Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log +42 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/requirements.txt +163 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-metadata.json +810 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug-internal.log +181 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/run-yu37vekm.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/run-pxpzv850.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug-internal.log +137 -0
- lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug.log +28 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log +34 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug-internal.log +183 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/run-qlxjd76q.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log +34 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug-internal.log +185 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/run-2cqsvyos.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/config.yaml +375 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/media/table/evaluation/eval_results_1_6529e3311149275b8699.table.json +1 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/output.log +805 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/requirements.txt +154 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug-internal.log +0 -0
- lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug.log +36 -0
- venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/configuration_align.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/convert_align_tf_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/modeling_align.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/processing_align.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/align/configuration_align.py +383 -0
- venv/lib/python3.10/site-packages/transformers/models/align/modeling_align.py +1633 -0
- venv/lib/python3.10/site-packages/transformers/models/align/processing_align.py +121 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/configuration_conditional_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/feature_extraction_conditional_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/image_processing_conditional_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/modeling_conditional_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/configuration_conditional_detr.py +273 -0
- venv/lib/python3.10/site-packages/transformers/models/conditional_detr/image_processing_conditional_detr.py +1777 -0
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.40.2
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1715682653
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.40.2
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-14:10:30:54,403 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-14:10:30:58,879 INFO [__main__.py:335] Selected Tasks: ['indiccopa-hi']
|
4 |
+
2024-05-14:10:30:58,881 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-14:10:30:58,881 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/data/cronscript/ckpts//hf_ckpt//global_step120'}
|
6 |
+
Traceback (most recent call last):
|
7 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 398, in cached_file
|
8 |
+
resolved_file = hf_hub_download(
|
9 |
+
File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 106, in _inner_fn
|
10 |
+
validate_repo_id(arg_value)
|
11 |
+
File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 154, in validate_repo_id
|
12 |
+
raise HFValidationError(
|
13 |
+
huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/data/cronscript/ckpts//hf_ckpt//global_step120'. Use `repo_type` argument if needed.
|
14 |
+
The above exception was the direct cause of the following exception:
|
15 |
+
Traceback (most recent call last):
|
16 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
17 |
+
return _run_code(code, main_globals, None,
|
18 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
19 |
+
exec(code, run_globals)
|
20 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
21 |
+
cli_evaluate()
|
22 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
23 |
+
results = evaluator.simple_evaluate(
|
24 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
25 |
+
return fn(*args, **kwargs)
|
26 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
27 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
28 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
29 |
+
return cls(**args, **args2)
|
30 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
31 |
+
self._get_config(
|
32 |
+
File "/data/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
33 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
34 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 928, in from_pretrained
|
35 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
36 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 631, in get_config_dict
|
37 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
38 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 686, in _get_config_dict
|
39 |
+
resolved_config_file = cached_file(
|
40 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 462, in cached_file
|
41 |
+
raise EnvironmentError(
|
42 |
+
OSError: Incorrect path_or_model_id: '/data/cronscript/ckpts//hf_ckpt//global_step120'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/requirements.txt
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.3
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.2
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.4
|
12 |
+
aiosignal==1.3.1
|
13 |
+
antlr4-python3-runtime==4.9.3
|
14 |
+
anyio==4.3.0
|
15 |
+
async-timeout==4.0.3
|
16 |
+
attrs==23.2.0
|
17 |
+
av==9.2.0
|
18 |
+
cachetools==5.3.3
|
19 |
+
certifi==2024.2.2
|
20 |
+
cffi==1.15.1
|
21 |
+
cfgv==3.4.0
|
22 |
+
chardet==5.2.0
|
23 |
+
charset-normalizer==3.3.2
|
24 |
+
click==8.1.7
|
25 |
+
cmake==3.29.2
|
26 |
+
colorama==0.4.6
|
27 |
+
datasets==2.19.1
|
28 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
29 |
+
dill==0.3.8
|
30 |
+
distlib==0.3.8
|
31 |
+
distro==1.9.0
|
32 |
+
docker-pycreds==0.4.0
|
33 |
+
einops==0.8.0
|
34 |
+
evaluate==0.4.2
|
35 |
+
exceptiongroup==1.2.0
|
36 |
+
expecttest==0.2.1
|
37 |
+
filelock==3.13.4
|
38 |
+
frozenlist==1.4.1
|
39 |
+
fsspec==2024.3.1
|
40 |
+
gitdb==4.0.11
|
41 |
+
google-auth-oauthlib==0.4.6
|
42 |
+
google-auth==2.29.0
|
43 |
+
grpcio==1.62.1
|
44 |
+
h11==0.14.0
|
45 |
+
habana-media-loader==1.15.1.15
|
46 |
+
habana-pyhlml==1.15.1.15
|
47 |
+
habana-torch-dataloader==1.15.1.15
|
48 |
+
habana-torch-plugin==1.15.1.15
|
49 |
+
habana_gpu_migration==1.15.1.15
|
50 |
+
habana_quantization_toolkit==1.15.1.15
|
51 |
+
hjson==3.1.0
|
52 |
+
httpcore==1.0.5
|
53 |
+
httpx==0.27.0
|
54 |
+
huggingface-hub==0.23.0
|
55 |
+
identify==2.5.35
|
56 |
+
idna==3.7
|
57 |
+
importlib_resources==6.4.0
|
58 |
+
iniconfig==2.0.0
|
59 |
+
joblib==1.4.2
|
60 |
+
jsonlines==4.0.0
|
61 |
+
lightning-habana==1.4.0
|
62 |
+
lightning-utilities==0.11.2
|
63 |
+
lightning==2.2.0.post0
|
64 |
+
lm_eval==0.3.0
|
65 |
+
lm_eval==0.4.2
|
66 |
+
lm_eval==0.4.2
|
67 |
+
lm_eval==0.4.2
|
68 |
+
mbstrdecoder==1.1.3
|
69 |
+
more-itertools==10.2.0
|
70 |
+
mpi4py==3.1.4
|
71 |
+
mpmath==1.3.0
|
72 |
+
multidict==6.0.5
|
73 |
+
multiprocess==0.70.16
|
74 |
+
networkx==3.3
|
75 |
+
ninja==1.11.1.1
|
76 |
+
nltk==3.8.1
|
77 |
+
nodeenv==1.8.0
|
78 |
+
numexpr==2.10.0
|
79 |
+
numpy==1.23.5
|
80 |
+
oauthlib==3.2.2
|
81 |
+
omegaconf==2.3.0
|
82 |
+
openai==1.29.0
|
83 |
+
packaging==24.0
|
84 |
+
pandas==2.0.1
|
85 |
+
pathspec==0.12.1
|
86 |
+
pathvalidate==3.2.0
|
87 |
+
peft==0.10.0
|
88 |
+
perfetto==0.7.0
|
89 |
+
pip==22.0.2
|
90 |
+
pip==23.3.1
|
91 |
+
platformdirs==4.2.0
|
92 |
+
pluggy==1.4.0
|
93 |
+
portalocker==2.8.2
|
94 |
+
pre-commit==3.3.3
|
95 |
+
protobuf==3.20.3
|
96 |
+
psutil==5.9.8
|
97 |
+
py-cpuinfo==9.0.0
|
98 |
+
pyarrow-hotfix==0.6
|
99 |
+
pyarrow==16.0.0
|
100 |
+
pyasn1==0.6.0
|
101 |
+
pyasn1_modules==0.4.0
|
102 |
+
pybind11==2.10.4
|
103 |
+
pycountry==23.12.11
|
104 |
+
pycparser==2.22
|
105 |
+
pydantic==1.10.13
|
106 |
+
pynvml==8.0.4
|
107 |
+
pytablewriter==1.2.0
|
108 |
+
pytest==8.1.1
|
109 |
+
python-dateutil==2.9.0.post0
|
110 |
+
pytorch-lightning==2.2.2
|
111 |
+
pytz==2024.1
|
112 |
+
regex==2023.5.5
|
113 |
+
requests-oauthlib==2.0.0
|
114 |
+
requests==2.31.0
|
115 |
+
rouge_score==0.1.2
|
116 |
+
rsa==4.9
|
117 |
+
sacrebleu==1.5.0
|
118 |
+
safetensors==0.4.3
|
119 |
+
scikit-learn==1.4.2
|
120 |
+
scipy==1.13.0
|
121 |
+
sentencepiece==0.2.0
|
122 |
+
sentry-sdk==2.1.1
|
123 |
+
setproctitle==1.3.3
|
124 |
+
setuptools==59.6.0
|
125 |
+
setuptools==69.5.1
|
126 |
+
six==1.16.0
|
127 |
+
smmap==5.0.1
|
128 |
+
sniffio==1.3.1
|
129 |
+
sqlitedict==2.1.0
|
130 |
+
symengine==0.11.0
|
131 |
+
sympy==1.12
|
132 |
+
tabledata==1.3.3
|
133 |
+
tcolorpy==0.1.6
|
134 |
+
tdqm==0.0.1
|
135 |
+
tensorboard-data-server==0.6.1
|
136 |
+
tensorboard-plugin-wit==1.8.1
|
137 |
+
tensorboard==2.11.2
|
138 |
+
threadpoolctl==3.5.0
|
139 |
+
tokenizers==0.19.1
|
140 |
+
tomli==2.0.1
|
141 |
+
torch==2.2.0a0+git8964477
|
142 |
+
torch_tb_profiler==0.4.0
|
143 |
+
torchaudio==2.2.0+08901ad
|
144 |
+
torchdata==0.7.1+5e6f7b7
|
145 |
+
torchmetrics==1.3.2
|
146 |
+
torchtext==0.17.0+400da5c
|
147 |
+
torchvision==0.17.0+b2383d4
|
148 |
+
tqdm-multiprocess==0.0.11
|
149 |
+
tqdm==4.66.2
|
150 |
+
transformers==4.40.2
|
151 |
+
typepy==1.3.2
|
152 |
+
typing_extensions==4.11.0
|
153 |
+
tzdata==2024.1
|
154 |
+
urllib3==1.26.18
|
155 |
+
virtualenv==20.25.1
|
156 |
+
wandb==0.17.0
|
157 |
+
wheel==0.37.1
|
158 |
+
wheel==0.43.0
|
159 |
+
word2number==1.1
|
160 |
+
xxhash==3.4.1
|
161 |
+
yamllint==1.35.1
|
162 |
+
yarl==1.9.4
|
163 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-metadata.json
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-14T10:30:54.266112",
|
5 |
+
"startedAt": "2024-05-14T10:30:53.886264",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/data/cronscript/ckpts//hf_ckpt//global_step120",
|
13 |
+
"--tasks",
|
14 |
+
"indiccopa-hi",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/data/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "vizzhy-150-3",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 76,
|
33 |
+
"cpu_count_logical": 152,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 3394.3469736842103,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3332.668,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3332.543,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 3316.868,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 3400.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 3400.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 3400.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 3400.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 3400.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 3400.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 3400.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 3400.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 3400.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 3400.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 3330.683,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 3400.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 3400.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 3400.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 3400.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 3400.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 3400.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 3400.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 3400.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 3400.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 3400.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 3400.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 3400.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 3400.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 3400.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 3400.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 3400.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 3400.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 3400.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 3400.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 3400.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 3400.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 3400.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 3400.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 3400.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 3300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 3300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 3400.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 3400.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 3400.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 3358.507,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 3400.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 3400.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 3400.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 3400.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 3400.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 3400.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 3400.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 3400.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 3400.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 3400.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 3400.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 3400.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 3400.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 3400.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 3400.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 3400.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 3400.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 3400.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 3400.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 3400.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 3400.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 3400.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 3400.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 3400.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 3400.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 3400.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 3400.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 3400.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 3400.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 3400.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 3400.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 3400.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 3400.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 3318.849,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 3400.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 3400.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 3400.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 3400.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 3400.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 3400.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 3400.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 3400.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 3400.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 3400.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 3400.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 3400.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 3400.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 3400.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 3400.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 3400.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 3400.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 3400.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 3400.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 3400.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 3400.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 3400.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 3400.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 3400.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 3400.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 3400.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 3400.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 3400.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 3400.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 3400.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 3400.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 3400.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 3400.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 3400.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 3400.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 3400.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 3400.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 3400.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 3400.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 3400.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 3400.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 3400.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 3400.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 3400.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 3400.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 3400.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 3400.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 3400.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 3400.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 3400.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 3300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 3400.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 3400.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 3400.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 3400.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 3400.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 3400.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 3400.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 3400.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 3400.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 3400.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 3400.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 3400.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 3400.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 3400.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 3400.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 3400.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 3400.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 3400.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 3400.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 3400.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 3400.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
}
|
800 |
+
],
|
801 |
+
"disk": {
|
802 |
+
"/": {
|
803 |
+
"total": 866.4415092468262,
|
804 |
+
"used": 76.92241668701172
|
805 |
+
}
|
806 |
+
},
|
807 |
+
"memory": {
|
808 |
+
"total": 1007.5000267028809
|
809 |
+
}
|
810 |
+
}
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 5}}
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug-internal.log
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-14 10:30:53,898 INFO StreamThr :8236 [internal.py:wandb_internal():85] W&B internal server running at pid: 8236, started at: 2024-05-14 10:30:53.897695
|
2 |
+
2024-05-14 10:30:53,900 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-14 10:30:53,901 INFO WriterThread:8236 [datastore.py:open_for_write():87] open: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/run-yu37vekm.wandb
|
4 |
+
2024-05-14 10:30:53,901 DEBUG SenderThread:8236 [sender.py:send():378] send: header
|
5 |
+
2024-05-14 10:30:53,911 DEBUG SenderThread:8236 [sender.py:send():378] send: run
|
6 |
+
2024-05-14 10:30:54,125 INFO SenderThread:8236 [dir_watcher.py:__init__():211] watching files in: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files
|
7 |
+
2024-05-14 10:30:54,125 INFO SenderThread:8236 [sender.py:_start_run_threads():1123] run started: yu37vekm with start time 1715682653.897371
|
8 |
+
2024-05-14 10:30:54,132 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-14 10:30:54,132 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-14 10:30:54,215 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-14 10:30:54,216 DEBUG HandlerThread:8236 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-14 10:30:54,216 DEBUG HandlerThread:8236 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-14 10:30:54,216 INFO HandlerThread:8236 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-14 10:30:54,217 INFO SystemMonitor:8236 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-14 10:30:54,217 INFO HandlerThread:8236 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-14 10:30:54,217 INFO SystemMonitor:8236 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-14 10:30:54,217 INFO SystemMonitor:8236 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-14 10:30:54,218 INFO SystemMonitor:8236 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-14 10:30:54,218 INFO SystemMonitor:8236 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-14 10:30:54,266 DEBUG HandlerThread:8236 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-14 10:30:54,274 DEBUG HandlerThread:8236 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-14 10:30:54,299 ERROR HandlerThread:8236 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/data/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /data/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-14 10:30:54,299 DEBUG HandlerThread:8236 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-14 10:30:54,300 DEBUG HandlerThread:8236 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-14 10:30:54,300 DEBUG HandlerThread:8236 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-14T10:30:54.266112', 'startedAt': '2024-05-14T10:30:53.886264', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/data/cronscript/ckpts//hf_ckpt//global_step120', '--tasks', 'indiccopa-hi', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/data/cronscript/lm-evaluation-harness', 'host': 'vizzhy-150-3', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 76, 'cpu_count_logical': 152, 'cpu_freq': {'current': 3394.3469736842103, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3332.668, 'min': 800.0, 'max': 3400.0}, {'current': 3332.543, 'min': 800.0, 'max': 3400.0}, {'current': 3316.868, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3330.683, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3358.507, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3318.849, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 866.4415092468262, 'used': 76.92241668701172}}, 'memory': {'total': 1007.5000267028809}}
|
31 |
+
2024-05-14 10:30:54,300 INFO HandlerThread:8236 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-14 10:30:54,300 INFO HandlerThread:8236 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-14 10:30:54,301 INFO HandlerThread:8236 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-14 10:30:54,305 DEBUG SenderThread:8236 [sender.py:send():378] send: files
|
35 |
+
2024-05-14 10:30:54,305 INFO SenderThread:8236 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-14 10:30:54,400 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-14 10:30:54,400 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: stop_status
|
38 |
+
2024-05-14 10:30:54,400 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: python_packages
|
39 |
+
2024-05-14 10:30:54,401 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-14 10:30:54,631 DEBUG SenderThread:8236 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-14 10:30:54,812 INFO wandb-upload_0:8236 [upload_job.py:push():130] Uploaded file /tmp/tmp7gniqj8owandb/oxues1px-wandb-metadata.json
|
42 |
+
2024-05-14 10:30:55,127 INFO Thread-12 :8236 [dir_watcher.py:_on_file_created():271] file/dir created: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log
|
43 |
+
2024-05-14 10:30:55,127 INFO Thread-12 :8236 [dir_watcher.py:_on_file_created():271] file/dir created: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/requirements.txt
|
44 |
+
2024-05-14 10:30:55,127 INFO Thread-12 :8236 [dir_watcher.py:_on_file_created():271] file/dir created: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-metadata.json
|
45 |
+
2024-05-14 10:30:57,127 INFO Thread-12 :8236 [dir_watcher.py:_on_file_modified():288] file/dir modified: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log
|
46 |
+
2024-05-14 10:30:59,882 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-14 10:30:59,949 DEBUG SenderThread:8236 [sender.py:send():378] send: exit
|
48 |
+
2024-05-14 10:30:59,949 INFO SenderThread:8236 [sender.py:send_exit():585] handling exit code: 1
|
49 |
+
2024-05-14 10:30:59,949 INFO SenderThread:8236 [sender.py:send_exit():587] handling runtime: 5
|
50 |
+
2024-05-14 10:30:59,950 INFO SenderThread:8236 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
51 |
+
2024-05-14 10:30:59,950 INFO SenderThread:8236 [sender.py:send_exit():593] send defer
|
52 |
+
2024-05-14 10:30:59,951 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
53 |
+
2024-05-14 10:30:59,951 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 0
|
54 |
+
2024-05-14 10:30:59,951 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
55 |
+
2024-05-14 10:30:59,951 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 0
|
56 |
+
2024-05-14 10:30:59,951 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 1
|
57 |
+
2024-05-14 10:30:59,951 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
58 |
+
2024-05-14 10:30:59,951 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 1
|
59 |
+
2024-05-14 10:30:59,951 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
60 |
+
2024-05-14 10:30:59,951 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 1
|
61 |
+
2024-05-14 10:30:59,951 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 2
|
62 |
+
2024-05-14 10:30:59,951 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
63 |
+
2024-05-14 10:30:59,951 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 2
|
64 |
+
2024-05-14 10:30:59,951 INFO HandlerThread:8236 [system_monitor.py:finish():203] Stopping system monitor
|
65 |
+
2024-05-14 10:30:59,952 INFO HandlerThread:8236 [interfaces.py:finish():200] Joined cpu monitor
|
66 |
+
2024-05-14 10:30:59,952 DEBUG SystemMonitor:8236 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
67 |
+
2024-05-14 10:30:59,952 INFO HandlerThread:8236 [interfaces.py:finish():200] Joined disk monitor
|
68 |
+
2024-05-14 10:30:59,952 DEBUG SystemMonitor:8236 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-14 10:30:59,952 INFO HandlerThread:8236 [interfaces.py:finish():200] Joined memory monitor
|
70 |
+
2024-05-14 10:30:59,952 DEBUG SystemMonitor:8236 [system_monitor.py:_start():183] Publishing last batch of metrics
|
71 |
+
2024-05-14 10:30:59,952 INFO HandlerThread:8236 [interfaces.py:finish():200] Joined network monitor
|
72 |
+
2024-05-14 10:30:59,954 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
73 |
+
2024-05-14 10:30:59,954 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 2
|
74 |
+
2024-05-14 10:30:59,954 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 3
|
75 |
+
2024-05-14 10:30:59,954 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
76 |
+
2024-05-14 10:30:59,954 DEBUG SenderThread:8236 [sender.py:send():378] send: stats
|
77 |
+
2024-05-14 10:30:59,954 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 3
|
78 |
+
2024-05-14 10:30:59,955 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
79 |
+
2024-05-14 10:30:59,955 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 3
|
80 |
+
2024-05-14 10:30:59,955 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 4
|
81 |
+
2024-05-14 10:30:59,955 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
82 |
+
2024-05-14 10:30:59,955 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 4
|
83 |
+
2024-05-14 10:30:59,955 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
84 |
+
2024-05-14 10:30:59,955 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 4
|
85 |
+
2024-05-14 10:30:59,955 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 5
|
86 |
+
2024-05-14 10:30:59,955 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
87 |
+
2024-05-14 10:30:59,955 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 5
|
88 |
+
2024-05-14 10:30:59,956 DEBUG SenderThread:8236 [sender.py:send():378] send: summary
|
89 |
+
2024-05-14 10:30:59,956 INFO SenderThread:8236 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
90 |
+
2024-05-14 10:30:59,956 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
91 |
+
2024-05-14 10:30:59,956 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 5
|
92 |
+
2024-05-14 10:30:59,956 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 6
|
93 |
+
2024-05-14 10:30:59,957 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
94 |
+
2024-05-14 10:30:59,957 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 6
|
95 |
+
2024-05-14 10:30:59,957 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
96 |
+
2024-05-14 10:30:59,957 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 6
|
97 |
+
2024-05-14 10:30:59,959 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: status_report
|
98 |
+
2024-05-14 10:31:00,025 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 7
|
99 |
+
2024-05-14 10:31:00,026 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
100 |
+
2024-05-14 10:31:00,026 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 7
|
101 |
+
2024-05-14 10:31:00,026 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
102 |
+
2024-05-14 10:31:00,026 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 7
|
103 |
+
2024-05-14 10:31:00,129 INFO Thread-12 :8236 [dir_watcher.py:_on_file_modified():288] file/dir modified: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/config.yaml
|
104 |
+
2024-05-14 10:31:00,129 INFO Thread-12 :8236 [dir_watcher.py:_on_file_created():271] file/dir created: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-summary.json
|
105 |
+
2024-05-14 10:31:00,642 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 8
|
106 |
+
2024-05-14 10:31:00,642 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
107 |
+
2024-05-14 10:31:00,643 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 8
|
108 |
+
2024-05-14 10:31:00,643 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
109 |
+
2024-05-14 10:31:00,643 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 8
|
110 |
+
2024-05-14 10:31:00,643 INFO SenderThread:8236 [job_builder.py:build():432] Attempting to build job artifact
|
111 |
+
2024-05-14 10:31:00,643 INFO SenderThread:8236 [job_builder.py:_get_source_type():576] no source found
|
112 |
+
2024-05-14 10:31:00,643 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 9
|
113 |
+
2024-05-14 10:31:00,644 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
114 |
+
2024-05-14 10:31:00,644 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 9
|
115 |
+
2024-05-14 10:31:00,644 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
116 |
+
2024-05-14 10:31:00,644 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 9
|
117 |
+
2024-05-14 10:31:00,644 INFO SenderThread:8236 [dir_watcher.py:finish():358] shutting down directory watcher
|
118 |
+
2024-05-14 10:31:00,949 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: poll_exit
|
119 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:_on_file_modified():288] file/dir modified: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log
|
120 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():388] scan: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files
|
121 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():402] scan save: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/config.yaml config.yaml
|
122 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():402] scan save: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/requirements.txt requirements.txt
|
123 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():402] scan save: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log output.log
|
124 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():402] scan save: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-summary.json wandb-summary.json
|
125 |
+
2024-05-14 10:31:01,130 INFO SenderThread:8236 [dir_watcher.py:finish():402] scan save: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-metadata.json wandb-metadata.json
|
126 |
+
2024-05-14 10:31:01,131 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 10
|
127 |
+
2024-05-14 10:31:01,131 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: poll_exit
|
128 |
+
2024-05-14 10:31:01,131 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
129 |
+
2024-05-14 10:31:01,131 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 10
|
130 |
+
2024-05-14 10:31:01,131 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
131 |
+
2024-05-14 10:31:01,131 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 10
|
132 |
+
2024-05-14 10:31:01,131 INFO SenderThread:8236 [file_pusher.py:finish():169] shutting down file pusher
|
133 |
+
2024-05-14 10:31:01,406 INFO wandb-upload_0:8236 [upload_job.py:push():130] Uploaded file /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/requirements.txt
|
134 |
+
2024-05-14 10:31:01,539 INFO wandb-upload_1:8236 [upload_job.py:push():130] Uploaded file /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/config.yaml
|
135 |
+
2024-05-14 10:31:01,609 INFO wandb-upload_2:8236 [upload_job.py:push():130] Uploaded file /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/output.log
|
136 |
+
2024-05-14 10:31:01,610 INFO wandb-upload_3:8236 [upload_job.py:push():130] Uploaded file /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/files/wandb-summary.json
|
137 |
+
2024-05-14 10:31:01,810 INFO Thread-11 (_thread_body):8236 [sender.py:transition_state():613] send defer: 11
|
138 |
+
2024-05-14 10:31:01,811 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
139 |
+
2024-05-14 10:31:01,811 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 11
|
140 |
+
2024-05-14 10:31:01,811 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
141 |
+
2024-05-14 10:31:01,812 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 11
|
142 |
+
2024-05-14 10:31:01,812 INFO SenderThread:8236 [file_pusher.py:join():175] waiting for file pusher
|
143 |
+
2024-05-14 10:31:01,812 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 12
|
144 |
+
2024-05-14 10:31:01,812 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
145 |
+
2024-05-14 10:31:01,812 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 12
|
146 |
+
2024-05-14 10:31:01,812 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
147 |
+
2024-05-14 10:31:01,812 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 12
|
148 |
+
2024-05-14 10:31:01,812 INFO SenderThread:8236 [file_stream.py:finish():601] file stream finish called
|
149 |
+
2024-05-14 10:31:01,949 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: poll_exit
|
150 |
+
2024-05-14 10:31:02,042 INFO SenderThread:8236 [file_stream.py:finish():605] file stream finish is done
|
151 |
+
2024-05-14 10:31:02,042 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 13
|
152 |
+
2024-05-14 10:31:02,042 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: poll_exit
|
153 |
+
2024-05-14 10:31:02,042 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
154 |
+
2024-05-14 10:31:02,042 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 13
|
155 |
+
2024-05-14 10:31:02,042 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
156 |
+
2024-05-14 10:31:02,042 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 13
|
157 |
+
2024-05-14 10:31:02,042 INFO SenderThread:8236 [sender.py:transition_state():613] send defer: 14
|
158 |
+
2024-05-14 10:31:02,042 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: defer
|
159 |
+
2024-05-14 10:31:02,043 INFO HandlerThread:8236 [handler.py:handle_request_defer():184] handle defer: 14
|
160 |
+
2024-05-14 10:31:02,043 DEBUG SenderThread:8236 [sender.py:send():378] send: final
|
161 |
+
2024-05-14 10:31:02,043 DEBUG SenderThread:8236 [sender.py:send():378] send: footer
|
162 |
+
2024-05-14 10:31:02,043 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: defer
|
163 |
+
2024-05-14 10:31:02,043 INFO SenderThread:8236 [sender.py:send_request_defer():609] handle sender defer: 14
|
164 |
+
2024-05-14 10:31:02,043 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: poll_exit
|
165 |
+
2024-05-14 10:31:02,044 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: poll_exit
|
166 |
+
2024-05-14 10:31:02,044 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-14 10:31:02,044 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: server_info
|
168 |
+
2024-05-14 10:31:02,044 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: poll_exit
|
169 |
+
2024-05-14 10:31:02,044 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: get_summary
|
170 |
+
2024-05-14 10:31:02,044 DEBUG SenderThread:8236 [sender.py:send_request():405] send_request: server_info
|
171 |
+
2024-05-14 10:31:02,044 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: sampled_history
|
172 |
+
2024-05-14 10:31:02,046 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: internal_messages
|
173 |
+
2024-05-14 10:31:02,099 INFO MainThread:8236 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
174 |
+
2024-05-14 10:31:02,099 INFO MainThread:8236 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
175 |
+
2024-05-14 10:31:02,099 INFO MainThread:8236 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
176 |
+
2024-05-14 10:31:02,099 DEBUG HandlerThread:8236 [handler.py:handle_request():158] handle_request: shutdown
|
177 |
+
2024-05-14 10:31:02,099 INFO HandlerThread:8236 [handler.py:finish():882] shutting down handler
|
178 |
+
2024-05-14 10:31:03,044 INFO WriterThread:8236 [datastore.py:close():296] close: /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/run-yu37vekm.wandb
|
179 |
+
2024-05-14 10:31:03,099 INFO SenderThread:8236 [sender.py:finish():1545] shutting down sender
|
180 |
+
2024-05-14 10:31:03,099 INFO SenderThread:8236 [file_pusher.py:finish():169] shutting down file pusher
|
181 |
+
2024-05-14 10:31:03,099 INFO SenderThread:8236 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Configure stats pid to 6969
|
3 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Loading settings from /data/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-14 10:30:53,894 WARNING MainThread:6969 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_init.py:_log_setup():520] Logging user logs to /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug.log
|
11 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_init.py:_log_setup():521] Logging internal logs to /data/cronscript/lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/logs/debug-internal.log
|
12 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-14 10:30:53,894 INFO MainThread:6969 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-14 10:30:53,895 INFO MainThread:6969 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-14 10:30:53,895 INFO MainThread:6969 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-14 10:30:53,896 INFO MainThread:6969 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-14 10:30:53,897 INFO MainThread:6969 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-14 10:30:53,899 INFO MainThread:6969 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-14 10:30:53,910 INFO MainThread:6969 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-14 10:30:54,131 INFO MainThread:6969 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-14 10:30:54,210 INFO MainThread:6969 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-14 10:30:54,211 INFO MainThread:6969 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-14 10:30:54,400 INFO MainThread:6969 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-14 10:30:54,400 INFO MainThread:6969 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-14 10:30:54,400 INFO MainThread:6969 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-14 10:30:54,401 INFO MainThread:6969 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-14 10:30:54,402 INFO MainThread:6969 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-14 10:31:03,100 WARNING MsgRouterThr:6969 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240514_103053-yu37vekm/run-yu37vekm.wandb
ADDED
Binary file (12.1 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240522_164547-pxpzv850/run-pxpzv850.wandb
ADDED
Binary file (7.9 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug-internal.log
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-22 18:49:28,214 INFO StreamThr :1570 [internal.py:wandb_internal():85] W&B internal server running at pid: 1570, started at: 2024-05-22 18:49:28.210056
|
2 |
+
2024-05-22 18:49:28,216 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-22 18:49:28,219 INFO WriterThread:1570 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/run-kt8p2r8k.wandb
|
4 |
+
2024-05-22 18:49:28,221 DEBUG SenderThread:1570 [sender.py:send():378] send: header
|
5 |
+
2024-05-22 18:49:28,223 DEBUG SenderThread:1570 [sender.py:send():378] send: run
|
6 |
+
2024-05-22 18:49:28,482 INFO SenderThread:1570 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files
|
7 |
+
2024-05-22 18:49:28,482 INFO SenderThread:1570 [sender.py:_start_run_threads():1123] run started: kt8p2r8k with start time 1716403768.210122
|
8 |
+
2024-05-22 18:49:28,483 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-22 18:49:28,484 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-22 18:49:28,640 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-22 18:49:28,642 DEBUG HandlerThread:1570 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-22 18:49:28,643 DEBUG HandlerThread:1570 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-22 18:49:28,643 INFO HandlerThread:1570 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-22 18:49:28,643 INFO SystemMonitor:1570 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-22 18:49:28,643 INFO HandlerThread:1570 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-22 18:49:28,650 INFO SystemMonitor:1570 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-22 18:49:28,650 INFO SystemMonitor:1570 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-22 18:49:28,652 INFO SystemMonitor:1570 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-22 18:49:28,652 INFO SystemMonitor:1570 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-22 18:49:28,717 DEBUG HandlerThread:1570 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-22 18:49:28,720 DEBUG HandlerThread:1570 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-22 18:49:28,730 ERROR HandlerThread:1570 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-22 18:49:28,730 DEBUG HandlerThread:1570 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-22 18:49:28,730 DEBUG HandlerThread:1570 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-22 18:49:28,730 DEBUG HandlerThread:1570 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-22T18:49:28.717571', 'startedAt': '2024-05-22T18:49:28.186831', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2327.1428562499996, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.64437866210938}}, 'memory': {'total': 1007.4379997253418}}
|
31 |
+
2024-05-22 18:49:28,731 INFO HandlerThread:1570 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-22 18:49:28,731 INFO HandlerThread:1570 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-22 18:49:28,733 INFO HandlerThread:1570 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-22 18:49:28,739 DEBUG SenderThread:1570 [sender.py:send():378] send: files
|
35 |
+
2024-05-22 18:49:28,739 INFO SenderThread:1570 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-22 18:49:28,914 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-22 18:49:28,914 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-22 18:49:28,916 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-22 18:49:28,917 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-22 18:49:29,020 DEBUG SenderThread:1570 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-22 18:49:29,397 INFO wandb-upload_0:1570 [upload_job.py:push():130] Uploaded file /tmp/tmpisanswpdwandb/k50sf3dt-wandb-metadata.json
|
42 |
+
2024-05-22 18:49:29,484 INFO Thread-12 :1570 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-metadata.json
|
43 |
+
2024-05-22 18:49:29,484 INFO Thread-12 :1570 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log
|
44 |
+
2024-05-22 18:49:29,484 INFO Thread-12 :1570 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/requirements.txt
|
45 |
+
2024-05-22 18:49:31,484 INFO Thread-12 :1570 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log
|
46 |
+
2024-05-22 18:49:34,023 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-22 18:49:39,336 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-22 18:49:39,495 INFO Thread-12 :1570 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log
|
49 |
+
2024-05-22 18:49:39,761 DEBUG SenderThread:1570 [sender.py:send():378] send: exit
|
50 |
+
2024-05-22 18:49:39,761 INFO SenderThread:1570 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-22 18:49:39,761 INFO SenderThread:1570 [sender.py:send_exit():587] handling runtime: 11
|
52 |
+
2024-05-22 18:49:39,762 INFO SenderThread:1570 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-22 18:49:39,762 INFO SenderThread:1570 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-22 18:49:39,763 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-22 18:49:39,763 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-22 18:49:39,763 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-22 18:49:39,763 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-22 18:49:39,763 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-22 18:49:39,763 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-22 18:49:39,763 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-22 18:49:39,763 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-22 18:49:39,763 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-22 18:49:39,763 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-22 18:49:39,763 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-22 18:49:39,763 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-22 18:49:39,763 INFO HandlerThread:1570 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-22 18:49:39,763 DEBUG SystemMonitor:1570 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-22 18:49:39,763 DEBUG SystemMonitor:1570 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-22 18:49:39,763 DEBUG SystemMonitor:1570 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-22 18:49:39,764 INFO HandlerThread:1570 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-22 18:49:39,764 INFO HandlerThread:1570 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-22 18:49:39,764 INFO HandlerThread:1570 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-22 18:49:39,765 INFO HandlerThread:1570 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-22 18:49:39,765 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-22 18:49:39,765 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
78 |
+
2024-05-22 18:49:39,765 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 3
|
79 |
+
2024-05-22 18:49:39,765 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
80 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 3
|
81 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 4
|
82 |
+
2024-05-22 18:49:39,765 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
83 |
+
2024-05-22 18:49:39,765 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 4
|
84 |
+
2024-05-22 18:49:39,765 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
85 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 4
|
86 |
+
2024-05-22 18:49:39,765 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 5
|
87 |
+
2024-05-22 18:49:39,765 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
88 |
+
2024-05-22 18:49:39,765 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 5
|
89 |
+
2024-05-22 18:49:39,766 DEBUG SenderThread:1570 [sender.py:send():378] send: summary
|
90 |
+
2024-05-22 18:49:39,766 INFO SenderThread:1570 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
91 |
+
2024-05-22 18:49:39,767 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
92 |
+
2024-05-22 18:49:39,767 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 5
|
93 |
+
2024-05-22 18:49:39,767 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 6
|
94 |
+
2024-05-22 18:49:39,767 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
95 |
+
2024-05-22 18:49:39,767 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 6
|
96 |
+
2024-05-22 18:49:39,767 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
97 |
+
2024-05-22 18:49:39,767 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 6
|
98 |
+
2024-05-22 18:49:39,771 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: status_report
|
99 |
+
2024-05-22 18:49:39,865 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 7
|
100 |
+
2024-05-22 18:49:39,865 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
101 |
+
2024-05-22 18:49:39,865 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 7
|
102 |
+
2024-05-22 18:49:39,865 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
103 |
+
2024-05-22 18:49:39,865 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 7
|
104 |
+
2024-05-22 18:49:40,496 INFO Thread-12 :1570 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/config.yaml
|
105 |
+
2024-05-22 18:49:40,496 INFO Thread-12 :1570 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-summary.json
|
106 |
+
2024-05-22 18:49:40,761 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: poll_exit
|
107 |
+
2024-05-22 18:49:41,045 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 8
|
108 |
+
2024-05-22 18:49:41,046 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: poll_exit
|
109 |
+
2024-05-22 18:49:41,046 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
110 |
+
2024-05-22 18:49:41,046 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 8
|
111 |
+
2024-05-22 18:49:41,046 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
112 |
+
2024-05-22 18:49:41,046 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 8
|
113 |
+
2024-05-22 18:49:41,046 INFO SenderThread:1570 [job_builder.py:build():432] Attempting to build job artifact
|
114 |
+
2024-05-22 18:49:41,047 INFO SenderThread:1570 [job_builder.py:_get_source_type():576] no source found
|
115 |
+
2024-05-22 18:49:41,047 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 9
|
116 |
+
2024-05-22 18:49:41,047 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
117 |
+
2024-05-22 18:49:41,047 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 9
|
118 |
+
2024-05-22 18:49:41,047 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
119 |
+
2024-05-22 18:49:41,047 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 9
|
120 |
+
2024-05-22 18:49:41,047 INFO SenderThread:1570 [dir_watcher.py:finish():358] shutting down directory watcher
|
121 |
+
2024-05-22 18:49:41,498 INFO SenderThread:1570 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log
|
122 |
+
2024-05-22 18:49:41,498 INFO SenderThread:1570 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files
|
123 |
+
2024-05-22 18:49:41,498 INFO SenderThread:1570 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-metadata.json wandb-metadata.json
|
124 |
+
2024-05-22 18:49:41,498 INFO SenderThread:1570 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/requirements.txt requirements.txt
|
125 |
+
2024-05-22 18:49:41,498 INFO SenderThread:1570 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-summary.json wandb-summary.json
|
126 |
+
2024-05-22 18:49:41,501 INFO SenderThread:1570 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log output.log
|
127 |
+
2024-05-22 18:49:41,503 INFO SenderThread:1570 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/config.yaml config.yaml
|
128 |
+
2024-05-22 18:49:41,503 INFO SenderThread:1570 [sender.py:transition_state():613] send defer: 10
|
129 |
+
2024-05-22 18:49:41,503 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: defer
|
130 |
+
2024-05-22 18:49:41,503 INFO HandlerThread:1570 [handler.py:handle_request_defer():184] handle defer: 10
|
131 |
+
2024-05-22 18:49:41,503 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: defer
|
132 |
+
2024-05-22 18:49:41,503 INFO SenderThread:1570 [sender.py:send_request_defer():609] handle sender defer: 10
|
133 |
+
2024-05-22 18:49:41,503 INFO SenderThread:1570 [file_pusher.py:finish():169] shutting down file pusher
|
134 |
+
2024-05-22 18:49:41,752 INFO wandb-upload_0:1570 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/requirements.txt
|
135 |
+
2024-05-22 18:49:41,761 DEBUG HandlerThread:1570 [handler.py:handle_request():158] handle_request: poll_exit
|
136 |
+
2024-05-22 18:49:41,761 DEBUG SenderThread:1570 [sender.py:send_request():405] send_request: poll_exit
|
137 |
+
2024-05-22 18:49:42,137 INFO wandb-upload_2:1570 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log
|
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug.log
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Configure stats pid to 1415
|
3 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-22 18:49:28,204 WARNING MainThread:1415 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug.log
|
11 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/logs/debug-internal.log
|
12 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-22 18:49:28,204 INFO MainThread:1415 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-22 18:49:28,209 INFO MainThread:1415 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-22 18:49:28,209 INFO MainThread:1415 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-22 18:49:28,213 INFO MainThread:1415 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-22 18:49:28,223 INFO MainThread:1415 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-22 18:49:28,483 INFO MainThread:1415 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-22 18:49:28,634 INFO MainThread:1415 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-22 18:49:28,634 INFO MainThread:1415 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-22 18:49:28,915 INFO MainThread:1415 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-22 18:49:28,915 INFO MainThread:1415 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-22 18:49:28,915 INFO MainThread:1415 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-22 18:49:28,915 INFO MainThread:1415 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-22 18:49:28,918 INFO MainThread:1415 [wandb_init.py:init():838] run started, returning control to user process
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.1
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716441730
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.1
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-23:05:22:11,517 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-23:05:22:20,014 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-23:05:22:20,015 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-23:05:22:20,016 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step6000'}
|
6 |
+
2024-05-23:05:22:22,340 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
9 |
+
return _run_code(code, main_globals, None,
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
11 |
+
exec(code, run_globals)
|
12 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
13 |
+
cli_evaluate()
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
15 |
+
results = evaluator.simple_evaluate(
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
19 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
21 |
+
return cls(**args, **args2)
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
23 |
+
self._get_config(
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
25 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
26 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
27 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
29 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
31 |
+
resolved_config_file = cached_file(
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
|
33 |
+
raise EnvironmentError(
|
34 |
+
OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step6000 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step6000/tree/main' for available files.
