+
|
861 |
+
|
862 |
+
def _materialize_meta_module(
|
863 |
+
root_module: nn.Module,
|
864 |
+
device_from_device_id: Optional[torch.device],
|
865 |
+
ignored_modules: Set[nn.Module],
|
866 |
+
):
|
867 |
+
# Run default meta device initialization
|
868 |
+
materialization_device = device_from_device_id or torch.device(
|
869 |
+
torch.cuda.current_device()
|
870 |
+
)
|
871 |
+
modules_to_materialize = _get_modules_to_materialize(root_module, ignored_modules)
|
872 |
+
try:
|
873 |
+
# Assume that each module's `reset_parameters()` only initializes its
|
874 |
+
# own parameters and not those of its children
|
875 |
+
with torch.no_grad():
|
876 |
+
for module in modules_to_materialize:
|
877 |
+
# As a contract to the user, only call `reset_parameters()` if
|
878 |
+
# the module has directly managed parameters/buffers
|
879 |
+
module_state_iter = itertools.chain(
|
880 |
+
module.parameters(recurse=False), module.buffers(recurse=False)
|
881 |
+
)
|
882 |
+
has_module_states = len(list(module_state_iter)) > 0
|
883 |
+
if has_module_states:
|
884 |
+
module.to_empty(device=materialization_device, recurse=False)
|
885 |
+
module.reset_parameters() # type: ignore[operator]
|
886 |
+
except BaseException as e:
|
887 |
+
warnings.warn(
|
888 |
+
"Unable to call `reset_parameters()` for module on meta "
|
889 |
+
f"device with error {str(e)}. Please ensure that your module of"
|
890 |
+
f"type {type(module)} implements a `reset_parameters()` method." # type: ignore[possibly-undefined]
|
891 |
+
)
|
892 |
+
raise e
|
893 |
+
|
894 |
+
|
895 |
+
def _get_modules_to_materialize(
|
896 |
+
root_module: nn.Module, ignored_modules: Set[nn.Module]
|
897 |
+
) -> List[nn.Module]:
|
898 |
+
# Run BFS to collect the modules to materialize via `reset_parameters()`,
|
899 |
+
# stopping at any module with FSDP already applied or at ignored modules.
|
900 |
+
modules_to_materialize: List[nn.Module] = []
|
901 |
+
queue = collections.deque([root_module])
|
902 |
+
visited_modules: Set[nn.Module] = {root_module}
|
903 |
+
while queue:
|
904 |
+
module = queue.popleft()
|
905 |
+
modules_to_materialize.append(module)
|
906 |
+
for child_module in module.children():
|
907 |
+
if (
|
908 |
+
child_module not in visited_modules
|
909 |
+
and _get_module_fsdp_state(child_module) is None
|
910 |
+
and child_module not in ignored_modules
|
911 |
+
):
|
912 |
+
visited_modules.add(child_module)
|
913 |
+
queue.append(child_module)
|
914 |
+
return modules_to_materialize
|
915 |
+
|
916 |
+
|
917 |
+
def _move_module_to_device(
|
918 |
+
module: nn.Module,
|
919 |
+
ignored_params: Set[nn.Parameter],
|
920 |
+
ignored_buffers: Set[torch.Tensor],
|
921 |
+
device_from_device_id: Optional[torch.device],
|
922 |
+
) -> None:
|
923 |
+
"""
|
924 |
+
Move ``module`` depending on ``device_from_device_id`` and its current device.
|
925 |
+
|
926 |
+
This includes moving ignored modules' parameters.
|
927 |
+
|
928 |
+
- If ``device_from_device_id`` is not ``None``, then this moves
|
929 |
+
``module`` to the device.
|
930 |
+
- If ``device_from_device_id`` is ``None``, then this does not move
|
931 |
+
``module`` but warns the user if it is on CPU.
|
932 |
+
|
933 |
+
Precondition: ``_check_single_device_module()``.
|
934 |
+
"""
|
935 |
+
cpu_device = torch.device("cpu")
|
936 |
+
if device_from_device_id is not None:
|
937 |
+
# BFS from `module` without traversing any nested FSDP instances to
|
938 |
+
# collect the parameters/buffers that have not yet been managed
|
939 |
+
queue: Deque[nn.Module] = collections.deque()
|
940 |
+
queue.append(module)
|
941 |
+
params: List[nn.Parameter] = []
|
942 |
+
buffers: List[torch.Tensor] = []
|
943 |
+
while queue:
|
944 |
+
curr_module = queue.popleft()
|
945 |
+
# NOTE: We include a check to only move parameters/buffers that are
|
946 |
+
# on CPU device. If they are on a CUDA device different from the
|
947 |
+
# one specified by `device_id`, then this does NOT move them. This
|
948 |
+
# is so that we can raise an error in `_get_compute_device()`.
|
949 |
+
params.extend(
|
950 |
+
param
|
951 |
+
for param in curr_module.parameters(recurse=False)
|
952 |
+
if param.device == cpu_device
|
953 |
+
)
|
954 |
+
buffers.extend(
|
955 |
+
buffer
|
956 |
+
for buffer in curr_module.buffers(recurse=False)
|
957 |
+
if buffer.device == cpu_device
|
958 |
+
)
|
959 |
+
for submodule in curr_module.children():
|
960 |
+
if not isinstance(submodule, fsdp_file.FullyShardedDataParallel):
|
961 |
+
queue.append(submodule)
|
962 |
+
params_to_move = [p for p in params if p not in ignored_params]
|
963 |
+
bufs_to_move = [p for p in buffers if p not in ignored_buffers]
|
964 |
+
_move_states_to_device(params_to_move, bufs_to_move, device_from_device_id)
|
965 |
+
return
|
966 |
+
param = next(_get_orig_params(module, ignored_params), None)
|
967 |
+
if param is not None and param.device == cpu_device:
|
968 |
+
_warn_cpu_init()
|
969 |
+
|
970 |
+
|
971 |
+
def _move_states_to_device(
|
972 |
+
params: List[nn.Parameter],
|
973 |
+
buffers: List[torch.Tensor],
|
974 |
+
device_from_device_id: Optional[torch.device],
|
975 |
+
) -> None:
|
976 |
+
"""
|
977 |
+
Move states to the specified device.
|
978 |
+
|
979 |
+
Precondition: ``_check_single_device_module()`` and module's parameters and
|
980 |
+
buffers have been materialized if needed.
|
981 |
+
"""
|
982 |
+
if len(params) == 0 and len(buffers) == 0:
|
983 |
+
return
|
984 |
+
if len(params) > 0:
|
985 |
+
current_device = params[0].device
|
986 |
+
elif len(buffers) > 0:
|
987 |
+
current_device = buffers[0].device
|
988 |
+
cpu_device = torch.device("cpu")
|
989 |
+
if device_from_device_id is not None:
|
990 |
+
# Move the parameters and buffers like the `.data` code path in
|
991 |
+
# `nn.Module._apply()`, which underlies `nn.Module.to()`
|
992 |
+
for param in params:
|
993 |
+
with torch.no_grad():
|
994 |
+
param.data = param.to(device_from_device_id)
|
995 |
+
if param.grad is not None:
|
996 |
+
param.grad.data = param.grad.to(device_from_device_id)
|
997 |
+
for buffer in buffers:
|
998 |
+
buffer.data = buffer.to(device_from_device_id)
|
999 |
+
elif current_device == cpu_device: # type: ignore[possibly-undefined]
|
1000 |
+
_warn_cpu_init()
|
1001 |
+
|
1002 |
+
|
1003 |
+
def _warn_cpu_init():
|
1004 |
+
warnings.warn(
|
1005 |
+
"The passed-in `module` is on CPU and will thus have FSDP's sharding "
|
1006 |
+
"initialization run on CPU, which may be slower than on GPU. We "
|
1007 |
+
"recommend passing in the `device_id` argument for FSDP to move "
|
1008 |
+
"`module` to GPU for the sharding initialization. `module` must also "
|
1009 |
+
"be on GPU device to work with the `sync_module_states=True` flag "
|
1010 |
+
"since that requires GPU communication."
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
|
1014 |
+
def _get_compute_device(
|
1015 |
+
module: nn.Module,
|
1016 |
+
ignored_params: Set[nn.Parameter],
|
1017 |
+
device_from_device_id: Optional[torch.device],
|
1018 |
+
rank: int,
|
1019 |
+
) -> torch.device:
|
1020 |
+
"""
|
1021 |
+
Determine and return this FSDP instance's compute device.
|
1022 |
+
|
1023 |
+
If a device is
|
1024 |
+
specified by ``device_id``, then returns that device. Otherwise, If the
|
1025 |
+
module is already on a non-CPU device, then the compute device is that non-CPU
|
1026 |
+
device. If the module is on CPU, then the compute device is the current
|
1027 |
+
device.
|
1028 |
+
|
1029 |
+
Since this method should be called after materializing the module, any
|
1030 |
+
non-CPU device should not be meta device. For now, the compute device is
|
1031 |
+
always a CUDA GPU device with its explicit index.
|
1032 |
+
|
1033 |
+
Precondition: ``_check_single_device_module()`` and
|
1034 |
+
``_move_module_to_device()``.
|
1035 |
+
"""
|
1036 |
+
param = next(_get_orig_params(module, ignored_params), None)
|
1037 |
+
if param is not None and param.device.type != "cpu":
|
1038 |
+
compute_device = param.device # Determined by model param placement
|
1039 |
+
else:
|
1040 |
+
if device_from_device_id is not None and device_from_device_id.type != "cuda":
|
1041 |
+
compute_device = device_from_device_id # Determined by custom backend
|
1042 |
+
else:
|
1043 |
+
compute_device = torch.device("cuda", torch.cuda.current_device())
|
1044 |
+
if device_from_device_id is not None and compute_device != device_from_device_id:
|
1045 |
+
raise ValueError(
|
1046 |
+
f"Inconsistent compute device and `device_id` on rank {rank}: "
|
1047 |
+
f"{compute_device} vs {device_from_device_id}"
|
1048 |
+
)
|
1049 |
+
return compute_device
|
1050 |
+
|
1051 |
+
|
1052 |
+
# TODO: See how to deprecate!
|
1053 |
+
def _sync_module_params_and_buffers(
|
1054 |
+
module: nn.Module,
|
1055 |
+
params: List[nn.Parameter],
|
1056 |
+
process_group: dist.ProcessGroup,
|
1057 |
+
) -> None:
|
1058 |
+
"""
|
1059 |
+
Synchronize module states (i.e. parameters ``params`` and all not-yet-synced buffers) by broadcasting from rank 0 to all ranks.
|
1060 |
+
|
1061 |
+
Precondition: ``sync_module_states == True`` and ``self.process_group`` has
|
1062 |
+
been set.
|
1063 |
+
"""
|
1064 |
+
module_states: List[torch.Tensor] = []
|
1065 |
+
for buffer in module.buffers():
|
1066 |
+
# Avoid re-synchronizing buffers in case of nested wrapping
|
1067 |
+
if not getattr(buffer, FSDP_SYNCED, False):
|
1068 |
+
setattr(buffer, FSDP_SYNCED, True)
|
1069 |
+
detached_buffer = buffer.detach()
|
1070 |
+
if is_traceable_wrapper_subclass(detached_buffer):
|
1071 |
+
# NOTE: Here we assume no nested subclasses, at most one level of subclass
|
1072 |
+
# in both model's buffers and params
|
1073 |
+
attrs, _ = detached_buffer.__tensor_flatten__() # type: ignore[attr-defined]
|
1074 |
+
inner_buffers = [getattr(detached_buffer, attr) for attr in attrs]
|
1075 |
+
module_states.extend(inner_buffers)
|
1076 |
+
else:
|
1077 |
+
module_states.append(detached_buffer)
|
1078 |
+
|
1079 |
+
for param in params:
|
1080 |
+
detached_param = param.detach()
|
1081 |
+
if is_traceable_wrapper_subclass(detached_param):
|
1082 |
+
attrs, _ = detached_param.__tensor_flatten__() # type: ignore[attr-defined]
|
1083 |
+
inner_params = [getattr(detached_param, attr) for attr in attrs]
|
1084 |
+
module_states.extend(inner_params)
|
1085 |
+
else:
|
1086 |
+
module_states.append(detached_param)
|
1087 |
+
|
1088 |
+
_check_module_states_for_sync_module_states(module_states)
|
1089 |
+
_sync_params_and_buffers(
|
1090 |
+
process_group,
|
1091 |
+
module_states,
|
1092 |
+
PARAM_BROADCAST_BUCKET_SIZE,
|
1093 |
+
src=0,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
|
1097 |
+
def _sync_module_states(
|
1098 |
+
params: List[nn.Parameter],
|
1099 |
+
buffers: List[torch.Tensor],
|
1100 |
+
process_group: dist.ProcessGroup,
|
1101 |
+
) -> None:
|
1102 |
+
# Assumes that each call to this method passes in disjoint `params` and
|
1103 |
+
# and `buffers` across calls, so there is no chance of re-synchronizing
|
1104 |
+
params_and_buffers = [param.detach() for param in params] + [
|
1105 |
+
buffer.detach() for buffer in buffers
|
1106 |
+
]
|
1107 |
+
_check_module_states_for_sync_module_states(params_and_buffers)
|
1108 |
+
_sync_params_and_buffers(
|
1109 |
+
process_group,
|
1110 |
+
params_and_buffers,
|
1111 |
+
PARAM_BROADCAST_BUCKET_SIZE,
|
1112 |
+
src=0,
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
|
1116 |
+
def _check_module_states_for_sync_module_states(
|
1117 |
+
module_states: List[torch.Tensor],
|
1118 |
+
) -> None:
|
1119 |
+
if module_states and any(
|
1120 |
+
tensor.device == torch.device("cpu") for tensor in module_states
|
1121 |
+
):
|
1122 |
+
raise ValueError(
|
1123 |
+
"The module has CPU parameters or buffers when `sync_module_states=True`, "
|
1124 |
+
"which requires them to be on GPU. Please specify the `device_id` argument "
|
1125 |
+
"or move the module to GPU before passing it to FSDP."
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
|
1129 |
+
def _get_orig_params(
|
1130 |
+
module: nn.Module,
|
1131 |
+
ignored_params: Set[nn.Parameter],
|
1132 |
+
) -> Iterator[nn.Parameter]:
|
1133 |
+
"""
|
1134 |
+
Return an iterator over the original parameters in ``module``.
|
1135 |
+
|
1136 |
+
The iterator does not return
|
1137 |
+
the parameters in ``ignored_params``, any ``FlatParameter`` s (which may be
|
1138 |
+
present due to nested FSDP wrapping), or any original parameters already
|
1139 |
+
flattened (only relevant when ``use_orig_params=True``).
|
1140 |
+
"""
|
1141 |
+
param_gen = module.parameters()
|
1142 |
+
try:
|
1143 |
+
while True:
|
1144 |
+
param = next(param_gen)
|
1145 |
+
if param not in ignored_params and not _is_fsdp_flattened(param):
|
1146 |
+
yield param
|
1147 |
+
except StopIteration:
|
1148 |
+
pass
|
1149 |
+
|
1150 |
+
|
1151 |
+
def _check_orig_params_flattened(
|
1152 |
+
fsdp_module,
|
1153 |
+
ignored_params: Set[nn.Parameter],
|
1154 |
+
) -> None:
|
1155 |
+
"""
|
1156 |
+
Check that original parameters in ``fsdp_module`` have been flattened.
|
1157 |
+
|
1158 |
+
The flattened parameters are made
|
1159 |
+
invisible to ``named_parameters()`` for the module hierarchy rooted at
|
1160 |
+
``fsdp_module``. This should be called as a sanity check after flattening
|
1161 |
+
the wrapped module's parameters.
|
1162 |
+
"""
|
1163 |
+
for param_name, param in _named_parameters_with_duplicates(fsdp_module):
|
1164 |
+
if param not in ignored_params and not _is_fsdp_flattened(param):
|
1165 |
+
raise RuntimeError(
|
1166 |
+
f"Found an unflattened parameter: {param_name}; "
|
1167 |
+
f"{param.size()} {param.__class__}"
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
|
1171 |
+
def _get_default_comm_hook(sharding_strategy: ShardingStrategy):
|
1172 |
+
return (
|
1173 |
+
default_hooks.allreduce_hook
|
1174 |
+
if sharding_strategy == ShardingStrategy.NO_SHARD
|
1175 |
+
else default_hooks.reduce_scatter_hook
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
|
1179 |
+
def _get_default_comm_hook_state(
|
1180 |
+
process_group: dist.ProcessGroup,
|
1181 |
+
) -> default_hooks.DefaultState:
|
1182 |
+
return default_hooks.DefaultState(process_group=process_group)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_limiter_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from typing import Deque, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class _FreeEventQueue:
|
8 |
+
"""
|
9 |
+
This tracks all pending frees corresponding to inflight all-gathers. The
|
10 |
+
queueing pattern is iterative enqueues with a single dequeue per iteration
|
11 |
+
once the limit ``_max_num_inflight_all_gathers`` is reached.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self) -> None:
|
15 |
+
self._queue: Deque[torch.cuda.Event] = collections.deque()
|
16 |
+
self._max_num_inflight_all_gathers = 2 # empirically chosen
|
17 |
+
|
18 |
+
def enqueue(self, free_event: torch.cuda.Event) -> None:
|
19 |
+
"""Enqueues a free event."""
|
20 |
+
self._queue.append(free_event)
|
21 |
+
|
22 |
+
def dequeue_if_needed(self) -> Optional[torch.cuda.Event]:
|
23 |
+
"""Dequeues a single event if the limit is reached."""
|
24 |
+
if len(self._queue) >= self._max_num_inflight_all_gathers:
|
25 |
+
return self._dequeue()
|
26 |
+
return None
|
27 |
+
|
28 |
+
def _dequeue(self) -> Optional[torch.cuda.Event]:
|
29 |
+
"""Dequeues a free event if possible."""
|
30 |
+
if self._queue:
|
31 |
+
event = self._queue.popleft()
|
32 |
+
return event
|
33 |
+
return None
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_optim_utils.py
ADDED
@@ -0,0 +1,2086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import functools
|
3 |
+
import logging
|
4 |
+
import warnings
|
5 |
+
from contextlib import ExitStack
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from typing import (
|
8 |
+
Any,
|
9 |
+
cast,
|
10 |
+
Dict,
|
11 |
+
Iterable,
|
12 |
+
Iterator,
|
13 |
+
List,
|
14 |
+
NamedTuple,
|
15 |
+
no_type_check,
|
16 |
+
Optional,
|
17 |
+
Sequence,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
Union,
|
21 |
+
)
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.distributed as dist
|
25 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
26 |
+
import torch.nn as nn
|
27 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
28 |
+
from torch.distributed._state_dict_utils import _gather_state_dict
|
29 |
+
from torch.distributed._tensor import DTensor, Replicate
|
30 |
+
from torch.distributed.distributed_c10d import _get_pg_default_device
|
31 |
+
from torch.distributed.fsdp._common_utils import (
|
32 |
+
_apply_to_modules,
|
33 |
+
_FSDPState,
|
34 |
+
_get_module_fsdp_state_if_fully_sharded_module,
|
35 |
+
_get_param_to_fqns,
|
36 |
+
_module_handle,
|
37 |
+
_named_parameters_with_duplicates,
|
38 |
+
clean_tensor_name,
|
39 |
+
)
|
40 |
+
from torch.distributed.fsdp._debug_utils import SimpleProfiler
|
41 |
+
from torch.distributed.fsdp._flat_param import FlatParameter, FlatParamHandle
|
42 |
+
from torch.distributed.fsdp._fsdp_extensions import (
|
43 |
+
_ext_chunk_dtensor,
|
44 |
+
_ext_chunk_tensor,
|
45 |
+
)
|
46 |
+
from torch.distributed.fsdp._runtime_utils import (
|
47 |
+
_lazy_init,
|
48 |
+
_reset_flat_param_grad_info_if_needed,
|
49 |
+
)
|
50 |
+
from torch.distributed.fsdp.api import (
|
51 |
+
ShardingStrategy,
|
52 |
+
StateDictSettings,
|
53 |
+
StateDictType,
|
54 |
+
)
|
55 |
+
from torch.utils._pytree import tree_map_only
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
class FSDPParamInfo:
|
63 |
+
state: _FSDPState
|
64 |
+
handle: FlatParamHandle
|
65 |
+
param_indices: Dict[str, int]
|
66 |
+
param_requires_grad: List[bool]
|
67 |
+
|
68 |
+
|
69 |
+
def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
|
70 |
+
keys = sorted(dictionary.keys())
|
71 |
+
for k in keys:
|
72 |
+
yield k, dictionary[k]
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class _ConsolidatedOptimState:
|
77 |
+
"""
|
78 |
+
This holds the consolidated optimizer state on the target rank. Positive-
|
79 |
+
dimension tensor state is communicated across ranks, while zero-dimension
|
80 |
+
tensor state and non-tensor state is taken directly from the target rank.
|
81 |
+
|
82 |
+
PyTorch version 1.12 moved to using zero-dimension tensors for scalar
|
83 |
+
values, but user implemented optimizers may still use float (i.e. a
|
84 |
+
non-tensor). Thus, we support both and handle them identically.
|
85 |
+
|
86 |
+
Attributes:
|
87 |
+
tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
|
88 |
+
tensor state name to the unsharded flat tensor representing the
|
89 |
+
state.
|
90 |
+
zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
|
91 |
+
dimension tensor state name to its value.
|
92 |
+
non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
|
93 |
+
name to its value.
|
94 |
+
"""
|
95 |
+
|
96 |
+
tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
97 |
+
zero_dim_tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
98 |
+
non_tensor_state: Dict[str, Any] = field(default_factory=dict)
|
99 |
+
|
100 |
+
|
101 |
+
class _PosDimTensorInfo(NamedTuple):
|
102 |
+
"""
|
103 |
+
Meatadata for positive-dimension tensors used internally for
|
104 |
+
:meth:`scatter_full_optim_state_dict`.
|
105 |
+
|
106 |
+
Attributes:
|
107 |
+
shape (torch.Size): Sharded tensor shape (which is equal to the
|
108 |
+
unsharded tensor shape if the tensor is optimizer state for a
|
109 |
+
non-FSDP parameter and is hence not sharded).
|
110 |
+
dtype (torch.dtype): Data type of the tensor.
|
111 |
+
"""
|
112 |
+
|
113 |
+
shape: torch.Size
|
114 |
+
dtype: torch.dtype
|
115 |
+
|
116 |
+
|
117 |
+
class _OptimStateKey(NamedTuple):
|
118 |
+
"""
|
119 |
+
This represents an optimizer state key that may be used commonly across
|
120 |
+
ranks. It is based on the unflattened parameter names rather than parameter
|
121 |
+
IDs to make it independent of each rank's own optimizer construction.
|
122 |
+
"""
|
123 |
+
|
124 |
+
unflat_param_names: Tuple[str, ...]
|
125 |
+
is_fsdp_managed: bool
|
126 |
+
|
127 |
+
|
128 |
+
def _unflatten_optim_state(
|
129 |
+
fsdp_param_info: FSDPParamInfo,
|
130 |
+
flat_param_state: Dict[str, Any],
|
131 |
+
to_save: bool,
|
132 |
+
shard_state: bool,
|
133 |
+
cpu_offload: bool,
|
134 |
+
) -> List[Dict[str, Any]]:
|
135 |
+
"""
|
136 |
+
Unflattens the optimizer state, consisting of the "state" part and the
|
137 |
+
"param_groups" part. Unflattening the "state" part involves consolidating
|
138 |
+
the state on the target rank and remapping from flattened to unflattened
|
139 |
+
parameter IDs, and the "param_groups" part only involves remapping from
|
140 |
+
flattened to unflattened parameter IDs.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
144 |
+
mapping from FQN to original parameter index.
|
145 |
+
flat_param_state (Dict[str, Any]): Entry for the flat parameter in the
|
146 |
+
"state" part of the optimizer state dict.
|
147 |
+
to_save (bool): Whether to save the state on this rank.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
151 |
+
"state" part of the optimizer state dict corresponding to the
|
152 |
+
unflattened parameters comprising the flat parameter if on the target
|
153 |
+
rank or an empty :class:`list` otherwise. The final optimizer state
|
154 |
+
dict will need to map these entries using the proper unflattened
|
155 |
+
parameter IDs.
|
156 |
+
"""
|
157 |
+
assert (
|
158 |
+
not shard_state or to_save
|
159 |
+
), "If ``shard_state`` is True, ``to_save`` has to be True."
|
160 |
+
consolidated_state = _communicate_optim_state(
|
161 |
+
fsdp_param_info,
|
162 |
+
flat_param_state,
|
163 |
+
)
|
164 |
+
if to_save:
|
165 |
+
unflat_param_state = _unflatten_communicated_optim_state(
|
166 |
+
fsdp_param_info,
|
167 |
+
consolidated_state,
|
168 |
+
shard_state,
|
169 |
+
)
|
170 |
+
for optim_state in unflat_param_state:
|
171 |
+
# We can't use .items() below cuz we'd run into a concurrent modification error
|
172 |
+
if cpu_offload:
|
173 |
+
for key in list(optim_state.keys()):
|
174 |
+
state = optim_state[key]
|
175 |
+
if not isinstance(state, torch.Tensor):
|
176 |
+
continue
|
177 |
+
optim_state[key] = state.cpu()
|
178 |
+
return unflat_param_state
|
179 |
+
else:
|
180 |
+
return []
|
181 |
+
|
182 |
+
|
183 |
+
def _is_zero_dim_tensor(x: Any) -> bool:
|
184 |
+
return torch.is_tensor(x) and x.dim() == 0
|
185 |
+
|
186 |
+
|
187 |
+
def _communicate_optim_state(
|
188 |
+
fsdp_param_info: FSDPParamInfo,
|
189 |
+
flat_param_state: Dict[str, Any],
|
190 |
+
) -> _ConsolidatedOptimState:
|
191 |
+
"""
|
192 |
+
Communicates the optimizer state for a flat parameter across ranks. All
|
193 |
+
ranks will hold the entire non-sharded optimizer state on GPU.
|
194 |
+
|
195 |
+
If ``N`` is the number of tensor optimizer states in the optimizer state
|
196 |
+
dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
|
197 |
+
otherwise (where the plus 1 comes from all-gathering the padding per rank).
|
198 |
+
|
199 |
+
Args:
|
200 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
201 |
+
mapping from FQN to original parameter index.
|
202 |
+
flat_param_state (Dict[str, Any]): The entry in the "state" part of the
|
203 |
+
optimizer state dict corresponding to the flat parameter.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
ConsolidatedOptimState: Consolidated optimizer state for the target
|
207 |
+
flat parameter.
|
208 |
+
"""
|
209 |
+
fsdp_state = fsdp_param_info.state
|
210 |
+
flat_param = fsdp_param_info.handle.flat_param
|
211 |
+
state = _ConsolidatedOptimState()
|
212 |
+
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
213 |
+
state.tensor_state,
|
214 |
+
state.zero_dim_tensor_state,
|
215 |
+
state.non_tensor_state,
|
216 |
+
)
|
217 |
+
|
218 |
+
for state_name, value in sorted_items(flat_param_state):
|
219 |
+
# Positive-dimension tensor state: communicate across ranks
|
220 |
+
if torch.is_tensor(value) and value.dim() > 0:
|
221 |
+
# If the parameter is not sharded, then neither is the
|
222 |
+
# positive-dimension tensor state, so no need to communicate it --
|
223 |
+
# we take the target rank's value
|
224 |
+
if (
|
225 |
+
fsdp_state.world_size == 1
|
226 |
+
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
227 |
+
):
|
228 |
+
tensor_state[state_name] = value
|
229 |
+
continue
|
230 |
+
assert (
|
231 |
+
fsdp_state.compute_device is not None
|
232 |
+
), "compute_device has not been initialized"
|
233 |
+
if value.device.type != fsdp_state.compute_device.type:
|
234 |
+
value = value.to(fsdp_state.compute_device)
|
235 |
+
# Assume that positive-dimension tensor optimizer state
|
236 |
+
# has the same shape as the sharded flat parameter
|
237 |
+
buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
|
238 |
+
tensor_buffer = value.new_zeros(*buffer_size)
|
239 |
+
dist.all_gather_into_tensor(
|
240 |
+
tensor_buffer, value, group=fsdp_state.process_group
|
241 |
+
)
|
242 |
+
fsdp_state._device_handle.synchronize()
|
243 |
+
unpadded_numel = cast(
|
244 |
+
nn.Parameter, flat_param._unpadded_unsharded_size
|
245 |
+
).numel()
|
246 |
+
tensor_state[state_name] = tensor_buffer[:unpadded_numel]
|
247 |
+
# Zero-dimension tensor state and non-tensor state: take this rank's
|
248 |
+
# value directly
|
249 |
+
else:
|
250 |
+
if _is_zero_dim_tensor(value):
|
251 |
+
zero_dim_tensor_state[state_name] = value.detach().clone()
|
252 |
+
else:
|
253 |
+
non_tensor_state[state_name] = value
|
254 |
+
return state
|
255 |
+
|
256 |
+
|
257 |
+
def _unflatten_communicated_optim_state(
|
258 |
+
fsdp_param_info: FSDPParamInfo,
|
259 |
+
state: _ConsolidatedOptimState,
|
260 |
+
shard_state: bool,
|
261 |
+
) -> List[Dict[str, Any]]:
|
262 |
+
"""
|
263 |
+
Unflattens the communicated optimizer state (given by ``tensor_state``,
|
264 |
+
``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flat
|
265 |
+
parameter. This should only be called on the target rank.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
269 |
+
mapping from FQN to original parameter index.
|
270 |
+
state (_ConsolidatedOptimState): Consolidated optimizer state.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
274 |
+
"state" part of the optimizer state dict corresponding to the
|
275 |
+
unflattened parameters comprising the flat parameter. The final
|
276 |
+
optimizer state dict will need to map these entries using the proper
|
277 |
+
unflattened parameter IDs.
|
278 |
+
"""
|
279 |
+
fsdp_state = fsdp_param_info.state
|
280 |
+
handle = fsdp_param_info.handle
|
281 |
+
flat_param = handle.flat_param
|
282 |
+
unflat_param_state: List[Dict[str, Any]] = []
|
283 |
+
flat_param_views: Dict[str, Iterator] = {}
|
284 |
+
num_unflat_params = flat_param._num_params
|
285 |
+
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
286 |
+
state.tensor_state,
|
287 |
+
state.zero_dim_tensor_state,
|
288 |
+
state.non_tensor_state,
|
289 |
+
)
|
290 |
+
|
291 |
+
for _ in range(num_unflat_params):
|
292 |
+
unflat_state_param = {}
|
293 |
+
# Add positive-dimension tensor state: unflatten with views
|
294 |
+
for state_name, flat_tensor in sorted_items(tensor_state):
|
295 |
+
views_generated = state_name in flat_param_views
|
296 |
+
if not views_generated:
|
297 |
+
views = handle._get_unflat_views(flat_tensor)
|
298 |
+
flat_param_views[state_name] = views
|
299 |
+
else:
|
300 |
+
views = flat_param_views[state_name]
|
301 |
+
optim_state: Union[torch.Tensor, ShardedTensor, DTensor] = next(views)
|
302 |
+
if shard_state:
|
303 |
+
osd_config = fsdp_state._optim_state_dict_config
|
304 |
+
if getattr(osd_config, "_use_dtensor", False):
|
305 |
+
assert fsdp_state._device_mesh is not None
|
306 |
+
optim_state = _ext_chunk_dtensor(
|
307 |
+
optim_state,
|
308 |
+
fsdp_state.rank,
|
309 |
+
fsdp_state._device_mesh,
|
310 |
+
fsdp_state._fsdp_extension,
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
assert fsdp_state.process_group is not None
|
314 |
+
optim_state = _ext_chunk_tensor(
|
315 |
+
optim_state,
|
316 |
+
fsdp_state.rank,
|
317 |
+
fsdp_state.world_size,
|
318 |
+
fsdp_state._device_handle.device_count(),
|
319 |
+
fsdp_state.process_group,
|
320 |
+
fsdp_state._fsdp_extension,
|
321 |
+
)
|
322 |
+
unflat_state_param[state_name] = optim_state
|
323 |
+
|
324 |
+
# Add zero-dimension tensor state: take the target rank's value
|
325 |
+
for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
|
326 |
+
unflat_state_param[state_name] = zero_dim_tensor
|
327 |
+
# Add non-tensor state: take the target rank's value
|
328 |
+
for state_name, non_tensor in sorted_items(non_tensor_state):
|
329 |
+
unflat_state_param[state_name] = non_tensor
|
330 |
+
unflat_param_state.append(unflat_state_param)
|
331 |
+
return unflat_param_state
|
332 |
+
|
333 |
+
|
334 |
+
def _broadcast_processed_state(
|
335 |
+
fsdp_state: _FSDPState,
|
336 |
+
optim_state: Dict[str, Any],
|
337 |
+
group: Optional[dist.ProcessGroup],
|
338 |
+
) -> Dict[str, Any]:
|
339 |
+
objects: List[Any] = [None]
|
340 |
+
if fsdp_state.rank == 0:
|
341 |
+
objects[0] = tree_map_only(
|
342 |
+
torch.Tensor,
|
343 |
+
lambda v: v.cpu() if v.dim() == 0 else _PosDimTensorInfo(v.shape, v.dtype), # type: ignore[union-attr]
|
344 |
+
optim_state,
|
345 |
+
)
|
346 |
+
dist.broadcast_object_list(objects, src=0, group=group)
|
347 |
+
if fsdp_state.rank == 0:
|
348 |
+
return optim_state
|
349 |
+
else:
|
350 |
+
return objects[0]
|
351 |
+
|
352 |
+
|
353 |
+
def _broadcast_state(
|
354 |
+
fsdp_state: _FSDPState, state: Any, group: Optional[dist.ProcessGroup]
|
355 |
+
) -> Any:
|
356 |
+
if fsdp_state.rank == 0:
|
357 |
+
if not isinstance(state, torch.Tensor) or state.dim() == 0:
|
358 |
+
return state
|
359 |
+
tensor = state.to(fsdp_state.compute_device)
|
360 |
+
else:
|
361 |
+
if isinstance(state, torch.Tensor):
|
362 |
+
assert state.dim() == 0, (
|
363 |
+
"For non-zero ranks, a tensor state should have zero dimension, "
|
364 |
+
"but got the state with shape {state.shape()}."
|
365 |
+
)
|
366 |
+
return state
|
367 |
+
elif not isinstance(state, _PosDimTensorInfo):
|
368 |
+
return state
|
369 |
+
tensor = torch.zeros(
|
370 |
+
state.shape, dtype=state.dtype, device=fsdp_state.compute_device
|
371 |
+
)
|
372 |
+
dist.broadcast(tensor, src=0, group=group)
|
373 |
+
return tensor
|
374 |
+
|
375 |
+
|
376 |
+
def _shard_orig_param_state(
|
377 |
+
fsdp_param_info: FSDPParamInfo,
|
378 |
+
fqn: str,
|
379 |
+
optim_state: Dict[str, Any],
|
380 |
+
) -> Dict[str, Any]:
|
381 |
+
"""
|
382 |
+
Shard the optimizer state for the original parameter with the name ``fqn``.
|
383 |
+
This API should only be used when ``use_orig_params`` is True.
|
384 |
+
"""
|
385 |
+
if not optim_state:
|
386 |
+
return {}
|
387 |
+
fsdp_state = fsdp_param_info.state
|
388 |
+
flat_param = fsdp_param_info.handle.flat_param
|
389 |
+
param_idx = fsdp_param_info.param_indices[fqn]
|
390 |
+
shard_param_info = flat_param._shard_param_infos[param_idx] # type: ignore[attr-defined]
|
391 |
+
optim_state = _gather_state_dict(
|
392 |
+
optim_state, pg=fsdp_state.process_group, device=fsdp_state.compute_device
|
393 |
+
)
|
394 |
+
if not shard_param_info.in_shard:
|
395 |
+
return {}
|
396 |
+
# Flatten and shard the state.
|
397 |
+
new_optim_state: Dict[str, Any] = {}
|
398 |
+
intra_param_start_idx = shard_param_info.intra_param_start_idx
|
399 |
+
intra_param_end_idx = shard_param_info.intra_param_end_idx
|
400 |
+
for state_name, value in optim_state.items():
|
401 |
+
if (
|
402 |
+
torch.is_tensor(value)
|
403 |
+
and value.dim() > 0
|
404 |
+
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
405 |
+
):
|
406 |
+
value = value.flatten()[intra_param_start_idx : intra_param_end_idx + 1].clone() # type: ignore[operator]
|
407 |
+
new_optim_state[state_name] = value
|
408 |
+
return new_optim_state
|
409 |
+
|
410 |
+
|
411 |
+
def _flatten_optim_state_dict(
|
412 |
+
optim_state_dict: Dict[str, Any],
|
413 |
+
model: nn.Module,
|
414 |
+
use_orig_params: bool = False,
|
415 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
416 |
+
rank0_only: bool = False,
|
417 |
+
group: Optional[dist.ProcessGroup] = None,
|
418 |
+
) -> Dict[str, Any]:
|
419 |
+
"""
|
420 |
+
Flattens the full optimizer state dict, still keying by unflattened parameter
|
421 |
+
names.
|
422 |
+
|
423 |
+
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
424 |
+
parameters but some of these parameters may be empty due to the sharding.
|
425 |
+
For a regular optim.Optimizer, states for those empty parameters will
|
426 |
+
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
427 |
+
will be raised on a rank even if it does not have all the states -- it is
|
428 |
+
valid and FSDP know how to aggregate them. However, FSDP has to ignore
|
429 |
+
handling those parameters that are not managed by FSDP and do not exist on
|
430 |
+
the local rank -- it is managed by other parallelism and FSDP does not
|
431 |
+
know ho to handle/aggregate them.
|
432 |
+
|
433 |
+
Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
|
434 |
+
flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
|
435 |
+
all the states even if the corresponding parameters are empty. To this end,
|
436 |
+
``optim`` will be used to to get the initial state of the empty parameters.
|
437 |
+
``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
|
438 |
+
NamedOptimizer.
|
439 |
+
|
440 |
+
Returns:
|
441 |
+
Dict[str, Any]: The flattened optimizer state dict.
|
442 |
+
"""
|
443 |
+
SimpleProfiler.reset()
|
444 |
+
|
445 |
+
unflat_osd = optim_state_dict
|
446 |
+
if "state" not in unflat_osd and not rank0_only:
|
447 |
+
raise ValueError(
|
448 |
+
'`optim_state_dict` must have the keys "state"'
|
449 |
+
"to be a valid optimizer state dict"
|
450 |
+
)
|
451 |
+
param_to_fqns = _get_param_to_fqns(model)
|
452 |
+
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
453 |
+
fsdp_state = next(iter(fqn_to_fsdp_param_info.values())).state
|
454 |
+
|
455 |
+
# Broadcast unflat_osd without non-scalar tensor if rank0_only is True.
|
456 |
+
if rank0_only:
|
457 |
+
unflat_osd = _broadcast_processed_state(fsdp_state, unflat_osd, group=group)
|
458 |
+
|
459 |
+
# Construct the "state" part
|
460 |
+
flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
|
461 |
+
unflat_osd_state = unflat_osd["state"]
|
462 |
+
all_state_keys = set(unflat_osd_state.keys())
|
463 |
+
|
464 |
+
for param, fqns in param_to_fqns.items():
|
465 |
+
fqn = fqns[0]
|
466 |
+
if fqn not in unflat_osd_state:
|
467 |
+
continue
|
468 |
+
all_state_keys.difference_update(fqns)
|
469 |
+
|
470 |
+
if rank0_only:
|
471 |
+
for fqn in fqns:
|
472 |
+
if not unflat_osd_state[fqn]:
|
473 |
+
continue
|
474 |
+
for state_name in unflat_osd_state[fqn].keys():
|
475 |
+
unflat_osd_state[fqn][state_name] = _broadcast_state(
|
476 |
+
fsdp_state, unflat_osd_state[fqn][state_name], group=group
|
477 |
+
)
|
478 |
+
fqn = fqns[0]
|
479 |
+
if fqn in fqn_to_fsdp_param_info:
|
480 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
481 |
+
if use_orig_params:
|
482 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
483 |
+
flat_state = _shard_orig_param_state(
|
484 |
+
fsdp_param_info,
|
485 |
+
fqn,
|
486 |
+
unflat_osd_state[fqn],
|
487 |
+
)
|
488 |
+
else:
|
489 |
+
flat_state = _flatten_optim_state(
|
490 |
+
fsdp_param_info,
|
491 |
+
unflat_osd_state,
|
492 |
+
fqns,
|
493 |
+
)
|
494 |
+
key = _OptimStateKey(tuple(fqns), True)
|
495 |
+
# Only include non-empty states since as expected by
|
496 |
+
# `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
|
497 |
+
# or NamedOptimizer.
|
498 |
+
if flat_state:
|
499 |
+
flat_osd_state[key] = flat_state
|
500 |
+
elif use_orig_params:
|
501 |
+
assert (
|
502 |
+
len(fqns) == 1
|
503 |
+
), f"use_orig_params is True but there are multiple FQNs, {fqns}."
|
504 |
+
if optim is not None: # NamedOptimizer or KeyedOptimizer case.
|
505 |
+
state = optim.state.get(param, None) # type: ignore[call-overload]
|
506 |
+
if state is not None:
|
507 |
+
flat_osd_state[key] = copy.deepcopy(state)
|
508 |
+
else:
|
509 |
+
warnings.warn(
|
510 |
+
f"optim_state[{key}] is not on rank{fsdp_state.rank}."
|
511 |
+
)
|
512 |
+
|
513 |
+
else:
|
514 |
+
raise RuntimeError(
|
515 |
+
f"The state of {key} is empty. This should happen when "
|
516 |
+
"use_orig_params=True."
|
517 |
+
)
|
518 |
+
else: # do not flatten non-FSDP parameters' states
|
519 |
+
assert len(fqns) == 1
|
520 |
+
key = _OptimStateKey(tuple(fqns), False)
|
521 |
+
flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])
|
522 |
+
|
523 |
+
if rank0_only:
|
524 |
+
for fqn in fqns:
|
525 |
+
if not unflat_osd_state[fqn]:
|
526 |
+
continue
|
527 |
+
for state_name, param_state in list(unflat_osd_state[fqn].items()):
|
528 |
+
if fsdp_state.rank > 0:
|
529 |
+
# Deference the tensor so that PyTorch can collect the memory.
|
530 |
+
del unflat_osd_state[fqn][state_name]
|
531 |
+
else:
|
532 |
+
# Move the tensor in the original osd back to CPU to make the
|
533 |
+
# original osd unaffected.
|
534 |
+
unflat_osd_state[fqn][state_name] = unflat_osd_state[fqn][
|
535 |
+
state_name
|
536 |
+
].cpu()
|
537 |
+
|
538 |
+
# Handle user-defined state, states that are not associated with parameters.
|
539 |
+
for key in all_state_keys:
|
540 |
+
user_state = unflat_osd_state[key]
|
541 |
+
if isinstance(user_state, torch.Tensor) and rank0_only and use_orig_params:
|
542 |
+
user_state = _broadcast_state(fsdp_state, user_state, group=group)
|
543 |
+
flat_osd_state[key] = copy.copy(user_state)
|
544 |
+
|
545 |
+
SimpleProfiler.dump_and_reset("FSDP _flatten_optim_state_dict() profiling: ")
|
546 |
+
# Construct the "param_groups" part -- copy as is since it will be
|
547 |
+
# rekeyed later according to the target rank's optimizer
|
548 |
+
# Only copy param_groups if it exists in unflat_osd
|
549 |
+
if "param_groups" in unflat_osd:
|
550 |
+
flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
|
551 |
+
return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
|
552 |
+
else:
|
553 |
+
return {"state": flat_osd_state}
|
554 |
+
|
555 |
+
|
556 |
+
def _flatten_optim_state(
|
557 |
+
fsdp_param_info: FSDPParamInfo,
|
558 |
+
unflat_osd_state: Dict[str, Dict[str, Any]],
|
559 |
+
unflat_param_names: List[str],
|
560 |
+
) -> Dict[str, Any]:
|
561 |
+
"""
|
562 |
+
Flattens the optimizer state in ``full_optim_state_dict`` for a single
|
563 |
+
flat parameter in ``fsdp_param_info`` corresponding to the unflattened
|
564 |
+
parameter names in ``unflat_param_names``.
|
565 |
+
|
566 |
+
Args:
|
567 |
+
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
568 |
+
mapping from FQN to original parameter index.
|
569 |
+
unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
|
570 |
+
optimizer state dict corresponding to the unflattened parameters.
|
571 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
572 |
+
parameter names corresponding to the flat parameter ``flat_param``.
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
Dict[str, Any]: A :class:`dict` mapping state names to their values for
|
576 |
+
a particular flat parameter. The sharded optimizer state dict's "state"
|
577 |
+
part will map a key to this returned value.
|
578 |
+
"""
|
579 |
+
fsdp_state = fsdp_param_info.state
|
580 |
+
handle = fsdp_param_info.handle
|
581 |
+
flat_param = handle.flat_param
|
582 |
+
num_unflat_params = len(unflat_param_names)
|
583 |
+
assert num_unflat_params > 0, (
|
584 |
+
"Expects at least one unflattened parameter corresponding to the "
|
585 |
+
"flat parameter"
|
586 |
+
)
|
587 |
+
unflat_param_shapes = flat_param._shapes
|
588 |
+
num_unflat_param_shapes = len(unflat_param_shapes)
|
589 |
+
assert (
|
590 |
+
num_unflat_params == num_unflat_param_shapes
|
591 |
+
), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
|
592 |
+
|
593 |
+
# Check if these unflattened parameters have any optimizer state
|
594 |
+
has_state = [
|
595 |
+
bool(unflat_param_name in unflat_osd_state)
|
596 |
+
for unflat_param_name in unflat_param_names
|
597 |
+
]
|
598 |
+
# If none of the unflattened parameters comprising this flat parameter have
|
599 |
+
# any state, then we do not want an entry in the optimizer state dict
|
600 |
+
if not any(has_state):
|
601 |
+
return {} # no need to flatten any state
|
602 |
+
# There may still be some unflattened parameters with state and some
|
603 |
+
# without
|
604 |
+
unflat_param_states = [
|
605 |
+
_gather_state_dict(
|
606 |
+
unflat_osd_state[unflat_param_name],
|
607 |
+
pg=fsdp_state.process_group,
|
608 |
+
device=fsdp_state.compute_device,
|
609 |
+
)
|
610 |
+
if unflat_param_name in unflat_osd_state
|
611 |
+
else None
|
612 |
+
for unflat_param_name in unflat_param_names
|
613 |
+
]
|
614 |
+
# Check that the unflattened parameters have the same state names
|
615 |
+
state_names = None
|
616 |
+
for unflat_param_state in unflat_param_states:
|
617 |
+
if unflat_param_state is None:
|
618 |
+
continue
|
619 |
+
if state_names is None:
|
620 |
+
state_names = set(unflat_param_state.keys())
|
621 |
+
else:
|
622 |
+
if state_names != set(unflat_param_state.keys()):
|
623 |
+
raise ValueError(
|
624 |
+
"Differing optimizer state names for the unflattened "
|
625 |
+
f"parameters: {unflat_param_names}"
|
626 |
+
)
|
627 |
+
assert state_names is not None
|
628 |
+
|
629 |
+
# Flatten the state
|
630 |
+
flat_state: Dict[str, Any] = {}
|
631 |
+
for state_name in state_names:
|
632 |
+
state_values = [
|
633 |
+
unflat_param_state[state_name] if unflat_param_state is not None else None
|
634 |
+
for unflat_param_state in unflat_param_states
|
635 |
+
]
|
636 |
+
non_none_state_values = [v for v in state_values if v is not None]
|
637 |
+
# If all ranks have None, this is a None value
|
638 |
+
if not non_none_state_values:
|
639 |
+
flat_state[state_name] = None
|
640 |
+
continue
|
641 |
+
are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
|
642 |
+
for v in non_none_state_values:
|
643 |
+
are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
|
644 |
+
are_zero_dim_tensors &= _is_zero_dim_tensor(v)
|
645 |
+
are_non_tensors &= not torch.is_tensor(v)
|
646 |
+
types = {type(v) for v in non_none_state_values}
|
647 |
+
if len(types) != 1 or not (
|
648 |
+
are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
|
649 |
+
):
|
650 |
+
raise ValueError(
|
651 |
+
f"Differing optimizer state types for state {state_name}, "
|
652 |
+
f"values {non_none_state_values}, and unflattened parameter "
|
653 |
+
f"names {unflat_param_names}"
|
654 |
+
)
|
655 |
+
if are_pos_dim_tensors:
|
656 |
+
flat_tensor = _flatten_tensor_optim_state(
|
657 |
+
state_name,
|
658 |
+
state_values,
|
659 |
+
unflat_param_names,
|
660 |
+
unflat_param_shapes,
|
661 |
+
handle,
|
662 |
+
)
|
663 |
+
# Shard the flattened tensor immediately to minimize max memory
|
664 |
+
# usage
|
665 |
+
if (
|
666 |
+
fsdp_state.world_size != 1
|
667 |
+
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
668 |
+
):
|
669 |
+
sharded_flat_tensor, _ = FlatParamHandle._get_shard(
|
670 |
+
flat_tensor,
|
671 |
+
fsdp_state.rank,
|
672 |
+
fsdp_state.world_size,
|
673 |
+
)
|
674 |
+
else:
|
675 |
+
sharded_flat_tensor = flat_tensor
|
676 |
+
flat_state[state_name] = sharded_flat_tensor
|
677 |
+
elif are_zero_dim_tensors:
|
678 |
+
flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
|
679 |
+
state_name,
|
680 |
+
state_values,
|
681 |
+
unflat_param_names,
|
682 |
+
)
|
683 |
+
else:
|
684 |
+
assert are_non_tensors
|
685 |
+
flat_state[state_name] = _flatten_non_tensor_optim_state(
|
686 |
+
state_name,
|
687 |
+
state_values,
|
688 |
+
unflat_param_names,
|
689 |
+
)
|
690 |
+
|
691 |
+
return flat_state
|
692 |
+
|
693 |
+
|
694 |
+
def _flatten_tensor_optim_state(
|
695 |
+
state_name: str,
|
696 |
+
pos_dim_tensors: List[torch.Tensor],
|
697 |
+
unflat_param_names: List[str],
|
698 |
+
unflat_param_shapes: Sequence[torch.Size],
|
699 |
+
handle: FlatParamHandle,
|
700 |
+
) -> torch.Tensor:
|
701 |
+
"""
|
702 |
+
Flattens the positive-dimension tensor optimizer state given by the values
|
703 |
+
``tensors`` for the state ``state_name`` for a single flat parameter
|
704 |
+
from ``handle`` corresponding to the unflattened parameter names
|
705 |
+
``unflat_param_names`` and unflatted parameter shapes
|
706 |
+
``unflat_param_shapes``. This flattens each unflattened parameter's tensor
|
707 |
+
state into one tensor.
|
708 |
+
|
709 |
+
NOTE: We use zero tensors for any unflattened parameters without state
|
710 |
+
since some value is required to fill those entries. This assumes that the
|
711 |
+
zero tensor is mathematically equivalent to having no state, which is true
|
712 |
+
for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
|
713 |
+
optimizers.
|
714 |
+
|
715 |
+
Args:
|
716 |
+
state_name (str): Optimizer state name.
|
717 |
+
pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
|
718 |
+
optimizer state values for the unflattened parameters corresponding
|
719 |
+
to the single flat parameter.
|
720 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
721 |
+
parameter names corresponding to the single flat parameter.
|
722 |
+
unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
|
723 |
+
corresponding to the single flat parameter.
|
724 |
+
handle (FlatParamHandle): The flat parameter's handle.
|
725 |
+
|
726 |
+
Returns:
|
727 |
+
torch.Tensor: A flat tensor containing the optimizer state
|
728 |
+
corresponding to ``state_name`` constructed by concatenating the
|
729 |
+
unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
|
730 |
+
tensors for any unflattened parameters without the state).
|
731 |
+
"""
|
732 |
+
flat_param = handle.flat_param
|
733 |
+
non_none_tensors = [t for t in pos_dim_tensors if t is not None]
|
734 |
+
# Check that all are tensors with the same dtype
|
735 |
+
dtypes = {t.dtype for t in non_none_tensors}
|
736 |
+
if len(dtypes) != 1:
|
737 |
+
raise ValueError(
|
738 |
+
"All unflattened parameters comprising a single flat "
|
739 |
+
"parameter must have positive-dimension tensor state with the "
|
740 |
+
f"same dtype but got dtypes {dtypes} for state {state_name} and "
|
741 |
+
f"unflattened parameter names {unflat_param_names}"
|
742 |
+
)
|
743 |
+
dtype = next(iter(dtypes))
|
744 |
+
# Check that each tensor state matches its parameter's shape
|
745 |
+
for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
|
746 |
+
if tensor is None and len(shape) == 0:
|
747 |
+
raise ValueError("Flattening a zero-dimension parameter is not supported")
|
748 |
+
elif tensor is not None and tensor.shape != shape:
|
749 |
+
raise ValueError(
|
750 |
+
"Tensor optimizer state does not have same shape as its "
|
751 |
+
f"parameter: {tensor.shape} {shape}"
|
752 |
+
)
|
753 |
+
# Flatten the tensor states: we do not need to add any right-hand-side
|
754 |
+
# padding since the flat optimizer state tensor is sharded via
|
755 |
+
# `_get_shard()`, which pads the shard as needed (just like for the flat
|
756 |
+
# parameter)
|
757 |
+
cpu_device = torch.device("cpu")
|
758 |
+
tensors_to_flatten = [
|
759 |
+
torch.flatten(state_value.to(cpu_device))
|
760 |
+
if state_value is not None
|
761 |
+
else torch.flatten(
|
762 |
+
torch.zeros(
|
763 |
+
size=shape,
|
764 |
+
dtype=dtype,
|
765 |
+
device=cpu_device,
|
766 |
+
)
|
767 |
+
)
|
768 |
+
for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
|
769 |
+
]
|
770 |
+
flat_tensor = handle.flatten_tensors(tensors_to_flatten, handle._aligned_numel)
|
771 |
+
flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
|
772 |
+
assert flat_tensor.shape == flat_param_shape, (
|
773 |
+
f"tensor optim state: {flat_tensor.shape} "
|
774 |
+
f"flat parameter: {flat_param_shape}"
|
775 |
+
)
|
776 |
+
return flat_tensor
|
777 |
+
|
778 |
+
|
779 |
+
def _flatten_zero_dim_tensor_optim_state(
|
780 |
+
state_name: str,
|
781 |
+
zero_dim_tensors: List[torch.Tensor],
|
782 |
+
unflat_param_names: List[str],
|
783 |
+
) -> torch.Tensor:
|
784 |
+
"""
|
785 |
+
Flattens the zero-dimension tensor optimizer state given by the values
|
786 |
+
``zero_dim_tensors`` for the state ``state_name`` for a single flat
|
787 |
+
parameter corresponding to the unflattened parameter names
|
788 |
+
``unflat_param_names`` by enforcing that all tensors are the same and using
|
789 |
+
that common value.
|
790 |
+
|
791 |
+
NOTE: The requirement that the tensors are the same across all unflattened
|
792 |
+
parameters comprising the flat parameter is needed to maintain the
|
793 |
+
invariant that FSDP performs the same computation as its non-sharded
|
794 |
+
equivalent. This means that none of the unflattened parameters can be
|
795 |
+
missing this state since imposing a value may differ from having no value.
|
796 |
+
For example, for Adam's "step", no value means maximum bias correction,
|
797 |
+
while having some positive value means less bias correction.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
state_name (str): Optimizer state name.
|
801 |
+
zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
|
802 |
+
for the unflattened parameters corresponding to the single
|
803 |
+
flat parameter.
|
804 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
805 |
+
parameter names corresponding to the single flat parameter.
|
806 |
+
|
807 |
+
Returns:
|
808 |
+
torch.Tensor: A zero-dimensional tensor giving the value of the state
|
809 |
+
``state_name`` for all unflattened parameters corresponding to the
|
810 |
+
names ``unflat_param_names``.
|
811 |
+
"""
|
812 |
+
non_none_tensors = [t for t in zero_dim_tensors if t is not None]
|
813 |
+
# Enforce that all have the same value and dtype
|
814 |
+
values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
|
815 |
+
dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
|
816 |
+
if (
|
817 |
+
len(non_none_tensors) != len(zero_dim_tensors)
|
818 |
+
or len(values_set) != 1
|
819 |
+
or len(dtypes) != 1
|
820 |
+
):
|
821 |
+
raise ValueError(
|
822 |
+
"All unflattened parameters comprising a single flat "
|
823 |
+
"parameter must have scalar state with the same value and dtype "
|
824 |
+
f"but got values {values_set} and dtypes {dtypes} for state "
|
825 |
+
f"{state_name} and unflattened parameter names "
|
826 |
+
f"{unflat_param_names}"
|
827 |
+
)
|
828 |
+
value = next(iter(values_set))
|
829 |
+
dtype = next(iter(dtypes))
|
830 |
+
return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
|
831 |
+
|
832 |
+
|
833 |
+
def _flatten_non_tensor_optim_state(
|
834 |
+
state_name: str,
|
835 |
+
non_tensors: List[Any],
|
836 |
+
unflat_param_names: List[str],
|
837 |
+
) -> Any:
|
838 |
+
"""
|
839 |
+
Flattens the non-tensor optimizer state given by the values ``non_tensors``
|
840 |
+
for the state ``state_name`` for a single flat parameter corresponding
|
841 |
+
to the unflattened parameter names ``unflat_param_names`` by enforcing that
|
842 |
+
all values are the same and using that common value.
|
843 |
+
|
844 |
+
See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
|
845 |
+
|
846 |
+
Args:
|
847 |
+
state_name (str): Optimizer state name.
|
848 |
+
non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
|
849 |
+
parameters corresponding to the single flat parameter.
|
850 |
+
unflat_param_names (List[str]): A :class:`list` of unflattened
|
851 |
+
parameter names corresponding to the single flat parameter.
|
852 |
+
|
853 |
+
Returns:
|
854 |
+
Any: A non-tensor giving the value of the state ``state_name`` for all
|
855 |
+
unflattened parameters corresponding to the names
|
856 |
+
``unflat_param_names``.
|
857 |
+
"""
|
858 |
+
non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
|
859 |
+
# Enforce that all have the same value (same type already checked)
|
860 |
+
non_tensor_set = set(non_tensors)
|
861 |
+
if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
|
862 |
+
raise ValueError(
|
863 |
+
"All unflattened parameters comprising a single flat "
|
864 |
+
"parameter must have scalar state with the same value and dtype "
|
865 |
+
f"but got values {non_tensor_set} for state {state_name} and "
|
866 |
+
f"unflattened parameter names {unflat_param_names}"
|
867 |
+
)
|
868 |
+
non_tensor = next(iter(non_tensor_set))
|
869 |
+
return non_tensor
|
870 |
+
|
871 |
+
|
872 |
+
def _rekey_sharded_optim_state_dict(
|
873 |
+
sharded_osd: Dict[str, Any],
|
874 |
+
model: nn.Module,
|
875 |
+
optim: torch.optim.Optimizer,
|
876 |
+
optim_input: Optional[
|
877 |
+
Union[
|
878 |
+
List[Dict[str, Any]],
|
879 |
+
Iterable[nn.Parameter],
|
880 |
+
]
|
881 |
+
],
|
882 |
+
using_optim_input: bool,
|
883 |
+
is_named_optimizer: bool = False,
|
884 |
+
) -> Dict[str, Any]:
|
885 |
+
"""
|
886 |
+
Rekeys the optimizer state dict from unflattened parameter names to flat
|
887 |
+
parameter IDs according to the calling rank's ``optim``, which may be
|
888 |
+
different across ranks. In particular, the unflattened parameter names are
|
889 |
+
represented as :class:`_OptimStateKey` s.
