Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_VF.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/__config__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/__future__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_appdirs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_classes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_compile.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_custom_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_deploy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_guards.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_jit_internal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_linalg_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_lobpcg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_lowrank.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_meta_registrations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_namedtensor_internals.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_python_dispatcher.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_sources.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_storage_docs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_streambase.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_str.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_torch_docs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_utils_internal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_vmap_internals.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/_weights_only_unpickler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/functional.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/hub.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/library.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/overrides.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/quasirandom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/random.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/return_types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/serialization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/storage.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/torch_version.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/__pycache__/version.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_prims/__init__.py +3031 -0
- venv/lib/python3.10/site-packages/torch/_prims/context.py +144 -0
- venv/lib/python3.10/site-packages/torch/_prims/debug_prims.py +59 -0
- venv/lib/python3.10/site-packages/torch/_prims/executor.py +60 -0
- venv/lib/python3.10/site-packages/torch/amp/__init__.py +2 -0
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25612e6021c8a2f6823366cc30e9f3a49f28c9ededc00355e7e8eea1782cf823
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/26.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ea88e8425126684a61bc38a0a113a144c30767b09eb289f7344d2cedabb941b
|
3 |
+
size 50332828
|
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1405102430b95a45777f24793899366dfa3252bb2789c5c3a8086a5cff0e1d40
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71023c52f8eb8c1d3f7b088a0fabea788e5623d7c2c1d524be094f58f19f712f
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/__pycache__/_VF.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/__config__.cpython-310.pyc
ADDED
Binary file (755 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/__future__.cpython-310.pyc
ADDED
Binary file (3.41 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (67.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_appdirs.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_classes.cpython-310.pyc
ADDED
Binary file (2.51 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_compile.cpython-310.pyc
ADDED
Binary file (1.11 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_custom_ops.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_deploy.cpython-310.pyc
ADDED
Binary file (2.58 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_guards.cpython-310.pyc
ADDED
Binary file (24 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_jit_internal.cpython-310.pyc
ADDED
Binary file (36.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_linalg_utils.cpython-310.pyc
ADDED
Binary file (5.81 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_lobpcg.cpython-310.pyc
ADDED
Binary file (30.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_lowrank.cpython-310.pyc
ADDED
Binary file (9.48 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_meta_registrations.cpython-310.pyc
ADDED
Binary file (166 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_namedtensor_internals.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_ops.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_python_dispatcher.cpython-310.pyc
ADDED
Binary file (3.47 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_sources.cpython-310.pyc
ADDED
Binary file (4.21 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_storage_docs.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_streambase.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor.cpython-310.pyc
ADDED
Binary file (42.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc
ADDED
Binary file (134 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_tensor_str.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_torch_docs.cpython-310.pyc
ADDED
Binary file (405 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_utils_internal.cpython-310.pyc
ADDED
Binary file (4.16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_vmap_internals.cpython-310.pyc
ADDED
Binary file (6.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/_weights_only_unpickler.cpython-310.pyc
ADDED
Binary file (7.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/functional.cpython-310.pyc
ADDED
Binary file (71.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/hub.cpython-310.pyc
ADDED
Binary file (27.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/library.cpython-310.pyc
ADDED
Binary file (18.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/overrides.cpython-310.pyc
ADDED
Binary file (155 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/quasirandom.cpython-310.pyc
ADDED
Binary file (6.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/random.cpython-310.pyc
ADDED
Binary file (5.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/return_types.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/serialization.cpython-310.pyc
ADDED
Binary file (43.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/storage.cpython-310.pyc
ADDED
Binary file (43.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/torch_version.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/types.cpython-310.pyc
ADDED
Binary file (2.65 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/__pycache__/version.cpython-310.pyc
ADDED
Binary file (451 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_prims/__init__.py
ADDED
@@ -0,0 +1,3031 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import itertools
|
3 |
+
import operator
|
4 |
+
import weakref
|
5 |
+
from enum import Enum
|
6 |
+
from functools import partial, reduce
|
7 |
+
from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import torch._prims_common as utils
|
12 |
+
import torch.library
|
13 |
+
from torch import sym_float, Tensor, TypedStorage
|
14 |
+
from torch._C import _get_default_device
|
15 |
+
from torch._prims.debug_prims import register_debug_prims
|
16 |
+
from torch._prims.rng_prims import register_rng_prims
|
17 |
+
from torch._prims_common import (
|
18 |
+
Dim,
|
19 |
+
DimsSequenceType,
|
20 |
+
DimsType,
|
21 |
+
IntLike,
|
22 |
+
Number,
|
23 |
+
NumberType,
|
24 |
+
RETURN_TYPE,
|
25 |
+
ShapeType,
|
26 |
+
StrideType,
|
27 |
+
TensorLike,
|
28 |
+
TensorLikeType,
|
29 |
+
type_to_dtype,
|
30 |
+
)
|
31 |
+
from torch._prims_common.wrappers import backwards_not_supported
|
32 |
+
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
|
33 |
+
from torch.overrides import handle_torch_function, has_torch_function
|
34 |
+
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
|
35 |
+
|
36 |
+
prim = torch.library.Library("prims", "DEF")
|
37 |
+
prim_impl = torch.library.Library("prims", "IMPL", "CompositeExplicitAutograd")
|
38 |
+
prim_backend_select_impl = torch.library.Library("prims", "IMPL", "BackendSelect")
|
39 |
+
prim_autograd_impl = torch.library.Library("prims", "IMPL", "Autograd")
|
40 |
+
prim_meta_impl = torch.library.Library("prims", "IMPL", "Meta")
|
41 |
+
|
42 |
+
# Experimental module containing prototype "primitive" operations.
|
43 |
+
|
44 |
+
__all__ = [
|
45 |
+
#
|
46 |
+
# Common datastructures and helpers
|
47 |
+
#
|
48 |
+
"RETURN_TYPE",
|
49 |
+
#
|
50 |
+
# Elementwise unary prims
|
51 |
+
#
|
52 |
+
"abs",
|
53 |
+
"acos",
|
54 |
+
"acosh",
|
55 |
+
"asin",
|
56 |
+
"asinh",
|
57 |
+
"atan",
|
58 |
+
"atanh",
|
59 |
+
"cos",
|
60 |
+
"cosh",
|
61 |
+
"bessel_i0",
|
62 |
+
"bessel_i0e",
|
63 |
+
"bessel_i1",
|
64 |
+
"bessel_i1e",
|
65 |
+
"bessel_j0",
|
66 |
+
"bessel_j1",
|
67 |
+
"bitwise_not",
|
68 |
+
"cbrt",
|
69 |
+
"ceil",
|
70 |
+
"conj_physical",
|
71 |
+
"digamma",
|
72 |
+
"erf",
|
73 |
+
"erf_inv",
|
74 |
+
"erfc",
|
75 |
+
"erfcx",
|
76 |
+
"exp",
|
77 |
+
"expm1",
|
78 |
+
"exp2",
|
79 |
+
"fill",
|
80 |
+
"floor",
|
81 |
+
"imag",
|
82 |
+
"isfinite",
|
83 |
+
"lgamma",
|
84 |
+
"log",
|
85 |
+
"log1p",
|
86 |
+
"log2",
|
87 |
+
"log10",
|
88 |
+
"ndtri",
|
89 |
+
"neg",
|
90 |
+
"real",
|
91 |
+
"reciprocal",
|
92 |
+
"round",
|
93 |
+
"sign",
|
94 |
+
"signbit",
|
95 |
+
"sin",
|
96 |
+
"sinh",
|
97 |
+
"spherical_bessel_j0",
|
98 |
+
"sqrt",
|
99 |
+
"tan",
|
100 |
+
"tanh",
|
101 |
+
"trunc",
|
102 |
+
#
|
103 |
+
# Elementwise binary prims
|
104 |
+
#
|
105 |
+
"add",
|
106 |
+
"atan2",
|
107 |
+
"bitwise_and",
|
108 |
+
"bitwise_or",
|
109 |
+
"bitwise_xor",
|
110 |
+
# 'complex', # needs custom meta
|
111 |
+
"div",
|
112 |
+
"eq",
|
113 |
+
"fmax",
|
114 |
+
"fmin",
|
115 |
+
"fmod",
|
116 |
+
"frexp",
|
117 |
+
"gcd",
|
118 |
+
"ge",
|
119 |
+
"gt",
|
120 |
+
"hypot",
|
121 |
+
"igamma",
|
122 |
+
"igammac",
|
123 |
+
"le",
|
124 |
+
"lt",
|
125 |
+
"maximum",
|
126 |
+
"minimum",
|
127 |
+
"mul",
|
128 |
+
"ne",
|
129 |
+
"nextafter",
|
130 |
+
"pow",
|
131 |
+
"remainder",
|
132 |
+
"rsqrt",
|
133 |
+
"shift_left",
|
134 |
+
"shift_right_arithmetic",
|
135 |
+
"shift_right_logical", # not implemented
|
136 |
+
"sub",
|
137 |
+
"zeta",
|
138 |
+
#
|
139 |
+
# View prims
|
140 |
+
#
|
141 |
+
"as_strided",
|
142 |
+
"broadcast_in_dim",
|
143 |
+
"collapse_view",
|
144 |
+
"conj",
|
145 |
+
"expand_dims",
|
146 |
+
"slice",
|
147 |
+
"slice_in_dim", # implemented using slice -- make this a ref?
|
148 |
+
"split_dim",
|
149 |
+
"squeeze",
|
150 |
+
"transpose",
|
151 |
+
"view_of",
|
152 |
+
"view_element_type",
|
153 |
+
#
|
154 |
+
# Functionalized view mutations
|
155 |
+
#
|
156 |
+
"as_strided_scatter",
|
157 |
+
#
|
158 |
+
# Shape prims
|
159 |
+
#
|
160 |
+
"collapse",
|
161 |
+
"cat",
|
162 |
+
"reshape",
|
163 |
+
"rev",
|
164 |
+
#
|
165 |
+
# Conditional prims
|
166 |
+
#
|
167 |
+
"where",
|
168 |
+
#
|
169 |
+
# Data conversion and movement prims
|
170 |
+
#
|
171 |
+
"clone",
|
172 |
+
"convert_element_type",
|
173 |
+
"device_put",
|
174 |
+
"item",
|
175 |
+
"maximum_value",
|
176 |
+
"minimum_value",
|
177 |
+
"copy_strided",
|
178 |
+
#
|
179 |
+
# Inplace prims
|
180 |
+
#
|
181 |
+
"copy_to",
|
182 |
+
"resize",
|
183 |
+
# "_set", # Commented out, see note below
|
184 |
+
#
|
185 |
+
# Reduction prims
|
186 |
+
#
|
187 |
+
"amax",
|
188 |
+
"amin",
|
189 |
+
"prod",
|
190 |
+
"sum",
|
191 |
+
"xor_sum",
|
192 |
+
"var",
|
193 |
+
#
|
194 |
+
# Tensor Creation Prims
|
195 |
+
#
|
196 |
+
"empty_strided",
|
197 |
+
"empty_permuted",
|
198 |
+
"scalar_tensor",
|
199 |
+
"iota",
|
200 |
+
#
|
201 |
+
# Linear algebra (linalg) Prims
|
202 |
+
#
|
203 |
+
"svd",
|
204 |
+
#
|
205 |
+
# Randomness Prims
|
206 |
+
#
|
207 |
+
"normal",
|
208 |
+
"_uniform_helper",
|
209 |
+
#
|
210 |
+
# FFT prims
|
211 |
+
#
|
212 |
+
"fft_r2c",
|
213 |
+
"fft_c2c",
|
214 |
+
"fft_c2r",
|
215 |
+
]
|
216 |
+
|
217 |
+
|
218 |
+
def TensorMeta(
|
219 |
+
tensorlike: Optional[Union[NumberType, torch.Tensor]] = None,
|
220 |
+
*,
|
221 |
+
shape: Optional[ShapeType] = None,
|
222 |
+
strides: Optional[StrideType] = None,
|
223 |
+
dtype: Optional[torch.dtype] = None,
|
224 |
+
device: Optional[Union[torch.device, str]] = None,
|
225 |
+
):
|
226 |
+
if isinstance(tensorlike, Number):
|
227 |
+
assert not shape and (shape is None or isinstance(shape, Sequence))
|
228 |
+
assert not strides and (strides is None or isinstance(strides, Sequence))
|
229 |
+
inferred_shape: Tuple[int, ...] = ()
|
230 |
+
inferred_strides: Tuple[int, ...] = ()
|
231 |
+
inferred_dtype = type_to_dtype(type(tensorlike))
|
232 |
+
inferred_device = torch.device("cpu")
|
233 |
+
# TODO: This looks wrong, a number that is wrapped into a tensor
|
234 |
+
# needs to behave differently than a scalar tensor for type
|
235 |
+
# promotion purposes
|
236 |
+
elif tensorlike is not None:
|
237 |
+
assert isinstance(tensorlike, torch.Tensor)
|
238 |
+
inferred_shape = tuple(tensorlike.shape)
|
239 |
+
inferred_strides = tuple(tensorlike.stride())
|
240 |
+
inferred_dtype = tensorlike.dtype
|
241 |
+
inferred_device = tensorlike.device
|
242 |
+
else:
|
243 |
+
# If no tensorlike "example" is given then all metadata
|
244 |
+
# must be provided explicitly
|
245 |
+
assert shape is not None
|
246 |
+
assert strides is not None
|
247 |
+
assert dtype is not None
|
248 |
+
assert device is not None
|
249 |
+
|
250 |
+
shape = inferred_shape if shape is None else tuple(shape) # type: ignore[possibly-undefined]
|
251 |
+
strides = inferred_strides if strides is None else tuple(strides) # type: ignore[possibly-undefined]
|
252 |
+
dtype = inferred_dtype if dtype is None else dtype # type: ignore[possibly-undefined]
|
253 |
+
device = inferred_device if device is None else device # type: ignore[possibly-undefined]
|
254 |
+
|
255 |
+
if isinstance(device, str):
|
256 |
+
device = torch.device(device)
|
257 |
+
|
258 |
+
return torch.empty_strided(shape, strides, dtype=dtype, device=device)
|
259 |
+
|
260 |
+
|
261 |
+
def _make_prim(
|
262 |
+
*,
|
263 |
+
schema: str,
|
264 |
+
return_type: Union[RETURN_TYPE, Tuple[RETURN_TYPE, ...]],
|
265 |
+
meta: Callable,
|
266 |
+
impl_aten: Callable,
|
267 |
+
doc: str,
|
268 |
+
tags: Optional[Sequence[torch.Tag]] = None,
|
269 |
+
):
|
270 |
+
"""
|
271 |
+
Creates a primitive operation.
|
272 |
+
|
273 |
+
"""
|
274 |
+
|
275 |
+
prim.define(schema, tags=torch.Tag.pt2_compliant_tag)
|
276 |
+
|
277 |
+
def _prim_impl(*args, **kwargs):
|
278 |
+
# always run the meta function because aten implementation will
|
279 |
+
# typically accept more inputs (e.g., it will do promotion and
|
280 |
+
# broadcasting) which we want to reject
|
281 |
+
meta(*args, **kwargs)
|
282 |
+
return impl_aten(*args, **kwargs)
|
283 |
+
|
284 |
+
# Right now prims don't support autograd (we can and should add an
|
285 |
+
# argument that provides an implementation for backward here.) Because we
|
286 |
+
# don't have derivative formulas, we must setup a custom autograd function
|
287 |
+
# that raises an error if backwards is invoked
|
288 |
+
def _autograd_impl(*args, **kwargs):
|
289 |
+
return backwards_not_supported(_prim)(*args, **kwargs)
|
290 |
+
|
291 |
+
def _backend_select_impl(*args, **kwargs):
|
292 |
+
if kwargs.get("device") and kwargs["device"].type == "meta":
|
293 |
+
return meta(*args, **kwargs)
|
294 |
+
if any(isinstance(x, torch.device) and x.type == "meta" for x in args):
|
295 |
+
return meta(*args, **kwargs)
|
296 |
+
else:
|
297 |
+
return _prim_impl(*args, **kwargs)
|
298 |
+
|
299 |
+
name = schema.split("(")[0]
|
300 |
+
prim_impl.impl(name, _prim_impl)
|
301 |
+
prim_autograd_impl.impl(name, _autograd_impl)
|
302 |
+
prim_meta_impl.impl(name, meta)
|
303 |
+
|
304 |
+
_prim_packet = getattr(torch._ops.ops.prims, name)
|
305 |
+
_prim = _prim_packet.default
|
306 |
+
if tags:
|
307 |
+
_prim._tags = tags
|
308 |
+
|
309 |
+
from torch._subclasses.fake_tensor import contains_tensor_types
|
310 |
+
|
311 |
+
if not any(contains_tensor_types(a.type) for a in _prim._schema.arguments) or str(
|
312 |
+
_prim
|
313 |
+
) in [
|
314 |
+
# See https://github.com/pytorch/pytorch/issues/103532
|
315 |
+
"prims.device_put.default"
|
316 |
+
]:
|
317 |
+
prim_backend_select_impl.impl(name, _backend_select_impl)
|
318 |
+
|
319 |
+
for p in (_prim_packet, _prim):
|
320 |
+
p.__doc__ = doc
|
321 |
+
p.return_type = return_type # type: ignore[attr-defined]
|
322 |
+
|
323 |
+
p.schema = schema
|
324 |
+
p.prim_impl = _prim_impl
|
325 |
+
p.prim_meta_impl = meta
|
326 |
+
p.impl_aten = impl_aten
|
327 |
+
|
328 |
+
return _prim
|
329 |
+
|
330 |
+
|
331 |
+
class ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND(Enum):
|
332 |
+
DEFAULT = (0,)
|
333 |
+
INT_TO_FLOAT = (2,)
|
334 |
+
ALWAYS_BOOL = (3,)
|
335 |
+
COMPLEX_TO_FLOAT = (4,)
|
336 |
+
|
337 |
+
|
338 |
+
# TODO: implement dtype validation here, too, or on the corresponding refs
|
339 |
+
def _prim_elementwise_meta(
|
340 |
+
*args,
|
341 |
+
type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND,
|
342 |
+
args_with_fixed_dtypes: Optional[Tuple[TensorLikeType, ...]] = None,
|
343 |
+
) -> FakeTensor:
|
344 |
+
"""
|
345 |
+
Meta function for elementwise operations that produce outputs in the same dtype
|
346 |
+
as their inputs.
|
347 |
+
|
348 |
+
Stride logic is currently incorrect.