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.1
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.2.1
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.1
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-23T05:22:11.312115",
|
5 |
+
"startedAt": "2024-05-23T05:22:10.734091",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step6000",
|
13 |
+
"--tasks",
|
14 |
+
"hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt_2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-debug-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2334.21898125,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3399.997,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 3333.083,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3399.237,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 212.24552154541016
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.43798828125
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 11}}
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug-internal.log
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 05:22:10,753 INFO StreamThr :11124 [internal.py:wandb_internal():85] W&B internal server running at pid: 11124, started at: 2024-05-23 05:22:10.751648
|
2 |
+
2024-05-23 05:22:10,754 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-23 05:22:10,759 INFO WriterThread:11124 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/run-qlxjd76q.wandb
|
4 |
+
2024-05-23 05:22:10,764 DEBUG SenderThread:11124 [sender.py:send():378] send: header
|
5 |
+
2024-05-23 05:22:10,768 DEBUG SenderThread:11124 [sender.py:send():378] send: run
|
6 |
+
2024-05-23 05:22:11,073 INFO SenderThread:11124 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files
|
7 |
+
2024-05-23 05:22:11,074 INFO SenderThread:11124 [sender.py:_start_run_threads():1123] run started: qlxjd76q with start time 1716441730.75226
|
8 |
+
2024-05-23 05:22:11,077 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-23 05:22:11,078 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-23 05:22:11,196 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-23 05:22:11,199 DEBUG HandlerThread:11124 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-23 05:22:11,199 DEBUG HandlerThread:11124 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-23 05:22:11,199 INFO HandlerThread:11124 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-23 05:22:11,199 INFO SystemMonitor:11124 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-23 05:22:11,199 INFO HandlerThread:11124 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-23 05:22:11,206 INFO SystemMonitor:11124 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-23 05:22:11,206 INFO SystemMonitor:11124 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-23 05:22:11,206 INFO SystemMonitor:11124 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-23 05:22:11,214 INFO SystemMonitor:11124 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-23 05:22:11,312 DEBUG HandlerThread:11124 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-23 05:22:11,316 DEBUG HandlerThread:11124 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-23 05:22:11,326 ERROR HandlerThread:11124 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-23 05:22:11,326 DEBUG HandlerThread:11124 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-23 05:22:11,326 DEBUG HandlerThread:11124 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-23 05:22:11,326 DEBUG HandlerThread:11124 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-23T05:22:11.312115', 'startedAt': '2024-05-23T05:22:10.734091', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step6000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-debug-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2334.21898125, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3399.997, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3333.083, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3399.237, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 212.24552154541016}}, 'memory': {'total': 1007.43798828125}}
|
31 |
+
2024-05-23 05:22:11,326 INFO HandlerThread:11124 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-23 05:22:11,326 INFO HandlerThread:11124 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-23 05:22:11,329 INFO HandlerThread:11124 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-23 05:22:11,334 DEBUG SenderThread:11124 [sender.py:send():378] send: files
|
35 |
+
2024-05-23 05:22:11,334 INFO SenderThread:11124 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-23 05:22:11,511 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-23 05:22:11,511 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-23 05:22:11,512 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-23 05:22:11,512 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-23 05:22:11,629 DEBUG SenderThread:11124 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-23 05:22:11,888 INFO wandb-upload_0:11124 [upload_job.py:push():130] Uploaded file /tmp/tmpxfu0gkt0wandb/yw4erfpx-wandb-metadata.json
|
42 |
+
2024-05-23 05:22:12,076 INFO Thread-12 :11124 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
|
43 |
+
2024-05-23 05:22:12,076 INFO Thread-12 :11124 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/requirements.txt
|
44 |
+
2024-05-23 05:22:12,076 INFO Thread-12 :11124 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-metadata.json
|
45 |
+
2024-05-23 05:22:14,076 INFO Thread-12 :11124 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
|
46 |
+
2024-05-23 05:22:16,633 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-23 05:22:22,017 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-23 05:22:22,083 INFO Thread-12 :11124 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
|
49 |
+
2024-05-23 05:22:22,347 DEBUG SenderThread:11124 [sender.py:send():378] send: exit
|
50 |
+
2024-05-23 05:22:22,348 INFO SenderThread:11124 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-23 05:22:22,348 INFO SenderThread:11124 [sender.py:send_exit():587] handling runtime: 11
|
52 |
+
2024-05-23 05:22:22,349 INFO SenderThread:11124 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-23 05:22:22,349 INFO SenderThread:11124 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-23 05:22:22,349 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-23 05:22:22,349 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-23 05:22:22,350 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-23 05:22:22,350 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-23 05:22:22,350 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-23 05:22:22,350 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-23 05:22:22,350 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-23 05:22:22,350 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-23 05:22:22,350 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-23 05:22:22,350 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-23 05:22:22,350 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-23 05:22:22,350 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-23 05:22:22,350 INFO HandlerThread:11124 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-23 05:22:22,350 DEBUG SystemMonitor:11124 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-23 05:22:22,351 DEBUG SystemMonitor:11124 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-23 05:22:22,351 INFO HandlerThread:11124 [interfaces.py:finish():200] Joined cpu monitor
|
70 |
+
2024-05-23 05:22:22,351 DEBUG SystemMonitor:11124 [system_monitor.py:_start():183] Publishing last batch of metrics
|
71 |
+
2024-05-23 05:22:22,351 INFO HandlerThread:11124 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-23 05:22:22,353 INFO HandlerThread:11124 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-23 05:22:22,353 INFO HandlerThread:11124 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-23 05:22:22,353 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-23 05:22:22,353 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-23 05:22:22,353 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-23 05:22:22,353 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
78 |
+
2024-05-23 05:22:22,353 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 3
|
79 |
+
2024-05-23 05:22:22,354 DEBUG SenderThread:11124 [sender.py:send():378] send: stats
|
80 |
+
2024-05-23 05:22:22,355 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
81 |
+
2024-05-23 05:22:22,355 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 3
|
82 |
+
2024-05-23 05:22:22,355 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 4
|
83 |
+
2024-05-23 05:22:22,355 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
84 |
+
2024-05-23 05:22:22,355 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 4
|
85 |
+
2024-05-23 05:22:22,355 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
86 |
+
2024-05-23 05:22:22,355 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 4
|
87 |
+
2024-05-23 05:22:22,355 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 5
|
88 |
+
2024-05-23 05:22:22,355 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
89 |
+
2024-05-23 05:22:22,355 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 5
|
90 |
+
2024-05-23 05:22:22,355 DEBUG SenderThread:11124 [sender.py:send():378] send: summary
|
91 |
+
2024-05-23 05:22:22,356 INFO SenderThread:11124 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
92 |
+
2024-05-23 05:22:22,356 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-23 05:22:22,356 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 5
|
94 |
+
2024-05-23 05:22:22,356 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 6
|
95 |
+
2024-05-23 05:22:22,356 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-23 05:22:22,356 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 6
|
97 |
+
2024-05-23 05:22:22,357 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-23 05:22:22,357 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 6
|
99 |
+
2024-05-23 05:22:22,361 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: status_report
|
100 |
+
2024-05-23 05:22:22,448 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 7
|
101 |
+
2024-05-23 05:22:22,448 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
102 |
+
2024-05-23 05:22:22,448 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 7
|
103 |
+
2024-05-23 05:22:22,448 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
104 |
+
2024-05-23 05:22:22,448 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 7
|
105 |
+
2024-05-23 05:22:23,084 INFO Thread-12 :11124 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/config.yaml
|
106 |
+
2024-05-23 05:22:23,084 INFO Thread-12 :11124 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-summary.json
|
107 |
+
2024-05-23 05:22:23,347 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: poll_exit
|
108 |
+
2024-05-23 05:22:23,657 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 8
|
109 |
+
2024-05-23 05:22:23,657 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: poll_exit
|
110 |
+
2024-05-23 05:22:23,657 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
111 |
+
2024-05-23 05:22:23,658 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 8
|
112 |
+
2024-05-23 05:22:23,658 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
113 |
+
2024-05-23 05:22:23,658 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 8
|
114 |
+
2024-05-23 05:22:23,658 INFO SenderThread:11124 [job_builder.py:build():432] Attempting to build job artifact
|
115 |
+
2024-05-23 05:22:23,658 INFO SenderThread:11124 [job_builder.py:_get_source_type():576] no source found
|
116 |
+
2024-05-23 05:22:23,658 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 9
|
117 |
+
2024-05-23 05:22:23,659 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
118 |
+
2024-05-23 05:22:23,659 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 9
|
119 |
+
2024-05-23 05:22:23,659 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
120 |
+
2024-05-23 05:22:23,659 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 9
|
121 |
+
2024-05-23 05:22:23,659 INFO SenderThread:11124 [dir_watcher.py:finish():358] shutting down directory watcher
|
122 |
+
2024-05-23 05:22:24,085 INFO SenderThread:11124 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
|
123 |
+
2024-05-23 05:22:24,085 INFO SenderThread:11124 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files
|
124 |
+
2024-05-23 05:22:24,086 INFO SenderThread:11124 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/requirements.txt requirements.txt
|
125 |
+
2024-05-23 05:22:24,086 INFO SenderThread:11124 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-metadata.json wandb-metadata.json
|
126 |
+
2024-05-23 05:22:24,086 INFO SenderThread:11124 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/config.yaml config.yaml
|
127 |
+
2024-05-23 05:22:24,088 INFO SenderThread:11124 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log output.log
|
128 |
+
2024-05-23 05:22:24,090 INFO SenderThread:11124 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-summary.json wandb-summary.json
|
129 |
+
2024-05-23 05:22:24,090 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 10
|
130 |
+
2024-05-23 05:22:24,091 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
131 |
+
2024-05-23 05:22:24,091 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 10
|
132 |
+
2024-05-23 05:22:24,091 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
133 |
+
2024-05-23 05:22:24,091 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 10
|
134 |
+
2024-05-23 05:22:24,091 INFO SenderThread:11124 [file_pusher.py:finish():169] shutting down file pusher
|
135 |
+
2024-05-23 05:22:24,320 INFO wandb-upload_0:11124 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/requirements.txt
|
136 |
+
2024-05-23 05:22:24,348 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: poll_exit
|
137 |
+
2024-05-23 05:22:24,348 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: poll_exit
|
138 |
+
2024-05-23 05:22:24,668 INFO wandb-upload_3:11124 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/wandb-summary.json
|
139 |
+
2024-05-23 05:22:24,679 INFO wandb-upload_2:11124 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/output.log
|
140 |
+
2024-05-23 05:22:24,704 INFO wandb-upload_1:11124 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/files/config.yaml
|
141 |
+
2024-05-23 05:22:24,904 INFO Thread-11 (_thread_body):11124 [sender.py:transition_state():613] send defer: 11
|
142 |
+
2024-05-23 05:22:24,904 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
143 |
+
2024-05-23 05:22:24,904 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 11
|
144 |
+
2024-05-23 05:22:24,904 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
145 |
+
2024-05-23 05:22:24,904 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 11
|
146 |
+
2024-05-23 05:22:24,904 INFO SenderThread:11124 [file_pusher.py:join():175] waiting for file pusher
|
147 |
+
2024-05-23 05:22:24,905 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 12
|
148 |
+
2024-05-23 05:22:24,905 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
149 |
+
2024-05-23 05:22:24,905 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 12
|
150 |
+
2024-05-23 05:22:24,905 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
151 |
+
2024-05-23 05:22:24,905 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 12
|
152 |
+
2024-05-23 05:22:24,905 INFO SenderThread:11124 [file_stream.py:finish():601] file stream finish called
|
153 |
+
2024-05-23 05:22:24,985 INFO SenderThread:11124 [file_stream.py:finish():605] file stream finish is done
|
154 |
+
2024-05-23 05:22:24,985 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 13
|
155 |
+
2024-05-23 05:22:24,985 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
156 |
+
2024-05-23 05:22:24,985 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 13
|
157 |
+
2024-05-23 05:22:24,985 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
158 |
+
2024-05-23 05:22:24,985 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 13
|
159 |
+
2024-05-23 05:22:24,985 INFO SenderThread:11124 [sender.py:transition_state():613] send defer: 14
|
160 |
+
2024-05-23 05:22:24,985 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: defer
|
161 |
+
2024-05-23 05:22:24,985 INFO HandlerThread:11124 [handler.py:handle_request_defer():184] handle defer: 14
|
162 |
+
2024-05-23 05:22:24,985 DEBUG SenderThread:11124 [sender.py:send():378] send: final
|
163 |
+
2024-05-23 05:22:24,985 DEBUG SenderThread:11124 [sender.py:send():378] send: footer
|
164 |
+
2024-05-23 05:22:24,985 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: defer
|
165 |
+
2024-05-23 05:22:24,985 INFO SenderThread:11124 [sender.py:send_request_defer():609] handle sender defer: 14
|
166 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: poll_exit
|
168 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: server_info
|
169 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: get_summary
|
170 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: sampled_history
|
171 |
+
2024-05-23 05:22:24,986 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: internal_messages
|
172 |
+
2024-05-23 05:22:24,987 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: poll_exit
|
173 |
+
2024-05-23 05:22:24,987 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: poll_exit
|
174 |
+
2024-05-23 05:22:24,987 DEBUG SenderThread:11124 [sender.py:send_request():405] send_request: server_info
|
175 |
+
2024-05-23 05:22:25,039 INFO MainThread:11124 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
176 |
+
2024-05-23 05:22:25,039 INFO MainThread:11124 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
177 |
+
2024-05-23 05:22:25,039 INFO MainThread:11124 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
178 |
+
2024-05-23 05:22:25,039 DEBUG HandlerThread:11124 [handler.py:handle_request():158] handle_request: shutdown
|
179 |
+
2024-05-23 05:22:25,039 INFO HandlerThread:11124 [handler.py:finish():882] shutting down handler
|
180 |
+
2024-05-23 05:22:25,987 INFO WriterThread:11124 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/run-qlxjd76q.wandb
|
181 |
+
2024-05-23 05:22:26,039 INFO SenderThread:11124 [sender.py:finish():1545] shutting down sender
|
182 |
+
2024-05-23 05:22:26,039 INFO SenderThread:11124 [file_pusher.py:finish():169] shutting down file pusher
|
183 |
+
2024-05-23 05:22:26,039 INFO SenderThread:11124 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Configure stats pid to 10969
|
3 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-23 05:22:10,746 WARNING MainThread:10969 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug.log
|
11 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/logs/debug-internal.log
|
12 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-23 05:22:10,746 INFO MainThread:10969 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-23 05:22:10,750 INFO MainThread:10969 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-23 05:22:10,752 INFO MainThread:10969 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-23 05:22:10,759 INFO MainThread:10969 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-23 05:22:10,767 INFO MainThread:10969 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-23 05:22:11,077 INFO MainThread:10969 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-23 05:22:11,190 INFO MainThread:10969 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-23 05:22:11,190 INFO MainThread:10969 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-23 05:22:11,512 INFO MainThread:10969 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-23 05:22:11,512 INFO MainThread:10969 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-23 05:22:11,512 INFO MainThread:10969 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-23 05:22:11,512 INFO MainThread:10969 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-23 05:22:11,515 INFO MainThread:10969 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-23 05:22:26,040 WARNING MsgRouterThr:10969 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_052210-qlxjd76q/run-qlxjd76q.wandb
ADDED
Binary file (11.2 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.1
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716451301
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.1
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-23:08:01:42,093 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-23:08:01:50,433 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-23:08:01:50,434 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-23:08:01:50,434 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step24000'}
|
6 |
+
2024-05-23:08:01:52,729 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
9 |
+
return _run_code(code, main_globals, None,
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
11 |
+
exec(code, run_globals)
|
12 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
13 |
+
cli_evaluate()
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
15 |
+
results = evaluator.simple_evaluate(
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
19 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
21 |
+
return cls(**args, **args2)
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
23 |
+
self._get_config(
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
25 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
26 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
27 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
29 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
31 |
+
resolved_config_file = cached_file(
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
|
33 |
+
raise EnvironmentError(
|
34 |
+
OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step24000 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step24000/tree/main' for available files.
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.1
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.2.1
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.1
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-23T08:01:41.881563",
|
5 |
+
"startedAt": "2024-05-23T08:01:41.399462",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step24000",
|
13 |
+
"--tasks",
|
14 |
+
"hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt_2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2325.7879625,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3400.002,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3399.997,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 211.64005279541016
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379806518555
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 10}}
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug-internal.log
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 08:01:41,420 INFO StreamThr :3068 [internal.py:wandb_internal():85] W&B internal server running at pid: 3068, started at: 2024-05-23 08:01:41.418713
|
2 |
+
2024-05-23 08:01:41,425 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-23 08:01:41,425 INFO WriterThread:3068 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/run-2cqsvyos.wandb
|
4 |
+
2024-05-23 08:01:41,428 DEBUG SenderThread:3068 [sender.py:send():378] send: header
|
5 |
+
2024-05-23 08:01:41,431 DEBUG SenderThread:3068 [sender.py:send():378] send: run
|
6 |
+
2024-05-23 08:01:41,684 INFO SenderThread:3068 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files
|
7 |
+
2024-05-23 08:01:41,684 INFO SenderThread:3068 [sender.py:_start_run_threads():1123] run started: 2cqsvyos with start time 1716451301.418951
|
8 |
+
2024-05-23 08:01:41,688 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-23 08:01:41,688 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-23 08:01:41,806 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-23 08:01:41,808 DEBUG HandlerThread:3068 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-23 08:01:41,808 DEBUG HandlerThread:3068 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-23 08:01:41,808 INFO HandlerThread:3068 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-23 08:01:41,808 INFO SystemMonitor:3068 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-23 08:01:41,808 INFO HandlerThread:3068 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-23 08:01:41,815 INFO SystemMonitor:3068 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-23 08:01:41,816 INFO SystemMonitor:3068 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-23 08:01:41,817 INFO SystemMonitor:3068 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-23 08:01:41,818 INFO SystemMonitor:3068 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-23 08:01:41,881 DEBUG HandlerThread:3068 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-23 08:01:41,884 DEBUG HandlerThread:3068 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-23 08:01:41,894 ERROR HandlerThread:3068 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-23 08:01:41,894 DEBUG HandlerThread:3068 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-23 08:01:41,894 DEBUG HandlerThread:3068 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-23 08:01:41,894 DEBUG HandlerThread:3068 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-23T08:01:41.881563', 'startedAt': '2024-05-23T08:01:41.399462', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step24000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2325.7879625, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3400.002, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3399.997, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.64005279541016}}, 'memory': {'total': 1007.4379806518555}}
|
31 |
+
2024-05-23 08:01:41,894 INFO HandlerThread:3068 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-23 08:01:41,895 INFO HandlerThread:3068 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-23 08:01:41,897 INFO HandlerThread:3068 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-23 08:01:41,902 DEBUG SenderThread:3068 [sender.py:send():378] send: files
|
35 |
+
2024-05-23 08:01:41,902 INFO SenderThread:3068 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-23 08:01:42,079 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-23 08:01:42,079 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-23 08:01:42,080 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-23 08:01:42,089 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-23 08:01:42,255 DEBUG SenderThread:3068 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-23 08:01:42,485 INFO wandb-upload_0:3068 [upload_job.py:push():130] Uploaded file /tmp/tmpzhezkosawandb/o4yjpi0c-wandb-metadata.json
|
42 |
+
2024-05-23 08:01:42,687 INFO Thread-12 :3068 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-metadata.json
|
43 |
+
2024-05-23 08:01:42,687 INFO Thread-12 :3068 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/requirements.txt
|
44 |
+
2024-05-23 08:01:42,687 INFO Thread-12 :3068 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
|
45 |
+
2024-05-23 08:01:44,686 INFO Thread-12 :3068 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
|
46 |
+
2024-05-23 08:01:47,257 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-23 08:01:52,435 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-23 08:01:52,693 INFO Thread-12 :3068 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
|
49 |
+
2024-05-23 08:01:52,736 DEBUG SenderThread:3068 [sender.py:send():378] send: exit
|
50 |
+
2024-05-23 08:01:52,736 INFO SenderThread:3068 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-23 08:01:52,736 INFO SenderThread:3068 [sender.py:send_exit():587] handling runtime: 10
|
52 |
+
2024-05-23 08:01:52,738 INFO SenderThread:3068 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-23 08:01:52,738 INFO SenderThread:3068 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-23 08:01:52,738 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-23 08:01:52,738 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-23 08:01:52,738 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-23 08:01:52,738 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-23 08:01:52,738 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-23 08:01:52,738 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-23 08:01:52,738 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-23 08:01:52,739 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-23 08:01:52,739 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-23 08:01:52,739 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-23 08:01:52,739 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-23 08:01:52,739 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-23 08:01:52,739 INFO HandlerThread:3068 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-23 08:01:52,739 DEBUG SystemMonitor:3068 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-23 08:01:52,739 DEBUG SystemMonitor:3068 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-23 08:01:52,739 DEBUG SystemMonitor:3068 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-23 08:01:52,742 INFO HandlerThread:3068 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-23 08:01:52,742 INFO HandlerThread:3068 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-23 08:01:52,742 INFO HandlerThread:3068 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-23 08:01:52,742 INFO HandlerThread:3068 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-23 08:01:52,743 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-23 08:01:52,743 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-23 08:01:52,743 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-23 08:01:52,743 DEBUG SenderThread:3068 [sender.py:send():378] send: stats
|
78 |
+
2024-05-23 08:01:52,744 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
79 |
+
2024-05-23 08:01:52,744 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 3
|
80 |
+
2024-05-23 08:01:52,744 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
81 |
+
2024-05-23 08:01:52,744 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 3
|
82 |
+
2024-05-23 08:01:52,744 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 4
|
83 |
+
2024-05-23 08:01:52,744 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
84 |
+
2024-05-23 08:01:52,744 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 4
|
85 |
+
2024-05-23 08:01:52,744 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
86 |
+
2024-05-23 08:01:52,744 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 4
|
87 |
+
2024-05-23 08:01:52,744 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 5
|
88 |
+
2024-05-23 08:01:52,744 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
89 |
+
2024-05-23 08:01:52,744 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 5
|
90 |
+
2024-05-23 08:01:52,745 DEBUG SenderThread:3068 [sender.py:send():378] send: summary
|
91 |
+
2024-05-23 08:01:52,745 INFO SenderThread:3068 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
92 |
+
2024-05-23 08:01:52,746 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-23 08:01:52,746 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 5
|
94 |
+
2024-05-23 08:01:52,746 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 6
|
95 |
+
2024-05-23 08:01:52,746 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-23 08:01:52,746 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 6
|
97 |
+
2024-05-23 08:01:52,746 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-23 08:01:52,746 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 6
|
99 |
+
2024-05-23 08:01:52,751 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: status_report
|
100 |
+
2024-05-23 08:01:52,826 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 7
|
101 |
+
2024-05-23 08:01:52,826 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
102 |
+
2024-05-23 08:01:52,826 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 7
|
103 |
+
2024-05-23 08:01:52,826 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
104 |
+
2024-05-23 08:01:52,826 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 7
|
105 |
+
2024-05-23 08:01:53,694 INFO Thread-12 :3068 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/config.yaml
|
106 |
+
2024-05-23 08:01:53,694 INFO Thread-12 :3068 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-summary.json
|
107 |
+
2024-05-23 08:01:53,736 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: poll_exit
|
108 |
+
2024-05-23 08:01:54,277 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 8
|
109 |
+
2024-05-23 08:01:54,277 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: poll_exit
|
110 |
+
2024-05-23 08:01:54,277 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
111 |
+
2024-05-23 08:01:54,277 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 8
|
112 |
+
2024-05-23 08:01:54,277 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
113 |
+
2024-05-23 08:01:54,277 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 8
|
114 |
+
2024-05-23 08:01:54,277 INFO SenderThread:3068 [job_builder.py:build():432] Attempting to build job artifact
|
115 |
+
2024-05-23 08:01:54,278 INFO SenderThread:3068 [job_builder.py:_get_source_type():576] no source found
|
116 |
+
2024-05-23 08:01:54,278 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 9
|
117 |
+
2024-05-23 08:01:54,278 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
118 |
+
2024-05-23 08:01:54,278 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 9
|
119 |
+
2024-05-23 08:01:54,278 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
120 |
+
2024-05-23 08:01:54,278 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 9
|
121 |
+
2024-05-23 08:01:54,278 INFO SenderThread:3068 [dir_watcher.py:finish():358] shutting down directory watcher
|
122 |
+
2024-05-23 08:01:54,695 INFO SenderThread:3068 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
|
123 |
+
2024-05-23 08:01:54,696 INFO SenderThread:3068 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files
|
124 |
+
2024-05-23 08:01:54,696 INFO SenderThread:3068 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-summary.json wandb-summary.json
|
125 |
+
2024-05-23 08:01:54,696 INFO SenderThread:3068 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/requirements.txt requirements.txt
|
126 |
+
2024-05-23 08:01:54,698 INFO SenderThread:3068 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-metadata.json wandb-metadata.json
|
127 |
+
2024-05-23 08:01:54,700 INFO SenderThread:3068 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/config.yaml config.yaml
|
128 |
+
2024-05-23 08:01:54,701 INFO SenderThread:3068 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log output.log
|
129 |
+
2024-05-23 08:01:54,701 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 10
|
130 |
+
2024-05-23 08:01:54,701 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
131 |
+
2024-05-23 08:01:54,701 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 10
|
132 |
+
2024-05-23 08:01:54,701 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
133 |
+
2024-05-23 08:01:54,701 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 10
|
134 |
+
2024-05-23 08:01:54,701 INFO SenderThread:3068 [file_pusher.py:finish():169] shutting down file pusher
|
135 |
+
2024-05-23 08:01:54,736 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: poll_exit
|
136 |
+
2024-05-23 08:01:54,736 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: poll_exit
|
137 |
+
2024-05-23 08:01:54,948 INFO wandb-upload_0:3068 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/wandb-summary.json
|
138 |
+
2024-05-23 08:01:55,376 INFO wandb-upload_2:3068 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/config.yaml
|
139 |
+
2024-05-23 08:01:55,502 INFO wandb-upload_1:3068 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/requirements.txt
|
140 |
+
2024-05-23 08:01:55,563 INFO wandb-upload_3:3068 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/files/output.log
|
141 |
+
2024-05-23 08:01:55,736 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: poll_exit
|
142 |
+
2024-05-23 08:01:55,737 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: poll_exit
|
143 |
+
2024-05-23 08:01:55,763 INFO Thread-11 (_thread_body):3068 [sender.py:transition_state():613] send defer: 11
|
144 |
+
2024-05-23 08:01:55,764 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
145 |
+
2024-05-23 08:01:55,764 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 11
|
146 |
+
2024-05-23 08:01:55,764 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
147 |
+
2024-05-23 08:01:55,764 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 11
|
148 |
+
2024-05-23 08:01:55,764 INFO SenderThread:3068 [file_pusher.py:join():175] waiting for file pusher
|
149 |
+
2024-05-23 08:01:55,764 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 12
|
150 |
+
2024-05-23 08:01:55,764 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
151 |
+
2024-05-23 08:01:55,764 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 12
|
152 |
+
2024-05-23 08:01:55,764 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
153 |
+
2024-05-23 08:01:55,764 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 12
|
154 |
+
2024-05-23 08:01:55,764 INFO SenderThread:3068 [file_stream.py:finish():601] file stream finish called
|
155 |
+
2024-05-23 08:01:55,827 INFO SenderThread:3068 [file_stream.py:finish():605] file stream finish is done
|
156 |
+
2024-05-23 08:01:55,827 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 13
|
157 |
+
2024-05-23 08:01:55,827 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
158 |
+
2024-05-23 08:01:55,827 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 13
|
159 |
+
2024-05-23 08:01:55,827 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
160 |
+
2024-05-23 08:01:55,827 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 13
|
161 |
+
2024-05-23 08:01:55,827 INFO SenderThread:3068 [sender.py:transition_state():613] send defer: 14
|
162 |
+
2024-05-23 08:01:55,827 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: defer
|
163 |
+
2024-05-23 08:01:55,827 INFO HandlerThread:3068 [handler.py:handle_request_defer():184] handle defer: 14
|
164 |
+
2024-05-23 08:01:55,827 DEBUG SenderThread:3068 [sender.py:send():378] send: final
|
165 |
+
2024-05-23 08:01:55,827 DEBUG SenderThread:3068 [sender.py:send():378] send: footer
|
166 |
+
2024-05-23 08:01:55,827 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: defer
|
167 |
+
2024-05-23 08:01:55,828 INFO SenderThread:3068 [sender.py:send_request_defer():609] handle sender defer: 14
|
168 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: poll_exit
|
169 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: poll_exit
|
170 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: server_info
|
171 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: get_summary
|
172 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: sampled_history
|
173 |
+
2024-05-23 08:01:55,828 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: internal_messages
|
174 |
+
2024-05-23 08:01:55,829 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: poll_exit
|
175 |
+
2024-05-23 08:01:55,829 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: poll_exit
|
176 |
+
2024-05-23 08:01:55,829 DEBUG SenderThread:3068 [sender.py:send_request():405] send_request: server_info
|
177 |
+
2024-05-23 08:01:55,884 INFO MainThread:3068 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
178 |
+
2024-05-23 08:01:55,884 INFO MainThread:3068 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
179 |
+
2024-05-23 08:01:55,884 INFO MainThread:3068 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
180 |
+
2024-05-23 08:01:55,885 DEBUG HandlerThread:3068 [handler.py:handle_request():158] handle_request: shutdown
|
181 |
+
2024-05-23 08:01:55,885 INFO HandlerThread:3068 [handler.py:finish():882] shutting down handler
|
182 |
+
2024-05-23 08:01:56,829 INFO WriterThread:3068 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/run-2cqsvyos.wandb
|
183 |
+
2024-05-23 08:01:56,884 INFO SenderThread:3068 [sender.py:finish():1545] shutting down sender
|
184 |
+
2024-05-23 08:01:56,884 INFO SenderThread:3068 [file_pusher.py:finish():169] shutting down file pusher
|
185 |
+
2024-05-23 08:01:56,884 INFO SenderThread:3068 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 08:01:41,412 INFO MainThread:2913 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Configure stats pid to 2913
|
3 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-23 08:01:41,413 WARNING MainThread:2913 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug.log
|
11 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/logs/debug-internal.log
|
12 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-23 08:01:41,413 INFO MainThread:2913 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-23 08:01:41,417 INFO MainThread:2913 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-23 08:01:41,418 INFO MainThread:2913 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-23 08:01:41,422 INFO MainThread:2913 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-23 08:01:41,430 INFO MainThread:2913 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-23 08:01:41,687 INFO MainThread:2913 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-23 08:01:41,800 INFO MainThread:2913 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-23 08:01:41,800 INFO MainThread:2913 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-23 08:01:42,080 INFO MainThread:2913 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-23 08:01:42,081 INFO MainThread:2913 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-23 08:01:42,081 INFO MainThread:2913 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-23 08:01:42,081 INFO MainThread:2913 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-23 08:01:42,090 INFO MainThread:2913 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-23 08:01:56,886 WARNING MsgRouterThr:2913 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_080141-2cqsvyos/run-2cqsvyos.wandb
ADDED
Binary file (11.1 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/config.yaml
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.1
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.36.2
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1717845026
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 2
|
38 |
+
- 13
|
39 |
+
- 23
|
40 |
+
- 62
|
41 |
+
4: 3.10.12
|
42 |
+
5: 0.17.1
|
43 |
+
6: 4.36.2
|
44 |
+
8:
|
45 |
+
- 5
|
46 |
+
13: linux-x86_64
|
47 |
+
task_configs:
|
48 |
+
desc: null
|
49 |
+
value:
|
50 |
+
arc_easy:
|
51 |
+
task: arc_easy
|
52 |
+
group:
|
53 |
+
- ai2_arc
|
54 |
+
dataset_path: allenai/ai2_arc
|
55 |
+
dataset_name: ARC-Easy
|
56 |
+
training_split: train
|
57 |
+
validation_split: validation
|
58 |
+
test_split: test
|
59 |
+
doc_to_text: 'Question: {{question}}
|
60 |
+
|
61 |
+
Answer:'
|
62 |
+
doc_to_target: '{{choices.label.index(answerKey)}}'
|
63 |
+
doc_to_choice: '{{choices.text}}'
|
64 |
+
description: ''
|
65 |
+
target_delimiter: ' '
|
66 |
+
fewshot_delimiter: '
|
67 |
+
|
68 |
+
|
69 |
+
'
|
70 |
+
num_fewshot: 0
|
71 |
+
metric_list:
|
72 |
+
- metric: acc
|
73 |
+
aggregation: mean
|
74 |
+
higher_is_better: true
|
75 |
+
- metric: acc_norm
|
76 |
+
aggregation: mean
|
77 |
+
higher_is_better: true
|
78 |
+
output_type: multiple_choice
|
79 |
+
repeats: 1
|
80 |
+
should_decontaminate: true
|
81 |
+
doc_to_decontamination_query: 'Question: {{question}}
|
82 |
+
|
83 |
+
Answer:'
|
84 |
+
metadata:
|
85 |
+
version: 1.0
|
86 |
+
boolq:
|
87 |
+
task: boolq
|
88 |
+
group:
|
89 |
+
- super-glue-lm-eval-v1
|
90 |
+
dataset_path: super_glue
|
91 |
+
dataset_name: boolq
|
92 |
+
training_split: train
|
93 |
+
validation_split: validation
|
94 |
+
doc_to_text: '{{passage}}
|
95 |
+
|
96 |
+
Question: {{question}}?