|
890 |
+
"""
|
891 |
+
param_to_fqns = _get_param_to_fqns(model)
|
892 |
+
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
893 |
+
param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
|
894 |
+
Dict[nn.Parameter, Union[int, str]],
|
895 |
+
(
|
896 |
+
_get_param_to_param_id_from_optim_input(model, optim_input)
|
897 |
+
if using_optim_input
|
898 |
+
else _get_param_to_param_key(
|
899 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
900 |
+
)
|
901 |
+
),
|
902 |
+
)
|
903 |
+
# All parameter keys in `param_to_param_key` should be in
|
904 |
+
# `param_to_fqns` -- strict inequality follows when not all parameters are
|
905 |
+
# passed to the optimizer
|
906 |
+
assert len(param_to_param_key) <= len(param_to_fqns)
|
907 |
+
|
908 |
+
unflat_param_names_to_flat_param_key: Dict[
|
909 |
+
Tuple[str, ...], Union[int, str]
|
910 |
+
] = {} # for "state"
|
911 |
+
unflat_param_name_to_flat_param_key: Dict[
|
912 |
+
str, Union[int, str]
|
913 |
+
] = {} # for "param_groups"
|
914 |
+
for param, unflat_param_names in param_to_fqns.items():
|
915 |
+
if param not in param_to_param_key:
|
916 |
+
# This parameter was not passed to the optimizer
|
917 |
+
continue
|
918 |
+
flat_param_key = param_to_param_key[param]
|
919 |
+
unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
|
920 |
+
for unflat_param_name in unflat_param_names:
|
921 |
+
unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key
|
922 |
+
|
923 |
+
sharded_osd_state = sharded_osd["state"]
|
924 |
+
rekeyed_osd_state: Dict[Union[str, int], Any] = {}
|
925 |
+
for key, param_state in sharded_osd_state.items():
|
926 |
+
if isinstance(key, str):
|
927 |
+
rekeyed_osd_state[key] = param_state
|
928 |
+
continue
|
929 |
+
flat_param_key = unflat_param_names_to_flat_param_key.get(
|
930 |
+
key.unflat_param_names, key.unflat_param_names
|
931 |
+
)
|
932 |
+
rekeyed_osd_state[flat_param_key] = param_state
|
933 |
+
|
934 |
+
# Only process param_groups if it exists in sharded_osd
|
935 |
+
if "param_groups" in sharded_osd:
|
936 |
+
rekeyed_osd_param_groups: List[Dict[str, Any]] = []
|
937 |
+
for unflat_param_group in sharded_osd["param_groups"]:
|
938 |
+
flat_param_group = copy.deepcopy(unflat_param_group)
|
939 |
+
flat_param_keys = sorted(
|
940 |
+
{
|
941 |
+
unflat_param_name_to_flat_param_key[unflat_param_name]
|
942 |
+
for unflat_param_name in unflat_param_group["params"]
|
943 |
+
}
|
944 |
+
)
|
945 |
+
flat_param_group["params"] = flat_param_keys
|
946 |
+
rekeyed_osd_param_groups.append(flat_param_group)
|
947 |
+
return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
|
948 |
+
else:
|
949 |
+
return {"state": rekeyed_osd_state}
|
950 |
+
|
951 |
+
|
952 |
+
def _get_param_id_to_param_from_optim_input(
|
953 |
+
model: nn.Module,
|
954 |
+
optim_input: Optional[
|
955 |
+
Union[
|
956 |
+
List[Dict[str, Any]],
|
957 |
+
Iterable[nn.Parameter],
|
958 |
+
]
|
959 |
+
] = None,
|
960 |
+
) -> Dict[int, nn.Parameter]:
|
961 |
+
"""
|
962 |
+
Constructs a mapping from parameter IDs to parameters. This may be used
|
963 |
+
both for models with ``FlatParameter`` s and without.
|
964 |
+
|
965 |
+
NOTE: This method is only preserved for backward compatibility. The method
|
966 |
+
:meth:`_get_param_key_to_param` is the preferred code path that does not
|
967 |
+
rely on ``optim_input``.
|
968 |
+
|
969 |
+
NOTE: We critically assume that, whether the optimizer input is a list of
|
970 |
+
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
|
971 |
+
enumerates the parameter IDs in order. In other words, for a parameter list
|
972 |
+
input, the parameter IDs should be in that list order, and for a parameter
|
973 |
+
groups input, the parameter IDs should be in order within each parameter
|
974 |
+
group and in order across parameter groups.
|
975 |
+
|
976 |
+
Args:
|
977 |
+
model (nn.Module): Model whose parameters are passed into the
|
978 |
+
optimizer.
|
979 |
+
optim_input (Optional[Union[List[Dict[str, Any]],
|
980 |
+
Iterable[nn.Parameter]]]): Input passed into the optimizer
|
981 |
+
representing either a :class:`list` of parameter groups or an
|
982 |
+
iterable of parameters; if ``None``, then this method assumes the
|
983 |
+
input was ``model.parameters()``. (Default: ``None``)
|
984 |
+
|
985 |
+
Returns:
|
986 |
+
List[nn.Parameter]: Mapping from parameter IDs to parameters,
|
987 |
+
where the parameter ID is implicitly the index in the :class:`list`.
|
988 |
+
"""
|
989 |
+
# Assume the standard case of passing `model.parameters()` to the optimizer
|
990 |
+
# if `optim_input` is not specified
|
991 |
+
if optim_input is None:
|
992 |
+
return dict(enumerate(model.parameters()))
|
993 |
+
try:
|
994 |
+
params = cast(List[nn.Parameter], list(optim_input))
|
995 |
+
except TypeError as e:
|
996 |
+
raise TypeError(
|
997 |
+
"Optimizer input should be an iterable of Tensors or dicts, "
|
998 |
+
f"but got {optim_input}"
|
999 |
+
) from e
|
1000 |
+
if len(params) == 0:
|
1001 |
+
raise ValueError("Optimizer input should not be empty")
|
1002 |
+
|
1003 |
+
# Check if the optimizer input represents tensors or parameter groups
|
1004 |
+
all_tensors = True
|
1005 |
+
all_dicts = True
|
1006 |
+
for param in params:
|
1007 |
+
all_tensors &= isinstance(param, torch.Tensor)
|
1008 |
+
all_dicts &= isinstance(param, dict)
|
1009 |
+
if not all_tensors and not all_dicts:
|
1010 |
+
raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
|
1011 |
+
if all_tensors:
|
1012 |
+
return dict(enumerate(params))
|
1013 |
+
assert all_dicts
|
1014 |
+
param_id_to_param: List[nn.Parameter] = []
|
1015 |
+
for param_group in params:
|
1016 |
+
has_params_key = "params" in param_group # type: ignore[operator]
|
1017 |
+
assert has_params_key, (
|
1018 |
+
'A parameter group should map "params" to a list of the '
|
1019 |
+
"parameters in the group"
|
1020 |
+
)
|
1021 |
+
# Implicitly map `flat_param_id` (current length of the list) to
|
1022 |
+
# `param`
|
1023 |
+
param_id_to_param.extend(param_group["params"]) # type: ignore[index]
|
1024 |
+
return dict(enumerate(param_id_to_param))
|
1025 |
+
|
1026 |
+
|
1027 |
+
def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[FlatParameter, str]:
|
1028 |
+
"""
|
1029 |
+
Constructs a mapping from ``FlatParameter`` to a cleaned (devoid of prefixes
|
1030 |
+
from wrappers) fully qualified name (FQN). Note that this FQN is "non-canonical"
|
1031 |
+
because ``FlatParameter`` s do not come from the original module but are
|
1032 |
+
registered only after FSDP has been applied. This function returns the FSDP-given
|
1033 |
+
name for the ``FlatParameter`` (usually module._flat_param) as opposed to the
|
1034 |
+
canonical FQNs returned for ``FlatParameter`` s in ``_common_utils._get_param_to_fqns(...)``).
|
1035 |
+
|
1036 |
+
Consequently, this function will only return a non-empty mapping if FSDP was
|
1037 |
+
applied with ``use_orig_params=False`` as, otherwise, the original parameters
|
1038 |
+
are used within the module and there would be no ``FlatParameter`` s in the module.
|
1039 |
+
|
1040 |
+
"""
|
1041 |
+
|
1042 |
+
def module_fn(module, prefix, tree_level, flat_param_to_fqn):
|
1043 |
+
for param_name, param in _named_parameters_with_duplicates(
|
1044 |
+
module, recurse=False
|
1045 |
+
):
|
1046 |
+
if not isinstance(param, FlatParameter):
|
1047 |
+
continue
|
1048 |
+
fqn = clean_tensor_name(prefix + param_name)
|
1049 |
+
flat_param_to_fqn[param] = fqn
|
1050 |
+
|
1051 |
+
def return_fn(flat_param_to_fqn):
|
1052 |
+
return flat_param_to_fqn
|
1053 |
+
|
1054 |
+
flat_param_to_fqn_ret: Dict[FlatParameter, str] = {}
|
1055 |
+
return _apply_to_modules(
|
1056 |
+
model,
|
1057 |
+
module_fn,
|
1058 |
+
return_fn,
|
1059 |
+
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
1060 |
+
flat_param_to_fqn_ret,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
|
1064 |
+
def _get_param_key_to_param(
|
1065 |
+
optim: torch.optim.Optimizer,
|
1066 |
+
model: Optional[nn.Module] = None,
|
1067 |
+
is_named_optimizer: bool = False,
|
1068 |
+
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
1069 |
+
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
1070 |
+
) -> Dict[Union[int, str], nn.Parameter]:
|
1071 |
+
"""
|
1072 |
+
Constructs a mapping from parameter keys to parameters. For the regular
|
1073 |
+
optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
|
1074 |
+
are FQNs. This API may be used both for models with ``FlatParameter`` s and
|
1075 |
+
without.
|
1076 |
+
"""
|
1077 |
+
clean_fqn_to_curr_fqn: Dict[str, str] = {}
|
1078 |
+
if is_named_optimizer:
|
1079 |
+
assert (
|
1080 |
+
param_to_fqns is not None and flat_param_to_fqn is not None
|
1081 |
+
), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
|
1082 |
+
assert model is not None
|
1083 |
+
for key, _ in _named_parameters_with_duplicates(model):
|
1084 |
+
clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key
|
1085 |
+
|
1086 |
+
param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
|
1087 |
+
pid = 0
|
1088 |
+
for param_group in optim.param_groups:
|
1089 |
+
if is_named_optimizer:
|
1090 |
+
for param in param_group["params"]:
|
1091 |
+
assert flat_param_to_fqn is not None
|
1092 |
+
if param in flat_param_to_fqn:
|
1093 |
+
# FlatParameter case
|
1094 |
+
key = flat_param_to_fqn[param]
|
1095 |
+
else:
|
1096 |
+
assert param_to_fqns is not None
|
1097 |
+
# use_orig_params case
|
1098 |
+
assert len(param_to_fqns[param]) == 1
|
1099 |
+
key = param_to_fqns[param][0]
|
1100 |
+
try:
|
1101 |
+
key = clean_fqn_to_curr_fqn[key]
|
1102 |
+
except KeyError as e:
|
1103 |
+
raise KeyError(
|
1104 |
+
f"Can't find {key} from {list(clean_fqn_to_curr_fqn.keys())}."
|
1105 |
+
) from e
|
1106 |
+
param_key_to_param[key] = param
|
1107 |
+
else:
|
1108 |
+
for param in param_group["params"]:
|
1109 |
+
param_key_to_param[pid] = param
|
1110 |
+
pid += 1
|
1111 |
+
|
1112 |
+
return param_key_to_param
|
1113 |
+
|
1114 |
+
|
1115 |
+
def _get_param_to_param_key(
|
1116 |
+
optim: torch.optim.Optimizer,
|
1117 |
+
model: Optional[nn.Module] = None,
|
1118 |
+
is_named_optimizer: bool = False,
|
1119 |
+
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
1120 |
+
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
1121 |
+
) -> Dict[nn.Parameter, Union[int, str]]:
|
1122 |
+
"""
|
1123 |
+
Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
|
1124 |
+
only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
|
1125 |
+
So the parameter keys will be parameter ids.
|
1126 |
+
"""
|
1127 |
+
param_id_to_param = _get_param_key_to_param(
|
1128 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
1129 |
+
)
|
1130 |
+
return {param: param_id for param_id, param in param_id_to_param.items()}
|
1131 |
+
|
1132 |
+
|
1133 |
+
def _get_param_to_param_id_from_optim_input(
|
1134 |
+
model: nn.Module,
|
1135 |
+
optim_input: Optional[
|
1136 |
+
Union[
|
1137 |
+
List[Dict[str, Any]],
|
1138 |
+
Iterable[nn.Parameter],
|
1139 |
+
]
|
1140 |
+
] = None,
|
1141 |
+
) -> Dict[nn.Parameter, int]:
|
1142 |
+
"""Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
|
1143 |
+
param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
|
1144 |
+
return {param: param_id for param_id, param in param_id_to_param.items()}
|
1145 |
+
|
1146 |
+
|
1147 |
+
def _check_missing_keys_on_rank(
|
1148 |
+
r0_optim_state_keys: List[_OptimStateKey],
|
1149 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
|
1150 |
+
param_key_to_param: Dict[Union[str, int], nn.Parameter],
|
1151 |
+
group: Optional[dist.ProcessGroup],
|
1152 |
+
) -> None:
|
1153 |
+
# Ensure that all ranks have at least the optimizer states needed by
|
1154 |
+
# rank 0's optimizer
|
1155 |
+
missing_keys: List[_OptimStateKey] = []
|
1156 |
+
for r0_optim_state_key in r0_optim_state_keys:
|
1157 |
+
if r0_optim_state_key not in optim_state_key_to_param_key:
|
1158 |
+
# A parameter from rank 0's optimizer does not exist for this
|
1159 |
+
# rank's optimizer
|
1160 |
+
missing_keys.append(r0_optim_state_key)
|
1161 |
+
continue
|
1162 |
+
param_key = optim_state_key_to_param_key[r0_optim_state_key]
|
1163 |
+
if isinstance(param_key, int):
|
1164 |
+
assert param_key >= 0 and param_key < len(
|
1165 |
+
param_key_to_param
|
1166 |
+
), "Check the `param_key_to_param` construction"
|
1167 |
+
# We cannot use FSDPState.compute_device as this API is a global view.
|
1168 |
+
device = _get_pg_default_device(group)
|
1169 |
+
num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
|
1170 |
+
dist.all_reduce(num_missing, group=group)
|
1171 |
+
if num_missing.item() > 0:
|
1172 |
+
obj_list = [None for _ in range(dist.get_world_size(group))]
|
1173 |
+
dist.all_gather_object(obj_list, missing_keys, group=group)
|
1174 |
+
error_msg = (
|
1175 |
+
"FSDP currently requires each rank to have at least the "
|
1176 |
+
"optimizer states needed by rank 0's optimizer but some ranks "
|
1177 |
+
"are missing some of those states"
|
1178 |
+
)
|
1179 |
+
for rank, keys in enumerate(obj_list):
|
1180 |
+
keys = cast(List[_OptimStateKey], keys)
|
1181 |
+
if len(keys) > 0:
|
1182 |
+
error_msg += (
|
1183 |
+
f"\nRank {rank} is missing states for the parameters: "
|
1184 |
+
f"{[key.unflat_param_names for key in keys]}"
|
1185 |
+
)
|
1186 |
+
raise RuntimeError(error_msg)
|
1187 |
+
|
1188 |
+
|
1189 |
+
def _map_param_key_to_optim_keys(
|
1190 |
+
optim_state_dict: Dict[str, Any],
|
1191 |
+
group: Optional[dist.ProcessGroup],
|
1192 |
+
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
1193 |
+
param_to_fqns: Dict[nn.Parameter, List[str]],
|
1194 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
1195 |
+
merge_keys: bool = False,
|
1196 |
+
) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
|
1197 |
+
"""
|
1198 |
+
Construct the local mapping between the ``_OptimStateKey`` and parameter keys
|
1199 |
+
and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
|
1200 |
+
must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
|
1201 |
+
Note that ``merge_keys`` should equal to ``use_orig_params``.
|
1202 |
+
"""
|
1203 |
+
rank = dist.get_rank(group)
|
1204 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {} # local
|
1205 |
+
all_optim_state_keys: List[_OptimStateKey] = []
|
1206 |
+
|
1207 |
+
for param_key, param in param_key_to_param.items():
|
1208 |
+
# Do not include parameters without state to avoid empty mappings
|
1209 |
+
# just like in normal `torch.optim.Optimizer.state_dict()`
|
1210 |
+
if param_key not in optim_state_dict["state"]:
|
1211 |
+
continue
|
1212 |
+
fqns = param_to_fqns[param]
|
1213 |
+
is_fsdp_managed = isinstance(param, FlatParameter)
|
1214 |
+
if is_fsdp_managed:
|
1215 |
+
assert fqns[0] in fqn_to_fsdp_param_info, (
|
1216 |
+
fqns[0],
|
1217 |
+
list(fqn_to_fsdp_param_info.keys()),
|
1218 |
+
)
|
1219 |
+
is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
|
1220 |
+
optim_state_key = _OptimStateKey(
|
1221 |
+
unflat_param_names=tuple(fqns),
|
1222 |
+
is_fsdp_managed=is_fsdp_managed,
|
1223 |
+
)
|
1224 |
+
if rank == 0 or merge_keys:
|
1225 |
+
all_optim_state_keys.append(optim_state_key)
|
1226 |
+
optim_state_key_to_param_key[optim_state_key] = param_key
|
1227 |
+
|
1228 |
+
if merge_keys:
|
1229 |
+
all_keys: List[List[_OptimStateKey]] = [
|
1230 |
+
[] for _ in range(dist.get_world_size(group))
|
1231 |
+
]
|
1232 |
+
dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
|
1233 |
+
merge_all_optim_state_keys = [
|
1234 |
+
key for local_keys in all_keys for key in local_keys
|
1235 |
+
]
|
1236 |
+
all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
|
1237 |
+
else:
|
1238 |
+
key_obj_list: List[Optional[List[_OptimStateKey]]] = (
|
1239 |
+
[all_optim_state_keys] if rank == 0 else [None]
|
1240 |
+
)
|
1241 |
+
dist.broadcast_object_list(key_obj_list, src=0, group=group)
|
1242 |
+
assert key_obj_list[0] is not None
|
1243 |
+
all_optim_state_keys = key_obj_list[0]
|
1244 |
+
_check_missing_keys_on_rank(
|
1245 |
+
all_optim_state_keys,
|
1246 |
+
optim_state_key_to_param_key,
|
1247 |
+
param_key_to_param,
|
1248 |
+
group,
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
return all_optim_state_keys, optim_state_key_to_param_key
|
1252 |
+
|
1253 |
+
|
1254 |
+
def _unflatten_param_groups(
|
1255 |
+
state_dict: Dict[str, Any],
|
1256 |
+
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
1257 |
+
param_to_fqns: Dict[nn.Parameter, List[str]],
|
1258 |
+
) -> List[Dict[str, Any]]:
|
1259 |
+
param_groups: List[Dict[str, Any]] = []
|
1260 |
+
for flat_param_group in state_dict["param_groups"]:
|
1261 |
+
unflat_param_group = copy.deepcopy(flat_param_group)
|
1262 |
+
param_group_params = [
|
1263 |
+
param_key_to_param[flat_param_key]
|
1264 |
+
for flat_param_key in flat_param_group["params"]
|
1265 |
+
]
|
1266 |
+
nested_unflat_param_names = [
|
1267 |
+
param_to_fqns[param] for param in param_group_params
|
1268 |
+
]
|
1269 |
+
unflat_param_group["params"] = [
|
1270 |
+
unflat_param_name
|
1271 |
+
for unflat_param_names in nested_unflat_param_names
|
1272 |
+
for unflat_param_name in unflat_param_names
|
1273 |
+
] # flatten the list of lists
|
1274 |
+
param_groups.append(unflat_param_group)
|
1275 |
+
return param_groups
|
1276 |
+
|
1277 |
+
|
1278 |
+
def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
|
1279 |
+
"""
|
1280 |
+
Returns whether the state_dict is from a NamedOptimizer.
|
1281 |
+
This function checks that the keys in the state_dict['state'] are strings
|
1282 |
+
(which usually are FQNs) versus integers (which usually refer to param_ids
|
1283 |
+
from a vanilla torch.optim.Optimizer).
|
1284 |
+
"""
|
1285 |
+
state = optim_state_dict.get("state", None)
|
1286 |
+
if not state:
|
1287 |
+
# If we cannot find a state, assume it is not NamedOptimizer as
|
1288 |
+
# NamedOptimizer has eager initialization.
|
1289 |
+
return False
|
1290 |
+
try:
|
1291 |
+
key = next(iter(state.keys()))
|
1292 |
+
except Exception as e:
|
1293 |
+
raise Exception(optim_state_dict) from e
|
1294 |
+
return isinstance(key, str)
|
1295 |
+
|
1296 |
+
|
1297 |
+
@dataclass
|
1298 |
+
class StateInfo:
|
1299 |
+
# The key of these dictionaries are the state name, e.g., `exp_avg`.
|
1300 |
+
tensors: Dict[str, _PosDimTensorInfo]
|
1301 |
+
scalar_tensors: Dict[str, torch.Tensor]
|
1302 |
+
non_tensors: Dict[str, Any]
|
1303 |
+
|
1304 |
+
|
1305 |
+
def _allgather_state_info(
|
1306 |
+
fsdp_state: _FSDPState,
|
1307 |
+
input_states: Dict[str, Any],
|
1308 |
+
) -> List[Dict[str, StateInfo]]:
|
1309 |
+
"""
|
1310 |
+
Given the ``input_states``, allgather StateInfo for each state. The function
|
1311 |
+
uses all_gather_object to gather StateInfo so no GPU tensors are sent.
|
1312 |
+
"""
|
1313 |
+
|
1314 |
+
processed_state_dict: Dict[str, StateInfo] = {}
|
1315 |
+
gathered_state_info: List[Dict[str, StateInfo]] = [
|
1316 |
+
{} for _ in range(fsdp_state.world_size)
|
1317 |
+
]
|
1318 |
+
|
1319 |
+
for fqn, optim_state in input_states.items():
|
1320 |
+
# Allgather the scalar tensor state, non-tensor states and tensors metadata.
|
1321 |
+
processed_state = StateInfo({}, {}, {})
|
1322 |
+
for state_name, value in sorted_items(optim_state):
|
1323 |
+
if torch.is_tensor(value):
|
1324 |
+
if value.dim() == 0:
|
1325 |
+
# Ensure that `step` is on CPU.
|
1326 |
+
processed_state.scalar_tensors[state_name] = value.cpu()
|
1327 |
+
else:
|
1328 |
+
processed_state.tensors[state_name] = _PosDimTensorInfo(
|
1329 |
+
value.shape, value.dtype
|
1330 |
+
)
|
1331 |
+
else:
|
1332 |
+
processed_state.non_tensors[state_name] = value
|
1333 |
+
processed_state_dict[fqn] = processed_state
|
1334 |
+
dist.all_gather_object(
|
1335 |
+
gathered_state_info,
|
1336 |
+
processed_state_dict,
|
1337 |
+
group=fsdp_state.process_group,
|
1338 |
+
)
|
1339 |
+
return gathered_state_info
|
1340 |
+
|
1341 |
+
|
1342 |
+
def _convert_all_state_info(
|
1343 |
+
fsdp_param_info: FSDPParamInfo,
|
1344 |
+
gathered_state_info: List[Dict[str, StateInfo]],
|
1345 |
+
input_states: Dict[str, Any],
|
1346 |
+
output_states: Dict[str, Dict[str, Any]],
|
1347 |
+
) -> Tuple[Optional[torch.dtype], Dict[str, List[Optional[torch.Tensor]]]]:
|
1348 |
+
"""
|
1349 |
+
Given the ``gathered_state_info`` and ``input_states``, the API converted
|
1350 |
+
the StateInfo into the original state if the state is not a non-scalar
|
1351 |
+
tensor. For a multi-dimensional tensor, the local state will be stored in
|
1352 |
+
``state_buffer`` in a correct order for later allgather purpose.
|
1353 |
+
"""
|
1354 |
+
|
1355 |
+
state_buffers: Dict[str, List[Optional[torch.Tensor]]] = {}
|
1356 |
+
|
1357 |
+
for fqn, gathered_state in output_states.items():
|
1358 |
+
state_info = [s[fqn] for s in gathered_state_info]
|
1359 |
+
all_tensor_states = sorted(
|
1360 |
+
{n for state in state_info for n in state.tensors.keys()}
|
1361 |
+
)
|
1362 |
+
empty_ranks: Set[int] = set()
|
1363 |
+
dtype: Optional[torch.dtype] = None
|
1364 |
+
# First check all the non-scalar states and get the information of
|
1365 |
+
# states on each rank.
|
1366 |
+
for state_name in all_tensor_states:
|
1367 |
+
numels = []
|
1368 |
+
_empty_ranks: Set[int] = set()
|
1369 |
+
for rank, object_state in enumerate(state_info):
|
1370 |
+
numels.append(0)
|
1371 |
+
info = object_state.tensors.get(state_name, None)
|
1372 |
+
if info is not None:
|
1373 |
+
numels[-1] = info.shape.numel()
|
1374 |
+
if not dtype:
|
1375 |
+
dtype = info.dtype
|
1376 |
+
else:
|
1377 |
+
assert dtype == info.dtype
|
1378 |
+
if numels[-1] == 0:
|
1379 |
+
_empty_ranks.add(rank)
|
1380 |
+
|
1381 |
+
assert not empty_ranks or empty_ranks == _empty_ranks
|
1382 |
+
empty_ranks = _empty_ranks
|
1383 |
+
if state_name not in state_buffers:
|
1384 |
+
state_buffers[state_name] = [
|
1385 |
+
None for _ in fsdp_param_info.param_indices
|
1386 |
+
]
|
1387 |
+
local_state = input_states[fqn].get(state_name, None)
|
1388 |
+
# N.B. We need to move the state to compute_device. The reason is
|
1389 |
+
# not yet clear and we need to figure out why the state may be on a
|
1390 |
+
# different device.
|
1391 |
+
if local_state is not None:
|
1392 |
+
local_state = local_state.to(fsdp_param_info.state.compute_device)
|
1393 |
+
state_buffers[state_name][fsdp_param_info.param_indices[fqn]] = local_state
|
1394 |
+
|
1395 |
+
# Restoring the scalar and non-tensor states. If the corresponding
|
1396 |
+
# non-scalar states do not exist on the rank, we also skip the scalar
|
1397 |
+
# non-tensor states on that rank.
|
1398 |
+
for rank, object_state in enumerate(state_info):
|
1399 |
+
if rank in empty_ranks:
|
1400 |
+
continue
|
1401 |
+
for name, non_tensor_value in object_state.non_tensors.items():
|
1402 |
+
curr_non_tensor_value = gathered_state.get(name, None)
|
1403 |
+
assert (
|
1404 |
+
curr_non_tensor_value is None
|
1405 |
+
or curr_non_tensor_value == non_tensor_value
|
1406 |
+
), (
|
1407 |
+
f"Rank {rank} has different values for {name}: {non_tensor_value}."
|
1408 |
+
+ f" Other ranks: {curr_non_tensor_value}"
|
1409 |
+
)
|
1410 |
+
gathered_state[name] = non_tensor_value
|
1411 |
+
|
1412 |
+
for name, scalar_tensor_value in object_state.scalar_tensors.items():
|
1413 |
+
curr_scalar_tensor_value = gathered_state.get(name, None)
|
1414 |
+
assert curr_scalar_tensor_value is None or torch.equal(
|
1415 |
+
scalar_tensor_value, curr_scalar_tensor_value
|
1416 |
+
), (
|
1417 |
+
f"Rank {rank} has different values for {name}: {scalar_tensor_value}."
|
1418 |
+
+ f" Other ranks: {curr_scalar_tensor_value}"
|
1419 |
+
)
|
1420 |
+
gathered_state[name] = scalar_tensor_value
|
1421 |
+
|
1422 |
+
return dtype, state_buffers # type: ignore[possibly-undefined]
|
1423 |
+
|
1424 |
+
|
1425 |
+
def _unflatten_orig_param_states(
|
1426 |
+
fsdp_param_info: FSDPParamInfo,
|
1427 |
+
output_states: Dict[str, Dict[str, Any]],
|
1428 |
+
state_name: str,
|
1429 |
+
shard_state: bool,
|
1430 |
+
to_save: bool,
|
1431 |
+
cpu_offload: bool,
|
1432 |
+
) -> None:
|
1433 |
+
"""
|
1434 |
+
Given a output state dict, ``output_states``, which the keys are FQNs to the
|
1435 |
+
original parameters (not FlatParameters nor parmeter ID), and the values
|
1436 |
+
are gathered states, unflatten the states to the original dimensions.
|
1437 |
+
|
1438 |
+
This function performs the unflattening process in-place.
|
1439 |
+
"""
|
1440 |
+
if not to_save:
|
1441 |
+
return
|
1442 |
+
flat_param = fsdp_param_info.handle.flat_param
|
1443 |
+
fsdp_state = fsdp_param_info.state
|
1444 |
+
for fqn, gathered_state in output_states.items():
|
1445 |
+
value = gathered_state[state_name]
|
1446 |
+
param_idx = fsdp_param_info.param_indices[fqn]
|
1447 |
+
|
1448 |
+
# TODO: This solution is not general and only apply to PTD TP solution.
|
1449 |
+
if isinstance(value, DTensor):
|
1450 |
+
placement = value.placements[0]
|
1451 |
+
# If gathered state is a DTensor and its TP placement is not Replicate(), we need to
|
1452 |
+
# gather the tensor on its TP dimension before chunking them into DTensor again.
|
1453 |
+
if placement != Replicate():
|
1454 |
+
placement_dim = placement.dim # type: ignore[attr-defined]
|
1455 |
+
value_local = value.redistribute(placements=(Replicate(),))
|
1456 |
+
reshape_size = list(flat_param._shapes[param_idx])
|
1457 |
+
reshape_size[placement_dim] *= value.device_mesh.size(0)
|
1458 |
+
reshape_size = torch.Size(reshape_size)
|
1459 |
+
value = value.reshape(reshape_size)
|
1460 |
+
# If gathered state is a replicate DTensor, we directly reshape it.
|
1461 |
+
else:
|
1462 |
+
value = value.reshape(flat_param._shapes[param_idx])
|
1463 |
+
else:
|
1464 |
+
# If gathered state is a tensor, we directly reshape it into unflatten state.
|
1465 |
+
value = value.reshape(flat_param._shapes[param_idx])
|
1466 |
+
|
1467 |
+
if shard_state:
|
1468 |
+
osd_config = fsdp_state._optim_state_dict_config
|
1469 |
+
if getattr(osd_config, "_use_dtensor", False):
|
1470 |
+
assert fsdp_state._device_mesh is not None
|
1471 |
+
value = _ext_chunk_dtensor(
|
1472 |
+
value,
|
1473 |
+
fsdp_state.rank,
|
1474 |
+
fsdp_state._device_mesh,
|
1475 |
+
fsdp_state._fsdp_extension,
|
1476 |
+
)
|
1477 |
+
else:
|
1478 |
+
assert fsdp_state.process_group is not None
|
1479 |
+
value = _ext_chunk_tensor(
|
1480 |
+
value,
|
1481 |
+
fsdp_state.rank,
|
1482 |
+
fsdp_state.world_size,
|
1483 |
+
fsdp_state._device_handle.device_count(),
|
1484 |
+
fsdp_state.process_group,
|
1485 |
+
fsdp_state._fsdp_extension,
|
1486 |
+
)
|
1487 |
+
elif not cpu_offload:
|
1488 |
+
with SimpleProfiler.profile("clone"):
|
1489 |
+
value = value.detach().clone()
|
1490 |
+
|
1491 |
+
if cpu_offload:
|
1492 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.D2H):
|
1493 |
+
value = value.cpu()
|
1494 |
+
gathered_state[state_name] = value
|
1495 |
+
|
1496 |
+
|
1497 |
+
def _allgather_orig_param_states(
|
1498 |
+
fsdp_param_info: FSDPParamInfo,
|
1499 |
+
gathered_state_info: List[Dict[str, StateInfo]],
|
1500 |
+
input_states: Dict[str, Any],
|
1501 |
+
shard_state: bool,
|
1502 |
+
to_save: bool,
|
1503 |
+
cpu_offload: bool,
|
1504 |
+
) -> Dict[str, Dict[str, Any]]:
|
1505 |
+
"""
|
1506 |
+
Given the ``gathered_state_info`` and ``input_states``, the API allgathers
|
1507 |
+
all tensor states and restore non-tensor states from ``gathered_state_info``.
|
1508 |
+
"""
|
1509 |
+
fsdp_state = fsdp_param_info.state
|
1510 |
+
if fsdp_state.rank == 0 and dist.get_debug_level() == dist.DebugLevel.DETAIL:
|
1511 |
+
logger.warning(
|
1512 |
+
"CUDA Memory Summary before calling to _allgather_orig_param_states %s",
|
1513 |
+
torch.cuda.memory_summary(),
|
1514 |
+
)
|
1515 |
+
|
1516 |
+
output_states: Dict[str, Dict[str, Any]] = {fqn: {} for fqn in input_states.keys()}
|
1517 |
+
|
1518 |
+
dtype, state_buffers = _convert_all_state_info(
|
1519 |
+
fsdp_param_info, gathered_state_info, input_states, output_states
|
1520 |
+
)
|
1521 |
+
|
1522 |
+
if len(state_buffers) == 0:
|
1523 |
+
return output_states
|
1524 |
+
|
1525 |
+
has_state_params: List[bool] = [
|
1526 |
+
True if fqn in output_states else False
|
1527 |
+
for fqn, idx in fsdp_param_info.param_indices.items()
|
1528 |
+
]
|
1529 |
+
|
1530 |
+
# Loop through the ``state_buffers`` and construct the flattened, concatenated,
|
1531 |
+
# sharded states. The size of the constructed state will be the same size as
|
1532 |
+
# flat_param (also sharded).
|
1533 |
+
# Then we perform an allgather_into_tensor to get the full flat_param state.
|
1534 |
+
# The full flat_param state is the result of concatenation of multiple states
|
1535 |
+
# the order of of flat_param._fqns.
|
1536 |
+
# The final step is to split the flat_param state into original param states
|
1537 |
+
# and return the result.
|
1538 |
+
flat_param = fsdp_param_info.handle.flat_param
|
1539 |
+
empty_func = functools.partial(
|
1540 |
+
torch.empty, dtype=dtype, device=fsdp_state.compute_device
|
1541 |
+
)
|
1542 |
+
gathered_tensor = empty_func(flat_param._padded_unsharded_size)
|
1543 |
+
# Synchronize can be slow but this will be easier for us to debug.
|
1544 |
+
torch.cuda.synchronize()
|
1545 |
+
for state_name, buffers in state_buffers.items():
|
1546 |
+
local_buffers: List[torch.Tensor] = []
|
1547 |
+
begin = fsdp_state.rank * flat_param._sharded_size.numel()
|
1548 |
+
# End is inclusive.
|
1549 |
+
end = begin + flat_param._sharded_size.numel() - 1
|
1550 |
+
# param_idx corresponds to the parameter index in the FlatParameter.
|
1551 |
+
mem_offset, param_idx = 0, 0
|
1552 |
+
for numel, is_padding in zip(
|
1553 |
+
flat_param._numels_with_padding, flat_param._is_padding_mask
|
1554 |
+
):
|
1555 |
+
frozen_and_no_state = not is_padding and (
|
1556 |
+
not fsdp_param_info.param_requires_grad[param_idx]
|
1557 |
+
and not has_state_params[param_idx]
|
1558 |
+
)
|
1559 |
+
|
1560 |
+
if is_padding or frozen_and_no_state:
|
1561 |
+
# This memory range is a padding or the param is frozen and does
|
1562 |
+
# not require gradient. For the later case, we treat it as a
|
1563 |
+
# padding and add empty values to the local_buffers.
|
1564 |
+
|
1565 |
+
padding_begin, padding_end = mem_offset, mem_offset + numel - 1
|
1566 |
+
if padding_begin <= begin <= padding_end:
|
1567 |
+
# The range is an align padding before the first parameter in
|
1568 |
+
# the shard. The shard includes parts of this align padding.
|
1569 |
+
padding_len = (
|
1570 |
+
padding_end - begin + 1
|
1571 |
+
if end >= padding_end
|
1572 |
+
else end - begin + 1
|
1573 |
+
)
|
1574 |
+
elif padding_begin <= end <= padding_end:
|
1575 |
+
# The range is an align padding after the last parameter in
|
1576 |
+
# the shard. The shard includes parts of this align padding.
|
1577 |
+
padding_len = (
|
1578 |
+
end - padding_begin + 1
|
1579 |
+
if begin <= padding_begin
|
1580 |
+
else end - begin + 1
|
1581 |
+
)
|
1582 |
+
elif begin < padding_begin <= padding_end < end:
|
1583 |
+
# The range is an align padding that is completely in the
|
1584 |
+
# shard.
|
1585 |
+
padding_len = numel
|
1586 |
+
else:
|
1587 |
+
padding_len = 0
|
1588 |
+
if padding_len:
|
1589 |
+
local_buffers.append(empty_func(padding_len))
|
1590 |
+
|
1591 |
+
if not is_padding:
|
1592 |
+
# This memory range is a parameter in FlatParameter. So there
|
1593 |
+
# should be an corresponding state in the optimizer unless the
|
1594 |
+
# parameter is frozen, which we treat it as a padding above.
|
1595 |
+
|
1596 |
+
# We need to check if this rank owns the buffer. If this is None:
|
1597 |
+
# 1.) the rank does not own any part of the original parameter.
|
1598 |
+
# As a result, there is no corresponding optimizer state on
|
1599 |
+
# the rank as well.
|
1600 |
+
# 2.) the parameter is frozen AND no optimizer state for the
|
1601 |
+
# parameter. If a parameter is frozen, there can still be
|
1602 |
+
# optimizer state if the parameter is not frozen in the
|
1603 |
+
# previous steps.
|
1604 |
+
if buffers[param_idx] is not None:
|
1605 |
+
local_buffers.append(cast(torch.Tensor, buffers[param_idx]))
|
1606 |
+
param_idx += 1
|
1607 |
+
|
1608 |
+
mem_offset += numel
|
1609 |
+
|
1610 |
+
shard_numel_padded = flat_param._sharded_size.numel() - (
|
1611 |
+
sum(t.numel() for t in local_buffers)
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
assert flat_param._shard_numel_padded == shard_numel_padded, (
|
1615 |
+
"Manually calculated _sharded_numel_padded is incorrect. "
|
1616 |
+
f"_shard_numel_padded={flat_param._shard_numel_padded}, "
|
1617 |
+
f"shard_numel_padded={shard_numel_padded}, "
|
1618 |
+
f"_sharded_size.numel={flat_param._sharded_size.numel()}, "
|
1619 |
+
f"_numels_with_padding={flat_param._numels_with_padding}, "
|
1620 |
+
f"begin={begin}, end={end},"
|
1621 |
+
)
|
1622 |
+
if shard_numel_padded > 0:
|
1623 |
+
# Add right-handed padding.
|
1624 |
+
local_buffers.append(empty_func(shard_numel_padded))
|
1625 |
+
local_shard = torch.cat(local_buffers)
|
1626 |
+
assert local_shard.numel() * fsdp_state.world_size == gathered_tensor.numel(), (
|
1627 |
+
"The size of local shard times the world size should equal to the "
|
1628 |
+
"gathered tensor size. The inconsistency may be from a bug of "
|
1629 |
+
"FlatParameter's metadata or the reconstruction logic in optimizer "
|
1630 |
+
"state dict."
|
1631 |
+
)
|
1632 |
+
torch.cuda.synchronize()
|
1633 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
|
1634 |
+
dist.all_gather_into_tensor(
|
1635 |
+
gathered_tensor, local_shard, group=fsdp_state.process_group
|
1636 |
+
)
|
1637 |
+
# Synchronize can be slow but this will be easier for us to debug.
|
1638 |
+
torch.cuda.synchronize()
|
1639 |
+
|
1640 |
+
unpadded_tensor = gathered_tensor[: flat_param._unpadded_unsharded_size.numel()]
|
1641 |
+
flat_param_handle = fsdp_param_info.handle
|
1642 |
+
orig_states = flat_param_handle._get_unflat_views_aligned(unpadded_tensor)
|
1643 |
+
assert len(orig_states) == len(fsdp_param_info.param_indices), (
|
1644 |
+
"The number of parameters from FlatParameter is not consistent to "
|
1645 |
+
"the number of states used by optimizer state dict reconstruction "
|
1646 |
+
"logic."
|
1647 |
+
)
|
1648 |
+
for fqn, idx in fsdp_param_info.param_indices.items():
|
1649 |
+
if fsdp_param_info.param_requires_grad[idx] or fqn in output_states:
|
1650 |
+
output_states[fqn][state_name] = orig_states[idx]
|
1651 |
+
|
1652 |
+
_unflatten_orig_param_states(
|
1653 |
+
fsdp_param_info,
|
1654 |
+
output_states,
|
1655 |
+
state_name,
|
1656 |
+
shard_state,
|
1657 |
+
to_save,
|
1658 |
+
cpu_offload,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
del gathered_tensor
|
1662 |
+
return output_states
|
1663 |
+
|
1664 |
+
|
1665 |
+
def _gather_all_orig_param_state(
|
1666 |
+
fsdp_param_info: FSDPParamInfo,
|
1667 |
+
input_states: Dict[str, Any],
|
1668 |
+
shard_state: bool,
|
1669 |
+
to_save: bool,
|
1670 |
+
cpu_offload: bool,
|
1671 |
+
) -> Dict[str, Any]:
|
1672 |
+
"""
|
1673 |
+
Given a optimizer state dict, ``input_states``, which the keys are FQNs to the
|
1674 |
+
original parameters (not FlatParameters nor parmeter ID), gather all the
|
1675 |
+
states and unflatten them to the original dimensions. Note that all the
|
1676 |
+
params referred by the ``input_states`` must be managed by FSDP.
|
1677 |
+
"""
|
1678 |
+
fsdp_state = fsdp_param_info.state
|
1679 |
+
if (
|
1680 |
+
fsdp_state.world_size == 1
|
1681 |
+
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
1682 |
+
):
|
1683 |
+
return input_states if to_save else {}
|
1684 |
+
|
1685 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
1686 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER_OBJ):
|
1687 |
+
gathered_state_info = _allgather_state_info(fsdp_state, input_states)
|
1688 |
+
output_states = _allgather_orig_param_states(
|
1689 |
+
fsdp_param_info,
|
1690 |
+
gathered_state_info,
|
1691 |
+
input_states,
|
1692 |
+
shard_state,
|
1693 |
+
to_save,
|
1694 |
+
cpu_offload,
|
1695 |
+
)
|
1696 |
+
if to_save:
|
1697 |
+
for key, idx in fsdp_param_info.param_indices.items():
|
1698 |
+
if key in output_states:
|
1699 |
+
continue
|
1700 |
+
if not fsdp_param_info.param_requires_grad[idx]:
|
1701 |
+
continue
|
1702 |
+
|
1703 |
+
raise RuntimeError(
|
1704 |
+
f"{key} is not in the output state. "
|
1705 |
+
"The FSDPParamInfo has the param keys "
|
1706 |
+
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
1707 |
+
"the output_states has the param keys "
|
1708 |
+
f"{sorted(output_states.keys())}."
|
1709 |
+
)
|
1710 |
+
return output_states
|
1711 |
+
else:
|
1712 |
+
return {}
|
1713 |
+
|
1714 |
+
|
1715 |
+
def _convert_state_with_orig_params(
|
1716 |
+
all_optim_state_keys: List[_OptimStateKey],
|
1717 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
1718 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
1719 |
+
optim_state_dict: Dict[Union[str, int], Any],
|
1720 |
+
to_save: bool,
|
1721 |
+
shard_state: bool,
|
1722 |
+
cpu_offload: bool = True,
|
1723 |
+
) -> Dict[str, Any]:
|
1724 |
+
fsdp_osd_state: Dict[str, Any] = {}
|
1725 |
+
# This variable is used to deduplicate the FSDPParamInfo as one FSDPParamInfo
|
1726 |
+
# usually corresponds to multiple parameters. We could not use FSDPParamInfo
|
1727 |
+
# as the key because FSDPParamInfo is not hashable. As a result, we fall back
|
1728 |
+
# to `id(FSDPParamInfo)`, which the type is an integer.
|
1729 |
+
all_states: Dict[int, Dict[str, Any]] = {}
|
1730 |
+
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
1731 |
+
# across ranks
|
1732 |
+
for optim_state_key in all_optim_state_keys:
|
1733 |
+
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
1734 |
+
optim_state_key, None
|
1735 |
+
)
|
1736 |
+
|
1737 |
+
if param_key is None and not optim_state_key.is_fsdp_managed:
|
1738 |
+
continue
|
1739 |
+
|
1740 |
+
if optim_state_key.is_fsdp_managed:
|
1741 |
+
fqn = optim_state_key.unflat_param_names[0]
|
1742 |
+
fsdp_param_info = fqn_to_fsdp_param_info.get(fqn, None)
|
1743 |
+
if fsdp_param_info is None:
|
1744 |
+
# This can happen if the not all FSDP instances have all the
|
1745 |
+
# parameters. This can happen with FSDP + some MPMD style
|
1746 |
+
# parallelism.
|
1747 |
+
|
1748 |
+
# TODO: it is unclear if we need to do the same check with
|
1749 |
+
# non-FSDP managed keys.
|
1750 |
+
continue
|
1751 |
+
state = {} if param_key is None else optim_state_dict[param_key]
|
1752 |
+
if id(fsdp_param_info) not in all_states:
|
1753 |
+
all_states[id(fsdp_param_info)] = {}
|
1754 |
+
all_states[id(fsdp_param_info)][fqn] = state
|
1755 |
+
|
1756 |
+
elif to_save:
|
1757 |
+
assert len(optim_state_key.unflat_param_names) == 1
|
1758 |
+
unflat_param_name = optim_state_key.unflat_param_names[0]
|
1759 |
+
with SimpleProfiler.profile("none_fsdp_managed_copy"):
|
1760 |
+
param_key = cast(Union[str, int], param_key)
|
1761 |
+
fsdp_osd_state[unflat_param_name] = copy.copy(
|
1762 |
+
optim_state_dict[param_key]
|
1763 |
+
)
|
1764 |
+
if cpu_offload:
|
1765 |
+
for state_name, value in sorted_items(
|
1766 |
+
fsdp_osd_state[unflat_param_name]
|
1767 |
+
):
|
1768 |
+
if not torch.is_tensor(value):
|
1769 |
+
continue
|
1770 |
+
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
1771 |
+
|
1772 |
+
# Instead of gathering the state of each parameter individually, we perform
|
1773 |
+
# the gathering all at once to speed up the process.
|
1774 |
+
for _all_states in all_states.values():
|
1775 |
+
fqn = next(iter(_all_states.keys()))
|
1776 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
1777 |
+
assert len(fsdp_param_info.param_requires_grad) > 0, (
|
1778 |
+
"With use_orig_params, FSDPParamInfo should have requires_grad "
|
1779 |
+
"information. However, the length is zero."
|
1780 |
+
)
|
1781 |
+
for key, idx in fsdp_param_info.param_indices.items():
|
1782 |
+
if key in _all_states:
|
1783 |
+
continue
|
1784 |
+
if not fsdp_param_info.param_requires_grad[idx]:
|
1785 |
+
continue
|
1786 |
+
raise RuntimeError(
|
1787 |
+
f"{key} is not in the optimizer state. "
|
1788 |
+
"The FSDPParamInfo has the param keys "
|
1789 |
+
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
1790 |
+
"the optimizer has the param keys "
|
1791 |
+
f"{sorted(_all_states.keys())}."
|
1792 |
+
)
|
1793 |
+
fsdp_osd_state.update(
|
1794 |
+
_gather_all_orig_param_state(
|
1795 |
+
fsdp_param_info,
|
1796 |
+
_all_states,
|
1797 |
+
shard_state,
|
1798 |
+
to_save,
|
1799 |
+
cpu_offload,
|
1800 |
+
)
|
1801 |
+
)
|
1802 |
+
|
1803 |
+
return fsdp_osd_state
|
1804 |
+
|
1805 |
+
|
1806 |
+
def _convert_state_with_flat_params(
|
1807 |
+
all_optim_state_keys: List[_OptimStateKey],
|
1808 |
+
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
1809 |
+
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
1810 |
+
optim_state_dict: Dict[Union[str, int], Any],
|
1811 |
+
to_save: bool,
|
1812 |
+
shard_state: bool,
|
1813 |
+
cpu_offload: bool = True,
|
1814 |
+
) -> Dict[str, Any]:
|
1815 |
+
fsdp_osd_state: Dict[str, Any] = {}
|
1816 |
+
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
1817 |
+
# across ranks
|
1818 |
+
for optim_state_key in all_optim_state_keys:
|
1819 |
+
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
1820 |
+
optim_state_key, None
|
1821 |
+
)
|
1822 |
+
|
1823 |
+
assert param_key is not None, (
|
1824 |
+
"If use_orig_params is False, we must be able to find the "
|
1825 |
+
f"corresponding param id. {optim_state_key} {param_key}"
|
1826 |
+
)
|
1827 |
+
|
1828 |
+
if optim_state_key.is_fsdp_managed:
|
1829 |
+
# If there are multiple unflat_param_names (not use_orig_params),
|
1830 |
+
# they share the same FSDPParamInfo. So the first unflat_param_name
|
1831 |
+
# is sufficient to fetch the FSDPParamInfo.
|
1832 |
+
fqn = optim_state_key.unflat_param_names[0]
|
1833 |
+
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
1834 |
+
unflat_state = _unflatten_optim_state(
|
1835 |
+
fsdp_param_info,
|
1836 |
+
optim_state_dict[param_key],
|
1837 |
+
to_save,
|
1838 |
+
shard_state,
|
1839 |
+
cpu_offload,
|
1840 |
+
)
|
1841 |
+
if to_save:
|
1842 |
+
assert len(unflat_state) == len(optim_state_key.unflat_param_names)
|
1843 |
+
for unflat_param_name, unflat_param_state in zip(
|
1844 |
+
optim_state_key.unflat_param_names,
|
1845 |
+
unflat_state,
|
1846 |
+
):
|
1847 |
+
fsdp_osd_state[unflat_param_name] = unflat_param_state
|
1848 |
+
elif to_save:
|
1849 |
+
assert len(optim_state_key.unflat_param_names) == 1
|
1850 |
+
unflat_param_name = optim_state_key.unflat_param_names[0]
|
1851 |
+
fsdp_osd_state[unflat_param_name] = copy.copy(optim_state_dict[param_key])
|
1852 |
+
if cpu_offload:
|
1853 |
+
for state_name, value in sorted_items(
|
1854 |
+
fsdp_osd_state[unflat_param_name]
|
1855 |
+
):
|
1856 |
+
if not torch.is_tensor(value):
|
1857 |
+
continue
|
1858 |
+
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
1859 |
+
|
1860 |
+
return fsdp_osd_state
|
1861 |
+
|
1862 |
+
|
1863 |
+
@torch.no_grad()
|
1864 |
+
def _optim_state_dict(
|
1865 |
+
model: nn.Module,
|
1866 |
+
optim: torch.optim.Optimizer,
|
1867 |
+
optim_state_dict: Dict[str, Any],
|
1868 |
+
optim_input: Optional[
|
1869 |
+
Union[
|
1870 |
+
List[Dict[str, Any]],
|
1871 |
+
Iterable[nn.Parameter],
|
1872 |
+
]
|
1873 |
+
],
|
1874 |
+
rank0_only: bool,
|
1875 |
+
shard_state: bool,
|
1876 |
+
group: Optional[dist.ProcessGroup],
|
1877 |
+
using_optim_input: bool,
|
1878 |
+
use_orig_params: bool = False,
|
1879 |
+
cpu_offload: bool = True,
|
1880 |
+
) -> Dict[str, Any]:
|
1881 |
+
"""
|
1882 |
+
Consolidates the optimizer state and returns it as a :class:`dict`
|
1883 |
+
following the convention of :meth:`torch.optim.Optimizer.state_dict`,
|
1884 |
+
i.e. with keys ``"state"`` and ``"param_groups"``.
|
1885 |
+
The flat parameters in ``FSDP`` modules contained in ``model`` are mapped
|
1886 |
+
back to their unflattened parameters.
|
1887 |
+
|
1888 |
+
Parameter keys are not well-defined. For a regular optimizer, the optimizer
|
1889 |
+
state_dict contains a mapping from parameter IDs to parameter states.
|
1890 |
+
Parameter IDs are the order of parameters in ``optim.param_groups()`` across
|
1891 |
+
all the groups. This API also allows user to pass ``optim_input`` for the
|
1892 |
+
mapping between parameters and parameter IDs. Using ``optim_input`` is being
|
1893 |
+
deprecated.
|
1894 |
+
|
1895 |
+
If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
|
1896 |
+
contain parameter IDs mapping but a mapping from parameter FQNs to parameter
|
1897 |
+
states. This API finds the mapping from FQNs to parameters if the optimizer
|
1898 |
+
is a ``NamedOptimizer``.
|
1899 |
+
|
1900 |
+
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
1901 |
+
parameters but some of these parameters may be empty due to the sharding.
|
1902 |
+
For a regular optim.Optimizer, states for those empty parameters will
|
1903 |
+
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
1904 |
+
will be raised on a rank even if it does not have all the states -- it is
|
1905 |
+
valid and FSDP knows how to aggregate them. However, FSDP has to ignore
|
1906 |
+
handling those parameters that are not managed by FSDP and do not exist on
|
1907 |
+
the local rank -- those are managed by other parallelisms and FSDP does not
|
1908 |
+
know how to handle/aggregate them.
|
1909 |
+
|
1910 |
+
Args:
|
1911 |
+
model (nn.Module): Root module (which may or may not be a
|
1912 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1913 |
+
were passed into the optimizer ``optim``.
|
1914 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
1915 |
+
parameters.
|
1916 |
+
rank0_only (bool): If ``True``, saves the populated :class:`dict`
|
1917 |
+
only on rank 0; if ``False``, saves it on all ranks. (Default:
|
1918 |
+
``True``)
|
1919 |
+
shard_state (bool): If ``True``, shard and distribute all
|
1920 |
+
non-zero-dimension states.
|
1921 |
+
|
1922 |
+
Returns:
|
1923 |
+
Dict[str, Any]: A :class:`dict` containing the optimizer state for
|
1924 |
+
``model`` 's original unflattened parameters and including keys
|
1925 |
+
"state" and "param_groups" following the convention of
|
1926 |
+
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
|
1927 |
+
then nonzero ranks return an empty :class:`dict`.
|
1928 |
+
"""
|
1929 |
+
SimpleProfiler.reset()
|
1930 |
+
cm = ExitStack()
|
1931 |
+
cm.enter_context(SimpleProfiler.profile(SimpleProfiler.Type.ALL))
|
1932 |
+
_reset_flat_param_grad_info_if_needed(traversal_utils._get_fsdp_handles(model))
|
1933 |
+
to_save = not rank0_only or dist.get_rank(group) == 0 or shard_state
|
1934 |
+
|
1935 |
+
with SimpleProfiler.profile("preprocessing"):
|
1936 |
+
param_to_fqns = _get_param_to_fqns(model)
|
1937 |
+
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
1938 |
+
is_named_optimizer = _is_named_optimizer(optim_state_dict)
|
1939 |
+
|
1940 |
+
param_key_to_param = cast(
|
1941 |
+
Dict[Union[int, str], nn.Parameter],
|
1942 |
+
(
|
1943 |
+
_get_param_id_to_param_from_optim_input(model, optim_input)
|
1944 |
+
if using_optim_input
|
1945 |
+
else _get_param_key_to_param(
|
1946 |
+
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
1947 |
+
)
|
1948 |
+
),
|
1949 |
+
)
|
1950 |
+
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
1951 |
+
|
1952 |
+
with SimpleProfiler.profile("preprocessing_with_comm"):
|
1953 |
+
(
|
1954 |
+
all_optim_state_keys,
|
1955 |
+
optim_state_key_to_param_key,
|
1956 |
+
) = _map_param_key_to_optim_keys(
|
1957 |
+
optim_state_dict,
|
1958 |
+
group,
|
1959 |
+
param_key_to_param,
|
1960 |
+
param_to_fqns,
|
1961 |
+
fqn_to_fsdp_param_info,
|
1962 |
+
merge_keys=use_orig_params,
|
1963 |
+
)
|
1964 |
+
|
1965 |
+
with SimpleProfiler.profile("state_converting"):
|
1966 |
+
convert_fn = (
|
1967 |
+
_convert_state_with_orig_params
|
1968 |
+
if use_orig_params
|
1969 |
+
else _convert_state_with_flat_params
|
1970 |
+
)
|
1971 |
+
fsdp_osd_state = convert_fn(
|
1972 |
+
all_optim_state_keys,
|
1973 |
+
optim_state_key_to_param_key,
|
1974 |
+
fqn_to_fsdp_param_info,
|
1975 |
+
optim_state_dict["state"],
|
1976 |
+
to_save,
|
1977 |
+
shard_state,
|
1978 |
+
cpu_offload,
|
1979 |
+
)
|
1980 |
+
|
1981 |
+
# At this point, communication is complete and ranks can return early if nothing
|
1982 |
+
# will be saved on that rank.
|
1983 |
+
if not to_save:
|
1984 |
+
return {}
|
1985 |
+
|
1986 |
+
fsdp_osd: Dict[str, Any] = {"state": fsdp_osd_state}
|
1987 |
+
|
1988 |
+
flat_param_fqns = set(flat_param_to_fqn.values())
|
1989 |
+
for key, value in optim_state_dict["state"].items():
|
1990 |
+
if key in fsdp_osd_state:
|
1991 |
+
continue
|
1992 |
+
if key in flat_param_fqns:
|
1993 |
+
continue
|
1994 |
+
if key in param_key_to_param:
|
1995 |
+
continue
|
1996 |
+
# This key is not recognized by FSDP. It may be a user-defined state
|
1997 |
+
# or some parameters state that FSDP is unable to map from
|
1998 |
+
# ``optim.param_groups``.
|
1999 |
+
warnings.warn(
|
2000 |
+
f"Found a optim state, {key}, that FSDP cannot process. FSDP "
|
2001 |
+
"will directly copy everything to the returned state_dict. In "
|
2002 |
+
"most cases, this is a user-defined state that is not "
|
2003 |
+
"associated with any particular parameter. Another possible "
|
2004 |
+
"case is this state is managed by TorchRec. Otherwise, there may "
|
2005 |
+
" be a mismatched assumption of optim_state_dict of this mode."
|
2006 |
+
)
|
2007 |
+
fsdp_osd_state[key] = value
|
2008 |
+
|
2009 |
+
if "param_groups" in optim_state_dict:
|
2010 |
+
fsdp_osd["param_groups"] = _unflatten_param_groups(
|
2011 |
+
optim_state_dict, param_key_to_param, param_to_fqns
|
2012 |
+
)
|
2013 |
+
|
2014 |
+
cm.close()
|
2015 |
+
SimpleProfiler.dump_and_reset("FSDP _optim_state_dict() profiling: ")
|
2016 |
+
|
2017 |
+
return fsdp_osd
|
2018 |
+
|
2019 |
+
|
2020 |
+
def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
|
2021 |
+
"""
|
2022 |
+
Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
|
2023 |
+
if the param is managed by FSDP. Shared parameters, or original parameters that
|
2024 |
+
are shared across multiple nn.Modules, are required to belong to one and only
|
2025 |
+
one FSDP instance and thus correspond to one ``FlatParameter``. Within the one
|
2026 |
+
``FlatParameter``, ``FlatParameter._fqns`` only stores the first FQN of a shared
|
2027 |
+
parameter. Thus, the keys in the mapping are guaranteed to map to unique parameters.
|
2028 |
+
"""
|
2029 |
+
|
2030 |
+
def module_fn(module, prefix, tree_level, fqn_to_param_info):
|
2031 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
2032 |
+
if fsdp_state is None:
|
2033 |
+
return
|
2034 |
+
_lazy_init(fsdp_state, module)
|
2035 |
+
handle = _module_handle(fsdp_state, module)
|
2036 |
+
if not handle:
|
2037 |
+
return
|
2038 |
+
flat_param = handle.flat_param
|
2039 |
+
fsdp_param_info = FSDPParamInfo(fsdp_state, handle, {}, [])
|
2040 |
+
# NOTE: `idx` indexes into the data structures *without* padding
|
2041 |
+
# elements
|
2042 |
+
for idx, local_fqn in enumerate(flat_param._fqns):
|
2043 |
+
fqn = clean_tensor_name(prefix + local_fqn)
|
2044 |
+
if fqn in fqn_to_param_info:
|
2045 |
+
assert fqn_to_param_info[fqn].handle.flat_param is flat_param, fqn
|
2046 |
+
fqn_to_param_info[fqn] = fsdp_param_info
|
2047 |
+
fsdp_param_info.param_indices[fqn] = idx
|
2048 |
+
if flat_param._params is not None:
|
2049 |
+
fsdp_param_info.param_requires_grad.append(
|
2050 |
+
flat_param._params[idx].requires_grad
|
2051 |
+
)
|
2052 |
+
|
2053 |
+
def return_fn(fqn_to_param_info):
|
2054 |
+
return fqn_to_param_info
|
2055 |
+
|
2056 |
+
fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
|
2057 |
+
# FlatParameter._fqns stores the local fqn, starting from the root of the
|
2058 |
+
# FSDP. Using _apply_to_modules() with model (may not be the FSDP root
|
2059 |
+
# module) allows us to construct the global fqn.
|
2060 |
+
return _apply_to_modules(
|
2061 |
+
model,
|
2062 |
+
module_fn,
|
2063 |
+
return_fn,
|
2064 |
+
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
2065 |
+
fqn_to_param_info,
|
2066 |
+
)
|
2067 |
+
|
2068 |
+
|
2069 |
+
@no_type_check
|
2070 |
+
def _set_optim_use_dtensor(
|
2071 |
+
fsdp_state: _FSDPState,
|
2072 |
+
state_dict_settings: StateDictSettings,
|
2073 |
+
) -> None:
|
2074 |
+
# If device_mesh is passed in when initalizing FSDP, we automatically turn the
|
2075 |
+
# _use_dtensor flag to be true for ShardedOptimStateDictConfig() if state_dict_type
|
2076 |
+
# has to be set to SHARDED_STATE_DICT.
|
2077 |
+
if getattr(fsdp_state, "_device_mesh", None):
|
2078 |
+
state_dict_type = state_dict_settings.state_dict_type
|
2079 |
+
if state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
2080 |
+
raise RuntimeError(
|
2081 |
+
"Found state_dict_type LOCAL_STATE_DICT.",
|
2082 |
+
"DeviceMesh is not compatible with LOCAL_STATE_DICT.",
|
2083 |
+
"Please set state_dict_type to SHARDED_STATE_DICT to get DTensor state_dict.",
|
2084 |
+
)
|
2085 |
+
else:
|
2086 |
+
state_dict_settings.optim_state_dict_config._use_dtensor = True
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_runtime_utils.py
ADDED
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import logging
|
3 |
+
from enum import auto, Enum
|
4 |
+
from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.autograd import Variable
|
12 |
+
from torch.autograd.graph import register_multi_grad_hook
|
13 |
+
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
|
14 |
+
from torch.distributed.fsdp._common_utils import (
|
15 |
+
_assert_in_training_states,
|
16 |
+
_FSDPState,
|
17 |
+
_get_module_fsdp_state,
|
18 |
+
_is_composable,
|
19 |
+
_log_post_backward_hook,
|
20 |
+
_no_dispatch_record_stream,
|
21 |
+
clean_tensor_name,
|
22 |
+
TrainingState,
|
23 |
+
)
|
24 |
+
from torch.distributed.fsdp._flat_param import (
|
25 |
+
FlatParameter,
|
26 |
+
FlatParamHandle,
|
27 |
+
HandleShardingStrategy,
|
28 |
+
HandleTrainingState,
|
29 |
+
RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES,
|
30 |
+
)
|
31 |
+
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
|
32 |
+
from torch.distributed.fsdp.api import BackwardPrefetch
|
33 |
+
from torch.distributed.utils import (
|
34 |
+
_apply_to_tensors,
|
35 |
+
_cast_forward_inputs,
|
36 |
+
_p_assert,
|
37 |
+
_to_kwargs,
|
38 |
+
)
|
39 |
+
from torch.utils import _pytree as pytree
|
40 |
+
|
41 |
+
log = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
# Do not include "process_group" to enable hybrid shard and MoE cases
|
44 |
+
HOMOGENEOUS_ATTR_NAMES = (
|
45 |
+
"_use_orig_params",
|
46 |
+
"limit_all_gathers",
|
47 |
+
"_use_full_prec_in_eval",
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class _PrefetchMode(Enum):
|
52 |
+
BACKWARD = auto()
|
53 |
+
FORWARD = auto()
|
54 |
+
|
55 |
+
|
56 |
+
def _get_fsdp_root_states_with_modules(
|
57 |
+
module: nn.Module,
|
58 |
+
) -> Tuple[List[_FSDPState], List[nn.Module]]:
|
59 |
+
"""
|
60 |
+
Returns a tuple containing:
|
61 |
+
1. A list of the root ``_FSDPState`` instances in the module tree rooted at
|
62 |
+
``module`` without any duplicates and following the ``module.modules()``
|
63 |
+
traversal order (which is assumed to be depth-first).
|
64 |
+
2. A corresponding list of the root modules owning the states in the first
|
65 |
+
list.
|
66 |
+
|
67 |
+
This is similar to :func:`_get_fsdp_states_with_modules` except that we
|
68 |
+
must call :func:`_is_fsdp_root` to force a lazy initialization to determine
|
69 |
+
the FSDP root in case lazy initialization has not yet happened.
|
70 |
+
"""
|
71 |
+
fsdp_root_states: List[_FSDPState] = []
|
72 |
+
fsdp_root_modules: List[nn.Module] = []
|
73 |
+
visited_fsdp_states: Set[_FSDPState] = set()
|
74 |
+
# NOTE: This function assumes that `module.modules()` proceeds top-down.
|
75 |
+
for submodule in module.modules():
|
76 |
+
optional_state = _get_module_fsdp_state(submodule)
|
77 |
+
if (
|
78 |
+
optional_state is not None
|
79 |
+
and optional_state not in visited_fsdp_states
|
80 |
+
and _is_fsdp_root(optional_state, submodule)
|
81 |
+
):
|
82 |
+
visited_fsdp_states.add(optional_state)
|
83 |
+
fsdp_root_states.append(optional_state)
|
84 |
+
fsdp_root_modules.append(submodule)
|
85 |
+
return fsdp_root_states, fsdp_root_modules
|
86 |
+
|
87 |
+
|
88 |
+
def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]:
|
89 |
+
"""See :func:`_get_fsdp_root_states_with_modules`."""
|
90 |
+
fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module)
|
91 |
+
return fsdp_root_states
|
92 |
+
|
93 |
+
|
94 |
+
def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool:
|
95 |
+
"""
|
96 |
+
Returns if ``state`` corresponds to that of an FSDP root.
|
97 |
+
|
98 |
+
For the wrapper code path, ``state`` and ``module`` should be the same. For
|
99 |
+
the non-wrapper code path, ``state`` should be ``module`` 's state.
|
100 |
+
"""
|
101 |
+
# Force a lazy initialization to determine the FSDP root
|
102 |
+
_lazy_init(state, module)
|
103 |
+
assert state._is_root is not None # mypy
|
104 |
+
return state._is_root
|
105 |
+
|
106 |
+
|
107 |
+
@no_type_check
|
108 |
+
def _lazy_init(
|
109 |
+
state: _FSDPState,
|
110 |
+
root_module: nn.Module,
|
111 |
+
) -> _FSDPState:
|
112 |
+
"""
|
113 |
+
Performs initialization lazily, typically right before the first forward
|
114 |
+
pass. The laziness is needed to ensure that the parameter device/dtype and
|
115 |
+
the FSDP hierarchy have finalized. This method's actual logic only runs on
|
116 |
+
the root FSDP instance, which performs initialization for all non-root FSDP
|
117 |
+
instances to avoid partial initialization.
|
118 |
+
|
119 |
+
For the non-composable code path, ``state`` and ``root_module`` should be
|
120 |
+
the same, namely the FSDP instance itself.
|
121 |
+
"""
|
122 |
+
if state._is_root is not None:
|
123 |
+
return # no-op: already lazily initialized
|
124 |
+
if not state._device_handle.is_available():
|
125 |
+
# Allow the FSDP constructor to run even without CUDA but check this
|
126 |
+
# once we start real execution
|
127 |
+
raise RuntimeError("FSDP does not support CPU only execution")
|
128 |
+
# The following logic is only run on the root FSDP instance since it will
|
129 |
+
# set `_is_root=False` for the non-root instances
|
130 |
+
state._is_root = True
|
131 |
+
_assert_in_training_states(state, [TrainingState.IDLE])
|
132 |
+
_check_flat_params_on_expected_device(state, root_module)
|
133 |
+
state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module)
|
134 |
+
_init_streams(state)
|
135 |
+
buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module)
|
136 |
+
_cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device)
|
137 |
+
state._exec_order_data.init(state, root_module, state.process_group)
|
138 |
+
_share_state_and_init_handle_attrs(state, root_module)
|
139 |
+
return state
|
140 |
+
|
141 |
+
|
142 |
+
def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module):
|
143 |
+
"""
|
144 |
+
Checks that all ``FlatParameter``s in ``module`` 's tree managed by
|
145 |
+
``state`` are on the expected device for *lazy initialization*.
|
146 |
+
"""
|
147 |
+
cpu_device = torch.device("cpu")
|
148 |
+
for handle in traversal_utils._get_fsdp_handles(module):
|
149 |
+
if (
|
150 |
+
not handle._offload_params
|
151 |
+
and handle.flat_param.device != state.compute_device
|
152 |
+
):
|
153 |
+
raise RuntimeError(
|
154 |
+
"An FSDP-managed module unexpectedly has parameters on "
|
155 |
+
f"{handle.flat_param.device}. Make sure to move the module to "
|
156 |
+
f"{state.compute_device} before training."
|
157 |
+
)
|
158 |
+
elif handle._offload_params and handle.flat_param.device != cpu_device:
|
159 |
+
raise RuntimeError(
|
160 |
+
"An FSDP-managed module with parameter CPU offloading enabled "
|
161 |
+
f"has parameters on {handle.flat_param.device}. Make sure to "
|
162 |
+
f"not move the module from CPU when offloading parameters."
