Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_prims/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/__pycache__/context.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/__pycache__/debug_prims.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/__pycache__/executor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/__pycache__/rng_prims.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/rng_prims.py +268 -0
- venv/lib/python3.10/site-packages/torch/distributed/__init__.py +132 -0
- venv/lib/python3.10/site-packages/torch/distributed/_composable_state.py +37 -0
- venv/lib/python3.10/site-packages/torch/distributed/_functional_collectives.py +1084 -0
- venv/lib/python3.10/site-packages/torch/distributed/_functional_collectives_impl.py +409 -0
- venv/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__init__.py +12 -0
- venv/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_sharding_spec/__init__.py +14 -0
- venv/lib/python3.10/site-packages/torch/distributed/_sharding_spec/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/batch_dim_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/comm_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/data_parallel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/distribute.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/experimental_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/gm_transformation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/graph_optimization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/graph_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/iter_graph_module.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/log_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/parallel_mode.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/partial_lower.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/api.py +575 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/batch_dim_utils.py +179 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/comm_tensor.py +247 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/config.py +27 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/data_parallel.py +824 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/distribute.py +783 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/experimental_ops.py +455 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/gm_transformation.py +51 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/graph_optimization.py +986 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/graph_utils.py +145 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/iter_graph_module.py +762 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/log_utils.py +78 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/parallel_mode.py +216 -0
- venv/lib/python3.10/site-packages/torch/distributed/_spmd/partial_lower.py +268 -0
ckpts/universal/global_step120/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b76ba44617583c711f86f1de7e4a659c37648ded1f657f897dba30513ef8656
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a40fb1e962c52cede791fa69ed0d037966235db1a663f491aadda732b091ed
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b604db8453bd1484546feaeba94c1ea31052848a6de2234e191cf3dfd534717
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04f24ac126b0f57c4a53ee91ea64fd799da90b0b6d07ab50b38ab25eb682b804
|
3 |
+
size 50332843
|
ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2eaa8e4a45847d44158859761ec77111585296ae41b4e64dac17284d4bcd62d
|
3 |
+
size 50332749
|
ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7ea30c1e8b0a2b4cb29ab44c993294f6c852a73425f9be0a57a01d9f6478834
|
3 |
+
size 415237291
|
venv/lib/python3.10/site-packages/torch/_prims/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (54.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/__pycache__/context.cpython-310.pyc
ADDED
Binary file (4.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/__pycache__/debug_prims.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/__pycache__/executor.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/__pycache__/rng_prims.cpython-310.pyc
ADDED
Binary file (8.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/rng_prims.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.utils._pytree as pytree
|
5 |
+
from torch import _prims
|
6 |
+
from torch._C import DispatchKey
|
7 |
+
from torch._higher_order_ops.utils import autograd_not_implemented
|
8 |
+
from torch._ops import HigherOrderOperator
|
9 |
+
|
10 |
+
from torch._prims_common import CUDARngStateHelper, make_contiguous_strides_for
|
11 |
+
from torch._prims_common.wrappers import backwards_not_supported
|
12 |
+
from torch._subclasses.fake_tensor import FakeTensorMode
|
13 |
+
from torch.fx.experimental.proxy_tensor import (
|
14 |
+
disable_proxy_modes_tracing,
|
15 |
+
ProxyTorchDispatchMode,
|
16 |
+
track_tensor_tree,
|
17 |
+
)
|
18 |
+
from torch.types import _device, _dtype
|
19 |
+
|
20 |
+
|
21 |
+
rngprim_namespace = "rngprims"
|
22 |
+
rngprim = torch.library.Library(rngprim_namespace, "DEF")
|
23 |
+
rngprim_impl = torch.library.Library(
|
24 |
+
rngprim_namespace, "IMPL", "CompositeExplicitAutograd"
|
25 |
+
)
|
26 |
+
rngprim_autograd_impl = torch.library.Library(rngprim_namespace, "IMPL", "Autograd")
|
27 |
+
rngprim_meta_impl = torch.library.Library(rngprim_namespace, "IMPL", "Meta")
|
28 |
+
|
29 |
+
|
30 |
+
def throw_on_non_cuda(device):
|
31 |
+
raise RuntimeError(
|
32 |
+
f"You are trying to functionalize a {device.type} RNG operator but {device.type} does not "
|
33 |
+
f"use Philox/counter-based RNG. Therefore, functionalizing a {device.type} RNG operator is "
|
34 |
+
"not supported. We are discussing the possibility of a Philox-based RNG implementation for CPU."
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def register_rng_prim(name, schema, impl_aten, impl_meta, doc, tags=None):
|
39 |
+
rngprim.define(schema)
|
40 |
+
rngprim_impl.impl(name, impl_aten)
|
41 |
+
rngprim_meta_impl.impl(name, impl_meta)
|
42 |
+
|
43 |
+
prim_packet = getattr(torch._ops.ops.rngprims, name)
|
44 |
+
prim = prim_packet.default
|
45 |
+
if tags:
|
46 |
+
prim._tags = tags
|
47 |
+
|
48 |
+
rngprim_autograd_impl.impl(name, backwards_not_supported(prim))
|
49 |
+
|
50 |
+
for p in (prim_packet, prim):
|
51 |
+
p.__doc__ = doc
|
52 |
+
p.return_type = torch._prims_common.RETURN_TYPE.NEW # type: ignore[attr-defined]
|
53 |
+
|
54 |
+
p.schema = schema
|
55 |
+
p.impl_aten = impl_aten
|
56 |
+
p.prim_meta_impl = impl_meta
|
57 |
+
|
58 |
+
|
59 |
+
# Philox rand offsets could be shared in future with other philox ops, so
|
60 |
+
# keeping these functions in global scope.
|
61 |
+
def philox_rand_offset_meta(
|
62 |
+
shape: torch.Size,
|
63 |
+
):
|
64 |
+
return _prims.TensorLike(torch.tensor(0, dtype=torch.int64))
|
65 |
+
|
66 |
+
|
67 |
+
def philox_rand_offset(
|
68 |
+
shape: torch.Size,
|
69 |
+
):
|
70 |
+
# For impl, look at the function calc_execution_policy in the file
|
71 |
+
# aten/src/ATen/native/cuda/DistributionTemplates.h. The impl was copied at
|
72 |
+
# commit hash 72aa0667bd16707d50eb8fa337092a1f5d11dfb6
|
73 |
+
numel_scalar = 1
|
74 |
+
for dim_size in shape:
|
75 |
+
numel_scalar *= dim_size
|
76 |
+
numel = torch.scalar_tensor(numel_scalar, dtype=torch.int64)
|
77 |
+
|
78 |
+
block_size = 256
|
79 |
+
unroll = 4
|
80 |
+
curand4_engine_calls = 4
|
81 |
+
device_property = torch.cuda.get_device_properties(torch.cuda.current_device())
|
82 |
+
blocks_per_sm = device_property.max_threads_per_multi_processor // block_size
|
83 |
+
grid_size = (numel + block_size - 1) // block_size
|
84 |
+
grid_size = min(grid_size, device_property.multi_processor_count * blocks_per_sm)
|
85 |
+
offset = (
|
86 |
+
(numel - 1) // (block_size * grid_size * unroll) + 1
|
87 |
+
) * curand4_engine_calls
|
88 |
+
return offset
|
89 |
+
|
90 |
+
|
91 |
+
def register_philox_rand():
|
92 |
+
name = "philox_rand"
|
93 |
+
schema = "philox_rand(SymInt[] size, Tensor seed, Tensor offset, int[]? stride, Device? device=None, ScalarType? dtype=None) -> (Tensor, Tensor)" # noqa: B950
|
94 |
+
|
95 |
+
def _philox_rand_meta(
|
96 |
+
shape: torch.Size,
|
97 |
+
seed: torch.Tensor,
|
98 |
+
offset: torch.Tensor,
|
99 |
+
stride: Optional[Tuple[int, ...]],
|
100 |
+
device: _device,
|
101 |
+
dtype: _dtype,
|
102 |
+
):
|
103 |
+
# stride arg will be useful for distributed usecase. Currently, its unused.
|
104 |
+
assert stride is None
|
105 |
+
stride = make_contiguous_strides_for(shape)
|
106 |
+
random_values = _prims.TensorMeta(
|
107 |
+
shape=shape, strides=stride, dtype=dtype, device=device
|
108 |
+
)
|
109 |
+
offset = philox_rand_offset_meta(shape)
|
110 |
+
return (random_values, offset)
|
111 |
+
|
112 |
+
def _philox_rand(
|
113 |
+
shape: torch.Size,
|
114 |
+
seed: torch.Tensor,
|
115 |
+
offset: torch.Tensor,
|
116 |
+
stride: Optional[Tuple[int, ...]],
|
117 |
+
device: _device,
|
118 |
+
dtype: _dtype,
|
119 |
+
):
|
120 |
+
# stride arg will be useful for distributed usecase. Currently, its unused.
|
121 |
+
assert stride is None
|
122 |
+
if device.type == "cpu":
|
123 |
+
devices = []
|
124 |
+
else:
|
125 |
+
devices = [device]
|
126 |
+
|
127 |
+
if device.type != "cuda":
|
128 |
+
raise throw_on_non_cuda(device)
|
129 |
+
|
130 |
+
with torch.random.fork_rng(devices):
|
131 |
+
CUDARngStateHelper.set_torch_state_tensor(seed, offset)
|
132 |
+
random_values = torch.rand(shape, device=device, dtype=dtype)
|
133 |
+
|
134 |
+
return random_values, philox_rand_offset(shape)
|
135 |
+
|
136 |
+
register_rng_prim(
|
137 |
+
name=name,
|
138 |
+
schema=schema,
|
139 |
+
impl_aten=_philox_rand,
|
140 |
+
impl_meta=_philox_rand_meta,
|
141 |
+
doc="Philox based stateless rand operator",
|
142 |
+
tags=(torch.Tag.nondeterministic_seeded,),
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
def get_device(args, kwargs):
|
147 |
+
if kwargs.get("device"):
|
148 |
+
device = kwargs.get("device")
|
149 |
+
if isinstance(device, str):
|
150 |
+
device = torch.device(device)
|
151 |
+
return device.type
|
152 |
+
|
153 |
+
devices = {arg.device.type for arg in args if isinstance(arg, torch.Tensor)}
|
154 |
+
if any(dev == "cuda" for dev in devices):
|
155 |
+
return "cuda"
|
156 |
+
elif any(dev == "cpu" for dev in devices):
|
157 |
+
return "cpu"
|
158 |
+
return None
|
159 |
+
|
160 |
+
|
161 |
+
def register_run_and_save_rng_state_op():
|
162 |
+
run_and_save_rng_state = HigherOrderOperator("run_and_save_rng_state")
|
163 |
+
|
164 |
+
run_and_save_rng_state.py_impl(DispatchKey.Autograd)(
|
165 |
+
autograd_not_implemented(run_and_save_rng_state, deferred_error=True)
|
166 |
+
)
|
167 |
+
|
168 |
+
@run_and_save_rng_state.py_impl(DispatchKey.CUDA)
|
169 |
+
def impl_cuda(op, *args, **kwargs):
|
170 |
+
return torch.cuda.get_rng_state(), op(*args, **kwargs)
|
171 |
+
|
172 |
+
@run_and_save_rng_state.py_impl(DispatchKey.CPU)
|
173 |
+
def impl_cpu(op, *args, **kwargs):
|
174 |
+
return torch.get_rng_state(), op(*args, **kwargs)
|
175 |
+
|
176 |
+
@run_and_save_rng_state.py_impl(DispatchKey.BackendSelect)
|
177 |
+
def impl_backend_select(op, *args, **kwargs):
|
178 |
+
impl_map = {"cuda": impl_cuda, "cpu": impl_cpu}
|
179 |
+
device = get_device(args, kwargs)
|
180 |
+
assert device in impl_map, f"Backend not supported for {device}"
|
181 |
+
impl = impl_map[device]
|
182 |
+
return impl(op, *args, **kwargs)
|
183 |
+
|
184 |
+
@run_and_save_rng_state.py_impl(FakeTensorMode)
|
185 |
+
def impl_fake_tensor_mode(mode, op, *args, **kwargs):
|
186 |
+
# Check device to call the right impl
|
187 |
+
with mode:
|
188 |
+
return impl_backend_select(op, *args, **kwargs)
|
189 |
+
|
190 |
+
@run_and_save_rng_state.py_impl(ProxyTorchDispatchMode)
|
191 |
+
def impl_proxy_dispatch_mode(mode, op, *args, **kwargs):
|
192 |
+
if mode.enable_tracing:
|
193 |
+
out = impl_backend_select(op, *args, **kwargs)
|
194 |
+
proxy_args = pytree.tree_map(mode.tracer.unwrap_proxy, (op, *args))
|
195 |
+
proxy_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, kwargs)
|
196 |
+
out_proxy = mode.tracer.create_proxy(
|
197 |
+
"call_function", run_and_save_rng_state, proxy_args, proxy_kwargs
|
198 |
+
)
|
199 |
+
return track_tensor_tree(out, out_proxy, constant=None, tracer=mode.tracer)
|
200 |
+
else:
|
201 |
+
return run_and_save_rng_state(op, *args, **kwargs)
|
202 |
+
|
203 |
+
return run_and_save_rng_state
|
204 |
+
|
205 |
+
|
206 |
+
def register_run_with_rng_state_op():
|
207 |
+
run_with_rng_state = HigherOrderOperator("run_with_rng_state")
|
208 |
+
|
209 |
+
run_with_rng_state.py_impl(DispatchKey.Autograd)(
|
210 |
+
autograd_not_implemented(run_with_rng_state, deferred_error=True)
|
211 |
+
)
|
212 |
+
|
213 |
+
@run_with_rng_state.py_impl(DispatchKey.CUDA)
|
214 |
+
def impl_cuda(rng_state, op, *args, **kwargs):
|
215 |
+
current_state = torch.cuda.get_rng_state()
|
216 |
+
torch.cuda.set_rng_state(rng_state.cpu())
|
217 |
+
out = op(*args, **kwargs)
|
218 |
+
torch.cuda.set_rng_state(current_state)
|
219 |
+
return out
|
220 |
+
|
221 |
+
@run_with_rng_state.py_impl(DispatchKey.CPU)
|
222 |
+
def impl_cpu(rng_state, op, *args, **kwargs):
|
223 |
+
current_state = torch.get_rng_state()
|
224 |
+
torch.set_rng_state(rng_state)
|
225 |
+
out = op(*args, **kwargs)
|
226 |
+
torch.set_rng_state(current_state)
|
227 |
+
return out
|
228 |
+
|
229 |
+
@run_with_rng_state.py_impl(ProxyTorchDispatchMode)
|
230 |
+
def impl_proxy_dispatch_mode(mode, rng_state, op, *args, **kwargs):
|
231 |
+
if mode.enable_tracing:
|
232 |
+
with disable_proxy_modes_tracing():
|
233 |
+
out = run_with_rng_state(rng_state, op, *args, **kwargs)
|
234 |
+
proxy_args = pytree.tree_map(
|
235 |
+
mode.tracer.unwrap_proxy, (rng_state, op, *args)
|
236 |
+
)
|
237 |
+
proxy_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, kwargs)
|
238 |
+
out_proxy = mode.tracer.create_proxy(
|
239 |
+
"call_function", run_with_rng_state, proxy_args, proxy_kwargs
|
240 |
+
)
|
241 |
+
return track_tensor_tree(out, out_proxy, constant=None, tracer=mode.tracer)
|
242 |
+
else:
|
243 |
+
return run_with_rng_state(rng_state, op, *args, **kwargs)
|
244 |
+
|
245 |
+
@run_with_rng_state.py_impl(DispatchKey.BackendSelect)
|
246 |
+
def impl_backend_select(rng_state, op, *args, **kwargs):
|
247 |
+
impl_map = {"cuda": impl_cuda, "cpu": impl_cpu}
|
248 |
+
device = get_device(args, kwargs)
|
249 |
+
assert device in impl_map, f"Backend not supported for {device}"
|
250 |
+
impl = impl_map[device]
|
251 |
+
return impl(rng_state, op, *args, **kwargs)
|
252 |
+
|
253 |
+
@run_with_rng_state.py_impl(FakeTensorMode)
|
254 |
+
def impl_fake_tensor_mode(mode, rng_state, op, *args, **kwargs):
|
255 |
+
# Skip setting the set_rng_state as it does not work well with fake tensors.
|
256 |
+
# And it does not matter for the fake tensor mode.
|
257 |
+
with mode:
|
258 |
+
return op(*args, **kwargs)
|
259 |
+
|
260 |
+
return run_with_rng_state
|
261 |
+
|
262 |
+
|
263 |
+
run_and_save_rng_state = register_run_and_save_rng_state_op()
|
264 |
+
run_with_rng_state = register_run_with_rng_state_op()
|
265 |
+
|
266 |
+
|
267 |
+
def register_rng_prims():
|
268 |
+
register_philox_rand()
|
venv/lib/python3.10/site-packages/torch/distributed/__init__.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from enum import Enum
|
4 |
+
import pdb
|
5 |
+
import io
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
def is_available() -> bool:
|
10 |
+
"""
|
11 |
+
Return ``True`` if the distributed package is available.
|
12 |
+
|
13 |
+
Otherwise,
|
14 |
+
``torch.distributed`` does not expose any other APIs. Currently,
|
15 |
+
``torch.distributed`` is available on Linux, MacOS and Windows. Set
|
16 |
+
``USE_DISTRIBUTED=1`` to enable it when building PyTorch from source.
|
17 |
+
Currently, the default value is ``USE_DISTRIBUTED=1`` for Linux and Windows,
|
18 |
+
``USE_DISTRIBUTED=0`` for MacOS.
|
19 |
+
"""
|
20 |
+
return hasattr(torch._C, "_c10d_init")
|
21 |
+
|
22 |
+
|
23 |
+
if is_available() and not torch._C._c10d_init():
|
24 |
+
raise RuntimeError("Failed to initialize torch.distributed")
|
25 |
+
|
26 |
+
# Custom Runtime Errors thrown from the distributed package
|
27 |
+
DistError = torch._C._DistError
|
28 |
+
DistBackendError = torch._C._DistBackendError
|
29 |
+
DistNetworkError = torch._C._DistNetworkError
|
30 |
+
DistStoreError = torch._C._DistStoreError
|
31 |
+
|
32 |
+
if is_available():
|
33 |
+
from torch._C._distributed_c10d import (
|
34 |
+
Store,
|
35 |
+
FileStore,
|
36 |
+
TCPStore,
|
37 |
+
ProcessGroup as ProcessGroup,
|
38 |
+
Backend as _Backend,
|
39 |
+
PrefixStore,
|
40 |
+
Reducer,
|
41 |
+
Logger,
|
42 |
+
BuiltinCommHookType,
|
43 |
+
GradBucket,
|
44 |
+
Work as _Work,
|
45 |
+
_DEFAULT_FIRST_BUCKET_BYTES,
|
46 |
+
_register_comm_hook,
|
47 |
+
_register_builtin_comm_hook,
|
48 |
+
_broadcast_coalesced,
|
49 |
+
_compute_bucket_assignment_by_size,
|
50 |
+
_verify_params_across_processes,
|
51 |
+
_test_python_store,
|
52 |
+
DebugLevel,
|
53 |
+
get_debug_level,
|
54 |
+
set_debug_level,
|
55 |
+
set_debug_level_from_env,
|
56 |
+
_make_nccl_premul_sum,
|
57 |
+
)
|
58 |
+
|
59 |
+
class _DistributedPdb(pdb.Pdb):
|
60 |
+
"""
|
61 |
+
Supports using PDB from inside a multiprocessing child process.
|
62 |
+
|
63 |
+
Usage:
|
64 |
+
_DistributedPdb().set_trace()
|
65 |
+
"""
|
66 |
+
def interaction(self, *args, **kwargs):
|
67 |
+
_stdin = sys.stdin
|
68 |
+
try:
|
69 |
+
sys.stdin = open('/dev/stdin')
|
70 |
+
pdb.Pdb.interaction(self, *args, **kwargs)
|
71 |
+
finally:
|
72 |
+
sys.stdin = _stdin
|
73 |
+
|
74 |
+
def breakpoint(rank: int = 0):
|
75 |
+
"""
|
76 |
+
Set a breakpoint, but only on a single rank. All other ranks will wait for you to be
|
77 |
+
done with the breakpoint before continuing.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
rank (int): Which rank to break on. Default: ``0``
|
81 |
+
"""
|
82 |
+
if get_rank() == rank:
|
83 |
+
pdb = _DistributedPdb()
|
84 |
+
pdb.message(
|
85 |
+
"\n!!! ATTENTION !!!\n\n"
|
86 |
+
f"Type 'up' to get to the frame that called dist.breakpoint(rank={rank})\n"
|
87 |
+
)
|
88 |
+
pdb.set_trace()
|
89 |
+
barrier()
|
90 |
+
|
91 |
+
if sys.platform != "win32":
|
92 |
+
from torch._C._distributed_c10d import (
|
93 |
+
HashStore,
|
94 |
+
_round_robin_process_groups,
|
95 |
+
)
|
96 |
+
|
97 |
+
from .distributed_c10d import * # noqa: F403
|
98 |
+
|
99 |
+
# Variables prefixed with underscore are not auto imported
|
100 |
+
# See the comment in `distributed_c10d.py` above `_backend` on why we expose
|
101 |
+
# this.
|
102 |
+
|
103 |
+
from .distributed_c10d import (
|
104 |
+
_all_gather_base,
|
105 |
+
_reduce_scatter_base,
|
106 |
+
_create_process_group_wrapper,
|
107 |
+
_rank_not_in_group,
|
108 |
+
_coalescing_manager,
|
109 |
+
_CoalescingManager,
|
110 |
+
_get_process_group_name,
|
111 |
+
)
|
112 |
+
|
113 |
+
from .rendezvous import (
|
114 |
+
rendezvous,
|
115 |
+
_create_store_from_options,
|
116 |
+
register_rendezvous_handler,
|
117 |
+
)
|
118 |
+
|
119 |
+
from .remote_device import _remote_device
|
120 |
+
|
121 |
+
set_debug_level_from_env()
|
122 |
+
|
123 |
+
else:
|
124 |
+
# This stub is sufficient to get
|
125 |
+
# python test/test_public_bindings.py -k test_correct_module_names
|
126 |
+
# working even when USE_DISTRIBUTED=0. Feel free to add more
|
127 |
+
# stubs as necessary.
|
128 |
+
# We cannot define stubs directly because they confuse pyre
|
129 |
+
|
130 |
+
class _ProcessGroupStub:
|
131 |
+
pass
|
132 |
+
sys.modules["torch.distributed"].ProcessGroup = _ProcessGroupStub # type: ignore[attr-defined]
|
venv/lib/python3.10/site-packages/torch/distributed/_composable_state.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import cast, Dict, Optional
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class _State:
|
7 |
+
pass
|
8 |
+
|
9 |
+
|
10 |
+
_module_state_mapping: Dict[nn.Module, _State] = {}
|
11 |
+
|
12 |
+
|
13 |
+
def _insert_module_state(module: nn.Module, state: _State) -> None:
|
14 |
+
global _module_state_mapping
|
15 |
+
assert module not in _module_state_mapping, f"Inserting {module} more than once."
|
16 |
+
_module_state_mapping[module] = state
|
17 |
+
|
18 |
+
|
19 |
+
def _get_module_state(module: nn.Module) -> Optional[_State]:
|
20 |
+
"""
|
21 |
+
Return the ``_State`` in ``model``.
|
22 |
+
|
23 |
+
Given a ``module``, this API finds out if the module is also a ``_State``
|
24 |
+
instance or if the module is managed by a composable API. If the module
|
25 |
+
is also a ``_State``, ``module`` will be casted to ``_State` and returned.
|
26 |
+
If it is managed by a composable API, the corresponding ``_State`` will
|
27 |
+
be returned.
|
28 |
+
"""
|
29 |
+
global _module_state_mapping
|
30 |
+
if isinstance(module, _State):
|
31 |
+
return cast(_State, module)
|
32 |
+
else:
|
33 |
+
# https://github.com/pytorch/pytorch/issues/107054
|
34 |
+
if module in _module_state_mapping:
|
35 |
+
return _module_state_mapping[module]
|
36 |
+
else:
|
37 |
+
return None
|
venv/lib/python3.10/site-packages/torch/distributed/_functional_collectives.py
ADDED
@@ -0,0 +1,1084 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import warnings
|
3 |
+
from typing import cast, List, Optional, Tuple, TYPE_CHECKING, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torch.distributed.distributed_c10d as c10d
|
8 |
+
from torch._custom_ops import impl_abstract
|
9 |
+
from torch.distributed.device_mesh import DeviceMesh
|
10 |
+
from torch.fx.experimental.proxy_tensor import get_innermost_proxy_mode
|
11 |
+
|
12 |
+
from . import _functional_collectives_impl as fun_col_impl
|
13 |
+
from ._functional_collectives_impl import ( # noqa: F401
|
14 |
+
_register_tensor_wrapper,
|
15 |
+
native_funcol_enabled,
|
16 |
+
)
|
17 |
+
|
18 |
+
try:
|
19 |
+
from torch.utils._cxx_pytree import tree_map_only
|
20 |
+
except ImportError:
|
21 |
+
from torch.utils._pytree import tree_map_only # type: ignore[no-redef]
|
22 |
+
|
23 |
+
|
24 |
+
if torch._running_with_deploy():
|
25 |
+
|
26 |
+
def is_torchdynamo_compiling():
|
27 |
+
"""Can't import torchdynamo in torchdeploy builds currently."""
|
28 |
+
return False
|
29 |
+
|
30 |
+
else:
|
31 |
+
try:
|
32 |
+
from torch.compiler import is_dynamo_compiling as is_torchdynamo_compiling
|
33 |
+
except Exception:
|
34 |
+
warnings.warn(
|
35 |
+
"Unable to import torchdynamo util `is_torchdynamo_compiling`, so won't support torchdynamo correctly"
|
36 |
+
)
|
37 |
+
|
38 |
+
def is_torchdynamo_compiling():
|
39 |
+
return False
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
New traceable, functional collectives.
|
44 |
+
RFC: https://github.com/pytorch/pytorch/issues/93173
|
45 |
+
|
46 |
+
compiler: trace these ops with plain-old-data schemas, then choose how to lower them.
|
47 |
+
eager: execute these 'functional' ops which in eager return AsyncCollectiveTensor subclasses,
|
48 |
+
automatically calling .wait() on underlying/hidden async 'work' obj only when fed to
|
49 |
+
a downstream op.
|
50 |
+
|
51 |
+
Issues:
|
52 |
+
* Where should these ops live? Couldn't `import torch` if putting these ops in existing torch.distributed files
|
53 |
+
* Proper support for eager requires inplace ops. We should explore having it as an option for the API.
|
54 |
+
"""
|
55 |
+
|
56 |
+
"""
|
57 |
+
Functional collectives are asynchronous only and we perform implicit stream synchronization
|
58 |
+
on behalf of the user.
|
59 |
+
|
60 |
+
We use AsyncCollectiveTensor to wrap the result tensor of a collective and it lets us witness
|
61 |
+
first usage of the tensor and insert cross stream sync at the right place.
|
62 |
+
|
63 |
+
The above are the easy bits, the hard one is how we match the Work object returned by
|
64 |
+
c10d and the tensor AsyncCollectiveTensor wraps. We alloc the tensor inside the collective
|
65 |
+
op implementation (see ``clone()`` call in ``_all_reduce``) and then it's handled by the
|
66 |
+
dispatcher which might call other implementations that are allowed to change the returned
|
67 |
+
tensor - even return a tensor with a different shape (see ``torch.vmap``).
|
68 |
+
|
69 |
+
This means the caller of our ops receives a Tensor that is not guaranteed to be the same
|
70 |
+
allocated by our implementations and that makes pairing The AsyncTensor to the original
|
71 |
+
tensor a lot harder. This pairing is needed so we can lookup the Work object to use.
|
72 |
+
|
73 |
+
Originally, we tried WeakKeyDictionary to map from Tensor to Work, but because Tensor's
|
74 |
+
identity is not stable across dispatch, the op caller would end up with a different Tensor
|
75 |
+
instance that would not match any in the dictionary.
|
76 |
+
|
77 |
+
With Tensor identity out of the question, we decided use the tensor data pointer, which
|
78 |
+
should be stable across all the Tensor changes done during dispatch.
|
79 |
+
|
80 |
+
We have a dictionary of tensor::data_ptr -> Work that we insert right after we call into c10d.
|
81 |
+
|
82 |
+
We use this dictionary when AsyncCollectiveTensor is used to invoke Work::wait()
|
83 |
+
|
84 |
+
Finally, we setup a finalizer against the tensor wrapper to observe it getting collected so we
|
85 |
+
can clean up stale entries in the dictionary.
|
86 |
+
|
87 |
+
To eliminate the possibility of races we have a global version counter that is used by the finalizer.
|
88 |
+
|
89 |
+
As a wise man said once: Don't cross the streams (https://www.youtube.com/watch?v=wyKQe_i9yyo)
|
90 |
+
|
91 |
+
"""
|
92 |
+
|
93 |
+
"""
|
94 |
+
Functional collectives can accept any of these types to describe the ranks participating in collectives.
|
95 |
+
|
96 |
+
The different types will be desugared to a canonical format
|
97 |
+
"""
|
98 |
+
RANK_TYPES = Union[
|
99 |
+
List[int],
|
100 |
+
List[List[int]],
|
101 |
+
dist.ProcessGroup,
|
102 |
+
DeviceMesh,
|
103 |
+
Tuple["dist._tensor.DeviceMesh", int],
|
104 |
+
str,
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
"""
|
109 |
+
User facing APIs for functional collectives
|
110 |
+
-------------------------------------------
|
111 |
+
|
112 |
+
These apis are called by user code and expected to work both in eager execution and compilation,
|
113 |
+
but there are significant differences to how the two modes are implemented underneath.
|
114 |
+
|
115 |
+
Eager execution is 'optimized' using a tensor subclass that schedules the synchronization (via wait_tensor() op)
|
116 |
+
just before the tensor is first used. Compiled tracing currently relies on the compiler to perform this optimization,
|
117 |
+
and cannot yet correctly trace the AsyncTensor wrapper class. In the future, these paths may be unified
|
118 |
+
if sufficient subclass support is added in dynamo.
|
119 |
+
|
120 |
+
Example: all_reduce is an entrypoint API, and other collectives follow a similar pattern.
|
121 |
+
|
122 |
+
Here's how it works under torch.compile/dynamo:
|
123 |
+
all_reduce(...)
|
124 |
+
|--> _expand_group(...) - desugars processgroup into canonical/traceable format
|
125 |
+
|--> c10d_functional.all_reduce(...) - dynamo captures this op call, doesn't trace deeper
|
126 |
+
|--> _maybe_wrap_tensor(...) - wait_tensor() op is immediately called, no AsyncTensor subclass needed
|
127 |
+
|
128 |
+
And under eager execution:
|
129 |
+
all_reduce(...)
|
130 |
+
|--> _expand_group(...) - same as above, but less critical for eager
|
131 |
+
|--> c10d_functional.all_reduce(...) - dispatches to real kernel OR records op in trace
|
132 |
+
|--> _maybe_wrap_tensor(...) - AsyncTensor wrapper applied to returned tensor,
|
133 |
+
which issues wait_tensor() at the time of first use
|
134 |
+
"""
|
135 |
+
|
136 |
+
|
137 |
+
def wait_tensor(tensor):
|
138 |
+
"""
|
139 |
+
Wait on a tensor returned by the collectives ops.
|
140 |
+
|
141 |
+
Waiting follows device semantics, which means blocking on CPU and synchronizing streams on CUDA.
|
142 |
+
"""
|
143 |
+
if native_funcol_enabled():
|
144 |
+
return torch.ops._c10d_functional.wait_tensor(tensor) # type: ignore[attr-defined]
|
145 |
+
else:
|
146 |
+
return torch.ops.c10d_functional.wait_tensor(tensor) # type: ignore[attr-defined]
|
147 |
+
|
148 |
+
|
149 |
+
def broadcast(self: torch.Tensor, src: int, group: RANK_TYPES, tag: str = ""):
|
150 |
+
"""
|
151 |
+
Broadcasts the tensor to all processes in the given process group.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
src (int): Source rank
|
155 |
+
group (ProcessGroup or List[int]): The process group to work on.
|
156 |
+
tag (str, optional): A unique identifier for the collective. Default: empty string
|
157 |
+
"""
|
158 |
+
if native_funcol_enabled():
|
159 |
+
group_name = _resolve_group_name(group, tag)
|
160 |
+
tensor = torch.ops._c10d_functional.broadcast(self, src, group_name)
|
161 |
+
else:
|
162 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
163 |
+
tensor = torch.ops.c10d_functional.broadcast(
|
164 |
+
self, src, tag, rankset, group_size
|
165 |
+
)
|
166 |
+
return _maybe_wrap_tensor(tensor)
|
167 |
+
|
168 |
+
|
169 |
+
def all_reduce(self: torch.Tensor, reduceOp: str, group: RANK_TYPES, tag: str = ""):
|
170 |
+
"""
|
171 |
+
Reduces the tensor data across all machines in such a way that all get
|
172 |
+
the final result.
|
173 |
+
|
174 |
+
The input tensor is left unmodified.
|
175 |
+
|
176 |
+
Group can be one of:
|
177 |
+
List[int]: ranks participating in the collective.
|
178 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
179 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
180 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
181 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
182 |
+
|
183 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
184 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
185 |
+
"""
|
186 |
+
if native_funcol_enabled():
|
187 |
+
group_name = _resolve_group_name(group, tag)
|
188 |
+
tensor = torch.ops._c10d_functional.all_reduce(
|
189 |
+
self, reduceOp.lower(), group_name
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
193 |
+
tensor = torch.ops.c10d_functional.all_reduce( # type: ignore[attr-defined]
|
194 |
+
self,
|
195 |
+
reduceOp,
|
196 |
+
tag,
|
197 |
+
rankset,
|
198 |
+
group_size,
|
199 |
+
)
|
200 |
+
return _maybe_wrap_tensor(tensor)
|
201 |
+
|
202 |
+
|
203 |
+
def all_gather_tensor(
|
204 |
+
self: torch.Tensor,
|
205 |
+
gather_dim: int,
|
206 |
+
group: RANK_TYPES,
|
207 |
+
tag: str = "",
|
208 |
+
):
|
209 |
+
"""
|
210 |
+
Gather tensor data across from all machines and concatenate over ``gather_dim``.
|
211 |
+
|
212 |
+
Note that it currently only supports gather_dim = 0.
|
213 |
+
|
214 |
+
The input tensor is left unmodified.
|
215 |
+
Group can be one of:
|
216 |
+
List[int]: ranks participating in the collective.
|
217 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
218 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
219 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
220 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
221 |
+
|
222 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
223 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
224 |
+
"""
|
225 |
+
assert self.is_contiguous()
|
226 |
+
if native_funcol_enabled():
|
227 |
+
group_name = _resolve_group_name(group, tag)
|
228 |
+
group_size = c10d._get_group_size_by_name(group_name)
|
229 |
+
tensor = torch.ops._c10d_functional.all_gather_into_tensor(
|
230 |
+
self, group_size, group_name
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
234 |
+
tensor = torch.ops.c10d_functional.all_gather_into_tensor( # type: ignore[attr-defined]
|
235 |
+
self,
|
236 |
+
tag,
|
237 |
+
rankset,
|
238 |
+
group_size,
|
239 |
+
)
|
240 |
+
res = _maybe_wrap_tensor(tensor)
|
241 |
+
# TODO this should be done inside AsyncCollectiveTensor to delay the wait() call
|
242 |
+
if gather_dim != 0:
|
243 |
+
# torch.cat access the data so we already need to wait here, first do wait
|
244 |
+
# and then chunk + cat avoid us going through ACT dispatching logic again
|
245 |
+
if isinstance(res, AsyncCollectiveTensor):
|
246 |
+
res = res.wait() # type: ignore[attr-defined]
|
247 |
+
res = torch.cat(torch.chunk(res, group_size, dim=0), dim=gather_dim)
|
248 |
+
return res
|
249 |
+
|
250 |
+
|
251 |
+
def reduce_scatter_tensor(
|
252 |
+
self: torch.Tensor,
|
253 |
+
reduceOp: str,
|
254 |
+
scatter_dim: int,
|
255 |
+
group: RANK_TYPES,
|
256 |
+
tag: str = "",
|
257 |
+
):
|
258 |
+
"""
|
259 |
+
Reduces the tensor data across all machines in such a way that all get
|
260 |
+
the final result, then scatter the results to corresponding ranks.
|
261 |
+
|
262 |
+
|
263 |
+
The input tensor is left unmodified.
|
264 |
+
Group can be one of:
|
265 |
+
List[int]: ranks participating in the collective.
|
266 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
267 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
268 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
269 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
270 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
271 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
272 |
+
"""
|
273 |
+
if native_funcol_enabled():
|
274 |
+
group_name = _resolve_group_name(group, tag)
|
275 |
+
group_size = c10d._get_group_size_by_name(group_name)
|
276 |
+
else:
|
277 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
278 |
+
|
279 |
+
assert (
|
280 |
+
self.size(scatter_dim) % group_size == 0
|
281 |
+
), f"input dimension 0 ({self.size(0)} must be a multiple of group_size {group_size}"
|
282 |
+
if scatter_dim != 0:
|
283 |
+
tensor_list = torch.chunk(self, group_size, dim=scatter_dim)
|
284 |
+
self = torch.cat(tensor_list)
|
285 |
+
|
286 |
+
if native_funcol_enabled():
|
287 |
+
tensor = torch.ops._c10d_functional.reduce_scatter_tensor(
|
288 |
+
self,
|
289 |
+
reduceOp.lower(),
|
290 |
+
group_size,
|
291 |
+
group_name, # type: ignore[possibly-undefined]
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
tensor = torch.ops.c10d_functional.reduce_scatter_tensor( # type: ignore[attr-defined]
|
295 |
+
self,
|
296 |
+
reduceOp,
|
297 |
+
tag,
|
298 |
+
rankset, # type: ignore[possibly-undefined]
|
299 |
+
group_size,
|
300 |
+
)
|
301 |
+
res = _maybe_wrap_tensor(tensor)
|
302 |
+
return res
|
303 |
+
|
304 |
+
|
305 |
+
def all_reduce_coalesced(
|
306 |
+
self: List[torch.Tensor], reduceOp: str, group: RANK_TYPES, tag: str = ""
|
307 |
+
) -> List[torch.Tensor]:
|
308 |
+
"""
|
309 |
+
Reduces a list of tensors across all machines in such a way that all get
|
310 |
+
the final result.
|
311 |
+
|
312 |
+
The all tensors in the input list are left unmodified.
|
313 |
+
|
314 |
+
Group can be one of:
|
315 |
+
List[int]: ranks participating in the collective.
|
316 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
317 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
318 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
319 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
320 |
+
|
321 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
322 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
323 |
+
"""
|
324 |
+
if native_funcol_enabled():
|
325 |
+
group_name = _resolve_group_name(group, tag)
|
326 |
+
tensor_list = torch.ops._c10d_functional.all_reduce_coalesced( # type: ignore[attr-defined]
|
327 |
+
self,
|
328 |
+
reduceOp.lower(),
|
329 |
+
group_name,
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
333 |
+
tensor_list = torch.ops.c10d_functional.all_reduce_coalesced( # type: ignore[attr-defined]
|
334 |
+
self,
|
335 |
+
reduceOp,
|
336 |
+
tag,
|
337 |
+
rankset,
|
338 |
+
group_size,
|
339 |
+
)
|
340 |
+
return list(map(_maybe_wrap_tensor, tensor_list))
|
341 |
+
|
342 |
+
|
343 |
+
def all_gather_into_tensor_coalesced(
|
344 |
+
self: List[torch.Tensor], group: RANK_TYPES, tag: str = ""
|
345 |
+
) -> List[torch.Tensor]:
|
346 |
+
"""
|
347 |
+
Gather a list of tensors across from all machines.
|
348 |
+
|
349 |
+
Note that it currently only supports gather_dim = 0.
|
350 |
+
|
351 |
+
The input tensor is left unmodified.
|
352 |
+
Group can be one of:
|
353 |
+
List[int]: ranks participating in the collective.
|
354 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
355 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
356 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
357 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
358 |
+
|
359 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
360 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
361 |
+
"""
|
362 |
+
if native_funcol_enabled():
|
363 |
+
group_name = _resolve_group_name(group, tag)
|
364 |
+
group_size = c10d._get_group_size_by_name(group_name)
|
365 |
+
tensor_list = torch.ops._c10d_functional.all_gather_into_tensor_coalesced( # type: ignore[attr-defined]
|
366 |
+
self,
|
367 |
+
group_size,
|
368 |
+
group_name,
|
369 |
+
)
|
370 |
+
else:
|
371 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
372 |
+
tensor_list = torch.ops.c10d_functional.all_gather_into_tensor_coalesced( # type: ignore[attr-defined]
|
373 |
+
self,
|
374 |
+
tag,
|
375 |
+
rankset,
|
376 |
+
group_size,
|
377 |
+
)
|
378 |
+
return list(map(_maybe_wrap_tensor, tensor_list))
|
379 |
+
|
380 |
+
|
381 |
+
def reduce_scatter_tensor_coalesced(
|
382 |
+
inputs: List[torch.Tensor],
|
383 |
+
reduceOp: str,
|
384 |
+
scatter_dim: List[int],
|
385 |
+
group: RANK_TYPES,
|
386 |
+
tag: str = "",
|
387 |
+
) -> List[torch.Tensor]:
|
388 |
+
"""
|
389 |
+
Reduces a list of tensors across all machines in such a way that all get
|
390 |
+
the final result, then scatter the results to corresponding ranks.
|
391 |
+
|
392 |
+
The input tensors are left unmodified.
|
393 |
+
Group can be one of:
|
394 |
+
List[int]: ranks participating in the collective.
|
395 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
396 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
397 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
398 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
399 |
+
|
400 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
401 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
402 |
+
"""
|
403 |
+
if native_funcol_enabled():
|
404 |
+
group_name = _resolve_group_name(group, tag)
|
405 |
+
group_size = c10d._get_group_size_by_name(group_name)
|
406 |
+
else:
|
407 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
408 |
+
|
409 |
+
assert len(scatter_dim) == len(inputs)
|
410 |
+
for idx, (dim, tensor) in enumerate(zip(scatter_dim, inputs)):
|
411 |
+
assert (
|
412 |
+
tensor.size(dim) % group_size == 0
|
413 |
+
), f"input dimension {dim} ({tensor.size(dim)} must be a multiple of group_size {group_size} for tensor at index {idx}"
|
414 |
+
if dim != 0:
|
415 |
+
tensor_list = torch.chunk(tensor, group_size, dim=dim)
|
416 |
+
inputs[idx] = torch.cat(tensor_list)
|
417 |
+
|
418 |
+
if native_funcol_enabled():
|
419 |
+
tensor_list = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced( # type: ignore[attr-defined]
|
420 |
+
inputs,
|
421 |
+
reduceOp.lower(),
|
422 |
+
group_size,
|
423 |
+
group_name, # type: ignore[possibly-undefined]
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
tensor_list = torch.ops.c10d_functional.reduce_scatter_tensor_coalesced( # type: ignore[attr-defined]
|
427 |
+
inputs,
|
428 |
+
reduceOp,
|
429 |
+
tag,
|
430 |
+
rankset, # type: ignore[possibly-undefined]
|
431 |
+
group_size,
|
432 |
+
)
|
433 |
+
|
434 |
+
return list(map(_maybe_wrap_tensor, tensor_list))
|
435 |
+
|
436 |
+
|
437 |
+
# This is a bit unsafe: it checks if the first argument in the schema reports as a non-mutable alias.
|
438 |
+
# Today, this maps 1:1 with "aten ops that are views".
|
439 |
+
def _is_view_op(tgt):
|
440 |
+
assert isinstance(tgt, torch._ops.OpOverload)
|
441 |
+
schema = tgt._schema
|
442 |
+
if len(schema.arguments) > 0:
|
443 |
+
first_arg = schema.arguments[0]
|
444 |
+
# check if op is a view
|
445 |
+
return first_arg.alias_info is not None and not first_arg.alias_info.is_write
|
446 |
+
|
447 |
+
|
448 |
+
def all_to_all_single(
|
449 |
+
self: torch.Tensor,
|
450 |
+
output_split_sizes: Optional[List[int]],
|
451 |
+
input_split_sizes: Optional[List[int]],
|
452 |
+
group: RANK_TYPES,
|
453 |
+
tag: str = "",
|
454 |
+
) -> torch.Tensor:
|
455 |
+
"""
|
456 |
+
Each process splits input tensor and then scatters the split list
|
457 |
+
to all processes in a group. Then concatenate the received tensors from all
|
458 |
+
the processes in the group and return single output tensor.
|
459 |
+
|
460 |
+
Group can be one of:
|
461 |
+
List[int]: ranks participating in the collective.
|
462 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
463 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
464 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
465 |
+
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
|
466 |
+
|
467 |
+
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
|
468 |
+
that information and perform collective algebraic optimization. Use other forms of input for that.
|
469 |
+
"""
|
470 |
+
if output_split_sizes is not None:
|
471 |
+
assert all(
|
472 |
+
isinstance(size, (int, torch.SymInt)) for size in output_split_sizes
|
473 |
+
), output_split_sizes
|
474 |
+
if input_split_sizes is not None:
|
475 |
+
assert all(
|
476 |
+
isinstance(size, (int, torch.SymInt)) for size in input_split_sizes
|
477 |
+
), input_split_sizes
|
478 |
+
if native_funcol_enabled():
|
479 |
+
group_name = _resolve_group_name(group, tag)
|
480 |
+
group_size = c10d._get_group_size_by_name(group_name)
|
481 |
+
if output_split_sizes is None or input_split_sizes is None:
|
482 |
+
assert output_split_sizes is None and input_split_sizes is None, (
|
483 |
+
"output_split_sizes and input_split_sizes must either be "
|
484 |
+
"specified together or both set to None"
|
485 |
+
)
|
486 |
+
output_split_sizes = [self.shape[0] // group_size] * group_size
|
487 |
+
input_split_sizes = output_split_sizes
|
488 |
+
tensor = torch.ops._c10d_functional.all_to_all_single( # type: ignore[attr-defined]
|
489 |
+
self,
|
490 |
+
output_split_sizes,
|
491 |
+
input_split_sizes,
|
492 |
+
group_name,
|
493 |
+
)
|
494 |
+
else:
|
495 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
496 |
+
tensor = torch.ops.c10d_functional.all_to_all_single( # type: ignore[attr-defined]
|
497 |
+
self,
|
498 |
+
output_split_sizes,
|
499 |
+
input_split_sizes,
|
500 |
+
tag,
|
501 |
+
rankset,
|
502 |
+
group_size,
|
503 |
+
)
|
504 |
+
return _maybe_wrap_tensor(tensor)
|
505 |
+
|
506 |
+
|
507 |
+
def permute_tensor(
|
508 |
+
self: torch.Tensor,
|
509 |
+
src_dst: List[int],
|
510 |
+
group: RANK_TYPES,
|
511 |
+
tag: str = "",
|
512 |
+
) -> torch.Tensor:
|
513 |
+
"""
|
514 |
+
Permutes the elements of the tensor according to the given source/destination pairs. `src_dst` should
|
515 |
+
be defined such that src_dst[m] == n means m sends to n.
|
516 |
+
|
517 |
+
Group can be one of:
|
518 |
+
List[int]: ranks participating in the collective.
