Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/16.attention.dense.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_refs/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/__pycache__/_conversions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/__pycache__/fft.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/_conversions.py +118 -0
- venv/lib/python3.10/site-packages/torch/_refs/fft.py +590 -0
- venv/lib/python3.10/site-packages/torch/_refs/linalg/__init__.py +308 -0
- venv/lib/python3.10/site-packages/torch/_refs/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/nn/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/_refs/nn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/nn/functional/__init__.py +1230 -0
- venv/lib/python3.10/site-packages/torch/_refs/nn/functional/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_refs/special/__init__.py +236 -0
- venv/lib/python3.10/site-packages/torch/_refs/special/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__init__.py +18 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_impls.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/functional_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/meta_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/schema_check_mode.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/fake_impls.py +1061 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py +1819 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/fake_utils.py +190 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/functional_tensor.py +653 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/meta_utils.py +987 -0
- venv/lib/python3.10/site-packages/torch/_subclasses/schema_check_mode.py +198 -0
- venv/lib/python3.10/site-packages/torch/export/__init__.py +344 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_remove_auto_functionalized_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_remove_effect_tokens_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_safeguard.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_trace.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_tree_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/_unlift.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/custom_obj.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/dynamic_shapes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/exported_program.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/graph_signature.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/__pycache__/unflatten.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/export/_remove_auto_functionalized_pass.py +93 -0
- venv/lib/python3.10/site-packages/torch/export/_remove_effect_tokens_pass.py +126 -0
- venv/lib/python3.10/site-packages/torch/export/_safeguard.py +42 -0
- venv/lib/python3.10/site-packages/torch/export/_trace.py +1060 -0
- venv/lib/python3.10/site-packages/torch/export/_tree_utils.py +64 -0
ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c54f008b0420ce9a6543fa4182978fce98614d47bacc66e120dc1cd698570c2e
|
3 |
+
size 50332828
|
ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa64a7e8c84a4aa24d5606e708ef41c553e667c8d9d564cf1c782ed0b68b00b8
|
3 |
+
size 50332843
|
ckpts/universal/global_step120/zero/15.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81dc8161845dd2f7ae322f702606ddce30ba8d1c358ee6db16a32a758a3a5917
|
3 |
+
size 50332749
|
ckpts/universal/global_step120/zero/16.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab35ef16672e672908d6ea232361665000eeae86cdeea20c355c84dc5b2e0498
|
3 |
+
size 16778396
|
venv/lib/python3.10/site-packages/torch/_refs/__init__.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/_refs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (141 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/__pycache__/_conversions.cpython-310.pyc
ADDED
Binary file (2.58 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/__pycache__/fft.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/_conversions.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch._prims_common as utils
|
3 |
+
|
4 |
+
# Utilities should come BEFORE this import
|
5 |
+
from torch._decomp import register_decomposition
|
6 |
+
|
7 |
+
from torch._prims_common import TensorLikeType
|
8 |
+
from torch._prims_common.wrappers import out_wrapper
|
9 |
+
from torch._refs import _broadcast_shapes
|
10 |
+
|
11 |
+
# Data conversion references.
|
12 |
+
#
|
13 |
+
# Note: this module breaks the usual _refs to torch naming scheme where
|
14 |
+
# _refs.foo.bar is a ref for torch.foo.bar. The following definitions are not
|
15 |
+
# part of _refs/__init__.py to avoid name clashes with Python builtin types
|
16 |
+
# (like int).
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
# dtypes
|
20 |
+
"bfloat16",
|
21 |
+
"bool",
|
22 |
+
"byte",
|
23 |
+
"cdouble",
|
24 |
+
"cfloat",
|
25 |
+
"chalf",
|
26 |
+
"char",
|
27 |
+
"double",
|
28 |
+
"float",
|
29 |
+
"half",
|
30 |
+
"int",
|
31 |
+
"long",
|
32 |
+
"short",
|
33 |
+
# misc
|
34 |
+
"complex",
|
35 |
+
"polar",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
def _make_conversion_method(name: str, dtype: torch.dtype):
|
40 |
+
def fn(
|
41 |
+
self: TensorLikeType, memory_format: torch.memory_format = torch.preserve_format
|
42 |
+
) -> TensorLikeType:
|
43 |
+
return self.to(dtype, memory_format=memory_format) # type: ignore[call-overload]
|
44 |
+
|
45 |
+
fn.__name__ = name
|
46 |
+
return fn
|
47 |
+
|
48 |
+
|
49 |
+
bfloat16 = _make_conversion_method("bfloat16", torch.bfloat16)
|
50 |
+
|
51 |
+
bool = _make_conversion_method("bool", torch.bool)
|
52 |
+
|
53 |
+
byte = _make_conversion_method("byte", torch.uint8)
|
54 |
+
|
55 |
+
cdouble = _make_conversion_method("cdouble", torch.cdouble)
|
56 |
+
|
57 |
+
cfloat = _make_conversion_method("cfloat", torch.cfloat)
|
58 |
+
|
59 |
+
chalf = _make_conversion_method("chalf", torch.complex32)
|
60 |
+
|
61 |
+
char = _make_conversion_method("char", torch.int8)
|
62 |
+
|
63 |
+
double = _make_conversion_method("double", torch.double)
|
64 |
+
|
65 |
+
float = _make_conversion_method("float", torch.float)
|
66 |
+
|
67 |
+
half = _make_conversion_method("half", torch.half)
|
68 |
+
|
69 |
+
int = _make_conversion_method("int", torch.int)
|
70 |
+
|
71 |
+
long = _make_conversion_method("long", torch.long)
|
72 |
+
|
73 |
+
short = _make_conversion_method("short", torch.short)
|
74 |
+
|
75 |
+
|
76 |
+
@register_decomposition(torch._ops.ops.aten.complex)
|
77 |
+
# Note: complex has type promotion tests disabled due to different semantics.
|
78 |
+
# exact_dtype is for compat with complex_check_dtype from core.
|
79 |
+
@out_wrapper(exact_dtype=True)
|
80 |
+
def complex(real: TensorLikeType, imag: TensorLikeType) -> TensorLikeType:
|
81 |
+
allowed_dtypes = (torch.float32, torch.float64, torch.float16)
|
82 |
+
torch._check(
|
83 |
+
real.dtype in allowed_dtypes and imag.dtype in allowed_dtypes,
|
84 |
+
lambda: (
|
85 |
+
f"Expected both inputs to be Half, Float or Double tensors but got "
|
86 |
+
f"{real.dtype} and {imag.dtype}"
|
87 |
+
),
|
88 |
+
)
|
89 |
+
torch._check(
|
90 |
+
real.dtype == imag.dtype,
|
91 |
+
lambda: (
|
92 |
+
f"Expected object of scalar type {real.dtype} but got "
|
93 |
+
f"scalar type {imag.dtype} for second argument"
|
94 |
+
),
|
95 |
+
)
|
96 |
+
result_dtype = utils.corresponding_complex_dtype(real.dtype) # type: ignore[arg-type]
|
97 |
+
common_shape = _broadcast_shapes(real.shape, imag.shape)
|
98 |
+
result = real.new_empty(
|
99 |
+
common_shape,
|
100 |
+
dtype=result_dtype,
|
101 |
+
layout=real.layout,
|
102 |
+
device=real.device,
|
103 |
+
# pin_memory=real.is_pinned(), # NYI
|
104 |
+
)
|
105 |
+
result.real = real
|
106 |
+
result.imag = imag
|
107 |
+
return result
|
108 |
+
|
109 |
+
|
110 |
+
@register_decomposition(torch._ops.ops.aten.polar)
|
111 |
+
# Note: polar has type promotion tests disabled due to different semantics.
|
112 |
+
# exact_dtype is for compat with complex_check_dtype from core.
|
113 |
+
@out_wrapper(exact_dtype=True)
|
114 |
+
def polar(abs: TensorLikeType, angle: TensorLikeType) -> TensorLikeType:
|
115 |
+
result = torch.complex(abs, angle)
|
116 |
+
result.real = abs * torch.cos(angle)
|
117 |
+
result.imag = abs * torch.sin(angle)
|
118 |
+
return result
|
venv/lib/python3.10/site-packages/torch/_refs/fft.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from typing import Iterable, List, Literal, NamedTuple, Optional, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch._prims as prims
|
7 |
+
import torch._prims_common as utils
|
8 |
+
from torch._decomp import register_decomposition
|
9 |
+
from torch._prims_common import DimsType, ShapeType, TensorLikeType
|
10 |
+
from torch._prims_common.wrappers import _maybe_convert_to_dtype, out_wrapper
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
# Transforms
|
14 |
+
"fft",
|
15 |
+
"fft2",
|
16 |
+
"fftn",
|
17 |
+
"hfft",
|
18 |
+
"hfft2",
|
19 |
+
"hfftn",
|
20 |
+
"rfft",
|
21 |
+
"rfft2",
|
22 |
+
"rfftn",
|
23 |
+
"ifft",
|
24 |
+
"ifft2",
|
25 |
+
"ifftn",
|
26 |
+
"ihfft",
|
27 |
+
"ihfft2",
|
28 |
+
"ihfftn",
|
29 |
+
"irfft",
|
30 |
+
"irfft2",
|
31 |
+
"irfftn",
|
32 |
+
# Helpers
|
33 |
+
"fftshift",
|
34 |
+
"ifftshift",
|
35 |
+
]
|
36 |
+
|
37 |
+
NormType = Union[None, Literal["forward", "backward", "ortho"]]
|
38 |
+
_NORM_VALUES = {None, "forward", "backward", "ortho"}
|
39 |
+
aten = torch._ops.ops.aten
|
40 |
+
|
41 |
+
|
42 |
+
def _apply_norm(
|
43 |
+
x: TensorLikeType, norm: NormType, signal_numel: int, forward: bool
|
44 |
+
) -> TensorLikeType:
|
45 |
+
"""Apply normalization to the un-normalized FFT result"""
|
46 |
+
torch._check(norm in _NORM_VALUES, lambda: f"Invalid normalization mode: {norm}")
|
47 |
+
|
48 |
+
if norm == "ortho":
|
49 |
+
return x * (1 / math.sqrt(signal_numel))
|
50 |
+
|
51 |
+
normalize = (not forward and (norm is None or norm == "backward")) or (
|
52 |
+
forward and norm == "forward"
|
53 |
+
)
|
54 |
+
return x * (1 / signal_numel) if normalize else x
|
55 |
+
|
56 |
+
|
57 |
+
def _promote_type_fft(
|
58 |
+
dtype: torch.dtype, require_complex: bool, device: torch.device
|
59 |
+
) -> torch.dtype:
|
60 |
+
"""Helper to promote a dtype to one supported by the FFT primitives"""
|
61 |
+
if dtype.is_complex:
|
62 |
+
return dtype
|
63 |
+
|
64 |
+
# Promote integral to default float type
|
65 |
+
if not dtype.is_floating_point:
|
66 |
+
dtype = torch.get_default_dtype()
|
67 |
+
|
68 |
+
allowed_types = [torch.float32, torch.float64]
|
69 |
+
maybe_support_half = device.type in ["cuda", "meta"]
|
70 |
+
|
71 |
+
if maybe_support_half:
|
72 |
+
allowed_types.append(torch.float16)
|
73 |
+
torch._check(dtype in allowed_types, lambda: f"Unsupported dtype {dtype}")
|
74 |
+
|
75 |
+
if require_complex:
|
76 |
+
dtype = utils.corresponding_complex_dtype(dtype)
|
77 |
+
|
78 |
+
return dtype
|
79 |
+
|
80 |
+
|
81 |
+
def _maybe_promote_tensor_fft(
|
82 |
+
t: TensorLikeType, require_complex: bool = False
|
83 |
+
) -> TensorLikeType:
|
84 |
+
"""Helper to promote a tensor to a dtype supported by the FFT primitives"""
|
85 |
+
cur_type = t.dtype
|
86 |
+
new_type = _promote_type_fft(cur_type, require_complex, t.device)
|
87 |
+
return _maybe_convert_to_dtype(t, new_type) # type: ignore[return-value]
|
88 |
+
|
89 |
+
|
90 |
+
def _resize_fft_input(
|
91 |
+
x: TensorLikeType, dims: Tuple[int, ...], sizes: Tuple[int, ...]
|
92 |
+
) -> TensorLikeType:
|
93 |
+
"""
|
94 |
+
Fixes the shape of x such that x.size(dims[i]) == sizes[i],
|
95 |
+
either by zero-padding, or by slicing x starting from 0.
|
96 |
+
"""
|
97 |
+
assert len(dims) == len(sizes)
|
98 |
+
must_copy = False
|
99 |
+
x_sizes = x.shape
|
100 |
+
pad_amount = [0] * len(x_sizes) * 2
|
101 |
+
for i in range(len(dims)):
|
102 |
+
if sizes[i] == -1:
|
103 |
+
continue
|
104 |
+
|
105 |
+
if x_sizes[dims[i]] < sizes[i]:
|
106 |
+
must_copy = True
|
107 |
+
pad_idx = len(pad_amount) - 2 * dims[i] - 1
|
108 |
+
pad_amount[pad_idx] = sizes[i] - x_sizes[dims[i]]
|
109 |
+
|
110 |
+
if x_sizes[dims[i]] > sizes[i]:
|
111 |
+
x = x.narrow(dims[i], 0, sizes[i])
|
112 |
+
|
113 |
+
return torch.constant_pad_nd(x, pad_amount) if must_copy else x
|
114 |
+
|
115 |
+
|
116 |
+
def _fft_c2r(
|
117 |
+
func_name: str,
|
118 |
+
input: TensorLikeType,
|
119 |
+
n: Optional[int],
|
120 |
+
dim: int,
|
121 |
+
norm: NormType,
|
122 |
+
forward: bool,
|
123 |
+
) -> TensorLikeType:
|
124 |
+
"""Common code for performing any complex to real FFT (irfft or hfft)"""
|
125 |
+
input = _maybe_promote_tensor_fft(input, require_complex=True)
|
126 |
+
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
|
127 |
+
last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1)
|
128 |
+
torch._check(
|
129 |
+
last_dim_size >= 1,
|
130 |
+
lambda: f"Invalid number of data points ({last_dim_size}) specified",
|
131 |
+
)
|
132 |
+
|
133 |
+
if n is not None:
|
134 |
+
input = _resize_fft_input(input, dims=dims, sizes=(last_dim_size // 2 + 1,))
|
135 |
+
|
136 |
+
if forward:
|
137 |
+
input = torch.conj(input)
|
138 |
+
|
139 |
+
output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size)
|
140 |
+
return _apply_norm(output, norm=norm, signal_numel=last_dim_size, forward=forward)
|
141 |
+
|
142 |
+
|
143 |
+
def _fft_r2c(
|
144 |
+
func_name: str,
|
145 |
+
input: TensorLikeType,
|
146 |
+
n: Optional[int],
|
147 |
+
dim: int,
|
148 |
+
norm: NormType,
|
149 |
+
forward: bool,
|
150 |
+
onesided: bool,
|
151 |
+
) -> TensorLikeType:
|
152 |
+
"""Common code for performing any real to complex FFT (rfft or ihfft)"""
|
153 |
+
torch._check(
|
154 |
+
not input.dtype.is_complex,
|
155 |
+
lambda: f"{func_name} expects a floating point input tensor, but got {input.dtype}",
|
156 |
+
)
|
157 |
+
input = _maybe_promote_tensor_fft(input)
|
158 |
+
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
|
159 |
+
dim_size = n if n is not None else input.shape[dim]
|
160 |
+
torch._check(
|
161 |
+
dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
|
162 |
+
)
|
163 |
+
|
164 |
+
if n is not None:
|
165 |
+
input = _resize_fft_input(input, dims, (n,))
|
166 |
+
|
167 |
+
ret = prims.fft_r2c(input, dim=dims, onesided=onesided)
|
168 |
+
ret = _apply_norm(ret, norm, dim_size, forward)
|
169 |
+
return ret if forward else torch.conj(ret)
|
170 |
+
|
171 |
+
|
172 |
+
def _fft_c2c(
|
173 |
+
func_name: str,
|
174 |
+
input: TensorLikeType,
|
175 |
+
n: Optional[int],
|
176 |
+
dim: int,
|
177 |
+
norm: NormType,
|
178 |
+
forward: bool,
|
179 |
+
) -> TensorLikeType:
|
180 |
+
"""Common code for performing any complex to complex FFT (fft or ifft)"""
|
181 |
+
torch._check(
|
182 |
+
input.dtype.is_complex,
|
183 |
+
lambda: f"{func_name} expects a complex input tensor, but got {input.dtype}",
|
184 |
+
)
|
185 |
+
dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),)
|
186 |
+
dim_size = n if n is not None else input.shape[dim]
|
187 |
+
torch._check(
|
188 |
+
dim_size >= 1, lambda: f"Invalid number of data points ({dim_size}) specified"
|
189 |
+
)
|
190 |
+
|
191 |
+
if n is not None:
|
192 |
+
input = _resize_fft_input(input, dims, (n,))
|
193 |
+
|
194 |
+
ret = prims.fft_c2c(input, dim=dims, forward=forward)
|
195 |
+
return _apply_norm(ret, norm, dim_size, forward)
|
196 |
+
|
197 |
+
|
198 |
+
@register_decomposition(aten.fft_fft)
|
199 |
+
@out_wrapper()
|
200 |
+
def fft(
|
201 |
+
input: TensorLikeType,
|
202 |
+
n: Optional[int] = None,
|
203 |
+
dim: int = -1,
|
204 |
+
norm: NormType = None,
|
205 |
+
) -> TensorLikeType:
|
206 |
+
if input.dtype.is_complex:
|
207 |
+
return _fft_c2c("fft", input, n, dim, norm, forward=True)
|
208 |
+
else:
|
209 |
+
return _fft_r2c("fft", input, n, dim, norm, forward=True, onesided=False)
|
210 |
+
|
211 |
+
|
212 |
+
@register_decomposition(aten.fft_ifft)
|
213 |
+
@out_wrapper()
|
214 |
+
def ifft(
|
215 |
+
input: TensorLikeType,
|
216 |
+
n: Optional[int] = None,
|
217 |
+
dim: int = -1,
|
218 |
+
norm: NormType = None,
|
219 |
+
) -> TensorLikeType:
|
220 |
+
if input.dtype.is_complex:
|
221 |
+
return _fft_c2c("ifft", input, n, dim, norm, forward=False)
|
222 |
+
else:
|
223 |
+
return _fft_r2c("ifft", input, n, dim, norm, forward=False, onesided=False)
|
224 |
+
|
225 |
+
|
226 |
+
@register_decomposition(aten.fft_rfft)
|
227 |
+
@out_wrapper()
|
228 |
+
def rfft(
|
229 |
+
input: TensorLikeType,
|
230 |
+
n: Optional[int] = None,
|
231 |
+
dim: int = -1,
|
232 |
+
norm: NormType = None,
|
233 |
+
) -> TensorLikeType:
|
234 |
+
return _fft_r2c("rfft", input, n, dim, norm, forward=True, onesided=True)
|
235 |
+
|
236 |
+
|
237 |
+
@register_decomposition(aten.fft_irfft)
|
238 |
+
@out_wrapper()
|
239 |
+
def irfft(
|
240 |
+
input: TensorLikeType,
|
241 |
+
n: Optional[int] = None,
|
242 |
+
dim: int = -1,
|
243 |
+
norm: NormType = None,
|
244 |
+
) -> TensorLikeType:
|
245 |
+
return _fft_c2r("irfft", input, n, dim, norm, forward=False)
|
246 |
+
|
247 |
+
|
248 |
+
@register_decomposition(aten.fft_hfft)
|
249 |
+
@out_wrapper()
|
250 |
+
def hfft(
|
251 |
+
input: TensorLikeType,
|
252 |
+
n: Optional[int] = None,
|
253 |
+
dim: int = -1,
|
254 |
+
norm: NormType = None,
|
255 |
+
) -> TensorLikeType:
|
256 |
+
return _fft_c2r("hfft", input, n, dim, norm, forward=True)
|
257 |
+
|
258 |
+
|
259 |
+
@register_decomposition(aten.fft_ihfft)
|
260 |
+
@out_wrapper()
|
261 |
+
def ihfft(
|
262 |
+
input: TensorLikeType,
|
263 |
+
n: Optional[int] = None,
|
264 |
+
dim: int = -1,
|
265 |
+
norm: NormType = None,
|
266 |
+
) -> TensorLikeType:
|
267 |
+
return _fft_r2c("ihfft", input, n, dim, norm, forward=False, onesided=True)
|
268 |
+
|
269 |
+
|
270 |
+
class _ShapeAndDims(NamedTuple):
|
271 |
+
shape: Tuple[int, ...]
|
272 |
+
dims: Tuple[int, ...]
|
273 |
+
|
274 |
+
|
275 |
+
def _canonicalize_fft_shape_and_dim_args(
|
276 |
+
input: TensorLikeType, shape: Optional[ShapeType], dim: Optional[DimsType]
|
277 |
+
) -> _ShapeAndDims:
|
278 |
+
"""Convert the shape and dim arguments into a canonical form where neither are optional"""
|
279 |
+
input_dim = input.ndim
|
280 |
+
input_sizes = input.shape
|
281 |
+
|
282 |
+
if dim is not None:
|
283 |
+
if not isinstance(dim, Sequence):
|
284 |
+
dim = (dim,)
|
285 |
+
ret_dims = utils.canonicalize_dims(input_dim, dim, wrap_scalar=False)
|
286 |
+
|
287 |
+
# Check dims are unique
|
288 |
+
torch._check(
|
289 |
+
len(set(ret_dims)) == len(ret_dims), lambda: "FFT dims must be unique"
|
290 |
+
)
|
291 |
+
|
292 |
+
if shape is not None:
|
293 |
+
if not isinstance(shape, Sequence):
|
294 |
+
shape = (shape,)
|
295 |
+
|
296 |
+
# Has shape, might have dim
|
297 |
+
torch._check(
|
298 |
+
dim is None or len(dim) == len(shape),
|
299 |
+
lambda: "When given, dim and shape arguments must have the same length",
|
300 |
+
)
|
301 |
+
transform_ndim = len(shape)
|
302 |
+
|
303 |
+
torch._check(
|
304 |
+
transform_ndim <= input_dim,
|
305 |
+
lambda: f"Got shape with {transform_ndim} values but input tensor "
|
306 |
+
f"only has {input_dim} dimensions.",
|
307 |
+
)
|
308 |
+
|
309 |
+
# If shape is given, dims defaults to the last len(shape) dimensions
|
310 |
+
if dim is None:
|
311 |
+
ret_dims = tuple(range(input_dim - transform_ndim, input_dim))
|
312 |
+
|
313 |
+
# Translate any -1 values in shape to the default length
|
314 |
+
ret_shape = tuple(
|
315 |
+
s if s != -1 else input_sizes[d] for (s, d) in zip(shape, ret_dims) # type: ignore[possibly-undefined]
|
316 |
+
)
|
317 |
+
elif dim is None:
|
318 |
+
# No shape, no dim
|
319 |
+
ret_dims = tuple(range(input_dim))
|
320 |
+
ret_shape = tuple(input_sizes)
|
321 |
+
else:
|
322 |
+
# No shape, has dim
|
323 |
+
ret_shape = tuple(input_sizes[d] for d in ret_dims) # type: ignore[possibly-undefined]
|
324 |
+
|
325 |
+
for n in ret_shape:
|
326 |
+
torch._check(n > 0, lambda: f"Invalid number of data points ({n}) specified")
|
327 |
+
|
328 |
+
return _ShapeAndDims(shape=ret_shape, dims=ret_dims) # type: ignore[possibly-undefined]
|
329 |
+
|
330 |
+
|
331 |
+
def _prod(xs: Iterable[int]) -> int:
|
332 |
+
"""Compute product of a list"""
|
333 |
+
prod = 1
|
334 |
+
for x in xs:
|
335 |
+
prod *= x
|
336 |
+
return prod
|
337 |
+
|
338 |
+
|
339 |
+
def _fftn_c2c(
|
340 |
+
function_name: str,
|
341 |
+
input: TensorLikeType,
|
342 |
+
shape: Tuple[int, ...],
|
343 |
+
dim: Tuple[int, ...],
|
344 |
+
norm: NormType,
|
345 |
+
forward: bool,
|
346 |
+
) -> TensorLikeType:
|
347 |
+
"""Common code for n-dimensional complex to complex FFTs (fftn or ifftn)"""
|
348 |
+
torch._check(
|
349 |
+
input.dtype.is_complex,
|
350 |
+
lambda: f"{function_name} expects a complex input tensor, "
|
351 |
+
f"but got {input.dtype}",
|
352 |
+
)
|
353 |
+
x = _resize_fft_input(input, dim, shape)
|
354 |
+
output = prims.fft_c2c(x, dim=dim, forward=forward)
|
355 |
+
return _apply_norm(output, norm=norm, signal_numel=_prod(shape), forward=forward)
|
356 |
+
|
357 |
+
|
358 |
+
@register_decomposition(aten.fft_fftn)
|
359 |
+
@out_wrapper()
|
360 |
+
def fftn(
|
361 |
+
input: TensorLikeType,
|
362 |
+
s: Optional[ShapeType] = None,
|
363 |
+
dim: Optional[DimsType] = None,
|
364 |
+
norm: NormType = None,
|
365 |
+
) -> TensorLikeType:
|
366 |
+
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
|
367 |
+
x = _maybe_promote_tensor_fft(input, require_complex=True)
|
368 |
+
return _fftn_c2c("fftn", x, shape, dim, norm, forward=True)
|
369 |
+
|
370 |
+
|
371 |
+
@register_decomposition(aten.fft_ifftn)
|
372 |
+
@out_wrapper()
|
373 |
+
def ifftn(
|
374 |
+
input: TensorLikeType,
|
375 |
+
s: Optional[ShapeType] = None,
|
376 |
+
dim: Optional[DimsType] = None,
|
377 |
+
norm: NormType = None,
|
378 |
+
) -> TensorLikeType:
|
379 |
+
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
|
380 |
+
x = _maybe_promote_tensor_fft(input, require_complex=True)
|
381 |
+
return _fftn_c2c("ifftn", x, shape, dim, norm, forward=False)
|
382 |
+
|
383 |
+
|
384 |
+
@register_decomposition(aten.fft_rfftn)
|
385 |
+
@out_wrapper()
|
386 |
+
def rfftn(
|
387 |
+
input: TensorLikeType,
|
388 |
+
s: Optional[ShapeType] = None,
|
389 |
+
dim: Optional[DimsType] = None,
|
390 |
+
norm: NormType = None,
|
391 |
+
) -> TensorLikeType:
|
392 |
+
torch._check(
|
393 |
+
not input.dtype.is_complex,
|
394 |
+
lambda: f"rfftn expects a real-valued input tensor, but got {input.dtype}",
|
395 |
+
)
|
396 |
+
shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
|
397 |
+
input = _maybe_promote_tensor_fft(input, require_complex=False)
|
398 |
+
input = _resize_fft_input(input, dim, shape)
|
399 |
+
out = prims.fft_r2c(input, dim=dim, onesided=True)
|
400 |
+
return _apply_norm(out, norm=norm, signal_numel=_prod(shape), forward=True)
|
401 |
+
|
402 |
+
|
403 |
+
@register_decomposition(aten.fft_ihfftn)
|
404 |
+
@out_wrapper()
|
405 |
+
def ihfftn(
|
406 |
+
input: TensorLikeType,
|
407 |
+
s: Optional[ShapeType] = None,
|
408 |
+
dim: Optional[DimsType] = None,
|
409 |
+
norm: NormType = None,
|
410 |
+
) -> TensorLikeType:
|
411 |
+
torch._check(
|
412 |
+
not input.dtype.is_complex,
|
413 |
+
lambda: f"ihfftn expects a real-valued input tensor, but got {input.dtype}",
|
414 |
+
)
|
415 |
+
shape, dim = _canonicalize_fft_shape_and_dim_args(input, s, dim)
|
416 |
+
torch._check(len(shape) > 0, lambda: "ihfftn must transform at least one axis")
|
417 |
+
input = _maybe_promote_tensor_fft(input, require_complex=False)
|
418 |
+
input = _resize_fft_input(input, dim, shape)
|
419 |
+
|
420 |
+
tmp = prims.fft_r2c(input, dim=dim[-1:], onesided=True)
|
421 |
+
|
422 |
+
if len(dim) == 1:
|
423 |
+
tmp = _apply_norm(tmp, norm=norm, signal_numel=shape[0], forward=False)
|
424 |
+
return prims.conj(tmp)
|
425 |
+
|
426 |
+
tmp = prims.conj_physical(tmp)
|
427 |
+
tmp = prims.fft_c2c(tmp, dim=dim[:-1], forward=False)
|
428 |
+
return _apply_norm(tmp, norm=norm, signal_numel=_prod(shape), forward=False)
|
429 |
+
|
430 |
+
|
431 |
+
class _CanonicalizeC2rReturn(NamedTuple):
|
432 |
+
shape: Tuple[int, ...]
|
433 |
+
dim: Tuple[int, ...]
|
434 |
+
last_dim_size: int
|
435 |
+
|
436 |
+
|
437 |
+
def _canonicalize_fft_c2r_shape_and_dim_args(
|
438 |
+
fname: str,
|
439 |
+
input: TensorLikeType,
|
440 |
+
s: Optional[ShapeType],
|
441 |
+
dim: Optional[DimsType],
|
442 |
+
) -> _CanonicalizeC2rReturn:
|
443 |
+
"""Canonicalize shape and dim arguments for n-dimensional c2r transforms,
|
444 |
+
as well as calculating the last_dim_size which is shape[dim[-1]] for the output"""
|
445 |
+
(shape, dim) = _canonicalize_fft_shape_and_dim_args(input, s, dim)
|
446 |
+
torch._check(len(shape) > 0, lambda: f"{fname} must transform at least one axis")
|
447 |
+
|
448 |
+
if s is None or s[-1] == -1:
|
449 |
+
last_dim_size = 2 * (input.shape[dim[-1]] - 1)
|
450 |
+
else:
|
451 |
+
last_dim_size = shape[-1]
|
452 |
+
|
453 |
+
torch._check(
|
454 |
+
last_dim_size >= 1,
|
455 |
+
lambda: f"Invalid number of data points ({last_dim_size}) specified",
|
456 |
+
)
|
457 |
+
|
458 |
+
shape_list = list(shape)
|
459 |
+
shape_list[-1] = last_dim_size // 2 + 1
|
460 |
+
return _CanonicalizeC2rReturn(
|
461 |
+
shape=tuple(shape_list), dim=dim, last_dim_size=last_dim_size
|
462 |
+
)
|
463 |
+
|
464 |
+
|
465 |
+
@register_decomposition(aten.fft_irfftn)
|
466 |
+
@out_wrapper()
|
467 |
+
def irfftn(
|
468 |
+
input: TensorLikeType,
|
469 |
+
s: Optional[ShapeType] = None,
|
470 |
+
dim: Optional[DimsType] = None,
|
471 |
+
norm: NormType = None,
|
472 |
+
) -> TensorLikeType:
|
473 |
+
shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
|
474 |
+
"irfftn", input, s, dim
|
475 |
+
)
|
476 |
+
input = _maybe_promote_tensor_fft(input, require_complex=True)
|
477 |
+
input = _resize_fft_input(input, dim, shape)
|
478 |
+
out = prims.fft_c2r(input, dim=dim, last_dim_size=last_dim_size)
|
479 |
+
return _apply_norm(out, norm, _prod(out.shape[d] for d in dim), forward=False)
|
480 |
+
|
481 |
+
|
482 |
+
@register_decomposition(aten.fft_hfftn)
|
483 |
+
@out_wrapper()
|
484 |
+
def hfftn(
|
485 |
+
input: TensorLikeType,
|
486 |
+
s: Optional[ShapeType] = None,
|
487 |
+
dim: Optional[DimsType] = None,
|
488 |
+
norm: NormType = None,
|
489 |
+
) -> TensorLikeType:
|
490 |
+
shape, dim, last_dim_size = _canonicalize_fft_c2r_shape_and_dim_args(
|
491 |
+
"hfftn", input, s, dim
|
492 |
+
)
|
493 |
+
input = _maybe_promote_tensor_fft(input, require_complex=True)
|
494 |
+
input = _resize_fft_input(input, dim, shape)
|
495 |
+
|
496 |
+
tmp = prims.fft_c2c(input, dim=dim[:-1], forward=True) if len(dim) > 1 else input
|
497 |
+
tmp = _apply_norm(tmp, norm, _prod(shape[:-1]), forward=True)
|
498 |
+
tmp = prims.conj_physical(tmp)
|
499 |
+
out = prims.fft_c2r(tmp, dim=dim[-1:], last_dim_size=last_dim_size)
|
500 |
+
return _apply_norm(out, norm, last_dim_size, forward=True)
|
501 |
+
|
502 |
+
|
503 |
+
@register_decomposition(aten.fft_fft2)
|
504 |
+
@out_wrapper()
|
505 |
+
def fft2(
|
506 |
+
input: TensorLikeType,
|
507 |
+
s: Optional[ShapeType] = None,
|
508 |
+
dim: Optional[DimsType] = (-2, -1),
|
509 |
+
norm: NormType = None,
|
510 |
+
) -> TensorLikeType:
|
511 |
+
return torch.fft.fftn(input, s=s, dim=dim, norm=norm)
|
512 |
+
|
513 |
+
|
514 |
+
@register_decomposition(aten.fft_ifft2)
|
515 |
+
@out_wrapper()
|
516 |
+
def ifft2(
|
517 |
+
input: TensorLikeType,
|
518 |
+
s: Optional[ShapeType] = None,
|
519 |
+
dim: Optional[DimsType] = (-2, -1),
|
520 |
+
norm: NormType = None,
|
521 |
+
) -> TensorLikeType:
|
522 |
+
return torch.fft.ifftn(input, s=s, dim=dim, norm=norm)
|
523 |
+
|
524 |
+
|
525 |
+
@register_decomposition(aten.fft_rfft2)
|
526 |
+
@out_wrapper()
|
527 |
+
def rfft2(
|
528 |
+
input: TensorLikeType,
|
529 |
+
s: Optional[ShapeType] = None,
|
530 |
+
dim: Optional[DimsType] = (-2, -1),
|
531 |
+
norm: NormType = None,
|
532 |
+
) -> TensorLikeType:
|
533 |
+
return torch.fft.rfftn(input, s=s, dim=dim, norm=norm)
|
534 |
+
|
535 |
+
|
536 |
+
@register_decomposition(aten.fft_irfft2)
|
537 |
+
@out_wrapper()
|
538 |
+
def irfft2(
|
539 |
+
input: TensorLikeType,
|
540 |
+
s: Optional[ShapeType] = None,
|
541 |
+
dim: Optional[DimsType] = (-2, -1),
|
542 |
+
norm: NormType = None,
|
543 |
+
) -> TensorLikeType:
|
544 |
+
return torch.fft.irfftn(input, s=s, dim=dim, norm=norm)
|
545 |
+
|
546 |
+
|
547 |
+
@register_decomposition(aten.fft_hfft2)
|
548 |
+
@out_wrapper()
|
549 |
+
def hfft2(
|
550 |
+
input: TensorLikeType,
|
551 |
+
s: Optional[ShapeType] = None,
|
552 |
+
dim: Optional[DimsType] = (-2, -1),
|
553 |
+
norm: NormType = None,
|
554 |
+
) -> TensorLikeType:
|
555 |
+
return torch.fft.hfftn(input, s=s, dim=dim, norm=norm)
|
556 |
+
|
557 |
+
|
558 |
+
@register_decomposition(aten.fft_ihfft2)
|
559 |
+
@out_wrapper()
|
560 |
+
def ihfft2(
|
561 |
+
input: TensorLikeType,
|
562 |
+
s: Optional[ShapeType] = None,
|
563 |
+
dim: Optional[DimsType] = (-2, -1),
|
564 |
+
norm: NormType = None,
|
565 |
+
) -> TensorLikeType:
|
566 |
+
return torch.fft.ihfftn(input, s=s, dim=dim, norm=norm)
|
567 |
+
|
568 |
+
|
569 |
+
def _default_alldims(dim: Optional[DimsType], x: TensorLikeType) -> List[int]:
|
570 |
+
"""Convert Optional[DimsType] to a simple list, defaulting to all dimensions"""
|
571 |
+
if dim is None:
|
572 |
+
return list(range(x.ndim))
|
573 |
+
elif not isinstance(dim, Sequence):
|
574 |
+
return [dim]
|
575 |
+
else:
|
576 |
+
return list(dim)
|
577 |
+
|
578 |
+
|
579 |
+
@register_decomposition(aten.fft_fftshift)
|
580 |
+
def fftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
|
581 |
+
dims = _default_alldims(dim, input)
|
582 |
+
shift = [input.shape[d] // 2 for d in dims]
|
583 |
+
return torch.roll(input, shift, dims)
|
584 |
+
|
585 |
+
|
586 |
+
@register_decomposition(aten.fft_ifftshift)
|
587 |
+
def ifftshift(input: TensorLikeType, dim: Optional[DimsType] = None) -> TensorLikeType:
|
588 |
+
dims = _default_alldims(dim, input)
|
589 |
+
shift = [(input.shape[d] + 1) // 2 for d in dims]
|
590 |
+
return torch.roll(input, shift, dims)
|
venv/lib/python3.10/site-packages/torch/_refs/linalg/__init__.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import torch._prims as prims
|
8 |
+
|
9 |
+
import torch._prims_common as utils
|
10 |
+
import torch._refs as refs
|
11 |
+
import torch._refs.linalg as linalg
|
12 |
+
from torch import Tensor
|
13 |
+
from torch._prims_common import (
|
14 |
+
check_fp_or_complex,
|
15 |
+
check_is_matrix,
|
16 |
+
Dim,
|
17 |
+
DimsType,
|
18 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND,
|
19 |
+
IntLike,
|
20 |
+
NumberType,
|
21 |
+
TensorLikeType,
|
22 |
+
)
|
23 |
+
from torch._prims_common.wrappers import (
|
24 |
+
_maybe_convert_to_dtype,
|
25 |
+
elementwise_type_promotion_wrapper,
|
26 |
+
out_wrapper,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
"diagonal",
|
32 |
+
"matrix_norm",
|
33 |
+
"norm",
|
34 |
+
"svd",
|
35 |
+
"svdvals",
|
36 |
+
"vector_norm",
|
37 |
+
"vecdot",
|
38 |
+
"cross",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def _check_norm_dtype(dtype: Optional[torch.dtype], x_dtype: torch.dtype, fn_name: str):
|
43 |
+
"""
|
44 |
+
Checks related to the dtype kwarg in `linalg.*norm` functions
|
45 |
+
"""
|
46 |
+
if dtype is not None:
|
47 |
+
torch._check(
|
48 |
+
utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
|
49 |
+
lambda: f"{fn_name}: dtype should be floating point or complex. Got {dtype}",
|
50 |
+
)
|
51 |
+
torch._check(
|
52 |
+
utils.is_complex_dtype(dtype) == utils.is_complex_dtype(x_dtype),
|
53 |
+
lambda: "{fn_name}: dtype should be {d} for {d} inputs. Got {dtype}".format(
|
54 |
+
fn_name=fn_name,
|
55 |
+
d="complex" if utils.is_complex_dtype(x_dtype) else "real",
|
56 |
+
dtype=dtype,
|
57 |
+
),
|
58 |
+
)
|
59 |
+
torch._check(
|
60 |
+
utils.get_higher_dtype(dtype, x_dtype) == dtype,
|
61 |
+
lambda: f"{fn_name}: the dtype of the input ({x_dtype}) should be convertible "
|
62 |
+
"without narrowing to the specified dtype ({dtype})",
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
# Utilities should come BEFORE this import
|
67 |
+
from torch._decomp import register_decomposition
|
68 |
+
from torch._decomp.decompositions import pw_cast_for_opmath
|
69 |
+
|
70 |
+
|
71 |
+
@register_decomposition(torch._ops.ops.aten.linalg_cross)
|
72 |
+
@out_wrapper()
|
73 |
+
@pw_cast_for_opmath
|
74 |
+
def cross(a: Tensor, b: Tensor, dim: int = -1):
|
75 |
+
torch._check(
|
76 |
+
a.ndim == b.ndim,
|
77 |
+
lambda: "linalg.cross: inputs must have the same number of dimensions.",
|
78 |
+
)
|
79 |
+
torch._check(
|
80 |
+
a.size(dim) == 3 and b.size(dim) == 3,
|
81 |
+
lambda: f"linalg.cross: inputs dim {dim} must have length 3, got {a.size(dim)} and {b.size(dim)}",
|
82 |
+
)
|
83 |
+
a, b = torch.broadcast_tensors(a, b)
|
84 |
+
dim = utils.canonicalize_dim(a.ndim, dim)
|
85 |
+
idx = torch.arange(3, device=a.device)
|
86 |
+
return a.index_select(dim, (idx + 1) % 3) * b.index_select(
|
87 |
+
dim, (idx + 2) % 3
|
88 |
+
) - a.index_select(dim, (idx + 2) % 3) * b.index_select(dim, (idx + 1) % 3)
|
89 |
+
|
90 |
+
|
91 |
+
def diagonal(
|
92 |
+
input: TensorLikeType,
|
93 |
+
*,
|
94 |
+
offset: int = 0,
|
95 |
+
dim1: int = -2,
|
96 |
+
dim2: int = -1,
|
97 |
+
) -> TensorLikeType:
|
98 |
+
return torch.diagonal(input, offset=offset, dim1=dim1, dim2=dim2)
|
99 |
+
|
100 |
+
|
101 |
+
@register_decomposition(torch._ops.ops.aten.linalg_vector_norm)
|
102 |
+
@out_wrapper(exact_dtype=True)
|
103 |
+
def vector_norm(
|
104 |
+
x: TensorLikeType,
|
105 |
+
ord: Union[float, int] = 2,
|
106 |
+
dim: Optional[DimsType] = None,
|
107 |
+
keepdim: bool = False,
|
108 |
+
*,
|
109 |
+
dtype: Optional[torch.dtype] = None,
|
110 |
+
) -> Tensor:
|
111 |
+
# Checks
|
112 |
+
check_fp_or_complex(x.dtype, "linalg.vector_norm")
|
113 |
+
|
114 |
+
if isinstance(dim, Dim):
|
115 |
+
dim = [dim] # type: ignore[assignment]
|
116 |
+
|
117 |
+
if x.numel() == 0 and (ord < 0.0 or ord == float("inf")):
|
118 |
+
torch._check(
|
119 |
+
dim is not None and len(dim) != 0,
|
120 |
+
lambda: f"linalg.vector_norm cannot compute the {ord} norm on an empty tensor "
|
121 |
+
"because the operation does not have an identity",
|
122 |
+
)
|
123 |
+
shape = x.shape
|
124 |
+
assert dim is not None # mypy does not seem to be able to see through check?
|
125 |
+
for d in dim:
|
126 |
+
torch._check(
|
127 |
+
shape[d] != 0,
|
128 |
+
lambda: f"linalg.vector_norm cannot compute the {ord} norm on the "
|
129 |
+
f"dimension {d} because this dimension is empty and the "
|
130 |
+
"operation does not have an identity",
|
131 |
+
)
|
132 |
+
_check_norm_dtype(dtype, x.dtype, "linalg.vector_norm")
|
133 |
+
|
134 |
+
computation_dtype, result_dtype = utils.reduction_dtypes(
|
135 |
+
x, utils.REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, dtype
|
136 |
+
)
|
137 |
+
|
138 |
+
to_result_dtype = partial(_maybe_convert_to_dtype, dtype=result_dtype)
|
139 |
+
|
140 |
+
# Implementation
|
141 |
+
if ord == 0.0:
|
142 |
+
return torch.sum(torch.ne(x, 0.0), dim=dim, keepdim=keepdim, dtype=result_dtype)
|
143 |
+
elif ord == float("inf"):
|
144 |
+
return to_result_dtype(torch.amax(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
|
145 |
+
elif ord == float("-inf"):
|
146 |
+
return to_result_dtype(torch.amin(torch.abs(x), dim=dim, keepdim=keepdim)) # type: ignore[return-value,arg-type]
|
147 |
+
else:
|
148 |
+
# From here on the computation dtype is important as the reduction is non-trivial
|
149 |
+
x = _maybe_convert_to_dtype(x, computation_dtype) # type: ignore[assignment]
|
150 |
+
reduce_sum = partial(torch.sum, dim=dim, keepdim=keepdim)
|
151 |
+
|
152 |
+
is_ord_even = ord % 2 == 0 if isinstance(ord, IntLike) else ord % 2.0 == 0.0
|
153 |
+
if not (is_ord_even and utils.is_float_dtype(x.dtype)):
|
154 |
+
x = torch.abs(x)
|
155 |
+
return to_result_dtype(torch.pow(reduce_sum(torch.pow(x, ord)), 1.0 / ord)) # type: ignore[return-value]
|
156 |
+
|
157 |
+
|
158 |
+
def _backshift_permutation(dim0, dim1, ndim):
|
159 |
+
# Auxiliary function for matrix_norm
|
160 |
+
# Computes the permutation that moves the two given dimensions to the back
|
161 |
+
ret = [i for i in range(ndim) if i != dim0 and i != dim1]
|
162 |
+
ret.extend((dim0, dim1))
|
163 |
+
return ret
|
164 |
+
|
165 |
+
|
166 |
+
def _inverse_permutation(perm):
|
167 |
+
# Given a permutation, returns its inverse. It's equivalent to argsort on an array
|
168 |
+
return [i for i, j in sorted(enumerate(perm), key=lambda i_j: i_j[1])]
|
169 |
+
|
170 |
+
|
171 |
+
# CompositeImplicitAutograd
|
172 |
+
@out_wrapper(exact_dtype=True)
|
173 |
+
def matrix_norm(
|
174 |
+
A: TensorLikeType,
|
175 |
+
ord: Union[float, str] = "fro",
|
176 |
+
dim: DimsType = (-2, -1),
|
177 |
+
keepdim: bool = False,
|
178 |
+
*,
|
179 |
+
dtype: Optional[torch.dtype] = None,
|
180 |
+
) -> TensorLikeType:
|
181 |
+
# shape
|
182 |
+
check_is_matrix(A, "linalg.matrix_norm")
|
183 |
+
# dim
|
184 |
+
dim = utils.canonicalize_dims(A.ndim, dim)
|
185 |
+
if isinstance(dim, Dim):
|
186 |
+
dim = (dim,) # type: ignore[assignment]
|
187 |
+
torch._check(
|
188 |
+
len(dim) == 2, lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}"
|
189 |
+
)
|
190 |
+
torch._check(
|
191 |
+
dim[0] != dim[1],
|
192 |
+
lambda: "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
|
193 |
+
)
|
194 |
+
# dtype arg
|
195 |
+
_check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")
|
196 |
+
|
197 |
+
if isinstance(ord, str):
|
198 |
+
# ord
|
199 |
+
torch._check(
|
200 |
+
ord in ("fro", "nuc"),
|
201 |
+
lambda: "linalg.matrix_norm: Order {ord} not supported.",
|
202 |
+
)
|
203 |
+
# dtype
|
204 |
+
check_fp_or_complex(
|
205 |
+
A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != "nuc"
|
206 |
+
)
|
207 |
+
|
208 |
+
if ord == "fro":
|
209 |
+
return vector_norm(A, 2, dim, keepdim, dtype=dtype)
|
210 |
+
else: # ord == "nuc"
|
211 |
+
if dtype is not None:
|
212 |
+
A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
|
213 |
+
perm = _backshift_permutation(dim[0], dim[1], A.ndim)
|
214 |
+
result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
|
215 |
+
if keepdim:
|
216 |
+
inv_perm = _inverse_permutation(perm)
|
217 |
+
result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
|
218 |
+
return result
|
219 |
+
else:
|
220 |
+
# ord
|
221 |
+
abs_ord = abs(ord)
|
222 |
+
torch._check(
|
223 |
+
abs_ord in (2, 1, float("inf")),
|
224 |
+
lambda: "linalg.matrix_norm: Order {ord} not supported.",
|
225 |
+
)
|
226 |
+
# dtype
|
227 |
+
check_fp_or_complex(
|
228 |
+
A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != 2
|
229 |
+
)
|
230 |
+
|
231 |
+
max_min = partial(torch.amax if ord > 0.0 else torch.amin, keepdim=keepdim)
|
232 |
+
|
233 |
+
if abs_ord == 2.0:
|
234 |
+
if dtype is not None:
|
235 |
+
A = _maybe_convert_to_dtype(A, dtype) # type: ignore[assignment]
|
236 |
+
perm = _backshift_permutation(dim[0], dim[1], A.ndim)
|
237 |
+
result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
|
238 |
+
if keepdim:
|
239 |
+
inv_perm = _inverse_permutation(perm)
|
240 |
+
result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
|
241 |
+
return result
|
242 |
+
else: # 1, -1, inf, -inf
|
243 |
+
dim0, dim1 = dim
|
244 |
+
if abs_ord == float("inf"):
|
245 |
+
dim0, dim1 = dim1, dim0
|
246 |
+
if not keepdim and (dim0 < dim1):
|
247 |
+
dim1 -= 1
|
248 |
+
return max_min(
|
249 |
+
vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype), dim1
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
# CompositeImplicitAutograd
|
254 |
+
@out_wrapper(exact_dtype=True)
|
255 |
+
def norm(
|
256 |
+
A: TensorLikeType,
|
257 |
+
ord: Optional[Union[float, str]] = None,
|
258 |
+
dim: Optional[DimsType] = None,
|
259 |
+
keepdim: bool = False,
|
260 |
+
*,
|
261 |
+
dtype: Optional[torch.dtype] = None,
|
262 |
+
) -> TensorLikeType:
|
263 |
+
if dim is not None:
|
264 |
+
if isinstance(dim, Dim):
|
265 |
+
dim = (dim,) # type: ignore[assignment]
|
266 |
+
torch._check(
|
267 |
+
len(dim) in (1, 2),
|
268 |
+
lambda: "linalg.norm: If dim is specified, it must be of length 1 or 2. Got {dim}",
|
269 |
+
)
|
270 |
+
elif ord is not None:
|
271 |
+
torch._check(
|
272 |
+
A.ndim in (1, 2),
|
273 |
+
lambda: "linalg.norm: If dim is not specified but ord is, the input must be 1D or 2D. Got {A.ndim}D",
|
274 |
+
)
|
275 |
+
|
276 |
+
if ord is not None and (
|
277 |
+
(dim is not None and len(dim) == 2) or (dim is None and A.ndim == 2)
|
278 |
+
):
|
279 |
+
if dim is None:
|
280 |
+
dim = (0, 1)
|
281 |
+
return matrix_norm(A, ord, dim, keepdim, dtype=dtype)
|
282 |
+
else:
|
283 |
+
if ord is None:
|
284 |
+
ord = 2.0
|
285 |
+
return vector_norm(A, ord, dim, keepdim, dtype=dtype)
|
286 |
+
|
287 |
+
|
288 |
+
# CompositeImplicitAutograd
|
289 |
+
@out_wrapper("U", "S", "Vh", exact_dtype=True)
|
290 |
+
def svd(A: TensorLikeType, full_matrices: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
|
291 |
+
return prims.svd(A, full_matrices=full_matrices)
|
292 |
+
|
293 |
+
|
294 |
+
# CompositeImplicitAutograd
|
295 |
+
@out_wrapper(exact_dtype=True)
|
296 |
+
def svdvals(A: TensorLikeType) -> Tensor:
|
297 |
+
return svd(A, full_matrices=False)[1]
|
298 |
+
|
299 |
+
|
300 |
+
# CompositeImplicitAutograd
|
301 |
+
@out_wrapper()
|
302 |
+
@elementwise_type_promotion_wrapper(
|
303 |
+
type_promoting_args=("x", "y"),
|
304 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
305 |
+
)
|
306 |
+
def vecdot(x: Tensor, y: Tensor, dim: int = -1) -> Tensor:
|
307 |
+
check_fp_or_complex(x.dtype, "linalg.vecdot")
|
308 |
+
return (x.conj() * y).sum(dim=dim)
|
venv/lib/python3.10/site-packages/torch/_refs/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (9.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/nn/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
__all__: List[str] = []
|
venv/lib/python3.10/site-packages/torch/_refs/nn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (273 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/nn/functional/__init__.py
ADDED
@@ -0,0 +1,1230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from functools import wraps
|
3 |
+
from typing import Callable, Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch._prims as prims
|
7 |
+
import torch._prims_common as utils
|
8 |
+
import torch._refs as refs
|
9 |
+
from torch._decomp import register_decomposition
|
10 |
+
from torch._prims_common import (
|
11 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND,
|
12 |
+
NumberType,
|
13 |
+
ShapeType,
|
14 |
+
TensorLike,
|
15 |
+
TensorLikeType,
|
16 |
+
)
|
17 |
+
from torch._prims_common.wrappers import (
|
18 |
+
elementwise_type_promotion_wrapper,
|
19 |
+
elementwise_unary_scalar_wrapper,
|
20 |
+
out_wrapper,
|
21 |
+
)
|
22 |
+
from torch._refs import _make_inplace
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"alpha_dropout",
|
26 |
+
"celu",
|
27 |
+
"celu_",
|
28 |
+
"dropout",
|
29 |
+
"elu",
|
30 |
+
"elu_",
|
31 |
+
"gelu",
|
32 |
+
"glu",
|
33 |
+
"group_norm",
|
34 |
+
"hardshrink",
|
35 |
+
"hardtanh",
|
36 |
+
"hinge_embedding_loss",
|
37 |
+
"huber_loss",
|
38 |
+
"l1_loss",
|
39 |
+
"layer_norm",
|
40 |
+
"leaky_relu",
|
41 |
+
"log_softmax",
|
42 |
+
"margin_ranking_loss",
|
43 |
+
"mish",
|
44 |
+
"mish_",
|
45 |
+
"mse_loss",
|
46 |
+
"nll_loss",
|
47 |
+
"pairwise_distance",
|
48 |
+
"pdist",
|
49 |
+
"poisson_nll_loss",
|
50 |
+
"prelu",
|
51 |
+
"relu",
|
52 |
+
"relu6",
|
53 |
+
"selu",
|
54 |
+
"selu_",
|
55 |
+
"smooth_l1_loss",
|
56 |
+
"softmax",
|
57 |
+
"softmin",
|
58 |
+
"softplus",
|
59 |
+
"softshrink",
|
60 |
+
"tanhshrink",
|
61 |
+
"threshold",
|
62 |
+
"threshold_",
|
63 |
+
"triplet_margin_loss",
|
64 |
+
]
|
65 |
+
|
66 |
+
Tensor = torch.Tensor
|
67 |
+
aten = torch._ops.ops.aten
|
68 |
+
DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined]
|
69 |
+
|
70 |
+
|
71 |
+
def _dropout_helper(
|
72 |
+
self: TensorLikeType,
|
73 |
+
val: float,
|
74 |
+
) -> TensorLikeType:
|
75 |
+
"""
|
76 |
+
Helper function for all dropout-type operators. During training,
|
77 |
+
some of the elements of the input tensor are randomly masked.
|
78 |
+
|
79 |
+
Returns the masked tensor of the boolean values.