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
@no_type_check
|
167 |
+
def _share_state_and_init_handle_attrs(
|
168 |
+
root_state: _FSDPState,
|
169 |
+
root_module: nn.Module,
|
170 |
+
) -> None:
|
171 |
+
"""
|
172 |
+
Shares data structure state from the ``root_state`` to all FSDP states in
|
173 |
+
``root_module`` 's module tree, and initializes handle attributes. These
|
174 |
+
are done together to require a single loop over the states.
|
175 |
+
"""
|
176 |
+
handle = root_state._handle
|
177 |
+
if handle:
|
178 |
+
handle.init_flat_param_attributes()
|
179 |
+
attr_name_to_values: Dict[str, Set[Any]] = {}
|
180 |
+
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
181 |
+
attr_name_to_values[attr_name] = set()
|
182 |
+
root_state._all_handles = root_state._exec_order_data.all_handles # share reference
|
183 |
+
# Update _has_optim_in_backward for each handle.
|
184 |
+
for handle in root_state._all_handles:
|
185 |
+
flat_param = handle.flat_param
|
186 |
+
if hasattr(flat_param, "_in_backward_optimizers"):
|
187 |
+
raise RuntimeError(
|
188 |
+
"FSDP optimizer in backward only supported with use_orig_params=True!"
|
189 |
+
)
|
190 |
+
handle._has_optim_in_backward = flat_param._params is not None and any(
|
191 |
+
hasattr(param, "_in_backward_optimizers") for param in flat_param._params
|
192 |
+
)
|
193 |
+
if handle._has_optim_in_backward:
|
194 |
+
torch._C._log_api_usage_once("fsdp.optimizer_in_backward")
|
195 |
+
for fsdp_state in root_state._all_fsdp_states:
|
196 |
+
for attr_name in HOMOGENEOUS_ATTR_NAMES:
|
197 |
+
_p_assert(
|
198 |
+
hasattr(fsdp_state, attr_name),
|
199 |
+
f"FSDP state missing attribute {attr_name}",
|
200 |
+
)
|
201 |
+
attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name))
|
202 |
+
if fsdp_state is root_state:
|
203 |
+
continue
|
204 |
+
# Relax the assert for non-root FSDP instances in case the nested
|
205 |
+
# initialized module is wrapped again in FSDP later (e.g. after
|
206 |
+
# training to run inference)
|
207 |
+
_p_assert(
|
208 |
+
fsdp_state._is_root is None or not fsdp_state._is_root,
|
209 |
+
"Non-root FSDP instance's `_is_root` should not have been "
|
210 |
+
"set yet or should have been set to `False`",
|
211 |
+
)
|
212 |
+
fsdp_state._is_root = False
|
213 |
+
fsdp_state._unshard_stream = root_state._unshard_stream
|
214 |
+
fsdp_state._post_backward_stream = root_state._post_backward_stream
|
215 |
+
fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream
|
216 |
+
fsdp_state._all_reduce_stream = root_state._all_reduce_stream
|
217 |
+
fsdp_state._default_stream = root_state._default_stream
|
218 |
+
fsdp_state._exec_order_data = root_state._exec_order_data
|
219 |
+
fsdp_state._free_event_queue = root_state._free_event_queue
|
220 |
+
if fsdp_state._fsdp_extension is not None:
|
221 |
+
fsdp_state._fsdp_extension.compute_stream = root_state._default_stream
|
222 |
+
handle = fsdp_state._handle
|
223 |
+
if handle:
|
224 |
+
handle.init_flat_param_attributes()
|
225 |
+
for attr_name, attr_values in attr_name_to_values.items():
|
226 |
+
if len(attr_values) != 1:
|
227 |
+
raise ValueError(
|
228 |
+
f"Expects one homogeneous value for {attr_name} but got {attr_values}"
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
@no_type_check
|
233 |
+
def _init_streams(
|
234 |
+
state: _FSDPState,
|
235 |
+
) -> None:
|
236 |
+
"""
|
237 |
+
Initializes CUDA streams for overlapping communication, computation, and
|
238 |
+
data transfers. The streams should be shared across FSDP instances.
|
239 |
+
"""
|
240 |
+
assert state._is_root
|
241 |
+
assert state._device_handle.is_available()
|
242 |
+
uses_hybrid_sharding = any(
|
243 |
+
fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES
|
244 |
+
for fsdp_state in state._all_fsdp_states
|
245 |
+
)
|
246 |
+
# Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and
|
247 |
+
# preserve the default priority of 0 otherwise
|
248 |
+
high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0
|
249 |
+
# Default stream for computation
|
250 |
+
state._default_stream = state._device_handle.current_stream()
|
251 |
+
if state._fsdp_extension is not None:
|
252 |
+
# set the compute stream to the FSDP extension
|
253 |
+
state._fsdp_extension.compute_stream = state._default_stream
|
254 |
+
|
255 |
+
# Stream for unshard logic, including allocating the all-gather destination
|
256 |
+
# tensors and the all-gathers themselves
|
257 |
+
state._unshard_stream = state._device_handle.Stream(priority=high_priority)
|
258 |
+
# Stream for overlapping gradient reduction with the backward pass gradient
|
259 |
+
# computation
|
260 |
+
state._post_backward_stream = state._device_handle.Stream(priority=high_priority)
|
261 |
+
# Stream for pre-unshard logic, namely allocations and writes for CPU
|
262 |
+
# offloading (H2D copy) and mixed precision (low precision cast)
|
263 |
+
state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority)
|
264 |
+
# Stream to run HSDP's all-reduce as async (if using HSDP)
|
265 |
+
state._all_reduce_stream = (
|
266 |
+
state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
@no_type_check
|
271 |
+
def _unshard(
|
272 |
+
state: _FSDPState,
|
273 |
+
handle: FlatParamHandle,
|
274 |
+
unshard_stream: torch.Stream,
|
275 |
+
pre_unshard_stream: torch.Stream,
|
276 |
+
) -> None:
|
277 |
+
"""
|
278 |
+
Unshards the handles in ``handles``. If the handles are in
|
279 |
+
:meth:`summon_full_params` and are using mixed precision, then they are
|
280 |
+
forced to full precision.
|
281 |
+
|
282 |
+
Postcondition: handle's ``FlatParameter`` 's data is the padded
|
283 |
+
unsharded flat parameter on the compute device.
|
284 |
+
"""
|
285 |
+
if not handle:
|
286 |
+
return
|
287 |
+
with state._device_handle.stream(pre_unshard_stream):
|
288 |
+
ran_pre_unshard = handle.pre_unshard()
|
289 |
+
if ran_pre_unshard:
|
290 |
+
unshard_stream.wait_stream(pre_unshard_stream)
|
291 |
+
if state.limit_all_gathers:
|
292 |
+
event = state._free_event_queue.dequeue_if_needed()
|
293 |
+
if event:
|
294 |
+
with torch.profiler.record_function(
|
295 |
+
"FullyShardedDataParallel.rate_limiter"
|
296 |
+
):
|
297 |
+
event.synchronize()
|
298 |
+
with state._device_handle.stream(unshard_stream):
|
299 |
+
handle.unshard()
|
300 |
+
handle.post_unshard()
|
301 |
+
|
302 |
+
|
303 |
+
@no_type_check
|
304 |
+
def _reshard(
|
305 |
+
state: _FSDPState,
|
306 |
+
handle: FlatParamHandle,
|
307 |
+
free_unsharded_flat_param: bool,
|
308 |
+
):
|
309 |
+
"""
|
310 |
+
Reshards the handle. ``free_unsharded_flat_param`` indicates whether to
|
311 |
+
free the handle's padded unsharded flat parameter.
|
312 |
+
"""
|
313 |
+
handle.reshard(free_unsharded_flat_param)
|
314 |
+
if state.limit_all_gathers and free_unsharded_flat_param:
|
315 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
316 |
+
# We don't run a even queue for freeing under torch compile atm
|
317 |
+
# But maybe we need to? TODO(voz): Look into this
|
318 |
+
free_event = state._device_handle.Event()
|
319 |
+
free_event.record()
|
320 |
+
state._free_event_queue.enqueue(free_event)
|
321 |
+
handle.post_reshard()
|
322 |
+
# Flat parameter freed or not, we always have to "unshard" the parameter
|
323 |
+
# upon next access to get its shape correct.
|
324 |
+
handle._prefetched = False
|
325 |
+
|
326 |
+
|
327 |
+
def _unshard_grads(
|
328 |
+
handle: Optional[FlatParamHandle],
|
329 |
+
) -> None:
|
330 |
+
if handle:
|
331 |
+
handle.unshard_grad()
|
332 |
+
|
333 |
+
|
334 |
+
def _reshard_grads(
|
335 |
+
handle: Optional[FlatParamHandle],
|
336 |
+
) -> None:
|
337 |
+
if handle:
|
338 |
+
handle.reshard_grad()
|
339 |
+
|
340 |
+
|
341 |
+
@no_type_check
|
342 |
+
def _pre_forward(
|
343 |
+
state: _FSDPState,
|
344 |
+
handle: Optional[FlatParamHandle],
|
345 |
+
unshard_fn: Callable,
|
346 |
+
module: nn.Module,
|
347 |
+
args: Tuple[Any, ...],
|
348 |
+
kwargs: Dict[str, Any],
|
349 |
+
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
|
350 |
+
"""
|
351 |
+
Runs the pre-forward logic. This includes an opportunity to unshard
|
352 |
+
currently sharded parameters such as those for the current forward and
|
353 |
+
registering post-backward hooks for these current parameters. This function
|
354 |
+
also converts forward ``args`` and ``kwargs`` to the given precision.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
358 |
+
the current forward.
|
359 |
+
unshard_fn (Optional[Callable]): A callable to unshard any currently
|
360 |
+
sharded parameters or ``None`` to not do any unsharding.
|
361 |
+
module (nn.Module): Module whose forward this method runs right before;
|
362 |
+
expected by the hook signature.
|
363 |
+
args (Tuple[Any, ...]): Module forward ``args``.
|
364 |
+
kwargs (Dict[str, Any]): Module forward ``kwargs``.
|
365 |
+
"""
|
366 |
+
with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"):
|
367 |
+
# For `fully_shard` + `checkpoint`, skip pre-forward logic in the
|
368 |
+
# recomputed forward
|
369 |
+
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
370 |
+
# For both checkpoint implementations, we do not need to re-cast
|
371 |
+
# inputs here since they will be checkpointed in the low precision
|
372 |
+
# either by AC or normally by autograd as long as the AC region is
|
373 |
+
# nested within FSDP
|
374 |
+
return args, kwargs
|
375 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
376 |
+
state._exec_order_data.record_pre_forward(handle, module.training)
|
377 |
+
if handle:
|
378 |
+
handle._training_state = HandleTrainingState.FORWARD
|
379 |
+
if unshard_fn is not None:
|
380 |
+
unshard_fn(state, handle)
|
381 |
+
# Register post-backward hooks to reshard the parameters and reduce-scatter
|
382 |
+
# their gradients. They must be re-registered every forward pass in case
|
383 |
+
# the `grad_fn` is mutated.
|
384 |
+
_register_post_backward_hook(state, handle)
|
385 |
+
# We have to reallocate the _cpu_grad if optimizer overlap
|
386 |
+
# set the grad to None in the backward pass.
|
387 |
+
if handle and handle._offload_params and handle.flat_param._cpu_grad is None:
|
388 |
+
handle.flat_param._cpu_grad = torch.zeros_like(
|
389 |
+
handle.flat_param._local_shard, device=torch.device("cpu")
|
390 |
+
).pin_memory()
|
391 |
+
|
392 |
+
should_cast_forward_inputs = (
|
393 |
+
state._handle and not state._handle._force_full_precision
|
394 |
+
)
|
395 |
+
|
396 |
+
if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs:
|
397 |
+
# Recursively convert args and kwargs to specified precision.
|
398 |
+
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
399 |
+
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
400 |
+
_register_post_backward_reshard_only_hook(state, handle, args, kwargs)
|
401 |
+
return args, kwargs
|
402 |
+
|
403 |
+
|
404 |
+
@no_type_check
|
405 |
+
def _pre_forward_unshard(
|
406 |
+
state: _FSDPState,
|
407 |
+
handle: Optional[FlatParamHandle],
|
408 |
+
) -> None:
|
409 |
+
"""Unshards parameters in the pre-forward."""
|
410 |
+
if not handle:
|
411 |
+
return
|
412 |
+
# If the handles have been prefetched, then there is no need to call
|
413 |
+
# `_unshard()` again
|
414 |
+
if not handle._prefetched:
|
415 |
+
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
416 |
+
handle._needs_pre_forward_unshard = False
|
417 |
+
# Don't wait during trace
|
418 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
419 |
+
state._device_handle.current_stream().wait_stream(state._unshard_stream)
|
420 |
+
with torch.profiler.record_function(
|
421 |
+
"FullyShardedDataParallel._pre_forward_prefetch"
|
422 |
+
):
|
423 |
+
_prefetch_handle(state, handle, _PrefetchMode.FORWARD)
|
424 |
+
|
425 |
+
|
426 |
+
@no_type_check
|
427 |
+
def _post_forward(
|
428 |
+
state: _FSDPState,
|
429 |
+
handle: Optional[FlatParamHandle],
|
430 |
+
reshard_fn: Callable,
|
431 |
+
module: nn.Module,
|
432 |
+
input: Any,
|
433 |
+
output: Any,
|
434 |
+
) -> Any:
|
435 |
+
"""
|
436 |
+
Runs the post-forward logic. This includes an opportunity to reshard
|
437 |
+
currently unsharded parameters such as those used in the current forward
|
438 |
+
and registering pre-backward hooks on the forward outputs.
|
439 |
+
|
440 |
+
Args:
|
441 |
+
handles (List[FlatParamHandle]): Handles giving the parameters used in
|
442 |
+
the current forward.
|
443 |
+
reshard_fn (Optional[Callable]): A callable to reshard any currently
|
444 |
+
unsharded parameters (e.g. from the current forward) or ``None`` to
|
445 |
+
not do any resharding.
|
446 |
+
module (nn.Module): Module whose forward just ran, which should be a
|
447 |
+
fully sharded module (see [Note: Fully Sharded Module]); expected
|
448 |
+
by the hook signature.
|
449 |
+
input (Any): Unused; expected by the hook signature.
|
450 |
+
output (Any): Forward pass output; pre-backward hooks are registered on
|
451 |
+
the tensors that require gradients in this output.
|
452 |
+
|
453 |
+
Postcondition: Each ``FlatParameter`` 's data points to the sharded flat
|
454 |
+
parameter.
|
455 |
+
"""
|
456 |
+
with torch.profiler.record_function("FullyShardedDataParallel._post_forward"):
|
457 |
+
# For `fully_shard` + `checkpoint`, skip post-forward logic in the
|
458 |
+
# recomputed forward
|
459 |
+
if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE:
|
460 |
+
return output
|
461 |
+
|
462 |
+
state._exec_order_data.record_post_forward(handle)
|
463 |
+
if reshard_fn is not None:
|
464 |
+
reshard_fn(state, handle)
|
465 |
+
# Register pre-backward hooks to unshard the flat parameters for the
|
466 |
+
# gradient computation (if needed)
|
467 |
+
output = _register_pre_backward_hooks(state, module, output, handle)
|
468 |
+
state.training_state = TrainingState.IDLE
|
469 |
+
if handle:
|
470 |
+
handle._training_state = HandleTrainingState.IDLE
|
471 |
+
return output
|
472 |
+
|
473 |
+
|
474 |
+
@no_type_check
|
475 |
+
def _post_forward_reshard(
|
476 |
+
state: _FSDPState,
|
477 |
+
handle: FlatParamHandle,
|
478 |
+
) -> None:
|
479 |
+
"""Reshards parameters in the post-forward."""
|
480 |
+
if not handle:
|
481 |
+
return
|
482 |
+
# Do not free the root's parameters in the post-forward for `FULL_SHARD`
|
483 |
+
# with the intention that they are immediately used for backward
|
484 |
+
# computation (though this may not be true)
|
485 |
+
free_unsharded_flat_param = (
|
486 |
+
not state._is_root
|
487 |
+
and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
488 |
+
)
|
489 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
490 |
+
|
491 |
+
|
492 |
+
@no_type_check
|
493 |
+
def _root_pre_forward(
|
494 |
+
state: _FSDPState,
|
495 |
+
module: nn.Module,
|
496 |
+
args,
|
497 |
+
kwargs,
|
498 |
+
) -> None:
|
499 |
+
"""
|
500 |
+
Runs pre-forward logic specific to the root FSDP instance, which should run
|
501 |
+
before any individual module's pre-forward. This starts with an attempt at
|
502 |
+
lazy initialization (which only runs non-vacuously once). Otherwise, if
|
503 |
+
this is called on a non-root FSDP instance, then it returns directly.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
module (nn.Module): Module for which this logic tries to run. It may or
|
507 |
+
may not be the root. If not, then this method does not do anything.
|
508 |
+
"""
|
509 |
+
with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"):
|
510 |
+
_lazy_init(state, module)
|
511 |
+
_p_assert(state._is_root is not None, "Expects a root FSDP to have been set")
|
512 |
+
if not state._is_root:
|
513 |
+
# Always cast forward inputs in the root of this local FSDP unit for mixed
|
514 |
+
# precision, as this is where mixed precision could be configed.
|
515 |
+
# This is more useful for auto wrapping that is recommended in composable path.
|
516 |
+
# For manual wrapping, cast forward inputs on each local FSDP unit root will
|
517 |
+
# increase some overhead, so not turned on for model wrapper path right now where
|
518 |
+
# manual wrapping is more broadly used.
|
519 |
+
if _is_composable(state):
|
520 |
+
return _root_cast_forward_input(state, module, args, kwargs)
|
521 |
+
return args, kwargs
|
522 |
+
|
523 |
+
# We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers
|
524 |
+
# are in full precision and if we should cast them back to lower precision, which happens when
|
525 |
+
# exiting eval() mode.
|
526 |
+
handle = state._handle
|
527 |
+
if handle:
|
528 |
+
should_cast_buffers_to_full_prec = handle._force_full_precision
|
529 |
+
else:
|
530 |
+
should_cast_buffers_to_full_prec = True
|
531 |
+
|
532 |
+
if should_cast_buffers_to_full_prec:
|
533 |
+
_cast_buffers_to_dtype_and_device(
|
534 |
+
buffers=dict(module.named_buffers()).values(),
|
535 |
+
buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()),
|
536 |
+
device=state.compute_device,
|
537 |
+
)
|
538 |
+
# This flag is only set when we cast buffers to full precision, to avoid the
|
539 |
+
# CPU overhead that can stem from retrieving all buffers and their types in the
|
540 |
+
# following else branch.
|
541 |
+
state._needs_buffer_dtype_restore_check = True
|
542 |
+
elif getattr(state, "_needs_buffer_dtype_restore_check", False):
|
543 |
+
# Check if buffers are in full precision and we need to cast them
|
544 |
+
# back down.
|
545 |
+
(
|
546 |
+
buffers,
|
547 |
+
buffer_dtypes_for_computation,
|
548 |
+
) = _get_buffers_and_dtypes_for_computation(state, module)
|
549 |
+
if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0:
|
550 |
+
if any(
|
551 |
+
buffer.dtype != buffer_dtype_for_computation
|
552 |
+
for buffer, buffer_dtype_for_computation in zip(
|
553 |
+
buffers, buffer_dtypes_for_computation
|
554 |
+
)
|
555 |
+
):
|
556 |
+
# Assume we have to cast everything if there is one mismatch
|
557 |
+
_cast_buffers_to_dtype_and_device(
|
558 |
+
buffers, buffer_dtypes_for_computation, state.compute_device
|
559 |
+
)
|
560 |
+
# We don't have to check this again until we cast buffers to full precision again.
|
561 |
+
state._needs_buffer_dtype_restore_check = False
|
562 |
+
|
563 |
+
if state.forward_prefetch:
|
564 |
+
handles = []
|
565 |
+
for fsdp_state in state._all_fsdp_states:
|
566 |
+
if fsdp_state._handle:
|
567 |
+
handles.append(fsdp_state._handle)
|
568 |
+
for handle in handles:
|
569 |
+
handle._needs_pre_forward_unshard = True
|
570 |
+
handle._prefetched = False
|
571 |
+
_wait_for_computation_stream(
|
572 |
+
state._device_handle.current_stream(),
|
573 |
+
state._unshard_stream,
|
574 |
+
state._pre_unshard_stream,
|
575 |
+
)
|
576 |
+
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
577 |
+
|
578 |
+
# Prepares the forward inputs by moving them to ``compute_device``
|
579 |
+
# TODO: Do not use the side stream for tensor copies for now; investigate
|
580 |
+
# the perf with/without it.
|
581 |
+
with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"):
|
582 |
+
args_tuple, kwargs_tuple = _to_kwargs(
|
583 |
+
args, kwargs, state.compute_device, False
|
584 |
+
)
|
585 |
+
args = args_tuple[0]
|
586 |
+
kwargs = kwargs_tuple[0]
|
587 |
+
|
588 |
+
return _root_cast_forward_input(state, module, args, kwargs)
|
589 |
+
|
590 |
+
|
591 |
+
@no_type_check
|
592 |
+
def _root_cast_forward_input(
|
593 |
+
state: _FSDPState, module: torch.nn.Module, args, kwargs
|
594 |
+
) -> Tuple[Any, Any]:
|
595 |
+
if state._handle:
|
596 |
+
force_full_precision = not state._handle._force_full_precision
|
597 |
+
else:
|
598 |
+
force_full_precision = True
|
599 |
+
|
600 |
+
should_cast_forward_inputs = (
|
601 |
+
(module.training or not state._use_full_prec_in_eval) and force_full_precision
|
602 |
+
) and state.mixed_precision.cast_root_forward_inputs
|
603 |
+
|
604 |
+
if should_cast_forward_inputs:
|
605 |
+
input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype
|
606 |
+
args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs)
|
607 |
+
|
608 |
+
return args, kwargs
|
609 |
+
|
610 |
+
|
611 |
+
@no_type_check
|
612 |
+
def _pre_backward_hook(
|
613 |
+
state: _FSDPState,
|
614 |
+
module: nn.Module,
|
615 |
+
handle: FlatParamHandle,
|
616 |
+
grad,
|
617 |
+
*unused: Any,
|
618 |
+
) -> Any:
|
619 |
+
"""
|
620 |
+
Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation.
|
621 |
+
|
622 |
+
Args:
|
623 |
+
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
624 |
+
Module]).
|
625 |
+
"""
|
626 |
+
# Only run the pre-backward hook once per group of handles involved in the
|
627 |
+
# same module forward computation
|
628 |
+
if (
|
629 |
+
handle
|
630 |
+
and hasattr(handle, "_ran_pre_backward_hook")
|
631 |
+
and handle._ran_pre_backward_hook
|
632 |
+
):
|
633 |
+
log.debug("%s %s", id(state), "Not Running pre backward! Already Ran!")
|
634 |
+
return grad
|
635 |
+
|
636 |
+
with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"):
|
637 |
+
# Queue the post-backward callback once for the root FSDP instance to
|
638 |
+
# attach it to the outermost backward graph task so that it is called
|
639 |
+
# after all backward calls complete
|
640 |
+
if state._is_root and not state._post_backward_callback_queued:
|
641 |
+
_register_post_backward_final_callback(state, module)
|
642 |
+
_reset_flat_param_grad_info_if_needed(state._all_handles)
|
643 |
+
elif handle:
|
644 |
+
allowed_states = [TrainingState.IDLE]
|
645 |
+
if _is_composable(state):
|
646 |
+
allowed_states.append(TrainingState.FORWARD_BACKWARD)
|
647 |
+
_assert_in_training_states(state, allowed_states)
|
648 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
649 |
+
# Queueing the post-backward callback is the only logic that is not
|
650 |
+
# per-handle in the pre-backward hook, so we can return early here if
|
651 |
+
# there are no handles.
|
652 |
+
if not handle:
|
653 |
+
return grad
|
654 |
+
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
655 |
+
|
656 |
+
if handle._needs_pre_backward_unshard:
|
657 |
+
# If the handles have been prefetched, then there is no need to
|
658 |
+
# call `_unshard()` again
|
659 |
+
if not handle._prefetched:
|
660 |
+
_unshard(
|
661 |
+
state,
|
662 |
+
handle,
|
663 |
+
state._unshard_stream,
|
664 |
+
state._pre_unshard_stream,
|
665 |
+
)
|
666 |
+
# Don't wait during trace
|
667 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
668 |
+
state._device_handle.current_stream().wait_stream(state._unshard_stream)
|
669 |
+
|
670 |
+
# Set this to `False` to ensure that a mistargeted prefetch does not
|
671 |
+
# actually unshard these handles
|
672 |
+
handle._needs_pre_backward_unshard = False
|
673 |
+
with torch.profiler.record_function(
|
674 |
+
"FullyShardedDataParallel._pre_backward_prefetch"
|
675 |
+
):
|
676 |
+
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
677 |
+
handle.prepare_gradient_for_backward()
|
678 |
+
handle._ran_pre_backward_hook = True
|
679 |
+
return grad
|
680 |
+
|
681 |
+
|
682 |
+
@no_type_check
|
683 |
+
@torch.no_grad()
|
684 |
+
def _post_backward_hook(
|
685 |
+
state: _FSDPState,
|
686 |
+
handle: FlatParamHandle,
|
687 |
+
flat_param,
|
688 |
+
*unused: Any,
|
689 |
+
):
|
690 |
+
"""
|
691 |
+
Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``.
|
692 |
+
|
693 |
+
Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the
|
694 |
+
unsharded gradient for the local batch.
|
695 |
+
|
696 |
+
Postcondition:
|
697 |
+
- If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced
|
698 |
+
unsharded gradient.
|
699 |
+
- Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded
|
700 |
+
gradient (accumulating with any existing gradient).
|
701 |
+
"""
|
702 |
+
_log_post_backward_hook(state, handle, log)
|
703 |
+
flat_param = handle.flat_param
|
704 |
+
flat_param._post_backward_called = True
|
705 |
+
with torch.autograd.profiler.record_function(
|
706 |
+
"FullyShardedDataParallel._post_backward_hook"
|
707 |
+
):
|
708 |
+
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
709 |
+
# For multiple applications of reentrant AC across submodules sharing
|
710 |
+
# the same `FlatParameter`, the post-backward hook may run multiple
|
711 |
+
# times in one backward, in which case we permit the state to already
|
712 |
+
# be in `BACKWARD_POST`.
|
713 |
+
_p_assert(
|
714 |
+
handle._training_state
|
715 |
+
in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST),
|
716 |
+
f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}",
|
717 |
+
)
|
718 |
+
handle._training_state = HandleTrainingState.BACKWARD_POST
|
719 |
+
|
720 |
+
if flat_param.grad is None:
|
721 |
+
return
|
722 |
+
if flat_param.grad.requires_grad:
|
723 |
+
raise RuntimeError("FSDP does not support gradients of gradients")
|
724 |
+
|
725 |
+
_post_backward_reshard(state, handle)
|
726 |
+
if not state._sync_gradients:
|
727 |
+
if handle._use_orig_params:
|
728 |
+
handle._use_unsharded_grad_views()
|
729 |
+
return
|
730 |
+
|
731 |
+
# Wait for all ops in the current stream (e.g. gradient computation) to
|
732 |
+
# finish before reduce-scattering the gradient
|
733 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
734 |
+
state._post_backward_stream.wait_stream(
|
735 |
+
state._device_handle.current_stream()
|
736 |
+
)
|
737 |
+
|
738 |
+
with state._device_handle.stream(state._post_backward_stream):
|
739 |
+
autograd_computed_grad = flat_param.grad.data
|
740 |
+
if (
|
741 |
+
not _low_precision_hook_enabled(state)
|
742 |
+
and flat_param.grad.dtype != handle._reduce_dtype
|
743 |
+
# If we are forcing full precision but communicating grads
|
744 |
+
# (i.e. model.eval() + full precision in eval was configured), don't downcast gradient.
|
745 |
+
and not handle._force_full_precision
|
746 |
+
):
|
747 |
+
flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype)
|
748 |
+
if handle.uses_sharded_strategy:
|
749 |
+
_reduce_grad(state, handle)
|
750 |
+
else:
|
751 |
+
_reduce_grad_no_shard(state, handle)
|
752 |
+
# Since the unsharded gradient is produced in the computation
|
753 |
+
# stream and consumed in the post-backward stream, inform the
|
754 |
+
# caching allocator (before it goes out of scope)
|
755 |
+
_no_dispatch_record_stream(
|
756 |
+
autograd_computed_grad, state._post_backward_stream
|
757 |
+
)
|
758 |
+
|
759 |
+
|
760 |
+
def _post_backward_reshard_only_hook(
|
761 |
+
state: _FSDPState,
|
762 |
+
handle: FlatParamHandle,
|
763 |
+
*unused: Any,
|
764 |
+
) -> None:
|
765 |
+
with torch.profiler.record_function(
|
766 |
+
"FullyShardedDataParallel._post_backward_hook_reshard_only"
|
767 |
+
):
|
768 |
+
# `_pre_backward_hook` may not get executed
|
769 |
+
# if forward output does not require grad
|
770 |
+
# overwrite IDLE state for post-backward prefetching
|
771 |
+
state.training_state = TrainingState.FORWARD_BACKWARD
|
772 |
+
handle._training_state = HandleTrainingState.BACKWARD_POST
|
773 |
+
_post_backward_reshard(state, handle)
|
774 |
+
|
775 |
+
|
776 |
+
def _post_backward_reshard(
|
777 |
+
state: _FSDPState,
|
778 |
+
handle: FlatParamHandle,
|
779 |
+
*unused: Any,
|
780 |
+
) -> None:
|
781 |
+
free_unsharded_flat_param = _should_free_in_backward(state, handle)
|
782 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
783 |
+
|
784 |
+
# TODO: Post-backward prefetching does not support the multiple handles
|
785 |
+
# per module case since the post-backward hook runs per handle, not per
|
786 |
+
# group of handles.
|
787 |
+
with torch.profiler.record_function(
|
788 |
+
"FullyShardedDataParallel._post_backward_prefetch"
|
789 |
+
):
|
790 |
+
_prefetch_handle(state, handle, _PrefetchMode.BACKWARD)
|
791 |
+
|
792 |
+
|
793 |
+
@no_type_check
|
794 |
+
def _should_free_in_backward(
|
795 |
+
state: _FSDPState,
|
796 |
+
handle: FlatParamHandle,
|
797 |
+
) -> bool:
|
798 |
+
"""
|
799 |
+
Returns whether FSDP should free the unsharded flat parameter in the
|
800 |
+
post-backward or not.
|
801 |
+
"""
|
802 |
+
if not handle.uses_sharded_strategy:
|
803 |
+
return False
|
804 |
+
# If not syncing gradients, then we do not free for strategies that do not
|
805 |
+
# reshard after forward as a *heuristic* to tradeoff higher memory for
|
806 |
+
# higher throughput.
|
807 |
+
return (
|
808 |
+
state._sync_gradients
|
809 |
+
or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
@no_type_check
|
814 |
+
def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None:
|
815 |
+
"""
|
816 |
+
For sharded strategies, this runs gradient reduction, sharded gradient
|
817 |
+
accumulation if needed, and the post-reduction callback.
|
818 |
+
"""
|
819 |
+
flat_param = handle.flat_param
|
820 |
+
uses_hybrid_sharded_strategy = handle._sharding_strategy in (
|
821 |
+
HandleShardingStrategy.HYBRID_SHARD,
|
822 |
+
HandleShardingStrategy._HYBRID_SHARD_ZERO2,
|
823 |
+
)
|
824 |
+
# We clear `.grad` to permit multiple backwards. This avoids a race where
|
825 |
+
# the second backward pass computation precedes ahead of the first backward
|
826 |
+
# pass reduction, which is possible since the reduction is issued in a
|
827 |
+
# separate stream and is async and would result in reducing the wrong
|
828 |
+
# gradient.
|
829 |
+
unsharded_grad = flat_param.grad.data
|
830 |
+
flat_param.grad = None
|
831 |
+
padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors(
|
832 |
+
state, unsharded_grad
|
833 |
+
)
|
834 |
+
if state._comm_hook is None: # default path
|
835 |
+
_div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor)
|
836 |
+
pg = (
|
837 |
+
handle._fake_process_group
|
838 |
+
if handle._use_fake_reduce
|
839 |
+
else state.process_group
|
840 |
+
)
|
841 |
+
dist.reduce_scatter_tensor(
|
842 |
+
new_sharded_grad,
|
843 |
+
padded_unsharded_grad,
|
844 |
+
group=pg,
|
845 |
+
)
|
846 |
+
if uses_hybrid_sharded_strategy:
|
847 |
+
# Don't wait during trace
|
848 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
849 |
+
state._all_reduce_stream.wait_stream(state._post_backward_stream)
|
850 |
+
with state._device_handle.stream(state._all_reduce_stream):
|
851 |
+
# Since the new sharded gradient is produced in the post-
|
852 |
+
# backward stream and consumed in the all-reduce stream,
|
853 |
+
# inform the caching allocator
|
854 |
+
_no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream)
|
855 |
+
dist.all_reduce(new_sharded_grad, group=state._inter_node_pg)
|
856 |
+
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
857 |
+
grad_to_offload = _accumulate_sharded_grad(
|
858 |
+
state, handle, new_sharded_grad
|
859 |
+
)
|
860 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
861 |
+
return
|
862 |
+
_div_if_needed(new_sharded_grad, state._gradient_postdivide_factor)
|
863 |
+
else:
|
864 |
+
state._comm_hook(
|
865 |
+
state._comm_hook_state, padded_unsharded_grad, new_sharded_grad
|
866 |
+
)
|
867 |
+
# NOTE: HSDP variants do not support communication hook.
|
868 |
+
grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad)
|
869 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
870 |
+
|
871 |
+
|
872 |
+
@no_type_check
|
873 |
+
def _get_reduce_scatter_tensors(
|
874 |
+
state: _FSDPState, unsharded_grad: torch.Tensor
|
875 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
876 |
+
"""
|
877 |
+
Returns the input and output tensors to reduce-scatter, respectively.
|
878 |
+
"""
|
879 |
+
chunks = list(unsharded_grad.chunk(state.world_size))
|
880 |
+
numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel()
|
881 |
+
padded_unsharded_grad = (
|
882 |
+
F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad
|
883 |
+
)
|
884 |
+
new_sharded_grad = torch.empty_like(chunks[0]) # padded
|
885 |
+
return padded_unsharded_grad, new_sharded_grad
|
886 |
+
|
887 |
+
|
888 |
+
@no_type_check
|
889 |
+
def _accumulate_sharded_grad(
|
890 |
+
state: _FSDPState,
|
891 |
+
handle: FlatParamHandle,
|
892 |
+
sharded_grad: torch.Tensor,
|
893 |
+
) -> torch.Tensor:
|
894 |
+
"""
|
895 |
+
Accumulates the reduce-scattered sharded gradient with any existing sharded
|
896 |
+
gradient if needed, returning the gradient to offload (if CPU offloading is
|
897 |
+
enabled).
|
898 |
+
"""
|
899 |
+
flat_param = handle.flat_param
|
900 |
+
_cast_grad_to_param_dtype(state, sharded_grad, flat_param)
|
901 |
+
# Save the sharded gradient in `_saved_grad_shard` to support gradient
|
902 |
+
# accumulation -- for multiple backwards, the gradient reductions may
|
903 |
+
# happen in arbitrary order
|
904 |
+
accumulate_grad = hasattr(flat_param, "_saved_grad_shard")
|
905 |
+
if accumulate_grad:
|
906 |
+
_check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard)
|
907 |
+
flat_param._saved_grad_shard += sharded_grad
|
908 |
+
else:
|
909 |
+
flat_param._saved_grad_shard = sharded_grad
|
910 |
+
grad_to_offload = flat_param._saved_grad_shard
|
911 |
+
return grad_to_offload
|
912 |
+
|
913 |
+
|
914 |
+
@no_type_check
|
915 |
+
def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None:
|
916 |
+
"""
|
917 |
+
For no-shard, this runs gradient reduction (which directly covers any
|
918 |
+
gradient accumulation implicitly) and the post-reduction callback.
|
919 |
+
"""
|
920 |
+
flat_param = handle.flat_param
|
921 |
+
if state._comm_hook is None: # default path
|
922 |
+
_div_if_needed(flat_param.grad, state._gradient_predivide_factor)
|
923 |
+
dist.all_reduce(flat_param.grad, group=state.process_group)
|
924 |
+
_div_if_needed(flat_param.grad, state._gradient_postdivide_factor)
|
925 |
+
else:
|
926 |
+
state._comm_hook(state._comm_hook_state, flat_param.grad)
|
927 |
+
# For `NO_SHARD`, we can keep the low precision gradients by simply
|
928 |
+
# omitting the cast altogether
|
929 |
+
if not handle._keep_low_precision_grads:
|
930 |
+
_cast_grad_to_param_dtype(state, flat_param.grad, flat_param)
|
931 |
+
grad_to_offload = flat_param.grad.data
|
932 |
+
_post_reduce_grad_callback(state, handle, grad_to_offload)
|
933 |
+
|
934 |
+
|
935 |
+
@no_type_check
|
936 |
+
def _post_reduce_grad_callback(
|
937 |
+
state: _FSDPState,
|
938 |
+
handle: FlatParamHandle,
|
939 |
+
# Additional arguments needed for the callback logic
|
940 |
+
grad_to_offload: torch.Tensor,
|
941 |
+
):
|
942 |
+
"""
|
943 |
+
This callback captures any logic to run after the gradient reduction
|
944 |
+
finishes. Currently, this offloads the gradient to CPU if CPU offloading is
|
945 |
+
enabled and uses sharded gradient views if ``use_orig_params=True``.
|
946 |
+
"""
|
947 |
+
_offload_grad(state, handle, grad_to_offload)
|
948 |
+
_post_backward_use_sharded_grad_views(handle)
|
949 |
+
|
950 |
+
|
951 |
+
@no_type_check
|
952 |
+
def _offload_grad(
|
953 |
+
state: _FSDPState,
|
954 |
+
handle: FlatParamHandle,
|
955 |
+
grad_to_offload: torch.Tensor,
|
956 |
+
):
|
957 |
+
if not handle._offload_params:
|
958 |
+
return
|
959 |
+
# Offload the gradient to CPU to ensure parameters and gradients are on the
|
960 |
+
# same device as required by the optimizer
|
961 |
+
# TODO: Investigate why `NO_SHARD` breaks correctness when using
|
962 |
+
# `non_blocking=True` here.
|
963 |
+
# TODO (rohan-varma): When CPU offload and optimizer overlap,
|
964 |
+
# non_blocking=True won't work since the copy may have not finished before
|
965 |
+
# the optimizer step executes on CPU. If we want to use non-blocking=True
|
966 |
+
# here, we'll have to synchronize before using result on CPU.
|
967 |
+
non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward
|
968 |
+
handle.flat_param._cpu_grad.copy_(
|
969 |
+
grad_to_offload.detach(), non_blocking=non_blocking
|
970 |
+
) # synchronized in the post-backward callback
|
971 |
+
# Since the gradient being offloaded may have been produced in the
|
972 |
+
# computation stream and is being consumed here in the post-backward
|
973 |
+
# stream, inform the caching allocator
|
974 |
+
_no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream)
|
975 |
+
|
976 |
+
|
977 |
+
@no_type_check
|
978 |
+
def _post_backward_use_sharded_grad_views(handle: FlatParamHandle):
|
979 |
+
if not handle._use_orig_params:
|
980 |
+
return
|
981 |
+
# Since the handle's `FlatParameter` completed its gradient computation, we
|
982 |
+
# should reset the gradient noneness mask
|
983 |
+
handle._reset_is_grad_none()
|
984 |
+
# Delay using sharded gradient views until after the reduce-scatter instead
|
985 |
+
# of immediately after resharding
|
986 |
+
handle._use_sharded_grad_views()
|
987 |
+
if handle._has_optim_in_backward:
|
988 |
+
handle.prepare_gradient_for_optim()
|
989 |
+
for orig_param in handle.flat_param._params:
|
990 |
+
# Check for `None` gradient to filter parameters not in the rank
|
991 |
+
if orig_param.grad is not None and hasattr(
|
992 |
+
orig_param, "_in_backward_optimizers"
|
993 |
+
):
|
994 |
+
# TODO (rohan-varma): For CPU offload, this unfortunately
|
995 |
+
# operates on CPU because the parameters and gradients have
|
996 |
+
# already been offloaded. We should run this on GPU after
|
997 |
+
# refactoring.
|
998 |
+
for optim in orig_param._in_backward_optimizers:
|
999 |
+
optim.step()
|
1000 |
+
|
1001 |
+
optim.zero_grad(set_to_none=True)
|
1002 |
+
handle._reset_flat_param_grad_info_if_needed()
|
1003 |
+
if handle._offload_params:
|
1004 |
+
handle.flat_param._cpu_grad = None
|
1005 |
+
|
1006 |
+
|
1007 |
+
def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None:
|
1008 |
+
if div_factor > 1:
|
1009 |
+
tensor.div_(div_factor)
|
1010 |
+
|
1011 |
+
|
1012 |
+
@no_type_check
|
1013 |
+
def _cast_grad_to_param_dtype(
|
1014 |
+
state: _FSDPState,
|
1015 |
+
sharded_grad: torch.Tensor,
|
1016 |
+
param: FlatParameter,
|
1017 |
+
):
|
1018 |
+
"""
|
1019 |
+
Casts ``sharded_grad`` back to the full parameter dtype so that the
|
1020 |
+
optimizer step runs with that dtype. This performs an actual cast if
|
1021 |
+
1. parameters were in reduced precision during the forward since then
|
1022 |
+
gradients would be in that reduced precision, or
|
1023 |
+
2. parameters were not in reduced precision but gradients were in
|
1024 |
+
reduced precision for communication.
|
1025 |
+
However, if a low precision communication hook is registered, then this
|
1026 |
+
dtype cast happens in the hook instead.
|
1027 |
+
"""
|
1028 |
+
_assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD])
|
1029 |
+
if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype:
|
1030 |
+
low_prec_grad_data = sharded_grad.data
|
1031 |
+
sharded_grad.data = sharded_grad.data.to(dtype=param.dtype)
|
1032 |
+
# Since for `NO_SHARD`, the gradient is produced in the computation
|
1033 |
+
# stream and consumed here in the post-backward stream, inform the
|
1034 |
+
# caching allocator; for the sharded strategies, the gradient is
|
1035 |
+
# produced in the post-backward stream, so this `record_stream()`
|
1036 |
+
# should be a no-op
|
1037 |
+
_no_dispatch_record_stream(
|
1038 |
+
low_prec_grad_data, state._device_handle.current_stream()
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
|
1042 |
+
def _check_grad_to_accumulate(
|
1043 |
+
new_sharded_grad: torch.Tensor,
|
1044 |
+
accumulated_grad: torch.Tensor,
|
1045 |
+
) -> None:
|
1046 |
+
_p_assert(
|
1047 |
+
accumulated_grad.shape == new_sharded_grad.shape,
|
1048 |
+
"Shape mismatch when accumulating gradients: "
|
1049 |
+
f"existing gradient shape={accumulated_grad.shape} "
|
1050 |
+
f"new gradient shape={new_sharded_grad.shape}",
|
1051 |
+
)
|
1052 |
+
_p_assert(
|
1053 |
+
accumulated_grad.device == new_sharded_grad.device,
|
1054 |
+
"Device mismatch when accumulating gradients: "
|
1055 |
+
f"existing gradient device={accumulated_grad.device} "
|
1056 |
+
f"new gradient device={new_sharded_grad.device}",
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
|
1060 |
+
@no_type_check
|
1061 |
+
def _low_precision_hook_enabled(state: _FSDPState) -> bool:
|
1062 |
+
return state._comm_hook in LOW_PRECISION_HOOKS
|
1063 |
+
|
1064 |
+
|
1065 |
+
@no_type_check
|
1066 |
+
@torch.no_grad()
|
1067 |
+
def _post_backward_final_callback(
|
1068 |
+
state: _FSDPState,
|
1069 |
+
module: nn.Module,
|
1070 |
+
):
|
1071 |
+
"""
|
1072 |
+
This waits for the post-backward to finish and performs some final cleanup.
|
1073 |
+
This runs at the end of the entire backward pass and should only be called
|
1074 |
+
on the root FSDP instance.
|
1075 |
+
"""
|
1076 |
+
_p_assert(
|
1077 |
+
state._is_root,
|
1078 |
+
"The post-backward callback should only be called on the root FSDP instance",
|
1079 |
+
)
|
1080 |
+
root_state = state
|
1081 |
+
|
1082 |
+
if root_state._sync_gradients:
|
1083 |
+
current_stream = state._device_handle.current_stream()
|
1084 |
+
# TODO (rohan-varma): this also waits for the overlapped optimizer step to finish
|
1085 |
+
# since it currently runs in the post-backward stream. That can be
|
1086 |
+
# pushed to the next forward if run in a different stream
|
1087 |
+
current_stream.wait_stream(root_state._post_backward_stream)
|
1088 |
+
if root_state._all_reduce_stream is not current_stream: # uses HSDP
|
1089 |
+
current_stream.wait_stream(root_state._all_reduce_stream)
|
1090 |
+
if root_state.cpu_offload.offload_params:
|
1091 |
+
# Wait for non-blocking GPU -> CPU sharded gradient copies from the
|
1092 |
+
# post-backward hooks to finish explicitly since CPU gradients do
|
1093 |
+
# not automatically synchronize with the GPU
|
1094 |
+
state._device_handle.current_stream().synchronize()
|
1095 |
+
root_state._exec_order_data.next_iter()
|
1096 |
+
|
1097 |
+
for fsdp_state in state._all_fsdp_states:
|
1098 |
+
_catch_all_reshard(fsdp_state)
|
1099 |
+
_finalize_params(fsdp_state)
|
1100 |
+
fsdp_state.training_state = TrainingState.IDLE
|
1101 |
+
handle = fsdp_state._handle
|
1102 |
+
if handle:
|
1103 |
+
handle._ran_pre_backward_hook = False
|
1104 |
+
handle._needs_pre_backward_unshard = False
|
1105 |
+
handle._post_forward_index = None
|
1106 |
+
handle._training_state = HandleTrainingState.IDLE
|
1107 |
+
handle._prefetched = False
|
1108 |
+
# Reset for cases like one forward and multiple backwards
|
1109 |
+
root_state._post_backward_callback_queued = False
|
1110 |
+
|
1111 |
+
|
1112 |
+
@no_type_check
|
1113 |
+
def _catch_all_reshard(
|
1114 |
+
state: _FSDPState,
|
1115 |
+
) -> None:
|
1116 |
+
"""
|
1117 |
+
Reshards the parameters that may not have been resharded in the
|
1118 |
+
post-backward hook. This can happen when a module's output is used in the
|
1119 |
+
forward pass, meaning that its pre-backward hook runs (unsharding the
|
1120 |
+
parameter), but the post-backward hook does not run because the output was
|
1121 |
+
not jused in the loss computation corresponding to this backward pass.
|
1122 |
+
"""
|
1123 |
+
# Wrap with a try-except to provide a more informative traceback if an
|
1124 |
+
# error is raised
|
1125 |
+
try:
|
1126 |
+
if state._handle:
|
1127 |
+
# TODO: This already-resharded check is brittle:
|
1128 |
+
# https://github.com/pytorch/pytorch/issues/83956
|
1129 |
+
already_resharded = (
|
1130 |
+
state._handle.flat_param.data_ptr()
|
1131 |
+
== state._handle.flat_param._local_shard.data_ptr()
|
1132 |
+
# If FSDP skipped using sharded views, then the flat parameter
|
1133 |
+
# still points to the sharded data, so we need to reshard to
|
1134 |
+
# use sharded views
|
1135 |
+
and not state._handle._skipped_use_sharded_views
|
1136 |
+
)
|
1137 |
+
if already_resharded:
|
1138 |
+
return
|
1139 |
+
free_unsharded_flat_param = _should_free_in_backward(state, state._handle)
|
1140 |
+
_reshard(state, state._handle, free_unsharded_flat_param)
|
1141 |
+
except Exception as e:
|
1142 |
+
_p_assert(
|
1143 |
+
False,
|
1144 |
+
f"Got exception in the catch-all reshard for {state}: {str(e)}",
|
1145 |
+
raise_assertion_error=False,
|
1146 |
+
)
|
1147 |
+
raise e
|
1148 |
+
|
1149 |
+
|
1150 |
+
@no_type_check
|
1151 |
+
def _finalize_params(
|
1152 |
+
state: _FSDPState,
|
1153 |
+
) -> None:
|
1154 |
+
"""Finalizes the parameters before the next iteration."""
|
1155 |
+
handle = state._handle
|
1156 |
+
if not handle:
|
1157 |
+
return
|
1158 |
+
flat_param = handle.flat_param
|
1159 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1160 |
+
if hasattr(flat_param, "_post_backward_hook_handle"):
|
1161 |
+
pbhs_handle = flat_param._post_backward_hook_handle
|
1162 |
+
pbhs_handle.remove()
|
1163 |
+
del flat_param._post_backward_hook_handle
|
1164 |
+
else:
|
1165 |
+
if hasattr(flat_param, "_post_backward_hook_state"):
|
1166 |
+
post_backward_hook_state_len = len(flat_param._post_backward_hook_state)
|
1167 |
+
expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1
|
1168 |
+
_p_assert(
|
1169 |
+
post_backward_hook_state_len == expected_post_backward_hook_state_len,
|
1170 |
+
f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}",
|
1171 |
+
)
|
1172 |
+
flat_param._post_backward_hook_state[-1].remove()
|
1173 |
+
delattr(flat_param, "_post_backward_hook_state")
|
1174 |
+
if flat_param.requires_grad:
|
1175 |
+
if not state._sync_gradients:
|
1176 |
+
# Preserve the gradient accumulation state if not synchronizing
|
1177 |
+
# gradients: `.grad` remains the unsharded gradient from prior
|
1178 |
+
# `no_sync()` iterations, and `_saved_grad_shard` remains the
|
1179 |
+
# sharded gradient from the last synchronized iteration
|
1180 |
+
return
|
1181 |
+
if not handle._has_optim_in_backward:
|
1182 |
+
handle.prepare_gradient_for_optim()
|
1183 |
+
_p_assert(
|
1184 |
+
hasattr(flat_param, "_post_backward_called"),
|
1185 |
+
"Expects `_post_backward_called` to be set on the `FlatParameter`",
|
1186 |
+
)
|
1187 |
+
flat_param._post_backward_called = False
|
1188 |
+
|
1189 |
+
|
1190 |
+
@no_type_check
|
1191 |
+
def _prefetch_handle(
|
1192 |
+
state: _FSDPState,
|
1193 |
+
current_handle: Optional[FlatParamHandle],
|
1194 |
+
prefetch_mode: _PrefetchMode,
|
1195 |
+
) -> None:
|
1196 |
+
"""
|
1197 |
+
Prefetches the next handles if needed (without synchronization). An empty
|
1198 |
+
handles key cannot prefetch.
|
1199 |
+
"""
|
1200 |
+
if not current_handle:
|
1201 |
+
return
|
1202 |
+
handle = _get_handle_to_prefetch(state, current_handle)
|
1203 |
+
if not handle:
|
1204 |
+
return
|
1205 |
+
# Temporarily emulate the training state while calling `_unshard` to
|
1206 |
+
# ensure the correct `as_params` for `_use_unsharded_views()`
|
1207 |
+
prev_training_state = handle._training_state
|
1208 |
+
if prefetch_mode == _PrefetchMode.BACKWARD:
|
1209 |
+
handle._training_state = HandleTrainingState.BACKWARD_PRE
|
1210 |
+
elif prefetch_mode == _PrefetchMode.FORWARD:
|
1211 |
+
handle._training_state = HandleTrainingState.FORWARD
|
1212 |
+
else:
|
1213 |
+
raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}")
|
1214 |
+
# Prefetch the next set of handles without synchronizing to allow
|
1215 |
+
# the sync to happen as late as possible to maximize overlap
|
1216 |
+
_unshard(state, handle, state._unshard_stream, state._pre_unshard_stream)
|
1217 |
+
handle._training_state = prev_training_state
|
1218 |
+
handle._prefetched = True
|
1219 |
+
|
1220 |
+
|
1221 |
+
@no_type_check
|
1222 |
+
def _get_handle_to_prefetch(
|
1223 |
+
state: _FSDPState,
|
1224 |
+
current_handle: FlatParamHandle,
|
1225 |
+
) -> FlatParamHandle:
|
1226 |
+
"""
|
1227 |
+
Returns a :class:`list` of the handles keys to prefetch for the next
|
1228 |
+
module(s), where ``current_handle`` represents the current module.
|
1229 |
+
|
1230 |
+
"Prefetching" refers to running the unshard logic early (without
|
1231 |
+
synchronization), and the "next" modules depend on the recorded execution
|
1232 |
+
order and the current training state.
