Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/10.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/9.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/testing/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/testing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/__pycache__/_comparison.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/__pycache__/_creation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_comparison.py +1575 -0
- venv/lib/python3.10/site-packages/torch/testing/_creation.py +267 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_cuda.py +270 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py +1525 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_dist_composable.py +111 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_dtype.py +134 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_optimizers.py +2033 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/composite_compliance.py +581 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/control_flow_opinfo_db.py +77 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/custom_op_db.py +456 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/dist_utils.py +206 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/sharded_tensor/_test_st_common.py +66 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/test_common.py +42 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/checkpoint_utils.py +51 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/common_state_dict.py +113 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/ddp_under_dist_autograd_test.py +733 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/distributed_test.py +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/distributed_utils.py +66 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/fake_pg.py +32 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/multi_threaded_pg.py +494 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/pipe_with_ddp_test.py +149 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/rpc_utils.py +185 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/inductor_utils.py +87 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/jit_metaprogramming_utils.py +722 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/jit_utils.py +893 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/logging_utils.py +208 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__init__.py +4 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/refs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/core.py +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__init__.py +27 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/_masked.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/fft.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/linalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/signal.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/10.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7a8eb4ef8b3a4658ebc534a4b6dc5432f9eebd027d6bb12ceda7668ffdab87d
|
3 |
+
size 16778396
|
ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5ebc1128a44ae3c445a0a95f50ffb143ebf08760b3a98925f758af7b9ebea88
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5345922f7704d6731c97aa71da69444eeff5bfce98eb2a060ff29452a7c49fab
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/9.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ef841dd22ee9d4328da498d9ab5d68f09462ad5ea07251cb984e42c4e2e5c90
|
3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/torch/testing/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from torch._C import FileCheck as FileCheck
|
2 |
+
from ._comparison import assert_allclose, assert_close as assert_close
|
3 |
+
from ._creation import make_tensor as make_tensor
|
venv/lib/python3.10/site-packages/torch/testing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (347 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/__pycache__/_comparison.cpython-310.pyc
ADDED
Binary file (52.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/__pycache__/_creation.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_comparison.py
ADDED
@@ -0,0 +1,1575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import cmath
|
3 |
+
import collections.abc
|
4 |
+
import contextlib
|
5 |
+
import warnings
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Callable,
|
9 |
+
Collection,
|
10 |
+
Dict,
|
11 |
+
List,
|
12 |
+
NoReturn,
|
13 |
+
Optional,
|
14 |
+
Sequence,
|
15 |
+
Tuple,
|
16 |
+
Type,
|
17 |
+
Union,
|
18 |
+
)
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
try:
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
NUMPY_AVAILABLE = True
|
26 |
+
except ModuleNotFoundError:
|
27 |
+
NUMPY_AVAILABLE = False
|
28 |
+
|
29 |
+
|
30 |
+
class ErrorMeta(Exception):
|
31 |
+
"""Internal testing exception that makes that carries error metadata."""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self, type: Type[Exception], msg: str, *, id: Tuple[Any, ...] = ()
|
35 |
+
) -> None:
|
36 |
+
super().__init__(
|
37 |
+
"If you are a user and see this message during normal operation "
|
38 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
39 |
+
"If you are a developer and working on the comparison functions, please `raise ErrorMeta().to_error()` "
|
40 |
+
"for user facing errors."
|
41 |
+
)
|
42 |
+
self.type = type
|
43 |
+
self.msg = msg
|
44 |
+
self.id = id
|
45 |
+
|
46 |
+
def to_error(
|
47 |
+
self, msg: Optional[Union[str, Callable[[str], str]]] = None
|
48 |
+
) -> Exception:
|
49 |
+
if not isinstance(msg, str):
|
50 |
+
generated_msg = self.msg
|
51 |
+
if self.id:
|
52 |
+
generated_msg += f"\n\nThe failure occurred for item {''.join(str([item]) for item in self.id)}"
|
53 |
+
|
54 |
+
msg = msg(generated_msg) if callable(msg) else generated_msg
|
55 |
+
|
56 |
+
return self.type(msg)
|
57 |
+
|
58 |
+
|
59 |
+
# Some analysis of tolerance by logging tests from test_torch.py can be found in
|
60 |
+
# https://github.com/pytorch/pytorch/pull/32538.
|
61 |
+
# {dtype: (rtol, atol)}
|
62 |
+
_DTYPE_PRECISIONS = {
|
63 |
+
torch.float16: (0.001, 1e-5),
|
64 |
+
torch.bfloat16: (0.016, 1e-5),
|
65 |
+
torch.float32: (1.3e-6, 1e-5),
|
66 |
+
torch.float64: (1e-7, 1e-7),
|
67 |
+
torch.complex32: (0.001, 1e-5),
|
68 |
+
torch.complex64: (1.3e-6, 1e-5),
|
69 |
+
torch.complex128: (1e-7, 1e-7),
|
70 |
+
}
|
71 |
+
# The default tolerances of torch.float32 are used for quantized dtypes, because quantized tensors are compared in
|
72 |
+
# their dequantized and floating point representation. For more details see `TensorLikePair._compare_quantized_values`
|
73 |
+
_DTYPE_PRECISIONS.update(
|
74 |
+
dict.fromkeys(
|
75 |
+
(torch.quint8, torch.quint2x4, torch.quint4x2, torch.qint8, torch.qint32),
|
76 |
+
_DTYPE_PRECISIONS[torch.float32],
|
77 |
+
)
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def default_tolerances(
|
82 |
+
*inputs: Union[torch.Tensor, torch.dtype],
|
83 |
+
dtype_precisions: Optional[Dict[torch.dtype, Tuple[float, float]]] = None,
|
84 |
+
) -> Tuple[float, float]:
|
85 |
+
"""Returns the default absolute and relative testing tolerances for a set of inputs based on the dtype.
|
86 |
+
|
87 |
+
See :func:`assert_close` for a table of the default tolerance for each dtype.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
(Tuple[float, float]): Loosest tolerances of all input dtypes.
|
91 |
+
"""
|
92 |
+
dtypes = []
|
93 |
+
for input in inputs:
|
94 |
+
if isinstance(input, torch.Tensor):
|
95 |
+
dtypes.append(input.dtype)
|
96 |
+
elif isinstance(input, torch.dtype):
|
97 |
+
dtypes.append(input)
|
98 |
+
else:
|
99 |
+
raise TypeError(
|
100 |
+
f"Expected a torch.Tensor or a torch.dtype, but got {type(input)} instead."
|
101 |
+
)
|
102 |
+
dtype_precisions = dtype_precisions or _DTYPE_PRECISIONS
|
103 |
+
rtols, atols = zip(*[dtype_precisions.get(dtype, (0.0, 0.0)) for dtype in dtypes])
|
104 |
+
return max(rtols), max(atols)
|
105 |
+
|
106 |
+
|
107 |
+
def get_tolerances(
|
108 |
+
*inputs: Union[torch.Tensor, torch.dtype],
|
109 |
+
rtol: Optional[float],
|
110 |
+
atol: Optional[float],
|
111 |
+
id: Tuple[Any, ...] = (),
|
112 |
+
) -> Tuple[float, float]:
|
113 |
+
"""Gets absolute and relative to be used for numeric comparisons.
|
114 |
+
|
115 |
+
If both ``rtol`` and ``atol`` are specified, this is a no-op. If both are not specified, the return value of
|
116 |
+
:func:`default_tolerances` is used.
|
117 |
+
|
118 |
+
Raises:
|
119 |
+
ErrorMeta: With :class:`ValueError`, if only ``rtol`` or ``atol`` is specified.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
(Tuple[float, float]): Valid absolute and relative tolerances.
|
123 |
+
"""
|
124 |
+
if (rtol is None) ^ (atol is None):
|
125 |
+
# We require both tolerance to be omitted or specified, because specifying only one might lead to surprising
|
126 |
+
# results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0.
|
127 |
+
raise ErrorMeta(
|
128 |
+
ValueError,
|
129 |
+
f"Both 'rtol' and 'atol' must be either specified or omitted, "
|
130 |
+
f"but got no {'rtol' if rtol is None else 'atol'}.",
|
131 |
+
id=id,
|
132 |
+
)
|
133 |
+
elif rtol is not None and atol is not None:
|
134 |
+
return rtol, atol
|
135 |
+
else:
|
136 |
+
return default_tolerances(*inputs)
|
137 |
+
|
138 |
+
|
139 |
+
def _make_mismatch_msg(
|
140 |
+
*,
|
141 |
+
default_identifier: str,
|
142 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
143 |
+
extra: Optional[str] = None,
|
144 |
+
abs_diff: float,
|
145 |
+
abs_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None,
|
146 |
+
atol: float,
|
147 |
+
rel_diff: float,
|
148 |
+
rel_diff_idx: Optional[Union[int, Tuple[int, ...]]] = None,
|
149 |
+
rtol: float,
|
150 |
+
) -> str:
|
151 |
+
"""Makes a mismatch error message for numeric values.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
default_identifier (str): Default description of the compared values, e.g. "Tensor-likes".
|
155 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional identifier that overrides
|
156 |
+
``default_identifier``. Can be passed as callable in which case it will be called with
|
157 |
+
``default_identifier`` to create the description at runtime.
|
158 |
+
extra (Optional[str]): Extra information to be placed after the message header and the mismatch statistics.
|
159 |
+
abs_diff (float): Absolute difference.
|
160 |
+
abs_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the absolute difference.
|
161 |
+
atol (float): Allowed absolute tolerance. Will only be added to mismatch statistics if it or ``rtol`` are
|
162 |
+
``> 0``.
|
163 |
+
rel_diff (float): Relative difference.
|
164 |
+
rel_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the relative difference.
|
165 |
+
rtol (float): Allowed relative tolerance. Will only be added to mismatch statistics if it or ``atol`` are
|
166 |
+
``> 0``.
|
167 |
+
"""
|
168 |
+
equality = rtol == 0 and atol == 0
|
169 |
+
|
170 |
+
def make_diff_msg(
|
171 |
+
*,
|
172 |
+
type: str,
|
173 |
+
diff: float,
|
174 |
+
idx: Optional[Union[int, Tuple[int, ...]]],
|
175 |
+
tol: float,
|
176 |
+
) -> str:
|
177 |
+
if idx is None:
|
178 |
+
msg = f"{type.title()} difference: {diff}"
|
179 |
+
else:
|
180 |
+
msg = f"Greatest {type} difference: {diff} at index {idx}"
|
181 |
+
if not equality:
|
182 |
+
msg += f" (up to {tol} allowed)"
|
183 |
+
return msg + "\n"
|
184 |
+
|
185 |
+
if identifier is None:
|
186 |
+
identifier = default_identifier
|
187 |
+
elif callable(identifier):
|
188 |
+
identifier = identifier(default_identifier)
|
189 |
+
|
190 |
+
msg = f"{identifier} are not {'equal' if equality else 'close'}!\n\n"
|
191 |
+
|
192 |
+
if extra:
|
193 |
+
msg += f"{extra.strip()}\n"
|
194 |
+
|
195 |
+
msg += make_diff_msg(type="absolute", diff=abs_diff, idx=abs_diff_idx, tol=atol)
|
196 |
+
msg += make_diff_msg(type="relative", diff=rel_diff, idx=rel_diff_idx, tol=rtol)
|
197 |
+
|
198 |
+
return msg.strip()
|
199 |
+
|
200 |
+
|
201 |
+
def make_scalar_mismatch_msg(
|
202 |
+
actual: Union[bool, int, float, complex],
|
203 |
+
expected: Union[bool, int, float, complex],
|
204 |
+
*,
|
205 |
+
rtol: float,
|
206 |
+
atol: float,
|
207 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
208 |
+
) -> str:
|
209 |
+
"""Makes a mismatch error message for scalars.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
actual (Union[bool, int, float, complex]): Actual scalar.
|
213 |
+
expected (Union[bool, int, float, complex]): Expected scalar.
|
214 |
+
rtol (float): Relative tolerance.
|
215 |
+
atol (float): Absolute tolerance.
|
216 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the scalars. Can be passed
|
217 |
+
as callable in which case it will be called by the default value to create the description at runtime.
|
218 |
+
Defaults to "Scalars".
|
219 |
+
"""
|
220 |
+
abs_diff = abs(actual - expected)
|
221 |
+
rel_diff = float("inf") if expected == 0 else abs_diff / abs(expected)
|
222 |
+
return _make_mismatch_msg(
|
223 |
+
default_identifier="Scalars",
|
224 |
+
identifier=identifier,
|
225 |
+
extra=f"Expected {expected} but got {actual}.",
|
226 |
+
abs_diff=abs_diff,
|
227 |
+
atol=atol,
|
228 |
+
rel_diff=rel_diff,
|
229 |
+
rtol=rtol,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
def make_tensor_mismatch_msg(
|
234 |
+
actual: torch.Tensor,
|
235 |
+
expected: torch.Tensor,
|
236 |
+
matches: torch.Tensor,
|
237 |
+
*,
|
238 |
+
rtol: float,
|
239 |
+
atol: float,
|
240 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
241 |
+
):
|
242 |
+
"""Makes a mismatch error message for tensors.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
actual (torch.Tensor): Actual tensor.
|
246 |
+
expected (torch.Tensor): Expected tensor.
|
247 |
+
matches (torch.Tensor): Boolean mask of the same shape as ``actual`` and ``expected`` that indicates the
|
248 |
+
location of matches.
|
249 |
+
rtol (float): Relative tolerance.
|
250 |
+
atol (float): Absolute tolerance.
|
251 |
+
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the tensors. Can be passed
|
252 |
+
as callable in which case it will be called by the default value to create the description at runtime.
|
253 |
+
Defaults to "Tensor-likes".
|
254 |
+
"""
|
255 |
+
|
256 |
+
def unravel_flat_index(flat_index: int) -> Tuple[int, ...]:
|
257 |
+
if not matches.shape:
|
258 |
+
return ()
|
259 |
+
|
260 |
+
inverse_index = []
|
261 |
+
for size in matches.shape[::-1]:
|
262 |
+
div, mod = divmod(flat_index, size)
|
263 |
+
flat_index = div
|
264 |
+
inverse_index.append(mod)
|
265 |
+
|
266 |
+
return tuple(inverse_index[::-1])
|
267 |
+
|
268 |
+
number_of_elements = matches.numel()
|
269 |
+
total_mismatches = number_of_elements - int(torch.sum(matches))
|
270 |
+
extra = (
|
271 |
+
f"Mismatched elements: {total_mismatches} / {number_of_elements} "
|
272 |
+
f"({total_mismatches / number_of_elements:.1%})"
|
273 |
+
)
|
274 |
+
|
275 |
+
actual_flat = actual.flatten()
|
276 |
+
expected_flat = expected.flatten()
|
277 |
+
matches_flat = matches.flatten()
|
278 |
+
|
279 |
+
if not actual.dtype.is_floating_point and not actual.dtype.is_complex:
|
280 |
+
# TODO: Instead of always upcasting to int64, it would be sufficient to cast to the next higher dtype to avoid
|
281 |
+
# overflow
|
282 |
+
actual_flat = actual_flat.to(torch.int64)
|
283 |
+
expected_flat = expected_flat.to(torch.int64)
|
284 |
+
|
285 |
+
abs_diff = torch.abs(actual_flat - expected_flat)
|
286 |
+
# Ensure that only mismatches are used for the max_abs_diff computation
|
287 |
+
abs_diff[matches_flat] = 0
|
288 |
+
max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0)
|
289 |
+
|
290 |
+
rel_diff = abs_diff / torch.abs(expected_flat)
|
291 |
+
# Ensure that only mismatches are used for the max_rel_diff computation
|
292 |
+
rel_diff[matches_flat] = 0
|
293 |
+
max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0)
|
294 |
+
return _make_mismatch_msg(
|
295 |
+
default_identifier="Tensor-likes",
|
296 |
+
identifier=identifier,
|
297 |
+
extra=extra,
|
298 |
+
abs_diff=max_abs_diff.item(),
|
299 |
+
abs_diff_idx=unravel_flat_index(int(max_abs_diff_flat_idx)),
|
300 |
+
atol=atol,
|
301 |
+
rel_diff=max_rel_diff.item(),
|
302 |
+
rel_diff_idx=unravel_flat_index(int(max_rel_diff_flat_idx)),
|
303 |
+
rtol=rtol,
|
304 |
+
)
|
305 |
+
|
306 |
+
|
307 |
+
class UnsupportedInputs(Exception): # noqa: B903
|
308 |
+
"""Exception to be raised during the construction of a :class:`Pair` in case it doesn't support the inputs."""
|
309 |
+
|
310 |
+
|
311 |
+
class Pair(abc.ABC):
|
312 |
+
"""ABC for all comparison pairs to be used in conjunction with :func:`assert_equal`.
|
313 |
+
|
314 |
+
Each subclass needs to overwrite :meth:`Pair.compare` that performs the actual comparison.
|
315 |
+
|
316 |
+
Each pair receives **all** options, so select the ones applicable for the subclass and forward the rest to the
|
317 |
+
super class. Raising an :class:`UnsupportedInputs` during constructions indicates that the pair is not able to
|
318 |
+
handle the inputs and the next pair type will be tried.
|
319 |
+
|
320 |
+
All other errors should be raised as :class:`ErrorMeta`. After the instantiation, :meth:`Pair._make_error_meta` can
|
321 |
+
be used to automatically handle overwriting the message with a user supplied one and id handling.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
actual: Any,
|
327 |
+
expected: Any,
|
328 |
+
*,
|
329 |
+
id: Tuple[Any, ...] = (),
|
330 |
+
**unknown_parameters: Any,
|
331 |
+
) -> None:
|
332 |
+
self.actual = actual
|
333 |
+
self.expected = expected
|
334 |
+
self.id = id
|
335 |
+
self._unknown_parameters = unknown_parameters
|
336 |
+
|
337 |
+
@staticmethod
|
338 |
+
def _inputs_not_supported() -> NoReturn:
|
339 |
+
raise UnsupportedInputs()
|
340 |
+
|
341 |
+
@staticmethod
|
342 |
+
def _check_inputs_isinstance(*inputs: Any, cls: Union[Type, Tuple[Type, ...]]):
|
343 |
+
"""Checks if all inputs are instances of a given class and raise :class:`UnsupportedInputs` otherwise."""
|
344 |
+
if not all(isinstance(input, cls) for input in inputs):
|
345 |
+
Pair._inputs_not_supported()
|
346 |
+
|
347 |
+
def _fail(
|
348 |
+
self, type: Type[Exception], msg: str, *, id: Tuple[Any, ...] = ()
|
349 |
+
) -> NoReturn:
|
350 |
+
"""Raises an :class:`ErrorMeta` from a given exception type and message and the stored id.
|
351 |
+
|
352 |
+
.. warning::
|
353 |
+
|
354 |
+
If you use this before the ``super().__init__(...)`` call in the constructor, you have to pass the ``id``
|
355 |
+
explicitly.
|
356 |
+
"""
|
357 |
+
raise ErrorMeta(type, msg, id=self.id if not id and hasattr(self, "id") else id)
|
358 |
+
|
359 |
+
@abc.abstractmethod
|
360 |
+
def compare(self) -> None:
|
361 |
+
"""Compares the inputs and raises an :class`ErrorMeta` in case they mismatch."""
|
362 |
+
|
363 |
+
def extra_repr(self) -> Sequence[Union[str, Tuple[str, Any]]]:
|
364 |
+
"""Returns extra information that will be included in the representation.
|
365 |
+
|
366 |
+
Should be overwritten by all subclasses that use additional options. The representation of the object will only
|
367 |
+
be surfaced in case we encounter an unexpected error and thus should help debug the issue. Can be a sequence of
|
368 |
+
key-value-pairs or attribute names.
|
369 |
+
"""
|
370 |
+
return []
|
371 |
+
|
372 |
+
def __repr__(self) -> str:
|
373 |
+
head = f"{type(self).__name__}("
|
374 |
+
tail = ")"
|
375 |
+
body = [
|
376 |
+
f" {name}={value!s},"
|
377 |
+
for name, value in [
|
378 |
+
("id", self.id),
|
379 |
+
("actual", self.actual),
|
380 |
+
("expected", self.expected),
|
381 |
+
*[
|
382 |
+
(extra, getattr(self, extra)) if isinstance(extra, str) else extra
|
383 |
+
for extra in self.extra_repr()
|
384 |
+
],
|
385 |
+
]
|
386 |
+
]
|
387 |
+
return "\n".join((head, *body, *tail))
|
388 |
+
|
389 |
+
|
390 |
+
class ObjectPair(Pair):
|
391 |
+
"""Pair for any type of inputs that will be compared with the `==` operator.
|
392 |
+
|
393 |
+
.. note::
|
394 |
+
|
395 |
+
Since this will instantiate for any kind of inputs, it should only be used as fallback after all other pairs
|
396 |
+
couldn't handle the inputs.
|
397 |
+
|
398 |
+
"""
|
399 |
+
|
400 |
+
def compare(self) -> None:
|
401 |
+
try:
|
402 |
+
equal = self.actual == self.expected
|
403 |
+
except Exception as error:
|
404 |
+
# We are not using `self._raise_error_meta` here since we need the exception chaining
|
405 |
+
raise ErrorMeta(
|
406 |
+
ValueError,
|
407 |
+
f"{self.actual} == {self.expected} failed with:\n{error}.",
|
408 |
+
id=self.id,
|
409 |
+
) from error
|
410 |
+
|
411 |
+
if not equal:
|
412 |
+
self._fail(AssertionError, f"{self.actual} != {self.expected}")
|
413 |
+
|
414 |
+
|
415 |
+
class NonePair(Pair):
|
416 |
+
"""Pair for ``None`` inputs."""
|
417 |
+
|
418 |
+
def __init__(self, actual: Any, expected: Any, **other_parameters: Any) -> None:
|
419 |
+
if not (actual is None or expected is None):
|
420 |
+
self._inputs_not_supported()
|
421 |
+
|
422 |
+
super().__init__(actual, expected, **other_parameters)
|
423 |
+
|
424 |
+
def compare(self) -> None:
|
425 |
+
if not (self.actual is None and self.expected is None):
|
426 |
+
self._fail(
|
427 |
+
AssertionError, f"None mismatch: {self.actual} is not {self.expected}"
|
428 |
+
)
|
429 |
+
|
430 |
+
|
431 |
+
class BooleanPair(Pair):
|
432 |
+
"""Pair for :class:`bool` inputs.
|
433 |
+
|
434 |
+
.. note::
|
435 |
+
|
436 |
+
If ``numpy`` is available, also handles :class:`numpy.bool_` inputs.
|
437 |
+
|
438 |
+
"""
|
439 |
+
|
440 |
+
def __init__(
|
441 |
+
self,
|
442 |
+
actual: Any,
|
443 |
+
expected: Any,
|
444 |
+
*,
|
445 |
+
id: Tuple[Any, ...],
|
446 |
+
**other_parameters: Any,
|
447 |
+
) -> None:
|
448 |
+
actual, expected = self._process_inputs(actual, expected, id=id)
|
449 |
+
super().__init__(actual, expected, **other_parameters)
|
450 |
+
|
451 |
+
@property
|
452 |
+
def _supported_types(self) -> Tuple[Type, ...]:
|
453 |
+
cls: List[Type] = [bool]
|
454 |
+
if NUMPY_AVAILABLE:
|
455 |
+
cls.append(np.bool_)
|
456 |
+
return tuple(cls)
|
457 |
+
|
458 |
+
def _process_inputs(
|
459 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...]
|
460 |
+
) -> Tuple[bool, bool]:
|
461 |
+
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
|
462 |
+
actual, expected = (
|
463 |
+
self._to_bool(bool_like, id=id) for bool_like in (actual, expected)
|
464 |
+
)
|
465 |
+
return actual, expected
|
466 |
+
|
467 |
+
def _to_bool(self, bool_like: Any, *, id: Tuple[Any, ...]) -> bool:
|
468 |
+
if isinstance(bool_like, bool):
|
469 |
+
return bool_like
|
470 |
+
elif isinstance(bool_like, np.bool_):
|
471 |
+
return bool_like.item()
|
472 |
+
else:
|
473 |
+
raise ErrorMeta(
|
474 |
+
TypeError, f"Unknown boolean type {type(bool_like)}.", id=id
|
475 |
+
)
|
476 |
+
|
477 |
+
def compare(self) -> None:
|
478 |
+
if self.actual is not self.expected:
|
479 |
+
self._fail(
|
480 |
+
AssertionError,
|
481 |
+
f"Booleans mismatch: {self.actual} is not {self.expected}",
|
482 |
+
)
|
483 |
+
|
484 |
+
|
485 |
+
class NumberPair(Pair):
|
486 |
+
"""Pair for Python number (:class:`int`, :class:`float`, and :class:`complex`) inputs.
|
487 |
+
|
488 |
+
.. note::
|
489 |
+
|
490 |
+
If ``numpy`` is available, also handles :class:`numpy.number` inputs.
|
491 |
+
|
492 |
+
Kwargs:
|
493 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
494 |
+
values based on the type are selected with the below table.
|
495 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
496 |
+
values based on the type are selected with the below table.
|
497 |
+
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
|
498 |
+
check_dtype (bool): If ``True``, the type of the inputs will be checked for equality. Defaults to ``False``.
|
499 |
+
|
500 |
+
The following table displays correspondence between Python number type and the ``torch.dtype``'s. See
|
501 |
+
:func:`assert_close` for the corresponding tolerances.
|
502 |
+
|
503 |
+
+------------------+-------------------------------+
|
504 |
+
| ``type`` | corresponding ``torch.dtype`` |
|
505 |
+
+==================+===============================+
|
506 |
+
| :class:`int` | :attr:`~torch.int64` |
|
507 |
+
+------------------+-------------------------------+
|
508 |
+
| :class:`float` | :attr:`~torch.float64` |
|
509 |
+
+------------------+-------------------------------+
|
510 |
+
| :class:`complex` | :attr:`~torch.complex64` |
|
511 |
+
+------------------+-------------------------------+
|
512 |
+
"""
|
513 |
+
|
514 |
+
_TYPE_TO_DTYPE = {
|
515 |
+
int: torch.int64,
|
516 |
+
float: torch.float64,
|
517 |
+
complex: torch.complex128,
|
518 |
+
}
|
519 |
+
_NUMBER_TYPES = tuple(_TYPE_TO_DTYPE.keys())
|
520 |
+
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
actual: Any,
|
524 |
+
expected: Any,
|
525 |
+
*,
|
526 |
+
id: Tuple[Any, ...] = (),
|
527 |
+
rtol: Optional[float] = None,
|
528 |
+
atol: Optional[float] = None,
|
529 |
+
equal_nan: bool = False,
|
530 |
+
check_dtype: bool = False,
|
531 |
+
**other_parameters: Any,
|
532 |
+
) -> None:
|
533 |
+
actual, expected = self._process_inputs(actual, expected, id=id)
|
534 |
+
super().__init__(actual, expected, id=id, **other_parameters)
|
535 |
+
|
536 |
+
self.rtol, self.atol = get_tolerances(
|
537 |
+
*[self._TYPE_TO_DTYPE[type(input)] for input in (actual, expected)],
|
538 |
+
rtol=rtol,
|
539 |
+
atol=atol,
|
540 |
+
id=id,
|
541 |
+
)
|
542 |
+
self.equal_nan = equal_nan
|
543 |
+
self.check_dtype = check_dtype
|
544 |
+
|
545 |
+
@property
|
546 |
+
def _supported_types(self) -> Tuple[Type, ...]:
|
547 |
+
cls = list(self._NUMBER_TYPES)
|
548 |
+
if NUMPY_AVAILABLE:
|
549 |
+
cls.append(np.number)
|
550 |
+
return tuple(cls)
|
551 |
+
|
552 |
+
def _process_inputs(
|
553 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...]
|
554 |
+
) -> Tuple[Union[int, float, complex], Union[int, float, complex]]:
|
555 |
+
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
|
556 |
+
actual, expected = (
|
557 |
+
self._to_number(number_like, id=id) for number_like in (actual, expected)
|
558 |
+
)
|
559 |
+
return actual, expected
|
560 |
+
|
561 |
+
def _to_number(
|
562 |
+
self, number_like: Any, *, id: Tuple[Any, ...]
|
563 |
+
) -> Union[int, float, complex]:
|
564 |
+
if NUMPY_AVAILABLE and isinstance(number_like, np.number):
|
565 |
+
return number_like.item()
|
566 |
+
elif isinstance(number_like, self._NUMBER_TYPES):
|
567 |
+
return number_like # type: ignore[return-value]
|
568 |
+
else:
|
569 |
+
raise ErrorMeta(
|
570 |
+
TypeError, f"Unknown number type {type(number_like)}.", id=id
|
571 |
+
)
|
572 |
+
|
573 |
+
def compare(self) -> None:
|
574 |
+
if self.check_dtype and type(self.actual) is not type(self.expected):
|
575 |
+
self._fail(
|
576 |
+
AssertionError,
|
577 |
+
f"The (d)types do not match: {type(self.actual)} != {type(self.expected)}.",
|
578 |
+
)
|
579 |
+
|
580 |
+
if self.actual == self.expected:
|
581 |
+
return
|
582 |
+
|
583 |
+
if self.equal_nan and cmath.isnan(self.actual) and cmath.isnan(self.expected):
|
584 |
+
return
|
585 |
+
|
586 |
+
abs_diff = abs(self.actual - self.expected)
|
587 |
+
tolerance = self.atol + self.rtol * abs(self.expected)
|
588 |
+
|
589 |
+
if cmath.isfinite(abs_diff) and abs_diff <= tolerance:
|
590 |
+
return
|
591 |
+
|
592 |
+
self._fail(
|
593 |
+
AssertionError,
|
594 |
+
make_scalar_mismatch_msg(
|
595 |
+
self.actual, self.expected, rtol=self.rtol, atol=self.atol
|
596 |
+
),
|
597 |
+
)
|
598 |
+
|
599 |
+
def extra_repr(self) -> Sequence[str]:
|
600 |
+
return (
|
601 |
+
"rtol",
|
602 |
+
"atol",
|
603 |
+
"equal_nan",
|
604 |
+
"check_dtype",
|
605 |
+
)
|
606 |
+
|
607 |
+
|
608 |
+
class TensorLikePair(Pair):
|
609 |
+
"""Pair for :class:`torch.Tensor`-like inputs.
|
610 |
+
|
611 |
+
Kwargs:
|
612 |
+
allow_subclasses (bool):
|
613 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
614 |
+
values based on the type are selected. See :func:assert_close: for details.
|
615 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
616 |
+
values based on the type are selected. See :func:assert_close: for details.
|
617 |
+
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
|
618 |
+
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
|
619 |
+
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
|
620 |
+
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
|
621 |
+
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
|
622 |
+
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
|
623 |
+
:func:`torch.promote_types`) before being compared.
|
624 |
+
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
|
625 |
+
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
|
626 |
+
compared.
|
627 |
+
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
|
628 |
+
"""
|
629 |
+
|
630 |
+
def __init__(
|
631 |
+
self,
|
632 |
+
actual: Any,
|
633 |
+
expected: Any,
|
634 |
+
*,
|
635 |
+
id: Tuple[Any, ...] = (),
|
636 |
+
allow_subclasses: bool = True,
|
637 |
+
rtol: Optional[float] = None,
|
638 |
+
atol: Optional[float] = None,
|
639 |
+
equal_nan: bool = False,
|
640 |
+
check_device: bool = True,
|
641 |
+
check_dtype: bool = True,
|
642 |
+
check_layout: bool = True,
|
643 |
+
check_stride: bool = False,
|
644 |
+
**other_parameters: Any,
|
645 |
+
):
|
646 |
+
actual, expected = self._process_inputs(
|
647 |
+
actual, expected, id=id, allow_subclasses=allow_subclasses
|
648 |
+
)
|
649 |
+
super().__init__(actual, expected, id=id, **other_parameters)
|
650 |
+
|
651 |
+
self.rtol, self.atol = get_tolerances(
|
652 |
+
actual, expected, rtol=rtol, atol=atol, id=self.id
|
653 |
+
)
|
654 |
+
self.equal_nan = equal_nan
|
655 |
+
self.check_device = check_device
|
656 |
+
self.check_dtype = check_dtype
|
657 |
+
self.check_layout = check_layout
|
658 |
+
self.check_stride = check_stride
|
659 |
+
|
660 |
+
def _process_inputs(
|
661 |
+
self, actual: Any, expected: Any, *, id: Tuple[Any, ...], allow_subclasses: bool
|
662 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
663 |
+
directly_related = isinstance(actual, type(expected)) or isinstance(
|
664 |
+
expected, type(actual)
|
665 |
+
)
|
666 |
+
if not directly_related:
|
667 |
+
self._inputs_not_supported()
|
668 |
+
|
669 |
+
if not allow_subclasses and type(actual) is not type(expected):
|
670 |
+
self._inputs_not_supported()
|
671 |
+
|
672 |
+
actual, expected = (self._to_tensor(input) for input in (actual, expected))
|
673 |
+
for tensor in (actual, expected):
|
674 |
+
self._check_supported(tensor, id=id)
|
675 |
+
return actual, expected
|
676 |
+
|
677 |
+
def _to_tensor(self, tensor_like: Any) -> torch.Tensor:
|
678 |
+
if isinstance(tensor_like, torch.Tensor):
|
679 |
+
return tensor_like
|
680 |
+
|
681 |
+
try:
|
682 |
+
return torch.as_tensor(tensor_like)
|
683 |
+
except Exception:
|
684 |
+
self._inputs_not_supported()
|
685 |
+
|
686 |
+
def _check_supported(self, tensor: torch.Tensor, *, id: Tuple[Any, ...]) -> None:
|
687 |
+
if tensor.layout not in {
|
688 |
+
torch.strided,
|
689 |
+
torch.sparse_coo,
|
690 |
+
torch.sparse_csr,
|
691 |
+
torch.sparse_csc,
|
692 |
+
torch.sparse_bsr,
|
693 |
+
torch.sparse_bsc,
|
694 |
+
}:
|
695 |
+
raise ErrorMeta(
|
696 |
+
ValueError, f"Unsupported tensor layout {tensor.layout}", id=id
|
697 |
+
)
|
698 |
+
|
699 |
+
def compare(self) -> None:
|
700 |
+
actual, expected = self.actual, self.expected
|
701 |
+
|
702 |
+
self._compare_attributes(actual, expected)
|
703 |
+
if any(input.device.type == "meta" for input in (actual, expected)):
|
704 |
+
return
|
705 |
+
|
706 |
+
actual, expected = self._equalize_attributes(actual, expected)
|
707 |
+
self._compare_values(actual, expected)
|
708 |
+
|
709 |
+
def _compare_attributes(
|
710 |
+
self,
|
711 |
+
actual: torch.Tensor,
|
712 |
+
expected: torch.Tensor,
|
713 |
+
) -> None:
|
714 |
+
"""Checks if the attributes of two tensors match.
|
715 |
+
|
716 |
+
Always checks
|
717 |
+
|
718 |
+
- the :attr:`~torch.Tensor.shape`,
|
719 |
+
- whether both inputs are quantized or not,
|
720 |
+
- and if they use the same quantization scheme.
|
721 |
+
|
722 |
+
Checks for
|
723 |
+
|
724 |
+
- :attr:`~torch.Tensor.layout`,
|
725 |
+
- :meth:`~torch.Tensor.stride`,
|
726 |
+
- :attr:`~torch.Tensor.device`, and
|
727 |
+
- :attr:`~torch.Tensor.dtype`
|
728 |
+
|
729 |
+
are optional and can be disabled through the corresponding ``check_*`` flag during construction of the pair.
|
730 |
+
"""
|
731 |
+
|
732 |
+
def raise_mismatch_error(
|
733 |
+
attribute_name: str, actual_value: Any, expected_value: Any
|
734 |
+
) -> NoReturn:
|
735 |
+
self._fail(
|
736 |
+
AssertionError,
|
737 |
+
f"The values for attribute '{attribute_name}' do not match: {actual_value} != {expected_value}.",
|
738 |
+
)
|
739 |
+
|
740 |
+
if actual.shape != expected.shape:
|
741 |
+
raise_mismatch_error("shape", actual.shape, expected.shape)
|
742 |
+
|
743 |
+
if actual.is_quantized != expected.is_quantized:
|
744 |
+
raise_mismatch_error(
|
745 |
+
"is_quantized", actual.is_quantized, expected.is_quantized
|
746 |
+
)
|
747 |
+
elif actual.is_quantized and actual.qscheme() != expected.qscheme():
|
748 |
+
raise_mismatch_error("qscheme()", actual.qscheme(), expected.qscheme())
|
749 |
+
|
750 |
+
if actual.layout != expected.layout:
|
751 |
+
if self.check_layout:
|
752 |
+
raise_mismatch_error("layout", actual.layout, expected.layout)
|
753 |
+
elif (
|
754 |
+
actual.layout == torch.strided
|
755 |
+
and self.check_stride
|
756 |
+
and actual.stride() != expected.stride()
|
757 |
+
):
|
758 |
+
raise_mismatch_error("stride()", actual.stride(), expected.stride())
|
759 |
+
|
760 |
+
if self.check_device and actual.device != expected.device:
|
761 |
+
raise_mismatch_error("device", actual.device, expected.device)
|
762 |
+
|
763 |
+
if self.check_dtype and actual.dtype != expected.dtype:
|
764 |
+
raise_mismatch_error("dtype", actual.dtype, expected.dtype)
|
765 |
+
|
766 |
+
def _equalize_attributes(
|
767 |
+
self, actual: torch.Tensor, expected: torch.Tensor
|
768 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
769 |
+
"""Equalizes some attributes of two tensors for value comparison.
|
770 |
+
|
771 |
+
If ``actual`` and ``expected`` are ...
|
772 |
+
|
773 |
+
- ... not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory.
|
774 |
+
- ... not of the same ``dtype``, they are promoted to a common ``dtype`` (according to
|
775 |
+
:func:`torch.promote_types`).
|
776 |
+
- ... not of the same ``layout``, they are converted to strided tensors.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
actual (Tensor): Actual tensor.
|
780 |
+
expected (Tensor): Expected tensor.
|
781 |
+
|
782 |
+
Returns:
|
783 |
+
(Tuple[Tensor, Tensor]): Equalized tensors.
|
784 |
+
"""
|
785 |
+
# The comparison logic uses operators currently not supported by the MPS backends.
|
786 |
+
# See https://github.com/pytorch/pytorch/issues/77144 for details.
|
787 |
+
# TODO: Remove this conversion as soon as all operations are supported natively by the MPS backend
|
788 |
+
if actual.is_mps or expected.is_mps: # type: ignore[attr-defined]
|
789 |
+
actual = actual.cpu()
|
790 |
+
expected = expected.cpu()
|
791 |
+
|
792 |
+
if actual.device != expected.device:
|
793 |
+
actual = actual.cpu()
|
794 |
+
expected = expected.cpu()
|
795 |
+
|
796 |
+
if actual.dtype != expected.dtype:
|
797 |
+
actual_dtype = actual.dtype
|
798 |
+
expected_dtype = expected.dtype
|
799 |
+
# For uint64, this is not sound in general, which is why promote_types doesn't
|
800 |
+
# allow it, but for easy testing, we're unlikely to get confused
|
801 |
+
# by large uint64 overflowing into negative int64
|
802 |
+
if actual_dtype in [torch.uint64, torch.uint32, torch.uint16]:
|
803 |
+
actual_dtype = torch.int64
|
804 |
+
if expected_dtype in [torch.uint64, torch.uint32, torch.uint16]:
|
805 |
+
expected_dtype = torch.int64
|
806 |
+
dtype = torch.promote_types(actual_dtype, expected_dtype)
|
807 |
+
actual = actual.to(dtype)
|
808 |
+
expected = expected.to(dtype)
|
809 |
+
|
810 |
+
if actual.layout != expected.layout:
|
811 |
+
# These checks are needed, since Tensor.to_dense() fails on tensors that are already strided
|
812 |
+
actual = actual.to_dense() if actual.layout != torch.strided else actual
|
813 |
+
expected = (
|
814 |
+
expected.to_dense() if expected.layout != torch.strided else expected
|
815 |
+
)
|
816 |
+
|
817 |
+
return actual, expected
|
818 |
+
|
819 |
+
def _compare_values(self, actual: torch.Tensor, expected: torch.Tensor) -> None:
|
820 |
+
if actual.is_quantized:
|
821 |
+
compare_fn = self._compare_quantized_values
|
822 |
+
elif actual.is_sparse:
|
823 |
+
compare_fn = self._compare_sparse_coo_values
|
824 |
+
elif actual.layout in {
|
825 |
+
torch.sparse_csr,
|
826 |
+
torch.sparse_csc,
|
827 |
+
torch.sparse_bsr,
|
828 |
+
torch.sparse_bsc,
|
829 |
+
}:
|
830 |
+
compare_fn = self._compare_sparse_compressed_values
|
831 |
+
else:
|
832 |
+
compare_fn = self._compare_regular_values_close
|
833 |
+
|
834 |
+
compare_fn(
|
835 |
+
actual, expected, rtol=self.rtol, atol=self.atol, equal_nan=self.equal_nan
|
836 |
+
)
|
837 |
+
|
838 |
+
def _compare_quantized_values(
|
839 |
+
self,
|
840 |
+
actual: torch.Tensor,
|
841 |
+
expected: torch.Tensor,
|
842 |
+
*,
|
843 |
+
rtol: float,
|
844 |
+
atol: float,
|
845 |
+
equal_nan: bool,
|
846 |
+
) -> None:
|
847 |
+
"""Compares quantized tensors by comparing the :meth:`~torch.Tensor.dequantize`'d variants for closeness.
|
848 |
+
|
849 |
+
.. note::
|
850 |
+
|
851 |
+
A detailed discussion about why only the dequantized variant is checked for closeness rather than checking
|
852 |
+
the individual quantization parameters for closeness and the integer representation for equality can be
|
853 |
+
found in https://github.com/pytorch/pytorch/issues/68548.
|
854 |
+
"""
|
855 |
+
return self._compare_regular_values_close(
|
856 |
+
actual.dequantize(),
|
857 |
+
expected.dequantize(),
|
858 |
+
rtol=rtol,
|
859 |
+
atol=atol,
|
860 |
+
equal_nan=equal_nan,
|
861 |
+
identifier=lambda default_identifier: f"Quantized {default_identifier.lower()}",
|
862 |
+
)
|
863 |
+
|
864 |
+
def _compare_sparse_coo_values(
|
865 |
+
self,
|
866 |
+
actual: torch.Tensor,
|
867 |
+
expected: torch.Tensor,
|
868 |
+
*,
|
869 |
+
rtol: float,
|
870 |
+
atol: float,
|
871 |
+
equal_nan: bool,
|
872 |
+
) -> None:
|
873 |
+
"""Compares sparse COO tensors by comparing
|
874 |
+
|
875 |
+
- the number of sparse dimensions,
|
876 |
+
- the number of non-zero elements (nnz) for equality,
|
877 |
+
- the indices for equality, and
|
878 |
+
- the values for closeness.
|
879 |
+
"""
|
880 |
+
if actual.sparse_dim() != expected.sparse_dim():
|
881 |
+
self._fail(
|
882 |
+
AssertionError,
|
883 |
+
(
|
884 |
+
f"The number of sparse dimensions in sparse COO tensors does not match: "
|
885 |
+
f"{actual.sparse_dim()} != {expected.sparse_dim()}"
|
886 |
+
),
|
887 |
+
)
|
888 |
+
|
889 |
+
if actual._nnz() != expected._nnz():
|
890 |
+
self._fail(
|
891 |
+
AssertionError,
|
892 |
+
(
|
893 |
+
f"The number of specified values in sparse COO tensors does not match: "
|
894 |
+
f"{actual._nnz()} != {expected._nnz()}"
|
895 |
+
),
|
896 |
+
)
|
897 |
+
|
898 |
+
self._compare_regular_values_equal(
|
899 |
+
actual._indices(),
|
900 |
+
expected._indices(),
|
901 |
+
identifier="Sparse COO indices",
|
902 |
+
)
|
903 |
+
self._compare_regular_values_close(
|
904 |
+
actual._values(),
|
905 |
+
expected._values(),
|
906 |
+
rtol=rtol,
|
907 |
+
atol=atol,
|
908 |
+
equal_nan=equal_nan,
|
909 |
+
identifier="Sparse COO values",
|
910 |
+
)
|
911 |
+
|
912 |
+
def _compare_sparse_compressed_values(
|
913 |
+
self,
|
914 |
+
actual: torch.Tensor,
|
915 |
+
expected: torch.Tensor,
|
916 |
+
*,
|
917 |
+
rtol: float,
|
918 |
+
atol: float,
|
919 |
+
equal_nan: bool,
|
920 |
+
) -> None:
|
921 |
+
"""Compares sparse compressed tensors by comparing
|
922 |
+
|
923 |
+
- the number of non-zero elements (nnz) for equality,
|
924 |
+
- the plain indices for equality,
|
925 |
+
- the compressed indices for equality, and
|
926 |
+
- the values for closeness.
|
927 |
+
"""
|
928 |
+
format_name, compressed_indices_method, plain_indices_method = {
|
929 |
+
torch.sparse_csr: (
|
930 |
+
"CSR",
|
931 |
+
torch.Tensor.crow_indices,
|
932 |
+
torch.Tensor.col_indices,
|
933 |
+
),
|
934 |
+
torch.sparse_csc: (
|
935 |
+
"CSC",
|
936 |
+
torch.Tensor.ccol_indices,
|
937 |
+
torch.Tensor.row_indices,
|
938 |
+
),
|
939 |
+
torch.sparse_bsr: (
|
940 |
+
"BSR",
|
941 |
+
torch.Tensor.crow_indices,
|
942 |
+
torch.Tensor.col_indices,
|
943 |
+
),
|
944 |
+
torch.sparse_bsc: (
|
945 |
+
"BSC",
|
946 |
+
torch.Tensor.ccol_indices,
|
947 |
+
torch.Tensor.row_indices,
|
948 |
+
),
|
949 |
+
}[actual.layout]
|
950 |
+
|
951 |
+
if actual._nnz() != expected._nnz():
|
952 |
+
self._fail(
|
953 |
+
AssertionError,
|
954 |
+
(
|
955 |
+
f"The number of specified values in sparse {format_name} tensors does not match: "
|
956 |
+
f"{actual._nnz()} != {expected._nnz()}"
|
957 |
+
),
|
958 |
+
)
|
959 |
+
|
960 |
+
# Compressed and plain indices in the CSR / CSC / BSR / BSC sparse formates can be `torch.int32` _or_
|
961 |
+
# `torch.int64`. While the same dtype is enforced for the compressed and plain indices of a single tensor, it
|
962 |
+
# can be different between two tensors. Thus, we need to convert them to the same dtype, or the comparison will
|
963 |
+
# fail.
|
964 |
+
actual_compressed_indices = compressed_indices_method(actual)
|
965 |
+
expected_compressed_indices = compressed_indices_method(expected)
|
966 |
+
indices_dtype = torch.promote_types(
|
967 |
+
actual_compressed_indices.dtype, expected_compressed_indices.dtype
|
968 |
+
)
|
969 |
+
|
970 |
+
self._compare_regular_values_equal(
|
971 |
+
actual_compressed_indices.to(indices_dtype),
|
972 |
+
expected_compressed_indices.to(indices_dtype),
|
973 |
+
identifier=f"Sparse {format_name} {compressed_indices_method.__name__}",
|
974 |
+
)
|
975 |
+
self._compare_regular_values_equal(
|
976 |
+
plain_indices_method(actual).to(indices_dtype),
|
977 |
+
plain_indices_method(expected).to(indices_dtype),
|
978 |
+
identifier=f"Sparse {format_name} {plain_indices_method.__name__}",
|
979 |
+
)
|
980 |
+
self._compare_regular_values_close(
|
981 |
+
actual.values(),
|
982 |
+
expected.values(),
|
983 |
+
rtol=rtol,
|
984 |
+
atol=atol,
|
985 |
+
equal_nan=equal_nan,
|
986 |
+
identifier=f"Sparse {format_name} values",
|
987 |
+
)
|
988 |
+
|
989 |
+
def _compare_regular_values_equal(
|
990 |
+
self,
|
991 |
+
actual: torch.Tensor,
|
992 |
+
expected: torch.Tensor,
|
993 |
+
*,
|
994 |
+
equal_nan: bool = False,
|
995 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
996 |
+
) -> None:
|
997 |
+
"""Checks if the values of two tensors are equal."""
|
998 |
+
self._compare_regular_values_close(
|
999 |
+
actual, expected, rtol=0, atol=0, equal_nan=equal_nan, identifier=identifier
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
def _compare_regular_values_close(
|
1003 |
+
self,
|
1004 |
+
actual: torch.Tensor,
|
1005 |
+
expected: torch.Tensor,
|
1006 |
+
*,
|
1007 |
+
rtol: float,
|
1008 |
+
atol: float,
|
1009 |
+
equal_nan: bool,
|
1010 |
+
identifier: Optional[Union[str, Callable[[str], str]]] = None,
|
1011 |
+
) -> None:
|
1012 |
+
"""Checks if the values of two tensors are close up to a desired tolerance."""
|
1013 |
+
matches = torch.isclose(
|
1014 |
+
actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan
|
1015 |
+
)
|
1016 |
+
if torch.all(matches):
|
1017 |
+
return
|
1018 |
+
|
1019 |
+
if actual.shape == torch.Size([]):
|
1020 |
+
msg = make_scalar_mismatch_msg(
|
1021 |
+
actual.item(),
|
1022 |
+
expected.item(),
|
1023 |
+
rtol=rtol,
|
1024 |
+
atol=atol,
|
1025 |
+
identifier=identifier,
|
1026 |
+
)
|
1027 |
+
else:
|
1028 |
+
msg = make_tensor_mismatch_msg(
|
1029 |
+
actual, expected, matches, rtol=rtol, atol=atol, identifier=identifier
|
1030 |
+
)
|
1031 |
+
self._fail(AssertionError, msg)
|
1032 |
+
|
1033 |
+
def extra_repr(self) -> Sequence[str]:
|
1034 |
+
return (
|
1035 |
+
"rtol",
|
1036 |
+
"atol",
|
1037 |
+
"equal_nan",
|
1038 |
+
"check_device",
|
1039 |
+
"check_dtype",
|
1040 |
+
"check_layout",
|
1041 |
+
"check_stride",
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
|
1045 |
+
def originate_pairs(
|
1046 |
+
actual: Any,
|
1047 |
+
expected: Any,
|
1048 |
+
*,
|
1049 |
+
pair_types: Sequence[Type[Pair]],
|
1050 |
+
sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,),
|
1051 |
+
mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,),
|
1052 |
+
id: Tuple[Any, ...] = (),
|
1053 |
+
**options: Any,
|
1054 |
+
) -> List[Pair]:
|
1055 |
+
"""Originates pairs from the individual inputs.
|
1056 |
+
|
1057 |
+
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
|
1058 |
+
:class:`~collections.abc.Mapping`'s. In this case the pairs are originated by recursing through them.
|
1059 |
+
|
1060 |
+
Args:
|
1061 |
+
actual (Any): Actual input.
|
1062 |
+
expected (Any): Expected input.
|
1063 |
+
pair_types (Sequence[Type[Pair]]): Sequence of pair types that will be tried to construct with the inputs.
|
1064 |
+
First successful pair will be used.
|
1065 |
+
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
|
1066 |
+
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
|
1067 |
+
id (Tuple[Any, ...]): Optional id of a pair that will be included in an error message.
|
1068 |
+
**options (Any): Options passed to each pair during construction.
|
1069 |
+
|
1070 |
+
Raises:
|
1071 |
+
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Sequence`'s, but their
|
1072 |
+
length does not match.
|
1073 |
+
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Mapping`'s, but their set of
|
1074 |
+
keys do not match.
|
1075 |
+
ErrorMeta: With :class`TypeError`, if no pair is able to handle the inputs.
|
1076 |
+
ErrorMeta: With any expected exception that happens during the construction of a pair.
|
1077 |
+
|
1078 |
+
Returns:
|
1079 |
+
(List[Pair]): Originated pairs.
|
1080 |
+
"""
|
1081 |
+
# We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop:
|
1082 |
+
# "a" == "a"[0][0]...
|
1083 |
+
if (
|
1084 |
+
isinstance(actual, sequence_types)
|
1085 |
+
and not isinstance(actual, str)
|
1086 |
+
and isinstance(expected, sequence_types)
|
1087 |
+
and not isinstance(expected, str)
|
1088 |
+
):
|
1089 |
+
actual_len = len(actual)
|
1090 |
+
expected_len = len(expected)
|
1091 |
+
if actual_len != expected_len:
|
1092 |
+
raise ErrorMeta(
|
1093 |
+
AssertionError,
|
1094 |
+
f"The length of the sequences mismatch: {actual_len} != {expected_len}",
|
1095 |
+
id=id,
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
pairs = []
|
1099 |
+
for idx in range(actual_len):
|
1100 |
+
pairs.extend(
|
1101 |
+
originate_pairs(
|
1102 |
+
actual[idx],
|
1103 |
+
expected[idx],
|
1104 |
+
pair_types=pair_types,
|
1105 |
+
sequence_types=sequence_types,
|
1106 |
+
mapping_types=mapping_types,
|
1107 |
+
id=(*id, idx),
|
1108 |
+
**options,
|
1109 |
+
)
|
1110 |
+
)
|
1111 |
+
return pairs
|
1112 |
+
|
1113 |
+
elif isinstance(actual, mapping_types) and isinstance(expected, mapping_types):
|
1114 |
+
actual_keys = set(actual.keys())
|
1115 |
+
expected_keys = set(expected.keys())
|
1116 |
+
if actual_keys != expected_keys:
|
1117 |
+
missing_keys = expected_keys - actual_keys
|
1118 |
+
additional_keys = actual_keys - expected_keys
|
1119 |
+
raise ErrorMeta(
|
1120 |
+
AssertionError,
|
1121 |
+
(
|
1122 |
+
f"The keys of the mappings do not match:\n"
|
1123 |
+
f"Missing keys in the actual mapping: {sorted(missing_keys)}\n"
|
1124 |
+
f"Additional keys in the actual mapping: {sorted(additional_keys)}"
|
1125 |
+
),
|
1126 |
+
id=id,
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
keys: Collection = actual_keys
|
1130 |
+
# Since the origination aborts after the first failure, we try to be deterministic
|
1131 |
+
with contextlib.suppress(Exception):
|
1132 |
+
keys = sorted(keys)
|
1133 |
+
|
1134 |
+
pairs = []
|
1135 |
+
for key in keys:
|
1136 |
+
pairs.extend(
|
1137 |
+
originate_pairs(
|
1138 |
+
actual[key],
|
1139 |
+
expected[key],
|
1140 |
+
pair_types=pair_types,
|
1141 |
+
sequence_types=sequence_types,
|
1142 |
+
mapping_types=mapping_types,
|
1143 |
+
id=(*id, key),
|
1144 |
+
**options,
|
1145 |
+
)
|
1146 |
+
)
|
1147 |
+
return pairs
|
1148 |
+
|
1149 |
+
else:
|
1150 |
+
for pair_type in pair_types:
|
1151 |
+
try:
|
1152 |
+
return [pair_type(actual, expected, id=id, **options)]
|
1153 |
+
# Raising an `UnsupportedInputs` during origination indicates that the pair type is not able to handle the
|
1154 |
+
# inputs. Thus, we try the next pair type.
|
1155 |
+
except UnsupportedInputs:
|
1156 |
+
continue
|
1157 |
+
# Raising an `ErrorMeta` during origination is the orderly way to abort and so we simply re-raise it. This
|
1158 |
+
# is only in a separate branch, because the one below would also except it.
|
1159 |
+
except ErrorMeta:
|
1160 |
+
raise
|
1161 |
+
# Raising any other exception during origination is unexpected and will give some extra information about
|
1162 |
+
# what happened. If applicable, the exception should be expected in the future.
|
1163 |
+
except Exception as error:
|
1164 |
+
raise RuntimeError(
|
1165 |
+
f"Originating a {pair_type.__name__}() at item {''.join(str([item]) for item in id)} with\n\n"
|
1166 |
+
f"{type(actual).__name__}(): {actual}\n\n"
|
1167 |
+
f"and\n\n"
|
1168 |
+
f"{type(expected).__name__}(): {expected}\n\n"
|
1169 |
+
f"resulted in the unexpected exception above. "
|
1170 |
+
f"If you are a user and see this message during normal operation "
|
1171 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
1172 |
+
"If you are a developer and working on the comparison functions, "
|
1173 |
+
"please except the previous error and raise an expressive `ErrorMeta` instead."
|
1174 |
+
) from error
|
1175 |
+
else:
|
1176 |
+
raise ErrorMeta(
|
1177 |
+
TypeError,
|
1178 |
+
f"No comparison pair was able to handle inputs of type {type(actual)} and {type(expected)}.",
|
1179 |
+
id=id,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
|
1183 |
+
def not_close_error_metas(
|
1184 |
+
actual: Any,
|
1185 |
+
expected: Any,
|
1186 |
+
*,
|
1187 |
+
pair_types: Sequence[Type[Pair]] = (ObjectPair,),
|
1188 |
+
sequence_types: Tuple[Type, ...] = (collections.abc.Sequence,),
|
1189 |
+
mapping_types: Tuple[Type, ...] = (collections.abc.Mapping,),
|
1190 |
+
**options: Any,
|
1191 |
+
) -> List[ErrorMeta]:
|
1192 |
+
"""Asserts that inputs are equal.
|
1193 |
+
|
1194 |
+
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
|
1195 |
+
:class:`~collections.abc.Mapping`'s. In this case the comparison happens elementwise by recursing through them.
|
1196 |
+
|
1197 |
+
Args:
|
1198 |
+
actual (Any): Actual input.
|
1199 |
+
expected (Any): Expected input.
|
1200 |
+
pair_types (Sequence[Type[Pair]]): Sequence of :class:`Pair` types that will be tried to construct with the
|
1201 |
+
inputs. First successful pair will be used. Defaults to only using :class:`ObjectPair`.
|
1202 |
+
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
|
1203 |
+
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
|
1204 |
+
**options (Any): Options passed to each pair during construction.
|
1205 |
+
"""
|
1206 |
+
# Hide this function from `pytest`'s traceback
|
1207 |
+
__tracebackhide__ = True
|
1208 |
+
|
1209 |
+
try:
|
1210 |
+
pairs = originate_pairs(
|
1211 |
+
actual,
|
1212 |
+
expected,
|
1213 |
+
pair_types=pair_types,
|
1214 |
+
sequence_types=sequence_types,
|
1215 |
+
mapping_types=mapping_types,
|
1216 |
+
**options,
|
1217 |
+
)
|
1218 |
+
except ErrorMeta as error_meta:
|
1219 |
+
# Explicitly raising from None to hide the internal traceback
|
1220 |
+
raise error_meta.to_error() from None
|
1221 |
+
|
1222 |
+
error_metas: List[ErrorMeta] = []
|
1223 |
+
for pair in pairs:
|
1224 |
+
try:
|
1225 |
+
pair.compare()
|
1226 |
+
except ErrorMeta as error_meta:
|
1227 |
+
error_metas.append(error_meta)
|
1228 |
+
# Raising any exception besides `ErrorMeta` while comparing is unexpected and will give some extra information
|
1229 |
+
# about what happened. If applicable, the exception should be expected in the future.
|
1230 |
+
except Exception as error:
|
1231 |
+
raise RuntimeError(
|
1232 |
+
f"Comparing\n\n"
|
1233 |
+
f"{pair}\n\n"
|
1234 |
+
f"resulted in the unexpected exception above. "
|
1235 |
+
f"If you are a user and see this message during normal operation "
|
1236 |
+
"please file an issue at https://github.com/pytorch/pytorch/issues. "
|
1237 |
+
"If you are a developer and working on the comparison functions, "
|
1238 |
+
"please except the previous error and raise an expressive `ErrorMeta` instead."
|
1239 |
+
) from error
|
1240 |
+
|
1241 |
+
# [ErrorMeta Cycles]
|
1242 |
+
# ErrorMeta objects in this list capture
|
1243 |
+
# tracebacks that refer to the frame of this function.
|
1244 |
+
# The local variable `error_metas` refers to the error meta
|
1245 |
+
# objects, creating a reference cycle. Frames in the traceback
|
1246 |
+
# would not get freed until cycle collection, leaking cuda memory in tests.
|
1247 |
+
# We break the cycle by removing the reference to the error_meta objects
|
1248 |
+
# from this frame as it returns.
|
1249 |
+
error_metas = [error_metas]
|
1250 |
+
return error_metas.pop()
|
1251 |
+
|
1252 |
+
|
1253 |
+
def assert_close(
|
1254 |
+
actual: Any,
|
1255 |
+
expected: Any,
|
1256 |
+
*,
|
1257 |
+
allow_subclasses: bool = True,
|
1258 |
+
rtol: Optional[float] = None,
|
1259 |
+
atol: Optional[float] = None,
|
1260 |
+
equal_nan: bool = False,
|
1261 |
+
check_device: bool = True,
|
1262 |
+
check_dtype: bool = True,
|
1263 |
+
check_layout: bool = True,
|
1264 |
+
check_stride: bool = False,
|
1265 |
+
msg: Optional[Union[str, Callable[[str], str]]] = None,
|
1266 |
+
):
|
1267 |
+
r"""Asserts that ``actual`` and ``expected`` are close.
|
1268 |
+
|
1269 |
+
If ``actual`` and ``expected`` are strided, non-quantized, real-valued, and finite, they are considered close if
|
1270 |
+
|
1271 |
+
.. math::
|
1272 |
+
|
1273 |
+
\lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert
|
1274 |
+
|
1275 |
+
Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are
|
1276 |
+
only considered equal to each other if ``equal_nan`` is ``True``.
|
1277 |
+
|
1278 |
+
In addition, they are only considered close if they have the same
|
1279 |
+
|
1280 |
+
- :attr:`~torch.Tensor.device` (if ``check_device`` is ``True``),
|
1281 |
+
- ``dtype`` (if ``check_dtype`` is ``True``),
|
1282 |
+
- ``layout`` (if ``check_layout`` is ``True``), and
|
1283 |
+
- stride (if ``check_stride`` is ``True``).
|
1284 |
+
|
1285 |
+
If either ``actual`` or ``expected`` is a meta tensor, only the attribute checks will be performed.
|
1286 |
+
|
1287 |
+
If ``actual`` and ``expected`` are sparse (either having COO, CSR, CSC, BSR, or BSC layout), their strided members are
|
1288 |
+
checked individually. Indices, namely ``indices`` for COO, ``crow_indices`` and ``col_indices`` for CSR and BSR,
|
1289 |
+
or ``ccol_indices`` and ``row_indices`` for CSC and BSC layouts, respectively,
|
1290 |
+
are always checked for equality whereas the values are checked for closeness according to the definition above.
|
1291 |
+
|
1292 |
+
If ``actual`` and ``expected`` are quantized, they are considered close if they have the same
|
1293 |
+
:meth:`~torch.Tensor.qscheme` and the result of :meth:`~torch.Tensor.dequantize` is close according to the
|
1294 |
+
definition above.
|
1295 |
+
|
1296 |
+
``actual`` and ``expected`` can be :class:`~torch.Tensor`'s or any tensor-or-scalar-likes from which
|
1297 |
+
:class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. Except for Python scalars the input types
|
1298 |
+
have to be directly related. In addition, ``actual`` and ``expected`` can be :class:`~collections.abc.Sequence`'s
|
1299 |
+
or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all
|
1300 |
+
their elements are considered close according to the above definition.
|
1301 |
+
|
1302 |
+
.. note::
|
1303 |
+
|
1304 |
+
Python scalars are an exception to the type relation requirement, because their :func:`type`, i.e.
|
1305 |
+
:class:`int`, :class:`float`, and :class:`complex`, is equivalent to the ``dtype`` of a tensor-like. Thus,
|
1306 |
+
Python scalars of different types can be checked, but require ``check_dtype=False``.
|
1307 |
+
|
1308 |
+
Args:
|
1309 |
+
actual (Any): Actual input.
|
1310 |
+
expected (Any): Expected input.
|
1311 |
+
allow_subclasses (bool): If ``True`` (default) and except for Python scalars, inputs of directly related types
|
1312 |
+
are allowed. Otherwise type equality is required.
|
1313 |
+
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
|
1314 |
+
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
1315 |
+
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
|
1316 |
+
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
1317 |
+
equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal.
|
1318 |
+
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
|
1319 |
+
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
|
1320 |
+
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
|
1321 |
+
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
|
1322 |
+
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
|
1323 |
+
:func:`torch.promote_types`) before being compared.
|
1324 |
+
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
|
1325 |
+
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
|
1326 |
+
compared.
|
1327 |
+
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
|
1328 |
+
msg (Optional[Union[str, Callable[[str], str]]]): Optional error message to use in case a failure occurs during
|
1329 |
+
the comparison. Can also passed as callable in which case it will be called with the generated message and
|
1330 |
+
should return the new message.
|
1331 |
+
|
1332 |
+
Raises:
|
1333 |
+
ValueError: If no :class:`torch.Tensor` can be constructed from an input.
|
1334 |
+
ValueError: If only ``rtol`` or ``atol`` is specified.
|
1335 |
+
AssertionError: If corresponding inputs are not Python scalars and are not directly related.
|
1336 |
+
AssertionError: If ``allow_subclasses`` is ``False``, but corresponding inputs are not Python scalars and have
|
1337 |
+
different types.
|
1338 |
+
AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match.
|
1339 |
+
AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match.
|
1340 |
+
AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`.
|
1341 |
+
AssertionError: If ``check_layout`` is ``True``, but corresponding tensors do not have the same
|
1342 |
+
:attr:`~torch.Tensor.layout`.
|
1343 |
+
AssertionError: If only one of corresponding tensors is quantized.
|
1344 |
+
AssertionError: If corresponding tensors are quantized, but have different :meth:`~torch.Tensor.qscheme`'s.
|
1345 |
+
AssertionError: If ``check_device`` is ``True``, but corresponding tensors are not on the same
|
1346 |
+
:attr:`~torch.Tensor.device`.
|
1347 |
+
AssertionError: If ``check_dtype`` is ``True``, but corresponding tensors do not have the same ``dtype``.
|
1348 |
+
AssertionError: If ``check_stride`` is ``True``, but corresponding strided tensors do not have the same stride.
|
1349 |
+
AssertionError: If the values of corresponding tensors are not close according to the definition above.
|
1350 |
+
|
1351 |
+
The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. In case of mismatching
|
1352 |
+
``dtype``'s, the maximum of both tolerances is used.
|
1353 |
+
|
1354 |
+
+---------------------------+------------+----------+
|
1355 |
+
| ``dtype`` | ``rtol`` | ``atol`` |
|
1356 |
+
+===========================+============+==========+
|
1357 |
+
| :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` |
|
1358 |
+
+---------------------------+------------+----------+
|
1359 |
+
| :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` |
|
1360 |
+
+---------------------------+------------+----------+
|
1361 |
+
| :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` |
|
1362 |
+
+---------------------------+------------+----------+
|
1363 |
+
| :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` |
|
1364 |
+
+---------------------------+------------+----------+
|
1365 |
+
| :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` |
|
1366 |
+
+---------------------------+------------+----------+
|
1367 |
+
| :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` |
|
1368 |
+
+---------------------------+------------+----------+
|
1369 |
+
| :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` |
|
1370 |
+
+---------------------------+------------+----------+
|
1371 |
+
| :attr:`~torch.quint8` | ``1.3e-6`` | ``1e-5`` |
|
1372 |
+
+---------------------------+------------+----------+
|
1373 |
+
| :attr:`~torch.quint2x4` | ``1.3e-6`` | ``1e-5`` |
|
1374 |
+
+---------------------------+------------+----------+
|
1375 |
+
| :attr:`~torch.quint4x2` | ``1.3e-6`` | ``1e-5`` |
|
1376 |
+
+---------------------------+------------+----------+
|
1377 |
+
| :attr:`~torch.qint8` | ``1.3e-6`` | ``1e-5`` |
|
1378 |
+
+---------------------------+------------+----------+
|
1379 |
+
| :attr:`~torch.qint32` | ``1.3e-6`` | ``1e-5`` |
|
1380 |
+
+---------------------------+------------+----------+
|
1381 |
+
| other | ``0.0`` | ``0.0`` |
|
1382 |
+
+---------------------------+------------+----------+
|
1383 |
+
|
1384 |
+
.. note::
|
1385 |
+
|
1386 |
+
:func:`~torch.testing.assert_close` is highly configurable with strict default settings. Users are encouraged
|
1387 |
+
to :func:`~functools.partial` it to fit their use case. For example, if an equality check is needed, one might
|
1388 |
+
define an ``assert_equal`` that uses zero tolerances for every ``dtype`` by default:
|
1389 |
+
|
1390 |
+
>>> import functools
|
1391 |
+
>>> assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=0)
|
1392 |
+
>>> assert_equal(1e-9, 1e-10)
|
1393 |
+
Traceback (most recent call last):
|
1394 |
+
...
|
1395 |
+
AssertionError: Scalars are not equal!
|
1396 |
+
<BLANKLINE>
|
1397 |
+
Expected 1e-10 but got 1e-09.
