applied-ai-018 commited on
Commit
6e039c6
·
verified ·
1 Parent(s): f374d72

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/17.attention.dense.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/17.attention.dense.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  4. venv/lib/python3.10/site-packages/torch/onnx/__init__.py +177 -0
  5. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/__init__.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_constants.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_deprecation.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_experimental.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_exporter_states.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_globals.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_onnx_supported_ops.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/errors.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/operators.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_caffe2.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_helper.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset10.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset11.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset12.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset13.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset14.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset15.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset16.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset17.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset18.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset7.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset8.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset9.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/utils.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/torch/onnx/__pycache__/verification.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/torch/onnx/_constants.py +25 -0
  31. venv/lib/python3.10/site-packages/torch/onnx/_experimental.py +28 -0
  32. venv/lib/python3.10/site-packages/torch/onnx/_exporter_states.py +39 -0
  33. venv/lib/python3.10/site-packages/torch/onnx/_globals.py +85 -0
  34. venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset10.py +1233 -0
  35. venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset12.py +485 -0
  36. venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset14.py +289 -0
  37. venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset8.py +470 -0
  38. venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset9.py +0 -0
  39. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/__init__.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/checkpoint_utils.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/common_state_dict.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/ddp_under_dist_autograd_test.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/distributed_test.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/distributed_utils.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/fake_pg.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/multi_threaded_pg.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/pipe_with_ddp_test.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/rpc_utils.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__pycache__/__init__.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__pycache__/test_common.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/17.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:521cf52a07bcfd9e7ad9bb21d552e93734867eb516c719b6b1e27a510b6f3515
3
+ size 16778396
ckpts/universal/global_step120/zero/17.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b20df606e3efb85cfb30786194df403fd4110bbfd108ef919c5446d8bed158bc
3
+ size 16778411
ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b79740a9833f95550810cd432c64519f335049e04225c97eb6ecb50ab61d9969
3
+ size 33555533
venv/lib/python3.10/site-packages/torch/onnx/__init__.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import _C
2
+ from torch._C import _onnx as _C_onnx
3
+ from torch._C._onnx import (
4
+ _CAFFE2_ATEN_FALLBACK,
5
+ OperatorExportTypes,
6
+ TensorProtoDataType,
7
+ TrainingMode,
8
+ )
9
+
10
+ from . import ( # usort:skip. Keep the order instead of sorting lexicographically
11
+ _deprecation,
12
+ errors,
13
+ symbolic_caffe2,
14
+ symbolic_helper,
15
+ symbolic_opset7,
16
+ symbolic_opset8,
17
+ symbolic_opset9,
18
+ symbolic_opset10,
19
+ symbolic_opset11,
20
+ symbolic_opset12,
21
+ symbolic_opset13,
22
+ symbolic_opset14,
23
+ symbolic_opset15,
24
+ symbolic_opset16,
25
+ symbolic_opset17,
26
+ symbolic_opset18,
27
+ utils,
28
+ )
29
+
30
+ # TODO(After 1.13 release): Remove the deprecated SymbolicContext
31
+ from ._exporter_states import ExportTypes, SymbolicContext
32
+ from ._type_utils import JitScalarType
33
+ from .errors import CheckerError # Backwards compatibility
34
+ from .utils import (
35
+ _optimize_graph,
36
+ _run_symbolic_function,
37
+ _run_symbolic_method,
38
+ export,
39
+ export_to_pretty_string,
40
+ is_in_onnx_export,
41
+ register_custom_op_symbolic,
42
+ select_model_mode_for_export,
43
+ unregister_custom_op_symbolic,
44
+ )
45
+
46
+ from ._internal.exporter import ( # usort:skip. needs to be last to avoid circular import
47
+ DiagnosticOptions,
48
+ ExportOptions,
49
+ ONNXProgram,
50
+ ONNXProgramSerializer,
51
+ ONNXRuntimeOptions,
52
+ InvalidExportOptionsError,
53
+ OnnxExporterError,
54
+ OnnxRegistry,
55
+ dynamo_export,
56
+ enable_fake_mode,
57
+ )
58
+
59
+ from ._internal.onnxruntime import (
60
+ is_onnxrt_backend_supported,
61
+ OrtBackend as _OrtBackend,
62
+ OrtBackendOptions as _OrtBackendOptions,
63
+ OrtExecutionProvider as _OrtExecutionProvider,
64
+ )
65
+
66
+ __all__ = [
67
+ # Modules
68
+ "symbolic_helper",
69
+ "utils",
70
+ "errors",
71
+ # All opsets
72
+ "symbolic_caffe2",
73
+ "symbolic_opset7",
74
+ "symbolic_opset8",
75
+ "symbolic_opset9",
76
+ "symbolic_opset10",
77
+ "symbolic_opset11",
78
+ "symbolic_opset12",
79
+ "symbolic_opset13",
80
+ "symbolic_opset14",
81
+ "symbolic_opset15",
82
+ "symbolic_opset16",
83
+ "symbolic_opset17",
84
+ "symbolic_opset18",
85
+ # Enums
86
+ "ExportTypes",
87
+ "OperatorExportTypes",
88
+ "TrainingMode",
89
+ "TensorProtoDataType",
90
+ "JitScalarType",
91
+ # Public functions
92
+ "export",
93
+ "export_to_pretty_string",
94
+ "is_in_onnx_export",
95
+ "select_model_mode_for_export",
96
+ "register_custom_op_symbolic",
97
+ "unregister_custom_op_symbolic",
98
+ "disable_log",
99
+ "enable_log",
100
+ # Errors
101
+ "CheckerError", # Backwards compatibility
102
+ # Dynamo Exporter
103
+ "DiagnosticOptions",
104
+ "ExportOptions",
105
+ "ONNXProgram",
106
+ "ONNXProgramSerializer",
107
+ "ONNXRuntimeOptions",
108
+ "InvalidExportOptionsError",
109
+ "OnnxExporterError",
110
+ "OnnxRegistry",
111
+ "dynamo_export",
112
+ "enable_fake_mode",
113
+ # DORT / torch.compile
114
+ "is_onnxrt_backend_supported",
115
+ ]
116
+
117
+ # Set namespace for exposed private names
118
+ ExportTypes.__module__ = "torch.onnx"
119
+ JitScalarType.__module__ = "torch.onnx"
120
+ ExportOptions.__module__ = "torch.onnx"
121
+ ONNXProgram.__module__ = "torch.onnx"
122
+ ONNXProgramSerializer.__module__ = "torch.onnx"
123
+ ONNXRuntimeOptions.__module__ = "torch.onnx"
124
+ dynamo_export.__module__ = "torch.onnx"
125
+ InvalidExportOptionsError.__module__ = "torch.onnx"
126
+ OnnxExporterError.__module__ = "torch.onnx"
127
+ enable_fake_mode.__module__ = "torch.onnx"
128
+ OnnxRegistry.__module__ = "torch.onnx"
129
+ DiagnosticOptions.__module__ = "torch.onnx"
130
+ is_onnxrt_backend_supported.__module__ = "torch.onnx"
131
+ _OrtExecutionProvider.__module__ = "torch.onnx"
132
+ _OrtBackendOptions.__module__ = "torch.onnx"
133
+ _OrtBackend.__module__ = "torch.onnx"
134
+
135
+ producer_name = "pytorch"
136
+ producer_version = _C_onnx.PRODUCER_VERSION
137
+
138
+
139
+ @_deprecation.deprecated(
140
+ since="1.12.0", removed_in="2.0", instructions="use `torch.onnx.export` instead"
141
+ )
142
+ def _export(*args, **kwargs):
143
+ return utils._export(*args, **kwargs)
144
+
145
+
146
+ # TODO(justinchuby): Deprecate these logging functions in favor of the new diagnostic module.
147
+
148
+ # Returns True iff ONNX logging is turned on.
149
+ is_onnx_log_enabled = _C._jit_is_onnx_log_enabled
150
+
151
+
152
+ def enable_log() -> None:
153
+ r"""Enables ONNX logging."""
154
+ _C._jit_set_onnx_log_enabled(True)
155
+
156
+
157
+ def disable_log() -> None:
158
+ r"""Disables ONNX logging."""
159
+ _C._jit_set_onnx_log_enabled(False)
160
+
161
+
162
+ """Sets output stream for ONNX logging.
163
+
164
+ Args:
165
+ stream_name (str, default "stdout"): Only 'stdout' and 'stderr' are supported
166
+ as ``stream_name``.
167
+ """
168
+ set_log_stream = _C._jit_set_onnx_log_output_stream
169
+
170
+
171
+ """A simple logging facility for ONNX exporter.
172
+
173
+ Args:
174
+ args: Arguments are converted to string, concatenated together with a newline
175
+ character appended to the end, and flushed to output stream.
176
+ """
177
+ log = _C._jit_onnx_log
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.98 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (782 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_deprecation.cpython-310.pyc ADDED
Binary file (1.82 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_experimental.cpython-310.pyc ADDED
Binary file (1.46 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_exporter_states.cpython-310.pyc ADDED
Binary file (1.69 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_globals.cpython-310.pyc ADDED
Binary file (3.04 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/_onnx_supported_ops.cpython-310.pyc ADDED
Binary file (3.79 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/errors.cpython-310.pyc ADDED
Binary file (3.41 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/operators.cpython-310.pyc ADDED
Binary file (903 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_caffe2.cpython-310.pyc ADDED
Binary file (7.23 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_helper.cpython-310.pyc ADDED
Binary file (42.7 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset10.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset11.cpython-310.pyc ADDED
Binary file (34 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset12.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset13.cpython-310.pyc ADDED
Binary file (21.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset14.cpython-310.pyc ADDED
Binary file (6.52 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset15.cpython-310.pyc ADDED
Binary file (2.71 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset16.cpython-310.pyc ADDED
Binary file (4.45 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset17.cpython-310.pyc ADDED
Binary file (5.19 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset18.cpython-310.pyc ADDED
Binary file (1.58 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset7.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset8.cpython-310.pyc ADDED
Binary file (10.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset9.cpython-310.pyc ADDED
Binary file (143 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/utils.cpython-310.pyc ADDED
Binary file (57.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/__pycache__/verification.cpython-310.pyc ADDED
Binary file (55.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/onnx/_constants.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Constant values used in ONNX."""
2
+
3
+ ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO"
4
+
5
+ ONNX_BASE_OPSET = 9
6
+ ONNX_MIN_OPSET = 7
7
+ ONNX_MAX_OPSET = 19
8
+ ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET = 17
9
+ # ONNX_DEFAULT_OPSET generated by tools/onnx/update_default_opset_version.py
10
+ ONNX_DEFAULT_OPSET = 17
11
+ ONNX_CONSTANT_FOLDING_MIN_OPSET = 9
12
+
13
+ PYTORCH_GITHUB_ISSUES_URL = "https://github.com/pytorch/pytorch/issues"
14
+
15
+ INT64_MAX = 9223372036854775807
16
+ INT32_MAX = 2147483647
17
+ INT16_MAX = 32767
18
+ INT8_MAX = 127
19
+ UINT8_MAX = 255
20
+
21
+ INT64_MIN = -9223372036854775808
22
+ INT32_MIN = -2147483648
23
+ INT16_MIN = -32768
24
+ INT8_MIN = -128
25
+ UINT8_MIN = 0
venv/lib/python3.10/site-packages/torch/onnx/_experimental.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Experimental classes and functions used by ONNX export."""
2
+
3
+ import dataclasses
4
+ from typing import Mapping, Optional, Sequence, Set, Type, Union
5
+
6
+ import torch
7
+ import torch._C._onnx as _C_onnx
8
+
9
+
10
+ @dataclasses.dataclass
11
+ class ExportOptions:
12
+ """Arguments used by :func:`torch.onnx.export`.
13
+
14
+ TODO: Adopt this in `torch.onnx.export` api to replace keyword arguments.
15
+ """
16
+
17
+ export_params: bool = True
18
+ verbose: bool = False
19
+ training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
20
+ input_names: Optional[Sequence[str]] = None
21
+ output_names: Optional[Sequence[str]] = None
22
+ operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX
23
+ opset_version: Optional[int] = None
24
+ do_constant_folding: bool = True
25
+ dynamic_axes: Optional[Mapping[str, Union[Mapping[int, str], Sequence[int]]]] = None
26
+ keep_initializers_as_inputs: Optional[bool] = None
27
+ custom_opsets: Optional[Mapping[str, int]] = None
28
+ export_modules_as_functions: Union[bool, Set[Type[torch.nn.Module]]] = False
venv/lib/python3.10/site-packages/torch/onnx/_exporter_states.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import Dict
4
+
5
+ from torch import _C
6
+
7
+
8
+ class ExportTypes:
9
+ r"""Specifies how the ONNX model is stored."""
10
+
11
+ PROTOBUF_FILE = "Saves model in the specified protobuf file."
12
+ ZIP_ARCHIVE = "Saves model in the specified ZIP file (uncompressed)."
13
+ COMPRESSED_ZIP_ARCHIVE = "Saves model in the specified ZIP file (compressed)."
14
+ DIRECTORY = "Saves model in the specified folder."
15
+
16
+
17
+ class SymbolicContext:
18
+ """Extra context for symbolic functions.
19
+
20
+ Args:
21
+ params_dict (Dict[str, _C.IValue]): Mapping from graph initializer name to IValue.
22
+ env (Dict[_C.Value, _C.Value]): Mapping from Torch domain graph Value to ONNX domain graph Value.
23
+ cur_node (_C.Node): Current node being converted to ONNX domain.
24
+ onnx_block (_C.Block): Current ONNX block that converted nodes are being appended to.
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ params_dict: Dict[str, _C.IValue],
30
+ env: dict,
31
+ cur_node: _C.Node,
32
+ onnx_block: _C.Block,
33
+ ):
34
+ self.params_dict: Dict[str, _C.IValue] = params_dict
35
+ self.env: Dict[_C.Value, _C.Value] = env
36
+ # Current node that is being converted.
37
+ self.cur_node: _C.Node = cur_node
38
+ # Current onnx block that converted nodes are being appended to.
39
+ self.onnx_block: _C.Block = onnx_block
venv/lib/python3.10/site-packages/torch/onnx/_globals.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Globals used internally by the ONNX exporter.