|
1233 |
+
"""
|
1234 |
+
training_state = _get_training_state(current_handle)
|
1235 |
+
valid_training_states = (
|
1236 |
+
HandleTrainingState.BACKWARD_PRE,
|
1237 |
+
HandleTrainingState.BACKWARD_POST,
|
1238 |
+
HandleTrainingState.FORWARD,
|
1239 |
+
)
|
1240 |
+
_p_assert(
|
1241 |
+
training_state in valid_training_states,
|
1242 |
+
f"Prefetching is only supported in {valid_training_states} but "
|
1243 |
+
f"currently in {training_state}",
|
1244 |
+
)
|
1245 |
+
eod = state._exec_order_data
|
1246 |
+
target_handle: Optional[FlatParamHandle] = None
|
1247 |
+
if (
|
1248 |
+
training_state == HandleTrainingState.BACKWARD_PRE
|
1249 |
+
and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
|
1250 |
+
) or (
|
1251 |
+
training_state == HandleTrainingState.BACKWARD_POST
|
1252 |
+
and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
|
1253 |
+
):
|
1254 |
+
target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle)
|
1255 |
+
if (
|
1256 |
+
target_handle_candidate
|
1257 |
+
and target_handle_candidate._needs_pre_backward_unshard
|
1258 |
+
and not target_handle_candidate._prefetched
|
1259 |
+
):
|
1260 |
+
target_handle = target_handle_candidate
|
1261 |
+
else:
|
1262 |
+
target_handle = None
|
1263 |
+
elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch:
|
1264 |
+
target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle)
|
1265 |
+
if (
|
1266 |
+
target_handle_candidate
|
1267 |
+
and target_handle_candidate._needs_pre_forward_unshard
|
1268 |
+
and not target_handle_candidate._prefetched
|
1269 |
+
):
|
1270 |
+
target_handle = target_handle_candidate
|
1271 |
+
else:
|
1272 |
+
target_handle = None
|
1273 |
+
|
1274 |
+
return target_handle
|
1275 |
+
|
1276 |
+
|
1277 |
+
def _get_training_state(
|
1278 |
+
handle: FlatParamHandle,
|
1279 |
+
) -> HandleTrainingState:
|
1280 |
+
"""Returns the training state of the handles in ``handle``."""
|
1281 |
+
_p_assert(handle, "Expects a non-empty handle")
|
1282 |
+
return handle._training_state
|
1283 |
+
|
1284 |
+
|
1285 |
+
@no_type_check
|
1286 |
+
def _register_pre_forward_hook(
|
1287 |
+
state: _FSDPState,
|
1288 |
+
module: nn.Module,
|
1289 |
+
) -> None:
|
1290 |
+
"""
|
1291 |
+
Registers a pre-forward hook on ``module``.
|
1292 |
+
"""
|
1293 |
+
for forward_handle in state._pre_forward_handles:
|
1294 |
+
forward_handle.remove()
|
1295 |
+
state._pre_forward_handles.clear()
|
1296 |
+
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
1297 |
+
hook = functools.partial(
|
1298 |
+
_pre_forward, state, module_param_handle, _pre_forward_unshard
|
1299 |
+
)
|
1300 |
+
state._pre_forward_handles.append(
|
1301 |
+
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
|
1305 |
+
@no_type_check
|
1306 |
+
def _register_post_forward_hook(
|
1307 |
+
state: _FSDPState,
|
1308 |
+
module: nn.Module,
|
1309 |
+
) -> None:
|
1310 |
+
"""
|
1311 |
+
Registers a post-forward hook on ``module``. Even if the module has no
|
1312 |
+
handles, we should register the hook since it will register the module's
|
1313 |
+
pre-backward hook.
|
1314 |
+
"""
|
1315 |
+
for forward_handle in state._post_forward_handles:
|
1316 |
+
forward_handle.remove()
|
1317 |
+
state._post_forward_handles.clear()
|
1318 |
+
module_param_handle = state._fully_sharded_module_to_handle.get(module, None)
|
1319 |
+
hook = functools.partial(
|
1320 |
+
_post_forward,
|
1321 |
+
state,
|
1322 |
+
module_param_handle,
|
1323 |
+
_post_forward_reshard,
|
1324 |
+
)
|
1325 |
+
state._post_forward_handles.append(module.register_forward_hook(hook))
|
1326 |
+
|
1327 |
+
|
1328 |
+
@no_type_check
|
1329 |
+
def _register_root_pre_forward_hook(
|
1330 |
+
state: _FSDPState,
|
1331 |
+
module: nn.Module,
|
1332 |
+
):
|
1333 |
+
"""
|
1334 |
+
Registers root pre-forward hook on ``module``, which should be the local
|
1335 |
+
FSDP root.
|
1336 |
+
|
1337 |
+
NOTE: For the current composable FSDP design, we have each application of
|
1338 |
+
``fully_shard()`` to a module to indicate that that module is the local
|
1339 |
+
FSDP root. We may remove this assumption in the future, in which case we
|
1340 |
+
will need to register this root pre-forward hook on any candidate module
|
1341 |
+
that may be the local FSDP root.
|
1342 |
+
"""
|
1343 |
+
for forward_handle in state._root_pre_forward_handles:
|
1344 |
+
forward_handle.remove()
|
1345 |
+
state._root_pre_forward_handles.clear()
|
1346 |
+
hook = functools.partial(_root_pre_forward, state)
|
1347 |
+
state._root_pre_forward_handles.append(
|
1348 |
+
module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True)
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
|
1352 |
+
@no_type_check
|
1353 |
+
def _register_pre_backward_hooks(
|
1354 |
+
state: _FSDPState,
|
1355 |
+
module: nn.Module,
|
1356 |
+
outputs: Any,
|
1357 |
+
handle: FlatParamHandle,
|
1358 |
+
) -> None:
|
1359 |
+
"""
|
1360 |
+
Registers pre-backward hooks on the tensors that require gradients in the
|
1361 |
+
forward pass outputs ``outputs``, which were computed using the
|
1362 |
+
``FlatParameter`` s of ``handles``.
|
1363 |
+
|
1364 |
+
Args:
|
1365 |
+
module (nn.Module): Fully sharded module (see [Note: Fully Sharded
|
1366 |
+
Module]).
|
1367 |
+
|
1368 |
+
Returns:
|
1369 |
+
Forward pass outputs with pre-backward hooks registered to tensors that
|
1370 |
+
require gradients.
|
1371 |
+
"""
|
1372 |
+
# If there is no gradient computation, then there is no need for
|
1373 |
+
# pre-backward logic
|
1374 |
+
if not torch.is_grad_enabled():
|
1375 |
+
return outputs
|
1376 |
+
if state._is_root:
|
1377 |
+
state._post_backward_callback_queued = False # only defined on the root
|
1378 |
+
|
1379 |
+
if handle:
|
1380 |
+
handle._needs_pre_backward_unshard = False
|
1381 |
+
# Since these handles' `FlatParameter`s participated in a forward, we
|
1382 |
+
# conservatively assume that they will be used in the backward
|
1383 |
+
handle._ran_pre_backward_hook = False
|
1384 |
+
|
1385 |
+
def _register_hook(t: torch.Tensor) -> torch.Tensor:
|
1386 |
+
if t.requires_grad:
|
1387 |
+
t.register_hook(
|
1388 |
+
functools.partial(_pre_backward_hook, state, module, handle)
|
1389 |
+
)
|
1390 |
+
if handle:
|
1391 |
+
handle._needs_pre_backward_unshard = True
|
1392 |
+
return t
|
1393 |
+
|
1394 |
+
return _apply_to_tensors(_register_hook, outputs)
|
1395 |
+
|
1396 |
+
|
1397 |
+
def _register_post_backward_hook(
|
1398 |
+
state: _FSDPState,
|
1399 |
+
handle: Optional[FlatParamHandle],
|
1400 |
+
) -> None:
|
1401 |
+
"""
|
1402 |
+
Registers post-backward hooks on the ``FlatParameter`` s'
|
1403 |
+
``AccumulateGrad`` objects to reshard and to reduce-scatter gradients.
|
1404 |
+
|
1405 |
+
The ``AccumulateGrad`` object represents the last function that finalizes
|
1406 |
+
the ``FlatParameter`` 's gradient, so it only runs after its entire
|
1407 |
+
gradient computation has finished.
|
1408 |
+
|
1409 |
+
We register the post-backward hook only once in the *first* forward that a
|
1410 |
+
``FlatParameter`` participates in. This relies on the ``AccumulateGrad``
|
1411 |
+
object being preserved through multiple forwards.
|
1412 |
+
|
1413 |
+
NOTE: We follow this heuristic to prefer the *first* forward to target the
|
1414 |
+
parameter mixed precision case, where there are *separate*
|
1415 |
+
``AccumulateGrad`` objects across the different forwards. (Without
|
1416 |
+
parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If
|
1417 |
+
we instead prefer the *last* forward, then the hook runs early.
|
1418 |
+
"""
|
1419 |
+
# If there is no gradient computation, then there is no need for
|
1420 |
+
# post-backward logic
|
1421 |
+
if not torch.is_grad_enabled():
|
1422 |
+
return
|
1423 |
+
if not handle:
|
1424 |
+
return
|
1425 |
+
flat_param = handle.flat_param
|
1426 |
+
|
1427 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1428 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
1429 |
+
if already_registered or not flat_param.requires_grad:
|
1430 |
+
return
|
1431 |
+
hook = functools.partial(_post_backward_hook, state, handle)
|
1432 |
+
hook_handle = flat_param.register_post_accumulate_grad_hook(hook)
|
1433 |
+
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined]
|
1434 |
+
else:
|
1435 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
1436 |
+
if already_registered or not flat_param.requires_grad:
|
1437 |
+
return
|
1438 |
+
# Get the `AccumulateGrad` object
|
1439 |
+
temp_flat_param = flat_param.expand_as(flat_param)
|
1440 |
+
_p_assert(
|
1441 |
+
temp_flat_param.grad_fn is not None,
|
1442 |
+
"The `grad_fn` is needed to access the `AccumulateGrad` and "
|
1443 |
+
"register the post-backward hook",
|
1444 |
+
)
|
1445 |
+
acc_grad = temp_flat_param.grad_fn.next_functions[0][0] # type: ignore[union-attr]
|
1446 |
+
assert acc_grad is not None
|
1447 |
+
hook_handle = acc_grad.register_hook(
|
1448 |
+
functools.partial(_post_backward_hook, state, handle)
|
1449 |
+
)
|
1450 |
+
flat_param._post_backward_hook_state = (acc_grad, hook_handle) # type: ignore[attr-defined]
|
1451 |
+
|
1452 |
+
|
1453 |
+
def _register_post_backward_reshard_only_hook(
|
1454 |
+
state: _FSDPState,
|
1455 |
+
handle: Optional[FlatParamHandle],
|
1456 |
+
args: Tuple[Any, ...],
|
1457 |
+
kwargs: Dict[str, Any],
|
1458 |
+
) -> None:
|
1459 |
+
"""
|
1460 |
+
Registers post-backward hooks to reshard flat parameters that do not
|
1461 |
+
require gradient. We register these using multi-post-grad hooks on the
|
1462 |
+
input activations to ensure that all gradients that may depend on the
|
1463 |
+
parameters have been computed before resharding.
|
1464 |
+
"""
|
1465 |
+
# If there is no gradient computation, then there is no need for
|
1466 |
+
# post-backward logic
|
1467 |
+
if not torch.is_grad_enabled():
|
1468 |
+
return
|
1469 |
+
# Construct `inp_tensors` lazily to avoid CPU overhead in typical case
|
1470 |
+
# where each flat parameter requires gradient
|
1471 |
+
inp_tensors: Optional[List[torch.Tensor]] = None
|
1472 |
+
if not handle:
|
1473 |
+
return
|
1474 |
+
flat_param = handle.flat_param
|
1475 |
+
|
1476 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1477 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_handle")
|
1478 |
+
else:
|
1479 |
+
already_registered = hasattr(flat_param, "_post_backward_hook_state")
|
1480 |
+
|
1481 |
+
if already_registered or flat_param.requires_grad:
|
1482 |
+
return
|
1483 |
+
if inp_tensors is None:
|
1484 |
+
args_flat = pytree.arg_tree_leaves(*args, **kwargs)
|
1485 |
+
inp_tensors = [
|
1486 |
+
obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad
|
1487 |
+
]
|
1488 |
+
assert inp_tensors is not None # mypy
|
1489 |
+
hook_handle = register_multi_grad_hook(
|
1490 |
+
inp_tensors, functools.partial(_post_backward_reshard_only_hook, state, handle)
|
1491 |
+
)
|
1492 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1493 |
+
flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined, assignment]
|
1494 |
+
else:
|
1495 |
+
flat_param._post_backward_hook_state = (hook_handle,) # type: ignore[attr-defined, assignment]
|
1496 |
+
|
1497 |
+
|
1498 |
+
@no_type_check
|
1499 |
+
def _register_post_backward_final_callback(
|
1500 |
+
state: _FSDPState, module: nn.Module
|
1501 |
+
) -> None:
|
1502 |
+
"""
|
1503 |
+
Registers the post-backward final callback that runs at the end of the
|
1504 |
+
backward pass. This should be called from the root FSDP instance at the
|
1505 |
+
beginning of the pre-backward.
|
1506 |
+
"""
|
1507 |
+
_p_assert(
|
1508 |
+
state._is_root,
|
1509 |
+
"Only the root FSDP instance should register the post-backward callback",
|
1510 |
+
)
|
1511 |
+
if state._post_backward_callback_queued:
|
1512 |
+
return
|
1513 |
+
_assert_in_training_states(state, [TrainingState.IDLE])
|
1514 |
+
# Trace does not need this callback
|
1515 |
+
if not torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1516 |
+
state._post_backward_callback_queued = True
|
1517 |
+
Variable._execution_engine.queue_callback(
|
1518 |
+
functools.partial(_post_backward_final_callback, state, module)
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
|
1522 |
+
def _wait_for_computation_stream(
|
1523 |
+
computation_stream: torch.Stream,
|
1524 |
+
unshard_stream: torch.Stream,
|
1525 |
+
pre_unshard_stream: torch.Stream,
|
1526 |
+
):
|
1527 |
+
"""
|
1528 |
+
Has the unshard and pre-unshard streams wait for the computation stream.
|
1529 |
+
For example, this should be called in the FSDP root's pre-forward to
|
1530 |
+
respect optimizer step computation.
|
1531 |
+
"""
|
1532 |
+
# Tracing does not need to wait
|
1533 |
+
if torch.distributed._functional_collectives.is_torchdynamo_compiling():
|
1534 |
+
return
|
1535 |
+
unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
1536 |
+
# Having the pre-all-gather stream wait for the current stream even if we
|
1537 |
+
# do not leverage the pre-all-gather stream is tolerable since this only
|
1538 |
+
# runs once per iteration
|
1539 |
+
pre_unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined]
|
1540 |
+
|
1541 |
+
|
1542 |
+
def _reset_flat_param_grad_info_if_needed(
|
1543 |
+
handles: List[FlatParamHandle],
|
1544 |
+
):
|
1545 |
+
"""
|
1546 |
+
Clears the original parameters' gradients if needed. This method's CPU
|
1547 |
+
overhead is minimal, so we may call it throughout FSDP methods, which serve
|
1548 |
+
as callsites to free the gradient memory earlier.
|
1549 |
+
"""
|
1550 |
+
if not isinstance(handles, list):
|
1551 |
+
handles = [handles]
|
1552 |
+
for handle in handles:
|
1553 |
+
if handle._use_orig_params:
|
1554 |
+
handle._reset_flat_param_grad_info_if_needed()
|
1555 |
+
|
1556 |
+
|
1557 |
+
@no_type_check
|
1558 |
+
def _get_buffers_and_dtypes_for_computation(
|
1559 |
+
state: _FSDPState,
|
1560 |
+
root_module: nn.Module,
|
1561 |
+
) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]:
|
1562 |
+
"""
|
1563 |
+
Returns all buffers in the module tree rooted at ``root_module`` and a
|
1564 |
+
corresponding list of the buffer dtypes for computation. Each buffer dtype
|
1565 |
+
is either ``None`` if buffer mixed precision is not enabled or the buffer
|
1566 |
+
low precision dtype otherwise.
|
1567 |
+
"""
|
1568 |
+
_p_assert(state._is_root, "Expects the root to cast buffers")
|
1569 |
+
buffers: List[torch.Tensor] = []
|
1570 |
+
buffer_dtypes: List[Optional[torch.dtype]] = []
|
1571 |
+
visited_buffers: Set[torch.Tensor] = set()
|
1572 |
+
# Traverse the FSDP states bottom-up so that we prefer the owning FSDP
|
1573 |
+
# instance's mixed precision setting for each buffer
|
1574 |
+
fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules(
|
1575 |
+
root_module
|
1576 |
+
)
|
1577 |
+
for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)):
|
1578 |
+
for buffer_name, buffer in fsdp_module.named_buffers():
|
1579 |
+
if buffer in visited_buffers:
|
1580 |
+
continue
|
1581 |
+
visited_buffers.add(buffer)
|
1582 |
+
if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names:
|
1583 |
+
continue
|
1584 |
+
buffers.append(buffer)
|
1585 |
+
buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype)
|
1586 |
+
assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}"
|
1587 |
+
return buffers, buffer_dtypes
|
1588 |
+
|
1589 |
+
|
1590 |
+
@no_type_check
|
1591 |
+
def _get_orig_buffer_dtypes(
|
1592 |
+
state: _FSDPState,
|
1593 |
+
buffer_names: List[str],
|
1594 |
+
) -> List[torch.dtype]:
|
1595 |
+
"""
|
1596 |
+
Returns the original buffer types of the given buffer names.
|
1597 |
+
"""
|
1598 |
+
buffer_dtypes: List[torch.dtype] = []
|
1599 |
+
for buffer_name in buffer_names:
|
1600 |
+
_p_assert(
|
1601 |
+
buffer_name in state._buffer_name_to_orig_dtype,
|
1602 |
+
f"{buffer_name} is missing from pre-computed dict on rank "
|
1603 |
+
f"{state.rank}, which only has keys "
|
1604 |
+
f"{state._buffer_name_to_orig_dtype.keys()}",
|
1605 |
+
)
|
1606 |
+
buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name])
|
1607 |
+
return buffer_dtypes
|
1608 |
+
|
1609 |
+
|
1610 |
+
def _cast_buffers_to_dtype_and_device(
|
1611 |
+
buffers: List[torch.Tensor],
|
1612 |
+
buffer_dtypes: List[Optional[torch.dtype]],
|
1613 |
+
device: torch.device,
|
1614 |
+
) -> None:
|
1615 |
+
"""
|
1616 |
+
Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them
|
1617 |
+
to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the
|
1618 |
+
corresponding buffer is only moved to ``device``.
|
1619 |
+
"""
|
1620 |
+
_p_assert(
|
1621 |
+
buffer_dtypes is None or len(buffers) == len(buffer_dtypes),
|
1622 |
+
f"Expects `buffers` and `buffer_dtypes` to have the same length if "
|
1623 |
+
f"`buffer_dtypes` is specified but got {len(buffers)} and "
|
1624 |
+
f"{len(buffer_dtypes)}",
|
1625 |
+
)
|
1626 |
+
for buffer, buffer_dtype in zip(buffers, buffer_dtypes):
|
1627 |
+
if not torch.is_floating_point(buffer) or buffer_dtype is None:
|
1628 |
+
buffer.data = buffer.to(device=device)
|
1629 |
+
else:
|
1630 |
+
buffer.data = buffer.to(device=device, dtype=buffer_dtype)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_shard_utils.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
from torch.distributed import distributed_c10d
|
9 |
+
from torch.distributed._shard.sharded_tensor import (
|
10 |
+
Shard,
|
11 |
+
ShardedTensor,
|
12 |
+
ShardedTensorMetadata,
|
13 |
+
TensorProperties,
|
14 |
+
)
|
15 |
+
from torch.distributed._shard.sharding_spec import ShardMetadata
|
16 |
+
from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard as DShard
|
17 |
+
|
18 |
+
|
19 |
+
def _get_remote_device_str(rank, device_type, num_devices_per_node):
|
20 |
+
if device_type.lower() == "cpu":
|
21 |
+
return f"rank:{rank}/{device_type}"
|
22 |
+
else:
|
23 |
+
return f"rank:{rank}/{device_type}:{rank % num_devices_per_node}"
|
24 |
+
|
25 |
+
|
26 |
+
def _create_chunk_sharded_tensor(
|
27 |
+
tensor: torch.Tensor,
|
28 |
+
rank: int,
|
29 |
+
world_size: int,
|
30 |
+
num_devices_per_node: int,
|
31 |
+
pg: dist.ProcessGroup,
|
32 |
+
device: Optional[torch.device] = None,
|
33 |
+
) -> ShardedTensor:
|
34 |
+
"""
|
35 |
+
Shard a tensor to chunks along the first dimension. The local rank will gets its
|
36 |
+
corresponding chunk as the local shard to create a ShardedTensor.
|
37 |
+
"""
|
38 |
+
chunks = tensor.chunk(world_size, dim=0)
|
39 |
+
if len(chunks) > rank:
|
40 |
+
local_shard = chunks[rank].clone()
|
41 |
+
offsets = [0 for _ in tensor.size()]
|
42 |
+
offsets[0] = math.ceil(tensor.size()[0] / world_size) * rank
|
43 |
+
local_shards = [Shard.from_tensor_and_offsets(local_shard, offsets, rank)]
|
44 |
+
else:
|
45 |
+
local_shards = []
|
46 |
+
|
47 |
+
# Create a ShardedTensor without invoking communication.
|
48 |
+
chunk_sizes = [list(chunk.size()) for chunk in chunks]
|
49 |
+
dim0_offsets = [0] + list(
|
50 |
+
itertools.accumulate([chunk_size[0] for chunk_size in chunk_sizes])
|
51 |
+
)[:-1]
|
52 |
+
offsets = [0] * (len(chunk_sizes[0]) - 1)
|
53 |
+
chunk_offsets = [[d0] + offsets for d0 in dim0_offsets]
|
54 |
+
device_type = (
|
55 |
+
distributed_c10d._get_pg_default_device(pg).type
|
56 |
+
if device is None
|
57 |
+
else device.type
|
58 |
+
)
|
59 |
+
placements = [
|
60 |
+
_get_remote_device_str(r, device_type, num_devices_per_node)
|
61 |
+
for r in range(len(chunk_sizes))
|
62 |
+
]
|
63 |
+
assert len(chunk_sizes) == len(chunk_offsets) == len(placements)
|
64 |
+
shard_metadata = [
|
65 |
+
ShardMetadata(offset, size, placement)
|
66 |
+
for offset, size, placement in zip(chunk_offsets, chunk_sizes, placements)
|
67 |
+
]
|
68 |
+
sharded_tensor_metadata = ShardedTensorMetadata(
|
69 |
+
shards_metadata=shard_metadata,
|
70 |
+
size=tensor.size(),
|
71 |
+
tensor_properties=TensorProperties(
|
72 |
+
dtype=tensor.dtype,
|
73 |
+
layout=tensor.layout,
|
74 |
+
requires_grad=False,
|
75 |
+
memory_format=torch.contiguous_format,
|
76 |
+
pin_memory=tensor.is_pinned(),
|
77 |
+
),
|
78 |
+
)
|
79 |
+
return ShardedTensor._init_from_local_shards_and_global_metadata(
|
80 |
+
local_shards, sharded_tensor_metadata=sharded_tensor_metadata, process_group=pg
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
def _create_chunk_dtensor(
|
85 |
+
tensor: torch.Tensor,
|
86 |
+
rank: int,
|
87 |
+
device_mesh: DeviceMesh,
|
88 |
+
) -> DTensor:
|
89 |
+
"""
|
90 |
+
Shard a tensor to chunks along the first dimension. The local rank will gets its
|
91 |
+
corresponding chunk as the local tensor to create a DTensor.
|
92 |
+
"""
|
93 |
+
# We need to explicitly call .detach() to return a new tensor detached from the current graph.
|
94 |
+
tensor = tensor.clone().detach()
|
95 |
+
|
96 |
+
# FSDP placements: [Shard(0)]
|
97 |
+
# HSDP placements: [Replicate(), Shard(0)]
|
98 |
+
replicate_placements = [Replicate() for _ in range(device_mesh.ndim)]
|
99 |
+
shard_placements = [Replicate() for _ in range(device_mesh.ndim)]
|
100 |
+
shard_placements[-1] = DShard(0) # type: ignore[call-overload]
|
101 |
+
|
102 |
+
return DTensor.from_local(
|
103 |
+
tensor, device_mesh, replicate_placements, run_check=False
|
104 |
+
).redistribute(
|
105 |
+
placements=shard_placements,
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def _all_gather_dtensor(
|
110 |
+
tensor: DTensor,
|
111 |
+
parent_mesh: Optional[DeviceMesh],
|
112 |
+
) -> torch.Tensor:
|
113 |
+
"""
|
114 |
+
All gather a DTensor in its sharded dimension and return the local tensor.
|
115 |
+
"""
|
116 |
+
assert parent_mesh is None
|
117 |
+
|
118 |
+
placements = list(copy.deepcopy(tensor.placements))
|
119 |
+
# FSDP placements: [Shard(0)] -> [Replicate()]
|
120 |
+
# HSDP placements: [Replicate(), Shard(0)] -> [Replicate(), Replicate()]
|
121 |
+
placements[-1] = Replicate()
|
122 |
+
tensor = tensor.redistribute(
|
123 |
+
device_mesh=tensor.device_mesh,
|
124 |
+
placements=placements,
|
125 |
+
)
|
126 |
+
|
127 |
+
return tensor.to_local()
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py
ADDED
@@ -0,0 +1,928 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import (
|
6 |
+
Any,
|
7 |
+
Callable,
|
8 |
+
cast,
|
9 |
+
Dict,
|
10 |
+
Generator,
|
11 |
+
Iterator,
|
12 |
+
List,
|
13 |
+
no_type_check,
|
14 |
+
Tuple,
|
15 |
+
)
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.distributed as dist
|
19 |
+
|
20 |
+
import torch.distributed.algorithms._checkpoint.checkpoint_wrapper as checkpoint_wrapper
|
21 |
+
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from torch.distributed._shard.sharded_tensor import (
|
25 |
+
init_from_local_shards,
|
26 |
+
Shard,
|
27 |
+
ShardedTensor,
|
28 |
+
)
|
29 |
+
from torch.distributed._tensor import DTensor
|
30 |
+
from torch.distributed.device_mesh import _mesh_resources
|
31 |
+
|
32 |
+
from torch.distributed.fsdp._common_utils import (
|
33 |
+
_FSDPState,
|
34 |
+
_get_module_fsdp_state_if_fully_sharded_module,
|
35 |
+
_has_fsdp_params,
|
36 |
+
_is_composable,
|
37 |
+
_module_handle,
|
38 |
+
clean_tensor_name,
|
39 |
+
FSDP_PREFIX,
|
40 |
+
FSDP_WRAPPED_MODULE,
|
41 |
+
)
|
42 |
+
from torch.distributed.fsdp._debug_utils import SimpleProfiler
|
43 |
+
from torch.distributed.fsdp._runtime_utils import (
|
44 |
+
_cast_buffers_to_dtype_and_device,
|
45 |
+
_get_orig_buffer_dtypes,
|
46 |
+
_lazy_init,
|
47 |
+
_reset_flat_param_grad_info_if_needed,
|
48 |
+
)
|
49 |
+
from torch.distributed.fsdp.api import (
|
50 |
+
FullStateDictConfig,
|
51 |
+
ShardingStrategy,
|
52 |
+
StateDictType,
|
53 |
+
)
|
54 |
+
from torch.distributed.utils import _replace_by_prefix
|
55 |
+
|
56 |
+
from ._fsdp_extensions import (
|
57 |
+
_ext_all_gather_dtensor,
|
58 |
+
_ext_chunk_dtensor,
|
59 |
+
_ext_chunk_tensor,
|
60 |
+
_ext_post_unflatten_transform,
|
61 |
+
_ext_pre_load_state_dict_transform,
|
62 |
+
)
|
63 |
+
from ._unshard_param_utils import _unshard_fsdp_state_params, FLAT_PARAM
|
64 |
+
|
65 |
+
|
66 |
+
logger = logging.getLogger(__name__)
|
67 |
+
|
68 |
+
|
69 |
+
def _should_unshard_params(fsdp_state: _FSDPState) -> bool:
|
70 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD and (
|
71 |
+
_is_composable(fsdp_state) or fsdp_state._use_orig_params
|
72 |
+
):
|
73 |
+
return False
|
74 |
+
else:
|
75 |
+
return True
|
76 |
+
|
77 |
+
|
78 |
+
def _convert_to_wrapped_module_name(module_name: str) -> str:
|
79 |
+
module_name = module_name.replace(f"{FSDP_PREFIX}", "")
|
80 |
+
module_name = module_name.replace(f"{FSDP_WRAPPED_MODULE}", "")
|
81 |
+
if module_name:
|
82 |
+
module_name = f"{module_name}."
|
83 |
+
# `CheckpointWrapper` adds a prefix that has to be removed as well.
|
84 |
+
module_name = module_name.replace(checkpoint_wrapper._CHECKPOINT_PREFIX, "")
|
85 |
+
return module_name
|
86 |
+
|
87 |
+
|
88 |
+
def _param_name_infos(
|
89 |
+
module: nn.Module, fsdp_state: _FSDPState
|
90 |
+
) -> Iterator[Tuple[str, str, str]]:
|
91 |
+
if not _has_fsdp_params(fsdp_state, module):
|
92 |
+
return
|
93 |
+
for param_name, module_name in _module_handle(
|
94 |
+
fsdp_state, module
|
95 |
+
).param_module_names():
|
96 |
+
module_name = _convert_to_wrapped_module_name(module_name)
|
97 |
+
fqn = f"{module_name}{param_name}"
|
98 |
+
yield fqn, param_name, module_name
|
99 |
+
|
100 |
+
|
101 |
+
def _shared_param_name_infos(
|
102 |
+
module: nn.Module, fsdp_state
|
103 |
+
) -> Iterator[Tuple[str, str, str]]:
|
104 |
+
for param_name, module_name in _module_handle(
|
105 |
+
fsdp_state, module
|
106 |
+
).shared_param_module_names():
|
107 |
+
module_name = _convert_to_wrapped_module_name(module_name)
|
108 |
+
fqn = f"{module_name}{param_name}"
|
109 |
+
yield fqn, param_name, module_name
|
110 |
+
|
111 |
+
|
112 |
+
@no_type_check
|
113 |
+
def _enter_unshard_params_ctx(
|
114 |
+
module: nn.Module,
|
115 |
+
fsdp_state: _FSDPState,
|
116 |
+
writeback: bool = False,
|
117 |
+
rank0_only: bool = False,
|
118 |
+
offload_to_cpu: bool = False,
|
119 |
+
with_grads: bool = False,
|
120 |
+
) -> None:
|
121 |
+
"""
|
122 |
+
state_dict hooks cannot use the pure context call as the checkpoint flow
|
123 |
+
requires to enter the context in the pre-hook but leave the context in the
|
124 |
+
post-hook. This API enters the context of ``_unshard_fsdp_state_params``.
|
125 |
+
"""
|
126 |
+
assert module not in fsdp_state._unshard_params_ctx, (
|
127 |
+
"Entering the ``_unshard_fsdp_state_params`` context but _unshard_params_ctx[module] "
|
128 |
+
"is not None."
|
129 |
+
)
|
130 |
+
fsdp_state._unshard_params_ctx[module] = _unshard_fsdp_state_params(
|
131 |
+
module,
|
132 |
+
fsdp_state,
|
133 |
+
writeback=writeback,
|
134 |
+
rank0_only=rank0_only,
|
135 |
+
offload_to_cpu=offload_to_cpu,
|
136 |
+
with_grads=with_grads,
|
137 |
+
)
|
138 |
+
fsdp_state._unshard_params_ctx[module].__enter__()
|
139 |
+
|
140 |
+
|
141 |
+
@no_type_check
|
142 |
+
def _exit_unshard_params_ctx(module: nn.Module, fsdp_state: _FSDPState) -> None:
|
143 |
+
"""A helper function to exit ``_unshard_fsdp_state_params`` context."""
|
144 |
+
fsdp_state._unshard_params_ctx[module].__exit__(None, None, None)
|
145 |
+
fsdp_state._unshard_params_ctx.pop(module)
|
146 |
+
|
147 |
+
|
148 |
+
def _common_pre_state_dict_hook(
|
149 |
+
module: nn.Module,
|
150 |
+
fsdp_state: _FSDPState,
|
151 |
+
) -> None:
|
152 |
+
"""Performs the pre-state_dict tasks shared by all state_dict types."""
|
153 |
+
if fsdp_state._device_handle.is_available():
|
154 |
+
fsdp_state._device_handle.synchronize()
|
155 |
+
# TODO: need to check if this is always correct for composable FSDP.
|
156 |
+
_lazy_init(fsdp_state, module)
|
157 |
+
if fsdp_state._is_root:
|
158 |
+
_reset_flat_param_grad_info_if_needed(fsdp_state._all_handles)
|
159 |
+
|
160 |
+
|
161 |
+
def _common_unshard_pre_state_dict_hook(
|
162 |
+
module: nn.Module,
|
163 |
+
fsdp_state: _FSDPState,
|
164 |
+
offload_to_cpu: bool,
|
165 |
+
rank0_only: bool,
|
166 |
+
) -> None:
|
167 |
+
"""
|
168 |
+
Performs the pre-state_dict tasks shared by all state_dict types that require
|
169 |
+
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this hook.
|
170 |
+
"""
|
171 |
+
# For composable `fully_shard`, it does not need to unshard parameters for `NO_SHARD` cases.
|
172 |
+
if not _should_unshard_params(fsdp_state):
|
173 |
+
return
|
174 |
+
_enter_unshard_params_ctx(
|
175 |
+
module,
|
176 |
+
fsdp_state,
|
177 |
+
writeback=False,
|
178 |
+
offload_to_cpu=offload_to_cpu,
|
179 |
+
rank0_only=rank0_only,
|
180 |
+
)
|
181 |
+
|
182 |
+
|
183 |
+
@no_type_check
|
184 |
+
def _common_unshard_post_state_dict_hook(
|
185 |
+
module: nn.Module,
|
186 |
+
fsdp_state: _FSDPState,
|
187 |
+
state_dict: Dict[str, Any],
|
188 |
+
prefix: str,
|
189 |
+
param_hook: Callable,
|
190 |
+
) -> Dict[str, Any]:
|
191 |
+
"""
|
192 |
+
The post-state_dict flow that shared by all state_dict types that require
|
193 |
+
``_unshard_fsdp_state_params()``. FULL_STATE_DICT and SHARDED_STATE_DICT use this
|
194 |
+
hook.
|
195 |
+
"""
|
196 |
+
_replace_by_prefix(state_dict, prefix + f"{FSDP_PREFIX}", prefix)
|
197 |
+
# Return early for trivial cases
|
198 |
+
if not state_dict or not _has_fsdp_params(fsdp_state, module):
|
199 |
+
if _should_unshard_params(fsdp_state):
|
200 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
201 |
+
return state_dict
|
202 |
+
|
203 |
+
# If a rank does not have unsharded parameters(when `rank0_only=True`
|
204 |
+
# and `rank != 0`), then the rank only needed to participate in the
|
205 |
+
# all-gather and does not need to save the # state dict. We simply check
|
206 |
+
# rank0_only to ensure this issue.
|
207 |
+
rank0_only = (
|
208 |
+
fsdp_state._state_dict_type == StateDictType.FULL_STATE_DICT
|
209 |
+
and cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only
|
210 |
+
)
|
211 |
+
# no_fsdp_return means the state_dict returned by this rank should contain
|
212 |
+
# only non-FSDP controlled parameters and buffers.
|
213 |
+
no_fsdp_return = rank0_only and fsdp_state.rank != 0
|
214 |
+
if no_fsdp_return and not fsdp_state._use_orig_params:
|
215 |
+
for clean_key in fsdp_state._buffer_names:
|
216 |
+
# This is a hack to support activation checkpoint.
|
217 |
+
clean_key = clean_key.replace(
|
218 |
+
f"{checkpoint_wrapper._CHECKPOINT_PREFIX}.", ""
|
219 |
+
)
|
220 |
+
state_dict.pop(f"{prefix}{clean_key}", None)
|
221 |
+
# Non-zero ranks have flat_param key when rank0_only=True, because rank0_only=True is
|
222 |
+
# passed in to unshard context, but nonzero ranks reshard early, causing this flat_param
|
223 |
+
# to appear in state_dict.
|
224 |
+
state_dict.pop(f"{prefix}{FLAT_PARAM}")
|
225 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
226 |
+
return state_dict
|
227 |
+
|
228 |
+
# Loop only the parameters saved in this instance's wrapped module to
|
229 |
+
# avoid processing buffers.
|
230 |
+
for fqn, param_name, module_name in _param_name_infos(module, fsdp_state):
|
231 |
+
fqn = f"{prefix}{fqn}"
|
232 |
+
if no_fsdp_return:
|
233 |
+
state_dict.pop(fqn)
|
234 |
+
continue
|
235 |
+
assert fqn in state_dict, (
|
236 |
+
f"FSDP assumes {fqn} is in the state_dict but the state_dict only "
|
237 |
+
f"has {state_dict.keys()}. "
|
238 |
+
f"prefix={prefix}, module_name={module_name}, "
|
239 |
+
f"param_name={param_name} rank={fsdp_state.rank}."
|
240 |
+
)
|
241 |
+
|
242 |
+
param_hook(state_dict, prefix, fqn)
|
243 |
+
|
244 |
+
if _should_unshard_params(fsdp_state):
|
245 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
246 |
+
|
247 |
+
cpu_device = torch.device("cpu")
|
248 |
+
buffer_clean_fqns = []
|
249 |
+
buffers = []
|
250 |
+
for clean_key in fsdp_state._buffer_names:
|
251 |
+
# This is a hack to support activation checkpoint.
|
252 |
+
clean_key = clean_tensor_name(clean_key)
|
253 |
+
fqn = f"{prefix}{clean_key}"
|
254 |
+
if fqn not in state_dict:
|
255 |
+
# A buffer can be registered as non-persistent.
|
256 |
+
continue
|
257 |
+
if no_fsdp_return:
|
258 |
+
state_dict.pop(fqn)
|
259 |
+
else:
|
260 |
+
buffer = state_dict[fqn]
|
261 |
+
if (
|
262 |
+
fsdp_state._state_dict_config.offload_to_cpu
|
263 |
+
and buffer.device != cpu_device
|
264 |
+
):
|
265 |
+
state_dict[fqn] = buffer.to(cpu_device)
|
266 |
+
# skip upcasting for ignored buffers
|
267 |
+
if clean_key not in fsdp_state._ignored_buffer_names:
|
268 |
+
buffer_clean_fqns.append(clean_key)
|
269 |
+
buffers.append(state_dict[fqn])
|
270 |
+
|
271 |
+
if buffers:
|
272 |
+
mixed_precision_enabled_for_buffers = (
|
273 |
+
fsdp_state._mixed_precision_enabled_for_buffers()
|
274 |
+
if not _is_composable(fsdp_state)
|
275 |
+
else (fsdp_state.mixed_precision.buffer_dtype is not None)
|
276 |
+
)
|
277 |
+
if mixed_precision_enabled_for_buffers:
|
278 |
+
buffer_dtypes = _get_orig_buffer_dtypes(fsdp_state, buffer_clean_fqns)
|
279 |
+
_cast_buffers_to_dtype_and_device(
|
280 |
+
buffers, buffer_dtypes, fsdp_state.compute_device
|
281 |
+
)
|
282 |
+
for buffer, clean_fqn in zip(buffers, buffer_clean_fqns):
|
283 |
+
fqn = f"{prefix}{clean_fqn}"
|
284 |
+
logger.info("FSDP is casting the dtype of %s to %s", fqn, buffer.dtype)
|
285 |
+
state_dict[fqn] = buffer.clone()
|
286 |
+
return state_dict
|
287 |
+
|
288 |
+
|
289 |
+
@no_type_check
|
290 |
+
def _full_pre_state_dict_hook(
|
291 |
+
fsdp_state: _FSDPState,
|
292 |
+
module: nn.Module,
|
293 |
+
*args,
|
294 |
+
**kwargs,
|
295 |
+
) -> None:
|
296 |
+
"""
|
297 |
+
Hook that runs before model.state_dict() is called. pre-state_dict hook is
|
298 |
+
not actually supported by ``nn.Module``. As a result, this API is called
|
299 |
+
from ``_full_post_state_dict_hook()`` to simulate the case. Once pre-state_dict
|
300 |
+
is supported in ``nn.Module``, this hook will be registered as a hook in
|
301 |
+
``nn.Module``.
|
302 |
+
"""
|
303 |
+
if getattr(fsdp_state, "_device_mesh", False):
|
304 |
+
parent_mesh = _mesh_resources.get_parent_mesh(fsdp_state._device_mesh)
|
305 |
+
|
306 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
307 |
+
_common_unshard_pre_state_dict_hook(
|
308 |
+
module,
|
309 |
+
fsdp_state,
|
310 |
+
offload_to_cpu=fsdp_state._state_dict_config.offload_to_cpu,
|
311 |
+
rank0_only=cast(FullStateDictConfig, fsdp_state._state_dict_config).rank0_only,
|
312 |
+
)
|
313 |
+
|
314 |
+
|
315 |
+
@no_type_check
|
316 |
+
def _full_post_state_dict_hook(
|
317 |
+
module: nn.Module,
|
318 |
+
fsdp_state: _FSDPState,
|
319 |
+
state_dict: Dict[str, Any],
|
320 |
+
prefix: str,
|
321 |
+
) -> Dict[str, Any]:
|
322 |
+
"""
|
323 |
+
Hook that runs after model.state_dict() is called before returning result to
|
324 |
+
user. For FSDP, we may have to clone the tensors in state_dict as params go
|
325 |
+
back to sharded version after _unshard_fsdp_state_params ends, and also remove
|
326 |
+
the ``FSDP_WRAPPED_MODULE`` prefix.
|
327 |
+
"""
|
328 |
+
|
329 |
+
def param_hook(
|
330 |
+
state_dict: Dict[str, Any],
|
331 |
+
prefix: str,
|
332 |
+
fqn: str,
|
333 |
+
) -> None:
|
334 |
+
clean_key = fqn
|
335 |
+
clean_prefix = clean_tensor_name(prefix)
|
336 |
+
# Strip prefix out of key if needed as buffer names and param names
|
337 |
+
# do not have prefix considered as they are not computed in `state_dict`
|
338 |
+
# call.
|
339 |
+
if clean_key.startswith(clean_prefix):
|
340 |
+
clean_key = clean_key[len(clean_prefix) :]
|
341 |
+
|
342 |
+
# Clone parameters before exiting the `_unshard_fsdp_state_params()` context.
|
343 |
+
if not getattr(state_dict[fqn], "_has_been_cloned", False):
|
344 |
+
try:
|
345 |
+
state_dict[fqn] = state_dict[fqn].clone().detach()
|
346 |
+
state_dict[fqn]._has_been_cloned = True # type: ignore[attr-defined]
|
347 |
+
except BaseException as e:
|
348 |
+
warnings.warn(
|
349 |
+
f"Failed to clone() tensor with name {fqn} on rank {fsdp_state.rank}. "
|
350 |
+
"This may mean that this state_dict entry could point to invalid "
|
351 |
+
"memory regions after returning from state_dict() call if this "
|
352 |
+
"parameter is managed by FSDP. Please check clone "
|
353 |
+
f"implementation of {fqn}. Error: {str(e)}"
|
354 |
+
)
|
355 |
+
|
356 |
+
return _common_unshard_post_state_dict_hook(
|
357 |
+
module, fsdp_state, state_dict, prefix, param_hook
|
358 |
+
)
|
359 |
+
|
360 |
+
|
361 |
+
def _full_pre_load_state_dict_hook(
|
362 |
+
module: nn.Module,
|
363 |
+
fsdp_state: _FSDPState,
|
364 |
+
state_dict: Dict[str, Any],
|
365 |
+
prefix: str,
|
366 |
+
) -> None:
|
367 |
+
_lazy_init(fsdp_state, module)
|
368 |
+
if _should_unshard_params(fsdp_state):
|
369 |
+
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
|
370 |
+
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
|
371 |
+
# Add FSDP_PREFIX only for wrapper-based FSDP.
|
372 |
+
if not _is_composable(fsdp_state):
|
373 |
+
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
|
374 |
+
|
375 |
+
|
376 |
+
def _full_post_load_state_dict_hook(
|
377 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
378 |
+
) -> None:
|
379 |
+
if _should_unshard_params(fsdp_state):
|
380 |
+
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
|
381 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
382 |
+
|
383 |
+
|
384 |
+
def _local_pre_state_dict_hook(
|
385 |
+
fsdp_state: _FSDPState,
|
386 |
+
module: nn.Module,
|
387 |
+
*args,
|
388 |
+
**kwargs,
|
389 |
+
) -> None:
|
390 |
+
"""
|
391 |
+
Hook that runs before model.state_dict() is called. Right now, pre-state_dict
|
392 |
+
hook is not supported by the PyTorch core. So this API is called from
|
393 |
+
`_local_post_state_dict_hook()` to simulate the case.
|
394 |
+
"""
|
395 |
+
if (
|
396 |
+
_has_fsdp_params(fsdp_state, module)
|
397 |
+
and not _module_handle(fsdp_state, module).uses_sharded_strategy
|
398 |
+
):
|
399 |
+
raise RuntimeError(
|
400 |
+
"``local_state_dict`` can only be used when parameters are flatten "
|
401 |
+
"and sharded."
|
402 |
+
)
|
403 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
404 |
+
|
405 |
+
|
406 |
+
@no_type_check
|
407 |
+
def _local_post_state_dict_hook(
|
408 |
+
module: nn.Module,
|
409 |
+
fsdp_state: _FSDPState,
|
410 |
+
state_dict: Dict[str, Any],
|
411 |
+
prefix: str,
|
412 |
+
) -> Dict[str, Any]:
|
413 |
+
"""
|
414 |
+
This hook create a ShardedTensor from the local flat_param and replace
|
415 |
+
the state_dict[f"{prefix}{FLAT_PARAM}] with the ShardedTensor. No copy
|
416 |
+
will happen. The underlying storage is the same.
|
417 |
+
"""
|
418 |
+
|
419 |
+
_replace_by_prefix(state_dict, f"{prefix}{FSDP_PREFIX}", prefix)
|
420 |
+
if not _has_fsdp_params(fsdp_state, module):
|
421 |
+
return state_dict
|
422 |
+
|
423 |
+
# state_dict[f"{prefix}{FLAT_PARAM}"] exists and has the same tensor
|
424 |
+
# value as the flat_param but it is a pure Tensor because
|
425 |
+
# nn.Module.state_dict() will detach the parameter. Therefore, we need
|
426 |
+
# to get flat_param to get the metadata.
|
427 |
+
assert _module_handle(fsdp_state, module), "Should have returned early"
|
428 |
+
flat_param = _module_handle(fsdp_state, module).flat_param
|
429 |
+
# Constructs a ShardedTensor from the flat_param "without" padding.
|
430 |
+
# Removing the padding allows users to change the number of ranks
|
431 |
+
# when loading the local_state_dict.
|
432 |
+
full_numel = flat_param._unpadded_unsharded_size.numel() # type: ignore[attr-defined]
|
433 |
+
shard_offset = flat_param.numel() * fsdp_state.rank
|
434 |
+
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
|
435 |
+
if valid_data_size > 0:
|
436 |
+
# If FlatParameter is returned, FlatParameter._local_shard cause a
|
437 |
+
# pickling issue (can be torch.save but not torch.load). Since there
|
438 |
+
# is no benefit for state_dict to return the actual FlatParameter class,
|
439 |
+
# a view (which is a tensor) of the FlatParameter will be returned.
|
440 |
+
flat_param = flat_param[:valid_data_size].view(valid_data_size)
|
441 |
+
local_shards = [
|
442 |
+
Shard.from_tensor_and_offsets(flat_param, [shard_offset], fsdp_state.rank)
|
443 |
+
]
|
444 |
+
else:
|
445 |
+
local_shards = []
|
446 |
+
sharded_tensor = init_from_local_shards(
|
447 |
+
local_shards, full_numel, process_group=fsdp_state.process_group
|
448 |
+
) # type: ignore[assignment]
|
449 |
+
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
|
450 |
+
if fsdp_state._state_dict_config.offload_to_cpu:
|
451 |
+
sharded_tensor = sharded_tensor.cpu()
|
452 |
+
state_dict[f"{prefix}{FLAT_PARAM}"] = sharded_tensor
|
453 |
+
return state_dict
|
454 |
+
|
455 |
+
|
456 |
+
def _local_post_load_state_dict_hook(
|
457 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
458 |
+
) -> None:
|
459 |
+
pass
|
460 |
+
|
461 |
+
|
462 |
+
def _local_pre_load_state_dict_hook(
|
463 |
+
module: nn.Module,
|
464 |
+
fsdp_state: _FSDPState,
|
465 |
+
state_dict: Dict[str, Any],
|
466 |
+
prefix: str,
|
467 |
+
) -> None:
|
468 |
+
"""
|
469 |
+
This hook finds the local flat_param for this FSDP module from the
|
470 |
+
state_dict. The flat_param should be a ShardedTensor. This hook converts
|
471 |
+
the ShardedTensor to a tensor. No copy happen unless padding is required.
|
472 |
+
"""
|
473 |
+
_lazy_init(fsdp_state, module)
|
474 |
+
_replace_by_prefix(state_dict, prefix, f"{prefix}{FSDP_PREFIX}")
|
475 |
+
fqn = f"{prefix}{FSDP_PREFIX}{FLAT_PARAM}"
|
476 |
+
if fqn not in state_dict:
|
477 |
+
assert not _has_fsdp_params(fsdp_state, module), (
|
478 |
+
"No `FlatParameter` in `state_dict` for this FSDP instance "
|
479 |
+
"but it has parameters"
|
480 |
+
)
|
481 |
+
return
|
482 |
+
load_tensor = state_dict[fqn]
|
483 |
+
assert isinstance(
|
484 |
+
load_tensor, ShardedTensor
|
485 |
+
), "Tensors in local_state_dict should be ShardedTensor."
|
486 |
+
|
487 |
+
# Convert the ShardedTensor to a Tensor.
|
488 |
+
flat_param = _module_handle(fsdp_state, module).flat_param
|
489 |
+
assert flat_param is not None
|
490 |
+
valid_data_size = flat_param.numel() - flat_param._shard_numel_padded
|
491 |
+
shards = load_tensor.local_shards()
|
492 |
+
if valid_data_size > 0:
|
493 |
+
assert len(shards), "load_local_state_dict assume one shard per ShardedTensor."
|
494 |
+
load_tensor = shards[0].tensor
|
495 |
+
|
496 |
+
# Get the metadata of the flat_param to decide whether to pad the loaded
|
497 |
+
# tensor.
|
498 |
+
if flat_param._shard_numel_padded > 0:
|
499 |
+
assert load_tensor.numel() < flat_param.numel(), (
|
500 |
+
f"Local shard size = {flat_param.numel()} and the tensor in "
|
501 |
+
f"the state_dict is {load_tensor.numel()}."
|
502 |
+
)
|
503 |
+
load_tensor = F.pad(load_tensor, [0, flat_param._shard_numel_padded])
|
504 |
+
else:
|
505 |
+
load_tensor = flat_param
|
506 |
+
# TODO: Add DTensor state_dict support for LOCAL_STATE_DICT.
|
507 |
+
state_dict[fqn] = load_tensor
|
508 |
+
|
509 |
+
|
510 |
+
def _sharded_pre_state_dict_hook(
|
511 |
+
fsdp_state: _FSDPState,
|
512 |
+
module: nn.Module,
|
513 |
+
*args,
|
514 |
+
**kwargs,
|
515 |
+
) -> None:
|
516 |
+
"""
|
517 |
+
Hook that runs before model.state_dict() is called. Check
|
518 |
+
``_full_pre_load_state_dict_hook`` for the detail.
|
519 |
+
"""
|
520 |
+
if (
|
521 |
+
_has_fsdp_params(fsdp_state, module)
|
522 |
+
and not _module_handle(fsdp_state, module).uses_sharded_strategy
|
523 |
+
):
|
524 |
+
raise RuntimeError(
|
525 |
+
"``sharded_state_dict`` can only be used when parameters are flatten "
|
526 |
+
"and sharded."
|
527 |
+
)
|
528 |
+
_common_pre_state_dict_hook(module, fsdp_state)
|
529 |
+
# Setting offload_to_cpu here does not work even if offload_to_cpu is True.
|
530 |
+
# We have to create ShardedTensor first then move it to CPU.
|
531 |
+
_common_unshard_pre_state_dict_hook(
|
532 |
+
module,
|
533 |
+
fsdp_state,
|
534 |
+
offload_to_cpu=False,
|
535 |
+
rank0_only=False,
|
536 |
+
)
|
537 |
+
|
538 |
+
|
539 |
+
@no_type_check
|
540 |
+
def _sharded_post_state_dict_hook(
|
541 |
+
module: nn.Module,
|
542 |
+
fsdp_state: _FSDPState,
|
543 |
+
state_dict: Dict[str, Any],
|
544 |
+
prefix: str,
|
545 |
+
) -> Dict[str, Any]:
|
546 |
+
"""
|
547 |
+
The hook replaces the unflattened, unsharded parameter in the state_dict
|
548 |
+
with a unflattened, sharded parameter (a ShardedTensor).
|
549 |
+
"""
|
550 |
+
|
551 |
+
def param_hook(state_dict: Dict[str, Any], prefix: str, fqn: str):
|
552 |
+
param = state_dict[fqn]
|
553 |
+
if not fsdp_state._state_dict_config._use_dtensor:
|
554 |
+
sharded_tensor = _ext_chunk_tensor(
|
555 |
+
tensor=param,
|
556 |
+
rank=fsdp_state.rank,
|
557 |
+
world_size=fsdp_state.world_size,
|
558 |
+
num_devices_per_node=fsdp_state._device_handle.device_count(),
|
559 |
+
pg=fsdp_state.process_group,
|
560 |
+
fsdp_extension=fsdp_state._fsdp_extension,
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
sharded_tensor = _ext_chunk_dtensor(
|
564 |
+
tensor=param,
|
565 |
+
rank=fsdp_state.rank,
|
566 |
+
device_mesh=fsdp_state._device_mesh,
|
567 |
+
fsdp_extension=fsdp_state._fsdp_extension,
|
568 |
+
)
|
569 |
+
if fsdp_state._state_dict_config.offload_to_cpu:
|
570 |
+
sharded_tensor = sharded_tensor.cpu()
|
571 |
+
state_dict[fqn] = sharded_tensor
|
572 |
+
|
573 |
+
return _common_unshard_post_state_dict_hook(
|
574 |
+
module, fsdp_state, state_dict, prefix, param_hook
|
575 |
+
)
|
576 |
+
|
577 |
+
|
578 |
+
@no_type_check
|
579 |
+
def _sharded_post_load_state_dict_hook(
|
580 |
+
module: nn.Module, fsdp_state: _FSDPState, *args, **kwargs
|
581 |
+
) -> None:
|
582 |
+
if _has_fsdp_params(fsdp_state, module):
|
583 |
+
with SimpleProfiler.profile("_exit_unshard_params_ctx"):
|
584 |
+
_exit_unshard_params_ctx(module, fsdp_state)
|
585 |
+
|
586 |
+
|
587 |
+
@no_type_check
|
588 |
+
def _sharded_pre_load_state_dict_hook(
|
589 |
+
module: nn.Module,
|
590 |
+
fsdp_state: _FSDPState,
|
591 |
+
state_dict: Dict[str, Any],
|
592 |
+
prefix: str,
|
593 |
+
) -> None:
|
594 |
+
"""
|
595 |
+
The hook combines the unflattened, sharded parameters (ShardedTensor) to
|
596 |
+
a new FlatParameter and shards the new FlatParameter to the local chunk.
|
597 |
+
"""
|
598 |
+
_lazy_init(fsdp_state, module)
|
599 |
+
if not _is_composable(fsdp_state):
|
600 |
+
_replace_by_prefix(state_dict, prefix, prefix + f"{FSDP_PREFIX}")
|
601 |
+
if not _has_fsdp_params(fsdp_state, module):
|
602 |
+
return
|
603 |
+
|
604 |
+
handle = _module_handle(fsdp_state, module)
|
605 |
+
if not handle.uses_sharded_strategy:
|
606 |
+
raise RuntimeError(
|
607 |
+
"load_sharded_state_dict can only be called when parameters "
|
608 |
+
"are flattened and sharded."
|
609 |
+
)
|
610 |
+
fqn_to_param_ext = dict(
|
611 |
+
zip(handle.flat_param._fqns, handle.flat_param._param_extensions)
|
612 |
+
)
|
613 |
+
|
614 |
+
for fqn, _, _ in _param_name_infos(module, fsdp_state):
|
615 |
+
if not _is_composable(fsdp_state):
|
616 |
+
fqn_from_global_root = f"{prefix}{FSDP_PREFIX}{fqn}"
|
617 |
+
else:
|
618 |
+
fqn_from_global_root = f"{prefix}{fqn}"
|
619 |
+
try:
|
620 |
+
param = state_dict.pop(fqn_from_global_root)
|
621 |
+
except KeyError:
|
622 |
+
logger.warning(
|
623 |
+
f"Did not find param with FQN {fqn_from_global_root}, skipping it. " # noqa: G004
|
624 |
+
"The weight will not be filled if you expect it to be."
|
625 |
+
)
|
626 |
+
continue # TODO: Improve unittesting for state_dict finetuning
|
627 |
+
# cases: https://github.com/pytorch/pytorch/issues/109134
|
628 |
+
|
629 |
+
if not fsdp_state._state_dict_config._use_dtensor:
|
630 |
+
# All-gather the param (ShardedTensor)
|
631 |
+
param, shards = _ext_pre_load_state_dict_transform(
|
632 |
+
param, fsdp_state._fsdp_extension
|
633 |
+
)
|
634 |
+
|
635 |
+
assert len(shards) < 2, (
|
636 |
+
"Expects 0 or 1 shard per rank "
|
637 |
+
f"but got {len(shards)} shards on rank {fsdp_state.rank}."
|
638 |
+
)
|
639 |
+
param_numel = param.size().numel()
|
640 |
+
dim_0_size = param.size()[0]
|
641 |
+
chunk_size = (
|
642 |
+
math.ceil(dim_0_size / fsdp_state.world_size)
|
643 |
+
* param_numel
|
644 |
+
// dim_0_size
|
645 |
+
)
|
646 |
+
if len(shards) == 1:
|
647 |
+
local_tensor = shards[0].tensor.flatten()
|
648 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.H2D):
|
649 |
+
local_tensor = local_tensor.to(fsdp_state.compute_device)
|
650 |
+
num_padding = chunk_size - local_tensor.numel()
|
651 |
+
if num_padding > 0:
|
652 |
+
local_tensor = F.pad(local_tensor, [0, num_padding])
|
653 |
+
else:
|
654 |
+
local_tensor = torch.zeros(
|
655 |
+
chunk_size, dtype=param.dtype, device=fsdp_state.compute_device
|
656 |
+
)
|
657 |
+
tensor = torch.empty(
|
658 |
+
chunk_size * fsdp_state.world_size,
|
659 |
+
dtype=local_tensor.dtype,
|
660 |
+
device=fsdp_state.compute_device,
|
661 |
+
)
|
662 |
+
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
|
663 |
+
dist.all_gather_into_tensor(
|
664 |
+
tensor, local_tensor, group=fsdp_state.process_group
|
665 |
+
)
|
666 |
+
tensor = tensor.narrow(0, 0, param_numel).reshape(param.size())
|
667 |
+
state_dict[fqn_from_global_root] = tensor
|
668 |
+
else:
|
669 |
+
if param.device != fsdp_state._device_mesh.device_type:
|
670 |
+
param = param.to(fsdp_state._device_mesh.device_type)
|
671 |
+
|
672 |
+
parent_mesh = _mesh_resources.get_parent_mesh(fsdp_state._device_mesh)
|
673 |
+
local_tensor = _ext_all_gather_dtensor(
|
674 |
+
param, parent_mesh, fsdp_state._fsdp_extension
|
675 |
+
)
|
676 |
+
|
677 |
+
if fqn_to_param_ext.get(fqn) is not None:
|
678 |
+
ext = fqn_to_param_ext[fqn]
|
679 |
+
local_tensor = _ext_post_unflatten_transform(
|
680 |
+
local_tensor, ext, fsdp_state._fsdp_extension
|
681 |
+
)
|
682 |
+
state_dict[fqn_from_global_root] = local_tensor
|
683 |
+
|
684 |
+
with SimpleProfiler.profile("_enter_unshard_params_ctx"):
|
685 |
+
_enter_unshard_params_ctx(module, fsdp_state, writeback=True)
|
686 |
+
|
687 |
+
|
688 |
+
@contextlib.contextmanager
|
689 |
+
def _replace_with_full_state_dict_type(fsdp_state: _FSDPState) -> Generator:
|
690 |
+
old_state_dict_config = fsdp_state._state_dict_config
|
691 |
+
old_state_dict_type = fsdp_state._state_dict_type
|
692 |
+
fsdp_state._state_dict_config = FullStateDictConfig()
|
693 |
+
fsdp_state._state_dict_type = StateDictType.FULL_STATE_DICT
|
694 |
+
yield
|
695 |
+
fsdp_state._state_dict_config = old_state_dict_config
|
696 |
+
fsdp_state._state_dict_type = old_state_dict_type
|
697 |
+
|
698 |
+
|
699 |
+
@no_type_check
|
700 |
+
@torch.no_grad()
|
701 |
+
def _post_state_dict_hook(
|
702 |
+
module: nn.Module,
|
703 |
+
state_dict: Dict[str, Any],
|
704 |
+
prefix: str,
|
705 |
+
*args: Any,
|
706 |
+
) -> Dict[str, Any]:
|
707 |
+
"""
|
708 |
+
_post_state_dict_hook() is called after the state_dict() of this
|
709 |
+
FSDP module is executed. ``fsdp_state._state_dict_type`` is used to decide
|
710 |
+
what postprocessing will be done.
