Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/9.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/9.attention.dense.weight/fp32.pt +3 -0
- lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/output.log +43 -0
- lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/wandb-summary.json +1 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_train.so.8 +3 -0
- venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__init__.py +127 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/configuration_blip.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/convert_blip_original_pytorch_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/modeling_blip.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/modeling_blip_text.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/configuration_blip.py +365 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/convert_blip_original_pytorch_to_hf.py +191 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/image_processing_blip.py +312 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/modeling_blip.py +1433 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/modeling_blip_text.py +945 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/modeling_tf_blip.py +1701 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/modeling_tf_blip_text.py +1122 -0
- venv/lib/python3.10/site-packages/transformers/models/blip/processing_blip.py +150 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py +325 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/feature_extraction_conditional_detr.py +43 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__init__.py +134 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/configuration_funnel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/convert_funnel_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/modeling_funnel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/modeling_tf_funnel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/tokenization_funnel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/tokenization_funnel_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py +166 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py +65 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py +1599 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py +1871 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel.py +534 -0
- venv/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py +200 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__init__.py +80 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/configuration_gpt_neox.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/modeling_gpt_neox.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/tokenization_gpt_neox_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/configuration_gpt_neox.py +179 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py +1426 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py +243 -0
- venv/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py +104 -0
.gitattributes
CHANGED
@@ -154,3 +154,4 @@ venv/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1600 filter=lfs diff
|
|
154 |
venv/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
155 |
venv/lib/python3.10/site-packages/pyarrow/libarrow_dataset.so.1600 filter=lfs diff=lfs merge=lfs -text
|
156 |
venv/lib/python3.10/site-packages/pyarrow/_compute.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
154 |
venv/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
155 |
venv/lib/python3.10/site-packages/pyarrow/libarrow_dataset.so.1600 filter=lfs diff=lfs merge=lfs -text
|
156 |
venv/lib/python3.10/site-packages/pyarrow/_compute.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
157 |
+
venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_train.so.8 filter=lfs diff=lfs merge=lfs -text
|
ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:720c3df14f634d26021cf13036bc0b93057d8d7b12d1c20401f541bbc6f7f4c4
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8e0933f2a678682b6c890451974e29399473898b6196dfb5e9fbd1bde1c05e8
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/9.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa01713ce86d2fdb91f0be217ea01bd94d27db97cb444e7ee2a7c173058cce4
|
3 |
+
size 16778396
|
ckpts/universal/global_step20/zero/9.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d48f8bb33a9f2794437c9843a070066793eed3341e5d3c8fbf3c07c083d1b4a
|
3 |
+
size 16778317
|
lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.0
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716396347
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.0
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/output.log
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-22:16:45:48,596 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-22:16:45:57,099 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-22:16:45:57,100 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-22:16:45:57,100 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000'}
|
6 |
+
2024-05-22:16:45:59,412 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 399, in cached_file
|
9 |
+
resolved_file = hf_hub_download(
|
10 |
+
File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn
|
11 |
+
validate_repo_id(arg_value)
|
12 |
+
File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id
|
13 |
+
raise HFValidationError(
|
14 |
+
huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000'. Use `repo_type` argument if needed.
|
15 |
+
The above exception was the direct cause of the following exception:
|
16 |
+
Traceback (most recent call last):
|
17 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
18 |
+
return _run_code(code, main_globals, None,
|
19 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
20 |
+
exec(code, run_globals)
|
21 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
22 |
+
cli_evaluate()
|
23 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
24 |
+
results = evaluator.simple_evaluate(
|
25 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
26 |
+
return fn(*args, **kwargs)
|
27 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
28 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
29 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
30 |
+
return cls(**args, **args2)
|
31 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
32 |
+
self._get_config(
|
33 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
34 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
35 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
36 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
37 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
38 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
39 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
40 |
+
resolved_config_file = cached_file(
|
41 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 463, in cached_file
|
42 |
+
raise EnvironmentError(
|
43 |
+
OSError: Incorrect path_or_model_id: '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
|
lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.0
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.2.1
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.0
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 11}}
|
venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_train.so.8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0768f3ee319e217e961baa1b4084a7d52900f0881c0364c371308bb1f58a226
|
3 |
+
size 132457288
|
venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/__init__.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_blip": [
|
27 |
+
"BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
28 |
+
"BlipConfig",
|
29 |
+
"BlipTextConfig",
|
30 |
+
"BlipVisionConfig",
|
31 |
+
],
|
32 |
+
"processing_blip": ["BlipProcessor"],
|
33 |
+
}
|
34 |
+
|
35 |
+
try:
|
36 |
+
if not is_vision_available():
|
37 |
+
raise OptionalDependencyNotAvailable()
|
38 |
+
except OptionalDependencyNotAvailable:
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
_import_structure["image_processing_blip"] = ["BlipImageProcessor"]
|
42 |
+
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
_import_structure["modeling_blip"] = [
|
51 |
+
"BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
52 |
+
"BlipModel",
|
53 |
+
"BlipPreTrainedModel",
|
54 |
+
"BlipForConditionalGeneration",
|
55 |
+
"BlipForQuestionAnswering",
|
56 |
+
"BlipVisionModel",
|
57 |
+
"BlipTextModel",
|
58 |
+
"BlipForImageTextRetrieval",
|
59 |
+
]
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_tf_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
_import_structure["modeling_tf_blip"] = [
|
68 |
+
"TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
69 |
+
"TFBlipModel",
|
70 |
+
"TFBlipPreTrainedModel",
|
71 |
+
"TFBlipForConditionalGeneration",
|
72 |
+
"TFBlipForQuestionAnswering",
|
73 |
+
"TFBlipVisionModel",
|
74 |
+
"TFBlipTextModel",
|
75 |
+
"TFBlipForImageTextRetrieval",
|
76 |
+
]
|
77 |
+
|
78 |
+
if TYPE_CHECKING:
|
79 |
+
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
|
80 |
+
from .processing_blip import BlipProcessor
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_vision_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .image_processing_blip import BlipImageProcessor
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_torch_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_blip import (
|
97 |
+
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
98 |
+
BlipForConditionalGeneration,
|
99 |
+
BlipForImageTextRetrieval,
|
100 |
+
BlipForQuestionAnswering,
|
101 |
+
BlipModel,
|
102 |
+
BlipPreTrainedModel,
|
103 |
+
BlipTextModel,
|
104 |
+
BlipVisionModel,
|
105 |
+
)
|
106 |
+
|
107 |
+
try:
|
108 |
+
if not is_tf_available():
|
109 |
+
raise OptionalDependencyNotAvailable()
|
110 |
+
except OptionalDependencyNotAvailable:
|
111 |
+
pass
|
112 |
+
else:
|
113 |
+
from .modeling_tf_blip import (
|
114 |
+
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
115 |
+
TFBlipForConditionalGeneration,
|
116 |
+
TFBlipForImageTextRetrieval,
|
117 |
+
TFBlipForQuestionAnswering,
|
118 |
+
TFBlipModel,
|
119 |
+
TFBlipPreTrainedModel,
|
120 |
+
TFBlipTextModel,
|
121 |
+
TFBlipVisionModel,
|
122 |
+
)
|
123 |
+
|
124 |
+
else:
|
125 |
+
import sys
|
126 |
+
|
127 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.89 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/configuration_blip.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/convert_blip_original_pytorch_to_hf.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/modeling_blip.cpython-310.pyc
ADDED
Binary file (48.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/__pycache__/modeling_blip_text.cpython-310.pyc
ADDED
Binary file (27.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/blip/configuration_blip.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Blip model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class BlipTextConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
|
33 |
+
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
34 |
+
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
|
35 |
+
architectures](https://huggingface.co/Salesforce/blip-vqa-base).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 30524):
|
43 |
+
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
|
44 |
+
the `inputs_ids` passed when calling [`BlipModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
encoder_hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the encoder layers from the vision model.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
56 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
57 |
+
just in case (e.g., 512 or 1024 or 2048).
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
59 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
60 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
61 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
62 |
+
The epsilon used by the layer normalization layers.
|
63 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio for the attention probabilities.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 30522):
|
70 |
+
The id of the `beginning-of-sequence` token.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
72 |
+
The id of the `end-of-sequence` token.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
74 |
+
The id of the `padding` token.
|
75 |
+
sep_token_id (`int`, *optional*, defaults to 102):
|
76 |
+
The id of the `separator` token.
|
77 |
+
is_decoder (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether the model is used as a decoder.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
81 |
+
label_smoothing (float, *optional*):
|
82 |
+
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
83 |
+
become a mixture of the original ground truth and a uniform distribution as described in
|
84 |
+
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> from transformers import BlipTextConfig, BlipTextModel
|
90 |
+
|
91 |
+
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
|
92 |
+
>>> configuration = BlipTextConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
95 |
+
>>> model = BlipTextModel(configuration)
|
96 |
+
|
97 |
+
>>> # Accessing the model configuration
|
98 |
+
>>> configuration = model.config
|
99 |
+
```"""
|
100 |
+
|
101 |
+
model_type = "blip_text_model"
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
vocab_size=30524,
|
106 |
+
hidden_size=768,
|
107 |
+
encoder_hidden_size=768,
|
108 |
+
intermediate_size=3072,
|
109 |
+
projection_dim=768,
|
110 |
+
num_hidden_layers=12,
|
111 |
+
num_attention_heads=8,
|
112 |
+
max_position_embeddings=512,
|
113 |
+
hidden_act="gelu",
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
hidden_dropout_prob=0.0,
|
116 |
+
attention_probs_dropout_prob=0.0,
|
117 |
+
initializer_range=0.02,
|
118 |
+
bos_token_id=30522,
|
119 |
+
eos_token_id=2,
|
120 |
+
pad_token_id=0,
|
121 |
+
sep_token_id=102,
|
122 |
+
is_decoder=True,
|
123 |
+
use_cache=True,
|
124 |
+
label_smoothing=0.0,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super().__init__(
|
128 |
+
pad_token_id=pad_token_id,
|
129 |
+
bos_token_id=bos_token_id,
|
130 |
+
eos_token_id=eos_token_id,
|
131 |
+
sep_token_id=sep_token_id,
|
132 |
+
**kwargs,
|
133 |
+
)
|
134 |
+
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.encoder_hidden_size = encoder_hidden_size
|
138 |
+
self.intermediate_size = intermediate_size
|
139 |
+
self.projection_dim = projection_dim
|
140 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
141 |
+
self.num_hidden_layers = num_hidden_layers
|
142 |
+
self.num_attention_heads = num_attention_heads
|
143 |
+
self.max_position_embeddings = max_position_embeddings
|
144 |
+
self.layer_norm_eps = layer_norm_eps
|
145 |
+
self.hidden_act = hidden_act
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
148 |
+
self.is_decoder = is_decoder
|
149 |
+
self.use_cache = use_cache
|
150 |
+
self.label_smoothing = label_smoothing
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
154 |
+
cls._set_token_in_kwargs(kwargs)
|
155 |
+
|
156 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
157 |
+
|
158 |
+
# get the text config dict if we are loading from BlipConfig
|
159 |
+
if config_dict.get("model_type") == "blip":
|
160 |
+
config_dict = config_dict["text_config"]
|
161 |
+
|
162 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
163 |
+
logger.warning(
|
164 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
165 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
166 |
+
)
|
167 |
+
|
168 |
+
return cls.from_dict(config_dict, **kwargs)
|
169 |
+
|
170 |
+
|
171 |
+
class BlipVisionConfig(PretrainedConfig):
|
172 |
+
r"""
|
173 |
+
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
|
174 |
+
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
|
175 |
+
configuration defaults will yield a similar configuration to that of the Blip-base
|
176 |
+
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
177 |
+
|
178 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
179 |
+
documentation from [`PretrainedConfig`] for more information.
|
180 |
+
|
181 |
+
|
182 |
+
Args:
|
183 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
184 |
+
Dimensionality of the encoder layers and the pooler layer.
|
185 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
186 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
187 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
188 |
+
Number of hidden layers in the Transformer encoder.
|
189 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
190 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
191 |
+
image_size (`int`, *optional*, defaults to 384):
|
192 |
+
The size (resolution) of each image.
|
193 |
+
patch_size (`int`, *optional*, defaults to 16):
|
194 |
+
The size (resolution) of each patch.
|
195 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
196 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
197 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
198 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
199 |
+
The epsilon used by the layer normalization layers.
|
200 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
201 |
+
The dropout ratio for the attention probabilities.
|
202 |
+
initializer_range (`float`, *optional*, defaults to 1e-10):
|
203 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
204 |
+
|
205 |
+
Example:
|
206 |
+
|
207 |
+
```python
|
208 |
+
>>> from transformers import BlipVisionConfig, BlipVisionModel
|
209 |
+
|
210 |
+
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
|
211 |
+
>>> configuration = BlipVisionConfig()
|
212 |
+
|
213 |
+
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
214 |
+
>>> model = BlipVisionModel(configuration)
|
215 |
+
|
216 |
+
>>> # Accessing the model configuration
|
217 |
+
>>> configuration = model.config
|
218 |
+
```"""
|
219 |
+
|
220 |
+
model_type = "blip_vision_model"
|
221 |
+
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
hidden_size=768,
|
225 |
+
intermediate_size=3072,
|
226 |
+
projection_dim=512,
|
227 |
+
num_hidden_layers=12,
|
228 |
+
num_attention_heads=12,
|
229 |
+
image_size=384,
|
230 |
+
patch_size=16,
|
231 |
+
hidden_act="gelu",
|
232 |
+
layer_norm_eps=1e-5,
|
233 |
+
attention_dropout=0.0,
|
234 |
+
initializer_range=1e-10,
|
235 |
+
**kwargs,
|
236 |
+
):
|
237 |
+
super().__init__(**kwargs)
|
238 |
+
|
239 |
+
self.hidden_size = hidden_size
|
240 |
+
self.intermediate_size = intermediate_size
|
241 |
+
self.projection_dim = projection_dim
|
242 |
+
self.num_hidden_layers = num_hidden_layers
|
243 |
+
self.num_attention_heads = num_attention_heads
|
244 |
+
self.patch_size = patch_size
|
245 |
+
self.image_size = image_size
|
246 |
+
self.initializer_range = initializer_range
|
247 |
+
self.attention_dropout = attention_dropout
|
248 |
+
self.layer_norm_eps = layer_norm_eps
|
249 |
+
self.hidden_act = hidden_act
|
250 |
+
|
251 |
+
@classmethod
|
252 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
253 |
+
cls._set_token_in_kwargs(kwargs)
|
254 |
+
|
255 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
256 |
+
|
257 |
+
# get the vision config dict if we are loading from BlipConfig
|
258 |
+
if config_dict.get("model_type") == "blip":
|
259 |
+
config_dict = config_dict["vision_config"]
|
260 |
+
|
261 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
262 |
+
logger.warning(
|
263 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
264 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
265 |
+
)
|
266 |
+
|
267 |
+
return cls.from_dict(config_dict, **kwargs)
|
268 |
+
|
269 |
+
|
270 |
+
class BlipConfig(PretrainedConfig):
|
271 |
+
r"""
|
272 |
+
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
|
273 |
+
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
|
274 |
+
a configuration with the defaults will yield a similar configuration to that of the BLIP-base
|
275 |
+
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
276 |
+
|
277 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
278 |
+
documentation from [`PretrainedConfig`] for more information.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
text_config (`dict`, *optional*):
|
282 |
+
Dictionary of configuration options used to initialize [`BlipTextConfig`].
|
283 |
+
vision_config (`dict`, *optional*):
|
284 |
+
Dictionary of configuration options used to initialize [`BlipVisionConfig`].
|
285 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
286 |
+
Dimentionality of text and vision projection layers.
|
287 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
288 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation.
|
289 |
+
image_text_hidden_size (`int`, *optional*, defaults to 256):
|
290 |
+
Dimentionality of the hidden state of the image-text fusion layer.
|
291 |
+
label_smoothing (float, optional, *optional*, defaults to 0.0):
|
292 |
+
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
293 |
+
become a mixture of the original ground truth and a uniform distribution as described in
|
294 |
+
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
295 |
+
kwargs (*optional*):
|
296 |
+
Dictionary of keyword arguments.
|
297 |
+
|
298 |
+
Example:
|
299 |
+
|
300 |
+
```python
|
301 |
+
>>> from transformers import BlipConfig, BlipModel
|
302 |
+
|
303 |
+
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
|
304 |
+
>>> configuration = BlipConfig()
|
305 |
+
|
306 |
+
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
307 |
+
>>> model = BlipModel(configuration)
|
308 |
+
|
309 |
+
>>> # Accessing the model configuration
|
310 |
+
>>> configuration = model.config
|
311 |
+
|
312 |
+
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
|
313 |
+
|
314 |
+
>>> # Initializing a BLIPText and BLIPVision configuration
|
315 |
+
>>> config_text = BlipTextConfig()
|
316 |
+
>>> config_vision = BlipVisionConfig()
|
317 |
+
|
318 |
+
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
|
319 |
+
```"""
|
320 |
+
|
321 |
+
model_type = "blip"
|
322 |
+
|
323 |
+
def __init__(
|
324 |
+
self,
|
325 |
+
text_config=None,
|
326 |
+
vision_config=None,
|
327 |
+
projection_dim=512,
|
328 |
+
logit_scale_init_value=2.6592,
|
329 |
+
image_text_hidden_size=256,
|
330 |
+
label_smoothing=0.0,
|
331 |
+
**kwargs,
|
332 |
+
):
|
333 |
+
super().__init__(**kwargs)
|
334 |
+
|
335 |
+
if text_config is None:
|
336 |
+
text_config = {}
|
337 |
+
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.")
|
338 |
+
|
339 |
+
if vision_config is None:
|
340 |
+
vision_config = {}
|
341 |
+
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.")
|
342 |
+
|
343 |
+
self.text_config = BlipTextConfig(**text_config)
|
344 |
+
self.vision_config = BlipVisionConfig(**vision_config)
|
345 |
+
|
346 |
+
self.text_config.encoder_hidden_size = self.vision_config.hidden_size
|
347 |
+
|
348 |
+
self.projection_dim = projection_dim
|
349 |
+
self.logit_scale_init_value = logit_scale_init_value
|
350 |
+
self.initializer_factor = 1.0
|
351 |
+
self.initializer_range = 0.02
|
352 |
+
self.image_text_hidden_size = image_text_hidden_size
|
353 |
+
self.label_smoothing = label_smoothing
|
354 |
+
|
355 |
+
@classmethod
|
356 |
+
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs):
|
357 |
+
r"""
|
358 |
+
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
|
359 |
+
configuration.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
[`BlipConfig`]: An instance of a configuration object
|
363 |
+
"""
|
364 |
+
|
365 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/blip/convert_blip_original_pytorch_to_hf.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import re
|
18 |
+
|
19 |
+
import requests
|
20 |
+
import torch
|
21 |
+
|
22 |
+
# git clone https://github.com/salesforce/BLIP.git
|
23 |
+
from models.blip import blip_decoder
|
24 |
+
from models.blip_itm import blip_itm
|
25 |
+
from models.blip_vqa import blip_vqa
|
26 |
+
from PIL import Image
|
27 |
+
from torchvision import transforms
|
28 |
+
from torchvision.transforms.functional import InterpolationMode
|
29 |
+
|
30 |
+
from transformers import (
|
31 |
+
BertTokenizer,
|
32 |
+
BlipConfig,
|
33 |
+
BlipForConditionalGeneration,
|
34 |
+
BlipForImageTextRetrieval,
|
35 |
+
BlipForQuestionAnswering,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def load_demo_image(image_size, device):
|
40 |
+
img_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
|
41 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
42 |
+
|
43 |
+
transform = transforms.Compose(
|
44 |
+
[
|
45 |
+
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
46 |
+
transforms.ToTensor(),
|
47 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
48 |
+
]
|
49 |
+
)
|
50 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
51 |
+
return image
|
52 |
+
|
53 |
+
|
54 |
+
def rename_key(key):
|
55 |
+
if "visual_encoder" in key:
|
56 |
+
key = re.sub("visual_encoder*", "vision_model.encoder", key)
|
57 |
+
if "blocks" in key:
|
58 |
+
key = re.sub(r"blocks", "layers", key)
|
59 |
+
if "attn" in key:
|
60 |
+
key = re.sub(r"attn", "self_attn", key)
|
61 |
+
if "norm1" in key:
|
62 |
+
key = re.sub(r"norm1", "layer_norm1", key)
|
63 |
+
if "norm2" in key:
|
64 |
+
key = re.sub(r"norm2", "layer_norm2", key)
|
65 |
+
if "encoder.norm" in key:
|
66 |
+
key = re.sub(r"encoder.norm", "post_layernorm", key)
|
67 |
+
if "encoder.patch_embed.proj" in key:
|
68 |
+
key = re.sub(r"encoder.patch_embed.proj", "embeddings.patch_embedding", key)
|
69 |
+
|
70 |
+
if "encoder.pos_embed" in key:
|
71 |
+
key = re.sub(r"encoder.pos_embed", "embeddings.position_embedding", key)
|
72 |
+
if "encoder.cls_token" in key:
|
73 |
+
key = re.sub(r"encoder.cls_token", "embeddings.class_embedding", key)
|
74 |
+
|
75 |
+
if "self_attn" in key:
|
76 |
+
key = re.sub(r"self_attn.proj", "self_attn.projection", key)
|
77 |
+
|
78 |
+
return key
|
79 |
+
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def convert_blip_checkpoint(pytorch_dump_folder_path, config_path=None):
|
83 |
+
"""
|
84 |
+
Copy/paste/tweak model's weights to transformers design.
|
85 |
+
"""
|
86 |
+
if config_path is not None:
|
87 |
+
config = BlipConfig.from_pretrained(config_path)
|
88 |
+
else:
|
89 |
+
config = BlipConfig(projection_dim=512, text_config={}, vision_config={})
|
90 |
+
|
91 |
+
hf_model = BlipForConditionalGeneration(config).eval()
|
92 |
+
|
93 |
+
model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"
|
94 |
+
|
95 |
+
pt_model = blip_decoder(pretrained=model_url, image_size=384, vit="base")
|
96 |
+
pt_model = pt_model.eval()
|
97 |
+
|
98 |
+
modified_state_dict = pt_model.state_dict()
|
99 |
+
for key in modified_state_dict.copy():
|
100 |
+
value = modified_state_dict.pop(key)
|
101 |
+
renamed_key = rename_key(key)
|
102 |
+
modified_state_dict[renamed_key] = value
|
103 |
+
|
104 |
+
hf_model.load_state_dict(modified_state_dict)
|
105 |
+
|
106 |
+
image_size = 384
|
107 |
+
image = load_demo_image(image_size=image_size, device="cpu")
|
108 |
+
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
109 |
+
input_ids = tokenizer(["a picture of"]).input_ids
|
110 |
+
|
111 |
+
out = hf_model.generate(image, input_ids)
|
112 |
+
|
113 |
+
assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
|
114 |
+
|
115 |
+
out = hf_model.generate(image)
|
116 |
+
|
117 |
+
assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
|
118 |
+
|
119 |
+
if pytorch_dump_folder_path is not None:
|
120 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
121 |
+
|
122 |
+
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
|
123 |
+
model_url = (
|
124 |
+
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"
|
125 |
+
)
|
126 |
+
|
127 |
+
vqa_model = blip_vqa(pretrained=model_url, image_size=image_size, vit="base")
|
128 |
+
vqa_model.eval()
|
129 |
+
|
130 |
+
modified_state_dict = vqa_model.state_dict()
|
131 |
+
for key in modified_state_dict.copy():
|
132 |
+
value = modified_state_dict.pop(key)
|
133 |
+
renamed_key = rename_key(key)
|
134 |
+
modified_state_dict[renamed_key] = value
|
135 |
+
|
136 |
+
hf_vqa_model = BlipForQuestionAnswering(config)
|
137 |
+
|
138 |
+
hf_vqa_model.load_state_dict(modified_state_dict)
|
139 |
+
|
140 |
+
question = ["How many dogs are in this image?"]
|
141 |
+
question_input_ids = tokenizer(question, return_tensors="pt").input_ids
|
142 |
+
|
143 |
+
answer = hf_vqa_model.generate(question_input_ids, image)
|
144 |
+
print(tokenizer.decode(answer[0]))
|
145 |
+
|
146 |
+
assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]"
|
147 |
+
if pytorch_dump_folder_path is not None:
|
148 |
+
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa")
|
149 |
+
|
150 |
+
model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"
|
151 |
+
|
152 |
+
itm_model = blip_itm(pretrained=model_url, image_size=image_size, vit="base")
|
153 |
+
itm_model.eval()
|
154 |
+
|
155 |
+
modified_state_dict = itm_model.state_dict()
|
156 |
+
for key in modified_state_dict.copy():
|
157 |
+
value = modified_state_dict.pop(key)
|
158 |
+
renamed_key = rename_key(key)
|
159 |
+
modified_state_dict[renamed_key] = value
|
160 |
+
|
161 |
+
hf_itm_model = BlipForImageTextRetrieval(config)
|
162 |
+
|
163 |
+
question = ["A picture of a woman with a dog sitting in a beach"]
|
164 |
+
question_input_ids = tokenizer(
|
165 |
+
question,
|
166 |
+
return_tensors="pt",
|
167 |
+
padding="max_length",
|
168 |
+
truncation=True,
|
169 |
+
max_length=35,
|
170 |
+
).input_ids
|
171 |
+
|
172 |
+
hf_itm_model.load_state_dict(modified_state_dict)
|
173 |
+
hf_itm_model.eval()
|
174 |
+
|
175 |
+
out_itm = hf_itm_model(question_input_ids, image, use_itm_head=True)
|
176 |
+
out = hf_itm_model(question_input_ids, image, use_itm_head=False)
|
177 |
+
|
178 |
+
assert out[0].item() == 0.2110687494277954
|
179 |
+
assert torch.nn.functional.softmax(out_itm[0], dim=1)[:, 1].item() == 0.45698845386505127
|
180 |
+
|
181 |
+
if pytorch_dump_folder_path is not None:
|
182 |
+
hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm")
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
parser = argparse.ArgumentParser()
|
187 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
188 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
189 |
+
args = parser.parse_args()
|
190 |
+
|
191 |
+
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
venv/lib/python3.10/site-packages/transformers/models/blip/image_processing_blip.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for BLIP."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
23 |
+
from ...image_utils import (
|
24 |
+
OPENAI_CLIP_MEAN,
|
25 |
+
OPENAI_CLIP_STD,
|
26 |
+
ChannelDimension,
|
27 |
+
ImageInput,
|
28 |
+
PILImageResampling,
|
29 |
+
infer_channel_dimension_format,
|
30 |
+
is_scaled_image,
|
31 |
+
make_list_of_images,
|
32 |
+
to_numpy_array,
|
33 |
+
valid_images,
|
34 |
+
validate_kwargs,
|
35 |
+
validate_preprocess_arguments,
|
36 |
+
)
|
37 |
+
from ...utils import TensorType, is_vision_available, logging
|
38 |
+
|
39 |
+
|
40 |
+
if is_vision_available():
|
41 |
+
import PIL
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class BlipImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a BLIP image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
54 |
+
`do_resize` parameter in the `preprocess` method.
|
55 |
+
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
|
56 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
57 |
+
method.
|
58 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
59 |
+
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
|
60 |
+
overridden by the `resample` parameter in the `preprocess` method.
|
61 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
63 |
+
`do_rescale` parameter in the `preprocess` method.
|
64 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
65 |
+
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
|
66 |
+
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
67 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
69 |
+
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
|
70 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
71 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
72 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
|
73 |
+
overridden by the `image_mean` parameter in the `preprocess` method.
|
74 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
75 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
76 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
77 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
78 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to convert the image to RGB.
|
80 |
+
"""
|
81 |
+
|
82 |
+
model_input_names = ["pixel_values"]
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
do_resize: bool = True,
|
87 |
+
size: Dict[str, int] = None,
|
88 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
89 |
+
do_rescale: bool = True,
|
90 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
91 |
+
do_normalize: bool = True,
|
92 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
93 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
94 |
+
do_convert_rgb: bool = True,
|
95 |
+
**kwargs,
|
96 |
+
) -> None:
|
97 |
+
super().__init__(**kwargs)
|
98 |
+
size = size if size is not None else {"height": 384, "width": 384}
|
99 |
+
size = get_size_dict(size, default_to_square=True)
|
100 |
+
|
101 |
+
self.do_resize = do_resize
|
102 |
+
self.size = size
|
103 |
+
self.resample = resample
|
104 |
+
self.do_rescale = do_rescale
|
105 |
+
self.rescale_factor = rescale_factor
|
106 |
+
self.do_normalize = do_normalize
|
107 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
108 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
109 |
+
self.do_convert_rgb = do_convert_rgb
|
110 |
+
self._valid_processor_keys = [
|
111 |
+
"images",
|
112 |
+
"do_resize",
|
113 |
+
"size",
|
114 |
+
"resample",
|
115 |
+
"do_rescale",
|
116 |
+
"rescale_factor",
|
117 |
+
"do_normalize",
|
118 |
+
"image_mean",
|
119 |
+
"image_std",
|
120 |
+
"do_convert_rgb",
|
121 |
+
"return_tensors",
|
122 |
+
"data_format",
|
123 |
+
"input_data_format",
|
124 |
+
]
|
125 |
+
|
126 |
+
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
|
127 |
+
def resize(
|
128 |
+
self,
|
129 |
+
image: np.ndarray,
|
130 |
+
size: Dict[str, int],
|
131 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
132 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
133 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
134 |
+
**kwargs,
|
135 |
+
) -> np.ndarray:
|
136 |
+
"""
|
137 |
+
Resize an image to `(size["height"], size["width"])`.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
image (`np.ndarray`):
|
141 |
+
Image to resize.
|
142 |
+
size (`Dict[str, int]`):
|
143 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
144 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
145 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
|
146 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
147 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
148 |
+
image is used. Can be one of:
|
149 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
150 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
151 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
152 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
153 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
154 |
+
from the input image. Can be one of:
|
155 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
156 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
157 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
`np.ndarray`: The resized image.
|
161 |
+
"""
|
162 |
+
size = get_size_dict(size)
|
163 |
+
if "height" not in size or "width" not in size:
|
164 |
+
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
|
165 |
+
output_size = (size["height"], size["width"])
|
166 |
+
return resize(
|
167 |
+
image,
|
168 |
+
size=output_size,
|
169 |
+
resample=resample,
|
170 |
+
data_format=data_format,
|
171 |
+
input_data_format=input_data_format,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
|
175 |
+
def preprocess(
|
176 |
+
self,
|
177 |
+
images: ImageInput,
|
178 |
+
do_resize: Optional[bool] = None,
|
179 |
+
size: Optional[Dict[str, int]] = None,
|
180 |
+
resample: PILImageResampling = None,
|
181 |
+
do_rescale: Optional[bool] = None,
|
182 |
+
rescale_factor: Optional[float] = None,
|
183 |
+
do_normalize: Optional[bool] = None,
|
184 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
185 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
186 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
187 |
+
do_convert_rgb: bool = None,
|
188 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
189 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
190 |
+
**kwargs,
|
191 |
+
) -> PIL.Image.Image:
|
192 |
+
"""
|
193 |
+
Preprocess an image or batch of images.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
images (`ImageInput`):
|
197 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
198 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
199 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
200 |
+
Whether to resize the image.
|
201 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
202 |
+
Controls the size of the image after `resize`. The shortest edge of the image is resized to
|
203 |
+
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
|
204 |
+
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
|
205 |
+
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
|
206 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
207 |
+
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
|
208 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
209 |
+
Whether to rescale the image values between [0 - 1].
|
210 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
211 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
212 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
213 |
+
Whether to normalize the image.
|
214 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
215 |
+
Image mean to normalize the image by if `do_normalize` is set to `True`.
|
216 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
217 |
+
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
|
218 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
219 |
+
Whether to convert the image to RGB.
|
220 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
221 |
+
The type of tensors to return. Can be one of:
|
222 |
+
- Unset: Return a list of `np.ndarray`.
|
223 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
224 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
225 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
226 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
227 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
228 |
+
The channel dimension format for the output image. Can be one of:
|
229 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
230 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
231 |
+
- Unset: Use the channel dimension format of the input image.
|
232 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
233 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
234 |
+
from the input image. Can be one of:
|
235 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
236 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
237 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
238 |
+
"""
|
239 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
240 |
+
resample = resample if resample is not None else self.resample
|
241 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
242 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
243 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
244 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
245 |
+
image_std = image_std if image_std is not None else self.image_std
|
246 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
247 |
+
|
248 |
+
size = size if size is not None else self.size
|
249 |
+
size = get_size_dict(size, default_to_square=False)
|
250 |
+
|
251 |
+
images = make_list_of_images(images)
|
252 |
+
|
253 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
254 |
+
|
255 |
+
if not valid_images(images):
|
256 |
+
raise ValueError(
|
257 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
258 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
259 |
+
)
|
260 |
+
|
261 |
+
validate_preprocess_arguments(
|
262 |
+
do_rescale=do_rescale,
|
263 |
+
rescale_factor=rescale_factor,
|
264 |
+
do_normalize=do_normalize,
|
265 |
+
image_mean=image_mean,
|
266 |
+
image_std=image_std,
|
267 |
+
do_resize=do_resize,
|
268 |
+
size=size,
|
269 |
+
resample=resample,
|
270 |
+
)
|
271 |
+
# PIL RGBA images are converted to RGB
|
272 |
+
if do_convert_rgb:
|
273 |
+
images = [convert_to_rgb(image) for image in images]
|
274 |
+
|
275 |
+
# All transformations expect numpy arrays.
|
276 |
+
images = [to_numpy_array(image) for image in images]
|
277 |
+
|
278 |
+
if is_scaled_image(images[0]) and do_rescale:
|
279 |
+
logger.warning_once(
|
280 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
281 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
282 |
+
)
|
283 |
+
|
284 |
+
if input_data_format is None:
|
285 |
+
# We assume that all images have the same channel dimension format.
|
286 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
287 |
+
|
288 |
+
if do_resize:
|
289 |
+
images = [
|
290 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
291 |
+
for image in images
|
292 |
+
]
|
293 |
+
|
294 |
+
if do_rescale:
|
295 |
+
images = [
|
296 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
297 |
+
for image in images
|
298 |
+
]
|
299 |
+
|
300 |
+
if do_normalize:
|
301 |
+
images = [
|
302 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
303 |
+
for image in images
|
304 |
+
]
|
305 |
+
|
306 |
+
images = [
|
307 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
308 |
+
]
|
309 |
+
|
310 |
+
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
311 |
+
|
312 |
+
return encoded_outputs
|
venv/lib/python3.10/site-packages/transformers/models/blip/modeling_blip.py
ADDED
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BLIP model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn.functional import normalize
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
28 |
+
from ...modeling_utils import PreTrainedModel
|
29 |
+
from ...utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
|
37 |
+
from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"
|
43 |
+
|
44 |
+
|
45 |
+
from ..deprecated._archive_maps import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
46 |
+
|
47 |
+
|
48 |
+
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
|
49 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
50 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip
|
54 |
+
def blip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
55 |
+
caption_loss = contrastive_loss(similarity)
|
56 |
+
image_loss = contrastive_loss(similarity.t())
|
57 |
+
return (caption_loss + image_loss) / 2.0
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class BlipForConditionalGenerationModelOutput(ModelOutput):
|
62 |
+
"""
|
63 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
64 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
68 |
+
Languge modeling loss from the text decoder.
|
69 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
|
70 |
+
Prediction scores of the language modeling head of the text decoder model.
|
71 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
|
72 |
+
The image embeddings obtained after applying the Vision Transformer model to the input image.
|
73 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
74 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
75 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
|
76 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
77 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
78 |
+
|
79 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
80 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
|
81 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
82 |
+
sequence_length)`.
|
83 |
+
|
84 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
85 |
+
heads.
|
86 |
+
"""
|
87 |
+
|
88 |
+
loss: Optional[Tuple[torch.FloatTensor]] = None
|
89 |
+
logits: Optional[Tuple[torch.FloatTensor]] = None
|
90 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
91 |
+
last_hidden_state: torch.FloatTensor = None
|
92 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
93 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
94 |
+
|
95 |
+
@property
|
96 |
+
def decoder_logits(self):
|
97 |
+
warnings.warn(
|
98 |
+
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
|
99 |
+
" Please use the `logits` attribute to retrieve the final output instead.",
|
100 |
+
FutureWarning,
|
101 |
+
)
|
102 |
+
return self.logits
|
103 |
+
|
104 |
+
|
105 |
+
@dataclass
|
106 |
+
class BlipTextVisionModelOutput(ModelOutput):
|
107 |
+
"""
|
108 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
109 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
113 |
+
Languge modeling loss from the text decoder.
|
114 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
115 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
116 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
117 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
118 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
119 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
120 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
121 |
+
|
122 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
123 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
124 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
125 |
+
sequence_length)`.
|
126 |
+
|
127 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
128 |
+
heads.
|
129 |
+
"""
|
130 |
+
|
131 |
+
loss: Optional[torch.FloatTensor] = None
|
132 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
133 |
+
last_hidden_state: torch.FloatTensor = None
|
134 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
135 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
136 |
+
|
137 |
+
|
138 |
+
@dataclass
|
139 |
+
class BlipImageTextMatchingModelOutput(ModelOutput):
|
140 |
+
"""
|
141 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
142 |
+
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
|
143 |
+
scores.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
itm_score (`torch.FloatTensor`):
|
147 |
+
The image-text similarity scores.
|
148 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
149 |
+
Languge modeling loss from the text decoder.
|
150 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
151 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
152 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
153 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
154 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
155 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
156 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
157 |
+
|
158 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
159 |
+
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
160 |
+
Last layer hidden-state of the vision of the vision-only branch of the model.
|
161 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
162 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
163 |
+
sequence_length)`.
|
164 |
+
|
165 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
166 |
+
heads.
|
167 |
+
question_embeds (`torch.FloatTensor`):
|
168 |
+
The question embeddings obtained by the text projection layer.
|
169 |
+
"""
|
170 |
+
|
171 |
+
itm_score: Optional[torch.FloatTensor] = None
|
172 |
+
loss: Optional[torch.FloatTensor] = None
|
173 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
174 |
+
last_hidden_state: torch.FloatTensor = None
|
175 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
176 |
+
vision_pooler_output: Optional[torch.FloatTensor] = None
|
177 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
178 |
+
question_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
179 |
+
|
180 |
+
|
181 |
+
@dataclass
|
182 |
+
class BlipOutput(ModelOutput):
|
183 |
+
"""
|
184 |
+
Args:
|
185 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
186 |
+
Contrastive loss for image-text similarity.
|
187 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
188 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
189 |
+
similarity scores.
|
190 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
191 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
192 |
+
similarity scores.
|
193 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
194 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
|
195 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
196 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
|
197 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
198 |
+
The output of the [`BlipTextModel`].
|
199 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
200 |
+
The output of the [`BlipVisionModel`].
|
201 |
+
"""
|
202 |
+
|
203 |
+
loss: Optional[torch.FloatTensor] = None
|
204 |
+
logits_per_image: torch.FloatTensor = None
|
205 |
+
logits_per_text: torch.FloatTensor = None
|
206 |
+
text_embeds: torch.FloatTensor = None
|
207 |
+
image_embeds: torch.FloatTensor = None
|
208 |
+
text_model_output: BaseModelOutputWithPooling = None
|
209 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
210 |
+
|
211 |
+
def to_tuple(self) -> Tuple[Any]:
|
212 |
+
return tuple(
|
213 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
214 |
+
for k in self.keys()
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
class BlipVisionEmbeddings(nn.Module):
|
219 |
+
def __init__(self, config: BlipVisionConfig):
|
220 |
+
super().__init__()
|
221 |
+
self.config = config
|
222 |
+
self.embed_dim = config.hidden_size
|
223 |
+
self.image_size = config.image_size
|
224 |
+
self.patch_size = config.patch_size
|
225 |
+
|
226 |
+
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
|
227 |
+
|
228 |
+
self.patch_embedding = nn.Conv2d(
|
229 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
230 |
+
)
|
231 |
+
|
232 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
233 |
+
self.num_positions = self.num_patches + 1
|
234 |
+
|
235 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
236 |
+
|
237 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
238 |
+
batch_size = pixel_values.shape[0]
|
239 |
+
target_dtype = self.patch_embedding.weight.dtype
|
240 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
241 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
242 |
+
|
243 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
244 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
245 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
|
246 |
+
return embeddings
|
247 |
+
|
248 |
+
|
249 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip
|
250 |
+
class BlipTextEmbeddings(nn.Module):
|
251 |
+
def __init__(self, config: BlipTextConfig):
|
252 |
+
super().__init__()
|
253 |
+
embed_dim = config.hidden_size
|
254 |
+
|
255 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
256 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
257 |
+
|
258 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
259 |
+
self.register_buffer(
|
260 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
261 |
+
)
|
262 |
+
|
263 |
+
def forward(
|
264 |
+
self,
|
265 |
+
input_ids: Optional[torch.LongTensor] = None,
|
266 |
+
position_ids: Optional[torch.LongTensor] = None,
|
267 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
268 |
+
) -> torch.Tensor:
|
269 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
270 |
+
|
271 |
+
if position_ids is None:
|
272 |
+
position_ids = self.position_ids[:, :seq_length]
|
273 |
+
|
274 |
+
if inputs_embeds is None:
|
275 |
+
inputs_embeds = self.token_embedding(input_ids)
|
276 |
+
|
277 |
+
position_embeddings = self.position_embedding(position_ids)
|
278 |
+
embeddings = inputs_embeds + position_embeddings
|
279 |
+
|
280 |
+
return embeddings
|
281 |
+
|
282 |
+
|
283 |
+
class BlipAttention(nn.Module):
|
284 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
285 |
+
|
286 |
+
def __init__(self, config):
|
287 |
+
super().__init__()
|
288 |
+
self.config = config
|
289 |
+
self.embed_dim = config.hidden_size
|
290 |
+
self.num_heads = config.num_attention_heads
|
291 |
+
self.head_dim = self.embed_dim // self.num_heads
|
292 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
293 |
+
raise ValueError(
|
294 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
295 |
+
f" {self.num_heads})."
|
296 |
+
)
|
297 |
+
self.scale = self.head_dim**-0.5
|
298 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
299 |
+
|
300 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim)
|
301 |
+
|
302 |
+
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
|
303 |
+
|
304 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
305 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states: torch.Tensor,
|
310 |
+
head_mask: Optional[torch.Tensor] = None,
|
311 |
+
output_attentions: Optional[bool] = False,
|
312 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
313 |
+
"""Input shape: Batch x Time x Channel"""
|
314 |
+
|
315 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
316 |
+
|
317 |
+
mixed_qkv = (
|
318 |
+
self.qkv(hidden_states)
|
319 |
+
.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads)
|
320 |
+
.permute(2, 0, 3, 1, 4)
|
321 |
+
)
|
322 |
+
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
|
323 |
+
|
324 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
325 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
326 |
+
|
327 |
+
attention_scores = attention_scores * self.scale
|
328 |
+
|
329 |
+
# Normalize the attention scores to probabilities.
|
330 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
331 |
+
|
332 |
+
# This is actually dropping out entire tokens to attend to, which might
|
333 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
334 |
+
attention_probs = self.dropout(attention_probs)
|
335 |
+
|
336 |
+
# Mask heads if we want to
|
337 |
+
if head_mask is not None:
|
338 |
+
attention_probs = attention_probs * head_mask
|
339 |
+
|
340 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
341 |
+
|
342 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
343 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
344 |
+
|
345 |
+
output = self.projection(context_layer)
|
346 |
+
|
347 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
348 |
+
|
349 |
+
return outputs
|
350 |
+
|
351 |
+
|
352 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip
|
353 |
+
class BlipMLP(nn.Module):
|
354 |
+
def __init__(self, config):
|
355 |
+
super().__init__()
|
356 |
+
self.config = config
|
357 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
358 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
359 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
360 |
+
|
361 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
362 |
+
hidden_states = self.fc1(hidden_states)
|
363 |
+
hidden_states = self.activation_fn(hidden_states)
|
364 |
+
hidden_states = self.fc2(hidden_states)
|
365 |
+
return hidden_states
|
366 |
+
|
367 |
+
|
368 |
+
class BlipEncoderLayer(nn.Module):
|
369 |
+
def __init__(self, config: BlipConfig):
|
370 |
+
super().__init__()
|
371 |
+
self.embed_dim = config.hidden_size
|
372 |
+
self.self_attn = BlipAttention(config)
|
373 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
374 |
+
self.mlp = BlipMLP(config)
|
375 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
376 |
+
|
377 |
+
def forward(
|
378 |
+
self,
|
379 |
+
hidden_states: torch.Tensor,
|
380 |
+
attention_mask: torch.Tensor,
|
381 |
+
output_attentions: Optional[bool] = False,
|
382 |
+
) -> Tuple[torch.FloatTensor]:
|
383 |
+
"""
|
384 |
+
Args:
|
385 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
386 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
387 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
388 |
+
`(config.encoder_attention_heads,)`.
|
389 |
+
output_attentions (`bool`, *optional*):
|
390 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
391 |
+
returned tensors for more detail.
|
392 |
+
"""
|
393 |
+
residual = hidden_states
|
394 |
+
|
395 |
+
hidden_states = self.layer_norm1(hidden_states)
|
396 |
+
hidden_states, attn_weights = self.self_attn(
|
397 |
+
hidden_states=hidden_states,
|
398 |
+
head_mask=attention_mask,
|
399 |
+
output_attentions=output_attentions,
|
400 |
+
)
|
401 |
+
hidden_states = hidden_states + residual
|
402 |
+
residual = hidden_states
|
403 |
+
hidden_states = self.layer_norm2(hidden_states)
|
404 |
+
hidden_states = self.mlp(hidden_states)
|
405 |
+
|
406 |
+
hidden_states = hidden_states + residual
|
407 |
+
|
408 |
+
outputs = (hidden_states,)
|
409 |
+
|
410 |
+
if output_attentions:
|
411 |
+
outputs += (attn_weights,)
|
412 |
+
|
413 |
+
return outputs
|
414 |
+
|
415 |
+
|
416 |
+
class BlipPreTrainedModel(PreTrainedModel):
|
417 |
+
"""
|
418 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
419 |
+
models.
|
420 |
+
"""
|
421 |
+
|
422 |
+
config_class = BlipConfig
|
423 |
+
base_model_prefix = "blip"
|
424 |
+
supports_gradient_checkpointing = True
|
425 |
+
|
426 |
+
def _init_weights(self, module):
|
427 |
+
"""Initialize the weights"""
|
428 |
+
factor = self.config.initializer_range
|
429 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
430 |
+
module.weight.data.normal_(mean=0.0, std=factor)
|
431 |
+
if hasattr(module, "bias") and module.bias is not None:
|
432 |
+
module.bias.data.zero_()
|
433 |
+
|
434 |
+
if isinstance(module, BlipVisionEmbeddings):
|
435 |
+
if hasattr(self.config, "vision_config"):
|
436 |
+
factor = self.config.vision_config.initializer_range
|
437 |
+
nn.init.trunc_normal_(
|
438 |
+
module.position_embedding,
|
439 |
+
mean=0.0,
|
440 |
+
std=factor,
|
441 |
+
)
|
442 |
+
|
443 |
+
nn.init.trunc_normal_(
|
444 |
+
module.class_embedding,
|
445 |
+
mean=0.0,
|
446 |
+
std=factor,
|
447 |
+
)
|
448 |
+
|
449 |
+
elif isinstance(module, nn.LayerNorm):
|
450 |
+
module.bias.data.zero_()
|
451 |
+
module.weight.data.fill_(1.0)
|
452 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
453 |
+
module.bias.data.zero_()
|
454 |
+
|
455 |
+
|
456 |
+
BLIP_START_DOCSTRING = r"""
|
457 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
458 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
459 |
+
etc.)
|
460 |
+
|
461 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
462 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
463 |
+
and behavior.
|
464 |
+
|
465 |
+
Parameters:
|
466 |
+
config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
|
467 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
468 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
469 |
+
"""
|
470 |
+
|
471 |
+
BLIP_TEXT_INPUTS_DOCSTRING = r"""
|
472 |
+
Args:
|
473 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
474 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
475 |
+
it.
|
476 |
+
|
477 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
478 |
+
|
479 |
+
[What are input IDs?](../glossary#input-ids)
|
480 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
481 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
482 |
+
|
483 |
+
- 1 for tokens that are **not masked**,
|
484 |
+
- 0 for tokens that are **masked**.
|
485 |
+
|
486 |
+
[What are attention masks?](../glossary#attention-mask)
|
487 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
488 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
489 |
+
config.max_position_embeddings - 1]`.
|
490 |
+
|
491 |
+
[What are position IDs?](../glossary#position-ids)
|
492 |
+
output_attentions (`bool`, *optional*):
|
493 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
494 |
+
tensors for more detail.
|
495 |
+
output_hidden_states (`bool`, *optional*):
|
496 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
497 |
+
more detail.
|
498 |
+
return_dict (`bool`, *optional*):
|
499 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
500 |
+
"""
|
501 |
+
|
502 |
+
BLIP_VISION_INPUTS_DOCSTRING = r"""
|
503 |
+
Args:
|
504 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
505 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
506 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
507 |
+
output_attentions (`bool`, *optional*):
|
508 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
509 |
+
tensors for more detail.
|
510 |
+
output_hidden_states (`bool`, *optional*):
|
511 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
512 |
+
more detail.
|
513 |
+
return_dict (`bool`, *optional*):
|
514 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
515 |
+
"""
|
516 |
+
|
517 |
+
BLIP_INPUTS_DOCSTRING = r"""
|
518 |
+
Args:
|
519 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
520 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
521 |
+
it.
|
522 |
+
|
523 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
524 |
+
|
525 |
+
[What are input IDs?](../glossary#input-ids)
|
526 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
527 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
528 |
+
|
529 |
+
- 1 for tokens that are **not masked**,
|
530 |
+
- 0 for tokens that are **masked**.
|
531 |
+
|
532 |
+
[What are attention masks?](../glossary#attention-mask)
|
533 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
534 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
535 |
+
config.max_position_embeddings - 1]`.
|
536 |
+
|
537 |
+
[What are position IDs?](../glossary#position-ids)
|
538 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
539 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
540 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
541 |
+
return_loss (`bool`, *optional*):
|
542 |
+
Whether or not to return the contrastive loss.
|
543 |
+
output_attentions (`bool`, *optional*):
|
544 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
545 |
+
tensors for more detail.
|
546 |
+
output_hidden_states (`bool`, *optional*):
|
547 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
548 |
+
more detail.
|
549 |
+
return_dict (`bool`, *optional*):
|
550 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
551 |
+
"""
|
552 |
+
|
553 |
+
|
554 |
+
class BlipEncoder(nn.Module):
|
555 |
+
"""
|
556 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
557 |
+
[`BlipEncoderLayer`].
|
558 |
+
|
559 |
+
Args:
|
560 |
+
config (`BlipConfig`):
|
561 |
+
The corresponding vision configuration for the `BlipEncoder`.
|
562 |
+
"""
|
563 |
+
|
564 |
+
def __init__(self, config: BlipConfig):
|
565 |
+
super().__init__()
|
566 |
+
self.config = config
|
567 |
+
self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
568 |
+
self.gradient_checkpointing = False
|
569 |
+
|
570 |
+
def forward(
|
571 |
+
self,
|
572 |
+
inputs_embeds,
|
573 |
+
attention_mask: Optional[torch.Tensor] = None,
|
574 |
+
output_attentions: Optional[bool] = None,
|
575 |
+
output_hidden_states: Optional[bool] = None,
|
576 |
+
return_dict: Optional[bool] = None,
|
577 |
+
) -> Union[Tuple, BaseModelOutput]:
|
578 |
+
r"""
|
579 |
+
Args:
|
580 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
581 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
582 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
583 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
584 |
+
|
585 |
+
- 1 for tokens that are **not masked**,
|
586 |
+
- 0 for tokens that are **masked**.
|
587 |
+
|
588 |
+
[What are attention masks?](../glossary#attention-mask)
|
589 |
+
output_attentions (`bool`, *optional*):
|
590 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
591 |
+
returned tensors for more detail.
|
592 |
+
output_hidden_states (`bool`, *optional*):
|
593 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
594 |
+
for more detail.
|
595 |
+
return_dict (`bool`, *optional*):
|
596 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
597 |
+
"""
|
598 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
599 |
+
output_hidden_states = (
|
600 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
601 |
+
)
|
602 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
603 |
+
|
604 |
+
encoder_states = () if output_hidden_states else None
|
605 |
+
all_attentions = () if output_attentions else None
|
606 |
+
|
607 |
+
hidden_states = inputs_embeds
|
608 |
+
for idx, encoder_layer in enumerate(self.layers):
|
609 |
+
if output_hidden_states:
|
610 |
+
encoder_states = encoder_states + (hidden_states,)
|
611 |
+
if self.gradient_checkpointing and self.training:
|
612 |
+
layer_outputs = self._gradient_checkpointing_func(
|
613 |
+
encoder_layer.__call__,
|
614 |
+
hidden_states,
|
615 |
+
attention_mask,
|
616 |
+
output_attentions,
|
617 |
+
)
|
618 |
+
else:
|
619 |
+
layer_outputs = encoder_layer(
|
620 |
+
hidden_states,
|
621 |
+
attention_mask,
|
622 |
+
output_attentions=output_attentions,
|
623 |
+
)
|
624 |
+
|
625 |
+
hidden_states = layer_outputs[0]
|
626 |
+
|
627 |
+
if output_attentions:
|
628 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
629 |
+
|
630 |
+
if output_hidden_states:
|
631 |
+
encoder_states = encoder_states + (hidden_states,)
|
632 |
+
|
633 |
+
if not return_dict:
|
634 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
635 |
+
return BaseModelOutput(
|
636 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
637 |
+
)
|
638 |
+
|
639 |
+
|
640 |
+
class BlipVisionModel(BlipPreTrainedModel):
|
641 |
+
main_input_name = "pixel_values"
|
642 |
+
config_class = BlipVisionConfig
|
643 |
+
|
644 |
+
def __init__(self, config: BlipVisionConfig):
|
645 |
+
super().__init__(config)
|
646 |
+
self.config = config
|
647 |
+
embed_dim = config.hidden_size
|
648 |
+
|
649 |
+
self.embeddings = BlipVisionEmbeddings(config)
|
650 |
+
self.encoder = BlipEncoder(config)
|
651 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
652 |
+
|
653 |
+
self.post_init()
|
654 |
+
|
655 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
656 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig)
|
657 |
+
def forward(
|
658 |
+
self,
|
659 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
660 |
+
output_attentions: Optional[bool] = None,
|
661 |
+
output_hidden_states: Optional[bool] = None,
|
662 |
+
return_dict: Optional[bool] = None,
|
663 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
664 |
+
r"""
|
665 |
+
Returns:
|
666 |
+
|
667 |
+
"""
|
668 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
669 |
+
output_hidden_states = (
|
670 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
671 |
+
)
|
672 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
673 |
+
|
674 |
+
if pixel_values is None:
|
675 |
+
raise ValueError("You have to specify pixel_values")
|
676 |
+
|
677 |
+
hidden_states = self.embeddings(pixel_values)
|
678 |
+
|
679 |
+
encoder_outputs = self.encoder(
|
680 |
+
inputs_embeds=hidden_states,
|
681 |
+
output_attentions=output_attentions,
|
682 |
+
output_hidden_states=output_hidden_states,
|
683 |
+
return_dict=return_dict,
|
684 |
+
)
|
685 |
+
|
686 |
+
last_hidden_state = encoder_outputs[0]
|
687 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
688 |
+
|
689 |
+
pooled_output = last_hidden_state[:, 0, :]
|
690 |
+
pooled_output = self.post_layernorm(pooled_output)
|
691 |
+
|
692 |
+
if not return_dict:
|
693 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
694 |
+
|
695 |
+
return BaseModelOutputWithPooling(
|
696 |
+
last_hidden_state=last_hidden_state,
|
697 |
+
pooler_output=pooled_output,
|
698 |
+
hidden_states=encoder_outputs.hidden_states,
|
699 |
+
attentions=encoder_outputs.attentions,
|
700 |
+
)
|
701 |
+
|
702 |
+
def get_input_embeddings(self):
|
703 |
+
return self.embeddings
|
704 |
+
|
705 |
+
|
706 |
+
@add_start_docstrings(BLIP_START_DOCSTRING)
|
707 |
+
class BlipModel(BlipPreTrainedModel):
|
708 |
+
config_class = BlipConfig
|
709 |
+
|
710 |
+
def __init__(self, config: BlipConfig):
|
711 |
+
super().__init__(config)
|
712 |
+
|
713 |
+
if not isinstance(config.text_config, BlipTextConfig):
|
714 |
+
raise ValueError(
|
715 |
+
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
716 |
+
f" {type(config.text_config)}."
|
717 |
+
)
|
718 |
+
|
719 |
+
if not isinstance(config.vision_config, BlipVisionConfig):
|
720 |
+
raise ValueError(
|
721 |
+
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
722 |
+
f" {type(config.vision_config)}."
|
723 |
+
)
|
724 |
+
|
725 |
+
text_config = config.text_config
|
726 |
+
vision_config = config.vision_config
|
727 |
+
|
728 |
+
self.projection_dim = config.projection_dim
|
729 |
+
self.text_embed_dim = text_config.hidden_size
|
730 |
+
self.vision_embed_dim = vision_config.hidden_size
|
731 |
+
|
732 |
+
self.text_model = BlipTextModel(text_config)
|
733 |
+
self.vision_model = BlipVisionModel(vision_config)
|
734 |
+
|
735 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
736 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
737 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
738 |
+
|
739 |
+
# Initialize weights and apply final processing
|
740 |
+
self.post_init()
|
741 |
+
|
742 |
+
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
743 |
+
def get_text_features(
|
744 |
+
self,
|
745 |
+
input_ids: Optional[torch.Tensor] = None,
|
746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
747 |
+
position_ids: Optional[torch.Tensor] = None,
|
748 |
+
return_dict: Optional[bool] = None,
|
749 |
+
) -> torch.FloatTensor:
|
750 |
+
r"""
|
751 |
+
Returns:
|
752 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
753 |
+
applying the projection layer to the pooled output of [`BlipTextModel`].