2
+
3
+ Do not use this module outside of `torch.onnx` and its tests.
4
+
5
+ Be very judicious when adding any new global variables. Do not create new global
6
+ variables unless they are absolutely necessary.
7
+ """
8
+ import torch._C._onnx as _C_onnx
9
+
10
+ # This module should only depend on _constants and nothing else in torch.onnx to keep
11
+ # dependency direction clean.
12
+ from torch.onnx import _constants
13
+
14
+
15
+ class _InternalGlobals:
16
+ """Globals used internally by ONNX exporter.
17
+
18
+ NOTE: Be very judicious when adding any new variables. Do not create new
19
+ global variables unless they are absolutely necessary.
20
+ """
21
+
22
+ def __init__(self):
23
+ self._export_onnx_opset_version = _constants.ONNX_DEFAULT_OPSET
24
+ self._training_mode: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
25
+ self._in_onnx_export: bool = False
26
+ # Whether the user's model is training during export
27
+ self.export_training: bool = False
28
+ self.operator_export_type: _C_onnx.OperatorExportTypes = (
29
+ _C_onnx.OperatorExportTypes.ONNX
30
+ )
31
+ self.onnx_shape_inference: bool = True
32
+ self._autograd_inlining: bool = True
33
+
34
+ @property
35
+ def training_mode(self):
36
+ """The training mode for the exporter."""
37
+ return self._training_mode
38
+
39
+ @training_mode.setter
40
+ def training_mode(self, training_mode: _C_onnx.TrainingMode):
41
+ if not isinstance(training_mode, _C_onnx.TrainingMode):
42
+ raise TypeError(
43
+ "training_mode must be of type 'torch.onnx.TrainingMode'. This is "
44
+ "likely a bug in torch.onnx."
45
+ )
46
+ self._training_mode = training_mode
47
+
48
+ @property
49
+ def export_onnx_opset_version(self) -> int:
50
+ """Opset version used during export."""
51
+ return self._export_onnx_opset_version
52
+
53
+ @export_onnx_opset_version.setter
54
+ def export_onnx_opset_version(self, value: int):
55
+ supported_versions = range(
56
+ _constants.ONNX_MIN_OPSET, _constants.ONNX_MAX_OPSET + 1
57
+ )
58
+ if value not in supported_versions:
59
+ raise ValueError(f"Unsupported ONNX opset version: {value}")
60
+ self._export_onnx_opset_version = value
61
+
62
+ @property
63
+ def in_onnx_export(self) -> bool:
64
+ """Whether it is in the middle of ONNX export."""
65
+ return self._in_onnx_export
66
+
67
+ @in_onnx_export.setter
68
+ def in_onnx_export(self, value: bool):
69
+ if type(value) is not bool:
70
+ raise TypeError("in_onnx_export must be a boolean")
71
+ self._in_onnx_export = value
72
+
73
+ @property
74
+ def autograd_inlining(self) -> bool:
75
+ """Whether Autograd must be inlined."""
76
+ return self._autograd_inlining
77
+
78
+ @autograd_inlining.setter
79
+ def autograd_inlining(self, value: bool):
80
+ if type(value) is not bool:
81
+ raise TypeError("autograd_inlining must be a boolean")
82
+ self._autograd_inlining = value
83
+
84
+
85
+ GLOBALS = _InternalGlobals()
venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset10.py ADDED
@@ -0,0 +1,1233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ import sys
5
+ import warnings
6
+ from typing import List, Optional, Sequence, Tuple, Union
7
+
8
+ import torch
9
+ import torch._C._onnx as _C_onnx
10
+ import torch.onnx
11
+ from torch import _C
12
+
13
+ # Monkey-patch graph manipulation methods on Graph, used for the ONNX symbolics
14
+ from torch.onnx import (
15
+ _constants,
16
+ _type_utils,
17
+ errors,
18
+ symbolic_helper,
19
+ symbolic_opset9 as opset9,
20
+ )
21
+ from torch.onnx._globals import GLOBALS
22
+ from torch.onnx._internal import _beartype, jit_utils, registration
23
+
24
+ # EDITING THIS FILE? READ THIS FIRST!
25
+ # see Note [Edit Symbolic Files] in README.md
26
+
27
+ # This file exports ONNX ops for opset 10
28
+ # Opset 10 is supported by ONNX release 1.5.0
29
+ # release on 04/24/19
30
+
31
+
32
+ __all__ = [
33
+ "dequantize",
34
+ "div",
35
+ "embedding_bag",
36
+ "fake_quantize_per_tensor_affine",
37
+ "flip",
38
+ "fmod",
39
+ "isfinite",
40
+ "isinf",
41
+ "nan_to_num",
42
+ "quantize_per_tensor",
43
+ "quantized_add_relu",
44
+ "quantized_add",
45
+ "quantized_cat",
46
+ "quantized_conv1d_relu",
47
+ "quantized_conv2d_relu",
48
+ "quantized_conv3d_relu",
49
+ "quantized_conv1d",
50
+ "quantized_conv2d",
51
+ "quantized_conv3d",
52
+ "quantized_conv_transpose1d",
53
+ "quantized_conv_transpose2d",
54
+ "quantized_conv_transpose3d",
55
+ "quantized_group_norm",
56
+ "quantized_hardswish",
57
+ "quantized_instance_norm",
58
+ "quantized_layer_norm",
59
+ "quantized_leaky_relu",
60
+ "quantized_linear",
61
+ "quantized_linear_relu",
62
+ "quantized_mul",
63
+ "quantized_sigmoid",
64
+ "slice",
65
+ "sort",
66
+ "topk",
67
+ ]
68
+
69
+
70
+ _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=10)
71
+
72
+
73
+ def _apply_params(*args, **kwargs):
74
+ """Returns a decorator that calls the decorated (higher-order) function with the given parameters."""
75
+
76
+ def _apply(fn):
77
+ return fn(*args, **kwargs)
78
+
79
+ return _apply
80
+
81
+
82
+ @_onnx_symbolic("aten::div")
83
+ @_beartype.beartype
84
+ def div(g: jit_utils.GraphContext, self, other, *args):
85
+ if len(args) == 0:
86
+ return opset9.true_divide(g, self, other)
87
+ else:
88
+ return _div_rounding_mode(g, self, other, *args)
89
+
90
+
91
+ @symbolic_helper.parse_args("v", "v", "s")
92
+ @_beartype.beartype
93
+ def _div_rounding_mode(g: jit_utils.GraphContext, self, other, rounding_mode):
94
+ if rounding_mode == "floor":
95
+ return _floor_divide(g, self, other)
96
+ else:
97
+ return opset9._div_rounding_mode(g, self, other, rounding_mode)
98
+
99
+
100
+ @_onnx_symbolic("aten::_floor_divide")
101
+ @_beartype.beartype
102
+ def _floor_divide(g: jit_utils.GraphContext, self, other):
103
+ if symbolic_helper._is_fp(self) or symbolic_helper._is_fp(other):
104
+ out = opset9.true_divide(g, self, other)
105
+ return g.op("Floor", out)
106
+ else:
107
+ # Integer division does trunction rounding
108
+ div = g.op("Div", self, other)
109
+ # Division is negative if: self < 0 != other < 0
110
+ zero = g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64))
111
+ negative = g.op("Xor", g.op("Less", self, zero), g.op("Less", other, zero))
112
+
113
+ # For negative numbers with self % other != 0, subtract 1 to round down instead of up
114
+ mod = g.op("Mod", self, other, fmod_i=0)
115
+ fixup_mask = g.op("And", negative, g.op("Not", g.op("Equal", mod, zero)))
116
+
117
+ one = g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64))
118
+ fixup = g.op("Sub", div, one)
119
+ return g.op("Where", fixup_mask, fixup, div)
120
+
121
+
122
+ @_onnx_symbolic("aten::sort")
123
+ @symbolic_helper.parse_args("v", "i", "i", "none")
124
+ @_beartype.beartype
125
+ def sort(g: jit_utils.GraphContext, self, dim, decending, out=None):
126
+ return symbolic_helper._sort_helper(g, self, dim, decending=decending, out=out)
127
+
128
+
129
+ @_onnx_symbolic("aten::topk")
130
+ @symbolic_helper.parse_args("v", "v", "i", "i", "i", "none")
131
+ @_beartype.beartype
132
+ def topk(g: jit_utils.GraphContext, self, k, dim, largest, sorted, out=None):
133
+ return symbolic_helper._topk_helper(
134
+ g, self, k, dim, largest=largest, sorted=sorted, out=out
135
+ )
136
+
137
+
138
+ def _aten_max_pool_onnx(
139
+ g: jit_utils.GraphContext,
140
+ self: _C.Value,
141
+ kernel_shape: Sequence[int],
142
+ strides: Sequence[int],
143
+ pads: Sequence[int],
144
+ dilations: Sequence[int],
145
+ ceil_mode: bool,
146
+ unbatched_rank: int,
147
+ ) -> _C.Value:
148
+ self_rank = g.op("Size", g.op("Shape", self))
149
+ if self_rank == unbatched_rank: # C,H,W -> N,C,H,W and N=1
150
+ self = g.op(
151
+ "Unsqueeze",
152
+ self,
153
+ g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)),
154
+ )
155
+
156
+ pool_result, _ = g.op(
157
+ "MaxPool",
158
+ self,
159
+ outputs=2,
160
+ ceil_mode_i=ceil_mode,
161
+ dilations_i=dilations,
162
+ kernel_shape_i=kernel_shape,
163
+ pads_i=pads,
164
+ strides_i=strides,
165
+ )
166
+
167
+ if self_rank == unbatched_rank:
168
+ pool_result = g.op(
169
+ "Squeeze",
170
+ pool_result,
171
+ g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)),
172
+ )
173
+
174
+ return pool_result
175
+
176
+
177
+ # For MaxPool
178
+ def _adjust_attributes_of_max_pool(
179
+ expand_size: int,
180
+ kernel_size: Union[Sequence[int], int],
181
+ stride: Union[Sequence[int], int],
182
+ padding: Union[Sequence[int], int],
183
+ dilation: Union[Sequence[int], int],
184
+ ) -> Tuple[Sequence[int], Sequence[int], Sequence[int], Sequence[int]]:
185
+ """Adjust attributes of avg_pool to match ONNX specification."""
186
+
187
+ if isinstance(dilation, int):
188
+ dilation = [dilation] * expand_size
189
+
190
+ if isinstance(kernel_size, int):
191
+ kernel_shape = [kernel_size] * expand_size
192
+ else:
193
+ kernel_shape = kernel_size # type: ignore[assignment]
194
+
195
+ if isinstance(padding, int):
196
+ pads = [padding] * expand_size * 2 # type: ignore[operator, assignment]
197
+ elif len(padding) == 1:
198
+ pads = padding * expand_size * 2 # type: ignore[operator, assignment]
199
+ elif len(padding) == 2:
200
+ # 2D padding
201
+ pads = padding * 2 # type: ignore[operator, assignment]
202
+ elif len(padding) == 3:
203
+ # 3D padding
204
+ pads = padding * 2 # type: ignore[operator, assignment]
205
+ else:
206
+ # When padding is already done for all dimensions,
207
+ # we don't need to double it
208
+ # eg: (1, 1, 1, 1, 1, 1)
209
+ pads = padding # type: ignore[assignment]
210
+
211
+ if isinstance(stride, int):
212
+ strides = [stride] * expand_size
213
+ elif not stride:
214
+ strides = kernel_shape
215
+ else:
216
+ strides = stride # type: ignore[assignment]
217
+
218
+ return (kernel_shape, strides, pads, dilation)
219
+
220
+
221
+ def _aten_max_pool_with_indices_onnx(
222
+ g: jit_utils.GraphContext,
223
+ self: _C.Value,
224
+ kernel_shape: Sequence[int],
225
+ strides: Sequence[int],
226
+ pads: Sequence[int],
227
+ dilations: Sequence[int],
228
+ ceil_mode: bool,
229
+ unbatched_rank: int,
230
+ n_dims_one: Sequence[int],
231
+ n_dims_zero: Sequence[int],
232
+ n_dims_axes: Sequence[int],
233
+ ) -> Tuple[_C.Value, Sequence[int]]:
234
+ self_rank = g.op("Size", g.op("Shape", self))
235
+ if self_rank == unbatched_rank: # C,H,W -> N,C,H,W and N=1
236
+ self = g.op(
237
+ "Unsqueeze",
238
+ self,
239
+ g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)),
240
+ )
241
+
242
+ pool_result, indices = g.op(
243
+ "MaxPool",
244
+ self,
245
+ outputs=2,
246
+ ceil_mode_i=ceil_mode,
247
+ dilations_i=dilations,
248
+ kernel_shape_i=kernel_shape,
249
+ pads_i=pads,
250
+ strides_i=strides,
251
+ )
252
+ _, flatten_indices = g.op(
253
+ "MaxPool",
254
+ self,
255
+ outputs=2,
256
+ dilations_i=dilations,
257
+ kernel_shape_i=n_dims_one,
258
+ strides_i=n_dims_one,
259
+ )
260
+
261
+ ends = g.op("Constant", value_t=torch.tensor(n_dims_one))
262
+ starts = g.op("Constant", value_t=torch.tensor(n_dims_zero))
263
+ axes = g.op("Constant", value_t=torch.tensor(n_dims_axes))
264
+
265
+ delta = g.op("Slice", flatten_indices, starts, ends, axes)
266
+ indices = g.op("Sub", indices, delta)
267
+
268
+ if self_rank == unbatched_rank:
269
+ pool_result = g.op(
270
+ "Squeeze", pool_result, value_t=torch.tensor([0], dtype=torch.int64)
271
+ )
272
+ indices = g.op("Squeeze", indices, value_t=torch.tensor([0], dtype=torch.int64))
273
+
274
+ return (pool_result, indices)
275
+
276
+
277
+ @_onnx_symbolic(
278
+ "aten::max_pool1d",
279
+ decorate=[_apply_params("max_pool1d", 1, return_indices=False)],
280
+ )
281
+ @_onnx_symbolic(
282
+ "aten::max_pool2d",
283
+ decorate=[_apply_params("max_pool2d", 2, return_indices=False)],
284
+ )
285
+ @_onnx_symbolic(
286
+ "aten::max_pool3d",
287
+ decorate=[_apply_params("max_pool3d", 3, return_indices=False)],
288
+ )
289
+ @_onnx_symbolic(
290
+ "aten::max_pool1d_with_indices",
291
+ decorate=[
292
+ _apply_params(
293
+ "max_pool1d_with_indices",
294
+ 1,
295
+ return_indices=True,
296
+ )
297
+ ],
298
+ )
299
+ @_onnx_symbolic(
300
+ "aten::max_pool2d_with_indices",
301
+ decorate=[
302
+ _apply_params(
303
+ "max_pool2d_with_indices",
304
+ 2,
305
+ return_indices=True,
306
+ )
307
+ ],
308
+ )
309
+ @_onnx_symbolic(
310
+ "aten::max_pool3d_with_indices",
311
+ decorate=[
312
+ _apply_params(
313
+ "max_pool3d_with_indices",
314
+ 3,
315
+ return_indices=True,
316
+ )
317
+ ],
318
+ )
319
+ @_beartype.beartype
320
+ def _max_pool(name: str, expand_size: int, return_indices: bool):
321
+ @symbolic_helper.quantized_args(True, False, False, False, False, False)
322
+ @symbolic_helper.parse_args("v", "is", "is", "is", "is", "i")
323
+ def symbolic_fn(
324
+ g: jit_utils.GraphContext,
325
+ input: _C.Value,
326
+ kernel_size: Sequence[int],
327
+ stride: Sequence[int],
328
+ padding: Union[int, Sequence[int]],
329
+ dilation: Sequence[int],
330
+ ceil_mode: bool,
331
+ ):
332
+ kernel_shape, strides, pads, dilations = _adjust_attributes_of_max_pool(
333
+ expand_size, kernel_size, stride, padding, dilation
334
+ )
335
+
336
+ if return_indices:
337
+ return _aten_max_pool_with_indices_onnx(
338
+ g,
339
+ input,
340
+ kernel_shape,
341
+ strides,
342
+ pads,
343
+ dilations,
344
+ ceil_mode,
345
+ expand_size + 1,
346
+ ([1] * expand_size),
347
+ ([0] * expand_size),
348
+ ([2 + i for i in range(expand_size)]),
349
+ )
350
+ else:
351
+ return _aten_max_pool_onnx(
352
+ g,
353
+ input,
354
+ kernel_shape,
355
+ strides,
356
+ pads,
357
+ dilations,
358
+ ceil_mode,
359
+ expand_size + 1,
360
+ )
361
+
362
+ return symbolic_fn
363
+
364
+
365
+ # For AvgPool
366
+ def _adjust_attributes_of_avg_pool(
367
+ expand_size: int,
368
+ kernel_size: Union[Sequence[int], int],
369
+ stride: Union[Sequence[int], int],
370
+ padding: Union[Sequence[int], int],
371
+ ) -> Tuple[Sequence[int], Sequence[int], Sequence[int]]:
372
+ """Adjust attributes of avg_pool to match ONNX specification."""