|
97 |
+
|
98 |
+
Answer:'
|
99 |
+
doc_to_target: label
|
100 |
+
doc_to_choice:
|
101 |
+
- 'no'
|
102 |
+
- 'yes'
|
103 |
+
description: ''
|
104 |
+
target_delimiter: ' '
|
105 |
+
fewshot_delimiter: '
|
106 |
+
|
107 |
+
|
108 |
+
'
|
109 |
+
num_fewshot: 0
|
110 |
+
metric_list:
|
111 |
+
- metric: acc
|
112 |
+
output_type: multiple_choice
|
113 |
+
repeats: 1
|
114 |
+
should_decontaminate: true
|
115 |
+
doc_to_decontamination_query: passage
|
116 |
+
metadata:
|
117 |
+
version: 2.0
|
118 |
+
copa:
|
119 |
+
task: copa
|
120 |
+
group:
|
121 |
+
- super-glue-lm-eval-v1
|
122 |
+
dataset_path: super_glue
|
123 |
+
dataset_name: copa
|
124 |
+
training_split: train
|
125 |
+
validation_split: validation
|
126 |
+
doc_to_text: "def doc_to_text(doc):\n # Drop the period\n connector =\
|
127 |
+
\ {\n \"cause\": \"because\",\n \"effect\": \"therefore\",\n\
|
128 |
+
\ }[doc[\"question\"]]\n return doc[\"premise\"].strip()[:-1] + f\"\
|
129 |
+
\ {connector}\"\n"
|
130 |
+
doc_to_target: "def doc_to_target(doc):\n correct_choice = doc[\"choice1\"\
|
131 |
+
] if doc[\"label\"] == 0 else doc[\"choice2\"]\n # Connect the sentences\n\
|
132 |
+
\ return \" \" + convert_choice(correct_choice)\n"
|
133 |
+
doc_to_choice: "def doc_to_choice(doc):\n return [\" \" + convert_choice(doc[\"\
|
134 |
+
choice1\"]), \" \" + convert_choice(doc[\"choice2\"])]\n"
|
135 |
+
description: ''
|
136 |
+
target_delimiter: ' '
|
137 |
+
fewshot_delimiter: '
|
138 |
+
|
139 |
+
|
140 |
+
'
|
141 |
+
num_fewshot: 0
|
142 |
+
metric_list:
|
143 |
+
- metric: acc
|
144 |
+
output_type: multiple_choice
|
145 |
+
repeats: 1
|
146 |
+
should_decontaminate: false
|
147 |
+
metadata:
|
148 |
+
version: 1.0
|
149 |
+
indic_arc_challenge_hi:
|
150 |
+
task: indic_arc_challenge_hi
|
151 |
+
group: Cognitive-Lab/Indic-ARC-Challenge
|
152 |
+
dataset_path: Cognitive-Lab/Indic-ARC-Challenge
|
153 |
+
dataset_name: hi
|
154 |
+
test_split: test
|
155 |
+
doc_to_text: 'Question: {{translated_question}}
|
156 |
+
|
157 |
+
Answer:'
|
158 |
+
doc_to_target: '{{translated_choices.label.index(answerKey)}}'
|
159 |
+
doc_to_choice: '{{translated_choices.text}}'
|
160 |
+
description: ''
|
161 |
+
target_delimiter: ' '
|
162 |
+
fewshot_delimiter: '
|
163 |
+
|
164 |
+
|
165 |
+
'
|
166 |
+
num_fewshot: 0
|
167 |
+
metric_list:
|
168 |
+
- metric: acc
|
169 |
+
aggregation: mean
|
170 |
+
higher_is_better: true
|
171 |
+
output_type: multiple_choice
|
172 |
+
repeats: 1
|
173 |
+
should_decontaminate: true
|
174 |
+
doc_to_decontamination_query: 'Question: {{translated_question}}
|
175 |
+
|
176 |
+
Answer:'
|
177 |
+
metadata:
|
178 |
+
version: 1.0
|
179 |
+
indic_arc_easy_hi:
|
180 |
+
task: indic_arc_easy_hi
|
181 |
+
group: Cognitive-Lab/Indic-ARC-Easy
|
182 |
+
dataset_path: Cognitive-Lab/Indic-ARC-Easy
|
183 |
+
dataset_name: hi
|
184 |
+
test_split: test
|
185 |
+
doc_to_text: 'Question: {{translated_question}}
|
186 |
+
|
187 |
+
Answer:'
|
188 |
+
doc_to_target: '{{translated_choices.label.index(answerKey)}}'
|
189 |
+
doc_to_choice: '{{translated_choices.text}}'
|
190 |
+
description: ''
|
191 |
+
target_delimiter: ' '
|
192 |
+
fewshot_delimiter: '
|
193 |
+
|
194 |
+
|
195 |
+
'
|
196 |
+
num_fewshot: 0
|
197 |
+
metric_list:
|
198 |
+
- metric: acc
|
199 |
+
aggregation: mean
|
200 |
+
higher_is_better: true
|
201 |
+
output_type: multiple_choice
|
202 |
+
repeats: 1
|
203 |
+
should_decontaminate: true
|
204 |
+
doc_to_decontamination_query: 'Question: {{translated_question}}
|
205 |
+
|
206 |
+
Answer:'
|
207 |
+
metadata:
|
208 |
+
version: 1.0
|
209 |
+
indic_boolq_hi:
|
210 |
+
task: indic_boolq_hi
|
211 |
+
group: Cognitive-Lab/Indic-BoolQ
|
212 |
+
dataset_path: Cognitive-Lab/Indic-BoolQ
|
213 |
+
dataset_name: hi
|
214 |
+
validation_split: validation
|
215 |
+
doc_to_text: 'Passage: {translated_passage}
|
216 |
+
|
217 |
+
Question: {translated_question.strip()}
|
218 |
+
|
219 |
+
Answer:'
|
220 |
+
doc_to_target: answer
|
221 |
+
doc_to_choice:
|
222 |
+
- 'true'
|
223 |
+
- 'false'
|
224 |
+
description: ''
|
225 |
+
target_delimiter: ' '
|
226 |
+
fewshot_delimiter: '
|
227 |
+
|
228 |
+
|
229 |
+
'
|
230 |
+
num_fewshot: 0
|
231 |
+
metric_list:
|
232 |
+
- metric: acc
|
233 |
+
aggregation: mean
|
234 |
+
higher_is_better: true
|
235 |
+
output_type: multiple_choice
|
236 |
+
repeats: 1
|
237 |
+
should_decontaminate: false
|
238 |
+
metadata:
|
239 |
+
version: 1.0
|
240 |
+
mrpc:
|
241 |
+
task: mrpc
|
242 |
+
group: glue
|
243 |
+
dataset_path: glue
|
244 |
+
dataset_name: mrpc
|
245 |
+
training_split: train
|
246 |
+
validation_split: validation
|
247 |
+
doc_to_text: 'Sentence 1: {{sentence1}}
|
248 |
+
|
249 |
+
Sentence 2: {{sentence2}}
|
250 |
+
|
251 |
+
Question: Do both sentences mean the same thing?
|
252 |
+
|
253 |
+
Answer:'
|
254 |
+
doc_to_target: label
|
255 |
+
doc_to_choice:
|
256 |
+
- 'no'
|
257 |
+
- 'yes'
|
258 |
+
description: ''
|
259 |
+
target_delimiter: ' '
|
260 |
+
fewshot_delimiter: '
|
261 |
+
|
262 |
+
|
263 |
+
'
|
264 |
+
num_fewshot: 0
|
265 |
+
metric_list:
|
266 |
+
- metric: acc
|
267 |
+
- metric: f1
|
268 |
+
output_type: multiple_choice
|
269 |
+
repeats: 1
|
270 |
+
should_decontaminate: false
|
271 |
+
metadata:
|
272 |
+
version: 1.0
|
273 |
+
piqa:
|
274 |
+
task: piqa
|
275 |
+
dataset_path: piqa
|
276 |
+
training_split: train
|
277 |
+
validation_split: validation
|
278 |
+
doc_to_text: 'Question: {{goal}}
|
279 |
+
|
280 |
+
Answer:'
|
281 |
+
doc_to_target: label
|
282 |
+
doc_to_choice: '{{[sol1, sol2]}}'
|
283 |
+
description: ''
|
284 |
+
target_delimiter: ' '
|
285 |
+
fewshot_delimiter: '
|
286 |
+
|
287 |
+
|
288 |
+
'
|
289 |
+
num_fewshot: 0
|
290 |
+
metric_list:
|
291 |
+
- metric: acc
|
292 |
+
aggregation: mean
|
293 |
+
higher_is_better: true
|
294 |
+
- metric: acc_norm
|
295 |
+
aggregation: mean
|
296 |
+
higher_is_better: true
|
297 |
+
output_type: multiple_choice
|
298 |
+
repeats: 1
|
299 |
+
should_decontaminate: true
|
300 |
+
doc_to_decontamination_query: goal
|
301 |
+
metadata:
|
302 |
+
version: 1.0
|
303 |
+
sst2:
|
304 |
+
task: sst2
|
305 |
+
group: glue
|
306 |
+
dataset_path: glue
|
307 |
+
dataset_name: sst2
|
308 |
+
training_split: train
|
309 |
+
validation_split: validation
|
310 |
+
doc_to_text: '{{sentence}}
|
311 |
+
|
312 |
+
Question: Is this sentence positive or negative?
|
313 |
+
|
314 |
+
Answer:'
|
315 |
+
doc_to_target: label
|
316 |
+
doc_to_choice:
|
317 |
+
- negative
|
318 |
+
- positive
|
319 |
+
description: ''
|
320 |
+
target_delimiter: ' '
|
321 |
+
fewshot_delimiter: '
|
322 |
+
|
323 |
+
|
324 |
+
'
|
325 |
+
num_fewshot: 0
|
326 |
+
metric_list:
|
327 |
+
- metric: acc
|
328 |
+
output_type: multiple_choice
|
329 |
+
repeats: 1
|
330 |
+
should_decontaminate: false
|
331 |
+
metadata:
|
332 |
+
version: 1.0
|
333 |
+
winogrande:
|
334 |
+
task: winogrande
|
335 |
+
dataset_path: winogrande
|
336 |
+
dataset_name: winogrande_xl
|
337 |
+
training_split: train
|
338 |
+
validation_split: validation
|
339 |
+
doc_to_text: "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n\
|
340 |
+
\ return answer_to_num[doc[\"answer\"]]\n"
|
341 |
+
doc_to_target: "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"\
|
342 |
+
_\") + 1\n return doc[\"sentence\"][idx:].strip()\n"
|
343 |
+
doc_to_choice: "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"\
|
344 |
+
_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"\
|
345 |
+
sentence\"][:idx] + opt for opt in options]\n"
|
346 |
+
description: ''
|
347 |
+
target_delimiter: ' '
|
348 |
+
fewshot_delimiter: '
|
349 |
+
|
350 |
+
|
351 |
+
'
|
352 |
+
num_fewshot: 0
|
353 |
+
metric_list:
|
354 |
+
- metric: acc
|
355 |
+
aggregation: mean
|
356 |
+
higher_is_better: true
|
357 |
+
output_type: multiple_choice
|
358 |
+
repeats: 1
|
359 |
+
should_decontaminate: true
|
360 |
+
doc_to_decontamination_query: sentence
|
361 |
+
metadata:
|
362 |
+
version: 1.0
|
363 |
+
cli_configs:
|
364 |
+
desc: null
|
365 |
+
value:
|
366 |
+
model: hf
|
367 |
+
model_args: pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step100000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer
|
368 |
+
batch_size: auto
|
369 |
+
batch_sizes:
|
370 |
+
- 64
|
371 |
+
device: null
|
372 |
+
use_cache: null
|
373 |
+
limit: null
|
374 |
+
bootstrap_iters: 100000
|
375 |
+
gen_kwargs: null
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/media/table/evaluation/eval_results_1_6529e3311149275b8699.table.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"columns": ["Tasks", "Version", "Filter", "num_fewshot", "Metric", "Value", "Stderr"], "data": [["winogrande", 1.0, "none", 0, "acc", "0.48539857932123126", "0.0140"], ["sst2", 1.0, "none", 0, "acc", "0.5160550458715596", "0.0169"], ["piqa", 1.0, "none", 0, "acc", "0.5321001088139282", "0.0116"], ["piqa", 1.0, "none", 0, "acc_norm", "0.49347116430903154", "0.0117"], ["mrpc", 1.0, "none", 0, "acc", "0.3161764705882353", "0.0230"], ["mrpc", 1.0, "none", 0, "f1", "0.0", "0.0000"], ["indic_boolq_hi", 1.0, "none", 0, "acc", "0.6217125382262997", "0.0085"], ["indic_arc_easy_hi", 1.0, "none", 0, "acc", "0.25084175084175087", "0.0089"], ["indic_arc_challenge_hi", 1.0, "none", 0, "acc", "0.20733788395904437", "0.0118"], ["copa", 1.0, "none", 0, "acc", "0.58", "0.0496"], ["boolq", 2.0, "none", 0, "acc", "0.38073394495412843", "0.0085"], ["arc_easy", 1.0, "none", 0, "acc", "0.26346801346801346", "0.0090"], ["arc_easy", 1.0, "none", 0, "acc_norm", "0.2668350168350168", "0.0091"]]}
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/output.log
ADDED
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-06-08:11:10:27,101 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-06-08:11:10:36,720 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'boolq', 'copa', 'indic_arc_challenge_hi', 'indic_arc_easy_hi', 'indic_boolq_hi', 'mrpc', 'piqa', 'sst2', 'winogrande']
|
4 |
+
2024-06-08:11:10:36,721 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-06-08:11:10:36,721 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step100000', 'tokenizer': '/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer'}
|
6 |
+
2024-06-08:11:10:39,088 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/torch/cuda/memory.py:36: UserWarning: No need to call empty_cache on HPU. It manages the memory internally in an effcient way.
|
8 |
+
warnings.warn(
|
9 |
+
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
10 |
+
Downloading readme: 100%|██████████| 9.00k/9.00k [00:00<00:00, 16.1MB/s]
|
11 |
+
Downloading data: 100%|██████████| 331k/331k [00:00<00:00, 1.48MB/s]
|
12 |
+
Downloading data: 100%|██████████| 346k/346k [00:00<00:00, 2.71MB/s]
|
13 |
+
Downloading data: 100%|██████████| 86.1k/86.1k [00:00<00:00, 706kB/s]
|
14 |
+
Generating train split: 100%|██████████| 2251/2251 [00:00<00:00, 47691.92 examples/s]
|
15 |
+
Generating test split: 100%|██████████| 2376/2376 [00:00<00:00, 328325.58 examples/s]
|
16 |
+
Generating validation split: 100%|██████████| 570/570 [00:00<00:00, 154162.58 examples/s]
|
17 |
+
2024-06-08:11:11:07,210 WARNING [task.py:763] [Task: boolq] metric acc is defined, but aggregation is not. using default aggregation=mean
|
18 |
+
2024-06-08:11:11:07,211 WARNING [task.py:775] [Task: boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
|
19 |
+
/usr/local/lib/python3.10/dist-packages/datasets/load.py:1491: FutureWarning: The repository for super_glue contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/super_glue
|
20 |
+
You can avoid this message in future by passing the argument `trust_remote_code=True`.
|
21 |
+
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
|
22 |
+
warnings.warn(
|
23 |
+
Downloading builder script: 100%|██████████| 30.7k/30.7k [00:00<00:00, 38.8MB/s]
|
24 |
+
Downloading readme: 100%|██████████| 18.2k/18.2k [00:00<00:00, 26.7MB/s]
|
25 |
+
Downloading data: 100%|██████████| 4.12M/4.12M [00:00<00:00, 25.5MB/s]
|
26 |
+
Generating train split: 100%|██████████| 9427/9427 [00:00<00:00, 22364.23 examples/s]
|
27 |
+
Generating validation split: 100%|██████████| 3270/3270 [00:00<00:00, 22504.25 examples/s]
|
28 |
+
Generating test split: 100%|██████████| 3245/3245 [00:00<00:00, 22795.47 examples/s]
|
29 |
+
2024-06-08:11:11:10,503 WARNING [task.py:763] [Task: copa] metric acc is defined, but aggregation is not. using default aggregation=mean
|
30 |
+
2024-06-08:11:11:10,504 WARNING [task.py:775] [Task: copa] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
|
31 |
+
Downloading data: 100%|██████████| 44.0k/44.0k [00:00<00:00, 43.7MB/s]
|
32 |
+
Generating train split: 100%|██████████| 400/400 [00:00<00:00, 16554.72 examples/s]
|
33 |
+
Generating validation split: 100%|██████████| 100/100 [00:00<00:00, 13212.90 examples/s]
|
34 |
+
Generating test split: 100%|██████████| 500/500 [00:00<00:00, 16539.31 examples/s]
|
35 |
+
Downloading readme: 100%|██████████| 2.09k/2.09k [00:00<00:00, 5.02MB/s]
|
36 |
+
Downloading data: 100%|██████████| 1.73M/1.73M [00:00<00:00, 5.42MB/s]
|
37 |
+
Downloading data: 100%|██████████| 1.84M/1.84M [00:00<00:00, 5.89MB/s]
|
38 |
+
Downloading data: 100%|██████████| 473k/473k [00:00<00:00, 1.94MB/s]
|
39 |
+
Generating train split: 1119 examples [00:00, 29847.10 examples/s]
|
40 |
+
Generating test split: 1172 examples [00:00, 24003.26 examples/s]
|
41 |
+
Generating validation split: 299 examples [00:00, 9589.73 examples/s]
|
42 |
+
2024-06-08:11:11:15,235 WARNING [task.py:322] [Task: indic_arc_challenge_hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
43 |
+
2024-06-08:11:11:15,236 WARNING [task.py:322] [Task: indic_arc_challenge_hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
44 |
+
Downloading readme: 100%|██████████| 2.19k/2.19k [00:00<00:00, 12.7MB/s]
|
45 |
+
Downloading data: 100%|██████████| 3.18M/3.18M [00:00<00:00, 15.8MB/s]
|
46 |
+
Downloading data: 100%|██████████| 3.37M/3.37M [00:00<00:00, 7.79MB/s]
|
47 |
+
Downloading data: 100%|██████████| 808k/808k [00:00<00:00, 8.55MB/s]
|
48 |
+
Generating train split: 100%|██████████| 2251/2251 [00:00<00:00, 37212.97 examples/s]
|
49 |
+
Generating test split: 100%|██████████| 2376/2376 [00:00<00:00, 32758.20 examples/s]
|
50 |
+
Generating validation split: 100%|██████████| 570/570 [00:00<00:00, 17717.03 examples/s]
|
51 |
+
2024-06-08:11:11:18,419 WARNING [task.py:322] [Task: indic_arc_easy_hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
52 |
+
2024-06-08:11:11:18,419 WARNING [task.py:322] [Task: indic_arc_easy_hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
53 |
+
Downloading readme: 100%|██████████| 1.53k/1.53k [00:00<00:00, 9.19MB/s]
|
54 |
+
Downloading data: 100%|██████████| 22.1M/22.1M [00:01<00:00, 18.4MB/s]
|
55 |
+
Downloading data: 100%|██████████| 7.55M/7.55M [00:00<00:00, 15.9MB/s]
|
56 |
+
Generating train split: 100%|██████████| 9427/9427 [00:00<00:00, 36151.38 examples/s]
|
57 |
+
Generating validation split: 100%|██████████| 3270/3270 [00:00<00:00, 35974.85 examples/s]
|
58 |
+
2024-06-08:11:11:22,746 WARNING [task.py:763] [Task: mrpc] metric acc is defined, but aggregation is not. using default aggregation=mean
|
59 |
+
2024-06-08:11:11:22,746 WARNING [task.py:775] [Task: mrpc] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
|
60 |
+
2024-06-08:11:11:22,746 WARNING [task.py:763] [Task: mrpc] metric f1 is defined, but aggregation is not. using default aggregation=f1
|
61 |
+
2024-06-08:11:11:22,747 WARNING [task.py:775] [Task: mrpc] metric f1 is defined, but higher_is_better is not. using default higher_is_better=True
|
62 |
+
Downloading readme: 100%|██████████| 35.3k/35.3k [00:00<00:00, 63.6MB/s]
|
63 |
+
Downloading data: 100%|██████████| 649k/649k [00:00<00:00, 3.52MB/s]
|
64 |
+
Downloading data: 100%|██████████| 75.7k/75.7k [00:00<00:00, 527kB/s]
|
65 |
+
Downloading data: 100%|██████████| 308k/308k [00:00<00:00, 2.12MB/s]
|
66 |
+
Generating train split: 100%|██████████| 3668/3668 [00:00<00:00, 415140.91 examples/s]
|
67 |
+
Generating validation split: 100%|██████████| 408/408 [00:00<00:00, 181260.04 examples/s]
|
68 |
+
Generating test split: 100%|██████████| 1725/1725 [00:00<00:00, 387924.21 examples/s]
|
69 |
+
/usr/local/lib/python3.10/dist-packages/datasets/load.py:1491: FutureWarning: The repository for piqa contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/piqa
|
70 |
+
You can avoid this message in future by passing the argument `trust_remote_code=True`.
|
71 |
+
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
|
72 |
+
warnings.warn(
|
73 |
+
Downloading builder script: 100%|██████████| 5.36k/5.36k [00:00<00:00, 22.5MB/s]
|
74 |
+
Downloading readme: 100%|██████████| 8.41k/8.41k [00:00<00:00, 31.5MB/s]
|
75 |
+
Downloading data: 100%|██████████| 1.82M/1.82M [00:00<00:00, 4.19MB/s]
|
76 |
+
Downloading data: 100%|██████████| 815k/815k [00:00<00:00, 53.8MB/s]
|
77 |
+
Generating train split: 100%|██████████| 16113/16113 [00:00<00:00, 23818.46 examples/s]
|
78 |
+
Generating test split: 100%|██████████| 3084/3084 [00:00<00:00, 24787.45 examples/s]
|
79 |
+
Generating validation split: 100%|██████████| 1838/1838 [00:00<00:00, 23782.31 examples/s]
|
80 |
+
2024-06-08:11:11:32,824 WARNING [task.py:763] [Task: sst2] metric acc is defined, but aggregation is not. using default aggregation=mean
|
81 |
+
2024-06-08:11:11:32,825 WARNING [task.py:775] [Task: sst2] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
|
82 |
+
Downloading data: 100%|██████████| 3.11M/3.11M [00:00<00:00, 20.6MB/s]
|
83 |
+
Downloading data: 100%|██████████| 72.8k/72.8k [00:00<00:00, 508kB/s]
|
84 |
+
Downloading data: 100%|██████████| 148k/148k [00:00<00:00, 1.02MB/s]
|
85 |
+
Generating train split: 100%|██████████| 67349/67349 [00:00<00:00, 1414143.23 examples/s]
|
86 |
+
Generating validation split: 100%|██████████| 872/872 [00:00<00:00, 372827.02 examples/s]
|
87 |
+
Generating test split: 100%|██████████| 1821/1821 [00:00<00:00, 598998.32 examples/s]
|
88 |
+
/usr/local/lib/python3.10/dist-packages/datasets/load.py:1491: FutureWarning: The repository for winogrande contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/winogrande
|
89 |
+
You can avoid this message in future by passing the argument `trust_remote_code=True`.
|
90 |
+
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
|
91 |
+
warnings.warn(
|
92 |
+
Downloading builder script: 100%|██████████| 5.65k/5.65k [00:00<00:00, 24.7MB/s]
|
93 |
+
Downloading readme: 100%|██████████| 9.97k/9.97k [00:00<00:00, 20.7MB/s]
|
94 |
+
Downloading data: 100%|██████████| 3.40M/3.40M [00:00<00:00, 6.98MB/s]
|
95 |
+
Generating train split: 100%|██████████| 40398/40398 [00:01<00:00, 23624.41 examples/s]
|
96 |
+
Generating test split: 100%|██████████| 1767/1767 [00:00<00:00, 24427.28 examples/s]
|
97 |
+
Generating validation split: 100%|██████████| 1267/1267 [00:00<00:00, 23893.31 examples/s]
|
98 |
+
2024-06-08:11:11:45,062 INFO [task.py:395] Building contexts for winogrande on rank 0...
|
99 |
+
100%|██████████| 1267/1267 [00:00<00:00, 68770.65it/s]
|
100 |
+
2024-06-08:11:11:45,158 INFO [task.py:395] Building contexts for sst2 on rank 0...
|
101 |
+
100%|██████████| 872/872 [00:00<00:00, 2509.76it/s]
|
102 |
+
2024-06-08:11:11:45,533 INFO [task.py:395] Building contexts for piqa on rank 0...
|
103 |
+
100%|██████████| 408/408 [00:00<00:00, 1840.66it/s]s]
|
104 |
+
2024-06-08:11:11:47,339 INFO [task.py:395] Building contexts for mrpc on rank 0...
|
105 |
+
100%|██████████| 408/408 [00:00<00:00, 1840.66it/s]s]
|
106 |
+
2024-06-08:11:11:47,581 INFO [task.py:395] Building contexts for indic_boolq_hi on rank 0...
|
107 |
+
100%|██████████| 3270/3270 [00:00<00:00, 3677.79it/s]
|
108 |
+
2024-06-08:11:11:48,639 INFO [task.py:395] Building contexts for indic_arc_easy_hi on rank 0...
|
109 |
+
100%|██████████| 2376/2376 [00:02<00:00, 1029.09it/s]
|
110 |
+
2024-06-08:11:11:51,186 INFO [task.py:395] Building contexts for indic_arc_challenge_hi on rank 0...
|
111 |
+
100%|██████████| 1172/1172 [00:01<00:00, 1125.50it/s]
|
112 |
+
2024-06-08:11:11:52,347 INFO [task.py:395] Building contexts for copa on rank 0...
|
113 |
+
100%|██████████| 100/100 [00:00<00:00, 62211.57it/s]
|
114 |
+
2024-06-08:11:11:52,356 INFO [task.py:395] Building contexts for boolq on rank 0...
|
115 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
116 |
+
2024-06-08:11:11:54,145 INFO [task.py:395] Building contexts for arc_easy on rank 0...