|
1398 |
+
Absolute difference: 9.000000000000001e-10
|
1399 |
+
Relative difference: 9.0
|
1400 |
+
|
1401 |
+
Examples:
|
1402 |
+
>>> # tensor to tensor comparison
|
1403 |
+
>>> expected = torch.tensor([1e0, 1e-1, 1e-2])
|
1404 |
+
>>> actual = torch.acos(torch.cos(expected))
|
1405 |
+
>>> torch.testing.assert_close(actual, expected)
|
1406 |
+
|
1407 |
+
>>> # scalar to scalar comparison
|
1408 |
+
>>> import math
|
1409 |
+
>>> expected = math.sqrt(2.0)
|
1410 |
+
>>> actual = 2.0 / math.sqrt(2.0)
|
1411 |
+
>>> torch.testing.assert_close(actual, expected)
|
1412 |
+
|
1413 |
+
>>> # numpy array to numpy array comparison
|
1414 |
+
>>> import numpy as np
|
1415 |
+
>>> expected = np.array([1e0, 1e-1, 1e-2])
|
1416 |
+
>>> actual = np.arccos(np.cos(expected))
|
1417 |
+
>>> torch.testing.assert_close(actual, expected)
|
1418 |
+
|
1419 |
+
>>> # sequence to sequence comparison
|
1420 |
+
>>> import numpy as np
|
1421 |
+
>>> # The types of the sequences do not have to match. They only have to have the same
|
1422 |
+
>>> # length and their elements have to match.
|
1423 |
+
>>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)]
|
1424 |
+
>>> actual = tuple(expected)
|
1425 |
+
>>> torch.testing.assert_close(actual, expected)
|
1426 |
+
|
1427 |
+
>>> # mapping to mapping comparison
|
1428 |
+
>>> from collections import OrderedDict
|
1429 |
+
>>> import numpy as np
|
1430 |
+
>>> foo = torch.tensor(1.0)
|
1431 |
+
>>> bar = 2.0
|
1432 |
+
>>> baz = np.array(3.0)
|
1433 |
+
>>> # The types and a possible ordering of mappings do not have to match. They only
|
1434 |
+
>>> # have to have the same set of keys and their elements have to match.
|
1435 |
+
>>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)])
|
1436 |
+
>>> actual = {"baz": baz, "bar": bar, "foo": foo}
|
1437 |
+
>>> torch.testing.assert_close(actual, expected)
|
1438 |
+
|
1439 |
+
>>> expected = torch.tensor([1.0, 2.0, 3.0])
|
1440 |
+
>>> actual = expected.clone()
|
1441 |
+
>>> # By default, directly related instances can be compared
|
1442 |
+
>>> torch.testing.assert_close(torch.nn.Parameter(actual), expected)
|
1443 |
+
>>> # This check can be made more strict with allow_subclasses=False
|
1444 |
+
>>> torch.testing.assert_close(
|
1445 |
+
... torch.nn.Parameter(actual), expected, allow_subclasses=False
|
1446 |
+
... )
|
1447 |
+
Traceback (most recent call last):
|
1448 |
+
...
|
1449 |
+
TypeError: No comparison pair was able to handle inputs of type
|
1450 |
+
<class 'torch.nn.parameter.Parameter'> and <class 'torch.Tensor'>.
|
1451 |
+
>>> # If the inputs are not directly related, they are never considered close
|
1452 |
+
>>> torch.testing.assert_close(actual.numpy(), expected)
|
1453 |
+
Traceback (most recent call last):
|
1454 |
+
...
|
1455 |
+
TypeError: No comparison pair was able to handle inputs of type <class 'numpy.ndarray'>
|
1456 |
+
and <class 'torch.Tensor'>.
|
1457 |
+
>>> # Exceptions to these rules are Python scalars. They can be checked regardless of
|
1458 |
+
>>> # their type if check_dtype=False.
|
1459 |
+
>>> torch.testing.assert_close(1.0, 1, check_dtype=False)
|
1460 |
+
|
1461 |
+
>>> # NaN != NaN by default.
|
1462 |
+
>>> expected = torch.tensor(float("Nan"))
|
1463 |
+
>>> actual = expected.clone()
|
1464 |
+
>>> torch.testing.assert_close(actual, expected)
|
1465 |
+
Traceback (most recent call last):
|
1466 |
+
...
|
1467 |
+
AssertionError: Scalars are not close!
|
1468 |
+
<BLANKLINE>
|
1469 |
+
Expected nan but got nan.
|
1470 |
+
Absolute difference: nan (up to 1e-05 allowed)
|
1471 |
+
Relative difference: nan (up to 1.3e-06 allowed)
|
1472 |
+
>>> torch.testing.assert_close(actual, expected, equal_nan=True)
|
1473 |
+
|
1474 |
+
>>> expected = torch.tensor([1.0, 2.0, 3.0])
|
1475 |
+
>>> actual = torch.tensor([1.0, 4.0, 5.0])
|
1476 |
+
>>> # The default error message can be overwritten.
|
1477 |
+
>>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!")
|
1478 |
+
Traceback (most recent call last):
|
1479 |
+
...
|
1480 |
+
AssertionError: Argh, the tensors are not close!
|
1481 |
+
>>> # If msg is a callable, it can be used to augment the generated message with
|
1482 |
+
>>> # extra information
|
1483 |
+
>>> torch.testing.assert_close(
|
1484 |
+
... actual, expected, msg=lambda msg: f"Header\n\n{msg}\n\nFooter"
|
1485 |
+
... )
|
1486 |
+
Traceback (most recent call last):
|
1487 |
+
...
|
1488 |
+
AssertionError: Header
|
1489 |
+
<BLANKLINE>
|
1490 |
+
Tensor-likes are not close!
|
1491 |
+
<BLANKLINE>
|
1492 |
+
Mismatched elements: 2 / 3 (66.7%)
|
1493 |
+
Greatest absolute difference: 2.0 at index (1,) (up to 1e-05 allowed)
|
1494 |
+
Greatest relative difference: 1.0 at index (1,) (up to 1.3e-06 allowed)
|
1495 |
+
<BLANKLINE>
|
1496 |
+
Footer
|
1497 |
+
"""
|
1498 |
+
# Hide this function from `pytest`'s traceback
|
1499 |
+
__tracebackhide__ = True
|
1500 |
+
|
1501 |
+
error_metas = not_close_error_metas(
|
1502 |
+
actual,
|
1503 |
+
expected,
|
1504 |
+
pair_types=(
|
1505 |
+
NonePair,
|
1506 |
+
BooleanPair,
|
1507 |
+
NumberPair,
|
1508 |
+
TensorLikePair,
|
1509 |
+
),
|
1510 |
+
allow_subclasses=allow_subclasses,
|
1511 |
+
rtol=rtol,
|
1512 |
+
atol=atol,
|
1513 |
+
equal_nan=equal_nan,
|
1514 |
+
check_device=check_device,
|
1515 |
+
check_dtype=check_dtype,
|
1516 |
+
check_layout=check_layout,
|
1517 |
+
check_stride=check_stride,
|
1518 |
+
msg=msg,
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
if error_metas:
|
1522 |
+
# TODO: compose all metas into one AssertionError
|
1523 |
+
raise error_metas[0].to_error(msg)
|
1524 |
+
|
1525 |
+
|
1526 |
+
def assert_allclose(
|
1527 |
+
actual: Any,
|
1528 |
+
expected: Any,
|
1529 |
+
rtol: Optional[float] = None,
|
1530 |
+
atol: Optional[float] = None,
|
1531 |
+
equal_nan: bool = True,
|
1532 |
+
msg: str = "",
|
1533 |
+
) -> None:
|
1534 |
+
"""
|
1535 |
+
.. warning::
|
1536 |
+
|
1537 |
+
:func:`torch.testing.assert_allclose` is deprecated since ``1.12`` and will be removed in a future release.
|
1538 |
+
Please use :func:`torch.testing.assert_close` instead. You can find detailed upgrade instructions
|
1539 |
+
`here <https://github.com/pytorch/pytorch/issues/61844>`_.
|
1540 |
+
"""
|
1541 |
+
warnings.warn(
|
1542 |
+
"`torch.testing.assert_allclose()` is deprecated since 1.12 and will be removed in a future release. "
|
1543 |
+
"Please use `torch.testing.assert_close()` instead. "
|
1544 |
+
"You can find detailed upgrade instructions in https://github.com/pytorch/pytorch/issues/61844.",
|
1545 |
+
FutureWarning,
|
1546 |
+
stacklevel=2,
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
if not isinstance(actual, torch.Tensor):
|
1550 |
+
actual = torch.tensor(actual)
|
1551 |
+
if not isinstance(expected, torch.Tensor):
|
1552 |
+
expected = torch.tensor(expected, dtype=actual.dtype)
|
1553 |
+
|
1554 |
+
if rtol is None and atol is None:
|
1555 |
+
rtol, atol = default_tolerances(
|
1556 |
+
actual,
|
1557 |
+
expected,
|
1558 |
+
dtype_precisions={
|
1559 |
+
torch.float16: (1e-3, 1e-3),
|
1560 |
+
torch.float32: (1e-4, 1e-5),
|
1561 |
+
torch.float64: (1e-5, 1e-8),
|
1562 |
+
},
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
torch.testing.assert_close(
|
1566 |
+
actual,
|
1567 |
+
expected,
|
1568 |
+
rtol=rtol,
|
1569 |
+
atol=atol,
|
1570 |
+
equal_nan=equal_nan,
|
1571 |
+
check_device=True,
|
1572 |
+
check_dtype=False,
|
1573 |
+
check_stride=False,
|
1574 |
+
msg=msg or None,
|
1575 |
+
)
|
venv/lib/python3.10/site-packages/torch/testing/_creation.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module contains tensor creation utilities.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import collections.abc
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import cast, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
_INTEGRAL_TYPES = [
|
13 |
+
torch.uint8,
|
14 |
+
torch.int8,
|
15 |
+
torch.int16,
|
16 |
+
torch.int32,
|
17 |
+
torch.int64,
|
18 |
+
torch.uint16,
|
19 |
+
torch.uint32,
|
20 |
+
torch.uint64,
|
21 |
+
]
|
22 |
+
_FLOATING_TYPES = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
|
23 |
+
_FLOATING_8BIT_TYPES = [
|
24 |
+
torch.float8_e4m3fn,
|
25 |
+
torch.float8_e5m2,
|
26 |
+
torch.float8_e4m3fnuz,
|
27 |
+
torch.float8_e5m2fnuz,
|
28 |
+
]
|
29 |
+
_COMPLEX_TYPES = [torch.complex32, torch.complex64, torch.complex128]
|
30 |
+
_BOOLEAN_OR_INTEGRAL_TYPES = [torch.bool, *_INTEGRAL_TYPES]
|
31 |
+
_FLOATING_OR_COMPLEX_TYPES = [*_FLOATING_TYPES, *_COMPLEX_TYPES]
|
32 |
+
|
33 |
+
|
34 |
+
def _uniform_random_(t: torch.Tensor, low: float, high: float) -> torch.Tensor:
|
35 |
+
# uniform_ requires to-from <= std::numeric_limits<scalar_t>::max()
|
36 |
+
# Work around this by scaling the range before and after the PRNG
|
37 |
+
if high - low >= torch.finfo(t.dtype).max:
|
38 |
+
return t.uniform_(low / 2, high / 2).mul_(2)
|
39 |
+
else:
|
40 |
+
return t.uniform_(low, high)
|
41 |
+
|
42 |
+
|
43 |
+
def make_tensor(
|
44 |
+
*shape: Union[int, torch.Size, List[int], Tuple[int, ...]],
|
45 |
+
dtype: torch.dtype,
|
46 |
+
device: Union[str, torch.device],
|
47 |
+
low: Optional[float] = None,
|
48 |
+
high: Optional[float] = None,
|
49 |
+
requires_grad: bool = False,
|
50 |
+
noncontiguous: bool = False,
|
51 |
+
exclude_zero: bool = False,
|
52 |
+
memory_format: Optional[torch.memory_format] = None,
|
53 |
+
) -> torch.Tensor:
|
54 |
+
r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
|
55 |
+
values uniformly drawn from ``[low, high)``.
|
56 |
+
|
57 |
+
If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
|
58 |
+
finite values then they are clamped to the lowest or highest representable finite value, respectively.
|
59 |
+
If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
|
60 |
+
which depend on :attr:`dtype`.
|
61 |
+
|
62 |
+
+---------------------------+------------+----------+
|
63 |
+
| ``dtype`` | ``low`` | ``high`` |
|
64 |
+
+===========================+============+==========+
|
65 |
+
| boolean type | ``0`` | ``2`` |
|
66 |
+
+---------------------------+------------+----------+
|
67 |
+
| unsigned integral type | ``0`` | ``10`` |
|
68 |
+
+---------------------------+------------+----------+
|
69 |
+
| signed integral types | ``-9`` | ``10`` |
|
70 |
+
+---------------------------+------------+----------+
|
71 |
+
| floating types | ``-9`` | ``9`` |
|
72 |
+
+---------------------------+------------+----------+
|
73 |
+
| complex types | ``-9`` | ``9`` |
|
74 |
+
+---------------------------+------------+----------+
|
75 |
+
|
76 |
+
Args:
|
77 |
+
shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
|
78 |
+
dtype (:class:`torch.dtype`): The data type of the returned tensor.
|
79 |
+
device (Union[str, torch.device]): The device of the returned tensor.
|
80 |
+
low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
|
81 |
+
clamped to the least representable finite value of the given dtype. When ``None`` (default),
|
82 |
+
this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
83 |
+
high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
|
84 |
+
clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
|
85 |
+
is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
86 |
+
|
87 |
+
.. deprecated:: 2.1
|
88 |
+
|
89 |
+
Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated
|
90 |
+
since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead.
|
91 |
+
|
92 |
+
requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
|
93 |
+
noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
|
94 |
+
ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``.
|
95 |
+
exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
|
96 |
+
depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
|
97 |
+
point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
|
98 |
+
:attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
|
99 |
+
whose real and imaginary parts are both the smallest positive normal number representable by the complex
|
100 |
+
type. Default ``False``.
|
101 |
+
memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive
|
102 |
+
with ``noncontiguous``.
|
103 |
+
|
104 |
+
Raises:
|
105 |
+
ValueError: If ``requires_grad=True`` is passed for integral `dtype`
|
106 |
+
ValueError: If ``low >= high``.
|
107 |
+
ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
|
108 |
+
ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed.
|
109 |
+
TypeError: If :attr:`dtype` isn't supported by this function.
|
110 |
+
|
111 |
+
Examples:
|
112 |
+
>>> # xdoctest: +SKIP
|
113 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
114 |
+
>>> from torch.testing import make_tensor
|
115 |
+
>>> # Creates a float tensor with values in [-1, 1)
|
116 |
+
>>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
|
117 |
+
>>> # xdoctest: +SKIP
|
118 |
+
tensor([ 0.1205, 0.2282, -0.6380])
|
119 |
+
>>> # Creates a bool tensor on CUDA
|
120 |
+
>>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
|
121 |
+
tensor([[False, False],
|
122 |
+
[False, True]], device='cuda:0')
|
123 |
+
"""
|
124 |
+
|
125 |
+
def modify_low_high(
|
126 |
+
low: Optional[float],
|
127 |
+
high: Optional[float],
|
128 |
+
*,
|
129 |
+
lowest_inclusive: float,
|
130 |
+
highest_exclusive: float,
|
131 |
+
default_low: float,
|
132 |
+
default_high: float,
|
133 |
+
) -> Tuple[float, float]:
|
134 |
+
"""
|
135 |
+
Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high)
|
136 |
+
if required.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def clamp(a: float, l: float, h: float) -> float:
|
140 |
+
return min(max(a, l), h)
|
141 |
+
|
142 |
+
low = low if low is not None else default_low
|
143 |
+
high = high if high is not None else default_high
|
144 |
+
|
145 |
+
if any(isinstance(value, float) and math.isnan(value) for value in [low, high]):
|
146 |
+
raise ValueError(
|
147 |
+
f"`low` and `high` cannot be NaN, but got {low=} and {high=}"
|
148 |
+
)
|
149 |
+
elif low == high and dtype in _FLOATING_OR_COMPLEX_TYPES:
|
150 |
+
warnings.warn(
|
151 |
+
"Passing `low==high` to `torch.testing.make_tensor` for floating or complex types "
|
152 |
+
"is deprecated since 2.1 and will be removed in 2.3. "
|
153 |
+
"Use torch.full(...) instead.",
|
154 |
+
FutureWarning,
|
155 |
+
)
|
156 |
+
elif low >= high:
|
157 |
+
raise ValueError(f"`low` must be less than `high`, but got {low} >= {high}")
|
158 |
+
elif high < lowest_inclusive or low >= highest_exclusive:
|
159 |
+
raise ValueError(
|
160 |
+
f"The value interval specified by `low` and `high` is [{low}, {high}), "
|
161 |
+
f"but {dtype} only supports [{lowest_inclusive}, {highest_exclusive})"
|
162 |
+
)
|
163 |
+
|
164 |
+
low = clamp(low, lowest_inclusive, highest_exclusive)
|
165 |
+
high = clamp(high, lowest_inclusive, highest_exclusive)
|
166 |
+
|
167 |
+
if dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
168 |
+
# 1. `low` is ceiled to avoid creating values smaller than `low` and thus outside the specified interval
|
169 |
+
# 2. Following the same reasoning as for 1., `high` should be floored. However, the higher bound of
|
170 |
+
# `torch.randint` is exclusive, and thus we need to ceil here as well.
|
171 |
+
return math.ceil(low), math.ceil(high)
|
172 |
+
|
173 |
+
return low, high
|
174 |
+
|
175 |
+
if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence):
|
176 |
+
shape = shape[0] # type: ignore[assignment]
|
177 |
+
shape = cast(Tuple[int, ...], tuple(shape))
|
178 |
+
|
179 |
+
if noncontiguous and memory_format is not None:
|
180 |
+
raise ValueError(
|
181 |
+
f"The parameters `noncontiguous` and `memory_format` are mutually exclusive, "
|
182 |
+
f"but got {noncontiguous=} and {memory_format=}"
|
183 |
+
)
|
184 |
+
|
185 |
+
if requires_grad and dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
186 |
+
raise ValueError(
|
187 |
+
f"`requires_grad=True` is not supported for boolean and integral dtypes, but got {dtype=}"
|
188 |
+
)
|
189 |
+
|
190 |
+
if dtype is torch.bool:
|
191 |
+
low, high = cast(
|
192 |
+
Tuple[int, int],
|
193 |
+
modify_low_high(
|
194 |
+
low,
|
195 |
+
high,
|
196 |
+
lowest_inclusive=0,
|
197 |
+
highest_exclusive=2,
|
198 |
+
default_low=0,
|
199 |
+
default_high=2,
|
200 |
+
),
|
201 |
+
)
|
202 |
+
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
203 |
+
elif dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
204 |
+
low, high = cast(
|
205 |
+
Tuple[int, int],
|
206 |
+
modify_low_high(
|
207 |
+
low,
|
208 |
+
high,
|
209 |
+
lowest_inclusive=torch.iinfo(dtype).min,
|
210 |
+
highest_exclusive=torch.iinfo(dtype).max
|
211 |
+
# In theory, `highest_exclusive` should always be the maximum value + 1. However, `torch.randint`
|
212 |
+
# internally converts the bounds to an int64 and would overflow. In other words: `torch.randint` cannot
|
213 |
+
# sample 2**63 - 1, i.e. the maximum value of `torch.int64` and we need to account for that here.
|
214 |
+
+ (1 if dtype is not torch.int64 else 0),
|
215 |
+
# This is incorrect for `torch.uint8`, but since we clamp to `lowest`, i.e. 0 for `torch.uint8`,
|
216 |
+
# _after_ we use the default value, we don't need to special case it here
|
217 |
+
default_low=-9,
|
218 |
+
default_high=10,
|
219 |
+
),
|
220 |
+
)
|
221 |
+
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
222 |
+
elif dtype in _FLOATING_OR_COMPLEX_TYPES:
|
223 |
+
low, high = modify_low_high(
|
224 |
+
low,
|
225 |
+
high,
|
226 |
+
lowest_inclusive=torch.finfo(dtype).min,
|
227 |
+
highest_exclusive=torch.finfo(dtype).max,
|
228 |
+
default_low=-9,
|
229 |
+
default_high=9,
|
230 |
+
)
|
231 |
+
result = torch.empty(shape, device=device, dtype=dtype)
|
232 |
+
_uniform_random_(
|
233 |
+
torch.view_as_real(result) if dtype in _COMPLEX_TYPES else result, low, high
|
234 |
+
)
|
235 |
+
elif dtype in _FLOATING_8BIT_TYPES:
|
236 |
+
low, high = modify_low_high(
|
237 |
+
low,
|
238 |
+
high,
|
239 |
+
lowest_inclusive=torch.finfo(dtype).min,
|
240 |
+
highest_exclusive=torch.finfo(dtype).max,
|
241 |
+
default_low=-9,
|
242 |
+
default_high=9,
|
243 |
+
)
|
244 |
+
result = torch.empty(shape, device=device, dtype=torch.float32)
|
245 |
+
_uniform_random_(result, low, high)
|
246 |
+
result = result.to(dtype)
|
247 |
+
else:
|
248 |
+
raise TypeError(
|
249 |
+
f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()."
|
250 |
+
" To request support, file an issue at: https://github.com/pytorch/pytorch/issues"
|
251 |
+
)
|
252 |
+
|
253 |
+
if noncontiguous and result.numel() > 1:
|
254 |
+
result = torch.repeat_interleave(result, 2, dim=-1)
|
255 |
+
result = result[..., ::2]
|
256 |
+
elif memory_format is not None:
|
257 |
+
result = result.clone(memory_format=memory_format)
|
258 |
+
|
259 |
+
if exclude_zero:
|
260 |
+
result[result == 0] = (
|
261 |
+
1 if dtype in _BOOLEAN_OR_INTEGRAL_TYPES else torch.finfo(dtype).tiny
|
262 |
+
)
|
263 |
+
|
264 |
+
if dtype in _FLOATING_OR_COMPLEX_TYPES:
|
265 |
+
result.requires_grad = requires_grad
|
266 |
+
|
267 |
+
return result
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_cuda.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
r"""This file is allowed to initialize CUDA context when imported."""
|
4 |
+
|
5 |
+
import functools
|
6 |
+
import torch
|
7 |
+
import torch.cuda
|
8 |
+
from torch.testing._internal.common_utils import LazyVal, TEST_NUMBA, TEST_WITH_ROCM, TEST_CUDA, IS_WINDOWS
|
9 |
+
import inspect
|
10 |
+
import contextlib
|
11 |
+
import os
|
12 |
+
|
13 |
+
|
14 |
+
CUDA_ALREADY_INITIALIZED_ON_IMPORT = torch.cuda.is_initialized()
|
15 |
+
|
16 |
+
|
17 |
+
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
|
18 |
+
CUDA_DEVICE = torch.device("cuda:0") if TEST_CUDA else None
|
19 |
+
# note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN
|
20 |
+
if TEST_WITH_ROCM:
|
21 |
+
TEST_CUDNN = LazyVal(lambda: TEST_CUDA)
|
22 |
+
else:
|
23 |
+
TEST_CUDNN = LazyVal(lambda: TEST_CUDA and torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE)))
|
24 |
+
|
25 |
+
TEST_CUDNN_VERSION = LazyVal(lambda: torch.backends.cudnn.version() if TEST_CUDNN else 0)
|
26 |
+
|
27 |
+
SM53OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (5, 3))
|
28 |
+
SM60OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (6, 0))
|
29 |
+
SM70OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 0))
|
30 |
+
SM75OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 5))
|
31 |
+
SM80OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0))
|
32 |
+
SM90OrLater = LazyVal(lambda: torch.cuda.is_available() and torch.cuda.get_device_capability() >= (9, 0))
|
33 |
+
|
34 |
+
def evaluate_gfx_arch_exact(matching_arch):
|
35 |
+
if not torch.cuda.is_available():
|
36 |
+
return False
|
37 |
+
gcn_arch_name = torch.cuda.get_device_properties('cuda').gcnArchName
|
38 |
+
arch = os.environ.get('PYTORCH_DEBUG_FLASH_ATTENTION_GCN_ARCH_OVERRIDE', gcn_arch_name)
|
39 |
+
return arch == matching_arch
|
40 |
+
|
41 |
+
GFX90A_Exact = LazyVal(lambda: evaluate_gfx_arch_exact('gfx90a:sramecc+:xnack-'))
|
42 |
+
GFX942_Exact = LazyVal(lambda: evaluate_gfx_arch_exact('gfx942:sramecc+:xnack-'))
|
43 |
+
|
44 |
+
def evaluate_platform_supports_flash_attention():
|
45 |
+
if TEST_WITH_ROCM:
|
46 |
+
return evaluate_gfx_arch_exact('gfx90a:sramecc+:xnack-') or evaluate_gfx_arch_exact('gfx942:sramecc+:xnack-')
|
47 |
+
if TEST_CUDA:
|
48 |
+
return not IS_WINDOWS and SM80OrLater
|
49 |
+
return False
|
50 |
+
|
51 |
+
PLATFORM_SUPPORTS_FLASH_ATTENTION: bool = LazyVal(lambda: evaluate_platform_supports_flash_attention())
|
52 |
+
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION: bool = LazyVal(lambda: TEST_CUDA and not TEST_WITH_ROCM)
|
53 |
+
# TODO(eqy): gate this against a cuDNN version
|
54 |
+
PLATFORM_SUPPORTS_CUDNN_ATTENTION: bool = LazyVal(lambda: TEST_CUDA and not TEST_WITH_ROCM and
|
55 |
+
torch.backends.cuda.cudnn_sdp_enabled())
|
56 |
+
# This condition always evaluates to PLATFORM_SUPPORTS_MEM_EFF_ATTENTION but for logical clarity we keep it separate
|
57 |
+
PLATFORM_SUPPORTS_FUSED_ATTENTION: bool = LazyVal(lambda: PLATFORM_SUPPORTS_FLASH_ATTENTION or PLATFORM_SUPPORTS_MEM_EFF_ATTENTION)
|
58 |
+
|
59 |
+
PLATFORM_SUPPORTS_FUSED_SDPA: bool = TEST_CUDA and not TEST_WITH_ROCM
|
60 |
+
|
61 |
+
if TEST_NUMBA:
|
62 |
+
try:
|
63 |
+
import numba.cuda
|
64 |
+
TEST_NUMBA_CUDA = numba.cuda.is_available()
|
65 |
+
except Exception as e:
|
66 |
+
TEST_NUMBA_CUDA = False
|
67 |
+
TEST_NUMBA = False
|
68 |
+
else:
|
69 |
+
TEST_NUMBA_CUDA = False
|
70 |
+
|
71 |
+
# Used below in `initialize_cuda_context_rng` to ensure that CUDA context and
|
72 |
+
# RNG have been initialized.
|
73 |
+
__cuda_ctx_rng_initialized = False
|
74 |
+
|
75 |
+
|
76 |
+
# after this call, CUDA context and RNG must have been initialized on each GPU
|
77 |
+
def initialize_cuda_context_rng():
|
78 |
+
global __cuda_ctx_rng_initialized
|
79 |
+
assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng'
|
80 |
+
if not __cuda_ctx_rng_initialized:
|
81 |
+
# initialize cuda context and rng for memory tests
|
82 |
+
for i in range(torch.cuda.device_count()):
|
83 |
+
torch.randn(1, device=f"cuda:{i}")
|
84 |
+
__cuda_ctx_rng_initialized = True
|
85 |
+
|
86 |
+
|
87 |
+
# Test whether hardware TF32 math mode enabled. It is enabled only on:
|
88 |
+
# - CUDA >= 11
|
89 |
+
# - arch >= Ampere
|
90 |
+
def tf32_is_not_fp32():
|
91 |
+
if not torch.cuda.is_available() or torch.version.cuda is None:
|
92 |
+
return False
|
93 |
+
if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
|
94 |
+
return False
|
95 |
+
if int(torch.version.cuda.split('.')[0]) < 11:
|
96 |
+
return False
|
97 |
+
return True
|
98 |
+
|
99 |
+
|
100 |
+
@contextlib.contextmanager
|
101 |
+
def tf32_off():
|
102 |
+
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
103 |
+
try:
|
104 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
105 |
+
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
|
106 |
+
yield
|
107 |
+
finally:
|
108 |
+
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
109 |
+
|
110 |
+
|
111 |
+
@contextlib.contextmanager
|
112 |
+
def tf32_on(self, tf32_precision=1e-5):
|
113 |
+
old_allow_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
114 |
+
old_precision = self.precision
|
115 |
+
try:
|
116 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
117 |
+
self.precision = tf32_precision
|
118 |
+
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
|
119 |
+
yield
|
120 |
+
finally:
|
121 |
+
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32_matmul
|
122 |
+
self.precision = old_precision
|
123 |
+
|
124 |
+
|
125 |
+
# This is a wrapper that wraps a test to run this test twice, one with
|
126 |
+
# allow_tf32=True, another with allow_tf32=False. When running with
|
127 |
+
# allow_tf32=True, it will use reduced precision as specified by the
|
128 |
+
# argument. For example:
|
129 |
+
# @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
130 |
+
# @tf32_on_and_off(0.005)
|
131 |
+
# def test_matmul(self, device, dtype):
|
132 |
+
# a = ...; b = ...;
|
133 |
+
# c = torch.matmul(a, b)
|
134 |
+
# self.assertEqual(c, expected)
|
135 |
+
# In the above example, when testing torch.float32 and torch.complex64 on CUDA
|
136 |
+
# on a CUDA >= 11 build on an >=Ampere architecture, the matmul will be running at
|
137 |
+
# TF32 mode and TF32 mode off, and on TF32 mode, the assertEqual will use reduced
|
138 |
+
# precision to check values.
|
139 |
+
#
|
140 |
+
# This decorator can be used for function with or without device/dtype, such as
|
141 |
+
# @tf32_on_and_off(0.005)
|
142 |
+
# def test_my_op(self)
|
143 |
+
# @tf32_on_and_off(0.005)
|
144 |
+
# def test_my_op(self, device)
|
145 |
+
# @tf32_on_and_off(0.005)
|
146 |
+
# def test_my_op(self, device, dtype)
|
147 |
+
# @tf32_on_and_off(0.005)
|
148 |
+
# def test_my_op(self, dtype)
|
149 |
+
# if neither device nor dtype is specified, it will check if the system has ampere device
|
150 |
+
# if device is specified, it will check if device is cuda
|
151 |
+
# if dtype is specified, it will check if dtype is float32 or complex64
|
152 |
+
# tf32 and fp32 are different only when all the three checks pass
|
153 |
+
def tf32_on_and_off(tf32_precision=1e-5):
|
154 |
+
def with_tf32_disabled(self, function_call):
|
155 |
+
with tf32_off():
|
156 |
+
function_call()
|
157 |
+
|
158 |
+
def with_tf32_enabled(self, function_call):
|
159 |
+
with tf32_on(self, tf32_precision):
|
160 |
+
function_call()
|
161 |
+
|
162 |
+
def wrapper(f):
|
163 |
+
params = inspect.signature(f).parameters
|
164 |
+
arg_names = tuple(params.keys())
|
165 |
+
|
166 |
+
@functools.wraps(f)
|
167 |
+
def wrapped(*args, **kwargs):
|
168 |
+
for k, v in zip(arg_names, args):
|
169 |
+
kwargs[k] = v
|
170 |
+
cond = tf32_is_not_fp32()
|
171 |
+
if 'device' in kwargs:
|
172 |
+
cond = cond and (torch.device(kwargs['device']).type == 'cuda')
|
173 |
+
if 'dtype' in kwargs:
|
174 |
+
cond = cond and (kwargs['dtype'] in {torch.float32, torch.complex64})
|
175 |
+
if cond:
|
176 |
+
with_tf32_disabled(kwargs['self'], lambda: f(**kwargs))
|
177 |
+
with_tf32_enabled(kwargs['self'], lambda: f(**kwargs))
|
178 |
+
else:
|
179 |
+
f(**kwargs)
|
180 |
+
|
181 |
+
return wrapped
|
182 |
+
return wrapper
|
183 |
+
|
184 |
+
|
185 |
+
# This is a wrapper that wraps a test to run it with TF32 turned off.
|
186 |
+
# This wrapper is designed to be used when a test uses matmul or convolutions
|
187 |
+
# but the purpose of that test is not testing matmul or convolutions.
|
188 |
+
# Disabling TF32 will enforce torch.float tensors to be always computed
|
189 |
+
# at full precision.
|
190 |
+
def with_tf32_off(f):
|
191 |
+
@functools.wraps(f)
|
192 |
+
def wrapped(*args, **kwargs):
|
193 |
+
with tf32_off():
|
194 |
+
return f(*args, **kwargs)
|
195 |
+
|
196 |
+
return wrapped
|
197 |
+
|
198 |
+
def _get_magma_version():
|
199 |
+
if 'Magma' not in torch.__config__.show():
|
200 |
+
return (0, 0)
|
201 |
+
position = torch.__config__.show().find('Magma ')
|
202 |
+
version_str = torch.__config__.show()[position + len('Magma '):].split('\n')[0]
|
203 |
+
return tuple(int(x) for x in version_str.split("."))
|
204 |
+
|
205 |
+
def _get_torch_cuda_version():
|
206 |
+
if torch.version.cuda is None:
|
207 |
+
return (0, 0)
|
208 |
+
cuda_version = str(torch.version.cuda)
|
209 |
+
return tuple(int(x) for x in cuda_version.split("."))
|
210 |
+
|
211 |
+
def _get_torch_rocm_version():
|
212 |
+
if not TEST_WITH_ROCM:
|
213 |
+
return (0, 0)
|
214 |
+
rocm_version = str(torch.version.hip)
|
215 |
+
rocm_version = rocm_version.split("-")[0] # ignore git sha
|
216 |
+
return tuple(int(x) for x in rocm_version.split("."))
|
217 |
+
|
218 |
+
def _check_cusparse_generic_available():
|
219 |
+
return not TEST_WITH_ROCM
|
220 |
+
|
221 |
+
def _check_hipsparse_generic_available():
|
222 |
+
if not TEST_WITH_ROCM:
|
223 |
+
return False
|
224 |
+
|
225 |
+
rocm_version = str(torch.version.hip)
|
226 |
+
rocm_version = rocm_version.split("-")[0] # ignore git sha
|
227 |
+
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
|
228 |
+
return not (rocm_version_tuple is None or rocm_version_tuple < (5, 1))
|
229 |
+
|
230 |
+
|
231 |
+
TEST_CUSPARSE_GENERIC = _check_cusparse_generic_available()
|
232 |
+
TEST_HIPSPARSE_GENERIC = _check_hipsparse_generic_available()
|
233 |
+
|
234 |
+
# Shared by test_torch.py and test_multigpu.py
|
235 |
+
def _create_scaling_models_optimizers(device="cuda", optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
236 |
+
# Create a module+optimizer that will use scaling, and a control module+optimizer
|
237 |
+
# that will not use scaling, against which the scaling-enabled module+optimizer can be compared.
|
238 |
+
mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
239 |
+
mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
|
240 |
+
with torch.no_grad():
|
241 |
+
for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
|
242 |
+
s.copy_(c)
|
243 |
+
|
244 |
+
kwargs = {"lr": 1.0}
|
245 |
+
if optimizer_kwargs is not None:
|
246 |
+
kwargs.update(optimizer_kwargs)
|
247 |
+
opt_control = optimizer_ctor(mod_control.parameters(), **kwargs)
|
248 |
+
opt_scaling = optimizer_ctor(mod_scaling.parameters(), **kwargs)
|
249 |
+
|
250 |
+
return mod_control, mod_scaling, opt_control, opt_scaling
|
251 |
+
|
252 |
+
# Shared by test_torch.py, test_cuda.py and test_multigpu.py
|
253 |
+
def _create_scaling_case(device="cuda", dtype=torch.float, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
|
254 |
+
data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
255 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
256 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
|
257 |
+
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))]
|
258 |
+
|
259 |
+
loss_fn = torch.nn.MSELoss().to(device)
|
260 |
+
|
261 |
+
skip_iter = 2
|
262 |
+
|
263 |
+
return _create_scaling_models_optimizers(
|
264 |
+
device=device, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
|
265 |
+
) + (data, loss_fn, skip_iter)
|
266 |
+
|
267 |
+
|
268 |
+
# Importing this module should NOT eagerly initialize CUDA
|
269 |
+
if not CUDA_ALREADY_INITIALIZED_ON_IMPORT:
|
270 |
+
assert not torch.cuda.is_initialized()
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py
ADDED
@@ -0,0 +1,1525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import gc
|
5 |
+
import inspect
|
6 |
+
import runpy
|
7 |
+
import sys
|
8 |
+
import threading
|
9 |
+
from collections import namedtuple
|
10 |
+
from enum import Enum
|
11 |
+
from functools import wraps, partial
|
12 |
+
from typing import List, Any, ClassVar, Optional, Sequence, Tuple, Union, Dict, Set
|
13 |
+
import unittest
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM, TEST_MKL, \
|
17 |
+
skipCUDANonDefaultStreamIf, TEST_WITH_ASAN, TEST_WITH_UBSAN, TEST_WITH_TSAN, \
|
18 |
+
IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, IS_WINDOWS, TEST_MPS, \
|
19 |
+
_TestParametrizer, compose_parametrize_fns, dtype_name, \
|
20 |
+
TEST_WITH_MIOPEN_SUGGEST_NHWC, NATIVE_DEVICES, skipIfTorchDynamo, \
|
21 |
+
get_tracked_input, clear_tracked_input, PRINT_REPRO_ON_FAILURE, \
|
22 |
+
TEST_WITH_TORCHINDUCTOR
|
23 |
+
from torch.testing._internal.common_cuda import _get_torch_cuda_version, \
|
24 |
+
TEST_CUSPARSE_GENERIC, TEST_HIPSPARSE_GENERIC, _get_torch_rocm_version
|
25 |
+
from torch.testing._internal.common_dtype import get_all_dtypes
|
26 |
+
|
27 |
+
try:
|
28 |
+
import psutil # type: ignore[import]
|
29 |
+
HAS_PSUTIL = True
|
30 |
+
except ImportError:
|
31 |
+
HAS_PSUTIL = False
|
32 |
+
|
33 |
+
# Note [Writing Test Templates]
|
34 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
35 |
+
#
|
36 |
+
# This note was written shortly after the PyTorch 1.9 release.
|
37 |
+
# If you notice it's out-of-date or think it could be improved then please
|
38 |
+
# file an issue.
|
39 |
+
#
|
40 |
+
# PyTorch has its own framework for instantiating test templates. That is, for
|
41 |
+
# taking test classes that look similar to unittest or pytest
|
42 |
+
# compatible test classes and optionally doing the following:
|
43 |
+
#
|
44 |
+
# - instantiating a version of the test class for each available device type
|
45 |
+
# (often the CPU, CUDA, and META device types)
|
46 |
+
# - further instantiating a version of each test that's always specialized
|
47 |
+
# on the test class's device type, and optionally specialized further
|
48 |
+
# on datatypes or operators
|
49 |
+
#
|
50 |
+
# This functionality is similar to pytest's parametrize functionality
|
51 |
+
# (see https://docs.pytest.org/en/6.2.x/parametrize.html), but with considerable
|
52 |
+
# additional logic that specializes the instantiated test classes for their
|
53 |
+
# device types (see CPUTestBase and CUDATestBase below), supports a variety
|
54 |
+
# of composable decorators that allow for test filtering and setting
|
55 |
+
# tolerances, and allows tests parametrized by operators to instantiate
|
56 |
+
# only the subset of device type x dtype that operator supports.
|
57 |
+
#
|
58 |
+
# This framework was built to make it easier to write tests that run on
|
59 |
+
# multiple device types, multiple datatypes (dtypes), and for multiple
|
60 |
+
# operators. It's also useful for controlling which tests are run. For example,
|
61 |
+
# only tests that use a CUDA device can be run on platforms with CUDA.
|
62 |
+
# Let's dive in with an example to get an idea for how it works:
|
63 |
+
#
|
64 |
+
# --------------------------------------------------------
|
65 |
+
# A template class (looks like a regular unittest TestCase)
|
66 |
+
# class TestClassFoo(TestCase):
|
67 |
+
#
|
68 |
+
# # A template test that can be specialized with a device
|
69 |
+
# # NOTE: this test case is not runnable by unittest or pytest because it
|
70 |
+
# # accepts an extra positional argument, "device", that they do not understand
|
71 |
+
# def test_bar(self, device):
|
72 |
+
# pass
|
73 |
+
#
|
74 |
+
# # Function that instantiates a template class and its tests
|
75 |
+
# instantiate_device_type_tests(TestCommon, globals())
|
76 |
+
# --------------------------------------------------------
|
77 |
+
#
|
78 |
+
# In the above code example we see a template class and a single test template
|
79 |
+
# that can be instantiated with a device. The function
|
80 |
+
# instantiate_device_type_tests(), called at file scope, instantiates
|
81 |
+
# new test classes, one per available device type, and new tests in those
|
82 |
+
# classes from these templates. It actually does this by removing
|
83 |
+
# the class TestClassFoo and replacing it with classes like TestClassFooCPU
|
84 |
+
# and TestClassFooCUDA, instantiated test classes that inherit from CPUTestBase
|
85 |
+
# and CUDATestBase respectively. Additional device types, like XLA,
|
86 |
+
# (see https://github.com/pytorch/xla) can further extend the set of
|
87 |
+
# instantiated test classes to create classes like TestClassFooXLA.
|
88 |
+
#
|
89 |
+
# The test template, test_bar(), is also instantiated. In this case the template
|
90 |
+
# is only specialized on a device, so (depending on the available device
|
91 |
+
# types) it might become test_bar_cpu() in TestClassFooCPU and test_bar_cuda()
|
92 |
+
# in TestClassFooCUDA. We can think of the instantiated test classes as
|
93 |
+
# looking like this:
|
94 |
+
#
|
95 |
+
# --------------------------------------------------------
|
96 |
+
# # An instantiated test class for the CPU device type
|
97 |
+
# class TestClassFooCPU(CPUTestBase):
|
98 |
+
#
|
99 |
+
# # An instantiated test that calls the template with the string representation
|
100 |
+
# # of a device from the test class's device type
|
101 |
+
# def test_bar_cpu(self):
|
102 |
+
# test_bar(self, 'cpu')
|
103 |
+
#
|
104 |
+
# # An instantiated test class for the CUDA device type
|
105 |
+
# class TestClassFooCUDA(CUDATestBase):
|
106 |
+
#
|
107 |
+
# # An instantiated test that calls the template with the string representation
|
108 |
+
# # of a device from the test class's device type
|
109 |
+
# def test_bar_cuda(self):
|
110 |
+
# test_bar(self, 'cuda:0')
|
111 |
+
# --------------------------------------------------------
|
112 |
+
#
|
113 |
+
# These instantiated test classes ARE discoverable and runnable by both
|
114 |
+
# unittest and pytest. One thing that may be confusing, however, is that
|
115 |
+
# attempting to run "test_bar" will not work, despite it appearing in the
|
116 |
+
# original template code. This is because "test_bar" is no longer discoverable
|
117 |
+
# after instantiate_device_type_tests() runs, as the above snippet shows.
|
118 |
+
# Instead "test_bar_cpu" and "test_bar_cuda" may be run directly, or both
|
119 |
+
# can be run with the option "-k test_bar".
|
120 |
+
#
|
121 |
+
# Removing the template class and adding the instantiated classes requires
|
122 |
+
# passing "globals()" to instantiate_device_type_tests(), because it
|
123 |
+
# edits the file's Python objects.
|
124 |
+
#
|
125 |
+
# As mentioned, tests can be additionally parametrized on dtypes or
|
126 |
+
# operators. Datatype parametrization uses the @dtypes decorator and
|
127 |
+
# require a test template like this:
|
128 |
+
#
|
129 |
+
# --------------------------------------------------------
|
130 |
+
# # A template test that can be specialized with a device and a datatype (dtype)
|
131 |
+
# @dtypes(torch.float32, torch.int64)
|
132 |
+
# def test_car(self, device, dtype)
|
133 |
+
# pass
|
134 |
+
# --------------------------------------------------------
|
135 |
+
#
|
136 |
+
# If the CPU and CUDA device types are available this test would be
|
137 |
+
# instantiated as 4 tests that cover the cross-product of the two dtypes
|
138 |
+
# and two device types:
|
139 |
+
#
|
140 |
+
# - test_car_cpu_float32
|
141 |
+
# - test_car_cpu_int64
|
142 |
+
# - test_car_cuda_float32
|
143 |
+
# - test_car_cuda_int64
|
144 |
+
#
|
145 |
+
# The dtype is passed as a torch.dtype object.
|
146 |
+
#
|
147 |
+
# Tests parametrized on operators (actually on OpInfos, more on that in a
|
148 |
+
# moment...) use the @ops decorator and require a test template like this:
|
149 |
+
# --------------------------------------------------------
|
150 |
+
# # A template test that can be specialized with a device, dtype, and OpInfo
|
151 |
+
# @ops(op_db)
|
152 |
+
# def test_car(self, device, dtype, op)
|
153 |
+
# pass
|
154 |
+
# --------------------------------------------------------
|
155 |
+
#
|
156 |
+
# See the documentation for the @ops decorator below for additional details
|
157 |
+
# on how to use it and see the note [OpInfos] in
|
158 |
+
# common_methods_invocations.py for more details on OpInfos.
|
159 |
+
#
|
160 |
+
# A test parametrized over the entire "op_db", which contains hundreds of
|
161 |
+
# OpInfos, will likely have hundreds or thousands of instantiations. The
|
162 |
+
# test will be instantiated on the cross-product of device types, operators,
|
163 |
+
# and the dtypes the operator supports on that device type. The instantiated
|
164 |
+
# tests will have names like:
|
165 |
+
#
|
166 |
+
# - test_car_add_cpu_float32
|
167 |
+
# - test_car_sub_cuda_int64
|
168 |
+
#
|
169 |
+
# The first instantiated test calls the original test_car() with the OpInfo
|
170 |
+
# for torch.add as its "op" argument, the string 'cpu' for its "device" argument,
|
171 |
+
# and the dtype torch.float32 for is "dtype" argument. The second instantiated
|
172 |
+
# test calls the test_car() with the OpInfo for torch.sub, a CUDA device string
|
173 |
+
# like 'cuda:0' or 'cuda:1' for its "device" argument, and the dtype
|
174 |
+
# torch.int64 for its "dtype argument."
|
175 |
+
#
|
176 |
+
# In addition to parametrizing over device, dtype, and ops via OpInfos, the
|
177 |
+
# @parametrize decorator is supported for arbitrary parametrizations:
|
178 |
+
# --------------------------------------------------------
|
179 |
+
# # A template test that can be specialized with a device, dtype, and value for x
|
180 |
+
# @parametrize("x", range(5))
|
181 |
+
# def test_car(self, device, dtype, x)
|
182 |
+
# pass
|
183 |
+
# --------------------------------------------------------
|
184 |
+
#
|
185 |
+
# See the documentation for @parametrize in common_utils.py for additional details
|
186 |
+
# on this. Note that the instantiate_device_type_tests() function will handle
|
187 |
+
# such parametrizations; there is no need to additionally call
|
188 |
+
# instantiate_parametrized_tests().
|
189 |
+
#
|
190 |
+
# Clever test filtering can be very useful when working with parametrized
|
191 |
+
# tests. "-k test_car" would run every instantiated variant of the test_car()
|
192 |
+
# test template, and "-k test_car_add" runs every variant instantiated with
|
193 |
+
# torch.add.
|
194 |
+
#
|
195 |
+
# It is important to use the passed device and dtype as appropriate. Use
|
196 |
+
# helper functions like make_tensor() that require explicitly specifying
|
197 |
+
# the device and dtype so they're not forgotten.
|
198 |
+
#
|
199 |
+
# Test templates can use a variety of composable decorators to specify
|
200 |
+
# additional options and requirements, some are listed here:
|
201 |
+
#
|
202 |
+
# - @deviceCountAtLeast(<minimum number of devices to run test with>)
|
203 |
+
# Passes a list of strings representing all available devices of
|
204 |
+
# the test class's device type as the test template's "device" argument.
|
205 |
+
# If there are fewer devices than the value passed to the decorator
|
206 |
+
# the test is skipped.
|
207 |
+
# - @dtypes(<list of tuples of dtypes>)
|
208 |
+
# In addition to accepting multiple dtypes, the @dtypes decorator
|
209 |
+
# can accept a sequence of tuple pairs of dtypes. The test template
|
210 |
+
# will be called with each tuple for its "dtype" argument.
|
211 |
+
# - @onlyNativeDeviceTypes
|
212 |
+
# Skips the test if the device is not a native device type (currently CPU, CUDA, Meta)
|
213 |
+
# - @onlyCPU
|
214 |
+
# Skips the test if the device is not a CPU device
|
215 |
+
# - @onlyCUDA
|
216 |
+
# Skips the test if the device is not a CUDA device
|
217 |
+
# - @onlyMPS
|
218 |
+
# Skips the test if the device is not a MPS device
|
219 |
+
# - @skipCPUIfNoLapack
|
220 |
+
# Skips the test if the device is a CPU device and LAPACK is not installed
|
221 |
+
# - @skipCPUIfNoMkl
|
222 |
+
# Skips the test if the device is a CPU device and MKL is not installed
|
223 |
+
# - @skipCUDAIfNoMagma
|
224 |
+
# Skips the test if the device is a CUDA device and MAGMA is not installed
|
225 |
+
# - @skipCUDAIfRocm
|
226 |
+
# Skips the test if the device is a CUDA device and ROCm is being used
|
227 |
+
|
228 |
+
|
229 |
+
# Note [Adding a Device Type]
|
230 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
231 |
+
#
|
232 |
+
# To add a device type:
|
233 |
+
#
|
234 |
+
# (1) Create a new "TestBase" extending DeviceTypeTestBase.
|
235 |
+
# See CPUTestBase and CUDATestBase below.
|
236 |
+
# (2) Define the "device_type" attribute of the base to be the
|
237 |
+
# appropriate string.
|
238 |
+
# (3) Add logic to this file that appends your base class to
|
239 |
+
# device_type_test_bases when your device type is available.
|
240 |
+
# (4) (Optional) Write setUpClass/tearDownClass class methods that
|
241 |
+
# instantiate dependencies (see MAGMA in CUDATestBase).
|
242 |
+
# (5) (Optional) Override the "instantiate_test" method for total
|
243 |
+
# control over how your class creates tests.
|
244 |
+
#
|
245 |
+
# setUpClass is called AFTER tests have been created and BEFORE and ONLY IF
|
246 |
+
# they are run. This makes it useful for initializing devices and dependencies.
|
247 |
+
|
248 |
+
|
249 |
+
# Note [Overriding methods in generic tests]
|
250 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
251 |
+
#
|
252 |
+
# Device generic tests look a lot like normal test classes, but they differ
|
253 |
+
# from ordinary classes in some important ways. In particular, overriding
|
254 |
+
# methods in generic tests doesn't work quite the way you expect.
|
255 |
+
#
|
256 |
+
# class TestFooDeviceType(TestCase):
|
257 |
+
# # Intention is to override
|
258 |
+
# def assertEqual(self, x, y):
|
259 |
+
# # This DOESN'T WORK!
|
260 |
+
# super().assertEqual(x, y)
|
261 |
+
#
|
262 |
+
# If you try to run this code, you'll get an error saying that TestFooDeviceType
|
263 |
+
# is not in scope. This is because after instantiating our classes, we delete
|
264 |
+
# it from the parent scope. Instead, you need to hardcode a direct invocation
|
265 |
+
# of the desired subclass call, e.g.,
|
266 |
+
#
|
267 |
+
# class TestFooDeviceType(TestCase):
|
268 |
+
# # Intention is to override
|
269 |
+
# def assertEqual(self, x, y):
|
270 |
+
# TestCase.assertEqual(x, y)
|
271 |
+
#
|
272 |
+
# However, a less error-prone way of customizing the behavior of TestCase
|
273 |
+
# is to either (1) add your functionality to TestCase and make it toggled
|
274 |
+
# by a class attribute, or (2) create your own subclass of TestCase, and
|
275 |
+
# then inherit from it for your generic test.
|
276 |
+
|
277 |
+
|
278 |
+
def _dtype_test_suffix(dtypes):
|
279 |
+
""" Returns the test suffix for a dtype, sequence of dtypes, or None. """
|
280 |
+
if isinstance(dtypes, (list, tuple)):
|
281 |
+
if len(dtypes) == 0:
|
282 |
+
return ''
|
283 |
+
return '_' + '_'.join(dtype_name(d) for d in dtypes)
|
284 |
+
elif dtypes:
|
285 |
+
return f'_{dtype_name(dtypes)}'
|
286 |
+
else:
|
287 |
+
return ''
|
288 |
+
|
289 |
+
|
290 |
+
def _update_param_kwargs(param_kwargs, name, value):
|
291 |
+
""" Adds a kwarg with the specified name and value to the param_kwargs dict. """
|
292 |
+
# Make name plural (e.g. devices / dtypes) if the value is composite.
|
293 |
+
plural_name = f'{name}s'
|
294 |
+
|
295 |
+
# Clear out old entries of the arg if any.
|
296 |
+
if name in param_kwargs:
|
297 |
+
del param_kwargs[name]
|
298 |
+
if plural_name in param_kwargs:
|
299 |
+
del param_kwargs[plural_name]
|
300 |
+
|
301 |
+
if isinstance(value, (list, tuple)):
|
302 |
+
param_kwargs[plural_name] = value
|
303 |
+
elif value is not None:
|
304 |
+
param_kwargs[name] = value
|
305 |
+
|
306 |
+
# Leave param_kwargs as-is when value is None.
|
307 |
+
|
308 |
+
|
309 |
+
class DeviceTypeTestBase(TestCase):
|
310 |
+
device_type: str = 'generic_device_type'
|
311 |
+
|
312 |
+
# Flag to disable test suite early due to unrecoverable error such as CUDA error.
|
313 |
+
_stop_test_suite = False
|
314 |
+
|
315 |
+
# Precision is a thread-local setting since it may be overridden per test
|
316 |
+
_tls = threading.local()
|
317 |
+
_tls.precision = TestCase._precision
|
318 |
+
_tls.rel_tol = TestCase._rel_tol
|
319 |
+
|
320 |
+
@property
|
321 |
+
def precision(self):
|
322 |
+
return self._tls.precision
|
323 |
+
|
324 |
+
@precision.setter
|
325 |
+
def precision(self, prec):
|
326 |
+
self._tls.precision = prec
|
327 |
+
|
328 |
+
@property
|
329 |
+
def rel_tol(self):
|
330 |
+
return self._tls.rel_tol
|
331 |
+
|
332 |
+
@rel_tol.setter
|
333 |
+
def rel_tol(self, prec):
|
334 |
+
self._tls.rel_tol = prec
|
335 |
+
|
336 |
+
# Returns a string representing the device that single device tests should use.
|
337 |
+
# Note: single device tests use this device exclusively.
|
338 |
+
@classmethod
|
339 |
+
def get_primary_device(cls):
|
340 |
+
return cls.device_type
|
341 |
+
|
342 |
+
@classmethod
|
343 |
+
def _init_and_get_primary_device(cls):
|
344 |
+
try:
|
345 |
+
return cls.get_primary_device()
|
346 |
+
except Exception:
|
347 |
+
# For CUDATestBase, XLATestBase, and possibly others, the primary device won't be available
|
348 |
+
# until setUpClass() sets it. Call that manually here if needed.
|
349 |
+
if hasattr(cls, 'setUpClass'):
|
350 |
+
cls.setUpClass()
|
351 |
+
return cls.get_primary_device()
|
352 |
+
|
353 |
+
# Returns a list of strings representing all available devices of this
|
354 |
+
# device type. The primary device must be the first string in the list
|
355 |
+
# and the list must contain no duplicates.
|
356 |
+
# Note: UNSTABLE API. Will be replaced once PyTorch has a device generic
|
357 |
+
# mechanism of acquiring all available devices.
|
358 |
+
@classmethod
|
359 |
+
def get_all_devices(cls):
|
360 |
+
return [cls.get_primary_device()]
|
361 |
+
|
362 |
+
# Returns the dtypes the test has requested.
|
363 |
+
# Prefers device-specific dtype specifications over generic ones.
|
364 |
+
@classmethod
|
365 |
+
def _get_dtypes(cls, test):
|
366 |
+
if not hasattr(test, 'dtypes'):
|
367 |
+
return None
|
368 |
+
|
369 |
+
default_dtypes = test.dtypes.get('all')
|
370 |
+
msg = f"@dtypes is mandatory when using @dtypesIf however '{test.__name__}' didn't specify it"
|
371 |
+
assert default_dtypes is not None, msg
|
372 |
+
|
373 |
+
return test.dtypes.get(cls.device_type, default_dtypes)
|
374 |
+
|
375 |
+
def _get_precision_override(self, test, dtype):
|
376 |
+
if not hasattr(test, 'precision_overrides'):
|
377 |
+
return self.precision
|
378 |
+
return test.precision_overrides.get(dtype, self.precision)
|
379 |
+
|
380 |
+
def _get_tolerance_override(self, test, dtype):
|
381 |
+
if not hasattr(test, 'tolerance_overrides'):
|
382 |
+
return self.precision, self.rel_tol
|
383 |
+
return test.tolerance_overrides.get(dtype, tol(self.precision, self.rel_tol))
|
384 |
+
|
385 |
+
def _apply_precision_override_for_test(self, test, param_kwargs):
|
386 |
+
dtype = param_kwargs['dtype'] if 'dtype' in param_kwargs else None
|
387 |
+
dtype = param_kwargs['dtypes'] if 'dtypes' in param_kwargs else dtype
|
388 |
+
if dtype:
|
389 |
+
self.precision = self._get_precision_override(test, dtype)
|
390 |
+
self.precision, self.rel_tol = self._get_tolerance_override(test, dtype)
|
391 |
+
|
392 |
+
# Creates device-specific tests.
|
393 |
+
@classmethod
|
394 |
+
def instantiate_test(cls, name, test, *, generic_cls=None):
|
395 |
+
|
396 |
+
def instantiate_test_helper(cls, name, *, test, param_kwargs=None, decorator_fn=lambda _: []):
|
397 |
+
# Add the device param kwarg if the test needs device or devices.
|
398 |
+
param_kwargs = {} if param_kwargs is None else param_kwargs
|
399 |
+
test_sig_params = inspect.signature(test).parameters
|
400 |
+
if 'device' in test_sig_params or 'devices' in test_sig_params:
|
401 |
+
device_arg: str = cls._init_and_get_primary_device()
|
402 |
+
if hasattr(test, 'num_required_devices'):
|
403 |
+
device_arg = cls.get_all_devices()
|
404 |
+
_update_param_kwargs(param_kwargs, 'device', device_arg)
|
405 |
+
|
406 |
+
# Apply decorators based on param kwargs.
|
407 |
+
for decorator in decorator_fn(param_kwargs):
|
408 |
+
test = decorator(test)
|
409 |
+
|
410 |
+
# Constructs the test
|
411 |
+
@wraps(test)
|
412 |
+
def instantiated_test(self, param_kwargs=param_kwargs):
|
413 |
+
# Sets precision and runs test
|
414 |
+
# Note: precision is reset after the test is run
|
415 |
+
guard_precision = self.precision
|
416 |
+
guard_rel_tol = self.rel_tol
|
417 |
+
try:
|
418 |
+
self._apply_precision_override_for_test(test, param_kwargs)
|
419 |
+
result = test(self, **param_kwargs)
|
420 |
+
except RuntimeError as rte:
|
421 |
+
# check if rte should stop entire test suite.
|
422 |
+
self._stop_test_suite = self._should_stop_test_suite()
|
423 |
+
# Check if test has been decorated with `@expectedFailure`
|
424 |
+
# Using `__unittest_expecting_failure__` attribute, see
|
425 |
+
# https://github.com/python/cpython/blob/ffa505b580464/Lib/unittest/case.py#L164
|
426 |
+
# In that case, make it fail with "unexpected success" by suppressing exception
|
427 |
+
if getattr(test, "__unittest_expecting_failure__", False) and self._stop_test_suite:
|
428 |
+
import sys
|
429 |
+
print("Suppressing fatal exception to trigger unexpected success", file=sys.stderr)
|
430 |
+
return
|
431 |
+
# raise the runtime error as is for the test suite to record.
|
432 |
+
raise rte
|
433 |
+
finally:
|
434 |
+
self.precision = guard_precision
|
435 |
+
self.rel_tol = guard_rel_tol
|
436 |
+
|
437 |
+
return result
|
438 |
+
|
439 |
+
assert not hasattr(cls, name), f"Redefinition of test {name}"
|
440 |
+
setattr(cls, name, instantiated_test)
|
441 |
+
|
442 |
+
def default_parametrize_fn(test, generic_cls, device_cls):
|
443 |
+
# By default, no parametrization is needed.
|
444 |
+
yield (test, '', {}, lambda _: [])
|
445 |
+
|
446 |
+
# Parametrization decorators set the parametrize_fn attribute on the test.
|
447 |
+
parametrize_fn = getattr(test, "parametrize_fn", default_parametrize_fn)
|
448 |
+
|
449 |
+
# If one of the @dtypes* decorators is present, also parametrize over the dtypes set by it.
|
450 |
+
dtypes = cls._get_dtypes(test)
|
451 |
+
if dtypes is not None:
|
452 |
+
|
453 |
+
def dtype_parametrize_fn(test, generic_cls, device_cls, dtypes=dtypes):
|
454 |
+
for dtype in dtypes:
|
455 |
+
param_kwargs: Dict[str, Any] = {}
|
456 |
+
_update_param_kwargs(param_kwargs, "dtype", dtype)
|
457 |
+
|
458 |
+
# Note that an empty test suffix is set here so that the dtype can be appended
|
459 |
+
# later after the device.
|
460 |
+
yield (test, '', param_kwargs, lambda _: [])
|
461 |
+
|
462 |
+
parametrize_fn = compose_parametrize_fns(dtype_parametrize_fn, parametrize_fn)
|
463 |
+
|
464 |
+
# Instantiate the parametrized tests.
|
465 |
+
for (test, test_suffix, param_kwargs, decorator_fn) in parametrize_fn(test, generic_cls, cls): # noqa: B020
|
466 |
+
test_suffix = '' if test_suffix == '' else '_' + test_suffix
|
467 |
+
device_suffix = '_' + cls.device_type
|
468 |
+
|
469 |
+
# Note: device and dtype suffix placement
|
470 |
+
# Special handling here to place dtype(s) after device according to test name convention.
|
471 |
+
dtype_kwarg = None
|
472 |
+
if 'dtype' in param_kwargs or 'dtypes' in param_kwargs:
|
473 |
+
dtype_kwarg = param_kwargs['dtypes'] if 'dtypes' in param_kwargs else param_kwargs['dtype']
|
474 |
+
test_name = f'{name}{test_suffix}{device_suffix}{_dtype_test_suffix(dtype_kwarg)}'
|
475 |
+
|
476 |
+
instantiate_test_helper(cls=cls, name=test_name, test=test, param_kwargs=param_kwargs,
|
477 |
+
decorator_fn=decorator_fn)
|
478 |
+
|
479 |
+
def run(self, result=None):
|
480 |
+
super().run(result=result)
|
481 |
+
# Early terminate test if _stop_test_suite is set.
|
482 |
+
if self._stop_test_suite:
|
483 |
+
result.stop()
|
484 |
+
|
485 |
+
|
486 |
+
class CPUTestBase(DeviceTypeTestBase):
|
487 |
+
device_type = 'cpu'
|
488 |
+
|
489 |
+
# No critical error should stop CPU test suite
|
490 |
+
def _should_stop_test_suite(self):
|
491 |
+
return False
|
492 |
+
|
493 |
+
class CUDATestBase(DeviceTypeTestBase):
|
494 |
+
device_type = 'cuda'
|
495 |
+
_do_cuda_memory_leak_check = True
|
496 |
+
_do_cuda_non_default_stream = True
|
497 |
+
primary_device: ClassVar[str]
|
498 |
+
cudnn_version: ClassVar[Any]
|
499 |
+
no_magma: ClassVar[bool]
|
500 |
+
no_cudnn: ClassVar[bool]
|
501 |
+
|
502 |
+
def has_cudnn(self):
|
503 |
+
return not self.no_cudnn
|
504 |
+
|
505 |
+
@classmethod
|
506 |
+
def get_primary_device(cls):
|
507 |
+
return cls.primary_device
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def get_all_devices(cls):
|
511 |
+
primary_device_idx = int(cls.get_primary_device().split(':')[1])
|
512 |
+
num_devices = torch.cuda.device_count()
|
513 |
+
|
514 |
+
prim_device = cls.get_primary_device()
|
515 |
+
cuda_str = 'cuda:{0}'
|
516 |
+
non_primary_devices = [cuda_str.format(idx) for idx in range(num_devices) if idx != primary_device_idx]
|
517 |
+
return [prim_device] + non_primary_devices
|
518 |
+
|
519 |
+
@classmethod
|
520 |
+
def setUpClass(cls):
|
521 |
+
# has_magma shows up after cuda is initialized
|
522 |
+
t = torch.ones(1).cuda()
|
523 |
+
cls.no_magma = not torch.cuda.has_magma
|
524 |
+
|
525 |
+
# Determines if cuDNN is available and its version
|
526 |
+
cls.no_cudnn = not torch.backends.cudnn.is_acceptable(t)
|
527 |
+
cls.cudnn_version = None if cls.no_cudnn else torch.backends.cudnn.version()
|
528 |
+
|
529 |
+
# Acquires the current device as the primary (test) device
|
530 |
+
cls.primary_device = f'cuda:{torch.cuda.current_device()}'
|
531 |
+
|
532 |
+
# See Note [Lazy Tensor tests in device agnostic testing]
|
533 |
+
lazy_ts_backend_init = False
|
534 |
+
class LazyTestBase(DeviceTypeTestBase):
|
535 |
+
device_type = 'lazy'
|
536 |
+
|
537 |
+
def _should_stop_test_suite(self):
|
538 |
+
return False
|
539 |
+
|
540 |
+
@classmethod
|
541 |
+
def setUpClass(cls):
|
542 |
+
import torch._lazy
|
543 |
+
import torch._lazy.metrics
|
544 |
+
import torch._lazy.ts_backend
|
545 |
+
global lazy_ts_backend_init
|
546 |
+
if not lazy_ts_backend_init:
|
547 |
+
# Need to connect the TS backend to lazy key before running tests
|
548 |
+
torch._lazy.ts_backend.init()
|
549 |
+
lazy_ts_backend_init = True
|
550 |
+
|
551 |
+
class MPSTestBase(DeviceTypeTestBase):
|
552 |
+
device_type = 'mps'
|
553 |
+
primary_device: ClassVar[str]
|
554 |
+
|
555 |
+
@classmethod
|
556 |
+
def get_primary_device(cls):
|
557 |
+
return cls.primary_device
|
558 |
+
|
559 |
+
@classmethod
|
560 |
+
def get_all_devices(cls):
|
561 |
+
# currently only one device is supported on MPS backend
|
562 |
+
prim_device = cls.get_primary_device()
|
563 |
+
return [prim_device]
|
564 |
+
|
565 |
+
@classmethod
|
566 |
+
def setUpClass(cls):
|
567 |
+
cls.primary_device = 'mps:0'
|
568 |
+
|
569 |
+
def _should_stop_test_suite(self):
|
570 |
+
return False
|
571 |
+
|
572 |
+
class PrivateUse1TestBase(DeviceTypeTestBase):
|
573 |
+
primary_device: ClassVar[str]
|
574 |
+
device_mod = None
|
575 |
+
device_type = 'privateuse1'
|
576 |
+
|
577 |
+
@classmethod
|
578 |
+
def get_primary_device(cls):
|
579 |
+
return cls.primary_device
|
580 |
+
|
581 |
+
@classmethod
|
582 |
+
def get_all_devices(cls):
|
583 |
+
primary_device_idx = int(cls.get_primary_device().split(':')[1])
|
584 |
+
num_devices = cls.device_mod.device_count()
|
585 |
+
prim_device = cls.get_primary_device()
|
586 |
+
device_str = f'{cls.device_type}:{{0}}'
|
587 |
+
non_primary_devices = [device_str.format(idx) for idx in range(num_devices) if idx != primary_device_idx]
|
588 |
+
return [prim_device] + non_primary_devices
|
589 |
+
|
590 |
+
@classmethod
|
591 |
+
def setUpClass(cls):
|
592 |
+
cls.device_type = torch._C._get_privateuse1_backend_name()
|
593 |
+
cls.device_mod = getattr(torch, cls.device_type, None)
|
594 |
+
assert cls.device_mod is not None, f'''torch has no module of `{cls.device_type}`, you should register
|
595 |
+
a module by `torch._register_device_module`.'''
