Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- lm-evaluation-harness/wandb/run-20240514_114444-iactyeb3/files/wandb-metadata.json +810 -0
- venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 +3 -0
- venv/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py +0 -0
- venv/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py +117 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py +170 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py +73 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py +107 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py +218 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py +517 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py +180 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py +97 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py +189 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py +121 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py +1122 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py +179 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py +1295 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py +252 -0
- venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py +819 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/__init__.py +69 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/configuration_nezha.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/modeling_nezha.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/configuration_nezha.py +103 -0
- venv/lib/python3.10/site-packages/transformers/models/nezha/modeling_nezha.py +1693 -0
- venv/lib/python3.10/site-packages/transformers/models/opt/__init__.py +101 -0
- venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -90,3 +90,4 @@ venv/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11 filter=lfs di
|
|
90 |
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
|
91 |
venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 filter=lfs diff=lfs merge=lfs -text
|
92 |
venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_ops_train.so.8 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
90 |
venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
|
91 |
venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 filter=lfs diff=lfs merge=lfs -text
|
92 |
venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_ops_train.so.8 filter=lfs diff=lfs merge=lfs -text
|
93 |
+
venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 filter=lfs diff=lfs merge=lfs -text
|
ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0583b3e1b5715c7324a5a96846f984529327ce654fe6e4ff751c55d08a1f4120
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a574574e1cf4f612f36c5a950de7dbd5a2fbe95d3ee30fdceb0e508c94e83eb
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:391ae28bf7845a2699f795228e5c7b365b28a4d85132194dcf94a12eb4f44725
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:299c8182eea4098a354774bfd621db676c0baeae084f0059983af42bbf72f1f7
|
3 |
+
size 50332843
|
lm-evaluation-harness/wandb/run-20240514_114444-iactyeb3/files/wandb-metadata.json
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-14T11:44:44.666189",
|
5 |
+
"startedAt": "2024-05-14T11:44:44.209643",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/data/cronscript/ckpts//hf_ckpt//global_step100",
|
13 |
+
"--tasks",
|
14 |
+
"indiccopa-hi",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=global_step100"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/data/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "vizzhy-150-3",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 76,
|
33 |
+
"cpu_count_logical": 152,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 3384.3174802631584,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3251.15,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3251.225,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 3400.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 3400.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 3400.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 3400.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 3400.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 3400.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 3400.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 3400.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 3400.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 3400.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 3400.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 3400.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 3400.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 3400.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 3400.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 3400.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 3400.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 3236.114,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 3285.304,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 3400.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 3400.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 3400.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 3400.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 3400.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 3400.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 3400.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 3400.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 3400.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 3285.185,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 3400.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 3400.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 3400.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 3400.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 3400.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 3400.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 3400.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 3223.021,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 3223.232,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 3400.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 3400.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 3400.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 3400.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 3400.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 3400.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 3400.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 3400.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 3400.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 3400.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 3400.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 3400.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 3400.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 3400.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 3400.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 3400.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 3400.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 3400.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 3400.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 3400.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 3291.956,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 3400.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 3400.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 3400.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 3400.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 3400.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 3400.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 3400.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 3400.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 3400.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 3400.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 3400.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 3400.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 3229.554,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 3400.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 3400.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 3400.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 3400.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 3400.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 3400.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 3400.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 3400.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 3400.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 3400.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 3148.525,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 3400.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 3400.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 3400.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 3400.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 3400.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 3400.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 3400.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 3400.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 3400.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 3400.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 3400.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 3400.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 3400.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 3400.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 3400.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 3400.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 3400.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 3285.184,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 3400.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 3400.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 3400.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 3400.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 3400.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 3400.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 3400.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 3400.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 3400.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 3400.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 3400.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 3400.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 3400.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 3400.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 3400.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 3400.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 3400.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 3400.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 3400.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 3400.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 3400.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 3400.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 3400.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 3400.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 3400.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 3400.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 3400.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 3400.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 3400.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 3400.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 3400.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 3400.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 3221.545,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 3400.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 3400.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 3400.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 3400.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 3400.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 3400.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 3400.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 3400.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 3400.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 3400.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 3400.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 3400.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 3400.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 3400.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
}
|
800 |
+
],
|
801 |
+
"disk": {
|
802 |
+
"/": {
|
803 |
+
"total": 866.4415092468262,
|
804 |
+
"used": 77.77706527709961
|
805 |
+
}
|
806 |
+
},
|
807 |
+
"memory": {
|
808 |
+
"total": 1007.5000267028809
|
809 |
+
}
|
810 |
+
}
|
venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37d1141111d6b935aa84156ad61fd3575350cad8d69d0916e9db7d37eef9b816
|
3 |
+
size 107473968
|
venv/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Audio/Text processor class for CLAP
|
17 |
+
"""
|
18 |
+
|
19 |
+
from ...processing_utils import ProcessorMixin
|
20 |
+
from ...tokenization_utils_base import BatchEncoding
|
21 |
+
|
22 |
+
|
23 |
+
class ClapProcessor(ProcessorMixin):
|
24 |
+
r"""
|
25 |
+
Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor.
|
26 |
+
|
27 |
+
[`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the
|
28 |
+
[`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
feature_extractor ([`ClapFeatureExtractor`]):
|
32 |
+
The audio processor is a required input.
|
33 |
+
tokenizer ([`RobertaTokenizerFast`]):
|
34 |
+
The tokenizer is a required input.
|
35 |
+
"""
|
36 |
+
|
37 |
+
feature_extractor_class = "ClapFeatureExtractor"
|
38 |
+
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
|
39 |
+
|
40 |
+
def __init__(self, feature_extractor, tokenizer):
|
41 |
+
super().__init__(feature_extractor, tokenizer)
|
42 |
+
|
43 |
+
def __call__(self, text=None, audios=None, return_tensors=None, **kwargs):
|
44 |
+
"""
|
45 |
+
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
|
46 |
+
and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to
|
47 |
+
encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
|
48 |
+
ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the
|
49 |
+
doctsring of the above two methods for more information.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
53 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
54 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
55 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
56 |
+
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
57 |
+
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
|
58 |
+
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
|
59 |
+
and T the sample length of the audio.
|
60 |
+
|
61 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
62 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
63 |
+
|
64 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
65 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
66 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
67 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
71 |
+
|
72 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
73 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
74 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
75 |
+
`None`).
|
76 |
+
- **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`.
|
77 |
+
"""
|
78 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
79 |
+
|
80 |
+
if text is None and audios is None:
|
81 |
+
raise ValueError("You have to specify either text or audios. Both cannot be none.")
|
82 |
+
|
83 |
+
if text is not None:
|
84 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
85 |
+
|
86 |
+
if audios is not None:
|
87 |
+
audio_features = self.feature_extractor(
|
88 |
+
audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs
|
89 |
+
)
|
90 |
+
|
91 |
+
if text is not None and audios is not None:
|
92 |
+
encoding["input_features"] = audio_features.input_features
|
93 |
+
return encoding
|
94 |
+
elif text is not None:
|
95 |
+
return encoding
|
96 |
+
else:
|
97 |
+
return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors)
|
98 |
+
|
99 |
+
def batch_decode(self, *args, **kwargs):
|
100 |
+
"""
|
101 |
+
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
102 |
+
refer to the docstring of this method for more information.
|
103 |
+
"""
|
104 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
105 |
+
|
106 |
+
def decode(self, *args, **kwargs):
|
107 |
+
"""
|
108 |
+
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
|
109 |
+
to the docstring of this method for more information.
|
110 |
+
"""
|
111 |
+
return self.tokenizer.decode(*args, **kwargs)
|
112 |
+
|
113 |
+
@property
|
114 |
+
def model_input_names(self):
|
115 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
116 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
117 |
+
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc
ADDED
Binary file (6.28 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc
ADDED
Binary file (31.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" Open-Llama model configuration"""
|
21 |
+
|
22 |
+
from ....configuration_utils import PretrainedConfig
|
23 |
+
from ....utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from .._archive_maps import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class OpenLlamaConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an
|
35 |
+
Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the
|
37 |
+
[s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1).
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
45 |
+
Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by
|
46 |
+
the `inputs_ids` passed when calling [`OpenLlamaModel`]
|
47 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
48 |
+
Dimension of the hidden representations.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
50 |
+
Dimension of the MLP representations.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
56 |
+
The non-linear activation function (function or string) in the decoder.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to tie weight embeddings
|
69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
70 |
+
The base period of the RoPE embeddings.
|
71 |
+
rope_scaling (`Dict`, *optional*):
|
72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
73 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
74 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
75 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
76 |
+
these scaling strategies behave:
|
77 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
78 |
+
experimental feature, subject to breaking API changes in future versions.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import OpenLlamaModel, OpenLlamaConfig
|
84 |
+
|
85 |
+
>>> # Initializing a Open-Llama open_llama-7b style configuration
|
86 |
+
>>> configuration = OpenLlamaConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the open_llama-7b style configuration
|
89 |
+
>>> model = OpenLlamaModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "open-llama"
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=100000,
|
100 |
+
hidden_size=4096,
|
101 |
+
intermediate_size=11008,
|
102 |
+
num_hidden_layers=32,
|
103 |
+
num_attention_heads=32,
|
104 |
+
hidden_act="silu",
|
105 |
+
max_position_embeddings=2048,
|
106 |
+
initializer_range=0.02,
|
107 |
+
rms_norm_eps=1e-6,
|
108 |
+
use_cache=True,
|
109 |
+
pad_token_id=0,
|
110 |
+
bos_token_id=1,
|
111 |
+
eos_token_id=2,
|
112 |
+
tie_word_embeddings=False,
|
113 |
+
use_memory_efficient_attention=True,
|
114 |
+
hidden_dropout_prob=0.1,
|
115 |
+
attention_dropout_prob=0.1,
|
116 |
+
use_stable_embedding=True,
|
117 |
+
shared_input_output_embedding=True,
|
118 |
+
rope_theta=10000.0,
|
119 |
+
rope_scaling=None,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
self.vocab_size = vocab_size
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.intermediate_size = intermediate_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
self.hidden_act = hidden_act
|
129 |
+
self.initializer_range = initializer_range
|
130 |
+
self.rms_norm_eps = rms_norm_eps
|
131 |
+
self.use_cache = use_cache
|
132 |
+
self.use_memory_efficient_attention = kwargs.pop(
|
133 |
+
"use_memorry_efficient_attention", use_memory_efficient_attention
|
134 |
+
)
|
135 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
136 |
+
self.attention_dropout_prob = attention_dropout_prob
|
137 |
+
self.use_stable_embedding = use_stable_embedding
|
138 |
+
self.shared_input_output_embedding = shared_input_output_embedding
|
139 |
+
self.rope_theta = rope_theta
|
140 |
+
self.rope_scaling = rope_scaling
|
141 |
+
self._rope_scaling_validation()
|
142 |
+
|
143 |
+
super().__init__(
|
144 |
+
pad_token_id=pad_token_id,
|
145 |
+
bos_token_id=bos_token_id,
|
146 |
+
eos_token_id=eos_token_id,
|
147 |
+
tie_word_embeddings=tie_word_embeddings,
|
148 |
+
**kwargs,
|
149 |
+
)
|
150 |
+
|
151 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
152 |
+
def _rope_scaling_validation(self):
|
153 |
+
"""
|
154 |
+
Validate the `rope_scaling` configuration.
|
155 |
+
"""
|
156 |
+
if self.rope_scaling is None:
|
157 |
+
return
|
158 |
+
|
159 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
160 |
+
raise ValueError(
|
161 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
162 |
+
)
|
163 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
164 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
165 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
166 |
+
raise ValueError(
|
167 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
168 |
+
)
|
169 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
170 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig"],
|
22 |
+
"tokenization_retribert": ["RetriBertTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_tokenizers_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["tokenization_retribert_fast"] = ["RetriBertTokenizerFast"]
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_torch_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["modeling_retribert"] = [
|
40 |
+
"RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
41 |
+
"RetriBertModel",
|
42 |
+
"RetriBertPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig
|
48 |
+
from .tokenization_retribert import RetriBertTokenizer
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_tokenizers_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .tokenization_retribert_fast import RetriBertTokenizerFast
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_retribert import (
|
65 |
+
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
RetriBertModel,
|
67 |
+
RetriBertPreTrainedModel,
|
68 |
+
)
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc
ADDED
Binary file (4.59 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc
ADDED
Binary file (7.46 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc
ADDED
Binary file (7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" RetriBERT model configuration"""
|
16 |
+
|
17 |
+
from ....configuration_utils import PretrainedConfig
|
18 |
+
from ....utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
from .._archive_maps import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
24 |
+
|
25 |
+
|
26 |
+
class RetriBertConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a
|
29 |
+
RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a
|
30 |
+
configuration with the defaults will yield a similar configuration to that of the RetriBERT
|
31 |
+
[yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
39 |
+
Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by
|
40 |
+
the `inputs_ids` passed when calling [`RetriBertModel`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
42 |
+
Dimensionality of the encoder layers and the pooler layer.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
49 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
50 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
51 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
52 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
53 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
54 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
57 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
58 |
+
just in case (e.g., 512 or 1024 or 2048).
|
59 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
60 |
+
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
64 |
+
The epsilon used by the layer normalization layers.
|
65 |
+
share_encoders (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to use the same Bert-type encoder for the queries and document
|
67 |
+
projection_dim (`int`, *optional*, defaults to 128):
|
68 |
+
Final dimension of the query and document representation after projection
|
69 |
+
"""
|
70 |
+
|
71 |
+
model_type = "retribert"
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
vocab_size=30522,
|
76 |
+
hidden_size=768,
|
77 |
+
num_hidden_layers=8,
|
78 |
+
num_attention_heads=12,
|
79 |
+
intermediate_size=3072,
|
80 |
+
hidden_act="gelu",
|
81 |
+
hidden_dropout_prob=0.1,
|
82 |
+
attention_probs_dropout_prob=0.1,
|
83 |
+
max_position_embeddings=512,
|
84 |
+
type_vocab_size=2,
|
85 |
+
initializer_range=0.02,
|
86 |
+
layer_norm_eps=1e-12,
|
87 |
+
share_encoders=True,
|
88 |
+
projection_dim=128,
|
89 |
+
pad_token_id=0,
|
90 |
+
**kwargs,
|
91 |
+
):
|
92 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
93 |
+
|
94 |
+
self.vocab_size = vocab_size
|
95 |
+
self.hidden_size = hidden_size
|
96 |
+
self.num_hidden_layers = num_hidden_layers
|
97 |
+
self.num_attention_heads = num_attention_heads
|
98 |
+
self.hidden_act = hidden_act
|
99 |
+
self.intermediate_size = intermediate_size
|
100 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
101 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.type_vocab_size = type_vocab_size
|
104 |
+
self.initializer_range = initializer_range
|
105 |
+
self.layer_norm_eps = layer_norm_eps
|
106 |
+
self.share_encoders = share_encoders
|
107 |
+
self.projection_dim = projection_dim
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
RetriBERT model
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
import math
|
21 |
+
from typing import Optional
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint as checkpoint
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from ....modeling_utils import PreTrainedModel
|
28 |
+
from ....utils import add_start_docstrings, logging
|
29 |
+
from ...bert.modeling_bert import BertModel
|
30 |
+
from .configuration_retribert import RetriBertConfig
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
from .._archive_maps import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
37 |
+
|
38 |
+
|
39 |
+
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
|
40 |
+
class RetriBertPreTrainedModel(PreTrainedModel):
|
41 |
+
"""
|
42 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
43 |
+
models.
|
44 |
+
"""
|
45 |
+
|
46 |
+
config_class = RetriBertConfig
|
47 |
+
load_tf_weights = None
|
48 |
+
base_model_prefix = "retribert"
|
49 |
+
|
50 |
+
def _init_weights(self, module):
|
51 |
+
"""Initialize the weights"""
|
52 |
+
if isinstance(module, nn.Linear):
|
53 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
54 |
+
if module.bias is not None:
|
55 |
+
module.bias.data.zero_()
|
56 |
+
elif isinstance(module, nn.Embedding):
|
57 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
58 |
+
if module.padding_idx is not None:
|
59 |
+
module.weight.data[module.padding_idx].zero_()
|
60 |
+
elif isinstance(module, nn.LayerNorm):
|
61 |
+
module.bias.data.zero_()
|
62 |
+
module.weight.data.fill_(1.0)
|
63 |
+
|
64 |
+
|
65 |
+
RETRIBERT_START_DOCSTRING = r"""
|
66 |
+
|
67 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
68 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
69 |
+
etc.)
|
70 |
+
|
71 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
72 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
73 |
+
and behavior.
|
74 |
+
|
75 |
+
Parameters:
|
76 |
+
config ([`RetriBertConfig`]): Model configuration class with all the parameters of the model.
|
77 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
78 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
@add_start_docstrings(
|
83 |
+
"""Bert Based model to embed queries or document for document retrieval.""",
|
84 |
+
RETRIBERT_START_DOCSTRING,
|
85 |
+
)
|
86 |
+
class RetriBertModel(RetriBertPreTrainedModel):
|
87 |
+
def __init__(self, config: RetriBertConfig) -> None:
|
88 |
+
super().__init__(config)
|
89 |
+
self.projection_dim = config.projection_dim
|
90 |
+
|
91 |
+
self.bert_query = BertModel(config)
|
92 |
+
self.bert_doc = None if config.share_encoders else BertModel(config)
|
93 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
94 |
+
self.project_query = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
95 |
+
self.project_doc = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
96 |
+
|
97 |
+
self.ce_loss = nn.CrossEntropyLoss(reduction="mean")
|
98 |
+
|
99 |
+
# Initialize weights and apply final processing
|
100 |
+
self.post_init()
|
101 |
+
|
102 |
+
def embed_sentences_checkpointed(
|
103 |
+
self,
|
104 |
+
input_ids,
|
105 |
+
attention_mask,
|
106 |
+
sent_encoder,
|
107 |
+
checkpoint_batch_size=-1,
|
108 |
+
):
|
109 |
+
# reproduces BERT forward pass with checkpointing
|
110 |
+
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
|
111 |
+
return sent_encoder(input_ids, attention_mask=attention_mask)[1]
|
112 |
+
else:
|
113 |
+
# prepare implicit variables
|
114 |
+
device = input_ids.device
|
115 |
+
input_shape = input_ids.size()
|
116 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
117 |
+
head_mask = [None] * sent_encoder.config.num_hidden_layers
|
118 |
+
extended_attention_mask: torch.Tensor = sent_encoder.get_extended_attention_mask(
|
119 |
+
attention_mask, input_shape
|
120 |
+
)
|
121 |
+
|
122 |
+
# define function for checkpointing
|
123 |
+
def partial_encode(*inputs):
|
124 |
+
encoder_outputs = sent_encoder.encoder(
|
125 |
+
inputs[0],
|
126 |
+
attention_mask=inputs[1],
|
127 |
+
head_mask=head_mask,
|
128 |
+
)
|
129 |
+
sequence_output = encoder_outputs[0]
|
130 |
+
pooled_output = sent_encoder.pooler(sequence_output)
|
131 |
+
return pooled_output
|
132 |
+
|
133 |
+
# run embedding layer on everything at once
|
134 |
+
embedding_output = sent_encoder.embeddings(
|
135 |
+
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
|
136 |
+
)
|
137 |
+
# run encoding and pooling on one mini-batch at a time
|
138 |
+
pooled_output_list = []
|
139 |
+
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
|
140 |
+
b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
|
141 |
+
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
|
142 |
+
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
|
143 |
+
pooled_output_list.append(pooled_output)
|
144 |
+
return torch.cat(pooled_output_list, dim=0)
|
145 |
+
|
146 |
+
def embed_questions(
|
147 |
+
self,
|
148 |
+
input_ids,
|
149 |
+
attention_mask=None,
|
150 |
+
checkpoint_batch_size=-1,
|
151 |
+
):
|
152 |
+
q_reps = self.embed_sentences_checkpointed(
|
153 |
+
input_ids,
|
154 |
+
attention_mask,
|
155 |
+
self.bert_query,
|
156 |
+
checkpoint_batch_size,
|
157 |
+
)
|
158 |
+
return self.project_query(q_reps)
|
159 |
+
|
160 |
+
def embed_answers(
|
161 |
+
self,
|
162 |
+
input_ids,
|
163 |
+
attention_mask=None,
|
164 |
+
checkpoint_batch_size=-1,
|
165 |
+
):
|
166 |
+
a_reps = self.embed_sentences_checkpointed(
|
167 |
+
input_ids,
|
168 |
+
attention_mask,
|
169 |
+
self.bert_query if self.bert_doc is None else self.bert_doc,
|
170 |
+
checkpoint_batch_size,
|
171 |
+
)
|
172 |
+
return self.project_doc(a_reps)
|
173 |
+
|
174 |
+
def forward(
|
175 |
+
self,
|
176 |
+
input_ids_query: torch.LongTensor,
|
177 |
+
attention_mask_query: Optional[torch.FloatTensor],
|
178 |
+
input_ids_doc: torch.LongTensor,
|
179 |
+
attention_mask_doc: Optional[torch.FloatTensor],
|
180 |
+
checkpoint_batch_size: int = -1,
|
181 |
+
) -> torch.FloatTensor:
|
182 |
+
r"""
|
183 |
+
Args:
|
184 |
+
input_ids_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
185 |
+
Indices of input sequence tokens in the vocabulary for the queries in a batch.
|
186 |
+
|
187 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
188 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
189 |
+
|
190 |
+
[What are input IDs?](../glossary#input-ids)
|
191 |
+
attention_mask_query (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
192 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
193 |
+
|
194 |
+
- 1 for tokens that are **not masked**,
|
195 |
+
- 0 for tokens that are **masked**.
|
196 |
+
|
197 |
+
[What are attention masks?](../glossary#attention-mask)
|
198 |
+
input_ids_doc (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
199 |
+
Indices of input sequence tokens in the vocabulary for the documents in a batch.
|
200 |
+
attention_mask_doc (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
201 |
+
Mask to avoid performing attention on documents padding token indices.
|
202 |
+
checkpoint_batch_size (`int`, *optional*, defaults to `-1`):
|
203 |
+
If greater than 0, uses gradient checkpointing to only compute sequence representation on
|
204 |
+
`checkpoint_batch_size` examples at a time on the GPU. All query representations are still compared to
|
205 |
+
all document representations in the batch.
|
206 |
+
|
207 |
+
Return:
|
208 |
+
`torch.FloatTensor``: The bidirectional cross-entropy loss obtained while trying to match each query to its
|
209 |
+
corresponding document and each document to its corresponding query in the batch
|
210 |
+
"""
|
211 |
+
device = input_ids_query.device
|
212 |
+
q_reps = self.embed_questions(input_ids_query, attention_mask_query, checkpoint_batch_size)
|
213 |
+
a_reps = self.embed_answers(input_ids_doc, attention_mask_doc, checkpoint_batch_size)
|
214 |
+
compare_scores = torch.mm(q_reps, a_reps.t())
|
215 |
+
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
|
216 |
+
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
|
217 |
+
loss = (loss_qa + loss_aq) / 2
|
218 |
+
return loss
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for RetriBERT."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ....tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
23 |
+
from ....utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
29 |
+
|
30 |
+
|
31 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
32 |
+
def load_vocab(vocab_file):
|
33 |
+
"""Loads a vocabulary file into a dictionary."""
|
34 |
+
vocab = collections.OrderedDict()
|
35 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
36 |
+
tokens = reader.readlines()
|
37 |
+
for index, token in enumerate(tokens):
|
38 |
+
token = token.rstrip("\n")
|
39 |
+
vocab[token] = index
|
40 |
+
return vocab
|
41 |
+
|
42 |
+
|
43 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
44 |
+
def whitespace_tokenize(text):
|
45 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
46 |
+
text = text.strip()
|
47 |
+
if not text:
|
48 |
+
return []
|
49 |
+
tokens = text.split()
|
50 |
+
return tokens
|
51 |
+
|
52 |
+
|
53 |
+
class RetriBertTokenizer(PreTrainedTokenizer):
|
54 |
+
r"""
|
55 |
+
Constructs a RetriBERT tokenizer.
|
56 |
+
|
57 |
+
[`RetriBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting
|
58 |
+
and wordpiece.
|
59 |
+
|
60 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
|
61 |
+
to: this superclass for more information regarding those methods.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
vocab_file (`str`):
|
65 |
+
File containing the vocabulary.
|
66 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not to lowercase the input when tokenizing.
|
68 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not to do basic tokenization before WordPiece.
|
70 |
+
never_split (`Iterable`, *optional*):
|
71 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
72 |
+
`do_basic_tokenize=True`
|
73 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
74 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
75 |
+
token instead.
|
76 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
77 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
78 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
79 |
+
token of a sequence built with special tokens.
|
80 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
81 |
+
The token used for padding, for example when batching sequences of different lengths.
|
82 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
83 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
84 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
85 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
86 |
+
The token used for masking values. This is the token used when training this model with masked language
|
87 |
+
modeling. This is the token which the model will try to predict.
|
88 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
|
90 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
91 |
+
strip_accents (`bool`, *optional*):
|
92 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
93 |
+
value for `lowercase` (as in the original BERT).
|
94 |
+
"""
|
95 |
+
|
96 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
97 |
+
model_input_names = ["input_ids", "attention_mask"]
|
98 |
+
|
99 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.__init__
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_file,
|
103 |
+
do_lower_case=True,
|
104 |
+
do_basic_tokenize=True,
|
105 |
+
never_split=None,
|
106 |
+
unk_token="[UNK]",
|
107 |
+
sep_token="[SEP]",
|
108 |
+
pad_token="[PAD]",
|
109 |
+
cls_token="[CLS]",
|
110 |
+
mask_token="[MASK]",
|
111 |
+
tokenize_chinese_chars=True,
|
112 |
+
strip_accents=None,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
if not os.path.isfile(vocab_file):
|
116 |
+
raise ValueError(
|
117 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
118 |
+
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
119 |
+
)
|
120 |
+
self.vocab = load_vocab(vocab_file)
|
121 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
122 |
+
self.do_basic_tokenize = do_basic_tokenize
|
123 |
+
if do_basic_tokenize:
|
124 |
+
self.basic_tokenizer = BasicTokenizer(
|
125 |
+
do_lower_case=do_lower_case,
|
126 |
+
never_split=never_split,
|
127 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
128 |
+
strip_accents=strip_accents,
|
129 |
+
)
|
130 |
+
|
131 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
132 |
+
|
133 |
+
super().__init__(
|
134 |
+
do_lower_case=do_lower_case,
|
135 |
+
do_basic_tokenize=do_basic_tokenize,
|
136 |
+
never_split=never_split,
|
137 |
+
unk_token=unk_token,
|
138 |
+
sep_token=sep_token,
|
139 |
+
pad_token=pad_token,
|
140 |
+
cls_token=cls_token,
|
141 |
+
mask_token=mask_token,
|
142 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
143 |
+
strip_accents=strip_accents,
|
144 |
+
**kwargs,
|
145 |
+
)
|
146 |
+
|
147 |
+
@property
|
148 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
|
149 |
+
def do_lower_case(self):
|
150 |
+
return self.basic_tokenizer.do_lower_case
|
151 |
+
|
152 |
+
@property
|
153 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
|
154 |
+
def vocab_size(self):
|
155 |
+
return len(self.vocab)
|
156 |
+
|
157 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
|
158 |
+
def get_vocab(self):
|
159 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
160 |
+
|
161 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
|
162 |
+
def _tokenize(self, text, split_special_tokens=False):
|
163 |
+
split_tokens = []
|
164 |
+
if self.do_basic_tokenize:
|
165 |
+
for token in self.basic_tokenizer.tokenize(
|
166 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
167 |
+
):
|
168 |
+
# If the token is part of the never_split set
|
169 |
+
if token in self.basic_tokenizer.never_split:
|
170 |
+
split_tokens.append(token)
|
171 |
+
else:
|
172 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
173 |
+
else:
|
174 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
175 |
+
return split_tokens
|
176 |
+
|
177 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
|
178 |
+
def _convert_token_to_id(self, token):
|
179 |
+
"""Converts a token (str) in an id using the vocab."""
|
180 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
181 |
+
|
182 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
|
183 |
+
def _convert_id_to_token(self, index):
|
184 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
185 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
186 |
+
|
187 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
|
188 |
+
def convert_tokens_to_string(self, tokens):
|
189 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
190 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
191 |
+
return out_string
|
192 |
+
|
193 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
194 |
+
def build_inputs_with_special_tokens(
|
195 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
196 |
+
) -> List[int]:
|
197 |
+
"""
|
198 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
199 |
+
adding special tokens. A BERT sequence has the following format:
|
200 |
+
|
201 |
+
- single sequence: `[CLS] X [SEP]`
|
202 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
203 |
+
|
204 |
+
Args:
|
205 |
+
token_ids_0 (`List[int]`):
|
206 |
+
List of IDs to which the special tokens will be added.
|
207 |
+
token_ids_1 (`List[int]`, *optional*):
|
208 |
+
Optional second list of IDs for sequence pairs.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
212 |
+
"""
|
213 |
+
if token_ids_1 is None:
|
214 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
215 |
+
cls = [self.cls_token_id]
|
216 |
+
sep = [self.sep_token_id]
|
217 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
218 |
+
|
219 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
220 |
+
def get_special_tokens_mask(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
225 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
token_ids_0 (`List[int]`):
|
229 |
+
List of IDs.
|
230 |
+
token_ids_1 (`List[int]`, *optional*):
|
231 |
+
Optional second list of IDs for sequence pairs.
|
232 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
233 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
237 |
+
"""
|
238 |
+
|
239 |
+
if already_has_special_tokens:
|
240 |
+
return super().get_special_tokens_mask(
|
241 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
242 |
+
)
|
243 |
+
|
244 |
+
if token_ids_1 is not None:
|
245 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
246 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
247 |
+
|
248 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
249 |
+
def create_token_type_ids_from_sequences(
|
250 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
251 |
+
) -> List[int]:
|
252 |
+
"""
|
253 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
254 |
+
pair mask has the following format:
|
255 |
+
|
256 |
+
```
|
257 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
258 |
+
| first sequence | second sequence |
|
259 |
+
```
|
260 |
+
|
261 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
262 |
+
|
263 |
+
Args:
|
264 |
+
token_ids_0 (`List[int]`):
|
265 |
+
List of IDs.
|
266 |
+
token_ids_1 (`List[int]`, *optional*):
|
267 |
+
Optional second list of IDs for sequence pairs.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
271 |
+
"""
|
272 |
+
sep = [self.sep_token_id]
|
273 |
+
cls = [self.cls_token_id]
|
274 |
+
if token_ids_1 is None:
|
275 |
+
return len(cls + token_ids_0 + sep) * [0]
|
276 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
277 |
+
|
278 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
|
279 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
280 |
+
index = 0
|
281 |
+
if os.path.isdir(save_directory):
|
282 |
+
vocab_file = os.path.join(
|
283 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
287 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
288 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
289 |
+
if index != token_index:
|
290 |
+
logger.warning(
|
291 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
292 |
+
" Please check that the vocabulary is not corrupted!"
|
293 |
+
)
|
294 |
+
index = token_index
|
295 |
+
writer.write(token + "\n")
|
296 |
+
index += 1
|
297 |
+
return (vocab_file,)
|
298 |
+
|
299 |
+
|
300 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
301 |
+
class BasicTokenizer(object):
|
302 |
+
"""
|
303 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
304 |
+
|
305 |
+
Args:
|
306 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
307 |
+
Whether or not to lowercase the input when tokenizing.
|
308 |
+
never_split (`Iterable`, *optional*):
|
309 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
310 |
+
`do_basic_tokenize=True`
|
311 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
312 |
+
Whether or not to tokenize Chinese characters.
|
313 |
+
|
314 |
+
This should likely be deactivated for Japanese (see this
|
315 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
316 |
+
strip_accents (`bool`, *optional*):
|
317 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
318 |
+
value for `lowercase` (as in the original BERT).
|
319 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
320 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
321 |
+
the full context of the words, such as contractions.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
do_lower_case=True,
|
327 |
+
never_split=None,
|
328 |
+
tokenize_chinese_chars=True,
|
329 |
+
strip_accents=None,
|
330 |
+
do_split_on_punc=True,
|
331 |
+
):
|
332 |
+
if never_split is None:
|
333 |
+
never_split = []
|
334 |
+
self.do_lower_case = do_lower_case
|
335 |
+
self.never_split = set(never_split)
|
336 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
337 |
+
self.strip_accents = strip_accents
|
338 |
+
self.do_split_on_punc = do_split_on_punc
|
339 |
+
|
340 |
+
def tokenize(self, text, never_split=None):
|
341 |
+
"""
|
342 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
never_split (`List[str]`, *optional*)
|
346 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
347 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
348 |
+
"""
|
349 |
+
# union() returns a new set by concatenating the two sets.
|
350 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
351 |
+
text = self._clean_text(text)
|
352 |
+
|
353 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
354 |
+
# models. This is also applied to the English models now, but it doesn't
|
355 |
+
# matter since the English models were not trained on any Chinese data
|
356 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
357 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
358 |
+
# words in the English Wikipedia.).
|
359 |
+
if self.tokenize_chinese_chars:
|
360 |
+
text = self._tokenize_chinese_chars(text)
|
361 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
362 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
363 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
364 |
+
split_tokens = []
|
365 |
+
for token in orig_tokens:
|
366 |
+
if token not in never_split:
|
367 |
+
if self.do_lower_case:
|
368 |
+
token = token.lower()
|
369 |
+
if self.strip_accents is not False:
|
370 |
+
token = self._run_strip_accents(token)
|
371 |
+
elif self.strip_accents:
|
372 |
+
token = self._run_strip_accents(token)
|
373 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
374 |
+
|
375 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
376 |
+
return output_tokens
|
377 |
+
|
378 |
+
def _run_strip_accents(self, text):
|
379 |
+
"""Strips accents from a piece of text."""