|
117 |
+
24%|██▍ | 581/2376 [00:00<00:01, 1143.34it/s]
|
118 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
119 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
120 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
121 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
122 |
+
Passed argument batch_size = auto:1. Detecting largest batch size
|
123 |
+
Determined largest batch size: 64
|
124 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
125 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
126 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
127 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
128 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
129 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
130 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
131 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
132 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
133 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
134 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
135 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
136 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
137 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
138 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
139 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
140 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
141 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
142 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
143 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
144 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
145 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
146 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
147 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
148 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
149 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
150 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
151 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
152 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
153 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
154 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
155 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
156 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
157 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
158 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
159 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
160 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
161 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
162 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
163 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
164 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
165 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
166 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
167 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
168 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
169 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
170 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
171 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
172 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
173 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
174 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
175 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
176 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
177 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
178 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
179 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
180 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
181 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
182 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
183 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
184 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
185 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
186 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
187 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
188 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
189 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
190 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
191 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
192 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
193 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
194 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
195 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
196 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
197 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
198 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
199 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
200 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
201 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
202 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
203 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
204 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
205 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
206 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
207 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
208 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
209 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
210 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
211 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
212 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
213 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
214 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
215 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
216 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
217 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
218 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
219 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
220 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
221 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
222 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
223 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
224 |
+
100%|██████��███| 3270/3270 [00:01<00:00, 1979.26it/s]
|
225 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
226 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
227 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
228 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
229 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
230 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
231 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
232 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
233 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
234 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
235 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
236 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
237 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
238 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
239 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
240 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
241 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
242 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
243 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
244 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
245 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
246 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
247 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
248 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
249 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
250 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
251 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
252 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
253 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
254 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
255 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
256 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
257 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
258 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
259 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
260 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
261 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
262 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
263 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
264 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
265 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
266 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
267 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
268 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
269 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
270 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
271 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
272 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
273 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
274 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
275 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
276 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
277 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
278 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
279 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
280 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
281 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
282 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
283 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
284 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
285 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
286 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
287 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
288 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
289 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
290 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
291 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
292 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
293 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
294 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
295 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
296 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
297 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
298 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
299 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
300 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
301 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
302 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
303 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
304 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
305 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
306 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
307 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
308 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
309 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
310 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
311 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
312 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
313 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
314 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
315 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
316 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
317 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
318 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
319 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
320 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
321 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
322 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
323 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
324 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
325 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
326 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
327 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
328 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
329 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
330 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
331 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
332 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
333 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
334 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
335 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
336 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
337 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
338 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
339 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
340 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
341 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
342 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
343 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
344 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
345 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
346 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
347 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
348 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
349 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
350 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
351 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
352 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
353 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
354 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
355 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
356 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
357 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
358 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
359 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
360 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
361 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
362 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
363 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
364 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
365 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
366 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
367 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
368 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
369 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
370 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
371 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
372 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
373 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
374 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
375 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
376 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
377 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
378 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
379 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
380 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
381 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
382 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
383 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
384 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
385 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
386 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
387 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
388 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
389 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
390 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
391 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
392 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
393 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
394 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
395 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
396 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
397 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
398 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
399 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
400 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
401 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
402 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
403 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
404 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
405 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
406 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
407 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
408 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
409 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
410 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
411 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
412 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
413 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
414 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
415 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
416 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
417 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
418 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
419 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
420 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
421 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
422 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
423 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
424 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
425 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
426 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
427 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
428 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
429 |
+
100%|█��████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
430 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
431 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
432 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
433 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
434 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
435 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
436 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
437 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
438 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
439 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
440 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
441 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
442 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
443 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
444 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
445 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
446 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
447 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
448 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
449 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
450 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
451 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
452 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
453 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
454 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
455 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
456 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
457 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
458 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
459 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
460 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
461 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
462 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
463 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
464 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
465 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
466 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
467 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
468 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
469 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
470 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
471 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
472 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
473 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
474 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
475 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
476 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
477 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
478 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
479 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
480 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
481 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
482 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
483 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
484 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
485 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
486 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
487 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
488 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
489 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
490 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
491 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
492 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
493 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
494 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
495 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
496 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
497 |
+
100%|████████���█| 3270/3270 [00:01<00:00, 1979.26it/s]
|
498 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
499 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
500 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
501 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
502 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
503 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
504 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
505 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
506 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
507 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
508 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
509 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
510 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
511 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
512 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
513 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
514 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
515 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
516 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
517 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
518 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
519 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
520 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
521 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
522 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
523 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
524 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
525 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
526 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
527 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
528 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
529 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
530 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
531 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
532 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
533 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
534 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
535 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
536 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
537 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
538 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
539 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
540 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
541 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
542 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
543 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
544 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
545 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
546 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
547 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
548 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
549 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
550 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
551 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
552 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
553 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
554 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
555 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
556 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
557 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
558 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
559 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
560 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
561 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
562 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
563 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
564 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
565 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
566 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
567 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
568 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
569 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
570 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
571 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
572 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
573 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
574 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
575 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
576 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
577 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
578 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
579 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
580 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
581 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
582 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
583 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
584 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
585 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
586 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
587 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
588 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
589 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
590 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
591 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
592 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
593 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
594 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
595 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
596 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
597 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
598 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
599 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
600 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
601 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
602 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
603 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
604 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
605 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
606 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
607 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
608 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
609 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
610 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
611 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
612 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
613 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
614 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
615 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
616 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
617 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
618 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
619 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
620 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
621 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
622 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
623 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
624 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
625 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
626 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
627 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
628 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
629 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
630 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
631 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
632 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
633 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
634 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
635 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
636 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
637 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
638 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
639 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
640 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
641 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
642 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
643 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
644 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
645 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
646 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
647 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
648 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
649 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
650 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
651 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
652 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
653 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
654 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
655 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
656 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
657 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
658 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
659 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
660 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
661 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
662 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
663 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
664 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
665 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
666 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
667 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
668 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
669 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
670 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
671 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
672 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
673 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
674 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
675 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
676 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
677 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
678 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
679 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
680 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
681 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
682 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
683 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
684 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
685 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
686 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
687 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
688 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
689 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
690 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
691 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
692 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
693 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
694 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
695 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
696 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
697 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
698 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
699 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
700 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
701 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
702 |
+
100%|███���██████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
703 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
704 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
705 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
706 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
707 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
708 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
709 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
710 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
711 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
712 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
713 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
714 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
715 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
716 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
717 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
718 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
719 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
720 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
721 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
722 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
723 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
724 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
725 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
726 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
727 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
728 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
729 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
730 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
731 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
732 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
733 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
734 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
735 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
736 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
737 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
738 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
739 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
740 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
741 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
742 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
743 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
744 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
745 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
746 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
747 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
748 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
749 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
750 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
751 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
752 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
753 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
754 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
755 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
756 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
757 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
758 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
759 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
760 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
761 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
762 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
763 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
764 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
765 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
766 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
767 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
768 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
769 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
770 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
771 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
772 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
773 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
774 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
775 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
776 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
777 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
778 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
779 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
780 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
781 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
782 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
783 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
784 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
785 |
+
bootstrapping for stddev: f1_score
|
786 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
787 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
788 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
789 |
+
100%|██████████| 3270/3270 [00:01<00:00, 1979.26it/s]
|
790 |
+
hf (pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step100000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (64)
|
791 |
+
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
792 |
+
|----------------------|------:|------|-----:|--------|-----:|---|-----:|
|
793 |
+
|winogrande | 1|none | 0|acc |0.4854|± |0.0140|
|
794 |
+
|sst2 | 1|none | 0|acc |0.5161|± |0.0169|
|
795 |
+
|piqa | 1|none | 0|acc |0.5321|± |0.0116|
|
796 |
+
| | |none | 0|acc_norm|0.4935|± |0.0117|
|
797 |
+
|mrpc | 1|none | 0|acc |0.3162|± |0.0230|
|
798 |
+
| | |none | 0|f1 |0.0000|± |0.0000|
|
799 |
+
|indic_boolq_hi | 1|none | 0|acc |0.6217|± |0.0085|
|
800 |
+
|indic_arc_easy_hi | 1|none | 0|acc |0.2508|± |0.0089|
|
801 |
+
|indic_arc_challenge_hi| 1|none | 0|acc |0.2073|± |0.0118|
|
802 |
+
|copa | 1|none | 0|acc |0.5800|± |0.0496|
|
803 |
+
|boolq | 2|none | 0|acc |0.3807|± |0.0085|
|
804 |
+
|arc_easy | 1|none | 0|acc |0.2635|± |0.0090|
|
805 |
+
| | |none | 0|acc_norm|0.2668|± |0.0091|
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/requirements.txt
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.31.0
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.2
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.3
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pip==22.0.2
|
81 |
+
pip==23.3.1
|
82 |
+
platformdirs==4.2.1
|
83 |
+
pluggy==1.5.0
|
84 |
+
portalocker==2.8.2
|
85 |
+
pre-commit==3.3.3
|
86 |
+
pretty-errors==1.2.25
|
87 |
+
protobuf==3.20.3
|
88 |
+
psutil==5.9.8
|
89 |
+
py-cpuinfo==9.0.0
|
90 |
+
pyarrow-hotfix==0.6
|
91 |
+
pyarrow==16.1.0
|
92 |
+
pyasn1==0.6.0
|
93 |
+
pyasn1_modules==0.4.0
|
94 |
+
pybind11==2.10.4
|
95 |
+
pycparser==2.22
|
96 |
+
pydantic==1.10.13
|
97 |
+
pynvml==8.0.4
|
98 |
+
pytablewriter==1.2.0
|
99 |
+
pytest==8.2.0
|
100 |
+
python-dateutil==2.9.0.post0
|
101 |
+
pytorch-lightning==2.2.4
|
102 |
+
pytz==2024.1
|
103 |
+
regex==2023.5.5
|
104 |
+
requests-oauthlib==2.0.0
|
105 |
+
requests==2.32.3
|
106 |
+
rouge_score==0.1.2
|
107 |
+
rsa==4.9
|
108 |
+
sacrebleu==2.4.2
|
109 |
+
safetensors==0.4.3
|
110 |
+
scikit-learn==1.5.0
|
111 |
+
scipy==1.13.1
|
112 |
+
sentencepiece==0.2.0
|
113 |
+
sentry-sdk==2.5.1
|
114 |
+
setproctitle==1.3.3
|
115 |
+
setuptools==59.6.0
|
116 |
+
setuptools==69.5.1
|
117 |
+
six==1.16.0
|
118 |
+
smmap==5.0.1
|
119 |
+
sqlitedict==2.1.0
|
120 |
+
symengine==0.11.0
|
121 |
+
sympy==1.12
|
122 |
+
tabledata==1.3.3
|
123 |
+
tabulate==0.9.0
|
124 |
+
tcolorpy==0.1.6
|
125 |
+
tdqm==0.0.1
|
126 |
+
tensorboard-data-server==0.6.1
|
127 |
+
tensorboard-plugin-wit==1.8.1
|
128 |
+
tensorboard==2.11.2
|
129 |
+
threadpoolctl==3.5.0
|
130 |
+
tokenizers==0.15.2
|
131 |
+
tomli==2.0.1
|
132 |
+
torch==2.2.0a0+git8964477
|
133 |
+
torch_tb_profiler==0.4.0
|
134 |
+
torchaudio==2.2.0+08901ad
|
135 |
+
torchdata==0.7.1+5e6f7b7
|
136 |
+
torchmetrics==1.4.0
|
137 |
+
torchtext==0.17.0+400da5c
|
138 |
+
torchvision==0.17.0+b2383d4
|
139 |
+
tqdm-multiprocess==0.0.11
|
140 |
+
tqdm==4.66.4
|
141 |
+
transformers==4.36.2
|
142 |
+
typepy==1.3.2
|
143 |
+
typing_extensions==4.11.0
|
144 |
+
tzdata==2024.1
|
145 |
+
urllib3==1.26.18
|
146 |
+
virtualenv==20.26.1
|
147 |
+
wandb==0.17.1
|
148 |
+
wheel==0.37.1
|
149 |
+
wheel==0.43.0
|
150 |
+
word2number==1.1
|
151 |
+
xxhash==3.4.1
|
152 |
+
yamllint==1.35.1
|
153 |
+
yarl==1.9.4
|
154 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-06-08T11:10:26.878917",
|
5 |
+
"startedAt": "2024-06-08T11:10:26.443305",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step100000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer",
|
13 |
+
"--tasks",
|
14 |
+
"winogrande,sst2,mrpc,arc_easy,copa,piqa,boolq,indic_arc_easy_hi,indic_arc_challenge_hi,indic_boolq_hi",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=engl-hi-eval,name=globalstep_100000,group=exp2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-debug-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2334.37498125,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3400.0,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.002,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 214.5283966064453
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379501342773
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"winogrande/alias": "winogrande", "sst2/alias": "sst2", "piqa/alias": "piqa", "mrpc/alias": "mrpc", "indic_boolq_hi/alias": "indic_boolq_hi", "indic_arc_easy_hi/alias": "indic_arc_easy_hi", "indic_arc_challenge_hi/alias": "indic_arc_challenge_hi", "copa/alias": "copa", "boolq/alias": "boolq", "arc_easy/alias": "arc_easy", "winogrande/acc": 0.48539857932123126, "winogrande/acc_stderr": 0.014046492383275837, "sst2/acc": 0.5160550458715596, "sst2/acc_stderr": 0.01693311741999099, "piqa/acc": 0.5321001088139282, "piqa/acc_stderr": 0.01164175801482013, "piqa/acc_norm": 0.49347116430903154, "piqa/acc_norm_stderr": 0.01166482959521097, "mrpc/acc": 0.3161764705882353, "mrpc/acc_stderr": 0.023048336668420193, "mrpc/f1": 0.0, "mrpc/f1_stderr": 0.0, "indic_boolq_hi/acc": 0.6217125382262997, "indic_boolq_hi/acc_stderr": 0.008482001133930994, "indic_arc_easy_hi/acc": 0.25084175084175087, "indic_arc_easy_hi/acc_stderr": 0.008895183010487388, "indic_arc_challenge_hi/acc": 0.20733788395904437, "indic_arc_challenge_hi/acc_stderr": 0.011846905782971373, "copa/acc": 0.58, "copa/acc_stderr": 0.049604496374885836, "boolq/acc": 0.38073394495412843, "boolq/acc_stderr": 0.008492625561656218, "arc_easy/acc": 0.26346801346801346, "arc_easy/acc_stderr": 0.009039157374497722, "arc_easy/acc_norm": 0.2668350168350168, "arc_easy/acc_norm_stderr": 0.00907591585926726, "_timestamp": 1717849398.984251, "_runtime": 4372.5210790634155, "_step": 1, "evaluation/eval_results": {"_type": "table-file", "sha256": "6529e3311149275b8699b4a67df73b70fcae908dd4f7d4af4f1c71c1b876ceba", "size": 984, "artifact_path": "wandb-client-artifact://zo4fjo3s3gxn5pzewdndrodktw0wj3vlmo930nos5bjauxgdso83b1v093mu7m3sjuc5l6ifeylay3tou90n1h393ka4vaikp9fzx5ch4qy9hs46r1kolxfyzeg1spz2/evaluation/eval_results.table.json", "_latest_artifact_path": "wandb-client-artifact://c0hwnhshjspl5o1obcimj38jhq5xicsi4rv04t2hvsil0gtkz1fygm2k2h673hytf5f073wg35atyzrch6c7p9zvw230orttwtjxy8zum5c2znzs56jehwecqu6nxcuj:latest/evaluation/eval_results.table.json", "path": "media/table/evaluation/eval_results_1_6529e3311149275b8699.table.json", "ncols": 7, "nrows": 13}, "_wandb": {"runtime": 4374}}
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug-internal.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug.log
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-08 11:10:26,457 INFO MainThread:833 [wandb_setup.py:_flush():76] Current SDK version is 0.17.1
|
2 |
+
2024-06-08 11:10:26,457 INFO MainThread:833 [wandb_setup.py:_flush():76] Configure stats pid to 833
|
3 |
+
2024-06-08 11:10:26,457 INFO MainThread:833 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-06-08 11:10:26,457 INFO MainThread:833 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-06-08 11:10:26,458 WARNING MainThread:833 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug.log
|
11 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240608_111026-9apxn9eo/logs/debug-internal.log
|
12 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-06-08 11:10:26,458 INFO MainThread:833 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-06-08 11:10:26,461 INFO MainThread:833 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-06-08 11:10:26,462 INFO MainThread:833 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-06-08 11:10:26,466 INFO MainThread:833 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-06-08 11:10:26,475 INFO MainThread:833 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-06-08 11:10:26,724 INFO MainThread:833 [wandb_run.py:_on_init():2402] communicating current version
|
22 |
+
2024-06-08 11:10:26,754 INFO MainThread:833 [wandb_run.py:_on_init():2411] got version response
|
23 |
+
2024-06-08 11:10:26,754 INFO MainThread:833 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-06-08 11:10:27,095 INFO MainThread:833 [wandb_run.py:_console_start():2380] atexit reg
|
25 |
+
2024-06-08 11:10:27,095 INFO MainThread:833 [wandb_run.py:_redirect():2235] redirect: wrap_raw
|
26 |
+
2024-06-08 11:10:27,095 INFO MainThread:833 [wandb_run.py:_redirect():2300] Wrapping output streams.
|
27 |
+
2024-06-08 11:10:27,095 INFO MainThread:833 [wandb_run.py:_redirect():2325] Redirects installed.
|
28 |
+
2024-06-08 11:10:27,099 INFO MainThread:833 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-06-08 12:23:18,575 INFO MainThread:833 [wandb_run.py:_config_callback():1382] config_cb None None {'task_configs': {'arc_easy': {'task': 'arc_easy', 'group': ['ai2_arc'], 'dataset_path': 'allenai/ai2_arc', 'dataset_name': 'ARC-Easy', 'training_split': 'train', 'validation_split': 'validation', 'test_split': 'test', 'doc_to_text': 'Question: {{question}}\nAnswer:', 'doc_to_target': '{{choices.label.index(answerKey)}}', 'doc_to_choice': '{{choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'boolq': {'task': 'boolq', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'boolq', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{passage}}\nQuestion: {{question}}?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'passage', 'metadata': {'version': 2.0}}, 'copa': {'task': 'copa', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'copa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n # Drop the period\n connector = {\n "cause": "because",\n "effect": "therefore",\n }[doc["question"]]\n return doc["premise"].strip()[:-1] + f" {connector}"\n', 'doc_to_target': 'def doc_to_target(doc):\n correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]\n # Connect the sentences\n return " " + convert_choice(correct_choice)\n', 'doc_to_choice': 'def doc_to_choice(doc):\n return [" " + convert_choice(doc["choice1"]), " " + convert_choice(doc["choice2"])]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'indic_arc_challenge_hi': {'task': 'indic_arc_challenge_hi', 'group': 'Cognitive-Lab/Indic-ARC-Challenge', 'dataset_path': 'Cognitive-Lab/Indic-ARC-Challenge', 'dataset_name': 'hi', 'test_split': 'test', 'doc_to_text': 'Question: {{translated_question}}\nAnswer:', 'doc_to_target': '{{translated_choices.label.index(answerKey)}}', 'doc_to_choice': '{{translated_choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{translated_question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'indic_arc_easy_hi': {'task': 'indic_arc_easy_hi', 'group': 'Cognitive-Lab/Indic-ARC-Easy', 'dataset_path': 'Cognitive-Lab/Indic-ARC-Easy', 'dataset_name': 'hi', 'test_split': 'test', 'doc_to_text': 'Question: {{translated_question}}\nAnswer:', 'doc_to_target': '{{translated_choices.label.index(answerKey)}}', 'doc_to_choice': '{{translated_choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{translated_question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'indic_boolq_hi': {'task': 'indic_boolq_hi', 'group': 'Cognitive-Lab/Indic-BoolQ', 'dataset_path': 'Cognitive-Lab/Indic-BoolQ', 'dataset_name': 'hi', 'validation_split': 'validation', 'doc_to_text': 'Passage: {translated_passage}\nQuestion: {translated_question.strip()}\nAnswer:', 'doc_to_target': 'answer', 'doc_to_choice': ['true', 'false'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'mrpc': {'task': 'mrpc', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'mrpc', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}, {'metric': 'f1'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'piqa': {'task': 'piqa', 'dataset_path': 'piqa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Question: {{goal}}\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': '{{[sol1, sol2]}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'goal', 'metadata': {'version': 1.0}}, 'sst2': {'task': 'sst2', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'sst2', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['negative', 'positive'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'winogrande': {'task': 'winogrande', 'dataset_path': 'winogrande', 'dataset_name': 'winogrande_xl', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n answer_to_num = {"1": 0, "2": 1}\n return answer_to_num[doc["answer"]]\n', 'doc_to_target': 'def doc_to_target(doc):\n idx = doc["sentence"].index("_") + 1\n return doc["sentence"][idx:].strip()\n', 'doc_to_choice': 'def doc_to_choice(doc):\n idx = doc["sentence"].index("_")\n options = [doc["option1"], doc["option2"]]\n return [doc["sentence"][:idx] + opt for opt in options]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'sentence', 'metadata': {'version': 1.0}}}, 'cli_configs': {'model': 'hf', 'model_args': 'pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step100000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer', 'batch_size': 'auto', 'batch_sizes': [64], 'device': None, 'use_cache': None, 'limit': None, 'bootstrap_iters': 100000, 'gen_kwargs': None}}
|
30 |
+
2024-06-08 12:23:19,219 INFO MainThread:833 [wandb_run.py:_finish():2109] finishing run smlgenai/engl-hi-eval/9apxn9eo
|
31 |
+
2024-06-08 12:23:19,219 INFO MainThread:833 [wandb_run.py:_atexit_cleanup():2349] got exitcode: 0
|
32 |
+
2024-06-08 12:23:19,220 INFO MainThread:833 [wandb_run.py:_restore():2332] restore
|
33 |
+
2024-06-08 12:23:19,220 INFO MainThread:833 [wandb_run.py:_restore():2338] restore done
|
34 |
+
2024-06-08 12:23:24,834 INFO MainThread:833 [wandb_run.py:_footer_history_summary_info():4008] rendering history
|
35 |
+
2024-06-08 12:23:24,835 INFO MainThread:833 [wandb_run.py:_footer_history_summary_info():4040] rendering summary
|
36 |
+
2024-06-08 12:23:24,841 INFO MainThread:833 [wandb_run.py:_footer_sync_info():3967] logging synced files
|
venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/configuration_align.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/convert_align_tf_to_hf.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/modeling_align.cpython-310.pyc
ADDED
Binary file (50.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/align/__pycache__/processing_align.cpython-310.pyc
ADDED
Binary file (5.68 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/align/configuration_align.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ALIGN model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import TYPE_CHECKING, List, Union
|
19 |
+
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
pass
|
23 |
+
|
24 |
+
from ...configuration_utils import PretrainedConfig
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class AlignTextConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a
|
37 |
+
ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
38 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN
|
39 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are
|
40 |
+
copied from BERT.
|
41 |
+
|
42 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
43 |
+
documentation from [`PretrainedConfig`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
47 |
+
Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by
|
48 |
+
the `inputs_ids` passed when calling [`AlignTextModel`].
|
49 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
50 |
+
Dimensionality of the encoder layers and the pooler layer.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
57 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
68 |
+
The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`].
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
74 |
+
Padding token id.
|
75 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
76 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
77 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
78 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
79 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
80 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
81 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
83 |
+
relevant if `config.is_decoder=True`.
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import AlignTextConfig, AlignTextModel
|
89 |
+
|
90 |
+
>>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration
|
91 |
+
>>> configuration = AlignTextConfig()
|
92 |
+
|
93 |
+
>>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration
|
94 |
+
>>> model = AlignTextModel(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
|
100 |
+
model_type = "align_text_model"
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_size=30522,
|
105 |
+
hidden_size=768,
|
106 |
+
num_hidden_layers=12,
|
107 |
+
num_attention_heads=12,
|
108 |
+
intermediate_size=3072,
|
109 |
+
hidden_act="gelu",
|
110 |
+
hidden_dropout_prob=0.1,
|
111 |
+
attention_probs_dropout_prob=0.1,
|
112 |
+
max_position_embeddings=512,
|
113 |
+
type_vocab_size=2,
|
114 |
+
initializer_range=0.02,
|
115 |
+
layer_norm_eps=1e-12,
|
116 |
+
pad_token_id=0,
|
117 |
+
position_embedding_type="absolute",
|
118 |
+
use_cache=True,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.position_embedding_type = position_embedding_type
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.pad_token_id = pad_token_id
|
138 |
+
|
139 |
+
@classmethod
|
140 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
141 |
+
cls._set_token_in_kwargs(kwargs)
|
142 |
+
|
143 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
144 |
+
|
145 |
+
# get the text config dict if we are loading from AlignConfig
|
146 |
+
if config_dict.get("model_type") == "align":
|
147 |
+
config_dict = config_dict["text_config"]
|
148 |
+
|
149 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
150 |
+
logger.warning(
|
151 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
152 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
153 |
+
)
|
154 |
+
|
155 |
+
return cls.from_dict(config_dict, **kwargs)
|
156 |
+
|
157 |
+
|
158 |
+
class AlignVisionConfig(PretrainedConfig):
|
159 |
+
r"""
|
160 |
+
This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a
|
161 |
+
ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
162 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN
|
163 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied
|
164 |
+
from EfficientNet (efficientnet-b7)
|
165 |
+
|
166 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
167 |
+
documentation from [`PretrainedConfig`] for more information.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
num_channels (`int`, *optional*, defaults to 3):
|
171 |
+
The number of input channels.
|
172 |
+
image_size (`int`, *optional*, defaults to 600):
|
173 |
+
The input image size.
|
174 |
+
width_coefficient (`float`, *optional*, defaults to 2.0):
|
175 |
+
Scaling coefficient for network width at each stage.
|
176 |
+
depth_coefficient (`float`, *optional*, defaults to 3.1):
|
177 |
+
Scaling coefficient for network depth at each stage.
|
178 |
+
depth_divisor `int`, *optional*, defaults to 8):
|
179 |
+
A unit of network width.
|
180 |
+
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
|
181 |
+
List of kernel sizes to be used in each block.
|
182 |
+
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
|
183 |
+
List of input channel sizes to be used in each block for convolutional layers.
|
184 |
+
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
|
185 |
+
List of output channel sizes to be used in each block for convolutional layers.
|
186 |
+
depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
|
187 |
+
List of block indices with square padding.
|
188 |
+
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
|
189 |
+
List of stride sizes to be used in each block for convolutional layers.
|
190 |
+
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
|
191 |
+
List of the number of times each block is to repeated.
|
192 |
+
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
|
193 |
+
List of scaling coefficient of each block.
|
194 |
+
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
|
195 |
+
Squeeze expansion ratio.
|
196 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
197 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
198 |
+
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
|
199 |
+
hiddem_dim (`int`, *optional*, defaults to 1280):
|
200 |
+
The hidden dimension of the layer before the classification head.
|
201 |
+
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
|
202 |
+
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
|
203 |
+
`"max"`]
|
204 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
205 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
206 |
+
batch_norm_eps (`float`, *optional*, defaults to 1e-3):
|
207 |
+
The epsilon used by the batch normalization layers.
|
208 |
+
batch_norm_momentum (`float`, *optional*, defaults to 0.99):
|
209 |
+
The momentum used by the batch normalization layers.
|
210 |
+
drop_connect_rate (`float`, *optional*, defaults to 0.2):
|
211 |
+
The drop rate for skip connections.
|
212 |
+
|
213 |
+
Example:
|
214 |
+
|
215 |
+
```python
|
216 |
+
>>> from transformers import AlignVisionConfig, AlignVisionModel
|
217 |
+
|
218 |
+
>>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration
|
219 |
+
>>> configuration = AlignVisionConfig()
|
220 |
+
|
221 |
+
>>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration
|
222 |
+
>>> model = AlignVisionModel(configuration)
|
223 |
+
|
224 |
+
>>> # Accessing the model configuration
|
225 |
+
>>> configuration = model.config
|
226 |
+
```"""
|
227 |
+
|
228 |
+
model_type = "align_vision_model"
|
229 |
+
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
num_channels: int = 3,
|
233 |
+
image_size: int = 600,
|
234 |
+
width_coefficient: float = 2.0,
|
235 |
+
depth_coefficient: float = 3.1,
|
236 |
+
depth_divisor: int = 8,
|
237 |
+
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
|
238 |
+
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
|
239 |
+
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
|
240 |
+
depthwise_padding: List[int] = [],
|
241 |
+
strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
|
242 |
+
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
|
243 |
+
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
|
244 |
+
squeeze_expansion_ratio: float = 0.25,
|
245 |
+
hidden_act: str = "swish",
|
246 |
+
hidden_dim: int = 2560,
|
247 |
+
pooling_type: str = "mean",
|
248 |
+
initializer_range: float = 0.02,
|
249 |
+
batch_norm_eps: float = 0.001,
|
250 |
+
batch_norm_momentum: float = 0.99,
|
251 |
+
drop_connect_rate: float = 0.2,
|
252 |
+
**kwargs,
|
253 |
+
):
|
254 |
+
super().__init__(**kwargs)
|
255 |
+
|
256 |
+
self.num_channels = num_channels
|
257 |
+
self.image_size = image_size
|
258 |
+
self.width_coefficient = width_coefficient
|
259 |
+
self.depth_coefficient = depth_coefficient
|
260 |
+
self.depth_divisor = depth_divisor
|
261 |
+
self.kernel_sizes = kernel_sizes
|
262 |
+
self.in_channels = in_channels
|
263 |
+
self.out_channels = out_channels
|
264 |
+
self.depthwise_padding = depthwise_padding
|
265 |
+
self.strides = strides
|
266 |
+
self.num_block_repeats = num_block_repeats
|
267 |
+
self.expand_ratios = expand_ratios
|
268 |
+
self.squeeze_expansion_ratio = squeeze_expansion_ratio
|
269 |
+
self.hidden_act = hidden_act
|
270 |
+
self.hidden_dim = hidden_dim
|
271 |
+
self.pooling_type = pooling_type
|
272 |
+
self.initializer_range = initializer_range
|
273 |
+
self.batch_norm_eps = batch_norm_eps
|
274 |
+
self.batch_norm_momentum = batch_norm_momentum
|
275 |
+
self.drop_connect_rate = drop_connect_rate
|
276 |
+
self.num_hidden_layers = sum(num_block_repeats) * 4
|
277 |
+
|
278 |
+
@classmethod
|
279 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
280 |
+
cls._set_token_in_kwargs(kwargs)
|
281 |
+
|
282 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
283 |
+
|
284 |
+
# get the vision config dict if we are loading from AlignConfig
|
285 |
+
if config_dict.get("model_type") == "align":
|
286 |
+
config_dict = config_dict["vision_config"]
|
287 |
+
|
288 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
289 |
+
logger.warning(
|
290 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
291 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
292 |
+
)
|
293 |
+
|
294 |
+
return cls.from_dict(config_dict, **kwargs)
|
295 |
+
|
296 |
+
|
297 |
+
class AlignConfig(PretrainedConfig):
|
298 |
+
r"""
|
299 |
+
[`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to
|
300 |
+
instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs.
|
301 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN
|
302 |
+
[kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture.
|
303 |
+
|
304 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
305 |
+
documentation from [`PretrainedConfig`] for more information.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
text_config (`dict`, *optional*):
|
309 |
+
Dictionary of configuration options used to initialize [`AlignTextConfig`].
|
310 |
+
vision_config (`dict`, *optional*):
|
311 |
+
Dictionary of configuration options used to initialize [`AlignVisionConfig`].
|
312 |
+
projection_dim (`int`, *optional*, defaults to 640):
|
313 |
+
Dimentionality of text and vision projection layers.
|
314 |
+
temperature_init_value (`float`, *optional*, defaults to 1.0):
|
315 |
+
The inital value of the *temperature* paramter. Default is used as per the original ALIGN implementation.
|
316 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
317 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
318 |
+
kwargs (*optional*):
|
319 |
+
Dictionary of keyword arguments.
|
320 |
+
|
321 |
+
Example:
|
322 |
+
|
323 |
+
```python
|
324 |
+
>>> from transformers import AlignConfig, AlignModel
|
325 |
+
|
326 |
+
>>> # Initializing a AlignConfig with kakaobrain/align-base style configuration
|
327 |
+
>>> configuration = AlignConfig()
|
328 |
+
|
329 |
+
>>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration
|
330 |
+
>>> model = AlignModel(configuration)
|
331 |
+
|
332 |
+
>>> # Accessing the model configuration
|
333 |
+
>>> configuration = model.config
|
334 |
+
|
335 |
+
>>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig
|
336 |
+
>>> from transformers import AlignTextConfig, AlignVisionConfig
|
337 |
+
|
338 |
+
>>> # Initializing ALIGN Text and Vision configurations
|
339 |
+
>>> config_text = AlignTextConfig()
|
340 |
+
>>> config_vision = AlignVisionConfig()
|
341 |
+
|
342 |
+
>>> config = AlignConfig.from_text_vision_configs(config_text, config_vision)
|
343 |
+
```"""
|
344 |
+
|
345 |
+
model_type = "align"
|
346 |
+
|
347 |
+
def __init__(
|
348 |
+
self,
|
349 |
+
text_config=None,
|
350 |
+
vision_config=None,
|
351 |
+
projection_dim=640,
|
352 |
+
temperature_init_value=1.0,
|
353 |
+
initializer_range=0.02,
|
354 |
+
**kwargs,
|
355 |
+
):
|
356 |
+
super().__init__(**kwargs)
|
357 |
+
|
358 |
+
if text_config is None:
|
359 |
+
text_config = {}
|
360 |
+
logger.info("text_config is None. Initializing the AlignTextConfig with default values.")
|
361 |
+
|
362 |
+
if vision_config is None:
|
363 |
+
vision_config = {}
|
364 |
+
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.")
|
365 |
+
|
366 |
+
self.text_config = AlignTextConfig(**text_config)
|
367 |
+
self.vision_config = AlignVisionConfig(**vision_config)
|
368 |
+
|
369 |
+
self.projection_dim = projection_dim
|
370 |
+
self.temperature_init_value = temperature_init_value
|
371 |
+
self.initializer_range = initializer_range
|
372 |
+
|
373 |
+
@classmethod
|
374 |
+
def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs):
|
375 |
+
r"""
|
376 |
+
Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model
|
377 |
+
configuration.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
[`AlignConfig`]: An instance of a configuration object
|
381 |
+
"""
|
382 |
+
|
383 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/align/modeling_align.py
ADDED
@@ -0,0 +1,1633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Google Research Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ALIGN model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithNoAttention,
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from ...utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_align import AlignConfig, AlignTextConfig, AlignVisionConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "kakaobrain/align-base"
|
47 |
+
_CONFIG_FOR_DOC = "AlignConfig"
|
48 |
+
|
49 |
+
|
50 |
+
from ..deprecated._archive_maps import ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
51 |
+
|
52 |
+
|
53 |
+
ALIGN_START_DOCSTRING = r"""
|
54 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
55 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
56 |
+
etc.)
|
57 |
+
|
58 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
59 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
60 |
+
and behavior.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
config ([`AlignConfig`]): Model configuration class with all the parameters of the model.
|
64 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
65 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
66 |
+
"""
|
67 |
+
|
68 |
+
ALIGN_TEXT_INPUTS_DOCSTRING = r"""
|
69 |
+
Args:
|
70 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
71 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
72 |
+
it.
|
73 |
+
|
74 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
75 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
76 |
+
|
77 |
+
[What are input IDs?](../glossary#input-ids)
|
78 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
79 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
80 |
+
|
81 |
+
- 1 for tokens that are **not masked**,
|
82 |
+
- 0 for tokens that are **masked**.
|
83 |
+
|
84 |
+
[What are attention masks?](../glossary#attention-mask)
|
85 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
86 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
87 |
+
config.max_position_embeddings - 1]`.
|
88 |
+
|
89 |
+
[What are position IDs?](../glossary#position-ids)
|
90 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
91 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
92 |
+
1]`:
|
93 |
+
|
94 |
+
- 0 corresponds to a *sentence A* token,
|
95 |
+
- 1 corresponds to a *sentence B* token.
|
96 |
+
|
97 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
98 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
99 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
100 |
+
|
101 |
+
- 1 indicates the head is **not masked**,
|
102 |
+
- 0 indicates the head is **masked**.
|
103 |
+
|
104 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
105 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
106 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
107 |
+
model's internal embedding lookup matrix.
|
108 |
+
output_attentions (`bool`, *optional*):
|
109 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
110 |
+
tensors for more detail.
|
111 |
+
output_hidden_states (`bool`, *optional*):
|
112 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
113 |
+
more detail.
|
114 |
+
return_dict (`bool`, *optional*):
|
115 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
116 |
+
"""
|
117 |
+
|
118 |
+
ALIGN_VISION_INPUTS_DOCSTRING = r"""
|
119 |
+
Args:
|
120 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
121 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
122 |
+
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
|
123 |
+
output_hidden_states (`bool`, *optional*):
|
124 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
125 |
+
more detail.