|
519 |
+
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
|
520 |
+
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
|
521 |
+
DeviceMesh: Do a SPMD collective over all ranks of the mesh
|
522 |
+
(DeviceMesh, int): Do a MPMD collective over one
|
523 |
+
"""
|
524 |
+
t, rankset, group_size = _expand_group(group, tag)
|
525 |
+
local_pg = c10d._find_or_create_pg_by_ranks_and_tag(t, rankset, group_size)
|
526 |
+
|
527 |
+
output_split_sizes = [0] * group_size
|
528 |
+
input_split_sizes = [0] * group_size
|
529 |
+
for src, dst in enumerate(src_dst):
|
530 |
+
if src == dist.get_rank(local_pg):
|
531 |
+
input_split_sizes[dst] = self.numel()
|
532 |
+
if dst == dist.get_rank(local_pg):
|
533 |
+
output_split_sizes[src] = self.numel()
|
534 |
+
|
535 |
+
return all_to_all_single(self, output_split_sizes, input_split_sizes, group, tag)
|
536 |
+
|
537 |
+
|
538 |
+
class AsyncCollectiveTensor(torch.Tensor):
|
539 |
+
r"""
|
540 |
+
A Tensor wrapper subclass that is used to trigger a call to wait
|
541 |
+
prior to first use of the underlying tensor.
|
542 |
+
Use it inside functional collective pytorch wrappers like the following:
|
543 |
+
def functional_collective(self, group, tag):
|
544 |
+
tag, rankset, group_size = _expand_group(group, tag)
|
545 |
+
tensor = torch.ops.c10d_functional.{collective}(self, tag, rankset, group_size)
|
546 |
+
return _maybe_wrap_tensor(tensor)
|
547 |
+
"""
|
548 |
+
elem: torch.Tensor
|
549 |
+
completed: bool
|
550 |
+
|
551 |
+
__slots__ = ["elem", "completed"]
|
552 |
+
|
553 |
+
@staticmethod
|
554 |
+
def __new__(cls, elem: torch.Tensor):
|
555 |
+
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
556 |
+
cls,
|
557 |
+
elem.size(),
|
558 |
+
strides=elem.stride(),
|
559 |
+
storage_offset=elem.storage_offset(),
|
560 |
+
dtype=elem.dtype,
|
561 |
+
layout=elem.layout,
|
562 |
+
device=elem.device,
|
563 |
+
requires_grad=False,
|
564 |
+
)
|
565 |
+
r.elem = elem
|
566 |
+
r.completed = False
|
567 |
+
return r
|
568 |
+
|
569 |
+
def __tensor_flatten__(self):
|
570 |
+
return ["elem"], None
|
571 |
+
|
572 |
+
def tolist(self):
|
573 |
+
self.trigger_wait()
|
574 |
+
return self.elem.tolist()
|
575 |
+
|
576 |
+
@staticmethod
|
577 |
+
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride):
|
578 |
+
assert meta is None
|
579 |
+
elem = inner_tensors["elem"]
|
580 |
+
return AsyncCollectiveTensor(elem)
|
581 |
+
|
582 |
+
def __repr__(self):
|
583 |
+
self.trigger_wait()
|
584 |
+
return f"AsyncCollectiveTensor({self.elem})"
|
585 |
+
|
586 |
+
def trigger_wait(self):
|
587 |
+
if not self.completed:
|
588 |
+
wait_tensor(self.elem)
|
589 |
+
self.completed = True
|
590 |
+
return self.elem
|
591 |
+
|
592 |
+
def wait(self) -> torch.Tensor:
|
593 |
+
wait_tensor(self.elem)
|
594 |
+
return self.elem
|
595 |
+
|
596 |
+
def _get_acs_underlying_tensor(self):
|
597 |
+
"""This method enables _functional_collectives_impl to test if a tensor is an ACS"""
|
598 |
+
return self.elem
|
599 |
+
|
600 |
+
@classmethod
|
601 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
602 |
+
if func == torch.ops.aten.view.default:
|
603 |
+
# Fast handle aten.view as a lot of view related op goes to aten.view
|
604 |
+
# eventually, this avoids pytree slowdown
|
605 |
+
res = func(args[0].elem, args[1])
|
606 |
+
wrapper_res = AsyncCollectiveTensor(res)
|
607 |
+
_register_tensor_wrapper(wrapper_res)
|
608 |
+
return wrapper_res
|
609 |
+
|
610 |
+
is_view_op = _is_view_op(func)
|
611 |
+
|
612 |
+
def unwrap(e: AsyncCollectiveTensor):
|
613 |
+
# wait_tensor is idepotent and will do stream sync only once
|
614 |
+
if not is_view_op:
|
615 |
+
e.trigger_wait()
|
616 |
+
return e.elem
|
617 |
+
|
618 |
+
def wrap(e: torch.Tensor):
|
619 |
+
# wait_tensor is idepotent and will do stream sync only once
|
620 |
+
assert not isinstance(e, AsyncCollectiveTensor)
|
621 |
+
res = AsyncCollectiveTensor(e)
|
622 |
+
_register_tensor_wrapper(res)
|
623 |
+
return res
|
624 |
+
|
625 |
+
unwrapped_args = tree_map_only(AsyncCollectiveTensor, unwrap, args)
|
626 |
+
unwrapped_kwargs = tree_map_only(AsyncCollectiveTensor, unwrap, kwargs)
|
627 |
+
|
628 |
+
# we don't wrap the result as it doesn't need to be waited on.
|
629 |
+
out = func(*unwrapped_args, **unwrapped_kwargs)
|
630 |
+
|
631 |
+
# View ops dont require a sync, so we should re-wrap the outputs.
|
632 |
+
if is_view_op:
|
633 |
+
out = tree_map_only(torch.Tensor, wrap, out)
|
634 |
+
|
635 |
+
return out
|
636 |
+
|
637 |
+
def numpy(self):
|
638 |
+
return self.wait().numpy()
|
639 |
+
|
640 |
+
|
641 |
+
"""
|
642 |
+
Utils and infrastructure for tracing support
|
643 |
+
"""
|
644 |
+
|
645 |
+
|
646 |
+
def _expand_group(group: RANK_TYPES, tag: str = "") -> Tuple[str, List[int], int]:
|
647 |
+
"""
|
648 |
+
_expand_group desugars the different RANK_TYPES types into a canonical format that is traceable.
|
649 |
+
|
650 |
+
By having this be part of the explicit eager codepath, we avoid having to specialize behavior inside
|
651 |
+
torchdynamo and can still interoperate with processgroup objects or other untraceable forms.
|
652 |
+
"""
|
653 |
+
# had to define this hack _inside_ expand_group to avoid
|
654 |
+
# graph_break [('torch.* op returned non-Tensor int
|
655 |
+
# caused by 'cast_*` functions being treated as 'torch.*' ops (iiuc)
|
656 |
+
if TYPE_CHECKING:
|
657 |
+
|
658 |
+
def cast_listlistint(x):
|
659 |
+
return cast(List[List[int]], x)
|
660 |
+
|
661 |
+
def cast_listint(x):
|
662 |
+
return cast(List[int], x)
|
663 |
+
|
664 |
+
else:
|
665 |
+
# fake cast op for use at runtime since dynamo doesn't support real cast
|
666 |
+
# also, dynamo didn't like encountering 'typing' objects ()
|
667 |
+
# NotImplementedError: argument of type: <class 'typing._GenericAlias'>
|
668 |
+
def cast_listlistint(x):
|
669 |
+
return x
|
670 |
+
|
671 |
+
def cast_listint(x):
|
672 |
+
return x
|
673 |
+
|
674 |
+
rankset: List[int]
|
675 |
+
if isinstance(group, list):
|
676 |
+
if isinstance(group[0], list):
|
677 |
+
nested_list = cast_listlistint(group)
|
678 |
+
rankset = []
|
679 |
+
group_size = -1
|
680 |
+
for rs in nested_list:
|
681 |
+
rankset.extend(rs)
|
682 |
+
if group_size != -1 and group_size != len(rs):
|
683 |
+
raise ValueError(
|
684 |
+
f"group sizes must be identical found {group_size} and {len(rs)}"
|
685 |
+
)
|
686 |
+
group_size = len(rs)
|
687 |
+
else:
|
688 |
+
rankset = cast_listint(group)
|
689 |
+
group_size = len(rankset)
|
690 |
+
elif isinstance(group, dist.ProcessGroup):
|
691 |
+
rankset = dist.get_process_group_ranks(group)
|
692 |
+
group_size = len(rankset)
|
693 |
+
tag = tag or c10d._get_group_tag(group)
|
694 |
+
elif isinstance(group, DeviceMesh):
|
695 |
+
assert (
|
696 |
+
group.ndim == 1
|
697 |
+
), "Only 1D mesh is supported, pass in (DeviceMesh, int) together if mesh > 1D"
|
698 |
+
# TODO: it should run collective in the whole mesh instead of dim 0
|
699 |
+
tag, rankset, _ = group._dim_group_infos[0]
|
700 |
+
group_size = len(rankset)
|
701 |
+
elif isinstance(group, tuple):
|
702 |
+
if (
|
703 |
+
len(group) == 2
|
704 |
+
and isinstance(group[0], DeviceMesh)
|
705 |
+
and isinstance(group[1], int)
|
706 |
+
):
|
707 |
+
dmesh = group[0]
|
708 |
+
dim = group[1]
|
709 |
+
tag, rankset, _ = dmesh._dim_group_infos[dim]
|
710 |
+
group_size = len(rankset)
|
711 |
+
else:
|
712 |
+
raise ValueError("Invalid tuple for group must be (DeviceMesh, int)")
|
713 |
+
else:
|
714 |
+
raise ValueError(
|
715 |
+
"Invalid type for group, must be one of List, Processgroup, DeviceMesh or (DeviceMesh, int)."
|
716 |
+
)
|
717 |
+
|
718 |
+
return (tag, rankset, group_size)
|
719 |
+
|
720 |
+
|
721 |
+
def _resolve_group_name(group: RANK_TYPES, tag: str = "") -> str:
|
722 |
+
"""
|
723 |
+
Given group in RANK_TYPES, return the group name.
|
724 |
+
"""
|
725 |
+
# `tag` will be deprecated. See details in:
|
726 |
+
# https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208
|
727 |
+
if isinstance(group, dist.ProcessGroup):
|
728 |
+
return group.group_name
|
729 |
+
elif isinstance(group, str):
|
730 |
+
return group
|
731 |
+
elif isinstance(group, DeviceMesh):
|
732 |
+
assert (
|
733 |
+
group.ndim == 1
|
734 |
+
), "Only 1D mesh is supported, pass in (DeviceMesh, int) together if mesh > 1D"
|
735 |
+
return group._dim_group_infos[0][2]
|
736 |
+
elif isinstance(group, tuple):
|
737 |
+
if (
|
738 |
+
len(group) == 2
|
739 |
+
and isinstance(group[0], DeviceMesh)
|
740 |
+
and isinstance(group[1], int)
|
741 |
+
):
|
742 |
+
dmesh = group[0]
|
743 |
+
dim = group[1]
|
744 |
+
return dmesh._dim_group_infos[dim][2]
|
745 |
+
else:
|
746 |
+
raise ValueError("Invalid tuple for group must be (DeviceMesh, int)")
|
747 |
+
elif isinstance(group, list):
|
748 |
+
if not is_torchdynamo_compiling():
|
749 |
+
warnings.warn(
|
750 |
+
"The combination of ranks + tag as process group "
|
751 |
+
"identifier has been deprecated. Please switch to "
|
752 |
+
"using ProcessGroup, DeviceMesh, or group name instead."
|
753 |
+
)
|
754 |
+
return c10d._resolve_group_name_by_ranks_and_tag(cast(List[int], group), tag)
|
755 |
+
else:
|
756 |
+
raise ValueError(f"Unsupported group type: {type(group)}, {group}")
|
757 |
+
|
758 |
+
|
759 |
+
def _are_we_tracing() -> bool:
|
760 |
+
if is_torchdynamo_compiling():
|
761 |
+
return True
|
762 |
+
# If functionalization is turned on, we are almost definitely compiling/tracing.
|
763 |
+
# (In particular, AOTAutograd traces a model once with functionalization on
|
764 |
+
# but proxy tracing turned of, so this is how we detect it).
|
765 |
+
if (
|
766 |
+
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
|
767 |
+
is not None
|
768 |
+
):
|
769 |
+
return True
|
770 |
+
mode = get_innermost_proxy_mode()
|
771 |
+
if mode is None:
|
772 |
+
return False
|
773 |
+
return mode.tracer is not None
|
774 |
+
|
775 |
+
|
776 |
+
def _maybe_wrap_tensor(self) -> torch.Tensor:
|
777 |
+
if _are_we_tracing():
|
778 |
+
return wait_tensor(self)
|
779 |
+
res = AsyncCollectiveTensor(self)
|
780 |
+
_register_tensor_wrapper(res)
|
781 |
+
return cast(torch.Tensor, res)
|
782 |
+
|
783 |
+
|
784 |
+
def _all_gather_into_tensor_coalesced_meta(self, tag, rankset, group_size):
|
785 |
+
def mk_out_tensor(shard):
|
786 |
+
out_size = list(shard.size())
|
787 |
+
out_size[0] *= group_size
|
788 |
+
out_tensor = shard.new_empty(out_size)
|
789 |
+
return out_tensor
|
790 |
+
|
791 |
+
return [mk_out_tensor(t) for t in self]
|
792 |
+
|
793 |
+
|
794 |
+
# We now register meta kernels to deal with tracing
|
795 |
+
def _broadcast_meta(self, *args):
|
796 |
+
return torch.empty_like(self)
|
797 |
+
|
798 |
+
|
799 |
+
def _all_reduce_meta(self, *args):
|
800 |
+
return torch.empty_like(self)
|
801 |
+
|
802 |
+
|
803 |
+
def _wait_tensor_meta(self, *args):
|
804 |
+
return torch.empty_like(self)
|
805 |
+
|
806 |
+
|
807 |
+
def _all_gather_into_tensor_meta(shard, tag, rankset, group_size):
|
808 |
+
out_size = list(shard.size())
|
809 |
+
out_size[0] *= group_size
|
810 |
+
return shard.new_empty(out_size)
|
811 |
+
|
812 |
+
|
813 |
+
def _reduce_scatter_tensor_meta(input, reduce_op, tag, rankset, group_size):
|
814 |
+
out_size = list(input.size())
|
815 |
+
out_size[0] //= group_size
|
816 |
+
return input.new_empty(out_size)
|
817 |
+
|
818 |
+
|
819 |
+
def _all_reduce_coalesced_meta(self, *args):
|
820 |
+
return [torch.empty_like(t) for t in self]
|
821 |
+
|
822 |
+
|
823 |
+
def _all_reduce__meta(inp, *args):
|
824 |
+
return inp
|
825 |
+
|
826 |
+
|
827 |
+
def _broadcast__meta(inp, *args):
|
828 |
+
return inp
|
829 |
+
|
830 |
+
|
831 |
+
def _all_reduce_coalesced__meta(inputs, *args):
|
832 |
+
return inputs
|
833 |
+
|
834 |
+
|
835 |
+
def _reduce_scatter_tensor_coalesced_meta(inputs, reduceOp, tag, rankset, group_size):
|
836 |
+
def mk_out_tensor(input):
|
837 |
+
out_size = list(input.size())
|
838 |
+
out_size[0] //= group_size
|
839 |
+
out_tensor = input.new_empty(out_size)
|
840 |
+
return out_tensor
|
841 |
+
|
842 |
+
return [mk_out_tensor(t) for t in inputs]
|
843 |
+
|
844 |
+
|
845 |
+
# NB: We often say all_to_all has dynamic output size, but this is not
|
846 |
+
# technically true: instead, what typically happens is you manually
|
847 |
+
# communicate the output_split_sizes ahead of time (which is dynamic),
|
848 |
+
# but then you pass those sizes explicitly, and the all to all itself
|
849 |
+
# isn't dynamic, it just follows the specified output splits
|
850 |
+
def _all_to_all_single_meta(
|
851 |
+
input, output_split_sizes, input_split_sizes, *args, **kwargs
|
852 |
+
):
|
853 |
+
if output_split_sizes is None:
|
854 |
+
return input.new_empty(input.size())
|
855 |
+
else:
|
856 |
+
for s in output_split_sizes:
|
857 |
+
torch._check_is_size(s)
|
858 |
+
out_size = list(input.size())
|
859 |
+
out_size[0] = sum(output_split_sizes)
|
860 |
+
return input.new_empty(out_size)
|
861 |
+
|
862 |
+
|
863 |
+
def _all_gather_into_tensor_native_meta(input, group_size, group_name):
|
864 |
+
shape = list(input.size())
|
865 |
+
shape[0] *= group_size
|
866 |
+
return input.new_empty(shape)
|
867 |
+
|
868 |
+
|
869 |
+
def _all_gather_into_tensor_coalesced_native_meta(inputs, group_size, group_name):
|
870 |
+
return [
|
871 |
+
_all_gather_into_tensor_native_meta(input, group_size, group_name)
|
872 |
+
for input in inputs
|
873 |
+
]
|
874 |
+
|
875 |
+
|
876 |
+
def _reduce_scatter_tensor_native_meta(inp, reduce_op, group_size, group_name):
|
877 |
+
shape = list(inp.size())
|
878 |
+
shape[0] //= group_size
|
879 |
+
return inp.new_empty(shape)
|
880 |
+
|
881 |
+
|
882 |
+
def _reduce_scatter_tensor_coalesced_native_meta(
|
883 |
+
inputs, reduce_op, group_size, group_name
|
884 |
+
):
|
885 |
+
return [
|
886 |
+
_reduce_scatter_tensor_native_meta(inp, reduce_op, group_size, group_name)
|
887 |
+
for inp in inputs
|
888 |
+
]
|
889 |
+
|
890 |
+
|
891 |
+
def _register_ops():
|
892 |
+
ops_defs = [
|
893 |
+
"broadcast(Tensor self, int src, str tag, int[] ranks, int group_size) -> Tensor",
|
894 |
+
"all_reduce(Tensor self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
|
895 |
+
"all_reduce_coalesced(Tensor[] self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
|
896 |
+
"wait_tensor(Tensor self) -> Tensor",
|
897 |
+
"all_gather_into_tensor(Tensor shard, str tag, int[] ranks, int group_size) -> Tensor",
|
898 |
+
"all_gather_into_tensor_coalesced(Tensor[] input, str tag, int[] ranks, int group_size) -> Tensor[]",
|
899 |
+
"reduce_scatter_tensor(Tensor input, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
|
900 |
+
"reduce_scatter_tensor_coalesced(Tensor[] inputs, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
|
901 |
+
"all_to_all_single(Tensor input, SymInt[]? output_split_sizes, SymInt[]? input_split_sizes, str tag, int[] ranks, int group_size) -> Tensor", # noqa: B950
|
902 |
+
]
|
903 |
+
|
904 |
+
my_module = sys.modules[__name__]
|
905 |
+
for op_def in ops_defs:
|
906 |
+
op_name = op_def[0 : op_def.index("(")]
|
907 |
+
backend_impl = getattr(fun_col_impl, f"_{op_name}")
|
908 |
+
meta_impl = getattr(my_module, f"_{op_name}_meta")
|
909 |
+
c10_lib.define(op_def, tags=torch.Tag.pt2_compliant_tag)
|
910 |
+
c10_lib_impl.impl(op_name, backend_impl, "CompositeExplicitAutograd")
|
911 |
+
impl_abstract(f"c10d_functional::{op_name}")(meta_impl)
|
912 |
+
|
913 |
+
|
914 |
+
if not torch._running_with_deploy():
|
915 |
+
# Library MUST be defined at module scope or it doesn't work
|
916 |
+
# Creating a "DEF" Library always crashes torch::deploy so we create our Library instances here
|
917 |
+
# guarded against running inside it
|
918 |
+
c10_lib = torch.library.Library("c10d_functional", "DEF")
|
919 |
+
c10_lib_impl = torch.library.Library("c10d_functional", "IMPL")
|
920 |
+
_register_ops()
|
921 |
+
|
922 |
+
_c10_lib_impl = torch.library.Library("_c10d_functional", "IMPL")
|
923 |
+
_c10_lib_impl.impl("all_reduce", _all_reduce_meta, "Meta")
|
924 |
+
_c10_lib_impl.impl("all_reduce_", _all_reduce__meta, "Meta")
|
925 |
+
_c10_lib_impl.impl("all_reduce_coalesced", _all_reduce_coalesced_meta, "Meta")
|
926 |
+
_c10_lib_impl.impl("all_reduce_coalesced_", _all_reduce_coalesced__meta, "Meta")
|
927 |
+
_c10_lib_impl.impl("wait_tensor", _wait_tensor_meta, "Meta")
|
928 |
+
_c10_lib_impl.impl(
|
929 |
+
"all_gather_into_tensor", _all_gather_into_tensor_native_meta, "Meta"
|
930 |
+
)
|
931 |
+
_c10_lib_impl.impl(
|
932 |
+
"all_gather_into_tensor_coalesced",
|
933 |
+
_all_gather_into_tensor_coalesced_native_meta,
|
934 |
+
"Meta",
|
935 |
+
)
|
936 |
+
_c10_lib_impl.impl(
|
937 |
+
"reduce_scatter_tensor", _reduce_scatter_tensor_native_meta, "Meta"
|
938 |
+
)
|
939 |
+
_c10_lib_impl.impl(
|
940 |
+
"reduce_scatter_tensor_coalesced",
|
941 |
+
_reduce_scatter_tensor_coalesced_native_meta,
|
942 |
+
"Meta",
|
943 |
+
)
|
944 |
+
_c10_lib_impl.impl("all_to_all_single", _all_to_all_single_meta, "Meta")
|
945 |
+
_c10_lib_impl.impl("broadcast", _broadcast_meta, "Meta")
|
946 |
+
_c10_lib_impl.impl("broadcast_", _broadcast__meta, "Meta")
|
947 |
+
else:
|
948 |
+
warnings.warn(
|
949 |
+
"PyTorch Distributed functional collectives do not work with torch::deploy."
|
950 |
+
)
|
951 |
+
|
952 |
+
|
953 |
+
"""
|
954 |
+
Dynamo Remappings allow seamless translation from non-functional collectives of supportable form into
|
955 |
+
functional collective calls followed by inplace copy ops, allowing them to be traced into a functional graph.
|
956 |
+
|
957 |
+
We implement this by writing a decomposition and teaching dynamo how to associate it to a corresponding op via
|
958 |
+
the mapping dict below.
|
959 |
+
|
960 |
+
These schemas intentionally match torch.distributed.distributed_c10d.* ops that we are trying to remap from
|
961 |
+
"""
|
962 |
+
|
963 |
+
|
964 |
+
def all_gather_tensor_inplace(
|
965 |
+
output_tensor: torch.Tensor,
|
966 |
+
input_tensor: torch.Tensor,
|
967 |
+
group, # TODO add a type,
|
968 |
+
async_op: bool = False,
|
969 |
+
tag: str = "",
|
970 |
+
gather_dim: int = 0,
|
971 |
+
):
|
972 |
+
assert (
|
973 |
+
not async_op
|
974 |
+
), "Can't remap async version of inplace op to functional collective"
|
975 |
+
return output_tensor.copy_(all_gather_tensor(input_tensor, gather_dim, group, tag))
|
976 |
+
|
977 |
+
|
978 |
+
def reduce_scatter_tensor_inplace(
|
979 |
+
output: torch.Tensor,
|
980 |
+
input: torch.Tensor,
|
981 |
+
op: str = "sum", # TODO type is actually c10d ReduceOp. is this ok?
|
982 |
+
group=None, # TODO add a type
|
983 |
+
async_op: bool = False,
|
984 |
+
scatter_dim: int = 0,
|
985 |
+
tag: str = "",
|
986 |
+
):
|
987 |
+
assert (
|
988 |
+
not async_op
|
989 |
+
), "Can't remap async version of inplace op to functional collective"
|
990 |
+
return output.copy_(reduce_scatter_tensor(input, op, scatter_dim, group, tag))
|
991 |
+
|
992 |
+
|
993 |
+
REDUCE_OP_TO_STR = {
|
994 |
+
dist.ReduceOp.SUM: "sum",
|
995 |
+
dist.ReduceOp.AVG: "avg",
|
996 |
+
dist.ReduceOp.PRODUCT: "product",
|
997 |
+
dist.ReduceOp.MIN: "min",
|
998 |
+
dist.ReduceOp.MAX: "max",
|
999 |
+
dist.ReduceOp.BAND: "band",
|
1000 |
+
dist.ReduceOp.BOR: "bor",
|
1001 |
+
dist.ReduceOp.BXOR: "bxor",
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
|
1005 |
+
def all_reduce_inplace(
|
1006 |
+
tensor: torch.Tensor,
|
1007 |
+
op: str = "sum",
|
1008 |
+
group=None,
|
1009 |
+
async_op: bool = False,
|
1010 |
+
tag: str = "",
|
1011 |
+
):
|
1012 |
+
assert (
|
1013 |
+
not async_op
|
1014 |
+
), "Can't remap async version of inplace op to functional collective"
|
1015 |
+
|
1016 |
+
return tensor.copy_(all_reduce(tensor, op, group, tag))
|
1017 |
+
|
1018 |
+
|
1019 |
+
def all_to_all_inplace(
|
1020 |
+
output: torch.Tensor,
|
1021 |
+
input: torch.Tensor,
|
1022 |
+
output_split_sizes=None,
|
1023 |
+
input_split_sizes=None,
|
1024 |
+
group=None,
|
1025 |
+
async_op=False,
|
1026 |
+
tag: str = "",
|
1027 |
+
):
|
1028 |
+
assert (
|
1029 |
+
not async_op
|
1030 |
+
), "Can't remap async version of inplace op to functional collective"
|
1031 |
+
return output.copy_(
|
1032 |
+
all_to_all_single(input, output_split_sizes, input_split_sizes, group, tag)
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
def all_gather_inplace(
|
1037 |
+
tensor_list: List[torch.Tensor],
|
1038 |
+
tensor: torch.Tensor,
|
1039 |
+
group=None,
|
1040 |
+
async_op=False,
|
1041 |
+
tag: str = "",
|
1042 |
+
):
|
1043 |
+
assert (
|
1044 |
+
not async_op
|
1045 |
+
), "Can't remap async version of inplace op to functional collective"
|
1046 |
+
assert all(
|
1047 |
+
t.size(0) == tensor.size(0) for t in tensor_list
|
1048 |
+
), "Remapping variable size all_gather is not yet supported"
|
1049 |
+
|
1050 |
+
output = all_gather_tensor(tensor, 0, group, tag)
|
1051 |
+
|
1052 |
+
# Use aten.slice instead of aten.split because the latter causes
|
1053 |
+
# tensor.shape(0) to be unnecessarily baked in when it's a SymInt.
|
1054 |
+
output_splits = []
|
1055 |
+
offset = 0
|
1056 |
+
for t in tensor_list:
|
1057 |
+
output_splits.append(output[offset : offset + t.size(0)])
|
1058 |
+
offset += t.size(0)
|
1059 |
+
for dst, src in zip(tensor_list, output_splits):
|
1060 |
+
dst.copy_(src)
|
1061 |
+
return tensor_list
|
1062 |
+
|
1063 |
+
|
1064 |
+
from torch.distributed.distributed_c10d import (
|
1065 |
+
_all_gather_base as legacy_all_gather_base,
|
1066 |
+
_reduce_scatter_base as legacy_reduce_scatter_base,
|
1067 |
+
all_gather as legacy_all_gather,
|
1068 |
+
all_gather_into_tensor as legacy_allgather,
|
1069 |
+
all_reduce as legacy_allreduce,
|
1070 |
+
all_to_all_single as legacy_all_to_all_single,
|
1071 |
+
reduce_scatter_tensor as legacy_reducescatter,
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
# This dict should contain sets of functions that dynamo is allowed to remap.
|
1075 |
+
# Functions in this set should accept the same args/kwargs 1:1 as their mapping.
|
1076 |
+
traceable_collective_remaps = {
|
1077 |
+
legacy_allgather: all_gather_tensor_inplace,
|
1078 |
+
legacy_reducescatter: reduce_scatter_tensor_inplace,
|
1079 |
+
legacy_allreduce: all_reduce_inplace,
|
1080 |
+
legacy_all_to_all_single: all_to_all_inplace,
|
1081 |
+
legacy_all_gather: all_gather_inplace,
|
1082 |
+
legacy_reduce_scatter_base: reduce_scatter_tensor_inplace,
|
1083 |
+
legacy_all_gather_base: all_gather_tensor_inplace,
|
1084 |
+
}
|
venv/lib/python3.10/site-packages/torch/distributed/_functional_collectives_impl.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
import weakref
|
5 |
+
from typing import cast, Dict, List, Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
import torch.distributed.distributed_c10d as c10d
|
10 |
+
|
11 |
+
"""
|
12 |
+
Moved eager kernel implementations to a separate file partly for readability and partly as it is currently
|
13 |
+
easier in dynamo to set tracing policy on a file-by-file level.
|
14 |
+
|
15 |
+
Do not put code in this file that Dynamo is expected to trace into, as dynamo may disallow this whole file.
|
16 |
+
|
17 |
+
DEBUG/TESTING HELPERS:
|
18 |
+
|
19 |
+
This module includes some helpers that are quite useful when debugging or testing functional collectives:
|
20 |
+
|
21 |
+
_tensor_needs_wait
|
22 |
+
_outstanding_wait_count
|
23 |
+
_wait_all
|
24 |
+
|
25 |
+
"""
|
26 |
+
|
27 |
+
_use_native_funcol: Optional[bool] = None
|
28 |
+
|
29 |
+
|
30 |
+
if torch._running_with_deploy():
|
31 |
+
|
32 |
+
def native_funcol_enabled():
|
33 |
+
return False
|
34 |
+
|
35 |
+
else:
|
36 |
+
from torch._dynamo import assume_constant_result
|
37 |
+
|
38 |
+
@assume_constant_result
|
39 |
+
def native_funcol_enabled():
|
40 |
+
global _use_native_funcol
|
41 |
+
if _use_native_funcol is None:
|
42 |
+
try:
|
43 |
+
# Disable native funcol when torch_xla is installed. This check
|
44 |
+
# will be removed once torch_xla adopts the native_funcol IR.
|
45 |
+
import torch_xla # noqa: F401
|
46 |
+
|
47 |
+
_use_native_funcol = False
|
48 |
+
except Exception:
|
49 |
+
# When TORCH_DISABLE_NATIVE_FUNCOL is set, fallback to py funcol
|
50 |
+
_use_native_funcol = (
|
51 |
+
os.environ.get("TORCH_DISABLE_NATIVE_FUNCOL") != "1"
|
52 |
+
)
|
53 |
+
|
54 |
+
return _use_native_funcol
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
data_ptr_to_work: Dict[int, "_WaitRegistration"] = dict()
|
60 |
+
work_version = 0
|
61 |
+
|
62 |
+
|
63 |
+
class _WaitRegistration:
|
64 |
+
def __init__(self, work):
|
65 |
+
global work_version
|
66 |
+
self.work = work
|
67 |
+
self.version = work_version
|
68 |
+
self.ptrs = set()
|
69 |
+
self.ptr_alias_count = {}
|
70 |
+
self.cleanup_count = 0
|
71 |
+
work_version += 1
|
72 |
+
|
73 |
+
def _register_tensor_ptr(self, data_ptr):
|
74 |
+
global data_ptr_to_work
|
75 |
+
data_ptr_to_work[data_ptr] = self
|
76 |
+
self.ptrs.add(data_ptr)
|
77 |
+
|
78 |
+
def _record_wrapper(self, ptr):
|
79 |
+
self._register_tensor_ptr(ptr)
|
80 |
+
self.ptr_alias_count.setdefault(ptr, 0)
|
81 |
+
self.ptr_alias_count[ptr] += 1
|
82 |
+
self.cleanup_count += 1
|
83 |
+
|
84 |
+
def wait(self):
|
85 |
+
if self.work is not None:
|
86 |
+
self.work.wait()
|
87 |
+
self.work = None
|
88 |
+
self.cleanup()
|
89 |
+
|
90 |
+
def decrement_live_tensor(self, ptr):
|
91 |
+
self.cleanup_count -= 1
|
92 |
+
if self.cleanup_count == 0:
|
93 |
+
self.wait()
|
94 |
+
else:
|
95 |
+
self.ptr_alias_count[ptr] -= 1
|
96 |
+
if (
|
97 |
+
self.ptr_alias_count[ptr] < 1
|
98 |
+
and data_ptr_to_work.get(ptr, None) == self
|
99 |
+
):
|
100 |
+
del data_ptr_to_work[ptr]
|
101 |
+
|
102 |
+
def cleanup(self):
|
103 |
+
for ptr in self.ptrs:
|
104 |
+
if data_ptr_to_work.get(ptr, None) == self:
|
105 |
+
del data_ptr_to_work[ptr]
|
106 |
+
|
107 |
+
|
108 |
+
def _register_tensor_work(tensor_or_list, work_or_list):
|
109 |
+
if not isinstance(tensor_or_list, list):
|
110 |
+
tensor_or_list = [tensor_or_list]
|
111 |
+
if not isinstance(work_or_list, list):
|
112 |
+
reg = _WaitRegistration(work_or_list)
|
113 |
+
for tensor in tensor_or_list:
|
114 |
+
reg._register_tensor_ptr(tensor.data_ptr())
|
115 |
+
else:
|
116 |
+
for tensor, work in zip(tensor_or_list, work_or_list):
|
117 |
+
reg = _WaitRegistration(work)
|
118 |
+
reg._register_tensor_ptr(tensor.data_ptr())
|
119 |
+
|
120 |
+
|
121 |
+
def _wait_reg_dec(ptr, wait_reg):
|
122 |
+
wait_reg.decrement_live_tensor(ptr)
|
123 |
+
|
124 |
+
|
125 |
+
def _register_tensor_wrapper(tensor) -> None:
|
126 |
+
if native_funcol_enabled():
|
127 |
+
# Tensor storage -> work mapping is maintained in C++
|
128 |
+
return
|
129 |
+
global data_ptr_to_work
|
130 |
+
data_ptr = tensor.elem.data_ptr()
|
131 |
+
# Note: we should NEVER try to trace this, bc it registers runtime stuff during trace.
|
132 |
+
# Instead, backends must call this themselves when implementing traced collectives.
|
133 |
+
wait_reg = data_ptr_to_work.get(data_ptr, None)
|
134 |
+
if wait_reg is None:
|
135 |
+
warnings.warn(
|
136 |
+
"Trying to register finalizer to AsyncCollectiveTensor but the inner tensor is already gone"
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
# We force the collective to be waited in the case this tensor goes away to reduce the change of deadlocks.
|
140 |
+
# NOTE: we register the callback to the ACT wrapper class, for the following reasons:
|
141 |
+
# 1. The inner tensor is referenced by the associated Work object, so it's uncollective until we release the
|
142 |
+
# associated work object
|
143 |
+
# 2. There's a n-to-1 relationship between wrappers and inner tensor due to non-waitable ops like view()
|
144 |
+
wait_reg._record_wrapper(data_ptr)
|
145 |
+
weakref.finalize(tensor, _wait_reg_dec, data_ptr, wait_reg)
|
146 |
+
|
147 |
+
|
148 |
+
def _wait_tensor(tensor: torch.Tensor) -> torch.Tensor:
|
149 |
+
global data_ptr_to_work
|
150 |
+
data_ptr = tensor.data_ptr()
|
151 |
+
wait_reg = data_ptr_to_work.get(data_ptr)
|
152 |
+
if wait_reg is not None:
|
153 |
+
wait_reg.wait()
|
154 |
+
return tensor
|
155 |
+
|
156 |
+
|
157 |
+
def _tensor_needs_wait(tensor: torch.Tensor) -> bool:
|
158 |
+
"""Returns true if ```tensor``` needs to be waited. Works with ACS and inner tensors."""
|
159 |
+
if hasattr(tensor, "_get_acs_underlying_tensor"):
|
160 |
+
tensor = tensor._get_acs_underlying_tensor()
|
161 |
+
data_ptr = tensor.data_ptr()
|
162 |
+
wait_reg = data_ptr_to_work.get(data_ptr)
|
163 |
+
return wait_reg is not None and wait_reg.work is not None
|
164 |
+
|
165 |
+
|
166 |
+
def _outstanding_wait_count() -> int:
|
167 |
+
"""Returns the number of outstanding work objects waiting to be waited (sic)."""
|
168 |
+
return len(data_ptr_to_work)
|
169 |
+
|
170 |
+
|
171 |
+
def _wait_all() -> None:
|
172 |
+
"""Wait for all outstanding collectives."""
|
173 |
+
for work_reg in list(data_ptr_to_work.values()):
|
174 |
+
work_reg.wait()
|
175 |
+
|
176 |
+
|
177 |
+
def _str_to_reduce_op(reduceOp: str) -> dist.ReduceOp:
|
178 |
+
reduceOp = reduceOp.upper()
|
179 |
+
op = dist.ReduceOp.RedOpType.__members__.get(reduceOp)
|
180 |
+
if op is None:
|
181 |
+
raise ValueError(f"Invalid reduce operation {reduceOp}")
|
182 |
+
return cast(dist.ReduceOp, op)
|
183 |
+
|
184 |
+
|
185 |
+
"""
|
186 |
+
Kernel implementations (for eager runtime only) - should never be traced by torch.compile
|
187 |
+
|
188 |
+
These functions should all be bound to dispatcher ops. During tracing, the op itself should be
|
189 |
+
captured in the graph and the backend should implement the op however it prefers.
|
190 |
+
"""
|
191 |
+
|
192 |
+
|
193 |
+
def _broadcast(self, src, tag, ranks, group_size):
|
194 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
195 |
+
assert group is not None
|
196 |
+
|
197 |
+
inplace_tensor = self.clone(memory_format=torch.contiguous_format)
|
198 |
+
work = dist.broadcast(inplace_tensor, src, group=group, async_op=True)
|
199 |
+
_register_tensor_work(inplace_tensor, work)
|
200 |
+
|
201 |
+
return inplace_tensor
|
202 |
+
|
203 |
+
|
204 |
+
# TODO assert if ranks has duplicated entries
|
205 |
+
def _all_reduce(self, reduceOp, tag, ranks, group_size):
|
206 |
+
op = _str_to_reduce_op(reduceOp)
|
207 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
208 |
+
assert group is not None
|
209 |
+
|
210 |
+
inplace_tensor = self.clone(memory_format=torch.contiguous_format)
|
211 |
+
work = dist.all_reduce(inplace_tensor, op=op, group=group, async_op=True)
|
212 |
+
_register_tensor_work(inplace_tensor, work)
|
213 |
+
|
214 |
+
return inplace_tensor
|
215 |
+
|
216 |
+
|
217 |
+
def _all_reduce_coalesced(self, reduceOp, tag, ranks, group_size):
|
218 |
+
op = _str_to_reduce_op(reduceOp)
|
219 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
220 |
+
assert group is not None
|
221 |
+
|
222 |
+
inplace_tensor_list = [t.clone(memory_format=torch.contiguous_format) for t in self]
|
223 |
+
work = dist.all_reduce_coalesced(
|
224 |
+
inplace_tensor_list, op=op, group=group, async_op=True
|
225 |
+
)
|
226 |
+
_register_tensor_work(inplace_tensor_list, work)
|
227 |
+
|
228 |
+
return inplace_tensor_list
|
229 |
+
|
230 |
+
|
231 |
+
def _all_gather_into_tensor(shard, tag, ranks, group_size):
|
232 |
+
# TODO add dim support?
|
233 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
234 |
+
assert group is not None
|
235 |
+
out_size = list(shard.size())
|
236 |
+
out_size[0] *= group_size
|
237 |
+
out_tensor = shard.new_empty(out_size)
|
238 |
+
assert out_tensor.is_contiguous()
|
239 |
+
# FIXME gloo doesn't support _allgather_base
|
240 |
+
if dist.get_backend(group) == dist.Backend.GLOO or shard.is_cpu:
|
241 |
+
tensor_list = list(torch.chunk(out_tensor, group_size))
|
242 |
+
work = dist.all_gather(tensor_list, shard, group=group, async_op=True)
|
243 |
+
else:
|
244 |
+
work = dist.all_gather_into_tensor(
|
245 |
+
out_tensor, shard, group=group, async_op=True
|
246 |
+
)
|
247 |
+
_register_tensor_work(out_tensor, work)
|
248 |
+
|
249 |
+
return out_tensor
|
250 |
+
|
251 |
+
|
252 |
+
def _all_gather_into_tensor_coalesced(self, tag, rankset, group_size):
|
253 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, rankset, group_size)
|
254 |
+
assert group is not None
|
255 |
+
|
256 |
+
def mk_out_tensor(shard):
|
257 |
+
out_size = list(shard.size())
|
258 |
+
out_size[0] *= group_size
|
259 |
+
out_tensor = shard.new_empty(out_size)
|
260 |
+
assert out_tensor.is_contiguous()
|
261 |
+
return out_tensor
|
262 |
+
|
263 |
+
out_tensors = [mk_out_tensor(t) for t in self]
|
264 |
+
|
265 |
+
work_list = _all_gather_into_tensor_coalesced_fallback(
|
266 |
+
output_tensors=out_tensors, input_tensors=self, group=group, async_op=True
|
267 |
+
)
|
268 |
+
|
269 |
+
_register_tensor_work(out_tensors, work_list)
|
270 |
+
return out_tensors
|
271 |
+
|
272 |
+
|
273 |
+
def _reduce_scatter_tensor(
|
274 |
+
input: torch.Tensor,
|
275 |
+
reduceOp: str,
|
276 |
+
tag: str,
|
277 |
+
ranks: List[int],
|
278 |
+
group_size: int,
|
279 |
+
):
|
280 |
+
# TODO add dim support?
|
281 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
282 |
+
assert group is not None
|
283 |
+
op = _str_to_reduce_op(reduceOp)
|
284 |
+
|
285 |
+
if dist.get_backend(group) == dist.Backend.GLOO or input.is_cpu:
|
286 |
+
# cpu::gloo backend does not have reduce_scatter we fallback to do all_reduce
|
287 |
+
# + local chunk
|
288 |
+
logger.warning(
|
289 |
+
"ProcessGroupGloo does not support reduce_scatter, falling back with all reduce!"
|
290 |
+
)
|
291 |
+
reduction_input = input.clone()
|
292 |
+
group_rank = dist.get_rank(group)
|
293 |
+
work = dist.all_reduce(reduction_input, op=op, group=group, async_op=True)
|
294 |
+
out_tensor = reduction_input.chunk(group_size, dim=0)[group_rank]
|
295 |
+
_register_tensor_work(out_tensor, work)
|
296 |
+
else:
|
297 |
+
out_size = list(input.size())
|
298 |
+
out_size[0] //= group_size
|
299 |
+
out_tensor = input.new_empty(out_size)
|
300 |
+
work = dist.reduce_scatter_tensor(
|
301 |
+
out_tensor, input, op=op, group=group, async_op=True
|
302 |
+
)
|
303 |
+
_register_tensor_work(out_tensor, work)
|
304 |
+
|
305 |
+
return out_tensor
|
306 |
+
|
307 |
+
|
308 |
+
def _reduce_scatter_tensor_coalesced(
|
309 |
+
inputs: List[torch.Tensor],
|
310 |
+
reduce_op: str,
|
311 |
+
tag: str,
|
312 |
+
ranks: List[int],
|
313 |
+
group_size: int,
|
314 |
+
):
|
315 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
316 |
+
assert group is not None
|
317 |
+
op = _str_to_reduce_op(reduce_op)
|
318 |
+
|
319 |
+
def mk_out_tensor(shard):
|
320 |
+
out_size = list(shard.size())
|
321 |
+
out_size[0] //= group_size
|
322 |
+
out_tensor = shard.new_empty(out_size)
|
323 |
+
assert out_tensor.is_contiguous()
|
324 |
+
return out_tensor
|
325 |
+
|
326 |
+
out_tensors = [mk_out_tensor(t) for t in inputs]
|
327 |
+
|
328 |
+
work_list = _reduce_scatter_tensor_coalesced_fallback(
|
329 |
+
output_tensors=out_tensors,
|
330 |
+
input_tensors=inputs,
|
331 |
+
op=op,
|
332 |
+
group=group,
|
333 |
+
async_op=False,
|
334 |
+
)
|
335 |
+
|
336 |
+
_register_tensor_work(out_tensors, work_list)
|
337 |
+
return out_tensors
|
338 |
+
|
339 |
+
|
340 |
+
def _all_gather_into_tensor_coalesced_fallback(
|
341 |
+
output_tensors, input_tensors, group, async_op=False
|
342 |
+
):
|
343 |
+
# all_gather_coalesced is useless, it doesn't work under NCCL and does lots of copies under Gloo
|
344 |
+
# all_gather is useless too because it's single tensor
|
345 |
+
# NCCL's PG::all_gather with multiple tensors is broken, it only works for the multi-device setting
|
346 |
+
# and fails if you mix same-size with different-size tensor lists.
|
347 |
+
# _coalescing_manager crashed NCCL when used with all_gather_into_tensor.
|
348 |
+
if input_tensors[0].is_cpu or not async_op:
|
349 |
+
work_list = []
|
350 |
+
out_tensors_sliced = [
|
351 |
+
list(torch.chunk(out_tensor, dist.get_world_size(group)))
|
352 |
+
for out_tensor in output_tensors
|
353 |
+
]
|
354 |
+
for shard, out_tensor in zip(input_tensors, out_tensors_sliced):
|
355 |
+
work = c10d.all_gather(out_tensor, shard, group=group, async_op=async_op)
|
356 |
+
work_list.append(work)
|
357 |
+
return work_list
|
358 |
+
else:
|
359 |
+
with c10d._coalescing_manager(group=group, async_ops=True) as cm:
|
360 |
+
for in_t, out_t in zip(input_tensors, output_tensors):
|
361 |
+
dist.all_gather_into_tensor(out_t, in_t, group=group, async_op=True)
|
362 |
+
return cm
|
363 |
+
|
364 |
+
|
365 |
+
def _reduce_scatter_tensor_coalesced_fallback(
|
366 |
+
output_tensors, input_tensors, op, group, async_op=False
|
367 |
+
):
|
368 |
+
# All the same reasons as the all_gather fallback
|
369 |
+
work_list = []
|
370 |
+
for shard, out_tensor in zip(input_tensors, output_tensors):
|
371 |
+
work = c10d.reduce_scatter_tensor(
|
372 |
+
out_tensor, shard, op=op, group=group, async_op=async_op
|
373 |
+
)
|
374 |
+
work_list.append(work)
|
375 |
+
return work_list
|
376 |
+
|
377 |
+
|
378 |
+
def _all_to_all_single(
|
379 |
+
input: torch.Tensor,
|
380 |
+
output_split_sizes: Optional[List[int]],
|
381 |
+
input_split_sizes: Optional[List[int]],
|
382 |
+
tag: str,
|
383 |
+
ranks: List[int],
|
384 |
+
group_size: int,
|
385 |
+
):
|
386 |
+
group = c10d._find_or_create_pg_by_ranks_and_tag(tag, ranks, group_size)
|
387 |
+
|
388 |
+
if output_split_sizes is not None:
|
389 |
+
torch._check(
|
390 |
+
input.dim() >= 1,
|
391 |
+
lambda: f"Expected input to have at least 1 dim but got {input.dim()} dim",
|
392 |
+
)
|
393 |
+
out_size = list(input.size())
|
394 |
+
out_size[0] = sum(output_split_sizes)
|
395 |
+
out_tensor = input.new_empty(out_size)
|
396 |
+
else:
|
397 |
+
out_tensor = input.new_empty(input.size())
|
398 |
+
|
399 |
+
work = c10d.all_to_all_single(
|
400 |
+
out_tensor,
|
401 |
+
input,
|
402 |
+
output_split_sizes=output_split_sizes,
|
403 |
+
input_split_sizes=input_split_sizes,
|
404 |
+
group=group,
|
405 |
+
async_op=True,
|
406 |
+
)
|
407 |
+
_register_tensor_work(out_tensor, work)
|
408 |
+
|
409 |
+
return out_tensor
|
venv/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Keep old package for BC purposes, this file should be removed once
|
2 |
+
# everything moves to the `torch.distributed._shard` package.
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from torch.distributed._shard.sharded_tensor import * # noqa: F403
|
8 |
+
warnings.warn(
|
9 |
+
"torch.distributed._sharded_tensor will be deprecated, use torch.distributed._shard.sharded_tensor instead",
|
10 |
+
DeprecationWarning
|
11 |
+
)
|
12 |
+
sys.modules['torch.distributed._sharded_tensor'] = torch.distributed._shard.sharded_tensor
|
venv/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (561 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_sharding_spec/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Keep old package for BC purposes, this file should be removed once
|
2 |
+
# everything moves to the `torch.distributed._shard` package.
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from torch.distributed._shard.sharding_spec import * # noqa: F403
|
8 |
+
warnings.warn(
|
9 |
+
"torch.distributed._sharding_spec will be deprecated, use torch.distributed._shard.sharding_spec instead",
|
10 |
+
DeprecationWarning
|
11 |
+
)
|
12 |
+
|
13 |
+
import torch.distributed._shard.sharding_spec as _sharding_spec
|
14 |
+
sys.modules['torch.distributed._sharding_spec'] = _sharding_spec
|
venv/lib/python3.10/site-packages/torch/distributed/_sharding_spec/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (591 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/api.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/batch_dim_utils.cpython-310.pyc
ADDED
Binary file (5.38 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/comm_tensor.cpython-310.pyc
ADDED
Binary file (6.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/config.cpython-310.pyc
ADDED
Binary file (963 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/data_parallel.cpython-310.pyc
ADDED
Binary file (17.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/distribute.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/experimental_ops.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/gm_transformation.cpython-310.pyc
ADDED
Binary file (1.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/graph_optimization.cpython-310.pyc
ADDED
Binary file (26.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/graph_utils.cpython-310.pyc
ADDED
Binary file (4.96 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/iter_graph_module.cpython-310.pyc
ADDED
Binary file (22.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/log_utils.cpython-310.pyc
ADDED
Binary file (1.63 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/parallel_mode.cpython-310.pyc
ADDED
Binary file (7.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/__pycache__/partial_lower.cpython-310.pyc
ADDED
Binary file (8.97 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/api.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from contextlib import contextmanager, nullcontext
|
3 |
+
from copy import copy
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from functools import partial, wraps
|
6 |
+
from typing import Any, Callable, cast, Dict, List, Optional, Set, Tuple, Union
|
7 |
+
|
8 |
+
from functorch import make_fx
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
|
13 |
+
# We need to import _functional_collectives to trigger op registration
|
14 |
+
import torch.distributed._functional_collectives
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.utils._pytree as pytree
|
17 |
+
|
18 |
+
from torch import fx
|
19 |
+
from torch._decomp.decompositions import native_layer_norm_backward
|
20 |
+
|
21 |
+
from torch._subclasses.fake_tensor import FakeTensorMode
|
22 |
+
from torch.distributed._spmd.data_parallel import gradients_tagging
|
23 |
+
from torch.distributed._spmd.parallel_mode import (
|
24 |
+
DataParallel,
|
25 |
+
DTensorExpandMode,
|
26 |
+
ParallelMode,
|
27 |
+
)
|
28 |
+
from torch.distributed._tensor import Placement
|
29 |
+
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo, CodeGen
|
30 |
+
from torch.nn.utils import stateless
|
31 |
+
from torch.nn.utils._named_member_accessor import NamedMemberAccessor
|
32 |
+
|
33 |
+
|
34 |
+
class Override(ABC):
|
35 |
+
r"""Override the tracing and transformation behavior of :meth:`~torch.distributed._spmd.compile`.