|
349 |
+
"""
|
350 |
+
|
351 |
+
assert len(args) > 0
|
352 |
+
|
353 |
+
utils.check_same_dtype(*args)
|
354 |
+
|
355 |
+
args_ = list(args)
|
356 |
+
if args_with_fixed_dtypes is not None:
|
357 |
+
args_ = list(args_with_fixed_dtypes) + args_
|
358 |
+
|
359 |
+
utils.check_same_device(*args_, allow_cpu_scalar_tensors=True)
|
360 |
+
utils.check_same_shape(*args_, allow_cpu_scalar_tensors=True)
|
361 |
+
|
362 |
+
l2p_perm = utils.compute_elementwise_output_logical_to_physical_perm(*args_)
|
363 |
+
shape = utils.extract_shape(*args_, allow_cpu_scalar_tensors=True)
|
364 |
+
|
365 |
+
# Acquires the dtype
|
366 |
+
dtype = None
|
367 |
+
scalar_type = None
|
368 |
+
for arg in args:
|
369 |
+
if isinstance(arg, TensorLike):
|
370 |
+
if not utils.is_cpu_scalar_tensor(arg):
|
371 |
+
dtype = arg.dtype
|
372 |
+
break
|
373 |
+
else:
|
374 |
+
dtype = arg.dtype
|
375 |
+
elif isinstance(arg, Number):
|
376 |
+
scalar_type = type(arg)
|
377 |
+
|
378 |
+
if dtype is None and scalar_type is not None:
|
379 |
+
dtype = utils.type_to_dtype(scalar_type)
|
380 |
+
|
381 |
+
# Acquires the device (if it exists) or number
|
382 |
+
device = None
|
383 |
+
number = None
|
384 |
+
for arg in args_:
|
385 |
+
if isinstance(arg, TensorLike):
|
386 |
+
if utils.is_cpu_scalar_tensor(arg):
|
387 |
+
if device is None:
|
388 |
+
device = arg.device
|
389 |
+
# keep going, in case there is a cuda tensor later
|
390 |
+
else:
|
391 |
+
device = arg.device
|
392 |
+
break
|
393 |
+
|
394 |
+
elif isinstance(arg, Number):
|
395 |
+
if number is None:
|
396 |
+
number = arg
|
397 |
+
|
398 |
+
# NOTE: type promotion behavior here is mostly hidden from tests because
|
399 |
+
# references will typically handle the type promotion properly even if this doesn't
|
400 |
+
# (but getting it wrong will cause too many casts to be inserted in traces!)
|
401 |
+
if device is not None:
|
402 |
+
assert dtype is not None
|
403 |
+
if type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT:
|
404 |
+
dtype = dtype
|
405 |
+
elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL:
|
406 |
+
dtype = torch.bool
|
407 |
+
elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.INT_TO_FLOAT:
|
408 |
+
if utils.is_integer_dtype(dtype) or utils.is_boolean_dtype(dtype):
|
409 |
+
dtype = torch.get_default_dtype()
|
410 |
+
elif type_promotion == ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT:
|
411 |
+
if utils.is_complex_dtype(dtype):
|
412 |
+
dtype = utils.corresponding_real_dtype(dtype)
|
413 |
+
else:
|
414 |
+
dtype = dtype
|
415 |
+
|
416 |
+
assert shape is not None
|
417 |
+
return torch.empty_permuted(shape, l2p_perm, device=device, dtype=dtype) # type: ignore[return-value]
|
418 |
+
|
419 |
+
# Number case
|
420 |
+
# TODO: fix number type promotion (bool, complex->float)
|
421 |
+
|
422 |
+
# For now for symint/float, just implementing the common / simple cases of (int,float,symint,symfloat)
|
423 |
+
seen_float = False
|
424 |
+
if isinstance(number, (torch.SymInt, torch.SymFloat)):
|
425 |
+
for a in args:
|
426 |
+
assert isinstance(a, (int, float, torch.SymInt, torch.SymFloat)), "NYI"
|
427 |
+
seen_float = seen_float or isinstance(a, (float, torch.SymFloat))
|
428 |
+
if seen_float:
|
429 |
+
number = sym_float(number)
|
430 |
+
|
431 |
+
return TensorMeta(number) # type: ignore[arg-type]
|
432 |
+
|
433 |
+
|
434 |
+
def _complex_only_elementwise_meta(*args, **kwargs):
|
435 |
+
torch._check(
|
436 |
+
utils.is_complex_dtype(args[0].dtype), lambda: "Only complex dtype is supported"
|
437 |
+
)
|
438 |
+
return _prim_elementwise_meta(*args, **kwargs)
|
439 |
+
|
440 |
+
|
441 |
+
def _make_elementwise_unary_prim(
|
442 |
+
name: str, *, type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND, **kwargs
|
443 |
+
):
|
444 |
+
"""
|
445 |
+
Creates an elementwise unary prim.
|
446 |
+
"""
|
447 |
+
|
448 |
+
return _make_prim(
|
449 |
+
schema=f"{name}(Tensor self) -> Tensor",
|
450 |
+
meta=partial(_prim_elementwise_meta, type_promotion=type_promotion),
|
451 |
+
return_type=RETURN_TYPE.NEW,
|
452 |
+
**kwargs,
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
def _make_elementwise_binary_prim(
|
457 |
+
name: str, *, type_promotion: ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND, **kwargs
|
458 |
+
):
|
459 |
+
"""
|
460 |
+
Creates an elementwise binary prim.
|
461 |
+
"""
|
462 |
+
|
463 |
+
return _make_prim(
|
464 |
+
schema=f"{name}(Tensor self, Tensor other) -> Tensor",
|
465 |
+
meta=partial(_prim_elementwise_meta, type_promotion=type_promotion),
|
466 |
+
return_type=RETURN_TYPE.NEW,
|
467 |
+
**kwargs,
|
468 |
+
)
|
469 |
+
|
470 |
+
|
471 |
+
def _not_impl(*args, **kwargs):
|
472 |
+
raise NotImplementedError
|
473 |
+
|
474 |
+
|
475 |
+
#
|
476 |
+
# Elementwise unary operations
|
477 |
+
#
|
478 |
+
|
479 |
+
|
480 |
+
abs = _make_elementwise_unary_prim(
|
481 |
+
"abs",
|
482 |
+
impl_aten=torch.abs,
|
483 |
+
doc="",
|
484 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
485 |
+
)
|
486 |
+
|
487 |
+
acos = _make_elementwise_unary_prim(
|
488 |
+
"acos",
|
489 |
+
impl_aten=torch.acos,
|
490 |
+
doc="",
|
491 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
492 |
+
)
|
493 |
+
|
494 |
+
acosh = _make_elementwise_unary_prim(
|
495 |
+
"acosh",
|
496 |
+
impl_aten=torch.acosh,
|
497 |
+
doc="",
|
498 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
499 |
+
)
|
500 |
+
|
501 |
+
asin = _make_elementwise_unary_prim(
|
502 |
+
"asin",
|
503 |
+
impl_aten=torch.asin,
|
504 |
+
doc="",
|
505 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
506 |
+
)
|
507 |
+
|
508 |
+
asinh = _make_elementwise_unary_prim(
|
509 |
+
"asinh",
|
510 |
+
impl_aten=torch.asinh,
|
511 |
+
doc="",
|
512 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
513 |
+
)
|
514 |
+
|
515 |
+
atan = _make_elementwise_unary_prim(
|
516 |
+
"atan",
|
517 |
+
impl_aten=torch.atan,
|
518 |
+
doc="",
|
519 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
520 |
+
)
|
521 |
+
|
522 |
+
atanh = _make_elementwise_unary_prim(
|
523 |
+
"atanh",
|
524 |
+
impl_aten=torch.atanh,
|
525 |
+
doc="",
|
526 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
527 |
+
)
|
528 |
+
|
529 |
+
cos = _make_elementwise_unary_prim(
|
530 |
+
"cos",
|
531 |
+
impl_aten=torch.cos,
|
532 |
+
doc="",
|
533 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
534 |
+
)
|
535 |
+
|
536 |
+
cosh = _make_elementwise_unary_prim(
|
537 |
+
"cosh",
|
538 |
+
impl_aten=torch.cosh,
|
539 |
+
doc="",
|
540 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
541 |
+
)
|
542 |
+
|
543 |
+
bessel_j0 = _make_elementwise_unary_prim(
|
544 |
+
"bessel_j0",
|
545 |
+
impl_aten=torch.special.bessel_j0,
|
546 |
+
doc="",
|
547 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
548 |
+
)
|
549 |
+
|
550 |
+
bessel_j1 = _make_elementwise_unary_prim(
|
551 |
+
"bessel_j1",
|
552 |
+
impl_aten=torch.special.bessel_j1,
|
553 |
+
doc="",
|
554 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
555 |
+
)
|
556 |
+
|
557 |
+
bessel_i0 = _make_elementwise_unary_prim(
|
558 |
+
"bessel_i0",
|
559 |
+
impl_aten=torch.i0,
|
560 |
+
doc="",
|
561 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
562 |
+
)
|
563 |
+
|
564 |
+
bessel_i0e = _make_elementwise_unary_prim(
|
565 |
+
"bessel_i0e",
|
566 |
+
impl_aten=torch.special.i0e,
|
567 |
+
doc="",
|
568 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
569 |
+
)
|
570 |
+
|
571 |
+
bessel_i1 = _make_elementwise_unary_prim(
|
572 |
+
"bessel_i1",
|
573 |
+
impl_aten=torch.special.i1,
|
574 |
+
doc="",
|
575 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
576 |
+
)
|
577 |
+
|
578 |
+
bessel_i1e = _make_elementwise_unary_prim(
|
579 |
+
"bessel_i1e",
|
580 |
+
impl_aten=torch.special.i1e,
|
581 |
+
doc="",
|
582 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
583 |
+
)
|
584 |
+
|
585 |
+
bitwise_not = _make_elementwise_unary_prim(
|
586 |
+
"bitwise_not",
|
587 |
+
impl_aten=torch.bitwise_not,
|
588 |
+
doc="",
|
589 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
590 |
+
)
|
591 |
+
|
592 |
+
|
593 |
+
def _cbrt_aten(a: torch.Tensor) -> Tensor:
|
594 |
+
torch._check(
|
595 |
+
not a.is_complex(),
|
596 |
+
lambda: "cbrt: Complex inputs not supported. Consider calling torch.pow(a, 1.0/3.0)",
|
597 |
+
)
|
598 |
+
# Returns the real cubic root of the number.
|
599 |
+
# Note that if a < 0, pow(a, (1. / 3.)) returns th complex number
|
600 |
+
# exp(1/3 * log(a)) = exp(1/3 * (log(abs(a)) + pi*i)) = cbrt(abs(a)) * e^{pi/3*i}
|
601 |
+
# which is a complex number.
|
602 |
+
# For more info see the section Note in
|
603 |
+
# https://en.cppreference.com/w/cpp/numeric/math/cbrt
|
604 |
+
return torch.copysign(torch.pow(a.abs(), 1 / 3), a)
|
605 |
+
|
606 |
+
|
607 |
+
cbrt = _make_elementwise_unary_prim(
|
608 |
+
"cbrt",
|
609 |
+
impl_aten=_cbrt_aten,
|
610 |
+
doc="",
|
611 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
612 |
+
)
|
613 |
+
|
614 |
+
ceil = _make_elementwise_unary_prim(
|
615 |
+
"ceil",
|
616 |
+
impl_aten=torch.ceil,
|
617 |
+
doc="",
|
618 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
619 |
+
)
|
620 |
+
|
621 |
+
|
622 |
+
def _conj_physical_meta(input: TensorLikeType) -> TensorLikeType:
|
623 |
+
if not input.dtype.is_complex:
|
624 |
+
raise RuntimeError("prims.conj_physical is only defined for complex dtypes")
|
625 |
+
|
626 |
+
strides = utils.compute_elementwise_output_strides(input)
|
627 |
+
return TensorMeta(input, strides=strides)
|
628 |
+
|
629 |
+
|
630 |
+
conj_physical = _make_prim(
|
631 |
+
schema="conj_physical(Tensor self) -> Tensor",
|
632 |
+
meta=_conj_physical_meta,
|
633 |
+
impl_aten=torch._conj_physical,
|
634 |
+
doc="Returns the physical conjugation of a complex tensor",
|
635 |
+
return_type=RETURN_TYPE.NEW,
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
def _clone_meta(
|
640 |
+
input: TensorLikeType, *, memory_format: torch.memory_format = torch.preserve_format
|
641 |
+
) -> TensorLikeType:
|
642 |
+
if memory_format != torch.preserve_format:
|
643 |
+
return torch.empty(
|
644 |
+
input.shape,
|
645 |
+
dtype=input.dtype,
|
646 |
+
layout=input.layout,
|
647 |
+
device=input.device,
|
648 |
+
memory_format=memory_format,
|
649 |
+
)
|
650 |
+
|
651 |
+
# memory_format == torch.preserve_format
|
652 |
+
strides = utils.compute_elementwise_output_strides(input)
|
653 |
+
return torch.empty_strided(
|
654 |
+
input.shape,
|
655 |
+
strides,
|
656 |
+
dtype=input.dtype,
|
657 |
+
layout=input.layout,
|
658 |
+
device=input.device,
|
659 |
+
)
|
660 |
+
|
661 |
+
|
662 |
+
clone = _make_prim(
|
663 |
+
schema="clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor",
|
664 |
+
meta=_clone_meta,
|
665 |
+
impl_aten=torch.clone,
|
666 |
+
doc="Returns the copy of a tensor",
|
667 |
+
return_type=RETURN_TYPE.NEW,
|
668 |
+
)
|
669 |
+
|
670 |
+
digamma = _make_elementwise_unary_prim(
|
671 |
+
"digamma",
|
672 |
+
impl_aten=torch.digamma,
|
673 |
+
doc="",
|
674 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
675 |
+
)
|
676 |
+
|
677 |
+
erf = _make_elementwise_unary_prim(
|
678 |
+
"erf",
|
679 |
+
impl_aten=torch.erf,
|
680 |
+
doc="",
|
681 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
682 |
+
)
|
683 |
+
|
684 |
+
erf_inv = _make_elementwise_unary_prim(
|
685 |
+
"erf_inv",
|
686 |
+
impl_aten=torch.special.erfinv,
|
687 |
+
doc="",
|
688 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
689 |
+
)
|
690 |
+
|
691 |
+
erfc = _make_elementwise_unary_prim(
|
692 |
+
"erfc",
|
693 |
+
impl_aten=torch.special.erfc,
|
694 |
+
doc="",
|
695 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
696 |
+
)
|
697 |
+
|
698 |
+
erfcx = _make_elementwise_unary_prim(
|
699 |
+
"erfcx",
|
700 |
+
impl_aten=torch.special.erfcx,
|
701 |
+
doc="",
|
702 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
703 |
+
)
|
704 |
+
|
705 |
+
exp = _make_elementwise_unary_prim(
|
706 |
+
"exp",
|
707 |
+
impl_aten=torch.exp,
|
708 |
+
doc="",
|
709 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
710 |
+
)
|
711 |
+
|
712 |
+
expm1 = _make_elementwise_unary_prim(
|
713 |
+
"expm1",
|
714 |
+
impl_aten=torch.special.expm1,
|
715 |
+
doc="",
|
716 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
717 |
+
)
|
718 |
+
|
719 |
+
exp2 = _make_elementwise_unary_prim(
|
720 |
+
"exp2",
|
721 |
+
impl_aten=torch.special.exp2,
|
722 |
+
doc="",
|
723 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
def _fill_meta(a: TensorLikeType, value: NumberType) -> TensorLikeType:
|
728 |
+
return _prim_elementwise_meta(
|
729 |
+
a, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
# NOTE: fill uses _make_prim directly because it has a value parameter
|
734 |
+
fill = _make_prim(
|
735 |
+
schema="fill(Tensor self, Scalar value) -> Tensor",
|
736 |
+
return_type=RETURN_TYPE.NEW,
|
737 |
+
meta=_fill_meta,
|
738 |
+
impl_aten=torch.fill,
|
739 |
+
doc="",
|
740 |
+
)
|
741 |
+
|
742 |
+
floor = _make_elementwise_unary_prim(
|
743 |
+
"floor",
|
744 |
+
impl_aten=torch.floor,
|
745 |
+
doc="",
|
746 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
747 |
+
)
|
748 |
+
|
749 |
+
imag = _make_prim(
|
750 |
+
schema="imag(Tensor self) -> Tensor",
|
751 |
+
meta=partial(
|
752 |
+
_complex_only_elementwise_meta,
|
753 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
754 |
+
),
|
755 |
+
return_type=RETURN_TYPE.VIEW,
|
756 |
+
impl_aten=torch.imag,
|
757 |
+
doc="",
|
758 |
+
)
|
759 |
+
|
760 |
+
isfinite = _make_elementwise_unary_prim(
|
761 |
+
"isfinite",
|
762 |
+
impl_aten=torch.isfinite,
|
763 |
+
doc="",
|
764 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
765 |
+
)
|
766 |
+
|
767 |
+
lgamma = _make_elementwise_unary_prim(
|
768 |
+
"lgamma",
|
769 |
+
impl_aten=torch.lgamma,
|
770 |
+
doc="",
|
771 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
772 |
+
)
|
773 |
+
|
774 |
+
log = _make_elementwise_unary_prim(
|
775 |
+
"log",
|
776 |
+
impl_aten=torch.log,
|
777 |
+
doc="",
|
778 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
779 |
+
)
|
780 |
+
|
781 |
+
log1p = _make_elementwise_unary_prim(
|
782 |
+
"log1p",
|
783 |
+
impl_aten=torch.log1p,
|
784 |
+
doc="",
|
785 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
786 |
+
)
|
787 |
+
|
788 |
+
log2 = _make_elementwise_unary_prim(
|
789 |
+
"log2",
|
790 |
+
impl_aten=torch.log2,
|
791 |
+
doc="",
|
792 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
793 |
+
)
|
794 |
+
|
795 |
+
log10 = _make_elementwise_unary_prim(
|
796 |
+
"log10",
|
797 |
+
impl_aten=torch.log10,
|
798 |
+
doc="",
|
799 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
800 |
+
)
|
801 |
+
|
802 |
+
real = _make_prim(
|
803 |
+
schema="real(Tensor self) -> Tensor",
|
804 |
+
meta=partial(
|
805 |
+
_complex_only_elementwise_meta,
|
806 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
807 |
+
),
|
808 |
+
return_type=RETURN_TYPE.VIEW,
|
809 |
+
impl_aten=torch.real,
|
810 |
+
doc="",
|
811 |
+
)
|
812 |
+
|
813 |
+
reciprocal = _make_elementwise_unary_prim(
|
814 |
+
"reciprocal",
|
815 |
+
impl_aten=torch.reciprocal,
|
816 |
+
doc="",
|
817 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
818 |
+
)
|
819 |
+
|
820 |
+
ndtri = _make_elementwise_unary_prim(
|
821 |
+
"ndtri",
|
822 |
+
impl_aten=torch.special.ndtri,
|
823 |
+
doc="",
|
824 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
825 |
+
)
|
826 |
+
|
827 |
+
neg = _make_elementwise_unary_prim(
|
828 |
+
"neg",
|
829 |
+
impl_aten=torch.neg,
|
830 |
+
doc="",
|