|
380 |
+
text = unicodedata.normalize("NFD", text)
|
381 |
+
output = []
|
382 |
+
for char in text:
|
383 |
+
cat = unicodedata.category(char)
|
384 |
+
if cat == "Mn":
|
385 |
+
continue
|
386 |
+
output.append(char)
|
387 |
+
return "".join(output)
|
388 |
+
|
389 |
+
def _run_split_on_punc(self, text, never_split=None):
|
390 |
+
"""Splits punctuation on a piece of text."""
|
391 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
392 |
+
return [text]
|
393 |
+
chars = list(text)
|
394 |
+
i = 0
|
395 |
+
start_new_word = True
|
396 |
+
output = []
|
397 |
+
while i < len(chars):
|
398 |
+
char = chars[i]
|
399 |
+
if _is_punctuation(char):
|
400 |
+
output.append([char])
|
401 |
+
start_new_word = True
|
402 |
+
else:
|
403 |
+
if start_new_word:
|
404 |
+
output.append([])
|
405 |
+
start_new_word = False
|
406 |
+
output[-1].append(char)
|
407 |
+
i += 1
|
408 |
+
|
409 |
+
return ["".join(x) for x in output]
|
410 |
+
|
411 |
+
def _tokenize_chinese_chars(self, text):
|
412 |
+
"""Adds whitespace around any CJK character."""
|
413 |
+
output = []
|
414 |
+
for char in text:
|
415 |
+
cp = ord(char)
|
416 |
+
if self._is_chinese_char(cp):
|
417 |
+
output.append(" ")
|
418 |
+
output.append(char)
|
419 |
+
output.append(" ")
|
420 |
+
else:
|
421 |
+
output.append(char)
|
422 |
+
return "".join(output)
|
423 |
+
|
424 |
+
def _is_chinese_char(self, cp):
|
425 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
426 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
427 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
428 |
+
#
|
429 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
430 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
431 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
432 |
+
# space-separated words, so they are not treated specially and handled
|
433 |
+
# like the all of the other languages.
|
434 |
+
if (
|
435 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
436 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
437 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
438 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
439 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
440 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
441 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
442 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
443 |
+
): #
|
444 |
+
return True
|
445 |
+
|
446 |
+
return False
|
447 |
+
|
448 |
+
def _clean_text(self, text):
|
449 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
450 |
+
output = []
|
451 |
+
for char in text:
|
452 |
+
cp = ord(char)
|
453 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
454 |
+
continue
|
455 |
+
if _is_whitespace(char):
|
456 |
+
output.append(" ")
|
457 |
+
else:
|
458 |
+
output.append(char)
|
459 |
+
return "".join(output)
|
460 |
+
|
461 |
+
|
462 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
463 |
+
class WordpieceTokenizer(object):
|
464 |
+
"""Runs WordPiece tokenization."""
|
465 |
+
|
466 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
467 |
+
self.vocab = vocab
|
468 |
+
self.unk_token = unk_token
|
469 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
470 |
+
|
471 |
+
def tokenize(self, text):
|
472 |
+
"""
|
473 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
474 |
+
tokenization using the given vocabulary.
|
475 |
+
|
476 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
text: A single token or whitespace separated tokens. This should have
|
480 |
+
already been passed through *BasicTokenizer*.
|
481 |
+
|
482 |
+
Returns:
|
483 |
+
A list of wordpiece tokens.
|
484 |
+
"""
|
485 |
+
|
486 |
+
output_tokens = []
|
487 |
+
for token in whitespace_tokenize(text):
|
488 |
+
chars = list(token)
|
489 |
+
if len(chars) > self.max_input_chars_per_word:
|
490 |
+
output_tokens.append(self.unk_token)
|
491 |
+
continue
|
492 |
+
|
493 |
+
is_bad = False
|
494 |
+
start = 0
|
495 |
+
sub_tokens = []
|
496 |
+
while start < len(chars):
|
497 |
+
end = len(chars)
|
498 |
+
cur_substr = None
|
499 |
+
while start < end:
|
500 |
+
substr = "".join(chars[start:end])
|
501 |
+
if start > 0:
|
502 |
+
substr = "##" + substr
|
503 |
+
if substr in self.vocab:
|
504 |
+
cur_substr = substr
|
505 |
+
break
|
506 |
+
end -= 1
|
507 |
+
if cur_substr is None:
|
508 |
+
is_bad = True
|
509 |
+
break
|
510 |
+
sub_tokens.append(cur_substr)
|
511 |
+
start = end
|
512 |
+
|
513 |
+
if is_bad:
|
514 |
+
output_tokens.append(self.unk_token)
|
515 |
+
else:
|
516 |
+
output_tokens.extend(sub_tokens)
|
517 |
+
return output_tokens
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for RetriBERT."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import normalizers
|
21 |
+
|
22 |
+
from ....tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ....utils import logging
|
24 |
+
from .tokenization_retribert import RetriBertTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
|
32 |
+
class RetriBertTokenizerFast(PreTrainedTokenizerFast):
|
33 |
+
r"""
|
34 |
+
Construct a "fast" RetriBERT tokenizer (backed by HuggingFace's *tokenizers* library).
|
35 |
+
|
36 |
+
[`RetriBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation
|
37 |
+
splitting and wordpiece.
|
38 |
+
|
39 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
40 |
+
refer to this superclass for more information regarding those methods.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_file (`str`):
|
44 |
+
File containing the vocabulary.
|
45 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
46 |
+
Whether or not to lowercase the input when tokenizing.
|
47 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
48 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
49 |
+
token instead.
|
50 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
51 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
52 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
53 |
+
token of a sequence built with special tokens.
|
54 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
55 |
+
The token used for padding, for example when batching sequences of different lengths.
|
56 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
57 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
58 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
59 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
60 |
+
The token used for masking values. This is the token used when training this model with masked language
|
61 |
+
modeling. This is the token which the model will try to predict.
|
62 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
64 |
+
whitespaces by the classic one.
|
65 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
67 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
68 |
+
strip_accents (`bool`, *optional*):
|
69 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
70 |
+
value for `lowercase` (as in the original BERT).
|
71 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
72 |
+
The prefix for subwords.
|
73 |
+
"""
|
74 |
+
|
75 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
76 |
+
slow_tokenizer_class = RetriBertTokenizer
|
77 |
+
model_input_names = ["input_ids", "attention_mask"]
|
78 |
+
|
79 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.__init__
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
vocab_file=None,
|
83 |
+
tokenizer_file=None,
|
84 |
+
do_lower_case=True,
|
85 |
+
unk_token="[UNK]",
|
86 |
+
sep_token="[SEP]",
|
87 |
+
pad_token="[PAD]",
|
88 |
+
cls_token="[CLS]",
|
89 |
+
mask_token="[MASK]",
|
90 |
+
tokenize_chinese_chars=True,
|
91 |
+
strip_accents=None,
|
92 |
+
**kwargs,
|
93 |
+
):
|
94 |
+
super().__init__(
|
95 |
+
vocab_file,
|
96 |
+
tokenizer_file=tokenizer_file,
|
97 |
+
do_lower_case=do_lower_case,
|
98 |
+
unk_token=unk_token,
|
99 |
+
sep_token=sep_token,
|
100 |
+
pad_token=pad_token,
|
101 |
+
cls_token=cls_token,
|
102 |
+
mask_token=mask_token,
|
103 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
104 |
+
strip_accents=strip_accents,
|
105 |
+
**kwargs,
|
106 |
+
)
|
107 |
+
|
108 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
109 |
+
if (
|
110 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
111 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
112 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
113 |
+
):
|
114 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
115 |
+
normalizer_state["lowercase"] = do_lower_case
|
116 |
+
normalizer_state["strip_accents"] = strip_accents
|
117 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
118 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
119 |
+
|
120 |
+
self.do_lower_case = do_lower_case
|
121 |
+
|
122 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens
|
123 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
124 |
+
"""
|
125 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
126 |
+
adding special tokens. A BERT sequence has the following format:
|
127 |
+
|
128 |
+
- single sequence: `[CLS] X [SEP]`
|
129 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
130 |
+
|
131 |
+
Args:
|
132 |
+
token_ids_0 (`List[int]`):
|
133 |
+
List of IDs to which the special tokens will be added.
|
134 |
+
token_ids_1 (`List[int]`, *optional*):
|
135 |
+
Optional second list of IDs for sequence pairs.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
139 |
+
"""
|
140 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
141 |
+
|
142 |
+
if token_ids_1 is not None:
|
143 |
+
output += token_ids_1 + [self.sep_token_id]
|
144 |
+
|
145 |
+
return output
|
146 |
+
|
147 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences
|
148 |
+
def create_token_type_ids_from_sequences(
|
149 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
150 |
+
) -> List[int]:
|
151 |
+
"""
|
152 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
153 |
+
pair mask has the following format:
|
154 |
+
|
155 |
+
```
|
156 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
157 |
+
| first sequence | second sequence |
|
158 |
+
```
|
159 |
+
|
160 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
161 |
+
|
162 |
+
Args:
|
163 |
+
token_ids_0 (`List[int]`):
|
164 |
+
List of IDs.
|
165 |
+
token_ids_1 (`List[int]`, *optional*):
|
166 |
+
Optional second list of IDs for sequence pairs.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
170 |
+
"""
|
171 |
+
sep = [self.sep_token_id]
|
172 |
+
cls = [self.cls_token_id]
|
173 |
+
if token_ids_1 is None:
|
174 |
+
return len(cls + token_ids_0 + sep) * [0]
|
175 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
176 |
+
|
177 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
|
178 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
179 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
180 |
+
return tuple(files)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"],
|
22 |
+
"tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_transfo_xl"] = [
|
32 |
+
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"AdaptiveEmbedding",
|
34 |
+
"TransfoXLForSequenceClassification",
|
35 |
+
"TransfoXLLMHeadModel",
|
36 |
+
"TransfoXLModel",
|
37 |
+
"TransfoXLPreTrainedModel",
|
38 |
+
"load_tf_weights_in_transfo_xl",
|
39 |
+
]
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_tf_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
_import_structure["modeling_tf_transfo_xl"] = [
|
48 |
+
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
49 |
+
"TFAdaptiveEmbedding",
|
50 |
+
"TFTransfoXLForSequenceClassification",
|
51 |
+
"TFTransfoXLLMHeadModel",
|
52 |
+
"TFTransfoXLMainLayer",
|
53 |
+
"TFTransfoXLModel",
|
54 |
+
"TFTransfoXLPreTrainedModel",
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
if TYPE_CHECKING:
|
59 |
+
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
|
60 |
+
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
|
61 |
+
|
62 |
+
try:
|
63 |
+
if not is_torch_available():
|
64 |
+
raise OptionalDependencyNotAvailable()
|
65 |
+
except OptionalDependencyNotAvailable:
|
66 |
+
pass
|
67 |
+
else:
|
68 |
+
from .modeling_transfo_xl import (
|
69 |
+
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
70 |
+
AdaptiveEmbedding,
|
71 |
+
TransfoXLForSequenceClassification,
|
72 |
+
TransfoXLLMHeadModel,
|
73 |
+
TransfoXLModel,
|
74 |
+
TransfoXLPreTrainedModel,
|
75 |
+
load_tf_weights_in_transfo_xl,
|
76 |
+
)
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_tf_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
from .modeling_tf_transfo_xl import (
|
85 |
+
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
86 |
+
TFAdaptiveEmbedding,
|
87 |
+
TFTransfoXLForSequenceClassification,
|
88 |
+
TFTransfoXLLMHeadModel,
|
89 |
+
TFTransfoXLMainLayer,
|
90 |
+
TFTransfoXLModel,
|
91 |
+
TFTransfoXLPreTrainedModel,
|
92 |
+
)
|
93 |
+
|
94 |
+
else:
|
95 |
+
import sys
|
96 |
+
|
97 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc
ADDED
Binary file (6.81 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (3.11 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc
ADDED
Binary file (34.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc
ADDED
Binary file (4.15 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc
ADDED
Binary file (40.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc
ADDED
Binary file (6.09 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc
ADDED
Binary file (25.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Transformer XL configuration"""
|
17 |
+
|
18 |
+
from ....configuration_utils import PretrainedConfig
|
19 |
+
from ....utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from .._archive_maps import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class TransfoXLConfig(PretrainedConfig):
|
29 |
+
"""
|
30 |
+
This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
|
31 |
+
used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
|
32 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
|
33 |
+
[transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 267735):
|
40 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`].
|
42 |
+
cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`):
|
43 |
+
Cutoffs for the adaptive softmax.
|
44 |
+
d_model (`int`, *optional*, defaults to 1024):
|
45 |
+
Dimensionality of the model's hidden states.
|
46 |
+
d_embed (`int`, *optional*, defaults to 1024):
|
47 |
+
Dimensionality of the embeddings
|
48 |
+
n_head (`int`, *optional*, defaults to 16):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
d_head (`int`, *optional*, defaults to 64):
|
51 |
+
Dimensionality of the model's heads.
|
52 |
+
d_inner (`int`, *optional*, defaults to 4096):
|
53 |
+
Inner dimension in FF
|
54 |
+
div_val (`int`, *optional*, defaults to 4):
|
55 |
+
Divident value for adapative input and softmax
|
56 |
+
pre_lnorm (`boolean`, *optional*, defaults to `False`):
|
57 |
+
Whether or not to apply LayerNorm to the input instead of the output in the blocks.
|
58 |
+
n_layer (`int`, *optional*, defaults to 18):
|
59 |
+
Number of hidden layers in the Transformer encoder.
|
60 |
+
mem_len (`int`, *optional*, defaults to 1600):
|
61 |
+
Length of the retained previous heads.
|
62 |
+
clamp_len (`int`, *optional*, defaults to 1000):
|
63 |
+
Use the same pos embeddings after clamp_len.
|
64 |
+
same_length (`boolean`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to use the same attn length for all tokens
|
66 |
+
proj_share_all_but_first (`boolean`, *optional*, defaults to `True`):
|
67 |
+
True to share all but first projs, False not to share.
|
68 |
+
attn_type (`int`, *optional*, defaults to 0):
|
69 |
+
Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
|
70 |
+
sample_softmax (`int`, *optional*, defaults to -1):
|
71 |
+
Number of samples in the sampled softmax.
|
72 |
+
adaptive (`boolean`, *optional*, defaults to `True`):
|
73 |
+
Whether or not to use adaptive softmax.
|
74 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
75 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
76 |
+
dropatt (`float`, *optional*, defaults to 0.0):
|
77 |
+
The dropout ratio for the attention probabilities.
|
78 |
+
untie_r (`boolean`, *optional*, defaults to `True`):
|
79 |
+
Whether ot not to untie relative position biases.
|
80 |
+
init (`str`, *optional*, defaults to `"normal"`):
|
81 |
+
Parameter initializer to use.
|
82 |
+
init_range (`float`, *optional*, defaults to 0.01):
|
83 |
+
Parameters initialized by U(-init_range, init_range).
|
84 |
+
proj_init_std (`float`, *optional*, defaults to 0.01):
|
85 |
+
Parameters initialized by N(0, init_std)
|
86 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
87 |
+
Parameters initialized by N(0, init_std)
|
88 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
89 |
+
The epsilon to use in the layer normalization layers
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
91 |
+
End of stream token id.
|
92 |
+
|
93 |
+
Examples:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import TransfoXLConfig, TransfoXLModel
|
97 |
+
|
98 |
+
>>> # Initializing a Transformer XL configuration
|
99 |
+
>>> configuration = TransfoXLConfig()
|
100 |
+
|
101 |
+
>>> # Initializing a model (with random weights) from the configuration
|
102 |
+
>>> model = TransfoXLModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "transfo-xl"
|
109 |
+
keys_to_ignore_at_inference = ["mems"]
|
110 |
+
attribute_map = {
|
111 |
+
"n_token": "vocab_size",
|
112 |
+
"hidden_size": "d_model",
|
113 |
+
"num_attention_heads": "n_head",
|
114 |
+
"num_hidden_layers": "n_layer",
|
115 |
+
}
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=267735,
|
120 |
+
cutoffs=[20000, 40000, 200000],
|
121 |
+
d_model=1024,
|
122 |
+
d_embed=1024,
|
123 |
+
n_head=16,
|
124 |
+
d_head=64,
|
125 |
+
d_inner=4096,
|
126 |
+
div_val=4,
|
127 |
+
pre_lnorm=False,
|
128 |
+
n_layer=18,
|
129 |
+
mem_len=1600,
|
130 |
+
clamp_len=1000,
|
131 |
+
same_length=True,
|
132 |
+
proj_share_all_but_first=True,
|
133 |
+
attn_type=0,
|
134 |
+
sample_softmax=-1,
|
135 |
+
adaptive=True,
|
136 |
+
dropout=0.1,
|
137 |
+
dropatt=0.0,
|
138 |
+
untie_r=True,
|
139 |
+
init="normal",
|
140 |
+
init_range=0.01,
|
141 |
+
proj_init_std=0.01,
|
142 |
+
init_std=0.02,
|
143 |
+
layer_norm_epsilon=1e-5,
|
144 |
+
eos_token_id=0,
|
145 |
+
**kwargs,
|
146 |
+
):
|
147 |
+
self.vocab_size = vocab_size
|
148 |
+
self.cutoffs = []
|
149 |
+
self.cutoffs.extend(cutoffs)
|
150 |
+
if proj_share_all_but_first:
|
151 |
+
self.tie_projs = [False] + [True] * len(self.cutoffs)
|
152 |
+
else:
|
153 |
+
self.tie_projs = [False] + [False] * len(self.cutoffs)
|
154 |
+
self.d_model = d_model
|
155 |
+
self.d_embed = d_embed
|
156 |
+
self.d_head = d_head
|
157 |
+
self.d_inner = d_inner
|
158 |
+
self.div_val = div_val
|
159 |
+
self.pre_lnorm = pre_lnorm
|
160 |
+
self.n_layer = n_layer
|
161 |
+
self.n_head = n_head
|
162 |
+
self.mem_len = mem_len
|
163 |
+
self.same_length = same_length
|
164 |
+
self.attn_type = attn_type
|
165 |
+
self.clamp_len = clamp_len
|
166 |
+
self.sample_softmax = sample_softmax
|
167 |
+
self.adaptive = adaptive
|
168 |
+
self.dropout = dropout
|
169 |
+
self.dropatt = dropatt
|
170 |
+
self.untie_r = untie_r
|
171 |
+
self.init = init
|
172 |
+
self.init_range = init_range
|
173 |
+
self.proj_init_std = proj_init_std
|
174 |
+
self.init_std = init_std
|
175 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
176 |
+
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def max_position_embeddings(self):
|
180 |
+
# Message copied from Transformer-XL documentation
|
181 |
+
logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
|
182 |
+
return -1
|
183 |
+
|
184 |
+
@max_position_embeddings.setter
|
185 |
+
def max_position_embeddings(self, value):
|
186 |
+
# Message copied from Transformer-XL documentation
|
187 |
+
raise NotImplementedError(
|
188 |
+
f"The model {self.model_type} is one of the few models that has no sequence length limit."
|
189 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Transformer XL checkpoint and datasets."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
import pickle
|
21 |
+
import sys
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
|
26 |
+
from transformers.models.deprecated.transfo_xl import tokenization_transfo_xl as data_utils
|
27 |
+
from transformers.models.deprecated.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
|
28 |
+
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
|
33 |
+
# We do this to be able to load python 2 datasets pickles
|
34 |
+
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
|
35 |
+
data_utils.Vocab = data_utils.TransfoXLTokenizer
|
36 |
+
data_utils.Corpus = data_utils.TransfoXLCorpus
|
37 |
+
sys.modules["data_utils"] = data_utils
|
38 |
+
sys.modules["vocabulary"] = data_utils
|
39 |
+
|
40 |
+
|
41 |
+
def convert_transfo_xl_checkpoint_to_pytorch(
|
42 |
+
tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file
|
43 |
+
):
|
44 |
+
if transfo_xl_dataset_file:
|
45 |
+
# Convert a pre-processed corpus (see original TensorFlow repo)
|
46 |
+
with open(transfo_xl_dataset_file, "rb") as fp:
|
47 |
+
corpus = pickle.load(fp, encoding="latin1")
|
48 |
+
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
|
49 |
+
pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"]
|
50 |
+
print(f"Save vocabulary to {pytorch_vocab_dump_path}")
|
51 |
+
corpus_vocab_dict = corpus.vocab.__dict__
|
52 |
+
torch.save(corpus_vocab_dict, pytorch_vocab_dump_path)
|
53 |
+
|
54 |
+
corpus_dict_no_vocab = corpus.__dict__
|
55 |
+
corpus_dict_no_vocab.pop("vocab", None)
|
56 |
+
pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME
|
57 |
+
print(f"Save dataset to {pytorch_dataset_dump_path}")
|
58 |
+
torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path)
|
59 |
+
|
60 |
+
if tf_checkpoint_path:
|
61 |
+
# Convert a pre-trained TensorFlow model
|
62 |
+
config_path = os.path.abspath(transfo_xl_config_file)
|
63 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
64 |
+
|
65 |
+
print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.")
|
66 |
+
# Initialise PyTorch model
|
67 |
+
if transfo_xl_config_file == "":
|
68 |
+
config = TransfoXLConfig()
|
69 |
+
else:
|
70 |
+
config = TransfoXLConfig.from_json_file(transfo_xl_config_file)
|
71 |
+
print(f"Building PyTorch model from configuration: {config}")
|
72 |
+
model = TransfoXLLMHeadModel(config)
|
73 |
+
|
74 |
+
model = load_tf_weights_in_transfo_xl(model, config, tf_path)
|
75 |
+
# Save pytorch-model
|
76 |
+
pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
|
77 |
+
pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
|
78 |
+
print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}")
|
79 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
80 |
+
print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}")
|
81 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
82 |
+
f.write(config.to_json_string())
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
parser = argparse.ArgumentParser()
|
87 |
+
parser.add_argument(
|
88 |
+
"--pytorch_dump_folder_path",
|
89 |
+
default=None,
|
90 |
+
type=str,
|
91 |
+
required=True,
|
92 |
+
help="Path to the folder to store the PyTorch model or dataset/vocab.",
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--tf_checkpoint_path",
|
96 |
+
default="",
|
97 |
+
type=str,
|
98 |
+
help="An optional path to a TensorFlow checkpoint path to be converted.",
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--transfo_xl_config_file",
|
102 |
+
default="",
|
103 |
+
type=str,
|
104 |
+
help=(
|
105 |
+
"An optional config json file corresponding to the pre-trained BERT model. \n"
|
106 |
+
"This specifies the model architecture."
|
107 |
+
),
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--transfo_xl_dataset_file",
|
111 |
+
default="",
|
112 |
+
type=str,
|
113 |
+
help="An optional dataset file to be converted in a vocabulary.",
|
114 |
+
)
|
115 |
+
args = parser.parse_args()
|
116 |
+
convert_transfo_xl_checkpoint_to_pytorch(
|
117 |
+
args.tf_checkpoint_path,
|
118 |
+
args.transfo_xl_config_file,
|
119 |
+
args.pytorch_dump_folder_path,
|
120 |
+
args.transfo_xl_dataset_file,
|
121 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
ADDED
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
TF 2.0 Transformer XL model.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ....modeling_tf_utils import (
|
29 |
+
TFModelInputType,
|
30 |
+
TFPreTrainedModel,
|
31 |
+
TFSequenceClassificationLoss,
|
32 |
+
get_initializer,
|
33 |
+
keras,
|
34 |
+
keras_serializable,
|
35 |
+
unpack_inputs,
|
36 |
+
)
|
37 |
+
from ....tf_utils import shape_list, stable_softmax
|
38 |
+
from ....utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
)
|
45 |
+
from .configuration_transfo_xl import TransfoXLConfig
|
46 |
+
from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103"
|
52 |
+
_CONFIG_FOR_DOC = "TransfoXLConfig"
|
53 |
+
|
54 |
+
|
55 |
+
from .._archive_maps import TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
56 |
+
|
57 |
+
|
58 |
+
class TFPositionalEmbedding(keras.layers.Layer):
|
59 |
+
def __init__(self, demb, **kwargs):
|
60 |
+
super().__init__(**kwargs)
|
61 |
+
|
62 |
+
self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb))
|
63 |
+
|
64 |
+
def call(self, pos_seq, bsz=None):
|
65 |
+
self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype)
|
66 |
+
sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq)
|
67 |
+
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
|
68 |
+
|
69 |
+
if bsz is not None:
|
70 |
+
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
|
71 |
+
else:
|
72 |
+
return pos_emb[:, None, :]
|
73 |
+
|
74 |
+
|
75 |
+
class TFPositionwiseFF(keras.layers.Layer):
|
76 |
+
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs):
|
77 |
+
super().__init__(**kwargs)
|
78 |
+
|
79 |
+
self.d_model = d_model
|
80 |
+
self.d_inner = d_inner
|
81 |
+
self.dropout = dropout
|
82 |
+
|
83 |
+
self.layer_1 = keras.layers.Dense(
|
84 |
+
d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0"
|
85 |
+
)
|
86 |
+
self.drop_1 = keras.layers.Dropout(dropout)
|
87 |
+
self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3")
|
88 |
+
self.drop_2 = keras.layers.Dropout(dropout)
|
89 |
+
|
90 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
|
91 |
+
|
92 |
+
self.pre_lnorm = pre_lnorm
|
93 |
+
|
94 |
+
def call(self, inp, training=False):
|
95 |
+
if self.pre_lnorm:
|
96 |
+
# layer normalization + positionwise feed-forward
|
97 |
+
core_out = self.layer_norm(inp)
|
98 |
+
core_out = self.layer_1(core_out)
|
99 |
+
core_out = self.drop_1(core_out, training=training)
|
100 |
+
core_out = self.layer_2(core_out)
|
101 |
+
core_out = self.drop_2(core_out, training=training)
|
102 |
+
|
103 |
+
# residual connection
|
104 |
+
output = core_out + inp
|
105 |
+
else:
|
106 |
+
# positionwise feed-forward
|
107 |
+
core_out = self.layer_1(inp)
|
108 |
+
core_out = self.drop_1(core_out, training=training)
|
109 |
+
core_out = self.layer_2(core_out)
|
110 |
+
core_out = self.drop_2(core_out, training=training)
|
111 |
+
|
112 |
+
# residual connection + layer normalization
|
113 |
+
output = self.layer_norm(inp + core_out)
|
114 |
+
|
115 |
+
return output
|
116 |
+
|
117 |
+
|
118 |
+
class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
n_head,
|
122 |
+
d_model,
|
123 |
+
d_head,
|
124 |
+
dropout,
|
125 |
+
dropatt=0.0,
|
126 |
+
pre_lnorm=False,
|
127 |
+
r_r_bias=None,
|
128 |
+
r_w_bias=None,
|
129 |
+
layer_norm_epsilon=1e-5,
|
130 |
+
init_std=0.02,
|
131 |
+
output_attentions=False,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
|
136 |
+
self.n_head = n_head
|
137 |
+
self.d_model = d_model
|
138 |
+
self.d_head = d_head
|
139 |
+
self.dropout = dropout
|
140 |
+
self.output_attentions = output_attentions
|
141 |
+
|
142 |
+
self.qkv_net = keras.layers.Dense(
|
143 |
+
3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net"
|
144 |
+
)
|
145 |
+
|
146 |
+
self.drop = keras.layers.Dropout(dropout)
|
147 |
+
self.dropatt = keras.layers.Dropout(dropatt)
|
148 |
+
self.o_net = keras.layers.Dense(
|
149 |
+
d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net"
|
150 |
+
)
|
151 |
+
|
152 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
|
153 |
+
|
154 |
+
self.scale = 1 / (d_head**0.5)
|
155 |
+
|
156 |
+
self.pre_lnorm = pre_lnorm
|
157 |
+
|
158 |
+
if r_r_bias is not None and r_w_bias is not None: # Biases are shared
|
159 |
+
self.r_r_bias = r_r_bias
|
160 |
+
self.r_w_bias = r_w_bias
|
161 |
+
else:
|
162 |
+
self.r_r_bias = None
|
163 |
+
self.r_w_bias = None
|
164 |
+
|
165 |
+
self.r_net = keras.layers.Dense(
|
166 |
+
self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net"
|
167 |
+
)
|
168 |
+
|
169 |
+
def build(self, input_shape):
|
170 |
+
if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared
|
171 |
+
self.r_r_bias = self.add_weight(
|
172 |
+
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
|
173 |
+
)
|
174 |
+
self.r_w_bias = self.add_weight(
|
175 |
+
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
|
176 |
+
)
|
177 |
+
super().build(input_shape)
|
178 |
+
|
179 |
+
def _rel_shift(self, x):
|
180 |
+
x_size = shape_list(x)
|
181 |
+
|
182 |
+
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
|
183 |
+
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
|
184 |
+
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
|
185 |
+
x = tf.reshape(x, x_size)
|
186 |
+
|
187 |
+
return x
|
188 |
+
|
189 |
+
def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False):
|
190 |
+
qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1]
|
191 |
+
|
192 |
+
if mems is not None:
|
193 |
+
mems = tf.cast(mems, dtype=w.dtype)
|
194 |
+
cat = tf.concat([mems, w], 0)
|
195 |
+
if self.pre_lnorm:
|
196 |
+
w_heads = self.qkv_net(self.layer_norm(cat))
|
197 |
+
else:
|
198 |
+
w_heads = self.qkv_net(cat)
|
199 |
+
r_head_k = self.r_net(r)
|
200 |
+
|
201 |
+
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
|
202 |
+
w_head_q = w_head_q[-qlen:]
|
203 |
+
else:
|
204 |
+
if self.pre_lnorm:
|
205 |
+
w_heads = self.qkv_net(self.layer_norm(w))
|
206 |
+
else:
|
207 |
+
w_heads = self.qkv_net(w)
|
208 |
+
r_head_k = self.r_net(r)
|
209 |
+
|
210 |
+
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
|
211 |
+
|
212 |
+
klen = shape_list(w_head_k)[0]
|
213 |
+
|
214 |
+
w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
|
215 |
+
w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
|
216 |
+
w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
|
217 |
+
|
218 |
+
r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head
|
219 |
+
|
220 |
+
# compute attention score
|
221 |
+
rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
|
222 |
+
AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head
|
223 |
+
|
224 |
+
rr_head_q = w_head_q + self.r_r_bias
|
225 |
+
BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head
|
226 |
+
BD = self._rel_shift(BD)
|
227 |
+
|
228 |
+
# [qlen x klen x bsz x n_head]
|
229 |
+
attn_score = AC + BD
|
230 |
+
attn_score = attn_score * self.scale
|
231 |
+
|
232 |
+
# compute attention probability
|
233 |
+
if attn_mask is not None:
|
234 |
+
attn_mask_t = attn_mask[:, :, None, None]
|
235 |
+
attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype)
|
236 |
+
attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t
|
237 |
+
|
238 |
+
# [qlen x klen x bsz x n_head]
|
239 |
+
attn_prob = stable_softmax(attn_score, axis=1)
|
240 |
+
attn_prob = self.dropatt(attn_prob, training=training)
|
241 |
+
|
242 |
+
# Mask heads if we want to
|
243 |
+
if head_mask is not None:
|
244 |
+
attn_prob = attn_prob * head_mask
|
245 |
+
|
246 |
+
# compute attention vector
|
247 |
+
attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v)
|
248 |
+
|
249 |
+
# [qlen x bsz x n_head x d_head]
|
250 |
+
attn_vec_sizes = shape_list(attn_vec)
|
251 |
+
attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head))
|
252 |
+
|
253 |
+
# linear projection
|
254 |
+
attn_out = self.o_net(attn_vec)
|
255 |
+
attn_out = self.drop(attn_out, training=training)
|
256 |
+
|
257 |
+
if self.pre_lnorm:
|
258 |
+
# residual connection
|
259 |
+
outputs = [w + attn_out]
|
260 |
+
else:
|
261 |
+
# residual connection + layer normalization
|
262 |
+
outputs = [self.layer_norm(w + attn_out)]
|
263 |
+
|
264 |
+
if output_attentions:
|
265 |
+
outputs.append(attn_prob)
|
266 |
+
|
267 |
+
return outputs
|
268 |
+
|
269 |
+
|
270 |
+
class TFRelPartialLearnableDecoderLayer(keras.layers.Layer):
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
n_head,
|
274 |
+
d_model,
|
275 |
+
d_head,
|
276 |
+
d_inner,
|
277 |
+
dropout,
|
278 |
+
dropatt=0.0,
|
279 |
+
pre_lnorm=False,
|
280 |
+
r_w_bias=None,
|
281 |
+
r_r_bias=None,
|
282 |
+
layer_norm_epsilon=1e-5,
|
283 |
+
init_std=0.02,
|
284 |
+
output_attentions=False,
|
285 |
+
**kwargs,
|
286 |
+
):
|
287 |
+
super().__init__(**kwargs)
|
288 |
+
|
289 |
+
self.dec_attn = TFRelPartialLearnableMultiHeadAttn(
|
290 |
+
n_head,
|
291 |
+
d_model,
|
292 |
+
d_head,
|
293 |
+
dropout,
|
294 |
+
dropatt=dropatt,
|
295 |
+
pre_lnorm=pre_lnorm,
|
296 |
+
r_w_bias=r_w_bias,
|
297 |
+
r_r_bias=r_r_bias,
|
298 |
+
init_std=init_std,
|
299 |
+
layer_norm_epsilon=layer_norm_epsilon,
|
300 |
+
output_attentions=output_attentions,
|
301 |
+
name="dec_attn",
|
302 |
+
)
|
303 |
+
self.pos_ff = TFPositionwiseFF(
|
304 |
+
d_model,
|
305 |
+
d_inner,
|
306 |
+
dropout,
|
307 |
+
pre_lnorm=pre_lnorm,
|
308 |
+
init_std=init_std,
|
309 |
+
layer_norm_epsilon=layer_norm_epsilon,
|
310 |
+
name="pos_ff",
|
311 |
+
)
|
312 |
+
|
313 |
+
def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False):
|
314 |
+
attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training)
|
315 |
+
ff_output = self.pos_ff(attn_outputs[0], training=training)
|
316 |
+
|
317 |
+
outputs = [ff_output] + attn_outputs[1:]
|
318 |
+
|
319 |
+
return outputs
|
320 |
+
|
321 |
+
|
322 |
+
class TFTransfoEmbeddings(keras.layers.Layer):
|
323 |
+
def __init__(self, vocab_size, emb_size, init_std, **kwargs):
|
324 |
+
super().__init__(**kwargs)
|
325 |
+
|
326 |
+
self.vocab_size = vocab_size
|
327 |
+
self.emb_size = emb_size
|
328 |
+
self.init_std = init_std
|
329 |
+
|
330 |
+
def build(self, input_shape):
|
331 |
+
self.weight = self.add_weight(
|
332 |
+
shape=(self.vocab_size, self.emb_size),
|
333 |
+
initializer=get_initializer(self.init_std),
|
334 |
+
name="embeddings",
|
335 |
+
)
|
336 |
+
|
337 |
+
super().build(input_shape)
|
338 |
+
|
339 |
+
def call(self, inputs):
|
340 |
+
return tf.gather(self.weight, inputs)
|
341 |
+
|
342 |
+
|
343 |
+
class TFAdaptiveEmbedding(keras.layers.Layer):
|
344 |
+
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs):
|
345 |
+
super().__init__(**kwargs)
|
346 |
+
|
347 |
+
self.n_token = n_token
|
348 |
+
self.d_embed = d_embed
|
349 |
+
self.init_std = init_std
|
350 |
+
|
351 |
+
self.cutoffs = cutoffs + [n_token]
|
352 |
+
self.div_val = div_val
|
353 |
+
self.d_proj = d_proj
|
354 |
+
|
355 |
+
self.emb_scale = d_proj**0.5
|
356 |
+
|
357 |
+
self.cutoff_ends = [0] + self.cutoffs
|
358 |
+
|
359 |
+
self.emb_layers = []
|
360 |
+
self.emb_projs = []
|
361 |
+
|
362 |
+
if div_val == 1:
|
363 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
364 |
+
else:
|
365 |
+
for i in range(len(self.cutoffs)):
|
366 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
367 |
+
d_emb_i = d_embed // (div_val**i)
|
368 |
+
self.emb_layers.append(
|
369 |
+
TFTransfoEmbeddings(
|
370 |
+
r_idx - l_idx,
|
371 |
+
d_emb_i,
|
372 |
+
init_std,
|
373 |
+
name=f"emb_layers_._{i}",
|
374 |
+
)
|
375 |
+
)
|
376 |
+
|
377 |
+
def build(self, input_shape):
|
378 |
+
for i in range(len(self.cutoffs)):
|
379 |
+
d_emb_i = self.d_embed // (self.div_val**i)
|
380 |
+
self.emb_projs.append(
|
381 |
+
self.add_weight(
|
382 |
+
shape=(d_emb_i, self.d_proj),
|
383 |
+
initializer=get_initializer(self.init_std),
|
384 |
+
trainable=True,
|
385 |
+
name=f"emb_projs_._{i}",
|
386 |
+
)
|
387 |
+
)
|
388 |
+
|
389 |
+
super().build(input_shape)
|
390 |
+
|
391 |
+
def call(self, inp):
|
392 |
+
if self.div_val == 1:
|
393 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
394 |
+
else:
|
395 |
+
inp_flat = tf.reshape(inp, (-1,))
|
396 |
+
emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj])
|
397 |
+
for i in range(len(self.cutoffs)):
|
398 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
399 |
+
|
400 |
+
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
|
401 |
+
|
402 |
+
inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx
|
403 |
+
emb_i = self.emb_layers[i](inp_i)
|
404 |
+
emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i])
|
405 |
+
|
406 |
+
mask_idx = tf.where(mask_i)
|
407 |
+
scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat))
|
408 |
+
emb_flat = tf.cast(emb_flat, dtype=scatter.dtype)
|
409 |
+
emb_flat += scatter
|
410 |
+
|
411 |
+
embed_shape = shape_list(inp) + [self.d_proj]
|
412 |
+
embed = tf.reshape(emb_flat, embed_shape)
|
413 |
+
|
414 |
+
embed *= self.emb_scale
|
415 |
+
|
416 |
+
return embed
|
417 |
+
|
418 |
+
|
419 |
+
@keras_serializable
|
420 |
+
class TFTransfoXLMainLayer(keras.layers.Layer):
|
421 |
+
config_class = TransfoXLConfig
|
422 |
+
|
423 |
+
def __init__(self, config, **kwargs):
|
424 |
+
super().__init__(**kwargs)
|
425 |
+
|
426 |
+
self.config = config
|
427 |
+
self.output_hidden_states = config.output_hidden_states
|
428 |
+
self.output_attentions = config.output_attentions
|
429 |
+
self.return_dict = config.use_return_dict
|
430 |
+
|
431 |
+
self.n_token = config.vocab_size
|
432 |
+
|
433 |
+
self.d_embed = config.d_embed
|
434 |
+
self.d_model = config.d_model
|
435 |
+
self.n_head = config.n_head
|
436 |
+
self.d_head = config.d_head
|
437 |
+
self.untie_r = config.untie_r
|
438 |
+
|
439 |
+
self.word_emb = TFAdaptiveEmbedding(
|
440 |
+
config.vocab_size,
|
441 |
+
config.d_embed,
|
442 |
+
config.d_model,
|
443 |
+
config.cutoffs,
|
444 |
+
div_val=config.div_val,
|
445 |
+
init_std=config.init_std,
|
446 |
+
name="word_emb",
|
447 |
+
)
|
448 |
+
|
449 |
+
self.drop = keras.layers.Dropout(config.dropout)
|
450 |
+
|
451 |
+
self.n_layer = config.n_layer
|
452 |
+
self.mem_len = config.mem_len
|
453 |
+
self.attn_type = config.attn_type
|
454 |
+
|
455 |
+
self.layers = []
|
456 |
+
if config.attn_type == 0: # the default attention
|
457 |
+
for i in range(config.n_layer):
|
458 |
+
self.layers.append(
|
459 |
+
TFRelPartialLearnableDecoderLayer(
|
460 |
+
config.n_head,
|
461 |
+
config.d_model,
|
462 |
+
config.d_head,
|
463 |
+
config.d_inner,
|
464 |
+
config.dropout,
|
465 |
+
dropatt=config.dropatt,
|
466 |
+
pre_lnorm=config.pre_lnorm,
|
467 |
+
r_w_bias=None if self.untie_r else self.r_w_bias,
|
468 |
+
r_r_bias=None if self.untie_r else self.r_r_bias,
|
469 |
+
layer_norm_epsilon=config.layer_norm_epsilon,
|
470 |
+
init_std=config.init_std,
|
471 |
+
output_attentions=self.output_attentions,
|
472 |
+
name=f"layers_._{i}",
|
473 |
+
)
|
474 |
+
)
|
475 |
+
else: # learnable embeddings and absolute embeddings
|
476 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
477 |
+
|
478 |
+
self.same_length = config.same_length
|
479 |
+
self.clamp_len = config.clamp_len
|
480 |
+
|
481 |
+
if self.attn_type == 0: # default attention
|
482 |
+
self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb")
|
483 |
+
else: # learnable embeddings and absolute embeddings
|
484 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
485 |
+
|
486 |
+
def build(self, input_shape):
|
487 |
+
if not self.untie_r:
|
488 |
+
self.r_w_bias = self.add_weight(
|
489 |
+
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
|
490 |
+
)
|
491 |
+
self.r_r_bias = self.add_weight(
|
492 |
+
shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
|
493 |
+
)
|
494 |
+
super().build(input_shape)
|
495 |
+
|
496 |
+
def get_input_embeddings(self):
|
497 |
+
return self.word_emb
|
498 |
+
|
499 |
+
def set_input_embeddings(self, value):
|
500 |
+
raise NotImplementedError
|
501 |
+
|
502 |
+
def backward_compatible(self):
|
503 |
+
self.sample_softmax = -1
|
504 |
+
|
505 |
+
def reset_memory_length(self, mem_len):
|
506 |
+
self.mem_len = mem_len
|
507 |
+
|
508 |
+
def _prune_heads(self, heads):
|
509 |
+
raise NotImplementedError
|
510 |
+
|
511 |
+
def init_mems(self, bsz):
|
512 |
+
if self.mem_len > 0:
|
513 |
+
mems = []
|
514 |
+
for i in range(self.n_layer):
|
515 |
+
empty = tf.zeros([self.mem_len, bsz, self.d_model])
|
516 |
+
mems.append(empty)
|
517 |
+
|
518 |
+
return mems
|
519 |
+
else:
|
520 |
+
return None
|
521 |
+
|
522 |
+
def _update_mems(self, hids, mems, mlen, qlen):
|
523 |
+
# does not deal with None
|
524 |
+
if mems is None:
|
525 |
+
return None
|
526 |
+
|
527 |
+
# mems is not None
|
528 |
+
assert len(hids) == len(mems), "len(hids) != len(mems)"
|
529 |
+
|
530 |
+
# There are `mlen + qlen` steps that can be cached into mems
|
531 |
+
new_mems = []
|
532 |
+
end_idx = mlen + tf.math.maximum(0, qlen)
|
533 |
+
beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len))
|
534 |
+
for i in range(len(hids)):
|
535 |
+
mems[i] = tf.cast(mems[i], dtype=hids[i].dtype)
|
536 |
+
cat = tf.concat([mems[i], hids[i]], axis=0)
|
537 |
+
tf.stop_gradient(cat)
|
538 |
+
new_mems.append(cat[beg_idx:end_idx])
|
539 |
+
|
540 |
+
return new_mems
|
541 |
+
|
542 |
+
@unpack_inputs
|
543 |
+
def call(
|
544 |
+
self,
|
545 |
+
input_ids: TFModelInputType | None = None,
|
546 |
+
mems: List[tf.Tensor] | None = None,
|
547 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
548 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
549 |
+
output_attentions: Optional[bool] = None,
|
550 |
+
output_hidden_states: Optional[bool] = None,
|
551 |
+
return_dict: Optional[bool] = None,
|
552 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
553 |
+
training: bool = False,
|
554 |
+
):
|
555 |
+
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
|
556 |
+
# so we transpose here from shape [bsz, len] to shape [len, bsz]
|
557 |
+
if input_ids is not None and inputs_embeds is not None:
|
558 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
559 |
+
elif input_ids is not None:
|
560 |
+
input_ids = tf.transpose(input_ids, perm=(1, 0))
|
561 |
+
qlen, bsz = shape_list(input_ids)
|
562 |
+
elif inputs_embeds is not None:
|
563 |
+
inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
|
564 |
+
qlen, bsz = shape_list(inputs_embeds)[:2]
|
565 |
+
else:
|
566 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
567 |
+
|
568 |
+
if mems is None:
|
569 |
+
mems = self.init_mems(bsz)
|
570 |
+
|
571 |
+
# Prepare head mask if needed
|
572 |
+
# 1.0 in head_mask indicate we keep the head
|
573 |
+
# attention_probs has shape bsz x n_heads x N x N
|
574 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
|
575 |
+
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
|
576 |
+
if head_mask is not None:
|
577 |
+
raise NotImplementedError
|
578 |
+
else:
|
579 |
+
head_mask = [None] * self.n_layer
|
580 |
+
|
581 |
+
if inputs_embeds is not None:
|
582 |
+
word_emb = inputs_embeds
|
583 |
+
else:
|
584 |
+
word_emb = self.word_emb(input_ids)
|
585 |
+
|
586 |
+
mlen = shape_list(mems[0])[0] if mems is not None else 0
|
587 |
+
klen = mlen + qlen
|
588 |
+
|
589 |
+
# Compute decoder attention mask
|
590 |
+
all_ones = tf.ones([qlen, klen], dtype=tf.int32)
|
591 |
+
upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen)
|
592 |
+
if self.same_length:
|
593 |
+
mask_len = klen - self.mem_len
|
594 |
+
mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero
|
595 |
+
|
596 |
+
# Use an indicator variable instead of a conditional to keep the compiler happy
|
597 |
+
lower_mask = tf.linalg.band_part(all_ones, -1, 0) - (
|
598 |
+
tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32)
|
599 |
+
)
|
600 |
+
dec_attn_mask = upper_mask + lower_mask
|
601 |
+
else:
|
602 |
+
dec_attn_mask = upper_mask
|
603 |
+
|
604 |
+
hids = []
|
605 |
+
attentions = [] if output_attentions else None
|
606 |
+
if self.attn_type == 0: # default
|
607 |
+
pos_seq = tf.range(klen - 1, -1, -1.0)
|
608 |
+
if self.clamp_len > 0:
|
609 |
+
pos_seq = tf.minimum(pos_seq, self.clamp_len)
|
610 |
+
pos_emb = self.pos_emb(pos_seq)
|
611 |
+
|
612 |
+
core_out = self.drop(word_emb, training=training)
|
613 |
+
pos_emb = self.drop(pos_emb, training=training)
|
614 |
+
|
615 |
+
for i, layer in enumerate(self.layers):
|
616 |
+
hids.append(core_out)
|
617 |
+
mems_i = None if mems is None else mems[i]
|
618 |
+
layer_outputs = layer(
|
619 |
+
core_out,
|
620 |
+
pos_emb,
|
621 |
+
dec_attn_mask,
|
622 |
+
mems_i,
|
623 |
+
head_mask[i],
|
624 |
+
output_attentions,
|
625 |
+
training=training,
|
626 |
+
)
|
627 |
+
core_out = layer_outputs[0]
|
628 |
+
if output_attentions:
|
629 |
+
attentions.append(layer_outputs[1])
|
630 |
+
else: # learnable embeddings and absolute embeddings
|
631 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
632 |
+
|
633 |
+
core_out = self.drop(core_out, training=training)
|
634 |
+
|
635 |
+
new_mems = self._update_mems(hids, mems, mlen, qlen)
|
636 |
+
|
637 |
+
# We transpose back here to shape [bsz, len, hidden_dim]
|
638 |
+
core_out = tf.transpose(core_out, perm=(1, 0, 2))
|
639 |
+
|
640 |
+
if output_hidden_states:
|
641 |
+
# Transpose to library standard shape [bsz, len, hidden_dim] and add last layer
|
642 |
+
hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids)
|
643 |
+
hids = hids + (core_out,)
|
644 |
+
else:
|
645 |
+
hids = None
|
646 |
+
if output_attentions:
|
647 |
+
# Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
|
648 |
+
attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)
|
649 |
+
|
650 |
+
if not return_dict:
|
651 |
+
return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
|
652 |
+
|
653 |
+
return TFTransfoXLModelOutput(
|
654 |
+
last_hidden_state=core_out,
|
655 |
+
mems=new_mems,
|
656 |
+
hidden_states=hids,
|
657 |
+
attentions=attentions,
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class TFTransfoXLPreTrainedModel(TFPreTrainedModel):
|
662 |
+
"""
|
663 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
664 |
+
models.
|
665 |
+
"""
|
666 |
+
|
667 |
+
config_class = TransfoXLConfig
|
668 |
+
base_model_prefix = "transformer"
|
669 |
+
|
670 |
+
|
671 |
+
@dataclass
|
672 |
+
class TFTransfoXLModelOutput(ModelOutput):
|
673 |
+
"""
|
674 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
675 |
+
|
676 |
+
Args:
|
677 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
678 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
679 |
+
mems (`List[tf.Tensor]` of length `config.n_layers`):
|
680 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
681 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
682 |
+
be passed as input ids as they have already been computed.
|
683 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
684 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
685 |
+
`(batch_size, sequence_length, hidden_size)`.
|
686 |
+
|
687 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
688 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
689 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
690 |
+
sequence_length)`.
|
691 |
+
|
692 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
693 |
+
heads.
|
694 |
+
"""
|
695 |
+
|
696 |
+
last_hidden_state: tf.Tensor = None
|
697 |
+
mems: List[tf.Tensor] = None
|
698 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
699 |
+
attentions: Tuple[tf.Tensor] | None = None
|
700 |
+
|
701 |
+
|
702 |
+
@dataclass
|
703 |
+
class TFTransfoXLLMHeadModelOutput(ModelOutput):
|
704 |
+
"""
|
705 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
706 |
+
|
707 |
+
Args:
|
708 |
+
losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided):
|
709 |
+
Language modeling losses (not reduced).
|
710 |
+
prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
711 |
+
Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax).
|
712 |
+
mems (`List[tf.Tensor]` of length `config.n_layers`):
|
713 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
714 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
715 |
+
be passed as input ids as they have already been computed.
|
716 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
717 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
718 |
+
`(batch_size, sequence_length, hidden_size)`.
|
719 |
+
|
720 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
721 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
722 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
723 |
+
sequence_length)`.
|
724 |
+
|
725 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
726 |
+
heads.
|
727 |
+
"""
|
728 |
+
|
729 |
+
prediction_scores: tf.Tensor = None
|
730 |
+
mems: List[tf.Tensor] = None
|
731 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
732 |
+
attentions: Tuple[tf.Tensor] | None = None
|
733 |
+
|
734 |
+
|
735 |
+
@dataclass
|
736 |
+
class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput):
|
737 |
+
"""
|
738 |
+
Base class for outputs of sentence classification models.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
742 |
+
Classification (or regression if config.num_labels==1) loss.
|
743 |
+
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
744 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
745 |
+
mems (`List[tf.Tensor]` of length `config.n_layers`):
|
746 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
747 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
748 |
+
be passed as input ids as they have already been computed.
|
749 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
750 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
751 |
+
`(batch_size, sequence_length, hidden_size)`.
|
752 |
+
|
753 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
754 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
755 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
756 |
+
sequence_length)`.
|
757 |
+
|
758 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
759 |
+
heads.
|
760 |
+
"""
|
761 |
+
|
762 |
+
loss: tf.Tensor | None = None
|
763 |
+
logits: tf.Tensor = None
|
764 |
+
mems: List[tf.Tensor] = None
|
765 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
766 |
+
attentions: Tuple[tf.Tensor] | None = None
|
767 |
+
|
768 |
+
|
769 |
+
TRANSFO_XL_START_DOCSTRING = r"""
|
770 |
+
|
771 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
772 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
773 |
+
etc.)
|
774 |
+
|
775 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
776 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
777 |
+
behavior.
|
778 |
+
|
779 |
+
<Tip>
|
780 |
+
|
781 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
782 |
+
|
783 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
784 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
785 |
+
|
786 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
787 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
788 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
789 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
790 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
791 |
+
positional argument:
|
792 |
+
|
793 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
794 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
795 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
796 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
797 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
798 |
+
|
799 |
+
Note that when creating models and layers with
|
800 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
801 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
802 |
+
|
803 |
+
</Tip>
|
804 |
+
|
805 |
+
Parameters:
|
806 |
+
config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model.
|
807 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
808 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
809 |
+
"""
|
810 |
+
|
811 |
+
TRANSFO_XL_INPUTS_DOCSTRING = r"""
|
812 |
+
Args:
|
813 |
+
input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`):
|
814 |
+
Indices of input sequence tokens in the vocabulary.
|
815 |
+
|
816 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
817 |
+
[`PreTrainedTokenizer.encode`] for details.
|
818 |
+
|
819 |
+
[What are input IDs?](../glossary#input-ids)
|
820 |
+
mems (`List[tf.Tensor]` of length `config.n_layers`):
|
821 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
822 |
+
`mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
|
823 |
+
given to this model should not be passed as `input_ids` as they have already been computed.
|
824 |
+
head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
825 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
826 |
+
|
827 |
+
- 1 indicates the head is **not masked**,
|
828 |
+
- 0 indicates the head is **masked**.
|
829 |
+
inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
830 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
831 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
832 |
+
model's internal embedding lookup matrix.
|
833 |
+
output_attentions (`bool`, *optional*):
|
834 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
835 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
836 |
+
config will be used instead.
|
837 |
+
output_hidden_states (`bool`, *optional*):
|
838 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
839 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
840 |
+
used instead.
|
841 |
+
return_dict (`bool`, *optional*):
|
842 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
843 |
+
eager mode, in graph mode the value will always be set to True.
|
844 |
+
training (`bool`, *optional*, defaults to `False`):
|
845 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
846 |
+
behaviors between training and evaluation).
|
847 |
+
"""
|
848 |
+
|
849 |
+
|
850 |
+
@add_start_docstrings(
|
851 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
852 |
+
TRANSFO_XL_START_DOCSTRING,
|
853 |
+
)
|
854 |
+
class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
|
855 |
+
def __init__(self, config, *inputs, **kwargs):
|
856 |
+
super().__init__(config, *inputs, **kwargs)
|
857 |
+
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
|
858 |
+
|
859 |
+
@unpack_inputs
|
860 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
861 |
+
@add_code_sample_docstrings(
|
862 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
863 |
+
output_type=TFTransfoXLModelOutput,
|
864 |
+
config_class=_CONFIG_FOR_DOC,
|
865 |
+
)
|
866 |
+
def call(
|
867 |
+
self,
|
868 |
+
input_ids: TFModelInputType | None = None,
|
869 |
+
mems: List[tf.Tensor] | None = None,
|
870 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
871 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
872 |
+
output_attentions: bool | None = None,
|
873 |
+
output_hidden_states: bool | None = None,
|
874 |
+
return_dict: bool | None = None,
|
875 |
+
training: bool = False,
|
876 |
+
) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]:
|
877 |
+
outputs = self.transformer(
|
878 |
+
input_ids=input_ids,
|
879 |
+
mems=mems,
|
880 |
+
head_mask=head_mask,
|
881 |
+
inputs_embeds=inputs_embeds,
|
882 |
+
output_attentions=output_attentions,
|
883 |
+
output_hidden_states=output_hidden_states,
|
884 |
+
return_dict=return_dict,
|
885 |
+
training=training,
|
886 |
+
)
|
887 |
+
|
888 |
+
return outputs
|
889 |
+
|
890 |
+
|
891 |
+
@add_start_docstrings(
|
892 |
+
"""
|
893 |
+
The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive
|
894 |
+
input embeddings)
|
895 |
+
""",
|
896 |
+
TRANSFO_XL_START_DOCSTRING,
|
897 |
+
)
|
898 |
+
class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
|
899 |
+
def __init__(self, config):
|
900 |
+
super().__init__(config)
|
901 |
+
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
|
902 |
+
self.sample_softmax = config.sample_softmax
|
903 |
+
assert self.sample_softmax <= 0, (
|
904 |
+
"Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
|
905 |
+
" https://github.com/huggingface/transformers/issues/3310"
|
906 |
+
)
|
907 |
+
|
908 |
+
self.crit = TFAdaptiveSoftmaxMask(
|
909 |
+
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit"
|
910 |
+
)
|
911 |
+
|
912 |
+
def _resize_token_embeddings(self, new_num_tokens):
|
913 |
+
raise NotImplementedError()
|
914 |
+
|
915 |
+
def get_output_embeddings(self):
|
916 |
+
"""Double-check if you are using adaptive softmax."""
|
917 |
+
if len(self.crit.out_layers) > 0:
|
918 |
+
return self.crit.out_layers[-1]
|
919 |
+
return None
|
920 |
+
|
921 |
+
def reset_memory_length(self, mem_len):
|
922 |
+
self.transformer.reset_memory_length(mem_len)
|
923 |
+
|
924 |
+
def init_mems(self, bsz):
|
925 |
+
return self.transformer.init_mems(bsz)
|
926 |
+
|
927 |
+
@unpack_inputs
|
928 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
929 |
+
@add_code_sample_docstrings(
|
930 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
931 |
+
output_type=TFTransfoXLLMHeadModelOutput,
|
932 |
+
config_class=_CONFIG_FOR_DOC,
|
933 |
+
)
|
934 |
+
def call(
|
935 |
+
self,
|
936 |
+
input_ids: TFModelInputType | None = None,
|
937 |
+
mems: List[tf.Tensor] | None = None,
|
938 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
939 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
940 |
+
output_attentions: bool | None = None,
|
941 |
+
output_hidden_states: bool | None = None,
|
942 |
+
return_dict: bool | None = None,
|
943 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
944 |
+
training: bool = False,
|
945 |
+
) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]:
|
946 |
+
if input_ids is not None:
|
947 |
+
bsz, tgt_len = shape_list(input_ids)[:2]
|
948 |
+
else:
|
949 |
+
bsz, tgt_len = shape_list(inputs_embeds)[:2]
|
950 |
+
|
951 |
+
transformer_outputs = self.transformer(
|
952 |
+
input_ids,
|
953 |
+
mems,
|
954 |
+
head_mask,
|
955 |
+
inputs_embeds,
|
956 |
+
output_attentions,
|
957 |
+
output_hidden_states,
|
958 |
+
return_dict,
|
959 |
+
training=training,
|
960 |
+
)
|
961 |
+
|
962 |
+
last_hidden = transformer_outputs[0]
|
963 |
+
pred_hid = last_hidden[:, -tgt_len:]
|
964 |
+
|
965 |
+
softmax_output = self.crit(pred_hid, labels, training=training)
|
966 |
+
prediction_scores = softmax_output if labels is None else ()
|
967 |
+
|
968 |
+
if not return_dict:
|
969 |
+
return (prediction_scores,) + transformer_outputs[1:]
|
970 |
+
|
971 |
+
return TFTransfoXLLMHeadModelOutput(
|
972 |
+
prediction_scores=prediction_scores,
|
973 |
+
mems=transformer_outputs.mems,
|
974 |
+
hidden_states=transformer_outputs.hidden_states,
|
975 |
+
attentions=transformer_outputs.attentions,
|
976 |
+
)
|
977 |
+
|
978 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
|
979 |
+
inputs = {}
|
980 |
+
|
981 |
+
# if past is defined in model kwargs then use it for faster decoding
|
982 |
+
if past_key_values:
|
983 |
+
input_ids = tf.expand_dims(input_ids[:, -1], axis=-1)
|
984 |
+
else:
|
985 |
+
input_ids = input_ids
|
986 |
+
|
987 |
+
return inputs
|
988 |
+
|
989 |
+
# Adapted from the torch tie_weights function
|
990 |
+
def tf_to_pt_weight_rename(self, tf_weight):
|
991 |
+
if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight:
|
992 |
+
return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers")
|
993 |
+
elif self.config.tie_projs and "crit.out_projs" in tf_weight:
|
994 |
+
for i, tie_proj in enumerate(self.config.tie_projs):
|
995 |
+
if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
|
996 |
+
# self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
|
997 |
+
return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0")
|
998 |
+
elif tie_proj and self.config.div_val != 1:
|
999 |
+
# self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
|
1000 |
+
return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs")
|
1001 |
+
else:
|
1002 |
+
return (tf_weight,)
|
1003 |
+
|
1004 |
+
|
1005 |
+
@add_start_docstrings(
|
1006 |
+
"""
|
1007 |
+
The Transfo XL Model transformer with a sequence classification head on top (linear layer).
|
1008 |
+
|
1009 |
+
[`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1010 |
+
models (e.g. GPT-1,GPT-2) do.
|
1011 |
+
|
1012 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1013 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1014 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1015 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1016 |
+
each row of the batch).
|
1017 |
+
""",
|
1018 |
+
TRANSFO_XL_START_DOCSTRING,
|
1019 |
+
)
|
1020 |
+
class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss):
|
1021 |
+
def __init__(self, config, *inputs, **kwargs):
|
1022 |
+
super().__init__(config, *inputs, **kwargs)
|
1023 |
+
self.num_labels = config.num_labels
|
1024 |
+
self.score = keras.layers.Dense(
|
1025 |
+
config.num_labels,
|
1026 |
+
kernel_initializer=get_initializer(config.init_range),
|
1027 |
+
name="score",
|
1028 |
+
use_bias=False,
|
1029 |
+
)
|
1030 |
+
self.transformer = TFTransfoXLMainLayer(config, name="transformer")
|
1031 |
+
|
1032 |
+
def get_output_embeddings(self):
|
1033 |
+
# Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
|
1034 |
+
logger.warning(
|
1035 |
+
"Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
|
1036 |
+
"in transformers v4.32."
|
1037 |
+
)
|
1038 |
+
return self.transformer.word_emb
|
1039 |
+
|
1040 |
+
@unpack_inputs
|
1041 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
1042 |
+
@add_code_sample_docstrings(
|
1043 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1044 |
+
output_type=TFTransfoXLSequenceClassifierOutputWithPast,
|
1045 |
+
config_class=_CONFIG_FOR_DOC,
|
1046 |
+
)
|
1047 |
+
def call(
|
1048 |
+
self,
|
1049 |
+
input_ids: TFModelInputType | None = None,
|
1050 |
+
mems: List[tf.Tensor] | None = None,
|
1051 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1052 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1053 |
+
output_attentions: Optional[bool] = None,
|
1054 |
+
output_hidden_states: Optional[bool] = None,
|
1055 |
+
return_dict: Optional[bool] = None,
|
1056 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1057 |
+
training: Optional[bool] = False,
|
1058 |
+
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
|
1059 |
+
r"""
|
1060 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1061 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
1062 |
+
config.vocab_size - 1]`.