|
596 |
+
cls.primary_device = f'{cls.device_type}:{cls.device_mod.current_device()}'
|
597 |
+
|
598 |
+
# Adds available device-type-specific test base classes
|
599 |
+
def get_device_type_test_bases():
|
600 |
+
# set type to List[Any] due to mypy list-of-union issue:
|
601 |
+
# https://github.com/python/mypy/issues/3351
|
602 |
+
test_bases: List[Any] = list()
|
603 |
+
|
604 |
+
if IS_SANDCASTLE or IS_FBCODE:
|
605 |
+
if IS_REMOTE_GPU:
|
606 |
+
# Skip if sanitizer is enabled
|
607 |
+
if not TEST_WITH_ASAN and not TEST_WITH_TSAN and not TEST_WITH_UBSAN:
|
608 |
+
test_bases.append(CUDATestBase)
|
609 |
+
else:
|
610 |
+
test_bases.append(CPUTestBase)
|
611 |
+
else:
|
612 |
+
test_bases.append(CPUTestBase)
|
613 |
+
if torch.cuda.is_available():
|
614 |
+
test_bases.append(CUDATestBase)
|
615 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
616 |
+
device_mod = getattr(torch, device_type, None)
|
617 |
+
if hasattr(device_mod, "is_available") and device_mod.is_available():
|
618 |
+
test_bases.append(PrivateUse1TestBase)
|
619 |
+
# Disable MPS testing in generic device testing temporarily while we're
|
620 |
+
# ramping up support.
|
621 |
+
# elif torch.backends.mps.is_available():
|
622 |
+
# test_bases.append(MPSTestBase)
|
623 |
+
|
624 |
+
return test_bases
|
625 |
+
|
626 |
+
device_type_test_bases = get_device_type_test_bases()
|
627 |
+
|
628 |
+
|
629 |
+
def filter_desired_device_types(device_type_test_bases, except_for=None, only_for=None):
|
630 |
+
# device type cannot appear in both except_for and only_for
|
631 |
+
intersect = set(except_for if except_for else []) & set(only_for if only_for else [])
|
632 |
+
assert not intersect, f"device ({intersect}) appeared in both except_for and only_for"
|
633 |
+
|
634 |
+
if except_for:
|
635 |
+
device_type_test_bases = filter(
|
636 |
+
lambda x: x.device_type not in except_for, device_type_test_bases)
|
637 |
+
if only_for:
|
638 |
+
device_type_test_bases = filter(
|
639 |
+
lambda x: x.device_type in only_for, device_type_test_bases)
|
640 |
+
|
641 |
+
return list(device_type_test_bases)
|
642 |
+
|
643 |
+
|
644 |
+
# Note [How to extend DeviceTypeTestBase to add new test device]
|
645 |
+
# The following logic optionally allows downstream projects like pytorch/xla to
|
646 |
+
# add more test devices.
|
647 |
+
# Instructions:
|
648 |
+
# - Add a python file (e.g. pytorch/xla/test/pytorch_test_base.py) in downstream project.
|
649 |
+
# - Inside the file, one should inherit from `DeviceTypeTestBase` class and define
|
650 |
+
# a new DeviceTypeTest class (e.g. `XLATestBase`) with proper implementation of
|
651 |
+
# `instantiate_test` method.
|
652 |
+
# - DO NOT import common_device_type inside the file.
|
653 |
+
# `runpy.run_path` with `globals()` already properly setup the context so that
|
654 |
+
# `DeviceTypeTestBase` is already available.
|
655 |
+
# - Set a top-level variable `TEST_CLASS` equal to your new class.
|
656 |
+
# E.g. TEST_CLASS = XLATensorBase
|
657 |
+
# - To run tests with new device type, set `TORCH_TEST_DEVICE` env variable to path
|
658 |
+
# to this file. Multiple paths can be separated by `:`.
|
659 |
+
# See pytorch/xla/test/pytorch_test_base.py for a more detailed example.
|
660 |
+
_TORCH_TEST_DEVICES = os.environ.get('TORCH_TEST_DEVICES', None)
|
661 |
+
if _TORCH_TEST_DEVICES:
|
662 |
+
for path in _TORCH_TEST_DEVICES.split(':'):
|
663 |
+
# runpy (a stdlib module) lacks annotations
|
664 |
+
mod = runpy.run_path(path, init_globals=globals()) # type: ignore[func-returns-value]
|
665 |
+
device_type_test_bases.append(mod['TEST_CLASS'])
|
666 |
+
|
667 |
+
|
668 |
+
PYTORCH_CUDA_MEMCHECK = os.getenv('PYTORCH_CUDA_MEMCHECK', '0') == '1'
|
669 |
+
|
670 |
+
PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY = 'PYTORCH_TESTING_DEVICE_ONLY_FOR'
|
671 |
+
PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY = 'PYTORCH_TESTING_DEVICE_EXCEPT_FOR'
|
672 |
+
|
673 |
+
|
674 |
+
def get_desired_device_type_test_bases(except_for=None, only_for=None, include_lazy=False, allow_mps=False):
|
675 |
+
# allow callers to specifically opt tests into being tested on MPS, similar to `include_lazy`
|
676 |
+
test_bases = device_type_test_bases.copy()
|
677 |
+
if allow_mps and TEST_MPS and MPSTestBase not in test_bases:
|
678 |
+
test_bases.append(MPSTestBase)
|
679 |
+
# Filter out the device types based on user inputs
|
680 |
+
desired_device_type_test_bases = filter_desired_device_types(test_bases, except_for, only_for)
|
681 |
+
if include_lazy:
|
682 |
+
# Note [Lazy Tensor tests in device agnostic testing]
|
683 |
+
# Right now, test_view_ops.py runs with LazyTensor.
|
684 |
+
# We don't want to opt every device-agnostic test into using the lazy device,
|
685 |
+
# because many of them will fail.
|
686 |
+
# So instead, the only way to opt a specific device-agnostic test file into
|
687 |
+
# lazy tensor testing is with include_lazy=True
|
688 |
+
if IS_FBCODE:
|
689 |
+
print("TorchScript backend not yet supported in FBCODE/OVRSOURCE builds", file=sys.stderr)
|
690 |
+
else:
|
691 |
+
desired_device_type_test_bases.append(LazyTestBase)
|
692 |
+
|
693 |
+
def split_if_not_empty(x: str):
|
694 |
+
return x.split(",") if x else []
|
695 |
+
|
696 |
+
# Filter out the device types based on environment variables if available
|
697 |
+
# Usage:
|
698 |
+
# export PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda,cpu
|
699 |
+
# export PYTORCH_TESTING_DEVICE_EXCEPT_FOR=xla
|
700 |
+
env_only_for = split_if_not_empty(os.getenv(PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, ''))
|
701 |
+
env_except_for = split_if_not_empty(os.getenv(PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, ''))
|
702 |
+
|
703 |
+
return filter_desired_device_types(desired_device_type_test_bases, env_except_for, env_only_for)
|
704 |
+
|
705 |
+
|
706 |
+
|
707 |
+
# Adds 'instantiated' device-specific test cases to the given scope.
|
708 |
+
# The tests in these test cases are derived from the generic tests in
|
709 |
+
# generic_test_class. This function should be used instead of
|
710 |
+
# instantiate_parametrized_tests() if the test class contains
|
711 |
+
# device-specific tests (NB: this supports additional @parametrize usage).
|
712 |
+
#
|
713 |
+
# See note "Writing Test Templates"
|
714 |
+
def instantiate_device_type_tests(generic_test_class, scope, except_for=None, only_for=None, include_lazy=False, allow_mps=False):
|
715 |
+
# Removes the generic test class from its enclosing scope so its tests
|
716 |
+
# are not discoverable.
|
717 |
+
del scope[generic_test_class.__name__]
|
718 |
+
|
719 |
+
# Creates an 'empty' version of the generic_test_class
|
720 |
+
# Note: we don't inherit from the generic_test_class directly because
|
721 |
+
# that would add its tests to our test classes and they would be
|
722 |
+
# discovered (despite not being runnable). Inherited methods also
|
723 |
+
# can't be removed later, and we can't rely on load_tests because
|
724 |
+
# pytest doesn't support it (as of this writing).
|
725 |
+
empty_name = generic_test_class.__name__ + "_base"
|
726 |
+
empty_class = type(empty_name, generic_test_class.__bases__, {})
|
727 |
+
|
728 |
+
# Acquires members names
|
729 |
+
# See Note [Overriding methods in generic tests]
|
730 |
+
generic_members = set(generic_test_class.__dict__.keys()) - set(empty_class.__dict__.keys())
|
731 |
+
generic_tests = [x for x in generic_members if x.startswith('test')]
|
732 |
+
|
733 |
+
# Creates device-specific test cases
|
734 |
+
for base in get_desired_device_type_test_bases(except_for, only_for, include_lazy, allow_mps):
|
735 |
+
class_name = generic_test_class.__name__ + base.device_type.upper()
|
736 |
+
|
737 |
+
# type set to Any and suppressed due to unsupport runtime class:
|
738 |
+
# https://github.com/python/mypy/wiki/Unsupported-Python-Features
|
739 |
+
device_type_test_class: Any = type(class_name, (base, empty_class), {})
|
740 |
+
|
741 |
+
for name in generic_members:
|
742 |
+
if name in generic_tests: # Instantiates test member
|
743 |
+
test = getattr(generic_test_class, name)
|
744 |
+
# XLA-compat shim (XLA's instantiate_test takes doesn't take generic_cls)
|
745 |
+
sig = inspect.signature(device_type_test_class.instantiate_test)
|
746 |
+
if len(sig.parameters) == 3:
|
747 |
+
# Instantiates the device-specific tests
|
748 |
+
device_type_test_class.instantiate_test(name, copy.deepcopy(test), generic_cls=generic_test_class)
|
749 |
+
else:
|
750 |
+
device_type_test_class.instantiate_test(name, copy.deepcopy(test))
|
751 |
+
else: # Ports non-test member
|
752 |
+
assert name not in device_type_test_class.__dict__, f"Redefinition of directly defined member {name}"
|
753 |
+
nontest = getattr(generic_test_class, name)
|
754 |
+
setattr(device_type_test_class, name, nontest)
|
755 |
+
|
756 |
+
# Mimics defining the instantiated class in the caller's file
|
757 |
+
# by setting its module to the given class's and adding
|
758 |
+
# the module to the given scope.
|
759 |
+
# This lets the instantiated class be discovered by unittest.
|
760 |
+
device_type_test_class.__module__ = generic_test_class.__module__
|
761 |
+
scope[class_name] = device_type_test_class
|
762 |
+
|
763 |
+
|
764 |
+
# Category of dtypes to run an OpInfo-based test for
|
765 |
+
# Example use: @ops(dtype=OpDTypes.supported)
|
766 |
+
#
|
767 |
+
# There are 5 categories:
|
768 |
+
# - supported: Every dtype supported by the operator. Use for exhaustive
|
769 |
+
# testing of all dtypes.
|
770 |
+
# - unsupported: Run tests on dtypes not supported by the operator. e.g. for
|
771 |
+
# testing the operator raises an error and doesn't crash.
|
772 |
+
# - supported_backward: Every dtype supported by the operator's backward pass.
|
773 |
+
# - unsupported_backward: Run tests on dtypes not supported by the operator's backward pass.
|
774 |
+
# - any_one: Runs a test for one dtype the operator supports. Prioritizes dtypes the
|
775 |
+
# operator supports in both forward and backward.
|
776 |
+
# - none: Useful for tests that are not dtype-specific. No dtype will be passed to the test
|
777 |
+
# when this is selected.
|
778 |
+
class OpDTypes(Enum):
|
779 |
+
supported = 0 # Test all supported dtypes (default)
|
780 |
+
unsupported = 1 # Test only unsupported dtypes
|
781 |
+
supported_backward = 2 # Test all supported backward dtypes
|
782 |
+
unsupported_backward = 3 # Test only unsupported backward dtypes
|
783 |
+
any_one = 4 # Test precisely one supported dtype
|
784 |
+
none = 5 # Instantiate no dtype variants (no dtype kwarg needed)
|
785 |
+
any_common_cpu_cuda_one = 6 # Test precisely one supported dtype that is common to both cuda and cpu
|
786 |
+
|
787 |
+
|
788 |
+
# Arbitrary order
|
789 |
+
ANY_DTYPE_ORDER = (
|
790 |
+
torch.float32,
|
791 |
+
torch.float64,
|
792 |
+
torch.complex64,
|
793 |
+
torch.complex128,
|
794 |
+
torch.float16,
|
795 |
+
torch.bfloat16,
|
796 |
+
torch.long,
|
797 |
+
torch.int32,
|
798 |
+
torch.int16,
|
799 |
+
torch.int8,
|
800 |
+
torch.uint8,
|
801 |
+
torch.bool
|
802 |
+
)
|
803 |
+
|
804 |
+
def _serialize_sample(sample_input):
|
805 |
+
# NB: For OpInfos, SampleInput.summary() prints in a cleaner way.
|
806 |
+
if getattr(sample_input, "summary", None) is not None:
|
807 |
+
return sample_input.summary()
|
808 |
+
return str(sample_input)
|
809 |
+
|
810 |
+
# Decorator that defines the OpInfos a test template should be instantiated for.
|
811 |
+
#
|
812 |
+
# Example usage:
|
813 |
+
#
|
814 |
+
# @ops(unary_ufuncs)
|
815 |
+
# def test_numerics(self, device, dtype, op):
|
816 |
+
# <test_code>
|
817 |
+
#
|
818 |
+
# This will instantiate variants of test_numerics for each given OpInfo,
|
819 |
+
# on each device the OpInfo's operator supports, and for every dtype supported by
|
820 |
+
# that operator. There are a few caveats to the dtype rule, explained below.
|
821 |
+
#
|
822 |
+
# The @ops decorator can accept two
|
823 |
+
# additional arguments, "dtypes" and "allowed_dtypes". If "dtypes" is specified
|
824 |
+
# then the test variants are instantiated for those dtypes, regardless of
|
825 |
+
# what the operator supports. If given "allowed_dtypes" then test variants
|
826 |
+
# are instantiated only for the intersection of allowed_dtypes and the dtypes
|
827 |
+
# they would otherwise be instantiated with. That is, allowed_dtypes composes
|
828 |
+
# with the options listed above and below.
|
829 |
+
#
|
830 |
+
# The "dtypes" argument can also accept additional values (see OpDTypes above):
|
831 |
+
# OpDTypes.supported - the test is instantiated for all dtypes the operator
|
832 |
+
# supports
|
833 |
+
# OpDTypes.unsupported - the test is instantiated for all dtypes the operator
|
834 |
+
# doesn't support
|
835 |
+
# OpDTypes.supported_backward - the test is instantiated for all dtypes the
|
836 |
+
# operator's gradient formula supports
|
837 |
+
# OpDTypes.unsupported_backward - the test is instantiated for all dtypes the
|
838 |
+
# operator's gradient formula doesn't support
|
839 |
+
# OpDTypes.any_one - the test is instantiated for one dtype the
|
840 |
+
# operator supports. The dtype supports forward and backward if possible.
|
841 |
+
# OpDTypes.none - the test is instantiated without any dtype. The test signature
|
842 |
+
# should not include a dtype kwarg in this case.
|
843 |
+
#
|
844 |
+
# These options allow tests to have considerable control over the dtypes
|
845 |
+
# they're instantiated for.
|
846 |
+
|
847 |
+
class ops(_TestParametrizer):
|
848 |
+
def __init__(self, op_list, *, dtypes: Union[OpDTypes, Sequence[torch.dtype]] = OpDTypes.supported,
|
849 |
+
allowed_dtypes: Optional[Sequence[torch.dtype]] = None, skip_if_dynamo=True):
|
850 |
+
self.op_list = list(op_list)
|
851 |
+
self.opinfo_dtypes = dtypes
|
852 |
+
self.allowed_dtypes = set(allowed_dtypes) if allowed_dtypes is not None else None
|
853 |
+
self.skip_if_dynamo = skip_if_dynamo
|
854 |
+
|
855 |
+
def _parametrize_test(self, test, generic_cls, device_cls):
|
856 |
+
""" Parameterizes the given test function across each op and its associated dtypes. """
|
857 |
+
if device_cls is None:
|
858 |
+
raise RuntimeError('The @ops decorator is only intended to be used in a device-specific '
|
859 |
+
'context; use it with instantiate_device_type_tests() instead of '
|
860 |
+
'instantiate_parametrized_tests()')
|
861 |
+
|
862 |
+
op = check_exhausted_iterator = object()
|
863 |
+
for op in self.op_list:
|
864 |
+
# Determine the set of dtypes to use.
|
865 |
+
dtypes: Union[Set[torch.dtype], Set[None]]
|
866 |
+
if isinstance(self.opinfo_dtypes, Sequence):
|
867 |
+
dtypes = set(self.opinfo_dtypes)
|
868 |
+
elif self.opinfo_dtypes == OpDTypes.unsupported_backward:
|
869 |
+
dtypes = set(get_all_dtypes()).difference(op.supported_backward_dtypes(device_cls.device_type))
|
870 |
+
elif self.opinfo_dtypes == OpDTypes.supported_backward:
|
871 |
+
dtypes = op.supported_backward_dtypes(device_cls.device_type)
|
872 |
+
elif self.opinfo_dtypes == OpDTypes.unsupported:
|
873 |
+
dtypes = set(get_all_dtypes()).difference(op.supported_dtypes(device_cls.device_type))
|
874 |
+
elif self.opinfo_dtypes == OpDTypes.supported:
|
875 |
+
dtypes = op.supported_dtypes(device_cls.device_type)
|
876 |
+
elif self.opinfo_dtypes == OpDTypes.any_one:
|
877 |
+
# Tries to pick a dtype that supports both forward or backward
|
878 |
+
supported = op.supported_dtypes(device_cls.device_type)
|
879 |
+
supported_backward = op.supported_backward_dtypes(device_cls.device_type)
|
880 |
+
supported_both = supported.intersection(supported_backward)
|
881 |
+
dtype_set = supported_both if len(supported_both) > 0 else supported
|
882 |
+
for dtype in ANY_DTYPE_ORDER:
|
883 |
+
if dtype in dtype_set:
|
884 |
+
dtypes = {dtype}
|
885 |
+
break
|
886 |
+
else:
|
887 |
+
dtypes = {}
|
888 |
+
elif self.opinfo_dtypes == OpDTypes.any_common_cpu_cuda_one:
|
889 |
+
# Tries to pick a dtype that supports both CPU and CUDA
|
890 |
+
supported = op.dtypes.intersection(op.dtypesIfCUDA)
|
891 |
+
if supported:
|
892 |
+
dtypes = {next(dtype for dtype in ANY_DTYPE_ORDER if dtype in supported)}
|
893 |
+
else:
|
894 |
+
dtypes = {}
|
895 |
+
|
896 |
+
elif self.opinfo_dtypes == OpDTypes.none:
|
897 |
+
dtypes = {None}
|
898 |
+
else:
|
899 |
+
raise RuntimeError(f"Unknown OpDType: {self.opinfo_dtypes}")
|
900 |
+
|
901 |
+
if self.allowed_dtypes is not None:
|
902 |
+
dtypes = dtypes.intersection(self.allowed_dtypes)
|
903 |
+
|
904 |
+
# Construct the test name; device / dtype parts are handled outside.
|
905 |
+
# See [Note: device and dtype suffix placement]
|
906 |
+
test_name = op.formatted_name
|
907 |
+
|
908 |
+
for dtype in dtypes:
|
909 |
+
# Construct parameter kwargs to pass to the test.
|
910 |
+
param_kwargs = {'op': op}
|
911 |
+
_update_param_kwargs(param_kwargs, 'dtype', dtype)
|
912 |
+
|
913 |
+
# NOTE: test_wrapper exists because we don't want to apply
|
914 |
+
# op-specific decorators to the original test.
|
915 |
+
# Test-specific decorators are applied to the original test,
|
916 |
+
# however.
|
917 |
+
try:
|
918 |
+
@wraps(test)
|
919 |
+
def test_wrapper(*args, **kwargs):
|
920 |
+
try:
|
921 |
+
return test(*args, **kwargs)
|
922 |
+
except unittest.SkipTest as e:
|
923 |
+
raise e
|
924 |
+
except Exception as e:
|
925 |
+
tracked_input = get_tracked_input()
|
926 |
+
if PRINT_REPRO_ON_FAILURE and tracked_input is not None:
|
927 |
+
raise Exception(
|
928 |
+
f"Caused by {tracked_input.type_desc} "
|
929 |
+
f"at index {tracked_input.index}: "
|
930 |
+
f"{_serialize_sample(tracked_input.val)}") from e
|
931 |
+
raise e
|
932 |
+
finally:
|
933 |
+
clear_tracked_input()
|
934 |
+
|
935 |
+
if self.skip_if_dynamo and not TEST_WITH_TORCHINDUCTOR:
|
936 |
+
test_wrapper = skipIfTorchDynamo("Policy: we don't run OpInfo tests w/ Dynamo")(test_wrapper)
|
937 |
+
|
938 |
+
# Initialize info for the last input seen. This is useful for tracking
|
939 |
+
# down which inputs caused a test failure. Note that TrackedInputIter is
|
940 |
+
# responsible for managing this.
|
941 |
+
test.tracked_input = None
|
942 |
+
|
943 |
+
decorator_fn = partial(op.get_decorators, generic_cls.__name__,
|
944 |
+
test.__name__, device_cls.device_type, dtype)
|
945 |
+
|
946 |
+
yield (test_wrapper, test_name, param_kwargs, decorator_fn)
|
947 |
+
except Exception as ex:
|
948 |
+
# Provides an error message for debugging before rethrowing the exception
|
949 |
+
print(f"Failed to instantiate {test_name} for op {op.name}!")
|
950 |
+
raise ex
|
951 |
+
if op is check_exhausted_iterator:
|
952 |
+
raise ValueError('An empty op_list was passed to @ops. '
|
953 |
+
'Note that this may result from reuse of a generator.')
|
954 |
+
|
955 |
+
# Decorator that skips a test if the given condition is true.
|
956 |
+
# Notes:
|
957 |
+
# (1) Skip conditions stack.
|
958 |
+
# (2) Skip conditions can be bools or strings. If a string the
|
959 |
+
# test base must have defined the corresponding attribute to be False
|
960 |
+
# for the test to run. If you want to use a string argument you should
|
961 |
+
# probably define a new decorator instead (see below).
|
962 |
+
# (3) Prefer the existing decorators to defining the 'device_type' kwarg.
|
963 |
+
class skipIf:
|
964 |
+
|
965 |
+
def __init__(self, dep, reason, device_type=None):
|
966 |
+
self.dep = dep
|
967 |
+
self.reason = reason
|
968 |
+
self.device_type = device_type
|
969 |
+
|
970 |
+
def __call__(self, fn):
|
971 |
+
|
972 |
+
@wraps(fn)
|
973 |
+
def dep_fn(slf, *args, **kwargs):
|
974 |
+
if self.device_type is None or self.device_type == slf.device_type:
|
975 |
+
if (isinstance(self.dep, str) and getattr(slf, self.dep, True)) or (isinstance(self.dep, bool) and self.dep):
|
976 |
+
raise unittest.SkipTest(self.reason)
|
977 |
+
|
978 |
+
return fn(slf, *args, **kwargs)
|
979 |
+
return dep_fn
|
980 |
+
|
981 |
+
|
982 |
+
# Skips a test on CPU if the condition is true.
|
983 |
+
class skipCPUIf(skipIf):
|
984 |
+
|
985 |
+
def __init__(self, dep, reason):
|
986 |
+
super().__init__(dep, reason, device_type='cpu')
|
987 |
+
|
988 |
+
|
989 |
+
# Skips a test on CUDA if the condition is true.
|
990 |
+
class skipCUDAIf(skipIf):
|
991 |
+
|
992 |
+
def __init__(self, dep, reason):
|
993 |
+
super().__init__(dep, reason, device_type='cuda')
|
994 |
+
|
995 |
+
# Skips a test on Lazy if the condition is true.
|
996 |
+
class skipLazyIf(skipIf):
|
997 |
+
|
998 |
+
def __init__(self, dep, reason):
|
999 |
+
super().__init__(dep, reason, device_type='lazy')
|
1000 |
+
|
1001 |
+
# Skips a test on Meta if the condition is true.
|
1002 |
+
class skipMetaIf(skipIf):
|
1003 |
+
|
1004 |
+
def __init__(self, dep, reason):
|
1005 |
+
super().__init__(dep, reason, device_type='meta')
|
1006 |
+
|
1007 |
+
# Skips a test on MPS if the condition is true.
|
1008 |
+
class skipMPSIf(skipIf):
|
1009 |
+
|
1010 |
+
def __init__(self, dep, reason):
|
1011 |
+
super().__init__(dep, reason, device_type='mps')
|
1012 |
+
|
1013 |
+
# Skips a test on XLA if the condition is true.
|
1014 |
+
class skipXLAIf(skipIf):
|
1015 |
+
|
1016 |
+
def __init__(self, dep, reason):
|
1017 |
+
super().__init__(dep, reason, device_type='xla')
|
1018 |
+
|
1019 |
+
class skipPRIVATEUSE1If(skipIf):
|
1020 |
+
|
1021 |
+
def __init__(self, dep, reason):
|
1022 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
1023 |
+
super().__init__(dep, reason, device_type=device_type)
|
1024 |
+
|
1025 |
+
def _has_sufficient_memory(device, size):
|
1026 |
+
if torch.device(device).type == 'cuda':
|
1027 |
+
if not torch.cuda.is_available():
|
1028 |
+
return False
|
1029 |
+
gc.collect()
|
1030 |
+
torch.cuda.empty_cache()
|
1031 |
+
# torch.cuda.mem_get_info, aka cudaMemGetInfo, returns a tuple of (free memory, total memory) of a GPU
|
1032 |
+
if device == 'cuda':
|
1033 |
+
device = 'cuda:0'
|
1034 |
+
return torch.cuda.memory.mem_get_info(device)[0] >= size
|
1035 |
+
|
1036 |
+
if device == 'xla':
|
1037 |
+
raise unittest.SkipTest('TODO: Memory availability checks for XLA?')
|
1038 |
+
|
1039 |
+
if device != 'cpu':
|
1040 |
+
raise unittest.SkipTest('Unknown device type')
|
1041 |
+
|
1042 |
+
# CPU
|
1043 |
+
if not HAS_PSUTIL:
|
1044 |
+
raise unittest.SkipTest('Need psutil to determine if memory is sufficient')
|
1045 |
+
|
1046 |
+
# The sanitizers have significant memory overheads
|
1047 |
+
if TEST_WITH_ASAN or TEST_WITH_TSAN or TEST_WITH_UBSAN:
|
1048 |
+
effective_size = size * 10
|
1049 |
+
else:
|
1050 |
+
effective_size = size
|
1051 |
+
|
1052 |
+
if psutil.virtual_memory().available < effective_size:
|
1053 |
+
gc.collect()
|
1054 |
+
return psutil.virtual_memory().available >= effective_size
|
1055 |
+
|
1056 |
+
|
1057 |
+
def largeTensorTest(size, device=None):
|
1058 |
+
"""Skip test if the device has insufficient memory to run the test
|
1059 |
+
|
1060 |
+
size may be a number of bytes, a string of the form "N GB", or a callable
|
1061 |
+
|
1062 |
+
If the test is a device generic test, available memory on the primary device will be checked.
|
1063 |
+
It can also be overriden by the optional `device=` argument.
|
1064 |
+
In other tests, the `device=` argument needs to be specified.
|
1065 |
+
"""
|
1066 |
+
if isinstance(size, str):
|
1067 |
+
assert size.endswith(('GB', 'gb')), "only bytes or GB supported"
|
1068 |
+
size = 1024 ** 3 * int(size[:-2])
|
1069 |
+
|
1070 |
+
def inner(fn):
|
1071 |
+
@wraps(fn)
|
1072 |
+
def dep_fn(self, *args, **kwargs):
|
1073 |
+
size_bytes = size(self, *args, **kwargs) if callable(size) else size
|
1074 |
+
_device = device if device is not None else self.get_primary_device()
|
1075 |
+
if not _has_sufficient_memory(_device, size_bytes):
|
1076 |
+
raise unittest.SkipTest(f'Insufficient {_device} memory')
|
1077 |
+
|
1078 |
+
return fn(self, *args, **kwargs)
|
1079 |
+
return dep_fn
|
1080 |
+
return inner
|
1081 |
+
|
1082 |
+
|
1083 |
+
class expectedFailure:
|
1084 |
+
|
1085 |
+
def __init__(self, device_type):
|
1086 |
+
self.device_type = device_type
|
1087 |
+
|
1088 |
+
def __call__(self, fn):
|
1089 |
+
|
1090 |
+
@wraps(fn)
|
1091 |
+
def efail_fn(slf, *args, **kwargs):
|
1092 |
+
if self.device_type is None or self.device_type == slf.device_type:
|
1093 |
+
try:
|
1094 |
+
fn(slf, *args, **kwargs)
|
1095 |
+
except Exception:
|
1096 |
+
return
|
1097 |
+
else:
|
1098 |
+
slf.fail('expected test to fail, but it passed')
|
1099 |
+
|
1100 |
+
return fn(slf, *args, **kwargs)
|
1101 |
+
return efail_fn
|
1102 |
+
|
1103 |
+
|
1104 |
+
class onlyOn:
|
1105 |
+
|
1106 |
+
def __init__(self, device_type):
|
1107 |
+
self.device_type = device_type
|
1108 |
+
|
1109 |
+
def __call__(self, fn):
|
1110 |
+
|
1111 |
+
@wraps(fn)
|
1112 |
+
def only_fn(slf, *args, **kwargs):
|
1113 |
+
if self.device_type != slf.device_type:
|
1114 |
+
reason = f"Only runs on {self.device_type}"
|
1115 |
+
raise unittest.SkipTest(reason)
|
1116 |
+
|
1117 |
+
return fn(slf, *args, **kwargs)
|
1118 |
+
|
1119 |
+
return only_fn
|
1120 |
+
|
1121 |
+
|
1122 |
+
# Decorator that provides all available devices of the device type to the test
|
1123 |
+
# as a list of strings instead of providing a single device string.
|
1124 |
+
# Skips the test if the number of available devices of the variant's device
|
1125 |
+
# type is less than the 'num_required_devices' arg.
|
1126 |
+
class deviceCountAtLeast:
|
1127 |
+
|
1128 |
+
def __init__(self, num_required_devices):
|
1129 |
+
self.num_required_devices = num_required_devices
|
1130 |
+
|
1131 |
+
def __call__(self, fn):
|
1132 |
+
assert not hasattr(fn, 'num_required_devices'), f"deviceCountAtLeast redefinition for {fn.__name__}"
|
1133 |
+
fn.num_required_devices = self.num_required_devices
|
1134 |
+
|
1135 |
+
@wraps(fn)
|
1136 |
+
def multi_fn(slf, devices, *args, **kwargs):
|
1137 |
+
if len(devices) < self.num_required_devices:
|
1138 |
+
reason = f"fewer than {self.num_required_devices} devices detected"
|
1139 |
+
raise unittest.SkipTest(reason)
|
1140 |
+
|
1141 |
+
return fn(slf, devices, *args, **kwargs)
|
1142 |
+
|
1143 |
+
return multi_fn
|
1144 |
+
|
1145 |
+
# Only runs the test on the native device type (currently CPU, CUDA, Meta and PRIVATEUSE1)
|
1146 |
+
def onlyNativeDeviceTypes(fn):
|
1147 |
+
@wraps(fn)
|
1148 |
+
def only_fn(self, *args, **kwargs):
|
1149 |
+
if self.device_type not in NATIVE_DEVICES:
|
1150 |
+
reason = f"onlyNativeDeviceTypes: doesn't run on {self.device_type}"
|
1151 |
+
raise unittest.SkipTest(reason)
|
1152 |
+
|
1153 |
+
return fn(self, *args, **kwargs)
|
1154 |
+
|
1155 |
+
return only_fn
|
1156 |
+
|
1157 |
+
# Specifies per-dtype precision overrides.
|
1158 |
+
# Ex.
|
1159 |
+
#
|
1160 |
+
# @precisionOverride({torch.half : 1e-2, torch.float : 1e-4})
|
1161 |
+
# @dtypes(torch.half, torch.float, torch.double)
|
1162 |
+
# def test_X(self, device, dtype):
|
1163 |
+
# ...
|
1164 |
+
#
|
1165 |
+
# When the test is instantiated its class's precision will be set to the
|
1166 |
+
# corresponding override, if it exists.
|
1167 |
+
# self.precision can be accessed directly, and it also controls the behavior of
|
1168 |
+
# functions like self.assertEqual().
|
1169 |
+
#
|
1170 |
+
# Note that self.precision is a scalar value, so if you require multiple
|
1171 |
+
# precisions (or are working with multiple dtypes) they should be specified
|
1172 |
+
# explicitly and computed using self.precision (e.g.
|
1173 |
+
# self.precision *2, max(1, self.precision)).
|
1174 |
+
class precisionOverride:
|
1175 |
+
|
1176 |
+
def __init__(self, d):
|
1177 |
+
assert isinstance(d, dict), "precisionOverride not given a dtype : precision dict!"
|
1178 |
+
for dtype in d.keys():
|
1179 |
+
assert isinstance(dtype, torch.dtype), f"precisionOverride given unknown dtype {dtype}"
|
1180 |
+
|
1181 |
+
self.d = d
|
1182 |
+
|
1183 |
+
def __call__(self, fn):
|
1184 |
+
fn.precision_overrides = self.d
|
1185 |
+
return fn
|
1186 |
+
|
1187 |
+
# Specifies per-dtype tolerance overrides tol(atol, rtol). It has priority over
|
1188 |
+
# precisionOverride.
|
1189 |
+
# Ex.
|
1190 |
+
#
|
1191 |
+
# @toleranceOverride({torch.float : tol(atol=1e-2, rtol=1e-3},
|
1192 |
+
# torch.double : tol{atol=1e-4, rtol = 0})
|
1193 |
+
# @dtypes(torch.half, torch.float, torch.double)
|
1194 |
+
# def test_X(self, device, dtype):
|
1195 |
+
# ...
|
1196 |
+
#
|
1197 |
+
# When the test is instantiated its class's tolerance will be set to the
|
1198 |
+
# corresponding override, if it exists.
|
1199 |
+
# self.rtol and self.precision can be accessed directly, and they also control
|
1200 |
+
# the behavior of functions like self.assertEqual().
|
1201 |
+
#
|
1202 |
+
# The above example sets atol = 1e-2 and rtol = 1e-3 for torch.float and
|
1203 |
+
# atol = 1e-4 and rtol = 0 for torch.double.
|
1204 |
+
tol = namedtuple('tol', ['atol', 'rtol'])
|
1205 |
+
|
1206 |
+
class toleranceOverride:
|
1207 |
+
def __init__(self, d):
|
1208 |
+
assert isinstance(d, dict), "toleranceOverride not given a dtype : tol dict!"
|
1209 |
+
for dtype, prec in d.items():
|
1210 |
+
assert isinstance(dtype, torch.dtype), f"toleranceOverride given unknown dtype {dtype}"
|
1211 |
+
assert isinstance(prec, tol), "toleranceOverride not given a dtype : tol dict!"
|
1212 |
+
|
1213 |
+
self.d = d
|
1214 |
+
|
1215 |
+
def __call__(self, fn):
|
1216 |
+
fn.tolerance_overrides = self.d
|
1217 |
+
return fn
|
1218 |
+
|
1219 |
+
# Decorator that instantiates a variant of the test for each given dtype.
|
1220 |
+
# Notes:
|
1221 |
+
# (1) Tests that accept the dtype argument MUST use this decorator.
|
1222 |
+
# (2) Can be overridden for CPU or CUDA, respectively, using dtypesIfCPU
|
1223 |
+
# or dtypesIfCUDA.
|
1224 |
+
# (3) Can accept an iterable of dtypes or an iterable of tuples
|
1225 |
+
# of dtypes.
|
1226 |
+
# Examples:
|
1227 |
+
# @dtypes(torch.float32, torch.float64)
|
1228 |
+
# @dtypes((torch.long, torch.float32), (torch.int, torch.float64))
|
1229 |
+
class dtypes:
|
1230 |
+
|
1231 |
+
def __init__(self, *args, device_type="all"):
|
1232 |
+
if len(args) > 0 and isinstance(args[0], (list, tuple)):
|
1233 |
+
for arg in args:
|
1234 |
+
assert isinstance(arg, (list, tuple)), \
|
1235 |
+
"When one dtype variant is a tuple or list, " \
|
1236 |
+
"all dtype variants must be. " \
|
1237 |
+
f"Received non-list non-tuple dtype {str(arg)}"
|
1238 |
+
assert all(isinstance(dtype, torch.dtype) for dtype in arg), f"Unknown dtype in {str(arg)}"
|
1239 |
+
else:
|
1240 |
+
assert all(isinstance(arg, torch.dtype) for arg in args), f"Unknown dtype in {str(args)}"
|
1241 |
+
|
1242 |
+
self.args = args
|
1243 |
+
self.device_type = device_type
|
1244 |
+
|
1245 |
+
def __call__(self, fn):
|
1246 |
+
d = getattr(fn, 'dtypes', {})
|
1247 |
+
assert self.device_type not in d, f"dtypes redefinition for {self.device_type}"
|
1248 |
+
d[self.device_type] = self.args
|
1249 |
+
fn.dtypes = d
|
1250 |
+
return fn
|
1251 |
+
|
1252 |
+
|
1253 |
+
# Overrides specified dtypes on the CPU.
|
1254 |
+
class dtypesIfCPU(dtypes):
|
1255 |
+
|
1256 |
+
def __init__(self, *args):
|
1257 |
+
super().__init__(*args, device_type='cpu')
|
1258 |
+
|
1259 |
+
|
1260 |
+
# Overrides specified dtypes on CUDA.
|
1261 |
+
class dtypesIfCUDA(dtypes):
|
1262 |
+
|
1263 |
+
def __init__(self, *args):
|
1264 |
+
super().__init__(*args, device_type='cuda')
|
1265 |
+
|
1266 |
+
class dtypesIfMPS(dtypes):
|
1267 |
+
|
1268 |
+
def __init__(self, *args):
|
1269 |
+
super().__init__(*args, device_type='mps')
|
1270 |
+
|
1271 |
+
class dtypesIfPRIVATEUSE1(dtypes):
|
1272 |
+
|
1273 |
+
def __init__(self, *args):
|
1274 |
+
super().__init__(*args, device_type=torch._C._get_privateuse1_backend_name())
|
1275 |
+
|
1276 |
+
def onlyCPU(fn):
|
1277 |
+
return onlyOn('cpu')(fn)
|
1278 |
+
|
1279 |
+
|
1280 |
+
def onlyCUDA(fn):
|
1281 |
+
return onlyOn('cuda')(fn)
|
1282 |
+
|
1283 |
+
|
1284 |
+
def onlyMPS(fn):
|
1285 |
+
return onlyOn('mps')(fn)
|
1286 |
+
|
1287 |
+
def onlyPRIVATEUSE1(fn):
|
1288 |
+
device_type = torch._C._get_privateuse1_backend_name()
|
1289 |
+
device_mod = getattr(torch, device_type, None)
|
1290 |
+
if device_mod is None:
|
1291 |
+
reason = f"Skip as torch has no module of {device_type}"
|
1292 |
+
return unittest.skip(reason)(fn)
|
1293 |
+
return onlyOn(device_type)(fn)
|
1294 |
+
|
1295 |
+
def onlyCUDAAndPRIVATEUSE1(fn):
|
1296 |
+
@wraps(fn)
|
1297 |
+
def only_fn(self, *args, **kwargs):
|
1298 |
+
if self.device_type not in ('cuda', torch._C._get_privateuse1_backend_name()):
|
1299 |
+
reason = f"onlyCUDAAndPRIVATEUSE1: doesn't run on {self.device_type}"
|
1300 |
+
raise unittest.SkipTest(reason)
|
1301 |
+
|
1302 |
+
return fn(self, *args, **kwargs)
|
1303 |
+
|
1304 |
+
return only_fn
|
1305 |
+
|
1306 |
+
def disablecuDNN(fn):
|
1307 |
+
|
1308 |
+
@wraps(fn)
|
1309 |
+
def disable_cudnn(self, *args, **kwargs):
|
1310 |
+
if self.device_type == 'cuda' and self.has_cudnn():
|
1311 |
+
with torch.backends.cudnn.flags(enabled=False):
|
1312 |
+
return fn(self, *args, **kwargs)
|
1313 |
+
return fn(self, *args, **kwargs)
|
1314 |
+
|
1315 |
+
return disable_cudnn
|
1316 |
+
|
1317 |
+
def disableMkldnn(fn):
|
1318 |
+
|
1319 |
+
@wraps(fn)
|
1320 |
+
def disable_mkldnn(self, *args, **kwargs):
|
1321 |
+
if torch.backends.mkldnn.is_available():
|
1322 |
+
with torch.backends.mkldnn.flags(enabled=False):
|
1323 |
+
return fn(self, *args, **kwargs)
|
1324 |
+
return fn(self, *args, **kwargs)
|
1325 |
+
|
1326 |
+
return disable_mkldnn
|
1327 |
+
|
1328 |
+
|
1329 |
+
def expectedFailureCPU(fn):
|
1330 |
+
return expectedFailure('cpu')(fn)
|
1331 |
+
|
1332 |
+
|
1333 |
+
def expectedFailureCUDA(fn):
|
1334 |
+
return expectedFailure('cuda')(fn)
|
1335 |
+
|
1336 |
+
def expectedFailureMeta(fn):
|
1337 |
+
return skipIfTorchDynamo()(expectedFailure('meta')(fn))
|
1338 |
+
|
1339 |
+
def expectedFailureXLA(fn):
|
1340 |
+
return expectedFailure('xla')(fn)
|
1341 |
+
|
1342 |
+
# Skips a test on CPU if LAPACK is not available.
|
1343 |
+
def skipCPUIfNoLapack(fn):
|
1344 |
+
return skipCPUIf(not torch._C.has_lapack, "PyTorch compiled without Lapack")(fn)
|
1345 |
+
|
1346 |
+
|
1347 |
+
# Skips a test on CPU if FFT is not available.
|
1348 |
+
def skipCPUIfNoFFT(fn):
|
1349 |
+
return skipCPUIf(not torch._C.has_spectral, "PyTorch is built without FFT support")(fn)
|
1350 |
+
|
1351 |
+
|
1352 |
+
# Skips a test on CPU if MKL is not available.
|
1353 |
+
def skipCPUIfNoMkl(fn):
|
1354 |
+
return skipCPUIf(not TEST_MKL, "PyTorch is built without MKL support")(fn)
|
1355 |
+
|
1356 |
+
|
1357 |
+
# Skips a test on CPU if MKL Sparse is not available (it's not linked on Windows).
|
1358 |
+
def skipCPUIfNoMklSparse(fn):
|
1359 |
+
return skipCPUIf(IS_WINDOWS or not TEST_MKL, "PyTorch is built without MKL support")(fn)
|
1360 |
+
|
1361 |
+
|
1362 |
+
# Skips a test on CPU if mkldnn is not available.
|
1363 |
+
def skipCPUIfNoMkldnn(fn):
|
1364 |
+
return skipCPUIf(not torch.backends.mkldnn.is_available(), "PyTorch is built without mkldnn support")(fn)
|
1365 |
+
|
1366 |
+
|
1367 |
+
# Skips a test on CUDA if MAGMA is not available.
|
1368 |
+
def skipCUDAIfNoMagma(fn):
|
1369 |
+
return skipCUDAIf('no_magma', "no MAGMA library detected")(skipCUDANonDefaultStreamIf(True)(fn))
|
1370 |
+
|
1371 |
+
def has_cusolver():
|
1372 |
+
return not TEST_WITH_ROCM
|
1373 |
+
|
1374 |
+
def has_hipsolver():
|
1375 |
+
rocm_version = _get_torch_rocm_version()
|
1376 |
+
# hipSOLVER is disabled on ROCM < 5.3
|
1377 |
+
return rocm_version >= (5, 3)
|
1378 |
+
|
1379 |
+
# Skips a test on CUDA/ROCM if cuSOLVER/hipSOLVER is not available
|
1380 |
+
def skipCUDAIfNoCusolver(fn):
|
1381 |
+
return skipCUDAIf(not has_cusolver() and not has_hipsolver(), "cuSOLVER not available")(fn)
|
1382 |
+
|
1383 |
+
|
1384 |
+
# Skips a test if both cuSOLVER and MAGMA are not available
|
1385 |
+
def skipCUDAIfNoMagmaAndNoCusolver(fn):
|
1386 |
+
if has_cusolver():
|
1387 |
+
return fn
|
1388 |
+
else:
|
1389 |
+
# cuSolver is disabled on cuda < 10.1.243, tests depend on MAGMA
|
1390 |
+
return skipCUDAIfNoMagma(fn)
|
1391 |
+
|
1392 |
+
# Skips a test if both cuSOLVER/hipSOLVER and MAGMA are not available
|
1393 |
+
def skipCUDAIfNoMagmaAndNoLinalgsolver(fn):
|
1394 |
+
if has_cusolver() or has_hipsolver():
|
1395 |
+
return fn
|
1396 |
+
else:
|
1397 |
+
# cuSolver is disabled on cuda < 10.1.243, tests depend on MAGMA
|
1398 |
+
return skipCUDAIfNoMagma(fn)
|
1399 |
+
|
1400 |
+
# Skips a test on CUDA when using ROCm.
|
1401 |
+
def skipCUDAIfRocm(func=None, *, msg="test doesn't currently work on the ROCm stack"):
|
1402 |
+
def dec_fn(fn):
|
1403 |
+
reason = f"skipCUDAIfRocm: {msg}"
|
1404 |
+
return skipCUDAIf(TEST_WITH_ROCM, reason=reason)(fn)
|
1405 |
+
if func:
|
1406 |
+
return dec_fn(func)
|
1407 |
+
return dec_fn
|
1408 |
+
|
1409 |
+
# Skips a test on CUDA when not using ROCm.
|
1410 |
+
def skipCUDAIfNotRocm(fn):
|
1411 |
+
return skipCUDAIf(not TEST_WITH_ROCM, "test doesn't currently work on the CUDA stack")(fn)
|
1412 |
+
|
1413 |
+
# Skips a test on CUDA if ROCm is unavailable or its version is lower than requested.
|
1414 |
+
def skipCUDAIfRocmVersionLessThan(version=None):
|
1415 |
+
|
1416 |
+
def dec_fn(fn):
|
1417 |
+
@wraps(fn)
|
1418 |
+
def wrap_fn(self, *args, **kwargs):
|
1419 |
+
if self.device_type == 'cuda':
|
1420 |
+
if not TEST_WITH_ROCM:
|
1421 |
+
reason = "ROCm not available"
|
1422 |
+
raise unittest.SkipTest(reason)
|
1423 |
+
rocm_version_tuple = _get_torch_rocm_version()
|
1424 |
+
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
|
1425 |
+
reason = f"ROCm {rocm_version_tuple} is available but {version} required"
|
1426 |
+
raise unittest.SkipTest(reason)
|
1427 |
+
|
1428 |
+
return fn(self, *args, **kwargs)
|
1429 |
+
|
1430 |
+
return wrap_fn
|
1431 |
+
return dec_fn
|
1432 |
+
|
1433 |
+
# Skips a test on CUDA when using ROCm.
|
1434 |
+
def skipCUDAIfNotMiopenSuggestNHWC(fn):
|
1435 |
+
return skipCUDAIf(not TEST_WITH_MIOPEN_SUGGEST_NHWC, "test doesn't currently work without MIOpen NHWC activation")(fn)
|
1436 |
+
|
1437 |
+
# Skips a test for specified CUDA versions, given in the form of a list of [major, minor]s.
|
1438 |
+
def skipCUDAVersionIn(versions : List[Tuple[int, int]] = None):
|
1439 |
+
def dec_fn(fn):
|
1440 |
+
@wraps(fn)
|
1441 |
+
def wrap_fn(self, *args, **kwargs):
|
1442 |
+
version = _get_torch_cuda_version()
|
1443 |
+
if version == (0, 0): # cpu or rocm
|
1444 |
+
return fn(self, *args, **kwargs)
|
1445 |
+
if version in (versions or []):
|
1446 |
+
reason = f"test skipped for CUDA version {version}"
|
1447 |
+
raise unittest.SkipTest(reason)
|
1448 |
+
return fn(self, *args, **kwargs)
|
1449 |
+
|
1450 |
+
return wrap_fn
|
1451 |
+
return dec_fn
|
1452 |
+
|
1453 |
+
# Skips a test for CUDA versions less than specified, given in the form of [major, minor].
|
1454 |
+
def skipCUDAIfVersionLessThan(versions : Tuple[int, int] = None):
|
1455 |
+
def dec_fn(fn):
|
1456 |
+
@wraps(fn)
|
1457 |
+
def wrap_fn(self, *args, **kwargs):
|
1458 |
+
version = _get_torch_cuda_version()
|
1459 |
+
if version == (0, 0): # cpu or rocm
|
1460 |
+
return fn(self, *args, **kwargs)
|
1461 |
+
if version < versions:
|
1462 |
+
reason = f"test skipped for CUDA versions < {version}"
|
1463 |
+
raise unittest.SkipTest(reason)
|
1464 |
+
return fn(self, *args, **kwargs)
|
1465 |
+
|
1466 |
+
return wrap_fn
|
1467 |
+
return dec_fn
|
1468 |
+
|
1469 |
+
# Skips a test on CUDA if cuDNN is unavailable or its version is lower than requested.
|
1470 |
+
def skipCUDAIfCudnnVersionLessThan(version=0):
|
1471 |
+
|
1472 |
+
def dec_fn(fn):
|
1473 |
+
@wraps(fn)
|
1474 |
+
def wrap_fn(self, *args, **kwargs):
|
1475 |
+
if self.device_type == 'cuda':
|
1476 |
+
if self.no_cudnn:
|
1477 |
+
reason = "cuDNN not available"
|
1478 |
+
raise unittest.SkipTest(reason)
|
1479 |
+
if self.cudnn_version is None or self.cudnn_version < version:
|
1480 |
+
reason = f"cuDNN version {self.cudnn_version} is available but {version} required"
|
1481 |
+
raise unittest.SkipTest(reason)
|
1482 |
+
|
1483 |
+
return fn(self, *args, **kwargs)
|
1484 |
+
|
1485 |
+
return wrap_fn
|
1486 |
+
return dec_fn
|
1487 |
+
|
1488 |
+
# Skips a test on CUDA if cuSparse generic API is not available
|
1489 |
+
def skipCUDAIfNoCusparseGeneric(fn):
|
1490 |
+
return skipCUDAIf(not TEST_CUSPARSE_GENERIC, "cuSparse Generic API not available")(fn)
|
1491 |
+
|
1492 |
+
def skipCUDAIfNoHipsparseGeneric(fn):
|
1493 |
+
return skipCUDAIf(not TEST_HIPSPARSE_GENERIC, "hipSparse Generic API not available")(fn)
|
1494 |
+
|
1495 |
+
def skipCUDAIfNoSparseGeneric(fn):
|
1496 |
+
return skipCUDAIf(not (TEST_CUSPARSE_GENERIC or TEST_HIPSPARSE_GENERIC), "Sparse Generic API not available")(fn)
|
1497 |
+
|
1498 |
+
def skipCUDAIfNoCudnn(fn):
|
1499 |
+
return skipCUDAIfCudnnVersionLessThan(0)(fn)
|
1500 |
+
|
1501 |
+
def skipCUDAIfMiopen(fn):
|
1502 |
+
return skipCUDAIf(torch.version.hip is not None, "Marked as skipped for MIOpen")(fn)
|
1503 |
+
|
1504 |
+
def skipCUDAIfNoMiopen(fn):
|
1505 |
+
return skipCUDAIf(torch.version.hip is None, "MIOpen is not available")(skipCUDAIfNoCudnn(fn))
|
1506 |
+
|
1507 |
+
def skipLazy(fn):
|
1508 |
+
return skipLazyIf(True, "test doesn't work with lazy tensors")(fn)
|
1509 |
+
|
1510 |
+
def skipMeta(fn):
|
1511 |
+
return skipMetaIf(True, "test doesn't work with meta tensors")(fn)
|
1512 |
+
|
1513 |
+
def skipXLA(fn):
|
1514 |
+
return skipXLAIf(True, "Marked as skipped for XLA")(fn)
|
1515 |
+
|
1516 |
+
def skipMPS(fn):
|
1517 |
+
return skipMPSIf(True, "test doesn't work on MPS backend")(fn)
|
1518 |
+
|
1519 |
+
def skipPRIVATEUSE1(fn):
|
1520 |
+
return skipPRIVATEUSE1If(True, "test doesn't work on privateuse1 backend")(fn)
|
1521 |
+
|
1522 |
+
# TODO: the "all" in the name isn't true anymore for quite some time as we have also have for example XLA and MPS now.
|
1523 |
+
# This should probably enumerate all available device type test base classes.
|
1524 |
+
def get_all_device_types() -> List[str]:
|
1525 |
+
return ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_dist_composable.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Owner(s): ["oncall: distributed"]
|
4 |
+
|
5 |
+
from typing import Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class UnitModule(nn.Module):
|
12 |
+
def __init__(self, device: torch.device):
|
13 |
+
super().__init__()
|
14 |
+
self.l1 = nn.Linear(100, 100, device=device)
|
15 |
+
self.seq = nn.Sequential(
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.Linear(100, 100, device=device),
|
18 |
+
nn.ReLU(),
|
19 |
+
)
|
20 |
+
self.l2 = nn.Linear(100, 100, device=device)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
return self.l2(self.seq(self.l1(x)))
|
24 |
+
|
25 |
+
|
26 |
+
class CompositeModel(nn.Module):
|
27 |
+
def __init__(self, device: torch.device):
|
28 |
+
super().__init__()
|
29 |
+
self.l1 = nn.Linear(100, 100, device=device)
|
30 |
+
self.u1 = UnitModule(device)
|
31 |
+
self.u2 = UnitModule(device)
|
32 |
+
self.l2 = nn.Linear(100, 100, device=device)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return self.l2(self.u2(self.u1(self.l1(x))))
|
36 |
+
|
37 |
+
|
38 |
+
class UnitParamModule(nn.Module):
|
39 |
+
def __init__(self, device: torch.device):
|
40 |
+
super().__init__()
|
41 |
+
self.l = nn.Linear(100, 100, device=device)
|
42 |
+
self.seq = nn.Sequential(
|
43 |
+
nn.ReLU(),
|
44 |
+
nn.Linear(100, 100, device=device),
|
45 |
+
nn.ReLU(),
|
46 |
+
)
|
47 |
+
self.p = nn.Parameter(torch.randn((100, 100), device=device))
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return torch.mm(self.seq(self.l(x)), self.p)
|
51 |
+
|
52 |
+
|
53 |
+
class CompositeParamModel(nn.Module):
|
54 |
+
def __init__(self, device: torch.device):
|
55 |
+
super().__init__()
|
56 |
+
self.l = nn.Linear(100, 100, device=device)
|
57 |
+
self.u1 = UnitModule(device)
|
58 |
+
self.u2 = UnitModule(device)
|
59 |
+
self.p = nn.Parameter(torch.randn((100, 100), device=device))
|
60 |
+
self.register_buffer(
|
61 |
+
"buffer", torch.randn((100, 100), device=device), persistent=True
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
a = self.u2(self.u1(self.l(x)))
|
66 |
+
b = self.p
|
67 |
+
return torch.mm(a, b)
|
68 |
+
|
69 |
+
|
70 |
+
class FakeSequential(nn.Module):
|
71 |
+
# Define this class to achieve a desired nested wrapping using the module
|
72 |
+
# wrap policy with `nn.Sequential`
|
73 |
+
def __init__(self, *modules: Tuple[nn.Module, ...]) -> None:
|
74 |
+
super().__init__()
|
75 |
+
self._module_sequence = list(modules)
|
76 |
+
|
77 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
78 |
+
for module in self._module_sequence:
|
79 |
+
x = module(x)
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class NestedSequentialModel(nn.Module):
|
84 |
+
def __init__(self, device: torch.device) -> None:
|
85 |
+
super().__init__()
|
86 |
+
# This nested structure exercises traversal order to catch differences
|
87 |
+
# between valid traversals (e.g. BFS and DFS variations).
|
88 |
+
self.seq1 = nn.Sequential(
|
89 |
+
nn.Linear(1, 1, device=device),
|
90 |
+
FakeSequential(
|
91 |
+
nn.Linear(1, 1, device=device),
|
92 |
+
nn.ReLU(),
|
93 |
+
FakeSequential(
|
94 |
+
nn.Linear(1, 1, device=device),
|
95 |
+
),
|
96 |
+
nn.ReLU(),
|
97 |
+
),
|
98 |
+
nn.Linear(1, 2, device=device),
|
99 |
+
)
|
100 |
+
self.lin = nn.Linear(2, 2, device=device)
|
101 |
+
self.seq2 = nn.Sequential(
|
102 |
+
nn.ReLU(),
|
103 |
+
nn.Linear(2, 3, device=device),
|
104 |
+
FakeSequential(
|
105 |
+
nn.Linear(3, 2, bias=False, device=device),
|
106 |
+
nn.Linear(2, 4, bias=False, device=device),
|
107 |
+
),
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
111 |
+
return self.seq2(self.lin(self.seq1(x)))
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_dtype.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
# Functions and classes for describing the dtypes a function supports
|
9 |
+
# NOTE: these helpers should correspond to PyTorch's C++ dispatch macros
|
10 |
+
|
11 |
+
# Verifies each given dtype is a torch.dtype
|
12 |
+
def _validate_dtypes(*dtypes):
|
13 |
+
for dtype in dtypes:
|
14 |
+
assert isinstance(dtype, torch.dtype)
|
15 |
+
return dtypes
|
16 |
+
|
17 |
+
# class for tuples corresponding to a PyTorch dispatch macro
|
18 |
+
class _dispatch_dtypes(tuple):
|
19 |
+
def __add__(self, other):
|
20 |
+
assert isinstance(other, tuple)
|
21 |
+
return _dispatch_dtypes(tuple.__add__(self, other))
|
22 |
+
|
23 |
+
_empty_types = _dispatch_dtypes(())
|
24 |
+
def empty_types():
|
25 |
+
return _empty_types
|
26 |
+
|
27 |
+
_floating_types = _dispatch_dtypes((torch.float32, torch.float64))
|
28 |
+
def floating_types():
|
29 |
+
return _floating_types
|
30 |
+
|
31 |
+
_floating_types_and_half = _floating_types + (torch.half,)
|
32 |
+
def floating_types_and_half():
|
33 |
+
return _floating_types_and_half
|
34 |
+
|
35 |
+
def floating_types_and(*dtypes):
|
36 |
+
return _floating_types + _validate_dtypes(*dtypes)
|
37 |
+
|
38 |
+
_floating_and_complex_types = _floating_types + (torch.cfloat, torch.cdouble)
|
39 |
+
def floating_and_complex_types():
|
40 |
+
return _floating_and_complex_types
|
41 |
+
|
42 |
+
def floating_and_complex_types_and(*dtypes):
|
43 |
+
return _floating_and_complex_types + _validate_dtypes(*dtypes)
|
44 |
+
|
45 |
+
_double_types = _dispatch_dtypes((torch.float64, torch.complex128))
|
46 |
+
def double_types():
|
47 |
+
return _double_types
|
48 |
+
|
49 |
+
# NB: Does not contain uint16/uint32/uint64 for BC reasons
|
50 |
+
_integral_types = _dispatch_dtypes((torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64))
|
51 |
+
def integral_types():
|
52 |
+
return _integral_types
|
53 |
+
|
54 |
+
def integral_types_and(*dtypes):
|
55 |
+
return _integral_types + _validate_dtypes(*dtypes)
|
56 |
+
|
57 |
+
_all_types = _floating_types + _integral_types
|
58 |
+
def all_types():
|
59 |
+
return _all_types
|
60 |
+
|
61 |
+
def all_types_and(*dtypes):
|
62 |
+
return _all_types + _validate_dtypes(*dtypes)
|
63 |
+
|
64 |
+
_complex_types = _dispatch_dtypes((torch.cfloat, torch.cdouble))
|
65 |
+
def complex_types():
|
66 |
+
return _complex_types
|
67 |
+
|
68 |
+
def complex_types_and(*dtypes):
|
69 |
+
return _complex_types + _validate_dtypes(*dtypes)
|
70 |
+
|
71 |
+
_all_types_and_complex = _all_types + _complex_types
|
72 |
+
def all_types_and_complex():
|
73 |
+
return _all_types_and_complex
|
74 |
+
|
75 |
+
def all_types_and_complex_and(*dtypes):
|
76 |
+
return _all_types_and_complex + _validate_dtypes(*dtypes)
|
77 |
+
|
78 |
+
_all_types_and_half = _all_types + (torch.half,)
|
79 |
+
def all_types_and_half():
|
80 |
+
return _all_types_and_half
|
81 |
+
|
82 |
+
def custom_types(*dtypes):
|
83 |
+
"""Create a list of arbitrary dtypes"""
|
84 |
+
return _empty_types + _validate_dtypes(*dtypes)
|
85 |
+
|
86 |
+
# The functions below are used for convenience in our test suite and thus have no corresponding C++ dispatch macro
|
87 |
+
|
88 |
+
# See AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
|
89 |
+
def get_all_dtypes(include_half=True,
|
90 |
+
include_bfloat16=True,
|
91 |
+
include_bool=True,
|
92 |
+
include_complex=True,
|
93 |
+
include_complex32=False,
|
94 |
+
include_qint=False,
|
95 |
+
) -> List[torch.dtype]:
|
96 |
+
dtypes = get_all_int_dtypes() + get_all_fp_dtypes(include_half=include_half, include_bfloat16=include_bfloat16)
|
97 |
+
if include_bool:
|
98 |
+
dtypes.append(torch.bool)
|
99 |
+
if include_complex:
|
100 |
+
dtypes += get_all_complex_dtypes(include_complex32)
|
101 |
+
if include_qint:
|
102 |
+
dtypes += get_all_qint_dtypes()
|
103 |
+
return dtypes
|
104 |
+
|
105 |
+
def get_all_math_dtypes(device) -> List[torch.dtype]:
|
106 |
+
return get_all_int_dtypes() + get_all_fp_dtypes(include_half=device.startswith('cuda'),
|
107 |
+
include_bfloat16=False) + get_all_complex_dtypes()
|
108 |
+
|
109 |
+
def get_all_complex_dtypes(include_complex32=False) -> List[torch.dtype]:
|
110 |
+
return [torch.complex32, torch.complex64, torch.complex128] if include_complex32 else [torch.complex64, torch.complex128]
|
111 |
+
|
112 |
+
|
113 |
+
def get_all_int_dtypes() -> List[torch.dtype]:
|
114 |
+
return [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
|
115 |
+
|
116 |
+
|
117 |
+
def get_all_fp_dtypes(include_half=True, include_bfloat16=True) -> List[torch.dtype]:
|
118 |
+
dtypes = [torch.float32, torch.float64]
|
119 |
+
if include_half:
|
120 |
+
dtypes.append(torch.float16)
|
121 |
+
if include_bfloat16:
|
122 |
+
dtypes.append(torch.bfloat16)
|
123 |
+
return dtypes
|
124 |
+
|
125 |
+
|
126 |
+
def get_all_qint_dtypes() -> List[torch.dtype]:
|
127 |
+
return [torch.qint8, torch.quint8, torch.qint32, torch.quint4x2, torch.quint2x4]
|
128 |
+
|
129 |
+
|
130 |
+
float_to_corresponding_complex_type_map = {
|
131 |
+
torch.float16: torch.complex32,
|
132 |
+
torch.float32: torch.complex64,
|
133 |
+
torch.float64: torch.complex128,
|
134 |
+
}
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_optimizers.py
ADDED
@@ -0,0 +1,2033 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import unittest
|
6 |
+
from copy import deepcopy
|
7 |
+
from enum import Enum
|
8 |
+
from typing import Any, Dict, List, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import Tensor
|
12 |
+
from torch.nn import Parameter
|
13 |
+
from torch.optim import (
|
14 |
+
Adadelta,
|
15 |
+
Adagrad,
|
16 |
+
Adam,
|
17 |
+
Adamax,
|
18 |
+
AdamW,
|
19 |
+
ASGD,
|
20 |
+
LBFGS,
|
21 |
+
NAdam,
|
22 |
+
Optimizer,
|
23 |
+
RAdam,
|
24 |
+
RMSprop,
|
25 |
+
Rprop,
|
26 |
+
SGD,
|
27 |
+
SparseAdam,
|
28 |
+
)
|
29 |
+
from torch.testing._internal.common_device_type import tol, toleranceOverride
|
30 |
+
from torch.testing._internal.common_methods_invocations import DecorateInfo
|
31 |
+
from torch.testing._internal.common_utils import (
|
32 |
+
_TestParametrizer,
|
33 |
+
set_single_threaded_if_parallel_tbb,
|
34 |
+
skipIfMps,
|
35 |
+
skipIfTorchDynamo,
|
36 |
+
TEST_WITH_TORCHDYNAMO,
|
37 |
+
)
|
38 |
+
from torch.utils._foreach_utils import (
|
39 |
+
_get_foreach_kernels_supported_devices,
|
40 |
+
_get_fused_kernels_supported_devices,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
class OptimizerInput:
|
45 |
+
"""Contains args / kwargs to be passed to an optimizer constructor."""
|
46 |
+
|
47 |
+
__slots__ = ["params", "kwargs", "desc"]
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
params: Union[List[Parameter], List[Tensor], Dict[Any, Any]],
|
52 |
+
kwargs: Dict[str, Any],
|
53 |
+
desc: str = "",
|
54 |
+
):
|
55 |
+
# params can be a list of Tensors OR param_groups OR None
|
56 |
+
self.params = params
|
57 |
+
self.kwargs = kwargs
|
58 |
+
self.desc = desc
|
59 |
+
|
60 |
+
def __repr__(self):
|
61 |
+
return f"params={self.params}, kwargs={self.kwargs}, desc={self.desc}"
|
62 |
+
|
63 |
+
|
64 |
+
class OptimizerErrorEnum(Enum):
|
65 |
+
"""Enumerates when an error is raised when testing optimizers."""
|
66 |
+
|
67 |
+
CONSTRUCTION_ERROR = 0
|
68 |
+
STEP_ERROR = 1
|
69 |
+
|
70 |
+
|
71 |
+
class ErrorOptimizerInput:
|
72 |
+
"""
|
73 |
+
An OptimizerInput that will cause the optimizer to throw an error when constructed.
|
74 |
+
Includes the type and string of the resulting error.
|
75 |
+
"""
|
76 |
+
|
77 |
+
__slots__ = ["optimizer_error_input", "error_on", "error_type", "error_regex"]
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
optimizer_error_input,
|
82 |
+
*,
|
83 |
+
error_on=OptimizerErrorEnum.CONSTRUCTION_ERROR,
|
84 |
+
error_type=RuntimeError,
|
85 |
+
error_regex="",
|
86 |
+
):
|
87 |
+
self.optimizer_error_input = optimizer_error_input
|
88 |
+
self.error_on = error_on
|
89 |
+
self.error_type = error_type
|
90 |
+
self.error_regex = error_regex
|
91 |
+
|
92 |
+
|
93 |
+
class OptimizerInfo:
|
94 |
+
"""Optimizer information to be used in testing."""