|
80 |
+
|
81 |
+
"""
|
82 |
+
|
83 |
+
return (
|
84 |
+
refs._uniform_helper(
|
85 |
+
self.shape, low=0.0, high=1.0, dtype=torch.float32, device=self.device
|
86 |
+
)
|
87 |
+
< val
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
@register_decomposition(aten.alpha_dropout)
|
92 |
+
def alpha_dropout(
|
93 |
+
self: TensorLikeType, p: float = 0.5, training: bool = False, inplace: bool = False
|
94 |
+
) -> TensorLikeType:
|
95 |
+
if inplace:
|
96 |
+
raise NotImplementedError
|
97 |
+
|
98 |
+
if not training:
|
99 |
+
return self
|
100 |
+
|
101 |
+
torch._check(
|
102 |
+
p <= 1 and p >= 0,
|
103 |
+
lambda: f"dropout probability has to be between 0 and 1, but got, {p}",
|
104 |
+
)
|
105 |
+
|
106 |
+
if p == 1:
|
107 |
+
return torch.zeros_like(self)
|
108 |
+
|
109 |
+
if p == 0:
|
110 |
+
return self
|
111 |
+
|
112 |
+
dropout_mask = _dropout_helper(self, 1 - p)
|
113 |
+
|
114 |
+
# From paper: Self-Normalizing Neural Networks (https://arxiv.org/pdf/1706.02515.pdf)
|
115 |
+
# alpha = - SELU.alpha * SELU.scale, here
|
116 |
+
# SELU.alpha = 1.6732632423543772848170429916717 and
|
117 |
+
# SELU.scale = 1.0507009873554804934193349852946
|
118 |
+
alpha = -1.7580993408473766
|
119 |
+
|
120 |
+
a = 1.0 / math.sqrt((alpha * alpha * p + 1) * (1 - p))
|
121 |
+
b = torch.logical_not(dropout_mask)
|
122 |
+
b = b * (alpha * a) + alpha * a * p
|
123 |
+
dropout_mask = a * dropout_mask
|
124 |
+
|
125 |
+
return self * dropout_mask + b
|
126 |
+
|
127 |
+
|
128 |
+
def _inplace_wrapper(fn):
|
129 |
+
"""
|
130 |
+
Given a nn.functional non-linearity, implements its `inplace: bool` argument
|
131 |
+
"""
|
132 |
+
|
133 |
+
# nb. We use the name of the first argument used in the unary references
|
134 |
+
@wraps(fn)
|
135 |
+
def _fn(a, *args, inplace=False, **kwargs):
|
136 |
+
if inplace:
|
137 |
+
torch._check(
|
138 |
+
"out" not in kwargs,
|
139 |
+
lambda: "Cannot set inplace=True and pass out= at the same time",
|
140 |
+
)
|
141 |
+
return fn(a, *args, inplace=False, out=a, **kwargs)
|
142 |
+
else:
|
143 |
+
return fn(a, *args, inplace=False, **kwargs)
|
144 |
+
|
145 |
+
return _fn
|
146 |
+
|
147 |
+
|
148 |
+
# celu is implemented specially because it has an alpha argument
|
149 |
+
# celu is very similar to elu
|
150 |
+
@register_decomposition(aten.celu)
|
151 |
+
@_inplace_wrapper
|
152 |
+
@out_wrapper()
|
153 |
+
@elementwise_type_promotion_wrapper(
|
154 |
+
type_promoting_args=("a",),
|
155 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
156 |
+
)
|
157 |
+
def celu(
|
158 |
+
a: TensorLikeType, alpha: Optional[NumberType] = None, inplace: bool = False
|
159 |
+
) -> TensorLikeType:
|
160 |
+
"""
|
161 |
+
Reference implementation of torch.nn.functional.celu
|
162 |
+
"""
|
163 |
+
|
164 |
+
if inplace:
|
165 |
+
raise NotImplementedError
|
166 |
+
|
167 |
+
rhs: TensorLikeType
|
168 |
+
if alpha is not None:
|
169 |
+
python_type = utils.dtype_to_type(a.dtype)
|
170 |
+
if not utils.is_weakly_lesser_type(type(alpha), python_type):
|
171 |
+
msg = f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!"
|
172 |
+
raise ValueError(msg)
|
173 |
+
rhs = alpha * torch.expm1(torch.true_divide(a, alpha)) # type: ignore[arg-type]
|
174 |
+
else:
|
175 |
+
rhs = torch.expm1(a)
|
176 |
+
|
177 |
+
return torch.where(a > 0, a, rhs)
|
178 |
+
|
179 |
+
|
180 |
+
@_inplace_wrapper
|
181 |
+
@out_wrapper()
|
182 |
+
def dropout(
|
183 |
+
a: TensorLikeType, p: float = 0.5, training: bool = True, inplace: bool = False
|
184 |
+
) -> TensorLikeType:
|
185 |
+
if inplace:
|
186 |
+
raise NotImplementedError
|
187 |
+
|
188 |
+
if not training:
|
189 |
+
return a
|
190 |
+
|
191 |
+
torch._check(
|
192 |
+
p <= 1 and p >= 0,
|
193 |
+
lambda: f"dropout probability has to be between 0 and 1, but got, {p}",
|
194 |
+
)
|
195 |
+
|
196 |
+
if p == 1:
|
197 |
+
return torch.zeros_like(a)
|
198 |
+
|
199 |
+
if p == 0:
|
200 |
+
return a
|
201 |
+
|
202 |
+
scale = 1 / (1 - p)
|
203 |
+
dropout_mask = _dropout_helper(a, 1 - p)
|
204 |
+
|
205 |
+
return a * dropout_mask * scale
|
206 |
+
|
207 |
+
|
208 |
+
@register_decomposition(aten.elu)
|
209 |
+
@_inplace_wrapper
|
210 |
+
@out_wrapper()
|
211 |
+
@elementwise_type_promotion_wrapper(
|
212 |
+
type_promoting_args=("a",),
|
213 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
214 |
+
)
|
215 |
+
def elu(
|
216 |
+
a: TensorLikeType,
|
217 |
+
alpha: NumberType = 1.0,
|
218 |
+
scale: NumberType = 1.0,
|
219 |
+
input_scale: NumberType = 1.0,
|
220 |
+
inplace: bool = False,
|
221 |
+
) -> TensorLikeType:
|
222 |
+
"""
|
223 |
+
Reference implementation of torch.nn.functional.elu
|
224 |
+
"""
|
225 |
+
if inplace:
|
226 |
+
raise NotImplementedError
|
227 |
+
|
228 |
+
# nb. This should be factored out into a can_cast aux function
|
229 |
+
python_type = utils.dtype_to_type(a.dtype)
|
230 |
+
torch._check(
|
231 |
+
utils.is_weakly_lesser_type(type(input_scale), python_type),
|
232 |
+
lambda: f"input_scale argument of type {type(input_scale)} cannot be safely cast to type {python_type}!",
|
233 |
+
)
|
234 |
+
torch._check(
|
235 |
+
utils.is_weakly_lesser_type(type(scale), python_type),
|
236 |
+
lambda: f"scale argument of type {type(scale)} cannot be safely cast to type {python_type}!",
|
237 |
+
)
|
238 |
+
torch._check(
|
239 |
+
utils.is_weakly_lesser_type(type(alpha), python_type),
|
240 |
+
lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!",
|
241 |
+
)
|
242 |
+
|
243 |
+
return torch.where(a > 0, scale * a, (alpha * scale) * torch.expm1(a * input_scale))
|
244 |
+
|
245 |
+
|
246 |
+
@register_decomposition(aten.relu)
|
247 |
+
@_inplace_wrapper
|
248 |
+
@out_wrapper()
|
249 |
+
@elementwise_type_promotion_wrapper(
|
250 |
+
type_promoting_args=("a",),
|
251 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
252 |
+
)
|
253 |
+
def relu(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
|
254 |
+
"""
|
255 |
+
Reference implementation of torch.nn.functional.relu
|
256 |
+
"""
|
257 |
+
|
258 |
+
if inplace:
|
259 |
+
raise NotImplementedError
|
260 |
+
|
261 |
+
return torch.where(torch.le(a, 0), 0, a)
|
262 |
+
|
263 |
+
|
264 |
+
def group_norm(
|
265 |
+
input: Tensor,
|
266 |
+
num_groups: int,
|
267 |
+
weight: Optional[Tensor] = None,
|
268 |
+
bias: Optional[Tensor] = None,
|
269 |
+
eps: float = 1e-5,
|
270 |
+
) -> Tensor:
|
271 |
+
"""
|
272 |
+
Reference implementation of :func:`torch.nn.functional.group_norm`.
|
273 |
+
"""
|
274 |
+
torch._check(
|
275 |
+
input.ndim >= 2,
|
276 |
+
lambda: f"Expected at least 2 dimensions for input tensor but received {input.ndim}",
|
277 |
+
)
|
278 |
+
|
279 |
+
batch_size = input.shape[0]
|
280 |
+
num_channels = input.shape[1]
|
281 |
+
torch._check(
|
282 |
+
num_channels % num_groups == 0,
|
283 |
+
lambda: "Expected number of channels in input to be divisible by num_groups, "
|
284 |
+
+ f"but got input of shape {input.shape} and num_groups = {num_groups}",
|
285 |
+
)
|
286 |
+
|
287 |
+
# input shape is (N, C, *), so we flatten all inner dimensions except (N, C)
|
288 |
+
flattened_inner_size = 1
|
289 |
+
for dim_length in input.shape[2:]:
|
290 |
+
flattened_inner_size *= dim_length
|
291 |
+
|
292 |
+
return torch.native_group_norm(
|
293 |
+
input,
|
294 |
+
weight,
|
295 |
+
bias,
|
296 |
+
batch_size,
|
297 |
+
num_channels,
|
298 |
+
flattened_inner_size,
|
299 |
+
num_groups,
|
300 |
+
eps,
|
301 |
+
)[0]
|
302 |
+
|
303 |
+
|
304 |
+
def layer_norm(
|
305 |
+
input: Tensor,
|
306 |
+
normalized_shape: ShapeType,
|
307 |
+
weight: Optional[Tensor] = None,
|
308 |
+
bias: Optional[Tensor] = None,
|
309 |
+
eps: float = 1e-5,
|
310 |
+
) -> Tensor:
|
311 |
+
"""
|
312 |
+
Reference implementation of :func:`torch.nn.functional.layer_norm`.
|
313 |
+
"""
|
314 |
+
return torch.native_layer_norm(input, normalized_shape, weight, bias, eps)[0]
|
315 |
+
|
316 |
+
|
317 |
+
@register_decomposition(aten.leaky_relu)
|
318 |
+
@_inplace_wrapper
|
319 |
+
@out_wrapper()
|
320 |
+
@elementwise_type_promotion_wrapper(
|
321 |
+
type_promoting_args=("a",),
|
322 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
323 |
+
)
|
324 |
+
def leaky_relu(
|
325 |
+
a: TensorLikeType, negative_slope: float = 0.01, inplace: bool = False
|
326 |
+
) -> TensorLikeType:
|
327 |
+
"""
|
328 |
+
Reference implementation of torch.nn.functional.leaky_relu
|
329 |
+
"""
|
330 |
+
|
331 |
+
if inplace:
|
332 |
+
raise NotImplementedError
|
333 |
+
|
334 |
+
python_type = utils.dtype_to_type(a.dtype)
|
335 |
+
if not utils.is_weakly_lesser_type(type(negative_slope), python_type):
|
336 |
+
msg = f"negative_slope argument of type {type(negative_slope)} cannot be safely cast to type {python_type}!"
|
337 |
+
raise ValueError(msg)
|
338 |
+
return torch.where(torch.gt(a, 0), a, torch.mul(a, negative_slope))
|
339 |
+
|
340 |
+
|
341 |
+
@register_decomposition(aten.mish)
|
342 |
+
@_inplace_wrapper
|
343 |
+
@out_wrapper()
|
344 |
+
@elementwise_type_promotion_wrapper(
|
345 |
+
type_promoting_args=("a",),
|
346 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
347 |
+
)
|
348 |
+
def mish(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
|
349 |
+
"""
|
350 |
+
Reference implementation of torch.nn.functional.mish
|
351 |
+
"""
|
352 |
+
|
353 |
+
if inplace:
|
354 |
+
raise NotImplementedError
|
355 |
+
return a * torch.tanh(torch.nn.functional.softplus(a))
|
356 |
+
|
357 |
+
|
358 |
+
@register_decomposition(aten.selu)
|
359 |
+
@_inplace_wrapper
|
360 |
+
@out_wrapper()
|
361 |
+
@elementwise_type_promotion_wrapper(
|
362 |
+
type_promoting_args=("a",),
|
363 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
364 |
+
)
|
365 |
+
def selu(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
|
366 |
+
"""
|
367 |
+
Reference implementation of torch.nn.functional.selu
|
368 |
+
"""
|
369 |
+
if inplace:
|
370 |
+
raise NotImplementedError
|
371 |
+
|
372 |
+
alpha = 1.6732632423543772848170429916717
|
373 |
+
scale = 1.0507009873554804934193349852946
|
374 |
+
|
375 |
+
rhs = alpha * torch.expm1(a)
|
376 |
+
|
377 |
+
return scale * torch.where(a > 0, a, rhs)
|
378 |
+
|
379 |
+
|
380 |
+
# Forwarding alias: the functional variant doesn't support the out kwarg
|
381 |
+
# CompositeImplicitAutograd - don't register decomp
|
382 |
+
def softmax(
|
383 |
+
a: TensorLikeType,
|
384 |
+
dim: Optional[int] = None,
|
385 |
+
_stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
|
386 |
+
dtype: Optional[torch.dtype] = None,
|
387 |
+
) -> TensorLikeType:
|
388 |
+
# The error is for compat with regular PyTorch, which has this behavior
|
389 |
+
# deprecated. For PrimTorch, it's fine to drop support for deprecated
|
390 |
+
# behavior because it requires explicit opt in. This error is to inform
|
391 |
+
# users how to update their calls.
|
392 |
+
torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
|
393 |
+
return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
|
394 |
+
|
395 |
+
|
396 |
+
# CompositeImplicitAutograd - don't register decomp
|
397 |
+
def softmin(
|
398 |
+
a: TensorLikeType,
|
399 |
+
dim: Optional[int] = None,
|
400 |
+
_stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
|
401 |
+
dtype: Optional[torch.dtype] = None,
|
402 |
+
) -> TensorLikeType:
|
403 |
+
# The error is for compat with regular PyTorch, which has this behavior
|
404 |
+
# deprecated. For PrimTorch, it's fine to drop support for deprecated
|
405 |
+
# behavior because it requires explicit opt in. This error is to inform
|
406 |
+
# users how to update their calls.
|
407 |
+
torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
|
408 |
+
return torch.softmax(a=-a, dim=dim, dtype=dtype) # type: ignore[call-overload]
|
409 |
+
|
410 |
+
|
411 |
+
# softplus is implemented specially because it has beta and threshold arguments
|
412 |
+
@register_decomposition(aten.softplus)
|
413 |
+
@_inplace_wrapper
|
414 |
+
@out_wrapper()
|
415 |
+
@elementwise_type_promotion_wrapper(
|
416 |
+
type_promoting_args=("a",),
|
417 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
418 |
+
)
|
419 |
+
def softplus(
|
420 |
+
a: TensorLikeType,
|
421 |
+
beta: Optional[NumberType] = None,
|
422 |
+
threshold: NumberType = 20,
|
423 |
+
inplace: bool = False,
|
424 |
+
) -> TensorLikeType:
|
425 |
+
"""
|
426 |
+
Reference implementation of torch.nn.functional.softplus
|
427 |
+
"""
|
428 |
+
|
429 |
+
if inplace:
|
430 |
+
raise NotImplementedError
|
431 |
+
|
432 |
+
rhs: TensorLikeType
|
433 |
+
if beta is not None:
|
434 |
+
python_type = utils.dtype_to_type(a.dtype)
|
435 |
+
if not utils.is_weakly_lesser_type(type(beta), python_type):
|
436 |
+
msg = f"beta argument of type {type(beta)} cannot be safely cast to type {python_type}!"
|
437 |
+
raise ValueError(msg)
|
438 |
+
scaled_input = a * beta
|
439 |
+
rhs = torch.true_divide(torch.log1p(torch.exp(scaled_input)), beta) # type: ignore[arg-type]
|
440 |
+
|
441 |
+
else:
|
442 |
+
scaled_input = a
|
443 |
+
rhs = torch.log1p(torch.exp(scaled_input))
|
444 |
+
|
445 |
+
return torch.where(scaled_input > threshold, a, rhs)
|
446 |
+
|
447 |
+
|
448 |
+
@aten.hardshrink.default.py_impl(DispatchKey.Autograd)
|
449 |
+
@register_decomposition(aten.hardshrink)
|
450 |
+
@out_wrapper()
|
451 |
+
def hardshrink(a: TensorLikeType, lambd: float = 0.5):
|
452 |
+
# Formula for reference,
|
453 |
+
# hardshrink(x) = x if x > lambd
|
454 |
+
# = x if x < -lambd
|
455 |
+
# = 0 otherwise
|
456 |
+
return torch.where(torch.abs(a) <= lambd, 0, a)
|
457 |
+
|
458 |
+
|
459 |
+
@aten.softshrink.default.py_impl(DispatchKey.Autograd)
|
460 |
+
@register_decomposition(aten.softshrink)
|
461 |
+
@out_wrapper()
|
462 |
+
def softshrink(a: TensorLikeType, lambd: float = 0.5):
|
463 |
+
# Formula for reference,
|
464 |
+
# softshrink(x) = x - lambd if x > lambd
|
465 |
+
# = x + lambd if x < -lambd
|
466 |
+
# = 0 otherwise
|
467 |
+
torch._check(
|
468 |
+
lambd >= 0,
|
469 |
+
lambda: f"lambda must be greater or equal to 0, but found to be {lambd}",
|
470 |
+
)
|
471 |
+
# We implement this in one torch.where to generate better code in the backward
|
472 |
+
# see https://github.com/pytorch/pytorch/pull/107052#discussion_r1293748211
|
473 |
+
return torch.where(torch.abs(a) > lambd, a - torch.sign(a) * lambd, 0)
|
474 |
+
|
475 |
+
|
476 |
+
# Losses
|
477 |
+
def _reduction_int_to_str(reduction: int) -> str:
|
478 |
+
from torch._decomp.decompositions import Reduction
|
479 |
+
|
480 |
+
if reduction == Reduction.NONE.value:
|
481 |
+
return "none"
|
482 |
+
elif reduction == Reduction.MEAN.value:
|
483 |
+
return "mean"
|
484 |
+
elif reduction == Reduction.SUM.value:
|
485 |
+
return "sum"
|
486 |
+
else:
|
487 |
+
raise ValueError(f"{reduction} is not a valid value for reduction")
|
488 |
+
|
489 |
+
|
490 |
+
def _apply_loss_reduction(loss: TensorLikeType, reduction: str) -> TensorLikeType:
|
491 |
+
if reduction == "sum":
|
492 |
+
return torch.sum(loss)
|
493 |
+
elif reduction == "mean":
|
494 |
+
return torch.mean(loss)
|
495 |
+
else: # reduction == "none"
|
496 |
+
return loss
|
497 |
+
|
498 |
+
|
499 |
+
def _check_reduction_value(reduction: str):
|
500 |
+
if reduction not in ("mean", "sum", "none"):
|
501 |
+
raise ValueError(f"{reduction} is not a valid value for reduction")
|
502 |
+
|
503 |
+
|
504 |
+
# This helper function maps depreciated arguments, "size_average" and "reduce"
|
505 |
+
# to their corresponding "reduction" string argument
|
506 |
+
def _get_string_reduction_arg(
|
507 |
+
*, size_average: Optional[bool], reduce: Optional[bool]
|
508 |
+
) -> str:
|
509 |
+
if size_average is None:
|
510 |
+
size_average = True
|
511 |
+
if reduce is None:
|
512 |
+
reduce = True
|
513 |
+
if size_average and reduce:
|
514 |
+
ret = "mean"
|
515 |
+
elif reduce:
|
516 |
+
ret = "sum"
|
517 |
+
else:
|
518 |
+
ret = "none"
|
519 |
+
return ret
|
520 |
+
|
521 |
+
|
522 |
+
# CompositeImplicitAutograd - don't register decomp
|
523 |
+
@elementwise_type_promotion_wrapper(
|
524 |
+
type_promoting_args=("input", "target"),
|
525 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
526 |
+
)
|
527 |
+
def l1_loss(
|
528 |
+
input: TensorLikeType,
|
529 |
+
target: TensorLikeType,
|
530 |
+
size_average: Optional[bool] = None,
|
531 |
+
reduce: Optional[bool] = None,
|
532 |
+
reduction: str = "mean",
|
533 |
+
) -> TensorLikeType:
|
534 |
+
"""
|
535 |
+
Reference implementation of torch.nn.functional.l1_loss
|
536 |
+
"""
|
537 |
+
if size_average is not None or reduce is not None:
|
538 |
+
# TODO: Raise exception instead of converting value. This is only for
|
539 |
+
# primTorch since it can drop support for deprecated arguments.
|
540 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
541 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
542 |
+
_check_reduction_value(reduction)
|
543 |
+
loss = torch.abs(input - target)
|
544 |
+
return _apply_loss_reduction(loss, reduction)
|
545 |
+
|
546 |
+
|
547 |
+
@elementwise_type_promotion_wrapper(
|
548 |
+
type_promoting_args=("input", "target"),
|
549 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
550 |
+
)
|
551 |
+
def smooth_l1_loss(
|
552 |
+
input: TensorLikeType,
|
553 |
+
target: TensorLikeType,
|
554 |
+
size_average: Optional[bool] = None,
|
555 |
+
reduce: Optional[bool] = None,
|
556 |
+
reduction: str = "mean",
|
557 |
+
beta: float = 1.0,
|
558 |
+
) -> TensorLikeType:
|
559 |
+
"""
|
560 |
+
Reference implementation of torch.nn.functional.smooth_l1_loss
|
561 |
+
"""
|
562 |
+
if size_average is not None or reduce is not None:
|
563 |
+
# TODO: Raise exception instead of converting value. This is only for
|
564 |
+
# primTorch since it can drop support for deprecated arguments.
|
565 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
566 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
567 |
+
_check_reduction_value(reduction)
|
568 |
+
|
569 |
+
if beta == 0.0:
|
570 |
+
return torch.nn.functional.l1_loss(
|
571 |
+
input, target, size_average=size_average, reduce=reduce, reduction=reduction
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
loss = torch.abs(input - target)
|
575 |
+
loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta)
|
576 |
+
return _apply_loss_reduction(loss, reduction)
|
577 |
+
|
578 |
+
|
579 |
+
# Forwarding alias: the functional variant doesn't support the out kwarg
|
580 |
+
# CompositeImplicitAutograd - don't register decomp
|
581 |
+
def log_softmax(
|
582 |
+
a: TensorLikeType,
|
583 |
+
dim: Optional[int] = None,
|
584 |
+
_stacklevel: int = 3, # for compat when using TorchRefsMode(strict=True)
|
585 |
+
dtype: Optional[torch.dtype] = None,
|
586 |
+
) -> TensorLikeType:
|
587 |
+
# The error is for compat with regular PyTorch, which has this behavior
|
588 |
+
# deprecated. For PrimTorch, it's fine to drop support for deprecated
|
589 |
+
# behavior because it requires explicit opt in. This error is to inform
|
590 |
+
# users how to update their calls.
|
591 |
+
torch._check(dim is not None, lambda: "implicit dim not supported, use dim=X")
|
592 |
+
return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
|
593 |
+
|
594 |
+
|
595 |
+
@register_decomposition(aten.margin_ranking_loss)
|
596 |
+
def margin_ranking_loss(
|
597 |
+
input1: TensorLikeType,
|
598 |
+
input2: TensorLikeType,
|
599 |
+
target: TensorLikeType,
|
600 |
+
margin: float = 0.0,
|
601 |
+
reduction: str = "mean",
|
602 |
+
) -> TensorLikeType:
|
603 |
+
# loss_without_reduction = max(0, −target * (input1 − input2) + margin)
|
604 |
+
if input1.ndim != input2.ndim or input1.ndim != target.ndim:
|
605 |
+
raise RuntimeError(
|
606 |
+
"margin_ranking_loss : All input tensors should have same dimension but got sizes: "
|
607 |
+
f"input1: {input1.shape}, input2: {input2.shape}, target: {target.shape} "
|
608 |
+
)
|
609 |
+
_check_reduction_value(reduction)
|
610 |
+
loss = torch.clamp_min(-target * (input1 - input2) + margin, 0)
|
611 |
+
return _apply_loss_reduction(loss, reduction)
|
612 |
+
|
613 |
+
|
614 |
+
@elementwise_type_promotion_wrapper(
|
615 |
+
type_promoting_args=("input", "target"),
|
616 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
|
617 |
+
)
|
618 |
+
def mse_loss(
|
619 |
+
input: TensorLikeType,
|
620 |
+
target: TensorLikeType,
|
621 |
+
size_average: Optional[bool] = None,
|
622 |
+
reduce: Optional[bool] = None,
|
623 |
+
reduction: str = "mean",
|
624 |
+
) -> TensorLikeType:
|
625 |
+
if size_average is not None or reduce is not None:
|
626 |
+
# TODO: Raise exception instead of converting value. This is only for
|
627 |
+
# primTorch since it can drop support for deprecated arguments.
|
628 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
629 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
630 |
+
_check_reduction_value(reduction)
|
631 |
+
loss = torch.pow(input - target, 2)
|
632 |
+
return _apply_loss_reduction(loss, reduction)
|
633 |
+
|
634 |
+
|
635 |
+
@register_decomposition(aten.hinge_embedding_loss)
|
636 |
+
def hinge_embedding_loss(
|
637 |
+
input: TensorLikeType,
|
638 |
+
target: TensorLikeType,
|
639 |
+
margin: float = 1.0,
|
640 |
+
reduction: str = "mean",
|
641 |
+
) -> TensorLikeType:
|
642 |
+
# loss_without_reduction = input if y == 1
|
643 |
+
# = max(0, margin - input) if y == -1
|
644 |
+
_check_reduction_value(reduction)
|
645 |
+
margin_clamp = torch.clamp_min(margin - input, 0)
|
646 |
+
output_margin = torch.where(target != 1, margin_clamp, 0)
|
647 |
+
output_self = torch.where(target != -1, input, 0)
|
648 |
+
loss = output_margin + output_self
|
649 |
+
return _apply_loss_reduction(loss, reduction)
|
650 |
+
|
651 |
+
|
652 |
+
def _nll_loss_nd(
|
653 |
+
input: TensorLikeType,
|
654 |
+
target: TensorLikeType,
|
655 |
+
weight: Optional[TensorLikeType],
|
656 |
+
reduction: str,
|
657 |
+
ignore_index: int,
|
658 |
+
) -> TensorLikeType:
|
659 |
+
torch._check(
|
660 |
+
input.ndim > 0 and input.ndim <= 3,
|
661 |
+
lambda: f"Expected input dimension to be either [1, 2, 3] but received {input.ndim}.",
|
662 |
+
)
|
663 |
+
|
664 |
+
torch._check(
|
665 |
+
(input.ndim == 1) or (input.shape[0] == target.shape[0]),
|
666 |
+
lambda: f"Expected input batch size {input.shape[0]} to match target batch size {target.shape[0]}.",
|
667 |
+
)
|
668 |
+
|
669 |
+
_check_reduction_value(reduction)
|
670 |
+
|
671 |
+
flat_target = torch.flatten(target)
|
672 |
+
ignore_classes_mask = torch.eq(flat_target, ignore_index)
|
673 |
+
|
674 |
+
# TODO: Enable data-dependent checks with debug mode
|
675 |
+
# TODO: This check does not work with FakeTensor inputs; See Issue #85834
|
676 |
+
# Explicit cast for class_check to bool; See Issue #78071
|
677 |
+
"""
|
678 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
679 |
+
num_classes = input.shape[1] if input.ndim > 1 else input.shape[0]
|
680 |
+
valid_classes_mask = torch.logical_and(
|
681 |
+
(flat_target >= 0), (flat_target < num_classes)
|
682 |
+
)
|
683 |
+
class_check = torch.all(torch.logical_or(ignore_classes_mask, valid_classes_mask))
|
684 |
+
torch._check(
|
685 |
+
isinstance(target, FakeTensor) or bool(class_check.item()),
|
686 |
+
lambda: "A target class is out-of-bounds and not the ignore index.",
|
687 |
+
)
|
688 |
+
"""
|
689 |
+
|
690 |
+
ignore_class_weight = torch.scalar_tensor(0, dtype=input.dtype, device=input.device)
|
691 |
+
class_weight = (
|
692 |
+
torch.scalar_tensor(1, dtype=input.dtype, device=input.device)
|
693 |
+
if weight is None
|
694 |
+
else weight[flat_target]
|
695 |
+
)
|
696 |
+
current_weight = torch.where(
|
697 |
+
ignore_classes_mask,
|
698 |
+
ignore_class_weight,
|
699 |
+
class_weight,
|
700 |
+
)
|
701 |
+
|
702 |
+
if input.ndim == 1:
|
703 |
+
# implicit batch size = 1
|
704 |
+
# input (1 batch size, C classes)
|
705 |
+
loss = -input[target] * current_weight
|
706 |
+
elif input.ndim == 2:
|
707 |
+
# input (N batch size, C classes)
|
708 |
+
batch_size = input.shape[0]
|
709 |
+
loss = -input[torch.arange(batch_size), target] * current_weight
|
710 |
+
else:
|
711 |
+
# 3D case (N batch size, C classe, K dimensions)
|
712 |
+
# input (N batch size, C classes, K)
|
713 |
+
batch_size = input.shape[0]
|
714 |
+
extent = input.shape[2]
|
715 |
+
numel = batch_size * extent
|
716 |
+
indices = torch.arange(numel)
|
717 |
+
bdx = indices // extent
|
718 |
+
kdx = indices % extent
|
719 |
+
loss = -input[bdx, flat_target, kdx] * current_weight
|
720 |
+
loss = torch.reshape(loss, target.shape)
|
721 |
+
|
722 |
+
if reduction == "none":
|
723 |
+
return loss
|
724 |
+
elif reduction == "sum":
|
725 |
+
return torch.sum(loss)
|
726 |
+
else:
|
727 |
+
# calculate weighted mean of the loss function
|
728 |
+
return torch.sum(loss) / torch.sum(current_weight)
|
729 |
+
|
730 |
+
|
731 |
+
@register_decomposition(aten.nll_loss)
|
732 |
+
@out_wrapper()
|
733 |
+
@elementwise_type_promotion_wrapper(
|
734 |
+
type_promoting_args=("input",),
|
735 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
736 |
+
)
|
737 |
+
def nll_loss(
|
738 |
+
input: TensorLikeType,
|
739 |
+
target: TensorLikeType,
|
740 |
+
weight: Optional[TensorLikeType] = None,
|
741 |
+
size_average: Optional[bool] = None,
|
742 |
+
ignore_index: int = -100,
|
743 |
+
reduce: Optional[bool] = None,
|
744 |
+
reduction: str = "mean",
|
745 |
+
) -> TensorLikeType:
|
746 |
+
"""
|
747 |
+
Reference implementation of torch.nn.functional.nll_loss
|
748 |
+
"""
|
749 |
+
torch._check(
|
750 |
+
input.ndim > 0,
|
751 |
+
lambda: f"Expected input tensor to have 1 or more dimensions (got {input.ndim})",
|
752 |
+
)
|
753 |
+
|
754 |
+
# TODO: raise exception instead of converting value
|
755 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
756 |
+
# Convert these options for consistency with the eager mode
|
757 |
+
if size_average is not None or reduce is not None:
|
758 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
759 |
+
|
760 |
+
# The expected behavior when the target and input have zero elements:
|
761 |
+
# reduction = 'none' --- tensor([])
|
762 |
+
# reduction = 'sum' --- tensor(0.)
|
763 |
+
# reduction = 'mean' --- tensor(nan)
|
764 |
+
# Mean reduction on empty tensors produces NaN. See the discussion in
|
765 |
+
# https://github.com/pytorch/pytorch/pull/64572#issuecomment-926504162
|
766 |
+
if input.numel() == 0 and target.numel() == 0:
|
767 |
+
if reduction == "none":
|
768 |
+
return torch.zeros_like(target)
|
769 |
+
elif reduction == "sum":
|
770 |
+
return torch.empty_like(target)
|
771 |
+
else:
|
772 |
+
return torch.full_like(target, float("nan"))
|
773 |
+
|
774 |
+
# The _nll_loss_nd helper function handles the most common cases.
|
775 |
+
# ndim == 1 (Single Example)
|
776 |
+
# => Batch Size: 1, Input: (C), Target: ()
|
777 |
+
# ndim == 2 (k = 1)
|
778 |
+
# => Batch Size: N, Input: (N, C), Target: (N)
|
779 |
+
# ndim == 3 (k > 1)
|
780 |
+
# => Batch Size: N, Input: (N, C, K), Target: (N, K)
|
781 |
+
if input.ndim <= 3:
|
782 |
+
return _nll_loss_nd(input, target, weight, reduction, ignore_index)
|
783 |
+
|
784 |
+
# For ndim > 3, we reshape the input and target to 3-D case.
|
785 |
+
# Input (N batch-size, C classes, k-dimensions)
|
786 |
+
# Target (N batch-size, k-dimensions)
|
787 |
+
torch._check(
|
788 |
+
input.ndim > 0 and target.ndim > 0 and target.shape[1:] == input.shape[2:],
|
789 |
+
lambda: (
|
790 |
+
"Expected input and target to both have ndim > 0 and "
|
791 |
+
"target.shape[1:] == input.shape[2:], but got "
|
792 |
+
f"target.shape {target.shape} and input.shape {input.shape}"
|
793 |
+
),
|
794 |
+
)
|
795 |
+
|
796 |
+
batch_size = input.shape[0]
|
797 |
+
num_classes = input.shape[1]
|
798 |
+
out_size = [batch_size] + list(target.shape[1:])
|
799 |
+
|
800 |
+
input = torch.reshape(input, [batch_size, num_classes, -1])
|
801 |
+
target = torch.reshape(target, [batch_size, -1])
|
802 |
+
if reduction != "none":
|
803 |
+
return _nll_loss_nd(input, target, weight, reduction, ignore_index)
|
804 |
+
else:
|
805 |
+
result = _nll_loss_nd(input, target, weight, reduction, ignore_index)
|
806 |
+
# reshape flattened inner-dim to original k-dimensions
|
807 |
+
return torch.reshape(result, out_size)
|
808 |
+
|
809 |
+
|
810 |
+
# TODO: This ref supports int reduction and out kwarg to be compatible with ATen:
|
811 |
+
# https://github.com/pytorch/pytorch/issues/83931
|
812 |
+
# TODO: Could be rewritten to support complex:
|
813 |
+
# https://github.com/pytorch/pytorch/pull/85041
|
814 |
+
@register_decomposition(aten.huber_loss)
|
815 |
+
@out_wrapper()
|
816 |
+
@elementwise_type_promotion_wrapper(
|
817 |
+
type_promoting_args=("input", "target"),
|
818 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
819 |
+
)
|
820 |
+
def huber_loss(
|
821 |
+
input: TensorLikeType,
|
822 |
+
target: TensorLikeType,
|
823 |
+
reduction: Union[str, int] = "mean",
|
824 |
+
delta: float = 1.0,
|
825 |
+
) -> TensorLikeType:
|
826 |
+
"""
|
827 |
+
Reference implementation of torch.nn.functional.huber_loss
|
828 |
+
"""
|
829 |
+
if type(reduction) is int:
|
830 |
+
reduction = _reduction_int_to_str(reduction)
|
831 |
+
_check_reduction_value(reduction) # type: ignore[arg-type]
|
832 |
+
torch._check(
|
833 |
+
delta > 0,
|
834 |
+
lambda: "huber_loss does not support non-positive values for delta.",
|
835 |
+
)
|
836 |
+
z = (input - target).abs()
|
837 |
+
loss = torch.where(z < delta, 0.5 * z * z, delta * (z - 0.5 * delta))
|
838 |
+
return _apply_loss_reduction(loss, reduction) # type: ignore[arg-type]
|
839 |
+
|
840 |
+
|
841 |
+
# tanhshrink does not use _make_elementwise_unary_reference because it does not support out
|
842 |
+
@elementwise_unary_scalar_wrapper
|
843 |
+
@elementwise_type_promotion_wrapper(
|
844 |
+
type_promoting_args=("a",),
|
845 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
846 |
+
)
|
847 |
+
def tanhshrink(a: TensorLikeType) -> TensorLikeType:
|
848 |
+
"""
|
849 |
+
Reference implementation of torch.nn.functional.tanhshrink
|
850 |
+
"""
|
851 |
+
if not isinstance(a, TensorLike):
|
852 |
+
raise RuntimeError(
|
853 |
+
"Expected a tensor input for an elementwise unary operation!"
|
854 |
+
)
|
855 |
+
return a - torch.tanh(a)
|
856 |
+
|
857 |
+
|
858 |
+
@register_decomposition(aten.threshold)
|
859 |
+
@_inplace_wrapper
|
860 |
+
@out_wrapper()
|
861 |
+
@elementwise_type_promotion_wrapper(
|
862 |
+
type_promoting_args=("a",),
|
863 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
864 |
+
)
|
865 |
+
def threshold(
|
866 |
+
a: TensorLikeType,
|
867 |
+
threshold: NumberType,
|
868 |
+
value: Union[bool, int, float],
|
869 |
+
inplace: bool = False,
|
870 |
+
) -> TensorLikeType:
|
871 |
+
"""
|
872 |
+
Reference implementation of torch.nn.functional.threshold
|
873 |
+
"""
|
874 |
+
|
875 |
+
if inplace:
|
876 |
+
raise NotImplementedError
|
877 |
+
|
878 |
+
return torch.where(a <= threshold, value, a)
|
879 |
+
|
880 |
+
|
881 |
+
# CompositeImplicitAutograd - don't register decomp
|
882 |
+
# No elementwise type promotion - core op doesn't explicitly type promote
|
883 |
+
def triplet_margin_loss(
|
884 |
+
anchor: TensorLikeType,
|
885 |
+
positive: TensorLikeType,
|
886 |
+
negative: TensorLikeType,
|
887 |
+
margin: float = 1.0,
|
888 |
+
p: float = 2,
|
889 |
+
eps: float = 1e-6,
|
890 |
+
swap: bool = False,
|
891 |
+
size_average: Optional[bool] = None,
|
892 |
+
reduce: Optional[bool] = None,
|
893 |
+
reduction: str = "mean",
|
894 |
+
) -> TensorLikeType:
|
895 |
+
if size_average is not None or reduce is not None:
|
896 |
+
# TODO: Raise exception instead of converting value. This is only for
|
897 |
+
# primTorch since it can drop support for deprecated arguments.
|
898 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
899 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
900 |
+
|
901 |
+
# torch.nn.functional.triplet_margin_with_distance_loss has no ref defined
|
902 |
+
# since it's a pure Python implementation. Use this helper instead.
|
903 |
+
return _triplet_margin_with_distance_loss(
|
904 |
+
anchor=anchor,
|
905 |
+
positive=positive,
|
906 |
+
negative=negative,
|
907 |
+
distance_function=lambda x, y: torch.pairwise_distance(x, y, p, eps),
|
908 |
+
margin=margin,
|
909 |
+
swap=swap,
|
910 |
+
reduction=reduction,
|
911 |
+
)
|
912 |
+
|
913 |
+
|
914 |
+
# Pure Python impl - don't register decomp and don't add a ref. Defined as a
|
915 |
+
# helper here since triplet_margin_loss can be nicely implemented with it.
|
916 |
+
def _triplet_margin_with_distance_loss(
|
917 |
+
anchor: TensorLikeType,
|
918 |
+
positive: TensorLikeType,
|
919 |
+
negative: TensorLikeType,
|
920 |
+
*,
|
921 |
+
distance_function: Optional[
|
922 |
+
Callable[[TensorLikeType, TensorLikeType], TensorLikeType]
|
923 |
+
] = None,
|
924 |
+
margin: float = 1.0,
|
925 |
+
swap: bool = False,
|
926 |
+
reduction: str = "mean",
|
927 |
+
) -> TensorLikeType:
|
928 |
+
_check_reduction_value(reduction)
|
929 |
+
|
930 |
+
a_dim = anchor.ndim
|
931 |
+
p_dim = positive.ndim
|
932 |
+
n_dim = negative.ndim
|
933 |
+
torch._check(
|
934 |
+
a_dim == p_dim and p_dim == n_dim,
|
935 |
+
lambda: (
|
936 |
+
f"The anchor, positive, and negative tensors are expected to have "
|
937 |
+
f"the same number of dimensions, but got: anchor {a_dim}D, "
|
938 |
+
f"positive {p_dim}D, and negative {n_dim}D inputs"
|
939 |
+
),
|
940 |
+
)
|
941 |
+
|
942 |
+
if distance_function is None:
|
943 |
+
distance_function = torch.pairwise_distance
|
944 |
+
|
945 |
+
dist_pos = distance_function(anchor, positive)
|
946 |
+
dist_neg = distance_function(anchor, negative)
|
947 |
+
# The distance swap is described in the paper "Learning shallow
|
948 |
+
# convolutional feature descriptors with triplet losses" by V. Balntas, E.
|
949 |
+
# Riba et al. If True, and if the positive example is closer to the
|
950 |
+
# negative example than the anchor is, swaps the positive example and the
|
951 |
+
# anchor in the loss computation.
|
952 |
+
if swap:
|
953 |
+
dist_swap = distance_function(positive, negative)
|
954 |
+
dist_neg = torch.minimum(dist_neg, dist_swap)
|
955 |
+
loss = torch.clamp_min(margin + dist_pos - dist_neg, 0)
|
956 |
+
return _apply_loss_reduction(loss, reduction)
|
957 |
+
|
958 |
+
|
959 |
+
@register_decomposition(aten.hardtanh)
|
960 |
+
@_inplace_wrapper
|
961 |
+
@out_wrapper()
|
962 |
+
@elementwise_unary_scalar_wrapper
|
963 |
+
@elementwise_type_promotion_wrapper(
|
964 |
+
type_promoting_args=("a"),
|
965 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
966 |
+
)
|
967 |
+
def hardtanh(
|
968 |
+
a: TensorLikeType,
|
969 |
+
min_val: NumberType = -1,
|
970 |
+
max_val: NumberType = 1,
|
971 |
+
inplace: bool = False,
|
972 |
+
) -> TensorLikeType:
|
973 |
+
"""
|
974 |
+
Reference implementation of torch.nn.functional.hardtanh
|
975 |
+
"""
|
976 |
+
if inplace:
|
977 |
+
raise NotImplementedError
|
978 |
+
if utils.is_boolean_dtype(a.dtype):
|
979 |
+
raise RuntimeError("Bool inputs not supported for hardtanh")
|
980 |
+
|
981 |
+
# preserve legacy behavior of boundaries not causing type promotion
|
982 |
+
if utils.is_integer_dtype(a.dtype):
|
983 |
+
min_val = int(min_val) # type: ignore[arg-type]
|
984 |
+
max_val = int(max_val) # type: ignore[arg-type]
|
985 |
+
if not (a.dtype != torch.uint8 or (min_val >= 0 and max_val >= 0)):
|
986 |
+
raise RuntimeError(
|
987 |
+
"Cannot do hardtanh on an unsigned type with negative limits"
|
988 |
+
)
|
989 |
+
return torch.clamp(a, min_val, max_val) # type: ignore[arg-type]
|
990 |
+
|
991 |
+
|
992 |
+
@register_decomposition(aten.gelu)
|
993 |
+
@out_wrapper()
|
994 |
+
@elementwise_unary_scalar_wrapper
|
995 |
+
@elementwise_type_promotion_wrapper(
|
996 |
+
type_promoting_args=("a",),
|
997 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
998 |
+
)
|
999 |
+
def gelu(a: TensorLikeType, approximate: str = "none") -> TensorLikeType:
|
1000 |
+
"""
|
1001 |
+
Reference implementation of torch.nn.functional.gelu
|
1002 |
+
"""
|
1003 |
+
if not isinstance(a, TensorLike):
|
1004 |
+
raise RuntimeError(
|
1005 |
+
"Expected a tensor input for an elementwise unary operation!"
|
1006 |
+
)
|
1007 |
+
M_SQRT2 = 1.41421356237309504880
|
1008 |
+
M_SQRT1_2 = 0.70710678118654752440
|
1009 |
+
M_2_SQRTPI = 1.12837916709551257390
|
1010 |
+
if approximate == "tanh":
|
1011 |
+
kBeta = M_SQRT2 * M_2_SQRTPI * 0.5
|
1012 |
+
kKappa = 0.044715
|
1013 |
+
a_cube = a * a * a
|
1014 |
+
inner = kBeta * (a + kKappa * a_cube)
|
1015 |
+
return 0.5 * a * (1 + torch.tanh(inner))
|
1016 |
+
elif approximate == "none":
|
1017 |
+
kAlpha = M_SQRT1_2
|
1018 |
+
return a * 0.5 * (1 + torch.erf(a * kAlpha))
|
1019 |
+
else:
|
1020 |
+
raise RuntimeError("approximate argument must be either none or tanh.")
|
1021 |
+
|
1022 |
+
|
1023 |
+
# CompositeImplicitAutograd - don't register decomp
|
1024 |
+
@elementwise_type_promotion_wrapper(
|
1025 |
+
type_promoting_args=("input", "target"),
|
1026 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
1027 |
+
)
|
1028 |
+
def poisson_nll_loss(
|
1029 |
+
input: TensorLikeType,
|
1030 |
+
target: TensorLikeType,
|
1031 |
+
log_input: bool = True,
|
1032 |
+
full: bool = False,
|
1033 |
+
size_average: Optional[bool] = None,
|
1034 |
+
eps: float = 1e-8,
|
1035 |
+
reduce: Optional[bool] = None,
|
1036 |
+
reduction: str = "mean",
|
1037 |
+
) -> TensorLikeType:
|
1038 |
+
"""
|
1039 |
+
Reference implementation of torch.nn.functional.poisson_nll_loss
|
1040 |
+
"""
|
1041 |
+
if size_average is not None or reduce is not None:
|
1042 |
+
# TODO: Raise exception instead of converting value. This is only for
|
1043 |
+
# primTorch since it can drop support for deprecated arguments.
|
1044 |
+
# msg = "size_average and reduce args are deprecated, please use reduction argument."
|
1045 |
+
reduction = _get_string_reduction_arg(size_average=size_average, reduce=reduce)
|
1046 |
+
_check_reduction_value(reduction)
|
1047 |
+
if log_input:
|
1048 |
+
loss = torch.exp(input) - target * input
|
1049 |
+
else:
|
1050 |
+
loss = input - target * torch.log(input + eps)
|
1051 |
+
|
1052 |
+
if full:
|
1053 |
+
stirling_term = (
|
1054 |
+
target * torch.log(target) - target + 0.5 * torch.log(2 * torch.pi * target)
|
1055 |
+
)
|
1056 |
+
# avoid inplace add
|
1057 |
+
loss = loss + stirling_term.masked_fill(target <= 1, 0)
|
1058 |
+
return _apply_loss_reduction(loss, reduction)
|
1059 |
+
|
1060 |
+
|
1061 |
+
@register_decomposition(aten.prelu)
|
1062 |
+
@elementwise_type_promotion_wrapper(
|
1063 |
+
type_promoting_args=("a", "weight"),
|
1064 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
1065 |
+
)
|
1066 |
+
def prelu(a: TensorLikeType, weight: TensorLikeType) -> TensorLikeType:
|
1067 |
+
"""
|
1068 |
+
Reference implementation of torch.nn.functional.prelu
|
1069 |
+
"""
|
1070 |
+
torch._check(
|
1071 |
+
isinstance(a, TensorLike),
|
1072 |
+
lambda: f"prelu: Expected `a` to be tensor, but got: {type(a)}",
|
1073 |
+
)
|
1074 |
+
torch._check(
|
1075 |
+
isinstance(weight, TensorLike),
|
1076 |
+
lambda: f"prelu: Expected `weight` to be tensor, but got: {type(weight)}",
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
if weight.numel() != 1:
|
1080 |
+
torch._check(a.ndim > 0, lambda: "Not allow zero-dim input tensor.")
|
1081 |
+
channel_size = a.shape[1] if a.ndim >= 2 else 1
|
1082 |
+
torch._check(
|
1083 |
+
weight.numel() == channel_size,
|
1084 |
+
lambda: f"Mismatch of parameter numbers and input channel size. Found parameter numbers ="
|
1085 |
+
f" {weight.numel()} and channel size = {channel_size}.",
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
torch._check(
|
1089 |
+
weight.ndim == 0 or weight.ndim == 1,
|
1090 |
+
lambda: f"prelu: Expected `weight` to be a scalar or 1D tensor, but got: "
|
1091 |
+
f"ndim = {weight.ndim}",
|
1092 |
+
)
|
1093 |
+
if a.ndim == 0:
|
1094 |
+
weight = weight[0] if weight.ndim == 1 else weight
|
1095 |
+
else:
|
1096 |
+
weight = prims.broadcast_in_dim(
|
1097 |
+
weight, a.shape, tuple() if weight.ndim == 0 else (0 if a.ndim == 1 else 1,)
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
return torch.where(a > 0, a, a * weight)
|
1101 |
+
|
1102 |
+
|
1103 |
+
@register_decomposition(aten.relu6)
|
1104 |
+
@_inplace_wrapper
|
1105 |
+
@out_wrapper()
|
1106 |
+
def relu6(a: TensorLikeType, inplace: bool = False) -> TensorLikeType:
|
1107 |
+
"""
|
1108 |
+
Reference implementation of torch.nn.functional.relu6
|
1109 |
+
"""
|
1110 |
+
if inplace:
|
1111 |
+
raise NotImplementedError
|
1112 |
+
|
1113 |
+
# See https://github.com/pytorch/pytorch/pull/81142#discussion_r918220126
|
1114 |
+
# It may be better to use clamp here, but we use hardtanh to replicate
|
1115 |
+
# the behavior of the existing implementation
|
1116 |
+
return torch.nn.functional.hardtanh(a, 0, 6)
|
1117 |
+
|
1118 |
+
|
1119 |
+
@register_decomposition(aten.glu)
|
1120 |
+
@out_wrapper()
|
1121 |
+
@elementwise_type_promotion_wrapper(
|
1122 |
+
type_promoting_args=("a",),
|
1123 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
1124 |
+
)
|
1125 |
+
def glu(a: TensorLikeType, dim: int = -1) -> TensorLikeType:
|
1126 |
+
dim = utils.canonicalize_dims(a.ndim, dim)
|
1127 |
+
torch._check(
|
1128 |
+
a.shape[dim] % 2 == 0,
|
1129 |
+
lambda: f"Halving dimension must be even, but dimension {dim} is size {a.shape[dim]}",
|
1130 |
+
)
|
1131 |
+
b, c = torch.tensor_split(a, 2, dim)
|
1132 |
+
|
1133 |
+
return b * torch.sigmoid(c)
|
1134 |
+
|
1135 |
+
|
1136 |
+
@register_decomposition(aten.pairwise_distance)
|
1137 |
+
@out_wrapper()
|
1138 |
+
def pairwise_distance(
|
1139 |
+
x1: TensorLikeType,
|
1140 |
+
x2: TensorLikeType,
|
1141 |
+
p: NumberType = 2.0,
|
1142 |
+
eps: NumberType = 1e-6,
|
1143 |
+
keepdim=False,
|
1144 |
+
) -> TensorLikeType:
|
1145 |
+
return torch.linalg.vector_norm(x1 - x2 + eps, ord=p, dim=-1, keepdim=keepdim)
|
1146 |
+
|
1147 |
+
|
1148 |
+
@register_decomposition(aten.pdist)
|
1149 |
+
@out_wrapper()
|
1150 |
+
@elementwise_type_promotion_wrapper(
|
1151 |
+
type_promoting_args=("a",),
|
1152 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
|
1153 |
+
)
|
1154 |
+
def pdist(a: TensorLikeType, p: float = 2) -> TensorLikeType:
|
1155 |
+
torch._check(a.ndim == 2, lambda: f"pdist only supports 2D tensors, got: {a.ndim}D")
|
1156 |
+
torch._check(p >= 0, lambda: "pdist only supports non-negative p values")
|
1157 |
+
# For p == 2 we can use an efficient implementation, but other values of p
|
1158 |
+
# require creating a much bigger tensor for an intermediate step
|
1159 |
+
if p == 2:
|
1160 |
+
aTa = torch.mm(a, a.T)
|
1161 |
+
aTa_diag = torch.diag(aTa)
|
1162 |
+
t = torch.sqrt(torch.clamp(aTa_diag + aTa_diag.unsqueeze(-1) - 2 * aTa, min=0))
|
1163 |
+
else:
|
1164 |
+
t = torch.linalg.vector_norm(a.unsqueeze(1) - a, ord=p, dim=2)
|
1165 |
+
i = torch.triu_indices(t.shape[0], t.shape[1], offset=1, device=a.device)
|
1166 |
+
return t.flatten().index_select(0, i[0] * t.shape[0] + i[1])
|
1167 |
+
|
1168 |
+
|
1169 |
+
@register_decomposition(aten.pixel_shuffle)
|
1170 |
+
@out_wrapper()
|
1171 |
+
def pixel_shuffle(self: Tensor, upscale_factor: int):
|
1172 |
+
torch._check(
|
1173 |
+
self.dim() >= 3,
|
1174 |
+
lambda: f"pixel_shuffle expects input to have at least 3 dimensions, but got input with {self.dim} dimension(s)",
|
1175 |
+
)
|
1176 |
+
batch = self.shape[:-3]
|
1177 |
+
C_out = self.shape[-3] // upscale_factor**2
|
1178 |
+
HW_out = (self.shape[-2] * upscale_factor, self.shape[-1] * upscale_factor)
|
1179 |
+
n = len(batch)
|
1180 |
+
B_dims = range(n)
|
1181 |
+
C_dim, r1_dim, r2_dim, H_dim, W_dim = range(n, n + 5)
|
1182 |
+
return (
|
1183 |
+
self.view(
|
1184 |
+
*batch,
|
1185 |
+
C_out,
|
1186 |
+
upscale_factor,
|
1187 |
+
upscale_factor,
|
1188 |
+
self.shape[-2],
|
1189 |
+
self.shape[-1],
|
1190 |
+
)
|
1191 |
+
.permute(*B_dims, C_dim, H_dim, r1_dim, W_dim, r2_dim)
|
1192 |
+
.reshape(*batch, C_out, *HW_out)
|
1193 |
+
.clone(memory_format=utils.suggest_memory_format(self))
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
|
1197 |
+
@register_decomposition(aten.pixel_unshuffle)
|
1198 |
+
@out_wrapper()
|
1199 |
+
def pixel_unshuffle(self: Tensor, downscale_factor: int):
|
1200 |
+
torch._check(
|
1201 |
+
self.dim() >= 3,
|
1202 |
+
lambda: f"pixel_unshuffle expects input to have at least 3 dimensions, but got input with {self.dim} dimension(s)",
|
1203 |
+
)
|
1204 |
+
batch = self.shape[:-3]
|
1205 |
+
C_out = self.shape[-3] * downscale_factor**2
|
1206 |
+
HW_out = (self.shape[-2] // downscale_factor, self.shape[-1] // downscale_factor)
|
1207 |
+
n = len(batch)
|
1208 |
+
B_dims = range(n)
|
1209 |
+
C_dim, H_dim, r1_dim, W_dim, r2_dim = range(n, n + 5)
|
1210 |
+
return (
|
1211 |
+
self.view(
|
1212 |
+
*batch,
|
1213 |
+
self.shape[-3],
|
1214 |
+
HW_out[0],
|
1215 |
+
downscale_factor,
|
1216 |
+
HW_out[1],
|
1217 |
+
downscale_factor,
|
1218 |
+
)
|
1219 |
+
.permute(*B_dims, C_dim, r1_dim, r2_dim, H_dim, W_dim)
|
1220 |
+
.reshape(*batch, C_out, *HW_out)
|
1221 |
+
.clone(memory_format=utils.suggest_memory_format(self))
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
|
1225 |
+
# Needed as aten.{celu_,elu_...} exist (even if they don't have the in-place kwarg)
|
1226 |
+
celu_ = _make_inplace(celu)
|
1227 |
+
elu_ = _make_inplace(elu)
|
1228 |
+
mish_ = _make_inplace(mish)
|
1229 |
+
selu_ = _make_inplace(selu)
|
1230 |
+
threshold_ = _make_inplace(threshold)
|
venv/lib/python3.10/site-packages/torch/_refs/nn/functional/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (26.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_refs/special/__init__.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch._prims as prims
|
6 |
+
import torch._prims_common as utils
|
7 |
+
import torch._refs as refs
|
8 |
+
|
9 |
+
from torch import Tensor
|
10 |
+
from torch._decomp import register_decomposition
|
11 |
+
from torch._prims_common import (
|
12 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND,
|
13 |
+
Number,
|
14 |
+
NumberType,
|
15 |
+
TensorLike,
|
16 |
+
TensorLikeType,
|
17 |
+
)
|
18 |
+
from torch._prims_common.wrappers import elementwise_type_promotion_wrapper, out_wrapper
|
19 |
+
from torch._refs import (
|
20 |
+
_make_alias,
|
21 |
+
_make_elementwise_binary_reference,
|
22 |
+
_make_elementwise_unary_reference,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"bessel_j0",
|
28 |
+
"bessel_j1",
|
29 |
+
"entr",
|
30 |
+
"erfcx",
|
31 |
+
"expit",
|
32 |
+
"i0e",
|
33 |
+
"i1",
|
34 |
+
"i1e",
|
35 |
+
"log_ndtr",
|
36 |
+
"logit",
|
37 |
+
"log_softmax",
|
38 |
+
"multigammaln",
|
39 |
+
"ndtr",
|
40 |
+
"ndtri",
|
41 |
+
"softmax",
|
42 |
+
"spherical_bessel_j0",
|
43 |
+
"xlog1py",
|
44 |
+
"zeta",
|
45 |
+
]
|
46 |
+
aten = torch._ops.ops.aten
|
47 |
+
|
48 |
+
|
49 |
+
@_make_elementwise_unary_reference(
|
50 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
51 |
+
)
|
52 |
+
def bessel_j0(a: TensorLikeType) -> TensorLikeType:
|
53 |
+
return prims.bessel_j0(a)
|
54 |
+
|
55 |
+
|
56 |
+
@_make_elementwise_unary_reference(
|
57 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
58 |
+
)
|
59 |
+
def bessel_j1(a: TensorLikeType) -> TensorLikeType:
|
60 |
+
return prims.bessel_j1(a)
|
61 |
+
|
62 |
+
|
63 |
+
@register_decomposition(aten.special_entr)
|
64 |
+
@out_wrapper()
|
65 |
+
@elementwise_type_promotion_wrapper(
|
66 |
+
type_promoting_args=("a",),
|
67 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
68 |
+
)
|
69 |
+
def entr(a: TensorLikeType) -> TensorLikeType:
|
70 |
+
return torch.where(
|
71 |
+
torch.isnan(a),
|
72 |
+
a,
|
73 |
+
torch.where(a > 0, -a * torch.log(a), torch.where(a == 0, 0, -torch.inf)),
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
@register_decomposition(aten.special_erfcx)
|
78 |
+
@out_wrapper()
|
79 |
+
@elementwise_type_promotion_wrapper(
|
80 |
+
type_promoting_args=("a",),
|
81 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
82 |
+
)
|
83 |
+
def erfcx(a: TensorLikeType) -> TensorLikeType:
|
84 |
+
return prims.erfcx(a)
|
85 |
+
|
86 |
+
|
87 |
+
# alias for sigmoid
|
88 |
+
expit = _make_alias(torch.sigmoid, "expit")
|
89 |
+
|
90 |
+
|
91 |
+
@_make_elementwise_unary_reference(
|
92 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
93 |
+
)
|
94 |
+
def i0e(a: TensorLikeType) -> TensorLikeType:
|
95 |
+
return prims.bessel_i0e(a)
|
96 |
+
|
97 |
+
|
98 |
+
@_make_elementwise_unary_reference(
|
99 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
100 |
+
)
|
101 |
+
def i1(a: TensorLikeType) -> TensorLikeType:
|
102 |
+
return prims.bessel_i1(a)
|
103 |
+
|
104 |
+
|
105 |
+
@_make_elementwise_unary_reference(
|
106 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
107 |
+
)
|
108 |
+
def i1e(a: TensorLikeType) -> TensorLikeType:
|
109 |
+
return prims.bessel_i1e(a)
|
110 |
+
|
111 |
+
|
112 |
+
@register_decomposition(aten.special_log_ndtr)
|
113 |
+
@out_wrapper()
|
114 |
+
@elementwise_type_promotion_wrapper(
|
115 |
+
type_promoting_args=("a",),
|
116 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
117 |
+
)
|
118 |
+
def log_ndtr(a: TensorLikeType) -> TensorLikeType:
|
119 |
+
# Note: M_SQRT1_2 is the value of 1 / √2
|
120 |
+
M_SQRT1_2 = 0.707106781186547524400844362104849039
|
121 |
+
t = a * M_SQRT1_2
|
122 |
+
return torch.where(
|
123 |
+
a < 1.0,
|
124 |
+
torch.log(torch.special.erfcx(-t) / 2) - t * t,
|
125 |
+
torch.log1p(-torch.erfc(t) / 2),
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
@register_decomposition(aten.logit)
|
130 |
+
@out_wrapper()
|
131 |
+
@elementwise_type_promotion_wrapper(
|
132 |
+
type_promoting_args=("self",),
|
133 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
134 |
+
)
|
135 |
+
def logit(self: TensorLikeType, eps: Optional[float] = None) -> TensorLikeType:
|
136 |
+
if eps is None:
|
137 |
+
eps = -1.0
|
138 |
+
lo = eps
|
139 |
+
hi = 1 - eps
|
140 |
+
self = torch.clamp(self, lo, hi)
|
141 |
+
return torch.log(torch.true_divide(self, torch.sub(1, self)))
|
142 |
+
|
143 |
+
|
144 |
+
@register_decomposition(aten.special_xlog1py)
|
145 |
+
@out_wrapper()
|
146 |
+
@elementwise_type_promotion_wrapper(
|
147 |
+
type_promoting_args=("a", "b"),
|
148 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
149 |
+
)
|
150 |
+
def xlog1py(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]):
|
151 |
+
torch._check(
|
152 |
+
isinstance(a, TensorLike) or isinstance(b, TensorLike),
|
153 |
+
lambda: 'Expected either argument a or b to be a Tensor"',
|
154 |
+
)
|
155 |
+
|
156 |
+
# Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors.