|
711 |
+
"""
|
712 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
713 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
714 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
715 |
+
warnings.warn(
|
716 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
717 |
+
"be returned."
|
718 |
+
)
|
719 |
+
else:
|
720 |
+
context = contextlib.nullcontext()
|
721 |
+
|
722 |
+
with context:
|
723 |
+
_post_state_dict_hook_fn = {
|
724 |
+
StateDictType.FULL_STATE_DICT: _full_post_state_dict_hook,
|
725 |
+
StateDictType.LOCAL_STATE_DICT: _local_post_state_dict_hook,
|
726 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_post_state_dict_hook,
|
727 |
+
}
|
728 |
+
processed_state_dict = _post_state_dict_hook_fn[fsdp_state._state_dict_type](
|
729 |
+
module, fsdp_state, state_dict, prefix
|
730 |
+
)
|
731 |
+
|
732 |
+
if fsdp_state._is_root:
|
733 |
+
logger.info("FSDP finished processing state_dict(), prefix=%s", prefix)
|
734 |
+
for key, tensor in sorted(processed_state_dict.items()):
|
735 |
+
if key.startswith(prefix) and isinstance(tensor, torch.Tensor):
|
736 |
+
local_shape = tensor.shape
|
737 |
+
if isinstance(tensor, ShardedTensor):
|
738 |
+
local_shape = None
|
739 |
+
shards = tensor.local_shards()
|
740 |
+
if shards:
|
741 |
+
local_shape = shards[0].tensor.shape
|
742 |
+
elif isinstance(tensor, DTensor):
|
743 |
+
local_shape = tensor.to_local().shape
|
744 |
+
logger.info(
|
745 |
+
"FQN=%s: type=%s, shape=%s, local_shape=%s, dtype=%s, device=%s",
|
746 |
+
key,
|
747 |
+
type(tensor),
|
748 |
+
tensor.shape,
|
749 |
+
local_shape,
|
750 |
+
tensor.dtype,
|
751 |
+
tensor.device,
|
752 |
+
)
|
753 |
+
|
754 |
+
return processed_state_dict
|
755 |
+
|
756 |
+
|
757 |
+
@no_type_check
|
758 |
+
@torch.no_grad()
|
759 |
+
def _pre_state_dict_hook(
|
760 |
+
module: nn.Module,
|
761 |
+
*args,
|
762 |
+
**kwargs,
|
763 |
+
) -> None:
|
764 |
+
"""
|
765 |
+
This is called before the core state dict saving logic of ``module``.
|
766 |
+
``fsdp_state._state_dict_type`` is used to decide what postprocessing will
|
767 |
+
be done.
|
768 |
+
"""
|
769 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
770 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
771 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
772 |
+
warnings.warn(
|
773 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
774 |
+
"be returned."
|
775 |
+
)
|
776 |
+
else:
|
777 |
+
_set_use_dtensor(fsdp_state)
|
778 |
+
context = contextlib.nullcontext()
|
779 |
+
|
780 |
+
with context:
|
781 |
+
_pre_state_dict_hook_fn = {
|
782 |
+
StateDictType.FULL_STATE_DICT: _full_pre_state_dict_hook,
|
783 |
+
StateDictType.LOCAL_STATE_DICT: _local_pre_state_dict_hook,
|
784 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_pre_state_dict_hook,
|
785 |
+
}
|
786 |
+
_pre_state_dict_hook_fn[fsdp_state._state_dict_type](
|
787 |
+
fsdp_state,
|
788 |
+
module,
|
789 |
+
*args,
|
790 |
+
**kwargs,
|
791 |
+
)
|
792 |
+
|
793 |
+
|
794 |
+
@no_type_check
|
795 |
+
def _set_use_dtensor(fsdp_state: _FSDPState) -> None:
|
796 |
+
# If device_mesh is passed in when initalizing FSDP, we automatically turn the
|
797 |
+
# _use_dtensor flag to be true for ShardedStateDictConfig().
|
798 |
+
if getattr(fsdp_state, "_device_mesh", None):
|
799 |
+
state_dict_type = fsdp_state._state_dict_type
|
800 |
+
if state_dict_type == StateDictType.LOCAL_STATE_DICT:
|
801 |
+
raise RuntimeError(
|
802 |
+
"Found state_dict_type LOCAL_STATE_DICT",
|
803 |
+
"DeviceMesh is not compatible with LOCAL_STATE_DICT.",
|
804 |
+
"Please set state_dict_type to SHARDED_STATE_DICT to get DTensor state_dict.",
|
805 |
+
)
|
806 |
+
else:
|
807 |
+
fsdp_state._state_dict_config._use_dtensor = True
|
808 |
+
|
809 |
+
|
810 |
+
@no_type_check
|
811 |
+
@torch.no_grad()
|
812 |
+
def _pre_load_state_dict_hook(
|
813 |
+
module: nn.Module,
|
814 |
+
state_dict: Dict[str, Any],
|
815 |
+
prefix: str,
|
816 |
+
*args: Any,
|
817 |
+
) -> None:
|
818 |
+
"""
|
819 |
+
This is called before ``module._load_from_state_dict()``.
|
820 |
+
``fsdp_state._state_dict_type`` is used to decide what preprocessing will
|
821 |
+
be done.
|
822 |
+
"""
|
823 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
824 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
825 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
826 |
+
warnings.warn(
|
827 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
828 |
+
"be returned."
|
829 |
+
)
|
830 |
+
else:
|
831 |
+
_set_use_dtensor(fsdp_state)
|
832 |
+
context = contextlib.nullcontext()
|
833 |
+
|
834 |
+
_lazy_init(fsdp_state, module)
|
835 |
+
if fsdp_state._is_root:
|
836 |
+
SimpleProfiler.reset()
|
837 |
+
|
838 |
+
with context:
|
839 |
+
_pre_load_state_dict_hook_fn = {
|
840 |
+
StateDictType.FULL_STATE_DICT: _full_pre_load_state_dict_hook,
|
841 |
+
StateDictType.LOCAL_STATE_DICT: _local_pre_load_state_dict_hook,
|
842 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_pre_load_state_dict_hook,
|
843 |
+
}
|
844 |
+
# Code that is common for all state_dict impls
|
845 |
+
if fsdp_state._device_handle.is_available():
|
846 |
+
fsdp_state._device_handle.synchronize()
|
847 |
+
# Dispatch into state_dict specific implementation of pre-hook.
|
848 |
+
_pre_load_state_dict_hook_fn[fsdp_state._state_dict_type](
|
849 |
+
module, fsdp_state, state_dict, prefix
|
850 |
+
)
|
851 |
+
|
852 |
+
|
853 |
+
@no_type_check
|
854 |
+
@torch.no_grad()
|
855 |
+
def _post_load_state_dict_hook(
|
856 |
+
module: nn.Module,
|
857 |
+
incompatible_keys: Tuple[List[str], List[str]],
|
858 |
+
*args: Any,
|
859 |
+
) -> None:
|
860 |
+
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
861 |
+
if fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD:
|
862 |
+
context = _replace_with_full_state_dict_type(fsdp_state)
|
863 |
+
warnings.warn(
|
864 |
+
"When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict will"
|
865 |
+
"be returned."
|
866 |
+
)
|
867 |
+
else:
|
868 |
+
context = contextlib.nullcontext()
|
869 |
+
|
870 |
+
with context:
|
871 |
+
_post_load_state_dict_hook_fn = {
|
872 |
+
StateDictType.FULL_STATE_DICT: _full_post_load_state_dict_hook,
|
873 |
+
StateDictType.LOCAL_STATE_DICT: _local_post_load_state_dict_hook,
|
874 |
+
StateDictType.SHARDED_STATE_DICT: _sharded_post_load_state_dict_hook,
|
875 |
+
}
|
876 |
+
# Code that is common for all state_dict impls
|
877 |
+
# Dispatch into state_dict type specific implementation of post-hook for
|
878 |
+
# loading state_dict.
|
879 |
+
_post_load_state_dict_hook_fn[fsdp_state._state_dict_type](module, fsdp_state)
|
880 |
+
|
881 |
+
# When reporting incompatible keys, trim FSDP prefixes.
|
882 |
+
missing_keys = incompatible_keys[0]
|
883 |
+
unexpected_keys = incompatible_keys[1]
|
884 |
+
for i in range(len(missing_keys)):
|
885 |
+
missing_keys[i] = clean_tensor_name(missing_keys[i])
|
886 |
+
|
887 |
+
for i in range(len(unexpected_keys)):
|
888 |
+
unexpected_keys[i] = clean_tensor_name(unexpected_keys[i])
|
889 |
+
|
890 |
+
if fsdp_state._is_root:
|
891 |
+
SimpleProfiler.dump_and_reset("FSDP model load_state_dict profiling: ")
|
892 |
+
|
893 |
+
|
894 |
+
def _register_all_state_dict_hooks(state: _FSDPState):
|
895 |
+
"""
|
896 |
+
Registers pre-save, post-save, pre-load, and post-load state dict hooks.
|
897 |
+
"""
|
898 |
+
for hook_registration_fn_str, hook, hook_registration_fn_kwargs in (
|
899 |
+
("register_state_dict_pre_hook", _pre_state_dict_hook, {}),
|
900 |
+
("_register_state_dict_hook", _post_state_dict_hook, {}),
|
901 |
+
(
|
902 |
+
"_register_load_state_dict_pre_hook",
|
903 |
+
_pre_load_state_dict_hook,
|
904 |
+
{"with_module": True},
|
905 |
+
),
|
906 |
+
("register_load_state_dict_post_hook", _post_load_state_dict_hook, {}),
|
907 |
+
):
|
908 |
+
_register_state_dict_hooks_base(
|
909 |
+
state, hook_registration_fn_str, hook, hook_registration_fn_kwargs
|
910 |
+
)
|
911 |
+
|
912 |
+
|
913 |
+
@no_type_check
|
914 |
+
def _register_state_dict_hooks_base(
|
915 |
+
state: _FSDPState,
|
916 |
+
hook_registration_fn_name: str,
|
917 |
+
hook: Callable,
|
918 |
+
hook_registration_fn_kwargs: Dict[str, Any],
|
919 |
+
) -> None:
|
920 |
+
"""Registers ``hook`` using ``hook_registration_fn``."""
|
921 |
+
if not _is_composable(state):
|
922 |
+
getattr(state, hook_registration_fn_name)(hook, **hook_registration_fn_kwargs)
|
923 |
+
else:
|
924 |
+
handle = state._handle
|
925 |
+
if handle:
|
926 |
+
getattr(handle._fully_sharded_module, hook_registration_fn_name)(
|
927 |
+
hook, **hook_registration_fn_kwargs
|
928 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_trace_utils.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from dataclasses import dataclass, field
|
4 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class TracingConfig:
|
12 |
+
"""
|
13 |
+
This represents a symbolic tracing configuration.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
tracer (torch.fx.Tracer): An instance of :class:`torch.fx.Tracer` to
|
17 |
+
use for symbolic tracing. The default value is the native
|
18 |
+
:class:`torch.fx.Tracer` constructed with default arguments.
|
19 |
+
However, the user may want to pass a different value such as the
|
20 |
+
``HFTracer`` for models in the HuggingFace Transformers_ library.
|
21 |
+
.. _Transformers: https://huggingface.co/docs/transformers/index
|
22 |
+
concrete_args (Optional[Dict[str, Any]]): Concrete arguments that
|
23 |
+
should not be treated as ``torch.fx.Proxy`` when tracing the
|
24 |
+
module ``forward()``. Passing ``concrete_args`` allows partially
|
25 |
+
specializing the forward, e.g. to remove control flow or data
|
26 |
+
structures. This ``concrete_args`` here is the same argument used
|
27 |
+
in :meth:`~torch.fx.Tracer.trace`.
|
28 |
+
"""
|
29 |
+
|
30 |
+
tracer: torch.fx.Tracer = field(default_factory=torch.fx.Tracer)
|
31 |
+
concrete_args: Optional[Dict[str, Any]] = None
|
32 |
+
|
33 |
+
|
34 |
+
class _ParamUsageInfo(NamedTuple):
|
35 |
+
"""
|
36 |
+
This is used for ``_ExecutionInfo.module_to_param_usage_infos`` to record
|
37 |
+
execution information. The ``dict`` maps modules to a list of these
|
38 |
+
``_ParamUsageInfo`` instances, where each instance represents a group of
|
39 |
+
parameters used together.
|
40 |
+
|
41 |
+
Specifically, for each module key in the ``dict``, each instance of this
|
42 |
+
class represents either:
|
43 |
+
(1) the module and some sublist of its ``named_parameters()`` used
|
44 |
+
together in execution (see ``_patched_create_proxy()``), or
|
45 |
+
(2) a submodule and all of ``submodule.named_parameters()`` (see
|
46 |
+
``_patched_call_module()``).
|
47 |
+
|
48 |
+
Type (1) corresponds to directly using parameters in ops without calling
|
49 |
+
``forward()``, and type (2) corresponds to calling ``forward()``. The
|
50 |
+
mapped-to lists in the ``dict`` follow the execution order.
|
51 |
+
"""
|
52 |
+
|
53 |
+
module: nn.Module
|
54 |
+
named_params: List[Tuple[str, nn.Parameter]]
|
55 |
+
|
56 |
+
|
57 |
+
class _ExecutionInfo:
|
58 |
+
"""
|
59 |
+
This represents the execution order information from the forward pass.
|
60 |
+
|
61 |
+
Attributes:
|
62 |
+
curr_module (nn.Module): Current module being traced.
|
63 |
+
module_forward_order (List[nn.Module]): The modules in (pre-)forward
|
64 |
+
order, i.e. the order in which their ``forward()`` methods are
|
65 |
+
called. Each call to a module's ``forward()`` corresponds to one
|
66 |
+
element in the list.
|
67 |
+
module_to_param_usage_infos (Dict[nn.Module, List[_ParamUsageInfo]]):
|
68 |
+
Maps a module to a list of module execution infos. See
|
69 |
+
:class:`_ParamUsageInfo` for details.
|
70 |
+
param_forward_order (List[nn.Parameter]): The parameters in forward
|
71 |
+
execution order, where only a parameter's first participation is
|
72 |
+
included.
|
73 |
+
visited_params (Set[nn.Parameter]): The parameters visited so far
|
74 |
+
during the trace. This is only used during tracing for fast
|
75 |
+
membership check. Invariant: The parameters in
|
76 |
+
``param_forward_order`` are exactly those in ``visited_params``.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, root_module: nn.Module) -> None:
|
80 |
+
self.curr_module: nn.Module = root_module
|
81 |
+
self.module_forward_order: List[nn.Module] = [root_module]
|
82 |
+
self.module_to_param_usage_infos: Dict[nn.Module, List[_ParamUsageInfo]] = {
|
83 |
+
root_module: []
|
84 |
+
}
|
85 |
+
self.param_forward_order: List[nn.Parameter] = []
|
86 |
+
self.visited_params: Set[nn.Parameter] = set()
|
87 |
+
|
88 |
+
|
89 |
+
class _ExecOrderTracer:
|
90 |
+
def __init__(self) -> None:
|
91 |
+
self.exec_info: Optional[_ExecutionInfo] = None
|
92 |
+
|
93 |
+
@contextmanager
|
94 |
+
def patch_tracer(self, tracer: torch.fx.Tracer, root_module: nn.Module):
|
95 |
+
self.exec_info = _ExecutionInfo(root_module)
|
96 |
+
orig_call_module = tracer.call_module
|
97 |
+
orig_create_proxy = tracer.create_proxy
|
98 |
+
tracer.call_module = functools.partial(
|
99 |
+
self._patched_call_module, orig_call_module, self.exec_info
|
100 |
+
)
|
101 |
+
fqn_to_param = dict(root_module.named_parameters())
|
102 |
+
tracer.create_proxy = functools.partial(
|
103 |
+
self._patched_create_proxy,
|
104 |
+
orig_create_proxy,
|
105 |
+
self.exec_info,
|
106 |
+
fqn_to_param,
|
107 |
+
)
|
108 |
+
try:
|
109 |
+
yield
|
110 |
+
finally:
|
111 |
+
tracer.call_module = orig_call_module
|
112 |
+
tracer.create_proxy = orig_create_proxy
|
113 |
+
|
114 |
+
def _patched_call_module(
|
115 |
+
self,
|
116 |
+
call_module: Callable,
|
117 |
+
exec_info: _ExecutionInfo,
|
118 |
+
# Below are the expected arguments to `call_module()`
|
119 |
+
module: nn.Module,
|
120 |
+
forward: Callable,
|
121 |
+
args: Tuple[Any, ...],
|
122 |
+
kwargs: Dict[str, Any],
|
123 |
+
) -> Any:
|
124 |
+
"""
|
125 |
+
Overrides ``call_module`` to save execution information to
|
126 |
+
``exec_info``. Note that ``call_module`` is called during symbolic
|
127 |
+
tracing for each non-root module.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
call_module (Callable): Original ``call_module`` to override.
|
131 |
+
exec_info (_ExecutionInfo): Used to record execution information.
|
132 |
+
module (nn.Module): Module corresponding to this ``call_module``.
|
133 |
+
forward (Callable): ``forward()`` method of ``module`` to be called
|
134 |
+
for this ``call_module``.
|
135 |
+
args (Tuple[Any, ...]): Positional arguments for ``forward``.
|
136 |
+
kwargs (Dict[str, Any]): Keyword arguments for ``forward``.
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
Same return value as ``call_module``.
|
140 |
+
"""
|
141 |
+
exec_info.module_forward_order.append(module)
|
142 |
+
named_params = list(module.named_parameters())
|
143 |
+
curr_module = exec_info.curr_module
|
144 |
+
if named_params:
|
145 |
+
assert (
|
146 |
+
curr_module in exec_info.module_to_param_usage_infos
|
147 |
+
), "The current module should have already been processed by a patched `call_module`"
|
148 |
+
exec_info.module_to_param_usage_infos[exec_info.curr_module].append(
|
149 |
+
_ParamUsageInfo(module, named_params)
|
150 |
+
)
|
151 |
+
prev_curr_module = curr_module
|
152 |
+
exec_info.curr_module = module
|
153 |
+
exec_info.module_to_param_usage_infos[module] = []
|
154 |
+
output = call_module(module, forward, args, kwargs)
|
155 |
+
exec_info.curr_module = prev_curr_module
|
156 |
+
return output
|
157 |
+
|
158 |
+
def _patched_create_proxy(
|
159 |
+
self,
|
160 |
+
create_proxy: Callable,
|
161 |
+
exec_info: _ExecutionInfo,
|
162 |
+
fqn_to_param: Dict[str, nn.Parameter],
|
163 |
+
# Below are the expected arguments to `create_proxy()`
|
164 |
+
kind: str,
|
165 |
+
target: torch.fx.node.Target,
|
166 |
+
args: Tuple[Any, ...],
|
167 |
+
kwargs: Dict[str, Any],
|
168 |
+
name: Optional[str] = None,
|
169 |
+
type_expr: Optional[Any] = None,
|
170 |
+
proxy_factory_fn: Optional[Callable[[torch.fx.Node], torch.fx.Proxy]] = None,
|
171 |
+
) -> torch.fx.Proxy:
|
172 |
+
"""
|
173 |
+
Overrides ``create_proxy`` to save execution information to
|
174 |
+
``exec_info``. Note that ``create_proxy`` is called during symbolic
|
175 |
+
tracing for each leaf function/method/module.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
create_proxy (Callable): Original ``create_proxy`` to override.
|
179 |
+
exec_info (_ExecutionInfo): Used to record execution information.
|
180 |
+
fqn_to_param (Dict[str, nn.Parameter]): ``dict`` version of the
|
181 |
+
root module's ``named_parameters()`` with FQN as key and
|
182 |
+
parameter as value.
|
183 |
+
kind (str): Kind of the target method ('call_function',
|
184 |
+
'call_method', 'get_attr', 'call_module', 'placeholder', or
|
185 |
+
'output'). See :class:`torch.fx.Graph` for details. This is
|
186 |
+
passed to ``create_proxy``.
|
187 |
+
target (torch.fx.node.Target): Contains the string name of the
|
188 |
+
function/method/module. This is passed to ``create_proxy``.
|
189 |
+
args (Tuple[Any, ...]): Positional arguments for the function/
|
190 |
+
method/module. This is passed to ``create_proxy``.
|
191 |
+
kwargs (Dict[str, Any]): Keyword arguments for the function/method/
|
192 |
+
module. This is passed to ``create_proxy``
|
193 |
+
name (Optional[str]): An optional string name for the ``Node``
|
194 |
+
created in ``create_proxy``. This is passed to
|
195 |
+
``create_proxy``.
|
196 |
+
type_expr (Optional[Any]): An optional type annotation representing
|
197 |
+
the Python type that the output of the node has. This is passed
|
198 |
+
to ``create_proxy``.
|
199 |
+
proxy_factory_fn (Callable[[torch.fx.Node], torch.fx.Proxy]):
|
200 |
+
An alternative proxy constructor used in ``create_proxy``. This
|
201 |
+
is passed to ``create_proxy``.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
torch.fx.Proxy: Created ``Node`` wrapped in a ``Proxy`` object.
|
205 |
+
"""
|
206 |
+
proxy = create_proxy(
|
207 |
+
kind, target, args, kwargs, name, type_expr, proxy_factory_fn
|
208 |
+
)
|
209 |
+
curr_module = exec_info.curr_module
|
210 |
+
if kind in ("call_function", "call_method"):
|
211 |
+
if args is not None:
|
212 |
+
named_params: List[Tuple[str, nn.Parameter]] = []
|
213 |
+
for arg in args:
|
214 |
+
if (
|
215 |
+
isinstance(arg, torch.fx.Proxy)
|
216 |
+
and arg.node.target in fqn_to_param
|
217 |
+
):
|
218 |
+
param = fqn_to_param[arg.node.target]
|
219 |
+
named_params.append((arg.node.target, param))
|
220 |
+
if param not in exec_info.visited_params:
|
221 |
+
exec_info.visited_params.add(param)
|
222 |
+
exec_info.param_forward_order.append(param)
|
223 |
+
if named_params:
|
224 |
+
exec_info.module_to_param_usage_infos[curr_module].append(
|
225 |
+
_ParamUsageInfo(curr_module, named_params)
|
226 |
+
)
|
227 |
+
elif kind == "call_module":
|
228 |
+
named_params = list(curr_module.named_parameters())
|
229 |
+
if named_params:
|
230 |
+
exec_info.module_to_param_usage_infos[curr_module].append(
|
231 |
+
_ParamUsageInfo(curr_module, named_params)
|
232 |
+
)
|
233 |
+
for _, param in named_params:
|
234 |
+
if param not in exec_info.visited_params:
|
235 |
+
exec_info.visited_params.add(param)
|
236 |
+
exec_info.param_forward_order.append(param)
|
237 |
+
return proxy
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_traversal_utils.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NOTE: This file must be imported like
|
3 |
+
``import torch.distributed.fsdp._traversal_utils`` and not like
|
4 |
+
``from torch.distirbuted.fsdp._traversal_utils import ...`` to avoid circular
|
5 |
+
imports. For brevity, we may import the file as ``traversal_utils``.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import collections
|
9 |
+
from typing import Deque, List, Set, Tuple
|
10 |
+
|
11 |
+
import torch.nn as nn
|
12 |
+
from torch.distributed._composable.contract import _get_registry
|
13 |
+
from torch.distributed.fsdp._common_utils import _FSDPState, _get_module_fsdp_state
|
14 |
+
|
15 |
+
|
16 |
+
"""
|
17 |
+
[Note: FSDP State Traversal]
|
18 |
+
For the wrapper code path, ``_FSDPState`` is the ``FullyShardedDataParallel``
|
19 |
+
module wrapping a fully sharded module, and for the non-wrapper code path,
|
20 |
+
``_FSDPState`` is an object that gets embedded on a fully sharded module.
|
21 |
+
See [Note: Fully Sharded Module] for the definition.
|
22 |
+
|
23 |
+
There are three common traversal idioms: Given a root module,
|
24 |
+
- ``_get_fsdp_states()`` returns all ``_FSDPState`` s in the tree.
|
25 |
+
- ``get_fsdp_root_states()`` returns all local root ``_FSDPState`` s in the
|
26 |
+
tree (i.e. those with ``_is_root == True``).
|
27 |
+
- ``_get_fsdp_handles()``returns all ``FlatParamHandle`` s in the tree.
|
28 |
+
|
29 |
+
All of these methods must take in the root module (i.e. an ``nn.Module``) and
|
30 |
+
not a general ``_FSDPState`` because ``_FSDPState`` does not support a graph
|
31 |
+
traversal, whereas ``nn.Module`` has ``nn.Module.modules()`` for traversal.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
def _composable(module: nn.Module) -> bool:
|
36 |
+
"""
|
37 |
+
Returns if ``module`` can compose with ``fully_shard``.
|
38 |
+
"""
|
39 |
+
# TODO: Add any other composable APIs that are mutually exclusive.
|
40 |
+
registry = _get_registry(module)
|
41 |
+
if registry is None:
|
42 |
+
return True
|
43 |
+
return "replicate" not in registry
|
44 |
+
|
45 |
+
|
46 |
+
# TODO (awgu): We may be able to remove this function if we retired the
|
47 |
+
# `use_orig_params=False` code path since so far we only need the module for
|
48 |
+
# `FlatParameter` registration, which is not needed for `use_orig_params=True`.
|
49 |
+
def _get_fsdp_states_with_modules(
|
50 |
+
module: nn.Module,
|
51 |
+
) -> Tuple[List[_FSDPState], List[nn.Module]]:
|
52 |
+
"""
|
53 |
+
Returns a tuple containing:
|
54 |
+
1. A list of the ``_FSDPState`` instances in the module tree rooted at
|
55 |
+
``module`` without any duplicates and following the ``module.modules()``
|
56 |
+
traversal order (which is assumed to be depth-first).
|
57 |
+
2. A corresponding list of the modules owning the states in the first list.
|
58 |
+
|
59 |
+
For the wrapper code path, both returned lists are the same, each
|
60 |
+
containing all ``FullyShardedDataParallel`` instances. For the composable
|
61 |
+
code path, this returns a list of all composable state instances and a list
|
62 |
+
of the corresponding fully sharded modules. See [Note: Fully Sharded
|
63 |
+
Module].
|
64 |
+
|
65 |
+
NOTE: The traversal does not proceed into any module annotated by an
|
66 |
+
incompatible API (e.g. ``replicate``).
|
67 |
+
"""
|
68 |
+
fsdp_states: List[_FSDPState] = []
|
69 |
+
fsdp_modules: List[nn.Module] = []
|
70 |
+
# Track the visited FSDP states since multiple modules may share the same
|
71 |
+
# one and we want to return a de-duplicated list
|
72 |
+
visited_fsdp_states: Set[_FSDPState] = set()
|
73 |
+
# Track the visited modules in case of shared modules, which implies the
|
74 |
+
# module graph is no longer a tree
|
75 |
+
visited_modules: Set[nn.Module] = set()
|
76 |
+
|
77 |
+
# Perform depth-first search from `module` to ensure that we do not
|
78 |
+
# traverse into an incompatible API's subtree (use DFS instead of BFS to
|
79 |
+
# match `.modules()` order)
|
80 |
+
deque: Deque[nn.Module] = collections.deque([module])
|
81 |
+
while deque:
|
82 |
+
submodule = deque.popleft()
|
83 |
+
visited_modules.add(submodule)
|
84 |
+
if not _composable(submodule):
|
85 |
+
continue
|
86 |
+
for child_module in reversed(list(submodule.children())):
|
87 |
+
if child_module not in visited_modules:
|
88 |
+
deque.appendleft(child_module)
|
89 |
+
optional_state = _get_module_fsdp_state(submodule)
|
90 |
+
if optional_state is not None and optional_state not in visited_fsdp_states:
|
91 |
+
visited_fsdp_states.add(optional_state)
|
92 |
+
fsdp_states.append(optional_state)
|
93 |
+
fsdp_modules.append(submodule)
|
94 |
+
return fsdp_states, fsdp_modules
|
95 |
+
|
96 |
+
|
97 |
+
def _get_fsdp_states(module: nn.Module) -> List[_FSDPState]:
|
98 |
+
"""See :func:`_get_fsdp_states_with_modules`."""
|
99 |
+
fsdp_states, _ = _get_fsdp_states_with_modules(module)
|
100 |
+
return fsdp_states
|
101 |
+
|
102 |
+
|
103 |
+
def _get_fsdp_handles(module: nn.Module) -> List:
|
104 |
+
"""
|
105 |
+
Returns all ``FlatParamHandle`` s in the module tree rooted at ``module``
|
106 |
+
following the rules in :func:`_get_fsdp_state`.
|
107 |
+
"""
|
108 |
+
handles = [
|
109 |
+
fsdp_state._handle
|
110 |
+
for fsdp_state in _get_fsdp_states(module)
|
111 |
+
if fsdp_state._handle is not None
|
112 |
+
]
|
113 |
+
return handles
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_unshard_param_utils.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
from typing import cast, Generator
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.distributed.fsdp._common_utils import (
|
9 |
+
_FSDPState,
|
10 |
+
_has_fsdp_params,
|
11 |
+
_module_handle,
|
12 |
+
HandleTrainingState,
|
13 |
+
TrainingState,
|
14 |
+
)
|
15 |
+
from torch.distributed.fsdp._runtime_utils import (
|
16 |
+
_get_fsdp_root_states_with_modules,
|
17 |
+
_lazy_init,
|
18 |
+
_reset_flat_param_grad_info_if_needed,
|
19 |
+
_reshard,
|
20 |
+
_reshard_grads,
|
21 |
+
_unshard,
|
22 |
+
_unshard_grads,
|
23 |
+
)
|
24 |
+
from torch.distributed.utils import _p_assert
|
25 |
+
|
26 |
+
from ._flat_param import FlatParamHandle
|
27 |
+
|
28 |
+
FLAT_PARAM = "_flat_param"
|
29 |
+
|
30 |
+
|
31 |
+
@torch.no_grad()
|
32 |
+
def _writeback_to_local_shard(
|
33 |
+
handle: FlatParamHandle,
|
34 |
+
writeback_grad: bool,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
For the handle, writes back the this rank's shard of the unsharded
|
38 |
+
flattened parameter to the sharded flattened parameter. If
|
39 |
+
``writeback_grad=True``, then writes back to the sharded gradient as
|
40 |
+
well.
|
41 |
+
|
42 |
+
Precondition: The handle's ``FlatParameter`` 's data points to the
|
43 |
+
padded unsharded flattened parameter.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def _get_shard(flat_param_or_grad: torch.Tensor) -> torch.Tensor:
|
47 |
+
if handle.uses_sharded_strategy:
|
48 |
+
# For sharded strategies, get the *unpadded* shard instead of
|
49 |
+
# the *padded* shard to persist user changes to the padding
|
50 |
+
# (though FSDP does not explicitly support this)
|
51 |
+
shard, _ = FlatParamHandle._get_unpadded_shard(
|
52 |
+
flat_param_or_grad,
|
53 |
+
handle.rank,
|
54 |
+
handle.world_size,
|
55 |
+
)
|
56 |
+
return shard
|
57 |
+
# For `NO_SHARD`, the `flat_param` or its gradient may be modified,
|
58 |
+
# so we write it back directly
|
59 |
+
return flat_param_or_grad
|
60 |
+
|
61 |
+
param_shard = _get_shard(handle.flat_param)
|
62 |
+
handle.flat_param._local_shard[: param_shard.numel()].copy_(param_shard) # type: ignore[attr-defined]
|
63 |
+
if writeback_grad:
|
64 |
+
existing_grad = handle.sharded_grad
|
65 |
+
if existing_grad is not None:
|
66 |
+
assert handle.flat_param.grad is not None
|
67 |
+
grad_shard = _get_shard(handle.flat_param.grad)
|
68 |
+
existing_grad[: grad_shard.numel()].copy_(grad_shard)
|
69 |
+
|
70 |
+
|
71 |
+
def _deregister_flat_param(state: _FSDPState, module: nn.Module) -> None:
|
72 |
+
"""
|
73 |
+
De-registers the flattened parameter from the wrapped module, hiding it
|
74 |
+
from ``nn.Module`` methods.
|
75 |
+
|
76 |
+
We do not use ``del`` because we want ``FLAT_PARAM`` to always be an
|
77 |
+
attribute but dynamically change whether it is visible to ``nn.Module``
|
78 |
+
methods.
|
79 |
+
"""
|
80 |
+
if _has_fsdp_params(state, module):
|
81 |
+
# TODO: figure out the case for the composable APIs.
|
82 |
+
cast(nn.Module, module.module)._parameters.pop(FLAT_PARAM, None)
|
83 |
+
|
84 |
+
|
85 |
+
def _register_flat_param(state: _FSDPState, module: nn.Module) -> None:
|
86 |
+
"""
|
87 |
+
Registers the flattened parameter to the wrapped module, making it
|
88 |
+
visible to ``nn.Module`` methods.
|
89 |
+
|
90 |
+
We do not use :meth:`nn.Module.register_parameter` because we want
|
91 |
+
``FLAT_PARAM`` to always be an attribute but dynamically change whether
|
92 |
+
it is visible to ``nn.Module`` methods.
|
93 |
+
"""
|
94 |
+
handle = _module_handle(state, module)
|
95 |
+
if _has_fsdp_params(state, module):
|
96 |
+
# TODO: figure out the case for the composable APIs.
|
97 |
+
cast(nn.Module, module.module)._parameters[FLAT_PARAM] = handle.flat_param
|
98 |
+
|
99 |
+
|
100 |
+
@contextlib.contextmanager
|
101 |
+
def _unflatten_as_params(state: _FSDPState, module: nn.Module) -> Generator:
|
102 |
+
"""
|
103 |
+
Assumes that the flattened parameter is unsharded. When in the context,
|
104 |
+
de-registers the flattened parameter and unflattens the original
|
105 |
+
parameters as ``nn.Parameter`` views into the flattened parameter.
|
106 |
+
After the context, re-registers the flattened parameter and restores
|
107 |
+
the original parameters as ``Tensor`` views into the flattened
|
108 |
+
parameter.
|
109 |
+
"""
|
110 |
+
handle = _module_handle(state, module)
|
111 |
+
if not handle:
|
112 |
+
yield
|
113 |
+
else:
|
114 |
+
_deregister_flat_param(state, module)
|
115 |
+
try:
|
116 |
+
with handle.unflatten_as_params():
|
117 |
+
yield
|
118 |
+
finally:
|
119 |
+
if not handle._use_orig_params:
|
120 |
+
_register_flat_param(state, module)
|
121 |
+
|
122 |
+
|
123 |
+
def _validate_unshard_params_args(
|
124 |
+
state: _FSDPState,
|
125 |
+
writeback: bool,
|
126 |
+
rank0_only: bool,
|
127 |
+
offload_to_cpu: bool,
|
128 |
+
with_grads: bool,
|
129 |
+
) -> None:
|
130 |
+
if with_grads and (offload_to_cpu or not state._use_orig_params):
|
131 |
+
raise NotImplementedError(
|
132 |
+
f"with_grads={with_grads}, "
|
133 |
+
f"use_orig_params={state._use_orig_params}, "
|
134 |
+
f"offload_to_cpu={offload_to_cpu} "
|
135 |
+
f"is not supported yet"
|
136 |
+
)
|
137 |
+
if offload_to_cpu and state._handle and (not state._handle.uses_sharded_strategy):
|
138 |
+
raise NotImplementedError(
|
139 |
+
"offload_to_cpu=True and NO_SHARD is not supported yet"
|
140 |
+
)
|
141 |
+
if writeback and rank0_only:
|
142 |
+
# TODO: Rank 0 can broadcast the `FlatParameter` to allow all ranks to
|
143 |
+
# persist the changes.
|
144 |
+
raise NotImplementedError(
|
145 |
+
"writeback=True and rank0_only=True is not supported yet"
|
146 |
+
)
|
147 |
+
if offload_to_cpu and not rank0_only:
|
148 |
+
warnings.warn(
|
149 |
+
"offload_to_cpu=True and rank0_only=False may result in the"
|
150 |
+
"unsharded parameters being redundantly copied to CPU memory for "
|
151 |
+
"GPUs sharing the same CPU memory, which risks CPU OOM. We "
|
152 |
+
"recommend using offload_to_cpu=True with rank0_only=True."
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
@contextlib.contextmanager
|
157 |
+
def _unshard_fsdp_state_params(
|
158 |
+
module: nn.Module,
|
159 |
+
state: _FSDPState,
|
160 |
+
writeback: bool,
|
161 |
+
rank0_only: bool,
|
162 |
+
offload_to_cpu: bool,
|
163 |
+
with_grads: bool,
|
164 |
+
):
|
165 |
+
"""
|
166 |
+
This unshards the parameters for a single FSDP state ``state`` that
|
167 |
+
corresponds to ``module``.
|
168 |
+
"""
|
169 |
+
_validate_unshard_params_args(
|
170 |
+
state, writeback, rank0_only, offload_to_cpu, with_grads
|
171 |
+
)
|
172 |
+
state._device_handle.synchronize()
|
173 |
+
# If handles are shared by other module(s), the handle may be already unsharded.
|
174 |
+
maybe_handle = _module_handle(state, module)
|
175 |
+
handle = None
|
176 |
+
if (
|
177 |
+
maybe_handle
|
178 |
+
and maybe_handle._training_state != HandleTrainingState.SUMMON_FULL_PARAMS
|
179 |
+
):
|
180 |
+
handle = maybe_handle
|
181 |
+
if not handle:
|
182 |
+
yield
|
183 |
+
return
|
184 |
+
|
185 |
+
assert (
|
186 |
+
handle._training_state == HandleTrainingState.IDLE
|
187 |
+
), f"Expects the handle training to be IDLE but got {handle._training_state}"
|
188 |
+
|
189 |
+
handle._training_state = HandleTrainingState.SUMMON_FULL_PARAMS
|
190 |
+
|
191 |
+
_reset_flat_param_grad_info_if_needed(handle)
|
192 |
+
free_unsharded_flat_param = handle.needs_unshard()
|
193 |
+
# No need to call `wait_stream()` since we unshard in the computation
|
194 |
+
# stream directly
|
195 |
+
computation_stream = state._device_handle.current_stream()
|
196 |
+
_unshard(state, handle, computation_stream, computation_stream)
|
197 |
+
if with_grads:
|
198 |
+
_unshard_grads(handle)
|
199 |
+
|
200 |
+
if rank0_only and state.rank != 0:
|
201 |
+
# Free the unsharded flattened parameter early
|
202 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
203 |
+
if with_grads:
|
204 |
+
_reshard_grads(handle)
|
205 |
+
try:
|
206 |
+
yield
|
207 |
+
finally:
|
208 |
+
handle._training_state = HandleTrainingState.IDLE
|
209 |
+
else:
|
210 |
+
# Unflatten the unsharded flattened parameters
|
211 |
+
with contextlib.ExitStack() as stack:
|
212 |
+
# Invariant: rank == 0 or !rank0_only
|
213 |
+
if offload_to_cpu and handle.uses_sharded_strategy:
|
214 |
+
stack.enter_context(handle.to_cpu())
|
215 |
+
# NOTE: Since PyTorch enforces that a parameter and its
|
216 |
+
# gradients need to match metadata (e.g. device), we must
|
217 |
+
# move gradients to CPU *after* we move parameters.
|
218 |
+
# NOTE: This assumes 1 `FlatParameter`
|
219 |
+
if not state._use_orig_params:
|
220 |
+
stack.enter_context(_unflatten_as_params(state, module))
|
221 |
+
try:
|
222 |
+
yield
|
223 |
+
finally:
|
224 |
+
stack.close()
|
225 |
+
if writeback:
|
226 |
+
_writeback_to_local_shard(handle, with_grads)
|
227 |
+
_reshard(state, handle, free_unsharded_flat_param)
|
228 |
+
if with_grads:
|
229 |
+
_reshard_grads(handle)
|
230 |
+
handle._training_state = HandleTrainingState.IDLE
|
231 |
+
|
232 |
+
|
233 |
+
@contextlib.contextmanager
|
234 |
+
def _unshard_params_recurse(
|
235 |
+
module: nn.Module,
|
236 |
+
state: _FSDPState,
|
237 |
+
recurse: bool,
|
238 |
+
writeback: bool,
|
239 |
+
rank0_only: bool,
|
240 |
+
offload_to_cpu: bool,
|
241 |
+
with_grads: bool,
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
This is a helper for :func:`_unshard_params` that recursively calls
|
245 |
+
:func:`_unshard_fsdp_state_params` on FSDP states if ``recurse=True``.
|
246 |
+
NOTE: This runs lazy initialization.
|
247 |
+
"""
|
248 |
+
_validate_unshard_params_args(
|
249 |
+
state, writeback, rank0_only, offload_to_cpu, with_grads
|
250 |
+
)
|
251 |
+
if recurse:
|
252 |
+
with contextlib.ExitStack() as stack:
|
253 |
+
# TODO (awgu): The traversal function does not traverse through
|
254 |
+
# incompatible composable APIs. Verify if this is the desired
|
255 |
+
# behavior for this function.
|
256 |
+
for state, fsdp_module in zip(
|
257 |
+
*traversal_utils._get_fsdp_states_with_modules(module)
|
258 |
+
):
|
259 |
+
stack.enter_context(
|
260 |
+
_unshard_params_recurse(
|
261 |
+
module=fsdp_module,
|
262 |
+
state=state,
|
263 |
+
recurse=False,
|
264 |
+
writeback=writeback,
|
265 |
+
rank0_only=rank0_only,
|
266 |
+
offload_to_cpu=offload_to_cpu,
|
267 |
+
with_grads=with_grads,
|
268 |
+
)
|
269 |
+
)
|
270 |
+
yield
|
271 |
+
return
|
272 |
+
_lazy_init(state, module)
|
273 |
+
if state.training_state == TrainingState.FORWARD_BACKWARD:
|
274 |
+
raise AssertionError(
|
275 |
+
"Cannot manually unshard parameters during forward/backward"
|
276 |
+
)
|
277 |
+
elif state.training_state == TrainingState.SUMMON_FULL_PARAMS:
|
278 |
+
raise AssertionError(
|
279 |
+
"Cannot manually unshard parameters when already unsharding parameters"
|
280 |
+
)
|
281 |
+
with _unshard_fsdp_state_params(
|
282 |
+
module=module,
|
283 |
+
state=state,
|
284 |
+
writeback=writeback,
|
285 |
+
rank0_only=rank0_only,
|
286 |
+
offload_to_cpu=offload_to_cpu,
|
287 |
+
with_grads=with_grads,
|
288 |
+
):
|
289 |
+
try:
|
290 |
+
state.training_state = TrainingState.SUMMON_FULL_PARAMS
|
291 |
+
yield
|
292 |
+
finally:
|
293 |
+
state.training_state = TrainingState.IDLE
|
294 |
+
|
295 |
+
|
296 |
+
@contextlib.contextmanager
|
297 |
+
def _unshard_params(
|
298 |
+
module: nn.Module,
|
299 |
+
recurse: bool,
|
300 |
+
writeback: bool,
|
301 |
+
rank0_only: bool,
|
302 |
+
offload_to_cpu: bool,
|
303 |
+
with_grads: bool,
|
304 |
+
):
|
305 |
+
"""
|
306 |
+
This unshards FSDP-managed parameters for all modules with FSDP applied in
|
307 |
+
the module tree rooted at ``module``.
|
308 |
+
"""
|
309 |
+
root_fsdp_states, root_fsdp_modules = _get_fsdp_root_states_with_modules(module)
|
310 |
+
with contextlib.ExitStack() as stack:
|
311 |
+
for root_fsdp_state, root_fsdp_module in zip(
|
312 |
+
root_fsdp_states, root_fsdp_modules
|
313 |
+
):
|
314 |
+
stack.enter_context(
|
315 |
+
_unshard_params_recurse(
|
316 |
+
module=root_fsdp_module,
|
317 |
+
state=root_fsdp_state,
|
318 |
+
recurse=recurse,
|
319 |
+
writeback=writeback,
|
320 |
+
rank0_only=rank0_only,
|
321 |
+
offload_to_cpu=offload_to_cpu,
|
322 |
+
with_grads=with_grads,
|
323 |
+
)
|
324 |
+
)
|
325 |
+
yield
|
326 |
+
return
|
327 |
+
|
328 |
+
|
329 |
+
def _deregister_orig_params(state: _FSDPState, module: nn.Module) -> None:
|
330 |
+
"""
|
331 |
+
Deregisters the original parameters; registers the ``FlatParameter``.
|
332 |
+
"""
|
333 |
+
handle = _module_handle(state, module)
|
334 |
+
if not handle:
|
335 |
+
return
|
336 |
+
_p_assert(
|
337 |
+
handle._use_orig_params,
|
338 |
+
f"Inconsistent `_use_orig_params` -- FSDP: {state._use_orig_params} "
|
339 |
+
f"handle: {handle._use_orig_params}",
|
340 |
+
)
|
341 |
+
handle._deregister_orig_params()
|
342 |
+
_register_flat_param(state, module)
|
343 |
+
|
344 |
+
|
345 |
+
def _register_orig_params(state: _FSDPState, module: nn.Module) -> None:
|
346 |
+
"""
|
347 |
+
Deregisters the ``FlatParameter``; registers the original parameters.
|
348 |
+
"""
|
349 |
+
handle = _module_handle(state, module)
|
350 |
+
if not handle:
|
351 |
+
return
|
352 |
+
_deregister_flat_param(state, module)
|
353 |
+
if handle.is_sharded(handle.flat_param):
|
354 |
+
handle._use_sharded_views()
|
355 |
+
handle._use_sharded_grad_views()
|
356 |
+
else:
|
357 |
+
handle._use_unsharded_views(as_params=True)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/_wrap_utils.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import functools
|
3 |
+
import inspect
|
4 |
+
import warnings
|
5 |
+
from functools import partial
|
6 |
+
from typing import Any, Callable, Dict, List, Set, Tuple, Type, Union
|
7 |
+
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.distributed.fsdp._common_utils import (
|
10 |
+
_get_module_fsdp_state,
|
11 |
+
_override_module_mixed_precision,
|
12 |
+
)
|
13 |
+
|
14 |
+
from torch.distributed.fsdp.wrap import (
|
15 |
+
_construct_wrap_fn,
|
16 |
+
_or_policy,
|
17 |
+
_Policy,
|
18 |
+
_post_order_apply,
|
19 |
+
_recursive_wrap,
|
20 |
+
_run_mixed_precision_override_policy,
|
21 |
+
_wrap_module_cls_individually,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def _auto_wrap(
|
26 |
+
root_module: nn.Module,
|
27 |
+
policy: Union[Callable, _Policy],
|
28 |
+
ignored_modules: Set[nn.Module],
|
29 |
+
ignored_params: Set[nn.Parameter],
|
30 |
+
root_kwargs: Dict[str, Any],
|
31 |
+
fsdp_fn: Callable, # e.g. `FullyShardedDataParallel` or `fully_shard`
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
Auto wraps modules in ``root_module`` 's tree according to ``policy``
|
35 |
+
following a post-order traversal.
|
36 |
+
|
37 |
+
Precondition: ``root_kwargs`` should contain all arguments except
|
38 |
+
``module``. This function accepts the kwargs dict directly since it gets
|
39 |
+
forwarded into the post-order traversal function.
|
40 |
+
"""
|
41 |
+
mixed_precision = root_kwargs["mixed_precision"]
|
42 |
+
is_wrapper = inspect.isclass(fsdp_fn)
|
43 |
+
# TODO: We may relax this no-nested-wrapping constraint to support manual
|
44 |
+
# wrapping followed by auto wrapping.
|
45 |
+
_check_nested_wrapping(root_module)
|
46 |
+
|
47 |
+
if isinstance(policy, _Policy):
|
48 |
+
root_kwargs["auto_wrap_policy" if is_wrapper else "policy"] = None
|
49 |
+
target_module_to_kwargs = policy._run_policy(
|
50 |
+
root_module, ignored_modules, root_kwargs
|
51 |
+
)
|
52 |
+
if mixed_precision is not None:
|
53 |
+
target_module_to_kwargs = _run_mixed_precision_override_policy(
|
54 |
+
root_module,
|
55 |
+
mixed_precision._module_classes_to_ignore,
|
56 |
+
ignored_modules,
|
57 |
+
root_kwargs,
|
58 |
+
target_module_to_kwargs,
|
59 |
+
)
|
60 |
+
overridden_module_classes = _override_module_mixed_precision(
|
61 |
+
root_module, mixed_precision._module_classes_to_ignore
|
62 |
+
)
|
63 |
+
_warn_on_overridden_mixed_precision(overridden_module_classes)
|
64 |
+
use_orig_params = root_kwargs.get("use_orig_params", False)
|
65 |
+
_validate_frozen_params(
|
66 |
+
root_module,
|
67 |
+
set(target_module_to_kwargs.keys()),
|
68 |
+
ignored_params,
|
69 |
+
use_orig_params,
|
70 |
+
)
|
71 |
+
wrap_fn = _construct_wrap_fn(root_module, target_module_to_kwargs, fsdp_fn)
|
72 |
+
_post_order_apply(root_module, wrap_fn)
|
73 |
+
return
|
74 |
+
|
75 |
+
recursive_wrap_kwargs = {
|
76 |
+
"module": root_module,
|
77 |
+
"auto_wrap_policy": policy,
|
78 |
+
"wrapper_cls": fsdp_fn,
|
79 |
+
"ignored_modules": ignored_modules,
|
80 |
+
"ignored_params": ignored_params,
|
81 |
+
"only_wrap_children": True,
|
82 |
+
}
|
83 |
+
if mixed_precision is not None:
|
84 |
+
# Wrap modules of the ignored types separately and register forward
|
85 |
+
# hooks to cast to fp32 and back to the original dtype, respectively
|
86 |
+
overridden_module_classes = _override_module_mixed_precision(
|
87 |
+
root_module, mixed_precision._module_classes_to_ignore
|
88 |
+
)
|
89 |
+
policy = functools.partial(
|
90 |
+
_or_policy,
|
91 |
+
policies=[
|
92 |
+
policy,
|
93 |
+
partial(
|
94 |
+
_wrap_module_cls_individually,
|
95 |
+
module_classes=mixed_precision._module_classes_to_ignore,
|
96 |
+
),
|
97 |
+
],
|
98 |
+
)
|
99 |
+
recursive_wrap_kwargs["auto_wrap_policy"] = policy
|
100 |
+
_warn_on_overridden_mixed_precision(overridden_module_classes)
|
101 |
+
_recursive_wrap(**recursive_wrap_kwargs, **root_kwargs) # type: ignore[arg-type]
|
102 |
+
|
103 |
+
|
104 |
+
def _check_nested_wrapping(root_module: nn.Module):
|
105 |
+
for module_name, module in root_module.named_modules():
|
106 |
+
if _get_module_fsdp_state(module) is not None:
|
107 |
+
raise ValueError(
|
108 |
+
"FSDP auto wrapping requires modules to not already have "
|
109 |
+
f"FSDP applied but found {module_name} in\n{root_module}"
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def _warn_on_overridden_mixed_precision(
|
114 |
+
overridden_module_classes: Set[Type[nn.Module]],
|
115 |
+
):
|
116 |
+
if len(overridden_module_classes) == 0:
|
117 |
+
return
|
118 |
+
warnings.warn(
|
119 |
+
"Both mixed precision and an auto_wrap_policy were specified to FSDP, "
|
120 |
+
f"where the wrapped module has submodules of type:\n{overridden_module_classes}\n"
|
121 |
+
"These modules will be wrapped as separate FSDP instacnes with mixed "
|
122 |
+
"precision disabled."