|
126 |
+
return_dict (`bool`, *optional*):
|
127 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
128 |
+
"""
|
129 |
+
|
130 |
+
ALIGN_INPUTS_DOCSTRING = r"""
|
131 |
+
Args:
|
132 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
133 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
134 |
+
it.
|
135 |
+
|
136 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
137 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
138 |
+
|
139 |
+
[What are input IDs?](../glossary#input-ids)
|
140 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
141 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
142 |
+
|
143 |
+
- 1 for tokens that are **not masked**,
|
144 |
+
- 0 for tokens that are **masked**.
|
145 |
+
|
146 |
+
[What are attention masks?](../glossary#attention-mask)
|
147 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
148 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
149 |
+
config.max_position_embeddings - 1]`.
|
150 |
+
|
151 |
+
[What are position IDs?](../glossary#position-ids)
|
152 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
153 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
154 |
+
1]`:
|
155 |
+
|
156 |
+
- 0 corresponds to a *sentence A* token,
|
157 |
+
- 1 corresponds to a *sentence B* token.
|
158 |
+
|
159 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
160 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
161 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
162 |
+
|
163 |
+
- 1 indicates the head is **not masked**,
|
164 |
+
- 0 indicates the head is **masked**.
|
165 |
+
|
166 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
167 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
168 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
169 |
+
model's internal embedding lookup matrix.
|
170 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
171 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
172 |
+
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details.
|
173 |
+
return_loss (`bool`, *optional*):
|
174 |
+
Whether or not to return the contrastive loss.
|
175 |
+
output_attentions (`bool`, *optional*):
|
176 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
177 |
+
tensors for more detail.
|
178 |
+
output_hidden_states (`bool`, *optional*):
|
179 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
180 |
+
more detail.
|
181 |
+
return_dict (`bool`, *optional*):
|
182 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
183 |
+
"""
|
184 |
+
|
185 |
+
|
186 |
+
@dataclass
|
187 |
+
class AlignVisionModelOutput(ModelOutput):
|
188 |
+
"""
|
189 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
193 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
194 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
195 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
196 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
197 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
198 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
199 |
+
|
200 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
201 |
+
"""
|
202 |
+
|
203 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
204 |
+
last_hidden_state: torch.FloatTensor = None
|
205 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
206 |
+
|
207 |
+
|
208 |
+
@dataclass
|
209 |
+
class AlignTextModelOutput(ModelOutput):
|
210 |
+
"""
|
211 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
215 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
216 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
217 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
218 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
219 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
220 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
221 |
+
|
222 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
223 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
224 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
225 |
+
sequence_length)`.
|
226 |
+
|
227 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
228 |
+
heads.
|
229 |
+
"""
|
230 |
+
|
231 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
232 |
+
last_hidden_state: torch.FloatTensor = None
|
233 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
234 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
235 |
+
|
236 |
+
|
237 |
+
@dataclass
|
238 |
+
class AlignOutput(ModelOutput):
|
239 |
+
"""
|
240 |
+
Args:
|
241 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
242 |
+
Contrastive loss for image-text similarity.
|
243 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
244 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
245 |
+
similarity scores.
|
246 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
247 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
248 |
+
similarity scores.
|
249 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
250 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`AlignTextModel`].
|
251 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
252 |
+
The output of [`AlignVisionModel`].
|
253 |
+
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
254 |
+
The output of the [`AlignTextModel`].
|
255 |
+
vision_model_output(`BaseModelOutputWithPoolingAndNoAttention`):
|
256 |
+
The output of the [`AlignVisionModel`].
|
257 |
+
"""
|
258 |
+
|
259 |
+
loss: Optional[torch.FloatTensor] = None
|
260 |
+
logits_per_image: torch.FloatTensor = None
|
261 |
+
logits_per_text: torch.FloatTensor = None
|
262 |
+
text_embeds: torch.FloatTensor = None
|
263 |
+
image_embeds: torch.FloatTensor = None
|
264 |
+
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
265 |
+
vision_model_output: BaseModelOutputWithPoolingAndNoAttention = None
|
266 |
+
|
267 |
+
def to_tuple(self) -> Tuple[Any]:
|
268 |
+
return tuple(
|
269 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
270 |
+
for k in self.keys()
|
271 |
+
)
|
272 |
+
|
273 |
+
|
274 |
+
# contrastive loss function, adapted from
|
275 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
276 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
277 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device), label_smoothing=0.1)
|
278 |
+
|
279 |
+
|
280 |
+
def align_loss(similarity: torch.Tensor) -> torch.Tensor:
|
281 |
+
caption_loss = contrastive_loss(similarity)
|
282 |
+
image_loss = contrastive_loss(similarity.t())
|
283 |
+
return (caption_loss + image_loss) / 2.0
|
284 |
+
|
285 |
+
|
286 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.round_filters with EfficientNet->AlignVision
|
287 |
+
def round_filters(config: AlignVisionConfig, num_channels: int):
|
288 |
+
r"""
|
289 |
+
Round number of filters based on depth multiplier.
|
290 |
+
"""
|
291 |
+
divisor = config.depth_divisor
|
292 |
+
num_channels *= config.width_coefficient
|
293 |
+
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
|
294 |
+
|
295 |
+
# Make sure that round down does not go down by more than 10%.
|
296 |
+
if new_dim < 0.9 * num_channels:
|
297 |
+
new_dim += divisor
|
298 |
+
|
299 |
+
return int(new_dim)
|
300 |
+
|
301 |
+
|
302 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.correct_pad
|
303 |
+
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
|
304 |
+
r"""
|
305 |
+
Utility function to get the tuple padding value for the depthwise convolution.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
kernel_size (`int` or `tuple`):
|
309 |
+
Kernel size of the convolution layers.
|
310 |
+
adjust (`bool`, *optional*, defaults to `True`):
|
311 |
+
Adjusts padding value to apply to right and bottom sides of the input.
|
312 |
+
"""
|
313 |
+
if isinstance(kernel_size, int):
|
314 |
+
kernel_size = (kernel_size, kernel_size)
|
315 |
+
|
316 |
+
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
|
317 |
+
if adjust:
|
318 |
+
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
|
319 |
+
else:
|
320 |
+
return (correct[1], correct[1], correct[0], correct[0])
|
321 |
+
|
322 |
+
|
323 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetEmbeddings with EfficientNet->AlignVision
|
324 |
+
class AlignVisionEmbeddings(nn.Module):
|
325 |
+
r"""
|
326 |
+
A module that corresponds to the stem module of the original work.
|
327 |
+
"""
|
328 |
+
|
329 |
+
def __init__(self, config: AlignVisionConfig):
|
330 |
+
super().__init__()
|
331 |
+
|
332 |
+
self.out_dim = round_filters(config, 32)
|
333 |
+
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
|
334 |
+
self.convolution = nn.Conv2d(
|
335 |
+
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
|
336 |
+
)
|
337 |
+
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
|
338 |
+
self.activation = ACT2FN[config.hidden_act]
|
339 |
+
|
340 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
341 |
+
features = self.padding(pixel_values)
|
342 |
+
features = self.convolution(features)
|
343 |
+
features = self.batchnorm(features)
|
344 |
+
features = self.activation(features)
|
345 |
+
|
346 |
+
return features
|
347 |
+
|
348 |
+
|
349 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseConv2d with EfficientNet->AlignVision
|
350 |
+
class AlignVisionDepthwiseConv2d(nn.Conv2d):
|
351 |
+
def __init__(
|
352 |
+
self,
|
353 |
+
in_channels,
|
354 |
+
depth_multiplier=1,
|
355 |
+
kernel_size=3,
|
356 |
+
stride=1,
|
357 |
+
padding=0,
|
358 |
+
dilation=1,
|
359 |
+
bias=True,
|
360 |
+
padding_mode="zeros",
|
361 |
+
):
|
362 |
+
out_channels = in_channels * depth_multiplier
|
363 |
+
super().__init__(
|
364 |
+
in_channels=in_channels,
|
365 |
+
out_channels=out_channels,
|
366 |
+
kernel_size=kernel_size,
|
367 |
+
stride=stride,
|
368 |
+
padding=padding,
|
369 |
+
dilation=dilation,
|
370 |
+
groups=in_channels,
|
371 |
+
bias=bias,
|
372 |
+
padding_mode=padding_mode,
|
373 |
+
)
|
374 |
+
|
375 |
+
|
376 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetExpansionLayer with EfficientNet->AlignVision
|
377 |
+
class AlignVisionExpansionLayer(nn.Module):
|
378 |
+
r"""
|
379 |
+
This corresponds to the expansion phase of each block in the original implementation.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int):
|
383 |
+
super().__init__()
|
384 |
+
self.expand_conv = nn.Conv2d(
|
385 |
+
in_channels=in_dim,
|
386 |
+
out_channels=out_dim,
|
387 |
+
kernel_size=1,
|
388 |
+
padding="same",
|
389 |
+
bias=False,
|
390 |
+
)
|
391 |
+
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
|
392 |
+
self.expand_act = ACT2FN[config.hidden_act]
|
393 |
+
|
394 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
395 |
+
# Expand phase
|
396 |
+
hidden_states = self.expand_conv(hidden_states)
|
397 |
+
hidden_states = self.expand_bn(hidden_states)
|
398 |
+
hidden_states = self.expand_act(hidden_states)
|
399 |
+
|
400 |
+
return hidden_states
|
401 |
+
|
402 |
+
|
403 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetDepthwiseLayer with EfficientNet->AlignVision
|
404 |
+
class AlignVisionDepthwiseLayer(nn.Module):
|
405 |
+
r"""
|
406 |
+
This corresponds to the depthwise convolution phase of each block in the original implementation.
|
407 |
+
"""
|
408 |
+
|
409 |
+
def __init__(
|
410 |
+
self,
|
411 |
+
config: AlignVisionConfig,
|
412 |
+
in_dim: int,
|
413 |
+
stride: int,
|
414 |
+
kernel_size: int,
|
415 |
+
adjust_padding: bool,
|
416 |
+
):
|
417 |
+
super().__init__()
|
418 |
+
self.stride = stride
|
419 |
+
conv_pad = "valid" if self.stride == 2 else "same"
|
420 |
+
padding = correct_pad(kernel_size, adjust=adjust_padding)
|
421 |
+
|
422 |
+
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
|
423 |
+
self.depthwise_conv = AlignVisionDepthwiseConv2d(
|
424 |
+
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
|
425 |
+
)
|
426 |
+
self.depthwise_norm = nn.BatchNorm2d(
|
427 |
+
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
428 |
+
)
|
429 |
+
self.depthwise_act = ACT2FN[config.hidden_act]
|
430 |
+
|
431 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
432 |
+
# Depthwise convolution
|
433 |
+
if self.stride == 2:
|
434 |
+
hidden_states = self.depthwise_conv_pad(hidden_states)
|
435 |
+
|
436 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
437 |
+
hidden_states = self.depthwise_norm(hidden_states)
|
438 |
+
hidden_states = self.depthwise_act(hidden_states)
|
439 |
+
|
440 |
+
return hidden_states
|
441 |
+
|
442 |
+
|
443 |
+
# Copied from transformers.models.efficientnet.modeling_efficientnet.EfficientNetSqueezeExciteLayer with EfficientNet->AlignVision
|
444 |
+
class AlignVisionSqueezeExciteLayer(nn.Module):
|
445 |
+
r"""
|
446 |
+
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
|
447 |
+
"""
|
448 |
+
|
449 |
+
def __init__(self, config: AlignVisionConfig, in_dim: int, expand_dim: int, expand: bool = False):
|
450 |
+
super().__init__()
|
451 |
+
self.dim = expand_dim if expand else in_dim
|
452 |
+
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
|
453 |
+
|
454 |
+
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
|
455 |
+
self.reduce = nn.Conv2d(
|
456 |
+
in_channels=self.dim,
|
457 |
+
out_channels=self.dim_se,
|
458 |
+
kernel_size=1,
|
459 |
+
padding="same",
|
460 |
+
)
|
461 |
+
self.expand = nn.Conv2d(
|
462 |
+
in_channels=self.dim_se,
|
463 |
+
out_channels=self.dim,
|
464 |
+
kernel_size=1,
|
465 |
+
padding="same",
|
466 |
+
)
|
467 |
+
self.act_reduce = ACT2FN[config.hidden_act]
|
468 |
+
self.act_expand = nn.Sigmoid()
|
469 |
+
|
470 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
471 |
+
inputs = hidden_states
|
472 |
+
hidden_states = self.squeeze(hidden_states)
|
473 |
+
hidden_states = self.reduce(hidden_states)
|
474 |
+
hidden_states = self.act_reduce(hidden_states)
|
475 |
+
|
476 |
+
hidden_states = self.expand(hidden_states)
|
477 |
+
hidden_states = self.act_expand(hidden_states)
|
478 |
+
hidden_states = torch.mul(inputs, hidden_states)
|
479 |
+
|
480 |
+
return hidden_states
|
481 |
+
|
482 |
+
|
483 |
+
class AlignVisionFinalBlockLayer(nn.Module):
|
484 |
+
r"""
|
485 |
+
This corresponds to the final phase of each block in the original implementation.
|
486 |
+
"""
|
487 |
+
|
488 |
+
def __init__(
|
489 |
+
self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
|
490 |
+
):
|
491 |
+
super().__init__()
|
492 |
+
self.apply_dropout = stride == 1 and not id_skip
|
493 |
+
self.project_conv = nn.Conv2d(
|
494 |
+
in_channels=in_dim,
|
495 |
+
out_channels=out_dim,
|
496 |
+
kernel_size=1,
|
497 |
+
padding="same",
|
498 |
+
bias=False,
|
499 |
+
)
|
500 |
+
self.project_bn = nn.BatchNorm2d(
|
501 |
+
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
502 |
+
)
|
503 |
+
self.dropout = nn.Dropout(p=drop_rate)
|
504 |
+
|
505 |
+
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
506 |
+
hidden_states = self.project_conv(hidden_states)
|
507 |
+
hidden_states = self.project_bn(hidden_states)
|
508 |
+
|
509 |
+
if self.apply_dropout:
|
510 |
+
hidden_states = self.dropout(hidden_states)
|
511 |
+
hidden_states = hidden_states + embeddings
|
512 |
+
|
513 |
+
return hidden_states
|
514 |
+
|
515 |
+
|
516 |
+
class AlignVisionBlock(nn.Module):
|
517 |
+
r"""
|
518 |
+
This corresponds to the block module of original the EfficientNet vision encoder implementation.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
config ([`AlignVisionConfig`]):
|
522 |
+
Model configuration class.
|
523 |
+
in_dim (`int`):
|
524 |
+
Number of input channels.
|
525 |
+
out_dim (`int`):
|
526 |
+
Number of output channels.
|
527 |
+
stride (`int`):
|
528 |
+
Stride size to be used in convolution layers.
|
529 |
+
expand_ratio (`int`):
|
530 |
+
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
|
531 |
+
kernel_size (`int`):
|
532 |
+
Kernel size for the depthwise convolution layer.
|
533 |
+
drop_rate (`float`):
|
534 |
+
Dropout rate to be used in the final phase of each block.
|
535 |
+
id_skip (`bool`):
|
536 |
+
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
|
537 |
+
of each block. Set to `True` for the first block of each stage.
|
538 |
+
adjust_padding (`bool`):
|
539 |
+
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
|
540 |
+
operation, set to `True` for inputs with odd input sizes.
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(
|
544 |
+
self,
|
545 |
+
config: AlignVisionConfig,
|
546 |
+
in_dim: int,
|
547 |
+
out_dim: int,
|
548 |
+
stride: int,
|
549 |
+
expand_ratio: int,
|
550 |
+
kernel_size: int,
|
551 |
+
drop_rate: float,
|
552 |
+
id_skip: bool,
|
553 |
+
adjust_padding: bool,
|
554 |
+
):
|
555 |
+
super().__init__()
|
556 |
+
self.expand_ratio = expand_ratio
|
557 |
+
self.expand = True if self.expand_ratio != 1 else False
|
558 |
+
expand_in_dim = in_dim * expand_ratio
|
559 |
+
|
560 |
+
if self.expand:
|
561 |
+
self.expansion = AlignVisionExpansionLayer(
|
562 |
+
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
|
563 |
+
)
|
564 |
+
|
565 |
+
self.depthwise_conv = AlignVisionDepthwiseLayer(
|
566 |
+
config=config,
|
567 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
568 |
+
stride=stride,
|
569 |
+
kernel_size=kernel_size,
|
570 |
+
adjust_padding=adjust_padding,
|
571 |
+
)
|
572 |
+
self.squeeze_excite = AlignVisionSqueezeExciteLayer(
|
573 |
+
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
|
574 |
+
)
|
575 |
+
self.projection = AlignVisionFinalBlockLayer(
|
576 |
+
config=config,
|
577 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
578 |
+
out_dim=out_dim,
|
579 |
+
stride=stride,
|
580 |
+
drop_rate=drop_rate,
|
581 |
+
id_skip=id_skip,
|
582 |
+
)
|
583 |
+
|
584 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
585 |
+
embeddings = hidden_states
|
586 |
+
# Expansion and depthwise convolution phase
|
587 |
+
if self.expand_ratio != 1:
|
588 |
+
hidden_states = self.expansion(hidden_states)
|
589 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
590 |
+
|
591 |
+
# Squeeze and excite phase
|
592 |
+
hidden_states = self.squeeze_excite(hidden_states)
|
593 |
+
hidden_states = self.projection(embeddings, hidden_states)
|
594 |
+
return hidden_states
|
595 |
+
|
596 |
+
|
597 |
+
class AlignVisionEncoder(nn.Module):
|
598 |
+
r"""
|
599 |
+
Forward propogates the embeddings through each vision encoder (EfficientNet) block.
|
600 |
+
|
601 |
+
Args:
|
602 |
+
config ([`AlignVisionConfig`]):
|
603 |
+
Model configuration class.
|
604 |
+
"""
|
605 |
+
|
606 |
+
def __init__(self, config: AlignVisionConfig):
|
607 |
+
super().__init__()
|
608 |
+
self.depth_coefficient = config.depth_coefficient
|
609 |
+
|
610 |
+
def round_repeats(repeats):
|
611 |
+
# Round number of block repeats based on depth multiplier.
|
612 |
+
return int(math.ceil(self.depth_coefficient * repeats))
|
613 |
+
|
614 |
+
num_base_blocks = len(config.in_channels)
|
615 |
+
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
|
616 |
+
|
617 |
+
curr_block_num = 0
|
618 |
+
blocks = []
|
619 |
+
for i in range(num_base_blocks):
|
620 |
+
in_dim = round_filters(config, config.in_channels[i])
|
621 |
+
out_dim = round_filters(config, config.out_channels[i])
|
622 |
+
stride = config.strides[i]
|
623 |
+
kernel_size = config.kernel_sizes[i]
|
624 |
+
expand_ratio = config.expand_ratios[i]
|
625 |
+
|
626 |
+
for j in range(round_repeats(config.num_block_repeats[i])):
|
627 |
+
id_skip = True if j == 0 else False
|
628 |
+
stride = 1 if j > 0 else stride
|
629 |
+
in_dim = out_dim if j > 0 else in_dim
|
630 |
+
adjust_padding = False if curr_block_num in config.depthwise_padding else True
|
631 |
+
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
|
632 |
+
|
633 |
+
block = AlignVisionBlock(
|
634 |
+
config=config,
|
635 |
+
in_dim=in_dim,
|
636 |
+
out_dim=out_dim,
|
637 |
+
stride=stride,
|
638 |
+
kernel_size=kernel_size,
|
639 |
+
expand_ratio=expand_ratio,
|
640 |
+
drop_rate=drop_rate,
|
641 |
+
id_skip=id_skip,
|
642 |
+
adjust_padding=adjust_padding,
|
643 |
+
)
|
644 |
+
blocks.append(block)
|
645 |
+
curr_block_num += 1
|
646 |
+
|
647 |
+
self.blocks = nn.ModuleList(blocks)
|
648 |
+
|
649 |
+
def forward(
|
650 |
+
self,
|
651 |
+
hidden_states: torch.FloatTensor,
|
652 |
+
output_hidden_states: Optional[bool] = False,
|
653 |
+
return_dict: Optional[bool] = True,
|
654 |
+
) -> BaseModelOutputWithPoolingAndNoAttention:
|
655 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
656 |
+
|
657 |
+
for block in self.blocks:
|
658 |
+
hidden_states = block(hidden_states)
|
659 |
+
if output_hidden_states:
|
660 |
+
all_hidden_states += (hidden_states,)
|
661 |
+
|
662 |
+
if not return_dict:
|
663 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
664 |
+
|
665 |
+
return BaseModelOutputWithNoAttention(
|
666 |
+
last_hidden_state=hidden_states,
|
667 |
+
hidden_states=all_hidden_states,
|
668 |
+
)
|
669 |
+
|
670 |
+
|
671 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->AlignText
|
672 |
+
class AlignTextEmbeddings(nn.Module):
|
673 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
674 |
+
|
675 |
+
def __init__(self, config):
|
676 |
+
super().__init__()
|
677 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
678 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
679 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
680 |
+
|
681 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
682 |
+
# any TensorFlow checkpoint file
|
683 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
684 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
685 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
686 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
687 |
+
self.register_buffer(
|
688 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
689 |
+
)
|
690 |
+
self.register_buffer(
|
691 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
692 |
+
)
|
693 |
+
|
694 |
+
def forward(
|
695 |
+
self,
|
696 |
+
input_ids: Optional[torch.LongTensor] = None,
|
697 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
698 |
+
position_ids: Optional[torch.LongTensor] = None,
|
699 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
700 |
+
past_key_values_length: int = 0,
|
701 |
+
) -> torch.Tensor:
|
702 |
+
if input_ids is not None:
|
703 |
+
input_shape = input_ids.size()
|
704 |
+
else:
|
705 |
+
input_shape = inputs_embeds.size()[:-1]
|
706 |
+
|
707 |
+
seq_length = input_shape[1]
|
708 |
+
|
709 |
+
if position_ids is None:
|
710 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
711 |
+
|
712 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
713 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
714 |
+
# issue #5664
|
715 |
+
if token_type_ids is None:
|
716 |
+
if hasattr(self, "token_type_ids"):
|
717 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
718 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
719 |
+
token_type_ids = buffered_token_type_ids_expanded
|
720 |
+
else:
|
721 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
722 |
+
|
723 |
+
if inputs_embeds is None:
|
724 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
725 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
726 |
+
|
727 |
+
embeddings = inputs_embeds + token_type_embeddings
|
728 |
+
if self.position_embedding_type == "absolute":
|
729 |
+
position_embeddings = self.position_embeddings(position_ids)
|
730 |
+
embeddings += position_embeddings
|
731 |
+
embeddings = self.LayerNorm(embeddings)
|
732 |
+
embeddings = self.dropout(embeddings)
|
733 |
+
return embeddings
|
734 |
+
|
735 |
+
|
736 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->AlignText
|
737 |
+
class AlignTextSelfAttention(nn.Module):
|
738 |
+
def __init__(self, config, position_embedding_type=None):
|
739 |
+
super().__init__()
|
740 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
741 |
+
raise ValueError(
|
742 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
743 |
+
f"heads ({config.num_attention_heads})"
|
744 |
+
)
|
745 |
+
|
746 |
+
self.num_attention_heads = config.num_attention_heads
|
747 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
748 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
749 |
+
|
750 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
751 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
752 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
753 |
+
|
754 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
755 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
756 |
+
config, "position_embedding_type", "absolute"
|
757 |
+
)
|
758 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
759 |
+
self.max_position_embeddings = config.max_position_embeddings
|
760 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
761 |
+
|
762 |
+
self.is_decoder = config.is_decoder
|
763 |
+
|
764 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
765 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
766 |
+
x = x.view(new_x_shape)
|
767 |
+
return x.permute(0, 2, 1, 3)
|
768 |
+
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
hidden_states: torch.Tensor,
|
772 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
773 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
774 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
775 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
776 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
777 |
+
output_attentions: Optional[bool] = False,
|
778 |
+
) -> Tuple[torch.Tensor]:
|
779 |
+
mixed_query_layer = self.query(hidden_states)
|
780 |
+
|
781 |
+
# If this is instantiated as a cross-attention module, the keys
|
782 |
+
# and values come from an encoder; the attention mask needs to be
|
783 |
+
# such that the encoder's padding tokens are not attended to.
|
784 |
+
is_cross_attention = encoder_hidden_states is not None
|
785 |
+
|
786 |
+
if is_cross_attention and past_key_value is not None:
|
787 |
+
# reuse k,v, cross_attentions
|
788 |
+
key_layer = past_key_value[0]
|
789 |
+
value_layer = past_key_value[1]
|
790 |
+
attention_mask = encoder_attention_mask
|
791 |
+
elif is_cross_attention:
|
792 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
793 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
794 |
+
attention_mask = encoder_attention_mask
|
795 |
+
elif past_key_value is not None:
|
796 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
797 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
798 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
799 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
800 |
+
else:
|
801 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
802 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
803 |
+
|
804 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
805 |
+
|
806 |
+
use_cache = past_key_value is not None
|
807 |
+
if self.is_decoder:
|
808 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
809 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
810 |
+
# key/value_states (first "if" case)
|
811 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
812 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
813 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
814 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
815 |
+
past_key_value = (key_layer, value_layer)
|
816 |
+
|
817 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
818 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
819 |
+
|
820 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
821 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
822 |
+
if use_cache:
|
823 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
824 |
+
-1, 1
|
825 |
+
)
|
826 |
+
else:
|
827 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
828 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
829 |
+
distance = position_ids_l - position_ids_r
|
830 |
+
|
831 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
832 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
833 |
+
|
834 |
+
if self.position_embedding_type == "relative_key":
|
835 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
836 |
+
attention_scores = attention_scores + relative_position_scores
|
837 |
+
elif self.position_embedding_type == "relative_key_query":
|
838 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
839 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
840 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
841 |
+
|
842 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
843 |
+
if attention_mask is not None:
|
844 |
+
# Apply the attention mask is (precomputed for all layers in AlignTextModel forward() function)
|
845 |
+
attention_scores = attention_scores + attention_mask
|
846 |
+
|
847 |
+
# Normalize the attention scores to probabilities.
|
848 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
849 |
+
|
850 |
+
# This is actually dropping out entire tokens to attend to, which might
|
851 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
852 |
+
attention_probs = self.dropout(attention_probs)
|
853 |
+
|
854 |
+
# Mask heads if we want to
|
855 |
+
if head_mask is not None:
|
856 |
+
attention_probs = attention_probs * head_mask
|
857 |
+
|
858 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
859 |
+
|
860 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
861 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
862 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
863 |
+
|
864 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
865 |
+
|
866 |
+
if self.is_decoder:
|
867 |
+
outputs = outputs + (past_key_value,)
|
868 |
+
return outputs
|
869 |
+
|
870 |
+
|
871 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->AlignText
|
872 |
+
class AlignTextSelfOutput(nn.Module):
|
873 |
+
def __init__(self, config):
|
874 |
+
super().__init__()
|
875 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
876 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
877 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
878 |
+
|
879 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
880 |
+
hidden_states = self.dense(hidden_states)
|
881 |
+
hidden_states = self.dropout(hidden_states)
|
882 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
883 |
+
return hidden_states
|
884 |
+
|
885 |
+
|
886 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->AlignText
|
887 |
+
class AlignTextAttention(nn.Module):
|
888 |
+
def __init__(self, config, position_embedding_type=None):
|
889 |
+
super().__init__()
|
890 |
+
self.self = AlignTextSelfAttention(config, position_embedding_type=position_embedding_type)
|
891 |
+
self.output = AlignTextSelfOutput(config)
|
892 |
+
self.pruned_heads = set()
|
893 |
+
|
894 |
+
def prune_heads(self, heads):
|
895 |
+
if len(heads) == 0:
|
896 |
+
return
|
897 |
+
heads, index = find_pruneable_heads_and_indices(
|
898 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
899 |
+
)
|
900 |
+
|
901 |
+
# Prune linear layers
|
902 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
903 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
904 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
905 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
906 |
+
|
907 |
+
# Update hyper params and store pruned heads
|
908 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
909 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
910 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
911 |
+
|
912 |
+
def forward(
|
913 |
+
self,
|
914 |
+
hidden_states: torch.Tensor,
|
915 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
916 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
917 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
918 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
919 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
920 |
+
output_attentions: Optional[bool] = False,
|
921 |
+
) -> Tuple[torch.Tensor]:
|
922 |
+
self_outputs = self.self(
|
923 |
+
hidden_states,
|
924 |
+
attention_mask,
|
925 |
+
head_mask,
|
926 |
+
encoder_hidden_states,
|
927 |
+
encoder_attention_mask,
|
928 |
+
past_key_value,
|
929 |
+
output_attentions,
|
930 |
+
)
|
931 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
932 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
933 |
+
return outputs
|
934 |
+
|
935 |
+
|
936 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->AlignText
|
937 |
+
class AlignTextIntermediate(nn.Module):
|
938 |
+
def __init__(self, config):
|
939 |
+
super().__init__()
|
940 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
941 |
+
if isinstance(config.hidden_act, str):
|
942 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
943 |
+
else:
|
944 |
+
self.intermediate_act_fn = config.hidden_act
|
945 |
+
|
946 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
947 |
+
hidden_states = self.dense(hidden_states)
|
948 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
949 |
+
return hidden_states
|
950 |
+
|
951 |
+
|
952 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->AlignText
|
953 |
+
class AlignTextOutput(nn.Module):
|
954 |
+
def __init__(self, config):
|
955 |
+
super().__init__()
|
956 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
957 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
958 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
959 |
+
|
960 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
961 |
+
hidden_states = self.dense(hidden_states)
|
962 |
+
hidden_states = self.dropout(hidden_states)
|
963 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
964 |
+
return hidden_states
|
965 |
+
|
966 |
+
|
967 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->AlignText
|
968 |
+
class AlignTextLayer(nn.Module):
|
969 |
+
def __init__(self, config):
|
970 |
+
super().__init__()
|
971 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
972 |
+
self.seq_len_dim = 1
|
973 |
+
self.attention = AlignTextAttention(config)
|
974 |
+
self.is_decoder = config.is_decoder
|
975 |
+
self.add_cross_attention = config.add_cross_attention
|
976 |
+
if self.add_cross_attention:
|
977 |
+
if not self.is_decoder:
|
978 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
979 |
+
self.crossattention = AlignTextAttention(config, position_embedding_type="absolute")
|
980 |
+
self.intermediate = AlignTextIntermediate(config)
|
981 |
+
self.output = AlignTextOutput(config)
|
982 |
+
|
983 |
+
def forward(
|
984 |
+
self,
|
985 |
+
hidden_states: torch.Tensor,
|
986 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
987 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
988 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
989 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
990 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
991 |
+
output_attentions: Optional[bool] = False,
|
992 |
+
) -> Tuple[torch.Tensor]:
|
993 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
994 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
995 |
+
self_attention_outputs = self.attention(
|
996 |
+
hidden_states,
|
997 |
+
attention_mask,
|
998 |
+
head_mask,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
past_key_value=self_attn_past_key_value,
|
1001 |
+
)
|
1002 |
+
attention_output = self_attention_outputs[0]
|
1003 |
+
|
1004 |
+
# if decoder, the last output is tuple of self-attn cache
|
1005 |
+
if self.is_decoder:
|
1006 |
+
outputs = self_attention_outputs[1:-1]
|
1007 |
+
present_key_value = self_attention_outputs[-1]
|
1008 |
+
else:
|
1009 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
1010 |
+
|
1011 |
+
cross_attn_present_key_value = None
|
1012 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1013 |
+
if not hasattr(self, "crossattention"):
|
1014 |
+
raise ValueError(
|
1015 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
1016 |
+
" by setting `config.add_cross_attention=True`"
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
1020 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
1021 |
+
cross_attention_outputs = self.crossattention(
|
1022 |
+
attention_output,
|
1023 |
+
attention_mask,
|
1024 |
+
head_mask,
|
1025 |
+
encoder_hidden_states,
|
1026 |
+
encoder_attention_mask,
|
1027 |
+
cross_attn_past_key_value,
|
1028 |
+
output_attentions,
|
1029 |
+
)
|
1030 |
+
attention_output = cross_attention_outputs[0]
|
1031 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
1032 |
+
|
1033 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
1034 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
1035 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
1036 |
+
|
1037 |
+
layer_output = apply_chunking_to_forward(
|
1038 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
1039 |
+
)
|
1040 |
+
outputs = (layer_output,) + outputs
|
1041 |
+
|
1042 |
+
# if decoder, return the attn key/values as the last output
|
1043 |
+
if self.is_decoder:
|
1044 |
+
outputs = outputs + (present_key_value,)
|
1045 |
+
|
1046 |
+
return outputs
|
1047 |
+
|
1048 |
+
def feed_forward_chunk(self, attention_output):
|
1049 |
+
intermediate_output = self.intermediate(attention_output)
|
1050 |
+
layer_output = self.output(intermediate_output, attention_output)
|
1051 |
+
return layer_output
|
1052 |
+
|
1053 |
+
|
1054 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->AlignText
|
1055 |
+
class AlignTextEncoder(nn.Module):
|
1056 |
+
def __init__(self, config):
|
1057 |
+
super().__init__()
|
1058 |
+
self.config = config
|
1059 |
+
self.layer = nn.ModuleList([AlignTextLayer(config) for _ in range(config.num_hidden_layers)])
|
1060 |
+
self.gradient_checkpointing = False
|
1061 |
+
|
1062 |
+
def forward(
|
1063 |
+
self,
|
1064 |
+
hidden_states: torch.Tensor,
|
1065 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1066 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1067 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1068 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1069 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1070 |
+
use_cache: Optional[bool] = None,
|
1071 |
+
output_attentions: Optional[bool] = False,
|
1072 |
+
output_hidden_states: Optional[bool] = False,
|
1073 |
+
return_dict: Optional[bool] = True,
|
1074 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
1075 |
+
all_hidden_states = () if output_hidden_states else None
|
1076 |
+
all_self_attentions = () if output_attentions else None
|
1077 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
1078 |
+
|
1079 |
+
if self.gradient_checkpointing and self.training:
|
1080 |
+
if use_cache:
|
1081 |
+
logger.warning_once(
|
1082 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1083 |
+
)
|
1084 |
+
use_cache = False
|
1085 |
+
|
1086 |
+
next_decoder_cache = () if use_cache else None
|
1087 |
+
for i, layer_module in enumerate(self.layer):
|
1088 |
+
if output_hidden_states:
|
1089 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1090 |
+
|
1091 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
1092 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
1093 |
+
|
1094 |
+
if self.gradient_checkpointing and self.training:
|
1095 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1096 |
+
layer_module.__call__,
|
1097 |
+
hidden_states,
|
1098 |
+
attention_mask,
|
1099 |
+
layer_head_mask,
|
1100 |
+
encoder_hidden_states,
|
1101 |
+
encoder_attention_mask,
|
1102 |
+
past_key_value,
|
1103 |
+
output_attentions,
|
1104 |
+
)
|
1105 |
+
else:
|
1106 |
+
layer_outputs = layer_module(
|
1107 |
+
hidden_states,
|
1108 |
+
attention_mask,
|
1109 |
+
layer_head_mask,
|
1110 |
+
encoder_hidden_states,
|
1111 |
+
encoder_attention_mask,
|
1112 |
+
past_key_value,
|
1113 |
+
output_attentions,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
hidden_states = layer_outputs[0]
|
1117 |
+
if use_cache:
|
1118 |
+
next_decoder_cache += (layer_outputs[-1],)
|
1119 |
+
if output_attentions:
|
1120 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1121 |
+
if self.config.add_cross_attention:
|
1122 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
1123 |
+
|
1124 |
+
if output_hidden_states:
|
1125 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1126 |
+
|
1127 |
+
if not return_dict:
|
1128 |
+
return tuple(
|
1129 |
+
v
|
1130 |
+
for v in [
|
1131 |
+
hidden_states,
|
1132 |
+
next_decoder_cache,
|
1133 |
+
all_hidden_states,
|
1134 |
+
all_self_attentions,
|
1135 |
+
all_cross_attentions,
|
1136 |
+
]
|
1137 |
+
if v is not None
|
1138 |
+
)
|
1139 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1140 |
+
last_hidden_state=hidden_states,
|
1141 |
+
past_key_values=next_decoder_cache,
|
1142 |
+
hidden_states=all_hidden_states,
|
1143 |
+
attentions=all_self_attentions,
|
1144 |
+
cross_attentions=all_cross_attentions,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
|
1148 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> AlignText
|
1149 |
+
class AlignTextPooler(nn.Module):
|
1150 |
+
def __init__(self, config):
|
1151 |
+
super().__init__()
|
1152 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1153 |
+
self.activation = nn.Tanh()
|
1154 |
+
|
1155 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1156 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