|
157 |
+
if isinstance(a, TensorLike) and isinstance(b, Number):
|
158 |
+
b = refs.scalar_tensor(b, dtype=a.dtype, device=a.device)
|
159 |
+
elif isinstance(b, TensorLike) and isinstance(a, Number):
|
160 |
+
a = refs.scalar_tensor(a, dtype=b.dtype, device=b.device)
|
161 |
+
|
162 |
+
# mypy: expected "Tensor"
|
163 |
+
assert isinstance(a, TensorLike)
|
164 |
+
assert isinstance(b, TensorLike)
|
165 |
+
rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log1p(b)))
|
166 |
+
return torch.where(torch.isnan(b), float("nan"), rhs)
|
167 |
+
|
168 |
+
|
169 |
+
@register_decomposition(aten.mvlgamma)
|
170 |
+
@out_wrapper()
|
171 |
+
@elementwise_type_promotion_wrapper(
|
172 |
+
type_promoting_args=("a",),
|
173 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
174 |
+
)
|
175 |
+
def multigammaln(a: TensorLikeType, p: int) -> TensorLikeType:
|
176 |
+
c = 0.25 * p * (p - 1) * math.log(math.pi)
|
177 |
+
b = 0.5 * torch.arange(start=(1 - p), end=1, step=1, dtype=a.dtype, device=a.device)
|
178 |
+
return torch.sum(torch.lgamma(a.unsqueeze(-1) + b), dim=-1) + c
|
179 |
+
|
180 |
+
|
181 |
+
@register_decomposition(aten.special_ndtr)
|
182 |
+
@out_wrapper()
|
183 |
+
@elementwise_type_promotion_wrapper(
|
184 |
+
type_promoting_args=("a",),
|
185 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
186 |
+
)
|
187 |
+
def ndtr(a: TensorLikeType) -> TensorLikeType:
|
188 |
+
# Note: M_SQRT1_2 is the value of 1 / √2
|
189 |
+
M_SQRT1_2 = 0.707106781186547524400844362104849039
|
190 |
+
a_sqrt_2 = a * M_SQRT1_2
|
191 |
+
return (1 + torch.erf(a_sqrt_2)) * 0.5
|
192 |
+
|
193 |
+
|
194 |
+
@register_decomposition(aten.special_ndtri)
|
195 |
+
@out_wrapper()
|
196 |
+
@elementwise_type_promotion_wrapper(
|
197 |
+
type_promoting_args=("a",),
|
198 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
199 |
+
)
|
200 |
+
def ndtri(a: TensorLikeType) -> TensorLikeType:
|
201 |
+
return prims.ndtri(a)
|
202 |
+
|
203 |
+
|
204 |
+
# Forwarding alias: the special variant doesn't support the out kwarg
|
205 |
+
# CompositeImplicitAutograd - don't register decomp
|
206 |
+
def log_softmax(
|
207 |
+
a: TensorLikeType,
|
208 |
+
dim: int,
|
209 |
+
dtype: Optional[torch.dtype] = None,
|
210 |
+
) -> TensorLikeType:
|
211 |
+
return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
|
212 |
+
|
213 |
+
|
214 |
+
# Forwarding alias: the special variant doesn't support the out kwarg
|
215 |
+
# CompositeImplicitAutograd - don't register decomp
|
216 |
+
def softmax(
|
217 |
+
a: TensorLikeType,
|
218 |
+
dim: int,
|
219 |
+
dtype: Optional[torch.dtype] = None,
|
220 |
+
) -> TensorLikeType:
|
221 |
+
return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
|
222 |
+
|
223 |
+
|
224 |
+
@_make_elementwise_unary_reference(
|
225 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
226 |
+
)
|
227 |
+
def spherical_bessel_j0(a: TensorLikeType) -> TensorLikeType:
|
228 |
+
return prims.spherical_bessel_j0(a)
|
229 |
+
|
230 |
+
|
231 |
+
# TODO: add docstring
|
232 |
+
@_make_elementwise_binary_reference(
|
233 |
+
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
234 |
+
)
|
235 |
+
def zeta(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType:
|
236 |
+
return prims.zeta(a, b)
|
venv/lib/python3.10/site-packages/torch/_refs/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.09 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from torch._subclasses.fake_tensor import (
|
4 |
+
DynamicOutputShapeException,
|
5 |
+
FakeTensor,
|
6 |
+
FakeTensorMode,
|
7 |
+
UnsupportedFakeTensorException,
|
8 |
+
)
|
9 |
+
|
10 |
+
from torch._subclasses.fake_utils import CrossRefFakeMode
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"FakeTensor",
|
14 |
+
"FakeTensorMode",
|
15 |
+
"UnsupportedFakeTensorException",
|
16 |
+
"DynamicOutputShapeException",
|
17 |
+
"CrossRefFakeMode",
|
18 |
+
]
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (485 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_impls.cpython-310.pyc
ADDED
Binary file (21.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_tensor.cpython-310.pyc
ADDED
Binary file (42.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/fake_utils.cpython-310.pyc
ADDED
Binary file (5.57 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/functional_tensor.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/meta_utils.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/__pycache__/schema_check_mode.cpython-310.pyc
ADDED
Binary file (6.09 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_subclasses/fake_impls.py
ADDED
@@ -0,0 +1,1061 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import math
|
6 |
+
import sys
|
7 |
+
from typing import Callable, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch._custom_op
|
11 |
+
import torch._logging
|
12 |
+
|
13 |
+
from torch._ops import OpOverload
|
14 |
+
from torch._prims_common import (
|
15 |
+
elementwise_dtypes,
|
16 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND,
|
17 |
+
is_boolean_dtype,
|
18 |
+
is_float_dtype,
|
19 |
+
is_integer_dtype,
|
20 |
+
)
|
21 |
+
|
22 |
+
from torch._subclasses.fake_tensor import (
|
23 |
+
DataDependentOutputException,
|
24 |
+
DynamicOutputShapeException,
|
25 |
+
FakeTensor,
|
26 |
+
in_kernel_invocation_manager,
|
27 |
+
run_fallback_kernel,
|
28 |
+
UnsupportedOperatorException,
|
29 |
+
)
|
30 |
+
from torch.fx.operator_schemas import normalize_function
|
31 |
+
|
32 |
+
from torch.utils._stats import count_label
|
33 |
+
|
34 |
+
pytree = torch.utils._pytree
|
35 |
+
|
36 |
+
__all__ = [
|
37 |
+
"op_implementations_checks",
|
38 |
+
"get_fast_op_impls",
|
39 |
+
"stride_incorrect_op",
|
40 |
+
"has_meta",
|
41 |
+
]
|
42 |
+
|
43 |
+
op_implementations_dict = {}
|
44 |
+
op_implementations_checks = []
|
45 |
+
|
46 |
+
|
47 |
+
aten = torch._ops.ops.aten
|
48 |
+
|
49 |
+
|
50 |
+
def ordered_set(*items):
|
51 |
+
return dict.fromkeys(items, True)
|
52 |
+
|
53 |
+
|
54 |
+
# This function indicates if the backend device
|
55 |
+
# supports non-contiguous tensors
|
56 |
+
def is_noncontiguous_supported(device):
|
57 |
+
if device.type == "hpu":
|
58 |
+
return False
|
59 |
+
return True
|
60 |
+
|
61 |
+
|
62 |
+
_like_tensor_constructors = ordered_set(
|
63 |
+
aten.empty_like.default,
|
64 |
+
aten.empty_like.out,
|
65 |
+
aten.full_like.default,
|
66 |
+
aten.full_like.out,
|
67 |
+
aten.ones_like.default,
|
68 |
+
aten.ones_like.out,
|
69 |
+
aten.rand_like.default,
|
70 |
+
aten.rand_like.out,
|
71 |
+
aten.randn_like.default,
|
72 |
+
aten.randn_like.out,
|
73 |
+
aten.randint_like.default,
|
74 |
+
aten.randint_like.out,
|
75 |
+
aten.randint_like.low_dtype,
|
76 |
+
aten.randint_like.low_dtype_out,
|
77 |
+
aten.zeros_like.default,
|
78 |
+
aten.zeros_like.out,
|
79 |
+
aten.new_empty.default,
|
80 |
+
aten.new_empty.out,
|
81 |
+
aten.new_empty_strided.default,
|
82 |
+
aten.new_empty_strided.out,
|
83 |
+
aten.new_full.default,
|
84 |
+
aten.new_full.out,
|
85 |
+
aten.new_zeros.default,
|
86 |
+
aten.new_zeros.out,
|
87 |
+
aten.new_ones.default,
|
88 |
+
aten.new_ones.out,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
_device_not_kwarg_ops = ordered_set(
|
93 |
+
aten._resize_output_.default,
|
94 |
+
aten._nested_tensor_from_tensor_list.default,
|
95 |
+
aten._nested_tensor_from_tensor_list.out,
|
96 |
+
aten.pin_memory.default,
|
97 |
+
aten.is_pinned.default,
|
98 |
+
aten.to.device,
|
99 |
+
aten.to.prim_Device,
|
100 |
+
aten._pin_memory.default,
|
101 |
+
aten._pin_memory.out,
|
102 |
+
aten._resize_output.default,
|
103 |
+
aten._resize_output.out,
|
104 |
+
)
|
105 |
+
|
106 |
+
# this op is never actually used
|
107 |
+
_non_kwarg_device_constructors = (aten._list_to_tensor,)
|
108 |
+
|
109 |
+
|
110 |
+
def contains_tensor_types(type):
|
111 |
+
tensor_type = torch._C.TensorType.get()
|
112 |
+
return type.isSubtypeOf(tensor_type) or any(
|
113 |
+
contains_tensor_types(e) for e in type.containedTypes()
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
@functools.lru_cache(None)
|
118 |
+
def _is_tensor_constructor(func: OpOverload):
|
119 |
+
assert isinstance(func, OpOverload)
|
120 |
+
schema = func._schema
|
121 |
+
if any(contains_tensor_types(arg.type) for arg in schema.arguments):
|
122 |
+
return False
|
123 |
+
# TODO: no real reason to restrict multiple outputs
|
124 |
+
return (
|
125 |
+
len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get()
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]):
|
130 |
+
def impl_decorator(op_impl):
|
131 |
+
if isinstance(run_impl_check, OpOverload):
|
132 |
+
assert (
|
133 |
+
run_impl_check not in op_implementations_dict
|
134 |
+
), f"duplicate registration: {run_impl_check}"
|
135 |
+
op_implementations_dict[run_impl_check] = op_impl
|
136 |
+
elif isinstance(run_impl_check, (list, tuple)):
|
137 |
+
for op in run_impl_check:
|
138 |
+
register_op_impl(op)(op_impl)
|
139 |
+
else:
|
140 |
+
assert callable(run_impl_check)
|
141 |
+
op_implementations_checks.append((run_impl_check, op_impl))
|
142 |
+
|
143 |
+
return op_impl
|
144 |
+
|
145 |
+
return impl_decorator
|
146 |
+
|
147 |
+
|
148 |
+
@register_op_impl(op_implementations_dict.__contains__)
|
149 |
+
def dispatch_to_op_implementations_dict(fake_mode, func, *args, **kwargs):
|
150 |
+
return op_implementations_dict[func](fake_mode, func, *args, **kwargs)
|
151 |
+
|
152 |
+
|
153 |
+
@register_op_impl(_is_tensor_constructor)
|
154 |
+
@register_op_impl([*_like_tensor_constructors])
|
155 |
+
def constructors(fake_mode, func, *args, **kwargs):
|
156 |
+
assert func not in _non_kwarg_device_constructors
|
157 |
+
_, new_kwargs = normalize_function(
|
158 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
159 |
+
)
|
160 |
+
if "names" in kwargs:
|
161 |
+
raise UnsupportedOperatorException(
|
162 |
+
"torch.compile doesn't support named tensors"
|
163 |
+
)
|
164 |
+
|
165 |
+
if func in _like_tensor_constructors:
|
166 |
+
default_device = new_kwargs["input"].device
|
167 |
+
# TODO: file issue
|
168 |
+
args = (new_kwargs.pop("input"),)
|
169 |
+
else:
|
170 |
+
# cpu is default device if none is specified
|
171 |
+
default_device = torch.device("cpu")
|
172 |
+
args = ()
|
173 |
+
out_device = new_kwargs.pop("device", None)
|
174 |
+
out_device = out_device if out_device is not None else default_device
|
175 |
+
new_kwargs["device"] = torch.device("meta")
|
176 |
+
# _like constructors have fake tensor inputs (maybe this causes the non-like
|
177 |
+
# to fail? hmmm)
|
178 |
+
with in_kernel_invocation_manager(fake_mode):
|
179 |
+
r = func(*args, **new_kwargs)
|
180 |
+
return FakeTensor(fake_mode, r, out_device)
|
181 |
+
|
182 |
+
|
183 |
+
@register_op_impl(aten.to.prim_Device)
|
184 |
+
@register_op_impl(aten.to.device)
|
185 |
+
def non_kwarg_to(fake_mode, func, *args, **kwargs):
|
186 |
+
_, new_kwargs = normalize_function(
|
187 |
+
func, args, kwargs, normalize_to_only_use_kwargs=True
|
188 |
+
)
|
189 |
+
input_device = new_kwargs["device"]
|
190 |
+
out_device = input_device if input_device else new_kwargs["input"].device
|
191 |
+
new_kwargs["device"] = torch.device("meta")
|
192 |
+
inp = new_kwargs.pop("input")
|
193 |
+
with in_kernel_invocation_manager(fake_mode):
|
194 |
+
r = func(inp, **new_kwargs)
|
195 |
+
# TODO: I think this does the wrong thing if r is inp
|
196 |
+
return fake_mode.fake_tensor_converter.from_meta_and_device(
|
197 |
+
fake_mode, r, out_device
|
198 |
+
)
|
199 |
+
|
200 |
+
|
201 |
+
def stride_incorrect_op(op):
|
202 |
+
if op.namespace not in ("aten", "prims"):
|
203 |
+
return False
|
204 |
+
if op is aten._fft_c2c.default:
|
205 |
+
return False
|
206 |
+
|
207 |
+
op_name = op.name()
|
208 |
+
if "fft" in op_name:
|
209 |
+
return True
|
210 |
+
return False
|
211 |
+
|
212 |
+
|
213 |
+
# These operators have meta implementations with incorrect strides
|
214 |
+
@register_op_impl(stride_incorrect_op)
|
215 |
+
def wordaround_stride_incorrect_op(fake_mode, func, *args, **kwargs):
|
216 |
+
# This is a workaround for meta implmentations with incorrect strides
|
217 |
+
|
218 |
+
def is_symbolic(x):
|
219 |
+
if isinstance(x, FakeTensor):
|
220 |
+
return x._has_symbolic_sizes_strides
|
221 |
+
if isinstance(x, (torch.SymInt, torch.SymFloat, torch.SymBool)):
|
222 |
+
return True
|
223 |
+
return False
|
224 |
+
|
225 |
+
# For static shapes, we can fall back to eager for the real strides
|
226 |
+
if fake_mode.allow_fallback_kernels:
|
227 |
+
require_dynamic = any(
|
228 |
+
is_symbolic(x) for x in itertools.chain(args, kwargs.values())
|
229 |
+
)
|
230 |
+
if not require_dynamic:
|
231 |
+
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
|
232 |
+
return run_fallback_kernel(fake_mode, func, flat_args, args_spec, None)
|
233 |
+
|
234 |
+
raise UnsupportedOperatorException(func)
|
235 |
+
|
236 |
+
|
237 |
+
# Dont default to default device handling,
|
238 |
+
# since the device of `the_template` is ignored
|
239 |
+
@register_op_impl(aten.resize_as_.default)
|
240 |
+
def resize_as_(fake_mode, func, *args, **kwargs):
|
241 |
+
with in_kernel_invocation_manager(fake_mode):
|
242 |
+
return func(*args, **kwargs)
|
243 |
+
|
244 |
+
|
245 |
+
@register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default)
|
246 |
+
def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs):
|
247 |
+
# TODO: remove me
|
248 |
+
return constructors(fake_mode, func, *args, **kwargs)
|
249 |
+
|
250 |
+
|
251 |
+
# index.Tensor data-dependent in only some conditions
|
252 |
+
@register_op_impl(
|
253 |
+
lambda func: torch.Tag.dynamic_output_shape in func.tags
|
254 |
+
and func
|
255 |
+
not in [aten.index.Tensor, aten.nonzero.default, aten.repeat_interleave.Tensor]
|
256 |
+
)
|
257 |
+
def dyn_shape(fake_mode, func, *args, **kwargs):
|
258 |
+
raise DynamicOutputShapeException(func)
|
259 |
+
|
260 |
+
|
261 |
+
@register_op_impl(aten.repeat_interleave.Tensor)
|
262 |
+
def repeat_interleave_tensor(fake_mode, func, repeats, output_size=None):
|
263 |
+
if output_size is None:
|
264 |
+
if (
|
265 |
+
fake_mode.shape_env is None
|
266 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
267 |
+
):
|
268 |
+
raise DynamicOutputShapeException(func)
|
269 |
+
|
270 |
+
output_size = fake_mode.shape_env.create_unbacked_symint()
|
271 |
+
|
272 |
+
# Avoid importing sympy at a module level
|
273 |
+
from torch.fx.experimental.symbolic_shapes import _constrain_range_for_size
|
274 |
+
|
275 |
+
_constrain_range_for_size(output_size)
|
276 |
+
# TODO: consider a memo
|
277 |
+
return repeats.new_empty(output_size)
|
278 |
+
|
279 |
+
|
280 |
+
@register_op_impl(torch.ops.aten._local_scalar_dense.default)
|
281 |
+
def local_scalar_dense(fake_mode, func, arg):
|
282 |
+
if fake_mode.shape_env is None or not fake_mode.shape_env.allow_scalar_outputs:
|
283 |
+
# Without symints/symfloats, cannot handle this
|
284 |
+
raise DataDependentOutputException(func)
|
285 |
+
if is_float_dtype(arg.dtype):
|
286 |
+
return fake_mode.shape_env.create_unbacked_symfloat()
|
287 |
+
elif is_integer_dtype(arg.dtype):
|
288 |
+
return fake_mode.shape_env.create_unbacked_symint()
|
289 |
+
elif is_boolean_dtype(arg.dtype):
|
290 |
+
return fake_mode.shape_env.create_unbacked_symbool()
|
291 |
+
else:
|
292 |
+
raise NotImplementedError(f"local_scalar_dense/item NYI for {arg.dtype}")
|
293 |
+
|
294 |
+
|
295 |
+
@register_op_impl(torch.ops.aten.nonzero.default)
|
296 |
+
def nonzero(fake_mode, func, arg):
|
297 |
+
if (
|
298 |
+
fake_mode.shape_env is None
|
299 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
300 |
+
):
|
301 |
+
# Without symints/symfloats, cannot handle this
|
302 |
+
raise DynamicOutputShapeException(func)
|
303 |
+
|
304 |
+
if arg.nonzero_memo is None:
|
305 |
+
nnz = fake_mode.shape_env.create_unbacked_symint()
|
306 |
+
|
307 |
+
# This is unsound, but it works well in practice
|
308 |
+
# See https://docs.google.com/document/d/1lFRYAJo5nrfxRhwIzGnfi2pbLpU6T4ytSRSuLJ5qebI/edit#
|
309 |
+
# TODO: Add a config knob to turn off this unsound behavior
|
310 |
+
#
|
311 |
+
# NB: If numel < 2, the bounds here might be COMPLETELY
|
312 |
+
# disjoint with what can actually occur. But this is fine:
|
313 |
+
# remember, the hypothesis is that if your later code works
|
314 |
+
# with N >= 2, it will work with N = 1 and N = 0.
|
315 |
+
maxval = sys.maxsize - 1
|
316 |
+
|
317 |
+
# Avoid importing sympy at a module level
|
318 |
+
from torch.fx.experimental.symbolic_shapes import (
|
319 |
+
_constrain_range_for_size,
|
320 |
+
has_free_symbols,
|
321 |
+
)
|
322 |
+
|
323 |
+
if not has_free_symbols(arg.numel()):
|
324 |
+
# Don't upgrade the range if numel is less than two, since we then
|
325 |
+
# have an empty range which makes things go explodey. We also
|
326 |
+
# don't allow for 2 because that would specialize the unbacked
|
327 |
+
# SymInt to 2, which is also likely to be buggy.
|
328 |
+
if arg.numel() > 2:
|
329 |
+
maxval = int(arg.numel())
|
330 |
+
|
331 |
+
_constrain_range_for_size(nnz, max=maxval)
|
332 |
+
|
333 |
+
arg._nonzero_memo = nnz
|
334 |
+
arg._nonzero_memo_vc = arg._version
|
335 |
+
|
336 |
+
return arg.new_empty((arg.nonzero_memo, arg.dim()), dtype=torch.int64)
|
337 |
+
|
338 |
+
|
339 |
+
@register_op_impl(torch.ops.aten.masked_select.default)
|
340 |
+
def masked_select(fake_mode, func, self, mask):
|
341 |
+
if (
|
342 |
+
fake_mode.shape_env is None
|
343 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
344 |
+
):
|
345 |
+
# Without symints/symfloats, cannot handle this
|
346 |
+
raise DynamicOutputShapeException(func)
|
347 |
+
|
348 |
+
nnz = fake_mode.shape_env.create_unbacked_symint()
|
349 |
+
|
350 |
+
# see nonzero for commentary
|
351 |
+
maxval = sys.maxsize - 1
|
352 |
+
|
353 |
+
# Avoid importing sympy at a module level
|
354 |
+
from torch.fx.experimental.symbolic_shapes import (
|
355 |
+
_constrain_range_for_size,
|
356 |
+
has_free_symbols,
|
357 |
+
)
|
358 |
+
|
359 |
+
if not has_free_symbols(self.numel()):
|
360 |
+
if self.numel() > 2:
|
361 |
+
maxval = int(self.numel())
|
362 |
+
|
363 |
+
_constrain_range_for_size(nnz, max=maxval)
|
364 |
+
|
365 |
+
return self.new_empty((nnz,))
|
366 |
+
|
367 |
+
|
368 |
+
# NB: this must be ordered after local_scalar_dense
|
369 |
+
@register_op_impl(lambda func: torch.Tag.data_dependent_output in func.tags)
|
370 |
+
def data_dep(fake_mode, func, *args, **kwargs):
|
371 |
+
raise DataDependentOutputException(func)
|
372 |
+
|
373 |
+
|
374 |
+
# Bool Indices get Expanded as Masks
|
375 |
+
# See: IndexingUtils.h:expandTensors
|
376 |
+
def check_no_bool_index_tensors(func, self, indices):
|
377 |
+
for index in indices:
|
378 |
+
if index is not None and index.dtype in (torch.bool, torch.uint8):
|
379 |
+
raise DynamicOutputShapeException(func)
|
380 |
+
|
381 |
+
|
382 |
+
def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs):
|
383 |
+
_, new_kwargs = normalize_function(
|
384 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
385 |
+
)
|
386 |
+
|
387 |
+
out_device = new_kwargs["input"].device
|
388 |
+
with in_kernel_invocation_manager(fake_mode):
|
389 |
+
out = func(*args, **kwargs)
|
390 |
+
if not is_noncontiguous_supported(out_device):
|
391 |
+
out = out.new_empty(out.shape)
|
392 |
+
|
393 |
+
if out is new_kwargs["input"]:
|
394 |
+
return out # copy_
|
395 |
+
return FakeTensor(fake_mode, out, out_device)
|
396 |
+
|
397 |
+
|
398 |
+
_is_builtin_namespaces = ordered_set("aten", "prims", "prim")
|
399 |
+
|
400 |
+
|
401 |
+
def is_builtin(op):
|
402 |
+
return op.namespace in _is_builtin_namespaces
|
403 |
+
|
404 |
+
|
405 |
+
def has_meta(func):
|
406 |
+
return torch._C._dispatch_has_computed_kernel_for_dispatch_key(func.name(), "Meta")
|
407 |
+
|
408 |
+
|
409 |
+
@register_op_impl(
|
410 |
+
lambda func: is_builtin(func) and "foreach" in func.name() and has_meta(func)
|
411 |
+
)
|
412 |
+
def foreach_run_and_map_input_device(fake_mode, func, *args, **kwargs):
|
413 |
+
tensor_lists = []
|
414 |
+
for arg in itertools.chain(args, kwargs.values()):
|
415 |
+
if (
|
416 |
+
isinstance(arg, (list, tuple))
|
417 |
+
and len(arg)
|
418 |
+
and isinstance(arg[0], torch.Tensor)
|
419 |
+
):
|
420 |
+
tensor_lists.append(arg)
|
421 |
+
|
422 |
+
try:
|
423 |
+
with in_kernel_invocation_manager(fake_mode):
|
424 |
+
out_meta = func(*args, **kwargs)
|
425 |
+
except NotImplementedError as not_implemented_error:
|
426 |
+
return NotImplemented
|
427 |
+
|
428 |
+
if not out_meta:
|
429 |
+
return out_meta
|
430 |
+
|
431 |
+
assert tensor_lists
|
432 |
+
out_fake = []
|
433 |
+
|
434 |
+
for i, meta_t in enumerate(out_meta):
|
435 |
+
device, _ = FakeTensor._find_common_device(func, [tl[i] for tl in tensor_lists])
|
436 |
+
out_fake.append(
|
437 |
+
fake_mode.fake_tensor_converter.from_meta_and_device(
|
438 |
+
fake_mode, meta_t, device
|
439 |
+
)
|
440 |
+
)
|
441 |
+
|
442 |
+
return out_fake
|
443 |
+
|
444 |
+
|
445 |
+
# Dont default to default device handling,
|
446 |
+
# Since op can take in non-zero sized cpu
|
447 |
+
# index tensors with cuda self
|
448 |
+
@register_op_impl(aten.index.Tensor)
|
449 |
+
def index_tensor(fake_mode, func, *args, **kwargs):
|
450 |
+
from torch._meta_registrations import meta_index_Tensor
|
451 |
+
|
452 |
+
_, new_kwargs = normalize_function(
|
453 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
454 |
+
)
|
455 |
+
|
456 |
+
out_device = new_kwargs["input"].device
|
457 |
+
# ensure nonzero call goes to fake tensor
|
458 |
+
with fake_mode:
|
459 |
+
out = meta_index_Tensor(*args, **kwargs)
|
460 |
+
return out.to(out_device)
|
461 |
+
|
462 |
+
|
463 |
+
# Can take mixed meta/non-meta arguments; the meta registration
|
464 |
+
# will roughly do the right thing even when given real devices
|
465 |
+
@register_op_impl(aten._embedding_bag.default)
|
466 |
+
def embedding_bag(fake_mode, func, *args, **kwargs):
|
467 |
+
from torch._meta_registrations import meta_embedding_bag
|
468 |
+
|
469 |
+
with fake_mode:
|
470 |
+
return meta_embedding_bag(*args, **kwargs)
|
471 |
+
|
472 |
+
|
473 |
+
# takes in multiple-devices, dont default to default device handling
|
474 |
+
@register_op_impl(aten._unsafe_index_put.default)
|
475 |
+
@register_op_impl(aten.copy.default)
|
476 |
+
@register_op_impl(aten.copy_.default)
|
477 |
+
@register_op_impl(aten.slice_scatter.default)
|
478 |
+
def multi_device_op_default(fake_mode, func, *args, **kwargs):
|
479 |
+
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
|
480 |
+
|
481 |
+
|
482 |
+
# same with multi_device_op_default, but return the input
|
483 |
+
@register_op_impl(aten.copy.out)
|
484 |
+
@register_op_impl(aten.slice_scatter.out)
|
485 |
+
def multi_device_op_out(fake_mode, func, *args, **kwargs):
|
486 |
+
with in_kernel_invocation_manager(fake_mode):
|
487 |
+
out = func(*args, **kwargs)
|
488 |
+
|
489 |
+
_, new_kwargs = normalize_function(
|
490 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
491 |
+
)
|
492 |
+
|
493 |
+
return new_kwargs["input"]
|
494 |
+
|
495 |
+
|
496 |
+
@register_op_impl(aten.index_put.default)
|
497 |
+
@register_op_impl(aten.index_put_.default)
|
498 |
+
def index_put_impl(fake_mode, func, *args, **kwargs):
|
499 |
+
_, new_kwargs = normalize_function(
|
500 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
501 |
+
)
|
502 |
+
|
503 |
+
values = new_kwargs["values"]
|
504 |
+
self_device = new_kwargs["input"].fake_device
|
505 |
+
torch._check(
|
506 |
+
self_device == values.fake_device or (values.ndim == 0 and values.numel() == 1),
|
507 |
+
lambda: f"Mismatching {func} device between self ({self_device}) and values ({values.device})",
|
508 |
+
)
|
509 |
+
|
510 |
+
out = run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
|
511 |
+
if func is aten.index_put_.default:
|
512 |
+
return new_kwargs["input"]
|
513 |
+
else:
|
514 |
+
return out
|
515 |
+
|
516 |
+
|
517 |
+
@register_op_impl(aten._nested_tensor_from_tensor_list.default)
|
518 |
+
@register_op_impl(aten._nested_tensor_from_tensor_list.out)
|
519 |
+
def nested_tensors_unsupported(fake_mode, func, *args, **kwargs):
|
520 |
+
raise UnsupportedOperatorException(
|
521 |
+
"torch.compile does not support strided NestedTensor"
|
522 |
+
)
|
523 |
+
|
524 |
+
|
525 |
+
@register_op_impl(
|
526 |
+
[
|
527 |
+
x
|
528 |
+
for x in _device_not_kwarg_ops
|
529 |
+
if x
|
530 |
+
not in (
|
531 |
+
# these are already registered elsewhere
|
532 |
+
aten.to.device,
|
533 |
+
aten.to.prim_Device,
|
534 |
+
aten._nested_tensor_from_tensor_list.default,
|
535 |
+
aten._nested_tensor_from_tensor_list.out,
|
536 |
+
)
|
537 |
+
]
|
538 |
+
)
|
539 |
+
def nyi(fake_mode, func, *args, **kwargs):
|
540 |
+
assert func not in _device_not_kwarg_ops, f"NYI: {func}"
|
541 |
+
|
542 |
+
|
543 |
+
@register_op_impl([aten.convolution.default, aten.convolution_backward.default])
|
544 |
+
def conv(fake_mode, func, *args, **kwargs):
|
545 |
+
_, kwargs = normalize_function(
|
546 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
547 |
+
)
|
548 |
+
device = kwargs["input"].fake_device
|
549 |
+
# need to re-enable mode so the tensors report fake device
|
550 |
+
with fake_mode:
|
551 |
+
# if the input is unsqueezed is done in Convolution.cpp we get segfault
|
552 |
+
k = kwargs["weight"].ndim
|
553 |
+
batch = kwargs["input"].shape[0]
|
554 |
+
|
555 |
+
# Avoid importing sympy at a module level
|
556 |
+
from torch.fx.experimental.symbolic_shapes import has_hint
|
557 |
+
|
558 |
+
if not has_hint(batch):
|
559 |
+
# TODO: We can make this a little more faithful with best effort
|
560 |
+
# channels last detection (but only if it's statically obvious!)
|
561 |
+
mem_fmt = None
|
562 |
+
elif k == 3 and not kwargs["input"].is_mkldnn and not kwargs["input"].is_xpu:
|
563 |
+
mem_fmt = None
|
564 |
+
else:
|
565 |
+
if func is aten.convolution.default:
|
566 |
+
conv_backend = torch._C._select_conv_backend(**kwargs)
|
567 |
+
else:
|
568 |
+
conv_backend = torch._C._select_conv_backend(
|
569 |
+
kwargs["input"],
|
570 |
+
kwargs["weight"],
|
571 |
+
bias=None,
|
572 |
+
stride=kwargs["stride"],
|
573 |
+
padding=kwargs["padding"],
|
574 |
+
dilation=kwargs["dilation"],
|
575 |
+
transposed=kwargs["transposed"],
|
576 |
+
output_padding=kwargs["output_padding"],
|
577 |
+
groups=kwargs["groups"],
|
578 |
+
bias_sizes=kwargs["bias_sizes"],
|
579 |
+
)
|
580 |
+
mem_fmt = torch._C._conv_determine_backend_memory_format(
|
581 |
+
kwargs["input"], kwargs["weight"], conv_backend
|
582 |
+
)
|
583 |
+
|
584 |
+
def convert(t, mem_fmt):
|
585 |
+
if t is None:
|
586 |
+
return t
|
587 |
+
if mem_fmt is not None:
|
588 |
+
t = t.to(memory_format=mem_fmt)
|
589 |
+
return FakeTensor(fake_mode, t, device)
|
590 |
+
|
591 |
+
with in_kernel_invocation_manager(fake_mode):
|
592 |
+
out = func(**kwargs)
|
593 |
+
|
594 |
+
if func is aten.convolution.default:
|
595 |
+
return convert(out, mem_fmt)
|
596 |
+
else:
|
597 |
+
return (
|
598 |
+
convert(out[0], mem_fmt),
|
599 |
+
convert(out[1], mem_fmt),
|
600 |
+
convert(out[2], None),
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
@register_op_impl(aten._scaled_dot_product_flash_attention.default)
|
605 |
+
def meta__scaled_dot_product_flash(fake_mode, func, *args, **kwargs):
|
606 |
+
_, kwargs = normalize_function(
|
607 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
608 |
+
)
|
609 |
+
|
610 |
+
query = kwargs["query"]
|
611 |
+
key = kwargs["key"]
|
612 |
+
return_debug_mask = kwargs["return_debug_mask"]
|
613 |
+
# unused: value, dropout_p, is_causal, scale
|
614 |
+
|
615 |
+
def convert_tensor(t, device):
|
616 |
+
return FakeTensor(fake_mode, t, device)
|
617 |
+
|
618 |
+
batch_size = query.size(0)
|
619 |
+
num_heads = query.size(1)
|
620 |
+
max_seqlen_batch_q = query.size(2)
|
621 |
+
head_dim = query.size(3)
|
622 |
+
max_seqlen_batch_k = key.size(2)
|
623 |
+
|
624 |
+
query_t = query.transpose(1, 2)
|
625 |
+
# empty_like already returns a fake tensor so we don't need to convert it
|
626 |
+
attention = torch.empty_like(query_t).transpose(1, 2)
|
627 |
+
logsumexp = convert_tensor(
|
628 |
+
torch.empty(
|
629 |
+
(batch_size, num_heads, max_seqlen_batch_q),
|
630 |
+
dtype=torch.float,
|
631 |
+
device="meta",
|
632 |
+
),
|
633 |
+
device=query.device,
|
634 |
+
)
|
635 |
+
|
636 |
+
if return_debug_mask:
|
637 |
+
blocksize_c = 128 if head_dim > 64 else 256
|
638 |
+
max_seqlen_k = math.ceil(max_seqlen_batch_q / blocksize_c)
|
639 |
+
if max_seqlen_batch_k <= 128:
|
640 |
+
max_seqlen_k = 128
|
641 |
+
elif max_seqlen_batch_k <= 256:
|
642 |
+
max_seqlen_k = 256
|
643 |
+
debug_mask = convert_tensor(
|
644 |
+
torch.empty(
|
645 |
+
(batch_size, num_heads, max_seqlen_batch_q, max_seqlen_k),
|
646 |
+
dtype=query.dtype,
|
647 |
+
device="meta",
|
648 |
+
),
|
649 |
+
device=query.device,
|
650 |
+
)
|
651 |
+
else:
|
652 |
+
debug_mask = convert_tensor(
|
653 |
+
torch.empty(0, dtype=query.dtype, device="meta"),
|
654 |
+
query.device,
|
655 |
+
)
|
656 |
+
|
657 |
+
# Note [Seed and Offset]: device for seed and offset below depends on whether we are
|
658 |
+
# capturing or not, but at the time of tracing we don't know if we
|
659 |
+
# are going to use cudagraphs or not, so we return meta tensors here
|
660 |
+
# it's possible we'll need to have some special handling in inductor for sdpa
|
661 |
+
|
662 |
+
return (
|
663 |
+
attention,
|
664 |
+
logsumexp,
|
665 |
+
None,
|
666 |
+
None,
|
667 |
+
max_seqlen_batch_q,
|
668 |
+
max_seqlen_batch_k,
|
669 |
+
convert_tensor(torch.empty((), dtype=torch.long, device="meta"), query.device),
|
670 |
+
convert_tensor(torch.empty((), dtype=torch.long, device="meta"), query.device),
|
671 |
+
debug_mask,
|
672 |
+
)
|
673 |
+
|
674 |
+
|
675 |
+
@register_op_impl(aten._scaled_dot_product_efficient_attention.default)
|
676 |
+
def meta__scaled_dot_product_efficient(fake_mode, func, *args, **kwargs):
|
677 |
+
_, kwargs = normalize_function(
|
678 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
679 |
+
)
|
680 |
+
|
681 |
+
query = kwargs["query"]
|
682 |
+
key = kwargs["key"]
|
683 |
+
value = kwargs["value"]
|
684 |
+
compute_log_sumexp = kwargs["compute_log_sumexp"]
|
685 |
+
# unused: attn_bias, dropout_p, is_causal, scale
|
686 |
+
|
687 |
+
def convert_tensor(t, device):
|
688 |
+
return FakeTensor(fake_mode, t, device)
|
689 |
+
|
690 |
+
query = query.transpose(1, 2)
|
691 |
+
key = key.transpose(1, 2)
|
692 |
+
value = value.transpose(1, 2)
|
693 |
+
|
694 |
+
B = query.size(0)
|
695 |
+
M = query.size(1)
|
696 |
+
N = key.size(1)
|
697 |
+
num_heads = query.size(-2)
|
698 |
+
K = query.size(-1)
|
699 |
+
Kv = value.size(-1)
|
700 |
+
|
701 |
+
res = convert_tensor(
|
702 |
+
torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device="meta"),
|
703 |
+
query.device,
|
704 |
+
)
|
705 |
+
|
706 |
+
logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0
|
707 |
+
logsum_exp = convert_tensor(
|
708 |
+
torch.empty(
|
709 |
+
(B, num_heads, logsumexp_dim),
|
710 |
+
dtype=torch.float,
|
711 |
+
device="meta",
|
712 |
+
),
|
713 |
+
query.device,
|
714 |
+
)
|
715 |
+
|
716 |
+
res = res.transpose(1, 2)
|
717 |
+
|
718 |
+
# See Note [Seed and Offset]:
|
719 |
+
seed = convert_tensor(
|
720 |
+
torch.empty((), dtype=torch.long, device="meta"), query.device
|
721 |
+
)
|
722 |
+
offset = convert_tensor(
|
723 |
+
torch.empty((), dtype=torch.long, device="meta"), query.device
|
724 |
+
)
|
725 |
+
|
726 |
+
return res, logsum_exp, seed, offset
|
727 |
+
|
728 |
+
|
729 |
+
@register_op_impl(aten._flash_attention_forward.default)
|
730 |
+
def meta__flash_attention_forward(fake_mode, func, *args, **kwargs):
|
731 |
+
_, kwargs = normalize_function(
|
732 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
733 |
+
)
|
734 |
+
|
735 |
+
query = kwargs["query"]
|
736 |
+
key = kwargs["key"]
|
737 |
+
cum_seq_q = kwargs["cum_seq_q"]
|
738 |
+
cum_seq_k = kwargs["cum_seq_k"]
|
739 |
+
max_q = kwargs["max_q"]
|
740 |
+
max_k = kwargs["max_k"]
|
741 |
+
return_debug_mask = kwargs["return_debug_mask"]
|
742 |
+
# unused: value, dropout_p, is_causal, scale
|
743 |
+
|
744 |
+
def convert_tensor(t, device):
|
745 |
+
return FakeTensor(fake_mode, t, device)
|
746 |
+
|
747 |
+
# NB: there are two underlying paths:
|
748 |
+
# 1. normal dense path; expect 4D inputs of shape (batch_size, seqlen, num_heads, head_dim)
|
749 |
+
# 2. varseqlen path; expect 3D inputs of shape (total, num_heads, head_dim) where total
|
750 |
+
# includes all batch item sequences. cum_seq_q / cum_seq_k contain offsets into total
|
751 |
+
batch_size = query.size(0) if cum_seq_q is None else cum_seq_q.numel() - 1
|
752 |
+
max_seqlen_batch_q = query.size(1) if cum_seq_q is None else max_q
|
753 |
+
max_seqlen_batch_k = key.size(1) if cum_seq_k is None else max_k
|
754 |
+
num_heads = query.size(-2)
|
755 |
+
head_dim = query.size(-1)
|
756 |
+
|
757 |
+
# Cuda Path
|
758 |
+
# note: empty_like already returns a fake tensor, we don't need to wrap it
|
759 |
+
attention = torch.empty_like(query)
|
760 |
+
logsumexp = convert_tensor(
|
761 |
+
torch.empty(
|
762 |
+
(batch_size, num_heads, max_seqlen_batch_q),
|
763 |
+
dtype=torch.float,
|
764 |
+
device="meta",
|
765 |
+
),
|
766 |
+
device=query.device,
|
767 |
+
)
|
768 |
+
|
769 |
+
if return_debug_mask:
|
770 |
+
blocksize_c = 128 if head_dim > 64 else 256
|
771 |
+
max_seqlen_k = math.ceil(max_seqlen_batch_q / blocksize_c)
|
772 |
+
if max_seqlen_batch_k <= 128:
|
773 |
+
max_seqlen_k = 128
|
774 |
+
elif max_seqlen_batch_k <= 256:
|
775 |
+
max_seqlen_k = 256
|
776 |
+
debug_mask = convert_tensor(
|
777 |
+
torch.empty(
|
778 |
+
(batch_size, num_heads, max_seqlen_batch_q, max_seqlen_k),
|
779 |
+
dtype=query.dtype,
|
780 |
+
device="meta",
|
781 |
+
),
|
782 |
+
query.device,
|
783 |
+
)
|
784 |
+
else:
|
785 |
+
debug_mask = convert_tensor(
|
786 |
+
torch.empty(0, dtype=query.dtype, device="meta"),
|
787 |
+
query.device,
|
788 |
+
)
|
789 |
+
|
790 |
+
# See Note [Seed and Offset]:
|
791 |
+
return (
|
792 |
+
attention,
|
793 |
+
logsumexp,
|
794 |
+
convert_tensor(torch.empty((), dtype=torch.long, device="meta"), query.device),
|
795 |
+
convert_tensor(torch.empty((), dtype=torch.long, device="meta"), query.device),
|
796 |
+
debug_mask,
|
797 |
+
)
|
798 |
+
|
799 |
+
|
800 |
+
@register_op_impl(aten._efficient_attention_forward.default)
|
801 |
+
def meta__efficient_attention_forward(fake_mode, func, *args, **kwargs):
|
802 |
+
_, kwargs = normalize_function(
|
803 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
804 |
+
)
|
805 |
+
|
806 |
+
query = kwargs["query"]
|
807 |
+
key = kwargs["key"]
|
808 |
+
value = kwargs["value"]
|
809 |
+
cu_seqlens_q = kwargs["cu_seqlens_q"]
|
810 |
+
max_seqlen_q = kwargs["max_seqlen_q"]
|
811 |
+
max_seqlen_k = kwargs["max_seqlen_k"]
|
812 |
+
compute_log_sumexp = kwargs["compute_log_sumexp"]
|
813 |
+
# unused: bias, cu_seqlens_k, dropout_p, custom_mask_type, scale, causal_diagonal, seqlen_k
|
814 |
+
|
815 |
+
def convert_tensor(t, device):
|
816 |
+
return FakeTensor(fake_mode, t, device)
|
817 |
+
|
818 |
+
B = query.size(0)
|
819 |
+
M = query.size(1)
|
820 |
+
N = key.size(1)
|
821 |
+
num_heads = query.size(-2)
|
822 |
+
K = query.size(-1)
|
823 |
+
Kv = value.size(-1)
|
824 |
+
|
825 |
+
res = convert_tensor(
|
826 |
+
torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device="meta"),
|
827 |
+
query.device,
|
828 |
+
)
|
829 |
+
|
830 |
+
logsumexp_batch_dim = cu_seqlens_q.size(0) - 1 if (cu_seqlens_q is not None) else B
|
831 |
+
actual_max_seqlen_q = M
|
832 |
+
if cu_seqlens_q is not None:
|
833 |
+
assert max_seqlen_q is not None
|
834 |
+
actual_max_seqlen_q = max_seqlen_q
|
835 |
+
actual_max_seqlen_k = max_seqlen_k if max_seqlen_k is not None else N
|
836 |
+
logsumexp_dim = (
|
837 |
+
math.ceil(actual_max_seqlen_q / 32) * 32 if compute_log_sumexp else 0
|
838 |
+
)
|
839 |
+
logsum_exp = convert_tensor(
|
840 |
+
torch.empty(
|
841 |
+
(logsumexp_batch_dim, num_heads, logsumexp_dim),
|
842 |
+
dtype=torch.float,
|
843 |
+
device="meta",
|
844 |
+
),
|
845 |
+
query.device,
|
846 |
+
)
|
847 |
+
|
848 |
+
# See Note [Seed and Offset]:
|
849 |
+
seed = convert_tensor(
|
850 |
+
torch.empty((), dtype=torch.long, device="meta"), query.device
|
851 |
+
)
|
852 |
+
offset = convert_tensor(
|
853 |
+
torch.empty((), dtype=torch.long, device="meta"), query.device
|
854 |
+
)
|
855 |
+
|
856 |
+
return res, logsum_exp, seed, offset, actual_max_seqlen_q, actual_max_seqlen_k
|
857 |
+
|
858 |
+
|
859 |
+
FAST_OP_IMPLEMENTATIONS = {}
|
860 |
+
|
861 |
+
|
862 |
+
# Unlike register_op_impl, these don't do the slow iteration for
|
863 |
+
# run_impl_check, and these run BEFORE decompositions
|
864 |
+
def register_fast_op_impl(func: OpOverload):
|
865 |
+
def impl_decorator(op_impl):
|
866 |
+
FAST_OP_IMPLEMENTATIONS[func] = op_impl
|
867 |
+
return op_impl
|
868 |
+
|
869 |
+
return impl_decorator
|
870 |
+
|
871 |
+
|
872 |
+
# infer_size_impl in ExpandUtils
|
873 |
+
def infer_size(a, b):
|
874 |
+
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
|
875 |
+
|
876 |
+
dimsA = len(a)
|
877 |
+
dimsB = len(b)
|
878 |
+
ndim = max(dimsA, dimsB)
|
879 |
+
expandedSizes = [0] * ndim
|
880 |
+
for i in range(ndim - 1, -1, -1):
|
881 |
+
offset = ndim - 1 - i
|
882 |
+
dimA = dimsA - 1 - offset
|
883 |
+
dimB = dimsB - 1 - offset
|
884 |
+
sizeA = a[dimA] if dimA >= 0 else 1
|
885 |
+
sizeB = b[dimB] if dimB >= 0 else 1
|
886 |
+
|
887 |
+
# NB: It is very important to test for broadcasting, before testing
|
888 |
+
# sizeA == sizeB. This is because the broadcasting tests are likely
|
889 |
+
# to be statically known (in particular, if sizeA/sizeB is unbacked
|
890 |
+
# but size-like, we will unsoundly assume they never equal 1), but
|
891 |
+
# the sizeA == sizeB test may not be statically known. However, once
|
892 |
+
# we have established that no broadcasting is happening, the
|
893 |
+
# sizeA == sizeB is now expect_true and we can defer it as a runtime
|
894 |
+
# assert (this works because Python will return the terminal
|
895 |
+
# expression of an or statement as-is, without bool()'ing it; if this
|
896 |
+
# were not the case, we'd need to write this using torch.sym_or() or
|
897 |
+
# something like that).
|
898 |
+
torch._check(
|
899 |
+
guard_size_oblivious(sizeA == 1)
|
900 |
+
or guard_size_oblivious(sizeB == 1)
|
901 |
+
or sizeA == sizeB,
|
902 |
+
lambda: f"The size of tensor a ({sizeA}) "
|
903 |
+
f"must match the size of tensor b ({sizeB}) "
|
904 |
+
f"at non-singleton dimension {i})",
|
905 |
+
)
|
906 |
+
expandedSizes[i] = sizeB if guard_size_oblivious(sizeA == 1) else sizeA
|
907 |
+
return tuple(expandedSizes)
|
908 |
+
|
909 |
+
|
910 |
+
def make_fast_binary_impl(slow_ref):
|
911 |
+
def fast_binary_impl(mode, *args, **kwargs):
|
912 |
+
def slow(msg):
|
913 |
+
count_label(f"slow {msg}")
|
914 |
+
with mode:
|
915 |
+
return slow_ref(*args, **kwargs)
|
916 |
+
|
917 |
+
count_label("attempt fast")
