Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/backends/__init__.py +70 -0
- venv/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py +206 -0
- venv/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/rnn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/cudnn/rnn.py +62 -0
- venv/lib/python3.10/site-packages/torch/backends/mha/__init__.py +24 -0
- venv/lib/python3.10/site-packages/torch/backends/mha/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/mkl/__init__.py +56 -0
- venv/lib/python3.10/site-packages/torch/backends/mkl/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/mkldnn/__init__.py +97 -0
- venv/lib/python3.10/site-packages/torch/backends/mkldnn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/mps/__init__.py +54 -0
- venv/lib/python3.10/site-packages/torch/backends/opt_einsum/__init__.py +110 -0
- venv/lib/python3.10/site-packages/torch/backends/opt_einsum/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/quantized/__init__.py +65 -0
- venv/lib/python3.10/site-packages/torch/backends/quantized/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/backends/xnnpack/__init__.py +28 -0
- venv/lib/python3.10/site-packages/torch/backends/xnnpack/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/bernoulli.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/beta.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/binomial.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/categorical.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/cauchy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/chi2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/constraint_registry.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/constraints.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/continuous_bernoulli.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/dirichlet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/distribution.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/exp_family.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/exponential.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/fishersnedecor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/gamma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/geometric.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/gumbel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/half_cauchy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/half_normal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/independent.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/inverse_gamma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/kl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/kumaraswamy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/laplace.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/log_normal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/logistic_normal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/lowrank_multivariate_normal.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/distributions/__pycache__/mixture_same_family.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/29.vocab_parallel_projection.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0af90c04e09d9f170443072e085ef161689484cbde3891a53fcf34e71cdefa42
|
3 |
+
size 415237197
|
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c6864d6b71e14e9528be3d7891c348b9312e7290005978f96fcc17c31157d98
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/backends/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import types
|
2 |
+
from contextlib import contextmanager
|
3 |
+
|
4 |
+
# The idea for this parameter is that we forbid bare assignment
|
5 |
+
# to torch.backends.<cudnn|mkldnn>.enabled and friends when running our
|
6 |
+
# test suite, where it's very easy to forget to undo the change
|
7 |
+
# later.
|
8 |
+
__allow_nonbracketed_mutation_flag = True
|
9 |
+
|
10 |
+
|
11 |
+
def disable_global_flags():
|
12 |
+
global __allow_nonbracketed_mutation_flag
|
13 |
+
__allow_nonbracketed_mutation_flag = False
|
14 |
+
|
15 |
+
|
16 |
+
def flags_frozen():
|
17 |
+
return not __allow_nonbracketed_mutation_flag
|
18 |
+
|
19 |
+
|
20 |
+
@contextmanager
|
21 |
+
def __allow_nonbracketed_mutation():
|
22 |
+
global __allow_nonbracketed_mutation_flag
|
23 |
+
old = __allow_nonbracketed_mutation_flag
|
24 |
+
__allow_nonbracketed_mutation_flag = True
|
25 |
+
try:
|
26 |
+
yield
|
27 |
+
finally:
|
28 |
+
__allow_nonbracketed_mutation_flag = old
|
29 |
+
|
30 |
+
|
31 |
+
class ContextProp:
|
32 |
+
def __init__(self, getter, setter):
