applied-ai-018 commited on
Commit
ddc4c37
·
verified ·
1 Parent(s): 788fc92

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  5. venv/lib/python3.10/site-packages/torch/__pycache__/_VF.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/torch/__pycache__/__config__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/torch/__pycache__/__future__.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/torch/__pycache__/__init__.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/__pycache__/_appdirs.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/__pycache__/_classes.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/__pycache__/_compile.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/__pycache__/_custom_ops.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/__pycache__/_deploy.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/__pycache__/_guards.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/__pycache__/_jit_internal.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/__pycache__/_linalg_utils.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/__pycache__/_lobpcg.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/__pycache__/_lowrank.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/__pycache__/_meta_registrations.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/__pycache__/_namedtensor_internals.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/torch/__pycache__/_ops.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/torch/__pycache__/_python_dispatcher.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/torch/__pycache__/_sources.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/torch/__pycache__/_storage_docs.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/torch/__pycache__/_streambase.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/torch/__pycache__/_tensor.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_str.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/torch/__pycache__/_torch_docs.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/torch/__pycache__/_utils.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/torch/__pycache__/_utils_internal.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/torch/__pycache__/_vmap_internals.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/torch/__pycache__/_weights_only_unpickler.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/torch/__pycache__/functional.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/torch/__pycache__/hub.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/torch/__pycache__/library.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/torch/__pycache__/overrides.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/torch/__pycache__/quasirandom.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/torch/__pycache__/random.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/torch/__pycache__/return_types.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/torch/__pycache__/serialization.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/__pycache__/storage.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/__pycache__/torch_version.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/__pycache__/types.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/__pycache__/version.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/_prims/__init__.py +3031 -0
  47. venv/lib/python3.10/site-packages/torch/_prims/context.py +144 -0
  48. venv/lib/python3.10/site-packages/torch/_prims/debug_prims.py +59 -0
  49. venv/lib/python3.10/site-packages/torch/_prims/executor.py +60 -0
  50. venv/lib/python3.10/site-packages/torch/amp/__init__.py +2 -0
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25612e6021c8a2f6823366cc30e9f3a49f28c9ededc00355e7e8eea1782cf823
3
+ size 33555627
ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ea88e8425126684a61bc38a0a113a144c30767b09eb289f7344d2cedabb941b
3
+ size 50332828
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1405102430b95a45777f24793899366dfa3252bb2789c5c3a8086a5cff0e1d40
3
+ size 33555612
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71023c52f8eb8c1d3f7b088a0fabea788e5623d7c2c1d524be094f58f19f712f
3
+ size 33555533
venv/lib/python3.10/site-packages/torch/__pycache__/_VF.cpython-310.pyc ADDED
Binary file (1.17 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/__config__.cpython-310.pyc ADDED
Binary file (755 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/__future__.cpython-310.pyc ADDED
Binary file (3.41 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (67.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_appdirs.cpython-310.pyc ADDED
Binary file (21.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_classes.cpython-310.pyc ADDED
Binary file (2.51 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_compile.cpython-310.pyc ADDED
Binary file (1.11 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_custom_ops.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_deploy.cpython-310.pyc ADDED
Binary file (2.58 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_guards.cpython-310.pyc ADDED
Binary file (24 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_jit_internal.cpython-310.pyc ADDED
Binary file (36.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_linalg_utils.cpython-310.pyc ADDED
Binary file (5.81 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_lobpcg.cpython-310.pyc ADDED
Binary file (30.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_lowrank.cpython-310.pyc ADDED
Binary file (9.48 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_meta_registrations.cpython-310.pyc ADDED
Binary file (166 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_namedtensor_internals.cpython-310.pyc ADDED
Binary file (4.97 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_ops.cpython-310.pyc ADDED
Binary file (27 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_python_dispatcher.cpython-310.pyc ADDED
Binary file (3.47 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_sources.cpython-310.pyc ADDED
Binary file (4.21 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_storage_docs.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_streambase.cpython-310.pyc ADDED
Binary file (1.86 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor.cpython-310.pyc ADDED
Binary file (42.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc ADDED
Binary file (134 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_str.cpython-310.pyc ADDED
Binary file (16.2 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_torch_docs.cpython-310.pyc ADDED
Binary file (405 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_utils.cpython-310.pyc ADDED
Binary file (25.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_utils_internal.cpython-310.pyc ADDED
Binary file (4.16 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_vmap_internals.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/_weights_only_unpickler.cpython-310.pyc ADDED
Binary file (7.05 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/functional.cpython-310.pyc ADDED
Binary file (71.9 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/hub.cpython-310.pyc ADDED
Binary file (27.2 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/library.cpython-310.pyc ADDED
Binary file (18.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/overrides.cpython-310.pyc ADDED
Binary file (155 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/quasirandom.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/random.cpython-310.pyc ADDED
Binary file (5.89 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/return_types.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/serialization.cpython-310.pyc ADDED
Binary file (43.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/storage.cpython-310.pyc ADDED
Binary file (43.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/torch_version.cpython-310.pyc ADDED
Binary file (2.49 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/types.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
venv/lib/python3.10/site-packages/torch/__pycache__/version.cpython-310.pyc ADDED
Binary file (451 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/_prims/__init__.py ADDED
@@ -0,0 +1,3031 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import itertools
3
+ import operator
4
+ import weakref
5
+ from enum import Enum
6
+ from functools import partial, reduce
7
+ from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union
8
+
9
+ import torch
10
+
11
+ import torch._prims_common as utils
12
+ import torch.library
13
+ from torch import sym_float, Tensor, TypedStorage
14
+ from torch._C import _get_default_device
15
+ from torch._prims.debug_prims import register_debug_prims
16
+ from torch._prims.rng_prims import register_rng_prims
17
+ from torch._prims_common import (
18
+ Dim,
19
+ DimsSequenceType,
20
+ DimsType,
21
+ IntLike,
22
+ Number,
23
+ NumberType,
24
+ RETURN_TYPE,
25
+ ShapeType,
26
+ StrideType,
27
+ TensorLike,
28
+ TensorLikeType,
29
+ type_to_dtype,
30
+ )
31
+ from torch._prims_common.wrappers import backwards_not_supported
32
+ from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
33
+ from torch.overrides import handle_torch_function, has_torch_function
34
+ from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
35
+
36
+ prim = torch.library.Library("prims", "DEF")
37
+ prim_impl = torch.library.Library("prims", "IMPL", "CompositeExplicitAutograd")
38
+ prim_backend_select_impl = torch.library.Library("prims", "IMPL", "BackendSelect")
39
+ prim_autograd_impl = torch.library.Library("prims", "IMPL", "Autograd")
40
+ prim_meta_impl = torch.library.Library("prims", "IMPL", "Meta")
41
+
42
+ # Experimental module containing prototype "primitive" operations.
43
+
44
+ __all__ = [
45
+ #
46
+ # Common datastructures and helpers
47
+ #
48
+ "RETURN_TYPE",
49
+ #
50
+ # Elementwise unary prims
51
+ #
52
+ "abs",
53
+ "acos",
54
+ "acosh",
55
+ "asin",
56
+ "asinh",
57
+ "atan",
58
+ "atanh",
59
+ "cos",
60
+ "cosh",
61
+ "bessel_i0",
62
+ "bessel_i0e",
63
+ "bessel_i1",
64
+ "bessel_i1e",
65
+ "bessel_j0",
66
+ "bessel_j1",
67
+ "bitwise_not",
68
+ "cbrt",
69
+ "ceil",
70
+ "conj_physical",
71
+ "digamma",
72
+ "erf",
73
+ "erf_inv",
74
+ "erfc",
75
+ "erfcx",
76
+ "exp",
77
+ "expm1",
78
+ "exp2",
79
+ "fill",
80
+ "floor",
81
+ "imag",
82
+ "isfinite",
83
+ "lgamma",
84
+ "log",
85
+ "log1p",
86
+ "log2",
87
+ "log10",
88
+ "ndtri",
89
+ "neg",
90
+ "real",
91
+ "reciprocal",
92
+ "round",
93
+ "sign",
94
+ "signbit",
95
+ "sin",
96
+ "sinh",
97
+ "spherical_bessel_j0",
98
+ "sqrt",
99
+ "tan",
100
+ "tanh",
101
+ "trunc",
102
+ #
103
+ # Elementwise binary prims
104
+ #
105
+ "add",
106
+ "atan2",
107
+ "bitwise_and",
108
+ "bitwise_or",
109
+ "bitwise_xor",
110
+ # 'complex', # needs custom meta
111
+ "div",
112
+ "eq",
113
+ "fmax",
114
+ "fmin",
115
+ "fmod",
116
+ "frexp",
117
+ "gcd",
118
+ "ge",
119
+ "gt",
120
+ "hypot",
121
+ "igamma",
122
+ "igammac",
123
+ "le",
124
+ "lt",
125
+ "maximum",
126
+ "minimum",
127
+ "mul",
128
+ "ne",
129
+ "nextafter",
130
+ "pow",
131
+ "remainder",
132
+ "rsqrt",
133
+ "shift_left",
134
+ "shift_right_arithmetic",
135
+ "shift_right_logical", # not implemented
136
+ "sub",
137
+ "zeta",
138
+ #
139
+ # View prims
140
+ #
141
+ "as_strided",
142
+ "broadcast_in_dim",
143
+ "collapse_view",
144
+ "conj",
145
+ "expand_dims",
146
+ "slice",
147
+ "slice_in_dim", # implemented using slice -- make this a ref?
148
+ "split_dim",
149
+ "squeeze",
150
+ "transpose",
151
+ "view_of",
152
+ "view_element_type",
153
+ #
154
+ # Functionalized view mutations
155
+ #
156
+ "as_strided_scatter",
157
+ #
158
+ # Shape prims
159
+ #
160
+ "collapse",
161
+ "cat",
162
+ "reshape",
163
+ "rev",
164
+ #
165
+ # Conditional prims
166
+ #
167
+ "where",
168
+ #
169
+ # Data conversion and movement prims
170
+ #
171
+ "clone",
172
+ "convert_element_type",
173
+ "device_put",
174
+ "item",
175
+ "maximum_value",
176
+ "minimum_value",
177
+ "copy_strided",
178
+ #
179
+ # Inplace prims
180
+ #
181
+ "copy_to",
182
+ "resize",
183
+ # "_set", # Commented out, see note below
184
+ #
185
+ # Reduction prims
186
+ #
187
+ "amax",
188
+ "amin",
189
+ "prod",
190
+ "sum",
191
+ "xor_sum",
192
+ "var",
193
+ #
194
+ # Tensor Creation Prims
195
+ #
196
+ "empty_strided",
197
+ "empty_permuted",
198
+ "scalar_tensor",
199
+ "iota",
200
+ #
201
+ # Linear algebra (linalg) Prims
202
+ #
203
+ "svd",
204
+ #
205
+ # Randomness Prims
206
+ #
207
+ "normal",
208
+ "_uniform_helper",
209
+ #
210
+ # FFT prims
211
+ #
212
+ "fft_r2c",
213
+ "fft_c2c",
214
+ "fft_c2r",
215
+ ]
216
+
217
+
218
+ def TensorMeta(
219
+ tensorlike: Optional[Union[NumberType, torch.Tensor]] = None,
220
+ *,
221
+ shape: Optional[ShapeType] = None,
222
+ strides: Optional[StrideType] = None,
223
+ dtype: Optional[torch.dtype] = None,
224
+ device: Optional[Union[torch.device, str]] = None,
225
+ ):
226
+ if isinstance(tensorlike, Number):
227
+ assert not shape and (shape is None or isinstance(shape, Sequence))
228
+ assert not strides and (strides is None or isinstance(strides, Sequence))
229
+ inferred_shape: Tuple[int, ...] = ()
230
+ inferred_strides: Tuple[int, ...] = ()
231
+ inferred_dtype = type_to_dtype(type(tensorlike))
232
+ inferred_device = torch.device("cpu")
233
+ # TODO: This looks wrong, a number that is wrapped into a tensor
234
+ # needs to behave differently than a scalar tensor for type
235
+ # promotion purposes
236
+ elif tensorlike is not None:
237
+ assert isinstance(tensorlike, torch.Tensor)
238
+ inferred_shape = tuple(tensorlike.shape)
239
+ inferred_strides = tuple(tensorlike.stride())
240
+ inferred_dtype = tensorlike.dtype
241
+ inferred_device = tensorlike.device
242
+ else:
243
+ # If no tensorlike "example" is given then all metadata
244
+ # must be provided explicitly
245
+ assert shape is not None
246
+ assert strides is not None
247
+ assert dtype is not None
248
+ assert device is not None
249
+
250
+ shape = inferred_shape if shape is None else tuple(shape) # type: ignore[possibly-undefined]
251
+ strides = inferred_strides if strides is None else tuple(strides) # type: ignore[possibly-undefined]
252
+ dtype = inferred_dtype if dtype is None else dtype # type: ignore[possibly-undefined]
253
+ device = inferred_device if device is None else device # type: ignore[possibly-undefined]
254
+
255
+ if isinstance(device, str):
256
+ device = torch.device(device)
257
+
258
+ return torch.empty_strided(shape, strides, dtype=dtype, device=device)
259
+
260
+
261
+ def _make_prim(
262
+ *,
263
+ schema: str,
264
+ return_type: Union[RETURN_TYPE, Tuple[RETURN_TYPE, ...]],
265
+ meta: Callable,
266
+ impl_aten: Callable,
267
+ doc: str,
268
+ tags: Optional[Sequence[torch.Tag]] = None,
269
+ ):
270
+ """
271
+ Creates a primitive operation.
272
+
273
+ """
274
+
275
+ prim.define(schema, tags=torch.Tag.pt2_compliant_tag)
276
+
277
+ def _prim_impl(*args, **kwargs):
278
+ # always run the meta function because aten implementation will
279
+ # typically accept more inputs (e.g., it will do promotion and
280
+ # broadcasting) which we want to reject
281
+ meta(*args, **kwargs)
282
+ return impl_aten(*args, **kwargs)
283
+
284
+ # Right now prims don't support autograd (we can and should add an
285
+ # argument that provides an implementation for backward here.) Because we
286
+ # don't have derivative formulas, we must setup a custom autograd function
287
+ # that raises an error if backwards is invoked
288
+ def _autograd_impl(*args, **kwargs):
289
+ return backwards_not_supported(_prim)(*args, **kwargs)
290
+
291
+ def _backend_select_impl(*args, **kwargs):
292
+ if kwargs.get("device") and kwargs["device"].type == "meta":
293
+ return meta(*args, **kwargs)
294
+ if any(isinstance(x, torch.device) and x.type == "meta" for x in args):
295
+ return meta(*args, **kwargs)
296
+ else:
297
+ return _prim_impl(*args, **kwargs)
298
+
299
+ name = schema.split("(")[0]
300
+ prim_impl.impl(name, _prim_impl)
301
+ prim_autograd_impl.impl(name, _autograd_impl)
302
+ prim_meta_impl.impl(name, meta)
303
+
304
+ _prim_packet = getattr(torch._ops.ops.prims, name)
305
+ _prim = _prim_packet.default
306
+ if tags:
307
+ _prim._tags = tags
308
+
309
+ from torch._subclasses.fake_tensor import contains_tensor_types
310
+
311
+ if not any(contains_tensor_types(a.type) for a in _prim._schema.arguments) or str(
312
+ _prim
313
+ ) in [
314
+ # See https://github.com/pytorch/pytorch/issues/103532
315
+ "prims.device_put.default"
316
+ ]:
317
+ prim_backend_select_impl.impl(name, _backend_select_impl)
318
+
319
+ for p in (_prim_packet, _prim):
320
+ p.__doc__ = doc
321
+ p.return_type = return_type # type: ignore[attr-defined]
322
+
323
+ p.schema = schema
324
+ p.prim_impl = _prim_impl
325
+ p.prim_meta_impl = meta
326
+ p.impl_aten = impl_aten
327
+
328
+ return _prim
329
+
330
+
331
+ class ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND(Enum):
332
+ DEFAULT = (0,)
333
+ INT_TO_FLOAT = (2,)
334
+ ALWAYS_BOOL = (3,)
335
+ COMPLEX_TO_FLOAT = (4,)
336
+
337
+
338
+ # TODO: implement dtype validation here, too, or on the corresponding refs
339
+ def _prim_elementwise_meta(
340
+ *args,
341
+ type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND,
342
+ args_with_fixed_dtypes: Optional[Tuple[TensorLikeType, ...]] = None,
343
+ ) -> FakeTensor:
344
+ """
345
+ Meta function for elementwise operations that produce outputs in the same dtype
346
+ as their inputs.