831 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
832 |
+
)
|
833 |
+
|
834 |
+
round = _make_elementwise_unary_prim(
|
835 |
+
"round",
|
836 |
+
impl_aten=torch.round,
|
837 |
+
doc="",
|
838 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
839 |
+
)
|
840 |
+
|
841 |
+
rsqrt = _make_elementwise_unary_prim(
|
842 |
+
"rsqrt",
|
843 |
+
impl_aten=torch.rsqrt,
|
844 |
+
doc="",
|
845 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
846 |
+
)
|
847 |
+
|
848 |
+
sign = _make_elementwise_unary_prim(
|
849 |
+
"sign",
|
850 |
+
impl_aten=torch.sign,
|
851 |
+
doc="",
|
852 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
853 |
+
)
|
854 |
+
|
855 |
+
signbit = _make_elementwise_unary_prim(
|
856 |
+
"signbit",
|
857 |
+
impl_aten=torch.signbit,
|
858 |
+
doc="",
|
859 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
860 |
+
)
|
861 |
+
|
862 |
+
sin = _make_elementwise_unary_prim(
|
863 |
+
"sin",
|
864 |
+
impl_aten=torch.sin,
|
865 |
+
doc="",
|
866 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
867 |
+
)
|
868 |
+
|
869 |
+
sinh = _make_elementwise_unary_prim(
|
870 |
+
"sinh",
|
871 |
+
impl_aten=torch.sinh,
|
872 |
+
doc="",
|
873 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
874 |
+
)
|
875 |
+
|
876 |
+
spherical_bessel_j0 = _make_elementwise_unary_prim(
|
877 |
+
"spherical_bessel_j0",
|
878 |
+
impl_aten=torch.special.spherical_bessel_j0,
|
879 |
+
doc="",
|
880 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
881 |
+
)
|
882 |
+
|
883 |
+
sqrt = _make_elementwise_unary_prim(
|
884 |
+
"sqrt",
|
885 |
+
impl_aten=torch.sqrt,
|
886 |
+
doc="",
|
887 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
888 |
+
)
|
889 |
+
|
890 |
+
tan = _make_elementwise_unary_prim(
|
891 |
+
"tan",
|
892 |
+
impl_aten=torch.tan,
|
893 |
+
doc="",
|
894 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
895 |
+
)
|
896 |
+
|
897 |
+
tanh = _make_elementwise_unary_prim(
|
898 |
+
"tanh",
|
899 |
+
impl_aten=torch.tanh,
|
900 |
+
doc="",
|
901 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
902 |
+
)
|
903 |
+
|
904 |
+
trunc = _make_elementwise_unary_prim(
|
905 |
+
"trunc",
|
906 |
+
impl_aten=torch.trunc,
|
907 |
+
doc="",
|
908 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
909 |
+
)
|
910 |
+
|
911 |
+
#
|
912 |
+
# Elementwise binary operations
|
913 |
+
#
|
914 |
+
|
915 |
+
add = _make_elementwise_binary_prim(
|
916 |
+
name="add",
|
917 |
+
impl_aten=torch.add,
|
918 |
+
doc="",
|
919 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
920 |
+
)
|
921 |
+
|
922 |
+
atan2 = _make_elementwise_binary_prim(
|
923 |
+
name="atan2",
|
924 |
+
impl_aten=torch.atan2,
|
925 |
+
doc="",
|
926 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
927 |
+
)
|
928 |
+
|
929 |
+
bitwise_and = _make_elementwise_binary_prim(
|
930 |
+
"bitwise_and",
|
931 |
+
impl_aten=torch.bitwise_and,
|
932 |
+
doc="",
|
933 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
934 |
+
)
|
935 |
+
|
936 |
+
bitwise_or = _make_elementwise_binary_prim(
|
937 |
+
"bitwise_or",
|
938 |
+
impl_aten=torch.bitwise_or,
|
939 |
+
doc="",
|
940 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
941 |
+
)
|
942 |
+
|
943 |
+
bitwise_xor = _make_elementwise_binary_prim(
|
944 |
+
"bitwise_xor",
|
945 |
+
impl_aten=torch.bitwise_xor,
|
946 |
+
doc="",
|
947 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
948 |
+
)
|
949 |
+
|
950 |
+
# TODO: complex needs a special meta to account for its float -> complex behavior
|
951 |
+
# complex = _make_elementwise_binary_prim(
|
952 |
+
# impl_aten=torch.complex,
|
953 |
+
# doc="",
|
954 |
+
# )
|
955 |
+
|
956 |
+
|
957 |
+
# div prim performs truncation division on integer inputs
|
958 |
+
# and true division for floating and complex inputs
|
959 |
+
def _div_aten(a, b):
|
960 |
+
is_integral = isinstance(a, (bool, int, torch.SymInt)) or (
|
961 |
+
isinstance(a, torch.Tensor) and utils.is_integer_dtype(a.dtype)
|
962 |
+
)
|
963 |
+
|
964 |
+
if is_integral:
|
965 |
+
return torch.div(a, b, rounding_mode="trunc")
|
966 |
+
else:
|
967 |
+
return torch.true_divide(a, b)
|
968 |
+
|
969 |
+
|
970 |
+
div = _make_elementwise_binary_prim(
|
971 |
+
"div",
|
972 |
+
impl_aten=_div_aten,
|
973 |
+
doc="",
|
974 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
975 |
+
)
|
976 |
+
|
977 |
+
eq = _make_elementwise_binary_prim(
|
978 |
+
"eq",
|
979 |
+
impl_aten=torch.eq,
|
980 |
+
doc="",
|
981 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
982 |
+
)
|
983 |
+
|
984 |
+
fmax = _make_elementwise_binary_prim(
|
985 |
+
"fmax",
|
986 |
+
impl_aten=torch.fmax,
|
987 |
+
doc="",
|
988 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
989 |
+
)
|
990 |
+
|
991 |
+
fmin = _make_elementwise_binary_prim(
|
992 |
+
"fmin",
|
993 |
+
impl_aten=torch.fmin,
|
994 |
+
doc="",
|
995 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
996 |
+
)
|
997 |
+
|
998 |
+
fmod = _make_elementwise_binary_prim(
|
999 |
+
"fmod",
|
1000 |
+
impl_aten=torch.fmod,
|
1001 |
+
doc="",
|
1002 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
|
1006 |
+
gcd = _make_elementwise_binary_prim(
|
1007 |
+
"gcd",
|
1008 |
+
impl_aten=torch.gcd,
|
1009 |
+
doc="",
|
1010 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
|
1014 |
+
ge = _make_elementwise_binary_prim(
|
1015 |
+
"ge",
|
1016 |
+
impl_aten=torch.ge,
|
1017 |
+
doc="",
|
1018 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
gt = _make_elementwise_binary_prim(
|
1022 |
+
"gt",
|
1023 |
+
impl_aten=torch.gt,
|
1024 |
+
doc="",
|
1025 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
hypot = _make_elementwise_binary_prim(
|
1029 |
+
"hypot",
|
1030 |
+
impl_aten=torch.hypot,
|
1031 |
+
doc="",
|
1032 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
igamma = _make_elementwise_binary_prim(
|
1036 |
+
"igamma",
|
1037 |
+
impl_aten=torch.special.gammainc,
|
1038 |
+
doc="",
|
1039 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
igammac = _make_elementwise_binary_prim(
|
1043 |
+
"igammac",
|
1044 |
+
impl_aten=torch.special.gammaincc,
|
1045 |
+
doc="",
|
1046 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
le = _make_elementwise_binary_prim(
|
1050 |
+
"le",
|
1051 |
+
impl_aten=torch.le,
|
1052 |
+
doc="",
|
1053 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
lt = _make_elementwise_binary_prim(
|
1057 |
+
"lt",
|
1058 |
+
impl_aten=torch.lt,
|
1059 |
+
doc="",
|
1060 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
|
1064 |
+
# Note: the following impls are because torch.maximum and torch.minimum do not support scalar inputs
|
1065 |
+
def _maximum_aten(
|
1066 |
+
a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
|
1067 |
+
) -> TensorLikeType:
|
1068 |
+
if isinstance(a, TensorLike) and isinstance(b, Number):
|
1069 |
+
b = scalar_tensor(b, dtype=a.dtype, device=a.device)
|
1070 |
+
elif isinstance(b, TensorLike) and isinstance(a, Number):
|
1071 |
+
a = scalar_tensor(a, dtype=b.dtype, device=b.device)
|
1072 |
+
|
1073 |
+
return torch.maximum(a, b) # type: ignore[arg-type]
|
1074 |
+
|
1075 |
+
|
1076 |
+
maximum = _make_elementwise_binary_prim(
|
1077 |
+
"maximum",
|
1078 |
+
impl_aten=_maximum_aten,
|
1079 |
+
doc="",
|
1080 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
|
1084 |
+
def _minimum_aten(
|
1085 |
+
a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
|
1086 |
+
) -> TensorLikeType:
|
1087 |
+
if isinstance(a, TensorLike) and isinstance(b, Number):
|
1088 |
+
b = scalar_tensor(b, dtype=a.dtype, device=a.device)
|
1089 |
+
elif isinstance(b, TensorLike) and isinstance(a, Number):
|
1090 |
+
a = scalar_tensor(a, dtype=b.dtype, device=b.device)
|
1091 |
+
|
1092 |
+
return torch.minimum(a, b) # type: ignore[arg-type]
|
1093 |
+
|
1094 |
+
|
1095 |
+
minimum = _make_elementwise_binary_prim(
|
1096 |
+
"minimum",
|
1097 |
+
impl_aten=_minimum_aten,
|
1098 |
+
doc="",
|
1099 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
mul = _make_elementwise_binary_prim(
|
1103 |
+
"mul",
|
1104 |
+
impl_aten=torch.mul,
|
1105 |
+
doc="",
|
1106 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
ne = _make_elementwise_binary_prim(
|
1110 |
+
"ne",
|
1111 |
+
impl_aten=torch.ne,
|
1112 |
+
doc="",
|
1113 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
nextafter = _make_elementwise_binary_prim(
|
1117 |
+
"nextafter",
|
1118 |
+
impl_aten=torch.nextafter,
|
1119 |
+
doc="",
|
1120 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
pow = _make_elementwise_binary_prim(
|
1124 |
+
"pow",
|
1125 |
+
impl_aten=torch.pow,
|
1126 |
+
doc="",
|
1127 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
remainder = _make_elementwise_binary_prim(
|
1131 |
+
"remainder",
|
1132 |
+
impl_aten=torch.remainder,
|
1133 |
+
doc="",
|
1134 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
|
1138 |
+
shift_left = _make_elementwise_binary_prim(
|
1139 |
+
"shift_left",
|
1140 |
+
impl_aten=torch.bitwise_left_shift,
|
1141 |
+
doc="",
|
1142 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
shift_right_arithmetic = _make_elementwise_binary_prim(
|
1146 |
+
"shift_right_arithmetic",
|
1147 |
+
impl_aten=torch.bitwise_right_shift,
|
1148 |
+
doc="",
|
1149 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
shift_right_logical = _not_impl
|
1153 |
+
|
1154 |
+
sub = _make_elementwise_binary_prim(
|
1155 |
+
"sub",
|
1156 |
+
impl_aten=torch.sub,
|
1157 |
+
doc="",
|
1158 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
zeta = _make_elementwise_binary_prim(
|
1162 |
+
"zeta",
|
1163 |
+
impl_aten=torch.special.zeta,
|
1164 |
+
doc="",
|
1165 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
|
1169 |
+
#
|
1170 |
+
# View operations
|
1171 |
+
def _as_strided_meta(
|
1172 |
+
a: TensorLikeType, size: ShapeType, stride: StrideType, storage_offset: int
|
1173 |
+
) -> TensorLikeType:
|
1174 |
+
assert len(size) == len(stride)
|
1175 |
+
assert storage_offset >= 0
|
1176 |
+
utils.validate_strides(stride)
|
1177 |
+
utils.validate_shape(size)
|
1178 |
+
|
1179 |
+
if reduce(operator.mul, size) == 0:
|
1180 |
+
# NOTE: This special case is to avoid having to acquire the storage below
|
1181 |
+
# as_strided to shapes with no elements are trivially valid, so it's OK
|
1182 |
+
pass
|
1183 |
+
elif isinstance(a, torch.Tensor):
|
1184 |
+
utils.check_in_bounds_for_storage(
|
1185 |
+
a._typed_storage(), size, stride, storage_offset
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
return torch.as_strided(a, size, stride, storage_offset)
|
1189 |
+
|
1190 |
+
|
1191 |
+
def _as_strided_aten(
|
1192 |
+
a: Tensor, size: ShapeType, stride: StrideType, storage_offset: int
|
1193 |
+
) -> Tensor:
|
1194 |
+
return torch.as_strided(a, size, stride, storage_offset)
|
1195 |
+
|
1196 |
+
|
1197 |
+
_as_strided_doc = """
|
1198 |
+
Creates a view of the tensor with the given shape (size), strides (stride) and
|
1199 |
+
storage offset (storage_offset).
|
1200 |
+
"""
|
1201 |
+
|
1202 |
+
as_strided = _make_prim(
|
1203 |
+
schema="as_strided(Tensor(a!) a, SymInt[] size, SymInt[] stride, SymInt storage_offset) -> Tensor(a!)",
|
1204 |
+
meta=_as_strided_meta,
|
1205 |
+
impl_aten=_as_strided_aten,
|
1206 |
+
return_type=RETURN_TYPE.VIEW,
|
1207 |
+
doc=_as_strided_doc,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
|
1211 |
+
def _broadcast_in_dim_meta(
|
1212 |
+
a: TensorLikeType, shape: ShapeType, broadcast_dimensions: Sequence[int]
|
1213 |
+
):
|
1214 |
+
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
|
1215 |
+
|
1216 |
+
# Type checks
|
1217 |
+
assert isinstance(a, TensorLike)
|
1218 |
+
assert isinstance(shape, Sequence)
|
1219 |
+
assert isinstance(broadcast_dimensions, Sequence)
|
1220 |
+
|
1221 |
+
# every dimension must be accounted for
|
1222 |
+
assert a.ndim == len(broadcast_dimensions)
|
1223 |
+
|
1224 |
+
# broadcast shape must have weakly more dimensions
|
1225 |
+
assert len(shape) >= a.ndim
|
1226 |
+
|
1227 |
+
# broadcast_dimensions must be an ascending sequence
|
1228 |
+
# (no relative reordering of dims) of integers and
|
1229 |
+
# each dimension must be within the new shape
|
1230 |
+
def _greater_than_reduce(acc, x):
|
1231 |
+
assert isinstance(x, Dim)
|
1232 |
+
assert x > acc
|
1233 |
+
assert x < len(shape)
|
1234 |
+
|
1235 |
+
return x
|
1236 |
+
|
1237 |
+
reduce(_greater_than_reduce, broadcast_dimensions, -1)
|
1238 |
+
|
1239 |
+
# shape must be broadcastable to
|
1240 |
+
for idx, new_idx in enumerate(broadcast_dimensions):
|
1241 |
+
if not guard_size_oblivious(a.shape[idx] == 1):
|
1242 |
+
torch._check(
|
1243 |
+
a.shape[idx] == shape[new_idx],
|
1244 |
+
lambda: f"{a.shape[idx]} must be broadcastable to {shape[new_idx]}",
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
new_strides = []
|
1248 |
+
original_idx = 0
|
1249 |
+
for idx in range(len(shape)):
|
1250 |
+
if idx in broadcast_dimensions:
|
1251 |
+
# Assigns a stride of zero to dimensions
|
1252 |
+
# which were actually broadcast
|
1253 |
+
if guard_size_oblivious(a.shape[original_idx] != shape[idx]):
|
1254 |
+
new_strides.append(0)
|
1255 |
+
else:
|
1256 |
+
new_strides.append(a.stride()[original_idx])
|
1257 |
+
original_idx = original_idx + 1
|
1258 |
+
else:
|
1259 |
+
if guard_size_oblivious(shape[idx] != 1):
|
1260 |
+
new_strides.append(0)
|
1261 |
+
elif original_idx == a.ndim:
|
1262 |
+
new_strides.append(1)
|
1263 |
+
else:
|
1264 |
+
new_strides.append(a.stride()[original_idx] * a.size()[original_idx])
|
1265 |
+
|
1266 |
+
return a.as_strided(shape, new_strides, a.storage_offset())
|
1267 |
+
|
1268 |
+
|
1269 |
+
def _broadcast_in_dim_aten(a, shape, broadcast_dimensions):
|
1270 |
+
s = list(shape)
|
1271 |
+
for broadcast_dimension in broadcast_dimensions:
|
1272 |
+
s[broadcast_dimension] = -1
|
1273 |
+
|
1274 |
+
v = a
|
1275 |
+
for idx, x in enumerate(s):
|
1276 |
+
if x != -1:
|
1277 |
+
v = v.unsqueeze(idx)
|
1278 |
+
|
1279 |
+
return v.expand(shape)
|
1280 |
+
|
1281 |
+
|
1282 |
+
_broadcast_in_dim_doc = """
|
1283 |
+
Creates a view of a with the specified shape.
|
1284 |
+
|
1285 |
+
Allows adding dimensions of any length and broadcasting
|
1286 |
+
dimensions of length one in a to any length.
|
1287 |
+
|
1288 |
+
The location of the broadcast dimensions must be specified
|
1289 |
+
using the broadcast_dimensions argument. Changing the
|
1290 |
+
relative order of dimensions is not supported.
|
1291 |
+
"""
|
1292 |
+
|
1293 |
+
broadcast_in_dim = _make_prim(
|
1294 |
+
schema="broadcast_in_dim(Tensor(a) a, SymInt[] shape, int[] broadcast_dimensions) -> Tensor(a)",
|
1295 |
+
meta=_broadcast_in_dim_meta,
|
1296 |
+
impl_aten=_broadcast_in_dim_aten,
|
1297 |
+
return_type=RETURN_TYPE.VIEW,
|
1298 |
+
doc=_broadcast_in_dim_doc,
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
|
1302 |
+
def _validate_collapse_args(a: Tensor, start: int, end: int) -> None:
|
1303 |
+
# Special-case for zero dimensional tensors
|
1304 |
+
ndim = max(1, a.dim())
|
1305 |
+
utils.validate_idx(ndim, start)
|
1306 |
+
utils.validate_idx(ndim, end)
|
1307 |
+
|
1308 |
+
# Verifies end is strictly greater than start
|
1309 |
+
# (Collapse requires a non-empty interval)
|
1310 |
+
torch._check_value(
|
1311 |
+
end >= start,
|
1312 |
+
lambda: f"Attempting to collapse but end, {end}, is less than start, {start}!",
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
|
1316 |
+
def _collapsed_shape(shape: ShapeType, start: int, end: int) -> Tuple[int, ...]:
|
1317 |
+
"""
|
1318 |
+
Returns the shape of a with dims in [start, end) merged into a single dimension.