|
33 |
+
self.getter = getter
|
34 |
+
self.setter = setter
|
35 |
+
|
36 |
+
def __get__(self, obj, objtype):
|
37 |
+
return self.getter()
|
38 |
+
|
39 |
+
def __set__(self, obj, val):
|
40 |
+
if not flags_frozen():
|
41 |
+
self.setter(val)
|
42 |
+
else:
|
43 |
+
raise RuntimeError(
|
44 |
+
"not allowed to set %s flags "
|
45 |
+
"after disable_global_flags; please use flags() context manager instead"
|
46 |
+
% obj.__name__
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class PropModule(types.ModuleType):
|
51 |
+
def __init__(self, m, name):
|
52 |
+
super().__init__(name)
|
53 |
+
self.m = m
|
54 |
+
|
55 |
+
def __getattr__(self, attr):
|
56 |
+
return self.m.__getattribute__(attr)
|
57 |
+
|
58 |
+
|
59 |
+
from torch.backends import (
|
60 |
+
cpu as cpu,
|
61 |
+
cuda as cuda,
|
62 |
+
cudnn as cudnn,
|
63 |
+
mha as mha,
|
64 |
+
mkl as mkl,
|
65 |
+
mkldnn as mkldnn,
|
66 |
+
mps as mps,
|
67 |
+
nnpack as nnpack,
|
68 |
+
openmp as openmp,
|
69 |
+
quantized as quantized,
|
70 |
+
)
|
venv/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
|
9 |
+
|
10 |
+
try:
|
11 |
+
from torch._C import _cudnn
|
12 |
+
except ImportError:
|
13 |
+
_cudnn = None # type: ignore[assignment]
|
14 |
+
|
15 |
+
# Write:
|
16 |
+
#
|
17 |
+
# torch.backends.cudnn.enabled = False
|
18 |
+
#
|
19 |
+
# to globally disable CuDNN/MIOpen
|
20 |
+
|
21 |
+
__cudnn_version: Optional[int] = None
|
22 |
+
|
23 |
+
if _cudnn is not None:
|
24 |
+
|
25 |
+
def _init():
|
26 |
+
global __cudnn_version
|
27 |
+
if __cudnn_version is None:
|
28 |
+
__cudnn_version = _cudnn.getVersionInt()
|
29 |
+
runtime_version = _cudnn.getRuntimeVersion()
|
30 |
+
compile_version = _cudnn.getCompileVersion()
|
31 |
+
runtime_major, runtime_minor, _ = runtime_version
|
32 |
+
compile_major, compile_minor, _ = compile_version
|
33 |
+
# Different major versions are always incompatible
|
34 |
+
# Starting with cuDNN 7, minor versions are backwards-compatible
|
35 |
+
# Not sure about MIOpen (ROCm), so always do a strict check
|
36 |
+
if runtime_major != compile_major:
|
37 |
+
cudnn_compatible = False
|
38 |
+
elif runtime_major < 7 or not _cudnn.is_cuda:
|
39 |
+
cudnn_compatible = runtime_minor == compile_minor
|
40 |
+
else:
|
41 |
+
cudnn_compatible = runtime_minor >= compile_minor
|
42 |
+
if not cudnn_compatible:
|
43 |
+
if os.environ.get("PYTORCH_SKIP_CUDNN_COMPATIBILITY_CHECK", "0") == "1":
|
44 |
+
return True
|
45 |
+
base_error_msg = (
|
46 |
+
f"cuDNN version incompatibility: "
|
47 |
+
f"PyTorch was compiled against {compile_version} "
|
48 |
+
f"but found runtime version {runtime_version}. "
|
49 |
+
f"PyTorch already comes bundled with cuDNN. "
|
50 |
+
f"One option to resolving this error is to ensure PyTorch "
|
51 |
+
f"can find the bundled cuDNN. "
|
52 |
+
)
|
53 |
+
|
54 |
+
if "LD_LIBRARY_PATH" in os.environ:
|
55 |
+
ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
|
56 |
+
if any(
|
57 |
+
substring in ld_library_path for substring in ["cuda", "cudnn"]
|
58 |
+
):
|
59 |
+
raise RuntimeError(
|
60 |
+
f"{base_error_msg}"
|
61 |
+
f"Looks like your LD_LIBRARY_PATH contains incompatible version of cudnn. "
|
62 |
+
f"Please either remove it from the path or install cudnn {compile_version}"
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
raise RuntimeError(
|
66 |
+
f"{base_error_msg}"
|
67 |
+
f"one possibility is that there is a "
|
68 |
+
f"conflicting cuDNN in LD_LIBRARY_PATH."
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
raise RuntimeError(base_error_msg)
|
72 |
+
|
73 |
+
return True
|
74 |
+
|
75 |
+
else:
|
76 |
+
|
77 |
+
def _init():
|
78 |
+
return False
|
79 |
+
|
80 |
+
|
81 |
+
def version():
|
82 |
+
"""Return the version of cuDNN."""
|
83 |
+
if not _init():
|
84 |
+
return None
|
85 |
+
return __cudnn_version
|
86 |
+
|
87 |
+
|
88 |
+
CUDNN_TENSOR_DTYPES = {
|
89 |
+
torch.half,
|
90 |
+
torch.float,
|
91 |
+
torch.double,
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
def is_available():
|
96 |
+
r"""Return a bool indicating if CUDNN is currently available."""
|
97 |
+
return torch._C._has_cudnn
|
98 |
+
|
99 |
+
|
100 |
+
def is_acceptable(tensor):
|
101 |
+
if not torch._C._get_cudnn_enabled():
|
102 |
+
return False
|
103 |
+
if tensor.device.type != "cuda" or tensor.dtype not in CUDNN_TENSOR_DTYPES:
|
104 |
+
return False
|
105 |
+
if not is_available():
|
106 |
+
warnings.warn(
|
107 |
+
"PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild "
|
108 |
+
"PyTorch making sure the library is visible to the build system."