|
1063 |
+
"""
|
1064 |
+
transformer_outputs = self.transformer(
|
1065 |
+
input_ids=input_ids,
|
1066 |
+
mems=mems,
|
1067 |
+
head_mask=head_mask,
|
1068 |
+
inputs_embeds=inputs_embeds,
|
1069 |
+
output_attentions=output_attentions,
|
1070 |
+
output_hidden_states=output_hidden_states,
|
1071 |
+
return_dict=return_dict,
|
1072 |
+
training=training,
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
hidden_states = transformer_outputs[0]
|
1076 |
+
logits = self.score(hidden_states)
|
1077 |
+
in_logits = None
|
1078 |
+
if self.config.pad_token_id is None:
|
1079 |
+
sequence_lengths = -1
|
1080 |
+
else:
|
1081 |
+
if input_ids is not None:
|
1082 |
+
sequence_lengths = (
|
1083 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
1084 |
+
- 1
|
1085 |
+
)
|
1086 |
+
sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
|
1087 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
1088 |
+
else:
|
1089 |
+
sequence_lengths = -1
|
1090 |
+
logger.warning(
|
1091 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1092 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1093 |
+
)
|
1094 |
+
loss = None
|
1095 |
+
|
1096 |
+
if labels is not None:
|
1097 |
+
if input_ids is not None:
|
1098 |
+
batch_size, sequence_length = shape_list(input_ids)[:2]
|
1099 |
+
else:
|
1100 |
+
batch_size, sequence_length = shape_list(inputs_embeds)[:2]
|
1101 |
+
assert (
|
1102 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1103 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1104 |
+
|
1105 |
+
if not tf.is_tensor(sequence_lengths):
|
1106 |
+
in_logits = logits[0:batch_size, sequence_lengths]
|
1107 |
+
|
1108 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
1109 |
+
|
1110 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
1111 |
+
|
1112 |
+
if not return_dict:
|
1113 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1114 |
+
return ((loss,) + output) if loss is not None else output
|
1115 |
+
|
1116 |
+
return TFTransfoXLSequenceClassifierOutputWithPast(
|
1117 |
+
loss=loss,
|
1118 |
+
logits=pooled_logits,
|
1119 |
+
mems=transformer_outputs.mems,
|
1120 |
+
hidden_states=transformer_outputs.hidden_states,
|
1121 |
+
attentions=transformer_outputs.attentions,
|
1122 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
A TF 2.0 Adaptive Softmax for Transformer XL model.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
|
23 |
+
from ....modeling_tf_utils import keras
|
24 |
+
from ....tf_utils import shape_list
|
25 |
+
|
26 |
+
|
27 |
+
class TFAdaptiveSoftmaxMask(keras.layers.Layer):
|
28 |
+
def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs):
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
|
31 |
+
self.vocab_size = vocab_size
|
32 |
+
self.d_embed = d_embed
|
33 |
+
self.d_proj = d_proj
|
34 |
+
|
35 |
+
self.cutoffs = cutoffs + [vocab_size]
|
36 |
+
self.cutoff_ends = [0] + self.cutoffs
|
37 |
+
self.div_val = div_val
|
38 |
+
|
39 |
+
self.shortlist_size = self.cutoffs[0]
|
40 |
+
self.n_clusters = len(self.cutoffs) - 1
|
41 |
+
self.head_size = self.shortlist_size + self.n_clusters
|
42 |
+
self.keep_order = keep_order
|
43 |
+
|
44 |
+
self.out_layers = []
|
45 |
+
self.out_projs = []
|
46 |
+
|
47 |
+
def build(self, input_shape):
|
48 |
+
if self.n_clusters > 0:
|
49 |
+
self.cluster_weight = self.add_weight(
|
50 |
+
shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight"
|
51 |
+
)
|
52 |
+
self.cluster_bias = self.add_weight(
|
53 |
+
shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias"
|
54 |
+
)
|
55 |
+
|
56 |
+
if self.div_val == 1:
|
57 |
+
for i in range(len(self.cutoffs)):
|
58 |
+
if self.d_proj != self.d_embed:
|
59 |
+
weight = self.add_weight(
|
60 |
+
shape=(self.d_embed, self.d_proj),
|
61 |
+
initializer="zeros",
|
62 |
+
trainable=True,
|
63 |
+
name=f"out_projs_._{i}",
|
64 |
+
)
|
65 |
+
self.out_projs.append(weight)
|
66 |
+
else:
|
67 |
+
self.out_projs.append(None)
|
68 |
+
weight = self.add_weight(
|
69 |
+
shape=(self.vocab_size, self.d_embed),
|
70 |
+
initializer="zeros",
|
71 |
+
trainable=True,
|
72 |
+
name=f"out_layers_._{i}_._weight",
|
73 |
+
)
|
74 |
+
bias = self.add_weight(
|
75 |
+
shape=(self.vocab_size,),
|
76 |
+
initializer="zeros",
|
77 |
+
trainable=True,
|
78 |
+
name=f"out_layers_._{i}_._bias",
|
79 |
+
)
|
80 |
+
self.out_layers.append((weight, bias))
|
81 |
+
else:
|
82 |
+
for i in range(len(self.cutoffs)):
|
83 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
84 |
+
d_emb_i = self.d_embed // (self.div_val**i)
|
85 |
+
|
86 |
+
weight = self.add_weight(
|
87 |
+
shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}"
|
88 |
+
)
|
89 |
+
self.out_projs.append(weight)
|
90 |
+
weight = self.add_weight(
|
91 |
+
shape=(r_idx - l_idx, d_emb_i),
|
92 |
+
initializer="zeros",
|
93 |
+
trainable=True,
|
94 |
+
name=f"out_layers_._{i}_._weight",
|
95 |
+
)
|
96 |
+
bias = self.add_weight(
|
97 |
+
shape=(r_idx - l_idx,),
|
98 |
+
initializer="zeros",
|
99 |
+
trainable=True,
|
100 |
+
name=f"out_layers_._{i}_._bias",
|
101 |
+
)
|
102 |
+
self.out_layers.append((weight, bias))
|
103 |
+
super().build(input_shape)
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def _logit(x, W, b, proj=None):
|
107 |
+
y = x
|
108 |
+
if proj is not None:
|
109 |
+
y = tf.einsum("ibd,ed->ibe", y, proj)
|
110 |
+
return tf.einsum("ibd,nd->ibn", y, W) + b
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def _gather_logprob(logprob, target):
|
114 |
+
lp_size = shape_list(logprob)
|
115 |
+
r = tf.range(lp_size[0], dtype=target.dtype)
|
116 |
+
idx = tf.stack([r, target], 1)
|
117 |
+
return tf.gather_nd(logprob, idx)
|
118 |
+
|
119 |
+
def call(self, hidden, target, return_mean=True, training=False):
|
120 |
+
head_logprob = 0
|
121 |
+
if self.n_clusters == 0:
|
122 |
+
output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0])
|
123 |
+
if target is not None:
|
124 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
|
125 |
+
out = tf.nn.log_softmax(output, axis=-1)
|
126 |
+
else:
|
127 |
+
hidden_sizes = shape_list(hidden)
|
128 |
+
out = []
|
129 |
+
loss = tf.zeros(hidden_sizes[:2])
|
130 |
+
for i in range(len(self.cutoffs)):
|
131 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
132 |
+
if target is not None:
|
133 |
+
mask = (target >= l_idx) & (target < r_idx)
|
134 |
+
mask_idx = tf.where(mask)
|
135 |
+
cur_target = tf.boolean_mask(target, mask) - l_idx
|
136 |
+
|
137 |
+
if self.div_val == 1:
|
138 |
+
cur_W = self.out_layers[0][0][l_idx:r_idx]
|
139 |
+
cur_b = self.out_layers[0][1][l_idx:r_idx]
|
140 |
+
else:
|
141 |
+
cur_W = self.out_layers[i][0]
|
142 |
+
cur_b = self.out_layers[i][1]
|
143 |
+
|
144 |
+
if i == 0:
|
145 |
+
cur_W = tf.concat([cur_W, self.cluster_weight], 0)
|
146 |
+
cur_b = tf.concat([cur_b, self.cluster_bias], 0)
|
147 |
+
|
148 |
+
head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0])
|
149 |
+
head_logprob = tf.nn.log_softmax(head_logit)
|
150 |
+
out.append(head_logprob[..., : self.cutoffs[0]])
|
151 |
+
if target is not None:
|
152 |
+
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
|
153 |
+
cur_logprob = self._gather_logprob(cur_head_logprob, cur_target)
|
154 |
+
else:
|
155 |
+
tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i])
|
156 |
+
tail_logprob = tf.nn.log_softmax(tail_logit)
|
157 |
+
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
|
158 |
+
logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob
|
159 |
+
out.append(logprob_i)
|
160 |
+
if target is not None:
|
161 |
+
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
|
162 |
+
cur_tail_logprob = tf.boolean_mask(tail_logprob, mask)
|
163 |
+
cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target)
|
164 |
+
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
|
165 |
+
if target is not None:
|
166 |
+
loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss))
|
167 |
+
out = tf.concat(out, axis=-1)
|
168 |
+
|
169 |
+
if target is not None:
|
170 |
+
if return_mean:
|
171 |
+
loss = tf.reduce_mean(loss)
|
172 |
+
# Add the training-time loss value to the layer using `self.add_loss()`.
|
173 |
+
self.add_loss(loss)
|
174 |
+
|
175 |
+
# Log the loss as a metric (we could log arbitrary metrics,
|
176 |
+
# including different metrics for training and inference.
|
177 |
+
self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "")
|
178 |
+
|
179 |
+
return out
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
ADDED
@@ -0,0 +1,1295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular
|
18 |
+
https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
|
19 |
+
"""
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
|
28 |
+
from ....modeling_utils import PreTrainedModel
|
29 |
+
from ....utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
)
|
36 |
+
from .configuration_transfo_xl import TransfoXLConfig
|
37 |
+
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103"
|
43 |
+
_CONFIG_FOR_DOC = "TransfoXLConfig"
|
44 |
+
|
45 |
+
|
46 |
+
from .._archive_maps import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
47 |
+
|
48 |
+
|
49 |
+
def build_tf_to_pytorch_map(model, config):
|
50 |
+
"""
|
51 |
+
A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original
|
52 |
+
PyTorch model as possible.
|
53 |
+
"""
|
54 |
+
tf_to_pt_map = {}
|
55 |
+
|
56 |
+
if hasattr(model, "transformer"):
|
57 |
+
# We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
|
58 |
+
tf_to_pt_map.update(
|
59 |
+
{
|
60 |
+
"transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
|
61 |
+
"transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias,
|
62 |
+
}
|
63 |
+
)
|
64 |
+
for i, (out_l, proj_l, tie_proj) in enumerate(
|
65 |
+
zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs)
|
66 |
+
):
|
67 |
+
layer_str = f"transformer/adaptive_softmax/cutoff_{i}/"
|
68 |
+
if config.tie_word_embeddings:
|
69 |
+
tf_to_pt_map.update({layer_str + "b": out_l.bias})
|
70 |
+
else:
|
71 |
+
raise NotImplementedError
|
72 |
+
# I don't think this is implemented in the TF code
|
73 |
+
tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias})
|
74 |
+
if not tie_proj:
|
75 |
+
tf_to_pt_map.update({layer_str + "proj": proj_l})
|
76 |
+
# Now load the rest of the transformer
|
77 |
+
model = model.transformer
|
78 |
+
|
79 |
+
# Embeddings
|
80 |
+
for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
|
81 |
+
layer_str = f"transformer/adaptive_embed/cutoff_{i}/"
|
82 |
+
tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l})
|
83 |
+
|
84 |
+
# Transformer blocks
|
85 |
+
for i, b in enumerate(model.layers):
|
86 |
+
layer_str = f"transformer/layer_{i}/"
|
87 |
+
tf_to_pt_map.update(
|
88 |
+
{
|
89 |
+
layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
|
90 |
+
layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
|
91 |
+
layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
|
92 |
+
layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
|
93 |
+
layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
|
94 |
+
layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
|
95 |
+
layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
|
96 |
+
layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
|
97 |
+
layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
|
98 |
+
layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
|
99 |
+
layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
|
100 |
+
}
|
101 |
+
)
|
102 |
+
|
103 |
+
# Relative positioning biases
|
104 |
+
if config.untie_r:
|
105 |
+
r_r_list = []
|
106 |
+
r_w_list = []
|
107 |
+
for b in model.layers:
|
108 |
+
r_r_list.append(b.dec_attn.r_r_bias)
|
109 |
+
r_w_list.append(b.dec_attn.r_w_bias)
|
110 |
+
else:
|
111 |
+
r_r_list = [model.r_r_bias]
|
112 |
+
r_w_list = [model.r_w_bias]
|
113 |
+
tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list})
|
114 |
+
return tf_to_pt_map
|
115 |
+
|
116 |
+
|
117 |
+
def load_tf_weights_in_transfo_xl(model, config, tf_path):
|
118 |
+
"""Load tf checkpoints in a pytorch model"""
|
119 |
+
try:
|
120 |
+
import numpy as np
|
121 |
+
import tensorflow as tf
|
122 |
+
except ImportError:
|
123 |
+
logger.error(
|
124 |
+
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
125 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
126 |
+
)
|
127 |
+
raise
|
128 |
+
# Build TF to PyTorch weights loading map
|
129 |
+
tf_to_pt_map = build_tf_to_pytorch_map(model, config)
|
130 |
+
|
131 |
+
# Load weights from TF model
|
132 |
+
init_vars = tf.train.list_variables(tf_path)
|
133 |
+
tf_weights = {}
|
134 |
+
for name, shape in init_vars:
|
135 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
136 |
+
array = tf.train.load_variable(tf_path, name)
|
137 |
+
tf_weights[name] = array
|
138 |
+
|
139 |
+
for name, pointer in tf_to_pt_map.items():
|
140 |
+
assert name in tf_weights
|
141 |
+
array = tf_weights[name]
|
142 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
143 |
+
# which are not required for using pretrained model
|
144 |
+
if "kernel" in name or "proj" in name:
|
145 |
+
array = np.transpose(array)
|
146 |
+
if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1:
|
147 |
+
# Here we will split the TF weights
|
148 |
+
assert len(pointer) == array.shape[0]
|
149 |
+
for i, p_i in enumerate(pointer):
|
150 |
+
arr_i = array[i, ...]
|
151 |
+
try:
|
152 |
+
assert p_i.shape == arr_i.shape
|
153 |
+
except AssertionError as e:
|
154 |
+
e.args += (p_i.shape, arr_i.shape)
|
155 |
+
raise
|
156 |
+
logger.info(f"Initialize PyTorch weight {name} for layer {i}")
|
157 |
+
p_i.data = torch.from_numpy(arr_i)
|
158 |
+
else:
|
159 |
+
try:
|
160 |
+
assert (
|
161 |
+
pointer.shape == array.shape
|
162 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
163 |
+
except AssertionError as e:
|
164 |
+
e.args += (pointer.shape, array.shape)
|
165 |
+
raise
|
166 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
167 |
+
pointer.data = torch.from_numpy(array)
|
168 |
+
tf_weights.pop(name, None)
|
169 |
+
tf_weights.pop(name + "/Adam", None)
|
170 |
+
tf_weights.pop(name + "/Adam_1", None)
|
171 |
+
|
172 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
|
173 |
+
return model
|
174 |
+
|
175 |
+
|
176 |
+
class PositionalEmbedding(nn.Module):
|
177 |
+
def __init__(self, demb):
|
178 |
+
super().__init__()
|
179 |
+
|
180 |
+
self.demb = demb
|
181 |
+
|
182 |
+
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
|
183 |
+
self.register_buffer("inv_freq", inv_freq)
|
184 |
+
|
185 |
+
def forward(self, pos_seq, bsz=None):
|
186 |
+
sinusoid_inp = torch.outer(pos_seq, self.inv_freq)
|
187 |
+
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
188 |
+
|
189 |
+
if bsz is not None:
|
190 |
+
return pos_emb[:, None, :].expand(-1, bsz, -1)
|
191 |
+
else:
|
192 |
+
return pos_emb[:, None, :]
|
193 |
+
|
194 |
+
|
195 |
+
class PositionwiseFF(nn.Module):
|
196 |
+
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5):
|
197 |
+
super().__init__()
|
198 |
+
|
199 |
+
self.d_model = d_model
|
200 |
+
self.d_inner = d_inner
|
201 |
+
self.dropout = dropout
|
202 |
+
|
203 |
+
self.CoreNet = nn.Sequential(
|
204 |
+
nn.Linear(d_model, d_inner),
|
205 |
+
nn.ReLU(inplace=True),
|
206 |
+
nn.Dropout(dropout),
|
207 |
+
nn.Linear(d_inner, d_model),
|
208 |
+
nn.Dropout(dropout),
|
209 |
+
)
|
210 |
+
|
211 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
|
212 |
+
|
213 |
+
self.pre_lnorm = pre_lnorm
|
214 |
+
|
215 |
+
def forward(self, inp):
|
216 |
+
if self.pre_lnorm:
|
217 |
+
# layer normalization + positionwise feed-forward
|
218 |
+
core_out = self.CoreNet(self.layer_norm(inp))
|
219 |
+
|
220 |
+
# residual connection
|
221 |
+
output = core_out + inp
|
222 |
+
else:
|
223 |
+
# positionwise feed-forward
|
224 |
+
core_out = self.CoreNet(inp)
|
225 |
+
|
226 |
+
# residual connection + layer normalization
|
227 |
+
output = self.layer_norm(inp + core_out)
|
228 |
+
|
229 |
+
return output
|
230 |
+
|
231 |
+
|
232 |
+
class RelPartialLearnableMultiHeadAttn(nn.Module):
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
n_head,
|
236 |
+
d_model,
|
237 |
+
d_head,
|
238 |
+
dropout,
|
239 |
+
dropatt=0,
|
240 |
+
pre_lnorm=False,
|
241 |
+
r_r_bias=None,
|
242 |
+
r_w_bias=None,
|
243 |
+
layer_norm_epsilon=1e-5,
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
|
247 |
+
self.n_head = n_head
|
248 |
+
self.d_model = d_model
|
249 |
+
self.d_head = d_head
|
250 |
+
self.dropout = dropout
|
251 |
+
|
252 |
+
self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)
|
253 |
+
|
254 |
+
self.drop = nn.Dropout(dropout)
|
255 |
+
self.dropatt = nn.Dropout(dropatt)
|
256 |
+
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
|
257 |
+
|
258 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
|
259 |
+
|
260 |
+
self.scale = 1 / (d_head**0.5)
|
261 |
+
|
262 |
+
self.pre_lnorm = pre_lnorm
|
263 |
+
|
264 |
+
if r_r_bias is None or r_w_bias is None: # Biases are not shared
|
265 |
+
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
266 |
+
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
267 |
+
else:
|
268 |
+
self.r_r_bias = r_r_bias
|
269 |
+
self.r_w_bias = r_w_bias
|
270 |
+
|
271 |
+
self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
|
272 |
+
|
273 |
+
def _rel_shift(self, x):
|
274 |
+
zero_pad_shape = (x.size(0), 1) + x.size()[2:]
|
275 |
+
zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
|
276 |
+
x_padded = torch.cat([zero_pad, x], dim=1)
|
277 |
+
|
278 |
+
x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
|
279 |
+
x_padded = x_padded.view(*x_padded_shape)
|
280 |
+
|
281 |
+
x = x_padded[1:].view_as(x)
|
282 |
+
|
283 |
+
return x
|
284 |
+
|
285 |
+
def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False):
|
286 |
+
qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
|
287 |
+
|
288 |
+
if mems is not None:
|
289 |
+
cat = torch.cat([mems, w], 0)
|
290 |
+
if self.pre_lnorm:
|
291 |
+
w_heads = self.qkv_net(self.layer_norm(cat))
|
292 |
+
else:
|
293 |
+
w_heads = self.qkv_net(cat)
|
294 |
+
r_head_k = self.r_net(r)
|
295 |
+
|
296 |
+
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
297 |
+
w_head_q = w_head_q[-qlen:]
|
298 |
+
else:
|
299 |
+
if self.pre_lnorm:
|
300 |
+
w_heads = self.qkv_net(self.layer_norm(w))
|
301 |
+
else:
|
302 |
+
w_heads = self.qkv_net(w)
|
303 |
+
r_head_k = self.r_net(r)
|
304 |
+
|
305 |
+
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
306 |
+
|
307 |
+
klen = w_head_k.size(0)
|
308 |
+
|
309 |
+
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
310 |
+
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
311 |
+
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
312 |
+
|
313 |
+
r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head
|
314 |
+
|
315 |
+
# compute attention score
|
316 |
+
rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
|
317 |
+
AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
|
318 |
+
|
319 |
+
rr_head_q = w_head_q + self.r_r_bias
|
320 |
+
BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head
|
321 |
+
BD = self._rel_shift(BD)
|
322 |
+
|
323 |
+
# [qlen x klen x bsz x n_head]
|
324 |
+
attn_score = AC + BD
|
325 |
+
attn_score.mul_(self.scale)
|
326 |
+
|
327 |
+
mask_value = torch.finfo(attn_score.dtype).min
|
328 |
+
|
329 |
+
# compute attention probability
|
330 |
+
if attn_mask is not None and torch.sum(attn_mask).item():
|
331 |
+
attn_mask = attn_mask == 1 # Switch to bool
|
332 |
+
if attn_mask.dim() == 2:
|
333 |
+
attn_score = (
|
334 |
+
attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score)
|
335 |
+
)
|
336 |
+
elif attn_mask.dim() == 3:
|
337 |
+
attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score)
|
338 |
+
|
339 |
+
# [qlen x klen x bsz x n_head]
|
340 |
+
attn_prob = nn.functional.softmax(attn_score, dim=1)
|
341 |
+
attn_prob = self.dropatt(attn_prob)
|
342 |
+
|
343 |
+
# Mask heads if we want to
|
344 |
+
if head_mask is not None:
|
345 |
+
attn_prob = attn_prob * head_mask
|
346 |
+
|
347 |
+
# compute attention vector
|
348 |
+
attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v))
|
349 |
+
|
350 |
+
# [qlen x bsz x n_head x d_head]
|
351 |
+
attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
|
352 |
+
|
353 |
+
# linear projection
|
354 |
+
attn_out = self.o_net(attn_vec)
|
355 |
+
attn_out = self.drop(attn_out)
|
356 |
+
|
357 |
+
if self.pre_lnorm:
|
358 |
+
# residual connection
|
359 |
+
outputs = [w + attn_out]
|
360 |
+
else:
|
361 |
+
# residual connection + layer normalization
|
362 |
+
outputs = [self.layer_norm(w + attn_out)]
|
363 |
+
|
364 |
+
if output_attentions:
|
365 |
+
outputs.append(attn_prob)
|
366 |
+
|
367 |
+
return outputs
|
368 |
+
|
369 |
+
|
370 |
+
class RelPartialLearnableDecoderLayer(nn.Module):
|
371 |
+
def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs):
|
372 |
+
super().__init__()
|
373 |
+
|
374 |
+
self.dec_attn = RelPartialLearnableMultiHeadAttn(
|
375 |
+
n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs
|
376 |
+
)
|
377 |
+
self.pos_ff = PositionwiseFF(
|
378 |
+
d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon
|
379 |
+
)
|
380 |
+
|
381 |
+
def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False):
|
382 |
+
attn_outputs = self.dec_attn(
|
383 |
+
dec_inp,
|
384 |
+
r,
|
385 |
+
attn_mask=dec_attn_mask,
|
386 |
+
mems=mems,
|
387 |
+
head_mask=head_mask,
|
388 |
+
output_attentions=output_attentions,
|
389 |
+
)
|
390 |
+
ff_output = self.pos_ff(attn_outputs[0])
|
391 |
+
|
392 |
+
outputs = [ff_output] + attn_outputs[1:]
|
393 |
+
|
394 |
+
return outputs
|
395 |
+
|
396 |
+
|
397 |
+
class AdaptiveEmbedding(nn.Module):
|
398 |
+
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False):
|
399 |
+
super().__init__()
|
400 |
+
|
401 |
+
self.n_token = n_token
|
402 |
+
self.d_embed = d_embed
|
403 |
+
|
404 |
+
self.cutoffs = cutoffs + [n_token]
|
405 |
+
self.div_val = div_val
|
406 |
+
self.d_proj = d_proj
|
407 |
+
|
408 |
+
self.emb_scale = d_proj**0.5
|
409 |
+
|
410 |
+
self.cutoff_ends = [0] + self.cutoffs
|
411 |
+
|
412 |
+
self.emb_layers = nn.ModuleList()
|
413 |
+
self.emb_projs = nn.ParameterList()
|
414 |
+
if div_val == 1:
|
415 |
+
self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0))
|
416 |
+
if d_proj != d_embed:
|
417 |
+
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
|
418 |
+
else:
|
419 |
+
for i in range(len(self.cutoffs)):
|
420 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
421 |
+
d_emb_i = d_embed // (div_val**i)
|
422 |
+
self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i))
|
423 |
+
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
|
424 |
+
|
425 |
+
def forward(self, inp):
|
426 |
+
if self.div_val == 1:
|
427 |
+
embed = self.emb_layers[0](inp)
|
428 |
+
if self.d_proj != self.d_embed:
|
429 |
+
embed = nn.functional.linear(embed, self.emb_projs[0])
|
430 |
+
else:
|
431 |
+
param = next(self.parameters())
|
432 |
+
inp_flat = inp.view(-1)
|
433 |
+
emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device)
|
434 |
+
for i in range(len(self.cutoffs)):
|
435 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
436 |
+
|
437 |
+
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
|
438 |
+
indices_i = mask_i.nonzero().squeeze()
|
439 |
+
|
440 |
+
if indices_i.numel() == 0:
|
441 |
+
continue
|
442 |
+
|
443 |
+
inp_i = inp_flat.index_select(0, indices_i) - l_idx
|
444 |
+
emb_i = self.emb_layers[i](inp_i)
|
445 |
+
emb_i = nn.functional.linear(emb_i, self.emb_projs[i])
|
446 |
+
|
447 |
+
emb_flat.index_copy_(0, indices_i, emb_i)
|
448 |
+
|
449 |
+
embed_shape = inp.size() + (self.d_proj,)
|
450 |
+
embed = emb_flat.view(embed_shape)
|
451 |
+
|
452 |
+
embed.mul_(self.emb_scale)
|
453 |
+
|
454 |
+
return embed
|
455 |
+
|
456 |
+
|
457 |
+
class TransfoXLPreTrainedModel(PreTrainedModel):
|
458 |
+
"""
|
459 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
460 |
+
models.
|
461 |
+
"""
|
462 |
+
|
463 |
+
config_class = TransfoXLConfig
|
464 |
+
load_tf_weights = load_tf_weights_in_transfo_xl
|
465 |
+
base_model_prefix = "transformer"
|
466 |
+
|
467 |
+
def _init_weight(self, weight):
|
468 |
+
if self.config.init == "uniform":
|
469 |
+
nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
|
470 |
+
elif self.config.init == "normal":
|
471 |
+
nn.init.normal_(weight, 0.0, self.config.init_std)
|
472 |
+
|
473 |
+
def _init_bias(self, bias):
|
474 |
+
nn.init.constant_(bias, 0.0)
|
475 |
+
|
476 |
+
def _init_weights(self, m):
|
477 |
+
"""Initialize the weights."""
|
478 |
+
classname = m.__class__.__name__
|
479 |
+
if classname.find("Linear") != -1:
|
480 |
+
if hasattr(m, "weight") and m.weight is not None:
|
481 |
+
self._init_weight(m.weight)
|
482 |
+
if hasattr(m, "bias") and m.bias is not None:
|
483 |
+
self._init_bias(m.bias)
|
484 |
+
elif classname.find("AdaptiveEmbedding") != -1:
|
485 |
+
if hasattr(m, "emb_projs"):
|
486 |
+
for i in range(len(m.emb_projs)):
|
487 |
+
if m.emb_projs[i] is not None:
|
488 |
+
nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
|
489 |
+
elif classname.find("Embedding") != -1:
|
490 |
+
if hasattr(m, "weight"):
|
491 |
+
self._init_weight(m.weight)
|
492 |
+
elif classname.find("ProjectedAdaptiveLogSoftmax") != -1:
|
493 |
+
if hasattr(m, "cluster_weight") and m.cluster_weight is not None:
|
494 |
+
self._init_weight(m.cluster_weight)
|
495 |
+
if hasattr(m, "cluster_bias") and m.cluster_bias is not None:
|
496 |
+
self._init_bias(m.cluster_bias)
|
497 |
+
if hasattr(m, "out_projs"):
|
498 |
+
for i in range(len(m.out_projs)):
|
499 |
+
if m.out_projs[i] is not None:
|
500 |
+
nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
|
501 |
+
elif classname.find("LayerNorm") != -1:
|
502 |
+
if hasattr(m, "weight"):
|
503 |
+
nn.init.normal_(m.weight, 1.0, self.config.init_std)
|
504 |
+
if hasattr(m, "bias") and m.bias is not None:
|
505 |
+
self._init_bias(m.bias)
|
506 |
+
else:
|
507 |
+
if hasattr(m, "r_emb"):
|
508 |
+
self._init_weight(m.r_emb)
|
509 |
+
if hasattr(m, "r_w_bias"):
|
510 |
+
self._init_weight(m.r_w_bias)
|
511 |
+
if hasattr(m, "r_r_bias"):
|
512 |
+
self._init_weight(m.r_r_bias)
|
513 |
+
if hasattr(m, "r_bias"):
|
514 |
+
self._init_bias(m.r_bias)
|
515 |
+
|
516 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1):
|
517 |
+
"""
|
518 |
+
Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying
|
519 |
+
weights embeddings afterwards if the model class has a *tie_weights()* method.
|
520 |
+
|
521 |
+
Arguments:
|
522 |
+
new_num_tokens: (*optional*) int:
|
523 |
+
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at
|
524 |
+
the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and
|
525 |
+
just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model.
|
526 |
+
layer: (*optional*) int:
|
527 |
+
Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be
|
528 |
+
resized. Be aware that when resizing other than the last layer, you have to ensure that the new
|
529 |
+
token(s) in the tokenizer are at the corresponding position.
|
530 |
+
|
531 |
+
Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model
|
532 |
+
"""
|
533 |
+
base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed
|
534 |
+
|
535 |
+
if new_num_tokens is None:
|
536 |
+
return self.get_input_embeddings()
|
537 |
+
|
538 |
+
new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer)
|
539 |
+
assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less"
|
540 |
+
model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer)
|
541 |
+
|
542 |
+
# Update base model and current model config
|
543 |
+
self.config.vocab_size = new_num_tokens
|
544 |
+
base_model.vocab_size = new_num_tokens
|
545 |
+
base_model.n_token = new_num_tokens
|
546 |
+
|
547 |
+
new_embedding_shapes = self._get_embedding_shapes()
|
548 |
+
self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer)
|
549 |
+
|
550 |
+
# Tie weights again if needed
|
551 |
+
self.tie_weights()
|
552 |
+
|
553 |
+
return model_embeds
|
554 |
+
|
555 |
+
def _get_new_num_tokens_layer(self, new_num_tokens, layer):
|
556 |
+
embeddings = self.get_input_embeddings()
|
557 |
+
if layer == -1:
|
558 |
+
layer = len(embeddings.emb_layers) - 1
|
559 |
+
assert 0 <= layer <= len(embeddings.emb_layers) - 1
|
560 |
+
|
561 |
+
new_num_tokens_layer = (
|
562 |
+
new_num_tokens
|
563 |
+
- sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]])
|
564 |
+
- sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]])
|
565 |
+
)
|
566 |
+
return new_num_tokens_layer, layer
|
567 |
+
|
568 |
+
def _get_embedding_shapes(self):
|
569 |
+
embeddings = self.get_input_embeddings()
|
570 |
+
return [emb.weight.shape[0] for emb in embeddings.emb_layers]
|
571 |
+
|
572 |
+
def _resize_token_embeddings(self, new_num_tokens, layer=-1):
|
573 |
+
embeddings = self.get_input_embeddings()
|
574 |
+
if new_num_tokens is None:
|
575 |
+
return embeddings
|
576 |
+
new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens)
|
577 |
+
embeddings.emb_layers[layer] = new_embeddings_layer
|
578 |
+
|
579 |
+
self.set_input_embeddings(embeddings)
|
580 |
+
|
581 |
+
return self.get_input_embeddings()
|
582 |
+
|
583 |
+
def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer):
|
584 |
+
embeddings = self.get_input_embeddings()
|
585 |
+
|
586 |
+
for i in range(layer, len(embeddings.cutoffs)):
|
587 |
+
embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1])
|
588 |
+
|
589 |
+
embeddings.cutoff_ends = [0] + embeddings.cutoffs
|
590 |
+
embeddings.n_token = new_num_tokens
|
591 |
+
|
592 |
+
self.config.cutoffs = embeddings.cutoffs[:-1]
|
593 |
+
|
594 |
+
return embeddings.cutoffs
|
595 |
+
|
596 |
+
|
597 |
+
@dataclass
|
598 |
+
class TransfoXLModelOutput(ModelOutput):
|
599 |
+
"""
|
600 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
601 |
+
|
602 |
+
Args:
|
603 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
604 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
605 |
+
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
606 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
607 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
608 |
+
be passed as input ids as they have already been computed.
|
609 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
610 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
611 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
612 |
+
|
613 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
614 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
615 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
616 |
+
sequence_length)`.
|
617 |
+
|
618 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
619 |
+
heads.
|
620 |
+
"""
|
621 |
+
|
622 |
+
last_hidden_state: torch.FloatTensor
|
623 |
+
mems: List[torch.FloatTensor] = None
|
624 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
625 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
626 |
+
|
627 |
+
|
628 |
+
@dataclass
|
629 |
+
class TransfoXLSequenceClassifierOutputWithPast(ModelOutput):
|
630 |
+
"""
|
631 |
+
Base class for outputs of sentence classification models.
|
632 |
+
|
633 |
+
Args:
|
634 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
635 |
+
Classification (or regression if config.num_labels==1) loss.
|
636 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
637 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
638 |
+
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
639 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
640 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
641 |
+
be passed as input ids as they have already been computed.
|
642 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
643 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
644 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
645 |
+
|
646 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
647 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
648 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
649 |
+
sequence_length)`.
|
650 |
+
|
651 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
652 |
+
heads.
|
653 |
+
"""
|
654 |
+
|
655 |
+
loss: Optional[torch.FloatTensor] = None
|
656 |
+
logits: torch.FloatTensor = None
|
657 |
+
mems: List[torch.FloatTensor] = None
|
658 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
659 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
660 |
+
|
661 |
+
|
662 |
+
@dataclass
|
663 |
+
class TransfoXLLMHeadModelOutput(ModelOutput):
|
664 |
+
"""
|
665 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
666 |
+
|
667 |
+
Args:
|
668 |
+
losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided):
|
669 |
+
Language modeling losses (not reduced).
|
670 |
+
prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
671 |
+
Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax).
|
672 |
+
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
673 |
+
Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
|
674 |
+
input) to speed up sequential decoding. The token ids which have their past given to this model should not
|
675 |
+
be passed as input ids as they have already been computed.
|
676 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
677 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
678 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
679 |
+
|
680 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
681 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
682 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
683 |
+
sequence_length)`.
|
684 |
+
|
685 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
686 |
+
heads.
|
687 |
+
loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided)
|
688 |
+
Reduced language modeling loss.
|
689 |
+
"""
|
690 |
+
|
691 |
+
losses: Optional[torch.FloatTensor] = None
|
692 |
+
prediction_scores: torch.FloatTensor = None
|
693 |
+
mems: List[torch.FloatTensor] = None
|
694 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
695 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
696 |
+
loss: Optional[torch.FloatTensor] = None
|
697 |
+
|
698 |
+
@property
|
699 |
+
def logits(self):
|
700 |
+
# prediction scores are the output of the adaptive softmax, see
|
701 |
+
# the file `modeling_transfo_xl_utilities`. Since the adaptive
|
702 |
+
# softmax returns the log softmax value, `self.prediction_scores`
|
703 |
+
# are strictly speaking not exactly `logits`, but behave the same
|
704 |
+
# way logits do.
|
705 |
+
return self.prediction_scores
|
706 |
+
|
707 |
+
|
708 |
+
TRANSFO_XL_START_DOCSTRING = r"""
|
709 |
+
|
710 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
711 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
712 |
+
etc.)