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
optim_cls: Optimizer, # Class object for the Optimizer under test
|
99 |
+
*,
|
100 |
+
# Function to generate optimizer inputs EXCLUDING params. We delegate params responsibility
|
101 |
+
# to the test using the OptimizerInfo. OptimizerInput.params is likely None.
|
102 |
+
# Can optionally take in device to filter out certain unsupported configs
|
103 |
+
optim_inputs_func,
|
104 |
+
# A subset of the global-cliquey flags (fused, foreach, differentiable) the optimizer
|
105 |
+
# supports. See NOTE: [optimizer kwarg categories] for what global-cliquey means.
|
106 |
+
supported_impls: Tuple[str] = ("foreach", "differentiable"),
|
107 |
+
# the devices on which the optim supports sparse tensors for params and grads, see SGD
|
108 |
+
supports_sparse_on: Tuple[str] = (),
|
109 |
+
# the optim only supports one config: sparse grads w/ dense params, see SparseAdam
|
110 |
+
only_supports_sparse_grads: bool = False,
|
111 |
+
# the optim supports complex parameters
|
112 |
+
supports_complex: bool = True,
|
113 |
+
# whether the optimizer.step() function requires a closure to be passed
|
114 |
+
step_requires_closure: bool = False,
|
115 |
+
# whether the optimizer supports per-param options with parameter groups
|
116 |
+
supports_param_groups: bool = True,
|
117 |
+
# whether the optimizer supports parameters on multiple devices
|
118 |
+
supports_multiple_devices: bool = True,
|
119 |
+
skips=(), # Indicates which tests to skip
|
120 |
+
decorators=None, # Additional decorators to apply to generated tests
|
121 |
+
optim_error_inputs_func=None, # Function to generate optim inputs that error
|
122 |
+
):
|
123 |
+
self.optim_cls = optim_cls
|
124 |
+
self.optim_inputs_func = optim_inputs_func
|
125 |
+
self.supported_impls = supported_impls
|
126 |
+
self.supports_sparse_on = supports_sparse_on
|
127 |
+
self.only_supports_sparse_grads = only_supports_sparse_grads
|
128 |
+
self.supports_complex = supports_complex
|
129 |
+
self.step_requires_closure = step_requires_closure
|
130 |
+
self.supports_param_groups = supports_param_groups
|
131 |
+
self.supports_multiple_devices = supports_multiple_devices
|
132 |
+
self.decorators = (
|
133 |
+
*(decorators if decorators else []),
|
134 |
+
*(skips if skips else []),
|
135 |
+
)
|
136 |
+
self.optim_error_inputs_func = optim_error_inputs_func
|
137 |
+
|
138 |
+
def get_decorators(self, test_class, test_name, device, dtype, param_kwargs):
|
139 |
+
result = [set_single_threaded_if_parallel_tbb]
|
140 |
+
for decorator in self.decorators:
|
141 |
+
if isinstance(decorator, DecorateInfo):
|
142 |
+
if decorator.is_active(
|
143 |
+
test_class, test_name, device, dtype, param_kwargs
|
144 |
+
):
|
145 |
+
result.extend(decorator.decorators)
|
146 |
+
else:
|
147 |
+
result.append(decorator)
|
148 |
+
return result
|
149 |
+
|
150 |
+
@property
|
151 |
+
def name(self):
|
152 |
+
return self.optim_cls.__name__
|
153 |
+
|
154 |
+
|
155 |
+
class optims(_TestParametrizer):
|
156 |
+
"""Decorator for specifying a list of optimizers over which to run a test."""
|
157 |
+
|
158 |
+
def __init__(self, optim_info_iterable, dtypes=None):
|
159 |
+
self.optim_info_list = list(optim_info_iterable)
|
160 |
+
|
161 |
+
# optimizers aren't limited to be one dtype as parameters can have different dtypes
|
162 |
+
# We default to torch.float32, but dtypes should be specified through passed in
|
163 |
+
# parameters.
|
164 |
+
self.dtypes = dtypes if dtypes is not None else [torch.float32]
|
165 |
+
|
166 |
+
def _parametrize_test(self, test, generic_cls, device_cls):
|
167 |
+
if device_cls is None:
|
168 |
+
raise RuntimeError(
|
169 |
+
"The @optims decorator is only intended to be used in a device-specific "
|
170 |
+
"context; use it with instantiate_device_type_tests() instead of "
|
171 |
+
"instantiate_parametrized_tests()"
|
172 |
+
)
|
173 |
+
|
174 |
+
for optim_info, dtype in itertools.product(self.optim_info_list, self.dtypes):
|
175 |
+
# Construct the test name; device / dtype parts are handled outside.
|
176 |
+
# See [Note: device and dtype suffix placement]
|
177 |
+
test_name = optim_info.name
|
178 |
+
|
179 |
+
# Construct parameter kwargs to pass to the test.
|
180 |
+
param_kwargs = {"optim_info": optim_info, "dtype": dtype}
|
181 |
+
|
182 |
+
try:
|
183 |
+
|
184 |
+
@functools.wraps(test)
|
185 |
+
def test_wrapper(*args, **kwargs):
|
186 |
+
return test(*args, **kwargs)
|
187 |
+
|
188 |
+
decorator_fn = functools.partial(
|
189 |
+
optim_info.get_decorators,
|
190 |
+
generic_cls.__name__,
|
191 |
+
test.__name__,
|
192 |
+
device_cls.device_type,
|
193 |
+
dtype,
|
194 |
+
)
|
195 |
+
|
196 |
+
yield (test_wrapper, test_name, param_kwargs, decorator_fn)
|
197 |
+
except Exception as ex:
|
198 |
+
# Provides an error message for debugging before rethrowing the exception
|
199 |
+
print(
|
200 |
+
f"Failed to instantiate {test_name} for module {optim_info.name}!"
|
201 |
+
)
|
202 |
+
raise ex
|
203 |
+
|
204 |
+
|
205 |
+
# Helper function for generating error inputs for all optimizers, used below.
|
206 |
+
def get_error_inputs_for_all_optims(device, dtype):
|
207 |
+
if str(device) == "cpu":
|
208 |
+
sample_param = Parameter(torch.randn(1, device=device, dtype=dtype))
|
209 |
+
return [
|
210 |
+
ErrorOptimizerInput(
|
211 |
+
OptimizerInput(
|
212 |
+
params=sample_param,
|
213 |
+
kwargs={},
|
214 |
+
desc="invalid param type",
|
215 |
+
),
|
216 |
+
error_type=TypeError,
|
217 |
+
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
|
218 |
+
),
|
219 |
+
ErrorOptimizerInput(
|
220 |
+
OptimizerInput(
|
221 |
+
params=[sample_param, sample_param],
|
222 |
+
kwargs={},
|
223 |
+
desc="a param group cannot have duplicate parameters",
|
224 |
+
),
|
225 |
+
error_type=UserWarning,
|
226 |
+
error_regex=".*a parameter group with duplicate parameters.*",
|
227 |
+
),
|
228 |
+
ErrorOptimizerInput(
|
229 |
+
OptimizerInput(
|
230 |
+
params=[{"params": sample_param}, {"params": sample_param}],
|
231 |
+
kwargs={},
|
232 |
+
desc="duplicate parameters should not occur across param groups either",
|
233 |
+
),
|
234 |
+
error_type=ValueError,
|
235 |
+
error_regex="some parameters appear in more than one parameter group",
|
236 |
+
),
|
237 |
+
]
|
238 |
+
else:
|
239 |
+
return []
|
240 |
+
|
241 |
+
|
242 |
+
# ------------------------------------------------------------------------------------------
|
243 |
+
# NOTE: [optimizer kwarg categories]
|
244 |
+
# We categorize optimizer kwargs as 3 types:
|
245 |
+
# 1. optimizer-specific flags are like amsgrad or rho or beta, flags that are specific to
|
246 |
+
# algorithms and thus only show up for certain optimizers. There are many of these, so I
|
247 |
+
# do not bother gathering them all and listing them here. The converse to these would be
|
248 |
+
# global flags that every optimizer ideally _should_ support. We break global flags into
|
249 |
+
# 2 further categories and list them all below.
|
250 |
+
# 2. global-friendly = ["lr", "weight_decay", "maximize", "capturable"]
|
251 |
+
# global-friendly flags are global flags who play nicely with all other global flags,
|
252 |
+
# i.e., are mutually exclusive in function. This means that any pair of the following
|
253 |
+
# flags can be toggled at once (e.g., maximize and weight_decay). Furthermore, any of the
|
254 |
+
# following flags theoretically can be enabled with ANY other global flag, including the
|
255 |
+
# cliquey ones (e.g, capturable and foreach).
|
256 |
+
# 3. global-cliquey = ["foreach", "fused", "differentiable"]
|
257 |
+
# global-cliquey flags are global flags that do NOT coexist with other cliquey flags,
|
258 |
+
# usually because they contradict each other in function. For example, one should not flip
|
259 |
+
# both foreach AND fused to True, because they are two differing performance optimizations
|
260 |
+
# in which you can only opt into one.
|
261 |
+
#
|
262 |
+
# The following optim_inputs_func_* sampling functions only return constructor combinations of
|
263 |
+
# optimizer-specific and global-friendly flags. This is because we are confident they would mesh
|
264 |
+
# well with additional kwargs. On the flip side of the same coin, we reserve setting the
|
265 |
+
# global-cliquey flags to individual tests and fully expect tests to edit OptimizerInput.kwargs.
|
266 |
+
|
267 |
+
|
268 |
+
def optim_inputs_func_adadelta(device):
|
269 |
+
return [
|
270 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
271 |
+
OptimizerInput(params=None, kwargs={"lr": 0.01}, desc="non-default lr"),
|
272 |
+
OptimizerInput(
|
273 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
274 |
+
),
|
275 |
+
OptimizerInput(
|
276 |
+
params=None,
|
277 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
278 |
+
desc="maximize",
|
279 |
+
),
|
280 |
+
OptimizerInput(
|
281 |
+
params=None, kwargs={"rho": 0.95, "weight_decay": 0.9}, desc="rho"
|
282 |
+
),
|
283 |
+
]
|
284 |
+
|
285 |
+
|
286 |
+
def optim_error_inputs_func_adadelta(device, dtype):
|
287 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
288 |
+
if str(device) == "cpu":
|
289 |
+
error_inputs += [
|
290 |
+
ErrorOptimizerInput(
|
291 |
+
OptimizerInput(
|
292 |
+
params=None,
|
293 |
+
kwargs=dict(lr=1e-2, rho=1.1),
|
294 |
+
desc="rho should be between 0 and 1",
|
295 |
+
),
|
296 |
+
error_type=ValueError,
|
297 |
+
error_regex="Invalid rho value: 1.1",
|
298 |
+
),
|
299 |
+
]
|
300 |
+
return error_inputs
|
301 |
+
|
302 |
+
|
303 |
+
def optim_inputs_func_adagrad(device):
|
304 |
+
return [
|
305 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
306 |
+
OptimizerInput(
|
307 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
308 |
+
),
|
309 |
+
OptimizerInput(
|
310 |
+
params=None,
|
311 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
312 |
+
desc="maximize",
|
313 |
+
),
|
314 |
+
OptimizerInput(params=None, kwargs={"lr": 0.1}, desc="non-default lr"),
|
315 |
+
OptimizerInput(
|
316 |
+
params=None,
|
317 |
+
kwargs={"initial_accumulator_value": 0.1, "weight_decay": 0.1},
|
318 |
+
desc="initial_accumulator_value",
|
319 |
+
),
|
320 |
+
OptimizerInput(
|
321 |
+
params=None,
|
322 |
+
kwargs={"lr": 0.1, "lr_decay": 0.5, "weight_decay": 0.1},
|
323 |
+
desc="lr_decay",
|
324 |
+
), # TODO: Move out to testing in param_group?
|
325 |
+
]
|
326 |
+
|
327 |
+
|
328 |
+
def optim_error_inputs_func_adagrad(device, dtype):
|
329 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
330 |
+
if str(device) == "cpu":
|
331 |
+
error_inputs += [
|
332 |
+
ErrorOptimizerInput(
|
333 |
+
OptimizerInput(
|
334 |
+
params=None,
|
335 |
+
kwargs=dict(lr=1e-2, lr_decay=-0.5),
|
336 |
+
desc="lr_decay must be bigger than 0",
|
337 |
+
),
|
338 |
+
error_type=ValueError,
|
339 |
+
error_regex="Invalid lr_decay value: -0.5",
|
340 |
+
),
|
341 |
+
]
|
342 |
+
return error_inputs
|
343 |
+
|
344 |
+
|
345 |
+
# TODO: consider tensor LR! See multi_tensor_optimizer_configs in test_optim.py --> tensor LR should work
|
346 |
+
# with all implementation code paths...
|
347 |
+
def optim_inputs_func_adam(device):
|
348 |
+
cuda_supported_configs = [
|
349 |
+
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
|
350 |
+
OptimizerInput(
|
351 |
+
params=None,
|
352 |
+
kwargs={"weight_decay": 0.1, "amsgrad": True, "capturable": True},
|
353 |
+
desc="capturable, amsgrad",
|
354 |
+
),
|
355 |
+
OptimizerInput(
|
356 |
+
params=None,
|
357 |
+
kwargs={"lr": torch.tensor(0.001), "amsgrad": True, "capturable": True},
|
358 |
+
desc="Tensor lr with capturable and amsgrad",
|
359 |
+
),
|
360 |
+
]
|
361 |
+
|
362 |
+
return [
|
363 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
364 |
+
OptimizerInput(params=None, kwargs={"lr": 0.01}, desc="non-default lr"),
|
365 |
+
OptimizerInput(
|
366 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
367 |
+
),
|
368 |
+
OptimizerInput(
|
369 |
+
params=None,
|
370 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
371 |
+
desc="maximize",
|
372 |
+
),
|
373 |
+
OptimizerInput(
|
374 |
+
params=None, kwargs={"weight_decay": 0.1, "amsgrad": True}, desc="amsgrad"
|
375 |
+
),
|
376 |
+
] + (cuda_supported_configs if "cuda" in str(device) else [])
|
377 |
+
|
378 |
+
|
379 |
+
def optim_error_inputs_func_adam(device, dtype):
|
380 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
381 |
+
if str(device) == "cpu":
|
382 |
+
error_inputs += [
|
383 |
+
ErrorOptimizerInput(
|
384 |
+
OptimizerInput(
|
385 |
+
params=None,
|
386 |
+
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
|
387 |
+
desc="beta1 should be between 0 and 1",
|
388 |
+
),
|
389 |
+
error_type=ValueError,
|
390 |
+
error_regex="Invalid beta parameter at index 0: 1.0",
|
391 |
+
),
|
392 |
+
ErrorOptimizerInput(
|
393 |
+
OptimizerInput(
|
394 |
+
params=None,
|
395 |
+
kwargs=dict(lr=1e-2, weight_decay=-1),
|
396 |
+
desc="weight_decay should > 0",
|
397 |
+
),
|
398 |
+
error_type=ValueError,
|
399 |
+
error_regex="Invalid weight_decay value: -1",
|
400 |
+
),
|
401 |
+
ErrorOptimizerInput(
|
402 |
+
OptimizerInput(
|
403 |
+
params=None,
|
404 |
+
kwargs=dict(lr=torch.tensor(0.001), foreach=True),
|
405 |
+
desc="lr as Tensor doesn't work with foreach & not capturable",
|
406 |
+
),
|
407 |
+
error_type=ValueError,
|
408 |
+
error_regex="lr as a Tensor is not supported for capturable=False and foreach=True",
|
409 |
+
),
|
410 |
+
]
|
411 |
+
if "cuda" in str(device):
|
412 |
+
sample_tensor = torch.empty((), device=device, dtype=dtype)
|
413 |
+
error_inputs += [
|
414 |
+
ErrorOptimizerInput(
|
415 |
+
OptimizerInput(
|
416 |
+
params=[sample_tensor],
|
417 |
+
kwargs={"foreach": True, "fused": True},
|
418 |
+
desc="`fused` and `foreach` cannot be `True` together",
|
419 |
+
),
|
420 |
+
error_type=RuntimeError,
|
421 |
+
error_regex="`fused` and `foreach` cannot be `True` together",
|
422 |
+
),
|
423 |
+
ErrorOptimizerInput(
|
424 |
+
OptimizerInput(
|
425 |
+
params=[sample_tensor],
|
426 |
+
kwargs={"fused": True, "differentiable": True},
|
427 |
+
desc="`fused` does not support `differentiable`",
|
428 |
+
),
|
429 |
+
error_type=RuntimeError,
|
430 |
+
error_regex="`fused` does not support `differentiable`",
|
431 |
+
),
|
432 |
+
]
|
433 |
+
return error_inputs
|
434 |
+
|
435 |
+
|
436 |
+
def optim_inputs_func_adamax(device):
|
437 |
+
cuda_supported_configs = [
|
438 |
+
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
|
439 |
+
OptimizerInput(
|
440 |
+
params=None,
|
441 |
+
kwargs={"weight_decay": 0.9, "maximize": True, "capturable": True},
|
442 |
+
desc="capturable, maximize, weight_decay",
|
443 |
+
),
|
444 |
+
OptimizerInput(
|
445 |
+
params=None,
|
446 |
+
kwargs={"weight_decay": 0, "maximize": True, "capturable": True},
|
447 |
+
desc="capturable, maximize",
|
448 |
+
),
|
449 |
+
OptimizerInput(
|
450 |
+
params=None,
|
451 |
+
kwargs={"weight_decay": 0.9, "maximize": False, "capturable": True},
|
452 |
+
desc="capturable, weight_decay",
|
453 |
+
),
|
454 |
+
]
|
455 |
+
|
456 |
+
return [
|
457 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
458 |
+
OptimizerInput(params=None, kwargs={"lr": 0.1}, desc="non-default lr"),
|
459 |
+
OptimizerInput(
|
460 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
461 |
+
),
|
462 |
+
OptimizerInput(
|
463 |
+
params=None,
|
464 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
465 |
+
desc="maximize",
|
466 |
+
),
|
467 |
+
] + (cuda_supported_configs if "cuda" in str(device) else [])
|
468 |
+
|
469 |
+
|
470 |
+
def optim_error_inputs_func_adamax(device, dtype):
|
471 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
472 |
+
if str(device) == "cpu":
|
473 |
+
error_inputs += [
|
474 |
+
ErrorOptimizerInput(
|
475 |
+
OptimizerInput(
|
476 |
+
params=None,
|
477 |
+
kwargs=dict(lr=1e-2, betas=(0.0, 1.0)),
|
478 |
+
desc="beta2 should be between 0 and 1",
|
479 |
+
),
|
480 |
+
error_type=ValueError,
|
481 |
+
error_regex="Invalid beta parameter at index 1: 1.0",
|
482 |
+
),
|
483 |
+
]
|
484 |
+
return error_inputs
|
485 |
+
|
486 |
+
|
487 |
+
def optim_inputs_func_adamw(device):
|
488 |
+
return optim_inputs_func_adam(device)
|
489 |
+
|
490 |
+
|
491 |
+
def optim_error_inputs_func_adamw(device, dtype):
|
492 |
+
return optim_error_inputs_func_adam(device, dtype)
|
493 |
+
|
494 |
+
|
495 |
+
def optim_inputs_func_asgd(device):
|
496 |
+
cuda_supported_configs = [
|
497 |
+
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
|
498 |
+
OptimizerInput(
|
499 |
+
params=None,
|
500 |
+
kwargs={"maximize": True, "capturable": True},
|
501 |
+
desc="maximize, capturable",
|
502 |
+
),
|
503 |
+
OptimizerInput(
|
504 |
+
params=None,
|
505 |
+
kwargs={"weight_decay": 0.1, "capturable": True},
|
506 |
+
desc="weight_decay, capturable",
|
507 |
+
),
|
508 |
+
OptimizerInput(
|
509 |
+
params=None,
|
510 |
+
kwargs={"weight_decay": 0.1, "maximize": True, "capturable": True},
|
511 |
+
desc="maximize, weight_decay, capturable",
|
512 |
+
),
|
513 |
+
]
|
514 |
+
return [
|
515 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
516 |
+
OptimizerInput(params=None, kwargs={"lr": 0.02}, desc="non-default lr"),
|
517 |
+
OptimizerInput(params=None, kwargs={"t0": 100}, desc="t0"),
|
518 |
+
OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
|
519 |
+
OptimizerInput(
|
520 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
521 |
+
),
|
522 |
+
OptimizerInput(
|
523 |
+
params=None,
|
524 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
525 |
+
desc="maximize, nonzero weight_decay",
|
526 |
+
),
|
527 |
+
] + (cuda_supported_configs if "cuda" in str(device) else [])
|
528 |
+
|
529 |
+
|
530 |
+
def optim_error_inputs_func_asgd(device, dtype):
|
531 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
532 |
+
if str(device) == "cpu":
|
533 |
+
error_inputs += [
|
534 |
+
ErrorOptimizerInput(
|
535 |
+
OptimizerInput(
|
536 |
+
params=None,
|
537 |
+
kwargs=dict(lr=1e-2, weight_decay=-0.5),
|
538 |
+
desc="weight_decay should > 0",
|
539 |
+
),
|
540 |
+
error_type=ValueError,
|
541 |
+
error_regex="Invalid weight_decay value: -0.5",
|
542 |
+
),
|
543 |
+
]
|
544 |
+
return error_inputs
|
545 |
+
|
546 |
+
|
547 |
+
def optim_inputs_func_lbfgs(device):
|
548 |
+
return [
|
549 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
550 |
+
OptimizerInput(params=None, kwargs={"lr": 0.01}, desc="non-default lr"),
|
551 |
+
OptimizerInput(
|
552 |
+
params=None, kwargs={"tolerance_grad": 1e-6}, desc="tolerance_grad"
|
553 |
+
),
|
554 |
+
OptimizerInput(
|
555 |
+
params=None,
|
556 |
+
kwargs={"line_search_fn": "strong_wolfe"},
|
557 |
+
desc="strong_wolfe",
|
558 |
+
),
|
559 |
+
]
|
560 |
+
|
561 |
+
|
562 |
+
def optim_error_inputs_func_lbfgs(device, dtype):
|
563 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
564 |
+
return error_inputs
|
565 |
+
|
566 |
+
|
567 |
+
# Weird story bro, NAdam and RAdam do not have maximize.
|
568 |
+
def optim_inputs_func_nadam(device):
|
569 |
+
cuda_supported_configs = [
|
570 |
+
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
|
571 |
+
OptimizerInput(
|
572 |
+
params=None,
|
573 |
+
kwargs={"weight_decay": 0.9, "momentum_decay": 6e-3, "capturable": True},
|
574 |
+
desc="weight_decay, capturable",
|
575 |
+
),
|
576 |
+
OptimizerInput(
|
577 |
+
params=None,
|
578 |
+
kwargs={
|
579 |
+
"weight_decay": 0.9,
|
580 |
+
"momentum_decay": 6e-3,
|
581 |
+
"decoupled_weight_decay": True,
|
582 |
+
"capturable": True,
|
583 |
+
},
|
584 |
+
desc="decoupled_weight_decay, capturable",
|
585 |
+
),
|
586 |
+
]
|
587 |
+
return [
|
588 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
589 |
+
OptimizerInput(params=None, kwargs={"lr": 1e-3}, desc="non-default lr"),
|
590 |
+
OptimizerInput(
|
591 |
+
params=None,
|
592 |
+
kwargs={"momentum_decay": 6e-3},
|
593 |
+
desc="non-zero momentum_decay",
|
594 |
+
),
|
595 |
+
OptimizerInput(
|
596 |
+
params=None,
|
597 |
+
kwargs={"weight_decay": 0.1, "momentum_decay": 6e-3},
|
598 |
+
desc="weight_decay",
|
599 |
+
),
|
600 |
+
OptimizerInput(
|
601 |
+
params=None,
|
602 |
+
kwargs={
|
603 |
+
"weight_decay": 0.1,
|
604 |
+
"momentum_decay": 6e-3,
|
605 |
+
"decoupled_weight_decay": True,
|
606 |
+
},
|
607 |
+
desc="decoupled_weight_decay",
|
608 |
+
),
|
609 |
+
] + (cuda_supported_configs if "cuda" in str(device) else [])
|
610 |
+
|
611 |
+
|
612 |
+
def optim_error_inputs_func_nadam(device, dtype):
|
613 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
614 |
+
if str(device) == "cpu":
|
615 |
+
error_inputs += [
|
616 |
+
ErrorOptimizerInput(
|
617 |
+
OptimizerInput(
|
618 |
+
params=None,
|
619 |
+
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
|
620 |
+
desc="beta1 should be between 0 and 1",
|
621 |
+
),
|
622 |
+
error_type=ValueError,
|
623 |
+
error_regex="Invalid beta parameter at index 0: 1.0",
|
624 |
+
),
|
625 |
+
ErrorOptimizerInput(
|
626 |
+
OptimizerInput(
|
627 |
+
params=None,
|
628 |
+
kwargs=dict(lr=1e-2, momentum_decay=-0.2),
|
629 |
+
desc="momentum_decay should > 0",
|
630 |
+
),
|
631 |
+
error_type=ValueError,
|
632 |
+
error_regex="Invalid momentum_decay value: -0.2",
|
633 |
+
),
|
634 |
+
]
|
635 |
+
return error_inputs
|
636 |
+
|
637 |
+
|
638 |
+
# Weird story bro, NAdam and RAdam do not have maximize.
|
639 |
+
def optim_inputs_func_radam(device=None):
|
640 |
+
cuda_supported_configs = [
|
641 |
+
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
|
642 |
+
OptimizerInput(
|
643 |
+
params=None,
|
644 |
+
kwargs={
|
645 |
+
"capturable": True,
|
646 |
+
"weight_decay": 0.1,
|
647 |
+
},
|
648 |
+
desc="capturable, weight_decay",
|
649 |
+
),
|
650 |
+
OptimizerInput(
|
651 |
+
params=None,
|
652 |
+
kwargs={
|
653 |
+
"capturable": True,
|
654 |
+
"weight_decay": 0.1,
|
655 |
+
"decoupled_weight_decay": True,
|
656 |
+
},
|
657 |
+
desc="capturable, weight_decay, decoupled_weight_decay",
|
658 |
+
),
|
659 |
+
]
|
660 |
+
return [
|
661 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
662 |
+
OptimizerInput(params=None, kwargs={"lr": 2e-3}, desc="non-default lr"),
|
663 |
+
OptimizerInput(params=None, kwargs={"eps": 1e-6}, desc="non-default eps"),
|
664 |
+
OptimizerInput(
|
665 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
666 |
+
),
|
667 |
+
OptimizerInput(
|
668 |
+
params=None,
|
669 |
+
kwargs={"weight_decay": 0.1, "decoupled_weight_decay": True},
|
670 |
+
desc="decoupled_weight_decay",
|
671 |
+
),
|
672 |
+
] + (cuda_supported_configs if "cuda" in str(device) else [])
|
673 |
+
|
674 |
+
|
675 |
+
def optim_error_inputs_func_radam(device, dtype):
|
676 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
677 |
+
if str(device) == "cpu":
|
678 |
+
error_inputs += [
|
679 |
+
ErrorOptimizerInput(
|
680 |
+
OptimizerInput(
|
681 |
+
params=None,
|
682 |
+
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
|
683 |
+
desc="beta1 should be between 0 and 1",
|
684 |
+
),
|
685 |
+
error_type=ValueError,
|
686 |
+
error_regex="Invalid beta parameter at index 0: 1.0",
|
687 |
+
),
|
688 |
+
ErrorOptimizerInput(
|
689 |
+
OptimizerInput(
|
690 |
+
params=None,
|
691 |
+
kwargs=dict(lr=1e-2, weight_decay=-1),
|
692 |
+
desc="weight_decay should > 0",
|
693 |
+
),
|
694 |
+
error_type=ValueError,
|
695 |
+
error_regex="Invalid weight_decay value: -1",
|
696 |
+
),
|
697 |
+
]
|
698 |
+
return error_inputs
|
699 |
+
|
700 |
+
|
701 |
+
def optim_inputs_func_rmsprop(device):
|
702 |
+
return [
|
703 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
704 |
+
OptimizerInput(params=None, kwargs={"lr": 1e-3}, desc="non-default lr"),
|
705 |
+
OptimizerInput(
|
706 |
+
params=None, kwargs={"weight_decay": 0.1}, desc="nonzero weight_decay"
|
707 |
+
),
|
708 |
+
OptimizerInput(
|
709 |
+
params=None,
|
710 |
+
kwargs={"weight_decay": 0.1, "centered": True},
|
711 |
+
desc="centered",
|
712 |
+
),
|
713 |
+
OptimizerInput(
|
714 |
+
params=None,
|
715 |
+
kwargs={"weight_decay": 0.1, "centered": True, "momentum": 0.1},
|
716 |
+
desc="momentum",
|
717 |
+
),
|
718 |
+
OptimizerInput(
|
719 |
+
params=None,
|
720 |
+
kwargs={
|
721 |
+
"weight_decay": 0.1,
|
722 |
+
"centered": True,
|
723 |
+
"momentum": 0.1,
|
724 |
+
"maximize": True,
|
725 |
+
},
|
726 |
+
desc="maximize",
|
727 |
+
),
|
728 |
+
]
|
729 |
+
|
730 |
+
|
731 |
+
def optim_error_inputs_func_rmsprop(device, dtype):
|
732 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
733 |
+
if str(device) == "cpu":
|
734 |
+
error_inputs += [
|
735 |
+
ErrorOptimizerInput(
|
736 |
+
OptimizerInput(
|
737 |
+
params=None,
|
738 |
+
kwargs=dict(lr=1e-2, momentum=-1.0),
|
739 |
+
desc="momentum should be between 0 and 1",
|
740 |
+
),
|
741 |
+
error_type=ValueError,
|
742 |
+
error_regex="Invalid momentum value: -1.0",
|
743 |
+
),
|
744 |
+
]
|
745 |
+
return error_inputs
|
746 |
+
|
747 |
+
|
748 |
+
def optim_inputs_func_rprop(device):
|
749 |
+
return [
|
750 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
751 |
+
OptimizerInput(params=None, kwargs={"lr": 2e-4}, desc="non-default lr"),
|
752 |
+
OptimizerInput(
|
753 |
+
params=None, kwargs={"etas": (0.5, 1.5)}, desc="non-default etas"
|
754 |
+
),
|
755 |
+
OptimizerInput(
|
756 |
+
params=None,
|
757 |
+
kwargs={"step_sizes": (2e-6, 100)},
|
758 |
+
desc="non-default step_sizes",
|
759 |
+
),
|
760 |
+
OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
|
761 |
+
]
|
762 |
+
|
763 |
+
|
764 |
+
def optim_error_inputs_func_rprop(device, dtype):
|
765 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
766 |
+
if str(device) == "cpu":
|
767 |
+
error_inputs += [
|
768 |
+
ErrorOptimizerInput(
|
769 |
+
OptimizerInput(
|
770 |
+
params=None,
|
771 |
+
kwargs=dict(lr=1e-2, etas=(1.0, 0.5)),
|
772 |
+
desc="0 < eta1 < 1 < eta2",
|
773 |
+
),
|
774 |
+
error_type=ValueError,
|
775 |
+
error_regex="Invalid eta values: 1.0, 0.5",
|
776 |
+
),
|
777 |
+
]
|
778 |
+
return error_inputs
|
779 |
+
|
780 |
+
|
781 |
+
def optim_inputs_func_sgd(device):
|
782 |
+
return [
|
783 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
784 |
+
OptimizerInput(params=None, kwargs={"lr": 1e-2}, desc="non-default lr"),
|
785 |
+
OptimizerInput(params=None, kwargs={"momentum": 0.9}, desc="momentum"),
|
786 |
+
OptimizerInput(
|
787 |
+
params=None,
|
788 |
+
kwargs={"momentum": 0.9, "dampening": 0.5},
|
789 |
+
desc="dampening",
|
790 |
+
),
|
791 |
+
OptimizerInput(
|
792 |
+
params=None,
|
793 |
+
kwargs={"momentum": 0.9, "weight_decay": 0.1},
|
794 |
+
desc="non-zero weight_decay",
|
795 |
+
),
|
796 |
+
OptimizerInput(
|
797 |
+
params=None,
|
798 |
+
kwargs={"momentum": 0.9, "nesterov": True, "weight_decay": 0.1},
|
799 |
+
desc="nesterov",
|
800 |
+
),
|
801 |
+
OptimizerInput(
|
802 |
+
params=None,
|
803 |
+
kwargs={"weight_decay": 0.1, "maximize": True},
|
804 |
+
desc="maximize",
|
805 |
+
),
|
806 |
+
]
|
807 |
+
|
808 |
+
|
809 |
+
def optim_error_inputs_func_sgd(device, dtype):
|
810 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
811 |
+
if str(device) == "cpu":
|
812 |
+
error_inputs += [
|
813 |
+
ErrorOptimizerInput(
|
814 |
+
OptimizerInput(
|
815 |
+
params=None,
|
816 |
+
kwargs=dict(lr=1e-2, momentum=-0.5),
|
817 |
+
desc="momentum should be between 0 and 1",
|
818 |
+
),
|
819 |
+
error_type=ValueError,
|
820 |
+
error_regex="Invalid momentum value: -0.5",
|
821 |
+
),
|
822 |
+
]
|
823 |
+
return error_inputs
|
824 |
+
|
825 |
+
|
826 |
+
def optim_inputs_func_sparseadam(device):
|
827 |
+
return [
|
828 |
+
OptimizerInput(params=None, kwargs={}, desc="default"),
|
829 |
+
OptimizerInput(
|
830 |
+
params=None, kwargs={"lr": 0.01}, desc="non-default lr"
|
831 |
+
), # TODO: Move out to testing in param_group?
|
832 |
+
OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
|
833 |
+
]
|
834 |
+
|
835 |
+
|
836 |
+
def optim_error_inputs_func_sparseadam(device, dtype):
|
837 |
+
error_inputs = get_error_inputs_for_all_optims(device, dtype)
|
838 |
+
|
839 |
+
if str(device) == "cpu":
|
840 |
+
# SparseAdam raises a warning and not an error for the first entry. We
|
841 |
+
# update it here:
|
842 |
+
error_inputs[0].error_type = FutureWarning
|
843 |
+
error_inputs[
|
844 |
+
0
|
845 |
+
].error_regex = "Passing in a raw Tensor as ``params`` to SparseAdam"
|
846 |
+
|
847 |
+
error_inputs += [
|
848 |
+
ErrorOptimizerInput(
|
849 |
+
OptimizerInput(
|
850 |
+
params=None,
|
851 |
+
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
|
852 |
+
desc="beta1 should be between 0 and 1",
|
853 |
+
),
|
854 |
+
error_type=ValueError,
|
855 |
+
error_regex="Invalid beta parameter at index 0: 1.0",
|
856 |
+
),
|
857 |
+
ErrorOptimizerInput(
|
858 |
+
OptimizerInput(
|
859 |
+
params=[
|
860 |
+
torch.zeros(
|
861 |
+
3, layout=torch.sparse_coo, device=device, dtype=dtype
|
862 |
+
)
|
863 |
+
],
|
864 |
+
kwargs={},
|
865 |
+
desc="dense params required",
|
866 |
+
),
|
867 |
+
error_type=ValueError,
|
868 |
+
error_regex="SparseAdam requires dense parameter tensors",
|
869 |
+
),
|
870 |
+
ErrorOptimizerInput(
|
871 |
+
OptimizerInput(
|
872 |
+
params=[
|
873 |
+
{
|
874 |
+
"params": [
|
875 |
+
torch.zeros(
|
876 |
+
3,
|
877 |
+
layout=torch.sparse_coo,
|
878 |
+
device=device,
|
879 |
+
dtype=dtype,
|
880 |
+
)
|
881 |
+
]
|
882 |
+
}
|
883 |
+
],
|
884 |
+
kwargs={},
|
885 |
+
desc="dense params required in param_groups",
|
886 |
+
),
|
887 |
+
error_type=ValueError,
|
888 |
+
error_regex="SparseAdam requires dense parameter tensors",
|
889 |
+
),
|
890 |
+
ErrorOptimizerInput(
|
891 |
+
OptimizerInput(
|
892 |
+
params=[torch.rand(2, 3, device=device, dtype=torch.complex64)],
|
893 |
+
kwargs=dict(),
|
894 |
+
desc="complex not supported",
|
895 |
+
),
|
896 |
+
error_type=ValueError,
|
897 |
+
error_regex="SparseAdam does not support complex parameters",
|
898 |
+
),
|
899 |
+
]
|
900 |
+
return error_inputs
|
901 |
+
|
902 |
+
|
903 |
+
def _get_device_type(device: Union[str, torch.device]) -> str:
|
904 |
+
# Returns the device type as a string, e.g., "cpu" or "cuda"
|
905 |
+
if isinstance(device, torch.device):
|
906 |
+
device = str(device.type)
|
907 |
+
assert isinstance(device, str)
|
908 |
+
return device.split(":")[0]
|
909 |
+
|
910 |
+
|
911 |
+
def _get_optim_inputs_including_global_cliquey_kwargs(
|
912 |
+
device, dtype, optim_info, skip=()
|
913 |
+
) -> List[OptimizerInput]:
|
914 |
+
"""
|
915 |
+
Return a list of all configs for a given optimizer as a list of OptimizerInputs,
|
916 |
+
including configs that have supported global cliquey kwargs (foreach, fused,
|
917 |
+
differentiable) based on optim_info.supported_impls.
|
918 |
+
|
919 |
+
The configs (optim_inputs) returned by optim_info.optim_inputs_func(...)
|
920 |
+
intentionally do NOT include global cliquey kwargs to give flexibility to tests.
|
921 |
+
For example, testing correctness between toggling foreach on and off is now
|
922 |
+
trivial. That said, we sometimes want to test for all possible configs on an
|
923 |
+
optimizer including all supported flags, so this helper returns all optim inputs.
|
924 |
+
"""
|
925 |
+
assert all(
|
926 |
+
x in ["foreach", "fused", "differentiable"] for x in skip
|
927 |
+
), "skip must be a subset of ['foreach', 'fused', 'differentiable']"
|
928 |
+
|
929 |
+
optim_inputs = optim_info.optim_inputs_func(device)
|
930 |
+
|
931 |
+
supported_impls = tuple(
|
932 |
+
x
|
933 |
+
for x in optim_info.supported_impls
|
934 |
+
if x not in skip
|
935 |
+
and (
|
936 |
+
_get_device_type(device) in _get_fused_kernels_supported_devices()
|
937 |
+
or x != "fused"
|
938 |
+
)
|
939 |
+
and (
|
940 |
+
_get_device_type(device) in _get_foreach_kernels_supported_devices()
|
941 |
+
or x != "foreach"
|
942 |
+
)
|
943 |
+
)
|
944 |
+
|
945 |
+
all_optim_inputs = []
|
946 |
+
for optim_input in optim_inputs:
|
947 |
+
# Add the base config where all the flags are False
|
948 |
+
base_kwargs = deepcopy(optim_input.kwargs)
|
949 |
+
if len(supported_impls) != 0:
|
950 |
+
for flag in supported_impls:
|
951 |
+
base_kwargs[flag] = False
|
952 |
+
all_optim_inputs.append(
|
953 |
+
OptimizerInput(params=None, kwargs=base_kwargs, desc=optim_input.desc)
|
954 |
+
)
|
955 |
+
else:
|
956 |
+
all_optim_inputs.append(optim_input)
|
957 |
+
# Add a config for when each of the global cliquey kwargs is True
|
958 |
+
# Note that in [optimizer kwarg categories], these kwargs are mutually
|
959 |
+
# exclusive, so we do not need to product them together.
|
960 |
+
for flag in supported_impls:
|
961 |
+
new_kwargs = deepcopy(base_kwargs)
|
962 |
+
new_kwargs[flag] = True
|
963 |
+
all_optim_inputs.append(
|
964 |
+
OptimizerInput(
|
965 |
+
params=None, kwargs=new_kwargs, desc=f"{optim_input.desc} & {flag}"
|
966 |
+
)
|
967 |
+
)
|
968 |
+
return all_optim_inputs
|
969 |
+
|
970 |
+
|
971 |
+
# Database of OptimizerInfo entries in alphabetical order.
|
972 |
+
optim_db: List[OptimizerInfo] = [
|
973 |
+
OptimizerInfo(
|
974 |
+
Adadelta,
|
975 |
+
optim_inputs_func=optim_inputs_func_adadelta,
|
976 |
+
optim_error_inputs_func=optim_error_inputs_func_adadelta,
|
977 |
+
supported_impls=("foreach", "differentiable"),
|
978 |
+
skips=(
|
979 |
+
DecorateInfo(
|
980 |
+
skipIfTorchDynamo(
|
981 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
982 |
+
),
|
983 |
+
"TestOptimRenewed",
|
984 |
+
"test_forloop_goes_right_direction",
|
985 |
+
),
|
986 |
+
DecorateInfo(
|
987 |
+
skipIfTorchDynamo(
|
988 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
989 |
+
),
|
990 |
+
"TestOptimRenewed",
|
991 |
+
"test_forloop_goes_right_direction_multigpu",
|
992 |
+
),
|
993 |
+
DecorateInfo(
|
994 |
+
skipIfTorchDynamo(
|
995 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
996 |
+
),
|
997 |
+
"TestOptimRenewed",
|
998 |
+
"test_foreach_matches_forloop",
|
999 |
+
),
|
1000 |
+
DecorateInfo(
|
1001 |
+
skipIfTorchDynamo(
|
1002 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1003 |
+
),
|
1004 |
+
"TestOptimRenewed",
|
1005 |
+
"test_peak_memory_foreach",
|
1006 |
+
),
|
1007 |
+
DecorateInfo(
|
1008 |
+
skipIfTorchDynamo(
|
1009 |
+
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
|
1010 |
+
),
|
1011 |
+
"TestOptimRenewed",
|
1012 |
+
"test_set_default_dtype_works_with_foreach",
|
1013 |
+
),
|
1014 |
+
DecorateInfo(
|
1015 |
+
skipIfTorchDynamo(
|
1016 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1017 |
+
),
|
1018 |
+
"TestOptimRenewed",
|
1019 |
+
"test_complex_2d",
|
1020 |
+
),
|
1021 |
+
DecorateInfo(
|
1022 |
+
skipIfTorchDynamo(
|
1023 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1024 |
+
),
|
1025 |
+
"TestOptimRenewed",
|
1026 |
+
"test_state_dict_deterministic",
|
1027 |
+
),
|
1028 |
+
DecorateInfo(
|
1029 |
+
skipIfTorchDynamo(
|
1030 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
1031 |
+
),
|
1032 |
+
"TestOptimRenewed",
|
1033 |
+
"test_state_dict_with_cuda_params",
|
1034 |
+
),
|
1035 |
+
DecorateInfo(
|
1036 |
+
skipIfTorchDynamo(
|
1037 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1038 |
+
),
|
1039 |
+
"TestOptimRenewed",
|
1040 |
+
"test_deepcopy_copies_all_public_attrs",
|
1041 |
+
),
|
1042 |
+
# Note on tolerances:
|
1043 |
+
# test_correctness_Adadelta_cuda_float32
|
1044 |
+
# Mismatched elements: 10 / 100 (10.0%)
|
1045 |
+
# Greatest absolute difference: 4.838220775127411e-05 at index (7, 4) (up to 1e-05 allowed)
|
1046 |
+
# Greatest relative difference: 0.007270356640219688 at index (7, 2) (up to 1e-05 allowed)
|
1047 |
+
# This is due to floating point ordering error + usage of sqrt
|
1048 |
+
DecorateInfo(
|
1049 |
+
toleranceOverride(
|
1050 |
+
{
|
1051 |
+
torch.float32: tol(
|
1052 |
+
rtol=5.5e-4,
|
1053 |
+
atol=5e-5,
|
1054 |
+
)
|
1055 |
+
}
|
1056 |
+
),
|
1057 |
+
"CompiledOptimizerParityTests",
|
1058 |
+
"test_correctness",
|
1059 |
+
),
|
1060 |
+
),
|
1061 |
+
),
|
1062 |
+
OptimizerInfo(
|
1063 |
+
Adagrad,
|
1064 |
+
optim_inputs_func=optim_inputs_func_adagrad,
|
1065 |
+
optim_error_inputs_func=optim_error_inputs_func_adagrad,
|
1066 |
+
supported_impls=("foreach", "differentiable"),
|
1067 |
+
supports_sparse_on=("cpu"),
|
1068 |
+
skips=(
|
1069 |
+
DecorateInfo(
|
1070 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1071 |
+
"TestOptimRenewed",
|
1072 |
+
"test_forloop_goes_right_direction",
|
1073 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1074 |
+
),
|
1075 |
+
DecorateInfo(
|
1076 |
+
skipIfTorchDynamo(
|
1077 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1078 |
+
),
|
1079 |
+
"TestOptimRenewed",
|
1080 |
+
"test_forloop_goes_right_direction",
|
1081 |
+
),
|
1082 |
+
DecorateInfo(
|
1083 |
+
skipIfTorchDynamo(
|
1084 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1085 |
+
),
|
1086 |
+
"TestOptimRenewed",
|
1087 |
+
"test_forloop_goes_right_direction_multigpu",
|
1088 |
+
),
|
1089 |
+
DecorateInfo(
|
1090 |
+
skipIfTorchDynamo(
|
1091 |
+
"See https://github.com/pytorch/pytorch/issues/115607"
|
1092 |
+
),
|
1093 |
+
"TestOptimRenewed",
|
1094 |
+
"test_foreach_matches_forloop",
|
1095 |
+
),
|
1096 |
+
DecorateInfo(
|
1097 |
+
skipIfTorchDynamo(
|
1098 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1099 |
+
),
|
1100 |
+
"TestOptimRenewed",
|
1101 |
+
"test_peak_memory_foreach",
|
1102 |
+
),
|
1103 |
+
DecorateInfo(
|
1104 |
+
skipIfTorchDynamo(
|
1105 |
+
"See https://github.com/pytorch/pytorch/issues/115607 and #116028"
|
1106 |
+
),
|
1107 |
+
"TestOptimRenewed",
|
1108 |
+
"test_set_default_dtype_works_with_foreach",
|
1109 |
+
),
|
1110 |
+
DecorateInfo(
|
1111 |
+
skipIfTorchDynamo(
|
1112 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1113 |
+
),
|
1114 |
+
"TestOptimRenewed",
|
1115 |
+
"test_complex_2d",
|
1116 |
+
),
|
1117 |
+
DecorateInfo(
|
1118 |
+
skipIfTorchDynamo(
|
1119 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1120 |
+
),
|
1121 |
+
"TestOptimRenewed",
|
1122 |
+
"test_state_dict_deterministic",
|
1123 |
+
),
|
1124 |
+
DecorateInfo(
|
1125 |
+
skipIfTorchDynamo(
|
1126 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1127 |
+
),
|
1128 |
+
"TestOptimRenewed",
|
1129 |
+
"test_deepcopy_copies_all_public_attrs",
|
1130 |
+
),
|
1131 |
+
),
|
1132 |
+
),
|
1133 |
+
OptimizerInfo(
|
1134 |
+
Adam,
|
1135 |
+
optim_inputs_func=optim_inputs_func_adam,
|
1136 |
+
optim_error_inputs_func=optim_error_inputs_func_adam,
|
1137 |
+
supported_impls=("foreach", "differentiable", "fused"),
|
1138 |
+
skips=(
|
1139 |
+
DecorateInfo(
|
1140 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1141 |
+
"TestOptimRenewed",
|
1142 |
+
"test_forloop_goes_right_direction",
|
1143 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1144 |
+
),
|
1145 |
+
DecorateInfo(
|
1146 |
+
skipIfTorchDynamo(
|
1147 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1148 |
+
),
|
1149 |
+
"TestOptimRenewed",
|
1150 |
+
"test_forloop_goes_right_direction",
|
1151 |
+
),
|
1152 |
+
DecorateInfo(
|
1153 |
+
skipIfTorchDynamo(
|
1154 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1155 |
+
),
|
1156 |
+
"TestOptimRenewed",
|
1157 |
+
"test_forloop_goes_right_direction_multigpu",
|
1158 |
+
),
|
1159 |
+
DecorateInfo(
|
1160 |
+
skipIfTorchDynamo(
|
1161 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1162 |
+
),
|
1163 |
+
"TestOptimRenewed",
|
1164 |
+
"test_set_default_dtype_works_with_foreach",
|
1165 |
+
),
|
1166 |
+
DecorateInfo(
|
1167 |
+
skipIfTorchDynamo(
|
1168 |
+
"Fixing #115607 should fix this test. fused is correct, but forloop is not."
|
1169 |
+
),
|
1170 |
+
"TestOptimRenewed",
|
1171 |
+
"test_fused_matches_forloop",
|
1172 |
+
),
|
1173 |
+
DecorateInfo(
|
1174 |
+
skipIfTorchDynamo(
|
1175 |
+
"See https://github.com/pytorch/pytorch/issues/116046"
|
1176 |
+
),
|
1177 |
+
"TestOptimRenewed",
|
1178 |
+
"test_peak_memory_foreach",
|
1179 |
+
),
|
1180 |
+
DecorateInfo(
|
1181 |
+
skipIfTorchDynamo(
|
1182 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1183 |
+
),
|
1184 |
+
"TestOptimRenewed",
|
1185 |
+
"test_complex_2d",
|
1186 |
+
),
|
1187 |
+
DecorateInfo(
|
1188 |
+
skipIfTorchDynamo(
|
1189 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1190 |
+
),
|
1191 |
+
"TestOptimRenewed",
|
1192 |
+
"test_state_dict_deterministic",
|
1193 |
+
),
|
1194 |
+
DecorateInfo(
|
1195 |
+
skipIfTorchDynamo(
|
1196 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1197 |
+
),
|
1198 |
+
"TestOptimRenewed",
|
1199 |
+
"test_deepcopy_copies_all_public_attrs",
|
1200 |
+
),
|
1201 |
+
),
|
1202 |
+
),
|
1203 |
+
OptimizerInfo(
|
1204 |
+
Adamax,
|
1205 |
+
optim_inputs_func=optim_inputs_func_adamax,
|
1206 |
+
optim_error_inputs_func=optim_error_inputs_func_adamax,
|
1207 |
+
supported_impls=("foreach", "differentiable"),
|
1208 |
+
skips=(
|
1209 |
+
DecorateInfo(
|
1210 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1211 |
+
"TestOptimRenewed",
|
1212 |
+
"test_forloop_goes_right_direction",
|
1213 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1214 |
+
),
|
1215 |
+
DecorateInfo(
|
1216 |
+
skipIfTorchDynamo(
|
1217 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1218 |
+
),
|
1219 |
+
"TestOptimRenewed",
|
1220 |
+
"test_forloop_goes_right_direction",
|
1221 |
+
),
|
1222 |
+
DecorateInfo(
|
1223 |
+
skipIfTorchDynamo(
|
1224 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1225 |
+
),
|
1226 |
+
"TestOptimRenewed",
|
1227 |
+
"test_forloop_goes_right_direction_multigpu",
|
1228 |
+
),
|
1229 |
+
DecorateInfo(
|
1230 |
+
skipIfTorchDynamo("Mismatched _foreach_addcdiv_ types, see #118159"),
|
1231 |
+
"TestOptimRenewed",
|
1232 |
+
"test_complex",
|
1233 |
+
),
|
1234 |
+
DecorateInfo(
|
1235 |
+
skipIfTorchDynamo(
|
1236 |
+
"See https://github.com/pytorch/pytorch/issues/115607"
|
1237 |
+
),
|
1238 |
+
"TestOptimRenewed",
|
1239 |
+
"test_foreach_matches_forloop",
|
1240 |
+
),
|
1241 |
+
DecorateInfo(
|
1242 |
+
skipIfTorchDynamo(
|
1243 |
+
"See https://github.com/pytorch/pytorch/issues/115607 and #116028"
|
1244 |
+
),
|
1245 |
+
"TestOptimRenewed",
|
1246 |
+
"test_set_default_dtype_works_with_foreach",
|
1247 |
+
),
|
1248 |
+
DecorateInfo(
|
1249 |
+
skipIfTorchDynamo(
|
1250 |
+
"See https://github.com/pytorch/pytorch/issues/116046"
|
1251 |
+
),
|
1252 |
+
"TestOptimRenewed",
|
1253 |
+
"test_peak_memory_foreach",
|
1254 |
+
),
|
1255 |
+
DecorateInfo(
|
1256 |
+
skipIfTorchDynamo(
|
1257 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1258 |
+
),
|
1259 |
+
"TestOptimRenewed",
|
1260 |
+
"test_complex_2d",
|
1261 |
+
),
|
1262 |
+
DecorateInfo(
|
1263 |
+
unittest.skip("Uses too much memory, even for H100, surprisingly."),
|
1264 |
+
"TestOptimRenewed",
|
1265 |
+
"test_foreach_large_tensor",
|
1266 |
+
),
|
1267 |
+
DecorateInfo(
|
1268 |
+
skipIfTorchDynamo(
|
1269 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1270 |
+
),
|
1271 |
+
"TestOptimRenewed",
|
1272 |
+
"test_state_dict_deterministic",
|
1273 |
+
),
|
1274 |
+
DecorateInfo(
|
1275 |
+
skipIfTorchDynamo(
|
1276 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1277 |
+
),
|
1278 |
+
"TestOptimRenewed",
|
1279 |
+
"test_deepcopy_copies_all_public_attrs",
|
1280 |
+
),
|
1281 |
+
DecorateInfo(
|
1282 |
+
skipIfTorchDynamo("cpu fails due to #115607"),
|
1283 |
+
"TestOptimRenewed",
|
1284 |
+
"test_can_load_older_state_dict",
|
1285 |
+
device_type="cpu",
|
1286 |
+
),
|
1287 |
+
DecorateInfo(
|
1288 |
+
skipIfTorchDynamo(
|
1289 |
+
"capturable path no longer called after hitting cache limit, see #121178"
|
1290 |
+
),
|
1291 |
+
"TestOptimRenewed",
|
1292 |
+
"test_save_load_equality_with_weights_only",
|
1293 |
+
),
|
1294 |
+
DecorateInfo(
|
1295 |
+
skipIfTorchDynamo(
|
1296 |
+
"capturable path no longer called after hitting cache limit, see #121178"
|
1297 |
+
),
|
1298 |
+
"TestOptimRenewed",
|
1299 |
+
"test_load_nontensor_step",
|
1300 |
+
),
|
1301 |
+
DecorateInfo(
|
1302 |
+
skipIfTorchDynamo(
|
1303 |
+
"capturable path no longer called after hitting cache limit, see #121178"
|
1304 |
+
),
|
1305 |
+
"TestOptimRenewed",
|
1306 |
+
"test_param_groups_lr",
|
1307 |
+
),
|
1308 |
+
),
|
1309 |
+
),
|
1310 |
+
OptimizerInfo(
|
1311 |
+
AdamW,
|
1312 |
+
optim_inputs_func=optim_inputs_func_adamw,
|
1313 |
+
optim_error_inputs_func=optim_error_inputs_func_adamw,
|
1314 |
+
supported_impls=("foreach", "differentiable", "fused"),
|
1315 |
+
skips=(
|
1316 |
+
DecorateInfo(
|
1317 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1318 |
+
"TestOptimRenewed",
|
1319 |
+
"test_forloop_goes_right_direction",
|
1320 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1321 |
+
),
|
1322 |
+
DecorateInfo(
|
1323 |
+
skipIfTorchDynamo(
|
1324 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1325 |
+
),
|
1326 |
+
"TestOptimRenewed",
|
1327 |
+
"test_forloop_goes_right_direction",
|
1328 |
+
),
|
1329 |
+
DecorateInfo(
|
1330 |
+
skipIfTorchDynamo(
|
1331 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1332 |
+
),
|
1333 |
+
"TestOptimRenewed",
|
1334 |
+
"test_forloop_goes_right_direction_multigpu",
|
1335 |
+
),
|
1336 |
+
DecorateInfo(
|
1337 |
+
skipIfTorchDynamo(
|
1338 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1339 |
+
),
|
1340 |
+
"TestOptimRenewed",
|
1341 |
+
"test_set_default_dtype_works_with_foreach",
|
1342 |
+
),
|
1343 |
+
DecorateInfo(
|
1344 |
+
skipIfTorchDynamo(
|
1345 |
+
"Fixing #115607 should fix this test. fused is correct, but forloop is not."
|
1346 |
+
),
|
1347 |
+
"TestOptimRenewed",
|
1348 |
+
"test_fused_matches_forloop",
|
1349 |
+
),
|
1350 |
+
DecorateInfo(
|
1351 |
+
skipIfTorchDynamo(
|
1352 |
+
"See https://github.com/pytorch/pytorch/issues/116046"
|
1353 |
+
),
|
1354 |
+
"TestOptimRenewed",
|
1355 |
+
"test_peak_memory_foreach",
|
1356 |
+
),
|
1357 |
+
DecorateInfo(
|
1358 |
+
skipIfTorchDynamo(
|
1359 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1360 |
+
),
|
1361 |
+
"TestOptimRenewed",
|
1362 |
+
"test_complex_2d",
|
1363 |
+
),
|
1364 |
+
DecorateInfo(
|
1365 |
+
skipIfTorchDynamo(
|
1366 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1367 |
+
),
|
1368 |
+
"TestOptimRenewed",
|
1369 |
+
"test_state_dict_deterministic",
|
1370 |
+
),
|
1371 |
+
DecorateInfo(
|
1372 |
+
skipIfTorchDynamo(
|
1373 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1374 |
+
),
|
1375 |
+
"TestOptimRenewed",
|
1376 |
+
"test_deepcopy_copies_all_public_attrs",
|
1377 |
+
),
|
1378 |
+
),
|
1379 |
+
),
|
1380 |
+
OptimizerInfo(
|
1381 |
+
ASGD,
|
1382 |
+
optim_inputs_func=optim_inputs_func_asgd,
|
1383 |
+
optim_error_inputs_func=optim_error_inputs_func_asgd,
|
1384 |
+
supported_impls=("foreach", "differentiable"),
|
1385 |
+
skips=(
|
1386 |
+
DecorateInfo(
|
1387 |
+
skipIfTorchDynamo(
|
1388 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1389 |
+
),
|
1390 |
+
"TestOptimRenewed",
|
1391 |
+
"test_forloop_goes_right_direction",
|
1392 |
+
),
|
1393 |
+
DecorateInfo(
|
1394 |
+
skipIfTorchDynamo(
|
1395 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1396 |
+
),
|
1397 |
+
"TestOptimRenewed",
|
1398 |
+
"test_forloop_goes_right_direction_multigpu",
|
1399 |
+
),
|
1400 |
+
DecorateInfo(
|
1401 |
+
skipIfTorchDynamo(
|
1402 |
+
"See discrepancy in https://github.com/pytorch/pytorch/issues/115607"
|
1403 |
+
),
|
1404 |
+
"TestOptimRenewed",
|
1405 |
+
"test_foreach_matches_forloop",
|
1406 |
+
),
|
1407 |
+
DecorateInfo(
|
1408 |
+
skipIfTorchDynamo(
|
1409 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1410 |
+
),
|
1411 |
+
"TestOptimRenewed",
|
1412 |
+
"test_peak_memory_foreach",
|
1413 |
+
),
|
1414 |
+
DecorateInfo(
|
1415 |
+
skipIfTorchDynamo(
|
1416 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1417 |
+
),
|
1418 |
+
"TestOptimRenewed",
|
1419 |
+
"test_set_default_dtype_works_with_foreach",
|
1420 |
+
),
|
1421 |
+
DecorateInfo(
|
1422 |
+
skipIfTorchDynamo(
|
1423 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1424 |
+
),
|
1425 |
+
"TestOptimRenewed",
|
1426 |
+
"test_complex_2d",
|
1427 |
+
),
|
1428 |
+
DecorateInfo(
|
1429 |
+
toleranceOverride(
|
1430 |
+
{
|
1431 |
+
torch.float32: tol(atol=1.5e-5, rtol=1e-5),
|
1432 |
+
}
|
1433 |
+
),
|
1434 |
+
"TestOptimRenewed",
|
1435 |
+
"test_step_is_noop_for_zero_grads",
|
1436 |
+
),
|
1437 |
+
DecorateInfo(
|
1438 |
+
skipIfTorchDynamo(
|
1439 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1440 |
+
),
|
1441 |
+
"TestOptimRenewed",
|
1442 |
+
"test_state_dict_deterministic",
|
1443 |
+
),
|
1444 |
+
DecorateInfo(
|
1445 |
+
skipIfTorchDynamo(
|
1446 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1447 |
+
),
|
1448 |
+
"TestOptimRenewed",
|
1449 |
+
"test_deepcopy_copies_all_public_attrs",
|
1450 |
+
),
|
1451 |
+
),
|
1452 |
+
),
|
1453 |
+
OptimizerInfo(
|
1454 |
+
LBFGS,
|
1455 |
+
optim_inputs_func=optim_inputs_func_lbfgs,
|
1456 |
+
optim_error_inputs_func=optim_error_inputs_func_lbfgs,
|
1457 |
+
supported_impls=(),
|
1458 |
+
step_requires_closure=True,
|
1459 |
+
supports_param_groups=False,
|
1460 |
+
supports_multiple_devices=False,
|
1461 |
+
skips=(
|
1462 |
+
# Fails on MacOS 13.2.1 in CI https://github.com/pytorch/pytorch/issues/117094
|
1463 |
+
DecorateInfo(
|
1464 |
+
skipIfMps, "TestOptimRenewed", "test_can_load_older_state_dict"
|
1465 |
+
),
|
1466 |
+
DecorateInfo(
|
1467 |
+
skipIfTorchDynamo(
|
1468 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1469 |
+
),
|
1470 |
+
"TestOptimRenewed",
|
1471 |
+
"test_deepcopy_copies_all_public_attrs",
|
1472 |
+
),
|
1473 |
+
DecorateInfo(
|
1474 |
+
unittest.skip("Does not support param groups"),
|
1475 |
+
"TestOptimRenewed",
|
1476 |
+
"test_param_groups_lr",
|
1477 |
+
),
|
1478 |
+
DecorateInfo(
|
1479 |
+
unittest.skip("Does not support param groups"),
|
1480 |
+
"TestOptimRenewed",
|
1481 |
+
"test_param_groups_weight_decay",
|
1482 |
+
),
|
1483 |
+
DecorateInfo(
|
1484 |
+
skipIfTorchDynamo(
|
1485 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1486 |
+
),
|
1487 |
+
"TestOptimRenewed",
|
1488 |
+
"test_forloop_goes_right_direction",
|
1489 |
+
),
|
1490 |
+
DecorateInfo(
|
1491 |
+
unittest.skip("LBFGS doesn't support multidevice"),
|
1492 |
+
"TestOptimRenewed",
|
1493 |
+
"test_forloop_goes_right_direction_multigpu",
|
1494 |
+
),
|
1495 |
+
),
|
1496 |
+
),
|
1497 |
+
OptimizerInfo(
|
1498 |
+
NAdam,
|
1499 |
+
optim_inputs_func=optim_inputs_func_nadam,
|
1500 |
+
optim_error_inputs_func=optim_error_inputs_func_nadam,
|
1501 |
+
supported_impls=("foreach", "differentiable"),
|
1502 |
+
skips=(
|
1503 |
+
DecorateInfo(
|
1504 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1505 |
+
"TestOptimRenewed",
|
1506 |
+
"test_forloop_goes_right_direction",
|
1507 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1508 |
+
),
|
1509 |
+
DecorateInfo(
|
1510 |
+
skipIfTorchDynamo(
|
1511 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1512 |
+
),
|
1513 |
+
"TestOptimRenewed",
|
1514 |
+
"test_forloop_goes_right_direction",
|
1515 |
+
),
|
1516 |
+
DecorateInfo(
|
1517 |
+
skipIfTorchDynamo(
|
1518 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1519 |
+
),
|
1520 |
+
"TestOptimRenewed",
|
1521 |
+
"test_forloop_goes_right_direction_multigpu",
|
1522 |
+
),
|
1523 |
+
DecorateInfo(
|
1524 |
+
skipIfTorchDynamo(
|
1525 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1526 |
+
),
|
1527 |
+
"TestOptimRenewed",
|
1528 |
+
"test_set_default_dtype_works_with_foreach",
|
1529 |
+
),
|
1530 |
+
DecorateInfo(
|
1531 |
+
skipIfTorchDynamo(
|
1532 |
+
"See https://github.com/pytorch/pytorch/issues/116046"
|
1533 |
+
),
|
1534 |
+
"TestOptimRenewed",
|
1535 |
+
"test_peak_memory_foreach",
|
1536 |
+
),
|
1537 |
+
DecorateInfo(
|
1538 |
+
skipIfTorchDynamo(
|
1539 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1540 |
+
),
|
1541 |
+
"TestOptimRenewed",
|
1542 |
+
"test_complex_2d",
|
1543 |
+
),
|
1544 |
+
DecorateInfo(
|
1545 |
+
skipIfTorchDynamo(
|
1546 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1547 |
+
),
|
1548 |
+
"TestOptimRenewed",
|
1549 |
+
"test_state_dict_deterministic",
|
1550 |
+
),
|
1551 |
+
DecorateInfo(
|
1552 |
+
skipIfTorchDynamo(
|
1553 |
+
"See https://github.com/pytorch/pytorch/issues/116499"
|
1554 |
+
),
|
1555 |
+
"TestOptimRenewed",
|
1556 |
+
"test_can_load_older_state_dict",
|
1557 |
+
device_type="cuda",
|
1558 |
+
),
|
1559 |
+
DecorateInfo(
|
1560 |
+
skipIfTorchDynamo(
|
1561 |
+
"Errors, https://github.com/pytorch/pytorch/issues/117150"
|
1562 |
+
),
|
1563 |
+
"TestOptimRenewed",
|
1564 |
+
"test_load_nontensor_step",
|
1565 |
+
),
|
1566 |
+
DecorateInfo(
|
1567 |
+
skipIfTorchDynamo(
|
1568 |
+
"Errors, see https://github.com/pytorch/pytorch/issues/117150"
|
1569 |
+
),
|
1570 |
+
"TestOptimRenewed",
|
1571 |
+
"test_state_dict_with_cuda_params",
|
1572 |
+
),
|
1573 |
+
DecorateInfo(
|
1574 |
+
skipIfTorchDynamo(
|
1575 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1576 |
+
),
|
1577 |
+
"TestOptimRenewed",
|
1578 |
+
"test_deepcopy_copies_all_public_attrs",
|
1579 |
+
),
|
1580 |
+
),
|
1581 |
+
),
|
1582 |
+
OptimizerInfo(
|
1583 |
+
RAdam,
|
1584 |
+
optim_inputs_func=optim_inputs_func_radam,
|
1585 |
+
optim_error_inputs_func=optim_error_inputs_func_radam,
|
1586 |
+
supported_impls=("foreach", "differentiable"),
|
1587 |
+
skips=(
|
1588 |
+
DecorateInfo(
|
1589 |
+
skipIfTorchDynamo(
|
1590 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1591 |
+
),
|
1592 |
+
"TestOptimRenewed",
|
1593 |
+
"test_forloop_goes_right_direction",
|
1594 |
+
),
|
1595 |
+
DecorateInfo(
|
1596 |
+
skipIfTorchDynamo(
|
1597 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1598 |
+
),
|
1599 |
+
"TestOptimRenewed",
|
1600 |
+
"test_forloop_goes_right_direction_multigpu",
|
1601 |
+
),
|
1602 |
+
DecorateInfo(
|
1603 |
+
skipIfTorchDynamo(
|
1604 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1605 |
+
),
|
1606 |
+
"TestOptimRenewed",
|
1607 |
+
"test_peak_memory_foreach",
|
1608 |
+
),
|
1609 |
+
DecorateInfo(
|
1610 |
+
skipIfTorchDynamo(
|
1611 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1612 |
+
),
|
1613 |
+
"TestOptimRenewed",
|
1614 |
+
"test_set_default_dtype_works_with_foreach",
|
1615 |
+
),
|
1616 |
+
DecorateInfo(
|
1617 |
+
skipIfTorchDynamo(
|
1618 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1619 |
+
),
|
1620 |
+
"TestOptimRenewed",
|
1621 |
+
"test_complex_2d",
|
1622 |
+
),
|
1623 |
+
DecorateInfo(
|
1624 |
+
skipIfTorchDynamo(
|
1625 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1626 |
+
),
|
1627 |
+
"TestOptimRenewed",
|
1628 |
+
"test_deepcopy_copies_all_public_attrs",
|
1629 |
+
),
|
1630 |
+
DecorateInfo(
|
1631 |
+
skipIfTorchDynamo(
|
1632 |
+
"See https://github.com/pytorch/pytorch/issues/115607"
|
1633 |
+
),
|
1634 |
+
"TestOptimRenewed",
|
1635 |
+
"test_foreach_matches_forloop",
|
1636 |
+
),
|
1637 |
+
DecorateInfo(
|
1638 |
+
toleranceOverride(
|
1639 |
+
{
|
1640 |
+
# previously atol=1e-7, rtol=1e-7
|
1641 |
+
torch.float64: tol(atol=1.5e-7, rtol=1.1e-7)
|
1642 |
+
}
|
1643 |
+
),
|
1644 |
+
"TestOptimRenewed",
|
1645 |
+
"test_foreach_matches_forloop",
|
1646 |
+
),
|
1647 |
+
DecorateInfo(
|
1648 |
+
skipIfTorchDynamo(
|
1649 |
+
"See https://github.com/pytorch/pytorch/issues/116494"
|
1650 |
+
),
|
1651 |
+
"TestOptimRenewed",
|
1652 |
+
"test_state_dict_deterministic",
|
1653 |
+
),
|
1654 |
+
DecorateInfo(
|
1655 |
+
skipIfTorchDynamo(
|
1656 |
+
"Should be fixed by https://github.com/pytorch/pytorch/issues/115607"
|
1657 |
+
),
|
1658 |
+
"TestOptimRenewed",
|
1659 |
+
"test_can_load_older_state_dict",
|
1660 |
+
device_type="cpu",
|
1661 |
+
),
|
1662 |
+
),
|
1663 |
+
),
|
1664 |
+
OptimizerInfo(
|
1665 |
+
RMSprop,
|
1666 |
+
optim_inputs_func=optim_inputs_func_rmsprop,
|
1667 |
+
optim_error_inputs_func=optim_error_inputs_func_rmsprop,
|
1668 |
+
supported_impls=("foreach", "differentiable"),
|
1669 |
+
skips=(
|
1670 |
+
DecorateInfo(
|
1671 |
+
skipIfMps, # addcdiv doesn't work for non-contiguous, see #118115
|
1672 |
+
"TestOptimRenewed",
|
1673 |
+
"test_forloop_goes_right_direction",
|
1674 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1675 |
+
),
|
1676 |
+
DecorateInfo(
|
1677 |
+
skipIfTorchDynamo(
|
1678 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1679 |
+
),
|
1680 |
+
"TestOptimRenewed",
|
1681 |
+
"test_forloop_goes_right_direction",
|
1682 |
+
),
|
1683 |
+
DecorateInfo(
|
1684 |
+
skipIfTorchDynamo(
|
1685 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1686 |
+
),
|
1687 |
+
"TestOptimRenewed",
|
1688 |
+
"test_forloop_goes_right_direction_multigpu",
|
1689 |
+
),
|
1690 |
+
DecorateInfo(
|
1691 |
+
skipIfTorchDynamo(
|
1692 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
1693 |
+
),
|
1694 |
+
"TestOptimRenewed",
|
1695 |
+
"test_foreach_matches_forloop",
|
1696 |
+
),
|
1697 |
+
DecorateInfo(
|
1698 |
+
skipIfTorchDynamo(
|
1699 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1700 |
+
),
|
1701 |
+
"TestOptimRenewed",
|
1702 |
+
"test_peak_memory_foreach",
|
1703 |
+
),
|
1704 |
+
DecorateInfo(
|
1705 |
+
skipIfTorchDynamo(
|
1706 |
+
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
|
1707 |
+
),
|
1708 |
+
"TestOptimRenewed",
|
1709 |
+
"test_set_default_dtype_works_with_foreach",
|
1710 |
+
),
|
1711 |
+
DecorateInfo(
|
1712 |
+
skipIfTorchDynamo(
|
1713 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1714 |
+
),
|
1715 |
+
"TestOptimRenewed",
|
1716 |
+
"test_complex_2d",
|
1717 |
+
),
|
1718 |
+
DecorateInfo(
|
1719 |
+
toleranceOverride(
|
1720 |
+
{ # previously atol=5-05, rtol=0.001, https://github.com/pytorch/pytorch/issues/116202
|
1721 |
+
torch.float32: tol(atol=5e-04, rtol=0.01),
|
1722 |
+
}
|
1723 |
+
),
|
1724 |
+
"TestOptimRenewed",
|
1725 |
+
"test_mixed_device_dtype",
|
1726 |
+
active_if=TEST_WITH_TORCHDYNAMO,
|
1727 |
+
),
|
1728 |
+
DecorateInfo(
|
1729 |
+
skipIfTorchDynamo(
|
1730 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1731 |
+
),
|
1732 |
+
"TestOptimRenewed",
|
1733 |
+
"test_state_dict_deterministic",
|
1734 |
+
),
|
1735 |
+
DecorateInfo(
|
1736 |
+
skipIfTorchDynamo(
|
1737 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
1738 |
+
),
|
1739 |
+
"TestOptimRenewed",
|
1740 |
+
"test_state_dict_with_cuda_params",
|
1741 |
+
),
|
1742 |
+
DecorateInfo(
|
1743 |
+
skipIfTorchDynamo(
|
1744 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1745 |
+
),
|
1746 |
+
"TestOptimRenewed",
|
1747 |
+
"test_deepcopy_copies_all_public_attrs",
|
1748 |
+
),
|
1749 |
+
),
|
1750 |
+
),
|
1751 |
+
OptimizerInfo(
|
1752 |
+
Rprop,
|
1753 |
+
optim_inputs_func=optim_inputs_func_rprop,
|
1754 |
+
optim_error_inputs_func=optim_error_inputs_func_rprop,
|
1755 |
+
supported_impls=("foreach", "differentiable"),
|
1756 |
+
skips=(
|
1757 |
+
DecorateInfo(
|
1758 |
+
skipIfMps, # Rprop doesn't update for non-contiguous, see #118117
|
1759 |
+
"TestOptimRenewed",
|
1760 |
+
"test_forloop_goes_right_direction",
|
1761 |
+
active_if=lambda kwargs: not kwargs["contiguous"],
|
1762 |
+
),
|
1763 |
+
DecorateInfo(
|
1764 |
+
skipIfTorchDynamo(
|
1765 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1766 |
+
),
|
1767 |
+
"TestOptimRenewed",
|
1768 |
+
"test_forloop_goes_right_direction",
|
1769 |
+
),
|
1770 |
+
DecorateInfo(
|
1771 |
+
skipIfTorchDynamo(
|
1772 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1773 |
+
),
|
1774 |
+
"TestOptimRenewed",
|
1775 |
+
"test_forloop_goes_right_direction_multigpu",
|
1776 |
+
),
|
1777 |
+
DecorateInfo(
|
1778 |
+
skipIfTorchDynamo(
|
1779 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
1780 |
+
),
|
1781 |
+
"TestOptimRenewed",
|
1782 |
+
"test_foreach_matches_forloop",
|
1783 |
+
),
|
1784 |
+
DecorateInfo(
|
1785 |
+
skipIfTorchDynamo(
|
1786 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1787 |
+
),
|
1788 |
+
"TestOptimRenewed",
|
1789 |
+
"test_peak_memory_foreach",
|
1790 |
+
),
|
1791 |
+
DecorateInfo(
|
1792 |
+
skipIfTorchDynamo(
|
1793 |
+
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
|
1794 |
+
),
|
1795 |
+
"TestOptimRenewed",
|
1796 |
+
"test_set_default_dtype_works_with_foreach",
|
1797 |
+
),
|
1798 |
+
DecorateInfo(
|
1799 |
+
skipIfTorchDynamo(
|
1800 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1801 |
+
),
|
1802 |
+
"TestOptimRenewed",
|
1803 |
+
"test_complex_2d",
|
1804 |
+
),
|
1805 |
+
DecorateInfo(
|
1806 |
+
skipIfTorchDynamo(
|
1807 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1808 |
+
),
|
1809 |
+
"TestOptimRenewed",
|
1810 |
+
"test_state_dict_deterministic",
|
1811 |
+
),
|
1812 |
+
DecorateInfo(
|
1813 |
+
skipIfTorchDynamo(
|
1814 |
+
"See https://github.com/pytorch/pytorch/issues/115679"
|
1815 |
+
),
|
1816 |
+
"TestOptimRenewed",
|
1817 |
+
"test_state_dict_with_cuda_params",
|
1818 |
+
),
|
1819 |
+
DecorateInfo(
|
1820 |
+
skipIfTorchDynamo(
|
1821 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1822 |
+
),
|
1823 |
+
"TestOptimRenewed",
|
1824 |
+
"test_deepcopy_copies_all_public_attrs",
|
1825 |
+
),
|
1826 |
+
),
|
1827 |
+
),
|
1828 |
+
OptimizerInfo(
|
1829 |
+
SGD,
|
1830 |
+
optim_inputs_func=optim_inputs_func_sgd,
|
1831 |
+
optim_error_inputs_func=optim_error_inputs_func_sgd,
|
1832 |
+
supported_impls=("foreach", "differentiable", "fused"),
|
1833 |
+
supports_sparse_on=("cpu", "cuda"),
|
1834 |
+
skips=(
|
1835 |
+
DecorateInfo(
|
1836 |
+
skipIfTorchDynamo(
|
1837 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1838 |
+
),
|
1839 |
+
"TestOptimRenewed",
|
1840 |
+
"test_forloop_goes_right_direction",
|
1841 |
+
),
|
1842 |
+
DecorateInfo(
|
1843 |
+
skipIfTorchDynamo(
|
1844 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1845 |
+
),
|
1846 |
+
"TestOptimRenewed",
|
1847 |
+
"test_forloop_goes_right_direction_multigpu",
|
1848 |
+
),
|
1849 |
+
DecorateInfo(
|
1850 |
+
skipIfTorchDynamo(
|
1851 |
+
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
|
1852 |
+
),
|
1853 |
+
"TestOptimRenewed",
|
1854 |
+
"test_peak_memory_foreach",
|
1855 |
+
),
|
1856 |
+
DecorateInfo(
|
1857 |
+
skipIfTorchDynamo(
|
1858 |
+
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
|
1859 |
+
),
|
1860 |
+
"TestOptimRenewed",
|
1861 |
+
"test_set_default_dtype_works_with_foreach",
|
1862 |
+
),
|
1863 |
+
DecorateInfo(
|
1864 |
+
skipIfTorchDynamo(
|
1865 |
+
"Accessing grad.real errors, see https://github.com/pytorch/pytorch/issues/117184"
|
1866 |
+
),
|
1867 |
+
"TestOptimRenewed",
|
1868 |
+
"test_complex_2d",
|
1869 |
+
),
|
1870 |
+
DecorateInfo(
|
1871 |
+
toleranceOverride(
|
1872 |
+
{ # previously atol=5-05, rtol=0.001, https://github.com/pytorch/pytorch/issues/116202
|
1873 |
+
torch.float32: tol(atol=5e-04, rtol=0.007),
|
1874 |
+
}
|
1875 |
+
),
|
1876 |
+
"TestOptimRenewed",
|
1877 |
+
"test_mixed_device_dtype",
|
1878 |
+
active_if=TEST_WITH_TORCHDYNAMO,
|
1879 |
+
),
|
1880 |
+
DecorateInfo(
|
1881 |
+
skipIfTorchDynamo(
|
1882 |
+
"Errors with list out of range, see https://github.com/pytorch/pytorch/issues/116061"
|
1883 |
+
),
|
1884 |
+
"TestOptimRenewed",
|
1885 |
+
"test_step_is_noop_for_zero_grads",
|
1886 |
+
device_type="cpu",
|
1887 |
+
),
|
1888 |
+
DecorateInfo(
|
1889 |
+
skipIfTorchDynamo(
|
1890 |
+
"No closure handling, https://github.com/pytorch/pytorch/issues/116494"
|
1891 |
+
),
|
1892 |
+
"TestOptimRenewed",
|
1893 |
+
"test_state_dict_deterministic",
|
1894 |
+
),
|
1895 |
+
DecorateInfo(
|
1896 |
+
skipIfTorchDynamo(
|
1897 |
+
"Errors with list out of range, see https://github.com/pytorch/pytorch/issues/116061"
|
1898 |
+
),
|
1899 |
+
"TestOptimRenewed",
|
1900 |
+
"test_param_groups_weight_decay",
|
1901 |
+
device_type="cpu",
|
1902 |
+
),
|
1903 |
+
DecorateInfo(
|
1904 |
+
skipIfTorchDynamo(
|
1905 |
+
"Errors with list out of range, see https://github.com/pytorch/pytorch/issues/116061"
|
1906 |
+
),
|
1907 |
+
"TestOptimRenewed",
|
1908 |
+
"test_param_groups_lr",
|
1909 |
+
device_type="cpu",
|
1910 |
+
),
|
1911 |
+
DecorateInfo(
|
1912 |
+
skipIfTorchDynamo(
|
1913 |
+
"Errors with list out of range, see https://github.com/pytorch/pytorch/issues/116061"
|
1914 |
+
),
|
1915 |
+
"TestOptimRenewed",
|
1916 |
+
"test_load_nontensor_step",
|
1917 |
+
device_type="cpu",
|
1918 |
+
),
|
1919 |
+
DecorateInfo(
|
1920 |
+
skipIfTorchDynamo(
|
1921 |
+
"momentum_buffer inconsistency, https://github.com/pytorch/pytorch/issues/117147"
|
1922 |
+
),
|
1923 |
+
"TestOptimRenewed",
|
1924 |
+
"test_state_dict_with_cuda_params",
|
1925 |
+
),
|
1926 |
+
DecorateInfo(
|
1927 |
+
skipIfTorchDynamo(
|
1928 |
+
"fails, https://github.com/pytorch/pytorch/issues/117165"
|
1929 |
+
),
|
1930 |
+
"TestOptimRenewed",
|
1931 |
+
"test_deepcopy_copies_all_public_attrs",
|
1932 |
+
),
|
1933 |
+
),
|
1934 |
+
),
|
1935 |
+
OptimizerInfo(
|
1936 |
+
SparseAdam,
|
1937 |
+
optim_inputs_func=optim_inputs_func_sparseadam,
|
1938 |
+
optim_error_inputs_func=optim_error_inputs_func_sparseadam,
|
1939 |
+
supported_impls=(),
|
1940 |
+
only_supports_sparse_grads=True,
|
1941 |
+
supports_complex=False, # Missing complex support, see #118153
|
1942 |
+
skips=(
|
1943 |
+
DecorateInfo(
|
1944 |
+
skipIfMps, # SparseAdam does not support MPS
|
1945 |
+
"TestOptimRenewed",
|
1946 |
+
),
|
1947 |
+
DecorateInfo(
|
1948 |
+
unittest.skip(
|
1949 |
+
"SparseAdam does not support dense gradients, see #116507"
|
1950 |
+
),
|
1951 |
+
"TestOptimRenewed",
|
1952 |
+
"test_state_dict_deterministic",
|
1953 |
+
),
|
1954 |
+
DecorateInfo(
|
1955 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1956 |
+
"TestOptimRenewed",
|
1957 |
+
"test_param_groups_lr",
|
1958 |
+
),
|
1959 |
+
DecorateInfo(
|
1960 |
+
unittest.skip(
|
1961 |
+
"SparseAdam does not support dense gradients, see #116507"
|
1962 |
+
),
|
1963 |
+
"TestOptimRenewed",
|
1964 |
+
"test_can_load_older_state_dict",
|
1965 |
+
),
|
1966 |
+
DecorateInfo(
|
1967 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1968 |
+
"TestOptimRenewed",
|
1969 |
+
"test_load_nontensor_step",
|
1970 |
+
),
|
1971 |
+
DecorateInfo(
|
1972 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1973 |
+
"TestOptimRenewed",
|
1974 |
+
"test_forloop_goes_right_direction",
|
1975 |
+
),
|
1976 |
+
DecorateInfo(
|
1977 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1978 |
+
"TestOptimRenewed",
|
1979 |
+
"test_forloop_goes_right_direction_multigpu",
|
1980 |
+
),
|
1981 |
+
DecorateInfo(
|
1982 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1983 |
+
"TestOptimRenewed",
|
1984 |
+
"test_state_dict_with_cuda_params",
|
1985 |
+
),
|
1986 |
+
DecorateInfo(
|
1987 |
+
skipIfTorchDynamo("cannot call to_sparse on p.grad, see #117184"),
|
1988 |
+
"TestOptimRenewed",
|
1989 |
+
"test_deepcopy_copies_all_public_attrs",
|
1990 |
+
),
|
1991 |
+
),
|
1992 |
+
),
|
1993 |
+
]
|
1994 |
+
|
1995 |
+
|
1996 |
+
class TensorTracker:
|
1997 |
+
"""
|
1998 |
+
A utility to track tensor clones in a list, with the expectation of popping them later (in
|
1999 |
+
order) to make fair comparisons between two multi-step computation. The intended use case is
|
2000 |
+
usually when comparing two supposed equal computations, such as an optimizer step that each
|
2001 |
+
individually consists of multiple steps, where numerical deviation could multiply.