373
+
374
+ if isinstance(kernel_size, int):
375
+ kernel_shape = [kernel_size] * expand_size
376
+ else:
377
+ kernel_shape = kernel_size # type: ignore[assignment]
378
+
379
+ if isinstance(padding, int):
380
+ pads = [padding] * expand_size * 2
381
+ elif len(padding) == 1:
382
+ pads = padding * expand_size * 2 # type: ignore[operator, assignment]
383
+ elif len(padding) == 2:
384
+ pads = padding * expand_size # type: ignore[operator, assignment]
385
+ else:
386
+ pads = padding * 2 # type: ignore[operator, assignment]
387
+
388
+ if isinstance(stride, int):
389
+ strides = [stride] * expand_size
390
+ elif not stride:
391
+ strides = kernel_shape
392
+ else:
393
+ strides = stride # type: ignore[assignment]
394
+
395
+ return (kernel_shape, strides, pads)
396
+
397
+
398
+ @_onnx_symbolic(
399
+ "aten::avg_pool1d",
400
+ decorate=[_apply_params("avg_pool1d", 1)],
401
+ )
402
+ @_onnx_symbolic(
403
+ "aten::avg_pool2d",
404
+ decorate=[_apply_params("avg_pool2d", 2)],
405
+ )
406
+ @_onnx_symbolic(
407
+ "aten::avg_pool3d",
408
+ decorate=[_apply_params("avg_pool3d", 3)],
409
+ )
410
+ @_beartype.beartype
411
+ def _avg_pool(name, expand_size):
412
+ @symbolic_helper.quantized_args(True, False, False, False, False, False, False)
413
+ @symbolic_helper.parse_args("v", "is", "is", "is", "i", "i", "none")
414
+ @_beartype.beartype
415
+ def symbolic_fn(
416
+ g,
417
+ input: _C.Value,
418
+ kernel_size: Sequence[int],
419
+ stride: Sequence[int],
420
+ padding: Union[int, Sequence[int]],
421
+ ceil_mode: int,
422
+ count_include_pad: int,
423
+ divisor_override=None,
424
+ ):
425
+ kernel_shape, strides, pads = _adjust_attributes_of_avg_pool(
426
+ expand_size, kernel_size, stride, padding
427
+ )
428
+
429
+ result = g.op(
430
+ "AveragePool",
431
+ input,
432
+ ceil_mode_i=ceil_mode,
433
+ count_include_pad_i=count_include_pad,
434
+ kernel_shape_i=kernel_shape,
435
+ pads_i=pads,
436
+ strides_i=strides,
437
+ )
438
+
439
+ return result
440
+
441
+ return symbolic_fn
442
+
443
+
444
+ @_onnx_symbolic(
445
+ "aten::upsample_nearest1d",
446
+ decorate=[_apply_params("upsample_nearest1d", 3, "nearest")],
447
+ )
448
+ @_onnx_symbolic(
449
+ "aten::upsample_nearest2d",
450
+ decorate=[_apply_params("upsample_nearest2d", 4, "nearest")],
451
+ )
452
+ @_onnx_symbolic(
453
+ "aten::upsample_nearest3d",
454
+ decorate=[_apply_params("upsample_nearest3d", 5, "nearest")],
455
+ )
456
+ @_onnx_symbolic(
457
+ "aten::upsample_linear1d",
458
+ decorate=[_apply_params("upsample_linear1d", 3, "linear")],
459
+ )
460
+ @_onnx_symbolic(
461
+ "aten::upsample_bilinear2d",
462
+ decorate=[_apply_params("upsample_bilinear2d", 4, "linear")],
463
+ )
464
+ @_onnx_symbolic(
465
+ "aten::upsample_trilinear3d",
466
+ decorate=[_apply_params("upsample_trilinear3d", 5, "linear")],
467
+ )
468
+ @_beartype.beartype
469
+ def _interpolate(name, dim, interpolate_mode):
470
+ @symbolic_helper.quantized_args(True, False, False)
471
+ @_beartype.beartype
472
+ def symbolic_fn(g, input, output_size, *args):
473
+ scales, align_corners = symbolic_helper._get_interpolate_attributes(
474
+ g, interpolate_mode, args
475
+ )
476
+ symbolic_helper._interpolate_warning(interpolate_mode)
477
+ align_corners = symbolic_helper._maybe_get_scalar(align_corners)
478
+ if align_corners:
479
+ return symbolic_helper._unimplemented(name, "align_corners == True", input)
480
+ if scales is None:
481
+ scales = symbolic_helper._interpolate_size_to_scales(
482
+ g, input, output_size, dim
483
+ )
484
+ return g.op("Resize", input, scales, mode_s=interpolate_mode)
485
+
486
+ return symbolic_fn
487
+
488
+
489
+ @_onnx_symbolic("aten::__interpolate")
490
+ @_beartype.beartype
491
+ def __interpolate(
492
+ g: jit_utils.GraphContext,
493
+ input,
494
+ size,
495
+ scale_factor,
496
+ mode,
497
+ align_corners,
498
+ recompute_scale_factor,
499
+ antialias,
500
+ ):
501
+ scales, mode = symbolic_helper._interpolate_get_scales_and_mode(
502
+ g, input, size, scale_factor, mode, align_corners
503
+ )
504
+ return g.op("Resize", input, scales, mode_s=mode)
505
+
506
+
507
+ @_beartype.beartype
508
+ def _slice(
509
+ g: jit_utils.GraphContext,
510
+ input: torch._C.Value,
511
+ axes: Union[List, torch.Tensor, torch._C.Value],
512
+ starts: Union[List, torch.Tensor, torch._C.Value],
513
+ ends: Union[List, torch.Tensor, torch._C.Value],
514
+ steps: Optional[Union[List, torch.Tensor, torch._C.Value]] = None,
515
+ ):
516
+ def is_none_value(value):
517
+ if value is None:
518
+ return True
519
+ return (
520
+ isinstance(value, torch._C.Value)
521
+ and value.node().kind() == "prim::Constant"
522
+ and isinstance(value.type(), _C.NoneType)
523
+ )
524
+
525
+ def to_slice_input(list_or_value, default_value=None):
526
+ # Convert input param into a 1D torch.Value.
527
+ if is_none_value(list_or_value) and default_value is not None:
528
+ list_or_value = [default_value]
529
+
530
+ if isinstance(list_or_value, (list, torch.Tensor)):
531
+ return g.op("Constant", value_t=torch.tensor(list_or_value))
532
+
533
+ rank = symbolic_helper._get_tensor_rank(list_or_value)
534
+ if rank == 0:
535
+ return symbolic_helper._unsqueeze_helper(g, list_or_value, [0])
536
+ if rank == 1:
537
+ return list_or_value
538
+ raise errors.SymbolicValueError(
539
+ f"Rank must be 0 or 1, not {rank}", list_or_value
540
+ )
541
+
542
+ def get_const_value(list_or_value):
543
+ if isinstance(list_or_value, (list, torch.Tensor)):
544
+ if len(list_or_value) == 1:
545
+ return list_or_value[0]
546
+ return None
547
+ return symbolic_helper._maybe_get_const(list_or_value, "i")
548
+
549
+ # Check if slice is a no-op
550
+ if (
551
+ get_const_value(starts) == 0
552
+ and get_const_value(ends) == _constants.INT64_MAX
553
+ and (steps is None or get_const_value(steps) == 1)
554
+ ):
555
+ return input
556
+
557
+ axes = to_slice_input(axes)
558
+ starts = to_slice_input(starts, default_value=0)
559
+ ends = to_slice_input(ends, default_value=_constants.INT64_MAX)
560
+ if steps is None:
561
+ return g.op("Slice", input, starts, ends, axes)
562
+ steps = to_slice_input(steps, default_value=1)
563
+ return g.op("Slice", input, starts, ends, axes, steps)
564
+
565
+
566
+ @_onnx_symbolic("aten::slice")
567
+ @_beartype.beartype
568
+ def slice(g: jit_utils.GraphContext, self, *args):
569
+ if len(args) == 4:
570
+ # aten::slice(Tensor self, int dim, int? start=None, int? end=None, int step=1) -> Tensor
571
+ dims, start, end, step = args
572
+ elif len(args) == 3:
573
+ # aten::slice(t[] l, int? start=None, int? end=None, int step=1) -> t[]
574
+ start, end, step = args
575
+ dims = [0]
576
+ else:
577
+ raise errors.SymbolicValueError("Unknown aten::slice signature", self)
578
+
579
+ return symbolic_helper._slice_helper(
580
+ g,
581
+ self,
582
+ axes=dims,
583
+ starts=start,
584
+ ends=end,
585
+ steps=step,
586
+ )
587
+
588
+
589
+ @_onnx_symbolic("aten::flip")
590
+ @symbolic_helper.parse_args("v", "is")
591
+ @_beartype.beartype
592
+ def flip(g: jit_utils.GraphContext, input, dims):
593
+ return symbolic_helper._slice_helper(
594
+ g,
595
+ input,
596
+ axes=dims,
597
+ starts=[-1] * len(dims),
598
+ ends=[-_constants.INT64_MAX] * len(dims),
599
+ steps=[-1] * len(dims),
600
+ )
601
+
602
+
603
+ @_onnx_symbolic("aten::fmod")
604
+ @_beartype.beartype
605
+ def fmod(g: jit_utils.GraphContext, input, other):
606
+ return g.op("Mod", input, other, fmod_i=1)
607
+
608
+
609
+ @_onnx_symbolic("aten::embedding_bag")
610
+ @symbolic_helper.parse_args("v", "v", "v", "i", "i", "i", "v", "i", "i")
611
+ @_beartype.beartype
612
+ def embedding_bag(
613
+ g: jit_utils.GraphContext,
614
+ embedding_matrix,
615
+ indices,
616
+ offsets,
617
+ scale_grad_by_freq,
618
+ mode,
619
+ sparse,
620
+ per_sample_weights,
621
+ include_last_offset,
622
+ padding_idx,
623
+ ):
624
+ if scale_grad_by_freq and GLOBALS.export_training:
625
+ return symbolic_helper._onnx_unsupported(
626
+ "embedding_bag with scale_grad_by_freq for training mode"
627
+ )
628
+ if padding_idx is not None and padding_idx >= 0:
629
+ raise RuntimeError("embedding_bag with padding_idx")
630
+
631
+ warnings.warn(
632
+ "Export of embedding_bag with dynamic input/offsets shape is not supported in opset 10. "
633
+ "Please use opset 11 or higher to export model for dynamic input shape.'"