|
713 |
+
|
714 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
715 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
716 |
+
and behavior.
|
717 |
+
|
718 |
+
Parameters:
|
719 |
+
config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model.
|
720 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
721 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
722 |
+
"""
|
723 |
+
|
724 |
+
TRANSFO_XL_INPUTS_DOCSTRING = r"""
|
725 |
+
Args:
|
726 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
727 |
+
Indices of input sequence tokens in the vocabulary.
|
728 |
+
|
729 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
730 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
731 |
+
|
732 |
+
[What are input IDs?](../glossary#input-ids)
|
733 |
+
mems (`List[torch.FloatTensor]` of length `config.n_layers`):
|
734 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
735 |
+
`mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
|
736 |
+
given to this model should not be passed as `input_ids` as they have already been computed.
|
737 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
738 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
739 |
+
|
740 |
+
- 1 indicates the head is **not masked**,
|
741 |
+
- 0 indicates the head is **masked**.
|
742 |
+
|
743 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
744 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
745 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
746 |
+
model's internal embedding lookup matrix.
|
747 |
+
output_attentions (`bool`, *optional*):
|
748 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
749 |
+
tensors for more detail.
|
750 |
+
output_hidden_states (`bool`, *optional*):
|
751 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
752 |
+
more detail.
|
753 |
+
return_dict (`bool`, *optional*):
|
754 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
755 |
+
"""
|
756 |
+
|
757 |
+
|
758 |
+
@add_start_docstrings(
|
759 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
760 |
+
TRANSFO_XL_START_DOCSTRING,
|
761 |
+
)
|
762 |
+
class TransfoXLModel(TransfoXLPreTrainedModel):
|
763 |
+
def __init__(self, config):
|
764 |
+
super().__init__(config)
|
765 |
+
|
766 |
+
self.n_token = config.vocab_size
|
767 |
+
|
768 |
+
self.d_embed = config.d_embed
|
769 |
+
self.d_model = config.d_model
|
770 |
+
self.n_head = config.n_head
|
771 |
+
self.d_head = config.d_head
|
772 |
+
|
773 |
+
self.word_emb = AdaptiveEmbedding(
|
774 |
+
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
|
775 |
+
)
|
776 |
+
|
777 |
+
self.drop = nn.Dropout(config.dropout)
|
778 |
+
|
779 |
+
self.n_layer = config.n_layer
|
780 |
+
self.mem_len = config.mem_len
|
781 |
+
self.attn_type = config.attn_type
|
782 |
+
|
783 |
+
if not config.untie_r:
|
784 |
+
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
785 |
+
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
|
786 |
+
|
787 |
+
self.layers = nn.ModuleList()
|
788 |
+
if config.attn_type == 0: # the default attention
|
789 |
+
for i in range(config.n_layer):
|
790 |
+
self.layers.append(
|
791 |
+
RelPartialLearnableDecoderLayer(
|
792 |
+
config.n_head,
|
793 |
+
config.d_model,
|
794 |
+
config.d_head,
|
795 |
+
config.d_inner,
|
796 |
+
config.dropout,
|
797 |
+
dropatt=config.dropatt,
|
798 |
+
pre_lnorm=config.pre_lnorm,
|
799 |
+
r_w_bias=None if config.untie_r else self.r_w_bias,
|
800 |
+
r_r_bias=None if config.untie_r else self.r_r_bias,
|
801 |
+
layer_norm_epsilon=config.layer_norm_epsilon,
|
802 |
+
)
|
803 |
+
)
|
804 |
+
else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints
|
805 |
+
raise NotImplementedError # Removed them to avoid maintaining dead code
|
806 |
+
|
807 |
+
self.same_length = config.same_length
|
808 |
+
self.clamp_len = config.clamp_len
|
809 |
+
|
810 |
+
if self.attn_type == 0: # default attention
|
811 |
+
self.pos_emb = PositionalEmbedding(self.d_model)
|
812 |
+
else: # learnable embeddings and absolute embeddings
|
813 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
814 |
+
|
815 |
+
# Initialize weights and apply final processing
|
816 |
+
self.post_init()
|
817 |
+
|
818 |
+
def get_input_embeddings(self):
|
819 |
+
return self.word_emb
|
820 |
+
|
821 |
+
def set_input_embeddings(self, new_embeddings):
|
822 |
+
self.word_emb = new_embeddings
|
823 |
+
|
824 |
+
def backward_compatible(self):
|
825 |
+
self.sample_softmax = -1
|
826 |
+
|
827 |
+
def reset_memory_length(self, mem_len):
|
828 |
+
self.mem_len = mem_len
|
829 |
+
|
830 |
+
def _prune_heads(self, heads):
|
831 |
+
logger.info("Head pruning is not implemented for Transformer-XL model")
|
832 |
+
pass
|
833 |
+
|
834 |
+
def init_mems(self, bsz):
|
835 |
+
if self.mem_len > 0:
|
836 |
+
mems = []
|
837 |
+
param = next(self.parameters())
|
838 |
+
for i in range(self.n_layer):
|
839 |
+
empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device)
|
840 |
+
mems.append(empty)
|
841 |
+
|
842 |
+
return mems
|
843 |
+
else:
|
844 |
+
return None
|
845 |
+
|
846 |
+
def _update_mems(self, hids, mems, mlen, qlen):
|
847 |
+
# does not deal with None
|
848 |
+
if mems is None:
|
849 |
+
return None
|
850 |
+
|
851 |
+
# mems is not None
|
852 |
+
assert len(hids) == len(mems), "len(hids) != len(mems)"
|
853 |
+
|
854 |
+
# There are `mlen + qlen` steps that can be cached into mems
|
855 |
+
with torch.no_grad():
|
856 |
+
new_mems = []
|
857 |
+
end_idx = mlen + max(0, qlen)
|
858 |
+
beg_idx = max(0, end_idx - self.mem_len)
|
859 |
+
for i in range(len(hids)):
|
860 |
+
cat = torch.cat([mems[i], hids[i]], dim=0)
|
861 |
+
new_mems.append(cat[beg_idx:end_idx].detach())
|
862 |
+
|
863 |
+
return new_mems
|
864 |
+
|
865 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
866 |
+
@add_code_sample_docstrings(
|
867 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
868 |
+
output_type=TransfoXLModelOutput,
|
869 |
+
config_class=_CONFIG_FOR_DOC,
|
870 |
+
)
|
871 |
+
def forward(
|
872 |
+
self,
|
873 |
+
input_ids: Optional[torch.LongTensor] = None,
|
874 |
+
mems: Optional[List[torch.FloatTensor]] = None,
|
875 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
876 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
877 |
+
output_attentions: Optional[bool] = None,
|
878 |
+
output_hidden_states: Optional[bool] = None,
|
879 |
+
return_dict: Optional[bool] = None,
|
880 |
+
) -> Union[Tuple, TransfoXLModelOutput]:
|
881 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
882 |
+
output_hidden_states = (
|
883 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
884 |
+
)
|
885 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
886 |
+
|
887 |
+
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
|
888 |
+
# so we transpose here from shape [bsz, len] to shape [len, bsz]
|
889 |
+
if input_ids is not None and inputs_embeds is not None:
|
890 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
891 |
+
elif input_ids is not None:
|
892 |
+
input_ids = input_ids.transpose(0, 1).contiguous()
|
893 |
+
qlen, bsz = input_ids.size()
|
894 |
+
elif inputs_embeds is not None:
|
895 |
+
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
|
896 |
+
qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
|
897 |
+
else:
|
898 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
899 |
+
|
900 |
+
if mems is None:
|
901 |
+
mems = self.init_mems(bsz)
|
902 |
+
|
903 |
+
# Prepare head mask if needed
|
904 |
+
# 1.0 in head_mask indicate we keep the head
|
905 |
+
# attention_probs has shape bsz x n_heads x N x N
|
906 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
|
907 |
+
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
|
908 |
+
if head_mask is not None:
|
909 |
+
if head_mask.dim() == 1:
|
910 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
|
911 |
+
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
|
912 |
+
elif head_mask.dim() == 2:
|
913 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
|
914 |
+
head_mask = head_mask.to(
|
915 |
+
dtype=next(self.parameters()).dtype
|
916 |
+
) # switch to float if need + fp16 compatibility
|
917 |
+
else:
|
918 |
+
head_mask = [None] * self.n_layer
|
919 |
+
|
920 |
+
if inputs_embeds is not None:
|
921 |
+
word_emb = inputs_embeds
|
922 |
+
else:
|
923 |
+
word_emb = self.word_emb(input_ids)
|
924 |
+
|
925 |
+
mlen = mems[0].size(0) if mems is not None else 0
|
926 |
+
klen = mlen + qlen
|
927 |
+
if self.same_length:
|
928 |
+
all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool)
|
929 |
+
mask_len = klen - self.mem_len
|
930 |
+
if mask_len > 0:
|
931 |
+
mask_shift_len = qlen - mask_len
|
932 |
+
else:
|
933 |
+
mask_shift_len = qlen
|
934 |
+
dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
|
935 |
+
else:
|
936 |
+
dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[
|
937 |
+
:, :, None
|
938 |
+
]
|
939 |
+
|
940 |
+
hids = []
|
941 |
+
attentions = [] if output_attentions else None
|
942 |
+
if self.attn_type == 0: # default
|
943 |
+
pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as(
|
944 |
+
dtype=word_emb.dtype
|
945 |
+
)
|
946 |
+
if self.clamp_len > 0:
|
947 |
+
pos_seq.clamp_(max=self.clamp_len)
|
948 |
+
pos_emb = self.pos_emb(pos_seq)
|
949 |
+
|
950 |
+
core_out = self.drop(word_emb)
|
951 |
+
pos_emb = self.drop(pos_emb)
|
952 |
+
|
953 |
+
for i, layer in enumerate(self.layers):
|
954 |
+
hids.append(core_out)
|
955 |
+
mems_i = None if mems is None else mems[i]
|
956 |
+
layer_outputs = layer(
|
957 |
+
core_out,
|
958 |
+
pos_emb,
|
959 |
+
dec_attn_mask=dec_attn_mask,
|
960 |
+
mems=mems_i,
|
961 |
+
head_mask=head_mask[i],
|
962 |
+
output_attentions=output_attentions,
|
963 |
+
)
|
964 |
+
core_out = layer_outputs[0]
|
965 |
+
if output_attentions:
|
966 |
+
attentions.append(layer_outputs[1])
|
967 |
+
else: # learnable embeddings and absolute embeddings
|
968 |
+
raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
|
969 |
+
|
970 |
+
core_out = self.drop(core_out)
|
971 |
+
|
972 |
+
new_mems = self._update_mems(hids, mems, mlen, qlen)
|
973 |
+
|
974 |
+
if output_hidden_states:
|
975 |
+
# Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
|
976 |
+
hids.append(core_out)
|
977 |
+
hids = tuple(t.transpose(0, 1).contiguous() for t in hids)
|
978 |
+
else:
|
979 |
+
hids = None
|
980 |
+
if output_attentions:
|
981 |
+
# Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
|
982 |
+
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
|
983 |
+
# We transpose back here to shape [bsz, len, hidden_dim]
|
984 |
+
core_out = core_out.transpose(0, 1).contiguous()
|
985 |
+
|
986 |
+
if not return_dict:
|
987 |
+
return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
|
988 |
+
|
989 |
+
return TransfoXLModelOutput(
|
990 |
+
last_hidden_state=core_out,
|
991 |
+
mems=new_mems,
|
992 |
+
hidden_states=hids,
|
993 |
+
attentions=attentions,
|
994 |
+
)
|
995 |
+
|
996 |
+
|
997 |
+
@add_start_docstrings(
|
998 |
+
"""
|
999 |
+
The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive
|
1000 |
+
input embeddings)
|
1001 |
+
""",
|
1002 |
+
TRANSFO_XL_START_DOCSTRING,
|
1003 |
+
)
|
1004 |
+
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
|
1005 |
+
_tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"]
|
1006 |
+
|
1007 |
+
def __init__(self, config):
|
1008 |
+
super().__init__(config)
|
1009 |
+
self.transformer = TransfoXLModel(config)
|
1010 |
+
self.sample_softmax = config.sample_softmax
|
1011 |
+
self.trainer_compatible = getattr(config, "trainer_compatible", False)
|
1012 |
+
|
1013 |
+
if not self.trainer_compatible:
|
1014 |
+
warnings.warn(
|
1015 |
+
"The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order "
|
1016 |
+
"to use that updated output, please specify `trainer_compatible=True` as your configuration"
|
1017 |
+
" attribute.",
|
1018 |
+
DeprecationWarning,
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
assert self.sample_softmax <= 0, (
|
1022 |
+
"Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
|
1023 |
+
" https://github.com/huggingface/transformers/issues/3310"
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
self.crit = ProjectedAdaptiveLogSoftmax(
|
1027 |
+
config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
# Initialize weights and apply final processing
|
1031 |
+
self.post_init()
|
1032 |
+
|
1033 |
+
def tie_weights(self):
|
1034 |
+
"""
|
1035 |
+
Run this to be sure output and input (adaptive) softmax weights are tied
|
1036 |
+
"""
|
1037 |
+
|
1038 |
+
if self.config.tie_word_embeddings:
|
1039 |
+
for i in range(len(self.crit.out_layers)):
|
1040 |
+
self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i])
|
1041 |
+
if self.config.tie_projs:
|
1042 |
+
for i, tie_proj in enumerate(self.config.tie_projs):
|
1043 |
+
if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
|
1044 |
+
if self.config.torchscript:
|
1045 |
+
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
|
1046 |
+
else:
|
1047 |
+
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
|
1048 |
+
elif tie_proj and self.config.div_val != 1:
|
1049 |
+
if self.config.torchscript:
|
1050 |
+
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
|
1051 |
+
else:
|
1052 |
+
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
|
1053 |
+
|
1054 |
+
def reset_memory_length(self, mem_len):
|
1055 |
+
self.transformer.reset_memory_length(mem_len)
|
1056 |
+
|
1057 |
+
def init_mems(self, bsz):
|
1058 |
+
return self.transformer.init_mems(bsz)
|
1059 |
+
|
1060 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
1061 |
+
@add_code_sample_docstrings(
|
1062 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1063 |
+
output_type=TransfoXLLMHeadModelOutput,
|
1064 |
+
config_class=_CONFIG_FOR_DOC,
|
1065 |
+
)
|
1066 |
+
def forward(
|
1067 |
+
self,
|
1068 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1069 |
+
mems: Optional[List[torch.FloatTensor]] = None,
|
1070 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1071 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1072 |
+
labels: Optional[torch.LongTensor] = None,
|
1073 |
+
output_attentions: Optional[bool] = None,
|
1074 |
+
output_hidden_states: Optional[bool] = None,
|
1075 |
+
return_dict: Optional[bool] = None,
|
1076 |
+
) -> Union[Tuple, TransfoXLLMHeadModelOutput]:
|
1077 |
+
r"""
|
1078 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1079 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1080 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1081 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1082 |
+
"""
|
1083 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1084 |
+
if input_ids is not None:
|
1085 |
+
bsz, tgt_len = input_ids.size(0), input_ids.size(1)
|
1086 |
+
elif inputs_embeds is not None:
|
1087 |
+
bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1)
|
1088 |
+
else:
|
1089 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1090 |
+
|
1091 |
+
transformer_outputs = self.transformer(
|
1092 |
+
input_ids,
|
1093 |
+
mems=mems,
|
1094 |
+
head_mask=head_mask,
|
1095 |
+
inputs_embeds=inputs_embeds,
|
1096 |
+
output_attentions=output_attentions,
|
1097 |
+
output_hidden_states=output_hidden_states,
|
1098 |
+
return_dict=return_dict,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
last_hidden = transformer_outputs[0]
|
1102 |
+
pred_hid = last_hidden[:, -tgt_len:]
|
1103 |
+
|
1104 |
+
if labels is not None:
|
1105 |
+
# Prevents all labels being -100 and throwing an error
|
1106 |
+
# when backwarding the loss
|
1107 |
+
miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100
|
1108 |
+
if miss_valid_label:
|
1109 |
+
# Sets an <EOS> token, just to prevent loss from being NaN
|
1110 |
+
labels[0, 1] = self.config.eos_token_id
|
1111 |
+
|
1112 |
+
softmax_output = self.crit(pred_hid, labels)
|
1113 |
+
prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else ()
|
1114 |
+
|
1115 |
+
if labels is not None:
|
1116 |
+
losses = softmax_output.view(bsz, tgt_len - 1)
|
1117 |
+
# Avoids from incorporating padding (-100) tokens into loss value
|
1118 |
+
loss = losses[losses != 0].mean()
|
1119 |
+
else:
|
1120 |
+
losses, loss = None, None
|
1121 |
+
|
1122 |
+
if not return_dict:
|
1123 |
+
if self.trainer_compatible:
|
1124 |
+
output = (prediction_scores, losses) if losses is not None else (prediction_scores,)
|
1125 |
+
output += transformer_outputs[1:]
|
1126 |
+
return ((loss,) + output) if loss is not None else output
|
1127 |
+
else:
|
1128 |
+
output = (prediction_scores, *transformer_outputs[1:])
|
1129 |
+
output = ((losses,) + output) if losses is not None else output
|
1130 |
+
return (output + (loss,)) if loss is not None else output
|
1131 |
+
|
1132 |
+
return TransfoXLLMHeadModelOutput(
|
1133 |
+
loss=loss,
|
1134 |
+
prediction_scores=prediction_scores,
|
1135 |
+
losses=losses,
|
1136 |
+
mems=transformer_outputs.mems,
|
1137 |
+
hidden_states=transformer_outputs.hidden_states,
|
1138 |
+
attentions=transformer_outputs.attentions,
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
def get_output_embeddings(self):
|
1142 |
+
"""Double-check if you are using adaptive softmax."""
|
1143 |
+
if self.sample_softmax > 0:
|
1144 |
+
return self.out_layer
|
1145 |
+
else:
|
1146 |
+
return self.crit.out_layers[-1]
|
1147 |
+
|
1148 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
|
1149 |
+
inputs = {}
|
1150 |
+
|
1151 |
+
# if past is defined in model kwargs then use it for faster decoding
|
1152 |
+
if past_key_values:
|
1153 |
+
inputs["mems"] = past_key_values
|
1154 |
+
inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1)
|
1155 |
+
else:
|
1156 |
+
inputs["input_ids"] = input_ids
|
1157 |
+
|
1158 |
+
return inputs
|
1159 |
+
|
1160 |
+
def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer):
|
1161 |
+
new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer)
|
1162 |
+
|
1163 |
+
self.crit.cutoffs = new_cutoffs
|
1164 |
+
self.crit.cutoff_ends = [0] + new_cutoffs
|
1165 |
+
self.crit.n_token = new_num_tokens
|
1166 |
+
|
1167 |
+
@staticmethod
|
1168 |
+
def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
|
1169 |
+
"""
|
1170 |
+
This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
|
1171 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
|
1172 |
+
generation step.
|
1173 |
+
"""
|
1174 |
+
return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
|
1175 |
+
|
1176 |
+
|
1177 |
+
@add_start_docstrings(
|
1178 |
+
"""
|
1179 |
+
The Transformer-XL Model transformer with a sequence classification head on top (linear layer).
|
1180 |
+
|
1181 |
+
[`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1182 |
+
models (e.g. GPT-1) do.
|
1183 |
+
|
1184 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1185 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1186 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1187 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1188 |
+
each row of the batch).
|
1189 |
+
""",
|
1190 |
+
TRANSFO_XL_START_DOCSTRING,
|
1191 |
+
)
|
1192 |
+
class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
|
1193 |
+
def __init__(self, config):
|
1194 |
+
super().__init__(config)
|
1195 |
+
self.num_labels = config.num_labels
|
1196 |
+
self.transformer = TransfoXLModel(config)
|
1197 |
+
self.score = nn.Linear(config.d_embed, self.num_labels, bias=False)
|
1198 |
+
# Initialize weights and apply final processing
|
1199 |
+
self.post_init()
|
1200 |
+
|
1201 |
+
@add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
|
1202 |
+
@add_code_sample_docstrings(
|
1203 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1204 |
+
output_type=TransfoXLSequenceClassifierOutputWithPast,
|
1205 |
+
config_class=_CONFIG_FOR_DOC,
|
1206 |
+
)
|
1207 |
+
def forward(
|
1208 |
+
self,
|
1209 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1210 |
+
mems: Optional[List[torch.FloatTensor]] = None,
|
1211 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1212 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1213 |
+
labels: Optional[torch.LongTensor] = None,
|
1214 |
+
output_attentions: Optional[bool] = None,
|
1215 |
+
output_hidden_states: Optional[bool] = None,
|
1216 |
+
return_dict: Optional[bool] = None,
|
1217 |
+
) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]:
|
1218 |
+
r"""
|
1219 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1220 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1221 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1222 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1223 |
+
"""
|
1224 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1225 |
+
|
1226 |
+
transformer_outputs = self.transformer(
|
1227 |
+
input_ids,
|
1228 |
+
mems=mems,
|
1229 |
+
head_mask=head_mask,
|
1230 |
+
inputs_embeds=inputs_embeds,
|
1231 |
+
output_attentions=output_attentions,
|
1232 |
+
output_hidden_states=output_hidden_states,
|
1233 |
+
return_dict=return_dict,
|
1234 |
+
)
|
1235 |
+
hidden_states = transformer_outputs[0]
|
1236 |
+
logits = self.score(hidden_states)
|
1237 |
+
|
1238 |
+
if input_ids is not None:
|
1239 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1240 |
+
else:
|
1241 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1242 |
+
|
1243 |
+
assert (
|
1244 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1245 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1246 |
+
if self.config.pad_token_id is None:
|
1247 |
+
sequence_lengths = -1
|
1248 |
+
else:
|
1249 |
+
if input_ids is not None:
|
1250 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1251 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1252 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1253 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1254 |
+
else:
|
1255 |
+
sequence_lengths = -1
|
1256 |
+
logger.warning(
|
1257 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1258 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
1262 |
+
|
1263 |
+
loss = None
|
1264 |
+
if labels is not None:
|
1265 |
+
if self.config.problem_type is None:
|
1266 |
+
if self.num_labels == 1:
|
1267 |
+
self.config.problem_type = "regression"
|
1268 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1269 |
+
self.config.problem_type = "single_label_classification"
|
1270 |
+
else:
|
1271 |
+
self.config.problem_type = "multi_label_classification"
|
1272 |
+
|
1273 |
+
if self.config.problem_type == "regression":
|
1274 |
+
loss_fct = MSELoss()
|
1275 |
+
if self.num_labels == 1:
|
1276 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1277 |
+
else:
|
1278 |
+
loss = loss_fct(pooled_logits, labels)
|
1279 |
+
elif self.config.problem_type == "single_label_classification":
|
1280 |
+
loss_fct = CrossEntropyLoss()
|
1281 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1282 |
+
elif self.config.problem_type == "multi_label_classification":
|
1283 |
+
loss_fct = BCEWithLogitsLoss()
|
1284 |
+
loss = loss_fct(pooled_logits, labels)
|
1285 |
+
if not return_dict:
|
1286 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1287 |
+
return ((loss,) + output) if loss is not None else output
|
1288 |
+
|
1289 |
+
return TransfoXLSequenceClassifierOutputWithPast(
|
1290 |
+
loss=loss,
|
1291 |
+
logits=pooled_logits,
|
1292 |
+
mems=transformer_outputs.mems,
|
1293 |
+
hidden_states=transformer_outputs.hidden_states,
|
1294 |
+
attentions=transformer_outputs.attentions,
|
1295 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
|
25 |
+
# CUDA_MAJOR = int(torch.version.cuda.split('.')[0])
|
26 |
+
# CUDA_MINOR = int(torch.version.cuda.split('.')[1])
|
27 |
+
|
28 |
+
|
29 |
+
class ProjectedAdaptiveLogSoftmax(nn.Module):
|
30 |
+
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.n_token = n_token
|
34 |
+
self.d_embed = d_embed
|
35 |
+
self.d_proj = d_proj
|
36 |
+
|
37 |
+
self.cutoffs = cutoffs + [n_token]
|
38 |
+
self.cutoff_ends = [0] + self.cutoffs
|
39 |
+
self.div_val = div_val
|
40 |
+
|
41 |
+
self.shortlist_size = self.cutoffs[0]
|
42 |
+
self.n_clusters = len(self.cutoffs) - 1
|
43 |
+
self.head_size = self.shortlist_size + self.n_clusters
|
44 |
+
|
45 |
+
if self.n_clusters > 0:
|
46 |
+
self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed))
|
47 |
+
self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters))
|
48 |
+
|
49 |
+
self.out_layers = nn.ModuleList()
|
50 |
+
self.out_projs = nn.ParameterList()
|
51 |
+
|
52 |
+
if div_val == 1:
|
53 |
+
for i in range(len(self.cutoffs)):
|
54 |
+
if d_proj != d_embed:
|
55 |
+
self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
|
56 |
+
else:
|
57 |
+
self.out_projs.append(None)
|
58 |
+
|
59 |
+
self.out_layers.append(nn.Linear(d_embed, n_token))
|
60 |
+
else:
|
61 |
+
for i in range(len(self.cutoffs)):
|
62 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
63 |
+
d_emb_i = d_embed // (div_val**i)
|
64 |
+
|
65 |
+
self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
|
66 |
+
|
67 |
+
self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx))
|
68 |
+
|
69 |
+
self.keep_order = keep_order
|
70 |
+
|
71 |
+
def _compute_logit(self, hidden, weight, bias, proj):
|
72 |
+
if proj is None:
|
73 |
+
logit = nn.functional.linear(hidden, weight, bias=bias)
|
74 |
+
else:
|
75 |
+
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
|
76 |
+
proj_hid = nn.functional.linear(hidden, proj.t().contiguous())
|
77 |
+
logit = nn.functional.linear(proj_hid, weight, bias=bias)
|
78 |
+
# else:
|
79 |
+
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
|
80 |
+
# if bias is not None:
|
81 |
+
# logit = logit + bias
|
82 |
+
|
83 |
+
return logit
|
84 |
+
|
85 |
+
def forward(self, hidden, labels=None, keep_order=False):
|
86 |
+
"""
|
87 |
+
Params:
|
88 |
+
hidden :: [len*bsz x d_proj]
|
89 |
+
labels :: [len*bsz]
|
90 |
+
|
91 |
+
Return:
|
92 |
+
if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out ::
|
93 |
+
[(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if
|
94 |
+
theirs had an option to set bias on all clusters in the native one. here:
|
95 |
+
https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138
|
96 |
+
"""
|
97 |
+
|
98 |
+
if labels is not None:
|
99 |
+
# Shift so that tokens < n predict n
|
100 |
+
hidden = hidden[..., :-1, :].contiguous()
|
101 |
+
labels = labels[..., 1:].contiguous()
|
102 |
+
hidden = hidden.view(-1, hidden.size(-1))
|
103 |
+
labels = labels.view(-1)
|
104 |
+
if hidden.size(0) != labels.size(0):
|
105 |
+
raise RuntimeError("Input and labels should have the same size in the batch dimension.")
|
106 |
+
else:
|
107 |
+
hidden = hidden.view(-1, hidden.size(-1))
|
108 |
+
|
109 |
+
if self.n_clusters == 0:
|
110 |
+
logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0])
|
111 |
+
if labels is not None:
|
112 |
+
mask = labels != -100
|
113 |
+
out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device)
|
114 |
+
out[mask] = (
|
115 |
+
-nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1)
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
out = nn.functional.log_softmax(logit, dim=-1)
|
119 |
+
else:
|
120 |
+
# construct weights and biases
|
121 |
+
weights, biases = [], []
|
122 |
+
for i in range(len(self.cutoffs)):
|
123 |
+
if self.div_val == 1:
|
124 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
125 |
+
weight_i = self.out_layers[0].weight[l_idx:r_idx]
|
126 |
+
bias_i = self.out_layers[0].bias[l_idx:r_idx]
|
127 |
+
else:
|
128 |
+
weight_i = self.out_layers[i].weight
|
129 |
+
bias_i = self.out_layers[i].bias
|
130 |
+
|
131 |
+
if i == 0:
|
132 |
+
weight_i = torch.cat([weight_i, self.cluster_weight], dim=0)
|
133 |
+
bias_i = torch.cat([bias_i, self.cluster_bias], dim=0)
|
134 |
+
|
135 |
+
weights.append(weight_i)
|
136 |
+
biases.append(bias_i)
|
137 |
+
|
138 |
+
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
|
139 |
+
|
140 |
+
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
|
141 |
+
head_logprob = nn.functional.log_softmax(head_logit, dim=1)
|
142 |
+
|
143 |
+
if labels is None:
|
144 |
+
out = hidden.new_empty((head_logit.size(0), self.n_token))
|
145 |
+
else:
|
146 |
+
out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device)
|
147 |
+
|
148 |
+
offset = 0
|
149 |
+
cutoff_values = [0] + self.cutoffs
|
150 |
+
for i in range(len(cutoff_values) - 1):
|
151 |
+
l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1]
|
152 |
+
|
153 |
+
if labels is not None:
|
154 |
+
mask_i = (labels >= l_idx) & (labels < r_idx)
|
155 |
+
indices_i = mask_i.nonzero().squeeze()
|
156 |
+
|
157 |
+
if indices_i.numel() == 0:
|
158 |
+
continue
|
159 |
+
|
160 |
+
target_i = labels.index_select(0, indices_i) - l_idx
|
161 |
+
head_logprob_i = head_logprob.index_select(0, indices_i)
|
162 |
+
hidden_i = hidden.index_select(0, indices_i)
|
163 |
+
else:
|
164 |
+
hidden_i = hidden
|
165 |
+
|
166 |
+
if i == 0:
|
167 |
+
if labels is not None:
|
168 |
+
logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1)
|
169 |
+
else:
|
170 |
+
out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]]
|
171 |
+
else:
|
172 |
+
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
|
173 |
+
|
174 |
+
tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i)
|
175 |
+
tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1)
|
176 |
+
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
|
177 |
+
if labels is not None:
|
178 |
+
logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
|
179 |
+
1, target_i[:, None]
|
180 |
+
).squeeze(1)
|
181 |
+
else:
|
182 |
+
logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
|
183 |
+
out[:, l_idx:r_idx] = logprob_i
|
184 |
+
|
185 |
+
if labels is not None:
|
186 |
+
if (hasattr(self, "keep_order") and self.keep_order) or keep_order:
|
187 |
+
out.index_copy_(0, indices_i, -logprob_i)
|
188 |
+
else:
|
189 |
+
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
|
190 |
+
offset += logprob_i.size(0)
|
191 |
+
|
192 |
+
return out
|
193 |
+
|
194 |
+
def log_prob(self, hidden):
|
195 |
+
r"""
|
196 |
+
Computes log probabilities for all \\(n\_classes\\) From:
|
197 |
+
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p
|
198 |
+
|
199 |
+
Args:
|
200 |
+
hidden (Tensor): a minibatch of example
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is
|
204 |
+
a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape:
|
205 |
+
|
206 |
+
- Input: \\((N, in\_features)\\)
|
207 |
+
- Output: \\((N, n\_classes)\\)
|
208 |
+
"""
|
209 |
+
if self.n_clusters == 0:
|
210 |
+
logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0])
|
211 |
+
return nn.functional.log_softmax(logit, dim=-1)
|
212 |
+
else:
|
213 |
+
# construct weights and biases
|
214 |
+
weights, biases = [], []
|
215 |
+
for i in range(len(self.cutoffs)):
|
216 |
+
if self.div_val == 1:
|
217 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
218 |
+
weight_i = self.out_layers[0].weight[l_idx:r_idx]
|
219 |
+
bias_i = self.out_layers[0].bias[l_idx:r_idx]
|
220 |
+
else:
|
221 |
+
weight_i = self.out_layers[i].weight
|
222 |
+
bias_i = self.out_layers[i].bias
|
223 |
+
|
224 |
+
if i == 0:
|
225 |
+
weight_i = torch.cat([weight_i, self.cluster_weight], dim=0)
|
226 |
+
bias_i = torch.cat([bias_i, self.cluster_bias], dim=0)
|
227 |
+
|
228 |
+
weights.append(weight_i)
|
229 |
+
biases.append(bias_i)
|
230 |
+
|
231 |
+
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
|
232 |
+
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
|
233 |
+
|
234 |
+
out = hidden.new_empty((head_logit.size(0), self.n_token))
|
235 |
+
head_logprob = nn.functional.log_softmax(head_logit, dim=1)
|
236 |
+
|
237 |
+
cutoff_values = [0] + self.cutoffs
|
238 |
+
for i in range(len(cutoff_values) - 1):
|
239 |
+
start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1]
|
240 |
+
|
241 |
+
if i == 0:
|
242 |
+
out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]]
|
243 |
+
else:
|
244 |
+
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
|
245 |
+
|
246 |
+
tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i)
|
247 |
+
tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1)
|
248 |
+
|
249 |
+
logprob_i = head_logprob[:, -i] + tail_logprob_i
|
250 |
+
out[:, start_idx, stop_idx] = logprob_i
|
251 |
+
|
252 |
+
return out
|
venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
ADDED
@@ -0,0 +1,819 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import glob
|
22 |
+
import os
|
23 |
+
import pickle
|
24 |
+
import re
|
25 |
+
from collections import Counter, OrderedDict
|
26 |
+
from typing import List, Optional, Tuple
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
from ....tokenization_utils import PreTrainedTokenizer
|
31 |
+
from ....utils import (
|
32 |
+
cached_file,
|
33 |
+
is_sacremoses_available,
|
34 |
+
is_torch_available,
|
35 |
+
logging,
|
36 |
+
requires_backends,
|
37 |
+
strtobool,
|
38 |
+
torch_only_method,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
if is_sacremoses_available():
|
43 |
+
import sacremoses as sm
|
44 |
+
|
45 |
+
|
46 |
+
if is_torch_available():
|
47 |
+
import torch
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
VOCAB_FILES_NAMES = {
|
53 |
+
"pretrained_vocab_file": "vocab.pkl",
|
54 |
+
"pretrained_vocab_file_torch": "vocab.bin",
|
55 |
+
"vocab_file": "vocab.txt",
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
PRETRAINED_CORPUS_ARCHIVE_MAP = {
|
60 |
+
"transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/corpus.bin",
|
61 |
+
}
|
62 |
+
CORPUS_NAME = "corpus.bin"
|
63 |
+
|
64 |
+
MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ "
|
65 |
+
DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")]
|
66 |
+
|
67 |
+
|
68 |
+
def tokenize_numbers(text_array: List[str]) -> List[str]:
|
69 |
+
"""
|
70 |
+
Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and
|
71 |
+
dots with ' @.@ '.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
text_array: An already tokenized text as list.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
A list of strings with tokenized numbers.