|
36 |
+
|
37 |
+
This is useful when any part of the model is not traceable or if you prefer
|
38 |
+
to not trace it due to any reason. More specifically, users can implement
|
39 |
+
:meth:`torch.distributed._spmd.Override.replacement` to replace an original
|
40 |
+
submodule with the return new submodule. The new submodule contains
|
41 |
+
operations that users preferred to be traced, which simply be a dummy
|
42 |
+
placeholder operator. After tracing, users can implement
|
43 |
+
:meth:`torch.distributed._spmd.Override.transform` to transform the traced
|
44 |
+
graph, where the dummy placeholder operator serves as an anchor to insert
|
45 |
+
new sub-graphs.
|
46 |
+
"""
|
47 |
+
|
48 |
+
@abstractmethod
|
49 |
+
def replacement(self, fqn: str, orig_submodule: torch.nn.Module) -> torch.nn.Module:
|
50 |
+
r"""Implement this method to return a new :class:`nn.Module` instance to replace the ``orig_submodule``
|
51 |
+
argument in the model.
|
52 |
+
|
53 |
+
This helps if ``orig_submodule`` is not traceable or should not be traced.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
fqn (str): fully quantified name of the submodule.
|
57 |
+
orig_submodule (class:`nn.Module`): original submodule instance to replace.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
A new :class:`nn.Module` instance to replace the original one.
|
61 |
+
|
62 |
+
"""
|
63 |
+
pass
|
64 |
+
|
65 |
+
@abstractmethod
|
66 |
+
def transform(
|
67 |
+
self,
|
68 |
+
gm: fx.GraphModule,
|
69 |
+
flat_state: List[torch.Tensor],
|
70 |
+
) -> fx.GraphModule:
|
71 |
+
r"""
|
72 |
+
Given a DTensor-expanded graph and sharding schema for every node,
|
73 |
+
conduct additional transformation for the sub-graph from the :class:`nn.Module`
|
74 |
+
returned by :meth:`torch.distributed._spmd.Override.replacement` if
|
75 |
+
necessary.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
gm (:class:`fx.Graph`): a DTensor-expanded graph.
|
79 |
+
flat_state (List[str, :class:`Tensor`]): a reference to the list of
|
80 |
+
flattened state. The elements in ``flat_state`` map to the first
|
81 |
+
``len(flat_state)`` placeholders in the graph. The transformation
|
82 |
+
can add state to or remove state from ``flat_state`` as long as
|
83 |
+
it keeps ``flat_state`` and the placeholders consistent.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
The :class:`fx.Graph` after transformation.
|
87 |
+
|
88 |
+
"""
|
89 |
+
pass
|
90 |
+
|
91 |
+
|
92 |
+
class _PyTreeCodeGenOutputsOnly(_PyTreeCodeGen):
|
93 |
+
# pyre-ignore[3]
|
94 |
+
def process_inputs(self, *args: Any) -> Any:
|
95 |
+
return args
|
96 |
+
|
97 |
+
# pyre-ignore[2, 3]
|
98 |
+
def gen_fn_def(self, free_vars, maybe_return_annotation):
|
99 |
+
return CodeGen.gen_fn_def(self, free_vars, maybe_return_annotation)
|
100 |
+
|
101 |
+
|
102 |
+
def _to_caller_flattened_graph_module(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
103 |
+
"""Move the responsibility of flattening the input arguments from the graph module to the caller.
|
104 |
+
|
105 |
+
Example:
|
106 |
+
|
107 |
+
output = gm(my_struct)
|
108 |
+
|
109 |
+
gm = gm(to_caller_flattened_graph_module)
|
110 |
+
|
111 |
+
output = gm(*pytree.flatten(my_struct)[0])
|
112 |
+
|
113 |
+
"""
|
114 |
+
# pyre-ignore[16]
|
115 |
+
gm._graph._codegen = _PyTreeCodeGenOutputsOnly(
|
116 |
+
pytree_info=_PyTreeInfo(
|
117 |
+
# pyre-ignore[6]
|
118 |
+
orig_args=None, # type: ignore[arg-type]
|
119 |
+
# pyre-ignore[6]
|
120 |
+
in_spec=None, # type: ignore[arg-type]
|
121 |
+
# pyre-ignore[16]
|
122 |
+
out_spec=gm._graph._codegen.pytree_info.out_spec,
|
123 |
+
)
|
124 |
+
)
|
125 |
+
gm.recompile()
|
126 |
+
return gm
|
127 |
+
|
128 |
+
|
129 |
+
# Use a dtensor expand mode for now to preserve the old behavior
|
130 |
+
# and avoid breaking existing code
|
131 |
+
dtensor_expand_mode = DTensorExpandMode()
|
132 |
+
|
133 |
+
|
134 |
+
def _override_placements(t: torch.Tensor, placements: List[Placement]):
|
135 |
+
global dtensor_expand_mode
|
136 |
+
dtensor_expand_mode._placements_override[id(t)] = placements
|
137 |
+
|
138 |
+
|
139 |
+
@contextmanager
|
140 |
+
def _rematerialize_optimizer(
|
141 |
+
opt: torch.optim.Optimizer,
|
142 |
+
named_states: Dict[str, Any],
|
143 |
+
params: Dict[str, nn.Parameter],
|
144 |
+
):
|
145 |
+
assert opt is not None
|
146 |
+
|
147 |
+
# update opt.state with proxy tensors
|
148 |
+
orig_states = copy(opt.state)
|
149 |
+
for n in named_states:
|
150 |
+
# opt.state's key type is string, but optimizer uses Parameter as keys
|
151 |
+
opt.state[params[n]] = named_states[n] # type: ignore[index]
|
152 |
+
|
153 |
+
# FIXME: support multiple parameter groups
|
154 |
+
param_group = opt.param_groups[0]
|
155 |
+
orig_params = param_group["params"]
|
156 |
+
param_group["params"] = params.values()
|
157 |
+
|
158 |
+
try:
|
159 |
+
yield
|
160 |
+
finally:
|
161 |
+
param_group["params"] = orig_params
|
162 |
+
opt.state = orig_states
|
163 |
+
|
164 |
+
|
165 |
+
aten = torch.ops.aten # pyre-ignore
|
166 |
+
|
167 |
+
|
168 |
+
@contextmanager
|
169 |
+
def _enable_compile():
|
170 |
+
# The return value of torch._utils.is_compiling changes optimizer behavior.
|
171 |
+
# We need that function to return True to include optimizer in the graph.
|
172 |
+
# See: https://github.com/pytorch/pytorch/blob/a524123c91ab399c9dd6882c1189596dd77e7734/torch/optim/optimizer.py#L41
|
173 |
+
def f_true():
|
174 |
+
return True
|
175 |
+
|
176 |
+
orig_is_compiling_code = torch._utils.is_compiling.__code__
|
177 |
+
torch._utils.is_compiling.__code__ = f_true.__code__
|
178 |
+
try:
|
179 |
+
yield
|
180 |
+
finally:
|
181 |
+
torch._utils.is_compiling.__code__ = orig_is_compiling_code
|
182 |
+
|
183 |
+
|
184 |
+
def _foreach_add_decomp(self, other, alpha=1):
|
185 |
+
self_updated = aten._foreach_add.List(self, other, alpha=alpha)
|
186 |
+
for s, s_u in zip(self, self_updated):
|
187 |
+
s.copy_(s_u)
|
188 |
+
|
189 |
+
|
190 |
+
def _foreach_unaop_decomp(op, self):
|
191 |
+
self_updated = op(self)
|
192 |
+
for s, s_u in zip(self, self_updated):
|
193 |
+
s.copy_(s_u)
|
194 |
+
|
195 |
+
|
196 |
+
def _foreach_binop_list_decomp(op, self, other):
|
197 |
+
self_updated = op(self, other)
|
198 |
+
for s, s_u in zip(self, self_updated):
|
199 |
+
s.copy_(s_u)
|
200 |
+
|
201 |
+
|
202 |
+
def _foreach_binop_scalar_decomp(op, self, scalar=1):
|
203 |
+
self_updated = op(self, scalar)
|
204 |
+
for s, s_u in zip(self, self_updated):
|
205 |
+
s.copy_(s_u)
|
206 |
+
|
207 |
+
|
208 |
+
def _foreach_addcop_scalar_decomp(op, self, tensor1, tensor2, scalar=1):
|
209 |
+
self_updated = op(self, tensor1, tensor2, scalar)
|
210 |
+
for s, s_u in zip(self, self_updated):
|
211 |
+
s.copy_(s_u)
|
212 |
+
|
213 |
+
|
214 |
+
def _fused_adam_decomp(
|
215 |
+
self,
|
216 |
+
grads,
|
217 |
+
exp_avgs,
|
218 |
+
exp_avg_sqs,
|
219 |
+
max_exp_avg_sqs,
|
220 |
+
state_steps,
|
221 |
+
*,
|
222 |
+
lr=1,
|
223 |
+
beta1=1,
|
224 |
+
beta2=1,
|
225 |
+
weight_decay=1,
|
226 |
+
eps=1,
|
227 |
+
amsgrad=True,
|
228 |
+
maximize=True,
|
229 |
+
grad_scale=None,
|
230 |
+
found_inf=None,
|
231 |
+
):
|
232 |
+
orig_tuple = (self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs)
|
233 |
+
updated_tuple = aten._fused_adam.default(
|
234 |
+
self,
|
235 |
+
grads,
|
236 |
+
exp_avgs,
|
237 |
+
exp_avg_sqs,
|
238 |
+
max_exp_avg_sqs,
|
239 |
+
state_steps,
|
240 |
+
lr=lr,
|
241 |
+
beta1=beta1,
|
242 |
+
beta2=beta2,
|
243 |
+
weight_decay=weight_decay,
|
244 |
+
eps=eps,
|
245 |
+
amsgrad=amsgrad,
|
246 |
+
maximize=maximize,
|
247 |
+
grad_scale=grad_scale,
|
248 |
+
found_inf=found_inf,
|
249 |
+
)
|
250 |
+
|
251 |
+
for idx, (orig, updated) in enumerate(zip(orig_tuple, updated_tuple)):
|
252 |
+
if idx == 1:
|
253 |
+
# skip gradient copying as we don't need to copy gradients back
|
254 |
+
continue
|
255 |
+
for o, u in zip(orig, updated):
|
256 |
+
o.copy_(u)
|
257 |
+
|
258 |
+
|
259 |
+
SPMD_DECOMP_TABLE = {
|
260 |
+
aten._foreach_add_.List: _foreach_add_decomp,
|
261 |
+
aten._foreach_add_.Scalar: partial(
|
262 |
+
_foreach_binop_scalar_decomp, aten._foreach_add.Scalar
|
263 |
+
),
|
264 |
+
aten._foreach_addcdiv_.Scalar: partial(
|
265 |
+
_foreach_addcop_scalar_decomp, aten._foreach_addcdiv.Scalar
|
266 |
+
),
|
267 |
+
aten._foreach_addcmul_.Scalar: partial(
|
268 |
+
_foreach_addcop_scalar_decomp, aten._foreach_addcmul.Scalar
|
269 |
+
),
|
270 |
+
aten._foreach_div_.List: partial(
|
271 |
+
_foreach_binop_list_decomp, aten._foreach_div.List
|
272 |
+
),
|
273 |
+
aten._foreach_mul_.Scalar: partial(
|
274 |
+
_foreach_binop_scalar_decomp, aten._foreach_mul.Scalar
|
275 |
+
),
|
276 |
+
aten._foreach_div_.Scalar: partial(
|
277 |
+
_foreach_binop_scalar_decomp, aten._foreach_div.Scalar
|
278 |
+
),
|
279 |
+
aten._foreach_neg_.default: partial(
|
280 |
+
_foreach_unaop_decomp, aten._foreach_neg.default
|
281 |
+
),
|
282 |
+
aten._foreach_reciprocal_.default: partial(
|
283 |
+
_foreach_unaop_decomp, aten._foreach_reciprocal.default
|
284 |
+
),
|
285 |
+
aten._foreach_sqrt_.default: partial(
|
286 |
+
_foreach_unaop_decomp, aten._foreach_sqrt.default
|
287 |
+
),
|
288 |
+
aten._foreach_sub_.Scalar: partial(
|
289 |
+
_foreach_binop_scalar_decomp, aten._foreach_sub.Scalar
|
290 |
+
),
|
291 |
+
aten._fused_adam_.default: _fused_adam_decomp,
|
292 |
+
aten.native_layer_norm_backward.default: native_layer_norm_backward,
|
293 |
+
}
|
294 |
+
|
295 |
+
|
296 |
+
DEDUP_TARGETS: Set[torch._ops.OpOverload] = {
|
297 |
+
torch.ops.c10d_functional.all_reduce.default,
|
298 |
+
torch.ops.c10d_functional.wait_tensor.default,
|
299 |
+
}
|
300 |
+
|
301 |
+
|
302 |
+
def _dedup_collectives(gm: fx.GraphModule) -> fx.GraphModule:
|
303 |
+
args_to_node: Dict[Tuple[Any, ...], fx.Node] = {}
|
304 |
+
|
305 |
+
for node in gm.graph.nodes:
|
306 |
+
# replace all args with the results from the first unique comm op
|
307 |
+
args = pytree.arg_tree_leaves(*node.args)
|
308 |
+
|
309 |
+
if node.target in DEDUP_TARGETS:
|
310 |
+
args_key = (node.target, *args)
|
311 |
+
unique_node = args_to_node.get(args_key, None)
|
312 |
+
if unique_node is None:
|
313 |
+
# first time seeing this combination, remember it
|
314 |
+
args_to_node[args_key] = node
|
315 |
+
else:
|
316 |
+
# the current node is a duplicate, replace it
|
317 |
+
node.replace_all_uses_with(unique_node)
|
318 |
+
gm.graph.erase_node(node)
|
319 |
+
|
320 |
+
gm.recompile()
|
321 |
+
|
322 |
+
return gm
|
323 |
+
|
324 |
+
|
325 |
+
@dataclass
|
326 |
+
class _CompiledResult:
|
327 |
+
gm: fx.GraphModule
|
328 |
+
mod: nn.Module
|
329 |
+
opt: Optional[torch.optim.Optimizer]
|
330 |
+
flat_state: List[torch.Tensor]
|
331 |
+
|
332 |
+
|
333 |
+
def _compile(
|
334 |
+
func: Callable,
|
335 |
+
module_override: Optional[List[Override]],
|
336 |
+
parallel_mode: ParallelMode,
|
337 |
+
*args: Any,
|
338 |
+
**kwargs: Any,
|
339 |
+
) -> _CompiledResult:
|
340 |
+
# 1. Extract nn.Module and Optimizer from args and kwargs
|
341 |
+
# FIXME(@mrshenli): support multiple nn.Module instances
|
342 |
+
# FIXME(@mrshenli): support multiple Optiimzer instances
|
343 |
+
# FIXME(@mrshenli): need to broadcast model to sync parameters
|
344 |
+
mod, opt = None, None
|
345 |
+
for arg in pytree.arg_tree_leaves(*args, **kwargs):
|
346 |
+
if isinstance(arg, nn.Module):
|
347 |
+
assert mod is None, "Only support single nn.Module for now"
|
348 |
+
mod = arg
|
349 |
+
if isinstance(arg, torch.optim.Optimizer):
|
350 |
+
assert opt is None, "Only support single Optimizer for now"
|
351 |
+
opt = arg
|
352 |
+
|
353 |
+
assert mod is not None, "Couldn't find nn.Module instances from the arguments."
|
354 |
+
|
355 |
+
# 2. Override target submodules (e.g., MoE) with dummy replacements
|
356 |
+
if module_override:
|
357 |
+
accessor = NamedMemberAccessor(mod)
|
358 |
+
|
359 |
+
def swap(fqn_prefix: str, module: torch.nn.Module) -> None:
|
360 |
+
for override in module_override: # type: ignore[union-attr]
|
361 |
+
for name, child in module.named_children():
|
362 |
+
if len(name) == 0:
|
363 |
+
continue
|
364 |
+
fqn = fqn_prefix + "." + name if fqn_prefix != "" else name
|
365 |
+
new_child = override.replacement(fqn, child)
|
366 |
+
if id(new_child) == id(child):
|
367 |
+
swap(fqn, new_child)
|
368 |
+
else:
|
369 |
+
accessor.swap_submodule(fqn, new_child)
|
370 |
+
|
371 |
+
swap("", mod)
|
372 |
+
|
373 |
+
# 3. Trace statelss version of the train_step
|
374 |
+
params = dict(mod.named_parameters(remove_duplicate=False))
|
375 |
+
buffers = dict(mod.named_buffers(remove_duplicate=False))
|
376 |
+
|
377 |
+
named_states = {}
|
378 |
+
if opt is not None:
|
379 |
+
# Pass named_states instead of opt.state to stateless_func, because
|
380 |
+
# the later uses nn.Parameter as key. During tracing, we need to
|
381 |
+
# make sure optimizers can find the states using proxy tensors.
|
382 |
+
for n, p in params.items():
|
383 |
+
if p in opt.state:
|
384 |
+
# opt.state's key type is string, but optimizer uses
|
385 |
+
# Parameter as keys
|
386 |
+
named_states[n] = opt.state[p] # type: ignore[index]
|
387 |
+
|
388 |
+
is_data_parallel_mode = isinstance(parallel_mode, DataParallel)
|
389 |
+
|
390 |
+
# Lift states and parameters as function arguments so that make_fx
|
391 |
+
# can trace operations applied to them.
|
392 |
+
def stateless_func(func, params, buffers, named_states, args, kwargs):
|
393 |
+
with stateless._reparametrize_module(
|
394 |
+
mod, {**params, **buffers}
|
395 |
+
), _rematerialize_optimizer(
|
396 |
+
opt, named_states, params
|
397 |
+
) if opt else nullcontext():
|
398 |
+
# For DataParallel mode, install hooks first to tag the gradients
|
399 |
+
with gradients_tagging(params) if is_data_parallel_mode else nullcontext():
|
400 |
+
ret = func(*args, **kwargs)
|
401 |
+
|
402 |
+
# make sure updated parameters are returned
|
403 |
+
return ret, list(mod.parameters()), list(named_states.values()) # type: ignore[union-attr]
|
404 |
+
|
405 |
+
# FIXME: Using symbolic tracing to work around in DTensor expand mode.
|
406 |
+
# Otherwise it hits shape mismatch error, as we use local inputs to
|
407 |
+
# trace local graph and use DTensor to expand operators, where
|
408 |
+
# DTensor's shape is the global shape.
|
409 |
+
tracing_mode = "fake" if is_data_parallel_mode else "symbolic"
|
410 |
+
|
411 |
+
if is_data_parallel_mode:
|
412 |
+
fake_mode = FakeTensorMode()
|
413 |
+
data_parallel_mode = cast(DataParallel, parallel_mode)
|
414 |
+
|
415 |
+
def _get_full_batch_arg(arg: torch.Tensor) -> torch.Tensor:
|
416 |
+
# since compilation happens in the first iteration and we
|
417 |
+
# receives mini-batch input, convert them to full batch
|
418 |
+
# fake tensor input first for data parallel sharding
|
419 |
+
# propagations
|
420 |
+
fake_arg = fake_mode.from_tensor(arg)
|
421 |
+
arg_dims = [1] * arg.ndim
|
422 |
+
# expand the tensor to full batch size on its batch dim
|
423 |
+
arg_dims[data_parallel_mode.input_batch_dim] *= dist.get_world_size()
|
424 |
+
return fake_arg.repeat(arg_dims)
|
425 |
+
|
426 |
+
args = pytree.tree_map_only(
|
427 |
+
torch.Tensor,
|
428 |
+
_get_full_batch_arg,
|
429 |
+
args,
|
430 |
+
)
|
431 |
+
kwargs = pytree.tree_map_only(
|
432 |
+
torch.Tensor,
|
433 |
+
_get_full_batch_arg,
|
434 |
+
kwargs,
|
435 |
+
)
|
436 |
+
|
437 |
+
with _enable_compile(), torch.autograd.detect_anomaly(check_nan=False):
|
438 |
+
# FIXME(@mrshenli): functionalization does not work for our use
|
439 |
+
# case yet. Use explicit decompositions for foreach ops.
|
440 |
+
# Remove this when the following issue is addressed.
|
441 |
+
# Issue: https://github.com/pytorch/pytorch/issues/97852
|
442 |
+
gm = make_fx(
|
443 |
+
partial(stateless_func, func),
|
444 |
+
tracing_mode=tracing_mode,
|
445 |
+
decomposition_table=SPMD_DECOMP_TABLE,
|
446 |
+
_allow_non_fake_inputs=False,
|
447 |
+
)(params, buffers, named_states, args, kwargs)
|
448 |
+
|
449 |
+
params_and_buffers: Dict[str, Union[torch.Tensor, nn.Parameter]] = {
|
450 |
+
**params,
|
451 |
+
**buffers,
|
452 |
+
}
|
453 |
+
|
454 |
+
# 4. parallel mode to expand a single device graph to a distributed graph
|
455 |
+
gm = parallel_mode.partition(
|
456 |
+
gm,
|
457 |
+
mod,
|
458 |
+
opt,
|
459 |
+
params_and_buffers,
|
460 |
+
named_states,
|
461 |
+
args,
|
462 |
+
kwargs,
|
463 |
+
)
|
464 |
+
|
465 |
+
# 5. Move the responsibility of flattening the input arguments from the
|
466 |
+
# graph module to the caller. This serves two purposes:
|
467 |
+
# - Transformations that add/remove state need to manipulate a state
|
468 |
+
# container that maintains the state tensors in the same order as they
|
469 |
+
# appear in graph placeholders.
|
470 |
+
# - Reduced runtime cost. The state container is only flattened once upfront.
|
471 |
+
flat_state = pytree.tree_leaves([params_and_buffers, named_states])
|
472 |
+
gm = _to_caller_flattened_graph_module(gm)
|
473 |
+
|
474 |
+
# 6. dedup comm operators.
|
475 |
+
# The duplication could come from DTensor args and kwargs redistribution.
|
476 |
+
# Suppose one operator produces a Partial gradient tensor and model
|
477 |
+
# parameters are replicated. In this case, every optimizer operation using
|
478 |
+
# that Partial gradient tensor would trigger an allreduce. This is becuase
|
479 |
+
# DTensor only has local information on individual tensor/operator, which is
|
480 |
+
# not sufficient to detect duplications in the graph. This situation can
|
481 |
+
# also happen when inserting FSDP allgather if a parameter is used multiple
|
482 |
+
# times in the forward method.
|
483 |
+
# TODO(@mrshenli): @yifuwang has a suggestion of conducting expansion and
|
484 |
+
# dedup at tracer-level to avoid multiple graph passes.
|
485 |
+
gm = _dedup_collectives(gm)
|
486 |
+
|
487 |
+
# 7. Replace previously inserted dummy ones with real graphs.
|
488 |
+
if module_override:
|
489 |
+
for override in module_override:
|
490 |
+
gm = override.transform(gm, flat_state)
|
491 |
+
|
492 |
+
return _CompiledResult(gm, mod, opt, flat_state)
|
493 |
+
|
494 |
+
|
495 |
+
# Note that the Python convention of __dict__ requires the key to be str.
|
496 |
+
# TODO: ensure the key is unique.
|
497 |
+
COMPILED_OBJECT_KEY = "_compiled_obj"
|
498 |
+
|
499 |
+
|
500 |
+
def compile(
|
501 |
+
module_override: Optional[List[Override]] = None,
|
502 |
+
gm_transformation: Optional[Callable[[fx.GraphModule], fx.GraphModule]] = None,
|
503 |
+
parallel_mode: Optional[ParallelMode] = None,
|
504 |
+
):
|
505 |
+
r"""Compile and optimize a callable, which can be a train step within a training loop.
|
506 |
+
|
507 |
+
This method will extract :class:`nn.Module` and :class:`torch.optim.Optimizer`
|
508 |
+
instances from the input arguments and trace operations applied to their
|
509 |
+
parameters and states.
|
510 |
+
|
511 |
+
Args:
|
512 |
+
module_override (Optional[List[Override]]): a list of Override instances
|
513 |
+
that will be applied to the module in order. The :class:`Override`
|
514 |
+
objects provide :class:`nn.Module` replacements during tracing and a
|
515 |
+
graph transformation function after tracing. (Default: ``None``)
|
516 |
+
gm_transformation (Optional[Callable[fx.GraphModule, fx.GraphModule]]):
|
517 |
+
a callback that will be called after the original callable is
|
518 |
+
compiled and distributed (usually after the first iteration) to
|
519 |
+
transform the compiled GraphModule into a new optimized one.
|
520 |
+
parallel_mode (Optional[ParallelMode]): a :class:`ParallelMode` object
|
521 |
+
that specifies how to parallelize the callable. Each ParallelMode
|
522 |
+
would have its own strategy to partition the model and the captured
|
523 |
+
graph (Default: ``None``)
|
524 |
+
|
525 |
+
"""
|
526 |
+
|
527 |
+
def inner(func: Callable):
|
528 |
+
@wraps(func)
|
529 |
+
def wrapper(*args, **kwargs):
|
530 |
+
last_train_step = kwargs.pop("last_train_step", False) if kwargs else False
|
531 |
+
first_iter = False
|
532 |
+
# Put the COMPILED_OBJECT_KEY in ``wrapper`` instead of ``func`` as
|
533 |
+
# ``wrapper`` is the one that users will get.
|
534 |
+
compiled_obj = wrapper.__dict__.get(COMPILED_OBJECT_KEY, None)
|
535 |
+
if compiled_obj is None:
|
536 |
+
first_iter = True
|
537 |
+
global dtensor_expand_mode
|
538 |
+
mode: ParallelMode = (
|
539 |
+
dtensor_expand_mode if parallel_mode is None else parallel_mode
|
540 |
+
)
|
541 |
+
|
542 |
+
compiled_obj = _compile(func, module_override, mode, *args, **kwargs)
|
543 |
+
wrapper.__dict__[COMPILED_OBJECT_KEY] = compiled_obj
|
544 |
+
|
545 |
+
flat_inps = compiled_obj.flat_state + pytree.arg_tree_leaves(
|
546 |
+
*args, **kwargs
|
547 |
+
)
|
548 |
+
|
549 |
+
with torch.no_grad():
|
550 |
+
# N.B.: we don't need autograd as backward has already been
|
551 |
+
# captured in the graph.
|
552 |
+
if first_iter and gm_transformation:
|
553 |
+
# TODO: SPMD should provid a default and configurable
|
554 |
+
# transformation.
|
555 |
+
compiled_obj.gm = gm_transformation(compiled_obj.gm)
|
556 |
+
if not last_train_step:
|
557 |
+
output = compiled_obj.gm(*flat_inps)[0]
|
558 |
+
else:
|
559 |
+
# This is the last train step. Call IterGraphModule.forward()
|
560 |
+
# with the `last_iter` argument and catch the exception in
|
561 |
+
# case the compiled_obj is not wrapped with IterGraphModule.
|
562 |
+
try:
|
563 |
+
output = compiled_obj.gm(*flat_inps, last_iter=last_train_step)[
|
564 |
+
0
|
565 |
+
]
|
566 |
+
except TypeError as e:
|
567 |
+
if "last_iter" not in str(e):
|
568 |
+
raise e
|
569 |
+
output = compiled_obj.gm(*flat_inps)[0]
|
570 |
+
|
571 |
+
return output
|
572 |
+
|
573 |
+
return wrapper
|
574 |
+
|
575 |
+
return inner
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/batch_dim_utils.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Dict, List, Set
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import torch.fx as fx
|
6 |
+
|
7 |
+
import torch.utils._pytree as pytree
|
8 |
+
|
9 |
+
from torch import Tensor
|
10 |
+
|
11 |
+
from torch.distributed._tensor import DeviceMesh, Replicate, Shard
|
12 |
+
from torch.distributed._tensor.ops.view_ops import (
|
13 |
+
DimSpec,
|
14 |
+
InputDim,
|
15 |
+
ops as view_op_rules,
|
16 |
+
)
|
17 |
+
from torch.distributed._tensor.placement_types import _Partial, DTensorSpec
|
18 |
+
|
19 |
+
aten = torch.ops.aten
|
20 |
+
|
21 |
+
|
22 |
+
class BatchDimAnalyzer:
|
23 |
+
"""This class is used to analyze the batch dimension of each tensor/node in the graph.
|
24 |
+
|
25 |
+
We need to know the batch dimension of each tensor/node so that we know
|
26 |
+
exactly the sharding layout of intermediate tensors.
|
27 |
+
|
28 |
+
We possibly should evaluate using symbolic shapes to track the batch dimension.
|
29 |
+
We can experiment it later with dynamo integration (as dynamo have mark_dynamic
|
30 |
+
API which allows marking batch dimension only) or try to use FakeTensorMode to
|
31 |
+
mark the batch dimension. For now, let's just use the batch dimension of the first
|
32 |
+
input tensor as the hint to track the batch dimension of all tensors/nodes in
|
33 |
+
the graph.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, batch_dim: int = 0) -> None:
|
37 |
+
self.batch_dim = batch_dim
|
38 |
+
|
39 |
+
self.batch_dim_map: Dict[fx.Node, int] = {}
|
40 |
+
# batch dim size is used to track the batch dim size of the input tensor
|
41 |
+
self.batch_dim_size = -1
|
42 |
+
|
43 |
+
self.dim_rule_map: Dict[torch._ops.OpOverload, Callable[..., torch.Tensor]] = {
|
44 |
+
aten.squeeze.default: torch.squeeze,
|
45 |
+
aten.squeeze.dim: torch.squeeze,
|
46 |
+
aten.view.default: Tensor.view,
|
47 |
+
aten.reshape.default: torch.reshape,
|
48 |
+
aten._unsafe_view.default: Tensor.view,
|
49 |
+
aten.unsqueeze.default: torch.unsqueeze,
|
50 |
+
aten.expand.default: Tensor.expand,
|
51 |
+
aten.permute.default: torch.permute,
|
52 |
+
aten.repeat.default: Tensor.repeat,
|
53 |
+
aten.transpose.int: torch.transpose,
|
54 |
+
}
|
55 |
+
|
56 |
+
def init_batch_dim_size(self, batch_dim_size: int) -> None:
|
57 |
+
"""Initialize batch dim size base on the first input batch size."""
|
58 |
+
if self.batch_dim_size != -1 and self.batch_dim_size != batch_dim_size:
|
59 |
+
raise RuntimeError(
|
60 |
+
f"batch dim size is already initialized! "
|
61 |
+
f"Found new batch size: {batch_dim_size} not "
|
62 |
+
f"matching existing batch dim size: {self.batch_dim_size}!"
|
63 |
+
)
|
64 |
+
self.batch_dim_size = batch_dim_size
|
65 |
+
|
66 |
+
def set_batch_dim(self, node: fx.Node, batch_dim: int) -> None:
|
67 |
+
self.batch_dim_map[node] = batch_dim
|
68 |
+
|
69 |
+
def get_batch_dim(self, node: fx.Node) -> int:
|
70 |
+
if node not in self.batch_dim_map:
|
71 |
+
raise RuntimeError(f"batch dim analysis failed on node: {node}!")
|
72 |
+
return self.batch_dim_map[node]
|
73 |
+
|
74 |
+
def compute_batch_dim(self, node: fx.Node, full_reduction=False) -> int:
|
75 |
+
"""Compute the batch dimension for the `node`."""
|
76 |
+
assert self.batch_dim_size != -1, "batch dim size is not initialized!"
|
77 |
+
|
78 |
+
if node in self.batch_dim_map:
|
79 |
+
# if batch dim already computed, simply return it
|
80 |
+
return self.batch_dim_map[node]
|
81 |
+
|
82 |
+
if node.target in self.dim_rule_map:
|
83 |
+
view_op_rule = view_op_rules[self.dim_rule_map[node.target]] # type: ignore[index]
|
84 |
+
args_val = pytree.tree_map_only(fx.Node, lambda n: n.meta["val"], node.args)
|
85 |
+
kwargs_val = pytree.tree_map_only(
|
86 |
+
fx.Node, lambda n: n.meta["val"], node.kwargs
|
87 |
+
)
|
88 |
+
output_dim_rules = view_op_rule.dim_map(*args_val, **kwargs_val)
|
89 |
+
|
90 |
+
def collect_input_dim(cmd: DimSpec, input_dims: Set[int]):
|
91 |
+
if isinstance(cmd, InputDim):
|
92 |
+
input_dims.add(cmd.input_dim)
|
93 |
+
for inp in cmd.inputs():
|
94 |
+
collect_input_dim(inp, input_dims)
|
95 |
+
|
96 |
+
output_dim_to_input_dims: List[Set[int]] = []
|
97 |
+
for inp in output_dim_rules:
|
98 |
+
input_dims: Set[int] = set()
|
99 |
+
collect_input_dim(inp, input_dims=input_dims)
|
100 |
+
output_dim_to_input_dims.append(input_dims)
|
101 |
+
|
102 |
+
operand = node.all_input_nodes[0]
|
103 |
+
operand_batch_dim = self.get_batch_dim(operand)
|
104 |
+
for output_dim, input_dims in enumerate(output_dim_to_input_dims):
|
105 |
+
if operand_batch_dim in input_dims:
|
106 |
+
self.set_batch_dim(node, output_dim)
|
107 |
+
# update batch dim size before return
|
108 |
+
# this is because batch dim size might change during the middle
|
109 |
+
self.batch_dim_size = node.meta["val"].shape[output_dim]
|
110 |
+
return output_dim
|
111 |
+
|
112 |
+
# if there's no hints from the output_dim_rules, we infer from output
|
113 |
+
# shape to see if there's batch dim, and shard correspondingly
|
114 |
+
node_val = node.meta["val"]
|
115 |
+
if isinstance(node_val, (list, tuple)):
|
116 |
+
shapes = [val.shape for val in node_val]
|
117 |
+
else:
|
118 |
+
shapes = [node_val.shape]
|
119 |
+
|
120 |
+
# for reduction op that reduces over the sharded batch dim
|
121 |
+
# we don't generate partial, but rather, we generate shard
|
122 |
+
# This is because the intention of data parallel is to never
|
123 |
+
# do full reduction across batch dimension, it would still
|
124 |
+
# keep the reduction activation as sharded.
|
125 |
+
full_reduction = False
|
126 |
+
# loop through the dim size to find the output batch dim
|
127 |
+
for shape in shapes:
|
128 |
+
if len(shape) == 0:
|
129 |
+
full_reduction = True
|
130 |
+
|
131 |
+
for i, dim_size in enumerate(shape):
|
132 |
+
if dim_size == self.batch_dim_size:
|
133 |
+
self.set_batch_dim(node, i)
|
134 |
+
return i
|
135 |
+
|
136 |
+
operands = node.all_input_nodes
|
137 |
+
if not operands:
|
138 |
+
# if there's no operands, it must be factory ops and it's a tensor
|
139 |
+
# generated for computation and should be marked as replicated
|
140 |
+
self.set_batch_dim(node, -1)
|
141 |
+
# -1 means replicated
|
142 |
+
return -1
|
143 |
+
else:
|
144 |
+
# if there's operand we see the operand have batch dim, if operand
|
145 |
+
# have batch dim but output does not, it's either a full reduction,
|
146 |
+
# where we should stay sharded, or it's a reduction on batch dim only
|
147 |
+
# where we should produce partial
|
148 |
+
operand_batch_dim = -1
|
149 |
+
for operand in operands:
|
150 |
+
if operand in self.batch_dim_map:
|
151 |
+
operand_batch_dim = self.get_batch_dim(operand)
|
152 |
+
# self.get_batch_dim(operands[0])
|
153 |
+
if operand_batch_dim < 0:
|
154 |
+
# if operand does not have batch dim, we also don't have batch dim
|
155 |
+
self.set_batch_dim(node, operand_batch_dim)
|
156 |
+
return operand_batch_dim
|
157 |
+
elif full_reduction:
|
158 |
+
self.set_batch_dim(node, operand_batch_dim)
|
159 |
+
return operand_batch_dim
|
160 |
+
else:
|
161 |
+
# if operand have batch dim but output does not, it should
|
162 |
+
# produce partial, we use -2 to indicate partial
|
163 |
+
self.set_batch_dim(node, -2)
|
164 |
+
return -2
|
165 |
+
|
166 |
+
def compute_act_spec(self, node: fx.Node, mesh: DeviceMesh) -> DTensorSpec:
|
167 |
+
"""Compute the batch dimension for the current node, then generate the sharding spec that shards on the batch dimension."""
|
168 |
+
node_batch_dim = self.compute_batch_dim(node)
|
169 |
+
if node_batch_dim == -1:
|
170 |
+
# indicate this activation is replicated
|
171 |
+
act_spec = DTensorSpec(mesh=mesh, placements=(Replicate(),))
|
172 |
+
elif node_batch_dim == -2:
|
173 |
+
# indicate this activation is partial
|
174 |
+
act_spec = DTensorSpec(mesh=mesh, placements=(_Partial(),))
|
175 |
+
else:
|
176 |
+
# indicate this activation is Shard
|
177 |
+
act_spec = DTensorSpec(mesh=mesh, placements=(Shard(node_batch_dim),))
|
178 |
+
|
179 |
+
return act_spec
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/comm_tensor.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from functools import partial
|
3 |
+
from typing import Any, List, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._C import _disabled_torch_function_impl
|
7 |
+
from torch.fx.experimental.proxy_tensor import (
|
8 |
+
_ProxyTensor,
|
9 |
+
fetch_object_proxy,
|
10 |
+
get_innermost_proxy_mode,
|
11 |
+
get_proxy_slot,
|
12 |
+
set_proxy_slot,
|
13 |
+
track_tensor_tree,
|
14 |
+
)
|
15 |
+
from torch.utils import _pytree as pytree
|
16 |
+
from torch.utils._mode_utils import no_dispatch
|
17 |
+
from torch.utils._pytree import tree_flatten, tree_map, tree_map_only
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class _CommResult:
|
22 |
+
# a custom type wrapping both inplace output tensor and work handle
|
23 |
+
_tensor: torch.Tensor
|
24 |
+
_work: torch.distributed._Work
|
25 |
+
|
26 |
+
|
27 |
+
def _wait_comm(comm_result: _CommResult):
|
28 |
+
# This function is only used by tracing mode as a call_function node right
|
29 |
+
# before consuming a collective result tensor.
|
30 |
+
comm_result._work.wait()
|
31 |
+
return comm_result._tensor
|
32 |
+
|
33 |
+
|
34 |
+
def _wrap_comm_result(result: Tuple[Any, Any]) -> Tuple[Any, Any]:
|
35 |
+
def wrap(work, e):
|
36 |
+
assert isinstance(e, torch.Tensor), (
|
37 |
+
"Excepting collection of tensors as the first element in the "
|
38 |
+
"return value of communication operations."
|
39 |
+
)
|
40 |
+
|
41 |
+
return _CommResult(e, work)
|
42 |
+
|
43 |
+
# E.g.,
|
44 |
+
# allreduce_ returns ([tensor], work)
|
45 |
+
# allgather_ returns ([[tensor1, tensor2]], work)
|
46 |
+
work = result[1]
|
47 |
+
return (tree_map(partial(wrap, work), result[0]), work)
|
48 |
+
|
49 |
+
|
50 |
+
def _get_tracer() -> Optional[torch.fx.Tracer]:
|
51 |
+
mode = get_innermost_proxy_mode()
|
52 |
+
if mode is None:
|
53 |
+
return None
|
54 |
+
return mode.tracer
|
55 |
+
|
56 |
+
|
57 |
+
class CommTensor(torch.Tensor):
|
58 |
+
r"""
|
59 |
+
A Tensor subclass to wrap input tensors for collective communications.
|
60 |
+
|
61 |
+
This Tensor subclass works for both eager and tracing mode.
|
62 |
+
In eager mode, it will record whether the inplace collective communication
|
63 |
+
has been launched using this Tensor and remember the corresponding work
|
64 |
+
handle. If yes, it will explicitly call wait() in the ``__torch_dispatch__``
|
65 |
+
function before subsequent operations consuming the value of the Tensor.
|
66 |
+
|
67 |
+
In tracing mode, ``CommTensor`` inserts two node into the graph using the
|
68 |
+
``__torch_dispatch__`` function.
|
69 |
+
1. The first node is inserted right after the
|
70 |
+
communication, wrapping both the inplace output tensor and the returned
|
71 |
+
work handle into a custom ``_CommResult`` type. We have to do this because
|
72 |
+
``ProxyTorchDispatchMode`` only handles ``torch.Tensor``, ``_ProxyTensor``,
|
73 |
+
and ``torch.nn.Parameter`` objects and will treat the work handle
|
74 |
+
as a constant and embed that into the graph. As a result, during execution,
|
75 |
+
it will use the work handle created during tracing and will lead to wrong
|
76 |
+
result. The solution in this test is to manually create a proxy on the
|
77 |
+
return value of ``allreduce_`` which is ``([tensor], work)``, and wrap that
|
78 |
+
to ``[(_CommResult(tensor, work)), work]``. In this way, subsequent nodes can
|
79 |
+
directly consume ``_CommResult``.
|
80 |
+
2. The second node is inserted right before any subsequent node reads from
|
81 |
+
``_CommResult``. It will call ``wait()`` on the stashed work handle to ensure
|
82 |
+
that computation waits for communication.