347
+
348
+ Stride logic is currently incorrect.
349
+ """
350
+
351
+ assert len(args) > 0
352
+
353
+ utils.check_same_dtype(*args)
354
+
355
+ args_ = list(args)
356
+ if args_with_fixed_dtypes is not None:
357
+ args_ = list(args_with_fixed_dtypes) + args_
358
+
359
+ utils.check_same_device(*args_, allow_cpu_scalar_tensors=True)
360
+ utils.check_same_shape(*args_, allow_cpu_scalar_tensors=True)
361
+
362
+ l2p_perm = utils.compute_elementwise_output_logical_to_physical_perm(*args_)
363
+ shape = utils.extract_shape(*args_, allow_cpu_scalar_tensors=True)
364
+
365
+ # Acquires the dtype
366
+ dtype = None
367
+ scalar_type = None
368
+ for arg in args:
369
+ if isinstance(arg, TensorLike):
370
+ if not utils.is_cpu_scalar_tensor(arg):
371
+ dtype = arg.dtype
372
+ break
373
+ else:
374
+ dtype = arg.dtype
375
+ elif isinstance(arg, Number):
376
+ scalar_type = type(arg)
377
+
378
+ if dtype is None and scalar_type is not None:
379
+ dtype = utils.type_to_dtype(scalar_type)
380
+
381
+ # Acquires the device (if it exists) or number
382
+ device = None
383
+ number = None
384
+ for arg in args_:
385
+ if isinstance(arg, TensorLike):
386
+ if utils.is_cpu_scalar_tensor(arg):
387
+ if device is None:
388
+ device = arg.device
389
+ # keep going, in case there is a cuda tensor later
390
+ else:
391
+ device = arg.device
392
+ break
393
+
394
+ elif isinstance(arg, Number):
395
+ if number is None:
396
+ number = arg
397
+
398
+ # NOTE: type promotion behavior here is mostly hidden from tests because
399
+ # references will typically handle the type promotion properly even if this doesn't
400
+ # (but getting it wrong will cause too many casts to be inserted in traces!)
401
+ if device is not None:
402
+ assert dtype is not None
403
+ if type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT:
404
+ dtype = dtype
405
+ elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL:
406
+ dtype = torch.bool
407
+ elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.INT_TO_FLOAT:
408
+ if utils.is_integer_dtype(dtype) or utils.is_boolean_dtype(dtype):
409
+ dtype = torch.get_default_dtype()
410
+ elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT:
411
+ if utils.is_complex_dtype(dtype):
412
+ dtype = utils.corresponding_real_dtype(dtype)
413
+ else:
414
+ dtype = dtype
415
+
416
+ assert shape is not None
417
+ return torch.empty_permuted(shape, l2p_perm, device=device, dtype=dtype) # type: ignore[return-value]
418
+
419
+ # Number case
420
+ # TODO: fix number type promotion (bool, complex->float)
421
+
422
+ # For now for symint/float, just implementing the common / simple cases of (int,float,symint,symfloat)
423
+ seen_float = False
424
+ if isinstance(number, (torch.SymInt, torch.SymFloat)):
425
+ for a in args:
426
+ assert isinstance(a, (int, float, torch.SymInt, torch.SymFloat)), "NYI"
427
+ seen_float = seen_float or isinstance(a, (float, torch.SymFloat))
428
+ if seen_float:
429
+ number = sym_float(number)
430
+
431
+ return TensorMeta(number) # type: ignore[arg-type]
432
+
433
+
434
+ def _complex_only_elementwise_meta(*args, **kwargs):
435
+ torch._check(
436
+ utils.is_complex_dtype(args[0].dtype), lambda: "Only complex dtype is supported"
437
+ )
438
+ return _prim_elementwise_meta(*args, **kwargs)
439
+
440
+
441
+ def _make_elementwise_unary_prim(
442
+ name: str, *, type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND, **kwargs
443
+ ):
444
+ """
445
+ Creates an elementwise unary prim.
446
+ """
447
+
448
+ return _make_prim(
449
+ schema=f"{name}(Tensor self) -> Tensor",
450
+ meta=partial(_prim_elementwise_meta, type_promotion=type_promotion),
451
+ return_type=RETURN_TYPE.NEW,
452
+ **kwargs,
453
+ )
454
+
455
+
456
+ def _make_elementwise_binary_prim(
457
+ name: str, *, type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND, **kwargs
458
+ ):
459
+ """
460
+ Creates an elementwise binary prim.
461
+ """
462
+
463
+ return _make_prim(
464
+ schema=f"{name}(Tensor self, Tensor other) -> Tensor",
465
+ meta=partial(_prim_elementwise_meta, type_promotion=type_promotion),
466
+ return_type=RETURN_TYPE.NEW,
467
+ **kwargs,
468
+ )
469
+
470
+
471
+ def _not_impl(*args, **kwargs):
472
+ raise NotImplementedError
473
+
474
+
475
+ #
476
+ # Elementwise unary operations
477
+ #
478
+
479
+
480
+ abs = _make_elementwise_unary_prim(
481
+ "abs",
482
+ impl_aten=torch.abs,
483
+ doc="",
484
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
485
+ )
486
+
487
+ acos = _make_elementwise_unary_prim(
488
+ "acos",
489
+ impl_aten=torch.acos,
490
+ doc="",
491
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
492
+ )
493
+
494
+ acosh = _make_elementwise_unary_prim(
495
+ "acosh",
496
+ impl_aten=torch.acosh,
497
+ doc="",
498
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
499
+ )
500
+
501
+ asin = _make_elementwise_unary_prim(
502
+ "asin",
503
+ impl_aten=torch.asin,
504
+ doc="",
505
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
506
+ )
507
+
508
+ asinh = _make_elementwise_unary_prim(
509
+ "asinh",
510
+ impl_aten=torch.asinh,
511
+ doc="",
512
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
513
+ )
514
+
515
+ atan = _make_elementwise_unary_prim(
516
+ "atan",
517
+ impl_aten=torch.atan,
518
+ doc="",
519
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
520
+ )
521
+
522
+ atanh = _make_elementwise_unary_prim(
523
+ "atanh",
524
+ impl_aten=torch.atanh,
525
+ doc="",
526
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
527
+ )
528
+
529
+ cos = _make_elementwise_unary_prim(
530
+ "cos",
531
+ impl_aten=torch.cos,
532
+ doc="",
533
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
534
+ )
535
+
536
+ cosh = _make_elementwise_unary_prim(
537
+ "cosh",
538
+ impl_aten=torch.cosh,
539
+ doc="",
540
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
541
+ )
542
+
543
+ bessel_j0 = _make_elementwise_unary_prim(
544
+ "bessel_j0",
545
+ impl_aten=torch.special.bessel_j0,
546
+ doc="",
547
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
548
+ )
549
+
550
+ bessel_j1 = _make_elementwise_unary_prim(
551
+ "bessel_j1",
552
+ impl_aten=torch.special.bessel_j1,
553
+ doc="",
554
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
555
+ )
556
+
557
+ bessel_i0 = _make_elementwise_unary_prim(
558
+ "bessel_i0",
559
+ impl_aten=torch.i0,
560
+ doc="",
561
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
562
+ )
563
+
564
+ bessel_i0e = _make_elementwise_unary_prim(
565
+ "bessel_i0e",
566
+ impl_aten=torch.special.i0e,
567
+ doc="",
568
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
569
+ )
570
+
571
+ bessel_i1 = _make_elementwise_unary_prim(
572
+ "bessel_i1",
573
+ impl_aten=torch.special.i1,
574
+ doc="",
575
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
576
+ )
577
+
578
+ bessel_i1e = _make_elementwise_unary_prim(
579
+ "bessel_i1e",
580
+ impl_aten=torch.special.i1e,
581
+ doc="",
582
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
583
+ )
584
+
585
+ bitwise_not = _make_elementwise_unary_prim(
586
+ "bitwise_not",
587
+ impl_aten=torch.bitwise_not,
588
+ doc="",
589
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
590
+ )
591
+
592
+
593
+ def _cbrt_aten(a: torch.Tensor) -> Tensor:
594
+ torch._check(
595
+ not a.is_complex(),
596
+ lambda: "cbrt: Complex inputs not supported. Consider calling torch.pow(a, 1.0/3.0)",
597
+ )
598
+ # Returns the real cubic root of the number.
599
+ # Note that if a < 0, pow(a, (1. / 3.)) returns th complex number
600
+ # exp(1/3 * log(a)) = exp(1/3 * (log(abs(a)) + pi*i)) = cbrt(abs(a)) * e^{pi/3*i}
601
+ # which is a complex number.
602
+ # For more info see the section Note in
603
+ # https://en.cppreference.com/w/cpp/numeric/math/cbrt
604
+ return torch.copysign(torch.pow(a.abs(), 1 / 3), a)
605
+
606
+
607
+ cbrt = _make_elementwise_unary_prim(
608
+ "cbrt",
609
+ impl_aten=_cbrt_aten,
610
+ doc="",
611
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
612
+ )
613
+
614
+ ceil = _make_elementwise_unary_prim(
615
+ "ceil",
616
+ impl_aten=torch.ceil,
617
+ doc="",
618
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
619
+ )
620
+
621
+
622
+ def _conj_physical_meta(input: TensorLikeType) -> TensorLikeType:
623
+ if not input.dtype.is_complex:
624
+ raise RuntimeError("prims.conj_physical is only defined for complex dtypes")
625
+
626
+ strides = utils.compute_elementwise_output_strides(input)
627
+ return TensorMeta(input, strides=strides)
628
+
629
+
630
+ conj_physical = _make_prim(
631
+ schema="conj_physical(Tensor self) -> Tensor",
632
+ meta=_conj_physical_meta,
633
+ impl_aten=torch._conj_physical,
634
+ doc="Returns the physical conjugation of a complex tensor",
635
+ return_type=RETURN_TYPE.NEW,
636
+ )
637
+
638
+
639
+ def _clone_meta(
640
+ input: TensorLikeType, *, memory_format: torch.memory_format = torch.preserve_format
641
+ ) -> TensorLikeType:
642
+ if memory_format != torch.preserve_format:
643
+ return torch.empty(
644
+ input.shape,
645
+ dtype=input.dtype,
646
+ layout=input.layout,
647
+ device=input.device,
648
+ memory_format=memory_format,
649
+ )
650
+
651
+ # memory_format == torch.preserve_format
652
+ strides = utils.compute_elementwise_output_strides(input)
653
+ return torch.empty_strided(
654
+ input.shape,
655
+ strides,
656
+ dtype=input.dtype,
657
+ layout=input.layout,
658
+ device=input.device,
659
+ )
660
+
661
+
662
+ clone = _make_prim(
663
+ schema="clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor",
664
+ meta=_clone_meta,
665
+ impl_aten=torch.clone,
666
+ doc="Returns the copy of a tensor",
667
+ return_type=RETURN_TYPE.NEW,
668
+ )
669
+
670
+ digamma = _make_elementwise_unary_prim(
671
+ "digamma",
672
+ impl_aten=torch.digamma,
673
+ doc="",
674
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
675
+ )
676
+
677
+ erf = _make_elementwise_unary_prim(
678
+ "erf",
679
+ impl_aten=torch.erf,
680
+ doc="",
681
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
682
+ )
683
+
684
+ erf_inv = _make_elementwise_unary_prim(
685
+ "erf_inv",
686
+ impl_aten=torch.special.erfinv,
687
+ doc="",
688
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
689
+ )
690
+
691
+ erfc = _make_elementwise_unary_prim(
692
+ "erfc",
693
+ impl_aten=torch.special.erfc,
694
+ doc="",
695
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
696
+ )
697
+
698
+ erfcx = _make_elementwise_unary_prim(
699
+ "erfcx",
700
+ impl_aten=torch.special.erfcx,
701
+ doc="",
702
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
703
+ )
704
+
705
+ exp = _make_elementwise_unary_prim(
706
+ "exp",
707
+ impl_aten=torch.exp,
708
+ doc="",
709
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
710
+ )
711
+
712
+ expm1 = _make_elementwise_unary_prim(
713
+ "expm1",
714
+ impl_aten=torch.special.expm1,
715
+ doc="",
716
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
717
+ )
718
+
719
+ exp2 = _make_elementwise_unary_prim(
720
+ "exp2",
721
+ impl_aten=torch.special.exp2,
722
+ doc="",
723
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
724
+ )
725
+
726
+
727
+ def _fill_meta(a: TensorLikeType, value: NumberType) -> TensorLikeType:
728
+ return _prim_elementwise_meta(
729
+ a, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT
730
+ )
731
+
732
+
733
+ # NOTE: fill uses _make_prim directly because it has a value parameter
734
+ fill = _make_prim(
735
+ schema="fill(Tensor self, Scalar value) -> Tensor",
736
+ return_type=RETURN_TYPE.NEW,
737
+ meta=_fill_meta,
738
+ impl_aten=torch.fill,
739
+ doc="",
740
+ )
741
+
742
+ floor = _make_elementwise_unary_prim(
743
+ "floor",
744
+ impl_aten=torch.floor,
745
+ doc="",
746
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
747
+ )
748
+
749
+ imag = _make_prim(
750
+ schema="imag(Tensor self) -> Tensor",
751
+ meta=partial(
752
+ _complex_only_elementwise_meta,
753
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
754
+ ),
755
+ return_type=RETURN_TYPE.VIEW,
756
+ impl_aten=torch.imag,
757
+ doc="",
758
+ )
759
+
760
+ isfinite = _make_elementwise_unary_prim(
761
+ "isfinite",
762
+ impl_aten=torch.isfinite,
763
+ doc="",
764
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
765
+ )
766
+
767
+ lgamma = _make_elementwise_unary_prim(
768
+ "lgamma",
769
+ impl_aten=torch.lgamma,
770
+ doc="",
771
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
772
+ )
773
+
774
+ log = _make_elementwise_unary_prim(
775
+ "log",
776
+ impl_aten=torch.log,
777
+ doc="",
778
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
779
+ )
780
+
781
+ log1p = _make_elementwise_unary_prim(
782
+ "log1p",
783
+ impl_aten=torch.log1p,
784
+ doc="",
785
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
786
+ )
787
+
788
+ log2 = _make_elementwise_unary_prim(
789
+ "log2",
790
+ impl_aten=torch.log2,
791
+ doc="",
792
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
793
+ )
794
+
795
+ log10 = _make_elementwise_unary_prim(
796
+ "log10",
797
+ impl_aten=torch.log10,
798
+ doc="",
799
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
800
+ )
801
+
802
+ real = _make_prim(
803
+ schema="real(Tensor self) -> Tensor",
804
+ meta=partial(
805
+ _complex_only_elementwise_meta,
806
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
807
+ ),
808
+ return_type=RETURN_TYPE.VIEW,
809
+ impl_aten=torch.real,
810
+ doc="",
811
+ )
812
+
813
+ reciprocal = _make_elementwise_unary_prim(
814
+ "reciprocal",
815
+ impl_aten=torch.reciprocal,
816
+ doc="",
817
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
818
+ )
819
+
820
+ ndtri = _make_elementwise_unary_prim(
821
+ "ndtri",
822
+ impl_aten=torch.special.ndtri,
823
+ doc="",
824
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
825
+ )
826
+
827
+ neg = _make_elementwise_unary_prim(
828
+ "neg",
829
+ impl_aten=torch.neg,
830
+ doc="",
831
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
832
+ )
833
+
834
+ round = _make_elementwise_unary_prim(
835
+ "round",
836
+ impl_aten=torch.round,
837
+ doc="",
838
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
839
+ )
840
+
841