|
918 |
+
|
919 |
+
# Fast path (based off of TensorIterator fast path).
|
920 |
+
# Unfortunately, there is no way to easily deduplicate
|
921 |
+
# this with either the TensorIterator C++ implementation
|
922 |
+
# (which we don't want to SymIntify, and also the algorithm
|
923 |
+
# here is slightly different from TensorIterator to allow
|
924 |
+
# for broadcasting), nor the PrimTorch implementation
|
925 |
+
# (which does not actually implement a fast path.)
|
926 |
+
|
927 |
+
operands = args
|
928 |
+
|
929 |
+
# compute_shape
|
930 |
+
has_scalars = False
|
931 |
+
has_tensors = False
|
932 |
+
final_shape = None
|
933 |
+
for op in operands:
|
934 |
+
shape = op.shape if isinstance(op, torch.Tensor) else ()
|
935 |
+
if len(shape) == 0:
|
936 |
+
has_scalars = True
|
937 |
+
else:
|
938 |
+
has_tensors = True
|
939 |
+
if final_shape is None:
|
940 |
+
final_shape = shape
|
941 |
+
# TODO: Minor optimization: track if the shapes
|
942 |
+
# were equal so you can skip the equality check
|
943 |
+
# below if unnecessary
|
944 |
+
final_shape = infer_size(final_shape, shape)
|
945 |
+
assert final_shape is not None
|
946 |
+
|
947 |
+
# Do some extra safety checks to see if the output
|
948 |
+
# stride is obvious
|
949 |
+
for op in operands:
|
950 |
+
if (
|
951 |
+
isinstance(op, torch.Tensor)
|
952 |
+
and len(op.shape) == len(final_shape)
|
953 |
+
and op.shape == final_shape
|
954 |
+
):
|
955 |
+
break
|
956 |
+
else:
|
957 |
+
return slow("both tensors nontrivially broadcast")
|
958 |
+
|
959 |
+
# compute_types
|
960 |
+
cpu = torch.device("cpu")
|
961 |
+
common_device = cpu
|
962 |
+
common_dtype = None
|
963 |
+
output_dtype = None
|
964 |
+
has_different_input_dtypes = False
|
965 |
+
for op in operands:
|
966 |
+
if not isinstance(op, torch.Tensor):
|
967 |
+
# Use elementwise_dtypes for the tricky case
|
968 |
+
has_different_input_dtypes = True
|
969 |
+
continue
|
970 |
+
if common_device == cpu and not op.device.type == "cpu":
|
971 |
+
common_device = op.device
|
972 |
+
# Slightly simplified here as target_dtype cannot vary
|
973 |
+
if common_dtype is None:
|
974 |
+
common_dtype = op.dtype
|
975 |
+
elif common_dtype != op.dtype:
|
976 |
+
has_different_input_dtypes = True
|
977 |
+
|
978 |
+
if has_different_input_dtypes:
|
979 |
+
# compute promotion
|
980 |
+
# TODO: we don't need the compute type
|
981 |
+
_, common_dtype = elementwise_dtypes(
|
982 |
+
*operands, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
|
983 |
+
)
|
984 |
+
|
985 |
+
# check all tensors on same device
|
986 |
+
# cpu scalars are assumed allow
|
987 |
+
current_cpu_scalars_on_non_cpu = 0
|
988 |
+
max_cpu_scalars_on_non_cpu = 1 # hard coded atm
|
989 |
+
for op in operands:
|
990 |
+
if not isinstance(op, torch.Tensor):
|
991 |
+
continue
|
992 |
+
if common_device != cpu and op.dim() == 0 and op.device == cpu:
|
993 |
+
if current_cpu_scalars_on_non_cpu >= max_cpu_scalars_on_non_cpu:
|
994 |
+
return slow("error")
|
995 |
+
current_cpu_scalars_on_non_cpu += 1
|
996 |
+
elif op.device != common_device:
|
997 |
+
return slow("error")
|
998 |
+
|
999 |
+
# compute_fast_setup_type
|
1000 |
+
is_contiguous = True
|
1001 |
+
is_channels_last = True
|
1002 |
+
# TODO: is_non-overlapping_and_dense (not bound from Python
|
1003 |
+
# no inplace, no out, everything defined
|
1004 |
+
|
1005 |
+
if is_noncontiguous_supported(common_device):
|
1006 |
+
for op in operands:
|
1007 |
+
if not isinstance(op, torch.Tensor):
|
1008 |
+
continue
|
1009 |
+
is_contiguous = is_contiguous and op.is_contiguous(
|
1010 |
+
memory_format=torch.contiguous_format
|
1011 |
+
)
|
1012 |
+
is_channels_last = is_channels_last and op.is_contiguous(
|
1013 |
+
memory_format=torch.channels_last
|
1014 |
+
)
|
1015 |
+
if is_contiguous:
|
1016 |
+
# do contiguous
|
1017 |
+
count_label("fast is_contiguous")
|
1018 |
+
return FakeTensor(
|
1019 |
+
mode,
|
1020 |
+
torch.empty(
|
1021 |
+
final_shape,
|
1022 |
+
dtype=common_dtype,
|
1023 |
+
device="meta",
|
1024 |
+
memory_format=torch.contiguous_format,
|
1025 |
+
),
|
1026 |
+
device=common_device,
|
1027 |
+
)
|
1028 |
+
if is_channels_last:
|
1029 |
+
count_label("fast channels_last")
|
1030 |
+
# do channels last
|
1031 |
+
return FakeTensor(
|
1032 |
+
mode,
|
1033 |
+
torch.empty(
|
1034 |
+
final_shape,
|
1035 |
+
dtype=common_dtype,
|
1036 |
+
device="meta",
|
1037 |
+
memory_format=torch.channels_last,
|
1038 |
+
),
|
1039 |
+
device=common_device,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
return slow("no contiguity match")
|
1043 |
+
|
1044 |
+
return fast_binary_impl
|
1045 |
+
|
1046 |
+
|
1047 |
+
@functools.lru_cache(None)
|
1048 |
+
def get_fast_op_impls():
|
1049 |
+
import torch._refs
|
1050 |
+
|
1051 |
+
register_fast_op_impl(torch.ops.aten.add.Tensor)(
|
1052 |
+
make_fast_binary_impl(torch._refs.add)
|
1053 |
+
)
|
1054 |
+
register_fast_op_impl(torch.ops.aten.sub.Tensor)(
|
1055 |
+
make_fast_binary_impl(torch._refs.sub)
|
1056 |
+
)
|
1057 |
+
register_fast_op_impl(torch.ops.aten.mul.Tensor)(make_fast_binary_impl(torch._refs.mul)) # type: ignore[has-type]
|
1058 |
+
register_fast_op_impl(torch.ops.aten.div.Tensor)(
|
1059 |
+
make_fast_binary_impl(torch._refs.div)
|
1060 |
+
)
|
1061 |
+
return FAST_OP_IMPLEMENTATIONS
|
venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py
ADDED
@@ -0,0 +1,1819 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import functools
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import traceback
|
8 |
+
import weakref
|
9 |
+
from collections import defaultdict
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Any, Dict, List, Optional, Tuple, Type, TYPE_CHECKING, TypeVar
|
12 |
+
from weakref import ReferenceType
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch._custom_op
|
16 |
+
import torch._logging
|
17 |
+
from torch._C._functorch import is_functorch_wrapped_tensor
|
18 |
+
|
19 |
+
from torch._guards import Source
|
20 |
+
from torch._ops import OpOverload
|
21 |
+
from torch._prims_common import suggest_memory_format
|
22 |
+
from torch._subclasses.meta_utils import (
|
23 |
+
assert_eq,
|
24 |
+
assert_metadata_eq,
|
25 |
+
is_sparse_any,
|
26 |
+
is_sparse_compressed,
|
27 |
+
MetaConverter,
|
28 |
+
)
|
29 |
+
from torch._utils import render_call
|
30 |
+
from torch.fx.operator_schemas import normalize_function
|
31 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
32 |
+
from torch.overrides import TorchFunctionMode
|
33 |
+
from torch.utils._mode_utils import no_dispatch
|
34 |
+
from torch.utils._python_dispatch import (
|
35 |
+
is_traceable_wrapper_subclass,
|
36 |
+
TorchDispatchMode,
|
37 |
+
)
|
38 |
+
|
39 |
+
from torch.utils._pytree import PyTree, tree_map
|
40 |
+
from torch.utils._stats import count
|
41 |
+
from torch.utils.weak import WeakIdRef
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
45 |
+
|
46 |
+
DimList = List
|
47 |
+
|
48 |
+
log = logging.getLogger(__name__)
|
49 |
+
|
50 |
+
# TODO: Hack to unblock https://github.com/pytorch/pytorch/pull/108186
|
51 |
+
# Proper fix tracked by https://github.com/pytorch/pytorch/issues/120105
|
52 |
+
try:
|
53 |
+
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
|
54 |
+
except ValueError as e:
|
55 |
+
if "'not_implemented' not registered" in str(e):
|
56 |
+
import logging as not_implemented_log
|
57 |
+
else:
|
58 |
+
raise e
|
59 |
+
|
60 |
+
pytree = torch.utils._pytree
|
61 |
+
T = TypeVar("T")
|
62 |
+
TensorWeakRef = Any
|
63 |
+
|
64 |
+
aten = torch._ops.ops.aten
|
65 |
+
|
66 |
+
CONSTANT_NUMEL_LIMIT = 1
|
67 |
+
|
68 |
+
RECURSION_COUNT = 0
|
69 |
+
|
70 |
+
|
71 |
+
# Small helper that increments recursion count, and
|
72 |
+
# resets it when the object goes out of scope. Useful
|
73 |
+
# if you don't want to increase indentation which is
|
74 |
+
# what a context manager would do.
|
75 |
+
class IncrementRecursionCount:
|
76 |
+
def __init__(self):
|
77 |
+
global RECURSION_COUNT
|
78 |
+
RECURSION_COUNT += 1
|
79 |
+
|
80 |
+
def __del__(self):
|
81 |
+
global RECURSION_COUNT
|
82 |
+
RECURSION_COUNT -= 1
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class UnsupportedFakeTensorException(RuntimeError):
|
87 |
+
reason: str
|
88 |
+
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class DynamicOutputShapeException(RuntimeError):
|
92 |
+
func: OpOverload
|
93 |
+
|
94 |
+
|
95 |
+
@dataclass
|
96 |
+
class DataDependentOutputException(RuntimeError):
|
97 |
+
func: OpOverload
|
98 |
+
|
99 |
+
|
100 |
+
@dataclass
|
101 |
+
class UnsupportedOperatorException(RuntimeError):
|
102 |
+
func: OpOverload
|
103 |
+
|
104 |
+
|
105 |
+
def ordered_set(*items):
|
106 |
+
return dict.fromkeys(items, True)
|
107 |
+
|
108 |
+
|
109 |
+
@contextlib.contextmanager
|
110 |
+
def unset_fake_temporarily():
|
111 |
+
old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
|
112 |
+
try:
|
113 |
+
yield old
|
114 |
+
finally:
|
115 |
+
if old is not None:
|
116 |
+
torch._C._set_dispatch_mode(old)
|
117 |
+
|
118 |
+
|
119 |
+
def is_fake(x):
|
120 |
+
if isinstance(x, FakeTensor):
|
121 |
+
return True
|
122 |
+
if is_traceable_wrapper_subclass(x):
|
123 |
+
attrs, _ = type(x).__tensor_flatten__(x)
|
124 |
+
flattened_tensors = [getattr(x, attr) for attr in attrs]
|
125 |
+
# need to recurse because we could have nested subclasses
|
126 |
+
all_fake = all(is_fake(x) for x in flattened_tensors)
|
127 |
+
any_fake = any(is_fake(x) for x in flattened_tensors)
|
128 |
+
assert all_fake == any_fake, "got mixed fake and real tensors!"
|
129 |
+
return all_fake
|
130 |
+
elif isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
|
131 |
+
reapply_views = torch._C._functionalization_reapply_views_tls()
|
132 |
+
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
|
133 |
+
return is_fake(unwrapped)
|
134 |
+
elif isinstance(x, torch.Tensor) and is_functorch_wrapped_tensor(x):
|
135 |
+
unwrapped = torch._C._functorch.get_unwrapped(x)
|
136 |
+
return is_fake(unwrapped)
|
137 |
+
return False
|
138 |
+
|
139 |
+
|
140 |
+
def maybe_get_fake_mode(t):
|
141 |
+
if isinstance(t, FakeTensor):
|
142 |
+
return t.fake_mode
|
143 |
+
if is_traceable_wrapper_subclass(t):
|
144 |
+
inner_tensor_names, _ = t.__tensor_flatten__()
|
145 |
+
modes = [
|
146 |
+
maybe_get_fake_mode(getattr(t, t_name)) for t_name in inner_tensor_names
|
147 |
+
]
|
148 |
+
m = modes[0]
|
149 |
+
assert all(m is x for x in modes)
|
150 |
+
return m
|
151 |
+
elif isinstance(t, torch.Tensor) and torch._is_functional_tensor(t):
|
152 |
+
reapply_views = torch._C._functionalization_reapply_views_tls()
|
153 |
+
unwrapped = torch._C._functorch._unwrap_functional_tensor(t, reapply_views)
|
154 |
+
return maybe_get_fake_mode(unwrapped)
|
155 |
+
elif isinstance(t, torch.Tensor) and is_functorch_wrapped_tensor(t):
|
156 |
+
unwrapped = torch._C._functorch.get_unwrapped(t)
|
157 |
+
return maybe_get_fake_mode(unwrapped)
|
158 |
+
return None
|
159 |
+
|
160 |
+
|
161 |
+
@functools.lru_cache(None)
|
162 |
+
def get_schema_info(func):
|
163 |
+
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
|
164 |
+
|
165 |
+
|
166 |
+
# many of the decompositions registered to torch/_prims do not at the moment model
|
167 |
+
# aliasing or strides, so as an incremental step, just enable the decompositions in
|
168 |
+
# torch/_decomp/decompositions.py.
|
169 |
+
# decomps are used for aot autograd tracing so we would like to unify on their
|
170 |
+
# implementation and add additional testing to them
|
171 |
+
@functools.lru_cache(None)
|
172 |
+
def torch_decomp_decompositions(func):
|
173 |
+
from torch._decomp import decomposition_table
|
174 |
+
|
175 |
+
decompositions = torch._decomp.decompositions
|
176 |
+
# Note that the function in the decomposition table might be
|
177 |
+
# different from the one in the module because of the difference
|
178 |
+
# in out handling in aten API and torch public API
|
179 |
+
return decomposition_table[func].__module__.startswith(
|
180 |
+
"torch._decomp"
|
181 |
+
) and decomposition_table[func].__name__ in dir(decompositions)
|
182 |
+
|
183 |
+
|
184 |
+
def tree_flatten_only(ty: Type[T], tree: PyTree):
|
185 |
+
flat_vals = pytree.tree_leaves(tree)
|
186 |
+
return [elem for elem in flat_vals if isinstance(elem, ty)]
|
187 |
+
|
188 |
+
|
189 |
+
# Similar to `MetaConverter`, this is a class for converting
|
190 |
+
# multiple tensors into fake tensors which share the same view/storage
|
191 |
+
# structure. Like `MetaConverter`, it uses `WeakIdRef` to
|
192 |
+
# hold a weak reference for all memoized tensors.
|
193 |
+
class FakeTensorConverter:
|
194 |
+
@property
|
195 |
+
def tensor_memo(self):
|
196 |
+
return self.meta_converter.tensor_memo
|
197 |
+
|
198 |
+
meta_converter: MetaConverter
|
199 |
+
constant_storage_mapping: Dict[StorageWeakRef, List[ReferenceType]]
|
200 |
+
|
201 |
+
def __init__(self):
|
202 |
+
self.meta_converter = MetaConverter()
|
203 |
+
|
204 |
+
# map from to storage to corresponding constant tensors
|
205 |
+
self.constant_storage_mapping = {}
|
206 |
+
|
207 |
+
def add_constant_storage_mapping(self, fake_tensor):
|
208 |
+
# when you have a constant, aliased tensor:
|
209 |
+
# const_tensor.add_(torch.rand([1]))
|
210 |
+
# all aliases of it must become no longer const
|
211 |
+
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
|
212 |
+
weak_st = StorageWeakRef(fake_tensor.constant._typed_storage())
|
213 |
+
|
214 |
+
# we need a map from a weak storage to all of its corresponding
|
215 |
+
# constant tensors. python doesn't have the weak value equivalent
|
216 |
+
# of defaultdict(list), so we are using a WeakValueDictionary as one
|
217 |
+
if weak_st not in self.constant_storage_mapping:
|
218 |
+
self.constant_storage_mapping[weak_st] = []
|
219 |
+
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
|
220 |
+
|
221 |
+
def invalidate_constant_aliases(self, tensor):
|
222 |
+
assert not isinstance(tensor, FakeTensor)
|
223 |
+
|
224 |
+
weak_st = StorageWeakRef(tensor._typed_storage())
|
225 |
+
if weak_st not in self.constant_storage_mapping:
|
226 |
+
return
|
227 |
+
|
228 |
+
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
|
229 |
+
ten = weak_tensor_ref()
|
230 |
+
if ten is not None:
|
231 |
+
ten._fix_weakref()
|
232 |
+
ten.constant = None
|
233 |
+
|
234 |
+
del self.constant_storage_mapping[weak_st]
|
235 |
+
|
236 |
+
def _get_memo(self, t):
|
237 |
+
if WeakIdRef(t) in self.tensor_memo:
|
238 |
+
out = self.tensor_memo[WeakIdRef(t)]
|
239 |
+
out._fix_weakref()
|
240 |
+
return out
|
241 |
+
return None
|
242 |
+
|
243 |
+
def set_tensor_memo(self, t, v):
|
244 |
+
th = WeakIdRef(t)
|
245 |
+
|
246 |
+
# hold a weak ref to self, otherwise it will be kept alive
|
247 |
+
# by the del_ten closure
|
248 |
+
self_weak_ref = weakref.ref(self)
|
249 |
+
|
250 |
+
def del_ten():
|
251 |
+
self_ref = self_weak_ref()
|
252 |
+
if self_ref is None:
|
253 |
+
return
|
254 |
+
# on shutdown, th may not be in memo
|
255 |
+
self_ref.tensor_memo.pop(th, None)
|
256 |
+
|
257 |
+
weakref.finalize(t, del_ten)
|
258 |
+
self.tensor_memo[th] = v
|
259 |
+
|
260 |
+
def from_real_tensor(
|
261 |
+
self,
|
262 |
+
fake_mode,
|
263 |
+
t,
|
264 |
+
make_constant=False,
|
265 |
+
shape_env=None,
|
266 |
+
*,
|
267 |
+
source=None,
|
268 |
+
symbolic_context=None,
|
269 |
+
memoized_only=False,
|
270 |
+
):
|
271 |
+
# see note [Tensor Fakification and Symbol Caching]
|
272 |
+
if not symbolic_context and not source and shape_env:
|
273 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
274 |
+
if t in tracing_context.tensor_to_context:
|
275 |
+
symbolic_context = tracing_context.tensor_to_context[t]
|
276 |
+
source = symbolic_context.tensor_source
|
277 |
+
|
278 |
+
maybe_memo = self._get_memo(t)
|
279 |
+
if maybe_memo is not None:
|
280 |
+
return maybe_memo
|
281 |
+
if memoized_only:
|
282 |
+
return None
|
283 |
+
existing_device = t.device
|
284 |
+
# not yet supported in metatensors
|
285 |
+
if t.is_quantized:
|
286 |
+
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
|
287 |
+
if type(t) is torch.nn.Parameter:
|
288 |
+
assert not make_constant
|
289 |
+
|
290 |
+
def mk_fake_tensor(make_meta_t):
|
291 |
+
# NB: don't use in_kernel_invocation_manager. to
|
292 |
+
# ensure FakeTensor can internally do constant computation
|
293 |
+
# as necessary. Invocation manager is "more correct" as
|
294 |
+
# it works for more operators in make_meta_t, but
|
295 |
+
# invariant is that make_meta_t only calls factories
|
296 |
+
# for which it is not strictly necessary to use the
|
297 |
+
# invocation manager (I think!)
|
298 |
+
with no_dispatch():
|
299 |
+
return FakeTensor(
|
300 |
+
fake_mode,
|
301 |
+
make_meta_t(),
|
302 |
+
existing_device,
|
303 |
+
constant=t if make_constant else None,
|
304 |
+
)
|
305 |
+
|
306 |
+
out = self.meta_converter(
|
307 |
+
t,
|
308 |
+
shape_env=shape_env,
|
309 |
+
callback=mk_fake_tensor,
|
310 |
+
source=source,
|
311 |
+
symbolic_context=symbolic_context,
|
312 |
+
)
|
313 |
+
if out is NotImplemented:
|
314 |
+
raise UnsupportedFakeTensorException("meta converter nyi")
|
315 |
+
if make_constant:
|
316 |
+
self.add_constant_storage_mapping(out)
|
317 |
+
# NB: meta_converter set the memo
|
318 |
+
return out
|
319 |
+
|
320 |
+
# If you specify the device, it MUST be a meta tensor.
|
321 |
+
def from_meta_and_device(self, fake_mode, t, device):
|
322 |
+
assert (
|
323 |
+
t.device.type == "meta"
|
324 |
+
), f"tensor's device must be `meta`, got {t.device.type} instead"
|
325 |
+
maybe_memo = self._get_memo(t)
|
326 |
+
if maybe_memo is not None:
|
327 |
+
return maybe_memo
|
328 |
+
out = FakeTensor(fake_mode, t, device)
|
329 |
+
self.set_tensor_memo(t, out)
|
330 |
+
return out
|
331 |
+
|
332 |
+
# You can have a real tensor that you need to convert into a fake tensor.
|
333 |
+
# If you have a meta tensor already, call from_meta_and_device.
|
334 |
+
#
|
335 |
+
# You're allowed to pass a meta tensor to be turned into a fake
|
336 |
+
# tensor; although an odd thing to do, this can occur if you're doing
|
337 |
+
# cross ref testing and the inner test is already operating on meta tensors.
|
338 |
+
def __call__(
|
339 |
+
self,
|
340 |
+
fake_mode,
|
341 |
+
t,
|
342 |
+
*,
|
343 |
+
make_constant=False,
|
344 |
+
shape_env=None,
|
345 |
+
source=None,
|
346 |
+
symbolic_context=None,
|
347 |
+
memoized_only=False,
|
348 |
+
):
|
349 |
+
return self.from_real_tensor(
|
350 |
+
fake_mode,
|
351 |
+
t,
|
352 |
+
make_constant,
|
353 |
+
shape_env=shape_env,
|
354 |
+
source=source,
|
355 |
+
symbolic_context=symbolic_context,
|
356 |
+
memoized_only=memoized_only,
|
357 |
+
)
|
358 |
+
|
359 |
+
|
360 |
+
@functools.lru_cache(None)
|
361 |
+
def init_cuda_context():
|
362 |
+
# Backward will error with cuda Fake Tensors if no cuda tensors have been initialized first
|
363 |
+
if torch.cuda.is_available():
|
364 |
+
torch.empty(1, device="cuda") if torch.version.hip is None else torch.zeros(
|
365 |
+
1, device="cuda"
|
366 |
+
)
|
367 |
+
|
368 |
+
|
369 |
+
@contextlib.contextmanager
|
370 |
+
def in_kernel_invocation_manager(fake_mode):
|
371 |
+
# See: note [Fake Tensor Dispatch Keys]
|
372 |
+
prev_in_kernel = fake_mode.in_kernel_invocation
|
373 |
+
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
|
374 |
+
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
|
375 |
+
|
376 |
+
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
|
377 |
+
fake_mode.in_kernel_invocation = True
|
378 |
+
torch._C._set_meta_in_tls_dispatch_include(True)
|
379 |
+
try:
|
380 |
+
yield
|
381 |
+
finally:
|
382 |
+
fake_mode.in_kernel_invocation = prev_in_kernel
|
383 |
+
torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
|
384 |
+
del guard
|
385 |
+
|
386 |
+
|
387 |
+
# Return if the function allows Python numbers to bind to Tensors
|
388 |
+
def should_allow_numbers_as_tensors(func: OpOverload):
|
389 |
+
return torch._C._should_allow_numbers_as_tensors(
|
390 |
+
func.name().split("::")[-1].split(".")[0]
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
class FakeTensorConfig:
|
395 |
+
debug = os.environ.get("TORCH_FAKE_TENSOR_DEBUG", "0") == "1"
|
396 |
+
|
397 |
+
|
398 |
+
class FakeTensor(torch.Tensor):
|
399 |
+
"""
|
400 |
+
Meta tensors give you the ability to run PyTorch code without having to
|
401 |
+
actually do computation through tensors allocated on a `meta` device.
|
402 |
+
Because the device is `meta`, meta tensors do not model device propagation.
|
403 |
+
FakeTensor extends MetaTensors to also carry an additional `fake_device`
|
404 |
+
which tracks devices that would have been used.
|
405 |
+
"""
|
406 |
+
|
407 |
+
fake_device: torch.device
|
408 |
+
fake_mode: "FakeTensorMode"
|
409 |
+
constant: Optional[torch.Tensor]
|
410 |
+
|
411 |
+
# This memorizes the unbacked SymInt representing the number of nonzero
|
412 |
+
# elements in this tensor. This is helpful if you do something like
|
413 |
+
# x[mask] and y[mask]; mask.nonzero() gets repeatedly called and should
|
414 |
+
# give a consistent unbacked SymInt. It needs to be invalidated in the
|
415 |
+
# same way constant is.
|
416 |
+
# TODO: Generalize this as needed, e.g., into a trie of memos
|
417 |
+
_nonzero_memo: Optional[torch.SymInt]
|
418 |
+
_nonzero_memo_vc: Optional[int]
|
419 |
+
|
420 |
+
# Indicates to our torch_dispatch dispatching infra that
|
421 |
+
# this is an "infra" mode with lower dispatching precedence.
|
422 |
+
_mode_key = torch._C._TorchDispatchModeKey.FAKE
|
423 |
+
|
424 |
+
@property
|
425 |
+
def nonzero_memo(self):
|
426 |
+
if self._nonzero_memo is None:
|
427 |
+
return None
|
428 |
+
# Version counter based tracking isn't 100% sound but it's close
|
429 |
+
# enough
|
430 |
+
if self._nonzero_memo_vc != self._version:
|
431 |
+
self._nonzero_memo = None
|
432 |
+
return None
|
433 |
+
return self._nonzero_memo
|
434 |
+
|
435 |
+
@property
|
436 |
+
def device(self):
|
437 |
+
if self.fake_mode.in_kernel_invocation:
|
438 |
+
return torch.device("meta")
|
439 |
+
else:
|
440 |
+
return self.fake_device
|
441 |
+
|
442 |
+
# Note: [Fake Tensor Dispatch Keys]
|
443 |
+
# In order to model the behavior of device-specific autocast
|
444 |
+
# and autograd logic, we update the dispatch keys of FakeTensors
|
445 |
+
# to reflect their fake device. This includes the BackendComponent
|
446 |
+
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
|
447 |
+
# related Autocast and Autograd keys. __torch__dispatch__ sits below
|
448 |
+
# Autocast and Autograd, and is only invoked when we are at the
|
449 |
+
# kernel for the BackendComponent. Then, we add Meta to the
|
450 |
+
# thread-local dispatch include set to hit the meta kernel
|
451 |
+
# instead of the kernel of the BackendComponent for the fake device.
|
452 |
+
# The `device_for_backend_keys` does that below
|
453 |
+
# NOTE: this probably will not do the right thing for backends
|
454 |
+
# that have dispatch keys which are higher than the "meta" key:
|
455 |
+
# https://github.com/pytorch/pytorch/blob/main/c10/core/DispatchKey.h#L189
|
456 |
+
|
457 |
+
# We don't support named tensors; graph break
|
458 |
+
@property
|
459 |
+
def names(self):
|
460 |
+
raise UnsupportedFakeTensorException(
|
461 |
+
"torch.compile doesn't support named tensors"
|
462 |
+
)
|
463 |
+
|
464 |
+
@staticmethod
|
465 |
+
def __new__(cls, fake_mode, elem, device, constant=None):
|
466 |
+
self = torch.Tensor._make_subclass(
|
467 |
+
cls,
|
468 |
+
elem,
|
469 |
+
elem.requires_grad,
|
470 |
+
dispatch_device=True,
|
471 |
+
device_for_backend_keys=device,
|
472 |
+
)
|
473 |
+
|
474 |
+
assert elem.device.type == "meta", elem.device.type
|
475 |
+
device = device if isinstance(device, torch.device) else torch.device(device)
|
476 |
+
# NB: it is fine, if a little confusing, for device to be meta
|
477 |
+
# (we are faking a meta tensor in that case). However, it often
|
478 |
+
# indicates some sort of confusion (e.g., you accidentally passed
|
479 |
+
# in a meta tensor when you should have passed in the real tensor).
|
480 |
+
# So by default we disallow meta, and if you are working in a situation
|
481 |
+
# where it is helpful (e.g., crossref testing) you can turn it back
|
482 |
+
# on
|
483 |
+
if not fake_mode.allow_meta:
|
484 |
+
assert device.type != "meta"
|
485 |
+
# normalize device.
|
486 |
+
if device.type == "cuda":
|
487 |
+
init_cuda_context()
|
488 |
+
|
489 |
+
if (
|
490 |
+
device.type
|
491 |
+
in ["cuda", "hpu", "xpu", torch._C._get_privateuse1_backend_name()]
|
492 |
+
and device.index is None
|
493 |
+
):
|
494 |
+
device = torch.device(
|
495 |
+
f"{device.type}:{getattr(torch, device.type).current_device()}"
|
496 |
+
)
|
497 |
+
self.fake_device = device # type: ignore[attr-defined]
|
498 |
+
self.fake_mode = fake_mode # type: ignore[attr-defined]
|
499 |
+
self.constant = constant # type: ignore[attr-defined]
|
500 |
+
self._nonzero_memo = None # type: ignore[attr-defined]
|
501 |
+
self._nonzero_memo_vc = None # type: ignore[attr-defined]
|
502 |
+
|
503 |
+
if FakeTensorConfig.debug:
|
504 |
+
import traceback
|
505 |
+
|
506 |
+
self._debug_trace = traceback.extract_stack() # type: ignore[attr-defined]
|
507 |
+
return self
|
508 |
+
|
509 |
+
# In some circumstances, a conventional torch.Tensor constructor
|
510 |
+
# will get rewritten to call into FakeTensor. We must provide an
|
511 |
+
# __init__ method that can accept the Python interpreters initialization
|
512 |
+
# in such a situation; we must also be able to handle direct fake
|
513 |
+
# tensor construction via FakeTensor().
|
514 |
+
#
|
515 |
+
# In particular, the __init__ call will look funny in the following case:
|
516 |
+
#
|
517 |
+
# with FakeTensorMode():
|
518 |
+
# x = torch.Tensor([1, 2, 3])
|
519 |
+
#
|
520 |
+
# this desugars into:
|
521 |
+
#
|
522 |
+
# with FakeTensorMode():
|
523 |
+
# x = torch.Tensor.__new__([1, 2, 3])
|
524 |
+
# # NB: x is a fake tensor, because of the mode!
|
525 |
+
# x.__init__([1, 2, 3]) # not the normal fake tensor args!
|
526 |
+
#
|
527 |
+
def __init__(self, *args, **kwargs):
|
528 |
+
super().__init__()
|
529 |
+
|
530 |
+
@staticmethod
|
531 |
+
def from_tensor(t, fake_mode):
|
532 |
+
return fake_mode.from_tensor(t)
|
533 |
+
|
534 |
+
@classmethod
|
535 |
+
@count
|
536 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
537 |
+
# need to handle here to avoid infinite recursion
|
538 |
+
# see [in_kernel_invocation]
|
539 |
+
if func == torch.ops.prim.device.default:
|
540 |
+
assert len(args) == 1 and isinstance(args[0], FakeTensor)
|
541 |
+
if args[0].fake_mode.in_kernel_invocation:
|
542 |
+
return torch.device("meta")
|
543 |
+
else:
|
544 |
+
return args[0].fake_device
|
545 |
+
|
546 |
+
# Because fake mode can return NotImplemented (if it sees a subclass
|
547 |
+
# it doesn't know how to deal with), this test here is important
|
548 |
+
# because the next dispatch after a fake mode will attempt to use
|
549 |
+
# subclasses of tensors to dispatch, and any FakeTensor arguments
|
550 |
+
# will be considered eligible.
|
551 |
+
unrecognized_types = [
|
552 |
+
t for t in types if not issubclass(t, FakeTensor) and t is not torch.Tensor
|
553 |
+
]
|
554 |
+
if unrecognized_types:
|
555 |
+
not_implemented_log.debug(
|
556 |
+
"FakeTensor unrecognized subclass(es): %s", unrecognized_types
|
557 |
+
)
|
558 |
+
return NotImplemented
|
559 |
+
|
560 |
+
fake_mode = None
|
561 |
+
for arg in pytree.arg_tree_leaves(*args, **kwargs):
|
562 |
+
if isinstance(arg, FakeTensor):
|
563 |
+
fake_mode = arg.fake_mode
|
564 |
+
break
|
565 |
+
|
566 |
+
assert fake_mode is not None
|
567 |
+
|
568 |
+
# If the fake mode is already active, don't try to reapply it!
|
569 |
+
# NotImplemented is the right thing to return here, because the
|
570 |
+
# typical situation this can occur is if ProxyTensorMode returned a
|
571 |
+
# NotImplemented because of a not implemented subclass; we may have
|
572 |
+
# unluckily attempted to hit FakeTensor's dispatch first,
|
573 |
+
# NotImplemented lets us keep chaining until we find the actual
|
574 |
+
# subclass
|
575 |
+
maybe_cur_fake_mode = torch._C._get_dispatch_mode(
|
576 |
+
torch._C._TorchDispatchModeKey.FAKE
|
577 |
+
)
|
578 |
+
if maybe_cur_fake_mode:
|
579 |
+
not_implemented_log.debug(
|
580 |
+
"FakeTensor mode already active: %s in %s",
|
581 |
+
fake_mode,
|
582 |
+
maybe_cur_fake_mode,
|
583 |
+
)
|
584 |
+
return NotImplemented
|
585 |
+
|
586 |
+
with fake_mode: # type: ignore[attr-defined]
|
587 |
+
return func(*args, **kwargs)
|
588 |
+
|
589 |
+
@staticmethod
|
590 |
+
def _find_common_device(func, flat_args) -> Tuple[torch.device, bool]:
|
591 |
+
# Returns: (common_device, has_scalar_only_inputs)
|
592 |
+
|
593 |
+
# cpu - zero-dim tensors can be called in cuda kernels,
|
594 |
+
# so overwrite the common_device if it the only existing
|
595 |
+
# device comes from a cpu zero-dim tensor
|
596 |
+
common_device = None
|
597 |
+
has_scalar_only_inputs = False
|
598 |
+
is_cpu_zero_dim = None
|
599 |
+
|
600 |
+
def cpu_zero_dim(t):
|
601 |
+
return t.device.type == "cpu" and t.dim() == 0
|
602 |
+
|
603 |
+
def merge_devices(t):
|
604 |
+
nonlocal common_device
|
605 |
+
nonlocal is_cpu_zero_dim
|
606 |
+
if not isinstance(t, FakeTensor):
|
607 |
+
return
|
608 |
+
|
609 |
+
if common_device is None:
|
610 |
+
common_device = t.device
|
611 |
+
is_cpu_zero_dim = cpu_zero_dim(t)
|
612 |
+
return
|
613 |
+
|
614 |
+
t_is_cpu_zero_dim = cpu_zero_dim(t)
|
615 |
+
if t.device == common_device:
|
616 |
+
if is_cpu_zero_dim:
|
617 |
+
is_cpu_zero_dim = t_is_cpu_zero_dim
|
618 |
+
return
|
619 |
+
|
620 |
+
# mismatching devices !
|
621 |
+
# if current tensor is cpu 0 dim, defer to existing device
|
622 |
+
if t_is_cpu_zero_dim:
|
623 |
+
return
|
624 |
+
|
625 |
+
# current device is from cpu 0 dim tensor, overwrite
|
626 |
+
if is_cpu_zero_dim:
|
627 |
+
common_device = t.device
|
628 |
+
is_cpu_zero_dim = t_is_cpu_zero_dim
|
629 |
+
return
|
630 |
+
|
631 |
+
# mismatching devices of non-zero dim tensors, throw
|
632 |
+
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
|
633 |
+
raise RuntimeError(
|
634 |
+
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
|
635 |
+
)
|
636 |
+
|
637 |
+
for arg in flat_args:
|
638 |
+
merge_devices(arg)
|
639 |
+
|
640 |
+
# some functions that allow Python numbers to bind to Tensors
|
641 |
+
# if we have failed to find a device, and we're running one of these operators,
|
642 |
+
# we must have scalar only inputs
|
643 |
+
if should_allow_numbers_as_tensors(func) and common_device is None:
|
644 |
+
# ops with scalar only inputs always have result on cpu
|
645 |
+
has_scalar_only_inputs = True
|
646 |
+
common_device = torch.device("cpu")
|
647 |
+
|
648 |
+
assert common_device is not None, f"Could not find common device for {func}"
|
649 |
+
|
650 |
+
return common_device, has_scalar_only_inputs
|
651 |
+
|
652 |
+
# We must handle tolist in a special way for FakeTensors here in the case
|
653 |
+
# where tolist is called from torch dispatch for tensor subclasses.
|
654 |
+
# Ordinarily, if a program calls .tolist compiling still works because there is
|
655 |
+
# special handling in dynamo, but for tensor subclasses if .tolist is called
|
656 |
+
# inside torch dispatch, the .tolist call may be directly on a FakeTensor.
|
657 |
+
# This would result in an error since wrapper subclasses don't have storage.
|
658 |
+
# To avoid this, we handle the FakeTensor case by (1) specializing on the size
|
659 |
+
# of the tensor to create the output Python list, and (2) creating unbacked
|
660 |
+
# symints for each element of the list.
|
661 |
+
def tolist(self):
|
662 |
+
assert self.dim() == 1, "NYI for higher dims"
|
663 |
+
shape_env = self.fake_mode.shape_env
|
664 |
+
out = []
|
665 |
+
# Specialize on the length of the list
|
666 |
+
for _ in range(self.shape[0]):
|
667 |
+
s = shape_env.create_unbacked_symint()
|
668 |
+
# max value?
|
669 |
+
torch._constrain_as_size(s, min=2)
|
670 |
+
out.append(s)
|
671 |
+
return out
|
672 |
+
|
673 |
+
|
674 |
+
@dataclass(frozen=True)
|
675 |
+
class TensorMetadata:
|
676 |
+
"""
|
677 |
+
The Tensor metadata relevant to hashing FakeTensors when caching.
|
678 |
+
"""
|
679 |
+
|
680 |
+
dtype: torch.dtype
|
681 |
+
shape: torch.Size
|
682 |
+
stride: Tuple[Any, ...]
|
683 |
+
device: torch.device
|
684 |
+
layout: torch.layout
|
685 |
+
memory_format: Optional[torch.memory_format]
|
686 |
+
storage_offset: int
|
687 |
+
requires_grad: bool
|
688 |
+
is_quantized: bool
|
689 |
+
is_conj: bool
|
690 |
+
is_neg: bool
|
691 |
+
is_inference: bool
|
692 |
+
is_sparse: bool # read: is sparse COO
|
693 |
+
is_coalesced: Optional[bool]
|
694 |
+
dense_dim: Optional[int]
|
695 |
+
sparse_dim: Optional[int]
|
696 |
+
|
697 |
+
|
698 |
+
def extract_tensor_metadata(t: torch.Tensor) -> "TensorMetadata":
|
699 |
+
"""
|
700 |
+
Extract the TensorMetadata of a tensor.
|
701 |
+
"""
|
702 |
+
memory_format = suggest_memory_format(t)
|
703 |
+
if is_sparse_any(t) or not t.is_contiguous(memory_format=memory_format):
|
704 |
+
memory_format = None
|
705 |
+
|
706 |
+
return TensorMetadata(
|
707 |
+
dtype=t.dtype,
|
708 |
+
shape=t.shape,
|
709 |
+
stride=t.stride() if t.layout == torch.strided else (),
|
710 |
+
device=t.device,
|
711 |
+
layout=t.layout,
|
712 |
+
memory_format=memory_format,
|
713 |
+
storage_offset=t.storage_offset(),
|
714 |
+
requires_grad=t.requires_grad,
|
715 |
+
is_quantized=t.is_quantized,
|
716 |
+
is_conj=t.is_conj(),
|
717 |
+
is_neg=t.is_neg(),
|
718 |
+
is_inference=t.is_inference(),
|
719 |
+
is_sparse=t.is_sparse,
|
720 |
+
is_coalesced=t.is_coalesced() if t.is_sparse else None,
|
721 |
+
dense_dim=t.dense_dim() if t.is_sparse else None,
|
722 |
+
sparse_dim=t.sparse_dim() if t.is_sparse else None,
|
723 |
+
)
|
724 |
+
|
725 |
+
|
726 |
+
@dataclass(frozen=True)
|
727 |
+
class _ShapeEnvSettings:
|
728 |
+
"""
|
729 |
+
Encapsulates all shape env settings that could potentially affect
|
730 |
+
FakeTensor dispatch. Used when creating dispatch cache keys.
|
731 |
+
"""
|
732 |
+
|
733 |
+
allow_scalar_outputs: bool
|
734 |
+
allow_dynamic_output_shape_ops: bool
|
735 |
+
assume_static_by_default: bool
|
736 |
+
specialize_zero_one: bool
|
737 |
+
duck_shape: bool
|
738 |
+
|
739 |
+
def __init__(self, env: "ShapeEnv"):
|
740 |
+
# Initialize this way because the class is frozen (to enable hashing):
|
741 |
+
object.__setattr__(self, "allow_scalar_outputs", env.allow_scalar_outputs)
|
742 |
+
object.__setattr__(
|
743 |
+
self, "allow_dynamic_output_shape_ops", env.allow_dynamic_output_shape_ops
|
744 |
+
)
|
745 |
+
object.__setattr__(
|
746 |
+
self, "assume_static_by_default", env.assume_static_by_default
|
747 |
+
)
|
748 |
+
object.__setattr__(self, "specialize_zero_one", env.specialize_zero_one)
|
749 |
+
object.__setattr__(self, "duck_shape", env.duck_shape)
|
750 |
+
|
751 |
+
|
752 |
+
class _DispatchCacheKey(list):
|
753 |
+
"""
|
754 |
+
Key for the FakeTensor dispatch cache. Inspired by (copied from)
|
755 |
+
_HashedSeq from the functools.lru_cache implementation.
|
756 |
+
"""
|
757 |
+
|
758 |
+
__slots__ = "hashvalue" # noqa: PLC0205
|
759 |
+
|
760 |
+
def __init__(self, tup, hash=hash):
|
761 |
+
self[:] = tup
|
762 |
+
self.hashvalue = hash(tup)
|
763 |
+
|
764 |
+
def __hash__(self):
|
765 |
+
return self.hashvalue
|
766 |
+
|
767 |
+
|
768 |
+
@dataclass(frozen=True)
|
769 |
+
class _DispatchCacheEntry:
|
770 |
+
"""
|
771 |
+
Entry type for the FakeTensor dispatch cache. Accounts for two possibilities:
|
772 |
+
1) The op is inplace, and a hit means we need to alias the argument at a given
|
773 |
+
index. 2) We need to synthesize a new FakeTensor given tensor metadata. For view
|
774 |
+
ops, we further capture the index of the arg to alias.
|
775 |
+
"""
|
776 |
+
|
777 |
+
inplace_idx: Optional[int] = None
|
778 |
+
metadata: Optional[TensorMetadata] = None
|
779 |
+
view_idx: Optional[int] = None
|
780 |
+
|
781 |
+
|
782 |
+
@dataclass(frozen=True)
|
783 |
+
class _BypassDispatchCache(Exception):
|
784 |
+
"""
|
785 |
+
Signals cases that should skip FakeTensor caching.
|
786 |
+
"""
|
787 |
+
|
788 |
+
reason: str
|
789 |
+
|
790 |
+
|
791 |
+
@dataclass(frozen=True)
|
792 |
+
class DispatchCacheInfo:
|
793 |
+
"""
|
794 |
+
Information about the state of the FakeTensor dispatch cache.
|
795 |
+
"""
|
796 |
+
|
797 |
+
hits: int
|
798 |
+
misses: int
|
799 |
+
bypasses: Dict[str, int]
|
800 |
+
size: int
|
801 |
+
|
802 |
+
|
803 |
+
# We keep one instantiation of `fake_tensor_converter` active
|
804 |
+
# for the duration of `with FakeTensorMode()`.
|
805 |
+
# This allows accurate storage aliasing across invocation of
|
806 |
+
# different operators. While this will keep all freshly allocated
|
807 |
+
# tensors alive during `FakeTensorMode`, there will no be no
|
808 |
+
# new allocations of Tensors which have non-meta storage so
|
809 |
+
# memory should not significantly increase.
|
810 |
+
|
811 |
+
|
812 |
+
class FakeTensorMode(TorchDispatchMode):
|
813 |
+
cache: Dict[_DispatchCacheKey, _DispatchCacheEntry] = {}
|
814 |
+
cache_hits: int = 0
|
815 |
+
cache_misses: int = 0
|
816 |
+
cache_bypasses = defaultdict(int)
|
817 |
+
|
818 |
+
def __init__(
|
819 |
+
self,
|
820 |
+
*,
|
821 |
+
allow_fallback_kernels=True,
|
822 |
+
allow_non_fake_inputs=False,
|
823 |
+
shape_env=None,
|
824 |
+
static_shapes=None,
|
825 |
+
):
|
826 |
+
log.debug("create_mode 0x%x", id(self))
|
827 |
+
self.allow_fallback_kernels = allow_fallback_kernels
|
828 |
+
self.fake_tensor_converter = FakeTensorConverter()
|
829 |
+
if static_shapes is not None:
|
830 |
+
self.static_shapes = static_shapes
|
831 |
+
else:
|
832 |
+
self.static_shapes = shape_env is None
|
833 |
+
|
834 |
+
import torch._dynamo.config
|
835 |
+
import torch._functorch.config
|
836 |
+
|
837 |
+
self.allow_meta = torch._functorch.config.fake_tensor_allow_meta
|
838 |
+
self.cache_enabled = torch._dynamo.config.fake_tensor_cache_enabled
|
839 |
+
self.cache_crosscheck_enabled = (
|
840 |
+
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled
|
841 |
+
)
|
842 |
+
|
843 |
+
# A flag that controls, whether we want to invoke ops on mix of
|
844 |
+
# real weights/global variables and fake inputs
|
845 |
+
self.allow_non_fake_inputs = allow_non_fake_inputs
|
846 |
+
|
847 |
+
# [in_kernel_invocation]
|
848 |
+
# when FakeTensor is invoked in user code, .device should return
|
849 |
+
# the fake_device of the tensor so that code such as as `if x.is_cuda`
|
850 |
+
# or torch.zeros([10, 10], device=x.device) continues to execute as if
|
851 |
+
# the FakeTensor were real. However, within kernel execution, we return
|
852 |
+
# the `Meta` device because all computation within the kernels should
|
853 |
+
# behave as if the Tensors are on meta devices. Kernels should allocate
|
854 |
+
# new tensors on meta devices, and checks like `is_meta` should return true.
|
855 |
+
# within python refs, we always return the real device by defining
|
856 |
+
# the device property
|
857 |
+
self.in_kernel_invocation = False
|
858 |
+
|
859 |
+
# True if we enter'ed and actually enabled fake tensor mode,
|
860 |
+
# false if it was a no-op. Not thread safe but neither is
|
861 |
+
# in_kernel_invocation
|
862 |
+
# If another fake mode was already active when we enter, we also stash it here.
|
863 |
+
# That way when we exit, we know to re-enable the previous fake mode.
|
864 |
+
self.enter_stack: List[Tuple[bool, Optional[FakeTensorMode]]] = []
|
865 |
+
|
866 |
+
self.shape_env = shape_env
|
867 |
+
|
868 |
+
self.stack = "".join(traceback.format_stack())
|
869 |
+
|
870 |
+
# Indicates to our torch_dispatch dispatching infra that
|
871 |
+
# this is an "infra" mode with lower dispatching precedence.
|
872 |
+
self._mode_key = torch._C._TorchDispatchModeKey.FAKE
|
873 |
+
|
874 |
+
# Typically, there is only one fake tensor mode and you test for it by
|
875 |
+
# doing an isinstance test. However, in some situations, there might be
|
876 |
+
# TWO fake tensor modes. The canonical example of this is exporting
|
877 |
+
# a fake model: there is an outer fake mode created by the user, and
|
878 |
+
# an inner fake mode created by Dynamo. The two phase process is required
|
879 |
+
# because the outer fake mode typically won't have a ShapeEnv, even if
|
880 |
+
# the user is interested in exporting with dynamic shapes (so the inner
|
881 |
+
# fake mode will actually have a ShapeEnv and swap in symbolic sizes.)
|
882 |
+
#
|
883 |
+
# In this case, it's insufficient to test only one FakeTensor: you need
|
884 |
+
# to distinguish between our fake tensor and other fake tensors. That's
|
885 |
+
# what this function does.
|
886 |
+
def is_our_fake(self, t):
|
887 |
+
return isinstance(t, FakeTensor) and t.fake_mode is self
|
888 |
+
|
889 |
+
@count
|
890 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
891 |
+
# FakeTensorMode should not be set when we're inside of it.
|
892 |
+
assert (
|
893 |
+
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE) is None
|
894 |
+
), func
|
895 |
+
try:
|
896 |
+
return self.dispatch(func, types, args, kwargs)
|
897 |
+
except TypeError:
|
898 |
+
log.exception("fake tensor raised TypeError")
|
899 |
+
raise
|
900 |
+
|
901 |
+
# No-op if FakeTensorMode is already in use
|
902 |
+
def __enter__(self):
|
903 |
+
maybe_prev_fake_mode = torch._C._unset_dispatch_mode(self._mode_key)
|
904 |
+
if self is not maybe_prev_fake_mode:
|
905 |
+
self.enter_stack.append((True, maybe_prev_fake_mode))
|
906 |
+
return super().__enter__()
|
907 |
+
else:
|
908 |
+
# no-op (still need to re-set the fake mode though since we unset it)
|
909 |
+
torch._C._set_dispatch_mode(self)
|
910 |
+
self.enter_stack.append((False, None))
|
911 |
+
return self
|
912 |
+
|
913 |
+
def __exit__(self, a, b, c):
|
914 |
+
live, maybe_prev_fake_mode = self.enter_stack.pop()
|
915 |
+
if live:
|
916 |
+
out = super().__exit__(a, b, c)
|
917 |
+
# Re-enable the previous fake mode, if there was one.
|
918 |
+
if maybe_prev_fake_mode is not None:
|
919 |
+
torch._C._set_dispatch_mode(maybe_prev_fake_mode)
|
920 |
+
|
921 |
+
@classmethod
|
922 |
+
def cache_info(cls) -> DispatchCacheInfo:
|
923 |
+
"""
|
924 |
+
Query the state of the dispatch cache.
|
925 |
+
"""
|
926 |
+
return DispatchCacheInfo(
|
927 |
+
FakeTensorMode.cache_hits,
|
928 |
+
FakeTensorMode.cache_misses,
|
929 |
+
dict(FakeTensorMode.cache_bypasses),
|
930 |
+
len(FakeTensorMode.cache),
|
931 |
+
)
|
932 |
+
|
933 |
+
@classmethod
|
934 |
+
def cache_clear(cls):
|
935 |
+
"""
|
936 |
+
Clear the dispatch cache.
|
937 |
+
"""
|
938 |
+
cls.cache_hits = 0
|
939 |
+
cls.cache_misses = 0
|
940 |
+
cls.cache_bypasses.clear()
|
941 |
+
cls.cache.clear()
|
942 |
+
|
943 |
+
def _cached_dispatch_impl(
|
944 |
+
self,
|
945 |
+
func: OpOverload,
|
946 |
+
types: Tuple[Any, ...],
|
947 |
+
args: Tuple[Any, ...],
|
948 |
+
kwargs: Dict[str, Any],
|
949 |
+
):
|
950 |
+
"""
|
951 |
+
Lookup a cache entry for the given arguments. If none exists, dispatch
|
952 |
+
and cache the result (if the result is eligible for caching).
|
953 |
+
"""
|
954 |
+
output = unassigned = object()
|
955 |
+
try:
|
956 |
+
key = self._cache_key(func, args, kwargs)
|
957 |
+
entry = FakeTensorMode.cache.get(key, None)
|
958 |
+
if entry is not None:
|
959 |
+
output = self._output_from_cache_entry(entry, func, args)
|
960 |
+
FakeTensorMode.cache_hits += 1
|
961 |
+
if self.cache_crosscheck_enabled:
|
962 |
+
# For debugging / testing: Validate that the output synthesized
|
963 |
+
# from the cache matches the output created by normal dispatch.
|
964 |
+
self._crosscheck_cache_output(output, func, types, args, kwargs)
|
965 |
+
else:
|
966 |
+
output = self._dispatch_impl(func, types, args, kwargs)
|
967 |
+
entry = self._make_cache_entry(key, func, args, kwargs, output)
|
968 |
+
FakeTensorMode.cache[key] = entry
|
969 |
+
FakeTensorMode.cache_misses += 1
|
970 |
+
except _BypassDispatchCache as e:
|
971 |
+
FakeTensorMode.cache_bypasses[e.reason] += 1
|
972 |
+
|
973 |
+
if output is unassigned:
|
974 |
+
output = self._dispatch_impl(func, types, args, kwargs)
|
975 |
+
|
976 |
+
return output
|
977 |
+
|
978 |
+
def _cache_key(
|
979 |
+
self,
|
980 |
+
func: OpOverload,
|
981 |
+
args: Tuple[Any, ...],
|
982 |
+
kwargs: Dict[str, Any],
|
983 |
+
) -> _DispatchCacheKey:
|
984 |
+
"""
|
985 |
+
Create a cache key given the dispatch args. Raises _BypassDispatchCache
|
986 |
+
for any situation that precludes caching.
|
987 |
+
"""
|
988 |
+
# Avoid caching for any ops that would require a more sophisticated
|
989 |
+
# caching implementation, e.g., data dependent ops or ops that modify
|
990 |
+
# the inputs.
|
991 |
+
if torch.Tag.data_dependent_output in func.tags:
|
992 |
+
raise _BypassDispatchCache("data dependent output")
|
993 |
+
|
994 |
+
if torch.Tag.dynamic_output_shape in func.tags:
|
995 |
+
raise _BypassDispatchCache("dynamic output shape")
|
996 |
+
|
997 |
+
if torch.Tag.inplace_view in func.tags:
|
998 |
+
raise _BypassDispatchCache("inplace view")
|
999 |
+
|
1000 |
+
if func == aten._unsafe_view.default:
|
1001 |
+
raise _BypassDispatchCache("unsafe view")
|
1002 |
+
|
1003 |
+
if func in self.lift_fns:
|
1004 |
+
raise _BypassDispatchCache("lift")
|
1005 |
+
|
1006 |
+
if not torch._library.utils.is_builtin(func):
|
1007 |
+
raise _BypassDispatchCache("non-builtin")
|
1008 |
+
|
1009 |
+
# In order to handle storage aliasing, we need to establish the alias
|
1010 |
+
# for any view op on a cache hit. But CompositeImplicitAutograd ops may
|
1011 |
+
# or may not alias the input, so just punt on caching these.
|
1012 |
+
if func.is_view and torch._C._dispatch_has_kernel_for_dispatch_key(
|
1013 |
+
func.name(), torch._C.DispatchKey.CompositeImplicitAutograd
|
1014 |
+
):
|
1015 |
+
raise _BypassDispatchCache("CompositeImplicitAutograd")
|
1016 |
+
|
1017 |
+
key_values = (
|
1018 |
+
func,
|
1019 |
+
# Translate any FakeTensor args to metadata.
|
1020 |
+
self._prep_args_for_hash(args) if args else (),
|
1021 |
+
self._prep_args_for_hash(kwargs) if kwargs else (),
|
1022 |
+
# Capture the default_dtype mode since that can affect the output tensor,
|
1023 |
+
# e.g., when operating on constant float values.
|
1024 |
+
torch.get_default_dtype(),
|
1025 |
+
# Capture the current device to support, e.g., cache tensor creation,
|
1026 |
+
# where there isn't necessarily a tensor to take the device from.
|
1027 |
+
torch._C._get_default_device(),
|
1028 |
+
# We want to create tensors from cached metadata only when the inference
|
1029 |
+
# mode is the same.
|
1030 |
+
torch.is_inference_mode_enabled(),
|
1031 |
+
# Shape env settings could affect behavior. One example seen in the wild:
|
1032 |
+
# Disasllowing dynamic shapes can introduce a DynamicOutputShapeException
|
1033 |
+
# where it wasn't seen on a previous instance of the same op.
|
1034 |
+
_ShapeEnvSettings(self.shape_env) if self.shape_env else None,
|
1035 |
+
)
|
1036 |
+
return _DispatchCacheKey(key_values)
|
1037 |
+
|
1038 |
+
def _prep_args_for_hash(self, args: Any) -> Any:
|
1039 |
+
"""
|
1040 |
+
Translate the provided args into a form suitable for caching at FakeTensor
|
1041 |
+
dispatch, i.e., convert unhashable types like lists & dicts into tuples and
|
1042 |
+
convert FakeTensors into metadata. Raises _BypassDispatchCache to signal
|
1043 |
+
unsupported cases that should bypass caching.
|
1044 |
+
"""
|
1045 |
+
if isinstance(args, dict):
|
1046 |
+
args = list(args.keys()) + list(args.values())
|
1047 |
+
|
1048 |
+
result = []
|
1049 |
+
for arg in args:
|
1050 |
+
if isinstance(arg, FakeTensor):
|
1051 |
+
if not self.is_our_fake(arg):
|
1052 |
+
raise _BypassDispatchCache("not our fake")
|
1053 |
+
if arg._has_symbolic_sizes_strides:
|
1054 |
+
raise _BypassDispatchCache("symbolic shape")
|
1055 |
+
if arg.constant is not None:
|
1056 |
+
raise _BypassDispatchCache("constant attribute")
|
1057 |
+
if arg.is_sparse:
|
1058 |
+
raise _BypassDispatchCache("sparse tensor")
|
1059 |
+
if is_sparse_compressed(arg):
|
1060 |
+
raise _BypassDispatchCache("sparse compressed tensor")
|
1061 |
+
result.append(extract_tensor_metadata(arg))
|
1062 |
+
elif isinstance(arg, torch.Tensor):
|
1063 |
+
raise _BypassDispatchCache("non-fake tensor")
|
1064 |
+
elif isinstance(arg, (torch.SymBool, torch.SymInt, torch.SymFloat)):
|
1065 |
+
raise _BypassDispatchCache("symbolic shape")
|
1066 |
+
elif isinstance(arg, (list, tuple, dict)):
|
1067 |
+
result.extend(self._prep_args_for_hash(arg))
|
1068 |
+
else:
|
1069 |
+
# It's important to capture the type of the arg since, e.g., 1 and 1.0
|
1070 |
+
# hash to the same value, but can produce different dtypes for the
|
1071 |
+
# output tensor.
|
1072 |
+
result.append((type(arg), arg))
|
1073 |
+
|
1074 |
+
return tuple(result)
|
1075 |
+
|
1076 |
+
def _make_cache_entry(
|
1077 |
+
self,
|
1078 |
+
key: _DispatchCacheKey,
|
1079 |
+
func: OpOverload,
|
1080 |
+
args: Tuple[Any, ...],
|
1081 |
+
kwargs: Dict[str, Any],
|
1082 |
+
output: FakeTensor,
|
1083 |
+
) -> _DispatchCacheEntry:
|
1084 |
+
"""
|
1085 |
+
Make a cache entry object for the given 'output' Tensor. Raises
|
1086 |
+
_BypassDispatchCache if the output tensor has characteristics that
|
1087 |
+
prevent caching it.