634
+ )
635
+ offsets_dim_0 = symbolic_helper._get_tensor_dim_size(offsets, 0)
636
+ if offsets_dim_0 is not None:
637
+ if include_last_offset:
638
+ offset_len = offsets_dim_0 - 1
639
+ offsets_extended = offsets
640
+ else:
641
+ offset_len = offsets_dim_0
642
+ offsets_extended = [
643
+ offsets,
644
+ g.op("Constant", value_t=torch.tensor([sys.maxsize])),
645
+ ]
646
+ offsets_extended = g.op("Concat", *offsets_extended, axis_i=0)
647
+ list_ = []
648
+ for i in range(offset_len):
649
+ start_ = symbolic_helper._unsqueeze_helper(
650
+ g,
651
+ opset9.select(g, offsets_extended, torch.tensor(0), torch.tensor(i)),
652
+ [0],
653
+ )
654
+ end_ = symbolic_helper._unsqueeze_helper(
655
+ g,
656
+ opset9.select(
657
+ g, offsets_extended, torch.tensor(0), torch.tensor(i + 1)
658
+ ),
659
+ [0],
660
+ )
661
+ axes_ = g.op("Constant", value_t=torch.tensor([0]))
662
+ indices_row = g.op("Slice", indices, start_, end_, axes_)
663
+
664
+ embeddings = g.op("Gather", embedding_matrix, indices_row)
665
+ if not symbolic_helper._is_none(per_sample_weights):
666
+ per_sample_weights_row = g.op(
667
+ "Slice", per_sample_weights, start_, end_, axes_
668
+ )
669
+ per_sample_weights_row = symbolic_helper._unsqueeze_helper(
670
+ g, per_sample_weights_row, [1]
671
+ )
672
+ embeddings = g.op("Mul", embeddings, per_sample_weights_row)
673
+ if mode == 0:
674
+ embeddings = symbolic_helper._reducesum_helper(
675
+ g, embeddings, axes_i=[0], keepdims_i=0
676
+ )
677
+ elif mode == 1:
678
+ embeddings = g.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0)
679
+ else:
680
+ embeddings = g.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0)
681
+
682
+ embeddings = symbolic_helper._unsqueeze_helper(g, embeddings, [0])
683
+ list_.append(embeddings)
684
+
685
+ output = g.op("Concat", *list_, axis_i=0)
686
+ # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
687
+ # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
688
+ return output, None, None, None
689
+ else:
690
+ return symbolic_helper._onnx_unsupported(
691
+ "embedding_bag with unknown shape of offsets for opset 10 is not supported. "
692
+ "please use opset 11 or higher."
693
+ )
694
+
695
+
696
+ @_onnx_symbolic("aten::fake_quantize_per_tensor_affine")
697
+ @symbolic_helper.parse_args("v", "v", "v", "i", "i")
698
+ @_beartype.beartype
699
+ def fake_quantize_per_tensor_affine(
700
+ g: jit_utils.GraphContext,
701
+ inputs,
702
+ scale,
703
+ zero_point,
704
+ quant_min=-128,
705
+ quant_max=127,
706
+ ):
707
+ # NOTE: (0, 127) is a special case. PyTorch restricts activations to be in the range (0, 127).
708
+ # https://github.com/pytorch/pytorch/blob/b34b192d6b97325c9f78e5995c48c8498ede34bd/torch/ao/quantization/observer.py#L1422
709
+ if (quant_min, quant_max) == (0, 127):
710
+ symbolic_helper._onnx_opset_unsupported_detailed(
711
+ "fake_quantize_per_tensor_affine",
712
+ 10,
713
+ 13,
714
+ "Quantize range (0, 127) not supported, requires opset 13 Clip",
715
+ inputs,
716
+ )
717
+ if (quant_min, quant_max) not in [(0, 255), (-128, 127)]:
718
+ raise errors.SymbolicValueError(
719
+ f"For (quant_min, quant_max), ONNX allows only (0, 255) and (-128, 127). "
720
+ f"Got ({quant_min}, {quant_max})",
721
+ inputs,
722
+ )
723
+ scale = symbolic_helper._maybe_get_scalar(scale)
724
+ if scale is None:
725
+ symbolic_helper._onnx_opset_unsupported_detailed(
726
+ "fake_quantize_per_tensor_affine",
727
+ 10,
728
+ 13,
729
+ "Non-constant scale not supported",
730
+ inputs,
731
+ )
732
+ scale = scale.float().data # Avoid exporter generating double type
733
+ if quant_min == 0:
734
+ zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.UINT8)
735
+ else:
736
+ zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.INT8)
737
+ return g.op(
738
+ "DequantizeLinear",
739
+ g.op("QuantizeLinear", inputs, scale, zero_point),
740
+ scale,
741
+ zero_point,
742
+ )
743
+
744
+
745
+ @_onnx_symbolic("aten::isinf")
746
+ @_beartype.beartype
747
+ def isinf(g: jit_utils.GraphContext, input):
748
+ return g.op("IsInf", g.op("Cast", input, to_i=_C_onnx.TensorProtoDataType.DOUBLE))
749
+
750
+
751
+ @_onnx_symbolic("aten::isfinite")
752
+ @_beartype.beartype
753
+ def isfinite(g: jit_utils.GraphContext, input):
754
+ inf_node = isinf(g, input)
755
+ nan_node = opset9.isnan(g, input)
756
+ return opset9.__not_(g, opset9.__or_(g, inf_node, nan_node))
757
+
758
+
759
+ @_onnx_symbolic("aten::quantize_per_tensor")
760
+ @_beartype.beartype
761
+ def quantize_per_tensor(g: jit_utils.GraphContext, input, scale, zero_point, dtype):
762
+ dtype = symbolic_helper._get_const(dtype, "i", "dtype")
763
+ # TODO(justinchuby): Extract all the cast ops into a helper function.
764
+ zero_point = g.op(
765
+ "Cast", zero_point, to_i=_type_utils.JitScalarType(dtype).onnx_type()
766
+ )
767
+ scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT)
768
+ return symbolic_helper.quantize_helper(g, input, scale, zero_point)
769
+
770
+
771
+ @_onnx_symbolic("aten::dequantize")
772
+ @_beartype.beartype
773
+ def dequantize(g: jit_utils.GraphContext, input):
774
+ return symbolic_helper.dequantize_helper(g, input)[0]
775
+
776
+
777
+ @_onnx_symbolic("aten::nan_to_num")
778
+ @symbolic_helper.parse_args("v", "f", "f", "f")
779
+ @_beartype.beartype
780
+ def nan_to_num(g: jit_utils.GraphContext, input, nan, posinf, neginf):
781
+ # Cannot create a int type tensor with inf/nan values, so we simply
782
+ # return the original tensor
783
+ if not symbolic_helper._is_fp(input):
784
+ return input
785
+ input_dtype = _type_utils.JitScalarType.from_value(input).dtype()
786
+ if nan is None:
787
+ nan = 0.0
788
+ nan_cond = opset9.isnan(g, input)
789
+ nan_result = g.op(
790
+ "Where",
791
+ nan_cond,
792
+ g.op("Constant", value_t=torch.tensor([nan], dtype=input_dtype)),
793
+ input,
794
+ )
795
+
796
+ # For None values of posinf, neginf we use the greatest/lowest finite
797
+ # value representable by input’s dtype.
798
+ finfo = torch.finfo(input_dtype)
799
+ if posinf is None:
800
+ posinf = finfo.max
801
+ posinf_cond = opset9.logical_and(
802
+ g,
803
+ isinf(g, nan_result),
804
+ opset9.gt(g, nan_result, g.op("Constant", value_t=torch.LongTensor([0]))),
805
+ )
806
+ nan_posinf_result = g.op(
807
+ "Where",
808
+ posinf_cond,
809
+ g.op("Constant", value_t=torch.tensor([posinf], dtype=input_dtype)),
810
+ nan_result,
811
+ )
812
+
813
+ if neginf is None:
814
+ neginf = finfo.min
815
+ neginf_cond = opset9.logical_and(
816
+ g,
817
+ isinf(g, nan_posinf_result),
818
+ opset9.lt(
819
+ g, nan_posinf_result, g.op("Constant", value_t=torch.LongTensor([0]))
820
+ ),
821
+ )
822
+ return g.op(
823
+ "Where",
824
+ neginf_cond,
825
+ g.op("Constant", value_t=torch.tensor([neginf], dtype=input_dtype)),
826
+ nan_posinf_result,
827
+ )
828
+
829
+
830
+ # Quantized symbolics ---------------------------------------------------------
831
+ # https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter#quantized-model-export
832
+ # Support starts from opset 10 because `DequantizeLinear` and `QuantizeLinear` were
833
+ # introduced in opset version 10.
834
+ @_onnx_symbolic("quantized::linear")
835
+ @_beartype.beartype
836
+ def quantized_linear(
837
+ g: jit_utils.GraphContext, q_input, q_weight, bias, op_scale, op_zero_point
838
+ ):
839
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
840
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
841
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
842
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
843
+
844
+ output = opset9.linear(g, input, weight, bias)
845
+
846
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
847
+
848
+
849
+ @_onnx_symbolic("quantized::linear_relu")
850
+ @_beartype.beartype
851
+ def quantized_linear_relu(
852
+ g: jit_utils.GraphContext, q_input, q_weight, bias, op_scale, op_zero_point
853
+ ):
854
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
855
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
856
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
857
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
858
+
859
+ output = opset9.linear(g, input, weight, bias)
860
+ output = opset9.relu(g, output)
861
+
862
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
863
+
864
+
865
+ @_onnx_symbolic("quantized::add")
866
+ @_beartype.beartype
867
+ def quantized_add(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point):
868
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
869
+ y, _, _, _ = symbolic_helper.dequantize_helper(g, y)
870
+
871
+ output = opset9.add(g, x, y)
872
+
873
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
874
+
875
+
876
+ @_onnx_symbolic("quantized::add_relu")
877
+ @_beartype.beartype
878
+ def quantized_add_relu(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point):
879
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
880
+ y, _, _, _ = symbolic_helper.dequantize_helper(g, y)
881
+
882
+ output = opset9.add(g, x, y)
883
+ output = opset9.relu(g, output)
884
+
885
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
886
+
887
+
888
+ @_onnx_symbolic("quantized::mul")
889
+ @_beartype.beartype
890
+ def quantized_mul(g: jit_utils.GraphContext, x, y, op_scale, op_zero_point):
891
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
892
+ y, _, _, _ = symbolic_helper.dequantize_helper(g, y)
893
+
894
+ output = opset9.mul(g, x, y)
895
+
896
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
897
+
898
+
899
+ @_onnx_symbolic("quantized::hardswish")
900
+ @_beartype.beartype
901
+ def quantized_hardswish(g: jit_utils.GraphContext, x, op_scale, op_zero_point):
902
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
903
+
904
+ output = opset9.hardswish(g, x)
905
+
906
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
907
+
908
+
909
+ @_onnx_symbolic("quantized::sigmoid")
910
+ @_beartype.beartype
911
+ def quantized_sigmoid(g: jit_utils.GraphContext, x, op_scale, op_zero_point):
912
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
913
+
914
+ output = opset9.sigmoid(g, x)
915
+
916
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
917
+
918
+
919
+ @_onnx_symbolic("quantized::leaky_relu")
920
+ @_beartype.beartype
921
+ def quantized_leaky_relu(
922
+ g: jit_utils.GraphContext, x, negative_slope, inplace, op_scale, op_zero_point
923
+ ):
924
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
925
+
926
+ output = opset9.leaky_relu(g, x, negative_slope, inplace)
927
+
928
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
929
+
930
+
931
+ @_onnx_symbolic("quantized::layer_norm")
932
+ @_beartype.beartype
933
+ def quantized_layer_norm(
934
+ g: jit_utils.GraphContext,
935
+ x,
936
+ normalized_shape,
937
+ weight,
938
+ bias,
939
+ eps,
940
+ op_scale,
941
+ op_zero_point,
942
+ ):
943
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
944
+
945
+ output = opset9.layer_norm(g, x, normalized_shape, weight, bias, eps, False)
946
+
947
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
948
+
949
+
950
+ @_onnx_symbolic("quantized::group_norm")
951
+ @_beartype.beartype
952
+ def quantized_group_norm(
953
+ g: jit_utils.GraphContext,
954
+ x,
955
+ num_groups,
956
+ weight,
957
+ bias,
958
+ eps,
959
+ op_scale,
960
+ op_zero_point,
961
+ ):
962
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
963
+
964
+ output = opset9.group_norm(g, x, num_groups, weight, bias, eps, False)
965
+
966
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
967
+
968
+
969
+ @_onnx_symbolic("quantized::instance_norm")
970
+ @symbolic_helper.parse_args("v", "v", "v", "f", "v", "v")
971
+ @_beartype.beartype
972
+ def quantized_instance_norm(
973
+ g: jit_utils.GraphContext,
974
+ q_input,
975
+ weight,
976
+ bias,
977
+ eps,
978
+ op_scale,
979
+ op_zero_point,
980
+ ):
981
+ input, _, _, _ = symbolic_helper.dequantize_helper(g, q_input)
982
+
983
+ output = opset9.instance_norm(
984
+ g, input, weight, bias, None, None, False, 0.0, eps, False
985
+ )
986
+
987
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
988
+
989
+
990
+ @_onnx_symbolic("quantized::conv1d_relu")
991
+ @_beartype.beartype
992
+ def quantized_conv1d_relu(
993
+ g: jit_utils.GraphContext,
994
+ q_input,
995
+ q_weight,
996
+ bias,
997
+ stride,
998
+ padding,
999
+ dilation,
1000
+ groups,
1001
+ op_scale,
1002
+ op_zero_point,
1003
+ ):
1004
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1005
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1006
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1007
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1008
+
1009
+ output = opset9.conv1d(g, input, weight, bias, stride, padding, dilation, groups)
1010
+ output = opset9.relu(g, output)
1011
+
1012
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1013
+
1014
+
1015
+ @_onnx_symbolic("quantized::conv2d_relu")