+ rsqrt = _make_elementwise_unary_prim(
842
+ "rsqrt",
843
+ impl_aten=torch.rsqrt,
844
+ doc="",
845
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
846
+ )
847
+
848
+ sign = _make_elementwise_unary_prim(
849
+ "sign",
850
+ impl_aten=torch.sign,
851
+ doc="",
852
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
853
+ )
854
+
855
+ signbit = _make_elementwise_unary_prim(
856
+ "signbit",
857
+ impl_aten=torch.signbit,
858
+ doc="",
859
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
860
+ )
861
+
862
+ sin = _make_elementwise_unary_prim(
863
+ "sin",
864
+ impl_aten=torch.sin,
865
+ doc="",
866
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
867
+ )
868
+
869
+ sinh = _make_elementwise_unary_prim(
870
+ "sinh",
871
+ impl_aten=torch.sinh,
872
+ doc="",
873
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
874
+ )
875
+
876
+ spherical_bessel_j0 = _make_elementwise_unary_prim(
877
+ "spherical_bessel_j0",
878
+ impl_aten=torch.special.spherical_bessel_j0,
879
+ doc="",
880
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
881
+ )
882
+
883
+ sqrt = _make_elementwise_unary_prim(
884
+ "sqrt",
885
+ impl_aten=torch.sqrt,
886
+ doc="",
887
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
888
+ )
889
+
890
+ tan = _make_elementwise_unary_prim(
891
+ "tan",
892
+ impl_aten=torch.tan,
893
+ doc="",
894
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
895
+ )
896
+
897
+ tanh = _make_elementwise_unary_prim(
898
+ "tanh",
899
+ impl_aten=torch.tanh,
900
+ doc="",
901
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
902
+ )
903
+
904
+ trunc = _make_elementwise_unary_prim(
905
+ "trunc",
906
+ impl_aten=torch.trunc,
907
+ doc="",
908
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
909
+ )
910
+
911
+ #
912
+ # Elementwise binary operations
913
+ #
914
+
915
+ add = _make_elementwise_binary_prim(
916
+ name="add",
917
+ impl_aten=torch.add,
918
+ doc="",
919
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
920
+ )
921
+
922
+ atan2 = _make_elementwise_binary_prim(
923
+ name="atan2",
924
+ impl_aten=torch.atan2,
925
+ doc="",
926
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
927
+ )
928
+
929
+ bitwise_and = _make_elementwise_binary_prim(
930
+ "bitwise_and",
931
+ impl_aten=torch.bitwise_and,
932
+ doc="",
933
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
934
+ )
935
+
936
+ bitwise_or = _make_elementwise_binary_prim(
937
+ "bitwise_or",
938
+ impl_aten=torch.bitwise_or,
939
+ doc="",
940
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
941
+ )
942
+
943
+ bitwise_xor = _make_elementwise_binary_prim(
944
+ "bitwise_xor",
945
+ impl_aten=torch.bitwise_xor,
946
+ doc="",
947
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
948
+ )
949
+
950
+ # TODO: complex needs a special meta to account for its float -> complex behavior
951
+ # complex = _make_elementwise_binary_prim(
952
+ # impl_aten=torch.complex,
953
+ # doc="",
954
+ # )
955
+
956
+
957
+ # div prim performs truncation division on integer inputs
958
+ # and true division for floating and complex inputs
959
+ def _div_aten(a, b):
960
+ is_integral = isinstance(a, (bool, int, torch.SymInt)) or (
961
+ isinstance(a, torch.Tensor) and utils.is_integer_dtype(a.dtype)
962
+ )
963
+
964
+ if is_integral:
965
+ return torch.div(a, b, rounding_mode="trunc")
966
+ else:
967
+ return torch.true_divide(a, b)
968
+
969
+
970
+ div = _make_elementwise_binary_prim(
971
+ "div",
972
+ impl_aten=_div_aten,
973
+ doc="",
974
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
975
+ )
976
+
977
+ eq = _make_elementwise_binary_prim(
978
+ "eq",
979
+ impl_aten=torch.eq,
980
+ doc="",
981
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
982
+ )
983
+
984
+ fmax = _make_elementwise_binary_prim(
985
+ "fmax",
986
+ impl_aten=torch.fmax,
987
+ doc="",
988
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
989
+ )
990
+
991
+ fmin = _make_elementwise_binary_prim(
992
+ "fmin",
993
+ impl_aten=torch.fmin,
994
+ doc="",
995
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
996
+ )
997
+
998
+ fmod = _make_elementwise_binary_prim(
999
+ "fmod",
1000
+ impl_aten=torch.fmod,
1001
+ doc="",
1002
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1003
+ )
1004
+
1005
+
1006
+ gcd = _make_elementwise_binary_prim(
1007
+ "gcd",
1008
+ impl_aten=torch.gcd,
1009
+ doc="",
1010
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1011
+ )
1012
+
1013
+
1014
+ ge = _make_elementwise_binary_prim(
1015
+ "ge",
1016
+ impl_aten=torch.ge,
1017
+ doc="",
1018
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
1019
+ )
1020
+
1021
+ gt = _make_elementwise_binary_prim(
1022
+ "gt",
1023
+ impl_aten=torch.gt,
1024
+ doc="",
1025
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
1026
+ )
1027
+
1028
+ hypot = _make_elementwise_binary_prim(
1029
+ "hypot",
1030
+ impl_aten=torch.hypot,
1031
+ doc="",
1032
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1033
+ )
1034
+
1035
+ igamma = _make_elementwise_binary_prim(
1036
+ "igamma",
1037
+ impl_aten=torch.special.gammainc,
1038
+ doc="",
1039
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1040
+ )
1041
+
1042
+ igammac = _make_elementwise_binary_prim(
1043
+ "igammac",
1044
+ impl_aten=torch.special.gammaincc,
1045
+ doc="",
1046
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1047
+ )
1048
+
1049
+ le = _make_elementwise_binary_prim(
1050
+ "le",
1051
+ impl_aten=torch.le,
1052
+ doc="",
1053
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
1054
+ )
1055
+
1056
+ lt = _make_elementwise_binary_prim(
1057
+ "lt",
1058
+ impl_aten=torch.lt,
1059
+ doc="",
1060
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
1061
+ )
1062
+
1063
+
1064
+ # Note: the following impls are because torch.maximum and torch.minimum do not support scalar inputs
1065
+ def _maximum_aten(
1066
+ a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
1067
+ ) -> TensorLikeType:
1068
+ if isinstance(a, TensorLike) and isinstance(b, Number):
1069
+ b = scalar_tensor(b, dtype=a.dtype, device=a.device)
1070
+ elif isinstance(b, TensorLike) and isinstance(a, Number):
1071
+ a = scalar_tensor(a, dtype=b.dtype, device=b.device)
1072
+
1073
+ return torch.maximum(a, b) # type: ignore[arg-type]
1074
+
1075
+
1076
+ maximum = _make_elementwise_binary_prim(
1077
+ "maximum",
1078
+ impl_aten=_maximum_aten,
1079
+ doc="",
1080
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1081
+ )
1082
+
1083
+
1084
+ def _minimum_aten(
1085
+ a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
1086
+ ) -> TensorLikeType:
1087
+ if isinstance(a, TensorLike) and isinstance(b, Number):
1088
+ b = scalar_tensor(b, dtype=a.dtype, device=a.device)
1089
+ elif isinstance(b, TensorLike) and isinstance(a, Number):
1090
+ a = scalar_tensor(a, dtype=b.dtype, device=b.device)
1091
+
1092
+ return torch.minimum(a, b) # type: ignore[arg-type]
1093
+
1094
+
1095
+ minimum = _make_elementwise_binary_prim(
1096
+ "minimum",
1097
+ impl_aten=_minimum_aten,
1098
+ doc="",
1099
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1100
+ )
1101
+
1102
+ mul = _make_elementwise_binary_prim(
1103
+ "mul",
1104
+ impl_aten=torch.mul,
1105
+ doc="",
1106
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1107
+ )
1108
+
1109
+ ne = _make_elementwise_binary_prim(
1110
+ "ne",
1111
+ impl_aten=torch.ne,
1112
+ doc="",
1113
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
1114
+ )
1115
+
1116
+ nextafter = _make_elementwise_binary_prim(
1117
+ "nextafter",
1118
+ impl_aten=torch.nextafter,
1119
+ doc="",
1120
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1121
+ )
1122
+
1123
+ pow = _make_elementwise_binary_prim(
1124
+ "pow",
1125
+ impl_aten=torch.pow,
1126
+ doc="",
1127
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1128
+ )
1129
+
1130
+ remainder = _make_elementwise_binary_prim(
1131
+ "remainder",
1132
+ impl_aten=torch.remainder,
1133
+ doc="",
1134
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1135
+ )
1136
+
1137
+
1138
+ shift_left = _make_elementwise_binary_prim(
1139
+ "shift_left",
1140
+ impl_aten=torch.bitwise_left_shift,
1141
+ doc="",
1142
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1143
+ )
1144
+
1145
+ shift_right_arithmetic = _make_elementwise_binary_prim(
1146
+ "shift_right_arithmetic",
1147
+ impl_aten=torch.bitwise_right_shift,
1148
+ doc="",
1149
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1150
+ )
1151
+
1152
+ shift_right_logical = _not_impl
1153
+
1154
+ sub = _make_elementwise_binary_prim(
1155
+ "sub",
1156
+ impl_aten=torch.sub,
1157
+ doc="",
1158
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1159
+ )
1160
+
1161
+ zeta = _make_elementwise_binary_prim(
1162
+ "zeta",
1163
+ impl_aten=torch.special.zeta,
1164
+ doc="",
1165
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
1166
+ )
1167
+
1168
+
1169
+ #
1170
+ # View operations
1171
+ def _as_strided_meta(
1172
+ a: TensorLikeType, size: ShapeType, stride: StrideType, storage_offset: int
1173
+ ) -> TensorLikeType:
1174
+ assert len(size) == len(stride)
1175
+ assert storage_offset >= 0
1176
+ utils.validate_strides(stride)
1177
+ utils.validate_shape(size)
1178
+
1179
+ if reduce(operator.mul, size) == 0:
1180
+ # NOTE: This special case is to avoid having to acquire the storage below
1181
+ # as_strided to shapes with no elements are trivially valid, so it's OK
1182
+ pass
1183
+ elif isinstance(a, torch.Tensor):
1184
+ utils.check_in_bounds_for_storage(
1185
+ a._typed_storage(), size, stride, storage_offset
1186
+ )
1187
+
1188
+ return torch.as_strided(a, size, stride, storage_offset)
1189
+
1190
+
1191
+ def _as_strided_aten(
1192
+ a: Tensor, size: ShapeType, stride: StrideType, storage_offset: int
1193
+ ) -> Tensor:
1194
+ return torch.as_strided(a, size, stride, storage_offset)
1195
+
1196
+
1197
+ _as_strided_doc = """
1198
+ Creates a view of the tensor with the given shape (size), strides (stride) and
1199
+ storage offset (storage_offset).
1200
+ """
1201
+
1202
+ as_strided = _make_prim(
1203
+ schema="as_strided(Tensor(a!) a, SymInt[] size, SymInt[] stride, SymInt storage_offset) -> Tensor(a!)",
1204
+ meta=_as_strided_meta,
1205
+ impl_aten=_as_strided_aten,
1206
+ return_type=RETURN_TYPE.VIEW,
1207
+ doc=_as_strided_doc,
1208
+ )
1209
+
1210
+
1211
+ def _broadcast_in_dim_meta(
1212
+ a: TensorLikeType, shape: ShapeType, broadcast_dimensions: Sequence[int]
1213
+ ):
1214
+ from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
1215
+
1216
+ # Type checks
1217
+ assert isinstance(a, TensorLike)
1218
+ assert isinstance(shape, Sequence)
1219
+ assert isinstance(broadcast_dimensions, Sequence)
1220
+
1221
+ # every dimension must be accounted for
1222
+ assert a.ndim == len(broadcast_dimensions)
1223
+
1224
+ # broadcast shape must have weakly more dimensions
1225
+ assert len(shape) >= a.ndim
1226
+
1227
+ # broadcast_dimensions must be an ascending sequence
1228
+ # (no relative reordering of dims) of integers and
1229
+ # each dimension must be within the new shape
1230
+ def _greater_than_reduce(acc, x):
1231
+ assert isinstance(x, Dim)
1232
+ assert x > acc
1233
+ assert x < len(shape)
1234
+
1235
+ return x
1236
+
1237
+ reduce(_greater_than_reduce, broadcast_dimensions, -1)
1238
+
1239
+ # shape must be broadcastable to
1240
+ for idx, new_idx in enumerate(broadcast_dimensions):
1241
+ if not guard_size_oblivious(a.shape[idx] == 1):
1242
+ torch._check(
1243
+ a.shape[idx] == shape[new_idx],
1244
+ lambda: f"{a.shape[idx]} must be broadcastable to {shape[new_idx]}",
1245
+ )
1246
+
1247
+ new_strides = []
1248
+ original_idx = 0
1249
+ for idx in range(len(shape)):
1250
+ if idx in broadcast_dimensions:
1251
+ # Assigns a stride of zero to dimensions
1252
+ # which were actually broadcast
1253
+ if guard_size_oblivious(a.shape[original_idx] != shape[idx]):
1254
+ new_strides.append(0)
1255
+ else:
1256
+ new_strides.append(a.stride()[original_idx])
1257
+ original_idx = original_idx + 1
1258
+ else:
1259
+ if guard_size_oblivious(shape[idx] != 1):
1260
+ new_strides.append(0)
1261
+ elif original_idx == a.ndim:
1262
+ new_strides.append(1)
1263
+ else:
1264
+ new_strides.append(a.stride()[original_idx] * a.size()[original_idx])
1265
+
1266
+ return a.as_strided(shape, new_strides, a.storage_offset())
1267
+
1268
+
1269
+ def _broadcast_in_dim_aten(a, shape, broadcast_dimensions):
1270
+ s = list(shape)
1271
+ for broadcast_dimension in broadcast_dimensions:
1272
+ s[broadcast_dimension] = -1
1273
+
1274
+ v = a
1275
+ for idx, x in enumerate(s):
1276
+ if x != -1:
1277
+ v = v.unsqueeze(idx)
1278
+
1279
+ return v.expand(shape)
1280
+
1281
+
1282
+ _broadcast_in_dim_doc = """
1283
+ Creates a view of a with the specified shape.
1284
+
1285
+ Allows adding dimensions of any length and broadcasting
1286
+ dimensions of length one in a to any length.
1287
+
1288
+ The location of the broadcast dimensions must be specified
1289
+ using the broadcast_dimensions argument. Changing the
1290
+ relative order of dimensions is not supported.
1291
+ """
1292
+
1293
+ broadcast_in_dim = _make_prim(
1294
+ schema="broadcast_in_dim(Tensor(a) a, SymInt[] shape, int[] broadcast_dimensions) -> Tensor(a)",
1295
+ meta=_broadcast_in_dim_meta,
1296
+ impl_aten=_broadcast_in_dim_aten,
1297
+ return_type=RETURN_TYPE.VIEW,
1298
+ doc=_broadcast_in_dim_doc,
1299
+ )
1300
+
1301
+
1302
+ def _validate_collapse_args(a: Tensor, start: int, end: int) -> None:
1303
+ # Special-case for zero dimensional tensors
1304
+ ndim = max(1, a.dim())
1305
+ utils.validate_idx(ndim, start)
1306
+ utils.validate_idx(ndim, end)
1307
+
1308
+ # Verifies end is strictly greater than start
1309
+ # (Collapse requires a non-empty interval)
1310
+ torch._check_value(
1311
+ end >= start,
1312
+ lambda: f"Attempting to collapse but end, {end}, is less than start, {start}!",
1313
+ )
1314
+
1315
+
1316
+ def _collapsed_shape(shape: ShapeType, start: int, end: int) -> Tuple[int, ...]:
1317
+ """
1318
+ Returns the shape of a with dims in [start, end) merged into a single dimension.