|
78 |
+
|
79 |
+
Example:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> tokenize_numbers(["$", "5,000", "1.73", "m"])
|
83 |
+
['$', '5', '@,@', '000', '1', '@.@', '73', 'm']
|
84 |
+
```"""
|
85 |
+
tokenized = []
|
86 |
+
for i in range(len(text_array)):
|
87 |
+
reg, sub = MATCH_NUMBERS
|
88 |
+
replaced = re.sub(reg, sub, text_array[i]).split()
|
89 |
+
tokenized.extend(replaced)
|
90 |
+
|
91 |
+
return tokenized
|
92 |
+
|
93 |
+
|
94 |
+
def detokenize_numbers(text: str) -> str:
|
95 |
+
"""
|
96 |
+
Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
text: A string where the number should be detokenized.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
A detokenized string.
|
103 |
+
|
104 |
+
Example:
|
105 |
+
|
106 |
+
```python
|
107 |
+
>>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m")
|
108 |
+
'$ 5,000 1.73 m'
|
109 |
+
```"""
|
110 |
+
for reg, sub in DETOKENIZE_NUMBERS:
|
111 |
+
text = re.sub(reg, sub, text)
|
112 |
+
return text
|
113 |
+
|
114 |
+
|
115 |
+
class TransfoXLTokenizer(PreTrainedTokenizer):
|
116 |
+
"""
|
117 |
+
Construct a Transformer-XL tokenizer adapted from Vocab class in [the original
|
118 |
+
code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no
|
119 |
+
sub-word tokenization).
|
120 |
+
|
121 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
122 |
+
this superclass for more information regarding those methods.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
special (`List[str]`, *optional*):
|
126 |
+
A list of special tokens (to be treated by the original implementation of this tokenizer).
|
127 |
+
min_freq (`int`, *optional*, defaults to 0):
|
128 |
+
The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it
|
129 |
+
will be mapped to `unk_token`).
|
130 |
+
max_size (`int`, *optional*):
|
131 |
+
The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found
|
132 |
+
after excluding the tokens according to the `min_freq` rule.
|
133 |
+
lower_case (`bool`, *optional*, defaults to `False`):
|
134 |
+
Whether or not to lowercase the input when tokenizing.
|
135 |
+
delimiter (`str`, *optional*):
|
136 |
+
The delimiter used between tokens.
|
137 |
+
vocab_file (`str`, *optional*):
|
138 |
+
File containing the vocabulary (from the original implementation).
|
139 |
+
pretrained_vocab_file (`str`, *optional*):
|
140 |
+
File containing the vocabulary as saved with the `save_pretrained()` method.
|
141 |
+
never_split (`List[str]`, *optional*):
|
142 |
+
List of tokens that should never be split. If no list is specified, will simply use the existing special
|
143 |
+
tokens.
|
144 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
145 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
146 |
+
token instead.
|
147 |
+
eos_token (`str`, *optional*, defaults to `"<eos>"`):
|
148 |
+
The end of sequence token.
|
149 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `['<formula>']`):
|
150 |
+
A list of additional special tokens (for the HuggingFace functionality).
|
151 |
+
language (`str`, *optional*, defaults to `"en"`):
|
152 |
+
The language of this tokenizer (used for mose preprocessing).
|
153 |
+
"""
|
154 |
+
|
155 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
156 |
+
model_input_names = ["input_ids"]
|
157 |
+
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
special=None,
|
161 |
+
min_freq=0,
|
162 |
+
max_size=None,
|
163 |
+
lower_case=False,
|
164 |
+
delimiter=None,
|
165 |
+
vocab_file=None,
|
166 |
+
pretrained_vocab_file: str = None,
|
167 |
+
never_split=None,
|
168 |
+
unk_token="<unk>",
|
169 |
+
eos_token="<eos>",
|
170 |
+
additional_special_tokens=["<formula>"],
|
171 |
+
language="en",
|
172 |
+
**kwargs,
|
173 |
+
):
|
174 |
+
logger.error(
|
175 |
+
"`TransfoXL` was deprecated due to security issues linked to `pickle.load` in `TransfoXLTokenizer`. "
|
176 |
+
"See more details on this model's documentation page: "
|
177 |
+
"`https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/transfo-xl.md`."
|
178 |
+
)
|
179 |
+
|
180 |
+
requires_backends(self, "sacremoses")
|
181 |
+
if special is None:
|
182 |
+
special = []
|
183 |
+
self.counter = Counter()
|
184 |
+
self.special = special
|
185 |
+
self.min_freq = min_freq
|
186 |
+
self.max_size = max_size
|
187 |
+
self.lower_case = lower_case
|
188 |
+
self.delimiter = delimiter
|
189 |
+
self.vocab_file = vocab_file
|
190 |
+
self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~'
|
191 |
+
self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]")
|
192 |
+
self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern()
|
193 |
+
self.language = language
|
194 |
+
self.moses_punct_normalizer = sm.MosesPunctNormalizer(language)
|
195 |
+
self.moses_tokenizer = sm.MosesTokenizer(language)
|
196 |
+
self.moses_detokenizer = sm.MosesDetokenizer(language)
|
197 |
+
self.idx2sym = []
|
198 |
+
self.sym2idx = OrderedDict()
|
199 |
+
# This try... catch... is not beautiful but honestly this tokenizer was not made to be used
|
200 |
+
# in a library like ours, at all.
|
201 |
+
try:
|
202 |
+
vocab_dict = None
|
203 |
+
if pretrained_vocab_file is not None:
|
204 |
+
# Priority on pickle files (support PyTorch and TF)
|
205 |
+
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
|
206 |
+
raise ValueError(
|
207 |
+
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is "
|
208 |
+
"potentially malicious. It's recommended to never unpickle data that could have come from an "
|
209 |
+
"untrusted source, or that could have been tampered with. If you already verified the pickle "
|
210 |
+
"data and decided to use it, you can set the environment variable "
|
211 |
+
"`TRUST_REMOTE_CODE` to `True` to allow it."
|
212 |
+
)
|
213 |
+
with open(pretrained_vocab_file, "rb") as f:
|
214 |
+
vocab_dict = pickle.load(f)
|
215 |
+
|
216 |
+
# Loading a torch-saved transfo-xl vocab dict with pickle results in an integer
|
217 |
+
# Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed.
|
218 |
+
# We therefore load it with torch, if it's available.
|
219 |
+
if isinstance(vocab_dict, int):
|
220 |
+
if not is_torch_available():
|
221 |
+
raise ImportError(
|
222 |
+
"Not trying to load dict with PyTorch as you need to install pytorch to load "
|
223 |
+
"from a PyTorch pretrained vocabulary, "
|
224 |
+
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
|
225 |
+
)
|
226 |
+
vocab_dict = torch.load(pretrained_vocab_file)
|
227 |
+
|
228 |
+
if vocab_dict is not None:
|
229 |
+
for key, value in vocab_dict.items():
|
230 |
+
if key not in self.__dict__ or key in ["sym2idx", "idx2sym"]:
|
231 |
+
self.__dict__[key] = value
|
232 |
+
elif vocab_file is not None:
|
233 |
+
self.build_vocab()
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
raise ValueError(
|
237 |
+
f"Unable to parse file {pretrained_vocab_file}. Unknown format. "
|
238 |
+
"If you tried to load a model saved through TransfoXLTokenizerFast, "
|
239 |
+
"please note they are not compatible."
|
240 |
+
) from e
|
241 |
+
|
242 |
+
if vocab_file is not None:
|
243 |
+
self.build_vocab()
|
244 |
+
|
245 |
+
super().__init__(
|
246 |
+
special=special,
|
247 |
+
min_freq=min_freq,
|
248 |
+
max_size=max_size,
|
249 |
+
lower_case=lower_case,
|
250 |
+
delimiter=delimiter,
|
251 |
+
vocab_file=vocab_file,
|
252 |
+
pretrained_vocab_file=pretrained_vocab_file,
|
253 |
+
never_split=never_split,
|
254 |
+
unk_token=unk_token,
|
255 |
+
eos_token=eos_token,
|
256 |
+
additional_special_tokens=additional_special_tokens,
|
257 |
+
language=language,
|
258 |
+
**kwargs,
|
259 |
+
)
|
260 |
+
|
261 |
+
# these are not required to initialize the parent class as only used when tokenizing.
|
262 |
+
if never_split is None:
|
263 |
+
never_split = self.all_special_tokens
|
264 |
+
self.never_split = never_split
|
265 |
+
|
266 |
+
@property
|
267 |
+
def do_lower_case(self):
|
268 |
+
return self.lower_case
|
269 |
+
|
270 |
+
def _compile_space_around_punctuation_pattern(self):
|
271 |
+
look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])"
|
272 |
+
look_ahead_to_match_all_except_space = r"(?=[^\s])"
|
273 |
+
return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space)
|
274 |
+
|
275 |
+
def count_file(self, path, verbose=False, add_eos=False):
|
276 |
+
if verbose:
|
277 |
+
logger.info(f"counting file {path} ...")
|
278 |
+
assert os.path.exists(path), f"Input file {path} not found"
|
279 |
+
|
280 |
+
sents = []
|
281 |
+
with open(path, "r", encoding="utf-8") as f:
|
282 |
+
for idx, line in enumerate(f):
|
283 |
+
if verbose and idx > 0 and idx % 500000 == 0:
|
284 |
+
logger.info(f" line {idx}")
|
285 |
+
symbols = self.tokenize(line, add_eos=add_eos)
|
286 |
+
self.counter.update(symbols)
|
287 |
+
sents.append(symbols)
|
288 |
+
|
289 |
+
return sents
|
290 |
+
|
291 |
+
def count_sents(self, sents, verbose=False):
|
292 |
+
"""
|
293 |
+
sents : a list of sentences, each a list of tokenized symbols
|
294 |
+
"""
|
295 |
+
if verbose:
|
296 |
+
logger.info(f"counting {len(sents)} sents ...")
|
297 |
+
for idx, symbols in enumerate(sents):
|
298 |
+
if verbose and idx > 0 and idx % 500000 == 0:
|
299 |
+
logger.info(f" line {idx}")
|
300 |
+
self.counter.update(symbols)
|
301 |
+
|
302 |
+
def _build_from_file(self, vocab_file):
|
303 |
+
self.idx2sym = []
|
304 |
+
self.sym2idx = OrderedDict()
|
305 |
+
|
306 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
307 |
+
for line in f:
|
308 |
+
symb = line.strip().split()[0]
|
309 |
+
self.add_symbol(symb)
|
310 |
+
if "<UNK>" in self.sym2idx:
|
311 |
+
self.unk_idx = self.sym2idx["<UNK>"]
|
312 |
+
elif "<unk>" in self.sym2idx:
|
313 |
+
self.unk_idx = self.sym2idx["<unk>"]
|
314 |
+
else:
|
315 |
+
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.")
|
316 |
+
|
317 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
318 |
+
if os.path.isdir(save_directory):
|
319 |
+
vocab_file = os.path.join(
|
320 |
+
save_directory,
|
321 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"],
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
325 |
+
with open(vocab_file, "wb") as f:
|
326 |
+
pickle.dump(self.__dict__, f)
|
327 |
+
return (vocab_file,)
|
328 |
+
|
329 |
+
def build_vocab(self):
|
330 |
+
if self.vocab_file:
|
331 |
+
logger.info(f"building vocab from {self.vocab_file}")
|
332 |
+
self._build_from_file(self.vocab_file)
|
333 |
+
logger.info(f"Final vocab size {len(self.sym2idx)}")
|
334 |
+
else:
|
335 |
+
logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}")
|
336 |
+
self.idx2sym = []
|
337 |
+
self.sym2idx = OrderedDict()
|
338 |
+
|
339 |
+
for sym in self.special:
|
340 |
+
self.add_special(sym)
|
341 |
+
|
342 |
+
for sym, cnt in self.counter.most_common(self.max_size):
|
343 |
+
if cnt < self.min_freq:
|
344 |
+
break
|
345 |
+
self.add_symbol(sym)
|
346 |
+
|
347 |
+
logger.info(f"Final vocab size {len(self.sym2idx)} from {len(self.counter)} unique tokens")
|
348 |
+
|
349 |
+
@torch_only_method
|
350 |
+
def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False):
|
351 |
+
if verbose:
|
352 |
+
logger.info(f"encoding file {path} ...")
|
353 |
+
assert os.path.exists(path), f"Output file {path} not found"
|
354 |
+
encoded = []
|
355 |
+
with open(path, "r", encoding="utf-8") as f:
|
356 |
+
for idx, line in enumerate(f):
|
357 |
+
if verbose and idx > 0 and idx % 500000 == 0:
|
358 |
+
logger.info(f" line {idx}")
|
359 |
+
symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos)
|
360 |
+
encoded.append(self.convert_to_tensor(symbols))
|
361 |
+
|
362 |
+
if ordered:
|
363 |
+
encoded = torch.cat(encoded)
|
364 |
+
|
365 |
+
return encoded
|
366 |
+
|
367 |
+
@torch_only_method
|
368 |
+
def encode_sents(self, sents, ordered=False, verbose=False):
|
369 |
+
if verbose:
|
370 |
+
logger.info(f"encoding {len(sents)} sents ...")
|
371 |
+
encoded = []
|
372 |
+
for idx, symbols in enumerate(sents):
|
373 |
+
if verbose and idx > 0 and idx % 500000 == 0:
|
374 |
+
logger.info(f" line {idx}")
|
375 |
+
encoded.append(self.convert_to_tensor(symbols))
|
376 |
+
|
377 |
+
if ordered:
|
378 |
+
encoded = torch.cat(encoded)
|
379 |
+
|
380 |
+
return encoded
|
381 |
+
|
382 |
+
def add_special(self, sym):
|
383 |
+
if sym not in self.sym2idx:
|
384 |
+
self.idx2sym.append(sym)
|
385 |
+
self.sym2idx[sym] = len(self.idx2sym) - 1
|
386 |
+
setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym])
|
387 |
+
|
388 |
+
def add_symbol(self, sym):
|
389 |
+
if sym not in self.sym2idx:
|
390 |
+
self.idx2sym.append(sym)
|
391 |
+
self.sym2idx[sym] = len(self.idx2sym) - 1
|
392 |
+
|
393 |
+
def move_added_token(self, token: str, target_idx: int):
|
394 |
+
"""
|
395 |
+
Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding
|
396 |
+
layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the
|
397 |
+
default position (at the very end) to the desired one.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
token: The token to move to a specific position in the vocab.
|
401 |
+
target_idx: The position where the token should be moved to.
|
402 |
+
"""
|
403 |
+
assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token"
|
404 |
+
assert token not in self.idx2sym, "Token which should be moved is already in vocab"
|
405 |
+
|
406 |
+
# Insert sym into vocab
|
407 |
+
self.idx2sym.insert(target_idx, token)
|
408 |
+
self.sym2idx[token] = target_idx
|
409 |
+
|
410 |
+
# Shift following indices in sym2idx
|
411 |
+
for idx in range(target_idx + 1, len(self.idx2sym)):
|
412 |
+
current_sym = self.idx2sym[idx]
|
413 |
+
self.sym2idx[current_sym] = idx
|
414 |
+
|
415 |
+
# Delete token from added_tokens
|
416 |
+
old_index = self._added_tokens_encoder.pop(token)
|
417 |
+
self._added_tokens_decoder.pop(old_index)
|
418 |
+
|
419 |
+
def moses_punct_norm(self, text):
|
420 |
+
return self.moses_punct_normalizer.normalize(text)
|
421 |
+
|
422 |
+
def moses_tokenize(self, text):
|
423 |
+
return self.moses_tokenizer.tokenize(
|
424 |
+
text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split
|
425 |
+
)
|
426 |
+
|
427 |
+
def moses_pipeline(self, text: str) -> List[str]:
|
428 |
+
"""
|
429 |
+
Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with
|
430 |
+
*aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large
|
431 |
+
comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000
|
432 |
+
people are 1 @.@ 80m tall"
|
433 |
+
|
434 |
+
Args:
|
435 |
+
text: Text to be tokenize
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
A list of tokenized string
|
439 |
+
|
440 |
+
Example:
|
441 |
+
|
442 |
+
```python
|
443 |
+
>>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103")
|
444 |
+
>>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall")
|
445 |
+
['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall']
|
446 |
+
```"""
|
447 |
+
text = self.moses_punct_norm(text)
|
448 |
+
text = self.moses_tokenize(text)
|
449 |
+
text = tokenize_numbers(text)
|
450 |
+
return text
|
451 |
+
|
452 |
+
def _convert_id_to_token(self, idx):
|
453 |
+
"""Converts an id in a token (BPE) using the vocab."""
|
454 |
+
assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range"
|
455 |
+
return self.idx2sym[idx]
|
456 |
+
|
457 |
+
def _convert_token_to_id(self, sym):
|
458 |
+
"""Converts a token (str) in an id using the vocab."""
|
459 |
+
if sym in self.sym2idx:
|
460 |
+
return self.sym2idx[sym]
|
461 |
+
else:
|
462 |
+
# logger.info(f'encounter unk {sym}')
|
463 |
+
# assert '<eos>' not in sym
|
464 |
+
if hasattr(self, "unk_idx"):
|
465 |
+
return self.sym2idx.get(sym, self.unk_idx)
|
466 |
+
# Backward compatibility with pre-trained models
|
467 |
+
elif "<unk>" in self.sym2idx:
|
468 |
+
return self.sym2idx["<unk>"]
|
469 |
+
elif "<UNK>" in self.sym2idx:
|
470 |
+
return self.sym2idx["<UNK>"]
|
471 |
+
else:
|
472 |
+
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.")
|
473 |
+
|
474 |
+
def convert_tokens_to_string(self, tokens):
|
475 |
+
"""
|
476 |
+
Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back
|
477 |
+
into it's original form.
|
478 |
+
"""
|
479 |
+
out_string = self.moses_detokenizer.detokenize(tokens)
|
480 |
+
return detokenize_numbers(out_string).strip()
|
481 |
+
|
482 |
+
@torch_only_method
|
483 |
+
def convert_to_tensor(self, symbols):
|
484 |
+
return torch.LongTensor(self.convert_tokens_to_ids(symbols))
|
485 |
+
|
486 |
+
@property
|
487 |
+
def vocab_size(self):
|
488 |
+
return len(self.idx2sym)
|
489 |
+
|
490 |
+
def get_vocab(self):
|
491 |
+
vocab = self.sym2idx.copy()
|
492 |
+
vocab.update(self.added_tokens_encoder)
|
493 |
+
return vocab
|
494 |
+
|
495 |
+
def _tokenize(self, line, add_eos=False, add_double_eos=False):
|
496 |
+
line = line.strip()
|
497 |
+
# convert to lower case
|
498 |
+
if self.lower_case:
|
499 |
+
line = line.lower()
|
500 |
+
|
501 |
+
# empty delimiter '' will evaluate False
|
502 |
+
if self.delimiter == "":
|
503 |
+
symbols = line
|
504 |
+
else:
|
505 |
+
symbols = self.moses_pipeline(line)
|
506 |
+
|
507 |
+
if add_double_eos: # lm1b
|
508 |
+
return ["<S>"] + symbols + ["<S>"]
|
509 |
+
elif add_eos:
|
510 |
+
return symbols + ["<eos>"]
|
511 |
+
else:
|
512 |
+
return symbols
|
513 |
+
|
514 |
+
|
515 |
+
class LMOrderedIterator(object):
|
516 |
+
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None):
|
517 |
+
"""
|
518 |
+
data -- LongTensor -- the LongTensor is strictly ordered
|
519 |
+
"""
|
520 |
+
self.bsz = bsz
|
521 |
+
self.bptt = bptt
|
522 |
+
self.ext_len = ext_len if ext_len is not None else 0
|
523 |
+
|
524 |
+
self.device = device
|
525 |
+
|
526 |
+
# Work out how cleanly we can divide the dataset into bsz parts.
|
527 |
+
self.n_step = data.size(0) // bsz
|
528 |
+
|
529 |
+
# Trim off any extra elements that wouldn't cleanly fit (remainders).
|
530 |
+
data = data.narrow(0, 0, self.n_step * bsz)
|
531 |
+
|
532 |
+
# Evenly divide the data across the bsz batches.
|
533 |
+
self.data = data.view(bsz, -1).t().contiguous().to(device)
|
534 |
+
|
535 |
+
# Number of mini-batches
|
536 |
+
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
|
537 |
+
|
538 |
+
def get_batch(self, i, bptt=None):
|
539 |
+
if bptt is None:
|
540 |
+
bptt = self.bptt
|
541 |
+
seq_len = min(bptt, self.data.size(0) - 1 - i)
|
542 |
+
|
543 |
+
end_idx = i + seq_len
|
544 |
+
beg_idx = max(0, i - self.ext_len)
|
545 |
+
|
546 |
+
data = self.data[beg_idx:end_idx]
|
547 |
+
target = self.data[i + 1 : i + 1 + seq_len]
|
548 |
+
|
549 |
+
data_out = data.transpose(0, 1).contiguous().to(self.device)
|
550 |
+
target_out = target.transpose(0, 1).contiguous().to(self.device)
|
551 |
+
|
552 |
+
return data_out, target_out, seq_len
|
553 |
+
|
554 |
+
def get_fixlen_iter(self, start=0):
|
555 |
+
for i in range(start, self.data.size(0) - 1, self.bptt):
|
556 |
+
yield self.get_batch(i)
|
557 |
+
|
558 |
+
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
|
559 |
+
max_len = self.bptt + max_deviation * std
|
560 |
+
i = start
|
561 |
+
while True:
|
562 |
+
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0
|
563 |
+
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
|
564 |
+
data, target, seq_len = self.get_batch(i, bptt)
|
565 |
+
i += seq_len
|
566 |
+
yield data, target, seq_len
|
567 |
+
if i >= self.data.size(0) - 2:
|
568 |
+
break
|
569 |
+
|
570 |
+
def __iter__(self):
|
571 |
+
return self.get_fixlen_iter()
|
572 |
+
|
573 |
+
|
574 |
+
class LMShuffledIterator(object):
|
575 |
+
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
|
576 |
+
"""
|
577 |
+
data -- list[LongTensor] -- there is no order among the LongTensors
|
578 |
+
"""
|
579 |
+
self.data = data
|
580 |
+
|
581 |
+
self.bsz = bsz
|
582 |
+
self.bptt = bptt
|
583 |
+
self.ext_len = ext_len if ext_len is not None else 0
|
584 |
+
|
585 |
+
self.device = device
|
586 |
+
self.shuffle = shuffle
|
587 |
+
|
588 |
+
def get_sent_stream(self):
|
589 |
+
# index iterator
|
590 |
+
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data)))
|
591 |
+
|
592 |
+
# sentence iterator
|
593 |
+
for idx in epoch_indices:
|
594 |
+
yield self.data[idx]
|
595 |
+
|
596 |
+
@torch_only_method
|
597 |
+
def stream_iterator(self, sent_stream):
|
598 |
+
# streams for each data in the batch
|
599 |
+
streams = [None] * self.bsz
|
600 |
+
|
601 |
+
data = torch.LongTensor(self.bptt, self.bsz)
|
602 |
+
target = torch.LongTensor(self.bptt, self.bsz)
|
603 |
+
|
604 |
+
n_retain = 0
|
605 |
+
|
606 |
+
while True:
|
607 |
+
# data : [n_retain+bptt x bsz]
|
608 |
+
# target : [bptt x bsz]
|
609 |
+
data[n_retain:].fill_(-1)
|
610 |
+
target.fill_(-1)
|
611 |
+
|
612 |
+
valid_batch = True
|
613 |
+
|
614 |
+
for i in range(self.bsz):
|
615 |
+
n_filled = 0
|
616 |
+
try:
|
617 |
+
while n_filled < self.bptt:
|
618 |
+
if streams[i] is None or len(streams[i]) <= 1:
|
619 |
+
streams[i] = next(sent_stream)
|
620 |
+
# number of new tokens to fill in
|
621 |
+
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
|
622 |
+
# first n_retain tokens are retained from last batch
|
623 |
+
data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new]
|
624 |
+
target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1]
|
625 |
+
streams[i] = streams[i][n_new:]
|
626 |
+
n_filled += n_new
|
627 |
+
except StopIteration:
|
628 |
+
valid_batch = False
|
629 |
+
break
|
630 |
+
|
631 |
+
if not valid_batch:
|
632 |
+
return
|
633 |
+
|
634 |
+
data_out = data.transpose(0, 1).contiguous().to(self.device)
|
635 |
+
target_out = target.transpose(0, 1).contiguous().to(self.device)
|
636 |
+
|
637 |
+
yield data_out, target_out, self.bptt
|
638 |
+
|
639 |
+
n_retain = min(data.size(0), self.ext_len)
|
640 |
+
if n_retain > 0:
|
641 |
+
data[:n_retain] = data[-n_retain:]
|
642 |
+
data.resize_(n_retain + self.bptt, data.size(1))
|
643 |
+
|
644 |
+
def __iter__(self):
|
645 |
+
# sent_stream is an iterator
|
646 |
+
sent_stream = self.get_sent_stream()
|
647 |
+
|
648 |
+
for batch in self.stream_iterator(sent_stream):
|
649 |
+
yield batch
|
650 |
+
|
651 |
+
|
652 |
+
class LMMultiFileIterator(LMShuffledIterator):
|
653 |
+
def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
|
654 |
+
self.paths = paths
|
655 |
+
self.vocab = vocab
|
656 |
+
|
657 |
+
self.bsz = bsz
|
658 |
+
self.bptt = bptt
|
659 |
+
self.ext_len = ext_len if ext_len is not None else 0
|
660 |
+
|
661 |
+
self.device = device
|
662 |
+
self.shuffle = shuffle
|
663 |
+
|
664 |
+
def get_sent_stream(self, path):
|
665 |
+
sents = self.vocab.encode_file(path, add_double_eos=True)
|
666 |
+
if self.shuffle:
|
667 |
+
np.random.shuffle(sents)
|
668 |
+
sent_stream = iter(sents)
|
669 |
+
|
670 |
+
return sent_stream
|
671 |
+
|
672 |
+
def __iter__(self):
|
673 |
+
if self.shuffle:
|
674 |
+
np.random.shuffle(self.paths)
|
675 |
+
|
676 |
+
for path in self.paths:
|
677 |
+
# sent_stream is an iterator
|
678 |
+
sent_stream = self.get_sent_stream(path)
|
679 |
+
for batch in self.stream_iterator(sent_stream):
|
680 |
+
yield batch
|
681 |
+
|
682 |
+
|
683 |
+
class TransfoXLCorpus(object):
|
684 |
+
@classmethod
|
685 |
+
@torch_only_method
|
686 |
+
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
687 |
+
"""
|
688 |
+
Instantiate a pre-processed corpus.
|
689 |
+
"""
|
690 |
+
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
691 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
692 |
+
# redirect to the cache, if necessary
|
693 |
+
try:
|
694 |
+
resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir)
|
695 |
+
except EnvironmentError:
|
696 |
+
logger.error(
|
697 |
+
f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list"
|
698 |
+
f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'"
|
699 |
+
f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url."
|
700 |
+
)
|
701 |
+
return None
|
702 |
+
if is_local:
|
703 |
+
logger.info(f"loading corpus file {resolved_corpus_file}")
|
704 |
+
else:
|
705 |
+
logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}")
|
706 |
+
|
707 |
+
# Instantiate tokenizer.
|
708 |
+
corpus = cls(*inputs, **kwargs)
|
709 |
+
corpus_dict = torch.load(resolved_corpus_file)
|
710 |
+
for key, value in corpus_dict.items():
|
711 |
+
corpus.__dict__[key] = value
|
712 |
+
corpus.vocab = vocab
|
713 |
+
if corpus.train is not None:
|
714 |
+
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
|
715 |
+
if corpus.valid is not None:
|
716 |
+
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
|
717 |
+
if corpus.test is not None:
|
718 |
+
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
|
719 |
+
return corpus
|
720 |
+
|
721 |
+
def __init__(self, *args, **kwargs):
|
722 |
+
self.vocab = TransfoXLTokenizer(*args, **kwargs)
|
723 |
+
self.dataset = None
|
724 |
+
self.train = None
|
725 |
+
self.valid = None
|
726 |
+
self.test = None
|
727 |
+
|
728 |
+
def build_corpus(self, path, dataset):
|
729 |
+
self.dataset = dataset
|
730 |
+
|
731 |
+
if self.dataset in ["ptb", "wt2", "enwik8", "text8"]:
|
732 |
+
self.vocab.count_file(os.path.join(path, "train.txt"))
|
733 |
+
self.vocab.count_file(os.path.join(path, "valid.txt"))
|
734 |
+
self.vocab.count_file(os.path.join(path, "test.txt"))
|
735 |
+
elif self.dataset == "wt103":
|
736 |
+
self.vocab.count_file(os.path.join(path, "train.txt"))
|
737 |
+
elif self.dataset == "lm1b":
|
738 |
+
train_path_pattern = os.path.join(
|
739 |
+
path,
|
740 |
+
"1-billion-word-language-modeling-benchmark-r13output",
|
741 |
+
"training-monolingual.tokenized.shuffled",
|
742 |
+
"news.en-*",
|
743 |
+
)
|
744 |
+
train_paths = glob.glob(train_path_pattern)
|
745 |
+
# the vocab will load from file when build_vocab() is called
|
746 |
+
|
747 |
+
self.vocab.build_vocab()
|
748 |
+
|
749 |
+
if self.dataset in ["ptb", "wt2", "wt103"]:
|
750 |
+
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True)
|
751 |
+
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True)
|
752 |
+
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True)
|
753 |
+
elif self.dataset in ["enwik8", "text8"]:
|
754 |
+
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False)
|
755 |
+
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False)
|
756 |
+
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False)
|
757 |
+
elif self.dataset == "lm1b":
|
758 |
+
self.train = train_paths
|
759 |
+
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True)
|
760 |
+
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True)
|
761 |
+
|
762 |
+
def get_iterator(self, split, *args, **kwargs):
|
763 |
+
if split == "train":
|
764 |
+
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
|
765 |
+
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
|
766 |
+
elif self.dataset == "lm1b":
|
767 |
+
kwargs["shuffle"] = True
|
768 |
+
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
|
769 |
+
elif split in ["valid", "test"]:
|
770 |
+
data = self.valid if split == "valid" else self.test
|
771 |
+
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
|
772 |
+
data_iter = LMOrderedIterator(data, *args, **kwargs)
|
773 |
+
elif self.dataset == "lm1b":
|
774 |
+
data_iter = LMShuffledIterator(data, *args, **kwargs)
|
775 |
+
else:
|
776 |
+
data_iter = None
|
777 |
+
raise ValueError(f"Split not recognized: {split}")
|
778 |
+
|
779 |
+
return data_iter
|
780 |
+
|
781 |
+
|
782 |
+
@torch_only_method
|
783 |
+
def get_lm_corpus(datadir, dataset):
|
784 |
+
fn = os.path.join(datadir, "cache.pt")
|
785 |
+
fn_pickle = os.path.join(datadir, "cache.pkl")
|
786 |
+
if os.path.exists(fn):
|
787 |
+
logger.info("Loading cached dataset...")
|
788 |
+
corpus = torch.load(fn_pickle)
|
789 |
+
elif os.path.exists(fn):
|
790 |
+
logger.info("Loading cached dataset from pickle...")
|
791 |
+
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
|
792 |
+
raise ValueError(
|
793 |
+
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
|
794 |
+
"malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
|
795 |
+
"that could have been tampered with. If you already verified the pickle data and decided to use it, "
|
796 |
+
"you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
|
797 |
+
)
|
798 |
+
with open(fn, "rb") as fp:
|
799 |
+
corpus = pickle.load(fp)
|
800 |
+
else:
|
801 |
+
logger.info(f"Producing dataset {dataset}...")