|
754 |
+
|
755 |
+
Examples:
|
756 |
+
|
757 |
+
```python
|
758 |
+
>>> from transformers import AutoProcessor, BlipModel
|
759 |
+
|
760 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
761 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
762 |
+
|
763 |
+
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
764 |
+
>>> text_features = model.get_text_features(**inputs)
|
765 |
+
```"""
|
766 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
767 |
+
|
768 |
+
text_outputs = self.text_model(
|
769 |
+
input_ids=input_ids,
|
770 |
+
attention_mask=attention_mask,
|
771 |
+
position_ids=position_ids,
|
772 |
+
return_dict=return_dict,
|
773 |
+
)
|
774 |
+
|
775 |
+
pooled_output = text_outputs[1]
|
776 |
+
text_features = self.text_projection(pooled_output)
|
777 |
+
|
778 |
+
return text_features
|
779 |
+
|
780 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
781 |
+
def get_image_features(
|
782 |
+
self,
|
783 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
784 |
+
return_dict: Optional[bool] = None,
|
785 |
+
) -> torch.FloatTensor:
|
786 |
+
r"""
|
787 |
+
Returns:
|
788 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
789 |
+
applying the projection layer to the pooled output of [`BlipVisionModel`].
|
790 |
+
|
791 |
+
Examples:
|
792 |
+
|
793 |
+
```python
|
794 |
+
>>> from PIL import Image
|
795 |
+
>>> import requests
|
796 |
+
>>> from transformers import AutoProcessor, BlipModel
|
797 |
+
|
798 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
799 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
800 |
+
|
801 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
802 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
803 |
+
|
804 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
805 |
+
|
806 |
+
>>> image_features = model.get_image_features(**inputs)
|
807 |
+
```"""
|
808 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
809 |
+
|
810 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values, return_dict=return_dict)
|
811 |
+
|
812 |
+
pooled_output = vision_outputs[1] # pooled_output
|
813 |
+
image_features = self.visual_projection(pooled_output)
|
814 |
+
|
815 |
+
return image_features
|
816 |
+
|
817 |
+
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
|
818 |
+
@replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig)
|
819 |
+
def forward(
|
820 |
+
self,
|
821 |
+
input_ids: Optional[torch.LongTensor] = None,
|
822 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
823 |
+
attention_mask: Optional[torch.Tensor] = None,
|
824 |
+
position_ids: Optional[torch.LongTensor] = None,
|
825 |
+
return_loss: Optional[bool] = None,
|
826 |
+
output_attentions: Optional[bool] = None,
|
827 |
+
output_hidden_states: Optional[bool] = None,
|
828 |
+
return_dict: Optional[bool] = None,
|
829 |
+
) -> Union[Tuple, BlipOutput]:
|
830 |
+
r"""
|
831 |
+
Returns:
|
832 |
+
|
833 |
+
Examples:
|
834 |
+
|
835 |
+
```python
|
836 |
+
>>> from PIL import Image
|
837 |
+
>>> import requests
|
838 |
+
>>> from transformers import AutoProcessor, BlipModel
|
839 |
+
|
840 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
841 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
842 |
+
|
843 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
844 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
845 |
+
|
846 |
+
>>> inputs = processor(
|
847 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
848 |
+
... )
|
849 |
+
|
850 |
+
>>> outputs = model(**inputs)
|
851 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
852 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
853 |
+
```"""
|
854 |
+
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
|
855 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
856 |
+
output_hidden_states = (
|
857 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
858 |
+
)
|
859 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
860 |
+
|
861 |
+
vision_outputs = self.vision_model(
|
862 |
+
pixel_values=pixel_values,
|
863 |
+
output_attentions=output_attentions,
|
864 |
+
output_hidden_states=output_hidden_states,
|
865 |
+
return_dict=return_dict,
|
866 |
+
)
|
867 |
+
|
868 |
+
text_outputs = self.text_model(
|
869 |
+
input_ids=input_ids,
|
870 |
+
attention_mask=attention_mask,
|
871 |
+
position_ids=position_ids,
|
872 |
+
output_attentions=output_attentions,
|
873 |
+
output_hidden_states=output_hidden_states,
|
874 |
+
return_dict=return_dict,
|
875 |
+
)
|
876 |
+
|
877 |
+
image_embeds = vision_outputs[1]
|
878 |
+
image_embeds = self.visual_projection(image_embeds)
|
879 |
+
|
880 |
+
text_embeds = text_outputs[1]
|
881 |
+
text_embeds = self.text_projection(text_embeds)
|
882 |
+
|
883 |
+
# normalized features
|
884 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
885 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
886 |
+
|
887 |
+
# cosine similarity as logits
|
888 |
+
logit_scale = self.logit_scale.exp()
|
889 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
890 |
+
logits_per_image = logits_per_text.t()
|
891 |
+
|
892 |
+
loss = None
|
893 |
+
if return_loss:
|
894 |
+
loss = blip_loss(logits_per_text)
|
895 |
+
|
896 |
+
if not return_dict:
|
897 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
898 |
+
return ((loss,) + output) if loss is not None else output
|
899 |
+
|
900 |
+
return BlipOutput(
|
901 |
+
loss=loss,
|
902 |
+
logits_per_image=logits_per_image,
|
903 |
+
logits_per_text=logits_per_text,
|
904 |
+
text_embeds=text_embeds,
|
905 |
+
image_embeds=image_embeds,
|
906 |
+
text_model_output=text_outputs,
|
907 |
+
vision_model_output=vision_outputs,
|
908 |
+
)
|
909 |
+
|
910 |
+
|
911 |
+
@add_start_docstrings(
|
912 |
+
"""
|
913 |
+
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
|
914 |
+
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
|
915 |
+
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
|
916 |
+
from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
|
917 |
+
""",
|
918 |
+
BLIP_START_DOCSTRING,
|
919 |
+
)
|
920 |
+
class BlipForConditionalGeneration(BlipPreTrainedModel):
|
921 |
+
config_class = BlipConfig
|
922 |
+
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
|
923 |
+
main_input_name = "pixel_values"
|
924 |
+
|
925 |
+
def __init__(self, config: BlipConfig):
|
926 |
+
super().__init__(config)
|
927 |
+
|
928 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
929 |
+
|
930 |
+
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
931 |
+
|
932 |
+
self.decoder_input_ids = config.text_config.bos_token_id
|
933 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
934 |
+
|
935 |
+
# Initialize weights and apply final processing
|
936 |
+
self.post_init()
|
937 |
+
|
938 |
+
def get_input_embeddings(self) -> nn.Module:
|
939 |
+
return self.vision_model.embeddings.patch_embedding
|
940 |
+
|
941 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
942 |
+
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
|
943 |
+
def forward(
|
944 |
+
self,
|
945 |
+
pixel_values: torch.FloatTensor,
|
946 |
+
input_ids: Optional[torch.LongTensor] = None,
|
947 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
948 |
+
output_attentions: Optional[bool] = None,
|
949 |
+
output_hidden_states: Optional[bool] = None,
|
950 |
+
labels: Optional[torch.LongTensor] = None,
|
951 |
+
return_dict: Optional[bool] = None,
|
952 |
+
) -> Union[Tuple, BlipForConditionalGenerationModelOutput]:
|
953 |
+
r"""
|
954 |
+
Returns:
|
955 |
+
|
956 |
+
Examples:
|
957 |
+
|
958 |
+
```python
|
959 |
+
>>> from PIL import Image
|
960 |
+
>>> import requests
|
961 |
+
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
962 |
+
|
963 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
964 |
+
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
965 |
+
|
966 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
967 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
968 |
+
>>> text = "A picture of"
|
969 |
+
|
970 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
971 |
+
|
972 |
+
>>> outputs = model(**inputs)
|
973 |
+
```"""
|
974 |
+
|
975 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
976 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
977 |
+
output_hidden_states = (
|
978 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
979 |
+
)
|
980 |
+
|
981 |
+
vision_outputs = self.vision_model(
|
982 |
+
pixel_values=pixel_values,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
)
|
987 |
+
|
988 |
+
image_embeds = vision_outputs[0]
|
989 |
+
|
990 |
+
outputs = self.text_decoder(
|
991 |
+
input_ids=input_ids,
|
992 |
+
attention_mask=attention_mask,
|
993 |
+
encoder_hidden_states=image_embeds,
|
994 |
+
labels=labels,
|
995 |
+
return_dict=return_dict,
|
996 |
+
reduction="mean",
|
997 |
+
)
|
998 |
+
|
999 |
+
if not return_dict:
|
1000 |
+
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1001 |
+
return tuple(output for output in outputs if output is not None)
|
1002 |
+
|
1003 |
+
return BlipForConditionalGenerationModelOutput(
|
1004 |
+
loss=outputs.loss,
|
1005 |
+
logits=outputs.logits,
|
1006 |
+
image_embeds=image_embeds,
|
1007 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1008 |
+
hidden_states=vision_outputs.hidden_states,
|
1009 |
+
attentions=vision_outputs.attentions,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
@torch.no_grad()
|
1013 |
+
def generate(
|
1014 |
+
self,
|
1015 |
+
pixel_values: torch.FloatTensor,
|
1016 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1017 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1018 |
+
**generate_kwargs,
|
1019 |
+
) -> torch.LongTensor:
|
1020 |
+
r"""
|
1021 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1022 |
+
|
1023 |
+
Parameters:
|
1024 |
+
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
|
1025 |
+
Input image to be processed
|
1026 |
+
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1027 |
+
The sequence used as a prompt for the generation.
|
1028 |
+
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1029 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1030 |
+
|
1031 |
+
|
1032 |
+
Examples:
|
1033 |
+
```python
|
1034 |
+
>>> from PIL import Image
|
1035 |
+
>>> import requests
|
1036 |
+
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
1037 |
+
|
1038 |
+
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
1039 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1040 |
+
|
1041 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1042 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1043 |
+
|
1044 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1045 |
+
|
1046 |
+
>>> outputs = model.generate(**inputs)
|
1047 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1048 |
+
two cats sleeping on a couch
|
1049 |
+
```
|
1050 |
+
"""
|
1051 |
+
|
1052 |
+
batch_size = pixel_values.shape[0]
|
1053 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
1054 |
+
|
1055 |
+
image_embeds = vision_outputs[0]
|
1056 |
+
|
1057 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
1058 |
+
|
1059 |
+
if isinstance(input_ids, list):
|
1060 |
+
input_ids = torch.LongTensor(input_ids)
|
1061 |
+
elif input_ids is None:
|
1062 |
+
input_ids = (
|
1063 |
+
torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]])
|
1064 |
+
.repeat(batch_size, 1)
|
1065 |
+
.to(image_embeds.device)
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
input_ids[:, 0] = self.config.text_config.bos_token_id
|
1069 |
+
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
|
1070 |
+
|
1071 |
+
outputs = self.text_decoder.generate(
|
1072 |
+
input_ids=input_ids[:, :-1],
|
1073 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1074 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1075 |
+
attention_mask=attention_mask,
|
1076 |
+
encoder_hidden_states=image_embeds,
|
1077 |
+
encoder_attention_mask=image_attention_mask,
|
1078 |
+
**generate_kwargs,
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
return outputs
|
1082 |
+
|
1083 |
+
|
1084 |
+
@add_start_docstrings(
|
1085 |
+
"""
|
1086 |
+
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
|
1087 |
+
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
|
1088 |
+
with the encoding of the image, and the text decoder will output the answer to the question.
|
1089 |
+
""",
|
1090 |
+
BLIP_START_DOCSTRING,
|
1091 |
+
)
|
1092 |
+
class BlipForQuestionAnswering(BlipPreTrainedModel):
|
1093 |
+
config_class = BlipConfig
|
1094 |
+
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
|
1095 |
+
|
1096 |
+
def __init__(self, config: BlipConfig):
|
1097 |
+
super().__init__(config)
|
1098 |
+
|
1099 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
1100 |
+
|
1101 |
+
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
1102 |
+
|
1103 |
+
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
1104 |
+
|
1105 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
1106 |
+
self.decoder_start_token_id = config.text_config.bos_token_id
|
1107 |
+
|
1108 |
+
# Initialize weights and apply final processing
|
1109 |
+
self.post_init()
|
1110 |
+
|
1111 |
+
def get_input_embeddings(self) -> nn.Module:
|
1112 |
+
return self.vision_model.embeddings.patch_embedding
|
1113 |
+
|
1114 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1115 |
+
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
1116 |
+
def forward(
|
1117 |
+
self,
|
1118 |
+
input_ids: torch.LongTensor,
|
1119 |
+
pixel_values: torch.FloatTensor,
|
1120 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1121 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1122 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1123 |
+
output_attentions: Optional[bool] = None,
|
1124 |
+
output_hidden_states: Optional[bool] = None,
|
1125 |
+
labels: Optional[torch.LongTensor] = None,
|
1126 |
+
return_dict: Optional[bool] = None,
|
1127 |
+
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
1128 |
+
r"""
|
1129 |
+
Returns:
|
1130 |
+
|
1131 |
+
Examples:
|
1132 |
+
|
1133 |
+
```python
|
1134 |
+
>>> from PIL import Image
|
1135 |
+
>>> import requests
|
1136 |
+
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
1137 |
+
|
1138 |
+
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1139 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1140 |
+
|
1141 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1142 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1143 |
+
|
1144 |
+
>>> # training
|
1145 |
+
>>> text = "How many cats are in the picture?"
|
1146 |
+
>>> label = "2"
|
1147 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1148 |
+
>>> labels = processor(text=label, return_tensors="pt").input_ids
|
1149 |
+
|
1150 |
+
>>> inputs["labels"] = labels
|
1151 |
+
>>> outputs = model(**inputs)
|
1152 |
+
>>> loss = outputs.loss
|
1153 |
+
>>> loss.backward()
|
1154 |
+
|
1155 |
+
>>> # inference
|
1156 |
+
>>> text = "How many cats are in the picture?"
|
1157 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1158 |
+
>>> outputs = model.generate(**inputs)
|
1159 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1160 |
+
2
|
1161 |
+
```"""
|
1162 |
+
if labels is None and decoder_input_ids is None:
|
1163 |
+
raise ValueError(
|
1164 |
+
"Either `decoder_input_ids` or `labels` should be passed when calling `forward` with"
|
1165 |
+
" `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
|
1166 |
+
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1170 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1171 |
+
output_hidden_states = (
|
1172 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
vision_outputs = self.vision_model(
|
1176 |
+
pixel_values=pixel_values,
|
1177 |
+
output_attentions=output_attentions,
|
1178 |
+
output_hidden_states=output_hidden_states,
|
1179 |
+
return_dict=return_dict,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
image_embeds = vision_outputs[0]
|
1183 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
1184 |
+
|
1185 |
+
question_embeds = self.text_encoder(
|
1186 |
+
input_ids=input_ids,
|
1187 |
+
attention_mask=attention_mask,
|
1188 |
+
encoder_hidden_states=image_embeds,
|
1189 |
+
encoder_attention_mask=image_attention_mask,
|
1190 |
+
return_dict=return_dict,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
if labels is not None and decoder_input_ids is None:
|
1194 |
+
# labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
|
1195 |
+
decoder_input_ids = labels
|
1196 |
+
|
1197 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1198 |
+
|
1199 |
+
answer_output = self.text_decoder(
|
1200 |
+
input_ids=decoder_input_ids,
|
1201 |
+
attention_mask=decoder_attention_mask,
|
1202 |
+
encoder_hidden_states=question_embeds,
|
1203 |
+
encoder_attention_mask=attention_mask,
|
1204 |
+
labels=labels,
|
1205 |
+
return_dict=return_dict,
|
1206 |
+
reduction="mean",
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
if labels is not None:
|
1210 |
+
decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean()
|
1211 |
+
else:
|
1212 |
+
decoder_loss = None
|
1213 |
+
|
1214 |
+
if not return_dict:
|
1215 |
+
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1216 |
+
return tuple(output for output in outputs if output is not None)
|
1217 |
+
|
1218 |
+
return BlipTextVisionModelOutput(
|
1219 |
+
loss=decoder_loss,
|
1220 |
+
image_embeds=image_embeds,
|
1221 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1222 |
+
hidden_states=vision_outputs.hidden_states,
|
1223 |
+
attentions=vision_outputs.attentions,
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
@torch.no_grad()
|
1227 |
+
def generate(
|
1228 |
+
self,
|
1229 |
+
input_ids: torch.LongTensor,
|
1230 |
+
pixel_values: torch.FloatTensor,
|
1231 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1232 |
+
**generate_kwargs,
|
1233 |
+
) -> torch.LongTensor:
|
1234 |
+
r"""
|
1235 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1236 |
+
|
1237 |
+
Parameters:
|
1238 |
+
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*):
|
1239 |
+
The sequence used as a prompt for the generation.
|
1240 |
+
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
|
1241 |
+
Input image to be processed
|
1242 |
+
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1243 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
|
1244 |
+
tokens that are NOT MASKED, `0` for MASKED tokens.
|
1245 |
+
**generate_kwargs:
|
1246 |
+
Additional arguments passed to the *generate* function of the decoder
|
1247 |
+
|
1248 |
+
|
1249 |
+
Examples:
|
1250 |
+
```python
|
1251 |
+
>>> from PIL import Image
|
1252 |
+
>>> import requests
|
1253 |
+
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
1254 |
+
|
1255 |
+
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1256 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1257 |
+
|
1258 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1259 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1260 |
+
>>> text = "How many cats are in the picture?"
|
1261 |
+
|
1262 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1263 |
+
|
1264 |
+
>>> outputs = model.generate(**inputs)
|
1265 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1266 |
+
2
|
1267 |
+
```
|
1268 |
+
"""
|
1269 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
1270 |
+
|
1271 |
+
image_embeds = vision_outputs[0]
|
1272 |
+
|
1273 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
1274 |
+
|
1275 |
+
if isinstance(input_ids, list):
|
1276 |
+
input_ids = torch.LongTensor(input_ids)
|
1277 |
+
|
1278 |
+
question_outputs = self.text_encoder(
|
1279 |
+
input_ids=input_ids,
|
1280 |
+
attention_mask=attention_mask,
|
1281 |
+
encoder_hidden_states=image_embeds,
|
1282 |
+
encoder_attention_mask=image_attention_mask,
|
1283 |
+
return_dict=False,
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
question_embeds = question_outputs[0]
|
1287 |
+
|
1288 |
+
question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device)
|
1289 |
+
|
1290 |
+
bos_ids = torch.full(
|
1291 |
+
(question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
outputs = self.text_decoder.generate(
|
1295 |
+
input_ids=bos_ids,
|
1296 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1297 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1298 |
+
encoder_hidden_states=question_embeds,
|
1299 |
+
encoder_attention_mask=question_attention_mask,
|
1300 |
+
**generate_kwargs,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
return outputs
|
1304 |
+
|
1305 |
+
|
1306 |
+
@add_start_docstrings(
|
1307 |
+
"""
|
1308 |
+
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
|
1309 |
+
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
|
1310 |
+
the image.
|
1311 |
+
""",
|
1312 |
+
BLIP_START_DOCSTRING,
|
1313 |
+
)
|
1314 |
+
class BlipForImageTextRetrieval(BlipPreTrainedModel):
|
1315 |
+
config_class = BlipConfig
|
1316 |
+
|
1317 |
+
def __init__(self, config: BlipConfig):
|
1318 |
+
super().__init__(config)
|
1319 |
+
|
1320 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
1321 |
+
|
1322 |
+
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
1323 |
+
|
1324 |
+
# vision projection layer
|
1325 |
+
self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size)
|
1326 |
+
|
1327 |
+
# text projection layer
|
1328 |
+
self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size)
|
1329 |
+
|
1330 |
+
# image text matching head
|
1331 |
+
self.itm_head = nn.Linear(config.text_config.hidden_size, 2)
|
1332 |
+
|
1333 |
+
self.decoder_pad_token_id = (
|
1334 |
+
config.text_config.pad_token_id
|
1335 |
+
if not hasattr(config, "decoder_pad_token_id")
|
1336 |
+
else config.decoder_pad_token_id
|
1337 |
+
)
|
1338 |
+
self.decoder_start_token_id = (
|
1339 |
+
config.text_config.bos_token_id
|
1340 |
+
if not hasattr(config, "decoder_start_token_id")
|
1341 |
+
else config.decoder_start_token_id
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
# Initialize weights and apply final processing
|
1345 |
+
self.post_init()
|
1346 |
+
|
1347 |
+
def get_input_embeddings(self) -> nn.Module:
|
1348 |
+
return self.vision_model.embeddings.patch_embedding
|
1349 |
+
|
1350 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1351 |
+
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
1352 |
+
def forward(
|
1353 |
+
self,
|
1354 |
+
input_ids: torch.LongTensor,
|
1355 |
+
pixel_values: torch.FloatTensor,
|
1356 |
+
use_itm_head: Optional[bool] = True,
|
1357 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1358 |
+
output_attentions: Optional[bool] = None,
|
1359 |
+
output_hidden_states: Optional[bool] = None,
|
1360 |
+
return_dict: Optional[bool] = None,
|
1361 |
+
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
1362 |
+
r"""
|
1363 |
+
Returns:
|
1364 |
+
|
1365 |
+
Examples:
|
1366 |
+
|
1367 |
+
```python
|
1368 |
+
>>> from PIL import Image
|
1369 |
+
>>> import requests
|
1370 |
+
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval
|
1371 |
+
|
1372 |
+
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
|
1373 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
1374 |
+
|
1375 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1376 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1377 |
+
>>> text = "an image of a cat"
|
1378 |
+
|
1379 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1380 |
+
>>> outputs = model(**inputs)
|
1381 |
+
```
|
1382 |
+
"""
|
1383 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1384 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1385 |
+
output_hidden_states = (
|
1386 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
vision_outputs = self.vision_model(
|
1390 |
+
pixel_values=pixel_values,
|
1391 |
+
output_attentions=output_attentions,
|
1392 |
+
output_hidden_states=output_hidden_states,
|
1393 |
+
return_dict=return_dict,
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
image_embeds = vision_outputs[0]
|
1397 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
1398 |
+
|
1399 |
+
if use_itm_head:
|
1400 |
+
question_embeds = self.text_encoder(
|
1401 |
+
input_ids=input_ids,
|
1402 |
+
attention_mask=attention_mask,
|
1403 |
+
encoder_hidden_states=image_embeds,
|
1404 |
+
encoder_attention_mask=image_atts,
|
1405 |
+
return_dict=return_dict,
|
1406 |
+
)
|
1407 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1408 |
+
|
1409 |
+
output = self.itm_head(question_embeds[:, 0, :])
|
1410 |
+
else:
|
1411 |
+
question_embeds = self.text_encoder(
|
1412 |
+
input_ids=input_ids,
|
1413 |
+
attention_mask=attention_mask,
|
1414 |
+
return_dict=return_dict,
|
1415 |
+
)
|
1416 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1417 |
+
|
1418 |
+
image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
|
1419 |
+
text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1)
|
1420 |
+
|
1421 |
+
output = image_feat @ text_feat.t()
|
1422 |
+
|
1423 |
+
if not return_dict:
|
1424 |
+
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
|
1425 |
+
return tuple(output for output in outputs if output is not None)
|
1426 |
+
|
1427 |
+
return BlipImageTextMatchingModelOutput(
|
1428 |
+
itm_score=output,
|
1429 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1430 |
+
hidden_states=vision_outputs.hidden_states,
|
1431 |
+
attentions=vision_outputs.attentions,
|
1432 |
+
question_embeds=question_embeds,
|
1433 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/blip/modeling_blip_text.py
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the BSD-3-clause license (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# https://opensource.org/licenses/BSD-3-Clause
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import Tensor, device, nn
|
23 |
+
from torch.nn import CrossEntropyLoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
29 |
+
CausalLMOutputWithCrossAttentions,
|
30 |
+
)
|
31 |
+
from ...modeling_utils import (
|
32 |
+
PreTrainedModel,
|
33 |
+
apply_chunking_to_forward,
|
34 |
+
find_pruneable_heads_and_indices,
|
35 |
+
prune_linear_layer,
|
36 |
+
)
|
37 |
+
from ...utils import logging
|
38 |
+
from .configuration_blip import BlipTextConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
|
45 |
+
class BlipTextEmbeddings(nn.Module):
|
46 |
+
"""Construct the embeddings from word and position embeddings."""
|
47 |
+
|
48 |
+
def __init__(self, config):
|
49 |
+
super().__init__()
|
50 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
51 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
52 |
+
|
53 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
54 |
+
# any TensorFlow checkpoint file
|
55 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
56 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
57 |
+
|
58 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
59 |
+
self.register_buffer(
|
60 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
61 |
+
)
|
62 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
63 |
+
|
64 |
+
self.config = config
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_ids: Optional[torch.LongTensor] = None,
|
69 |
+
position_ids: Optional[torch.LongTensor] = None,
|
70 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
71 |
+
past_key_values_length: int = 0,
|
72 |
+
) -> torch.Tensor:
|
73 |
+
if input_ids is not None:
|
74 |
+
input_shape = input_ids.size()
|
75 |
+
else:
|
76 |
+
input_shape = inputs_embeds.size()[:-1]
|
77 |
+
|
78 |
+
seq_length = input_shape[1]
|
79 |
+
|
80 |
+
if position_ids is None:
|
81 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
82 |
+
|
83 |
+
if inputs_embeds is None:
|
84 |
+
input_ids = input_ids.to(self.word_embeddings.weight.device)
|
85 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
86 |
+
|
87 |
+
embeddings = inputs_embeds
|
88 |
+
|
89 |
+
if self.position_embedding_type == "absolute":
|
90 |
+
position_embeddings = self.position_embeddings(position_ids)
|
91 |
+
embeddings += position_embeddings
|
92 |
+
embeddings = self.LayerNorm(embeddings)
|
93 |
+
embeddings = self.dropout(embeddings)
|
94 |
+
return embeddings
|
95 |
+
|
96 |
+
|
97 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
|
98 |
+
class BlipTextSelfAttention(nn.Module):
|
99 |
+
def __init__(self, config, is_cross_attention):
|
100 |
+
super().__init__()
|
101 |
+
self.config = config
|
102 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
103 |
+
raise ValueError(
|
104 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
105 |
+
% (config.hidden_size, config.num_attention_heads)
|
106 |
+
)
|
107 |
+
|
108 |
+
self.num_attention_heads = config.num_attention_heads
|
109 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
110 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
111 |
+
|
112 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
113 |
+
if is_cross_attention:
|
114 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
115 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
116 |
+
else:
|
117 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
118 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
119 |
+
|
120 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
121 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
122 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
123 |
+
self.max_position_embeddings = config.max_position_embeddings
|
124 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
125 |
+
|
126 |
+
def save_attn_gradients(self, attn_gradients):
|
127 |
+
self.attn_gradients = attn_gradients
|
128 |
+
|
129 |
+
def get_attn_gradients(self):
|
130 |
+
return self.attn_gradients
|
131 |
+
|
132 |
+
def save_attention_map(self, attention_map):
|
133 |
+
self.attention_map = attention_map
|
134 |
+
|
135 |
+
def get_attention_map(self):
|
136 |
+
return self.attention_map
|
137 |
+
|
138 |
+
def transpose_for_scores(self, x):
|
139 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
140 |
+
x = x.view(*new_x_shape)
|
141 |
+
return x.permute(0, 2, 1, 3)
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
hidden_states: torch.Tensor,
|
146 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
147 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
148 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
149 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
150 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
151 |
+
output_attentions: Optional[bool] = False,
|
152 |
+
) -> Tuple[torch.Tensor]:
|
153 |
+
mixed_query_layer = self.query(hidden_states)
|
154 |
+
|
155 |
+
# If this is instantiated as a cross-attention module, the keys
|
156 |
+
# and values come from an encoder; the attention mask needs to be
|
157 |
+
# such that the encoder's padding tokens are not attended to.
|
158 |
+
is_cross_attention = encoder_hidden_states is not None
|
159 |
+
|
160 |
+
if is_cross_attention:
|
161 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
162 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
163 |
+
attention_mask = encoder_attention_mask
|
164 |
+
elif past_key_value is not None:
|
165 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
166 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
167 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
168 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
169 |
+
else:
|
170 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
171 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
172 |
+
|
173 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
174 |
+
|
175 |
+
past_key_value = (key_layer, value_layer)
|
176 |
+
|
177 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
178 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
179 |
+
|
180 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
181 |
+
seq_length = hidden_states.size()[1]
|
182 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
183 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
184 |
+
distance = position_ids_l - position_ids_r
|
185 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
186 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
187 |
+
|
188 |
+
if self.position_embedding_type == "relative_key":
|
189 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
190 |
+
attention_scores = attention_scores + relative_position_scores
|
191 |
+
elif self.position_embedding_type == "relative_key_query":
|
192 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
193 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
194 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
195 |
+
|
196 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
197 |
+
if attention_mask is not None:
|
198 |
+
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
|
199 |
+
attention_scores = attention_scores + attention_mask.to(attention_scores.device)
|
200 |
+
|
201 |
+
# Normalize the attention scores to probabilities.
|
202 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
203 |
+
|
204 |
+
# This is actually dropping out entire tokens to attend to, which might
|
205 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
206 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
207 |
+
|
208 |
+
# Mask heads if we want to
|
209 |
+
if head_mask is not None:
|
210 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
211 |
+
|
212 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
213 |
+
|
214 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
215 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
216 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
217 |
+
|
218 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
219 |
+
|
220 |
+
outputs = outputs + (past_key_value,)
|
221 |
+
return outputs
|
222 |
+
|
223 |
+
|
224 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText
|
225 |
+
class BlipTextSelfOutput(nn.Module):
|
226 |
+
def __init__(self, config):
|
227 |
+
super().__init__()
|
228 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
229 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
230 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
231 |
+
|
232 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
233 |
+
hidden_states = self.dense(hidden_states)
|
234 |
+
hidden_states = self.dropout(hidden_states)
|
235 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
236 |
+
return hidden_states
|
237 |
+
|
238 |
+
|
239 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
|
240 |
+
class BlipTextAttention(nn.Module):
|
241 |
+
def __init__(self, config, is_cross_attention=False):
|
242 |
+
super().__init__()
|
243 |
+
self.self = BlipTextSelfAttention(config, is_cross_attention)
|
244 |
+
self.output = BlipTextSelfOutput(config)
|
245 |
+
self.pruned_heads = set()
|
246 |
+
|
247 |
+
def prune_heads(self, heads):
|
248 |
+
if len(heads) == 0:
|
249 |
+
return
|
250 |
+
heads, index = find_pruneable_heads_and_indices(
|
251 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
252 |
+
)
|
253 |
+
|
254 |
+
# Prune linear layers
|
255 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
256 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
257 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
258 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
259 |
+
|
260 |
+
# Update hyper params and store pruned heads
|
261 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
262 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
263 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
264 |
+
|
265 |
+
def forward(
|
266 |
+
self,
|
267 |
+
hidden_states: torch.Tensor,
|
268 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
269 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
270 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
271 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
272 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
273 |
+
output_attentions: Optional[bool] = False,
|
274 |
+
) -> Tuple[torch.Tensor]:
|
275 |
+
self_outputs = self.self(
|
276 |
+
hidden_states,
|
277 |
+
attention_mask,
|
278 |
+
head_mask,
|
279 |
+
encoder_hidden_states,
|
280 |
+
encoder_attention_mask,
|
281 |
+
past_key_value,
|
282 |
+
output_attentions,
|
283 |
+
)
|
284 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
285 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
286 |
+
return outputs
|
287 |
+
|
288 |
+
|
289 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText
|
290 |
+
class BlipTextIntermediate(nn.Module):
|
291 |
+
def __init__(self, config):
|
292 |
+
super().__init__()
|
293 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
294 |
+
if isinstance(config.hidden_act, str):
|
295 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
296 |
+
else:
|
297 |
+
self.intermediate_act_fn = config.hidden_act
|
298 |
+
|
299 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
300 |
+
hidden_states = self.dense(hidden_states)
|
301 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
302 |
+
return hidden_states
|
303 |
+
|
304 |
+
|
305 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText
|
306 |
+
class BlipTextOutput(nn.Module):
|
307 |
+
def __init__(self, config):
|
308 |
+
super().__init__()
|
309 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
310 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
311 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
312 |
+
|
313 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
314 |
+
hidden_states = self.dense(hidden_states)
|
315 |
+
hidden_states = self.dropout(hidden_states)
|
316 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
317 |
+
return hidden_states
|
318 |
+
|
319 |
+
|
320 |
+
class BlipTextLayer(nn.Module):
|
321 |
+
def __init__(self, config, layer_num):
|
322 |
+
super().__init__()
|
323 |
+
self.config = config
|
324 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
325 |
+
self.seq_len_dim = 1
|
326 |
+
self.attention = BlipTextAttention(config)
|
327 |
+
self.layer_num = layer_num
|
328 |
+
if self.config.is_decoder:
|
329 |
+
self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
|
330 |
+
self.intermediate = BlipTextIntermediate(config)
|
331 |
+
self.output = BlipTextOutput(config)
|
332 |
+
|
333 |
+
def forward(
|
334 |
+
self,
|
335 |
+
hidden_states: torch.Tensor,
|
336 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
337 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
338 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
339 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
340 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
341 |
+
output_attentions: Optional[bool] = False,
|
342 |
+
) -> Tuple[torch.Tensor]:
|
343 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
344 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
345 |
+
self_attention_outputs = self.attention(
|
346 |
+
hidden_states,
|
347 |
+
attention_mask,
|
348 |
+
head_mask,
|
349 |
+
output_attentions=output_attentions,
|
350 |
+
past_key_value=self_attn_past_key_value,
|
351 |
+
)
|
352 |
+
attention_output = self_attention_outputs[0]
|
353 |
+
|
354 |
+
outputs = self_attention_outputs[1:-1]
|
355 |
+
present_key_value = self_attention_outputs[-1]
|
356 |
+
|
357 |
+
if encoder_hidden_states is not None:
|
358 |
+
cross_attention_outputs = self.crossattention(
|
359 |
+
attention_output,
|
360 |
+
attention_mask,
|
361 |
+
head_mask,
|
362 |
+
encoder_hidden_states,
|
363 |
+
encoder_attention_mask,
|
364 |
+
output_attentions=output_attentions,
|
365 |
+
)
|
366 |
+
attention_output = cross_attention_outputs[0]
|
367 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
368 |
+
layer_output = apply_chunking_to_forward(
|
369 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
370 |
+
)
|
371 |
+
outputs = (layer_output,) + outputs
|
372 |
+
|
373 |
+
outputs = outputs + (present_key_value,)
|
374 |
+
|
375 |
+
return outputs
|
376 |
+
|
377 |
+
def feed_forward_chunk(self, attention_output):
|
378 |
+
intermediate_output = self.intermediate(attention_output)
|
379 |
+
layer_output = self.output(intermediate_output, attention_output)
|
380 |
+
return layer_output
|
381 |
+
|
382 |
+
|
383 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
|
384 |
+
class BlipTextEncoder(nn.Module):
|
385 |
+
def __init__(self, config):
|
386 |
+
super().__init__()
|
387 |
+
self.config = config
|
388 |
+
self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
|
389 |
+
self.gradient_checkpointing = False
|
390 |
+
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
hidden_states: torch.Tensor,
|
394 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
395 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
396 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
397 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
398 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
399 |
+
use_cache: Optional[bool] = None,
|
400 |
+
output_attentions: Optional[bool] = False,
|
401 |
+
output_hidden_states: Optional[bool] = False,
|
402 |
+
return_dict: Optional[bool] = True,
|
403 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
404 |
+
if self.gradient_checkpointing and self.training:
|
405 |
+
if use_cache:
|
406 |
+
logger.warning(
|
407 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
408 |
+
)
|
409 |
+
use_cache = False
|
410 |
+
all_hidden_states = () if output_hidden_states else None
|
411 |
+
all_self_attentions = () if output_attentions else None
|
412 |
+
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
|
413 |
+
|
414 |
+
next_decoder_cache = () if use_cache else None
|
415 |
+
|
416 |
+
for i in range(self.config.num_hidden_layers):
|
417 |
+
layer_module = self.layer[i]
|
418 |
+
if output_hidden_states:
|
419 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
420 |
+
|
421 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
422 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
423 |
+
|
424 |
+
if self.gradient_checkpointing and self.training:
|
425 |
+
layer_outputs = self._gradient_checkpointing_func(
|
426 |
+
layer_module.__call__,
|
427 |
+
hidden_states,
|
428 |
+
attention_mask,
|
429 |
+
layer_head_mask,
|
430 |
+
encoder_hidden_states,
|
431 |
+
encoder_attention_mask,
|
432 |
+
past_key_value,
|
433 |
+
output_attentions,
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
layer_outputs = layer_module(
|
437 |
+
hidden_states,
|
438 |
+
attention_mask,
|
439 |
+
layer_head_mask,
|
440 |
+
encoder_hidden_states,
|
441 |
+
encoder_attention_mask,
|
442 |
+
past_key_value,
|
443 |
+
output_attentions,
|
444 |
+
)
|
445 |
+
|
446 |
+
hidden_states = layer_outputs[0]
|
447 |
+
if use_cache:
|
448 |
+
next_decoder_cache += (layer_outputs[-1],)
|
449 |
+
if output_attentions:
|
450 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
451 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
452 |
+
|
453 |
+
if output_hidden_states:
|
454 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
455 |
+
|
456 |
+
if not return_dict:
|
457 |
+
return tuple(
|
458 |
+
v
|
459 |
+
for v in [
|
460 |
+
hidden_states,
|
461 |
+
next_decoder_cache,
|
462 |
+
all_hidden_states,
|
463 |
+
all_self_attentions,
|
464 |
+
all_cross_attentions,
|
465 |
+
]
|
466 |
+
if v is not None
|
467 |
+
)
|
468 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
469 |
+
last_hidden_state=hidden_states,
|
470 |
+
past_key_values=next_decoder_cache,
|
471 |
+
hidden_states=all_hidden_states,
|
472 |
+
attentions=all_self_attentions,
|
473 |
+
cross_attentions=all_cross_attentions,
|
474 |
+
)
|
475 |
+
|
476 |
+
|
477 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
|
478 |
+
class BlipTextPooler(nn.Module):
|
479 |
+
def __init__(self, config):
|
480 |
+
super().__init__()
|
481 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
482 |
+
self.activation = nn.Tanh()
|
483 |
+
|
484 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
485 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
486 |
+
# to the first token.
|
487 |
+
first_token_tensor = hidden_states[:, 0]
|
488 |
+
pooled_output = self.dense(first_token_tensor)
|
489 |
+
pooled_output = self.activation(pooled_output)
|
490 |
+
return pooled_output
|
491 |
+
|
492 |
+
|
493 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText
|
494 |
+
class BlipTextPredictionHeadTransform(nn.Module):
|
495 |
+
def __init__(self, config):
|
496 |
+
super().__init__()
|
497 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
498 |
+
if isinstance(config.hidden_act, str):
|
499 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
500 |
+
else:
|
501 |
+
self.transform_act_fn = config.hidden_act
|
502 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
503 |
+
|
504 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
505 |
+
hidden_states = self.dense(hidden_states)
|
506 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
507 |
+
hidden_states = self.LayerNorm(hidden_states)
|
508 |
+
return hidden_states
|
509 |
+
|
510 |
+
|
511 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText
|
512 |
+
class BlipTextLMPredictionHead(nn.Module):
|
513 |
+
def __init__(self, config):
|
514 |
+
super().__init__()
|
515 |
+
self.transform = BlipTextPredictionHeadTransform(config)
|
516 |
+
|
517 |
+
# The output weights are the same as the input embeddings, but there is
|
518 |
+
# an output-only bias for each token.
|
519 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
520 |
+
|
521 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
522 |
+
|
523 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
524 |
+
self.decoder.bias = self.bias
|
525 |
+
|
526 |
+
def forward(self, hidden_states):
|
527 |
+
hidden_states = self.transform(hidden_states)
|
528 |
+
hidden_states = self.decoder(hidden_states)
|
529 |
+
return hidden_states
|
530 |
+
|
531 |
+
|
532 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText
|
533 |
+
class BlipTextOnlyMLMHead(nn.Module):
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__()
|
536 |
+
self.predictions = BlipTextLMPredictionHead(config)
|
537 |
+
|
538 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
539 |
+
prediction_scores = self.predictions(sequence_output)
|
540 |
+
return prediction_scores
|
541 |
+
|
542 |
+
|
543 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
|
544 |
+
class BlipTextPreTrainedModel(PreTrainedModel):
|
545 |
+
"""
|
546 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
547 |
+
models.
|
548 |
+
"""
|
549 |
+
|
550 |
+
config_class = BlipTextConfig
|
551 |
+
base_model_prefix = "bert"
|
552 |
+
|
553 |
+
def _init_weights(self, module):
|
554 |
+
"""Initialize the weights"""
|
555 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
556 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
557 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
558 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
559 |
+
elif isinstance(module, nn.LayerNorm):
|
560 |
+
module.bias.data.zero_()
|
561 |
+
module.weight.data.fill_(1.0)
|
562 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
563 |
+
module.bias.data.zero_()
|
564 |
+
|
565 |
+
|
566 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
|
567 |
+
class BlipTextModel(BlipTextPreTrainedModel):
|
568 |
+
"""
|
569 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
570 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
571 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
572 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
|
573 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
574 |
+
"""
|
575 |
+
|
576 |
+
def __init__(self, config, add_pooling_layer=True):
|
577 |
+
super().__init__(config)
|
578 |
+
self.config = config
|
579 |
+
|
580 |
+
self.embeddings = BlipTextEmbeddings(config)
|
581 |
+
self.encoder = BlipTextEncoder(config)
|
582 |
+
self.pooler = BlipTextPooler(config) if add_pooling_layer else None
|
583 |
+
|
584 |
+
self.post_init()
|
585 |
+
|
586 |
+
def get_input_embeddings(self):
|
587 |
+
return self.embeddings.word_embeddings
|
588 |
+
|
589 |
+
def set_input_embeddings(self, value):
|
590 |
+
self.embeddings.word_embeddings = value
|
591 |
+
|
592 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
|
593 |
+
def _prune_heads(self, heads_to_prune):
|
594 |
+
"""
|
595 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
596 |
+
class PreTrainedModel
|
597 |
+
"""
|
598 |
+
for layer, heads in heads_to_prune.items():
|
599 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
600 |
+
|
601 |
+
def get_extended_attention_mask(
|
602 |
+
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
|
603 |
+
) -> Tensor:
|
604 |
+
"""
|
605 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
606 |
+
|
607 |
+
Arguments:
|
608 |
+
attention_mask (`torch.Tensor`):
|
609 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
610 |
+
input_shape (`Tuple[int]`):
|
611 |
+
The shape of the input to the model.
|
612 |
+
device (`torch.device`):
|
613 |
+
The device of the input to the model.
|
614 |
+
|
615 |
+
Returns:
|
616 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
617 |
+
"""
|
618 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
619 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
620 |
+
if attention_mask.dim() == 3:
|
621 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
622 |
+
elif attention_mask.dim() == 2:
|
623 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
624 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
625 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
626 |
+
if is_decoder:
|
627 |
+
batch_size, seq_length = input_shape
|
628 |
+
|
629 |
+
seq_ids = torch.arange(seq_length, device=device)
|
630 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
631 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
632 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
633 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
634 |
+
|
635 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
636 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
637 |
+
causal_mask = torch.cat(
|
638 |
+
[
|
639 |
+
torch.ones(
|
640 |
+
(batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
|
641 |
+
),
|
642 |
+
causal_mask,
|
643 |
+
],
|
644 |
+
axis=-1,
|
645 |
+
)
|
646 |
+
|
647 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
648 |
+
else:
|
649 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
650 |
+
else:
|
651 |
+
raise ValueError(
|
652 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
653 |
+
input_shape, attention_mask.shape
|
654 |
+
)
|
655 |
+
)
|
656 |
+
|
657 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
658 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
659 |
+
# positions we want to attend and -10000.0 for masked positions.
|
660 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
661 |
+
# effectively the same as removing these entirely.
|
662 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
663 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
664 |
+
return extended_attention_mask
|
665 |
+
|
666 |
+
def forward(
|
667 |
+
self,
|
668 |
+
input_ids: Optional[torch.Tensor] = None,
|
669 |
+
attention_mask: Optional[torch.Tensor] = None,
|
670 |
+
position_ids: Optional[torch.Tensor] = None,
|
671 |
+
head_mask: Optional[torch.Tensor] = None,
|
672 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
673 |
+
encoder_embeds: Optional[torch.Tensor] = None,
|
674 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
675 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
676 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
677 |
+
use_cache: Optional[bool] = None,
|
678 |
+
output_attentions: Optional[bool] = None,
|
679 |
+
output_hidden_states: Optional[bool] = None,
|
680 |
+
return_dict: Optional[bool] = None,
|
681 |
+
is_decoder: Optional[bool] = False,
|
682 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
683 |
+
r"""
|
684 |
+
encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
685 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
686 |
+
the model is configured as a decoder.
|
687 |
+
encoder_attention_mask (`torch.FloatTensor`, *optional*):
|
688 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
689 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
690 |
+
- 1 for tokens that are **not masked**,
|
691 |
+
- 0 for tokens that are **masked**.
|
692 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
|
693 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
694 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
695 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
696 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
697 |
+
use_cache (`bool`, *optional*):
|
698 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
699 |
+
`past_key_values`).
|
700 |
+
"""
|
701 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
702 |
+
output_hidden_states = (
|
703 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
704 |
+
)
|
705 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
706 |
+
|
707 |
+
if is_decoder:
|
708 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
709 |
+
else:
|
710 |
+
use_cache = False
|
711 |
+
|
712 |
+
if input_ids is not None and inputs_embeds is not None:
|
713 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
714 |
+
elif input_ids is not None:
|
715 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
716 |
+
input_shape = input_ids.size()
|
717 |
+
batch_size, seq_length = input_shape
|
718 |
+
device = input_ids.device
|
719 |
+
elif inputs_embeds is not None:
|
720 |
+
input_shape = inputs_embeds.size()[:-1]
|
721 |
+
batch_size, seq_length = input_shape
|
722 |
+
device = inputs_embeds.device
|
723 |
+
elif encoder_embeds is not None:
|
724 |
+
input_shape = encoder_embeds.size()[:-1]
|
725 |
+
batch_size, seq_length = input_shape
|
726 |
+
device = encoder_embeds.device
|
727 |
+
else:
|
728 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
729 |
+
|
730 |
+
# past_key_values_length
|
731 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
732 |
+
|
733 |
+
if attention_mask is None:
|
734 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device)
|
735 |
+
|
736 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
737 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
738 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
739 |
+
attention_mask, input_shape, device, is_decoder
|
740 |
+
)
|
741 |
+
|
742 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
743 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
744 |
+
if encoder_hidden_states is not None:
|
745 |
+
if isinstance(encoder_hidden_states, list):
|
746 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
747 |
+
else:
|
748 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
749 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
750 |
+
|
751 |
+
if isinstance(encoder_attention_mask, list):
|
752 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
753 |
+
elif encoder_attention_mask is None:
|
754 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
755 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
756 |
+
else:
|
757 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
758 |
+
else:
|
759 |
+
encoder_extended_attention_mask = None
|
760 |
+
|
761 |
+
# Prepare head mask if needed
|
762 |
+
# 1.0 in head_mask indicate we keep the head
|
763 |
+
# attention_probs has shape bsz x n_heads x N x N
|
764 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
765 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
766 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
767 |
+
|
768 |
+
if encoder_embeds is None:
|
769 |
+
embedding_output = self.embeddings(
|
770 |
+
input_ids=input_ids,
|
771 |
+
position_ids=position_ids,
|
772 |
+
inputs_embeds=inputs_embeds,
|
773 |
+
past_key_values_length=past_key_values_length,
|
774 |
+
)
|
775 |
+
else:
|
776 |
+
embedding_output = encoder_embeds
|
777 |
+
|
778 |
+
encoder_outputs = self.encoder(
|
779 |
+
embedding_output,
|
780 |
+
attention_mask=extended_attention_mask,
|
781 |
+
head_mask=head_mask,
|
782 |
+
encoder_hidden_states=encoder_hidden_states,
|
783 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
784 |
+
past_key_values=past_key_values,
|
785 |
+
use_cache=use_cache,
|
786 |
+
output_attentions=output_attentions,
|
787 |
+
output_hidden_states=output_hidden_states,
|
788 |
+
return_dict=return_dict,
|
789 |
+
)
|
790 |
+
sequence_output = encoder_outputs[0]
|
791 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
792 |
+
|
793 |
+
if not return_dict:
|
794 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
795 |
+
|
796 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
797 |
+
last_hidden_state=sequence_output,
|
798 |
+
pooler_output=pooled_output,
|
799 |
+
past_key_values=encoder_outputs.past_key_values,
|
800 |
+
hidden_states=encoder_outputs.hidden_states,
|
801 |
+
attentions=encoder_outputs.attentions,
|
802 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
803 |
+
)
|
804 |
+
|
805 |
+
|
806 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
|
807 |
+
class BlipTextLMHeadModel(BlipTextPreTrainedModel):
|
808 |
+
def __init__(self, config):
|
809 |
+
super().__init__(config)
|
810 |
+
|
811 |
+
self.bert = BlipTextModel(config, add_pooling_layer=False)
|
812 |
+
self.cls = BlipTextOnlyMLMHead(config)
|
813 |
+
self.label_smoothing = config.label_smoothing
|
814 |
+
|
815 |
+
def get_output_embeddings(self):
|
816 |
+
return self.cls.predictions.decoder
|
817 |
+
|
818 |
+
def set_output_embeddings(self, new_embeddings):
|
819 |
+
self.cls.predictions.decoder = new_embeddings
|
820 |
+
|
821 |
+
def forward(
|
822 |
+
self,
|
823 |
+
input_ids: Optional[torch.Tensor] = None,
|
824 |
+
attention_mask: Optional[torch.Tensor] = None,
|
825 |
+
position_ids: Optional[torch.Tensor] = None,
|
826 |
+
head_mask: Optional[torch.Tensor] = None,
|
827 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
828 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
829 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
830 |
+
labels: Optional[torch.Tensor] = None,
|
831 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
832 |
+
use_cache: Optional[bool] = None,
|
833 |
+
output_attentions: Optional[bool] = None,
|
834 |
+
output_hidden_states: Optional[bool] = None,
|
835 |
+
return_dict: Optional[bool] = None,
|
836 |
+
return_logits: Optional[bool] = False,
|
837 |
+
is_decoder: Optional[bool] = True,
|
838 |
+
reduction: Optional[str] = "mean",
|
839 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
840 |
+
r"""
|
841 |
+
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
|
842 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
|
843 |
+
configured as a decoder.
|
844 |
+
encoder_attention_mask (`torch.FloatTensor`, *optional*):
|
845 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
846 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
847 |
+
- 1 for tokens that are **not masked**,
|
848 |
+
- 0 for tokens that are **masked**.
|
849 |
+
labels (`torch.LongTensor`, *optional*):
|
850 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
851 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
852 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
853 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
|
854 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
855 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
856 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
857 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
858 |
+
use_cache (`bool`, *optional*):
|
859 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
860 |
+
`past_key_values`).
|
861 |
+
"""
|
862 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
863 |
+
if labels is not None:
|
864 |
+
use_cache = False
|
865 |
+
|
866 |
+
outputs = self.bert(
|
867 |
+
input_ids,
|
868 |
+
attention_mask=attention_mask,
|
869 |
+
position_ids=position_ids,
|
870 |
+
head_mask=head_mask,
|
871 |
+
inputs_embeds=inputs_embeds,
|
872 |
+
encoder_hidden_states=encoder_hidden_states,
|
873 |
+
encoder_attention_mask=encoder_attention_mask,
|
874 |
+
past_key_values=past_key_values,
|
875 |
+
use_cache=use_cache,
|
876 |
+
output_attentions=output_attentions,
|
877 |
+
output_hidden_states=output_hidden_states,
|
878 |
+
return_dict=return_dict,
|
879 |
+
is_decoder=is_decoder,
|
880 |
+
)
|
881 |
+
|
882 |
+
sequence_output = outputs[0]
|
883 |
+
prediction_scores = self.cls(sequence_output)
|
884 |
+
|
885 |
+
if return_logits:
|
886 |
+
return prediction_scores[:, :-1, :].contiguous()
|
887 |
+
|
888 |
+
lm_loss = None
|
889 |
+
if labels is not None:
|
890 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
891 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
892 |
+
labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
|
893 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=self.label_smoothing)
|
894 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
895 |
+
if reduction == "none":
|
896 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
897 |
+
|
898 |
+
if not return_dict:
|
899 |
+
output = (prediction_scores,) + outputs[2:]
|
900 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
901 |
+
|
902 |
+
return CausalLMOutputWithCrossAttentions(
|
903 |
+
loss=lm_loss,
|
904 |
+
logits=prediction_scores,
|
905 |
+
past_key_values=outputs.past_key_values,
|
906 |
+
hidden_states=outputs.hidden_states,
|
907 |
+
attentions=outputs.attentions,
|
908 |
+
cross_attentions=outputs.cross_attentions,
|
909 |
+
)
|
910 |
+
|
911 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
912 |
+
input_shape = input_ids.shape
|
913 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
914 |
+
if attention_mask is None:
|
915 |
+
attention_mask = input_ids.new_ones(input_shape)
|
916 |
+
|
917 |
+
# cut decoder_input_ids if past_key_values is used
|
918 |
+
if past_key_values is not None:
|
919 |
+
past_length = past_key_values[0][0].shape[2]
|
920 |
+
|
921 |
+
# Some generation methods already pass only the last input ID
|
922 |
+
if input_ids.shape[1] > past_length:
|
923 |
+
remove_prefix_length = past_length
|
924 |
+
else:
|
925 |
+
# Default to old behavior: keep only final ID
|
926 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
927 |
+
|
928 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
929 |
+
|
930 |
+
return {
|
931 |
+
"input_ids": input_ids,
|
932 |
+
"attention_mask": attention_mask,
|
933 |
+
"past_key_values": past_key_values,
|
934 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
935 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
936 |
+
"is_decoder": True,
|
937 |
+
}
|
938 |
+
|
939 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
940 |
+
reordered_past = ()
|
941 |
+
for layer_past in past_key_values:
|
942 |
+
reordered_past += (
|
943 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
944 |
+
)
|
945 |
+
return reordered_past
|
venv/lib/python3.10/site-packages/transformers/models/blip/modeling_tf_blip.py
ADDED
@@ -0,0 +1,1701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TensorFlow BLIP model."""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Any, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
|
26 |
+
from ...modeling_tf_utils import (
|
27 |
+
TFPreTrainedModel,
|
28 |
+
get_initializer,
|
29 |
+
get_tf_activation,
|
30 |
+
keras,
|
31 |
+
keras_serializable,
|
32 |
+
shape_list,
|
33 |
+
unpack_inputs,
|
34 |
+
)
|
35 |
+
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
|
36 |
+
from ...utils import (
|
37 |
+
ModelOutput,
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
|
44 |
+
from .modeling_tf_blip_text import BLIP_TEXT_INPUTS_DOCSTRING, TFBlipTextLMHeadModel, TFBlipTextModel
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"
|
50 |
+
|
51 |
+
|
52 |
+
from ..deprecated._archive_maps import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.clip.modeling_tf_clip.contrastive_loss
|
56 |
+
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
|
57 |
+
return tf.math.reduce_mean(
|
58 |
+
keras.metrics.sparse_categorical_crossentropy(
|
59 |
+
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
|
60 |
+
)
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->blip
|
65 |
+
def blip_loss(similarity: tf.Tensor) -> tf.Tensor:
|
66 |
+
caption_loss = contrastive_loss(similarity)
|
67 |
+
image_loss = contrastive_loss(tf.transpose(similarity))
|
68 |
+
return (caption_loss + image_loss) / 2.0
|
69 |
+
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class TFBlipForConditionalGenerationModelOutput(ModelOutput):
|
73 |
+
"""
|
74 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
75 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
loss (`tf.Tensor`, *optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
|
79 |
+
Languge modeling loss from the text decoder.
|
80 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
|
81 |
+
Prediction scores of the language modeling head of the text decoder model.
|
82 |
+
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)`, *optional*):
|
83 |
+
The image embeddings obtained after applying the Vision Transformer model to the input image.
|
84 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
86 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True`):
|
87 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
|
88 |
+
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
89 |
+
|
90 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
91 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed):
|
92 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
93 |
+
sequence_length)`.
|
94 |
+
|
95 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
96 |
+
heads.`
|
97 |
+
"""
|
98 |
+
|
99 |
+
loss: Tuple[tf.Tensor] | None = None
|
100 |
+
logits: Tuple[tf.Tensor] | None = None
|
101 |
+
image_embeds: tf.Tensor | None = None
|
102 |
+
last_hidden_state: tf.Tensor = None
|
103 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
104 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
105 |
+
|
106 |
+
@property
|
107 |
+
def decoder_logits(self):
|
108 |
+
warnings.warn(
|
109 |
+
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
|
110 |
+
" Please use the `logits` attribute to retrieve the final output instead.",
|
111 |
+
FutureWarning,
|
112 |
+
)
|
113 |
+
return self.logits
|
114 |
+
|
115 |
+
|
116 |
+
@dataclass
|
117 |
+
class TFBlipTextVisionModelOutput(ModelOutput):
|
118 |
+
"""
|
119 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
120 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
124 |
+
Languge modeling loss from the text decoder.
|
125 |
+
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
126 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
127 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
128 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
129 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
130 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
|
131 |
+
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
132 |
+
|
133 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
134 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
135 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
136 |
+
sequence_length)`.
|
137 |
+
|
138 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
139 |
+
heads.
|
140 |
+
"""
|
141 |
+
|
142 |
+
loss: tf.Tensor | None = None
|
143 |
+
image_embeds: tf.Tensor | None = None
|
144 |
+
last_hidden_state: tf.Tensor = None
|
145 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
146 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass
|
150 |
+
class TFBlipImageTextMatchingModelOutput(ModelOutput):
|
151 |
+
"""
|
152 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
153 |
+
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
|
154 |
+
scores.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
itm_score (`tf.Tensor`):
|
158 |
+
The image-text similarity scores.
|
159 |
+
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
160 |
+
Languge modeling loss from the text decoder.
|
161 |
+
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
162 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
163 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
164 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
165 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
166 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
|
167 |
+
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
168 |
+
|
169 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
170 |
+
vision_pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*):
|
171 |
+
Last layer hidden-state of the vision of the vision-only branch of the model.
|
172 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
173 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
174 |
+
sequence_length)`.
|
175 |
+
|
176 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
177 |
+
heads.
|
178 |
+
question_embeds (`tf.Tensor`):
|
179 |
+
The question embeddings obtained by the text projection layer.
|
180 |
+
"""
|
181 |
+
|
182 |
+
itm_score: tf.Tensor | None = None
|
183 |
+
loss: tf.Tensor | None = None
|
184 |
+
image_embeds: tf.Tensor | None = None
|
185 |
+
last_hidden_state: tf.Tensor = None
|
186 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
187 |
+
vision_pooler_output: tf.Tensor | None = None
|
188 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
189 |
+
question_embeds: Tuple[tf.Tensor] | None = None
|
190 |
+
|
191 |
+
|
192 |
+
@dataclass
|
193 |
+
class TFBlipOutput(ModelOutput):
|
194 |
+
"""
|
195 |
+
Args:
|
196 |
+
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
197 |
+
Contrastive loss for image-text similarity.
|
198 |
+
logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
|
199 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
200 |
+
similarity scores.
|
201 |
+
logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
|
202 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
203 |
+
similarity scores.
|
204 |
+
text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
|
205 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
|
206 |
+
image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
|
207 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
|
208 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
209 |
+
The output of the [`BlipTextModel`].
|
210 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
211 |
+
The output of the [`BlipVisionModel`].
|
212 |
+
"""
|
213 |
+
|
214 |
+
loss: tf.Tensor | None = None
|
215 |
+
logits_per_image: tf.Tensor = None
|
216 |
+
logits_per_text: tf.Tensor = None
|
217 |
+
text_embeds: tf.Tensor = None
|
218 |
+
image_embeds: tf.Tensor = None
|
219 |
+
text_model_output: TFBaseModelOutputWithPooling = None
|
220 |
+
vision_model_output: TFBaseModelOutputWithPooling = None
|
221 |
+
|
222 |
+
def to_tuple(self) -> Tuple[Any]:
|
223 |
+
return tuple(
|
224 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
225 |
+
for k in self.keys()
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
class TFBlipVisionEmbeddings(keras.layers.Layer):
|
230 |
+
def __init__(self, config: BlipVisionConfig, **kwargs):
|
231 |
+
super().__init__(**kwargs)
|
232 |
+
self.config = config
|
233 |
+
self.embed_dim = config.hidden_size
|
234 |
+
self.image_size = config.image_size
|
235 |
+
self.patch_size = config.patch_size
|
236 |
+
|
237 |
+
self.patch_embedding = keras.layers.Conv2D(
|
238 |
+
filters=self.embed_dim,
|
239 |
+
kernel_size=self.patch_size,
|
240 |
+
strides=self.patch_size,
|
241 |
+
kernel_initializer=get_initializer(self.config.initializer_range),
|
242 |
+
data_format="channels_last",
|
243 |
+
name="patch_embedding",
|
244 |
+
)
|
245 |
+
|
246 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
247 |
+
self.num_positions = self.num_patches + 1
|
248 |
+
|
249 |
+
def build(self, input_shape=None):
|
250 |
+
self.class_embedding = self.add_weight(
|
251 |
+
shape=(1, 1, self.embed_dim),
|
252 |
+
initializer=get_initializer(self.config.initializer_range),
|
253 |
+
trainable=True,
|
254 |
+
name="class_embedding",
|
255 |
+
)
|
256 |
+
|
257 |
+
self.position_embedding = self.add_weight(
|
258 |
+
shape=(1, self.num_positions, self.embed_dim),
|
259 |
+
initializer=get_initializer(self.config.initializer_range),
|
260 |
+
trainable=True,
|
261 |
+
name="position_embedding",
|
262 |
+
)
|
263 |
+
|
264 |
+
if self.built:
|
265 |
+
return
|
266 |
+
self.built = True
|
267 |
+
if getattr(self, "patch_embedding", None) is not None:
|
268 |
+
with tf.name_scope(self.patch_embedding.name):
|
269 |
+
self.patch_embedding.build([None, None, None, 3])
|
270 |
+
|
271 |
+
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
|
272 |
+
# Input is channels-first, we transpose. PyTorch transposes after the conv because PyTorch
|
273 |
+
# likes channels-first convs.
|
274 |
+
batch_size = tf.shape(pixel_values)[0]
|
275 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
276 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
277 |
+
patch_embeds = tf.reshape(patch_embeds, (batch_size, self.num_patches, -1))
|
278 |
+
|
279 |
+
class_embeds = tf.broadcast_to(self.class_embedding, (batch_size, 1, self.embed_dim))
|
280 |
+
embeddings = tf.concat([class_embeds, patch_embeds], axis=1)
|
281 |
+
embeddings = embeddings + self.position_embedding[:, : tf.shape(embeddings)[1], :]
|
282 |
+
return embeddings
|
283 |
+
|
284 |
+
|
285 |
+
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->Blip
|
286 |
+
class TFBlipTextEmbeddings(keras.layers.Layer):
|
287 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
288 |
+
super().__init__(**kwargs)
|
289 |
+
|
290 |
+
self.embed_dim = config.hidden_size
|
291 |
+
|
292 |
+
self.config = config
|
293 |
+
|
294 |
+
def build(self, input_shape: tf.TensorShape = None):
|
295 |
+
with tf.name_scope("token_embedding"):
|
296 |
+
self.weight = self.add_weight(
|
297 |
+
shape=(self.config.vocab_size, self.embed_dim),
|
298 |
+
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
|
299 |
+
trainable=True,
|
300 |
+
name="weight",
|
301 |
+
)
|
302 |
+
|
303 |
+
with tf.name_scope("position_embedding"):
|
304 |
+
self.position_embedding = self.add_weight(
|
305 |
+
shape=(self.config.max_position_embeddings, self.embed_dim),
|
306 |
+
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
|
307 |
+
trainable=True,
|
308 |
+
name="embeddings",
|
309 |
+
)
|
310 |
+
|
311 |
+
super().build(input_shape)
|
312 |
+
|
313 |
+
def call(
|
314 |
+
self,
|
315 |
+
input_ids: tf.Tensor = None,
|
316 |
+
position_ids: tf.Tensor = None,
|
317 |
+
inputs_embeds: tf.Tensor = None,
|
318 |
+
) -> tf.Tensor:
|
319 |
+
"""
|
320 |
+
Applies embedding based on inputs tensor.