|
1319 |
+
"""
|
1320 |
+
# Special-case for zero dimensional tensors
|
1321 |
+
shape = (1,) if len(shape) == 0 else tuple(shape)
|
1322 |
+
|
1323 |
+
dim_length = 1
|
1324 |
+
for s in shape[start : end + 1]:
|
1325 |
+
dim_length = dim_length * s
|
1326 |
+
|
1327 |
+
return shape[0:start] + (dim_length,) + shape[end + 1 :]
|
1328 |
+
|
1329 |
+
|
1330 |
+
def _collapse_view_helper(
|
1331 |
+
a: TensorLikeType, start: int, end: int
|
1332 |
+
) -> Tuple[Optional[ShapeType], Optional[StrideType]]:
|
1333 |
+
assert isinstance(a, TensorLike)
|
1334 |
+
|
1335 |
+
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
|
1336 |
+
|
1337 |
+
_validate_collapse_args(a, start, end)
|
1338 |
+
|
1339 |
+
# Special-case for zero dimensional tensors
|
1340 |
+
if a.ndim == 0:
|
1341 |
+
shape = (1,)
|
1342 |
+
strides = (1,)
|
1343 |
+
else:
|
1344 |
+
shape = a.shape # type: ignore[assignment]
|
1345 |
+
strides = a.stride() # type: ignore[assignment]
|
1346 |
+
|
1347 |
+
if a.ndim == 0 or (end == start):
|
1348 |
+
return shape, strides
|
1349 |
+
|
1350 |
+
length = shape[end]
|
1351 |
+
stride = strides[end]
|
1352 |
+
for idx in range(end - 1, start - 1, -1):
|
1353 |
+
if guard_size_oblivious(shape[idx] == 0) or guard_size_oblivious(
|
1354 |
+
shape[idx + 1] == 0
|
1355 |
+
):
|
1356 |
+
length = 0
|
1357 |
+
stride = 0
|
1358 |
+
break
|
1359 |
+
|
1360 |
+
if guard_size_oblivious(shape[idx] == 1):
|
1361 |
+
continue
|
1362 |
+
|
1363 |
+
length = length * shape[idx]
|
1364 |
+
stride = min(stride, strides[idx])
|
1365 |
+
|
1366 |
+
if (
|
1367 |
+
guard_size_oblivious(a.numel() > 0)
|
1368 |
+
and guard_size_oblivious(shape[idx + 1] != 1)
|
1369 |
+
and not guard_size_oblivious(
|
1370 |
+
strides[idx] == strides[idx + 1] * shape[idx + 1]
|
1371 |
+
)
|
1372 |
+
):
|
1373 |
+
return None, None
|
1374 |
+
|
1375 |
+
new_shape = shape[:start] + (length,) + shape[end + 1 :]
|
1376 |
+
new_strides = strides[:start] + (stride,) + strides[end + 1 :]
|
1377 |
+
|
1378 |
+
# NOTE: when the input has no elements it's restrided as if it were contiguous
|
1379 |
+
if guard_size_oblivious(a.numel() == 0):
|
1380 |
+
new_strides = utils.make_contiguous_strides_for(new_shape)
|
1381 |
+
|
1382 |
+
return new_shape, new_strides
|
1383 |
+
|
1384 |
+
|
1385 |
+
def _collapse_view_meta(a: TensorLikeType, start: int, end: int) -> TensorLikeType:
|
1386 |
+
new_shape, new_strides = _collapse_view_helper(a, start, end)
|
1387 |
+
|
1388 |
+
if new_shape is None:
|
1389 |
+
msg = "Attempting to view a collapsed tensor, but no such view exists!"
|
1390 |
+
raise ValueError(msg)
|
1391 |
+
|
1392 |
+
assert new_strides is not None
|
1393 |
+
return a.as_strided(new_shape, new_strides, a.storage_offset())
|
1394 |
+
|
1395 |
+
|
1396 |
+
def _collapse_view_aten(a: Tensor, start: int, end: int) -> Tensor:
|
1397 |
+
new_shape = _collapsed_shape(a.shape, start, end)
|
1398 |
+
return a.view(new_shape)
|
1399 |
+
|
1400 |
+
|
1401 |
+
_collapse_view_doc = """
|
1402 |
+
Creates a view of a with the dimensions between
|
1403 |
+
start (inclusive) and end (exclusive) merged into a
|
1404 |
+
single dimension.
|
1405 |
+
|
1406 |
+
If it's not possible to take such a view then an error
|
1407 |
+
is thrown. See collapse instead.
|
1408 |
+
|
1409 |
+
The dimensions can be merged if and only if
|
1410 |
+
they are all "nested" with each other. That is, they all
|
1411 |
+
have the property that
|
1412 |
+
|
1413 |
+
stride[i] = stride[i+1] * shape[i+1]
|
1414 |
+
|
1415 |
+
for all i in [start, end - 1).
|
1416 |
+
"""
|
1417 |
+
|
1418 |
+
collapse_view = _make_prim(
|
1419 |
+
schema="collapse_view(Tensor(a) a, int start, int end) -> Tensor(a)",
|
1420 |
+
meta=_collapse_view_meta,
|
1421 |
+
impl_aten=_collapse_view_aten,
|
1422 |
+
return_type=RETURN_TYPE.VIEW,
|
1423 |
+
doc=_collapse_view_doc,
|
1424 |
+
)
|
1425 |
+
|
1426 |
+
|
1427 |
+
def _conj_meta(a: TensorLikeType) -> TensorLikeType:
|
1428 |
+
if not a.dtype.is_complex:
|
1429 |
+
raise RuntimeError("Expected complex dtype in prims.conj")
|
1430 |
+
out = a.as_strided(a.shape, a.stride(), a.storage_offset())
|
1431 |
+
torch._C._set_conj(out, not a.is_conj())
|
1432 |
+
return out
|
1433 |
+
|
1434 |
+
|
1435 |
+
_conj_doc = """
|
1436 |
+
Returns a conjugated view of the original tensor
|
1437 |
+
"""
|
1438 |
+
|
1439 |
+
conj = _make_prim(
|
1440 |
+
schema="conj(Tensor(a) a) -> Tensor(a)",
|
1441 |
+
meta=_conj_meta,
|
1442 |
+
impl_aten=torch.conj,
|
1443 |
+
return_type=RETURN_TYPE.VIEW,
|
1444 |
+
doc=_conj_doc,
|
1445 |
+
)
|
1446 |
+
|
1447 |
+
|
1448 |
+
def expand_dims(
|
1449 |
+
a: TensorLikeType, dimensions: DimsSequenceType, ndim=None
|
1450 |
+
) -> TensorLikeType:
|
1451 |
+
"""
|
1452 |
+
Creates a view of a with a.ndim + len(dimensions) dimensions, with new
|
1453 |
+
dimensions of length one at the dimensions specified by dimensions.
|
1454 |
+
"""
|
1455 |
+
if ndim is not None:
|
1456 |
+
# TODO: this is only here to support the unsqueeze ref
|
1457 |
+
dims = sorted(utils.canonicalize_dims(ndim, dimensions)) # type: ignore[arg-type]
|
1458 |
+
else:
|
1459 |
+
dims = sorted(utils.canonicalize_dims(a.ndim, dimensions)) # type: ignore[arg-type]
|
1460 |
+
if len(set(dims)) != len(dims):
|
1461 |
+
msg = f"Received duplicate dimensions to expand in {str(dimensions)}"
|
1462 |
+
raise ValueError(msg)
|
1463 |
+
|
1464 |
+
new_shape = list(a.shape)
|
1465 |
+
for idx in dims:
|
1466 |
+
new_shape.insert(idx, 1)
|
1467 |
+
|
1468 |
+
broadcast_dimensions = [
|
1469 |
+
idx for idx in range(len(new_shape)) if idx not in dimensions
|
1470 |
+
]
|
1471 |
+
return broadcast_in_dim(a, new_shape, broadcast_dimensions)
|
1472 |
+
|
1473 |
+
|
1474 |
+
# Note: saves the Python slice object because we're about to clobber its name with the slice prim
|
1475 |
+
pyslice: Type[slice] = slice # type: ignore[has-type]
|
1476 |
+
|
1477 |
+
|
1478 |
+
def _slice_meta(
|
1479 |
+
a: TensorLikeType,
|
1480 |
+
start_indices: DimsSequenceType,
|
1481 |
+
limit_indices: DimsSequenceType,
|
1482 |
+
strides: Optional[StrideType] = None,
|
1483 |
+
) -> TensorLikeType:
|
1484 |
+
_strides = strides if strides is not None else [1] * len(start_indices)
|
1485 |
+
|
1486 |
+
if a.ndim != len(start_indices):
|
1487 |
+
msg = f"Attempting to slice tensor of rank {a.ndim} with start_indices of length {len(start_indices)}!"
|
1488 |
+
raise ValueError(msg)
|
1489 |
+
|
1490 |
+
if a.ndim != len(limit_indices):
|
1491 |
+
msg = f"Attempting to slice tensor of rank {a.ndim} with limit_indices of length {len(limit_indices)}!"
|
1492 |
+
raise ValueError(msg)
|
1493 |
+
|
1494 |
+
if a.ndim != len(_strides):
|
1495 |
+
msg = f"Attempting to slice tensor of rank {a.ndim} with strides of length {len(limit_indices)}!"
|
1496 |
+
raise ValueError(msg)
|
1497 |
+
|
1498 |
+
for x, y in zip(start_indices, a.shape):
|
1499 |
+
if x < 0:
|
1500 |
+
msg = f"Attempting to slice a tensor with a negative start index of {x}!"
|
1501 |
+
raise ValueError(msg)
|
1502 |
+
if x > y:
|
1503 |
+
msg = (
|
1504 |
+
f"Attempting to slice a tensor but a start index in {start_indices} is greater than"
|
1505 |
+
f" the length of its corresponding dimension in shape {a.shape}"
|
1506 |
+
)
|
1507 |
+
raise ValueError(msg)
|
1508 |
+
|
1509 |
+
for x, y, z in zip(limit_indices, a.shape, start_indices):
|
1510 |
+
if x < 0:
|
1511 |
+
msg = f"Attempting to slice a tensor with a negative stop index of {x}!"
|
1512 |
+
raise ValueError(msg)
|
1513 |
+
if x > y:
|
1514 |
+
msg = (
|
1515 |
+
f"Attempting to slice a tensor but a stop index in {limit_indices} is greater than the length of "
|
1516 |
+
f" its corresponding dimension in shape {a.shape}"
|
1517 |
+
)
|
1518 |
+
raise ValueError(msg)
|
1519 |
+
if x < z:
|
1520 |
+
msg = (
|
1521 |
+
f"Attempting to slice a tensor but a start index in {x} is greater than "
|
1522 |
+
f" its corresponding stop index {z}"
|
1523 |
+
)
|
1524 |
+
|
1525 |
+
for x in _strides:
|
1526 |
+
if x <= 0:
|
1527 |
+
msg = f"Attempting to slice a tensor with a non-positive step of {x}!"
|
1528 |
+
raise ValueError(msg)
|
1529 |
+
|
1530 |
+
new_shape = []
|
1531 |
+
for x, y, z in zip(start_indices, limit_indices, _strides):
|
1532 |
+
new_shape.append(1 + (y - x - 1) // z)
|
1533 |
+
|
1534 |
+
new_strides = []
|
1535 |
+
for x, y in zip(a.stride(), _strides):
|
1536 |
+
new_strides.append(x * y)
|
1537 |
+
|
1538 |
+
return a.as_strided(new_shape, new_strides, a.storage_offset())
|
1539 |
+
|
1540 |
+
|
1541 |
+
def _slice_aten(
|
1542 |
+
a: Tensor,
|
1543 |
+
start_indices: DimsSequenceType,
|
1544 |
+
limit_indices: DimsSequenceType,
|
1545 |
+
strides: Optional[StrideType] = None,
|
1546 |
+
) -> Tensor:
|
1547 |
+
_strides = strides if strides is not None else [1] * len(start_indices)
|
1548 |
+
|
1549 |
+
slices = []
|
1550 |
+
for start, stop, step in zip(start_indices, limit_indices, _strides):
|
1551 |
+
slices.append(pyslice(start, stop, step))
|
1552 |
+
|
1553 |
+
return operator.getitem(a, slices) # type: ignore[call-overload]
|
1554 |
+
|
1555 |
+
|
1556 |
+
_slice_doc = """
|
1557 |
+
Creates a view of a "bounding box" within the tensor.
|
1558 |
+
|
1559 |
+
The bounding box is specified independently in each of the tensor's dimensions.
|
1560 |
+
start_indices and limit_indices describe the box's boundaries for their corresponding
|
1561 |
+
dimensions. If strides is specified then they specify the step size between elements
|
1562 |
+
in their corresponding dimension.
|
1563 |
+
|
1564 |
+
This operation is analogous to slicing in NumPy, but does not permit slices where
|
1565 |
+
the stop indices are less than the start indices.
|
1566 |
+
"""
|
1567 |
+
|
1568 |
+
slice = _make_prim(
|
1569 |
+
schema="slice(Tensor(a) a, SymInt[] start_indices, SymInt[] limit_indices, SymInt[]? strides=None) -> Tensor(a)",
|
1570 |
+
meta=_slice_meta,
|
1571 |
+
impl_aten=_slice_aten,
|
1572 |
+
return_type=RETURN_TYPE.VIEW,
|
1573 |
+
doc=_slice_doc,
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
|
1577 |
+
def _slice_in_dim_meta(
|
1578 |
+
a: TensorLikeType,
|
1579 |
+
start_index: int,
|
1580 |
+
limit_index: int,
|
1581 |
+
stride: int = 1,
|
1582 |
+
axis: int = 0,
|
1583 |
+
) -> TensorLikeType:
|
1584 |
+
if axis < 0:
|
1585 |
+
msg = f"slice_in_dim: received a negative axis {axis}"
|
1586 |
+
raise ValueError(msg)
|
1587 |
+
if axis >= a.ndim:
|
1588 |
+
msg = f"slice_in_dim: axis {axis} is greater or equal to the rank {a.ndim} of the tensor"
|
1589 |
+
raise ValueError(msg)
|
1590 |
+
|
1591 |
+
if start_index < 0:
|
1592 |
+
msg = f"slice_in_dim: received a negative start_index {start_index}"
|
1593 |
+
raise ValueError(msg)
|
1594 |
+
|
1595 |
+
if start_index > a.shape[axis]:
|
1596 |
+
msg = f"slice_in_dim: start_index is greater than the length {start_index} of dimension {axis}"
|
1597 |
+
raise ValueError(msg)
|
1598 |
+
|
1599 |
+
if limit_index > a.shape[axis]:
|
1600 |
+
msg = f"slice_in_dim: limit_index is greater than the length {limit_index} of dimension {axis}"
|
1601 |
+
raise ValueError(msg)
|
1602 |
+
|
1603 |
+
if limit_index < start_index:
|
1604 |
+
msg = f"slice_in_dim: received a limit_index {limit_index} less than the start_index {start_index}"
|
1605 |
+
raise ValueError(msg)
|
1606 |
+
|
1607 |
+
if stride < 0:
|
1608 |
+
msg = f"slice_in_dim: received a non-positive stride of {stride}!"
|
1609 |
+
raise ValueError(msg)
|
1610 |
+
|
1611 |
+
start_indices = [0] * a.ndim
|
1612 |
+
limit_indices = list(a.shape)
|
1613 |
+
strides = [1] * a.ndim
|
1614 |
+
|
1615 |
+
start_indices[axis] = start_index
|
1616 |
+
limit_indices[axis] = limit_index
|
1617 |
+
strides[axis] = stride
|
1618 |
+
|
1619 |
+
return _slice_meta(a, start_indices, limit_indices, strides)
|
1620 |
+
|
1621 |
+
|
1622 |
+
def _slice_in_dim_aten(
|
1623 |
+
a: Tensor,
|
1624 |
+
start_index: int,
|
1625 |
+
limit_index: int,
|
1626 |
+
stride: int = 1,
|
1627 |
+
axis: int = 0,
|
1628 |
+
) -> Tensor:
|
1629 |
+
start_indices = [0] * a.ndim
|
1630 |
+
limit_indices = list(a.shape)
|
1631 |
+
strides = [1] * a.ndim
|
1632 |
+
|
1633 |
+
start_indices[axis] = start_index
|
1634 |
+
limit_indices[axis] = limit_index
|
1635 |
+
strides[axis] = stride
|
1636 |
+
|
1637 |
+
return slice(a, start_indices, limit_indices, strides)
|
1638 |
+
|
1639 |
+
|
1640 |
+
_slice_in_dim_doc = """
|
1641 |
+
Convenience wrapper for slicing just one dimension using slice.
|
1642 |
+
"""
|
1643 |
+
|
1644 |
+
# TODO: make stride SymInt
|
1645 |
+
slice_in_dim = _make_prim(
|
1646 |
+
schema="slice_in_dim(Tensor(a) a, SymInt start_index, SymInt limit_index, int stride=1, int axis=0) -> Tensor(a)",
|
1647 |
+
meta=_slice_in_dim_meta,
|
1648 |
+
impl_aten=_slice_in_dim_aten,
|
1649 |
+
return_type=RETURN_TYPE.VIEW,
|
1650 |
+
doc=_slice_in_dim_doc,
|
1651 |
+
)
|
1652 |
+
|
1653 |
+
|
1654 |
+
def _split_dim_meta(a: TensorLikeType, dim: int, outer_length: int) -> TensorLikeType:
|
1655 |
+
assert isinstance(a, TensorLike)
|
1656 |
+
utils.validate_idx(a.ndim, dim)
|
1657 |
+
utils.validate_dim_length(outer_length)
|
1658 |
+
|
1659 |
+
# Verifies the dim can be split with the specified lhs_length
|
1660 |
+
inner_length = a.shape[dim] // outer_length
|
1661 |
+
|
1662 |
+
if (a.shape[dim] % outer_length) != 0:
|
1663 |
+
msg = "Attempting to split dimension of length {}, but outer length of {} divides it with a remainder!".format(
|
1664 |
+
a.shape[dim], outer_length
|
1665 |
+
)
|
1666 |
+
raise ValueError(msg)
|
1667 |
+
|
1668 |
+
new_shape: List[int] = []
|
1669 |
+
new_strides: List[int] = []
|
1670 |
+
for idx in range(a.ndim):
|
1671 |
+
if idx == dim:
|
1672 |
+
new_shape.extend((outer_length, inner_length))
|
1673 |
+
new_strides.extend((a.stride()[idx] * inner_length, a.stride()[idx]))
|
1674 |
+
else:
|
1675 |
+
new_shape.append(a.shape[idx])
|
1676 |
+
new_strides.append(a.stride()[idx])
|
1677 |
+
|
1678 |
+
return a.as_strided(new_shape, new_strides, a.storage_offset())
|
1679 |
+
|
1680 |
+
|
1681 |
+
def _split_dim_aten(a: Tensor, dim: int, outer_length: int) -> Tensor:
|
1682 |
+
inner_length = a.shape[dim] // outer_length
|
1683 |
+
new_shape = a.shape[0:dim] + (outer_length, inner_length) + a.shape[dim + 1 :]
|
1684 |
+
|
1685 |
+
return a.view(new_shape)
|
1686 |
+
|
1687 |
+
|
1688 |
+
_split_dim_doc = """
|
1689 |
+
Creates a view of a with the given dimension (of length l) split
|
1690 |
+
into two dimensions, with the outer of the two having
|
1691 |
+
length outer_length and the inner of the two having computed
|
1692 |
+
length inner_length such outer_length * inner_length = l.
|
1693 |
+
"""
|
1694 |
+
|
1695 |
+
# TODO: consider renaming split_dim_view
|
1696 |
+
split_dim = _make_prim(
|
1697 |
+
schema="split_dim(Tensor(a) a, int dim, SymInt outer_length) -> Tensor(a)",
|
1698 |
+
meta=_split_dim_meta,
|
1699 |
+
impl_aten=_split_dim_aten,
|
1700 |
+
return_type=RETURN_TYPE.VIEW,
|
1701 |
+
doc=_split_dim_doc,
|
1702 |
+
)
|
1703 |
+
|
1704 |
+
|
1705 |
+
# Note: allows dimensions to be specified redundantly
|
1706 |
+
def _squeeze_meta(a: TensorLikeType, dimensions: Sequence) -> TensorLikeType:
|
1707 |
+
assert isinstance(a, TensorLike)
|
1708 |
+
|
1709 |
+
for idx in dimensions:
|
1710 |
+
utils.validate_idx(a.ndim, idx)
|
1711 |
+
assert a.shape[idx] == 1
|
1712 |
+
|
1713 |
+
new_shape = []
|
1714 |
+
new_strides = []
|
1715 |
+
for idx in range(len(a.shape)):
|
1716 |
+
if idx in dimensions:
|
1717 |
+
continue
|
1718 |
+
|
1719 |
+
new_shape.append(a.shape[idx])
|
1720 |
+
new_strides.append(a.stride()[idx])
|
1721 |
+
|
1722 |
+
return a.as_strided(new_shape, new_strides, a.storage_offset())
|
1723 |
+
|
1724 |
+
|
1725 |
+
_squeeze_doc = """
|
1726 |
+
Creates a view of the tensor with the specified dimensions removed.