|
1088 |
+
"""
|
1089 |
+
# Some ops return tuples of Tensors, but it's rare, so avoid
|
1090 |
+
# the complexity of caching other types.
|
1091 |
+
if not isinstance(output, FakeTensor):
|
1092 |
+
raise _BypassDispatchCache("non-FakeTensor output")
|
1093 |
+
|
1094 |
+
# Avoid caching FakeTensors with constants attached since those
|
1095 |
+
# can be invalidated.
|
1096 |
+
if output.constant is not None:
|
1097 |
+
raise _BypassDispatchCache("constant attribute")
|
1098 |
+
|
1099 |
+
# TODO: support caching sparse outputs?
|
1100 |
+
if output.is_sparse:
|
1101 |
+
raise _BypassDispatchCache("sparse output")
|
1102 |
+
|
1103 |
+
if is_sparse_compressed(output):
|
1104 |
+
raise _BypassDispatchCache("sparse compressed output")
|
1105 |
+
|
1106 |
+
# Can an in-place op really reference a kwarg? If so, then we need
|
1107 |
+
# to extend the implementation to handle it.
|
1108 |
+
for kval in kwargs.values():
|
1109 |
+
if id(kval) == id(output):
|
1110 |
+
raise _BypassDispatchCache("kwarg aliases output")
|
1111 |
+
|
1112 |
+
# If this is an in-place op, the entry records which input arg is aliased.
|
1113 |
+
for idx in range(len(args)):
|
1114 |
+
if id(args[idx]) == id(output):
|
1115 |
+
return _DispatchCacheEntry(
|
1116 |
+
inplace_idx=idx, metadata=None, view_idx=None
|
1117 |
+
)
|
1118 |
+
|
1119 |
+
# Otherwise, create an entry that records the output tensor's metadata.
|
1120 |
+
view_idx = None
|
1121 |
+
if func.is_view:
|
1122 |
+
idxs = [i for i, t in enumerate(args) if isinstance(t, torch.Tensor)]
|
1123 |
+
assert len(idxs) == 1
|
1124 |
+
view_idx = idxs[0]
|
1125 |
+
|
1126 |
+
metadata = extract_tensor_metadata(output)
|
1127 |
+
entry = _DispatchCacheEntry(
|
1128 |
+
inplace_idx=None, metadata=metadata, view_idx=view_idx
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
# N.B.: Some checks for bypassing the cache would be performed on the
|
1132 |
+
# output tensor synthesized from the cached metadata. As an optimization,
|
1133 |
+
# we can synthesize a tensor here and do the checks on that instance.
|
1134 |
+
# This approach keeps the (more frequent) cache-hit path as lightweight
|
1135 |
+
# as possible.
|
1136 |
+
synth_output = self._output_from_cache_entry(entry, func, args)
|
1137 |
+
|
1138 |
+
# Make sure the dispatch_key_set from the synthesized output tensor will
|
1139 |
+
# be the same.
|
1140 |
+
synth_key_set = torch._C._dispatch_key_set(synth_output)
|
1141 |
+
key_set = torch._C._dispatch_key_set(output)
|
1142 |
+
if synth_key_set != key_set:
|
1143 |
+
raise _BypassDispatchCache("dispatch_key_set mismatch")
|
1144 |
+
|
1145 |
+
return entry
|
1146 |
+
|
1147 |
+
def _output_from_cache_entry(
|
1148 |
+
self, entry: _DispatchCacheEntry, func: OpOverload, args: Tuple[Any, ...]
|
1149 |
+
) -> FakeTensor:
|
1150 |
+
"""
|
1151 |
+
Create a new FakeTensor from the cache entry.
|
1152 |
+
"""
|
1153 |
+
if entry.inplace_idx is not None:
|
1154 |
+
# This is an in-place op; return the aliased arg.
|
1155 |
+
return args[entry.inplace_idx]
|
1156 |
+
|
1157 |
+
# Synthesize a new FakeTensor with the cached metadata.
|
1158 |
+
metadata = entry.metadata
|
1159 |
+
assert not metadata.is_sparse
|
1160 |
+
|
1161 |
+
empty = torch.empty_strided(
|
1162 |
+
metadata.shape,
|
1163 |
+
metadata.stride,
|
1164 |
+
dtype=metadata.dtype,
|
1165 |
+
layout=metadata.layout,
|
1166 |
+
device="meta",
|
1167 |
+
requires_grad=metadata.requires_grad,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
if metadata.is_conj:
|
1171 |
+
torch._C._set_conj(empty, True)
|
1172 |
+
if metadata.is_neg:
|
1173 |
+
torch._C._set_neg(empty, True)
|
1174 |
+
|
1175 |
+
if func.is_view:
|
1176 |
+
# For view ops, the storage should be the same as the tensor input.
|
1177 |
+
storage = args[entry.view_idx].untyped_storage()
|
1178 |
+
with in_kernel_invocation_manager(self):
|
1179 |
+
empty.set_(
|
1180 |
+
storage, metadata.storage_offset, metadata.shape, metadata.stride
|
1181 |
+
)
|
1182 |
+
elif metadata.storage_offset != 0:
|
1183 |
+
storage = empty.untyped_storage()
|
1184 |
+
with in_kernel_invocation_manager(self):
|
1185 |
+
empty.set_(
|
1186 |
+
storage, metadata.storage_offset, metadata.shape, metadata.stride
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
return FakeTensor(self, empty, metadata.device)
|
1190 |
+
|
1191 |
+
def _crosscheck_cache_output(
|
1192 |
+
self,
|
1193 |
+
output: FakeTensor,
|
1194 |
+
func: OpOverload,
|
1195 |
+
types: Tuple[Any, ...],
|
1196 |
+
args: Tuple[Any, ...],
|
1197 |
+
kwargs: Dict[str, Any],
|
1198 |
+
):
|
1199 |
+
"""
|
1200 |
+
Helper to validate that the output synthesized from the cache matches
|
1201 |
+
the output created by normal dispatch.
|
1202 |
+
"""
|
1203 |
+
try:
|
1204 |
+
true_output = self._dispatch_impl(func, types, args, kwargs)
|
1205 |
+
except Exception as e:
|
1206 |
+
raise RuntimeError(
|
1207 |
+
f"FakeTensor cache crosscheck failure: func={func}, "
|
1208 |
+
f"args={args}, kwargs={kwargs}: Dispatch raised={e}"
|
1209 |
+
) from e
|
1210 |
+
try:
|
1211 |
+
assert_metadata_eq(assert_eq, true_output, output)
|
1212 |
+
except Exception as e:
|
1213 |
+
raise RuntimeError(
|
1214 |
+
f"FakeTensor cache crosscheck failure: func={func}, "
|
1215 |
+
f"args={args}, kwargs={kwargs}"
|
1216 |
+
) from e
|
1217 |
+
|
1218 |
+
def dispatch(self, func, types, args=(), kwargs=None):
|
1219 |
+
kwargs = kwargs or {}
|
1220 |
+
with no_dispatch():
|
1221 |
+
log.debug("%s %s %s", func, args, kwargs)
|
1222 |
+
|
1223 |
+
if func in _DISPATCH_META_HANDLERS:
|
1224 |
+
return _DISPATCH_META_HANDLERS[func](args)
|
1225 |
+
|
1226 |
+
if log.getEffectiveLevel() <= logging.DEBUG:
|
1227 |
+
log.debug(
|
1228 |
+
"%sFakeTensorMode.__torch_dispatch__: %s", " " * RECURSION_COUNT, func
|
1229 |
+
)
|
1230 |
+
# NOTE: incr is intentionally unused for a RAII pattern
|
1231 |
+
incr = IncrementRecursionCount()
|
1232 |
+
|
1233 |
+
# Some attribute queries that can be serviced directly
|
1234 |
+
# See Note [is_coalesced is dispatched]
|
1235 |
+
if func in _DISPATCH_HANDLE_DIRECTLY:
|
1236 |
+
# NB: no_dispatch is ok here too, this func is very simple
|
1237 |
+
with in_kernel_invocation_manager(self):
|
1238 |
+
return func(*args, **kwargs)
|
1239 |
+
|
1240 |
+
if self.cache_enabled:
|
1241 |
+
return self._cached_dispatch_impl(func, types, args, kwargs)
|
1242 |
+
else:
|
1243 |
+
return self._dispatch_impl(func, types, args, kwargs)
|
1244 |
+
|
1245 |
+
def _dispatch_impl(self, func, types, args, kwargs):
|
1246 |
+
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
|
1247 |
+
|
1248 |
+
flat_arg_fake_tensors = [
|
1249 |
+
t for t in flat_args if isinstance(t, FakeTensor) and self.is_our_fake(t)
|
1250 |
+
]
|
1251 |
+
has_symbolic_sizes = any(
|
1252 |
+
i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors
|
1253 |
+
) or any(isinstance(a, torch.SymInt) for a in flat_args)
|
1254 |
+
|
1255 |
+
converter = self.fake_tensor_converter
|
1256 |
+
|
1257 |
+
def maybe_to_constant(t):
|
1258 |
+
if isinstance(t, FakeTensor) and self.is_our_fake(t):
|
1259 |
+
return t.constant
|
1260 |
+
else:
|
1261 |
+
return t
|
1262 |
+
|
1263 |
+
# To constant propagate through these functions:
|
1264 |
+
# 1, If this is a lift due to a torch.tensor call,
|
1265 |
+
# the input tensor is guaranteed to be a
|
1266 |
+
# constant, so we keep a copy of the original argument along so
|
1267 |
+
# we can query it if we're asked to item() it at some later point.
|
1268 |
+
# (Note that you can always call a lift fn manually, so we do
|
1269 |
+
# have to check if there are any fake tensors!)
|
1270 |
+
# 2, Some functions that allow Python numbers to bind to Tensors, e.g, torch.div
|
1271 |
+
if (func in self.lift_fns and not flat_arg_fake_tensors) or (
|
1272 |
+
should_allow_numbers_as_tensors(func)
|
1273 |
+
and not has_symbolic_sizes
|
1274 |
+
and not flat_arg_fake_tensors
|
1275 |
+
):
|
1276 |
+
assert all(
|
1277 |
+
t.constant is not None for t in flat_arg_fake_tensors
|
1278 |
+
), f"{func} should not have fake inputs without constants"
|
1279 |
+
const_flat_args = [maybe_to_constant(a) for a in flat_args]
|
1280 |
+
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
|
1281 |
+
out = func(*const_args, **const_kwargs)
|
1282 |
+
if type(out) is torch.Tensor and self.may_turn_const(out):
|
1283 |
+
# NB: not in_kernel_invocation_manager because we're doing real
|
1284 |
+
# compute here
|
1285 |
+
# NB: no_dispatch() here is VERY DANGEROUS (like, segfault
|
1286 |
+
# dangerous) if this is actually a wrapper subclass tensor,
|
1287 |
+
# therefore the exact type test above
|
1288 |
+
with no_dispatch():
|
1289 |
+
out = out.clone()
|
1290 |
+
return converter(self, out, make_constant=True)
|
1291 |
+
|
1292 |
+
# See [subclass inputs] below
|
1293 |
+
# NB: If you're seeing a mysterious infinite loop involving fake
|
1294 |
+
# tensor, it might be related to this line. Though I'm not sure
|
1295 |
+
# how you'll know to read this comment, as this line won't show up
|
1296 |
+
# in the stack trace.
|
1297 |
+
unrecognized_types = self.check_for_subclass(flat_args)
|
1298 |
+
if unrecognized_types:
|
1299 |
+
not_implemented_log.debug(
|
1300 |
+
"FakeTensorMode unrecognized subclass(es): %s", unrecognized_types
|
1301 |
+
)
|
1302 |
+
return NotImplemented
|
1303 |
+
|
1304 |
+
# if we are in the dispatch mode, we will enter this function even if the inputs
|
1305 |
+
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
|
1306 |
+
# and just support constructors.
|
1307 |
+
|
1308 |
+
# this is generated from torch.tensor(), which does not use the
|
1309 |
+
# dispatcher, to allow wrapper subclasses to wrap the new tensor
|
1310 |
+
if func in self.lift_fns:
|
1311 |
+
assert len(kwargs) == 0 and len(args) == 1, f"{args} {kwargs}"
|
1312 |
+
|
1313 |
+
if type(args[0]) is torch.Tensor:
|
1314 |
+
return converter(self, args[0])
|
1315 |
+
|
1316 |
+
# Recompute flat_arg_fake_tensors here again in case some of the inputs
|
1317 |
+
# were real tensors and fakified in validate_and_convert_non_fake_tensors
|
1318 |
+
(flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors(
|
1319 |
+
func, converter, flat_args, args_spec
|
1320 |
+
)
|
1321 |
+
del args, kwargs # Invalidated
|
1322 |
+
|
1323 |
+
# The current constant handling only support tracing systems
|
1324 |
+
# (aot autograd, torchdynamo) where each operation is run consecutively.
|
1325 |
+
# Because each operation is run in order, we can trace out and support
|
1326 |
+
# sequences like: x = torch.tensor(0.); y = x.add_(1)
|
1327 |
+
# Whenver a constant is written to but with inputs that cannot be evaluated
|
1328 |
+
# statically, such as random_(), we invalidate all constants that alias the input
|
1329 |
+
# We will rely on functionalization for use of fake tensors constants as persistent
|
1330 |
+
# objects on an FX Graph.
|
1331 |
+
|
1332 |
+
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
|
1333 |
+
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
|
1334 |
+
if (
|
1335 |
+
torch.Tag.nondeterministic_seeded not in func.tags
|
1336 |
+
and torch.Tag.inplace_view not in func.tags
|
1337 |
+
and all_constant
|
1338 |
+
and len(flat_arg_fake_tensors) != 0
|
1339 |
+
and not has_symbolic_sizes
|
1340 |
+
):
|
1341 |
+
const_flat_args = [maybe_to_constant(a) for a in flat_args]
|
1342 |
+
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
|
1343 |
+
|
1344 |
+
# NB: not in_kernel_invocation_manager(self) as we want to do REAL
|
1345 |
+
# compute
|
1346 |
+
with no_dispatch():
|
1347 |
+
out = func(*const_args, **const_kwargs)
|
1348 |
+
|
1349 |
+
flat_out = pytree.tree_leaves(out)
|
1350 |
+
flat_out_tensors = [t for t in flat_out if isinstance(t, torch.Tensor)]
|
1351 |
+
all_constant = all(self.may_turn_const(t) for t in flat_out_tensors)
|
1352 |
+
|
1353 |
+
if all_constant:
|
1354 |
+
return pytree.tree_map_only(
|
1355 |
+
torch.Tensor,
|
1356 |
+
lambda t: converter(self, t, make_constant=True),
|
1357 |
+
out,
|
1358 |
+
)
|
1359 |
+
|
1360 |
+
# we weren't able to turn outputs to constants,
|
1361 |
+
# so invalidate all constants that might be aliases of the outputs
|
1362 |
+
for ten in flat_out_tensors:
|
1363 |
+
converter.invalidate_constant_aliases(ten)
|
1364 |
+
|
1365 |
+
# we are falling through to running non constant tensors, any input constant that
|
1366 |
+
# is written to must be invalidated
|
1367 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1368 |
+
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
|
1369 |
+
|
1370 |
+
# Try for fastpath
|
1371 |
+
if has_symbolic_sizes:
|
1372 |
+
fast_impl = get_fast_op_impls().get(func)
|
1373 |
+
if fast_impl is not None:
|
1374 |
+
return fast_impl(self, *args, **kwargs)
|
1375 |
+
|
1376 |
+
# If there's a Python meta, prefer that over the decomposition
|
1377 |
+
from torch._decomp import meta_table as meta_table
|
1378 |
+
|
1379 |
+
if func not in meta_table and not self.cpp_meta_supports_symint(func):
|
1380 |
+
from torch._decomp import decomposition_table
|
1381 |
+
|
1382 |
+
# Prefer Python decompositions over C++ ones
|
1383 |
+
if func in decomposition_table and (
|
1384 |
+
has_symbolic_sizes
|
1385 |
+
or (
|
1386 |
+
# TODO: Remove these exclusions, so that we can remove
|
1387 |
+
# this leg entirely
|
1388 |
+
torch_decomp_decompositions(func)
|
1389 |
+
and all(not e.is_sparse for e in flat_arg_fake_tensors)
|
1390 |
+
)
|
1391 |
+
):
|
1392 |
+
with self:
|
1393 |
+
return decomposition_table[func](*args, **kwargs)
|
1394 |
+
|
1395 |
+
with self:
|
1396 |
+
# Decomposes CompositeImplicitAutograd ops
|
1397 |
+
r = func.decompose(*args, **kwargs)
|
1398 |
+
if r is not NotImplemented:
|
1399 |
+
return r
|
1400 |
+
|
1401 |
+
# prims already wrap FakeTensor inputs to FakeTensor outputs
|
1402 |
+
# and do device logic, we dont need do anything but run them
|
1403 |
+
# and ensure that Meta kernels are dispatched to (see)
|
1404 |
+
# Fake Tensor Dispatch Keys
|
1405 |
+
# TODO - we should be use the prim aten impl
|
1406 |
+
# TODO - fix prims complex ops
|
1407 |
+
if (
|
1408 |
+
"prims::" in func._schema.name
|
1409 |
+
and hasattr(func, "prim_meta_impl")
|
1410 |
+
and not stride_incorrect_op(func)
|
1411 |
+
):
|
1412 |
+
with self:
|
1413 |
+
return func.prim_meta_impl(*args, **kwargs)
|
1414 |
+
|
1415 |
+
# Users can register FakeTensor rules for custom operators
|
1416 |
+
# Call them if they exist.
|
1417 |
+
maybe_abstract_impl = torch._library.simple_registry.singleton.find(
|
1418 |
+
func.name()
|
1419 |
+
).abstract_impl.kernel
|
1420 |
+
if maybe_abstract_impl:
|
1421 |
+
ctx = torch._library.abstract_impl.AbstractImplCtx(self.shape_env, func)
|
1422 |
+
with torch._library.abstract_impl.set_ctx_getter(lambda: ctx), self:
|
1423 |
+
result = maybe_abstract_impl(*args, **kwargs)
|
1424 |
+
return result
|
1425 |
+
|
1426 |
+
# special handling for funcs registered through `register_op_impl`,
|
1427 |
+
# e.g., manipulating args on constructor calls to construct meta tensors
|
1428 |
+
# and then afterwards wrapping them to a FakeTensor
|
1429 |
+
for run_impl_check, op_impl in op_implementations_checks:
|
1430 |
+
if run_impl_check(func):
|
1431 |
+
op_impl_out = op_impl(self, func, *args, **kwargs)
|
1432 |
+
if op_impl_out != NotImplemented:
|
1433 |
+
return op_impl_out
|
1434 |
+
|
1435 |
+
def maybe_run_unsafe_fallback(error=None):
|
1436 |
+
# We infer the meta of a custom ops that return None to just
|
1437 |
+
# return None. custom ops are not allowed to mutate metadata
|
1438 |
+
# of their inputs, so this is safe.
|
1439 |
+
if can_generate_trivial_abstract_impl(func):
|
1440 |
+
return None
|
1441 |
+
# no meta kernel registered, fallback to kernel for the device
|
1442 |
+
if has_symbolic_sizes or not self.can_run_unsafe_fallback(func):
|
1443 |
+
raise UnsupportedOperatorException(func)
|
1444 |
+
if error is None:
|
1445 |
+
error = UnsupportedOperatorException(func)
|
1446 |
+
return run_fallback_kernel(self, func, flat_args, args_spec, error)
|
1447 |
+
|
1448 |
+
# Optimization: If there is no Meta kernel, it takes a surprisingly long
|
1449 |
+
# amount of time to catch the NotImplementedError, so we check it here.
|
1450 |
+
if not has_meta(func):
|
1451 |
+
return maybe_run_unsafe_fallback()
|
1452 |
+
|
1453 |
+
# run kernel registered to meta for func, which include
|
1454 |
+
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
|
1455 |
+
# It's possible that the kernel will return NotImplementedError
|
1456 |
+
try:
|
1457 |
+
with in_kernel_invocation_manager(self):
|
1458 |
+
r = func(*args, **kwargs)
|
1459 |
+
except NotImplementedError as not_implemented_error:
|
1460 |
+
return maybe_run_unsafe_fallback(not_implemented_error)
|
1461 |
+
|
1462 |
+
return self.wrap_meta_outputs_with_default_device_logic(
|
1463 |
+
r, func, flat_args, device=kwargs.get("device")
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
# WARNING: DO NOT add any additional namespaces/operators here if they refer to operators
|
1467 |
+
# outside of the pytorch/pytorch library! Any pre-existing things here
|
1468 |
+
# are either in the pytorch/pytorch library or have been grandfathered in.
|
1469 |
+
# The fallback does not always work and MAY CRASH and emit unreadable error messages
|
1470 |
+
# so it should not be allowed by default.
|
1471 |
+
_can_run_unsafe_fallback_allowed_namespaces = ordered_set(
|
1472 |
+
"debugprims",
|
1473 |
+
"prims",
|
1474 |
+
"aten",
|
1475 |
+
"xla",
|
1476 |
+
"vision",
|
1477 |
+
"torchtext",
|
1478 |
+
"torchaudio",
|
1479 |
+
"quantized",
|
1480 |
+
)
|
1481 |
+
|
1482 |
+
def can_run_unsafe_fallback(self, func: OpOverload):
|
1483 |
+
if not self.allow_fallback_kernels:
|
1484 |
+
return False
|
1485 |
+
# It's OK to try the fallback for built-in ops (e.g. aten, prims)
|
1486 |
+
# because we control and test these but the fallback leads to unexpected behavior
|
1487 |
+
# in user-defined custom ops
|
1488 |
+
return (
|
1489 |
+
func.namespace in self._can_run_unsafe_fallback_allowed_namespaces
|
1490 |
+
or func.name() == "fbgemm::gmm"
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
# [subclass inputs]
|
1494 |
+
# Suppose we enable fake tensor mode. This means that fake tensor
|
1495 |
+
# mode will run first. But what if we do an operation that
|
1496 |
+
# involves a tensor subclass that will desugar into normal tensor
|
1497 |
+
# operations? Without returning NotImplemented, fake tensor mode will run first,
|
1498 |
+
# decide that a conversion was made (since there was a non fake
|
1499 |
+
# tensor argument), and report an error that converting non
|
1500 |
+
# fake tensor is not supported. What we actually wanted to happen
|
1501 |
+
# was to give the subclass a chance to figure out what it wants to
|
1502 |
+
# before erroring out. Returning NotImplemented here allows this.
|
1503 |
+
def check_for_subclass(self, flat_args):
|
1504 |
+
def check(x):
|
1505 |
+
return (
|
1506 |
+
isinstance(x, torch.Tensor)
|
1507 |
+
and not isinstance(x, FakeTensor)
|
1508 |
+
and type(x) is not torch.Tensor
|
1509 |
+
and type(x) is not torch.nn.Parameter
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
return [type(x) for x in flat_args if check(x)]
|
1513 |
+
|
1514 |
+
def validate_and_convert_non_fake_tensors(
|
1515 |
+
self, func, converter, flat_args, args_spec
|
1516 |
+
):
|
1517 |
+
"""
|
1518 |
+
Checks if the list of tensors are fake tensors.
|
1519 |
+
If not, try to convert them to fake tensors.
|
1520 |
+
Returns the original args, kwargs, and a flattened list of (args, kwargs) that are fake tensors.
|
1521 |
+
"""
|
1522 |
+
flat_arg_fake_tensors = []
|
1523 |
+
|
1524 |
+
def validate(x):
|
1525 |
+
if not isinstance(x, torch.Tensor):
|
1526 |
+
return x
|
1527 |
+
|
1528 |
+
nonlocal flat_arg_fake_tensors
|
1529 |
+
if not self.is_our_fake(x):
|
1530 |
+
if torch.Tag.inplace_view in func.tags:
|
1531 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1532 |
+
raise Exception(
|
1533 |
+
f"Can't call metadata mutating ops on non-Fake Tensor inputs. Found in {render_call(func, args, kwargs)}"
|
1534 |
+
)
|
1535 |
+
if not self.allow_non_fake_inputs:
|
1536 |
+
if isinstance(x, FakeTensor) and x.fake_mode is not self:
|
1537 |
+
raise AssertionError("Mixing fake modes NYI")
|
1538 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1539 |
+
raise Exception(
|
1540 |
+
f"Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode "
|
1541 |
+
f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}"
|
1542 |
+
)
|
1543 |
+
|
1544 |
+
x = converter(self, x)
|
1545 |
+
|
1546 |
+
flat_arg_fake_tensors.append(x)
|
1547 |
+
return x
|
1548 |
+
|
1549 |
+
validated_args = [validate(a) for a in flat_args]
|
1550 |
+
return validated_args, flat_arg_fake_tensors
|
1551 |
+
|
1552 |
+
def wrap_meta_outputs_with_default_device_logic(self, r, func, flat_args, device):
|
1553 |
+
converter = self.fake_tensor_converter
|
1554 |
+
|
1555 |
+
# Lazily initialized, in case there are no tensor returns
|
1556 |
+
common_device = None
|
1557 |
+
has_scalar_only_inputs = False
|
1558 |
+
|
1559 |
+
def wrap(e):
|
1560 |
+
nonlocal common_device
|
1561 |
+
nonlocal has_scalar_only_inputs
|
1562 |
+
|
1563 |
+
if isinstance(e, torch.Tensor) and common_device is None:
|
1564 |
+
(
|
1565 |
+
common_device,
|
1566 |
+
has_scalar_only_inputs,
|
1567 |
+
) = FakeTensor._find_common_device(func, flat_args)
|
1568 |
+
|
1569 |
+
if self.is_our_fake(e):
|
1570 |
+
torch._check(
|
1571 |
+
e.device == common_device,
|
1572 |
+
lambda: f"FakeTensor is wrapped to wrong device, found {e.device}, expected {common_device}",
|
1573 |
+
)
|
1574 |
+
|
1575 |
+
if (
|
1576 |
+
isinstance(e, torch.Tensor)
|
1577 |
+
and not self.is_our_fake(e)
|
1578 |
+
and converter is not None
|
1579 |
+
):
|
1580 |
+
if has_scalar_only_inputs:
|
1581 |
+
# Under FakeTensorMode, op accepts scalar only inputs, such as aten.add/sub/mul/div,
|
1582 |
+
# returns a real scalar tensor on CPU. See TensorMeta() in _prims/__init__.py for details.
|
1583 |
+
# We thus directly convert real tensor to fake tensor.
|
1584 |
+
return converter(self, e)
|
1585 |
+
else:
|
1586 |
+
return converter.from_meta_and_device(
|
1587 |
+
self, e, device or common_device
|
1588 |
+
)
|
1589 |
+
else:
|
1590 |
+
return e
|
1591 |
+
|
1592 |
+
return tree_map(wrap, r)
|
1593 |
+
|
1594 |
+
_cpp_meta_supports_symint = ordered_set(
|
1595 |
+
aten.empty.memory_format,
|
1596 |
+
aten.empty_strided.default,
|
1597 |
+
aten.as_strided_scatter.default,
|
1598 |
+
aten.as_strided.default,
|
1599 |
+
aten.as_strided_.default,
|
1600 |
+
aten.zeros.default,
|
1601 |
+
aten.detach.default,
|
1602 |
+
aten.view_as_real.default,
|
1603 |
+
aten.view_as_complex.default,
|
1604 |
+
aten.set_.source_Storage_storage_offset,
|
1605 |
+
aten._sparse_coo_tensor_with_dims_and_tensors.default,
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
def cpp_meta_supports_symint(self, func):
|
1609 |
+
if torch.Tag.view_copy in func.tags:
|
1610 |
+
return True
|
1611 |
+
return func in self._cpp_meta_supports_symint
|
1612 |
+
|
1613 |
+
lift_fns = ordered_set(aten.lift_fresh.default, aten.lift_fresh_copy.default)
|
1614 |
+
|
1615 |
+
def may_turn_const(self, t):
|
1616 |
+
return (
|
1617 |
+
t.numel() <= CONSTANT_NUMEL_LIMIT
|
1618 |
+
and not t.is_sparse
|
1619 |
+
and not self.is_our_fake(t)
|
1620 |
+
and not t.device.type == "meta"
|
1621 |
+
)
|
1622 |
+
|
1623 |
+
def invalidate_written_to_constants(
|
1624 |
+
self, func, flat_arg_fake_tensors, args, kwargs
|
1625 |
+
):
|
1626 |
+
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
|
1627 |
+
schema_info = get_schema_info(func)
|
1628 |
+
if any_constant and schema_info.is_mutable():
|
1629 |
+
_, new_kwargs = normalize_function(
|
1630 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1631 |
+
)
|
1632 |
+
for k, v in new_kwargs.items():
|
1633 |
+
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
|
1634 |
+
if (
|
1635 |
+
self.is_our_fake(v)
|
1636 |
+
and schema_info.is_mutable(k)
|
1637 |
+
and v.constant is not None
|
1638 |
+
):
|
1639 |
+
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
|
1640 |
+
|
1641 |
+
def from_tensor(
|
1642 |
+
self,
|
1643 |
+
tensor,
|
1644 |
+
*,
|
1645 |
+
static_shapes=None,
|
1646 |
+
source: Optional[Source] = None,
|
1647 |
+
symbolic_context=None,
|
1648 |
+
# Setting this flag will force FakeTensorMode to return `None` if attempting to convert a tensor we have not
|
1649 |
+
# seen before.
|
1650 |
+
memoized_only=False,
|
1651 |
+
):
|
1652 |
+
shape_env = self.shape_env
|
1653 |
+
if static_shapes is None:
|
1654 |
+
static_shapes = self.static_shapes
|
1655 |
+
if static_shapes:
|
1656 |
+
assert (
|
1657 |
+
symbolic_context is None
|
1658 |
+
), "cannot set both static_shapes and symbolic_context"
|
1659 |
+
shape_env = None
|
1660 |
+
# see note [Tensor Fakification and Symbol Caching]
|
1661 |
+
if not symbolic_context and not source and not static_shapes:
|
1662 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
1663 |
+
if tensor in tracing_context.tensor_to_context:
|
1664 |
+
symbolic_context = tracing_context.tensor_to_context[tensor]
|
1665 |
+
source = symbolic_context.tensor_source
|
1666 |
+
return self.fake_tensor_converter(
|
1667 |
+
self,
|
1668 |
+
tensor,
|
1669 |
+
shape_env=shape_env,
|
1670 |
+
source=source,
|
1671 |
+
symbolic_context=symbolic_context,
|
1672 |
+
memoized_only=memoized_only,
|
1673 |
+
)
|
1674 |
+
|
1675 |
+
|
1676 |
+
# NB: returns fake tensors
|
1677 |
+
def run_fallback_kernel(
|
1678 |
+
fake_mode, func, flat_args, args_spec, orig_not_implemented_exception
|
1679 |
+
):
|
1680 |
+
# these should all be supported, just to be safe
|
1681 |
+
# avoid fallback for operators which inplace modify metadata
|
1682 |
+
# because the input fake tensors would be umodified
|
1683 |
+
if torch.Tag.inplace_view in func.tags:
|
1684 |
+
raise orig_not_implemented_exception
|
1685 |
+
|
1686 |
+
inp_impls = {}
|
1687 |
+
|
1688 |
+
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
|
1689 |
+
# REAL compute (not with meta device)
|
1690 |
+
with no_dispatch():
|
1691 |
+
|
1692 |
+
def to_real_tensor(e):
|
1693 |
+
if fake_mode.is_our_fake(e):
|
1694 |
+
out = torch.zeros_like(e, device=e.fake_device)
|
1695 |
+
if e.is_sparse:
|
1696 |
+
out._coalesced_(e.is_coalesced())
|
1697 |
+
inp_impls[id(out)] = e
|
1698 |
+
return out
|
1699 |
+
return e
|
1700 |
+
|
1701 |
+
flat_args = [to_real_tensor(a) for a in flat_args]
|
1702 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1703 |
+
|
1704 |
+
r = func(*args, **kwargs)
|
1705 |
+
|
1706 |
+
tensor_impls = set()
|
1707 |
+
storages = set()
|
1708 |
+
|
1709 |
+
for e in flat_args:
|
1710 |
+
if isinstance(e, torch.Tensor):
|
1711 |
+
if not e.is_sparse:
|
1712 |
+
storages.add(e._typed_storage()._cdata)
|
1713 |
+
|
1714 |
+
# TODO: also check metadata change on inputs
|
1715 |
+
# proper aliasing/metadata relationship between outputs and inputs will
|
1716 |
+
# not be set up, bc of conversion to device, unless we can reuse an
|
1717 |
+
# input impl
|
1718 |
+
|
1719 |
+
def map_out(e):
|
1720 |
+
if id(e) not in inp_impls and (
|
1721 |
+
isinstance(e, torch.Tensor)
|
1722 |
+
and not e.is_sparse
|
1723 |
+
and e._typed_storage()._cdata in storages
|
1724 |
+
):
|
1725 |
+
raise orig_not_implemented_exception
|
1726 |
+
|
1727 |
+
if isinstance(e, torch.Tensor):
|
1728 |
+
if id(e) in inp_impls:
|
1729 |
+
return inp_impls[id(e)]
|
1730 |
+
else:
|
1731 |
+
return fake_mode.fake_tensor_converter(fake_mode, e)
|
1732 |
+
else:
|
1733 |
+
return e
|
1734 |
+
|
1735 |
+
return pytree.tree_map(map_out, r)
|
1736 |
+
|
1737 |
+
|
1738 |
+
def can_generate_trivial_abstract_impl(op: torch._ops.OpOverload) -> bool:
|
1739 |
+
assert isinstance(op, torch._ops.OpOverload)
|
1740 |
+
if torch._library.utils.is_builtin(op):
|
1741 |
+
# We control the built-ins. These may (in rare cases)
|
1742 |
+
# do input metadata mutation (which we have banned on custom ops)
|
1743 |
+
return False
|
1744 |
+
schema = op._schema
|
1745 |
+
# It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
|
1746 |
+
if not schema.is_mutable:
|
1747 |
+
return False
|
1748 |
+
if len(schema.returns) > 0:
|
1749 |
+
return False
|
1750 |
+
# If the op returns nothing, then it has a trivial abstract impl.
|
1751 |
+
return True
|
1752 |
+
|
1753 |
+
|
1754 |
+
# Just for use to allow copying a module to fake tensors,
|
1755 |
+
# does not apply elsewhere
|
1756 |
+
class FakeCopyMode(TorchFunctionMode):
|
1757 |
+
def __init__(self, fake_mode):
|
1758 |
+
self.fake_mode = fake_mode
|
1759 |
+
|
1760 |
+
def __torch_function__(self, func, types, args=(), kwargs=None):
|
1761 |
+
kwargs = kwargs if kwargs else {}
|
1762 |
+
|
1763 |
+
# clone will get called in Parameter deepcopy
|
1764 |
+
if func == torch._C.TensorBase.clone:
|
1765 |
+
return func(
|
1766 |
+
self.fake_mode.from_tensor(args[0], static_shapes=True), **kwargs
|
1767 |
+
)
|
1768 |
+
elif func == torch.Tensor.__deepcopy__:
|
1769 |
+
assert len(args) == 2 and len(kwargs) == 0
|
1770 |
+
tensor, memo = args
|
1771 |
+
|
1772 |
+
if id(tensor) in memo:
|
1773 |
+
return memo[id(tensor)]
|
1774 |
+
|
1775 |
+
out = self.fake_mode.from_tensor(tensor, static_shapes=True)
|
1776 |
+
memo[id(tensor)] = out
|
1777 |
+
return out
|
1778 |
+
else:
|
1779 |
+
with torch._C.DisableTorchFunctionSubclass():
|
1780 |
+
return func(*args, **kwargs)
|
1781 |
+
|
1782 |
+
|
1783 |
+
def _device_handler(args):
|
1784 |
+
# NB: Don't use is_our_fake, just serve the fake information
|
1785 |
+
# as is. Notice we don't use 'self'; we use args[0].fake_mode
|
1786 |
+
# because they may not be the same. It would also be possible
|
1787 |
+
# to return NotImplemented here, in which case the FakeTensor
|
1788 |
+
# handler on args[0] would handle it, but we're being nice and
|
1789 |
+
# short-circuiting quickly.
|
1790 |
+
assert len(args) == 1 and isinstance(args[0], FakeTensor)
|
1791 |
+
if args[0].fake_mode.in_kernel_invocation:
|
1792 |
+
return torch.device("meta")
|
1793 |
+
else:
|
1794 |
+
return args[0].fake_device
|
1795 |
+
|
1796 |
+
|
1797 |
+
_DISPATCH_META_HANDLERS = {
|
1798 |
+
torch.ops.prim.device.default: _device_handler,
|
1799 |
+
torch.ops.aten.size.default: lambda args: tuple(int(s) for s in args[0].size()),
|
1800 |
+
torch.ops.aten.stride.default: lambda args: tuple(int(s) for s in args[0].stride()),
|
1801 |
+
torch.ops.aten.storage_offset.default: lambda args: int(args[0].storage_offset()),
|
1802 |
+
}
|
1803 |
+
|
1804 |
+
_DISPATCH_HANDLE_DIRECTLY = ordered_set(
|
1805 |
+
torch.ops.aten.is_coalesced.default,
|
1806 |
+
torch.ops.aten.dense_dim.default,
|
1807 |
+
torch.ops.aten.sparse_dim.default,
|
1808 |
+
)
|
1809 |
+
|
1810 |
+
from torch._subclasses.fake_impls import ( # noqa: F401
|
1811 |
+
_device_not_kwarg_ops, # noqa: F401
|
1812 |
+
_is_tensor_constructor, # noqa: F401
|
1813 |
+
_like_tensor_constructors, # noqa: F401
|
1814 |
+
contains_tensor_types, # noqa: F401
|
1815 |
+
get_fast_op_impls,
|
1816 |
+
has_meta,
|
1817 |
+
op_implementations_checks,
|
1818 |
+
stride_incorrect_op,
|
1819 |
+
)
|
venv/lib/python3.10/site-packages/torch/_subclasses/fake_utils.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import warnings
|
5 |
+
from typing import Callable, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils._pytree as pytree
|
9 |
+
from torch._ops import OpOverload
|
10 |
+
from torch._subclasses.fake_tensor import (
|
11 |
+
FakeTensorMode,
|
12 |
+
tree_flatten_only,
|
13 |
+
UnsupportedFakeTensorException,
|
14 |
+
)
|
15 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
16 |
+
|
17 |
+
|
18 |
+
aten = torch._ops.ops.aten
|
19 |
+
|
20 |
+
|
21 |
+
def outputs_alias_inputs(outputs, inputs):
|
22 |
+
input_storages = {
|
23 |
+
inp._typed_storage()._cdata
|
24 |
+
for inp in tree_flatten_only(torch.Tensor, inputs)
|
25 |
+
if torch._C._has_storage(inp)
|
26 |
+
}
|
27 |
+
return any(
|
28 |
+
torch._C._has_storage(out) and out._typed_storage()._cdata in input_storages
|
29 |
+
for out in tree_flatten_only(torch.Tensor, outputs)
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def outputs_are_inputs(outputs, inputs):
|
34 |
+
input_ids = {id(inp) for inp in tree_flatten_only(torch.Tensor, inputs)}
|
35 |
+
return any(id(out) in input_ids for out in tree_flatten_only(torch.Tensor, outputs))
|
36 |
+
|
37 |
+
|
38 |
+
def output_alias_each_other(outputs):
|
39 |
+
storages = set()
|
40 |
+
for out in tree_flatten_only(torch.Tensor, outputs):
|
41 |
+
if not torch._C._has_storage(out):
|
42 |
+
continue
|
43 |
+
stor = out._typed_storage()._cdata
|
44 |
+
if stor in storages:
|
45 |
+
return True
|
46 |
+
storages.add(stor)
|
47 |
+
return False
|
48 |
+
|
49 |
+
|
50 |
+
def is_sdpa_error(func, idx, e):
|
51 |
+
if (
|
52 |
+
(
|
53 |
+
func is aten._scaled_dot_product_flash_attention.default
|
54 |
+
or func is aten._flash_attention_forward.default
|
55 |
+
)
|
56 |
+
and idx in (6, 7)
|
57 |
+
and "Devices" in repr(e)
|
58 |
+
):
|
59 |
+
return True
|
60 |
+
if (
|
61 |
+
(
|
62 |
+
func is aten._scaled_dot_product_efficient_attention.default
|
63 |
+
or func is aten._efficient_attention_forward.default
|
64 |
+
)
|
65 |
+
and idx in (2, 3)
|
66 |
+
and "Devices" in repr(e)
|
67 |
+
):
|
68 |
+
return True
|
69 |
+
return False
|
70 |
+
|
71 |
+
|
72 |
+
class CrossRefFakeMode(TorchDispatchMode):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
ignore_op_fn: Union[Callable[[OpOverload], bool], None] = None,
|
76 |
+
*,
|
77 |
+
check_strides=True,
|
78 |
+
check_aliasing=True,
|
79 |
+
):
|
80 |
+
self.ignore_op_fn = (
|
81 |
+
ignore_op_fn if ignore_op_fn is not None else lambda fn: False
|
82 |
+
)
|
83 |
+
self.check_strides = check_strides
|
84 |
+
self.check_aliasing = check_aliasing
|
85 |
+
|
86 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
87 |
+
kwargs = kwargs or {}
|
88 |
+
|
89 |
+
fake_r = None
|
90 |
+
|
91 |
+
# empty_like excluded for now due to sparse complex
|
92 |
+
# aten._to_dense.default this one is getting called with csc
|
93 |
+
if (
|
94 |
+
func
|
95 |
+
not in (
|
96 |
+
aten.lift_fresh.default,
|
97 |
+
aten.lift_fresh_copy.default,
|
98 |
+
aten.set_.source_Storage_storage_offset,
|
99 |
+
)
|
100 |
+
and not self.ignore_op_fn(func)
|
101 |
+
and torch.Tag.dynamic_output_shape not in func.tags
|
102 |
+
and torch.Tag.inplace_view not in func.tags
|
103 |
+
and torch.Tag.data_dependent_output not in func.tags
|
104 |
+
):
|
105 |
+
# Do not import symbolic_shapes at the top of the module as it imports sympy and that's slow
|
106 |
+
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
107 |
+
|
108 |
+
try:
|
109 |
+
# TODO: enable_python_dispatcher() here
|
110 |
+
with FakeTensorMode(shape_env=ShapeEnv()) as fake_mode:
|
111 |
+
fake_args, fake_kwargs = pytree.tree_map_only(
|
112 |
+
torch.Tensor,
|
113 |
+
functools.partial(fake_mode.from_tensor, static_shapes=True),
|
114 |
+
(args, kwargs),
|
115 |
+
)
|
116 |
+
with warnings.catch_warnings():
|
117 |
+
fake_r = func(*fake_args, **fake_kwargs)
|
118 |
+
except UnsupportedFakeTensorException:
|
119 |
+
pass
|
120 |
+
|
121 |
+
context = (
|
122 |
+
f"When comparing the output of {func} on FakeTensor and concrete Tensors, "
|
123 |
+
f"found"
|
124 |
+
)
|
125 |
+
r = func(*args, **kwargs)
|
126 |
+
if fake_r is not None:
|
127 |
+
r_flat = pytree.tree_leaves(r)
|
128 |
+
f_flat = pytree.tree_leaves(fake_r)
|
129 |
+
assert len(f_flat) == len(
|
130 |
+
r_flat
|
131 |
+
), f"{context} mismatch in number of returns {len(f_flat)} != {len(r_flat)}"
|
132 |
+
|
133 |
+
if self.check_aliasing:
|
134 |
+
r_aliasing = outputs_alias_inputs(r, (args, kwargs))
|
135 |
+
f_aliasing = outputs_alias_inputs(fake_r, (fake_args, fake_kwargs))
|
136 |
+
assert (
|
137 |
+
r_aliasing == f_aliasing
|
138 |
+
), f"{context} mismatch in outputs_alias_inputs check {f_aliasing} != {r_aliasing}"
|
139 |
+
|
140 |
+
r_identity_eq = outputs_are_inputs(r, (args, kwargs))
|
141 |
+
f_identity_eq = outputs_are_inputs(fake_r, (fake_args, fake_kwargs))
|
142 |
+
assert (
|
143 |
+
r_identity_eq == f_identity_eq
|
144 |
+
), f"{context} mismatch in outputs_are_inputs check {f_identity_eq} != {r_identity_eq}"
|
145 |
+
|
146 |
+
r_output_alias_each_other = output_alias_each_other(r)
|
147 |
+
f_output_alias_each_other = output_alias_each_other(fake_r)
|
148 |
+
assert r_output_alias_each_other == f_output_alias_each_other, (
|
149 |
+
f"{context} mismatch in outputs_alias_each_other check "
|
150 |
+
f"{f_output_alias_each_other} != {r_output_alias_each_other}"
|
151 |
+
)
|
152 |
+
|
153 |
+
for idx, (r_out, fake_out) in enumerate(
|
154 |
+
zip(pytree.tree_leaves(r), pytree.tree_leaves(fake_r))
|
155 |
+
):
|
156 |
+
r_is_ten = isinstance(r_out, torch.Tensor)
|
157 |
+
assert r_is_ten == isinstance(
|
158 |
+
fake_out, torch.Tensor
|
159 |
+
), f"{context} mismatched number of tensor outputs"
|
160 |
+
if r_is_ten:
|
161 |
+
assert r_out.requires_grad == fake_out.requires_grad, (
|
162 |
+
f"{context} mismatched requires_grad-ness of outputs. "
|
163 |
+
f"This usually means that you have added autograd support "
|
164 |
+
f"for your operator at a dispatch key other than Autograd, "
|
165 |
+
f"which will lead to problems"
|
166 |
+
)
|
167 |
+
if torch._C._has_storage(r_out):
|
168 |
+
r_offset = r_out.storage_offset()
|
169 |
+
f_offset = fake_out.storage_offset()
|
170 |
+
assert (
|
171 |
+
r_offset == f_offset
|
172 |
+
), f"{context} mismatched storage offset"
|
173 |
+
|
174 |
+
try:
|
175 |
+
torch._prims.utils.compare_tensor_meta(
|
176 |
+
r_out,
|
177 |
+
fake_out,
|
178 |
+
check_strides=self.check_strides,
|
179 |
+
allow_rhs_unbacked=True,
|
180 |
+
)
|
181 |
+
except Exception as e:
|
182 |
+
if is_sdpa_error(func, idx, e):
|
183 |
+
continue
|
184 |
+
error_message = (
|
185 |
+
f"{context} mismatched tensor metadata: {e}"
|
186 |
+
if len(r_flat) == 1
|
187 |
+
else f"{context} mismatched tensor metadata for output[{idx}]: {e}"
|
188 |
+
)
|
189 |
+
raise RuntimeError(error_message) from e
|
190 |
+
return r
|
venv/lib/python3.10/site-packages/torch/_subclasses/functional_tensor.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from typing import Any, Callable, ContextManager, Dict, Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils._pytree as pytree
|
7 |
+
from torch._C import _functionalization_reapply_views_tls as _reapply_views
|
8 |
+
from torch._ops import _get_dispatch_mode_pre_dispatch
|
9 |
+
from torch.utils._python_dispatch import (
|
10 |
+
_detect_functional_mode,
|
11 |
+
_disable_infra_mode,
|
12 |
+
return_and_correct_aliasing,
|
13 |
+
TorchDispatchMode,
|
14 |
+
)
|
15 |
+
|
16 |
+
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
|
17 |
+
|
18 |
+
|
19 |
+
class FunctionalTensor(torch.Tensor):
|
20 |
+
"""
|
21 |
+
Functional tensors represent tensors that will remove mutations
|
22 |
+
from a program. If you perform a mutable operation on a functional tensor,
|
23 |
+
it will re-dispatch to the functional variant of that operation.
|
24 |
+
|
25 |
+
Historically, functionalization is implemented in C++ in the dispatcher.
|
26 |
+
This class is a lightweight python shim around the C++ functionalization logic.
|
27 |
+
|
28 |
+
FunctionalTensor is required to be used with a corresponding
|
29 |
+
FunctionalTensormode active, because it relies
|
30 |
+
on using the mode for dispatch (which can properly handle factory functions).