|
83 |
+
"""
|
84 |
+
|
85 |
+
_supported_comms: List[str] = [
|
86 |
+
"_allgather_base_",
|
87 |
+
"_reduce_scatter_base_",
|
88 |
+
"allreduce_",
|
89 |
+
"allgather_",
|
90 |
+
"alltoall_",
|
91 |
+
"broadcast_",
|
92 |
+
"reduce_scatter_",
|
93 |
+
"scatter_",
|
94 |
+
]
|
95 |
+
|
96 |
+
_tensor: torch.Tensor
|
97 |
+
_work: Optional[torch.distributed._Work]
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def __new__(cls, tensor: torch.Tensor):
|
101 |
+
t = tensor._tensor if isinstance(tensor, CommTensor) else tensor
|
102 |
+
if get_innermost_proxy_mode() is None:
|
103 |
+
# noop for eager mode
|
104 |
+
return tensor
|
105 |
+
|
106 |
+
# Use non-CommTensor to avoid nested CommTensor Wrapping
|
107 |
+
r = torch.Tensor._make_subclass(cls, t, require_grad=t.requires_grad)
|
108 |
+
# The tensor object wrapped by this CommTensor
|
109 |
+
# NB: THIS CAN BE A CommTensor; see test_nested_comm_tensor_wrapping
|
110 |
+
r._tensor = tensor # type: ignore[attr-defined]
|
111 |
+
# Record the LAST `work` object returned by collective communication
|
112 |
+
# operations. If this is None, it means no collectives have called
|
113 |
+
# since last time a tensor is wrapped by CommTensor
|
114 |
+
r._work = None # type: ignore[attr-defined]
|
115 |
+
return r
|
116 |
+
|
117 |
+
def __repr__(self):
|
118 |
+
return f"CommTensor({self._tensor}, work={self._work})"
|
119 |
+
|
120 |
+
# disable __torch_function__ so that CommTensor can recursively dispatch
|
121 |
+
# with ProxyTorchDispatchMode in make_fx
|
122 |
+
__torch_function__ = _disabled_torch_function_impl
|
123 |
+
|
124 |
+
@classmethod
|
125 |
+
def _is_supported(cls, op_name):
|
126 |
+
return any(comm in op_name for comm in cls._supported_comms)
|
127 |
+
|
128 |
+
@classmethod
|
129 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
130 |
+
# shared states when unwrapping args
|
131 |
+
tracer: Optional[torch.fx.Tracer] = None
|
132 |
+
work: Optional[torch.distributed._Work] = None
|
133 |
+
|
134 |
+
# wrapped ._tensor if this is a CommTensor, and insert/call wait()
|
135 |
+
# if communication has been launched on this tensor.
|
136 |
+
def unwrap(e: Any):
|
137 |
+
if isinstance(e, CommTensor):
|
138 |
+
nonlocal tracer, work
|
139 |
+
|
140 |
+
work = e._work
|
141 |
+
# TODO(ezyang): I don't really understand what's going on
|
142 |
+
# here, but it seems that tracer doesn't reflect whether or
|
143 |
+
# not there is ambient tracing going on, but rather, whether
|
144 |
+
# or not we will trace THIS particular invocation. If we
|
145 |
+
# have a nested CommTensor, the outer layer doesn't actually
|
146 |
+
# trace and we only trace the inner layer
|
147 |
+
if not isinstance(e._tensor, CommTensor):
|
148 |
+
tracer = _get_tracer()
|
149 |
+
|
150 |
+
if work is not None:
|
151 |
+
if tracer is not None:
|
152 |
+
# insert a node to the traced graph.
|
153 |
+
proxy_res = tracer.create_proxy( # type: ignore[union-attr]
|
154 |
+
"call_function",
|
155 |
+
_wait_comm,
|
156 |
+
(get_proxy_slot(e._tensor, tracer).proxy,),
|
157 |
+
{},
|
158 |
+
name="wait_comm",
|
159 |
+
)
|
160 |
+
# HACK: update the proxy for the inplace output
|
161 |
+
set_proxy_slot(e._tensor, tracer, proxy_res)
|
162 |
+
# For eager mode, simply wait.
|
163 |
+
# During tracing, still need to wait here, to make sure the
|
164 |
+
# execution during tracing is correct.
|
165 |
+
work.wait()
|
166 |
+
|
167 |
+
# communication has been waited, stop propagating CommTensor
|
168 |
+
return e._tensor
|
169 |
+
else:
|
170 |
+
return e
|
171 |
+
|
172 |
+
def wrap(e: Any):
|
173 |
+
return CommTensor(e) if isinstance(e, torch.Tensor) else e
|
174 |
+
|
175 |
+
def set_work(work: torch.distributed._Work, e: Any):
|
176 |
+
if isinstance(e, CommTensor):
|
177 |
+
e._work = work # type: ignore[attr-defined]
|
178 |
+
elif isinstance(e, torch.Tensor):
|
179 |
+
raise RuntimeError(
|
180 |
+
"Type of output tensors from collective communication during "
|
181 |
+
"tracing should always be CommTensor instead of torch.Tensor"
|
182 |
+
)
|
183 |
+
return e
|
184 |
+
|
185 |
+
unwrapped_args = tree_map(unwrap, args)
|
186 |
+
unwrapped_kwargs = tree_map(unwrap, kwargs)
|
187 |
+
|
188 |
+
if cls._is_supported(func.__name__):
|
189 |
+
if tracer is not None:
|
190 |
+
# in tracing mode, get proxies for args
|
191 |
+
proxy_args, proxy_kwargs = tree_map_only(
|
192 |
+
_ProxyTensor,
|
193 |
+
lambda e: e.proxy,
|
194 |
+
tree_map_only(
|
195 |
+
torch.Tensor,
|
196 |
+
fetch_object_proxy(tracer),
|
197 |
+
(unwrapped_args, unwrapped_kwargs),
|
198 |
+
),
|
199 |
+
)
|
200 |
+
|
201 |
+
# get proxy for output tuple
|
202 |
+
proxy_res = func(*proxy_args, **proxy_kwargs)
|
203 |
+
assert isinstance(proxy_res, torch.fx.Proxy)
|
204 |
+
# insert a node that wraps the output tuple into
|
205 |
+
# _CommResult(tensor, work)
|
206 |
+
comm_result_proxy = tracer.create_proxy( # type: ignore[union-attr]
|
207 |
+
"call_function",
|
208 |
+
_wrap_comm_result,
|
209 |
+
(proxy_res,),
|
210 |
+
{},
|
211 |
+
name="comm_result",
|
212 |
+
)
|
213 |
+
|
214 |
+
with no_dispatch():
|
215 |
+
# disable dispatch to avoid trigger ProxyTorchDispatchMode logic
|
216 |
+
out = func(*unwrapped_args, **unwrapped_kwargs)
|
217 |
+
|
218 |
+
# wrap output with the proxy of _CommResult, so that subsequent
|
219 |
+
# ops and link to it.
|
220 |
+
track_tensor_tree(out, comm_result_proxy, constant=None, tracer=tracer)
|
221 |
+
|
222 |
+
# N.B.: we still need to remember the work handle here, and wait
|
223 |
+
# for it later to make sure the execution during tracing is
|
224 |
+
# correct. Also, remember comm is already launched
|
225 |
+
# args[0] is always the collection of output tensors
|
226 |
+
pytree.tree_map_(partial(set_work, out[1]), args[0])
|
227 |
+
|
228 |
+
# HACK: update the proxy on the input argument as this is an
|
229 |
+
# inplace collective communication.
|
230 |
+
flat_args, args_spec = tree_flatten(unwrapped_args[0])
|
231 |
+
flat_out, out_spec = tree_flatten(out[0])
|
232 |
+
for a, o in zip(flat_args, flat_out):
|
233 |
+
set_proxy_slot(a, tracer, get_proxy_slot(o, tracer))
|
234 |
+
|
235 |
+
return out
|
236 |
+
else:
|
237 |
+
# in eager mode, simply remember work handle as an attribute
|
238 |
+
out = func(*unwrapped_args, **unwrapped_kwargs)
|
239 |
+
pytree.tree_map_(partial(set_work, out[1]), args[0])
|
240 |
+
return out
|
241 |
+
else:
|
242 |
+
if work is not None:
|
243 |
+
return func(*unwrapped_args, **unwrapped_kwargs)
|
244 |
+
else:
|
245 |
+
# we need to propagate CommTensor wrapping until the first
|
246 |
+
# subsequent operation has waited for it.
|
247 |
+
return tree_map(wrap, func(*unwrapped_args, **unwrapped_kwargs))
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/config.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
from types import ModuleType
|
4 |
+
from typing import Set
|
5 |
+
|
6 |
+
# log level (levels print what it says + all levels listed below it)
|
7 |
+
# DEBUG print full traces <-- lowest level + print tracing of every instruction
|
8 |
+
# INFO print compiler functions + distributed graphs
|
9 |
+
# WARN print warnings
|
10 |
+
# ERROR print exceptions
|
11 |
+
log_level: int = logging.DEBUG
|
12 |
+
# Verbose will print full stack traces on warnings and errors
|
13 |
+
verbose = False
|
14 |
+
|
15 |
+
# the name of a file to write the logs to
|
16 |
+
log_file_name: None = None
|
17 |
+
|
18 |
+
|
19 |
+
class _AccessLimitingConfig(ModuleType):
|
20 |
+
def __setattr__(self, name, value) -> None:
|
21 |
+
if name not in _allowed_config_names:
|
22 |
+
raise AttributeError(f"{__name__}.{name} does not exist")
|
23 |
+
return object.__setattr__(self, name, value)
|
24 |
+
|
25 |
+
|
26 |
+
_allowed_config_names: Set[str] = {*globals().keys()}
|
27 |
+
sys.modules[__name__].__class__ = _AccessLimitingConfig
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/data_parallel.py
ADDED
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from enum import Enum
|
4 |
+
|
5 |
+
from typing import Any, cast, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import torch.distributed.distributed_c10d as c10d
|
10 |
+
import torch.fx as fx
|
11 |
+
import torch.library
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
import torch.utils._pytree as pytree
|
15 |
+
|
16 |
+
from torch.distributed._spmd.batch_dim_utils import BatchDimAnalyzer
|
17 |
+
from torch.distributed._tensor import DeviceMesh, distribute_tensor, Replicate, Shard
|
18 |
+
|
19 |
+
from torch.distributed._tensor._utils import compute_local_shape
|
20 |
+
from torch.distributed._tensor.op_schema import (
|
21 |
+
OpStrategy,
|
22 |
+
PlacementStrategy,
|
23 |
+
StrategyType,
|
24 |
+
TupleStrategy,
|
25 |
+
)
|
26 |
+
from torch.distributed._tensor.placement_types import _Partial, DTensorSpec, Placement
|
27 |
+
from torch.distributed._tensor.redistribute import redistribute_local_tensor
|
28 |
+
from torch.fx import GraphModule
|
29 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
30 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata
|
31 |
+
from torch.nn.utils._named_member_accessor import NamedMemberAccessor
|
32 |
+
|
33 |
+
aten = torch.ops.aten
|
34 |
+
|
35 |
+
# Dummy op used by data parallel to tag gradients.
|
36 |
+
_spmd_lib_def = torch.library.Library("_spmd", "DEF")
|
37 |
+
_spmd_lib_def.define("tag_grad(Tensor self) -> Tensor")
|
38 |
+
|
39 |
+
_spmd_lib_impl = torch.library.Library("_spmd", "IMPL")
|
40 |
+
_spmd_lib_impl.impl("tag_grad", lambda x: x, "CompositeExplicitAutograd")
|
41 |
+
|
42 |
+
|
43 |
+
class DataParallelStyle(Enum):
|
44 |
+
"""This enum represents the style of the data-parallel operation.
|
45 |
+
|
46 |
+
We have three types of Data Parallel style:
|
47 |
+
1. DEFAULT: the default data parallel style, which is to represent a mixed
|
48 |
+
replicate and fully shard behavior. For each parameter that is able
|
49 |
+
to be sharded evenly, we shard it, otherwise we would replicate the
|
50 |
+
parameter. This style avoids potential padding if the parameters
|
51 |
+
cannot be sharded evenly, but it would generate a mixed of all_reduce
|
52 |
+
and reduce_scatter.
|
53 |
+
2. REPLICATE: the data parallel style that replicates all model parameters.
|
54 |
+
This is similar to the behavior of DistributedDataParallel.
|
55 |
+
3. FULLY_SHARD: the data parallel style that shards all model parameters. This
|
56 |
+
is similar to the behavior of FullyShardedDataParallel, the
|
57 |
+
difference is that FullyShardedDataParallel (ZERO-3), which
|
58 |
+
shards the model using FlatParameter based sharding,
|
59 |
+
while this style shards each parameter into DTensor.
|
60 |
+
"""
|
61 |
+
|
62 |
+
DEFAULT = 0
|
63 |
+
REPLICATE = 1
|
64 |
+
FULLY_SHARD = 2
|
65 |
+
|
66 |
+
|
67 |
+
class NodeType(Enum):
|
68 |
+
"""NodeType is an enum that records the type of the tensors in the graph.
|
69 |
+
|
70 |
+
This is used to determine the data parallel strategy.
|
71 |
+
"""
|
72 |
+
|
73 |
+
PARAM = 0
|
74 |
+
ACT = 1
|
75 |
+
GRAD = 2
|
76 |
+
STATE = 3
|
77 |
+
NON_TENSOR = 4 # NON_TENSOR is to tag non tensor node (i.e. graph output)
|
78 |
+
|
79 |
+
|
80 |
+
class DataParallelStrategy(OpStrategy):
|
81 |
+
"""DataParallelStrategy is a special case of OpStrategy that only records the "data parallel style" placement
|
82 |
+
strategy for each fx Node.
|
83 |
+
|
84 |
+
It takes a list of PlacementStrategy, where each PlacementStrategy describes
|
85 |
+
one way to distribute the tensor and computation. In the DataParallel case,
|
86 |
+
there're two possible ways to distribute the parameters:
|
87 |
+
1. replicate the parameter over a set of devices (DDP like behavior)
|
88 |
+
2. shard the parameter on its tensor dimension 0 over a set of devices
|
89 |
+
(FSDP like behavior).
|
90 |
+
|
91 |
+
In addition to the strategy list, we also need to:
|
92 |
+
1. `node_type`: record the type of each node in the graph, so that we can
|
93 |
+
determine how to propagate in a data parallel fashion.
|
94 |
+
2. `reduce_over_batch` is specifically tied to data parallel as the loss
|
95 |
+
calculation usually results in scalar tensor where it comes from a
|
96 |
+
reduction over the batch dimension. We need to know this information
|
97 |
+
so that we could keep the output as sharded.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
node_type: NodeType,
|
103 |
+
strategy_list: List[PlacementStrategy],
|
104 |
+
reduction_over_batch: bool = False,
|
105 |
+
):
|
106 |
+
super().__init__(strategy_list)
|
107 |
+
self.node_type = node_type
|
108 |
+
self.reduction_over_batch = reduction_over_batch
|
109 |
+
|
110 |
+
def __str__(self) -> str:
|
111 |
+
return f"type: {self.node_type}, {super().__str__()}"
|
112 |
+
|
113 |
+
|
114 |
+
@contextmanager
|
115 |
+
def gradients_tagging(params: Dict[str, torch.Tensor]):
|
116 |
+
"""Tag the gradient of the parameters with a special tag, so that we can identify them during SPMD expansion.
|
117 |
+
|
118 |
+
It's safe to trace those hooks and we would remove those nodes later.
|
119 |
+
"""
|
120 |
+
tagging_hooks = []
|
121 |
+
try:
|
122 |
+
for p in params.values():
|
123 |
+
h = p.register_hook(torch.ops._spmd.tag_grad)
|
124 |
+
tagging_hooks.append(h)
|
125 |
+
yield
|
126 |
+
finally:
|
127 |
+
# remove those hooks after tracing
|
128 |
+
for h in tagging_hooks:
|
129 |
+
h.remove()
|
130 |
+
|
131 |
+
|
132 |
+
def _gen_shard_strategy(
|
133 |
+
mesh: DeviceMesh, shard_dim: int, input_specs: Optional[List[DTensorSpec]] = None
|
134 |
+
) -> PlacementStrategy:
|
135 |
+
"""Util function to generate a shard strategy on shard_dim."""
|
136 |
+
return PlacementStrategy(
|
137 |
+
output_specs=DTensorSpec(mesh=mesh, placements=(Shard(shard_dim),)),
|
138 |
+
input_specs=input_specs,
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
def _gen_replicate_strategy(
|
143 |
+
mesh: DeviceMesh, input_specs: Optional[List[DTensorSpec]] = None
|
144 |
+
) -> PlacementStrategy:
|
145 |
+
"""Util function to generate a replicate strategy."""
|
146 |
+
return PlacementStrategy(
|
147 |
+
output_specs=DTensorSpec(mesh=mesh, placements=(Replicate(),)),
|
148 |
+
input_specs=input_specs,
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def _gen_partial_strategy(mesh: DeviceMesh) -> PlacementStrategy:
|
153 |
+
"""Util function to generate a partial strategy."""
|
154 |
+
# NOTE: we use AVG by default, avg reduction is needed depending on
|
155 |
+
# the loss function, for most loss function it should do
|
156 |
+
# gradient averaging. There might be certain cases it should
|
157 |
+
# not do gradient averaging (i.e. sum) but it's pretty rare.
|
158 |
+
# TODO: Only NCCL supports AVG so using backend like Gloo would
|
159 |
+
# crash, we should figure out a way to support avg reduction
|
160 |
+
# for non-NCCL backend
|
161 |
+
reduce_op = c10d.ReduceOp.AVG # type: ignore[attr-defined]
|
162 |
+
return PlacementStrategy(
|
163 |
+
output_specs=DTensorSpec(mesh=mesh, placements=(_Partial(reduce_op),)),
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
def build_data_parallel_strategies(
|
168 |
+
train_step_graph: GraphModule,
|
169 |
+
num_params: int,
|
170 |
+
num_states: int,
|
171 |
+
mesh: DeviceMesh,
|
172 |
+
batch_dim: int = 0,
|
173 |
+
) -> Dict[fx.Node, StrategyType]:
|
174 |
+
"""Loop through the train step graph and build the data parallel strategy for each fx Node."""
|
175 |
+
activation_idx = num_params + num_states
|
176 |
+
non_compute_ops = [
|
177 |
+
aten.clone.default,
|
178 |
+
aten.detach.default,
|
179 |
+
aten.ones_like.default,
|
180 |
+
aten.reshape.default,
|
181 |
+
aten.t.default,
|
182 |
+
aten.view.default,
|
183 |
+
torch.ops._spmd.tag_grad.default,
|
184 |
+
operator.getitem,
|
185 |
+
]
|
186 |
+
|
187 |
+
tuple_strategy_ops = [aten._fused_adam.default]
|
188 |
+
|
189 |
+
dp_strategy_map: Dict[fx.Node, StrategyType] = {}
|
190 |
+
batch_dim_analyzer = BatchDimAnalyzer(batch_dim)
|
191 |
+
placeholder_idx = 0
|
192 |
+
num_param_grad = 0
|
193 |
+
|
194 |
+
# first we backward propagate to mark the param gradients sharding
|
195 |
+
# with tag_grad node helps and then delete the tag_grad nodes
|
196 |
+
for node in reversed(list(train_step_graph.graph.nodes)):
|
197 |
+
# find a param_grad node via the tagging
|
198 |
+
if node.target == torch.ops._spmd.tag_grad.default:
|
199 |
+
cur_node = node
|
200 |
+
while cur_node.target in non_compute_ops:
|
201 |
+
cur_node = cur_node.args[0]
|
202 |
+
partial_strategy = _gen_partial_strategy(mesh)
|
203 |
+
dp_strategy_map[cur_node] = DataParallelStrategy(
|
204 |
+
NodeType.GRAD, [partial_strategy]
|
205 |
+
)
|
206 |
+
num_param_grad += 1
|
207 |
+
# remove the tag_grad node from graph
|
208 |
+
node.replace_all_uses_with(node.args[0])
|
209 |
+
train_step_graph.graph.erase_node(node)
|
210 |
+
|
211 |
+
if num_param_grad == num_params:
|
212 |
+
# early break if we have already processed all param_grads
|
213 |
+
break
|
214 |
+
|
215 |
+
# next we forward propagate to mark all the sharding
|
216 |
+
for node in train_step_graph.graph.nodes:
|
217 |
+
if node.op == "placeholder":
|
218 |
+
if "val" not in node.meta:
|
219 |
+
# NOTE: There're certain cases where the placeholder nodes do
|
220 |
+
# not have real tensor values:
|
221 |
+
# 1. optimizer states can be None sometimes, i.e. SGD with
|
222 |
+
# no momentum, optimizer states populate `momentum` state
|
223 |
+
# as None, the full graph we get from `compile` would have
|
224 |
+
# None as the placeholder value
|
225 |
+
# 2. function args might not only contain params or activations,
|
226 |
+
# but also contain other non-tensor inputs, i.e. the model
|
227 |
+
# and optimizer instances baked in as a placeholder, there might
|
228 |
+
# also be some scalar argument which is not a tensor
|
229 |
+
#
|
230 |
+
# For the above cases, we create a NON_TENSOR stratgy so that we
|
231 |
+
# know it's not a tensor and we don't need to shard it
|
232 |
+
dp_strategy_map[node] = DataParallelStrategy(NodeType.NON_TENSOR, [])
|
233 |
+
|
234 |
+
elif placeholder_idx < num_params:
|
235 |
+
# during compilation there's an assumption that the first num_params
|
236 |
+
# placeholders should be parameters
|
237 |
+
shard_strategy = _gen_shard_strategy(mesh, 0)
|
238 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
239 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
240 |
+
NodeType.PARAM, [replica_strategy, shard_strategy]
|
241 |
+
)
|
242 |
+
|
243 |
+
elif placeholder_idx < activation_idx:
|
244 |
+
# optimizer states follow the same strategy as
|
245 |
+
# the corresponding parameters
|
246 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
247 |
+
shard_strategy = _gen_shard_strategy(mesh, 0)
|
248 |
+
|
249 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
250 |
+
NodeType.STATE, [replica_strategy, shard_strategy]
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
activation_batch_dim_size = node.meta["val"].shape[batch_dim]
|
254 |
+
# find the first activation node and use its batch dim size
|
255 |
+
if batch_dim_analyzer.batch_dim_size == -1:
|
256 |
+
batch_dim_analyzer.init_batch_dim_size(activation_batch_dim_size)
|
257 |
+
|
258 |
+
batch_dim_analyzer.set_batch_dim(node, batch_dim)
|
259 |
+
shard_strategy = _gen_shard_strategy(mesh, batch_dim)
|
260 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
261 |
+
NodeType.ACT, [shard_strategy]
|
262 |
+
)
|
263 |
+
placeholder_idx += 1
|
264 |
+
elif node.op == "call_function":
|
265 |
+
# Annotate node types for the computation graph
|
266 |
+
# Data Parallel node propagation logic:
|
267 |
+
# param (non-compute) -> out: param
|
268 |
+
# grad (non-compute before/after) -> out: grad
|
269 |
+
# state -> output: state
|
270 |
+
#
|
271 |
+
# param + activation (param must be replicate, act be sharded) -> out: activation
|
272 |
+
# param/state + grad (param/state/grad be the same spec) -> out: param/state
|
273 |
+
# param + state -> out: param
|
274 |
+
|
275 |
+
if node.target in non_compute_ops:
|
276 |
+
# At this point, we should have removed all the `tag_grad` nodes in the graph
|
277 |
+
assert node.target != torch.ops._spmd.tag_grad.default
|
278 |
+
|
279 |
+
input_nodes = node.all_input_nodes
|
280 |
+
assert (
|
281 |
+
len(input_nodes) == 1
|
282 |
+
), f"non-compute op only support one input now, found node: {node} with length of inputs: {len(node.args)}"
|
283 |
+
arg_strategy = dp_strategy_map[input_nodes[0]]
|
284 |
+
|
285 |
+
if node.target == operator.getitem:
|
286 |
+
# for getitem call, just forward the strategy from the input
|
287 |
+
getitem_idx = node.args[1]
|
288 |
+
if isinstance(arg_strategy, TupleStrategy):
|
289 |
+
# for tuple strategy, we need to get the child strategy from the tuple
|
290 |
+
dp_strategy_map[node] = arg_strategy.childs[getitem_idx]
|
291 |
+
else:
|
292 |
+
# if it's not a tuple strategy, we just forward the arg strategy
|
293 |
+
dp_strategy_map[node] = arg_strategy
|
294 |
+
else:
|
295 |
+
assert isinstance(arg_strategy, DataParallelStrategy)
|
296 |
+
arg_node_type = arg_strategy.node_type
|
297 |
+
if arg_node_type == NodeType.PARAM:
|
298 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
299 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
300 |
+
NodeType.PARAM, [replica_strategy]
|
301 |
+
)
|
302 |
+
elif arg_node_type == NodeType.GRAD:
|
303 |
+
partial_sig = _gen_partial_strategy(mesh)
|
304 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
305 |
+
NodeType.GRAD, [partial_sig]
|
306 |
+
)
|
307 |
+
elif arg_node_type == NodeType.ACT:
|
308 |
+
arg_node_spec = batch_dim_analyzer.compute_act_spec(
|
309 |
+
input_nodes[0], mesh
|
310 |
+
)
|
311 |
+
|
312 |
+
output_spec = batch_dim_analyzer.compute_act_spec(node, mesh)
|
313 |
+
|
314 |
+
shard_strategy = PlacementStrategy(
|
315 |
+
output_specs=output_spec, input_specs=[arg_node_spec]
|
316 |
+
)
|
317 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
318 |
+
NodeType.ACT, [shard_strategy]
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
raise RuntimeError(
|
322 |
+
f"non compute op not supporting {arg_node_type}! "
|
323 |
+
)
|
324 |
+
|
325 |
+
# finished processing this non-compute node
|
326 |
+
continue
|
327 |
+
|
328 |
+
# for computatation nodes, we need to check all the inputs
|
329 |
+
input_args = node.all_input_nodes
|
330 |
+
input_specs = []
|
331 |
+
if node in dp_strategy_map:
|
332 |
+
# found a param_grad node that already have output pre-filled spec
|
333 |
+
# fill in the expected input specs for the pre-filled strategy
|
334 |
+
node_strategy = dp_strategy_map[node]
|
335 |
+
assert isinstance(node_strategy, DataParallelStrategy)
|
336 |
+
node_type = node_strategy.node_type
|
337 |
+
assert node_type == NodeType.GRAD
|
338 |
+
produce_param_grad_strat = node_strategy.strategies
|
339 |
+
has_activation = False
|
340 |
+
for arg in input_args:
|
341 |
+
arg_strategy = dp_strategy_map[arg]
|
342 |
+
assert isinstance(arg_strategy, DataParallelStrategy)
|
343 |
+
arg_node_type = arg_strategy.node_type
|
344 |
+
if arg_node_type == NodeType.ACT:
|
345 |
+
# activation sharded
|
346 |
+
has_activation = True
|
347 |
+
act_spec = batch_dim_analyzer.compute_act_spec(arg, mesh)
|
348 |
+
|
349 |
+
input_specs.append(act_spec)
|
350 |
+
|
351 |
+
if has_activation:
|
352 |
+
assert len(produce_param_grad_strat) == 1
|
353 |
+
produce_param_grad_strat[0].input_specs = input_specs
|
354 |
+
elif node.target in tuple_strategy_ops:
|
355 |
+
# ops that need to build tuple strategy instead of normal strategy
|
356 |
+
# This should happen rarely and only needed when we need to generate
|
357 |
+
# different node strategy for multiple outputs (i.e. fused_adam op)
|
358 |
+
# TODO: Currently this specializes to fused optimizer ops, but we need
|
359 |
+
# to see how to generalize this strategy building logic
|
360 |
+
output_strategy_len = len(node.args) - 1
|
361 |
+
tuple_strategies = []
|
362 |
+
for i in range(output_strategy_len):
|
363 |
+
if not isinstance(node.args[i], list):
|
364 |
+
raise RuntimeError(
|
365 |
+
f"Expecting list as arg to build Tuple Strategy, but found type {type(node.args[i])}!"
|
366 |
+
)
|
367 |
+
# for list/tuple arg, use the first one to find out the node type
|
368 |
+
if len(node.args[i]) > 0:
|
369 |
+
arg_strategy = dp_strategy_map[node.args[i][0]]
|
370 |
+
assert isinstance(arg_strategy, DataParallelStrategy)
|
371 |
+
assert arg_strategy.node_type in [
|
372 |
+
NodeType.PARAM,
|
373 |
+
NodeType.GRAD,
|
374 |
+
NodeType.STATE,
|
375 |
+
], "Expecting param/grad/state as arg to build Tuple Strategy!"
|
376 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
377 |
+
shard_strategy = _gen_shard_strategy(mesh, shard_dim=0)
|
378 |
+
out_node_strategy: StrategyType = DataParallelStrategy(
|
379 |
+
arg_strategy.node_type, [replica_strategy, shard_strategy]
|
380 |
+
)
|
381 |
+
|
382 |
+
tuple_strategies.append(out_node_strategy)
|
383 |
+
|
384 |
+
output_tuple_strategy = TupleStrategy(tuple(tuple_strategies))
|
385 |
+
dp_strategy_map[node] = output_tuple_strategy
|
386 |
+
else:
|
387 |
+
# NOTE: This is the common region for all regular computation ops
|
388 |
+
|
389 |
+
input_node_types = [
|
390 |
+
cast(DataParallelStrategy, dp_strategy_map[arg]).node_type
|
391 |
+
for arg in input_args
|
392 |
+
if isinstance(dp_strategy_map[arg], DataParallelStrategy)
|
393 |
+
]
|
394 |
+
if NodeType.GRAD in input_node_types:
|
395 |
+
# param/state + grad, build up acceptable strategy
|
396 |
+
# the strategy should be the same for all the inputs/outputs
|
397 |
+
# TODO: optimizer parts should follow the dtensor prop logic
|
398 |
+
# to support more general cases that allows optimizer states
|
399 |
+
# to have different shardings compare to the params
|
400 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
401 |
+
shard_strategy = _gen_shard_strategy(mesh, shard_dim=0)
|
402 |
+
output_node_type = NodeType.PARAM
|
403 |
+
|
404 |
+
non_grad_types = [t for t in input_node_types if t != NodeType.GRAD]
|
405 |
+
|
406 |
+
output_node_type = non_grad_types[0]
|
407 |
+
for non_grad_type in non_grad_types:
|
408 |
+
assert (
|
409 |
+
non_grad_type == output_node_type
|
410 |
+
), f"Found more than one non grad types! Expect {output_node_type} but found {non_grad_type}!"
|
411 |
+
assert output_node_type in [
|
412 |
+
NodeType.PARAM,
|
413 |
+
NodeType.STATE,
|
414 |
+
], f"Expecting output node type to be either state or param, but found {output_node_type}!"
|
415 |
+
|
416 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
417 |
+
output_node_type, [replica_strategy, shard_strategy]
|
418 |
+
)
|
419 |
+
elif NodeType.STATE in input_node_types:
|
420 |
+
# either param + state or state + state
|
421 |
+
replica_strategy = _gen_replicate_strategy(mesh)
|
422 |
+
shard_strategy = _gen_shard_strategy(mesh, shard_dim=0)
|
423 |
+
output_node_type = (
|
424 |
+
NodeType.PARAM
|
425 |
+
if NodeType.PARAM in input_node_types
|
426 |
+
else NodeType.STATE
|
427 |
+
)
|
428 |
+
|
429 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
430 |
+
output_node_type, [replica_strategy, shard_strategy]
|
431 |
+
)
|
432 |
+
elif NodeType.PARAM in input_node_types:
|
433 |
+
if NodeType.ACT in input_node_types:
|
434 |
+
# param + activation, build up acceptable strategy
|
435 |
+
# param must be replicated, activation must be sharded
|
436 |
+
for arg in input_args:
|
437 |
+
arg_strategy = dp_strategy_map[arg]
|
438 |
+
assert isinstance(arg_strategy, DataParallelStrategy)
|
439 |
+
node_type = arg_strategy.node_type
|
440 |
+
if node_type == NodeType.ACT:
|
441 |
+
# compute activation spec
|
442 |
+
act_spec = batch_dim_analyzer.compute_act_spec(
|
443 |
+
arg, mesh
|
444 |
+
)
|
445 |
+
|
446 |
+
input_specs.append(act_spec)
|
447 |
+
elif node_type == NodeType.PARAM:
|
448 |
+
# param must be replicated
|
449 |
+
input_specs.append(
|
450 |
+
DTensorSpec(mesh=mesh, placements=(Replicate(),))
|
451 |
+
)
|
452 |
+
else:
|
453 |
+
raise RuntimeError(
|
454 |
+
f"Expecting node with parameter and activation, but found {input_node_types}! "
|
455 |
+
)
|
456 |
+
# produce activation type sharding for output
|
457 |
+
output_spec = batch_dim_analyzer.compute_act_spec(node, mesh)
|
458 |
+
|
459 |
+
act_strategy = PlacementStrategy(
|
460 |
+
output_specs=output_spec, input_specs=input_specs
|
461 |
+
)
|
462 |
+
|
463 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
464 |
+
NodeType.ACT, [act_strategy]
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
# If inputs only have parameters, the
|
468 |
+
# strategy of this node should follow input
|
469 |
+
dp_strategy_map[node] = dp_strategy_map[input_args[0]]
|
470 |
+
else:
|
471 |
+
# If input nodes does not have PARAM/GRAD/STATE, then
|
472 |
+
# it should be a pure activation computation, it should
|
473 |
+
# produce activation output.
|
474 |
+
# Activations are usually sharded unless model creates
|
475 |
+
# new tensors during computation, which depend on whether
|
476 |
+
# the new tensor associate with a batch dim or not, it could
|
477 |
+
# be shard/replicate/partial, batch dim analyzer should tell
|
478 |
+
# us the correct sharding.
|
479 |
+
for arg in input_args:
|
480 |
+
arg_strategy = dp_strategy_map[arg]
|
481 |
+
assert isinstance(arg_strategy, DataParallelStrategy)
|
482 |
+
input_spec = batch_dim_analyzer.compute_act_spec(arg, mesh)
|
483 |
+
|
484 |
+
input_specs.append(input_spec)
|
485 |
+
|
486 |
+
act_spec = batch_dim_analyzer.compute_act_spec(node, mesh)
|
487 |
+
op_strategy = PlacementStrategy(
|
488 |
+
output_specs=act_spec, input_specs=input_specs
|
489 |
+
)
|
490 |
+
dp_strategy_map[node] = DataParallelStrategy(
|
491 |
+
NodeType.ACT, [op_strategy]
|
492 |
+
)
|
493 |
+
|
494 |
+
elif node.op == "output":
|
495 |
+
dp_strategy_map[node] = DataParallelStrategy(NodeType.NON_TENSOR, [])
|
496 |
+
else:
|
497 |
+
raise RuntimeError(f"op code {node.op} not supported")
|
498 |
+
|
499 |
+
return dp_strategy_map # type: ignore[return-value]
|
500 |
+
|
501 |
+
|
502 |
+
def mark_data_parallel_shardings(
|
503 |
+
train_step_graph: GraphModule,
|
504 |
+
num_parameters: int,
|
505 |
+
num_states: int,
|
506 |
+
dp_strategy_map: Dict[fx.Node, StrategyType],
|
507 |
+
parallel_mode: DataParallelStyle = DataParallelStyle.FULLY_SHARD,
|
508 |
+
) -> None:
|
509 |
+
"""Mark the sharding for the nodes in the train_step_graph."""
|
510 |
+
activation_idx = num_parameters + num_states
|
511 |
+
placeholder_idx = 0
|
512 |
+
for node in train_step_graph.graph.nodes:
|
513 |
+
node_strategy = dp_strategy_map[node]
|
514 |
+
if node.op == "placeholder":
|
515 |
+
assert isinstance(node_strategy, DataParallelStrategy)
|
516 |
+
node_type = node_strategy.node_type
|
517 |
+
node_strategies = node_strategy.strategies
|
518 |
+
if node_type == NodeType.NON_TENSOR:
|
519 |
+
# set node sharding to None
|
520 |
+
node_sharding = None
|
521 |
+
elif placeholder_idx < activation_idx:
|
522 |
+
assert len(node_strategies) > 0, "node_strategies should not be empty"
|
523 |
+
if parallel_mode == DataParallelStyle.REPLICATE:
|
524 |
+
# set to replicate for replicate style
|
525 |
+
node_sharding = node_strategies[0]
|
526 |
+
elif parallel_mode == DataParallelStyle.FULLY_SHARD:
|
527 |
+
# set to shard for fully shard style
|
528 |
+
if len(node_strategies) == 1:
|
529 |
+
# only one strategy, use that instead
|
530 |
+
# i.e. optimizer state steps can only be replicate
|
531 |
+
node_sharding = node_strategies[0]
|
532 |
+
else:
|
533 |
+
# use the full sharding strategy
|
534 |
+
node_sharding = node_strategies[1]
|
535 |
+
elif parallel_mode == DataParallelStyle.DEFAULT:
|
536 |
+
# TODO: add support for default mode
|
537 |
+
# default mode would generate either replicate or shard
|
538 |
+
raise NotImplementedError("default mode not implemented")
|
539 |
+
else:
|
540 |
+
assert len(node_strategies) > 0, "node_strategies should not be empty"
|
541 |
+
# mark activation as sharded on batch dim
|
542 |
+
node_sharding = node_strategies[0]
|
543 |
+
|
544 |
+
node.meta["sharding"] = node_sharding # type: ignore[possibly-undefined]
|
545 |
+
|
546 |
+
placeholder_idx += 1
|
547 |
+
elif node.op == "call_function":
|
548 |
+
if isinstance(node_strategy, TupleStrategy):
|
549 |
+
# For tuple strategy in the data parallel mode, it should have the same strategy
|
550 |
+
# for all tuple elements, assert that then use the first element's strategy as sharding
|
551 |
+
first_strategy = cast(DataParallelStrategy, node_strategy.childs[0])
|
552 |
+
for child_strategy in node_strategy.childs:
|
553 |
+
assert isinstance(child_strategy, DataParallelStrategy)
|
554 |
+
assert child_strategy.strategies == first_strategy.strategies
|
555 |
+
|
556 |
+
node_strategies = first_strategy.strategies
|
557 |
+
else:
|
558 |
+
assert isinstance(node_strategy, DataParallelStrategy)
|
559 |
+
node_strategies = node_strategy.strategies
|
560 |
+
|
561 |
+
assert (
|
562 |
+
len(node_strategies) <= 2
|
563 |
+
), "data parallel should have at most 2 strategies"
|
564 |
+
if len(node_strategies) == 1:
|
565 |
+
node.meta["sharding"] = node_strategies[0]
|
566 |
+
elif len(node_strategies) == 2:
|
567 |
+
if parallel_mode == DataParallelStyle.REPLICATE:
|
568 |
+
# set to replicate for replicate style
|
569 |
+
node.meta["sharding"] = node_strategies[0]
|
570 |
+
elif parallel_mode == DataParallelStyle.FULLY_SHARD:
|
571 |
+
# set to shard for fully shard style
|
572 |
+
node.meta["sharding"] = node_strategies[1]
|
573 |
+
else:
|
574 |
+
raise RuntimeError("default mode not supported yet!")
|
575 |
+
else:
|
576 |
+
raise RuntimeError(
|
577 |
+
f"node {node} strategy length {len(node_strategies)} is not expected!"
|
578 |
+
)
|
579 |
+
elif node.op == "output":
|
580 |
+
assert (
|
581 |
+
isinstance(node_strategy, DataParallelStrategy)
|
582 |
+
and node_strategy.node_type == NodeType.NON_TENSOR
|
583 |
+
), "output node should not be tensor"
|
584 |
+
node.meta["sharding"] = None
|
585 |
+
else:
|
586 |
+
raise RuntimeError(f"op code {node.op} not supported")
|
587 |
+
|
588 |
+
|
589 |
+
def _partition_val(val: Any, spec: DTensorSpec) -> Any:
|
590 |
+
"""Util function to convert a full tensor val to its local component."""
|
591 |
+
if isinstance(val, torch.Tensor):
|
592 |
+
local_shard = val
|
593 |
+
if val.ndim == 0:
|
594 |
+
# If it's already a scalar tensor, it is already local, we don't
|
595 |
+
# need to do anything
|
596 |
+
return local_shard
|
597 |
+
|
598 |
+
for idx, placement in enumerate(spec.placements):
|
599 |
+
if placement.is_shard():
|
600 |
+
placement = cast(Shard, placement)
|
601 |
+
num_chunks = spec.mesh.size(mesh_dim=idx)
|
602 |
+
my_coord = spec.mesh.get_coordinate()
|
603 |
+
assert my_coord is not None, "current rank not in mesh!"
|
604 |
+
my_coord_on_mesh_dim = my_coord[idx]
|
605 |
+
local_shard = placement._split_tensor(
|
606 |
+
local_shard, num_chunks, with_padding=False, contiguous=False
|
607 |
+
)[0][my_coord_on_mesh_dim]
|
608 |
+
return local_shard
|
609 |
+
elif isinstance(val, (tuple, list)):
|
610 |
+
return val.__class__(_partition_val(v, spec) for v in val)
|
611 |
+
else:
|
612 |
+
raise RuntimeError(f"val type {type(val)} not supported")
|
613 |
+
|
614 |
+
|
615 |
+
def partitioner(graph: GraphModule) -> GraphModule:
|
616 |
+
"""Graph partitioner that partitions the single device graph to distributed graph."""
|
617 |
+
shape_adjustment_ops = {
|
618 |
+
aten._unsafe_view.default: 1,
|
619 |
+
aten.expand.default: 1,
|
620 |
+
aten.new_zeros.default: 1,
|
621 |
+
aten.ones.default: 0,
|
622 |
+
aten.reshape.default: 1,
|
623 |
+
aten.view.default: 1,
|
624 |
+
aten.zeros.default: 0,
|
625 |
+
}
|
626 |
+
# partition the graph to distributed
|
627 |
+
for node in graph.graph.nodes:
|
628 |
+
node_sharding = node.meta["sharding"]
|
629 |
+
# None sharding means this node don't need sharding
|
630 |
+
if node_sharding is None:
|
631 |
+
continue
|
632 |
+
|
633 |
+
if node.op == "placeholder":
|
634 |
+
out_spec = node_sharding.output_spec
|
635 |
+
if not hasattr(out_spec, "from_local"):
|
636 |
+
local_val = _partition_val(node.meta["val"], out_spec)
|
637 |
+
# update node value
|
638 |
+
node.meta["val"] = local_val
|
639 |
+
elif node.op == "call_function":
|
640 |
+
out_spec = node_sharding.output_spec
|
641 |
+
|
642 |
+
# check if there's misaligned sharding, insert reshard if there is
|
643 |
+
expected_input_specs = node_sharding.input_specs
|
644 |
+
for idx, input_arg in enumerate(node.all_input_nodes):
|
645 |
+
input_arg_sharding = input_arg.meta["sharding"]
|
646 |
+
|
647 |
+
input_arg_spec = input_arg_sharding.output_spec
|
648 |
+
desired_spec = (
|
649 |
+
out_spec
|
650 |
+
if expected_input_specs is None
|
651 |
+
else expected_input_specs[idx]
|
652 |
+
)
|
653 |
+
if input_arg_spec != desired_spec:
|
654 |
+
input_arg_spec.tensor_meta = input_arg.meta["tensor_meta"]
|
655 |
+
desired_spec.tensor_meta = input_arg.meta["tensor_meta"]
|
656 |
+
input_arg_tensor = input_arg.meta["val"]
|
657 |
+
|
658 |
+
# insert reshard operation
|
659 |
+
def reshard_fn(local_tensor: torch.Tensor) -> torch.Tensor:
|
660 |
+
return redistribute_local_tensor(
|
661 |
+
local_tensor,
|
662 |
+
input_arg_spec,
|
663 |
+
desired_spec,
|
664 |
+
)
|
665 |
+
|
666 |
+
reshard_gm = make_fx(reshard_fn)(input_arg_tensor)
|
667 |
+
reshard_gm_nodes = list(reshard_gm.graph.nodes)
|
668 |
+
input_node = reshard_gm_nodes[0]
|
669 |
+
with graph.graph.inserting_before(node):
|
670 |
+
output_node = graph.graph.graph_copy(
|
671 |
+
reshard_gm.graph,
|
672 |
+
val_map={
|
673 |
+
input_node: input_arg,
|
674 |
+
},
|
675 |
+
)
|
676 |
+
node.replace_input_with(input_arg, output_node)
|
677 |
+
|
678 |
+
output_val = node.meta["val"]
|
679 |
+
|
680 |
+
if node.target == torch.ops.aten.repeat.default:
|
681 |
+
# for repeat op, we need to infer the repeat sizes
|
682 |
+
assert isinstance(output_val, torch.Tensor)
|
683 |
+
local_shape = compute_local_shape(
|
684 |
+
output_val.shape, out_spec.mesh, out_spec.placements
|
685 |
+
)
|
686 |
+
input_shape = node.args[0].meta["val"].shape
|
687 |
+
|
688 |
+
def infer_repeat_sizes(repeated_shape, input_shape):
|
689 |
+
repeated_size = [1] * len(repeated_shape)
|
690 |
+
padded_length = len(repeated_shape) - len(input_shape)
|
691 |
+
for i in range(len(repeated_shape)):
|
692 |
+
if i < padded_length:
|
693 |
+
repeated_size[i] = repeated_shape[i]
|
694 |
+
else:
|
695 |
+
repeated_size[i] = (
|
696 |
+
repeated_shape[i] // input_shape[i - padded_length]
|
697 |
+
)
|
698 |
+
|
699 |
+
return repeated_size
|
700 |
+
|
701 |
+
node.update_arg(1, infer_repeat_sizes(local_shape, input_shape))
|
702 |
+
|
703 |
+
elif node.target in shape_adjustment_ops:
|
704 |
+
# for view related op that needs shape, adjust shape to local shape if needed
|
705 |
+
assert isinstance(output_val, torch.Tensor)
|
706 |
+
local_shape = compute_local_shape(
|
707 |
+
output_val.shape, out_spec.mesh, out_spec.placements
|
708 |
+
)
|
709 |
+
shape_arg_num = shape_adjustment_ops[node.target]
|
710 |
+
node.update_arg(shape_arg_num, local_shape)
|
711 |
+
|
712 |
+
# convert output val to its local component
|
713 |
+
node.meta["val"] = _partition_val(output_val, out_spec)
|
714 |
+
|
715 |
+
elif node.op == "output":
|
716 |
+
break
|
717 |
+
else:
|
718 |
+
raise RuntimeError(f"op code {node} not supported")
|
719 |
+
|
720 |
+
# clean up the graph by removing sharding and partitioning related metadata
|
721 |
+
for node in graph.graph.nodes:
|
722 |
+
if "sharding" in node.meta:
|
723 |
+
del node.meta["sharding"]
|
724 |
+
if "val" in node.meta and isinstance(node.meta["val"], torch.Tensor):
|
725 |
+
local_tensor_meta = _extract_tensor_metadata(node.meta["val"])
|
726 |
+
node.meta["tensor_meta"] = local_tensor_meta
|
727 |
+
|
728 |
+
graph.graph.lint()
|
729 |
+
graph.recompile()
|
730 |
+
return graph
|
731 |
+
|
732 |
+
|
733 |
+
def partition_data_parallel(
|
734 |
+
graph: GraphModule,
|
735 |
+
model: nn.Module,
|
736 |
+
optimizer: Optional[torch.optim.Optimizer],
|
737 |
+
params_buffers: Dict[str, torch.Tensor],
|
738 |
+
named_states: Dict[str, Any],
|
739 |
+
args: Tuple[Any, ...],
|
740 |
+
kwargs: Dict[str, Any],
|
741 |
+
mesh: DeviceMesh,
|
742 |
+
parallel_style: DataParallelStyle,
|
743 |
+
input_batch_dim: int,
|
744 |
+
) -> GraphModule:
|
745 |
+
"""Partition the graph to into a data parallel graph.
|
746 |
+
|
747 |
+
This function also shards/replicates the model parameters and optimizer states to DTensors.
|
748 |
+
"""
|
749 |
+
num_params_buffers = len(params_buffers)
|
750 |
+
flattened_states = pytree.tree_leaves(named_states)
|
751 |
+
num_states = len(flattened_states)
|
752 |
+
|
753 |
+
changed = graph.graph.eliminate_dead_code()
|
754 |
+
if changed:
|
755 |
+
graph.recompile()
|
756 |
+
|
757 |
+
# 1. First build up data parallel strategies for the whole graph
|
758 |
+
strategy_map = build_data_parallel_strategies(
|
759 |
+
graph, num_params_buffers, num_states, mesh=mesh, batch_dim=input_batch_dim
|
760 |
+
)
|
761 |
+
|
762 |
+
# 2. Next we mark the data parallel strategy for each node base on
|
763 |
+
# the parallel_style
|
764 |
+
mark_data_parallel_shardings(
|
765 |
+
graph,
|
766 |
+
num_parameters=num_params_buffers,
|
767 |
+
num_states=num_states,
|
768 |
+
dp_strategy_map=strategy_map,
|
769 |
+
parallel_mode=parallel_style,
|
770 |
+
)
|
771 |
+
|
772 |
+
# 3. Partition the single machine graph to the distribute graph
|
773 |
+
partitioned_graph = partitioner(graph)
|
774 |
+
|
775 |
+
# preserve node types for the expanded graph
|
776 |
+
for node in partitioned_graph.graph.nodes:
|
777 |
+
if node in strategy_map:
|
778 |
+
node_strategy = strategy_map[node]
|
779 |
+
if isinstance(node_strategy, DataParallelStrategy):
|
780 |
+
node.meta["node_type"] = node_strategy.node_type
|
781 |
+
elif isinstance(node_strategy, TupleStrategy):
|
782 |
+
node.meta["node_type"] = NodeType.NON_TENSOR
|
783 |
+
else:
|
784 |
+
raise RuntimeError(f"Unknown node strategy {node_strategy}")
|
785 |
+
else:
|
786 |
+
# if the nodes are expanded nodes (collectives), we mark them
|
787 |
+
# the same type as the input node.
|
788 |
+
input_node = node.all_input_nodes[0]
|
789 |
+
node.meta["node_type"] = input_node.meta["node_type"]
|
790 |
+
|
791 |
+
# 4. Last, inplace partition the weights and optim states to
|
792 |
+
# DTensors base on the parallel style
|
793 |
+
accessor = NamedMemberAccessor(model)
|
794 |
+
for param_key, param in params_buffers.items():
|
795 |
+
placement: Placement = Replicate()
|
796 |
+
if parallel_style == DataParallelStyle.FULLY_SHARD:
|
797 |
+
placement = Shard(0)
|
798 |
+
elif parallel_style != DataParallelStyle.REPLICATE:
|
799 |
+
raise RuntimeError(f"parallel style {parallel_style} not supported yet")
|
800 |
+
|
801 |
+
dtensor_param = distribute_tensor(param, mesh, [placement])
|
802 |
+
# update re-parameterized module param dict and optim states dict to DTensor
|
803 |
+
params_buffers[param_key] = dtensor_param.to_local()
|
804 |
+
# update module parameters to DTensor
|
805 |
+
accessor.set_tensor(param_key, dtensor_param)
|
806 |
+
|
807 |
+
# update the optimizer state key and values to DTensor
|
808 |
+
if optimizer is not None and param in optimizer.state:
|
809 |
+
param_states = named_states[param_key]
|
810 |
+
param_dtensor_states = {}
|
811 |
+
for state_key, state_val in param_states.items():
|
812 |
+
if isinstance(state_val, torch.Tensor) and state_val.ndim > 0:
|
813 |
+
# shard/replicate non-scalar tensors, for scalar tensor, we
|
814 |
+
# don't do anything
|
815 |
+
dtensor_state = distribute_tensor(state_val, mesh, [placement])
|
816 |
+
param_dtensor_states[state_key] = dtensor_state
|
817 |
+
param_states[state_key] = dtensor_state.to_local()
|
818 |
+
else:
|
819 |
+
param_dtensor_states[state_key] = state_val
|
820 |
+
|
821 |
+
optimizer.state.pop(param) # type: ignore[call-overload]
|
822 |
+
optimizer.state[dtensor_param] = param_dtensor_states # type: ignore[index]
|
823 |
+
|
824 |
+
return partitioned_graph
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/distribute.py
ADDED
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import operator
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from enum import auto, Enum
|
5 |
+
from functools import partial
|
6 |
+
from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.distributed._spmd.experimental_ops
|
10 |
+
import torch.fx as fx
|
11 |
+
|
12 |
+
from torch.distributed._spmd.comm_tensor import _get_tracer
|
13 |
+
from torch.distributed._spmd.graph_utils import OP
|
14 |
+
from torch.distributed._spmd.log_utils import get_logger
|
15 |
+
|
16 |
+
from torch.distributed._tensor import DeviceMesh, DTensor
|
17 |
+
from torch.distributed._tensor.op_schema import OpSchema
|
18 |
+
from torch.distributed._tensor.placement_types import (
|
19 |
+
_Partial,
|
20 |
+
DTensorSpec,
|
21 |
+
Placement,
|
22 |
+
Replicate,
|
23 |
+
Shard,
|
24 |
+
TensorMeta,
|
25 |
+
)
|
26 |
+
from torch.distributed._tensor.redistribute import redistribute_local_tensor
|
27 |
+
from torch.fx.experimental.proxy_tensor import make_fx, proxy_slot
|
28 |
+
from torch.utils import _pytree as pytree
|
29 |
+
from torch.utils._pytree import tree_flatten, tree_map, tree_map_only, tree_unflatten
|
30 |
+
|
31 |
+
|
32 |
+
logger: Optional[logging.Logger] = None
|
33 |
+
|
34 |
+
aten = torch.ops.aten
|
35 |
+
|
36 |
+
|
37 |
+
class TrainingPhase(Enum):
|
38 |
+
FORWARD = auto()
|
39 |
+
BACKWARD = auto()
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class Schema:
|
44 |
+
mesh: DeviceMesh
|
45 |
+
placements: List[Placement]
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class DSymInt:
|
50 |
+
"""DSymInt represents a value retrieved by a SymInt op from a DTensor.