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
324 |
+
"""
|
325 |
+
if input_ids is None and inputs_embeds is None:
|
326 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
327 |
+
|
328 |
+
if inputs_embeds is None:
|
329 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
330 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
331 |
+
|
332 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
333 |
+
|
334 |
+
if position_ids is None:
|
335 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
336 |
+
|
337 |
+
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
|
338 |
+
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
|
339 |
+
final_embeddings = inputs_embeds + position_embeds
|
340 |
+
|
341 |
+
return final_embeddings
|
342 |
+
|
343 |
+
|
344 |
+
class TFBlipAttention(keras.layers.Layer):
|
345 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
346 |
+
|
347 |
+
def __init__(self, config, **kwargs):
|
348 |
+
super().__init__(**kwargs)
|
349 |
+
self.config = config
|
350 |
+
self.embed_dim = config.hidden_size
|
351 |
+
self.num_heads = config.num_attention_heads
|
352 |
+
self.head_dim = self.embed_dim // self.num_heads
|
353 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
354 |
+
raise ValueError(
|
355 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
356 |
+
f" {self.num_heads})."
|
357 |
+
)
|
358 |
+
self.scale = self.head_dim**-0.5
|
359 |
+
self.dropout = keras.layers.Dropout(config.attention_dropout, name="dropout")
|
360 |
+
|
361 |
+
self.qkv = keras.layers.Dense(
|
362 |
+
3 * self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
|
363 |
+
)
|
364 |
+
|
365 |
+
self.projection = keras.layers.Dense(
|
366 |
+
self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
|
367 |
+
)
|
368 |
+
|
369 |
+
def call(
|
370 |
+
self,
|
371 |
+
hidden_states: tf.Tensor,
|
372 |
+
head_mask: tf.Tensor | None = None,
|
373 |
+
output_attentions: Optional[bool] = False,
|
374 |
+
training: Optional[bool] = None,
|
375 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None, Tuple[tf.Tensor] | None]:
|
376 |
+
"""Input shape: Batch x Time x Channel"""
|
377 |
+
|
378 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
379 |
+
|
380 |
+
mixed_qkv = self.qkv(hidden_states)
|
381 |
+
mixed_qkv = tf.reshape(mixed_qkv, (bsz, tgt_len, 3, self.num_heads, self.head_dim))
|
382 |
+
mixed_qkv = tf.transpose(mixed_qkv, perm=(2, 0, 3, 1, 4))
|
383 |
+
|
384 |
+
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
|
385 |
+
|
386 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
387 |
+
attention_scores = query_states @ tf.transpose(key_states, (0, 1, 3, 2))
|
388 |
+
|
389 |
+
attention_scores = attention_scores * self.scale
|
390 |
+
|
391 |
+
# Normalize the attention scores to probabilities.
|
392 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
393 |
+
|
394 |
+
# This is actually dropping out entire tokens to attend to, which might
|
395 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
396 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
397 |
+
|
398 |
+
# Mask heads if we want to
|
399 |
+
if head_mask is not None:
|
400 |
+
attention_probs = attention_probs * head_mask
|
401 |
+
|
402 |
+
context_layer = tf.transpose(attention_probs @ value_states, perm=(0, 2, 1, 3))
|
403 |
+
|
404 |
+
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.embed_dim]
|
405 |
+
context_layer = tf.reshape(context_layer, new_context_layer_shape)
|
406 |
+
|
407 |
+
output = self.projection(context_layer)
|
408 |
+
|
409 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
410 |
+
|
411 |
+
return outputs
|
412 |
+
|
413 |
+
def build(self, input_shape=None):
|
414 |
+
if self.built:
|
415 |
+
return
|
416 |
+
self.built = True
|
417 |
+
if getattr(self, "dropout", None) is not None:
|
418 |
+
with tf.name_scope(self.dropout.name):
|
419 |
+
self.dropout.build(None)
|
420 |
+
if getattr(self, "qkv", None) is not None:
|
421 |
+
with tf.name_scope(self.qkv.name):
|
422 |
+
self.qkv.build([None, None, self.embed_dim])
|
423 |
+
if getattr(self, "projection", None) is not None:
|
424 |
+
with tf.name_scope(self.projection.name):
|
425 |
+
self.projection.build([None, None, self.embed_dim])
|
426 |
+
|
427 |
+
|
428 |
+
class TFBlipMLP(keras.layers.Layer):
|
429 |
+
def __init__(self, config: BlipConfig, **kwargs):
|
430 |
+
super().__init__(**kwargs)
|
431 |
+
|
432 |
+
self.activation_fn = get_tf_activation(config.hidden_act)
|
433 |
+
|
434 |
+
in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5)
|
435 |
+
fc_std = (2 * config.hidden_size) ** -0.5
|
436 |
+
|
437 |
+
self.fc1 = keras.layers.Dense(
|
438 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
|
439 |
+
)
|
440 |
+
self.fc2 = keras.layers.Dense(
|
441 |
+
units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
|
442 |
+
)
|
443 |
+
self.config = config
|
444 |
+
|
445 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
446 |
+
hidden_states = self.fc1(inputs=hidden_states)
|
447 |
+
hidden_states = self.activation_fn(hidden_states)
|
448 |
+
hidden_states = self.fc2(inputs=hidden_states)
|
449 |
+
return hidden_states
|
450 |
+
|
451 |
+
def build(self, input_shape=None):
|
452 |
+
if self.built:
|
453 |
+
return
|
454 |
+
self.built = True
|
455 |
+
if getattr(self, "fc1", None) is not None:
|
456 |
+
with tf.name_scope(self.fc1.name):
|
457 |
+
self.fc1.build([None, None, self.config.hidden_size])
|
458 |
+
if getattr(self, "fc2", None) is not None:
|
459 |
+
with tf.name_scope(self.fc2.name):
|
460 |
+
self.fc2.build([None, None, self.config.intermediate_size])
|
461 |
+
|
462 |
+
|
463 |
+
class TFBlipEncoderLayer(keras.layers.Layer):
|
464 |
+
def __init__(self, config: BlipConfig, **kwargs):
|
465 |
+
super().__init__(**kwargs)
|
466 |
+
self.embed_dim = config.hidden_size
|
467 |
+
self.self_attn = TFBlipAttention(config, name="self_attn")
|
468 |
+
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
|
469 |
+
self.mlp = TFBlipMLP(config, name="mlp")
|
470 |
+
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
|
471 |
+
|
472 |
+
def call(
|
473 |
+
self,
|
474 |
+
hidden_states: tf.Tensor,
|
475 |
+
attention_mask: tf.Tensor,
|
476 |
+
output_attentions: Optional[bool] = False,
|
477 |
+
training: Optional[bool] = None,
|
478 |
+
) -> Tuple[tf.Tensor]:
|
479 |
+
"""
|
480 |
+
Args:
|
481 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
482 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
483 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
484 |
+
`(config.encoder_attention_heads,)`.
|
485 |
+
output_attentions (`bool`, *optional*):
|
486 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
487 |
+
returned tensors for more detail.
|
488 |
+
"""
|
489 |
+
residual = hidden_states
|
490 |
+
|
491 |
+
hidden_states = self.layer_norm1(hidden_states)
|
492 |
+
hidden_states, attn_weights = self.self_attn(
|
493 |
+
hidden_states=hidden_states,
|
494 |
+
head_mask=attention_mask,
|
495 |
+
output_attentions=output_attentions,
|
496 |
+
training=training,
|
497 |
+
)
|
498 |
+
hidden_states = hidden_states + residual
|
499 |
+
residual = hidden_states
|
500 |
+
hidden_states = self.layer_norm2(hidden_states)
|
501 |
+
hidden_states = self.mlp(hidden_states)
|
502 |
+
|
503 |
+
hidden_states = hidden_states + residual
|
504 |
+
|
505 |
+
outputs = (hidden_states,)
|
506 |
+
|
507 |
+
if output_attentions:
|
508 |
+
outputs += (attn_weights,)
|
509 |
+
|
510 |
+
return outputs
|
511 |
+
|
512 |
+
def build(self, input_shape=None):
|
513 |
+
if self.built:
|
514 |
+
return
|
515 |
+
self.built = True
|
516 |
+
if getattr(self, "self_attn", None) is not None:
|
517 |
+
with tf.name_scope(self.self_attn.name):
|
518 |
+
self.self_attn.build(None)
|
519 |
+
if getattr(self, "layer_norm1", None) is not None:
|
520 |
+
with tf.name_scope(self.layer_norm1.name):
|
521 |
+
self.layer_norm1.build([None, None, self.embed_dim])
|
522 |
+
if getattr(self, "mlp", None) is not None:
|
523 |
+
with tf.name_scope(self.mlp.name):
|
524 |
+
self.mlp.build(None)
|
525 |
+
if getattr(self, "layer_norm2", None) is not None:
|
526 |
+
with tf.name_scope(self.layer_norm2.name):
|
527 |
+
self.layer_norm2.build([None, None, self.embed_dim])
|
528 |
+
|
529 |
+
|
530 |
+
class TFBlipPreTrainedModel(TFPreTrainedModel):
|
531 |
+
"""
|
532 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
533 |
+
models.
|
534 |
+
"""
|
535 |
+
|
536 |
+
config_class = BlipConfig
|
537 |
+
base_model_prefix = "blip"
|
538 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
539 |
+
|
540 |
+
|
541 |
+
BLIP_START_DOCSTRING = r"""
|
542 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
543 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
544 |
+
etc.)
|
545 |
+
|
546 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
547 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
548 |
+
behavior.
|
549 |
+
|
550 |
+
Parameters:
|
551 |
+
config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
|
552 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
553 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
554 |
+
"""
|
555 |
+
|
556 |
+
BLIP_VISION_INPUTS_DOCSTRING = r"""
|
557 |
+
Args:
|
558 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
559 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
560 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
561 |
+
output_attentions (`bool`, *optional*):
|
562 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
563 |
+
tensors for more detail.
|
564 |
+
output_hidden_states (`bool`, *optional*):
|
565 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
566 |
+
more detail.
|
567 |
+
return_dict (`bool`, *optional*):
|
568 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
569 |
+
"""
|
570 |
+
|
571 |
+
BLIP_INPUTS_DOCSTRING = r"""
|
572 |
+
Args:
|
573 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
574 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
575 |
+
it.
|
576 |
+
|
577 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
578 |
+
|
579 |
+
[What are input IDs?](../glossary#input-ids)
|
580 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
581 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
582 |
+
|
583 |
+
- 1 for tokens that are **not masked**,
|
584 |
+
- 0 for tokens that are **masked**.
|
585 |
+
|
586 |
+
[What are attention masks?](../glossary#attention-mask)
|
587 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
588 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
589 |
+
config.max_position_embeddings - 1]`.
|
590 |
+
|
591 |
+
[What are position IDs?](../glossary#position-ids)
|
592 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
593 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
594 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
595 |
+
return_loss (`bool`, *optional*):
|
596 |
+
Whether or not to return the contrastive loss.
|
597 |
+
output_attentions (`bool`, *optional*):
|
598 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
599 |
+
tensors for more detail.
|
600 |
+
output_hidden_states (`bool`, *optional*):
|
601 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
602 |
+
more detail.
|
603 |
+
return_dict (`bool`, *optional*):
|
604 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
605 |
+
"""
|
606 |
+
|
607 |
+
|
608 |
+
@keras_serializable
|
609 |
+
class TFBlipEncoder(keras.layers.Layer):
|
610 |
+
config_class = BlipConfig
|
611 |
+
"""
|
612 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
613 |
+
[`BlipEncoderLayer`].
|
614 |
+
|
615 |
+
Args:
|
616 |
+
config (`BlipConfig`):
|
617 |
+
The corresponding vision configuration for the `BlipEncoder`.
|
618 |
+
"""
|
619 |
+
|
620 |
+
def __init__(self, config: BlipConfig, **kwargs):
|
621 |
+
super().__init__(**kwargs)
|
622 |
+
self.config = config
|
623 |
+
self.layers = [TFBlipEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
|
624 |
+
|
625 |
+
@unpack_inputs
|
626 |
+
def call(
|
627 |
+
self,
|
628 |
+
inputs_embeds,
|
629 |
+
attention_mask: tf.Tensor | None = None,
|
630 |
+
output_attentions: Optional[bool] = None,
|
631 |
+
output_hidden_states: Optional[bool] = None,
|
632 |
+
return_dict: Optional[bool] = None,
|
633 |
+
training: Optional[bool] = None,
|
634 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
635 |
+
r"""
|
636 |
+
Args:
|
637 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
638 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
639 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
640 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
641 |
+
|
642 |
+
- 1 for tokens that are **not masked**,
|
643 |
+
- 0 for tokens that are **masked**.
|
644 |
+
|
645 |
+
[What are attention masks?](../glossary#attention-mask)
|
646 |
+
output_attentions (`bool`, *optional*):
|
647 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
648 |
+
returned tensors for more detail.
|
649 |
+
output_hidden_states (`bool`, *optional*):
|
650 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
651 |
+
for more detail.
|
652 |
+
return_dict (`bool`, *optional*):
|
653 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
654 |
+
"""
|
655 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
656 |
+
output_hidden_states = (
|
657 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
658 |
+
)
|
659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
660 |
+
|
661 |
+
encoder_states = () if output_hidden_states else None
|
662 |
+
all_attentions = () if output_attentions else None
|
663 |
+
|
664 |
+
hidden_states = inputs_embeds
|
665 |
+
for idx, encoder_layer in enumerate(self.layers):
|
666 |
+
if output_hidden_states:
|
667 |
+
encoder_states = encoder_states + (hidden_states,)
|
668 |
+
layer_outputs = encoder_layer(
|
669 |
+
hidden_states,
|
670 |
+
attention_mask,
|
671 |
+
output_attentions=output_attentions,
|
672 |
+
training=training,
|
673 |
+
)
|
674 |
+
|
675 |
+
hidden_states = layer_outputs[0]
|
676 |
+
|
677 |
+
if output_attentions:
|
678 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
679 |
+
|
680 |
+
if output_hidden_states:
|
681 |
+
encoder_states = encoder_states + (hidden_states,)
|
682 |
+
|
683 |
+
if not return_dict:
|
684 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
685 |
+
return TFBaseModelOutput(
|
686 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
687 |
+
)
|
688 |
+
|
689 |
+
def build(self, input_shape=None):
|
690 |
+
if self.built:
|
691 |
+
return
|
692 |
+
self.built = True
|
693 |
+
if getattr(self, "layers", None) is not None:
|
694 |
+
for layer in self.layers:
|
695 |
+
with tf.name_scope(layer.name):
|
696 |
+
layer.build(None)
|
697 |
+
|
698 |
+
|
699 |
+
class TFBlipVisionModel(TFBlipPreTrainedModel):
|
700 |
+
main_input_name = "pixel_values"
|
701 |
+
config_class = BlipVisionConfig
|
702 |
+
|
703 |
+
def __init__(self, config: BlipVisionConfig, *args, **kwargs):
|
704 |
+
super().__init__(config, *args, **kwargs)
|
705 |
+
self.config = config
|
706 |
+
|
707 |
+
self.embeddings = TFBlipVisionEmbeddings(config, name="embeddings")
|
708 |
+
self.encoder = TFBlipEncoder(config, name="encoder")
|
709 |
+
self.post_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
|
710 |
+
self.embed_dim = config.hidden_size
|
711 |
+
|
712 |
+
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
|
713 |
+
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
|
714 |
+
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
|
715 |
+
|
716 |
+
return TFBaseModelOutputWithPooling(
|
717 |
+
last_hidden_state=output.last_hidden_state,
|
718 |
+
pooler_output=output.pooler_output,
|
719 |
+
hidden_states=hs,
|
720 |
+
attentions=attns,
|
721 |
+
)
|
722 |
+
|
723 |
+
@unpack_inputs
|
724 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
725 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=BlipVisionConfig)
|
726 |
+
def call(
|
727 |
+
self,
|
728 |
+
pixel_values: tf.Tensor | None = None,
|
729 |
+
output_attentions: Optional[bool] = None,
|
730 |
+
output_hidden_states: Optional[bool] = None,
|
731 |
+
return_dict: Optional[bool] = None,
|
732 |
+
training: Optional[bool] = None,
|
733 |
+
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
|
734 |
+
r"""
|
735 |
+
Returns:
|
736 |
+
|
737 |
+
"""
|
738 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
739 |
+
output_hidden_states = (
|
740 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
741 |
+
)
|
742 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
743 |
+
|
744 |
+
if pixel_values is None:
|
745 |
+
raise ValueError("You have to specify pixel_values")
|
746 |
+
|
747 |
+
hidden_states = self.embeddings(pixel_values)
|
748 |
+
|
749 |
+
encoder_outputs = self.encoder(
|
750 |
+
inputs_embeds=hidden_states,
|
751 |
+
output_attentions=output_attentions,
|
752 |
+
output_hidden_states=output_hidden_states,
|
753 |
+
return_dict=return_dict,
|
754 |
+
training=training,
|
755 |
+
)
|
756 |
+
|
757 |
+
last_hidden_state = encoder_outputs[0]
|
758 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
759 |
+
|
760 |
+
pooled_output = last_hidden_state[:, 0, :]
|
761 |
+
# TF gets confused if we call the layer with inputs of different ranks, so insert a singleton dimension
|
762 |
+
pooled_output = self.post_layernorm(tf.expand_dims(pooled_output, 1))
|
763 |
+
pooled_output = tf.squeeze(pooled_output, 1)
|
764 |
+
|
765 |
+
if not return_dict:
|
766 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
767 |
+
|
768 |
+
return TFBaseModelOutputWithPooling(
|
769 |
+
last_hidden_state=last_hidden_state,
|
770 |
+
pooler_output=pooled_output,
|
771 |
+
hidden_states=encoder_outputs.hidden_states,
|
772 |
+
attentions=encoder_outputs.attentions,
|
773 |
+
)
|
774 |
+
|
775 |
+
def get_input_embeddings(self):
|
776 |
+
return self.embeddings
|
777 |
+
|
778 |
+
def build(self, input_shape=None):
|
779 |
+
if self.built:
|
780 |
+
return
|
781 |
+
self.built = True
|
782 |
+
if getattr(self, "embeddings", None) is not None:
|
783 |
+
with tf.name_scope(self.embeddings.name):
|
784 |
+
self.embeddings.build(None)
|
785 |
+
if getattr(self, "encoder", None) is not None:
|
786 |
+
with tf.name_scope(self.encoder.name):
|
787 |
+
self.encoder.build(None)
|
788 |
+
if getattr(self, "post_layernorm", None) is not None:
|
789 |
+
with tf.name_scope(self.post_layernorm.name):
|
790 |
+
self.post_layernorm.build([None, None, self.embed_dim])
|
791 |
+
|
792 |
+
|
793 |
+
class TFBlipMainLayer(keras.layers.Layer):
|
794 |
+
config_class = BlipConfig
|
795 |
+
|
796 |
+
def __init__(self, config: BlipConfig, *args, **kwargs):
|
797 |
+
super().__init__(*args, **kwargs)
|
798 |
+
|
799 |
+
if not isinstance(config.text_config, BlipTextConfig):
|
800 |
+
raise ValueError(
|
801 |
+
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
802 |
+
f" {type(config.text_config)}."
|
803 |
+
)
|
804 |
+
|
805 |
+
if not isinstance(config.vision_config, BlipVisionConfig):
|
806 |
+
raise ValueError(
|
807 |
+
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
808 |
+
f" {type(config.vision_config)}."
|
809 |
+
)
|
810 |
+
|
811 |
+
text_config = config.text_config
|
812 |
+
vision_config = config.vision_config
|
813 |
+
|
814 |
+
self.projection_dim = config.projection_dim
|
815 |
+
self.text_embed_dim = text_config.hidden_size
|
816 |
+
self.vision_embed_dim = vision_config.hidden_size
|
817 |
+
|
818 |
+
self.text_model = TFBlipTextModel(text_config, name="text_model")
|
819 |
+
self.vision_model = TFBlipVisionModel(vision_config, name="vision_model")
|
820 |
+
|
821 |
+
self.visual_projection = keras.layers.Dense(
|
822 |
+
self.projection_dim,
|
823 |
+
use_bias=False,
|
824 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
825 |
+
name="visual_projection",
|
826 |
+
)
|
827 |
+
self.text_projection = keras.layers.Dense(
|
828 |
+
self.projection_dim,
|
829 |
+
use_bias=False,
|
830 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
831 |
+
name="text_projection",
|
832 |
+
)
|
833 |
+
|
834 |
+
self.config = config
|
835 |
+
|
836 |
+
def build(self, input_shape=None):
|
837 |
+
self.logit_scale = self.add_weight(
|
838 |
+
name="logit_scale",
|
839 |
+
shape=[],
|
840 |
+
initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
|
841 |
+
trainable=True,
|
842 |
+
)
|
843 |
+
|
844 |
+
if self.built:
|
845 |
+
return
|
846 |
+
self.built = True
|
847 |
+
if getattr(self, "text_model", None) is not None:
|
848 |
+
with tf.name_scope(self.text_model.name):
|
849 |
+
self.text_model.build(None)
|
850 |
+
if getattr(self, "vision_model", None) is not None:
|
851 |
+
with tf.name_scope(self.vision_model.name):
|
852 |
+
self.vision_model.build(None)
|
853 |
+
if getattr(self, "visual_projection", None) is not None:
|
854 |
+
with tf.name_scope(self.visual_projection.name):
|
855 |
+
self.visual_projection.build([None, None, self.vision_embed_dim])
|
856 |
+
if getattr(self, "text_projection", None) is not None:
|
857 |
+
with tf.name_scope(self.text_projection.name):
|
858 |
+
self.text_projection.build([None, None, self.text_embed_dim])
|
859 |
+
|
860 |
+
@unpack_inputs
|
861 |
+
def call(
|
862 |
+
self,
|
863 |
+
input_ids: tf.Tensor | None = None,
|
864 |
+
pixel_values: tf.Tensor | None = None,
|
865 |
+
attention_mask: tf.Tensor | None = None,
|
866 |
+
position_ids: tf.Tensor | None = None,
|
867 |
+
return_loss: Optional[bool] = None,
|
868 |
+
output_attentions: Optional[bool] = None,
|
869 |
+
output_hidden_states: Optional[bool] = None,
|
870 |
+
return_dict: Optional[bool] = None,
|
871 |
+
training: Optional[bool] = None,
|
872 |
+
) -> Union[Tuple, TFBlipOutput]:
|
873 |
+
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
|
874 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
875 |
+
output_hidden_states = (
|
876 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
877 |
+
)
|
878 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
879 |
+
|
880 |
+
vision_outputs = self.vision_model(
|
881 |
+
pixel_values=pixel_values,
|
882 |
+
output_attentions=output_attentions,
|
883 |
+
output_hidden_states=output_hidden_states,
|
884 |
+
return_dict=return_dict,
|
885 |
+
training=training,
|
886 |
+
)
|
887 |
+
|
888 |
+
text_outputs = self.text_model(
|
889 |
+
input_ids=input_ids,
|
890 |
+
attention_mask=attention_mask,
|
891 |
+
position_ids=position_ids,
|
892 |
+
output_attentions=output_attentions,
|
893 |
+
output_hidden_states=output_hidden_states,
|
894 |
+
return_dict=return_dict,
|
895 |
+
training=training,
|
896 |
+
)
|
897 |
+
|
898 |
+
image_embeds = vision_outputs[1]
|
899 |
+
image_embeds = self.visual_projection(image_embeds)
|
900 |
+
|
901 |
+
text_embeds = text_outputs[1]
|
902 |
+
text_embeds = self.text_projection(text_embeds)
|
903 |
+
|
904 |
+
# normalized features
|
905 |
+
image_embeds = image_embeds / tf.norm(image_embeds, ord=2, axis=-1, keepdims=True)
|
906 |
+
text_embeds = text_embeds / tf.norm(text_embeds, ord=2, axis=-1, keepdims=True)
|
907 |
+
|
908 |
+
# cosine similarity as logits
|
909 |
+
logit_scale = tf.exp(self.logit_scale)
|
910 |
+
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
|
911 |
+
logits_per_image = tf.transpose(logits_per_text)
|
912 |
+
|
913 |
+
loss = None
|
914 |
+
if return_loss:
|
915 |
+
loss = blip_loss(logits_per_text)
|
916 |
+
loss = tf.reshape(loss, (1,))
|
917 |
+
|
918 |
+
if not return_dict:
|
919 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
920 |
+
return ((loss,) + output) if loss is not None else output
|
921 |
+
|
922 |
+
return TFBlipOutput(
|
923 |
+
loss=loss,
|
924 |
+
logits_per_image=logits_per_image,
|
925 |
+
logits_per_text=logits_per_text,
|
926 |
+
text_embeds=text_embeds,
|
927 |
+
image_embeds=image_embeds,
|
928 |
+
text_model_output=text_outputs,
|
929 |
+
vision_model_output=vision_outputs,
|
930 |
+
)
|
931 |
+
|
932 |
+
|
933 |
+
class TFBlipModel(TFBlipPreTrainedModel):
|
934 |
+
config_class = BlipConfig
|
935 |
+
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
|
936 |
+
main_input_name = "input_ids"
|
937 |
+
|
938 |
+
def __init__(self, config: BlipConfig, *inputs, **kwargs):
|
939 |
+
super().__init__(config, *inputs, **kwargs)
|
940 |
+
|
941 |
+
self.blip = TFBlipMainLayer(config, name="blip")
|
942 |
+
|
943 |
+
def serving_output(self, output: TFBlipOutput) -> TFBlipOutput:
|
944 |
+
return TFBlipOutput(
|
945 |
+
logits_per_image=output.logits_per_image,
|
946 |
+
logits_per_text=output.logits_per_text,
|
947 |
+
text_embeds=output.text_embeds,
|
948 |
+
image_embeds=output.image_embeds,
|
949 |
+
)
|
950 |
+
|
951 |
+
@unpack_inputs
|
952 |
+
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
|
953 |
+
@replace_return_docstrings(output_type=TFBlipOutput, config_class=BlipConfig)
|
954 |
+
def call(
|
955 |
+
self,
|
956 |
+
input_ids: tf.Tensor | None = None,
|
957 |
+
pixel_values: tf.Tensor | None = None,
|
958 |
+
attention_mask: tf.Tensor | None = None,
|
959 |
+
position_ids: tf.Tensor | None = None,
|
960 |
+
return_loss: Optional[bool] = None,
|
961 |
+
output_attentions: Optional[bool] = None,
|
962 |
+
output_hidden_states: Optional[bool] = None,
|
963 |
+
return_dict: Optional[bool] = None,
|
964 |
+
training: Optional[bool] = None,
|
965 |
+
) -> Union[Tuple, TFBlipOutput]:
|
966 |
+
r"""
|
967 |
+
Returns:
|
968 |
+
|
969 |
+
Examples:
|
970 |
+
|
971 |
+
```python
|
972 |
+
>>> from PIL import Image
|
973 |
+
>>> import requests
|
974 |
+
>>> from transformers import AutoProcessor, TFBlipModel
|
975 |
+
|
976 |
+
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
977 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
978 |
+
|
979 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
980 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
981 |
+
|
982 |
+
>>> inputs = processor(
|
983 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
|
984 |
+
... )
|
985 |
+
|
986 |
+
>>> outputs = model(**inputs)
|
987 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
988 |
+
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
|
989 |
+
```"""
|
990 |
+
outputs = self.blip(
|
991 |
+
input_ids=input_ids,
|
992 |
+
pixel_values=pixel_values,
|
993 |
+
attention_mask=attention_mask,
|
994 |
+
position_ids=position_ids,
|
995 |
+
return_loss=return_loss,
|
996 |
+
output_attentions=output_attentions,
|
997 |
+
output_hidden_states=output_hidden_states,
|
998 |
+
return_dict=return_dict,
|
999 |
+
training=training,
|
1000 |
+
)
|
1001 |
+
return outputs
|
1002 |
+
|
1003 |
+
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
1004 |
+
def get_text_features(
|
1005 |
+
self,
|
1006 |
+
input_ids: tf.Tensor | None = None,
|
1007 |
+
attention_mask: tf.Tensor | None = None,
|
1008 |
+
position_ids: tf.Tensor | None = None,
|
1009 |
+
return_dict: Optional[bool] = None,
|
1010 |
+
) -> tf.Tensor:
|
1011 |
+
r"""
|
1012 |
+
Returns:
|
1013 |
+
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
|
1014 |
+
the projection layer to the pooled output of [`TFBlipTextModel`].
|
1015 |
+
|
1016 |
+
Examples:
|
1017 |
+
|
1018 |
+
```python
|
1019 |
+
>>> from transformers import AutoProcessor, TFBlipModel
|
1020 |
+
|
1021 |
+
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
1022 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1023 |
+
|
1024 |
+
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
|
1025 |
+
>>> text_features = model.get_text_features(**inputs)
|
1026 |
+
```"""
|
1027 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1028 |
+
|
1029 |
+
text_outputs = self.blip.text_model(
|
1030 |
+
input_ids=input_ids,
|
1031 |
+
attention_mask=attention_mask,
|
1032 |
+
position_ids=position_ids,
|
1033 |
+
return_dict=return_dict,
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
pooled_output = text_outputs[1]
|
1037 |
+
text_features = self.blip.text_projection(pooled_output)
|
1038 |
+
|
1039 |
+
return text_features
|
1040 |
+
|
1041 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1042 |
+
def get_image_features(
|
1043 |
+
self,
|
1044 |
+
pixel_values: tf.Tensor | None = None,
|
1045 |
+
return_dict: Optional[bool] = None,
|
1046 |
+
) -> tf.Tensor:
|
1047 |
+
r"""
|
1048 |
+
Returns:
|
1049 |
+
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
|
1050 |
+
the projection layer to the pooled output of [`TFBlipVisionModel`].
|
1051 |
+
|
1052 |
+
Examples:
|
1053 |
+
|
1054 |
+
```python
|
1055 |
+
>>> from PIL import Image
|
1056 |
+
>>> import requests
|
1057 |
+
>>> from transformers import AutoProcessor, TFBlipModel
|
1058 |
+
|
1059 |
+
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
1060 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1061 |
+
|
1062 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1063 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1064 |
+
|
1065 |
+
>>> inputs = processor(images=image, return_tensors="tf")
|
1066 |
+
|
1067 |
+
>>> image_features = model.get_image_features(**inputs)
|
1068 |
+
```"""
|
1069 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1070 |
+
|
1071 |
+
vision_outputs = self.blip.vision_model(pixel_values=pixel_values, return_dict=return_dict)
|
1072 |
+
|
1073 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1074 |
+
image_features = self.blip.visual_projection(pooled_output)
|
1075 |
+
|
1076 |
+
return image_features
|
1077 |
+
|
1078 |
+
def build(self, input_shape=None):
|
1079 |
+
if self.built:
|
1080 |
+
return
|
1081 |
+
self.built = True
|
1082 |
+
if getattr(self, "blip", None) is not None:
|
1083 |
+
with tf.name_scope(self.blip.name):
|
1084 |
+
self.blip.build(None)
|
1085 |
+
|
1086 |
+
|
1087 |
+
@add_start_docstrings(
|
1088 |
+
"""
|
1089 |
+
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
|
1090 |
+
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
|
1091 |
+
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
|
1092 |
+
from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
|
1093 |
+
""",
|
1094 |
+
BLIP_START_DOCSTRING,
|
1095 |
+
)
|
1096 |
+
class TFBlipForConditionalGeneration(TFBlipPreTrainedModel):
|
1097 |
+
config_class = BlipConfig
|
1098 |
+
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
|
1099 |
+
main_input_name = "pixel_values"
|
1100 |
+
|
1101 |
+
def __init__(self, config: BlipConfig, *args, **kwargs):
|
1102 |
+
super().__init__(config, *args, **kwargs)
|
1103 |
+
|
1104 |
+
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
|
1105 |
+
|
1106 |
+
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")
|
1107 |
+
|
1108 |
+
self.decoder_input_ids = config.text_config.bos_token_id
|
1109 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
1110 |
+
|
1111 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1112 |
+
return self.vision_model.embeddings.patch_embedding
|
1113 |
+
|
1114 |
+
@unpack_inputs
|
1115 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1116 |
+
@replace_return_docstrings(output_type=TFBlipForConditionalGenerationModelOutput, config_class=BlipConfig)
|
1117 |
+
def call(
|
1118 |
+
self,
|
1119 |
+
pixel_values: tf.Tensor,
|
1120 |
+
input_ids: tf.Tensor | None = None,
|
1121 |
+
attention_mask: tf.Tensor | None = None,
|
1122 |
+
output_attentions: Optional[bool] = None,
|
1123 |
+
output_hidden_states: Optional[bool] = None,
|
1124 |
+
labels: tf.Tensor | None = None,
|
1125 |
+
return_dict: Optional[bool] = None,
|
1126 |
+
training: Optional[bool] = None,
|
1127 |
+
) -> Union[Tuple, TFBlipForConditionalGenerationModelOutput]:
|
1128 |
+
r"""
|
1129 |
+
Returns:
|
1130 |
+
|
1131 |
+
Examples:
|
1132 |
+
|
1133 |
+
```python
|
1134 |
+
>>> from PIL import Image
|
1135 |
+
>>> import requests
|
1136 |
+
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration
|
1137 |
+
|
1138 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1139 |
+
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
1140 |
+
|
1141 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1142 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1143 |
+
>>> text = "A picture of"
|
1144 |
+
|
1145 |
+
>>> inputs = processor(images=image, text=text, return_tensors="tf")
|
1146 |
+
|
1147 |
+
>>> outputs = model(**inputs)
|
1148 |
+
```"""
|
1149 |
+
|
1150 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1151 |
+
vision_outputs = self.vision_model(
|
1152 |
+
pixel_values=pixel_values,
|
1153 |
+
output_attentions=output_attentions,
|
1154 |
+
output_hidden_states=output_hidden_states,
|
1155 |
+
return_dict=return_dict,
|
1156 |
+
training=training,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
image_embeds = vision_outputs[0]
|
1160 |
+
|
1161 |
+
outputs = self.text_decoder(
|
1162 |
+
input_ids=input_ids,
|
1163 |
+
attention_mask=attention_mask,
|
1164 |
+
encoder_hidden_states=image_embeds,
|
1165 |
+
labels=labels,
|
1166 |
+
return_dict=False,
|
1167 |
+
training=training,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
if not return_dict:
|
1171 |
+
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1172 |
+
return tuple(output for output in outputs if output is not None)
|
1173 |
+
|
1174 |
+
if labels is not None:
|
1175 |
+
loss = outputs[0]
|
1176 |
+
logits = outputs[1]
|
1177 |
+
else:
|
1178 |
+
loss = None
|
1179 |
+
logits = outputs[0]
|
1180 |
+
|
1181 |
+
if loss is not None and loss.shape.rank == 0:
|
1182 |
+
loss = tf.reshape(loss, (1,))
|
1183 |
+
|
1184 |
+
return TFBlipForConditionalGenerationModelOutput(
|
1185 |
+
loss=loss,
|
1186 |
+
logits=logits,
|
1187 |
+
image_embeds=image_embeds,
|
1188 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1189 |
+
hidden_states=vision_outputs.hidden_states,
|
1190 |
+
attentions=vision_outputs.attentions,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
def generate(
|
1194 |
+
self,
|
1195 |
+
pixel_values: tf.Tensor,
|
1196 |
+
input_ids: tf.Tensor | None = None,
|
1197 |
+
attention_mask: tf.Tensor | None = None,
|
1198 |
+
**generate_kwargs,
|
1199 |
+
) -> tf.Tensor:
|
1200 |
+
r"""
|
1201 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1202 |
+
|
1203 |
+
Parameters:
|
1204 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
|
1205 |
+
Input image to be processed
|
1206 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1207 |
+
The sequence used as a prompt for the generation.
|
1208 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1209 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1210 |
+
|
1211 |
+
|
1212 |
+
Examples:
|
1213 |
+
```python
|
1214 |
+
>>> from PIL import Image
|
1215 |
+
>>> import requests
|
1216 |
+
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration
|
1217 |
+
|
1218 |
+
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
1219 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1220 |
+
|
1221 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1222 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1223 |
+
|
1224 |
+
>>> inputs = processor(images=image, return_tensors="tf")
|
1225 |
+
|
1226 |
+
>>> outputs = model.generate(**inputs)
|
1227 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1228 |
+
two cats sleeping on a couch
|
1229 |
+
```
|
1230 |
+
"""
|
1231 |
+
|
1232 |
+
batch_size = pixel_values.shape[0]
|
1233 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
1234 |
+
|
1235 |
+
image_embeds = vision_outputs[0]
|
1236 |
+
|
1237 |
+
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)
|
1238 |
+
|
1239 |
+
if isinstance(input_ids, list):
|
1240 |
+
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int32)
|
1241 |
+
elif input_ids is None:
|
1242 |
+
input_ids = tf.convert_to_tensor(
|
1243 |
+
[[self.decoder_input_ids, self.config.text_config.eos_token_id]], dtype=tf.int32
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
input_ids = tf.tile(input_ids, (batch_size, 1))
|
1247 |
+
|
1248 |
+
# PyTorch: input_ids[:, 0] = self.config.text_config.bos_token_id
|
1249 |
+
input_ids = tf.concat(
|
1250 |
+
[tf.ones((batch_size, 1), dtype=tf.int32) * self.config.text_config.bos_token_id, input_ids[:, 1:]], axis=1
|
1251 |
+
)
|
1252 |
+
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
|
1253 |
+
|
1254 |
+
outputs = self.text_decoder.generate(
|
1255 |
+
input_ids=input_ids[:, :-1],
|
1256 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1257 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1258 |
+
attention_mask=attention_mask,
|
1259 |
+
encoder_hidden_states=image_embeds,
|
1260 |
+
encoder_attention_mask=image_attention_mask,
|
1261 |
+
**generate_kwargs,
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
return outputs
|
1265 |
+
|
1266 |
+
def build(self, input_shape=None):
|
1267 |
+
if self.built:
|
1268 |
+
return
|
1269 |
+
self.built = True
|
1270 |
+
if getattr(self, "vision_model", None) is not None:
|
1271 |
+
with tf.name_scope(self.vision_model.name):
|
1272 |
+
self.vision_model.build(None)
|
1273 |
+
if getattr(self, "text_decoder", None) is not None:
|
1274 |
+
with tf.name_scope(self.text_decoder.name):
|
1275 |
+
self.text_decoder.build(None)
|
1276 |
+
|
1277 |
+
|
1278 |
+
@add_start_docstrings(
|
1279 |
+
"""
|
1280 |
+
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
|
1281 |
+
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
|
1282 |
+
with the encoding of the image, and the text decoder will output the answer to the question.
|
1283 |
+
""",
|
1284 |
+
BLIP_START_DOCSTRING,
|
1285 |
+
)
|
1286 |
+
class TFBlipForQuestionAnswering(TFBlipPreTrainedModel):
|
1287 |
+
config_class = BlipConfig
|
1288 |
+
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
|
1289 |
+
|
1290 |
+
def __init__(self, config: BlipConfig, *args, **kwargs):
|
1291 |
+
super().__init__(config, *args, **kwargs)
|
1292 |
+
|
1293 |
+
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
|
1294 |
+
|
1295 |
+
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)
|
1296 |
+
|
1297 |
+
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")
|
1298 |
+
|
1299 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
1300 |
+
self.decoder_start_token_id = config.text_config.bos_token_id
|
1301 |
+
|
1302 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1303 |
+
return self.vision_model.embeddings.patch_embedding
|
1304 |
+
|
1305 |
+
# Adapted from transformers.models.t5.modeling_tf_t5.TFT5PreTrainedModel._shift_right
|
1306 |
+
def _shift_right(self, input_ids):
|
1307 |
+
decoder_start_token_id = self.decoder_start_token_id
|
1308 |
+
pad_token_id = self.decoder_pad_token_id
|
1309 |
+
|
1310 |
+
if decoder_start_token_id is None or pad_token_id is None:
|
1311 |
+
raise ValueError("decoder_start_token_id and pad_token_id must be defined!")
|
1312 |
+
|
1313 |
+
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
|
1314 |
+
start_tokens = tf.cast(start_tokens, input_ids.dtype) # Ensure compatible dtypes for concatenation
|
1315 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
1316 |
+
|
1317 |
+
# replace possible -100 values in labels by `pad_token_id`
|
1318 |
+
shifted_input_ids = tf.where(
|
1319 |
+
shifted_input_ids == -100,
|
1320 |
+
tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype),
|
1321 |
+
shifted_input_ids,
|
1322 |
+
)
|
1323 |
+
|
1324 |
+
# "Verify that `labels` has only positive values and -100"
|
1325 |
+
tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype))
|
1326 |
+
|
1327 |
+
return shifted_input_ids
|
1328 |
+
|
1329 |
+
@unpack_inputs
|
1330 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1331 |
+
@replace_return_docstrings(output_type=TFBlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
1332 |
+
def call(
|
1333 |
+
self,
|
1334 |
+
input_ids: tf.Tensor,
|
1335 |
+
pixel_values: tf.Tensor | None = None,
|
1336 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1337 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1338 |
+
attention_mask: tf.Tensor | None = None,
|
1339 |
+
output_attentions: Optional[bool] = None,
|
1340 |
+
output_hidden_states: Optional[bool] = None,
|
1341 |
+
labels: tf.Tensor | None = None,
|
1342 |
+
return_dict: Optional[bool] = None,
|
1343 |
+
training: Optional[bool] = None,
|
1344 |
+
) -> Union[Tuple, TFBlipTextVisionModelOutput]:
|
1345 |
+
r"""
|
1346 |
+
Returns:
|
1347 |
+
|
1348 |
+
Examples:
|
1349 |
+
|
1350 |
+
```python
|
1351 |
+
>>> from PIL import Image
|
1352 |
+
>>> import requests
|
1353 |
+
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering
|
1354 |
+
|
1355 |
+
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1356 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1357 |
+
|
1358 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1359 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1360 |
+
|
1361 |
+
>>> # training
|
1362 |
+
>>> text = "How many cats are in the picture?"
|
1363 |
+
>>> label = "2"
|
1364 |
+
>>> inputs = processor(images=image, text=text, return_tensors="tf")
|
1365 |
+
>>> labels = processor(text=label, return_tensors="tf").input_ids
|
1366 |
+
|
1367 |
+
>>> inputs["labels"] = labels
|
1368 |
+
>>> outputs = model(**inputs)
|
1369 |
+
>>> loss = outputs.loss
|
1370 |
+
|
1371 |
+
>>> # inference
|
1372 |
+
>>> text = "How many cats are in the picture?"
|
1373 |
+
>>> inputs = processor(images=image, text=text, return_tensors="tf")
|
1374 |
+
>>> outputs = model.generate(**inputs)
|
1375 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1376 |
+
2
|
1377 |
+
```"""
|
1378 |
+
if labels is None and decoder_input_ids is None:
|
1379 |
+
raise ValueError(
|
1380 |
+
"Either `decoder_input_ids` or `labels` should be passed when calling"
|
1381 |
+
" `TFBlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
|
1382 |
+
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1386 |
+
|
1387 |
+
vision_outputs = self.vision_model(
|
1388 |
+
pixel_values=pixel_values,
|
1389 |
+
output_attentions=output_attentions,
|
1390 |
+
output_hidden_states=output_hidden_states,
|
1391 |
+
return_dict=return_dict,
|
1392 |
+
training=training,
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
image_embeds = vision_outputs[0]
|
1396 |
+
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)
|
1397 |
+
|
1398 |
+
question_embeds = self.text_encoder(
|
1399 |
+
input_ids=input_ids,
|
1400 |
+
attention_mask=attention_mask,
|
1401 |
+
encoder_hidden_states=image_embeds,
|
1402 |
+
encoder_attention_mask=image_attention_mask,
|
1403 |
+
return_dict=return_dict,
|
1404 |
+
training=training,
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1408 |
+
|
1409 |
+
if labels is not None and decoder_input_ids is None:
|
1410 |
+
# labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
|
1411 |
+
decoder_input_ids = labels
|
1412 |
+
|
1413 |
+
answer_output = self.text_decoder(
|
1414 |
+
input_ids=decoder_input_ids,
|
1415 |
+
attention_mask=decoder_attention_mask,
|
1416 |
+
encoder_hidden_states=question_embeds,
|
1417 |
+
encoder_attention_mask=attention_mask,
|
1418 |
+
labels=labels,
|
1419 |
+
return_dict=return_dict,
|
1420 |
+
training=training,
|
1421 |
+
)
|
1422 |
+
|
1423 |
+
if labels is not None:
|
1424 |
+
decoder_loss = tf.reduce_mean(answer_output.loss) if return_dict else tf.reduce_mean(answer_output[0])
|
1425 |
+
else:
|
1426 |
+
decoder_loss = None
|
1427 |
+
|
1428 |
+
if not return_dict:
|
1429 |
+
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1430 |
+
return tuple(output for output in outputs if output is not None)
|
1431 |
+
|
1432 |
+
return TFBlipTextVisionModelOutput(
|
1433 |
+
loss=decoder_loss,
|
1434 |
+
image_embeds=image_embeds,
|
1435 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1436 |
+
hidden_states=vision_outputs.hidden_states,
|
1437 |
+
attentions=vision_outputs.attentions,
|
1438 |
+
)
|
1439 |
+
|
1440 |
+
def generate(
|
1441 |
+
self,
|
1442 |
+
input_ids: tf.Tensor,
|
1443 |
+
pixel_values: tf.Tensor,
|
1444 |
+
attention_mask: tf.Tensor | None = None,
|
1445 |
+
**generate_kwargs,
|
1446 |
+
) -> tf.Tensor:
|
1447 |
+
r"""
|
1448 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1449 |
+
|
1450 |
+
Parameters:
|
1451 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
1452 |
+
The sequence used as a prompt for the generation.
|
1453 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
|
1454 |
+
Input image to be processed
|
1455 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1456 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
|
1457 |
+
tokens that are NOT MASKED, `0` for MASKED tokens.
|
1458 |
+
generate_kwargs (dict, *optional*):
|
1459 |
+
Additional arguments passed to the `generate` function of the decoder
|
1460 |
+
|
1461 |
+
|
1462 |
+
Examples:
|
1463 |
+
```python
|
1464 |
+
>>> from PIL import Image
|
1465 |
+
>>> import requests
|
1466 |
+
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering
|
1467 |
+
|
1468 |
+
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1469 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1470 |
+
|
1471 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1472 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1473 |
+
>>> text = "How many cats are in the picture?"
|
1474 |
+
|
1475 |
+
>>> inputs = processor(images=image, text=text, return_tensors="tf")
|
1476 |
+
|
1477 |
+
>>> outputs = model.generate(**inputs)
|
1478 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1479 |
+
2
|
1480 |
+
```
|
1481 |
+
"""
|
1482 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
1483 |
+
|
1484 |
+
image_embeds = vision_outputs[0]
|
1485 |
+
|
1486 |
+
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)
|
1487 |
+
|
1488 |
+
if isinstance(input_ids, list):
|
1489 |
+
input_ids = tf.Tensor(input_ids)
|
1490 |
+
|
1491 |
+
question_outputs = self.text_encoder(
|
1492 |
+
input_ids=input_ids,
|
1493 |
+
attention_mask=attention_mask,
|
1494 |
+
encoder_hidden_states=image_embeds,
|
1495 |
+
encoder_attention_mask=image_attention_mask,
|
1496 |
+
return_dict=False,
|
1497 |
+
)
|
1498 |
+
|
1499 |
+
question_embeds = question_outputs[0]
|
1500 |
+
|
1501 |
+
question_attention_mask = tf.ones(shape_list(question_embeds)[:-1], dtype=tf.int32)
|
1502 |
+
|
1503 |
+
bos_ids = tf.fill(
|
1504 |
+
(tf.shape(question_embeds)[0], 1), value=tf.cast(self.decoder_start_token_id, input_ids.dtype)
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
outputs = self.text_decoder.generate(
|
1508 |
+
input_ids=bos_ids,
|
1509 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1510 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1511 |
+
encoder_hidden_states=question_embeds,
|
1512 |
+
encoder_attention_mask=question_attention_mask,
|
1513 |
+
**generate_kwargs,
|
1514 |
+
)
|
1515 |
+
|
1516 |
+
return outputs
|
1517 |
+
|
1518 |
+
def build(self, input_shape=None):
|
1519 |
+
if self.built:
|
1520 |
+
return
|
1521 |
+
self.built = True
|
1522 |
+
if getattr(self, "vision_model", None) is not None:
|
1523 |
+
with tf.name_scope(self.vision_model.name):
|
1524 |
+
self.vision_model.build(None)
|
1525 |
+
if getattr(self, "text_encoder", None) is not None:
|
1526 |
+
with tf.name_scope(self.text_encoder.name):
|
1527 |
+
self.text_encoder.build(None)
|
1528 |
+
if getattr(self, "text_decoder", None) is not None:
|
1529 |
+
with tf.name_scope(self.text_decoder.name):
|
1530 |
+
self.text_decoder.build(None)
|
1531 |
+
|
1532 |
+
|
1533 |
+
@add_start_docstrings(
|
1534 |
+
"""
|
1535 |
+
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
|
1536 |
+
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
|
1537 |
+
the image.