|
1727 |
+
|
1728 |
+
The removed dimensions must each have length one.
|
1729 |
+
"""
|
1730 |
+
|
1731 |
+
squeeze = _make_prim(
|
1732 |
+
schema="squeeze(Tensor(a) a, int[] dimensions) -> Tensor(a)",
|
1733 |
+
meta=_squeeze_meta,
|
1734 |
+
impl_aten=torch.squeeze,
|
1735 |
+
return_type=RETURN_TYPE.VIEW,
|
1736 |
+
doc=_squeeze_doc,
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
|
1740 |
+
def _transpose_meta(a: TensorLikeType, permutation: DimsSequenceType) -> TensorLikeType:
|
1741 |
+
if a.ndim != len(permutation):
|
1742 |
+
msg = "Attempting to permute a tensor of rank {}, but received a permutation of length {}!".format(
|
1743 |
+
a.ndim, len(permutation)
|
1744 |
+
)
|
1745 |
+
raise ValueError(msg)
|
1746 |
+
|
1747 |
+
if not utils.is_valid_permutation(a.ndim, permutation):
|
1748 |
+
msg = f"Received an invalid permutation, {permutation}!"
|
1749 |
+
raise ValueError(msg)
|
1750 |
+
|
1751 |
+
new_shape = [0] * a.ndim
|
1752 |
+
new_strides = [0] * a.ndim
|
1753 |
+
for idx, dim in enumerate(permutation):
|
1754 |
+
new_shape[idx] = a.shape[dim]
|
1755 |
+
new_strides[idx] = a.stride()[dim]
|
1756 |
+
|
1757 |
+
return a.as_strided(tuple(new_shape), tuple(new_strides), a.storage_offset())
|
1758 |
+
|
1759 |
+
|
1760 |
+
def _transpose_aten(a: Tensor, permutation: DimsSequenceType) -> Tensor:
|
1761 |
+
return torch.permute(a, permutation)
|
1762 |
+
|
1763 |
+
|
1764 |
+
_transpose_doc = """
|
1765 |
+
Creates a view of the tensor with its dimensions permuted.
|
1766 |
+
|
1767 |
+
The length of the permutation must be the rank of the tensor,
|
1768 |
+
and each element of the permutation specifies the new order
|
1769 |
+
for the corresponding dimension.
|
1770 |
+
"""
|
1771 |
+
|
1772 |
+
transpose = _make_prim(
|
1773 |
+
schema="transpose(Tensor(a) a, int[] permutation) -> Tensor(a)",
|
1774 |
+
meta=_transpose_meta,
|
1775 |
+
impl_aten=_transpose_aten,
|
1776 |
+
return_type=RETURN_TYPE.VIEW,
|
1777 |
+
doc=_transpose_doc,
|
1778 |
+
)
|
1779 |
+
|
1780 |
+
|
1781 |
+
def _view_of_meta(a: TensorLikeType) -> TensorLikeType:
|
1782 |
+
return a.as_strided(a.shape, a.stride(), a.storage_offset())
|
1783 |
+
|
1784 |
+
|
1785 |
+
def _view_of_aten(a: Tensor) -> Tensor:
|
1786 |
+
return a.view(a.shape)
|
1787 |
+
|
1788 |
+
|
1789 |
+
_view_of_doc = """
|
1790 |
+
Creates a view of the tensor.
|
1791 |
+
"""
|
1792 |
+
|
1793 |
+
view_of = _make_prim(
|
1794 |
+
schema="view_of(Tensor(a) a) -> Tensor",
|
1795 |
+
meta=_view_of_meta,
|
1796 |
+
impl_aten=_view_of_aten,
|
1797 |
+
return_type=RETURN_TYPE.VIEW,
|
1798 |
+
doc=_view_of_doc,
|
1799 |
+
)
|
1800 |
+
|
1801 |
+
|
1802 |
+
def _view_element_type_meta(a: TensorLikeType, dtype: torch.dtype) -> TensorLikeType:
|
1803 |
+
return a.view(dtype)
|
1804 |
+
|
1805 |
+
|
1806 |
+
def _view_element_type_aten(a: Tensor, dtype: torch.dtype) -> Tensor:
|
1807 |
+
return a.view(dtype)
|
1808 |
+
|
1809 |
+
|
1810 |
+
_view_element_type_doc = """
|
1811 |
+
Creates a view of the tensor with a different dtype.
|
1812 |
+
"""
|
1813 |
+
|
1814 |
+
view_element_type = _make_prim(
|
1815 |
+
schema="view_of_dtype(Tensor(a) a, ScalarType dtype) -> Tensor",
|
1816 |
+
meta=_view_element_type_meta,
|
1817 |
+
impl_aten=_view_element_type_aten,
|
1818 |
+
return_type=RETURN_TYPE.VIEW,
|
1819 |
+
doc=_view_element_type_doc,
|
1820 |
+
)
|
1821 |
+
|
1822 |
+
#
|
1823 |
+
# Functionalized view mutations
|
1824 |
+
#
|
1825 |
+
|
1826 |
+
|
1827 |
+
def _as_strided_scatter_meta(
|
1828 |
+
input: TensorLikeType,
|
1829 |
+
src: TensorLikeType,
|
1830 |
+
size: ShapeType,
|
1831 |
+
stride: StrideType,
|
1832 |
+
storage_offset: int,
|
1833 |
+
) -> TensorLikeType:
|
1834 |
+
utils.validate_shape(size)
|
1835 |
+
utils.validate_strides(stride)
|
1836 |
+
|
1837 |
+
required_size = utils.compute_required_storage_length(size, stride, storage_offset)
|
1838 |
+
torch._check(
|
1839 |
+
input.numel() >= required_size,
|
1840 |
+
lambda: (
|
1841 |
+
f"as_strided_scatter: sizes {size}, strides {stride}, storage offset {storage_offset} "
|
1842 |
+
f" and itemsize {input.element_size()} requiring a storage size of "
|
1843 |
+
f"{required_size * input.element_size()} are out of bounds "
|
1844 |
+
f"for storage of size {input.numel() * input.element_size()}"
|
1845 |
+
),
|
1846 |
+
)
|
1847 |
+
torch._check(
|
1848 |
+
utils.is_same_shape(src.shape, size),
|
1849 |
+
lambda: f"expected src to have a size equal to the slice of self. src size = {src.shape}, slice size = {size}",
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
return utils.clone_preserve_strides(input)
|
1853 |
+
|
1854 |
+
|
1855 |
+
_as_strided_scatter_doc = """
|
1856 |
+
Creates a new tensor equivalent to ``out = input.clone()`` after mutation by
|
1857 |
+
``out.as_strided(size, stride, storage_offset).copy_(src)``.
|
1858 |
+
"""
|
1859 |
+
|
1860 |
+
as_strided_scatter = _make_prim(
|
1861 |
+
schema="as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt storage_offset) -> Tensor",
|
1862 |
+
meta=_as_strided_scatter_meta,
|
1863 |
+
impl_aten=torch.as_strided_scatter,
|
1864 |
+
return_type=RETURN_TYPE.NEW,
|
1865 |
+
doc=_as_strided_scatter_doc,
|
1866 |
+
)
|
1867 |
+
|
1868 |
+
|
1869 |
+
#
|
1870 |
+
# Shape operations
|
1871 |
+
#
|
1872 |
+
|
1873 |
+
|
1874 |
+
def _collapse_meta(a: Tensor, start: int, end: int) -> Tensor:
|
1875 |
+
# Special-case for zero dimensional tensors
|
1876 |
+
_validate_collapse_args(a, start, end)
|
1877 |
+
new_shape = _collapsed_shape(a.shape, start, end)
|
1878 |
+
return a.new_empty(new_shape)
|
1879 |
+
|
1880 |
+
|
1881 |
+
def _collapse_aten(a: Tensor, start: int, end: int) -> Tensor:
|
1882 |
+
new_shape = _collapsed_shape(a.shape, start, end)
|
1883 |
+
out = a.new_empty(new_shape)
|
1884 |
+
with torch.no_grad():
|
1885 |
+
out.view_as(a).copy_(a)
|
1886 |
+
return out
|
1887 |
+
|
1888 |
+
|
1889 |
+
_collapse_doc = """
|
1890 |
+
Collapse a span of neighboring dimensions into one.
|
1891 |
+
|
1892 |
+
See collapse_view for the corresponding view operation.
|
1893 |
+
"""
|
1894 |
+
collapse = _make_prim(
|
1895 |
+
schema="collapse(Tensor a, int start, int end) -> Tensor",
|
1896 |
+
meta=_collapse_meta,
|
1897 |
+
impl_aten=_collapse_aten,
|
1898 |
+
return_type=RETURN_TYPE.NEW,
|
1899 |
+
doc=_collapse_doc,
|
1900 |
+
)
|
1901 |
+
|
1902 |
+
|
1903 |
+
# TODO: review stride logic
|
1904 |
+
# NB: unlike torch.cat, this is more strict about empty tensors and dim is
|
1905 |
+
# never negative
|
1906 |
+
def _cat_meta(tensors: Sequence[TensorLikeType], dim: int) -> TensorLikeType:
|
1907 |
+
# Verifies same shape (except in the concat dimension)
|
1908 |
+
assert dim >= 0
|
1909 |
+
shape = tensors[0].shape
|
1910 |
+
concat_length = 0
|
1911 |
+
for tensor_idx, tensor in enumerate(tensors):
|
1912 |
+
assert len(shape) == len(tensor.shape)
|
1913 |
+
for idx, (common_length, length) in enumerate(zip(shape, tensor.shape)):
|
1914 |
+
if idx == dim:
|
1915 |
+
concat_length = concat_length + length
|
1916 |
+
else:
|
1917 |
+
torch._check(
|
1918 |
+
length == common_length,
|
1919 |
+
lambda: f"Sizes of tensors must match except in dimension {dim}. "
|
1920 |
+
f"Expected {common_length} but got {length} for tensor number "
|
1921 |
+
f"{tensor_idx} in the list",
|
1922 |
+
)
|
1923 |
+
|
1924 |
+
new_shape = list(tensors[0].shape).copy()
|
1925 |
+
new_shape[dim] = concat_length
|
1926 |
+
return TensorMeta(
|
1927 |
+
tensors[0],
|
1928 |
+
shape=new_shape,
|
1929 |
+
strides=utils.make_contiguous_strides_for(new_shape),
|
1930 |
+
)
|
1931 |
+
|
1932 |
+
|
1933 |
+
def _cat_aten(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: int) -> Tensor:
|
1934 |
+
return torch.cat(tensors, dim)
|
1935 |
+
|
1936 |
+
|
1937 |
+
_cat_doc = """
|
1938 |
+
Concatenates tensors along the specified dimension.
|
1939 |
+
|
1940 |
+
The tensors' shapes must have the same rank and same length for other dimensions.
|
1941 |
+
"""
|
1942 |
+
|
1943 |
+
cat = _make_prim(
|
1944 |
+
schema="cat(Tensor[] tensors, int dim) -> Tensor",
|
1945 |
+
meta=_cat_meta,
|
1946 |
+
impl_aten=_cat_aten,
|
1947 |
+
return_type=RETURN_TYPE.NEW,
|
1948 |
+
doc=_cat_doc,
|
1949 |
+
)
|
1950 |
+
|
1951 |
+
|
1952 |
+
def _reshape_meta(a: TensorLikeType, shape: ShapeType):
|
1953 |
+
assert isinstance(a, TensorLike)
|
1954 |
+
utils.validate_shape(shape)
|
1955 |
+
|
1956 |
+
# Validates the tensor and the requested shape have the
|
1957 |
+
# same number of elements
|
1958 |
+
numel = reduce(operator.mul, shape)
|
1959 |
+
if numel != a.numel():
|
1960 |
+
msg = f"Attempting to reshape a tensor with {a.numel()} elements to a shape with {numel} elements!"
|
1961 |
+
raise ValueError(msg)
|
1962 |
+
|
1963 |
+
return TensorMeta(a, shape=shape, strides=utils.make_contiguous_strides_for(shape))
|
1964 |
+
|
1965 |
+
|
1966 |
+
def _reshape_aten(a: Tensor, shape: ShapeType) -> Tensor:
|
1967 |
+
return a.reshape(shape).contiguous().clone()
|
1968 |
+
|
1969 |
+
|
1970 |
+
_reshape_doc = """
|
1971 |
+
Creates a contiguous tensor with the specified shape
|
1972 |
+
containing a copy of the data in a.
|
1973 |
+
"""
|
1974 |
+
reshape = _make_prim(
|
1975 |
+
schema="reshape(Tensor a, SymInt[] shape) -> Tensor",
|
1976 |
+
meta=_reshape_meta,
|
1977 |
+
impl_aten=_reshape_aten,
|
1978 |
+
return_type=RETURN_TYPE.NEW,
|
1979 |
+
doc=_reshape_doc,
|
1980 |
+
)
|
1981 |
+
|
1982 |
+
|
1983 |
+
def _rev_meta(a: TensorLikeType, dims: DimsSequenceType) -> TensorLikeType:
|
1984 |
+
utils.validate_dimension_indices(a.ndim, dims)
|
1985 |
+
return torch.empty_like(a, memory_format=torch.preserve_format)
|
1986 |
+
|
1987 |
+
|
1988 |
+
_rev_doc = """
|
1989 |
+
Reverses the order of elements along the given dimensions.
|
1990 |
+
"""
|
1991 |
+
|
1992 |
+
rev = _make_prim(
|
1993 |
+
schema="rev(Tensor a, int[] dims) -> Tensor",
|
1994 |
+
meta=_rev_meta,
|
1995 |
+
impl_aten=torch.flip,
|
1996 |
+
return_type=RETURN_TYPE.NEW,
|
1997 |
+
doc=_rev_doc,
|
1998 |
+
)
|
1999 |
+
|
2000 |
+
#
|
2001 |
+
# Conditional prims
|
2002 |
+
#
|
2003 |
+
|
2004 |
+
|
2005 |
+
def _where_meta(
|
2006 |
+
pred: TensorLikeType, a: TensorLikeType, b: TensorLikeType
|
2007 |
+
) -> TensorLikeType:
|
2008 |
+
return _prim_elementwise_meta(
|
2009 |
+
a,
|
2010 |
+
b,
|
2011 |
+
type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT,
|
2012 |
+
args_with_fixed_dtypes=(pred,),
|
2013 |
+
)
|
2014 |
+
|
2015 |
+
|
2016 |
+
_where_doc = """
|
2017 |
+
Selects elements from a and b according to pred.
|
2018 |
+
|
2019 |
+
Where pred is true the result contains the element from a, and
|
2020 |
+
where pred is false the result contains the element from b.
|
2021 |
+
"""
|
2022 |
+
|
2023 |
+
where = _make_prim(
|
2024 |
+
schema="where(Tensor pred, Tensor a, Tensor b) -> Tensor",
|
2025 |
+
meta=_where_meta,
|
2026 |
+
impl_aten=torch.where,
|
2027 |
+
return_type=RETURN_TYPE.NEW,
|
2028 |
+
doc=_where_doc,
|
2029 |
+
)
|
2030 |
+
|
2031 |
+
|
2032 |
+
#
|
2033 |
+
# Type conversions
|
2034 |
+
#
|
2035 |
+
def _convert_element_type_meta(a: TensorLikeType, dtype: torch.dtype) -> TensorLikeType:
|
2036 |
+
# Type checks
|
2037 |
+
assert isinstance(a, TensorLike)
|
2038 |
+
assert isinstance(dtype, torch.dtype)
|
2039 |
+
|
2040 |
+
# dtype conversion preserves dense strides
|
2041 |
+
if torch._prims_common.is_non_overlapping_and_dense(a):
|
2042 |
+
strides = a.stride()
|
2043 |
+
else:
|
2044 |
+
strides = utils.compute_elementwise_output_strides(a)
|
2045 |
+
|
2046 |
+
return TensorMeta(a, strides=strides, dtype=dtype)
|
2047 |
+
|
2048 |
+
|
2049 |
+
def _convert_element_type_aten(a: Tensor, dtype: torch.dtype) -> Tensor:
|
2050 |
+
# Propagates requires grad when possible
|
2051 |
+
if not utils.is_grad_dtype(dtype):
|
2052 |
+
requires_grad = False
|
2053 |
+
else:
|
2054 |
+
# TODO: update meta objects so this can be acquired directly
|
2055 |
+
try:
|
2056 |
+
requires_grad = a.requires_grad
|
2057 |
+
except Exception as e:
|
2058 |
+
requires_grad = False
|
2059 |
+
|
2060 |
+
result = torch.empty_like(
|
2061 |
+
a, device=a.device, dtype=dtype, requires_grad=requires_grad
|
2062 |
+
)
|
2063 |
+
with torch.no_grad():
|
2064 |
+
return copy_to(result, a)
|
2065 |
+
|
2066 |
+
|
2067 |
+
_convert_element_type_doc = """
|
2068 |
+
Creates a copy of a tensor with the given dtype.
|
2069 |
+
"""
|
2070 |
+
|
2071 |
+
convert_element_type = _make_prim(
|
2072 |
+
schema="convert_element_type(Tensor a, ScalarType dtype) -> Tensor",
|
2073 |
+
meta=_convert_element_type_meta,
|
2074 |
+
impl_aten=_convert_element_type_aten,
|
2075 |
+
return_type=RETURN_TYPE.NEW,
|
2076 |
+
doc=_convert_element_type_doc,
|
2077 |
+
tags=(torch.Tag.pointwise,),
|
2078 |
+
)
|
2079 |
+
|
2080 |
+
|
2081 |
+
def _device_put_meta(
|
2082 |
+
a: TensorLikeType, device: Union[str, torch.device]
|
2083 |
+
) -> TensorLikeType:
|
2084 |
+
assert isinstance(a, TensorLike)
|
2085 |
+
assert isinstance(device, (str, torch.device))
|
2086 |
+
|
2087 |
+
return TensorMeta(a, device=utils.canonicalize_device(device))
|
2088 |
+
|
2089 |
+
|
2090 |
+
def _device_put_aten(a: Tensor, device: Union[str, torch.device]) -> Tensor:
|
2091 |
+
return a.to(device)
|
2092 |
+
|
2093 |
+
|
2094 |
+
_device_put_doc = """
|
2095 |
+
Creates a copy of a tensor on the given device.
|
2096 |
+
"""
|
2097 |
+
|
2098 |
+
device_put = _make_prim(
|
2099 |
+
schema="device_put(Tensor a, Device device) -> Tensor",
|
2100 |
+
meta=_device_put_meta,
|
2101 |
+
impl_aten=_device_put_aten,
|
2102 |
+
return_type=RETURN_TYPE.NEW,
|
2103 |
+
doc=_device_put_doc,
|
2104 |
+
)
|
2105 |
+
|
2106 |
+
|
2107 |
+
# NOTE: need to model meta scalars
|
2108 |
+
# See https://github.com/pytorch/pytorch/issues/78070
|
2109 |
+
def _item_meta(a: TensorLikeType) -> FakeTensor:
|
2110 |
+
number_type = utils.dtype_to_type(a.dtype)
|
2111 |
+
return TensorMeta(number_type(-1))
|
2112 |
+
|
2113 |
+
|
2114 |
+
_item_doc = """
|
2115 |
+
Converts a tensor with one element to a Python number.