|
31 |
+
"""
|
32 |
+
|
33 |
+
elem: torch.Tensor
|
34 |
+
# Indicates to our torch_dispatch dispatching infra that
|
35 |
+
# this is an "infra" mode with lower dispatching precedence.
|
36 |
+
_mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
|
37 |
+
|
38 |
+
# Note: The reason we add these extra keys to our FunctionalTensor subclass
|
39 |
+
# is to mirror the behavior of C++ functionalization (we can choose to change this
|
40 |
+
# later, as long as it doesn't break anything).
|
41 |
+
# FunctionalTensorWrapper copies **all** dispatch keys from the inner tensor
|
42 |
+
# to the wrapper, excluding functorch and python dispatch keys.
|
43 |
+
# Here I'm trying to re-use the keyset the functorch wrapper subclasses copy,
|
44 |
+
# except that they don't include ZeroTensor so I'm manually adding it in.
|
45 |
+
_extra_dispatch_keys = torch._C._additional_keys_to_prop_for_wrapper_tensors.add(
|
46 |
+
torch._C.DispatchKey.ZeroTensor
|
47 |
+
)
|
48 |
+
|
49 |
+
# These are all aten ops that correspond to metadata queries.
|
50 |
+
# We want FunctionalTensor to be able to handle them directly.
|
51 |
+
metadata_fns = [
|
52 |
+
torch.ops.aten.is_contiguous.default, # type: ignore[has-type]
|
53 |
+
torch.ops.aten.is_contiguous.memory_format, # type: ignore[has-type]
|
54 |
+
torch.ops.aten.is_strides_like_format.default, # type: ignore[has-type]
|
55 |
+
torch.ops.aten.is_non_overlapping_and_dense.default, # type: ignore[has-type]
|
56 |
+
torch.ops.aten.size.default, # type: ignore[has-type]
|
57 |
+
torch.ops.aten.sym_size.default, # type: ignore[has-type]
|
58 |
+
torch.ops.aten.stride.default, # type: ignore[has-type]
|
59 |
+
torch.ops.aten.sym_stride.default, # type: ignore[has-type]
|
60 |
+
torch.ops.aten.storage_offset.default, # type: ignore[has-type]
|
61 |
+
torch.ops.aten.sym_storage_offset.default, # type: ignore[has-type]
|
62 |
+
torch.ops.aten.numel.default, # type: ignore[has-type]
|
63 |
+
torch.ops.aten.sym_numel.default, # type: ignore[has-type]
|
64 |
+
torch.ops.aten.dim.default, # type: ignore[has-type]
|
65 |
+
torch.ops.prim.device.default, # type: ignore[has-type]
|
66 |
+
]
|
67 |
+
|
68 |
+
# These are ops that claim to be functional, but actually are maybe-mutating/maybe-aliasing
|
69 |
+
# TODO (tmanlaibaatar) make it a tag
|
70 |
+
maybe_aliasing_or_mutating_ops = [
|
71 |
+
torch.ops.aten.dropout.default, # type: ignore[has-type]
|
72 |
+
torch.ops.aten.batch_norm.default, # type: ignore[has-type]
|
73 |
+
torch.ops.aten.native_batch_norm.default, # type: ignore[has-type]
|
74 |
+
torch.ops.aten._batch_norm_impl_index.default, # type: ignore[has-type]
|
75 |
+
torch.ops.aten.cudnn_batch_norm.default, # type: ignore[has-type]
|
76 |
+
torch.ops.aten.miopen_batch_norm.default, # type: ignore[has-type]
|
77 |
+
]
|
78 |
+
|
79 |
+
def __new__(cls, elem):
|
80 |
+
assert torch._is_functional_tensor(elem)
|
81 |
+
|
82 |
+
# In general, we'd like our functional tensor subclass to only be in charge of functionalization,
|
83 |
+
# and defer to the inner subclass for all other functionality.
|
84 |
+
# Example: If our inner tensor is a ZeroTensor, we would want to defer running the ZeroTensor fallback
|
85 |
+
# until after we redispatch to our inner ZeroTensor.
|
86 |
+
# However, there are a few keys that we need to mirror between the inner and outer tensors.
|
87 |
+
# Conjugate
|
88 |
+
# Negative
|
89 |
+
# Why? These keys are used to test metadata queries, like `.is_conj()` and `.is_neg()`.
|
90 |
+
# We **need** calls to is_conj() to return the same thing on the outer and inner tensors,
|
91 |
+
# Because user code / framework code that branches like so needs to do the same thing
|
92 |
+
# when it sees the outer FunctionalTensor:
|
93 |
+
# if (x.is_conj()) {
|
94 |
+
# return at::view_as_real(x.resolve_conj());
|
95 |
+
# } else {
|
96 |
+
# return at::view_as_real(x);
|
97 |
+
# }
|
98 |
+
extra_dispatch_keys = (
|
99 |
+
FunctionalTensor._extra_dispatch_keys & torch._C._dispatch_keys(elem)
|
100 |
+
)
|
101 |
+
|
102 |
+
out = torch.Tensor._make_wrapper_subclass( # type: ignore[arg-type, attr-defined]
|
103 |
+
# TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
|
104 |
+
# Calling the overload that has kwargs causes us to go down the first overload path,
|
105 |
+
# which will **always** specialize sizes.
|
106 |
+
# We should probably eventually fix this so that the first overload can just handle dynamic shapes.
|
107 |
+
cls,
|
108 |
+
elem.shape, # sizes
|
109 |
+
elem.stride(), # strides
|
110 |
+
elem.storage_offset(), # storage_offset
|
111 |
+
None, # memory_format
|
112 |
+
elem.dtype, # dtype
|
113 |
+
elem.layout, # layout
|
114 |
+
elem.device, # device
|
115 |
+
False, # pin_memory
|
116 |
+
elem.requires_grad, # requires_grad
|
117 |
+
"sizes", # dispatch_sizes_strides_policy
|
118 |
+
False, # dispatch_device
|
119 |
+
False, # dispatch_layout
|
120 |
+
extra_dispatch_keys, # _extra_dispatch_keys
|
121 |
+
)
|
122 |
+
out.elem = elem
|
123 |
+
return out
|
124 |
+
|
125 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
126 |
+
unrecognized_types = [
|
127 |
+
t
|
128 |
+
for t in types
|
129 |
+
if t not in [torch.Tensor, torch._subclasses.FakeTensor, FunctionalTensor]
|
130 |
+
]
|
131 |
+
if unrecognized_types:
|
132 |
+
not_implemented_log.debug(
|
133 |
+
"FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
|
134 |
+
)
|
135 |
+
return NotImplemented
|
136 |
+
|
137 |
+
if kwargs is None:
|
138 |
+
kwargs = {}
|
139 |
+
|
140 |
+
# FunctionalTensor needs to plumb all metadata requests to the inner tensor.
|
141 |
+
# In theory we don't have to do this - but if we want to service metadata requests here,
|
142 |
+
# we need to carefully make sure all metadata is accurate (including metadata mutations)
|
143 |
+
if func in FunctionalTensor.metadata_fns:
|
144 |
+
# All metadata accesses should be plumbed to the inner tensor, that way we don't have to worry
|
145 |
+
# about the problem of keeping metadata in sync between the wrapper and inner tensor.
|
146 |
+
# This also alleviates us from having to manually handle metadata mutations on the wrapper.
|
147 |
+
assert len(kwargs) == 0
|
148 |
+
if func in [
|
149 |
+
torch.ops.aten.is_strides_like_format.default,
|
150 |
+
torch.ops.aten.is_contiguous.memory_format,
|
151 |
+
]:
|
152 |
+
assert len(args) == 2 and isinstance(args[0], FunctionalTensor)
|
153 |
+
return func(args[0].elem, args[1])
|
154 |
+
assert len(args) == 1 and isinstance(args[0], FunctionalTensor)
|
155 |
+
|
156 |
+
return func(args[0].elem)
|
157 |
+
# Originally I tried to implement my subclass without giving it a torch_dispatch, but I gave up:
|
158 |
+
# - _make_wrapper_subclass requires a __torch_dispatch__
|
159 |
+
# - If we want to use _make_subclass(), we have a problem: the subclass will share a TensorImpl with the inner tensor,
|
160 |
+
# which is of type FunctionalTensorWrapper! We explicitly do not want our wrapper to be a FunctionalTensorWrapper.
|
161 |
+
# - If we use the default tensor.__new__(), we have another problem: it returns inner_tensor.alias(),
|
162 |
+
# which causes every subclass created above autograd to have autograd view metadata
|
163 |
+
# (in addition to also being a FunctionalTensorWrapper).
|
164 |
+
raise RuntimeError(
|
165 |
+
"Attempting to use FunctionalTensor on its own. Instead, please use it with a corresponding FunctionalTensorMode()"
|
166 |
+
)
|
167 |
+
|
168 |
+
def __repr__(self):
|
169 |
+
return f"FunctionalTensor({repr(self.elem)})"
|
170 |
+
|
171 |
+
@staticmethod
|
172 |
+
def to_functional(x):
|
173 |
+
# We will do the wrapping for the user.
|
174 |
+
assert not torch._is_functional_tensor(x)
|
175 |
+
# The only autograd metadata we care about on the FunctionalTensor is:
|
176 |
+
# - requires_grad (so autograd runs)
|
177 |
+
# - is_leaf (so that mutations on graph inputs that are not leaves are allowed by the autograd engine)
|
178 |
+
# this is handled by FunctionalTensor.to_functional
|
179 |
+
x_functional = torch._to_functional_tensor(x)
|
180 |
+
# Technically the FunctionalTensormode here is unnecessary,
|
181 |
+
# but it avoids spurious NotImplemented logs during `ProxyTorchDispatchMode` tracing.
|
182 |
+
# _mirror_autograd_meta_to queries tensor sizes,
|
183 |
+
# and otherwise the sym_size() call will go to the proxy mode before hitting
|
184 |
+
# FunctionalTensor.__torch_dispatch__
|
185 |
+
|
186 |
+
functional_mode = _detect_functional_mode()
|
187 |
+
assert functional_mode is not None
|
188 |
+
|
189 |
+
with functional_mode:
|
190 |
+
torch._mirror_autograd_meta_to(x, x_functional) # type: ignore[attr-defined]
|
191 |
+
out = FunctionalTensor(x_functional)
|
192 |
+
torch._mirror_autograd_meta_to(x_functional, out) # type: ignore[attr-defined]
|
193 |
+
return out
|
194 |
+
|
195 |
+
def from_functional(self):
|
196 |
+
torch._sync(self)
|
197 |
+
return torch._from_functional_tensor(self.elem)
|
198 |
+
|
199 |
+
def replace_(self, output) -> None:
|
200 |
+
torch._functionalize_replace(self.elem, output)
|
201 |
+
|
202 |
+
def commit_update(self) -> None:
|
203 |
+
torch._functionalize_commit_update(self.elem)
|
204 |
+
|
205 |
+
def sync(self) -> None:
|
206 |
+
torch._functionalize_sync(self.elem)
|
207 |
+
|
208 |
+
def mark_mutation_hidden_from_autograd(self) -> None:
|
209 |
+
torch._functionalize_mark_mutation_hidden_from_autograd(self.elem)
|
210 |
+
|
211 |
+
def tolist(self) -> Any:
|
212 |
+
if self.elem.dim() == 0:
|
213 |
+
return self.elem.item()
|
214 |
+
elif self.elem.dim() == 1:
|
215 |
+
return [elem.item() for elem in self.elem]
|
216 |
+
else:
|
217 |
+
return [elem.tolist() for elem in self.elem]
|
218 |
+
|
219 |
+
|
220 |
+
class FunctionalTensorMode(TorchDispatchMode):
|
221 |
+
def __init__(self, pre_dispatch=False, export=False, _allow_token_discovery=False):
|
222 |
+
self.export = export
|
223 |
+
self.is_on_stack = False
|
224 |
+
self.enter_stack = []
|
225 |
+
# Indicates to our torch_dispatch dispatching infra that
|
226 |
+
# this is an "infra" mode with lower dispatching precedence.
|
227 |
+
self._mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
|
228 |
+
self.pre_dispatch = pre_dispatch
|
229 |
+
# This will be turned off later for pre-dispatch functionalization
|
230 |
+
self._dispatch_key = torch._C.DispatchKey.PreDispatch if pre_dispatch else None # type: ignore[attr-defined]
|
231 |
+
# Map of effect type (ex. _EffectType.ORDERED) to a token. The tokens help keep
|
232 |
+
# track of the ordering between side effectful operations.
|
233 |
+
self._tokens: Dict[Any, torch.Tensor] = {}
|
234 |
+
|
235 |
+
# Functionalization runs twice in AOTAutograd, once in
|
236 |
+
# `run_functionalized_fw_and_collect_metadata` to collect metadata to
|
237 |
+
# see which tensors need to be functionalized and discover how many
|
238 |
+
# tokens we need, and another time in `make_fx` which does the actual
|
239 |
+
# tracing to replace ops with their functional variants and handling
|
240 |
+
# side-effectful ops. In the second stage there should be no token
|
241 |
+
# discovery. This flag distinguishes between the two stages.
|
242 |
+
self._allow_token_discovery = _allow_token_discovery
|
243 |
+
|
244 |
+
# No-op if FunctionalTensorMode is already in use
|
245 |
+
def __enter__(self):
|
246 |
+
def _get_prev_mode():
|
247 |
+
if self._dispatch_key == torch._C.DispatchKey.PreDispatch:
|
248 |
+
return _get_dispatch_mode_pre_dispatch(
|
249 |
+
torch._C._TorchDispatchModeKey.FUNCTIONAL
|
250 |
+
)
|
251 |
+
return torch._C._get_dispatch_mode(
|
252 |
+
torch._C._TorchDispatchModeKey.FUNCTIONAL
|
253 |
+
)
|
254 |
+
|
255 |
+
if _get_prev_mode() is None:
|
256 |
+
self.enter_stack.append(True)
|
257 |
+
return super().__enter__()
|
258 |
+
else:
|
259 |
+
self.enter_stack.append(False)
|
260 |
+
return self
|
261 |
+
|
262 |
+
def __exit__(self, a, b, c):
|
263 |
+
is_on_stack = self.enter_stack.pop()
|
264 |
+
if is_on_stack:
|
265 |
+
super().__exit__(a, b, c)
|
266 |
+
|
267 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
268 |
+
if kwargs is None:
|
269 |
+
kwargs = {}
|
270 |
+
|
271 |
+
unrecognized_types = [
|
272 |
+
t
|
273 |
+
for t in types
|
274 |
+
if not issubclass(t, torch._subclasses.FakeTensor)
|
275 |
+
and t not in [torch.Tensor, FunctionalTensor]
|
276 |
+
]
|
277 |
+
if unrecognized_types:
|
278 |
+
not_implemented_log.debug(
|
279 |
+
"FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
|
280 |
+
)
|
281 |
+
return NotImplemented
|
282 |
+
|
283 |
+
def _can_decompose(func):
|
284 |
+
# See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832
|
285 |
+
# We never decompose dropout in export
|
286 |
+
if self.export and func == torch.ops.aten.dropout.default:
|
287 |
+
return False
|
288 |
+
# TODO (tmanlaibaatar)
|
289 |
+
# Eventually, we don't want to decompose any aten op at all
|
290 |
+
# but there is a safety and coverage gap that we need to close
|
291 |
+
# before that.
|
292 |
+
#
|
293 |
+
# (1) the "safety" is what we are risking with this PR
|
294 |
+
# (we are blindly taking every op that advertises as
|
295 |
+
# functional and sending it to the functional fallback.
|
296 |
+
# We risk silent correctness if we have an op that lies about its schema,
|
297 |
+
# that we didn't manually hardcode above) Therefore we always decompose them
|
298 |
+
# (2) the "not every composite inplace op has a functional variant" is a coverage gap,
|
299 |
+
# but not really a safety risk, since we'll loudly error when we try to generate
|
300 |
+
# functionalization kernels for these new (composite) inplace/view ops. But until we
|
301 |
+
# establish such gap more concretely, we still decompose them
|
302 |
+
if self._dispatch_key is not None:
|
303 |
+
# it is unsafe to not decompose ops that claim to be functional but actually aren't
|
304 |
+
if func in FunctionalTensor.maybe_aliasing_or_mutating_ops:
|
305 |
+
return True
|
306 |
+
# only decompose view or inplace mutating ops
|
307 |
+
alias_info = len(
|
308 |
+
[i for i in func._schema.arguments if i.alias_info is not None]
|
309 |
+
)
|
310 |
+
return alias_info != 0 or func._schema.is_mutable
|
311 |
+
return True
|
312 |
+
|
313 |
+
if (
|
314 |
+
func not in FunctionalTensor.metadata_fns
|
315 |
+
and _can_decompose(func)
|
316 |
+
# Not all funcs from __torch_dispatch__ are actual dispatcher ops,
|
317 |
+
# e.g. prim.device
|
318 |
+
and torch._C._dispatch_has_kernel(func.name())
|
319 |
+
):
|
320 |
+
with self:
|
321 |
+
r = func.decompose(*args, **kwargs)
|
322 |
+
if r is not NotImplemented:
|
323 |
+
return r
|
324 |
+
|
325 |
+
def assert_is_functional(x):
|
326 |
+
assert torch._is_functional_tensor(x)
|
327 |
+
|
328 |
+
def wrap(x):
|
329 |
+
# Only wrap our outputs in subclasses if the inner functionalization call
|
330 |
+
# also wrapped outputs into FunctionalTensorWrappers.
|
331 |
+
# When can this happen? e.g. `torch.div(2, 2)`
|
332 |
+
assert not isinstance(x, FunctionalTensor)
|
333 |
+
if isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
|
334 |
+
return FunctionalTensor(x)
|
335 |
+
return x
|
336 |
+
|
337 |
+
def unwrap(x):
|
338 |
+
return x.elem
|
339 |
+
|
340 |
+
from torch._higher_order_ops.auto_functionalize import (
|
341 |
+
can_auto_functionalize,
|
342 |
+
do_auto_functionalize,
|
343 |
+
)
|
344 |
+
|
345 |
+
if can_auto_functionalize(
|
346 |
+
func
|
347 |
+
) and not torch._C._dispatch_has_kernel_for_dispatch_key(
|
348 |
+
func.name(), torch._C.DispatchKey.Functionalize
|
349 |
+
):
|
350 |
+
if self.pre_dispatch:
|
351 |
+
raise NotImplementedError(
|
352 |
+
"Auto functionalization is not supported on pre-dispatch tracing"
|
353 |
+
)
|
354 |
+
return do_auto_functionalize(func, args, kwargs)
|
355 |
+
|
356 |
+
from torch._higher_order_ops.effects import handle_effects, has_effects
|
357 |
+
|
358 |
+
if has_effects(func, args, kwargs):
|
359 |
+
assert not torch._C._dispatch_has_kernel_for_dispatch_key(
|
360 |
+
func.name(), torch._C.DispatchKey.Functionalize
|
361 |
+
)
|
362 |
+
return handle_effects(
|
363 |
+
self._allow_token_discovery, self._tokens, func, args, kwargs
|
364 |
+
)
|
365 |
+
|
366 |
+
args_unwrapped, kwargs_unwrapped = pytree.tree_map_only(
|
367 |
+
FunctionalTensor, unwrap, (args, kwargs)
|
368 |
+
)
|
369 |
+
|
370 |
+
# Expectation: functionalization should not **already** be enabled above our mode.
|
371 |
+
# Why would that be bad? when we return a FunctionalTensor here, we don't want functionalization
|
372 |
+
# to run above this mode and further wrap that output in **another** C++ FunctionalTensorWrapper.
|
373 |
+
is_included = torch._C._dispatch_tls_is_dispatch_key_included(
|
374 |
+
torch._C.DispatchKey.Functionalize
|
375 |
+
)
|
376 |
+
is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
|
377 |
+
torch._C.DispatchKey.Functionalize
|
378 |
+
)
|
379 |
+
assert is_excluded or not is_included
|
380 |
+
include_to_set = (
|
381 |
+
torch._C._dispatch_tls_local_include_set()
|
382 |
+
| torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
383 |
+
)
|
384 |
+
exclude_to_set = (
|
385 |
+
torch._C._dispatch_tls_local_exclude_set().remove(
|
386 |
+
torch._C.DispatchKey.Functionalize
|
387 |
+
)
|
388 |
+
- FunctionalTensor._extra_dispatch_keys
|
389 |
+
)
|
390 |
+
|
391 |
+
# All we want to do here is re-use the existing C++ functionalization logic.
|
392 |
+
# This requires swizzling our TLS dispatch keys so that the Functionalize key is active.
|
393 |
+
with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set):
|
394 |
+
try:
|
395 |
+
# By default for python functionalization (for AOTAutograd), we reapply views.
|
396 |
+
old_apply_views = torch._functionalize_enable_reapply_views(True) # type: ignore[attr-defined]
|
397 |
+
|
398 |
+
# Sometimes these functions cannot be directly dispatched to functionalize key
|
399 |
+
# because args are sometimes not functional tensors for some reason?
|
400 |
+
if func in FunctionalTensor.metadata_fns:
|
401 |
+
outs_unwrapped = func(*args_unwrapped, **kwargs_unwrapped)
|
402 |
+
outs_wrapped = pytree.tree_map_only(
|
403 |
+
torch.Tensor, wrap, outs_unwrapped
|
404 |
+
)
|
405 |
+
else:
|
406 |
+
# When we dispatch to the C++ functionalization kernel, we might need to jump back to the
|
407 |
+
# PreDispatch mode stack afterwards, to handle any other PreDispatch modes underneath
|
408 |
+
# FunctionalTensorMode. If we call func() directly, we would need to exclude PreDispatch
|
409 |
+
# from the TLS in order to avoid infinite looping, but this would prevent us from coming
|
410 |
+
# back to PreDispatch later
|
411 |
+
outs_unwrapped = func._op_dk(
|
412 |
+
torch._C.DispatchKey.Functionalize,
|
413 |
+
*args_unwrapped,
|
414 |
+
**kwargs_unwrapped,
|
415 |
+
)
|
416 |
+
# We don't allow any mutation on result of dropout
|
417 |
+
if self.export and func == torch.ops.aten.dropout.default:
|
418 |
+
torch._freeze_functional_tensor(outs_unwrapped) # type: ignore[attr-defined]
|
419 |
+
outs_wrapped = pytree.tree_map_only(
|
420 |
+
torch.Tensor, wrap, outs_unwrapped
|
421 |
+
)
|
422 |
+
finally:
|
423 |
+
torch._disable_functionalization()
|
424 |
+
torch._functionalize_enable_reapply_views(old_apply_views) # type: ignore[attr-defined]
|
425 |
+
|
426 |
+
is_included = torch._C._dispatch_tls_is_dispatch_key_included(
|
427 |
+
torch._C.DispatchKey.Functionalize
|
428 |
+
)
|
429 |
+
is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
|
430 |
+
torch._C.DispatchKey.Functionalize
|
431 |
+
)
|
432 |
+
assert is_excluded or not is_included
|
433 |
+
|
434 |
+
if (
|
435 |
+
# If no outputs are our functional subclass, then don't try to fix up aliasing
|
436 |
+
not any(
|
437 |
+
isinstance(x, FunctionalTensor)
|
438 |
+
for x in pytree.tree_leaves(outs_wrapped)
|
439 |
+
)
|
440 |
+
# Since lift_fresh lifts its argument into a functional tensor, we can skip the
|
441 |
+
# aliasing correction step. Otherwise, we would be setting the storage of a
|
442 |
+
# lifted tensor to that of an unlifted tensor.
|
443 |
+
# Ref: https://github.com/pytorch/pytorch/issues/111506
|
444 |
+
or func == torch.ops.aten.lift_fresh.default
|
445 |
+
):
|
446 |
+
return outs_wrapped
|
447 |
+
# Wrapper tensor subclasses do not have correct aliasing info! Use this util to manually correct the output aliasing.
|
448 |
+
# inplace ops like `aten.add_()` are expected to return inputs **directly**, instead of creating fresh tensor objects.
|
449 |
+
# Use this util to figure out the right thing to return.
|
450 |
+
# If none of our inputs were wrapped, then we have no FunctionalTensor outputs that we need to fix up storages for.
|
451 |
+
return return_and_correct_aliasing(func, args, kwargs, outs_wrapped)
|
452 |
+
|
453 |
+
|
454 |
+
@contextlib.contextmanager
|
455 |
+
def disable_functional_mode():
|
456 |
+
return _disable_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
|
457 |
+
|
458 |
+
|
459 |
+
# This is similar to torch.func.functionalize, but:
|
460 |
+
# - It uses FunctionalTensorMode, and FunctionalTensor (a python subclass).
|
461 |
+
# One important advantage to using this mode is that it will let us
|
462 |
+
# run functionalization underneath __torch_dispatch__,
|
463 |
+
# which we need in AOTAutograd.
|
464 |
+
# - Doing so means that it does not automatically compose with other
|
465 |
+
# functorch transforms, since these transforms always run above __torch_dispatch__.
|
466 |
+
# That's why this util lives here, and not in functorch.
|
467 |
+
def dispatch_functionalize(func, mode: FunctionalTensorMode = FunctionalTensorMode()):
|
468 |
+
# TODO: pull these from aot autograd
|
469 |
+
def to_fun(t):
|
470 |
+
if isinstance(t, torch.Tensor):
|
471 |
+
return FunctionalTensor.to_functional(t)
|
472 |
+
return t
|
473 |
+
|
474 |
+
def from_fun(t):
|
475 |
+
if not isinstance(t, FunctionalTensor):
|
476 |
+
# quick sanity assert
|
477 |
+
if isinstance(t, torch.Tensor):
|
478 |
+
assert not torch._is_functional_tensor(t)
|
479 |
+
return t
|
480 |
+
torch._sync(t)
|
481 |
+
return torch._from_functional_tensor(t.elem)
|
482 |
+
|
483 |
+
def inner(*args, **kwargs):
|
484 |
+
disable_above = torch._C._ExcludeDispatchKeyGuard(
|
485 |
+
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
486 |
+
)
|
487 |
+
with disable_above, mode:
|
488 |
+
func_args = pytree.tree_map_only(torch.Tensor, to_fun, args)
|
489 |
+
func_kwargs = pytree.tree_map_only(torch.Tensor, to_fun, kwargs)
|
490 |
+
func_outputs = func(*func_args, **func_kwargs)
|
491 |
+
outputs = pytree.tree_map_only(FunctionalTensor, from_fun, func_outputs)
|
492 |
+
|
493 |
+
return outputs
|
494 |
+
|
495 |
+
return inner
|
496 |
+
|
497 |
+
|
498 |
+
class BaseFunctionalizeAPI(ABC):
|
499 |
+
@abstractmethod
|
500 |
+
def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
501 |
+
pass
|
502 |
+
|
503 |
+
@abstractmethod
|
504 |
+
def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
505 |
+
pass
|
506 |
+
|
507 |
+
@abstractmethod
|
508 |
+
def functionalize(self, inner_f: Callable) -> Callable:
|
509 |
+
pass
|
510 |
+
|
511 |
+
@abstractmethod
|
512 |
+
def redispatch_to_next(self) -> ContextManager:
|
513 |
+
pass
|
514 |
+
|
515 |
+
@abstractmethod
|
516 |
+
def replace(self, input_tensor, output_tensor) -> None:
|
517 |
+
pass
|
518 |
+
|
519 |
+
@abstractmethod
|
520 |
+
def commit_update(self, tensor) -> None:
|
521 |
+
pass
|
522 |
+
|
523 |
+
@abstractmethod
|
524 |
+
def sync(self, tensor) -> None:
|
525 |
+
pass
|
526 |
+
|
527 |
+
@abstractmethod
|
528 |
+
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
529 |
+
pass
|
530 |
+
|
531 |
+
|
532 |
+
class PythonFunctionalizeAPI(BaseFunctionalizeAPI):
|
533 |
+
def __init__(
|
534 |
+
self, mode: Optional[FunctionalTensorMode] = None, pre_dispatch: bool = False
|
535 |
+
) -> None:
|
536 |
+
super().__init__()
|
537 |
+
self.mode = mode if mode else FunctionalTensorMode()
|
538 |
+
self.pre_dispatch = pre_dispatch
|
539 |
+
|
540 |
+
def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
541 |
+
with self.mode:
|
542 |
+
return torch.utils._pytree.tree_map_only(
|
543 |
+
torch.Tensor, FunctionalTensor.to_functional, args
|
544 |
+
)
|
545 |
+
|
546 |
+
def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
547 |
+
return torch.utils._pytree.tree_map_only(
|
548 |
+
FunctionalTensor, FunctionalTensor.from_functional, args
|
549 |
+
)
|
550 |
+
|
551 |
+
def functionalize(self, inner_f: Callable) -> Callable:
|
552 |
+
return dispatch_functionalize(inner_f, self.mode)
|
553 |
+
|
554 |
+
def redispatch_to_next(self) -> ContextManager:
|
555 |
+
# [NOTE] We don't do anything here because at the time
|
556 |
+
# we exercise this path, we would have already popped the
|
557 |
+
# FunctionalTensorMode from mode stack. Since FunctionalTensorMode
|
558 |
+
# is now stateful, it is better to explicitly pass in correct mode
|
559 |
+
# directly instead of globally setting it.
|
560 |
+
return contextlib.nullcontext()
|
561 |
+
|
562 |
+
def replace(self, input_tensor, output_tensor) -> None:
|
563 |
+
assert isinstance(input_tensor, FunctionalTensor)
|
564 |
+
assert not isinstance(output_tensor, FunctionalTensor)
|
565 |
+
input_tensor.replace_(output_tensor)
|
566 |
+
|
567 |
+
def commit_update(self, tensor) -> None:
|
568 |
+
assert isinstance(tensor, FunctionalTensor)
|
569 |
+
tensor.commit_update()
|
570 |
+
|
571 |
+
def sync(self, tensor) -> None:
|
572 |
+
assert isinstance(tensor, FunctionalTensor)
|
573 |
+
tensor.sync()
|
574 |
+
|
575 |
+
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
576 |
+
assert isinstance(tensor, FunctionalTensor)
|
577 |
+
tensor.mark_mutation_hidden_from_autograd()
|
578 |
+
|
579 |
+
|
580 |
+
class CppFunctionalizeAPI(BaseFunctionalizeAPI):
|
581 |
+
def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
582 |
+
from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
|
583 |
+
|
584 |
+
return _wrap_all_tensors_to_functional(args, level=0)
|
585 |
+
|
586 |
+
def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
587 |
+
from torch._functorch.eager_transforms import (
|
588 |
+
_unwrap_all_tensors_from_functional,
|
589 |
+
)
|
590 |
+
|
591 |
+
return _unwrap_all_tensors_from_functional(args, reapply_views=_reapply_views())
|
592 |
+
|
593 |
+
def functionalize(self, inner_f: Callable) -> Callable:
|
594 |
+
return torch.func.functionalize(inner_f)
|
595 |
+
|
596 |
+
def redispatch_to_next(self) -> ContextManager:
|
597 |
+
return torch._C._ExcludeDispatchKeyGuard(
|
598 |
+
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
599 |
+
)
|
600 |
+
|
601 |
+
def replace(self, input_tensor, output_tensor) -> None:
|
602 |
+
torch._functionalize_replace(input_tensor, output_tensor)
|
603 |
+
|
604 |
+
def commit_update(self, tensor) -> None:
|
605 |
+
torch._functionalize_commit_update(tensor)
|
606 |
+
|
607 |
+
def sync(self, tensor) -> None:
|
608 |
+
torch._functionalize_sync(tensor)
|
609 |
+
|
610 |
+
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
611 |
+
torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
|
612 |
+
|
613 |
+
|
614 |
+
class FunctorchFunctionalizeAPI(BaseFunctionalizeAPI):
|
615 |
+
def __init__(self, interpreter):
|
616 |
+
self.interpreter = interpreter
|
617 |
+
|
618 |
+
def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
619 |
+
from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
|
620 |
+
|
621 |
+
return _wrap_all_tensors_to_functional(args, level=self.interpreter.level())
|
622 |
+
|
623 |
+
def unwrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
|
624 |
+
from torch._functorch.eager_transforms import (
|
625 |
+
_unwrap_all_tensors_from_functional,
|
626 |
+
)
|
627 |
+
|
628 |
+
return _unwrap_all_tensors_from_functional(
|
629 |
+
args, reapply_views=self.interpreter.functionalize_add_back_views()
|
630 |
+
)
|
631 |
+
|
632 |
+
def functionalize(self, inner_f: Callable) -> Callable:
|
633 |
+
return torch.func.functionalize(
|
634 |
+
inner_f,
|
635 |
+
remove="mutations_and_views"
|
636 |
+
if self.interpreter.functionalize_add_back_views()
|
637 |
+
else "mutations",
|
638 |
+
)
|
639 |
+
|
640 |
+
def redispatch_to_next(self) -> ContextManager:
|
641 |
+
return self.interpreter.lower()
|
642 |
+
|
643 |
+
def replace(self, input_tensor, output_tensor) -> None:
|
644 |
+
torch._functionalize_replace(input_tensor, output_tensor)
|
645 |
+
|
646 |
+
def commit_update(self, tensor) -> None:
|
647 |
+
torch._functionalize_commit_update(tensor)
|
648 |
+
|
649 |
+
def sync(self, tensor) -> None:
|
650 |
+
torch._functionalize_sync(tensor)
|
651 |
+
|
652 |
+
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
653 |
+
torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
|
venv/lib/python3.10/site-packages/torch/_subclasses/meta_utils.py
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
import weakref
|
4 |
+
from typing import ContextManager, Dict, List, Optional, Tuple, TYPE_CHECKING
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch._C._functorch import (
|
8 |
+
_add_batch_dim,
|
9 |
+
_unwrap_functional_tensor,
|
10 |
+
_wrap_functional_tensor,
|
11 |
+
current_level,
|
12 |
+
get_unwrapped,
|
13 |
+
is_batchedtensor,
|
14 |
+
is_functorch_wrapped_tensor,
|
15 |
+
is_gradtrackingtensor,
|
16 |
+
maybe_get_bdim,
|
17 |
+
maybe_get_level,
|
18 |
+
peek_interpreter_stack,
|
19 |
+
TransformType,
|
20 |
+
)
|
21 |
+
from torch._guards import Source
|
22 |
+
|
23 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
24 |
+
from torch.utils._python_dispatch import (
|
25 |
+
is_traceable_wrapper_subclass,
|
26 |
+
transform_subclass,
|
27 |
+
)
|
28 |
+
from torch.utils.weak import WeakIdRef
|
29 |
+
|
30 |
+
if TYPE_CHECKING:
|
31 |
+
# Import the following modules during type checking to enable code intelligence features,
|
32 |
+
# Do not import unconditionally, as they import sympy and importing sympy is very slow
|
33 |
+
from torch.fx.experimental.symbolic_shapes import SymbolicContext
|
34 |
+
|
35 |
+
DimList = List
|
36 |
+
|
37 |
+
|
38 |
+
def safe_is_leaf(t):
|
39 |
+
try:
|
40 |
+
return t.is_leaf
|
41 |
+
except RuntimeError:
|
42 |
+
# inference mode can trigger this
|
43 |
+
return False
|
44 |
+
|
45 |
+
|
46 |
+
def safe_grad(t):
|
47 |
+
with warnings.catch_warnings():
|
48 |
+
warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
|
49 |
+
return t.grad
|
50 |
+
|
51 |
+
|
52 |
+
def assert_eq(a, b):
|
53 |
+
assert a == b, f"{a} != {b}"
|
54 |
+
|
55 |
+
|
56 |
+
def assert_metadata_eq(assert_eq, m1, m2, *, skip_symbolic=False):
|
57 |
+
def go(m1, m2):
|
58 |
+
assert_eq(m1.dtype, m2.dtype)
|
59 |
+
if not skip_symbolic:
|
60 |
+
assert_eq(m1.shape, m2.shape)
|
61 |
+
assert_eq(m1.requires_grad, m2.requires_grad)
|
62 |
+
assert_eq(m1.is_leaf, m2.is_leaf)
|
63 |
+
assert_eq(m1.grad_fn is None, m2.grad_fn is None)
|
64 |
+
assert_eq(m1.is_sparse, m2.is_sparse)
|
65 |
+
assert_eq(m1.is_inference(), m2.is_inference())
|
66 |
+
assert_eq(m1.is_conj(), m2.is_conj())
|
67 |
+
assert_eq(m1.is_neg(), m2.is_neg())
|
68 |
+
assert_eq(safe_grad(m1) is not None, safe_grad(m2) is not None)
|
69 |
+
if safe_grad(m1) is not None:
|
70 |
+
go(safe_grad(m1), safe_grad(m2))
|
71 |
+
if m1.is_sparse:
|
72 |
+
assert_eq(m1.dense_dim(), m2.dense_dim())
|
73 |
+
assert_eq(m1.sparse_dim(), m2.sparse_dim())
|
74 |
+
assert_eq(m1.is_coalesced(), m2.is_coalesced())
|
75 |
+
else:
|
76 |
+
if not skip_symbolic:
|
77 |
+
assert_eq(m1.stride(), m2.stride())
|
78 |
+
assert_eq(m1.storage_offset(), m2.storage_offset())
|
79 |
+
assert_eq(m1._is_view(), m2._is_view())
|
80 |
+
if m1._is_view():
|
81 |
+
go(m1._base, m2._base)
|
82 |
+
# TODO: test if is resizable (no direct query for this atm)
|
83 |
+
# TODO: audit AutogradMeta to see if it matches
|
84 |
+
# TODO: test forward AD
|
85 |
+
|
86 |
+
return go(m1, m2)
|
87 |
+
|
88 |
+
|
89 |
+
def is_sparse_coo(t):
|
90 |
+
return isinstance(t, torch.Tensor) and t.layout is torch.sparse_coo
|
91 |
+
|
92 |
+
|
93 |
+
def is_sparse_compressed(t):
|
94 |
+
return isinstance(t, torch.Tensor) and t.layout in {
|
95 |
+
torch.sparse_csr,
|
96 |
+
torch.sparse_csc,
|
97 |
+
torch.sparse_bsr,
|
98 |
+
torch.sparse_bsc,
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
def is_sparse_any(t):
|
103 |
+
return is_sparse_coo(t) or is_sparse_compressed(t)
|
104 |
+
|
105 |
+
|
106 |
+
# This is a class for converting multiple tensors into meta tensors which
|
107 |
+
# share the same view/storage structure. The operation model is you allocate
|
108 |
+
# one of these, and then call it repeatedly on all the tensors you want to
|
109 |
+
# convert. It's important to use the same object for tensors you want to
|
110 |
+
# share storage because this is how we correlate shared storages to the same
|
111 |
+
# meta storages. This class will hold weak references to cached tenosrs
|
112 |
+
# and tensor storages.
|
113 |
+
class MetaConverter:
|
114 |
+
def __init__(self):
|
115 |
+
self.storage_memo = {}
|
116 |
+
self.tensor_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
|
117 |
+
self.maybe_storages_to_delete = []
|
118 |
+
self.check_expired_frequency = 128
|
119 |
+
self.check_expired_count = 0
|
120 |
+
self.hit = 0
|
121 |
+
self.miss = 0
|
122 |
+
self.del_hook = None
|
123 |
+
self.arg_cnt = 0
|
124 |
+
|
125 |
+
def successful(self):
|
126 |
+
return self.hit > 0 and self.miss == 0
|
127 |
+
|
128 |
+
def check_for_expired_weak_storages(self):
|
129 |
+
new_li = []
|
130 |
+
stor_to_delete = []
|
131 |
+
for obj in self.maybe_storages_to_delete:
|
132 |
+
if not obj.expired():
|
133 |
+
new_li.append(obj)
|
134 |
+
else:
|
135 |
+
stor_to_delete.append(obj)
|
136 |
+
for obj in stor_to_delete:
|
137 |
+
self.storage_memo.pop(obj, None)
|
138 |
+
self.maybe_storages_to_delete = new_li
|
139 |
+
|
140 |
+
# if for some reason we have aquired many storages which have not expired
|
141 |
+
# even though a tensor with their storage has expired (aliasing or otherwise)
|
142 |
+
# check for expired storages less often so as to bound the amount of work we
|
143 |
+
# do checking for expired storages
|
144 |
+
self.check_expired_frequency = max(
|
145 |
+
self.check_expired_frequency, len(self.maybe_storages_to_delete)
|
146 |
+
)
|
147 |
+
|
148 |
+
def get_tensor_memo(self, t):
|
149 |
+
return self.tensor_memo.get(WeakIdRef(t), None)
|
150 |
+
|
151 |
+
def set_tensor_memo(self, t, v):
|
152 |
+
# hold a weak ref to self, otherwise it will be kept alive
|
153 |
+
# by the del_ten closure
|
154 |
+
self_weak_ref = weakref.ref(self)
|
155 |
+
if is_sparse_any(t) or t.is_mkldnn or is_functorch_wrapped_tensor(t):
|
156 |
+
weak_st = None
|
157 |
+
else:
|
158 |
+
weak_st = StorageWeakRef(t._typed_storage())
|
159 |
+
tensor_ref_key = WeakIdRef(t)
|
160 |
+
|
161 |
+
def del_ten():
|
162 |
+
# tensor outlives the converter
|
163 |
+
self_ref = self_weak_ref()
|
164 |
+
if self_ref is None:
|
165 |
+
return
|
166 |
+
# on shutdown, tensor_ref_key may not be in memo
|
167 |
+
self_ref.tensor_memo.pop(tensor_ref_key, None)
|
168 |
+
if weak_st and weak_st.expired():
|
169 |
+
self_ref.storage_memo.pop(weak_st, None)
|
170 |
+
elif weak_st is not None:
|
171 |
+
# [expired-storages]
|
172 |
+
# NB: even though the tensor has died,
|
173 |
+
# the deallocation of its storage can take longer,
|
174 |
+
# even when the storage has no other uses/views.
|
175 |
+
# In this case, the StorageWeakRef object will be kept alive
|
176 |
+
# longer than it needs to be, however the storage itself
|
177 |
+
# will be deallocated. We retain the possibly dead storages
|
178 |
+
# and periodically check if any of them are expired and
|
179 |
+
# can be freed.
|
180 |
+
self_ref.maybe_storages_to_delete.append(weak_st)
|
181 |
+
|
182 |
+
weakref.finalize(t, del_ten)
|
183 |
+
self.tensor_memo[tensor_ref_key] = v
|
184 |
+
|
185 |
+
# NB: doesn't actually return a storage, because meta storage is
|
186 |
+
# not supported
|
187 |
+
def meta_storage(self, s, callback):
|
188 |
+
# NB: TypedStorage is freshly allocated and cannot be used as hash
|
189 |
+
# key index.
|
190 |
+
|
191 |
+
# Use a Weak Ref to s in order to not leak memory
|
192 |
+
swr = StorageWeakRef(s)
|
193 |
+
if swr not in self.storage_memo:
|
194 |
+
self.storage_memo[swr] = callback(
|
195 |
+
lambda: torch.empty(s.size(), dtype=torch.uint8, device="meta")
|
196 |
+
).untyped_storage()
|
197 |
+
return self.storage_memo[swr]
|
198 |
+
|
199 |
+
# This function assumes that it's possible to do the conversion
|
200 |
+
# NB: name here is used in a conventional way by Dynamo; it corresponds
|
201 |
+
# precisely to the Source.name() of the tensor we're fakeifying and
|
202 |
+
# corresponds to a valid Python expression. When we construct sub-names
|
203 |
+
# as part of this process, we will maintain this invariant! (Even though
|
204 |
+
# other users of this may not need it this property to be upheld.)
|
205 |
+
def meta_tensor(
|
206 |
+
self,
|
207 |
+
t,
|
208 |
+
shape_env=None,
|
209 |
+
callback=lambda t: t(),
|
210 |
+
source: Optional[Source] = None,
|
211 |
+
symbolic_context: Optional["SymbolicContext"] = None,
|
212 |
+
):
|
213 |
+
if source is None:
|
214 |
+
from torch._dynamo.source import ConstantSource
|
215 |
+
|
216 |
+
# TODO: make a dedicated UnknownSource for this?
|
217 |
+
source = ConstantSource(
|
218 |
+
f"__meta_utils_unknown_tensor{len(self.tensor_memo)}"
|
219 |
+
)
|
220 |
+
|
221 |
+
# This indicates you set no_dispatch() before calling into this
|
222 |
+
# function. This is an error: we may be creating fake tensors and
|
223 |
+
# will perform operations on them which need fake tensor mode to
|
224 |
+
# be active. You will segfault if you are in a no_dispatch() block.
|
225 |
+
assert not torch._C._dispatch_tls_local_exclude_set().has(
|
226 |
+
torch._C.DispatchKey.Python
|
227 |
+
)
|
228 |
+
arg_cnt = self.arg_cnt
|
229 |
+
self.arg_cnt += 1
|
230 |
+
|
231 |
+
# When we make as_strided calls, we end up generating a guard
|
232 |
+
# that the new as_strided tensor is in bounds for the old storage
|
233 |
+
# for the base (since as_strided calls can "bust" out of their
|
234 |
+
# bounding box.) This guard is unnecessary: if a user is able
|
235 |
+
# to provide us a tensor with the view base setup this way, we
|
236 |
+
# don't need to produce a guard, because the fact that they
|
237 |
+
# were able to produce the view base means its in bounds.
|
238 |
+
#
|
239 |
+
# Now, ordinarily, this guard would be harmless. However, the
|
240 |
+
# generated guard refers to variables bound on the base variable.
|
241 |
+
# At the moment, Dynamo doesn't actually guard on x._base, because
|
242 |
+
# according to Voz this results in a lot of spurious invalidations,
|
243 |
+
# and also if the user doesn't directly make use of _base, its
|
244 |
+
# pointless anyway (because programs should be parametric over
|
245 |
+
# whether or not the input tensor is a view or not--unless you're
|
246 |
+
# mutating the input, but that's a whole 'nother ballgame). So
|
247 |
+
# for expediency, we suppress these guards so we don't have to
|
248 |
+
# deal with this (yet, anyway.)
|
249 |
+
#
|
250 |
+
# NB: An old version of this code suppressed guards for ALL operations
|
251 |
+
# happening during meta conversion, not just as_strided calls.
|
252 |
+
# This is too aggressive: we do duck sizing and 0/1 simplification
|
253 |
+
# as we allocate variables, and we do need to register guards for
|
254 |
+
# these cases.
|
255 |
+
maybe_suppress = contextlib.nullcontext
|
256 |
+
if shape_env is not None:
|
257 |
+
maybe_suppress = shape_env.suppress_guards
|
258 |
+
|
259 |
+
def sym_sizes_strides_storage_offset(
|
260 |
+
t, src, symbolic_context=symbolic_context
|
261 |
+
) -> Tuple[Tuple[int, ...], Tuple[int, ...], int]:
|
262 |
+
if shape_env is not None:
|
263 |
+
fake_mode = torch._subclasses.fake_tensor.maybe_get_fake_mode(t)
|
264 |
+
if fake_mode is not None and fake_mode.shape_env is shape_env:
|
265 |
+
# Don't reallocate the sizes; the shape envs are the same,
|
266 |
+
# so reuse the old sizes/strides/etc
|
267 |
+
return (t.size(), t.stride(), t.storage_offset())
|
268 |
+
else:
|
269 |
+
return shape_env.create_symbolic_sizes_strides_storage_offset(
|
270 |
+
t,
|
271 |
+
src,
|
272 |
+
symbolic_context=symbolic_context,
|
273 |
+
)
|
274 |
+
else:
|
275 |
+
assert symbolic_context is None
|
276 |
+
return (t.size(), t.stride(), t.storage_offset())
|
277 |
+
|
278 |
+
def empty_create(inner_t, inner_src, symbolic_context=symbolic_context):
|
279 |
+
(
|
280 |
+
inner_sizes,
|
281 |
+
inner_strides,
|
282 |
+
inner_storage_offset,
|
283 |
+
) = sym_sizes_strides_storage_offset(inner_t, inner_src, symbolic_context)
|
284 |
+
return torch.empty_strided(
|
285 |
+
inner_sizes,
|
286 |
+
inner_strides,
|
287 |
+
dtype=inner_t.dtype,
|
288 |
+
device="meta",
|
289 |
+
)
|
290 |
+
|
291 |
+
# Creates a subclass instance with empty inner tensors according to the specified
|
292 |
+
# symbolic context.
|
293 |
+
def empty_create_subclass(
|
294 |
+
t,
|
295 |
+
outer_size,
|
296 |
+
outer_stride,
|
297 |
+
symbolic_context=symbolic_context,
|
298 |
+
callback=callback,
|
299 |
+
source=source,
|
300 |
+
):
|
301 |
+
from torch._dynamo.source import AttrSource
|
302 |
+
from torch.fx.experimental.symbolic_shapes import SubclassSymbolicContext
|
303 |
+
|
304 |
+
assert symbolic_context is None or isinstance(
|
305 |
+
symbolic_context, SubclassSymbolicContext
|
306 |
+
)
|
307 |
+
|
308 |
+
# Note: transform_subclass will use __tensor_unflatten__ to generate
|
309 |
+
# a fresh subclass wrapper with outer sizes / strides according to the
|
310 |
+
# outer symbolic context (passed in to this function). Inner size / stride
|
311 |
+
# / storage offset symbols are allocated according to the appropriate inner
|
312 |
+
# symbolic contexts, after which the checks in transform_subclass() will
|
313 |
+
# relate them to the outer metadata as possible.
|
314 |
+
return transform_subclass(
|
315 |
+
t,
|
316 |
+
lambda attr, inner_t: callback(
|
317 |
+
lambda: empty_create(
|
318 |
+
inner_t,
|
319 |
+
AttrSource(source, attr),
|
320 |
+
symbolic_context=(
|
321 |
+
None
|
322 |
+
if symbolic_context is None
|
323 |
+
else symbolic_context.inner_contexts[attr]
|
324 |
+
),
|
325 |
+
)
|
326 |
+
),
|
327 |
+
outer_size=outer_size,
|
328 |
+
outer_stride=outer_stride,
|
329 |
+
)
|
330 |
+
|
331 |
+
# Returns an all-dynamic symbolic context used for metafying the given tensor with
|
332 |
+
# fully dynamic dims. This is useful when fake-ifying intermediate tensors in
|
333 |
+
# closed-over ViewFunc state, as we don't have symbolic contexts for them, but we
|
334 |
+
# don't want to over-specialize during view replay.
|
335 |
+
def all_dynamic_symbolic_context(t, source, shape_env, callback):
|
336 |
+
from torch._dynamo.source import AttrSource
|
337 |
+
from torch.fx.experimental.symbolic_shapes import (
|
338 |
+
DimDynamic,
|
339 |
+
StatelessSymbolicContext,
|
340 |
+
SubclassSymbolicContext,
|
341 |
+
SymbolicContext,
|
342 |
+
)
|
343 |
+
|
344 |
+
view_base_context: Optional[SymbolicContext] = None
|
345 |
+
if t._is_view():
|
346 |
+
view_base_context = all_dynamic_symbolic_context(
|
347 |
+
t._base, AttrSource(source, "_base"), shape_env, callback
|
348 |
+
)
|
349 |
+
|
350 |
+
t_symbolic_context: SymbolicContext
|
351 |
+
t_dynamic_sizes = [DimDynamic.DYNAMIC] * t.dim()
|
352 |
+
if is_traceable_wrapper_subclass(t):
|
353 |
+
inner_contexts: Dict[str, SymbolicContext] = {}
|
354 |
+
attrs, _ = t.__tensor_flatten__()
|
355 |
+
for attr in attrs:
|
356 |
+
assert isinstance(attr, str)
|
357 |
+
inner = getattr(t, attr)
|
358 |
+
inner_contexts[attr] = all_dynamic_symbolic_context(
|
359 |
+
inner, AttrSource(source, attr), shape_env, callback
|
360 |
+
)
|
361 |
+
t_symbolic_context = SubclassSymbolicContext(
|
362 |
+
dynamic_sizes=t_dynamic_sizes,
|
363 |
+
constraint_sizes=[None] * t.dim(),
|
364 |
+
inner_contexts=inner_contexts,
|
365 |
+
tensor_source=source,
|
366 |
+
view_base_context=view_base_context,
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
t_symbolic_context = StatelessSymbolicContext(
|
370 |
+
dynamic_sizes=t_dynamic_sizes,
|
371 |
+
constraint_sizes=[None] * t.dim(),
|
372 |
+
view_base_context=view_base_context,
|
373 |
+
)
|
374 |
+
|
375 |
+
return t_symbolic_context
|
376 |
+
|
377 |
+
# Returns a fake-ified version of an input view tensor t, given an already fake-ified
|
378 |
+
# base. At a high level, we want two things:
|
379 |
+
# 1. fake_t should have the same view relationship to the given fake base as the
|
380 |
+
# input t has to its _base.
|
381 |
+
# 2. fake_t should have symbolic sizes / strides / storage offset according to the
|
382 |
+
# appropriate symbolic context (i.e. from the automatic dynamic algorithm).
|
383 |
+
#
|
384 |
+
# We currently take different strategies across view types:
|
385 |
+
# * For dense -> dense views, accomplish both (1) and (2) simultaneously via an
|
386 |
+
# as_strided() call on the fake-ified base, passing symbolic metadata.
|
387 |
+
# * For views involving subclasses, perform view replay using view funcs to
|
388 |
+
# achieve (1). It's necessary for (2) to swap out any closed-over state in
|
389 |
+
# the view funcs with symbolicized SymInts and fake-ified tensors. Doing this
|
390 |
+
# avoids specialization (and thus over-eager simplification of symbols) that
|
391 |
+
# could occur during view replay on the fake-ified base.
|
392 |
+
#
|
393 |
+
# Examples:
|
394 |
+
# * t.unsqueeze(-1) with dense t is a dense -> dense view. It can be modeled
|
395 |
+
# with an as_strided() call on the fake base passing symbolic metadata.
|
396 |
+
# * sub.select(dim=0, index=3) is a subclass -> subclass view. The index arg
|
397 |
+
# is made symbolic to avoid invalid specialization and view replay is then
|
398 |
+
# done to reconstruct the view.
|
399 |
+
# * _nested_from_jagged(values, offsets) is a dense -> subclass view
|
400 |
+
# that returns a subclass instance from a dense values tensor. The offsets
|
401 |
+
# tensor is closed over in the view func, as it can be considered view metadata.
|
402 |
+
# First, the offsets tensor is fake-ified according to the inner symbolic
|
403 |
+
# context and with the correct relationship to the outer size / stride metadata.
|
404 |
+
# Then view replay is done, swapping in the fake offsets so the view replay output
|
405 |
+
# is fully fake with no invalid specialization.
|
406 |
+
def view_from_base(base, t, source=source, shape_env=shape_env):
|
407 |
+
# fake-ify t's metadata according to the outer symbolic context
|
408 |
+
(sizes, strides, storage_offset) = sym_sizes_strides_storage_offset(
|
409 |
+
t, source
|
410 |
+
)
|
411 |
+
if not is_traceable_wrapper_subclass(
|
412 |
+
t
|
413 |
+
) and not is_traceable_wrapper_subclass(base):
|
414 |
+
# Dense -> Dense view case uses as_strided() to construct view relationship.
|
415 |
+
# TODO: Change this logic to use view replay for consistency?
|
416 |
+
# It's likely there is no view func available.
|
417 |
+
return base.as_strided(sizes, strides, storage_offset)
|
418 |
+
|
419 |
+
from torch._dynamo.source import EphemeralSource
|
420 |
+
from torch.fx.experimental.symbolic_shapes import sym_eq
|
421 |
+
|
422 |
+
def symint_visitor_fn(s):
|
423 |
+
if shape_env is None:
|
424 |
+
return s
|
425 |
+
|
426 |
+
# NB: The symbol here is expected to be simplified out because we a priori
|
427 |
+
# allocate inner and outer symbols according to the appropriate symbolic
|
428 |
+
# contexts and prefer those over this symbol during symbol simplification
|
429 |
+
# (via usage of EphemeralSource below). This -shouldn't- happen, but if
|
430 |
+
# this symbol somehow leaks out beyond the view tensor's shape metadata, our
|
431 |
+
# assumption of it being simplified out will fail and it may be guarded on,
|
432 |
+
# which will hard error.
|
433 |
+
sym_source = EphemeralSource("symint_visitor_fn")
|
434 |
+
symbol = shape_env.create_symbol(s, sym_source)
|
435 |
+
return shape_env.create_symintnode(symbol, hint=s, source=sym_source)
|
436 |
+
|
437 |
+
real_to_fake_mapping = {}
|
438 |
+
if is_traceable_wrapper_subclass(t):
|
439 |
+
# Fake-ify t naively here; this is only done so we can get fake-ified inner
|
440 |
+
# tensors with the correct relationships to the outer sizes / strides for use
|
441 |
+
# in view replay. It's done beforehand here because it's not easy to do when
|
442 |
+
# visiting tensors one-by-one during view replay.
|
443 |
+
#
|
444 |
+
# Example:
|
445 |
+
# Consider a Dense -> NJT view. NJT has (values, offsets) components and we
|
446 |
+
# want a view of values with the offsets closed over. As the offsets component
|
447 |
+
# is needed to describe the output view, it's important that it's fakeified
|
448 |
+
# correctly.
|
449 |
+
fake_t = empty_create_subclass(
|
450 |
+
t, outer_size=sizes, outer_stride=strides
|
451 |
+
)
|
452 |
+
attrs, _ = fake_t.__tensor_flatten__()
|
453 |
+
for attr in attrs:
|
454 |
+
real_to_fake_mapping[getattr(t, attr)] = getattr(fake_t, attr)
|
455 |
+
|
456 |
+
def tensor_visitor_fn(
|
457 |
+
visited_t, shape_env=shape_env, callback=callback, source=source
|
458 |
+
):
|
459 |
+
# It's possible to close over an undefined tensor (e.g. NJT's lengths).
|
460 |
+
if visited_t is None:
|
461 |
+
return None
|
462 |
+
|
463 |
+
# Fake inner tensors of view subclasses will come from the mapping built above.
|
464 |
+
fake_visited_t = real_to_fake_mapping.get(visited_t, None)
|
465 |
+
if fake_visited_t is not None:
|
466 |
+
return fake_visited_t
|
467 |
+
|
468 |
+
# For other closed-over tensor state, fake-ify it as all dynamic with an
|
469 |
+
# ephemeral source. This avoids invalid specialization during view replay.
|
470 |
+
# If we find that in practice the usage of ephemeral sources isn't enough
|
471 |
+
# to guarantee that we don't have guards on these symbols, we may need to
|
472 |
+
# explicitly suppress guards (as is done for _base in the dense -> dense
|
473 |
+
# view case).
|
474 |
+
temp_source = EphemeralSource("tensor_visitor_fn")
|
475 |
+
return self.meta_tensor(
|
476 |
+
visited_t,
|
477 |
+
shape_env,
|
478 |
+
callback,
|
479 |
+
source=temp_source,
|
480 |
+
symbolic_context=all_dynamic_symbolic_context(
|
481 |
+
visited_t, temp_source, shape_env, callback
|
482 |
+
),
|
483 |
+
)
|
484 |
+
|
485 |
+
# Replay the view, swapping out any non-symbolic SymInts or real tensors
|
486 |
+
# for symbolic SymInts or fake tensors.
|
487 |
+
fake_t = t._view_func_unsafe(base, symint_visitor_fn, tensor_visitor_fn)
|
488 |
+
|
489 |
+
# Ensure the output has symbolic shapes according to the outer symbolic context.
|
490 |
+
# These checks should simplify out any symbols created for closed-over view func
|
491 |
+
# SymInts.
|
492 |
+
torch._check(sym_eq(fake_t.size(), sizes))
|
493 |
+
torch._check(sym_eq(fake_t.stride(), strides))
|
494 |
+
torch._check(sym_eq(fake_t.storage_offset(), storage_offset))
|
495 |
+
return fake_t
|
496 |
+
|
497 |
+
# see expired-storages
|
498 |
+
self.check_expired_count += 1
|
499 |
+
if self.check_expired_count >= self.check_expired_frequency:
|
500 |
+
self.check_for_expired_weak_storages()
|
501 |
+
self.check_expired_count = 0
|
502 |
+
|
503 |
+
if self.get_tensor_memo(t) is None:
|
504 |
+
with torch.inference_mode(t.is_inference()):
|
505 |
+
if t.is_sparse:
|
506 |
+
is_leaf = safe_is_leaf(t)
|
507 |
+
|
508 |
+
# The lambda function below is similar to
|
509 |
+
# `t.to(device='meta')` except the latter
|
510 |
+
# preserves nnz value
|
511 |
+
r = callback(
|
512 |
+
lambda: torch.ops.aten._sparse_coo_tensor_with_dims(
|
513 |
+
t.sparse_dim(),
|
514 |
+
t.dense_dim(),
|
515 |
+
t.shape,
|
516 |
+
dtype=t.dtype,
|
517 |
+
layout=torch.sparse_coo,
|
518 |
+
device="meta",
|
519 |
+
)
|
520 |
+
)
|
521 |
+
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
|
522 |
+
# Note [is_coalesced is dispatched]
|
523 |
+
# Strangely enough, is_coalesced() is a dispatched operator,
|
524 |
+
# which means that it will get caught by fake tensor mode.
|
525 |
+
# Ordinarily this would error, but there's some logic in
|
526 |
+
# fake tensor ensure this doesn't happen.
|
527 |
+
r._coalesced_(t.is_coalesced())
|
528 |
+
if t.requires_grad:
|
529 |
+
r.requires_grad = True
|
530 |
+
if t.requires_grad and not is_leaf:
|
531 |
+
with torch.enable_grad():
|
532 |
+
r = r.clone()
|
533 |
+
r._coalesced_(t.is_coalesced())
|
534 |
+
elif is_sparse_compressed(t):
|
535 |
+
is_leaf = safe_is_leaf(t)
|
536 |
+
|
537 |
+
def mk_meta():
|
538 |
+
nnz = 0
|
539 |
+
batch_dim = t.ndim - t.sparse_dim() - t.dense_dim()
|
540 |
+
batch_size = t.shape[:batch_dim]
|
541 |
+
if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
542 |
+
index_dtype = t.crow_indices().dtype
|
543 |
+
compressed_indices = torch.empty(
|
544 |
+
t.crow_indices().shape, device="meta", dtype=index_dtype
|
545 |
+
)
|
546 |
+
plain_indices = torch.empty(
|
547 |
+
(*t.col_indices().shape[:-1], nnz),
|
548 |
+
device="meta",
|
549 |
+
dtype=index_dtype,
|
550 |
+
)
|
551 |
+
else:
|
552 |
+
index_dtype = t.ccol_indices().dtype
|
553 |
+
compressed_indices = torch.empty(
|
554 |
+
t.ccol_indices().shape, device="meta", dtype=index_dtype
|
555 |
+
)
|
556 |
+
plain_indices = torch.empty(
|
557 |
+
(*t.row_indices().shape[:-1], nnz),
|
558 |
+
device="meta",
|
559 |
+
dtype=index_dtype,
|
560 |
+
)
|
561 |
+
values_shape = t.values().shape
|
562 |
+
values = torch.empty(
|
563 |
+
(
|
564 |
+
*values_shape[:batch_dim],
|
565 |
+
nnz,
|
566 |
+
*values_shape[batch_dim + 1 :],
|
567 |
+
),
|
568 |
+
dtype=t.dtype,
|
569 |
+
device="meta",
|
570 |
+
)
|
571 |
+
return torch.ops.aten.sparse_compressed_tensor(
|
572 |
+
compressed_indices,
|
573 |
+
plain_indices,
|
574 |
+
values,
|
575 |
+
t.shape,
|
576 |
+
layout=t.layout,
|
577 |
+
dtype=t.dtype,
|
578 |
+
device="meta",
|
579 |
+
)
|
580 |
+
|
581 |
+
# `mk_meta()` is similar to `t.to(device='meta'))`
|
582 |
+
# except `to('meta')` preserves nnz value while
|
583 |
+
# `mk_meta` result has nnz == 0.
|
584 |
+
r = callback(mk_meta)
|
585 |
+
|
586 |
+
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
|
587 |
+
if t.requires_grad:
|
588 |
+
r.requires_grad = True
|
589 |
+
if t.requires_grad and not is_leaf:
|
590 |
+
with torch.enable_grad():
|
591 |
+
r = r.clone()
|
592 |
+
elif t.is_nested and not is_traceable_wrapper_subclass(t):