|
1538 |
+
""",
|
1539 |
+
BLIP_START_DOCSTRING,
|
1540 |
+
)
|
1541 |
+
class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel):
|
1542 |
+
config_class = BlipConfig
|
1543 |
+
|
1544 |
+
def __init__(self, config: BlipConfig, *args, **kwargs):
|
1545 |
+
super().__init__(config, *args, **kwargs)
|
1546 |
+
|
1547 |
+
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
|
1548 |
+
|
1549 |
+
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)
|
1550 |
+
|
1551 |
+
# vision projection layer
|
1552 |
+
self.vision_proj = keras.layers.Dense(
|
1553 |
+
config.image_text_hidden_size,
|
1554 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1555 |
+
name="vision_proj",
|
1556 |
+
)
|
1557 |
+
|
1558 |
+
# text projection layer
|
1559 |
+
self.text_proj = keras.layers.Dense(
|
1560 |
+
config.image_text_hidden_size,
|
1561 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1562 |
+
name="text_proj",
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
# image text matching head
|
1566 |
+
self.itm_head = keras.layers.Dense(
|
1567 |
+
2, kernel_initializer=get_initializer(config.initializer_range), name="itm_head"
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
self.decoder_pad_token_id = (
|
1571 |
+
config.text_config.pad_token_id
|
1572 |
+
if not hasattr(config, "decoder_pad_token_id")
|
1573 |
+
else config.decoder_pad_token_id
|
1574 |
+
)
|
1575 |
+
self.decoder_start_token_id = (
|
1576 |
+
config.text_config.bos_token_id
|
1577 |
+
if not hasattr(config, "decoder_start_token_id")
|
1578 |
+
else config.decoder_start_token_id
|
1579 |
+
)
|
1580 |
+
self.config = config
|
1581 |
+
|
1582 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1583 |
+
return self.vision_model.embeddings.patch_embedding
|
1584 |
+
|
1585 |
+
@unpack_inputs
|
1586 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1587 |
+
@replace_return_docstrings(output_type=TFBlipImageTextMatchingModelOutput, config_class=BlipVisionConfig)
|
1588 |
+
def call(
|
1589 |
+
self,
|
1590 |
+
input_ids: tf.Tensor,
|
1591 |
+
pixel_values: tf.Tensor | None = None,
|
1592 |
+
use_itm_head: Optional[bool] = True,
|
1593 |
+
attention_mask: tf.Tensor | None = None,
|
1594 |
+
output_attentions: Optional[bool] = None,
|
1595 |
+
output_hidden_states: Optional[bool] = None,
|
1596 |
+
return_dict: Optional[bool] = None,
|
1597 |
+
training: Optional[bool] = None,
|
1598 |
+
) -> Union[Tuple, TFBlipImageTextMatchingModelOutput]:
|
1599 |
+
r"""
|
1600 |
+
Returns:
|
1601 |
+
|
1602 |
+
Examples:
|
1603 |
+
|
1604 |
+
```python
|
1605 |
+
>>> from PIL import Image
|
1606 |
+
>>> import requests
|
1607 |
+
>>> from transformers import AutoProcessor, TFBlipForImageTextRetrieval
|
1608 |
+
|
1609 |
+
>>> model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
|
1610 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
1611 |
+
|
1612 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1613 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1614 |
+
>>> text = "an image of a cat"
|
1615 |
+
|
1616 |
+
>>> inputs = processor(images=image, text=text, return_tensors="tf")
|
1617 |
+
>>> outputs = model(**inputs)
|
1618 |
+
```
|
1619 |
+
"""
|
1620 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1621 |
+
|
1622 |
+
vision_outputs = self.vision_model(
|
1623 |
+
pixel_values=pixel_values,
|
1624 |
+
output_attentions=output_attentions,
|
1625 |
+
output_hidden_states=output_hidden_states,
|
1626 |
+
return_dict=return_dict,
|
1627 |
+
training=training,
|
1628 |
+
)
|
1629 |
+
|
1630 |
+
image_embeds = vision_outputs[0]
|
1631 |
+
image_atts = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)
|
1632 |
+
|
1633 |
+
# Matt: In PyTorch, only one path (itm/non-itm) is taken. However, in TensorFlow this can result in
|
1634 |
+
# some layers not being built! To avoid this, we always call both paths, then use an if statement to select
|
1635 |
+
# which output to pass to the final output. The unnecessary nodes will be pruned from the final graph, but
|
1636 |
+
# not before the layers have all been built correctly.
|
1637 |
+
itm_question_embeds = self.text_encoder(
|
1638 |
+
input_ids=input_ids,
|
1639 |
+
attention_mask=attention_mask,
|
1640 |
+
encoder_hidden_states=image_embeds,
|
1641 |
+
encoder_attention_mask=image_atts,
|
1642 |
+
return_dict=return_dict,
|
1643 |
+
training=training,
|
1644 |
+
)
|
1645 |
+
itm_question_embeds = itm_question_embeds[0] if not return_dict else itm_question_embeds.last_hidden_state
|
1646 |
+
|
1647 |
+
itm_output = self.itm_head(itm_question_embeds[:, 0, :])
|
1648 |
+
|
1649 |
+
no_itm_question_embeds = self.text_encoder(
|
1650 |
+
input_ids=input_ids,
|
1651 |
+
attention_mask=attention_mask,
|
1652 |
+
return_dict=return_dict,
|
1653 |
+
training=training,
|
1654 |
+
)
|
1655 |
+
no_itm_question_embeds = (
|
1656 |
+
no_itm_question_embeds[0] if not return_dict else no_itm_question_embeds.last_hidden_state
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
image_feat, _ = tf.linalg.normalize(self.vision_proj(image_embeds[:, 0, :]), ord=2, axis=-1)
|
1660 |
+
text_feat, _ = tf.linalg.normalize(self.text_proj(no_itm_question_embeds[:, 0, :]), ord=2, axis=-1)
|
1661 |
+
|
1662 |
+
no_itm_output = tf.matmul(image_feat, text_feat, transpose_b=True)
|
1663 |
+
|
1664 |
+
if use_itm_head:
|
1665 |
+
output = itm_output
|
1666 |
+
question_embeds = itm_question_embeds
|
1667 |
+
else:
|
1668 |
+
output = no_itm_output
|
1669 |
+
question_embeds = no_itm_question_embeds
|
1670 |
+
|
1671 |
+
if not return_dict:
|
1672 |
+
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
|
1673 |
+
return tuple(output for output in outputs if output is not None)
|
1674 |
+
|
1675 |
+
return TFBlipImageTextMatchingModelOutput(
|
1676 |
+
itm_score=output,
|
1677 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1678 |
+
hidden_states=vision_outputs.hidden_states,
|
1679 |
+
attentions=vision_outputs.attentions,
|
1680 |
+
question_embeds=question_embeds,
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
def build(self, input_shape=None):
|
1684 |
+
if self.built:
|
1685 |
+
return
|
1686 |
+
self.built = True
|
1687 |
+
if getattr(self, "vision_model", None) is not None:
|
1688 |
+
with tf.name_scope(self.vision_model.name):
|
1689 |
+
self.vision_model.build(None)
|
1690 |
+
if getattr(self, "text_encoder", None) is not None:
|
1691 |
+
with tf.name_scope(self.text_encoder.name):
|
1692 |
+
self.text_encoder.build(None)
|
1693 |
+
if getattr(self, "vision_proj", None) is not None:
|
1694 |
+
with tf.name_scope(self.vision_proj.name):
|
1695 |
+
self.vision_proj.build([None, None, self.config.vision_config.hidden_size])
|
1696 |
+
if getattr(self, "text_proj", None) is not None:
|
1697 |
+
with tf.name_scope(self.text_proj.name):
|
1698 |
+
self.text_proj.build([None, None, self.config.text_config.hidden_size])
|
1699 |
+
if getattr(self, "itm_head", None) is not None:
|
1700 |
+
with tf.name_scope(self.itm_head.name):
|
1701 |
+
self.itm_head.build([None, None, self.config.text_config.hidden_size])
|
venv/lib/python3.10/site-packages/transformers/models/blip/modeling_tf_blip_text.py
ADDED
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the BSD-3-clause license (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# https://opensource.org/licenses/BSD-3-Clause
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Optional, Tuple
|
21 |
+
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from ...modeling_tf_outputs import (
|
25 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
26 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
27 |
+
TFCausalLMOutputWithCrossAttentions,
|
28 |
+
)
|
29 |
+
from ...modeling_tf_utils import (
|
30 |
+
TFModelInputType,
|
31 |
+
TFPreTrainedModel,
|
32 |
+
get_initializer,
|
33 |
+
get_tf_activation,
|
34 |
+
keras,
|
35 |
+
keras_serializable,
|
36 |
+
shape_list,
|
37 |
+
unpack_inputs,
|
38 |
+
)
|
39 |
+
from ...tf_utils import check_embeddings_within_bounds, invert_attention_mask, stable_softmax
|
40 |
+
from ...utils import add_start_docstrings_to_model_forward, logging
|
41 |
+
from .configuration_blip import BlipTextConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
BLIP_TEXT_INPUTS_DOCSTRING = r"""
|
47 |
+
Args:
|
48 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
49 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
50 |
+
it.
|
51 |
+
|
52 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
53 |
+
|
54 |
+
[What are input IDs?](../glossary#input-ids)
|
55 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
56 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
57 |
+
|
58 |
+
- 1 for tokens that are **not masked**,
|
59 |
+
- 0 for tokens that are **masked**.
|
60 |
+
|
61 |
+
[What are attention masks?](../glossary#attention-mask)
|
62 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
63 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
64 |
+
config.max_position_embeddings - 1]`.
|
65 |
+
|
66 |
+
[What are position IDs?](../glossary#position-ids)
|
67 |
+
output_attentions (`bool`, *optional*):
|
68 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
69 |
+
tensors for more detail.
|
70 |
+
output_hidden_states (`bool`, *optional*):
|
71 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
72 |
+
more detail.
|
73 |
+
return_dict (`bool`, *optional*):
|
74 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
|
79 |
+
class TFBlipTextEmbeddings(keras.layers.Layer):
|
80 |
+
"""Construct the embeddings from word and position embeddings."""
|
81 |
+
|
82 |
+
def __init__(self, config, **kwargs):
|
83 |
+
super().__init__(**kwargs)
|
84 |
+
self.word_embeddings = keras.layers.Embedding(
|
85 |
+
config.vocab_size,
|
86 |
+
config.hidden_size,
|
87 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
88 |
+
name="word_embeddings",
|
89 |
+
)
|
90 |
+
self.position_embeddings = keras.layers.Embedding(
|
91 |
+
config.max_position_embeddings,
|
92 |
+
config.hidden_size,
|
93 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
94 |
+
name="position_embeddings",
|
95 |
+
)
|
96 |
+
|
97 |
+
# self.LayerNorm is not snake-cased to stick with PyTorch model variable name and be able to load
|
98 |
+
# any TensorFlow checkpoint file
|
99 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
100 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
|
101 |
+
|
102 |
+
self.position_ids = tf.expand_dims(tf.range(config.max_position_embeddings), 0)
|
103 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
104 |
+
|
105 |
+
self.config = config
|
106 |
+
|
107 |
+
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, training=None):
|
108 |
+
if input_ids is not None:
|
109 |
+
input_shape = tf.shape(input_ids)
|
110 |
+
else:
|
111 |
+
input_shape = tf.shape(inputs_embeds)[:-1]
|
112 |
+
|
113 |
+
seq_length = input_shape[1]
|
114 |
+
|
115 |
+
if position_ids is None:
|
116 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
117 |
+
|
118 |
+
if inputs_embeds is None:
|
119 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
120 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
121 |
+
|
122 |
+
embeddings = inputs_embeds
|
123 |
+
|
124 |
+
if self.position_embedding_type == "absolute":
|
125 |
+
position_embeddings = self.position_embeddings(position_ids)
|
126 |
+
embeddings += position_embeddings
|
127 |
+
embeddings = self.LayerNorm(embeddings)
|
128 |
+
embeddings = self.dropout(embeddings, training=training)
|
129 |
+
return embeddings
|
130 |
+
|
131 |
+
def build(self, input_shape=None):
|
132 |
+
if self.built:
|
133 |
+
return
|
134 |
+
self.built = True
|
135 |
+
if getattr(self, "word_embeddings", None) is not None:
|
136 |
+
with tf.name_scope(self.word_embeddings.name):
|
137 |
+
self.word_embeddings.build(None)
|
138 |
+
if getattr(self, "position_embeddings", None) is not None:
|
139 |
+
with tf.name_scope(self.position_embeddings.name):
|
140 |
+
self.position_embeddings.build(None)
|
141 |
+
if getattr(self, "LayerNorm", None) is not None:
|
142 |
+
with tf.name_scope(self.LayerNorm.name):
|
143 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
144 |
+
if getattr(self, "dropout", None) is not None:
|
145 |
+
with tf.name_scope(self.dropout.name):
|
146 |
+
self.dropout.build(None)
|
147 |
+
|
148 |
+
|
149 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
|
150 |
+
class TFBlipTextSelfAttention(keras.layers.Layer):
|
151 |
+
def __init__(self, config, is_cross_attention, **kwargs):
|
152 |
+
super().__init__(**kwargs)
|
153 |
+
self.config = config
|
154 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
155 |
+
raise ValueError(
|
156 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
157 |
+
% (config.hidden_size, config.num_attention_heads)
|
158 |
+
)
|
159 |
+
|
160 |
+
self.num_attention_heads = config.num_attention_heads
|
161 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
162 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
163 |
+
|
164 |
+
self.query = keras.layers.Dense(
|
165 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
166 |
+
)
|
167 |
+
self.key = keras.layers.Dense(
|
168 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
169 |
+
)
|
170 |
+
self.value = keras.layers.Dense(
|
171 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
172 |
+
)
|
173 |
+
|
174 |
+
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
|
175 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
176 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
177 |
+
self.max_position_embeddings = config.max_position_embeddings
|
178 |
+
self.distance_embedding = keras.layers.Embedding(
|
179 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
180 |
+
)
|
181 |
+
self.is_cross_attention = is_cross_attention
|
182 |
+
|
183 |
+
def transpose_for_scores(self, x):
|
184 |
+
new_x_shape = tf.concat(
|
185 |
+
[tf.shape(x)[:-1], tf.constant([self.num_attention_heads, self.attention_head_size], dtype=tf.int32)],
|
186 |
+
axis=0,
|
187 |
+
)
|
188 |
+
x = tf.reshape(x, new_x_shape)
|
189 |
+
return tf.transpose(x, perm=(0, 2, 1, 3))
|
190 |
+
|
191 |
+
def call(
|
192 |
+
self,
|
193 |
+
hidden_states,
|
194 |
+
attention_mask=None,
|
195 |
+
head_mask=None,
|
196 |
+
encoder_hidden_states=None,
|
197 |
+
encoder_attention_mask=None,
|
198 |
+
past_key_value=None,
|
199 |
+
output_attentions=False,
|
200 |
+
training=None,
|
201 |
+
):
|
202 |
+
mixed_query_layer = self.query(hidden_states)
|
203 |
+
|
204 |
+
# If this is instantiated as a cross-attention module, the keys
|
205 |
+
# and values come from an encoder; the attention mask needs to be
|
206 |
+
# such that the encoder's padding tokens are not attended to.
|
207 |
+
is_cross_attention = encoder_hidden_states is not None
|
208 |
+
|
209 |
+
if is_cross_attention:
|
210 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
211 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
212 |
+
attention_mask = encoder_attention_mask
|
213 |
+
elif past_key_value is not None:
|
214 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
215 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
216 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
217 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
218 |
+
else:
|
219 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
220 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
221 |
+
|
222 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
223 |
+
|
224 |
+
past_key_value = (key_layer, value_layer)
|
225 |
+
|
226 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
227 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
228 |
+
|
229 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
230 |
+
seq_length = shape_list(hidden_states)[1]
|
231 |
+
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 1)
|
232 |
+
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 0)
|
233 |
+
distance = position_ids_l - position_ids_r
|
234 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
235 |
+
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
|
236 |
+
|
237 |
+
if self.position_embedding_type == "relative_key":
|
238 |
+
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
239 |
+
attention_scores = attention_scores + relative_position_scores
|
240 |
+
elif self.position_embedding_type == "relative_key_query":
|
241 |
+
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
242 |
+
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
243 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
|
248 |
+
attention_scores = attention_scores + tf.cast(attention_mask, attention_scores.dtype)
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
252 |
+
|
253 |
+
# This is actually dropping out entire tokens to attend to, which might
|
254 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
255 |
+
attention_probs_dropped = self.dropout(attention_probs, training=training)
|
256 |
+
|
257 |
+
# Mask heads if we want to
|
258 |
+
if head_mask is not None:
|
259 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
260 |
+
|
261 |
+
context_layer = attention_probs_dropped @ value_layer
|
262 |
+
|
263 |
+
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
|
264 |
+
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
|
265 |
+
context_layer = tf.reshape(context_layer, new_context_layer_shape)
|
266 |
+
|
267 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
268 |
+
|
269 |
+
outputs = outputs + (past_key_value,)
|
270 |
+
return outputs
|
271 |
+
|
272 |
+
def build(self, input_shape=None):
|
273 |
+
if self.built:
|
274 |
+
return
|
275 |
+
self.built = True
|
276 |
+
if getattr(self, "query", None) is not None:
|
277 |
+
with tf.name_scope(self.query.name):
|
278 |
+
self.query.build([None, None, self.config.hidden_size])
|
279 |
+
if self.is_cross_attention:
|
280 |
+
if getattr(self, "key", None) is not None:
|
281 |
+
with tf.name_scope(self.key.name):
|
282 |
+
self.key.build([None, None, self.config.encoder_hidden_size])
|
283 |
+
if getattr(self, "value", None) is not None:
|
284 |
+
with tf.name_scope(self.value.name):
|
285 |
+
self.value.build([None, None, self.config.encoder_hidden_size])
|
286 |
+
else:
|
287 |
+
if getattr(self, "key", None) is not None:
|
288 |
+
with tf.name_scope(self.key.name):
|
289 |
+
self.key.build([None, None, self.config.hidden_size])
|
290 |
+
if getattr(self, "value", None) is not None:
|
291 |
+
with tf.name_scope(self.value.name):
|
292 |
+
self.value.build([None, None, self.config.hidden_size])
|
293 |
+
|
294 |
+
|
295 |
+
class TFBlipTextSelfOutput(keras.layers.Layer):
|
296 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
297 |
+
super().__init__(**kwargs)
|
298 |
+
|
299 |
+
self.dense = keras.layers.Dense(
|
300 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
301 |
+
)
|
302 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
303 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
304 |
+
self.config = config
|
305 |
+
|
306 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: Optional[bool] = None) -> tf.Tensor:
|
307 |
+
hidden_states = self.dense(inputs=hidden_states)
|
308 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
309 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
310 |
+
|
311 |
+
return hidden_states
|
312 |
+
|
313 |
+
def build(self, input_shape=None):
|
314 |
+
if self.built:
|
315 |
+
return
|
316 |
+
self.built = True
|
317 |
+
if getattr(self, "dense", None) is not None:
|
318 |
+
with tf.name_scope(self.dense.name):
|
319 |
+
self.dense.build([None, None, self.config.hidden_size])
|
320 |
+
if getattr(self, "LayerNorm", None) is not None:
|
321 |
+
with tf.name_scope(self.LayerNorm.name):
|
322 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
323 |
+
|
324 |
+
|
325 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
|
326 |
+
class TFBlipTextAttention(keras.layers.Layer):
|
327 |
+
def __init__(self, config, is_cross_attention=False, **kwargs):
|
328 |
+
super().__init__(**kwargs)
|
329 |
+
self.self = TFBlipTextSelfAttention(config, is_cross_attention, name="self")
|
330 |
+
# "output" is a protected attribute on TF models
|
331 |
+
self.self_output = TFBlipTextSelfOutput(config, name="output")
|
332 |
+
|
333 |
+
def call(
|
334 |
+
self,
|
335 |
+
hidden_states: tf.Tensor,
|
336 |
+
attention_mask: tf.Tensor | None = None,
|
337 |
+
head_mask: tf.Tensor | None = None,
|
338 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
339 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
340 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
341 |
+
output_attentions: Optional[bool] = False,
|
342 |
+
training: Optional[bool] = None,
|
343 |
+
):
|
344 |
+
self_outputs = self.self(
|
345 |
+
hidden_states,
|
346 |
+
attention_mask,
|
347 |
+
head_mask,
|
348 |
+
encoder_hidden_states,
|
349 |
+
encoder_attention_mask,
|
350 |
+
past_key_value,
|
351 |
+
output_attentions,
|
352 |
+
training=training,
|
353 |
+
)
|
354 |
+
attention_output = self.self_output(self_outputs[0], hidden_states, training=training)
|
355 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
356 |
+
return outputs
|
357 |
+
|
358 |
+
def build(self, input_shape=None):
|
359 |
+
if self.built:
|
360 |
+
return
|
361 |
+
self.built = True
|
362 |
+
if getattr(self, "self", None) is not None:
|
363 |
+
with tf.name_scope(self.self.name):
|
364 |
+
self.self.build(None)
|
365 |
+
if getattr(self, "self_output", None) is not None:
|
366 |
+
with tf.name_scope(self.self_output.name):
|
367 |
+
self.self_output.build(None)
|
368 |
+
|
369 |
+
|
370 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->BlipText
|
371 |
+
class TFBlipTextIntermediate(keras.layers.Layer):
|
372 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
373 |
+
super().__init__(**kwargs)
|
374 |
+
|
375 |
+
self.dense = keras.layers.Dense(
|
376 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
377 |
+
)
|
378 |
+
|
379 |
+
if isinstance(config.hidden_act, str):
|
380 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
381 |
+
else:
|
382 |
+
self.intermediate_act_fn = config.hidden_act
|
383 |
+
self.config = config
|
384 |
+
|
385 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
386 |
+
hidden_states = self.dense(inputs=hidden_states)
|
387 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
388 |
+
|
389 |
+
return hidden_states
|
390 |
+
|
391 |
+
def build(self, input_shape=None):
|
392 |
+
if self.built:
|
393 |
+
return
|
394 |
+
self.built = True
|
395 |
+
if getattr(self, "dense", None) is not None:
|
396 |
+
with tf.name_scope(self.dense.name):
|
397 |
+
self.dense.build([None, None, self.config.hidden_size])
|
398 |
+
|
399 |
+
|
400 |
+
class TFBlipTextOutput(keras.layers.Layer):
|
401 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
402 |
+
super().__init__(**kwargs)
|
403 |
+
|
404 |
+
self.dense = keras.layers.Dense(
|
405 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
406 |
+
)
|
407 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
408 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
409 |
+
self.config = config
|
410 |
+
|
411 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
412 |
+
hidden_states = self.dense(inputs=hidden_states)
|
413 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
414 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
415 |
+
|
416 |
+
return hidden_states
|
417 |
+
|
418 |
+
def build(self, input_shape=None):
|
419 |
+
if self.built:
|
420 |
+
return
|
421 |
+
self.built = True
|
422 |
+
if getattr(self, "dense", None) is not None:
|
423 |
+
with tf.name_scope(self.dense.name):
|
424 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
425 |
+
if getattr(self, "LayerNorm", None) is not None:
|
426 |
+
with tf.name_scope(self.LayerNorm.name):
|
427 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
428 |
+
|
429 |
+
|
430 |
+
class TFBlipTextLayer(keras.layers.Layer):
|
431 |
+
def __init__(self, config, **kwargs):
|
432 |
+
super().__init__(**kwargs)
|
433 |
+
self.config = config
|
434 |
+
self.attention = TFBlipTextAttention(config, name="attention")
|
435 |
+
if self.config.is_decoder:
|
436 |
+
self.crossattention = TFBlipTextAttention(
|
437 |
+
config, is_cross_attention=self.config.is_decoder, name="crossattention"
|
438 |
+
)
|
439 |
+
self.intermediate = TFBlipTextIntermediate(config, name="intermediate")
|
440 |
+
self.self_output = TFBlipTextOutput(config, name="output")
|
441 |
+
|
442 |
+
def call(
|
443 |
+
self,
|
444 |
+
hidden_states,
|
445 |
+
attention_mask=None,
|
446 |
+
head_mask=None,
|
447 |
+
encoder_hidden_states=None,
|
448 |
+
encoder_attention_mask=None,
|
449 |
+
past_key_value=None,
|
450 |
+
output_attentions=False,
|
451 |
+
training=None,
|
452 |
+
):
|
453 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
454 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
455 |
+
self_attention_outputs = self.attention(
|
456 |
+
hidden_states,
|
457 |
+
attention_mask,
|
458 |
+
head_mask,
|
459 |
+
output_attentions=output_attentions,
|
460 |
+
past_key_value=self_attn_past_key_value,
|
461 |
+
training=training,
|
462 |
+
)
|
463 |
+
attention_output = self_attention_outputs[0]
|
464 |
+
|
465 |
+
outputs = self_attention_outputs[1:-1]
|
466 |
+
present_key_value = self_attention_outputs[-1]
|
467 |
+
|
468 |
+
if encoder_hidden_states is not None:
|
469 |
+
cross_attention_outputs = self.crossattention(
|
470 |
+
attention_output,
|
471 |
+
attention_mask,
|
472 |
+
head_mask,
|
473 |
+
encoder_hidden_states,
|
474 |
+
encoder_attention_mask,
|
475 |
+
output_attentions=output_attentions,
|
476 |
+
training=training,
|
477 |
+
)
|
478 |
+
attention_output = cross_attention_outputs[0]
|
479 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
480 |
+
intermediate_output = self.intermediate(attention_output)
|
481 |
+
layer_output = self.self_output(intermediate_output, attention_output, training=training)
|
482 |
+
outputs = (layer_output,) + outputs
|
483 |
+
|
484 |
+
outputs = outputs + (present_key_value,)
|
485 |
+
|
486 |
+
return outputs
|
487 |
+
|
488 |
+
def build(self, input_shape=None):
|
489 |
+
if self.built:
|
490 |
+
return
|
491 |
+
self.built = True
|
492 |
+
if getattr(self, "attention", None) is not None:
|
493 |
+
with tf.name_scope(self.attention.name):
|
494 |
+
self.attention.build(None)
|
495 |
+
if getattr(self, "intermediate", None) is not None:
|
496 |
+
with tf.name_scope(self.intermediate.name):
|
497 |
+
self.intermediate.build(None)
|
498 |
+
if getattr(self, "self_output", None) is not None:
|
499 |
+
with tf.name_scope(self.self_output.name):
|
500 |
+
self.self_output.build(None)
|
501 |
+
if getattr(self, "crossattention", None) is not None:
|
502 |
+
with tf.name_scope(self.crossattention.name):
|
503 |
+
self.crossattention.build(None)
|
504 |
+
|
505 |
+
|
506 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
|
507 |
+
@keras_serializable
|
508 |
+
class TFBlipTextEncoder(keras.layers.Layer):
|
509 |
+
config_class = BlipTextConfig
|
510 |
+
|
511 |
+
def __init__(self, config, name=None, **kwargs):
|
512 |
+
super().__init__(name=name, **kwargs)
|
513 |
+
self.config = config
|
514 |
+
self.layer = [TFBlipTextLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
515 |
+
|
516 |
+
@unpack_inputs
|
517 |
+
def call(
|
518 |
+
self,
|
519 |
+
hidden_states,
|
520 |
+
attention_mask=None,
|
521 |
+
head_mask=None,
|
522 |
+
encoder_hidden_states=None,
|
523 |
+
encoder_attention_mask=None,
|
524 |
+
past_key_values=None,
|
525 |
+
use_cache=None,
|
526 |
+
output_attentions=False,
|
527 |
+
output_hidden_states=False,
|
528 |
+
return_dict=True,
|
529 |
+
training=None,
|
530 |
+
):
|
531 |
+
all_hidden_states = () if output_hidden_states else None
|
532 |
+
all_self_attentions = () if output_attentions else None
|
533 |
+
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
|
534 |
+
|
535 |
+
next_decoder_cache = () if use_cache else None
|
536 |
+
|
537 |
+
for i in range(self.config.num_hidden_layers):
|
538 |
+
layer_module = self.layer[i]
|
539 |
+
if output_hidden_states:
|
540 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
541 |
+
|
542 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
543 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
544 |
+
|
545 |
+
layer_outputs = layer_module(
|
546 |
+
hidden_states,
|
547 |
+
attention_mask,
|
548 |
+
layer_head_mask,
|
549 |
+
encoder_hidden_states,
|
550 |
+
encoder_attention_mask,
|
551 |
+
past_key_value,
|
552 |
+
output_attentions,
|
553 |
+
training=training,
|
554 |
+
)
|
555 |
+
|
556 |
+
hidden_states = layer_outputs[0]
|
557 |
+
if use_cache:
|
558 |
+
next_decoder_cache += (layer_outputs[-1],)
|
559 |
+
if output_attentions:
|
560 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
561 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
562 |
+
|
563 |
+
if output_hidden_states:
|
564 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
565 |
+
|
566 |
+
if not return_dict:
|
567 |
+
return tuple(
|
568 |
+
v
|
569 |
+
for v in [
|
570 |
+
hidden_states,
|
571 |
+
next_decoder_cache,
|
572 |
+
all_hidden_states,
|
573 |
+
all_self_attentions,
|
574 |
+
all_cross_attentions,
|
575 |
+
]
|
576 |
+
if v is not None
|
577 |
+
)
|
578 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
579 |
+
last_hidden_state=hidden_states,
|
580 |
+
past_key_values=next_decoder_cache,
|
581 |
+
hidden_states=all_hidden_states,
|
582 |
+
attentions=all_self_attentions,
|
583 |
+
cross_attentions=all_cross_attentions,
|
584 |
+
)
|
585 |
+
|
586 |
+
def build(self, input_shape=None):
|
587 |
+
if self.built:
|
588 |
+
return
|
589 |
+
self.built = True
|
590 |
+
if getattr(self, "layer", None) is not None:
|
591 |
+
for layer in self.layer:
|
592 |
+
with tf.name_scope(layer.name):
|
593 |
+
layer.build(None)
|
594 |
+
|
595 |
+
|
596 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->BlipText
|
597 |
+
class TFBlipTextPooler(keras.layers.Layer):
|
598 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
599 |
+
super().__init__(**kwargs)
|
600 |
+
|
601 |
+
self.dense = keras.layers.Dense(
|
602 |
+
units=config.hidden_size,
|
603 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
604 |
+
activation="tanh",
|
605 |
+
name="dense",
|
606 |
+
)
|
607 |
+
self.config = config
|
608 |
+
|
609 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
610 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
611 |
+
# to the first token.
|
612 |
+
first_token_tensor = hidden_states[:, 0]
|
613 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
614 |
+
|
615 |
+
return pooled_output
|
616 |
+
|
617 |
+
def build(self, input_shape=None):
|
618 |
+
if self.built:
|
619 |
+
return
|
620 |
+
self.built = True
|
621 |
+
if getattr(self, "dense", None) is not None:
|
622 |
+
with tf.name_scope(self.dense.name):
|
623 |
+
self.dense.build([None, None, self.config.hidden_size])
|
624 |
+
|
625 |
+
|
626 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->BlipText
|
627 |
+
class TFBlipTextPredictionHeadTransform(keras.layers.Layer):
|
628 |
+
def __init__(self, config: BlipTextConfig, **kwargs):
|
629 |
+
super().__init__(**kwargs)
|
630 |
+
|
631 |
+
self.dense = keras.layers.Dense(
|
632 |
+
units=config.hidden_size,
|
633 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
634 |
+
name="dense",
|
635 |
+
)
|
636 |
+
|
637 |
+
if isinstance(config.hidden_act, str):
|
638 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
639 |
+
else:
|
640 |
+
self.transform_act_fn = config.hidden_act
|
641 |
+
|
642 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
643 |
+
self.config = config
|
644 |
+
|
645 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
646 |
+
hidden_states = self.dense(inputs=hidden_states)
|
647 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
648 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
649 |
+
|
650 |
+
return hidden_states
|
651 |
+
|
652 |
+
def build(self, input_shape=None):
|
653 |
+
if self.built:
|
654 |
+
return
|
655 |
+
self.built = True
|
656 |
+
if getattr(self, "dense", None) is not None:
|
657 |
+
with tf.name_scope(self.dense.name):
|
658 |
+
self.dense.build([None, None, self.config.hidden_size])
|
659 |
+
if getattr(self, "LayerNorm", None) is not None:
|
660 |
+
with tf.name_scope(self.LayerNorm.name):
|
661 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
662 |
+
|
663 |
+
|
664 |
+
class TFBlipTextLMPredictionHead(keras.layers.Layer):
|
665 |
+
def __init__(self, config, **kwargs):
|
666 |
+
super().__init__(**kwargs)
|
667 |
+
self.transform = TFBlipTextPredictionHeadTransform(config, name="transform")
|
668 |
+
|
669 |
+
# The output weights are the same as the input embeddings, but there is
|
670 |
+
# an output-only bias for each token.
|
671 |
+
self.decoder = keras.layers.Dense(
|
672 |
+
config.vocab_size,
|
673 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
674 |
+
name="decoder",
|
675 |
+
use_bias=False,
|
676 |
+
)
|
677 |
+
self.config = config
|
678 |
+
|
679 |
+
def build(self, input_shape=None):
|
680 |
+
self.bias = self.add_weight(name="bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
|
681 |
+
|
682 |
+
if self.built:
|
683 |
+
return
|
684 |
+
self.built = True
|
685 |
+
if getattr(self, "transform", None) is not None:
|
686 |
+
with tf.name_scope(self.transform.name):
|
687 |
+
self.transform.build(None)
|
688 |
+
if getattr(self, "decoder", None) is not None:
|
689 |
+
with tf.name_scope(self.decoder.name):
|
690 |
+
self.decoder.build([None, None, self.config.hidden_size])
|
691 |
+
|
692 |
+
def call(self, hidden_states):
|
693 |
+
hidden_states = self.transform(hidden_states)
|
694 |
+
hidden_states = self.decoder(hidden_states) + self.bias
|
695 |
+
return hidden_states
|
696 |
+
|
697 |
+
|
698 |
+
class TFBlipTextOnlyMLMHead(keras.layers.Layer):
|
699 |
+
def __init__(self, config, **kwargs):
|
700 |
+
super().__init__(**kwargs)
|
701 |
+
self.predictions = TFBlipTextLMPredictionHead(config, name="predictions")
|
702 |
+
|
703 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
704 |
+
prediction_scores = self.predictions(sequence_output)
|
705 |
+
return prediction_scores
|
706 |
+
|
707 |
+
def build(self, input_shape=None):
|
708 |
+
if self.built:
|
709 |
+
return
|
710 |
+
self.built = True
|
711 |
+
if getattr(self, "predictions", None) is not None:
|
712 |
+
with tf.name_scope(self.predictions.name):
|
713 |
+
self.predictions.build(None)
|
714 |
+
|
715 |
+
|
716 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
|
717 |
+
class TFBlipTextPreTrainedModel(TFPreTrainedModel):
|
718 |
+
"""
|
719 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
720 |
+
models.
|
721 |
+
"""
|
722 |
+
|
723 |
+
config_class = BlipTextConfig
|
724 |
+
base_model_prefix = "bert"
|
725 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
726 |
+
|
727 |
+
|
728 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
|
729 |
+
class TFBlipTextModel(TFBlipTextPreTrainedModel):
|
730 |
+
"""
|
731 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
732 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
733 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
734 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
|
735 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
736 |
+
"""
|
737 |
+
|
738 |
+
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
|
739 |
+
super().__init__(config, name=name, **kwargs)
|
740 |
+
self.config = config
|
741 |
+
|
742 |
+
self.embeddings = TFBlipTextEmbeddings(config, name="embeddings")
|
743 |
+
self.encoder = TFBlipTextEncoder(config, name="encoder")
|
744 |
+
self.pooler = TFBlipTextPooler(config, name="pooler") if add_pooling_layer else None
|
745 |
+
|
746 |
+
def get_input_embeddings(self):
|
747 |
+
return self.embeddings.word_embeddings
|
748 |
+
|
749 |
+
def set_input_embeddings(self, value):
|
750 |
+
self.embeddings.word_embeddings = value
|
751 |
+
|
752 |
+
@tf.function
|
753 |
+
def get_extended_attention_mask(
|
754 |
+
self, attention_mask: tf.Tensor, input_shape: Tuple[int], is_decoder: bool
|
755 |
+
) -> tf.Tensor:
|
756 |
+
"""
|
757 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
758 |
+
|
759 |
+
Arguments:
|
760 |
+
attention_mask (`tf.Tensor`):
|
761 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
762 |
+
input_shape (`Tuple[int]`):
|
763 |
+
The shape of the input to the model.
|
764 |
+
is_decoder (`bool`):
|
765 |
+
Whether the model is used as a decoder.
|
766 |
+
|
767 |
+
Returns:
|
768 |
+
`tf.Tensor` The extended attention mask, with the same dtype as `attention_mask.dtype`.
|
769 |
+
"""
|
770 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
771 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
772 |
+
if not isinstance(attention_mask, tf.Tensor):
|
773 |
+
attention_mask = tf.convert_to_tensor(attention_mask) # Catches NumPy inputs that haven't been cast yet
|
774 |
+
if attention_mask.shape.rank == 3:
|
775 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
776 |
+
elif attention_mask.shape.rank == 2:
|
777 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
778 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
779 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
780 |
+
if is_decoder:
|
781 |
+
batch_size, seq_length = input_shape
|
782 |
+
|
783 |
+
seq_ids = tf.range(seq_length, dtype=attention_mask.dtype)
|
784 |
+
causal_mask = tf.broadcast_to(seq_ids, (batch_size, seq_length, seq_length)) <= seq_ids[None, :, None]
|
785 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
786 |
+
|
787 |
+
if shape_list(causal_mask)[1] < shape_list(attention_mask)[1]:
|
788 |
+
prefix_seq_len = tf.shape(attention_mask)[1] - tf.shape(causal_mask)[1]
|
789 |
+
causal_mask = tf.concat(
|
790 |
+
[
|
791 |
+
tf.ones((batch_size, seq_length, prefix_seq_len), dtype=causal_mask.dtype),
|
792 |
+
causal_mask,
|
793 |
+
],
|
794 |
+
axis=-1,
|
795 |
+
)
|
796 |
+
extended_attention_mask = (
|
797 |
+
tf.cast(causal_mask[:, None, :, :], attention_mask.dtype) * attention_mask[:, None, None, :]
|
798 |
+
)
|
799 |
+
else:
|
800 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
801 |
+
else:
|
802 |
+
raise ValueError(
|
803 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
804 |
+
input_shape, attention_mask.shape
|
805 |
+
)
|
806 |
+
)
|
807 |
+
|
808 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
809 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
810 |
+
# positions we want to attend and -10000.0 for masked positions.
|
811 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
812 |
+
# effectively the same as removing these entirely.
|
813 |
+
extended_attention_mask = tf.cast(extended_attention_mask, self.dtype) # fp16 compatibility
|
814 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
815 |
+
return extended_attention_mask
|
816 |
+
|
817 |
+
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
818 |
+
@unpack_inputs
|
819 |
+
def call(
|
820 |
+
self,
|
821 |
+
input_ids: TFModelInputType | None = None,
|
822 |
+
attention_mask: tf.Tensor | None = None,
|
823 |
+
position_ids: tf.Tensor | None = None,
|
824 |
+
head_mask: tf.Tensor | None = None,
|
825 |
+
inputs_embeds: tf.Tensor | None = None,
|
826 |
+
encoder_embeds: tf.Tensor | None = None,
|
827 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
828 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
829 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
|
830 |
+
use_cache: bool | None = None,
|
831 |
+
output_attentions: bool | None = None,
|
832 |
+
output_hidden_states: bool | None = None,
|
833 |
+
return_dict: bool | None = None,
|
834 |
+
is_decoder: bool = False,
|
835 |
+
training: bool = False,
|
836 |
+
) -> Tuple[tf.Tensor] | TFBaseModelOutputWithPoolingAndCrossAttentions:
|
837 |
+
r"""
|
838 |
+
encoder_hidden_states (`tf.Tensor`, *optional*):
|
839 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
840 |
+
the model is configured as a decoder.
|
841 |
+
encoder_attention_mask (`tf.Tensor`, *optional*):
|
842 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
843 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
844 |
+
- 1 for tokens that are **not masked**,
|
845 |
+
- 0 for tokens that are **masked**.
|
846 |
+
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*):
|
847 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
848 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
849 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
850 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
851 |
+
use_cache (`bool`, *optional*):
|
852 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
853 |
+
`past_key_values`).
|
854 |
+
"""
|
855 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
856 |
+
output_hidden_states = (
|
857 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
858 |
+
)
|
859 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
860 |
+
|
861 |
+
if is_decoder:
|
862 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
863 |
+
else:
|
864 |
+
use_cache = False
|
865 |
+
|
866 |
+
if input_ids is not None and inputs_embeds is not None:
|
867 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
868 |
+
elif input_ids is not None:
|
869 |
+
input_shape = shape_list(input_ids)
|
870 |
+
batch_size, seq_length = input_shape
|
871 |
+
elif inputs_embeds is not None:
|
872 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
873 |
+
batch_size, seq_length = input_shape
|
874 |
+
elif encoder_embeds is not None:
|
875 |
+
input_shape = shape_list(encoder_embeds)[:-1]
|
876 |
+
batch_size, seq_length = input_shape
|
877 |
+
else:
|
878 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
879 |
+
|
880 |
+
# past_key_values_length
|
881 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
882 |
+
|
883 |
+
if attention_mask is None:
|
884 |
+
attention_mask = tf.ones(((batch_size, seq_length + past_key_values_length)))
|
885 |
+
|
886 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
887 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
888 |
+
extended_attention_mask: tf.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, is_decoder)
|
889 |
+
|
890 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
891 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
892 |
+
if encoder_hidden_states is not None:
|
893 |
+
if isinstance(encoder_hidden_states, list):
|
894 |
+
encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states[0])
|
895 |
+
else:
|
896 |
+
encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states)
|
897 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
898 |
+
|
899 |
+
if isinstance(encoder_attention_mask, list):
|
900 |
+
encoder_extended_attention_mask = [invert_attention_mask(mask) for mask in encoder_attention_mask]
|
901 |
+
elif encoder_attention_mask is None:
|
902 |
+
encoder_attention_mask = tf.ones(encoder_hidden_shape)
|
903 |
+
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
|
904 |
+
else:
|
905 |
+
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
|
906 |
+
else:
|
907 |
+
encoder_extended_attention_mask = None
|
908 |
+
|
909 |
+
# Prepare head mask if needed
|
910 |
+
# 1.0 in head_mask indicate we keep the head
|
911 |
+
# attention_probs has shape bsz x n_heads x N x N
|
912 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
913 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
914 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
915 |
+
|
916 |
+
if encoder_embeds is None:
|
917 |
+
embedding_output = self.embeddings(
|
918 |
+
input_ids=input_ids,
|
919 |
+
position_ids=position_ids,
|
920 |
+
inputs_embeds=inputs_embeds,
|
921 |
+
past_key_values_length=past_key_values_length,
|
922 |
+
)
|
923 |
+
else:
|
924 |
+
embedding_output = encoder_embeds
|
925 |
+
|
926 |
+
encoder_outputs = self.encoder(
|
927 |
+
embedding_output,
|
928 |
+
attention_mask=extended_attention_mask,
|
929 |
+
head_mask=head_mask,
|
930 |
+
encoder_hidden_states=encoder_hidden_states,
|
931 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
932 |
+
past_key_values=past_key_values,
|
933 |
+
use_cache=use_cache,
|
934 |
+
output_attentions=output_attentions,
|
935 |
+
output_hidden_states=output_hidden_states,
|
936 |
+
return_dict=return_dict,
|
937 |
+
training=training,
|
938 |
+
)
|
939 |
+
sequence_output = encoder_outputs[0]
|
940 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
941 |
+
|
942 |
+
if not return_dict:
|
943 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
944 |
+
|
945 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
946 |
+
last_hidden_state=sequence_output,
|
947 |
+
pooler_output=pooled_output,
|
948 |
+
past_key_values=encoder_outputs.past_key_values,
|
949 |
+
hidden_states=encoder_outputs.hidden_states,
|
950 |
+
attentions=encoder_outputs.attentions,
|
951 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
952 |
+
)
|
953 |
+
|
954 |
+
def build(self, input_shape=None):
|
955 |
+
if self.built:
|
956 |
+
return
|
957 |
+
self.built = True
|
958 |
+
if getattr(self, "embeddings", None) is not None:
|
959 |
+
with tf.name_scope(self.embeddings.name):
|
960 |
+
self.embeddings.build(None)
|
961 |
+
if getattr(self, "encoder", None) is not None:
|
962 |
+
with tf.name_scope(self.encoder.name):
|
963 |
+
self.encoder.build(None)
|
964 |
+
if getattr(self, "pooler", None) is not None:
|
965 |
+
with tf.name_scope(self.pooler.name):
|
966 |
+
self.pooler.build(None)
|
967 |
+
|
968 |
+
|
969 |
+
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
|
970 |
+
class TFBlipTextLMHeadModel(TFBlipTextPreTrainedModel):
|
971 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
972 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
973 |
+
|
974 |
+
def __init__(self, config, **kwargs):
|
975 |
+
super().__init__(config, **kwargs)
|
976 |
+
|
977 |
+
self.bert = TFBlipTextModel(config, add_pooling_layer=False, name="bert")
|
978 |
+
self.cls = TFBlipTextOnlyMLMHead(config, name="cls")
|
979 |
+
self.label_smoothing = config.label_smoothing
|
980 |
+
|
981 |
+
def get_output_embeddings(self):
|
982 |
+
return self.cls.predictions.decoder
|
983 |
+
|
984 |
+
def set_output_embeddings(self, new_embeddings):
|
985 |
+
self.cls.predictions.decoder = new_embeddings
|
986 |
+
|
987 |
+
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
988 |
+
@unpack_inputs
|
989 |
+
def call(
|
990 |
+
self,
|
991 |
+
input_ids=None,
|
992 |
+
attention_mask=None,
|
993 |
+
position_ids=None,
|
994 |
+
head_mask=None,
|
995 |
+
inputs_embeds=None,
|
996 |
+
encoder_hidden_states=None,
|
997 |
+
encoder_attention_mask=None,
|
998 |
+
labels=None,
|
999 |
+
past_key_values=None,
|
1000 |
+
use_cache=None,
|
1001 |
+
output_attentions=None,
|
1002 |
+
output_hidden_states=None,
|
1003 |
+
return_dict=None,
|
1004 |
+
return_logits=False,
|
1005 |
+
is_decoder=True,
|
1006 |
+
training=None,
|
1007 |
+
):
|
1008 |
+
r"""
|
1009 |
+
encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of
|
1010 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
|
1011 |
+
configured as a decoder.
|
1012 |
+
encoder_attention_mask (`tf.Tensor`, *optional*):
|
1013 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1014 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1015 |
+
- 1 for tokens that are **not masked**,
|
1016 |
+
- 0 for tokens that are **masked**.
|
1017 |
+
labels (`tf.Tensor`, *optional*):
|
1018 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1019 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1020 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1021 |
+
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*):
|
1022 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1023 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1024 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1025 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1026 |
+
use_cache (`bool`, *optional*):
|
1027 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1028 |
+
`past_key_values`).
|
1029 |
+
"""
|
1030 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1031 |
+
if labels is not None:
|
1032 |
+
use_cache = False
|
1033 |
+
|
1034 |
+
outputs = self.bert(
|
1035 |
+
input_ids,
|
1036 |
+
attention_mask=attention_mask,
|
1037 |
+
position_ids=position_ids,
|
1038 |
+
head_mask=head_mask,
|
1039 |
+
inputs_embeds=inputs_embeds,
|
1040 |
+
encoder_hidden_states=encoder_hidden_states,
|
1041 |
+
encoder_attention_mask=encoder_attention_mask,
|
1042 |
+
past_key_values=past_key_values,
|
1043 |
+
use_cache=use_cache,
|
1044 |
+
output_attentions=output_attentions,
|
1045 |
+
output_hidden_states=output_hidden_states,
|
1046 |
+
return_dict=return_dict,
|
1047 |
+
is_decoder=is_decoder,
|
1048 |
+
training=training,
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
sequence_output = outputs[0]
|
1052 |
+
prediction_scores = self.cls(sequence_output)
|
1053 |
+
|
1054 |
+
if return_logits:
|
1055 |
+
return prediction_scores[:, :-1, :]
|
1056 |
+
|
1057 |
+
lm_loss = None
|
1058 |
+
if labels is not None:
|
1059 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1060 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :]
|
1061 |
+
shifted_prediction_scores = tf.reshape(shifted_prediction_scores, (-1, self.config.vocab_size))
|
1062 |
+
labels = labels[:, 1:]
|
1063 |
+
labels = tf.reshape(labels, (-1,))
|
1064 |
+
# Keras won't give us label smoothing for sparse CE, so we de-sparsify things here
|
1065 |
+
# Use relu to clamp masked labels at 0 to avoid NaN (we will be zeroing those out later anyway)
|
1066 |
+
one_hot_labels = tf.one_hot(tf.nn.relu(labels), depth=self.config.vocab_size, dtype=tf.float32)
|
1067 |
+
loss_fct = keras.losses.CategoricalCrossentropy(
|
1068 |
+
from_logits=True, label_smoothing=self.label_smoothing, reduction="none"
|
1069 |
+
)
|
1070 |
+
masked_positions = tf.cast(tf.not_equal(labels, -100), dtype=tf.float32)
|
1071 |
+
lm_loss = loss_fct(one_hot_labels, shifted_prediction_scores)
|
1072 |
+
lm_loss *= masked_positions
|
1073 |
+
lm_loss = tf.reduce_sum(lm_loss, axis=0) / tf.math.count_nonzero(masked_positions, dtype=tf.float32)
|
1074 |
+
|
1075 |
+
if not return_dict:
|
1076 |
+
output = (prediction_scores,) + outputs[2:]
|
1077 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1078 |
+
|
1079 |
+
return TFCausalLMOutputWithCrossAttentions(
|
1080 |
+
loss=lm_loss,
|
1081 |
+
logits=prediction_scores,
|
1082 |
+
past_key_values=outputs.past_key_values,
|
1083 |
+
hidden_states=outputs.hidden_states,
|
1084 |
+
attentions=outputs.attentions,
|
1085 |
+
cross_attentions=outputs.cross_attentions,
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1089 |
+
input_shape = input_ids.shape
|
1090 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1091 |
+
if attention_mask is None:
|
1092 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1093 |
+
|
1094 |
+
# cut decoder_input_ids if past_key_values is used
|
1095 |
+
if past_key_values is not None:
|
1096 |
+
input_ids = input_ids[:, -1:]
|
1097 |
+
|
1098 |
+
return {
|
1099 |
+
"input_ids": input_ids,
|
1100 |
+
"attention_mask": attention_mask,
|
1101 |
+
"past_key_values": past_key_values,
|
1102 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1103 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1104 |
+
"is_decoder": True,
|
1105 |
+
}
|
1106 |
+
|
1107 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1108 |
+
reordered_past = ()
|
1109 |
+
for layer_past in past_key_values:
|
1110 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1111 |
+
return reordered_past
|
1112 |
+
|
1113 |
+
def build(self, input_shape=None):
|
1114 |
+
if self.built:
|
1115 |
+
return
|
1116 |
+
self.built = True
|
1117 |
+
if getattr(self, "bert", None) is not None:
|
1118 |
+
with tf.name_scope(self.bert.name):
|
1119 |
+
self.bert.build(None)
|
1120 |
+
if getattr(self, "cls", None) is not None:
|
1121 |
+
with tf.name_scope(self.cls.name):
|
1122 |
+
self.cls.build(None)
|
venv/lib/python3.10/site-packages/transformers/models/blip/processing_blip.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Blip.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...image_utils import ImageInput
|
22 |
+
from ...processing_utils import ProcessorMixin
|
23 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
|
27 |
+
class BlipProcessor(ProcessorMixin):
|
28 |
+
r"""
|
29 |
+
Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.
|
30 |
+
|
31 |
+
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
|
32 |
+
docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_processor (`BlipImageProcessor`):
|
36 |
+
An instance of [`BlipImageProcessor`]. The image processor is a required input.
|
37 |
+
tokenizer (`BertTokenizerFast`):
|
38 |
+
An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
attributes = ["image_processor", "tokenizer"]
|
42 |
+
image_processor_class = "BlipImageProcessor"
|
43 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
44 |
+
|
45 |
+
def __init__(self, image_processor, tokenizer):
|
46 |
+
tokenizer.return_token_type_ids = False
|
47 |
+
super().__init__(image_processor, tokenizer)
|
48 |
+
self.current_processor = self.image_processor
|
49 |
+
|
50 |
+
def __call__(
|
51 |
+
self,
|
52 |
+
images: ImageInput = None,
|
53 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
54 |
+
add_special_tokens: bool = True,
|
55 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
56 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
57 |
+
max_length: Optional[int] = None,
|
58 |
+
stride: int = 0,
|
59 |
+
pad_to_multiple_of: Optional[int] = None,
|
60 |
+
return_attention_mask: Optional[bool] = None,
|
61 |
+
return_overflowing_tokens: bool = False,
|
62 |
+
return_special_tokens_mask: bool = False,
|
63 |
+
return_offsets_mapping: bool = False,
|
64 |
+
return_token_type_ids: bool = False,
|
65 |
+
return_length: bool = False,
|
66 |
+
verbose: bool = True,
|
67 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
68 |
+
**kwargs,
|
69 |
+
) -> BatchEncoding:
|
70 |
+
"""
|
71 |
+
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
|
72 |
+
[`BertTokenizerFast.__call__`] to prepare text for the model.
|
73 |
+
|
74 |
+
Please refer to the docstring of the above two methods for more information.
|
75 |
+
"""
|
76 |
+
if images is None and text is None:
|
77 |
+
raise ValueError("You have to specify either images or text.")
|
78 |
+
|
79 |
+
# Get only text
|
80 |
+
if images is None:
|
81 |
+
self.current_processor = self.tokenizer
|
82 |
+
text_encoding = self.tokenizer(
|
83 |
+
text=text,
|
84 |
+
add_special_tokens=add_special_tokens,
|
85 |
+
padding=padding,
|
86 |
+
truncation=truncation,
|
87 |
+
max_length=max_length,
|
88 |
+
stride=stride,
|
89 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
90 |
+
return_attention_mask=return_attention_mask,
|
91 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
92 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
93 |
+
return_offsets_mapping=return_offsets_mapping,
|
94 |
+
return_token_type_ids=return_token_type_ids,
|
95 |
+
return_length=return_length,
|
96 |
+
verbose=verbose,
|
97 |
+
return_tensors=return_tensors,
|
98 |
+
**kwargs,
|
99 |
+
)
|
100 |
+
return text_encoding
|
101 |
+
|
102 |
+
# add pixel_values
|
103 |
+
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
|
104 |
+
|
105 |
+
if text is not None:
|
106 |
+
text_encoding = self.tokenizer(
|
107 |
+
text=text,
|
108 |
+
add_special_tokens=add_special_tokens,
|
109 |
+
padding=padding,
|
110 |
+
truncation=truncation,
|
111 |
+
max_length=max_length,
|
112 |
+
stride=stride,
|
113 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
114 |
+
return_attention_mask=return_attention_mask,
|
115 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
116 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
117 |
+
return_offsets_mapping=return_offsets_mapping,
|
118 |
+
return_token_type_ids=return_token_type_ids,
|
119 |
+
return_length=return_length,
|
120 |
+
verbose=verbose,
|
121 |
+
return_tensors=return_tensors,
|
122 |
+
**kwargs,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
text_encoding = None
|
126 |
+
|
127 |
+
if text_encoding is not None:
|
128 |
+
encoding_image_processor.update(text_encoding)
|
129 |
+
|
130 |
+
return encoding_image_processor
|
131 |
+
|
132 |
+
def batch_decode(self, *args, **kwargs):
|
133 |
+
"""
|
134 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
135 |
+
refer to the docstring of this method for more information.
|
136 |
+
"""
|
137 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
138 |
+
|
139 |
+
def decode(self, *args, **kwargs):
|
140 |
+
"""
|
141 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
142 |
+
the docstring of this method for more information.
|
143 |
+
"""
|
144 |
+
return self.tokenizer.decode(*args, **kwargs)
|
145 |
+
|
146 |
+
@property
|
147 |
+
def model_input_names(self):
|
148 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
149 |
+
image_processor_input_names = self.image_processor.model_input_names
|
150 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Conditional DETR checkpoints."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from collections import OrderedDict
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import (
|
29 |
+
ConditionalDetrConfig,
|
30 |
+
ConditionalDetrForObjectDetection,
|
31 |
+
ConditionalDetrForSegmentation,
|
32 |
+
ConditionalDetrImageProcessor,
|
33 |
+
)
|
34 |
+
from transformers.utils import logging
|
35 |
+
|
36 |
+
|
37 |
+
logging.set_verbosity_info()
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
41 |
+
rename_keys = []
|
42 |
+
for i in range(6):
|
43 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
44 |
+
rename_keys.append(
|
45 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
|
46 |
+
)
|
47 |
+
rename_keys.append(
|
48 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
|
49 |
+
)
|
50 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
|
51 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
|
52 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
|
53 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
|
54 |
+
rename_keys.append(
|
55 |
+
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
|
56 |
+
)
|
57 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
|
58 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
|
59 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
|
60 |
+
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
|
61 |
+
rename_keys.append(
|
62 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
|
63 |
+
)
|
64 |
+
rename_keys.append(
|
65 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
|
66 |
+
)
|
67 |
+
rename_keys.append(
|
68 |
+
(
|
69 |
+
f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight",
|
70 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
|
71 |
+
)
|
72 |
+
)
|
73 |
+
rename_keys.append(
|
74 |
+
(
|
75 |
+
f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias",
|
76 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
|
77 |
+
)
|
78 |
+
)
|
79 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
|
80 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
|
81 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
|
82 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
|
83 |
+
rename_keys.append(
|
84 |
+
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
|
85 |
+
)
|
86 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
|
87 |
+
rename_keys.append(
|
88 |
+
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
|
89 |
+
)
|
90 |
+
rename_keys.append(
|
91 |
+
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
|
92 |
+
)
|
93 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
|
94 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
|
95 |
+
|
96 |
+
# q, k, v projections in self/cross-attention in decoder for conditional DETR
|
97 |
+
rename_keys.append(
|
98 |
+
(f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight")
|
99 |
+
)
|
100 |
+
rename_keys.append(
|
101 |
+
(f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight")
|
102 |
+
)
|
103 |
+
rename_keys.append(
|
104 |
+
(f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight")
|
105 |
+
)
|
106 |
+
rename_keys.append(
|
107 |
+
(f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight")
|
108 |
+
)
|
109 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight"))
|
110 |
+
rename_keys.append(
|
111 |
+
(f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight")
|
112 |
+
)
|
113 |
+
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
|
114 |
+
rename_keys.append(
|
115 |
+
(f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight")
|
116 |
+
)
|
117 |
+
rename_keys.append(
|
118 |
+
(f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight")
|
119 |
+
)
|
120 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight"))
|
121 |
+
rename_keys.append(
|
122 |
+
(f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight")
|
123 |
+
)
|
124 |
+
|
125 |
+
rename_keys.append(
|
126 |
+
(f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias")
|
127 |
+
)
|
128 |
+
rename_keys.append(
|
129 |
+
(f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias")
|
130 |
+
)
|
131 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias"))
|
132 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias"))
|
133 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias"))
|
134 |
+
rename_keys.append(
|
135 |
+
(f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias")
|
136 |
+
)
|
137 |
+
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
|
138 |
+
rename_keys.append(
|
139 |
+
(f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias")
|
140 |
+
)
|
141 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias"))
|
142 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias"))
|
143 |
+
rename_keys.append(
|
144 |
+
(f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias")
|
145 |
+
)
|
146 |
+
|
147 |
+
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
|
148 |
+
# for conditional DETR, also convert reference point head and query scale MLP
|
149 |
+
rename_keys.extend(
|
150 |
+
[
|
151 |
+
("input_proj.weight", "input_projection.weight"),
|
152 |
+
("input_proj.bias", "input_projection.bias"),
|
153 |
+
("query_embed.weight", "query_position_embeddings.weight"),
|
154 |
+
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
|
155 |
+
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
|
156 |
+
("class_embed.weight", "class_labels_classifier.weight"),
|
157 |
+
("class_embed.bias", "class_labels_classifier.bias"),
|
158 |
+
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
|
159 |
+
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
|
160 |
+
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
|
161 |
+
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
|
162 |
+
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
|
163 |
+
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
|
164 |
+
("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"),
|
165 |
+
("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"),
|
166 |
+
("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"),
|
167 |
+
("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"),
|
168 |
+
("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"),
|
169 |
+
("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"),
|
170 |
+
("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"),
|
171 |
+
("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"),
|
172 |
+
("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"),
|
173 |
+
("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"),
|
174 |
+
]
|
175 |
+
)
|
176 |
+
|
177 |
+
|
178 |
+
def rename_key(state_dict, old, new):
|
179 |
+
val = state_dict.pop(old)
|
180 |
+
state_dict[new] = val
|
181 |
+
|
182 |
+
|
183 |
+
def rename_backbone_keys(state_dict):
|
184 |
+
new_state_dict = OrderedDict()
|
185 |
+
for key, value in state_dict.items():
|
186 |
+
if "backbone.0.body" in key:
|
187 |
+
new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model")
|
188 |
+
new_state_dict[new_key] = value
|
189 |
+
else:
|
190 |
+
new_state_dict[key] = value
|
191 |
+
|
192 |
+
return new_state_dict
|
193 |
+
|
194 |
+
|
195 |
+
def read_in_q_k_v(state_dict, is_panoptic=False):
|
196 |
+
prefix = ""
|
197 |
+
if is_panoptic:
|
198 |
+
prefix = "conditional_detr."