|
109 |
+
)
|
110 |
+
return False
|
111 |
+
if not _init():
|
112 |
+
warnings.warn(
|
113 |
+
"cuDNN/MIOpen library not found. Check your {libpath}".format(
|
114 |
+
libpath={"darwin": "DYLD_LIBRARY_PATH", "win32": "PATH"}.get(
|
115 |
+
sys.platform, "LD_LIBRARY_PATH"
|
116 |
+
)
|
117 |
+
)
|
118 |
+
)
|
119 |
+
return False
|
120 |
+
return True
|
121 |
+
|
122 |
+
|
123 |
+
def set_flags(
|
124 |
+
_enabled=None,
|
125 |
+
_benchmark=None,
|
126 |
+
_benchmark_limit=None,
|
127 |
+
_deterministic=None,
|
128 |
+
_allow_tf32=None,
|
129 |
+
):
|
130 |
+
orig_flags = (
|
131 |
+
torch._C._get_cudnn_enabled(),
|
132 |
+
torch._C._get_cudnn_benchmark(),
|
133 |
+
None if not is_available() else torch._C._cuda_get_cudnn_benchmark_limit(),
|
134 |
+
torch._C._get_cudnn_deterministic(),
|
135 |
+
torch._C._get_cudnn_allow_tf32(),
|
136 |
+
)
|
137 |
+
if _enabled is not None:
|
138 |
+
torch._C._set_cudnn_enabled(_enabled)
|
139 |
+
if _benchmark is not None:
|
140 |
+
torch._C._set_cudnn_benchmark(_benchmark)
|
141 |
+
if _benchmark_limit is not None and is_available():
|
142 |
+
torch._C._cuda_set_cudnn_benchmark_limit(_benchmark_limit)
|
143 |
+
if _deterministic is not None:
|
144 |
+
torch._C._set_cudnn_deterministic(_deterministic)
|
145 |
+
if _allow_tf32 is not None:
|
146 |
+
torch._C._set_cudnn_allow_tf32(_allow_tf32)
|
147 |
+
return orig_flags
|
148 |
+
|
149 |
+
|
150 |
+
@contextmanager
|
151 |
+
def flags(
|
152 |
+
enabled=False,
|
153 |
+
benchmark=False,
|
154 |
+
benchmark_limit=10,
|
155 |
+
deterministic=False,
|
156 |
+
allow_tf32=True,
|
157 |
+
):
|
158 |
+
with __allow_nonbracketed_mutation():
|
159 |
+
orig_flags = set_flags(
|
160 |
+
enabled, benchmark, benchmark_limit, deterministic, allow_tf32
|
161 |
+
)
|
162 |
+
try:
|
163 |
+
yield
|
164 |
+
finally:
|
165 |
+
# recover the previous values
|
166 |
+
with __allow_nonbracketed_mutation():
|
167 |
+
set_flags(*orig_flags)
|
168 |
+
|
169 |
+
|
170 |
+
# The magic here is to allow us to intercept code like this:
|
171 |
+
#
|
172 |
+
# torch.backends.<cudnn|mkldnn>.enabled = True
|
173 |
+
|
174 |
+
|
175 |
+
class CudnnModule(PropModule):
|
176 |
+
def __init__(self, m, name):
|
177 |
+
super().__init__(m, name)
|
178 |
+
|
179 |
+
enabled = ContextProp(torch._C._get_cudnn_enabled, torch._C._set_cudnn_enabled)
|
180 |
+
deterministic = ContextProp(
|
181 |
+
torch._C._get_cudnn_deterministic, torch._C._set_cudnn_deterministic
|
182 |
+
)
|
183 |
+
benchmark = ContextProp(
|
184 |
+
torch._C._get_cudnn_benchmark, torch._C._set_cudnn_benchmark
|
185 |
+
)
|
186 |
+
benchmark_limit = None
|
187 |
+
if is_available():
|
188 |
+
benchmark_limit = ContextProp(
|
189 |
+
torch._C._cuda_get_cudnn_benchmark_limit,
|
190 |
+
torch._C._cuda_set_cudnn_benchmark_limit,
|
191 |
+
)
|
192 |
+
allow_tf32 = ContextProp(
|
193 |
+
torch._C._get_cudnn_allow_tf32, torch._C._set_cudnn_allow_tf32
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# This is the sys.modules replacement trick, see
|
198 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
199 |
+
sys.modules[__name__] = CudnnModule(sys.modules[__name__], __name__)
|
200 |
+
|
201 |
+
# Add type annotation for the replaced module
|
202 |
+
enabled: bool
|
203 |
+
deterministic: bool
|
204 |
+
benchmark: bool
|
205 |
+
allow_tf32: bool
|
206 |
+
benchmark_limit: int
|
venv/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.79 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/rnn.cpython-310.pyc
ADDED
Binary file (1.81 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/cudnn/rnn.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.cuda
|
2 |
+
|
3 |
+
try:
|
4 |
+
from torch._C import _cudnn
|
5 |
+
except ImportError:
|
6 |
+
# Uses of all the functions below should be guarded by torch.backends.cudnn.is_available(),
|
7 |
+
# so it's safe to not emit any checks here.
|
8 |
+
_cudnn = None # type: ignore[assignment]
|
9 |
+
|
10 |
+
|
11 |
+
def get_cudnn_mode(mode):
|
12 |
+
if mode == "RNN_RELU":
|
13 |
+
return int(_cudnn.RNNMode.rnn_relu)
|
14 |
+
elif mode == "RNN_TANH":
|
15 |
+
return int(_cudnn.RNNMode.rnn_tanh)
|
16 |
+
elif mode == "LSTM":
|
17 |
+
return int(_cudnn.RNNMode.lstm)
|
18 |
+
elif mode == "GRU":
|
19 |
+
return int(_cudnn.RNNMode.gru)
|
20 |
+
else:
|
21 |
+
raise Exception(f"Unknown mode: {mode}")
|
22 |
+
|
23 |
+
|
24 |
+
# NB: We don't actually need this class anymore (in fact, we could serialize the
|
25 |
+
# dropout state for even better reproducibility), but it is kept for backwards
|
26 |
+
# compatibility for old models.
|
27 |
+
class Unserializable:
|
28 |
+
def __init__(self, inner):
|
29 |
+
self.inner = inner
|
30 |
+
|
31 |
+
def get(self):
|
32 |
+
return self.inner
|
33 |
+
|
34 |
+
def __getstate__(self):
|
35 |
+
# Note: can't return {}, because python2 won't call __setstate__
|
36 |
+
# if the value evaluates to False
|
37 |
+
return "<unserializable>"
|
38 |
+
|
39 |
+
def __setstate__(self, state):
|
40 |
+
self.inner = None
|
41 |
+
|
42 |
+
|
43 |
+
def init_dropout_state(dropout, train, dropout_seed, dropout_state):
|
44 |
+
dropout_desc_name = "desc_" + str(torch.cuda.current_device())
|
45 |
+
dropout_p = dropout if train else 0
|
46 |
+
if (dropout_desc_name not in dropout_state) or (
|
47 |
+
dropout_state[dropout_desc_name].get() is None
|
48 |
+
):
|
49 |
+
if dropout_p == 0:
|
50 |
+
dropout_state[dropout_desc_name] = Unserializable(None)
|
51 |
+
else:
|
52 |
+
dropout_state[dropout_desc_name] = Unserializable(
|
53 |
+
torch._cudnn_init_dropout_state( # type: ignore[call-arg]
|
54 |
+
dropout_p,
|
55 |
+
train,
|
56 |
+
dropout_seed,
|
57 |
+
self_ty=torch.uint8,
|
58 |
+
device=torch.device("cuda"),
|
59 |
+
)
|
60 |
+
)
|
61 |
+
dropout_ts = dropout_state[dropout_desc_name].get()
|
62 |
+
return dropout_ts
|
venv/lib/python3.10/site-packages/torch/backends/mha/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Config options to enable/disable C++ kernel for nn.functional.MHA
|
2 |
+
# and nn.TransformerEncoder
|
3 |
+
import torch
|
4 |
+
|
5 |
+
_is_fastpath_enabled: bool = True
|
6 |
+
|
7 |
+
|
8 |
+
def get_fastpath_enabled() -> bool:
|
9 |
+
"""Returns whether fast path for TransformerEncoder and MultiHeadAttention
|
10 |
+
is enabled, or ``True`` if jit is scripting.
|
11 |
+
|
12 |
+
..note:
|
13 |
+
The fastpath might not be run even if ``get_fastpath_enabled`` returns
|
14 |
+
``True`` unless all conditions on inputs are met.
|
15 |
+
"""
|
16 |
+
if not torch.jit.is_scripting():
|
17 |
+
return _is_fastpath_enabled
|
18 |
+
return True
|
19 |
+
|
20 |
+
|
21 |
+
def set_fastpath_enabled(value: bool) -> None:
|
22 |
+
"""Sets whether fast path is enabled"""
|
23 |
+
global _is_fastpath_enabled
|
24 |
+
_is_fastpath_enabled = value
|
venv/lib/python3.10/site-packages/torch/backends/mha/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (898 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/mkl/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def is_available():
|
5 |
+
r"""Return whether PyTorch is built with MKL support."""
|
6 |
+
return torch._C.has_mkl
|
7 |
+
|
8 |
+
|
9 |
+
VERBOSE_OFF = 0
|
10 |
+
VERBOSE_ON = 1
|
11 |
+
|
12 |
+
|
13 |
+
class verbose:
|
14 |
+
"""
|
15 |
+
On-demand oneMKL verbosing functionality.
|
16 |
+
|
17 |
+
To make it easier to debug performance issues, oneMKL can dump verbose
|
18 |
+
messages containing execution information like duration while executing
|
19 |
+
the kernel. The verbosing functionality can be invoked via an environment
|
20 |
+
variable named `MKL_VERBOSE`. However, this methodology dumps messages in
|
21 |
+
all steps. Those are a large amount of verbose messages. Moreover, for
|
22 |
+
investigating the performance issues, generally taking verbose messages
|
23 |
+
for one single iteration is enough. This on-demand verbosing functionality
|
24 |
+
makes it possible to control scope for verbose message dumping. In the
|
25 |
+
following example, verbose messages will be dumped out for the second
|
26 |
+
inference only.