|
593 |
+
# TODO: Handle this better in Dynamo?
|
594 |
+
# There are checks there now, but this can still be triggered by a dense
|
595 |
+
# tensor graph input that is a view of a strided NT.
|
596 |
+
from torch._dynamo.exc import unimplemented
|
597 |
+
|
598 |
+
unimplemented(
|
599 |
+
"strided nested tensors are not supported by meta conversion"
|
600 |
+
)
|
601 |
+
elif t.is_mkldnn:
|
602 |
+
is_leaf = safe_is_leaf(t)
|
603 |
+
sizes, strides, _storage_offset = sym_sizes_strides_storage_offset(
|
604 |
+
t, source
|
605 |
+
)
|
606 |
+
r = callback(
|
607 |
+
lambda: torch.empty_strided(
|
608 |
+
sizes, strides, dtype=t.dtype, device="meta"
|
609 |
+
)
|
610 |
+
)
|
611 |
+
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
|
612 |
+
if t.requires_grad:
|
613 |
+
r.requires_grad = True
|
614 |
+
if t.requires_grad and not is_leaf:
|
615 |
+
with torch.enable_grad():
|
616 |
+
r = r.clone()
|
617 |
+
elif is_functorch_wrapped_tensor(t):
|
618 |
+
if t._is_view():
|
619 |
+
from torch._dynamo.exc import unimplemented
|
620 |
+
|
621 |
+
unimplemented(
|
622 |
+
"view functorch tensors are not supported by meta conversion"
|
623 |
+
)
|
624 |
+
|
625 |
+
# Wraps a functorch tensor class (BatchedTensor, GradTrackingTensor)
|
626 |
+
# in a FakeTensor
|
627 |
+
def _to_fake_tensor(t):
|
628 |
+
if is_batchedtensor(t):
|
629 |
+
ft = _to_fake_tensor(get_unwrapped(t))
|
630 |
+
lvl = maybe_get_level(t)
|
631 |
+
bdim = maybe_get_bdim(t)
|
632 |
+
r = _add_batch_dim(ft, bdim, lvl)
|
633 |
+
elif is_gradtrackingtensor(t):
|
634 |
+
disable_functorch = torch._C._DisableFuncTorch
|
635 |
+
with disable_functorch():
|
636 |
+
ft = _to_fake_tensor(get_unwrapped(t))
|
637 |
+
lvl = torch._C._functorch.maybe_get_level(t)
|
638 |
+
r = torch._C._functorch._wrap_for_grad(ft, lvl)
|
639 |
+
|
640 |
+
is_leaf = safe_is_leaf(t)
|
641 |
+
if t.requires_grad and safe_is_leaf(r):
|
642 |
+
r.requires_grad = True
|
643 |
+
elif t.requires_grad and not is_leaf:
|
644 |
+
with torch.enable_grad():
|
645 |
+
r = r.clone()
|
646 |
+
else:
|
647 |
+
sizes = t.size()
|
648 |
+
strides = t.stride()
|
649 |
+
r = callback(
|
650 |
+
lambda: torch.empty_strided(
|
651 |
+
sizes,
|
652 |
+
strides,
|
653 |
+
dtype=t.dtype,
|
654 |
+
device="meta",
|
655 |
+
)
|
656 |
+
)
|
657 |
+
return r
|
658 |
+
|
659 |
+
r = _to_fake_tensor(t)
|
660 |
+
|
661 |
+
elif t._is_view():
|
662 |
+
# Construct views in two steps: recursively meta-fy their
|
663 |
+
# base, and then create view(s) off that. NB: doing it
|
664 |
+
# directly from storage is WRONG because this won't cause
|
665 |
+
# version counters to get shared.
|
666 |
+
assert t._is_view()
|
667 |
+
|
668 |
+
base_symbolic_context = None
|
669 |
+
if shape_env and symbolic_context is not None:
|
670 |
+
from torch.fx.experimental.symbolic_shapes import (
|
671 |
+
StatelessSymbolicContext,
|
672 |
+
)
|
673 |
+
|
674 |
+
assert isinstance(symbolic_context, StatelessSymbolicContext)
|
675 |
+
# NB: This should generally be set when the input is a view,
|
676 |
+
# but the exception right now is for fake-ifying grads, which is
|
677 |
+
# a work in progress.
|
678 |
+
if symbolic_context.view_base_context is not None:
|
679 |
+
base_symbolic_context = symbolic_context.view_base_context
|
680 |
+
|
681 |
+
base = self.meta_tensor(
|
682 |
+
t._base,
|
683 |
+
shape_env,
|
684 |
+
callback,
|
685 |
+
source=torch._dynamo.source.AttrSource(source, "_base"),
|
686 |
+
symbolic_context=base_symbolic_context,
|
687 |
+
)
|
688 |
+
|
689 |
+
def is_c_of_r(complex_dtype, real_dtype):
|
690 |
+
return (
|
691 |
+
utils.is_complex_dtype(complex_dtype)
|
692 |
+
and utils.corresponding_real_dtype(complex_dtype)
|
693 |
+
== real_dtype
|
694 |
+
)
|
695 |
+
|
696 |
+
# In some situations, MetaConverter may be called in a
|
697 |
+
# context where autograd is disabled. For the _is_view
|
698 |
+
# assert to pass, we have to setup the autograd view
|
699 |
+
# metadata anyway. Do this by reenabling the
|
700 |
+
# ADInplaceOrView key. This is kind of a hack.
|
701 |
+
old_exclude = torch._C._dispatch_tls_is_dispatch_key_excluded(
|
702 |
+
torch._C.DispatchKey.ADInplaceOrView
|
703 |
+
)
|
704 |
+
torch._C._dispatch_tls_set_dispatch_key_excluded(
|
705 |
+
torch._C.DispatchKey.ADInplaceOrView, False
|
706 |
+
)
|
707 |
+
try:
|
708 |
+
if base.dtype == t.dtype:
|
709 |
+
pass
|
710 |
+
elif is_c_of_r(base.dtype, t.dtype):
|
711 |
+
base = torch.view_as_real(base)
|
712 |
+
elif is_c_of_r(t.dtype, base.dtype):
|
713 |
+
base = torch.view_as_complex(base)
|
714 |
+
else:
|
715 |
+
# This is not guaranteed to succeed. If it fails, it
|
716 |
+
# means there is another dtype-converting view function
|
717 |
+
# that hasn't been handled here
|
718 |
+
base = base.view(t.dtype)
|
719 |
+
|
720 |
+
# This is very tricky. Naively, you might expect this
|
721 |
+
# to hold:
|
722 |
+
#
|
723 |
+
# if t.requires_grad and not safe_is_leaf(t)
|
724 |
+
# assert t._base.requires_grad
|
725 |
+
#
|
726 |
+
# But it's not true! As you can see in the following
|
727 |
+
# program:
|
728 |
+
#
|
729 |
+
# x = torch.zeros(4)
|
730 |
+
# y = x.view(1, 4)
|
731 |
+
# y.requires_grad = True
|
732 |
+
# z = y.view(1, 1, 4)
|
733 |
+
# assert z._base is x
|
734 |
+
#
|
735 |
+
# So we may have to do *two* views out of the base to
|
736 |
+
# recreate this situation.
|
737 |
+
if safe_is_leaf(t):
|
738 |
+
# Leaf views that track view metadata are created by
|
739 |
+
# creating a view inside a no_grad block
|
740 |
+
with torch.no_grad(), maybe_suppress():
|
741 |
+
r = view_from_base(base, t)
|
742 |
+
# As it's a leaf, we can directly assign requires_grad
|
743 |
+
r.requires_grad = t.requires_grad
|
744 |
+
else:
|
745 |
+
if t._base.requires_grad == t.requires_grad:
|
746 |
+
# Easy case, just run the view op
|
747 |
+
with torch.enable_grad(), maybe_suppress():
|
748 |
+
r = view_from_base(base, t)
|
749 |
+
|
750 |
+
# NB: We don't actaully faithfully replicate
|
751 |
+
# autograd connectivity, but that doesn't matter
|
752 |
+
# today. See following for more info:
|
753 |
+
# https://gist.github.com/soulitzer/e03f015b314c3f5fcf80888c69390913
|
754 |
+
else:
|
755 |
+
# Obscure case. Create a leaf view and give it the
|
756 |
+
# correct requires_grad, then do the final view.
|
757 |
+
# NB: Can't have a non-leaf without requiring grad!
|
758 |
+
assert t.requires_grad
|
759 |
+
with torch.no_grad():
|
760 |
+
mid = base.view(base.shape)
|
761 |
+
mid.requires_grad = t.requires_grad
|
762 |
+
with torch.enable_grad(), maybe_suppress():
|
763 |
+
r = view_from_base(mid, t)
|
764 |
+
# The CreationMeta influences whether or not inplace
|
765 |
+
# mutation is an error or not. So we need to make
|
766 |
+
# sure we properly propagate this as well.
|
767 |
+
torch._C._autograd._set_creation_meta(
|
768 |
+
r, torch._C._autograd._get_creation_meta(t)
|
769 |
+
)
|
770 |
+
finally:
|
771 |
+
torch._C._dispatch_tls_set_dispatch_key_excluded(
|
772 |
+
torch._C.DispatchKey.ADInplaceOrView, old_exclude
|
773 |
+
)
|
774 |
+
|
775 |
+
else:
|
776 |
+
is_leaf = safe_is_leaf(t)
|
777 |
+
|
778 |
+
(
|
779 |
+
sizes,
|
780 |
+
strides,
|
781 |
+
storage_offset,
|
782 |
+
) = sym_sizes_strides_storage_offset(t, source, symbolic_context)
|
783 |
+
|
784 |
+
# If we have a subclass that desugars into dense tensors,
|
785 |
+
# perform our callback on each inner tensor.
|
786 |
+
if is_traceable_wrapper_subclass(t):
|
787 |
+
r = empty_create_subclass(
|
788 |
+
t, outer_size=sizes, outer_stride=strides
|
789 |
+
)
|
790 |
+
else:
|
791 |
+
r = callback(
|
792 |
+
lambda: torch.empty_strided(
|
793 |
+
sizes,
|
794 |
+
strides,
|
795 |
+
dtype=t.dtype,
|
796 |
+
device="meta",
|
797 |
+
)
|
798 |
+
)
|
799 |
+
|
800 |
+
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
|
801 |
+
if t.requires_grad:
|
802 |
+
r.requires_grad = t.requires_grad
|
803 |
+
if not is_leaf:
|
804 |
+
# Fake up some autograd history.
|
805 |
+
with torch.enable_grad():
|
806 |
+
# preserve_format is the default, but we want to
|
807 |
+
# emphasize how important it is to preserve
|
808 |
+
# format here
|
809 |
+
r = r.clone(memory_format=torch.preserve_format)
|
810 |
+
|
811 |
+
# Graph-Break for wrapped tensors
|
812 |
+
if not (
|
813 |
+
is_batchedtensor(t) or is_gradtrackingtensor(t)
|
814 |
+
) and torch._C._functorch.is_functorch_wrapped_tensor(t):
|
815 |
+
return NotImplemented
|
816 |
+
|
817 |
+
s = t.untyped_storage()
|
818 |
+
swr = StorageWeakRef(s)
|
819 |
+
if swr not in self.storage_memo and (
|
820 |
+
r.is_nested
|
821 |
+
or (
|
822 |
+
r.stride() == strides
|
823 |
+
and r.storage_offset() == storage_offset
|
824 |
+
)
|
825 |
+
):
|
826 |
+
# You're normal and happy, install the fresh storage into the memo
|
827 |
+
self.storage_memo[swr] = r.untyped_storage()
|
828 |
+
else:
|
829 |
+
# You're in crazy town; somehow you gave us a tensor
|
830 |
+
# that wasn't a view, but had nonzero storage offset,
|
831 |
+
# nontrivial strides (such that clone() couldn't
|
832 |
+
# preserve them), or already aliases with another
|
833 |
+
# tensor's storage. The most typical way to end
|
834 |
+
# up here is with set_. So use set_ to bludgeon this
|
835 |
+
# in.
|
836 |
+
r_s = self.meta_storage(s, callback=callback)
|
837 |
+
# NB: In principle, this should always work, but there
|
838 |
+
# is some subtle difference in the autograd metadata
|
839 |
+
# that means we will backprop the set_ call, even if
|
840 |
+
# r is declared as an input to grad.
|
841 |
+
# See https://github.com/pytorch/pytorch/issues/87956
|
842 |
+
# for the reproducer.
|
843 |
+
# NB: The in_kernel_invocation_manager here is necessary
|
844 |
+
# for fake tensor. If we run the set_ call with fake
|
845 |
+
# tensor on, r will improperly report that it is NOT a
|
846 |
+
# meta tensor but a cpu tensor, and then the set_ call
|
847 |
+
# will fail due to device mismatch. no_dispatch() is
|
848 |
+
# not enough, because the fake tensor will still claim
|
849 |
+
# to be a CPU tensor and you'll end up in the CPU
|
850 |
+
# kernel. Arguably this is a hack; a cleaner way to
|
851 |
+
# solve this is to have a FakeStorage concept which
|
852 |
+
# would report it's CPU device--no problem now! But
|
853 |
+
# this is difficult to do because we don't have storage
|
854 |
+
# subclasses. Relevant test is
|
855 |
+
# DynamicShapesFunctionTests::test_add_dynamic_shapes in
|
856 |
+
# test/dynamo/test_dynamic_shapes.py
|
857 |
+
maybe_fake_mgr: ContextManager[None] = contextlib.nullcontext()
|
858 |
+
from torch._subclasses.fake_tensor import (
|
859 |
+
in_kernel_invocation_manager,
|
860 |
+
maybe_get_fake_mode,
|
861 |
+
)
|
862 |
+
|
863 |
+
mb_fake_mode = maybe_get_fake_mode(r)
|
864 |
+
if mb_fake_mode is not None:
|
865 |
+
maybe_fake_mgr = in_kernel_invocation_manager(mb_fake_mode)
|
866 |
+
with maybe_fake_mgr, torch.no_grad():
|
867 |
+
r.set_(r_s, storage_offset, sizes, strides)
|
868 |
+
|
869 |
+
if safe_grad(t) is not None:
|
870 |
+
from torch._dynamo.source import AttrSource
|
871 |
+
|
872 |
+
# TODO: Use a valid grad-specific symbolic context instead of recycling
|
873 |
+
# the one from t. This isn't correct if e.g. t._is_view() != t.grad._is_view().
|
874 |
+
r.grad = self.meta_tensor(
|
875 |
+
safe_grad(t),
|
876 |
+
shape_env,
|
877 |
+
callback,
|
878 |
+
source=AttrSource(source, "grad"),
|
879 |
+
symbolic_context=symbolic_context,
|
880 |
+
)
|
881 |
+
torch._C._set_conj(r, t.is_conj())
|
882 |
+
torch._C._set_neg(r, t.is_neg())
|
883 |
+
# This can be skipped if necessary for performance reasons
|
884 |
+
assert_metadata_eq(assert_eq, t, r, skip_symbolic=True)
|
885 |
+
self.set_tensor_memo(t, r)
|
886 |
+
|
887 |
+
return self.get_tensor_memo(t)
|
888 |
+
|
889 |
+
def __call__(
|
890 |
+
self,
|
891 |
+
t,
|
892 |
+
shape_env=None,
|
893 |
+
*,
|
894 |
+
callback=lambda t: t(),
|
895 |
+
source=None,
|
896 |
+
symbolic_context=None,
|
897 |
+
):
|
898 |
+
# TODO: zero tensors? We appear to have eliminated them by
|
899 |
+
# excluding complex for now
|
900 |
+
|
901 |
+
if isinstance(t, torch.Tensor) or is_traceable_wrapper_subclass(t):
|
902 |
+
if t.device.type != "xla" and any(
|
903 |
+
[
|
904 |
+
t.is_quantized,
|
905 |
+
t._is_view() and t._base is not None and t._base.is_sparse,
|
906 |
+
torch._is_functional_tensor(t),
|
907 |
+
t.device.type in ("lazy"),
|
908 |
+
# We need a way to test if a tensor is batched but there
|
909 |
+
# is no official APi to do it
|
910 |
+
# torch._C._is_batched(t),
|
911 |
+
]
|
912 |
+
):
|
913 |
+
# TODO: sparse should support meta
|
914 |
+
# NB technically to('meta') does work but our logging
|
915 |
+
# instrumentation will see the meta conversions and the
|
916 |
+
# tests all break so we just exclude this. In any case
|
917 |
+
# the to conversion isn't really right anyhow.
|
918 |
+
|
919 |
+
if torch._is_functional_tensor(t) and t.device.type != "lazy":
|
920 |
+
if t._is_view():
|
921 |
+
raise RuntimeError(
|
922 |
+
"Cannot safely fakify a view because this process drops the view information right now."
|
923 |
+
)
|
924 |
+
|
925 |
+
st = peek_interpreter_stack()
|
926 |
+
assert (
|
927 |
+
st is None or st.key() == TransformType.Functionalize
|
928 |
+
), "Expect st to be either None or have Functionalize transform key."
|
929 |
+
if st is None:
|
930 |
+
# the case of AOTAutograd
|
931 |
+
torch._sync(t)
|
932 |
+
unwrap_t = torch._from_functional_tensor(t)
|
933 |
+
with torch._dispatch.python.suspend_functionalization():
|
934 |
+
fake_t = self.meta_tensor(
|
935 |
+
unwrap_t,
|
936 |
+
shape_env=shape_env,
|
937 |
+
callback=callback,
|
938 |
+
source=source,
|
939 |
+
symbolic_context=symbolic_context,
|
940 |
+
)
|
941 |
+
out = torch._to_functional_tensor(fake_t)
|
942 |
+
torch._mirror_autograd_meta_to(fake_t, out)
|
943 |
+
return out
|
944 |
+
else:
|
945 |
+
# torch.func.functionalize
|
946 |
+
reapply_views = torch._C._functionalization_reapply_views_tls()
|
947 |
+
unwrap_t = _unwrap_functional_tensor(t, reapply_views)
|
948 |
+
pop_st_ctx = (
|
949 |
+
torch._functorch.pyfunctorch.temporarily_pop_interpreter_stack()
|
950 |
+
)
|
951 |
+
with pop_st_ctx:
|
952 |
+
fake_t = self.meta_tensor(
|
953 |
+
unwrap_t,
|
954 |
+
shape_env=shape_env,
|
955 |
+
callback=callback,
|
956 |
+
source=source,
|
957 |
+
symbolic_context=symbolic_context,
|
958 |
+
)
|
959 |
+
return _wrap_functional_tensor(fake_t, current_level())
|
960 |
+
self.miss += 1
|
961 |
+
return NotImplemented
|
962 |
+
else:
|
963 |
+
self.hit += 1
|
964 |
+
|
965 |
+
disable_functorch = torch._C._DisableFuncTorch
|
966 |
+
with disable_functorch():
|
967 |
+
r = self.meta_tensor(
|
968 |
+
t,
|
969 |
+
shape_env=shape_env,
|
970 |
+
callback=callback,
|
971 |
+
source=source,
|
972 |
+
symbolic_context=symbolic_context,
|
973 |
+
)
|
974 |
+
if type(t) is torch.nn.Parameter:
|
975 |
+
# NB: Cannot directly use Parameter constructor
|
976 |
+
# because that would force a detach, not desirable
|
977 |
+
r._is_param = True
|
978 |
+
return r
|
979 |
+
elif torch.overrides.is_tensor_like(t):
|
980 |
+
self.miss += 1
|
981 |
+
return NotImplemented
|
982 |
+
else:
|
983 |
+
# non-Tensor types don't count as hit or miss
|
984 |
+
return t
|
985 |
+
|
986 |
+
|
987 |
+
import torch._prims_common as utils
|
venv/lib/python3.10/site-packages/torch/_subclasses/schema_check_mode.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from collections import namedtuple
|
4 |
+
from copy import deepcopy
|
5 |
+
from itertools import combinations
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch.fx.operator_schemas import normalize_function
|
9 |
+
from torch.testing._internal.jit_utils import clone_inputs
|
10 |
+
from torch.utils import _pytree as pytree
|
11 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
12 |
+
from torch.utils._pytree import tree_map
|
13 |
+
|
14 |
+
# Named Tuples used within SchemaCheckMode
|
15 |
+
Mutation = namedtuple("Mutation", ["op_name", "arg_name"])
|
16 |
+
Aliasing = namedtuple("Aliasing", ["op_name", "arg_name", "output_number"])
|
17 |
+
|
18 |
+
# Simplified naming for C++ classes
|
19 |
+
SchemaArgument = torch._C._SchemaArgument
|
20 |
+
SchemaArgType = torch._C._SchemaArgType
|
21 |
+
SchemaInfo = torch._C._SchemaInfo
|
22 |
+
|
23 |
+
# This TorchDispatchMode Subclass is used to verify op schemas
|
24 |
+
# This TorchDispatchMode Scubclass currently:
|
25 |
+
# - Records the called ops
|
26 |
+
# - Checks for mutations on all inputs
|
27 |
+
# - Checks for aliasing on all inputs
|
28 |
+
|
29 |
+
|
30 |
+
class SchemaCheckMode(TorchDispatchMode):
|
31 |
+
def __init__(self):
|
32 |
+
# Information recorded for testing purposes. For example:
|
33 |
+
# - incorrect schemas
|
34 |
+
# - overly conservative schemas
|
35 |
+
self.ops = []
|
36 |
+
self.mutated = []
|
37 |
+
self.aliasing = []
|
38 |
+
|
39 |
+
def reset_cache(self):
|
40 |
+
self.ops.clear()
|
41 |
+
self.mutated.clear()
|
42 |
+
self.aliasing.clear()
|
43 |
+
|
44 |
+
def display_ops(self):
|
45 |
+
print(*self.ops, sep=",")
|
46 |
+
|
47 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
48 |
+
def bitwise_equal(lhs, rhs):
|
49 |
+
if lhs.is_quantized:
|
50 |
+
# TODO: This is only OK if can't have NaN quantized; idk if
|
51 |
+
# this is actually true
|
52 |
+
return torch.equal(lhs, rhs)
|
53 |
+
else:
|
54 |
+
return torch.allclose(lhs, rhs, equal_nan=True)
|
55 |
+
|
56 |
+
def has_mutated(before, after, md):
|
57 |
+
are_tensors = type(before) == torch.Tensor and type(after) == torch.Tensor
|
58 |
+
if (
|
59 |
+
are_tensors
|
60 |
+
and before.layout != torch.sparse_csr
|
61 |
+
and after.layout != torch.sparse_csr
|
62 |
+
):
|
63 |
+
return not (
|
64 |
+
before.size() == after.size()
|
65 |
+
and bitwise_equal(before, after)
|
66 |
+
and md[0] == after.stride()
|
67 |
+
and md[1] == after._typed_storage()._cdata
|
68 |
+
)
|
69 |
+
return False
|
70 |
+
|
71 |
+
def has_aliased(lhs, rhs):
|
72 |
+
try:
|
73 |
+
return torch._C._overlaps(lhs, rhs)
|
74 |
+
except Exception as exception:
|
75 |
+
if str(exception).startswith("Cannot inspect value of type "):
|
76 |
+
return False
|
77 |
+
else:
|
78 |
+
raise exception
|
79 |
+
|
80 |
+
def standardize_name(name):
|
81 |
+
return name if name != "self" else "input"
|
82 |
+
|
83 |
+
def unwrap(e):
|
84 |
+
if isinstance(e, torch.Tensor) and not type(e) == torch.Tensor:
|
85 |
+
try:
|
86 |
+
return e.elem
|
87 |
+
except AttributeError as t:
|
88 |
+
return e
|
89 |
+
return e
|
90 |
+
|
91 |
+
def parse_metadata(e):
|
92 |
+
if isinstance(e, torch.Tensor):
|
93 |
+
if not type(e) == torch.Tensor:
|
94 |
+
try:
|
95 |
+
current = e.elem
|
96 |
+
return (
|
97 |
+
deepcopy(current.stride()),
|
98 |
+
current._typed_storage()._cdata,
|
99 |
+
)
|
100 |
+
except AttributeError as t:
|
101 |
+
return None
|
102 |
+
# Sparse CSR tensors do not have strides or storage
|
103 |
+
elif e.layout != torch.sparse_csr:
|
104 |
+
return (deepcopy(e.stride()), e._typed_storage()._cdata)
|
105 |
+
return None
|
106 |
+
|
107 |
+
self.ops.append(func._schema.name)
|
108 |
+
|
109 |
+
# Clone and process arguments and outputs
|
110 |
+
pre_arguments = normalize_function(
|
111 |
+
func, args, kwargs, normalize_to_only_use_kwargs=True
|
112 |
+
).kwargs
|
113 |
+
|
114 |
+
c_p_args = dict(zip(pre_arguments.keys(), clone_inputs(pre_arguments.values())))
|
115 |
+
cloned_arguments = {
|
116 |
+
name: tree_map(unwrap, c_p_args.get(name)) for name in c_p_args
|
117 |
+
}
|
118 |
+
cloned_metadata = {
|
119 |
+
name: [
|
120 |
+
parse_metadata(a) for a in pytree.tree_leaves(pre_arguments.get(name))
|
121 |
+
]
|
122 |
+
for name in pre_arguments
|
123 |
+
}
|
124 |
+
|
125 |
+
out = func(*args, **kwargs)
|
126 |
+
arguments = {
|
127 |
+
name: tree_map(unwrap, pre_arguments.get(name)) for name in pre_arguments
|
128 |
+
}
|
129 |
+
tuple_out = out if isinstance(out, tuple) else (out,)
|
130 |
+
tuple_out = tree_map(unwrap, tuple_out)
|
131 |
+
|
132 |
+
schema_info = SchemaInfo(func._schema)
|
133 |
+
schema_info.add_argument_values(pre_arguments)
|
134 |
+
|
135 |
+
# Process arguments with outputs
|
136 |
+
for i in range(len(func._schema.arguments)):
|
137 |
+
arg = func._schema.arguments[i]
|
138 |
+
name = standardize_name(arg.name)
|
139 |
+
if arguments.get(name) is not None:
|
140 |
+
before = cloned_arguments.get(name)
|
141 |
+
md = cloned_metadata.get(name)
|
142 |
+
after = arguments.get(name)
|
143 |
+
for j in range(len(tuple_out)):
|
144 |
+
# aten::_unsafe_view is intended to have incorrect aliasing notation (hence unsafe)
|
145 |
+
unsafe_ops = ("aten::_unsafe_view", "aten::unsafe_split")
|
146 |
+
if (
|
147 |
+
has_aliased(tuple_out[j], after)
|
148 |
+
and func._schema.name not in unsafe_ops
|
149 |
+
):
|
150 |
+
if not schema_info.may_contain_alias(
|
151 |
+
SchemaArgument(SchemaArgType.output, j),
|
152 |
+
SchemaArgument(SchemaArgType.input, i),
|
153 |
+
):
|
154 |
+
raise RuntimeError(
|
155 |
+
f"Argument {name} is not defined to alias output but was aliasing"
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
self.aliasing.append(
|
159 |
+
Aliasing(func._schema.name, name, f"output_{j}")
|
160 |
+
)
|
161 |
+
if after is tuple_out[j] and isinstance(after, torch.Tensor):
|
162 |
+
# Only mutable ops e.g. (add_, add.out) are allowed to directly return inputs.
|
163 |
+
if not schema_info.is_mutable(
|
164 |
+
SchemaArgument(SchemaArgType.input, i)
|
165 |
+
) and func not in [
|
166 |
+
torch.ops.aten.lift.default,
|
167 |
+
torch.ops.aten.lift_fresh.default,
|
168 |
+
]:
|
169 |
+
raise RuntimeError(
|
170 |
+
f"""\
|
171 |
+
Dispatcher operators below autograd are not allowed to directly return inputs.
|
172 |
+
However, we found that `outputs[{str(j)}] is {name}"""
|
173 |
+
)
|
174 |
+
if any(
|
175 |
+
has_mutated(a, b, c)
|
176 |
+
for a, b, c in zip(
|
177 |
+
pytree.tree_leaves(before), pytree.tree_leaves(after), md
|
178 |
+
)
|
179 |
+
):
|
180 |
+
if not schema_info.is_mutable(
|
181 |
+
SchemaArgument(SchemaArgType.input, i)
|
182 |
+
):
|
183 |
+
raise RuntimeError(
|
184 |
+
f"Argument {name} is not defined as mutable but was mutated"
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
self.mutated.append(Mutation(func._schema.name, name))
|
188 |
+
|
189 |
+
# Aliasing between outputs
|
190 |
+
for i, j in combinations(range(len(func._schema.returns)), 2):
|
191 |
+
if has_aliased(tuple_out[i], tuple_out[j]):
|
192 |
+
if not schema_info.may_contain_alias(
|
193 |
+
SchemaArgument(SchemaArgType.output, i),
|
194 |
+
SchemaArgument(SchemaArgType.output, j),
|
195 |
+
):
|
196 |
+
raise RuntimeError(f"Outputs {i} and {j} alias unexpectedly")
|
197 |
+
|
198 |
+
return out
|
venv/lib/python3.10/site-packages/torch/export/__init__.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
import copy
|
3 |
+
import dataclasses
|
4 |
+
import inspect
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import typing
|
9 |
+
import warnings
|
10 |
+
from enum import auto, Enum
|
11 |
+
from typing import (
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Dict,
|
15 |
+
Iterator,
|
16 |
+
List,
|
17 |
+
Optional,
|
18 |
+
Tuple,
|
19 |
+
Type,
|
20 |
+
TYPE_CHECKING,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils._pytree as pytree
|
26 |
+
from torch.fx._compatibility import compatibility
|
27 |
+
|
28 |
+
from torch.fx.passes.infra.pass_base import PassResult
|
29 |
+
from torch.fx.passes.infra.pass_manager import PassManager
|
30 |
+
|
31 |
+
from torch.utils._pytree import (
|
32 |
+
FlattenFunc,
|
33 |
+
FromDumpableContextFn,
|
34 |
+
ToDumpableContextFn,
|
35 |
+
UnflattenFunc,
|
36 |
+
)
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
# Import the following modules during type checking to enable code intelligence features,
|
40 |
+
# Do not import unconditionally, as they import sympy and importing sympy is very slow
|
41 |
+
from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint
|
42 |
+
|
43 |
+
|
44 |
+
__all__ = [
|
45 |
+
"Constraint",
|
46 |
+
"Dim",
|
47 |
+
"ExportBackwardSignature",
|
48 |
+
"ExportGraphSignature",
|
49 |
+
"ExportedProgram",
|
50 |
+
"ModuleCallEntry",
|
51 |
+
"ModuleCallSignature",
|
52 |
+
"dims",
|
53 |
+
"dynamic_dim",
|
54 |
+
"export",
|
55 |
+
"load",
|
56 |
+
"register_dataclass",
|
57 |
+
"save",
|
58 |
+
"unflatten",
|
59 |
+
"FlatArgsAdapter",
|
60 |
+
"UnflattenedModule",
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
from .dynamic_shapes import Constraint, Dim, dims, dynamic_dim
|
65 |
+
from .exported_program import ExportedProgram, ModuleCallEntry, ModuleCallSignature
|
66 |
+
from .graph_signature import ExportBackwardSignature, ExportGraphSignature
|
67 |
+
from .unflatten import FlatArgsAdapter, unflatten, UnflattenedModule
|
68 |
+
|
69 |
+
|
70 |
+
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
|
71 |
+
|
72 |
+
|
73 |
+
def export(
|
74 |
+
mod: torch.nn.Module,
|
75 |
+
args: Tuple[Any, ...],
|
76 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
77 |
+
*,
|
78 |
+
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
|
79 |
+
strict: bool = True,
|
80 |
+
preserve_module_call_signature: Tuple[str, ...] = (),
|
81 |
+
) -> ExportedProgram:
|
82 |
+
"""
|
83 |
+
:func:`export` takes an arbitrary Python callable (an nn.Module, a function or
|
84 |
+
a method) along with example inputs, and produces a traced graph representing
|
85 |
+
only the Tensor computation of the function in an Ahead-of-Time (AOT) fashion,
|
86 |
+
which can subsequently be executed with different inputs or serialized. The
|
87 |
+
traced graph (1) produces normalized operators in the functional ATen operator set
|
88 |
+
(as well as any user-specified custom operators), (2) has eliminated all Python control
|
89 |
+
flow and data structures (with certain exceptions), and (3) records the set of
|
90 |
+
shape constraints needed to show that this normalization and control-flow elimination
|
91 |
+
is sound for future inputs.
|
92 |
+
|
93 |
+
**Soundness Guarantee**
|
94 |
+
|
95 |
+
While tracing, :func:`export()` takes note of shape-related assumptions
|
96 |
+
made by the user program and the underlying PyTorch operator kernels.
|
97 |
+
The output :class:`ExportedProgram` is considered valid only when these
|
98 |
+
assumptions hold true.
|
99 |
+
|
100 |
+
Tracing makes assumptions on the shapes (not values) of input tensors.
|
101 |
+
Such assumptions must be validated at graph capture time for :func:`export`
|
102 |
+
to succeed. Specifically:
|
103 |
+
|
104 |
+
- Assumptions on static shapes of input tensors are automatically validated without additional effort.
|
105 |
+
- Assumptions on dynamic shape of input tensors require explicit specification
|
106 |
+
by using the :func:`Dim` API to construct dynamic dimensions and by associating
|
107 |
+
them with example inputs through the ``dynamic_shapes`` argument.
|
108 |
+
|
109 |
+
If any assumption can not be validated, a fatal error will be raised. When that happens,
|
110 |
+
the error message will include suggested fixes to the specification that are needed
|
111 |
+
to validate the assumptions. For example :func:`export` might suggest the
|
112 |
+
following fix to the definition of a dynamic dimension ``dim0_x``, say appearing in the
|
113 |
+
shape associated with input ``x``, that was previously defined as ``Dim("dim0_x")``::
|
114 |
+
|
115 |
+
dim = Dim("dim0_x", max=5)
|
116 |
+
|
117 |
+
This example means the generated code requires dimension 0 of input ``x`` to be less
|
118 |
+
than or equal to 5 to be valid. You can inspect the suggested fixes to dynamic dimension
|
119 |
+
definitions and then copy them verbatim into your code without needing to change the
|
120 |
+
``dynamic_shapes`` argument to your :func:`export` call.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
mod: We will trace the forward method of this module.
|
124 |
+
|
125 |
+
args: Example positional inputs.
|
126 |
+
|
127 |
+
kwargs: Optional example keyword inputs.
|
128 |
+
|
129 |
+
dynamic_shapes:
|
130 |
+
An optional argument where the type should either be:
|
131 |
+
1) a dict from argument names of ``f`` to their dynamic shape specifications,
|
132 |
+
2) a tuple that specifies dynamic shape specifications for each input in original order.
|
133 |
+
If you are specifying dynamism on keyword args, you will need to pass them in the order that
|
134 |
+
is defined in the original function signature.
|
135 |
+
|
136 |
+
The dynamic shape of a tensor argument can be specified as either
|
137 |
+
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
|
138 |
+
not required to include static dimension indices in this dict, but when they are,
|
139 |
+
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
|
140 |
+
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
|
141 |
+
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
|
142 |
+
recursively specified by using mappings or sequences of contained specifications.
|
143 |
+
|
144 |
+
strict: When enabled (default), the export function will trace the program through
|
145 |
+
TorchDynamo which will ensure the soundness of the resulting graph. Otherwise, the
|
146 |
+
exported program will not validate the implicit assumptions baked into the graph and
|
147 |
+
may cause behavior divergence between the original model and the exported one. This is
|
148 |
+
useful when users need to workaround bugs in the tracer, or simply want incrementally
|
149 |
+
enable safety in their models. Note that this does not affect the resulting IR spec
|
150 |
+
to be different and the model will be serialized in the same way regardless of what value
|
151 |
+
is passed here.
|
152 |
+
WARNING: This option is experimental and use this at your own risk.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
An :class:`ExportedProgram` containing the traced callable.
|
156 |
+
|
157 |
+
**Acceptable input/output types**
|
158 |
+
|
159 |
+
Acceptable types of inputs (for ``args`` and ``kwargs``) and outputs include:
|
160 |
+
|
161 |
+
- Primitive types, i.e. ``torch.Tensor``, ``int``, ``float``, ``bool`` and ``str``.
|
162 |
+
- Dataclasses, but they must be registered by calling :func:`register_dataclass` first.
|
163 |
+
- (Nested) Data structures comprising of ``dict``, ``list``, ``tuple``, ``namedtuple`` and
|
164 |
+
``OrderedDict`` containing all above types.
|
165 |
+
|
166 |
+
"""
|
167 |
+
from ._trace import _export
|
168 |
+
|
169 |
+
if not isinstance(mod, torch.nn.Module):
|
170 |
+
raise ValueError(
|
171 |
+
f"Expected `mod` to be an instance of `torch.nn.Module`, got {type(mod)}."
|
172 |
+
)
|
173 |
+
|
174 |
+
return _export(
|
175 |
+
mod,
|
176 |
+
args,
|
177 |
+
kwargs,
|
178 |
+
dynamic_shapes,
|
179 |
+
strict=strict,
|
180 |
+
preserve_module_call_signature=preserve_module_call_signature,
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
def save(
|
185 |
+
ep: ExportedProgram,
|
186 |
+
f: Union[str, os.PathLike, io.BytesIO],
|
187 |
+
*,
|
188 |
+
extra_files: Optional[Dict[str, Any]] = None,
|
189 |
+
opset_version: Optional[Dict[str, int]] = None,
|
190 |
+
) -> None:
|
191 |
+
"""
|
192 |
+
|
193 |
+
.. warning::
|
194 |
+
Under active development, saved files may not be usable in newer versions
|
195 |
+
of PyTorch.
|
196 |
+
|
197 |
+
Saves an :class:`ExportedProgram` to a file-like object. It can then be
|
198 |
+
loaded using the Python API :func:`torch.export.load <torch.export.load>`.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
ep (ExportedProgram): The exported program to save.
|
202 |
+
|
203 |
+
f (Union[str, os.PathLike, io.BytesIO): A file-like object (has to
|
204 |
+
implement write and flush) or a string containing a file name.
|
205 |
+
|
206 |
+
extra_files (Optional[Dict[str, Any]]): Map from filename to contents
|
207 |
+
which will be stored as part of f.
|
208 |
+
|
209 |
+
opset_version (Optional[Dict[str, int]]): A map of opset names
|
210 |
+
to the version of this opset
|
211 |
+
|
212 |
+
|
213 |
+
Example::
|
214 |
+
|
215 |
+
import torch
|
216 |
+
import io
|
217 |
+
|
218 |
+
class MyModule(torch.nn.Module):
|
219 |
+
def forward(self, x):
|
220 |
+
return x + 10
|
221 |
+
|
222 |
+
ep = torch.export.export(MyModule(), (torch.randn(5),))
|
223 |
+
|
224 |
+
# Save to file
|
225 |
+
torch.export.save(ep, 'exported_program.pt2')
|
226 |
+
|
227 |
+
# Save to io.BytesIO buffer
|
228 |
+
buffer = io.BytesIO()
|
229 |
+
torch.export.save(ep, buffer)
|
230 |
+
|
231 |
+
# Save with extra files
|
232 |
+
extra_files = {'foo.txt': b'bar'.decode('utf-8')}
|
233 |
+
torch.export.save(ep, 'exported_program.pt2', extra_files=extra_files)
|
234 |
+
|
235 |
+
"""
|
236 |
+
from torch._export import save
|
237 |
+
|
238 |
+
if not isinstance(ep, ExportedProgram):
|
239 |
+
raise TypeError(
|
240 |
+
f"The 'ep' parameter must be an instance of 'ExportedProgram', got '{type(ep).__name__}' instead."
|
241 |
+
)
|
242 |
+
|
243 |
+
save(ep, f, extra_files=extra_files, opset_version=opset_version)
|
244 |
+
|
245 |
+
|
246 |
+
def load(
|
247 |
+
f: Union[str, os.PathLike, io.BytesIO],
|
248 |
+
*,
|
249 |
+
extra_files: Optional[Dict[str, Any]] = None,
|
250 |
+
expected_opset_version: Optional[Dict[str, int]] = None,
|
251 |
+
) -> ExportedProgram:
|
252 |
+
"""
|
253 |
+
|
254 |
+
.. warning::
|
255 |
+
Under active development, saved files may not be usable in newer versions
|
256 |
+
of PyTorch.
|
257 |
+
|
258 |
+
Loads an :class:`ExportedProgram` previously saved with
|
259 |
+
:func:`torch.export.save <torch.export.save>`.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
ep (ExportedProgram): The exported program to save.
|
263 |
+
|
264 |
+
f (Union[str, os.PathLike, io.BytesIO): A file-like object (has to
|
265 |
+
implement write and flush) or a string containing a file name.
|
266 |
+
|
267 |
+
extra_files (Optional[Dict[str, Any]]): The extra filenames given in
|
268 |
+
this map would be loaded and their content would be stored in the
|
269 |
+
provided map.
|
270 |
+
|
271 |
+
expected_opset_version (Optional[Dict[str, int]]): A map of opset names
|
272 |
+
to expected opset versions
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
An :class:`ExportedProgram` object
|
276 |
+
|
277 |
+
Example::
|
278 |
+
|
279 |
+
import torch
|
280 |
+
import io
|
281 |
+
|
282 |
+
# Load ExportedProgram from file
|
283 |
+
ep = torch.export.load('exported_program.pt2')
|
284 |
+
|
285 |
+
# Load ExportedProgram from io.BytesIO object
|
286 |
+
with open('exported_program.pt2', 'rb') as f:
|
287 |
+
buffer = io.BytesIO(f.read())
|
288 |
+
buffer.seek(0)
|
289 |
+
ep = torch.export.load(buffer)
|
290 |
+
|
291 |
+
# Load with extra files.
|
292 |
+
extra_files = {'foo.txt': ''} # values will be replaced with data
|
293 |
+
ep = torch.export.load('exported_program.pt2', extra_files=extra_files)
|
294 |
+
print(extra_files['foo.txt'])
|
295 |
+
print(ep(torch.randn(5)))
|
296 |
+
"""
|
297 |
+
from torch._export import load
|
298 |
+
|
299 |
+
return load(
|
300 |
+
f, extra_files=extra_files, expected_opset_version=expected_opset_version
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
def register_dataclass(
|
305 |
+
cls: Type[Any],
|
306 |
+
*,
|
307 |
+
serialized_type_name: Optional[str] = None,
|
308 |
+
) -> None:
|
309 |
+
"""
|
310 |
+
Registers a dataclass as a valid input/output type for :func:`torch.export.export`.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
cls: the dataclass type to register
|
314 |
+
serialized_type_name: The serialized name for the dataclass. This is
|
315 |
+
required if you want to serialize the pytree TreeSpec containing this
|
316 |
+
dataclass.
|
317 |
+
|
318 |
+
Example::
|
319 |
+
|
320 |
+
@dataclass
|
321 |
+
class InputDataClass:
|
322 |
+
feature: torch.Tensor
|
323 |
+
bias: int
|
324 |
+
|
325 |
+
class OutputDataClass:
|
326 |
+
res: torch.Tensor
|
327 |
+
|
328 |
+
torch.export.register_dataclass(InputDataClass)
|
329 |
+
torch.export.register_dataclass(OutputDataClass)
|
330 |
+
|
331 |
+
def fn(o: InputDataClass) -> torch.Tensor:
|
332 |
+
res = res=o.feature + o.bias
|
333 |
+
return OutputDataClass(res=res)
|
334 |
+
|
335 |
+
ep = torch.export.export(fn, (InputDataClass(torch.ones(2, 2), 1), ))
|
336 |
+
print(ep)
|
337 |
+
|
338 |
+
"""
|
339 |
+
|
340 |
+
from torch._export.utils import register_dataclass_as_pytree_node
|
341 |
+
|
342 |
+
return register_dataclass_as_pytree_node(
|
343 |
+
cls, serialized_type_name=serialized_type_name
|
344 |
+
)
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_remove_auto_functionalized_pass.cpython-310.pyc
ADDED
Binary file (2.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_remove_effect_tokens_pass.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_safeguard.cpython-310.pyc
ADDED
Binary file (1.63 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_trace.cpython-310.pyc
ADDED
Binary file (26.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_tree_utils.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/_unlift.cpython-310.pyc
ADDED
Binary file (8.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/custom_obj.cpython-310.pyc
ADDED
Binary file (571 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/dynamic_shapes.cpython-310.pyc
ADDED
Binary file (24.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/exported_program.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/graph_signature.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/__pycache__/unflatten.cpython-310.pyc
ADDED
Binary file (22.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/export/_remove_auto_functionalized_pass.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import operator
|
8 |
+
from typing import List
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch._higher_order_ops.auto_functionalize import (
|
12 |
+
auto_functionalized,
|
13 |
+
get_mutable_arg_names,
|
14 |
+
)
|
15 |
+
from torch.export import ExportedProgram
|
16 |
+
|
17 |
+
|
18 |
+
def unsafe_remove_auto_functionalized_pass(
|
19 |
+
ep: ExportedProgram,
|
20 |
+
) -> ExportedProgram:
|
21 |
+
"""
|
22 |
+
This pass removes an instances of the higher order op 'auto_functionalized',
|
23 |
+
and modifies the calling EP inplace to have the original mutator op.
|
24 |
+
This pass doesn't perform safety checks to make sure that this inplace mutation is safe.
|
25 |
+
"""
|
26 |
+
auto_functionalize_nodes: List[torch.fx.Node] = []
|
27 |
+
for module in ep.graph_module.modules():
|
28 |
+
if not isinstance(module, torch.fx.GraphModule):
|
29 |
+
continue
|
30 |
+
for node in ep.graph.nodes:
|
31 |
+
if node.op == "call_function" and node.target is auto_functionalized:
|
32 |
+
auto_functionalize_nodes.append(node)
|
33 |
+
|
34 |
+
# Update every use of the HOP
|
35 |
+
for node in reversed(auto_functionalize_nodes):
|
36 |
+
func = node.args[0]
|
37 |
+
original_kwargs = node.kwargs
|
38 |
+
assert isinstance(func, torch._ops.OpOverload)
|
39 |
+
|
40 |
+
with ep.graph.inserting_before(node):
|
41 |
+
# This makes the call_function refer to every arg as a kwarg, this is weird but probably fine?
|
42 |
+
new_node = ep.graph.call_function(func, kwargs=node.kwargs)
|
43 |
+
for k, v in node.meta.items():
|
44 |
+
new_node.meta[k] = v
|
45 |
+
|
46 |
+
# Replace auto_functionalize(func, args) with just func(args)
|
47 |
+
node.replace_all_uses_with(new_node)
|
48 |
+
|
49 |
+
mutable_args_names = get_mutable_arg_names(new_node.target)
|
50 |
+
output_specs = ep.graph_signature.output_specs
|
51 |
+
|
52 |
+
# update the users of the auto_func node (the getitem nodes)
|
53 |
+
for user in list(new_node.users.keys()):
|
54 |
+
assert user.target == operator.getitem
|
55 |
+
# getitem corresponding to a mutated input, just replace all uses with the original input
|
56 |
+
if user.args[1] >= len(func._schema.returns):
|
57 |
+
assert user.args[1] <= len(func._schema.returns) + len(
|
58 |
+
mutable_args_names
|
59 |
+
)
|
60 |
+
|
61 |
+
# If the result of getitem was used in an output node, update the output spec with the correct name
|
62 |
+
adusted_index = user.args[1] - len(func._schema.returns)
|
63 |
+
original_arg = original_kwargs[mutable_args_names[adusted_index]]
|
64 |
+
for spec in output_specs:
|
65 |
+
if spec.arg.name == user.name:
|
66 |
+
spec.arg.name = original_arg.name # pyre-ignore
|
67 |
+
break
|
68 |
+
|
69 |
+
# This is a little fragile/implementation dependent, but the order of the mutable args is the same as the order
|
70 |
+
# of the getitem calls following the HOP.
|
71 |
+
user.replace_all_uses_with(
|
72 |
+
original_kwargs[mutable_args_names[adusted_index]]
|
73 |
+
)
|
74 |
+
|
75 |
+
if len(func._schema.returns) == 1:
|
76 |
+
# If the function has 1 return then it will just directly return the
|
77 |
+
# result -- we don't need a getitem. So we can replace all the
|
78 |
+
# getitem(auto_functionalized, 0) with just the note itself.
|
79 |
+
for user in list(new_node.users.keys()):
|
80 |
+
if user.args[1] == 0:
|
81 |
+
user.replace_all_uses_with(new_node)
|
82 |
+
|
83 |
+
# Same case as above, update the output spec if getitem result used in an output node
|
84 |
+
for spec in output_specs:
|
85 |
+
if spec.arg.name == user.name:
|
86 |
+
spec.arg.name = new_node.name
|
87 |
+
break
|
88 |
+
|
89 |
+
new_node.meta["val"] = node.meta["val"][: len(func._schema.returns)]
|
90 |
+
ep.graph.erase_node(node)
|
91 |
+
|
92 |
+
ep.graph.eliminate_dead_code()
|
93 |
+
return ep
|
venv/lib/python3.10/site-packages/torch/export/_remove_effect_tokens_pass.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch._higher_order_ops.effects import with_effects
|
6 |
+
from .exported_program import ExportedProgram
|
7 |
+
from .graph_signature import (
|
8 |
+
InputKind,
|
9 |
+
InputSpec,
|
10 |
+
OutputKind,
|
11 |
+
OutputSpec,
|
12 |
+
TensorArgument,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def _remove_effect_tokens(ep: ExportedProgram) -> ExportedProgram:
|
17 |
+
"""
|
18 |
+
Removes the existance of tokens from the exported program, including:
|
19 |
+
- Removes the input and output tokens
|
20 |
+
- Replaces with_effects(token, func, args) with just func(args)
|
21 |
+
|
22 |
+
This function does an inplace modification on the given ExportedProgram.
|
23 |
+
"""
|
24 |
+
num_tokens: int = 0
|
25 |
+
input_token_names: List[str] = []
|
26 |
+
new_input_specs: List[InputSpec] = []
|
27 |
+
for inp in ep.graph_signature.input_specs:
|
28 |
+
if inp.kind == InputKind.TOKEN:
|
29 |
+
num_tokens += 1
|
30 |
+
assert isinstance(inp.arg, TensorArgument)
|
31 |
+
input_token_names.append(inp.arg.name)
|
32 |
+
else:
|
33 |
+
new_input_specs.append(inp)
|
34 |
+
|
35 |
+
num_out_tokens: int = 0
|
36 |
+
new_output_specs: List[str] = []
|
37 |
+
output_token_names: List[OutputSpec] = []
|
38 |
+
for out in ep.graph_signature.output_specs:
|
39 |
+
if out.kind == OutputKind.TOKEN:
|
40 |
+
num_out_tokens += 1
|
41 |
+
output_token_names.append(out.arg.name)
|
42 |
+
else:
|
43 |
+
new_output_specs.append(out)
|
44 |
+
|
45 |
+
assert num_tokens == num_out_tokens
|
46 |
+
|
47 |
+
output_node = None
|
48 |
+
with_effect_nodes: List[torch.fx.Node] = []
|
49 |
+
for node in ep.graph.nodes:
|
50 |
+
if node.op == "output":
|
51 |
+
output_node = node
|
52 |
+
break
|
53 |
+
|
54 |
+
if not (node.op == "call_function" and node.target is with_effects):
|
55 |
+
continue
|
56 |
+
|
57 |
+
with_effect_nodes.append(node)
|
58 |
+
|
59 |
+
# Remove tokens from outputs
|
60 |
+
assert output_node is not None
|
61 |
+
output_args = output_node.args[0]
|
62 |
+
assert len(output_args) >= num_tokens
|
63 |
+
out_token_nodes = output_args[:num_tokens]
|
64 |
+
output_node.args = (tuple(output_args[num_tokens:]),)
|
65 |
+
for out_token in out_token_nodes:
|
66 |
+
assert out_token.name in output_token_names
|
67 |
+
ep.graph.erase_node(out_token)
|
68 |
+
|
69 |
+
# Replace with_effects(token, func, args) with just func(args)
|
70 |
+
for node in reversed(with_effect_nodes):
|
71 |
+
func = node.args[1]
|
72 |
+
assert isinstance(func, torch._ops.OpOverload)
|
73 |
+
|
74 |
+
with ep.graph.inserting_before(node):
|
75 |
+
new_node = ep.graph.call_function(func, node.args[2:])
|
76 |
+
for k, v in node.meta.items():
|
77 |
+
new_node.meta[k] = v
|
78 |
+
|
79 |
+
node.replace_all_uses_with(new_node)
|
80 |
+
|
81 |
+
# Update user getitem nodes
|
82 |
+
for user in list(new_node.users.keys()):
|
83 |
+
assert user.target == operator.getitem
|
84 |
+
# getitem(with_effects, 0) == token
|
85 |
+
if user.args[1] == 0:
|
86 |
+
ep.graph.erase_node(user)
|
87 |
+
|
88 |
+
if len(func._schema.returns) == 1:
|
89 |
+
# If the function has 1 return then it will just directly return the
|
90 |
+
# result -- we don't need a getitem. So we can replace all the
|
91 |
+
# getitem(with_effects, 1) with just the note itself.
|
92 |
+
for user in list(new_node.users.keys()):
|
93 |
+
assert user.args[1] == 1
|
94 |
+
user.replace_all_uses_with(new_node)
|
95 |
+
|
96 |
+
new_node.meta["val"] = node.meta["val"][1]
|
97 |
+
elif len(func._schema.returns) > 1:
|
98 |
+
# If the function has more than 1 return then since we got rid of
|
99 |
+
# the 1st return value (the token), we need to bump all the other
|
100 |
+
# getitem calls by 1 down
|
101 |
+
for user in list(new_node.users.keys()):
|
102 |
+
assert user.args[1] >= 1
|
103 |
+
user.args = (user.args[0], user.args[1] - 1)
|
104 |
+
|
105 |
+
new_node.meta["val"] = node.meta["val"][1:]
|
106 |
+
else:
|
107 |
+
assert len(func._schema.returns) == 0
|
108 |
+
assert len(new_node.users) == 0
|
109 |
+
new_node.meta["val"] = None
|
110 |
+
|
111 |
+
ep.graph.erase_node(node)
|
112 |
+
|
113 |
+
# Remove tokens from inputs
|
114 |
+
placeholders = [node for node in ep.graph.nodes if node.op == "placeholder"]
|
115 |
+
assert len(placeholders) >= num_tokens
|
116 |
+
inp_token_nodes = placeholders[:num_tokens]
|
117 |
+
for inp_token in inp_token_nodes:
|
118 |
+
assert inp_token.name in input_token_names
|
119 |
+
ep.graph.erase_node(inp_token)
|
120 |
+
|
121 |
+
# Update graph signature
|
122 |
+
ep.graph_signature.input_specs = new_input_specs
|
123 |
+
ep.graph_signature.output_specs = new_output_specs
|
124 |
+
|
125 |
+
ep.graph.eliminate_dead_code()
|
126 |
+
return ep
|
venv/lib/python3.10/site-packages/torch/export/_safeguard.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode
|
3 |
+
from torch.overrides import TorchFunctionMode
|
4 |
+
|
5 |
+
|
6 |
+
class AutogradStateOpsFailSafeguard(TorchFunctionMode):
|
7 |
+
"""
|
8 |
+
Detect grad state ops during exporting the graph and fail the process by
|
9 |
+
raising an error, to avoid unexpected behavior. Those grad mode ops could be:
|
10 |
+
`torch.no_grad`
|
11 |
+
`torch.enable_grad`
|
12 |
+
`torch.set_grad_enabled`
|
13 |
+
|
14 |
+
Export with predispatch mode is exempted.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __torch_function__(self, func, types, args=(), kwargs=None):
|
18 |
+
kwargs = kwargs or {}
|
19 |
+
unsupported_grad_mode_ops = [
|
20 |
+
torch._C._set_grad_enabled,
|
21 |
+
]
|
22 |
+
# It's only enabled while tracing, by confirming the torch dispatch mode is
|
23 |
+
# any active PROXY. This is to allow the autograd ops out of tracing.
|
24 |
+
current_state = torch._C.is_grad_enabled()
|
25 |
+
if func in unsupported_grad_mode_ops:
|
26 |
+
assert len(args) == 1
|
27 |
+
changed_state = args[0]
|
28 |
+
mode = torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
|
29 |
+
# Intend to check if it's not the pre_dispatch mode. It's allowed to use
|
30 |
+
# autograd ops in pre_dispatch mode, e.g. `torch.no_grad`
|
31 |
+
if (
|
32 |
+
mode
|
33 |
+
and isinstance(mode, ProxyTorchDispatchMode)
|
34 |
+
and not mode.pre_dispatch
|
35 |
+
and changed_state != current_state
|
36 |
+
):
|
37 |
+
raise RuntimeError(
|
38 |
+
f"Encountered autograd state manager op {func} trying to change global autograd state "
|
39 |
+
"while exporting. This is unsafe because we don't capture this op in torch.export "
|
40 |
+
"today, hence we can't reflect the user intention soundly."