|
199 |
+
|
200 |
+
# first: transformer encoder
|
201 |
+
for i in range(6):
|
202 |
+
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
|
203 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
|
204 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
|
205 |
+
# next, add query, keys and values (in that order) to the state dict
|
206 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
207 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
208 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
209 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
210 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
211 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
212 |
+
|
213 |
+
|
214 |
+
# We will verify our results on an image of cute cats
|
215 |
+
def prepare_img():
|
216 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
217 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
218 |
+
|
219 |
+
return im
|
220 |
+
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def convert_conditional_detr_checkpoint(model_name, pytorch_dump_folder_path):
|
224 |
+
"""
|
225 |
+
Copy/paste/tweak model's weights to our CONDITIONAL_DETR structure.
|
226 |
+
"""
|
227 |
+
|
228 |
+
# load default config
|
229 |
+
config = ConditionalDetrConfig()
|
230 |
+
# set backbone and dilation attributes
|
231 |
+
if "resnet101" in model_name:
|
232 |
+
config.backbone = "resnet101"
|
233 |
+
if "dc5" in model_name:
|
234 |
+
config.dilation = True
|
235 |
+
is_panoptic = "panoptic" in model_name
|
236 |
+
if is_panoptic:
|
237 |
+
config.num_labels = 250
|
238 |
+
else:
|
239 |
+
config.num_labels = 91
|
240 |
+
repo_id = "huggingface/label-files"
|
241 |
+
filename = "coco-detection-id2label.json"
|
242 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
243 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
244 |
+
config.id2label = id2label
|
245 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
246 |
+
|
247 |
+
# load image processor
|
248 |
+
format = "coco_panoptic" if is_panoptic else "coco_detection"
|
249 |
+
image_processor = ConditionalDetrImageProcessor(format=format)
|
250 |
+
|
251 |
+
# prepare image
|
252 |
+
img = prepare_img()
|
253 |
+
encoding = image_processor(images=img, return_tensors="pt")
|
254 |
+
pixel_values = encoding["pixel_values"]
|
255 |
+
|
256 |
+
logger.info(f"Converting model {model_name}...")
|
257 |
+
|
258 |
+
# load original model from torch hub
|
259 |
+
conditional_detr = torch.hub.load("DeppMeng/ConditionalDETR", model_name, pretrained=True).eval()
|
260 |
+
state_dict = conditional_detr.state_dict()
|
261 |
+
# rename keys
|
262 |
+
for src, dest in rename_keys:
|
263 |
+
if is_panoptic:
|
264 |
+
src = "conditional_detr." + src
|
265 |
+
rename_key(state_dict, src, dest)
|
266 |
+
state_dict = rename_backbone_keys(state_dict)
|
267 |
+
# query, key and value matrices need special treatment
|
268 |
+
read_in_q_k_v(state_dict, is_panoptic=is_panoptic)
|
269 |
+
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
|
270 |
+
prefix = "conditional_detr.model." if is_panoptic else "model."
|
271 |
+
for key in state_dict.copy().keys():
|
272 |
+
if is_panoptic:
|
273 |
+
if (
|
274 |
+
key.startswith("conditional_detr")
|
275 |
+
and not key.startswith("class_labels_classifier")
|
276 |
+
and not key.startswith("bbox_predictor")
|
277 |
+
):
|
278 |
+
val = state_dict.pop(key)
|
279 |
+
state_dict["conditional_detr.model" + key[4:]] = val
|
280 |
+
elif "class_labels_classifier" in key or "bbox_predictor" in key:
|
281 |
+
val = state_dict.pop(key)
|
282 |
+
state_dict["conditional_detr." + key] = val
|
283 |
+
elif key.startswith("bbox_attention") or key.startswith("mask_head"):
|
284 |
+
continue
|
285 |
+
else:
|
286 |
+
val = state_dict.pop(key)
|
287 |
+
state_dict[prefix + key] = val
|
288 |
+
else:
|
289 |
+
if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
|
290 |
+
val = state_dict.pop(key)
|
291 |
+
state_dict[prefix + key] = val
|
292 |
+
# finally, create HuggingFace model and load state dict
|
293 |
+
model = ConditionalDetrForSegmentation(config) if is_panoptic else ConditionalDetrForObjectDetection(config)
|
294 |
+
model.load_state_dict(state_dict)
|
295 |
+
model.eval()
|
296 |
+
model.push_to_hub(repo_id=model_name, organization="DepuMeng", commit_message="Add model")
|
297 |
+
# verify our conversion
|
298 |
+
original_outputs = conditional_detr(pixel_values)
|
299 |
+
outputs = model(pixel_values)
|
300 |
+
assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-4)
|
301 |
+
assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-4)
|
302 |
+
if is_panoptic:
|
303 |
+
assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4)
|
304 |
+
|
305 |
+
# Save model and image processor
|
306 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
307 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
308 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
309 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
310 |
+
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
parser = argparse.ArgumentParser()
|
314 |
+
|
315 |
+
parser.add_argument(
|
316 |
+
"--model_name",
|
317 |
+
default="conditional_detr_resnet50",
|
318 |
+
type=str,
|
319 |
+
help="Name of the CONDITIONAL_DETR model you'd like to convert.",
|
320 |
+
)
|
321 |
+
parser.add_argument(
|
322 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
323 |
+
)
|
324 |
+
args = parser.parse_args()
|
325 |
+
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/feature_extraction_conditional_detr.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for Conditional DETR."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...image_transforms import rgb_to_id as _rgb_to_id
|
20 |
+
from ...utils import logging
|
21 |
+
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def rgb_to_id(x):
|
28 |
+
warnings.warn(
|
29 |
+
"rgb_to_id has moved and will not be importable from this module from v5. "
|
30 |
+
"Please import from transformers.image_transforms instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
return _rgb_to_id(x)
|
34 |
+
|
35 |
+
|
36 |
+
class ConditionalDetrFeatureExtractor(ConditionalDetrImageProcessor):
|
37 |
+
def __init__(self, *args, **kwargs) -> None:
|
38 |
+
warnings.warn(
|
39 |
+
"The class ConditionalDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
40 |
+
" Please use ConditionalDetrImageProcessor instead.",
|
41 |
+
FutureWarning,
|
42 |
+
)
|
43 |
+
super().__init__(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__init__.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
|
28 |
+
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
|
29 |
+
"tokenization_funnel": ["FunnelTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_funnel"] = [
|
47 |
+
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"FunnelBaseModel",
|
49 |
+
"FunnelForMaskedLM",
|
50 |
+
"FunnelForMultipleChoice",
|
51 |
+
"FunnelForPreTraining",
|
52 |
+
"FunnelForQuestionAnswering",
|
53 |
+
"FunnelForSequenceClassification",
|
54 |
+
"FunnelForTokenClassification",
|
55 |
+
"FunnelModel",
|
56 |
+
"FunnelPreTrainedModel",
|
57 |
+
"load_tf_weights_in_funnel",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_tf_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_tf_funnel"] = [
|
67 |
+
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
68 |
+
"TFFunnelBaseModel",
|
69 |
+
"TFFunnelForMaskedLM",
|
70 |
+
"TFFunnelForMultipleChoice",
|
71 |
+
"TFFunnelForPreTraining",
|
72 |
+
"TFFunnelForQuestionAnswering",
|
73 |
+
"TFFunnelForSequenceClassification",
|
74 |
+
"TFFunnelForTokenClassification",
|
75 |
+
"TFFunnelModel",
|
76 |
+
"TFFunnelPreTrainedModel",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
if TYPE_CHECKING:
|
81 |
+
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
|
82 |
+
from .tokenization_funnel import FunnelTokenizer
|
83 |
+
|
84 |
+
try:
|
85 |
+
if not is_tokenizers_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
from .tokenization_funnel_fast import FunnelTokenizerFast
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_torch_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_funnel import (
|
99 |
+
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
FunnelBaseModel,
|
101 |
+
FunnelForMaskedLM,
|
102 |
+
FunnelForMultipleChoice,
|
103 |
+
FunnelForPreTraining,
|
104 |
+
FunnelForQuestionAnswering,
|
105 |
+
FunnelForSequenceClassification,
|
106 |
+
FunnelForTokenClassification,
|
107 |
+
FunnelModel,
|
108 |
+
FunnelPreTrainedModel,
|
109 |
+
load_tf_weights_in_funnel,
|
110 |
+
)
|
111 |
+
|
112 |
+
try:
|
113 |
+
if not is_tf_available():
|
114 |
+
raise OptionalDependencyNotAvailable()
|
115 |
+
except OptionalDependencyNotAvailable:
|
116 |
+
pass
|
117 |
+
else:
|
118 |
+
from .modeling_tf_funnel import (
|
119 |
+
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
120 |
+
TFFunnelBaseModel,
|
121 |
+
TFFunnelForMaskedLM,
|
122 |
+
TFFunnelForMultipleChoice,
|
123 |
+
TFFunnelForPreTraining,
|
124 |
+
TFFunnelForQuestionAnswering,
|
125 |
+
TFFunnelForSequenceClassification,
|
126 |
+
TFFunnelForTokenClassification,
|
127 |
+
TFFunnelModel,
|
128 |
+
TFFunnelPreTrainedModel,
|
129 |
+
)
|
130 |
+
|
131 |
+
else:
|
132 |
+
import sys
|
133 |
+
|
134 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.05 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/configuration_funnel.cpython-310.pyc
ADDED
Binary file (6.88 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/convert_funnel_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/modeling_funnel.cpython-310.pyc
ADDED
Binary file (46.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/modeling_tf_funnel.cpython-310.pyc
ADDED
Binary file (54.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/tokenization_funnel.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/__pycache__/tokenization_funnel_fast.cpython-310.pyc
ADDED
Binary file (7.39 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, Hugging Face
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Funnel Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class FunnelConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
|
30 |
+
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
|
31 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
|
32 |
+
Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
39 |
+
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
|
40 |
+
by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
|
41 |
+
block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
|
42 |
+
The sizes of the blocks used in the model.
|
43 |
+
block_repeats (`List[int]`, *optional*):
|
44 |
+
If passed along, each layer of each block is repeated the number of times indicated.
|
45 |
+
num_decoder_layers (`int`, *optional*, defaults to 2):
|
46 |
+
The number of layers in the decoder (when not using the base model).
|
47 |
+
d_model (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the model's hidden states.
|
49 |
+
n_head (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
d_head (`int`, *optional*, defaults to 64):
|
52 |
+
Dimensionality of the model's heads.
|
53 |
+
d_inner (`int`, *optional*, defaults to 3072):
|
54 |
+
Inner dimension in the feed-forward blocks.
|
55 |
+
hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
58 |
+
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for the attention probabilities.
|
62 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout probability used between the two layers of the feed-forward blocks.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.1):
|
65 |
+
The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
|
66 |
+
initializer_std (`float`, *optional*):
|
67 |
+
The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
|
68 |
+
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
|
69 |
+
linear layers.
|
70 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-09):
|
71 |
+
The epsilon used by the layer normalization layers.
|
72 |
+
pooling_type (`str`, *optional*, defaults to `"mean"`):
|
73 |
+
Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
|
74 |
+
attention_type (`str`, *optional*, defaults to `"relative_shift"`):
|
75 |
+
Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
|
76 |
+
is faster on TPU.
|
77 |
+
separate_cls (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not to separate the cls token when applying pooling.
|
79 |
+
truncate_seq (`bool`, *optional*, defaults to `True`):
|
80 |
+
When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
|
81 |
+
sequence length that is not a multiple of 2.
|
82 |
+
pool_q_only (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
|
84 |
+
"""
|
85 |
+
|
86 |
+
model_type = "funnel"
|
87 |
+
attribute_map = {
|
88 |
+
"hidden_size": "d_model",
|
89 |
+
"num_attention_heads": "n_head",
|
90 |
+
}
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_size=30522,
|
95 |
+
block_sizes=[4, 4, 4],
|
96 |
+
block_repeats=None,
|
97 |
+
num_decoder_layers=2,
|
98 |
+
d_model=768,
|
99 |
+
n_head=12,
|
100 |
+
d_head=64,
|
101 |
+
d_inner=3072,
|
102 |
+
hidden_act="gelu_new",
|
103 |
+
hidden_dropout=0.1,
|
104 |
+
attention_dropout=0.1,
|
105 |
+
activation_dropout=0.0,
|
106 |
+
initializer_range=0.1,
|
107 |
+
initializer_std=None,
|
108 |
+
layer_norm_eps=1e-9,
|
109 |
+
pooling_type="mean",
|
110 |
+
attention_type="relative_shift",
|
111 |
+
separate_cls=True,
|
112 |
+
truncate_seq=True,
|
113 |
+
pool_q_only=True,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.block_sizes = block_sizes
|
118 |
+
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
|
119 |
+
assert len(block_sizes) == len(
|
120 |
+
self.block_repeats
|
121 |
+
), "`block_sizes` and `block_repeats` should have the same length."
|
122 |
+
self.num_decoder_layers = num_decoder_layers
|
123 |
+
self.d_model = d_model
|
124 |
+
self.n_head = n_head
|
125 |
+
self.d_head = d_head
|
126 |
+
self.d_inner = d_inner
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.hidden_dropout = hidden_dropout
|
129 |
+
self.attention_dropout = attention_dropout
|
130 |
+
self.activation_dropout = activation_dropout
|
131 |
+
self.initializer_range = initializer_range
|
132 |
+
self.initializer_std = initializer_std
|
133 |
+
self.layer_norm_eps = layer_norm_eps
|
134 |
+
assert pooling_type in [
|
135 |
+
"mean",
|
136 |
+
"max",
|
137 |
+
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
|
138 |
+
self.pooling_type = pooling_type
|
139 |
+
assert attention_type in [
|
140 |
+
"relative_shift",
|
141 |
+
"factorized",
|
142 |
+
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
|
143 |
+
self.attention_type = attention_type
|
144 |
+
self.separate_cls = separate_cls
|
145 |
+
self.truncate_seq = truncate_seq
|
146 |
+
self.pool_q_only = pool_q_only
|
147 |
+
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
@property
|
151 |
+
def num_hidden_layers(self):
|
152 |
+
return sum(self.block_sizes)
|
153 |
+
|
154 |
+
@num_hidden_layers.setter
|
155 |
+
def num_hidden_layers(self, value):
|
156 |
+
raise NotImplementedError(
|
157 |
+
"This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`."
|
158 |
+
)
|
159 |
+
|
160 |
+
@property
|
161 |
+
def num_blocks(self):
|
162 |
+
return len(self.block_sizes)
|
163 |
+
|
164 |
+
@num_blocks.setter
|
165 |
+
def num_blocks(self, value):
|
166 |
+
raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
|
venv/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Funnel checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = FunnelConfig.from_json_file(config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = FunnelBaseModel(config) if base_model else FunnelModel(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_funnel(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
convert_tf_checkpoint_to_pytorch(
|
64 |
+
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
|
65 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py
ADDED
@@ -0,0 +1,1599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Funnel Transformer model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
MaskedLMOutput,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...utils import (
|
37 |
+
ModelOutput,
|
38 |
+
add_code_sample_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_funnel import FunnelConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CONFIG_FOR_DOC = "FunnelConfig"
|
50 |
+
_CHECKPOINT_FOR_DOC = "funnel-transformer/small"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
INF = 1e6
|
57 |
+
|
58 |
+
|
59 |
+
def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
|
60 |
+
"""Load tf checkpoints in a pytorch model."""
|
61 |
+
try:
|
62 |
+
import re
|
63 |
+
|
64 |
+
import numpy as np
|
65 |
+
import tensorflow as tf
|
66 |
+
except ImportError:
|
67 |
+
logger.error(
|
68 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
69 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
70 |
+
)
|
71 |
+
raise
|
72 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
73 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
74 |
+
# Load weights from TF model
|
75 |
+
init_vars = tf.train.list_variables(tf_path)
|
76 |
+
names = []
|
77 |
+
arrays = []
|
78 |
+
for name, shape in init_vars:
|
79 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
80 |
+
array = tf.train.load_variable(tf_path, name)
|
81 |
+
names.append(name)
|
82 |
+
arrays.append(array)
|
83 |
+
|
84 |
+
_layer_map = {
|
85 |
+
"k": "k_head",
|
86 |
+
"q": "q_head",
|
87 |
+
"v": "v_head",
|
88 |
+
"o": "post_proj",
|
89 |
+
"layer_1": "linear_1",
|
90 |
+
"layer_2": "linear_2",
|
91 |
+
"rel_attn": "attention",
|
92 |
+
"ff": "ffn",
|
93 |
+
"kernel": "weight",
|
94 |
+
"gamma": "weight",
|
95 |
+
"beta": "bias",
|
96 |
+
"lookup_table": "weight",
|
97 |
+
"word_embedding": "word_embeddings",
|
98 |
+
"input": "embeddings",
|
99 |
+
}
|
100 |
+
|
101 |
+
for name, array in zip(names, arrays):
|
102 |
+
name = name.split("/")
|
103 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
104 |
+
# which are not required for using pretrained model
|
105 |
+
if any(
|
106 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
107 |
+
for n in name
|
108 |
+
):
|
109 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
110 |
+
continue
|
111 |
+
if name[0] == "generator":
|
112 |
+
continue
|
113 |
+
pointer = model
|
114 |
+
skipped = False
|
115 |
+
for m_name in name[1:]:
|
116 |
+
if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
|
117 |
+
layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
|
118 |
+
if layer_index < config.num_hidden_layers:
|
119 |
+
block_idx = 0
|
120 |
+
while layer_index >= config.block_sizes[block_idx]:
|
121 |
+
layer_index -= config.block_sizes[block_idx]
|
122 |
+
block_idx += 1
|
123 |
+
pointer = pointer.blocks[block_idx][layer_index]
|
124 |
+
else:
|
125 |
+
layer_index -= config.num_hidden_layers
|
126 |
+
pointer = pointer.layers[layer_index]
|
127 |
+
elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
|
128 |
+
pointer = pointer.r_kernel
|
129 |
+
break
|
130 |
+
elif m_name in _layer_map:
|
131 |
+
pointer = getattr(pointer, _layer_map[m_name])
|
132 |
+
else:
|
133 |
+
try:
|
134 |
+
pointer = getattr(pointer, m_name)
|
135 |
+
except AttributeError:
|
136 |
+
print(f"Skipping {'/'.join(name)}", array.shape)
|
137 |
+
skipped = True
|
138 |
+
break
|
139 |
+
if not skipped:
|
140 |
+
if len(pointer.shape) != len(array.shape):
|
141 |
+
array = array.reshape(pointer.shape)
|
142 |
+
if m_name == "kernel":
|
143 |
+
array = np.transpose(array)
|
144 |
+
pointer.data = torch.from_numpy(array)
|
145 |
+
|
146 |
+
return model
|
147 |
+
|
148 |
+
|
149 |
+
class FunnelEmbeddings(nn.Module):
|
150 |
+
def __init__(self, config: FunnelConfig) -> None:
|
151 |
+
super().__init__()
|
152 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
153 |
+
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
154 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None
|
158 |
+
) -> torch.Tensor:
|
159 |
+
if inputs_embeds is None:
|
160 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
161 |
+
embeddings = self.layer_norm(inputs_embeds)
|
162 |
+
embeddings = self.dropout(embeddings)
|
163 |
+
return embeddings
|
164 |
+
|
165 |
+
|
166 |
+
class FunnelAttentionStructure(nn.Module):
|
167 |
+
"""
|
168 |
+
Contains helpers for `FunnelRelMultiheadAttention `.
|
169 |
+
"""
|
170 |
+
|
171 |
+
cls_token_type_id: int = 2
|
172 |
+
|
173 |
+
def __init__(self, config: FunnelConfig) -> None:
|
174 |
+
super().__init__()
|
175 |
+
self.config = config
|
176 |
+
self.sin_dropout = nn.Dropout(config.hidden_dropout)
|
177 |
+
self.cos_dropout = nn.Dropout(config.hidden_dropout)
|
178 |
+
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
|
179 |
+
# divided.
|
180 |
+
self.pooling_mult = None
|
181 |
+
|
182 |
+
def init_attention_inputs(
|
183 |
+
self,
|
184 |
+
inputs_embeds: torch.Tensor,
|
185 |
+
attention_mask: Optional[torch.Tensor] = None,
|
186 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
187 |
+
) -> Tuple[torch.Tensor]:
|
188 |
+
"""Returns the attention inputs associated to the inputs of the model."""
|
189 |
+
# inputs_embeds has shape batch_size x seq_len x d_model
|
190 |
+
# attention_mask and token_type_ids have shape batch_size x seq_len
|
191 |
+
self.pooling_mult = 1
|
192 |
+
self.seq_len = seq_len = inputs_embeds.size(1)
|
193 |
+
position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
|
194 |
+
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
|
195 |
+
cls_mask = (
|
196 |
+
nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
|
197 |
+
if self.config.separate_cls
|
198 |
+
else None
|
199 |
+
)
|
200 |
+
return (position_embeds, token_type_mat, attention_mask, cls_mask)
|
201 |
+
|
202 |
+
def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor:
|
203 |
+
"""Convert `token_type_ids` to `token_type_mat`."""
|
204 |
+
token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
|
205 |
+
# Treat <cls> as in the same segment as both A & B
|
206 |
+
cls_ids = token_type_ids == self.cls_token_type_id
|
207 |
+
cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
|
208 |
+
return cls_mat | token_type_mat
|
209 |
+
|
210 |
+
def get_position_embeds(
|
211 |
+
self, seq_len: int, dtype: torch.dtype, device: torch.device
|
212 |
+
) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]:
|
213 |
+
"""
|
214 |
+
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
|
215 |
+
are using the factorized or the relative shift attention:
|
216 |
+
|
217 |
+
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
|
218 |
+
final formula.
|
219 |
+
|
220 |
+
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
|
221 |
+
formula.
|
222 |
+
|
223 |
+
Paper link: https://arxiv.org/abs/2006.03236
|
224 |
+
"""
|
225 |
+
d_model = self.config.d_model
|
226 |
+
if self.config.attention_type == "factorized":
|
227 |
+
# Notations from the paper, appending A.2.2, final formula.
|
228 |
+
# We need to create and return the matrices phi, psi, pi and omega.
|
229 |
+
pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype)
|
230 |
+
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
231 |
+
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
232 |
+
sinusoid = pos_seq[:, None] * inv_freq[None]
|
233 |
+
sin_embed = torch.sin(sinusoid)
|
234 |
+
sin_embed_d = self.sin_dropout(sin_embed)
|
235 |
+
cos_embed = torch.cos(sinusoid)
|
236 |
+
cos_embed_d = self.cos_dropout(cos_embed)
|
237 |
+
# This is different from the formula on the paper...
|
238 |
+
phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
|
239 |
+
psi = torch.cat([cos_embed, sin_embed], dim=-1)
|
240 |
+
pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
|
241 |
+
omega = torch.cat([-sin_embed, cos_embed], dim=-1)
|
242 |
+
return (phi, pi, psi, omega)
|
243 |
+
else:
|
244 |
+
# Notations from the paper, appending A.2.1, final formula.
|
245 |
+
# We need to create and return all the possible vectors R for all blocks and shifts.
|
246 |
+
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
247 |
+
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
248 |
+
# Maximum relative positions for the first input
|
249 |
+
rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
250 |
+
zero_offset = seq_len * 2
|
251 |
+
sinusoid = rel_pos_id[:, None] * inv_freq[None]
|
252 |
+
sin_embed = self.sin_dropout(torch.sin(sinusoid))
|
253 |
+
cos_embed = self.cos_dropout(torch.cos(sinusoid))
|
254 |
+
pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)
|
255 |
+
|
256 |
+
pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype)
|
257 |
+
pooled_pos = pos
|
258 |
+
position_embeds_list = []
|
259 |
+
for block_index in range(0, self.config.num_blocks):
|
260 |
+
# For each block with block_index > 0, we need two types position embeddings:
|
261 |
+
# - Attention(pooled-q, unpooled-kv)
|
262 |
+
# - Attention(pooled-q, pooled-kv)
|
263 |
+
# For block_index = 0 we only need the second one and leave the first one as None.
|
264 |
+
|
265 |
+
# First type
|
266 |
+
if block_index == 0:
|
267 |
+
position_embeds_pooling = None
|
268 |
+
else:
|
269 |
+
pooled_pos = self.stride_pool_pos(pos, block_index)
|
270 |
+
|
271 |
+
# construct rel_pos_id
|
272 |
+
stride = 2 ** (block_index - 1)
|
273 |
+
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
|
274 |
+
rel_pos = rel_pos[:, None] + zero_offset
|
275 |
+
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
276 |
+
position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)
|
277 |
+
|
278 |
+
# Second type
|
279 |
+
pos = pooled_pos
|
280 |
+
stride = 2**block_index
|
281 |
+
rel_pos = self.relative_pos(pos, stride)
|
282 |
+
|
283 |
+
rel_pos = rel_pos[:, None] + zero_offset
|
284 |
+
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
285 |
+
position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)
|
286 |
+
|
287 |
+
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
|
288 |
+
return position_embeds_list
|
289 |
+
|
290 |
+
def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int):
|
291 |
+
"""
|
292 |
+
Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
|
293 |
+
"""
|
294 |
+
if self.config.separate_cls:
|
295 |
+
# Under separate <cls>, we treat the <cls> as the first token in
|
296 |
+
# the previous block of the 1st real block. Since the 1st real
|
297 |
+
# block always has position 1, the position of the previous block
|
298 |
+
# will be at `1 - 2 ** block_index`.
|
299 |
+
cls_pos = pos_id.new_tensor([-(2**block_index) + 1])
|
300 |
+
pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
|
301 |
+
return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
|
302 |
+
else:
|
303 |
+
return pos_id[::2]
|
304 |
+
|
305 |
+
def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor:
|
306 |
+
"""
|
307 |
+
Build the relative positional vector between `pos` and `pooled_pos`.
|
308 |
+
"""
|
309 |
+
if pooled_pos is None:
|
310 |
+
pooled_pos = pos
|
311 |
+
|
312 |
+
ref_point = pooled_pos[0] - pos[0]
|
313 |
+
num_remove = shift * len(pooled_pos)
|
314 |
+
max_dist = ref_point + num_remove * stride
|
315 |
+
min_dist = pooled_pos[0] - pos[-1]
|
316 |
+
|
317 |
+
return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)
|
318 |
+
|
319 |
+
def stride_pool(
|
320 |
+
self,
|
321 |
+
tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
|
322 |
+
axis: Union[int, Tuple[int], List[int]],
|
323 |
+
) -> torch.Tensor:
|
324 |
+
"""
|
325 |
+
Perform pooling by stride slicing the tensor along the given axis.
|
326 |
+
"""
|
327 |
+
if tensor is None:
|
328 |
+
return None
|
329 |
+
|
330 |
+
# Do the stride pool recursively if axis is a list or a tuple of ints.
|
331 |
+
if isinstance(axis, (list, tuple)):
|
332 |
+
for ax in axis:
|
333 |
+
tensor = self.stride_pool(tensor, ax)
|
334 |
+
return tensor
|
335 |
+
|
336 |
+
# Do the stride pool recursively if tensor is a list or tuple of tensors.
|
337 |
+
if isinstance(tensor, (tuple, list)):
|
338 |
+
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
|
339 |
+
|
340 |
+
# Deal with negative axis
|
341 |
+
axis %= tensor.ndim
|
342 |
+
|
343 |
+
axis_slice = (
|
344 |
+
slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
|
345 |
+
)
|
346 |
+
enc_slice = [slice(None)] * axis + [axis_slice]
|
347 |
+
if self.config.separate_cls:
|
348 |
+
cls_slice = [slice(None)] * axis + [slice(None, 1)]
|
349 |
+
tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
|
350 |
+
return tensor[enc_slice]
|
351 |
+
|
352 |
+
def pool_tensor(
|
353 |
+
self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2
|
354 |
+
) -> torch.Tensor:
|
355 |
+
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
|
356 |
+
if tensor is None:
|
357 |
+
return None
|
358 |
+
|
359 |
+
# Do the pool recursively if tensor is a list or tuple of tensors.
|
360 |
+
if isinstance(tensor, (tuple, list)):
|
361 |
+
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
|
362 |
+
|
363 |
+
if self.config.separate_cls:
|
364 |
+
suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
|
365 |
+
tensor = torch.cat([tensor[:, :1], suffix], dim=1)
|
366 |
+
|
367 |
+
ndim = tensor.ndim
|
368 |
+
if ndim == 2:
|
369 |
+
tensor = tensor[:, None, :, None]
|
370 |
+
elif ndim == 3:
|
371 |
+
tensor = tensor[:, None, :, :]
|
372 |
+
# Stride is applied on the second-to-last dimension.
|
373 |
+
stride = (stride, 1)
|
374 |
+
|
375 |
+
if mode == "mean":
|
376 |
+
tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
377 |
+
elif mode == "max":
|
378 |
+
tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
379 |
+
elif mode == "min":
|
380 |
+
tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
|
381 |
+
else:
|
382 |
+
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
|
383 |
+
|
384 |
+
if ndim == 2:
|
385 |
+
return tensor[:, 0, :, 0]
|
386 |
+
elif ndim == 3:
|
387 |
+
return tensor[:, 0]
|
388 |
+
return tensor
|
389 |
+
|
390 |
+
def pre_attention_pooling(
|
391 |
+
self, output, attention_inputs: Tuple[torch.Tensor]
|
392 |
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
|
393 |
+
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
|
394 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
395 |
+
if self.config.pool_q_only:
|
396 |
+
if self.config.attention_type == "factorized":
|
397 |
+
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
|
398 |
+
token_type_mat = self.stride_pool(token_type_mat, 1)
|
399 |
+
cls_mask = self.stride_pool(cls_mask, 0)
|
400 |
+
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
401 |
+
else:
|
402 |
+
self.pooling_mult *= 2
|
403 |
+
if self.config.attention_type == "factorized":
|
404 |
+
position_embeds = self.stride_pool(position_embeds, 0)
|
405 |
+
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
|
406 |
+
cls_mask = self.stride_pool(cls_mask, [1, 2])
|
407 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
408 |
+
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
409 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
410 |
+
return output, attention_inputs
|
411 |
+
|
412 |
+
def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
|
413 |
+
"""Pool the proper parts of `attention_inputs` after the attention layer."""
|
414 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
415 |
+
if self.config.pool_q_only:
|
416 |
+
self.pooling_mult *= 2
|
417 |
+
if self.config.attention_type == "factorized":
|
418 |
+
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
|
419 |
+
token_type_mat = self.stride_pool(token_type_mat, 2)
|
420 |
+
cls_mask = self.stride_pool(cls_mask, 1)
|
421 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
422 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
423 |
+
return attention_inputs
|
424 |
+
|
425 |
+
|
426 |
+
def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor:
|
427 |
+
batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
|
428 |
+
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
|
429 |
+
|
430 |
+
# What's next is the same as doing the following gather, which might be clearer code but less efficient.
|
431 |
+
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
|
432 |
+
# # matrix of context_len + i-j
|
433 |
+
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
|
434 |
+
|
435 |
+
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
|
436 |
+
positional_attn = positional_attn[:, :, shift:, :]
|
437 |
+
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
|
438 |
+
positional_attn = positional_attn[..., :context_len]
|
439 |
+
return positional_attn
|
440 |
+
|
441 |
+
|
442 |
+
class FunnelRelMultiheadAttention(nn.Module):
|
443 |
+
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
444 |
+
super().__init__()
|
445 |
+
self.config = config
|
446 |
+
self.block_index = block_index
|
447 |
+
d_model, n_head, d_head = config.d_model, config.n_head, config.d_head
|
448 |
+
|
449 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout)
|
450 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
451 |
+
|
452 |
+
self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
|
453 |
+
self.k_head = nn.Linear(d_model, n_head * d_head)
|
454 |
+
self.v_head = nn.Linear(d_model, n_head * d_head)
|
455 |
+
|
456 |
+
self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
457 |
+
self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
458 |
+
self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
|
459 |
+
self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
460 |
+
self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))
|
461 |
+
|
462 |
+
self.post_proj = nn.Linear(n_head * d_head, d_model)
|
463 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
|
464 |
+
self.scale = 1.0 / (d_head**0.5)
|
465 |
+
|
466 |
+
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
|
467 |
+
"""Relative attention score for the positional encodings"""
|
468 |
+
# q_head has shape batch_size x sea_len x n_head x d_head
|
469 |
+
if self.config.attention_type == "factorized":
|
470 |
+
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
|
471 |
+
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
|
472 |
+
phi, pi, psi, omega = position_embeds
|
473 |
+
# Shape n_head x d_head
|
474 |
+
u = self.r_r_bias * self.scale
|
475 |
+
# Shape d_model x n_head x d_head
|
476 |
+
w_r = self.r_kernel
|
477 |
+
|
478 |
+
# Shape batch_size x sea_len x n_head x d_model
|
479 |
+
q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
|
480 |
+
q_r_attention_1 = q_r_attention * phi[:, None]
|
481 |
+
q_r_attention_2 = q_r_attention * pi[:, None]
|
482 |
+
|
483 |
+
# Shape batch_size x n_head x seq_len x context_len
|
484 |
+
positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
|
485 |
+
"bind,jd->bnij", q_r_attention_2, omega
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
shift = 2 if q_head.shape[1] != context_len else 1
|
489 |
+
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
|
490 |
+
# Grab the proper positional encoding, shape max_rel_len x d_model
|
491 |
+
r = position_embeds[self.block_index][shift - 1]
|
492 |
+
# Shape n_head x d_head
|
493 |
+
v = self.r_r_bias * self.scale
|
494 |
+
# Shape d_model x n_head x d_head
|
495 |
+
w_r = self.r_kernel
|
496 |
+
|
497 |
+
# Shape max_rel_len x n_head x d_model
|
498 |
+
r_head = torch.einsum("td,dnh->tnh", r, w_r)
|
499 |
+
# Shape batch_size x n_head x seq_len x max_rel_len
|
500 |
+
positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
|
501 |
+
# Shape batch_size x n_head x seq_len x context_len
|
502 |
+
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
|
503 |
+
|
504 |
+
if cls_mask is not None:
|
505 |
+
positional_attn *= cls_mask
|
506 |
+
return positional_attn
|
507 |
+
|
508 |
+
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
|
509 |
+
"""Relative attention score for the token_type_ids"""
|
510 |
+
if token_type_mat is None:
|
511 |
+
return 0
|
512 |
+
batch_size, seq_len, context_len = token_type_mat.shape
|
513 |
+
# q_head has shape batch_size x seq_len x n_head x d_head
|
514 |
+
# Shape n_head x d_head
|
515 |
+
r_s_bias = self.r_s_bias * self.scale
|
516 |
+
|
517 |
+
# Shape batch_size x n_head x seq_len x 2
|
518 |
+
token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
|
519 |
+
# Shape batch_size x n_head x seq_len x context_len
|
520 |
+
token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
|
521 |
+
# Shapes batch_size x n_head x seq_len
|
522 |
+
diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
|
523 |
+
# Shape batch_size x n_head x seq_len x context_len
|
524 |
+
token_type_attn = torch.where(
|
525 |
+
token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
|
526 |
+
)
|
527 |
+
|
528 |
+
if cls_mask is not None:
|
529 |
+
token_type_attn *= cls_mask
|
530 |
+
return token_type_attn
|
531 |
+
|
532 |
+
def forward(
|
533 |
+
self,
|
534 |
+
query: torch.Tensor,
|
535 |
+
key: torch.Tensor,
|
536 |
+
value: torch.Tensor,
|
537 |
+
attention_inputs: Tuple[torch.Tensor],
|
538 |
+
output_attentions: bool = False,
|
539 |
+
) -> Tuple[torch.Tensor, ...]:
|
540 |
+
# query has shape batch_size x seq_len x d_model
|
541 |
+
# key and value have shapes batch_size x context_len x d_model
|
542 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
543 |
+
|
544 |
+
batch_size, seq_len, _ = query.shape
|
545 |
+
context_len = key.shape[1]
|
546 |
+
n_head, d_head = self.config.n_head, self.config.d_head
|
547 |
+
|
548 |
+
# Shape batch_size x seq_len x n_head x d_head
|
549 |
+
q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
|
550 |
+
# Shapes batch_size x context_len x n_head x d_head
|
551 |
+
k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
|
552 |
+
v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)
|
553 |
+
|
554 |
+
q_head = q_head * self.scale
|
555 |
+
# Shape n_head x d_head
|
556 |
+
r_w_bias = self.r_w_bias * self.scale
|
557 |
+
# Shapes batch_size x n_head x seq_len x context_len
|
558 |
+
content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
|
559 |
+
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
|
560 |
+
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
|
561 |
+
|
562 |
+
# merge attention scores
|
563 |
+
attn_score = content_score + positional_attn + token_type_attn
|
564 |
+
|
565 |
+
# precision safe in case of mixed precision training
|
566 |
+
dtype = attn_score.dtype
|
567 |
+
attn_score = attn_score.float()
|
568 |
+
# perform masking
|
569 |
+
if attention_mask is not None:
|
570 |
+
attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
|
571 |
+
# attention probability
|
572 |
+
attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
|
573 |
+
attn_prob = self.attention_dropout(attn_prob)
|
574 |
+
|
575 |
+
# attention output, shape batch_size x seq_len x n_head x d_head
|
576 |
+
attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)
|
577 |
+
|
578 |
+
# Shape shape batch_size x seq_len x d_model
|
579 |
+
attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
|
580 |
+
attn_out = self.hidden_dropout(attn_out)
|
581 |
+
|
582 |
+
output = self.layer_norm(query + attn_out)
|
583 |
+
return (output, attn_prob) if output_attentions else (output,)
|
584 |
+
|
585 |
+
|
586 |
+
class FunnelPositionwiseFFN(nn.Module):
|
587 |
+
def __init__(self, config: FunnelConfig) -> None:
|
588 |
+
super().__init__()
|
589 |
+
self.linear_1 = nn.Linear(config.d_model, config.d_inner)
|
590 |
+
self.activation_function = ACT2FN[config.hidden_act]
|
591 |
+
self.activation_dropout = nn.Dropout(config.activation_dropout)
|
592 |
+
self.linear_2 = nn.Linear(config.d_inner, config.d_model)
|
593 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
594 |
+
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
|
595 |
+
|
596 |
+
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
597 |
+
h = self.linear_1(hidden)
|
598 |
+
h = self.activation_function(h)
|
599 |
+
h = self.activation_dropout(h)
|
600 |
+
h = self.linear_2(h)
|
601 |
+
h = self.dropout(h)
|
602 |
+
return self.layer_norm(hidden + h)
|
603 |
+
|
604 |
+
|
605 |
+
class FunnelLayer(nn.Module):
|
606 |
+
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
607 |
+
super().__init__()
|
608 |
+
self.attention = FunnelRelMultiheadAttention(config, block_index)
|
609 |
+
self.ffn = FunnelPositionwiseFFN(config)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
query: torch.Tensor,
|
614 |
+
key: torch.Tensor,
|
615 |
+
value: torch.Tensor,
|
616 |
+
attention_inputs,
|
617 |
+
output_attentions: bool = False,
|
618 |
+
) -> Tuple:
|
619 |
+
attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
|
620 |
+
output = self.ffn(attn[0])
|
621 |
+
return (output, attn[1]) if output_attentions else (output,)
|
622 |
+
|
623 |
+
|
624 |
+
class FunnelEncoder(nn.Module):
|
625 |
+
def __init__(self, config: FunnelConfig) -> None:
|
626 |
+
super().__init__()
|
627 |
+
self.config = config
|
628 |
+
self.attention_structure = FunnelAttentionStructure(config)
|
629 |
+
self.blocks = nn.ModuleList(
|
630 |
+
[
|
631 |
+
nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
|
632 |
+
for block_index, block_size in enumerate(config.block_sizes)
|
633 |
+
]
|
634 |
+
)
|
635 |
+
|
636 |
+
def forward(
|
637 |
+
self,
|
638 |
+
inputs_embeds: torch.Tensor,
|
639 |
+
attention_mask: Optional[torch.Tensor] = None,
|
640 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
641 |
+
output_attentions: bool = False,
|
642 |
+
output_hidden_states: bool = False,
|
643 |
+
return_dict: bool = True,
|
644 |
+
) -> Union[Tuple, BaseModelOutput]:
|
645 |
+
# The pooling is not implemented on long tensors, so we convert this mask.
|
646 |
+
attention_mask = attention_mask.type_as(inputs_embeds)
|
647 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
648 |
+
inputs_embeds,
|
649 |
+
attention_mask=attention_mask,
|
650 |
+
token_type_ids=token_type_ids,
|
651 |
+
)
|
652 |
+
hidden = inputs_embeds
|
653 |
+
|
654 |
+
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
|
655 |
+
all_attentions = () if output_attentions else None
|
656 |
+
|
657 |
+
for block_index, block in enumerate(self.blocks):
|
658 |
+
pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
|
659 |
+
pooling_flag = pooling_flag and block_index > 0
|
660 |
+
if pooling_flag:
|
661 |
+
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
|
662 |
+
hidden, attention_inputs
|
663 |
+
)
|
664 |
+
for layer_index, layer in enumerate(block):
|
665 |
+
for repeat_index in range(self.config.block_repeats[block_index]):
|
666 |
+
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
|
667 |
+
if do_pooling:
|
668 |
+
query = pooled_hidden
|
669 |
+
key = value = hidden if self.config.pool_q_only else pooled_hidden
|
670 |
+
else:
|
671 |
+
query = key = value = hidden
|
672 |
+
layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
|
673 |
+
hidden = layer_output[0]
|
674 |
+
if do_pooling:
|
675 |
+
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
|
676 |
+
|
677 |
+
if output_attentions:
|
678 |
+
all_attentions = all_attentions + layer_output[1:]
|
679 |
+
if output_hidden_states:
|
680 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
681 |
+
|
682 |
+
if not return_dict:
|
683 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
684 |
+
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
685 |
+
|
686 |
+
|
687 |
+
def upsample(
|
688 |
+
x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False
|
689 |
+
) -> torch.Tensor:
|
690 |
+
"""
|
691 |
+
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
|
692 |
+
"""
|
693 |
+
if stride == 1:
|
694 |
+
return x
|
695 |
+
if separate_cls:
|
696 |
+
cls = x[:, :1]
|
697 |
+
x = x[:, 1:]
|
698 |
+
output = torch.repeat_interleave(x, repeats=stride, dim=1)
|
699 |
+
if separate_cls:
|
700 |
+
if truncate_seq:
|
701 |
+
output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
|
702 |
+
output = output[:, : target_len - 1]
|
703 |
+
output = torch.cat([cls, output], dim=1)
|
704 |
+
else:
|
705 |
+
output = output[:, :target_len]
|
706 |
+
return output
|
707 |
+
|
708 |
+
|
709 |
+
class FunnelDecoder(nn.Module):
|
710 |
+
def __init__(self, config: FunnelConfig) -> None:
|
711 |
+
super().__init__()
|
712 |
+
self.config = config
|
713 |
+
self.attention_structure = FunnelAttentionStructure(config)
|
714 |
+
self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])
|
715 |
+
|
716 |
+
def forward(
|
717 |
+
self,
|
718 |
+
final_hidden: torch.Tensor,
|
719 |
+
first_block_hidden: torch.Tensor,
|
720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
721 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
722 |
+
output_attentions: bool = False,
|
723 |
+
output_hidden_states: bool = False,
|
724 |
+
return_dict: bool = True,
|
725 |
+
) -> Union[Tuple, BaseModelOutput]:
|
726 |
+
upsampled_hidden = upsample(
|
727 |
+
final_hidden,
|
728 |
+
stride=2 ** (len(self.config.block_sizes) - 1),
|
729 |
+
target_len=first_block_hidden.shape[1],
|
730 |
+
separate_cls=self.config.separate_cls,
|
731 |
+
truncate_seq=self.config.truncate_seq,
|
732 |
+
)
|
733 |
+
|
734 |
+
hidden = upsampled_hidden + first_block_hidden
|
735 |
+
all_hidden_states = (hidden,) if output_hidden_states else None
|
736 |
+
all_attentions = () if output_attentions else None
|
737 |
+
|
738 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
739 |
+
hidden,
|
740 |
+
attention_mask=attention_mask,
|
741 |
+
token_type_ids=token_type_ids,
|
742 |
+
)
|
743 |
+
|
744 |
+
for layer in self.layers:
|
745 |
+
layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
|
746 |
+
hidden = layer_output[0]
|
747 |
+
|
748 |
+
if output_attentions:
|
749 |
+
all_attentions = all_attentions + layer_output[1:]
|
750 |
+
if output_hidden_states:
|
751 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
752 |
+
|
753 |
+
if not return_dict:
|
754 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
755 |
+
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
756 |
+
|
757 |
+
|
758 |
+
class FunnelDiscriminatorPredictions(nn.Module):
|
759 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
760 |
+
|
761 |
+
def __init__(self, config: FunnelConfig) -> None:
|
762 |
+
super().__init__()
|
763 |
+
self.config = config
|
764 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
765 |
+
self.dense_prediction = nn.Linear(config.d_model, 1)
|
766 |
+
|
767 |
+
def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor:
|
768 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
769 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
770 |
+
logits = self.dense_prediction(hidden_states).squeeze(-1)
|
771 |
+
return logits
|
772 |
+
|
773 |
+
|
774 |
+
class FunnelPreTrainedModel(PreTrainedModel):
|
775 |
+
"""
|
776 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
777 |
+
models.
|
778 |
+
"""
|
779 |
+
|
780 |
+
config_class = FunnelConfig
|
781 |
+
load_tf_weights = load_tf_weights_in_funnel
|
782 |
+
base_model_prefix = "funnel"
|
783 |
+
|
784 |
+
def _init_weights(self, module):
|
785 |
+
classname = module.__class__.__name__
|
786 |
+
if classname.find("Linear") != -1:
|
787 |
+
if getattr(module, "weight", None) is not None:
|
788 |
+
if self.config.initializer_std is None:
|
789 |
+
fan_out, fan_in = module.weight.shape
|
790 |
+
std = np.sqrt(1.0 / float(fan_in + fan_out))
|
791 |
+
else:
|
792 |
+
std = self.config.initializer_std
|
793 |
+
nn.init.normal_(module.weight, std=std)
|
794 |
+
if getattr(module, "bias", None) is not None:
|
795 |
+
nn.init.constant_(module.bias, 0.0)
|
796 |
+
elif classname == "FunnelRelMultiheadAttention":
|
797 |
+
nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
|
798 |
+
nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
|
799 |
+
nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
|
800 |
+
nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
|
801 |
+
nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
|
802 |
+
elif classname == "FunnelEmbeddings":
|
803 |
+
std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
|
804 |
+
nn.init.normal_(module.word_embeddings.weight, std=std)
|
805 |
+
if module.word_embeddings.padding_idx is not None:
|
806 |
+
module.word_embeddings.weight.data[module.padding_idx].zero_()
|
807 |
+
|
808 |
+
|
809 |
+
class FunnelClassificationHead(nn.Module):
|
810 |
+
def __init__(self, config: FunnelConfig, n_labels: int) -> None:
|
811 |
+
super().__init__()
|
812 |
+
self.linear_hidden = nn.Linear(config.d_model, config.d_model)
|
813 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
814 |
+
self.linear_out = nn.Linear(config.d_model, n_labels)
|
815 |
+
|
816 |
+
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
817 |
+
hidden = self.linear_hidden(hidden)
|
818 |
+
hidden = torch.tanh(hidden)
|
819 |
+
hidden = self.dropout(hidden)
|
820 |
+
return self.linear_out(hidden)
|
821 |
+
|
822 |
+
|
823 |
+
@dataclass
|
824 |
+
class FunnelForPreTrainingOutput(ModelOutput):
|
825 |
+
"""
|
826 |
+
Output type of [`FunnelForPreTraining`].
|
827 |
+
|
828 |
+
Args:
|
829 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
830 |
+
Total loss of the ELECTRA-style objective.
|
831 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
832 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
833 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
834 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
835 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
836 |
+
|
837 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
838 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
839 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
840 |
+
sequence_length)`.
|
841 |
+
|
842 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
843 |
+
heads.
|
844 |
+
"""
|
845 |
+
|
846 |
+
loss: Optional[torch.FloatTensor] = None
|
847 |
+
logits: torch.FloatTensor = None
|
848 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
849 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
850 |
+
|
851 |
+
|
852 |
+
FUNNEL_START_DOCSTRING = r"""
|
853 |
+
|
854 |
+
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
|
855 |
+
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
856 |
+
|
857 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
858 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
859 |
+
etc.)
|
860 |
+
|
861 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
862 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
863 |
+
and behavior.
|
864 |
+
|
865 |
+
Parameters:
|
866 |
+
config ([`FunnelConfig`]): Model configuration class with all the parameters of the model.
|
867 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
868 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
869 |
+
"""
|
870 |
+
|
871 |
+
FUNNEL_INPUTS_DOCSTRING = r"""
|
872 |
+
Args:
|
873 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
874 |
+
Indices of input sequence tokens in the vocabulary.
|
875 |
+
|
876 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
877 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
878 |
+
|
879 |
+
[What are input IDs?](../glossary#input-ids)
|
880 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
881 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
882 |
+
|
883 |
+
- 1 for tokens that are **not masked**,
|
884 |
+
- 0 for tokens that are **masked**.
|
885 |
+
|
886 |
+
[What are attention masks?](../glossary#attention-mask)
|
887 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
888 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
889 |
+
1]`:
|
890 |
+
|
891 |
+
- 0 corresponds to a *sentence A* token,
|
892 |
+
- 1 corresponds to a *sentence B* token.
|
893 |
+
|
894 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
895 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
896 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
897 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
898 |
+
model's internal embedding lookup matrix.
|
899 |
+
output_attentions (`bool`, *optional*):
|
900 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
901 |
+
tensors for more detail.
|
902 |
+
output_hidden_states (`bool`, *optional*):
|
903 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
904 |
+
more detail.
|
905 |
+
return_dict (`bool`, *optional*):
|
906 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
907 |
+
"""
|
908 |
+
|
909 |
+
|
910 |
+
@add_start_docstrings(
|
911 |
+
"""
|
912 |
+
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
|
913 |
+
decoder) or any task-specific head on top.
|
914 |
+
""",
|
915 |
+
FUNNEL_START_DOCSTRING,
|
916 |
+
)
|
917 |
+
class FunnelBaseModel(FunnelPreTrainedModel):
|
918 |
+
def __init__(self, config: FunnelConfig) -> None:
|
919 |
+
super().__init__(config)
|
920 |
+
|
921 |
+
self.embeddings = FunnelEmbeddings(config)
|
922 |
+
self.encoder = FunnelEncoder(config)
|
923 |
+
|
924 |
+
# Initialize weights and apply final processing
|
925 |
+
self.post_init()
|
926 |
+
|
927 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
928 |
+
return self.embeddings.word_embeddings
|
929 |
+
|
930 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
931 |
+
self.embeddings.word_embeddings = new_embeddings
|
932 |
+
|
933 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
934 |
+
@add_code_sample_docstrings(
|
935 |
+
checkpoint="funnel-transformer/small-base",
|
936 |
+
output_type=BaseModelOutput,
|
937 |
+
config_class=_CONFIG_FOR_DOC,
|
938 |
+
)
|
939 |
+
def forward(
|
940 |
+
self,
|
941 |
+
input_ids: Optional[torch.Tensor] = None,
|
942 |
+
attention_mask: Optional[torch.Tensor] = None,
|
943 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
944 |
+
position_ids: Optional[torch.Tensor] = None,
|
945 |
+
head_mask: Optional[torch.Tensor] = None,
|
946 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
947 |
+
output_attentions: Optional[bool] = None,
|
948 |
+
output_hidden_states: Optional[bool] = None,
|
949 |
+
return_dict: Optional[bool] = None,
|
950 |
+
) -> Union[Tuple, BaseModelOutput]:
|
951 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
952 |
+
output_hidden_states = (
|
953 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
954 |
+
)
|
955 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
956 |
+
|
957 |
+
if input_ids is not None and inputs_embeds is not None:
|
958 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
959 |
+
elif input_ids is not None:
|
960 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
961 |
+
input_shape = input_ids.size()
|
962 |
+
elif inputs_embeds is not None:
|
963 |
+
input_shape = inputs_embeds.size()[:-1]
|
964 |
+
else:
|
965 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
966 |
+
|
967 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
968 |
+
|
969 |
+
if attention_mask is None:
|
970 |
+
attention_mask = torch.ones(input_shape, device=device)
|
971 |
+
if token_type_ids is None:
|
972 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
973 |
+
|
974 |
+
# TODO: deal with head_mask
|
975 |
+
if inputs_embeds is None:
|
976 |
+
inputs_embeds = self.embeddings(input_ids)
|
977 |
+
|
978 |
+
encoder_outputs = self.encoder(
|
979 |
+
inputs_embeds,
|
980 |
+
attention_mask=attention_mask,
|
981 |
+
token_type_ids=token_type_ids,
|
982 |
+
output_attentions=output_attentions,
|
983 |
+
output_hidden_states=output_hidden_states,
|
984 |
+
return_dict=return_dict,
|
985 |
+
)
|
986 |
+
|
987 |
+
return encoder_outputs
|
988 |
+
|
989 |
+
|
990 |
+
@add_start_docstrings(
|
991 |
+
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
|
992 |
+
FUNNEL_START_DOCSTRING,
|
993 |
+
)
|
994 |
+
class FunnelModel(FunnelPreTrainedModel):
|
995 |
+
def __init__(self, config: FunnelConfig) -> None:
|
996 |
+
super().__init__(config)
|
997 |
+
self.config = config
|
998 |
+
self.embeddings = FunnelEmbeddings(config)
|
999 |
+
self.encoder = FunnelEncoder(config)
|
1000 |
+
self.decoder = FunnelDecoder(config)
|
1001 |
+
|
1002 |
+
# Initialize weights and apply final processing
|
1003 |
+
self.post_init()
|
1004 |
+
|
1005 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1006 |
+
return self.embeddings.word_embeddings
|
1007 |
+
|
1008 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
1009 |
+
self.embeddings.word_embeddings = new_embeddings
|
1010 |
+
|
1011 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1012 |
+
@add_code_sample_docstrings(
|
1013 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1014 |
+
output_type=BaseModelOutput,
|
1015 |
+
config_class=_CONFIG_FOR_DOC,
|
1016 |
+
)
|
1017 |
+
def forward(
|
1018 |
+
self,
|
1019 |
+
input_ids: Optional[torch.Tensor] = None,
|
1020 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1021 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1022 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1023 |
+
output_attentions: Optional[bool] = None,
|
1024 |
+
output_hidden_states: Optional[bool] = None,
|
1025 |
+
return_dict: Optional[bool] = None,
|
1026 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
if input_ids is not None and inputs_embeds is not None:
|
1034 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1035 |
+
elif input_ids is not None:
|
1036 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1037 |
+
input_shape = input_ids.size()
|
1038 |
+
elif inputs_embeds is not None:
|
1039 |
+
input_shape = inputs_embeds.size()[:-1]
|
1040 |
+
else:
|
1041 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1042 |
+
|
1043 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1044 |
+
|
1045 |
+
if attention_mask is None:
|
1046 |
+
attention_mask = torch.ones(input_shape, device=device)
|
1047 |
+
if token_type_ids is None:
|
1048 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1049 |
+
|
1050 |
+
# TODO: deal with head_mask
|
1051 |
+
if inputs_embeds is None:
|
1052 |
+
inputs_embeds = self.embeddings(input_ids)
|
1053 |
+
|
1054 |
+
encoder_outputs = self.encoder(
|
1055 |
+
inputs_embeds,
|
1056 |
+
attention_mask=attention_mask,
|
1057 |
+
token_type_ids=token_type_ids,
|
1058 |
+
output_attentions=output_attentions,
|
1059 |
+
output_hidden_states=True,
|
1060 |
+
return_dict=return_dict,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
decoder_outputs = self.decoder(
|
1064 |
+
final_hidden=encoder_outputs[0],
|
1065 |
+
first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
|
1066 |
+
attention_mask=attention_mask,
|
1067 |
+
token_type_ids=token_type_ids,
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
if not return_dict:
|
1074 |
+
idx = 0
|
1075 |
+
outputs = (decoder_outputs[0],)
|
1076 |
+
if output_hidden_states:
|
1077 |
+
idx += 1
|
1078 |
+
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
|
1079 |
+
if output_attentions:
|
1080 |
+
idx += 1
|
1081 |
+
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
|
1082 |
+
return outputs
|
1083 |
+
|
1084 |
+
return BaseModelOutput(
|
1085 |
+
last_hidden_state=decoder_outputs[0],
|
1086 |
+
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
|
1087 |
+
if output_hidden_states
|
1088 |
+
else None,
|
1089 |
+
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
|
1093 |
+
add_start_docstrings(
|
1094 |
+
"""
|
1095 |
+
Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
|
1096 |
+
generated tokens.