|
27 |
+
|
28 |
+
.. highlight:: python
|
29 |
+
.. code-block:: python
|
30 |
+
|
31 |
+
import torch
|
32 |
+
model(data)
|
33 |
+
with torch.backends.mkl.verbose(torch.backends.mkl.VERBOSE_ON):
|
34 |
+
model(data)
|
35 |
+
|
36 |
+
Args:
|
37 |
+
level: Verbose level
|
38 |
+
- ``VERBOSE_OFF``: Disable verbosing
|
39 |
+
- ``VERBOSE_ON``: Enable verbosing
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, enable):
|
43 |
+
self.enable = enable
|
44 |
+
|
45 |
+
def __enter__(self):
|
46 |
+
if self.enable == VERBOSE_OFF:
|
47 |
+
return
|
48 |
+
st = torch._C._verbose.mkl_set_verbose(self.enable)
|
49 |
+
assert (
|
50 |
+
st
|
51 |
+
), "Failed to set MKL into verbose mode. Please consider to disable this verbose scope."
|
52 |
+
return self
|
53 |
+
|
54 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
55 |
+
torch._C._verbose.mkl_set_verbose(VERBOSE_OFF)
|
56 |
+
return False
|
venv/lib/python3.10/site-packages/torch/backends/mkl/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.31 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/mkldnn/__init__.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from contextlib import contextmanager
|
3 |
+
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
|
8 |
+
|
9 |
+
|
10 |
+
def is_available():
|
11 |
+
r"""Return whether PyTorch is built with MKL-DNN support."""
|
12 |
+
return torch._C._has_mkldnn
|
13 |
+
|
14 |
+
|
15 |
+
VERBOSE_OFF = 0
|
16 |
+
VERBOSE_ON = 1
|
17 |
+
VERBOSE_ON_CREATION = 2
|
18 |
+
|
19 |
+
|
20 |
+
class verbose:
|
21 |
+
"""
|
22 |
+
On-demand oneDNN (former MKL-DNN) verbosing functionality.
|
23 |
+
|
24 |
+
To make it easier to debug performance issues, oneDNN can dump verbose
|
25 |
+
messages containing information like kernel size, input data size and
|
26 |
+
execution duration while executing the kernel. The verbosing functionality
|
27 |
+
can be invoked via an environment variable named `DNNL_VERBOSE`. However,
|
28 |
+
this methodology dumps messages in all steps. Those are a large amount of
|
29 |
+
verbose messages. Moreover, for investigating the performance issues,
|
30 |
+
generally taking verbose messages for one single iteration is enough.
|
31 |
+
This on-demand verbosing functionality makes it possible to control scope
|
32 |
+
for verbose message dumping. In the following example, verbose messages
|
33 |
+
will be dumped out for the second inference only.
|
34 |
+
|
35 |
+
.. highlight:: python
|
36 |
+
.. code-block:: python
|
37 |
+
|
38 |
+
import torch
|
39 |
+
model(data)
|
40 |
+
with torch.backends.mkldnn.verbose(torch.backends.mkldnn.VERBOSE_ON):
|
41 |
+
model(data)
|
42 |
+
|
43 |
+
Args:
|
44 |
+
level: Verbose level
|
45 |
+
- ``VERBOSE_OFF``: Disable verbosing
|
46 |
+
- ``VERBOSE_ON``: Enable verbosing
|
47 |
+
- ``VERBOSE_ON_CREATION``: Enable verbosing, including oneDNN kernel creation
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(self, level):
|
51 |
+
self.level = level
|
52 |
+
|
53 |
+
def __enter__(self):
|
54 |
+
if self.level == VERBOSE_OFF:
|
55 |
+
return
|
56 |
+
st = torch._C._verbose.mkldnn_set_verbose(self.level)
|
57 |
+
assert (
|
58 |
+
st
|
59 |
+
), "Failed to set MKLDNN into verbose mode. Please consider to disable this verbose scope."