1157 |
+
# to the first token.
|
1158 |
+
first_token_tensor = hidden_states[:, 0]
|
1159 |
+
pooled_output = self.dense(first_token_tensor)
|
1160 |
+
pooled_output = self.activation(pooled_output)
|
1161 |
+
return pooled_output
|
1162 |
+
|
1163 |
+
|
1164 |
+
class AlignPreTrainedModel(PreTrainedModel):
|
1165 |
+
"""
|
1166 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1167 |
+
models.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
config_class = AlignConfig
|
1171 |
+
base_model_prefix = "align"
|
1172 |
+
supports_gradient_checkpointing = True
|
1173 |
+
|
1174 |
+
def _init_weights(self, module):
|
1175 |
+
"""Initialize the weights"""
|
1176 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
1177 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1178 |
+
if module.bias is not None:
|
1179 |
+
module.bias.data.zero_()
|
1180 |
+
elif isinstance(module, AlignModel):
|
1181 |
+
nn.init.xavier_uniform_(module.text_projection.weight)
|
1182 |
+
module.text_projection.bias.data.zero_()
|
1183 |
+
module.text_projection._is_hf_initialized = True
|
1184 |
+
elif isinstance(module, nn.Embedding):
|
1185 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1186 |
+
if module.padding_idx is not None:
|
1187 |
+
module.weight.data[module.padding_idx].zero_()
|
1188 |
+
if isinstance(module, nn.LayerNorm):
|
1189 |
+
module.bias.data.zero_()
|
1190 |
+
module.weight.data.fill_(1.0)
|
1191 |
+
|
1192 |
+
|
1193 |
+
@add_start_docstrings(
|
1194 |
+
"""The text model from ALIGN without any head or projection on top.""",
|
1195 |
+
ALIGN_START_DOCSTRING,
|
1196 |
+
)
|
1197 |
+
class AlignTextModel(AlignPreTrainedModel):
|
1198 |
+
config_class = AlignTextConfig
|
1199 |
+
|
1200 |
+
def __init__(self, config: AlignTextConfig, add_pooling_layer: bool = True):
|
1201 |
+
super().__init__(config)
|
1202 |
+
self.config = config
|
1203 |
+
|
1204 |
+
self.embeddings = AlignTextEmbeddings(config)
|
1205 |
+
self.encoder = AlignTextEncoder(config)
|
1206 |
+
|
1207 |
+
self.pooler = AlignTextPooler(config) if add_pooling_layer else None
|
1208 |
+
|
1209 |
+
# Initialize weights and apply final processing
|
1210 |
+
self.post_init()
|
1211 |
+
|
1212 |
+
def get_input_embeddings(self):
|
1213 |
+
return self.embeddings.word_embeddings
|
1214 |
+
|
1215 |
+
def set_input_embeddings(self, value):
|
1216 |
+
self.embeddings.word_embeddings = value
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
|
1219 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=AlignTextConfig)
|
1220 |
+
def forward(
|
1221 |
+
self,
|
1222 |
+
input_ids: Optional[torch.Tensor] = None,
|
1223 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1224 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1225 |
+
position_ids: Optional[torch.Tensor] = None,
|
1226 |
+
head_mask: Optional[torch.Tensor] = None,
|
1227 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1228 |
+
output_attentions: Optional[bool] = None,
|
1229 |
+
output_hidden_states: Optional[bool] = None,
|
1230 |
+
return_dict: Optional[bool] = None,
|
1231 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
1232 |
+
r"""
|
1233 |
+
Returns:
|
1234 |
+
|
1235 |
+
Examples:
|
1236 |
+
|
1237 |
+
```python
|
1238 |
+
>>> from transformers import AutoTokenizer, AlignTextModel
|
1239 |
+
|
1240 |
+
>>> model = AlignTextModel.from_pretrained("kakaobrain/align-base")
|
1241 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
|
1242 |
+
|
1243 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1244 |
+
|
1245 |
+
>>> outputs = model(**inputs)
|
1246 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1247 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
1248 |
+
```"""
|
1249 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1250 |
+
output_hidden_states = (
|
1251 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1252 |
+
)
|
1253 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1254 |
+
|
1255 |
+
if input_ids is not None and inputs_embeds is not None:
|
1256 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1257 |
+
elif input_ids is not None:
|
1258 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1259 |
+
input_shape = input_ids.size()
|
1260 |
+
elif inputs_embeds is not None:
|
1261 |
+
input_shape = inputs_embeds.size()[:-1]
|
1262 |
+
else:
|
1263 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1264 |
+
|
1265 |
+
batch_size, seq_length = input_shape
|
1266 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1267 |
+
|
1268 |
+
if attention_mask is None:
|
1269 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
1270 |
+
|
1271 |
+
if token_type_ids is None:
|
1272 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1273 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1274 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1275 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1276 |
+
else:
|
1277 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1278 |
+
|
1279 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1280 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1281 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1282 |
+
|
1283 |
+
# Prepare head mask if needed
|
1284 |
+
# 1.0 in head_mask indicate we keep the head
|
1285 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1286 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1287 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1288 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1289 |
+
|
1290 |
+
embedding_output = self.embeddings(
|
1291 |
+
input_ids=input_ids,
|
1292 |
+
position_ids=position_ids,
|
1293 |
+
token_type_ids=token_type_ids,
|
1294 |
+
inputs_embeds=inputs_embeds,
|
1295 |
+
)
|
1296 |
+
encoder_outputs = self.encoder(
|
1297 |
+
embedding_output,
|
1298 |
+
attention_mask=extended_attention_mask,
|
1299 |
+
head_mask=head_mask,
|
1300 |
+
output_attentions=output_attentions,
|
1301 |
+
output_hidden_states=output_hidden_states,
|
1302 |
+
return_dict=return_dict,
|
1303 |
+
)
|
1304 |
+
sequence_output = encoder_outputs[0]
|
1305 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1306 |
+
|
1307 |
+
if not return_dict:
|
1308 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1309 |
+
|
1310 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1311 |
+
last_hidden_state=sequence_output,
|
1312 |
+
pooler_output=pooled_output,
|
1313 |
+
hidden_states=encoder_outputs.hidden_states,
|
1314 |
+
attentions=encoder_outputs.attentions,
|
1315 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
|
1319 |
+
@add_start_docstrings(
|
1320 |
+
"""The vision model from ALIGN without any head or projection on top.""",
|
1321 |
+
ALIGN_START_DOCSTRING,
|
1322 |
+
)
|
1323 |
+
class AlignVisionModel(AlignPreTrainedModel):
|
1324 |
+
config_class = AlignVisionConfig
|
1325 |
+
main_input_name = "pixel_values"
|
1326 |
+
supports_gradient_checkpointing = False
|
1327 |
+
|
1328 |
+
def __init__(self, config: AlignVisionConfig):
|
1329 |
+
super().__init__(config)
|
1330 |
+
self.config = config
|
1331 |
+
self.embeddings = AlignVisionEmbeddings(config)
|
1332 |
+
self.encoder = AlignVisionEncoder(config)
|
1333 |
+
|
1334 |
+
# Final pooling layer
|
1335 |
+
if config.pooling_type == "mean":
|
1336 |
+
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
|
1337 |
+
elif config.pooling_type == "max":
|
1338 |
+
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
|
1339 |
+
else:
|
1340 |
+
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
|
1341 |
+
|
1342 |
+
# Initialize weights and apply final processing
|
1343 |
+
self.post_init()
|
1344 |
+
|
1345 |
+
def get_input_embeddings(self) -> nn.Module:
|
1346 |
+
return self.vision_model.embeddings.convolution
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
|
1349 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=AlignVisionConfig)
|
1350 |
+
def forward(
|
1351 |
+
self,
|
1352 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1353 |
+
output_hidden_states: Optional[bool] = None,
|
1354 |
+
return_dict: Optional[bool] = None,
|
1355 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
1356 |
+
r"""
|
1357 |
+
Returns:
|
1358 |
+
|
1359 |
+
Examples:
|
1360 |
+
|
1361 |
+
```python
|
1362 |
+
>>> from PIL import Image
|
1363 |
+
>>> import requests
|
1364 |
+
>>> from transformers import AutoProcessor, AlignVisionModel
|
1365 |
+
|
1366 |
+
>>> model = AlignVisionModel.from_pretrained("kakaobrain/align-base")
|
1367 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1368 |
+
|
1369 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1370 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1371 |
+
|
1372 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1373 |
+
|
1374 |
+
>>> outputs = model(**inputs)
|
1375 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1376 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1377 |
+
```"""
|
1378 |
+
output_hidden_states = (
|
1379 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1380 |
+
)
|
1381 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1382 |
+
|
1383 |
+
if pixel_values is None:
|
1384 |
+
raise ValueError("You have to specify pixel_values")
|
1385 |
+
|
1386 |
+
embedding_output = self.embeddings(pixel_values)
|
1387 |
+
encoder_outputs = self.encoder(
|
1388 |
+
embedding_output,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
# Apply pooling
|
1393 |
+
last_hidden_state = encoder_outputs[0]
|
1394 |
+
pooled_output = self.pooler(last_hidden_state)
|
1395 |
+
# Reshape (batch_size, projection_dim, 1 , 1) -> (batch_size, projection_dim)
|
1396 |
+
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
|
1397 |
+
|
1398 |
+
if not return_dict:
|
1399 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1400 |
+
|
1401 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
1402 |
+
last_hidden_state=last_hidden_state,
|
1403 |
+
pooler_output=pooled_output,
|
1404 |
+
hidden_states=encoder_outputs.hidden_states,
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
|
1408 |
+
@add_start_docstrings(ALIGN_START_DOCSTRING)
|
1409 |
+
class AlignModel(AlignPreTrainedModel):
|
1410 |
+
config_class = AlignConfig
|
1411 |
+
|
1412 |
+
def __init__(self, config: AlignConfig):
|
1413 |
+
super().__init__(config)
|
1414 |
+
|
1415 |
+
if not isinstance(config.text_config, AlignTextConfig):
|
1416 |
+
raise ValueError(
|
1417 |
+
"config.text_config is expected to be of type AlignTextConfig but is of type"
|
1418 |
+
f" {type(config.text_config)}."
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
if not isinstance(config.vision_config, AlignVisionConfig):
|
1422 |
+
raise ValueError(
|
1423 |
+
"config.vision_config is expected to be of type AlignVisionConfig but is of type"
|
1424 |
+
f" {type(config.vision_config)}."
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
text_config = config.text_config
|
1428 |
+
vision_config = config.vision_config
|
1429 |
+
|
1430 |
+
self.projection_dim = config.projection_dim
|
1431 |
+
self.text_embed_dim = text_config.hidden_size
|
1432 |
+
|
1433 |
+
self.text_model = AlignTextModel(text_config)
|
1434 |
+
self.vision_model = AlignVisionModel(vision_config)
|
1435 |
+
|
1436 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim)
|
1437 |
+
self.temperature = nn.Parameter(torch.tensor(self.config.temperature_init_value))
|
1438 |
+
|
1439 |
+
# Initialize weights and apply final processing
|
1440 |
+
self.post_init()
|
1441 |
+
|
1442 |
+
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
|
1443 |
+
def get_text_features(
|
1444 |
+
self,
|
1445 |
+
input_ids: Optional[torch.Tensor] = None,
|
1446 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1447 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1448 |
+
position_ids: Optional[torch.Tensor] = None,
|
1449 |
+
head_mask: Optional[torch.Tensor] = None,
|
1450 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1451 |
+
output_attentions: Optional[bool] = None,
|
1452 |
+
output_hidden_states: Optional[bool] = None,
|
1453 |
+
return_dict: Optional[bool] = None,
|
1454 |
+
) -> torch.FloatTensor:
|
1455 |
+
r"""
|
1456 |
+
Returns:
|
1457 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1458 |
+
applying the projection layer to the pooled output of [`AlignTextModel`].
|
1459 |
+
|
1460 |
+
Examples:
|
1461 |
+
|
1462 |
+
```python
|
1463 |
+
>>> from transformers import AutoTokenizer, AlignModel
|
1464 |
+
|
1465 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1466 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")
|
1467 |
+
|
1468 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1469 |
+
>>> text_features = model.get_text_features(**inputs)
|
1470 |
+
```"""
|
1471 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1472 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1473 |
+
output_hidden_states = (
|
1474 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1475 |
+
)
|
1476 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1477 |
+
|
1478 |
+
text_outputs = self.text_model(
|
1479 |
+
input_ids=input_ids,
|
1480 |
+
attention_mask=attention_mask,
|
1481 |
+
token_type_ids=token_type_ids,
|
1482 |
+
position_ids=position_ids,
|
1483 |
+
head_mask=head_mask,
|
1484 |
+
inputs_embeds=inputs_embeds,
|
1485 |
+
output_attentions=output_attentions,
|
1486 |
+
output_hidden_states=output_hidden_states,
|
1487 |
+
return_dict=return_dict,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
last_hidden_state = text_outputs[0][:, 0, :]
|
1491 |
+
text_features = self.text_projection(last_hidden_state)
|
1492 |
+
|
1493 |
+
return text_features
|
1494 |
+
|
1495 |
+
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
|
1496 |
+
def get_image_features(
|
1497 |
+
self,
|
1498 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1499 |
+
output_hidden_states: Optional[bool] = None,
|
1500 |
+
return_dict: Optional[bool] = None,
|
1501 |
+
) -> torch.FloatTensor:
|
1502 |
+
r"""
|
1503 |
+
Returns:
|
1504 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1505 |
+
applying the projection layer to the pooled output of [`AlignVisionModel`].
|
1506 |
+
|
1507 |
+
Examples:
|
1508 |
+
|
1509 |
+
```python
|
1510 |
+
>>> from PIL import Image
|
1511 |
+
>>> import requests
|
1512 |
+
>>> from transformers import AutoProcessor, AlignModel
|
1513 |
+
|
1514 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1515 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1516 |
+
|
1517 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1518 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1519 |
+
|
1520 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1521 |
+
|
1522 |
+
>>> image_features = model.get_image_features(**inputs)
|
1523 |
+
```"""
|
1524 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1525 |
+
output_hidden_states = (
|
1526 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1527 |
+
)
|
1528 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1529 |
+
|
1530 |
+
vision_outputs = self.vision_model(
|
1531 |
+
pixel_values=pixel_values,
|
1532 |
+
output_hidden_states=output_hidden_states,
|
1533 |
+
return_dict=return_dict,
|
1534 |
+
)
|
1535 |
+
|
1536 |
+
image_features = vision_outputs[1] # pooled_output
|
1537 |
+
|
1538 |
+
return image_features
|
1539 |
+
|
1540 |
+
@add_start_docstrings_to_model_forward(ALIGN_INPUTS_DOCSTRING)
|
1541 |
+
@replace_return_docstrings(output_type=AlignOutput, config_class=AlignConfig)
|
1542 |
+
def forward(
|
1543 |
+
self,
|
1544 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1545 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1546 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1547 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1548 |
+
position_ids: Optional[torch.Tensor] = None,
|
1549 |
+
head_mask: Optional[torch.Tensor] = None,
|
1550 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1551 |
+
return_loss: Optional[bool] = None,
|
1552 |
+
output_attentions: Optional[bool] = None,
|
1553 |
+
output_hidden_states: Optional[bool] = None,
|
1554 |
+
return_dict: Optional[bool] = None,
|
1555 |
+
) -> Union[Tuple, AlignOutput]:
|
1556 |
+
r"""
|
1557 |
+
Returns:
|
1558 |
+
|
1559 |
+
Examples:
|
1560 |
+
|
1561 |
+
```python
|
1562 |
+
>>> from PIL import Image
|
1563 |
+
>>> import requests
|
1564 |
+
>>> from transformers import AutoProcessor, AlignModel
|
1565 |
+
|
1566 |
+
>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
|
1567 |
+
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
|
1568 |
+
|
1569 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1570 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1571 |
+
|
1572 |
+
>>> inputs = processor(
|
1573 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1574 |
+
... )
|
1575 |
+
|
1576 |
+
>>> outputs = model(**inputs)
|
1577 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1578 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1579 |
+
```"""
|
1580 |
+
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
|
1581 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1582 |
+
output_hidden_states = (
|
1583 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1584 |
+
)
|
1585 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1586 |
+
|
1587 |
+
vision_outputs = self.vision_model(
|
1588 |
+
pixel_values=pixel_values,
|
1589 |
+
output_hidden_states=output_hidden_states,
|
1590 |
+
return_dict=return_dict,
|
1591 |
+
)
|
1592 |
+
|
1593 |
+
text_outputs = self.text_model(
|
1594 |
+
input_ids=input_ids,
|
1595 |
+
attention_mask=attention_mask,
|
1596 |
+
token_type_ids=token_type_ids,
|
1597 |
+
position_ids=position_ids,
|
1598 |
+
head_mask=head_mask,
|
1599 |
+
inputs_embeds=inputs_embeds,
|
1600 |
+
output_attentions=output_attentions,
|
1601 |
+
output_hidden_states=output_hidden_states,
|
1602 |
+
return_dict=return_dict,
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
image_embeds = vision_outputs[1]
|
1606 |
+
text_embeds = text_outputs[0][:, 0, :]
|
1607 |
+
text_embeds = self.text_projection(text_embeds)
|
1608 |
+
|
1609 |
+
# normalized features
|
1610 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1611 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1612 |
+
|
1613 |
+
# cosine similarity as logits
|
1614 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) / self.temperature
|
1615 |
+
logits_per_image = logits_per_text.t()
|
1616 |
+
|
1617 |
+
loss = None
|
1618 |
+
if return_loss:
|
1619 |
+
loss = align_loss(logits_per_text)
|
1620 |
+
|
1621 |
+
if not return_dict:
|
1622 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1623 |
+
return ((loss,) + output) if loss is not None else output
|
1624 |
+
|
1625 |
+
return AlignOutput(
|
1626 |
+
loss=loss,
|
1627 |
+
logits_per_image=logits_per_image,
|
1628 |
+
logits_per_text=logits_per_text,
|
1629 |
+
text_embeds=text_embeds,
|
1630 |
+
image_embeds=image_embeds,
|
1631 |
+
text_model_output=text_outputs,
|
1632 |
+
vision_model_output=vision_outputs,
|
1633 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/align/processing_align.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for ALIGN
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from ...processing_utils import ProcessorMixin
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
|
23 |
+
|
24 |
+
class AlignProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
|
27 |
+
[`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
|
28 |
+
tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
|
29 |
+
information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
image_processor ([`EfficientNetImageProcessor`]):
|
33 |
+
The image processor is a required input.
|
34 |
+
tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
|
35 |
+
The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
attributes = ["image_processor", "tokenizer"]
|
39 |
+
image_processor_class = "EfficientNetImageProcessor"
|
40 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
41 |
+
|
42 |
+
def __init__(self, image_processor, tokenizer):
|
43 |
+
super().__init__(image_processor, tokenizer)
|
44 |
+
|
45 |
+
def __call__(self, text=None, images=None, padding="max_length", max_length=64, return_tensors=None, **kwargs):
|
46 |
+
"""
|
47 |
+
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
|
48 |
+
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
49 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
|
50 |
+
EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
|
51 |
+
to the doctsring of the above two methods for more information.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
text (`str`, `List[str]`):
|
55 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
56 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
57 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
58 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
59 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
60 |
+
tensor. Both channels-first and channels-last formats are supported.
|
61 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
|
62 |
+
Activates and controls padding for tokenization of input text. Choose between [`True` or `'longest'`,
|
63 |
+
`'max_length'`, `False` or `'do_not_pad'`]
|
64 |
+
max_length (`int`, *optional*, defaults to `max_length`):
|
65 |
+
Maximum padding value to use to pad the input text during tokenization.
|
66 |
+
|
67 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
68 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
69 |
+
|
70 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
71 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
72 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
73 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
77 |
+
|
78 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
79 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
80 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
81 |
+
`None`).
|
82 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
83 |
+
"""
|
84 |
+
if text is None and images is None:
|
85 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
86 |
+
|
87 |
+
if text is not None:
|
88 |
+
encoding = self.tokenizer(
|
89 |
+
text, padding=padding, max_length=max_length, return_tensors=return_tensors, **kwargs
|
90 |
+
)
|
91 |
+
|
92 |
+
if images is not None:
|
93 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
94 |
+
|
95 |
+
if text is not None and images is not None:
|
96 |
+
encoding["pixel_values"] = image_features.pixel_values
|
97 |
+
return encoding
|
98 |
+
elif text is not None:
|
99 |
+
return encoding
|
100 |
+
else:
|
101 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
102 |
+
|
103 |
+
def batch_decode(self, *args, **kwargs):
|
104 |
+
"""
|
105 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
106 |
+
refer to the docstring of this method for more information.
|
107 |
+
"""
|
108 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
109 |
+
|
110 |
+
def decode(self, *args, **kwargs):
|
111 |
+
"""
|
112 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
113 |
+
the docstring of this method for more information.
|
114 |
+
"""
|
115 |
+
return self.tokenizer.decode(*args, **kwargs)
|
116 |
+
|
117 |
+
@property
|
118 |
+
def model_input_names(self):
|
119 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
120 |
+
image_processor_input_names = self.image_processor.model_input_names
|
121 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/configuration_conditional_detr.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/feature_extraction_conditional_detr.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/image_processing_conditional_detr.cpython-310.pyc
ADDED
Binary file (59.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__pycache__/modeling_conditional_detr.cpython-310.pyc
ADDED
Binary file (93.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/configuration_conditional_detr.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Conditional DETR model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
from ..auto import CONFIG_MAPPING
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class ConditionalDetrConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`ConditionalDetrModel`]. It is used to instantiate
|
36 |
+
a Conditional DETR model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the Conditional DETR
|
38 |
+
[microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
use_timm_backbone (`bool`, *optional*, defaults to `True`):
|
45 |
+
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
|
46 |
+
API.
|
47 |
+
backbone_config (`PretrainedConfig` or `dict`, *optional*):
|
48 |
+
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
|
49 |
+
case it will default to `ResNetConfig()`.
|
50 |
+
num_channels (`int`, *optional*, defaults to 3):
|
51 |
+
The number of input channels.
|
52 |
+
num_queries (`int`, *optional*, defaults to 100):
|
53 |
+
Number of object queries, i.e. detection slots. This is the maximal number of objects
|
54 |
+
[`ConditionalDetrModel`] can detect in a single image. For COCO, we recommend 100 queries.
|
55 |
+
d_model (`int`, *optional*, defaults to 256):
|
56 |
+
Dimension of the layers.
|
57 |
+
encoder_layers (`int`, *optional*, defaults to 6):
|
58 |
+
Number of encoder layers.
|
59 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
60 |
+
Number of decoder layers.
|
61 |
+
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
62 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
63 |
+
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
64 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
65 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
66 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
67 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
68 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
69 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
70 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
71 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
72 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
73 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
74 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
75 |
+
The dropout ratio for the attention probabilities.
|
76 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
77 |
+
The dropout ratio for activations inside the fully connected layer.
|
78 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
80 |
+
init_xavier_std (`float`, *optional*, defaults to 1):
|
81 |
+
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
|
82 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
83 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
84 |
+
for more details.
|
85 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
86 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
87 |
+
for more details.
|
88 |
+
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
90 |
+
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
|
91 |
+
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
|
92 |
+
backbone (`str`, *optional*, defaults to `"resnet50"`):
|
93 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
94 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
95 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
96 |
+
use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
|
97 |
+
Whether to use pretrained weights for the backbone.
|
98 |
+
backbone_kwargs (`dict`, *optional*):
|
99 |
+
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
100 |
+
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
101 |
+
dilation (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
|
103 |
+
`use_timm_backbone` = `True`.
|
104 |
+
class_cost (`float`, *optional*, defaults to 1):
|
105 |
+
Relative weight of the classification error in the Hungarian matching cost.
|
106 |
+
bbox_cost (`float`, *optional*, defaults to 5):
|
107 |
+
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
108 |
+
giou_cost (`float`, *optional*, defaults to 2):
|
109 |
+
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
110 |
+
mask_loss_coefficient (`float`, *optional*, defaults to 1):
|
111 |
+
Relative weight of the Focal loss in the panoptic segmentation loss.
|
112 |
+
dice_loss_coefficient (`float`, *optional*, defaults to 1):
|
113 |
+
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
|
114 |
+
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
115 |
+
Relative weight of the L1 bounding box loss in the object detection loss.
|
116 |
+
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
117 |
+
Relative weight of the generalized IoU loss in the object detection loss.
|
118 |
+
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
119 |
+
Relative classification weight of the 'no-object' class in the object detection loss.
|
120 |
+
focal_alpha (`float`, *optional*, defaults to 0.25):
|
121 |
+
Alpha parameter in the focal loss.
|
122 |
+
|
123 |
+
Examples:
|
124 |
+
|
125 |
+
```python
|
126 |
+
>>> from transformers import ConditionalDetrConfig, ConditionalDetrModel
|
127 |
+
|
128 |
+
>>> # Initializing a Conditional DETR microsoft/conditional-detr-resnet-50 style configuration
|
129 |
+
>>> configuration = ConditionalDetrConfig()
|
130 |
+
|
131 |
+
>>> # Initializing a model (with random weights) from the microsoft/conditional-detr-resnet-50 style configuration
|
132 |
+
>>> model = ConditionalDetrModel(configuration)
|
133 |
+
|
134 |
+
>>> # Accessing the model configuration
|
135 |
+
>>> configuration = model.config
|
136 |
+
```"""
|
137 |
+
|
138 |
+
model_type = "conditional_detr"
|
139 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
140 |
+
attribute_map = {
|
141 |
+
"hidden_size": "d_model",
|
142 |
+
"num_attention_heads": "encoder_attention_heads",
|
143 |
+
}
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
use_timm_backbone=True,
|
148 |
+
backbone_config=None,
|
149 |
+
num_channels=3,
|
150 |
+
num_queries=300,
|
151 |
+
encoder_layers=6,
|
152 |
+
encoder_ffn_dim=2048,
|
153 |
+
encoder_attention_heads=8,
|
154 |
+
decoder_layers=6,
|
155 |
+
decoder_ffn_dim=2048,
|
156 |
+
decoder_attention_heads=8,
|
157 |
+
encoder_layerdrop=0.0,
|
158 |
+
decoder_layerdrop=0.0,
|
159 |
+
is_encoder_decoder=True,
|
160 |
+
activation_function="relu",
|
161 |
+
d_model=256,
|
162 |
+
dropout=0.1,
|
163 |
+
attention_dropout=0.0,
|
164 |
+
activation_dropout=0.0,
|
165 |
+
init_std=0.02,
|
166 |
+
init_xavier_std=1.0,
|
167 |
+
auxiliary_loss=False,
|
168 |
+
position_embedding_type="sine",
|
169 |
+
backbone="resnet50",
|
170 |
+
use_pretrained_backbone=True,
|
171 |
+
backbone_kwargs=None,
|
172 |
+
dilation=False,
|
173 |
+
class_cost=2,
|
174 |
+
bbox_cost=5,
|
175 |
+
giou_cost=2,
|
176 |
+
mask_loss_coefficient=1,
|
177 |
+
dice_loss_coefficient=1,
|
178 |
+
cls_loss_coefficient=2,
|
179 |
+
bbox_loss_coefficient=5,
|
180 |
+
giou_loss_coefficient=2,
|
181 |
+
focal_alpha=0.25,
|
182 |
+
**kwargs,
|
183 |
+
):
|
184 |
+
if not use_timm_backbone and use_pretrained_backbone:
|
185 |
+
raise ValueError(
|
186 |
+
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
|
187 |
+
)
|
188 |
+
|
189 |
+
if backbone_config is not None and backbone is not None:
|
190 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
191 |
+
|
192 |
+
if backbone_config is not None and use_timm_backbone:
|
193 |
+
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
|
194 |
+
|
195 |
+
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
196 |
+
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
197 |
+
|
198 |
+
if not use_timm_backbone:
|
199 |
+
if backbone_config is None:
|
200 |
+
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
|
201 |
+
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
|
202 |
+
elif isinstance(backbone_config, dict):
|
203 |
+
backbone_model_type = backbone_config.get("model_type")
|
204 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
205 |
+
backbone_config = config_class.from_dict(backbone_config)
|
206 |
+
|
207 |
+
self.use_timm_backbone = use_timm_backbone
|
208 |
+
self.backbone_config = backbone_config
|
209 |
+
self.num_channels = num_channels
|
210 |
+
self.num_queries = num_queries
|
211 |
+
self.d_model = d_model
|
212 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
213 |
+
self.encoder_layers = encoder_layers
|
214 |
+
self.encoder_attention_heads = encoder_attention_heads
|
215 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
216 |
+
self.decoder_layers = decoder_layers
|
217 |
+
self.decoder_attention_heads = decoder_attention_heads
|
218 |
+
self.dropout = dropout
|
219 |
+
self.attention_dropout = attention_dropout
|
220 |
+
self.activation_dropout = activation_dropout
|
221 |
+
self.activation_function = activation_function
|
222 |
+
self.init_std = init_std
|
223 |
+
self.init_xavier_std = init_xavier_std
|
224 |
+
self.encoder_layerdrop = encoder_layerdrop
|
225 |
+
self.decoder_layerdrop = decoder_layerdrop
|
226 |
+
self.num_hidden_layers = encoder_layers
|
227 |
+
self.auxiliary_loss = auxiliary_loss
|
228 |
+
self.position_embedding_type = position_embedding_type
|
229 |
+
self.backbone = backbone
|
230 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
231 |
+
self.backbone_kwargs = backbone_kwargs
|
232 |
+
self.dilation = dilation
|
233 |
+
# Hungarian matcher
|
234 |
+
self.class_cost = class_cost
|
235 |
+
self.bbox_cost = bbox_cost
|
236 |
+
self.giou_cost = giou_cost
|
237 |
+
# Loss coefficients
|
238 |
+
self.mask_loss_coefficient = mask_loss_coefficient
|
239 |
+
self.dice_loss_coefficient = dice_loss_coefficient
|
240 |
+
self.cls_loss_coefficient = cls_loss_coefficient
|
241 |
+
self.bbox_loss_coefficient = bbox_loss_coefficient
|
242 |
+
self.giou_loss_coefficient = giou_loss_coefficient
|
243 |
+
self.focal_alpha = focal_alpha
|
244 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
245 |
+
|
246 |
+
@property
|
247 |
+
def num_attention_heads(self) -> int:
|
248 |
+
return self.encoder_attention_heads
|
249 |
+
|
250 |
+
@property
|
251 |
+
def hidden_size(self) -> int:
|
252 |
+
return self.d_model
|
253 |
+
|
254 |
+
|
255 |
+
class ConditionalDetrOnnxConfig(OnnxConfig):
|
256 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
257 |
+
|
258 |
+
@property
|
259 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
260 |
+
return OrderedDict(
|
261 |
+
[
|
262 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
263 |
+
("pixel_mask", {0: "batch"}),
|
264 |
+
]
|
265 |
+
)
|
266 |
+
|
267 |
+
@property
|
268 |
+
def atol_for_validation(self) -> float:
|
269 |
+
return 1e-5
|
270 |
+
|
271 |
+
@property
|
272 |
+
def default_onnx_opset(self) -> int:
|
273 |
+
return 12
|
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/image_processing_conditional_detr.py
ADDED
@@ -0,0 +1,1777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Conditional DETR."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import pathlib
|
19 |
+
from collections import defaultdict
|
20 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...feature_extraction_utils import BatchFeature
|
25 |
+
from ...image_processing_utils import BaseImageProcessor, get_size_dict
|
26 |
+
from ...image_transforms import (
|
27 |
+
PaddingMode,
|
28 |
+
center_to_corners_format,
|
29 |
+
corners_to_center_format,
|
30 |
+
id_to_rgb,
|
31 |
+
pad,
|
32 |
+
rescale,
|
33 |
+
resize,
|
34 |
+
rgb_to_id,
|
35 |
+
to_channel_dimension_format,
|
36 |
+
)
|
37 |
+
from ...image_utils import (
|
38 |
+
IMAGENET_DEFAULT_MEAN,
|
39 |
+
IMAGENET_DEFAULT_STD,
|
40 |
+
AnnotationFormat,
|
41 |
+
AnnotationType,
|
42 |
+
ChannelDimension,
|
43 |
+
ImageInput,
|
44 |
+
PILImageResampling,
|
45 |
+
get_image_size,
|
46 |
+
infer_channel_dimension_format,
|
47 |
+
is_scaled_image,
|
48 |
+
make_list_of_images,
|
49 |
+
to_numpy_array,
|
50 |
+
valid_images,
|
51 |
+
validate_annotations,
|
52 |
+
validate_kwargs,
|
53 |
+
validate_preprocess_arguments,
|
54 |
+
)
|
55 |
+
from ...utils import (
|
56 |
+
TensorType,
|
57 |
+
is_flax_available,
|
58 |
+
is_jax_tensor,
|
59 |
+
is_scipy_available,
|
60 |
+
is_tf_available,
|
61 |
+
is_tf_tensor,
|
62 |
+
is_torch_available,
|
63 |
+
is_torch_tensor,
|
64 |
+
is_vision_available,
|
65 |
+
logging,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
if is_torch_available():
|
70 |
+
import torch
|
71 |
+
from torch import nn
|
72 |
+
|
73 |
+
|
74 |
+
if is_vision_available():
|
75 |
+
import PIL
|
76 |
+
|
77 |
+
|
78 |
+
if is_scipy_available():
|
79 |
+
import scipy.special
|
80 |
+
import scipy.stats
|
81 |
+
|
82 |
+
|
83 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
84 |
+
|
85 |
+
|
86 |
+
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
|
90 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
|
91 |
+
"""
|
92 |
+
Computes the output image size given the input image size and the desired output size.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
image_size (`Tuple[int, int]`):
|
96 |
+
The input image size.