1319
+ """
1320
+ # Special-case for zero dimensional tensors
1321
+ shape = (1,) if len(shape) == 0 else tuple(shape)
1322
+
1323
+ dim_length = 1
1324
+ for s in shape[start : end + 1]:
1325
+ dim_length = dim_length * s
1326
+
1327
+ return shape[0:start] + (dim_length,) + shape[end + 1 :]
1328
+
1329
+
1330
+ def _collapse_view_helper(
1331
+ a: TensorLikeType, start: int, end: int
1332
+ ) -> Tuple[Optional[ShapeType], Optional[StrideType]]:
1333
+ assert isinstance(a, TensorLike)
1334
+
1335
+ from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
1336
+
1337
+ _validate_collapse_args(a, start, end)
1338
+
1339
+ # Special-case for zero dimensional tensors
1340
+ if a.ndim == 0:
1341
+ shape = (1,)
1342
+ strides = (1,)
1343
+ else:
1344
+ shape = a.shape # type: ignore[assignment]
1345
+ strides = a.stride() # type: ignore[assignment]
1346
+
1347
+ if a.ndim == 0 or (end == start):
1348
+ return shape, strides
1349
+
1350
+ length = shape[end]
1351
+ stride = strides[end]
1352
+ for idx in range(end - 1, start - 1, -1):
1353
+ if guard_size_oblivious(shape[idx] == 0) or guard_size_oblivious(
1354
+ shape[idx + 1] == 0
1355
+ ):
1356
+ length = 0
1357
+ stride = 0
1358
+ break
1359
+
1360
+ if guard_size_oblivious(shape[idx] == 1):
1361
+ continue
1362
+
1363
+ length = length * shape[idx]
1364
+ stride = min(stride, strides[idx])
1365
+
1366
+ if (
1367
+ guard_size_oblivious(a.numel() > 0)
1368
+ and guard_size_oblivious(shape[idx + 1] != 1)
1369
+ and not guard_size_oblivious(
1370
+ strides[idx] == strides[idx + 1] * shape[idx + 1]
1371
+ )
1372
+ ):
1373
+ return None, None
1374
+
1375
+ new_shape = shape[:start] + (length,) + shape[end + 1 :]
1376
+ new_strides = strides[:start] + (stride,) + strides[end + 1 :]
1377
+
1378
+ # NOTE: when the input has no elements it's restrided as if it were contiguous
1379
+ if guard_size_oblivious(a.numel() == 0):
1380
+ new_strides = utils.make_contiguous_strides_for(new_shape)
1381
+
1382
+ return new_shape, new_strides
1383
+
1384
+
1385
+ def _collapse_view_meta(a: TensorLikeType, start: int, end: int) -> TensorLikeType:
1386
+ new_shape, new_strides = _collapse_view_helper(a, start, end)
1387
+
1388
+ if new_shape is None:
1389
+ msg = "Attempting to view a collapsed tensor, but no such view exists!"
1390
+ raise ValueError(msg)
1391
+
1392
+ assert new_strides is not None
1393
+ return a.as_strided(new_shape, new_strides, a.storage_offset())
1394
+
1395
+
1396
+ def _collapse_view_aten(a: Tensor, start: int, end: int) -> Tensor:
1397
+ new_shape = _collapsed_shape(a.shape, start, end)
1398
+ return a.view(new_shape)
1399
+
1400
+
1401
+ _collapse_view_doc = """
1402
+ Creates a view of a with the dimensions between
1403
+ start (inclusive) and end (exclusive) merged into a
1404
+ single dimension.
1405
+
1406
+ If it's not possible to take such a view then an error
1407
+ is thrown. See collapse instead.
1408
+
1409
+ The dimensions can be merged if and only if
1410
+ they are all "nested" with each other. That is, they all
1411
+ have the property that
1412
+
1413
+ stride[i] = stride[i+1] * shape[i+1]
1414
+
1415
+ for all i in [start, end - 1).
1416
+ """
1417
+
1418
+ collapse_view = _make_prim(
1419
+ schema="collapse_view(Tensor(a) a, int start, int end) -> Tensor(a)",
1420
+ meta=_collapse_view_meta,
1421
+ impl_aten=_collapse_view_aten,
1422
+ return_type=RETURN_TYPE.VIEW,
1423
+ doc=_collapse_view_doc,
1424
+ )
1425
+
1426
+
1427
+ def _conj_meta(a: TensorLikeType) -> TensorLikeType:
1428
+ if not a.dtype.is_complex:
1429
+ raise RuntimeError("Expected complex dtype in prims.conj")
1430
+ out = a.as_strided(a.shape, a.stride(), a.storage_offset())
1431
+ torch._C._set_conj(out, not a.is_conj())
1432
+ return out
1433
+
1434
+
1435
+ _conj_doc = """
1436
+ Returns a conjugated view of the original tensor
1437
+ """
1438
+
1439
+ conj = _make_prim(
1440
+ schema="conj(Tensor(a) a) -> Tensor(a)",
1441
+ meta=_conj_meta,
1442
+ impl_aten=torch.conj,
1443
+ return_type=RETURN_TYPE.VIEW,
1444
+ doc=_conj_doc,
1445
+ )
1446
+
1447
+
1448
+ def expand_dims(
1449
+ a: TensorLikeType, dimensions: DimsSequenceType, ndim=None
1450
+ ) -> TensorLikeType:
1451
+ """
1452
+ Creates a view of a with a.ndim + len(dimensions) dimensions, with new
1453
+ dimensions of length one at the dimensions specified by dimensions.
1454
+ """
1455
+ if ndim is not None:
1456
+ # TODO: this is only here to support the unsqueeze ref
1457
+ dims = sorted(utils.canonicalize_dims(ndim, dimensions)) # type: ignore[arg-type]
1458
+ else:
1459
+ dims = sorted(utils.canonicalize_dims(a.ndim, dimensions)) # type: ignore[arg-type]
1460
+ if len(set(dims)) != len(dims):
1461
+ msg = f"Received duplicate dimensions to expand in {str(dimensions)}"
1462
+ raise ValueError(msg)
1463
+
1464
+ new_shape = list(a.shape)
1465
+ for idx in dims:
1466
+ new_shape.insert(idx, 1)
1467
+
1468
+ broadcast_dimensions = [
1469
+ idx for idx in range(len(new_shape)) if idx not in dimensions
1470
+ ]
1471
+ return broadcast_in_dim(a, new_shape, broadcast_dimensions)
1472
+
1473
+
1474
+ # Note: saves the Python slice object because we're about to clobber its name with the slice prim
1475
+ pyslice: Type[slice] = slice # type: ignore[has-type]
1476
+
1477
+
1478
+ def _slice_meta(
1479
+ a: TensorLikeType,
1480
+ start_indices: DimsSequenceType,
1481
+ limit_indices: DimsSequenceType,
1482
+ strides: Optional[StrideType] = None,
1483
+ ) -> TensorLikeType:
1484
+ _strides = strides if strides is not None else [1] * len(start_indices)
1485
+
1486
+ if a.ndim != len(start_indices):
1487
+ msg = f"Attempting to slice tensor of rank {a.ndim} with start_indices of length {len(start_indices)}!"
1488
+ raise ValueError(msg)
1489
+
1490
+ if a.ndim != len(limit_indices):
1491
+ msg = f"Attempting to slice tensor of rank {a.ndim} with limit_indices of length {len(limit_indices)}!"
1492
+ raise ValueError(msg)
1493
+
1494
+ if a.ndim != len(_strides):
1495
+ msg = f"Attempting to slice tensor of rank {a.ndim} with strides of length {len(limit_indices)}!"
1496
+ raise ValueError(msg)
1497
+
1498
+ for x, y in zip(start_indices, a.shape):
1499
+ if x < 0:
1500
+ msg = f"Attempting to slice a tensor with a negative start index of {x}!"
1501
+ raise ValueError(msg)
1502
+ if x > y:
1503
+ msg = (
1504
+ f"Attempting to slice a tensor but a start index in {start_indices} is greater than"
1505
+ f" the length of its corresponding dimension in shape {a.shape}"
1506
+ )
1507
+ raise ValueError(msg)
1508
+
1509
+ for x, y, z in zip(limit_indices, a.shape, start_indices):
1510
+ if x < 0:
1511
+ msg = f"Attempting to slice a tensor with a negative stop index of {x}!"
1512
+ raise ValueError(msg)
1513
+ if x > y:
1514
+ msg = (
1515
+ f"Attempting to slice a tensor but a stop index in {limit_indices} is greater than the length of "
1516
+ f" its corresponding dimension in shape {a.shape}"
1517
+ )
1518
+ raise ValueError(msg)
1519
+ if x < z:
1520
+ msg = (
1521
+ f"Attempting to slice a tensor but a start index in {x} is greater than "
1522
+ f" its corresponding stop index {z}"
1523
+ )
1524
+
1525
+ for x in _strides:
1526
+ if x <= 0:
1527
+ msg = f"Attempting to slice a tensor with a non-positive step of {x}!"
1528
+ raise ValueError(msg)
1529
+
1530
+ new_shape = []
1531
+ for x, y, z in zip(start_indices, limit_indices, _strides):
1532
+ new_shape.append(1 + (y - x - 1) // z)
1533
+
1534
+ new_strides = []
1535
+ for x, y in zip(a.stride(), _strides):
1536
+ new_strides.append(x * y)
1537
+
1538
+ return a.as_strided(new_shape, new_strides, a.storage_offset())
1539
+
1540
+
1541
+ def _slice_aten(
1542
+ a: Tensor,
1543
+ start_indices: DimsSequenceType,
1544
+ limit_indices: DimsSequenceType,
1545
+ strides: Optional[StrideType] = None,
1546
+ ) -> Tensor:
1547
+ _strides = strides if strides is not None else [1] * len(start_indices)
1548
+
1549
+ slices = []
1550
+ for start, stop, step in zip(start_indices, limit_indices, _strides):
1551
+ slices.append(pyslice(start, stop, step))
1552
+
1553
+ return operator.getitem(a, slices) # type: ignore[call-overload]
1554
+
1555
+
1556
+ _slice_doc = """
1557
+ Creates a view of a "bounding box" within the tensor.
1558
+
1559
+ The bounding box is specified independently in each of the tensor's dimensions.
1560
+ start_indices and limit_indices describe the box's boundaries for their corresponding
1561
+ dimensions. If strides is specified then they specify the step size between elements
1562
+ in their corresponding dimension.
1563
+
1564
+ This operation is analogous to slicing in NumPy, but does not permit slices where
1565
+ the stop indices are less than the start indices.
1566
+ """
1567
+
1568
+ slice = _make_prim(
1569
+ schema="slice(Tensor(a) a, SymInt[] start_indices, SymInt[] limit_indices, SymInt[]? strides=None) -> Tensor(a)",
1570
+ meta=_slice_meta,
1571
+ impl_aten=_slice_aten,
1572
+ return_type=RETURN_TYPE.VIEW,
1573
+ doc=_slice_doc,
1574
+ )
1575
+
1576
+
1577
+ def _slice_in_dim_meta(
1578
+ a: TensorLikeType,
1579
+ start_index: int,
1580
+ limit_index: int,
1581
+ stride: int = 1,
1582
+ axis: int = 0,
1583
+ ) -> TensorLikeType:
1584
+ if axis < 0:
1585
+ msg = f"slice_in_dim: received a negative axis {axis}"
1586
+ raise ValueError(msg)
1587
+ if axis >= a.ndim:
1588
+ msg = f"slice_in_dim: axis {axis} is greater or equal to the rank {a.ndim} of the tensor"
1589
+ raise ValueError(msg)
1590
+
1591
+ if start_index < 0:
1592
+ msg = f"slice_in_dim: received a negative start_index {start_index}"
1593
+ raise ValueError(msg)
1594
+
1595
+ if start_index > a.shape[axis]:
1596
+ msg = f"slice_in_dim: start_index is greater than the length {start_index} of dimension {axis}"
1597
+ raise ValueError(msg)
1598
+
1599
+ if limit_index > a.shape[axis]:
1600
+ msg = f"slice_in_dim: limit_index is greater than the length {limit_index} of dimension {axis}"
1601
+ raise ValueError(msg)
1602
+
1603
+ if limit_index < start_index:
1604
+ msg = f"slice_in_dim: received a limit_index {limit_index} less than the start_index {start_index}"
1605
+ raise ValueError(msg)
1606
+
1607
+ if stride < 0:
1608
+ msg = f"slice_in_dim: received a non-positive stride of {stride}!"
1609
+ raise ValueError(msg)
1610
+
1611
+ start_indices = [0] * a.ndim
1612
+ limit_indices = list(a.shape)
1613
+ strides = [1] * a.ndim
1614
+
1615
+ start_indices[axis] = start_index
1616
+ limit_indices[axis] = limit_index
1617
+ strides[axis] = stride
1618
+
1619
+ return _slice_meta(a, start_indices, limit_indices, strides)
1620
+
1621
+
1622
+ def _slice_in_dim_aten(
1623
+ a: Tensor,
1624
+ start_index: int,
1625
+ limit_index: int,
1626
+ stride: int = 1,
1627
+ axis: int = 0,
1628
+ ) -> Tensor:
1629
+ start_indices = [0] * a.ndim
1630
+ limit_indices = list(a.shape)
1631
+ strides = [1] * a.ndim
1632
+
1633
+ start_indices[axis] = start_index
1634
+ limit_indices[axis] = limit_index
1635
+ strides[axis] = stride
1636
+
1637
+ return slice(a, start_indices, limit_indices, strides)
1638
+
1639
+
1640
+ _slice_in_dim_doc = """
1641
+ Convenience wrapper for slicing just one dimension using slice.
1642
+ """
1643
+
1644
+ # TODO: make stride SymInt
1645
+ slice_in_dim = _make_prim(
1646
+ schema="slice_in_dim(Tensor(a) a, SymInt start_index, SymInt limit_index, int stride=1, int axis=0) -> Tensor(a)",
1647
+ meta=_slice_in_dim_meta,
1648
+ impl_aten=_slice_in_dim_aten,
1649
+ return_type=RETURN_TYPE.VIEW,
1650
+ doc=_slice_in_dim_doc,
1651
+ )
1652
+
1653
+
1654
+ def _split_dim_meta(a: TensorLikeType, dim: int, outer_length: int) -> TensorLikeType:
1655
+ assert isinstance(a, TensorLike)
1656
+ utils.validate_idx(a.ndim, dim)
1657
+ utils.validate_dim_length(outer_length)
1658
+
1659
+ # Verifies the dim can be split with the specified lhs_length
1660
+ inner_length = a.shape[dim] // outer_length
1661
+
1662
+ if (a.shape[dim] % outer_length) != 0:
1663
+ msg = "Attempting to split dimension of length {}, but outer length of {} divides it with a remainder!".format(
1664
+ a.shape[dim], outer_length
1665
+ )
1666
+ raise ValueError(msg)
1667
+
1668
+ new_shape: List[int] = []
1669
+ new_strides: List[int] = []
1670
+ for idx in range(a.ndim):
1671
+ if idx == dim:
1672
+ new_shape.extend((outer_length, inner_length))
1673
+ new_strides.extend((a.stride()[idx] * inner_length, a.stride()[idx]))
1674
+ else:
1675
+ new_shape.append(a.shape[idx])
1676
+ new_strides.append(a.stride()[idx])
1677
+
1678
+ return a.as_strided(new_shape, new_strides, a.storage_offset())
1679
+
1680
+
1681
+ def _split_dim_aten(a: Tensor, dim: int, outer_length: int) -> Tensor:
1682
+ inner_length = a.shape[dim] // outer_length
1683
+ new_shape = a.shape[0:dim] + (outer_length, inner_length) + a.shape[dim + 1 :]
1684
+
1685
+ return a.view(new_shape)
1686
+
1687
+
1688
+ _split_dim_doc = """
1689
+ Creates a view of a with the given dimension (of length l) split
1690
+ into two dimensions, with the outer of the two having
1691
+ length outer_length and the inner of the two having computed
1692
+ length inner_length such outer_length * inner_length = l.