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def _validate_frozen_params(
|
127 |
+
root_module: nn.Module,
|
128 |
+
modules_to_wrap: Set[nn.Module],
|
129 |
+
ignored_params: Set[nn.Parameter],
|
130 |
+
use_orig_params: bool,
|
131 |
+
):
|
132 |
+
"""
|
133 |
+
This checks that, given ``modules_to_wrap``, each module would manage
|
134 |
+
parameters that are uniformly frozen or non-frozen. This uniformity
|
135 |
+
requirement is strict for ``use_orig_params=False`` (hard error) and highly
|
136 |
+
recommended for ``use_orig_params=True`` (user warning).
|
137 |
+
"""
|
138 |
+
post_order_named_modules = _get_post_order_named_modules(root_module)
|
139 |
+
visited_modules: Set[nn.Module] = set()
|
140 |
+
for module_name, module in post_order_named_modules:
|
141 |
+
if module in modules_to_wrap:
|
142 |
+
param_to_fqn = _get_managed_param_to_fqn(
|
143 |
+
module, ignored_params, visited_modules, module_name
|
144 |
+
)
|
145 |
+
frozen_param_fqns: List[str] = []
|
146 |
+
frozen_param_numel = 0
|
147 |
+
nonfrozen_param_fqns: List[str] = []
|
148 |
+
nonfrozen_param_numel = 0
|
149 |
+
for param, fqn in param_to_fqn.items():
|
150 |
+
if param.requires_grad:
|
151 |
+
nonfrozen_param_fqns.append(fqn)
|
152 |
+
nonfrozen_param_numel += param.numel()
|
153 |
+
else:
|
154 |
+
frozen_param_fqns.append(fqn)
|
155 |
+
frozen_param_numel += param.numel()
|
156 |
+
if len(frozen_param_fqns) > 0 and len(nonfrozen_param_fqns) > 0:
|
157 |
+
msg = f"{module_name} has both parameters with requires_grad=True and False."
|
158 |
+
if use_orig_params:
|
159 |
+
total_param_numel = frozen_param_numel + nonfrozen_param_numel
|
160 |
+
msg += (
|
161 |
+
" We do not recommend wrapping such modules since "
|
162 |
+
"the gradient memory usage will be higher than expected "
|
163 |
+
f"({total_param_numel} numel instead of {nonfrozen_param_numel} numel "
|
164 |
+
"before sharding via reduce-scatter). "
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
msg += " FSDP does not support wrapping such modules when use_orig_params=False. "
|
168 |
+
msg += "If possible, wrap the frozen parameters with FSDP separately.\n"
|
169 |
+
msg += (
|
170 |
+
f"The following parameters have requires_grad=True:\n{nonfrozen_param_fqns}\n"
|
171 |
+
f"The following parameters have requires_grad=False:\n{frozen_param_fqns}"
|
172 |
+
)
|
173 |
+
if use_orig_params:
|
174 |
+
warnings.warn(msg)
|
175 |
+
else:
|
176 |
+
raise ValueError(msg)
|
177 |
+
|
178 |
+
|
179 |
+
def _get_post_order_named_modules(
|
180 |
+
root_module: nn.Module,
|
181 |
+
) -> List[Tuple[str, nn.Module]]:
|
182 |
+
"""
|
183 |
+
This returns the named modules following a post-order traversal, which is a
|
184 |
+
valid reverse topological sort. We achieve this using the reverse of a
|
185 |
+
stack-based DFS order instead of reversing ``root_module.named_modules()``
|
186 |
+
since the former gives the modules in registration order at each level in
|
187 |
+
the module tree (as opposed to the reverse), which allows us to error/warn
|
188 |
+
on the first registered module that violates the condition.
|
189 |
+
|
190 |
+
For example, consider the following module structure:
|
191 |
+
M(
|
192 |
+
S1(),
|
193 |
+
S2(
|
194 |
+
SS1(),
|
195 |
+
SS2(),
|
196 |
+
),
|
197 |
+
S3(),
|
198 |
+
)
|
199 |
+
The reverse DFS order is [S1, SS1, SS2, S2, S3, M], while the reverse
|
200 |
+
``named_modules()`` order is [S3, SS2, SS1, S2, S1, M].
|
201 |
+
"""
|
202 |
+
visited_modules = {root_module}
|
203 |
+
stack = [("", root_module)]
|
204 |
+
# Append and reverse at the end for linear-time algorithm
|
205 |
+
reverse_post_order_named_modules: List[Tuple[str, nn.Module]] = []
|
206 |
+
while stack:
|
207 |
+
module_name, module = stack.pop()
|
208 |
+
reverse_post_order_named_modules.append((module_name, module))
|
209 |
+
for child_module_name, child_module in module.named_children():
|
210 |
+
if child_module is None: # only for overrides of `named_children()`
|
211 |
+
continue
|
212 |
+
if child_module not in visited_modules:
|
213 |
+
visited_modules.add(child_module)
|
214 |
+
if module_name != "":
|
215 |
+
child_module_name = module_name + "." + child_module_name
|
216 |
+
stack.append((child_module_name, child_module))
|
217 |
+
post_order_named_modules = list(reversed(reverse_post_order_named_modules))
|
218 |
+
return post_order_named_modules
|
219 |
+
|
220 |
+
|
221 |
+
def _get_managed_param_to_fqn(
|
222 |
+
module_to_wrap: nn.Module,
|
223 |
+
ignored_params: Set[nn.Parameter],
|
224 |
+
visited_modules: Set[nn.Module],
|
225 |
+
root_prefix: str,
|
226 |
+
) -> Dict[nn.Parameter, str]:
|
227 |
+
"""
|
228 |
+
This returns a dict that maps managed parameter to its FQN for the given
|
229 |
+
``module_to_wrap``. The dict's keys are exactly the parameters that would
|
230 |
+
be managed by the module, where this is achieved by calling this function
|
231 |
+
on the modules to wrap in reverse topological order, destructively updating
|
232 |
+
``visited_modules``, and not traversing into those modules. The FQNs are
|
233 |
+
prefixed from the root (via ``root_prefix``) to be more informative.
|
234 |
+
|
235 |
+
NOTE: This function is meant to be called pre-wrapping and iteratively in
|
236 |
+
reverse topological order to cover the full module tree. This differs from
|
237 |
+
the ``_get_param_to_fqn()`` function meant to be called post-wrapping and
|
238 |
+
on the full module tree in one shot. Given those differences, we do not try
|
239 |
+
to unify the two.
|
240 |
+
"""
|
241 |
+
param_to_fqn: Dict[nn.Parameter, str] = {}
|
242 |
+
# Run BFS (or any tree traversal works)
|
243 |
+
queue = collections.deque([(module_to_wrap, root_prefix)])
|
244 |
+
visited_modules.add(module_to_wrap)
|
245 |
+
while queue:
|
246 |
+
module, prefix = queue.popleft()
|
247 |
+
for param_name, param in module.named_parameters(recurse=False):
|
248 |
+
if param not in ignored_params:
|
249 |
+
fqn = param_name if prefix == "" else prefix + "." + param_name
|
250 |
+
param_to_fqn[param] = fqn
|
251 |
+
for child_module_name, child_module in module.named_children():
|
252 |
+
if child_module is None: # only for overrides of `named_children()`
|
253 |
+
continue
|
254 |
+
if child_module not in visited_modules:
|
255 |
+
visited_modules.add(child_module)
|
256 |
+
child_prefix = (
|
257 |
+
child_module_name
|
258 |
+
if prefix == ""
|
259 |
+
else prefix + "." + child_module_name
|
260 |
+
)
|
261 |
+
queue.append((child_module, child_prefix))
|
262 |
+
return param_to_fqn
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/api.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file includes public APIs for FSDP such as the classes used for the
|
3 |
+
constructor arguments.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from enum import auto, Enum
|
8 |
+
|
9 |
+
from typing import Optional, Sequence, Type
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"ShardingStrategy",
|
16 |
+
"BackwardPrefetch",
|
17 |
+
"MixedPrecision",
|
18 |
+
"CPUOffload",
|
19 |
+
"StateDictType",
|
20 |
+
"StateDictConfig",
|
21 |
+
"FullStateDictConfig",
|
22 |
+
"LocalStateDictConfig",
|
23 |
+
"ShardedStateDictConfig",
|
24 |
+
"OptimStateDictConfig",
|
25 |
+
"FullOptimStateDictConfig",
|
26 |
+
"LocalOptimStateDictConfig",
|
27 |
+
"ShardedOptimStateDictConfig",
|
28 |
+
"StateDictSettings",
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
class ShardingStrategy(Enum):
|
33 |
+
"""
|
34 |
+
This specifies the sharding strategy to be used for distributed training by
|
35 |
+
:class:`FullyShardedDataParallel`.
|
36 |
+
|
37 |
+
- ``FULL_SHARD``: Parameters, gradients, and optimizer states are sharded.
|
38 |
+
For the parameters, this strategy unshards (via all-gather) before the
|
39 |
+
forward, reshards after the forward, unshards before the backward
|
40 |
+
computation, and reshards after the backward computation. For gradients,
|
41 |
+
it synchronizes and shards them (via reduce-scatter) after the backward
|
42 |
+
computation. The sharded optimizer states are updated locally per rank.
|
43 |
+
- ``SHARD_GRAD_OP``: Gradients and optimizer states are sharded during
|
44 |
+
computation, and additionally, parameters are sharded outside
|
45 |
+
computation. For the parameters, this strategy unshards before the
|
46 |
+
forward, does not reshard them after the forward, and only reshards them
|
47 |
+
after the backward computation. The sharded optimizer states are updated
|
48 |
+
locally per rank. Inside ``no_sync()``, the parameters are not resharded
|
49 |
+
after the backward computation.
|
50 |
+
- ``NO_SHARD``: Parameters, gradients, and optimizer states are not sharded
|
51 |
+
but instead replicated across ranks similar to PyTorch's
|
52 |
+
:class:`DistributedDataParallel` API. For gradients, this strategy
|
53 |
+
synchronizes them (via all-reduce) after the backward computation. The
|
54 |
+
unsharded optimizer states are updated locally per rank.
|
55 |
+
- ``HYBRID_SHARD``: Apply ``FULL_SHARD`` within a node, and replicate parameters across
|
56 |
+
nodes. This results in reduced communication volume as expensive all-gathers and
|
57 |
+
reduce-scatters are only done within a node, which can be more performant for medium
|
58 |
+
-sized models.
|
59 |
+
- ``_HYBRID_SHARD_ZERO2``: Apply ``SHARD_GRAD_OP`` within a node, and replicate parameters across
|
60 |
+
nodes. This is like ``HYBRID_SHARD``, except this may provide even higher throughput
|
61 |
+
since the unsharded parameters are not freed after the forward pass, saving the
|
62 |
+
all-gathers in the pre-backward.
|
63 |
+
"""
|
64 |
+
|
65 |
+
FULL_SHARD = auto()
|
66 |
+
SHARD_GRAD_OP = auto()
|
67 |
+
NO_SHARD = auto()
|
68 |
+
HYBRID_SHARD = auto()
|
69 |
+
_HYBRID_SHARD_ZERO2 = auto()
|
70 |
+
|
71 |
+
|
72 |
+
class BackwardPrefetch(Enum):
|
73 |
+
"""
|
74 |
+
This configures explicit backward prefetching, which improves throughput by
|
75 |
+
enabling communication and computation overlap in the backward pass at the
|
76 |
+
cost of slightly increased memory usage.
|
77 |
+
|
78 |
+
- ``BACKWARD_PRE``: This enables the most overlap but increases memory
|
79 |
+
usage the most. This prefetches the next set of parameters *before* the
|
80 |
+
current set of parameters' gradient computation. This overlaps the *next
|
81 |
+
all-gather* and the *current gradient computation*, and at the peak, it
|
82 |
+
holds the current set of parameters, next set of parameters, and current
|
83 |
+
set of gradients in memory.
|
84 |
+
- ``BACKWARD_POST``: This enables less overlap but requires less memory
|
85 |
+
usage. This prefetches the next set of parameters *after* the current
|
86 |
+
set of parameters' gradient computation. This overlaps the *current
|
87 |
+
reduce-scatter* and the *next gradient computation*, and it frees the
|
88 |
+
current set of parameters before allocating memory for the next set of
|
89 |
+
parameters, only holding the next set of parameters and current set of
|
90 |
+
gradients in memory at the peak.
|
91 |
+
- FSDP's ``backward_prefetch`` argument accepts ``None``, which disables
|
92 |
+
the backward prefetching altogether. This has no overlap and does not
|
93 |
+
increase memory usage. In general, we do not recommend this setting since
|
94 |
+
it may degrade throughput significantly.
|
95 |
+
|
96 |
+
For more technical context: For a single process group using NCCL backend,
|
97 |
+
any collectives, even if issued from different streams, contend for the
|
98 |
+
same per-device NCCL stream, which implies that the relative order in which
|
99 |
+
the collectives are issued matters for overlapping. The two backward
|
100 |
+
prefetching values correspond to different issue orders.
|
101 |
+
"""
|
102 |
+
|
103 |
+
# NOTE: For both modes, the ordering that defines "current" and "next" is
|
104 |
+
# not always exact in the current implementation. A mistargeted prefetch
|
105 |
+
# simply means that the parameter memory is allocated earlier than needed,
|
106 |
+
# possibly increasing peak memory usage, but does not affect correctness.
|
107 |
+
BACKWARD_PRE = auto()
|
108 |
+
BACKWARD_POST = auto()
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class MixedPrecision:
|
113 |
+
"""
|
114 |
+
This configures FSDP-native mixed precision training.
|
115 |
+
|
116 |
+
Attributes:
|
117 |
+
param_dtype (Optional[torch.dtype]): This specifies the dtype for model
|
118 |
+
parameters during forward and backward and thus the dtype for
|
119 |
+
forward and backward computation. Outside forward and backward, the
|
120 |
+
*sharded* parameters are kept in full precision (e.g. for the
|
121 |
+
optimizer step), and for model checkpointing, the parameters are
|
122 |
+
always saved in full precision. (Default: ``None``)
|
123 |
+
reduce_dtype (Optional[torch.dtype]): This specifies the dtype for
|
124 |
+
gradient reduction (i.e. reduce-scatter or all-reduce). If this is
|
125 |
+
``None`` but ``param_dtype`` is not ``None``, then this takes on
|
126 |
+
the ``param_dtype`` value, still running gradient reduction in low
|
127 |
+
precision. This is permitted to differ from ``param_dtype``, e.g.
|
128 |
+
to force gradient reduction to run in full precision. (Default:
|
129 |
+
``None``)
|
130 |
+
buffer_dtype (Optional[torch.dtype]): This specifies the dtype for
|
131 |
+
buffers. FSDP does not shard buffers. Rather, FSDP casts them to
|
132 |
+
``buffer_dtype`` in the first forward pass and keeps them in that
|
133 |
+
dtype thereafter. For model checkpointing, the buffers are saved
|
134 |
+
in full precision except for ``LOCAL_STATE_DICT``. (Default:
|
135 |
+
``None``)
|
136 |
+
keep_low_precision_grads (bool): If ``False``, then FSDP upcasts
|
137 |
+
gradients to full precision after the backward pass in preparation
|
138 |
+
for the optimizer step. If ``True``, then FSDP keeps the gradients
|
139 |
+
in the dtype used for gradient reduction, which can save memory if
|
140 |
+
using a custom optimizer that supports running in low precision.
|
141 |
+
(Default: ``False``)
|
142 |
+
cast_forward_inputs (bool): If ``True``, then this FSDP module casts
|
143 |
+
its forward args and kwargs to ``param_dtype``. This is to ensure
|
144 |
+
that parameter and input dtypes match for forward computation, as
|
145 |
+
required by many ops. This may need to be set to ``True`` when only
|
146 |
+
applying mixed precision to some but not all FSDP modules, in which
|
147 |
+
case a mixed-precision FSDP submodule needs to recast its inputs.
|
148 |
+
(Default: ``False``)
|
149 |
+
cast_root_forward_inputs (bool): If ``True``, then the root FSDP module
|
150 |
+
casts its forward args and kwargs to ``param_dtype``, overriding
|
151 |
+
the value of ``cast_forward_inputs``. For non-root FSDP modules,
|
152 |
+
this does not do anything. (Default: ``True``)
|
153 |
+
_module_classes_to_ignore: (Sequence[Type[nn.Module]]): This specifies
|
154 |
+
module classes to ignore for mixed precision when using an
|
155 |
+
``auto_wrap_policy``: Modules of these classes will have FSDP
|
156 |
+
applied to them separately with mixed precision disabled (meaning
|
157 |
+
that the final FSDP construction would deviate from the specified
|
158 |
+
policy). If ``auto_wrap_policy`` is not specified, then this does
|
159 |
+
not do anything. This API is experimental and subject to change.
|
160 |
+
(Default: ``(_BatchNorm,)``)
|
161 |
+
|
162 |
+
.. note:: This API is experimental and subject to change.
|
163 |
+
|
164 |
+
.. note:: Only floating point tensors are cast to their specified dtypes.
|
165 |
+
|
166 |
+
.. note:: In ``summon_full_params``, parameters are forced to full
|
167 |
+
precision, but buffers are not.
|
168 |
+
|
169 |
+
.. note:: Layer norm and batch norm accumulate in ``float32`` even when
|
170 |
+
their inputs are in a low precision like ``float16`` or ``bfloat16``.
|
171 |
+
Disabling FSDP's mixed precision for those norm modules only means that
|
172 |
+
the affine parameters are kept in ``float32``. However, this incurs
|
173 |
+
separate all-gathers and reduce-scatters for those norm modules, which
|
174 |
+
may be inefficient, so if the workload permits, the user should prefer
|
175 |
+
to still apply mixed precision to those modules.
|
176 |
+
|
177 |
+
.. note:: By default, if the user passes a model with any ``_BatchNorm``
|
178 |
+
modules and specifies an ``auto_wrap_policy``, then the batch norm
|
179 |
+
modules will have FSDP applied to them separately with mixed precision
|
180 |
+
disabled. See the ``_module_classes_to_ignore`` argument.
|
181 |
+
|
182 |
+
.. note:: ``MixedPrecision`` has ``cast_root_forward_inputs=True`` and
|
183 |
+
``cast_forward_inputs=False`` by default. For the root FSDP instance,
|
184 |
+
its ``cast_root_forward_inputs`` takes precedence over its
|
185 |
+
``cast_forward_inputs``. For non-root FSDP instances, their
|
186 |
+
``cast_root_forward_inputs`` values are ignored. The default setting is
|
187 |
+
sufficient for the typical case where each FSDP instance has the same
|
188 |
+
``MixedPrecision`` configuration and only needs to cast inputs to the
|
189 |
+
``param_dtype`` at the beginning of the model's forward pass.
|
190 |
+
|
191 |
+
.. note:: For nested FSDP instances with different ``MixedPrecision``
|
192 |
+
configurations, we recommend setting individual ``cast_forward_inputs``
|
193 |
+
values to configure casting inputs or not before each instance's
|
194 |
+
forward. In such a case, since the casts happen before each FSDP
|
195 |
+
instance's forward, a parent FSDP instance should have its non-FSDP
|
196 |
+
submodules run before its FSDP submodules to avoid the activation dtype
|
197 |
+
being changed due to a different ``MixedPrecision`` configuration.
|
198 |
+
|
199 |
+
Example::
|
200 |
+
|
201 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
202 |
+
>>> model = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
|
203 |
+
>>> model[1] = FSDP(
|
204 |
+
>>> model[1],
|
205 |
+
>>> mixed_precision=MixedPrecision(param_dtype=torch.float16, cast_forward_inputs=True),
|
206 |
+
>>> )
|
207 |
+
>>> model = FSDP(
|
208 |
+
>>> model,
|
209 |
+
>>> mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, cast_forward_inputs=True),
|
210 |
+
>>> )
|
211 |
+
|
212 |
+
The above shows a working example. On the other hand, if ``model[1]``
|
213 |
+
were replaced with ``model[0]``, meaning that the submodule using
|
214 |
+
different ``MixedPrecision`` ran its forward first, then ``model[1]``
|
215 |
+
would incorrectly see ``float16`` activations instead of ``bfloat16``
|
216 |
+
ones.
|
217 |
+
|
218 |
+
"""
|
219 |
+
|
220 |
+
param_dtype: Optional[torch.dtype] = None
|
221 |
+
reduce_dtype: Optional[torch.dtype] = None
|
222 |
+
buffer_dtype: Optional[torch.dtype] = None
|
223 |
+
keep_low_precision_grads: bool = False
|
224 |
+
cast_forward_inputs: bool = False
|
225 |
+
cast_root_forward_inputs: bool = True
|
226 |
+
_module_classes_to_ignore: Sequence[Type[torch.nn.Module]] = (_BatchNorm,)
|
227 |
+
|
228 |
+
|
229 |
+
@dataclass
|
230 |
+
class CPUOffload:
|
231 |
+
"""
|
232 |
+
This configures CPU offloading.
|
233 |
+
|
234 |
+
Attributes:
|
235 |
+
offload_params (bool): This specifies whether to offload parameters to
|
236 |
+
CPU when not involved in computation. If ``True``, then this
|
237 |
+
offloads gradients to CPU as well, meaning that the optimizer step
|
238 |
+
runs on CPU.
|
239 |
+
"""
|
240 |
+
|
241 |
+
offload_params: bool = False
|
242 |
+
|
243 |
+
|
244 |
+
class StateDictType(Enum):
|
245 |
+
"""
|
246 |
+
This enum indicates that which type of ``state_dict`` the FSDP module is
|
247 |
+
currently processing (returning or loading).
|
248 |
+
The default value is FULL_STATE_DICT to comply the PyTorch convention.
|
249 |
+
..note::
|
250 |
+
FSDP currently supports three types of ``state_dict``:
|
251 |
+
1. ``state_dict/load_state_dict`: this pair of APIs return and load
|
252 |
+
the non-sharded, unflattened parameters. The semantics is the
|
253 |
+
same as using DDP.
|
254 |
+
2. ``_local_state_dict/_load_local_state_dict``: this pair of APIs return
|
255 |
+
and load local sharded, flattened parameters. The values returned
|
256 |
+
by ``_local_state_dict`` can be directly used by FSDP and is only
|
257 |
+
meaningful to FSDP (because parameters are flattened). Note that
|
258 |
+
these APIs are meant for use via the :func:`state_dict_type`
|
259 |
+
context manager as follows:
|
260 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
261 |
+
>>> with fsdp.state_dict_type(StateDictType.LOCAL_STATE_DICT):
|
262 |
+
... state = fsdp.state_dict() # loads local state dict
|
263 |
+
3. ``_sharded_state_dict/_load_sharded_state_dict``: this pair of APIs
|
264 |
+
return and load sharded, unflattened parameters. The ``state_dict``
|
265 |
+
return by ``sharded_state_dict`` can be used by all other parallel
|
266 |
+
schemes (resharding may be required).
|
267 |
+
"""
|
268 |
+
|
269 |
+
FULL_STATE_DICT = auto()
|
270 |
+
LOCAL_STATE_DICT = auto()
|
271 |
+
SHARDED_STATE_DICT = auto()
|
272 |
+
|
273 |
+
|
274 |
+
@dataclass
|
275 |
+
class StateDictConfig:
|
276 |
+
"""
|
277 |
+
``StateDictConfig`` is the base class for all ``state_dict`` configuration
|
278 |
+
classes. Users should instantiate a child class (e.g.
|
279 |
+
``FullStateDictConfig``) in order to configure settings for the
|
280 |
+
corresponding ``state_dict`` type supported by FSDP.
|
281 |
+
|
282 |
+
Attributes:
|
283 |
+
offload_to_cpu (bool): If ``True``, then FSDP offloads the state dict
|
284 |
+
values to CPU, and if ``False``, then FSDP keeps them on GPU.
|
285 |
+
(Default: ``False``)
|
286 |
+
"""
|
287 |
+
|
288 |
+
offload_to_cpu: bool = False
|
289 |
+
|
290 |
+
|
291 |
+
@dataclass
|
292 |
+
class FullStateDictConfig(StateDictConfig):
|
293 |
+
"""
|
294 |
+
``FullStateDictConfig`` is a config class meant to be used with
|
295 |
+
``StateDictType.FULL_STATE_DICT``. We recommend enabling both
|
296 |
+
``offload_to_cpu=True`` and ``rank0_only=True`` when saving full state
|
297 |
+
dicts to save GPU memory and CPU memory, respectively. This config class
|
298 |
+
is meant to be used via the :func:`state_dict_type` context manager as
|
299 |
+
follows:
|
300 |
+
|
301 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
302 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
303 |
+
>>> fsdp = FSDP(model, auto_wrap_policy=...)
|
304 |
+
>>> cfg = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
305 |
+
>>> with FSDP.state_dict_type(fsdp, StateDictType.FULL_STATE_DICT, cfg):
|
306 |
+
>>> state = fsdp.state_dict()
|
307 |
+
>>> # `state` will be empty on non rank 0 and contain CPU tensors on rank 0.
|
308 |
+
>>> # To reload checkpoint for inference, finetuning, transfer learning, etc:
|
309 |
+
>>> model = model_fn() # Initialize model in preparation for wrapping with FSDP
|
310 |
+
>>> if dist.get_rank() == 0:
|
311 |
+
>>> # Load checkpoint only on rank 0 to avoid memory redundancy
|
312 |
+
>>> state_dict = torch.load("my_checkpoint.pt")
|
313 |
+
>>> model.load_state_dict(state_dict)
|
314 |
+
>>> # All ranks initialize FSDP module as usual. `sync_module_states` argument
|
315 |
+
>>> # communicates loaded checkpoint states from rank 0 to rest of the world.
|
316 |
+
>>> fsdp = FSDP(model, device_id=torch.cuda.current_device(), auto_wrap_policy=..., sync_module_states=True)
|
317 |
+
>>> # After this point, all ranks have FSDP model with loaded checkpoint.
|
318 |
+
|
319 |
+
Attributes:
|
320 |
+
rank0_only (bool): If ``True``, then only rank 0 saves the full state
|
321 |
+
dict, and nonzero ranks save an empty dict. If ``False``, then all
|
322 |
+
ranks save the full state dict. (Default: ``False``)
|
323 |
+
"""
|
324 |
+
|
325 |
+
rank0_only: bool = False
|
326 |
+
|
327 |
+
|
328 |
+
@dataclass
|
329 |
+
class LocalStateDictConfig(StateDictConfig):
|
330 |
+
pass
|
331 |
+
|
332 |
+
|
333 |
+
@dataclass
|
334 |
+
class ShardedStateDictConfig(StateDictConfig):
|
335 |
+
"""
|
336 |
+
``ShardedStateDictConfig`` is a config class meant to be used with
|
337 |
+
``StateDictType.SHARDED_STATE_DICT``.
|
338 |
+
|
339 |
+
Attributes:
|
340 |
+
_use_dtensor (bool): If ``True``, then FSDP saves the state dict values
|
341 |
+
as ``DTensor``, and if ``False``, then FSDP saves them as
|
342 |
+
``ShardedTensor``. (Default: ``False``)
|
343 |
+
|
344 |
+
.. warning:: ``_use_dtensor`` is a private field of :class:`ShardedStateDictConfig`
|
345 |
+
and it is used by FSDP to determine the type of state dict values. Users should not
|
346 |
+
manually modify ``_use_dtensor``.
|
347 |
+
"""
|
348 |
+
|
349 |
+
_use_dtensor: bool = False
|
350 |
+
|
351 |
+
|
352 |
+
@dataclass
|
353 |
+
class OptimStateDictConfig:
|
354 |
+
"""
|
355 |
+
``OptimStateDictConfig`` is the base class for all ``optim_state_dict``
|
356 |
+
configuration classes. Users should instantiate a child class (e.g.
|
357 |
+
``FullOptimStateDictConfig``) in order to configure settings for the
|
358 |
+
corresponding ``optim_state_dict`` type supported by FSDP.
|
359 |
+
|
360 |
+
Attributes:
|
361 |
+
offload_to_cpu (bool): If ``True``, then FSDP offloads the state dict's
|
362 |
+
tensor values to CPU, and if ``False``, then FSDP keeps them on the
|
363 |
+
original device (which is GPU unless parameter CPU offloading is
|
364 |
+
enabled). (Default: ``True``)
|
365 |
+
"""
|
366 |
+
|
367 |
+
offload_to_cpu: bool = True
|
368 |
+
|
369 |
+
|
370 |
+
@dataclass
|
371 |
+
class FullOptimStateDictConfig(OptimStateDictConfig):
|
372 |
+
"""
|
373 |
+
Attributes:
|
374 |
+
rank0_only (bool): If ``True``, then only rank 0 saves the full state
|
375 |
+
dict, and nonzero ranks save an empty dict. If ``False``, then all
|
376 |
+
ranks save the full state dict. (Default: ``False``)
|
377 |
+
"""
|
378 |
+
|
379 |
+
rank0_only: bool = False
|
380 |
+
|
381 |
+
|
382 |
+
@dataclass
|
383 |
+
class LocalOptimStateDictConfig(OptimStateDictConfig):
|
384 |
+
offload_to_cpu: bool = False
|
385 |
+
|
386 |
+
|
387 |
+
@dataclass
|
388 |
+
class ShardedOptimStateDictConfig(OptimStateDictConfig):
|
389 |
+
"""
|
390 |
+
``ShardedOptimStateDictConfig`` is a config class meant to be used with
|
391 |
+
``StateDictType.SHARDED_STATE_DICT``.
|
392 |
+
|
393 |
+
Attributes:
|
394 |
+
_use_dtensor (bool): If ``True``, then FSDP saves the state dict values
|
395 |
+
as ``DTensor``, and if ``False``, then FSDP saves them as
|
396 |
+
``ShardedTensor``. (Default: ``False``)
|
397 |
+
|
398 |
+
.. warning:: ``_use_dtensor`` is a private field of :class:`ShardedOptimStateDictConfig`
|
399 |
+
and it is used by FSDP to determine the type of state dict values. Users should not
|
400 |
+
manually modify ``_use_dtensor``.
|
401 |
+
"""
|
402 |
+
|
403 |
+
_use_dtensor: bool = False
|
404 |
+
|
405 |
+
|
406 |
+
@dataclass
|
407 |
+
class StateDictSettings:
|
408 |
+
state_dict_type: StateDictType
|
409 |
+
state_dict_config: StateDictConfig
|
410 |
+
optim_state_dict_config: OptimStateDictConfig
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py
ADDED
@@ -0,0 +1,2075 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import copy
|
5 |
+
import functools
|
6 |
+
import math
|
7 |
+
import traceback
|
8 |
+
import warnings
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from enum import auto, Enum
|
11 |
+
from typing import (
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Dict,
|
15 |
+
Generator,
|
16 |
+
Iterable,
|
17 |
+
Iterator,
|
18 |
+
List,
|
19 |
+
Optional,
|
20 |
+
Tuple,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.distributed as dist
|
26 |
+
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
27 |
+
import torch.nn as nn
|
28 |
+
from torch.distributed._tensor import DeviceMesh
|
29 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
30 |
+
_CHECKPOINT_WRAPPED_MODULE,
|
31 |
+
ActivationWrapper,
|
32 |
+
)
|
33 |
+
from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS
|
34 |
+
from torch.distributed.fsdp._common_utils import (
|
35 |
+
_FSDPState,
|
36 |
+
_get_param_to_fqns,
|
37 |
+
FSDP_PREFIX,
|
38 |
+
FSDP_WRAPPED_MODULE,
|
39 |
+
TrainingState,
|
40 |
+
)
|
41 |
+
from torch.distributed.fsdp._dynamo_utils import _annotate_modules_for_dynamo
|
42 |
+
from torch.distributed.fsdp._init_utils import (
|
43 |
+
_check_orig_params_flattened,
|
44 |
+
_init_buffer_state,
|
45 |
+
_init_core_state,
|
46 |
+
_init_device_handle,
|
47 |
+
_init_extension,
|
48 |
+
_init_ignored_module_states,
|
49 |
+
_init_param_handle_from_module,
|
50 |
+
_init_prefetching_state,
|
51 |
+
_init_process_group_state,
|
52 |
+
_init_runtime_state,
|
53 |
+
_init_state_dict_state,
|
54 |
+
HYBRID_SHARDING_STRATEGIES,
|
55 |
+
ProcessGroupType,
|
56 |
+
)
|
57 |
+
from torch.distributed.fsdp._runtime_utils import (
|
58 |
+
_get_fsdp_root_states,
|
59 |
+
_is_fsdp_root,
|
60 |
+
_lazy_init,
|
61 |
+
_post_forward,
|
62 |
+
_post_forward_reshard,
|
63 |
+
_pre_forward,
|
64 |
+
_pre_forward_unshard,
|
65 |
+
_root_pre_forward,
|
66 |
+
)
|
67 |
+
from torch.distributed.fsdp._wrap_utils import _auto_wrap
|
68 |
+
from torch.distributed.fsdp.api import (
|
69 |
+
BackwardPrefetch,
|
70 |
+
CPUOffload,
|
71 |
+
FullOptimStateDictConfig,
|
72 |
+
FullStateDictConfig,
|
73 |
+
LocalOptimStateDictConfig,
|
74 |
+
LocalStateDictConfig,
|
75 |
+
MixedPrecision,
|
76 |
+
OptimStateDictConfig,
|
77 |
+
ShardedOptimStateDictConfig,
|
78 |
+
ShardedStateDictConfig,
|
79 |
+
ShardingStrategy,
|
80 |
+
StateDictConfig,
|
81 |
+
StateDictSettings,
|
82 |
+
StateDictType,
|
83 |
+
)
|
84 |
+
from torch.distributed.utils import _p_assert
|
85 |
+
from ._flat_param import FlatParameter
|
86 |
+
|
87 |
+
from ._optim_utils import (
|
88 |
+
_flatten_optim_state_dict,
|
89 |
+
_get_param_id_to_param_from_optim_input,
|
90 |
+
_get_param_key_to_param,
|
91 |
+
_get_param_to_param_id_from_optim_input,
|
92 |
+
_get_param_to_param_key,
|
93 |
+
_optim_state_dict,
|
94 |
+
_rekey_sharded_optim_state_dict,
|
95 |
+
_set_optim_use_dtensor,
|
96 |
+
)
|
97 |
+
from ._state_dict_utils import _register_all_state_dict_hooks
|
98 |
+
from ._unshard_param_utils import (
|
99 |
+
_deregister_orig_params,
|
100 |
+
_register_flat_param,
|
101 |
+
_register_orig_params,
|
102 |
+
_unshard_params,
|
103 |
+
_unshard_params_recurse,
|
104 |
+
)
|
105 |
+
from .wrap import CustomPolicy, ModuleWrapPolicy
|
106 |
+
|
107 |
+
|
108 |
+
__all__ = [
|
109 |
+
"FullyShardedDataParallel",
|
110 |
+
"OptimStateKeyType",
|
111 |
+
]
|
112 |
+
|
113 |
+
|
114 |
+
FLAT_PARAM = "_flat_param"
|
115 |
+
|
116 |
+
|
117 |
+
class OptimStateKeyType(Enum):
|
118 |
+
"""Represents the type of key in an optimizer state-dict."""
|
119 |
+
|
120 |
+
PARAM_NAME = auto()
|
121 |
+
PARAM_ID = auto()
|
122 |
+
|
123 |
+
|
124 |
+
class FullyShardedDataParallel(nn.Module, _FSDPState):
|
125 |
+
"""A wrapper for sharding module parameters across data parallel workers.
|
126 |
+
|
127 |
+
This is inspired by `Xu et al.`_ as well as the ZeRO Stage 3 from DeepSpeed_.
|
128 |
+
FullyShardedDataParallel is commonly shortened to FSDP.
|
129 |
+
|
130 |
+
.. _`Xu et al.`: https://arxiv.org/abs/2004.13336
|
131 |
+
.. _DeepSpeed: https://www.deepspeed.ai/
|
132 |
+
|
133 |
+
For advanced notes please refer to :ref:`fsdp_notes`.
|
134 |
+
|
135 |
+
Example::
|
136 |
+
|
137 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
138 |
+
>>> import torch
|
139 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
140 |
+
>>> torch.cuda.set_device(device_id)
|
141 |
+
>>> sharded_module = FSDP(my_module)
|
142 |
+
>>> optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
|
143 |
+
>>> x = sharded_module(x, y=3, z=torch.Tensor([1]))
|
144 |
+
>>> loss = x.sum()
|
145 |
+
>>> loss.backward()
|
146 |
+
>>> optim.step()
|
147 |
+
|
148 |
+
.. warning::
|
149 |
+
The optimizer must be initialized *after* the module has been wrapped
|
150 |
+
with FSDP since FSDP will shard and transform the module's parameters
|
151 |
+
in a way that may not preserve the original parameter variables. Thus,
|
152 |
+
the previously initialized optimizer may have stale references to the
|
153 |
+
parameters.
|
154 |
+
|
155 |
+
.. warning::
|
156 |
+
If the destination CUDA device has ID ``dev_id``, either (1)
|
157 |
+
``module`` should already be placed on that device, (2) the device
|
158 |
+
should be set using ``torch.cuda.set_device(dev_id)``, or (3)
|
159 |
+
``dev_id`` should be passed into the ``device_id`` constructor
|
160 |
+
argument. This FSDP instance's compute device will be that destination
|
161 |
+
device. For (1) and (3), the FSDP initialization always occurs on GPU.
|
162 |
+
For (2), the FSDP initialization happens on ``module`` 's current
|
163 |
+
device, which may be CPU.
|
164 |
+
|
165 |
+
.. warning::
|
166 |
+
FSDP currently does not support gradient accumulation outside
|
167 |
+
``no_sync()`` when using CPU offloading. Trying to do so yields
|
168 |
+
incorrect results since FSDP will use the newly-reduced gradient
|
169 |
+
instead of accumulating with any existing gradient.
|
170 |
+
|
171 |
+
.. warning::
|
172 |
+
Changing the original parameter variable names after construction will
|
173 |
+
lead to undefined behavior.
|
174 |
+
|
175 |
+
.. warning::
|
176 |
+
Passing in the ``sync_module_states=True`` flag requires ``module`` to
|
177 |
+
be on GPU or to use the ``device_id`` argument to specify a CUDA device
|
178 |
+
that FSDP will move ``module`` to in the FSDP constructor. This is
|
179 |
+
because ``sync_module_states=True`` requires GPU communication.
|
180 |
+
|
181 |
+
.. warning::
|
182 |
+
As of PyTorch 1.12, FSDP only offers limited support for shared parameters
|
183 |
+
(for example, setting one ``Linear`` layer's weight to another's). In
|
184 |
+
particular, modules that share parameters must be wrapped as part of the
|
185 |
+
same FSDP unit. If enhanced shared parameter support is needed for your
|
186 |
+
use case, please ping https://github.com/pytorch/pytorch/issues/77724
|
187 |
+
|
188 |
+
.. warning::
|
189 |
+
FSDP has some constraints on freezing parameters (i.e. setting
|
190 |
+
``param.requires_grad=False``). For ``use_orig_params=False``, each
|
191 |
+
FSDP instance must manage parameters that are all frozen or all
|
192 |
+
non-frozen. For ``use_orig_params=True``, FSDP supports mixing frozen
|
193 |
+
and non-frozen, but we recommend not doing so since then the gradient
|
194 |
+
memory usage will be higher than expected (namely, equivalent to not
|
195 |
+
freezing those parameters). This means that ideally, frozen parameters
|
196 |
+
should be isolated into their own ``nn.Module`` s and wrapped
|
197 |
+
separately with FSDP.
|
198 |
+
|
199 |
+
.. note::
|
200 |
+
Attempting to run the forward pass of a submodule that is contained in an
|
201 |
+
FSDP instance is not supported and will result in errors. This is because the
|
202 |
+
submodule's parameters will be sharded, but it itself is not an FSDP instance,
|
203 |
+
so its forward pass will not all-gather the full parameters appropriately.
|
204 |
+
This could potentially happen when attempting to run only the encoder of a
|
205 |
+
encoder-decoder model, and the encoder is not wrapped in its own FSDP instance. To
|
206 |
+
resolve this, please wrap the submodule in its own FSDP unit.
|
207 |
+
|
208 |
+
.. note::
|
209 |
+
FSDP moves input tensors to the ``forward`` method to the GPU compute
|
210 |
+
device, so the user does not need to manually move them from CPU.
|
211 |
+
|
212 |
+
.. warning::
|
213 |
+
The user should not modify the parameters between forward and backward
|
214 |
+
without using the :meth:`summon_full_params` context since the
|
215 |
+
modifications may not persist. Moreover, for ``use_orig_params=False``,
|
216 |
+
accessing the original parameters between forward and backward may
|
217 |
+
raise an illegal memory access.
|
218 |
+
|
219 |
+
.. warning::
|
220 |
+
For ``use_orig_params=True``, ``ShardingStrategy.SHARD_GRAD_OP``
|
221 |
+
exposes the unsharded parameters, not the sharded parameters, after
|
222 |
+
forward since it does not free the unsharded ones, unlike
|
223 |
+
``ShardingStrategy.FULL_SHARD``. One caveat is that, since gradients
|
224 |
+
are always sharded or ``None``, ``ShardingStrategy.SHARD_GRAD_OP`` will
|
225 |
+
not expose the sharded gradients with the unsharded parameters after
|
226 |
+
forward. If you want to inspect the gradients, try
|
227 |
+
:meth:`summon_full_params` with ``with_grads=True``.
|
228 |
+
|
229 |
+
.. warning::
|
230 |
+
FSDP replaces managed modules' parameters with ``torch.Tensor`` views
|
231 |
+
during forward and backward computation for autograd-related reasons.
|
232 |
+
If your module's forward relies on saved references to the parameters
|
233 |
+
instead of reacquiring the references each iteration, then it will not
|
234 |
+
see FSDP's newly created views, and autograd will not work correctly.
|
235 |
+
|
236 |
+
.. note::
|
237 |
+
With ``limit_all_gathers=True``, you may see a gap in the FSDP
|
238 |
+
pre-forward where the CPU thread is not issuing any kernels. This is
|
239 |
+
intentional and shows the rate limiter in effect. Synchronizing the CPU
|
240 |
+
thread in that way prevents over-allocating memory for subsequent
|
241 |
+
all-gathers, and it should not actually delay GPU kernel execution.
|
242 |
+
|
243 |
+
.. note::
|
244 |
+
When using ``sharding_strategy=ShardingStrategy.HYBRID_SHARD`` with the
|
245 |
+
sharding process group being intra-node and the replication process
|
246 |
+
group being inter-node, setting ``NCCL_CROSS_NIC=1`` can help improve
|
247 |
+
the all-reduce times over the replication process group for some
|
248 |
+
cluster setups.
|
249 |
+
|
250 |
+
.. warning::
|
251 |
+
FSDP does not work with double backwards due to how it registers
|
252 |
+
backward hooks.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
module (nn.Module):
|
256 |
+
This is the module to be wrapped with FSDP.
|
257 |
+
process_group (Optional[Union[ProcessGroup, Tuple[ProcessGroup, ProcessGroup]]]):
|
258 |
+
This is the process group over which the model is sharded and thus
|
259 |
+
the one used for FSDP's all-gather and reduce-scatter collective
|
260 |
+
communications. If ``None``, then FSDP uses the default process
|
261 |
+
group. For hybrid sharding strategies such as
|
262 |
+
``ShardingStrategy.HYBRID_SHARD``, users can pass in a tuple of
|
263 |
+
process groups, representing the groups over which to shard and
|
264 |
+
replicate, respectively. If ``None``, then FSDP constructs process
|
265 |
+
groups for the user to shard intra-node and replicate inter-node.
|
266 |
+
(Default: ``None``)
|
267 |
+
sharding_strategy (Optional[ShardingStrategy]):
|
268 |
+
This configures the sharding strategy, which may trade off memory
|
269 |
+
saving and communication overhead. See :class:`ShardingStrategy`
|
270 |
+
for details. (Default: ``FULL_SHARD``)
|
271 |
+
cpu_offload (Optional[CPUOffload]):
|
272 |
+
This configures CPU offloading. If this is set to ``None``, then
|
273 |
+
no CPU offloading happens. See :class:`CPUOffload` for details.
|
274 |
+
(Default: ``None``)
|
275 |
+
auto_wrap_policy (Optional[Union[Callable[[nn.Module, bool, int], bool], ModuleWrapPolicy, CustomPolicy]]):
|
276 |
+
This specifies a policy to apply FSDP to submodules of ``module``,
|
277 |
+
which is needed for communication and computation overlap and thus
|
278 |
+
affects performance. If ``None``, then FSDP only applies to
|
279 |
+
``module``, and users should manually apply FSDP to parent modules
|
280 |
+
themselves (proceeding bottom-up). For convenience, this accepts
|
281 |
+
``ModuleWrapPolicy`` directly, which allows users to specify the
|
282 |
+
module classes to wrap (e.g. the transformer block). Otherwise,
|
283 |
+
this should be a callable that takes in three arguments
|
284 |
+
``module: nn.Module``, ``recurse: bool``, and
|
285 |
+
``nonwrapped_numel: int`` and should return a ``bool`` specifying
|
286 |
+
whether the passed-in ``module`` should have FSDP applied if
|
287 |
+
``recurse=False`` or if the traversal should continue into the
|
288 |
+
module's subtree if ``recurse=True``. Users may add additional
|
289 |
+
arguments to the callable. The ``size_based_auto_wrap_policy`` in
|
290 |
+
``torch.distributed.fsdp.wrap.py`` gives an example callable that
|
291 |
+
applies FSDP to a module if the parameters in its subtree exceed
|
292 |
+
100M numel. We recommend printing the model after applying FSDP
|
293 |
+
and adjusting as needed.
|
294 |
+
|
295 |
+
Example::
|
296 |
+
|
297 |
+
>>> def custom_auto_wrap_policy(
|
298 |
+
>>> module: nn.Module,
|
299 |
+
>>> recurse: bool,
|
300 |
+
>>> nonwrapped_numel: int,
|
301 |
+
>>> # Additional custom arguments
|
302 |
+
>>> min_num_params: int = int(1e8),
|
303 |
+
>>> ) -> bool:
|
304 |
+
>>> return nonwrapped_numel >= min_num_params
|
305 |
+
>>> # Configure a custom `min_num_params`
|
306 |
+
>>> my_auto_wrap_policy = functools.partial(custom_auto_wrap_policy, min_num_params=int(1e5))
|
307 |
+
|
308 |
+
backward_prefetch (Optional[BackwardPrefetch]):
|
309 |
+
This configures explicit backward prefetching of all-gathers. If
|
310 |
+
``None``, then FSDP does not backward prefetch, and there is no
|
311 |
+
communication and computation overlap in the backward pass. See
|
312 |
+
:class:`BackwardPrefetch` for details. (Default: ``BACKWARD_PRE``)
|
313 |
+
mixed_precision (Optional[MixedPrecision]):
|
314 |
+
This configures native mixed precision for FSDP. If this is set to
|
315 |
+
``None``, then no mixed precision is used. Otherwise, parameter,
|
316 |
+
buffer, and gradient reduction dtypes can be set. See
|
317 |
+
:class:`MixedPrecision` for details. (Default: ``None``)
|
318 |
+
ignored_modules (Optional[Iterable[torch.nn.Module]]): Modules whose
|
319 |
+
own parameters and child modules' parameters and buffers are
|
320 |
+
ignored by this instance. None of the modules directly in
|
321 |
+
``ignored_modules`` should be :class:`FullyShardedDataParallel`
|
322 |
+
instances, and any child modules that are already-constructed
|
323 |
+
:class:`FullyShardedDataParallel` instances will not be ignored if
|
324 |
+
they are nested under this instance. This argument may be used to
|
325 |
+
avoid sharding specific parameters at module granularity when using an
|
326 |
+
``auto_wrap_policy`` or if parameters' sharding is not managed by
|
327 |
+
FSDP. (Default: ``None``)
|
328 |
+
param_init_fn (Optional[Callable[[nn.Module], None]]):
|
329 |
+
A ``Callable[torch.nn.Module] -> None`` that
|
330 |
+
specifies how modules that are currently on the meta device should
|
331 |
+
be initialized onto an actual device. As of v1.12, FSDP detects
|
332 |
+
modules with parameters or buffers on meta device via ``is_meta``
|
333 |
+
and either applies ``param_init_fn`` if specified or calls
|
334 |
+
``nn.Module.reset_parameters()`` otherwise. For both cases, the
|
335 |
+
implementation should *only* initialize the parameters/buffers of
|
336 |
+
the module, not those of its submodules. This is to avoid
|
337 |
+
re-initialization. In addition, FSDP also supports deferred
|
338 |
+
initialization via torchdistX's (https://github.com/pytorch/torchdistX)
|
339 |
+
``deferred_init()`` API, where the deferred modules are initialized
|
340 |
+
by calling ``param_init_fn`` if specified or torchdistX's default
|
341 |
+
``materialize_module()`` otherwise. If ``param_init_fn`` is
|
342 |
+
specified, then it is applied to all meta-device modules, meaning
|
343 |
+
that it should probably case on the module type. FSDP calls the
|
344 |
+
initialization function before parameter flattening and sharding.
|
345 |
+
|
346 |
+
Example::
|
347 |
+
|
348 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
349 |
+
>>> module = MyModule(device="meta")
|
350 |
+
>>> def my_init_fn(module: nn.Module):
|
351 |
+
>>> # E.g. initialize depending on the module type
|
352 |
+
>>> ...
|
353 |
+
>>> fsdp_model = FSDP(module, param_init_fn=my_init_fn, auto_wrap_policy=size_based_auto_wrap_policy)
|
354 |
+
>>> print(next(fsdp_model.parameters()).device) # current CUDA device
|
355 |
+
>>> # With torchdistX
|
356 |
+
>>> module = deferred_init.deferred_init(MyModule, device="cuda")
|
357 |
+
>>> # Will initialize via deferred_init.materialize_module().
|
358 |
+
>>> fsdp_model = FSDP(module, auto_wrap_policy=size_based_auto_wrap_policy)
|
359 |
+
|
360 |
+
device_id (Optional[Union[int, torch.device]]): An ``int`` or
|
361 |
+
``torch.device`` giving the CUDA device on which FSDP
|
362 |
+
initialization takes place, including the module initialization
|
363 |
+
if needed and the parameter sharding. This should be specified to
|
364 |
+
improve initialization speed if ``module`` is on CPU. If the
|
365 |
+
default CUDA device was set (e.g. via ``torch.cuda.set_device``),
|
366 |
+
then the user may pass ``torch.cuda.current_device`` to this.
|
367 |
+
(Default: ``None``)
|
368 |
+
sync_module_states (bool): If ``True``, then each FSDP module will
|
369 |
+
broadcast module parameters and buffers from rank 0 to ensure that
|
370 |
+
they are replicated across ranks (adding communication overhead to
|
371 |
+
this constructor). This can help load ``state_dict`` checkpoints
|
372 |
+
via ``load_state_dict`` in a memory efficient way. See
|
373 |
+
:class:`FullStateDictConfig` for an example of this. (Default:
|
374 |
+
``False``)
|
375 |
+
forward_prefetch (bool): If ``True``, then FSDP *explicitly* prefetches
|
376 |
+
the next forward-pass all-gather before the current forward
|
377 |
+
computation. This is only useful for CPU-bound workloads, in which
|
378 |
+
case issuing the next all-gather earlier may improve overlap. This
|
379 |
+
should only be used for static-graph models since the prefetching
|
380 |
+
follows the first iteration's execution order. (Default: ``False``)
|
381 |
+
limit_all_gathers (bool): If ``True``, then FSDP explicitly
|
382 |
+
synchronizes the CPU thread to ensure GPU memory usage from only
|
383 |
+
*two* consecutive FSDP instances (the current instance running
|
384 |
+
computation and the next instance whose all-gather is prefetched).
|
385 |
+
If ``False``, then FSDP allows the CPU thread to issue all-gathers
|
386 |
+
without any extra synchronization. (Default: ``True``) We often
|
387 |
+
refer to this feature as the "rate limiter". This flag should only
|
388 |
+
be set to ``False`` for specific CPU-bound workloads with low
|
389 |
+
memory pressure in which case the CPU thread can aggressively issue
|
390 |
+
all kernels without concern for the GPU memory usage.
|
391 |
+
use_orig_params (bool): Setting this to ``True`` has FSDP use
|
392 |
+
``module`` 's original parameters. FSDP exposes those original
|
393 |
+
parameters to the user via :meth:`nn.Module.named_parameters`
|
394 |
+
instead of FSDP's internal :class:`FlatParameter` s. This means
|
395 |
+
that the optimizer step runs on the original parameters, enabling
|
396 |
+
per-original-parameter hyperparameters. FSDP preserves the original
|
397 |
+
parameter variables and manipulates their data between unsharded
|
398 |
+
and sharded forms, where they are always views into the underlying
|
399 |
+
unsharded or sharded :class:`FlatParameter`, respectively. With the
|
400 |
+
current algorithm, the sharded form is always 1D, losing the
|
401 |
+
original tensor structure. An original parameter may have all,
|
402 |
+
some, or none of its data present for a given rank. In the none
|
403 |
+
case, its data will be like a size-0 empty tensor. Users should not
|
404 |
+
author programs relying on what data is present for a given
|
405 |
+
original parameter in its sharded form. ``True`` is required to
|
406 |
+
use ``torch.compile()``. Setting this to ``False`` exposes FSDP's
|
407 |
+
internal :class:`FlatParameter` s to the user via
|
408 |
+
:meth:`nn.Module.named_parameters`. (Default: ``False``)
|
409 |
+
ignored_states (Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]):
|
410 |
+
Ignored parameters or modules that will not be managed by this FSDP
|
411 |
+
instance, meaning that the parameters are not sharded and their
|
412 |
+
gradients are not reduced across ranks. This argument unifies with
|
413 |
+
the existing ``ignored_modules`` argument, and we may deprecate
|
414 |
+
``ignored_modules`` soon. For backward compatibility, we keep both
|
415 |
+
``ignored_states`` and `ignored_modules``, but FSDP only allows one
|
416 |
+
of them to be specified as not ``None``.
|
417 |
+
"""
|
418 |
+
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
module: nn.Module,
|
422 |
+
process_group: ProcessGroupType = None,
|
423 |
+
sharding_strategy: Optional[ShardingStrategy] = None,
|
424 |
+
cpu_offload: Optional[CPUOffload] = None,
|
425 |
+
auto_wrap_policy: Optional[
|
426 |
+
Union[Callable, ModuleWrapPolicy, CustomPolicy]
|
427 |
+
] = None,
|
428 |
+
backward_prefetch: Optional[BackwardPrefetch] = BackwardPrefetch.BACKWARD_PRE,
|
429 |
+
mixed_precision: Optional[MixedPrecision] = None,
|
430 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
|
431 |
+
param_init_fn: Optional[Callable[[nn.Module], None]] = None,
|
432 |
+
device_id: Optional[Union[int, torch.device]] = None,
|
433 |
+
sync_module_states: bool = False,
|
434 |
+
forward_prefetch: bool = False,
|
435 |
+
limit_all_gathers: bool = True,
|
436 |
+
use_orig_params: bool = False,
|
437 |
+
ignored_states: Union[
|
438 |
+
Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
|
439 |
+
] = None,
|
440 |
+
device_mesh: Optional[DeviceMesh] = None,
|
441 |
+
):
|
442 |
+
torch._C._log_api_usage_once("torch.distributed.fsdp")
|
443 |
+
super().__init__()
|
444 |
+
_init_ignored_module_states(self, module, ignored_modules, ignored_states)
|
445 |
+
_init_device_handle(self, module, self._ignored_params, device_id)
|
446 |
+
|
447 |
+
# Add module annotations for Dynamo support (see function for details)
|
448 |
+
_annotate_modules_for_dynamo(module, self._ignored_modules, use_orig_params)
|
449 |
+
|
450 |
+
# Initializes self.process_group, along with rank and world size. This will
|
451 |
+
# also set another attribute, _inter_node_pg, to control the process group
|
452 |
+
# over which sharding occurs, if sharding_strategy is {HYBRID_SHARD, _HYBRID_SHARD_ZERO2}.
|
453 |
+
# Note that this is done before auto_wrapping, so that child FSDP modules simply pick up
|
454 |
+
# the same process group state as the root FSDP module.
|
455 |
+
self._device_mesh = device_mesh
|
456 |
+
_init_process_group_state(
|
457 |
+
self,
|
458 |
+
process_group,
|
459 |
+
sharding_strategy,
|
460 |
+
auto_wrap_policy,
|
461 |
+
device_mesh,
|
462 |
+
)
|
463 |
+
if auto_wrap_policy is not None:
|
464 |
+
root_kwargs = {
|
465 |
+
"process_group": process_group,
|
466 |
+
"sharding_strategy": sharding_strategy,
|
467 |
+
"cpu_offload": cpu_offload,
|
468 |
+
"backward_prefetch": backward_prefetch,
|
469 |
+
"mixed_precision": mixed_precision,
|
470 |
+
"param_init_fn": param_init_fn,
|
471 |
+
"device_id": device_id,
|
472 |
+
"sync_module_states": sync_module_states,
|
473 |
+
"forward_prefetch": forward_prefetch,
|
474 |
+
"limit_all_gathers": limit_all_gathers,
|
475 |
+
"use_orig_params": use_orig_params,
|
476 |
+
"ignored_states": self._ignored_params,
|
477 |
+
"device_mesh": device_mesh,
|
478 |
+
}
|
479 |
+
if sharding_strategy in HYBRID_SHARDING_STRATEGIES and device_mesh is None:
|
480 |
+
# Share root process groups with children to maintain
|
481 |
+
# the invariant that all FSDP modules will have the same
|
482 |
+
# process groups.
|
483 |
+
root_kwargs["process_group"] = (self.process_group, self._inter_node_pg)
|
484 |
+
|
485 |
+
_auto_wrap(
|
486 |
+
module,
|
487 |
+
auto_wrap_policy,
|
488 |
+
self._ignored_modules,
|
489 |
+
self._ignored_params,
|
490 |
+
root_kwargs,
|
491 |
+
FullyShardedDataParallel,
|
492 |
+
)
|
493 |
+
|
494 |
+
backward_prefetch_limit = 1
|
495 |
+
forward_prefetch_limit = 1
|
496 |
+
_init_core_state(
|
497 |
+
self,
|
498 |
+
sharding_strategy,
|
499 |
+
mixed_precision,
|
500 |
+
cpu_offload,
|
501 |
+
limit_all_gathers,
|
502 |
+
use_orig_params,
|
503 |
+
backward_prefetch_limit,
|
504 |
+
forward_prefetch_limit,
|
505 |
+
)
|
506 |
+
_init_runtime_state(self)
|
507 |
+
_init_prefetching_state(self, backward_prefetch, forward_prefetch)
|
508 |
+
_init_buffer_state(self, module)
|
509 |
+
# extension needs to be set before `_init_param_handle_from_module()`
|
510 |
+
_init_extension(self, device_mesh)
|
511 |
+
_init_param_handle_from_module(
|
512 |
+
self,
|
513 |
+
module,
|
514 |
+
device_id,
|
515 |
+
param_init_fn,
|
516 |
+
sync_module_states,
|
517 |
+
)
|
518 |
+
self._fsdp_wrapped_module = module
|
519 |
+
if not use_orig_params:
|
520 |
+
_check_orig_params_flattened(self, self._ignored_params)
|
521 |
+
_register_flat_param(self, self)
|
522 |
+
|
523 |
+
# `_state_dict_type` controls the `state_dict()` behavior, which is
|
524 |
+
# implemented using post-save and pre-load hooks
|
525 |
+
_init_state_dict_state(self)
|
526 |
+
_register_all_state_dict_hooks(self)
|
527 |
+
|
528 |
+
@property
|
529 |
+
def module(self) -> nn.Module:
|
530 |
+
"""Return the wrapped module."""
|
531 |
+
# FSDP's `.module` must refer to the innermost wrapped module when
|
532 |
+
# composing with other module wrappers in order for state dict to work
|
533 |
+
if isinstance(self._fsdp_wrapped_module, ActivationWrapper):
|
534 |
+
return getattr(self._fsdp_wrapped_module, _CHECKPOINT_WRAPPED_MODULE)
|
535 |
+
return self._fsdp_wrapped_module
|
536 |
+
|
537 |
+
@property
|
538 |
+
def _has_params(self) -> bool:
|
539 |
+
"""Returns whether this FSDP instance manages any parameters."""
|
540 |
+
return hasattr(self, "_handle") and self._handle is not None
|
541 |
+
|
542 |
+
@property
|
543 |
+
def _flat_param(self) -> Optional[FlatParameter]:
|
544 |
+
return self._handle.flat_param if self._handle else None
|
545 |
+
|
546 |
+
def __getattr__(self, name: str) -> Any:
|
547 |
+
"""Forward missing attributes to the wrapped module."""
|
548 |
+
try:
|
549 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
550 |
+
except AttributeError:
|
551 |
+
return getattr(self._fsdp_wrapped_module, name)
|
552 |
+
|
553 |
+
def __getitem__(self, key: int) -> Any:
|
554 |
+
"""Forward indexing calls in case the module is an ``nn.Sequential``."""
|
555 |
+
if hasattr(self, FSDP_WRAPPED_MODULE):
|
556 |
+
return self._fsdp_wrapped_module.__getitem__(key) # type: ignore[operator]
|
557 |
+
return super().__getitem__(key)
|
558 |
+
|
559 |
+
def check_is_root(self) -> bool:
|
560 |
+
"""Check if this instance is a root FSDP module."""
|
561 |
+
return _is_fsdp_root(self, self)
|
562 |
+
|
563 |
+
@staticmethod
|
564 |
+
def fsdp_modules(
|
565 |
+
module: nn.Module,
|
566 |
+
root_only: bool = False,
|
567 |
+
) -> List["FullyShardedDataParallel"]:
|
568 |
+
"""Return all nested FSDP instances.
|
569 |
+
|
570 |
+
This possibly includes ``module`` itself and only includes FSDP root modules if ``root_only=True``.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
module (torch.nn.Module): Root module, which may or may not be an
|
574 |
+
``FSDP`` module.
|
575 |
+
root_only (bool): Whether to return only FSDP root modules.
|
576 |
+
(Default: ``False``)
|
577 |
+
|
578 |
+
Returns:
|
579 |
+
List[FullyShardedDataParallel]: FSDP modules that are nested in
|
580 |
+
the input ``module``.
|
581 |
+
"""
|
582 |
+
if root_only:
|
583 |
+
return _get_fsdp_root_states(module)
|
584 |
+
return traversal_utils._get_fsdp_states(module)
|
585 |
+
|
586 |
+
def apply(self, fn: Callable[[nn.Module], None]) -> "FullyShardedDataParallel":
|
587 |
+
r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.
|
588 |
+
|
589 |
+
Typical use includes initializing the parameters of a model (see also :ref:`nn-init-doc`).
|
590 |
+
|
591 |
+
Compared to ``torch.nn.Module.apply``, this version additionally gathers
|
592 |
+
the full parameters before applying ``fn``. It should not be called from
|
593 |
+
within another ``summon_full_params`` context.
|
594 |
+
|
595 |
+
Args:
|
596 |
+
fn (:class:`Module` -> None): function to be applied to each submodule
|
597 |
+
|
598 |
+
Returns:
|
599 |
+
Module: self
|
600 |
+
"""
|
601 |
+
uninitialized = self._is_root is None
|
602 |
+
self._assert_state(TrainingState.IDLE)
|
603 |
+
# Use `_unshard_params_recurse()` with `recurse=False` instead of
|
604 |
+
# `_unshard_fsdp_state_params()` directly to perform lazy
|
605 |
+
# initialization, which is needed to initialize `FlatParameter`
|
606 |
+
# parameter attributes as required by the unshard logic
|
607 |
+
with _unshard_params_recurse(
|
608 |
+
self,
|
609 |
+
self,
|
610 |
+
recurse=False,
|
611 |
+
writeback=True,
|
612 |
+
rank0_only=False,
|
613 |
+
offload_to_cpu=False,
|
614 |
+
with_grads=False,
|
615 |
+
):
|
616 |
+
ret = super().apply(fn)
|
617 |
+
|
618 |
+
# Reset lazy init called in `_unshard_params_recurse()` since `apply()`
|
619 |
+
# may have been called on FSDP instance that is not truly a root, in
|
620 |
+
# which case it will be incorrectly marked as one.
|
621 |
+
if uninitialized and self._is_root:
|
622 |
+
for module in traversal_utils._get_fsdp_states(self):
|
623 |
+
module._reset_lazy_init()
|
624 |
+
|
625 |
+
return ret
|
626 |
+
|
627 |
+
def _mixed_precision_enabled_for_buffers(self) -> bool:
|
628 |
+
"""Return whether the user explicitly enabled buffer mixed precision.
|
629 |
+
|
630 |
+
NOTE: Unlike parameters and gradient reduction, buffer mixed precision
|
631 |
+
is applied at the FSDP instance level, not the ``FlatParameter`` level,
|
632 |
+
which may be different for the composable code path.
|
633 |
+
"""
|
634 |
+
return self.mixed_precision.buffer_dtype is not None
|
635 |
+
|
636 |
+
def _low_precision_hook_enabled(self) -> bool:
|
637 |
+
"""Whether a low precision hook is registered or not."""
|
638 |
+
return self._comm_hook is not None and self._comm_hook in LOW_PRECISION_HOOKS
|
639 |
+
|
640 |
+
def _reset_lazy_init(self) -> None:
|
641 |
+
"""Reset instance so :func:`_lazy_init` will run on the next forward."""
|
642 |
+
self._is_root: Optional[bool] = None
|
643 |
+
|
644 |
+
@staticmethod
|
645 |
+
def set_state_dict_type(
|
646 |
+
module: nn.Module,
|
647 |
+
state_dict_type: StateDictType,
|
648 |
+
state_dict_config: Optional[StateDictConfig] = None,
|
649 |
+
optim_state_dict_config: Optional[OptimStateDictConfig] = None,
|
650 |
+
) -> StateDictSettings:
|
651 |
+
"""Set the ``state_dict_type`` of all the descendant FSDP modules of the target module.
|
652 |
+
|
653 |
+
Also takes (optional) configuration for the model's and optimizer's state dict.
|
654 |
+
The target module does not have to be a FSDP module. If the target
|
655 |
+
module is a FSDP module, its ``state_dict_type`` will also be changed.
|
656 |
+
|
657 |
+
.. note:: This API should be called for only the top-level (root)
|
658 |
+
module.
|
659 |
+
|
660 |
+
.. note:: This API enables users to transparently use the conventional
|
661 |
+
``state_dict`` API to take model checkpoints in cases where the
|
662 |
+
root FSDP module is wrapped by another ``nn.Module``. For example,
|
663 |
+
the following will ensure ``state_dict`` is called on all non-FSDP
|
664 |
+
instances, while dispatching into `sharded_state_dict` implementation
|
665 |
+
for FSDP:
|
666 |
+
|
667 |
+
Example::
|
668 |
+
|
669 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
670 |
+
>>> model = DDP(FSDP(...))
|
671 |
+
>>> FSDP.set_state_dict_type(
|
672 |
+
>>> model,
|
673 |
+
>>> StateDictType.SHARDED_STATE_DICT,
|
674 |
+
>>> state_dict_config = ShardedStateDictConfig(offload_to_cpu=True),
|
675 |
+
>>> optim_state_dict_config = OptimStateDictConfig(offload_to_cpu=True),
|
676 |
+
>>> )
|
677 |
+
>>> param_state_dict = model.state_dict()
|
678 |
+
>>> optim_state_dict = FSDP.optim_state_dict(model, optim)
|
679 |
+
|
680 |
+
Args:
|
681 |
+
module (torch.nn.Module): Root module.
|
682 |
+
state_dict_type (StateDictType): the desired ``state_dict_type`` to set.
|
683 |
+
state_dict_config (Optional[StateDictConfig]): the configuration for the
|
684 |
+
target ``state_dict_type``.
|
685 |
+
optim_state_dict_config (Optional[OptimStateDictConfig]): the configuration
|
686 |
+
for the optimizer state dict.
|
687 |
+
|
688 |
+
Returns:
|
689 |
+
A StateDictSettings that include the previous state_dict type and
|
690 |
+
configuration for the module.
|
691 |
+
"""
|
692 |
+
_state_dict_type_to_config = {
|
693 |
+
StateDictType.FULL_STATE_DICT: FullStateDictConfig,
|
694 |
+
StateDictType.LOCAL_STATE_DICT: LocalStateDictConfig,
|
695 |
+
StateDictType.SHARDED_STATE_DICT: ShardedStateDictConfig,
|
696 |
+
}
|
697 |
+
_optim_state_dict_type_to_config = {
|
698 |
+
StateDictType.FULL_STATE_DICT: FullOptimStateDictConfig,
|
699 |
+
StateDictType.LOCAL_STATE_DICT: LocalOptimStateDictConfig,
|
700 |
+
StateDictType.SHARDED_STATE_DICT: ShardedOptimStateDictConfig,
|
701 |
+
}
|
702 |
+
|
703 |
+
# Use the default config if a state_dict config is not set.
|
704 |
+
state_dict_config_type = _state_dict_type_to_config[state_dict_type]
|
705 |
+
optim_state_dict_config_type = _optim_state_dict_type_to_config[state_dict_type]
|
706 |
+
if state_dict_config is None:
|
707 |
+
state_dict_config = state_dict_config_type()
|
708 |
+
if optim_state_dict_config is None:
|
709 |
+
optim_state_dict_config = optim_state_dict_config_type()
|
710 |
+
if state_dict_config_type != type(state_dict_config):
|
711 |
+
raise RuntimeError(
|
712 |
+
f"Expected state_dict_config of type {state_dict_config_type} "
|
713 |
+
f"but got {type(state_dict_config)}"
|
714 |
+
)
|
715 |
+
if optim_state_dict_config_type != type(optim_state_dict_config):
|
716 |
+
raise RuntimeError(
|
717 |
+
f"Expected optim_state_dict_config of type {optim_state_dict_config_type} "
|
718 |
+
f"but got {type(optim_state_dict_config)}"
|
719 |
+
)
|
720 |
+
|
721 |
+
# Set the state_dict type and configurations.
|
722 |
+
prev_state_dict_type = None
|
723 |
+
prev_state_dict_config = None
|
724 |
+
prev_optim_state_dict_config = None
|
725 |
+
for submodule in traversal_utils._get_fsdp_states(module):
|
726 |
+
if prev_state_dict_type is None:
|
727 |
+
prev_state_dict_type = submodule._state_dict_type
|
728 |
+
else:
|
729 |
+
assert (
|
730 |
+
prev_state_dict_type == submodule._state_dict_type
|
731 |
+
), "All FSDP modules should have the same state_dict_type."