1016
+ @_beartype.beartype
1017
+ def quantized_conv2d_relu(
1018
+ g: jit_utils.GraphContext,
1019
+ q_input,
1020
+ q_weight,
1021
+ bias,
1022
+ stride,
1023
+ padding,
1024
+ dilation,
1025
+ groups,
1026
+ op_scale,
1027
+ op_zero_point,
1028
+ ):
1029
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1030
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1031
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1032
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1033
+
1034
+ output = opset9.conv2d(g, input, weight, bias, stride, padding, dilation, groups)
1035
+ output = opset9.relu(g, output)
1036
+
1037
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1038
+
1039
+
1040
+ @_onnx_symbolic("quantized::conv3d_relu")
1041
+ @_beartype.beartype
1042
+ def quantized_conv3d_relu(
1043
+ g: jit_utils.GraphContext,
1044
+ q_input,
1045
+ q_weight,
1046
+ bias,
1047
+ stride,
1048
+ padding,
1049
+ dilation,
1050
+ groups,
1051
+ op_scale,
1052
+ op_zero_point,
1053
+ ):
1054
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1055
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1056
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1057
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1058
+
1059
+ output = opset9.conv3d(g, input, weight, bias, stride, padding, dilation, groups)
1060
+ output = opset9.relu(g, output)
1061
+
1062
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1063
+
1064
+
1065
+ @_onnx_symbolic("quantized::conv1d")
1066
+ @_beartype.beartype
1067
+ def quantized_conv1d(
1068
+ g: jit_utils.GraphContext,
1069
+ q_input,
1070
+ q_weight,
1071
+ bias,
1072
+ stride,
1073
+ padding,
1074
+ dilation,
1075
+ groups,
1076
+ op_scale,
1077
+ op_zero_point,
1078
+ ):
1079
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1080
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1081
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1082
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1083
+
1084
+ output = opset9.conv1d(g, input, weight, bias, stride, padding, dilation, groups)
1085
+
1086
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1087
+
1088
+
1089
+ @_onnx_symbolic("quantized::conv2d")
1090
+ @_beartype.beartype
1091
+ def quantized_conv2d(
1092
+ g: jit_utils.GraphContext,
1093
+ q_input,
1094
+ q_weight,
1095
+ bias,
1096
+ stride,
1097
+ padding,
1098
+ dilation,
1099
+ groups,
1100
+ op_scale,
1101
+ op_zero_point,
1102
+ ):
1103
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1104
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1105
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1106
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1107
+
1108
+ output = opset9.conv2d(g, input, weight, bias, stride, padding, dilation, groups)
1109
+
1110
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1111
+
1112
+
1113
+ @_onnx_symbolic("quantized::conv3d")
1114
+ @_beartype.beartype
1115
+ def quantized_conv3d(
1116
+ g: jit_utils.GraphContext,
1117
+ q_input,
1118
+ q_weight,
1119
+ bias,
1120
+ stride,
1121
+ padding,
1122
+ dilation,
1123
+ groups,
1124
+ op_scale,
1125
+ op_zero_point,
1126
+ ):
1127
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1128
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1129
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1130
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1131
+
1132
+ output = opset9.conv3d(g, input, weight, bias, stride, padding, dilation, groups)
1133
+
1134
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1135
+
1136
+
1137
+ @_onnx_symbolic("quantized::conv_transpose1d")
1138
+ @_beartype.beartype
1139
+ def quantized_conv_transpose1d(
1140
+ g: jit_utils.GraphContext,
1141
+ q_input,
1142
+ q_weight,
1143
+ bias,
1144
+ stride,
1145
+ padding,
1146
+ output_padding,
1147
+ dilation,
1148
+ groups,
1149
+ op_scale,
1150
+ op_zero_point,
1151
+ ):
1152
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1153
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1154
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1155
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1156
+
1157
+ output = opset9.conv_transpose2d(
1158
+ g, input, weight, bias, stride, padding, output_padding, groups, dilation
1159
+ )
1160
+
1161
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1162
+
1163
+
1164
+ @_onnx_symbolic("quantized::conv_transpose2d")
1165
+ @_beartype.beartype
1166
+ def quantized_conv_transpose2d(
1167
+ g: jit_utils.GraphContext,
1168
+ q_input,
1169
+ q_weight,
1170
+ bias,
1171
+ stride,
1172
+ padding,
1173
+ output_padding,
1174
+ dilation,
1175
+ groups,
1176
+ op_scale,
1177
+ op_zero_point,
1178
+ ):
1179
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1180
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1181
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1182
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1183
+
1184
+ output = opset9.conv_transpose2d(
1185
+ g, input, weight, bias, stride, padding, output_padding, groups, dilation
1186
+ )
1187
+
1188
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1189
+
1190
+
1191
+ @_onnx_symbolic("quantized::conv_transpose3d")
1192
+ @_beartype.beartype
1193
+ def quantized_conv_transpose3d(
1194
+ g: jit_utils.GraphContext,
1195
+ q_input,
1196
+ q_weight,
1197
+ bias,
1198
+ stride,
1199
+ padding,
1200
+ output_padding,
1201
+ dilation,
1202
+ groups,
1203
+ op_scale,
1204
+ op_zero_point,
1205
+ ):
1206
+ input, input_scale, _, _ = symbolic_helper.dequantize_helper(g, q_input)
1207
+ weight, weight_scale, _, _ = symbolic_helper.dequantize_helper(g, q_weight)
1208
+ q_bias = symbolic_helper.requantize_bias_helper(g, bias, input_scale, weight_scale)
1209
+ bias, _, _, _ = symbolic_helper.dequantize_helper(g, q_bias)
1210
+
1211
+ output = opset9.conv_transpose3d(
1212
+ g, input, weight, bias, stride, padding, output_padding, groups, dilation
1213
+ )
1214
+
1215
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
1216
+
1217
+
1218
+ @_onnx_symbolic("quantized::cat")
1219
+ @symbolic_helper.parse_args("v", "i", "v", "v")
1220
+ @_beartype.beartype
1221
+ def quantized_cat(
1222
+ g: jit_utils.GraphContext,
1223
+ q_inputs: _C.Value,
1224
+ dim: int,
1225
+ op_scale: _C.Value,
1226
+ op_zero_point: _C.Value,
1227
+ ) -> _C.Value:
1228
+ unpacked_inputs = symbolic_helper._unpack_list(q_inputs)
1229
+ dequantized = [
1230
+ symbolic_helper.dequantize_helper(g, input)[0] for input in unpacked_inputs
1231
+ ]
1232
+ concatenated = g.op("Concat", *dequantized, axis_i=dim)
1233
+ return symbolic_helper.quantize_helper(g, concatenated, op_scale, op_zero_point)
venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset12.py ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ import sys
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ from torch._C import _onnx as _C_onnx
9
+ from torch.onnx import (
10
+ _type_utils,
11
+ errors,
12
+ symbolic_helper,
13
+ symbolic_opset9 as opset9,
14
+ utils,
15
+ )
16
+ from torch.onnx._internal import _beartype, jit_utils, registration
17
+
18
+
19
+ # EDITING THIS FILE? READ THIS FIRST!
20
+ # see Note [Edit Symbolic Files] in README.md
21
+
22
+ # This file exports ONNX ops for opset 12
23
+
24
+ __all__ = [
25
+ "argmax",
26
+ "argmin",
27
+ "binary_cross_entropy_with_logits",
28
+ "celu",
29
+ "cross_entropy_loss",
30
+ "dropout",
31
+ "einsum",
32
+ "ge",
33
+ "le",
34
+ "native_dropout",
35
+ "nll_loss",
36
+ "nll_loss2d",
37
+ "nll_loss_nd",
38
+ "outer",
39
+ "pow",
40
+ "tensordot",
41
+ "unfold",
42
+ ]
43
+
44
+ _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=12)
45
+
46
+
47
+ @_beartype.beartype
48
+ def _einsum_helper(g: jit_utils.GraphContext, equation, tensors):
49
+ if not tensors:
50
+ raise RuntimeError("Einsum inputs are empty.")
51
+ # ONNX does not support bool for Einsum inputs.
52
+ if symbolic_helper._is_bool(tensors[0]):
53
+ tensors = [
54
+ g.op("Cast", tensor, to_i=_C_onnx.TensorProtoDataType.INT64)
55
+ for tensor in tensors
56
+ ]
57
+ return g.op(
58
+ "Cast",
59
+ g.op("Einsum", *tensors, equation_s=equation),
60
+ to_i=_C_onnx.TensorProtoDataType.BOOL,
61
+ )
62
+ else:
63
+ return g.op("Einsum", *tensors, equation_s=equation)
64
+
65
+
66
+ @_onnx_symbolic("aten::einsum")
67
+ @symbolic_helper.parse_args("s", "v", "is")
68
+ @_beartype.beartype
69
+ def einsum(g: jit_utils.GraphContext, equation, tensor_list, path=None):
70
+ tensors = symbolic_helper._unpack_list(tensor_list)
71
+ return _einsum_helper(g, equation, tensors)
72
+
73
+
74
+ @_onnx_symbolic("aten::outer")
75
+ @symbolic_helper.parse_args("v", "v")
76
+ @_beartype.beartype
77
+ def outer(g: jit_utils.GraphContext, input, other):
78
+ # make sure to cast other to self's type
79
+ if _type_utils.JitScalarType.from_value(
80
+ other, _type_utils.JitScalarType.UNDEFINED
81
+ ) != _type_utils.JitScalarType.from_value(input):
82
+ other = g.op(
83
+ "Cast",
84
+ other,
85
+ to_i=_type_utils.JitScalarType.from_value(input).onnx_type(),
86
+ )
87
+ return _einsum_helper(g, "i,j->ij", [input, other])
88
+
89
+
90
+ @_beartype.beartype
91
+ def _dropout_returns_masked_input_and_mask(
92
+ g: jit_utils.GraphContext, input: torch._C.Value, p: float, train: bool
93
+ ) -> Tuple[torch._C.Value, Optional[torch._C.Value]]:
94
+ symbolic_helper.check_training_mode(train, "dropout")
95
+ # In eval mode, dropout is non-op. That is, if the node's
96
+ # train param is set to False, dropout just returns its inputs.
97
+ if not train:
98
+ return input, None
99
+ p = g.op("Constant", value_t=torch.tensor(p))
100
+ t = g.op("Constant", value_t=torch.tensor(train, dtype=torch.bool))
101
+ r, mask = g.op("Dropout", input, p, t, outputs=2)
102
+ return r, mask
103
+
104
+
105
+ @_onnx_symbolic("aten::dropout")
106
+ @symbolic_helper.parse_args("v", "f", "b")
107
+ @_beartype.beartype
108
+ def dropout(g: jit_utils.GraphContext, input, p, train):
109
+ masked, _ = _dropout_returns_masked_input_and_mask(g, input, p, train)
110
+ return masked
111
+
112
+
113
+ @_onnx_symbolic("aten::native_dropout")
114
+ @symbolic_helper.parse_args("v", "f", "b")
115
+ @_beartype.beartype
116
+ def native_dropout(g: jit_utils.GraphContext, input, p, train):
117
+ return _dropout_returns_masked_input_and_mask(g, input, p, train)
118
+
119
+
120
+ @_onnx_symbolic("aten::nll_loss")
121
+ @_beartype.beartype
122
+ def nll_loss(g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index):
123
+ # none reduction : onnx::Constant[value={0}]
124
+ # mean reduction : onnx::Constant[value={1}]
125
+ # sum reduction : onnx::Constant[value={2}]
126
+ reduction = symbolic_helper._maybe_get_const(reduction, "i")
127
+ reduction_vals = ["none", "mean", "sum"]
128
+ reduction = reduction_vals[reduction]
129
+
130
+ # in onnx NegativeLogLikelihoodLoss specification, ignore_index is optional without default value.
131
+ # therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
132
+ ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
133
+ if weight.node().mustBeNone():
134
+ nllloss = g.op(
135
+ "NegativeLogLikelihoodLoss",
136
+ self,
137
+ target,
138
+ reduction_s=reduction,
139
+ ignore_index_i=ignore_index,
140
+ )
141
+ else:
142
+ nllloss = g.op(
143
+ "NegativeLogLikelihoodLoss",
144
+ self,
145
+ target,
146
+ weight,
147
+ reduction_s=reduction,
148
+ ignore_index_i=ignore_index,
149
+ )
150
+
151
+ return nllloss
152
+
153
+
154
+ @_onnx_symbolic("aten::nll_loss2d")
155
+ @_beartype.beartype
156
+ def nll_loss2d(
157
+ g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index
158
+ ):
159
+ return nll_loss(g, self, target, weight, reduction, ignore_index)
160
+
161
+
162
+ @_onnx_symbolic("aten::nll_loss_nd")
163
+ @_beartype.beartype
164
+ def nll_loss_nd(
165
+ g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index
166
+ ):
167
+ return nll_loss(g, self, target, weight, reduction, ignore_index)
168
+
169
+
170
+ @_onnx_symbolic("aten::cross_entropy_loss")
171
+ @_beartype.beartype
172
+ def cross_entropy_loss(
173
+ g: jit_utils.GraphContext,
174
+ self,
175
+ target,
176
+ weight,
177
+ reduction,
178
+ ignore_index,
179
+ label_smoothing,
180
+ ):
181
+ # none reduction : onnx::Constant[value={0}]
182
+ # mean reduction : onnx::Constant[value={1}]
183
+ # sum reduction : onnx::Constant[value={2}]
184
+ reduction = symbolic_helper._maybe_get_const(reduction, "i")
185
+ reduction_vals = ["none", "mean", "sum"]
186
+ reduction = reduction_vals[reduction]
187
+
188
+ label_smoothing = symbolic_helper._maybe_get_const(label_smoothing, "f")
189
+ if label_smoothing is not None and label_smoothing > 0.0:
190
+ raise errors.SymbolicValueError(
191
+ "Unsupported: ONNX does not support label_smoothing", self
192
+ )
193
+
194
+ # in onnx SoftmaxCrossEntropyLoss specification, ignore_index is optional without default value.