|
60 |
+
return self
|
61 |
+
|
62 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
63 |
+
torch._C._verbose.mkldnn_set_verbose(VERBOSE_OFF)
|
64 |
+
return False
|
65 |
+
|
66 |
+
|
67 |
+
def set_flags(_enabled):
|
68 |
+
orig_flags = (torch._C._get_mkldnn_enabled(),)
|
69 |
+
torch._C._set_mkldnn_enabled(_enabled)
|
70 |
+
return orig_flags
|
71 |
+
|
72 |
+
|
73 |
+
@contextmanager
|
74 |
+
def flags(enabled=False):
|
75 |
+
with __allow_nonbracketed_mutation():
|
76 |
+
orig_flags = set_flags(enabled)
|
77 |
+
try:
|
78 |
+
yield
|
79 |
+
finally:
|
80 |
+
with __allow_nonbracketed_mutation():
|
81 |
+
set_flags(orig_flags[0])
|
82 |
+
|
83 |
+
|
84 |
+
class MkldnnModule(PropModule):
|
85 |
+
def __init__(self, m, name):
|
86 |
+
super().__init__(m, name)
|
87 |
+
|
88 |
+
enabled = ContextProp(torch._C._get_mkldnn_enabled, torch._C._set_mkldnn_enabled)
|
89 |
+
|
90 |
+
|
91 |
+
if TYPE_CHECKING:
|
92 |
+
enabled: ContextProp
|
93 |
+
|
94 |
+
|
95 |
+
# Cool stuff from torch/backends/cudnn/__init__.py and
|
96 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
97 |
+
sys.modules[__name__] = MkldnnModule(sys.modules[__name__], __name__)
|
venv/lib/python3.10/site-packages/torch/backends/mkldnn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/mps/__init__.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import lru_cache as _lru_cache
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from ...library import Library as _Library
|
7 |
+
|
8 |
+
__all__ = ["is_built", "is_available", "is_macos13_or_newer", "is_macos_or_newer"]
|
9 |
+
|
10 |
+
|
11 |
+
def is_built() -> bool:
|
12 |
+
r"""Return whether PyTorch is built with MPS support.
|
13 |
+
|
14 |
+
Note that this doesn't necessarily mean MPS is available; just that
|
15 |
+
if this PyTorch binary were run a machine with working MPS drivers
|
16 |
+
and devices, we would be able to use it.
|
17 |
+
"""
|
18 |
+
return torch._C._has_mps
|
19 |
+
|
20 |
+
|
21 |
+
@_lru_cache
|
22 |
+
def is_available() -> bool:
|
23 |
+
r"""Return a bool indicating if MPS is currently available."""
|
24 |
+
return torch._C._mps_is_available()
|
25 |
+
|
26 |
+
|
27 |
+
@_lru_cache
|
28 |
+
def is_macos_or_newer(major: int, minor: int) -> bool:
|
29 |
+
r"""Return a bool indicating whether MPS is running on given MacOS or newer."""
|
30 |
+
return torch._C._mps_is_on_macos_or_newer(major, minor)
|
31 |
+
|
32 |
+
|
33 |
+
@_lru_cache
|
34 |
+
def is_macos13_or_newer(minor: int = 0) -> bool:
|
35 |
+
r"""Return a bool indicating whether MPS is running on MacOS 13 or newer."""
|
36 |
+
return torch._C._mps_is_on_macos_or_newer(13, minor)
|
37 |
+
|
38 |
+
|
39 |
+
_lib: Optional[_Library] = None
|
40 |
+
|
41 |
+
|
42 |
+
def _init():
|
43 |
+
r"""Register prims as implementation of var_mean and group_norm."""
|
44 |
+
global _lib
|
45 |
+
if is_built() is False or _lib is not None:
|
46 |
+
return
|
47 |
+
from ..._decomp.decompositions import (
|
48 |
+
native_group_norm_backward as _native_group_norm_backward,
|
49 |
+
)
|
50 |
+
from ..._refs import native_group_norm as _native_group_norm
|
51 |
+
|
52 |
+
_lib = _Library("aten", "IMPL")
|
53 |
+
_lib.impl("native_group_norm", _native_group_norm, "MPS")
|
54 |
+
_lib.impl("native_group_norm_backward", _native_group_norm_backward, "MPS")
|
venv/lib/python3.10/site-packages/torch/backends/opt_einsum/__init__.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import warnings
|
3 |
+
from contextlib import contextmanager
|
4 |
+
from functools import lru_cache as _lru_cache
|
5 |
+
from typing import Any
|
6 |
+
|
7 |
+
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
|
8 |
+
|
9 |
+
try:
|
10 |
+
import opt_einsum as _opt_einsum # type: ignore[import]
|
11 |
+
except ImportError:
|
12 |
+
_opt_einsum = None
|
13 |
+
|
14 |
+
|
15 |
+
@_lru_cache
|
16 |
+
def is_available() -> bool:
|
17 |
+
r"""Return a bool indicating if opt_einsum is currently available."""
|
18 |
+
return _opt_einsum is not None
|
19 |
+
|
20 |
+
|
21 |
+
def get_opt_einsum() -> Any:
|
22 |
+
r"""Return the opt_einsum package if opt_einsum is currently available, else None."""
|
23 |
+
return _opt_einsum
|
24 |
+
|
25 |
+
|
26 |
+
def _set_enabled(_enabled: bool) -> None:
|
27 |
+
if not is_available() and _enabled:
|
28 |
+
raise ValueError(
|
29 |
+
f"opt_einsum is not available, so setting `enabled` to {_enabled} will not reap "
|
30 |
+
"the benefits of calculating an optimal path for einsum. torch.einsum will "
|
31 |
+
"fall back to contracting from left to right. To enable this optimal path "
|
32 |
+
"calculation, please install opt-einsum."