|
2116 |
+
"""
|
2117 |
+
|
2118 |
+
# TODO: create a new return type for scalars?
|
2119 |
+
# FIXME: currently returns integers for boolean tensors
|
2120 |
+
# https://github.com/pytorch/pytorch/issues/78071
|
2121 |
+
item = _make_prim(
|
2122 |
+
schema="item(Tensor a) -> Scalar",
|
2123 |
+
meta=_item_meta,
|
2124 |
+
impl_aten=torch.Tensor.item,
|
2125 |
+
return_type=RETURN_TYPE.NEW,
|
2126 |
+
doc=_item_doc,
|
2127 |
+
)
|
2128 |
+
|
2129 |
+
|
2130 |
+
# NOTE: need to model meta scalars
|
2131 |
+
# See https://github.com/pytorch/pytorch/issues/78070
|
2132 |
+
def _maximum_value_meta(dtype: torch.dtype) -> FakeTensor:
|
2133 |
+
number_type = utils.dtype_to_type(dtype)
|
2134 |
+
return TensorMeta(number_type(-1))
|
2135 |
+
|
2136 |
+
|
2137 |
+
def _maximum_value_aten(dtype: torch.dtype):
|
2138 |
+
if dtype == torch.bool:
|
2139 |
+
return True
|
2140 |
+
elif dtype.is_complex or dtype.is_floating_point:
|
2141 |
+
return torch.finfo(dtype).max
|
2142 |
+
else:
|
2143 |
+
return torch.iinfo(dtype).max
|
2144 |
+
|
2145 |
+
|
2146 |
+
_maximum_value_doc = """
|
2147 |
+
Return the maximum finite value for a dtype.
|
2148 |
+
"""
|
2149 |
+
|
2150 |
+
# TODO: create a new return type for scalars?
|
2151 |
+
# FIXME: currently returns integers for boolean tensors
|
2152 |
+
# https://github.com/pytorch/pytorch/issues/78071
|
2153 |
+
maximum_value = _make_prim(
|
2154 |
+
schema="maximum_value(ScalarType dtype) -> Scalar",
|
2155 |
+
meta=_maximum_value_meta,
|
2156 |
+
impl_aten=_maximum_value_aten,
|
2157 |
+
return_type=RETURN_TYPE.NEW,
|
2158 |
+
doc=_maximum_value_doc,
|
2159 |
+
)
|
2160 |
+
|
2161 |
+
|
2162 |
+
# NOTE: need to model meta scalars
|
2163 |
+
# See https://github.com/pytorch/pytorch/issues/78070
|
2164 |
+
def _minimum_value_meta(dtype: torch.dtype) -> FakeTensor:
|
2165 |
+
number_type = utils.dtype_to_type(dtype)
|
2166 |
+
return TensorMeta(number_type(-1))
|
2167 |
+
|
2168 |
+
|
2169 |
+
def _minimum_value_aten(dtype: torch.dtype):
|
2170 |
+
if dtype == torch.bool:
|
2171 |
+
return False
|
2172 |
+
elif dtype.is_complex or dtype.is_floating_point:
|
2173 |
+
return torch.finfo(dtype).min
|
2174 |
+
else:
|
2175 |
+
return torch.iinfo(dtype).min
|
2176 |
+
|
2177 |
+
|
2178 |
+
_minimum_value_doc = """
|
2179 |
+
Return the minimum finite value for a dtype.
|
2180 |
+
"""
|
2181 |
+
|
2182 |
+
# TODO: create a new return type for scalars?
|
2183 |
+
# FIXME: currently returns integers for boolean tensors
|
2184 |
+
# https://github.com/pytorch/pytorch/issues/78071
|
2185 |
+
minimum_value = _make_prim(
|
2186 |
+
schema="minimum_value(ScalarType dtype) -> Scalar",
|
2187 |
+
meta=_minimum_value_meta,
|
2188 |
+
impl_aten=_minimum_value_aten,
|
2189 |
+
return_type=RETURN_TYPE.NEW,
|
2190 |
+
doc=_minimum_value_doc,
|
2191 |
+
)
|
2192 |
+
|
2193 |
+
#
|
2194 |
+
# Inplace operators
|
2195 |
+
#
|
2196 |
+
|
2197 |
+
|
2198 |
+
def _copy_to_meta(a: TensorLikeType, b: TensorLikeType):
|
2199 |
+
assert isinstance(a, TensorLike)
|
2200 |
+
assert isinstance(b, TensorLike)
|
2201 |
+
|
2202 |
+
# Validates the cast is safe
|
2203 |
+
# TODO: move this as an option on the reference
|
2204 |
+
# a_typ = utils.dtype_to_type(a.dtype)
|
2205 |
+
# b_typ = utils.dtype_to_type(b.dtype)
|
2206 |
+
# if a_typ is not utils.get_higher_type(a_typ, b_typ):
|
2207 |
+
# raise RuntimeError(str(b.dtype), " can't be cast safely to ", str(a.dtype), "!")
|
2208 |
+
|
2209 |
+
# Validates the tensors have the same number of elements
|
2210 |
+
if a.numel() != b.numel():
|
2211 |
+
msg = f"Attempting to copy {b.numel()} elements to a tensor with {a.numel()} elements!"
|
2212 |
+
raise RuntimeError(msg)
|
2213 |
+
|
2214 |
+
return a
|
2215 |
+
|
2216 |
+
|
2217 |
+
def _copy_to_aten(a: Tensor, b: Tensor) -> Tensor:
|
2218 |
+
return a.copy_(b)
|
2219 |
+
|
2220 |
+
|
2221 |
+
_copy_to_doc = """
|
2222 |
+
Copies the data in b to a and returns the modified a.
|
2223 |
+
"""
|
2224 |
+
|
2225 |
+
# TODO: Remove safe casting and implement on reference instead
|
2226 |
+
copy_to = _make_prim(
|
2227 |
+
schema="copy_to(Tensor(a!) a, Tensor b) -> Tensor(a!)",
|
2228 |
+
meta=_copy_to_meta,
|
2229 |
+
impl_aten=_copy_to_aten,
|
2230 |
+
return_type=RETURN_TYPE.INPLACE,
|
2231 |
+
doc=_copy_to_doc,
|
2232 |
+
)
|
2233 |
+
|
2234 |
+
|
2235 |
+
def _copy_strided_meta(a: TensorLikeType, stride: ShapeType):
|
2236 |
+
assert isinstance(a, TensorLike)
|
2237 |
+
return torch.empty_strided(
|
2238 |
+
a.shape,
|
2239 |
+
stride,
|
2240 |
+
dtype=a.dtype,
|
2241 |
+
layout=a.layout,
|
2242 |
+
device=a.device,
|
2243 |
+
requires_grad=a.requires_grad,
|
2244 |
+
)
|
2245 |
+
|
2246 |
+
|
2247 |
+
def _copy_strided_aten(a: Tensor, stride: ShapeType) -> Tensor:
|
2248 |
+
out = torch.empty_strided(
|
2249 |
+
a.size(),
|
2250 |
+
stride=stride,
|
2251 |
+
dtype=a.dtype,
|
2252 |
+
layout=a.layout,
|
2253 |
+
device=a.device,
|
2254 |
+
requires_grad=a.requires_grad,
|
2255 |
+
)
|
2256 |
+
out.copy_(a)
|
2257 |
+
return out
|
2258 |
+
|
2259 |
+
|
2260 |
+
_copy_strided_doc = """
|
2261 |
+
Copies the data in a to a new tensor, the new tensor has same shape with a size, but has different stride.
|
2262 |
+
"""
|
2263 |
+
|
2264 |
+
|
2265 |
+
copy_strided = _make_prim(
|
2266 |
+
schema="copy_strided(Tensor a, SymInt[] stride) -> Tensor",
|
2267 |
+
meta=_copy_strided_meta,
|
2268 |
+
impl_aten=_copy_strided_aten,
|
2269 |
+
return_type=RETURN_TYPE.NEW,
|
2270 |
+
doc=_copy_strided_doc,
|
2271 |
+
)
|
2272 |
+
|
2273 |
+
|
2274 |
+
def _resize_meta(a: TensorLikeType, shape: ShapeType):
|
2275 |
+
return a.resize_(shape)
|
2276 |
+
|
2277 |
+
|
2278 |
+
def _resize_aten(a: Tensor, shape: ShapeType) -> Tensor:
|
2279 |
+
return a.resize_(shape)
|
2280 |
+
|
2281 |
+
|
2282 |
+
_resize_doc = """
|
2283 |
+
Gives a tensor with no elements a new shape, returning the modified tensor.
|
2284 |
+
|
2285 |
+
The tensor's strides are contiguous and its values are unitialized.
|
2286 |
+
"""
|
2287 |
+
|
2288 |
+
# TODO: review support arbitrary resizes
|
2289 |
+
resize = _make_prim(
|
2290 |
+
schema="resize(Tensor(a!) a, SymInt[] shape) -> Tensor(a!)",
|
2291 |
+
meta=_resize_meta,
|
2292 |
+
impl_aten=_resize_aten,
|
2293 |
+
return_type=RETURN_TYPE.INPLACE,
|
2294 |
+
doc=_resize_doc,
|
2295 |
+
)
|
2296 |
+
|
2297 |
+
|
2298 |
+
def _reduction_meta(inp, dims, *, output_dtype=None):
|
2299 |
+
"""
|
2300 |
+
Meta function for single output reduction operations
|
2301 |
+
Stride logic is incorrect
|
2302 |
+
"""
|
2303 |
+
assert isinstance(inp, TensorLike)
|
2304 |
+
if output_dtype is None:
|
2305 |
+
output_dtype = inp.dtype
|
2306 |
+
output_shape = utils.compute_reduction_output_shape(inp.shape, dims)
|
2307 |
+
return TensorMeta(
|
2308 |
+
shape=output_shape,
|
2309 |
+
strides=utils.make_contiguous_strides_for(output_shape),
|
2310 |
+
dtype=output_dtype,
|
2311 |
+
device=inp.device,
|
2312 |
+
)
|
2313 |
+
|
2314 |
+
|
2315 |
+
def _var_reduction_meta(inp, dims, *, correction):
|
2316 |
+
if utils.is_complex_dtype(inp.dtype):
|
2317 |
+
output_dtype = utils.corresponding_real_dtype(inp.dtype)
|
2318 |
+
else:
|
2319 |
+
output_dtype = inp.dtype
|
2320 |
+
return _reduction_meta(inp, dims, output_dtype=output_dtype)
|
2321 |
+
|
2322 |
+
|
2323 |
+
_sum_doc = """
|
2324 |
+
Computes the sum of elements in the input tensor over the list of dimensions
|
2325 |
+
specified in the dim argument
|
2326 |
+
"""
|
2327 |
+
_xor_sum_doc = """
|
2328 |
+
Computes the xor sum of elements in the input tensor over the list of dimensions
|
2329 |
+
specified in the dim argument
|
2330 |
+
"""
|
2331 |
+
_prod_doc = """
|
2332 |
+
Computes the product of elements in the input tensor over the list of dimensions
|
2333 |
+
specified in the dim argument
|
2334 |
+
"""
|
2335 |
+
_amax_doc = """
|
2336 |
+
Computes the maximum value of elements in the input tensor over the list of dimensions
|
2337 |
+
specified in the dim argument
|
2338 |
+
"""
|
2339 |
+
_amin_doc = """
|
2340 |
+
Computes the minimum value of elements in the input tensor over the list of dimensions
|
2341 |
+
specified in the dim argument
|
2342 |
+
"""
|
2343 |
+
_var_doc = """
|
2344 |
+
Computes the biased variance of x over the list of dimensions specified in the dim argument
|
2345 |
+
"""
|
2346 |
+
|
2347 |
+
|
2348 |
+
def _make_reduction_prim(name: str, impl_aten, doc):
|
2349 |
+
"""Creates a reduction prim."""
|
2350 |
+
return _make_prim(
|
2351 |
+
schema=f"{name}(Tensor inp, int[]? dims, *, ScalarType? output_dtype=None) -> Tensor",
|
2352 |
+
meta=_reduction_meta,
|
2353 |
+
impl_aten=impl_aten,
|
2354 |
+
return_type=RETURN_TYPE.NEW,
|
2355 |
+
doc=doc,
|
2356 |
+
)
|
2357 |
+
|
2358 |
+
|
2359 |
+
def _make_var_reduction_prim(name: str, impl_aten, doc):
|
2360 |
+
"""Creates a reduction prim."""
|
2361 |
+
return _make_prim(
|
2362 |
+
schema=f"{name}(Tensor inp, int[]? dims, *, float correction, ScalarType? output_dtype=None) -> Tensor",
|
2363 |
+
meta=_var_reduction_meta,
|
2364 |
+
impl_aten=impl_aten,
|
2365 |
+
return_type=RETURN_TYPE.NEW,
|
2366 |
+
doc=doc,
|
2367 |
+
)
|
2368 |
+
|
2369 |
+
|
2370 |
+
sum = _make_reduction_prim(
|
2371 |
+
name="sum",
|
2372 |
+
impl_aten=torch.sum,
|
2373 |
+
doc=_sum_doc,
|
2374 |
+
)
|
2375 |
+
|
2376 |
+
|
2377 |
+
def _xor_sum_aten(
|
2378 |
+
inp: TensorLikeType,
|
2379 |
+
dims: Optional[DimsSequenceType],
|
2380 |
+
*,
|
2381 |
+
dtype: Optional[torch.dtype] = None,
|
2382 |
+
) -> Tensor:
|
2383 |
+
raise NotImplementedError("xor_sum only implemented with inductor")
|
2384 |
+
|
2385 |
+
|
2386 |
+
xor_sum = _make_reduction_prim(
|
2387 |
+
name="xor_sum",
|
2388 |
+
impl_aten=_xor_sum_aten,
|
2389 |
+
doc=_xor_sum_doc,
|
2390 |
+
)
|
2391 |
+
|
2392 |
+
|
2393 |
+
def _prod_aten(
|
2394 |
+
inp: TensorLikeType,
|
2395 |
+
dims: Optional[DimsSequenceType],
|
2396 |
+
*,
|
2397 |
+
dtype: Optional[torch.dtype] = None,
|
2398 |
+
) -> Tensor:
|
2399 |
+
if dims is not None:
|
2400 |
+
for d in sorted(dims, reverse=True):
|
2401 |
+
assert d >= 0
|
2402 |
+
inp = torch.prod(inp, d, dtype=dtype)
|
2403 |
+
return inp
|
2404 |
+
else:
|
2405 |
+
return torch.prod(inp, dims, dtype=dtype)
|
2406 |
+
|
2407 |
+
|
2408 |
+
prod = _make_reduction_prim(
|
2409 |
+
name="prod",
|
2410 |
+
impl_aten=_prod_aten,
|
2411 |
+
doc=_prod_doc,
|
2412 |
+
)
|
2413 |
+
|
2414 |
+
var = _make_var_reduction_prim(
|
2415 |
+
name="var",
|
2416 |
+
impl_aten=torch.var,
|
2417 |
+
doc=_var_doc,
|
2418 |
+
)
|
2419 |
+
|
2420 |
+
amax = _make_reduction_prim(
|
2421 |
+
name="amax",
|
2422 |
+
impl_aten=torch.amax,
|
2423 |
+
doc=_amax_doc,
|
2424 |
+
)
|
2425 |
+
|
2426 |
+
amin = _make_reduction_prim(
|
2427 |
+
name="amin",
|
2428 |
+
impl_aten=torch.amin,
|
2429 |
+
doc=_amin_doc,
|
2430 |
+
)
|
2431 |
+
|
2432 |
+
|
2433 |
+
_iota_doc = """
|
2434 |
+
Constructs a 1-D tensor t where ``t[i] == start + i * step``.
|
2435 |
+
"""
|
2436 |
+
|
2437 |
+
|
2438 |
+
# TODO: layout, pin_memory, memory_format
|
2439 |
+
# TODO: model requires_grad on TensorMeta
|
2440 |
+
def _iota_meta(
|
2441 |
+
length: int,
|
2442 |
+
*,
|
2443 |
+
start: int,
|
2444 |
+
step: int,
|
2445 |
+
dtype: torch.dtype,
|
2446 |
+
device: torch.device,
|
2447 |
+
requires_grad: bool,
|
2448 |
+
) -> TensorLikeType:
|
2449 |
+
torch._check(
|
2450 |
+
utils.is_integer_dtype(dtype),
|
2451 |
+
lambda: "prims.iota only supports integer dtypes",
|
2452 |
+
)
|
2453 |
+
torch._check(step != 0, lambda: "step must be nonzero")
|
2454 |
+
return torch.empty(
|
2455 |
+
length,
|
2456 |
+
dtype=dtype,
|
2457 |
+
device=device,
|
2458 |
+
requires_grad=requires_grad,
|
2459 |
+
)
|
2460 |
+
|
2461 |
+
|
2462 |
+
def _iota_aten(
|
2463 |
+
length: int,
|
2464 |
+
*,
|
2465 |
+
start: int,
|
2466 |
+
step: int,
|
2467 |
+
dtype: torch.dtype,
|
2468 |
+
device: torch.device,
|
2469 |
+
requires_grad: bool,
|
2470 |
+
) -> TensorLikeType:
|
2471 |
+
end = start + length * step
|
2472 |
+
return torch.arange(
|
2473 |
+
start, end, step, dtype=dtype, device=device, requires_grad=requires_grad
|
2474 |
+
)
|
2475 |
+
|
2476 |
+
|
2477 |
+
iota = _make_prim(
|
2478 |
+
schema="iota(SymInt length, *, SymInt start, SymInt step, ScalarType dtype, Device device, bool requires_grad) -> Tensor", # noqa: B950
|
2479 |
+
return_type=RETURN_TYPE.NEW,
|
2480 |
+
meta=_iota_meta,
|
2481 |
+
impl_aten=_iota_aten,
|
2482 |
+
doc=_iota_doc,
|
2483 |
+
)
|
2484 |
+
|
2485 |
+
|
2486 |
+
# TODO: layout, pin_memory, memory_format
|
2487 |
+
# TODO: model requires_grad on TensorMeta
|
2488 |
+
def _empty_meta(
|
2489 |
+
shape: ShapeType, *, dtype: torch.dtype, device: torch.device, requires_grad: bool
|
2490 |
+
) -> TensorLikeType:
|
2491 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2492 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
|
2493 |
+
|
2494 |
+
|
2495 |
+
def _empty_aten(
|
2496 |
+
shape: ShapeType, *, dtype: torch.dtype, device: torch.device, requires_grad: bool
|
2497 |
+
) -> Tensor:
|
2498 |
+
return torch.empty(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
2499 |
+
|
2500 |
+
|
2501 |
+
_empty_doc = """
|
2502 |
+
Creates a tensor with uninitialized values and the specified shape, dtype, and device.