|
732 |
+
if prev_state_dict_config is None:
|
733 |
+
prev_state_dict_config = submodule._state_dict_config
|
734 |
+
else:
|
735 |
+
assert isinstance(
|
736 |
+
submodule._state_dict_config, type(prev_state_dict_config)
|
737 |
+
), "All FSDP modules must have the same type of state_dict_config."
|
738 |
+
if prev_optim_state_dict_config is None:
|
739 |
+
prev_optim_state_dict_config = submodule._optim_state_dict_config
|
740 |
+
else:
|
741 |
+
assert isinstance(
|
742 |
+
submodule._optim_state_dict_config,
|
743 |
+
type(prev_optim_state_dict_config),
|
744 |
+
), "All FSDP modules must have the same type of optim_state_dict_config."
|
745 |
+
|
746 |
+
submodule._state_dict_type = state_dict_type
|
747 |
+
submodule._state_dict_config = state_dict_config
|
748 |
+
submodule._optim_state_dict_config = optim_state_dict_config
|
749 |
+
|
750 |
+
return StateDictSettings(
|
751 |
+
prev_state_dict_type, prev_state_dict_config, prev_optim_state_dict_config
|
752 |
+
)
|
753 |
+
|
754 |
+
@staticmethod
|
755 |
+
def get_state_dict_type(module: nn.Module) -> StateDictSettings:
|
756 |
+
"""Get the state_dict_type and the corresponding configurations for the FSDP modules rooted at ``module``.
|
757 |
+
|
758 |
+
The target module does not have to be an FSDP module.
|
759 |
+
|
760 |
+
Returns:
|
761 |
+
A ``StateDictSettings`` containing the state_dict_type and
|
762 |
+
state_dict / optim_state_dict configs that are currently set.
|
763 |
+
|
764 |
+
Raises:
|
765 |
+
``AssertionError`` if the ``StateDictSettings`` for different
|
766 |
+
FSDP submodules differ.
|
767 |
+
"""
|
768 |
+
state_dict_settings: Optional[StateDictSettings] = None
|
769 |
+
for submodule in FullyShardedDataParallel.fsdp_modules(module):
|
770 |
+
if state_dict_settings is None:
|
771 |
+
state_dict_settings = StateDictSettings(
|
772 |
+
state_dict_type=submodule._state_dict_type,
|
773 |
+
state_dict_config=submodule._state_dict_config,
|
774 |
+
optim_state_dict_config=submodule._optim_state_dict_config,
|
775 |
+
)
|
776 |
+
_set_optim_use_dtensor(submodule, state_dict_settings)
|
777 |
+
else:
|
778 |
+
submodule_settings = StateDictSettings(
|
779 |
+
submodule._state_dict_type,
|
780 |
+
submodule._state_dict_config,
|
781 |
+
submodule._optim_state_dict_config,
|
782 |
+
)
|
783 |
+
assert state_dict_settings == submodule_settings, (
|
784 |
+
"All FSDP modules must have the same state dict settings."
|
785 |
+
f"Got {submodule_settings} and {state_dict_settings}."
|
786 |
+
)
|
787 |
+
_set_optim_use_dtensor(submodule, submodule_settings)
|
788 |
+
return state_dict_settings
|
789 |
+
|
790 |
+
@staticmethod
|
791 |
+
@contextlib.contextmanager
|
792 |
+
def state_dict_type(
|
793 |
+
module: nn.Module,
|
794 |
+
state_dict_type: StateDictType,
|
795 |
+
state_dict_config: Optional[StateDictConfig] = None,
|
796 |
+
optim_state_dict_config: Optional[OptimStateDictConfig] = None,
|
797 |
+
) -> Generator:
|
798 |
+
"""Set the ``state_dict_type`` of all the descendant FSDP modules of the target module.
|
799 |
+
|
800 |
+
This context manager has the same functions as :meth:`set_state_dict_type`. Read the document of
|
801 |
+
:meth:`set_state_dict_type` for the detail.
|
802 |
+
|
803 |
+
Example::
|
804 |
+
|
805 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
806 |
+
>>> model = DDP(FSDP(...))
|
807 |
+
>>> with FSDP.state_dict_type(
|
808 |
+
>>> model,
|
809 |
+
>>> StateDictType.SHARDED_STATE_DICT,
|
810 |
+
>>> ):
|
811 |
+
>>> checkpoint = model.state_dict()
|
812 |
+
|
813 |
+
Args:
|
814 |
+
module (torch.nn.Module): Root module.
|
815 |
+
state_dict_type (StateDictType): the desired ``state_dict_type`` to set.
|
816 |
+
state_dict_config (Optional[StateDictConfig]): the model ``state_dict``
|
817 |
+
configuration for the target ``state_dict_type``.
|
818 |
+
optim_state_dict_config (Optional[OptimStateDictConfig]): the optimizer
|
819 |
+
``state_dict`` configuration for the target ``state_dict_type``.
|
820 |
+
"""
|
821 |
+
prev_state_dict_settings = FullyShardedDataParallel.set_state_dict_type(
|
822 |
+
module,
|
823 |
+
state_dict_type,
|
824 |
+
state_dict_config,
|
825 |
+
optim_state_dict_config,
|
826 |
+
)
|
827 |
+
yield
|
828 |
+
FullyShardedDataParallel.set_state_dict_type(
|
829 |
+
module,
|
830 |
+
prev_state_dict_settings.state_dict_type,
|
831 |
+
prev_state_dict_settings.state_dict_config,
|
832 |
+
prev_state_dict_settings.optim_state_dict_config,
|
833 |
+
)
|
834 |
+
|
835 |
+
def forward(self, *args: Any, **kwargs: Any) -> Any:
|
836 |
+
"""Run the forward pass for the wrapped module, inserting FSDP-specific pre- and post-forward sharding logic."""
|
837 |
+
handle = self._handle
|
838 |
+
with torch.autograd.profiler.record_function(
|
839 |
+
"FullyShardedDataParallel.forward"
|
840 |
+
):
|
841 |
+
args, kwargs = _root_pre_forward(self, self, args, kwargs)
|
842 |
+
unused = None
|
843 |
+
args, kwargs = _pre_forward(
|
844 |
+
self,
|
845 |
+
handle,
|
846 |
+
_pre_forward_unshard,
|
847 |
+
self._fsdp_wrapped_module,
|
848 |
+
args,
|
849 |
+
kwargs,
|
850 |
+
)
|
851 |
+
if handle:
|
852 |
+
_p_assert(
|
853 |
+
handle.flat_param.device == self.compute_device,
|
854 |
+
"Expected `FlatParameter` to be on the compute device "
|
855 |
+
f"{self.compute_device} but got {handle.flat_param.device}",
|
856 |
+
)
|
857 |
+
output = self._fsdp_wrapped_module(*args, **kwargs)
|
858 |
+
return _post_forward(
|
859 |
+
self, handle, _post_forward_reshard, self, unused, output
|
860 |
+
)
|
861 |
+
|
862 |
+
@staticmethod
|
863 |
+
@contextlib.contextmanager
|
864 |
+
def summon_full_params(
|
865 |
+
module: nn.Module,
|
866 |
+
recurse: bool = True,
|
867 |
+
writeback: bool = True,
|
868 |
+
rank0_only: bool = False,
|
869 |
+
offload_to_cpu: bool = False,
|
870 |
+
with_grads: bool = False,
|
871 |
+
) -> Generator:
|
872 |
+
r"""Expose full params for FSDP instances with this context manager.
|
873 |
+
|
874 |
+
Can be useful *after* forward/backward for a model to get
|
875 |
+
the params for additional processing or checking. It can take a non-FSDP
|
876 |
+
module and will summon full params for all contained FSDP modules as
|
877 |
+
well as their children, depending on the ``recurse`` argument.
|
878 |
+
|
879 |
+
.. note:: This can be used on inner FSDPs.
|
880 |
+
.. note:: This can *not* be used within a forward or backward pass. Nor
|
881 |
+
can forward and backward be started from within this context.
|
882 |
+
.. note:: Parameters will revert to their local shards after the context
|
883 |
+
manager exits, storage behavior is the same as forward.
|
884 |
+
.. note:: The full parameters can be modified, but only the portion
|
885 |
+
corresponding to the local param shard will persist after the
|
886 |
+
context manager exits (unless ``writeback=False``, in which case
|
887 |
+
changes will be discarded). In the case where FSDP does not shard
|
888 |
+
the parameters, currently only when ``world_size == 1``, or ``NO_SHARD``
|
889 |
+
config, the modification is persisted regardless of ``writeback``.
|
890 |
+
.. note:: This method works on modules which are not FSDP themselves but
|
891 |
+
may contain multiple independent FSDP units. In that case, the given
|
892 |
+
arguments will apply to all contained FSDP units.
|
893 |
+
|
894 |
+
.. warning:: Note that ``rank0_only=True`` in conjunction with
|
895 |
+
``writeback=True`` is not currently supported and will raise an
|
896 |
+
error. This is because model parameter shapes would be different
|
897 |
+
across ranks within the context, and writing to them can lead to
|
898 |
+
inconsistency across ranks when the context is exited.
|
899 |
+
|
900 |
+
.. warning:: Note that ``offload_to_cpu`` and ``rank0_only=False`` will
|
901 |
+
result in full parameters being redundantly copied to CPU memory for
|
902 |
+
GPUs that reside on the same machine, which may incur the risk of
|
903 |
+
CPU OOM. It is recommended to use ``offload_to_cpu`` with
|
904 |
+
``rank0_only=True``.
|
905 |
+
|
906 |
+
Args:
|
907 |
+
recurse (bool, Optional): recursively summon all params for nested
|
908 |
+
FSDP instances (default: True).
|
909 |
+
writeback (bool, Optional): if ``False``, modifications to params are
|
910 |
+
discarded after the context manager exits;
|
911 |
+
disabling this can be slightly more efficient (default: True)
|
912 |
+
rank0_only (bool, Optional): if ``True``, full parameters are
|
913 |
+
materialized on only global rank 0. This means that within the
|
914 |
+
context, only rank 0 will have full parameters and the other
|
915 |
+
ranks will have sharded parameters. Note that setting
|
916 |
+
``rank0_only=True`` with ``writeback=True`` is not supported,
|
917 |
+
as model parameter shapes will be different across ranks
|
918 |
+
within the context, and writing to them can lead to
|
919 |
+
inconsistency across ranks when the context is exited.
|
920 |
+
offload_to_cpu (bool, Optional): If ``True``, full parameters are
|
921 |
+
offloaded to CPU. Note that this offloading currently only
|
922 |
+
occurs if the parameter is sharded (which is only not the case
|
923 |
+
for world_size = 1 or ``NO_SHARD`` config). It is recommended
|
924 |
+
to use ``offload_to_cpu`` with ``rank0_only=True`` to avoid
|
925 |
+
redundant copies of model parameters being offloaded to the same CPU memory.
|
926 |
+
with_grads (bool, Optional): If ``True``, gradients are also
|
927 |
+
unsharded with the parameters. Currently, this is only
|
928 |
+
supported when passing ``use_orig_params=True`` to the FSDP
|
929 |
+
constructor and ``offload_to_cpu=False`` to this method.
|
930 |
+
(Default: ``False``)
|
931 |
+
"""
|
932 |
+
with _unshard_params(
|
933 |
+
module, recurse, writeback, rank0_only, offload_to_cpu, with_grads
|
934 |
+
):
|
935 |
+
yield
|
936 |
+
|
937 |
+
@contextlib.contextmanager
|
938 |
+
def _deregister_orig_params_ctx(self):
|
939 |
+
"""Deregister the original parameters and expose the :class:`FlatParameter`.
|
940 |
+
|
941 |
+
If a :class:`FlatParameter` is sharded, then
|
942 |
+
this refreshes the sharded views before exiting. This method should
|
943 |
+
only be called when using the original parameters.
|
944 |
+
"""
|
945 |
+
_p_assert(
|
946 |
+
self._use_orig_params,
|
947 |
+
"`_deregister_orig_params_ctx()` should only be called when "
|
948 |
+
"`_use_orig_params=True`",
|
949 |
+
)
|
950 |
+
for fsdp_module in traversal_utils._get_fsdp_states(self):
|
951 |
+
_deregister_orig_params(fsdp_module, fsdp_module)
|
952 |
+
try:
|
953 |
+
yield
|
954 |
+
finally:
|
955 |
+
for fsdp_module in traversal_utils._get_fsdp_states(self):
|
956 |
+
_register_orig_params(fsdp_module, fsdp_module)
|
957 |
+
|
958 |
+
def _apply(self, *args, **kwargs):
|
959 |
+
"""Deregister the original parameters and expose the :class:`FlatParameter` s before calling ``_apply()``."""
|
960 |
+
# When using the original parameters: Since (1) the `FlatParameter`s
|
961 |
+
# own the storage and (2) `_apply()` is the subroutine underlying the
|
962 |
+
# most common storage-changing ops like `to()` and `cuda()`, we
|
963 |
+
# override `_apply()` to have the storage change directly performed on
|
964 |
+
# the `FlatParameter`s instead of applying to the original parameters
|
965 |
+
# and then writing back to the `FlatParameter`s.
|
966 |
+
context = (
|
967 |
+
self._deregister_orig_params_ctx()
|
968 |
+
if self._use_orig_params
|
969 |
+
else contextlib.nullcontext()
|
970 |
+
)
|
971 |
+
with context:
|
972 |
+
return super()._apply(*args, **kwargs)
|
973 |
+
|
974 |
+
def named_buffers(
|
975 |
+
self,
|
976 |
+
*args,
|
977 |
+
**kwargs,
|
978 |
+
) -> Iterator[Tuple[str, torch.Tensor]]:
|
979 |
+
"""Return an iterator over module buffers, yielding both the name of the buffer and the buffer itself.
|
980 |
+
|
981 |
+
Intercepts buffer names and removes all occurrences of the FSDP-specific flattened buffer prefix
|
982 |
+
when inside the :meth:`summon_full_params` context manager.
|
983 |
+
"""
|
984 |
+
should_clean_name = self.training_state == TrainingState.SUMMON_FULL_PARAMS
|
985 |
+
for buffer_name, buffer in super().named_buffers(*args, **kwargs):
|
986 |
+
if should_clean_name:
|
987 |
+
# Remove any instances of the FSDP-specific prefix; there can
|
988 |
+
# be multiple in the case of nested FSDP modules
|
989 |
+
buffer_name = buffer_name.replace(FSDP_PREFIX, "")
|
990 |
+
yield (buffer_name, buffer)
|
991 |
+
|
992 |
+
def named_parameters(
|
993 |
+
self,
|
994 |
+
*args,
|
995 |
+
**kwargs,
|
996 |
+
) -> Iterator[Tuple[str, torch.nn.Parameter]]:
|
997 |
+
"""Return an iterator over module parameters, yielding both the name of the parameter and the parameter itself.
|
998 |
+
|
999 |
+
Intercepts parameter names and removes all occurrences of the FSDP-specific flattened parameter prefix
|
1000 |
+
when inside the :meth:`summon_full_params` context manager.
|
1001 |
+
"""
|
1002 |
+
should_clean_name = self.training_state == TrainingState.SUMMON_FULL_PARAMS
|
1003 |
+
for param_name, param in super().named_parameters(*args, **kwargs):
|
1004 |
+
if should_clean_name:
|
1005 |
+
# Remove any instances of the FSDP-specific prefix; there can
|
1006 |
+
# be multiple in the case of nested FSDP modules
|
1007 |
+
param_name = param_name.replace(FSDP_PREFIX, "")
|
1008 |
+
yield (param_name, param)
|
1009 |
+
|
1010 |
+
def _assert_state(self, state: Union[TrainingState, List[TrainingState]]) -> None:
|
1011 |
+
"""Assert we are in the given state."""
|
1012 |
+
# Since assert can be turned off and this error checking
|
1013 |
+
# is really important, we use explicit error checking
|
1014 |
+
# and raise a ValueError if needed.
|
1015 |
+
if isinstance(state, TrainingState):
|
1016 |
+
state = [state]
|
1017 |
+
if self.training_state not in state:
|
1018 |
+
msg = (
|
1019 |
+
f"expected to be in states {state} but current state "
|
1020 |
+
f"is {self.training_state}"
|
1021 |
+
)
|
1022 |
+
# In case we are failing in the context of autograd hook, asserting
|
1023 |
+
# may not generate useful msg. So, let's print it to be sure.
|
1024 |
+
if self.rank == 0:
|
1025 |
+
print(f"Asserting FSDP instance is: {self}")
|
1026 |
+
print(f"ERROR: {msg}")
|
1027 |
+
traceback.print_stack()
|
1028 |
+
raise ValueError(msg)
|
1029 |
+
|
1030 |
+
@contextmanager
|
1031 |
+
def no_sync(self) -> Generator:
|
1032 |
+
"""Disable gradient synchronizations across FSDP instances.
|
1033 |
+
|
1034 |
+
Within this context, gradients will be accumulated in module
|
1035 |
+
variables, which will later be synchronized in the first
|
1036 |
+
forward-backward pass after exiting the context. This should only be
|
1037 |
+
used on the root FSDP instance and will recursively apply to all
|
1038 |
+
children FSDP instances.
|
1039 |
+
|
1040 |
+
.. note:: This likely results in higher memory usage because FSDP will
|
1041 |
+
accumulate the full model gradients (instead of gradient shards)
|
1042 |
+
until the eventual sync.
|
1043 |
+
|
1044 |
+
.. note:: When used with CPU offloading, the gradients will not be
|
1045 |
+
offloaded to CPU when inside the context manager. Instead, they
|
1046 |
+
will only be offloaded right after the eventual sync.
|
1047 |
+
"""
|
1048 |
+
_lazy_init(self, self)
|
1049 |
+
if not self._is_root:
|
1050 |
+
raise RuntimeError(
|
1051 |
+
"`no_sync()` on inner FSDP instances is not supported. Please call `no_sync()` on root FSDP module."
|
1052 |
+
)
|
1053 |
+
self._assert_state(TrainingState.IDLE)
|
1054 |
+
old_flags = []
|
1055 |
+
for m in self.modules():
|
1056 |
+
if isinstance(m, FullyShardedDataParallel):
|
1057 |
+
old_flags.append((m, m._sync_gradients))
|
1058 |
+
m._sync_gradients = False
|
1059 |
+
try:
|
1060 |
+
yield
|
1061 |
+
finally:
|
1062 |
+
for m, old_flag in old_flags:
|
1063 |
+
assert not m._sync_gradients, (
|
1064 |
+
"`_sync_gradients` was incorrectly set to "
|
1065 |
+
"`True` while in the `no_sync()` context manager"
|
1066 |
+
)
|
1067 |
+
m._sync_gradients = old_flag
|
1068 |
+
|
1069 |
+
@torch.no_grad()
|
1070 |
+
def clip_grad_norm_(
|
1071 |
+
self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0
|
1072 |
+
) -> torch.Tensor:
|
1073 |
+
"""Clip the gradient norm of all parameters.
|
1074 |
+
|
1075 |
+
The norm is computed over all parameters' gradients as viewed as a single vector, and the
|
1076 |
+
gradients are modified in-place.
|
1077 |
+
|
1078 |
+
Args:
|
1079 |
+
max_norm (float or int): max norm of the gradients
|
1080 |
+
norm_type (float or int): type of the used p-norm. Can be ``'inf'``
|
1081 |
+
for infinity norm.
|
1082 |
+
|
1083 |
+
Returns:
|
1084 |
+
Total norm of the parameters (viewed as a single vector).
|
1085 |
+
|
1086 |
+
.. note:: If every FSDP instance uses ``NO_SHARD``, meaning that no
|
1087 |
+
gradients are sharded across ranks, then you may directly use
|
1088 |
+
:func:`torch.nn.utils.clip_grad_norm_`.
|
1089 |
+
|
1090 |
+
.. note:: If at least some FSDP instance uses a sharded strategy (i.e.
|
1091 |
+
one other than ``NO_SHARD``), then you should use this method
|
1092 |
+
instead of :func:`torch.nn.utils.clip_grad_norm_` since this method
|
1093 |
+
handles the fact that gradients are sharded across ranks.
|
1094 |
+
|
1095 |
+
.. note:: The total norm returned will have the "largest" dtype across
|
1096 |
+
all parameters/gradients as defined by PyTorch's type promotion
|
1097 |
+
semantics. For example, if *all* parameters/gradients use a low
|
1098 |
+
precision dtype, then the returned norm's dtype will be that low
|
1099 |
+
precision dtype, but if there exists at least one parameter/
|
1100 |
+
gradient using FP32, then the returned norm's dtype will be FP32.
|
1101 |
+
|
1102 |
+
.. warning:: This needs to be called on all ranks since it uses
|
1103 |
+
collective communications.
|
1104 |
+
"""
|
1105 |
+
_lazy_init(self, self)
|
1106 |
+
if not self._is_root:
|
1107 |
+
raise RuntimeError(
|
1108 |
+
"`clip_grad_norm_()` should only be called on the root FSDP instance"
|
1109 |
+
)
|
1110 |
+
self._assert_state(TrainingState.IDLE)
|
1111 |
+
# If every FSDP instance uses `NO_SHARD`, then we can directly use
|
1112 |
+
# the normal `nn.utils` one targeting local gradients
|
1113 |
+
all_no_shard = all(
|
1114 |
+
not handle.uses_sharded_strategy for handle in self._all_handles
|
1115 |
+
)
|
1116 |
+
if all_no_shard:
|
1117 |
+
return torch.nn.utils.clip_grad_norm_(
|
1118 |
+
self.parameters(), max_norm, norm_type
|
1119 |
+
)
|
1120 |
+
# Otherwise, there exists some FSDP instance using a sharded strategy,
|
1121 |
+
# where sharded and non-sharded parameters must be handled separately
|
1122 |
+
max_norm = float(max_norm)
|
1123 |
+
norm_type = float(norm_type)
|
1124 |
+
sharded_params = set()
|
1125 |
+
nonsharded_params = set() # `NO_SHARD` or not FSDP-managed
|
1126 |
+
grads: List[torch.Tensor] = []
|
1127 |
+
for handle in self._all_handles:
|
1128 |
+
target_set = (
|
1129 |
+
sharded_params if handle.uses_sharded_strategy else nonsharded_params
|
1130 |
+
)
|
1131 |
+
if handle._use_orig_params:
|
1132 |
+
for param in handle.flat_param._params:
|
1133 |
+
target_set.add(param)
|
1134 |
+
if param.grad is not None:
|
1135 |
+
grads.append(param.grad)
|
1136 |
+
else:
|
1137 |
+
target_set.add(handle.flat_param)
|
1138 |
+
if handle.flat_param.grad is not None:
|
1139 |
+
grads.append(handle.flat_param.grad)
|
1140 |
+
for param in self.parameters():
|
1141 |
+
not_fsdp_managed = (
|
1142 |
+
param not in sharded_params and param not in nonsharded_params
|
1143 |
+
)
|
1144 |
+
if not_fsdp_managed:
|
1145 |
+
nonsharded_params.add(param)
|
1146 |
+
if param.grad is not None:
|
1147 |
+
grads.append(param.grad)
|
1148 |
+
# Compute local norms (forced to be in FP32)
|
1149 |
+
local_sharded_norm = _get_grad_norm(sharded_params, norm_type).to(
|
1150 |
+
self.compute_device
|
1151 |
+
)
|
1152 |
+
local_nonsharded_norm = _get_grad_norm(nonsharded_params, norm_type).to(
|
1153 |
+
self.compute_device
|
1154 |
+
)
|
1155 |
+
# Reconstruct the total gradient norm depending on the norm type
|
1156 |
+
if norm_type == math.inf:
|
1157 |
+
total_norm = torch.maximum(local_sharded_norm, local_nonsharded_norm)
|
1158 |
+
dist.all_reduce(
|
1159 |
+
total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group
|
1160 |
+
)
|
1161 |
+
else:
|
1162 |
+
total_norm = local_sharded_norm**norm_type
|
1163 |
+
dist.all_reduce(total_norm, group=self.process_group)
|
1164 |
+
# All-reducing the local non-sharded norm would count it an extra
|
1165 |
+
# world-size-many times
|
1166 |
+
total_norm += local_nonsharded_norm**norm_type
|
1167 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
1168 |
+
if self.cpu_offload.offload_params:
|
1169 |
+
total_norm = total_norm.cpu()
|
1170 |
+
|
1171 |
+
clip_coef = max_norm / (total_norm + 1e-6)
|
1172 |
+
# Multiplying by the clamped coefficient is meaningless when it is
|
1173 |
+
# equal to 1, but it avoids the host-device sync that would result from
|
1174 |
+
# `if clip_coef < 1`
|
1175 |
+
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
|
1176 |
+
for grad in grads:
|
1177 |
+
grad.mul_(clip_coef_clamped.to(grad.device, grad.dtype))
|
1178 |
+
# Use the "largest" dtype by type promotion semantics to use the same
|
1179 |
+
# dtype as if we did not force local norm computation to be in FP32
|
1180 |
+
if len(grads) == 0:
|
1181 |
+
# If this rank has no gradients, then we must default to FP32
|
1182 |
+
# unless we use additional communication, which we prefer to avoid
|
1183 |
+
# since `clip_grad_norm_()` is called in the training loop
|
1184 |
+
warnings.warn(
|
1185 |
+
f"Called FSDP.clip_grad_norm_() on rank {self.rank} with no "
|
1186 |
+
"gradients -- returning the total norm in the default dtype "
|
1187 |
+
f"{total_norm.dtype}"
|
1188 |
+
) # warn since this is generally unexpected
|
1189 |
+
return total_norm
|
1190 |
+
total_norm_dtype = functools.reduce(
|
1191 |
+
torch.promote_types,
|
1192 |
+
[grad.dtype for grad in grads],
|
1193 |
+
)
|
1194 |
+
return total_norm.to(total_norm_dtype)
|
1195 |
+
|
1196 |
+
@staticmethod
|
1197 |
+
def _warn_optim_input(optim_input):
|
1198 |
+
if optim_input is not None:
|
1199 |
+
warnings.warn(
|
1200 |
+
"The `optim_input` argument is deprecated and will be removed after PyTorch 1.13. You may remove it "
|
1201 |
+
"from your code without changing its functionality."
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
@staticmethod
|
1205 |
+
def _is_using_optim_input(optim_input, optim) -> bool:
|
1206 |
+
if optim_input is None and optim is None:
|
1207 |
+
# Use the default behavior of `optim_input``
|
1208 |
+
return True
|
1209 |
+
if optim_input is not None:
|
1210 |
+
# Use the `optim_input` code path
|
1211 |
+
return True
|
1212 |
+
# Use the `optim` code path
|
1213 |
+
return False
|
1214 |
+
|
1215 |
+
@staticmethod
|
1216 |
+
def _warn_legacy_optim_state_dict(curr: str, new: str):
|
1217 |
+
warnings.warn(
|
1218 |
+
f"``FullyShardedDataParallel.{curr}``is being deprecated and is "
|
1219 |
+
f"replaced by ``FullyShardedDataParallel.{new}``. "
|
1220 |
+
f"``FullyShardedDataParallel.{curr}`` may be removed after PyTorch 2.2."
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
@staticmethod
|
1224 |
+
def _optim_state_dict_impl(
|
1225 |
+
model: torch.nn.Module,
|
1226 |
+
optim: torch.optim.Optimizer,
|
1227 |
+
optim_state_dict: Dict[str, Any],
|
1228 |
+
optim_input: Optional[
|
1229 |
+
Union[
|
1230 |
+
List[Dict[str, Any]],
|
1231 |
+
Iterable[torch.nn.Parameter],
|
1232 |
+
]
|
1233 |
+
] = None,
|
1234 |
+
rank0_only: bool = True,
|
1235 |
+
full_state_dict: bool = True,
|
1236 |
+
group: Optional[dist.ProcessGroup] = None,
|
1237 |
+
cpu_offload: bool = True,
|
1238 |
+
) -> Dict[str, Any]:
|
1239 |
+
"""Transform the state-dict of an optimizer corresponding to a sharded model.
|
1240 |
+
|
1241 |
+
This is the internal API that is used by all the optim_state_dict implementations.
|
1242 |
+
Given model, optim, the original optim_state_dict, this API removes the
|
1243 |
+
FSDP internal information and internal sharding from the optim_state_dict.
|
1244 |
+
"""
|
1245 |
+
if full_state_dict:
|
1246 |
+
FullyShardedDataParallel._warn_optim_input(optim_input)
|
1247 |
+
using_optim_input = FullyShardedDataParallel._is_using_optim_input(
|
1248 |
+
optim_input,
|
1249 |
+
optim,
|
1250 |
+
)
|
1251 |
+
else:
|
1252 |
+
using_optim_input = False
|
1253 |
+
assert optim_input is None and not rank0_only
|
1254 |
+
|
1255 |
+
use_orig_params = FullyShardedDataParallel.fsdp_modules(model)[
|
1256 |
+
0
|
1257 |
+
]._use_orig_params
|
1258 |
+
assert all(
|
1259 |
+
use_orig_params == m._use_orig_params
|
1260 |
+
for m in FullyShardedDataParallel.fsdp_modules(model)
|
1261 |
+
), "Not all FSDP modules have the same _use_orig_params value"
|
1262 |
+
|
1263 |
+
return _optim_state_dict(
|
1264 |
+
model=model,
|
1265 |
+
optim=optim,
|
1266 |
+
optim_state_dict=optim_state_dict,
|
1267 |
+
optim_input=optim_input,
|
1268 |
+
rank0_only=rank0_only,
|
1269 |
+
shard_state=not full_state_dict,
|
1270 |
+
group=group,
|
1271 |
+
using_optim_input=using_optim_input,
|
1272 |
+
use_orig_params=use_orig_params,
|
1273 |
+
cpu_offload=cpu_offload,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
@staticmethod
|
1277 |
+
def _optim_state_dict_to_load_impl(
|
1278 |
+
optim_state_dict: Dict[str, Any],
|
1279 |
+
model: torch.nn.Module,
|
1280 |
+
optim_input: Optional[
|
1281 |
+
Union[
|
1282 |
+
List[Dict[str, Any]],
|
1283 |
+
Iterable[torch.nn.Parameter],
|
1284 |
+
]
|
1285 |
+
] = None,
|
1286 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
1287 |
+
full_state_dict: bool = True,
|
1288 |
+
rank0_only: bool = False,
|
1289 |
+
is_named_optimizer: bool = False,
|
1290 |
+
group: Optional[dist.ProcessGroup] = None,
|
1291 |
+
) -> Dict[str, Any]:
|
1292 |
+
"""
|
1293 |
+
Convert an optimizer state-dict so that it can be loaded into the optimizer associated with the FSDP model.
|
1294 |
+
|
1295 |
+
This is the internal API that is used by all the load optim_state_dict implementations.
|
1296 |
+
Given model, optim, and the saved optim_state_dict, this API adds the FSDP
|
1297 |
+
internal information and internal sharding to the optim_state_dict.
|
1298 |
+
"""
|
1299 |
+
if full_state_dict:
|
1300 |
+
FullyShardedDataParallel._warn_optim_input(optim_input)
|
1301 |
+
using_optim_input = FullyShardedDataParallel._is_using_optim_input(
|
1302 |
+
optim_input,
|
1303 |
+
optim,
|
1304 |
+
)
|
1305 |
+
else:
|
1306 |
+
using_optim_input = False
|
1307 |
+
assert optim_input is None and not rank0_only
|
1308 |
+
|
1309 |
+
use_orig_params = FullyShardedDataParallel.fsdp_modules(model)[
|
1310 |
+
0
|
1311 |
+
]._use_orig_params
|
1312 |
+
assert all(
|
1313 |
+
use_orig_params == m._use_orig_params
|
1314 |
+
for m in FullyShardedDataParallel.fsdp_modules(model)
|
1315 |
+
), "Not all FSDP modules have the same _use_orig_params value"
|
1316 |
+
|
1317 |
+
if rank0_only and dist.get_rank(group) > 0:
|
1318 |
+
optim_state_dict = {}
|
1319 |
+
sharded_osd = _flatten_optim_state_dict(
|
1320 |
+
optim_state_dict,
|
1321 |
+
model=model,
|
1322 |
+
use_orig_params=use_orig_params,
|
1323 |
+
optim=(optim if is_named_optimizer else None),
|
1324 |
+
rank0_only=rank0_only,
|
1325 |
+
group=group,
|
1326 |
+
)
|
1327 |
+
return _rekey_sharded_optim_state_dict(
|
1328 |
+
sharded_osd,
|
1329 |
+
model=model,
|
1330 |
+
optim=optim,
|
1331 |
+
optim_input=optim_input,
|
1332 |
+
using_optim_input=using_optim_input,
|
1333 |
+
is_named_optimizer=is_named_optimizer,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
@staticmethod
|
1337 |
+
def full_optim_state_dict(
|
1338 |
+
model: torch.nn.Module,
|
1339 |
+
optim: torch.optim.Optimizer,
|
1340 |
+
optim_input: Optional[
|
1341 |
+
Union[
|
1342 |
+
List[Dict[str, Any]],
|
1343 |
+
Iterable[torch.nn.Parameter],
|
1344 |
+
]
|
1345 |
+
] = None,
|
1346 |
+
rank0_only: bool = True,
|
1347 |
+
group: Optional[dist.ProcessGroup] = None,
|
1348 |
+
) -> Dict[str, Any]:
|
1349 |
+
"""Return the full optimizer state-dict.
|
1350 |
+
|
1351 |
+
Consolidates the full optimizer state on rank 0 and returns it
|
1352 |
+
as a :class:`dict` following the convention of
|
1353 |
+
:meth:`torch.optim.Optimizer.state_dict`, i.e. with keys ``"state"``
|
1354 |
+
and ``"param_groups"``. The flattened parameters in ``FSDP`` modules
|
1355 |
+
contained in ``model`` are mapped back to their unflattened parameters.
|
1356 |
+
|
1357 |
+
.. warning:: This needs to be called on all ranks since it uses
|
1358 |
+
collective communications. However, if ``rank0_only=True``, then
|
1359 |
+
the state dict is only populated on rank 0, and all other ranks
|
1360 |
+
return an empty :class:`dict`.
|
1361 |
+
|
1362 |
+
.. warning:: Unlike ``torch.optim.Optimizer.state_dict()``, this method
|
1363 |
+
uses full parameter names as keys instead of parameter IDs.
|
1364 |
+
|
1365 |
+
.. note:: Like in :meth:`torch.optim.Optimizer.state_dict`, the tensors
|
1366 |
+
contained in the optimizer state dict are not cloned, so there may
|
1367 |
+
be aliasing surprises. For best practices, consider saving the
|
1368 |
+
returned optimizer state dict immediately, e.g. using
|
1369 |
+
``torch.save()``.
|
1370 |
+
|
1371 |
+
Args:
|
1372 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
1373 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1374 |
+
were passed into the optimizer ``optim``.
|
1375 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
1376 |
+
parameters.
|
1377 |
+
optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
|
1378 |
+
Input passed into the optimizer ``optim`` representing either a
|
1379 |
+
:class:`list` of parameter groups or an iterable of parameters;
|
1380 |
+
if ``None``, then this method assumes the input was
|
1381 |
+
``model.parameters()``. This argument is deprecated, and there
|
1382 |
+
is no need to pass it in anymore. (Default: ``None``)
|
1383 |
+
rank0_only (bool): If ``True``, saves the populated :class:`dict`
|
1384 |
+
only on rank 0; if ``False``, saves it on all ranks. (Default:
|
1385 |
+
``True``)
|
1386 |
+
group (dist.ProcessGroup): Model's process group or ``None`` if using
|
1387 |
+
the default process group. (Default: ``None``)
|
1388 |
+
|
1389 |
+
Returns:
|
1390 |
+
Dict[str, Any]: A :class:`dict` containing the optimizer state for
|
1391 |
+
``model`` 's original unflattened parameters and including keys
|
1392 |
+
"state" and "param_groups" following the convention of
|
1393 |
+
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=True``,
|
1394 |
+
then nonzero ranks return an empty :class:`dict`.
|
1395 |
+
"""
|
1396 |
+
FullyShardedDataParallel._warn_legacy_optim_state_dict(
|
1397 |
+
"full_optim_state_dict", "optim_state_dict"
|
1398 |
+
)
|
1399 |
+
return FullyShardedDataParallel._optim_state_dict_impl(
|
1400 |
+
model=model,
|
1401 |
+
optim=optim,
|
1402 |
+
optim_state_dict=optim.state_dict(),
|
1403 |
+
optim_input=optim_input,
|
1404 |
+
rank0_only=rank0_only,
|
1405 |
+
group=group,
|
1406 |
+
full_state_dict=True,
|
1407 |
+
)
|
1408 |
+
|
1409 |
+
@staticmethod
|
1410 |
+
def sharded_optim_state_dict(
|
1411 |
+
model: torch.nn.Module,
|
1412 |
+
optim: torch.optim.Optimizer,
|
1413 |
+
group: Optional[dist.ProcessGroup] = None,
|
1414 |
+
) -> Dict[str, Any]:
|
1415 |
+
"""Return the optimizer state-dict in its sharded form.
|
1416 |
+
|
1417 |
+
The API is similar to :meth:`full_optim_state_dict` but this API chunks
|
1418 |
+
all non-zero-dimension states to :class:`ShardedTensor` to save memory.
|
1419 |
+
This API should only be used when the model ``state_dict`` is derived
|
1420 |
+
with the context manager ``with state_dict_type(SHARDED_STATE_DICT):``.
|
1421 |
+
|
1422 |
+
For the detailed usage, refer to :meth:`full_optim_state_dict`.
|
1423 |
+
|
1424 |
+
.. warning:: The returned state dict contains ``ShardedTensor`` and
|
1425 |
+
cannot be directly used by the regular ``optim.load_state_dict``.
|
1426 |
+
"""
|
1427 |
+
FullyShardedDataParallel._warn_legacy_optim_state_dict(
|
1428 |
+
"sharded_optim_state_dict", "optim_state_dict"
|
1429 |
+
)
|
1430 |
+
return FullyShardedDataParallel._optim_state_dict_impl(
|
1431 |
+
model=model,
|
1432 |
+
optim=optim,
|
1433 |
+
optim_state_dict=optim.state_dict(),
|
1434 |
+
optim_input=None,
|
1435 |
+
rank0_only=False,
|
1436 |
+
full_state_dict=False,
|
1437 |
+
group=group,
|
1438 |
+
)
|
1439 |
+
|
1440 |
+
@staticmethod
|
1441 |
+
def shard_full_optim_state_dict(
|
1442 |
+
full_optim_state_dict: Dict[str, Any],
|
1443 |
+
model: torch.nn.Module,
|
1444 |
+
optim_input: Optional[
|
1445 |
+
Union[
|
1446 |
+
List[Dict[str, Any]],
|
1447 |
+
Iterable[torch.nn.Parameter],
|
1448 |
+
]
|
1449 |
+
] = None,
|
1450 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
1451 |
+
) -> Dict[str, Any]:
|
1452 |
+
"""Shard a full optimizer state-dict.
|
1453 |
+
|
1454 |
+
Remaps the state in ``full_optim_state_dict`` to flattened parameters instead of unflattened
|
1455 |
+
parameters and restricts to only this rank's part of the optimizer state.
|
1456 |
+
The first argument should be the return value of :meth:`full_optim_state_dict`.
|
1457 |
+
|
1458 |
+
Example::
|
1459 |
+
|
1460 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1461 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
1462 |
+
>>> model, optim = ...
|
1463 |
+
>>> full_osd = FSDP.full_optim_state_dict(model, optim)
|
1464 |
+
>>> torch.save(full_osd, PATH)
|
1465 |
+
>>> # Define new model with possibly different world size
|
1466 |
+
>>> new_model, new_optim = ...
|
1467 |
+
>>> full_osd = torch.load(PATH)
|
1468 |
+
>>> sharded_osd = FSDP.shard_full_optim_state_dict(full_osd, new_model)
|
1469 |
+
>>> new_optim.load_state_dict(sharded_osd)
|
1470 |
+
|
1471 |
+
.. note:: Both :meth:`shard_full_optim_state_dict` and
|
1472 |
+
:meth:`scatter_full_optim_state_dict` may be used to get the
|
1473 |
+
sharded optimizer state dict to load. Assuming that the full
|
1474 |
+
optimizer state dict resides in CPU memory, the former requires
|
1475 |
+
each rank to have the full dict in CPU memory, where each rank
|
1476 |
+
individually shards the dict without any communication, while the
|
1477 |
+
latter requires only rank 0 to have the full dict in CPU memory,
|
1478 |
+
where rank 0 moves each shard to GPU memory (for NCCL) and
|
1479 |
+
communicates it to ranks appropriately. Hence, the former has
|
1480 |
+
higher aggregate CPU memory cost, while the latter has higher
|
1481 |
+
communication cost.
|
1482 |
+
|
1483 |
+
Args:
|
1484 |
+
full_optim_state_dict (Dict[str, Any]): Optimizer state dict
|
1485 |
+
corresponding to the unflattened parameters and holding the
|
1486 |
+
full non-sharded optimizer state.
|
1487 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
1488 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1489 |
+
correspond to the optimizer state in ``full_optim_state_dict``.
|
1490 |
+
optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
|
1491 |
+
Input passed into the optimizer representing either a
|
1492 |
+
:class:`list` of parameter groups or an iterable of parameters;
|
1493 |
+
if ``None``, then this method assumes the input was
|
1494 |
+
``model.parameters()``. This argument is deprecated, and there
|
1495 |
+
is no need to pass it in anymore. (Default: ``None``)
|
1496 |
+
optim (Optional[torch.optim.Optimizer]): Optimizer that will load
|
1497 |
+
the state dict returned by this method. This is the preferred
|
1498 |
+
argument to use over ``optim_input``. (Default: ``None``)
|
1499 |
+
|
1500 |
+
Returns:
|
1501 |
+
Dict[str, Any]: The full optimizer state dict now remapped to
|
1502 |
+
flattened parameters instead of unflattened parameters and
|
1503 |
+
restricted to only include this rank's part of the optimizer state.
|
1504 |
+
"""
|
1505 |
+
FullyShardedDataParallel._warn_legacy_optim_state_dict(
|
1506 |
+
"shard_full_optim_state_dict", "optim_state_dict_to_load"
|
1507 |
+
)
|
1508 |
+
return FullyShardedDataParallel._optim_state_dict_to_load_impl(
|
1509 |
+
optim_state_dict=full_optim_state_dict,
|
1510 |
+
model=model,
|
1511 |
+
optim_input=optim_input,
|
1512 |
+
optim=optim,
|
1513 |
+
full_state_dict=True,
|
1514 |
+
is_named_optimizer=False,
|
1515 |
+
)
|
1516 |
+
|
1517 |
+
@staticmethod
|
1518 |
+
def flatten_sharded_optim_state_dict(
|
1519 |
+
sharded_optim_state_dict: Dict[str, Any],
|
1520 |
+
model: torch.nn.Module,
|
1521 |
+
optim: torch.optim.Optimizer,
|
1522 |
+
) -> Dict[str, Any]:
|
1523 |
+
"""Flatten a sharded optimizer state-dict.
|
1524 |
+
|
1525 |
+
The API is similar to :meth:`shard_full_optim_state_dict`. The only
|
1526 |
+
difference is that the input ``sharded_optim_state_dict`` should be
|
1527 |
+
returned from :meth:`sharded_optim_state_dict`. Therefore, there will
|
1528 |
+
be all-gather calls on each rank to gather ``ShardedTensor`` s.
|
1529 |
+
|
1530 |
+
Args:
|
1531 |
+
sharded_optim_state_dict (Dict[str, Any]): Optimizer state dict
|
1532 |
+
corresponding to the unflattened parameters and holding the
|
1533 |
+
sharded optimizer state.
|
1534 |
+
model (torch.nn.Module):
|
1535 |
+
Refer to :meth:`shard_full_optim_state_dict`.
|
1536 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
1537 |
+
parameters.
|
1538 |
+
|
1539 |
+
Returns:
|
1540 |
+
Refer to :meth:`shard_full_optim_state_dict`.
|
1541 |
+
"""
|
1542 |
+
FullyShardedDataParallel._warn_legacy_optim_state_dict(
|
1543 |
+
"flatten_sharded_optim_state_dict", "optim_state_dict_to_load"
|
1544 |
+
)
|
1545 |
+
return FullyShardedDataParallel._optim_state_dict_to_load_impl(
|
1546 |
+
optim_state_dict=sharded_optim_state_dict,
|
1547 |
+
model=model,
|
1548 |
+
optim_input=None,
|
1549 |
+
optim=optim,
|
1550 |
+
full_state_dict=False,
|
1551 |
+
is_named_optimizer=False,
|
1552 |
+
)
|
1553 |
+
|
1554 |
+
@staticmethod
|
1555 |
+
def scatter_full_optim_state_dict(
|
1556 |
+
full_optim_state_dict: Optional[Dict[str, Any]],
|
1557 |
+
model: torch.nn.Module,
|
1558 |
+
optim_input: Optional[
|
1559 |
+
Union[
|
1560 |
+
List[Dict[str, Any]],
|
1561 |
+
Iterable[torch.nn.Parameter],
|
1562 |
+
]
|
1563 |
+
] = None,
|
1564 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
1565 |
+
group: Optional[Any] = None,
|
1566 |
+
) -> Dict[str, Any]:
|
1567 |
+
"""Scatter the full optimizer state dict from rank 0 to all other ranks.
|
1568 |
+
|
1569 |
+
Returns the sharded optimizer state dict on each rank.
|
1570 |
+
The return value is the same as :meth:`shard_full_optim_state_dict`, and on rank
|
1571 |
+
0, the first argument should be the return value of
|
1572 |
+
:meth:`full_optim_state_dict`.
|
1573 |
+
|
1574 |
+
Example::
|
1575 |
+
|
1576 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1577 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
1578 |
+
>>> model, optim = ...
|
1579 |
+
>>> full_osd = FSDP.full_optim_state_dict(model, optim) # only non-empty on rank 0
|
1580 |
+
>>> # Define new model with possibly different world size
|
1581 |
+
>>> new_model, new_optim, new_group = ...
|
1582 |
+
>>> sharded_osd = FSDP.scatter_full_optim_state_dict(full_osd, new_model, group=new_group)
|
1583 |
+
>>> new_optim.load_state_dict(sharded_osd)
|
1584 |
+
|
1585 |
+
.. note:: Both :meth:`shard_full_optim_state_dict` and
|
1586 |
+
:meth:`scatter_full_optim_state_dict` may be used to get the
|
1587 |
+
sharded optimizer state dict to load. Assuming that the full
|
1588 |
+
optimizer state dict resides in CPU memory, the former requires
|
1589 |
+
each rank to have the full dict in CPU memory, where each rank
|
1590 |
+
individually shards the dict without any communication, while the
|
1591 |
+
latter requires only rank 0 to have the full dict in CPU memory,
|
1592 |
+
where rank 0 moves each shard to GPU memory (for NCCL) and
|
1593 |
+
communicates it to ranks appropriately. Hence, the former has
|
1594 |
+
higher aggregate CPU memory cost, while the latter has higher
|
1595 |
+
communication cost.
|
1596 |
+
|
1597 |
+
Args:
|
1598 |
+
full_optim_state_dict (Optional[Dict[str, Any]]): Optimizer state
|
1599 |
+
dict corresponding to the unflattened parameters and holding
|
1600 |
+
the full non-sharded optimizer state if on rank 0; the argument
|
1601 |
+
is ignored on nonzero ranks.
|
1602 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
1603 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1604 |
+
correspond to the optimizer state in ``full_optim_state_dict``.
|
1605 |
+
optim_input (Optional[Union[List[Dict[str, Any]], Iterable[torch.nn.Parameter]]]):
|
1606 |
+
Input passed into the optimizer representing either a
|
1607 |
+
:class:`list` of parameter groups or an iterable of parameters;
|
1608 |
+
if ``None``, then this method assumes the input was
|
1609 |
+
``model.parameters()``. This argument is deprecated, and there
|
1610 |
+
is no need to pass it in anymore. (Default: ``None``)
|
1611 |
+
optim (Optional[torch.optim.Optimizer]): Optimizer that will load
|
1612 |
+
the state dict returned by this method. This is the preferred
|
1613 |
+
argument to use over ``optim_input``. (Default: ``None``)
|
1614 |
+
group (dist.ProcessGroup): Model's process group or ``None`` if
|
1615 |
+
using the default process group. (Default: ``None``)
|
1616 |
+
|
1617 |
+
Returns:
|
1618 |
+
Dict[str, Any]: The full optimizer state dict now remapped to
|
1619 |
+
flattened parameters instead of unflattened parameters and
|
1620 |
+
restricted to only include this rank's part of the optimizer state.
|
1621 |
+
"""
|
1622 |
+
FullyShardedDataParallel._warn_legacy_optim_state_dict(
|
1623 |
+
"scatter_full_optim_state_dict", "optim_state_dict_to_load"
|
1624 |
+
)
|
1625 |
+
return FullyShardedDataParallel._optim_state_dict_to_load_impl(
|
1626 |
+
optim_state_dict=full_optim_state_dict,
|
1627 |
+
model=model,
|
1628 |
+
optim_input=optim_input,
|
1629 |
+
optim=optim,
|
1630 |
+
full_state_dict=True,
|
1631 |
+
rank0_only=True,
|
1632 |
+
is_named_optimizer=False,
|
1633 |
+
group=group,
|
1634 |
+
)
|
1635 |
+
|
1636 |
+
@staticmethod
|
1637 |
+
def rekey_optim_state_dict(
|
1638 |
+
optim_state_dict: Dict[str, Any],
|
1639 |
+
optim_state_key_type: OptimStateKeyType,
|
1640 |
+
model: torch.nn.Module,
|
1641 |
+
optim_input: Optional[
|
1642 |
+
Union[
|
1643 |
+
List[Dict[str, Any]],
|
1644 |
+
Iterable[torch.nn.Parameter],
|
1645 |
+
]
|
1646 |
+
] = None,
|
1647 |
+
optim: Optional[torch.optim.Optimizer] = None,
|
1648 |
+
) -> Dict[str, Any]:
|
1649 |
+
"""Re-keys the optimizer state dict ``optim_state_dict`` to use the key type ``optim_state_key_type``.
|
1650 |
+
|
1651 |
+
This can be used to achieve compatibility between optimizer state dicts from models with FSDP
|
1652 |
+
instances and ones without.
|
1653 |
+
|
1654 |
+
To re-key an FSDP full optimizer state dict (i.e. from
|
1655 |
+
:meth:`full_optim_state_dict`) to use parameter IDs and be loadable to
|
1656 |
+
a non-wrapped model::
|
1657 |
+
|
1658 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1659 |
+
>>> wrapped_model, wrapped_optim = ...
|
1660 |
+
>>> full_osd = FSDP.full_optim_state_dict(wrapped_model, wrapped_optim)
|
1661 |
+
>>> nonwrapped_model, nonwrapped_optim = ...
|
1662 |
+
>>> rekeyed_osd = FSDP.rekey_optim_state_dict(full_osd, OptimStateKeyType.PARAM_ID, nonwrapped_model)
|
1663 |
+
>>> nonwrapped_optim.load_state_dict(rekeyed_osd)
|
1664 |
+
|
1665 |
+
To re-key a normal optimizer state dict from a non-wrapped model to be
|
1666 |
+
loadable to a wrapped model::
|
1667 |
+
|
1668 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1669 |
+
>>> nonwrapped_model, nonwrapped_optim = ...
|
1670 |
+
>>> osd = nonwrapped_optim.state_dict()
|
1671 |
+
>>> rekeyed_osd = FSDP.rekey_optim_state_dict(osd, OptimStateKeyType.PARAM_NAME, nonwrapped_model)
|
1672 |
+
>>> wrapped_model, wrapped_optim = ...
|
1673 |
+
>>> sharded_osd = FSDP.shard_full_optim_state_dict(rekeyed_osd, wrapped_model)
|
1674 |
+
>>> wrapped_optim.load_state_dict(sharded_osd)
|
1675 |
+
|
1676 |
+
Returns:
|
1677 |
+
Dict[str, Any]: The optimizer state dict re-keyed using the
|
1678 |
+
parameter keys specified by ``optim_state_key_type``.
|
1679 |
+
"""
|
1680 |
+
FullyShardedDataParallel._warn_optim_input(optim_input)
|
1681 |
+
using_optim_input = FullyShardedDataParallel._is_using_optim_input(
|
1682 |
+
optim_input,
|
1683 |
+
optim,
|
1684 |
+
)
|
1685 |
+
assert optim_state_key_type in (
|
1686 |
+
OptimStateKeyType.PARAM_NAME,
|
1687 |
+
OptimStateKeyType.PARAM_ID,
|
1688 |
+
)
|
1689 |
+
osd = optim_state_dict # alias
|
1690 |
+
# Validate that the existing parameter keys are uniformly typed
|
1691 |
+
uses_param_name_mask = [type(param_key) is str for param_key in osd["state"]]
|
1692 |
+
uses_param_id_mask = [type(param_key) is int for param_key in osd["state"]]
|
1693 |
+
if (any(uses_param_name_mask) and not all(uses_param_name_mask)) or (
|
1694 |
+
any(uses_param_id_mask) and not all(uses_param_id_mask)
|
1695 |
+
):
|
1696 |
+
error_msg = f"Invalid parameter keys: {osd['state'].keys()}"
|
1697 |
+
raise ValueError(error_msg)
|
1698 |
+
# Return directly if the existing key type matches the target key type
|
1699 |
+
if (
|
1700 |
+
optim_state_key_type == OptimStateKeyType.PARAM_NAME
|
1701 |
+
and all(uses_param_name_mask)
|
1702 |
+
) or (
|
1703 |
+
optim_state_key_type == OptimStateKeyType.PARAM_ID
|
1704 |
+
and all(uses_param_id_mask)
|
1705 |
+
):
|
1706 |
+
return osd
|
1707 |
+
# Otherwise, actually perform the re-keying
|
1708 |
+
new_osd = {}
|
1709 |
+
if optim_state_key_type == OptimStateKeyType.PARAM_NAME: # ID -> name
|
1710 |
+
param_id_to_param = (
|
1711 |
+
_get_param_id_to_param_from_optim_input(model, optim_input)
|
1712 |
+
if using_optim_input
|
1713 |
+
else _get_param_key_to_param(optim)
|
1714 |
+
)
|
1715 |
+
param_to_param_name = _get_param_to_fqn(model)
|
1716 |
+
param_id_to_param_name: List[str] = [
|
1717 |
+
param_to_param_name[param] for param in param_id_to_param.values()
|
1718 |
+
]
|
1719 |
+
new_osd["state"] = {
|
1720 |
+
param_id_to_param_name[param_id]: param_state
|
1721 |
+
for param_id, param_state in osd["state"].items()
|
1722 |
+
}
|
1723 |
+
new_osd["param_groups"] = copy.deepcopy(osd["param_groups"])
|
1724 |
+
for param_group in new_osd["param_groups"]:
|
1725 |
+
param_group["params"] = sorted(
|
1726 |
+
[
|
1727 |
+
param_id_to_param_name[param_id]
|
1728 |
+
for param_id in param_group["params"]
|
1729 |
+
]
|
1730 |
+
)
|
1731 |
+
return new_osd
|
1732 |
+
elif optim_state_key_type == OptimStateKeyType.PARAM_ID: # name -> ID
|
1733 |
+
param_name_to_param = _get_fqn_to_param(model)
|
1734 |
+
param_to_param_id = (
|
1735 |
+
_get_param_to_param_id_from_optim_input(model, optim_input)
|
1736 |
+
if using_optim_input
|
1737 |
+
else _get_param_to_param_key(optim)
|
1738 |
+
)
|
1739 |
+
# Because not all model parameters may be passed as the optimizer
|
1740 |
+
# input, we may need to drop some parameters from this mapping
|
1741 |
+
param_name_to_param_id = {
|
1742 |
+
param_name: param_to_param_id[param]
|
1743 |
+
for param_name, param in param_name_to_param.items()
|
1744 |
+
if param in param_to_param_id
|
1745 |
+
}
|
1746 |
+
new_osd["state"] = {
|
1747 |
+
param_name_to_param_id[param_name]: param_state
|
1748 |
+
for param_name, param_state in osd["state"].items()
|
1749 |
+
}
|
1750 |
+
new_osd["param_groups"] = copy.deepcopy(osd["param_groups"])
|
1751 |
+
for param_group in new_osd["param_groups"]:
|
1752 |
+
param_group["params"] = sorted(
|
1753 |
+
[
|
1754 |
+
param_name_to_param_id[param_name]
|
1755 |
+
for param_name in param_group["params"]
|
1756 |
+
]
|
1757 |
+
)
|
1758 |
+
return new_osd
|
1759 |
+
return new_osd # should never reach here
|
1760 |
+
|
1761 |
+
@staticmethod
|
1762 |
+
def optim_state_dict(
|
1763 |
+
model: torch.nn.Module,
|
1764 |
+
optim: torch.optim.Optimizer,
|
1765 |
+
optim_state_dict: Optional[Dict[str, Any]] = None,
|
1766 |
+
group: Optional[dist.ProcessGroup] = None,
|
1767 |
+
) -> Dict[str, Any]:
|
1768 |
+
"""
|
1769 |
+
Transform the state-dict of an optimizer corresponding to a sharded model.
|
1770 |
+
|
1771 |
+
The given state-dict can be transformed to one of three types:
|
1772 |
+
1) full optimizer state_dict, 2) sharded optimizer state_dict, 3) local optimizer state_dict.
|
1773 |
+
|
1774 |
+
For full optimizer state_dict, all states are unflattened and not sharded.
|
1775 |
+
Rank0 only and CPU only can be specified via :meth:`state_dict_type` to
|
1776 |
+
avoid OOM.
|
1777 |
+
|
1778 |
+
For sharded optimizer state_dict, all states are unflattened but sharded.
|
1779 |
+
CPU only can be specified via :meth:`state_dict_type` to further save
|
1780 |
+
memory.
|
1781 |
+
|
1782 |
+
For local state_dict, no transformation will be performed. But a state
|
1783 |
+
will be converted from nn.Tensor to ShardedTensor to represent its sharding
|
1784 |
+
nature (this is not supported yet).
|
1785 |
+
|
1786 |
+
Example::
|
1787 |
+
|
1788 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1789 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
1790 |
+
>>> from torch.distributed.fsdp import StateDictType
|
1791 |
+
>>> from torch.distributed.fsdp import FullStateDictConfig
|
1792 |
+
>>> from torch.distributed.fsdp import FullOptimStateDictConfig
|
1793 |
+
>>> # Save a checkpoint
|
1794 |
+
>>> model, optim = ...
|
1795 |
+
>>> FSDP.set_state_dict_type(
|
1796 |
+
>>> model,
|
1797 |
+
>>> StateDictType.FULL_STATE_DICT,
|
1798 |
+
>>> FullStateDictConfig(rank0_only=False),
|
1799 |
+
>>> FullOptimStateDictConfig(rank0_only=False),
|
1800 |
+
>>> )
|
1801 |
+
>>> state_dict = model.state_dict()
|
1802 |
+
>>> optim_state_dict = FSDP.optim_state_dict(model, optim)
|
1803 |
+
>>> save_a_checkpoint(state_dict, optim_state_dict)
|
1804 |
+
>>> # Load a checkpoint
|
1805 |
+
>>> model, optim = ...
|
1806 |
+
>>> state_dict, optim_state_dict = load_a_checkpoint()
|
1807 |
+
>>> FSDP.set_state_dict_type(
|
1808 |
+
>>> model,
|
1809 |
+
>>> StateDictType.FULL_STATE_DICT,
|
1810 |
+
>>> FullStateDictConfig(rank0_only=False),
|
1811 |
+
>>> FullOptimStateDictConfig(rank0_only=False),
|
1812 |
+
>>> )
|
1813 |
+
>>> model.load_state_dict(state_dict)
|
1814 |
+
>>> optim_state_dict = FSDP.optim_state_dict_to_load(
|
1815 |
+
>>> model, optim, optim_state_dict
|
1816 |
+
>>> )
|
1817 |
+
>>> optim.load_state_dict(optim_state_dict)
|
1818 |
+
|
1819 |
+
Args:
|
1820 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
1821 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1822 |
+
were passed into the optimizer ``optim``.
|
1823 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
1824 |
+
parameters.