195
+ # therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
196
+ ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
197
+ if weight.node().mustBeNone():
198
+ celoss = g.op(
199
+ "SoftmaxCrossEntropyLoss",
200
+ self,
201
+ target,
202
+ reduction_s=reduction,
203
+ ignore_index_i=ignore_index,
204
+ )
205
+ else:
206
+ celoss = g.op(
207
+ "SoftmaxCrossEntropyLoss",
208
+ self,
209
+ target,
210
+ weight,
211
+ reduction_s=reduction,
212
+ ignore_index_i=ignore_index,
213
+ )
214
+
215
+ return celoss
216
+
217
+
218
+ @_onnx_symbolic("aten::binary_cross_entropy_with_logits")
219
+ @symbolic_helper.parse_args("v", "v", "v", "v", "i")
220
+ @_beartype.beartype
221
+ def binary_cross_entropy_with_logits(
222
+ g: jit_utils.GraphContext, input, target, weight, pos_weight, reduction
223
+ ):
224
+ p = g.op("Constant", value_t=torch.tensor([1]))
225
+ sig_x = opset9.sigmoid(g, input)
226
+ log_sig_x = opset9.log(g, sig_x)
227
+ sub_1_x = opset9.sub(g, p, sig_x)
228
+ sub_1_y = opset9.sub(g, p, target)
229
+ log_1_x = opset9.log(g, sub_1_x)
230
+ if pos_weight is None or symbolic_helper._is_none(pos_weight):
231
+ output = opset9.neg(
232
+ g,
233
+ opset9.add(
234
+ g, opset9.mul(g, target, log_sig_x), opset9.mul(g, sub_1_y, log_1_x)
235
+ ),
236
+ )
237
+ else:
238
+ output = opset9.neg(
239
+ g,
240
+ opset9.add(
241
+ g,
242
+ opset9.mul(g, opset9.mul(g, target, log_sig_x), pos_weight),
243
+ opset9.mul(g, sub_1_y, log_1_x),
244
+ ),
245
+ )
246
+
247
+ if weight is not None and not symbolic_helper._is_none(weight):
248
+ output = opset9.mul(g, weight, output)
249
+
250
+ reduction = symbolic_helper._maybe_get_const(reduction, "i")
251
+ if reduction == 0:
252
+ return output
253
+ elif reduction == 1:
254
+ return g.op("ReduceMean", output, keepdims_i=0)
255
+ elif reduction == 2:
256
+ return g.op("ReduceSum", output, keepdims_i=0)
257
+ else:
258
+ return symbolic_helper._onnx_unsupported(
259
+ "binary_cross_entropy_with_logits with reduction other than none, mean, or sum",
260
+ input,
261
+ )
262
+
263
+
264
+ @_onnx_symbolic("aten::celu")
265
+ @_beartype.beartype
266
+ def celu(g: jit_utils.GraphContext, self, alpha):
267
+ alpha = symbolic_helper._maybe_get_const(alpha, "f")
268
+ # if the input is of type double cast it to float
269
+ if (
270
+ _type_utils.JitScalarType.from_value(self, _type_utils.JitScalarType.UNDEFINED)
271
+ == _type_utils.JitScalarType.DOUBLE
272
+ ):
273
+ self = g.op("Cast", self, to_i=_C_onnx.TensorProtoDataType.FLOAT)
274
+ out = g.op("Celu", self, alpha_f=alpha)
275
+ return g.op("Cast", out, to_i=_C_onnx.TensorProtoDataType.DOUBLE)
276
+
277
+ return g.op("Celu", self, alpha_f=alpha)
278
+
279
+
280
+ @_onnx_symbolic("aten::argmax")
281
+ @symbolic_helper.parse_args("v", "v", "b")
282
+ @_beartype.beartype
283
+ def argmax(
284
+ g: jit_utils.GraphContext,
285
+ input: torch._C.Value,
286
+ dim: torch._C.Value,
287
+ keepdim: bool,
288
+ ):
289
+ return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMax")
290
+
291
+
292
+ @_onnx_symbolic("aten::argmin")
293
+ @symbolic_helper.parse_args("v", "v", "b")
294
+ @_beartype.beartype
295
+ def argmin(
296
+ g: jit_utils.GraphContext,
297
+ input: torch._C.Value,
298
+ dim: torch._C.Value,
299
+ keepdim: bool,
300
+ ):
301
+ return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMin")
302
+
303
+
304
+ @_onnx_symbolic("aten::pow")
305
+ @_beartype.beartype
306
+ def pow(g: jit_utils.GraphContext, self, exponent):
307
+ return g.op("Pow", self, exponent)
308
+
309
+
310
+ @_onnx_symbolic("aten::ge")
311
+ @_beartype.beartype
312
+ def ge(g: jit_utils.GraphContext, input, other):
313
+ return g.op("GreaterOrEqual", input, other)
314
+
315
+
316
+ @_onnx_symbolic("aten::le")
317
+ @_beartype.beartype
318
+ def le(g: jit_utils.GraphContext, input, other):
319
+ return g.op("LessOrEqual", input, other)
320
+
321
+
322
+ @_onnx_symbolic("aten::unfold")
323
+ @symbolic_helper.parse_args("v", "i", "v", "v")
324
+ @_beartype.beartype
325
+ def unfold(g: jit_utils.GraphContext, input, dimension, size, step):
326
+ const_size = symbolic_helper._maybe_get_const(size, "i")
327
+ const_step = symbolic_helper._maybe_get_const(step, "i")
328
+ if not symbolic_helper._is_value(const_size) and not symbolic_helper._is_value(
329
+ const_step
330
+ ):
331
+ return opset9.unfold(g, input, dimension, const_size, const_step)
332
+ if symbolic_helper.is_caffe2_aten_fallback():
333
+ return g.at("unfold", input, dimension_i=dimension, size_i=size, step_i=step)
334
+
335
+ sizedim = symbolic_helper._get_tensor_dim_size(input, dimension)
336
+ if sizedim is not None:
337
+ low_start = g.op("Constant", value_t=torch.tensor(0))
338
+ low_end = g.op("Constant", value_t=torch.tensor(sizedim))
339
+ hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
340
+ low_indices = g.op("Range", low_start, low_end, step)
341
+ hi_indices = g.op("Range", size, hi_end, step)
342
+
343
+ low_size = symbolic_helper._size_helper(
344
+ g, low_indices, g.op("Constant", value_t=torch.tensor(0))
345
+ )
346
+ hi_size = symbolic_helper._size_helper(
347
+ g, hi_indices, g.op("Constant", value_t=torch.tensor(0))
348
+ )
349
+
350
+ ndim = symbolic_helper._get_tensor_rank(input)
351
+ assert ndim is not None
352
+ perm = list(range(0, ndim))
353
+ perm.append(perm.pop(dimension))
354
+
355
+ unsqueeze_list = []
356
+ loop_condition = g.op("Constant", value_t=torch.tensor(1))
357
+ loop_condition = g.op(
358
+ "Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL
359
+ )
360
+ loop_len = g.op("Min", low_size, hi_size)
361
+
362
+ loop, (loop_context,), _ = jit_utils.add_op_with_blocks(
363
+ g, "Loop", loop_len, loop_condition, n_blocks=1
364
+ )
365
+
366
+ loop_block = loop_context.block
367
+ block_input_iter = utils._add_input_to_block(loop_block)
368
+ # FIXME(justinchuby): cond is unused?
369
+ cond = utils._add_input_to_block(loop_block)
370
+
371
+ starts = loop_context.op("Gather", low_indices, block_input_iter)
372
+ ends = loop_context.op("Gather", hi_indices, block_input_iter)
373
+ axes = loop_context.op("Constant", value_t=torch.tensor([2]))
374
+ starts = symbolic_helper._unsqueeze_helper(loop_context, starts, [0])
375
+ ends = symbolic_helper._unsqueeze_helper(loop_context, ends, [0])
376
+ stack = loop_context.op("Slice", input, starts, ends, axes)
377
+
378
+ unsqueeze = symbolic_helper._unsqueeze_helper(
379
+ loop_context, loop_context.op("Transpose", stack, perm_i=perm), [dimension]
380
+ )
381
+ unsqueeze_list.append(unsqueeze)
382
+ concat = loop_context.op("Concat", *unsqueeze_list, axis_i=0)
383
+
384
+ cond_out = loop_context.op(
385
+ "Cast", loop_condition, _C_onnx.TensorProtoDataType.BOOL
386
+ )
387
+ utils._add_output_to_block(loop_block, cond_out)
388
+ utils._add_output_to_block(loop_block, concat)
389
+
390
+ loop_output = loop.node().output()
391
+ perm = [0, 1, 2, 3, 4]
392
+ perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
393
+ transpose = g.op("Transpose", loop_output, perm_i=perm)
394
+ squeeze = symbolic_helper._squeeze_helper(g, transpose, [0])
395
+
396
+ return squeeze
397
+
398
+ return symbolic_helper._unimplemented("Unfold", "input size not accessible")
399
+
400
+
401
+ @_onnx_symbolic("aten::tensordot")
402
+ @symbolic_helper.parse_args("v", "v", "is", "is", "v")
403
+ @_beartype.beartype
404
+ def tensordot(g: jit_utils.GraphContext, input_a, input_b, dims_a, dims_b, out=None):
405
+ if out is not None:
406
+ symbolic_helper._unimplemented(
407
+ "Tensordot", "Out parameter is not supported for tensordot."
408
+ )
409
+
410
+ dim_count_a = symbolic_helper._get_tensor_rank(input_a)
411
+ if dim_count_a is None:
412
+ raise errors.SymbolicValueError(
413
+ "Unsupported: ONNX export of tensordot for tensor(input_a) of unknown rank.",
414
+ input_a,
415
+ )
416
+
417
+ dim_count_b = symbolic_helper._get_tensor_rank(input_b)
418
+ if dim_count_b is None:
419
+ raise errors.SymbolicValueError(
420
+ "Unsupported: ONNX export of tensordot for tensor(input_b) of unknown rank.",
421
+ input_b,
422
+ )
423
+
424
+ dims_a = [
425
+ (dims_a[i] + dim_count_a) if (dims_a[i] < 0) else dims_a[i]
426
+ for i in range(len(dims_a))
427
+ ]
428
+ dims_b = [
429
+ (dims_b[i] + dim_count_b) if (dims_b[i] < 0) else dims_b[i]
430
+ for i in range(len(dims_b))
431
+ ]
432
+
433
+ left_dims_a = [i for i in range(dim_count_a) if (i not in dims_a)]
434
+ left_dims_b = [i for i in range(dim_count_b) if (i not in dims_b)]
435
+
436
+ new_input_a = opset9.permute(g, input_a, left_dims_a + dims_a)
437
+ new_input_b = opset9.permute(g, input_b, dims_b + left_dims_b)
438
+
439
+ input_shape = g.op("Shape", new_input_a)
440
+ left_sizes_a = symbolic_helper._slice_helper(
441
+ g, input_shape, axes=[0], starts=[0], ends=[len(left_dims_a)]
442
+ )
443
+ shape_sizes = [
444
+ left_sizes_a,
445
+ g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
446
+ ]
447
+ output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
448
+
449
+ input_shape = g.op("Shape", output_a)
450
+ slices = symbolic_helper._slice_helper(
451
+ g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
452
+ )
453
+ shape_sizes = [
454
+ g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
455
+ slices,
456
+ ]
457
+ output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
458
+
459
+ input_shape = g.op("Shape", new_input_b)
460
+ left_sizes_b = symbolic_helper._slice_helper(
461
+ g, input_shape, axes=[0], starts=[len(dims_b)], ends=[sys.maxsize]
462
+ )
463
+ slices = symbolic_helper._slice_helper(
464
+ g, input_shape, axes=[0], starts=[0], ends=[len(dims_b)]
465
+ )
466
+ shape_sizes = [
467
+ slices,
468
+ g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
469
+ ]
470
+ output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
471
+
472
+ input_shape = g.op("Shape", output_b)
473
+ slices = symbolic_helper._slice_helper(
474
+ g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
475
+ )
476
+ shape_sizes = [
477
+ g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
478
+ slices,
479
+ ]
480
+ output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
481
+
482
+ output = einsum(g, "ij,jk->ik", g.op("prim::ListConstruct", *[output_a, output_b]))
483
+
484
+ shape_sizes = [left_sizes_a, left_sizes_b]
485
+ return opset9._reshape_from_tensor(g, output, shape_sizes)
venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset14.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This file exports ONNX ops for opset 14.
2
+
3
+ Note [ONNX operators that are added/updated in opset 14]
4
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5
+ New operators:
6
+ HardSwish, Trilu
7
+
8
+ Updated operators:
9
+ Reshape
10
+ Add, Sub, Mul, Div
11
+ GRU, LSTM, RNN
12
+ BatchNorm, Cumsum, Relu
13
+ """
14
+
15
+ # EDITING THIS FILE? READ THIS FIRST!
16
+ # see Note [Edit Symbolic Files] in README.md
17
+ from __future__ import annotations
18
+
19
+ import functools
20
+ from typing import Optional
21
+
22
+ import torch
23
+ from torch.onnx import _constants, _type_utils, symbolic_helper
24
+ from torch.onnx._globals import GLOBALS
25
+ from torch.onnx._internal import _beartype, jit_utils, registration
26
+
27
+ __all__ = [
28
+ "hardswish",
29
+ "tril",
30
+ "triu",
31
+ "reshape",
32
+ "batch_norm",
33
+ "quantized_hardswish",
34
+ "scaled_dot_product_attention",
35
+ ]
36
+
37
+ _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=14)
38
+
39
+
40
+ @_onnx_symbolic("aten::hardswish")
41
+ @symbolic_helper.parse_args("v")
42
+ @_beartype.beartype
43
+ def hardswish(g: jit_utils.GraphContext, self):
44
+ return g.op("HardSwish", self)
45
+
46
+
47
+ @_onnx_symbolic("aten::tril")
48
+ @_beartype.beartype
49
+ def tril(g: jit_utils.GraphContext, self, diagonal, out=None):
50
+ return g.op("Trilu", self, diagonal, upper_i=0)
51
+
52
+
53
+ @_onnx_symbolic("aten::triu")
54
+ @_beartype.beartype
55
+ def triu(g: jit_utils.GraphContext, self, diagonal, out=None):
56
+ return g.op("Trilu", self, diagonal, upper_i=1)
57
+
58
+
59
+ @_onnx_symbolic("aten::reshape")
60
+ @symbolic_helper.quantized_args(True)
61
+ @symbolic_helper.parse_args("v", "v")
62
+ @_beartype.beartype
63
+ def reshape(g: jit_utils.GraphContext, self, shape):
64
+ # NOTE: Due to bug in ORT https://github.com/microsoft/onnxruntime/issues/10664
65
+ # Reshape export cannot utilize the new allowzero attribute introduced in opset 14.