|
1097 |
+
""",
|
1098 |
+
FUNNEL_START_DOCSTRING,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class FunnelForPreTraining(FunnelPreTrainedModel):
|
1103 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1104 |
+
super().__init__(config)
|
1105 |
+
|
1106 |
+
self.funnel = FunnelModel(config)
|
1107 |
+
self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
|
1108 |
+
# Initialize weights and apply final processing
|
1109 |
+
self.post_init()
|
1110 |
+
|
1111 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1112 |
+
@replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1113 |
+
def forward(
|
1114 |
+
self,
|
1115 |
+
input_ids: Optional[torch.Tensor] = None,
|
1116 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1117 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1118 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1119 |
+
labels: Optional[torch.Tensor] = None,
|
1120 |
+
output_attentions: Optional[bool] = None,
|
1121 |
+
output_hidden_states: Optional[bool] = None,
|
1122 |
+
return_dict: Optional[bool] = None,
|
1123 |
+
) -> Union[Tuple, FunnelForPreTrainingOutput]:
|
1124 |
+
r"""
|
1125 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1126 |
+
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids`
|
1127 |
+
docstring) Indices should be in `[0, 1]`:
|
1128 |
+
|
1129 |
+
- 0 indicates the token is an original token,
|
1130 |
+
- 1 indicates the token was replaced.
|
1131 |
+
|
1132 |
+
Returns:
|
1133 |
+
|
1134 |
+
Examples:
|
1135 |
+
|
1136 |
+
```python
|
1137 |
+
>>> from transformers import AutoTokenizer, FunnelForPreTraining
|
1138 |
+
>>> import torch
|
1139 |
+
|
1140 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
|
1141 |
+
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
|
1142 |
+
|
1143 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1144 |
+
>>> logits = model(**inputs).logits
|
1145 |
+
```"""
|
1146 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1147 |
+
|
1148 |
+
discriminator_hidden_states = self.funnel(
|
1149 |
+
input_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
token_type_ids=token_type_ids,
|
1152 |
+
inputs_embeds=inputs_embeds,
|
1153 |
+
output_attentions=output_attentions,
|
1154 |
+
output_hidden_states=output_hidden_states,
|
1155 |
+
return_dict=return_dict,
|
1156 |
+
)
|
1157 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1158 |
+
|
1159 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1160 |
+
|
1161 |
+
loss = None
|
1162 |
+
if labels is not None:
|
1163 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1164 |
+
if attention_mask is not None:
|
1165 |
+
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
|
1166 |
+
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
|
1167 |
+
active_labels = labels[active_loss]
|
1168 |
+
loss = loss_fct(active_logits, active_labels.float())
|
1169 |
+
else:
|
1170 |
+
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
|
1171 |
+
|
1172 |
+
if not return_dict:
|
1173 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1174 |
+
return ((loss,) + output) if loss is not None else output
|
1175 |
+
|
1176 |
+
return FunnelForPreTrainingOutput(
|
1177 |
+
loss=loss,
|
1178 |
+
logits=logits,
|
1179 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1180 |
+
attentions=discriminator_hidden_states.attentions,
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
|
1184 |
+
@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
|
1185 |
+
class FunnelForMaskedLM(FunnelPreTrainedModel):
|
1186 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1187 |
+
|
1188 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1189 |
+
super().__init__(config)
|
1190 |
+
|
1191 |
+
self.funnel = FunnelModel(config)
|
1192 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size)
|
1193 |
+
|
1194 |
+
# Initialize weights and apply final processing
|
1195 |
+
self.post_init()
|
1196 |
+
|
1197 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1198 |
+
return self.lm_head
|
1199 |
+
|
1200 |
+
def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
1201 |
+
self.lm_head = new_embeddings
|
1202 |
+
|
1203 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1204 |
+
@add_code_sample_docstrings(
|
1205 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1206 |
+
output_type=MaskedLMOutput,
|
1207 |
+
config_class=_CONFIG_FOR_DOC,
|
1208 |
+
mask="<mask>",
|
1209 |
+
)
|
1210 |
+
def forward(
|
1211 |
+
self,
|
1212 |
+
input_ids: Optional[torch.Tensor] = None,
|
1213 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1214 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1215 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1216 |
+
labels: Optional[torch.Tensor] = None,
|
1217 |
+
output_attentions: Optional[bool] = None,
|
1218 |
+
output_hidden_states: Optional[bool] = None,
|
1219 |
+
return_dict: Optional[bool] = None,
|
1220 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1221 |
+
r"""
|
1222 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1223 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1224 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1225 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1226 |
+
"""
|
1227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1228 |
+
|
1229 |
+
outputs = self.funnel(
|
1230 |
+
input_ids,
|
1231 |
+
attention_mask=attention_mask,
|
1232 |
+
token_type_ids=token_type_ids,
|
1233 |
+
inputs_embeds=inputs_embeds,
|
1234 |
+
output_attentions=output_attentions,
|
1235 |
+
output_hidden_states=output_hidden_states,
|
1236 |
+
return_dict=return_dict,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
last_hidden_state = outputs[0]
|
1240 |
+
prediction_logits = self.lm_head(last_hidden_state)
|
1241 |
+
|
1242 |
+
masked_lm_loss = None
|
1243 |
+
if labels is not None:
|
1244 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1245 |
+
masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1246 |
+
|
1247 |
+
if not return_dict:
|
1248 |
+
output = (prediction_logits,) + outputs[1:]
|
1249 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1250 |
+
|
1251 |
+
return MaskedLMOutput(
|
1252 |
+
loss=masked_lm_loss,
|
1253 |
+
logits=prediction_logits,
|
1254 |
+
hidden_states=outputs.hidden_states,
|
1255 |
+
attentions=outputs.attentions,
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
|
1259 |
+
@add_start_docstrings(
|
1260 |
+
"""
|
1261 |
+
Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
|
1262 |
+
first timestep of the last hidden state) e.g. for GLUE tasks.
|
1263 |
+
""",
|
1264 |
+
FUNNEL_START_DOCSTRING,
|
1265 |
+
)
|
1266 |
+
class FunnelForSequenceClassification(FunnelPreTrainedModel):
|
1267 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1268 |
+
super().__init__(config)
|
1269 |
+
self.num_labels = config.num_labels
|
1270 |
+
self.config = config
|
1271 |
+
|
1272 |
+
self.funnel = FunnelBaseModel(config)
|
1273 |
+
self.classifier = FunnelClassificationHead(config, config.num_labels)
|
1274 |
+
# Initialize weights and apply final processing
|
1275 |
+
self.post_init()
|
1276 |
+
|
1277 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1278 |
+
@add_code_sample_docstrings(
|
1279 |
+
checkpoint="funnel-transformer/small-base",
|
1280 |
+
output_type=SequenceClassifierOutput,
|
1281 |
+
config_class=_CONFIG_FOR_DOC,
|
1282 |
+
)
|
1283 |
+
def forward(
|
1284 |
+
self,
|
1285 |
+
input_ids: Optional[torch.Tensor] = None,
|
1286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1287 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1288 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1289 |
+
labels: Optional[torch.Tensor] = None,
|
1290 |
+
output_attentions: Optional[bool] = None,
|
1291 |
+
output_hidden_states: Optional[bool] = None,
|
1292 |
+
return_dict: Optional[bool] = None,
|
1293 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1294 |
+
r"""
|
1295 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1296 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1297 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1298 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1299 |
+
"""
|
1300 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1301 |
+
|
1302 |
+
outputs = self.funnel(
|
1303 |
+
input_ids,
|
1304 |
+
attention_mask=attention_mask,
|
1305 |
+
token_type_ids=token_type_ids,
|
1306 |
+
inputs_embeds=inputs_embeds,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
output_hidden_states=output_hidden_states,
|
1309 |
+
return_dict=return_dict,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
last_hidden_state = outputs[0]
|
1313 |
+
pooled_output = last_hidden_state[:, 0]
|
1314 |
+
logits = self.classifier(pooled_output)
|
1315 |
+
|
1316 |
+
loss = None
|
1317 |
+
if labels is not None:
|
1318 |
+
if self.config.problem_type is None:
|
1319 |
+
if self.num_labels == 1:
|
1320 |
+
self.config.problem_type = "regression"
|
1321 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1322 |
+
self.config.problem_type = "single_label_classification"
|
1323 |
+
else:
|
1324 |
+
self.config.problem_type = "multi_label_classification"
|
1325 |
+
|
1326 |
+
if self.config.problem_type == "regression":
|
1327 |
+
loss_fct = MSELoss()
|
1328 |
+
if self.num_labels == 1:
|
1329 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1330 |
+
else:
|
1331 |
+
loss = loss_fct(logits, labels)
|
1332 |
+
elif self.config.problem_type == "single_label_classification":
|
1333 |
+
loss_fct = CrossEntropyLoss()
|
1334 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1335 |
+
elif self.config.problem_type == "multi_label_classification":
|
1336 |
+
loss_fct = BCEWithLogitsLoss()
|
1337 |
+
loss = loss_fct(logits, labels)
|
1338 |
+
|
1339 |
+
if not return_dict:
|
1340 |
+
output = (logits,) + outputs[1:]
|
1341 |
+
return ((loss,) + output) if loss is not None else output
|
1342 |
+
|
1343 |
+
return SequenceClassifierOutput(
|
1344 |
+
loss=loss,
|
1345 |
+
logits=logits,
|
1346 |
+
hidden_states=outputs.hidden_states,
|
1347 |
+
attentions=outputs.attentions,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
|
1351 |
+
@add_start_docstrings(
|
1352 |
+
"""
|
1353 |
+
Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
|
1354 |
+
timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
|
1355 |
+
""",
|
1356 |
+
FUNNEL_START_DOCSTRING,
|
1357 |
+
)
|
1358 |
+
class FunnelForMultipleChoice(FunnelPreTrainedModel):
|
1359 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1360 |
+
super().__init__(config)
|
1361 |
+
|
1362 |
+
self.funnel = FunnelBaseModel(config)
|
1363 |
+
self.classifier = FunnelClassificationHead(config, 1)
|
1364 |
+
# Initialize weights and apply final processing
|
1365 |
+
self.post_init()
|
1366 |
+
|
1367 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1368 |
+
@add_code_sample_docstrings(
|
1369 |
+
checkpoint="funnel-transformer/small-base",
|
1370 |
+
output_type=MultipleChoiceModelOutput,
|
1371 |
+
config_class=_CONFIG_FOR_DOC,
|
1372 |
+
)
|
1373 |
+
def forward(
|
1374 |
+
self,
|
1375 |
+
input_ids: Optional[torch.Tensor] = None,
|
1376 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1377 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1378 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1379 |
+
labels: Optional[torch.Tensor] = None,
|
1380 |
+
output_attentions: Optional[bool] = None,
|
1381 |
+
output_hidden_states: Optional[bool] = None,
|
1382 |
+
return_dict: Optional[bool] = None,
|
1383 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1384 |
+
r"""
|
1385 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1386 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1387 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1388 |
+
`input_ids` above)
|
1389 |
+
"""
|
1390 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1391 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1392 |
+
|
1393 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1394 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1395 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1396 |
+
inputs_embeds = (
|
1397 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1398 |
+
if inputs_embeds is not None
|
1399 |
+
else None
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
outputs = self.funnel(
|
1403 |
+
input_ids,
|
1404 |
+
attention_mask=attention_mask,
|
1405 |
+
token_type_ids=token_type_ids,
|
1406 |
+
inputs_embeds=inputs_embeds,
|
1407 |
+
output_attentions=output_attentions,
|
1408 |
+
output_hidden_states=output_hidden_states,
|
1409 |
+
return_dict=return_dict,
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
last_hidden_state = outputs[0]
|
1413 |
+
pooled_output = last_hidden_state[:, 0]
|
1414 |
+
logits = self.classifier(pooled_output)
|
1415 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1416 |
+
|
1417 |
+
loss = None
|
1418 |
+
if labels is not None:
|
1419 |
+
loss_fct = CrossEntropyLoss()
|
1420 |
+
loss = loss_fct(reshaped_logits, labels)
|
1421 |
+
|
1422 |
+
if not return_dict:
|
1423 |
+
output = (reshaped_logits,) + outputs[1:]
|
1424 |
+
return ((loss,) + output) if loss is not None else output
|
1425 |
+
|
1426 |
+
return MultipleChoiceModelOutput(
|
1427 |
+
loss=loss,
|
1428 |
+
logits=reshaped_logits,
|
1429 |
+
hidden_states=outputs.hidden_states,
|
1430 |
+
attentions=outputs.attentions,
|
1431 |
+
)
|
1432 |
+
|
1433 |
+
|
1434 |
+
@add_start_docstrings(
|
1435 |
+
"""
|
1436 |
+
Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
|
1437 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1438 |
+
""",
|
1439 |
+
FUNNEL_START_DOCSTRING,
|
1440 |
+
)
|
1441 |
+
class FunnelForTokenClassification(FunnelPreTrainedModel):
|
1442 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1443 |
+
super().__init__(config)
|
1444 |
+
self.num_labels = config.num_labels
|
1445 |
+
|
1446 |
+
self.funnel = FunnelModel(config)
|
1447 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
1448 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1449 |
+
|
1450 |
+
# Initialize weights and apply final processing
|
1451 |
+
self.post_init()
|
1452 |
+
|
1453 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1454 |
+
@add_code_sample_docstrings(
|
1455 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1456 |
+
output_type=TokenClassifierOutput,
|
1457 |
+
config_class=_CONFIG_FOR_DOC,
|
1458 |
+
)
|
1459 |
+
def forward(
|
1460 |
+
self,
|
1461 |
+
input_ids: Optional[torch.Tensor] = None,
|
1462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1463 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1464 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1465 |
+
labels: Optional[torch.Tensor] = None,
|
1466 |
+
output_attentions: Optional[bool] = None,
|
1467 |
+
output_hidden_states: Optional[bool] = None,
|
1468 |
+
return_dict: Optional[bool] = None,
|
1469 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1470 |
+
r"""
|
1471 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1472 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1473 |
+
"""
|
1474 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1475 |
+
|
1476 |
+
outputs = self.funnel(
|
1477 |
+
input_ids,
|
1478 |
+
attention_mask=attention_mask,
|
1479 |
+
token_type_ids=token_type_ids,
|
1480 |
+
inputs_embeds=inputs_embeds,
|
1481 |
+
output_attentions=output_attentions,
|
1482 |
+
output_hidden_states=output_hidden_states,
|
1483 |
+
return_dict=return_dict,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
last_hidden_state = outputs[0]
|
1487 |
+
last_hidden_state = self.dropout(last_hidden_state)
|
1488 |
+
logits = self.classifier(last_hidden_state)
|
1489 |
+
|
1490 |
+
loss = None
|
1491 |
+
if labels is not None:
|
1492 |
+
loss_fct = CrossEntropyLoss()
|
1493 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1494 |
+
|
1495 |
+
if not return_dict:
|
1496 |
+
output = (logits,) + outputs[1:]
|
1497 |
+
return ((loss,) + output) if loss is not None else output
|
1498 |
+
|
1499 |
+
return TokenClassifierOutput(
|
1500 |
+
loss=loss,
|
1501 |
+
logits=logits,
|
1502 |
+
hidden_states=outputs.hidden_states,
|
1503 |
+
attentions=outputs.attentions,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
|
1507 |
+
@add_start_docstrings(
|
1508 |
+
"""
|
1509 |
+
Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
|
1510 |
+
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1511 |
+
""",
|
1512 |
+
FUNNEL_START_DOCSTRING,
|
1513 |
+
)
|
1514 |
+
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
|
1515 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1516 |
+
super().__init__(config)
|
1517 |
+
self.num_labels = config.num_labels
|
1518 |
+
|
1519 |
+
self.funnel = FunnelModel(config)
|
1520 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1521 |
+
|
1522 |
+
# Initialize weights and apply final processing
|
1523 |
+
self.post_init()
|
1524 |
+
|
1525 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1526 |
+
@add_code_sample_docstrings(
|
1527 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1528 |
+
output_type=QuestionAnsweringModelOutput,
|
1529 |
+
config_class=_CONFIG_FOR_DOC,
|
1530 |
+
)
|
1531 |
+
def forward(
|
1532 |
+
self,
|
1533 |
+
input_ids: Optional[torch.Tensor] = None,
|
1534 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1535 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1536 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1537 |
+
start_positions: Optional[torch.Tensor] = None,
|
1538 |
+
end_positions: Optional[torch.Tensor] = None,
|
1539 |
+
output_attentions: Optional[bool] = None,
|
1540 |
+
output_hidden_states: Optional[bool] = None,
|
1541 |
+
return_dict: Optional[bool] = None,
|
1542 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1543 |
+
r"""
|
1544 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1545 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1546 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1547 |
+
are not taken into account for computing the loss.
|
1548 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1549 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1550 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1551 |
+
are not taken into account for computing the loss.
|
1552 |
+
"""
|
1553 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1554 |
+
|
1555 |
+
outputs = self.funnel(
|
1556 |
+
input_ids,
|
1557 |
+
attention_mask=attention_mask,
|
1558 |
+
token_type_ids=token_type_ids,
|
1559 |
+
inputs_embeds=inputs_embeds,
|
1560 |
+
output_attentions=output_attentions,
|
1561 |
+
output_hidden_states=output_hidden_states,
|
1562 |
+
return_dict=return_dict,
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
last_hidden_state = outputs[0]
|
1566 |
+
|
1567 |
+
logits = self.qa_outputs(last_hidden_state)
|
1568 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1569 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1570 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1571 |
+
|
1572 |
+
total_loss = None
|
1573 |
+
if start_positions is not None and end_positions is not None:
|
1574 |
+
# If we are on multi-GPU, split add a dimension
|
1575 |
+
if len(start_positions.size()) > 1:
|
1576 |
+
start_positions = start_positions.squeze(-1)
|
1577 |
+
if len(end_positions.size()) > 1:
|
1578 |
+
end_positions = end_positions.squeeze(-1)
|
1579 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1580 |
+
ignored_index = start_logits.size(1)
|
1581 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1582 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1583 |
+
|
1584 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1585 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1586 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1587 |
+
total_loss = (start_loss + end_loss) / 2
|
1588 |
+
|
1589 |
+
if not return_dict:
|
1590 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1591 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1592 |
+
|
1593 |
+
return QuestionAnsweringModelOutput(
|
1594 |
+
loss=total_loss,
|
1595 |
+
start_logits=start_logits,
|
1596 |
+
end_logits=end_logits,
|
1597 |
+
hidden_states=outputs.hidden_states,
|
1598 |
+
attentions=outputs.attentions,
|
1599 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py
ADDED
@@ -0,0 +1,1871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Funnel model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import tensorflow as tf
|
26 |
+
|
27 |
+
from ...activations_tf import get_tf_activation
|
28 |
+
from ...modeling_tf_outputs import (
|
29 |
+
TFBaseModelOutput,
|
30 |
+
TFMaskedLMOutput,
|
31 |
+
TFMultipleChoiceModelOutput,
|
32 |
+
TFQuestionAnsweringModelOutput,
|
33 |
+
TFSequenceClassifierOutput,
|
34 |
+
TFTokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFMaskedLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFMultipleChoiceLoss,
|
40 |
+
TFPreTrainedModel,
|
41 |
+
TFQuestionAnsweringLoss,
|
42 |
+
TFSequenceClassificationLoss,
|
43 |
+
TFTokenClassificationLoss,
|
44 |
+
get_initializer,
|
45 |
+
keras,
|
46 |
+
keras_serializable,
|
47 |
+
unpack_inputs,
|
48 |
+
)
|
49 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
50 |
+
from ...utils import (
|
51 |
+
ModelOutput,
|
52 |
+
add_code_sample_docstrings,
|
53 |
+
add_start_docstrings,
|
54 |
+
add_start_docstrings_to_model_forward,
|
55 |
+
logging,
|
56 |
+
replace_return_docstrings,
|
57 |
+
)
|
58 |
+
from .configuration_funnel import FunnelConfig
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
_CONFIG_FOR_DOC = "FunnelConfig"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
INF = 1e6
|
70 |
+
|
71 |
+
|
72 |
+
class TFFunnelEmbeddings(keras.layers.Layer):
|
73 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
74 |
+
|
75 |
+
def __init__(self, config, **kwargs):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
|
78 |
+
self.config = config
|
79 |
+
self.hidden_size = config.hidden_size
|
80 |
+
self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std
|
81 |
+
|
82 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
83 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout)
|
84 |
+
|
85 |
+
def build(self, input_shape=None):
|
86 |
+
with tf.name_scope("word_embeddings"):
|
87 |
+
self.weight = self.add_weight(
|
88 |
+
name="weight",
|
89 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
90 |
+
initializer=get_initializer(initializer_range=self.initializer_std),
|
91 |
+
)
|
92 |
+
|
93 |
+
if self.built:
|
94 |
+
return
|
95 |
+
self.built = True
|
96 |
+
if getattr(self, "LayerNorm", None) is not None:
|
97 |
+
with tf.name_scope(self.LayerNorm.name):
|
98 |
+
self.LayerNorm.build([None, None, self.config.d_model])
|
99 |
+
|
100 |
+
def call(self, input_ids=None, inputs_embeds=None, training=False):
|
101 |
+
"""
|
102 |
+
Applies embedding based on inputs tensor.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
106 |
+
"""
|
107 |
+
assert not (input_ids is None and inputs_embeds is None)
|
108 |
+
assert not (input_ids is not None and inputs_embeds is not None)
|
109 |
+
|
110 |
+
if input_ids is not None:
|
111 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
112 |
+
inputs_embeds = tf.gather(self.weight, input_ids)
|
113 |
+
|
114 |
+
final_embeddings = self.LayerNorm(inputs=inputs_embeds)
|
115 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
116 |
+
|
117 |
+
return final_embeddings
|
118 |
+
|
119 |
+
|
120 |
+
class TFFunnelAttentionStructure:
|
121 |
+
"""
|
122 |
+
Contains helpers for `TFFunnelRelMultiheadAttention `.
|
123 |
+
"""
|
124 |
+
|
125 |
+
cls_token_type_id: int = 2
|
126 |
+
|
127 |
+
def __init__(self, config):
|
128 |
+
self.d_model = config.d_model
|
129 |
+
self.attention_type = config.attention_type
|
130 |
+
self.num_blocks = config.num_blocks
|
131 |
+
self.separate_cls = config.separate_cls
|
132 |
+
self.truncate_seq = config.truncate_seq
|
133 |
+
self.pool_q_only = config.pool_q_only
|
134 |
+
self.pooling_type = config.pooling_type
|
135 |
+
|
136 |
+
self.sin_dropout = keras.layers.Dropout(config.hidden_dropout)
|
137 |
+
self.cos_dropout = keras.layers.Dropout(config.hidden_dropout)
|
138 |
+
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
|
139 |
+
# divided.
|
140 |
+
self.pooling_mult = None
|
141 |
+
|
142 |
+
def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False):
|
143 |
+
"""Returns the attention inputs associated to the inputs of the model."""
|
144 |
+
# inputs_embeds has shape batch_size x seq_len x d_model
|
145 |
+
# attention_mask and token_type_ids have shape batch_size x seq_len
|
146 |
+
self.pooling_mult = 1
|
147 |
+
self.seq_len = seq_len = shape_list(inputs_embeds)[1]
|
148 |
+
position_embeds = self.get_position_embeds(seq_len, training=training)
|
149 |
+
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
|
150 |
+
cls_mask = (
|
151 |
+
tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]])
|
152 |
+
if self.separate_cls
|
153 |
+
else None
|
154 |
+
)
|
155 |
+
return (position_embeds, token_type_mat, attention_mask, cls_mask)
|
156 |
+
|
157 |
+
def token_type_ids_to_mat(self, token_type_ids):
|
158 |
+
"""Convert `token_type_ids` to `token_type_mat`."""
|
159 |
+
token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2))
|
160 |
+
# Treat <cls> as in the same segment as both A & B
|
161 |
+
cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype))
|
162 |
+
cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2))
|
163 |
+
return tf.logical_or(cls_mat, token_type_mat)
|
164 |
+
|
165 |
+
def get_position_embeds(self, seq_len, training=False):
|
166 |
+
"""
|
167 |
+
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
|
168 |
+
are using the factorized or the relative shift attention:
|
169 |
+
|
170 |
+
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
|
171 |
+
final formula.
|
172 |
+
|
173 |
+
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
|
174 |
+
formula.
|
175 |
+
|
176 |
+
Paper link: https://arxiv.org/abs/2006.03236
|
177 |
+
"""
|
178 |
+
if self.attention_type == "factorized":
|
179 |
+
# Notations from the paper, appending A.2.2, final formula.
|
180 |
+
# We need to create and return the matrices phi, psi, pi and omega.
|
181 |
+
pos_seq = tf.range(0, seq_len, 1.0)
|
182 |
+
freq_seq = tf.range(0, self.d_model // 2, 1.0)
|
183 |
+
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
|
184 |
+
sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq)
|
185 |
+
|
186 |
+
sin_embed = tf.sin(sinusoid)
|
187 |
+
sin_embed_d = self.sin_dropout(sin_embed, training=training)
|
188 |
+
cos_embed = tf.cos(sinusoid)
|
189 |
+
cos_embed_d = self.cos_dropout(cos_embed, training=training)
|
190 |
+
# This is different from the formula on the paper...
|
191 |
+
phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1)
|
192 |
+
psi = tf.concat([cos_embed, sin_embed], axis=-1)
|
193 |
+
pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1)
|
194 |
+
omega = tf.concat([-sin_embed, cos_embed], axis=-1)
|
195 |
+
return (phi, pi, psi, omega)
|
196 |
+
else:
|
197 |
+
# Notations from the paper, appending A.2.1, final formula.
|
198 |
+
# We need to create and return all the possible vectors R for all blocks and shifts.
|
199 |
+
freq_seq = tf.range(0, self.d_model // 2, 1.0)
|
200 |
+
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
|
201 |
+
# Maximum relative positions for the first input
|
202 |
+
rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0)
|
203 |
+
zero_offset = seq_len * tf.constant(2)
|
204 |
+
sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq)
|
205 |
+
sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training)
|
206 |
+
cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training)
|
207 |
+
pos_embed = tf.concat([sin_embed, cos_embed], axis=-1)
|
208 |
+
|
209 |
+
pos = tf.range(0, seq_len)
|
210 |
+
pooled_pos = pos
|
211 |
+
position_embeds_list = []
|
212 |
+
for block_index in range(0, self.num_blocks):
|
213 |
+
# For each block with block_index > 0, we need two types position embeddings:
|
214 |
+
# - Attention(pooled-q, unpooled-kv)
|
215 |
+
# - Attention(pooled-q, pooled-kv)
|
216 |
+
# For block_index = 0 we only need the second one and leave the first one as None.
|
217 |
+
|
218 |
+
# First type
|
219 |
+
position_embeds_pooling = tf.fill([1], value=-1.0)
|
220 |
+
|
221 |
+
if block_index != 0:
|
222 |
+
pooled_pos = self.stride_pool_pos(pos, block_index)
|
223 |
+
|
224 |
+
# construct rel_pos_id
|
225 |
+
stride = 2 ** (block_index - 1)
|
226 |
+
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
|
227 |
+
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
|
228 |
+
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
|
229 |
+
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
|
230 |
+
rel_pos = rel_pos + zero_offset
|
231 |
+
position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0)
|
232 |
+
|
233 |
+
# Second type
|
234 |
+
pos = pooled_pos
|
235 |
+
stride = 2**block_index
|
236 |
+
rel_pos = self.relative_pos(pos, stride)
|
237 |
+
|
238 |
+
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
|
239 |
+
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
|
240 |
+
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
|
241 |
+
rel_pos = rel_pos + zero_offset
|
242 |
+
tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0])
|
243 |
+
position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0)
|
244 |
+
|
245 |
+
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
|
246 |
+
return position_embeds_list
|
247 |
+
|
248 |
+
def stride_pool_pos(self, pos_id, block_index):
|
249 |
+
"""
|
250 |
+
Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`).
|
251 |
+
"""
|
252 |
+
if self.separate_cls:
|
253 |
+
# Under separate <cls>, we treat the <cls> as the first token in
|
254 |
+
# the previous block of the 1st real block. Since the 1st real
|
255 |
+
# block always has position 1, the position of the previous block
|
256 |
+
# will be at `1 - 2 ** block_index`.
|
257 |
+
cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype)
|
258 |
+
pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:]
|
259 |
+
return tf.concat([cls_pos, pooled_pos_id[::2]], 0)
|
260 |
+
else:
|
261 |
+
return pos_id[::2]
|
262 |
+
|
263 |
+
def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
|
264 |
+
"""
|
265 |
+
Build the relative positional vector between `pos` and `pooled_pos`.
|
266 |
+
"""
|
267 |
+
if pooled_pos is None:
|
268 |
+
pooled_pos = pos
|
269 |
+
|
270 |
+
ref_point = pooled_pos[0] - pos[0]
|
271 |
+
num_remove = shift * shape_list(pooled_pos)[0]
|
272 |
+
max_dist = ref_point + num_remove * stride
|
273 |
+
min_dist = pooled_pos[0] - pos[-1]
|
274 |
+
|
275 |
+
return tf.range(max_dist, min_dist - 1, -stride)
|
276 |
+
|
277 |
+
def stride_pool(self, tensor, axis):
|
278 |
+
"""
|
279 |
+
Perform pooling by stride slicing the tensor along the given axis.
|
280 |
+
"""
|
281 |
+
if tensor is None:
|
282 |
+
return None
|
283 |
+
|
284 |
+
# Do the stride pool recursively if axis is a list or a tuple of ints.
|
285 |
+
if isinstance(axis, (list, tuple)):
|
286 |
+
for ax in axis:
|
287 |
+
tensor = self.stride_pool(tensor, ax)
|
288 |
+
return tensor
|
289 |
+
|
290 |
+
# Do the stride pool recursively if tensor is a list or tuple of tensors.
|
291 |
+
if isinstance(tensor, (tuple, list)):
|
292 |
+
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
|
293 |
+
|
294 |
+
# Deal with negative axis
|
295 |
+
axis %= len(shape_list(tensor))
|
296 |
+
|
297 |
+
axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2)
|
298 |
+
enc_slice = [slice(None)] * axis + [axis_slice]
|
299 |
+
if self.separate_cls:
|
300 |
+
cls_slice = [slice(None)] * axis + [slice(None, 1)]
|
301 |
+
tensor = tf.concat([tensor[cls_slice], tensor], axis)
|
302 |
+
return tensor[enc_slice]
|
303 |
+
|
304 |
+
def pool_tensor(self, tensor, mode="mean", stride=2):
|
305 |
+
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
|
306 |
+
if tensor is None:
|
307 |
+
return None
|
308 |
+
|
309 |
+
# Do the pool recursively if tensor is a list or tuple of tensors.
|
310 |
+
if isinstance(tensor, (tuple, list)):
|
311 |
+
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
|
312 |
+
|
313 |
+
if self.separate_cls:
|
314 |
+
suffix = tensor[:, :-1] if self.truncate_seq else tensor
|
315 |
+
tensor = tf.concat([tensor[:, :1], suffix], axis=1)
|
316 |
+
|
317 |
+
ndim = len(shape_list(tensor))
|
318 |
+
if ndim == 2:
|
319 |
+
tensor = tensor[:, :, None]
|
320 |
+
|
321 |
+
if mode == "mean":
|
322 |
+
tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
323 |
+
elif mode == "max":
|
324 |
+
tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
325 |
+
elif mode == "min":
|
326 |
+
tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
327 |
+
else:
|
328 |
+
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
|
329 |
+
|
330 |
+
return tf.squeeze(tensor, 2) if ndim == 2 else tensor
|
331 |
+
|
332 |
+
def pre_attention_pooling(self, output, attention_inputs):
|
333 |
+
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
|
334 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
335 |
+
if self.pool_q_only:
|
336 |
+
if self.attention_type == "factorized":
|
337 |
+
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
|
338 |
+
token_type_mat = self.stride_pool(token_type_mat, 1)
|
339 |
+
cls_mask = self.stride_pool(cls_mask, 0)
|
340 |
+
output = self.pool_tensor(output, mode=self.pooling_type)
|
341 |
+
else:
|
342 |
+
self.pooling_mult *= 2
|
343 |
+
if self.attention_type == "factorized":
|
344 |
+
position_embeds = self.stride_pool(position_embeds, 0)
|
345 |
+
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
|
346 |
+
cls_mask = self.stride_pool(cls_mask, [1, 2])
|
347 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
348 |
+
output = self.pool_tensor(output, mode=self.pooling_type)
|
349 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
350 |
+
return output, attention_inputs
|
351 |
+
|
352 |
+
def post_attention_pooling(self, attention_inputs):
|
353 |
+
"""Pool the proper parts of `attention_inputs` after the attention layer."""
|
354 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
355 |
+
if self.pool_q_only:
|
356 |
+
self.pooling_mult *= 2
|
357 |
+
if self.attention_type == "factorized":
|
358 |
+
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
|
359 |
+
token_type_mat = self.stride_pool(token_type_mat, 2)
|
360 |
+
cls_mask = self.stride_pool(cls_mask, 1)
|
361 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
362 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
363 |
+
return attention_inputs
|
364 |
+
|
365 |
+
|
366 |
+
def _relative_shift_gather(positional_attn, context_len, shift):
|
367 |
+
batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn)
|
368 |
+
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
|
369 |
+
|
370 |
+
# What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient.
|
371 |
+
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
|
372 |
+
# # matrix of context_len + i-j
|
373 |
+
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
|
374 |
+
|
375 |
+
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
|
376 |
+
positional_attn = positional_attn[:, :, shift:, :]
|
377 |
+
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
|
378 |
+
positional_attn = positional_attn[..., :context_len]
|
379 |
+
return positional_attn
|
380 |
+
|
381 |
+
|
382 |
+
class TFFunnelRelMultiheadAttention(keras.layers.Layer):
|
383 |
+
def __init__(self, config, block_index, **kwargs):
|
384 |
+
super().__init__(**kwargs)
|
385 |
+
self.attention_type = config.attention_type
|
386 |
+
self.n_head = n_head = config.n_head
|
387 |
+
self.d_head = d_head = config.d_head
|
388 |
+
self.d_model = d_model = config.d_model
|
389 |
+
self.initializer_range = config.initializer_range
|
390 |
+
self.block_index = block_index
|
391 |
+
|
392 |
+
self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout)
|
393 |
+
self.attention_dropout = keras.layers.Dropout(config.attention_dropout)
|
394 |
+
|
395 |
+
initializer = get_initializer(config.initializer_range)
|
396 |
+
|
397 |
+
self.q_head = keras.layers.Dense(
|
398 |
+
n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head"
|
399 |
+
)
|
400 |
+
self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head")
|
401 |
+
self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head")
|
402 |
+
|
403 |
+
self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj")
|
404 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
405 |
+
self.scale = 1.0 / (d_head**0.5)
|
406 |
+
|
407 |
+
def build(self, input_shape=None):
|
408 |
+
n_head, d_head, d_model = self.n_head, self.d_head, self.d_model
|
409 |
+
initializer = get_initializer(self.initializer_range)
|
410 |
+
|
411 |
+
self.r_w_bias = self.add_weight(
|
412 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias"
|
413 |
+
)
|
414 |
+
self.r_r_bias = self.add_weight(
|
415 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias"
|
416 |
+
)
|
417 |
+
self.r_kernel = self.add_weight(
|
418 |
+
shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel"
|
419 |
+
)
|
420 |
+
self.r_s_bias = self.add_weight(
|
421 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias"
|
422 |
+
)
|
423 |
+
self.seg_embed = self.add_weight(
|
424 |
+
shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed"
|
425 |
+
)
|
426 |
+
|
427 |
+
if self.built:
|
428 |
+
return
|
429 |
+
self.built = True
|
430 |
+
if getattr(self, "q_head", None) is not None:
|
431 |
+
with tf.name_scope(self.q_head.name):
|
432 |
+
self.q_head.build([None, None, d_model])
|
433 |
+
if getattr(self, "k_head", None) is not None:
|
434 |
+
with tf.name_scope(self.k_head.name):
|
435 |
+
self.k_head.build([None, None, d_model])
|
436 |
+
if getattr(self, "v_head", None) is not None:
|
437 |
+
with tf.name_scope(self.v_head.name):
|
438 |
+
self.v_head.build([None, None, d_model])
|
439 |
+
if getattr(self, "post_proj", None) is not None:
|
440 |
+
with tf.name_scope(self.post_proj.name):
|
441 |
+
self.post_proj.build([None, None, n_head * d_head])
|
442 |
+
if getattr(self, "layer_norm", None) is not None:
|
443 |
+
with tf.name_scope(self.layer_norm.name):
|
444 |
+
self.layer_norm.build([None, None, d_model])
|
445 |
+
|
446 |
+
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
|
447 |
+
"""Relative attention score for the positional encodings"""
|
448 |
+
# q_head has shape batch_size x sea_len x n_head x d_head
|
449 |
+
if self.attention_type == "factorized":
|
450 |
+
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
|
451 |
+
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
|
452 |
+
phi, pi, psi, omega = position_embeds
|
453 |
+
# Shape n_head x d_head
|
454 |
+
u = self.r_r_bias * self.scale
|
455 |
+
# Shape d_model x n_head x d_head
|
456 |
+
w_r = self.r_kernel
|
457 |
+
|
458 |
+
# Shape batch_size x sea_len x n_head x d_model
|
459 |
+
q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r)
|
460 |
+
q_r_attention_1 = q_r_attention * phi[:, None]
|
461 |
+
q_r_attention_2 = q_r_attention * pi[:, None]
|
462 |
+
|
463 |
+
# Shape batch_size x n_head x seq_len x context_len
|
464 |
+
positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum(
|
465 |
+
"bind,jd->bnij", q_r_attention_2, omega
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
|
469 |
+
# Grab the proper positional encoding, shape max_rel_len x d_model
|
470 |
+
if shape_list(q_head)[1] != context_len:
|
471 |
+
shift = 2
|
472 |
+
r = position_embeds[self.block_index][1]
|
473 |
+
else:
|
474 |
+
shift = 1
|
475 |
+
r = position_embeds[self.block_index][0]
|
476 |
+
# Shape n_head x d_head
|
477 |
+
v = self.r_r_bias * self.scale
|
478 |
+
# Shape d_model x n_head x d_head
|
479 |
+
w_r = self.r_kernel
|
480 |
+
|
481 |
+
# Shape max_rel_len x n_head x d_model
|
482 |
+
r_head = tf.einsum("td,dnh->tnh", r, w_r)
|
483 |
+
# Shape batch_size x n_head x seq_len x max_rel_len
|
484 |
+
positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head)
|
485 |
+
# Shape batch_size x n_head x seq_len x context_len
|
486 |
+
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
|
487 |
+
|
488 |
+
if cls_mask is not None:
|
489 |
+
positional_attn *= cls_mask
|
490 |
+
return positional_attn
|
491 |
+
|
492 |
+
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
|
493 |
+
"""Relative attention score for the token_type_ids"""
|
494 |
+
if token_type_mat is None:
|
495 |
+
return 0
|
496 |
+
batch_size, seq_len, context_len = shape_list(token_type_mat)
|
497 |
+
# q_head has shape batch_size x seq_len x n_head x d_head
|
498 |
+
# Shape n_head x d_head
|
499 |
+
r_s_bias = self.r_s_bias * self.scale
|
500 |
+
|
501 |
+
# Shape batch_size x n_head x seq_len x 2
|
502 |
+
token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
|
503 |
+
# Shape batch_size x n_head x seq_len x context_len
|
504 |
+
token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1])
|
505 |
+
# token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape)
|
506 |
+
# Shapes batch_size x n_head x seq_len
|
507 |
+
diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1)
|
508 |
+
# Shape batch_size x n_head x seq_len x context_len
|
509 |
+
token_type_attn = tf.where(
|
510 |
+
token_type_mat,
|
511 |
+
tf.tile(same_token_type, [1, 1, 1, context_len]),
|
512 |
+
tf.tile(diff_token_type, [1, 1, 1, context_len]),
|
513 |
+
)
|
514 |
+
|
515 |
+
if cls_mask is not None:
|
516 |
+
token_type_attn *= cls_mask
|
517 |
+
return token_type_attn
|
518 |
+
|
519 |
+
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
|
520 |
+
# query has shape batch_size x seq_len x d_model
|
521 |
+
# key and value have shapes batch_size x context_len x d_model
|
522 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
523 |
+
|
524 |
+
batch_size, seq_len, _ = shape_list(query)
|
525 |
+
context_len = shape_list(key)[1]
|
526 |
+
n_head, d_head = self.n_head, self.d_head
|
527 |
+
|
528 |
+
# Shape batch_size x seq_len x n_head x d_head
|
529 |
+
q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head])
|
530 |
+
# Shapes batch_size x context_len x n_head x d_head
|
531 |
+
k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head])
|
532 |
+
v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head])
|
533 |
+
|
534 |
+
q_head = q_head * self.scale
|
535 |
+
# Shape n_head x d_head
|
536 |
+
r_w_bias = self.r_w_bias * self.scale
|
537 |
+
# Shapes batch_size x n_head x seq_len x context_len
|
538 |
+
content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
|
539 |
+
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
|
540 |
+
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
|
541 |
+
|
542 |
+
# merge attention scores
|
543 |
+
attn_score = content_score + positional_attn + token_type_attn
|
544 |
+
|
545 |
+
# perform masking
|
546 |
+
if attention_mask is not None:
|
547 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype)
|
548 |
+
attn_score = attn_score - (INF * (1 - attention_mask[:, None, None]))
|
549 |
+
|
550 |
+
# attention probability
|
551 |
+
attn_prob = stable_softmax(attn_score, axis=-1)
|
552 |
+
attn_prob = self.attention_dropout(attn_prob, training=training)
|
553 |
+
|
554 |
+
# attention output, shape batch_size x seq_len x n_head x d_head
|
555 |
+
attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head)
|
556 |
+
|
557 |
+
# Shape shape batch_size x seq_len x d_model
|
558 |
+
attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head]))
|
559 |
+
attn_out = self.hidden_dropout(attn_out, training=training)
|
560 |
+
|
561 |
+
output = self.layer_norm(query + attn_out)
|
562 |
+
return (output, attn_prob) if output_attentions else (output,)
|
563 |
+
|
564 |
+
|
565 |
+
class TFFunnelPositionwiseFFN(keras.layers.Layer):
|
566 |
+
def __init__(self, config, **kwargs):
|
567 |
+
super().__init__(**kwargs)
|
568 |
+
initializer = get_initializer(config.initializer_range)
|
569 |
+
self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1")
|
570 |
+
self.activation_function = get_tf_activation(config.hidden_act)
|
571 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
572 |
+
self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2")
|
573 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
574 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
575 |
+
self.config = config
|
576 |
+
|
577 |
+
def call(self, hidden, training=False):
|
578 |
+
h = self.linear_1(hidden)
|
579 |
+
h = self.activation_function(h)
|
580 |
+
h = self.activation_dropout(h, training=training)
|
581 |
+
h = self.linear_2(h)
|
582 |
+
h = self.dropout(h, training=training)
|
583 |
+
return self.layer_norm(hidden + h)
|
584 |
+
|
585 |
+
def build(self, input_shape=None):
|
586 |
+
if self.built:
|
587 |
+
return
|
588 |
+
self.built = True
|
589 |
+
if getattr(self, "linear_1", None) is not None:
|
590 |
+
with tf.name_scope(self.linear_1.name):
|
591 |
+
self.linear_1.build([None, None, self.config.d_model])
|
592 |
+
if getattr(self, "linear_2", None) is not None:
|
593 |
+
with tf.name_scope(self.linear_2.name):
|
594 |
+
self.linear_2.build([None, None, self.config.d_inner])
|
595 |
+
if getattr(self, "layer_norm", None) is not None:
|
596 |
+
with tf.name_scope(self.layer_norm.name):
|
597 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
598 |
+
|
599 |
+
|
600 |
+
class TFFunnelLayer(keras.layers.Layer):
|
601 |
+
def __init__(self, config, block_index, **kwargs):
|
602 |
+
super().__init__(**kwargs)
|
603 |
+
self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention")
|
604 |
+
self.ffn = TFFunnelPositionwiseFFN(config, name="ffn")
|
605 |
+
|
606 |
+
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
|
607 |
+
attn = self.attention(
|
608 |
+
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
|
609 |
+
)
|
610 |
+
output = self.ffn(attn[0], training=training)
|
611 |
+
return (output, attn[1]) if output_attentions else (output,)
|
612 |
+
|
613 |
+
def build(self, input_shape=None):
|
614 |
+
if self.built:
|
615 |
+
return
|
616 |
+
self.built = True
|
617 |
+
if getattr(self, "attention", None) is not None:
|
618 |
+
with tf.name_scope(self.attention.name):
|
619 |
+
self.attention.build(None)
|
620 |
+
if getattr(self, "ffn", None) is not None:
|
621 |
+
with tf.name_scope(self.ffn.name):
|
622 |
+
self.ffn.build(None)
|
623 |
+
|
624 |
+
|
625 |
+
class TFFunnelEncoder(keras.layers.Layer):
|
626 |
+
def __init__(self, config, **kwargs):
|
627 |
+
super().__init__(**kwargs)
|
628 |
+
self.separate_cls = config.separate_cls
|
629 |
+
self.pool_q_only = config.pool_q_only
|
630 |
+
self.block_repeats = config.block_repeats
|
631 |
+
self.attention_structure = TFFunnelAttentionStructure(config)
|
632 |
+
self.blocks = [
|
633 |
+
[TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)]
|
634 |
+
for block_index, block_size in enumerate(config.block_sizes)
|
635 |
+
]
|
636 |
+
|
637 |
+
def call(
|
638 |
+
self,
|
639 |
+
inputs_embeds,
|
640 |
+
attention_mask=None,
|
641 |
+
token_type_ids=None,
|
642 |
+
output_attentions=False,
|
643 |
+
output_hidden_states=False,
|
644 |
+
return_dict=True,
|
645 |
+
training=False,
|
646 |
+
):
|
647 |
+
# The pooling is not implemented on long tensors, so we convert this mask.
|
648 |
+
# attention_mask = tf.cast(attention_mask, inputs_embeds.dtype)
|
649 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
650 |
+
inputs_embeds,
|
651 |
+
attention_mask=attention_mask,
|
652 |
+
token_type_ids=token_type_ids,
|
653 |
+
training=training,
|
654 |
+
)
|
655 |
+
hidden = inputs_embeds
|
656 |
+
|
657 |
+
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
|
658 |
+
all_attentions = () if output_attentions else None
|
659 |
+
|
660 |
+
for block_index, block in enumerate(self.blocks):
|
661 |
+
pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1)
|
662 |
+
pooling_flag = pooling_flag and block_index > 0
|
663 |
+
pooled_hidden = tf.zeros(shape_list(hidden))
|
664 |
+
|
665 |
+
if pooling_flag:
|
666 |
+
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
|
667 |
+
hidden, attention_inputs
|
668 |
+
)
|
669 |
+
|
670 |
+
for layer_index, layer in enumerate(block):
|
671 |
+
for repeat_index in range(self.block_repeats[block_index]):
|
672 |
+
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
|
673 |
+
if do_pooling:
|
674 |
+
query = pooled_hidden
|
675 |
+
key = value = hidden if self.pool_q_only else pooled_hidden
|
676 |
+
else:
|
677 |
+
query = key = value = hidden
|
678 |
+
layer_output = layer(
|
679 |
+
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
|
680 |
+
)
|
681 |
+
hidden = layer_output[0]
|
682 |
+
if do_pooling:
|
683 |
+
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
|
684 |
+
|
685 |
+
if output_attentions:
|
686 |
+
all_attentions = all_attentions + layer_output[1:]
|
687 |
+
if output_hidden_states:
|
688 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
689 |
+
|
690 |
+
if not return_dict:
|
691 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
692 |
+
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
693 |
+
|
694 |
+
def build(self, input_shape=None):
|
695 |
+
if self.built:
|
696 |
+
return
|
697 |
+
self.built = True
|
698 |
+
for block in self.blocks:
|
699 |
+
for layer in block:
|
700 |
+
with tf.name_scope(layer.name):
|
701 |
+
layer.build(None)
|
702 |
+
|
703 |
+
|
704 |
+
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
|
705 |
+
"""
|
706 |
+
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
|
707 |
+
"""
|
708 |
+
if stride == 1:
|
709 |
+
return x
|
710 |
+
if separate_cls:
|
711 |
+
cls = x[:, :1]
|
712 |
+
x = x[:, 1:]
|
713 |
+
output = tf.repeat(x, repeats=stride, axis=1)
|
714 |
+
if separate_cls:
|
715 |
+
if truncate_seq:
|
716 |
+
output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]])
|
717 |
+
output = output[:, : target_len - 1]
|
718 |
+
output = tf.concat([cls, output], axis=1)
|
719 |
+
else:
|
720 |
+
output = output[:, :target_len]
|
721 |
+
return output
|
722 |
+
|
723 |
+
|
724 |
+
class TFFunnelDecoder(keras.layers.Layer):
|
725 |
+
def __init__(self, config, **kwargs):
|
726 |
+
super().__init__(**kwargs)
|
727 |
+
self.separate_cls = config.separate_cls
|
728 |
+
self.truncate_seq = config.truncate_seq
|
729 |
+
self.stride = 2 ** (len(config.block_sizes) - 1)
|
730 |
+
self.attention_structure = TFFunnelAttentionStructure(config)
|
731 |
+
self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)]
|
732 |
+
|
733 |
+
def call(
|
734 |
+
self,
|
735 |
+
final_hidden,
|
736 |
+
first_block_hidden,
|
737 |
+
attention_mask=None,
|
738 |
+
token_type_ids=None,
|
739 |
+
output_attentions=False,
|
740 |
+
output_hidden_states=False,
|
741 |
+
return_dict=True,
|
742 |
+
training=False,
|
743 |
+
):
|
744 |
+
upsampled_hidden = upsample(
|
745 |
+
final_hidden,
|
746 |
+
stride=self.stride,
|
747 |
+
target_len=shape_list(first_block_hidden)[1],
|
748 |
+
separate_cls=self.separate_cls,
|
749 |
+
truncate_seq=self.truncate_seq,
|
750 |
+
)
|
751 |
+
|
752 |
+
hidden = upsampled_hidden + first_block_hidden
|
753 |
+
all_hidden_states = (hidden,) if output_hidden_states else None
|
754 |
+
all_attentions = () if output_attentions else None
|
755 |
+
|
756 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
757 |
+
hidden,
|
758 |
+
attention_mask=attention_mask,
|
759 |
+
token_type_ids=token_type_ids,
|
760 |
+
training=training,
|
761 |
+
)
|
762 |
+
|
763 |
+
for layer in self.layers:
|
764 |
+
layer_output = layer(
|
765 |
+
hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training
|
766 |
+
)
|
767 |
+
hidden = layer_output[0]
|
768 |
+
|
769 |
+
if output_attentions:
|
770 |
+
all_attentions = all_attentions + layer_output[1:]
|
771 |
+
if output_hidden_states:
|
772 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
773 |
+
|
774 |
+
if not return_dict:
|
775 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
776 |
+
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
777 |
+
|
778 |
+
def build(self, input_shape=None):
|
779 |
+
if self.built:
|
780 |
+
return
|
781 |
+
self.built = True
|
782 |
+
if getattr(self, "layers", None) is not None:
|
783 |
+
for layer in self.layers:
|
784 |
+
with tf.name_scope(layer.name):
|
785 |
+
layer.build(None)
|
786 |
+
|
787 |
+
|
788 |
+
@keras_serializable
|
789 |
+
class TFFunnelBaseLayer(keras.layers.Layer):
|
790 |
+
"""Base model without decoder"""
|
791 |
+
|
792 |
+
config_class = FunnelConfig
|
793 |
+
|
794 |
+
def __init__(self, config, **kwargs):
|
795 |
+
super().__init__(**kwargs)
|
796 |
+
|
797 |
+
self.config = config
|
798 |
+
self.output_attentions = config.output_attentions
|
799 |
+
self.output_hidden_states = config.output_hidden_states
|
800 |
+
self.return_dict = config.use_return_dict
|
801 |
+
|
802 |
+
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
|
803 |
+
self.encoder = TFFunnelEncoder(config, name="encoder")
|
804 |
+
|
805 |
+
def get_input_embeddings(self):
|
806 |
+
return self.embeddings
|
807 |
+
|
808 |
+
def set_input_embeddings(self, value):
|
809 |
+
self.embeddings.weight = value
|
810 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
811 |
+
|
812 |
+
def _prune_heads(self, heads_to_prune):
|
813 |
+
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
|
814 |
+
|
815 |
+
@unpack_inputs
|
816 |
+
def call(
|
817 |
+
self,
|
818 |
+
input_ids=None,
|
819 |
+
attention_mask=None,
|
820 |
+
token_type_ids=None,
|
821 |
+
inputs_embeds=None,
|
822 |
+
output_attentions=None,
|
823 |
+
output_hidden_states=None,
|
824 |
+
return_dict=None,
|
825 |
+
training=False,
|
826 |
+
):
|
827 |
+
if input_ids is not None and inputs_embeds is not None:
|
828 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
829 |
+
elif input_ids is not None:
|
830 |
+
input_shape = shape_list(input_ids)
|
831 |
+
elif inputs_embeds is not None:
|
832 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
833 |
+
else:
|
834 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
835 |
+
|
836 |
+
if attention_mask is None:
|
837 |
+
attention_mask = tf.fill(input_shape, 1)
|
838 |
+
|
839 |
+
if token_type_ids is None:
|
840 |
+
token_type_ids = tf.fill(input_shape, 0)
|
841 |
+
|
842 |
+
if inputs_embeds is None:
|
843 |
+
inputs_embeds = self.embeddings(input_ids, training=training)
|
844 |
+
|
845 |
+
encoder_outputs = self.encoder(
|
846 |
+
inputs_embeds,
|
847 |
+
attention_mask=attention_mask,
|
848 |
+
token_type_ids=token_type_ids,
|
849 |
+
output_attentions=output_attentions,
|
850 |
+
output_hidden_states=output_hidden_states,
|
851 |
+
return_dict=return_dict,
|
852 |
+
training=training,
|
853 |
+
)
|
854 |
+
|
855 |
+
return encoder_outputs
|
856 |
+
|
857 |
+
def build(self, input_shape=None):
|
858 |
+
if self.built:
|
859 |
+
return
|
860 |
+
self.built = True
|
861 |
+
if getattr(self, "embeddings", None) is not None:
|
862 |
+
with tf.name_scope(self.embeddings.name):
|
863 |
+
self.embeddings.build(None)
|
864 |
+
if getattr(self, "encoder", None) is not None:
|
865 |
+
with tf.name_scope(self.encoder.name):
|
866 |
+
self.encoder.build(None)
|
867 |
+
|
868 |
+
|
869 |
+
@keras_serializable
|
870 |
+
class TFFunnelMainLayer(keras.layers.Layer):
|
871 |
+
"""Base model with decoder"""
|
872 |
+
|
873 |
+
config_class = FunnelConfig
|
874 |
+
|
875 |
+
def __init__(self, config, **kwargs):
|
876 |
+
super().__init__(**kwargs)
|
877 |
+
|
878 |
+
self.config = config
|
879 |
+
self.block_sizes = config.block_sizes
|
880 |
+
self.output_attentions = config.output_attentions
|
881 |
+
self.output_hidden_states = config.output_hidden_states
|
882 |
+
self.return_dict = config.use_return_dict
|
883 |
+
|
884 |
+
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
|
885 |
+
self.encoder = TFFunnelEncoder(config, name="encoder")
|
886 |
+
self.decoder = TFFunnelDecoder(config, name="decoder")
|
887 |
+
|
888 |
+
def get_input_embeddings(self):
|
889 |
+
return self.embeddings
|
890 |
+
|
891 |
+
def set_input_embeddings(self, value):
|
892 |
+
self.embeddings.weight = value
|
893 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
894 |
+
|
895 |
+
def _prune_heads(self, heads_to_prune):
|
896 |
+
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
|
897 |
+
|
898 |
+
@unpack_inputs
|
899 |
+
def call(
|
900 |
+
self,
|
901 |
+
input_ids=None,
|
902 |
+
attention_mask=None,
|
903 |
+
token_type_ids=None,
|
904 |
+
inputs_embeds=None,
|
905 |
+
output_attentions=None,
|
906 |
+
output_hidden_states=None,
|
907 |
+
return_dict=None,
|
908 |
+
training=False,
|
909 |
+
):
|
910 |
+
if input_ids is not None and inputs_embeds is not None:
|
911 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
912 |
+
elif input_ids is not None:
|
913 |
+
input_shape = shape_list(input_ids)
|
914 |
+
elif inputs_embeds is not None:
|
915 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
916 |
+
else:
|
917 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
918 |
+
|
919 |
+
if attention_mask is None:
|
920 |
+
attention_mask = tf.fill(input_shape, 1)
|
921 |
+
|
922 |
+
if token_type_ids is None:
|
923 |
+
token_type_ids = tf.fill(input_shape, 0)
|
924 |
+
|
925 |
+
if inputs_embeds is None:
|
926 |
+
inputs_embeds = self.embeddings(input_ids, training=training)
|
927 |
+
|
928 |
+
encoder_outputs = self.encoder(
|
929 |
+
inputs_embeds,
|
930 |
+
attention_mask=attention_mask,
|
931 |
+
token_type_ids=token_type_ids,
|
932 |
+
output_attentions=output_attentions,
|
933 |
+
output_hidden_states=True,
|
934 |
+
return_dict=return_dict,
|
935 |
+
training=training,
|
936 |
+
)
|
937 |
+
|
938 |
+
decoder_outputs = self.decoder(
|
939 |
+
final_hidden=encoder_outputs[0],
|
940 |
+
first_block_hidden=encoder_outputs[1][self.block_sizes[0]],
|
941 |
+
attention_mask=attention_mask,
|
942 |
+
token_type_ids=token_type_ids,
|
943 |
+
output_attentions=output_attentions,
|
944 |
+
output_hidden_states=output_hidden_states,
|
945 |
+
return_dict=return_dict,
|
946 |
+
training=training,
|
947 |
+
)
|
948 |
+
|
949 |
+
if not return_dict:
|
950 |
+
idx = 0
|
951 |
+
outputs = (decoder_outputs[0],)
|
952 |
+
if output_hidden_states:
|
953 |
+
idx += 1
|
954 |
+
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
|
955 |
+
if output_attentions:
|
956 |
+
idx += 1
|
957 |
+
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
|
958 |
+
return outputs
|
959 |
+
|
960 |
+
return TFBaseModelOutput(
|
961 |
+
last_hidden_state=decoder_outputs[0],
|
962 |
+
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
|
963 |
+
if output_hidden_states
|
964 |
+
else None,
|
965 |
+
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
|
966 |
+
)
|
967 |
+
|
968 |
+
def build(self, input_shape=None):
|
969 |
+
if self.built:
|
970 |
+
return
|
971 |
+
self.built = True
|
972 |
+
if getattr(self, "embeddings", None) is not None:
|
973 |
+
with tf.name_scope(self.embeddings.name):
|
974 |
+
self.embeddings.build(None)
|
975 |
+
if getattr(self, "encoder", None) is not None:
|
976 |
+
with tf.name_scope(self.encoder.name):
|
977 |
+
self.encoder.build(None)
|
978 |
+
if getattr(self, "decoder", None) is not None:
|
979 |
+
with tf.name_scope(self.decoder.name):
|
980 |
+
self.decoder.build(None)
|
981 |
+
|
982 |
+
|
983 |
+
class TFFunnelDiscriminatorPredictions(keras.layers.Layer):
|
984 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
985 |
+
|
986 |
+
def __init__(self, config, **kwargs):
|
987 |
+
super().__init__(**kwargs)
|
988 |
+
initializer = get_initializer(config.initializer_range)
|
989 |
+
self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense")
|
990 |
+
self.activation_function = get_tf_activation(config.hidden_act)
|
991 |
+
self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction")
|
992 |
+
self.config = config
|
993 |
+
|
994 |
+
def call(self, discriminator_hidden_states):
|
995 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
996 |
+
hidden_states = self.activation_function(hidden_states)
|
997 |
+
logits = tf.squeeze(self.dense_prediction(hidden_states))
|
998 |
+
return logits
|
999 |
+
|
1000 |
+
def build(self, input_shape=None):
|
1001 |
+
if self.built:
|
1002 |
+
return
|
1003 |
+
self.built = True
|
1004 |
+
if getattr(self, "dense", None) is not None:
|
1005 |
+
with tf.name_scope(self.dense.name):
|
1006 |
+
self.dense.build([None, None, self.config.d_model])
|
1007 |
+
if getattr(self, "dense_prediction", None) is not None:
|
1008 |
+
with tf.name_scope(self.dense_prediction.name):
|
1009 |
+
self.dense_prediction.build([None, None, self.config.d_model])
|
1010 |
+
|
1011 |
+
|
1012 |
+
class TFFunnelMaskedLMHead(keras.layers.Layer):
|
1013 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
1014 |
+
super().__init__(**kwargs)
|
1015 |
+
self.config = config
|
1016 |
+
self.hidden_size = config.hidden_size
|
1017 |
+
self.input_embeddings = input_embeddings
|
1018 |
+
|
1019 |
+
def build(self, input_shape):
|
1020 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
1021 |
+
|
1022 |
+
super().build(input_shape)
|
1023 |
+
|
1024 |
+
def get_output_embeddings(self):
|
1025 |
+
return self.input_embeddings
|
1026 |
+
|
1027 |
+
def set_output_embeddings(self, value):
|
1028 |
+
self.input_embeddings.weight = value
|
1029 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1030 |
+
|
1031 |
+
def get_bias(self):
|
1032 |
+
return {"bias": self.bias}
|
1033 |
+
|
1034 |
+
def set_bias(self, value):
|
1035 |
+
self.bias = value["bias"]
|
1036 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1037 |
+
|
1038 |
+
def call(self, hidden_states, training=False):
|
1039 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
1040 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
1041 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1042 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1043 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1044 |
+
|
1045 |
+
return hidden_states
|
1046 |
+
|
1047 |
+
|
1048 |
+
class TFFunnelClassificationHead(keras.layers.Layer):
|
1049 |
+
def __init__(self, config, n_labels, **kwargs):
|
1050 |
+
super().__init__(**kwargs)
|
1051 |
+
initializer = get_initializer(config.initializer_range)
|
1052 |
+
self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden")
|
1053 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
1054 |
+
self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out")
|
1055 |
+
self.config = config
|
1056 |
+
|
1057 |
+
def call(self, hidden, training=False):
|
1058 |
+
hidden = self.linear_hidden(hidden)
|
1059 |
+
hidden = keras.activations.tanh(hidden)
|
1060 |
+
hidden = self.dropout(hidden, training=training)
|
1061 |
+
return self.linear_out(hidden)
|
1062 |
+
|
1063 |
+
def build(self, input_shape=None):
|
1064 |
+
if self.built:
|
1065 |
+
return
|
1066 |
+
self.built = True
|
1067 |
+
if getattr(self, "linear_hidden", None) is not None:
|
1068 |
+
with tf.name_scope(self.linear_hidden.name):
|
1069 |
+
self.linear_hidden.build([None, None, self.config.d_model])
|
1070 |
+
if getattr(self, "linear_out", None) is not None:
|
1071 |
+
with tf.name_scope(self.linear_out.name):
|
1072 |
+
self.linear_out.build([None, None, self.config.d_model])
|
1073 |
+
|
1074 |
+
|
1075 |
+
class TFFunnelPreTrainedModel(TFPreTrainedModel):
|
1076 |
+
"""
|
1077 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1078 |
+
models.