|
1825 |
+
optim_state_dict (Dict[str, Any]): the target optimizer state_dict to
|
1826 |
+
transform. If the value is None, optim.state_dict() will be used. (
|
1827 |
+
Default: ``None``)
|
1828 |
+
group (dist.ProcessGroup): Model's process group across which parameters
|
1829 |
+
are sharded or ``None`` if using the default process group. (
|
1830 |
+
Default: ``None``)
|
1831 |
+
|
1832 |
+
Returns:
|
1833 |
+
Dict[str, Any]: A :class:`dict` containing the optimizer state for
|
1834 |
+
``model``. The sharding of the optimizer state is based on
|
1835 |
+
``state_dict_type``.
|
1836 |
+
"""
|
1837 |
+
state_dict_settings = FullyShardedDataParallel.get_state_dict_type(model)
|
1838 |
+
if optim_state_dict is None:
|
1839 |
+
optim_state_dict = optim.state_dict()
|
1840 |
+
return FullyShardedDataParallel._optim_state_dict_impl(
|
1841 |
+
model=model,
|
1842 |
+
optim=optim,
|
1843 |
+
optim_state_dict=optim_state_dict,
|
1844 |
+
optim_input=None,
|
1845 |
+
rank0_only=getattr(
|
1846 |
+
state_dict_settings.optim_state_dict_config, "rank0_only", False
|
1847 |
+
),
|
1848 |
+
full_state_dict=state_dict_settings.state_dict_type
|
1849 |
+
== StateDictType.FULL_STATE_DICT,
|
1850 |
+
group=group,
|
1851 |
+
cpu_offload=getattr(
|
1852 |
+
state_dict_settings.optim_state_dict_config, "offload_to_cpu", True
|
1853 |
+
),
|
1854 |
+
)
|
1855 |
+
|
1856 |
+
@staticmethod
|
1857 |
+
def optim_state_dict_to_load(
|
1858 |
+
model: torch.nn.Module,
|
1859 |
+
optim: torch.optim.Optimizer,
|
1860 |
+
optim_state_dict: Dict[str, Any],
|
1861 |
+
is_named_optimizer: bool = False,
|
1862 |
+
load_directly: bool = False,
|
1863 |
+
group: Optional[dist.ProcessGroup] = None,
|
1864 |
+
) -> Dict[str, Any]:
|
1865 |
+
"""
|
1866 |
+
Convert an optimizer state-dict so that it can be loaded into the optimizer associated with the FSDP model.
|
1867 |
+
|
1868 |
+
Given a ``optim_state_dict`` that is transformed through
|
1869 |
+
:meth:`optim_state_dict`, it gets converted to the flattened optimizer
|
1870 |
+
state_dict that can be loaded to ``optim`` which is the optimizer for
|
1871 |
+
``model``. ``model`` must be sharded by FullyShardedDataParallel.
|
1872 |
+
|
1873 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
1874 |
+
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
1875 |
+
>>> from torch.distributed.fsdp import StateDictType
|
1876 |
+
>>> from torch.distributed.fsdp import FullStateDictConfig
|
1877 |
+
>>> from torch.distributed.fsdp import FullOptimStateDictConfig
|
1878 |
+
>>> # Save a checkpoint
|
1879 |
+
>>> model, optim = ...
|
1880 |
+
>>> FSDP.set_state_dict_type(
|
1881 |
+
>>> model,
|
1882 |
+
>>> StateDictType.FULL_STATE_DICT,
|
1883 |
+
>>> FullStateDictConfig(rank0_only=False),
|
1884 |
+
>>> FullOptimStateDictConfig(rank0_only=False),
|
1885 |
+
>>> )
|
1886 |
+
>>> state_dict = model.state_dict()
|
1887 |
+
>>> original_osd = optim.state_dict()
|
1888 |
+
>>> optim_state_dict = FSDP.optim_state_dict(
|
1889 |
+
>>> model,
|
1890 |
+
>>> optim,
|
1891 |
+
>>> optim_state_dict=original_osd
|
1892 |
+
>>> )
|
1893 |
+
>>> save_a_checkpoint(state_dict, optim_state_dict)
|
1894 |
+
>>> # Load a checkpoint
|
1895 |
+
>>> model, optim = ...
|
1896 |
+
>>> state_dict, optim_state_dict = load_a_checkpoint()
|
1897 |
+
>>> FSDP.set_state_dict_type(
|
1898 |
+
>>> model,
|
1899 |
+
>>> StateDictType.FULL_STATE_DICT,
|
1900 |
+
>>> FullStateDictConfig(rank0_only=False),
|
1901 |
+
>>> FullOptimStateDictConfig(rank0_only=False),
|
1902 |
+
>>> )
|
1903 |
+
>>> model.load_state_dict(state_dict)
|
1904 |
+
>>> optim_state_dict = FSDP.optim_state_dict_to_load(
|
1905 |
+
>>> model, optim, optim_state_dict
|
1906 |
+
>>> )
|
1907 |
+
>>> optim.load_state_dict(optim_state_dict)
|
1908 |
+
|
1909 |
+
Args:
|
1910 |
+
model (torch.nn.Module): Root module (which may or may not be a
|
1911 |
+
:class:`FullyShardedDataParallel` instance) whose parameters
|
1912 |
+
were passed into the optimizer ``optim``.
|
1913 |
+
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
1914 |
+
parameters.
|
1915 |
+
optim_state_dict (Dict[str, Any]): The optimizer states to be loaded.
|
1916 |
+
is_named_optimizer (bool): Is this optimizer a NamedOptimizer or
|
1917 |
+
KeyedOptimizer. Only set to True if ``optim`` is TorchRec's
|
1918 |
+
KeyedOptimizer or torch.distributed's NamedOptimizer.
|
1919 |
+
load_directly (bool): If this is set to True, this API will also
|
1920 |
+
call optim.load_state_dict(result) before returning the result.
|
1921 |
+
Otherwise, users are responsible to call ``optim.load_state_dict()``
|
1922 |
+
(Default: ``False``)
|
1923 |
+
group (dist.ProcessGroup): Model's process group across which parameters
|
1924 |
+
are sharded or ``None`` if using the default process group. (
|
1925 |
+
Default: ``None``)
|
1926 |
+
"""
|
1927 |
+
state_dict_settings = FullyShardedDataParallel.get_state_dict_type(model)
|
1928 |
+
result = FullyShardedDataParallel._optim_state_dict_to_load_impl(
|
1929 |
+
optim_state_dict=optim_state_dict,
|
1930 |
+
model=model,
|
1931 |
+
optim_input=None,
|
1932 |
+
optim=optim,
|
1933 |
+
full_state_dict=(
|
1934 |
+
state_dict_settings.state_dict_type == StateDictType.FULL_STATE_DICT
|
1935 |
+
),
|
1936 |
+
rank0_only=getattr(
|
1937 |
+
state_dict_settings.optim_state_dict_config, "rank0_only", False
|
1938 |
+
),
|
1939 |
+
is_named_optimizer=is_named_optimizer,
|
1940 |
+
group=group,
|
1941 |
+
)
|
1942 |
+
if load_directly:
|
1943 |
+
optim.load_state_dict(result)
|
1944 |
+
return result
|
1945 |
+
|
1946 |
+
def register_comm_hook(self, state: object, hook: callable):
|
1947 |
+
"""Register a communication hook.
|
1948 |
+
|
1949 |
+
This is an enhancement that provides a flexible hook to users where they can specify how FSDP aggregates
|
1950 |
+
gradients across multiple workers.
|
1951 |
+
This hook can be used to implement several algorithms like
|
1952 |
+
`GossipGrad <https://arxiv.org/abs/1803.05880>`_ and gradient compression
|
1953 |
+
which involve different communication strategies for
|
1954 |
+
parameter syncs while training with :class:`FullyShardedDataParallel`.
|
1955 |
+
|
1956 |
+
.. warning ::
|
1957 |
+
FSDP communication hook should be registered before running an initial forward pass
|
1958 |
+
and only once.
|
1959 |
+
|
1960 |
+
Args:
|
1961 |
+
state (object): Passed to the hook to maintain any state information during the training process.
|
1962 |
+
Examples include error feedback in gradient compression,
|
1963 |
+
peers to communicate with next in `GossipGrad <https://arxiv.org/abs/1803.05880>`_, etc.
|
1964 |
+
It is locally stored by each worker
|
1965 |
+
and shared by all the gradient tensors on the worker.
|
1966 |
+
hook (Callable): Callable, which has one of the following signatures:
|
1967 |
+
1) ``hook: Callable[torch.Tensor] -> None``:
|
1968 |
+
This function takes in a Python tensor, which represents
|
1969 |
+
the full, flattened, unsharded gradient with respect to all variables
|
1970 |
+
corresponding to the model this FSDP unit is wrapping
|
1971 |
+
(that are not wrapped by other FSDP sub-units).
|
1972 |
+
It then performs all necessary processing and returns ``None``;
|
1973 |
+
2) ``hook: Callable[torch.Tensor, torch.Tensor] -> None``:
|
1974 |
+
This function takes in two Python tensors, the first one represents
|
1975 |
+
the full, flattened, unsharded gradient with respect to all variables
|
1976 |
+
corresponding to the model this FSDP unit is wrapping
|
1977 |
+
(that are not wrapped by other FSDP sub-units). The latter
|
1978 |
+
represents a pre-sized tensor to store a chunk of a sharded gradient after
|
1979 |
+
reduction.
|
1980 |
+
In both cases, callable performs all necessary processing and returns ``None``.
|
1981 |
+
Callables with signature 1 are expected to handle gradient communication for a `NO_SHARD` case.
|
1982 |
+
Callables with signature 2 are expected to handle gradient communication for sharded cases.
|
1983 |
+
|
1984 |
+
"""
|
1985 |
+
if not self.check_is_root():
|
1986 |
+
raise AssertionError(
|
1987 |
+
"register_comm_hook can only be called on a root instance."
|
1988 |
+
)
|
1989 |
+
for fsdp_state in traversal_utils._get_fsdp_states(self):
|
1990 |
+
if fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES:
|
1991 |
+
raise AssertionError(
|
1992 |
+
f"Communication hook is not supported for hybrid strategies: {fsdp_state.sharding_strategy}"
|
1993 |
+
)
|
1994 |
+
if fsdp_state._comm_hook is not None:
|
1995 |
+
raise AssertionError("A communication hook is already registered")
|
1996 |
+
if not callable(hook):
|
1997 |
+
raise ValueError(
|
1998 |
+
f"The communication hook must be callable but got {hook}"
|
1999 |
+
)
|
2000 |
+
fsdp_state._comm_hook = hook
|
2001 |
+
fsdp_state._comm_hook_state = state
|
2002 |
+
|
2003 |
+
|
2004 |
+
def _get_grad_norm(
|
2005 |
+
params: Iterable[nn.Parameter],
|
2006 |
+
norm_type: float,
|
2007 |
+
) -> torch.Tensor:
|
2008 |
+
"""
|
2009 |
+
Return the gradient norm of parameters ``param`` s, where the gradients are viewed as a single vector.
|
2010 |
+
|
2011 |
+
The returned norm is in FP32 even if parameters/gradients are in a low precision. This is because the downstream
|
2012 |
+
use of this return value is a reduction across ranks.
|
2013 |
+
"""
|
2014 |
+
params_with_grad = [param for param in params if param.grad is not None]
|
2015 |
+
if len(params_with_grad) == 0:
|
2016 |
+
return torch.tensor(0.0)
|
2017 |
+
grads = [param.grad for param in params_with_grad]
|
2018 |
+
grad_dtypes = {grad.dtype for grad in grads}
|
2019 |
+
if len(grad_dtypes) != 1:
|
2020 |
+
raise ValueError(
|
2021 |
+
f"Requires uniform dtype across all gradients but got {grad_dtypes}"
|
2022 |
+
)
|
2023 |
+
# Compute the gradient norm in FP32, where we treat the gradients as a
|
2024 |
+
# single vector
|
2025 |
+
grad_norm = torch.linalg.vector_norm(
|
2026 |
+
torch.stack(
|
2027 |
+
[
|
2028 |
+
torch.linalg.vector_norm(grad.detach(), norm_type, dtype=torch.float32)
|
2029 |
+
for grad in grads
|
2030 |
+
],
|
2031 |
+
),
|
2032 |
+
norm_type,
|
2033 |
+
dtype=torch.float32,
|
2034 |
+
)
|
2035 |
+
return grad_norm
|
2036 |
+
|
2037 |
+
|
2038 |
+
def _get_param_to_fqn(
|
2039 |
+
model: torch.nn.Module,
|
2040 |
+
) -> Dict[torch.nn.Parameter, str]:
|
2041 |
+
"""
|
2042 |
+
Construct a mapping from parameters to their parameter names.
|
2043 |
+
|
2044 |
+
The ``model`` should not contain any :class:`FullyShardedDataParallel` instances, which
|
2045 |
+
means that none of the parameters should be ``FlatParameter`` s. As a
|
2046 |
+
result, compared to :meth:`_get_param_to_fqns`, the mapped
|
2047 |
+
values may be flattened from singleton :class:`list` s to the contained
|
2048 |
+
names themselves.
|
2049 |
+
|
2050 |
+
Args:
|
2051 |
+
model (torch.nn.Module): Root module, which should not contain any
|
2052 |
+
:class:`FullyShardedDataParallel` instances.
|
2053 |
+
"""
|
2054 |
+
param_to_param_names = _get_param_to_fqns(model)
|
2055 |
+
for param_names in param_to_param_names.values():
|
2056 |
+
assert (
|
2057 |
+
len(param_names) > 0
|
2058 |
+
), "`_get_param_to_fqns()` should not construct empty lists"
|
2059 |
+
if len(param_names) > 1:
|
2060 |
+
raise RuntimeError(
|
2061 |
+
"Each parameter should only map to one parameter name but got "
|
2062 |
+
f"{len(param_names)}: {param_names}"
|
2063 |
+
)
|
2064 |
+
param_to_param_name = {
|
2065 |
+
param: param_names[0] for param, param_names in param_to_param_names.items()
|
2066 |
+
}
|
2067 |
+
return param_to_param_name
|
2068 |
+
|
2069 |
+
|
2070 |
+
def _get_fqn_to_param(
|
2071 |
+
model: torch.nn.Module,
|
2072 |
+
) -> Dict[str, torch.nn.Parameter]:
|
2073 |
+
"""Construct the inverse mapping of :meth:`_get_param_to_fqn`."""
|
2074 |
+
param_to_param_name = _get_param_to_fqn(model)
|
2075 |
+
return dict(zip(param_to_param_name.values(), param_to_param_name.keys()))
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from collections import abc, defaultdict
|
3 |
+
from typing import Any, Dict, Iterable, List, Optional, overload, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
from torch.amp.grad_scaler import _MultiDeviceReplicator, GradScaler, OptState
|
8 |
+
from torch.distributed.distributed_c10d import ProcessGroup
|
9 |
+
|
10 |
+
log = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def _refresh_per_optimizer_state() -> Dict[str, Any]:
|
14 |
+
return {"stage": OptState.READY, "found_inf_per_device": {}}
|
15 |
+
|
16 |
+
|
17 |
+
def _is_supported_device(tensor: torch.Tensor) -> bool:
|
18 |
+
return tensor.is_cuda or tensor.device.type in ("xla", "cpu", "hpu")
|
19 |
+
|
20 |
+
|
21 |
+
class _GeneralMultiDeviceReplicator(_MultiDeviceReplicator):
|
22 |
+
"""
|
23 |
+
Lazily serves tensor to request device. This class extends
|
24 |
+
_MultiDeviceReplicator to allow support for "cpu" as a device.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, master_tensor: torch.Tensor) -> None:
|
28 |
+
assert _is_supported_device(master_tensor)
|
29 |
+
self.master = master_tensor
|
30 |
+
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
|
31 |
+
|
32 |
+
|
33 |
+
class ShardedGradScaler(GradScaler):
|
34 |
+
"""
|
35 |
+
ShardedGradScaler helps perform gradient scaling in a shard aware manner. It extends
|
36 |
+
functionality from GradScaler:
|
37 |
+
* Supports Pytorch DDP and FSDP implementations
|
38 |
+
* Support CPU offloaded tensors (as used in fully sharded data parallel[FSDP])
|
39 |
+
* Supports the custom Mixed Precision loss dtype (fp16, bf16) that FSDP returns
|
40 |
+
* Sync inf/nan for scaled gradient tensors on any torch.device (where tensors are placed) across
|
41 |
+
nodes
|
42 |
+
|
43 |
+
Example::
|
44 |
+
|
45 |
+
# Creates a ShardedGradScaler once at the beginning of training.
|
46 |
+
scaler = ShardedGradScaler()
|
47 |
+
|
48 |
+
for epoch in epochs:
|
49 |
+
for input, target in data:
|
50 |
+
optimizer.zero_grad()
|
51 |
+
output = model(input)
|
52 |
+
loss = loss_fn(output, target)
|
53 |
+
|
54 |
+
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
|
55 |
+
scaler.scale(loss).backward()
|
56 |
+
|
57 |
+
# scaler.step() first unscales gradients of the optimizer's params.
|
58 |
+
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
|
59 |
+
# otherwise, optimizer.step() is skipped.
|
60 |
+
scaler.step(optimizer)
|
61 |
+
|
62 |
+
# Updates the scale for next iteration.
|
63 |
+
scaler.update()
|
64 |
+
|
65 |
+
See :class:`GradScaler` for explanation of scaling/unscaling and more use cases.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
init_scale (float, optional, default=2.**16): Initial scale factor.
|
69 |
+
growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during
|
70 |
+
:meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations.
|
71 |
+
backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during
|
72 |
+
:meth:`update` if inf/NaN gradients occur in an iteration.
|
73 |
+
growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients
|
74 |
+
that must occur for the scale to be multiplied by ``growth_factor``.
|
75 |
+
enabled (bool, optional): If ``False``, disables gradient scaling. :meth:`step` simply
|
76 |
+
invokes the underlying ``optimizer.step()``, and other methods become no-ops.
|
77 |
+
Default: ``True``
|
78 |
+
process_group (ProcessGroup, optional, default=torch.distributed.group.WORLD):
|
79 |
+
process group for sharding
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
device: str = "cuda",
|
85 |
+
init_scale: float = 2.0**16,
|
86 |
+
backoff_factor: float = 0.5,
|
87 |
+
growth_factor: float = 2.0,
|
88 |
+
growth_interval: int = 2000,
|
89 |
+
enabled: bool = True,
|
90 |
+
process_group: Optional[ProcessGroup] = dist.group.WORLD,
|
91 |
+
) -> None:
|
92 |
+
super().__init__(
|
93 |
+
device,
|
94 |
+
init_scale=init_scale,
|
95 |
+
backoff_factor=backoff_factor,
|
96 |
+
growth_factor=growth_factor,
|
97 |
+
growth_interval=growth_interval,
|
98 |
+
enabled=enabled,
|
99 |
+
)
|
100 |
+
if self._enabled:
|
101 |
+
self.process_group = process_group
|
102 |
+
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
103 |
+
|
104 |
+
@overload
|
105 |
+
def scale(self, outputs: torch.Tensor) -> torch.Tensor:
|
106 |
+
...
|
107 |
+
|
108 |
+
@overload
|
109 |
+
def scale(self, outputs: List[torch.Tensor]) -> List[torch.Tensor]:
|
110 |
+
...
|
111 |
+
|
112 |
+
@overload
|
113 |
+
def scale(self, outputs: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor, ...]:
|
114 |
+
...
|
115 |
+
|
116 |
+
@overload
|
117 |
+
def scale(self, outputs: Iterable[torch.Tensor]) -> Iterable[torch.Tensor]:
|
118 |
+
...
|
119 |
+
|
120 |
+
def scale(
|
121 |
+
self, outputs: Union[torch.Tensor, Iterable[torch.Tensor]]
|
122 |
+
) -> Union[torch.Tensor, Iterable[torch.Tensor]]:
|
123 |
+
if not self._enabled:
|
124 |
+
return outputs
|
125 |
+
|
126 |
+
if isinstance(outputs, torch.Tensor):
|
127 |
+
assert _is_supported_device(outputs)
|
128 |
+
if self._scale is None:
|
129 |
+
self._lazy_init_scale_growth_tracker(outputs.device)
|
130 |
+
assert self._scale is not None
|
131 |
+
scaled_output = outputs * self._scale.to(
|
132 |
+
device=outputs.device, non_blocking=True
|
133 |
+
)
|
134 |
+
# Here we ensure the return dtype is the same as the outputs dtype.
|
135 |
+
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
|
136 |
+
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
|
137 |
+
return scaled_output.type(outputs.dtype)
|
138 |
+
|
139 |
+
stash: List[_GeneralMultiDeviceReplicator] = []
|
140 |
+
|
141 |
+
def apply_scale(val: Union[torch.Tensor, Iterable[torch.Tensor]]):
|
142 |
+
if isinstance(val, torch.Tensor):
|
143 |
+
assert _is_supported_device(val)
|
144 |
+
if len(stash) == 0:
|
145 |
+
if self._scale is None:
|
146 |
+
self._lazy_init_scale_growth_tracker(val.device)
|
147 |
+
assert self._scale is not None
|
148 |
+
stash.append(_GeneralMultiDeviceReplicator(self._scale))
|
149 |
+
scaled_val = val * stash[0].get(val.device)
|
150 |
+
# Here we ensure the return dtype is the same as the outputs dtype.
|
151 |
+
# For the FSDP + Mixed Precision use case, the loss output is in the Mixed Precision
|
152 |
+
# format (fp16, bf16) and so the scaled loss should be of the same dtype.
|
153 |
+
return scaled_val.type(val.dtype)
|
154 |
+
if isinstance(val, abc.Iterable):
|
155 |
+
iterator = map(apply_scale, val)
|
156 |
+
if isinstance(val, (list, tuple)):
|
157 |
+
return type(val)(iterator)
|
158 |
+
return iterator
|
159 |
+
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
|
160 |
+
|
161 |
+
return apply_scale(outputs)
|
162 |
+
|
163 |
+
def _foreach_non_finite_check_and_unscale_cpu_(
|
164 |
+
self,
|
165 |
+
grads: Sequence[torch.Tensor],
|
166 |
+
found_inf: torch.Tensor,
|
167 |
+
inv_scale: torch.Tensor,
|
168 |
+
) -> None:
|
169 |
+
if len(grads) == 0:
|
170 |
+
return
|
171 |
+
assert inv_scale.numel() == 1, "inv_scale must be a 1-element tensor."
|
172 |
+
assert found_inf.numel() == 1, "found_inf must be a 1-element tensor."
|
173 |
+
|
174 |
+
for grad in grads:
|
175 |
+
if grad.device.type != "cpu":
|
176 |
+
log.error(
|
177 |
+
"tensor device is %s but was expected to be ``cpu``",
|
178 |
+
grad.device,
|
179 |
+
)
|
180 |
+
raise ValueError(
|
181 |
+
"Gradients were found on a non-CPU device when"
|
182 |
+
" expected to be on CPU."
|
183 |
+
)
|
184 |
+
if (
|
185 |
+
torch.isinf(grad).any().item() is True
|
186 |
+
or torch.isnan(grad).any().item() is True
|
187 |
+
):
|
188 |
+
found_inf.data = torch.tensor([1.0])
|
189 |
+
break
|
190 |
+
else:
|
191 |
+
grad.data *= inv_scale.item()
|
192 |
+
|
193 |
+
def _unscale_grads_(
|
194 |
+
self,
|
195 |
+
optimizer: torch.optim.Optimizer,
|
196 |
+
inv_scale: torch.Tensor,
|
197 |
+
found_inf: torch.Tensor,
|
198 |
+
allow_fp16: bool = True,
|
199 |
+
) -> Dict[torch.device, torch.Tensor]:
|
200 |
+
per_device_inv_scale = _GeneralMultiDeviceReplicator(inv_scale)
|
201 |
+
per_device_found_inf = _GeneralMultiDeviceReplicator(found_inf)
|
202 |
+
|
203 |
+
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
|
204 |
+
# There could be thousands of grads, so we'd like to iterate through them just once.
|
205 |
+
# However, we don't know their devices or dtypes in advance.
|
206 |
+
|
207 |
+
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
|
208 |
+
# Google says mypy struggles with defaultdicts type annotations.
|
209 |
+
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
|
210 |
+
with torch.no_grad():
|
211 |
+
for group in optimizer.param_groups:
|
212 |
+
for param in group["params"]:
|
213 |
+
if param.grad is None:
|
214 |
+
continue
|
215 |
+
if (not allow_fp16) and param.grad.dtype == torch.float16:
|
216 |
+
raise ValueError("Attempting to unscale FP16 gradients.")
|
217 |
+
if param.grad.is_sparse:
|
218 |
+
# is_coalesced() == False means the sparse grad has values with duplicate indices.
|
219 |
+
# coalesce() deduplicates indices and adds all values that have the same index.
|
220 |
+
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
|
221 |
+
# so we should check the coalesced _values().
|
222 |
+
if param.grad.dtype is torch.float16:
|
223 |
+
# coalesce is not supported in torch.float16
|
224 |
+
param_grad_fp32 = param.grad.type(torch.float32).coalesce()
|
225 |
+
param.grad = param_grad_fp32.type(torch.float16)
|
226 |
+
to_unscale = param.grad._values()
|
227 |
+
else:
|
228 |
+
to_unscale = param.grad
|
229 |
+
|
230 |
+
per_device_and_dtype_grads[to_unscale.device][
|
231 |
+
to_unscale.dtype
|
232 |
+
].append(to_unscale)
|
233 |
+
|
234 |
+
for device, per_dtype_grads in per_device_and_dtype_grads.items():
|
235 |
+
for grads in per_dtype_grads.values():
|
236 |
+
if grads[0].device.type == "cpu":
|
237 |
+
self._foreach_non_finite_check_and_unscale_cpu_(
|
238 |
+
grads,
|
239 |
+
per_device_found_inf.get(device),
|
240 |
+
per_device_inv_scale.get(device),
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
torch._amp_foreach_non_finite_check_and_unscale_(
|
244 |
+
grads,
|
245 |
+
per_device_found_inf.get(device),
|
246 |
+
per_device_inv_scale.get(device),
|
247 |
+
)
|
248 |
+
# There exist contexts (e.g. w/ `use_orig_params=True`) wherein some
|
249 |
+
# ranks may have no (non-zero sized) parameter shards, necessitating the
|
250 |
+
# initialization of `per_device_found_inf._per_device_tensors` here
|
251 |
+
if not per_device_found_inf._per_device_tensors:
|
252 |
+
assert self._scale is not None
|
253 |
+
per_device_found_inf.get(self._scale.device)
|
254 |
+
return per_device_found_inf._per_device_tensors
|
255 |
+
|
256 |
+
def unscale_(self, optimizer: torch.optim.Optimizer) -> None:
|
257 |
+
if not self._enabled:
|
258 |
+
return
|
259 |
+
|
260 |
+
self._check_scale_growth_tracker("unscale_")
|
261 |
+
|
262 |
+
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
263 |
+
|
264 |
+
if optimizer_state["stage"] is OptState.UNSCALED:
|
265 |
+
raise RuntimeError(
|
266 |
+
"unscale_() has already been called on this optimizer since the last update()."
|
267 |
+
)
|
268 |
+
elif optimizer_state["stage"] is OptState.STEPPED:
|
269 |
+
raise RuntimeError("unscale_() is being called after step().")
|
270 |
+
|
271 |
+
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
272 |
+
assert self._scale is not None
|
273 |
+
inv_scale = self._scale.double().reciprocal().float()
|
274 |
+
found_inf = torch.full(
|
275 |
+
(1,), 0.0, dtype=torch.float32, device=self._scale.device
|
276 |
+
)
|
277 |
+
|
278 |
+
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
279 |
+
optimizer, inv_scale, found_inf, True
|
280 |
+
)
|
281 |
+
optimizer_state["stage"] = OptState.UNSCALED
|
282 |
+
|
283 |
+
# Synchronize the detected inf across the ranks
|
284 |
+
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
285 |
+
works = []
|
286 |
+
found_inf_on_cpus = []
|
287 |
+
found_inf_on_cudas = []
|
288 |
+
|
289 |
+
for found_inf in optimizer_state["found_inf_per_device"].values():
|
290 |
+
if self._device == "cuda" and found_inf.device.type == "cpu":
|
291 |
+
found_inf_on_cpus.append(found_inf)
|
292 |
+
found_inf_on_cuda = found_inf.cuda()
|
293 |
+
found_inf_on_cudas.append(found_inf_on_cuda)
|
294 |
+
works.append(
|
295 |
+
dist.all_reduce(
|
296 |
+
found_inf_on_cuda, async_op=True, group=self.process_group
|
297 |
+
)
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
works.append(
|
301 |
+
dist.all_reduce(found_inf, async_op=True, group=self.process_group)
|
302 |
+
)
|
303 |
+
for work in works:
|
304 |
+
work.wait()
|
305 |
+
if found_inf_on_cpus:
|
306 |
+
torch._foreach_copy_(found_inf_on_cpus, found_inf_on_cudas)
|
307 |
+
|
308 |
+
def _amp_update_scale_cpu_(self, found_inf: torch.Tensor) -> None:
|
309 |
+
"""
|
310 |
+
If found_inf is 1.0 (True), then scale is multiplied by backoff_factor and growth_tracker is set to zero.
|
311 |
+
Otherwise, scale is multiplied by the growth factor when the growth interval is reached.
|
312 |
+
"""
|
313 |
+
assert self._scale is not None and self._growth_tracker is not None
|
314 |
+
|
315 |
+
if found_inf.item() >= 1.0:
|
316 |
+
self._scale *= self._backoff_factor
|
317 |
+
self._growth_tracker.fill_(0)
|
318 |
+
else:
|
319 |
+
successful = self._growth_tracker + 1
|
320 |
+
if successful == self._growth_interval:
|
321 |
+
self._scale *= self._growth_factor
|
322 |
+
self._growth_tracker.fill_(0)
|
323 |
+
else:
|
324 |
+
self._growth_tracker = successful
|
325 |
+
|
326 |
+
def update(self, new_scale: Optional[Union[float, torch.Tensor]] = None) -> None:
|
327 |
+
"""
|
328 |
+
Updates the scale factor.
|
329 |
+
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
|
330 |
+
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
|
331 |
+
the scale is multiplied by ``growth_factor`` to increase it.
|
332 |
+
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
|
333 |
+
used directly, it's used to fill GradScaler's internal scale tensor. So if
|
334 |
+
``new_scale`` was a tensor, later in-place changes to that tensor will not further
|
335 |
+
affect the scale GradScaler uses internally.)
|
336 |
+
Args:
|
337 |
+
new_scale (float or :class:`torch.Tensor`, optional, default=None): New scale factor.
|
338 |
+
.. warning::
|
339 |
+
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
|
340 |
+
been invoked for all optimizers used this iteration.
|
341 |
+
"""
|
342 |
+
|
343 |
+
if not self._enabled:
|
344 |
+
return
|
345 |
+
|
346 |
+
_scale, _growth_tracker = self._check_scale_growth_tracker("update") # type: ignore[var-annotated]
|
347 |
+
|
348 |
+
if new_scale is not None:
|
349 |
+
# Accept a new user-defined scale.
|
350 |
+
if isinstance(new_scale, float):
|
351 |
+
self._scale.fill_(new_scale) # type: ignore[union-attr]
|
352 |
+
else:
|
353 |
+
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor or \
|
354 |
+
torch.FloatTensor with requires_grad=False."
|
355 |
+
assert new_scale.device.type == self._device, reason
|
356 |
+
assert new_scale.numel() == 1, reason
|
357 |
+
assert new_scale.requires_grad is False, reason
|
358 |
+
self._scale.copy_(new_scale) # type: ignore[union-attr]
|
359 |
+
else:
|
360 |
+
# Consume shared inf/nan data collected from optimizers to update the scale.
|
361 |
+
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
|
362 |
+
found_infs = [
|
363 |
+
found_inf.to(device=_scale.device, non_blocking=True)
|
364 |
+
for state in self._per_optimizer_states.values()
|
365 |
+
for found_inf in state["found_inf_per_device"].values()
|
366 |
+
]
|
367 |
+
|
368 |
+
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
|
369 |
+
|
370 |
+
found_inf_combined = found_infs[0]
|
371 |
+
if len(found_infs) > 1:
|
372 |
+
for i in range(1, len(found_infs)):
|
373 |
+
found_inf_combined += found_infs[i]
|
374 |
+
|
375 |
+
if _scale.device.type == "cpu":
|
376 |
+
self._amp_update_scale_cpu_(found_inf_combined)
|
377 |
+
else:
|
378 |
+
torch._amp_update_scale_(
|
379 |
+
self._scale, # type: ignore[arg-type]
|
380 |
+
self._growth_tracker, # type: ignore[arg-type]
|
381 |
+
found_inf_combined,
|
382 |
+
self._growth_factor, # type: ignore[arg-type]
|
383 |
+
self._backoff_factor, # type: ignore[arg-type]
|
384 |
+
self._growth_interval, # type: ignore[arg-type]
|
385 |
+
)
|
386 |
+
|
387 |
+
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
388 |
+
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
venv/lib/python3.10/site-packages/torch/distributed/fsdp/wrap.py
ADDED
@@ -0,0 +1,606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the BSD license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import copy
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
from typing import (
|
10 |
+
Any,
|
11 |
+
Callable,
|
12 |
+
cast,
|
13 |
+
Dict,
|
14 |
+
Generator,
|
15 |
+
Iterable,
|
16 |
+
Optional,
|
17 |
+
Sequence,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
Type,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"always_wrap_policy",
|
28 |
+
"lambda_auto_wrap_policy",
|
29 |
+
"transformer_auto_wrap_policy",
|
30 |
+
"size_based_auto_wrap_policy",
|
31 |
+
"enable_wrap",
|
32 |
+
"wrap",
|
33 |
+
"CustomPolicy",
|
34 |
+
"ModuleWrapPolicy",
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
# NOTE: We intentionally keep this function simple and isolate the complexity
|
39 |
+
# to `fn` to enable using this function generically. We may move this to a
|
40 |
+
# non-FSDP-specific folder and/or make it public in the future.
|
41 |
+
def _post_order_apply(
|
42 |
+
root_module: nn.Module,
|
43 |
+
fn: Callable[[nn.Module], Optional[nn.Module]],
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
This applies ``fn`` to every module in the module tree of ``root_module``
|
47 |
+
following a post-order traversal. If ``fn`` returns an :class:`nn.Module`,
|
48 |
+
then this replaces the original module with the newly returned one in the
|
49 |
+
tree. Otherwise, ``fn`` should return ``None``, in which case the module is
|
50 |
+
not changed.
|
51 |
+
"""
|
52 |
+
# Track visited modules to avoid visiting shared modules multiple times
|
53 |
+
visited_modules: Set[nn.Module] = {root_module}
|
54 |
+
|
55 |
+
def _post_order_apply_inner(
|
56 |
+
module: nn.Module,
|
57 |
+
module_name: str,
|
58 |
+
parent_module: Optional[nn.Module],
|
59 |
+
):
|
60 |
+
for child_module_name, child_module in module.named_children():
|
61 |
+
if child_module not in visited_modules:
|
62 |
+
visited_modules.add(child_module)
|
63 |
+
_post_order_apply_inner(child_module, child_module_name, module)
|
64 |
+
optional_module = fn(module)
|
65 |
+
if optional_module is not None:
|
66 |
+
assert isinstance(parent_module, nn.Module), (
|
67 |
+
"Non-root modules should have their parent module set but got "
|
68 |
+
f"{parent_module} for {module}"
|
69 |
+
)
|
70 |
+
assert module_name, (
|
71 |
+
"Non-root modules should have their module name set but got "
|
72 |
+
f"an empty module name for {module}"
|
73 |
+
)
|
74 |
+
assert isinstance(
|
75 |
+
optional_module, nn.Module
|
76 |
+
), f"fn should return None or an nn.Module but got {optional_module}"
|
77 |
+
setattr(parent_module, module_name, optional_module)
|
78 |
+
|
79 |
+
_post_order_apply_inner(root_module, "", None)
|
80 |
+
|
81 |
+
|
82 |
+
def _construct_wrap_fn(
|
83 |
+
root_module: nn.Module,
|
84 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],
|
85 |
+
fsdp_fn: Callable,
|
86 |
+
) -> Callable[[nn.Module], Optional[nn.Module]]:
|
87 |
+
"""
|
88 |
+
This constructs the "wrap" function to pass to :func:`_post_order_apply`
|
89 |
+
based on ``target_module_to_kwargs``, which should be constructed from the
|
90 |
+
wrapping policy.
|
91 |
+
"""
|
92 |
+
|
93 |
+
def fn(module: nn.Module) -> Optional[nn.Module]:
|
94 |
+
# Explicitly avoid wrapping the root module since for FSDP, it is
|
95 |
+
# handled by the caller
|
96 |
+
if module in target_module_to_kwargs and module is not root_module:
|
97 |
+
kwargs = target_module_to_kwargs[module]
|
98 |
+
return fsdp_fn(module, **kwargs)
|
99 |
+
return None
|
100 |
+
|
101 |
+
return fn
|
102 |
+
|
103 |
+
|
104 |
+
def _run_mixed_precision_override_policy(
|
105 |
+
root_module: nn.Module,
|
106 |
+
module_classes: Iterable[Type[nn.Module]],
|
107 |
+
ignored_modules: Set[nn.Module],
|
108 |
+
root_kwargs: Dict[str, Any],
|
109 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],
|
110 |
+
):
|
111 |
+
module_classes_tuple = tuple(set(module_classes))
|
112 |
+
for module in root_module.modules():
|
113 |
+
if module in ignored_modules:
|
114 |
+
continue
|
115 |
+
elif isinstance(module, module_classes_tuple):
|
116 |
+
# This policy overrides any existing policy
|
117 |
+
if module not in target_module_to_kwargs:
|
118 |
+
# Only inherit from the root kwargs if not already specified
|
119 |
+
target_module_to_kwargs[module] = root_kwargs
|
120 |
+
target_module_to_kwargs[module]["mixed_precision"] = None
|
121 |
+
return target_module_to_kwargs
|
122 |
+
|
123 |
+
|
124 |
+
def always_wrap_policy(*args, **kwargs) -> bool:
|
125 |
+
"""
|
126 |
+
A simple recursive wrap policy that always returns ``True``. This means
|
127 |
+
that every submodule is wrapped by the wrapper class in
|
128 |
+
:func:`_recursive_wrap`.
|
129 |
+
"""
|
130 |
+
return True
|
131 |
+
|
132 |
+
|
133 |
+
class _Policy(ABC):
|
134 |
+
"""
|
135 |
+
This defines an abstract base class that represents a policy for applying
|
136 |
+
a module-level API.
|
137 |
+
"""
|
138 |
+
|
139 |
+
@abstractmethod
|
140 |
+
def _run_policy(
|
141 |
+
self,
|
142 |
+
root_module: nn.Module,
|
143 |
+
ignored_modules: Set[nn.Module],
|
144 |
+
root_kwargs: Dict[str, Any],
|
145 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
146 |
+
"""
|
147 |
+
This should return a dict ``target_module_to_kwargs`` that maps from
|
148 |
+
each target module to wrap to its kwargs.
|
149 |
+
"""
|
150 |
+
...
|
151 |
+
|
152 |
+
|
153 |
+
def _module_wrap_policy(
|
154 |
+
module: nn.Module,
|
155 |
+
recurse: bool,
|
156 |
+
nonwrapped_numel: int,
|
157 |
+
module_classes: Set[Type[nn.Module]],
|
158 |
+
) -> bool:
|
159 |
+
"""
|
160 |
+
This auto wrap policy wraps every module that is an instance of any type in
|
161 |
+
``module_classes`` as its own FSDP instance. The root module given by
|
162 |
+
``module`` is always wrapped as an FSDP instance regardless. Since the
|
163 |
+
wrapping proceeds bottom up, each FSDP instance manages the parameters in
|
164 |
+
its subtree excluding any already managed by a child FSDP instance.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
module (nn.Module): Current module being considered.
|
168 |
+
recurse (bool): If ``False``, then this function must decide whether
|
169 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
170 |
+
``True``, then the function is still recursing down the module
|
171 |
+
tree as a part of the DFS.
|
172 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
173 |
+
module_classes (Set[Type[nn.Module]]): Set of module classes that are
|
174 |
+
wrapped as FSDP instances.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
``True`` if ``recurse=True``, and whether ``module`` should be wrapped
|
178 |
+
if ``recurse=False``.
|
179 |
+
"""
|
180 |
+
if recurse:
|
181 |
+
return True # always recurse
|
182 |
+
return isinstance(module, tuple(module_classes))
|
183 |
+
|
184 |
+
|
185 |
+
class ModuleWrapPolicy(_Policy):
|
186 |
+
"""
|
187 |
+
This policy applies to every module of the specified module classes,
|
188 |
+
passing in the kwargs given to the root.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(self, module_classes: Iterable[Type[nn.Module]]):
|
192 |
+
module_classes_set = set(module_classes)
|
193 |
+
self._module_classes = module_classes_set
|
194 |
+
self._module_classes_str = str(module_classes_set)
|
195 |
+
|
196 |
+
def _run_policy(
|
197 |
+
self,
|
198 |
+
root_module: nn.Module,
|
199 |
+
ignored_modules: Set[nn.Module],
|
200 |
+
root_kwargs: Dict[str, Any],
|
201 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
202 |
+
module_classes = tuple(self._module_classes)
|
203 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
|
204 |
+
for module in root_module.modules():
|
205 |
+
if module in ignored_modules:
|
206 |
+
continue
|
207 |
+
elif isinstance(module, module_classes):
|
208 |
+
# Shallow copy to avoid coupling changes across modules
|
209 |
+
target_module_to_kwargs[module] = copy.copy(root_kwargs)
|
210 |
+
return target_module_to_kwargs
|
211 |
+
|
212 |
+
def __call__(self, module, recurse, *args, **kwargs):
|
213 |
+
# nonwrapped_numel is not used.
|
214 |
+
return _module_wrap_policy(
|
215 |
+
module, recurse, nonwrapped_numel=-1, module_classes=self._module_classes
|
216 |
+
)
|
217 |
+
|
218 |
+
def __repr__(self) -> str:
|
219 |
+
return super().__repr__() + f"({self._module_classes_str})"
|
220 |
+
|
221 |
+
|
222 |
+
class CustomPolicy(_Policy):
|
223 |
+
"""
|
224 |
+
This policy takes in a lambda function that maps a given ``nn.Module`` to
|
225 |
+
either ``False``, ``True``, or a kwarg dictionary.
|
226 |
+
- If the function returns ``False`` or an empty dictionary, then the module
|
227 |
+
does not have the API applied.
|
228 |
+
- If the function returns ``True``, then the module has the API applied
|
229 |
+
with the root's kwargs.
|
230 |
+
- If the function returns a non-empty dictionary, then the module has the
|
231 |
+
API applied, and the dictionary overrides the root's kwargs.
|
232 |
+
|
233 |
+
Example::
|
234 |
+
|
235 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
236 |
+
>>> model = init_transformer_model(...)
|
237 |
+
>>> def lambda_fn(module: nn.Module):
|
238 |
+
>>> if module is model.lm_head:
|
239 |
+
>>> return {"sharding_strategy": ShardingStrategy.SHARD_GRAD_OP}
|
240 |
+
>>> elif isinstance(module, TransformerBlock):
|
241 |
+
>>> return True
|
242 |
+
>>> return False
|
243 |
+
>>> policy = CustomPolicy(lambda_fn)
|
244 |
+
>>> fsdp_model = FSDP(model, auto_wrap_policy=policy)
|
245 |
+
"""
|
246 |
+
|
247 |
+
def __init__(self, lambda_fn: Callable[[nn.Module], Union[bool, Dict[str, Any]]]):
|
248 |
+
self._lambda_fn = lambda_fn
|
249 |
+
|
250 |
+
def _run_policy(
|
251 |
+
self,
|
252 |
+
root_module: nn.Module,
|
253 |
+
ignored_modules: Set[nn.Module],
|
254 |
+
root_kwargs: Dict[str, Any],
|
255 |
+
) -> Dict[nn.Module, Dict[str, Any]]:
|
256 |
+
target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
|
257 |
+
for module in root_module.modules():
|
258 |
+
if module in ignored_modules:
|
259 |
+
continue
|
260 |
+
res = self._lambda_fn(module)
|
261 |
+
if not isinstance(res, (dict, bool)):
|
262 |
+
raise ValueError(
|
263 |
+
"The lambda_fn passed to CustomPolicy should return "
|
264 |
+
f"False/True or a kwarg dict, but it returned {res}"
|
265 |
+
)
|
266 |
+
if not res:
|
267 |
+
continue
|
268 |
+
kwargs = copy.copy(root_kwargs)
|
269 |
+
if isinstance(res, dict):
|
270 |
+
# Override the root kwargs with the ones specified by the
|
271 |
+
# lambda function
|
272 |
+
kwargs.update(res)
|
273 |
+
target_module_to_kwargs[module] = kwargs
|
274 |
+
return target_module_to_kwargs
|
275 |
+
|
276 |
+
|
277 |
+
def lambda_auto_wrap_policy(
|
278 |
+
module: nn.Module, recurse: bool, nonwrapped_numel: int, lambda_fn: Callable
|
279 |
+
) -> bool:
|
280 |
+
"""
|
281 |
+
A convenient auto wrap policy to wrap submodules based on an arbitrary user
|
282 |
+
function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as
|
283 |
+
a `wrapper_cls` unit.
|
284 |
+
|
285 |
+
Return if a module should be wrapped during auto wrapping.
|
286 |
+
|
287 |
+
The first three parameters are required by :func:`_recursive_wrap`.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
module (nn.Module): Current module being considered.
|
291 |
+
recurse (bool): If ``False``, then this function must decide whether
|
292 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
293 |
+
``True``, then the function is still recursing down the module
|
294 |
+
tree as a part of the DFS.
|
295 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
296 |
+
|
297 |
+
lambda_fn (Callable[[nn.Module], bool]): If this returns ``True``, then
|
298 |
+
this module will be wrapped.
|
299 |
+
"""
|
300 |
+
if recurse:
|
301 |
+
return True # always recurse
|
302 |
+
return lambda_fn(module)
|
303 |
+
|
304 |
+
|
305 |
+
def transformer_auto_wrap_policy(
|
306 |
+
module: nn.Module,
|
307 |
+
recurse: bool,
|
308 |
+
nonwrapped_numel: int,
|
309 |
+
transformer_layer_cls: Set[Type[nn.Module]],
|
310 |
+
) -> bool:
|
311 |
+
"""
|
312 |
+
See :func:`_module_wrap_policy`, where ``transformer_layer_cls`` is the
|
313 |
+
same as ``module_classes``. Note that shared parameters must be wrapped in
|
314 |
+
the same FSDP instance, so this auto wrap policy can help wrap shared
|
315 |
+
embeddings into the same FSDP instance for transformer models.
|
316 |
+
"""
|
317 |
+
return _module_wrap_policy(module, recurse, nonwrapped_numel, transformer_layer_cls)
|
318 |
+
|
319 |
+
|
320 |
+
def _wrap_module_cls_individually(
|
321 |
+
module: nn.Module, module_classes: Sequence[type], recurse: bool, *args, **kwargs
|
322 |
+
):
|
323 |
+
if recurse:
|
324 |
+
# always recurse
|
325 |
+
return True
|
326 |
+
else:
|
327 |
+
# if not recursing, decide whether we should wrap based on whether the type of module
|
328 |
+
# is in `module_classes`.
|
329 |
+
return isinstance(module, tuple(module_classes))
|
330 |
+
|
331 |
+
|
332 |
+
def _or_policy(
|
333 |
+
module: nn.Module,
|
334 |
+
recurse: bool,
|
335 |
+
nonwrapped_numel: int,
|
336 |
+
policies,
|
337 |
+
) -> bool:
|
338 |
+
"""
|
339 |
+
A policy that wraps ``module`` if any policy in the passed in iterable of
|
340 |
+
``policies`` returns ``True``.
|
341 |
+
"""
|
342 |
+
return any(
|
343 |
+
policy(module=module, recurse=recurse, nonwrapped_numel=nonwrapped_numel)
|
344 |
+
for policy in policies
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
def size_based_auto_wrap_policy(
|
349 |
+
module: nn.Module,
|
350 |
+
recurse: bool,
|
351 |
+
nonwrapped_numel: int,
|
352 |
+
# Additional custom arguments
|
353 |
+
min_num_params: int = int(1e8),
|
354 |
+
force_leaf_modules: Optional[Set[Type[nn.Module]]] = None,
|
355 |
+
exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None,
|
356 |
+
) -> bool:
|
357 |
+
"""
|
358 |
+
A size-based auto wrap policy.
|
359 |
+
|
360 |
+
Args:
|
361 |
+
module (nn.Module): Current module being considered.
|
362 |
+
recurse (bool): If ``False``, then this function must decide whether
|
363 |
+
``module`` should be wrapped as an FSDP instance or not. If
|
364 |
+
``True``, then the function is still recursing down the module
|
365 |
+
tree as a part of the DFS.
|
366 |
+
nonwrapped_numel (int): Parameter numel not yet wrapped.
|
367 |
+
|
368 |
+
min_num_params (int): Customizable policy input that controls the size
|
369 |
+
threshold over which a module is ready to be wrapped. This is in
|
370 |
+
units of numel.
|
371 |
+
force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
|
372 |
+
as leaves, i.e. their children will never be wrapped.
|
373 |
+
exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
|
374 |
+
excluded in wrapping.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
Whether ``module`` should be wrapped.
|
378 |
+
"""
|
379 |
+
force_leaf_modules = (
|
380 |
+
size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
|
381 |
+
if force_leaf_modules is None
|
382 |
+
else force_leaf_modules
|
383 |
+
)
|
384 |
+
exclude_wrap_modules = (
|
385 |
+
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
|
386 |
+
if exclude_wrap_modules is None
|
387 |
+
else exclude_wrap_modules
|
388 |
+
)
|
389 |
+
|
390 |
+
# Keep the argument `min_num_params` for BC for now, but it represents the
|
391 |
+
# minimum non-wrapped *numel* before triggering a wrapping
|
392 |
+
min_nonwrapped_numel = min_num_params
|
393 |
+
is_large = nonwrapped_numel >= min_nonwrapped_numel
|
394 |
+
if recurse:
|
395 |
+
# We should recurse if the module is big enough but not in force_leaf_modules list.
|
396 |
+
return is_large and not isinstance(module, tuple(force_leaf_modules))
|
397 |
+
else:
|
398 |
+
# If we are not recursing, determine if we should wrap.
|
399 |
+
return is_large and not isinstance(module, tuple(exclude_wrap_modules))
|
400 |
+
|
401 |
+
|
402 |
+
# Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
|
403 |
+
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict} # type: ignore[attr-defined]
|
404 |
+
size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention} # type: ignore[attr-defined]
|
405 |
+
|
406 |
+
|
407 |
+
@contextlib.contextmanager
|
408 |
+
def enable_wrap(
|
409 |
+
*, wrapper_cls: Any, **wrapper_kwargs: Any
|
410 |
+
) -> Generator[None, None, None]:
|
411 |
+
"""
|
412 |
+
Context manager to wrap modules using a wrapper.
|
413 |
+
|
414 |
+
Useful for when you'd like to apply the same configuration arguments to all
|
415 |
+
child modules that you wrap. A particularly important use case is wrapping
|
416 |
+
large layers so that they get sharded (in-place) during initialization, to
|
417 |
+
avoid running out of system memory. Large layers can indicate that they
|
418 |
+
should be sharded via the ``wrap`` annotation and this context manager can
|
419 |
+
provide the exact configuration for these nested instances.
|
420 |
+
|
421 |
+
Usage::
|
422 |
+
|
423 |
+
with enable_wrap(wrapper_cls, **params):
|
424 |
+
# Wraps layer in FSDP by default if within context
|
425 |
+
self.l1 = wrap(torch.nn.Linear(5, 5))
|
426 |
+
|
427 |
+
Args:
|
428 |
+
wrapper_cls:
|
429 |
+
Class that `wrap` annotation will `wrap` modules with, such as
|
430 |
+
`FullyShardedDataParallel`.
|
431 |
+
**wrapper_kwargs:
|
432 |
+
Configuration settings that will be passed to all ``wrap``
|
433 |
+
instances inside the context
|
434 |
+
"""
|
435 |
+
kwargs = {
|
436 |
+
"wrapper_cls": wrapper_cls,
|
437 |
+
**wrapper_kwargs,
|
438 |
+
}
|
439 |
+
with _ConfigAutoWrap(**kwargs):
|
440 |
+
yield
|
441 |
+
|
442 |
+
|
443 |
+
def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module:
|
444 |
+
"""
|
445 |
+
Annotate that a module should be wrapped. Annotated modules will only be
|
446 |
+
wrapped if inside of an :func:`enable_wrap` context manager. This allows
|
447 |
+
a module to be initialized both with and without a wrapper without code
|
448 |
+
change.
|
449 |
+
|
450 |
+
The class that this function wraps the passed in ``nn.Module`` with is the
|
451 |
+
passed in ``wrapper_cls`` argument into ``enable_wrap``. Both
|
452 |
+
``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct
|
453 |
+
the ``wrapper_cls`` instance. In the case of duplicate kwargs in
|
454 |
+
``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be
|
455 |
+
respected.
|
456 |
+
|
457 |
+
Usage::
|
458 |
+
|
459 |
+
with enable_wrap(wrapper_cls=FSDP, **fsdp_config):
|
460 |
+
# Wraps layer in FSDP by default if within context
|
461 |
+
self.l1 = wrap(torch.nn.Linear(5, 5))
|
462 |
+
|
463 |
+
Args:
|
464 |
+
module (nn.Module): module to wrap (if in :func:`enable_wrap` context)
|
465 |
+
**wrap_overrides: configuration overrides that will take priority over
|
466 |
+
the values provided by the :func:`enable_wrap` context
|
467 |
+
"""
|
468 |
+
if _ConfigAutoWrap.in_autowrap_context:
|
469 |
+
assert _ConfigAutoWrap.wrapper_cls is not None
|
470 |
+
|
471 |
+
wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides}
|
472 |
+
return _wrap(
|
473 |
+
module,
|
474 |
+
_ConfigAutoWrap.wrapper_cls,
|
475 |
+
**wrap_overrides,
|
476 |
+
)
|
477 |
+
return module
|
478 |
+
|
479 |
+
|
480 |
+
def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module:
|
481 |
+
assert wrapper_cls is not None
|
482 |
+
if hasattr(module, "_wrap_overrides"):
|
483 |
+
# If module has a _wrap_overrides attribute, we force overriding the
|
484 |
+
# FSDP config with these attributes for this module. Currently this
|
485 |
+
# is only used to disable mixed precision for BatchNorm when
|
486 |
+
# auto_wrapping.
|
487 |
+
overrides = {**kwargs, **module._wrap_overrides} # type: ignore[arg-type]
|
488 |
+
return wrapper_cls(module, **overrides)
|
489 |
+
|
490 |
+
return wrapper_cls(module, **kwargs)
|
491 |
+
|
492 |
+
|
493 |
+
def _recursive_wrap(
|
494 |
+
module: nn.Module,
|
495 |
+
auto_wrap_policy: Callable,
|
496 |
+
wrapper_cls: Callable,
|
497 |
+
ignored_modules: Set[nn.Module],
|
498 |
+
ignored_params: Set[nn.Parameter],
|
499 |
+
only_wrap_children: bool = False,
|
500 |
+
**kwargs: Any,
|
501 |
+
) -> Tuple[nn.Module, int]:
|
502 |
+
"""
|
503 |
+
Wraps submodules of ``module`` for which ``auto_wrap_policy`` returns
|
504 |
+
``True`` with ``wrapper_cls``.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
module (nn.Module): Module to recursively wrap.
|
508 |
+
auto_wrap_policy (Callable): A callable representing a policy that
|
509 |
+
determines which modules to recursively wrap with ``wrapper_cls``.
|
510 |
+
ignored_modules (Set[torch.nn.Module]): Modules to ignore when
|
511 |
+
wrapping.
|
512 |
+
ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when
|
513 |
+
wrapping; these should be the parameters contained in the modules
|
514 |
+
in ``ignored_modules``.
|
515 |
+
Returns:
|
516 |
+
(nn.Module, int):
|
517 |
+
``module`` after wrapping and the numel recursively wrapped.
|
518 |
+
"""
|
519 |
+
assert auto_wrap_policy is not None, "Must specify auto_wrap_policy."
|
520 |
+
assert wrapper_cls is not None, "Must specify wrapper_cls"
|
521 |
+
# Make sure no child is already wrapped.
|
522 |
+
for _, child in module.named_modules():
|
523 |
+
if child in ignored_modules:
|
524 |
+
continue
|
525 |
+
try:
|
526 |
+
assert not isinstance(child, cast(type, wrapper_cls))
|
527 |
+
except TypeError:
|
528 |
+
# wrapper_cls is a function as opposed to a class type, just bypass above check.
|
529 |
+
pass
|
530 |
+
|
531 |
+
# We count all params, assuming none of them are already wrapped.
|
532 |
+
nonwrapped_numel = sum(
|
533 |
+
p.numel() for p in module.parameters() if p not in ignored_params
|
534 |
+
)
|
535 |
+
|
536 |
+
assert auto_wrap_policy is not None
|
537 |
+
if auto_wrap_policy(module=module, recurse=True, nonwrapped_numel=nonwrapped_numel):
|
538 |
+
total_wrapped_numel = 0
|
539 |
+
# Iterate through the children, recursively wrap if necessary
|
540 |
+
for name, child in module.named_children():
|
541 |
+
if child in ignored_modules:
|
542 |
+
continue
|
543 |
+
wrapped_child, num_wrapped_params = _recursive_wrap(
|
544 |
+
module=child,
|
545 |
+
auto_wrap_policy=auto_wrap_policy,
|
546 |
+
wrapper_cls=wrapper_cls,
|
547 |
+
ignored_modules=ignored_modules,
|
548 |
+
ignored_params=ignored_params,
|
549 |
+
**kwargs,
|
550 |
+
)
|
551 |
+
setattr(module, name, wrapped_child)
|
552 |
+
# Keep track of how many parameters have been wrapped
|
553 |
+
total_wrapped_numel += num_wrapped_params
|
554 |
+
# decide if we need to wrap the current module,
|
555 |
+
# since the left over parameters exceed the number of params to wrap
|
556 |
+
remainder = nonwrapped_numel - total_wrapped_numel
|
557 |
+
if not only_wrap_children and auto_wrap_policy(
|
558 |
+
module=module, recurse=False, nonwrapped_numel=remainder
|
559 |
+
):
|
560 |
+
# Leaf node or final wrapping of the remainder both happen here.
|
561 |
+
return _wrap(module, wrapper_cls, **kwargs), nonwrapped_numel
|
562 |
+
else:
|
563 |
+
return module, total_wrapped_numel
|
564 |
+
return module, 0
|
565 |
+
|
566 |
+
|
567 |
+
class _ConfigAutoWrap:
|
568 |
+
"""
|
569 |
+
Helper class to wrap modules based on default config args via a context manager.
|
570 |
+
See :func:`enable_wrap` for more information.
|
571 |
+
"""
|
572 |
+
|
573 |
+
in_autowrap_context: bool = False # Context flag
|
574 |
+
wrapper_cls: Optional[Callable] = None # The wrapper class
|
575 |
+
kwargs: Dict[str, Any] = {} # Wrapper's args
|
576 |
+
|
577 |
+
def __init__(self, **kwargs: Dict[str, Any]):
|
578 |
+
self.kwargs = kwargs
|
579 |
+
|
580 |
+
@staticmethod
|
581 |
+
def enable_autowrap_context(kwargs: Any) -> None:
|
582 |
+
if _ConfigAutoWrap.in_autowrap_context:
|
583 |
+
raise NotImplementedError(
|
584 |
+
"You are already within an autowrap context and we currently do not supported nested autowrap."
|
585 |
+
)
|
586 |
+
_ConfigAutoWrap.in_autowrap_context = True
|
587 |
+
# Get and save the wrapper cls for the context.
|
588 |
+
assert (
|
589 |
+
"wrapper_cls" in kwargs.keys()
|
590 |
+
), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap."
|
591 |
+
_ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"])
|
592 |
+
del kwargs["wrapper_cls"]
|
593 |
+
# Save the rest.
|
594 |
+
_ConfigAutoWrap.kwargs = kwargs
|
595 |
+
|
596 |
+
@staticmethod
|
597 |
+
def disable_autowrap_context() -> None:
|
598 |
+
_ConfigAutoWrap.in_autowrap_context = False
|
599 |
+
_ConfigAutoWrap.wrapper_cls = None
|
600 |
+
_ConfigAutoWrap.kwargs = {}
|
601 |
+
|
602 |
+
def __enter__(self) -> None:
|
603 |
+
self.enable_autowrap_context(self.kwargs)
|
604 |
+
|
605 |
+
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
|
606 |
+
self.disable_autowrap_context()
|
venv/lib/python3.10/site-packages/torch/distributed/pipeline/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.warn(
|
3 |
+
"torch.distributed.pipeline is deprecated. For up-to-date pipeline parallel "
|
4 |
+
"implementation, please refer to the PiPPy library under the PyTorch "
|
5 |
+
"organization (Pipeline Parallelism for PyTorch): "
|
6 |
+
"https://github.com/pytorch/PiPPy"
|
7 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.65 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/rpc/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|