|
51 |
+
|
52 |
+
DSymInt helps View and Factory ops to determine the placement and shape of the
|
53 |
+
output tensor, as those operators either do not have an input DTensor or
|
54 |
+
the input DTensor is insufficient to determine the output tensor's placement.
|
55 |
+
"""
|
56 |
+
|
57 |
+
global_value: int # value that the SymInt evaluates to
|
58 |
+
local_value: int # vaue that this SymInt evaluates to on the local shard
|
59 |
+
mesh: DeviceMesh # device mesh of the DTensor where this SymInt is retrieved from
|
60 |
+
|
61 |
+
def is_shard(self) -> bool:
|
62 |
+
return self.local_value != self.global_value
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_node(cls, node: fx.Node, dtensor: DTensor) -> "DSymInt":
|
66 |
+
dim: int = 0
|
67 |
+
if node.target == aten.sym_size:
|
68 |
+
dim = cast(int, node.args[1])
|
69 |
+
return cls(
|
70 |
+
global_value=dtensor.size(dim),
|
71 |
+
local_value=dtensor.to_local().size(dim),
|
72 |
+
mesh=dtensor.device_mesh,
|
73 |
+
)
|
74 |
+
elif node.target == aten.sym_numel:
|
75 |
+
return cls(
|
76 |
+
global_value=dtensor.numel(),
|
77 |
+
local_value=dtensor.to_local().numel(),
|
78 |
+
mesh=dtensor.device_mesh,
|
79 |
+
)
|
80 |
+
elif node.target == aten.sym_stride:
|
81 |
+
dim = cast(int, node.args[1])
|
82 |
+
return cls(
|
83 |
+
global_value=dtensor.stride(dim),
|
84 |
+
local_value=dtensor.to_local().stride(dim),
|
85 |
+
mesh=dtensor.device_mesh,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
raise NotImplementedError(f"DSymInt does not support {node.target}")
|
89 |
+
|
90 |
+
|
91 |
+
def _is_partial_dtensor(obj: Any) -> bool:
|
92 |
+
"""Check if object is 1) DTensor and 2) with any placement of _Partial."""
|
93 |
+
if not isinstance(obj, DTensor):
|
94 |
+
return False
|
95 |
+
|
96 |
+
is_partial = False
|
97 |
+
for placement in obj.placements:
|
98 |
+
if isinstance(placement, _Partial):
|
99 |
+
is_partial = True
|
100 |
+
break
|
101 |
+
|
102 |
+
return is_partial
|
103 |
+
|
104 |
+
|
105 |
+
def _dispatch_with_local_tensors(
|
106 |
+
op: torch._ops.OpOverload,
|
107 |
+
local_args: Tuple[Any, ...],
|
108 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
109 |
+
specs: Optional[
|
110 |
+
Dict[
|
111 |
+
torch.Tensor,
|
112 |
+
Tuple[torch.Size, DeviceMesh, Sequence[Placement], Sequence[Placement]],
|
113 |
+
]
|
114 |
+
] = None,
|
115 |
+
) -> Any:
|
116 |
+
if kwargs is None:
|
117 |
+
kwargs = {}
|
118 |
+
if specs is None:
|
119 |
+
specs = {}
|
120 |
+
|
121 |
+
def redistribute(arg: Any) -> Any:
|
122 |
+
tensor_shape, mesh, current_placement, target_placement = specs[arg]
|
123 |
+
tensor_meta = TensorMeta(
|
124 |
+
tensor_shape,
|
125 |
+
stride=arg.stride(),
|
126 |
+
dtype=arg.dtype,
|
127 |
+
)
|
128 |
+
current_spec = DTensorSpec(
|
129 |
+
mesh, tuple(current_placement), tensor_meta=tensor_meta
|
130 |
+
)
|
131 |
+
target_spec = DTensorSpec(
|
132 |
+
mesh, tuple(target_placement), tensor_meta=tensor_meta
|
133 |
+
)
|
134 |
+
|
135 |
+
return (
|
136 |
+
redistribute_local_tensor(arg, current_spec, target_spec) # type: ignore[index]
|
137 |
+
if isinstance(arg, torch.Tensor) and arg in specs # type: ignore[operator]
|
138 |
+
else arg
|
139 |
+
)
|
140 |
+
|
141 |
+
# TODO: this is broken because it won't redistributed potential tensors on the kwargs
|
142 |
+
return op(*tree_map(redistribute, local_args), **kwargs)
|
143 |
+
|
144 |
+
|
145 |
+
# Figure out how to specify a type spec for the return specs value
|
146 |
+
# without the entire structure.
|
147 |
+
# pyre-fixme
|
148 |
+
def _update_specs_for_redistribute(args, target_schema, redistribute):
|
149 |
+
# Code adapted from pack_args_kwargs_with_local_tensor
|
150 |
+
flatten_args, args_tree_spec = tree_flatten(args)
|
151 |
+
flatten_args_schema = pytree.tree_leaves(target_schema.args_schema)
|
152 |
+
|
153 |
+
specs: Dict[
|
154 |
+
torch.Tensor,
|
155 |
+
Tuple[
|
156 |
+
torch.Size,
|
157 |
+
DeviceMesh,
|
158 |
+
Sequence[Placement],
|
159 |
+
Sequence[Placement],
|
160 |
+
],
|
161 |
+
] = {}
|
162 |
+
for i, arg in enumerate(flatten_args):
|
163 |
+
if isinstance(arg, DTensor):
|
164 |
+
if redistribute:
|
165 |
+
specs[arg._local_tensor] = (
|
166 |
+
arg.size(),
|
167 |
+
flatten_args_schema[i].mesh,
|
168 |
+
arg.placements,
|
169 |
+
flatten_args_schema[i].placements,
|
170 |
+
)
|
171 |
+
flatten_args_schema[i] = arg._local_tensor
|
172 |
+
|
173 |
+
unflattened_args = tree_unflatten(flatten_args_schema, args_tree_spec)
|
174 |
+
return specs, unflattened_args
|
175 |
+
|
176 |
+
|
177 |
+
# When no tensor redistribution is required, we only need to update non-tensor args
|
178 |
+
# of the node according to op_schema and avoid building a GraphModule just for the
|
179 |
+
# node.
|
180 |
+
def _update_node_from_op_schema(node: torch.fx.Node, op_schema: OpSchema) -> None:
|
181 |
+
flat_args, args_tree_spec = tree_flatten(node.args)
|
182 |
+
flat_args_schema = pytree.tree_leaves(op_schema.args_schema)
|
183 |
+
|
184 |
+
def is_sym_int_or_int(arg: Union[int, torch.fx.Node]) -> bool:
|
185 |
+
if isinstance(arg, torch.fx.Node):
|
186 |
+
return arg.target in [
|
187 |
+
aten.sym_size,
|
188 |
+
aten.sym_numel,
|
189 |
+
aten.sym_stride,
|
190 |
+
]
|
191 |
+
return isinstance(arg, int)
|
192 |
+
|
193 |
+
assert len(flat_args) == len(flat_args_schema)
|
194 |
+
for i, (arg, arg_schema) in enumerate(zip(flat_args, flat_args_schema)):
|
195 |
+
if is_sym_int_or_int(arg) and isinstance(arg_schema, int):
|
196 |
+
flat_args[i] = arg_schema
|
197 |
+
|
198 |
+
args = tree_unflatten(flat_args, args_tree_spec)
|
199 |
+
for idx, arg in enumerate(args):
|
200 |
+
node.update_arg(idx, arg)
|
201 |
+
return None
|
202 |
+
|
203 |
+
|
204 |
+
def _remap_arg(node_to_obj: Dict[fx.Node, Any], arg: Any) -> Any:
|
205 |
+
if isinstance(arg, torch.fx.Node):
|
206 |
+
obj = node_to_obj[arg]
|
207 |
+
if _get_tracer():
|
208 |
+
# This is a shared arg, already has a tracer from previous
|
209 |
+
# tracing. Delete the tracer.
|
210 |
+
del cast(Dict[Any, Any], obj.__dict__)[proxy_slot]
|
211 |
+
return obj
|
212 |
+
else:
|
213 |
+
return arg
|
214 |
+
|
215 |
+
|
216 |
+
def unpack_sizes_and_dims(
|
217 |
+
sizes: List[Union[DSymInt, int]], mesh: DeviceMesh
|
218 |
+
) -> Tuple[List[int], List[Placement]]:
|
219 |
+
local_sizes: List[int] = [
|
220 |
+
s.local_value if isinstance(s, DSymInt) else s for s in sizes
|
221 |
+
]
|
222 |
+
placements: List[Placement] = [
|
223 |
+
Shard(i)
|
224 |
+
for i, a in enumerate(sizes)
|
225 |
+
if (isinstance(a, DSymInt) and a.is_shard())
|
226 |
+
] or [Replicate()]
|
227 |
+
|
228 |
+
assert len(placements) == mesh.ndim, (
|
229 |
+
f"The number of sharded dimensions ({len(placements)}) must "
|
230 |
+
f"match number of dimensions in device mesh ({mesh.ndim})."
|
231 |
+
)
|
232 |
+
|
233 |
+
return local_sizes, placements
|
234 |
+
|
235 |
+
|
236 |
+
def binop_sym_int_consumer_rule(node: fx.Node, args: Tuple[Any, ...]) -> DTensor:
|
237 |
+
assert len(args) == 2, f"Expect two args but got op {node.target} with args {args}"
|
238 |
+
assert isinstance(
|
239 |
+
args[0], DTensor
|
240 |
+
), f"Expect 1st argument to be DTensor but got {args[0]}"
|
241 |
+
assert isinstance(args[1], list), f"Expect 2nd argument as list but got {args[1]}"
|
242 |
+
|
243 |
+
# extract sharded dimensions in the size list, the output DTensor should
|
244 |
+
# follow these placements.
|
245 |
+
local_sizes, placements = unpack_sizes_and_dims(args[1], args[0].device_mesh)
|
246 |
+
|
247 |
+
# set node args to real int sizes.
|
248 |
+
node.args = (node.args[0], local_sizes)
|
249 |
+
op = cast(torch._ops.OpOverload, node.target)
|
250 |
+
return DTensor.from_local(
|
251 |
+
local_tensor=op(args[0]._local_tensor, local_sizes),
|
252 |
+
device_mesh=args[0].device_mesh,
|
253 |
+
placements=placements,
|
254 |
+
run_check=False,
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def slice_backwad_sym_int_consumer_rule(
|
259 |
+
node: fx.Node, args: Tuple[Any, ...]
|
260 |
+
) -> DTensor:
|
261 |
+
grad_output, input_sizes, dim, start, end, step = args
|
262 |
+
|
263 |
+
local_sizes: List[int] = [
|
264 |
+
s.local_value if isinstance(s, DSymInt) else s for s in input_sizes
|
265 |
+
]
|
266 |
+
|
267 |
+
input_tensor = torch.zeros(
|
268 |
+
local_sizes, device=grad_output.device, dtype=grad_output.dtype
|
269 |
+
)
|
270 |
+
return DTensor.from_local(
|
271 |
+
local_tensor=torch.slice_scatter(
|
272 |
+
input_tensor, grad_output.to_local(), dim, start, end, step
|
273 |
+
),
|
274 |
+
device_mesh=grad_output.device_mesh,
|
275 |
+
placements=grad_output.placements,
|
276 |
+
run_check=False,
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
def factory_with_sizes_rule(
|
281 |
+
node: fx.Node,
|
282 |
+
args: Tuple[Any, ...],
|
283 |
+
kwargs: Dict[str, Any],
|
284 |
+
default_mesh: DeviceMesh,
|
285 |
+
) -> DTensor:
|
286 |
+
flat_args = pytree.arg_tree_leaves(*args)
|
287 |
+
assert not any(isinstance(a, DTensor) for a in flat_args), (
|
288 |
+
f"Not expect DTensor argument for factory op, but got {node.target} "
|
289 |
+
f"with arguments {args}."
|
290 |
+
)
|
291 |
+
assert isinstance(args[0], list), f"Expect 2nd argument as list but got {args[1]}"
|
292 |
+
|
293 |
+
local_sizes, placements = unpack_sizes_and_dims(args[0], default_mesh)
|
294 |
+
node.args = (local_sizes, *args[1:])
|
295 |
+
op = cast(torch._ops.OpOverload, node.target)
|
296 |
+
return DTensor.from_local(
|
297 |
+
local_tensor=op(*node.args, **kwargs),
|
298 |
+
device_mesh=default_mesh,
|
299 |
+
placements=placements,
|
300 |
+
run_check=False,
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
def factory_arange_rule(
|
305 |
+
node: fx.Node,
|
306 |
+
args: Tuple[Any, ...],
|
307 |
+
kwargs: Dict[str, Any],
|
308 |
+
default_mesh: DeviceMesh,
|
309 |
+
) -> DTensor:
|
310 |
+
node.args = tree_map(lambda a: a.local_value if isinstance(a, DSymInt) else a, args)
|
311 |
+
op = cast(torch._ops.OpOverload, node.target)
|
312 |
+
return DTensor.from_local(
|
313 |
+
local_tensor=op(*node.args, **kwargs),
|
314 |
+
device_mesh=default_mesh,
|
315 |
+
placements=[Replicate()],
|
316 |
+
run_check=False,
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
+
def default_factory_op_rule(
|
321 |
+
node: fx.Node,
|
322 |
+
args: Tuple[Any, ...],
|
323 |
+
kwargs: Dict[str, Any],
|
324 |
+
default_mesh: DeviceMesh,
|
325 |
+
) -> DTensor:
|
326 |
+
node.args, node.kwargs = args, kwargs
|
327 |
+
op = cast(torch._ops.OpOverload, node.target)
|
328 |
+
return DTensor.from_local(
|
329 |
+
local_tensor=op(*node.args, **node.kwargs),
|
330 |
+
device_mesh=default_mesh,
|
331 |
+
placements=[Replicate()],
|
332 |
+
run_check=False,
|
333 |
+
)
|
334 |
+
|
335 |
+
|
336 |
+
# Dispatch override for view and factory ops that consume SymInt arguments,
|
337 |
+
# where the output spec should follow dimension placement where the SymInt comes
|
338 |
+
# from.
|
339 |
+
VIEW_SYM_INT_CONSUMERS: Dict[torch._ops.OpOverload, Callable] = {
|
340 |
+
aten._unsafe_view.default: binop_sym_int_consumer_rule,
|
341 |
+
aten.expand.default: binop_sym_int_consumer_rule,
|
342 |
+
aten.slice_backward.default: slice_backwad_sym_int_consumer_rule,
|
343 |
+
aten.view.default: binop_sym_int_consumer_rule,
|
344 |
+
}
|
345 |
+
|
346 |
+
FACTORY_SYM_INT_CONSUMERS: Dict[torch._ops.OpOverload, Callable] = {
|
347 |
+
aten.full.default: factory_with_sizes_rule,
|
348 |
+
aten.arange.default: factory_arange_rule,
|
349 |
+
aten.arange.start: factory_arange_rule,
|
350 |
+
}
|
351 |
+
|
352 |
+
|
353 |
+
# Dispatch override for factory ops, as DTensor cannot propogate sharding spec
|
354 |
+
# without DTensor inputs.
|
355 |
+
FACTORY_OPS: Dict[torch._ops.OpOverload, Callable] = {
|
356 |
+
aten.scalar_tensor.default: default_factory_op_rule,
|
357 |
+
aten.arange.start: default_factory_op_rule,
|
358 |
+
aten.zeros.default: default_factory_op_rule,
|
359 |
+
}
|
360 |
+
|
361 |
+
|
362 |
+
def _get_dtensor_dispatch_graph(
|
363 |
+
node: fx.Node,
|
364 |
+
node_to_obj: Dict[fx.Node, Any],
|
365 |
+
*,
|
366 |
+
force_make_fx: bool = False,
|
367 |
+
default_mesh: Optional[DeviceMesh] = None,
|
368 |
+
) -> Optional[fx.GraphModule]:
|
369 |
+
with torch.no_grad():
|
370 |
+
# Args should be a list of objects post remapping.
|
371 |
+
args = tree_map(partial(_remap_arg, node_to_obj), node.args)
|
372 |
+
kwargs = tree_map(partial(_remap_arg, node_to_obj), node.kwargs)
|
373 |
+
|
374 |
+
op_overload = cast(torch._ops.OpOverload, node.target)
|
375 |
+
|
376 |
+
if any(
|
377 |
+
a.is_shard()
|
378 |
+
for a in pytree.arg_tree_leaves(*args)
|
379 |
+
if isinstance(a, DSymInt)
|
380 |
+
):
|
381 |
+
if op_overload in VIEW_SYM_INT_CONSUMERS:
|
382 |
+
assert len(kwargs) == 0, f"Expect empty kwargs, but got {kwargs}"
|
383 |
+
node_to_obj[node] = VIEW_SYM_INT_CONSUMERS[op_overload](node, args)
|
384 |
+
return None
|
385 |
+
elif op_overload in FACTORY_SYM_INT_CONSUMERS:
|
386 |
+
assert default_mesh is not None, "Requires default mesh for factory ops"
|
387 |
+
node_to_obj[node] = FACTORY_SYM_INT_CONSUMERS[op_overload](
|
388 |
+
node, args, kwargs, default_mesh
|
389 |
+
)
|
390 |
+
return None
|
391 |
+
else:
|
392 |
+
assert isinstance(logger, logging.Logger)
|
393 |
+
logger.warning(
|
394 |
+
"Assuming using local_value from SymInt for %s"
|
395 |
+
"is mathematically correct. Full args are %s.",
|
396 |
+
op_overload,
|
397 |
+
args,
|
398 |
+
)
|
399 |
+
|
400 |
+
if node.target == aten.view.default:
|
401 |
+
# HACK: this is a hack to get around with the fact that some
|
402 |
+
# view operations on a "global" tensor is invalid usage
|
403 |
+
# but somehow the view operation on the batch input might hit it
|
404 |
+
# so we convert the view op to reshape before calling DTensor
|
405 |
+
op_overload = aten.reshape.default
|
406 |
+
|
407 |
+
# DSymInt args are not sharded on any dimension, local value and global
|
408 |
+
# value should be the same
|
409 |
+
args = tree_map(lambda a: a.local_value if isinstance(a, DSymInt) else a, args)
|
410 |
+
kwargs = tree_map(
|
411 |
+
lambda a: a.local_value if isinstance(a, DSymInt) else a, kwargs
|
412 |
+
)
|
413 |
+
|
414 |
+
if op_overload in FACTORY_OPS:
|
415 |
+
# Don't pass factory ops to DTensor dispatch, as DTensor cannot
|
416 |
+
# propagate sharding spec without DTensor inputs.
|
417 |
+
node_to_obj[node] = FACTORY_OPS[op_overload](
|
418 |
+
node, args, kwargs, default_mesh
|
419 |
+
)
|
420 |
+
return None
|
421 |
+
|
422 |
+
dispatch = partial(
|
423 |
+
_dispatch_with_local_tensors,
|
424 |
+
op_overload,
|
425 |
+
kwargs=kwargs,
|
426 |
+
specs=args,
|
427 |
+
)
|
428 |
+
|
429 |
+
gm = make_fx(dispatch, _allow_non_fake_inputs=False)(args)
|
430 |
+
# FIXME(@wanchaol, @mrshenli): the above seems to accidentally captured
|
431 |
+
# DeviceMesh tensor ops when handling inplace operators? The ``_to_copy`` is
|
432 |
+
# not connected to graph output. So, using DCE to get rid of it, but this
|
433 |
+
# doesn't look correct.
|
434 |
+
#
|
435 |
+
# The following operators appear in the captured graph, where the dtype is
|
436 |
+
# torch.int64.
|
437 |
+
#
|
438 |
+
# get_attr _tensor_constant0 _tensor_constant0 ()
|
439 |
+
# call_function transpose aten.transpose.int (_tensor_constant0, -1, 0)
|
440 |
+
# call_function view aten.view.default (transpose, [-1, 2])
|
441 |
+
# call_function view_1 aten.view.default (view, [2])
|
442 |
+
# call_function _to_copy aten._to_copy.default (view_1,)
|
443 |
+
gm.graph.eliminate_dead_code()
|
444 |
+
|
445 |
+
return gm
|
446 |
+
|
447 |
+
|
448 |
+
def _build_dummy_add_graph(
|
449 |
+
dt: DTensor, node_to_obj: Dict[fx.Node, Any]
|
450 |
+
) -> Tuple[fx.GraphModule, Any]:
|
451 |
+
"""Create a graph for a dummy add function from a partial DTensor.
|
452 |
+
|
453 |
+
This dummy add is used for triggering all_reduce on a Partial DTensor
|
454 |
+
during the DTensor expansion of the traced graph.
|
455 |
+
Also returns the actual DTensor after resharding.
|
456 |
+
"""
|
457 |
+
|
458 |
+
def dummy_add(grad: torch.Tensor, zero: torch.Tensor) -> torch.Tensor:
|
459 |
+
return grad + zero
|
460 |
+
|
461 |
+
grad: torch.Tensor = dt._local_tensor
|
462 |
+
zero: torch.Tensor = torch.zeros_like(dt._local_tensor)
|
463 |
+
|
464 |
+
traced_add = make_fx(dummy_add)(grad, zero)
|
465 |
+
|
466 |
+
placeholders = [n for n in traced_add.graph.nodes if n.op == OP.PLACEHOLDER]
|
467 |
+
call_functions = [n for n in traced_add.graph.nodes if n.op == OP.CALL_FUNCTION]
|
468 |
+
assert len(placeholders) == 2
|
469 |
+
assert len(call_functions) == 1
|
470 |
+
node_to_obj[placeholders[0]] = dt
|
471 |
+
node_to_obj[placeholders[1]] = DTensor.from_local(
|
472 |
+
zero, dt.device_mesh, [Replicate()], run_check=False
|
473 |
+
)
|
474 |
+
|
475 |
+
traced_dispatch = _get_dtensor_dispatch_graph(
|
476 |
+
call_functions[0], node_to_obj, force_make_fx=True
|
477 |
+
)
|
478 |
+
assert traced_dispatch is not None
|
479 |
+
|
480 |
+
# TODO(anj): This depends on the call function node -> actual DTensor output
|
481 |
+
# mapping that we want to avoid for SPMD expansion
|
482 |
+
return traced_dispatch, node_to_obj[call_functions[0]]
|
483 |
+
|
484 |
+
|
485 |
+
def _convert_output(
|
486 |
+
gm: fx.GraphModule,
|
487 |
+
node: fx.Node,
|
488 |
+
node_to_obj: Dict[fx.Node, Any],
|
489 |
+
) -> fx.Node:
|
490 |
+
new_args = []
|
491 |
+
has_partial = False
|
492 |
+
for argument in node.args[0]: # type: ignore[union-attr]
|
493 |
+
if not isinstance(argument, fx.Node):
|
494 |
+
new_args.append(argument)
|
495 |
+
continue
|
496 |
+
|
497 |
+
obj = node_to_obj[argument]
|
498 |
+
|
499 |
+
if not _is_partial_dtensor(obj):
|
500 |
+
new_args.append(argument)
|
501 |
+
continue
|
502 |
+
|
503 |
+
has_partial = True
|
504 |
+
|
505 |
+
# we know it's a dtensor from is partial DT check...
|
506 |
+
dt = cast(DTensor, obj)
|
507 |
+
|
508 |
+
traced_dispatch, result_obj = _build_dummy_add_graph(dt, node_to_obj)
|
509 |
+
|
510 |
+
wait = [
|
511 |
+
n
|
512 |
+
for n in traced_dispatch.graph.nodes
|
513 |
+
if n.name == "wait_comm" or n.name == "wait_tensor"
|
514 |
+
]
|
515 |
+
add = [n for n in traced_dispatch.graph.nodes if n.name == "add"]
|
516 |
+
assert len(wait) == 1 and len(add) == 1
|
517 |
+
|
518 |
+
# remove add node and replace it with wait node
|
519 |
+
add[0].replace_all_uses_with(wait[0])
|
520 |
+
traced_dispatch.graph.eliminate_dead_code()
|
521 |
+
# also update the actual DTensor corresponding to the node
|
522 |
+
# TODO(anj): We require mapping of the final DTensor output to the wait
|
523 |
+
# comm node.
|
524 |
+
node_to_obj[wait[0]] = result_obj
|
525 |
+
|
526 |
+
value_remap: Dict[fx.Node, fx.Node] = {}
|
527 |
+
for dtn in traced_dispatch.graph.nodes:
|
528 |
+
if dtn.op == OP.PLACEHOLDER:
|
529 |
+
# do nothing, ignore placeholders, as it has
|
530 |
+
# already been prepared in value_remap
|
531 |
+
value_remap[dtn] = argument
|
532 |
+
elif dtn.op == OP.OUTPUT:
|
533 |
+
assert (
|
534 |
+
len(dtn.args) == 1 and len(dtn.args[0]) == 1
|
535 |
+
), f"Expecting single output, but got {dtn.args} {len(dtn.args)}"
|
536 |
+
new_args.append(value_remap[dtn.args[0][0]])
|
537 |
+
# the concrete DTensor value of output was added when creating the
|
538 |
+
# inner graph (in _build_dummy_add_graph). Just add it to the final
|
539 |
+
# output node so that we can report the final output specs correctly.
|
540 |
+
# TODO(anj): We are depending on the concrete DTensor output of the dummy add.
|
541 |
+
node_to_obj[value_remap[dtn.args[0][0]]] = node_to_obj[dtn.args[0][0]]
|
542 |
+
|
543 |
+
else:
|
544 |
+
if dtn.op == OP.GET_ATTR:
|
545 |
+
setattr(
|
546 |
+
gm,
|
547 |
+
dtn.target,
|
548 |
+
getattr(traced_dispatch, dtn.target),
|
549 |
+
)
|
550 |
+
with gm.graph.inserting_before(node):
|
551 |
+
value_remap[dtn] = gm.graph.node_copy(dtn, lambda n: value_remap[n])
|
552 |
+
if has_partial:
|
553 |
+
gm.graph.erase_node(node)
|
554 |
+
return gm.graph.output(new_args)
|
555 |
+
else:
|
556 |
+
return node
|
557 |
+
|
558 |
+
|
559 |
+
def _rebuild_graph(
|
560 |
+
gm: fx.GraphModule,
|
561 |
+
node_replacements: Dict[torch.fx.Node, torch.fx.GraphModule],
|
562 |
+
) -> None:
|
563 |
+
# replace nodes in local traced graph with DTensor's dispatch graph
|
564 |
+
for node in gm.graph.nodes:
|
565 |
+
if node not in node_replacements:
|
566 |
+
continue
|
567 |
+
|
568 |
+
traced_dispatch = node_replacements[node]
|
569 |
+
# Map DT's dispatch graph input placeholder nodes to the ones in
|
570 |
+
# local traced graph. It uses index-based accessing, which is
|
571 |
+
# brittle, just for testing purpose.
|
572 |
+
flatten_args = pytree.arg_tree_leaves(*node.args)
|
573 |
+
i, value_remap = 0, {}
|
574 |
+
for dtn in traced_dispatch.graph.nodes:
|
575 |
+
if dtn.op == OP.PLACEHOLDER:
|
576 |
+
value_remap[dtn] = flatten_args[i]
|
577 |
+
i += 1
|
578 |
+
|
579 |
+
# insert DT's dispatch graph to traced local graph.
|
580 |
+
with gm.graph.inserting_before(node):
|
581 |
+
for dtn in traced_dispatch.graph.nodes:
|
582 |
+
if dtn.op == OP.PLACEHOLDER:
|
583 |
+
# do nothing, ignore placeholders, as it has already
|
584 |
+
# been prepared in value_remap
|
585 |
+
pass
|
586 |
+
elif dtn.op == OP.OUTPUT:
|
587 |
+
assert (
|
588 |
+
len(dtn.args) == 1
|
589 |
+
), f"Expecting single output, but got {dtn.args} {len(dtn.args[0])}"
|
590 |
+
outputs = dtn.args[0]
|
591 |
+
# we currently support two very specific types of output
|
592 |
+
# 1. single output
|
593 |
+
# 2. multiple outputs resulting from getitem of all elements of tuple
|
594 |
+
if len(outputs) == 1:
|
595 |
+
# for single output, we replace the node with the single node
|
596 |
+
output = outputs[0]
|
597 |
+
else:
|
598 |
+
# for multiple outputs, we check that these outputs correspond
|
599 |
+
# to all elements of a tuple. In that case, we replace
|
600 |
+
# uses of the output directly with the original tuple
|
601 |
+
source = None
|
602 |
+
for i, out in enumerate(outputs):
|
603 |
+
# we allow None outputs for certain items in the tuple
|
604 |
+
if out is None:
|
605 |
+
continue
|
606 |
+
assert out.op == "call_function"
|
607 |
+
assert out.target.__module__ == "_operator"
|
608 |
+
assert out.target.__name__ == "getitem"
|
609 |
+
assert source is None or source == out.args[0]
|
610 |
+
source = out.args[0]
|
611 |
+
assert out.args[1] == i
|
612 |
+
assert source is not None
|
613 |
+
output = source
|
614 |
+
|
615 |
+
new_node = value_remap[output]
|
616 |
+
node.replace_all_uses_with(new_node)
|
617 |
+
else:
|
618 |
+
value_remap[dtn] = gm.graph.node_copy(dtn, lambda n: value_remap[n])
|
619 |
+
if all(
|
620 |
+
isinstance(n.target, torch._ops.OpOverload)
|
621 |
+
and n.target._schema.name.startswith(
|
622 |
+
("aten::_foreach", "aten::_fused_adam")
|
623 |
+
)
|
624 |
+
for n in [dtn, node]
|
625 |
+
):
|
626 |
+
# FIXME(@mrshenli): This is a temporary solution enable
|
627 |
+
# foreach ops. The problem is that foreach ops returns
|
628 |
+
# List[Tensor], but make_fx will flatten that before
|
629 |
+
# passing those tensors to output node, which will
|
630 |
+
# introduce additional getitem nodes. These redundant
|
631 |
+
# getitem nodes breaks graph correctness as we cannot do
|
632 |
+
# getitem(getitem(foreach_out, 0), 0). This temporary
|
633 |
+
# solution skips getitem nodes in DTensor expanded
|
634 |
+
# subgraphs.
|
635 |
+
node.replace_all_uses_with(value_remap[dtn])
|
636 |
+
break
|
637 |
+
# explicitly erase node instead of relying on DCE, as DCE does not
|
638 |
+
# remove inplace copy_ correctly.
|
639 |
+
gm.graph.erase_node(node)
|
640 |
+
|
641 |
+
gm.graph.eliminate_dead_code()
|
642 |
+
gm.recompile()
|
643 |
+
|
644 |
+
|
645 |
+
def _get_last_consumer_to_nodes(
|
646 |
+
graph: fx.Graph,
|
647 |
+
) -> Dict[fx.Node, List[fx.Node]]:
|
648 |
+
# Run through reverse nodes and record the first instance of a use
|
649 |
+
# of a given node. This represents the *last* use of the node in the
|
650 |
+
# execution order of the program, which we will use to free unused
|
651 |
+
# values
|
652 |
+
node_to_last_consumer: Dict[fx.Node, fx.Node] = {}
|
653 |
+
last_consumer_to_nodes: Dict[fx.Node, List[fx.Node]] = {}
|
654 |
+
|
655 |
+
def _register_final_consumer(arg_node: fx.Node, consumer: fx.Node) -> None:
|
656 |
+
if arg_node not in node_to_last_consumer:
|
657 |
+
node_to_last_consumer[arg_node] = consumer
|
658 |
+
last_consumer_to_nodes.setdefault(consumer, []).append(arg_node)
|
659 |
+
|
660 |
+
for node in reversed(graph.nodes):
|
661 |
+
fx.node.map_arg(
|
662 |
+
node.args, lambda arg_node: _register_final_consumer(arg_node, node)
|
663 |
+
)
|
664 |
+
fx.node.map_arg(
|
665 |
+
node.kwargs,
|
666 |
+
lambda kwarg_node: _register_final_consumer(kwarg_node, node),
|
667 |
+
)
|
668 |
+
|
669 |
+
return last_consumer_to_nodes
|
670 |
+
|
671 |
+
|
672 |
+
def _convert_to_distributed(
|
673 |
+
gm: fx.GraphModule,
|
674 |
+
inps: List[torch.Tensor],
|
675 |
+
schemas: List[Schema],
|
676 |
+
default_mesh: Optional[DeviceMesh] = None,
|
677 |
+
_allow_partial: bool = False,
|
678 |
+
) -> Tuple[fx.GraphModule, Dict[str, Schema]]:
|
679 |
+
"""Transform a graph module to a distributed graph module.
|
680 |
+
|
681 |
+
Returns:
|
682 |
+
- transformed graph module
|
683 |
+
- map from output name to DTensorSpec
|
684 |
+
|
685 |
+
"""
|
686 |
+
global logger
|
687 |
+
logger = get_logger("spmd_exp")
|
688 |
+
operators = {getattr(operator, name) for name in operator.__all__}
|
689 |
+
node_to_obj: Dict[fx.Node, Any] = {}
|
690 |
+
# map local op node in traced_f to its corresponding subgraph of
|
691 |
+
# DTensor ops.
|
692 |
+
node_replacements: Dict[torch.fx.Node, torch.fx.GraphModule] = {}
|
693 |
+
|
694 |
+
last_consumer_to_nodes = _get_last_consumer_to_nodes(gm.graph)
|
695 |
+
|
696 |
+
output_schemas: Dict[str, Schema] = {}
|
697 |
+
for i, node in enumerate(gm.graph.nodes):
|
698 |
+
assert logger is not None
|
699 |
+
logger.info("node%s: op=%s target=%s", i, node.op, node.target)
|
700 |
+
if node.op == OP.PLACEHOLDER:
|
701 |
+
assert i < len(
|
702 |
+
inps
|
703 |
+
), f"got more placeholder nodes ({i + 1}) than inputs ({len(inps)})"
|
704 |
+
|
705 |
+
# our example inputs are local shards. Create DTensors from them.
|
706 |
+
node_to_obj[node] = DTensor.from_local(
|
707 |
+
inps[i].clone(), # use clone to avoid modifications from inplace ops
|
708 |
+
schemas[i].mesh,
|
709 |
+
schemas[i].placements,
|
710 |
+
# prevent running this collective in backwards pass
|
711 |
+
run_check=False,
|
712 |
+
)
|
713 |
+
elif isinstance(node.target, torch._ops.OpOverloadPacket):
|
714 |
+
dtensor = cast(DTensor, node_to_obj[node.args[0]])
|
715 |
+
node_to_obj[node] = DSymInt.from_node(node, dtensor)
|
716 |
+
elif isinstance(node.target, torch._ops.OpOverload):
|
717 |
+
replacement = _get_dtensor_dispatch_graph(
|
718 |
+
node, node_to_obj, default_mesh=default_mesh
|
719 |
+
)
|
720 |
+
if replacement is not None:
|
721 |
+
node_replacements[node] = replacement
|
722 |
+
elif node.op == OP.OUTPUT:
|
723 |
+
if not _allow_partial:
|
724 |
+
# Returns an expanded dummy add node that ensures
|
725 |
+
# that the partial output tensor has been converted
|
726 |
+
# to a replicated tensor.
|
727 |
+
node = _convert_output(gm, node, node_to_obj)
|
728 |
+
|
729 |
+
# Save output sharding for the inputs to backward pass.
|
730 |
+
# TODO(anj): Pipe the output schema for the BW pass
|
731 |
+
# instead of requiring the full output DTensor to be
|
732 |
+
# materialized.
|
733 |
+
for inp_arg in node.args[0]:
|
734 |
+
if isinstance(inp_arg, fx.Node):
|
735 |
+
obj = node_to_obj[inp_arg]
|
736 |
+
if isinstance(obj, DTensor):
|
737 |
+
output_schemas[inp_arg.name] = Schema(
|
738 |
+
obj.device_mesh, obj.placements # type: ignore[arg-type]
|
739 |
+
)
|
740 |
+
elif node.op == OP.CALL_FUNCTION:
|
741 |
+
args = tree_map(partial(_remap_arg, node_to_obj), node.args)
|
742 |
+
kwargs = tree_map(partial(_remap_arg, node_to_obj), node.kwargs)
|
743 |
+
|
744 |
+
dsymints = list(
|
745 |
+
filter(lambda a: isinstance(a, DSymInt), args + tuple(kwargs.values()))
|
746 |
+
)
|
747 |
+
|
748 |
+
if node.target in operators and len(dsymints) > 0:
|
749 |
+
assert all(
|
750 |
+
dsymints[0].mesh == d.mesh for d in dsymints
|
751 |
+
), "all DSymInts must have the same mesh. "
|
752 |
+
|
753 |
+
local_args = tree_map_only(DSymInt, lambda a: a.local_value, args)
|
754 |
+
local_kwargs = tree_map_only(DSymInt, lambda a: a.local_value, kwargs)
|
755 |
+
|
756 |
+
global_args = tree_map_only(DSymInt, lambda a: a.global_value, args)
|
757 |
+
global_kwargs = tree_map_only(DSymInt, lambda a: a.global_value, kwargs)
|
758 |
+
|
759 |
+
node.args = local_args
|
760 |
+
node.kwargs = local_kwargs
|
761 |
+
|
762 |
+
node_to_obj[node] = DSymInt(
|
763 |
+
local_value=node.target(*local_args, **local_kwargs),
|
764 |
+
global_value=node.target(*global_args, **global_kwargs),
|
765 |
+
mesh=dsymints[0].mesh,
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
assert len(dsymints) == 0, (
|
769 |
+
"SPMD expansion does not support SymInt in non-operator "
|
770 |
+
f"nodes, got {node.target}."
|
771 |
+
)
|
772 |
+
node_to_obj[node] = node.target(*args, **kwargs)
|
773 |
+
else:
|
774 |
+
raise ValueError(f"Unrecognized node.op type {node.op}")
|
775 |
+
|
776 |
+
if node in last_consumer_to_nodes:
|
777 |
+
# Save memory by deleting objs that wont be used anymore.
|
778 |
+
for arg_node in last_consumer_to_nodes[node]:
|
779 |
+
del node_to_obj[arg_node]
|
780 |
+
|
781 |
+
_rebuild_graph(gm, node_replacements)
|
782 |
+
|
783 |
+
return gm, output_schemas
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/experimental_ops.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
from typing import cast, List, Optional, Sequence, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.distributed._tensor.op_schema import OpSchema, OutputSharding
|
6 |
+
from torch.distributed._tensor.ops.common_rules import pointwise_rule
|
7 |
+
from torch.distributed._tensor.ops.utils import register_prop_rule
|
8 |
+
|
9 |
+
from torch.distributed._tensor.placement_types import (
|
10 |
+
_Partial,
|
11 |
+
DTensorSpec,
|
12 |
+
Placement,
|
13 |
+
Replicate,
|
14 |
+
Shard,
|
15 |
+
TensorMeta,
|
16 |
+
)
|
17 |
+
|
18 |
+
aten = torch.ops.aten # pyre-ignore
|
19 |
+
|
20 |
+
|
21 |
+
@register_prop_rule( # pyre-ignore
|
22 |
+
[
|
23 |
+
aten._foreach_neg.default,
|
24 |
+
aten._foreach_reciprocal.default,
|
25 |
+
aten._foreach_sqrt.default,
|
26 |
+
]
|
27 |
+
)
|
28 |
+
def _prop__foreach_unaop(op_schema: OpSchema) -> OutputSharding:
|
29 |
+
self = op_schema.args_schema[0]
|
30 |
+
assert isinstance(self, list) and all(isinstance(s, DTensorSpec) for s in self)
|
31 |
+
# FIXME(@mrshenli): for sqrt, this is only mathematically correct for
|
32 |
+
# Replicate and Shard tensor.
|
33 |
+
return OutputSharding(output_spec=self)
|
34 |
+
|
35 |
+
|
36 |
+
@register_prop_rule( # pyre-ignore
|
37 |
+
[
|
38 |
+
aten._foreach_add.List,
|
39 |
+
aten._foreach_div.List,
|
40 |
+
aten._foreach_mul.List,
|
41 |
+
]
|
42 |
+
)
|
43 |
+
def _prop__foreach_binop_list(op_schema: OpSchema) -> OutputSharding:
|
44 |
+
self, other = op_schema.args_schema[:2]
|
45 |
+
scalar = None if len(op_schema.args_schema) < 3 else op_schema.args_schema[2]
|
46 |
+
assert isinstance(self, list) and all(
|
47 |
+
isinstance(s, DTensorSpec) for s in self
|
48 |
+
), f"Expect a List[DTensorSpec] but got {self}"
|
49 |
+
assert isinstance(other, list) and all(
|
50 |
+
isinstance(o, DTensorSpec) for o in other
|
51 |
+
), f"Expect a List[DTensorSpec] but got {other}"
|
52 |
+
assert len(self) == len(other), (
|
53 |
+
"Two tensor lists must match in length, "
|
54 |
+
f"but got {len(self)} and {len(other)}"
|
55 |
+
)
|
56 |
+
|
57 |
+
if any(s != o for s, o in zip(self, other)):
|
58 |
+
# If DTensorSpec for the two operand do not match, suggest using
|
59 |
+
# self's DTensorSpec. This will trigger allreduce if other is partial
|
60 |
+
# and self is replicated.
|
61 |
+
return OutputSharding(
|
62 |
+
output_spec=None,
|
63 |
+
schema_suggestions=[
|
64 |
+
OpSchema(
|
65 |
+
op=op_schema.op,
|
66 |
+
args_schema=(self, self, scalar) if scalar else (self, self),
|
67 |
+
kwargs_schema=op_schema.kwargs_schema,
|
68 |
+
)
|
69 |
+
],
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
return OutputSharding(output_spec=self)
|
73 |
+
|
74 |
+
|
75 |
+
@register_prop_rule( # pyre-ignore
|
76 |
+
[
|
77 |
+
aten._foreach_add.Scalar,
|
78 |
+
aten._foreach_div.Scalar,
|
79 |
+
aten._foreach_mul.Scalar,
|
80 |
+
aten._foreach_sub.Scalar,
|
81 |
+
]
|
82 |
+
)
|
83 |
+
def _prop__foreach_binop_scalar(op_schema: OpSchema) -> OutputSharding:
|
84 |
+
self, scalar = op_schema.args_schema
|
85 |
+
assert isinstance(self, list) and all(isinstance(s, DTensorSpec) for s in self)
|
86 |
+
assert not isinstance(scalar, list)
|
87 |
+
return OutputSharding(output_spec=self)
|
88 |
+
|
89 |
+
|
90 |
+
@register_prop_rule( # pyre-ignore
|
91 |
+
[
|
92 |
+
aten._foreach_addcdiv.Scalar,
|
93 |
+
aten._foreach_addcmul.Scalar,
|
94 |
+
]
|
95 |
+
)
|
96 |
+
def _prop__foreach_addcop_scalar(op_schema: OpSchema):
|
97 |
+
self, tensor1, tensor2 = op_schema.args_schema[:3]
|
98 |
+
scalar = None if len(op_schema.args_schema) < 4 else op_schema.args_schema[3]
|
99 |
+
assert isinstance(self, list) and all(isinstance(s, DTensorSpec) for s in self)
|
100 |
+
assert isinstance(tensor1, list) and all(isinstance(s, DTensorSpec) for s in self)
|
101 |
+
assert isinstance(tensor2, list) and all(isinstance(s, DTensorSpec) for s in self)
|
102 |
+
if any(s != t1 or s != t2 for s, t1, t2 in zip(self, tensor1, tensor2)):
|
103 |
+
# If DTensorSpec for the two operand do not match, suggest using
|
104 |
+
# self's DTensorSpec. This will trigger allreduce if other is partial
|
105 |
+
# and self is replicated.
|
106 |
+
return OutputSharding(
|
107 |
+
output_spec=None,
|
108 |
+
schema_suggestions=[
|
109 |
+
OpSchema(
|
110 |
+
op=op_schema.op,
|
111 |
+
args_schema=(self, self, self, scalar)
|
112 |
+
if scalar
|
113 |
+
else (self, self, self),
|
114 |
+
kwargs_schema=op_schema.kwargs_schema,
|
115 |
+
)
|
116 |
+
],
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
return OutputSharding(output_spec=self)
|
120 |
+
|
121 |
+
|
122 |
+
@register_prop_rule([aten._foreach_pow.ScalarAndTensor]) # pyre-ignore
|
123 |
+
def _prop__foreach_pow_scalar_and_tensor(op_schema: OpSchema):
|
124 |
+
scala, exponent = op_schema.args_schema
|
125 |
+
assert isinstance(exponent, list) and all(
|
126 |
+
isinstance(s, DTensorSpec) for s in exponent
|
127 |
+
)
|
128 |
+
return OutputSharding(output_spec=exponent)
|
129 |
+
|
130 |
+
|
131 |
+
@register_prop_rule([aten._fused_adam.default]) # pyre-ignore
|
132 |
+
def _prop__fused_adam(op_schema: OpSchema):
|
133 |
+
NT = 5
|
134 |
+
tesnor_list_args: Tuple[List[DTensorSpec]] = op_schema.args_schema[:NT] # type: ignore[assignment]
|
135 |
+
|
136 |
+
assert all(isinstance(schema, list) for schema in tesnor_list_args)
|
137 |
+
assert all(
|
138 |
+
isinstance(s, DTensorSpec) for schema in tesnor_list_args for s in schema
|
139 |
+
)
|
140 |
+
|
141 |
+
tensor_schemas: Tuple[List[DTensorSpec]] = [ # type: ignore[assignment]
|
142 |
+
schema for schema in tesnor_list_args if len(schema)
|
143 |
+
]
|
144 |
+
|
145 |
+
assert all(len(s) == len(tensor_schemas[0]) for s in tensor_schemas), (
|
146 |
+
"expect the same number of gradients and states, but got "
|
147 |
+
f"{[len(s) for s in tensor_schemas]}."