|
33 |
+
)
|
34 |
+
global enabled
|
35 |
+
enabled = _enabled
|
36 |
+
|
37 |
+
|
38 |
+
def _get_enabled() -> bool:
|
39 |
+
return enabled
|
40 |
+
|
41 |
+
|
42 |
+
def _set_strategy(_strategy: str) -> None:
|
43 |
+
if not is_available():
|
44 |
+
raise ValueError(
|
45 |
+
f"opt_einsum is not available, so setting `strategy` to {_strategy} will not be meaningful. "
|
46 |
+
"torch.einsum will bypass path calculation and simply contract from left to right. "
|
47 |
+
"Please install opt_einsum or unset `strategy`."
|
48 |
+
)
|
49 |
+
if not enabled:
|
50 |
+
raise ValueError(
|
51 |
+
f"opt_einsum is not enabled, so setting a `strategy` to {_strategy} will not be meaningful. "
|
52 |
+
"torch.einsum will bypass path calculation and simply contract from left to right. "
|
53 |
+
"Please set `enabled` to `True` as well or unset `strategy`."
|
54 |
+
)
|
55 |
+
if _strategy not in ["auto", "greedy", "optimal"]:
|
56 |
+
raise ValueError(
|
57 |
+
f"`strategy` must be one of the following: [auto, greedy, optimal] but is {_strategy}"
|
58 |
+
)
|
59 |
+
global strategy
|
60 |
+
strategy = _strategy
|
61 |
+
|
62 |
+
|
63 |
+
def _get_strategy() -> str:
|
64 |
+
return strategy
|
65 |
+
|
66 |
+
|
67 |
+
def set_flags(_enabled=None, _strategy=None):
|
68 |
+
orig_flags = (enabled, None if not is_available() else strategy)
|
69 |
+
if _enabled is not None:
|
70 |
+
_set_enabled(_enabled)
|
71 |
+
if _strategy is not None:
|
72 |
+
_set_strategy(_strategy)
|
73 |
+
return orig_flags
|
74 |
+
|
75 |
+
|
76 |
+
@contextmanager
|
77 |
+
def flags(enabled=None, strategy=None):
|
78 |
+
with __allow_nonbracketed_mutation():
|
79 |
+
orig_flags = set_flags(enabled, strategy)
|
80 |
+
try:
|
81 |
+
yield
|
82 |
+
finally:
|
83 |
+
# recover the previous values
|
84 |
+
with __allow_nonbracketed_mutation():
|
85 |
+
set_flags(*orig_flags)
|
86 |
+
|
87 |
+
|
88 |
+
# The magic here is to allow us to intercept code like this:
|
89 |
+
#
|
90 |
+
# torch.backends.opt_einsum.enabled = True
|
91 |
+
|
92 |
+
|
93 |
+
class OptEinsumModule(PropModule):
|
94 |
+
def __init__(self, m, name):
|
95 |
+
super().__init__(m, name)
|
96 |
+
|
97 |
+
global enabled
|
98 |
+
enabled = ContextProp(_get_enabled, _set_enabled)
|
99 |
+
global strategy
|
100 |
+
strategy = None
|
101 |
+
if is_available():
|
102 |
+
strategy = ContextProp(_get_strategy, _set_strategy)
|
103 |
+
|
104 |
+
|
105 |
+
# This is the sys.modules replacement trick, see
|
106 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
107 |
+
sys.modules[__name__] = OptEinsumModule(sys.modules[__name__], __name__)
|
108 |
+
|
109 |
+
enabled = True if is_available() else False
|
110 |
+
strategy = "auto" if is_available() else None
|
venv/lib/python3.10/site-packages/torch/backends/opt_einsum/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.47 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/quantized/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import types
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
# This function should correspond to the enums present in c10/core/QEngine.h
|
9 |
+
def _get_qengine_id(qengine: str) -> int:
|
10 |
+
if qengine == "none" or qengine == "" or qengine is None:
|
11 |
+
ret = 0
|
12 |
+
elif qengine == "fbgemm":
|
13 |
+
ret = 1
|
14 |
+
elif qengine == "qnnpack":
|
15 |
+
ret = 2
|
16 |
+
elif qengine == "onednn":
|
17 |
+
ret = 3
|
18 |
+
elif qengine == "x86":
|
19 |
+
ret = 4
|
20 |
+
else:
|
21 |
+
ret = -1
|
22 |
+
raise RuntimeError(f"{qengine} is not a valid value for quantized engine")
|
23 |
+
return ret
|
24 |
+
|
25 |
+
|
26 |
+
# This function should correspond to the enums present in c10/core/QEngine.h
|
27 |
+
def _get_qengine_str(qengine: int) -> str:
|
28 |
+
all_engines = {0: "none", 1: "fbgemm", 2: "qnnpack", 3: "onednn", 4: "x86"}
|
29 |
+
return all_engines.get(qengine, "*undefined")
|
30 |
+
|
31 |
+
|
32 |
+
class _QEngineProp:
|
33 |
+
def __get__(self, obj, objtype) -> str:
|
34 |
+
return _get_qengine_str(torch._C._get_qengine())
|
35 |
+
|
36 |
+
def __set__(self, obj, val: str) -> None:
|
37 |
+
torch._C._set_qengine(_get_qengine_id(val))
|
38 |
+
|
39 |
+
|
40 |
+
class _SupportedQEnginesProp:
|
41 |
+
def __get__(self, obj, objtype) -> List[str]:
|
42 |
+
qengines = torch._C._supported_qengines()
|
43 |
+
return [_get_qengine_str(qe) for qe in qengines]
|
44 |
+
|
45 |
+
def __set__(self, obj, val) -> None:
|
46 |
+