|
41 |
+
)
|
42 |
+
return func(*args, **kwargs)
|
venv/lib/python3.10/site-packages/torch/export/_trace.py
ADDED
@@ -0,0 +1,1060 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import functools
|
3 |
+
import inspect
|
4 |
+
import logging
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
import warnings
|
8 |
+
from contextlib import contextmanager, nullcontext
|
9 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch._dynamo
|
13 |
+
import torch.fx
|
14 |
+
|
15 |
+
import torch.utils._pytree as pytree
|
16 |
+
from torch._dynamo.exc import UserError, UserErrorType
|
17 |
+
from torch._export.non_strict_utils import (
|
18 |
+
make_constraints,
|
19 |
+
make_fake_inputs,
|
20 |
+
make_fake_params_buffers,
|
21 |
+
)
|
22 |
+
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
|
23 |
+
_AddRuntimeAssertionsForInlineConstraintsPass,
|
24 |
+
)
|
25 |
+
from torch._export.passes.collect_tracepoints_pass import CollectTracepointsPass
|
26 |
+
from torch._export.passes.lift_constants_pass import (
|
27 |
+
ConstantAttrMap,
|
28 |
+
lift_constants_pass,
|
29 |
+
rewrite_script_object_meta,
|
30 |
+
)
|
31 |
+
from torch._export.wrappers import _wrap_submodules
|
32 |
+
from torch._functorch.aot_autograd import aot_export_module
|
33 |
+
from torch._guards import detect_fake_mode
|
34 |
+
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
|
35 |
+
from torch._utils_internal import log_export_usage
|
36 |
+
from torch.export.exported_program import OutputKind
|
37 |
+
from torch.fx.experimental.symbolic_shapes import (
|
38 |
+
ConstraintViolationError,
|
39 |
+
free_unbacked_symbols,
|
40 |
+
GuardOnDataDependentSymNode,
|
41 |
+
ShapeEnv,
|
42 |
+
)
|
43 |
+
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
|
44 |
+
from torch.utils._sympy.value_ranges import ValueRangeError
|
45 |
+
|
46 |
+
from ._safeguard import AutogradStateOpsFailSafeguard
|
47 |
+
|
48 |
+
from .dynamic_shapes import _process_constraints, Constraint
|
49 |
+
from .exported_program import (
|
50 |
+
_disable_prexisiting_fake_mode,
|
51 |
+
ExportedProgram,
|
52 |
+
InputKind,
|
53 |
+
ModuleCallEntry,
|
54 |
+
ModuleCallSignature,
|
55 |
+
)
|
56 |
+
from .graph_signature import (
|
57 |
+
_sig_to_specs,
|
58 |
+
ArgumentSpec,
|
59 |
+
ConstantArgument,
|
60 |
+
CustomObjArgument,
|
61 |
+
ExportGraphSignature,
|
62 |
+
SymIntArgument,
|
63 |
+
TensorArgument,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
log = logging.getLogger(__name__)
|
68 |
+
|
69 |
+
|
70 |
+
@dataclasses.dataclass
|
71 |
+
class ExportDynamoConfig:
|
72 |
+
"""
|
73 |
+
Manage Export-specific configurations of Dynamo.
|
74 |
+
"""
|
75 |
+
|
76 |
+
allow_rnn: bool = True
|
77 |
+
reorderable_logging_functions: Set[Callable] = dataclasses.field(
|
78 |
+
default_factory=set
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
DEFAULT_EXPORT_DYNAMO_CONFIG = ExportDynamoConfig()
|
83 |
+
DEFAULT_EXPORT_DYNAMO_CONFIG.reorderable_logging_functions = {
|
84 |
+
logging.critical,
|
85 |
+
logging.debug,
|
86 |
+
logging.error,
|
87 |
+
logging.exception,
|
88 |
+
logging.info,
|
89 |
+
logging.log,
|
90 |
+
logging.warning,
|
91 |
+
print,
|
92 |
+
warnings.warn,
|
93 |
+
}
|
94 |
+
|
95 |
+
|
96 |
+
@contextmanager
|
97 |
+
def _ignore_backend_decomps():
|
98 |
+
orig_mkldnn_flag = torch.backends.mkldnn.set_flags(False)
|
99 |
+
orig_nnpack_flag = torch.backends.nnpack.set_flags(False)
|
100 |
+
try:
|
101 |
+
yield
|
102 |
+
finally:
|
103 |
+
torch.backends.mkldnn.set_flags(*orig_mkldnn_flag)
|
104 |
+
torch.backends.nnpack.set_flags(*orig_nnpack_flag)
|
105 |
+
|
106 |
+
|
107 |
+
def _convert_input_to_fake(gm, args, kwargs):
|
108 |
+
params_buffers = _get_params_buffers(gm)
|
109 |
+
fake_inps: List[torch.Tensor] = []
|
110 |
+
for node in gm.graph.nodes:
|
111 |
+
if node.op == "placeholder" and "val" in node.meta:
|
112 |
+
fake_val = node.meta["val"]
|
113 |
+
if fake_val is not None and isinstance(fake_val, torch.Tensor):
|
114 |
+
fake_inps.append(fake_val)
|
115 |
+
|
116 |
+
if detected_fake_mode := detect_fake_mode(fake_inps):
|
117 |
+
fake_mode = detected_fake_mode
|
118 |
+
else:
|
119 |
+
fake_mode = FakeTensorMode(shape_env=ShapeEnv())
|
120 |
+
|
121 |
+
if len(args) == 0 and len(kwargs) == 0:
|
122 |
+
return (), {}, params_buffers, fake_mode
|
123 |
+
|
124 |
+
count = 0
|
125 |
+
|
126 |
+
def convert_to_fake(x):
|
127 |
+
nonlocal count
|
128 |
+
val = fake_inps[count]
|
129 |
+
count += 1
|
130 |
+
return val
|
131 |
+
|
132 |
+
fake_args = pytree.tree_map_only(torch.Tensor, convert_to_fake, args)
|
133 |
+
# TODO properly use the cached fake tensor
|
134 |
+
fake_kwargs = pytree.tree_map_only(torch.Tensor, fake_mode.from_tensor, kwargs)
|
135 |
+
fake_params_buffers = pytree.tree_map_only(
|
136 |
+
torch.Tensor,
|
137 |
+
functools.partial(fake_mode.from_tensor, static_shapes=True),
|
138 |
+
params_buffers,
|
139 |
+
)
|
140 |
+
return fake_args, fake_kwargs, fake_params_buffers, fake_mode
|
141 |
+
|
142 |
+
|
143 |
+
def _replace_param_buffer_names(param_buffer_table, sig):
|
144 |
+
for spec in sig.input_specs:
|
145 |
+
if spec.kind in (
|
146 |
+
InputKind.PARAMETER,
|
147 |
+
InputKind.BUFFER,
|
148 |
+
):
|
149 |
+
spec.target = param_buffer_table[spec.target]
|
150 |
+
for spec in sig.output_specs:
|
151 |
+
if spec.kind in (
|
152 |
+
OutputKind.BUFFER_MUTATION,
|
153 |
+
OutputKind.GRADIENT_TO_PARAMETER,
|
154 |
+
):
|
155 |
+
spec.target = param_buffer_table[spec.target]
|
156 |
+
|
157 |
+
|
158 |
+
def _convert_to_positional_args(orig_arg_names, args, kwargs):
|
159 |
+
assert len(orig_arg_names) == len(args) + len(kwargs), (
|
160 |
+
f"Total number of arg names is expected to be {len(orig_arg_names)} "
|
161 |
+
f"but got {len(args)} positional args, {len(kwargs)} kwargs."
|
162 |
+
)
|
163 |
+
reordered_kwargs = [kwargs[kw_name] for kw_name in orig_arg_names[len(args) :]]
|
164 |
+
return (
|
165 |
+
*args,
|
166 |
+
*reordered_kwargs,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def _normalize_nn_module_stack(gm_torch_level, root_cls):
|
171 |
+
# Append a root module to every nn_module_stack.
|
172 |
+
root = "L['self']"
|
173 |
+
root_key = re.sub(r"[^a-zA-Z0-9]", "_", root)
|
174 |
+
for gm in gm_torch_level.modules():
|
175 |
+
if not isinstance(gm, torch.fx.GraphModule):
|
176 |
+
continue
|
177 |
+
for node in gm.graph.nodes:
|
178 |
+
if node.op in ["placeholder", "output"]:
|
179 |
+
continue
|
180 |
+
add_root = True
|
181 |
+
if nn_module_stack := node.meta.get("nn_module_stack", {}):
|
182 |
+
path, ty = next(iter(nn_module_stack.values()))
|
183 |
+
# After deserializing the class `ty` might not exist anymore so
|
184 |
+
# it could be a string
|
185 |
+
if inspect.isclass(ty) and issubclass(ty, torch.nn.Module):
|
186 |
+
# TODO Figure out why sometimes we have root sometimes we don't.
|
187 |
+
if path == root and ty is root_cls:
|
188 |
+
add_root = False
|
189 |
+
else:
|
190 |
+
assert isinstance(ty, str)
|
191 |
+
if add_root:
|
192 |
+
|
193 |
+
def normalize_path(path):
|
194 |
+
try:
|
195 |
+
parts = []
|
196 |
+
|
197 |
+
class Path:
|
198 |
+
def __getattr__(self, name):
|
199 |
+
parts.append(name)
|
200 |
+
return self
|
201 |
+
|
202 |
+
def __getitem__(self, idx):
|
203 |
+
parts.append(str(idx))
|
204 |
+
return self
|
205 |
+
|
206 |
+
eval(path, {"L": {"self": Path()}})
|
207 |
+
return ".".join(parts)
|
208 |
+
except Exception: # TODO(zhxchen17) Remove this.
|
209 |
+
return path
|
210 |
+
|
211 |
+
nn_module_stack = {root_key: (root, root_cls), **nn_module_stack}
|
212 |
+
node.meta["nn_module_stack"] = {
|
213 |
+
key: (normalize_path(path), ty)
|
214 |
+
for key, (path, ty) in nn_module_stack.items()
|
215 |
+
}
|
216 |
+
|
217 |
+
|
218 |
+
def _get_param_buffer_mapping(
|
219 |
+
original_module: torch.nn.Module,
|
220 |
+
traced_module: torch.nn.Module,
|
221 |
+
) -> Dict[str, str]:
|
222 |
+
"""
|
223 |
+
Returns a mapping of parameter/buffer names from the new module to the
|
224 |
+
original model. This is to help with restoring the FQN for parameter/buffers
|
225 |
+
of a traced module to what the original module contains.
|
226 |
+
"""
|
227 |
+
|
228 |
+
param_lookup: Dict[int, List[str]] = {}
|
229 |
+
buffer_lookup: Dict[int, List[str]] = {}
|
230 |
+
for name, param in original_module.named_parameters(remove_duplicate=False):
|
231 |
+
param_lookup.setdefault(id(param), []).append(name)
|
232 |
+
for name, buffer in original_module.named_buffers(remove_duplicate=False):
|
233 |
+
buffer_lookup.setdefault(id(buffer), []).append(name)
|
234 |
+
|
235 |
+
param_buffer_table: Dict[str, str] = {}
|
236 |
+
for dynamo_name, dynamo_param in traced_module.named_parameters(
|
237 |
+
remove_duplicate=False
|
238 |
+
):
|
239 |
+
assert dynamo_name not in param_buffer_table
|
240 |
+
if id(dynamo_param) in param_lookup:
|
241 |
+
param_buffer_table[dynamo_name] = param_lookup[id(dynamo_param)].pop()
|
242 |
+
|
243 |
+
for dynamo_name, dynamo_buffer in traced_module.named_buffers(
|
244 |
+
remove_duplicate=False
|
245 |
+
):
|
246 |
+
assert dynamo_name not in param_buffer_table
|
247 |
+
if id(dynamo_buffer) in buffer_lookup:
|
248 |
+
param_buffer_table[dynamo_name] = buffer_lookup[id(dynamo_buffer)].pop()
|
249 |
+
|
250 |
+
return param_buffer_table
|
251 |
+
|
252 |
+
|
253 |
+
def _remap_constants(
|
254 |
+
orig_constant_attrs: ConstantAttrMap,
|
255 |
+
graph_signature: ExportGraphSignature,
|
256 |
+
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
|
257 |
+
) -> None:
|
258 |
+
"""Rewrite the graph signature and constants table to use the FQN from the original module."""
|
259 |
+
remap_table: Dict[str, str] = {}
|
260 |
+
for name, value in constants.items():
|
261 |
+
if value in orig_constant_attrs:
|
262 |
+
remap_table[name] = orig_constant_attrs[value]
|
263 |
+
|
264 |
+
for spec in graph_signature.input_specs:
|
265 |
+
if spec.kind in (
|
266 |
+
InputKind.CONSTANT_TENSOR,
|
267 |
+
InputKind.CUSTOM_OBJ,
|
268 |
+
):
|
269 |
+
orig_target = spec.target
|
270 |
+
assert orig_target is not None
|
271 |
+
spec.target = remap_table.get(orig_target, orig_target)
|
272 |
+
|
273 |
+
constant = constants[orig_target]
|
274 |
+
del constants[orig_target]
|
275 |
+
constants[spec.target] = constant
|
276 |
+
|
277 |
+
|
278 |
+
def _restore_state_dict(
|
279 |
+
original_module: torch.nn.Module, traced_module: torch.fx.GraphModule
|
280 |
+
) -> None:
|
281 |
+
"""
|
282 |
+
Restores the state dict of the traced module to that of the original module.
|
283 |
+
"""
|
284 |
+
param_buffer_table = _get_param_buffer_mapping(original_module, traced_module)
|
285 |
+
# Since the graph module is flattened (no module heirarchy), we
|
286 |
+
# need to noramlize the module by replacing "." with "_". If we
|
287 |
+
# don't, it will try to save the weight to a submodule which no
|
288 |
+
# longer exists.
|
289 |
+
for name, fqn in param_buffer_table.items():
|
290 |
+
param_buffer_table[name] = fqn.replace(".", "_")
|
291 |
+
|
292 |
+
# Replace state dict attr names with the fqn
|
293 |
+
for name, fqn in param_buffer_table.items():
|
294 |
+
if not hasattr(traced_module, name):
|
295 |
+
continue
|
296 |
+
|
297 |
+
attr = getattr(traced_module, name)
|
298 |
+
if isinstance(attr, torch.Tensor) and not isinstance(attr, torch.nn.Parameter):
|
299 |
+
traced_module.register_buffer(fqn, attr)
|
300 |
+
else:
|
301 |
+
setattr(traced_module, fqn, attr)
|
302 |
+
delattr(traced_module, name)
|
303 |
+
|
304 |
+
# Replace graph getattr nodes with the correct name
|
305 |
+
for node in traced_module.graph.nodes:
|
306 |
+
if node.op == "get_attr":
|
307 |
+
attr_name = node.target
|
308 |
+
if attr_name in param_buffer_table:
|
309 |
+
node.target = param_buffer_table[attr_name]
|
310 |
+
|
311 |
+
traced_module.recompile()
|
312 |
+
|
313 |
+
|
314 |
+
def _export_to_torch_ir(
|
315 |
+
f: Callable,
|
316 |
+
args: Tuple[Any, ...],
|
317 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
318 |
+
constraints: Optional[List[Constraint]] = None,
|
319 |
+
*,
|
320 |
+
preserve_module_call_signature: Tuple[str, ...] = (),
|
321 |
+
disable_constraint_solver: bool = False,
|
322 |
+
restore_fqn: bool = True,
|
323 |
+
_log_export_usage: bool = True,
|
324 |
+
) -> torch.fx.GraphModule:
|
325 |
+
"""
|
326 |
+
Traces either an nn.Module's forward function or just a callable with PyTorch
|
327 |
+
operations inside and produce a torch.fx.GraphModule in torch IR.
|
328 |
+
"""
|
329 |
+
|
330 |
+
if _log_export_usage:
|
331 |
+
log_export_usage(event="export.private_api", flags={"_export_to_torch_ir"})
|
332 |
+
|
333 |
+
kwargs = kwargs or {}
|
334 |
+
|
335 |
+
if not isinstance(args, tuple):
|
336 |
+
raise UserError(
|
337 |
+
UserErrorType.INVALID_INPUT,
|
338 |
+
f"Expecting `args` to be a tuple of example positional inputs, got {type(args)}",
|
339 |
+
)
|
340 |
+
|
341 |
+
with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)):
|
342 |
+
try:
|
343 |
+
module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}
|
344 |
+
with _wrap_submodules(
|
345 |
+
f, preserve_module_call_signature, module_call_specs
|
346 |
+
), _ignore_backend_decomps():
|
347 |
+
gm_torch_level, _ = torch._dynamo.export(
|
348 |
+
f,
|
349 |
+
constraints=constraints, # type: ignore[arg-type]
|
350 |
+
assume_static_by_default=True,
|
351 |
+
tracing_mode="symbolic",
|
352 |
+
disable_constraint_solver=disable_constraint_solver,
|
353 |
+
_log_export_usage=_log_export_usage,
|
354 |
+
)(
|
355 |
+
*args,
|
356 |
+
**kwargs,
|
357 |
+
)
|
358 |
+
except (ConstraintViolationError, ValueRangeError) as e:
|
359 |
+
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: TRY200
|
360 |
+
except GuardOnDataDependentSymNode as e:
|
361 |
+
raise UserError( # noqa: TRY200
|
362 |
+
UserErrorType.ANTI_PATTERN,
|
363 |
+
f"Consider annotating your code using torch._constrain_as_*(). {str(e)}",
|
364 |
+
case_name="constrain_as_size_example",
|
365 |
+
)
|
366 |
+
|
367 |
+
gm_torch_level.meta["module_call_specs"] = module_call_specs
|
368 |
+
|
369 |
+
if isinstance(f, torch.nn.Module) and restore_fqn:
|
370 |
+
_restore_state_dict(f, gm_torch_level)
|
371 |
+
|
372 |
+
return gm_torch_level
|
373 |
+
|
374 |
+
|
375 |
+
def _gather_constant_attrs(m: torch.nn.Module) -> ConstantAttrMap:
|
376 |
+
"""Search the module hierarchy, gathering up all tensor and ScriptObject constants.
|
377 |
+
|
378 |
+
Returns a dictionary mapping hash(value) to the name of the constant. We
|
379 |
+
have to abuse `hash` here unfortunately, see: [ScriptObject hash].
|
380 |
+
"""
|
381 |
+
constants = ConstantAttrMap()
|
382 |
+
buffers_parameters = set(m.buffers())
|
383 |
+
buffers_parameters.update(m.parameters())
|
384 |
+
|
385 |
+
def inner(m: torch.nn.Module, prefix_atoms: List[str], constants):
|
386 |
+
for k, v in m.__dict__.items():
|
387 |
+
if isinstance(v, (torch.Tensor, torch.ScriptObject)):
|
388 |
+
if v in buffers_parameters:
|
389 |
+
# filter out buffers and parameters, leaving only constants
|
390 |
+
continue
|
391 |
+
|
392 |
+
fqn = ".".join(prefix_atoms + [k])
|
393 |
+
if v in constants:
|
394 |
+
raise ValueError(
|
395 |
+
f"Duplicate reference to constant attribute found: '{constants[v]}' and '{fqn}'."
|
396 |
+
)
|
397 |
+
|
398 |
+
constants[v] = fqn
|
399 |
+
for k, v in m.named_children():
|
400 |
+
inner(v, prefix_atoms + [k], constants)
|
401 |
+
|
402 |
+
inner(m, [], constants)
|
403 |
+
return constants
|
404 |
+
|
405 |
+
|
406 |
+
def _export_non_strict(
|
407 |
+
mod: torch.nn.Module,
|
408 |
+
fake_args,
|
409 |
+
fake_kwargs,
|
410 |
+
fake_params_buffers,
|
411 |
+
constant_attrs: ConstantAttrMap,
|
412 |
+
*,
|
413 |
+
transform=lambda x: x, # TODO(zhxchen17) Revisit if this is needed later.
|
414 |
+
pre_dispatch=False,
|
415 |
+
):
|
416 |
+
# [NOTE] If the user is exporting under training mode, we want to detect if there is any
|
417 |
+
# state change in the autograd global state and error. If the user is exporting under inference
|
418 |
+
# mode, we don't care.
|
419 |
+
is_grad_enabled = torch._C.is_grad_enabled()
|
420 |
+
grad_safe_guard = (
|
421 |
+
AutogradStateOpsFailSafeguard() if is_grad_enabled else nullcontext()
|
422 |
+
)
|
423 |
+
|
424 |
+
@contextmanager
|
425 |
+
def _compiling_state_context():
|
426 |
+
old_value = torch.compiler._is_compiling_flag
|
427 |
+
try:
|
428 |
+
torch.compiler._is_compiling_flag = True
|
429 |
+
yield
|
430 |
+
finally:
|
431 |
+
torch.compiler._is_compiling_flag = old_value
|
432 |
+
|
433 |
+
# This _reparametrize_module makes sure inputs and module.params/buffers have the same fake_mode,
|
434 |
+
# otherwise aot_export_module will error out because it sees a mix of fake_modes.
|
435 |
+
# And we want aot_export_module to use the fake_tensor mode in dynamo to keep the pipeline easy to reason about.
|
436 |
+
with torch.nn.utils.stateless._reparametrize_module(
|
437 |
+
mod, fake_params_buffers
|
438 |
+
), grad_safe_guard, _ignore_backend_decomps(), _compiling_state_context(): # type: ignore[attr-defined]
|
439 |
+
gm, graph_signature = transform(aot_export_module)(
|
440 |
+
mod,
|
441 |
+
fake_args,
|
442 |
+
trace_joint=False,
|
443 |
+
pre_dispatch=pre_dispatch,
|
444 |
+
kwargs=fake_kwargs,
|
445 |
+
)
|
446 |
+
# TODO unfortunately preserving graph-level metadata is not
|
447 |
+
# working well with aot_export. So we manually copy it.
|
448 |
+
# (The node-level meta is addressed above.)
|
449 |
+
if isinstance(mod, torch.fx.GraphModule) and hasattr(mod, "meta"):
|
450 |
+
gm.meta.update(mod.meta)
|
451 |
+
|
452 |
+
if pre_dispatch:
|
453 |
+
from torch._export.passes.replace_set_grad_with_hop_pass import (
|
454 |
+
replace_set_grad_with_hop_pass,
|
455 |
+
)
|
456 |
+
|
457 |
+
gm = replace_set_grad_with_hop_pass(gm)
|
458 |
+
|
459 |
+
# NOTE: aot_export adds symint metadata for placeholders with int values;
|
460 |
+
# since these become specialized, we replace such metadata with the original values
|
461 |
+
flat_args = pytree.tree_leaves((fake_args, fake_kwargs))
|
462 |
+
index = 0
|
463 |
+
total_non_user_inputs = (
|
464 |
+
len(graph_signature.parameters)
|
465 |
+
+ len(graph_signature.buffers)
|
466 |
+
+ len(graph_signature.input_tokens)
|
467 |
+
)
|
468 |
+
for node in gm.graph.nodes:
|
469 |
+
if node.op == "placeholder":
|
470 |
+
if index >= total_non_user_inputs:
|
471 |
+
user_arg = flat_args[index - total_non_user_inputs]
|
472 |
+
if not isinstance(user_arg, torch.Tensor):
|
473 |
+
node.meta["val"] = user_arg
|
474 |
+
index += 1
|
475 |
+
|
476 |
+
is_joint = graph_signature.backward_signature is not None
|
477 |
+
|
478 |
+
def make_argument_spec(node) -> ArgumentSpec:
|
479 |
+
if isinstance(node, (int, bool, float, type(None))):
|
480 |
+
# For const outputs we just directly return this
|
481 |
+
return ConstantArgument(value=node)
|
482 |
+
|
483 |
+
assert (
|
484 |
+
"val" in node.meta
|
485 |
+
), f"{node} is not a constant or a node with a 'val' metadata field"
|
486 |
+
val = node.meta["val"]
|
487 |
+
if isinstance(val, FakeTensor):
|
488 |
+
return TensorArgument(name=node.name)
|
489 |
+
elif isinstance(val, torch.SymInt):
|
490 |
+
return SymIntArgument(name=node.name)
|
491 |
+
elif isinstance(val, torch.ScriptObject):
|
492 |
+
return CustomObjArgument(
|
493 |
+
name=node.name, class_fqn=val._type().qualified_name() # type: ignore[attr-defined]
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
# TODO: this branch is likely wrong, all permissible ConstantArgument type
|
497 |
+
# should have been handled already
|
498 |
+
return ConstantArgument(value=val)
|
499 |
+
|
500 |
+
input_specs, output_specs = _sig_to_specs(
|
501 |
+
user_inputs=set(graph_signature.user_inputs),
|
502 |
+
inputs_to_parameters=graph_signature.inputs_to_parameters, # type: ignore[arg-type]
|
503 |
+
inputs_to_buffers=graph_signature.inputs_to_buffers, # type: ignore[arg-type]
|
504 |
+
user_outputs=set(graph_signature.user_outputs), # type: ignore[arg-type]
|
505 |
+
buffer_mutations=graph_signature.buffers_to_mutate, # type: ignore[arg-type]
|
506 |
+
user_input_mutations=graph_signature.user_inputs_to_mutate, # type: ignore[arg-type]
|
507 |
+
grad_params=graph_signature.backward_signature.gradients_to_parameters if is_joint else {}, # type: ignore[arg-type, union-attr]
|
508 |
+
grad_user_inputs=graph_signature.backward_signature.gradients_to_user_inputs if is_joint else {}, # type: ignore[arg-type, union-attr]
|
509 |
+
loss_output=graph_signature.backward_signature.loss_output if is_joint else None, # type: ignore[arg-type, union-attr]
|
510 |
+
inputs=[
|
511 |
+
make_argument_spec(node)
|
512 |
+
for node in gm.graph.nodes
|
513 |
+
if node.op == "placeholder"
|
514 |
+
],
|
515 |
+
outputs=[
|
516 |
+
make_argument_spec(node)
|
517 |
+
for node in pytree.tree_leaves(next(iter(reversed(gm.graph.nodes))).args)
|
518 |
+
],
|
519 |
+
input_tokens=graph_signature.input_tokens,
|
520 |
+
output_tokens=graph_signature.output_tokens,
|
521 |
+
)
|
522 |
+
export_graph_signature = ExportGraphSignature(
|
523 |
+
input_specs=input_specs, output_specs=output_specs
|
524 |
+
)
|
525 |
+
|
526 |
+
constants = rewrite_script_object_meta(gm)
|
527 |
+
constants.update(lift_constants_pass(gm, export_graph_signature, constant_attrs))
|
528 |
+
|
529 |
+
@dataclasses.dataclass
|
530 |
+
class _ExportedProgramNonStrict:
|
531 |
+
gm: torch.fx.GraphModule
|
532 |
+
sig: ExportGraphSignature
|
533 |
+
constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]
|
534 |
+
|
535 |
+
return _ExportedProgramNonStrict(
|
536 |
+
gm,
|
537 |
+
export_graph_signature,
|
538 |
+
constants,
|
539 |
+
)
|
540 |
+
|
541 |
+
|
542 |
+
def _get_params_buffers(mod: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
543 |
+
params_buffers: Dict[str, torch.Tensor] = {}
|
544 |
+
for name, param in mod.named_parameters(remove_duplicate=False):
|
545 |
+
params_buffers[name] = param
|
546 |
+
|
547 |
+
for name, buffer in mod.named_buffers(remove_duplicate=False):
|
548 |
+
params_buffers[name] = buffer
|
549 |
+
return params_buffers
|
550 |
+
|
551 |
+
|
552 |
+
def _rewrite_dynamo_tensor_constants(
|
553 |
+
orig_mod_buffers: Set[torch.Tensor],
|
554 |
+
traced_mod_buffers: Dict[str, torch.Tensor],
|
555 |
+
graph_signature: ExportGraphSignature,
|
556 |
+
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
|
557 |
+
):
|
558 |
+
"""Dynamo erroneously marks tensor attributes on modules as a buffers.
|
559 |
+
|
560 |
+
Rewrite them to be tensor constants.
|
561 |
+
"""
|
562 |
+
for spec in graph_signature.input_specs:
|
563 |
+
if spec.kind == InputKind.BUFFER:
|
564 |
+
assert spec.target is not None
|
565 |
+
value = traced_mod_buffers[spec.target]
|
566 |
+
if value not in orig_mod_buffers:
|
567 |
+
# This was a tensor constant erroneously marked as a buffer.
|
568 |
+
# Convert it int oa constant in the graph signature, and add its
|
569 |
+
# value to the constants table.
|
570 |
+
spec.kind = InputKind.CONSTANT_TENSOR
|
571 |
+
constants[spec.target] = value
|
572 |
+
|
573 |
+
|
574 |
+
def _rewrite_non_persistent_buffers(
|
575 |
+
orig_mod: torch.nn.Module,
|
576 |
+
graph_signature: ExportGraphSignature,
|
577 |
+
constants: Dict[str, Union[torch.Tensor, torch.ScriptObject]],
|
578 |
+
):
|
579 |
+
"""Dynamo erroneously drops the persistent flag on buffers.
|
580 |
+
|
581 |
+
Rewrite non-persistent buffers to reflect the original module.
|
582 |
+
"""
|
583 |
+
state_dict = orig_mod.state_dict()
|
584 |
+
for spec in graph_signature.input_specs:
|
585 |
+
if spec.kind == InputKind.BUFFER:
|
586 |
+
assert spec.target is not None
|
587 |
+
if spec.target not in state_dict:
|
588 |
+
assert spec.target not in constants
|
589 |
+
spec.persistent = False
|
590 |
+
constants[spec.target] = orig_mod.get_buffer(spec.target)
|
591 |
+
|
592 |
+
|
593 |
+
def get_ep_stats(ep: ExportedProgram) -> Dict[str, Any]:
|
594 |
+
op_count = 0
|
595 |
+
op_set = set()
|
596 |
+
for m in ep.graph_module.modules():
|
597 |
+
if not isinstance(m, torch.fx.GraphModule):
|
598 |
+
continue
|
599 |
+
for node in m.graph.nodes:
|
600 |
+
if node.op != "call_function":
|
601 |
+
continue
|
602 |
+
op_count += 1
|
603 |
+
assert hasattr(node.target, "__module__")
|
604 |
+
assert hasattr(node.target, "__name__")
|
605 |
+
op_set.add(f"{node.target.__module__}.{node.target.__name__}")
|
606 |
+
return {"op_count": op_count, "op_set": op_set}
|
607 |
+
|
608 |
+
|
609 |
+
_EXPORT_FLAGS: Optional[Set[str]] = None
|
610 |
+
|
611 |
+
|
612 |
+
def _log_export_wrapper(fn):
|
613 |
+
@functools.wraps(fn)
|
614 |
+
def wrapper(*args, **kwargs):
|
615 |
+
global _EXPORT_FLAGS
|
616 |
+
try:
|
617 |
+
start = time.time()
|
618 |
+
ep = fn(*args, **kwargs)
|
619 |
+
end = time.time()
|
620 |
+
log_export_usage(
|
621 |
+
event="export.time",
|
622 |
+
metrics=end - start,
|
623 |
+
flags=_EXPORT_FLAGS,
|
624 |
+
**get_ep_stats(ep),
|
625 |
+
)
|
626 |
+
except Exception as e:
|
627 |
+
t = type(e)
|
628 |
+
error_type = t.__module__ + "." + t.__qualname__
|
629 |
+
log_export_usage(
|
630 |
+
event="export.error",
|
631 |
+
type=error_type,
|
632 |
+
message=str(e),
|
633 |
+
flags=_EXPORT_FLAGS,
|
634 |
+
)
|
635 |
+
raise e
|
636 |
+
finally:
|
637 |
+
_EXPORT_FLAGS = None
|
638 |
+
|
639 |
+
return ep
|
640 |
+
|
641 |
+
return wrapper
|
642 |
+
|
643 |
+
|
644 |
+
@_log_export_wrapper
|
645 |
+
@_disable_prexisiting_fake_mode
|
646 |
+
def _export(
|
647 |
+
mod: torch.nn.Module,
|
648 |
+
args: Tuple[Any, ...],
|
649 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
650 |
+
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
|
651 |
+
*,
|
652 |
+
strict: bool = True,
|
653 |
+
preserve_module_call_signature: Tuple[str, ...] = (),
|
654 |
+
pre_dispatch: bool = False,
|
655 |
+
) -> ExportedProgram:
|
656 |
+
"""
|
657 |
+
Traces either an nn.Module's forward function or just a callable with PyTorch
|
658 |
+
operations inside and produce a ExportedProgram.
|
659 |
+
|
660 |
+
Args:
|
661 |
+
f: the `nn.Module` to trace.
|
662 |
+
|
663 |
+
args: example positional inputs.
|
664 |
+
|
665 |
+
kwargs: optional example keyword inputs.
|
666 |
+
|
667 |
+
dynamic_shapes:
|
668 |
+
An optional argument where the type should either be:
|
669 |
+
1) a dict from argument names of ``f`` to their dynamic shape specifications,
|
670 |
+
2) a tuple that specifies dynamic shape specifications for each input in original order.
|
671 |
+
If you are specifying dynamism on keyword args, you will need to pass them in the order that
|
672 |
+
is defined in the original function signature.
|
673 |
+
|
674 |
+
The dynamic shape of a tensor argument can be specified as either
|
675 |
+
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
|
676 |
+
not required to include static dimension indices in this dict, but when they are,
|
677 |
+
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
|
678 |
+
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
|
679 |
+
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
|
680 |
+
recursively specified by using mappings or sequences of contained specifications.
|
681 |
+
|
682 |
+
preserve_module_call_signature: A list of submodule paths for which the original
|
683 |
+
calling conventions are preserved as metadata.
|
684 |
+
|
685 |
+
Returns:
|
686 |
+
An ExportedProgram containing the traced method.
|
687 |
+
"""
|
688 |
+
from .dynamic_shapes import _process_dynamic_shapes
|
689 |
+
|
690 |
+
global _EXPORT_FLAGS
|
691 |
+
flags = set()
|
692 |
+
flags.add("strict" if strict else "non_strict")
|
693 |
+
flags.add("pre_dispatch" if pre_dispatch else "aot_dispatch")
|
694 |
+
log_export_usage(event="export.enter", flags=flags)
|
695 |
+
_EXPORT_FLAGS = flags
|
696 |
+
|
697 |
+
constraints = _process_dynamic_shapes(mod, args, kwargs, dynamic_shapes) or []
|
698 |
+
|
699 |
+
kwargs = kwargs or {}
|
700 |
+
|
701 |
+
constant_attrs = _gather_constant_attrs(mod)
|
702 |
+
|
703 |
+
flat_args, orig_in_spec = pytree.tree_flatten((args, kwargs))
|
704 |
+
|
705 |
+
if not strict:
|
706 |
+
out_spec = None
|
707 |
+
|
708 |
+
module_call_specs: Dict[str, Dict[str, pytree.TreeSpec]] = {}
|
709 |
+
|
710 |
+
def strip_root(x):
|
711 |
+
if isinstance(x, str) and x.startswith("_export_root"):
|
712 |
+
stripped = x[len("_export_root") :]
|
713 |
+
return stripped[1:] if stripped.startswith(".") else stripped
|
714 |
+
return x
|
715 |
+
|
716 |
+
def fixup_key(x):
|
717 |
+
return "L__self__" + strip_root(x)
|
718 |
+
|
719 |
+
def _tuplify_outputs(aot_export):
|
720 |
+
def _aot_export_non_strict(mod, args, kwargs=None, **flags):
|
721 |
+
kwargs = kwargs or {}
|
722 |
+
|
723 |
+
class Wrapper(torch.nn.Module):
|
724 |
+
def __init__(self, mod):
|
725 |
+
super().__init__()
|
726 |
+
self._export_root = mod
|
727 |
+
|
728 |
+
def forward(self, *args, **kwargs):
|
729 |
+
nonlocal out_spec
|
730 |
+
if isinstance(self._export_root, torch.fx.GraphModule):
|
731 |
+
with torch.fx.traceback.preserve_node_meta():
|
732 |
+
tree_out = torch.fx.Interpreter(self._export_root).run(
|
733 |
+
*args, **kwargs
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
tree_out = self._export_root(*args, **kwargs)
|
737 |
+
flat_outs, out_spec = pytree.tree_flatten(tree_out)
|
738 |
+
return tuple(flat_outs)
|
739 |
+
|
740 |
+
wrapped_mod = Wrapper(mod)
|
741 |
+
# Patch export_root to the signatures so that wrapper module correctly populates the
|
742 |
+
# in/out spec
|
743 |
+
new_preserved_call_signatures = [
|
744 |
+
"_export_root." + i for i in preserve_module_call_signature
|
745 |
+
]
|
746 |
+
with _wrap_submodules(
|
747 |
+
wrapped_mod, new_preserved_call_signatures, module_call_specs
|
748 |
+
):
|
749 |
+
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
|
750 |
+
|
751 |
+
sig.parameters = pytree.tree_map(strip_root, sig.parameters)
|
752 |
+
sig.buffers = pytree.tree_map(strip_root, sig.buffers)
|
753 |
+
sig.inputs_to_buffers = pytree.tree_map(
|
754 |
+
strip_root, sig.inputs_to_buffers
|
755 |
+
)
|
756 |
+
sig.inputs_to_parameters = pytree.tree_map(
|
757 |
+
strip_root, sig.inputs_to_parameters
|
758 |
+
)
|
759 |
+
sig.buffers_to_mutate = pytree.tree_map(
|
760 |
+
strip_root, sig.buffers_to_mutate
|
761 |
+
)
|
762 |
+
for node in gm.graph.nodes:
|
763 |
+
if "nn_module_stack" in node.meta:
|
764 |
+
nn_module_stack = node.meta["nn_module_stack"]
|
765 |
+
node.meta["nn_module_stack"] = {
|
766 |
+
fixup_key(key): val
|
767 |
+
for key, val in pytree.tree_map(
|
768 |
+
strip_root, nn_module_stack
|
769 |
+
).items()
|
770 |
+
}
|
771 |
+
|
772 |
+
return gm, sig
|
773 |
+
|
774 |
+
return _aot_export_non_strict
|
775 |
+
|
776 |
+
(
|
777 |
+
fake_mode,
|
778 |
+
fake_args,
|
779 |
+
fake_kwargs,
|
780 |
+
equalities_inputs,
|
781 |
+
original_signature,
|
782 |
+
) = make_fake_inputs(mod, args, kwargs, constraints)
|
783 |
+
|
784 |
+
fake_params_buffers = make_fake_params_buffers(
|
785 |
+
fake_mode, _get_params_buffers(mod)
|
786 |
+
)
|
787 |
+
with fake_mode:
|
788 |
+
ep_non_strict = _export_non_strict(
|
789 |
+
mod,
|
790 |
+
fake_args,
|
791 |
+
fake_kwargs,
|
792 |
+
fake_params_buffers,
|
793 |
+
constant_attrs,
|
794 |
+
pre_dispatch=pre_dispatch,
|
795 |
+
transform=_tuplify_outputs,
|
796 |
+
)
|
797 |
+
try:
|
798 |
+
range_constraints = make_constraints(
|
799 |
+
fake_mode,
|
800 |
+
equalities_inputs,
|
801 |
+
original_signature,
|
802 |
+
ep_non_strict.gm,
|
803 |
+
)
|
804 |
+
except (ConstraintViolationError, ValueRangeError) as e:
|
805 |
+
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: TRY200
|
806 |
+
|
807 |
+
assert out_spec is not None
|
808 |
+
|
809 |
+
gm = ep_non_strict.gm
|
810 |
+
|
811 |
+
module_call_signatures = {
|
812 |
+
strip_root(fqn): ModuleCallSignature(inputs=[], outputs=[], **specs)
|
813 |
+
for fqn, specs in module_call_specs.items()
|
814 |
+
}
|
815 |
+
|
816 |
+
if len(preserve_module_call_signature) > 0:
|
817 |
+
for node in gm.graph.nodes:
|
818 |
+
if node.target == torch.ops.higher_order._export_tracepoint:
|
819 |
+
if "path" in node.kwargs:
|
820 |
+
path = strip_root(node.kwargs["path"])
|
821 |
+
with gm.graph.inserting_before(node):
|
822 |
+
new_node = gm.graph.create_node(
|
823 |
+
"call_function",
|
824 |
+
torch.ops.higher_order._export_tracepoint,
|
825 |
+
args=node.args,
|
826 |
+
kwargs={
|
827 |
+
"path": path,
|
828 |
+
"kind": node.kwargs["kind"],
|
829 |
+
},
|
830 |
+
)
|
831 |
+
node.replace_all_uses_with(new_node)
|
832 |
+
gm.graph.erase_node(node)
|
833 |
+
|
834 |
+
res = CollectTracepointsPass(module_call_signatures, ep_non_strict.sig)(gm)
|
835 |
+
assert res is not None
|
836 |
+
gm = res.graph_module
|
837 |
+
|
838 |
+
_rewrite_non_persistent_buffers(mod, ep_non_strict.sig, ep_non_strict.constants)
|
839 |
+
return ExportedProgram(
|
840 |
+
root=gm,
|
841 |
+
graph=gm.graph,
|
842 |
+
graph_signature=ep_non_strict.sig,
|
843 |
+
state_dict=mod.state_dict(keep_vars=True),
|
844 |
+
range_constraints=range_constraints,
|
845 |
+
module_call_graph=[
|
846 |
+
ModuleCallEntry(
|
847 |
+
"",
|
848 |
+
ModuleCallSignature(
|
849 |
+
inputs=[], outputs=[], in_spec=orig_in_spec, out_spec=out_spec
|
850 |
+
),
|
851 |
+
)
|
852 |
+
]
|
853 |
+
+ [
|
854 |
+
ModuleCallEntry(fqn, sig) for fqn, sig in module_call_signatures.items()
|
855 |
+
],
|
856 |
+
example_inputs=(args, kwargs),
|
857 |
+
constants=ep_non_strict.constants,
|
858 |
+
)
|
859 |
+
|
860 |
+
gm_torch_level = _export_to_torch_ir(
|
861 |
+
mod,
|
862 |
+
args,
|
863 |
+
kwargs,
|
864 |
+
constraints,
|
865 |
+
preserve_module_call_signature=preserve_module_call_signature,
|
866 |
+
restore_fqn=False, # don't need to restore because we will do it later
|
867 |
+
_log_export_usage=False,
|
868 |
+
)
|
869 |
+
|
870 |
+
# We detect the fake_mode by looking at gm_torch_level's placeholders, this is the fake_mode created in dynamo.
|
871 |
+
(
|
872 |
+
fake_args,
|
873 |
+
fake_kwargs,
|
874 |
+
fake_params_buffers,
|
875 |
+
dynamo_fake_mode,
|
876 |
+
) = _convert_input_to_fake(gm_torch_level, args, kwargs)
|
877 |
+
|
878 |
+
# First, we want to pass through the graph to try populating
|
879 |
+
# val field for getattr if there is anything missing.
|
880 |
+
# This can happen when quantization adds extra params and forgets
|
881 |
+
# to update "val"
|
882 |
+
for node in gm_torch_level.graph.nodes:
|
883 |
+
if node.op == "get_attr" and "val" not in node.meta:
|
884 |
+
attr = getattr(gm_torch_level, node.target)
|
885 |
+
# Checks if it is not a HigherOrderOp branch or a module
|
886 |
+
if not isinstance(attr, torch.nn.Module):
|
887 |
+
assert (
|
888 |
+
dynamo_fake_mode is not None
|
889 |
+
), "Cannot find dynamo_fake_mode. This could be due to the exported graph module have no placeholders."
|
890 |
+
node.meta["val"] = dynamo_fake_mode.from_tensor(
|
891 |
+
attr, static_shapes=True
|
892 |
+
)
|
893 |
+
|
894 |
+
# When aot_export lifts the params, we lose the nn_module_stack
|
895 |
+
# and source_fn from the param nodes as they are treated as fresh inputs
|
896 |
+
# Therefore, we manually extract them before calling into aot_export
|
897 |
+
params_buffers_to_node_meta = {}
|
898 |
+
for node in gm_torch_level.graph.nodes:
|
899 |
+
target = node.target
|
900 |
+
meta = node.meta
|
901 |
+
if node.op == "call_module":
|
902 |
+
submodule = getattr(gm_torch_level, target)
|
903 |
+
if isinstance(submodule, torch.nn.Module):
|
904 |
+
for name, _ in submodule.named_parameters(
|
905 |
+
recurse=True, remove_duplicate=False
|
906 |
+
):
|
907 |
+
params_buffers_to_node_meta[target + "." + name] = meta
|
908 |
+
|
909 |
+
for name, _ in submodule.named_buffers(
|
910 |
+
recurse=True, remove_duplicate=False
|
911 |
+
):
|
912 |
+
params_buffers_to_node_meta[target + "." + name] = meta
|
913 |
+
|
914 |
+
if node.op == "get_attr":
|
915 |
+
submodule = getattr(gm_torch_level, target)
|
916 |
+
if not isinstance(submodule, torch.fx.GraphModule):
|
917 |
+
params_buffers_to_node_meta[target] = meta
|
918 |
+
|
919 |
+
# If the call_function uses param as input, we also need to update params' meta
|
920 |
+
# with this call_function node's meta.
|
921 |
+
# This is basically the same flow as torch.fx.traceback.preserve_meta()
|
922 |
+
if node.op == "call_function" and not isinstance(
|
923 |
+
node.target, torch._ops.HigherOrderOperator
|
924 |
+
):
|
925 |
+
for arg in node._input_nodes:
|
926 |
+
if arg.op == "get_attr":
|
927 |
+
for entry in torch.fx.proxy._COPY_META_FIELDS:
|
928 |
+
if entry in meta:
|
929 |
+
params_buffers_to_node_meta[arg.target][entry] = meta[entry]
|
930 |
+
|
931 |
+
# Fix the graph output signature to be tuple if scalar
|
932 |
+
out_spec = orig_out_spec = gm_torch_level._out_spec
|
933 |
+
assert out_spec is not None
|
934 |
+
# aot_export expect the return type to always be a tuple.
|
935 |
+
if out_spec.type not in (list, tuple):
|
936 |
+
out_spec = pytree.TreeSpec(tuple, None, [out_spec])
|
937 |
+
|
938 |
+
orig_arg_names = gm_torch_level.graph._codegen.pytree_info.orig_args # type: ignore[attr-defined]
|
939 |
+
|
940 |
+
gm_torch_level.graph._codegen = _PyTreeCodeGen(
|
941 |
+
_PyTreeInfo(
|
942 |
+
orig_arg_names,
|
943 |
+
gm_torch_level._in_spec,
|
944 |
+
out_spec,
|
945 |
+
)
|
946 |
+
)
|
947 |
+
gm_torch_level.recompile()
|
948 |
+
|
949 |
+
_normalize_nn_module_stack(gm_torch_level, type(mod))
|
950 |
+
|
951 |
+
# NOTE: graph module expects only positional args
|
952 |
+
ep_non_strict = _export_non_strict(
|
953 |
+
gm_torch_level,
|
954 |
+
_convert_to_positional_args(orig_arg_names, fake_args, fake_kwargs),
|
955 |
+
{},
|
956 |
+
fake_params_buffers,
|
957 |
+
constant_attrs,
|
958 |
+
pre_dispatch=pre_dispatch,
|
959 |
+
)
|
960 |
+
|
961 |
+
gm = ep_non_strict.gm
|
962 |
+
export_graph_signature = ep_non_strict.sig
|
963 |
+
constants = ep_non_strict.constants
|
964 |
+
|
965 |
+
# After aot_export, set the param/buffer metadata back into placeholders
|
966 |
+
# Technically, users can still construct this data from param names
|
967 |
+
# without relying on this metadata
|
968 |
+
for node in gm.graph.nodes:
|
969 |
+
if node.op == "placeholder":
|
970 |
+
if node.target in export_graph_signature.inputs_to_parameters:
|
971 |
+
param_name = export_graph_signature.inputs_to_parameters[node.target]
|
972 |
+
if param_name in params_buffers_to_node_meta:
|
973 |
+
for k, v in params_buffers_to_node_meta[param_name].items():
|
974 |
+
node.meta[k] = v
|
975 |
+
if node.target in export_graph_signature.inputs_to_buffers:
|
976 |
+
buffer_name = export_graph_signature.inputs_to_buffers[node.target]
|
977 |
+
if buffer_name in params_buffers_to_node_meta:
|
978 |
+
for k, v in params_buffers_to_node_meta[buffer_name].items():
|
979 |
+
node.meta[k] = v
|
980 |
+
|
981 |
+
# The unbacked symint symbols are updated in aot_export
|
982 |
+
# so we serialize them here instead of inside dynamo
|
983 |
+
|
984 |
+
gm.meta["inline_constraints"] = {
|
985 |
+
k: v
|
986 |
+
for k, v in dynamo_fake_mode.shape_env.var_to_range.items()
|
987 |
+
if free_unbacked_symbols(k)
|
988 |
+
}
|
989 |
+
|
990 |
+
num_lifted = next(
|
991 |
+
(
|
992 |
+
i
|
993 |
+
for i, s in enumerate(export_graph_signature.input_specs)
|
994 |
+
if s.kind == InputKind.USER_INPUT
|
995 |
+
),
|
996 |
+
len(export_graph_signature.input_specs),
|
997 |
+
)
|
998 |
+
range_constraints = _process_constraints(
|
999 |
+
dynamo_fake_mode,
|
1000 |
+
gm,
|
1001 |
+
num_lifted,
|
1002 |
+
flat_args,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
# Do some cleanups on the graph module to restore the state dict to the
|
1006 |
+
# expected form. Each of these steps should probably get fixed upstream.
|
1007 |
+
# 1. Remove tensor constants that were added as buffers.
|
1008 |
+
_rewrite_dynamo_tensor_constants(
|
1009 |
+
orig_mod_buffers=set(mod.buffers()),
|
1010 |
+
traced_mod_buffers=dict(gm_torch_level.named_buffers()),
|
1011 |
+
graph_signature=ep_non_strict.sig,
|
1012 |
+
constants=ep_non_strict.constants,
|
1013 |
+
)
|
1014 |
+
# 2. Restore FQN of param/buffers
|
1015 |
+
param_buffer_table: Dict[str, str] = _get_param_buffer_mapping(mod, gm_torch_level)
|
1016 |
+
_replace_param_buffer_names(param_buffer_table, export_graph_signature)
|
1017 |
+
|
1018 |
+
# 3. Remove non-persistent buffers from the graph signature
|
1019 |
+
_rewrite_non_persistent_buffers(mod, ep_non_strict.sig, ep_non_strict.constants)
|
1020 |
+
|
1021 |
+
# 4. Rewrite constants to have the same FQN as the original module.
|
1022 |
+
_remap_constants(constant_attrs, export_graph_signature, constants)
|
1023 |
+
|
1024 |
+
module_call_signatures = {
|
1025 |
+
fqn: ModuleCallSignature(inputs=[], outputs=[], **specs)
|
1026 |
+
for fqn, specs in gm_torch_level.meta["module_call_specs"].items()
|
1027 |
+
}
|
1028 |
+
|
1029 |
+
if len(preserve_module_call_signature) > 0:
|
1030 |
+
res = CollectTracepointsPass(module_call_signatures, export_graph_signature)(gm)
|
1031 |
+
assert res is not None
|
1032 |
+
gm = res.graph_module
|
1033 |
+
|
1034 |
+
assert orig_out_spec is not None
|
1035 |
+
exported_program = ExportedProgram(
|
1036 |
+
root=gm,
|
1037 |
+
graph=gm.graph,
|
1038 |
+
graph_signature=export_graph_signature,
|
1039 |
+
state_dict=mod.state_dict(keep_vars=True),
|
1040 |
+
range_constraints=range_constraints,
|
1041 |
+
module_call_graph=[
|
1042 |
+
ModuleCallEntry(
|
1043 |
+
"",
|
1044 |
+
ModuleCallSignature(
|
1045 |
+
inputs=[], outputs=[], in_spec=orig_in_spec, out_spec=orig_out_spec
|
1046 |
+
),
|
1047 |
+
)
|
1048 |
+
]
|
1049 |
+
+ [ModuleCallEntry(fqn, sig) for fqn, sig in module_call_signatures.items()],
|
1050 |
+
example_inputs=(args, kwargs),
|
1051 |
+
constants=constants,
|
1052 |
+
)
|
1053 |
+
log.debug("Exported program from AOTAutograd:\n%s", exported_program)
|
1054 |
+
|
1055 |
+
if len(range_constraints) > 0:
|
1056 |
+
exported_program = exported_program._transform_do_not_use(
|
1057 |
+
_AddRuntimeAssertionsForInlineConstraintsPass(range_constraints)
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
return exported_program
|
venv/lib/python3.10/site-packages/torch/export/_tree_utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, Optional
|
2 |
+
|
3 |
+
from torch.utils._pytree import Context, TreeSpec
|
4 |
+
|
5 |
+
|
6 |
+
def reorder_kwargs(user_kwargs: Dict[str, Any], spec: TreeSpec) -> Dict[str, Any]:
|
7 |
+
"""Reorder user-provided kwargs to match the order in `spec`. `spec` is
|
8 |
+
expected to be the in_spec of an exported program, i.e. the spec that
|
9 |
+
results from flattening `(args, kwargs)`.
|
10 |
+
|
11 |
+
We need this to provide consistent input ordering, such so that users can
|
12 |
+
pass in foo(a=a, b=b) OR foo(b=b, a=a) and receive the same result.
|
13 |
+
"""
|
14 |
+
# Make sure that the spec is actually shaped like (args, kwargs)
|
15 |
+
assert spec.type is tuple
|
16 |
+
assert spec.num_children == 2
|
17 |
+
kwargs_spec = spec.children_specs[1]
|
18 |
+
assert kwargs_spec.type is dict
|
19 |
+
|
20 |
+
if set(user_kwargs) != set(kwargs_spec.context):
|
21 |
+
raise ValueError(
|
22 |
+
f"kwarg key mismatch: "
|
23 |
+
f"Got {list(user_kwargs)} but expected {kwargs_spec.context}"
|
24 |
+
)
|
25 |
+
|
26 |
+
reordered_kwargs = {}
|
27 |
+
for kw in kwargs_spec.context:
|
28 |
+
reordered_kwargs[kw] = user_kwargs[kw]
|
29 |
+
|
30 |
+
return reordered_kwargs
|
31 |
+
|
32 |
+
|
33 |
+
def is_equivalent(
|
34 |
+
spec1: TreeSpec,
|
35 |
+
spec2: TreeSpec,
|
36 |
+
equivalence_fn: Callable[[Optional[type], Context, Optional[type], Context], bool],
|
37 |
+
) -> bool:
|
38 |
+
"""Customizable equivalence check for two TreeSpecs.
|
39 |
+
|
40 |
+
Arguments:
|
41 |
+
spec1: The first TreeSpec to compare
|
42 |
+
spec2: The second TreeSpec to compare
|
43 |
+
equivalence_fn: A function to determine the equivalence of two
|
44 |
+
TreeSpecs by examining their types and contexts. It will be called like:
|
45 |
+
|
46 |
+
equivalence_fn(spec1.type, spec1.context, spec2.type, spec2.context)
|
47 |
+
|
48 |
+
This function will be applied recursively to all children.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
True if the two TreeSpecs are equivalent, False otherwise.
|
52 |
+
"""
|
53 |
+
if not equivalence_fn(spec1.type, spec1.context, spec2.type, spec2.context):
|
54 |
+
return False
|
55 |
+
|
56 |
+
# Recurse on children
|
57 |
+
if len(spec1.children_specs) != len(spec2.children_specs):
|
58 |
+
return False
|
59 |
+
|
60 |
+
for child_spec1, child_spec2 in zip(spec1.children_specs, spec2.children_specs):
|
61 |
+
if not is_equivalent(child_spec1, child_spec2, equivalence_fn):
|
62 |
+
return False
|
63 |
+
|
64 |
+
return True
|