|
148 |
+
)
|
149 |
+
|
150 |
+
if any(any(t != ts[0] for t in ts) for ts in zip(*tensor_schemas)):
|
151 |
+
new_schemas: Tuple[List[DTensorSpec]] = tuple( # type: ignore[assignment]
|
152 |
+
op_schema.args_schema[0] if len(s) else s for s in tesnor_list_args
|
153 |
+
)
|
154 |
+
return OutputSharding(
|
155 |
+
output_spec=None,
|
156 |
+
schema_suggestions=[
|
157 |
+
OpSchema(
|
158 |
+
op=op_schema.op,
|
159 |
+
args_schema=new_schemas + op_schema.args_schema[NT:],
|
160 |
+
kwargs_schema=op_schema.kwargs_schema,
|
161 |
+
)
|
162 |
+
],
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
return OutputSharding(output_spec=(op_schema.args_schema[0],) * NT) # type: ignore[arg-type]
|
166 |
+
|
167 |
+
|
168 |
+
@register_prop_rule(aten.nll_loss_forward.default) # pyre-ignore
|
169 |
+
def _prop_nll_loss_forward(op_schema: OpSchema) -> OutputSharding:
|
170 |
+
self, target = op_schema.args_schema[:2]
|
171 |
+
assert isinstance(self, DTensorSpec)
|
172 |
+
assert isinstance(target, DTensorSpec)
|
173 |
+
if self.placements != target.placements:
|
174 |
+
# Self and target must match in placements, which should be shard along
|
175 |
+
# batch dimension in data parallell use cases. Force redistribute.
|
176 |
+
|
177 |
+
# need to create a new self instead return (target, target) as target
|
178 |
+
# and self might not match in shape.
|
179 |
+
new_self = DTensorSpec(
|
180 |
+
mesh=self.mesh,
|
181 |
+
placements=target.placements,
|
182 |
+
tensor_meta=self.tensor_meta,
|
183 |
+
)
|
184 |
+
return OutputSharding(
|
185 |
+
output_spec=None,
|
186 |
+
schema_suggestions=[
|
187 |
+
OpSchema(
|
188 |
+
op=op_schema.op,
|
189 |
+
args_schema=(new_self, target) + op_schema.args_schema[2:],
|
190 |
+
kwargs_schema=op_schema.kwargs_schema,
|
191 |
+
)
|
192 |
+
],
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
return OutputSharding(
|
196 |
+
output_spec=(
|
197 |
+
# by default, nll_loss_forward conducts a reduction and returns
|
198 |
+
# a scalar tensor, and hence the _Partial placements.
|
199 |
+
DTensorSpec(mesh=self.mesh, placements=(_Partial(),)),
|
200 |
+
# the 2nd output total_weight is always a scalar tensor
|
201 |
+
DTensorSpec(mesh=self.mesh, placements=(Replicate(),)),
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
@register_prop_rule(aten.nll_loss_backward.default) # pyre-ignore
|
207 |
+
def _prop_nll_loss_backward(op_schema: OpSchema) -> OutputSharding:
|
208 |
+
grad_output, self = op_schema.args_schema[:2]
|
209 |
+
assert isinstance(grad_output, DTensorSpec)
|
210 |
+
assert isinstance(self, DTensorSpec)
|
211 |
+
return OutputSharding(output_spec=self)
|
212 |
+
|
213 |
+
|
214 |
+
@register_prop_rule(aten.stack.default)
|
215 |
+
def _prop_stack(op_schema: OpSchema) -> OutputSharding:
|
216 |
+
tensors = op_schema.args_schema[0]
|
217 |
+
dim = 0 if len(op_schema.args_schema) == 1 else cast(int, op_schema.args_schema[1])
|
218 |
+
assert (
|
219 |
+
isinstance(tensors, list) and len(tensors) > 0
|
220 |
+
), "expect at least one tensor to stack"
|
221 |
+
assert all(
|
222 |
+
isinstance(t, DTensorSpec) for t in tensors
|
223 |
+
), f"expect a list of DTensorSpecs, but got {tensors}"
|
224 |
+
assert all(
|
225 |
+
t.shape == tensors[0].shape for t in tensors
|
226 |
+
), f"expect all tensors to have the same shape, but got {tensors}."
|
227 |
+
# TODO: provide schema_suggestions when placements do not match
|
228 |
+
assert all(
|
229 |
+
t.placements == tensors[0].placements for t in tensors
|
230 |
+
), f"expect all tensors to have the same placements, but got {tensors}."
|
231 |
+
assert all(
|
232 |
+
not p.is_shard(dim) for p in tensors[0].placements
|
233 |
+
), "DTensor does not support stack on sharded dimension."
|
234 |
+
|
235 |
+
return OutputSharding(
|
236 |
+
output_spec=DTensorSpec(mesh=tensors[0].mesh, placements=tensors[0].placements)
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
@register_prop_rule(aten.select.int)
|
241 |
+
def _prop_select(op_schema: OpSchema) -> OutputSharding:
|
242 |
+
tensor, dim = op_schema.args_schema[:2]
|
243 |
+
assert isinstance(tensor, DTensorSpec)
|
244 |
+
assert isinstance(dim, int)
|
245 |
+
placements: Sequence[Placement] = tensor.placements
|
246 |
+
assert all(
|
247 |
+
not p.is_shard(dim) for p in placements
|
248 |
+
), "DTensor does not support select on sharded dimension."
|
249 |
+
|
250 |
+
# select will remove one dimension, decrement dim of Shard placements by 1
|
251 |
+
# if they are larger than dim.
|
252 |
+
new_placements: List[Placement] = []
|
253 |
+
for p in placements:
|
254 |
+
# Using isinstance instead of is_shard so that mypy won't complain
|
255 |
+
# about accessing dim attribute.
|
256 |
+
if isinstance(p, Shard) and p.dim > dim:
|
257 |
+
new_placements.append(Shard(p.dim - 1))
|
258 |
+
else:
|
259 |
+
new_placements.append(p)
|
260 |
+
|
261 |
+
return OutputSharding(
|
262 |
+
output_spec=DTensorSpec(mesh=tensor.mesh, placements=tuple(new_placements))
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
@register_prop_rule(aten.native_layer_norm.default) # pyre-ignore
|
267 |
+
def _prop_native_layer_norm(op_schema: OpSchema) -> OutputSharding:
|
268 |
+
input, normalized_shape, weight, bias, eps = op_schema.args_schema
|
269 |
+
assert isinstance(input, DTensorSpec)
|
270 |
+
assert isinstance(normalized_shape, (tuple, list))
|
271 |
+
if weight is not None:
|
272 |
+
assert isinstance(weight, DTensorSpec)
|
273 |
+
assert all(isinstance(p, Replicate) for p in weight.placements)
|
274 |
+
if bias is not None:
|
275 |
+
assert isinstance(bias, DTensorSpec)
|
276 |
+
assert all(isinstance(p, Replicate) for p in bias.placements)
|
277 |
+
# only the left-most (non-normalized) dimensions of the input can be sharded
|
278 |
+
batch_ndim = len(input.shape) - len(normalized_shape)
|
279 |
+
assert all(
|
280 |
+
isinstance(p, Replicate) or (isinstance(p, Shard) and p.dim < batch_ndim,)
|
281 |
+
for p in input.placements
|
282 |
+
)
|
283 |
+
stats_spec = DTensorSpec(
|
284 |
+
mesh=input.mesh,
|
285 |
+
placements=input.placements,
|
286 |
+
)
|
287 |
+
return OutputSharding(output_spec=(input, stats_spec, stats_spec))
|
288 |
+
|
289 |
+
|
290 |
+
@register_prop_rule(aten.native_layer_norm_backward.default) # pyre-ignore
|
291 |
+
def _prop_native_layer_norm_backward(op_schema: OpSchema) -> OutputSharding:
|
292 |
+
(
|
293 |
+
grad,
|
294 |
+
input,
|
295 |
+
normalized_shape,
|
296 |
+
result1,
|
297 |
+
result2,
|
298 |
+
weight,
|
299 |
+
bias,
|
300 |
+
grad_input_mask,
|
301 |
+
) = op_schema.args_schema
|
302 |
+
assert isinstance(grad, DTensorSpec)
|
303 |
+
assert isinstance(grad_input_mask, (list, tuple))
|
304 |
+
if weight is not None:
|
305 |
+
assert isinstance(weight, DTensorSpec)
|
306 |
+
assert all(isinstance(s, Replicate) for s in weight.placements)
|
307 |
+
if bias is not None:
|
308 |
+
assert isinstance(bias, DTensorSpec)
|
309 |
+
assert all(isinstance(s, Replicate) for s in bias.placements)
|
310 |
+
# ensure sharding on dim 0, which will trigger the "Partial" output on
|
311 |
+
# weight and bias grads
|
312 |
+
assert any(
|
313 |
+
isinstance(s, Shard) and s.dim == 0 for s in grad.placements
|
314 |
+
), f"Got {grad.placements}"
|
315 |
+
weight_grad = (
|
316 |
+
DTensorSpec(
|
317 |
+
mesh=weight.mesh,
|
318 |
+
placements=tuple([_Partial()] * weight.mesh.ndim),
|
319 |
+
)
|
320 |
+
if weight
|
321 |
+
else None
|
322 |
+
)
|
323 |
+
bias_grad = (
|
324 |
+
DTensorSpec(
|
325 |
+
mesh=bias.mesh,
|
326 |
+
placements=tuple([_Partial()] * bias.mesh.ndim),
|
327 |
+
)
|
328 |
+
if bias
|
329 |
+
else None
|
330 |
+
)
|
331 |
+
return OutputSharding(
|
332 |
+
# NOTE: type errors below are legit. This is because DTensor currently
|
333 |
+
# doesn't support Optional return values. Need to be fixed in DTensor repo.
|
334 |
+
output_spec=(
|
335 |
+
grad if grad_input_mask[0] else None,
|
336 |
+
weight_grad if grad_input_mask[1] else None,
|
337 |
+
bias_grad if grad_input_mask[2] else None,
|
338 |
+
),
|
339 |
+
)
|
340 |
+
|
341 |
+
|
342 |
+
def _refine_sharding(
|
343 |
+
op_schema: OpSchema, active_dim: Optional[int]
|
344 |
+
) -> Sequence[Placement]:
|
345 |
+
"""Considers 2 first inputs of op_schema as having same shape, and returns suggested placement for a pointwise operation."""
|
346 |
+
# consider the operating dimension as a singleton to prevent sharding on it
|
347 |
+
# however, if active_dim is None, this means the input and output shapes are equal and
|
348 |
+
# we'll apply exactly the pointwise rule.
|
349 |
+
|
350 |
+
args_schema = []
|
351 |
+
for s in op_schema.args_schema[:2]:
|
352 |
+
assert isinstance(s, DTensorSpec) and s.tensor_meta is not None
|
353 |
+
args_schema.append(
|
354 |
+
DTensorSpec(
|
355 |
+
mesh=s.mesh, # type: ignore[attr-defined]
|
356 |
+
placements=s.placements, # type: ignore[attr-defined]
|
357 |
+
tensor_meta=TensorMeta(
|
358 |
+
shape=torch.Size(
|
359 |
+
s.shape[0:active_dim] + (1,) + s.shape[active_dim + 1 :]
|
360 |
+
)
|
361 |
+
if active_dim is not None
|
362 |
+
else s.shape,
|
363 |
+
stride=s.tensor_meta.stride,
|
364 |
+
dtype=s.tensor_meta.dtype,
|
365 |
+
),
|
366 |
+
)
|
367 |
+
)
|
368 |
+
|
369 |
+
op_schema = OpSchema(
|
370 |
+
op=op_schema.op,
|
371 |
+
args_schema=args_schema, # type: ignore[arg-type]
|
372 |
+
kwargs_schema={},
|
373 |
+
)
|
374 |
+
output_sharding = pointwise_rule(op_schema, linearity=False)
|
375 |
+
if output_sharding.output_spec:
|
376 |
+
assert isinstance(output_sharding.output_spec, DTensorSpec)
|
377 |
+
return output_sharding.output_spec.placements
|
378 |
+
else:
|
379 |
+
assert output_sharding.schema_suggestions is not None
|
380 |
+
out_schema = output_sharding.schema_suggestions[0].args_schema[0]
|
381 |
+
assert isinstance(out_schema, DTensorSpec)
|
382 |
+
return tuple(out_schema.placements)
|
383 |
+
|
384 |
+
|
385 |
+
@register_prop_rule(aten.slice_scatter.default) # pyre-ignore
|
386 |
+
def prop_slice_scatter(op_schema: OpSchema) -> OutputSharding:
|
387 |
+
# 1. number of dimensions in input and src need to match.
|
388 |
+
# 2. number of elements on all non-dim need to match between input and src.
|
389 |
+
# 3. numer of elements in src in dim need to match the slice size.
|
390 |
+
# Given the above:
|
391 |
+
# - We suggest for src to follow the sharding of input, except on the scatter dimension,
|
392 |
+
# where our best bet for now is to make them replicated as a fall-back.
|
393 |
+
# TODO: Ideally we'd like to make sure the output is re-sharded afterwards to keep input sharding.
|
394 |
+
|
395 |
+
defaults = (None, None, 0, None, None, 1)
|
396 |
+
input, src, dim, start, end, step = (
|
397 |
+
op_schema.args_schema + defaults[len(op_schema.args_schema) :]
|
398 |
+
)
|
399 |
+
assert isinstance(input, DTensorSpec)
|
400 |
+
assert isinstance(src, DTensorSpec)
|
401 |
+
assert isinstance(dim, int)
|
402 |
+
|
403 |
+
if dim < 0:
|
404 |
+
dim += input.ndim
|
405 |
+
|
406 |
+
# if the input shape and the output shape are the same on the operating dimension,
|
407 |
+
# this is effectively a no-op, so we just propagate sharding as we would do for
|
408 |
+
# pointwise, no exceptions.
|
409 |
+
if input.shape[dim] == src.shape[dim]:
|
410 |
+
assert start == 0
|
411 |
+
assert end >= src.shape[dim] # type: ignore[operator]
|
412 |
+
dim = None
|
413 |
+
|
414 |
+
# apply sharding refinement as implemented in pointwise_rule
|
415 |
+
input_suggestion = list(_refine_sharding(op_schema, dim))
|
416 |
+
# apply the exception -- disallow sharding on the operating dimension.
|
417 |
+
for i, p in enumerate(input_suggestion):
|
418 |
+
if isinstance(p, Shard) and p.dim == dim:
|
419 |
+
input_suggestion[i] = Replicate()
|
420 |
+
input_suggestion = tuple(input_suggestion) # type: ignore[assignment]
|
421 |
+
|
422 |
+
if input_suggestion == tuple(input.placements) and src.placements == tuple(
|
423 |
+
input.placements
|
424 |
+
):
|
425 |
+
# if our sharding is correct, the output sharding will be the same as the input.
|
426 |
+
return OutputSharding(
|
427 |
+
output_spec=DTensorSpec(
|
428 |
+
mesh=input.mesh,
|
429 |
+
placements=input.placements,
|
430 |
+
)
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
# otherwise, return the suggestion.
|
434 |
+
return OutputSharding(
|
435 |
+
output_spec=None,
|
436 |
+
schema_suggestions=[
|
437 |
+
OpSchema(
|
438 |
+
op=op_schema.op,
|
439 |
+
args_schema=(
|
440 |
+
DTensorSpec(
|
441 |
+
mesh=input.mesh,
|
442 |
+
placements=input_suggestion,
|
443 |
+
tensor_meta=input.tensor_meta,
|
444 |
+
),
|
445 |
+
DTensorSpec(
|
446 |
+
mesh=src.mesh,
|
447 |
+
placements=input_suggestion,
|
448 |
+
tensor_meta=src.tensor_meta,
|
449 |
+
),
|
450 |
+
)
|
451 |
+
+ op_schema.args_schema[2:],
|
452 |
+
kwargs_schema=op_schema.kwargs_schema,
|
453 |
+
)
|
454 |
+
],
|
455 |
+
)
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/gm_transformation.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable
|
2 |
+
|
3 |
+
from torch import fx
|
4 |
+
from torch.distributed._spmd.graph_optimization import (
|
5 |
+
comm_fusion_with_concat,
|
6 |
+
enable_graph_optimization_dump,
|
7 |
+
remove_copy_from_optimizer,
|
8 |
+
schedule_comm_wait,
|
9 |
+
)
|
10 |
+
from torch.distributed._spmd.graph_utils import dump_graphs_to_files
|
11 |
+
from torch.distributed._spmd.iter_graph_module import IterGraphModule
|
12 |
+
|
13 |
+
|
14 |
+
class GraphModuleTransformation:
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
*,
|
18 |
+
enable_graph_optimization: bool = False,
|
19 |
+
enable_inductor: bool = False,
|
20 |
+
dump_graphs: bool = False,
|
21 |
+
) -> None:
|
22 |
+
self.enable_graph_optimization = enable_graph_optimization
|
23 |
+
self.enable_inductor = enable_inductor
|
24 |
+
self.dump_graphs = dump_graphs
|
25 |
+
|
26 |
+
def __call__(self, gm: fx.GraphModule) -> Callable:
|
27 |
+
if self.dump_graphs:
|
28 |
+
graph_folder = dump_graphs_to_files(
|
29 |
+
{"before_transformation_gm": gm.print_readable(False)}
|
30 |
+
)
|
31 |
+
enable_graph_optimization_dump(graph_folder)
|
32 |
+
|
33 |
+
iter_gm = IterGraphModule(gm, enable_inductor=self.enable_inductor)
|
34 |
+
if self.enable_graph_optimization:
|
35 |
+
comm_fusion_with_concat(iter_gm, 100)
|
36 |
+
schedule_comm_wait(iter_gm)
|
37 |
+
remove_copy_from_optimizer(iter_gm)
|
38 |
+
# Must be called after we are not going to move the graphs
|
39 |
+
iter_gm.finalize_setup()
|
40 |
+
|
41 |
+
if self.dump_graphs:
|
42 |
+
dump_graphs_to_files(
|
43 |
+
{
|
44 |
+
"iter_graph_setup_gm": iter_gm.setup_gm.print_readable(False),
|
45 |
+
"iter_graph_main_gm": iter_gm.main_gm.print_readable(False),
|
46 |
+
"iter_graph_cleanup_gm": iter_gm.cleanup_gm.print_readable(False),
|
47 |
+
},
|
48 |
+
graph_folder, # type: ignore[possibly-undefined]
|
49 |
+
)
|
50 |
+
|
51 |
+
return iter_gm
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/graph_optimization.py
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Owner(s): ["oncall: distributed"]
|
2 |
+
import collections
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import operator
|
6 |
+
import tempfile
|
7 |
+
import time
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from functools import wraps
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Callable,
|
13 |
+
cast,
|
14 |
+
DefaultDict,
|
15 |
+
Dict,
|
16 |
+
Iterable,
|
17 |
+
List,
|
18 |
+
Optional,
|
19 |
+
Set,
|
20 |
+
Tuple,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.fx as fx
|
26 |
+
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
|
27 |
+
from torch.distributed._spmd.graph_utils import (
|
28 |
+
CommType,
|
29 |
+
dump_graphs_to_files,
|
30 |
+
find_node,
|
31 |
+
get_output,
|
32 |
+
OP,
|
33 |
+
)
|
34 |
+
from torch.distributed._spmd.iter_graph_module import IterGraphModule
|
35 |
+
from torch.fx.passes.shape_prop import TensorMetadata
|
36 |
+
from torch.utils import _pytree as pytree
|
37 |
+
from torch.utils._pytree import tree_flatten, tree_unflatten
|
38 |
+
|
39 |
+
logger: logging.Logger = logging.getLogger("graph_optimization")
|
40 |
+
aten = torch.ops.aten
|
41 |
+
fake_tensor_mode = FakeTensorMode()
|
42 |
+
|
43 |
+
_optimized_func: Set[str] = set()
|
44 |
+
# The key is the target pass and the value is the prerequisites of the pass.
|
45 |
+
_prerequisite_sets: DefaultDict[str, Set[str]] = collections.defaultdict(set)
|
46 |
+
# The key is the target pass and the value is the passes that must applied before
|
47 |
+
# the key.
|
48 |
+
_apply_before_sets: DefaultDict[str, Set[str]] = collections.defaultdict(set)
|
49 |
+
_dump_graph_folder: str = ""
|
50 |
+
|
51 |
+
|
52 |
+
def enable_graph_optimization_dump(folder: str = ""):
|
53 |
+
global _dump_graph_folder
|
54 |
+
if not folder:
|
55 |
+
folder = tempfile.mkdtemp()
|
56 |
+
_dump_graph_folder = folder
|
57 |
+
|
58 |
+
|
59 |
+
# TODO(@fegin): Support multiple runs of graph optimization
|
60 |
+
# TODO(@fegin): With this design, circular imports will happen when a pass
|
61 |
+
# developer accidentally create a pass dependency cycle. As a result, we need to
|
62 |
+
# break this file into a finer granularity to avoid incorrect circular import.
|
63 |
+
def graph_optimization_pass(
|
64 |
+
prerequisites: Iterable[Callable],
|
65 |
+
apply_after: Iterable[Callable],
|
66 |
+
) -> Callable:
|
67 |
+
"""Define the contract of a graph optimization pass.
|
68 |
+
|
69 |
+
All the passes should be wrapped with this decorator.
|
70 |
+
`prerequisites` is used to annotate the prerequisite passes of the this pass.
|
71 |
+
`apply_after` means that this wrapped pass must be applied after the passes
|
72 |
+
in `apply_after`. The difference between `prerequisites` and `apply_after`
|
73 |
+
is that all the passes in `prerequisites` must be applied to the graph and
|
74 |
+
must be applifed before the wrapped pass while the passes `apply_after` are
|
75 |
+
optional. But if a pass in `apply_after` is applied to the graph, it has to
|
76 |
+
be done before the wrapped pass.
|
77 |
+
Optimizer pass developers are required to add these fields accordingly and
|
78 |
+
users need to follow the restrictions to avoid the assert.
|
79 |
+
|
80 |
+
Current design has one limitation: users can only apply the optimizations
|
81 |
+
once. In some cases, we may need to run multiple the same optimization
|
82 |
+
multiple time, e.g., optimization passes -> profiling the result -> apply
|
83 |
+
optimization passes with the profiling result again. This limitation will be
|
84 |
+
addressed limitation in the future.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
prerequisites (Iterable[Callable]): the list of string to the names of
|
88 |
+
passes which are the prerequisites of this pass.
|
89 |
+
apply_after (Iterable[Callable]): the list of string to the names of
|
90 |
+
passes that can not be applied after the wrapped pass.
|
91 |
+
"""
|
92 |
+
|
93 |
+
def inner(func: Callable) -> Callable:
|
94 |
+
def make_key(func: Callable) -> str:
|
95 |
+
return f"{func.__module__}.{func.__name__}"
|
96 |
+
|
97 |
+
func_key = make_key(func)
|
98 |
+
_prerequisite_sets[func_key] = {make_key(f) for f in prerequisites}
|
99 |
+
for apply_after_pass in apply_after:
|
100 |
+
_apply_before_sets[make_key(apply_after_pass)].add(func_key)
|
101 |
+
|
102 |
+
@wraps(func)
|
103 |
+
def pass_wrapper(
|
104 |
+
gm: Union[fx.GraphModule, IterGraphModule], *args: Any, **kwargs: Any
|
105 |
+
) -> None:
|
106 |
+
begin = time.time()
|
107 |
+
assert isinstance(gm, (fx.GraphModule, IterGraphModule)), (
|
108 |
+
"The first argument of the pass must be either "
|
109 |
+
"fx.GraphModule or IterGraphModule."
|
110 |
+
)
|
111 |
+
assert func_key not in _optimized_func, f"Cannot apply {func_key} twice."
|
112 |
+
invalid_passes = _apply_before_sets[func_key].intersection(_optimized_func)
|
113 |
+
assert (
|
114 |
+
not invalid_passes
|
115 |
+
), f"{invalid_passes} must be applied after {func_key}."
|
116 |
+
assert _prerequisite_sets[func_key].issubset(_optimized_func), (
|
117 |
+
f"{_prerequisite_sets[func_key] - _optimized_func} are the "
|
118 |
+
f"prerequisites of {func_key} but are not applified. "
|
119 |
+
f"Applied passes are {_optimized_func}."
|
120 |
+
)
|
121 |
+
|
122 |
+
func(gm, *args, **kwargs)
|
123 |
+
gm.graph.lint()
|
124 |
+
gm.graph.eliminate_dead_code()
|
125 |
+
gm.recompile()
|
126 |
+
_optimized_func.add(func_key)
|
127 |
+
|
128 |
+
prefix = f"after_{func.__name__}"
|
129 |
+
if _dump_graph_folder:
|
130 |
+
if isinstance(gm, IterGraphModule):
|
131 |
+
dump_graphs_to_files(
|
132 |
+
{
|
133 |
+
f"{prefix}_setup_gm": gm.setup_gm,
|
134 |
+
f"{prefix}_main_gm": gm.main_gm,
|
135 |
+
f"{prefix}_cleanup_gm": gm.cleanup_gm,
|
136 |
+
},
|
137 |
+
_dump_graph_folder,
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
dump_graphs_to_files({prefix: gm}, _dump_graph_folder)
|
141 |
+
|
142 |
+
logger.info("Spent %f seconds applying %s", time.time() - begin, func_key)
|
143 |
+
|
144 |
+
return pass_wrapper
|
145 |
+
|
146 |
+
return inner
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass(unsafe_hash=True)
|
150 |
+
class CommBlock:
|
151 |
+
shape: Optional[torch.Size]
|
152 |
+
node_list: List[fx.Node]
|
153 |
+
inputs: List[fx.Node]
|
154 |
+
wait_nodes: List[fx.Node]
|
155 |
+
comm_node: fx.Node
|
156 |
+
outputs: Set[fx.Node]
|
157 |
+
|
158 |
+
|
159 |
+
def get_comm_block(comm_node: fx.Node) -> CommBlock:
|
160 |
+
"""Find out all the nodes belong to this communcation given a collective node (e.g., allreduce).
|
161 |
+
|
162 |
+
Args:
|
163 |
+
comm_node(fx.Node): The target communication/collective node.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
The CommBlock that encapsulates the related nodes (e.g., wait_node) of
|
167 |
+
the given comm_node.
|
168 |
+
"""
|
169 |
+
# We choose 5 to prevent some accidents that cause infinite loop. But
|
170 |
+
# with functional collective, the distance is 1.
|
171 |
+
MAX_WAIT_DISTANCE = 5
|
172 |
+
node_list = []
|
173 |
+
wait_nodes = []
|
174 |
+
inputs = pytree.arg_tree_leaves(*comm_node.args, **comm_node.kwargs)
|
175 |
+
input_nodes = [inp for inp in inputs if isinstance(inp, fx.Node)]
|
176 |
+
distance = 0
|
177 |
+
wait_prefixes = ("wait_comm", "wait_tensor")
|
178 |
+
non_end_users_nodes = ("split", "reshape", "getitem", "detach", "alias")
|
179 |
+
|
180 |
+
nodes = collections.deque([comm_node, None])
|
181 |
+
while nodes and distance < 5:
|
182 |
+
node = nodes.popleft()
|
183 |
+
if node is None:
|
184 |
+
distance += 1
|
185 |
+
if nodes:
|
186 |
+
nodes.append(None)
|
187 |
+
continue
|
188 |
+
node_list.append(node)
|
189 |
+
if node.name.startswith(wait_prefixes):
|
190 |
+
wait_nodes.append(node)
|
191 |
+
else:
|
192 |
+
for child in node.users:
|
193 |
+
if isinstance(child, fx.Node):
|
194 |
+
nodes.append(child)
|
195 |
+
|
196 |
+
if not wait_nodes:
|
197 |
+
raise RuntimeError(
|
198 |
+
"The wait nodes are too far away from the comm node {comm_node}."
|
199 |
+
)
|
200 |
+
|
201 |
+
# Identify all the outputs of this collective block.
|
202 |
+
outputs: Set[fx.Node] = set()
|
203 |
+
nodes = collections.deque(wait_nodes)
|
204 |
+
while nodes:
|
205 |
+
node = nodes.popleft()
|
206 |
+
assert node is not None
|
207 |
+
for user in node.users:
|
208 |
+
if isinstance(user, fx.Node) and user.name.startswith(non_end_users_nodes):
|
209 |
+
nodes.append(user)
|
210 |
+
node_list.append(user)
|
211 |
+
else:
|
212 |
+
outputs.add(node)
|
213 |
+
break
|
214 |
+
|
215 |
+
# TODO: populate all the tensor metadata and remove the default.
|
216 |
+
tensor_meta = input_nodes[0].meta.get("tensor_meta", None)
|
217 |
+
return CommBlock(
|
218 |
+
# TODO: support symbolic shapes
|
219 |
+
shape=torch.Size(int(s) for s in tensor_meta.shape) if tensor_meta else None,
|
220 |
+
node_list=node_list,
|
221 |
+
wait_nodes=wait_nodes,
|
222 |
+
comm_node=comm_node,
|
223 |
+
inputs=input_nodes,
|
224 |
+
outputs=outputs,
|
225 |
+
)
|
226 |
+
|
227 |
+
|
228 |
+
def get_all_comm_blocks(
|
229 |
+
gm: IterGraphModule, comm_ops: Union[Tuple[str, ...], str]
|
230 |
+
) -> List[CommBlock]:
|
231 |
+
return [
|
232 |
+
get_comm_block(node)
|
233 |
+
for node in gm.graph.nodes
|
234 |
+
if node.name.startswith(comm_ops)
|
235 |
+
]
|
236 |
+
|
237 |
+
|
238 |
+
def _create_meta_val(
|
239 |
+
fake_tensor_mode: FakeTensorMode,
|
240 |
+
val: FakeTensor,
|
241 |
+
) -> FakeTensor:
|
242 |
+
# TODO: fix the memory_format
|
243 |
+
return FakeTensor(
|
244 |
+
fake_tensor_mode,
|
245 |
+
torch.empty(
|
246 |
+
val.shape,
|
247 |
+
dtype=val.dtype,
|
248 |
+
device="meta",
|
249 |
+
requires_grad=val.requires_grad,
|
250 |
+
),
|
251 |
+
val.device,
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
def _create_meta_tensor_meta(
|
256 |
+
fake_tensor_mode: FakeTensorMode,
|
257 |
+
val: FakeTensor,
|
258 |
+
) -> TensorMetadata:
|
259 |
+
return TensorMetadata(
|
260 |
+
shape=val.shape,
|
261 |
+
dtype=val.dtype,
|
262 |
+
requires_grad=val.requires_grad,
|
263 |
+
stride=val.stride, # type: ignore[arg-type]
|
264 |
+
# TODO: fix these value
|
265 |
+
memory_format=None,
|
266 |
+
is_quantized=False,
|
267 |
+
qparams={},
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
def _call_function(
|
272 |
+
gm: IterGraphModule,
|
273 |
+
fake_tensor_mode: FakeTensorMode,
|
274 |
+
meta_val: Optional[FakeTensor],
|
275 |
+
function: Any,
|
276 |
+
*args: Any,
|
277 |
+
**kwargs: Any,
|
278 |
+
) -> fx.Node:
|
279 |
+
node = gm.graph.call_function(function, args, kwargs)
|
280 |
+
|
281 |
+
if meta_val is None:
|
282 |
+
flat_args, spec = tree_flatten((args, kwargs))
|
283 |
+
new_flat_args = []
|
284 |
+
memory_format = None
|
285 |
+
for arg in flat_args:
|
286 |
+
if not isinstance(arg, fx.Node):
|
287 |
+
new_flat_args.append(arg)
|
288 |
+
continue
|
289 |
+
val = arg.meta["val"]
|
290 |
+
new_flat_args.append(_create_meta_val(fake_tensor_mode, val))
|
291 |
+
|
292 |
+
fake_args, fake_kwargs = tree_unflatten(new_flat_args, spec)
|
293 |
+
new_meta_val = function(*fake_args, **fake_kwargs)
|
294 |
+
else:
|
295 |
+
new_meta_val = meta_val
|
296 |
+
node.meta["val"] = new_meta_val
|
297 |
+
node.meta["tensor_meta"] = _create_meta_tensor_meta(fake_tensor_mode, new_meta_val)
|
298 |
+
return node
|
299 |
+
|
300 |
+
|
301 |
+
def _scatter_wait_result(
|
302 |
+
gm: IterGraphModule,
|
303 |
+
fused_comm_block: CommBlock,
|
304 |
+
comm_blocks: List[CommBlock],
|
305 |
+
node_indices: Dict[fx.Node, int],
|
306 |
+
) -> None:
|
307 |
+
"""Scatter the result of the fused communication node to the original users -- splitting the output and reshape each subitem."""
|
308 |
+
last_wait_node_idx = 0
|
309 |
+
for node in gm.graph.nodes:
|
310 |
+
if node == fused_comm_block.comm_node:
|
311 |
+
break
|
312 |
+
last_wait_node_idx = max(
|
313 |
+
node_indices.get(node, last_wait_node_idx), last_wait_node_idx
|
314 |
+
)
|
315 |
+
|
316 |
+
fused_comm_node = fused_comm_block.comm_node
|
317 |
+
fused_wait_node = fused_comm_block.wait_nodes[0]
|
318 |
+
|
319 |
+
with gm.graph.inserting_after(fused_wait_node):
|
320 |
+
split_node = gm.graph.call_function(
|
321 |
+
aten.split,
|
322 |
+
(
|
323 |
+
fused_wait_node,
|
324 |
+
# TODO(@fegin): support symbolic shapes
|
325 |
+
[int(cast(torch.Size, cb.shape).numel()) for cb in comm_blocks],
|
326 |
+
),
|
327 |
+
)
|
328 |
+
|
329 |
+
# Scatter the split result.
|
330 |
+
need_sort_nodes = []
|
331 |
+
last_split_reshape_node = split_node
|
332 |
+
with gm.graph.inserting_after(split_node):
|
333 |
+
for idx, comm_block in enumerate(comm_blocks):
|
334 |
+
# Some users of the original allreduce and wait are scheduled
|
335 |
+
# before the fused allreduce. We must move these users to a
|
336 |
+
# correct topological sort order -- right after the last fused
|
337 |
+
# allreduce result, the `last_split_reshape_node` variable.
|
338 |
+
orig_wait = comm_block.wait_nodes[0]
|
339 |
+
nodes = collections.deque(list(orig_wait.users))
|
340 |
+
while nodes:
|
341 |
+
user_node = nodes.popleft()
|
342 |
+
if not isinstance(user_node, fx.Node):
|
343 |
+
continue
|
344 |
+
if node_indices[user_node] < last_wait_node_idx:
|
345 |
+
need_sort_nodes.append(user_node)
|
346 |
+
nodes.extend(list(user_node.users))
|
347 |
+
|
348 |
+
split_idx_node = gm.graph.call_function(operator.getitem, (split_node, idx))
|
349 |
+
with gm.graph.inserting_after(split_idx_node):
|
350 |
+
wait_output_node = gm.graph.call_function(
|
351 |
+
aten.reshape, (split_idx_node, comm_block.shape)
|
352 |
+
)
|
353 |
+
gm.graph.node_replace_all_uses_with(orig_wait, wait_output_node)
|
354 |
+
|
355 |
+
if last_split_reshape_node == split_node:
|
356 |
+
last_split_reshape_node = wait_output_node # type: ignore[possibly-undefined]
|
357 |
+
|
358 |
+
need_sort_nodes = sorted(need_sort_nodes, key=lambda node: node_indices[node])
|
359 |
+
gm.graph.move_after(need_sort_nodes, last_split_reshape_node)
|
360 |
+
|
361 |
+
gm.graph.eliminate_dead_code()
|
362 |
+
|
363 |
+
|
364 |
+
def _fuse_with_cat(
|
365 |
+
gm: IterGraphModule,
|
366 |
+
comm_blocks: List[CommBlock],
|
367 |
+
node_indices: Dict[fx.Node, int],
|
368 |
+
) -> CommBlock:
|
369 |
+
"""Fuse the CommBlocks using concat given a list of CommBlock (only allreduce)."""
|
370 |
+
# Find the last input node.
|
371 |
+
last_input_node = comm_blocks[0].inputs[0]
|
372 |
+
last_input_index = -1
|
373 |
+
all_input_nodes = []
|
374 |
+
for comm_block in comm_blocks:
|
375 |
+
input_node = comm_block.inputs[0]
|
376 |
+
# If the input node is a clone, this is CommTensor based implementation.
|
377 |
+
if input_node.name.startswith("clone"):
|
378 |
+
input_node = cast(fx.Node, input_node.args[0])
|
379 |
+
all_input_nodes.append(input_node)
|
380 |
+
index = node_indices[input_node]
|
381 |
+
if index >= last_input_index:
|
382 |
+
assert index != last_input_index
|
383 |
+
last_input_node = input_node
|
384 |
+
last_input_index = index
|
385 |
+
|
386 |
+
# Flatten all the inputs right after the last input is ready.
|
387 |
+
with gm.graph.inserting_after(last_input_node):
|
388 |
+
cat_inputs = []
|
389 |
+
for input_node in all_input_nodes:
|
390 |
+
cat_inputs.append(
|
391 |
+
_call_function(
|
392 |
+
gm, fake_tensor_mode, None, aten.flatten.using_ints, input_node
|
393 |
+
)
|
394 |
+
)
|
395 |
+
|
396 |
+
with gm.graph.inserting_after(cat_inputs[0]):
|
397 |
+
cat_node = _call_function(gm, fake_tensor_mode, None, aten.cat, cat_inputs)
|
398 |
+
|
399 |
+
# Create a new Comm node.
|
400 |
+
last_comm = comm_blocks[-1]
|
401 |
+
last_comm_node = last_comm.comm_node
|
402 |
+
last_wait_node = last_comm.wait_nodes[0]
|
403 |
+
with gm.graph.inserting_after(cat_node):
|
404 |
+
flatten_args, spec = tree_flatten((last_comm_node.args, last_comm_node.kwargs))
|
405 |
+
flatten_args[0] = cat_node
|
406 |
+
args, kwargs = tree_unflatten(flatten_args, spec)
|
407 |
+
fused_comm_node = _call_function(
|
408 |
+
gm,
|
409 |
+
fake_tensor_mode,
|
410 |
+
cat_node.meta["val"],
|
411 |
+
last_comm_node.target,
|
412 |
+
*args,
|
413 |
+
**kwargs,
|
414 |
+
)
|
415 |
+
|
416 |
+
# Create a new Wait node.
|
417 |
+
with gm.graph.inserting_after(fused_comm_node):
|
418 |
+
flatten_args, spec = tree_flatten((last_wait_node.args, last_wait_node.kwargs))
|
419 |
+
flatten_args[0] = fused_comm_node
|
420 |
+
args, kwargs = tree_unflatten(flatten_args, spec)
|
421 |
+
fused_wait_node = _call_function(
|
422 |
+
gm,
|
423 |
+
fake_tensor_mode,
|
424 |
+
cat_node.meta["val"],
|
425 |
+
last_wait_node.target,
|
426 |
+
*args,
|
427 |
+
**kwargs,
|
428 |
+
)
|
429 |
+
|
430 |
+
# Move the fused_comm_node and its args to right after the source node
|
431 |
+
nodes_to_move = cat_inputs + [cat_node, fused_comm_node, fused_wait_node]
|
432 |
+
gm.graph.move_after(nodes_to_move, last_input_node)
|
433 |
+
|
434 |
+
tensor_meta = cat_node.meta.get("tensor_meta")
|
435 |
+
fused_comm_block = CommBlock(
|
436 |
+
shape=tensor_meta.shape, # type: ignore[union-attr]
|
437 |
+
node_list=[fused_comm_node, fused_wait_node],
|
438 |
+
wait_nodes=[fused_wait_node],
|
439 |
+
comm_node=fused_comm_node,
|
440 |
+
inputs=[cat_node],
|
441 |
+
outputs={fused_wait_node},
|
442 |
+
)
|
443 |
+
|
444 |
+
_scatter_wait_result(gm, fused_comm_block, comm_blocks, node_indices)
|
445 |
+
|
446 |
+
return fused_comm_block
|
447 |
+
|
448 |
+
|
449 |
+
def _expedite_comm_ops(gm: IterGraphModule, comm_blocks: List[CommBlock]) -> None:
|
450 |
+
node_indices = {node: i for i, node in enumerate(gm.graph.nodes)}
|
451 |
+
for comm_block in comm_blocks:
|
452 |
+
last_input = comm_block.comm_node
|
453 |
+
last_input_idx = -1
|
454 |
+
for input in comm_block.inputs:
|
455 |
+
input_idx = node_indices[input]
|
456 |
+
if input_idx > last_input_idx:
|
457 |
+
last_input = input
|
458 |
+
last_input_idx = input_idx
|
459 |
+
gm.graph.node_append(last_input, comm_block.comm_node)
|
460 |
+
|
461 |
+
|
462 |
+
@graph_optimization_pass(
|
463 |
+
prerequisites=[],
|
464 |
+
apply_after=[],
|
465 |
+
)
|
466 |
+
def comm_fusion_with_concat(
|
467 |
+
gm: IterGraphModule,
|
468 |
+
bucket_size_mb: int,
|
469 |
+
) -> None:
|
470 |
+
"""Run fuse communication with concat.
|
471 |
+
|
472 |
+
This implementation uses concat to concat the bucketed gradients.
|
473 |
+
"""
|
474 |
+
comm_blocks = get_all_comm_blocks(gm, (CommType.ALLREDUCE, "all_reduce"))
|
475 |
+
# First ensure the allreduce are scheduled immediately right after the gradients.
|
476 |
+
_expedite_comm_ops(gm, comm_blocks)
|
477 |
+
# Get the comm_blocks based on the new order.
|
478 |
+
comm_blocks = get_all_comm_blocks(gm, (CommType.ALLREDUCE, "all_reduce"))
|
479 |
+
node_indices = {node: i for i, node in enumerate(gm.graph.nodes)}
|
480 |
+
|
481 |
+
bucket_size = 1 * 1024**2
|
482 |
+
bucket_cap_size = bucket_size_mb * 1024**2
|
483 |
+
begin = end = curr_size = 0
|
484 |
+
while end < len(comm_blocks):
|
485 |
+
# TODO: determine the dtype
|
486 |
+
curr_size += cast(torch.Size, comm_blocks[end].shape).numel() * 4
|
487 |
+
end += 1
|
488 |
+
if curr_size < bucket_size:
|
489 |
+
continue
|
490 |
+
_fuse_with_cat(gm, comm_blocks[begin:end], node_indices)
|
491 |
+
bucket_size = bucket_cap_size
|
492 |
+
begin = end
|
493 |
+
curr_size = 0
|
494 |
+
else:
|
495 |
+
if begin < len(comm_blocks):
|
496 |
+
_fuse_with_cat(gm, comm_blocks[begin:end], node_indices)
|
497 |
+
|
498 |
+
|
499 |
+
@graph_optimization_pass(
|
500 |
+
prerequisites=[comm_fusion_with_concat],
|
501 |
+
apply_after=[],
|
502 |
+
)
|
503 |
+
def schedule_comm_wait(gm: IterGraphModule) -> None:
|
504 |
+
"""Delay the execution of wait tensors of allreduce until its first user."""
|
505 |
+
comm_blocks = get_all_comm_blocks(gm, (CommType.ALLREDUCE, "all_reduce"))
|
506 |
+
|
507 |
+
# Find all the end users.
|
508 |
+
allreduce_users: Set[fx.Node] = set()
|
509 |
+
for allreduce in comm_blocks:
|
510 |
+
for output in allreduce.outputs:
|
511 |
+
allreduce_users.update(output.users)
|
512 |
+
|
513 |
+
node_indices = {node: i for i, node in enumerate(gm.graph.nodes)}
|
514 |
+
for allreduce in comm_blocks:
|
515 |
+
# Find the earliest users.
|
516 |
+
assert (
|
517 |
+
len(allreduce.outputs) >= 1
|
518 |
+
), f"Found a allreduce that has zero outputs/users -- {allreduce}."
|
519 |
+
# Initialize the target_node to be the first user of the first output.
|
520 |
+
target_node = next(iter(next(iter(allreduce.outputs)).users))
|
521 |
+
target_node_index = 2**31
|
522 |
+
for user in (user for output in allreduce.outputs for user in output.users):
|
523 |
+
index = node_indices[user]
|
524 |
+
if index < target_node_index:
|
525 |
+
target_node = user
|
526 |
+
target_node_index = index
|
527 |
+
|
528 |
+
# Move wait nodes and all the subsequent output nodes before the
|
529 |
+
# earliest user.
|
530 |
+
wait_idx = -1
|
531 |
+
for wait_idx, node in enumerate(allreduce.node_list):
|
532 |
+
if node == allreduce.wait_nodes[0]:
|
533 |
+
break
|
534 |
+
assert wait_idx >= 0
|
535 |
+
gm.graph.move_before(allreduce.node_list[wait_idx:], target_node)
|
536 |
+
|
537 |
+
|
538 |
+
@graph_optimization_pass(
|
539 |
+
prerequisites=[],
|
540 |
+
apply_after=[],
|
541 |
+
)
|
542 |
+
def remove_copy_from_optimizer(gm: IterGraphModule) -> None:
|
543 |
+
"""Erase the orphant copy_ that generated when tracing optimizer.
|
544 |
+
|
545 |
+
Two reasons why we could not simply use the DCE of fx.Graph.
|
546 |
+
1. fx.Graph treats copy_ as a side-effect node and does not erase it.
|
547 |
+
2. Users may want to preserve some orphan `copy_` that is not from the
|
548 |
+
optimizer.
|
549 |
+
If the second reason does not hold, this pass can be rewritten as using
|
550 |
+
DCE from fx.Graph (with the overwrite to the side-effect node list).