raise RuntimeError("Assignment not supported")
|
47 |
+
|
48 |
+
|
49 |
+
class QuantizedEngine(types.ModuleType):
|
50 |
+
def __init__(self, m, name):
|
51 |
+
super().__init__(name)
|
52 |
+
self.m = m
|
53 |
+
|
54 |
+
def __getattr__(self, attr):
|
55 |
+
return self.m.__getattribute__(attr)
|
56 |
+
|
57 |
+
engine = _QEngineProp()
|
58 |
+
supported_engines = _SupportedQEnginesProp()
|
59 |
+
|
60 |
+
|
61 |
+
# This is the sys.modules replacement trick, see
|
62 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
63 |
+
sys.modules[__name__] = QuantizedEngine(sys.modules[__name__], __name__)
|
64 |
+
engine: str
|
65 |
+
supported_engines: List[str]
|
venv/lib/python3.10/site-packages/torch/backends/quantized/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/backends/xnnpack/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import types
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class _XNNPACKEnabled:
|
8 |
+
def __get__(self, obj, objtype):
|
9 |
+
return torch._C._is_xnnpack_enabled()
|
10 |
+
|
11 |
+
def __set__(self, obj, val):
|
12 |
+
raise RuntimeError("Assignment not supported")
|
13 |
+
|
14 |
+
|
15 |
+
class XNNPACKEngine(types.ModuleType):
|
16 |
+
def __init__(self, m, name):
|
17 |
+
super().__init__(name)
|
18 |
+
self.m = m
|
19 |
+
|
20 |
+
def __getattr__(self, attr):
|
21 |
+
return self.m.__getattribute__(attr)
|
22 |
+
|
23 |
+
enabled = _XNNPACKEnabled()
|
24 |
+
|
25 |
+
|
26 |
+
# This is the sys.modules replacement trick, see
|
27 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
28 |
+
sys.modules[__name__] = XNNPACKEngine(sys.modules[__name__], __name__)
|
venv/lib/python3.10/site-packages/torch/backends/xnnpack/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.98 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/bernoulli.cpython-310.pyc
ADDED
Binary file (4.77 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/beta.cpython-310.pyc
ADDED
Binary file (3.86 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/binomial.cpython-310.pyc
ADDED
Binary file (5.43 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/categorical.cpython-310.pyc
ADDED
Binary file (5.98 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/cauchy.cpython-310.pyc
ADDED
Binary file (3.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/chi2.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/constraint_registry.cpython-310.pyc
ADDED
Binary file (9.95 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/constraints.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/continuous_bernoulli.cpython-310.pyc
ADDED
Binary file (8.16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/dirichlet.cpython-310.pyc
ADDED
Binary file (4.58 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/distribution.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/exp_family.cpython-310.pyc
ADDED
Binary file (2.97 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/exponential.cpython-310.pyc
ADDED
Binary file (3.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/fishersnedecor.cpython-310.pyc
ADDED
Binary file (3.52 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/gamma.cpython-310.pyc
ADDED
Binary file (3.97 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/geometric.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/gumbel.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/half_cauchy.cpython-310.pyc
ADDED
Binary file (3.19 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/half_normal.cpython-310.pyc
ADDED
Binary file (3.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/independent.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/inverse_gamma.cpython-310.pyc
ADDED
Binary file (3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/kl.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/kumaraswamy.cpython-310.pyc
ADDED
Binary file (3.45 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/laplace.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc
ADDED
Binary file (4.78 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/log_normal.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/logistic_normal.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/lowrank_multivariate_normal.cpython-310.pyc
ADDED
Binary file (8.24 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/distributions/__pycache__/mixture_same_family.cpython-310.pyc
ADDED
Binary file (7.23 kB). View file
|
|