|
1079 |
+
"""
|
1080 |
+
|
1081 |
+
config_class = FunnelConfig
|
1082 |
+
base_model_prefix = "funnel"
|
1083 |
+
|
1084 |
+
@property
|
1085 |
+
def dummy_inputs(self):
|
1086 |
+
# Funnel misbehaves with very small inputs, so we override and make them a bit bigger
|
1087 |
+
return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
|
1088 |
+
|
1089 |
+
|
1090 |
+
@dataclass
|
1091 |
+
class TFFunnelForPreTrainingOutput(ModelOutput):
|
1092 |
+
"""
|
1093 |
+
Output type of [`FunnelForPreTraining`].
|
1094 |
+
|
1095 |
+
Args:
|
1096 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
1097 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
1098 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1099 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1100 |
+
`(batch_size, sequence_length, hidden_size)`.
|
1101 |
+
|
1102 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1103 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1104 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1105 |
+
sequence_length)`.
|
1106 |
+
|
1107 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1108 |
+
heads.
|
1109 |
+
"""
|
1110 |
+
|
1111 |
+
logits: tf.Tensor = None
|
1112 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
1113 |
+
attentions: Tuple[tf.Tensor] | None = None
|
1114 |
+
|
1115 |
+
|
1116 |
+
FUNNEL_START_DOCSTRING = r"""
|
1117 |
+
|
1118 |
+
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
|
1119 |
+
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
1120 |
+
|
1121 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1122 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1123 |
+
etc.)
|
1124 |
+
|
1125 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1126 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1127 |
+
behavior.
|
1128 |
+
|
1129 |
+
<Tip>
|
1130 |
+
|
1131 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1132 |
+
|
1133 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1134 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1135 |
+
|
1136 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1137 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1138 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1139 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1140 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1141 |
+
positional argument:
|
1142 |
+
|
1143 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1144 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1145 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1146 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1147 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1148 |
+
|
1149 |
+
Note that when creating models and layers with
|
1150 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1151 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1152 |
+
|
1153 |
+
</Tip>
|
1154 |
+
|
1155 |
+
Parameters:
|
1156 |
+
config ([`XxxConfig`]): Model configuration class with all the parameters of the model.
|
1157 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1158 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1159 |
+
"""
|
1160 |
+
|
1161 |
+
FUNNEL_INPUTS_DOCSTRING = r"""
|
1162 |
+
Args:
|
1163 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
1164 |
+
Indices of input sequence tokens in the vocabulary.
|
1165 |
+
|
1166 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1167 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1168 |
+
|
1169 |
+
[What are input IDs?](../glossary#input-ids)
|
1170 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1171 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1172 |
+
|
1173 |
+
- 1 for tokens that are **not masked**,
|
1174 |
+
- 0 for tokens that are **masked**.
|
1175 |
+
|
1176 |
+
[What are attention masks?](../glossary#attention-mask)
|
1177 |
+
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1178 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1179 |
+
1]`:
|
1180 |
+
|
1181 |
+
- 0 corresponds to a *sentence A* token,
|
1182 |
+
- 1 corresponds to a *sentence B* token.
|
1183 |
+
|
1184 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1185 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1186 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1187 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1188 |
+
model's internal embedding lookup matrix.
|
1189 |
+
output_attentions (`bool`, *optional*):
|
1190 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1191 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1192 |
+
config will be used instead.
|
1193 |
+
output_hidden_states (`bool`, *optional*):
|
1194 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1195 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1196 |
+
used instead.
|
1197 |
+
return_dict (`bool`, *optional*):
|
1198 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1199 |
+
eager mode, in graph mode the value will always be set to True.
|
1200 |
+
training (`bool`, *optional*, defaults to `False`):
|
1201 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1202 |
+
behaviors between training and evaluation).
|
1203 |
+
"""
|
1204 |
+
|
1205 |
+
|
1206 |
+
@add_start_docstrings(
|
1207 |
+
"""
|
1208 |
+
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
|
1209 |
+
decoder) or any task-specific head on top.
|
1210 |
+
""",
|
1211 |
+
FUNNEL_START_DOCSTRING,
|
1212 |
+
)
|
1213 |
+
class TFFunnelBaseModel(TFFunnelPreTrainedModel):
|
1214 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1215 |
+
super().__init__(config, *inputs, **kwargs)
|
1216 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1219 |
+
@add_code_sample_docstrings(
|
1220 |
+
checkpoint="funnel-transformer/small-base",
|
1221 |
+
output_type=TFBaseModelOutput,
|
1222 |
+
config_class=_CONFIG_FOR_DOC,
|
1223 |
+
)
|
1224 |
+
@unpack_inputs
|
1225 |
+
def call(
|
1226 |
+
self,
|
1227 |
+
input_ids: TFModelInputType | None = None,
|
1228 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1229 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1230 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1231 |
+
output_attentions: Optional[bool] = None,
|
1232 |
+
output_hidden_states: Optional[bool] = None,
|
1233 |
+
return_dict: Optional[bool] = None,
|
1234 |
+
training: bool = False,
|
1235 |
+
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
|
1236 |
+
return self.funnel(
|
1237 |
+
input_ids=input_ids,
|
1238 |
+
attention_mask=attention_mask,
|
1239 |
+
token_type_ids=token_type_ids,
|
1240 |
+
inputs_embeds=inputs_embeds,
|
1241 |
+
output_attentions=output_attentions,
|
1242 |
+
output_hidden_states=output_hidden_states,
|
1243 |
+
return_dict=return_dict,
|
1244 |
+
training=training,
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
def serving_output(self, output):
|
1248 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1249 |
+
# different dimensions
|
1250 |
+
return TFBaseModelOutput(
|
1251 |
+
last_hidden_state=output.last_hidden_state,
|
1252 |
+
hidden_states=output.hidden_states,
|
1253 |
+
attentions=output.attentions,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
def build(self, input_shape=None):
|
1257 |
+
if self.built:
|
1258 |
+
return
|
1259 |
+
self.built = True
|
1260 |
+
if getattr(self, "funnel", None) is not None:
|
1261 |
+
with tf.name_scope(self.funnel.name):
|
1262 |
+
self.funnel.build(None)
|
1263 |
+
|
1264 |
+
|
1265 |
+
@add_start_docstrings(
|
1266 |
+
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
|
1267 |
+
FUNNEL_START_DOCSTRING,
|
1268 |
+
)
|
1269 |
+
class TFFunnelModel(TFFunnelPreTrainedModel):
|
1270 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1271 |
+
super().__init__(config, *inputs, **kwargs)
|
1272 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1273 |
+
|
1274 |
+
@unpack_inputs
|
1275 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1276 |
+
@add_code_sample_docstrings(
|
1277 |
+
checkpoint="funnel-transformer/small",
|
1278 |
+
output_type=TFBaseModelOutput,
|
1279 |
+
config_class=_CONFIG_FOR_DOC,
|
1280 |
+
)
|
1281 |
+
def call(
|
1282 |
+
self,
|
1283 |
+
input_ids: TFModelInputType | None = None,
|
1284 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1285 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1286 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1287 |
+
output_attentions: Optional[bool] = None,
|
1288 |
+
output_hidden_states: Optional[bool] = None,
|
1289 |
+
return_dict: Optional[bool] = None,
|
1290 |
+
training: bool = False,
|
1291 |
+
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
|
1292 |
+
return self.funnel(
|
1293 |
+
input_ids=input_ids,
|
1294 |
+
attention_mask=attention_mask,
|
1295 |
+
token_type_ids=token_type_ids,
|
1296 |
+
inputs_embeds=inputs_embeds,
|
1297 |
+
output_attentions=output_attentions,
|
1298 |
+
output_hidden_states=output_hidden_states,
|
1299 |
+
return_dict=return_dict,
|
1300 |
+
training=training,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
def serving_output(self, output):
|
1304 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1305 |
+
# different dimensions
|
1306 |
+
return TFBaseModelOutput(
|
1307 |
+
last_hidden_state=output.last_hidden_state,
|
1308 |
+
hidden_states=output.hidden_states,
|
1309 |
+
attentions=output.attentions,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
def build(self, input_shape=None):
|
1313 |
+
if self.built:
|
1314 |
+
return
|
1315 |
+
self.built = True
|
1316 |
+
if getattr(self, "funnel", None) is not None:
|
1317 |
+
with tf.name_scope(self.funnel.name):
|
1318 |
+
self.funnel.build(None)
|
1319 |
+
|
1320 |
+
|
1321 |
+
@add_start_docstrings(
|
1322 |
+
"""
|
1323 |
+
Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1324 |
+
""",
|
1325 |
+
FUNNEL_START_DOCSTRING,
|
1326 |
+
)
|
1327 |
+
class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
|
1328 |
+
def __init__(self, config: FunnelConfig, **kwargs) -> None:
|
1329 |
+
super().__init__(config, **kwargs)
|
1330 |
+
|
1331 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1332 |
+
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
|
1333 |
+
|
1334 |
+
@unpack_inputs
|
1335 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1336 |
+
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1337 |
+
def call(
|
1338 |
+
self,
|
1339 |
+
input_ids: TFModelInputType | None = None,
|
1340 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1341 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1342 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1343 |
+
output_attentions: Optional[bool] = None,
|
1344 |
+
output_hidden_states: Optional[bool] = None,
|
1345 |
+
return_dict: Optional[bool] = None,
|
1346 |
+
training: bool = False,
|
1347 |
+
**kwargs,
|
1348 |
+
) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]:
|
1349 |
+
r"""
|
1350 |
+
Returns:
|
1351 |
+
|
1352 |
+
Examples:
|
1353 |
+
|
1354 |
+
```python
|
1355 |
+
>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
|
1356 |
+
>>> import torch
|
1357 |
+
|
1358 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
|
1359 |
+
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")
|
1360 |
+
|
1361 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
1362 |
+
>>> logits = model(inputs).logits
|
1363 |
+
```"""
|
1364 |
+
discriminator_hidden_states = self.funnel(
|
1365 |
+
input_ids,
|
1366 |
+
attention_mask,
|
1367 |
+
token_type_ids,
|
1368 |
+
inputs_embeds,
|
1369 |
+
output_attentions,
|
1370 |
+
output_hidden_states,
|
1371 |
+
return_dict=return_dict,
|
1372 |
+
training=training,
|
1373 |
+
)
|
1374 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1375 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1376 |
+
|
1377 |
+
if not return_dict:
|
1378 |
+
return (logits,) + discriminator_hidden_states[1:]
|
1379 |
+
|
1380 |
+
return TFFunnelForPreTrainingOutput(
|
1381 |
+
logits=logits,
|
1382 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1383 |
+
attentions=discriminator_hidden_states.attentions,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
def serving_output(self, output):
|
1387 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1388 |
+
# different dimensions
|
1389 |
+
return TFFunnelForPreTrainingOutput(
|
1390 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
def build(self, input_shape=None):
|
1394 |
+
if self.built:
|
1395 |
+
return
|
1396 |
+
self.built = True
|
1397 |
+
if getattr(self, "funnel", None) is not None:
|
1398 |
+
with tf.name_scope(self.funnel.name):
|
1399 |
+
self.funnel.build(None)
|
1400 |
+
if getattr(self, "discriminator_predictions", None) is not None:
|
1401 |
+
with tf.name_scope(self.discriminator_predictions.name):
|
1402 |
+
self.discriminator_predictions.build(None)
|
1403 |
+
|
1404 |
+
|
1405 |
+
@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
|
1406 |
+
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1407 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1408 |
+
super().__init__(config, *inputs, **kwargs)
|
1409 |
+
|
1410 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1411 |
+
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
|
1412 |
+
|
1413 |
+
def get_lm_head(self) -> TFFunnelMaskedLMHead:
|
1414 |
+
return self.lm_head
|
1415 |
+
|
1416 |
+
def get_prefix_bias_name(self) -> str:
|
1417 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1418 |
+
return self.name + "/" + self.lm_head.name
|
1419 |
+
|
1420 |
+
@unpack_inputs
|
1421 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1422 |
+
@add_code_sample_docstrings(
|
1423 |
+
checkpoint="funnel-transformer/small",
|
1424 |
+
output_type=TFMaskedLMOutput,
|
1425 |
+
config_class=_CONFIG_FOR_DOC,
|
1426 |
+
)
|
1427 |
+
def call(
|
1428 |
+
self,
|
1429 |
+
input_ids: TFModelInputType | None = None,
|
1430 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1431 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1432 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1433 |
+
output_attentions: Optional[bool] = None,
|
1434 |
+
output_hidden_states: Optional[bool] = None,
|
1435 |
+
return_dict: Optional[bool] = None,
|
1436 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1437 |
+
training: bool = False,
|
1438 |
+
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
|
1439 |
+
r"""
|
1440 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1441 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1442 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1443 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1444 |
+
"""
|
1445 |
+
outputs = self.funnel(
|
1446 |
+
input_ids,
|
1447 |
+
attention_mask,
|
1448 |
+
token_type_ids,
|
1449 |
+
inputs_embeds,
|
1450 |
+
output_attentions,
|
1451 |
+
output_hidden_states,
|
1452 |
+
return_dict=return_dict,
|
1453 |
+
training=training,
|
1454 |
+
)
|
1455 |
+
sequence_output = outputs[0]
|
1456 |
+
prediction_scores = self.lm_head(sequence_output, training=training)
|
1457 |
+
|
1458 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
|
1459 |
+
|
1460 |
+
if not return_dict:
|
1461 |
+
output = (prediction_scores,) + outputs[1:]
|
1462 |
+
return ((loss,) + output) if loss is not None else output
|
1463 |
+
|
1464 |
+
return TFMaskedLMOutput(
|
1465 |
+
loss=loss,
|
1466 |
+
logits=prediction_scores,
|
1467 |
+
hidden_states=outputs.hidden_states,
|
1468 |
+
attentions=outputs.attentions,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
|
1472 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1473 |
+
# different dimensions
|
1474 |
+
return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions)
|
1475 |
+
|
1476 |
+
def build(self, input_shape=None):
|
1477 |
+
if self.built:
|
1478 |
+
return
|
1479 |
+
self.built = True
|
1480 |
+
if getattr(self, "funnel", None) is not None:
|
1481 |
+
with tf.name_scope(self.funnel.name):
|
1482 |
+
self.funnel.build(None)
|
1483 |
+
if getattr(self, "lm_head", None) is not None:
|
1484 |
+
with tf.name_scope(self.lm_head.name):
|
1485 |
+
self.lm_head.build(None)
|
1486 |
+
|
1487 |
+
|
1488 |
+
@add_start_docstrings(
|
1489 |
+
"""
|
1490 |
+
Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1491 |
+
output) e.g. for GLUE tasks.
|
1492 |
+
""",
|
1493 |
+
FUNNEL_START_DOCSTRING,
|
1494 |
+
)
|
1495 |
+
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss):
|
1496 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1497 |
+
super().__init__(config, *inputs, **kwargs)
|
1498 |
+
self.num_labels = config.num_labels
|
1499 |
+
|
1500 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1501 |
+
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
|
1502 |
+
|
1503 |
+
@unpack_inputs
|
1504 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1505 |
+
@add_code_sample_docstrings(
|
1506 |
+
checkpoint="funnel-transformer/small-base",
|
1507 |
+
output_type=TFSequenceClassifierOutput,
|
1508 |
+
config_class=_CONFIG_FOR_DOC,
|
1509 |
+
)
|
1510 |
+
def call(
|
1511 |
+
self,
|
1512 |
+
input_ids: TFModelInputType | None = None,
|
1513 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1514 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1515 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1516 |
+
output_attentions: Optional[bool] = None,
|
1517 |
+
output_hidden_states: Optional[bool] = None,
|
1518 |
+
return_dict: Optional[bool] = None,
|
1519 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1520 |
+
training: bool = False,
|
1521 |
+
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
|
1522 |
+
r"""
|
1523 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1524 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1525 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1526 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1527 |
+
"""
|
1528 |
+
outputs = self.funnel(
|
1529 |
+
input_ids,
|
1530 |
+
attention_mask,
|
1531 |
+
token_type_ids,
|
1532 |
+
inputs_embeds,
|
1533 |
+
output_attentions,
|
1534 |
+
output_hidden_states,
|
1535 |
+
return_dict=return_dict,
|
1536 |
+
training=training,
|
1537 |
+
)
|
1538 |
+
last_hidden_state = outputs[0]
|
1539 |
+
pooled_output = last_hidden_state[:, 0]
|
1540 |
+
logits = self.classifier(pooled_output, training=training)
|
1541 |
+
|
1542 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1543 |
+
|
1544 |
+
if not return_dict:
|
1545 |
+
output = (logits,) + outputs[1:]
|
1546 |
+
return ((loss,) + output) if loss is not None else output
|
1547 |
+
|
1548 |
+
return TFSequenceClassifierOutput(
|
1549 |
+
loss=loss,
|
1550 |
+
logits=logits,
|
1551 |
+
hidden_states=outputs.hidden_states,
|
1552 |
+
attentions=outputs.attentions,
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
|
1556 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1557 |
+
# different dimensions
|
1558 |
+
return TFSequenceClassifierOutput(
|
1559 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
def build(self, input_shape=None):
|
1563 |
+
if self.built:
|
1564 |
+
return
|
1565 |
+
self.built = True
|
1566 |
+
if getattr(self, "funnel", None) is not None:
|
1567 |
+
with tf.name_scope(self.funnel.name):
|
1568 |
+
self.funnel.build(None)
|
1569 |
+
if getattr(self, "classifier", None) is not None:
|
1570 |
+
with tf.name_scope(self.classifier.name):
|
1571 |
+
self.classifier.build(None)
|
1572 |
+
|
1573 |
+
|
1574 |
+
@add_start_docstrings(
|
1575 |
+
"""
|
1576 |
+
Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1577 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1578 |
+
""",
|
1579 |
+
FUNNEL_START_DOCSTRING,
|
1580 |
+
)
|
1581 |
+
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
|
1582 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1583 |
+
super().__init__(config, *inputs, **kwargs)
|
1584 |
+
|
1585 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1586 |
+
self.classifier = TFFunnelClassificationHead(config, 1, name="classifier")
|
1587 |
+
|
1588 |
+
@property
|
1589 |
+
def dummy_inputs(self):
|
1590 |
+
return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)}
|
1591 |
+
|
1592 |
+
@unpack_inputs
|
1593 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1594 |
+
@add_code_sample_docstrings(
|
1595 |
+
checkpoint="funnel-transformer/small-base",
|
1596 |
+
output_type=TFMultipleChoiceModelOutput,
|
1597 |
+
config_class=_CONFIG_FOR_DOC,
|
1598 |
+
)
|
1599 |
+
def call(
|
1600 |
+
self,
|
1601 |
+
input_ids: TFModelInputType | None = None,
|
1602 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1603 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1604 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1605 |
+
output_attentions: Optional[bool] = None,
|
1606 |
+
output_hidden_states: Optional[bool] = None,
|
1607 |
+
return_dict: Optional[bool] = None,
|
1608 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1609 |
+
training: bool = False,
|
1610 |
+
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
|
1611 |
+
r"""
|
1612 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1613 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1614 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1615 |
+
"""
|
1616 |
+
if input_ids is not None:
|
1617 |
+
num_choices = shape_list(input_ids)[1]
|
1618 |
+
seq_length = shape_list(input_ids)[2]
|
1619 |
+
else:
|
1620 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1621 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1622 |
+
|
1623 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1624 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1625 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1626 |
+
flat_inputs_embeds = (
|
1627 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1628 |
+
if inputs_embeds is not None
|
1629 |
+
else None
|
1630 |
+
)
|
1631 |
+
|
1632 |
+
outputs = self.funnel(
|
1633 |
+
flat_input_ids,
|
1634 |
+
attention_mask=flat_attention_mask,
|
1635 |
+
token_type_ids=flat_token_type_ids,
|
1636 |
+
inputs_embeds=flat_inputs_embeds,
|
1637 |
+
output_attentions=output_attentions,
|
1638 |
+
output_hidden_states=output_hidden_states,
|
1639 |
+
return_dict=return_dict,
|
1640 |
+
training=training,
|
1641 |
+
)
|
1642 |
+
|
1643 |
+
last_hidden_state = outputs[0]
|
1644 |
+
pooled_output = last_hidden_state[:, 0]
|
1645 |
+
logits = self.classifier(pooled_output, training=training)
|
1646 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1647 |
+
|
1648 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1649 |
+
|
1650 |
+
if not return_dict:
|
1651 |
+
output = (reshaped_logits,) + outputs[1:]
|
1652 |
+
return ((loss,) + output) if loss is not None else output
|
1653 |
+
|
1654 |
+
return TFMultipleChoiceModelOutput(
|
1655 |
+
loss=loss,
|
1656 |
+
logits=reshaped_logits,
|
1657 |
+
hidden_states=outputs.hidden_states,
|
1658 |
+
attentions=outputs.attentions,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
|
1662 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1663 |
+
# different dimensions
|
1664 |
+
return TFMultipleChoiceModelOutput(
|
1665 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
def build(self, input_shape=None):
|
1669 |
+
if self.built:
|
1670 |
+
return
|
1671 |
+
self.built = True
|
1672 |
+
if getattr(self, "funnel", None) is not None:
|
1673 |
+
with tf.name_scope(self.funnel.name):
|
1674 |
+
self.funnel.build(None)
|
1675 |
+
if getattr(self, "classifier", None) is not None:
|
1676 |
+
with tf.name_scope(self.classifier.name):
|
1677 |
+
self.classifier.build(None)
|
1678 |
+
|
1679 |
+
|
1680 |
+
@add_start_docstrings(
|
1681 |
+
"""
|
1682 |
+
Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1683 |
+
Named-Entity-Recognition (NER) tasks.
|
1684 |
+
""",
|
1685 |
+
FUNNEL_START_DOCSTRING,
|
1686 |
+
)
|
1687 |
+
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss):
|
1688 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1689 |
+
super().__init__(config, *inputs, **kwargs)
|
1690 |
+
self.num_labels = config.num_labels
|
1691 |
+
|
1692 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1693 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
1694 |
+
self.classifier = keras.layers.Dense(
|
1695 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1696 |
+
)
|
1697 |
+
self.config = config
|
1698 |
+
|
1699 |
+
@unpack_inputs
|
1700 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1701 |
+
@add_code_sample_docstrings(
|
1702 |
+
checkpoint="funnel-transformer/small",
|
1703 |
+
output_type=TFTokenClassifierOutput,
|
1704 |
+
config_class=_CONFIG_FOR_DOC,
|
1705 |
+
)
|
1706 |
+
def call(
|
1707 |
+
self,
|
1708 |
+
input_ids: TFModelInputType | None = None,
|
1709 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1710 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1711 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1712 |
+
output_attentions: Optional[bool] = None,
|
1713 |
+
output_hidden_states: Optional[bool] = None,
|
1714 |
+
return_dict: Optional[bool] = None,
|
1715 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1716 |
+
training: bool = False,
|
1717 |
+
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
|
1718 |
+
r"""
|
1719 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1720 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1721 |
+
"""
|
1722 |
+
outputs = self.funnel(
|
1723 |
+
input_ids,
|
1724 |
+
attention_mask,
|
1725 |
+
token_type_ids,
|
1726 |
+
inputs_embeds,
|
1727 |
+
output_attentions,
|
1728 |
+
output_hidden_states,
|
1729 |
+
return_dict=return_dict,
|
1730 |
+
training=training,
|
1731 |
+
)
|
1732 |
+
sequence_output = outputs[0]
|
1733 |
+
|
1734 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1735 |
+
logits = self.classifier(sequence_output)
|
1736 |
+
|
1737 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1738 |
+
|
1739 |
+
if not return_dict:
|
1740 |
+
output = (logits,) + outputs[1:]
|
1741 |
+
return ((loss,) + output) if loss is not None else output
|
1742 |
+
|
1743 |
+
return TFTokenClassifierOutput(
|
1744 |
+
loss=loss,
|
1745 |
+
logits=logits,
|
1746 |
+
hidden_states=outputs.hidden_states,
|
1747 |
+
attentions=outputs.attentions,
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
|
1751 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1752 |
+
# different dimensions
|
1753 |
+
return TFTokenClassifierOutput(
|
1754 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1755 |
+
)
|
1756 |
+
|
1757 |
+
def build(self, input_shape=None):
|
1758 |
+
if self.built:
|
1759 |
+
return
|
1760 |
+
self.built = True
|
1761 |
+
if getattr(self, "funnel", None) is not None:
|
1762 |
+
with tf.name_scope(self.funnel.name):
|
1763 |
+
self.funnel.build(None)
|
1764 |
+
if getattr(self, "classifier", None) is not None:
|
1765 |
+
with tf.name_scope(self.classifier.name):
|
1766 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1767 |
+
|
1768 |
+
|
1769 |
+
@add_start_docstrings(
|
1770 |
+
"""
|
1771 |
+
Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1772 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1773 |
+
""",
|
1774 |
+
FUNNEL_START_DOCSTRING,
|
1775 |
+
)
|
1776 |
+
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss):
|
1777 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1778 |
+
super().__init__(config, *inputs, **kwargs)
|
1779 |
+
self.num_labels = config.num_labels
|
1780 |
+
|
1781 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1782 |
+
self.qa_outputs = keras.layers.Dense(
|
1783 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1784 |
+
)
|
1785 |
+
self.config = config
|
1786 |
+
|
1787 |
+
@unpack_inputs
|
1788 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1789 |
+
@add_code_sample_docstrings(
|
1790 |
+
checkpoint="funnel-transformer/small",
|
1791 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1792 |
+
config_class=_CONFIG_FOR_DOC,
|
1793 |
+
)
|
1794 |
+
def call(
|
1795 |
+
self,
|
1796 |
+
input_ids: TFModelInputType | None = None,
|
1797 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1798 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1799 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1800 |
+
output_attentions: Optional[bool] = None,
|
1801 |
+
output_hidden_states: Optional[bool] = None,
|
1802 |
+
return_dict: Optional[bool] = None,
|
1803 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1804 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1805 |
+
training: bool = False,
|
1806 |
+
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
|
1807 |
+
r"""
|
1808 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1809 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1810 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1811 |
+
are not taken into account for computing the loss.
|
1812 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1813 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1814 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1815 |
+
are not taken into account for computing the loss.
|
1816 |
+
"""
|
1817 |
+
|
1818 |
+
outputs = self.funnel(
|
1819 |
+
input_ids,
|
1820 |
+
attention_mask,
|
1821 |
+
token_type_ids,
|
1822 |
+
inputs_embeds,
|
1823 |
+
output_attentions,
|
1824 |
+
output_hidden_states,
|
1825 |
+
return_dict=return_dict,
|
1826 |
+
training=training,
|
1827 |
+
)
|
1828 |
+
sequence_output = outputs[0]
|
1829 |
+
|
1830 |
+
logits = self.qa_outputs(sequence_output)
|
1831 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1832 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1833 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1834 |
+
|
1835 |
+
loss = None
|
1836 |
+
if start_positions is not None and end_positions is not None:
|
1837 |
+
labels = {"start_position": start_positions, "end_position": end_positions}
|
1838 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1839 |
+
|
1840 |
+
if not return_dict:
|
1841 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1842 |
+
return ((loss,) + output) if loss is not None else output
|
1843 |
+
|
1844 |
+
return TFQuestionAnsweringModelOutput(
|
1845 |
+
loss=loss,
|
1846 |
+
start_logits=start_logits,
|
1847 |
+
end_logits=end_logits,
|
1848 |
+
hidden_states=outputs.hidden_states,
|
1849 |
+
attentions=outputs.attentions,
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
|
1853 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1854 |
+
# different dimensions
|
1855 |
+
return TFQuestionAnsweringModelOutput(
|
1856 |
+
start_logits=output.start_logits,
|
1857 |
+
end_logits=output.end_logits,
|
1858 |
+
hidden_states=output.hidden_states,
|
1859 |
+
attentions=output.attentions,
|
1860 |
+
)
|
1861 |
+
|
1862 |
+
def build(self, input_shape=None):
|
1863 |
+
if self.built:
|
1864 |
+
return
|
1865 |
+
self.built = True
|
1866 |
+
if getattr(self, "funnel", None) is not None:
|
1867 |
+
with tf.name_scope(self.funnel.name):
|
1868 |
+
self.funnel.build(None)
|
1869 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1870 |
+
with tf.name_scope(self.qa_outputs.name):
|
1871 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
venv/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for Funnel Transformer."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
29 |
+
|
30 |
+
_model_names = [
|
31 |
+
"small",
|
32 |
+
"small-base",
|
33 |
+
"medium",
|
34 |
+
"medium-base",
|
35 |
+
"intermediate",
|
36 |
+
"intermediate-base",
|
37 |
+
"large",
|
38 |
+
"large-base",
|
39 |
+
"xlarge",
|
40 |
+
"xlarge-base",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
45 |
+
def load_vocab(vocab_file):
|
46 |
+
"""Loads a vocabulary file into a dictionary."""
|
47 |
+
vocab = collections.OrderedDict()
|
48 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
49 |
+
tokens = reader.readlines()
|
50 |
+
for index, token in enumerate(tokens):
|
51 |
+
token = token.rstrip("\n")
|
52 |
+
vocab[token] = index
|
53 |
+
return vocab
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
57 |
+
def whitespace_tokenize(text):
|
58 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
59 |
+
text = text.strip()
|
60 |
+
if not text:
|
61 |
+
return []
|
62 |
+
tokens = text.split()
|
63 |
+
return tokens
|
64 |
+
|
65 |
+
|
66 |
+
class FunnelTokenizer(PreTrainedTokenizer):
|
67 |
+
r"""
|
68 |
+
Construct a Funnel Transformer tokenizer. Based on WordPiece.
|
69 |
+
|
70 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
71 |
+
this superclass for more information regarding those methods.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
vocab_file (`str`):
|
75 |
+
File containing the vocabulary.
|
76 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not to lowercase the input when tokenizing.
|
78 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not to do basic tokenization before WordPiece.
|
80 |
+
never_split (`Iterable`, *optional*):
|
81 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
82 |
+
`do_basic_tokenize=True`
|
83 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
84 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
85 |
+
token instead.
|
86 |
+
sep_token (`str`, *optional*, defaults to `"<sep>"`):
|
87 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
88 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
89 |
+
token of a sequence built with special tokens.
|
90 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
91 |
+
The token used for padding, for example when batching sequences of different lengths.
|
92 |
+
cls_token (`str`, *optional*, defaults to `"<cls>"`):
|
93 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
94 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
95 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
96 |
+
The token used for masking values. This is the token used when training this model with masked language
|
97 |
+
modeling. This is the token which the model will try to predict.
|
98 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
99 |
+
The beginning of sentence token.
|
100 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
101 |
+
The end of sentence token.
|
102 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
103 |
+
Whether or not to tokenize Chinese characters.
|
104 |
+
|
105 |
+
This should likely be deactivated for Japanese (see this
|
106 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
107 |
+
strip_accents (`bool`, *optional*):
|
108 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
109 |
+
value for `lowercase` (as in the original BERT).
|
110 |
+
"""
|
111 |
+
|
112 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
113 |
+
cls_token_type_id: int = 2
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_file,
|
118 |
+
do_lower_case=True,
|
119 |
+
do_basic_tokenize=True,
|
120 |
+
never_split=None,
|
121 |
+
unk_token="<unk>",
|
122 |
+
sep_token="<sep>",
|
123 |
+
pad_token="<pad>",
|
124 |
+
cls_token="<cls>",
|
125 |
+
mask_token="<mask>",
|
126 |
+
bos_token="<s>",
|
127 |
+
eos_token="</s>",
|
128 |
+
tokenize_chinese_chars=True,
|
129 |
+
strip_accents=None,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
if not os.path.isfile(vocab_file):
|
133 |
+
raise ValueError(
|
134 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
135 |
+
" model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
136 |
+
)
|
137 |
+
self.vocab = load_vocab(vocab_file)
|
138 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
139 |
+
self.do_basic_tokenize = do_basic_tokenize
|
140 |
+
if do_basic_tokenize:
|
141 |
+
self.basic_tokenizer = BasicTokenizer(
|
142 |
+
do_lower_case=do_lower_case,
|
143 |
+
never_split=never_split,
|
144 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
145 |
+
strip_accents=strip_accents,
|
146 |
+
)
|
147 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
148 |
+
|
149 |
+
super().__init__(
|
150 |
+
do_lower_case=do_lower_case,
|
151 |
+
do_basic_tokenize=do_basic_tokenize,
|
152 |
+
never_split=never_split,
|
153 |
+
unk_token=unk_token,
|
154 |
+
sep_token=sep_token,
|
155 |
+
pad_token=pad_token,
|
156 |
+
cls_token=cls_token,
|
157 |
+
mask_token=mask_token,
|
158 |
+
bos_token=bos_token,
|
159 |
+
eos_token=eos_token,
|
160 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
161 |
+
strip_accents=strip_accents,
|
162 |
+
**kwargs,
|
163 |
+
)
|
164 |
+
|
165 |
+
@property
|
166 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
|
167 |
+
def do_lower_case(self):
|
168 |
+
return self.basic_tokenizer.do_lower_case
|
169 |
+
|
170 |
+
@property
|
171 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
|
172 |
+
def vocab_size(self):
|
173 |
+
return len(self.vocab)
|
174 |
+
|
175 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
|
176 |
+
def get_vocab(self):
|
177 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
178 |
+
|
179 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
|
180 |
+
def _tokenize(self, text, split_special_tokens=False):
|
181 |
+
split_tokens = []
|
182 |
+
if self.do_basic_tokenize:
|
183 |
+
for token in self.basic_tokenizer.tokenize(
|
184 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
185 |
+
):
|
186 |
+
# If the token is part of the never_split set
|
187 |
+
if token in self.basic_tokenizer.never_split:
|
188 |
+
split_tokens.append(token)
|
189 |
+
else:
|
190 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
191 |
+
else:
|
192 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
193 |
+
return split_tokens
|
194 |
+
|
195 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
|
196 |
+
def _convert_token_to_id(self, token):
|
197 |
+
"""Converts a token (str) in an id using the vocab."""
|
198 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
199 |
+
|
200 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
|
201 |
+
def _convert_id_to_token(self, index):
|
202 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
203 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
204 |
+
|
205 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
|
206 |
+
def convert_tokens_to_string(self, tokens):
|
207 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
208 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
209 |
+
return out_string
|
210 |
+
|
211 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
212 |
+
def build_inputs_with_special_tokens(
|
213 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
214 |
+
) -> List[int]:
|
215 |
+
"""
|
216 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
217 |
+
adding special tokens. A BERT sequence has the following format:
|
218 |
+
|
219 |
+
- single sequence: `[CLS] X [SEP]`
|
220 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
221 |
+
|
222 |
+
Args:
|
223 |
+
token_ids_0 (`List[int]`):
|
224 |
+
List of IDs to which the special tokens will be added.
|
225 |
+
token_ids_1 (`List[int]`, *optional*):
|
226 |
+
Optional second list of IDs for sequence pairs.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
230 |
+
"""
|
231 |
+
if token_ids_1 is None:
|
232 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
233 |
+
cls = [self.cls_token_id]
|
234 |
+
sep = [self.sep_token_id]
|
235 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
236 |
+
|
237 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
238 |
+
def get_special_tokens_mask(
|
239 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
240 |
+
) -> List[int]:
|
241 |
+
"""
|
242 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
243 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
token_ids_0 (`List[int]`):
|
247 |
+
List of IDs.
|
248 |
+
token_ids_1 (`List[int]`, *optional*):
|
249 |
+
Optional second list of IDs for sequence pairs.
|
250 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
251 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
255 |
+
"""
|
256 |
+
|
257 |
+
if already_has_special_tokens:
|
258 |
+
return super().get_special_tokens_mask(
|
259 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
260 |
+
)
|
261 |
+
|
262 |
+
if token_ids_1 is not None:
|
263 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
264 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
265 |
+
|
266 |
+
def create_token_type_ids_from_sequences(
|
267 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
268 |
+
) -> List[int]:
|
269 |
+
"""
|
270 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
|
271 |
+
Transformer sequence pair mask has the following format:
|
272 |
+
|
273 |
+
```
|
274 |
+
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
275 |
+
| first sequence | second sequence |
|
276 |
+
```
|
277 |
+
|
278 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
279 |
+
|
280 |
+
Args:
|
281 |
+
token_ids_0 (`List[int]`):
|
282 |
+
List of IDs.
|
283 |
+
token_ids_1 (`List[int]`, *optional*):
|
284 |
+
Optional second list of IDs for sequence pairs.
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
288 |
+
"""
|
289 |
+
sep = [self.sep_token_id]
|
290 |
+
cls = [self.cls_token_id]
|
291 |
+
if token_ids_1 is None:
|
292 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
|
293 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
294 |
+
|
295 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
|
296 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
297 |
+
index = 0
|
298 |
+
if os.path.isdir(save_directory):
|
299 |
+
vocab_file = os.path.join(
|
300 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
304 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
305 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
306 |
+
if index != token_index:
|
307 |
+
logger.warning(
|
308 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
309 |
+
" Please check that the vocabulary is not corrupted!"
|
310 |
+
)
|
311 |
+
index = token_index
|
312 |
+
writer.write(token + "\n")
|
313 |
+
index += 1
|
314 |
+
return (vocab_file,)
|
315 |
+
|
316 |
+
|
317 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
318 |
+
class BasicTokenizer(object):
|
319 |
+
"""
|
320 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
321 |
+
|
322 |
+
Args:
|
323 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
324 |
+
Whether or not to lowercase the input when tokenizing.
|
325 |
+
never_split (`Iterable`, *optional*):
|
326 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
327 |
+
`do_basic_tokenize=True`
|
328 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
329 |
+
Whether or not to tokenize Chinese characters.
|
330 |
+
|
331 |
+
This should likely be deactivated for Japanese (see this
|
332 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
333 |
+
strip_accents (`bool`, *optional*):
|
334 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
335 |
+
value for `lowercase` (as in the original BERT).
|
336 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
337 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
338 |
+
the full context of the words, such as contractions.
|
339 |
+
"""
|
340 |
+
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
do_lower_case=True,
|
344 |
+
never_split=None,
|
345 |
+
tokenize_chinese_chars=True,
|
346 |
+
strip_accents=None,
|
347 |
+
do_split_on_punc=True,
|
348 |
+
):
|
349 |
+
if never_split is None:
|
350 |
+
never_split = []
|
351 |
+
self.do_lower_case = do_lower_case
|
352 |
+
self.never_split = set(never_split)
|
353 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
354 |
+
self.strip_accents = strip_accents
|
355 |
+
self.do_split_on_punc = do_split_on_punc
|
356 |
+
|
357 |
+
def tokenize(self, text, never_split=None):
|
358 |
+
"""
|
359 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
never_split (`List[str]`, *optional*)
|
363 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
364 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
365 |
+
"""
|
366 |
+
# union() returns a new set by concatenating the two sets.
|
367 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
368 |
+
text = self._clean_text(text)
|
369 |
+
|
370 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
371 |
+
# models. This is also applied to the English models now, but it doesn't
|
372 |
+
# matter since the English models were not trained on any Chinese data
|
373 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
374 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
375 |
+
# words in the English Wikipedia.).
|
376 |
+
if self.tokenize_chinese_chars:
|
377 |
+
text = self._tokenize_chinese_chars(text)
|
378 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
379 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
380 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
381 |
+
split_tokens = []
|
382 |
+
for token in orig_tokens:
|
383 |
+
if token not in never_split:
|
384 |
+
if self.do_lower_case:
|
385 |
+
token = token.lower()
|
386 |
+
if self.strip_accents is not False:
|
387 |
+
token = self._run_strip_accents(token)
|
388 |
+
elif self.strip_accents:
|
389 |
+
token = self._run_strip_accents(token)
|
390 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
391 |
+
|
392 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
393 |
+
return output_tokens
|
394 |
+
|
395 |
+
def _run_strip_accents(self, text):
|
396 |
+
"""Strips accents from a piece of text."""
|
397 |
+
text = unicodedata.normalize("NFD", text)
|
398 |
+
output = []
|
399 |
+
for char in text:
|
400 |
+
cat = unicodedata.category(char)
|
401 |
+
if cat == "Mn":
|
402 |
+
continue
|
403 |
+
output.append(char)
|
404 |
+
return "".join(output)
|
405 |
+
|
406 |
+
def _run_split_on_punc(self, text, never_split=None):
|
407 |
+
"""Splits punctuation on a piece of text."""
|
408 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
409 |
+
return [text]
|
410 |
+
chars = list(text)
|
411 |
+
i = 0
|
412 |
+
start_new_word = True
|
413 |
+
output = []
|
414 |
+
while i < len(chars):
|
415 |
+
char = chars[i]
|
416 |
+
if _is_punctuation(char):
|
417 |
+
output.append([char])
|
418 |
+
start_new_word = True
|
419 |
+
else:
|
420 |
+
if start_new_word:
|
421 |
+
output.append([])
|
422 |
+
start_new_word = False
|
423 |
+
output[-1].append(char)
|
424 |
+
i += 1
|
425 |
+
|
426 |
+
return ["".join(x) for x in output]
|
427 |
+
|
428 |
+
def _tokenize_chinese_chars(self, text):
|
429 |
+
"""Adds whitespace around any CJK character."""
|
430 |
+
output = []
|
431 |
+
for char in text:
|
432 |
+
cp = ord(char)
|
433 |
+
if self._is_chinese_char(cp):
|
434 |
+
output.append(" ")
|
435 |
+
output.append(char)
|
436 |
+
output.append(" ")
|
437 |
+
else:
|
438 |
+
output.append(char)
|
439 |
+
return "".join(output)
|
440 |
+
|
441 |
+
def _is_chinese_char(self, cp):
|
442 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
443 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
444 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
445 |
+
#
|
446 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
447 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
448 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
449 |
+
# space-separated words, so they are not treated specially and handled
|
450 |
+
# like the all of the other languages.
|
451 |
+
if (
|
452 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
453 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
454 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
455 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
456 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
457 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
458 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
459 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
460 |
+
): #
|
461 |
+
return True
|
462 |
+
|
463 |
+
return False
|
464 |
+
|
465 |
+
def _clean_text(self, text):
|
466 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
467 |
+
output = []
|
468 |
+
for char in text:
|
469 |
+
cp = ord(char)
|
470 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
471 |
+
continue
|
472 |
+
if _is_whitespace(char):
|
473 |
+
output.append(" ")
|
474 |
+
else:
|
475 |
+
output.append(char)
|
476 |
+
return "".join(output)
|
477 |
+
|
478 |
+
|
479 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
480 |
+
class WordpieceTokenizer(object):
|
481 |
+
"""Runs WordPiece tokenization."""
|
482 |
+
|
483 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
484 |
+
self.vocab = vocab
|
485 |
+
self.unk_token = unk_token
|
486 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
487 |
+
|
488 |
+
def tokenize(self, text):
|
489 |
+
"""
|
490 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
491 |
+
tokenization using the given vocabulary.
|
492 |
+
|
493 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
text: A single token or whitespace separated tokens. This should have
|
497 |
+
already been passed through *BasicTokenizer*.
|
498 |
+
|
499 |
+
Returns:
|
500 |
+
A list of wordpiece tokens.
|
501 |
+
"""
|
502 |
+
|
503 |
+
output_tokens = []
|
504 |
+
for token in whitespace_tokenize(text):
|
505 |
+
chars = list(token)
|
506 |
+
if len(chars) > self.max_input_chars_per_word:
|
507 |
+
output_tokens.append(self.unk_token)
|
508 |
+
continue
|
509 |
+
|
510 |
+
is_bad = False
|
511 |
+
start = 0
|
512 |
+
sub_tokens = []
|
513 |
+
while start < len(chars):
|
514 |
+
end = len(chars)
|
515 |
+
cur_substr = None
|
516 |
+
while start < end:
|
517 |
+
substr = "".join(chars[start:end])
|
518 |
+
if start > 0:
|
519 |
+
substr = "##" + substr
|
520 |
+
if substr in self.vocab:
|
521 |
+
cur_substr = substr
|
522 |
+
break
|
523 |
+
end -= 1
|
524 |
+
if cur_substr is None:
|
525 |
+
is_bad = True
|
526 |
+
break
|
527 |
+
sub_tokens.append(cur_substr)
|
528 |
+
start = end
|
529 |
+
|
530 |
+
if is_bad:
|
531 |
+
output_tokens.append(self.unk_token)
|
532 |
+
else:
|
533 |
+
output_tokens.extend(sub_tokens)
|
534 |
+
return output_tokens
|
venv/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for Funnel Transformer."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import normalizers
|
21 |
+
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_funnel import FunnelTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
_model_names = [
|
32 |
+
"small",
|
33 |
+
"small-base",
|
34 |
+
"medium",
|
35 |
+
"medium-base",
|
36 |
+
"intermediate",
|
37 |
+
"intermediate-base",
|
38 |
+
"large",
|
39 |
+
"large-base",
|
40 |
+
"xlarge",
|
41 |
+
"xlarge-base",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
class FunnelTokenizerFast(PreTrainedTokenizerFast):
|
46 |
+
r"""
|
47 |
+
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
48 |
+
|
49 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
50 |
+
refer to this superclass for more information regarding those methods.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_file (`str`):
|
54 |
+
File containing the vocabulary.
|
55 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not to lowercase the input when tokenizing.
|
57 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
+
token instead.
|
60 |
+
sep_token (`str`, *optional*, defaults to `"<sep>"`):
|
61 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
62 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
63 |
+
token of a sequence built with special tokens.
|
64 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
65 |
+
The token used for padding, for example when batching sequences of different lengths.
|
66 |
+
cls_token (`str`, *optional*, defaults to `"<cls>"`):
|
67 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
68 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
69 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
70 |
+
The token used for masking values. This is the token used when training this model with masked language
|
71 |
+
modeling. This is the token which the model will try to predict.
|
72 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
74 |
+
whitespaces by the classic one.
|
75 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
77 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
78 |
+
bos_token (`str`, `optional`, defaults to `"<s>"`):
|
79 |
+
The beginning of sentence token.
|
80 |
+
eos_token (`str`, `optional`, defaults to `"</s>"`):
|
81 |
+
The end of sentence token.
|
82 |
+
strip_accents (`bool`, *optional*):
|
83 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
84 |
+
value for `lowercase` (as in the original BERT).
|
85 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
86 |
+
The prefix for subwords.
|
87 |
+
"""
|
88 |
+
|
89 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
90 |
+
slow_tokenizer_class = FunnelTokenizer
|
91 |
+
cls_token_type_id: int = 2
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
vocab_file=None,
|
96 |
+
tokenizer_file=None,
|
97 |
+
do_lower_case=True,
|
98 |
+
unk_token="<unk>",
|
99 |
+
sep_token="<sep>",
|
100 |
+
pad_token="<pad>",
|
101 |
+
cls_token="<cls>",
|
102 |
+
mask_token="<mask>",
|
103 |
+
bos_token="<s>",
|
104 |
+
eos_token="</s>",
|
105 |
+
clean_text=True,
|
106 |
+
tokenize_chinese_chars=True,
|
107 |
+
strip_accents=None,
|
108 |
+
wordpieces_prefix="##",
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(
|
112 |
+
vocab_file,
|
113 |
+
tokenizer_file=tokenizer_file,
|
114 |
+
do_lower_case=do_lower_case,
|
115 |
+
unk_token=unk_token,
|
116 |
+
sep_token=sep_token,
|
117 |
+
pad_token=pad_token,
|
118 |
+
cls_token=cls_token,
|
119 |
+
mask_token=mask_token,
|
120 |
+
bos_token=bos_token,
|
121 |
+
eos_token=eos_token,
|
122 |
+
clean_text=clean_text,
|
123 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
124 |
+
strip_accents=strip_accents,
|
125 |
+
wordpieces_prefix=wordpieces_prefix,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
130 |
+
if (
|
131 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
132 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
133 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
134 |
+
):
|
135 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
136 |
+
normalizer_state["lowercase"] = do_lower_case
|
137 |
+
normalizer_state["strip_accents"] = strip_accents
|
138 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
139 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
140 |
+
|
141 |
+
self.do_lower_case = do_lower_case
|
142 |
+
|
143 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
|
144 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
145 |
+
"""
|
146 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
147 |
+
adding special tokens. A Funnel sequence has the following format:
|
148 |
+
|
149 |
+
- single sequence: `[CLS] X [SEP]`
|
150 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs to which the special tokens will be added.
|
155 |
+
token_ids_1 (`List[int]`, *optional*):
|
156 |
+
Optional second list of IDs for sequence pairs.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
160 |
+
"""
|
161 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
162 |
+
|
163 |
+
if token_ids_1 is not None:
|
164 |
+
output += token_ids_1 + [self.sep_token_id]
|
165 |
+
|
166 |
+
return output
|
167 |
+
|
168 |
+
def create_token_type_ids_from_sequences(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
|
173 |
+
Transformer sequence pair mask has the following format:
|
174 |
+
|
175 |
+
```
|
176 |
+
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
177 |
+
| first sequence | second sequence |
|
178 |
+
```
|
179 |
+
|
180 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
181 |
+
|
182 |
+
Args:
|
183 |
+
token_ids_0 (`List[int]`):
|
184 |
+
List of IDs.
|
185 |
+
token_ids_1 (`List[int]`, *optional*):
|
186 |
+
Optional second list of IDs for sequence pairs.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
190 |
+
"""
|
191 |
+
sep = [self.sep_token_id]
|
192 |
+
cls = [self.cls_token_id]
|
193 |
+
if token_ids_1 is None:
|
194 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
|
195 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
196 |
+
|
197 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
|
198 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
199 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
200 |
+
return tuple(files)
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
from ...utils import OptionalDependencyNotAvailable
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_tokenizers_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_gpt_neox_fast"] = ["GPTNeoXTokenizerFast"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_gpt_neox"] = [
|
37 |
+
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"GPTNeoXForCausalLM",
|
39 |
+
"GPTNeoXForQuestionAnswering",
|
40 |
+
"GPTNeoXForSequenceClassification",
|
41 |
+
"GPTNeoXForTokenClassification",
|
42 |
+
"GPTNeoXLayer",
|
43 |
+
"GPTNeoXModel",
|
44 |
+
"GPTNeoXPreTrainedModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_tokenizers_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_torch_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
from .modeling_gpt_neox import (
|
66 |
+
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
|
67 |
+
GPTNeoXForCausalLM,
|
68 |
+
GPTNeoXForQuestionAnswering,
|
69 |
+
GPTNeoXForSequenceClassification,
|
70 |
+
GPTNeoXForTokenClassification,
|
71 |
+
GPTNeoXLayer,
|
72 |
+
GPTNeoXModel,
|
73 |
+
GPTNeoXPreTrainedModel,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
else:
|
78 |
+
import sys
|
79 |
+
|
80 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/configuration_gpt_neox.cpython-310.pyc
ADDED
Binary file (7.62 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/modeling_gpt_neox.cpython-310.pyc
ADDED
Binary file (41.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/tokenization_gpt_neox_fast.cpython-310.pyc
ADDED
Binary file (8.46 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/configuration_gpt_neox.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPTNeoX model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class GPTNeoXConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
|
30 |
+
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the GPTNeoX
|
32 |
+
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
40 |
+
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`GPTNeoXModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
43 |
+
Dimension of the encoder layers and the pooler layer.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
49 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
52 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
53 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
54 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
55 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
56 |
+
base for computing rotary embeddings frequency
|
57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio probability of the attention score.