1693
+ """
1694
+
1695
+ # TODO: consider renaming split_dim_view
1696
+ split_dim = _make_prim(
1697
+ schema="split_dim(Tensor(a) a, int dim, SymInt outer_length) -> Tensor(a)",
1698
+ meta=_split_dim_meta,
1699
+ impl_aten=_split_dim_aten,
1700
+ return_type=RETURN_TYPE.VIEW,
1701
+ doc=_split_dim_doc,
1702
+ )
1703
+
1704
+
1705
+ # Note: allows dimensions to be specified redundantly
1706
+ def _squeeze_meta(a: TensorLikeType, dimensions: Sequence) -> TensorLikeType:
1707
+ assert isinstance(a, TensorLike)
1708
+
1709
+ for idx in dimensions:
1710
+ utils.validate_idx(a.ndim, idx)
1711
+ assert a.shape[idx] == 1
1712
+
1713
+ new_shape = []
1714
+ new_strides = []
1715
+ for idx in range(len(a.shape)):
1716
+ if idx in dimensions:
1717
+ continue
1718
+
1719
+ new_shape.append(a.shape[idx])
1720
+ new_strides.append(a.stride()[idx])
1721
+
1722
+ return a.as_strided(new_shape, new_strides, a.storage_offset())
1723
+
1724
+
1725
+ _squeeze_doc = """
1726
+ Creates a view of the tensor with the specified dimensions removed.
1727
+
1728
+ The removed dimensions must each have length one.
1729
+ """
1730
+
1731
+ squeeze = _make_prim(
1732
+ schema="squeeze(Tensor(a) a, int[] dimensions) -> Tensor(a)",
1733
+ meta=_squeeze_meta,
1734
+ impl_aten=torch.squeeze,
1735
+ return_type=RETURN_TYPE.VIEW,
1736
+ doc=_squeeze_doc,
1737
+ )
1738
+
1739
+
1740
+ def _transpose_meta(a: TensorLikeType, permutation: DimsSequenceType) -> TensorLikeType:
1741
+ if a.ndim != len(permutation):
1742
+ msg = "Attempting to permute a tensor of rank {}, but received a permutation of length {}!".format(
1743
+ a.ndim, len(permutation)
1744
+ )
1745
+ raise ValueError(msg)
1746
+
1747
+ if not utils.is_valid_permutation(a.ndim, permutation):
1748
+ msg = f"Received an invalid permutation, {permutation}!"
1749
+ raise ValueError(msg)
1750
+
1751
+ new_shape = [0] * a.ndim
1752
+ new_strides = [0] * a.ndim
1753
+ for idx, dim in enumerate(permutation):
1754
+ new_shape[idx] = a.shape[dim]
1755
+ new_strides[idx] = a.stride()[dim]
1756
+
1757
+ return a.as_strided(tuple(new_shape), tuple(new_strides), a.storage_offset())
1758
+
1759
+
1760
+ def _transpose_aten(a: Tensor, permutation: DimsSequenceType) -> Tensor:
1761
+ return torch.permute(a, permutation)
1762
+
1763
+
1764
+ _transpose_doc = """
1765
+ Creates a view of the tensor with its dimensions permuted.
1766
+
1767
+ The length of the permutation must be the rank of the tensor,
1768
+ and each element of the permutation specifies the new order
1769
+ for the corresponding dimension.
1770
+ """
1771
+
1772
+ transpose = _make_prim(
1773
+ schema="transpose(Tensor(a) a, int[] permutation) -> Tensor(a)",
1774
+ meta=_transpose_meta,
1775
+ impl_aten=_transpose_aten,
1776
+ return_type=RETURN_TYPE.VIEW,
1777
+ doc=_transpose_doc,
1778
+ )
1779
+
1780
+
1781
+ def _view_of_meta(a: TensorLikeType) -> TensorLikeType:
1782
+ return a.as_strided(a.shape, a.stride(), a.storage_offset())
1783
+
1784
+
1785
+ def _view_of_aten(a: Tensor) -> Tensor:
1786
+ return a.view(a.shape)
1787
+
1788
+
1789
+ _view_of_doc = """
1790
+ Creates a view of the tensor.
1791
+ """
1792
+
1793
+ view_of = _make_prim(
1794
+ schema="view_of(Tensor(a) a) -> Tensor",
1795
+ meta=_view_of_meta,
1796
+ impl_aten=_view_of_aten,
1797
+ return_type=RETURN_TYPE.VIEW,
1798
+ doc=_view_of_doc,
1799
+ )
1800
+
1801
+
1802
+ def _view_element_type_meta(a: TensorLikeType, dtype: torch.dtype) -> TensorLikeType:
1803
+ return a.view(dtype)
1804
+
1805
+
1806
+ def _view_element_type_aten(a: Tensor, dtype: torch.dtype) -> Tensor:
1807
+ return a.view(dtype)
1808
+
1809
+
1810
+ _view_element_type_doc = """
1811
+ Creates a view of the tensor with a different dtype.
1812
+ """
1813
+
1814
+ view_element_type = _make_prim(
1815
+ schema="view_of_dtype(Tensor(a) a, ScalarType dtype) -> Tensor",
1816
+ meta=_view_element_type_meta,
1817
+ impl_aten=_view_element_type_aten,
1818
+ return_type=RETURN_TYPE.VIEW,
1819
+ doc=_view_element_type_doc,
1820
+ )
1821
+
1822
+ #
1823
+ # Functionalized view mutations
1824
+ #
1825
+
1826
+
1827
+ def _as_strided_scatter_meta(
1828
+ input: TensorLikeType,
1829
+ src: TensorLikeType,
1830
+ size: ShapeType,
1831
+ stride: StrideType,
1832
+ storage_offset: int,
1833
+ ) -> TensorLikeType:
1834
+ utils.validate_shape(size)
1835
+ utils.validate_strides(stride)
1836
+
1837
+ required_size = utils.compute_required_storage_length(size, stride, storage_offset)
1838
+ torch._check(
1839
+ input.numel() >= required_size,
1840
+ lambda: (
1841
+ f"as_strided_scatter: sizes {size}, strides {stride}, storage offset {storage_offset} "
1842
+ f" and itemsize {input.element_size()} requiring a storage size of "
1843
+ f"{required_size * input.element_size()} are out of bounds "
1844
+ f"for storage of size {input.numel() * input.element_size()}"
1845
+ ),
1846
+ )
1847
+ torch._check(
1848
+ utils.is_same_shape(src.shape, size),
1849
+ lambda: f"expected src to have a size equal to the slice of self. src size = {src.shape}, slice size = {size}",
1850
+ )
1851
+
1852
+ return utils.clone_preserve_strides(input)
1853
+
1854
+
1855
+ _as_strided_scatter_doc = """
1856
+ Creates a new tensor equivalent to ``out = input.clone()`` after mutation by
1857
+ ``out.as_strided(size, stride, storage_offset).copy_(src)``.
1858
+ """
1859
+
1860
+ as_strided_scatter = _make_prim(
1861
+ schema="as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt storage_offset) -> Tensor",
1862
+ meta=_as_strided_scatter_meta,
1863
+ impl_aten=torch.as_strided_scatter,
1864
+ return_type=RETURN_TYPE.NEW,
1865
+ doc=_as_strided_scatter_doc,
1866
+ )
1867
+
1868
+
1869
+ #
1870
+ # Shape operations
1871
+ #
1872
+
1873
+
1874
+ def _collapse_meta(a: Tensor, start: int, end: int) -> Tensor:
1875
+ # Special-case for zero dimensional tensors
1876
+ _validate_collapse_args(a, start, end)
1877
+ new_shape = _collapsed_shape(a.shape, start, end)
1878
+ return a.new_empty(new_shape)
1879
+
1880
+
1881
+ def _collapse_aten(a: Tensor, start: int, end: int) -> Tensor:
1882
+ new_shape = _collapsed_shape(a.shape, start, end)
1883
+ out = a.new_empty(new_shape)
1884
+ with torch.no_grad():
1885
+ out.view_as(a).copy_(a)
1886
+ return out
1887
+
1888
+
1889
+ _collapse_doc = """
1890
+ Collapse a span of neighboring dimensions into one.
1891
+
1892
+ See collapse_view for the corresponding view operation.
1893
+ """
1894
+ collapse = _make_prim(
1895
+ schema="collapse(Tensor a, int start, int end) -> Tensor",
1896
+ meta=_collapse_meta,
1897
+ impl_aten=_collapse_aten,
1898
+ return_type=RETURN_TYPE.NEW,
1899
+ doc=_collapse_doc,
1900
+ )
1901
+
1902
+
1903
+ # TODO: review stride logic
1904
+ # NB: unlike torch.cat, this is more strict about empty tensors and dim is
1905
+ # never negative
1906
+ def _cat_meta(tensors: Sequence[TensorLikeType], dim: int) -> TensorLikeType:
1907
+ # Verifies same shape (except in the concat dimension)
1908
+ assert dim >= 0
1909
+ shape = tensors[0].shape
1910
+ concat_length = 0
1911
+ for tensor_idx, tensor in enumerate(tensors):
1912
+ assert len(shape) == len(tensor.shape)
1913
+ for idx, (common_length, length) in enumerate(zip(shape, tensor.shape)):
1914
+ if idx == dim:
1915
+ concat_length = concat_length + length
1916
+ else:
1917
+ torch._check(
1918
+ length == common_length,
1919
+ lambda: f"Sizes of tensors must match except in dimension {dim}. "
1920
+ f"Expected {common_length} but got {length} for tensor number "
1921
+ f"{tensor_idx} in the list",
1922
+ )
1923
+
1924
+ new_shape = list(tensors[0].shape).copy()
1925
+ new_shape[dim] = concat_length
1926
+ return TensorMeta(
1927
+ tensors[0],
1928
+ shape=new_shape,
1929
+ strides=utils.make_contiguous_strides_for(new_shape),
1930
+ )
1931
+
1932
+
1933
+ def _cat_aten(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: int) -> Tensor:
1934
+ return torch.cat(tensors, dim)
1935
+
1936
+
1937
+ _cat_doc = """
1938
+ Concatenates tensors along the specified dimension.
1939
+
1940
+ The tensors' shapes must have the same rank and same length for other dimensions.
1941
+ """
1942
+
1943
+ cat = _make_prim(
1944
+ schema="cat(Tensor[] tensors, int dim) -> Tensor",
1945
+ meta=_cat_meta,
1946
+ impl_aten=_cat_aten,
1947
+ return_type=RETURN_TYPE.NEW,
1948
+ doc=_cat_doc,
1949
+ )
1950
+
1951
+
1952
+ def _reshape_meta(a: TensorLikeType, shape: ShapeType):
1953
+ assert isinstance(a, TensorLike)
1954
+ utils.validate_shape(shape)
1955
+
1956
+ # Validates the tensor and the requested shape have the
1957
+ # same number of elements
1958
+ numel = reduce(operator.mul, shape)
1959
+ if numel != a.numel():
1960
+ msg = f"Attempting to reshape a tensor with {a.numel()} elements to a shape with {numel} elements!"
1961
+ raise ValueError(msg)
1962
+
1963
+ return TensorMeta(a, shape=shape, strides=utils.make_contiguous_strides_for(shape))
1964
+
1965
+
1966
+ def _reshape_aten(a: Tensor, shape: ShapeType) -> Tensor:
1967
+ return a.reshape(shape).contiguous().clone()
1968
+
1969
+
1970
+ _reshape_doc = """
1971
+ Creates a contiguous tensor with the specified shape
1972
+ containing a copy of the data in a.
1973
+ """
1974
+ reshape = _make_prim(
1975
+ schema="reshape(Tensor a, SymInt[] shape) -> Tensor",
1976
+ meta=_reshape_meta,
1977
+ impl_aten=_reshape_aten,
1978
+ return_type=RETURN_TYPE.NEW,
1979
+ doc=_reshape_doc,
1980
+ )
1981
+
1982
+
1983
+ def _rev_meta(a: TensorLikeType, dims: DimsSequenceType) -> TensorLikeType:
1984
+ utils.validate_dimension_indices(a.ndim, dims)
1985
+ return torch.empty_like(a, memory_format=torch.preserve_format)
1986
+
1987
+
1988
+ _rev_doc = """
1989
+ Reverses the order of elements along the given dimensions.
1990
+ """
1991
+
1992
+ rev = _make_prim(
1993
+ schema="rev(Tensor a, int[] dims) -> Tensor",
1994
+ meta=_rev_meta,
1995
+ impl_aten=torch.flip,
1996
+ return_type=RETURN_TYPE.NEW,
1997
+ doc=_rev_doc,
1998
+ )
1999
+
2000
+ #
2001
+ # Conditional prims
2002
+ #
2003
+
2004
+
2005
+ def _where_meta(
2006
+ pred: TensorLikeType, a: TensorLikeType, b: TensorLikeType
2007
+ ) -> TensorLikeType:
2008
+ return _prim_elementwise_meta(
2009
+ a,
2010
+ b,
2011
+ type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
2012
+ args_with_fixed_dtypes=(pred,),
2013
+ )
2014
+
2015
+
2016
+ _where_doc = """
2017
+ Selects elements from a and b according to pred.
2018
+
2019
+ Where pred is true the result contains the element from a, and
2020
+ where pred is false the result contains the element from b.
2021
+ """
2022
+
2023
+ where = _make_prim(
2024
+ schema="where(Tensor pred, Tensor a, Tensor b) -> Tensor",
2025
+ meta=_where_meta,
2026
+ impl_aten=torch.where,
2027
+ return_type=RETURN_TYPE.NEW,
2028
+ doc=_where_doc,
2029
+ )
2030
+
2031
+
2032
+ #
2033
+ # Type conversions
2034
+ #
2035
+ def _convert_element_type_meta(a: TensorLikeType, dtype: torch.dtype) -> TensorLikeType:
2036
+ # Type checks
2037
+ assert isinstance(a, TensorLike)
2038
+ assert isinstance(dtype, torch.dtype)
2039
+
2040
+ # dtype conversion preserves dense strides
2041
+ if torch._prims_common.is_non_overlapping_and_dense(a):
2042
+ strides = a.stride()
2043
+ else:
2044
+ strides = utils.compute_elementwise_output_strides(a)
2045
+
2046
+ return TensorMeta(a, strides=strides, dtype=dtype)
2047
+
2048
+
2049
+ def _convert_element_type_aten(a: Tensor, dtype: torch.dtype) -> Tensor:
2050
+ # Propagates requires grad when possible
2051
+ if not utils.is_grad_dtype(dtype):
2052
+ requires_grad = False
2053
+ else:
2054
+ # TODO: update meta objects so this can be acquired directly
2055
+ try:
2056
+ requires_grad = a.requires_grad
2057
+ except Exception as e:
2058
+ requires_grad = False
2059
+
2060
+ result = torch.empty_like(
2061
+ a, device=a.device, dtype=dtype, requires_grad=requires_grad
2062
+ )
2063
+ with torch.no_grad():
2064
+ return copy_to(result, a)
2065
+
2066
+
2067
+ _convert_element_type_doc = """
2068
+ Creates a copy of a tensor with the given dtype.
2069
+ """
2070
+
2071
+ convert_element_type = _make_prim(
2072
+ schema="convert_element_type(Tensor a, ScalarType dtype) -> Tensor",
2073
+ meta=_convert_element_type_meta,
2074
+ impl_aten=_convert_element_type_aten,
2075
+ return_type=RETURN_TYPE.NEW,
2076
+ doc=_convert_element_type_doc,
2077
+ tags=(torch.Tag.pointwise,),
2078
+ )
2079
+
2080
+
2081
+ def _device_put_meta(
2082
+ a: TensorLikeType, device: Union[str, torch.device]
2083
+ ) -> TensorLikeType:
2084
+ assert isinstance(a, TensorLike)
2085
+ assert isinstance(device, (str, torch.device))
2086
+
2087
+ return TensorMeta(a, device=utils.canonicalize_device(device))
2088
+
2089
+
2090
+ def _device_put_aten(a: Tensor, device: Union[str, torch.device]) -> Tensor:
2091
+ return a.to(device)
2092
+
2093
+
2094
+ _device_put_doc = """
2095
+ Creates a copy of a tensor on the given device.