|
2002 |
+
|
2003 |
+
The goal is to be able to compare and align numbers at every milestone so as to minimize
|
2004 |
+
numerical discrepancies, and so when the test fails, it is likely a real problem.
|
2005 |
+
"""
|
2006 |
+
|
2007 |
+
def __init__(self):
|
2008 |
+
self.tensors = []
|
2009 |
+
|
2010 |
+
def add(self, tensor):
|
2011 |
+
"""
|
2012 |
+
Add a clone().detach()'d version of the tensor
|
2013 |
+
"""
|
2014 |
+
self.tensors.append(tensor.clone().detach())
|
2015 |
+
|
2016 |
+
# pops from beginning, like a queue and not a stack!
|
2017 |
+
def pop_check_set(self, tensor_to_set, testcase):
|
2018 |
+
"""
|
2019 |
+
Pop the first element in the tensor tracker, assert equality between the popped tensor and
|
2020 |
+
the input tensor, and then set the input tensor to have the same values as the popped tensor
|
2021 |
+
(with copy_).
|
2022 |
+
"""
|
2023 |
+
testcase.assertGreater(len(self.tensors), 0, "no tensors to pop")
|
2024 |
+
ref = self.tensors.pop(0)
|
2025 |
+
|
2026 |
+
testcase.assertTrue(isinstance(ref, Tensor), f"{type(ref)=}")
|
2027 |
+
testcase.assertEqual(tensor_to_set, ref)
|
2028 |
+
|
2029 |
+
with torch.no_grad():
|
2030 |
+
tensor_to_set.copy_(ref)
|
2031 |
+
|
2032 |
+
def all_popped(self):
|
2033 |
+
return len(self.tensors) == 0
|
venv/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/composite_compliance.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
import itertools
|
6 |
+
|
7 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
8 |
+
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
|
9 |
+
from torch.utils import _pytree as pytree
|
10 |
+
from functools import partial
|
11 |
+
from torch.utils._mode_utils import no_dispatch, all_same_mode
|
12 |
+
import torch.autograd.forward_ad as fwAD
|
13 |
+
from typing import Callable
|
14 |
+
import re
|
15 |
+
|
16 |
+
|
17 |
+
def check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor):
|
18 |
+
elem = wrapper_tensor.elem
|
19 |
+
metadata_wrapper_tensor = metadata_accessor(wrapper_tensor)
|
20 |
+
metadata_elem = metadata_accessor(elem)
|
21 |
+
if metadata_wrapper_tensor == metadata_elem:
|
22 |
+
return
|
23 |
+
raise RuntimeError(
|
24 |
+
f"This operator is not Composite Compliant: the "
|
25 |
+
f"{metadata_name} of the tensor was modified directly without "
|
26 |
+
f"going through the PyTorch dispatcher.")
|
27 |
+
|
28 |
+
def check_metadata_consistency(wrapper_tensor, CCT):
|
29 |
+
# CCT: CompositeCompliantTensor class which is generated using generate_cct
|
30 |
+
if not isinstance(wrapper_tensor, CCT):
|
31 |
+
return
|
32 |
+
things_to_check = {
|
33 |
+
'shape': Tensor.size,
|
34 |
+
'dtype': lambda x: x.dtype,
|
35 |
+
'device': lambda x: x.device,
|
36 |
+
'numel': Tensor.numel,
|
37 |
+
'stride': Tensor.stride,
|
38 |
+
'storage_offset': Tensor.storage_offset,
|
39 |
+
}
|
40 |
+
for metadata_name, metadata_accessor in things_to_check.items():
|
41 |
+
check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor)
|
42 |
+
|
43 |
+
def is_view_fn(func):
|
44 |
+
return func.overloadpacket.__name__ in {
|
45 |
+
'as_strided',
|
46 |
+
'detach',
|
47 |
+
'diagonal',
|
48 |
+
'expand',
|
49 |
+
'expand_as',
|
50 |
+
'movedim',
|
51 |
+
'narrow',
|
52 |
+
'permute',
|
53 |
+
'select',
|
54 |
+
'squeeze',
|
55 |
+
'transpose',
|
56 |
+
't',
|
57 |
+
'real',
|
58 |
+
'imag',
|
59 |
+
'view_as_real',
|
60 |
+
'view_as_complex',
|
61 |
+
'unflatten',
|
62 |
+
'unfold',
|
63 |
+
'unsqueeze',
|
64 |
+
'view',
|
65 |
+
'view_as',
|
66 |
+
'unbind',
|
67 |
+
'split',
|
68 |
+
'split_with_sizes',
|
69 |
+
'vsplit',
|
70 |
+
'hsplit',
|
71 |
+
'tensor_split',
|
72 |
+
'chunk',
|
73 |
+
'swapaxes',
|
74 |
+
'slice',
|
75 |
+
'_reshape_alias',
|
76 |
+
'_unsafe_view',
|
77 |
+
'_conj',
|
78 |
+
'alias',
|
79 |
+
}
|
80 |
+
|
81 |
+
# manually populated from native_functions that have inplace_view: True.
|
82 |
+
# In the future we will probably be able to grab that list directly
|
83 |
+
def is_inplace_view_fn(func):
|
84 |
+
return func.overloadpacket.__name__ in {
|
85 |
+
'as_strided_',
|
86 |
+
'detach_',
|
87 |
+
'squeeze_',
|
88 |
+
'swapaxes_',
|
89 |
+
'swapdims_',
|
90 |
+
't_',
|
91 |
+
'transpose_',
|
92 |
+
'unsqueeze_',
|
93 |
+
}
|
94 |
+
|
95 |
+
|
96 |
+
# Introspection please save us
|
97 |
+
def is_inplace(func):
|
98 |
+
name = func.overloadpacket.__name__
|
99 |
+
if re.match('__i.+__', name):
|
100 |
+
return True
|
101 |
+
if re.match('__.+__', name):
|
102 |
+
return False
|
103 |
+
return name[-1] == '_'
|
104 |
+
|
105 |
+
|
106 |
+
def generate_cct_and_mode(autograd_view_consistency=True):
|
107 |
+
# This function returns a new class CompositeCompliantTensor
|
108 |
+
# The two arguments control the behaviour described below.
|
109 |
+
|
110 |
+
# autograd_view_consistency:
|
111 |
+
# If True, alias result using `set_` if func returns a view
|
112 |
+
# (See Note [Alias Result]).
|
113 |
+
# Since Forward AD doesn't work with `set_`
|
114 |
+
# we disable it by setting alias to False.
|
115 |
+
|
116 |
+
class CompositeCompliantTensor(torch.Tensor):
|
117 |
+
elem: torch.Tensor
|
118 |
+
|
119 |
+
__slots__ = ['elem']
|
120 |
+
|
121 |
+
@staticmethod
|
122 |
+
def __new__(cls, elem, mode, *args, **kwargs):
|
123 |
+
assert type(elem) is not cls, \
|
124 |
+
"Wrapping a CompositeCompliantTensor in a CompositeCompliantTensor is not supported"
|
125 |
+
|
126 |
+
# The storage of CompositeCompliantTensor should never be used directly
|
127 |
+
# by a Composite operation; if the Composite
|
128 |
+
# operator attempts to read from the storage without dispatching then it'll
|
129 |
+
# raise a RuntimeError due to it being a meta storage.
|
130 |
+
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
131 |
+
cls, elem.size(),
|
132 |
+
dtype=elem.dtype, layout=elem.layout,
|
133 |
+
device=elem.device, requires_grad=elem.requires_grad,
|
134 |
+
strides=elem.stride(), storage_offset=elem.storage_offset())
|
135 |
+
|
136 |
+
if elem.requires_grad:
|
137 |
+
# CompositeCompliantTensor steals the "requires_grad"-ness.
|
138 |
+
# Why a new copy of `elem`? Because sometimes OpInfo shares inputs between tests...
|
139 |
+
tmp = torch.empty_strided(elem.shape, elem.stride(), dtype=elem.dtype,
|
140 |
+
device=elem.device, layout=elem.layout,
|
141 |
+
requires_grad=False)
|
142 |
+
tmp.copy_(elem.detach())
|
143 |
+
r.elem = tmp
|
144 |
+
else:
|
145 |
+
r.elem = elem
|
146 |
+
|
147 |
+
assert r.stride() == r.elem.stride()
|
148 |
+
|
149 |
+
# Propagate conjugate bits to the wrapper tensor
|
150 |
+
# Ref: https://github.com/albanD/subclass_zoo/issues/24
|
151 |
+
# Ref: https://github.com/albanD/subclass_zoo/issues/21
|
152 |
+
torch._C._set_conj(r, r.elem.is_conj())
|
153 |
+
torch._C._set_neg(r, r.elem.is_neg())
|
154 |
+
|
155 |
+
r.mode = mode
|
156 |
+
return r
|
157 |
+
|
158 |
+
def __repr__(self):
|
159 |
+
return f"CompositeCompliantTensor({self.elem})"
|
160 |
+
|
161 |
+
@classmethod
|
162 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
163 |
+
all_args = pytree.arg_tree_leaves(*args, **(kwargs or {}))
|
164 |
+
modes = tuple(e.mode for e in all_args if isinstance(e, CompositeCompliantTensor))
|
165 |
+
if not all_same_mode(modes):
|
166 |
+
raise RuntimeError("Multiple CompositeCompliantTensorModes NYI")
|
167 |
+
with modes[0]:
|
168 |
+
return func(*args, **kwargs)
|
169 |
+
|
170 |
+
class CompositeCompliantTensorMode(TorchDispatchMode):
|
171 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
172 |
+
def unwrap(e):
|
173 |
+
return e.elem if isinstance(e, CompositeCompliantTensor) else e
|
174 |
+
|
175 |
+
def wrap(e):
|
176 |
+
return CompositeCompliantTensor(e, self) if isinstance(e, torch.Tensor) else e
|
177 |
+
|
178 |
+
if func == torch.ops.aten._local_scalar_dense.default:
|
179 |
+
raise RuntimeError(
|
180 |
+
".item() is not allowed to be called inside of composite "
|
181 |
+
"functions in the PyTorch library because not all backends "
|
182 |
+
"and/or Tensor subclasses (e.g. vmap, ProxyTensor) support them.")
|
183 |
+
|
184 |
+
if func.overloadpacket.__name__ in ('set_', 'resize_'):
|
185 |
+
raise RuntimeError(
|
186 |
+
f"{func.__name__} is not allowed to be called inside of "
|
187 |
+
f"Composite operators.")
|
188 |
+
|
189 |
+
if is_inplace(func):
|
190 |
+
# NB: We are making an assumption that if the function is in-place,
|
191 |
+
# then the first argument is being written to. Introspection please save us!
|
192 |
+
mutated_argument = args[0]
|
193 |
+
if not isinstance(mutated_argument, CompositeCompliantTensor) and \
|
194 |
+
any(isinstance(a, CompositeCompliantTensor) for a in args[1:]):
|
195 |
+
raise RuntimeError(
|
196 |
+
'Not composite compliant: performing in-place operation '
|
197 |
+
f'{func.__name__} where the Tensor being written to is '
|
198 |
+
'regular Tensor but the other tensors are Tensor Subclasses. '
|
199 |
+
'Please try to avoid this in-place operation.')
|
200 |
+
|
201 |
+
unwrapped_args = tree_map(unwrap, args)
|
202 |
+
unwrapped_kwargs = tree_map(unwrap, kwargs)
|
203 |
+
unwrapped_rs = func(*unwrapped_args, **unwrapped_kwargs)
|
204 |
+
rs = tree_map(wrap, unwrapped_rs)
|
205 |
+
|
206 |
+
if is_view_fn(func) and autograd_view_consistency:
|
207 |
+
# Note [Alias Result]
|
208 |
+
# Autograd asserts that for B = A.view_fn(...), B and A's storages
|
209 |
+
# are the same. Here we try to make B alias A to avoid those asserts.
|
210 |
+
# See https://github.com/pytorch/pytorch/issues/65339 for more information
|
211 |
+
# about the issue.
|
212 |
+
with no_dispatch():
|
213 |
+
# Idea: this is a weird way of getting a storage that aliases the input.
|
214 |
+
# This is a workaround for #65339.
|
215 |
+
# 1. under no_dispatch, all of the wrapper tensors look like regular
|
216 |
+
# tensors with special storage (the storage is nullptr and
|
217 |
+
# advertises CPU/CUDA device.
|
218 |
+
# 2. we run func, which ends up running the view operation
|
219 |
+
# 3. All view operations reuse the input's storage and return
|
220 |
+
# result Tensor(s) with new sizes/strides/offset that alias
|
221 |
+
# the input.
|
222 |
+
# 4. we set the storage (and sizes/strides/offset) of the wrapper
|
223 |
+
# tensor results to be that of the tensors that alias the input
|
224 |
+
result = func(*args, **kwargs)
|
225 |
+
if isinstance(result, (tuple, list)):
|
226 |
+
for a, b in zip(rs, result):
|
227 |
+
a.set_(b)
|
228 |
+
else:
|
229 |
+
rs.set_(result)
|
230 |
+
|
231 |
+
# Some operations are allowed to in-place modify the metadata of the
|
232 |
+
# inputs. The only ones are the "inplace view functions"; when we
|
233 |
+
# run into these, we manually modify the metadata of the input.
|
234 |
+
with no_dispatch():
|
235 |
+
if is_inplace_view_fn(func):
|
236 |
+
func(*args, **kwargs)
|
237 |
+
|
238 |
+
# For each CompositeCompliantTensor t, we check that t and t.elem
|
239 |
+
# have consistent metadata. If they don't have consistent metadata,
|
240 |
+
# that means the operator did something fishy.
|
241 |
+
check = partial(check_metadata_consistency, CCT=CompositeCompliantTensor)
|
242 |
+
pytree.tree_map_(check, args)
|
243 |
+
pytree.tree_map_(check, kwargs)
|
244 |
+
pytree.tree_map_(check, rs)
|
245 |
+
return rs
|
246 |
+
|
247 |
+
return CompositeCompliantTensor, CompositeCompliantTensorMode()
|
248 |
+
|
249 |
+
def is_tensorlist(lst):
|
250 |
+
if not isinstance(lst, list) and not isinstance(lst, tuple):
|
251 |
+
return False
|
252 |
+
if len(lst) == 0:
|
253 |
+
return False
|
254 |
+
all_tensors = all(isinstance(elt, torch.Tensor) for elt in lst)
|
255 |
+
if all_tensors:
|
256 |
+
return True
|
257 |
+
exists_one_tensor = all(isinstance(elt, torch.Tensor) for elt in lst)
|
258 |
+
if exists_one_tensor:
|
259 |
+
raise RuntimeError('This test assumes that PyTorch APIs cannot take '
|
260 |
+
'mixed lists of Tensor and other things')
|
261 |
+
return False
|
262 |
+
|
263 |
+
|
264 |
+
def maybe_map(fn, should_map, arg):
|
265 |
+
return fn(arg) if should_map else arg
|
266 |
+
|
267 |
+
|
268 |
+
def wrap(arg, CCT, cct_mode):
|
269 |
+
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
|
270 |
+
if isinstance(arg, torch.Tensor):
|
271 |
+
return CCT(arg, cct_mode)
|
272 |
+
if is_tensorlist(arg):
|
273 |
+
return [CCT(a, cct_mode) for a in arg]
|
274 |
+
raise RuntimeError("wrap assumes that the input can be wrapped")
|
275 |
+
|
276 |
+
|
277 |
+
# Given a list of flat arguments, some of which may be Tensors, return all
|
278 |
+
# possible ways some of the arguments could be CompositeCompliantTensors (CCT).
|
279 |
+
# For example, given Tensors A, B, C and flat_args = [A, 1, B],
|
280 |
+
# We would return the following 4 options:
|
281 |
+
# [CCT(A), 1, CCT(B)]
|
282 |
+
# [CCT(A), 1, B]
|
283 |
+
# [A, 1, CCT(B)]
|
284 |
+
# [A, 1, B]
|
285 |
+
# NB: Yes, this is exponential. No, we don't care too much because PyTorch ops
|
286 |
+
# don't accept that many input Tensors.
|
287 |
+
def generate_subclass_choices(flat_args, CCT, cct_mode):
|
288 |
+
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
|
289 |
+
is_tensor_likes = [isinstance(arg, torch.Tensor) or is_tensorlist(arg) for arg in flat_args]
|
290 |
+
subclass_options = [[False, True] if is_tensor_like else [False] for is_tensor_like in is_tensor_likes]
|
291 |
+
|
292 |
+
for which_args_are_wrapped in itertools.product(*subclass_options):
|
293 |
+
|
294 |
+
result = [maybe_map(partial(wrap, CCT=CCT, cct_mode=cct_mode), should_wrap_arg, arg)
|
295 |
+
for should_wrap_arg, arg in zip(which_args_are_wrapped, flat_args)]
|
296 |
+
yield result, which_args_are_wrapped
|
297 |
+
|
298 |
+
|
299 |
+
# For an operation f(*args, **kwargs), each Tensor argument may either be
|
300 |
+
# a regular Tensor or a Tensor Subclass. This iterator iterates through
|
301 |
+
# all of those options.
|
302 |
+
def generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
|
303 |
+
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
|
304 |
+
flat_kwargs, spec = tree_flatten(kwargs)
|
305 |
+
flat_args_kwargs = list(args) + list(flat_kwargs)
|
306 |
+
for choice, debug_metadata in generate_subclass_choices(flat_args_kwargs, CCT, cct_mode):
|
307 |
+
new_args = choice[:len(args)]
|
308 |
+
new_kwargs = tree_unflatten(choice[len(args):], spec)
|
309 |
+
which_args_are_wrapped = debug_metadata[:len(args)]
|
310 |
+
which_kwargs_are_wrapped = tree_unflatten(debug_metadata[len(args):], spec)
|
311 |
+
yield new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped
|
312 |
+
|
313 |
+
|
314 |
+
def raise_composite_compliance_error(err, additional_info=''):
|
315 |
+
raise RuntimeError(
|
316 |
+
"Composite compliance check failed with "
|
317 |
+
"the above error.\n"
|
318 |
+
f"{additional_info}"
|
319 |
+
"If you are adding an OpInfo of an "
|
320 |
+
"existing operator, please feel free to skip this test "
|
321 |
+
"because the problem was pre-existing and file an issue. "
|
322 |
+
"Otherwise, if you added a new operator, please read "
|
323 |
+
"through the Composite Compliance section in "
|
324 |
+
"aten/src/ATen/native/README.md for how to resolve this. "
|
325 |
+
) from err
|
326 |
+
|
327 |
+
|
328 |
+
# This test checks ALL possible permutations of calling `op` with arguments
|
329 |
+
# that are individually either a regular Tensor or a Tensor subclass.
|
330 |
+
#
|
331 |
+
# The general strategy is to wrap some Tensor args and kwargs in
|
332 |
+
# CompositeCompliantTensor wrappers and call the operation.
|
333 |
+
|
334 |
+
# If some composite operation does any non-compliant behavior,
|
335 |
+
# CompositeCompliantTensor will raise an error.
|
336 |
+
def check_all_permutations(op, args, kwargs, assert_equal_fn):
|
337 |
+
CCT, cct_mode = generate_cct_and_mode()
|
338 |
+
expected = op(*args, **kwargs)
|
339 |
+
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
|
340 |
+
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
|
341 |
+
|
342 |
+
try:
|
343 |
+
actual = op(*new_args, **new_kwargs)
|
344 |
+
# NOTE: [What errors are Composite Compliance trying to catch?]
|
345 |
+
#
|
346 |
+
# There's two things we want to catch:
|
347 |
+
# - errors that would raise within the torch_dispatch impl
|
348 |
+
# - data_ptr accesses
|
349 |
+
# The first is easy to filter for (we could make the error a different
|
350 |
+
# error class), the second is always going to be a RuntimeError due to
|
351 |
+
# how it is implemented (if you try to access the data_ptr of thex
|
352 |
+
# wrapper Tensor, it raises you some internal RuntimeError).
|
353 |
+
#
|
354 |
+
# So the most general thing to catch here was RuntimeError. If you
|
355 |
+
# are here and debugging why your test failed, it's plausible that
|
356 |
+
# the operator itself is broken and that there are other tests failing.
|
357 |
+
except RuntimeError as err:
|
358 |
+
raise_composite_compliance_error(
|
359 |
+
err,
|
360 |
+
f"- wrapped_args: {which_args_are_wrapped}\n"
|
361 |
+
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
362 |
+
)
|
363 |
+
|
364 |
+
def unwrap(e):
|
365 |
+
return e.elem if isinstance(e, CCT) else e
|
366 |
+
|
367 |
+
assert_equal_fn(tree_map(unwrap, actual), expected)
|
368 |
+
|
369 |
+
# Checks via the usage of torch dispatch mode certain anti-patterns that
|
370 |
+
# are not composite compliant.
|
371 |
+
#
|
372 |
+
# In particular, the anti-pattern we are trying to prevent is a user
|
373 |
+
# creating an empty tensor and then resize_-ing it. Torch Dispatch Mode helps
|
374 |
+
# here because all factory functions will create tensors that are
|
375 |
+
# CompositeCompliantTensor.
|
376 |
+
#
|
377 |
+
# The general strategy is to wrap all Tensor args and kwargs in
|
378 |
+
# CompositeCompliantTensor wrappers. If an operator that is
|
379 |
+
# Composite does any non-compliant behavior,
|
380 |
+
# CompositeCompliantTensor will raise an error.
|
381 |
+
def check_with_mode(op, args, kwargs, assert_equal_fn):
|
382 |
+
CCT, cct_mode = generate_cct_and_mode()
|
383 |
+
|
384 |
+
def wrap(e):
|
385 |
+
return CCT(e, cct_mode) if isinstance(e, torch.Tensor) else e
|
386 |
+
|
387 |
+
expected = op(*args, **kwargs)
|
388 |
+
|
389 |
+
args = tree_map(wrap, args)
|
390 |
+
kwargs = tree_map(wrap, kwargs)
|
391 |
+
try:
|
392 |
+
with cct_mode:
|
393 |
+
actual = op(*args, **kwargs)
|
394 |
+
# see NOTE: [What errors are Composite Compliance trying to catch?]
|
395 |
+
except RuntimeError as err:
|
396 |
+
raise_composite_compliance_error(err)
|
397 |
+
|
398 |
+
def unwrap(e):
|
399 |
+
return e.elem if isinstance(e, CCT) else e
|
400 |
+
|
401 |
+
assert_equal_fn(tree_map(unwrap, actual), expected)
|
402 |
+
|
403 |
+
def gather_leaf_tensors(args, kwargs):
|
404 |
+
leaf_tensors = []
|
405 |
+
args, args_spec = tree_flatten(args)
|
406 |
+
kwargs, kwargs_spec = tree_flatten(kwargs)
|
407 |
+
args = args + kwargs
|
408 |
+
for arg in args:
|
409 |
+
if not isinstance(arg, torch.Tensor):
|
410 |
+
continue
|
411 |
+
if arg.requires_grad:
|
412 |
+
leaf_tensors.append(arg)
|
413 |
+
return leaf_tensors
|
414 |
+
|
415 |
+
|
416 |
+
def compute_expected_grads(op, args, kwargs, output_process_fn_grad=None, gradcheck_wrapper=None):
|
417 |
+
if gradcheck_wrapper is None:
|
418 |
+
results = op(*args, **kwargs)
|
419 |
+
else:
|
420 |
+
results = gradcheck_wrapper(op, *args, **kwargs)
|
421 |
+
|
422 |
+
if output_process_fn_grad is not None:
|
423 |
+
results = output_process_fn_grad(results)
|
424 |
+
|
425 |
+
flat_results = pytree.tree_leaves(results)
|
426 |
+
flat_results = [r for r in flat_results if isinstance(r, torch.Tensor)]
|
427 |
+
flat_diff_results = [r for r in flat_results if r.requires_grad]
|
428 |
+
assert len(flat_diff_results) > 0
|
429 |
+
|
430 |
+
grads = [torch.ones(r.shape, device=r.device, dtype=r.dtype) for r in flat_diff_results]
|
431 |
+
leaf_tensors = gather_leaf_tensors(args, kwargs)
|
432 |
+
assert len(leaf_tensors) > 0
|
433 |
+
return torch.autograd.grad(flat_diff_results, leaf_tensors,
|
434 |
+
grads, allow_unused=True, retain_graph=True)
|
435 |
+
|
436 |
+
|
437 |
+
# Checks if the backward formula is composite compliant by testing
|
438 |
+
# all possible permutations of {inputs, grad_outputs} being
|
439 |
+
# CompositeCompliantTensor or regular Tensors.
|
440 |
+
#
|
441 |
+
# NB: it is important that op is accepted as a Callable and not an OpInfo,
|
442 |
+
# this means we can apply check_backward_formula to things that aren't OpInfos
|
443 |
+
# while debugging.
|
444 |
+
def check_backward_formula(op: Callable, args, kwargs,
|
445 |
+
output_process_fn_grad=None,
|
446 |
+
gradcheck_wrapper=None, assert_equal_fn=None):
|
447 |
+
CCT, cct_mode = generate_cct_and_mode()
|
448 |
+
|
449 |
+
expected = compute_expected_grads(op, args, kwargs, output_process_fn_grad, gradcheck_wrapper)
|
450 |
+
|
451 |
+
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
|
452 |
+
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
|
453 |
+
leaf_tensors = gather_leaf_tensors(new_args, new_kwargs)
|
454 |
+
assert len(leaf_tensors) > 0
|
455 |
+
|
456 |
+
try:
|
457 |
+
if gradcheck_wrapper is None:
|
458 |
+
results = op(*new_args, **new_kwargs)
|
459 |
+
else:
|
460 |
+
results = gradcheck_wrapper(op, *new_args, **new_kwargs)
|
461 |
+
if output_process_fn_grad is not None:
|
462 |
+
results = output_process_fn_grad(results)
|
463 |
+
# see NOTE: [What errors are Composite Compliance trying to catch?]
|
464 |
+
except RuntimeError as err:
|
465 |
+
raise_composite_compliance_error(
|
466 |
+
err,
|
467 |
+
f"- wrapped_args: {which_args_are_wrapped}\n"
|
468 |
+
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
469 |
+
)
|
470 |
+
|
471 |
+
flat_results = pytree.tree_leaves(results)
|
472 |
+
flat_results = [r for r in flat_results if isinstance(r, torch.Tensor)]
|
473 |
+
flat_diff_results = [r for r in flat_results if r.requires_grad]
|
474 |
+
assert len(flat_diff_results) > 0
|
475 |
+
|
476 |
+
# NB: ones, not ones_like, so we get a regular Tensor here
|
477 |
+
grads = [torch.ones(r.shape, device=r.device, dtype=r.dtype)
|
478 |
+
for r in flat_diff_results]
|
479 |
+
for flat_new_grads, which_grad_is_batched in generate_subclass_choices(grads, CCT, cct_mode):
|
480 |
+
try:
|
481 |
+
actual = torch.autograd.grad(flat_diff_results, leaf_tensors, flat_new_grads,
|
482 |
+
allow_unused=True, retain_graph=True)
|
483 |
+
# see NOTE: [What errors are Composite Compliance trying to catch?]
|
484 |
+
except RuntimeError as err:
|
485 |
+
raise_composite_compliance_error(
|
486 |
+
err,
|
487 |
+
f"- wrapped_args: {which_args_are_wrapped}\n"
|
488 |
+
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
489 |
+
f"- wrapped_grads: {which_grad_is_batched}\n"
|
490 |
+
)
|
491 |
+
|
492 |
+
def unwrap(e):
|
493 |
+
return e.elem if isinstance(e, CCT) else e
|
494 |
+
|
495 |
+
assert_equal_fn(tuple(map(unwrap, actual)), expected, equal_nan=True)
|
496 |
+
|
497 |
+
# Checks if the forward AD formula is composite compliant by testing
|
498 |
+
# all possible permutations of {primals, tangents} being
|
499 |
+
# CompositeCompliantTensor or regular Tensors.
|
500 |
+
#
|
501 |
+
# NB: it is important that op is accepted as a Callable and not an OpInfo,
|
502 |
+
# this means we can apply check_forward_ad_formula to things that aren't OpInfos
|
503 |
+
# while debugging.
|
504 |
+
def check_forward_ad_formula(op: Callable, args, kwargs, gradcheck_wrapper=None, assert_equal_fn=None):
|
505 |
+
CCT, cct_mode = generate_cct_and_mode(autograd_view_consistency=False)
|
506 |
+
|
507 |
+
def maybe_tangent(t):
|
508 |
+
assert type(t) is not CCT
|
509 |
+
# Generate `tangent` tensor
|
510 |
+
# if given object is a Tensor and requires grad is set.
|
511 |
+
if isinstance(t, torch.Tensor) and t.requires_grad:
|
512 |
+
return torch.randn_like(t)
|
513 |
+
elif is_tensorlist(t):
|
514 |
+
return [torch.randn_like(e) if e.requires_grad else None for e in t]
|
515 |
+
return None
|
516 |
+
|
517 |
+
tangent_args = tuple(maybe_tangent(arg) for arg in args)
|
518 |
+
flat_kwargs, spec = tree_flatten(kwargs)
|
519 |
+
flat_tangent_kwargs = tuple(maybe_tangent(arg) for arg in flat_kwargs)
|
520 |
+
tangent_kwargs = tree_unflatten(flat_tangent_kwargs, spec)
|
521 |
+
|
522 |
+
with fwAD.dual_level():
|
523 |
+
def maybe_make_dual(dual):
|
524 |
+
# Returns dual tensor if primal is a tensor/tensor subclass
|
525 |
+
# with requires_grad set.
|
526 |
+
primal, tangent = dual
|
527 |
+
if isinstance(primal, torch.Tensor) and primal.requires_grad:
|
528 |
+
return fwAD.make_dual(primal.detach(), tangent)
|
529 |
+
elif is_tensorlist(primal):
|
530 |
+
return tuple(fwAD.make_dual(pri.detach(), tang) if tang is not None else pri
|
531 |
+
for pri, tang in zip(primal, tangent))
|
532 |
+
return primal
|
533 |
+
|
534 |
+
def compute_expected_grad(args, tangent_args, kwargs, tangent_kwargs):
|
535 |
+
op_args = tuple(map(maybe_make_dual, zip(args, tangent_args)))
|
536 |
+
op_kwargs = {k: maybe_make_dual((v, tangent_kwargs[k])) for k, v in kwargs.items()}
|
537 |
+
|
538 |
+
if gradcheck_wrapper is None:
|
539 |
+
return op(*op_args, **op_kwargs)
|
540 |
+
return gradcheck_wrapper(op, *op_args, **op_kwargs)
|
541 |
+
|
542 |
+
expected = compute_expected_grad(args, tangent_args, kwargs, tangent_kwargs)
|
543 |
+
expected = tree_map(fwAD.unpack_dual, expected)
|
544 |
+
expected_primals = tree_map(lambda x: x.primal, expected)
|
545 |
+
expected_tangents = tree_map(lambda x: x.tangent, expected)
|
546 |
+
|
547 |
+
# Permutations of arg and kwargs in CCT.
|
548 |
+
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
|
549 |
+
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
|
550 |
+
|
551 |
+
# Permutations tangent arg and tangent kwargs in CCT.
|
552 |
+
for tang_choice in generate_subclass_choices_args_kwargs(tangent_args, tangent_kwargs, CCT, cct_mode):
|
553 |
+
new_tang_args, new_tang_kwargs, \
|
554 |
+
which_tang_args_are_wrapped, which_tang_kwargs_are_wrapped = tang_choice
|
555 |
+
|
556 |
+
op_args = tuple(map(maybe_make_dual, zip(new_args, new_tang_args)))
|
557 |
+
op_kwargs = {k: maybe_make_dual((v, new_tang_kwargs[k])) for k, v in new_kwargs.items()}
|
558 |
+
|
559 |
+
try:
|
560 |
+
if gradcheck_wrapper is None:
|
561 |
+
actual = op(*op_args, **op_kwargs)
|
562 |
+
else:
|
563 |
+
actual = gradcheck_wrapper(op, *op_args, **op_kwargs)
|
564 |
+
# see NOTE: [What errors are Composite Compliance trying to catch?]
|
565 |
+
except RuntimeError as err:
|
566 |
+
raise_composite_compliance_error(
|
567 |
+
err,
|
568 |
+
f"- wrapped_args: {which_args_are_wrapped}\n"
|
569 |
+
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
|
570 |
+
f"- wrapped_tangent_args: {which_tang_args_are_wrapped}\n"
|
571 |
+
f"- wrapped_tangent_kwargs: {which_tang_kwargs_are_wrapped}\n"
|
572 |
+
)
|
573 |
+
|
574 |
+
def unwrap(e):
|
575 |
+
return e.elem if isinstance(e, CCT) else e
|
576 |
+
|
577 |
+
actual = tree_map(fwAD.unpack_dual, actual)
|
578 |
+
actual_primals = tree_map(lambda x: unwrap(x.primal), actual)
|
579 |
+
actual_tangents = tree_map(lambda x: unwrap(x.tangent), actual)
|
580 |
+
assert_equal_fn(actual_primals, expected_primals, equal_nan=True)
|
581 |
+
assert_equal_fn(actual_tangents, expected_tangents, equal_nan=True)
|
venv/lib/python3.10/site-packages/torch/testing/_internal/control_flow_opinfo_db.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import functools
|
5 |
+
from torch.testing import make_tensor
|
6 |
+
from functorch.experimental.control_flow import map
|
7 |
+
from torch.testing._internal.opinfo.core import (
|
8 |
+
OpInfo,
|
9 |
+
SampleInput,
|
10 |
+
)
|
11 |
+
from torch.testing._internal.common_dtype import all_types_and
|
12 |
+
|
13 |
+
def sample_inputs_map(opinfo, device, dtype, requires_grad, **kwargs):
|
14 |
+
make_arg = functools.partial(
|
15 |
+
make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
16 |
+
yield SampleInput([make_arg(2, 2, 2, low=0.1, high=2), make_arg(2, 2, 2, low=0.1, high=2)],
|
17 |
+
args=(make_arg(1, low=0.1, high=2), make_arg(1, low=0.1, high=2)))
|
18 |
+
|
19 |
+
def inner_f(x, y0, y1):
|
20 |
+
return [x[0].cos().add_(1.) * y0, (x[1] + y1.sin()).cos_().view(x[1].size())]
|
21 |
+
|
22 |
+
def simple_map(xs, y0, y1):
|
23 |
+
def f(x, y0, y1):
|
24 |
+
return inner_f(x, y0, y1)
|
25 |
+
return map(f, xs, y0, y1)
|
26 |
+
|
27 |
+
def nested_map(xs, y0, y1):
|
28 |
+
def f1(xx, y0, y1):
|
29 |
+
def f2(x, y0, y1):
|
30 |
+
return inner_f(x, y0, y1)
|
31 |
+
return map(f2, xx, y0, y1)
|
32 |
+
return map(f1, xs, y0, y1)
|
33 |
+
|
34 |
+
def triple_nested_map(xs, y0, y1):
|
35 |
+
def f0(xs, y0, y1):
|
36 |
+
def f1(xx, y0, y1):
|
37 |
+
def f2(x, y0, y1):
|
38 |
+
return inner_f(x, y0, y1)
|
39 |
+
return map(f2, xx, y0, y1)
|
40 |
+
return map(f1, xs, y0, y1)
|
41 |
+
return map(f0, xs, y0, y1)
|
42 |
+
|
43 |
+
control_flow_opinfo_db = [
|
44 |
+
OpInfo(
|
45 |
+
"MapControlflowOp",
|
46 |
+
op=simple_map,
|
47 |
+
sample_inputs_func=sample_inputs_map,
|
48 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
49 |
+
supports_out=False,
|
50 |
+
check_batched_grad=False,
|
51 |
+
check_batched_gradgrad=False,
|
52 |
+
check_batched_forward_grad=False,
|
53 |
+
check_inplace_batched_forward_grad=False,
|
54 |
+
),
|
55 |
+
OpInfo(
|
56 |
+
"NestedMapControlflowOp",
|
57 |
+
op=nested_map,
|
58 |
+
sample_inputs_func=sample_inputs_map,
|
59 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
60 |
+
supports_out=False,
|
61 |
+
check_batched_grad=False,
|
62 |
+
check_batched_gradgrad=False,
|
63 |
+
check_batched_forward_grad=False,
|
64 |
+
check_inplace_batched_forward_grad=False,
|
65 |
+
),
|
66 |
+
OpInfo(
|
67 |
+
"TripleNestedMapControlflowOp",
|
68 |
+
op=triple_nested_map,
|
69 |
+
sample_inputs_func=sample_inputs_map,
|
70 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
71 |
+
supports_out=False,
|
72 |
+
check_batched_grad=False,
|
73 |
+
check_batched_gradgrad=False,
|
74 |
+
check_batched_forward_grad=False,
|
75 |
+
check_inplace_batched_forward_grad=False,
|
76 |
+
)
|
77 |
+
]
|
venv/lib/python3.10/site-packages/torch/testing/_internal/custom_op_db.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import functools
|
5 |
+
from torch.testing import make_tensor
|
6 |
+
from torch.testing._internal.opinfo.core import (
|
7 |
+
OpInfo,
|
8 |
+
SampleInput,
|
9 |
+
)
|
10 |
+
from torch.testing._internal.common_dtype import all_types_and
|
11 |
+
import numpy as np
|
12 |
+
from torch.testing._internal.autograd_function_db import (
|
13 |
+
sample_inputs_numpy_cube,
|
14 |
+
sample_inputs_numpy_mul,
|
15 |
+
sample_inputs_numpy_sort,
|
16 |
+
sample_inputs_numpy_take,
|
17 |
+
)
|
18 |
+
from torch import Tensor
|
19 |
+
from torch.types import Number
|
20 |
+
from typing import * # noqa: F403
|
21 |
+
import torch._custom_ops as custom_ops
|
22 |
+
|
23 |
+
# Note: [custom op db]
|
24 |
+
#
|
25 |
+
# This is a collection of custom operator test cases written as OpInfos
|
26 |
+
# so they can easily be consumed by OpInfo-based tests to check if subsystems
|
27 |
+
# support them correctly.
|
28 |
+
|
29 |
+
def to_numpy(tensor):
|
30 |
+
return tensor.cpu().numpy()
|
31 |
+
|
32 |
+
@custom_ops.custom_op('_torch_testing::numpy_cube')
|
33 |
+
def numpy_cube(x: Tensor) -> Tuple[Tensor, Tensor]:
|
34 |
+
raise NotImplementedError()
|
35 |
+
|
36 |
+
@custom_ops.impl('_torch_testing::numpy_cube')
|
37 |
+
def numpy_cube_impl(x):
|
38 |
+
x_np = to_numpy(x)
|
39 |
+
dx = torch.tensor(3 * x_np ** 2, device=x.device)
|
40 |
+
return torch.tensor(x_np ** 3, device=x.device), dx
|
41 |
+
|
42 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_cube')
|
43 |
+
def numpy_cube_abstract(x):
|
44 |
+
return x.clone(), x.clone()
|
45 |
+
|
46 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_cube')
|
47 |
+
def numpy_cube_save_for_backward(inputs, output):
|
48 |
+
return (inputs.x, output[1])
|
49 |
+
|
50 |
+
@custom_ops.impl_backward('_torch_testing::numpy_cube')
|
51 |
+
def numpy_cube_backward(ctx, saved, grad_out, grad_dx):
|
52 |
+
x, dx = saved
|
53 |
+
grad_x = torch.ops._torch_testing.numpy_mul(grad_out, dx) + 6 * torch.ops._torch_testing.numpy_mul(grad_dx, x)
|
54 |
+
return {'x': grad_x}
|
55 |
+
|
56 |
+
@custom_ops.custom_op('_torch_testing::numpy_mul')
|
57 |
+
def numpy_mul(x: Tensor, y: Tensor) -> Tensor:
|
58 |
+
raise NotImplementedError()
|
59 |
+
|
60 |
+
@custom_ops.impl('_torch_testing::numpy_mul')
|
61 |
+
def numpy_mul_impl(x, y):
|
62 |
+
return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
|
63 |
+
|
64 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_mul')
|
65 |
+
def numpy_mul_abstract(x, y):
|
66 |
+
assert x.device == y.device
|
67 |
+
return (x * y).contiguous()
|
68 |
+
|
69 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_mul')
|
70 |
+
def numpy_mul_save_for_backward(inputs, output):
|
71 |
+
saved = {}
|
72 |
+
saved['x_requires_grad'] = inputs.x.requires_grad
|
73 |
+
saved['y_requires_grad'] = inputs.y.requires_grad
|
74 |
+
# Optimization: only save what is necessary
|
75 |
+
saved['y'] = inputs.y if inputs.x.requires_grad else None
|
76 |
+
saved['x'] = inputs.x if inputs.y.requires_grad else None
|
77 |
+
return saved
|
78 |
+
|
79 |
+
@custom_ops.impl_backward('_torch_testing::numpy_mul')
|
80 |
+
def numpy_mul_backward(ctx, saved, grad_out):
|
81 |
+
grad_x = grad_out * saved['y'] if saved['x_requires_grad'] else None
|
82 |
+
grad_y = grad_out * saved['x'] if saved['x_requires_grad'] else None
|
83 |
+
return {'y': grad_y, 'x': grad_x}
|
84 |
+
|
85 |
+
@custom_ops.custom_op('_torch_testing::numpy_sort')
|
86 |
+
def numpy_sort(x: Tensor, dim: int) -> Tuple[Tensor, Tensor, Tensor]:
|
87 |
+
raise NotImplementedError()
|
88 |
+
|
89 |
+
@custom_ops.impl("_torch_testing::numpy_sort")
|
90 |
+
def numpy_sort_impl(x, dim):
|
91 |
+
device = x.device
|
92 |
+
x = to_numpy(x)
|
93 |
+
ind = np.argsort(x, axis=dim)
|
94 |
+
ind_inv = np.argsort(ind, axis=dim)
|
95 |
+
result = np.take_along_axis(x, ind, axis=dim)
|
96 |
+
return (
|
97 |
+
torch.tensor(result, device=device),
|
98 |
+
torch.tensor(ind, device=device),
|
99 |
+
torch.tensor(ind_inv, device=device),
|
100 |
+
)
|
101 |
+
|
102 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_sort')
|
103 |
+
def numpy_sort_abstract(x, dim):
|
104 |
+
return torch.empty_like(x), torch.empty_like(x, dtype=torch.long), torch.empty_like(x, dtype=torch.long)
|
105 |
+
|
106 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_sort')
|
107 |
+
def numpy_sort_save_for_backward(inputs, output):
|
108 |
+
out, ind, ind_inv = output
|
109 |
+
return [inputs.dim, ind, ind_inv]
|
110 |
+
|
111 |
+
@custom_ops.impl_backward('_torch_testing::numpy_sort', output_differentiability=[True, False, False])
|
112 |
+
def numpy_sort_backward(ctx, saved, grad_out, grad_ind, grad_ind_inv):
|
113 |
+
dim, ind, ind_inv = saved
|
114 |
+
return {'x': torch.ops._torch_testing.numpy_take(grad_out, ind_inv, ind, dim)}
|
115 |
+
|
116 |
+
@custom_ops.custom_op('_torch_testing::numpy_take')
|
117 |
+
def numpy_take(x: Tensor, ind: Tensor, ind_inv: Tensor, dim: int) -> Tensor:
|
118 |
+
raise NotImplementedError()
|
119 |
+
|
120 |
+
@custom_ops.impl("_torch_testing::numpy_take")
|
121 |
+
def numpy_take_impl(x, ind, ind_inv, dim):
|
122 |
+
device = x.device
|
123 |
+
x = to_numpy(x)
|
124 |
+
ind = to_numpy(ind)
|
125 |
+
return torch.tensor(np.take_along_axis(x, ind, dim), device=device)
|
126 |
+
|
127 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_take')
|
128 |
+
def numpy_take_abstract(x, ind, ind_inv, dim):
|
129 |
+
assert x.device == ind.device
|
130 |
+
assert x.device == ind_inv.device
|
131 |
+
assert ind.dtype == torch.long
|
132 |
+
assert ind_inv.dtype == torch.long
|
133 |
+
return torch.empty_like(x)
|
134 |
+
|
135 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_take')
|
136 |
+
def numpy_take_save_for_backward(inputs, output):
|
137 |
+
return {
|
138 |
+
'dim': inputs.dim,
|
139 |
+
'ind': inputs.ind,
|
140 |
+
'ind_inv': inputs.ind_inv,
|
141 |
+
}
|
142 |
+
|
143 |
+
@custom_ops.impl_backward('_torch_testing::numpy_take')
|
144 |
+
def numpy_take_backward(ctx, saved, grad_out):
|
145 |
+
return {
|
146 |
+
'x': torch.ops._torch_testing.numpy_take(grad_out, saved['ind_inv'], saved['ind'], saved['dim']),
|
147 |
+
'ind': None,
|
148 |
+
'ind_inv': None,
|
149 |
+
}
|
150 |
+
|
151 |
+
@custom_ops.custom_op('_torch_testing::numpy_nonzero')
|
152 |
+
def numpy_nonzero(x: Tensor) -> Tensor:
|
153 |
+
raise NotImplementedError()
|
154 |
+
|
155 |
+
@custom_ops.impl('_torch_testing::numpy_nonzero')
|
156 |
+
def numpy_nonzero_impl(x):
|
157 |
+
x_np = to_numpy(x)
|
158 |
+
res = np.stack(np.nonzero(x_np), axis=1)
|
159 |
+
if res.shape[0] <= 1:
|
160 |
+
raise RuntimeError("not supported")
|
161 |
+
return torch.tensor(res, device=x.device)
|
162 |
+
|
163 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_nonzero')
|
164 |
+
def numpy_nonzero_abstract(x):
|
165 |
+
ctx = torch._custom_op.impl.get_ctx()
|
166 |
+
i0 = ctx.create_unbacked_symint()
|
167 |
+
shape = [i0, x.dim()]
|
168 |
+
result = x.new_empty(shape, dtype=torch.long)
|
169 |
+
return result
|
170 |
+
|
171 |
+
def sample_inputs_numpy_nonzero(opinfo, device, dtype, requires_grad, **kwargs):
|
172 |
+
make_arg = functools.partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
173 |
+
shape = 10
|
174 |
+
result = make_arg(shape, low=0.9, high=2)
|
175 |
+
mask = make_tensor(shape, low=0, high=2, device=device, dtype=torch.long)
|
176 |
+
with torch.no_grad():
|
177 |
+
result *= mask
|
178 |
+
|
179 |
+
yield SampleInput(result, args=())
|
180 |
+
|
181 |
+
@custom_ops.custom_op('_torch_testing::numpy_view_copy')
|
182 |
+
def numpy_view_copy(x: Tensor, shape: Sequence[int]) -> Tensor:
|
183 |
+
raise NotImplementedError()
|
184 |
+
|
185 |
+
@custom_ops.impl('_torch_testing::numpy_view_copy')
|
186 |
+
def numpy_view_copy_impl(x, shape) -> Tensor:
|
187 |
+
return torch.tensor(np.copy(to_numpy(x).reshape(shape)), device=x.device)
|
188 |
+
|
189 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_view_copy')
|
190 |
+
def numpy_view_copy_abstract(x, shape) -> Tensor:
|
191 |
+
return x.clone().view(shape).clone()
|
192 |
+
|
193 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_view_copy')
|
194 |
+
def numpy_view_copy_save_for_backward(inputs, output) -> Tensor:
|
195 |
+
return inputs.x.shape
|
196 |
+
|
197 |
+
@custom_ops.impl_backward('_torch_testing::numpy_view_copy')
|
198 |
+
def numpy_view_copy_backward(ctx, x_shape, grad_out) -> Tensor:
|
199 |
+
return {'x': torch.ops._torch_testing.numpy_view_copy(grad_out, x_shape)}
|
200 |
+
|
201 |
+
def sample_inputs_numpy_view_copy(opinfo, device, dtype, requires_grad, **kwargs):
|
202 |
+
make_arg = functools.partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
203 |
+
result = make_arg(2, 3, 4, low=0.9, high=2)
|
204 |
+
yield SampleInput(result, args=([2, 12],))
|
205 |
+
|
206 |
+
@custom_ops.custom_op('_torch_testing::numpy_cat')
|
207 |
+
def numpy_cat(xs: Sequence[Tensor], dim: int) -> Tensor:
|
208 |
+
raise NotImplementedError()
|
209 |
+
|
210 |
+
@custom_ops.impl('_torch_testing::numpy_cat')
|
211 |
+
def numpy_cat_impl(xs, dim):
|
212 |
+
assert len(xs) > 0
|
213 |
+
assert all(x.device == xs[0].device for x in xs)
|
214 |
+
assert all(x.dtype == xs[0].dtype for x in xs)
|
215 |
+
np_xs = [to_numpy(x) for x in xs]
|
216 |
+
np_out = np.concatenate(np_xs, axis=dim)
|
217 |
+
return torch.tensor(np_out, device=xs[0].device)
|
218 |
+
|
219 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_cat')
|
220 |
+
def numpy_cat_abstract(xs, dim):
|
221 |
+
assert len(xs) > 0
|
222 |
+
assert all(x.device == xs[0].device for x in xs)
|
223 |
+
assert all(x.dtype == xs[0].dtype for x in xs)
|
224 |
+
return torch.cat(xs, dim=dim)
|
225 |
+
|
226 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_cat')
|
227 |
+
def numpy_cat_save_for_backward(inputs, output):
|
228 |
+
dim_sizes = [x.shape[inputs.dim] for x in inputs.xs]
|
229 |
+
return dim_sizes, inputs.dim
|
230 |
+
|
231 |
+
@custom_ops.impl_backward('_torch_testing::numpy_cat')
|
232 |
+
def numpy_cat_backward(ctx, saved, grad_out):
|
233 |
+
dim_sizes, dim = saved
|
234 |
+
splits = list(np.cumsum(dim_sizes)[:-1])
|
235 |
+
grad_xs = torch.ops._torch_testing.numpy_split_copy(grad_out, splits, dim)
|
236 |
+
return {'xs': grad_xs}
|
237 |
+
|
238 |
+
def sample_inputs_numpy_cat(opinfo, device, dtype, requires_grad, **kwargs):
|
239 |
+
make_arg = functools.partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
240 |
+
r0 = make_arg(2, 3, 4, low=0.9, high=2)
|
241 |
+
r1 = make_arg(4, 3, 4, low=0.9, high=2)
|
242 |
+
r2 = make_arg(5, 3, 4, low=0.9, high=2)
|
243 |
+
yield SampleInput([r0, r1, r2], args=(0,))
|
244 |
+
|
245 |
+
@custom_ops.custom_op('_torch_testing::numpy_split_copy')
|
246 |
+
def numpy_split_copy(x: Tensor, sections: Sequence[int], dim: int) -> List[Tensor]:
|
247 |
+
raise NotImplementedError()
|
248 |
+
|
249 |
+
@custom_ops.impl('_torch_testing::numpy_split_copy')
|
250 |
+
def numpy_split_copy_impl(x, splits, dim):
|
251 |
+
x_np = to_numpy(x)
|
252 |
+
arrs = np.split(x_np, splits, axis=dim)
|
253 |
+
return [torch.tensor(arr, device=x.device, dtype=x.dtype) for arr in arrs]
|
254 |
+
|
255 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_split_copy')
|
256 |
+
def numpy_split_copy_abstract(x, splits, dim):
|
257 |
+
return [xi.clone() for xi in torch.tensor_split(x, splits, dim)]
|
258 |
+
|
259 |
+
@custom_ops.impl_save_for_backward('_torch_testing::numpy_split_copy')
|
260 |
+
def numpy_split_copy_save_for_backward(inputs, output):
|
261 |
+
return inputs.dim
|
262 |
+
|
263 |
+
@custom_ops.impl_backward('_torch_testing::numpy_split_copy')
|
264 |
+
def numpy_split_copy_backward(ctx, saved, grad_out):
|
265 |
+
dim = saved
|
266 |
+
return {'x': torch.ops._torch_testing.numpy_cat(grad_out, dim=dim)}
|
267 |
+
|
268 |
+
def sample_inputs_numpy_split_copy(opinfo, device, dtype, requires_grad, **kwargs):
|
269 |
+
make_arg = functools.partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
270 |
+
x = make_arg(2, 9, low=0.9, high=2)
|
271 |
+
yield SampleInput(x, args=([1, 3, 6], 1))
|
272 |
+
|
273 |
+
@custom_ops.custom_op('_torch_testing::numpy_split_copy_with_int')
|
274 |
+
def numpy_split_copy_with_int(x: Tensor, sections: Sequence[int], dim: int) -> Tuple[List[Tensor], int]:
|
275 |
+
raise NotImplementedError()
|
276 |
+
|
277 |
+
@custom_ops.impl('_torch_testing::numpy_split_copy_with_int')
|
278 |
+
def numpy_split_copy_with_int_impl(x, splits, dim):
|
279 |
+
x_np = to_numpy(x)
|
280 |
+
arrs = np.split(x_np, splits, axis=dim)
|
281 |
+
return [torch.tensor(arr, device=x.device, dtype=x.dtype) for arr in arrs], len(splits)
|
282 |
+
|
283 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_split_copy_with_int')
|
284 |
+
def numpy_split_copy_with_int_abstract(x, splits, dim):
|
285 |
+
return [xi.clone() for xi in torch.tensor_split(x, splits, dim)], len(splits)
|
286 |
+
|
287 |
+
@custom_ops.impl_save_for_backward(
|
288 |
+
'_torch_testing::numpy_split_copy_with_int')
|
289 |
+
def numpy_split_copy_with_int_save_for_backward(inputs, output):
|
290 |
+
return inputs.dim
|
291 |
+
|
292 |
+
@custom_ops.impl_backward(
|
293 |
+
'_torch_testing::numpy_split_copy_with_int',
|
294 |
+
output_differentiability=[True, False])
|
295 |
+
def numpy_split_copy_with_int_backward(ctx, saved, grad_out, _):
|
296 |
+
dim = saved
|
297 |
+
return {'x': torch.ops._torch_testing.numpy_cat(grad_out, dim=dim)}
|
298 |
+
|
299 |
+
@custom_ops.custom_op('_torch_testing::numpy_nms')
|
300 |
+
def numpy_nms(boxes: Tensor, scores: Tensor, iou_threshold: Number) -> Tensor:
|
301 |
+
raise NotImplementedError()
|
302 |
+
|
303 |
+
@custom_ops.impl('_torch_testing::numpy_nms')
|
304 |
+
def numpy_nms_impl(boxes, scores, iou_threshold):
|
305 |
+
# Adapted from Ross Girshick's fast-rcnn implementation at
|
306 |
+
# https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py
|
307 |
+
assert boxes.device == scores.device
|
308 |
+
device = boxes.device
|
309 |
+
|
310 |
+
boxes = to_numpy(boxes)
|
311 |
+
scores = to_numpy(scores)
|
312 |
+
|
313 |
+
N = boxes.shape[0]
|
314 |
+
assert boxes.shape == (N, 4)
|
315 |
+
assert scores.shape == (N,)
|
316 |
+
|
317 |
+
x1 = boxes[:, 0]
|
318 |
+
y1 = boxes[:, 1]
|
319 |
+
x2 = boxes[:, 2]
|
320 |
+
y2 = boxes[:, 3]
|
321 |
+
|
322 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
323 |
+
order = scores.argsort()[::-1]
|
324 |
+
|
325 |
+
keep = []
|
326 |
+
while order.size > 0:
|
327 |
+
i = order[0]
|
328 |
+
keep.append(i)
|
329 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
330 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
331 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
332 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
333 |
+
|
334 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
335 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
336 |
+
inter = w * h
|
337 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
338 |
+
|
339 |
+
inds = np.where(ovr <= iou_threshold)[0]
|
340 |
+
order = order[inds + 1]
|
341 |
+
|
342 |
+
result = torch.tensor(np.stack(keep), device=device)
|
343 |
+
# Needed for data-dependent condition :(
|
344 |
+
assert result.size(0) >= 2
|
345 |
+
return result
|
346 |
+
|
347 |
+
@custom_ops.impl_abstract('_torch_testing::numpy_nms')
|
348 |
+
def numpy_nms_abstract(boxes, scores, iou_threshold):
|
349 |
+
assert boxes.device == scores.device
|
350 |
+
N = boxes.shape[0]
|
351 |
+
assert boxes.shape == (N, 4)
|
352 |
+
assert scores.shape == (N,)
|
353 |
+
|
354 |
+
ctx = torch._custom_op.impl.get_ctx()
|
355 |
+
i0 = ctx.create_unbacked_symint()
|
356 |
+
result = boxes.new_empty([i0], dtype=torch.int64)
|
357 |
+
return result
|
358 |
+
|
359 |
+
def sample_inputs_numpy_nms(opinfo, device, dtype, requires_grad, **kwargs):
|
360 |
+
make_arg = functools.partial(make_tensor, device=device, dtype=dtype)
|
361 |
+
N = 64
|
362 |
+
xs = make_arg([N], low=0, high=28)
|
363 |
+
dx = make_arg([N], low=0, high=4)
|
364 |
+
ys = make_arg([N], low=0, high=28)
|
365 |
+
dy = make_arg([N], low=0, high=4)
|
366 |
+
boxes = torch.stack([xs, ys, xs + dx, ys + dy], dim=1).requires_grad_(requires_grad)
|
367 |
+
scores = make_arg([N], low=0, high=1, requires_grad=requires_grad)
|
368 |
+
iou_threshold = make_arg([], low=0, high=1).item()
|
369 |
+
|
370 |
+
yield SampleInput(boxes, args=(scores, iou_threshold))
|
371 |
+
|
372 |
+
custom_op_db = [
|
373 |
+
OpInfo(
|
374 |
+
'NumpyCubeCustomOp',
|
375 |
+
op=torch.ops._torch_testing.numpy_cube,
|
376 |
+
sample_inputs_func=sample_inputs_numpy_cube,
|
377 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
378 |
+
supports_out=False,
|
379 |
+
),
|
380 |
+
OpInfo(
|
381 |
+
'NumpyMulCustomOp',
|
382 |
+
op=torch.ops._torch_testing.numpy_mul,
|
383 |
+
sample_inputs_func=sample_inputs_numpy_mul,
|
384 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
385 |
+
supports_out=False,
|
386 |
+
),
|
387 |
+
OpInfo(
|
388 |
+
'NumpySortCustomOp',
|
389 |
+
op=torch.ops._torch_testing.numpy_sort,
|
390 |
+
sample_inputs_func=sample_inputs_numpy_sort,
|
391 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
392 |
+
supports_out=False,
|
393 |
+
),
|
394 |
+
OpInfo(
|
395 |
+
'NumpyTakeCustomOp',
|
396 |
+
op=torch.ops._torch_testing.numpy_take,
|
397 |
+
sample_inputs_func=sample_inputs_numpy_take,
|
398 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
399 |
+
supports_out=False,
|
400 |
+
),
|
401 |
+
OpInfo(
|
402 |
+
'NumpyNonzeroCustomOp',
|
403 |
+
op=torch.ops._torch_testing.numpy_nonzero,
|
404 |
+
sample_inputs_func=sample_inputs_numpy_nonzero,
|
405 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
406 |
+
supports_autograd=False,
|
407 |
+
supports_out=False,
|
408 |
+
),
|
409 |
+
OpInfo(
|
410 |
+
'NumpyNMSCustomOp',
|
411 |
+
op=torch.ops._torch_testing.numpy_nms,
|
412 |
+
sample_inputs_func=sample_inputs_numpy_nms,
|
413 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
414 |
+
supports_autograd=False,
|
415 |
+
supports_out=False,
|
416 |
+
),
|
417 |
+
OpInfo(
|
418 |
+
'NumpyViewCopyCustomOp',
|
419 |
+
op=torch.ops._torch_testing.numpy_view_copy,
|
420 |
+
sample_inputs_func=sample_inputs_numpy_view_copy,
|
421 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
422 |
+
supports_autograd=True,
|
423 |
+
supports_out=False,
|
424 |
+
),
|
425 |
+
OpInfo(
|
426 |
+
'NumpyCatCustomOp',
|
427 |
+
op=torch.ops._torch_testing.numpy_cat,
|
428 |
+
sample_inputs_func=sample_inputs_numpy_cat,
|
429 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
430 |
+
supports_autograd=True,
|
431 |
+
check_batched_grad=False,
|
432 |
+
check_batched_gradgrad=False,
|
433 |
+
supports_out=False,
|
434 |
+
),
|
435 |
+
OpInfo(
|
436 |
+
'NumpySplitCopyCustomOp',
|
437 |
+
op=torch.ops._torch_testing.numpy_split_copy,
|
438 |
+
sample_inputs_func=sample_inputs_numpy_split_copy,
|
439 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
440 |
+
supports_autograd=True,
|
441 |
+
check_batched_grad=False,
|
442 |
+
check_batched_gradgrad=False,
|
443 |
+
supports_out=False,
|
444 |
+
),
|
445 |
+
OpInfo(
|
446 |
+
'NumpySplitCopyWithIntCustomOp',
|
447 |
+
op=torch.ops._torch_testing.numpy_split_copy_with_int,
|
448 |
+
sample_inputs_func=sample_inputs_numpy_split_copy,
|
449 |
+
dtypes=all_types_and(torch.bool, torch.half),
|
450 |
+
gradcheck_wrapper=lambda op, *args, **kwargs: op(*args, **kwargs)[0],
|
451 |
+
supports_autograd=True,
|
452 |
+
check_batched_grad=False,
|
453 |
+
check_batched_gradgrad=False,
|
454 |
+
supports_out=False,
|
455 |
+
),
|
456 |
+
]
|
venv/lib/python3.10/site-packages/torch/testing/_internal/dist_utils.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
from functools import partial, wraps
|
7 |
+
from typing import Tuple
|
8 |
+
|
9 |
+
import torch.distributed as dist
|
10 |
+
import torch.distributed.rpc as rpc
|
11 |
+
from torch.distributed.rpc import _rref_context_get_debug_info
|
12 |
+
from torch.testing._internal.common_utils import FILE_SCHEMA, TEST_WITH_TSAN
|
13 |
+
|
14 |
+
|
15 |
+
if not dist.is_available():
|
16 |
+
print("c10d not available, skipping tests", file=sys.stderr)
|
17 |
+
sys.exit(0)
|
18 |
+
|
19 |
+
|
20 |
+
INIT_METHOD_TEMPLATE = FILE_SCHEMA + "{file_name}"
|
21 |
+
|
22 |
+
def dist_init(
|
23 |
+
old_test_method=None,
|
24 |
+
setup_rpc: bool = True,
|
25 |
+
clean_shutdown: bool = True,
|
26 |
+
faulty_messages=None,
|
27 |
+
messages_to_delay=None,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
We use this decorator for setting up and tearing down state since
|
31 |
+
MultiProcessTestCase runs each `test*` method in a separate process and
|
32 |
+
each process just runs the `test*` method without actually calling
|
33 |
+
'setUp' and 'tearDown' methods of unittest.