66
+ return symbolic_helper._reshape_helper(g, self, shape, allowzero=0)
67
+
68
+
69
+ @_onnx_symbolic("aten::batch_norm")
70
+ @symbolic_helper.parse_args("v", "v", "v", "v", "v", "i", "f", "f", "i")
71
+ @_beartype.beartype
72
+ def batch_norm(
73
+ g: jit_utils.GraphContext,
74
+ input,
75
+ weight,
76
+ bias,
77
+ running_mean,
78
+ running_var,
79
+ training,
80
+ momentum,
81
+ eps,
82
+ cudnn_enabled,
83
+ ):
84
+ if (
85
+ torch.is_autocast_enabled()
86
+ and not symbolic_helper.args_have_same_dtype(
87
+ [input, weight, bias, running_mean, running_var]
88
+ )
89
+ and GLOBALS.export_onnx_opset_version < 15
90
+ ):
91
+ return symbolic_helper._onnx_opset_unsupported_detailed(
92
+ "BatchNormalization",
93
+ 14,
94
+ 15,
95
+ "All input tensors must have the same `dtype`."
96
+ " Turn off Autocast or export using opset version 15.",
97
+ input,
98
+ )
99
+
100
+ symbolic_helper.check_training_mode(training, "batch_norm")
101
+ weight, bias, running_mean, running_var = symbolic_helper._batchnorm_helper(
102
+ g, input, weight, bias, running_mean, running_var
103
+ )
104
+ out = g.op(
105
+ "BatchNormalization",
106
+ input,
107
+ weight,
108
+ bias,
109
+ running_mean,
110
+ running_var,
111
+ epsilon_f=eps,
112
+ momentum_f=1 - momentum,
113
+ training_mode_i=0 if not training else 1,
114
+ outputs=1 if not training else 3,
115
+ )
116
+ if not training:
117
+ return out
118
+ else:
119
+ res, new_running_mean, new_running_var = out
120
+ new_running_mean.setType(running_mean.type())
121
+ new_running_var.setType(running_var.type())
122
+ return res
123
+
124
+
125
+ @_onnx_symbolic("quantized::hardswish")
126
+ @_beartype.beartype
127
+ def quantized_hardswish(g: jit_utils.GraphContext, x, op_scale, op_zero_point):
128
+ x, _, _, _ = symbolic_helper.dequantize_helper(g, x)
129
+
130
+ output = hardswish(g, x)
131
+
132
+ return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point)
133
+
134
+
135
+ # Ported from
136
+ # https://github.com/microsoft/onnxscript/blob/6b1b81700b4523f31d8c6d3321e5d8ef5d42b764/onnxscript/function_libs/torch_aten/ops/nn.py#L1504
137
+ # aten_scaled_dot_product_attention
138
+ # NOTE: Need op.Trilu
139
+ @_onnx_symbolic("aten::scaled_dot_product_attention")
140
+ @symbolic_helper.parse_args("v", "v", "v", "v", "f", "b", "v")
141
+ @_beartype.beartype
142
+ def scaled_dot_product_attention(
143
+ g: jit_utils.GraphContext,
144
+ query: torch._C.Value,
145
+ key: torch._C.Value,
146
+ value: torch._C.Value,
147
+ attn_mask: Optional[torch._C.Value] = None,
148
+ dropout_p: float = 0.0,
149
+ is_causal: bool = False,
150
+ scale: Optional[torch._C.Value] = None,
151
+ ):
152
+ assert (not is_causal) or (
153
+ is_causal and symbolic_helper._is_none(attn_mask)
154
+ ), "is_causal and attn_mask cannot be set at the same time"
155
+
156
+ scale = symbolic_helper._maybe_get_const(scale, "f")
157
+ if symbolic_helper._is_none(scale):
158
+ scale = _attention_scale(g, query)
159
+
160
+ if is_causal:
161
+ attn_mask = _causal_attention_mask(g, query, key)
162
+
163
+ # Swap the last two axes of key
164
+ # NOTE: onnx-script has different logic here, because the attribute perms in
165
+ # transpose needs list of ints
166
+ key_shape_builtin = symbolic_helper._get_tensor_rank(key)
167
+ key_transposed_axes = list(range(key_shape_builtin))
168
+ key_transposed_axes[-1], key_transposed_axes[-2] = (
169
+ key_transposed_axes[-2],
170
+ key_transposed_axes[-1],
171
+ )
172
+ key_transposed = g.op("Transpose", key, perm_i=key_transposed_axes)
173
+
174
+ # https://github.com/pytorch/pytorch/blob/12da0c70378b5be9135c6fda62a9863bce4a4818/aten/src/ATen/native/transformers/attention.cpp#L653
175
+ # Scale q, k before matmul for stability see https://tinyurl.com/sudb9s96 for math
176
+ query_scaled = g.op("Mul", query, g.op("Sqrt", scale))
177
+ key_transposed_scaled = g.op("Mul", key_transposed, g.op("Sqrt", scale))
178
+ mul_qk = g.op("MatMul", query_scaled, key_transposed_scaled)
179
+
180
+ if symbolic_helper._is_none(attn_mask):
181
+ mul_qk_add = mul_qk
182
+ elif (
183
+ _type_utils.JitScalarType.from_value(attn_mask)
184
+ == _type_utils.JitScalarType.BOOL
185
+ ):
186
+ # Turn the Boolean mask to float: attn_mask.masked_fill(not attn_mask, -float('inf'))
187
+ const_zero = g.op("Constant", value_t=torch.tensor([0.0]))
188
+ const_neg_inf = g.op("Constant", value_t=torch.tensor([-float("inf")]))
189
+ attn_mask = g.op("Where", attn_mask, const_zero, const_neg_inf)
190
+ mul_qk_add = g.op("Add", mul_qk, attn_mask)
191
+ elif _type_utils.JitScalarType.from_value(attn_mask) in (
192
+ _type_utils.JitScalarType.FLOAT,
193
+ _type_utils.JitScalarType.HALF,
194
+ _type_utils.JitScalarType.BFLOAT16,
195
+ ):
196
+ mul_qk_add = g.op("Add", mul_qk, attn_mask)
197
+ else:
198
+ raise ValueError(
199
+ f"Unsupported type for attn_mask: {_type_utils.JitScalarType.from_value(attn_mask)}"
200
+ )
201
+
202
+ attn_weight = g.op("Softmax", mul_qk_add, axis_i=-1)
203
+
204
+ if dropout_p != 0:
205
+ attn_weight = g.op(
206
+ "Dropout",
207
+ attn_weight,
208
+ g.op("Constant", value_t=torch.tensor(dropout_p, dtype=torch.float)),
209
+ )
210
+
211
+ return g.op("MatMul", attn_weight, value)
212
+
213
+
214
+ @_beartype.beartype
215
+ def _attention_scale(
216
+ g: jit_utils.GraphContext, query: torch._C.Value
217
+ ) -> torch._C.Value:
218
+ """Calculate the scale factor for the attention result.
219
+
220
+ Args:
221
+ query: Tensor of shape [..., L, E]
222
+
223
+ Returns:
224
+ Scalar scale factor := 1 / math.sqrt(query.size(-1))
225
+ """
226
+ query_shape = g.op("Shape", query)
227
+ query_shape_last = g.op(
228
+ "Slice",
229
+ query_shape,
230
+ g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64)),
231
+ g.op(
232
+ "Constant", value_t=torch.tensor([_constants.INT64_MAX], dtype=torch.int64)
233
+ ),
234
+ )
235
+ embedding_size = g.op(
236
+ "Cast",
237
+ query_shape_last,
238
+ to_i=_type_utils.JitScalarType.from_value(query).onnx_type(),
239
+ )
240
+ const_one = g.op("Constant", value_t=torch.tensor([1.0], dtype=torch.float))
241
+ scale = g.op("Div", const_one, g.op("Sqrt", embedding_size))
242
+ # Add a Cast to convert the scale back to original type
243
+ scale = g.op(
244
+ "Cast",
245
+ scale,
246
+ to_i=_type_utils.JitScalarType.from_value(query).onnx_type(),
247
+ )
248
+ return scale
249
+
250
+
251
+ @_beartype.beartype
252
+ def _causal_attention_mask(
253
+ g: jit_utils.GraphContext, query: torch._C.Value, key: torch._C.Value
254
+ ) -> torch._C.Value:
255
+ """Create a causal mask for the given query and key tensors.
256
+
257
+ Equivalent to::
258
+ mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
259
+ attn_mask = torch.zeros(L, S, dtype=torch.float)
260
+ attn_mask = attn_mask.masked_fill(not mask, -float('inf'))
261
+
262
+ Args:
263
+ query: Tensor of shape [..., L, E]
264
+ key: Tensor of shape [..., S, E]
265
+
266
+ Returns:
267
+ Tensor of shape [L, S]
268
+ """
269
+
270
+ query_shape = g.op("Shape", query)
271
+ key_shape = g.op("Shape", key)
272
+
273
+ last_idx = g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64))
274
+ second_last_idx = g.op("Constant", value_t=torch.tensor([-2], dtype=torch.int64))
275
+ target_length = g.op("Slice", query_shape, second_last_idx, last_idx)
276
+ source_length = g.op("Slice", key_shape, second_last_idx, last_idx)
277
+ # attn_mask = torch.ones(L, S) := {
278
+ size = g.op("Concat", target_length, source_length, axis_i=0)
279
+ const_one = g.op("Constant", value_t=torch.tensor([1.0]))
280
+ attn_mask = g.op("Expand", const_one, size)
281
+ # }
282
+ attn_mask = g.op("Trilu", attn_mask, upper_i=0)
283
+ # The causal mask has 0s in the lower triangle and -inf in the upper triangle.
284
+ const_zero = g.op("Constant", value_t=torch.tensor([0.0]))
285
+ const_neg_inf = g.op("Constant", value_t=torch.tensor([-float("inf")]))
286
+ attn_mask = g.op(
287
+ "Where", g.op("Equal", attn_mask, const_zero), const_neg_inf, const_zero
288
+ )
289
+ return attn_mask
venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset8.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Note [ONNX operators that are added/updated from opset 8 to opset 9]
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
+ New operators:
5
+ Compress
6
+ ConstantOfShape
7
+ EyeLike
8
+ MaxUnpool
9
+ OneHot
10
+ Sinh
11
+ Cosh
12
+ Asinh
13
+ Acosh
14
+ Atanh
15
+ Shrink
16
+ IsNaN
17
+ Sign
18
+ Erf
19
+ Scatter
20
+ Where
21
+ NonZero
22
+ TfIdfVectorizer
23
+ MeanVarianceNormalization
24
+
25
+ Updated operators:
26
+ BatchNormalization: removed spatial attribute.
27
+ Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported.
28
+ Cast: more data types{string} supported.
29
+ Upsample: moved scales from attribute to input.
30
+ Scan
31
+ """
32
+
33
+ import functools
34
+ import warnings
35
+
36
+ import torch
37
+ from torch._C import _onnx as _C_onnx
38
+ from torch.onnx import _type_utils, errors, symbolic_helper, symbolic_opset9 as opset9
39
+ from torch.onnx._internal import jit_utils, registration
40
+
41
+ _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=8)
42
+
43
+ block_listed_operators = (
44
+ "nonzero",
45
+ "where",
46
+ "scatter",
47
+ "scatter_add",
48
+ "erf",
49
+ "sign",
50
+ "isnan",
51
+ "gather",
52
+ "arange",
53
+ "masked_fill",
54
+ "index_fill",
55
+ "index_copy",
56
+ "repeat_interleave",
57
+ "any",
58
+ "all",
59
+ )
60
+
61
+ for block_listed_op in block_listed_operators:
62
+ _onnx_symbolic(f"aten::{block_listed_op}")(
63
+ symbolic_helper._block_list_in_opset(block_listed_op)
64
+ )
65
+
66
+
67
+ def _apply_params(*args, **kwargs):
68
+ """Returns a decorator that calls the decorated (higher-order) function with the given parameters."""
69
+
70
+ def _apply(fn):
71
+ return fn(*args, **kwargs)
72
+
73
+ return _apply
74
+
75
+
76
+ @_onnx_symbolic(
77
+ "aten::upsample_nearest1d",
78
+ decorate=[_apply_params("upsample_nearest1d", 3, "nearest")],
79
+ )
80
+ @_onnx_symbolic(
81
+ "aten::upsample_nearest2d",
82
+ decorate=[_apply_params("upsample_nearest2d", 4, "nearest")],
83
+ )
84
+ @_onnx_symbolic(
85
+ "aten::upsample_nearest3d",
86
+ decorate=[_apply_params("upsample_nearest3d", 5, "nearest")],
87
+ )
88
+ @_onnx_symbolic(
89
+ "aten::upsample_linear1d",
90
+ decorate=[_apply_params("upsample_linear1d", 3, "linear")],
91
+ )
92
+ @_onnx_symbolic(
93
+ "aten::upsample_bilinear2d",
94
+ decorate=[_apply_params("upsample_bilinear2d", 4, "linear")],
95
+ )
96
+ @_onnx_symbolic(
97
+ "aten::upsample_trilinear3d",
98
+ decorate=[_apply_params("upsample_trilinear3d", 5, "linear")],
99
+ )
100
+ def _interpolate(name, dim, interpolate_mode):
101
+ def symbolic_fn(g, input, output_size, *args):
102
+ scales, align_corners = symbolic_helper._get_interpolate_attributes(
103
+ g, interpolate_mode, args
104
+ )
105
+ symbolic_helper._interpolate_warning(interpolate_mode)
106
+ align_corners = symbolic_helper._maybe_get_scalar(align_corners)
107
+ if align_corners:
108
+ return symbolic_helper._unimplemented(name, "align_corners == True", input)
109
+ output_size = symbolic_helper._maybe_get_const(output_size, "is")
110
+ if symbolic_helper._is_value(output_size):
111
+ return symbolic_helper._unimplemented(
112
+ name, "torch._C.Value (output_size) indexing"
113
+ )
114
+ if scales is None:
115
+ scales = [
116
+ 1.0
117
+ if i < 2
118
+ else float(output_size[-(dim - i)])
119
+ / float(input.type().sizes()[-(dim - i)])
120
+ for i in range(0, dim)
121
+ ]
122
+ return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales)
123
+
124
+ return symbolic_fn
125
+
126
+
127
+ @_onnx_symbolic("aten::__interpolate")
128
+ def __interpolate(
129
+ g: jit_utils.GraphContext,
130
+ input,
131
+ size,
132
+ scale_factor,
133
+ mode,
134
+ align_corners,
135
+ recompute_scale_factor,
136
+ antialias,
137
+ ):
138
+ align_corners = symbolic_helper._maybe_get_const(align_corners, "b")
139
+ if not symbolic_helper._is_none(align_corners) and align_corners:
140
+ return symbolic_helper._unimplemented("interpolate", "align_corners == True")
141
+
142
+ if not symbolic_helper._is_none(scale_factor) and symbolic_helper._is_value(
143
+ scale_factor
144
+ ):
145
+ return symbolic_helper._unimplemented(
146
+ "interpolate", "dynamic scales in opset 8"
147
+ )
148
+
149
+ if not symbolic_helper._is_none(size) and symbolic_helper._is_value(size):
150
+ return symbolic_helper._unimplemented("interpolate", "dynamic size in opset 8")
151
+
152
+ scales, mode = symbolic_helper._interpolate_get_scales_and_mode(
153
+ g, input, size, scale_factor, mode, align_corners
154
+ )
155
+ return g.op("Upsample", input, mode_s=mode, scales_f=scales)
156
+
157
+
158
+ # NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation
159
+ # issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which
160
+ # is lost after casting.