|
802 |
+
kwargs = {}
|
803 |
+
if dataset in ["wt103", "wt2"]:
|
804 |
+
kwargs["special"] = ["<eos>"]
|
805 |
+
kwargs["lower_case"] = False
|
806 |
+
elif dataset == "ptb":
|
807 |
+
kwargs["special"] = ["<eos>"]
|
808 |
+
kwargs["lower_case"] = True
|
809 |
+
elif dataset == "lm1b":
|
810 |
+
kwargs["special"] = []
|
811 |
+
kwargs["lower_case"] = False
|
812 |
+
kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt")
|
813 |
+
elif dataset in ["enwik8", "text8"]:
|
814 |
+
pass
|
815 |
+
|
816 |
+
corpus = TransfoXLCorpus(datadir, dataset, **kwargs)
|
817 |
+
torch.save(corpus, fn)
|
818 |
+
|
819 |
+
return corpus
|
venv/lib/python3.10/site-packages/transformers/models/nezha/__init__.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_nezha"] = [
|
30 |
+
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"NezhaForNextSentencePrediction",
|
32 |
+
"NezhaForMaskedLM",
|
33 |
+
"NezhaForPreTraining",
|
34 |
+
"NezhaForMultipleChoice",
|
35 |
+
"NezhaForQuestionAnswering",
|
36 |
+
"NezhaForSequenceClassification",
|
37 |
+
"NezhaForTokenClassification",
|
38 |
+
"NezhaModel",
|
39 |
+
"NezhaPreTrainedModel",
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
from .modeling_nezha import (
|
53 |
+
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
54 |
+
NezhaForMaskedLM,
|
55 |
+
NezhaForMultipleChoice,
|
56 |
+
NezhaForNextSentencePrediction,
|
57 |
+
NezhaForPreTraining,
|
58 |
+
NezhaForQuestionAnswering,
|
59 |
+
NezhaForSequenceClassification,
|
60 |
+
NezhaForTokenClassification,
|
61 |
+
NezhaModel,
|
62 |
+
NezhaPreTrainedModel,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
else:
|
67 |
+
import sys
|
68 |
+
|
69 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/configuration_nezha.cpython-310.pyc
ADDED
Binary file (4.76 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/modeling_nezha.cpython-310.pyc
ADDED
Binary file (49.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nezha/configuration_nezha.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ... import PretrainedConfig
|
2 |
+
from ..deprecated._archive_maps import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
3 |
+
|
4 |
+
|
5 |
+
class NezhaConfig(PretrainedConfig):
|
6 |
+
r"""
|
7 |
+
This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha
|
8 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
9 |
+
defaults will yield a similar configuration to that of the Nezha
|
10 |
+
[sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture.
|
11 |
+
|
12 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
13 |
+
documentation from [`PretrainedConfig`] for more information.
|
14 |
+
|
15 |
+
|
16 |
+
Args:
|
17 |
+
vocab_size (`int`, optional, defaults to 21128):
|
18 |
+
Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the
|
19 |
+
*inputs_ids* passed to the forward method of [`NezhaModel`].
|
20 |
+
hidden_size (`int`, optional, defaults to 768):
|
21 |
+
Dimensionality of the encoder layers and the pooler layer.
|
22 |
+
num_hidden_layers (`int`, optional, defaults to 12):
|
23 |
+
Number of hidden layers in the Transformer encoder.
|
24 |
+
num_attention_heads (`int`, optional, defaults to 12):
|
25 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
26 |
+
intermediate_size (`int`, optional, defaults to 3072):
|
27 |
+
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
28 |
+
hidden_act (`str` or `function`, optional, defaults to "gelu"):
|
29 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
30 |
+
hidden_dropout_prob (`float`, optional, defaults to 0.1):
|
31 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
32 |
+
attention_probs_dropout_prob (`float`, optional, defaults to 0.1):
|
33 |
+
The dropout ratio for the attention probabilities.
|
34 |
+
max_position_embeddings (`int`, optional, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
36 |
+
(e.g., 512 or 1024 or 2048).
|
37 |
+
type_vocab_size (`int`, optional, defaults to 2):
|
38 |
+
The vocabulary size of the *token_type_ids* passed into [`NezhaModel`].
|
39 |
+
initializer_range (`float`, optional, defaults to 0.02):
|
40 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
41 |
+
layer_norm_eps (`float`, optional, defaults to 1e-12):
|
42 |
+
The epsilon used by the layer normalization layers.
|
43 |
+
classifier_dropout (`float`, optional, defaults to 0.1):
|
44 |
+
The dropout ratio for attached classifiers.
|
45 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
46 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
47 |
+
|
48 |
+
Example:
|
49 |
+
|
50 |
+
```python
|
51 |
+
>>> from transformers import NezhaConfig, NezhaModel
|
52 |
+
|
53 |
+
>>> # Initializing an Nezha configuration
|
54 |
+
>>> configuration = NezhaConfig()
|
55 |
+
|
56 |
+
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
|
57 |
+
>>> model = NezhaModel(configuration)
|
58 |
+
|
59 |
+
>>> # Accessing the model configuration
|
60 |
+
>>> configuration = model.config
|
61 |
+
```"""
|
62 |
+
|
63 |
+
model_type = "nezha"
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
vocab_size=21128,
|
68 |
+
hidden_size=768,
|
69 |
+
num_hidden_layers=12,
|
70 |
+
num_attention_heads=12,
|
71 |
+
intermediate_size=3072,
|
72 |
+
hidden_act="gelu",
|
73 |
+
hidden_dropout_prob=0.1,
|
74 |
+
attention_probs_dropout_prob=0.1,
|
75 |
+
max_position_embeddings=512,
|
76 |
+
max_relative_position=64,
|
77 |
+
type_vocab_size=2,
|
78 |
+
initializer_range=0.02,
|
79 |
+
layer_norm_eps=1e-12,
|
80 |
+
classifier_dropout=0.1,
|
81 |
+
pad_token_id=0,
|
82 |
+
bos_token_id=2,
|
83 |
+
eos_token_id=3,
|
84 |
+
use_cache=True,
|
85 |
+
**kwargs,
|
86 |
+
):
|
87 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
88 |
+
|
89 |
+
self.vocab_size = vocab_size
|
90 |
+
self.hidden_size = hidden_size
|
91 |
+
self.num_hidden_layers = num_hidden_layers
|
92 |
+
self.num_attention_heads = num_attention_heads
|
93 |
+
self.hidden_act = hidden_act
|
94 |
+
self.intermediate_size = intermediate_size
|
95 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
96 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.max_relative_position = max_relative_position
|
99 |
+
self.type_vocab_size = type_vocab_size
|
100 |
+
self.initializer_range = initializer_range
|
101 |
+
self.layer_norm_eps = layer_norm_eps
|
102 |
+
self.classifier_dropout = classifier_dropout
|
103 |
+
self.use_cache = use_cache
|
venv/lib/python3.10/site-packages/transformers/models/nezha/modeling_nezha.py
ADDED
@@ -0,0 +1,1693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Nezha model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from ...modeling_utils import PreTrainedModel
|
41 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
42 |
+
from ...utils import (
|
43 |
+
ModelOutput,
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from .configuration_nezha import NezhaConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "sijunhe/nezha-cn-base"
|
56 |
+
_CONFIG_FOR_DOC = "NezhaConfig"
|
57 |
+
|
58 |
+
|
59 |
+
from ..deprecated._archive_maps import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
60 |
+
|
61 |
+
|
62 |
+
def load_tf_weights_in_nezha(model, config, tf_checkpoint_path):
|
63 |
+
"""Load tf checkpoints in a pytorch model."""
|
64 |
+
try:
|
65 |
+
import re
|
66 |
+
|
67 |
+
import numpy as np
|
68 |
+
import tensorflow as tf
|
69 |
+
except ImportError:
|
70 |
+
logger.error(
|
71 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
72 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
73 |
+
)
|
74 |
+
raise
|
75 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
76 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
77 |
+
# Load weights from TF model
|
78 |
+
init_vars = tf.train.list_variables(tf_path)
|
79 |
+
names = []
|
80 |
+
arrays = []
|
81 |
+
for name, shape in init_vars:
|
82 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
83 |
+
array = tf.train.load_variable(tf_path, name)
|
84 |
+
names.append(name)
|
85 |
+
arrays.append(array)
|
86 |
+
|
87 |
+
for name, array in zip(names, arrays):
|
88 |
+
name = name.split("/")
|
89 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
90 |
+
# which are not required for using pretrained model
|
91 |
+
if any(
|
92 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
93 |
+
for n in name
|
94 |
+
):
|
95 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
96 |
+
continue
|
97 |
+
pointer = model
|
98 |
+
for m_name in name:
|
99 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
100 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
101 |
+
else:
|
102 |
+
scope_names = [m_name]
|
103 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
104 |
+
pointer = getattr(pointer, "weight")
|
105 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
106 |
+
pointer = getattr(pointer, "bias")
|
107 |
+
elif scope_names[0] == "output_weights":
|
108 |
+
pointer = getattr(pointer, "weight")
|
109 |
+
elif scope_names[0] == "squad":
|
110 |
+
pointer = getattr(pointer, "classifier")
|
111 |
+
else:
|
112 |
+
try:
|
113 |
+
pointer = getattr(pointer, scope_names[0])
|
114 |
+
except AttributeError:
|
115 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
116 |
+
continue
|
117 |
+
if len(scope_names) >= 2:
|
118 |
+
num = int(scope_names[1])
|
119 |
+
pointer = pointer[num]
|
120 |
+
if m_name[-11:] == "_embeddings":
|
121 |
+
pointer = getattr(pointer, "weight")
|
122 |
+
elif m_name == "kernel":
|
123 |
+
array = np.transpose(array)
|
124 |
+
try:
|
125 |
+
if pointer.shape != array.shape:
|
126 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
127 |
+
except AssertionError as e:
|
128 |
+
e.args += (pointer.shape, array.shape)
|
129 |
+
raise
|
130 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
131 |
+
pointer.data = torch.from_numpy(array)
|
132 |
+
return model
|
133 |
+
|
134 |
+
|
135 |
+
class NezhaRelativePositionsEncoding(nn.Module):
|
136 |
+
"""Implement the Functional Relative Position Encoding"""
|
137 |
+
|
138 |
+
def __init__(self, length, depth, max_relative_position=127):
|
139 |
+
super().__init__()
|
140 |
+
vocab_size = max_relative_position * 2 + 1
|
141 |
+
range_vec = torch.arange(length)
|
142 |
+
range_mat = range_vec.repeat(length).view(length, length)
|
143 |
+
distance_mat = range_mat - torch.t(range_mat)
|
144 |
+
distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position)
|
145 |
+
final_mat = distance_mat_clipped + max_relative_position
|
146 |
+
|
147 |
+
embeddings_table = torch.zeros(vocab_size, depth)
|
148 |
+
position = torch.arange(0, vocab_size, dtype=torch.int64).float().unsqueeze(1)
|
149 |
+
div_term = torch.exp(torch.arange(0, depth, 2).float() * (-math.log(10000.0) / depth))
|
150 |
+
embeddings_table[:, 0::2] = torch.sin(position * div_term)
|
151 |
+
embeddings_table[:, 1::2] = torch.cos(position * div_term)
|
152 |
+
|
153 |
+
flat_relative_positions_matrix = final_mat.view(-1)
|
154 |
+
one_hot_relative_positions_matrix = torch.nn.functional.one_hot(
|
155 |
+
flat_relative_positions_matrix, num_classes=vocab_size
|
156 |
+
).float()
|
157 |
+
positions_encoding = torch.matmul(one_hot_relative_positions_matrix, embeddings_table)
|
158 |
+
my_shape = list(final_mat.size())
|
159 |
+
my_shape.append(depth)
|
160 |
+
positions_encoding = positions_encoding.view(my_shape)
|
161 |
+
self.register_buffer("positions_encoding", positions_encoding, persistent=False)
|
162 |
+
|
163 |
+
def forward(self, length):
|
164 |
+
return self.positions_encoding[:length, :length, :]
|
165 |
+
|
166 |
+
|
167 |
+
class NezhaEmbeddings(nn.Module):
|
168 |
+
"""Construct the embeddings from word and token_type embeddings."""
|
169 |
+
|
170 |
+
def __init__(self, config):
|
171 |
+
super().__init__()
|
172 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
173 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
174 |
+
|
175 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
176 |
+
# any TensorFlow checkpoint file
|
177 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
178 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
179 |
+
self.register_buffer(
|
180 |
+
"token_type_ids", torch.zeros((1, config.max_position_embeddings), dtype=torch.long), persistent=False
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(
|
184 |
+
self,
|
185 |
+
input_ids: Optional[torch.LongTensor] = None,
|
186 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
187 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
188 |
+
) -> torch.Tensor:
|
189 |
+
if input_ids is not None:
|
190 |
+
input_shape = input_ids.size()
|
191 |
+
else:
|
192 |
+
input_shape = inputs_embeds.size()[:-1]
|
193 |
+
|
194 |
+
seq_length = input_shape[1]
|
195 |
+
|
196 |
+
if inputs_embeds is None:
|
197 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
198 |
+
|
199 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
200 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
201 |
+
# issue #5664
|
202 |
+
if token_type_ids is None:
|
203 |
+
if hasattr(self, "token_type_ids"):
|
204 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
205 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
206 |
+
token_type_ids = buffered_token_type_ids_expanded
|
207 |
+
else:
|
208 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device)
|
209 |
+
|
210 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
211 |
+
|
212 |
+
embeddings = inputs_embeds + token_type_embeddings
|
213 |
+
embeddings = self.LayerNorm(embeddings)
|
214 |
+
embeddings = self.dropout(embeddings)
|
215 |
+
return embeddings
|
216 |
+
|
217 |
+
|
218 |
+
class NezhaSelfAttention(nn.Module):
|
219 |
+
def __init__(self, config):
|
220 |
+
super().__init__()
|
221 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
222 |
+
raise ValueError(
|
223 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
224 |
+
f"heads ({config.num_attention_heads})"
|
225 |
+
)
|
226 |
+
|
227 |
+
self.num_attention_heads = config.num_attention_heads
|
228 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
229 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
230 |
+
|
231 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
232 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
233 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
234 |
+
|
235 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
236 |
+
self.relative_positions_encoding = NezhaRelativePositionsEncoding(
|
237 |
+
length=config.max_position_embeddings,
|
238 |
+
depth=self.attention_head_size,
|
239 |
+
max_relative_position=config.max_relative_position,
|
240 |
+
)
|
241 |
+
self.is_decoder = config.is_decoder
|
242 |
+
|
243 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
244 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
245 |
+
x = x.view(new_x_shape)
|
246 |
+
return x.permute(0, 2, 1, 3)
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
hidden_states: torch.Tensor,
|
251 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
252 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
253 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
254 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
255 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
256 |
+
output_attentions: Optional[bool] = False,
|
257 |
+
) -> Tuple[torch.Tensor]:
|
258 |
+
mixed_query_layer = self.query(hidden_states)
|
259 |
+
|
260 |
+
# If this is instantiated as a cross-attention module, the keys
|
261 |
+
# and values come from an encoder; the attention mask needs to be
|
262 |
+
# such that the encoder's padding tokens are not attended to.
|
263 |
+
is_cross_attention = encoder_hidden_states is not None
|
264 |
+
|
265 |
+
if is_cross_attention and past_key_value is not None:
|
266 |
+
# reuse k,v, cross_attentions
|
267 |
+
key_layer = past_key_value[0]
|
268 |
+
value_layer = past_key_value[1]
|
269 |
+
attention_mask = encoder_attention_mask
|
270 |
+
elif is_cross_attention:
|
271 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
272 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
273 |
+
attention_mask = encoder_attention_mask
|
274 |
+
elif past_key_value is not None:
|
275 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
276 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
277 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
278 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
279 |
+
else:
|
280 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
281 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
282 |
+
|
283 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
284 |
+
|
285 |
+
if self.is_decoder:
|
286 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
287 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
288 |
+
# key/value_states (first "if" case)
|
289 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
290 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
291 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
292 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
293 |
+
past_key_value = (key_layer, value_layer)
|
294 |
+
|
295 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
296 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
297 |
+
|
298 |
+
batch_size, num_attention_heads, from_seq_length, to_seq_length = attention_scores.size()
|
299 |
+
relations_keys = self.relative_positions_encoding(to_seq_length)
|
300 |
+
query_layer_t = query_layer.permute(2, 0, 1, 3)
|
301 |
+
|
302 |
+
query_layer_r = query_layer_t.contiguous().view(
|
303 |
+
from_seq_length, batch_size * num_attention_heads, self.attention_head_size
|
304 |
+
)
|
305 |
+
key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1))
|
306 |
+
key_position_scores_r = key_position_scores.view(
|
307 |
+
from_seq_length, batch_size, num_attention_heads, from_seq_length
|
308 |
+
)
|
309 |
+
key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3)
|
310 |
+
attention_scores = attention_scores + key_position_scores_r_t
|
311 |
+
|
312 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
313 |
+
|
314 |
+
if attention_mask is not None:
|
315 |
+
# Apply the attention mask is (precomputed for all layers in NezhaModel forward() function)
|
316 |
+
attention_scores = attention_scores + attention_mask
|
317 |
+
|
318 |
+
# Normalize the attention scores to probabilities.
|
319 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
320 |
+
|
321 |
+
# This is actually dropping out entire tokens to attend to, which might
|
322 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
323 |
+
attention_probs = self.dropout(attention_probs)
|
324 |
+
|
325 |
+
# Mask heads if we want to
|
326 |
+
if head_mask is not None:
|
327 |
+
attention_probs = attention_probs * head_mask
|
328 |
+
|
329 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
330 |
+
relations_values = self.relative_positions_encoding(to_seq_length)
|
331 |
+
attention_probs_t = attention_probs.permute(2, 0, 1, 3)
|
332 |
+
attentions_probs_r = attention_probs_t.contiguous().view(
|
333 |
+
from_seq_length, batch_size * num_attention_heads, to_seq_length
|
334 |
+
)
|
335 |
+
value_position_scores = torch.matmul(attentions_probs_r, relations_values)
|
336 |
+
value_position_scores_r = value_position_scores.view(
|
337 |
+
from_seq_length, batch_size, num_attention_heads, self.attention_head_size
|
338 |
+
)
|
339 |
+
value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3)
|
340 |
+
context_layer = context_layer + value_position_scores_r_t
|
341 |
+
|
342 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
343 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
344 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
345 |
+
|
346 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
347 |
+
|
348 |
+
if self.is_decoder:
|
349 |
+
outputs = outputs + (past_key_value,)
|
350 |
+
return outputs
|
351 |
+
|
352 |
+
|
353 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Nezha
|
354 |
+
class NezhaSelfOutput(nn.Module):
|
355 |
+
def __init__(self, config):
|
356 |
+
super().__init__()
|
357 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
358 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
359 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
360 |
+
|
361 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
362 |
+
hidden_states = self.dense(hidden_states)
|
363 |
+
hidden_states = self.dropout(hidden_states)
|
364 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
365 |
+
return hidden_states
|
366 |
+
|
367 |
+
|
368 |
+
class NezhaAttention(nn.Module):
|
369 |
+
def __init__(self, config):
|
370 |
+
super().__init__()
|
371 |
+
self.self = NezhaSelfAttention(config)
|
372 |
+
self.output = NezhaSelfOutput(config)
|
373 |
+
self.pruned_heads = set()
|
374 |
+
|
375 |
+
def prune_heads(self, heads):
|
376 |
+
if len(heads) == 0:
|
377 |
+
return
|
378 |
+
heads, index = find_pruneable_heads_and_indices(
|
379 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
380 |
+
)
|
381 |
+
|
382 |
+
# Prune linear layers
|
383 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
384 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
385 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
386 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
387 |
+
|
388 |
+
# Update hyper params and store pruned heads
|
389 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
390 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
391 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
392 |
+
|
393 |
+
def forward(
|
394 |
+
self,
|
395 |
+
hidden_states: torch.Tensor,
|
396 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
397 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
398 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
399 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
400 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
401 |
+
output_attentions: Optional[bool] = False,
|
402 |
+
) -> Tuple[torch.Tensor]:
|
403 |
+
self_outputs = self.self(
|
404 |
+
hidden_states,
|
405 |
+
attention_mask,
|
406 |
+
head_mask,
|
407 |
+
encoder_hidden_states,
|
408 |
+
encoder_attention_mask,
|
409 |
+
past_key_value,
|
410 |
+
output_attentions,
|
411 |
+
)
|
412 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
413 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
414 |
+
return outputs
|
415 |
+
|
416 |
+
|
417 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nezha
|
418 |
+
class NezhaIntermediate(nn.Module):
|
419 |
+
def __init__(self, config):
|
420 |
+
super().__init__()
|
421 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
422 |
+
if isinstance(config.hidden_act, str):
|
423 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
424 |
+
else:
|
425 |
+
self.intermediate_act_fn = config.hidden_act
|
426 |
+
|
427 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
428 |
+
hidden_states = self.dense(hidden_states)
|
429 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
430 |
+
return hidden_states
|
431 |
+
|
432 |
+
|
433 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nezha
|
434 |
+
class NezhaOutput(nn.Module):
|
435 |
+
def __init__(self, config):
|
436 |
+
super().__init__()
|
437 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
438 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
439 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
440 |
+
|
441 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
442 |
+
hidden_states = self.dense(hidden_states)
|
443 |
+
hidden_states = self.dropout(hidden_states)
|
444 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
445 |
+
return hidden_states
|
446 |
+
|
447 |
+
|
448 |
+
class NezhaLayer(nn.Module):
|
449 |
+
def __init__(self, config):
|
450 |
+
super().__init__()
|
451 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
452 |
+
self.seq_len_dim = 1
|
453 |
+
self.attention = NezhaAttention(config)
|
454 |
+
self.is_decoder = config.is_decoder
|
455 |
+
self.add_cross_attention = config.add_cross_attention
|
456 |
+
if self.add_cross_attention:
|
457 |
+
if not self.is_decoder:
|
458 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
459 |
+
self.crossattention = NezhaAttention(config)
|
460 |
+
self.intermediate = NezhaIntermediate(config)
|
461 |
+
self.output = NezhaOutput(config)
|
462 |
+
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
hidden_states: torch.Tensor,
|
466 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
467 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
468 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
469 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
470 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
471 |
+
output_attentions: Optional[bool] = False,
|
472 |
+
) -> Tuple[torch.Tensor]:
|
473 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
474 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
475 |
+
self_attention_outputs = self.attention(
|
476 |
+
hidden_states,
|
477 |
+
attention_mask,
|
478 |
+
head_mask,
|
479 |
+
output_attentions=output_attentions,
|
480 |
+
past_key_value=self_attn_past_key_value,
|
481 |
+
)
|
482 |
+
attention_output = self_attention_outputs[0]
|
483 |
+
|
484 |
+
# if decoder, the last output is tuple of self-attn cache
|
485 |
+
if self.is_decoder:
|
486 |
+
outputs = self_attention_outputs[1:-1]
|
487 |
+
present_key_value = self_attention_outputs[-1]
|
488 |
+
else:
|
489 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
490 |
+
|
491 |
+
cross_attn_present_key_value = None
|
492 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
493 |
+
if not hasattr(self, "crossattention"):
|
494 |
+
raise ValueError(
|
495 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
496 |
+
" by setting `config.add_cross_attention=True`"
|
497 |
+
)
|
498 |
+
|
499 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
500 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
501 |
+
cross_attention_outputs = self.crossattention(
|
502 |
+
attention_output,
|
503 |
+
attention_mask,
|
504 |
+
head_mask,
|
505 |
+
encoder_hidden_states,
|
506 |
+
encoder_attention_mask,
|
507 |
+
cross_attn_past_key_value,
|
508 |
+
output_attentions,
|
509 |
+
)
|
510 |
+
attention_output = cross_attention_outputs[0]
|
511 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
512 |
+
|
513 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
514 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
515 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
516 |
+
|
517 |
+
layer_output = apply_chunking_to_forward(
|
518 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
519 |
+
)
|
520 |
+
outputs = (layer_output,) + outputs
|
521 |
+
|
522 |
+
# if decoder, return the attn key/values as the last output
|
523 |
+
if self.is_decoder:
|
524 |
+
outputs = outputs + (present_key_value,)
|
525 |
+
|
526 |
+
return outputs
|
527 |
+
|
528 |
+
def feed_forward_chunk(self, attention_output):
|
529 |
+
intermediate_output = self.intermediate(attention_output)
|
530 |
+
layer_output = self.output(intermediate_output, attention_output)
|
531 |
+
return layer_output
|
532 |
+
|
533 |
+
|
534 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Nezha
|
535 |
+
class NezhaEncoder(nn.Module):
|
536 |
+
def __init__(self, config):
|
537 |
+
super().__init__()
|
538 |
+
self.config = config
|
539 |
+
self.layer = nn.ModuleList([NezhaLayer(config) for _ in range(config.num_hidden_layers)])
|
540 |
+
self.gradient_checkpointing = False
|
541 |
+
|
542 |
+
def forward(
|
543 |
+
self,
|
544 |
+
hidden_states: torch.Tensor,
|
545 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
546 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
547 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
548 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
549 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
550 |
+
use_cache: Optional[bool] = None,
|
551 |
+
output_attentions: Optional[bool] = False,
|
552 |
+
output_hidden_states: Optional[bool] = False,
|
553 |
+
return_dict: Optional[bool] = True,
|
554 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
555 |
+
all_hidden_states = () if output_hidden_states else None
|
556 |
+
all_self_attentions = () if output_attentions else None
|
557 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
558 |
+
|
559 |
+
if self.gradient_checkpointing and self.training:
|
560 |
+
if use_cache:
|
561 |
+
logger.warning_once(
|
562 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
563 |
+
)
|
564 |
+
use_cache = False
|
565 |
+
|
566 |
+
next_decoder_cache = () if use_cache else None
|
567 |
+
for i, layer_module in enumerate(self.layer):
|
568 |
+
if output_hidden_states:
|
569 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
570 |
+
|
571 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
572 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
573 |
+
|
574 |
+
if self.gradient_checkpointing and self.training:
|
575 |
+
layer_outputs = self._gradient_checkpointing_func(
|
576 |
+
layer_module.__call__,
|
577 |
+
hidden_states,
|
578 |
+
attention_mask,
|
579 |
+
layer_head_mask,
|
580 |
+
encoder_hidden_states,
|
581 |
+
encoder_attention_mask,
|
582 |
+
past_key_value,
|
583 |
+
output_attentions,
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
layer_outputs = layer_module(
|
587 |
+
hidden_states,
|
588 |
+
attention_mask,
|
589 |
+
layer_head_mask,
|
590 |
+
encoder_hidden_states,
|
591 |
+
encoder_attention_mask,
|
592 |
+
past_key_value,
|
593 |
+
output_attentions,
|
594 |
+
)
|
595 |
+
|
596 |
+
hidden_states = layer_outputs[0]
|
597 |
+
if use_cache:
|
598 |
+
next_decoder_cache += (layer_outputs[-1],)
|
599 |
+
if output_attentions:
|
600 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
601 |
+
if self.config.add_cross_attention:
|
602 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
603 |
+
|
604 |
+
if output_hidden_states:
|
605 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
606 |
+
|
607 |
+
if not return_dict:
|
608 |
+
return tuple(
|
609 |
+
v
|
610 |
+
for v in [
|
611 |
+
hidden_states,
|
612 |
+
next_decoder_cache,
|
613 |
+
all_hidden_states,
|
614 |
+
all_self_attentions,
|
615 |
+
all_cross_attentions,
|
616 |
+
]
|
617 |
+
if v is not None
|
618 |
+
)
|
619 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
620 |
+
last_hidden_state=hidden_states,
|
621 |
+
past_key_values=next_decoder_cache,
|
622 |
+
hidden_states=all_hidden_states,
|
623 |
+
attentions=all_self_attentions,
|
624 |
+
cross_attentions=all_cross_attentions,
|
625 |
+
)
|
626 |
+
|
627 |
+
|
628 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Nezha
|
629 |
+
class NezhaPooler(nn.Module):
|
630 |
+
def __init__(self, config):
|
631 |
+
super().__init__()
|
632 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
633 |
+
self.activation = nn.Tanh()
|
634 |
+
|
635 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
636 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
637 |
+
# to the first token.
|
638 |
+
first_token_tensor = hidden_states[:, 0]
|
639 |
+
pooled_output = self.dense(first_token_tensor)
|
640 |
+
pooled_output = self.activation(pooled_output)
|
641 |
+
return pooled_output
|
642 |
+
|
643 |
+
|
644 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nezha
|
645 |
+
class NezhaPredictionHeadTransform(nn.Module):
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__()
|
648 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
649 |
+
if isinstance(config.hidden_act, str):
|
650 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
651 |
+
else:
|
652 |
+
self.transform_act_fn = config.hidden_act
|
653 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
654 |
+
|
655 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
656 |
+
hidden_states = self.dense(hidden_states)
|
657 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
658 |
+
hidden_states = self.LayerNorm(hidden_states)
|
659 |
+
return hidden_states
|
660 |
+
|
661 |
+
|
662 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nezha
|
663 |
+
class NezhaLMPredictionHead(nn.Module):
|
664 |
+
def __init__(self, config):
|
665 |
+
super().__init__()
|
666 |
+
self.transform = NezhaPredictionHeadTransform(config)
|
667 |
+
|
668 |
+
# The output weights are the same as the input embeddings, but there is
|
669 |
+
# an output-only bias for each token.
|
670 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
671 |
+
|
672 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
673 |
+
|
674 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
675 |
+
self.decoder.bias = self.bias
|
676 |
+
|
677 |
+
def forward(self, hidden_states):
|
678 |
+
hidden_states = self.transform(hidden_states)
|
679 |
+
hidden_states = self.decoder(hidden_states)
|
680 |
+
return hidden_states
|
681 |
+
|
682 |
+
|
683 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nezha
|
684 |
+
class NezhaOnlyMLMHead(nn.Module):
|
685 |
+
def __init__(self, config):
|
686 |
+
super().__init__()
|
687 |
+
self.predictions = NezhaLMPredictionHead(config)
|
688 |
+
|
689 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
690 |
+
prediction_scores = self.predictions(sequence_output)
|
691 |
+
return prediction_scores
|
692 |
+
|
693 |
+
|
694 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Nezha
|
695 |
+
class NezhaOnlyNSPHead(nn.Module):
|
696 |
+
def __init__(self, config):
|
697 |
+
super().__init__()
|
698 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
699 |
+
|
700 |
+
def forward(self, pooled_output):
|
701 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
702 |
+
return seq_relationship_score
|
703 |
+
|
704 |
+
|
705 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Nezha
|
706 |
+
class NezhaPreTrainingHeads(nn.Module):
|
707 |
+
def __init__(self, config):
|
708 |
+
super().__init__()
|
709 |
+
self.predictions = NezhaLMPredictionHead(config)
|
710 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
711 |
+
|
712 |
+
def forward(self, sequence_output, pooled_output):
|
713 |
+
prediction_scores = self.predictions(sequence_output)
|
714 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
715 |
+
return prediction_scores, seq_relationship_score
|
716 |
+
|
717 |
+
|
718 |
+
class NezhaPreTrainedModel(PreTrainedModel):
|
719 |
+
"""
|
720 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
721 |
+
models.
|
722 |
+
"""
|
723 |
+
|
724 |
+
config_class = NezhaConfig
|
725 |
+
load_tf_weights = load_tf_weights_in_nezha
|
726 |
+
base_model_prefix = "nezha"
|
727 |
+
supports_gradient_checkpointing = True
|
728 |
+
|
729 |
+
def _init_weights(self, module):
|
730 |
+
"""Initialize the weights"""
|
731 |
+
if isinstance(module, nn.Linear):
|
732 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
733 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
734 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
735 |
+
if module.bias is not None:
|
736 |
+
module.bias.data.zero_()
|
737 |
+
elif isinstance(module, nn.Embedding):
|
738 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
739 |
+
if module.padding_idx is not None:
|
740 |
+
module.weight.data[module.padding_idx].zero_()
|
741 |
+
elif isinstance(module, nn.LayerNorm):
|
742 |
+
module.bias.data.zero_()
|
743 |
+
module.weight.data.fill_(1.0)
|
744 |
+
|
745 |
+
|
746 |
+
@dataclass
|
747 |
+
class NezhaForPreTrainingOutput(ModelOutput):
|
748 |
+
"""
|
749 |
+
Output type of [`NezhaForPreTraining`].
|
750 |
+
|
751 |
+
Args:
|
752 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
753 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
754 |
+
(classification) loss.
|
755 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
756 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
757 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
758 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
759 |
+
before SoftMax).
|
760 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
761 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
762 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
763 |
+
|
764 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
765 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
766 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
767 |
+
sequence_length)`.
|
768 |
+
|
769 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
770 |
+
heads.
|
771 |
+
"""
|
772 |
+
|
773 |
+
loss: Optional[torch.FloatTensor] = None
|
774 |
+
prediction_logits: torch.FloatTensor = None
|
775 |
+
seq_relationship_logits: torch.FloatTensor = None
|
776 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
777 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
778 |
+
|
779 |
+
|
780 |
+
NEZHA_START_DOCSTRING = r"""
|
781 |
+
|
782 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
783 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
784 |
+
etc.)
|
785 |
+
|
786 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
787 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
788 |
+
and behavior.
|
789 |
+
|
790 |
+
Parameters:
|
791 |
+
config ([`NezhaConfig`]): Model configuration class with all the parameters of the model.