2096
+ """
2097
+
2098
+ device_put = _make_prim(
2099
+ schema="device_put(Tensor a, Device device) -> Tensor",
2100
+ meta=_device_put_meta,
2101
+ impl_aten=_device_put_aten,
2102
+ return_type=RETURN_TYPE.NEW,
2103
+ doc=_device_put_doc,
2104
+ )
2105
+
2106
+
2107
+ # NOTE: need to model meta scalars
2108
+ # See https://github.com/pytorch/pytorch/issues/78070
2109
+ def _item_meta(a: TensorLikeType) -> FakeTensor:
2110
+ number_type = utils.dtype_to_type(a.dtype)
2111
+ return TensorMeta(number_type(-1))
2112
+
2113
+
2114
+ _item_doc = """
2115
+ Converts a tensor with one element to a Python number.
2116
+ """
2117
+
2118
+ # TODO: create a new return type for scalars?
2119
+ # FIXME: currently returns integers for boolean tensors
2120
+ # https://github.com/pytorch/pytorch/issues/78071
2121
+ item = _make_prim(
2122
+ schema="item(Tensor a) -> Scalar",
2123
+ meta=_item_meta,
2124
+ impl_aten=torch.Tensor.item,
2125
+ return_type=RETURN_TYPE.NEW,
2126
+ doc=_item_doc,
2127
+ )
2128
+
2129
+
2130
+ # NOTE: need to model meta scalars
2131
+ # See https://github.com/pytorch/pytorch/issues/78070
2132
+ def _maximum_value_meta(dtype: torch.dtype) -> FakeTensor:
2133
+ number_type = utils.dtype_to_type(dtype)
2134
+ return TensorMeta(number_type(-1))
2135
+
2136
+
2137
+ def _maximum_value_aten(dtype: torch.dtype):
2138
+ if dtype == torch.bool:
2139
+ return True
2140
+ elif dtype.is_complex or dtype.is_floating_point:
2141
+ return torch.finfo(dtype).max
2142
+ else:
2143
+ return torch.iinfo(dtype).max
2144
+
2145
+
2146
+ _maximum_value_doc = """
2147
+ Return the maximum finite value for a dtype.
2148
+ """
2149
+
2150
+ # TODO: create a new return type for scalars?
2151
+ # FIXME: currently returns integers for boolean tensors
2152
+ # https://github.com/pytorch/pytorch/issues/78071
2153
+ maximum_value = _make_prim(
2154
+ schema="maximum_value(ScalarType dtype) -> Scalar",
2155
+ meta=_maximum_value_meta,
2156
+ impl_aten=_maximum_value_aten,
2157
+ return_type=RETURN_TYPE.NEW,
2158
+ doc=_maximum_value_doc,
2159
+ )
2160
+
2161
+
2162
+ # NOTE: need to model meta scalars
2163
+ # See https://github.com/pytorch/pytorch/issues/78070
2164
+ def _minimum_value_meta(dtype: torch.dtype) -> FakeTensor:
2165
+ number_type = utils.dtype_to_type(dtype)
2166
+ return TensorMeta(number_type(-1))
2167
+
2168
+
2169
+ def _minimum_value_aten(dtype: torch.dtype):
2170
+ if dtype == torch.bool:
2171
+ return False
2172
+ elif dtype.is_complex or dtype.is_floating_point:
2173
+ return torch.finfo(dtype).min
2174
+ else:
2175
+ return torch.iinfo(dtype).min
2176
+
2177
+
2178
+ _minimum_value_doc = """
2179
+ Return the minimum finite value for a dtype.
2180
+ """
2181
+
2182
+ # TODO: create a new return type for scalars?
2183
+ # FIXME: currently returns integers for boolean tensors
2184
+ # https://github.com/pytorch/pytorch/issues/78071
2185
+ minimum_value = _make_prim(
2186
+ schema="minimum_value(ScalarType dtype) -> Scalar",
2187
+ meta=_minimum_value_meta,
2188
+ impl_aten=_minimum_value_aten,
2189
+ return_type=RETURN_TYPE.NEW,
2190
+ doc=_minimum_value_doc,
2191
+ )
2192
+
2193
+ #
2194
+ # Inplace operators
2195
+ #
2196
+
2197
+
2198
+ def _copy_to_meta(a: TensorLikeType, b: TensorLikeType):
2199
+ assert isinstance(a, TensorLike)
2200
+ assert isinstance(b, TensorLike)
2201
+
2202
+ # Validates the cast is safe
2203
+ # TODO: move this as an option on the reference
2204
+ # a_typ = utils.dtype_to_type(a.dtype)
2205
+ # b_typ = utils.dtype_to_type(b.dtype)
2206
+ # if a_typ is not utils.get_higher_type(a_typ, b_typ):
2207
+ # raise RuntimeError(str(b.dtype), " can't be cast safely to ", str(a.dtype), "!")
2208
+
2209
+ # Validates the tensors have the same number of elements
2210
+ if a.numel() != b.numel():
2211
+ msg = f"Attempting to copy {b.numel()} elements to a tensor with {a.numel()} elements!"
2212
+ raise RuntimeError(msg)
2213
+
2214
+ return a
2215
+
2216
+
2217
+ def _copy_to_aten(a: Tensor, b: Tensor) -> Tensor:
2218
+ return a.copy_(b)
2219
+
2220
+
2221
+ _copy_to_doc = """
2222
+ Copies the data in b to a and returns the modified a.
2223
+ """
2224
+
2225
+ # TODO: Remove safe casting and implement on reference instead
2226
+ copy_to = _make_prim(
2227
+ schema="copy_to(Tensor(a!) a, Tensor b) -> Tensor(a!)",
2228
+ meta=_copy_to_meta,
2229
+ impl_aten=_copy_to_aten,
2230
+ return_type=RETURN_TYPE.INPLACE,
2231
+ doc=_copy_to_doc,
2232
+ )
2233
+
2234
+
2235
+ def _copy_strided_meta(a: TensorLikeType, stride: ShapeType):
2236
+ assert isinstance(a, TensorLike)
2237
+ return torch.empty_strided(
2238
+ a.shape,
2239
+ stride,
2240
+ dtype=a.dtype,
2241
+ layout=a.layout,
2242
+ device=a.device,
2243
+ requires_grad=a.requires_grad,
2244
+ )
2245
+
2246
+
2247
+ def _copy_strided_aten(a: Tensor, stride: ShapeType) -> Tensor:
2248
+ out = torch.empty_strided(
2249
+ a.size(),
2250
+ stride=stride,
2251
+ dtype=a.dtype,
2252
+ layout=a.layout,
2253
+ device=a.device,
2254
+ requires_grad=a.requires_grad,
2255
+ )
2256
+ out.copy_(a)
2257
+ return out
2258
+
2259
+
2260
+ _copy_strided_doc = """
2261
+ Copies the data in a to a new tensor, the new tensor has same shape with a size, but has different stride.
2262
+ """
2263
+
2264
+
2265
+ copy_strided = _make_prim(
2266
+ schema="copy_strided(Tensor a, SymInt[] stride) -> Tensor",
2267
+ meta=_copy_strided_meta,
2268
+ impl_aten=_copy_strided_aten,
2269
+ return_type=RETURN_TYPE.NEW,
2270
+ doc=_copy_strided_doc,
2271
+ )
2272
+
2273
+
2274
+ def _resize_meta(a: TensorLikeType, shape: ShapeType):
2275
+ return a.resize_(shape)
2276
+
2277
+
2278
+ def _resize_aten(a: Tensor, shape: ShapeType) -> Tensor:
2279
+ return a.resize_(shape)
2280
+
2281
+
2282
+ _resize_doc = """
2283
+ Gives a tensor with no elements a new shape, returning the modified tensor.
2284
+
2285
+ The tensor's strides are contiguous and its values are unitialized.
2286
+ """
2287
+
2288
+ # TODO: review support arbitrary resizes
2289
+ resize = _make_prim(
2290
+ schema="resize(Tensor(a!) a, SymInt[] shape) -> Tensor(a!)",
2291
+ meta=_resize_meta,
2292
+ impl_aten=_resize_aten,
2293
+ return_type=RETURN_TYPE.INPLACE,
2294
+ doc=_resize_doc,
2295
+ )
2296
+
2297
+
2298
+ def _reduction_meta(inp, dims, *, output_dtype=None):
2299
+ """
2300
+ Meta function for single output reduction operations
2301
+ Stride logic is incorrect
2302
+ """
2303
+ assert isinstance(inp, TensorLike)
2304
+ if output_dtype is None:
2305
+ output_dtype = inp.dtype
2306
+ output_shape = utils.compute_reduction_output_shape(inp.shape, dims)
2307
+ return TensorMeta(
2308
+ shape=output_shape,
2309
+ strides=utils.make_contiguous_strides_for(output_shape),
2310
+ dtype=output_dtype,
2311
+ device=inp.device,
2312
+ )
2313
+
2314
+
2315
+ def _var_reduction_meta(inp, dims, *, correction):
2316
+ if utils.is_complex_dtype(inp.dtype):
2317
+ output_dtype = utils.corresponding_real_dtype(inp.dtype)
2318
+ else:
2319
+ output_dtype = inp.dtype
2320
+ return _reduction_meta(inp, dims, output_dtype=output_dtype)
2321
+
2322
+
2323
+ _sum_doc = """
2324
+ Computes the sum of elements in the input tensor over the list of dimensions
2325
+ specified in the dim argument
2326
+ """
2327
+ _xor_sum_doc = """
2328
+ Computes the xor sum of elements in the input tensor over the list of dimensions
2329
+ specified in the dim argument
2330
+ """
2331
+ _prod_doc = """
2332
+ Computes the product of elements in the input tensor over the list of dimensions
2333
+ specified in the dim argument
2334
+ """
2335
+ _amax_doc = """
2336
+ Computes the maximum value of elements in the input tensor over the list of dimensions
2337
+ specified in the dim argument
2338
+ """
2339
+ _amin_doc = """
2340
+ Computes the minimum value of elements in the input tensor over the list of dimensions
2341
+ specified in the dim argument
2342
+ """
2343
+ _var_doc = """
2344
+ Computes the biased variance of x over the list of dimensions specified in the dim argument
2345
+ """
2346
+
2347
+
2348
+ def _make_reduction_prim(name: str, impl_aten, doc):
2349
+ """Creates a reduction prim."""
2350
+ return _make_prim(
2351
+ schema=f"{name}(Tensor inp, int[]? dims, *, ScalarType? output_dtype=None) -> Tensor",
2352
+ meta=_reduction_meta,
2353
+ impl_aten=impl_aten,
2354
+ return_type=RETURN_TYPE.NEW,
2355
+ doc=doc,
2356
+ )
2357
+
2358
+
2359
+ def _make_var_reduction_prim(name: str, impl_aten, doc):
2360
+ """Creates a reduction prim."""
2361
+ return _make_prim(
2362
+ schema=f"{name}(Tensor inp, int[]? dims, *, float correction, ScalarType? output_dtype=None) -> Tensor",
2363
+ meta=_var_reduction_meta,
2364
+ impl_aten=impl_aten,
2365
+ return_type=RETURN_TYPE.NEW,
2366
+ doc=doc,
2367
+ )
2368
+
2369
+
2370
+ sum = _make_reduction_prim(
2371
+ name="sum",
2372
+ impl_aten=torch.sum,
2373
+ doc=_sum_doc,
2374
+ )
2375
+
2376
+
2377
+ def _xor_sum_aten(
2378
+ inp: TensorLikeType,
2379
+ dims: Optional[DimsSequenceType],
2380
+ *,
2381
+ dtype: Optional[torch.dtype] = None,
2382
+ ) -> Tensor:
2383
+ raise NotImplementedError("xor_sum only implemented with inductor")
2384
+
2385
+
2386
+ xor_sum = _make_reduction_prim(
2387
+ name="xor_sum",
2388
+ impl_aten=_xor_sum_aten,
2389
+ doc=_xor_sum_doc,
2390
+ )
2391
+
2392
+
2393
+ def _prod_aten(
2394
+ inp: TensorLikeType,
2395
+ dims: Optional[DimsSequenceType],
2396
+ *,
2397
+ dtype: Optional[torch.dtype] = None,
2398
+ ) -> Tensor:
2399
+ if dims is not None:
2400
+ for d in sorted(dims, reverse=True):
2401
+ assert d >= 0
2402
+ inp = torch.prod(inp, d, dtype=dtype)
2403
+ return inp
2404
+ else:
2405
+ return torch.prod(inp, dims, dtype=dtype)
2406
+
2407
+
2408
+ prod = _make_reduction_prim(
2409
+ name="prod",
2410
+ impl_aten=_prod_aten,
2411
+ doc=_prod_doc,
2412
+ )
2413
+
2414
+ var = _make_var_reduction_prim(
2415
+ name="var",
2416
+ impl_aten=torch.var,
2417
+ doc=_var_doc,
2418
+ )
2419
+
2420
+ amax = _make_reduction_prim(
2421
+ name="amax",
2422
+ impl_aten=torch.amax,
2423
+ doc=_amax_doc,
2424
+ )
2425
+
2426
+ amin = _make_reduction_prim(
2427
+ name="amin",
2428
+ impl_aten=torch.amin,
2429
+ doc=_amin_doc,
2430
+ )
2431
+
2432
+
2433
+ _iota_doc = """
2434
+ Constructs a 1-D tensor t where ``t[i] == start + i * step``.
2435
+ """
2436
+
2437
+
2438
+ # TODO: layout, pin_memory, memory_format
2439
+ # TODO: model requires_grad on TensorMeta
2440
+ def _iota_meta(
2441
+ length: int,
2442
+ *,
2443
+ start: int,
2444
+ step: int,
2445
+ dtype: torch.dtype,
2446
+ device: torch.device,
2447
+ requires_grad: bool,
2448
+ ) -> TensorLikeType:
2449
+ torch._check(
2450
+ utils.is_integer_dtype(dtype),
2451
+ lambda: "prims.iota only supports integer dtypes",
2452
+ )
2453
+ torch._check(step != 0, lambda: "step must be nonzero")
2454
+ return torch.empty(
2455
+ length,
2456
+ dtype=dtype,
2457
+ device=device,
2458
+ requires_grad=requires_grad,
2459
+ )
2460
+
2461
+
2462
+ def _iota_aten(
2463
+ length: int,
2464
+ *,
2465
+ start: int,
2466
+ step: int,
2467
+ dtype: torch.dtype,
2468
+ device: torch.device,
2469
+ requires_grad: bool,
2470
+ ) -> TensorLikeType:
2471
+ end = start + length * step
2472
+ return torch.arange(
2473
+ start, end, step, dtype=dtype, device=device, requires_grad=requires_grad
2474
+ )
2475
+
2476
+
2477
+ iota = _make_prim(
2478
+ schema="iota(SymInt length, *, SymInt start, SymInt step, ScalarType dtype, Device device, bool requires_grad) -> Tensor", # noqa: B950
2479
+ return_type=RETURN_TYPE.NEW,
2480
+ meta=_iota_meta,
2481
+ impl_aten=_iota_aten,
2482
+ doc=_iota_doc,
2483
+ )
2484
+
2485
+
2486
+ # TODO: layout, pin_memory, memory_format
2487
+ # TODO: model requires_grad on TensorMeta
2488
+ def _empty_meta(
2489
+ shape: ShapeType, *, dtype: torch.dtype, device: torch.device, requires_grad: bool
2490
+ ) -> TensorLikeType:
2491
+ strides = utils.make_contiguous_strides_for(shape)
2492
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
2493
+
2494
+
2495
+ def _empty_aten(
2496
+ shape: ShapeType, *, dtype: torch.dtype, device: torch.device, requires_grad: bool
2497
+ ) -> Tensor:
2498
+ return torch.empty(shape, dtype=dtype, device=device, requires_grad=requires_grad)
2499
+
2500
+
2501
+ _empty_doc = """
2502
+ Creates a tensor with uninitialized values and the specified shape, dtype, and device.