161
+ def _try_cast_integer_to_float(g: jit_utils.GraphContext, *args):
162
+ floating_scalar_types = {
163
+ _type_utils.JitScalarType.HALF,
164
+ _type_utils.JitScalarType.FLOAT,
165
+ _type_utils.JitScalarType.DOUBLE,
166
+ }
167
+ old_type = None
168
+ # Cast the input tensor to Float if its scalarType is known and is not floating number.
169
+ # If casting is performed, return the old scalarType, otherwise return None.
170
+ arg0_type = _type_utils.JitScalarType.from_value(
171
+ args[0], _type_utils.JitScalarType.UNDEFINED
172
+ )
173
+ if arg0_type != _type_utils.JitScalarType.UNDEFINED:
174
+ old_type = arg0_type
175
+ if old_type not in floating_scalar_types:
176
+ old_type = old_type.scalar_name()
177
+ args = tuple(
178
+ g.op("Cast", arg, to_i=_C_onnx.TensorProtoDataType.FLOAT)
179
+ for arg in args
180
+ )
181
+ else:
182
+ return (None,) + args
183
+ else:
184
+ warnings.warn(
185
+ "Only floating datatype is supported for these operators: "
186
+ "{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause "
187
+ "the onnx model to be incorrect, if inputs have integer datatypes."
188
+ )
189
+ return (old_type,) + args
190
+
191
+
192
+ def _cast_to_type(g: jit_utils.GraphContext, input, to_type):
193
+ if to_type is None:
194
+ return input
195
+ return getattr(opset9, f"_cast_{to_type}")(g, input, False)
196
+
197
+
198
+ def _comparison_operator(g: jit_utils.GraphContext, input, other, op_name):
199
+ other = symbolic_helper._maybe_get_scalar(other)
200
+ other = symbolic_helper._if_scalar_type_as(other, input)
201
+ _, input, other = _try_cast_integer_to_float(g, input, other)
202
+ return g.op(op_name, input, other)
203
+
204
+
205
+ # NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten},
206
+ # integer input type not supported in opset8. Cast to float if possible.
207
+ @_onnx_symbolic("aten::gt")
208
+ def gt(g: jit_utils.GraphContext, input, other):
209
+ return _comparison_operator(g, input, other, "Greater")
210
+
211
+
212
+ @_onnx_symbolic("aten::lt")
213
+ def lt(g: jit_utils.GraphContext, input, other):
214
+ return _comparison_operator(g, input, other, "Less")
215
+
216
+
217
+ @_onnx_symbolic("aten::bmm")
218
+ def bmm(g: jit_utils.GraphContext, self, other):
219
+ if symbolic_helper._try_get_scalar_type(self):
220
+ old_type, self, other = _try_cast_integer_to_float(g, self, other)
221
+ return _cast_to_type(g, g.op("MatMul", self, other), old_type)
222
+ else:
223
+ return g.op("MatMul", self, other)
224
+
225
+
226
+ @_onnx_symbolic("aten::matmul")
227
+ def matmul(g: jit_utils.GraphContext, self, other):
228
+ return bmm(g, self, other)
229
+
230
+
231
+ @_onnx_symbolic("aten::prelu")
232
+ def prelu(g: jit_utils.GraphContext, self, weight):
233
+ self_rank = symbolic_helper._get_tensor_rank(self)
234
+ weight_sizes = symbolic_helper._get_tensor_sizes(weight)
235
+ if self_rank is not None and self_rank > 2:
236
+ weight = g.op("Unsqueeze", weight, axes_i=list(range(1, self_rank - 1)))
237
+ elif self_rank == 0 and weight_sizes == [1]:
238
+ # self and weight are both scalar but weight has rank == 1, squeeze weight.
239
+ weight = symbolic_helper._squeeze_helper(g, weight, [0])
240
+ if symbolic_helper._try_get_scalar_type(self):
241
+ old_type, self, weight = _try_cast_integer_to_float(g, self, weight)
242
+ return _cast_to_type(g, g.op("PRelu", self, weight), old_type)
243
+ else:
244
+ return g.op("PRelu", self, weight)
245
+
246
+
247
+ @_onnx_symbolic("aten::mm")
248
+ def mm(g: jit_utils.GraphContext, self, other):
249
+ # Create a dummy C tensor. Only needed for API purposes, the value is
250
+ # since beta = 0
251
+ scalar_type = symbolic_helper._try_get_scalar_type(self, other)
252
+ if scalar_type is None:
253
+ raise errors.SymbolicValueError(
254
+ "mm can only operate on tensors with known types", self
255
+ )
256
+ zero_constant = g.op(
257
+ "Constant",
258
+ value_t=torch.tensor([0], dtype=scalar_type.dtype()),
259
+ )
260
+
261
+ if symbolic_helper._try_get_scalar_type(self):
262
+ old_type, self, other, zero_constant = _try_cast_integer_to_float(
263
+ g, self, other, zero_constant
264
+ )
265
+ return _cast_to_type(
266
+ g,
267
+ g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0),
268
+ old_type,
269
+ )
270
+ return g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0)
271
+
272
+
273
+ @_onnx_symbolic("aten::addmm")
274
+ @symbolic_helper.parse_args("v", "v", "v", "t", "t")
275
+ def addmm(g: jit_utils.GraphContext, self, mat1, mat2, beta, alpha):
276
+ if symbolic_helper._try_get_scalar_type(self):
277
+ old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2)
278
+ return _cast_to_type(
279
+ g,
280
+ g.op(
281
+ "Gemm",
282
+ mat1,
283
+ mat2,
284
+ self,
285
+ beta_f=symbolic_helper._scalar(beta),
286
+ alpha_f=symbolic_helper._scalar(alpha),
287
+ ),
288
+ old_type,
289
+ )
290
+ else:
291
+ return g.op(
292
+ "Gemm",
293
+ mat1,
294
+ mat2,
295
+ self,
296
+ beta_f=symbolic_helper._scalar(beta),
297
+ alpha_f=symbolic_helper._scalar(alpha),
298
+ )
299
+
300
+
301
+ @_onnx_symbolic("aten::flatten")
302
+ def flatten(g: jit_utils.GraphContext, input, start_dim, end_dim):
303
+ start_dim_i = symbolic_helper._get_const(start_dim, "i", "start_dim")
304
+ end_dim_i = symbolic_helper._get_const(end_dim, "i", "end_dim")
305
+
306
+ dim = input.type().dim()
307
+ if end_dim_i < 0:
308
+ end_dim_i = dim + end_dim_i
309
+ # use ONNX's Flatten operator for cases where the output shape is 2D
310
+ if start_dim_i == 1 and end_dim_i == dim - 1:
311
+ if symbolic_helper._try_get_scalar_type(input):
312
+ old_type, input = _try_cast_integer_to_float(g, input)
313
+ return _cast_to_type(
314
+ g, g.op("Flatten", input, axis_i=start_dim_i), old_type
315
+ )
316
+ else:
317
+ return g.op("Flatten", input, axis_i=start_dim_i)
318
+ if start_dim_i == 0 and end_dim_i == dim - 2:
319
+ if symbolic_helper._try_get_scalar_type(input):
320
+ old_type, input = _try_cast_integer_to_float(g, input)
321
+ return _cast_to_type(
322
+ g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type
323
+ )
324
+ else:
325
+ return g.op("Flatten", input, axis_i=end_dim_i + 1)
326
+
327
+ return opset9.flatten(g, input, start_dim, end_dim)
328
+
329
+
330
+ def _constant_fill(g: jit_utils.GraphContext, sizes, dtype: int, const_value):
331
+ if dtype is None:
332
+ scalar_type = _type_utils.JitScalarType.FLOAT
333
+ else:
334
+ scalar_type = _type_utils.JitScalarType(dtype)
335
+ if not scalar_type.dtype().is_floating_point:
336
+ result = g.op(
337
+ "ConstantFill",
338
+ sizes,
339
+ dtype_i=_type_utils.JitScalarType.FLOAT.onnx_type(),
340
+ input_as_shape_i=1,
341
+ value_f=const_value,
342
+ )
343
+ return g.op("Cast", result, to_i=scalar_type.onnx_type())
344
+ else:
345
+ return g.op(
346
+ "ConstantFill",
347
+ sizes,
348
+ dtype_i=scalar_type.onnx_type(),
349
+ input_as_shape_i=1,
350
+ value_f=const_value,
351
+ )
352
+
353
+
354
+ @_onnx_symbolic("aten::empty")
355
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v")
356
+ def empty(
357
+ g: jit_utils.GraphContext,
358
+ sizes,
359
+ dtype,
360
+ layout,
361
+ device,
362
+ pin_memory=False,
363
+ memory_format=None,
364
+ ):
365
+ return zeros(g, sizes, dtype, layout, device, pin_memory)
366
+
367
+
368
+ @_onnx_symbolic("aten::empty_like")
369
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v")
370
+ def empty_like(
371
+ g: jit_utils.GraphContext,
372
+ input,
373
+ dtype,
374
+ layout,
375
+ device,
376
+ pin_memory=False,
377
+ memory_format=None,
378
+ ):
379
+ return zeros_like(g, input, dtype, layout, device, pin_memory)
380
+
381
+
382
+ @_onnx_symbolic("aten::zeros")
383
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v")
384
+ def zeros(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False):
385
+ # NOTE: no way to set device and layout in ONNX, so we ignore it
386
+ return _constant_fill(g, sizes, dtype, 0)
387
+
388
+
389
+ @_onnx_symbolic("aten::zeros_like")
390
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v")
391
+ def zeros_like(
392
+ g: jit_utils.GraphContext,
393
+ input,
394
+ dtype,
395
+ layout,
396
+ device,
397
+ pin_memory=False,
398
+ memory_format=None,
399
+ ):
400
+ shape = g.op("Shape", input)
401
+ return _constant_fill(g, shape, dtype, 0)
402
+
403
+
404
+ @_onnx_symbolic("aten::ones")
405
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v")
406
+ def ones(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False):
407
+ return _constant_fill(g, sizes, dtype, 1)
408
+
409
+
410
+ @_onnx_symbolic("aten::ones_like")
411
+ @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v")
412
+ def ones_like(
413
+ g: jit_utils.GraphContext,
414
+ input,
415
+ dtype,
416
+ layout,
417
+ device,
418
+ pin_memory=False,
419
+ memory_format=None,
420
+ ):
421
+ shape = g.op("Shape", input)
422
+ return _constant_fill(g, shape, dtype, 1)
423
+
424
+
425
+ @_onnx_symbolic("aten::full")
426
+ def full(
427
+ g: jit_utils.GraphContext, sizes, value, dtype, layout, device, pin_memory=False
428
+ ):
429
+ const_value = symbolic_helper._maybe_get_const(value, "t")
430
+ if symbolic_helper._is_value(const_value):
431
+ tmp = zeros(g, sizes, dtype, layout, device)
432
+ return opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1)))
433
+ else:
434
+ dtype = symbolic_helper._get_const(dtype, "i", "dtype")
435
+ return _constant_fill(g, sizes, dtype, const_value)
436
+
437
+
438
+ @_onnx_symbolic("aten::full_like")
439
+ @symbolic_helper.parse_args("v", "f", "i", "v", "v", "v", "v")
440
+ def full_like(
441
+ g: jit_utils.GraphContext,
442
+ input,
443
+ fill_value,
444
+ dtype,
445
+ layout,
446
+ device,
447
+ pin_memory=False,
448
+ memory_format=None,
449
+ ):
450
+ shape = g.op("Shape", input)
451
+ return _constant_fill(g, shape, dtype, fill_value)
452
+
453
+
454
+ @_onnx_symbolic("aten::repeat")
455
+ def repeat(g: jit_utils.GraphContext, self, repeats):
456
+ if not symbolic_helper._is_value(repeats):
457
+ repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
458
+ if symbolic_helper._is_packed_list(repeats):
459
+ repeat_size_len = len(symbolic_helper._unpack_list(repeats))
460
+ else:
461
+ const_repeats = symbolic_helper._maybe_get_const(repeats, "is")
462
+ repeat_size_len = len(const_repeats)
463
+ if self.isCompleteTensor():
464
+ sizes = self.type().sizes()
465
+ diff_dims = repeat_size_len - len(sizes)
466
+ if diff_dims > 0:
467
+ self = opset9.view(
468
+ g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes))
469
+ )
470
+ return g.op("Tile", self, repeats)
venv/lib/python3.10/site-packages/torch/onnx/symbolic_opset9.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/checkpoint_utils.cpython-310.pyc ADDED
Binary file (1.46 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/common_state_dict.cpython-310.pyc ADDED
Binary file (3.68 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/ddp_under_dist_autograd_test.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/distributed_test.cpython-310.pyc ADDED
Binary file (253 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/distributed_utils.cpython-310.pyc ADDED
Binary file (2.48 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/fake_pg.cpython-310.pyc ADDED
Binary file (1.41 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/multi_threaded_pg.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/pipe_with_ddp_test.cpython-310.pyc ADDED
Binary file (4.78 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__pycache__/rpc_utils.cpython-310.pyc ADDED
Binary file (4.97 kB). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (210 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (1.84 kB). View file