|
792 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
793 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
794 |
+
"""
|
795 |
+
|
796 |
+
NEZHA_INPUTS_DOCSTRING = r"""
|
797 |
+
Args:
|
798 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
799 |
+
Indices of input sequence tokens in the vocabulary.
|
800 |
+
|
801 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
802 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
803 |
+
|
804 |
+
[What are input IDs?](../glossary#input-ids)
|
805 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
806 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
807 |
+
|
808 |
+
- 1 for tokens that are **not masked**,
|
809 |
+
- 0 for tokens that are **masked**.
|
810 |
+
|
811 |
+
[What are attention masks?](../glossary#attention-mask)
|
812 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
813 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
814 |
+
1]`:
|
815 |
+
|
816 |
+
- 0 corresponds to a *sentence A* token,
|
817 |
+
- 1 corresponds to a *sentence B* token.
|
818 |
+
|
819 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
820 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
821 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
822 |
+
|
823 |
+
- 1 indicates the head is **not masked**,
|
824 |
+
- 0 indicates the head is **masked**.
|
825 |
+
|
826 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
827 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
828 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
829 |
+
model's internal embedding lookup matrix.
|
830 |
+
output_attentions (`bool`, *optional*):
|
831 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
832 |
+
tensors for more detail.
|
833 |
+
output_hidden_states (`bool`, *optional*):
|
834 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
835 |
+
more detail.
|
836 |
+
return_dict (`bool`, *optional*):
|
837 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
838 |
+
"""
|
839 |
+
|
840 |
+
|
841 |
+
@add_start_docstrings(
|
842 |
+
"The bare Nezha Model transformer outputting raw hidden-states without any specific head on top.",
|
843 |
+
NEZHA_START_DOCSTRING,
|
844 |
+
)
|
845 |
+
class NezhaModel(NezhaPreTrainedModel):
|
846 |
+
"""
|
847 |
+
|
848 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
849 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
850 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
851 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
852 |
+
|
853 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
854 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
855 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
856 |
+
"""
|
857 |
+
|
858 |
+
def __init__(self, config, add_pooling_layer=True):
|
859 |
+
super().__init__(config)
|
860 |
+
self.config = config
|
861 |
+
|
862 |
+
self.embeddings = NezhaEmbeddings(config)
|
863 |
+
self.encoder = NezhaEncoder(config)
|
864 |
+
|
865 |
+
self.pooler = NezhaPooler(config) if add_pooling_layer else None
|
866 |
+
|
867 |
+
# Initialize weights and apply final processing
|
868 |
+
self.post_init()
|
869 |
+
|
870 |
+
def get_input_embeddings(self):
|
871 |
+
return self.embeddings.word_embeddings
|
872 |
+
|
873 |
+
def set_input_embeddings(self, value):
|
874 |
+
self.embeddings.word_embeddings = value
|
875 |
+
|
876 |
+
def _prune_heads(self, heads_to_prune):
|
877 |
+
"""
|
878 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
879 |
+
class PreTrainedModel
|
880 |
+
"""
|
881 |
+
for layer, heads in heads_to_prune.items():
|
882 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
883 |
+
|
884 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
885 |
+
@add_code_sample_docstrings(
|
886 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
887 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
888 |
+
config_class=_CONFIG_FOR_DOC,
|
889 |
+
)
|
890 |
+
def forward(
|
891 |
+
self,
|
892 |
+
input_ids: Optional[torch.Tensor] = None,
|
893 |
+
attention_mask: Optional[torch.Tensor] = None,
|
894 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
895 |
+
head_mask: Optional[torch.Tensor] = None,
|
896 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
897 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
898 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
899 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
900 |
+
use_cache: Optional[bool] = None,
|
901 |
+
output_attentions: Optional[bool] = None,
|
902 |
+
output_hidden_states: Optional[bool] = None,
|
903 |
+
return_dict: Optional[bool] = None,
|
904 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
905 |
+
r"""
|
906 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
907 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
908 |
+
the model is configured as a decoder.
|
909 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
910 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
911 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
912 |
+
|
913 |
+
- 1 for tokens that are **not masked**,
|
914 |
+
- 0 for tokens that are **masked**.
|
915 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
916 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
917 |
+
|
918 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
919 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
920 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
921 |
+
use_cache (`bool`, *optional*):
|
922 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
923 |
+
`past_key_values`).
|
924 |
+
"""
|
925 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
926 |
+
output_hidden_states = (
|
927 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
928 |
+
)
|
929 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
930 |
+
|
931 |
+
if self.config.is_decoder:
|
932 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
933 |
+
else:
|
934 |
+
use_cache = False
|
935 |
+
|
936 |
+
if input_ids is not None and inputs_embeds is not None:
|
937 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
938 |
+
elif input_ids is not None:
|
939 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
940 |
+
input_shape = input_ids.size()
|
941 |
+
elif inputs_embeds is not None:
|
942 |
+
input_shape = inputs_embeds.size()[:-1]
|
943 |
+
else:
|
944 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
945 |
+
|
946 |
+
batch_size, seq_length = input_shape
|
947 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
948 |
+
|
949 |
+
# past_key_values_length
|
950 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
951 |
+
|
952 |
+
if attention_mask is None:
|
953 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
954 |
+
|
955 |
+
if token_type_ids is None:
|
956 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
957 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
958 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
959 |
+
token_type_ids = buffered_token_type_ids_expanded
|
960 |
+
else:
|
961 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
962 |
+
|
963 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
964 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
965 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
966 |
+
|
967 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
968 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
969 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
970 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
971 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
972 |
+
if encoder_attention_mask is None:
|
973 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
974 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
975 |
+
else:
|
976 |
+
encoder_extended_attention_mask = None
|
977 |
+
|
978 |
+
# Prepare head mask if needed
|
979 |
+
# 1.0 in head_mask indicate we keep the head
|
980 |
+
# attention_probs has shape bsz x n_heads x N x N
|
981 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
982 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
983 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
984 |
+
|
985 |
+
embedding_output = self.embeddings(
|
986 |
+
input_ids=input_ids,
|
987 |
+
token_type_ids=token_type_ids,
|
988 |
+
inputs_embeds=inputs_embeds,
|
989 |
+
)
|
990 |
+
encoder_outputs = self.encoder(
|
991 |
+
embedding_output,
|
992 |
+
attention_mask=extended_attention_mask,
|
993 |
+
head_mask=head_mask,
|
994 |
+
encoder_hidden_states=encoder_hidden_states,
|
995 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
996 |
+
past_key_values=past_key_values,
|
997 |
+
use_cache=use_cache,
|
998 |
+
output_attentions=output_attentions,
|
999 |
+
output_hidden_states=output_hidden_states,
|
1000 |
+
return_dict=return_dict,
|
1001 |
+
)
|
1002 |
+
sequence_output = encoder_outputs[0]
|
1003 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1004 |
+
|
1005 |
+
if not return_dict:
|
1006 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1007 |
+
|
1008 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1009 |
+
last_hidden_state=sequence_output,
|
1010 |
+
pooler_output=pooled_output,
|
1011 |
+
past_key_values=encoder_outputs.past_key_values,
|
1012 |
+
hidden_states=encoder_outputs.hidden_states,
|
1013 |
+
attentions=encoder_outputs.attentions,
|
1014 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
|
1018 |
+
@add_start_docstrings(
|
1019 |
+
"""
|
1020 |
+
Nezha Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1021 |
+
sentence prediction (classification)` head.
|
1022 |
+
""",
|
1023 |
+
NEZHA_START_DOCSTRING,
|
1024 |
+
)
|
1025 |
+
class NezhaForPreTraining(NezhaPreTrainedModel):
|
1026 |
+
_tied_weights_keys = ["cls.predictions.decoder"]
|
1027 |
+
|
1028 |
+
def __init__(self, config):
|
1029 |
+
super().__init__(config)
|
1030 |
+
|
1031 |
+
self.nezha = NezhaModel(config)
|
1032 |
+
self.cls = NezhaPreTrainingHeads(config)
|
1033 |
+
|
1034 |
+
# Initialize weights and apply final processing
|
1035 |
+
self.post_init()
|
1036 |
+
|
1037 |
+
def get_output_embeddings(self):
|
1038 |
+
return self.cls.predictions.decoder
|
1039 |
+
|
1040 |
+
def set_output_embeddings(self, new_embeddings):
|
1041 |
+
self.cls.predictions.decoder = new_embeddings
|
1042 |
+
|
1043 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1044 |
+
@replace_return_docstrings(output_type=NezhaForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1045 |
+
def forward(
|
1046 |
+
self,
|
1047 |
+
input_ids: Optional[torch.Tensor] = None,
|
1048 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1049 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1050 |
+
head_mask: Optional[torch.Tensor] = None,
|
1051 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1052 |
+
labels: Optional[torch.Tensor] = None,
|
1053 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
1054 |
+
output_attentions: Optional[bool] = None,
|
1055 |
+
output_hidden_states: Optional[bool] = None,
|
1056 |
+
return_dict: Optional[bool] = None,
|
1057 |
+
) -> Union[Tuple[torch.Tensor], NezhaForPreTrainingOutput]:
|
1058 |
+
r"""
|
1059 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1060 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1061 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
1062 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1063 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1064 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
1065 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1066 |
+
|
1067 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1068 |
+
- 1 indicates sequence B is a random sequence.
|
1069 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1070 |
+
Used to hide legacy arguments that have been deprecated.
|
1071 |
+
|
1072 |
+
Returns:
|
1073 |
+
|
1074 |
+
Example:
|
1075 |
+
|
1076 |
+
```python
|
1077 |
+
>>> from transformers import AutoTokenizer, NezhaForPreTraining
|
1078 |
+
>>> import torch
|
1079 |
+
|
1080 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
|
1081 |
+
>>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base")
|
1082 |
+
|
1083 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1084 |
+
>>> outputs = model(**inputs)
|
1085 |
+
|
1086 |
+
>>> prediction_logits = outputs.prediction_logits
|
1087 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1088 |
+
```
|
1089 |
+
"""
|
1090 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1091 |
+
|
1092 |
+
outputs = self.nezha(
|
1093 |
+
input_ids,
|
1094 |
+
attention_mask=attention_mask,
|
1095 |
+
token_type_ids=token_type_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
inputs_embeds=inputs_embeds,
|
1098 |
+
output_attentions=output_attentions,
|
1099 |
+
output_hidden_states=output_hidden_states,
|
1100 |
+
return_dict=return_dict,
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
sequence_output, pooled_output = outputs[:2]
|
1104 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1105 |
+
|
1106 |
+
total_loss = None
|
1107 |
+
if labels is not None and next_sentence_label is not None:
|
1108 |
+
loss_fct = CrossEntropyLoss()
|
1109 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1110 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1111 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1112 |
+
|
1113 |
+
if not return_dict:
|
1114 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1115 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1116 |
+
|
1117 |
+
return NezhaForPreTrainingOutput(
|
1118 |
+
loss=total_loss,
|
1119 |
+
prediction_logits=prediction_scores,
|
1120 |
+
seq_relationship_logits=seq_relationship_score,
|
1121 |
+
hidden_states=outputs.hidden_states,
|
1122 |
+
attentions=outputs.attentions,
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings("""Nezha Model with a `language modeling` head on top.""", NEZHA_START_DOCSTRING)
|
1127 |
+
class NezhaForMaskedLM(NezhaPreTrainedModel):
|
1128 |
+
_tied_weights_keys = ["cls.predictions.decoder"]
|
1129 |
+
|
1130 |
+
def __init__(self, config):
|
1131 |
+
super().__init__(config)
|
1132 |
+
|
1133 |
+
if config.is_decoder:
|
1134 |
+
logger.warning(
|
1135 |
+
"If you want to use `NezhaForMaskedLM` make sure `config.is_decoder=False` for "
|
1136 |
+
"bi-directional self-attention."
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
self.nezha = NezhaModel(config, add_pooling_layer=False)
|
1140 |
+
self.cls = NezhaOnlyMLMHead(config)
|
1141 |
+
|
1142 |
+
# Initialize weights and apply final processing
|
1143 |
+
self.post_init()
|
1144 |
+
|
1145 |
+
def get_output_embeddings(self):
|
1146 |
+
return self.cls.predictions.decoder
|
1147 |
+
|
1148 |
+
def set_output_embeddings(self, new_embeddings):
|
1149 |
+
self.cls.predictions.decoder = new_embeddings
|
1150 |
+
|
1151 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1152 |
+
@add_code_sample_docstrings(
|
1153 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1154 |
+
output_type=MaskedLMOutput,
|
1155 |
+
config_class=_CONFIG_FOR_DOC,
|
1156 |
+
)
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
input_ids: Optional[torch.Tensor] = None,
|
1160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1161 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1162 |
+
head_mask: Optional[torch.Tensor] = None,
|
1163 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1164 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1165 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
labels: Optional[torch.Tensor] = None,
|
1167 |
+
output_attentions: Optional[bool] = None,
|
1168 |
+
output_hidden_states: Optional[bool] = None,
|
1169 |
+
return_dict: Optional[bool] = None,
|
1170 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1171 |
+
r"""
|
1172 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1173 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1174 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1175 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1176 |
+
"""
|
1177 |
+
|
1178 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1179 |
+
|
1180 |
+
outputs = self.nezha(
|
1181 |
+
input_ids,
|
1182 |
+
attention_mask=attention_mask,
|
1183 |
+
token_type_ids=token_type_ids,
|
1184 |
+
head_mask=head_mask,
|
1185 |
+
inputs_embeds=inputs_embeds,
|
1186 |
+
encoder_hidden_states=encoder_hidden_states,
|
1187 |
+
encoder_attention_mask=encoder_attention_mask,
|
1188 |
+
output_attentions=output_attentions,
|
1189 |
+
output_hidden_states=output_hidden_states,
|
1190 |
+
return_dict=return_dict,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
sequence_output = outputs[0]
|
1194 |
+
prediction_scores = self.cls(sequence_output)
|
1195 |
+
|
1196 |
+
masked_lm_loss = None
|
1197 |
+
if labels is not None:
|
1198 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1199 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1200 |
+
|
1201 |
+
if not return_dict:
|
1202 |
+
output = (prediction_scores,) + outputs[2:]
|
1203 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1204 |
+
|
1205 |
+
return MaskedLMOutput(
|
1206 |
+
loss=masked_lm_loss,
|
1207 |
+
logits=prediction_scores,
|
1208 |
+
hidden_states=outputs.hidden_states,
|
1209 |
+
attentions=outputs.attentions,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1213 |
+
input_shape = input_ids.shape
|
1214 |
+
effective_batch_size = input_shape[0]
|
1215 |
+
|
1216 |
+
# add a dummy token
|
1217 |
+
if self.config.pad_token_id is None:
|
1218 |
+
raise ValueError("The PAD token should be defined for generation")
|
1219 |
+
|
1220 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1221 |
+
dummy_token = torch.full(
|
1222 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1223 |
+
)
|
1224 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1225 |
+
|
1226 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1227 |
+
|
1228 |
+
|
1229 |
+
@add_start_docstrings(
|
1230 |
+
"""Nezha Model with a `next sentence prediction (classification)` head on top.""",
|
1231 |
+
NEZHA_START_DOCSTRING,
|
1232 |
+
)
|
1233 |
+
class NezhaForNextSentencePrediction(NezhaPreTrainedModel):
|
1234 |
+
def __init__(self, config):
|
1235 |
+
super().__init__(config)
|
1236 |
+
|
1237 |
+
self.nezha = NezhaModel(config)
|
1238 |
+
self.cls = NezhaOnlyNSPHead(config)
|
1239 |
+
|
1240 |
+
# Initialize weights and apply final processing
|
1241 |
+
self.post_init()
|
1242 |
+
|
1243 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1244 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1245 |
+
def forward(
|
1246 |
+
self,
|
1247 |
+
input_ids: Optional[torch.Tensor] = None,
|
1248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1249 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1250 |
+
head_mask: Optional[torch.Tensor] = None,
|
1251 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1252 |
+
labels: Optional[torch.Tensor] = None,
|
1253 |
+
output_attentions: Optional[bool] = None,
|
1254 |
+
output_hidden_states: Optional[bool] = None,
|
1255 |
+
return_dict: Optional[bool] = None,
|
1256 |
+
**kwargs,
|
1257 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
1258 |
+
r"""
|
1259 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1260 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1261 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1262 |
+
|
1263 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1264 |
+
- 1 indicates sequence B is a random sequence.
|
1265 |
+
|
1266 |
+
Returns:
|
1267 |
+
|
1268 |
+
Example:
|
1269 |
+
|
1270 |
+
```python
|
1271 |
+
>>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction
|
1272 |
+
>>> import torch
|
1273 |
+
|
1274 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
|
1275 |
+
>>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base")
|
1276 |
+
|
1277 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1278 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1279 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1280 |
+
|
1281 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1282 |
+
>>> logits = outputs.logits
|
1283 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1284 |
+
```
|
1285 |
+
"""
|
1286 |
+
|
1287 |
+
if "next_sentence_label" in kwargs:
|
1288 |
+
warnings.warn(
|
1289 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1290 |
+
" `labels` instead.",
|
1291 |
+
FutureWarning,
|
1292 |
+
)
|
1293 |
+
labels = kwargs.pop("next_sentence_label")
|
1294 |
+
|
1295 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1296 |
+
|
1297 |
+
outputs = self.nezha(
|
1298 |
+
input_ids,
|
1299 |
+
attention_mask=attention_mask,
|
1300 |
+
token_type_ids=token_type_ids,
|
1301 |
+
head_mask=head_mask,
|
1302 |
+
inputs_embeds=inputs_embeds,
|
1303 |
+
output_attentions=output_attentions,
|
1304 |
+
output_hidden_states=output_hidden_states,
|
1305 |
+
return_dict=return_dict,
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
pooled_output = outputs[1]
|
1309 |
+
|
1310 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1311 |
+
|
1312 |
+
next_sentence_loss = None
|
1313 |
+
if labels is not None:
|
1314 |
+
loss_fct = CrossEntropyLoss()
|
1315 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1316 |
+
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1319 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1320 |
+
|
1321 |
+
return NextSentencePredictorOutput(
|
1322 |
+
loss=next_sentence_loss,
|
1323 |
+
logits=seq_relationship_scores,
|
1324 |
+
hidden_states=outputs.hidden_states,
|
1325 |
+
attentions=outputs.attentions,
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
|
1329 |
+
@add_start_docstrings(
|
1330 |
+
"""
|
1331 |
+
Nezha Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1332 |
+
output) e.g. for GLUE tasks.
|
1333 |
+
""",
|
1334 |
+
NEZHA_START_DOCSTRING,
|
1335 |
+
)
|
1336 |
+
class NezhaForSequenceClassification(NezhaPreTrainedModel):
|
1337 |
+
def __init__(self, config):
|
1338 |
+
super().__init__(config)
|
1339 |
+
self.num_labels = config.num_labels
|
1340 |
+
self.config = config
|
1341 |
+
|
1342 |
+
self.nezha = NezhaModel(config)
|
1343 |
+
classifier_dropout = (
|
1344 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1345 |
+
)
|
1346 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1347 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1348 |
+
|
1349 |
+
# Initialize weights and apply final processing
|
1350 |
+
self.post_init()
|
1351 |
+
|
1352 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1353 |
+
@add_code_sample_docstrings(
|
1354 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1355 |
+
output_type=SequenceClassifierOutput,
|
1356 |
+
config_class=_CONFIG_FOR_DOC,
|
1357 |
+
)
|
1358 |
+
def forward(
|
1359 |
+
self,
|
1360 |
+
input_ids: Optional[torch.Tensor] = None,
|
1361 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1362 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1363 |
+
head_mask: Optional[torch.Tensor] = None,
|
1364 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1365 |
+
labels: Optional[torch.Tensor] = None,
|
1366 |
+
output_attentions: Optional[bool] = None,
|
1367 |
+
output_hidden_states: Optional[bool] = None,
|
1368 |
+
return_dict: Optional[bool] = None,
|
1369 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1370 |
+
r"""
|
1371 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1372 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1373 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1374 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1375 |
+
"""
|
1376 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1377 |
+
|
1378 |
+
outputs = self.nezha(
|
1379 |
+
input_ids,
|
1380 |
+
attention_mask=attention_mask,
|
1381 |
+
token_type_ids=token_type_ids,
|
1382 |
+
head_mask=head_mask,
|
1383 |
+
inputs_embeds=inputs_embeds,
|
1384 |
+
output_attentions=output_attentions,
|
1385 |
+
output_hidden_states=output_hidden_states,
|
1386 |
+
return_dict=return_dict,
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
pooled_output = outputs[1]
|
1390 |
+
|
1391 |
+
pooled_output = self.dropout(pooled_output)
|
1392 |
+
logits = self.classifier(pooled_output)
|
1393 |
+
|
1394 |
+
loss = None
|
1395 |
+
if labels is not None:
|
1396 |
+
if self.config.problem_type is None:
|
1397 |
+
if self.num_labels == 1:
|
1398 |
+
self.config.problem_type = "regression"
|
1399 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1400 |
+
self.config.problem_type = "single_label_classification"
|
1401 |
+
else:
|
1402 |
+
self.config.problem_type = "multi_label_classification"
|
1403 |
+
|
1404 |
+
if self.config.problem_type == "regression":
|
1405 |
+
loss_fct = MSELoss()
|
1406 |
+
if self.num_labels == 1:
|
1407 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1408 |
+
else:
|
1409 |
+
loss = loss_fct(logits, labels)
|
1410 |
+
elif self.config.problem_type == "single_label_classification":
|
1411 |
+
loss_fct = CrossEntropyLoss()
|
1412 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1413 |
+
elif self.config.problem_type == "multi_label_classification":
|
1414 |
+
loss_fct = BCEWithLogitsLoss()
|
1415 |
+
loss = loss_fct(logits, labels)
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (logits,) + outputs[2:]
|
1418 |
+
return ((loss,) + output) if loss is not None else output
|
1419 |
+
|
1420 |
+
return SequenceClassifierOutput(
|
1421 |
+
loss=loss,
|
1422 |
+
logits=logits,
|
1423 |
+
hidden_states=outputs.hidden_states,
|
1424 |
+
attentions=outputs.attentions,
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
|
1428 |
+
@add_start_docstrings(
|
1429 |
+
"""
|
1430 |
+
Nezha Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1431 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1432 |
+
""",
|
1433 |
+
NEZHA_START_DOCSTRING,
|
1434 |
+
)
|
1435 |
+
class NezhaForMultipleChoice(NezhaPreTrainedModel):
|
1436 |
+
def __init__(self, config):
|
1437 |
+
super().__init__(config)
|
1438 |
+
|
1439 |
+
self.nezha = NezhaModel(config)
|
1440 |
+
classifier_dropout = (
|
1441 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1442 |
+
)
|
1443 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1444 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1445 |
+
|
1446 |
+
# Initialize weights and apply final processing
|
1447 |
+
self.post_init()
|
1448 |
+
|
1449 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1450 |
+
@add_code_sample_docstrings(
|
1451 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1452 |
+
output_type=MultipleChoiceModelOutput,
|
1453 |
+
config_class=_CONFIG_FOR_DOC,
|
1454 |
+
)
|
1455 |
+
def forward(
|
1456 |
+
self,
|
1457 |
+
input_ids: Optional[torch.Tensor] = None,
|
1458 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1459 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1460 |
+
head_mask: Optional[torch.Tensor] = None,
|
1461 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1462 |
+
labels: Optional[torch.Tensor] = None,
|
1463 |
+
output_attentions: Optional[bool] = None,
|
1464 |
+
output_hidden_states: Optional[bool] = None,
|
1465 |
+
return_dict: Optional[bool] = None,
|
1466 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1467 |
+
r"""
|
1468 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1469 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1470 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1471 |
+
`input_ids` above)
|
1472 |
+
"""
|
1473 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1474 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1475 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1476 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1477 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1478 |
+
inputs_embeds = (
|
1479 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1480 |
+
if inputs_embeds is not None
|
1481 |
+
else None
|
1482 |
+
)
|
1483 |
+
|
1484 |
+
outputs = self.nezha(
|
1485 |
+
input_ids,
|
1486 |
+
attention_mask=attention_mask,
|
1487 |
+
token_type_ids=token_type_ids,
|
1488 |
+
head_mask=head_mask,
|
1489 |
+
inputs_embeds=inputs_embeds,
|
1490 |
+
output_attentions=output_attentions,
|
1491 |
+
output_hidden_states=output_hidden_states,
|
1492 |
+
return_dict=return_dict,
|
1493 |
+
)
|
1494 |
+
|
1495 |
+
pooled_output = outputs[1]
|
1496 |
+
print(pooled_output.shape)
|
1497 |
+
pooled_output = self.dropout(pooled_output)
|
1498 |
+
logits = self.classifier(pooled_output)
|
1499 |
+
print(logits.shape)
|
1500 |
+
print(num_choices)
|
1501 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1502 |
+
|
1503 |
+
loss = None
|
1504 |
+
if labels is not None:
|
1505 |
+
loss_fct = CrossEntropyLoss()
|
1506 |
+
loss = loss_fct(reshaped_logits, labels)
|
1507 |
+
|
1508 |
+
if not return_dict:
|
1509 |
+
output = (reshaped_logits,) + outputs[2:]
|
1510 |
+
return ((loss,) + output) if loss is not None else output
|
1511 |
+
|
1512 |
+
return MultipleChoiceModelOutput(
|
1513 |
+
loss=loss,
|
1514 |
+
logits=reshaped_logits,
|
1515 |
+
hidden_states=outputs.hidden_states,
|
1516 |
+
attentions=outputs.attentions,
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
|
1520 |
+
@add_start_docstrings(
|
1521 |
+
"""
|
1522 |
+
Nezha Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1523 |
+
Named-Entity-Recognition (NER) tasks.
|
1524 |
+
""",
|
1525 |
+
NEZHA_START_DOCSTRING,
|
1526 |
+
)
|
1527 |
+
class NezhaForTokenClassification(NezhaPreTrainedModel):
|
1528 |
+
def __init__(self, config):
|
1529 |
+
super().__init__(config)
|
1530 |
+
self.num_labels = config.num_labels
|
1531 |
+
|
1532 |
+
self.nezha = NezhaModel(config, add_pooling_layer=False)
|
1533 |
+
classifier_dropout = (
|
1534 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1535 |
+
)
|
1536 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1537 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1538 |
+
|
1539 |
+
# Initialize weights and apply final processing
|
1540 |
+
self.post_init()
|
1541 |
+
|
1542 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1543 |
+
@add_code_sample_docstrings(
|
1544 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1545 |
+
output_type=TokenClassifierOutput,
|
1546 |
+
config_class=_CONFIG_FOR_DOC,
|
1547 |
+
)
|
1548 |
+
def forward(
|
1549 |
+
self,
|
1550 |
+
input_ids: Optional[torch.Tensor] = None,
|
1551 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1552 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1553 |
+
head_mask: Optional[torch.Tensor] = None,
|
1554 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1555 |
+
labels: Optional[torch.Tensor] = None,
|
1556 |
+
output_attentions: Optional[bool] = None,
|
1557 |
+
output_hidden_states: Optional[bool] = None,
|
1558 |
+
return_dict: Optional[bool] = None,
|
1559 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1560 |
+
r"""
|
1561 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1562 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1563 |
+
"""
|
1564 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1565 |
+
|
1566 |
+
outputs = self.nezha(
|
1567 |
+
input_ids,
|
1568 |
+
attention_mask=attention_mask,
|
1569 |
+
token_type_ids=token_type_ids,
|
1570 |
+
head_mask=head_mask,
|
1571 |
+
inputs_embeds=inputs_embeds,
|
1572 |
+
output_attentions=output_attentions,
|
1573 |
+
output_hidden_states=output_hidden_states,
|
1574 |
+
return_dict=return_dict,
|
1575 |
+
)
|
1576 |
+
|
1577 |
+
sequence_output = outputs[0]
|
1578 |
+
|
1579 |
+
sequence_output = self.dropout(sequence_output)
|
1580 |
+
logits = self.classifier(sequence_output)
|
1581 |
+
|
1582 |
+
loss = None
|
1583 |
+
if labels is not None:
|
1584 |
+
loss_fct = CrossEntropyLoss()
|
1585 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1586 |
+
|
1587 |
+
if not return_dict:
|
1588 |
+
output = (logits,) + outputs[2:]
|
1589 |
+
return ((loss,) + output) if loss is not None else output
|
1590 |
+
|
1591 |
+
return TokenClassifierOutput(
|
1592 |
+
loss=loss,
|
1593 |
+
logits=logits,
|
1594 |
+
hidden_states=outputs.hidden_states,
|
1595 |
+
attentions=outputs.attentions,
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
|
1599 |
+
@add_start_docstrings(
|
1600 |
+
"""
|
1601 |
+
Nezha Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1602 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1603 |
+
""",
|
1604 |
+
NEZHA_START_DOCSTRING,
|
1605 |
+
)
|
1606 |
+
class NezhaForQuestionAnswering(NezhaPreTrainedModel):
|
1607 |
+
def __init__(self, config):
|
1608 |
+
super().__init__(config)
|
1609 |
+
self.num_labels = config.num_labels
|
1610 |
+
|
1611 |
+
self.nezha = NezhaModel(config, add_pooling_layer=False)
|
1612 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1613 |
+
|
1614 |
+
# Initialize weights and apply final processing
|
1615 |
+
self.post_init()
|
1616 |
+
|
1617 |
+
@add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1618 |
+
@add_code_sample_docstrings(
|
1619 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1620 |
+
output_type=QuestionAnsweringModelOutput,
|
1621 |
+
config_class=_CONFIG_FOR_DOC,
|
1622 |
+
)
|
1623 |
+
def forward(
|
1624 |
+
self,
|
1625 |
+
input_ids: Optional[torch.Tensor] = None,
|
1626 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1627 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1628 |
+
head_mask: Optional[torch.Tensor] = None,
|
1629 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1630 |
+
start_positions: Optional[torch.Tensor] = None,
|
1631 |
+
end_positions: Optional[torch.Tensor] = None,
|
1632 |
+
output_attentions: Optional[bool] = None,
|
1633 |
+
output_hidden_states: Optional[bool] = None,
|
1634 |
+
return_dict: Optional[bool] = None,
|
1635 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1636 |
+
r"""
|
1637 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1638 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1639 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1640 |
+
are not taken into account for computing the loss.
|
1641 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1642 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1643 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1644 |
+
are not taken into account for computing the loss.
|
1645 |
+
"""
|
1646 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1647 |
+
|
1648 |
+
outputs = self.nezha(
|
1649 |
+
input_ids,
|
1650 |
+
attention_mask=attention_mask,
|
1651 |
+
token_type_ids=token_type_ids,
|
1652 |
+
head_mask=head_mask,
|
1653 |
+
inputs_embeds=inputs_embeds,
|
1654 |
+
output_attentions=output_attentions,
|
1655 |
+
output_hidden_states=output_hidden_states,
|
1656 |
+
return_dict=return_dict,
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
sequence_output = outputs[0]
|
1660 |
+
|
1661 |
+
logits = self.qa_outputs(sequence_output)
|
1662 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1663 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1664 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1665 |
+
|
1666 |
+
total_loss = None
|
1667 |
+
if start_positions is not None and end_positions is not None:
|
1668 |
+
# If we are on multi-GPU, split add a dimension
|
1669 |
+
if len(start_positions.size()) > 1:
|
1670 |
+
start_positions = start_positions.squeeze(-1)
|
1671 |
+
if len(end_positions.size()) > 1:
|
1672 |
+
end_positions = end_positions.squeeze(-1)
|
1673 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1674 |
+
ignored_index = start_logits.size(1)
|
1675 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1676 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1677 |
+
|
1678 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1679 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1680 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1681 |
+
total_loss = (start_loss + end_loss) / 2
|
1682 |
+
|
1683 |
+
if not return_dict:
|
1684 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1685 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1686 |
+
|
1687 |
+
return QuestionAnsweringModelOutput(
|
1688 |
+
loss=total_loss,
|
1689 |
+
start_logits=start_logits,
|
1690 |
+
end_logits=end_logits,
|
1691 |
+
hidden_states=outputs.hidden_states,
|
1692 |
+
attentions=outputs.attentions,
|
1693 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/opt/__init__.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_opt"] = [
|
35 |
+
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"OPTForCausalLM",
|
37 |
+
"OPTModel",
|
38 |
+
"OPTPreTrainedModel",
|
39 |
+
"OPTForSequenceClassification",
|
40 |
+
"OPTForQuestionAnswering",
|
41 |
+
]
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_tf_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
_import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_flax_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
_import_structure["modeling_flax_opt"] = [
|
58 |
+
"FlaxOPTForCausalLM",
|
59 |
+
"FlaxOPTModel",
|
60 |
+
"FlaxOPTPreTrainedModel",
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
if TYPE_CHECKING:
|
65 |
+
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_torch_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
from .modeling_opt import (
|
74 |
+
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
75 |
+
OPTForCausalLM,
|
76 |
+
OPTForQuestionAnswering,
|
77 |
+
OPTForSequenceClassification,
|
78 |
+
OPTModel,
|
79 |
+
OPTPreTrainedModel,
|
80 |
+
)
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_tf_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_flax_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
|
97 |
+
|
98 |
+
else:
|
99 |
+
import sys
|
100 |
+
|
101 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc
ADDED
Binary file (5.39 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (2.58 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|