|
59 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
|
61 |
+
hidden states.
|
62 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
63 |
+
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
|
64 |
+
|
65 |
+
The dropout ratio for the hidden layer.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
75 |
+
relevant if `config.is_decoder=True`.
|
76 |
+
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
78 |
+
speedup at large scales (e.g. 20B).
|
79 |
+
rope_scaling (`Dict`, *optional*):
|
80 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
81 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
82 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
83 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
84 |
+
these scaling strategies behave:
|
85 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
86 |
+
experimental feature, subject to breaking API changes in future versions.
|
87 |
+
attention_bias (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
89 |
+
|
90 |
+
Example:
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
|
94 |
+
|
95 |
+
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
|
96 |
+
>>> configuration = GPTNeoXConfig()
|
97 |
+
|
98 |
+
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
|
99 |
+
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
|
100 |
+
|
101 |
+
>>> # Accessing the model configuration
|
102 |
+
>>> configuration = model.config # doctest: +SKIP
|
103 |
+
```"""
|
104 |
+
|
105 |
+
model_type = "gpt_neox"
|
106 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=50432,
|
111 |
+
hidden_size=6144,
|
112 |
+
num_hidden_layers=44,
|
113 |
+
num_attention_heads=64,
|
114 |
+
intermediate_size=24576,
|
115 |
+
hidden_act="gelu",
|
116 |
+
rotary_pct=0.25,
|
117 |
+
rotary_emb_base=10000,
|
118 |
+
attention_dropout=0.0,
|
119 |
+
hidden_dropout=0.0,
|
120 |
+
classifier_dropout=0.1,
|
121 |
+
max_position_embeddings=2048,
|
122 |
+
initializer_range=0.02,
|
123 |
+
layer_norm_eps=1e-5,
|
124 |
+
use_cache=True,
|
125 |
+
bos_token_id=0,
|
126 |
+
eos_token_id=2,
|
127 |
+
tie_word_embeddings=False,
|
128 |
+
use_parallel_residual=True,
|
129 |
+
rope_scaling=None,
|
130 |
+
attention_bias=True,
|
131 |
+
**kwargs,
|
132 |
+
):
|
133 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.num_hidden_layers = num_hidden_layers
|
138 |
+
self.num_attention_heads = num_attention_heads
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.rotary_pct = rotary_pct
|
142 |
+
self.rotary_emb_base = rotary_emb_base
|
143 |
+
self.attention_dropout = attention_dropout
|
144 |
+
self.hidden_dropout = hidden_dropout
|
145 |
+
self.classifier_dropout = classifier_dropout
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.layer_norm_eps = layer_norm_eps
|
148 |
+
self.use_cache = use_cache
|
149 |
+
self.tie_word_embeddings = tie_word_embeddings
|
150 |
+
self.use_parallel_residual = use_parallel_residual
|
151 |
+
self.rope_scaling = rope_scaling
|
152 |
+
self.attention_bias = attention_bias
|
153 |
+
self._rope_scaling_validation()
|
154 |
+
|
155 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
156 |
+
raise ValueError(
|
157 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
|
158 |
+
)
|
159 |
+
|
160 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
161 |
+
def _rope_scaling_validation(self):
|
162 |
+
"""
|
163 |
+
Validate the `rope_scaling` configuration.
|
164 |
+
"""
|
165 |
+
if self.rope_scaling is None:
|
166 |
+
return
|
167 |
+
|
168 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
169 |
+
raise ValueError(
|
170 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
171 |
+
)
|
172 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
173 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
174 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
175 |
+
raise ValueError(
|
176 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
177 |
+
)
|
178 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
179 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py
ADDED
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPTNeoX model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
from torch.nn import functional as F
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...file_utils import (
|
27 |
+
add_code_sample_docstrings,
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
replace_return_docstrings,
|
31 |
+
)
|
32 |
+
from ...modeling_outputs import (
|
33 |
+
BaseModelOutputWithPast,
|
34 |
+
CausalLMOutputWithPast,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_utils import PreTrainedModel
|
40 |
+
from ...utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging
|
41 |
+
from .configuration_gpt_neox import GPTNeoXConfig
|
42 |
+
|
43 |
+
|
44 |
+
if is_flash_attn_2_available():
|
45 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
46 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
|
52 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
|
53 |
+
_CONFIG_FOR_DOC = "GPTNeoXConfig"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
60 |
+
def _get_unpad_data(attention_mask):
|
61 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
62 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
63 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
64 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
65 |
+
return (
|
66 |
+
indices,
|
67 |
+
cu_seqlens,
|
68 |
+
max_seqlen_in_batch,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class GPTNeoXPreTrainedModel(PreTrainedModel):
|
73 |
+
"""
|
74 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
75 |
+
models.
|
76 |
+
"""
|
77 |
+
|
78 |
+
config_class = GPTNeoXConfig
|
79 |
+
base_model_prefix = "gpt_neox"
|
80 |
+
supports_gradient_checkpointing = True
|
81 |
+
_no_split_modules = ["GPTNeoXLayer"]
|
82 |
+
_skip_keys_device_placement = "past_key_values"
|
83 |
+
_supports_flash_attn_2 = True
|
84 |
+
|
85 |
+
def _init_weights(self, module):
|
86 |
+
"""Initialize the weights"""
|
87 |
+
if isinstance(module, nn.Linear):
|
88 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
89 |
+
if module.bias is not None:
|
90 |
+
module.bias.data.zero_()
|
91 |
+
elif isinstance(module, nn.Embedding):
|
92 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
93 |
+
if module.padding_idx is not None:
|
94 |
+
module.weight.data[module.padding_idx].zero_()
|
95 |
+
elif isinstance(module, nn.LayerNorm):
|
96 |
+
module.bias.data.zero_()
|
97 |
+
module.weight.data.fill_(1.0)
|
98 |
+
|
99 |
+
|
100 |
+
class GPTNeoXAttention(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.config = config
|
104 |
+
self.num_attention_heads = config.num_attention_heads
|
105 |
+
self.hidden_size = config.hidden_size
|
106 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
107 |
+
raise ValueError(
|
108 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
|
109 |
+
)
|
110 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
111 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
112 |
+
self._init_bias(config.max_position_embeddings)
|
113 |
+
|
114 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
115 |
+
self._init_rope()
|
116 |
+
|
117 |
+
self.norm_factor = self.head_size**-0.5
|
118 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
|
119 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
120 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
121 |
+
self.is_causal = True
|
122 |
+
|
123 |
+
def _init_bias(self, max_positions, device=None):
|
124 |
+
self.register_buffer(
|
125 |
+
"bias",
|
126 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
127 |
+
1, 1, max_positions, max_positions
|
128 |
+
),
|
129 |
+
persistent=False,
|
130 |
+
)
|
131 |
+
if device is not None:
|
132 |
+
self.bias = self.bias.to(device)
|
133 |
+
|
134 |
+
def _init_rope(self):
|
135 |
+
if self.config.rope_scaling is None:
|
136 |
+
self.rotary_emb = GPTNeoXRotaryEmbedding(
|
137 |
+
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
scaling_type = self.config.rope_scaling["type"]
|
141 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
142 |
+
if scaling_type == "linear":
|
143 |
+
self.rotary_emb = GPTNeoXLinearScalingRotaryEmbedding(
|
144 |
+
self.rotary_ndims,
|
145 |
+
self.config.max_position_embeddings,
|
146 |
+
base=self.config.rotary_emb_base,
|
147 |
+
scaling_factor=scaling_factor,
|
148 |
+
)
|
149 |
+
elif scaling_type == "dynamic":
|
150 |
+
self.rotary_emb = GPTNeoXDynamicNTKScalingRotaryEmbedding(
|
151 |
+
self.rotary_ndims,
|
152 |
+
self.config.max_position_embeddings,
|
153 |
+
base=self.config.rotary_emb_base,
|
154 |
+
scaling_factor=scaling_factor,
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
158 |
+
|
159 |
+
def forward(
|
160 |
+
self,
|
161 |
+
hidden_states: torch.FloatTensor,
|
162 |
+
attention_mask: torch.FloatTensor,
|
163 |
+
position_ids: torch.LongTensor,
|
164 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
165 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
166 |
+
use_cache: Optional[bool] = False,
|
167 |
+
output_attentions: Optional[bool] = False,
|
168 |
+
padding_mask: Optional[torch.Tensor] = None,
|
169 |
+
):
|
170 |
+
has_layer_past = layer_past is not None
|
171 |
+
|
172 |
+
# Compute QKV
|
173 |
+
# Attention heads [batch, seq_len, hidden_size]
|
174 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
175 |
+
qkv = self.query_key_value(hidden_states)
|
176 |
+
|
177 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
178 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
179 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
180 |
+
qkv = qkv.view(*new_qkv_shape)
|
181 |
+
|
182 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
183 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
184 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
185 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
186 |
+
|
187 |
+
# Compute rotary embeddings on rotary_ndims
|
188 |
+
query_rot = query[..., : self.rotary_ndims]
|
189 |
+
query_pass = query[..., self.rotary_ndims :]
|
190 |
+
key_rot = key[..., : self.rotary_ndims]
|
191 |
+
key_pass = key[..., self.rotary_ndims :]
|
192 |
+
|
193 |
+
# Compute token offset for rotary embeddings (when decoding)
|
194 |
+
seq_len = key.shape[-2]
|
195 |
+
if has_layer_past:
|
196 |
+
seq_len += layer_past[0].shape[-2]
|
197 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
198 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
199 |
+
query = torch.cat((query, query_pass), dim=-1)
|
200 |
+
key = torch.cat((key, key_pass), dim=-1)
|
201 |
+
|
202 |
+
# Cache QKV values
|
203 |
+
if has_layer_past:
|
204 |
+
past_key = layer_past[0]
|
205 |
+
past_value = layer_past[1]
|
206 |
+
key = torch.cat((past_key, key), dim=-2)
|
207 |
+
value = torch.cat((past_value, value), dim=-2)
|
208 |
+
present = (key, value) if use_cache else None
|
209 |
+
|
210 |
+
# Compute attention
|
211 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
212 |
+
|
213 |
+
# Reshape outputs
|
214 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
215 |
+
attn_output = self.dense(attn_output)
|
216 |
+
|
217 |
+
outputs = (attn_output, present)
|
218 |
+
if output_attentions:
|
219 |
+
outputs += (attn_weights,)
|
220 |
+
|
221 |
+
return outputs
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
225 |
+
"""
|
226 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
227 |
+
"""
|
228 |
+
# tensor: [bs, seq_len, hidden_size]
|
229 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
230 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
231 |
+
tensor = tensor.view(new_shape)
|
232 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
233 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
234 |
+
return tensor
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
238 |
+
"""
|
239 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
240 |
+
"""
|
241 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
242 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
243 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
244 |
+
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
245 |
+
# -> [bs, seq_len, hidden_size]
|
246 |
+
return tensor
|
247 |
+
|
248 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
249 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
250 |
+
# compute causal mask from causal mask buffer
|
251 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
252 |
+
key_length = key.size(-2)
|
253 |
+
|
254 |
+
# dynamically increase the causal mask with the key length, if needed.
|
255 |
+
if key_length > self.bias.shape[-1]:
|
256 |
+
self._init_bias(key_length, device=key.device)
|
257 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
258 |
+
|
259 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
260 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
261 |
+
attn_scores = torch.zeros(
|
262 |
+
batch_size * num_attention_heads,
|
263 |
+
query_length,
|
264 |
+
key_length,
|
265 |
+
dtype=query.dtype,
|
266 |
+
device=key.device,
|
267 |
+
)
|
268 |
+
attn_scores = torch.baddbmm(
|
269 |
+
attn_scores,
|
270 |
+
query,
|
271 |
+
key.transpose(1, 2),
|
272 |
+
beta=1.0,
|
273 |
+
alpha=self.norm_factor,
|
274 |
+
)
|
275 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
276 |
+
|
277 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
278 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
279 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
280 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
281 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
282 |
+
|
283 |
+
if attention_mask is not None:
|
284 |
+
# Apply the attention mask
|
285 |
+
attn_scores = attn_scores + attention_mask
|
286 |
+
|
287 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
288 |
+
attn_weights = attn_weights.to(value.dtype)
|
289 |
+
|
290 |
+
# Mask heads if we want to
|
291 |
+
if head_mask is not None:
|
292 |
+
attn_weights = attn_weights * head_mask
|
293 |
+
|
294 |
+
attn_weights = self.attention_dropout(attn_weights)
|
295 |
+
|
296 |
+
attn_output = torch.matmul(attn_weights, value)
|
297 |
+
return attn_output, attn_weights
|
298 |
+
|
299 |
+
|
300 |
+
class GPTNeoXFlashAttention2(GPTNeoXAttention):
|
301 |
+
"""
|
302 |
+
GPTNeoX flash attention module. This module inherits from `GPTNeoXAttention` as the weights of the module stays
|
303 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
304 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, *args, **kwargs):
|
308 |
+
super().__init__(*args, **kwargs)
|
309 |
+
|
310 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
311 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
312 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
313 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states: torch.FloatTensor,
|
318 |
+
attention_mask: torch.FloatTensor,
|
319 |
+
position_ids: torch.LongTensor,
|
320 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
321 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
322 |
+
use_cache: Optional[bool] = False,
|
323 |
+
output_attentions: Optional[bool] = False,
|
324 |
+
):
|
325 |
+
has_layer_past = layer_past is not None
|
326 |
+
|
327 |
+
# Compute QKV
|
328 |
+
# Attention heads [batch, seq_len, hidden_size]
|
329 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
330 |
+
qkv = self.query_key_value(hidden_states)
|
331 |
+
|
332 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
333 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
334 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
335 |
+
qkv = qkv.view(*new_qkv_shape)
|
336 |
+
|
337 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
338 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
339 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
340 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
341 |
+
|
342 |
+
query_length = query.shape[-2]
|
343 |
+
|
344 |
+
# Compute rotary embeddings on rotary_ndims
|
345 |
+
query_rot = query[..., : self.rotary_ndims]
|
346 |
+
query_pass = query[..., self.rotary_ndims :]
|
347 |
+
key_rot = key[..., : self.rotary_ndims]
|
348 |
+
key_pass = key[..., self.rotary_ndims :]
|
349 |
+
|
350 |
+
# Compute token offset for rotary embeddings (when decoding)
|
351 |
+
seq_len = key.shape[-2]
|
352 |
+
if has_layer_past:
|
353 |
+
seq_len += layer_past[0].shape[-2]
|
354 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
355 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
356 |
+
query = torch.cat((query, query_pass), dim=-1)
|
357 |
+
key = torch.cat((key, key_pass), dim=-1)
|
358 |
+
|
359 |
+
# Cache QKV values
|
360 |
+
if has_layer_past:
|
361 |
+
past_key = layer_past[0]
|
362 |
+
past_value = layer_past[1]
|
363 |
+
key = torch.cat((past_key, key), dim=-2)
|
364 |
+
value = torch.cat((past_value, value), dim=-2)
|
365 |
+
present = (key, value) if use_cache else None
|
366 |
+
|
367 |
+
# GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
|
368 |
+
target_dtype = value.dtype
|
369 |
+
if query.dtype != target_dtype:
|
370 |
+
query = query.to(target_dtype)
|
371 |
+
if key.dtype != target_dtype:
|
372 |
+
key = key.to(target_dtype)
|
373 |
+
|
374 |
+
# Permute to get the expected shape for Flash Attention
|
375 |
+
query = query.permute(0, 2, 1, 3)
|
376 |
+
key = key.permute(0, 2, 1, 3)
|
377 |
+
value = value.permute(0, 2, 1, 3)
|
378 |
+
|
379 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
380 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
381 |
+
# cast them back in float16 / bfloat16 just to be sure everything works as expected.
|
382 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
383 |
+
input_dtype = query.dtype
|
384 |
+
if input_dtype == torch.float32:
|
385 |
+
if torch.is_autocast_enabled():
|
386 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
387 |
+
# Handle the case where the model is quantized
|
388 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
389 |
+
target_dtype = self.config._pre_quantization_dtype
|
390 |
+
else:
|
391 |
+
target_dtype = self.query_key_value.weight.dtype
|
392 |
+
|
393 |
+
logger.warning_once(
|
394 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
395 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
396 |
+
f" {target_dtype}."
|
397 |
+
)
|
398 |
+
|
399 |
+
query = query.to(target_dtype)
|
400 |
+
key = key.to(target_dtype)
|
401 |
+
value = value.to(target_dtype)
|
402 |
+
|
403 |
+
attention_dropout = self.config.attention_dropout if self.training else 0.0
|
404 |
+
|
405 |
+
# Compute attention
|
406 |
+
attn_weights = self._flash_attention_forward(
|
407 |
+
query, key, value, attention_mask, query_length, dropout=attention_dropout, softmax_scale=self.norm_factor
|
408 |
+
)
|
409 |
+
|
410 |
+
# Reshape outputs
|
411 |
+
attn_output = attn_weights.reshape(
|
412 |
+
attn_weights.shape[0], attn_weights.shape[1], self.num_attention_heads * self.head_size
|
413 |
+
)
|
414 |
+
attn_output = self.dense(attn_output)
|
415 |
+
|
416 |
+
outputs = (attn_output, present)
|
417 |
+
if output_attentions:
|
418 |
+
outputs += (attn_weights,)
|
419 |
+
|
420 |
+
return outputs
|
421 |
+
|
422 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
423 |
+
def _flash_attention_forward(
|
424 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
425 |
+
):
|
426 |
+
"""
|
427 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
428 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
query_states (`torch.Tensor`):
|
432 |
+
Input query states to be passed to Flash Attention API
|
433 |
+
key_states (`torch.Tensor`):
|
434 |
+
Input key states to be passed to Flash Attention API
|
435 |
+
value_states (`torch.Tensor`):
|
436 |
+
Input value states to be passed to Flash Attention API
|
437 |
+
attention_mask (`torch.Tensor`):
|
438 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
439 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
440 |
+
dropout (`float`):
|
441 |
+
Attention dropout
|
442 |
+
softmax_scale (`float`, *optional*):
|
443 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
444 |
+
"""
|
445 |
+
if not self._flash_attn_uses_top_left_mask:
|
446 |
+
causal = self.is_causal
|
447 |
+
else:
|
448 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
449 |
+
causal = self.is_causal and query_length != 1
|
450 |
+
|
451 |
+
# Contains at least one padding token in the sequence
|
452 |
+
if attention_mask is not None:
|
453 |
+
batch_size = query_states.shape[0]
|
454 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
455 |
+
query_states, key_states, value_states, attention_mask, query_length
|
456 |
+
)
|
457 |
+
|
458 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
459 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
460 |
+
|
461 |
+
attn_output_unpad = flash_attn_varlen_func(
|
462 |
+
query_states,
|
463 |
+
key_states,
|
464 |
+
value_states,
|
465 |
+
cu_seqlens_q=cu_seqlens_q,
|
466 |
+
cu_seqlens_k=cu_seqlens_k,
|
467 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
468 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
469 |
+
dropout_p=dropout,
|
470 |
+
softmax_scale=softmax_scale,
|
471 |
+
causal=causal,
|
472 |
+
)
|
473 |
+
|
474 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
475 |
+
else:
|
476 |
+
attn_output = flash_attn_func(
|
477 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
478 |
+
)
|
479 |
+
|
480 |
+
return attn_output
|
481 |
+
|
482 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
|
483 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
484 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
485 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
486 |
+
|
487 |
+
key_layer = index_first_axis(
|
488 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
489 |
+
)
|
490 |
+
value_layer = index_first_axis(
|
491 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
492 |
+
)
|
493 |
+
if query_length == kv_seq_len:
|
494 |
+
query_layer = index_first_axis(
|
495 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
|
496 |
+
)
|
497 |
+
cu_seqlens_q = cu_seqlens_k
|
498 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
499 |
+
indices_q = indices_k
|
500 |
+
elif query_length == 1:
|
501 |
+
max_seqlen_in_batch_q = 1
|
502 |
+
cu_seqlens_q = torch.arange(
|
503 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
504 |
+
) # There is a memcpy here, that is very bad.
|
505 |
+
indices_q = cu_seqlens_q[:-1]
|
506 |
+
query_layer = query_layer.squeeze(1)
|
507 |
+
else:
|
508 |
+
# The -q_len: slice assumes left padding.
|
509 |
+
attention_mask = attention_mask[:, -query_length:]
|
510 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
511 |
+
|
512 |
+
return (
|
513 |
+
query_layer,
|
514 |
+
key_layer,
|
515 |
+
value_layer,
|
516 |
+
indices_q,
|
517 |
+
(cu_seqlens_q, cu_seqlens_k),
|
518 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
def attention_mask_func(attention_scores, ltor_mask):
|
523 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
524 |
+
return attention_scores
|
525 |
+
|
526 |
+
|
527 |
+
class GPTNeoXRotaryEmbedding(nn.Module):
|
528 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__
|
529 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
530 |
+
super().__init__()
|
531 |
+
|
532 |
+
self.dim = dim
|
533 |
+
self.max_position_embeddings = max_position_embeddings
|
534 |
+
self.base = base
|
535 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
536 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
537 |
+
|
538 |
+
# Build here to make `torch.jit.trace` work.
|
539 |
+
self._set_cos_sin_cache(
|
540 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
541 |
+
)
|
542 |
+
|
543 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
544 |
+
self.max_seq_len_cached = seq_len
|
545 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
546 |
+
|
547 |
+
freqs = torch.outer(t, self.inv_freq)
|
548 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
549 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
550 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
551 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
552 |
+
|
553 |
+
def forward(self, x, seq_len=None):
|
554 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
555 |
+
if seq_len > self.max_seq_len_cached:
|
556 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
557 |
+
|
558 |
+
return (
|
559 |
+
self.cos_cached[:seq_len],
|
560 |
+
self.sin_cached[:seq_len],
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__
|
565 |
+
# TODO @gante bring compatibility back
|
566 |
+
class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
567 |
+
"""GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
568 |
+
|
569 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
570 |
+
self.scaling_factor = scaling_factor
|
571 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
572 |
+
|
573 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
574 |
+
self.max_seq_len_cached = seq_len
|
575 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
576 |
+
t = t / self.scaling_factor
|
577 |
+
|
578 |
+
freqs = torch.outer(t, self.inv_freq)
|
579 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
580 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
581 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
582 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
583 |
+
|
584 |
+
|
585 |
+
class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
586 |
+
"""GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
587 |
+
|
588 |
+
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding.__init__
|
589 |
+
# TODO @gante no longer copied from
|
590 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
591 |
+
self.scaling_factor = scaling_factor
|
592 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
593 |
+
|
594 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
595 |
+
self.max_seq_len_cached = seq_len
|
596 |
+
|
597 |
+
if seq_len > self.max_position_embeddings:
|
598 |
+
base = self.base * (
|
599 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
600 |
+
) ** (self.dim / (self.dim - 2))
|
601 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
602 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
603 |
+
|
604 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
605 |
+
|
606 |
+
freqs = torch.outer(t, self.inv_freq)
|
607 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
608 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
609 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
610 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
611 |
+
|
612 |
+
|
613 |
+
def rotate_half(x):
|
614 |
+
"""Rotates half the hidden dims of the input."""
|
615 |
+
x1 = x[..., : x.shape[-1] // 2]
|
616 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
617 |
+
return torch.cat((-x2, x1), dim=-1)
|
618 |
+
|
619 |
+
|
620 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
621 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
622 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
623 |
+
|
624 |
+
Args:
|
625 |
+
q (`torch.Tensor`): The query tensor.
|
626 |
+
k (`torch.Tensor`): The key tensor.
|
627 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
628 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
629 |
+
position_ids (`torch.Tensor`):
|
630 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
631 |
+
used to pass offsetted position ids when working with a KV-cache.
|
632 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
633 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
634 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
635 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
636 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
637 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
638 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
639 |
+
Returns:
|
640 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
641 |
+
"""
|
642 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
643 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
644 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
645 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
646 |
+
return q_embed, k_embed
|
647 |
+
|
648 |
+
|
649 |
+
class GPTNeoXMLP(nn.Module):
|
650 |
+
def __init__(self, config):
|
651 |
+
super().__init__()
|
652 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
|
653 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
|
654 |
+
self.act = ACT2FN[config.hidden_act]
|
655 |
+
|
656 |
+
def forward(self, hidden_states):
|
657 |
+
hidden_states = self.dense_h_to_4h(hidden_states)
|
658 |
+
hidden_states = self.act(hidden_states)
|
659 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
660 |
+
return hidden_states
|
661 |
+
|
662 |
+
|
663 |
+
GPT_NEOX_ATTENTION_CLASSES = {
|
664 |
+
"eager": GPTNeoXAttention,
|
665 |
+
"flash_attention_2": GPTNeoXFlashAttention2,
|
666 |
+
}
|
667 |
+
|
668 |
+
|
669 |
+
class GPTNeoXLayer(nn.Module):
|
670 |
+
def __init__(self, config):
|
671 |
+
super().__init__()
|
672 |
+
self.use_parallel_residual = config.use_parallel_residual
|
673 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
674 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
675 |
+
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
|
676 |
+
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
|
677 |
+
self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config)
|
678 |
+
self.mlp = GPTNeoXMLP(config)
|
679 |
+
|
680 |
+
def forward(
|
681 |
+
self,
|
682 |
+
hidden_states: Optional[torch.FloatTensor],
|
683 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
684 |
+
position_ids: Optional[torch.LongTensor] = None,
|
685 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
686 |
+
use_cache: Optional[bool] = False,
|
687 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
688 |
+
output_attentions: Optional[bool] = False,
|
689 |
+
):
|
690 |
+
attention_layer_outputs = self.attention(
|
691 |
+
self.input_layernorm(hidden_states),
|
692 |
+
attention_mask=attention_mask,
|
693 |
+
position_ids=position_ids,
|
694 |
+
layer_past=layer_past,
|
695 |
+
head_mask=head_mask,
|
696 |
+
use_cache=use_cache,
|
697 |
+
output_attentions=output_attentions,
|
698 |
+
)
|
699 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
700 |
+
attn_output = self.post_attention_dropout(attn_output)
|
701 |
+
outputs = attention_layer_outputs[1:]
|
702 |
+
|
703 |
+
if self.use_parallel_residual:
|
704 |
+
# pseudocode:
|
705 |
+
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
706 |
+
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
707 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
708 |
+
hidden_states = mlp_output + attn_output + hidden_states
|
709 |
+
else:
|
710 |
+
# pseudocode:
|
711 |
+
# x = x + attn(ln1(x))
|
712 |
+
# x = x + mlp(ln2(x))
|
713 |
+
attn_output = attn_output + hidden_states
|
714 |
+
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
715 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
716 |
+
hidden_states = mlp_output + attn_output
|
717 |
+
|
718 |
+
if use_cache:
|
719 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
720 |
+
else:
|
721 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
722 |
+
|
723 |
+
return outputs
|
724 |
+
|
725 |
+
|
726 |
+
GPT_NEOX_START_DOCSTRING = r"""
|
727 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
728 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
729 |
+
behavior.
|
730 |
+
|
731 |
+
Parameters:
|
732 |
+
config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
|
733 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
734 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
735 |
+
"""
|
736 |
+
|
737 |
+
GPT_NEOX_INPUTS_DOCSTRING = r"""
|
738 |
+
Args:
|
739 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
740 |
+
Indices of input sequence tokens in the vocabulary.
|
741 |
+
|
742 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
743 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
744 |
+
|
745 |
+
[What are input IDs?](../glossary#input-ids)
|
746 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
747 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
748 |
+
|
749 |
+
- 1 for tokens that are **not masked**,
|
750 |
+
- 0 for tokens that are **masked**.
|
751 |
+
|
752 |
+
[What are attention masks?](../glossary#attention-mask)
|
753 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
754 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
755 |
+
config.n_positions - 1]`.
|
756 |
+
|
757 |
+
[What are position IDs?](../glossary#position-ids)
|
758 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
759 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
760 |
+
|
761 |
+
- 1 indicates the head is **not masked**,
|
762 |
+
- 0 indicates the head is **masked**.
|
763 |
+
|
764 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
765 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
766 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
767 |
+
model's internal embedding lookup matrix.
|
768 |
+
output_attentions (`bool`, *optional*):
|
769 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
770 |
+
tensors for more detail.
|
771 |
+
output_hidden_states (`bool`, *optional*):
|
772 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
773 |
+
more detail.
|
774 |
+
return_dict (`bool`, *optional*):
|
775 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
776 |
+
"""
|
777 |
+
|
778 |
+
|
779 |
+
@add_start_docstrings(
|
780 |
+
"The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
|
781 |
+
GPT_NEOX_START_DOCSTRING,
|
782 |
+
)
|
783 |
+
class GPTNeoXModel(GPTNeoXPreTrainedModel):
|
784 |
+
def __init__(self, config):
|
785 |
+
super().__init__(config)
|
786 |
+
self.config = config
|
787 |
+
|
788 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
789 |
+
self.emb_dropout = nn.Dropout(config.hidden_dropout)
|
790 |
+
self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
|
791 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
792 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
793 |
+
|
794 |
+
self.gradient_checkpointing = False
|
795 |
+
|
796 |
+
# Initialize weights and apply final processing
|
797 |
+
self.post_init()
|
798 |
+
|
799 |
+
def get_input_embeddings(self):
|
800 |
+
return self.embed_in
|
801 |
+
|
802 |
+
def set_input_embeddings(self, value):
|
803 |
+
self.embed_in = value
|
804 |
+
|
805 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
806 |
+
@add_code_sample_docstrings(
|
807 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
808 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
809 |
+
output_type=BaseModelOutputWithPast,
|
810 |
+
config_class=_CONFIG_FOR_DOC,
|
811 |
+
)
|
812 |
+
def forward(
|
813 |
+
self,
|
814 |
+
input_ids: Optional[torch.LongTensor] = None,
|
815 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
816 |
+
position_ids: Optional[torch.LongTensor] = None,
|
817 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
818 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
819 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
820 |
+
use_cache: Optional[bool] = None,
|
821 |
+
output_attentions: Optional[bool] = None,
|
822 |
+
output_hidden_states: Optional[bool] = None,
|
823 |
+
return_dict: Optional[bool] = None,
|
824 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
825 |
+
r"""
|
826 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
827 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
828 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
829 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
830 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
831 |
+
use_cache (`bool`, *optional*):
|
832 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
833 |
+
`past_key_values`).
|
834 |
+
"""
|
835 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
836 |
+
output_hidden_states = (
|
837 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
838 |
+
)
|
839 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
840 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
841 |
+
|
842 |
+
if input_ids is not None and inputs_embeds is not None:
|
843 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
844 |
+
elif input_ids is not None:
|
845 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
846 |
+
input_shape = input_ids.size()
|
847 |
+
elif inputs_embeds is not None:
|
848 |
+
input_shape = inputs_embeds.size()[:-1]
|
849 |
+
else:
|
850 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
851 |
+
|
852 |
+
batch_size, seq_length = input_shape
|
853 |
+
|
854 |
+
if past_key_values is None:
|
855 |
+
past_length = 0
|
856 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
857 |
+
else:
|
858 |
+
past_length = past_key_values[0][0].size(-2)
|
859 |
+
|
860 |
+
if position_ids is None:
|
861 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
862 |
+
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
863 |
+
position_ids = position_ids.unsqueeze(0)
|
864 |
+
|
865 |
+
# Attention mask.
|
866 |
+
if attention_mask is not None:
|
867 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
868 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
869 |
+
if self._use_flash_attention_2:
|
870 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
871 |
+
else:
|
872 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
873 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
874 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
875 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
876 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
877 |
+
attention_mask = attention_mask[:, None, None, :]
|
878 |
+
|
879 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
880 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
881 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
882 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
883 |
+
# effectively the same as removing these entirely.
|
884 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
885 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
886 |
+
|
887 |
+
# Prepare head mask if needed
|
888 |
+
# 1.0 in head_mask indicate we keep the head
|
889 |
+
# attention_probs has shape bsz x n_heads x N x N
|
890 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
891 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
892 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
893 |
+
|
894 |
+
if inputs_embeds is None:
|
895 |
+
inputs_embeds = self.embed_in(input_ids)
|
896 |
+
|
897 |
+
hidden_states = self.emb_dropout(inputs_embeds)
|
898 |
+
|
899 |
+
if self.gradient_checkpointing and self.training:
|
900 |
+
if use_cache:
|
901 |
+
logger.warning(
|
902 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
903 |
+
)
|
904 |
+
use_cache = False
|
905 |
+
|
906 |
+
presents = () if use_cache else None
|
907 |
+
all_attentions = () if output_attentions else None
|
908 |
+
all_hidden_states = () if output_hidden_states else None
|
909 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
910 |
+
if output_hidden_states:
|
911 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
912 |
+
|
913 |
+
if self.gradient_checkpointing and self.training:
|
914 |
+
outputs = self._gradient_checkpointing_func(
|
915 |
+
layer.__call__,
|
916 |
+
hidden_states,
|
917 |
+
attention_mask,
|
918 |
+
position_ids,
|
919 |
+
head_mask[i],
|
920 |
+
use_cache,
|
921 |
+
None,
|
922 |
+
output_attentions,
|
923 |
+
)
|
924 |
+
else:
|
925 |
+
outputs = layer(
|
926 |
+
hidden_states,
|
927 |
+
attention_mask=attention_mask,
|
928 |
+
position_ids=position_ids,
|
929 |
+
head_mask=head_mask[i],
|
930 |
+
layer_past=layer_past,
|
931 |
+
use_cache=use_cache,
|
932 |
+
output_attentions=output_attentions,
|
933 |
+
)
|
934 |
+
hidden_states = outputs[0]
|
935 |
+
if use_cache is True:
|
936 |
+
presents = presents + (outputs[1],)
|
937 |
+
if output_attentions:
|
938 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
939 |
+
|
940 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
941 |
+
# Add last hidden state
|
942 |
+
if output_hidden_states:
|
943 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
944 |
+
|
945 |
+
if not return_dict:
|
946 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
947 |
+
|
948 |
+
return BaseModelOutputWithPast(
|
949 |
+
last_hidden_state=hidden_states,
|
950 |
+
past_key_values=presents,
|
951 |
+
hidden_states=all_hidden_states,
|
952 |
+
attentions=all_attentions,
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
@add_start_docstrings(
|
957 |
+
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
|
958 |
+
)
|
959 |
+
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel):
|
960 |
+
_tied_weights_keys = ["embed_out.weight"]
|
961 |
+
|
962 |
+
def __init__(self, config):
|
963 |
+
super().__init__(config)
|
964 |
+
|
965 |
+
self.gpt_neox = GPTNeoXModel(config)
|
966 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
967 |
+
|
968 |
+
# Initialize weights and apply final processing
|
969 |
+
self.post_init()
|
970 |
+
|
971 |
+
def get_output_embeddings(self):
|
972 |
+
return self.embed_out
|
973 |
+
|
974 |
+
def set_output_embeddings(self, new_embeddings):
|
975 |
+
self.embed_out = new_embeddings
|
976 |
+
|
977 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
978 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
979 |
+
def forward(
|
980 |
+
self,
|
981 |
+
input_ids: Optional[torch.LongTensor] = None,
|
982 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
983 |
+
position_ids: Optional[torch.LongTensor] = None,
|
984 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
985 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
986 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
987 |
+
labels: Optional[torch.LongTensor] = None,
|
988 |
+
use_cache: Optional[bool] = None,
|
989 |
+
output_attentions: Optional[bool] = None,
|
990 |
+
output_hidden_states: Optional[bool] = None,
|
991 |
+
return_dict: Optional[bool] = None,
|
992 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
993 |
+
r"""
|
994 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
995 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
996 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
997 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
998 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
999 |
+
|
1000 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
1001 |
+
`past_key_values` input) to speed up sequential decoding.
|
1002 |
+
|
1003 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1004 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1005 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1006 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1007 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1008 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1009 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
1010 |
+
use_cache (`bool`, *optional*):
|
1011 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1012 |
+
`past_key_values`).
|
1013 |
+
|
1014 |
+
Returns:
|
1015 |
+
|
1016 |
+
Example:
|
1017 |
+
|
1018 |
+
```python
|
1019 |
+
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
|
1020 |
+
>>> import torch
|
1021 |
+
|
1022 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
1023 |
+
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
1024 |
+
>>> config.is_decoder = True
|
1025 |
+
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
1026 |
+
|
1027 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1028 |
+
>>> outputs = model(**inputs)
|
1029 |
+
|
1030 |
+
>>> prediction_logits = outputs.logits
|
1031 |
+
```"""
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1033 |
+
|
1034 |
+
outputs = self.gpt_neox(
|
1035 |
+
input_ids,
|
1036 |
+
attention_mask=attention_mask,
|
1037 |
+
position_ids=position_ids,
|
1038 |
+
head_mask=head_mask,
|
1039 |
+
inputs_embeds=inputs_embeds,
|
1040 |
+
past_key_values=past_key_values,
|
1041 |
+
use_cache=use_cache,
|
1042 |
+
output_attentions=output_attentions,
|
1043 |
+
output_hidden_states=output_hidden_states,
|
1044 |
+
return_dict=return_dict,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
hidden_states = outputs[0]
|
1048 |
+
lm_logits = self.embed_out(hidden_states)
|
1049 |
+
|
1050 |
+
lm_loss = None
|
1051 |
+
if labels is not None:
|
1052 |
+
# move labels to correct device to enable model parallelism
|
1053 |
+
labels = labels.to(lm_logits.device)
|
1054 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1055 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
1056 |
+
labels = labels[:, 1:].contiguous()
|
1057 |
+
loss_fct = CrossEntropyLoss()
|
1058 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
1059 |
+
|
1060 |
+
if not return_dict:
|
1061 |
+
output = (lm_logits,) + outputs[1:]
|
1062 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1063 |
+
|
1064 |
+
return CausalLMOutputWithPast(
|
1065 |
+
loss=lm_loss,
|
1066 |
+
logits=lm_logits,
|
1067 |
+
past_key_values=outputs.past_key_values,
|
1068 |
+
hidden_states=outputs.hidden_states,
|
1069 |
+
attentions=outputs.attentions,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
def prepare_inputs_for_generation(
|
1073 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1074 |
+
):
|
1075 |
+
input_shape = input_ids.shape
|
1076 |
+
# cut decoder_input_ids if past is used
|
1077 |
+
if past_key_values is not None:
|
1078 |
+
past_length = past_key_values[0][0].shape[2]
|
1079 |
+
|
1080 |
+
# Some generation methods already pass only the last input ID
|
1081 |
+
if input_ids.shape[1] > past_length:
|
1082 |
+
remove_prefix_length = past_length
|
1083 |
+
else:
|
1084 |
+
# Default to old behavior: keep only final ID
|
1085 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1086 |
+
|
1087 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1088 |
+
|
1089 |
+
position_ids = kwargs.get("position_ids", None)
|
1090 |
+
if attention_mask is not None and position_ids is None:
|
1091 |
+
# create position_ids on the fly for batch generation
|
1092 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1093 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1094 |
+
if past_key_values:
|
1095 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1096 |
+
|
1097 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1098 |
+
if attention_mask is None:
|
1099 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1100 |
+
|
1101 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1102 |
+
if inputs_embeds is not None and past_key_values is None:
|
1103 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1104 |
+
else:
|
1105 |
+
model_inputs = {"input_ids": input_ids}
|
1106 |
+
model_inputs.update(
|
1107 |
+
{
|
1108 |
+
"attention_mask": attention_mask,
|
1109 |
+
"past_key_values": past_key_values,
|
1110 |
+
"position_ids": position_ids,
|
1111 |
+
}
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
return model_inputs
|
1115 |
+
|
1116 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1117 |
+
reordered_past = ()
|
1118 |
+
for layer_past in past_key_values:
|
1119 |
+
reordered_past += (
|
1120 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1121 |
+
+ layer_past[2:],
|
1122 |
+
)
|
1123 |
+
return reordered_past
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings(
|
1127 |
+
"""
|
1128 |
+
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
|
1129 |
+
|
1130 |
+
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1131 |
+
(e.g. GPT-1) do.
|
1132 |
+
|
1133 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1134 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1135 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1136 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1137 |
+
each row of the batch).
|
1138 |
+
""",
|
1139 |
+
GPT_NEOX_START_DOCSTRING,
|
1140 |
+
)
|
1141 |
+
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
|
1142 |
+
def __init__(self, config):
|
1143 |
+
super().__init__(config)
|
1144 |
+
self.num_labels = config.num_labels
|
1145 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1146 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1147 |
+
|
1148 |
+
# Initialize weights and apply final processing
|
1149 |
+
self.post_init()
|
1150 |
+
|
1151 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1152 |
+
@add_code_sample_docstrings(
|
1153 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1154 |
+
output_type=SequenceClassifierOutputWithPast,
|
1155 |
+
config_class=_CONFIG_FOR_DOC,
|
1156 |
+
)
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1160 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1161 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1162 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1163 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1164 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1165 |
+
labels: Optional[torch.LongTensor] = None,
|
1166 |
+
use_cache: Optional[bool] = None,
|
1167 |
+
output_attentions: Optional[bool] = None,
|
1168 |
+
output_hidden_states: Optional[bool] = None,
|
1169 |
+
return_dict: Optional[bool] = None,
|
1170 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1171 |
+
r"""
|
1172 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1173 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1174 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1175 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1176 |
+
"""
|
1177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1178 |
+
|
1179 |
+
outputs = self.gpt_neox(
|
1180 |
+
input_ids,
|
1181 |
+
attention_mask=attention_mask,
|
1182 |
+
position_ids=position_ids,
|
1183 |
+
head_mask=head_mask,
|
1184 |
+
inputs_embeds=inputs_embeds,
|
1185 |
+
past_key_values=past_key_values,
|
1186 |
+
use_cache=use_cache,
|
1187 |
+
output_attentions=output_attentions,
|
1188 |
+
output_hidden_states=output_hidden_states,
|
1189 |
+
return_dict=return_dict,
|
1190 |
+
)
|
1191 |
+
hidden_states = outputs[0]
|
1192 |
+
logits = self.score(hidden_states)
|
1193 |
+
|
1194 |
+
if input_ids is not None:
|
1195 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1196 |
+
else:
|
1197 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1198 |
+
|
1199 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1200 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1201 |
+
if self.config.pad_token_id is None:
|
1202 |
+
sequence_lengths = -1
|
1203 |
+
else:
|
1204 |
+
if input_ids is not None:
|
1205 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1206 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1207 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1208 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1209 |
+
else:
|
1210 |
+
sequence_lengths = -1
|
1211 |
+
logger.warning(
|
1212 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1213 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1217 |
+
|
1218 |
+
loss = None
|
1219 |
+
if labels is not None:
|
1220 |
+
labels = labels.to(logits.device)
|
1221 |
+
if self.config.problem_type is None:
|
1222 |
+
if self.num_labels == 1:
|
1223 |
+
self.config.problem_type = "regression"
|
1224 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1225 |
+
self.config.problem_type = "single_label_classification"
|
1226 |
+
else:
|
1227 |
+
self.config.problem_type = "multi_label_classification"
|
1228 |
+
|
1229 |
+
if self.config.problem_type == "regression":
|
1230 |
+
loss_fct = MSELoss()
|
1231 |
+
if self.num_labels == 1:
|
1232 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1233 |
+
else:
|
1234 |
+
loss = loss_fct(pooled_logits, labels)
|
1235 |
+
elif self.config.problem_type == "single_label_classification":
|
1236 |
+
loss_fct = CrossEntropyLoss()
|
1237 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1238 |
+
elif self.config.problem_type == "multi_label_classification":
|
1239 |
+
loss_fct = BCEWithLogitsLoss()
|
1240 |
+
loss = loss_fct(pooled_logits, labels)
|
1241 |
+
if not return_dict:
|
1242 |
+
output = (pooled_logits,) + outputs[1:]
|
1243 |
+
return ((loss,) + output) if loss is not None else output
|
1244 |
+
|
1245 |
+
return SequenceClassifierOutputWithPast(
|
1246 |
+
loss=loss,
|
1247 |
+
logits=pooled_logits,
|
1248 |
+
past_key_values=outputs.past_key_values,
|
1249 |
+
hidden_states=outputs.hidden_states,
|
1250 |
+
attentions=outputs.attentions,
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
|
1254 |
+
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
|
1255 |
+
def __init__(self, config):
|
1256 |
+
super().__init__(config)
|
1257 |
+
self.num_labels = config.num_labels
|
1258 |
+
|
1259 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1260 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
1261 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1262 |
+
|
1263 |
+
# Initialize weights and apply final processing
|
1264 |
+
self.post_init()
|
1265 |
+
|
1266 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1267 |
+
@add_code_sample_docstrings(
|
1268 |
+
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
|
1269 |
+
output_type=TokenClassifierOutput,
|
1270 |
+
config_class=_CONFIG_FOR_DOC,
|
1271 |
+
expected_loss=0.25,
|
1272 |
+
)
|
1273 |
+
def forward(
|
1274 |
+
self,
|
1275 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1276 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1277 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1278 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1279 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1280 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1281 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1282 |
+
labels: Optional[torch.LongTensor] = None,
|
1283 |
+
use_cache: Optional[bool] = None,
|
1284 |
+
output_attentions: Optional[bool] = None,
|
1285 |
+
output_hidden_states: Optional[bool] = None,
|
1286 |
+
return_dict: Optional[bool] = None,
|
1287 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1288 |
+
r"""
|
1289 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1290 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1291 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1292 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1293 |
+
"""
|
1294 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1295 |
+
|
1296 |
+
outputs = self.gpt_neox(
|
1297 |
+
input_ids,
|
1298 |
+
past_key_values=past_key_values,
|
1299 |
+
attention_mask=attention_mask,
|
1300 |
+
position_ids=position_ids,
|
1301 |
+
head_mask=head_mask,
|
1302 |
+
inputs_embeds=inputs_embeds,
|
1303 |
+
use_cache=use_cache,
|
1304 |
+
output_attentions=output_attentions,
|
1305 |
+
output_hidden_states=output_hidden_states,
|
1306 |
+
return_dict=return_dict,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
hidden_states = outputs[0]
|
1310 |
+
hidden_states = self.dropout(hidden_states)
|
1311 |
+
logits = self.classifier(hidden_states)
|
1312 |
+
|
1313 |
+
loss = None
|
1314 |
+
if labels is not None:
|
1315 |
+
labels = labels.to(logits.device)
|
1316 |
+
loss_fct = CrossEntropyLoss()
|
1317 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[2:]
|
1321 |
+
return ((loss,) + output) if loss is not None else output
|
1322 |
+
|
1323 |
+
return TokenClassifierOutput(
|
1324 |
+
loss=loss,
|
1325 |
+
logits=logits,
|
1326 |
+
hidden_states=outputs.hidden_states,
|
1327 |
+
attentions=outputs.attentions,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
|
1331 |
+
@add_start_docstrings(
|
1332 |
+
"""
|
1333 |
+
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
|
1334 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1335 |
+
""",
|
1336 |
+
GPT_NEOX_START_DOCSTRING,
|
1337 |
+
)
|
1338 |
+
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
|
1339 |
+
def __init__(self, config):
|
1340 |
+
super().__init__(config)
|
1341 |
+
self.num_labels = config.num_labels
|
1342 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1343 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1344 |
+
|
1345 |
+
# Initialize weights and apply final processing
|
1346 |
+
self.post_init()
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1349 |
+
@add_code_sample_docstrings(
|
1350 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1351 |
+
output_type=QuestionAnsweringModelOutput,
|
1352 |
+
config_class=_CONFIG_FOR_DOC,
|
1353 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1354 |
+
)
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1358 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1359 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1361 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1363 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1364 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
return_dict: Optional[bool] = None,
|
1368 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1369 |
+
r"""
|
1370 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1371 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1372 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1373 |
+
are not taken into account for computing the loss.
|
1374 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
outputs = self.gpt_neox(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
position_ids=position_ids,
|
1385 |
+
head_mask=head_mask,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
output_attentions=output_attentions,
|
1388 |
+
output_hidden_states=output_hidden_states,
|
1389 |
+
return_dict=return_dict,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
sequence_output = outputs[0]
|
1393 |
+
|
1394 |
+
logits = self.qa_outputs(sequence_output)
|
1395 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1396 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1397 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1398 |
+
|
1399 |
+
total_loss = None
|
1400 |
+
if start_positions is not None and end_positions is not None:
|
1401 |
+
# If we are on multi-GPU, split add a dimension
|
1402 |
+
if len(start_positions.size()) > 1:
|
1403 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1404 |
+
if len(end_positions.size()) > 1:
|
1405 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1406 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1407 |
+
ignored_index = start_logits.size(1)
|
1408 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1409 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1410 |
+
|
1411 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1412 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1413 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1414 |
+
total_loss = (start_loss + end_loss) / 2
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1418 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1419 |
+
|
1420 |
+
return QuestionAnsweringModelOutput(
|
1421 |
+
loss=total_loss,
|
1422 |
+
start_logits=start_logits,
|
1423 |
+
end_logits=end_logits,
|
1424 |
+
hidden_states=outputs.hidden_states,
|
1425 |
+
attentions=outputs.attentions,
|
1426 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for GPTNeoX."""
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import pre_tokenizers, processors
|
20 |
+
|
21 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
28 |
+
|
29 |
+
|
30 |
+
class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
|
31 |
+
"""
|
32 |
+
Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
33 |
+
Byte-Pair-Encoding.
|
34 |
+
|
35 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
36 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
37 |
+
|
38 |
+
```python
|
39 |
+
>>> from transformers import GPTNeoXTokenizerFast
|
40 |
+
|
41 |
+
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
|
42 |
+
>>> tokenizer("Hello world")["input_ids"]
|
43 |
+
[15496, 995]
|
44 |
+
|
45 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
46 |
+
[18435, 995]
|
47 |
+
```
|
48 |
+
|
49 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
50 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
51 |
+
|
52 |
+
<Tip>
|
53 |
+
|
54 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
55 |
+
|
56 |
+
</Tip>
|
57 |
+
|
58 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
59 |
+
refer to this superclass for more information regarding those methods.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_file (`str`):
|
63 |
+
Path to the vocabulary file.
|
64 |
+
merges_file (`str`):
|
65 |
+
Path to the merges file.
|
66 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
67 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
68 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
69 |
+
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
70 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
71 |
+
token instead.
|
72 |
+
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
73 |
+
The beginning of sequence token.
|
74 |
+
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
75 |
+
The end of sequence token.
|
76 |
+
pad_token (`str`, *optional*):
|
77 |
+
Token for padding a sequence.
|
78 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
80 |
+
other word. (GPTNeoX tokenizer detect beginning of words by the preceding space).
|
81 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether or not to add a `bos_token` at the start of sequences.
|
83 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
85 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
|
87 |
+
"""
|
88 |
+
|
89 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
90 |
+
model_input_names = ["input_ids", "attention_mask"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_file=None,
|
95 |
+
merges_file=None,
|
96 |
+
tokenizer_file=None,
|
97 |
+
unk_token="<|endoftext|>",
|
98 |
+
bos_token="<|endoftext|>",
|
99 |
+
eos_token="<|endoftext|>",
|
100 |
+
pad_token=None,
|
101 |
+
add_bos_token=False,
|
102 |
+
add_eos_token=False,
|
103 |
+
add_prefix_space=False,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(
|
107 |
+
vocab_file,
|
108 |
+
merges_file,
|
109 |
+
tokenizer_file=tokenizer_file,
|
110 |
+
unk_token=unk_token,
|
111 |
+
bos_token=bos_token,
|
112 |
+
eos_token=eos_token,
|
113 |
+
pad_token=pad_token,
|
114 |
+
add_bos_token=add_bos_token,
|
115 |
+
add_eos_token=add_eos_token,
|
116 |
+
add_prefix_space=add_prefix_space,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
|
120 |
+
self._add_bos_token = add_bos_token
|
121 |
+
self._add_eos_token = add_eos_token
|
122 |
+
self.update_post_processor()
|
123 |
+
|
124 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
125 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
126 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
127 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
128 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
129 |
+
|
130 |
+
self.add_prefix_space = add_prefix_space
|
131 |
+
|
132 |
+
@property
|
133 |
+
def add_eos_token(self):
|
134 |
+
return self._add_eos_token
|
135 |
+
|
136 |
+
@property
|
137 |
+
def add_bos_token(self):
|
138 |
+
return self._add_bos_token
|
139 |
+
|
140 |
+
@add_eos_token.setter
|
141 |
+
def add_eos_token(self, value):
|
142 |
+
self._add_eos_token = value
|
143 |
+
self.update_post_processor()
|
144 |
+
|
145 |
+
@add_bos_token.setter
|
146 |
+
def add_bos_token(self, value):
|
147 |
+
self._add_bos_token = value
|
148 |
+
self.update_post_processor()
|
149 |
+
|
150 |
+
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
|
151 |
+
def update_post_processor(self):
|
152 |
+
"""
|
153 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
154 |
+
"""
|
155 |
+
bos = self.bos_token
|
156 |
+
bos_token_id = self.bos_token_id
|
157 |
+
if bos is None and self.add_bos_token:
|
158 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
159 |
+
|
160 |
+
eos = self.eos_token
|
161 |
+
eos_token_id = self.eos_token_id
|
162 |
+
if eos is None and self.add_eos_token:
|
163 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
164 |
+
|
165 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
166 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
167 |
+
|
168 |
+
special_tokens = []
|
169 |
+
if self.add_bos_token:
|
170 |
+
special_tokens.append((bos, bos_token_id))
|
171 |
+
if self.add_eos_token:
|
172 |
+
special_tokens.append((eos, eos_token_id))
|
173 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
174 |
+
single=single, pair=pair, special_tokens=special_tokens
|
175 |
+
)
|
176 |
+
|
177 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
|
178 |
+
def get_special_tokens_mask(
|
179 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
180 |
+
) -> List[int]:
|
181 |
+
"""
|
182 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
183 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
token_ids_0 (`List[int]`):
|
187 |
+
List of IDs.
|
188 |
+
token_ids_1 (`List[int]`, *optional*):
|
189 |
+
Optional second list of IDs for sequence pairs.
|
190 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
191 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
195 |
+
"""
|
196 |
+
if already_has_special_tokens:
|
197 |
+
return super().get_special_tokens_mask(
|
198 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
199 |
+
)
|
200 |
+
|
201 |
+
bos_token_id = [1] if self.add_bos_token else []
|
202 |
+
eos_token_id = [1] if self.add_eos_token else []
|
203 |
+
|
204 |
+
if token_ids_1 is None:
|
205 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
206 |
+
return (
|
207 |
+
bos_token_id
|
208 |
+
+ ([0] * len(token_ids_0))
|
209 |
+
+ eos_token_id
|
210 |
+
+ bos_token_id
|
211 |
+
+ ([0] * len(token_ids_1))
|
212 |
+
+ eos_token_id
|
213 |
+
)
|
214 |
+
|
215 |
+
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
|
216 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
217 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
218 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
219 |
+
|
220 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
221 |
+
|
222 |
+
if token_ids_1 is not None:
|
223 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
224 |
+
|
225 |
+
return output
|
226 |
+
|
227 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
228 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
229 |
+
return tuple(files)
|
230 |
+
|
231 |
+
@property
|
232 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
|
233 |
+
def default_chat_template(self):
|
234 |
+
"""
|
235 |
+
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
236 |
+
"""
|
237 |
+
logger.warning_once(
|
238 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
239 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
240 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
241 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
242 |
+
)
|
243 |
+
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|
venv/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tokenizers_available,
|
21 |
+
is_torch_available,
|
22 |
+
is_vision_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
|
28 |
+
"processing_layoutlmv2": ["LayoutLMv2Processor"],
|
29 |
+
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_layoutlmv2_fast"] = ["LayoutLMv2TokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_vision_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["feature_extraction_layoutlmv2"] = ["LayoutLMv2FeatureExtractor"]
|
47 |
+
_import_structure["image_processing_layoutlmv2"] = ["LayoutLMv2ImageProcessor"]
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
_import_structure["modeling_layoutlmv2"] = [
|
56 |
+
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
57 |
+
"LayoutLMv2ForQuestionAnswering",
|
58 |
+
"LayoutLMv2ForSequenceClassification",
|
59 |
+
"LayoutLMv2ForTokenClassification",
|
60 |
+
"LayoutLMv2Layer",
|
61 |
+
"LayoutLMv2Model",
|
62 |
+
"LayoutLMv2PreTrainedModel",
|
63 |
+
]
|
64 |
+
|
65 |
+
if TYPE_CHECKING:
|
66 |
+
from .configuration_layoutlmv2 import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv2Config
|
67 |
+
from .processing_layoutlmv2 import LayoutLMv2Processor
|
68 |
+
from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer
|
69 |
+
|
70 |
+
try:
|
71 |
+
if not is_tokenizers_available():
|
72 |
+
raise OptionalDependencyNotAvailable()
|
73 |
+
except OptionalDependencyNotAvailable:
|
74 |
+
pass
|
75 |
+
else:
|
76 |
+
from .tokenization_layoutlmv2_fast import LayoutLMv2TokenizerFast
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_vision_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
from .feature_extraction_layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor
|
85 |
+
|
86 |
+
try:
|
87 |
+
if not is_torch_available():
|
88 |
+
raise OptionalDependencyNotAvailable()
|
89 |
+
except OptionalDependencyNotAvailable:
|
90 |
+
pass
|
91 |
+
else:
|
92 |
+
from .modeling_layoutlmv2 import (
|
93 |
+
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
94 |
+
LayoutLMv2ForQuestionAnswering,
|
95 |
+
LayoutLMv2ForSequenceClassification,
|
96 |
+
LayoutLMv2ForTokenClassification,
|
97 |
+
LayoutLMv2Layer,
|
98 |
+
LayoutLMv2Model,
|
99 |
+
LayoutLMv2PreTrainedModel,
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
import sys
|
103 |
+
|
104 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|