|
2503 |
+
"""
|
2504 |
+
|
2505 |
+
empty = _make_prim(
|
2506 |
+
schema="empty(SymInt[] shape, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
|
2507 |
+
meta=_empty_meta,
|
2508 |
+
impl_aten=_empty_aten,
|
2509 |
+
return_type=RETURN_TYPE.NEW,
|
2510 |
+
doc=_empty_doc,
|
2511 |
+
)
|
2512 |
+
|
2513 |
+
|
2514 |
+
def _empty_strided_meta(
|
2515 |
+
shape: ShapeType,
|
2516 |
+
strides: StrideType,
|
2517 |
+
*,
|
2518 |
+
dtype: torch.dtype,
|
2519 |
+
device: torch.device,
|
2520 |
+
requires_grad: bool,
|
2521 |
+
) -> TensorLikeType:
|
2522 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
|
2523 |
+
|
2524 |
+
|
2525 |
+
_empty_strided_doc = """
|
2526 |
+
Creates a tensor with uninitialized values.
|
2527 |
+
"""
|
2528 |
+
|
2529 |
+
# TODO: add layout, pin_memory
|
2530 |
+
empty_strided = _make_prim(
|
2531 |
+
schema="empty_strided(SymInt[] shape, SymInt[] strides, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
|
2532 |
+
return_type=RETURN_TYPE.NEW,
|
2533 |
+
meta=_empty_strided_meta,
|
2534 |
+
impl_aten=torch.empty_strided,
|
2535 |
+
doc=_empty_strided_doc,
|
2536 |
+
)
|
2537 |
+
|
2538 |
+
|
2539 |
+
def _empty_permuted_meta(
|
2540 |
+
shape: ShapeType,
|
2541 |
+
physical_layout: DimsSequenceType,
|
2542 |
+
*,
|
2543 |
+
dtype: torch.dtype,
|
2544 |
+
device: torch.device,
|
2545 |
+
requires_grad: bool,
|
2546 |
+
) -> TensorLikeType:
|
2547 |
+
p_strides = utils.make_contiguous_strides_for([shape[l] for l in physical_layout])
|
2548 |
+
dim = len(shape)
|
2549 |
+
torch._check(
|
2550 |
+
len(physical_layout) == dim,
|
2551 |
+
lambda: (
|
2552 |
+
"Number of dimensions in the tensor input does not match the "
|
2553 |
+
f"length of the physical layout; i.e. len(size) = {dim} "
|
2554 |
+
f"is not equal to len(physical_layout) = {len(physical_layout)}"
|
2555 |
+
),
|
2556 |
+
)
|
2557 |
+
strides = [0] * len(shape)
|
2558 |
+
seen_dims = set()
|
2559 |
+
for p, l in enumerate(physical_layout):
|
2560 |
+
torch._check(
|
2561 |
+
0 <= l < dim,
|
2562 |
+
lambda: (
|
2563 |
+
f"Dimension out of range (expected to be between 0 and {dim - 1}, but got "
|
2564 |
+
f"{l} at index {p}). NB: negative dims "
|
2565 |
+
"not currently supported; file an issue if you want it."
|
2566 |
+
),
|
2567 |
+
)
|
2568 |
+
torch._check(l not in seen_dims, lambda: "Duplicate dim not allowed")
|
2569 |
+
strides[l] = p_strides[p]
|
2570 |
+
seen_dims.add(l)
|
2571 |
+
return TensorMeta(
|
2572 |
+
shape=shape,
|
2573 |
+
strides=strides,
|
2574 |
+
dtype=dtype,
|
2575 |
+
device=device,
|
2576 |
+
)
|
2577 |
+
|
2578 |
+
|
2579 |
+
_empty_permuted_doc = """
|
2580 |
+
Creates a tensor with uninitialized values according to some physical layout,
|
2581 |
+
that is guaranteed to be non-overlapping and dense.
|
2582 |
+
"""
|
2583 |
+
|
2584 |
+
# TODO: add layout, pin_memory
|
2585 |
+
empty_permuted = _make_prim(
|
2586 |
+
schema="empty_permuted(SymInt[] shape, int[] physical_layout, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor", # noqa: B950
|
2587 |
+
return_type=RETURN_TYPE.NEW,
|
2588 |
+
meta=_empty_permuted_meta,
|
2589 |
+
impl_aten=torch.empty_permuted,
|
2590 |
+
doc=_empty_permuted_doc,
|
2591 |
+
)
|
2592 |
+
|
2593 |
+
|
2594 |
+
def _full_meta(
|
2595 |
+
shape: ShapeType,
|
2596 |
+
fill_value: NumberType,
|
2597 |
+
*,
|
2598 |
+
dtype: torch.dtype,
|
2599 |
+
device: torch.device,
|
2600 |
+
requires_grad: bool,
|
2601 |
+
) -> TensorLikeType:
|
2602 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2603 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
|
2604 |
+
|
2605 |
+
|
2606 |
+
def _full_aten(
|
2607 |
+
shape: ShapeType,
|
2608 |
+
fill_value: NumberType,
|
2609 |
+
*,
|
2610 |
+
dtype: torch.dtype,
|
2611 |
+
device: torch.device,
|
2612 |
+
requires_grad: bool,
|
2613 |
+
) -> Tensor:
|
2614 |
+
# Note that Mypy thinks torch.full can't accept a complex fill_value
|
2615 |
+
return torch.full(
|
2616 |
+
shape, fill_value, dtype=dtype, device=device, requires_grad=requires_grad # type: ignore[arg-type]
|
2617 |
+
)
|
2618 |
+
|
2619 |
+
|
2620 |
+
_full_doc = """
|
2621 |
+
Creates a tensor filled with the given fill value, and with the specified shape, dtype, and device.
|
2622 |
+
"""
|
2623 |
+
|
2624 |
+
# TODO: add layout
|
2625 |
+
full = _make_prim(
|
2626 |
+
schema="full(SymInt[] shape, Scalar fill_value, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
|
2627 |
+
meta=_full_meta,
|
2628 |
+
impl_aten=_full_aten,
|
2629 |
+
return_type=RETURN_TYPE.NEW,
|
2630 |
+
doc=_full_doc,
|
2631 |
+
)
|
2632 |
+
|
2633 |
+
|
2634 |
+
def _full_like_meta(
|
2635 |
+
a: TensorLikeType,
|
2636 |
+
fill_value: NumberType,
|
2637 |
+
*,
|
2638 |
+
dtype: torch.dtype,
|
2639 |
+
device: torch.device,
|
2640 |
+
requires_grad: bool,
|
2641 |
+
) -> TensorLikeType:
|
2642 |
+
strides = utils.compute_elementwise_output_strides(a)
|
2643 |
+
if a.numel() == 0:
|
2644 |
+
strides = a.stride()
|
2645 |
+
|
2646 |
+
return TensorMeta(a, strides=strides, dtype=dtype, device=device)
|
2647 |
+
|
2648 |
+
|
2649 |
+
def _full_like_aten(
|
2650 |
+
a: Tensor,
|
2651 |
+
fill_value: NumberType,
|
2652 |
+
*,
|
2653 |
+
dtype: torch.dtype,
|
2654 |
+
device: torch.device,
|
2655 |
+
requires_grad: bool,
|
2656 |
+
) -> Tensor:
|
2657 |
+
# Note that Mypy thinks torch.full can't accept a complex fill_value
|
2658 |
+
return torch.full_like(
|
2659 |
+
a, fill_value, dtype=dtype, device=device, requires_grad=requires_grad # type: ignore[arg-type]
|
2660 |
+
)
|
2661 |
+
|
2662 |
+
|
2663 |
+
_full_like_doc = """
|
2664 |
+
Creates a tensor filled with the given fill value, and the same shape, dtype, and device as the
|
2665 |
+
given tensor by default. The dtype and device settings can be overridden
|
2666 |
+
by specifying them explicitly.
|
2667 |
+
"""
|
2668 |
+
|
2669 |
+
full_like = _make_prim(
|
2670 |
+
schema="full_like(Tensor a, Scalar fill_value, *, ScalarType dtype, Device device, bool requires_grad) -> Tensor",
|
2671 |
+
meta=_full_like_meta,
|
2672 |
+
impl_aten=_full_like_aten,
|
2673 |
+
return_type=RETURN_TYPE.NEW,
|
2674 |
+
doc=_full_like_doc,
|
2675 |
+
)
|
2676 |
+
|
2677 |
+
|
2678 |
+
def _scalar_tensor_meta(
|
2679 |
+
scalar: NumberType,
|
2680 |
+
*,
|
2681 |
+
dtype: torch.dtype,
|
2682 |
+
device: torch.device,
|
2683 |
+
) -> TensorLikeType:
|
2684 |
+
shape: ShapeType = []
|
2685 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2686 |
+
return TensorMeta(scalar, shape=shape, strides=strides, dtype=dtype, device=device)
|
2687 |
+
|
2688 |
+
|
2689 |
+
def _scalar_tensor_aten(
|
2690 |
+
scalar: NumberType,
|
2691 |
+
*,
|
2692 |
+
dtype: torch.dtype,
|
2693 |
+
device: torch.device,
|
2694 |
+
) -> Tensor:
|
2695 |
+
if isinstance(scalar, complex) and (
|
2696 |
+
dtype is None or not utils.is_complex_dtype(dtype)
|
2697 |
+
):
|
2698 |
+
raise TypeError("Complex scalar requires complex tensor dtype.")
|
2699 |
+
# Note that Mypy thinks torch.scalar can't accept a complex scalar
|
2700 |
+
return torch.scalar_tensor(scalar, dtype=dtype, device=device) # type: ignore[arg-type]
|
2701 |
+
|
2702 |
+
|
2703 |
+
_scalar_tensor_doc = """
|
2704 |
+
Wraps a Number into a Tensor with the specified dtype and device.
|
2705 |
+
"""
|
2706 |
+
|
2707 |
+
# TODO: add layout and pin_memory support
|
2708 |
+
scalar_tensor = _make_prim(
|
2709 |
+
schema="scalar_tensor(Scalar s, *, ScalarType? dtype=None, Device? device=None) -> Tensor",
|
2710 |
+
meta=_scalar_tensor_meta,
|
2711 |
+
impl_aten=_scalar_tensor_aten,
|
2712 |
+
return_type=RETURN_TYPE.NEW,
|
2713 |
+
doc=_scalar_tensor_doc,
|
2714 |
+
)
|
2715 |
+
|
2716 |
+
|
2717 |
+
#
|
2718 |
+
# Linear algebra (linalg) prims
|
2719 |
+
#
|
2720 |
+
|
2721 |
+
|
2722 |
+
def _svd_meta(
|
2723 |
+
A: TensorLikeType, *, full_matrices: bool
|
2724 |
+
) -> Tuple[TensorLikeType, TensorLikeType, TensorLikeType]:
|
2725 |
+
utils.check_is_matrix(A, "linalg.svd")
|
2726 |
+
utils.check_fp_or_complex(A.dtype, "linalg.svd", allow_low_precision_dtypes=False)
|
2727 |
+
|
2728 |
+
A_shape = A.shape
|
2729 |
+
batch = A_shape[:-2]
|
2730 |
+
m, n = A_shape[-2:]
|
2731 |
+
k = min(m, n)
|
2732 |
+
|
2733 |
+
shape_U = batch + (m, m if full_matrices else k)
|
2734 |
+
strides_U = utils.make_contiguous_strides_for(shape_U, row_major=False)
|
2735 |
+
U = TensorMeta(shape=shape_U, strides=strides_U, dtype=A.dtype, device=A.device)
|
2736 |
+
|
2737 |
+
shape_S = batch + (k,)
|
2738 |
+
strides_S = utils.make_contiguous_strides_for(shape_S)
|
2739 |
+
S = TensorMeta(
|
2740 |
+
shape=shape_S,
|
2741 |
+
strides=strides_S,
|
2742 |
+
dtype=utils.corresponding_real_dtype(A.dtype) if A.is_complex() else A.dtype,
|
2743 |
+
device=A.device,
|
2744 |
+
)
|
2745 |
+
|
2746 |
+
shape_Vh = batch + (n if full_matrices else k, n)
|
2747 |
+
# The CPU backend returns V, but the cuSolver backend returns V^H
|
2748 |
+
# TODO The MAGMA backend returns V, so this is wrong if used with the MAGMA backend
|
2749 |
+
is_cuda = A.device.type == "cuda"
|
2750 |
+
strides_Vh = utils.make_contiguous_strides_for(shape_Vh, row_major=is_cuda)
|
2751 |
+
Vh = TensorMeta(shape=shape_Vh, strides=strides_Vh, dtype=A.dtype, device=A.device)
|
2752 |
+
# Also makes sure this is CUDA or HIP:
|
2753 |
+
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
|
2754 |
+
if A.numel() != 0 and Vh.is_complex() and torch.cuda.is_available():
|
2755 |
+
Vh = Vh.conj()
|
2756 |
+
return U, S, Vh
|
2757 |
+
|
2758 |
+
|
2759 |
+
def _svd_aten(
|
2760 |
+
A: TensorLikeType, *, full_matrices: bool
|
2761 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
2762 |
+
return torch.linalg.svd(A, full_matrices=full_matrices)
|
2763 |
+
|
2764 |
+
|
2765 |
+
_svd_doc = """
|
2766 |
+
Returns the SVD of a matrix or batch of matrices.
|
2767 |
+
|
2768 |
+
The `full_matrices` flag controls whether the full or reduced SVD decomposition is returned.
|
2769 |
+
"""
|
2770 |
+
|
2771 |
+
svd = _make_prim(
|
2772 |
+
schema="svd(Tensor A, *, bool full_matrices) -> (Tensor U, Tensor S, Tensor Vh)",
|
2773 |
+
meta=_svd_meta,
|
2774 |
+
impl_aten=_svd_aten,
|
2775 |
+
return_type=(RETURN_TYPE.NEW, RETURN_TYPE.NEW, RETURN_TYPE.NEW),
|
2776 |
+
doc=_svd_doc,
|
2777 |
+
)
|
2778 |
+
|
2779 |
+
|
2780 |
+
#
|
2781 |
+
# Randomness Prims
|
2782 |
+
#
|
2783 |
+
|
2784 |
+
|
2785 |
+
def _normal_meta(
|
2786 |
+
shape: ShapeType,
|
2787 |
+
*,
|
2788 |
+
mean: Union[float, complex],
|
2789 |
+
std: float,
|
2790 |
+
dtype: torch.dtype,
|
2791 |
+
device: torch.device,
|
2792 |
+
requires_grad: bool,
|
2793 |
+
generator: Optional[torch.Generator] = None,
|
2794 |
+
) -> TensorLikeType:
|
2795 |
+
torch._check(
|
2796 |
+
std >= 0.0,
|
2797 |
+
lambda: f"expected non-negative standard deviation, but got std={std}",
|
2798 |
+
)
|
2799 |
+
|
2800 |
+
torch._check(
|
2801 |
+
utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
|
2802 |
+
lambda: f"expected a floating-point or complex dtype, but got dtype={dtype}",
|
2803 |
+
)
|
2804 |
+
|
2805 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2806 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
|
2807 |
+
|
2808 |
+
|
2809 |
+
def _normal_aten(
|
2810 |
+
shape: ShapeType,
|
2811 |
+
*,
|
2812 |
+
mean: Union[float, complex],
|
2813 |
+
std: float,
|
2814 |
+
dtype: torch.dtype,
|
2815 |
+
device: torch.device,
|
2816 |
+
requires_grad: bool,
|
2817 |
+
generator: Optional[torch.Generator] = None,
|
2818 |
+
) -> Tensor:
|
2819 |
+
a = torch.empty(shape, dtype=dtype, device=device, requires_grad=requires_grad)
|
2820 |
+
with torch.no_grad():
|
2821 |
+
# NOTE: normal_ is incorrectly annotated to expect mean to be a float
|
2822 |
+
a.normal_(mean, std, generator=generator) # type: ignore[arg-type]
|
2823 |
+
return a
|
2824 |
+
|
2825 |
+
|
2826 |
+
_normal_doc = """
|
2827 |
+
Constructs a tensor filled with values drawn from a normal distribution with the specified mean
|
2828 |
+
and standard deviation.
|
2829 |
+
|
2830 |
+
Only supports floating-point types.
|
2831 |
+
"""
|
2832 |
+
|
2833 |
+
normal = _make_prim(
|
2834 |
+
schema=(
|
2835 |
+
"normal(SymInt[] shape, *, Scalar mean, Scalar std, ScalarType dtype, Device device, bool requires_grad, Generator? generator=None) -> Tensor" # noqa: B950
|
2836 |
+
),
|
2837 |
+
return_type=RETURN_TYPE.NEW,
|
2838 |
+
meta=_normal_meta,
|
2839 |
+
impl_aten=_normal_aten,
|
2840 |
+
doc=_normal_doc,
|
2841 |
+
)
|
2842 |
+
|
2843 |
+
|
2844 |
+
def _uniform_meta(
|
2845 |
+
shape: ShapeType,
|
2846 |
+
*,
|
2847 |
+
low: float,
|
2848 |
+
high: float,
|
2849 |
+
dtype: torch.dtype,
|
2850 |
+
device: torch.device,
|
2851 |
+
generator: Optional[torch.Generator] = None,
|
2852 |
+
) -> TensorLikeType:
|
2853 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2854 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=device)
|
2855 |
+
|
2856 |
+
|
2857 |
+
def _uniform_aten(
|
2858 |
+
shape: ShapeType,
|
2859 |
+
*,
|
2860 |
+
low: float,
|
2861 |
+
high: float,
|
2862 |
+
dtype: torch.dtype,
|
2863 |
+
device: torch.device,
|
2864 |
+
generator: Optional[torch.Generator] = None,
|
2865 |
+
) -> Tensor:
|
2866 |
+
a = torch.empty(shape, dtype=dtype, device=device)
|
2867 |
+
a.uniform_(low, high, generator=generator)
|
2868 |
+
return a
|
2869 |
+
|
2870 |
+
|
2871 |
+
_uniform_doc = """
|
2872 |
+
Constructs a tensor filled with values drawn uniformly from low to high.