2503
+ """
2504
+
2505
+ empty = _make_prim(
2506
+ schema="empty(SymInt[] shape, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
2507
+ meta=_empty_meta,
2508
+ impl_aten=_empty_aten,
2509
+ return_type=RETURN_TYPE.NEW,
2510
+ doc=_empty_doc,
2511
+ )
2512
+
2513
+
2514
+ def _empty_strided_meta(
2515
+ shape: ShapeType,
2516
+ strides: StrideType,
2517
+ *,
2518
+ dtype: torch.dtype,
2519
+ device: torch.device,
2520
+ requires_grad: bool,
2521
+ ) -> TensorLikeType:
2522
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
2523
+
2524
+
2525
+ _empty_strided_doc = """
2526
+ Creates a tensor with uninitialized values.
2527
+ """
2528
+
2529
+ # TODO: add layout, pin_memory
2530
+ empty_strided = _make_prim(
2531
+ schema="empty_strided(SymInt[] shape, SymInt[] strides, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
2532
+ return_type=RETURN_TYPE.NEW,
2533
+ meta=_empty_strided_meta,
2534
+ impl_aten=torch.empty_strided,
2535
+ doc=_empty_strided_doc,
2536
+ )
2537
+
2538
+
2539
+ def _empty_permuted_meta(
2540
+ shape: ShapeType,
2541
+ physical_layout: DimsSequenceType,
2542
+ *,
2543
+ dtype: torch.dtype,
2544
+ device: torch.device,
2545
+ requires_grad: bool,
2546
+ ) -> TensorLikeType:
2547
+ p_strides = utils.make_contiguous_strides_for([shape[l] for l in physical_layout])
2548
+ dim = len(shape)
2549
+ torch._check(
2550
+ len(physical_layout) == dim,
2551
+ lambda: (
2552
+ "Number of dimensions in the tensor input does not match the "
2553
+ f"length of the physical layout; i.e. len(size) = {dim} "
2554
+ f"is not equal to len(physical_layout) = {len(physical_layout)}"
2555
+ ),
2556
+ )
2557
+ strides = [0] * len(shape)
2558
+ seen_dims = set()
2559
+ for p, l in enumerate(physical_layout):
2560
+ torch._check(
2561
+ 0 <= l < dim,
2562
+ lambda: (
2563
+ f"Dimension out of range (expected to be between 0 and {dim - 1}, but got "
2564
+ f"{l} at index {p}). NB: negative dims "
2565
+ "not currently supported; file an issue if you want it."
2566
+ ),
2567
+ )
2568
+ torch._check(l not in seen_dims, lambda: "Duplicate dim not allowed")
2569
+ strides[l] = p_strides[p]
2570
+ seen_dims.add(l)
2571
+ return TensorMeta(
2572
+ shape=shape,
2573
+ strides=strides,
2574
+ dtype=dtype,
2575
+ device=device,
2576
+ )
2577
+
2578
+
2579
+ _empty_permuted_doc = """
2580
+ Creates a tensor with uninitialized values according to some physical layout,
2581
+ that is guaranteed to be non-overlapping and dense.
2582
+ """
2583
+
2584
+ # TODO: add layout, pin_memory
2585
+ empty_permuted = _make_prim(
2586
+ schema="empty_permuted(SymInt[] shape, int[] physical_layout, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor", # noqa: B950
2587
+ return_type=RETURN_TYPE.NEW,
2588
+ meta=_empty_permuted_meta,
2589
+ impl_aten=torch.empty_permuted,
2590
+ doc=_empty_permuted_doc,
2591
+ )
2592
+
2593
+
2594
+ def _full_meta(
2595
+ shape: ShapeType,
2596
+ fill_value: NumberType,
2597
+ *,
2598
+ dtype: torch.dtype,
2599
+ device: torch.device,
2600
+ requires_grad: bool,
2601
+ ) -> TensorLikeType:
2602
+ strides = utils.make_contiguous_strides_for(shape)
2603
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
2604
+
2605
+
2606
+ def _full_aten(
2607
+ shape: ShapeType,
2608
+ fill_value: NumberType,
2609
+ *,
2610
+ dtype: torch.dtype,
2611
+ device: torch.device,
2612
+ requires_grad: bool,
2613
+ ) -> Tensor:
2614
+ # Note that Mypy thinks torch.full can't accept a complex fill_value
2615
+ return torch.full(
2616
+ shape, fill_value, dtype=dtype, device=device, requires_grad=requires_grad # type: ignore[arg-type]
2617
+ )
2618
+
2619
+
2620
+ _full_doc = """
2621
+ Creates a tensor filled with the given fill value, and with the specified shape, dtype, and device.
2622
+ """
2623
+
2624
+ # TODO: add layout
2625
+ full = _make_prim(
2626
+ schema="full(SymInt[] shape, Scalar fill_value, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
2627
+ meta=_full_meta,
2628
+ impl_aten=_full_aten,
2629
+ return_type=RETURN_TYPE.NEW,
2630
+ doc=_full_doc,
2631
+ )
2632
+
2633
+
2634
+ def _full_like_meta(
2635
+ a: TensorLikeType,
2636
+ fill_value: NumberType,
2637
+ *,
2638
+ dtype: torch.dtype,
2639
+ device: torch.device,
2640
+ requires_grad: bool,
2641
+ ) -> TensorLikeType:
2642
+ strides = utils.compute_elementwise_output_strides(a)
2643
+ if a.numel() == 0:
2644
+ strides = a.stride()
2645
+
2646
+ return TensorMeta(a, strides=strides, dtype=dtype, device=device)
2647
+
2648
+
2649
+ def _full_like_aten(
2650
+ a: Tensor,
2651
+ fill_value: NumberType,
2652
+ *,
2653
+ dtype: torch.dtype,
2654
+ device: torch.device,
2655
+ requires_grad: bool,
2656
+ ) -> Tensor:
2657
+ # Note that Mypy thinks torch.full can't accept a complex fill_value
2658
+ return torch.full_like(
2659
+ a, fill_value, dtype=dtype, device=device, requires_grad=requires_grad # type: ignore[arg-type]
2660
+ )
2661
+
2662
+
2663
+ _full_like_doc = """
2664
+ Creates a tensor filled with the given fill value, and the same shape, dtype, and device as the
2665
+ given tensor by default. The dtype and device settings can be overridden
2666
+ by specifying them explicitly.
2667
+ """
2668
+
2669
+ full_like = _make_prim(
2670
+ schema="full_like(Tensor a, Scalar fill_value, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
2671
+ meta=_full_like_meta,
2672
+ impl_aten=_full_like_aten,
2673
+ return_type=RETURN_TYPE.NEW,
2674
+ doc=_full_like_doc,
2675
+ )
2676
+
2677
+
2678
+ def _scalar_tensor_meta(
2679
+ scalar: NumberType,
2680
+ *,
2681
+ dtype: torch.dtype,
2682
+ device: torch.device,
2683
+ ) -> TensorLikeType:
2684
+ shape: ShapeType = []
2685
+ strides = utils.make_contiguous_strides_for(shape)
2686
+ return TensorMeta(scalar, shape=shape, strides=strides, dtype=dtype, device=device)
2687
+
2688
+
2689
+ def _scalar_tensor_aten(
2690
+ scalar: NumberType,
2691
+ *,
2692
+ dtype: torch.dtype,
2693
+ device: torch.device,
2694
+ ) -> Tensor:
2695
+ if isinstance(scalar, complex) and (
2696
+ dtype is None or not utils.is_complex_dtype(dtype)
2697
+ ):
2698
+ raise TypeError("Complex scalar requires complex tensor dtype.")
2699
+ # Note that Mypy thinks torch.scalar can't accept a complex scalar
2700
+ return torch.scalar_tensor(scalar, dtype=dtype, device=device) # type: ignore[arg-type]
2701
+
2702
+
2703
+ _scalar_tensor_doc = """
2704
+ Wraps a Number into a Tensor with the specified dtype and device.
2705
+ """
2706
+
2707
+ # TODO: add layout and pin_memory support
2708
+ scalar_tensor = _make_prim(
2709
+ schema="scalar_tensor(Scalar s, *, ScalarType? dtype=None, Device? device=None) -> Tensor",
2710
+ meta=_scalar_tensor_meta,
2711
+ impl_aten=_scalar_tensor_aten,
2712
+ return_type=RETURN_TYPE.NEW,
2713
+ doc=_scalar_tensor_doc,
2714
+ )
2715
+
2716
+
2717
+ #
2718
+ # Linear algebra (linalg) prims
2719
+ #
2720
+
2721
+
2722
+ def _svd_meta(
2723
+ A: TensorLikeType, *, full_matrices: bool
2724
+ ) -> Tuple[TensorLikeType, TensorLikeType, TensorLikeType]:
2725
+ utils.check_is_matrix(A, "linalg.svd")
2726
+ utils.check_fp_or_complex(A.dtype, "linalg.svd", allow_low_precision_dtypes=False)
2727
+
2728
+ A_shape = A.shape
2729
+ batch = A_shape[:-2]
2730
+ m, n = A_shape[-2:]
2731
+ k = min(m, n)
2732
+
2733
+ shape_U = batch + (m, m if full_matrices else k)
2734
+ strides_U = utils.make_contiguous_strides_for(shape_U, row_major=False)
2735
+ U = TensorMeta(shape=shape_U, strides=strides_U, dtype=A.dtype, device=A.device)
2736
+
2737
+ shape_S = batch + (k,)
2738
+ strides_S = utils.make_contiguous_strides_for(shape_S)
2739
+ S = TensorMeta(
2740
+ shape=shape_S,
2741
+ strides=strides_S,
2742
+ dtype=utils.corresponding_real_dtype(A.dtype) if A.is_complex() else A.dtype,
2743
+ device=A.device,
2744
+ )
2745
+
2746
+ shape_Vh = batch + (n if full_matrices else k, n)
2747
+ # The CPU backend returns V, but the cuSolver backend returns V^H
2748
+ # TODO The MAGMA backend returns V, so this is wrong if used with the MAGMA backend
2749
+ is_cuda = A.device.type == "cuda"
2750
+ strides_Vh = utils.make_contiguous_strides_for(shape_Vh, row_major=is_cuda)
2751
+ Vh = TensorMeta(shape=shape_Vh, strides=strides_Vh, dtype=A.dtype, device=A.device)
2752
+ # Also makes sure this is CUDA or HIP:
2753
+ # https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
2754
+ if A.numel() != 0 and Vh.is_complex() and torch.cuda.is_available():
2755
+ Vh = Vh.conj()
2756
+ return U, S, Vh
2757
+
2758
+
2759
+ def _svd_aten(
2760
+ A: TensorLikeType, *, full_matrices: bool
2761
+ ) -> Tuple[Tensor, Tensor, Tensor]:
2762
+ return torch.linalg.svd(A, full_matrices=full_matrices)
2763
+
2764
+
2765
+ _svd_doc = """
2766
+ Returns the SVD of a matrix or batch of matrices.
2767
+
2768
+ The `full_matrices` flag controls whether the full or reduced SVD decomposition is returned.
2769
+ """
2770
+
2771
+ svd = _make_prim(
2772
+ schema="svd(Tensor A, *, bool full_matrices) -> (Tensor U, Tensor S, Tensor Vh)",
2773
+ meta=_svd_meta,
2774
+ impl_aten=_svd_aten,
2775
+ return_type=(RETURN_TYPE.NEW, RETURN_TYPE.NEW, RETURN_TYPE.NEW),
2776
+ doc=_svd_doc,
2777
+ )
2778
+
2779
+
2780
+ #
2781
+ # Randomness Prims
2782
+ #
2783
+
2784
+
2785
+ def _normal_meta(
2786
+ shape: ShapeType,
2787
+ *,
2788
+ mean: Union[float, complex],
2789
+ std: float,
2790
+ dtype: torch.dtype,
2791
+ device: torch.device,
2792
+ requires_grad: bool,
2793
+ generator: Optional[torch.Generator] = None,
2794
+ ) -> TensorLikeType:
2795
+ torch._check(
2796
+ std >= 0.0,
2797
+ lambda: f"expected non-negative standard deviation, but got std={std}",
2798
+ )
2799
+
2800
+ torch._check(
2801
+ utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
2802
+ lambda: f"expected a floating-point or complex dtype, but got dtype={dtype}",
2803
+ )
2804
+
2805
+ strides = utils.make_contiguous_strides_for(shape)
2806
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
2807
+
2808
+
2809
+ def _normal_aten(
2810
+ shape: ShapeType,
2811
+ *,
2812
+ mean: Union[float, complex],
2813
+ std: float,
2814
+ dtype: torch.dtype,
2815
+ device: torch.device,
2816
+ requires_grad: bool,
2817
+ generator: Optional[torch.Generator] = None,
2818
+ ) -> Tensor:
2819
+ a = torch.empty(shape, dtype=dtype, device=device, requires_grad=requires_grad)
2820
+ with torch.no_grad():
2821
+ # NOTE: normal_ is incorrectly annotated to expect mean to be a float
2822
+ a.normal_(mean, std, generator=generator) # type: ignore[arg-type]
2823
+ return a
2824
+
2825
+
2826
+ _normal_doc = """
2827
+ Constructs a tensor filled with values drawn from a normal distribution with the specified mean
2828
+ and standard deviation.
2829
+
2830
+ Only supports floating-point types.
2831
+ """
2832
+
2833
+ normal = _make_prim(
2834
+ schema=(
2835
+ "normal(SymInt[] shape, *, Scalar mean, Scalar std, ScalarType dtype, Device device, bool requires_grad, Generator? generator=None) -> Tensor" # noqa: B950
2836
+ ),
2837
+ return_type=RETURN_TYPE.NEW,
2838
+ meta=_normal_meta,
2839
+ impl_aten=_normal_aten,
2840
+ doc=_normal_doc,
2841
+ )
2842
+
2843
+
2844
+ def _uniform_meta(
2845
+ shape: ShapeType,
2846
+ *,
2847
+ low: float,
2848
+ high: float,
2849
+ dtype: torch.dtype,
2850
+ device: torch.device,
2851
+ generator: Optional[torch.Generator] = None,
2852
+ ) -> TensorLikeType:
2853
+ strides = utils.make_contiguous_strides_for(shape)
2854
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
2855
+
2856
+
2857
+ def _uniform_aten(
2858
+ shape: ShapeType,
2859
+ *,
2860
+ low: float,
2861
+ high: float,
2862
+ dtype: torch.dtype,
2863
+ device: torch.device,
2864
+ generator: Optional[torch.Generator] = None,
2865
+ ) -> Tensor:
2866
+ a = torch.empty(shape, dtype=dtype, device=device)
2867
+ a.uniform_(low, high, generator=generator)
2868
+ return a
2869
+
2870
+
2871
+ _uniform_doc = """
2872
+ Constructs a tensor filled with values drawn uniformly from low to high.