|
34 |
+
|
35 |
+
Note: pass the string representation of MessageTypes that should be used
|
36 |
+
with the faulty agent's send function. By default, all retriable messages
|
37 |
+
("RREF_FORK_REQUEST", "RREF_CHILD_ACCEPT", "RREF_USER_DELETE",
|
38 |
+
"CLEANUP_AUTOGRAD_CONTEXT_REQ") will use the faulty send (this default is
|
39 |
+
set from faulty_rpc_agent_test_fixture.py).
|
40 |
+
"""
|
41 |
+
# If we use dist_init without arguments (ex: @dist_init), old_test_method is
|
42 |
+
# appropriately set and we return the wrapper appropriately. On the other
|
43 |
+
# hand if dist_init has arguments (ex: @dist_init(clean_shutdown=False)),
|
44 |
+
# old_test_method is None and we return a functools.partial which is the real
|
45 |
+
# decorator that is used and as a result we recursively call dist_init with
|
46 |
+
# old_test_method and the rest of the arguments appropriately set.
|
47 |
+
if old_test_method is None:
|
48 |
+
return partial(
|
49 |
+
dist_init,
|
50 |
+
setup_rpc=setup_rpc,
|
51 |
+
clean_shutdown=clean_shutdown,
|
52 |
+
faulty_messages=faulty_messages,
|
53 |
+
messages_to_delay=messages_to_delay,
|
54 |
+
)
|
55 |
+
|
56 |
+
@wraps(old_test_method)
|
57 |
+
def new_test_method(self, *arg, **kwargs):
|
58 |
+
# Setting _ignore_rref_leak to make sure OwnerRRefs are properly deleted
|
59 |
+
# in tests.
|
60 |
+
import torch.distributed.rpc.api as api
|
61 |
+
|
62 |
+
api._ignore_rref_leak = False
|
63 |
+
self.worker_id = self.rank
|
64 |
+
self.setup_fault_injection(faulty_messages, messages_to_delay)
|
65 |
+
|
66 |
+
rpc_backend_options = self.rpc_backend_options
|
67 |
+
if setup_rpc:
|
68 |
+
if TEST_WITH_TSAN:
|
69 |
+
# TSAN runs much slower.
|
70 |
+
rpc_backend_options.rpc_timeout = rpc.constants.DEFAULT_RPC_TIMEOUT_SEC * 5
|
71 |
+
rpc.constants.DEFAULT_SHUTDOWN_TIMEOUT = 60
|
72 |
+
|
73 |
+
rpc.init_rpc(
|
74 |
+
name="worker%d" % self.rank,
|
75 |
+
backend=self.rpc_backend,
|
76 |
+
rank=self.rank,
|
77 |
+
world_size=self.world_size,
|
78 |
+
rpc_backend_options=rpc_backend_options,
|
79 |
+
)
|
80 |
+
|
81 |
+
return_value = old_test_method(self, *arg, **kwargs)
|
82 |
+
|
83 |
+
if setup_rpc:
|
84 |
+
rpc.shutdown(graceful=clean_shutdown)
|
85 |
+
|
86 |
+
return return_value
|
87 |
+
|
88 |
+
return new_test_method
|
89 |
+
|
90 |
+
|
91 |
+
def noop() -> None:
|
92 |
+
pass
|
93 |
+
|
94 |
+
|
95 |
+
def wait_until_node_failure(rank: int, expected_error_regex: str = ".*") -> str:
|
96 |
+
"""
|
97 |
+
Loops until an RPC to the given rank fails. This is used to
|
98 |
+
indicate that the node has failed in unit tests.
|
99 |
+
Args:
|
100 |
+
rank (int): Rank of the node expected to fail
|
101 |
+
expected_error_regex (optional, str): Regex of exception message expected. Useful to ensure a specific failure
|
102 |
+
occurs, not just any.
|
103 |
+
"""
|
104 |
+
while True:
|
105 |
+
try:
|
106 |
+
rpc.rpc_sync(f"worker{rank}", noop, args=())
|
107 |
+
time.sleep(0.1)
|
108 |
+
except Exception as e:
|
109 |
+
if re.search(pattern=expected_error_regex, string=str(e)):
|
110 |
+
return str(e)
|
111 |
+
|
112 |
+
|
113 |
+
def wait_until_pending_futures_and_users_flushed(timeout: int = 20) -> None:
|
114 |
+
"""
|
115 |
+
The RRef protocol holds forkIds of rrefs in a map until those forks are
|
116 |
+
confirmed by the owner. The message confirming the fork may arrive after
|
117 |
+
our tests check whether this map is empty, which leads to failures and
|
118 |
+
flaky tests. to_here also does not guarantee that we have finished
|
119 |
+
processind the owner's confirmation message for the RRef. This function
|
120 |
+
loops until the map is empty, which means the messages have been received
|
121 |
+
as processed. Call this function before asserting the map returned by
|
122 |
+
_get_debug_info is empty.
|
123 |
+
"""
|
124 |
+
start = time.time()
|
125 |
+
while True:
|
126 |
+
debug_info = _rref_context_get_debug_info()
|
127 |
+
num_pending_futures = int(debug_info["num_pending_futures"])
|
128 |
+
num_pending_users = int(debug_info["num_pending_users"])
|
129 |
+
if num_pending_futures == 0 and num_pending_users == 0:
|
130 |
+
break
|
131 |
+
time.sleep(0.1)
|
132 |
+
if time.time() - start > timeout:
|
133 |
+
raise ValueError(
|
134 |
+
"Timed out waiting to flush pending futures and users, had {} pending futures and {} pending users".format(
|
135 |
+
num_pending_futures, num_pending_users
|
136 |
+
)
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def get_num_owners_and_forks() -> Tuple[str, str]:
|
141 |
+
"""
|
142 |
+
Retrieves number of OwnerRRefs and forks on this node from
|
143 |
+
_rref_context_get_debug_info.
|
144 |
+
"""
|
145 |
+
rref_dbg_info = _rref_context_get_debug_info()
|
146 |
+
num_owners = rref_dbg_info["num_owner_rrefs"]
|
147 |
+
num_forks = rref_dbg_info["num_forks"]
|
148 |
+
return num_owners, num_forks
|
149 |
+
|
150 |
+
|
151 |
+
def wait_until_owners_and_forks_on_rank(
|
152 |
+
num_owners: int, num_forks: int, rank: int, timeout: int = 20
|
153 |
+
) -> None:
|
154 |
+
"""
|
155 |
+
Waits until timeout for num_forks and num_owners to exist on the rank. Used
|
156 |
+
to ensure proper deletion of RRefs in tests.
|
157 |
+
"""
|
158 |
+
start = time.time()
|
159 |
+
while True:
|
160 |
+
num_owners_on_rank, num_forks_on_rank = rpc.rpc_sync(
|
161 |
+
worker_name(rank), get_num_owners_and_forks, args=(), timeout=5
|
162 |
+
)
|
163 |
+
num_owners_on_rank = int(num_owners_on_rank)
|
164 |
+
num_forks_on_rank = int(num_forks_on_rank)
|
165 |
+
if num_owners_on_rank == num_owners and num_forks_on_rank == num_forks:
|
166 |
+
return
|
167 |
+
time.sleep(1)
|
168 |
+
if time.time() - start > timeout:
|
169 |
+
raise ValueError(
|
170 |
+
"Timed out waiting {} sec for {} owners and {} forks on rank, had {} owners and {} forks".format(
|
171 |
+
timeout,
|
172 |
+
num_owners,
|
173 |
+
num_forks,
|
174 |
+
num_owners_on_rank,
|
175 |
+
num_forks_on_rank,
|
176 |
+
)
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
def initialize_pg(init_method, rank: int, world_size: int) -> None:
|
181 |
+
# This is for tests using `dist.barrier`.
|
182 |
+
if not dist.is_initialized():
|
183 |
+
dist.init_process_group(
|
184 |
+
backend="gloo",
|
185 |
+
init_method=init_method,
|
186 |
+
rank=rank,
|
187 |
+
world_size=world_size,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
def worker_name(rank: int) -> str:
|
192 |
+
return f"worker{rank}"
|
193 |
+
|
194 |
+
|
195 |
+
def get_function_event(function_events, partial_event_name):
|
196 |
+
"""
|
197 |
+
Returns the first event that matches partial_event_name in the provided
|
198 |
+
function_events. These function_events should be the output of
|
199 |
+
torch.autograd.profiler.function_events().
|
200 |
+
|
201 |
+
Args:
|
202 |
+
function_events: function_events returned by the profiler.
|
203 |
+
event_name (str): partial key that the event was profiled with.
|
204 |
+
"""
|
205 |
+
event = [event for event in function_events if partial_event_name in event.name][0] # noqa: RUF015
|
206 |
+
return event
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/sharded_tensor/_test_st_common.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from torch.distributed._shard import sharded_tensor
|
7 |
+
|
8 |
+
from torch.distributed._shard.sharding_spec import (
|
9 |
+
ChunkShardingSpec,
|
10 |
+
)
|
11 |
+
|
12 |
+
PLACEMENTS = [
|
13 |
+
"rank:0/cuda:0",
|
14 |
+
"rank:1/cuda:1",
|
15 |
+
"rank:2/cuda:2",
|
16 |
+
"rank:3/cuda:3",
|
17 |
+
]
|
18 |
+
|
19 |
+
DEFAULT_GPU_NUM = 4
|
20 |
+
|
21 |
+
|
22 |
+
def _chunk_sharding_specs_list_for_test(sharding_dims, seed=0):
|
23 |
+
spec_list = []
|
24 |
+
for i in range(len(sharding_dims)):
|
25 |
+
random.Random(seed + i).shuffle(PLACEMENTS)
|
26 |
+
spec_list.append(
|
27 |
+
ChunkShardingSpec(
|
28 |
+
dim=sharding_dims[i],
|
29 |
+
placements=copy.deepcopy(PLACEMENTS),
|
30 |
+
)
|
31 |
+
)
|
32 |
+
return spec_list
|
33 |
+
|
34 |
+
class MyShardedModel2(torch.nn.Module):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
spec=None,
|
38 |
+
group=None,
|
39 |
+
init_rrefs=True
|
40 |
+
) -> None:
|
41 |
+
super().__init__()
|
42 |
+
if spec is not None:
|
43 |
+
self.sharded_tensor2 = sharded_tensor.rand(
|
44 |
+
spec, 10, 20, process_group=group, init_rrefs=init_rrefs
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
self.sharded_tensor2 = None
|
48 |
+
self.random_tensor2 = torch.nn.Parameter(torch.rand(2, 2))
|
49 |
+
|
50 |
+
|
51 |
+
class MyShardedModel1(torch.nn.Module):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
spec=None,
|
55 |
+
group=None,
|
56 |
+
init_rrefs=True
|
57 |
+
) -> None:
|
58 |
+
super().__init__()
|
59 |
+
if spec is not None:
|
60 |
+
self.sharded_tensor1 = sharded_tensor.rand(
|
61 |
+
spec, 10, 20, process_group=group, init_rrefs=init_rrefs
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
self.sharded_tensor1 = None
|
65 |
+
self.random_tensor1 = torch.nn.Parameter(torch.rand(2, 2))
|
66 |
+
self.submodule = MyShardedModel2(spec, group, init_rrefs)
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/_shard/test_common.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
7 |
+
|
8 |
+
|
9 |
+
class SimpleMegatronLM(nn.Module):
|
10 |
+
def __init__(self, linear_size, rank=None, dtype=torch.float32):
|
11 |
+
super().__init__()
|
12 |
+
self.fc1 = nn.Linear(*linear_size[0], dtype=dtype)
|
13 |
+
self.gelu = nn.GELU()
|
14 |
+
self.fc2 = nn.Linear(*linear_size[1], dtype=dtype)
|
15 |
+
if rank is not None:
|
16 |
+
self.fc1.cuda(rank)
|
17 |
+
self.fc2.cuda(rank)
|
18 |
+
|
19 |
+
def forward(self, inp):
|
20 |
+
return self.fc2(self.gelu(self.fc1(inp)))
|
21 |
+
|
22 |
+
def get_weights(self):
|
23 |
+
if isinstance(self.fc1.weight, ShardedTensor):
|
24 |
+
weight1 = self.fc1.weight.local_tensor()
|
25 |
+
else:
|
26 |
+
weight1 = self.fc1.weight
|
27 |
+
|
28 |
+
if isinstance(self.fc2.weight, ShardedTensor):
|
29 |
+
weight2 = self.fc2.weight.local_tensor()
|
30 |
+
else:
|
31 |
+
weight2 = self.fc2.weight
|
32 |
+
|
33 |
+
return (weight1, weight2)
|
34 |
+
|
35 |
+
def get_biases(self):
|
36 |
+
return (self.fc1.bias, self.fc2.bias)
|
37 |
+
|
38 |
+
def get_weight_grads(self):
|
39 |
+
return (self.fc1.weight.grad, self.fc2.weight.grad)
|
40 |
+
|
41 |
+
def get_bias_grads(self):
|
42 |
+
return (self.fc1.bias.grad, self.fc2.bias.grad)
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/checkpoint_utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
4 |
+
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
import tempfile
|
8 |
+
from functools import wraps
|
9 |
+
from typing import Any, Callable, Dict, Optional, Tuple
|
10 |
+
|
11 |
+
import torch.distributed as dist
|
12 |
+
|
13 |
+
|
14 |
+
def with_temp_dir(
|
15 |
+
func: Optional[Callable] = None,
|
16 |
+
) -> Optional[Callable]:
|
17 |
+
"""
|
18 |
+
Wrapper to initialize temp directory for distributed checkpoint.
|
19 |
+
"""
|
20 |
+
assert func is not None
|
21 |
+
|
22 |
+
@wraps(func)
|
23 |
+
def wrapper(self, *args: Tuple[object], **kwargs: Dict[str, Any]) -> None:
|
24 |
+
if dist.is_initialized():
|
25 |
+
# Only create temp_dir when rank is 0
|
26 |
+
if dist.get_rank() == 0:
|
27 |
+
temp_dir = tempfile.mkdtemp()
|
28 |
+
print(f"Using temp directory: {temp_dir}")
|
29 |
+
else:
|
30 |
+
temp_dir = ""
|
31 |
+
object_list = [temp_dir]
|
32 |
+
|
33 |
+
# Broadcast temp_dir to all the other ranks
|
34 |
+
os.sync()
|
35 |
+
dist.broadcast_object_list(object_list)
|
36 |
+
self.temp_dir = object_list[0]
|
37 |
+
os.sync()
|
38 |
+
else:
|
39 |
+
temp_dir = tempfile.mkdtemp()
|
40 |
+
print(f"No process group initialized, using temp directory: {temp_dir}")
|
41 |
+
self.temp_dir = temp_dir
|
42 |
+
|
43 |
+
try:
|
44 |
+
func(self, *args, **kwargs)
|
45 |
+
finally:
|
46 |
+
if dist.is_initialized() and dist.get_rank() == 0:
|
47 |
+
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
48 |
+
else:
|
49 |
+
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
50 |
+
|
51 |
+
return wrapper
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/common_state_dict.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Owner(s): ["oncall: distributed"]
|
4 |
+
|
5 |
+
import copy
|
6 |
+
from itertools import chain
|
7 |
+
from typing import Any, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
from torch.distributed._sharded_tensor import ShardedTensor
|
13 |
+
from torch.distributed._state_dict_utils import _gather_state_dict
|
14 |
+
from torch.distributed._tensor import DTensor
|
15 |
+
from torch.distributed.checkpoint.state_dict import (
|
16 |
+
PG,
|
17 |
+
set_state_dict,
|
18 |
+
STATE,
|
19 |
+
StateDictOptions,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
class VerifyStateDictMixin:
|
24 |
+
def _compare_tensor(self, orig_tensor, dist_tensor):
|
25 |
+
if isinstance(dist_tensor, (DTensor, ShardedTensor)):
|
26 |
+
dist_tensor = _gather_state_dict({"mykey": dist_tensor}).pop("mykey")
|
27 |
+
self.assertTrue(isinstance(dist_tensor, torch.Tensor))
|
28 |
+
self.assertTrue(torch.allclose(orig_tensor, dist_tensor))
|
29 |
+
|
30 |
+
def _verify_msd(
|
31 |
+
self,
|
32 |
+
msd: Dict[str, Any],
|
33 |
+
dist_msd: Dict[str, Any],
|
34 |
+
options: StateDictOptions = StateDictOptions(),
|
35 |
+
) -> None:
|
36 |
+
if not options.ignore_frozen_params:
|
37 |
+
self.assertEqual(len(msd), len(dist_msd))
|
38 |
+
for fqn, param in msd.items():
|
39 |
+
dist_param = dist_msd.get(fqn, None)
|
40 |
+
if not options.ignore_frozen_params:
|
41 |
+
self.assertIsNotNone(dist_param, f"{fqn=}")
|
42 |
+
self._compare_tensor(param, dist_param)
|
43 |
+
elif dist_param is None:
|
44 |
+
self.assertFalse(param.requires_grad, f"{fqn=}")
|
45 |
+
|
46 |
+
def _verify_osd(
|
47 |
+
self,
|
48 |
+
model: nn.Module,
|
49 |
+
optim: torch.optim.Optimizer,
|
50 |
+
osd: Dict[str, Any],
|
51 |
+
dist_osd: Dict[str, Any],
|
52 |
+
) -> None:
|
53 |
+
params = list(chain.from_iterable(g["params"] for g in optim.param_groups))
|
54 |
+
param_pid_mapping = dict(zip(params, range(len(params))))
|
55 |
+
fqn_pid_mapping = {}
|
56 |
+
for fqn, param in model.named_parameters():
|
57 |
+
pid = param_pid_mapping[param]
|
58 |
+
fqn_pid_mapping[fqn] = pid
|
59 |
+
fqn_pid_mapping[pid] = fqn
|
60 |
+
# Check optimizer_state_dict state
|
61 |
+
|
62 |
+
self.assertEqual(len(osd[STATE]), len(dist_osd[STATE]))
|
63 |
+
for pid, states in osd[STATE].items():
|
64 |
+
fqn = fqn_pid_mapping[pid]
|
65 |
+
dist_states = dist_osd[STATE].get(fqn, None)
|
66 |
+
self.assertIsNotNone(dist_states, fqn)
|
67 |
+
self.assertEqual(len(states), len(dist_states))
|
68 |
+
for key, state in states.items():
|
69 |
+
dist_state = states.get(key, None)
|
70 |
+
self.assertIsNotNone(dist_state)
|
71 |
+
self._compare_tensor(state, dist_state)
|
72 |
+
|
73 |
+
# Check optimizer_state_dict param_group
|
74 |
+
old_dist_osd_pg = dist_osd[PG]
|
75 |
+
if len(osd[PG]) != len(dist_osd[PG]):
|
76 |
+
self.assertTrue(len(dist_osd[PG]) > len(osd[PG]))
|
77 |
+
new_pg = copy.deepcopy(dist_osd[PG][0])
|
78 |
+
new_pg["params"] = []
|
79 |
+
for dist_group in dist_osd[PG]:
|
80 |
+
new_pg["params"].extend(dist_group["params"])
|
81 |
+
dist_osd[PG] = [new_pg]
|
82 |
+
|
83 |
+
self.assertEqual(len(osd[PG]), len(dist_osd[PG]))
|
84 |
+
for group, dist_group in zip(osd[PG], dist_osd[PG]):
|
85 |
+
self.assertEqual(len(group), len(dist_group))
|
86 |
+
for key, value in group.items():
|
87 |
+
# Below doesn't work because param_groups can have None
|
88 |
+
# values.
|
89 |
+
# dist_value = dist_group.get(key, None)
|
90 |
+
# self.assertIsNotNone(dist_value, (dist_group, group))
|
91 |
+
dist_value = dist_group[key]
|
92 |
+
if key == "params":
|
93 |
+
fqns = [fqn_pid_mapping[pid] for pid in value]
|
94 |
+
self.assertEqual(sorted(fqns), sorted(dist_value))
|
95 |
+
else:
|
96 |
+
self.assertEqual(value, dist_value)
|
97 |
+
dist_osd[PG] = old_dist_osd_pg
|
98 |
+
|
99 |
+
def _verify_osd_by_load(
|
100 |
+
self,
|
101 |
+
model: nn.Module,
|
102 |
+
optim: torch.optim.Optimizer,
|
103 |
+
new_optim: torch.optim.Optimizer,
|
104 |
+
dist_osd: Dict[str, Any],
|
105 |
+
) -> None:
|
106 |
+
new_dist_osd = _gather_state_dict(dist_osd)
|
107 |
+
set_state_dict(
|
108 |
+
model,
|
109 |
+
optimizers=new_optim,
|
110 |
+
model_state_dict={},
|
111 |
+
optim_state_dict=new_dist_osd,
|
112 |
+
)
|
113 |
+
self.assertEqual(optim.state_dict(), new_optim.state_dict())
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/ddp_under_dist_autograd_test.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import enum
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import threading
|
8 |
+
from typing import NamedTuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
import torch.distributed.autograd as dist_autograd
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.distributed import rpc
|
15 |
+
from torch.distributed.nn import RemoteModule
|
16 |
+
from torch.nn.parallel import DistributedDataParallel
|
17 |
+
from torch.testing._internal.common_distributed import (
|
18 |
+
requires_gloo,
|
19 |
+
requires_nccl,
|
20 |
+
skip_if_lt_x_gpu,
|
21 |
+
skip_if_rocm,
|
22 |
+
)
|
23 |
+
from torch.testing._internal.dist_utils import INIT_METHOD_TEMPLATE, dist_init
|
24 |
+
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
|
25 |
+
RpcAgentTestFixture,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
NUM_EM_ROW = 2
|
30 |
+
D_SPARSE = 3
|
31 |
+
D_DENSE = 2
|
32 |
+
D_HID = 3
|
33 |
+
D_OUT = 1
|
34 |
+
NUM_TRAINERS = 4
|
35 |
+
# Trainers + the master + the remote worker
|
36 |
+
WORLD_SIZE = NUM_TRAINERS + 2
|
37 |
+
TRAINER_RANKS = list(range(NUM_TRAINERS))
|
38 |
+
REMOTE_WORKER_RANK = TRAINER_RANKS[-1] + 1
|
39 |
+
MASTER_RANK = REMOTE_WORKER_RANK + 1
|
40 |
+
|
41 |
+
|
42 |
+
class DdpMode(enum.Enum):
|
43 |
+
# Don't apply DDP
|
44 |
+
NONE = enum.auto()
|
45 |
+
# Apply DDP to the top level nn.Module
|
46 |
+
OUTSIDE = enum.auto()
|
47 |
+
# Embed DDP inside the top level nn.Module
|
48 |
+
INSIDE = enum.auto()
|
49 |
+
|
50 |
+
|
51 |
+
def init_logger():
|
52 |
+
logger = logging.getLogger(__name__)
|
53 |
+
level = logging.DEBUG if "debug" in os.environ else logging.INFO
|
54 |
+
logger.setLevel(level)
|
55 |
+
console = logging.StreamHandler()
|
56 |
+
formatter = logging.Formatter(
|
57 |
+
"%(asctime)s %(filename)s:%(lineno)s %(levelname)s p:%(processName)s t:%(threadName)s: %(message)s"
|
58 |
+
)
|
59 |
+
console.setFormatter(formatter)
|
60 |
+
console.setLevel(level)
|
61 |
+
# add the handlers to the logger
|
62 |
+
logger.addHandler(console)
|
63 |
+
logger.propagate = False
|
64 |
+
return logger
|
65 |
+
|
66 |
+
|
67 |
+
gLogger = init_logger()
|
68 |
+
|
69 |
+
|
70 |
+
class FeatureSet(NamedTuple):
|
71 |
+
""" A feature set has 2 types of features"""
|
72 |
+
|
73 |
+
dense_features: torch.Tensor
|
74 |
+
sparse_features: torch.LongTensor
|
75 |
+
values: torch.Tensor
|
76 |
+
|
77 |
+
|
78 |
+
def _call_method(method, rref, *args, **kwargs):
|
79 |
+
return method(rref.local_value(), *args, **kwargs)
|
80 |
+
|
81 |
+
|
82 |
+
def _remote_method(method, rref, *args, **kwargs):
|
83 |
+
args_tup = tuple([method, rref] + list(args))
|
84 |
+
return rpc.rpc_sync(rref.owner(), _call_method, args=args_tup, kwargs=kwargs)
|
85 |
+
|
86 |
+
|
87 |
+
def _remote_method_async(method, rref, *args, **kwargs):
|
88 |
+
args_tup = tuple([method, rref] + list(args))
|
89 |
+
return rpc.rpc_async(rref.owner(), _call_method, args=args_tup, kwargs=kwargs)
|
90 |
+
|
91 |
+
|
92 |
+
class RemoteEM(nn.Module):
|
93 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
94 |
+
gLogger.info("Initing RemoteEM with %s %s", num_embeddings, embedding_dim)
|
95 |
+
super().__init__()
|
96 |
+
init_em = [0.5] * embedding_dim
|
97 |
+
self.em = nn.EmbeddingBag(
|
98 |
+
num_embeddings,
|
99 |
+
embedding_dim,
|
100 |
+
_weight=torch.tensor([init_em] * num_embeddings),
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, input: torch.Tensor):
|
104 |
+
gLogger.debug("Running RemoteEM.forward() on: %s", input)
|
105 |
+
return self.em(input, offsets=torch.LongTensor(range(input.shape[0])))
|
106 |
+
|
107 |
+
|
108 |
+
# Return a linear module with predefined parameters.
|
109 |
+
def getLinear(d_in, d_out):
|
110 |
+
l = nn.Linear(d_in, d_out, bias=False)
|
111 |
+
w = torch.ones((d_out, d_in))
|
112 |
+
w[0][0] = -1
|
113 |
+
w.requires_grad_()
|
114 |
+
l.weight.data = w
|
115 |
+
return l
|
116 |
+
|
117 |
+
|
118 |
+
class RemoteNet(nn.Module):
|
119 |
+
def __init__(self, d_in: int, d_out: int):
|
120 |
+
gLogger.info("Initing RemoteNet with %s %s", d_in, d_out)
|
121 |
+
super().__init__()
|
122 |
+
self.fc = getLinear(d_in, d_out)
|
123 |
+
self.relu = nn.ReLU()
|
124 |
+
|
125 |
+
def forward(self, input: torch.Tensor):
|
126 |
+
gLogger.debug("Running RemoteNet.forward() on: %s", input)
|
127 |
+
return self.relu(self.fc(input))
|
128 |
+
|
129 |
+
|
130 |
+
class HybridModel(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
remote_em_rref: rpc.RRef,
|
134 |
+
remote_net_rref: rpc.RRef,
|
135 |
+
process_group_for_ddp: dist.ProcessGroup = None,
|
136 |
+
):
|
137 |
+
super().__init__()
|
138 |
+
self.remote_em_rref = remote_em_rref
|
139 |
+
self.remote_net_rref = remote_net_rref
|
140 |
+
self.fc1 = getLinear(D_DENSE, D_DENSE)
|
141 |
+
self.fc2 = getLinear(D_HID, D_OUT)
|
142 |
+
|
143 |
+
self.non_ddp_params = tuple(self.fc1.parameters()) + tuple(
|
144 |
+
self.fc2.parameters()
|
145 |
+
)
|
146 |
+
self.ddp_params = ()
|
147 |
+
|
148 |
+
if process_group_for_ddp is not None:
|
149 |
+
self.non_ddp_params, self.ddp_params = (
|
150 |
+
tuple(self.fc1.parameters()),
|
151 |
+
tuple(self.fc2.parameters()),
|
152 |
+
)
|
153 |
+
gLogger.info("Use DDP for the second local net.")
|
154 |
+
self.fc2 = DistributedDataParallel(
|
155 |
+
self.fc2, check_reduction=True, process_group=process_group_for_ddp
|
156 |
+
)
|
157 |
+
|
158 |
+
gLogger.info(
|
159 |
+
"HybridModel has %s groups of parameters.", len(list(self.parameters()))
|
160 |
+
)
|
161 |
+
|
162 |
+
def forward(self, input: FeatureSet):
|
163 |
+
gLogger.debug("Running HybridModel.forward on %s", input)
|
164 |
+
sparse = _remote_method(
|
165 |
+
RemoteEM.forward, self.remote_em_rref, input.sparse_features
|
166 |
+
)
|
167 |
+
# The same size of mini batch.
|
168 |
+
assert sparse.shape[0] == input.dense_features.shape[0]
|
169 |
+
dense = self.fc1(input.dense_features)
|
170 |
+
x = torch.cat((dense, sparse), 1)
|
171 |
+
gLogger.debug("Concatenated feature: %s", x)
|
172 |
+
x = _remote_method(RemoteNet.forward, self.remote_net_rref, x)
|
173 |
+
return self.fc2(x)
|
174 |
+
|
175 |
+
|
176 |
+
class Trainer:
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
remote_em_rref: rpc.RRef,
|
180 |
+
remote_net_rref: rpc.RRef,
|
181 |
+
ddp_mode: DdpMode,
|
182 |
+
rank: int,
|
183 |
+
):
|
184 |
+
self.rank = rank
|
185 |
+
self.trainer_group = (
|
186 |
+
dist.new_group(TRAINER_RANKS)
|
187 |
+
if ddp_mode in (DdpMode.INSIDE, DdpMode.OUTSIDE)
|
188 |
+
else None
|
189 |
+
)
|
190 |
+
self.remote_em_rref = remote_em_rref
|
191 |
+
self.remote_net_rref = remote_net_rref
|
192 |
+
self.hybrid_module = HybridModel(
|
193 |
+
self.remote_em_rref,
|
194 |
+
self.remote_net_rref,
|
195 |
+
self.trainer_group if ddp_mode in (DdpMode.INSIDE,) else None,
|
196 |
+
)
|
197 |
+
self.ddp_params, self.non_ddp_params = (
|
198 |
+
self.hybrid_module.ddp_params,
|
199 |
+
self.hybrid_module.non_ddp_params,
|
200 |
+
)
|
201 |
+
if ddp_mode == DdpMode.OUTSIDE:
|
202 |
+
gLogger.info("Wrapping the whole hybrid module into DDP.")
|
203 |
+
self.ddp_params += self.non_ddp_params
|
204 |
+
self.non_ddp_params = ()
|
205 |
+
self.hybrid_module = DistributedDataParallel(
|
206 |
+
self.hybrid_module,
|
207 |
+
check_reduction=True,
|
208 |
+
process_group=self.trainer_group,
|
209 |
+
)
|
210 |
+
gLogger.info(
|
211 |
+
"Succeeded in creating a HybridModel instance with "
|
212 |
+
"%s ddp params and %s other local params.",
|
213 |
+
len(self.ddp_params), len(self.non_ddp_params)
|
214 |
+
)
|
215 |
+
|
216 |
+
def destroy_pg(self):
|
217 |
+
if self.trainer_group:
|
218 |
+
dist.destroy_process_group(self.trainer_group)
|
219 |
+
|
220 |
+
def train_batch(
|
221 |
+
self,
|
222 |
+
mini_batch: FeatureSet,
|
223 |
+
trainer_has_less_inputs: bool,
|
224 |
+
simulate_uneven_inputs: bool,
|
225 |
+
):
|
226 |
+
grads_dict = None
|
227 |
+
|
228 |
+
if not simulate_uneven_inputs:
|
229 |
+
input_batches = [mini_batch]
|
230 |
+
else:
|
231 |
+
# Split into microbatches, and trim to simulate uneven inputs.
|
232 |
+
dense_features = mini_batch.dense_features
|
233 |
+
sparse_features = mini_batch.sparse_features
|
234 |
+
values = mini_batch.values
|
235 |
+
|
236 |
+
dense_microbatch = torch.split(dense_features, 2)
|
237 |
+
sparse_microbatch = torch.split(sparse_features, 2)
|
238 |
+
values_microbatch = torch.split(values, 2)
|
239 |
+
batches = []
|
240 |
+
for d, s, v in zip(dense_microbatch, sparse_microbatch, values_microbatch):
|
241 |
+
feature_set = FeatureSet(dense_features=d, sparse_features=s, values=v)
|
242 |
+
batches.append(feature_set)
|
243 |
+
|
244 |
+
if trainer_has_less_inputs:
|
245 |
+
input_batches = batches[: len(batches) // 2]
|
246 |
+
gLogger.info(
|
247 |
+
"Trainer reduced input patches from %s "
|
248 |
+
"to %s to simulate uneven inputs.",
|
249 |
+
len(batches), len(input_batches)
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
input_batches = batches
|
253 |
+
|
254 |
+
with self.hybrid_module.join() if simulate_uneven_inputs else contextlib.nullcontext():
|
255 |
+
for b in input_batches:
|
256 |
+
with dist_autograd.context() as context_id:
|
257 |
+
output = self.hybrid_module.forward(b)
|
258 |
+
loss = (output * mini_batch.values).sum()
|
259 |
+
dist_autograd.backward(context_id, [loss])
|
260 |
+
grads_dict = dist_autograd.get_gradients(context_id)
|
261 |
+
gLogger.info(
|
262 |
+
"Loss is %s for mini batch: %s. "
|
263 |
+
"Grads dict has %s entries: %s", loss, mini_batch, len(grads_dict), grads_dict
|
264 |
+
)
|
265 |
+
return (
|
266 |
+
tuple(grads_dict[param] for param in self.ddp_params),
|
267 |
+
tuple(grads_dict[param] for param in self.non_ddp_params),
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
def get_training_examples():
|
272 |
+
n = 16
|
273 |
+
training_examples = FeatureSet(
|
274 |
+
dense_features=torch.zeros((n, D_DENSE)),
|
275 |
+
sparse_features=torch.zeros(n, dtype=torch.long),
|
276 |
+
values=torch.zeros(n),
|
277 |
+
)
|
278 |
+
idx = 0
|
279 |
+
# Every example has another one that has exactly the same features but an
|
280 |
+
# opposite value. Therefore, their grads cancel each other in all-reduce.
|
281 |
+
for value in (-1, 1):
|
282 |
+
for x in (-1.0 * value, 1.0 * value):
|
283 |
+
for y in (1.0 * value, -1.0 * value):
|
284 |
+
for z in (0, 1):
|
285 |
+
training_examples.dense_features[idx, :] = torch.tensor((x, y))
|
286 |
+
training_examples.sparse_features[idx] = z
|
287 |
+
training_examples.values[idx] = value
|
288 |
+
idx += 1
|
289 |
+
|
290 |
+
# Split the examples among NUM_TRAINERS trainers
|
291 |
+
assert 0 == (n % NUM_TRAINERS)
|
292 |
+
examples_per_trainer = int(n / NUM_TRAINERS)
|
293 |
+
return [
|
294 |
+
FeatureSet(
|
295 |
+
dense_features=training_examples.dense_features[
|
296 |
+
start : start + examples_per_trainer, :
|
297 |
+
],
|
298 |
+
sparse_features=training_examples.sparse_features[
|
299 |
+
start : start + examples_per_trainer
|
300 |
+
],
|
301 |
+
values=training_examples.values[start : start + examples_per_trainer],
|
302 |
+
)
|
303 |
+
for start in range(0, n, examples_per_trainer)
|
304 |
+
]
|
305 |
+
|
306 |
+
|
307 |
+
shutdown_signal = threading.Condition()
|
308 |
+
|
309 |
+
|
310 |
+
def set_shutdown_signal():
|
311 |
+
global shutdown_signal
|
312 |
+
with shutdown_signal:
|
313 |
+
shutdown_signal.notify()
|
314 |
+
|
315 |
+
|
316 |
+
class DdpUnderDistAutogradTest(RpcAgentTestFixture):
|
317 |
+
@property
|
318 |
+
def world_size(self) -> int:
|
319 |
+
return WORLD_SIZE
|
320 |
+
|
321 |
+
def remote_worker_name(self) -> str:
|
322 |
+
# The name has to be consistent with that in 'dist_init' decorator.
|
323 |
+
return f"worker{REMOTE_WORKER_RANK}"
|
324 |
+
|
325 |
+
def trainer_name(self, rank):
|
326 |
+
# The name has to be consistent with that in 'dist_init' decorator.
|
327 |
+
return f"worker{rank}"
|
328 |
+
|
329 |
+
def _remote_worker_process(self, ddp_mode):
|
330 |
+
gLogger.info("The remote worker is running.")
|
331 |
+
dist.init_process_group(
|
332 |
+
backend="gloo",
|
333 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
334 |
+
world_size=self.world_size,
|
335 |
+
rank=self.rank,
|
336 |
+
)
|
337 |
+
|
338 |
+
if ddp_mode in (DdpMode.INSIDE, DdpMode.OUTSIDE):
|
339 |
+
# new_group needs to be called on ranks.
|
340 |
+
dist.new_group(TRAINER_RANKS)
|
341 |
+
|
342 |
+
global shutdown_signal
|
343 |
+
with shutdown_signal:
|
344 |
+
shutdown_signal.wait()
|
345 |
+
gLogger.info("Exiting remote worker.")
|
346 |
+
dist.destroy_process_group()
|
347 |
+
|
348 |
+
def _trainer_process(self, rank: int):
|
349 |
+
gLogger.info("Running the trainer #%s...", rank)
|
350 |
+
gLogger.info(
|
351 |
+
"Initing trainer process group by trainer #%s with ranks %s", rank, TRAINER_RANKS
|
352 |
+
)
|
353 |
+
dist.init_process_group(
|
354 |
+
backend="gloo",
|
355 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
356 |
+
world_size=self.world_size,
|
357 |
+
rank=self.rank,
|
358 |
+
)
|
359 |
+
|
360 |
+
gLogger.info("Waiting for shutdown signal on trainer #%s...", rank)
|
361 |
+
|
362 |
+
global shutdown_signal
|
363 |
+
with shutdown_signal:
|
364 |
+
shutdown_signal.wait()
|
365 |
+
gLogger.info("Exiting the trainer #%s...", rank)
|
366 |
+
dist.destroy_process_group()
|
367 |
+
|
368 |
+
def _master_process(self, ddp_mode: DdpMode, simulate_uneven_inputs: bool):
|
369 |
+
gLogger.info("Running the master process...")
|
370 |
+
dist.init_process_group(
|
371 |
+
backend="gloo",
|
372 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
373 |
+
world_size=self.world_size,
|
374 |
+
rank=self.rank,
|
375 |
+
)
|
376 |
+
|
377 |
+
remote_em_rref = rpc.remote(
|
378 |
+
self.remote_worker_name(), RemoteEM, args=(NUM_EM_ROW, D_SPARSE)
|
379 |
+
)
|
380 |
+
remote_net_rref = rpc.remote(
|
381 |
+
self.remote_worker_name(), RemoteNet, args=(D_DENSE + D_SPARSE, D_HID)
|
382 |
+
)
|
383 |
+
gLogger.info("Created remote rrefs on master")
|
384 |
+
self.do_test_on_master(
|
385 |
+
ddp_mode, simulate_uneven_inputs, remote_em_rref, remote_net_rref
|
386 |
+
)
|
387 |
+
|
388 |
+
def do_test_on_master(
|
389 |
+
self,
|
390 |
+
ddp_mode: DdpMode,
|
391 |
+
simulate_uneven_inputs: bool,
|
392 |
+
remote_em_rref: rpc.RRef,
|
393 |
+
remote_net_rref: rpc.RRef,
|
394 |
+
):
|
395 |
+
if simulate_uneven_inputs:
|
396 |
+
gLogger.info(
|
397 |
+
"Running DDP + RPC test with simulating uneven inputs across trainers."
|
398 |
+
)
|
399 |
+
|
400 |
+
trainer_rrefs = []
|
401 |
+
for rank in TRAINER_RANKS:
|
402 |
+
trainer = self.trainer_name(rank)
|
403 |
+
trainer_rrefs.append(
|
404 |
+
rpc.remote(
|
405 |
+
trainer,
|
406 |
+
Trainer,
|
407 |
+
args=(remote_em_rref, remote_net_rref, ddp_mode, rank),
|
408 |
+
)
|
409 |
+
)
|
410 |
+
|
411 |
+
if ddp_mode in (DdpMode.INSIDE, DdpMode.OUTSIDE):
|
412 |
+
# new_group needs to be called on ranks.
|
413 |
+
dist.new_group(TRAINER_RANKS)
|
414 |
+
|
415 |
+
training_examples = get_training_examples()
|
416 |
+
for _ in range(3):
|
417 |
+
futures = []
|
418 |
+
num_trainers = len(trainer_rrefs)
|
419 |
+
for idx, trainer_rref in enumerate(trainer_rrefs):
|
420 |
+
# Half the trainers will deplete inputs earlier than the rest.
|
421 |
+
trainer_has_less_inputs = (
|
422 |
+
simulate_uneven_inputs and idx < num_trainers // 2
|
423 |
+
)
|
424 |
+
futures.append(
|
425 |
+
_remote_method_async(
|
426 |
+
Trainer.train_batch,
|
427 |
+
trainer_rref,
|
428 |
+
training_examples[idx],
|
429 |
+
trainer_has_less_inputs,
|
430 |
+
simulate_uneven_inputs,
|
431 |
+
)
|
432 |
+
)
|
433 |
+
|
434 |
+
for future in futures:
|
435 |
+
ddp_grads, non_ddp_grads = future.wait()
|
436 |
+
# When there are uneven inputs, it is not necessary that grads
|
437 |
+
# cancel each other out, since some trainers contribute 0 grad.
|
438 |
+
if not simulate_uneven_inputs:
|
439 |
+
for grad in ddp_grads:
|
440 |
+
self.assertEqual(
|
441 |
+
grad,
|
442 |
+
torch.zeros_like(grad),
|
443 |
+
msg=f"The grad for any ddp parameter should be zeros, because "
|
444 |
+
"the training examples' grads cancel each other. Received "
|
445 |
+
f"gradient {grad}",
|
446 |
+
)
|
447 |
+
for grad in non_ddp_grads:
|
448 |
+
self.assertNotEqual(
|
449 |
+
grad,
|
450 |
+
torch.zeros_like(grad),
|
451 |
+
msg="The grad for any non-ddp parameter shouldn't be zeros",
|
452 |
+
)
|
453 |
+
|
454 |
+
# Destroy process groups
|
455 |
+
for idx, trainer_rref in enumerate(trainer_rrefs):
|
456 |
+
_remote_method_async(Trainer.destroy_pg, trainer_rref).wait()
|
457 |
+
|
458 |
+
# Send shutdown signals.
|
459 |
+
for rank in TRAINER_RANKS:
|
460 |
+
trainer = self.trainer_name(rank)
|
461 |
+
rpc.rpc_sync(trainer, set_shutdown_signal, args=())
|
462 |
+
|
463 |
+
rpc.rpc_sync(self.remote_worker_name(), set_shutdown_signal, args=())
|
464 |
+
|
465 |
+
def _do_test(self, ddp_mode, simulate_uneven_inputs=False):
|
466 |
+
if self.rank == MASTER_RANK:
|
467 |
+
self._master_process(ddp_mode, simulate_uneven_inputs)
|
468 |
+
elif self.rank == REMOTE_WORKER_RANK:
|
469 |
+
self._remote_worker_process(ddp_mode)
|
470 |
+
elif self.rank in TRAINER_RANKS:
|
471 |
+
self._trainer_process(self.rank)
|
472 |
+
else:
|
473 |
+
raise RuntimeError(f"Unknown process rank: {self.rank}")
|
474 |
+
|
475 |
+
@requires_gloo()
|
476 |
+
@dist_init
|
477 |
+
def test_backward_no_ddp(self):
|
478 |
+
self._do_test(DdpMode.NONE)
|
479 |
+
|
480 |
+
@requires_gloo()
|
481 |
+
@dist_init
|
482 |
+
def test_backward_ddp_outside(self):
|
483 |
+
self._do_test(DdpMode.OUTSIDE)
|
484 |
+
|
485 |
+
@requires_gloo()
|
486 |
+
@dist_init
|
487 |
+
def test_backward_ddp_outside_uneven_inputs(self):
|
488 |
+
self._do_test(DdpMode.OUTSIDE, simulate_uneven_inputs=True)
|
489 |
+
|
490 |
+
@requires_gloo()
|
491 |
+
@dist_init
|
492 |
+
def test_backward_ddp_inside(self):
|
493 |
+
self._do_test(DdpMode.INSIDE)
|
494 |
+
|
495 |
+
|
496 |
+
# Common utils for both CPU and CUDA test suites
|
497 |
+
class CommonDdpComparisonTest(RpcAgentTestFixture):
|
498 |
+
@property
|
499 |
+
def world_size(self) -> int:
|
500 |
+
return NUM_TRAINERS
|
501 |
+
|
502 |
+
def trainer_name(self, rank):
|
503 |
+
# The name has to be consistent with that in 'dist_init' decorator.
|
504 |
+
return f"worker{rank}"
|
505 |
+
|
506 |
+
@staticmethod
|
507 |
+
def get_remote_grads(rref, context_id):
|
508 |
+
return dist_autograd.get_gradients(context_id)[rref.local_value().weight]
|
509 |
+
|
510 |
+
|
511 |
+
class DdpComparisonTest(CommonDdpComparisonTest):
|
512 |
+
def _run_test_ddp_comparision(self, simulate_uneven_inputs=False):
|
513 |
+
gLogger.info("Running trainer rank: %s", self.rank)
|
514 |
+
# Each trainer uses a different random seed. Otherwise, they are going
|
515 |
+
# to have exactly the same initial model parameters, input, and
|
516 |
+
# therefore grads. That means the grads will be the same before and
|
517 |
+
# after DDP's all-reduce.
|
518 |
+
torch.manual_seed(self.rank)
|
519 |
+
dist.init_process_group(
|
520 |
+
backend="gloo",
|
521 |
+
# Postfix file_name with "pg" since file_name is also used by RPC agent
|
522 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=f"{self.file_name}_pg"),
|
523 |
+
world_size=self.world_size,
|
524 |
+
rank=self.rank,
|
525 |
+
)
|
526 |
+
net = nn.Linear(2, 3)
|
527 |
+
ddp_net = DistributedDataParallel(net)
|
528 |
+
|
529 |
+
# Odd ranks join early if simulate_uneven_inputs.
|
530 |
+
num_inputs = 1
|
531 |
+
if simulate_uneven_inputs:
|
532 |
+
if self.rank % 2 == 0:
|
533 |
+
num_inputs += 2
|
534 |
+
inputs_list = [torch.rand((3, 2)) for _ in range(num_inputs)]
|
535 |
+
|
536 |
+
if simulate_uneven_inputs:
|
537 |
+
gLogger.info("Rank %s training with %s inputs.", self.rank, len(inputs_list))
|
538 |
+
|
539 |
+
# Use distributed autograd. The gradients will be in RPC context map.
|
540 |
+
grads_dict = {}
|
541 |
+
with ddp_net.join(simulate_uneven_inputs):
|
542 |
+
for i, inputs in enumerate(inputs_list):
|
543 |
+
with dist_autograd.context() as context_id:
|
544 |
+
loss = ddp_net(inputs).norm()
|
545 |
+
dist_autograd.backward(context_id, [loss])
|
546 |
+
grads_dict = dist_autograd.get_gradients(context_id)
|
547 |
+
gLogger.info("Trainer #%s got grad dict: %s", self.rank, grads_dict)
|
548 |
+
|
549 |
+
# Use local autograd. The gradients will be in each variable's '.grad'.
|
550 |
+
ddp_net.zero_grad()
|
551 |
+
loss = ddp_net(inputs).norm()
|
552 |
+
loss.backward()
|
553 |
+
|
554 |
+
# The gradients should be the same
|
555 |
+
for param in net.parameters():
|
556 |
+
self.assertTrue(
|
557 |
+
param in grads_dict,
|
558 |
+
msg=f"Param {param} is not in dist_auto grad dict {grads_dict} for iteration {i}",
|
559 |
+
)
|
560 |
+
self.assertEqual(
|
561 |
+
grads_dict[param],
|
562 |
+
param.grad,
|
563 |
+
msg=f"The grads for param {param} are different under local "
|
564 |
+
f"and dist autograd: {param.grad} \n---\n {grads_dict[param]} for iteration {i}",
|
565 |
+
)
|
566 |
+
dist.destroy_process_group()
|
567 |
+
|
568 |
+
@requires_gloo()
|
569 |
+
@dist_init
|
570 |
+
def test_ddp_comparison(self):
|
571 |
+
self._run_test_ddp_comparision()
|
572 |
+
|
573 |
+
@requires_gloo()
|
574 |
+
@dist_init
|
575 |
+
def test_ddp_comparison_uneven_inputs(self):
|
576 |
+
# test with simulating uneven inputs in DDP
|
577 |
+
self._run_test_ddp_comparision(simulate_uneven_inputs=True)
|
578 |
+
|
579 |
+
@requires_gloo()
|
580 |
+
@dist_init
|
581 |
+
def test_ddp_dist_autograd_sparse_grads(self):
|
582 |
+
# Each trainer uses a different random seed. Otherwise, they are going
|
583 |
+
# to have exactly the same initial model parameters, input, and
|
584 |
+
# therefore grads. That means the grads will be the same before and
|
585 |
+
# after DDP's all-reduce.
|
586 |
+
torch.manual_seed(self.rank)
|
587 |
+
dist.init_process_group(
|
588 |
+
backend="gloo",
|
589 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
590 |
+
world_size=self.world_size,
|
591 |
+
rank=self.rank,
|
592 |
+
)
|
593 |
+
|
594 |
+
model = nn.EmbeddingBag(10, 3, sparse=True)
|
595 |
+
ddp_model = DistributedDataParallel(model)
|
596 |
+
|
597 |
+
# Different inputs for each
|
598 |
+
input = torch.LongTensor(10).random_(0, 10)
|
599 |
+
offsets = torch.LongTensor([0, 4])
|
600 |
+
|
601 |
+
# Run local.
|
602 |
+
loss = ddp_model(input, offsets).sum()
|
603 |
+
loss.backward()
|
604 |
+
|
605 |
+
with dist_autograd.context() as context_id:
|
606 |
+
loss = ddp_model(input, offsets).sum()
|
607 |
+
dist_autograd.backward(context_id, [loss])
|
608 |
+
grads_dict = dist_autograd.get_gradients(context_id)
|
609 |
+
self.assertEqual(1, len(grads_dict))
|
610 |
+
self.assertEqual(model.weight.grad, grads_dict[model.weight])
|
611 |
+
|
612 |
+
@requires_gloo()
|
613 |
+
@dist_init
|
614 |
+
def test_ddp_dist_autograd_local_vs_remote(self):
|
615 |
+
# Each trainer uses a different random seed. Otherwise, they are going
|
616 |
+
# to have exactly the same initial model parameters, input, and
|
617 |
+
# therefore grads. That means the grads will be the same before and
|
618 |
+
# after DDP's all-reduce.
|
619 |
+
torch.manual_seed(self.rank)
|
620 |
+
dist.init_process_group(
|
621 |
+
backend="gloo",
|
622 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
623 |
+
world_size=self.world_size,
|
624 |
+
rank=self.rank,
|
625 |
+
)
|
626 |
+
|
627 |
+
# Use two different remote device input string, w/ and w/o the default
|
628 |
+
# device string "cpu", respectively.
|
629 |
+
for remote_device in ["worker0/cpu", "worker0"]:
|
630 |
+
remote_layer1 = RemoteModule(
|
631 |
+
remote_device=remote_device, module_cls=nn.Linear, args=(10, 5, False)
|
632 |
+
)
|
633 |
+
layer1 = nn.Linear(10, 5, False)
|
634 |
+
# Start with the same parameters for remote and local
|
635 |
+
layer1.weight = remote_layer1.module_rref.to_here().weight
|
636 |
+
|
637 |
+
# Run local case.
|
638 |
+
layer2 = nn.Linear(5, 1)
|
639 |
+
inputs = torch.rand((10, 10))
|
640 |
+
ddp_model = DistributedDataParallel(layer2)
|
641 |
+
loss = ddp_model(layer1(inputs)).sum()
|
642 |
+
loss.backward()
|
643 |
+
|
644 |
+
# Run remote case.
|
645 |
+
with dist_autograd.context() as context_id:
|
646 |
+
loss = ddp_model(remote_layer1(inputs)).sum()
|
647 |
+
dist_autograd.backward(context_id, [loss])
|
648 |
+
grads_dict = dist_autograd.get_gradients(context_id)
|
649 |
+
dist.barrier()
|
650 |
+
self.assertEqual(layer2.weight.grad, grads_dict[layer2.weight])
|
651 |
+
self.assertEqual(
|
652 |
+
layer1.weight.grad,
|
653 |
+
rpc.rpc_sync(
|
654 |
+
"worker0",
|
655 |
+
CommonDdpComparisonTest.get_remote_grads,
|
656 |
+
args=(remote_layer1.module_rref, context_id),
|
657 |
+
),
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class CudaDdpComparisonTest(CommonDdpComparisonTest):
|
662 |
+
@skip_if_lt_x_gpu(NUM_TRAINERS)
|
663 |
+
@requires_nccl()
|
664 |
+
@dist_init
|
665 |
+
@skip_if_rocm
|
666 |
+
def test_ddp_dist_autograd_local_vs_remote_gpu(self):
|
667 |
+
# Each trainer uses a different random seed. Otherwise, they are going
|
668 |
+
# to have exactly the same initial model parameters, input, and
|
669 |
+
# therefore grads. That means the grads will be the same before and
|
670 |
+
# after DDP's all-reduce.
|
671 |
+
torch.manual_seed(self.rank)
|
672 |
+
dist.init_process_group(
|
673 |
+
backend="gloo",
|
674 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
675 |
+
world_size=self.world_size,
|
676 |
+
rank=self.rank,
|
677 |
+
)
|
678 |
+
|
679 |
+
remote_layer1 = RemoteModule(
|
680 |
+
remote_device="worker0/cpu", module_cls=nn.Linear, args=(10, 7, False)
|
681 |
+
)
|
682 |
+
layer1 = nn.Linear(10, 7, False)
|
683 |
+
# Start with the same parameters for remote and local
|
684 |
+
layer1.weight = remote_layer1.module_rref.to_here().weight
|
685 |
+
|
686 |
+
layer2 = nn.Linear(7, 5).cuda(self.rank)
|
687 |
+
ddp_layer2 = DistributedDataParallel(layer2, device_ids=[self.rank])
|
688 |
+
|
689 |
+
remote_layer3 = RemoteModule(
|
690 |
+
remote_device="worker0/cpu", module_cls=nn.Linear, args=(5, 3, False)
|
691 |
+
)
|
692 |
+
layer3 = nn.Linear(5, 3, False)
|
693 |
+
# Start with the same parameters for remote and local
|
694 |
+
layer3.weight = remote_layer3.module_rref.to_here().weight
|
695 |
+
|
696 |
+
layer4 = nn.Linear(3, 1).cuda(self.rank)
|
697 |
+
ddp_layer4 = DistributedDataParallel(layer4, device_ids=[self.rank])
|
698 |
+
|
699 |
+
# Run local case.
|
700 |
+
inputs = torch.rand((10, 10))
|
701 |
+
loss = ddp_layer4(
|
702 |
+
layer3(ddp_layer2(layer1(inputs).cuda(self.rank)).cpu()).cuda(self.rank)
|
703 |
+
).sum()
|
704 |
+
loss.backward()
|
705 |
+
|
706 |
+
# Run remote case.
|
707 |
+
with dist_autograd.context() as context_id:
|
708 |
+
loss = ddp_layer4(
|
709 |
+
remote_layer3(
|
710 |
+
ddp_layer2(remote_layer1(inputs).cuda(self.rank)).cpu()
|
711 |
+
).cuda(self.rank)
|
712 |
+
).sum()
|
713 |
+
dist_autograd.backward(context_id, [loss])
|
714 |
+
grads_dict = dist_autograd.get_gradients(context_id)
|
715 |
+
dist.barrier()
|
716 |
+
self.assertEqual(
|
717 |
+
layer1.weight.grad,
|
718 |
+
rpc.rpc_sync(
|
719 |
+
"worker0",
|
720 |
+
CommonDdpComparisonTest.get_remote_grads,
|
721 |
+
args=(remote_layer1.module_rref, context_id),
|
722 |
+
),
|
723 |
+
)
|
724 |
+
self.assertEqual(layer2.weight.grad, grads_dict[layer2.weight])
|
725 |
+
self.assertEqual(
|
726 |
+
layer3.weight.grad,
|
727 |
+
rpc.rpc_sync(
|
728 |
+
"worker0",
|
729 |
+
CommonDdpComparisonTest.get_remote_grads,
|
730 |
+
args=(remote_layer3.module_rref, context_id),
|
731 |
+
),
|
732 |
+
)
|
733 |
+
self.assertEqual(layer4.weight.grad, grads_dict[layer4.weight])
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/distributed_test.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/distributed_utils.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from contextlib import contextmanager
|
4 |
+
from datetime import timedelta
|
5 |
+
from functools import (
|
6 |
+
partial,
|
7 |
+
wraps,
|
8 |
+
)
|
9 |
+
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.distributed.distributed_c10d as c10d
|
12 |
+
|
13 |
+
class MockProcessGroup(dist.ProcessGroup):
|
14 |
+
|
15 |
+
def __init__(self, rank, world):
|
16 |
+
super().__init__(rank, world)
|
17 |
+
|
18 |
+
def getBackendName(self):
|
19 |
+
return "mock_process_group"
|
20 |
+
|
21 |
+
def create_mock_pg(prefix_store, rank, world_size, timeout):
|
22 |
+
return MockProcessGroup(rank, world_size)
|
23 |
+
|
24 |
+
dist.Backend.register_backend('mock_process_group', create_mock_pg)
|
25 |
+
|
26 |
+
def mock_init_dist(rank, world_size):
|
27 |
+
# !!! WARNING !!!
|
28 |
+
# Kids don't try this at home, this is a cute pile of hacks that
|
29 |
+
# depends on a small mountain of c10d internals
|
30 |
+
assert not dist.is_initialized()
|
31 |
+
store = dist.HashStore()
|
32 |
+
# Trick _store_based_barrier into believing everyone else already checked-in
|
33 |
+
# Zero is the group index
|
34 |
+
store.add(f"{c10d.STORE_BASED_BARRIER_PREFIX}:0", world_size - 1)
|
35 |
+
dist.init_process_group(
|
36 |
+
backend="mock_process_group",
|
37 |
+
rank=rank,
|
38 |
+
world_size=world_size,
|
39 |
+
store=store,
|
40 |
+
group_name="fake",
|
41 |
+
timeout=timedelta(seconds=1))
|
42 |
+
|
43 |
+
@contextmanager
|
44 |
+
def with_dist(rank=0, world_size=2):
|
45 |
+
"""
|
46 |
+
Context manager that initializer c10d with a fake process group.
|
47 |
+
"""
|
48 |
+
mock_init_dist(rank=rank, world_size=world_size)
|
49 |
+
try:
|
50 |
+
yield
|
51 |
+
finally:
|
52 |
+
dist.destroy_process_group()
|
53 |
+
|
54 |
+
def with_fake_comms(func=None, rank=0, world_size=2):
|
55 |
+
"""
|
56 |
+
Function wrapper that inits a fake process group designed for testing.
|
57 |
+
Right now only querying for world size is available
|
58 |
+
"""
|
59 |
+
if func is None:
|
60 |
+
return partial(with_fake_comms, rank=rank, world_size=world_size)
|
61 |
+
|
62 |
+
@wraps(func)
|
63 |
+
def wrapper(self, *args, **kwargs):
|
64 |
+
with with_dist(rank, world_size):
|
65 |
+
func(self, *args, **kwargs)
|
66 |
+
return wrapper
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/fake_pg.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch.distributed as dist
|
4 |
+
|
5 |
+
from torch._C._distributed_c10d import (
|
6 |
+
FakeProcessGroup,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
class FakeStore(dist.Store):
|
11 |
+
"""
|
12 |
+
A fake store is a fake Key-Value store simply for initialization usage
|
13 |
+
the of fake process group, one can either use FakeStore or HashStore.
|
14 |
+
"""
|
15 |
+
pass
|
16 |
+
|
17 |
+
|
18 |
+
def _create_fake_pg(prefix_store, rank, world_size, timeout):
|
19 |
+
"""
|
20 |
+
A fake process group (not related to FakeTensor) is a process group which
|
21 |
+
doesn't actually do any communication, it just hallucinates some
|
22 |
+
communication. You can run a single rank with a fake process group
|
23 |
+
without needing multiple processes (simulates per-rank behavior)
|
24 |
+
|
25 |
+
NOTE: This is not a real process group, and it would produce wrong results
|
26 |
+
for every collective. It should be used as a convinient tool when playing
|
27 |
+
with distributed but don't care about the actual data.
|
28 |
+
"""
|
29 |
+
return FakeProcessGroup(rank, world_size)
|
30 |
+
|
31 |
+
|
32 |
+
dist.Backend.register_backend("fake", _create_fake_pg, devices=['cpu', 'cuda'])
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/multi_threaded_pg.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import threading
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Dict, List, Optional, Tuple, Union
|
7 |
+
from functools import partial, reduce
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
import weakref
|
12 |
+
from torch._C._distributed_c10d import (
|
13 |
+
_create_work_from_future,
|
14 |
+
AllgatherOptions,
|
15 |
+
AllreduceOptions,
|
16 |
+
AllToAllOptions,
|
17 |
+
BarrierOptions,
|
18 |
+
BroadcastOptions,
|
19 |
+
ReduceScatterOptions,
|
20 |
+
ScatterOptions,
|
21 |
+
Store,
|
22 |
+
ReduceOp,
|
23 |
+
)
|
24 |
+
from torch.distributed.distributed_c10d import _CollOp, _store_based_barrier, P2POp
|
25 |
+
from torch.futures import Future
|
26 |
+
from torch.utils import _pytree as pytree
|
27 |
+
|
28 |
+
"""
|
29 |
+
TODO:
|
30 |
+
Lots of missing collectives.
|
31 |
+
Collectives validation.
|
32 |
+
Make timeout robust by making collectives respect the test deadline.
|
33 |
+
Make tests robust by making collectives interruptible.
|
34 |
+
We need some synchronization around cleanup to ensure that timedout ranks don't cause spurious failures.