|
97 |
+
size (`int`):
|
98 |
+
The desired output size.
|
99 |
+
max_size (`int`, *optional*):
|
100 |
+
The maximum allowed output size.
|
101 |
+
"""
|
102 |
+
height, width = image_size
|
103 |
+
if max_size is not None:
|
104 |
+
min_original_size = float(min((height, width)))
|
105 |
+
max_original_size = float(max((height, width)))
|
106 |
+
if max_original_size / min_original_size * size > max_size:
|
107 |
+
size = int(round(max_size * min_original_size / max_original_size))
|
108 |
+
|
109 |
+
if (height <= width and height == size) or (width <= height and width == size):
|
110 |
+
return height, width
|
111 |
+
|
112 |
+
if width < height:
|
113 |
+
ow = size
|
114 |
+
oh = int(size * height / width)
|
115 |
+
else:
|
116 |
+
oh = size
|
117 |
+
ow = int(size * width / height)
|
118 |
+
return (oh, ow)
|
119 |
+
|
120 |
+
|
121 |
+
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
|
122 |
+
def get_resize_output_image_size(
|
123 |
+
input_image: np.ndarray,
|
124 |
+
size: Union[int, Tuple[int, int], List[int]],
|
125 |
+
max_size: Optional[int] = None,
|
126 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
127 |
+
) -> Tuple[int, int]:
|
128 |
+
"""
|
129 |
+
Computes the output image size given the input image size and the desired output size. If the desired output size
|
130 |
+
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
|
131 |
+
image size is computed by keeping the aspect ratio of the input image size.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
input_image (`np.ndarray`):
|
135 |
+
The image to resize.
|
136 |
+
size (`int` or `Tuple[int, int]` or `List[int]`):
|
137 |
+
The desired output size.
|
138 |
+
max_size (`int`, *optional*):
|
139 |
+
The maximum allowed output size.
|
140 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
141 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
142 |
+
"""
|
143 |
+
image_size = get_image_size(input_image, input_data_format)
|
144 |
+
if isinstance(size, (list, tuple)):
|
145 |
+
return size
|
146 |
+
|
147 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
148 |
+
|
149 |
+
|
150 |
+
# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
|
151 |
+
def get_numpy_to_framework_fn(arr) -> Callable:
|
152 |
+
"""
|
153 |
+
Returns a function that converts a numpy array to the framework of the input array.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
arr (`np.ndarray`): The array to convert.
|
157 |
+
"""
|
158 |
+
if isinstance(arr, np.ndarray):
|
159 |
+
return np.array
|
160 |
+
if is_tf_available() and is_tf_tensor(arr):
|
161 |
+
import tensorflow as tf
|
162 |
+
|
163 |
+
return tf.convert_to_tensor
|
164 |
+
if is_torch_available() and is_torch_tensor(arr):
|
165 |
+
import torch
|
166 |
+
|
167 |
+
return torch.tensor
|
168 |
+
if is_flax_available() and is_jax_tensor(arr):
|
169 |
+
import jax.numpy as jnp
|
170 |
+
|
171 |
+
return jnp.array
|
172 |
+
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
|
173 |
+
|
174 |
+
|
175 |
+
# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
|
176 |
+
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
|
177 |
+
"""
|
178 |
+
Squeezes an array, but only if the axis specified has dim 1.
|
179 |
+
"""
|
180 |
+
if axis is None:
|
181 |
+
return arr.squeeze()
|
182 |
+
|
183 |
+
try:
|
184 |
+
return arr.squeeze(axis=axis)
|
185 |
+
except ValueError:
|
186 |
+
return arr
|
187 |
+
|
188 |
+
|
189 |
+
# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
|
190 |
+
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
191 |
+
image_height, image_width = image_size
|
192 |
+
norm_annotation = {}
|
193 |
+
for key, value in annotation.items():
|
194 |
+
if key == "boxes":
|
195 |
+
boxes = value
|
196 |
+
boxes = corners_to_center_format(boxes)
|
197 |
+
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
|
198 |
+
norm_annotation[key] = boxes
|
199 |
+
else:
|
200 |
+
norm_annotation[key] = value
|
201 |
+
return norm_annotation
|
202 |
+
|
203 |
+
|
204 |
+
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
|
205 |
+
def max_across_indices(values: Iterable[Any]) -> List[Any]:
|
206 |
+
"""
|
207 |
+
Return the maximum value across all indices of an iterable of values.
|
208 |
+
"""
|
209 |
+
return [max(values_i) for values_i in zip(*values)]
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
|
213 |
+
def get_max_height_width(
|
214 |
+
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
215 |
+
) -> List[int]:
|
216 |
+
"""
|
217 |
+
Get the maximum height and width across all images in a batch.
|
218 |
+
"""
|
219 |
+
if input_data_format is None:
|
220 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
221 |
+
|
222 |
+
if input_data_format == ChannelDimension.FIRST:
|
223 |
+
_, max_height, max_width = max_across_indices([img.shape for img in images])
|
224 |
+
elif input_data_format == ChannelDimension.LAST:
|
225 |
+
max_height, max_width, _ = max_across_indices([img.shape for img in images])
|
226 |
+
else:
|
227 |
+
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
|
228 |
+
return (max_height, max_width)
|
229 |
+
|
230 |
+
|
231 |
+
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
|
232 |
+
def make_pixel_mask(
|
233 |
+
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
234 |
+
) -> np.ndarray:
|
235 |
+
"""
|
236 |
+
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
image (`np.ndarray`):
|
240 |
+
Image to make the pixel mask for.
|
241 |
+
output_size (`Tuple[int, int]`):
|
242 |
+
Output size of the mask.
|
243 |
+
"""
|
244 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
245 |
+
mask = np.zeros(output_size, dtype=np.int64)
|
246 |
+
mask[:input_height, :input_width] = 1
|
247 |
+
return mask
|
248 |
+
|
249 |
+
|
250 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
|
251 |
+
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
|
252 |
+
"""
|
253 |
+
Convert a COCO polygon annotation to a mask.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
segmentations (`List[List[float]]`):
|
257 |
+
List of polygons, each polygon represented by a list of x-y coordinates.
|
258 |
+
height (`int`):
|
259 |
+
Height of the mask.
|
260 |
+
width (`int`):
|
261 |
+
Width of the mask.
|
262 |
+
"""
|
263 |
+
try:
|
264 |
+
from pycocotools import mask as coco_mask
|
265 |
+
except ImportError:
|
266 |
+
raise ImportError("Pycocotools is not installed in your environment.")
|
267 |
+
|
268 |
+
masks = []
|
269 |
+
for polygons in segmentations:
|
270 |
+
rles = coco_mask.frPyObjects(polygons, height, width)
|
271 |
+
mask = coco_mask.decode(rles)
|
272 |
+
if len(mask.shape) < 3:
|
273 |
+
mask = mask[..., None]
|
274 |
+
mask = np.asarray(mask, dtype=np.uint8)
|
275 |
+
mask = np.any(mask, axis=2)
|
276 |
+
masks.append(mask)
|
277 |
+
if masks:
|
278 |
+
masks = np.stack(masks, axis=0)
|
279 |
+
else:
|
280 |
+
masks = np.zeros((0, height, width), dtype=np.uint8)
|
281 |
+
|
282 |
+
return masks
|
283 |
+
|
284 |
+
|
285 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->ConditionalDetr
|
286 |
+
def prepare_coco_detection_annotation(
|
287 |
+
image,
|
288 |
+
target,
|
289 |
+
return_segmentation_masks: bool = False,
|
290 |
+
input_data_format: Optional[Union[ChannelDimension, str]] = None,
|
291 |
+
):
|
292 |
+
"""
|
293 |
+
Convert the target in COCO format into the format expected by ConditionalDetr.
|
294 |
+
"""
|
295 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
296 |
+
|
297 |
+
image_id = target["image_id"]
|
298 |
+
image_id = np.asarray([image_id], dtype=np.int64)
|
299 |
+
|
300 |
+
# Get all COCO annotations for the given image.
|
301 |
+
annotations = target["annotations"]
|
302 |
+
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
|
303 |
+
|
304 |
+
classes = [obj["category_id"] for obj in annotations]
|
305 |
+
classes = np.asarray(classes, dtype=np.int64)
|
306 |
+
|
307 |
+
# for conversion to coco api
|
308 |
+
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
|
309 |
+
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
|
310 |
+
|
311 |
+
boxes = [obj["bbox"] for obj in annotations]
|
312 |
+
# guard against no boxes via resizing
|
313 |
+
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
|
314 |
+
boxes[:, 2:] += boxes[:, :2]
|
315 |
+
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
|
316 |
+
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
|
317 |
+
|
318 |
+
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
319 |
+
|
320 |
+
new_target = {}
|
321 |
+
new_target["image_id"] = image_id
|
322 |
+
new_target["class_labels"] = classes[keep]
|
323 |
+
new_target["boxes"] = boxes[keep]
|
324 |
+
new_target["area"] = area[keep]
|
325 |
+
new_target["iscrowd"] = iscrowd[keep]
|
326 |
+
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
|
327 |
+
|
328 |
+
if annotations and "keypoints" in annotations[0]:
|
329 |
+
keypoints = [obj["keypoints"] for obj in annotations]
|
330 |
+
# Converting the filtered keypoints list to a numpy array
|
331 |
+
keypoints = np.asarray(keypoints, dtype=np.float32)
|
332 |
+
# Apply the keep mask here to filter the relevant annotations
|
333 |
+
keypoints = keypoints[keep]
|
334 |
+
num_keypoints = keypoints.shape[0]
|
335 |
+
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
|
336 |
+
new_target["keypoints"] = keypoints
|
337 |
+
|
338 |
+
if return_segmentation_masks:
|
339 |
+
segmentation_masks = [obj["segmentation"] for obj in annotations]
|
340 |
+
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
|
341 |
+
new_target["masks"] = masks[keep]
|
342 |
+
|
343 |
+
return new_target
|
344 |
+
|
345 |
+
|
346 |
+
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
|
347 |
+
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
|
348 |
+
"""
|
349 |
+
Compute the bounding boxes around the provided panoptic segmentation masks.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
masks: masks in format `[number_masks, height, width]` where N is the number of masks
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
356 |
+
"""
|
357 |
+
if masks.size == 0:
|
358 |
+
return np.zeros((0, 4))
|
359 |
+
|
360 |
+
h, w = masks.shape[-2:]
|
361 |
+
y = np.arange(0, h, dtype=np.float32)
|
362 |
+
x = np.arange(0, w, dtype=np.float32)
|
363 |
+
# see https://github.com/pytorch/pytorch/issues/50276
|
364 |
+
y, x = np.meshgrid(y, x, indexing="ij")
|
365 |
+
|
366 |
+
x_mask = masks * np.expand_dims(x, axis=0)
|
367 |
+
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
|
368 |
+
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
|
369 |
+
x_min = x.filled(fill_value=1e8)
|
370 |
+
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
|
371 |
+
|
372 |
+
y_mask = masks * np.expand_dims(y, axis=0)
|
373 |
+
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
|
374 |
+
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
|
375 |
+
y_min = y.filled(fill_value=1e8)
|
376 |
+
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
|
377 |
+
|
378 |
+
return np.stack([x_min, y_min, x_max, y_max], 1)
|
379 |
+
|
380 |
+
|
381 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->ConditionalDetr
|
382 |
+
def prepare_coco_panoptic_annotation(
|
383 |
+
image: np.ndarray,
|
384 |
+
target: Dict,
|
385 |
+
masks_path: Union[str, pathlib.Path],
|
386 |
+
return_masks: bool = True,
|
387 |
+
input_data_format: Union[ChannelDimension, str] = None,
|
388 |
+
) -> Dict:
|
389 |
+
"""
|
390 |
+
Prepare a coco panoptic annotation for ConditionalDetr.
|
391 |
+
"""
|
392 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
393 |
+
annotation_path = pathlib.Path(masks_path) / target["file_name"]
|
394 |
+
|
395 |
+
new_target = {}
|
396 |
+
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
|
397 |
+
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
398 |
+
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
399 |
+
|
400 |
+
if "segments_info" in target:
|
401 |
+
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
|
402 |
+
masks = rgb_to_id(masks)
|
403 |
+
|
404 |
+
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
|
405 |
+
masks = masks == ids[:, None, None]
|
406 |
+
masks = masks.astype(np.uint8)
|
407 |
+
if return_masks:
|
408 |
+
new_target["masks"] = masks
|
409 |
+
new_target["boxes"] = masks_to_boxes(masks)
|
410 |
+
new_target["class_labels"] = np.array(
|
411 |
+
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
|
412 |
+
)
|
413 |
+
new_target["iscrowd"] = np.asarray(
|
414 |
+
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
|
415 |
+
)
|
416 |
+
new_target["area"] = np.asarray(
|
417 |
+
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
|
418 |
+
)
|
419 |
+
|
420 |
+
return new_target
|
421 |
+
|
422 |
+
|
423 |
+
# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
|
424 |
+
def get_segmentation_image(
|
425 |
+
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
|
426 |
+
):
|
427 |
+
h, w = input_size
|
428 |
+
final_h, final_w = target_size
|
429 |
+
|
430 |
+
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
|
431 |
+
|
432 |
+
if m_id.shape[-1] == 0:
|
433 |
+
# We didn't detect any mask :(
|
434 |
+
m_id = np.zeros((h, w), dtype=np.int64)
|
435 |
+
else:
|
436 |
+
m_id = m_id.argmax(-1).reshape(h, w)
|
437 |
+
|
438 |
+
if deduplicate:
|
439 |
+
# Merge the masks corresponding to the same stuff class
|
440 |
+
for equiv in stuff_equiv_classes.values():
|
441 |
+
for eq_id in equiv:
|
442 |
+
m_id[m_id == eq_id] = equiv[0]
|
443 |
+
|
444 |
+
seg_img = id_to_rgb(m_id)
|
445 |
+
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
|
446 |
+
return seg_img
|
447 |
+
|
448 |
+
|
449 |
+
# Copied from transformers.models.detr.image_processing_detr.get_mask_area
|
450 |
+
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
|
451 |
+
final_h, final_w = target_size
|
452 |
+
np_seg_img = seg_img.astype(np.uint8)
|
453 |
+
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
|
454 |
+
m_id = rgb_to_id(np_seg_img)
|
455 |
+
area = [(m_id == i).sum() for i in range(n_classes)]
|
456 |
+
return area
|
457 |
+
|
458 |
+
|
459 |
+
# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
|
460 |
+
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
461 |
+
probs = scipy.special.softmax(logits, axis=-1)
|
462 |
+
labels = probs.argmax(-1, keepdims=True)
|
463 |
+
scores = np.take_along_axis(probs, labels, axis=-1)
|
464 |
+
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
|
465 |
+
return scores, labels
|
466 |
+
|
467 |
+
|
468 |
+
# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample with DetrForSegmentation->ConditionalDetrForSegmentation
|
469 |
+
def post_process_panoptic_sample(
|
470 |
+
out_logits: np.ndarray,
|
471 |
+
masks: np.ndarray,
|
472 |
+
boxes: np.ndarray,
|
473 |
+
processed_size: Tuple[int, int],
|
474 |
+
target_size: Tuple[int, int],
|
475 |
+
is_thing_map: Dict,
|
476 |
+
threshold=0.85,
|
477 |
+
) -> Dict:
|
478 |
+
"""
|
479 |
+
Converts the output of [`ConditionalDetrForSegmentation`] into panoptic segmentation predictions for a single sample.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
out_logits (`torch.Tensor`):
|
483 |
+
The logits for this sample.
|
484 |
+
masks (`torch.Tensor`):
|
485 |
+
The predicted segmentation masks for this sample.
|
486 |
+
boxes (`torch.Tensor`):
|
487 |
+
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
|
488 |
+
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
|
489 |
+
processed_size (`Tuple[int, int]`):
|
490 |
+
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
|
491 |
+
after data augmentation but before batching.
|
492 |
+
target_size (`Tuple[int, int]`):
|
493 |
+
The target size of the image, `(height, width)` corresponding to the requested final size of the
|
494 |
+
prediction.
|
495 |
+
is_thing_map (`Dict`):
|
496 |
+
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
|
497 |
+
threshold (`float`, *optional*, defaults to 0.85):
|
498 |
+
The threshold used to binarize the segmentation masks.
|
499 |
+
"""
|
500 |
+
# we filter empty queries and detection below threshold
|
501 |
+
scores, labels = score_labels_from_class_probabilities(out_logits)
|
502 |
+
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
|
503 |
+
|
504 |
+
cur_scores = scores[keep]
|
505 |
+
cur_classes = labels[keep]
|
506 |
+
cur_boxes = center_to_corners_format(boxes[keep])
|
507 |
+
|
508 |
+
if len(cur_boxes) != len(cur_classes):
|
509 |
+
raise ValueError("Not as many boxes as there are classes")
|
510 |
+
|
511 |
+
cur_masks = masks[keep]
|
512 |
+
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
|
513 |
+
cur_masks = safe_squeeze(cur_masks, 1)
|
514 |
+
b, h, w = cur_masks.shape
|
515 |
+
|
516 |
+
# It may be that we have several predicted masks for the same stuff class.
|
517 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
518 |
+
cur_masks = cur_masks.reshape(b, -1)
|
519 |
+
stuff_equiv_classes = defaultdict(list)
|
520 |
+
for k, label in enumerate(cur_classes):
|
521 |
+
if not is_thing_map[label]:
|
522 |
+
stuff_equiv_classes[label].append(k)
|
523 |
+
|
524 |
+
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
|
525 |
+
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
|
526 |
+
|
527 |
+
# We filter out any mask that is too small
|
528 |
+
if cur_classes.size() > 0:
|
529 |
+
# We know filter empty masks as long as we find some
|
530 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
531 |
+
while filtered_small.any():
|
532 |
+
cur_masks = cur_masks[~filtered_small]
|
533 |
+
cur_scores = cur_scores[~filtered_small]
|
534 |
+
cur_classes = cur_classes[~filtered_small]
|
535 |
+
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
|
536 |
+
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
|
537 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
538 |
+
else:
|
539 |
+
cur_classes = np.ones((1, 1), dtype=np.int64)
|
540 |
+
|
541 |
+
segments_info = [
|
542 |
+
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
|
543 |
+
for i, (cat, a) in enumerate(zip(cur_classes, area))
|
544 |
+
]
|
545 |
+
del cur_classes
|
546 |
+
|
547 |
+
with io.BytesIO() as out:
|
548 |
+
PIL.Image.fromarray(seg_img).save(out, format="PNG")
|
549 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
550 |
+
|
551 |
+
return predictions
|
552 |
+
|
553 |
+
|
554 |
+
# Copied from transformers.models.detr.image_processing_detr.resize_annotation
|
555 |
+
def resize_annotation(
|
556 |
+
annotation: Dict[str, Any],
|
557 |
+
orig_size: Tuple[int, int],
|
558 |
+
target_size: Tuple[int, int],
|
559 |
+
threshold: float = 0.5,
|
560 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
561 |
+
):
|
562 |
+
"""
|
563 |
+
Resizes an annotation to a target size.
|
564 |
+
|
565 |
+
Args:
|
566 |
+
annotation (`Dict[str, Any]`):
|
567 |
+
The annotation dictionary.
|
568 |
+
orig_size (`Tuple[int, int]`):
|
569 |
+
The original size of the input image.
|
570 |
+
target_size (`Tuple[int, int]`):
|
571 |
+
The target size of the image, as returned by the preprocessing `resize` step.
|
572 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
573 |
+
The threshold used to binarize the segmentation masks.
|
574 |
+
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
|
575 |
+
The resampling filter to use when resizing the masks.
|
576 |
+
"""
|
577 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
|
578 |
+
ratio_height, ratio_width = ratios
|
579 |
+
|
580 |
+
new_annotation = {}
|
581 |
+
new_annotation["size"] = target_size
|
582 |
+
|
583 |
+
for key, value in annotation.items():
|
584 |
+
if key == "boxes":
|
585 |
+
boxes = value
|
586 |
+
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
|
587 |
+
new_annotation["boxes"] = scaled_boxes
|
588 |
+
elif key == "area":
|
589 |
+
area = value
|
590 |
+
scaled_area = area * (ratio_width * ratio_height)
|
591 |
+
new_annotation["area"] = scaled_area
|
592 |
+
elif key == "masks":
|
593 |
+
masks = value[:, None]
|
594 |
+
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
|
595 |
+
masks = masks.astype(np.float32)
|
596 |
+
masks = masks[:, 0] > threshold
|
597 |
+
new_annotation["masks"] = masks
|
598 |
+
elif key == "size":
|
599 |
+
new_annotation["size"] = target_size
|
600 |
+
else:
|
601 |
+
new_annotation[key] = value
|
602 |
+
|
603 |
+
return new_annotation
|
604 |
+
|
605 |
+
|
606 |
+
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
|
607 |
+
def binary_mask_to_rle(mask):
|
608 |
+
"""
|
609 |
+
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
|
610 |
+
|
611 |
+
Args:
|
612 |
+
mask (`torch.Tensor` or `numpy.array`):
|
613 |
+
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
|
614 |
+
segment_id or class_id.
|
615 |
+
Returns:
|
616 |
+
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
|
617 |
+
format.
|
618 |
+
"""
|
619 |
+
if is_torch_tensor(mask):
|
620 |
+
mask = mask.numpy()
|
621 |
+
|
622 |
+
pixels = mask.flatten()
|
623 |
+
pixels = np.concatenate([[0], pixels, [0]])
|
624 |
+
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
|
625 |
+
runs[1::2] -= runs[::2]
|
626 |
+
return list(runs)
|
627 |
+
|
628 |
+
|
629 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
|
630 |
+
def convert_segmentation_to_rle(segmentation):
|
631 |
+
"""
|
632 |
+
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
|
633 |
+
|
634 |
+
Args:
|
635 |
+
segmentation (`torch.Tensor` or `numpy.array`):
|
636 |
+
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
|
637 |
+
Returns:
|
638 |
+
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
|
639 |
+
"""
|
640 |
+
segment_ids = torch.unique(segmentation)
|
641 |
+
|
642 |
+
run_length_encodings = []
|
643 |
+
for idx in segment_ids:
|
644 |
+
mask = torch.where(segmentation == idx, 1, 0)
|
645 |
+
rle = binary_mask_to_rle(mask)
|
646 |
+
run_length_encodings.append(rle)
|
647 |
+
|
648 |
+
return run_length_encodings
|
649 |
+
|
650 |
+
|
651 |
+
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
|
652 |
+
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
|
653 |
+
"""
|
654 |
+
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
|
655 |
+
`labels`.
|
656 |
+
|
657 |
+
Args:
|
658 |
+
masks (`torch.Tensor`):
|
659 |
+
A tensor of shape `(num_queries, height, width)`.
|
660 |
+
scores (`torch.Tensor`):
|
661 |
+
A tensor of shape `(num_queries)`.
|
662 |
+
labels (`torch.Tensor`):
|
663 |
+
A tensor of shape `(num_queries)`.
|
664 |
+
object_mask_threshold (`float`):
|
665 |
+
A number between 0 and 1 used to binarize the masks.
|
666 |
+
Raises:
|
667 |
+
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
|
668 |
+
Returns:
|
669 |
+
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
|
670 |
+
< `object_mask_threshold`.
|
671 |
+
"""
|
672 |
+
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
|
673 |
+
raise ValueError("mask, scores and labels must have the same shape!")
|
674 |
+
|
675 |
+
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
|
676 |
+
|
677 |
+
return masks[to_keep], scores[to_keep], labels[to_keep]
|
678 |
+
|
679 |
+
|
680 |
+
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
|
681 |
+
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
|
682 |
+
# Get the mask associated with the k class
|
683 |
+
mask_k = mask_labels == k
|
684 |
+
mask_k_area = mask_k.sum()
|
685 |
+
|
686 |
+
# Compute the area of all the stuff in query k
|
687 |
+
original_area = (mask_probs[k] >= mask_threshold).sum()
|
688 |
+
mask_exists = mask_k_area > 0 and original_area > 0
|
689 |
+
|
690 |
+
# Eliminate disconnected tiny segments
|
691 |
+
if mask_exists:
|
692 |
+
area_ratio = mask_k_area / original_area
|
693 |
+
if not area_ratio.item() > overlap_mask_area_threshold:
|
694 |
+
mask_exists = False
|
695 |
+
|
696 |
+
return mask_exists, mask_k
|
697 |
+
|
698 |
+
|
699 |
+
# Copied from transformers.models.detr.image_processing_detr.compute_segments
|
700 |
+
def compute_segments(
|
701 |
+
mask_probs,
|
702 |
+
pred_scores,
|
703 |
+
pred_labels,
|
704 |
+
mask_threshold: float = 0.5,
|
705 |
+
overlap_mask_area_threshold: float = 0.8,
|
706 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
707 |
+
target_size: Tuple[int, int] = None,
|
708 |
+
):
|
709 |
+
height = mask_probs.shape[1] if target_size is None else target_size[0]
|
710 |
+
width = mask_probs.shape[2] if target_size is None else target_size[1]
|
711 |
+
|
712 |
+
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
|
713 |
+
segments: List[Dict] = []
|
714 |
+
|
715 |
+
if target_size is not None:
|
716 |
+
mask_probs = nn.functional.interpolate(
|
717 |
+
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
|
718 |
+
)[0]
|
719 |
+
|
720 |
+
current_segment_id = 0
|
721 |
+
|
722 |
+
# Weigh each mask by its prediction score
|
723 |
+
mask_probs *= pred_scores.view(-1, 1, 1)
|
724 |
+
mask_labels = mask_probs.argmax(0) # [height, width]
|
725 |
+
|
726 |
+
# Keep track of instances of each class
|
727 |
+
stuff_memory_list: Dict[str, int] = {}
|
728 |
+
for k in range(pred_labels.shape[0]):
|
729 |
+
pred_class = pred_labels[k].item()
|
730 |
+
should_fuse = pred_class in label_ids_to_fuse
|
731 |
+
|
732 |
+
# Check if mask exists and large enough to be a segment
|
733 |
+
mask_exists, mask_k = check_segment_validity(
|
734 |
+
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
|
735 |
+
)
|
736 |
+
|
737 |
+
if mask_exists:
|
738 |
+
if pred_class in stuff_memory_list:
|
739 |
+
current_segment_id = stuff_memory_list[pred_class]
|
740 |
+
else:
|
741 |
+
current_segment_id += 1
|
742 |
+
|
743 |
+
# Add current object segment to final segmentation map
|
744 |
+
segmentation[mask_k] = current_segment_id
|
745 |
+
segment_score = round(pred_scores[k].item(), 6)
|
746 |
+
segments.append(
|
747 |
+
{
|
748 |
+
"id": current_segment_id,
|
749 |
+
"label_id": pred_class,
|
750 |
+
"was_fused": should_fuse,
|
751 |
+
"score": segment_score,
|
752 |
+
}
|
753 |
+
)
|
754 |
+
if should_fuse:
|
755 |
+
stuff_memory_list[pred_class] = current_segment_id
|
756 |
+
|
757 |
+
return segmentation, segments
|
758 |
+
|
759 |
+
|
760 |
+
class ConditionalDetrImageProcessor(BaseImageProcessor):
|
761 |
+
r"""
|
762 |
+
Constructs a Conditional Detr image processor.
|
763 |
+
|
764 |
+
Args:
|
765 |
+
format (`str`, *optional*, defaults to `"coco_detection"`):
|
766 |
+
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
|
767 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
768 |
+
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
|
769 |
+
overridden by the `do_resize` parameter in the `preprocess` method.
|
770 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
|
771 |
+
Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
|
772 |
+
the `preprocess` method.
|
773 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
774 |
+
Resampling filter to use if resizing the image.
|
775 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
776 |
+
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
777 |
+
`do_rescale` parameter in the `preprocess` method.
|
778 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
779 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
780 |
+
`preprocess` method.
|
781 |
+
do_normalize:
|
782 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
783 |
+
`preprocess` method.
|
784 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
|
785 |
+
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
|
786 |
+
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
787 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
|
788 |
+
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
|
789 |
+
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
790 |
+
do_convert_annotations (`bool`, *optional*, defaults to `True`):
|
791 |
+
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
|
792 |
+
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
|
793 |
+
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
|
794 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
795 |
+
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
|
796 |
+
method. If `True` will pad the images in the batch to the largest height and width in the batch.
|
797 |
+
Padding will be applied to the bottom and right of the image with zeros.
|
798 |
+
"""
|
799 |
+
|
800 |
+
model_input_names = ["pixel_values", "pixel_mask"]
|
801 |
+
|
802 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
|
803 |
+
def __init__(
|
804 |
+
self,
|
805 |
+
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
|
806 |
+
do_resize: bool = True,
|
807 |
+
size: Dict[str, int] = None,
|
808 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
809 |
+
do_rescale: bool = True,
|
810 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
811 |
+
do_normalize: bool = True,
|
812 |
+
image_mean: Union[float, List[float]] = None,
|
813 |
+
image_std: Union[float, List[float]] = None,
|
814 |
+
do_convert_annotations: Optional[bool] = None,
|
815 |
+
do_pad: bool = True,
|
816 |
+
**kwargs,
|
817 |
+
) -> None:
|
818 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
819 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
820 |
+
|
821 |
+
if "max_size" in kwargs:
|
822 |
+
logger.warning_once(
|
823 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
824 |
+
"Please specify in `size['longest_edge'] instead`.",
|
825 |
+
)
|
826 |
+
max_size = kwargs.pop("max_size")
|
827 |
+
else:
|
828 |
+
max_size = None if size is None else 1333
|
829 |
+
|
830 |
+
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
|
831 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
832 |
+
|
833 |
+
# Backwards compatibility
|
834 |
+
if do_convert_annotations is None:
|
835 |
+
do_convert_annotations = do_normalize
|
836 |
+
|
837 |
+
super().__init__(**kwargs)
|
838 |
+
self.format = format
|
839 |
+
self.do_resize = do_resize
|
840 |
+
self.size = size
|
841 |
+
self.resample = resample
|
842 |
+
self.do_rescale = do_rescale
|
843 |
+
self.rescale_factor = rescale_factor
|
844 |
+
self.do_normalize = do_normalize
|
845 |
+
self.do_convert_annotations = do_convert_annotations
|
846 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
847 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
848 |
+
self.do_pad = do_pad
|
849 |
+
self._valid_processor_keys = [
|
850 |
+
"images",
|
851 |
+
"annotations",
|
852 |
+
"return_segmentation_masks",
|
853 |
+
"masks_path",
|
854 |
+
"do_resize",
|
855 |
+
"size",
|
856 |
+
"resample",
|
857 |
+
"do_rescale",
|
858 |
+
"rescale_factor",
|
859 |
+
"do_normalize",
|
860 |
+
"do_convert_annotations",
|
861 |
+
"image_mean",
|
862 |
+
"image_std",
|
863 |
+
"do_pad",
|
864 |
+
"format",
|
865 |
+
"return_tensors",
|
866 |
+
"data_format",
|
867 |
+
"input_data_format",
|
868 |
+
]
|
869 |
+
|
870 |
+
@classmethod
|
871 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->ConditionalDetr
|
872 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
873 |
+
"""
|
874 |
+
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
|
875 |
+
created using from_dict and kwargs e.g. `ConditionalDetrImageProcessor.from_pretrained(checkpoint, size=600,
|
876 |
+
max_size=800)`
|
877 |
+
"""
|
878 |
+
image_processor_dict = image_processor_dict.copy()
|
879 |
+
if "max_size" in kwargs:
|
880 |
+
image_processor_dict["max_size"] = kwargs.pop("max_size")
|
881 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
882 |
+
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
|
883 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
884 |
+
|
885 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->ConditionalDetr
|
886 |
+
def prepare_annotation(
|
887 |
+
self,
|
888 |
+
image: np.ndarray,
|
889 |
+
target: Dict,
|
890 |
+
format: Optional[AnnotationFormat] = None,
|
891 |
+
return_segmentation_masks: bool = None,
|
892 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
893 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
894 |
+
) -> Dict:
|
895 |
+
"""
|
896 |
+
Prepare an annotation for feeding into ConditionalDetr model.
|
897 |
+
"""
|
898 |
+
format = format if format is not None else self.format
|
899 |
+
|
900 |
+
if format == AnnotationFormat.COCO_DETECTION:
|
901 |
+
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
|
902 |
+
target = prepare_coco_detection_annotation(
|
903 |
+
image, target, return_segmentation_masks, input_data_format=input_data_format
|
904 |
+
)
|
905 |
+
elif format == AnnotationFormat.COCO_PANOPTIC:
|
906 |
+
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
|
907 |
+
target = prepare_coco_panoptic_annotation(
|
908 |
+
image,
|
909 |
+
target,
|
910 |
+
masks_path=masks_path,
|
911 |
+
return_masks=return_segmentation_masks,
|
912 |
+
input_data_format=input_data_format,
|
913 |
+
)
|
914 |
+
else:
|
915 |
+
raise ValueError(f"Format {format} is not supported.")