2873
+ """
2874
+
2875
+ # TODO: we should more seriously review randomness modeling and prims
2876
+ _uniform_helper = _make_prim(
2877
+ schema=(
2878
+ "uniform(SymInt[] shape, *, Scalar low, Scalar high, ScalarType dtype, Device device, Generator? generator=None) -> Tensor"
2879
+ ),
2880
+ return_type=RETURN_TYPE.NEW,
2881
+ meta=_uniform_meta,
2882
+ impl_aten=_uniform_aten,
2883
+ doc=_uniform_doc,
2884
+ )
2885
+
2886
+ #
2887
+ # FFT prims
2888
+ #
2889
+
2890
+
2891
+ def _fft_r2c_meta(
2892
+ input: TensorLike,
2893
+ *,
2894
+ dim: DimsSequenceType,
2895
+ onesided: bool,
2896
+ ) -> TensorLikeType:
2897
+ dim = utils.canonicalize_dims(input.ndim, dim)
2898
+ utils.validate_no_repeating_dims(dim)
2899
+
2900
+ shape = list(input.shape)
2901
+ if onesided:
2902
+ last_dim = dim[-1]
2903
+ shape[last_dim] = shape[last_dim] // 2 + 1
2904
+
2905
+ dtype = utils.corresponding_complex_dtype(input.dtype)
2906
+ strides = utils.make_contiguous_strides_for(shape)
2907
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=input.device)
2908
+
2909
+
2910
+ def _fft_r2c_aten(
2911
+ input: TensorLike,
2912
+ *,
2913
+ dim: DimsSequenceType,
2914
+ onesided: bool,
2915
+ ) -> TensorLikeType:
2916
+ normalization = 0 # No normalization
2917
+ return torch._fft_r2c(input, dim, normalization, onesided)
2918
+
2919
+
2920
+ _fft_r2c_doc = """
2921
+ Performs a real to complex Fast Fourier Transform
2922
+ """
2923
+
2924
+
2925
+ fft_r2c = _make_prim(
2926
+ schema="fft_r2c(Tensor self, *, int[] dim, bool onesided) -> Tensor",
2927
+ meta=_fft_r2c_meta,
2928
+ impl_aten=_fft_r2c_aten,
2929
+ return_type=RETURN_TYPE.NEW,
2930
+ doc=_fft_r2c_doc,
2931
+ )
2932
+
2933
+
2934
+ def _fft_c2c_meta(
2935
+ input: TensorLike,
2936
+ *,
2937
+ dim: DimsSequenceType,
2938
+ forward: bool,
2939
+ ) -> TensorLikeType:
2940
+ dim = utils.canonicalize_dims(input.ndim, dim)
2941
+ utils.validate_no_repeating_dims(dim)
2942
+
2943
+ shape = input.shape
2944
+ strides = utils.make_contiguous_strides_for(shape)
2945
+ return TensorMeta(
2946
+ shape=shape, strides=strides, dtype=input.dtype, device=input.device
2947
+ )
2948
+
2949
+
2950
+ def _fft_c2c_aten(
2951
+ input: TensorLike,
2952
+ *,
2953
+ dim: DimsSequenceType,
2954
+ forward: bool,
2955
+ ) -> TensorLikeType:
2956
+ normalization = 0 # No normalization
2957
+ return torch._fft_c2c(input, dim, normalization, forward)
2958
+
2959
+
2960
+ _fft_c2c_doc = """
2961
+ Performs either a Fast Fourier Transform, or its inverse
2962
+ """
2963
+
2964
+
2965
+ fft_c2c = _make_prim(
2966
+ schema="fft_c2c(Tensor self, *, int[] dim, bool forward) -> Tensor",
2967
+ meta=_fft_c2c_meta,
2968
+ impl_aten=_fft_c2c_aten,
2969
+ return_type=RETURN_TYPE.NEW,
2970
+ doc=_fft_c2c_doc,
2971
+ )
2972
+
2973
+
2974
+ def _fft_c2r_meta(
2975
+ input: TensorLike,
2976
+ *,
2977
+ dim: DimsSequenceType,
2978
+ last_dim_size: int,
2979
+ ) -> TensorLikeType:
2980
+ dim = utils.canonicalize_dims(input.ndim, dim)
2981
+ utils.validate_no_repeating_dims(dim)
2982
+
2983
+ shape = list(input.shape)
2984
+ shape[dim[-1]] = last_dim_size
2985
+ dtype = utils.corresponding_real_dtype(input.dtype)
2986
+ strides = utils.make_contiguous_strides_for(shape)
2987
+ return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=input.device)
2988
+
2989
+
2990
+ def _fft_c2r_aten(
2991
+ input: TensorLike,
2992
+ *,
2993
+ dim: DimsSequenceType,
2994
+ last_dim_size: int,
2995
+ ) -> TensorLikeType:
2996
+ normalization = 0 # No normalization
2997
+ return torch._fft_c2r(input, dim, normalization, last_dim_size)
2998
+
2999
+
3000
+ _fft_c2r_doc = """
3001
+ Performs a complex to real Inverse Fast Fourier Transform
3002
+ """
3003
+
3004
+
3005
+ fft_c2r = _make_prim(
3006
+ schema="fft_c2r(Tensor self, *, int[] dim, SymInt last_dim_size) -> Tensor",
3007
+ meta=_fft_c2r_meta,
3008
+ impl_aten=_fft_c2r_aten,
3009
+ return_type=RETURN_TYPE.NEW,
3010
+ doc=_fft_c2r_doc,
3011
+ )
3012
+
3013
+
3014
+ def _frexp_meta(self: TensorLikeType) -> Tuple[TensorLikeType, TensorLikeType]:
3015
+ torch._check(
3016
+ self.dtype.is_floating_point,
3017
+ lambda: "torch.frexp() only supports floating-point dtypes",
3018
+ )
3019
+ return torch.empty_like(self), torch.empty_like(self, dtype=torch.int32)
3020
+
3021
+
3022
+ frexp = _make_prim(
3023
+ schema="frexp(Tensor self) -> (Tensor mantissa, Tensor exponent)",
3024
+ meta=_frexp_meta,
3025
+ return_type=(RETURN_TYPE.NEW, RETURN_TYPE.NEW),
3026
+ impl_aten=torch.frexp,
3027
+ doc="",
3028
+ )
3029
+
3030
+ register_rng_prims()
3031
+ register_debug_prims()
venv/lib/python3.10/site-packages/torch/_prims/context.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ from contextlib import nullcontext
3
+ from typing import Any, Callable, Dict, Optional, Sequence
4
+
5
+ import torch
6
+
7
+ import torch._decomp
8
+ import torch._prims
9
+
10
+ import torch._refs
11
+ import torch._refs.nn
12
+ import torch._refs.nn.functional
13
+ import torch._refs.special
14
+ import torch.overrides
15
+
16
+ from torch._prims_common import torch_function_passthrough
17
+
18
+
19
+ @functools.lru_cache(None)
20
+ def torch_to_refs_map():
21
+ """
22
+ Mapping of torch API functions to torch._refs functions.
23
+ E.g. torch_to_refs_map()[torch.add] == torch._refs.add
24
+ """
25
+ modules = [
26
+ (torch, torch._refs),
27
+ (torch.nn, torch._refs.nn),
28
+ (torch.nn.functional, torch._refs.nn.functional),
29
+ (torch.special, torch._refs.special),
30
+ (torch.fft, torch._refs.fft),
31
+ (torch.linalg, torch._refs.linalg),
32
+ ]
33
+ r: Dict[Any, Any] = {
34
+ torch.Tensor.__invert__: torch._refs.bitwise_not,
35
+ torch.Tensor.__xor__: torch._refs.bitwise_xor,
36
+ torch.Tensor.__and__: torch._refs.bitwise_and,
37
+ torch.Tensor.__or__: torch._refs.bitwise_or,
38
+ torch.Tensor.__eq__: torch._refs.eq,
39
+ torch.Tensor.__rsub__: torch._refs.rsub,
40
+ torch.Tensor.__rtruediv__: torch._refs.rtruediv,
41
+ torch.Tensor.__floordiv__: torch._refs.floor_divide,
42
+ torch.Tensor.__rfloordiv__: torch._refs.rfloordiv,
43
+ torch.Tensor.__pow__: torch._refs.pow,
44
+ torch.Tensor.__rpow__: torch._refs.rpow,
45
+ torch.Tensor.new_empty: torch._refs.new_empty,
46
+ torch.Tensor.new_full: torch._refs.new_full,
47
+ torch.Tensor.new_zeros: torch._refs.new_zeros,
48
+ torch.Tensor.new_ones: torch._refs.new_ones,
49
+ torch.Tensor.fill_: torch._refs.fill_,
50
+ torch.Tensor.zero_: torch._refs.zero_,
51
+ torch.Tensor.to: torch._refs.to,
52
+ torch.Tensor.sum_to_size: torch._refs.sum_to_size,
53
+ # TODO: Should these methods be mapped some other way?
54
+ torch.Tensor.copy_: torch._prims.copy_to,
55
+ torch.Tensor.resize: torch._prims.resize,
56
+ }
57
+ for mod_torch, mod_refs in modules:
58
+ for s in mod_refs.__all__: # type: ignore[attr-defined]
59
+ r[mod_torch.__dict__.get(s)] = mod_refs.__dict__.get(s)
60
+
61
+ # Support remapping torch.Tensor.foo to _refs.foo
62
+ for s in dir(torch.Tensor):
63
+ if s in torch._refs.__all__:
64
+ r[getattr(torch.Tensor, s)] = torch._refs.__dict__.get(s)
65
+
66
+ # Support conversions
67
+ for s in torch._refs._conversions.__all__:
68
+ tensor_attr = getattr(torch.Tensor, s, None) or getattr(torch, s)
69
+ r[tensor_attr] = torch._refs._conversions.__dict__.get(s)
70
+
71
+ return r
72
+
73
+
74
+ @functools.lru_cache(None)
75
+ def all_prims():
76
+ """
77
+ Set of all prim functions, e.g., torch._prims.add in all_prims()
78
+ """
79
+ return {torch._prims.__dict__.get(s) for s in torch._prims.__all__}
80
+
81
+
82
+ class TorchRefsMode(torch.overrides.TorchFunctionMode):
83
+ """
84
+ Switches the interpretation of torch.* functions and Tensor methods to
85
+ use PrimTorch refs in torch._refs. (Direct calls to _refs are unaffected.)
86
+
87
+ >>> # xdoctest: +SKIP
88
+ >>> with TorchRefsMode():
89
+ ... torch.add(x, y) # calls torch._refs.add(x, y)
90
+
91
+ By default, this context manager will fall back on the torch.* if the
92
+ ref does not exist; set strict=True to error if this occurs.
93
+ If the ref exists we still would like to fall back on the torch.* sometimes,
94
+ this behavior can be customized by passing a function to should_fallback_fn.
95
+ """
96
+
97
+ def __init__(
98
+ self,
99
+ strict=False,
100
+ should_fallback_fn=lambda *_: False,
101
+ prims_mode_cls=nullcontext,
102
+ ):
103
+ self.strict = strict
104
+ self.should_fallback_fn = should_fallback_fn
105
+ self.prims_mode_cls = prims_mode_cls
106
+
107
+ def __torch_function__(
108
+ self,
109
+ orig_func: Callable,
110
+ types: Sequence,
111
+ args: Sequence[Any] = (),
112
+ kwargs: Optional[Dict] = None,
113
+ ):
114
+ if kwargs is None:
115
+ kwargs = {}
116
+ # For primitive operations, run them as is without interception
117
+ # Unless we are in prims_mode, in which case we want to use nvprims
118
+ if orig_func in torch_function_passthrough or orig_func in all_prims():
119
+ with self.prims_mode_cls():
120
+ return orig_func(*args, **kwargs)
121
+ mapping = torch_to_refs_map()
122
+ func = mapping.get(orig_func, None)
123
+
124
+ # For torch.ops.aten.*, use registered decompositions from torch._decomp
125
+ # torch._decomp.decomposition_table provides a mapping from
126
+ # torch.ops.aten.* to torch._refs or torch._decomp.decompositions
127
+ # implementations.
128
+ # There're other ways to implement this functionality,
129
+ # see https://github.com/pytorch/pytorch/pull/82657#discussion_r939776417
130
+ if func is None and isinstance(orig_func, torch._ops.OpOverload):
131
+ func = torch._decomp.decomposition_table.get(orig_func, None)
132
+
133
+ if func is not None:
134
+ # If the ref exists query whether we should use it or not
135
+ if self.should_fallback_fn(self, orig_func, func, args, kwargs):
136
+ return orig_func(*args, **kwargs)
137
+ # torch calls inside func should be interpreted as refs calls
138
+ with self:
139
+ return func(*args, **kwargs)
140
+ if self.strict:
141
+ raise RuntimeError(
142
+ f"no _refs support for {torch.overrides.resolve_name(orig_func)}"
143
+ )
144
+ return orig_func(*args, **kwargs)
venv/lib/python3.10/site-packages/torch/_prims/debug_prims.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ from typing import Optional, Sequence
3
+
4
+ import torch
5
+ from torch._custom_op.impl import custom_op
6
+ from torch.utils._content_store import ContentStoreReader
7
+
8
+ LOAD_TENSOR_READER: Optional[ContentStoreReader] = None
9
+
10
+
11
+ @contextlib.contextmanager
12
+ def load_tensor_reader(loc):
13
+ global LOAD_TENSOR_READER
14
+ assert LOAD_TENSOR_READER is None
15
+ # load_tensor is an "op", and we will play merry hell on
16
+ # Inductor's memory planning if we return a tensor that
17
+ # aliases another tensor that we previously returned from
18
+ # an operator. So unlike standard ContentStoreReader use,
19
+ # we disable the cache so that you always get fresh storages
20
+ # (no aliasing for you!)
21
+ LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False)
22
+ try:
23
+ yield
24
+ finally:
25
+ LOAD_TENSOR_READER = None
26
+
27
+
28
+ def register_debug_prims():
29
+ @custom_op("debugprims::load_tensor")
30
+ def load_tensor( # type: ignore[empty-body]
31
+ name: str,
32
+ size: Sequence[int],
33
+ stride: Sequence[int],
34
+ *,
35
+ dtype: torch.dtype,
36
+ device: torch.device,
37
+ ) -> torch.Tensor:
38
+ ...
39
+
40
+ @load_tensor.impl_factory()
41
+ def load_tensor_factory(name, size, stride, dtype, device):
42
+ if LOAD_TENSOR_READER is None:
43
+ from torch._dynamo.testing import rand_strided
44
+
45
+ return rand_strided(size, stride, dtype, device)
46
+ else:
47
+ from torch._dynamo.utils import clone_input
48
+
49
+ # device argument here takes care of coercion
50
+ r = LOAD_TENSOR_READER.read_tensor(name, device=device)
51
+ assert list(r.size()) == size, f"{r.size()} != {size}"
52
+ assert list(r.stride()) == stride, f"{r.stride()} != {stride}"
53
+ assert r.device == device, f"{r.device} != {device}"
54
+
55
+ # Unlike the other properties, we will do coercions for dtype
56
+ # mismatch
57
+ if r.dtype != dtype:
58
+ r = clone_input(r, dtype=dtype)
59
+ return r
venv/lib/python3.10/site-packages/torch/_prims/executor.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, Optional
2
+
3
+ from torch._prims.context import TorchRefsMode
4
+
5
+ from torch.fx import GraphModule
6
+ from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx
7
+
8
+
9
+ def execute(
10
+ gm: GraphModule,
11
+ *args,
12
+ executor: str = "aten",
13
+ executor_parameters: Optional[dict] = None,
14
+ ):
15
+ """
16
+ Prototype ATen executor.
17
+
18
+ Just executes the context's graph.
19
+ """
20
+
21
+ if executor == "aten":
22
+ return gm.forward(*args)
23
+
24
+ msg = f"Received unexpected value for 'executor': {executor}. Allowed values are: aten."
25
+ raise ValueError(msg)
26
+
27
+
28
+ def make_traced(fn: Callable):
29
+ """
30
+ Returns a function that, when called, will
31
+ trace its torch operations to prims and then
32
+ execute those prims on the requested trace executor
33
+ (possibly lowering them to that trace executor first).
34
+
35
+ Only supports the torch operations defined in _torch_to_reference_map
36
+ in context.py and operations with positional args. All args must
37
+ be tensors.
38
+ In the near future all these restrictions will be lifted.
39
+
40
+ Example usage:
41
+
42
+ def foo(a, b):
43
+ return torch.add(a, b)
44
+
45
+ traced_foo = make_traced(foo)
46
+
47
+ a = torch.randn((1, 2, 3, 4, 5), device='cuda')
48
+ b = torch.randn((1, 2, 3, 4, 5), device='cuda')
49
+ result = traced_foo(a, b, executor='aten')
50
+ """
51
+
52
+ def _traced(*args, executor="aten", **kwargs):
53
+ # TODO: caching
54
+ wrapped, all_args = wrapper_and_args_for_make_fx(fn, args, kwargs)
55
+
56
+ with TorchRefsMode():
57
+ gm = make_fx(wrapped)(all_args)
58
+ return execute(gm, all_args, executor=executor)
59
+
60
+ return _traced
venv/lib/python3.10/site-packages/torch/amp/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .autocast_mode import _enter_autocast, _exit_autocast, autocast
2
+ from .grad_scaler import GradScaler