|
2873 |
+
"""
|
2874 |
+
|
2875 |
+
# TODO: we should more seriously review randomness modeling and prims
|
2876 |
+
_uniform_helper = _make_prim(
|
2877 |
+
schema=(
|
2878 |
+
"uniform(SymInt[] shape, *, Scalar low, Scalar high, ScalarType dtype, Device device, Generator? generator=None) -> Tensor"
|
2879 |
+
),
|
2880 |
+
return_type=RETURN_TYPE.NEW,
|
2881 |
+
meta=_uniform_meta,
|
2882 |
+
impl_aten=_uniform_aten,
|
2883 |
+
doc=_uniform_doc,
|
2884 |
+
)
|
2885 |
+
|
2886 |
+
#
|
2887 |
+
# FFT prims
|
2888 |
+
#
|
2889 |
+
|
2890 |
+
|
2891 |
+
def _fft_r2c_meta(
|
2892 |
+
input: TensorLike,
|
2893 |
+
*,
|
2894 |
+
dim: DimsSequenceType,
|
2895 |
+
onesided: bool,
|
2896 |
+
) -> TensorLikeType:
|
2897 |
+
dim = utils.canonicalize_dims(input.ndim, dim)
|
2898 |
+
utils.validate_no_repeating_dims(dim)
|
2899 |
+
|
2900 |
+
shape = list(input.shape)
|
2901 |
+
if onesided:
|
2902 |
+
last_dim = dim[-1]
|
2903 |
+
shape[last_dim] = shape[last_dim] // 2 + 1
|
2904 |
+
|
2905 |
+
dtype = utils.corresponding_complex_dtype(input.dtype)
|
2906 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2907 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=input.device)
|
2908 |
+
|
2909 |
+
|
2910 |
+
def _fft_r2c_aten(
|
2911 |
+
input: TensorLike,
|
2912 |
+
*,
|
2913 |
+
dim: DimsSequenceType,
|
2914 |
+
onesided: bool,
|
2915 |
+
) -> TensorLikeType:
|
2916 |
+
normalization = 0 # No normalization
|
2917 |
+
return torch._fft_r2c(input, dim, normalization, onesided)
|
2918 |
+
|
2919 |
+
|
2920 |
+
_fft_r2c_doc = """
|
2921 |
+
Performs a real to complex Fast Fourier Transform
|
2922 |
+
"""
|
2923 |
+
|
2924 |
+
|
2925 |
+
fft_r2c = _make_prim(
|
2926 |
+
schema="fft_r2c(Tensor self, *, int[] dim, bool onesided) -> Tensor",
|
2927 |
+
meta=_fft_r2c_meta,
|
2928 |
+
impl_aten=_fft_r2c_aten,
|
2929 |
+
return_type=RETURN_TYPE.NEW,
|
2930 |
+
doc=_fft_r2c_doc,
|
2931 |
+
)
|
2932 |
+
|
2933 |
+
|
2934 |
+
def _fft_c2c_meta(
|
2935 |
+
input: TensorLike,
|
2936 |
+
*,
|
2937 |
+
dim: DimsSequenceType,
|
2938 |
+
forward: bool,
|
2939 |
+
) -> TensorLikeType:
|
2940 |
+
dim = utils.canonicalize_dims(input.ndim, dim)
|
2941 |
+
utils.validate_no_repeating_dims(dim)
|
2942 |
+
|
2943 |
+
shape = input.shape
|
2944 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2945 |
+
return TensorMeta(
|
2946 |
+
shape=shape, strides=strides, dtype=input.dtype, device=input.device
|
2947 |
+
)
|
2948 |
+
|
2949 |
+
|
2950 |
+
def _fft_c2c_aten(
|
2951 |
+
input: TensorLike,
|
2952 |
+
*,
|
2953 |
+
dim: DimsSequenceType,
|
2954 |
+
forward: bool,
|
2955 |
+
) -> TensorLikeType:
|
2956 |
+
normalization = 0 # No normalization
|
2957 |
+
return torch._fft_c2c(input, dim, normalization, forward)
|
2958 |
+
|
2959 |
+
|
2960 |
+
_fft_c2c_doc = """
|
2961 |
+
Performs either a Fast Fourier Transform, or its inverse
|
2962 |
+
"""
|
2963 |
+
|
2964 |
+
|
2965 |
+
fft_c2c = _make_prim(
|
2966 |
+
schema="fft_c2c(Tensor self, *, int[] dim, bool forward) -> Tensor",
|
2967 |
+
meta=_fft_c2c_meta,
|
2968 |
+
impl_aten=_fft_c2c_aten,
|
2969 |
+
return_type=RETURN_TYPE.NEW,
|
2970 |
+
doc=_fft_c2c_doc,
|
2971 |
+
)
|
2972 |
+
|
2973 |
+
|
2974 |
+
def _fft_c2r_meta(
|
2975 |
+
input: TensorLike,
|
2976 |
+
*,
|
2977 |
+
dim: DimsSequenceType,
|
2978 |
+
last_dim_size: int,
|
2979 |
+
) -> TensorLikeType:
|
2980 |
+
dim = utils.canonicalize_dims(input.ndim, dim)
|
2981 |
+
utils.validate_no_repeating_dims(dim)
|
2982 |
+
|
2983 |
+
shape = list(input.shape)
|
2984 |
+
shape[dim[-1]] = last_dim_size
|
2985 |
+
dtype = utils.corresponding_real_dtype(input.dtype)
|
2986 |
+
strides = utils.make_contiguous_strides_for(shape)
|
2987 |
+
return TensorMeta(shape=shape, strides=strides, dtype=dtype, device=input.device)
|
2988 |
+
|
2989 |
+
|
2990 |
+
def _fft_c2r_aten(
|
2991 |
+
input: TensorLike,
|
2992 |
+
*,
|
2993 |
+
dim: DimsSequenceType,
|
2994 |
+
last_dim_size: int,
|
2995 |
+
) -> TensorLikeType:
|
2996 |
+
normalization = 0 # No normalization
|
2997 |
+
return torch._fft_c2r(input, dim, normalization, last_dim_size)
|
2998 |
+
|
2999 |
+
|
3000 |
+
_fft_c2r_doc = """
|
3001 |
+
Performs a complex to real Inverse Fast Fourier Transform
|
3002 |
+
"""
|
3003 |
+
|
3004 |
+
|
3005 |
+
fft_c2r = _make_prim(
|
3006 |
+
schema="fft_c2r(Tensor self, *, int[] dim, SymInt last_dim_size) -> Tensor",
|
3007 |
+
meta=_fft_c2r_meta,
|
3008 |
+
impl_aten=_fft_c2r_aten,
|
3009 |
+
return_type=RETURN_TYPE.NEW,
|
3010 |
+
doc=_fft_c2r_doc,
|
3011 |
+
)
|
3012 |
+
|
3013 |
+
|
3014 |
+
def _frexp_meta(self: TensorLikeType) -> Tuple[TensorLikeType, TensorLikeType]:
|
3015 |
+
torch._check(
|
3016 |
+
self.dtype.is_floating_point,
|
3017 |
+
lambda: "torch.frexp() only supports floating-point dtypes",
|
3018 |
+
)
|
3019 |
+
return torch.empty_like(self), torch.empty_like(self, dtype=torch.int32)
|
3020 |
+
|
3021 |
+
|
3022 |
+
frexp = _make_prim(
|
3023 |
+
schema="frexp(Tensor self) -> (Tensor mantissa, Tensor exponent)",
|
3024 |
+
meta=_frexp_meta,
|
3025 |
+
return_type=(RETURN_TYPE.NEW, RETURN_TYPE.NEW),
|
3026 |
+
impl_aten=torch.frexp,
|
3027 |
+
doc="",
|
3028 |
+
)
|
3029 |
+
|
3030 |
+
register_rng_prims()
|
3031 |
+
register_debug_prims()
|
venv/lib/python3.10/site-packages/torch/_prims/context.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from contextlib import nullcontext
|
3 |
+
from typing import Any, Callable, Dict, Optional, Sequence
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import torch._decomp
|
8 |
+
import torch._prims
|
9 |
+
|
10 |
+
import torch._refs
|
11 |
+
import torch._refs.nn
|
12 |
+
import torch._refs.nn.functional
|
13 |
+
import torch._refs.special
|
14 |
+
import torch.overrides
|
15 |
+
|
16 |
+
from torch._prims_common import torch_function_passthrough
|
17 |
+
|
18 |
+
|
19 |
+
@functools.lru_cache(None)
|
20 |
+
def torch_to_refs_map():
|
21 |
+
"""
|
22 |
+
Mapping of torch API functions to torch._refs functions.
|
23 |
+
E.g. torch_to_refs_map()[torch.add] == torch._refs.add
|
24 |
+
"""
|
25 |
+
modules = [
|
26 |
+
(torch, torch._refs),
|
27 |
+
(torch.nn, torch._refs.nn),
|
28 |
+
(torch.nn.functional, torch._refs.nn.functional),
|
29 |
+
(torch.special, torch._refs.special),
|
30 |
+
(torch.fft, torch._refs.fft),
|
31 |
+
(torch.linalg, torch._refs.linalg),
|
32 |
+
]
|
33 |
+
r: Dict[Any, Any] = {
|
34 |
+
torch.Tensor.__invert__: torch._refs.bitwise_not,
|
35 |
+
torch.Tensor.__xor__: torch._refs.bitwise_xor,
|
36 |
+
torch.Tensor.__and__: torch._refs.bitwise_and,
|
37 |
+
torch.Tensor.__or__: torch._refs.bitwise_or,
|
38 |
+
torch.Tensor.__eq__: torch._refs.eq,
|
39 |
+
torch.Tensor.__rsub__: torch._refs.rsub,
|
40 |
+
torch.Tensor.__rtruediv__: torch._refs.rtruediv,
|
41 |
+
torch.Tensor.__floordiv__: torch._refs.floor_divide,
|
42 |
+
torch.Tensor.__rfloordiv__: torch._refs.rfloordiv,
|
43 |
+
torch.Tensor.__pow__: torch._refs.pow,
|
44 |
+
torch.Tensor.__rpow__: torch._refs.rpow,
|
45 |
+
torch.Tensor.new_empty: torch._refs.new_empty,
|
46 |
+
torch.Tensor.new_full: torch._refs.new_full,
|
47 |
+
torch.Tensor.new_zeros: torch._refs.new_zeros,
|
48 |
+
torch.Tensor.new_ones: torch._refs.new_ones,
|
49 |
+
torch.Tensor.fill_: torch._refs.fill_,
|
50 |
+
torch.Tensor.zero_: torch._refs.zero_,
|
51 |
+
torch.Tensor.to: torch._refs.to,
|
52 |
+
torch.Tensor.sum_to_size: torch._refs.sum_to_size,
|
53 |
+
# TODO: Should these methods be mapped some other way?
|
54 |
+
torch.Tensor.copy_: torch._prims.copy_to,
|
55 |
+
torch.Tensor.resize: torch._prims.resize,
|
56 |
+
}
|
57 |
+
for mod_torch, mod_refs in modules:
|
58 |
+
for s in mod_refs.__all__: # type: ignore[attr-defined]
|
59 |
+
r[mod_torch.__dict__.get(s)] = mod_refs.__dict__.get(s)
|
60 |
+
|
61 |
+
# Support remapping torch.Tensor.foo to _refs.foo
|
62 |
+
for s in dir(torch.Tensor):
|
63 |
+
if s in torch._refs.__all__:
|
64 |
+
r[getattr(torch.Tensor, s)] = torch._refs.__dict__.get(s)
|
65 |
+
|
66 |
+
# Support conversions
|
67 |
+
for s in torch._refs._conversions.__all__:
|
68 |
+
tensor_attr = getattr(torch.Tensor, s, None) or getattr(torch, s)
|
69 |
+
r[tensor_attr] = torch._refs._conversions.__dict__.get(s)
|
70 |
+
|
71 |
+
return r
|
72 |
+
|
73 |
+
|
74 |
+
@functools.lru_cache(None)
|
75 |
+
def all_prims():
|
76 |
+
"""
|
77 |
+
Set of all prim functions, e.g., torch._prims.add in all_prims()
|
78 |
+
"""
|
79 |
+
return {torch._prims.__dict__.get(s) for s in torch._prims.__all__}
|
80 |
+
|
81 |
+
|
82 |
+
class TorchRefsMode(torch.overrides.TorchFunctionMode):
|
83 |
+
"""
|
84 |
+
Switches the interpretation of torch.* functions and Tensor methods to
|
85 |
+
use PrimTorch refs in torch._refs. (Direct calls to _refs are unaffected.)
|
86 |
+
|
87 |
+
>>> # xdoctest: +SKIP
|
88 |
+
>>> with TorchRefsMode():
|
89 |
+
... torch.add(x, y) # calls torch._refs.add(x, y)
|
90 |
+
|
91 |
+
By default, this context manager will fall back on the torch.* if the
|
92 |
+
ref does not exist; set strict=True to error if this occurs.
|
93 |
+
If the ref exists we still would like to fall back on the torch.* sometimes,
|
94 |
+
this behavior can be customized by passing a function to should_fallback_fn.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
strict=False,
|
100 |
+
should_fallback_fn=lambda *_: False,
|
101 |
+
prims_mode_cls=nullcontext,
|
102 |
+
):
|
103 |
+
self.strict = strict
|
104 |
+
self.should_fallback_fn = should_fallback_fn
|
105 |
+
self.prims_mode_cls = prims_mode_cls
|
106 |
+
|
107 |
+
def __torch_function__(
|
108 |
+
self,
|
109 |
+
orig_func: Callable,
|
110 |
+
types: Sequence,
|
111 |
+
args: Sequence[Any] = (),
|
112 |
+
kwargs: Optional[Dict] = None,
|
113 |
+
):
|
114 |
+
if kwargs is None:
|
115 |
+
kwargs = {}
|
116 |
+
# For primitive operations, run them as is without interception
|
117 |
+
# Unless we are in prims_mode, in which case we want to use nvprims
|
118 |
+
if orig_func in torch_function_passthrough or orig_func in all_prims():
|
119 |
+
with self.prims_mode_cls():
|
120 |
+
return orig_func(*args, **kwargs)
|
121 |
+
mapping = torch_to_refs_map()
|
122 |
+
func = mapping.get(orig_func, None)
|
123 |
+
|
124 |
+
# For torch.ops.aten.*, use registered decompositions from torch._decomp
|
125 |
+
# torch._decomp.decomposition_table provides a mapping from
|
126 |
+
# torch.ops.aten.* to torch._refs or torch._decomp.decompositions
|
127 |
+
# implementations.
|
128 |
+
# There're other ways to implement this functionality,
|
129 |
+
# see https://github.com/pytorch/pytorch/pull/82657#discussion_r939776417
|
130 |
+
if func is None and isinstance(orig_func, torch._ops.OpOverload):
|
131 |
+
func = torch._decomp.decomposition_table.get(orig_func, None)
|
132 |
+
|
133 |
+
if func is not None:
|
134 |
+
# If the ref exists query whether we should use it or not
|
135 |
+
if self.should_fallback_fn(self, orig_func, func, args, kwargs):
|
136 |
+
return orig_func(*args, **kwargs)
|
137 |
+
# torch calls inside func should be interpreted as refs calls
|
138 |
+
with self:
|
139 |
+
return func(*args, **kwargs)
|
140 |
+
if self.strict:
|
141 |
+
raise RuntimeError(
|
142 |
+
f"no _refs support for {torch.overrides.resolve_name(orig_func)}"
|
143 |
+
)
|
144 |
+
return orig_func(*args, **kwargs)
|
venv/lib/python3.10/site-packages/torch/_prims/debug_prims.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
from typing import Optional, Sequence
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch._custom_op.impl import custom_op
|
6 |
+
from torch.utils._content_store import ContentStoreReader
|
7 |
+
|
8 |
+
LOAD_TENSOR_READER: Optional[ContentStoreReader] = None
|
9 |
+
|
10 |
+
|
11 |
+
@contextlib.contextmanager
|
12 |
+
def load_tensor_reader(loc):
|
13 |
+
global LOAD_TENSOR_READER
|
14 |
+
assert LOAD_TENSOR_READER is None
|
15 |
+
# load_tensor is an "op", and we will play merry hell on
|
16 |
+
# Inductor's memory planning if we return a tensor that
|
17 |
+
# aliases another tensor that we previously returned from
|
18 |
+
# an operator. So unlike standard ContentStoreReader use,
|
19 |
+
# we disable the cache so that you always get fresh storages
|
20 |
+
# (no aliasing for you!)
|
21 |
+
LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False)
|
22 |
+
try:
|
23 |
+
yield
|
24 |
+
finally:
|
25 |
+
LOAD_TENSOR_READER = None
|
26 |
+
|
27 |
+
|
28 |
+
def register_debug_prims():
|
29 |
+
@custom_op("debugprims::load_tensor")
|
30 |
+
def load_tensor( # type: ignore[empty-body]
|
31 |
+
name: str,
|
32 |
+
size: Sequence[int],
|
33 |
+
stride: Sequence[int],
|
34 |
+
*,
|
35 |
+
dtype: torch.dtype,
|
36 |
+
device: torch.device,
|
37 |
+
) -> torch.Tensor:
|
38 |
+
...
|
39 |
+
|
40 |
+
@load_tensor.impl_factory()
|
41 |
+
def load_tensor_factory(name, size, stride, dtype, device):
|
42 |
+
if LOAD_TENSOR_READER is None:
|
43 |
+
from torch._dynamo.testing import rand_strided
|
44 |
+
|
45 |
+
return rand_strided(size, stride, dtype, device)
|
46 |
+
else:
|
47 |
+
from torch._dynamo.utils import clone_input
|
48 |
+
|
49 |
+
# device argument here takes care of coercion
|
50 |
+
r = LOAD_TENSOR_READER.read_tensor(name, device=device)
|
51 |
+
assert list(r.size()) == size, f"{r.size()} != {size}"
|
52 |
+
assert list(r.stride()) == stride, f"{r.stride()} != {stride}"
|
53 |
+
assert r.device == device, f"{r.device} != {device}"
|
54 |
+
|
55 |
+
# Unlike the other properties, we will do coercions for dtype
|
56 |
+
# mismatch
|
57 |
+
if r.dtype != dtype:
|
58 |
+
r = clone_input(r, dtype=dtype)
|
59 |
+
return r
|
venv/lib/python3.10/site-packages/torch/_prims/executor.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional
|
2 |
+
|
3 |
+
from torch._prims.context import TorchRefsMode
|
4 |
+
|
5 |
+
from torch.fx import GraphModule
|
6 |
+
from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx
|
7 |
+
|
8 |
+
|
9 |
+
def execute(
|
10 |
+
gm: GraphModule,
|
11 |
+
*args,
|
12 |
+
executor: str = "aten",
|
13 |
+
executor_parameters: Optional[dict] = None,
|
14 |
+
):
|
15 |
+
"""
|
16 |
+
Prototype ATen executor.
|
17 |
+
|
18 |
+
Just executes the context's graph.
|
19 |
+
"""
|
20 |
+
|
21 |
+
if executor == "aten":
|
22 |
+
return gm.forward(*args)
|
23 |
+
|
24 |
+
msg = f"Received unexpected value for 'executor': {executor}. Allowed values are: aten."
|
25 |
+
raise ValueError(msg)
|
26 |
+
|
27 |
+
|
28 |
+
def make_traced(fn: Callable):
|
29 |
+
"""
|
30 |
+
Returns a function that, when called, will
|
31 |
+
trace its torch operations to prims and then
|
32 |
+
execute those prims on the requested trace executor
|
33 |
+
(possibly lowering them to that trace executor first).
|
34 |
+
|
35 |
+
Only supports the torch operations defined in _torch_to_reference_map
|
36 |
+
in context.py and operations with positional args. All args must
|
37 |
+
be tensors.
|
38 |
+
In the near future all these restrictions will be lifted.
|
39 |
+
|
40 |
+
Example usage:
|
41 |
+
|
42 |
+
def foo(a, b):
|
43 |
+
return torch.add(a, b)
|
44 |
+
|
45 |
+
traced_foo = make_traced(foo)
|
46 |
+
|
47 |
+
a = torch.randn((1, 2, 3, 4, 5), device='cuda')
|
48 |
+
b = torch.randn((1, 2, 3, 4, 5), device='cuda')
|
49 |
+
result = traced_foo(a, b, executor='aten')
|
50 |
+
"""
|
51 |
+
|
52 |
+
def _traced(*args, executor="aten", **kwargs):
|
53 |
+
# TODO: caching
|
54 |
+
wrapped, all_args = wrapper_and_args_for_make_fx(fn, args, kwargs)
|
55 |
+
|
56 |
+
with TorchRefsMode():
|
57 |
+
gm = make_fx(wrapped)(all_args)
|
58 |
+
return execute(gm, all_args, executor=executor)
|
59 |
+
|
60 |
+
return _traced
|
venv/lib/python3.10/site-packages/torch/amp/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .autocast_mode import _enter_autocast, _exit_autocast, autocast
|
2 |
+
from .grad_scaler import GradScaler
|