|
916 |
+
return target
|
917 |
+
|
918 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
919 |
+
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
920 |
+
logger.warning_once(
|
921 |
+
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
922 |
+
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
923 |
+
"does not return the image anymore.",
|
924 |
+
)
|
925 |
+
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
926 |
+
return image, target
|
927 |
+
|
928 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
929 |
+
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
930 |
+
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
931 |
+
return convert_coco_poly_to_mask(*args, **kwargs)
|
932 |
+
|
933 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection with DETR->ConditionalDetr
|
934 |
+
def prepare_coco_detection(self, *args, **kwargs):
|
935 |
+
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
936 |
+
return prepare_coco_detection_annotation(*args, **kwargs)
|
937 |
+
|
938 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
939 |
+
def prepare_coco_panoptic(self, *args, **kwargs):
|
940 |
+
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
941 |
+
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
942 |
+
|
943 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
944 |
+
def resize(
|
945 |
+
self,
|
946 |
+
image: np.ndarray,
|
947 |
+
size: Dict[str, int],
|
948 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
949 |
+
data_format: Optional[ChannelDimension] = None,
|
950 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
951 |
+
**kwargs,
|
952 |
+
) -> np.ndarray:
|
953 |
+
"""
|
954 |
+
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
|
955 |
+
int, smaller edge of the image will be matched to this number.
|
956 |
+
|
957 |
+
Args:
|
958 |
+
image (`np.ndarray`):
|
959 |
+
Image to resize.
|
960 |
+
size (`Dict[str, int]`):
|
961 |
+
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
|
962 |
+
`height` and `width`.
|
963 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
964 |
+
Resampling filter to use if resizing the image.
|
965 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
966 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
967 |
+
image is used.
|
968 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
969 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
970 |
+
"""
|
971 |
+
if "max_size" in kwargs:
|
972 |
+
logger.warning_once(
|
973 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
974 |
+
"Please specify in `size['longest_edge'] instead`.",
|
975 |
+
)
|
976 |
+
max_size = kwargs.pop("max_size")
|
977 |
+
else:
|
978 |
+
max_size = None
|
979 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
980 |
+
if "shortest_edge" in size and "longest_edge" in size:
|
981 |
+
size = get_resize_output_image_size(
|
982 |
+
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
|
983 |
+
)
|
984 |
+
elif "height" in size and "width" in size:
|
985 |
+
size = (size["height"], size["width"])
|
986 |
+
else:
|
987 |
+
raise ValueError(
|
988 |
+
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
|
989 |
+
f" {size.keys()}."
|
990 |
+
)
|
991 |
+
image = resize(
|
992 |
+
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
993 |
+
)
|
994 |
+
return image
|
995 |
+
|
996 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
|
997 |
+
def resize_annotation(
|
998 |
+
self,
|
999 |
+
annotation,
|
1000 |
+
orig_size,
|
1001 |
+
size,
|
1002 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
1003 |
+
) -> Dict:
|
1004 |
+
"""
|
1005 |
+
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
|
1006 |
+
to this number.
|
1007 |
+
"""
|
1008 |
+
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
|
1009 |
+
|
1010 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
|
1011 |
+
def rescale(
|
1012 |
+
self,
|
1013 |
+
image: np.ndarray,
|
1014 |
+
rescale_factor: float,
|
1015 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
1016 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1017 |
+
) -> np.ndarray:
|
1018 |
+
"""
|
1019 |
+
Rescale the image by the given factor. image = image * rescale_factor.
|
1020 |
+
|
1021 |
+
Args:
|
1022 |
+
image (`np.ndarray`):
|
1023 |
+
Image to rescale.
|
1024 |
+
rescale_factor (`float`):
|
1025 |
+
The value to use for rescaling.
|
1026 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1027 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
1028 |
+
image is used. Can be one of:
|
1029 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1030 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1031 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
1032 |
+
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
|
1033 |
+
one of:
|
1034 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1035 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1036 |
+
"""
|
1037 |
+
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
1038 |
+
|
1039 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
1040 |
+
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
1041 |
+
"""
|
1042 |
+
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
|
1043 |
+
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
|
1044 |
+
"""
|
1045 |
+
return normalize_annotation(annotation, image_size=image_size)
|
1046 |
+
|
1047 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
|
1048 |
+
def _update_annotation_for_padded_image(
|
1049 |
+
self,
|
1050 |
+
annotation: Dict,
|
1051 |
+
input_image_size: Tuple[int, int],
|
1052 |
+
output_image_size: Tuple[int, int],
|
1053 |
+
padding,
|
1054 |
+
update_bboxes,
|
1055 |
+
) -> Dict:
|
1056 |
+
"""
|
1057 |
+
Update the annotation for a padded image.
|
1058 |
+
"""
|
1059 |
+
new_annotation = {}
|
1060 |
+
new_annotation["size"] = output_image_size
|
1061 |
+
|
1062 |
+
for key, value in annotation.items():
|
1063 |
+
if key == "masks":
|
1064 |
+
masks = value
|
1065 |
+
masks = pad(
|
1066 |
+
masks,
|
1067 |
+
padding,
|
1068 |
+
mode=PaddingMode.CONSTANT,
|
1069 |
+
constant_values=0,
|
1070 |
+
input_data_format=ChannelDimension.FIRST,
|
1071 |
+
)
|
1072 |
+
masks = safe_squeeze(masks, 1)
|
1073 |
+
new_annotation["masks"] = masks
|
1074 |
+
elif key == "boxes" and update_bboxes:
|
1075 |
+
boxes = value
|
1076 |
+
boxes *= np.asarray(
|
1077 |
+
[
|
1078 |
+
input_image_size[1] / output_image_size[1],
|
1079 |
+
input_image_size[0] / output_image_size[0],
|
1080 |
+
input_image_size[1] / output_image_size[1],
|
1081 |
+
input_image_size[0] / output_image_size[0],
|
1082 |
+
]
|
1083 |
+
)
|
1084 |
+
new_annotation["boxes"] = boxes
|
1085 |
+
elif key == "size":
|
1086 |
+
new_annotation["size"] = output_image_size
|
1087 |
+
else:
|
1088 |
+
new_annotation[key] = value
|
1089 |
+
return new_annotation
|
1090 |
+
|
1091 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
|
1092 |
+
def _pad_image(
|
1093 |
+
self,
|
1094 |
+
image: np.ndarray,
|
1095 |
+
output_size: Tuple[int, int],
|
1096 |
+
annotation: Optional[Dict[str, Any]] = None,
|
1097 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1098 |
+
data_format: Optional[ChannelDimension] = None,
|
1099 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1100 |
+
update_bboxes: bool = True,
|
1101 |
+
) -> np.ndarray:
|
1102 |
+
"""
|
1103 |
+
Pad an image with zeros to the given size.
|
1104 |
+
"""
|
1105 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
1106 |
+
output_height, output_width = output_size
|
1107 |
+
|
1108 |
+
pad_bottom = output_height - input_height
|
1109 |
+
pad_right = output_width - input_width
|
1110 |
+
padding = ((0, pad_bottom), (0, pad_right))
|
1111 |
+
padded_image = pad(
|
1112 |
+
image,
|
1113 |
+
padding,
|
1114 |
+
mode=PaddingMode.CONSTANT,
|
1115 |
+
constant_values=constant_values,
|
1116 |
+
data_format=data_format,
|
1117 |
+
input_data_format=input_data_format,
|
1118 |
+
)
|
1119 |
+
if annotation is not None:
|
1120 |
+
annotation = self._update_annotation_for_padded_image(
|
1121 |
+
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
|
1122 |
+
)
|
1123 |
+
return padded_image, annotation
|
1124 |
+
|
1125 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
|
1126 |
+
def pad(
|
1127 |
+
self,
|
1128 |
+
images: List[np.ndarray],
|
1129 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1130 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1131 |
+
return_pixel_mask: bool = True,
|
1132 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1133 |
+
data_format: Optional[ChannelDimension] = None,
|
1134 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1135 |
+
update_bboxes: bool = True,
|
1136 |
+
) -> BatchFeature:
|
1137 |
+
"""
|
1138 |
+
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
|
1139 |
+
in the batch and optionally returns their corresponding pixel mask.
|
1140 |
+
|
1141 |
+
Args:
|
1142 |
+
images (List[`np.ndarray`]):
|
1143 |
+
Images to pad.
|
1144 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1145 |
+
Annotations to transform according to the padding that is applied to the images.
|
1146 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
1147 |
+
The value to use for the padding if `mode` is `"constant"`.
|
1148 |
+
return_pixel_mask (`bool`, *optional*, defaults to `True`):
|
1149 |
+
Whether to return a pixel mask.
|
1150 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
1151 |
+
The type of tensors to return. Can be one of:
|
1152 |
+
- Unset: Return a list of `np.ndarray`.
|
1153 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
1154 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
1155 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
1156 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
1157 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1158 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
1159 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1160 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1161 |
+
update_bboxes (`bool`, *optional*, defaults to `True`):
|
1162 |
+
Whether to update the bounding boxes in the annotations to match the padded images. If the
|
1163 |
+
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
|
1164 |
+
format, the bounding boxes will not be updated.
|
1165 |
+
"""
|
1166 |
+
pad_size = get_max_height_width(images, input_data_format=input_data_format)
|
1167 |
+
|
1168 |
+
annotation_list = annotations if annotations is not None else [None] * len(images)
|
1169 |
+
padded_images = []
|
1170 |
+
padded_annotations = []
|
1171 |
+
for image, annotation in zip(images, annotation_list):
|
1172 |
+
padded_image, padded_annotation = self._pad_image(
|
1173 |
+
image,
|
1174 |
+
pad_size,
|
1175 |
+
annotation,
|
1176 |
+
constant_values=constant_values,
|
1177 |
+
data_format=data_format,
|
1178 |
+
input_data_format=input_data_format,
|
1179 |
+
update_bboxes=update_bboxes,
|
1180 |
+
)
|
1181 |
+
padded_images.append(padded_image)
|
1182 |
+
padded_annotations.append(padded_annotation)
|
1183 |
+
|
1184 |
+
data = {"pixel_values": padded_images}
|
1185 |
+
|
1186 |
+
if return_pixel_mask:
|
1187 |
+
masks = [
|
1188 |
+
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
|
1189 |
+
for image in images
|
1190 |
+
]
|
1191 |
+
data["pixel_mask"] = masks
|
1192 |
+
|
1193 |
+
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
|
1194 |
+
|
1195 |
+
if annotations is not None:
|
1196 |
+
encoded_inputs["labels"] = [
|
1197 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
|
1198 |
+
]
|
1199 |
+
|
1200 |
+
return encoded_inputs
|
1201 |
+
|
1202 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
|
1203 |
+
def preprocess(
|
1204 |
+
self,
|
1205 |
+
images: ImageInput,
|
1206 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1207 |
+
return_segmentation_masks: bool = None,
|
1208 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
1209 |
+
do_resize: Optional[bool] = None,
|
1210 |
+
size: Optional[Dict[str, int]] = None,
|
1211 |
+
resample=None, # PILImageResampling
|
1212 |
+
do_rescale: Optional[bool] = None,
|
1213 |
+
rescale_factor: Optional[Union[int, float]] = None,
|
1214 |
+
do_normalize: Optional[bool] = None,
|
1215 |
+
do_convert_annotations: Optional[bool] = None,
|
1216 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
1217 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
1218 |
+
do_pad: Optional[bool] = None,
|
1219 |
+
format: Optional[Union[str, AnnotationFormat]] = None,
|
1220 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
1221 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
1222 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1223 |
+
**kwargs,
|
1224 |
+
) -> BatchFeature:
|
1225 |
+
"""
|
1226 |
+
Preprocess an image or a batch of images so that it can be used by the model.
|
1227 |
+
|
1228 |
+
Args:
|
1229 |
+
images (`ImageInput`):
|
1230 |
+
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
|
1231 |
+
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
1232 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1233 |
+
List of annotations associated with the image or batch of images. If annotation is for object
|
1234 |
+
detection, the annotations should be a dictionary with the following keys:
|
1235 |
+
- "image_id" (`int`): The image id.
|
1236 |
+
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
|
1237 |
+
dictionary. An image can have no annotations, in which case the list should be empty.
|
1238 |
+
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
|
1239 |
+
- "image_id" (`int`): The image id.
|
1240 |
+
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
|
1241 |
+
An image can have no segments, in which case the list should be empty.
|
1242 |
+
- "file_name" (`str`): The file name of the image.
|
1243 |
+
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
|
1244 |
+
Whether to return segmentation masks.
|
1245 |
+
masks_path (`str` or `pathlib.Path`, *optional*):
|
1246 |
+
Path to the directory containing the segmentation masks.
|
1247 |
+
do_resize (`bool`, *optional*, defaults to self.do_resize):
|
1248 |
+
Whether to resize the image.
|
1249 |
+
size (`Dict[str, int]`, *optional*, defaults to self.size):
|
1250 |
+
Size of the image after resizing.
|
1251 |
+
resample (`PILImageResampling`, *optional*, defaults to self.resample):
|
1252 |
+
Resampling filter to use when resizing the image.
|
1253 |
+
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
|
1254 |
+
Whether to rescale the image.
|
1255 |
+
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
|
1256 |
+
Rescale factor to use when rescaling the image.
|
1257 |
+
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
|
1258 |
+
Whether to normalize the image.
|
1259 |
+
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
|
1260 |
+
Whether to convert the annotations to the format expected by the model. Converts the bounding
|
1261 |
+
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
|
1262 |
+
and in relative coordinates.
|
1263 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
|
1264 |
+
Mean to use when normalizing the image.
|
1265 |
+
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
|
1266 |
+
Standard deviation to use when normalizing the image.
|
1267 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
1268 |
+
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
1269 |
+
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
1270 |
+
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
|
1271 |
+
Format of the annotations.
|
1272 |
+
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
|
1273 |
+
Type of tensors to return. If `None`, will return the list of images.
|
1274 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
1275 |
+
The channel dimension format for the output image. Can be one of:
|
1276 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1277 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1278 |
+
- Unset: Use the channel dimension format of the input image.
|
1279 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1280 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
1281 |
+
from the input image. Can be one of:
|
1282 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1283 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1284 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
1285 |
+
"""
|
1286 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
1287 |
+
logger.warning_once(
|
1288 |
+
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
|
1289 |
+
"use `do_pad` instead."
|
1290 |
+
)
|
1291 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
1292 |
+
|
1293 |
+
max_size = None
|
1294 |
+
if "max_size" in kwargs:
|
1295 |
+
logger.warning_once(
|
1296 |
+
"The `max_size` argument is deprecated and will be removed in a future version, use"
|
1297 |
+
" `size['longest_edge']` instead."
|
1298 |
+
)
|
1299 |
+
size = kwargs.pop("max_size")
|
1300 |
+
|
1301 |
+
do_resize = self.do_resize if do_resize is None else do_resize
|
1302 |
+
size = self.size if size is None else size
|
1303 |
+
size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
|
1304 |
+
resample = self.resample if resample is None else resample
|
1305 |
+
do_rescale = self.do_rescale if do_rescale is None else do_rescale
|
1306 |
+
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
|
1307 |
+
do_normalize = self.do_normalize if do_normalize is None else do_normalize
|
1308 |
+
image_mean = self.image_mean if image_mean is None else image_mean
|
1309 |
+
image_std = self.image_std if image_std is None else image_std
|
1310 |
+
do_convert_annotations = (
|
1311 |
+
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
|
1312 |
+
)
|
1313 |
+
do_pad = self.do_pad if do_pad is None else do_pad
|
1314 |
+
format = self.format if format is None else format
|
1315 |
+
|
1316 |
+
images = make_list_of_images(images)
|
1317 |
+
|
1318 |
+
if not valid_images(images):
|
1319 |
+
raise ValueError(
|
1320 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
1321 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
1322 |
+
)
|
1323 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
1324 |
+
|
1325 |
+
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
1326 |
+
validate_preprocess_arguments(
|
1327 |
+
do_rescale=do_rescale,
|
1328 |
+
rescale_factor=rescale_factor,
|
1329 |
+
do_normalize=do_normalize,
|
1330 |
+
image_mean=image_mean,
|
1331 |
+
image_std=image_std,
|
1332 |
+
do_resize=do_resize,
|
1333 |
+
size=size,
|
1334 |
+
resample=resample,
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
if annotations is not None and isinstance(annotations, dict):
|
1338 |
+
annotations = [annotations]
|
1339 |
+
|
1340 |
+
if annotations is not None and len(images) != len(annotations):
|
1341 |
+
raise ValueError(
|
1342 |
+
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
format = AnnotationFormat(format)
|
1346 |
+
if annotations is not None:
|
1347 |
+
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
|
1348 |
+
|
1349 |
+
if (
|
1350 |
+
masks_path is not None
|
1351 |
+
and format == AnnotationFormat.COCO_PANOPTIC
|
1352 |
+
and not isinstance(masks_path, (pathlib.Path, str))
|
1353 |
+
):
|
1354 |
+
raise ValueError(
|
1355 |
+
"The path to the directory containing the mask PNG files should be provided as a"
|
1356 |
+
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
|
1357 |
+
)
|
1358 |
+
|
1359 |
+
# All transformations expect numpy arrays
|
1360 |
+
images = [to_numpy_array(image) for image in images]
|
1361 |
+
|
1362 |
+
if is_scaled_image(images[0]) and do_rescale:
|
1363 |
+
logger.warning_once(
|
1364 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
1365 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
if input_data_format is None:
|
1369 |
+
# We assume that all images have the same channel dimension format.
|
1370 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
1371 |
+
|
1372 |
+
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
|
1373 |
+
if annotations is not None:
|
1374 |
+
prepared_images = []
|
1375 |
+
prepared_annotations = []
|
1376 |
+
for image, target in zip(images, annotations):
|
1377 |
+
target = self.prepare_annotation(
|
1378 |
+
image,
|
1379 |
+
target,
|
1380 |
+
format,
|
1381 |
+
return_segmentation_masks=return_segmentation_masks,
|
1382 |
+
masks_path=masks_path,
|
1383 |
+
input_data_format=input_data_format,
|
1384 |
+
)
|
1385 |
+
prepared_images.append(image)
|
1386 |
+
prepared_annotations.append(target)
|
1387 |
+
images = prepared_images
|
1388 |
+
annotations = prepared_annotations
|
1389 |
+
del prepared_images, prepared_annotations
|
1390 |
+
|
1391 |
+
# transformations
|
1392 |
+
if do_resize:
|
1393 |
+
if annotations is not None:
|
1394 |
+
resized_images, resized_annotations = [], []
|
1395 |
+
for image, target in zip(images, annotations):
|
1396 |
+
orig_size = get_image_size(image, input_data_format)
|
1397 |
+
resized_image = self.resize(
|
1398 |
+
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
|
1399 |
+
)
|
1400 |
+
resized_annotation = self.resize_annotation(
|
1401 |
+
target, orig_size, get_image_size(resized_image, input_data_format)
|
1402 |
+
)
|
1403 |
+
resized_images.append(resized_image)
|
1404 |
+
resized_annotations.append(resized_annotation)
|
1405 |
+
images = resized_images
|
1406 |
+
annotations = resized_annotations
|
1407 |
+
del resized_images, resized_annotations
|
1408 |
+
else:
|
1409 |
+
images = [
|
1410 |
+
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
|
1411 |
+
for image in images
|
1412 |
+
]
|
1413 |
+
|
1414 |
+
if do_rescale:
|
1415 |
+
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
|
1416 |
+
|
1417 |
+
if do_normalize:
|
1418 |
+
images = [
|
1419 |
+
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
|
1420 |
+
]
|
1421 |
+
|
1422 |
+
if do_convert_annotations and annotations is not None:
|
1423 |
+
annotations = [
|
1424 |
+
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
|
1425 |
+
for annotation, image in zip(annotations, images)
|
1426 |
+
]
|
1427 |
+
|
1428 |
+
if do_pad:
|
1429 |
+
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
|
1430 |
+
encoded_inputs = self.pad(
|
1431 |
+
images,
|
1432 |
+
annotations=annotations,
|
1433 |
+
return_pixel_mask=True,
|
1434 |
+
data_format=data_format,
|
1435 |
+
input_data_format=input_data_format,
|
1436 |
+
update_bboxes=do_convert_annotations,
|
1437 |
+
return_tensors=return_tensors,
|
1438 |
+
)
|
1439 |
+
else:
|
1440 |
+
images = [
|
1441 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
1442 |
+
for image in images
|
1443 |
+
]
|
1444 |
+
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
1445 |
+
if annotations is not None:
|
1446 |
+
encoded_inputs["labels"] = [
|
1447 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
|
1448 |
+
]
|
1449 |
+
|
1450 |
+
return encoded_inputs
|
1451 |
+
|
1452 |
+
# POSTPROCESSING METHODS - TODO: add support for other frameworks
|
1453 |
+
def post_process(self, outputs, target_sizes):
|
1454 |
+
"""
|
1455 |
+
Converts the output of [`ConditionalDetrForObjectDetection`] into the format expected by the Pascal VOC format (xmin, ymin, xmax, ymax).
|
1456 |
+
Only supports PyTorch.
|
1457 |
+
|
1458 |
+
Args:
|
1459 |
+
outputs ([`ConditionalDetrObjectDetectionOutput`]):
|
1460 |
+
Raw outputs of the model.
|
1461 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1462 |
+
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
|
1463 |
+
image size (before any data augmentation). For visualization, this should be the image size after data
|
1464 |
+
augment, but before padding.
|
1465 |
+
Returns:
|
1466 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1467 |
+
in the batch as predicted by the model.
|
1468 |
+
"""
|
1469 |
+
logging.warning_once(
|
1470 |
+
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
|
1471 |
+
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1475 |
+
|
1476 |
+
if len(out_logits) != len(target_sizes):
|
1477 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
1478 |
+
if target_sizes.shape[1] != 2:
|
1479 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
1480 |
+
|
1481 |
+
prob = out_logits.sigmoid()
|
1482 |
+
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 300, dim=1)
|
1483 |
+
scores = topk_values
|
1484 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1485 |
+
labels = topk_indexes % out_logits.shape[2]
|
1486 |
+
boxes = center_to_corners_format(out_bbox)
|
1487 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1488 |
+
|
1489 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1490 |
+
img_h, img_w = target_sizes.unbind(1)
|
1491 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
1492 |
+
boxes = boxes * scale_fct[:, None, :]
|
1493 |
+
|
1494 |
+
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
|
1495 |
+
|
1496 |
+
return results
|
1497 |
+
|
1498 |
+
# Copied from transformers.models.deformable_detr.image_processing_deformable_detr.DeformableDetrImageProcessor.post_process_object_detection with DeformableDetr->ConditionalDetr
|
1499 |
+
def post_process_object_detection(
|
1500 |
+
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
|
1501 |
+
):
|
1502 |
+
"""
|
1503 |
+
Converts the raw output of [`ConditionalDetrForObjectDetection`] into final bounding boxes in (top_left_x,
|
1504 |
+
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1505 |
+
|
1506 |
+
Args:
|
1507 |
+
outputs ([`DetrObjectDetectionOutput`]):
|
1508 |
+
Raw outputs of the model.
|
1509 |
+
threshold (`float`, *optional*):
|
1510 |
+
Score threshold to keep object detection predictions.
|
1511 |
+
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
|
1512 |
+
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
|
1513 |
+
(height, width) of each image in the batch. If left to None, predictions will not be resized.
|
1514 |
+
top_k (`int`, *optional*, defaults to 100):
|
1515 |
+
Keep only top k bounding boxes before filtering by thresholding.
|
1516 |
+
|
1517 |
+
Returns:
|
1518 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1519 |
+
in the batch as predicted by the model.
|
1520 |
+
"""
|
1521 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1522 |
+
|
1523 |
+
if target_sizes is not None:
|
1524 |
+
if len(out_logits) != len(target_sizes):
|
1525 |
+
raise ValueError(
|
1526 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
prob = out_logits.sigmoid()
|
1530 |
+
prob = prob.view(out_logits.shape[0], -1)
|
1531 |
+
k_value = min(top_k, prob.size(1))
|
1532 |
+
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
|
1533 |
+
scores = topk_values
|
1534 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1535 |
+
labels = topk_indexes % out_logits.shape[2]
|
1536 |
+
boxes = center_to_corners_format(out_bbox)
|
1537 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1538 |
+
|
1539 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1540 |
+
if target_sizes is not None:
|
1541 |
+
if isinstance(target_sizes, List):
|
1542 |
+
img_h = torch.Tensor([i[0] for i in target_sizes])
|
1543 |
+
img_w = torch.Tensor([i[1] for i in target_sizes])
|
1544 |
+
else:
|
1545 |
+
img_h, img_w = target_sizes.unbind(1)
|
1546 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
1547 |
+
boxes = boxes * scale_fct[:, None, :]
|
1548 |
+
|
1549 |
+
results = []
|
1550 |
+
for s, l, b in zip(scores, labels, boxes):
|
1551 |
+
score = s[s > threshold]
|
1552 |
+
label = l[s > threshold]
|
1553 |
+
box = b[s > threshold]
|
1554 |
+
results.append({"scores": score, "labels": label, "boxes": box})
|
1555 |
+
|
1556 |
+
return results
|
1557 |
+
|
1558 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation with Detr->ConditionalDetr
|
1559 |
+
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None):
|
1560 |
+
"""
|
1561 |
+
Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
1562 |
+
|
1563 |
+
Args:
|
1564 |
+
outputs ([`ConditionalDetrForSegmentation`]):
|
1565 |
+
Raw outputs of the model.
|
1566 |
+
target_sizes (`List[Tuple[int, int]]`, *optional*):
|
1567 |
+
A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the
|
1568 |
+
batch. If unset, predictions will not be resized.
|
1569 |
+
Returns:
|
1570 |
+
`List[torch.Tensor]`:
|
1571 |
+
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
|
1572 |
+
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
|
1573 |
+
`torch.Tensor` correspond to a semantic class id.
|
1574 |
+
"""
|
1575 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1576 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1577 |
+
|
1578 |
+
# Remove the null class `[..., :-1]`
|
1579 |
+
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
|
1580 |
+
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1581 |
+
|
1582 |
+
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
|
1583 |
+
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
|
1584 |
+
batch_size = class_queries_logits.shape[0]
|
1585 |
+
|
1586 |
+
# Resize logits and compute semantic segmentation maps
|
1587 |
+
if target_sizes is not None:
|
1588 |
+
if batch_size != len(target_sizes):
|
1589 |
+
raise ValueError(
|
1590 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1591 |
+
)
|
1592 |
+
|
1593 |
+
semantic_segmentation = []
|
1594 |
+
for idx in range(batch_size):
|
1595 |
+
resized_logits = nn.functional.interpolate(
|
1596 |
+
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
1597 |
+
)
|
1598 |
+
semantic_map = resized_logits[0].argmax(dim=0)
|
1599 |
+
semantic_segmentation.append(semantic_map)
|
1600 |
+
else:
|
1601 |
+
semantic_segmentation = segmentation.argmax(dim=1)
|
1602 |
+
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
1603 |
+
|
1604 |
+
return semantic_segmentation
|
1605 |
+
|
1606 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance_segmentation with Detr->ConditionalDetr
|
1607 |
+
def post_process_instance_segmentation(
|
1608 |
+
self,
|
1609 |
+
outputs,
|
1610 |
+
threshold: float = 0.5,
|
1611 |
+
mask_threshold: float = 0.5,
|
1612 |
+
overlap_mask_area_threshold: float = 0.8,
|
1613 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
1614 |
+
return_coco_annotation: Optional[bool] = False,
|
1615 |
+
) -> List[Dict]:
|
1616 |
+
"""
|
1617 |
+
Converts the output of [`ConditionalDetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch.
|
1618 |
+
|
1619 |
+
Args:
|
1620 |
+
outputs ([`ConditionalDetrForSegmentation`]):
|
1621 |
+
Raw outputs of the model.
|
1622 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
1623 |
+
The probability score threshold to keep predicted instance masks.
|
1624 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
1625 |
+
Threshold to use when turning the predicted masks into binary values.
|
1626 |
+
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
|
1627 |
+
The overlap mask area threshold to merge or discard small disconnected parts within each binary
|
1628 |
+
instance mask.
|
1629 |
+
target_sizes (`List[Tuple]`, *optional*):
|
1630 |
+
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
|
1631 |
+
final size (height, width) of each prediction. If unset, predictions will not be resized.
|
1632 |
+
return_coco_annotation (`bool`, *optional*):
|
1633 |
+
Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE)
|
1634 |
+
format.
|
1635 |
+
Returns:
|
1636 |
+
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
|
1637 |
+
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
|
1638 |
+
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
|
1639 |
+
`True`. Set to `None` if no mask if found above `threshold`.
|
1640 |
+
- **segments_info** -- A dictionary that contains additional information on each segment.
|
1641 |
+
- **id** -- An integer representing the `segment_id`.
|
1642 |
+
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
|
1643 |
+
- **score** -- Prediction score of segment with `segment_id`.
|
1644 |
+
"""
|
1645 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1646 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1647 |
+
|
1648 |
+
batch_size = class_queries_logits.shape[0]
|
1649 |
+
num_labels = class_queries_logits.shape[-1] - 1
|
1650 |
+
|
1651 |
+
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1652 |
+
|
1653 |
+
# Predicted label and score of each query (batch_size, num_queries)
|
1654 |
+
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
|
1655 |
+
|
1656 |
+
# Loop over items in batch size
|
1657 |
+
results: List[Dict[str, TensorType]] = []
|
1658 |
+
|
1659 |
+
for i in range(batch_size):
|
1660 |
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
|
1661 |
+
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
|
1662 |
+
)
|
1663 |
+
|
1664 |
+
# No mask found
|
1665 |
+
if mask_probs_item.shape[0] <= 0:
|
1666 |
+
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
|
1667 |
+
segmentation = torch.zeros((height, width)) - 1
|
1668 |
+
results.append({"segmentation": segmentation, "segments_info": []})
|
1669 |
+
continue
|
1670 |
+
|
1671 |
+
# Get segmentation map and segment information of batch item
|
1672 |
+
target_size = target_sizes[i] if target_sizes is not None else None
|
1673 |
+
segmentation, segments = compute_segments(
|
1674 |
+
mask_probs=mask_probs_item,
|
1675 |
+
pred_scores=pred_scores_item,
|
1676 |
+
pred_labels=pred_labels_item,
|
1677 |
+
mask_threshold=mask_threshold,
|
1678 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
1679 |
+
label_ids_to_fuse=[],
|
1680 |
+
target_size=target_size,
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
# Return segmentation map in run-length encoding (RLE) format
|
1684 |
+
if return_coco_annotation:
|
1685 |
+
segmentation = convert_segmentation_to_rle(segmentation)
|
1686 |
+
|
1687 |
+
results.append({"segmentation": segmentation, "segments_info": segments})
|
1688 |
+
return results
|
1689 |
+
|
1690 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic_segmentation with Detr->ConditionalDetr
|
1691 |
+
def post_process_panoptic_segmentation(
|
1692 |
+
self,
|
1693 |
+
outputs,
|
1694 |
+
threshold: float = 0.5,
|
1695 |
+
mask_threshold: float = 0.5,
|
1696 |
+
overlap_mask_area_threshold: float = 0.8,
|
1697 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
1698 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
1699 |
+
) -> List[Dict]:
|
1700 |
+
"""
|
1701 |
+
Converts the output of [`ConditionalDetrForSegmentation`] into image panoptic segmentation predictions. Only supports
|
1702 |
+
PyTorch.
|
1703 |
+
|
1704 |
+
Args:
|
1705 |
+
outputs ([`ConditionalDetrForSegmentation`]):
|
1706 |
+
The outputs from [`ConditionalDetrForSegmentation`].
|
1707 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
1708 |
+
The probability score threshold to keep predicted instance masks.
|
1709 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
1710 |
+
Threshold to use when turning the predicted masks into binary values.
|
1711 |
+
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
|
1712 |
+
The overlap mask area threshold to merge or discard small disconnected parts within each binary
|
1713 |
+
instance mask.
|
1714 |
+
label_ids_to_fuse (`Set[int]`, *optional*):
|
1715 |
+
The labels in this state will have all their instances be fused together. For instance we could say
|
1716 |
+
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
|
1717 |
+
set, but not the one for person.
|
1718 |
+
target_sizes (`List[Tuple]`, *optional*):
|
1719 |
+
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
|
1720 |
+
final size (height, width) of each prediction in batch. If unset, predictions will not be resized.
|
1721 |
+
Returns:
|
1722 |
+
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
|
1723 |
+
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or
|
1724 |
+
`None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to
|
1725 |
+
the corresponding `target_sizes` entry.
|
1726 |
+
- **segments_info** -- A dictionary that contains additional information on each segment.
|
1727 |
+
- **id** -- an integer representing the `segment_id`.
|
1728 |
+
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
|
1729 |
+
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
|
1730 |
+
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
|
1731 |
+
- **score** -- Prediction score of segment with `segment_id`.
|
1732 |
+
"""
|
1733 |
+
|
1734 |
+
if label_ids_to_fuse is None:
|
1735 |
+
logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.")
|
1736 |
+
label_ids_to_fuse = set()
|
1737 |
+
|
1738 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1739 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1740 |
+
|
1741 |
+
batch_size = class_queries_logits.shape[0]
|
1742 |
+
num_labels = class_queries_logits.shape[-1] - 1
|
1743 |
+
|
1744 |
+
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1745 |
+
|
1746 |
+
# Predicted label and score of each query (batch_size, num_queries)
|
1747 |
+
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
|
1748 |
+
|
1749 |
+
# Loop over items in batch size
|
1750 |
+
results: List[Dict[str, TensorType]] = []
|
1751 |
+
|
1752 |
+
for i in range(batch_size):
|
1753 |
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
|
1754 |
+
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
|
1755 |
+
)
|
1756 |
+
|
1757 |
+
# No mask found
|
1758 |
+
if mask_probs_item.shape[0] <= 0:
|
1759 |
+
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
|
1760 |
+
segmentation = torch.zeros((height, width)) - 1
|
1761 |
+
results.append({"segmentation": segmentation, "segments_info": []})
|
1762 |
+
continue
|
1763 |
+
|
1764 |
+
# Get segmentation map and segment information of batch item
|
1765 |
+
target_size = target_sizes[i] if target_sizes is not None else None
|
1766 |
+
segmentation, segments = compute_segments(
|
1767 |
+
mask_probs=mask_probs_item,
|
1768 |
+
pred_scores=pred_scores_item,
|
1769 |
+
pred_labels=pred_labels_item,
|
1770 |
+
mask_threshold=mask_threshold,
|
1771 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
1772 |
+
label_ids_to_fuse=label_ids_to_fuse,
|
1773 |
+
target_size=target_size,
|
1774 |
+
)
|
1775 |
+
|
1776 |
+
results.append({"segmentation": segmentation, "segments_info": segments})
|
1777 |
+
return results
|