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
def flatten_list(lst):
|
40 |
+
return pytree.tree_leaves(lst)
|
41 |
+
|
42 |
+
|
43 |
+
def ret_work(ret):
|
44 |
+
fut = Future()
|
45 |
+
fut.set_result(ret)
|
46 |
+
return _create_work_from_future(fut)
|
47 |
+
|
48 |
+
def binop_reduce(tensors, op):
|
49 |
+
res = op(torch.stack(tensors), dim=0)
|
50 |
+
if isinstance(res, torch.Tensor):
|
51 |
+
return res
|
52 |
+
# min/max return a namedtuple
|
53 |
+
return res.values
|
54 |
+
|
55 |
+
def bitwise_reduce(tensors, op):
|
56 |
+
return reduce(op, tensors)
|
57 |
+
|
58 |
+
_reduce_ops = {
|
59 |
+
ReduceOp.SUM: partial(binop_reduce, op=torch.sum),
|
60 |
+
ReduceOp.AVG: partial(binop_reduce, op=torch.mean),
|
61 |
+
ReduceOp.PRODUCT: partial(binop_reduce, op=torch.prod),
|
62 |
+
ReduceOp.MIN: partial(binop_reduce, op=torch.min),
|
63 |
+
ReduceOp.MAX: partial(binop_reduce, op=torch.max),
|
64 |
+
ReduceOp.BAND: partial(bitwise_reduce, op=torch.bitwise_and),
|
65 |
+
ReduceOp.BOR: partial(bitwise_reduce, op=torch.bitwise_or),
|
66 |
+
ReduceOp.BXOR: partial(bitwise_reduce, op=torch.bitwise_xor),
|
67 |
+
}
|
68 |
+
|
69 |
+
class AllToAll:
|
70 |
+
@torch.no_grad()
|
71 |
+
def work(self, data):
|
72 |
+
world_size = len(data)
|
73 |
+
for dest_rank in range(world_size):
|
74 |
+
output_tensor_list, _ = data[dest_rank]
|
75 |
+
for src_rank in range(world_size):
|
76 |
+
_, input_tensor_list = data[src_rank]
|
77 |
+
output_tensor_list[src_rank].copy_(input_tensor_list[dest_rank])
|
78 |
+
|
79 |
+
class AllReduce:
|
80 |
+
def __init__(self, op):
|
81 |
+
if op.op not in _reduce_ops:
|
82 |
+
raise NotImplementedError(
|
83 |
+
f"AllReduce op {op.op} not supported on multithreaded pg for now."
|
84 |
+
)
|
85 |
+
self.op = op.op
|
86 |
+
|
87 |
+
@torch.no_grad()
|
88 |
+
def work(self, data):
|
89 |
+
for i in range(len(data[0])):
|
90 |
+
tensors = []
|
91 |
+
# use rank0 as the device for sum
|
92 |
+
rank_0_device = data[0][i].device
|
93 |
+
# collect all data to the list and make them
|
94 |
+
# all on rank 0 device
|
95 |
+
for src_rank in range(0, len(data)):
|
96 |
+
tensors.append(data[src_rank][i].to(rank_0_device))
|
97 |
+
|
98 |
+
# now mimic reduce across all ranks
|
99 |
+
res = _reduce_ops[self.op](tensors)
|
100 |
+
|
101 |
+
# copy all the reduced value to each rank
|
102 |
+
for src_rank in range(len(data)):
|
103 |
+
data[src_rank][i].copy_(res.to(data[src_rank][i].device))
|
104 |
+
|
105 |
+
|
106 |
+
class AllGather:
|
107 |
+
@torch.no_grad()
|
108 |
+
def work(self, data):
|
109 |
+
for src_rank in range(len(data)):
|
110 |
+
in_tensor_list = data[src_rank][1]
|
111 |
+
# Can't handle all_gather with multiple tensors
|
112 |
+
assert len(in_tensor_list) == 1
|
113 |
+
src_tensor = in_tensor_list[0]
|
114 |
+
|
115 |
+
for dest in data:
|
116 |
+
dest_tensor = dest[0][0][src_rank]
|
117 |
+
dest_tensor.copy_(src_tensor)
|
118 |
+
|
119 |
+
|
120 |
+
class Scatter:
|
121 |
+
def __init__(self, src):
|
122 |
+
self.src = src
|
123 |
+
|
124 |
+
@torch.no_grad()
|
125 |
+
def work(self, data):
|
126 |
+
src_in_tensor_list = data[self.src][1]
|
127 |
+
# Can't handle scatter with multiple input tensor list
|
128 |
+
assert len(src_in_tensor_list) == 1
|
129 |
+
src_in_tensors = src_in_tensor_list[0]
|
130 |
+
|
131 |
+
for rank, each_rank_data in enumerate(data):
|
132 |
+
out_tensor_list = each_rank_data[0]
|
133 |
+
# Can't handle scatter with multiple output tensor
|
134 |
+
assert len(out_tensor_list) == 1
|
135 |
+
dest_tensor = out_tensor_list[0]
|
136 |
+
dest_tensor.copy_(src_in_tensors[rank])
|
137 |
+
|
138 |
+
|
139 |
+
class Gather:
|
140 |
+
def __init__(self, dst):
|
141 |
+
self.dst = dst
|
142 |
+
|
143 |
+
@torch.no_grad()
|
144 |
+
def work(self, data):
|
145 |
+
# Can't handle gather with multiple tensor lists
|
146 |
+
assert len(data[self.dst][0]) == 1
|
147 |
+
out_tensor_list = data[self.dst][0][0]
|
148 |
+
for rank, each_rank_data in enumerate(data):
|
149 |
+
src_in_tensor_list = each_rank_data[1]
|
150 |
+
# Can't handle gather with multiple tensor lists
|
151 |
+
assert len(src_in_tensor_list) == 1
|
152 |
+
dest_tensor = out_tensor_list[rank]
|
153 |
+
dest_tensor.copy_(src_in_tensor_list[0])
|
154 |
+
|
155 |
+
class ReduceScatter:
|
156 |
+
def __init__(self, op):
|
157 |
+
if op != dist.ReduceOp.SUM and op != dist.ReduceOp.AVG:
|
158 |
+
raise NotImplementedError(f"ReduceScatter does not support {op}")
|
159 |
+
self.op = op
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def work(self, data):
|
163 |
+
start_reduction = [False for _ in range(len(data))]
|
164 |
+
for each_rank_data in data:
|
165 |
+
# Can't handle reduce_scatter with multiple scatter list
|
166 |
+
assert len(each_rank_data[1]) == 1
|
167 |
+
to_scatter = each_rank_data[1][0]
|
168 |
+
for i in range(len(to_scatter)):
|
169 |
+
dest_tensor_on_rank_i = data[i][0]
|
170 |
+
# Can't handle reduce_scatter with multiple output tensor
|
171 |
+
assert len(dest_tensor_on_rank_i) == 1
|
172 |
+
dst_tensor_device = dest_tensor_on_rank_i[0].device
|
173 |
+
if not start_reduction[i]:
|
174 |
+
dest_tensor_on_rank_i[0].copy_(to_scatter[i].to(dst_tensor_device))
|
175 |
+
start_reduction[i] = True
|
176 |
+
else:
|
177 |
+
dest_tensor_on_rank_i[0].add_(to_scatter[i].to(dst_tensor_device))
|
178 |
+
if self.op == dist.ReduceOp.AVG:
|
179 |
+
num_ranks = len(data)
|
180 |
+
for each_rank_data in data:
|
181 |
+
each_rank_data[0][0] /= num_ranks
|
182 |
+
|
183 |
+
|
184 |
+
class Broadcast:
|
185 |
+
def __init__(self, src):
|
186 |
+
self.src = src
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def work(self, data):
|
190 |
+
in_tensor_list = flatten_list(data[self.src])
|
191 |
+
for i in range(len(data)):
|
192 |
+
out_tensor_list = flatten_list(data[i])
|
193 |
+
for j in range(len(in_tensor_list)):
|
194 |
+
out_tensor_list[j].copy_(in_tensor_list[j])
|
195 |
+
|
196 |
+
|
197 |
+
class Collective:
|
198 |
+
def __init__(self, world_size, collective, pg):
|
199 |
+
self._world_size = world_size
|
200 |
+
self._collective = collective
|
201 |
+
|
202 |
+
self._start_cond = threading.Condition()
|
203 |
+
self._done_cond = threading.Condition()
|
204 |
+
|
205 |
+
self._data = [None] * world_size
|
206 |
+
self._count = 0
|
207 |
+
self._done = False
|
208 |
+
|
209 |
+
self._pg = pg
|
210 |
+
|
211 |
+
def join(self, rank, data):
|
212 |
+
with self._start_cond:
|
213 |
+
self._data[rank] = data
|
214 |
+
self._count += 1
|
215 |
+
|
216 |
+
# notify rank 0
|
217 |
+
if self._count == self._world_size:
|
218 |
+
if rank > 0:
|
219 |
+
self._start_cond.notify()
|
220 |
+
|
221 |
+
if rank == 0:
|
222 |
+
self._start_cond.wait_for(
|
223 |
+
lambda: self._count == self._world_size or self._pg._terminate.is_set()
|
224 |
+
)
|
225 |
+
# SystemExit is not a subclass of Exception but BaseException
|
226 |
+
# and can be distinguished from normal exception raised from program errors
|
227 |
+
# so that we can hide it from the exception queue
|
228 |
+
if self._pg._terminate.is_set():
|
229 |
+
sys.exit("Test termination event occurs.")
|
230 |
+
|
231 |
+
with self._done_cond:
|
232 |
+
# wait for rank 0 to finish
|
233 |
+
if rank > 0:
|
234 |
+
self._done_cond.wait_for(lambda: self._done or self._pg._terminate.is_set())
|
235 |
+
if self._pg._terminate.is_set():
|
236 |
+
sys.exit("Test termination event occurs.")
|
237 |
+
else:
|
238 |
+
# copy data around
|
239 |
+
self._collective.work(self._data)
|
240 |
+
self._done = True
|
241 |
+
self._done_cond.notify_all()
|
242 |
+
return ret_work(data)
|
243 |
+
|
244 |
+
|
245 |
+
class ProcessLocalGroup(dist.ProcessGroup):
|
246 |
+
_coll_lock = threading.Lock()
|
247 |
+
_cur_coll_on_pgs = {}
|
248 |
+
|
249 |
+
_terminate = threading.Event()
|
250 |
+
|
251 |
+
@classmethod
|
252 |
+
def _start_coll(cls, collective, pg):
|
253 |
+
with cls._coll_lock:
|
254 |
+
# pg_name is unique, we use that to record the mapping between pg and collective
|
255 |
+
if pg.pg_name not in cls._cur_coll_on_pgs:
|
256 |
+
cls._cur_coll_on_pgs[pg.pg_name] = Collective(pg.size(), collective, cls)
|
257 |
+
return cls._cur_coll_on_pgs[pg.pg_name]
|
258 |
+
|
259 |
+
@classmethod
|
260 |
+
def _end_coll(cls, collective, pg):
|
261 |
+
# This is racily called by all ranks, so only one will work
|
262 |
+
with cls._coll_lock:
|
263 |
+
if pg.pg_name in cls._cur_coll_on_pgs and cls._cur_coll_on_pgs[pg.pg_name] == collective:
|
264 |
+
cls._cur_coll_on_pgs.pop(pg.pg_name)
|
265 |
+
|
266 |
+
@classmethod
|
267 |
+
def exception_handle(cls, exc):
|
268 |
+
cls._terminate.set()
|
269 |
+
for coll in cls._cur_coll_on_pgs.values():
|
270 |
+
with coll._start_cond:
|
271 |
+
coll._start_cond.notify()
|
272 |
+
with coll._done_cond:
|
273 |
+
coll._done_cond.notify_all()
|
274 |
+
|
275 |
+
@classmethod
|
276 |
+
def reset(cls):
|
277 |
+
with cls._coll_lock:
|
278 |
+
cls._cur_coll_on_pgs = {}
|
279 |
+
cls._terminate.clear()
|
280 |
+
|
281 |
+
def alltoall(self, output_tensor_list, input_tensor_list, opts=AllToAllOptions()):
|
282 |
+
coll = ProcessLocalGroup._start_coll(AllToAll(), self)
|
283 |
+
res = coll.join(self._rank, (output_tensor_list, input_tensor_list))
|
284 |
+
ProcessLocalGroup._end_coll(coll, self)
|
285 |
+
return res
|
286 |
+
|
287 |
+
def allreduce(self, tensor_list, opts=AllreduceOptions()):
|
288 |
+
coll = ProcessLocalGroup._start_coll(AllReduce(opts.reduceOp), self)
|
289 |
+
res = coll.join(self._rank, tensor_list)
|
290 |
+
ProcessLocalGroup._end_coll(coll, self)
|
291 |
+
return res
|
292 |
+
|
293 |
+
def allreduce_coalesced(self, tensor_list, opts=AllreduceOptions()):
|
294 |
+
coll = ProcessLocalGroup._start_coll(AllReduce(opts.reduceOp), self)
|
295 |
+
res = coll.join(self._rank, tensor_list)
|
296 |
+
ProcessLocalGroup._end_coll(coll, self)
|
297 |
+
return res
|
298 |
+
|
299 |
+
def barrier(self, opts=BarrierOptions()):
|
300 |
+
return self.allreduce(tensor_list=[torch.ones(1)])
|
301 |
+
|
302 |
+
def allgather(self, output_tensors, input_tensor, opts=AllgatherOptions()):
|
303 |
+
coll = ProcessLocalGroup._start_coll(AllGather(), self)
|
304 |
+
res = coll.join(self._rank, (output_tensors, input_tensor))
|
305 |
+
ProcessLocalGroup._end_coll(coll, self)
|
306 |
+
return res
|
307 |
+
|
308 |
+
def _allgather_base(self, output_tensor, input_tensor, opts=AllgatherOptions()):
|
309 |
+
tensor_list = list(torch.chunk(output_tensor, self._world_size))
|
310 |
+
return self.allgather([tensor_list], [input_tensor], opts)
|
311 |
+
|
312 |
+
def broadcast(self, tensor_list, opts=BroadcastOptions()):
|
313 |
+
coll = ProcessLocalGroup._start_coll(Broadcast(opts.rootRank), self)
|
314 |
+
res = coll.join(self._rank, tensor_list)
|
315 |
+
ProcessLocalGroup._end_coll(coll, self)
|
316 |
+
return res
|
317 |
+
|
318 |
+
def scatter(self, output_tensors, input_tensors, opts=ScatterOptions()):
|
319 |
+
coll = ProcessLocalGroup._start_coll(Scatter(opts.rootRank), self)
|
320 |
+
res = coll.join(self._rank, (output_tensors, input_tensors))
|
321 |
+
ProcessLocalGroup._end_coll(coll, self)
|
322 |
+
return res
|
323 |
+
|
324 |
+
def gather(self, output_tensors, input_tensors, opts=ScatterOptions()):
|
325 |
+
coll = ProcessLocalGroup._start_coll(Gather(opts.rootRank), self)
|
326 |
+
res = coll.join(self._rank, (output_tensors, input_tensors))
|
327 |
+
ProcessLocalGroup._end_coll(coll, self)
|
328 |
+
return res
|
329 |
+
|
330 |
+
def reduce_scatter(self, output_tensor, scatter_list, opts=ReduceScatterOptions()):
|
331 |
+
coll = ProcessLocalGroup._start_coll(ReduceScatter(opts.reduceOp), self)
|
332 |
+
res = coll.join(self._rank, (output_tensor, scatter_list))
|
333 |
+
ProcessLocalGroup._end_coll(coll, self)
|
334 |
+
return res
|
335 |
+
|
336 |
+
def _reduce_scatter_base(self, output_tensor, input_tensor, opts=ReduceScatterOptions()):
|
337 |
+
tensor_list = list(torch.chunk(input_tensor, self._world_size))
|
338 |
+
return self.reduce_scatter([output_tensor], [tensor_list], opts)
|
339 |
+
|
340 |
+
def reduce_scatter_tensor_coalesced(self, output_tensors, input_tensors, opts=ReduceScatterOptions()):
|
341 |
+
works = [
|
342 |
+
self._reduce_scatter_base(output_tensor, input_tensor, opts)
|
343 |
+
for output_tensor, input_tensor
|
344 |
+
in zip(output_tensors, input_tensors)
|
345 |
+
]
|
346 |
+
for work in works[:-1]:
|
347 |
+
work.wait()
|
348 |
+
return works[-1]
|
349 |
+
|
350 |
+
def allgather_into_tensor_coalesced(self, output_tensor_list, input_tensor_list, opts=AllgatherOptions()):
|
351 |
+
res = None
|
352 |
+
for o_t, i_t in zip(output_tensor_list, input_tensor_list):
|
353 |
+
res = self._allgather_base(o_t, i_t)
|
354 |
+
return res
|
355 |
+
|
356 |
+
def __init__(self, rank, world_size):
|
357 |
+
super().__init__(rank, world_size)
|
358 |
+
self._rank = rank
|
359 |
+
self._world_size = world_size
|
360 |
+
world = dist.distributed_c10d._world
|
361 |
+
if isinstance(world, ThreadLocalWorld):
|
362 |
+
world = world._get_world()
|
363 |
+
self._world = weakref.ref(world)
|
364 |
+
self._ctx = torch.autograd.set_multithreading_enabled(False)
|
365 |
+
|
366 |
+
def size(self):
|
367 |
+
return self._world_size
|
368 |
+
|
369 |
+
@property
|
370 |
+
def pg_name(self):
|
371 |
+
"""
|
372 |
+
return the global registered name of the current pg in the world
|
373 |
+
"""
|
374 |
+
return self._world().pg_names[self]
|
375 |
+
|
376 |
+
@property
|
377 |
+
def group_name(self):
|
378 |
+
return self.pg_name
|
379 |
+
|
380 |
+
def getBackendName(self):
|
381 |
+
return "threaded"
|
382 |
+
|
383 |
+
def __repr__(self):
|
384 |
+
return f"ThreadedPG world_size:{self._world_size} rank:{self._rank}"
|
385 |
+
|
386 |
+
|
387 |
+
def _create_threaded_pg(prefix_store, rank, world_size, timeout):
|
388 |
+
pg = ProcessLocalGroup(rank, world_size)
|
389 |
+
# https://github.com/pytorch/pytorch/pull/103033 changed store based barrier to optional
|
390 |
+
# When device mesh involves sub groups while store based barrier is not enabled in c10d,
|
391 |
+
# even though threaded pg actual collectives are assumed to be single threaded,
|
392 |
+
# different threads may be initializing different groups,
|
393 |
+
# leading to race conditions.
|
394 |
+
# For example, if we have a mesh of [[0, 1], [2, 3]], the sub groups
|
395 |
+
# (dim 0 and 1) would be initialized in different threads independently.
|
396 |
+
# In this case we can no longer rely on class or global variables
|
397 |
+
# but have to rely on store based barrier to make sure each group
|
398 |
+
# is ready separately before we can invoke collectives in any of the groups.
|
399 |
+
|
400 |
+
# the prefix store is already per group so we pass an empty name here
|
401 |
+
_store_based_barrier(rank, prefix_store, "", world_size, timeout)
|
402 |
+
return pg
|
403 |
+
|
404 |
+
|
405 |
+
dist.Backend.register_backend("threaded", _create_threaded_pg, devices=["cpu", "cuda"])
|
406 |
+
|
407 |
+
|
408 |
+
@dataclass
|
409 |
+
class WorldData:
|
410 |
+
default_pg: dist.ProcessGroup
|
411 |
+
pg_map: Dict[dist.ProcessGroup, Tuple[str, Optional[Store]]]
|
412 |
+
pg_names: Dict[dist.ProcessGroup, str]
|
413 |
+
pg_group_ranks: Dict[dist.ProcessGroup, Dict[int, int]]
|
414 |
+
pg_backend_config: Dict[dist.ProcessGroup, str]
|
415 |
+
group_count: int
|
416 |
+
tags_to_pg: Dict[str, List[dist.ProcessGroup]]
|
417 |
+
pg_to_tag: Dict[dist.ProcessGroup, str]
|
418 |
+
pg_coalesce_state: Dict[dist.ProcessGroup, List[Union[_CollOp, P2POp]]]
|
419 |
+
pg_default_device: Dict[dist.ProcessGroup, torch.device]
|
420 |
+
|
421 |
+
|
422 |
+
class ThreadLocalWorld:
|
423 |
+
_world = threading.local()
|
424 |
+
|
425 |
+
def _get_world(self) -> WorldData:
|
426 |
+
if not hasattr(ThreadLocalWorld._world, "world"):
|
427 |
+
ThreadLocalWorld._world.world = WorldData(None, {}, {}, {}, {}, 0, {}, {}, {}, {})
|
428 |
+
return ThreadLocalWorld._world.world
|
429 |
+
|
430 |
+
@property
|
431 |
+
def default_pg(self):
|
432 |
+
return self._get_world().default_pg
|
433 |
+
|
434 |
+
@default_pg.setter
|
435 |
+
def default_pg(self, value):
|
436 |
+
self._get_world().default_pg = value
|
437 |
+
|
438 |
+
@property
|
439 |
+
def pg_map(self):
|
440 |
+
return self._get_world().pg_map
|
441 |
+
|
442 |
+
@property
|
443 |
+
def pg_names(self):
|
444 |
+
return self._get_world().pg_names
|
445 |
+
|
446 |
+
@property
|
447 |
+
def pg_group_ranks(self):
|
448 |
+
return self._get_world().pg_group_ranks
|
449 |
+
|
450 |
+
@property
|
451 |
+
def pg_backend_config(self):
|
452 |
+
return self._get_world().pg_backend_config
|
453 |
+
|
454 |
+
@property
|
455 |
+
def group_count(self) -> int:
|
456 |
+
return self._get_world().group_count
|
457 |
+
|
458 |
+
@group_count.setter
|
459 |
+
def group_count(self, value):
|
460 |
+
self._get_world().group_count = value
|
461 |
+
|
462 |
+
@property
|
463 |
+
def tags_to_pg(self):
|
464 |
+
return self._get_world().tags_to_pg
|
465 |
+
|
466 |
+
@property
|
467 |
+
def pg_to_tag(self):
|
468 |
+
return self._get_world().pg_to_tag
|
469 |
+
|
470 |
+
@property
|
471 |
+
def pg_coalesce_state(self) -> Dict[dist.ProcessGroup, List[Union[_CollOp, P2POp]]]:
|
472 |
+
return self._get_world().pg_coalesce_state
|
473 |
+
|
474 |
+
@property
|
475 |
+
def pg_default_device(self) -> Dict[dist.ProcessGroup, torch.device]:
|
476 |
+
return self._get_world().pg_default_device
|
477 |
+
|
478 |
+
|
479 |
+
_old_pg_world = None
|
480 |
+
_ctx_manager = None
|
481 |
+
|
482 |
+
|
483 |
+
def _install_threaded_pg():
|
484 |
+
global _old_pg_world
|
485 |
+
global _ctx_manager
|
486 |
+
_old_pg_world = dist.distributed_c10d._world
|
487 |
+
dist.distributed_c10d._world = ThreadLocalWorld()
|
488 |
+
_ctx_manager = torch.autograd.set_multithreading_enabled(False)
|
489 |
+
|
490 |
+
return dist.distributed_c10d._world
|
491 |
+
|
492 |
+
|
493 |
+
def _uninstall_threaded_pg():
|
494 |
+
dist.distributed_c10d._world = _old_pg_world
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/pipe_with_ddp_test.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn.parallel import DistributedDataParallel
|
8 |
+
from torch.testing._internal.dist_utils import INIT_METHOD_TEMPLATE, dist_init
|
9 |
+
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
|
10 |
+
RpcAgentTestFixture,
|
11 |
+
)
|
12 |
+
from torch.testing._internal.common_distributed import (
|
13 |
+
requires_gloo,
|
14 |
+
requires_nccl,
|
15 |
+
skip_if_lt_x_gpu,
|
16 |
+
skip_if_rocm,
|
17 |
+
)
|
18 |
+
from torch.distributed.pipeline.sync import Pipe
|
19 |
+
|
20 |
+
class PipeWithDDPTest(RpcAgentTestFixture):
|
21 |
+
@property
|
22 |
+
def world_size(self) -> int:
|
23 |
+
return 2
|
24 |
+
|
25 |
+
@skip_if_lt_x_gpu(4)
|
26 |
+
@requires_nccl()
|
27 |
+
@dist_init
|
28 |
+
@skip_if_rocm
|
29 |
+
def test_basic_nccl_ckpt_never(self):
|
30 |
+
self._run_basic_test("nccl", "never")
|
31 |
+
|
32 |
+
@skip_if_lt_x_gpu(4)
|
33 |
+
@requires_nccl()
|
34 |
+
@dist_init
|
35 |
+
@skip_if_rocm
|
36 |
+
def test_basic_nccl_ckpt_never_find_unused(self):
|
37 |
+
self._run_basic_test("nccl", "never", find_unused_parameters=True)
|
38 |
+
|
39 |
+
@skip_if_lt_x_gpu(4)
|
40 |
+
@requires_nccl()
|
41 |
+
@dist_init
|
42 |
+
@skip_if_rocm
|
43 |
+
def test_basic_nccl_ckpt_always(self):
|
44 |
+
self._run_basic_test("nccl", "always", static_graph=True)
|
45 |
+
|
46 |
+
@skip_if_lt_x_gpu(4)
|
47 |
+
@requires_nccl()
|
48 |
+
@dist_init
|
49 |
+
@skip_if_rocm
|
50 |
+
def test_basic_nccl_ckpt_except_last(self):
|
51 |
+
self._run_basic_test("nccl", "except_last", static_graph=True)
|
52 |
+
|
53 |
+
@skip_if_lt_x_gpu(4)
|
54 |
+
@requires_gloo()
|
55 |
+
@dist_init
|
56 |
+
@skip_if_rocm
|
57 |
+
def test_basic_gloo_ckpt_never(self):
|
58 |
+
self._run_basic_test("gloo", "never")
|
59 |
+
|
60 |
+
@skip_if_lt_x_gpu(4)
|
61 |
+
@requires_gloo()
|
62 |
+
@dist_init
|
63 |
+
@skip_if_rocm
|
64 |
+
def test_basic_gloo_ckpt_never_find_unused(self):
|
65 |
+
self._run_basic_test("gloo", "never", find_unused_parameters=True)
|
66 |
+
|
67 |
+
@skip_if_lt_x_gpu(4)
|
68 |
+
@requires_gloo()
|
69 |
+
@dist_init
|
70 |
+
@skip_if_rocm
|
71 |
+
def test_basic_gloo_ckpt_always(self):
|
72 |
+
self._run_basic_test("gloo", "always", static_graph=True)
|
73 |
+
|
74 |
+
@skip_if_lt_x_gpu(4)
|
75 |
+
@requires_gloo()
|
76 |
+
@dist_init
|
77 |
+
@skip_if_rocm
|
78 |
+
def test_basic_gloo_ckpt_except_last(self):
|
79 |
+
self._run_basic_test("gloo", "except_last", static_graph=True)
|
80 |
+
|
81 |
+
def _run_basic_test(self, backend, checkpoint, find_unused_parameters=False, static_graph=False):
|
82 |
+
dist.init_process_group(
|
83 |
+
backend=backend,
|
84 |
+
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
|
85 |
+
world_size=self.world_size,
|
86 |
+
rank=self.rank,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Use 4 GPUs, two replicas of a pipe across GPU 0 and 1 and another
|
90 |
+
# pipe between GPU 2 and 3. Both replicas are replicated via DDP.
|
91 |
+
fc1 = nn.Linear(16, 8, bias=False).cuda(2 * self.rank)
|
92 |
+
|
93 |
+
class MyModule(nn.Module):
|
94 |
+
def __init__(self, device):
|
95 |
+
super().__init__()
|
96 |
+
self.fc2 = nn.Linear(8, 4, bias=False).cuda(device)
|
97 |
+
self.fc3 = nn.Linear(4, 2, bias=False).cuda(device)
|
98 |
+
|
99 |
+
def forward(self, inp):
|
100 |
+
if find_unused_parameters:
|
101 |
+
return self.fc2(inp)
|
102 |
+
else:
|
103 |
+
return self.fc3(self.fc2(inp))
|
104 |
+
|
105 |
+
layer2 = MyModule(2 * self.rank + 1)
|
106 |
+
model = nn.Sequential(
|
107 |
+
fc1,
|
108 |
+
layer2
|
109 |
+
)
|
110 |
+
model = Pipe(model, chunks=2, checkpoint=checkpoint)
|
111 |
+
model = DistributedDataParallel(
|
112 |
+
model,
|
113 |
+
find_unused_parameters=find_unused_parameters,
|
114 |
+
static_graph=static_graph,
|
115 |
+
)
|
116 |
+
|
117 |
+
# Ensure inputs are different across ranks to verify that gradient
|
118 |
+
# sync indeed occurs.
|
119 |
+
model_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
|
120 |
+
out = model(model_input).local_value()
|
121 |
+
out.sum().backward()
|
122 |
+
|
123 |
+
# Run forward again for find_unused_parameters to trigger any potential errors.
|
124 |
+
if find_unused_parameters:
|
125 |
+
# Ensure inputs are different across ranks to verify that gradient
|
126 |
+
# sync indeed occurs.
|
127 |
+
unused_param_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
|
128 |
+
model(unused_param_input).local_value().sum().backward()
|
129 |
+
|
130 |
+
# Run a few more iterations of fwd + bwd to ensure gradient synchronization
|
131 |
+
# occurs properly across iterations via delay_all_reduce/bucketized allreduce.
|
132 |
+
for _ in range(3):
|
133 |
+
model_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
|
134 |
+
out = model(model_input).local_value()
|
135 |
+
out.sum().backward()
|
136 |
+
|
137 |
+
# Check grads
|
138 |
+
output = [torch.empty_like(fc1.weight.grad), torch.empty_like(fc1.weight.grad)]
|
139 |
+
dist.all_gather(output, fc1.weight.grad)
|
140 |
+
self.assertEqual(output[0], output[1])
|
141 |
+
|
142 |
+
output = [torch.empty_like(layer2.fc2.weight.grad), torch.empty_like(layer2.fc2.weight.grad)]
|
143 |
+
dist.all_gather(output, layer2.fc2.weight.grad)
|
144 |
+
self.assertEqual(output[0], output[1])
|
145 |
+
|
146 |
+
if not find_unused_parameters:
|
147 |
+
output = [torch.empty_like(layer2.fc3.weight.grad), torch.empty_like(layer2.fc3.weight.grad)]
|
148 |
+
dist.all_gather(output, layer2.fc3.weight.grad)
|
149 |
+
self.assertEqual(output[0], output[1])
|
venv/lib/python3.10/site-packages/torch/testing/_internal/distributed/rpc_utils.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import unittest
|
6 |
+
from typing import Dict, List, Type
|
7 |
+
|
8 |
+
from torch.testing._internal.common_distributed import MultiProcessTestCase
|
9 |
+
from torch.testing._internal.common_utils import (
|
10 |
+
TEST_WITH_DEV_DBG_ASAN,
|
11 |
+
find_free_port,
|
12 |
+
IS_SANDCASTLE,
|
13 |
+
)
|
14 |
+
from torch.testing._internal.distributed.ddp_under_dist_autograd_test import (
|
15 |
+
CudaDdpComparisonTest,
|
16 |
+
DdpComparisonTest,
|
17 |
+
DdpUnderDistAutogradTest,
|
18 |
+
)
|
19 |
+
from torch.testing._internal.distributed.pipe_with_ddp_test import (
|
20 |
+
PipeWithDDPTest,
|
21 |
+
)
|
22 |
+
from torch.testing._internal.distributed.nn.api.remote_module_test import (
|
23 |
+
CudaRemoteModuleTest,
|
24 |
+
RemoteModuleTest,
|
25 |
+
ThreeWorkersRemoteModuleTest,
|
26 |
+
)
|
27 |
+
from torch.testing._internal.distributed.rpc.dist_autograd_test import (
|
28 |
+
DistAutogradTest,
|
29 |
+
CudaDistAutogradTest,
|
30 |
+
FaultyAgentDistAutogradTest,
|
31 |
+
TensorPipeAgentDistAutogradTest,
|
32 |
+
TensorPipeCudaDistAutogradTest
|
33 |
+
)
|
34 |
+
from torch.testing._internal.distributed.rpc.dist_optimizer_test import (
|
35 |
+
DistOptimizerTest,
|
36 |
+
)
|
37 |
+
from torch.testing._internal.distributed.rpc.jit.dist_autograd_test import (
|
38 |
+
JitDistAutogradTest,
|
39 |
+
)
|
40 |
+
from torch.testing._internal.distributed.rpc.jit.rpc_test import JitRpcTest
|
41 |
+
from torch.testing._internal.distributed.rpc.jit.rpc_test_faulty import (
|
42 |
+
JitFaultyAgentRpcTest,
|
43 |
+
)
|
44 |
+
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
|
45 |
+
RpcAgentTestFixture,
|
46 |
+
)
|
47 |
+
from torch.testing._internal.distributed.rpc.faulty_agent_rpc_test import (
|
48 |
+
FaultyAgentRpcTest,
|
49 |
+
)
|
50 |
+
from torch.testing._internal.distributed.rpc.rpc_test import (
|
51 |
+
CudaRpcTest,
|
52 |
+
RpcTest,
|
53 |
+
TensorPipeAgentRpcTest,
|
54 |
+
TensorPipeAgentCudaRpcTest,
|
55 |
+
)
|
56 |
+
from torch.testing._internal.distributed.rpc.examples.parameter_server_test import ParameterServerTest
|
57 |
+
from torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test import (
|
58 |
+
ReinforcementLearningRpcTest,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def _check_and_set_tcp_init():
|
63 |
+
# if we are running with TCP init, set main address and port
|
64 |
+
# before spawning subprocesses, since different processes could find
|
65 |
+
# different ports.
|
66 |
+
use_tcp_init = os.environ.get("RPC_INIT_WITH_TCP", None)
|
67 |
+
if use_tcp_init == "1":
|
68 |
+
os.environ["MASTER_ADDR"] = '127.0.0.1'
|
69 |
+
os.environ["MASTER_PORT"] = str(find_free_port())
|
70 |
+
|
71 |
+
def _check_and_unset_tcp_init():
|
72 |
+
use_tcp_init = os.environ.get("RPC_INIT_WITH_TCP", None)
|
73 |
+
if use_tcp_init == "1":
|
74 |
+
del os.environ["MASTER_ADDR"]
|
75 |
+
del os.environ["MASTER_PORT"]
|
76 |
+
|
77 |
+
# The tests for the RPC module need to cover multiple possible combinations:
|
78 |
+
# - different aspects of the API, each one having its own suite of tests;
|
79 |
+
# - different agents (ProcessGroup, TensorPipe, ...);
|
80 |
+
# To avoid a combinatorial explosion in code size, and to prevent forgetting to
|
81 |
+
# add a combination, these are generated automatically by the code in this file.
|
82 |
+
# Here, we collect all the test suites that we need to cover.
|
83 |
+
# We then have one separate file for each agent, from which
|
84 |
+
# we call the generate_tests function of this file, passing to it a fixture for
|
85 |
+
# the agent, which then gets mixed-in with each test suite.
|
86 |
+
|
87 |
+
@unittest.skipIf(
|
88 |
+
TEST_WITH_DEV_DBG_ASAN, "Skip ASAN as torch + multiprocessing spawn have known issues"
|
89 |
+
)
|
90 |
+
class SpawnHelper(MultiProcessTestCase):
|
91 |
+
def setUp(self):
|
92 |
+
super().setUp()
|
93 |
+
_check_and_set_tcp_init()
|
94 |
+
self._spawn_processes()
|
95 |
+
|
96 |
+
def tearDown(self):
|
97 |
+
_check_and_unset_tcp_init()
|
98 |
+
super().tearDown()
|
99 |
+
|
100 |
+
|
101 |
+
# This list contains test suites that are agent-agnostic and that only verify
|
102 |
+
# compliance with the generic RPC interface specification. These tests should
|
103 |
+
# *not* make use of implementation details of a specific agent (options,
|
104 |
+
# attributes, ...). These test suites will be instantiated multiple times, once
|
105 |
+
# for each agent (except the faulty agent, which is special).
|
106 |
+
GENERIC_TESTS = [
|
107 |
+
RpcTest,
|
108 |
+
ParameterServerTest,
|
109 |
+
DistAutogradTest,
|
110 |
+
DistOptimizerTest,
|
111 |
+
JitRpcTest,
|
112 |
+
JitDistAutogradTest,
|
113 |
+
RemoteModuleTest,
|
114 |
+
ThreeWorkersRemoteModuleTest,
|
115 |
+
DdpUnderDistAutogradTest,
|
116 |
+
DdpComparisonTest,
|
117 |
+
ReinforcementLearningRpcTest,
|
118 |
+
]
|
119 |
+
GENERIC_CUDA_TESTS = [
|
120 |
+
CudaRpcTest,
|
121 |
+
CudaDistAutogradTest,
|
122 |
+
CudaRemoteModuleTest,
|
123 |
+
CudaDdpComparisonTest,
|
124 |
+
PipeWithDDPTest,
|
125 |
+
]
|
126 |
+
|
127 |
+
|
128 |
+
# This list contains test suites that will only be run on the TensorPipeAgent.
|
129 |
+
# These suites should be standalone, and separate from the ones in the generic
|
130 |
+
# list (not subclasses of those!).
|
131 |
+
TENSORPIPE_TESTS = [
|
132 |
+
TensorPipeAgentRpcTest,
|
133 |
+
TensorPipeAgentDistAutogradTest,
|
134 |
+
]
|
135 |
+
TENSORPIPE_CUDA_TESTS = [
|
136 |
+
TensorPipeAgentCudaRpcTest,
|
137 |
+
TensorPipeCudaDistAutogradTest,
|
138 |
+
]
|
139 |
+
|
140 |
+
|
141 |
+
# This list contains test suites that will only be run on the faulty RPC agent.
|
142 |
+
# That agent is special as it's only used to perform fault injection in order to
|
143 |
+
# verify the error handling behavior. Thus the faulty agent will only run the
|
144 |
+
# suites in this list, which were designed to test such behaviors, and not the
|
145 |
+
# ones in the generic list.
|
146 |
+
FAULTY_AGENT_TESTS = [
|
147 |
+
FaultyAgentRpcTest,
|
148 |
+
FaultyAgentDistAutogradTest,
|
149 |
+
JitFaultyAgentRpcTest,
|
150 |
+
]
|
151 |
+
|
152 |
+
|
153 |
+
def generate_tests(
|
154 |
+
prefix: str,
|
155 |
+
mixin: Type[RpcAgentTestFixture],
|
156 |
+
tests: List[Type[RpcAgentTestFixture]],
|
157 |
+
module_name: str,
|
158 |
+
) -> Dict[str, Type[RpcAgentTestFixture]]:
|
159 |
+
"""Mix in the classes needed to autogenerate the tests based on the params.
|
160 |
+
|
161 |
+
Takes a series of test suites, each written against a "generic" agent (i.e.,
|
162 |
+
derived from the abstract RpcAgentTestFixture class), as the `tests` args.
|
163 |
+
Takes a concrete subclass of RpcAgentTestFixture, which specializes it for a
|
164 |
+
certain agent, as the `mixin` arg. Produces all combinations of them.
|
165 |
+
Returns a dictionary of class names to class type
|
166 |
+
objects which can be inserted into the global namespace of the calling
|
167 |
+
module. The name of each test will be a concatenation of the `prefix` arg
|
168 |
+
and the original name of the test suite.
|
169 |
+
The `module_name` should be the name of the calling module so
|
170 |
+
that the classes can be fixed to make it look like they belong to it, which
|
171 |
+
is necessary for pickling to work on them.
|
172 |
+
"""
|
173 |
+
ret: Dict[str, Type[RpcAgentTestFixture]] = {}
|
174 |
+
for test_class in tests:
|
175 |
+
if IS_SANDCASTLE and TEST_WITH_DEV_DBG_ASAN:
|
176 |
+
print(
|
177 |
+
f'Skipping test {test_class} on sandcastle for the following reason: '
|
178 |
+
'Skip dev-asan as torch + multiprocessing spawn have known issues', file=sys.stderr)
|
179 |
+
continue
|
180 |
+
|
181 |
+
name = f"{prefix}{test_class.__name__}"
|
182 |
+
class_ = type(name, (test_class, mixin, SpawnHelper), {})
|
183 |
+
class_.__module__ = module_name
|
184 |
+
ret[name] = class_
|
185 |
+
return ret
|
venv/lib/python3.10/site-packages/torch/testing/_internal/inductor_utils.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
import unittest
|
6 |
+
import functools
|
7 |
+
from subprocess import CalledProcessError
|
8 |
+
|
9 |
+
from torch._inductor.codecache import CppCodeCache
|
10 |
+
from torch.utils._triton import has_triton
|
11 |
+
from torch.testing._internal.common_utils import (
|
12 |
+
LazyVal,
|
13 |
+
IS_FBCODE,
|
14 |
+
)
|
15 |
+
from torch._dynamo.backends.registry import register_backend
|
16 |
+
from torch._inductor.compile_fx import compile_fx, count_bytes_inner
|
17 |
+
from torch.testing._internal.common_utils import TestCase
|
18 |
+
|
19 |
+
def test_cpu():
|
20 |
+
try:
|
21 |
+
CppCodeCache.load("")
|
22 |
+
return not IS_FBCODE
|
23 |
+
except (
|
24 |
+
CalledProcessError,
|
25 |
+
OSError,
|
26 |
+
torch._inductor.exc.InvalidCxxCompiler,
|
27 |
+
torch._inductor.exc.CppCompileError,
|
28 |
+
):
|
29 |
+
return False
|
30 |
+
|
31 |
+
HAS_CPU = LazyVal(test_cpu)
|
32 |
+
|
33 |
+
HAS_CUDA = torch.cuda.is_available() and has_triton()
|
34 |
+
|
35 |
+
HAS_GPU = HAS_CUDA
|
36 |
+
|
37 |
+
GPUS = ["cuda"]
|
38 |
+
|
39 |
+
HAS_MULTIGPU = any(
|
40 |
+
getattr(torch, gpu).is_available() and getattr(torch, gpu).device_count() >= 2
|
41 |
+
for gpu in GPUS
|
42 |
+
)
|
43 |
+
|
44 |
+
tmp_gpus = [x for x in GPUS if getattr(torch, x).is_available()]
|
45 |
+
assert len(tmp_gpus) <= 1
|
46 |
+
GPU_TYPE = "cuda" if len(tmp_gpus) == 0 else tmp_gpus.pop()
|
47 |
+
del tmp_gpus
|
48 |
+
|
49 |
+
@register_backend
|
50 |
+
def count_bytes_inductor(gm, example_inputs):
|
51 |
+
return compile_fx(gm, example_inputs, inner_compile=count_bytes_inner)
|
52 |
+
|
53 |
+
def _check_has_dynamic_shape(
|
54 |
+
self: TestCase,
|
55 |
+
code,
|
56 |
+
):
|
57 |
+
for_loop_found = False
|
58 |
+
has_dynamic = False
|
59 |
+
lines = code.split("\n")
|
60 |
+
for line in lines:
|
61 |
+
if "for(" in line:
|
62 |
+
for_loop_found = True
|
63 |
+
if re.search(r";.*ks.*;", line) is not None:
|
64 |
+
has_dynamic = True
|
65 |
+
break
|
66 |
+
self.assertTrue(
|
67 |
+
has_dynamic, msg=f"Failed to find dynamic for loop variable\n{code}"
|
68 |
+
)
|
69 |
+
self.assertTrue(for_loop_found, f"Failed to find for loop\n{code}")
|
70 |
+
|
71 |
+
|
72 |
+
def skipDeviceIf(cond, msg, *, device):
|
73 |
+
if cond:
|
74 |
+
def decorate_fn(fn):
|
75 |
+
def inner(self, *args, **kwargs):
|
76 |
+
if self.device == device:
|
77 |
+
raise unittest.SkipTest(msg)
|
78 |
+
return fn(self, *args, **kwargs)
|
79 |
+
return inner
|
80 |
+
else:
|
81 |
+
def decorate_fn(fn):
|
82 |
+
return fn
|
83 |
+
|
84 |
+
return decorate_fn
|
85 |
+
|
86 |
+
skipCUDAIf = functools.partial(skipDeviceIf, device="cuda")
|
87 |
+
skipCPUIf = functools.partial(skipDeviceIf, device="cpu")
|
venv/lib/python3.10/site-packages/torch/testing/_internal/jit_metaprogramming_utils.py
ADDED
@@ -0,0 +1,722 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Torch
|
4 |
+
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch
|
7 |
+
import torch.cuda
|
8 |
+
import torch.jit
|
9 |
+
import torch.jit._logging
|
10 |
+
import torch.jit.frontend
|
11 |
+
from torch.testing._internal.common_nn import module_tests, new_module_tests
|
12 |
+
from torch.testing._internal.common_utils import is_iterable_of_tensors, noncontiguous_like
|
13 |
+
|
14 |
+
import collections
|
15 |
+
from copy import deepcopy
|
16 |
+
from typing import Any, Dict, List, Union
|
17 |
+
import math # noqa: F401
|
18 |
+
|
19 |
+
# Testing utils
|
20 |
+
from torch import inf
|
21 |
+
|
22 |
+
assert torch.get_default_dtype() == torch.float32
|
23 |
+
|
24 |
+
L = 20
|
25 |
+
M = 10
|
26 |
+
S = 5
|
27 |
+
|
28 |
+
|
29 |
+
def unpack_variables(args):
|
30 |
+
if isinstance(args, tuple):
|
31 |
+
return tuple(unpack_variables(elem) for elem in args)
|
32 |
+
else:
|
33 |
+
return args
|
34 |
+
|
35 |
+
class dont_convert(tuple):
|
36 |
+
pass
|
37 |
+
|
38 |
+
non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
|
39 |
+
|
40 |
+
def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.float, device=None):
|
41 |
+
if not isinstance(call_args, tuple):
|
42 |
+
call_args = (call_args,)
|
43 |
+
|
44 |
+
def map_arg(arg):
|
45 |
+
def maybe_non_contig(tensor):
|
46 |
+
if not non_contiguous or tensor.numel() < 2:
|
47 |
+
return tensor.clone()
|
48 |
+
|
49 |
+
return noncontiguous_like(tensor)
|
50 |
+
|
51 |
+
def conjugate(tensor):
|
52 |
+
return tensor.conj()
|
53 |
+
|
54 |
+
if isinstance(arg, (torch.Size, dont_convert)):
|
55 |
+
return arg
|
56 |
+
elif isinstance(arg, tuple) and len(arg) == 0:
|
57 |
+
var = conjugate(torch.randn((), dtype=dtype, device=device))
|
58 |
+
var.requires_grad = requires_grad
|
59 |
+
return var
|
60 |
+
elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
|
61 |
+
return conjugate(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device))).requires_grad_(requires_grad)
|
62 |
+
# double check casting
|
63 |
+
elif isinstance(arg, non_differentiable):
|
64 |
+
if isinstance(arg.tensor, torch.Tensor):
|
65 |
+
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
|
66 |
+
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
|
67 |
+
elif isinstance(arg, torch.Tensor):
|
68 |
+
if arg.is_complex() != dtype.is_complex:
|
69 |
+
raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
|
70 |
+
"which is not supported for now")
|
71 |
+
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
|
72 |
+
v = conjugate(maybe_non_contig(arg)).detach().to(device=device).clone()
|
73 |
+
v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
|
74 |
+
return v
|
75 |
+
elif callable(arg):
|
76 |
+
return map_arg(arg(dtype=dtype, device=device))
|
77 |
+
else:
|
78 |
+
return arg
|
79 |
+
args_out = tuple(map_arg(arg) for arg in call_args)
|
80 |
+
kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
|
81 |
+
return args_out, kwargs_out
|
82 |
+
|
83 |
+
# NB: JIT script tests for all nn functional interfaces, script mode does
|
84 |
+
# not support in_place operations yet, so no inplace operation tests added.
|
85 |
+
# removed all the deprecated functions
|
86 |
+
#
|
87 |
+
# (
|
88 |
+
# method name,
|
89 |
+
# input size/constructing fn,
|
90 |
+
# args (tuple represents shape of a tensor arg),
|
91 |
+
# test variant name(will be used at test name suffix,
|
92 |
+
# 'inplace' skips grad tests), // optional
|
93 |
+
# (True, nonfusible_nodes, fusible_nodes) for autodiff // optional
|
94 |
+
# fn to determine if test should be skipped, // optional
|
95 |
+
# fn mapping output to part that should be gradcheck'ed, // optional
|
96 |
+
# kwargs for function, // optional
|
97 |
+
# )
|
98 |
+
nn_functional_tests = [
|
99 |
+
('conv1d', (S, S, S), ((S, S, S),)),
|
100 |
+
('conv2d', (S, S, S, S), ((S, S, S, S),)),
|
101 |
+
('conv3d', (S, S, S, S, S), ((S, S, S, S, S),)),
|
102 |
+
('conv_transpose1d', (S, S, S), ((S, S, S),)),
|
103 |
+
('conv_transpose2d', (S, S, S, S), ((S, S, S, S),)),
|
104 |
+
('conv_transpose3d', (S, S, S, S, S), ((S, S, S, S, S),)),
|
105 |
+
('conv_tbc', (S, S, S), ((S, S, S), (S,), 2)),
|
106 |
+
('avg_pool1d', (S, S, S), (3,)),
|
107 |
+
('avg_pool2d', (S, S, S, S), (3,), '', (True,)),
|
108 |
+
('avg_pool3d', (S, S, S, S, S), (3,)),
|
109 |
+
('fractional_max_pool2d', (S, S, S, S), (3, [2, 3],)),
|
110 |
+
('max_pool1d', (S, S, S), (2, 1)),
|
111 |
+
('max_pool1d', (S, S, S), (2, 1, 1, 1, False, True), 'with_indices'),
|
112 |
+
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
|
113 |
+
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
|
114 |
+
('max_pool3d', (S, S, S, S, S), (2, 1)),
|
115 |
+
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
|
116 |
+
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
|
117 |
+
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
|
118 |
+
('lp_pool1d', (S, S, S), (2., 3, 2,)),
|
119 |
+
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
|
120 |
+
('lp_pool3d', (S, S, S, S, S), (2., 3, 2,)),
|
121 |
+
('adaptive_max_pool1d', (S, S, S), (5,)),
|
122 |
+
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
|
123 |
+
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
|
124 |
+
('adaptive_avg_pool1d', (S, S, S), (5,), '', (True,)),
|
125 |
+
('adaptive_avg_pool2d', (S, S, S, S), ([5, 7],), '', (True,)),
|
126 |
+
('adaptive_avg_pool3d', (S, S, S, S, S), ([3, 2, 2],), '', (True,)),
|
127 |
+
('dropout', (S, S, S), (0.5,), '', (True, 'aten::native_dropout')),
|
128 |
+
('alpha_dropout', (S, S, S), (0.5,)),
|
129 |
+
('dropout2d', (S, S, S), (0.5,)),
|
130 |
+
('dropout2d', (S, S, S, S), (0.5,), 'batched'),
|
131 |
+
('dropout3d', (S, S, S, S), (0.5,)),
|
132 |
+
('dropout3d', (S, S, S, S, S), (0.5,), 'batched'),
|
133 |
+
('feature_alpha_dropout', (S, S, S), (0.5,)),
|
134 |
+
('threshold', (S, S, S), (0.1, 2.), '', (True,)),
|
135 |
+
('threshold', (S, S, S), (0.1, 2., True), 'inplace'),
|
136 |
+
('relu', (S, S, S), (), '', (True,)),
|
137 |
+
('relu', (S, S, S), (), 'inplace'),
|
138 |
+
('glu', (S - 1, S - 1, S - 1), (),),
|
139 |
+
('hardtanh', (S, S, S), (-0.5, 0.5), '', (True,)),
|
140 |
+
('hardtanh', (S, S, S), (-0.5, 0.5, True), 'inplace'),
|
141 |
+
('relu6', (S, S, S), (), '', (True,)),
|
142 |
+
('relu6', (S, S, S), (True), 'inplace'),
|
143 |
+
('elu', (S, S, S), (0.9,),),
|
144 |
+
('elu', (S, S, S), (0.9, True), 'inplace'),
|
145 |
+
('selu', (S, S, S), (),),
|
146 |
+
('selu', (S, S, S), (True), 'inplace'),
|
147 |
+
('celu', (S, S, S), (0.9,),),
|
148 |
+
('celu', (S, S, S), (0.9, True), 'inplace'),
|
149 |
+
('leaky_relu', (S, S, S), (0.02,), '', (True,)),
|
150 |
+
('leaky_relu', (S, S, S), (0.02,), 'inplace'),
|
151 |
+
('rrelu', (S, S), (0.1, 0.3, False),),
|
152 |
+
('rrelu', (S, S), (0.1, 0.3, False, True), 'inplace'),
|
153 |
+
('hardshrink', (S, S, S), (0.4,), '', (True,)),
|
154 |
+
('tanhshrink', (S, S, S), (),),
|
155 |
+
('softsign', (S, S, S), (),),
|
156 |
+
('softplus', (S, S, S), (), '', (True,)),
|
157 |
+
('softmin', (S, S, S), (0,),),
|
158 |
+
('softmax', (S, S, S), (0,), '', (True,)),
|
159 |
+
('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
|
160 |
+
('tanh', (S, S, S), (), '', (True,)),
|
161 |
+
('sigmoid', (S, S, S), (), '', (True,)),
|
162 |
+
('silu', (S, S, S), (), '', (True,)),
|
163 |
+
('log_softmax', (S, S, S), (0,), '', (True,)),
|
164 |
+
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
|
165 |
+
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
|
166 |
+
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
|
167 |
+
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
|
168 |
+
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
|
169 |
+
('batch_norm', (S, S),
|
170 |
+
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), None, None, True, ),
|
171 |
+
'training', (True, 'aten::_batch_norm_impl_index')),
|
172 |
+
('batch_norm', (0, S, S, S),
|
173 |
+
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
174 |
+
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
|
175 |
+
'size_zero', (True, 'aten::_batch_norm_impl_index')),
|
176 |
+
('batch_norm', (0, S, S, S),
|
177 |
+
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
178 |
+
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
|
179 |
+
'size_zero_inference', (True, 'aten::_batch_norm_impl_index')),
|
180 |
+
('batch_norm', (S, S),
|
181 |
+
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
182 |
+
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
|
183 |
+
'with_weight_and_bias_training', (True, 'aten::_batch_norm_impl_index')),
|
184 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
185 |
+
None, non_differentiable(torch.ones(S)), True, ),
|
186 |
+
'with_only_bias_training', (True, 'aten::_batch_norm_impl_index')),
|
187 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
188 |
+
non_differentiable(torch.randn(S)), None, True, ),
|
189 |
+
'with_only_weight_training', (True, 'aten::_batch_norm_impl_index')),
|
190 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
191 |
+
None, None, False, ),
|
192 |
+
'inference', (True, 'aten::_batch_norm_impl_index')),
|
193 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
194 |
+
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), False, ),
|
195 |
+
'with_weight_and_bias_inference', (True, 'aten::_batch_norm_impl_index')),
|
196 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
197 |
+
None, non_differentiable(torch.ones(S)), False, ),
|
198 |
+
'with_only_bias_inference', (True, 'aten::_batch_norm_impl_index')),
|
199 |
+
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
|
200 |
+
non_differentiable(torch.randn(S)), None, False, ),
|
201 |
+
'with_only_weight_inference', (True, 'aten::_batch_norm_impl_index')),
|
202 |
+
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
|
203 |
+
('layer_norm', (S, S, S, S), ([5],), '',
|
204 |
+
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
|
205 |
+
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),), 'with_only_weight',
|
206 |
+
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
|
207 |
+
('layer_norm', (S, S, S, S), ([5], None, non_differentiable(torch.rand(S)),), 'with_only_bias',
|
208 |
+
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
|
209 |
+
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),
|
210 |
+
non_differentiable(torch.rand(S))), 'with_weight_and_bias',
|
211 |
+
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index', 'aten::addcmul'])),
|
212 |
+
('group_norm', (S, S, S), (1, torch.rand(5),),),
|
213 |
+
('local_response_norm', (S, S, S), (2, ),),
|
214 |
+
('nll_loss', F.log_softmax(torch.randn(3, 5), dim=0), (torch.tensor([1, 0, 4]),), '',),
|
215 |
+
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2),),),
|
216 |
+
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2), True, True), 'full'),
|
217 |
+
('kl_div', F.log_softmax(torch.randn(S, 10), 1), (F.softmax(torch.randn(S, 10), 1),),),
|
218 |
+
('cross_entropy', (3, S), (torch.randint(S, (3,), dtype=torch.int64),),),
|
219 |
+
('binary_cross_entropy_with_logits', (3,), (torch.empty(3).random_(2), ),),
|
220 |
+
('smooth_l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
221 |
+
('huber_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
222 |
+
('l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
223 |
+
('mse_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
224 |
+
('smooth_l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
|
225 |
+
('huber_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
|
226 |
+
('l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
|
227 |
+
('mse_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
|
228 |
+
('margin_ranking_loss', (S,), ((S,), (S,)),),
|
229 |
+
('hinge_embedding_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
230 |
+
('soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
231 |
+
('multilabel_soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
|
232 |
+
('cosine_embedding_loss', (S, S), ((S, S), non_differentiable(torch.rand(S,))),),
|
233 |
+
('pixel_shuffle', (1, 9, 4, 4), (3,),),
|
234 |
+
('pixel_unshuffle', (1, 1, 12, 12), (3,),),
|
235 |
+
('affine_grid', (S, 2, 3), (torch.Size([S, 1, 7, 7]),),),
|
236 |
+
('pad', (3, 3, 4, 2), ([1, 1],),),
|
237 |
+
('pairwise_distance', (S, S), ((S, S),),),
|
238 |
+
('pdist', (S, S), (),),
|
239 |
+
('cosine_similarity', (S, S), ((S, S),),),
|
240 |
+
('triplet_margin_loss', (S, S), ((S, S), (S, S)),),
|
241 |
+
('normalize', (S, S, S), (),),
|
242 |
+
('unfold', (S, S, S, S), ([2, 3]),),
|
243 |
+
('fold', (1, 3 * 2 * 2, 12), ([4, 5], [2, 2]),),
|
244 |
+
('grid_sample', (S, S, S, S), (non_differentiable(torch.rand(S, S, S, 2)),),),
|
245 |
+
('gumbel_softmax', (S, S), (2.,), '', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
|
246 |
+
('gumbel_softmax', (S, S), (2., True,), 'hard', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
|
247 |
+
('multilabel_margin_loss', torch.tensor([[0.2, -0.2, 0.07]]), (torch.tensor([[0, 0, 1]]),),),
|
248 |
+
('multi_margin_loss', (S, S), (non_differentiable(torch.randint(S, (S, ), dtype=torch.int64)),
|
249 |
+
1, 1., non_differentiable(torch.randn(S))),),
|
250 |
+
('binary_cross_entropy', torch.randn(3, 2).sigmoid(), (non_differentiable(torch.rand(3, 2)),
|
251 |
+
non_differentiable(torch.randn(3, 2))),),
|
252 |
+
('binary_cross_entropy', torch.randn(3, 2).sigmoid(),
|
253 |
+
(non_differentiable(torch.rand(3, 2)),
|
254 |
+
non_differentiable(torch.randn(3, 2)), None, None, 'mean'), 'size_average'),
|
255 |
+
('ctc_loss', torch.rand(S, S, S).log_softmax(2).detach().requires_grad_(),
|
256 |
+
(torch.randint(1, S, (S, S), dtype=torch.long), torch.full((S,), S, dtype=torch.long),
|
257 |
+
torch.randint(1, S, (S,), dtype=torch.long))),
|
258 |
+
('upsample', torch.randn(S, S, M, M), (None, 2.), 'with_scale'),
|
259 |
+
('upsample', torch.randn(S, S, M, M), (4,), 'with_size'),
|
260 |
+
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'nearest_4d'),
|
261 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'nearest_4d_with_scale'),
|
262 |
+
('interpolate', torch.randn(S, S, M, M), (4,), 'nearest_4d_with_size'),
|
263 |
+
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'area_4d'),
|
264 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'area_4d_with_scale'),
|
265 |
+
('interpolate', torch.randn(S, S, M, M), (4,), 'area_4d_with_size'),
|
266 |
+
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bilinear_4d'),
|
267 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bilinear_4d_with_scale'),
|
268 |
+
('interpolate', torch.randn(S, S, M, M), (4,), 'bilinear_4d_with_size'),
|
269 |
+
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bicubic_4d'),
|
270 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bicubic_4d_with_scale'),
|
271 |
+
('interpolate', torch.randn(S, S, M, M), (4,), 'bicubic_4d_with_size'),
|
272 |
+
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'nearest_3d'),
|
273 |
+
('interpolate', torch.randn(S, M, M), (None, 2.), 'nearest_3d_with_scale'),
|
274 |
+
('interpolate', torch.randn(S, M, M), (4,), 'nearest_3d_with_size'),
|
275 |
+
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'area_3d'),
|
276 |
+
('interpolate', torch.randn(S, M, M), (None, 2.), 'area_3d_with_scale'),
|
277 |
+
('interpolate', torch.randn(S, M, M), (4,), 'area_3d_with_size'),
|
278 |
+
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'linear_3d'),
|
279 |
+
('interpolate', torch.randn(S, M, M), (None, 2.), 'linear_3d_with_scale'),
|
280 |
+
('interpolate', torch.randn(S, M, M), (4,), 'linear_3d_with_size'),
|
281 |
+
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'nearest_5d_with_scale'),
|
282 |
+
('interpolate', torch.randn(S, M, M, M, M), (4,), 'nearest_5d_with_size'),
|
283 |
+
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'area_5d'),
|
284 |
+
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'area_5d_with_scale'),
|
285 |
+
('interpolate', torch.randn(S, M, M, M, M), (4,), 'area_5d_with_size'),
|
286 |
+
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'trilinear_5d'),
|
287 |
+
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'trilinear_5d_with_scale'),
|
288 |
+
('interpolate', torch.randn(S, M, M, M, M), (4,), 'trilinear_5d_with_size'),
|
289 |
+
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2, None, 'nearest', None, False),
|
290 |
+
'nearest_4d_not_recompute_scale_factor'),
|
291 |
+
('interpolate', torch.randn(S, S, M, M), (4, None, 'nearest', None, False),
|
292 |
+
'nearest_4d_with_size_not_recompute_scale_factor'),
|
293 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bilinear', None, False),
|
294 |
+
'bilinear_4d_with_scale_not_recompute_scale_factor'),
|
295 |
+
('interpolate', torch.randn(S, S, M, M), (4, None, 'bilinear', None, False),
|
296 |
+
'bilinear_4d_with_size_not_recompute_scale_factor'),
|
297 |
+
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bicubic', None, False),
|
298 |
+
'bicubic_4d_with_scale_not_recompute_scale_factor'),
|
299 |
+
('interpolate', torch.randn(S, S, M, M), (4, None, 'bicubic', None, False),
|
300 |
+
'bicubic_4d_with_size_not_recompute_scale_factor'),
|
301 |
+
('interpolate', torch.randn(S, M, M), (None, 2., 'nearest', None, False),
|
302 |
+
'nearest_3d_with_scale_not_recompute_scale_factor'),
|
303 |
+
('interpolate', torch.randn(S, M, M), (4, None, 'nearest', None, False),
|
304 |
+
'nearest_3d_with_size_not_recompute_scale_factor'),
|
305 |
+
('interpolate', torch.randn(S, M, M), (None, 2., 'linear', None, False),
|
306 |
+
'linear_3d_with_scale_not_recompute_scale_factor'),
|
307 |
+
('interpolate', torch.randn(S, M, M), (4, None, 'linear', None, False),
|
308 |
+
'linear_3d_with_size_not_recompute_scale_factor'),
|
309 |
+
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'nearest', None, False),
|
310 |
+
'nearest_5d_with_scale_not_recompute_scale_factor'),
|
311 |
+
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'nearest', None, False),
|
312 |
+
'nearest_5d_with_size_not_recompute_scale_factor'),
|
313 |
+
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'trilinear', None, False),
|
314 |
+
'trilinear_5d_with_scale_not_recompute_scale_factor'),
|
315 |
+
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'trilinear', None, False),
|
316 |
+
'trilinear_5d_with_size_not_recompute_scale_factor'),
|
317 |
+
]
|
318 |
+
|
319 |
+
script_template = '''
|
320 |
+
def the_method({}):
|
321 |
+
return {}
|
322 |
+
'''
|
323 |
+
|
324 |
+
def value_to_literal(value):
|
325 |
+
if isinstance(value, str):
|
326 |
+
# Quotes string and escapes special characters
|
327 |
+
return ascii(value)
|
328 |
+
if isinstance(value, torch.Tensor):
|
329 |
+
return 'torch.' + str(value)
|
330 |
+
else:
|
331 |
+
return str(value)
|
332 |
+
|
333 |
+
def get_call(method_name, func_type, args, kwargs):
|
334 |
+
kwargs_str = ', '.join([k + '=' + value_to_literal(v) for k, v in kwargs.items()])
|
335 |
+
self_arg = args[0]
|
336 |
+
if func_type == 'method':
|
337 |
+
args = args[1:]
|
338 |
+
|
339 |
+
argument_str = ', '.join(args)
|
340 |
+
argument_str += ', ' if len(args) and len(kwargs) else ''
|
341 |
+
argument_str += kwargs_str
|
342 |
+
|
343 |
+
if func_type == 'functional' or func_type == 'function':
|
344 |
+
call = f'torch.{method_name}({argument_str})'
|
345 |
+
elif func_type == 'method':
|
346 |
+
call = f'{self_arg}.{method_name}({argument_str})'
|
347 |
+
elif func_type == 'nn_functional':
|
348 |
+
call = f'torch.nn.functional.{method_name}({argument_str})'
|
349 |
+
else:
|
350 |
+
raise TypeError('Unsupported function type')
|
351 |
+
|
352 |
+
return call
|
353 |
+
|
354 |
+
def get_constant(x):
|
355 |
+
if x == inf:
|
356 |
+
return 'math.inf'
|
357 |
+
if x == -inf:
|
358 |
+
return '-math.inf'
|
359 |
+
return x
|
360 |
+
|
361 |
+
def get_script_args(args):
|
362 |
+
formals: List[str] = []
|
363 |
+
tensors: List[Union[torch.Tensor, List[torch.Tensor]]] = []
|
364 |
+
actuals: List[str] = []
|
365 |
+
for arg in args:
|
366 |
+
if isinstance(arg, torch.Tensor):
|
367 |
+
name = f'i{len(formals)}'
|
368 |
+
formals.append(name)
|
369 |
+
actuals.append(name)
|
370 |
+
tensors.append(arg)
|
371 |
+
elif is_iterable_of_tensors(arg):
|
372 |
+
name = f'i{len(formals)}'
|
373 |
+
formals.append(name + ': List[torch.Tensor]')
|
374 |
+
actuals.append(name)
|
375 |
+
tensors.append(list(arg))
|
376 |
+
elif isinstance(arg, str):
|
377 |
+
actuals.append(f"'{arg}'")
|
378 |
+
else:
|
379 |
+
actuals.append(str(get_constant(arg)))
|
380 |
+
return (formals, tensors, actuals)
|
381 |
+
|
382 |
+
# create a script function from (name, func_type, output_process_fn),
|
383 |
+
# and returns the compiled function and example inputs
|
384 |
+
def gen_script_fn_and_args(method_name, func_type, *args, **kwargs):
|
385 |
+
formals, tensors, actuals = get_script_args(args)
|
386 |
+
call = get_call(method_name, func_type, actuals, kwargs)
|
387 |
+
script = script_template.format(', '.join(formals), call)
|
388 |
+
CU = torch.jit.CompilationUnit(script)
|
389 |
+
return CU.the_method, tensors
|
390 |
+
|
391 |
+
# create a script function from (name, func_type),
|
392 |
+
# returns a function takes in (args, kwargs) and runs the compiled function
|
393 |
+
def create_script_fn(self, method_name, func_type):
|
394 |
+
# function returns tuple containing original output and
|
395 |
+
# filtered output to be used in checking gradients
|
396 |
+
def script_fn(*args, **kwargs):
|
397 |
+
fn, tensors = gen_script_fn_and_args(method_name, func_type, *args, **kwargs)
|
398 |
+
self.assertExportImport(fn.graph, tensors)
|
399 |
+
output = fn(*tensors)
|
400 |
+
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
|
401 |
+
script_fn.last_graph = fn.graph_for(*tensors) # type: ignore[attr-defined]
|
402 |
+
return output
|
403 |
+
return script_fn
|
404 |
+
|
405 |
+
class SplitInputs:
|
406 |
+
all_tensors: List[Any]
|
407 |
+
tensor_args: List[Any]
|
408 |
+
nontensor_args: List[Any]
|
409 |
+
arg_types: List[str]
|
410 |
+
tensor_kwargs: Dict[str, Any]
|
411 |
+
kwarg_order: List[str]
|
412 |
+
nontensor_kwargs: Dict[str, Any]
|
413 |
+
kwarg_types: Dict[str, Any]
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _is_tensor_input(arg):
|
417 |
+
return isinstance(arg, torch.Tensor) or is_iterable_of_tensors(arg)
|
418 |
+
|
419 |
+
def __init__(self, args, kwargs):
|
420 |
+
self.arg_types = ['t' if self._is_tensor_input(arg) else 's' for arg in args]
|
421 |
+
self.kwarg_types = {k: 't' if self._is_tensor_input(v) else 's' for k, v in kwargs.items()}
|
422 |
+
self.tensor_args = [arg for arg in args if self._is_tensor_input(arg)]
|
423 |
+
self.nontensor_args = [arg for arg in args if not self._is_tensor_input(arg)]
|
424 |
+
self.tensor_kwargs = {k: v for k, v in kwargs.items() if self._is_tensor_input(v)}
|
425 |
+
self.nontensor_kwargs = {k: v for k, v in kwargs.items() if not self._is_tensor_input(v)}
|
426 |
+
self.all_tensors = [*self.tensor_args, *[v for k, v in self.tensor_kwargs.items()]]
|
427 |
+
self.kwarg_order = [k for k, v in kwargs.items()]
|
428 |
+
|
429 |
+
def nontensors_match(self, other: 'SplitInputs'):
|
430 |
+
if self.arg_types != other.arg_types:
|
431 |
+
return False
|
432 |
+
if self.kwarg_types != other.kwarg_types:
|
433 |
+
return False
|
434 |
+
if self.kwarg_order != other.kwarg_order:
|
435 |
+
return False
|
436 |
+
if self.nontensor_args != other.nontensor_args:
|
437 |
+
return False
|
438 |
+
if self.nontensor_kwargs != other.nontensor_kwargs:
|
439 |
+
return False
|
440 |
+
return True
|
441 |
+
|
442 |
+
# make a new function where all non-tensor arguments in 'args' have been partially
|
443 |
+
# applied, and all tensor arguments remain.
|
444 |
+
# used to trace functions when some arguments are not tensors
|
445 |
+
def partial_apply_nontensors(fn, args, kwargs):
|
446 |
+
inputs = SplitInputs(args, kwargs)
|
447 |
+
|
448 |
+
def new_fn(*tensors_):
|
449 |
+
tensors = iter(tensors_)
|
450 |
+
full_args = [args[i] if s == 's' else next(tensors) for i, s in enumerate(inputs.arg_types)]
|
451 |
+
full_kwargs = {k: kwargs[k] if s == 's' else next(tensors) for k, s in inputs.kwarg_types.items()}
|
452 |
+
return fn(*full_args, **full_kwargs)
|
453 |
+
|
454 |
+
return new_fn, inputs
|
455 |
+
|
456 |
+
# create a trace function from input fn
|
457 |
+
def create_traced_fn(self, fn, cache_traced_fn=False):
|
458 |
+
def traced_fn(*inputs, **kwargs):
|
459 |
+
# `check_trace` is set to False because check_trace is run with @no_grad
|
460 |
+
# Also, `check_against_reference` already does all the checks
|
461 |
+
# against python function
|
462 |
+
fn_tensors, split_inputs = partial_apply_nontensors(fn, inputs, kwargs)
|
463 |
+
if not cache_traced_fn or not hasattr(traced_fn, 'traced'):
|
464 |
+
traced = torch.jit.trace(fn_tensors, split_inputs.all_tensors, check_trace=False)
|
465 |
+
self.assertExportImport(traced.graph, split_inputs.all_tensors)
|
466 |
+
output = traced(*split_inputs.all_tensors)
|
467 |
+
if cache_traced_fn:
|
468 |
+
traced_fn.traced = traced
|
469 |
+
traced_fn.split_inputs = split_inputs
|
470 |
+
else:
|
471 |
+
# Guard to check that nontensor inputs are the same as during tracing
|
472 |
+
self.assertTrue(traced_fn.split_inputs.nontensors_match(split_inputs))
|
473 |
+
output = traced_fn.traced(*split_inputs.all_tensors)
|
474 |
+
traced = traced_fn.traced
|
475 |
+
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
|
476 |
+
traced_fn.last_graph = traced.graph_for(*split_inputs.all_tensors) # type: ignore[attr-defined]
|
477 |
+
traced_fn.graph = traced.graph # type: ignore[attr-defined]
|
478 |
+
return output
|
479 |
+
return traced_fn
|
480 |
+
|
481 |
+
# known to be failing in script
|
482 |
+
EXCLUDE_SCRIPT = {
|
483 |
+
'test_norm_fro_default',
|
484 |
+
'test_norm_fro_cpu',
|
485 |
+
'test_norm_nuc',
|
486 |
+
'test_norm_fro',
|
487 |
+
'test_norm_nuc_batched',
|
488 |
+
|
489 |
+
# aten op has additional cudnn argument
|
490 |
+
'test_nn_unfold',
|
491 |
+
|
492 |
+
# flaky test - TODO fix
|
493 |
+
'test_nn_ctc_loss',
|
494 |
+
|
495 |
+
# unknown builtin op
|
496 |
+
'test_nn_fold',
|
497 |
+
|
498 |
+
# jit doesn't support sparse tensors.
|
499 |
+
'test_to_sparse',
|
500 |
+
'test_to_sparse_dim',
|
501 |
+
}
|
502 |
+
|
503 |
+
# generates a script function and set of example inputs
|
504 |
+
# from a specified test in the format of nn_functional_tests
|
505 |
+
def get_nn_functional_compiled_fn_and_inputs(name, self_size, args, variant_name='', *extra_args):
|
506 |
+
test_name = 'test_nn_' + name
|
507 |
+
|
508 |
+
if variant_name != '':
|
509 |
+
test_name = test_name + '_' + variant_name
|
510 |
+
|
511 |
+
no_grad = variant_name == 'inplace'
|
512 |
+
|
513 |
+
self_variable = create_input((self_size,))[0][0]
|
514 |
+
kwargs = None
|
515 |
+
|
516 |
+
# need to record this because methods can change the size (e.g. unsqueeze)
|
517 |
+
args_variable, kwargs_variable = create_input(args)
|
518 |
+
|
519 |
+
self_tensor = deepcopy(self_variable.data)
|
520 |
+
args_tensor = deepcopy(unpack_variables(args_variable))
|
521 |
+
|
522 |
+
f_args_variable = (self_variable,) + args_variable
|
523 |
+
f_args_tensor = (self_tensor,) + args_tensor
|
524 |
+
with torch._jit_internal._disable_emit_hooks():
|
525 |
+
script_fn, inputs = gen_script_fn_and_args(name, "nn_functional", *f_args_variable)
|
526 |
+
return script_fn, inputs
|
527 |
+
|
528 |
+
|
529 |
+
# additional modules test
|
530 |
+
# TODO: delete this list once we make all nn_tests work
|
531 |
+
additional_module_tests = [
|
532 |
+
{
|
533 |
+
'module_name': 'Bilinear',
|
534 |
+
'constructor_args': (S, S, M),
|
535 |
+
'input_size': (S, S),
|
536 |
+
'extra_args': ((S, S),)
|
537 |
+
},
|
538 |
+
{
|
539 |
+
'module_name': 'RNNCell',
|
540 |
+
'constructor_args': (S, S),
|
541 |
+
'input_size': (S, S),
|
542 |
+
},
|
543 |
+
{
|
544 |
+
'module_name': 'LSTMCell',
|
545 |
+
'constructor_args': (S, S),
|
546 |
+
'input_size': (S, S),
|
547 |
+
},
|
548 |
+
{
|
549 |
+
'module_name': 'GRUCell',
|
550 |
+
'constructor_args': (S, S),
|
551 |
+
'input_size': (S, S),
|
552 |
+
},
|
553 |
+
{
|
554 |
+
'module_name': 'MultiheadAttention',
|
555 |
+
'constructor_args': (128, 8),
|
556 |
+
'input_size': (10, 8, 128),
|
557 |
+
'extra_args': (torch.randn(10, 8, 128), torch.randn(10, 8, 128)),
|
558 |
+
'slowTest': True
|
559 |
+
},
|
560 |
+
{
|
561 |
+
'module_name': 'Transformer',
|
562 |
+
'constructor_args': (1, 1, 1, 1, 2),
|
563 |
+
'input_size': (3, 1, 1),
|
564 |
+
'extra_args': (torch.randn(1, 1, 1),),
|
565 |
+
'slowTest': True
|
566 |
+
}
|
567 |
+
]
|
568 |
+
|
569 |
+
EXCLUDE_SCRIPT_MODULES = {
|
570 |
+
'test_nn_AdaptiveAvgPool2d_tuple_none',
|
571 |
+
'test_nn_AdaptiveAvgPool3d_tuple_none',
|
572 |
+
'test_nn_AdaptiveMaxPool2d_tuple_none',
|
573 |
+
'test_nn_AdaptiveMaxPool3d_tuple_none',
|
574 |
+
|
575 |
+
# Doesn't use future division, so this is not supported
|
576 |
+
'test_nn_CrossMapLRN2d',
|
577 |
+
# Derivative for aten::_scaled_dot_product_flash_attention_backward is not implemented
|
578 |
+
'test_nn_TransformerDecoderLayer_gelu_activation',
|
579 |
+
'test_nn_TransformerDecoderLayer_relu_activation',
|
580 |
+
'test_nn_TransformerEncoderLayer_gelu_activation',
|
581 |
+
'test_nn_TransformerEncoderLayer_relu_activation',
|
582 |
+
'test_nn_Transformer_multilayer_coder',
|
583 |
+
}
|
584 |
+
|
585 |
+
script_method_template = '''
|
586 |
+
def forward({}):
|
587 |
+
return {}
|
588 |
+
'''
|
589 |
+
|
590 |
+
def create_script_module(self, nn_module, constructor_args, *args, **kwargs):
|
591 |
+
def script_module(*args, **kwargs):
|
592 |
+
formals, tensors, actuals = get_script_args(args)
|
593 |
+
|
594 |
+
method_args = ', '.join(['self'] + actuals)
|
595 |
+
call_args_str = ', '.join(actuals)
|
596 |
+
call = f"self.submodule({call_args_str})"
|
597 |
+
script = script_method_template.format(method_args, call)
|
598 |
+
|
599 |
+
submodule_constants = []
|
600 |
+
if kwargs.get('is_constant'):
|
601 |
+
submodule_constants = ['submodule']
|
602 |
+
|
603 |
+
# Create module to use the script method
|
604 |
+
class TheModule(torch.jit.ScriptModule):
|
605 |
+
__constants__ = submodule_constants
|
606 |
+
|
607 |
+
def __init__(self):
|
608 |
+
super().__init__()
|
609 |
+
self.submodule = nn_module(*constructor_args)
|
610 |
+
|
611 |
+
def make_module(script):
|
612 |
+
module = TheModule()
|
613 |
+
# check __repr__
|
614 |
+
str(module)
|
615 |
+
module.define(script)
|
616 |
+
return module
|
617 |
+
|
618 |
+
module = make_module(script)
|
619 |
+
if self:
|
620 |
+
self.assertExportImportModule(module, tensors)
|
621 |
+
module(*args)
|
622 |
+
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
|
623 |
+
create_script_module.last_graph = module.graph # type: ignore[attr-defined]
|
624 |
+
return module
|
625 |
+
return script_module
|
626 |
+
|
627 |
+
def check_alias_annotation(method_name, args, kwargs, *, aten_name, func_type='method'):
|
628 |
+
formals, tensors, actuals = get_script_args(args)
|
629 |
+
call = get_call(method_name, func_type, actuals, kwargs)
|
630 |
+
script = script_template.format(', '.join(formals), call)
|
631 |
+
CU = torch.jit.CompilationUnit(script)
|
632 |
+
# to clean up IR
|
633 |
+
torch._C._jit_pass_inline(CU.the_method.graph)
|
634 |
+
torch._C._jit_pass_constant_propagation(CU.the_method.graph)
|
635 |
+
torch._C._jit_check_alias_annotation(CU.the_method.graph, tuple(tensors), aten_name)
|
636 |
+
|
637 |
+
def get_nn_module_name_from_kwargs(**kwargs):
|
638 |
+
if 'module_name' in kwargs:
|
639 |
+
return kwargs['module_name']
|
640 |
+
elif 'fullname' in kwargs:
|
641 |
+
return kwargs['fullname']
|
642 |
+
elif 'constructor' in kwargs:
|
643 |
+
return kwargs['constructor'].__name__
|
644 |
+
|
645 |
+
def get_nn_mod_test_name(**kwargs):
|
646 |
+
if 'fullname' in kwargs:
|
647 |
+
test_name = kwargs['fullname']
|
648 |
+
else:
|
649 |
+
test_name = get_nn_module_name_from_kwargs(**kwargs)
|
650 |
+
if 'desc' in kwargs:
|
651 |
+
test_name = f"{test_name}_{kwargs['desc']}"
|
652 |
+
return f'test_nn_{test_name}'
|
653 |
+
|
654 |
+
def get_nn_module_class_from_kwargs(**kwargs):
|
655 |
+
name = get_nn_module_name_from_kwargs(**kwargs)
|
656 |
+
index = name.find("_")
|
657 |
+
if index == -1:
|
658 |
+
return name
|
659 |
+
else:
|
660 |
+
return name[0:name.find("_")]
|
661 |
+
|
662 |
+
def try_get_nn_module_compiled_mod_and_inputs(*args, **kwargs):
|
663 |
+
name = get_nn_module_name_from_kwargs(**kwargs)
|
664 |
+
|
665 |
+
if 'desc' in kwargs and 'eval' in kwargs['desc']:
|
666 |
+
# eval() is not supported, so skip these tests
|
667 |
+
return
|
668 |
+
|
669 |
+
test_name = name
|
670 |
+
if 'desc' in kwargs:
|
671 |
+
test_name = f"{test_name}_{kwargs['desc']}"
|
672 |
+
test_name = get_nn_mod_test_name(**kwargs)
|
673 |
+
|
674 |
+
if test_name in EXCLUDE_SCRIPT_MODULES:
|
675 |
+
return
|
676 |
+
if 'constructor' in kwargs:
|
677 |
+
nn_module = kwargs['constructor']
|
678 |
+
else:
|
679 |
+
nn_module = getattr(torch.nn, name)
|
680 |
+
|
681 |
+
if "FunctionalModule" in str(nn_module):
|
682 |
+
return
|
683 |
+
|
684 |
+
if 'constructor_args_fn' in kwargs:
|
685 |
+
constructor_args = kwargs['constructor_args_fn']()
|
686 |
+
else:
|
687 |
+
constructor_args = kwargs.get('constructor_args', ())
|
688 |
+
|
689 |
+
# Set up inputs from tuple of sizes or constructor fn
|
690 |
+
input_dtype = torch.double
|
691 |
+
if 'input_fn' in kwargs:
|
692 |
+
input = kwargs['input_fn']()
|
693 |
+
if isinstance(input, torch.Tensor):
|
694 |
+
input = (input,)
|
695 |
+
|
696 |
+
if all(tensor.is_complex() for tensor in input):
|
697 |
+
input_dtype = torch.cdouble
|
698 |
+
else:
|
699 |
+
input = (kwargs['input_size'],)
|
700 |
+
|
701 |
+
# Extra parameters to forward()
|
702 |
+
if 'extra_args' in kwargs:
|
703 |
+
input = input + kwargs['extra_args']
|
704 |
+
|
705 |
+
if 'target_size' in kwargs:
|
706 |
+
input = input + (kwargs['target_size'],)
|
707 |
+
elif 'target_fn' in kwargs:
|
708 |
+
if torch.is_tensor(input):
|
709 |
+
input = (input,)
|
710 |
+
input = input + (kwargs['target_fn'](),)
|
711 |
+
|
712 |
+
args_variable, kwargs_variable = create_input(input, dtype=input_dtype)
|
713 |
+
f_args_variable = deepcopy(unpack_variables(args_variable))
|
714 |
+
out_var = deepcopy(f_args_variable)
|
715 |
+
|
716 |
+
args, mod = f_args_variable, create_script_module(None, nn_module, constructor_args, *f_args_variable)(*f_args_variable)
|
717 |
+
|
718 |
+
return mod, out_var
|
719 |
+
|
720 |
+
|
721 |
+
def get_all_nn_module_tests():
|
722 |
+
return module_tests + new_module_tests + additional_module_tests
|
venv/lib/python3.10/site-packages/torch/testing/_internal/jit_utils.py
ADDED
@@ -0,0 +1,893 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Torch
|
4 |
+
from torch.autograd import Variable
|
5 |
+
from torch.autograd.function import _nested_map
|
6 |
+
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
|
7 |
+
|
8 |
+
from torch.onnx import OperatorExportTypes
|
9 |
+
import torch
|
10 |
+
import torch.cuda
|
11 |
+
import torch.jit
|
12 |
+
import torch.jit._logging
|
13 |
+
import torch.jit.frontend
|
14 |
+
import torch.jit.quantized
|
15 |
+
import zipfile
|
16 |
+
import functools
|
17 |
+
|
18 |
+
# Testing utils
|
19 |
+
from torch.testing import FileCheck
|
20 |
+
from torch.testing._internal.common_utils import IS_WINDOWS, \
|
21 |
+
freeze_rng_state, enable_profiling_mode_for_profiling_tests, ProfilingMode, TEST_BAILOUTS, \
|
22 |
+
is_iterable_of_tensors
|
23 |
+
from torch.testing._internal.common_jit import JitCommonTestCase
|
24 |
+
from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401
|
25 |
+
|
26 |
+
# Standard library
|
27 |
+
from contextlib import contextmanager
|
28 |
+
from functools import reduce
|
29 |
+
from io import StringIO
|
30 |
+
from collections import defaultdict
|
31 |
+
|
32 |
+
import importlib.util
|
33 |
+
import inspect
|
34 |
+
import io
|
35 |
+
import math
|
36 |
+
import os
|
37 |
+
import pickle
|
38 |
+
import sys
|
39 |
+
import tempfile
|
40 |
+
import textwrap
|
41 |
+
from importlib.abc import Loader
|
42 |
+
from typing import Any, Dict, List, Tuple, Union
|
43 |
+
|
44 |
+
RUN_CUDA = torch.cuda.is_available()
|
45 |
+
RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1
|
46 |
+
RUN_CUDA_HALF = RUN_CUDA
|
47 |
+
# HIP supports half, no version check necessary
|
48 |
+
if torch.cuda.is_available() and not torch.version.hip:
|
49 |
+
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
|
50 |
+
for d in range(torch.cuda.device_count()):
|
51 |
+
major = torch.cuda.get_device_capability(d)[0]
|
52 |
+
if (major < 6):
|
53 |
+
RUN_CUDA_HALF = False
|
54 |
+
|
55 |
+
def execWrapper(code, glob, loc):
|
56 |
+
exec(code, glob, loc)
|
57 |
+
|
58 |
+
def do_input_map(fn, input):
|
59 |
+
return _nested_map(lambda t: isinstance(t, torch.Tensor), fn)(input)
|
60 |
+
|
61 |
+
def clear_class_registry():
|
62 |
+
torch._C._jit_clear_class_registry()
|
63 |
+
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
|
64 |
+
torch.jit._state._clear_class_state()
|
65 |
+
|
66 |
+
def get_execution_plan(graph_executor_state):
|
67 |
+
execution_plans = list(graph_executor_state.execution_plans.values())
|
68 |
+
num_plans = len(execution_plans)
|
69 |
+
if num_plans != 1:
|
70 |
+
raise RuntimeError('This test assumes this GraphExecutor should '
|
71 |
+
f'only have one execution plan, got: {num_plans}')
|
72 |
+
return execution_plans[0]
|
73 |
+
|
74 |
+
class _AssertRaisesRegexWithHighlightContext:
|
75 |
+
"""
|
76 |
+
A context manager that is useful for checking that error messages highlight
|
77 |
+
the correct part of the source code.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self, test_case, exception, regex, highlight):
|
81 |
+
self.test_case = test_case
|
82 |
+
self.exception_type = exception
|
83 |
+
self.regex = regex
|
84 |
+
self.highlight = highlight
|
85 |
+
|
86 |
+
def __enter__(self):
|
87 |
+
return self
|
88 |
+
|
89 |
+
def __exit__(self, type, value, traceback):
|
90 |
+
with self.test_case.assertRaisesRegex(self.exception_type, self.regex):
|
91 |
+
if type:
|
92 |
+
raise value
|
93 |
+
|
94 |
+
if self.highlight:
|
95 |
+
FileCheck().check_source_highlighted(self.highlight).run(str(value))
|
96 |
+
|
97 |
+
return True
|
98 |
+
|
99 |
+
FUSION_GROUP = "prim::TensorExprGroup"
|
100 |
+
|
101 |
+
class JitTestCase(JitCommonTestCase):
|
102 |
+
_do_cuda_memory_leak_check = True
|
103 |
+
_restored_warnings = False
|
104 |
+
|
105 |
+
class capture_stdout(list):
|
106 |
+
"""
|
107 |
+
Replace sys.stdout with a temporary StringIO
|
108 |
+
"""
|
109 |
+
def __enter__(self):
|
110 |
+
self.sys_stdout = sys.stdout
|
111 |
+
self.stringio = StringIO()
|
112 |
+
sys.stdout = self.stringio
|
113 |
+
return self
|
114 |
+
|
115 |
+
def __exit__(self, *args):
|
116 |
+
self.append(str(self.stringio.getvalue()))
|
117 |
+
del self.stringio
|
118 |
+
sys.stdout = self.sys_stdout
|
119 |
+
|
120 |
+
class capture_stderr(list):
|
121 |
+
"""
|
122 |
+
Replace sys.stderr with a temporary StringIO
|
123 |
+
"""
|
124 |
+
def __enter__(self):
|
125 |
+
self.sys_stderr = sys.stderr
|
126 |
+
self.stringio = StringIO()
|
127 |
+
sys.stderr = self.stringio
|
128 |
+
return self
|
129 |
+
|
130 |
+
def __exit__(self, *args):
|
131 |
+
self.append(str(self.stringio.getvalue()))
|
132 |
+
del self.stringio
|
133 |
+
sys.stderr = self.sys_stderr
|
134 |
+
|
135 |
+
def setHooks(self):
|
136 |
+
torch._C._jit_set_emit_hooks(self.emitModuleHook, self.emitFunctionHook)
|
137 |
+
|
138 |
+
def clearHooks(self):
|
139 |
+
torch._C._jit_set_emit_hooks(None, None)
|
140 |
+
|
141 |
+
def setUp(self):
|
142 |
+
super().setUp()
|
143 |
+
# unittest overrides all warning filters and forces all of them to show up
|
144 |
+
# after we install our own to silence those coming from inside PyTorch.
|
145 |
+
# This will ensure that our filter still takes precedence.
|
146 |
+
if not JitTestCase._restored_warnings:
|
147 |
+
torch.jit.TracerWarning.ignore_lib_warnings()
|
148 |
+
JitTestCase._restored_warnings = True
|
149 |
+
self.setHooks()
|
150 |
+
|
151 |
+
def tearDown(self):
|
152 |
+
super().tearDown()
|
153 |
+
# needs to be cleared because python might be unloaded before
|
154 |
+
# the callback gets destructed
|
155 |
+
self.clearHooks()
|
156 |
+
clear_class_registry()
|
157 |
+
|
158 |
+
def assertAllFused(self, graph, except_for=()):
|
159 |
+
|
160 |
+
# note this helper collects nodes on 'fast path' only
|
161 |
+
# i.e. the true blocks of specialized checks
|
162 |
+
def get_nodes_and_parents_recursively(block, kind, acc):
|
163 |
+
for node in block.nodes():
|
164 |
+
if node.kind() == kind:
|
165 |
+
acc[block].append(node)
|
166 |
+
elif node.kind() == 'prim::DifferentiableGraph':
|
167 |
+
get_nodes_and_parents_recursively(node.g('Subgraph'), kind, acc)
|
168 |
+
elif node.kind() == 'prim::If' and (node.inputs().__next__().node().kind() == 'aten::all' or
|
169 |
+
node.inputs().__next__().node().kind() == 'prim::TypeCheck' or
|
170 |
+
node.inputs().__next__().node().kind() == 'prim::RequiresGradCheck'):
|
171 |
+
get_nodes_and_parents_recursively(node.blocks().__next__(), kind, acc)
|
172 |
+
else:
|
173 |
+
for inner_block in node.blocks():
|
174 |
+
get_nodes_and_parents_recursively(inner_block, kind, acc)
|
175 |
+
|
176 |
+
allowed_nodes = {'prim::Constant', FUSION_GROUP, 'prim::BailoutTemplate',
|
177 |
+
'prim::TupleConstruct', 'prim::If', 'prim::TypeCheck', 'prim::RequiresGradCheck'} | set(except_for)
|
178 |
+
|
179 |
+
fusion_groups : Dict[torch._C.Block, List[torch._C.Node]] = defaultdict(list)
|
180 |
+
get_nodes_and_parents_recursively(graph, FUSION_GROUP, fusion_groups)
|
181 |
+
self.assertTrue(len(fusion_groups) == 1, f'got {graph}')
|
182 |
+
(graph, fusion_nodes) = next(iter(fusion_groups.items()))
|
183 |
+
# the block contains one FUSION_GROUP and the rest of nodes are `allowed_nodes`
|
184 |
+
self.assertTrue(len(fusion_nodes) == 1, f'got {graph}')
|
185 |
+
self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()),
|
186 |
+
f'got {graph}')
|
187 |
+
|
188 |
+
def _isHookExceptionOk(self, e):
|
189 |
+
se = str(e)
|
190 |
+
allowed = ("Could not export Python function",
|
191 |
+
"closures are not exportable")
|
192 |
+
for a in allowed:
|
193 |
+
if a in se:
|
194 |
+
return True
|
195 |
+
return False
|
196 |
+
|
197 |
+
def _compared_saved_loaded(self, m):
|
198 |
+
def extract_files(buffer):
|
199 |
+
# crack open the zip format to get at the main module code
|
200 |
+
archive = zipfile.ZipFile(buffer)
|
201 |
+
# check that we have no duplicate names
|
202 |
+
self.assertEqual(len(set(archive.namelist())), len(archive.namelist()))
|
203 |
+
files = list(filter(lambda x: x.startswith('archive/code/'), archive.namelist()))
|
204 |
+
# unwrap all the code files into strings
|
205 |
+
code_files_str = filter(lambda x: x.endswith('.py'), files)
|
206 |
+
code_files_stream = (archive.open(f) for f in code_files_str)
|
207 |
+
code_files = ("".join([line.decode() for line in file]) for file in code_files_stream)
|
208 |
+
|
209 |
+
# unpickled all the debug files
|
210 |
+
debug_files_str = filter(lambda f: f.endswith('.debug_pkl'), files)
|
211 |
+
debug_files_stream = (archive.open(f) for f in debug_files_str)
|
212 |
+
debug_files = (pickle.load(f) for f in debug_files_stream)
|
213 |
+
return code_files, debug_files
|
214 |
+
|
215 |
+
# disable the hook while we parse code, otherwise we will re-enter the hook
|
216 |
+
with torch._jit_internal._disable_emit_hooks():
|
217 |
+
try:
|
218 |
+
# short-circuit if this is an empty function or module
|
219 |
+
if len(m.code) == 0:
|
220 |
+
return
|
221 |
+
if isinstance(m, torch._C.ScriptModule):
|
222 |
+
if len(m._method_names()) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
# save the module to a buffer
|
226 |
+
buffer = io.BytesIO()
|
227 |
+
torch.jit.save(m, buffer)
|
228 |
+
# copy the data in the buffer so we can restore it later. This
|
229 |
+
# is because py2 and py3 have different semantics with zipfile
|
230 |
+
# and it's easier to just work with a fresh copy each time.
|
231 |
+
buffer_copy = buffer.getvalue()
|
232 |
+
|
233 |
+
code_files, debug_files = extract_files(buffer)
|
234 |
+
|
235 |
+
except RuntimeError as e:
|
236 |
+
if not self._isHookExceptionOk(e):
|
237 |
+
raise
|
238 |
+
else:
|
239 |
+
return
|
240 |
+
|
241 |
+
# import the model again (from a the copy we made of the original)
|
242 |
+
buffer2 = io.BytesIO(buffer_copy)
|
243 |
+
imported = torch.jit.load(buffer2)
|
244 |
+
|
245 |
+
# save it again
|
246 |
+
saved_module_buffer_2 = io.BytesIO()
|
247 |
+
torch.jit.save(imported, saved_module_buffer_2)
|
248 |
+
|
249 |
+
saved_module_buffer_2.seek(0)
|
250 |
+
code_files_2, debug_files_2 = extract_files(saved_module_buffer_2)
|
251 |
+
|
252 |
+
for a, b in zip(code_files, code_files_2):
|
253 |
+
self.assertMultiLineEqual(a, b)
|
254 |
+
|
255 |
+
if isinstance(m, torch._C.ScriptModule):
|
256 |
+
self.assertTrue(torch._C._ivalue_tags_match(m, imported._c))
|
257 |
+
|
258 |
+
|
259 |
+
def emitFunctionHook(self, func):
|
260 |
+
# func has invalid names for export, skip the jitter check
|
261 |
+
if func.name == "<lambda>" or "aten::" in func.name:
|
262 |
+
return
|
263 |
+
self._compared_saved_loaded(func)
|
264 |
+
|
265 |
+
def emitModuleHook(self, module):
|
266 |
+
self._compared_saved_loaded(module)
|
267 |
+
|
268 |
+
|
269 |
+
def getExportImportCopyWithPacking(self, m, also_test_file=True, map_location=None):
|
270 |
+
buffer = io.BytesIO()
|
271 |
+
m.apply(lambda s: s._pack() if s._c._has_method('_pack') else None)
|
272 |
+
torch.jit.save(m, buffer)
|
273 |
+
m.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
274 |
+
buffer.seek(0)
|
275 |
+
imported = torch.jit.load(buffer, map_location=map_location)
|
276 |
+
imported.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
277 |
+
|
278 |
+
if not also_test_file:
|
279 |
+
return imported
|
280 |
+
|
281 |
+
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
|
282 |
+
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
|
283 |
+
# close the file after creation and try to remove it manually
|
284 |
+
f = tempfile.NamedTemporaryFile(delete=False)
|
285 |
+
try:
|
286 |
+
f.close()
|
287 |
+
imported.save(f.name)
|
288 |
+
result = torch.jit.load(f.name, map_location=map_location)
|
289 |
+
finally:
|
290 |
+
os.unlink(f.name)
|
291 |
+
|
292 |
+
result.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
|
293 |
+
return result
|
294 |
+
|
295 |
+
def assertGraphContains(self, graph, kind, consider_subgraphs=False):
|
296 |
+
|
297 |
+
if consider_subgraphs:
|
298 |
+
strgraph = str(graph)
|
299 |
+
count = strgraph.count(kind) - strgraph.count(f'with {kind}')
|
300 |
+
self.assertTrue(count > 0)
|
301 |
+
return
|
302 |
+
|
303 |
+
def nodes(block):
|
304 |
+
out = []
|
305 |
+
for node in block.nodes():
|
306 |
+
if node.kind() == kind:
|
307 |
+
out.append(node)
|
308 |
+
for block in node.blocks():
|
309 |
+
out += nodes(block)
|
310 |
+
return out
|
311 |
+
|
312 |
+
out_nodes = nodes(graph)
|
313 |
+
self.assertTrue(len(out_nodes) > 0)
|
314 |
+
|
315 |
+
def assertGraphContainsExactly(self, graph, kind, num_kind_nodes, consider_subgraphs=False):
|
316 |
+
def perform_assert(graph, kind, actual, expected, consider_subgraphs):
|
317 |
+
if actual == expected:
|
318 |
+
return
|
319 |
+
subgraph = 'including' if consider_subgraphs else 'excluding'
|
320 |
+
raise AssertionError(
|
321 |
+
f'{graph}\nError: graph contains {actual} {kind} nodes ({subgraph} subgraphs) but expected {expected}')
|
322 |
+
|
323 |
+
if consider_subgraphs:
|
324 |
+
strgraph = str(graph)
|
325 |
+
count = strgraph.count(kind) - strgraph.count(f'with {kind}')
|
326 |
+
perform_assert(graph, kind, count, num_kind_nodes,
|
327 |
+
consider_subgraphs)
|
328 |
+
return
|
329 |
+
|
330 |
+
def nodes(block):
|
331 |
+
out = []
|
332 |
+
for node in block.nodes():
|
333 |
+
if node.kind() == kind:
|
334 |
+
out.append(node)
|
335 |
+
for block in node.blocks():
|
336 |
+
out += nodes(block)
|
337 |
+
return out
|
338 |
+
|
339 |
+
out_nodes = nodes(graph)
|
340 |
+
perform_assert(graph, kind, len(out_nodes), num_kind_nodes,
|
341 |
+
consider_subgraphs)
|
342 |
+
|
343 |
+
def assertExpectedONNXGraph(self, g, *args, **kwargs):
|
344 |
+
g = torch.onnx._optimize_trace(g, operator_export_type=OperatorExportTypes.ONNX)
|
345 |
+
self.assertExpectedGraph(g, *args, **kwargs)
|
346 |
+
|
347 |
+
def assertExpectedGraph(self, trace, *args, **kwargs):
|
348 |
+
if isinstance(trace, torch._C.Graph):
|
349 |
+
graph = trace
|
350 |
+
else:
|
351 |
+
graph = trace.graph()
|
352 |
+
|
353 |
+
torch._C._jit_pass_lint(graph)
|
354 |
+
torch._C._jit_pass_dce(graph)
|
355 |
+
torch._C._jit_pass_lint(graph)
|
356 |
+
graph = torch._C._jit_pass_canonicalize(graph)
|
357 |
+
torch._C._jit_pass_lint(graph)
|
358 |
+
self.assertExpected(str(graph), *args, **kwargs)
|
359 |
+
|
360 |
+
def run_pass(self, name, trace):
|
361 |
+
if isinstance(trace, torch._C.Graph):
|
362 |
+
graph = trace
|
363 |
+
set_graph = False
|
364 |
+
else:
|
365 |
+
set_graph = True
|
366 |
+
graph = trace.graph()
|
367 |
+
|
368 |
+
torch._C._jit_pass_lint(graph)
|
369 |
+
result = getattr(torch._C, '_jit_pass_' + name)(graph)
|
370 |
+
if result is not None and not isinstance(result, bool):
|
371 |
+
graph = result
|
372 |
+
torch._C._jit_pass_lint(graph)
|
373 |
+
|
374 |
+
if set_graph:
|
375 |
+
trace.set_graph(graph)
|
376 |
+
return graph
|
377 |
+
|
378 |
+
def get_frame_vars(self, frames_up):
|
379 |
+
frame = inspect.currentframe()
|
380 |
+
if not frame:
|
381 |
+
raise RuntimeError("failed to inspect frame")
|
382 |
+
i = 0
|
383 |
+
while i < frames_up + 1:
|
384 |
+
frame = frame.f_back
|
385 |
+
if not frame:
|
386 |
+
raise RuntimeError("failed to get frame")
|
387 |
+
i += 1
|
388 |
+
defined_vars: Dict[str, Any] = {}
|
389 |
+
defined_vars.update(frame.f_locals)
|
390 |
+
defined_vars.update(frame.f_globals)
|
391 |
+
return defined_vars
|
392 |
+
|
393 |
+
def assertRaisesRegexWithHighlight(self, exception, regex, highlight):
|
394 |
+
return _AssertRaisesRegexWithHighlightContext(self, exception, regex, highlight)
|
395 |
+
|
396 |
+
def checkScriptRaisesRegex(self, script, inputs, exception, regex,
|
397 |
+
name=None, outputs=None, capture_output=False,
|
398 |
+
frames_up=1, profiling=ProfilingMode.PROFILING):
|
399 |
+
"""
|
400 |
+
Checks that a given function will throw the correct exception,
|
401 |
+
when executed with normal python, the string frontend, and the
|
402 |
+
AST frontend. Logic taken from `checkScript` (see comments there
|
403 |
+
for details)
|
404 |
+
"""
|
405 |
+
with enable_profiling_mode_for_profiling_tests():
|
406 |
+
# Normal Python
|
407 |
+
with self.assertRaisesRegex(exception, regex):
|
408 |
+
if isinstance(script, str):
|
409 |
+
frame = self.get_frame_vars(frames_up)
|
410 |
+
the_locals: Dict[str, Any] = {}
|
411 |
+
execWrapper(script, glob=frame, loc=the_locals)
|
412 |
+
frame.update(the_locals)
|
413 |
+
|
414 |
+
python_fn = frame[name]
|
415 |
+
else:
|
416 |
+
python_fn = script
|
417 |
+
|
418 |
+
python_fn(*inputs)
|
419 |
+
|
420 |
+
# String frontend
|
421 |
+
with self.assertRaisesRegex(exception, regex):
|
422 |
+
if isinstance(script, str):
|
423 |
+
cu = torch.jit.CompilationUnit(script, _frames_up=frames_up)
|
424 |
+
string_frontend = getattr(cu, name)
|
425 |
+
else:
|
426 |
+
source = textwrap.dedent(inspect.getsource(script))
|
427 |
+
cu = torch.jit.CompilationUnit(source, _frames_up=frames_up)
|
428 |
+
string_frontend = getattr(cu, script.__name__)
|
429 |
+
|
430 |
+
string_frontend(*inputs)
|
431 |
+
|
432 |
+
# Python AST frontend
|
433 |
+
if not isinstance(script, str):
|
434 |
+
with self.assertRaisesRegex(exception, regex):
|
435 |
+
ge = torch.jit.script(python_fn)
|
436 |
+
ge(*inputs)
|
437 |
+
|
438 |
+
def checkBailouts(self, model, inputs, expected):
|
439 |
+
state = model.get_debug_state()
|
440 |
+
plan = get_execution_plan(state)
|
441 |
+
num_bailouts = plan.code.num_bailouts()
|
442 |
+
for i in range(0, num_bailouts):
|
443 |
+
plan.code.request_bailout(i)
|
444 |
+
bailout_outputs = model(*inputs)
|
445 |
+
self.assertEqual(bailout_outputs, expected)
|
446 |
+
|
447 |
+
def checkScript(self,
|
448 |
+
script,
|
449 |
+
inputs,
|
450 |
+
name='func',
|
451 |
+
optimize=True,
|
452 |
+
inputs_requires_grad=False,
|
453 |
+
capture_output=False,
|
454 |
+
frames_up=1,
|
455 |
+
profiling=ProfilingMode.PROFILING,
|
456 |
+
atol=None,
|
457 |
+
rtol=None):
|
458 |
+
"""
|
459 |
+
Checks that a given script generates the same output as the Python
|
460 |
+
version using the given inputs.
|
461 |
+
"""
|
462 |
+
with torch.jit.optimized_execution(optimize):
|
463 |
+
with enable_profiling_mode_for_profiling_tests():
|
464 |
+
extra_profile_runs = any(isinstance(x, torch.Tensor) and x.requires_grad for x in inputs)
|
465 |
+
if isinstance(script, str):
|
466 |
+
# Compile the string to a Script function
|
467 |
+
# with enable_profiling_mode():
|
468 |
+
cu = torch.jit.CompilationUnit(script, _frames_up=frames_up)
|
469 |
+
|
470 |
+
# Execute the Python function so we can run it later and get its
|
471 |
+
# outputs
|
472 |
+
|
473 |
+
frame = self.get_frame_vars(frames_up)
|
474 |
+
the_locals: Dict[str, Any] = {}
|
475 |
+
execWrapper(script, glob=frame, loc=the_locals)
|
476 |
+
frame.update(the_locals)
|
477 |
+
|
478 |
+
python_fn = frame[name]
|
479 |
+
scripted_fn = getattr(cu, name)
|
480 |
+
else:
|
481 |
+
|
482 |
+
# Check the string frontend first
|
483 |
+
source = textwrap.dedent(inspect.getsource(script))
|
484 |
+
self.checkScript(
|
485 |
+
source,
|
486 |
+
inputs,
|
487 |
+
script.__name__,
|
488 |
+
optimize=optimize,
|
489 |
+
inputs_requires_grad=inputs_requires_grad,
|
490 |
+
capture_output=capture_output,
|
491 |
+
profiling=profiling,
|
492 |
+
frames_up=2)
|
493 |
+
|
494 |
+
# Continue checking the Python frontend
|
495 |
+
scripted_fn = torch.jit.script(script, _frames_up=1)
|
496 |
+
python_fn = script
|
497 |
+
|
498 |
+
if inputs_requires_grad:
|
499 |
+
recording_inputs = do_input_map(lambda t: t.detach().requires_grad_(), inputs)
|
500 |
+
else:
|
501 |
+
recording_inputs = inputs
|
502 |
+
|
503 |
+
if capture_output:
|
504 |
+
with self.capture_stdout() as script_stdout:
|
505 |
+
script_outputs = scripted_fn(*recording_inputs)
|
506 |
+
with self.capture_stdout() as opt_script_stdout:
|
507 |
+
opt_script_outputs = scripted_fn(*recording_inputs)
|
508 |
+
with self.capture_stdout() as _python_stdout:
|
509 |
+
python_outputs = python_fn(*inputs)
|
510 |
+
if not IS_WINDOWS:
|
511 |
+
self.assertExpected(script_stdout[0], subname='stdout')
|
512 |
+
self.assertEqual(python_outputs, opt_script_outputs, atol=atol, rtol=rtol)
|
513 |
+
else:
|
514 |
+
# profiling run
|
515 |
+
script_outputs = scripted_fn(*recording_inputs)
|
516 |
+
if inputs_requires_grad or extra_profile_runs:
|
517 |
+
opt_script_outputs = scripted_fn(*recording_inputs)
|
518 |
+
# optimized run
|
519 |
+
opt_script_outputs = scripted_fn(*recording_inputs)
|
520 |
+
if TEST_BAILOUTS:
|
521 |
+
self.checkBailouts(scripted_fn, inputs, opt_script_outputs)
|
522 |
+
python_outputs = python_fn(*inputs)
|
523 |
+
self.assertEqual(python_outputs, script_outputs, atol=atol, rtol=rtol)
|
524 |
+
self.assertEqual(script_outputs, opt_script_outputs, atol=atol, rtol=rtol)
|
525 |
+
return scripted_fn
|
526 |
+
|
527 |
+
def checkTrace(self, func, reference_tensors, input_tensors=None,
|
528 |
+
drop=None, allow_unused=False, verbose=False,
|
529 |
+
inputs_require_grads=True, check_tolerance=1e-5, export_import=True,
|
530 |
+
_force_outplace=False, grad_atol=None, grad_rtol=None):
|
531 |
+
|
532 |
+
# TODO: check gradients for parameters, not just inputs
|
533 |
+
def allSum(vs):
|
534 |
+
# drop allows us to remove some values from ever being used
|
535 |
+
# to test unused outputs
|
536 |
+
if drop is not None:
|
537 |
+
vs = vs[:-drop]
|
538 |
+
# we don't want all the grad for all the outputs to be the same
|
539 |
+
# so we multiply each by a constant
|
540 |
+
return sum(math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None)
|
541 |
+
if input_tensors is None:
|
542 |
+
input_tensors = reference_tensors
|
543 |
+
|
544 |
+
def flatten_inputs(inputs):
|
545 |
+
def input_reduce(input, fn, acc):
|
546 |
+
if isinstance(input, torch.Tensor):
|
547 |
+
fn(input, acc)
|
548 |
+
elif isinstance(input, dict):
|
549 |
+
reduce(lambda acc, key: input_reduce(input[key], fn, acc), input, acc)
|
550 |
+
else:
|
551 |
+
reduce(lambda acc, val: input_reduce(val, fn, acc), input, acc)
|
552 |
+
return acc
|
553 |
+
return tuple(input_reduce(recording_inputs, lambda t, acc: acc.append(t), []))
|
554 |
+
|
555 |
+
nograd_inputs = reference_tensors
|
556 |
+
if inputs_require_grads:
|
557 |
+
recording_inputs = do_input_map(lambda t: t.clone().requires_grad_(), reference_tensors)
|
558 |
+
flattened_recording_inputs = flatten_inputs(recording_inputs)
|
559 |
+
else:
|
560 |
+
recording_inputs = reference_tensors
|
561 |
+
|
562 |
+
# `check_trace` is set to False because check_trace is run with @no_grad
|
563 |
+
# Also, `checkTrace` already does all the checks
|
564 |
+
# against python function
|
565 |
+
ge = torch.jit.trace(func, input_tensors, check_tolerance=check_tolerance,
|
566 |
+
_force_outplace=_force_outplace, check_trace=False)
|
567 |
+
|
568 |
+
if export_import:
|
569 |
+
ge = self.getExportImportCopy(ge)
|
570 |
+
|
571 |
+
if verbose:
|
572 |
+
print(ge.graph)
|
573 |
+
|
574 |
+
# test no gradients case
|
575 |
+
outputs = func(*nograd_inputs)
|
576 |
+
outputs_ge = ge(*nograd_inputs)
|
577 |
+
self.assertEqual(outputs, outputs_ge)
|
578 |
+
|
579 |
+
# test gradients case
|
580 |
+
outputs = func(*recording_inputs)
|
581 |
+
if inputs_require_grads:
|
582 |
+
grads = torch.autograd.grad(allSum(outputs), flattened_recording_inputs,
|
583 |
+
allow_unused=allow_unused)
|
584 |
+
|
585 |
+
outputs_ge = ge(*recording_inputs)
|
586 |
+
if inputs_require_grads:
|
587 |
+
grads_ge = torch.autograd.grad(allSum(outputs_ge), flattened_recording_inputs,
|
588 |
+
allow_unused=allow_unused)
|
589 |
+
self.assertEqual(outputs, outputs_ge)
|
590 |
+
if inputs_require_grads:
|
591 |
+
self.assertEqual(grads, grads_ge, atol=grad_atol, rtol=grad_rtol)
|
592 |
+
|
593 |
+
# test the grad grad case
|
594 |
+
outputs = func(*recording_inputs)
|
595 |
+
l1 = allSum(outputs)
|
596 |
+
if inputs_require_grads:
|
597 |
+
grads = torch.autograd.grad(l1, flattened_recording_inputs, create_graph=True,
|
598 |
+
allow_unused=allow_unused)
|
599 |
+
if inputs_require_grads:
|
600 |
+
l2 = (allSum(grads) * l1)
|
601 |
+
grads2 = torch.autograd.grad(l2, flattened_recording_inputs, allow_unused=allow_unused)
|
602 |
+
|
603 |
+
if inputs_require_grads:
|
604 |
+
recording_inputs = do_input_map(lambda t: Variable(t, requires_grad=True), reference_tensors)
|
605 |
+
flattened_recording_inputs = flatten_inputs(recording_inputs)
|
606 |
+
|
607 |
+
outputs_ge = ge(*recording_inputs)
|
608 |
+
l1_ge = allSum(outputs_ge)
|
609 |
+
if inputs_require_grads:
|
610 |
+
grads_ge = torch.autograd.grad(
|
611 |
+
l1_ge, flattened_recording_inputs, create_graph=True, allow_unused=allow_unused)
|
612 |
+
|
613 |
+
if inputs_require_grads:
|
614 |
+
l2_ge = (allSum(grads_ge) * l1_ge)
|
615 |
+
grads2_ge = torch.autograd.grad(l2_ge, flattened_recording_inputs, allow_unused=allow_unused)
|
616 |
+
|
617 |
+
self.assertEqual(outputs, outputs_ge)
|
618 |
+
if inputs_require_grads:
|
619 |
+
self.assertEqual(grads, grads_ge, atol=grad_atol, rtol=grad_rtol)
|
620 |
+
for g2, g2_ge in zip(grads2, grads2_ge):
|
621 |
+
if g2 is None and g2_ge is None:
|
622 |
+
continue
|
623 |
+
self.assertEqual(g2, g2_ge, atol=8e-4, rtol=8e-4)
|
624 |
+
|
625 |
+
return ge
|
626 |
+
|
627 |
+
def checkModule(self, nn_module, args):
|
628 |
+
"""
|
629 |
+
Check that a nn.Module's results in Script mode match eager and that it
|
630 |
+
can be exported
|
631 |
+
"""
|
632 |
+
sm = torch.jit.script(nn_module)
|
633 |
+
|
634 |
+
with freeze_rng_state():
|
635 |
+
eager_out = nn_module(*args)
|
636 |
+
|
637 |
+
with freeze_rng_state():
|
638 |
+
script_out = sm(*args)
|
639 |
+
|
640 |
+
self.assertEqual(eager_out, script_out)
|
641 |
+
self.assertExportImportModule(sm, args)
|
642 |
+
|
643 |
+
return sm
|
644 |
+
|
645 |
+
class NoTracerWarnContextManager:
|
646 |
+
def __enter__(self):
|
647 |
+
self.prev = torch._C._jit_get_tracer_state_warn()
|
648 |
+
torch._C._jit_set_tracer_state_warn(False)
|
649 |
+
|
650 |
+
def __exit__(self, *args):
|
651 |
+
torch._C._jit_set_tracer_state_warn(self.prev)
|
652 |
+
|
653 |
+
@contextmanager
|
654 |
+
def inline_everything_mode(should_inline):
|
655 |
+
old = torch._C._jit_get_inline_everything_mode()
|
656 |
+
torch._C._jit_set_inline_everything_mode(should_inline)
|
657 |
+
try:
|
658 |
+
yield
|
659 |
+
finally:
|
660 |
+
torch._C._jit_set_inline_everything_mode(old)
|
661 |
+
|
662 |
+
@contextmanager
|
663 |
+
def set_fusion_group_inlining(inlining):
|
664 |
+
old = torch._C._debug_get_fusion_group_inlining()
|
665 |
+
torch._C._debug_set_fusion_group_inlining(inlining)
|
666 |
+
try:
|
667 |
+
yield
|
668 |
+
finally:
|
669 |
+
torch._C._debug_set_fusion_group_inlining(old)
|
670 |
+
|
671 |
+
# note: not re-entrant, use unnested only
|
672 |
+
@contextmanager
|
673 |
+
def disable_autodiff_subgraph_inlining(enabled=True):
|
674 |
+
torch._C._debug_set_autodiff_subgraph_inlining(not enabled)
|
675 |
+
try:
|
676 |
+
yield
|
677 |
+
finally:
|
678 |
+
torch._C._debug_set_autodiff_subgraph_inlining(True)
|
679 |
+
|
680 |
+
def _inline_everything(fn):
|
681 |
+
@functools.wraps(fn)
|
682 |
+
def wrapper(*args, **kwargs):
|
683 |
+
with inline_everything_mode(True):
|
684 |
+
fn(*args, **kwargs)
|
685 |
+
return wrapper
|
686 |
+
|
687 |
+
# this exists for forward compatibility reasons temporarily.
|
688 |
+
# TODO(suo) remove
|
689 |
+
def _tmp_donotuse_dont_inline_everything(fn):
|
690 |
+
@functools.wraps(fn)
|
691 |
+
def wrapper(*args, **kwargs):
|
692 |
+
with inline_everything_mode(False):
|
693 |
+
fn(*args, **kwargs)
|
694 |
+
return wrapper
|
695 |
+
|
696 |
+
# make it easy to quicky define/trace a function for these tests
|
697 |
+
def _trace(*args, **kwargs):
|
698 |
+
def wrapper(func):
|
699 |
+
return torch.jit.trace(func, args, **kwargs)
|
700 |
+
return wrapper
|
701 |
+
|
702 |
+
|
703 |
+
def enable_cpu_fuser(fn):
|
704 |
+
def wrapper(*args, **kwargs):
|
705 |
+
torch._C._jit_override_can_fuse_on_cpu_legacy(True)
|
706 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
707 |
+
torch._C._jit_set_te_must_use_llvm_cpu(False)
|
708 |
+
try:
|
709 |
+
fn(*args, **kwargs)
|
710 |
+
finally:
|
711 |
+
torch._C._jit_override_can_fuse_on_cpu_legacy(False)
|
712 |
+
torch._C._jit_override_can_fuse_on_cpu(False)
|
713 |
+
torch._C._jit_set_te_must_use_llvm_cpu(True)
|
714 |
+
return wrapper
|
715 |
+
|
716 |
+
|
717 |
+
def enable_cpu_fuser_if(cond):
|
718 |
+
if cond:
|
719 |
+
return enable_cpu_fuser
|
720 |
+
else:
|
721 |
+
def noop_fuser(fn):
|
722 |
+
def wrapper(*args, **kwargs):
|
723 |
+
return fn(*args, **kwargs)
|
724 |
+
return wrapper
|
725 |
+
return noop_fuser
|
726 |
+
|
727 |
+
def get_forward(c):
|
728 |
+
return c._get_method('forward')
|
729 |
+
|
730 |
+
def get_forward_graph(c):
|
731 |
+
return c._get_method('forward').graph
|
732 |
+
|
733 |
+
def get_module_method(m, module, method):
|
734 |
+
return m._c.getattr(module)._get_method(method)
|
735 |
+
|
736 |
+
def attrs_with_prefix(module, prefix):
|
737 |
+
return [x for x, _ in module._modules._c.items()
|
738 |
+
if x.startswith(prefix)]
|
739 |
+
|
740 |
+
def warmup_backward(f, *args):
|
741 |
+
profiling_count = 3
|
742 |
+
results = []
|
743 |
+
for i in range(profiling_count):
|
744 |
+
if len(args) > 0:
|
745 |
+
r = torch.autograd.grad(f, *args)
|
746 |
+
results.append(r)
|
747 |
+
else:
|
748 |
+
f.backward(retain_graph=True)
|
749 |
+
|
750 |
+
return results
|
751 |
+
|
752 |
+
# TODO: Remove me once https://bugs.python.org/issue42666 is resolved
|
753 |
+
def make_global(*args):
|
754 |
+
for arg in args:
|
755 |
+
setattr(sys.modules[arg.__module__], arg.__name__, arg)
|
756 |
+
|
757 |
+
# Helper function to eval Python3 code without causing a syntax error for
|
758 |
+
# this file under py2
|
759 |
+
def _get_py3_code(code, fn_name):
|
760 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
761 |
+
script_path = os.path.join(tmp_dir, 'script.py')
|
762 |
+
with open(script_path, 'w') as f:
|
763 |
+
f.write(code)
|
764 |
+
spec = importlib.util.spec_from_file_location(fn_name, script_path)
|
765 |
+
module = importlib.util.module_from_spec(spec)
|
766 |
+
loader = spec.loader
|
767 |
+
assert isinstance(loader, Loader) # Assert type to meet MyPy requirement
|
768 |
+
loader.exec_module(module)
|
769 |
+
fn = getattr(module, fn_name)
|
770 |
+
return fn
|
771 |
+
|
772 |
+
class TensorExprTestOptions:
|
773 |
+
def __init__(self):
|
774 |
+
self.old_profiling_executor = torch._C._jit_set_profiling_executor(True)
|
775 |
+
self.old_profiling_mode = torch._C._get_graph_executor_optimize(True)
|
776 |
+
|
777 |
+
self.old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu()
|
778 |
+
self.old_gpu_fuser_state = torch._C._jit_can_fuse_on_gpu()
|
779 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
780 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
781 |
+
self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
|
782 |
+
torch._C._jit_set_texpr_fuser_enabled(True)
|
783 |
+
self.old_fusion_inlining = torch._C._debug_get_fusion_group_inlining()
|
784 |
+
torch._C._debug_set_fusion_group_inlining(False)
|
785 |
+
self.old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu()
|
786 |
+
torch._C._jit_set_te_must_use_llvm_cpu(False)
|
787 |
+
|
788 |
+
def restore(self):
|
789 |
+
torch._C._jit_set_profiling_executor(self.old_profiling_executor)
|
790 |
+
torch._C._get_graph_executor_optimize(self.old_profiling_mode)
|
791 |
+
|
792 |
+
torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state)
|
793 |
+
torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuser_state)
|
794 |
+
torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuser_state)
|
795 |
+
torch._C._debug_set_fusion_group_inlining(self.old_fusion_inlining)
|
796 |
+
torch._C._jit_set_te_must_use_llvm_cpu(self.old_te_must_use_llvm_cpu)
|
797 |
+
|
798 |
+
def clone_inputs(args):
|
799 |
+
inputs: List[Union[torch.Tensor, List[torch.Tensor]]] = []
|
800 |
+
|
801 |
+
for arg in args:
|
802 |
+
if isinstance(arg, torch.Tensor):
|
803 |
+
inputs.append(arg.detach().clone())
|
804 |
+
elif is_iterable_of_tensors(arg):
|
805 |
+
inputs.append([t.detach().clone() for t in arg])
|
806 |
+
else:
|
807 |
+
inputs.append(arg)
|
808 |
+
|
809 |
+
return inputs
|
810 |
+
|
811 |
+
def get_traced_sample_variant_pairs(device, dtype, op):
|
812 |
+
# tuples of (variant, sample)
|
813 |
+
outputs: List[Tuple[Any, Any]] = []
|
814 |
+
|
815 |
+
samples = op.sample_inputs(device, dtype)
|
816 |
+
|
817 |
+
# Acquires variants to test
|
818 |
+
func = op.get_op()
|
819 |
+
method = op.get_method()
|
820 |
+
variants = {
|
821 |
+
# TODO: inplace tests currently fail, fix and add inplace variant
|
822 |
+
'function': func, 'method': method,
|
823 |
+
}
|
824 |
+
|
825 |
+
# TODO: find better way to standardize on op registration itself..
|
826 |
+
has_fake_function = op.name in ["resize_", 'resize_as_']
|
827 |
+
|
828 |
+
if has_fake_function:
|
829 |
+
variants = {'method': getattr(torch.Tensor, op.name)}
|
830 |
+
|
831 |
+
# In eager mode, these ops can take (Tensor, bool) args; but in
|
832 |
+
# JIT they can only take (Tensor, Scalar), and bool is not a
|
833 |
+
# scalar in the JIT type system. So to test these in JIT, the bool
|
834 |
+
# is converted to an int for the test.
|
835 |
+
ops_with_unsupported_bool_args = [
|
836 |
+
{
|
837 |
+
"name": "div_floor_rounding",
|
838 |
+
"arg_idx": [0],
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"name": "div_no_rounding_mode",
|
842 |
+
"arg_idx": [0],
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"name": "div_trunc_rounding",
|
846 |
+
"arg_idx": [0],
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"name": "index_fill",
|
850 |
+
"arg_idx": [2],
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"name": "full_like",
|
854 |
+
"arg_idx": [0],
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"name": "mul",
|
858 |
+
"arg_idx": [0],
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"name": "new_full",
|
862 |
+
"arg_idx": [1],
|
863 |
+
},
|
864 |
+
]
|
865 |
+
|
866 |
+
# doesn't support tracing
|
867 |
+
if has_fake_function:
|
868 |
+
return outputs
|
869 |
+
|
870 |
+
for sample in samples:
|
871 |
+
for variant in variants.values():
|
872 |
+
if variant is None:
|
873 |
+
continue
|
874 |
+
|
875 |
+
if is_lambda(variant):
|
876 |
+
continue
|
877 |
+
|
878 |
+
matching_ops = filter(lambda x: op.formatted_name == x["name"], ops_with_unsupported_bool_args)
|
879 |
+
for op_data in matching_ops:
|
880 |
+
for idx in op_data["arg_idx"]:
|
881 |
+
args = list(sample.args)
|
882 |
+
if len(sample.args) > idx and isinstance(sample.args[idx], bool):
|
883 |
+
args[idx] = int(args[idx])
|
884 |
+
sample.args = tuple(args)
|
885 |
+
|
886 |
+
outputs.append((variant, sample))
|
887 |
+
|
888 |
+
return outputs
|
889 |
+
|
890 |
+
# types.LambdaType gave false positives
|
891 |
+
def is_lambda(lamb):
|
892 |
+
LAMBDA = lambda: 0 # noqa: E731
|
893 |
+
return isinstance(lamb, type(LAMBDA)) and lamb.__name__ == LAMBDA.__name__
|
venv/lib/python3.10/site-packages/torch/testing/_internal/logging_utils.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch._dynamo.test_case
|
4 |
+
import unittest.mock
|
5 |
+
import os
|
6 |
+
import contextlib
|
7 |
+
import torch._logging
|
8 |
+
import torch._logging._internal
|
9 |
+
from torch._dynamo.utils import LazyString
|
10 |
+
import logging
|
11 |
+
import io
|
12 |
+
|
13 |
+
@contextlib.contextmanager
|
14 |
+
def preserve_log_state():
|
15 |
+
prev_state = torch._logging._internal._get_log_state()
|
16 |
+
torch._logging._internal._set_log_state(torch._logging._internal.LogState())
|
17 |
+
try:
|
18 |
+
yield
|
19 |
+
finally:
|
20 |
+
torch._logging._internal._set_log_state(prev_state)
|
21 |
+
torch._logging._internal._init_logs()
|
22 |
+
|
23 |
+
def log_settings(settings):
|
24 |
+
exit_stack = contextlib.ExitStack()
|
25 |
+
settings_patch = unittest.mock.patch.dict(os.environ, {"TORCH_LOGS": settings})
|
26 |
+
exit_stack.enter_context(preserve_log_state())
|
27 |
+
exit_stack.enter_context(settings_patch)
|
28 |
+
torch._logging._internal._init_logs()
|
29 |
+
return exit_stack
|
30 |
+
|
31 |
+
def log_api(**kwargs):
|
32 |
+
exit_stack = contextlib.ExitStack()
|
33 |
+
exit_stack.enter_context(preserve_log_state())
|
34 |
+
torch._logging.set_logs(**kwargs)
|
35 |
+
return exit_stack
|
36 |
+
|
37 |
+
|
38 |
+
def kwargs_to_settings(**kwargs):
|
39 |
+
INT_TO_VERBOSITY = {10: "+", 20: "", 40: "-"}
|
40 |
+
|
41 |
+
settings = []
|
42 |
+
|
43 |
+
def append_setting(name, level):
|
44 |
+
if isinstance(name, str) and isinstance(level, int) and level in INT_TO_VERBOSITY:
|
45 |
+
settings.append(INT_TO_VERBOSITY[level] + name)
|
46 |
+
return
|
47 |
+
else:
|
48 |
+
raise ValueError("Invalid value for setting")
|
49 |
+
|
50 |
+
for name, val in kwargs.items():
|
51 |
+
if isinstance(val, bool):
|
52 |
+
settings.append(name)
|
53 |
+
elif isinstance(val, int):
|
54 |
+
append_setting(name, val)
|
55 |
+
elif isinstance(val, dict) and name == "modules":
|
56 |
+
for module_qname, level in val.items():
|
57 |
+
append_setting(module_qname, level)
|
58 |
+
else:
|
59 |
+
raise ValueError("Invalid value for setting")
|
60 |
+
|
61 |
+
return ",".join(settings)
|
62 |
+
|
63 |
+
|
64 |
+
# Note on testing strategy:
|
65 |
+
# This class does two things:
|
66 |
+
# 1. Runs two versions of a test:
|
67 |
+
# 1a. patches the env var log settings to some specific value
|
68 |
+
# 1b. calls torch._logging.set_logs(..)
|
69 |
+
# 2. patches the emit method of each setup handler to gather records
|
70 |
+
# that are emitted to each console stream
|
71 |
+
# 3. passes a ref to the gathered records to each test case for checking
|
72 |
+
#
|
73 |
+
# The goal of this testing in general is to ensure that given some settings env var
|
74 |
+
# that the logs are setup correctly and capturing the correct records.
|
75 |
+
def make_logging_test(**kwargs):
|
76 |
+
def wrapper(fn):
|
77 |
+
def test_fn(self):
|
78 |
+
|
79 |
+
torch._dynamo.reset()
|
80 |
+
records = []
|
81 |
+
# run with env var
|
82 |
+
if len(kwargs) == 0:
|
83 |
+
with self._handler_watcher(records):
|
84 |
+
fn(self, records)
|
85 |
+
else:
|
86 |
+
with log_settings(kwargs_to_settings(**kwargs)), self._handler_watcher(records):
|
87 |
+
fn(self, records)
|
88 |
+
|
89 |
+
# run with API
|
90 |
+
torch._dynamo.reset()
|
91 |
+
records.clear()
|
92 |
+
with log_api(**kwargs), self._handler_watcher(records):
|
93 |
+
fn(self, records)
|
94 |
+
|
95 |
+
|
96 |
+
return test_fn
|
97 |
+
|
98 |
+
return wrapper
|
99 |
+
|
100 |
+
def make_settings_test(settings):
|
101 |
+
def wrapper(fn):
|
102 |
+
def test_fn(self):
|
103 |
+
torch._dynamo.reset()
|
104 |
+
records = []
|
105 |
+
# run with env var
|
106 |
+
with log_settings(settings), self._handler_watcher(records):
|
107 |
+
fn(self, records)
|
108 |
+
|
109 |
+
return test_fn
|
110 |
+
|
111 |
+
return wrapper
|
112 |
+
|
113 |
+
class LoggingTestCase(torch._dynamo.test_case.TestCase):
|
114 |
+
@classmethod
|
115 |
+
def setUpClass(cls):
|
116 |
+
super().setUpClass()
|
117 |
+
cls._exit_stack.enter_context(
|
118 |
+
unittest.mock.patch.dict(os.environ, {"___LOG_TESTING": ""})
|
119 |
+
)
|
120 |
+
cls._exit_stack.enter_context(
|
121 |
+
unittest.mock.patch("torch._dynamo.config.suppress_errors", True)
|
122 |
+
)
|
123 |
+
cls._exit_stack.enter_context(
|
124 |
+
unittest.mock.patch("torch._dynamo.config.verbose", False)
|
125 |
+
)
|
126 |
+
|
127 |
+
@classmethod
|
128 |
+
def tearDownClass(cls):
|
129 |
+
cls._exit_stack.close()
|
130 |
+
torch._logging._internal.log_state.clear()
|
131 |
+
torch._logging._init_logs()
|
132 |
+
|
133 |
+
def getRecord(self, records, m):
|
134 |
+
record = None
|
135 |
+
for r in records:
|
136 |
+
# NB: not r.msg because it looks like 3.11 changed how they
|
137 |
+
# structure log records
|
138 |
+
if m in r.getMessage():
|
139 |
+
self.assertIsNone(
|
140 |
+
record,
|
141 |
+
msg=LazyString(
|
142 |
+
lambda: f"multiple matching records: {record} and {r} among {records}"
|
143 |
+
),
|
144 |
+
)
|
145 |
+
record = r
|
146 |
+
if record is None:
|
147 |
+
self.fail(f"did not find record with {m} among {records}")
|
148 |
+
return record
|
149 |
+
|
150 |
+
# This patches the emit method of each handler to gather records
|
151 |
+
# as they are emitted
|
152 |
+
def _handler_watcher(self, record_list):
|
153 |
+
exit_stack = contextlib.ExitStack()
|
154 |
+
|
155 |
+
def emit_post_hook(record):
|
156 |
+
nonlocal record_list
|
157 |
+
record_list.append(record)
|
158 |
+
|
159 |
+
# registered logs are the only ones with handlers, so patch those
|
160 |
+
for log_qname in torch._logging._internal.log_registry.get_log_qnames():
|
161 |
+
logger = logging.getLogger(log_qname)
|
162 |
+
num_handlers = len(logger.handlers)
|
163 |
+
self.assertLessEqual(
|
164 |
+
num_handlers,
|
165 |
+
2,
|
166 |
+
"All pt2 loggers should only have at most two handlers (debug artifacts and messages above debug level).",
|
167 |
+
)
|
168 |
+
|
169 |
+
self.assertGreater(num_handlers, 0, "All pt2 loggers should have more than zero handlers")
|
170 |
+
|
171 |
+
for handler in logger.handlers:
|
172 |
+
old_emit = handler.emit
|
173 |
+
|
174 |
+
def new_emit(record):
|
175 |
+
old_emit(record)
|
176 |
+
emit_post_hook(record)
|
177 |
+
|
178 |
+
exit_stack.enter_context(
|
179 |
+
unittest.mock.patch.object(handler, "emit", new_emit)
|
180 |
+
)
|
181 |
+
|
182 |
+
return exit_stack
|
183 |
+
|
184 |
+
|
185 |
+
def logs_to_string(module, log_option):
|
186 |
+
"""Example:
|
187 |
+
logs_to_string("torch._inductor.compile_fx", "post_grad_graphs")
|
188 |
+
returns the output of TORCH_LOGS="post_grad_graphs" from the
|
189 |
+
torch._inductor.compile_fx module.
|
190 |
+
"""
|
191 |
+
log_stream = io.StringIO()
|
192 |
+
handler = logging.StreamHandler(stream=log_stream)
|
193 |
+
|
194 |
+
@contextlib.contextmanager
|
195 |
+
def tmp_redirect_logs():
|
196 |
+
try:
|
197 |
+
logger = torch._logging.getArtifactLogger(module, log_option)
|
198 |
+
logger.addHandler(handler)
|
199 |
+
yield
|
200 |
+
finally:
|
201 |
+
logger.removeHandler(handler)
|
202 |
+
|
203 |
+
def ctx_manager():
|
204 |
+
exit_stack = log_settings(log_option)
|
205 |
+
exit_stack.enter_context(tmp_redirect_logs())
|
206 |
+
return exit_stack
|
207 |
+
|
208 |
+
return log_stream, ctx_manager
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import torch.testing._internal.opinfo.core
|
4 |
+
import torch.testing._internal.opinfo.definitions
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (306 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/core.cpython-310.pyc
ADDED
Binary file (55.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/refs.cpython-310.pyc
ADDED
Binary file (3.63 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/core.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
from torch.testing._internal.opinfo.core import OpInfo
|
6 |
+
from torch.testing._internal.opinfo.definitions import (
|
7 |
+
_masked,
|
8 |
+
fft,
|
9 |
+
linalg,
|
10 |
+
signal,
|
11 |
+
special,
|
12 |
+
)
|
13 |
+
|
14 |
+
# Operator database
|
15 |
+
op_db: List[OpInfo] = [
|
16 |
+
*fft.op_db,
|
17 |
+
*linalg.op_db,
|
18 |
+
*signal.op_db,
|
19 |
+
*special.op_db,
|
20 |
+
*_masked.op_db,
|
21 |
+
]
|
22 |
+
|
23 |
+
python_ref_db: List[OpInfo] = [
|
24 |
+
*fft.python_ref_db,
|
25 |
+
*linalg.python_ref_db,
|
26 |
+
*special.python_ref_db,
|
27 |
+
]
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (618 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/_masked.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/fft.cpython-310.pyc
ADDED
Binary file (9.81 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/linalg.cpython-310.pyc
ADDED
Binary file (43.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/testing/_internal/opinfo/definitions/__pycache__/signal.cpython-310.pyc
ADDED
Binary file (8.88 kB). View file
|
|