|
551 |
+
"""
|
552 |
+
MAX_COPY_DISTANCE = 5
|
553 |
+
remove_candidates: Set[fx.Node] = set()
|
554 |
+
for node in reversed(gm.graph.nodes):
|
555 |
+
if node.users:
|
556 |
+
continue
|
557 |
+
if node.op != OP.CALL_FUNCTION or node.target != aten.copy_.default:
|
558 |
+
continue
|
559 |
+
|
560 |
+
copy_ancestors: Set[fx.Node] = set()
|
561 |
+
nodes = collections.deque([node, None])
|
562 |
+
distance = 0
|
563 |
+
should_remove = False
|
564 |
+
while nodes and distance < MAX_COPY_DISTANCE:
|
565 |
+
visiting = nodes.popleft()
|
566 |
+
if visiting is None:
|
567 |
+
distance += 1
|
568 |
+
if nodes:
|
569 |
+
nodes.append(None)
|
570 |
+
continue
|
571 |
+
copy_ancestors.add(visiting)
|
572 |
+
if visiting.op == OP.CALL_FUNCTION and str(visiting.target).startswith(
|
573 |
+
("aten._foreach_", "aten._fused_")
|
574 |
+
):
|
575 |
+
should_remove = True
|
576 |
+
parents = pytree.arg_tree_leaves(*visiting.args, **visiting.kwargs)
|
577 |
+
for parent in parents:
|
578 |
+
if isinstance(parent, fx.Node):
|
579 |
+
nodes.append(parent)
|
580 |
+
if should_remove:
|
581 |
+
# We add all ancestors to the list and it is okay as not all of
|
582 |
+
# them will be erased -- only those nodes with zero users will be
|
583 |
+
# erased.
|
584 |
+
remove_candidates.update(copy_ancestors)
|
585 |
+
|
586 |
+
for node in reversed(gm.graph.nodes):
|
587 |
+
if node.users:
|
588 |
+
continue
|
589 |
+
if node not in remove_candidates:
|
590 |
+
continue
|
591 |
+
gm.graph.erase_node(node)
|
592 |
+
|
593 |
+
|
594 |
+
# The args list of fused_adam function. We don't care about kwargs.
|
595 |
+
AdamArgs = collections.namedtuple(
|
596 |
+
"AdamArgs",
|
597 |
+
["params", "grads", "exp_avgs", "exp_avg_sqs", "max_exp_avg_sqs", "state_steps"],
|
598 |
+
)
|
599 |
+
|
600 |
+
|
601 |
+
# TODO(fegin): Have a template class for all Block class.
|
602 |
+
@dataclass(unsafe_hash=True)
|
603 |
+
class FusedAdamBlock:
|
604 |
+
optim_node: fx.Node
|
605 |
+
generate_output: bool
|
606 |
+
# The output list of the copy nodes. The order follows the argument order.
|
607 |
+
param_outputs: List[fx.Node] = field(default_factory=list)
|
608 |
+
grad_outputs: List[fx.Node] = field(default_factory=list)
|
609 |
+
exp_avgs_outputs: List[fx.Node] = field(default_factory=list)
|
610 |
+
exp_avg_sqs_outputs: List[fx.Node] = field(default_factory=list)
|
611 |
+
# TODO(fegin): populate/generate the max_exp_avg_sqs if exists
|
612 |
+
max_exp_avg_sqs: List[fx.Node] = field(default_factory=list)
|
613 |
+
|
614 |
+
def generate_outputs(self):
|
615 |
+
# Iterate all the args and generate the corresponding output lists.
|
616 |
+
# Assuming the corrsesponding output nodes are not created yet.
|
617 |
+
def _generate_outputs(arg_idx, output_list):
|
618 |
+
graph = self.optim_node.graph
|
619 |
+
with graph.inserting_after(self.optim_node):
|
620 |
+
optim_getitem = graph.call_function(
|
621 |
+
operator.getitem, (self.optim_node, arg_idx)
|
622 |
+
)
|
623 |
+
for i, arg in enumerate(self.optim_node.args[arg_idx]):
|
624 |
+
with graph.inserting_after(optim_getitem):
|
625 |
+
updated_arg = graph.call_function(
|
626 |
+
operator.getitem, (optim_getitem, i)
|
627 |
+
)
|
628 |
+
with graph.inserting_after(updated_arg):
|
629 |
+
output_copy = graph.call_function(aten.copy_, (arg, updated_arg))
|
630 |
+
output_list.append(output_copy)
|
631 |
+
|
632 |
+
_generate_outputs(0, self.param_outputs)
|
633 |
+
# Do not generate gradient out list as it is not used.
|
634 |
+
_generate_outputs(2, self.exp_avgs_outputs)
|
635 |
+
_generate_outputs(3, self.exp_avg_sqs_outputs)
|
636 |
+
|
637 |
+
def populate_outputs(self):
|
638 |
+
# Populate the existing output lists from the graph.
|
639 |
+
def _populate_outputs(args_idx, output_list):
|
640 |
+
optim_getitem = self.optim_node
|
641 |
+
for user in self.optim_node.users:
|
642 |
+
assert (
|
643 |
+
user.target == operator.getitem
|
644 |
+
), f"The user of {self.optim_node} is not getitem."
|
645 |
+
if user.args[1] == args_idx:
|
646 |
+
optim_getitem = user
|
647 |
+
break
|
648 |
+
assert (
|
649 |
+
optim_getitem != self.optim_node
|
650 |
+
), f"Cannot find the getitem node for {self.optim_node}"
|
651 |
+
output_list.extend(
|
652 |
+
[self.optim_node] * len(cast(List[fx.Node], self.optim_node.args[0]))
|
653 |
+
)
|
654 |
+
for updated_arg in optim_getitem.users:
|
655 |
+
assert (
|
656 |
+
updated_arg.target == operator.getitem
|
657 |
+
), f"Unexpected node target {updated_arg.target}."
|
658 |
+
idx = updated_arg.args[1]
|
659 |
+
output_copy = next(iter(updated_arg.users))
|
660 |
+
assert str(output_copy.target).startswith(
|
661 |
+
"aten.copy_"
|
662 |
+
), f"Unexpected node target {output_copy.target}."
|
663 |
+
output_list[idx] = output_copy
|
664 |
+
for i, output in enumerate(output_list):
|
665 |
+
assert output != self.optim_node, f"{i}th output is not replaced."
|
666 |
+
|
667 |
+
assert output_list, f"The output for {self.optim_node} is empty."
|
668 |
+
|
669 |
+
_populate_outputs(0, self.param_outputs)
|
670 |
+
_populate_outputs(2, self.exp_avgs_outputs)
|
671 |
+
_populate_outputs(3, self.exp_avg_sqs_outputs)
|
672 |
+
|
673 |
+
def __post_init__(self):
|
674 |
+
if self.param_outputs:
|
675 |
+
return
|
676 |
+
if self.generate_output:
|
677 |
+
self.generate_outputs()
|
678 |
+
else:
|
679 |
+
self.populate_outputs()
|
680 |
+
|
681 |
+
|
682 |
+
@dataclass(unsafe_hash=True)
|
683 |
+
class ForeachAddBlock:
|
684 |
+
add_node: fx.Node
|
685 |
+
generate_output: bool
|
686 |
+
# The output list of the copy nodes. The order follows the argument order.
|
687 |
+
outputs: List[fx.Node] = field(default_factory=list)
|
688 |
+
|
689 |
+
def generate_outputs(self):
|
690 |
+
# Iterate all the args and generate the corresponding output lists
|
691 |
+
# Assuming the corrsesponding output nodes are not created yet.
|
692 |
+
graph = self.add_node.graph
|
693 |
+
for i, arg in enumerate(cast(Tuple[Any, ...], self.add_node.args[0])):
|
694 |
+
with graph.inserting_after(self.add_node):
|
695 |
+
updated_arg = graph.call_function(operator.getitem, (self.add_node, i))
|
696 |
+
with graph.inserting_after(updated_arg):
|
697 |
+
output_copy = graph.call_function(aten.copy_, (arg, updated_arg))
|
698 |
+
self.outputs.append(output_copy)
|
699 |
+
assert self.outputs, f"The output for {self.add_node} is empty."
|
700 |
+
|
701 |
+
def populate_outputs(self):
|
702 |
+
# Populate the existing output lists from the graph.
|
703 |
+
self.outputs = [
|
704 |
+
self.add_node for _ in cast(Tuple[Any, ...], self.add_node.args[0])
|
705 |
+
]
|
706 |
+
for updated_arg in self.add_node.users:
|
707 |
+
assert (
|
708 |
+
updated_arg.target == operator.getitem
|
709 |
+
), f"Unexpected node target {updated_arg.target}"
|
710 |
+
idx = cast(int, updated_arg.args[1])
|
711 |
+
output_copy = next(iter(updated_arg.users))
|
712 |
+
assert str(output_copy.target).startswith(
|
713 |
+
"aten.copy_"
|
714 |
+
), f"The execpted output node is different, {str(output_copy.target)}"
|
715 |
+
self.outputs[idx] = output_copy
|
716 |
+
for i, output in enumerate(self.outputs):
|
717 |
+
assert output != self.add_node, f"{i}th output is not replaced."
|
718 |
+
|
719 |
+
def __post_init__(self):
|
720 |
+
if self.outputs:
|
721 |
+
return
|
722 |
+
|
723 |
+
if self.generate_output:
|
724 |
+
self.generate_outputs()
|
725 |
+
else:
|
726 |
+
self.populate_outputs()
|
727 |
+
|
728 |
+
|
729 |
+
@dataclass(unsafe_hash=True)
|
730 |
+
class FusedOptimizerBlock:
|
731 |
+
step: ForeachAddBlock
|
732 |
+
optim: FusedAdamBlock
|
733 |
+
|
734 |
+
|
735 |
+
def get_fused_optimizer_block(optim_node: fx.Node) -> FusedOptimizerBlock:
|
736 |
+
"""Given a fused optimizer node and return the FusedOptimizerBlock."""
|
737 |
+
MAX_STEP_DISTANCE = 5
|
738 |
+
# Find the step (foreach_add)
|
739 |
+
nodes = collections.deque([optim_node, None])
|
740 |
+
step_node = optim_node
|
741 |
+
distance = 0
|
742 |
+
while nodes and distance < MAX_STEP_DISTANCE:
|
743 |
+
node = nodes.popleft()
|
744 |
+
if node is None:
|
745 |
+
distance += 1
|
746 |
+
if nodes:
|
747 |
+
nodes.append(None)
|
748 |
+
continue
|
749 |
+
elif node.op == OP.CALL_FUNCTION and str(node.target).startswith(
|
750 |
+
"aten._foreach_add"
|
751 |
+
):
|
752 |
+
step_node = node
|
753 |
+
break
|
754 |
+
else:
|
755 |
+
nodes.extend(
|
756 |
+
a
|
757 |
+
for a in pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
758 |
+
if isinstance(a, fx.Node)
|
759 |
+
)
|
760 |
+
if step_node == optim_node:
|
761 |
+
raise RuntimeError(
|
762 |
+
"Cannot find step node (foreach_add) for the optimizer node "
|
763 |
+
f"{optim_node} with {MAX_STEP_DISTANCE} BFS distance. "
|
764 |
+
"The API design does not match the tracing graph."
|
765 |
+
)
|
766 |
+
|
767 |
+
step = ForeachAddBlock(step_node, generate_output=False)
|
768 |
+
optim = FusedAdamBlock(optim_node, generate_output=False)
|
769 |
+
return FusedOptimizerBlock(step, optim)
|
770 |
+
|
771 |
+
|
772 |
+
def get_all_fused_optimizer_blocks(
|
773 |
+
gm: IterGraphModule, optim_ops: Union[Tuple[str, ...], str]
|
774 |
+
) -> List[FusedOptimizerBlock]:
|
775 |
+
"""Find all the FusedOptimizerBlock that the optimizer operators are in `optim_ops`."""
|
776 |
+
return [
|
777 |
+
get_fused_optimizer_block(node)
|
778 |
+
for node in gm.graph.nodes
|
779 |
+
if node.name.startswith(optim_ops)
|
780 |
+
]
|
781 |
+
|
782 |
+
|
783 |
+
def _split_fused_adam(
|
784 |
+
gm: IterGraphModule,
|
785 |
+
orig_optim_block: FusedOptimizerBlock,
|
786 |
+
split_gradients: Set[fx.Node],
|
787 |
+
) -> Tuple[FusedOptimizerBlock, FusedOptimizerBlock]:
|
788 |
+
"""Split the `orig_optim_block` into two FusedOptimizerBlock.
|
789 |
+
|
790 |
+
The first one will be the optimizer that optimize `split_gradients`. The second one is
|
791 |
+
used to optimize the remaining gradients.
|
792 |
+
An assert will be raised if one of the optimizer optimize zero gradients.
|
793 |
+
"""
|
794 |
+
orig_optim_args = AdamArgs(*orig_optim_block.optim.optim_node.args)
|
795 |
+
optim_args = (AdamArgs([], [], [], [], [], []), AdamArgs([], [], [], [], [], []))
|
796 |
+
# The only hint we can use to split the optimizer is the order/indices.
|
797 |
+
orig_optim_indices: Tuple[List[int], List[int]] = ([], [])
|
798 |
+
orig_step_indices: Tuple[List[int], List[int]] = ([], [])
|
799 |
+
|
800 |
+
for idx, gradient in enumerate(orig_optim_args.grads):
|
801 |
+
group_idx = 0 if gradient in split_gradients else 1
|
802 |
+
orig_optim_indices[group_idx].append(idx)
|
803 |
+
# Get the argument for idx-th gradient from orig_optim_args
|
804 |
+
for orig_arg, optim_arg in zip(orig_optim_args, optim_args[group_idx]):
|
805 |
+
# Only add the argument to the list if the original argument list
|
806 |
+
# is not empty. If the original argument list is empty, the new
|
807 |
+
# one must be an empty list as well.
|
808 |
+
if orig_arg:
|
809 |
+
optim_arg.append(orig_arg[idx])
|
810 |
+
|
811 |
+
# If argument order of step is the same as optimizer, nothing has to be
|
812 |
+
# done. However, it is risky to rely on this assumption so we populate
|
813 |
+
# the orig_step_indices.
|
814 |
+
orig_step_output = optim_args[group_idx].state_steps[-1]
|
815 |
+
assert str(orig_step_output.target).startswith(
|
816 |
+
"aten.copy_"
|
817 |
+
), f"The copy output is {orig_step_output.target}, expect aten.copy_"
|
818 |
+
orig_step_getitem = orig_step_output.args[1]
|
819 |
+
assert "getitem" in str(
|
820 |
+
orig_step_getitem.target
|
821 |
+
), f"The copy getitem is {orig_step_getitem.target}, expect operator.getitem"
|
822 |
+
orig_step_idx = orig_step_getitem.args[1]
|
823 |
+
orig_step_indices[group_idx].append(orig_step_idx)
|
824 |
+
|
825 |
+
if not all(l for l in (orig_step_indices + orig_optim_indices)):
|
826 |
+
raise ValueError("At least one split optimizer does not have input.")
|
827 |
+
|
828 |
+
output = get_output(gm.graph)
|
829 |
+
results: List[FusedOptimizerBlock] = []
|
830 |
+
flatten_output_args, spec = tree_flatten((output.args, output.kwargs))
|
831 |
+
flatten_output_args_indices: DefaultDict[
|
832 |
+
fx.Node, Set[int]
|
833 |
+
] = collections.defaultdict(set)
|
834 |
+
for idx, output_arg in enumerate(flatten_output_args):
|
835 |
+
if isinstance(output_arg, fx.Node):
|
836 |
+
flatten_output_args_indices[output_arg].add(idx)
|
837 |
+
|
838 |
+
def replace_flatten_output_args(orig_node: fx.Node, new_node: fx.Node):
|
839 |
+
for idx in flatten_output_args_indices[orig_node]:
|
840 |
+
flatten_output_args[idx] = new_node
|
841 |
+
|
842 |
+
# Create the new step and optim nodes and blocks.
|
843 |
+
for group_idx in range(2):
|
844 |
+
step_args: List[fx.Node] = []
|
845 |
+
orig_step_outputs: List[fx.Node] = []
|
846 |
+
# We have to create the new step node and block first because it is used
|
847 |
+
# for the new optim node as the input.
|
848 |
+
with gm.graph.inserting_after(orig_optim_block.optim.optim_node):
|
849 |
+
for idx in orig_step_indices[group_idx]:
|
850 |
+
step_args.append(
|
851 |
+
cast(Tuple[fx.Node, ...], orig_optim_block.step.add_node.args[0])[
|
852 |
+
idx
|
853 |
+
]
|
854 |
+
)
|
855 |
+
orig_step_outputs.append(orig_optim_block.step.outputs[idx])
|
856 |
+
step = gm.graph.call_function(
|
857 |
+
aten._foreach_add.Scalar,
|
858 |
+
(step_args, 1),
|
859 |
+
)
|
860 |
+
step_block = ForeachAddBlock(step, generate_output=True)
|
861 |
+
for i, step_output in enumerate(step_block.outputs):
|
862 |
+
# Replace the original step output in the graph output node with
|
863 |
+
# the new one.
|
864 |
+
orig_step_output = orig_step_outputs[i]
|
865 |
+
replace_flatten_output_args(orig_step_output, step_output)
|
866 |
+
# Also need to replace the step output used for the new optimizer.
|
867 |
+
assert optim_args[group_idx].state_steps[i] == orig_step_output, (
|
868 |
+
f"The expected step output node mismatched, {orig_step_output} "
|
869 |
+
f"{optim_args[group_idx].state_steps[i]}"
|
870 |
+
)
|
871 |
+
optim_args[group_idx].state_steps[i] = step_output
|
872 |
+
|
873 |
+
# Insert the optimizer node after the first step output because its
|
874 |
+
# topo sort order is the last.
|
875 |
+
with gm.graph.inserting_after(step_block.outputs[0]):
|
876 |
+
optim = gm.graph.call_function(
|
877 |
+
aten._fused_adam.default,
|
878 |
+
optim_args[group_idx],
|
879 |
+
orig_optim_block.optim.optim_node.kwargs,
|
880 |
+
)
|
881 |
+
optim_block = FusedAdamBlock(optim, generate_output=True)
|
882 |
+
for curr_idx, orig_idx in enumerate(orig_optim_indices[group_idx]):
|
883 |
+
list_names = ("param_outputs", "exp_avgs_outputs", "exp_avg_sqs_outputs")
|
884 |
+
for name in list_names:
|
885 |
+
orig_list = getattr(orig_optim_block.optim, name)
|
886 |
+
curr_list = getattr(optim_block, name)
|
887 |
+
replace_flatten_output_args(orig_list[orig_idx], curr_list[curr_idx])
|
888 |
+
|
889 |
+
results.append(FusedOptimizerBlock(step_block, optim_block))
|
890 |
+
|
891 |
+
# Optimizer is used as the output of the train_step. Therefore, we have to
|
892 |
+
# update the output node of the graph.
|
893 |
+
output_args, output_kwargs = tree_unflatten(flatten_output_args, spec)
|
894 |
+
gm.graph.node_set_args(output, output_args)
|
895 |
+
gm.graph.node_set_kwargs(output, output_kwargs)
|
896 |
+
# Remove the original copy_ nodes as they won't be DCE.
|
897 |
+
for copy_output in itertools.chain(
|
898 |
+
orig_optim_block.optim.param_outputs,
|
899 |
+
orig_optim_block.optim.exp_avgs_outputs,
|
900 |
+
orig_optim_block.optim.exp_avg_sqs_outputs,
|
901 |
+
):
|
902 |
+
gm.graph.erase_node(copy_output)
|
903 |
+
# Call DCE once to get rid of the old optimizer. By doing so, we will be
|
904 |
+
# able to erase the copy_ nodes of step later.
|
905 |
+
gm.graph.eliminate_dead_code()
|
906 |
+
for copy_output in orig_optim_block.step.outputs:
|
907 |
+
gm.graph.erase_node(copy_output)
|
908 |
+
# This is not required but calling this for consistency.
|
909 |
+
gm.graph.eliminate_dead_code()
|
910 |
+
|
911 |
+
return results[0], results[1]
|
912 |
+
|
913 |
+
|
914 |
+
def split_fused_optimizer(
|
915 |
+
gm: IterGraphModule,
|
916 |
+
optim_block: FusedOptimizerBlock,
|
917 |
+
split_gradients: Set[fx.Node],
|
918 |
+
) -> Tuple[FusedOptimizerBlock, FusedOptimizerBlock]:
|
919 |
+
if not split_gradients:
|
920 |
+
raise ValueError("The given split_gradients is empty.")
|
921 |
+
if str(optim_block.optim.optim_node.target).startswith("aten._fused_adam"):
|
922 |
+
return _split_fused_adam(gm, optim_block, split_gradients)
|
923 |
+
else:
|
924 |
+
raise NotImplementedError("Only fused_adam is supported now")
|
925 |
+
|
926 |
+
|
927 |
+
# TODO(fegin): The API only support fused adam now. Should extend it to support
|
928 |
+
# foreach as well.
|
929 |
+
@graph_optimization_pass(
|
930 |
+
prerequisites=[remove_copy_from_optimizer],
|
931 |
+
apply_after=[schedule_comm_wait],
|
932 |
+
)
|
933 |
+
def iter_move_grads_and_optimizers(
|
934 |
+
gm: IterGraphModule,
|
935 |
+
target_comm_node: str,
|
936 |
+
target_dest_node: str,
|
937 |
+
) -> None:
|
938 |
+
"""Extract a comm block and split out a new optimizer and step for it.
|
939 |
+
|
940 |
+
This subgraph is then moved to the forward graph.
|
941 |
+
"""
|
942 |
+
for comm_block in get_all_comm_blocks(gm, "all_reduce"):
|
943 |
+
if comm_block.comm_node.name == target_comm_node:
|
944 |
+
break
|
945 |
+
else:
|
946 |
+
raise ValueError(f"Cannot find {target_comm_node}")
|
947 |
+
|
948 |
+
optim_blocks = get_all_fused_optimizer_blocks(gm, "_fused_adam")
|
949 |
+
for optim_block in optim_blocks:
|
950 |
+
optim_args = AdamArgs(*optim_block.optim.optim_node.args)
|
951 |
+
one_output = next(iter(comm_block.outputs))
|
952 |
+
if one_output in optim_args.grads:
|
953 |
+
break
|
954 |
+
else:
|
955 |
+
raise ValueError(f"{target_comm_node} is not used by any fused optimizer.")
|
956 |
+
|
957 |
+
move_optim, _ = split_fused_optimizer(gm, optim_block, comm_block.outputs)
|
958 |
+
|
959 |
+
move_nodes = find_all_descendants(
|
960 |
+
gm, [comm_block.comm_node, move_optim.step.add_node]
|
961 |
+
)
|
962 |
+
|
963 |
+
stop_node = find_node(gm.graph, lambda n: n.name == target_dest_node)[0]
|
964 |
+
|
965 |
+
gm.graph.move_to_next_iter_before(move_nodes, stop_node)
|
966 |
+
|
967 |
+
|
968 |
+
def find_all_descendants(
|
969 |
+
gm: IterGraphModule,
|
970 |
+
parent_nodes: List[fx.Node],
|
971 |
+
) -> List[fx.Node]:
|
972 |
+
"""Identify the list of nodes to move during FX graph transformation."""
|
973 |
+
assert len(parent_nodes) > 0, "No parent nodes are given."
|
974 |
+
|
975 |
+
output = get_output(gm.graph)
|
976 |
+
dq_parent_nodes = collections.deque(parent_nodes)
|
977 |
+
move_node_set = set()
|
978 |
+
while dq_parent_nodes:
|
979 |
+
node = dq_parent_nodes.popleft()
|
980 |
+
move_node_set.add(node)
|
981 |
+
dq_parent_nodes += [
|
982 |
+
u for u in node.users if isinstance(u, fx.Node) and u != output
|
983 |
+
]
|
984 |
+
move_nodes = [node for node in gm.graph.nodes if node in move_node_set]
|
985 |
+
|
986 |
+
return move_nodes
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/graph_utils.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from enum import Enum
|
5 |
+
from typing import Callable, cast, Dict, Iterable, List, Set
|
6 |
+
|
7 |
+
import torch.fx as fx
|
8 |
+
from torch.fx.passes.shape_prop import TensorMetadata
|
9 |
+
from torch.utils import _pytree as pytree
|
10 |
+
from torch.utils._pytree import tree_flatten, tree_unflatten
|
11 |
+
|
12 |
+
|
13 |
+
logger: logging.Logger = logging.getLogger("graph_utils")
|
14 |
+
|
15 |
+
|
16 |
+
class OP(str, Enum):
|
17 |
+
CALL_FUNCTION = "call_function"
|
18 |
+
CALL_MODULE = "call_module"
|
19 |
+
CALL_METHOD = "call_method"
|
20 |
+
GET_ATTR = "get_attr"
|
21 |
+
OUTPUT = "output"
|
22 |
+
PLACEHOLDER = "placeholder"
|
23 |
+
|
24 |
+
|
25 |
+
class CommType(str, Enum):
|
26 |
+
ALLREDUCE = "allreduce_"
|
27 |
+
ALLGATHER = "allgather_"
|
28 |
+
BROADCAST = "broadcast_"
|
29 |
+
REDUCESCATTER = "reduce_scatter_"
|
30 |
+
SCATTER = "scatter_"
|
31 |
+
|
32 |
+
|
33 |
+
def get_node_tensor_metadata(node: fx.Node, is_required: bool = True) -> TensorMetadata:
|
34 |
+
metadata = node.meta.get("tensor_meta", None)
|
35 |
+
if is_required and metadata is None:
|
36 |
+
raise RuntimeError(
|
37 |
+
f"Callsite expects that ``tensor_meta`` exists in ``{node.name}``, "
|
38 |
+
f"but got None instead. Node: {node.op} {node.name} {node.target}"
|
39 |
+
)
|
40 |
+
return metadata
|
41 |
+
|
42 |
+
|
43 |
+
def get_output(graph: fx.Graph) -> fx.Node:
|
44 |
+
"""Take a graphmodule and return the graph output node.
|
45 |
+
|
46 |
+
We traverse in reverse to expedite it, with the idea that last node should be output
|
47 |
+
"""
|
48 |
+
for node in reversed(graph.nodes):
|
49 |
+
if node.op == OP.OUTPUT:
|
50 |
+
return node
|
51 |
+
raise RuntimeError(f"Cannot find the output node in {graph}")
|
52 |
+
|
53 |
+
|
54 |
+
def find_node(
|
55 |
+
graph: fx.Graph, predicate: Callable, reverse_order: bool = False
|
56 |
+
) -> List[fx.Node]:
|
57 |
+
"""Take a predicate and return all the nodes in the `graph` where the predicate holds."""
|
58 |
+
nodes = cast(Iterable[fx.Node], graph.nodes)
|
59 |
+
if reverse_order:
|
60 |
+
nodes = cast(Iterable[fx.Node], iter(reversed(nodes))) # type: ignore[call-overload]
|
61 |
+
return [node for node in nodes if predicate(node)]
|
62 |
+
|
63 |
+
|
64 |
+
def is_leaf_subgraph(graph: fx.Graph, subgraph: List[fx.Node]) -> bool:
|
65 |
+
"""Ensure nodes in ``subgraph`` satisfy one of the following rules.
|
66 |
+
|
67 |
+
1. The user of the node is in ``subgraph``.
|
68 |
+
2. The user of the node is output.
|
69 |
+
3. There are no users -- the node is a side-effect node.
|
70 |
+
"""
|
71 |
+
all_nodes: Set[fx.Node] = set(subgraph)
|
72 |
+
output = get_output(graph)
|
73 |
+
for node in subgraph:
|
74 |
+
for user in node.users:
|
75 |
+
if not isinstance(user, fx.Node):
|
76 |
+
continue
|
77 |
+
if user not in all_nodes and user != output:
|
78 |
+
return False
|
79 |
+
return True
|
80 |
+
|
81 |
+
|
82 |
+
def clone_subgraph(
|
83 |
+
graph: fx.Graph, subgraph: List[fx.Node], target: fx.Node
|
84 |
+
) -> List[fx.Node]:
|
85 |
+
"""Clone the given subgraph and insert it before ``target``.
|
86 |
+
|
87 |
+
This API currently does not support inserting after ``target``.
|
88 |
+
"""
|
89 |
+
all_nodes = set(subgraph)
|
90 |
+
mapping: Dict[fx.Node, fx.Node] = dict()
|
91 |
+
cloned_subgraph = []
|
92 |
+
with graph.inserting_before(target):
|
93 |
+
for node in subgraph:
|
94 |
+
cloned_node = graph.call_function(
|
95 |
+
node.target, node.args, node.kwargs, node.type
|
96 |
+
)
|
97 |
+
# TODO: there are many flatten/unflatten in IterGraph that
|
98 |
+
# can be simplified with tree_map. Will simplify this in
|
99 |
+
# a follow-up PR.
|
100 |
+
original_input = pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
101 |
+
cloned_input, spec = tree_flatten((cloned_node.args, cloned_node.kwargs))
|
102 |
+
mapped_cloned_input = []
|
103 |
+
for original_input_node, cloned_input_node in zip(
|
104 |
+
original_input, cloned_input
|
105 |
+
):
|
106 |
+
if (
|
107 |
+
isinstance(original_input_node, fx.Node)
|
108 |
+
and original_input_node in all_nodes
|
109 |
+
):
|
110 |
+
assert original_input_node in mapping
|
111 |
+
mapped_cloned_input.append(mapping[original_input_node])
|
112 |
+
else:
|
113 |
+
mapped_cloned_input.append(cloned_input_node)
|
114 |
+
cloned_node.args, cloned_node.kwargs = tree_unflatten(
|
115 |
+
mapped_cloned_input, spec
|
116 |
+
)
|
117 |
+
mapping[node] = cloned_node
|
118 |
+
cloned_subgraph.append(cloned_node)
|
119 |
+
|
120 |
+
return cloned_subgraph
|
121 |
+
|
122 |
+
|
123 |
+
def rebuild_graph(gm: fx.GraphModule, remove_dead_code: bool = True) -> None:
|
124 |
+
"""Run the required steps to ensure production-ready graph.
|
125 |
+
|
126 |
+
Note - per the fx docs, elimination of dead code is not very precise.
|
127 |
+
Hence, the flag to make this step optional.
|
128 |
+
"""
|
129 |
+
gm.graph.lint()
|
130 |
+
if remove_dead_code:
|
131 |
+
gm.graph.eliminate_dead_code()
|
132 |
+
gm.recompile()
|
133 |
+
|
134 |
+
|
135 |
+
def dump_graphs_to_files(graphs: Dict[str, fx.GraphModule], folder: str = "") -> str:
|
136 |
+
if not folder:
|
137 |
+
folder = tempfile.mkdtemp()
|
138 |
+
|
139 |
+
for prefix, gm in graphs.items():
|
140 |
+
with open(os.path.join(folder, f"{prefix}.graph"), "w") as fp:
|
141 |
+
fp.write(str(gm))
|
142 |
+
|
143 |
+
logger.warning("Dump graphs to %s", folder)
|
144 |
+
|
145 |
+
return folder
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/iter_graph_module.py
ADDED
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import inspect
|
3 |
+
import logging
|
4 |
+
from typing import Any, Callable, cast, Dict, List, Optional, Set, Tuple, Type
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch import fx
|
8 |
+
from torch.distributed._spmd.graph_utils import (
|
9 |
+
clone_subgraph,
|
10 |
+
get_output,
|
11 |
+
is_leaf_subgraph,
|
12 |
+
)
|
13 |
+
from torch.distributed._spmd.partial_lower import partial_lower
|
14 |
+
from torch.fx.graph import _PyTreeCodeGen, PythonCode
|
15 |
+
from torch.fx.node import Argument
|
16 |
+
from torch.profiler import record_function
|
17 |
+
from torch.utils import _pytree as pytree
|
18 |
+
from torch.utils._pytree import tree_flatten, tree_map, tree_map_only, tree_unflatten
|
19 |
+
|
20 |
+
|
21 |
+
logger: logging.Logger = logging.getLogger("IterGraphModule")
|
22 |
+
|
23 |
+
|
24 |
+
class IterGraph(fx.Graph):
|
25 |
+
"""``IterGraph`` is used to perform cross-iteration optimization.
|
26 |
+
|
27 |
+
``IterGraph`` keeps track of the 3 graphs, self (the original graph), setup graph, and
|
28 |
+
cleanup graph. The 3 graphs should be identical copies of a ``fx.Graph``.
|
29 |
+
|
30 |
+
IterGraph subclass fx.Graph to override the necessary APIs that will be used
|
31 |
+
when constructing a optimization, e.g., communication fusion. IterGraph also
|
32 |
+
provides APIs that originally belong to fx.Node and all these APIs will have
|
33 |
+
``node_`` prefix. For example, ``IterGraph.node_prepend`` is the equivalence
|
34 |
+
of ``fx.Node.prepend``. Note that all the optimizations must be constructed
|
35 |
+
using these APIs.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
orig_graph: fx.Graph,
|
41 |
+
setup_graph: fx.Graph,
|
42 |
+
cleanup_graph: fx.Graph,
|
43 |
+
owning_module: Optional[fx.GraphModule] = None,
|
44 |
+
tracer_cls: Optional[Type["fx.Tracer"]] = None,
|
45 |
+
tracer_extras: Optional[Dict[str, Any]] = None,
|
46 |
+
):
|
47 |
+
super().__init__(owning_module, tracer_cls, tracer_extras)
|
48 |
+
|
49 |
+
output_vals = self.graph_copy(orig_graph, {}, return_output_node=True)
|
50 |
+
# TODO: if we do ``deepcopy(_codegen)`` and the input argument contains
|
51 |
+
# a dictionary with the form of Dict[torch.Tensor, Any], the
|
52 |
+
# torch.fx._pytree.treen_flatten_spec will not be able to flatten the
|
53 |
+
# dict -- the torch.Tensor will be duplicated because the _input_spec
|
54 |
+
# will save the ``keys`` of a dictionary (the values are not saved).
|
55 |
+
self._codegen = copy.deepcopy(orig_graph._codegen)
|
56 |
+
assert isinstance(output_vals, tuple)
|
57 |
+
output_val, old_output_val = output_vals
|
58 |
+
super().output(output_val, type_expr=getattr(old_output_val, "type", None))
|
59 |
+
|
60 |
+
self.setup_graph = setup_graph
|
61 |
+
self.cleanup_graph = cleanup_graph
|
62 |
+
self._all_graphs: Tuple[fx.Graph, ...] = (
|
63 |
+
self.setup_graph,
|
64 |
+
self.cleanup_graph,
|
65 |
+
cast(fx.Graph, super()),
|
66 |
+
)
|
67 |
+
|
68 |
+
self._setup_mapping: Dict[fx.Node, fx.Node] = {}
|
69 |
+
self._cleanup_mapping: Dict[fx.Node, fx.Node] = {}
|
70 |
+
self._freeze_cross_iter_movement = False
|
71 |
+
self._cross_iter_block_count = 0
|
72 |
+
|
73 |
+
for node, setup_node, cleanup_node in zip(
|
74 |
+
self.nodes, self.setup_graph.nodes, self.cleanup_graph.nodes
|
75 |
+
):
|
76 |
+
self._setup_mapping[node] = setup_node
|
77 |
+
self._cleanup_mapping[node] = cleanup_node
|
78 |
+
|
79 |
+
self.num_extra_output = 0
|
80 |
+
|
81 |
+
def _lookup_node(self, node: fx.Node, graph: fx.Graph) -> Optional[fx.Node]:
|
82 |
+
if graph == self.setup_graph:
|
83 |
+
return self._setup_mapping.get(node, None)
|
84 |
+
elif graph == self.cleanup_graph:
|
85 |
+
return self._cleanup_mapping.get(node, None)
|
86 |
+
return node
|
87 |
+
|
88 |
+
def _fx_graph_call(
|
89 |
+
self, graph: fx.Graph, func: str, *args: Any, **kwargs: Any
|
90 |
+
) -> Any:
|
91 |
+
fx_graph: fx.Graph = graph if graph != self else cast(fx.Graph, super())
|
92 |
+
return getattr(fx_graph, func)(*args, **kwargs)
|
93 |
+
|
94 |
+
def _insert_context(self, func: str, node: fx.Node):
|
95 |
+
class _InsertPoint:
|
96 |
+
def __init__(self, insert_points: List[Any]):
|
97 |
+
self.insert_points = insert_points
|
98 |
+
|
99 |
+
def __enter__(self):
|
100 |
+
pass
|
101 |
+
|
102 |
+
def __exit__(self, type, value, tb):
|
103 |
+
for insert_point in self.insert_points:
|
104 |
+
insert_point.__exit__(type, value, tb)
|
105 |
+
|
106 |
+
insert_points = []
|
107 |
+
for graph in self._all_graphs:
|
108 |
+
if node:
|
109 |
+
actual_node = self._lookup_node(node, graph)
|
110 |
+
assert actual_node is not None, "Cannot handle None case now."
|
111 |
+
else:
|
112 |
+
actual_node = node
|
113 |
+
insert_points.append(getattr(graph, func)(actual_node))
|
114 |
+
|
115 |
+
return _InsertPoint(insert_points)
|
116 |
+
|
117 |
+
def inserting_after(self, node):
|
118 |
+
if self._freeze_cross_iter_movement:
|
119 |
+
return super().inserting_after(node)
|
120 |
+
return self._insert_context("inserting_after", node)
|
121 |
+
|
122 |
+
def inserting_before(self, node):
|
123 |
+
if self._freeze_cross_iter_movement:
|
124 |
+
return super().inserting_before(node)
|
125 |
+
return self._insert_context("inserting_before", node)
|
126 |
+
|
127 |
+
def _forward_subgraph_inputs(
|
128 |
+
self, subgraph: List[fx.Node], graph: fx.Graph, erase_node: bool
|
129 |
+
) -> int:
|
130 |
+
"""Turn the inputs of a subgraph into the extra output of the entire graph.
|
131 |
+
|
132 |
+
If ``erase_node`` is True, the subgraph will be erased from the graph -- essentially forward the inputs
|
133 |
+
of the subgraph to the output of the graph.
|
134 |
+
"""
|
135 |
+
output = get_output(graph)
|
136 |
+
inputs = []
|
137 |
+
all_nodes: Set[fx.Node] = set(subgraph)
|
138 |
+
|
139 |
+
for node in subgraph:
|
140 |
+
node_inputs = pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
141 |
+
for _input in node_inputs:
|
142 |
+
if not isinstance(_input, fx.Node):
|
143 |
+
continue
|
144 |
+
if _input in all_nodes:
|
145 |
+
continue
|
146 |
+
inputs.append(_input)
|
147 |
+
|
148 |
+
if erase_node:
|
149 |
+
# We have to remove the node in the reversed order to ensure the
|
150 |
+
# node has zero users.
|
151 |
+
erased = set()
|
152 |
+
for node in reversed(subgraph):
|
153 |
+
if len(node.users) == 1:
|
154 |
+
key = next(iter(node.users.keys()))
|
155 |
+
if key == output:
|
156 |
+
flatten_args, spec = tree_flatten((output.args, output.kwargs))
|
157 |
+
if node not in flatten_args:
|
158 |
+
# This optimizer node from the legacy _SPMD tracing.
|
159 |
+
node.users.clear()
|
160 |
+
elif str(node.target).startswith("aten.copy_"):
|
161 |
+
# This is the case where the optimizer is
|
162 |
+
# functionalized with copy_.
|
163 |
+
for i in range(len(flatten_args)):
|
164 |
+
if flatten_args[i] == node:
|
165 |
+
flatten_args[i] = node.args[0]
|
166 |
+
else:
|
167 |
+
# We have not figured out semantics of forwarding
|
168 |
+
# all diff ops.
|
169 |
+
raise RuntimeError(
|
170 |
+
f"IterGraph does not how to forward the output of {node}"
|
171 |
+
)
|
172 |
+
output.args, output.kwargs = tree_unflatten(flatten_args, spec)
|
173 |
+
|
174 |
+
# This is the step case where there is a virtual data dependency
|
175 |
+
# (in-place update) between step and optimizer. And
|
176 |
+
# functionalize_optim add this dependency
|
177 |
+
for user in list(node.users.keys()):
|
178 |
+
if user in erased:
|
179 |
+
node.users.pop(user)
|
180 |
+
if node.users:
|
181 |
+
raise RuntimeError(
|
182 |
+
"IterGraph has not supported moving the nodes that "
|
183 |
+
"produce users output result. "
|
184 |
+
f"Error node: {node}."
|
185 |
+
)
|
186 |
+
self._fx_graph_call(graph, "erase_node", node)
|
187 |
+
erased.add(node)
|
188 |
+
|
189 |
+
# Add all the extra output nodes into a list and append the list to
|
190 |
+
# the original output.args[0].
|
191 |
+
if self.num_extra_output:
|
192 |
+
# If the extra-output list already exist, just use it.
|
193 |
+
cast(List[fx.Node], output.args[0][-1]).extend(inputs) # type: ignore[index]
|
194 |
+
new_output = output.args[0]
|
195 |
+
else:
|
196 |
+
# When adding the extra-output list, out_spec of _PyTreeCodeGen
|
197 |
+
# must be updated accordingly.
|
198 |
+
if isinstance(graph._codegen, _PyTreeCodeGen):
|
199 |
+
codegen = graph._codegen
|
200 |
+
new_output = list(output.args[0]) # type: ignore[arg-type]
|
201 |
+
new_output.append(inputs)
|
202 |
+
assert codegen.pytree_info.out_spec is not None
|
203 |
+
original_tree_out = tree_unflatten(
|
204 |
+
cast(List[Any], output.args[0]), codegen.pytree_info.out_spec
|
205 |
+
)
|
206 |
+
# Use None as a placeholder. If we use the extra-output list
|
207 |
+
# the list will be flatten as well and put into out_spec.
|
208 |
+
_, out_spec = tree_flatten((original_tree_out, None))
|
209 |
+
codegen.pytree_info = codegen.pytree_info._replace(out_spec=out_spec)
|
210 |
+
else:
|
211 |
+
new_output = (output.args[0], inputs)
|
212 |
+
self._fx_graph_call(graph, "erase_node", output)
|
213 |
+
self._fx_graph_call(graph, "output", new_output)
|
214 |
+
|
215 |
+
logger.info("Extended outputs from the subgraph inputs: %s", str(inputs))
|
216 |
+
return len(inputs)
|
217 |
+
|
218 |
+
def _forward_inputs_to_subgraph(
|
219 |
+
self, subgraph: List[fx.Node], graph: fx.Graph, extra_input: int
|
220 |
+
) -> None:
|
221 |
+
"""Create extra input nodes and forward the input nodes to the ``subgraph``.
|
222 |
+
|
223 |
+
The external input nodes of ``subgraph`` (nodes that are not in ``subgraph``) will replaced by the newly
|
224 |
+
created input nodes.
|
225 |
+
"""
|
226 |
+
placeholders = [node for node in graph.nodes if str(node.op) == "placeholder"]
|
227 |
+
assert placeholders, "No placeholders are found"
|
228 |
+
# Append the extra input nodes to the current input nodes.
|
229 |
+
with self._fx_graph_call(graph, "inserting_after", placeholders[-1]):
|
230 |
+
new_input_nodes = list(
|
231 |
+
reversed(
|
232 |
+
[
|
233 |
+
self._fx_graph_call(
|
234 |
+
graph,
|
235 |
+
"placeholder",
|
236 |
+
f"cross_iter_input_{self._cross_iter_block_count}_{i}",
|
237 |
+
)
|
238 |
+
for i in reversed(range(extra_input))
|
239 |
+
]
|
240 |
+
)
|
241 |
+
)
|
242 |
+
|
243 |
+
# Update the inputs of subgraph to use the newly created input nodes.
|
244 |
+
all_nodes = set(subgraph)
|
245 |
+
new_input_index = 0
|
246 |
+
for node in subgraph:
|
247 |
+
node_inputs, spec = tree_flatten((node.args, node.kwargs))
|
248 |
+
new_node_inputs = []
|
249 |
+
for input_node in node_inputs:
|
250 |
+
if not isinstance(input_node, fx.Node) or input_node in all_nodes:
|
251 |
+
new_node_inputs.append(input_node)
|
252 |
+
else:
|
253 |
+
new_node_inputs.append(new_input_nodes[new_input_index])
|
254 |
+
new_input_index += 1
|
255 |
+
node.args, node.kwargs = tree_unflatten(new_node_inputs, spec)
|
256 |
+
assert new_input_index == len(
|
257 |
+
new_input_nodes
|
258 |
+
), f"More inputs than needed {len(new_input_nodes)} > {new_input_index}"
|
259 |
+
|
260 |
+
# Update the in_spec of _PyTreeCodeGen if in_spec is not None (the new
|
261 |
+
# SPMD makes in_spec as None).
|
262 |
+
if (
|
263 |
+
isinstance(graph._codegen, _PyTreeCodeGen)
|
264 |
+
and graph._codegen.pytree_info.in_spec is not None
|
265 |
+
):
|
266 |
+
codegen = graph._codegen
|
267 |
+
original_tree_in = tree_unflatten(placeholders, codegen.pytree_info.in_spec)
|
268 |
+
_, in_spec = tree_flatten(tuple(list(original_tree_in) + new_input_nodes))
|
269 |
+
codegen.pytree_info = codegen.pytree_info._replace(in_spec=in_spec)
|
270 |
+
for new_input in new_input_nodes:
|
271 |
+
codegen.pytree_info.orig_args.append(new_input.name)
|
272 |
+
codegen.pytree_info = codegen.pytree_info._replace(in_spec=in_spec)
|
273 |
+
|
274 |
+
def move_to_next_iter_before(
|
275 |
+
self, subgraph: List[fx.Node], target_node: fx.Node
|
276 |
+
) -> None:
|
277 |
+
"""Move the ``subgraph`` to the next iteration before ``target_node``.
|
278 |
+
|
279 |
+
The ``subgraph`` is a list of fx.Node and must satisfy the following
|
280 |
+
restrictions:
|
281 |
+
1. The order of the nodes in ``subgraph`` must obey the topological
|
282 |
+
sort order.
|
283 |
+
2. The users of the node in ``subgraph`` must be one of the following:
|
284 |
+
a.) the user is also a node in ``subgraph``.
|
285 |
+
b.) the user is the output of the full graph.
|
286 |
+
c.) the node has users (side effect node).
|
287 |
+
"""
|
288 |
+
if self._freeze_cross_iter_movement:
|
289 |
+
raise RuntimeError(
|
290 |
+
"The cross-iteration movement has been frozen for the given "
|
291 |
+
"IterGraph."
|
292 |
+
)
|
293 |
+
|
294 |
+
if not is_leaf_subgraph(self, subgraph):
|
295 |
+
raise ValueError(
|
296 |
+
"The target nodes for ``move_to_next_iter_before`` must "
|
297 |
+
"satisfy one of the following conditions: 1) the user of the "
|
298 |
+
"node is in the target nodes, 2) the user is the output of the "
|
299 |
+
"graph, 3) there are no users -- the node is a side-effect node. "
|
300 |
+
)
|
301 |
+
|
302 |
+
self._cross_iter_block_count += 1
|
303 |
+
# The main graph must be the last one to be modified. Otherwise, the
|
304 |
+
# mapping may change and hence introduce incorrect mapping for setup
|
305 |
+
# and cleanup graphs.
|
306 |
+
|
307 |
+
# For the setup graph, no additional input is needed but additional
|
308 |
+
# outputs will be created. The additional output represents the input of
|
309 |
+
# the action to be moved to the next iteration -- main graph.
|
310 |
+
setup_subgraph: List[fx.Node] = []
|
311 |
+
for node in subgraph:
|
312 |
+
mapped_node = self._lookup_node(node, self.setup_graph)
|
313 |
+
assert mapped_node is not None
|
314 |
+
setup_subgraph.append(mapped_node)
|
315 |
+
setup_extra_input = self._forward_subgraph_inputs(
|
316 |
+
subgraph=setup_subgraph,
|
317 |
+
graph=self.setup_graph,
|
318 |
+
erase_node=True,
|
319 |
+
)
|
320 |
+
|
321 |
+
# For the cleanup graph, additional input is required to get the output
|
322 |
+
# from the last iteration -- main graph. Additional nodes are also
|
323 |
+
# needed to perform the action moved from the last iteration.
|
324 |
+
target_cleanup_node = self._lookup_node(target_node, self.cleanup_graph)
|
325 |
+
assert target_cleanup_node is not None, "The target_cleanup_node is None."
|
326 |
+
cleanup_subgraph: List[fx.Node] = []
|
327 |
+
for node in subgraph:
|
328 |
+
mapped_node = self._lookup_node(node, self.cleanup_graph)
|
329 |
+
assert mapped_node is not None
|
330 |
+
cleanup_subgraph.append(mapped_node)
|
331 |
+
cloned_subgraph = clone_subgraph(
|
332 |
+
self.cleanup_graph,
|
333 |
+
cleanup_subgraph,
|
334 |
+
target=target_cleanup_node,
|
335 |
+
)
|
336 |
+
self._forward_inputs_to_subgraph(
|
337 |
+
cloned_subgraph, self.cleanup_graph, setup_extra_input
|
338 |
+
)
|
339 |
+
|
340 |
+
# For the main graph, additional input will be created to represent
|
341 |
+
# the output from the last iteration -- main graph or setup graph.
|
342 |
+
# Additional output will also be generated to represent the input for
|
343 |
+
# the next iteration -- the main graph or the cleanup graph.
|
344 |
+
main_extra_input = self._forward_subgraph_inputs(
|
345 |
+
subgraph=subgraph, graph=self, erase_node=False
|
346 |
+
)
|
347 |
+
assert main_extra_input == setup_extra_input
|
348 |
+
for node in subgraph:
|
349 |
+
target_node.prepend(node)
|
350 |
+
self._forward_inputs_to_subgraph(subgraph, self, main_extra_input)
|
351 |
+
|
352 |
+
# TODO: This is a temporary solution. We are going to remove DCE usage
|
353 |
+
# or have something to replace fx DCE.
|
354 |
+
for node in self.cleanup_graph.nodes:
|
355 |
+
if len(node.users) == 0:
|
356 |
+
node.users["__hold__"] = None # type: ignore[index]
|
357 |
+
for node in self.nodes:
|
358 |
+
if len(node.users) == 0:
|
359 |
+
node.users["__hold__"] = None # type: ignore[index]
|
360 |
+
self.num_extra_output += main_extra_input
|
361 |
+
|
362 |
+
def move_before(self, nodes: List[fx.Node], target_node: fx.Node) -> None:
|
363 |
+
for graph in self._all_graphs:
|
364 |
+
actual_nodes = [self._lookup_node(node, graph) for node in nodes]
|
365 |
+
actual_target_node = self._lookup_node(target_node, graph)
|
366 |
+
assert actual_target_node is not None
|
367 |
+
for actual_node in actual_nodes:
|
368 |
+
actual_target_node.prepend(actual_node)
|
369 |
+
|
370 |
+
def move_after(self, nodes: List[fx.Node], target_node: fx.Node) -> None:
|
371 |
+
for graph in self._all_graphs:
|
372 |
+
actual_nodes = [self._lookup_node(node, graph) for node in nodes]
|
373 |
+
actual_target_node = self._lookup_node(target_node, graph)
|
374 |
+
for actual_node in actual_nodes:
|
375 |
+
assert actual_target_node is not None
|
376 |
+
actual_target_node.append(actual_node)
|
377 |
+
actual_target_node = actual_node
|
378 |
+
|
379 |
+
def call_function(
|
380 |
+
self,
|
381 |
+
the_function: Callable[..., Any],
|
382 |
+
args: Optional[Tuple[Argument, ...]] = None,
|
383 |
+
kwargs: Optional[Dict[str, Argument]] = None,
|
384 |
+
type_expr: Optional[Any] = None,
|
385 |
+
) -> fx.Node:
|
386 |
+
if self._freeze_cross_iter_movement:
|
387 |
+
return super().call_function(the_function, args, kwargs, type_expr)
|
388 |
+
|
389 |
+
setup_args = tree_map(
|
390 |
+
lambda arg: self._lookup_node(arg, self.setup_graph)
|
391 |
+
if isinstance(arg, fx.Node)
|
392 |
+
else arg,
|
393 |
+
args,
|
394 |
+
)
|
395 |
+
setup_kwargs = tree_map(
|
396 |
+
lambda arg: self._lookup_node(arg, self.setup_graph)
|
397 |
+
if isinstance(arg, fx.Node)
|
398 |
+
else arg,
|
399 |
+
kwargs,
|
400 |
+
)
|
401 |
+
cleanup_args = tree_map(
|
402 |
+
lambda arg: self._lookup_node(arg, self.cleanup_graph)
|
403 |
+
if isinstance(arg, fx.Node)
|
404 |
+
else arg,
|
405 |
+
args,
|
406 |
+
)
|
407 |
+
cleanup_kwargs = tree_map(
|
408 |
+
lambda arg: self._lookup_node(arg, self.cleanup_graph)
|
409 |
+
if isinstance(arg, fx.Node)
|
410 |
+
else arg,
|
411 |
+
kwargs,
|
412 |
+
)
|
413 |
+
|
414 |
+
setup_node = self.setup_graph.call_function(
|
415 |
+
the_function, setup_args, setup_kwargs, type_expr
|
416 |
+
)
|
417 |
+
main_node = super().call_function(the_function, args, kwargs, type_expr)
|
418 |
+
cleanup_node = self.cleanup_graph.call_function(
|
419 |
+
the_function, cleanup_args, cleanup_kwargs, type_expr
|
420 |
+
)
|
421 |
+
self._setup_mapping[main_node] = setup_node
|
422 |
+
self._cleanup_mapping[main_node] = cleanup_node
|
423 |
+
return main_node
|
424 |
+
|
425 |
+
def erase_node(self, to_erase: fx.Node) -> None:
|
426 |
+
if self._freeze_cross_iter_movement:
|
427 |
+
return super().erase_node(to_erase)
|
428 |
+
|
429 |
+
setup_node = self._lookup_node(to_erase, self.setup_graph)
|
430 |
+
assert setup_node is not None, "setup_node is None"
|
431 |
+
self.setup_graph.erase_node(setup_node)
|
432 |
+
super().erase_node(to_erase)
|
433 |
+
cleanup_node = self._lookup_node(to_erase, self.cleanup_graph)
|
434 |
+
self.cleanup_graph.erase_node(cleanup_node)
|
435 |
+
|
436 |
+
def placeholder(
|
437 |
+
self,
|
438 |
+
name: str,
|
439 |
+
type_expr: Optional[Any] = None,
|
440 |
+
default_value: Any = inspect.Signature.empty,
|
441 |
+
) -> fx.Node:
|
442 |
+
if self._freeze_cross_iter_movement:
|
443 |
+
return super().placeholder(name, type_expr, default_value)
|
444 |
+
|
445 |
+
main_placeholder = super().placeholder(name, type_expr, default_value)
|
446 |
+
setup_placeholder = self.setup_graph.placeholder(name, type_expr, default_value)
|
447 |
+
cleanup_placeholder = self.cleanup_graph.placeholder(
|
448 |
+
name, type_expr, default_value
|
449 |
+
)
|
450 |
+
self._setup_mapping[main_placeholder] = setup_placeholder
|
451 |
+
self._cleanup_mapping[main_placeholder] = cleanup_placeholder
|
452 |
+
return main_placeholder
|
453 |
+
|
454 |
+
def output(self, result: Argument, type_expr: Optional[Any] = None) -> fx.Node:
|
455 |
+
if self._freeze_cross_iter_movement:
|
456 |
+
return super().output(result, type_expr)
|
457 |
+
|
458 |
+
main_output = super().output(result, type_expr)
|
459 |
+
setup_result = tree_map(
|
460 |
+
lambda _result: self._lookup_node(_result, self.setup_graph)
|
461 |
+
if isinstance(_result, fx.Node)
|
462 |
+
else _result,
|
463 |
+
result,
|
464 |
+
)
|
465 |
+
cleanup_result = tree_map(
|
466 |
+
lambda _result: self._lookup_node(_result, self.cleanup_graph)
|
467 |
+
if isinstance(_result, fx.Node)
|
468 |
+
else _result,
|
469 |
+
result,
|
470 |
+
)
|
471 |
+
self.setup_graph.output(setup_result, type_expr)
|
472 |
+
self.cleanup_graph.output(cleanup_result, type_expr)
|
473 |
+
|
474 |
+
return main_output
|
475 |
+
|
476 |
+
def lint(self) -> None:
|
477 |
+
self.setup_graph.lint()
|
478 |
+
super().lint()
|
479 |
+
self.cleanup_graph.lint()
|
480 |
+
|
481 |
+
def node_prepend(self, target_node: fx.Node, node: fx.Node) -> None:
|
482 |
+
"""Prepend node to target_node."""
|
483 |
+
if self._freeze_cross_iter_movement:
|
484 |
+
target_node.prepend(node)
|
485 |
+
return
|
486 |
+
|
487 |
+
for graph in self._all_graphs:
|
488 |
+
actual_node = self._lookup_node(node, graph)
|
489 |
+
assert actual_node is not None, "The node is None"
|
490 |
+
actual_target_node = self._lookup_node(target_node, graph)
|
491 |
+
assert actual_target_node is not None, "The target node is None"
|
492 |
+
actual_target_node.prepend(actual_node)
|
493 |
+
|
494 |
+
def node_append(self, target_node: fx.Node, node: fx.Node) -> None:
|
495 |
+
"""Append node to target_node."""
|
496 |
+
if self._freeze_cross_iter_movement:
|
497 |
+
target_node.append(node)
|
498 |
+
return
|
499 |
+
|
500 |
+
for graph in self._all_graphs:
|
501 |
+
actual_node = self._lookup_node(node, graph)
|
502 |
+
assert actual_node is not None, f"The actual node is None, {node}."
|
503 |
+
actual_target_node = self._lookup_node(target_node, graph)
|
504 |
+
assert (
|
505 |
+
actual_target_node is not None
|
506 |
+
), f"The actual target node is None, {target_node}."
|
507 |
+
actual_target_node.append(actual_node)
|
508 |
+
|
509 |
+
def node_set_args(self, node: fx.Node, args: Tuple[Argument, ...]) -> None:
|
510 |
+
if self._freeze_cross_iter_movement:
|
511 |
+
node.args = args
|
512 |
+
return
|
513 |
+
|
514 |
+
setup_args = tree_map_only(
|
515 |
+
fx.Node, lambda _arg: self._lookup_node(_arg, self.setup_graph), args
|
516 |
+
)
|
517 |
+
setup_node = self._lookup_node(node, self.setup_graph)
|
518 |
+
assert setup_node is not None
|
519 |
+
setup_node.args = setup_args
|
520 |
+
cleanup_args = tree_map_only(
|
521 |
+
fx.Node, lambda _arg: self._lookup_node(_arg, self.cleanup_graph), args
|
522 |
+
)
|
523 |
+
cleanup_node = self._lookup_node(node, self.cleanup_graph)
|
524 |
+
assert cleanup_node is not None
|
525 |
+
cleanup_node.args = cleanup_args
|
526 |
+
node.args = args
|
527 |
+
|
528 |
+
def node_set_kwargs(self, node: fx.Node, kwargs: Dict[str, Argument]) -> None:
|
529 |
+
if self._freeze_cross_iter_movement:
|
530 |
+
node.kwargs = kwargs
|
531 |
+
return
|
532 |
+
|
533 |
+
setup_kwargs = tree_map_only(
|
534 |
+
fx.Node, lambda _arg: self._lookup_node(_arg, self.setup_graph), kwargs
|
535 |
+
)
|
536 |
+
setup_node = self._lookup_node(node, self.setup_graph)
|
537 |
+
assert setup_node is not None
|
538 |
+
setup_node.kwargs = setup_kwargs
|
539 |
+
cleanup_kwargs = tree_map_only(
|
540 |
+
fx.Node, lambda _arg: self._lookup_node(_arg, self.cleanup_graph), kwargs
|
541 |
+
)
|
542 |
+
cleanup_node = self._lookup_node(node, self.cleanup_graph)
|
543 |
+
assert cleanup_node is not None
|
544 |
+
cleanup_node.kwargs = cleanup_kwargs
|
545 |
+
node.kwargs = kwargs
|
546 |
+
|
547 |
+
def node_replace_all_uses_with(
|
548 |
+
self,
|
549 |
+
node: fx.Node,
|
550 |
+
replace_with: fx.Node,
|
551 |
+
delete_user_cb: Callable[[fx.Node], bool] = lambda user: True,
|
552 |
+
*,
|
553 |
+
propagate_meta=False,
|
554 |
+
) -> List[fx.Node]:
|
555 |
+
for graph in self._all_graphs:
|
556 |
+
actual_node = self._lookup_node(node, graph)
|
557 |
+
actual_replace_with = self._lookup_node(replace_with, graph)
|
558 |
+
assert actual_node is not None
|
559 |
+
ret = actual_node.replace_all_uses_with(
|
560 |
+
actual_replace_with,
|
561 |
+
delete_user_cb,
|
562 |
+
propagate_meta=propagate_meta,
|
563 |
+
)
|
564 |
+
return ret # type: ignore[possibly-undefined]
|
565 |
+
|
566 |
+
def node_add_user(self, node: fx.Node, user: Any) -> None:
|
567 |
+
for graph in self._all_graphs:
|
568 |
+
actual_node = self._lookup_node(node, graph)
|
569 |
+
if isinstance(user, fx.Node):
|
570 |
+
actual_user_node = self._lookup_node(user, graph)
|
571 |
+
else:
|
572 |
+
actual_user_node = user
|
573 |
+
assert actual_node is not None
|
574 |
+
actual_node.users[actual_user_node] = None # type: ignore[index]
|
575 |
+
|
576 |
+
def node_remove_user(self, node: fx.Node, user: Any) -> None:
|
577 |
+
for graph in self._all_graphs:
|
578 |
+
actual_node = self._lookup_node(node, graph)
|
579 |
+
if isinstance(user, fx.Node):
|
580 |
+
actual_user_node = self._lookup_node(user, graph)
|
581 |
+
else:
|
582 |
+
actual_user_node = user
|
583 |
+
assert actual_node is not None
|
584 |
+
del actual_node.users[actual_user_node] # type: ignore[arg-type]
|
585 |
+
|
586 |
+
def keep_unused_nodes(self) -> None:
|
587 |
+
for node in self.nodes:
|
588 |
+
if len(node.users) == 0 and str(node.op) != "output":
|
589 |
+
self.node_add_user(node, "__hold__")
|
590 |
+
|
591 |
+
def functionalize_optim(self) -> None:
|
592 |
+
# IterGraph can only support full graph (fwd+bwd+optim). As optimizer
|
593 |
+
# is not a functional call (it is inplace op), this method adds the of
|
594 |
+
# the optimizer call. This method has strong assumption of the optimizer
|
595 |
+
# and may not always be working. This method is intended be a temporary
|
596 |
+
# solution only.
|
597 |
+
|
598 |
+
# TODO: remove this API after DCE is removed
|
599 |
+
for node in reversed(self.nodes):
|
600 |
+
if node.name.startswith("output"):
|
601 |
+
output_node = node
|
602 |
+
elif node.name.startswith(
|
603 |
+
"_fused_adam_",
|
604 |
+
):
|
605 |
+
optim_node = node
|
606 |
+
elif node.name.startswith(
|
607 |
+
"_foreach_add_",
|
608 |
+
):
|
609 |
+
step_node = node
|
610 |
+
self.node_add_user(optim_node, output_node) # type: ignore[possibly-undefined]
|
611 |
+
self.node_add_user(step_node, optim_node) # type: ignore[possibly-undefined]
|
612 |
+
|
613 |
+
def defunctionalize_optim(self) -> None:
|
614 |
+
# TODO: remove this API after DCE is not used with IterGraph
|
615 |
+
for graph in self._all_graphs:
|
616 |
+
for node in reversed(graph.nodes):
|
617 |
+
if node.name.startswith("output"):
|
618 |
+
output_node = node
|
619 |
+
elif node.name.startswith(
|
620 |
+
"_fused_adam_",
|
621 |
+
):
|
622 |
+
optim_node = node
|
623 |
+
elif node.name.startswith(
|
624 |
+
"_foreach_add_",
|
625 |
+
):
|
626 |
+
step_node = node
|
627 |
+
optim_node.users.pop(output_node, None) # type: ignore[possibly-undefined]
|
628 |
+
step_node.users.pop(optim_node, None) # type: ignore[possibly-undefined]
|
629 |
+
|
630 |
+
def freeze_cross_iter_movement(self) -> None:
|
631 |
+
self._freeze_cross_iter_movement = True
|
632 |
+
|
633 |
+
|
634 |
+
class IterGraphModule(nn.Module):
|
635 |
+
"""``IterGraphModule`` provides the ability to do cross-iteration optimization.
|
636 |
+
|
637 |
+
Given a ``fx.GraphModule``, main_gm, ``IterGraphModule`` internally
|
638 |
+
duplicate it to 3 copies and redirect the ``forward`` request to a different
|
639 |
+
``fx.GraphModule`` based on the iteration count. This allows users to do
|
640 |
+
graph optimizations that across iterations (e.g., moving collective wait in
|
641 |
+
the backward to the forward of the next iteration).
|
642 |
+
|
643 |
+
Note that users must call the APIs provided by ``IterGraphModule`` or
|
644 |
+
``IterGraph`` to rewrite the graph so that ``IterGraphModule`` can keep the
|
645 |
+
data dependency for all 3 graphs.
|
646 |
+
"""
|
647 |
+
|
648 |
+
def __init__(
|
649 |
+
self,
|
650 |
+
main_gm: fx.GraphModule,
|
651 |
+
max_iters: int = -1,
|
652 |
+
enable_inductor: bool = False,
|
653 |
+
) -> None:
|
654 |
+
super().__init__()
|
655 |
+
|
656 |
+
def _copy_gm(src: fx.GraphModule, graph: fx.Graph) -> fx.GraphModule:
|
657 |
+
gm = fx.GraphModule(src, graph)
|
658 |
+
gm.meta = getattr(graph, "meta", {})
|
659 |
+
return gm
|
660 |
+
|
661 |
+
self.setup_gm = _copy_gm(main_gm, copy.deepcopy(main_gm.graph))
|
662 |
+
self.cleanup_gm = _copy_gm(main_gm, copy.deepcopy(main_gm.graph))
|
663 |
+
self.main_gm = _copy_gm(
|
664 |
+
main_gm,
|
665 |
+
IterGraph(main_gm.graph, self.setup_gm.graph, self.cleanup_gm.graph),
|
666 |
+
)
|
667 |
+
|
668 |
+
self._iter = 0
|
669 |
+
self._max_iters = max_iters
|
670 |
+
self._previous_output: Tuple[Any, ...] = tuple()
|
671 |
+
self._num_extra_output = 0
|
672 |
+
self._is_frozen = False
|
673 |
+
self._enable_inductor = enable_inductor
|
674 |
+
|
675 |
+
def finalize_setup(self) -> None:
|
676 |
+
"""Set up the internal states and also get the signal from users that what is the maximum iteration count.
|
677 |
+
|
678 |
+
This method must be called before the forward() is called.
|
679 |
+
"""
|
680 |
+
if not self._is_frozen:
|
681 |
+
self.graph.freeze_cross_iter_movement()
|
682 |
+
self._num_extra_output = self.graph.num_extra_output
|
683 |
+
if self._enable_inductor:
|
684 |
+
self.main_gm = partial_lower(self.main_gm)
|
685 |
+
self._is_frozen = True
|
686 |
+
|
687 |
+
self._iter = 0
|
688 |
+
|
689 |
+
def _run(self, gm: fx.GraphModule, last_iter: bool, *args, **kwargs) -> Any:
|
690 |
+
if self._num_extra_output > 0:
|
691 |
+
new_args = args + (self._previous_output)
|
692 |
+
output = gm(*new_args, **kwargs)
|
693 |
+
if not last_iter:
|
694 |
+
assert len(output) == 2
|
695 |
+
self._previous_output = tuple(output[-1])
|
696 |
+
assert (
|
697 |
+
len(self._previous_output) > 0
|
698 |
+
), "There should be at least one extra output."
|
699 |
+
output = output[0]
|
700 |
+
else:
|
701 |
+
# No cross-iteration optimization is done. Simply call the
|
702 |
+
# GraphModule.
|
703 |
+
output = gm(*args, **kwargs)
|
704 |
+
return output
|
705 |
+
|
706 |
+
def forward(self, *args: Any, last_iter: bool = False, **kwargs: Any) -> Any:
|
707 |
+
self._iter += 1
|
708 |
+
last_iter = last_iter or self._iter == self._max_iters
|
709 |
+
if last_iter:
|
710 |
+
logger.info("Using the cleanup graph")
|
711 |
+
gm = self.cleanup_gm
|
712 |
+
profiler_string = "## IterGraphModule: Cleanup Graph ##"
|
713 |
+
self._iter = 0
|
714 |
+
elif self._iter == 1:
|
715 |
+
logger.info("Using the setup graph")
|
716 |
+
gm = self.setup_gm
|
717 |
+
profiler_string = "## IterGraphModule: Setup Graph ##"
|
718 |
+
else:
|
719 |
+
gm = self.main_gm
|
720 |
+
if self._iter == 2:
|
721 |
+
logger.info("Using the main graph")
|
722 |
+
profiler_string = "## IterGraphModule -- Maybe Compiling ##"
|
723 |
+
else:
|
724 |
+
profiler_string = "## IterGraphModule ##"
|
725 |
+
|
726 |
+
with record_function(profiler_string):
|
727 |
+
return self._run(gm, last_iter, *args, **kwargs)
|
728 |
+
|
729 |
+
@property
|
730 |
+
def graph(self) -> IterGraph:
|
731 |
+
return cast(IterGraph, self.main_gm.graph)
|
732 |
+
|
733 |
+
def recompile(self) -> PythonCode:
|
734 |
+
self.setup_gm.recompile()
|
735 |
+
self.cleanup_gm.recompile()
|
736 |
+
return self.main_gm.recompile()
|
737 |
+
|
738 |
+
def freeze_cross_iter_movement(self) -> None:
|
739 |
+
# TODO: remove this API once it is not used.
|
740 |
+
self.graph.freeze_cross_iter_movement()
|
741 |
+
self._num_extra_output = self.graph.num_extra_output
|
742 |
+
|
743 |
+
def print_readable(self, print_output: bool = True) -> str:
|
744 |
+
return self.main_gm.print_readable(print_output)
|
745 |
+
|
746 |
+
def print_all_graphs(self) -> None:
|
747 |
+
logger.info("Printing the three fx.Graph:")
|
748 |
+
logger.info("1. Setup fx.Graph:")
|
749 |
+
logger.info("%s", self.setup_gm.graph)
|
750 |
+
logger.info("2. Main fx.Graph:")
|
751 |
+
logger.info("%s", self.main_gm.graph)
|
752 |
+
logger.info("3. Cleanup fx.Graph:")
|
753 |
+
logger.info("%s", self.cleanup_gm.graph)
|
754 |
+
|
755 |
+
def print_all_graph_modules(self) -> None:
|
756 |
+
logger.info("Printing the three fx gm:")
|
757 |
+
logger.info("1. Setup fx.GraphModule:")
|
758 |
+
logger.info("%s", self.setup_gm.print_readable(False))
|
759 |
+
logger.info("2. Main fx.GraphModule:")
|
760 |
+
logger.info("%s", self.main_gm.print_readable(False))
|
761 |
+
logger.info("3. Cleanup fx.GraphModule:")
|
762 |
+
logger.info("%s", self.cleanup_gm.print_readable(False))
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/log_utils.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import logging.config
|
3 |
+
import os
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
|
9 |
+
LOGGING_CONFIG = {
|
10 |
+
"version": 1,
|
11 |
+
"formatters": {
|
12 |
+
"spmd_format": {"format": "%(name)s: [%(levelname)s] %(message)s"},
|
13 |
+
"graph_opt_format": {"format": "%(name)s: [%(levelname)s] %(message)s"},
|
14 |
+
},
|
15 |
+
"handlers": {
|
16 |
+
"spmd_console": {
|
17 |
+
"class": "logging.StreamHandler",
|
18 |
+
"level": "DEBUG",
|
19 |
+
"formatter": "spmd_format",
|
20 |
+
"stream": "ext://sys.stdout",
|
21 |
+
},
|
22 |
+
"graph_opt_console": {
|
23 |
+
"class": "logging.StreamHandler",
|
24 |
+
"level": "DEBUG",
|
25 |
+
"formatter": "graph_opt_format",
|
26 |
+
"stream": "ext://sys.stdout",
|
27 |
+
},
|
28 |
+
"null_console": {
|
29 |
+
"class": "logging.NullHandler",
|
30 |
+
},
|
31 |
+
},
|
32 |
+
"loggers": {
|
33 |
+
"spmd_exp": {
|
34 |
+
"level": "DEBUG",
|
35 |
+
"handlers": ["spmd_console"],
|
36 |
+
"propagate": False,
|
37 |
+
},
|
38 |
+
"graph_opt": {
|
39 |
+
"level": "DEBUG",
|
40 |
+
"handlers": ["graph_opt_console"],
|
41 |
+
"propagate": False,
|
42 |
+
},
|
43 |
+
"null_logger": {
|
44 |
+
"handlers": ["null_console"],
|
45 |
+
"propagate": False,
|
46 |
+
},
|
47 |
+
# TODO(anj): Add loggers for MPMD
|
48 |
+
},
|
49 |
+
"disable_existing_loggers": False,
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
def get_logger(log_type: str) -> Optional[logging.Logger]:
|
54 |
+
from torch.distributed._spmd import config
|
55 |
+
|
56 |
+
if "PYTEST_CURRENT_TEST" not in os.environ:
|
57 |
+
logging.config.dictConfig(LOGGING_CONFIG)
|
58 |
+
avail_loggers = list(LOGGING_CONFIG["loggers"].keys()) # type: ignore[attr-defined]
|
59 |
+
assert (
|
60 |
+
log_type in avail_loggers
|
61 |
+
), f"Unable to find {log_type} in the available list of loggers {avail_loggers}"
|
62 |
+
|
63 |
+
if not dist.is_initialized():
|
64 |
+
return logging.getLogger(log_type)
|
65 |
+
|
66 |
+
if dist.get_rank() == 0:
|
67 |
+
logger = logging.getLogger(log_type)
|
68 |
+
logger.setLevel(config.log_level)
|
69 |
+
if config.log_file_name is not None:
|
70 |
+
log_file = logging.FileHandler(config.log_file_name)
|
71 |
+
log_file.setLevel(config.log_level)
|
72 |
+
logger.addHandler(log_file)
|
73 |
+
else:
|
74 |
+
logger = logging.getLogger("null_logger")
|
75 |
+
|
76 |
+
return logger
|
77 |
+
|
78 |
+
return logging.getLogger("null_logger")
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/parallel_mode.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
import torch.utils._pytree as pytree
|
7 |
+
from torch._subclasses import FakeTensorMode
|
8 |
+
from torch.distributed._spmd.data_parallel import (
|
9 |
+
DataParallelStyle,
|
10 |
+
partition_data_parallel,
|
11 |
+
)
|
12 |
+
from torch.distributed._spmd.distribute import _convert_to_distributed, Schema
|
13 |
+
from torch.distributed._tensor import DeviceMesh, Placement, Replicate, Shard
|
14 |
+
|
15 |
+
from torch.fx import GraphModule
|
16 |
+
|
17 |
+
|
18 |
+
class ParallelMode(ABC):
|
19 |
+
"""
|
20 |
+
Basic Parallel Mode interface. Each parallelism pattern should implement
|
21 |
+
this interface to describe how to partition and compile the graph in the
|
22 |
+
spmd compiler.
|
23 |
+
"""
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def partition(
|
27 |
+
self,
|
28 |
+
gm: GraphModule,
|
29 |
+
model: torch.nn.Module,
|
30 |
+
optimizer: Optional[torch.optim.Optimizer],
|
31 |
+
params_and_buffers: Dict[str, Any],
|
32 |
+
named_states: Dict[str, Any],
|
33 |
+
args: Tuple[Any, ...],
|
34 |
+
kwargs: Dict[str, Any],
|
35 |
+
) -> GraphModule:
|
36 |
+
"""
|
37 |
+
Partition a single device graph to a distributed graph.
|
38 |
+
|
39 |
+
TODO(@wanchaol): some of these arguments are not necessary for
|
40 |
+
partitioning, remove the unnecessary ones later.
|
41 |
+
"""
|
42 |
+
raise NotImplementedError()
|
43 |
+
|
44 |
+
@abstractmethod
|
45 |
+
def transform_and_compile(self, gm: GraphModule) -> GraphModule:
|
46 |
+
"""
|
47 |
+
Transform and compile a distributed graph with a set of graph
|
48 |
+
transformation and optimization passes for each parallel mode.
|
49 |
+
|
50 |
+
The returned result should be a compiled executable graph in
|
51 |
+
the distributed environment.
|
52 |
+
"""
|
53 |
+
# TODO: add more necessary arguments to this interface.
|
54 |
+
raise NotImplementedError()
|
55 |
+
|
56 |
+
|
57 |
+
class DataParallel(ParallelMode):
|
58 |
+
"""Data Parallelism mode."""
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
parallel_style: str = "replicate",
|
63 |
+
*,
|
64 |
+
input_batch_dim: int = 0,
|
65 |
+
custom_passes: Optional[Callable[[GraphModule], GraphModule]] = None,
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
DataParallel Mode that partition the model and graph to data parallel style
|
69 |
+
parallelism (i.e. DDP/FSDP/ZERO-3). It currently supports three different
|
70 |
+
parallel styles: "replicate", "fully_shard", and "default". See
|
71 |
+
:class:`DataParallelStyle` for more details.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
parallel_style (str): parallel style to use. Currently supports
|
75 |
+
"replicate", "fully_shard", and "default".
|
76 |
+
|
77 |
+
Keyword args:
|
78 |
+
input_batch_dim (int): the batch dimension of the input tensor.
|
79 |
+
default: 0
|
80 |
+
custom_passes (Callable[[GraphModule], GraphModule], optional):
|
81 |
+
A custom callable that overrides the default graph transformation
|
82 |
+
and optimization passes.
|
83 |
+
"""
|
84 |
+
if parallel_style == "replicate":
|
85 |
+
self.parallel_style = DataParallelStyle.REPLICATE
|
86 |
+
elif parallel_style == "fully_shard":
|
87 |
+
self.parallel_style = DataParallelStyle.FULLY_SHARD
|
88 |
+
elif parallel_style == "default":
|
89 |
+
self.parallel_style = DataParallelStyle.DEFAULT
|
90 |
+
else:
|
91 |
+
raise RuntimeError(f"Unknown parallel style: {parallel_style}")
|
92 |
+
|
93 |
+
# TODO: what if user passes in a incorrect `input_batch_dim`, how should we
|
94 |
+
# detect that and do proper error handling?
|
95 |
+
self.input_batch_dim = input_batch_dim
|
96 |
+
|
97 |
+
if custom_passes is not None:
|
98 |
+
self._gm_passes: Callable[[GraphModule], GraphModule] = custom_passes
|
99 |
+
else:
|
100 |
+
# TODO: add a few default passes here.
|
101 |
+
self._gm_passes = lambda gm: gm
|
102 |
+
|
103 |
+
def partition(
|
104 |
+
self,
|
105 |
+
gm: GraphModule,
|
106 |
+
model: torch.nn.Module,
|
107 |
+
optimizer: Optional[torch.optim.Optimizer],
|
108 |
+
params_and_buffers: Dict[str, Any],
|
109 |
+
named_states: Dict[str, Any],
|
110 |
+
args: Tuple[Any, ...],
|
111 |
+
kwargs: Dict[str, Any],
|
112 |
+
) -> GraphModule:
|
113 |
+
# TODO: figure out a way to avoid explicit "cuda" mesh.
|
114 |
+
mesh = DeviceMesh("cuda", torch.arange(dist.get_world_size()))
|
115 |
+
|
116 |
+
gm = partition_data_parallel(
|
117 |
+
gm,
|
118 |
+
model,
|
119 |
+
optimizer,
|
120 |
+
params_and_buffers,
|
121 |
+
named_states,
|
122 |
+
args,
|
123 |
+
kwargs,
|
124 |
+
mesh,
|
125 |
+
self.parallel_style,
|
126 |
+
self.input_batch_dim,
|
127 |
+
)
|
128 |
+
return gm
|
129 |
+
|
130 |
+
def transform_and_compile(self, gm: GraphModule) -> GraphModule:
|
131 |
+
"""optimize a distributed graph with a set of optimization passes"""
|
132 |
+
# TODO: add more necessary arguments to this interface.
|
133 |
+
return self._gm_passes(gm)
|
134 |
+
|
135 |
+
|
136 |
+
class DTensorExpandMode(ParallelMode):
|
137 |
+
"""
|
138 |
+
The DTensor Expand mode. It's replicating the parameters and
|
139 |
+
shard the inputs to represent DDP like behavior, it's currently
|
140 |
+
a transitent mode before we move to the new data parallel expansion.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self, custom_passes: Optional[Callable[[GraphModule], GraphModule]] = None
|
145 |
+
):
|
146 |
+
self._placements_override: Dict[int, List[Placement]] = {}
|
147 |
+
if custom_passes is not None:
|
148 |
+
self._gm_passes: Callable[[GraphModule], GraphModule] = custom_passes
|
149 |
+
else:
|
150 |
+
# TODO: add a few default passes here.
|
151 |
+
self._gm_passes = lambda gm: gm
|
152 |
+
|
153 |
+
def partition(
|
154 |
+
self,
|
155 |
+
gm: GraphModule,
|
156 |
+
model: torch.nn.Module,
|
157 |
+
optimizer: Optional[torch.optim.Optimizer],
|
158 |
+
params_and_buffers: Dict[str, Any],
|
159 |
+
named_states: Dict[str, Any],
|
160 |
+
args: Tuple[Any, ...],
|
161 |
+
kwargs: Dict[str, Any],
|
162 |
+
) -> GraphModule:
|
163 |
+
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
164 |
+
|
165 |
+
mesh = DeviceMesh("cuda", torch.arange(dist.get_world_size()).cuda())
|
166 |
+
shard_schema: Schema = Schema(mesh=mesh, placements=[Shard(0)])
|
167 |
+
# FIXME: allow other sharding schemas
|
168 |
+
replicate_schema: Schema = Schema(mesh=mesh, placements=[Replicate()])
|
169 |
+
|
170 |
+
inps, schemas = [], []
|
171 |
+
|
172 |
+
for p in pytree.tree_leaves(params_and_buffers):
|
173 |
+
assert isinstance(p, torch.Tensor), f"expecting Tensor but got {type(p)}"
|
174 |
+
inps.append(p)
|
175 |
+
schemas.append(replicate_schema)
|
176 |
+
|
177 |
+
for o in pytree.tree_leaves(named_states):
|
178 |
+
if isinstance(o, torch.Tensor):
|
179 |
+
inps.append(o)
|
180 |
+
schemas.append(replicate_schema)
|
181 |
+
else:
|
182 |
+
inps.append(torch.empty(0))
|
183 |
+
schemas.append(replicate_schema)
|
184 |
+
|
185 |
+
for a in flat_args:
|
186 |
+
if isinstance(a, torch.Tensor):
|
187 |
+
inps.append(a)
|
188 |
+
if id(a) in self._placements_override:
|
189 |
+
schemas.append(
|
190 |
+
Schema(mesh=mesh, placements=self._placements_override[id(a)])
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
schemas.append(shard_schema)
|
194 |
+
else:
|
195 |
+
# Create dummy tensor and schema for non-tensor inputs for
|
196 |
+
# the purpose of dtensor expansion. Non-tensor inputs are
|
197 |
+
# guaranteed unused in dispatcher graphs produced by make_fx.
|
198 |
+
# However, we still need to respect them so that tensor inputs
|
199 |
+
# match wtih their placeholders.
|
200 |
+
inps.append(torch.empty(0))
|
201 |
+
schemas.append(shard_schema)
|
202 |
+
|
203 |
+
with FakeTensorMode(allow_non_fake_inputs=True):
|
204 |
+
fake_inps = [torch.empty_like(inp) for inp in inps]
|
205 |
+
|
206 |
+
return _convert_to_distributed(
|
207 |
+
gm, fake_inps, schemas, default_mesh=mesh, _allow_partial=False
|
208 |
+
)[0]
|
209 |
+
|
210 |
+
def transform_and_compile(self, gm: GraphModule) -> GraphModule:
|
211 |
+
"""
|
212 |
+
Transform and compile a distributed graph with a set of graph transformation
|
213 |
+
and optimization passes for the dtensor fallback parallel mode.
|
214 |
+
"""
|
215 |
+
# TODO: move the trasnformation passed to this function
|
216 |
+
return self._gm_passes(gm)
|
venv/lib/python3.10/site-packages/torch/distributed/_spmd/partial_lower.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is copied from Meta internal repo and is not synced with the
|
2 |
+
# internal version. Once the internal version is fully mature, we should
|
3 |
+
# upstream again and retire the internal version. @yifuwang
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import operator
|
7 |
+
from typing import Callable, List, Optional, Set, Tuple
|
8 |
+
|
9 |
+
from functorch import make_fx
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
14 |
+
from torch._inductor.decomposition import select_decomp_table
|
15 |
+
|
16 |
+
MIN_ATEN_OPS_TO_LOWER = 10
|
17 |
+
|
18 |
+
logger: logging.Logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def _create_subgraph_module(
|
22 |
+
inputs: List[torch.fx.Node], body: List[torch.fx.Node], outputs: List[torch.fx.Node]
|
23 |
+
) -> torch.fx.GraphModule:
|
24 |
+
subgraph: torch.fx.Graph = torch.fx.Graph()
|
25 |
+
node_to_subgraph_node = {}
|
26 |
+
for idx, inp in enumerate(inputs):
|
27 |
+
subgraph_inp = subgraph.placeholder(name=f"arg_{idx}")
|
28 |
+
subgraph_inp.meta = inp.meta
|
29 |
+
node_to_subgraph_node[inp] = subgraph_inp
|
30 |
+
|
31 |
+
for node in body:
|
32 |
+
subgraph_node = subgraph.node_copy(
|
33 |
+
node, arg_transform=lambda x: node_to_subgraph_node[x]
|
34 |
+
)
|
35 |
+
node_to_subgraph_node[node] = subgraph_node
|
36 |
+
|
37 |
+
subgraph.output(result=tuple(node_to_subgraph_node[x] for x in outputs))
|
38 |
+
subgraph.eliminate_dead_code()
|
39 |
+
subgraph.lint()
|
40 |
+
return torch.fx.GraphModule(root={}, graph=subgraph)
|
41 |
+
|
42 |
+
|
43 |
+
def _is_container_node(node: torch.fx.Node) -> bool:
|
44 |
+
if any(user.target == operator.getitem for user in node.users):
|
45 |
+
assert all(user.target == operator.getitem for user in node.users), (
|
46 |
+
"Malformed graph: a container node is used as input for non-getitem nodes."
|
47 |
+
"\nNode: {fmt_node}\nUsers: {fmt_users}".format(
|
48 |
+
fmt_node=node.format_node(),
|
49 |
+
fmt_users="\n".join(u.format_node() for u in node.users),
|
50 |
+
)
|
51 |
+
)
|
52 |
+
return True
|
53 |
+
return False
|
54 |
+
|
55 |
+
|
56 |
+
def _lower_subgraph_nodes(
|
57 |
+
gm: torch.fx.GraphModule,
|
58 |
+
subgraph_name: str,
|
59 |
+
subgraph_nodes: List[torch.fx.Node],
|
60 |
+
dumper: Callable[[str], str],
|
61 |
+
) -> None:
|
62 |
+
prologue: List[torch.fx.Node] = []
|
63 |
+
inputs: List[torch.fx.Node] = []
|
64 |
+
body: List[torch.fx.Node] = []
|
65 |
+
visible: Set[torch.fx.Node] = set()
|
66 |
+
|
67 |
+
# Inductor requires all graph input to be tensors. When adding a container
|
68 |
+
# node as subgraph input, add its descendant getitem nodes to the subgraph
|
69 |
+
# prologue and add its leaf getitem nodes to the subgraph input.
|
70 |
+
def add_input(arg: torch.fx.Node) -> None:
|
71 |
+
stack = [arg]
|
72 |
+
while len(stack) != 0:
|
73 |
+
node = stack.pop()
|
74 |
+
if _is_container_node(node):
|
75 |
+
# We should only prepone nodes within subgraph_nodes
|
76 |
+
prologue.extend(user for user in node.users if user in subgraph_nodes)
|
77 |
+
stack.extend(node.users)
|
78 |
+
else:
|
79 |
+
if node not in visible:
|
80 |
+
inputs.append(node)
|
81 |
+
visible.add(node)
|
82 |
+
|
83 |
+
for node in subgraph_nodes:
|
84 |
+
if node.op == "get_attr":
|
85 |
+
# Prepone get_attr to avoid having to copy
|
86 |
+
# the attribute to the subgraph module.
|
87 |
+
inputs.append(node)
|
88 |
+
visible.add(node)
|
89 |
+
continue
|
90 |
+
|
91 |
+
for arg in node.all_input_nodes:
|
92 |
+
if arg not in visible:
|
93 |
+
add_input(arg)
|
94 |
+
|
95 |
+
if node not in prologue:
|
96 |
+
body.append(node)
|
97 |
+
visible.add(node)
|
98 |
+
|
99 |
+
outputs: List[torch.fx.Node] = []
|
100 |
+
|
101 |
+
# Inductor requires all graph output to be tensors. When adding a container
|
102 |
+
# node as subgraph output, add its descendant getitem nodes to the subgraph
|
103 |
+
# body and add its leaf getitem nodes to the subgraph output.
|
104 |
+
def add_output(output: torch.fx.Node) -> None:
|
105 |
+
stack = [output]
|
106 |
+
while len(stack) != 0:
|
107 |
+
node = stack.pop()
|
108 |
+
if _is_container_node(node):
|
109 |
+
body.extend(node.users)
|
110 |
+
stack.extend(node.users)
|
111 |
+
elif not all(user in visible for user in node.users):
|
112 |
+
if node not in outputs:
|
113 |
+
outputs.append(node)
|
114 |
+
|
115 |
+
for node in body:
|
116 |
+
if not all(user in visible for user in node.users):
|
117 |
+
add_output(node)
|
118 |
+
|
119 |
+
assert len(inputs) == len(set(inputs))
|
120 |
+
assert len(outputs) == len(set(outputs))
|
121 |
+
|
122 |
+
subgraph_module = _create_subgraph_module(inputs, body, outputs)
|
123 |
+
readable_tag = dumper(str(subgraph_module.graph))
|
124 |
+
setattr(gm, subgraph_name, _InductorModule(subgraph_module))
|
125 |
+
|
126 |
+
insertion_point = subgraph_nodes[-1].next
|
127 |
+
for node in prologue:
|
128 |
+
insertion_point.prepend(node)
|
129 |
+
|
130 |
+
with gm.graph.inserting_before(insertion_point):
|
131 |
+
# Insert subgraph call
|
132 |
+
subgraph_call = gm.graph.create_node(
|
133 |
+
op="call_module",
|
134 |
+
target=subgraph_name,
|
135 |
+
args=tuple(inputs),
|
136 |
+
kwargs={"tag": readable_tag},
|
137 |
+
)
|
138 |
+
# Replace parent graph nodes with their corresponding subgraph outputs
|
139 |
+
for idx, output in enumerate(outputs):
|
140 |
+
new_output = gm.graph.create_node(
|
141 |
+
op="call_function",
|
142 |
+
target=operator.getitem,
|
143 |
+
args=(subgraph_call, idx),
|
144 |
+
)
|
145 |
+
new_output.meta = output.meta
|
146 |
+
output.replace_all_uses_with(new_output)
|
147 |
+
|
148 |
+
# Erase lowered nodes from the parent graph
|
149 |
+
for node in reversed(body + outputs):
|
150 |
+
if len(node.users) == 0:
|
151 |
+
gm.graph.erase_node(node)
|
152 |
+
|
153 |
+
|
154 |
+
class _InductorModule(torch.nn.Module):
|
155 |
+
def __init__(self, gm: torch.fx.GraphModule) -> None:
|
156 |
+
super().__init__()
|
157 |
+
self.gm = gm
|
158 |
+
self.compiled: Optional[
|
159 |
+
Callable[[List[torch.Tensor]], List[torch.Tensor]]
|
160 |
+
] = None
|
161 |
+
|
162 |
+
def forward(self, *args: torch.Tensor, tag: str) -> List[torch.Tensor]:
|
163 |
+
if self.compiled is None:
|
164 |
+
inductor_decompositions = select_decomp_table()
|
165 |
+
# TODO: figure out why turning on cudagraphs cause exceptions.
|
166 |
+
decomp_gm = make_fx(self.gm, decomposition_table=inductor_decompositions)(
|
167 |
+
*args
|
168 |
+
)
|
169 |
+
logger.info("Lowering subgraph (%s) to Inductor...", tag)
|
170 |
+
self.compiled = compile_fx_inner(
|
171 |
+
decomp_gm,
|
172 |
+
list(args),
|
173 |
+
cudagraphs=False,
|
174 |
+
)
|
175 |
+
logger.info("Completed lowering subgraph (%s) to Inductor", tag)
|
176 |
+
with torch.profiler.record_function(tag):
|
177 |
+
assert self.compiled is not None
|
178 |
+
return self.compiled(list(args))
|
179 |
+
|
180 |
+
|
181 |
+
def _is_inductor_compatible(node: torch.fx.Node) -> Tuple[bool, str]:
|
182 |
+
# `has_tag` is not supported yet
|
183 |
+
# if has_tag(node, "non_lowerable"):
|
184 |
+
|
185 |
+
if node.target in (
|
186 |
+
torch.ops.aten._fused_adam_.default,
|
187 |
+
torch.ops.aten._fused_adam.default,
|
188 |
+
torch.ops.aten._foreach_add_.Scalar,
|
189 |
+
torch.ops.aten._foreach_add.Scalar,
|
190 |
+
):
|
191 |
+
return False, "fused adam is not supported yet"
|
192 |
+
|
193 |
+
# TODO(yifu): apparently having a meta kernel is not a necessary
|
194 |
+
# condition for Inductor compatiblity. We should refine the check.
|
195 |
+
# Sneaking this one in for now to support comm_fusion_with_cat.
|
196 |
+
if node.target == torch.ops.aten.flatten.using_ints:
|
197 |
+
return True, ""
|
198 |
+
|
199 |
+
if isinstance(node.target, torch._ops.OpOverload):
|
200 |
+
if not node.target.has_kernel_for_dispatch_key(torch._C.DispatchKey.Meta):
|
201 |
+
return False, f"{node.target} doesn't have a meta kernel registered"
|
202 |
+
return True, ""
|
203 |
+
|
204 |
+
|
205 |
+
def _subgraph_predicate(nodes: List[torch.fx.Node]) -> bool:
|
206 |
+
num_aten_ops = len([n for n in nodes if str(n.target).startswith("aten.")])
|
207 |
+
return num_aten_ops >= MIN_ATEN_OPS_TO_LOWER
|
208 |
+
|
209 |
+
|
210 |
+
def partial_lower(
|
211 |
+
gm: torch.fx.GraphModule,
|
212 |
+
node_predicate: Callable[[torch.fx.Node], bool] = lambda x: True,
|
213 |
+
subgraph_predicate: Callable[[List[torch.fx.Node]], bool] = lambda x: True,
|
214 |
+
dumper: Callable[[str], str] = lambda x: "subgraph",
|
215 |
+
) -> torch.fx.GraphModule:
|
216 |
+
"""
|
217 |
+
Lower Inductor compatible portions of the graph module to Inductor.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
node_predicate: user predicate for determining whether to consider a node for
|
221 |
+
lowering.
|
222 |
+
subgraph_predicate: user predicate for determining whether to consider a list of
|
223 |
+
candidate nodes for lowering.
|
224 |
+
dumper: a callback for dumping subgraphs for human digestion. For exmaple, it
|
225 |
+
can be a function that writes to disk/blob storage and returns the
|
226 |
+
path/handle. The returned path/handle for each subgraph will be made
|
227 |
+
available in the subgraph call node in the parent graph, as well as the
|
228 |
+
label of the profiler block for the subgraph.
|
229 |
+
"""
|
230 |
+
nodes_per_subgraph: List[List[torch.fx.Node]] = [[]]
|
231 |
+
ptr = next(iter(gm.graph.nodes))
|
232 |
+
|
233 |
+
def _node_predicate(node: torch.fx.Node) -> Tuple[bool, str]:
|
234 |
+
should_lower, reason = _is_inductor_compatible(node)
|
235 |
+
if not should_lower:
|
236 |
+
return should_lower, reason
|
237 |
+
if not node_predicate(node):
|
238 |
+
return False, "user predicate"
|
239 |
+
return True, ""
|
240 |
+
|
241 |
+
while ptr.op != "output":
|
242 |
+
if ptr.op == "placeholder":
|
243 |
+
ptr = ptr.next
|
244 |
+
continue
|
245 |
+
should_lower, reason = _node_predicate(ptr)
|
246 |
+
if should_lower:
|
247 |
+
nodes_per_subgraph[-1].append(ptr)
|
248 |
+
else:
|
249 |
+
if len(nodes_per_subgraph[-1]) > 0:
|
250 |
+
logger.warning(
|
251 |
+
"partial_lower: graph break at %s. Reason: %s", str(ptr), reason
|
252 |
+
)
|
253 |
+
nodes_per_subgraph.append([])
|
254 |
+
ptr = ptr.next
|
255 |
+
|
256 |
+
nodes_per_subgraph = [
|
257 |
+
nodes
|
258 |
+
for nodes in nodes_per_subgraph
|
259 |
+
if subgraph_predicate(nodes) and _subgraph_predicate(nodes)
|
260 |
+
]
|
261 |
+
|
262 |
+
for idx, subgraph_nodes in enumerate(nodes_per_subgraph):
|
263 |
+
subgraph_name = f"subgraph_{idx}"
|
264 |
+
_lower_subgraph_nodes(gm, subgraph_name, subgraph_nodes, dumper)
|
265 |
+
|
266 |
+
gm.graph.lint()
|
267 |
+
gm.recompile()
|
268 |
+
return gm
|