applied-ai-018 commited on
Commit
79490f8
·
verified ·
1 Parent(s): 11e0ef6

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_176_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_29_mp_rank_03_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_37_mp_rank_02_optim_states.pt +3 -0
  4. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_41_mp_rank_01_optim_states.pt +3 -0
  5. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py +0 -0
  6. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_get.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_indexing.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py +499 -0
  10. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py +70 -0
  11. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py +238 -0
  12. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py +735 -0
  13. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py +518 -0
  14. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_mask.py +69 -0
  15. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_set_value.py +45 -0
  16. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py +1847 -0
  17. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py +50 -0
  18. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py +481 -0
  19. venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py +82 -0
  20. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_add_prefix_suffix.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_align.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_astype.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_copy.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_fillna.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_info.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nlargest.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_176_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee49effce3195bead5ecb7d3d8ed1c536ee0d566452972cceecaf3c0f2de1fad
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_29_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:686c670e59a59a96324efd41d24e9d7e7d06fcd91313d55de9c825b0322b318f
3
+ size 41830330
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_37_mp_rank_02_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:190c5990847f2f823d25e884840b26098f3569d85ee2fadab478aae74abf7adf
3
+ size 41830330
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_41_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2588d65718e0a45ffdfe2815f9cf509e3d990e8153172303473b4fdc5096da5
3
+ size 41830138
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_get.cpython-310.pyc ADDED
Binary file (4.37 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (16.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Also test support for datetime64[ns] in Series / DataFrame
3
+ """
4
+ from datetime import (
5
+ datetime,
6
+ timedelta,
7
+ )
8
+ import re
9
+
10
+ from dateutil.tz import (
11
+ gettz,
12
+ tzutc,
13
+ )
14
+ import numpy as np
15
+ import pytest
16
+ import pytz
17
+
18
+ from pandas._libs import index as libindex
19
+
20
+ import pandas as pd
21
+ from pandas import (
22
+ DataFrame,
23
+ Series,
24
+ Timestamp,
25
+ date_range,
26
+ period_range,
27
+ )
28
+ import pandas._testing as tm
29
+
30
+
31
+ def test_fancy_getitem():
32
+ dti = date_range(
33
+ freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
34
+ )
35
+
36
+ s = Series(np.arange(len(dti)), index=dti)
37
+
38
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
39
+ with tm.assert_produces_warning(FutureWarning, match=msg):
40
+ assert s[48] == 48
41
+ assert s["1/2/2009"] == 48
42
+ assert s["2009-1-2"] == 48
43
+ assert s[datetime(2009, 1, 2)] == 48
44
+ assert s[Timestamp(datetime(2009, 1, 2))] == 48
45
+ with pytest.raises(KeyError, match=r"^'2009-1-3'$"):
46
+ s["2009-1-3"]
47
+ tm.assert_series_equal(
48
+ s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)]
49
+ )
50
+
51
+
52
+ def test_fancy_setitem():
53
+ dti = date_range(
54
+ freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
55
+ )
56
+
57
+ s = Series(np.arange(len(dti)), index=dti)
58
+
59
+ msg = "Series.__setitem__ treating keys as positions is deprecated"
60
+ with tm.assert_produces_warning(FutureWarning, match=msg):
61
+ s[48] = -1
62
+ assert s.iloc[48] == -1
63
+ s["1/2/2009"] = -2
64
+ assert s.iloc[48] == -2
65
+ s["1/2/2009":"2009-06-05"] = -3
66
+ assert (s[48:54] == -3).all()
67
+
68
+
69
+ @pytest.mark.parametrize("tz_source", ["pytz", "dateutil"])
70
+ def test_getitem_setitem_datetime_tz(tz_source):
71
+ if tz_source == "pytz":
72
+ tzget = pytz.timezone
73
+ else:
74
+ # handle special case for utc in dateutil
75
+ tzget = lambda x: tzutc() if x == "UTC" else gettz(x)
76
+
77
+ N = 50
78
+ # testing with timezone, GH #2785
79
+ rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern"))
80
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
81
+
82
+ # also test Timestamp tz handling, GH #2789
83
+ result = ts.copy()
84
+ result["1990-01-01 09:00:00+00:00"] = 0
85
+ result["1990-01-01 09:00:00+00:00"] = ts.iloc[4]
86
+ tm.assert_series_equal(result, ts)
87
+
88
+ result = ts.copy()
89
+ result["1990-01-01 03:00:00-06:00"] = 0
90
+ result["1990-01-01 03:00:00-06:00"] = ts.iloc[4]
91
+ tm.assert_series_equal(result, ts)
92
+
93
+ # repeat with datetimes
94
+ result = ts.copy()
95
+ result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0
96
+ result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4]
97
+ tm.assert_series_equal(result, ts)
98
+
99
+ result = ts.copy()
100
+ dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central"))
101
+ dt = dt.to_pydatetime()
102
+ result[dt] = 0
103
+ result[dt] = ts.iloc[4]
104
+ tm.assert_series_equal(result, ts)
105
+
106
+
107
+ def test_getitem_setitem_datetimeindex():
108
+ N = 50
109
+ # testing with timezone, GH #2785
110
+ rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern")
111
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
112
+
113
+ result = ts["1990-01-01 04:00:00"]
114
+ expected = ts.iloc[4]
115
+ assert result == expected
116
+
117
+ result = ts.copy()
118
+ result["1990-01-01 04:00:00"] = 0
119
+ result["1990-01-01 04:00:00"] = ts.iloc[4]
120
+ tm.assert_series_equal(result, ts)
121
+
122
+ result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"]
123
+ expected = ts[4:8]
124
+ tm.assert_series_equal(result, expected)
125
+
126
+ result = ts.copy()
127
+ result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0
128
+ result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8]
129
+ tm.assert_series_equal(result, ts)
130
+
131
+ lb = "1990-01-01 04:00:00"
132
+ rb = "1990-01-01 07:00:00"
133
+ # GH#18435 strings get a pass from tzawareness compat
134
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
135
+ expected = ts[4:8]
136
+ tm.assert_series_equal(result, expected)
137
+
138
+ lb = "1990-01-01 04:00:00-0500"
139
+ rb = "1990-01-01 07:00:00-0500"
140
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
141
+ expected = ts[4:8]
142
+ tm.assert_series_equal(result, expected)
143
+
144
+ # But we do not give datetimes a pass on tzawareness compat
145
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
146
+ naive = datetime(1990, 1, 1, 4)
147
+ for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]:
148
+ with pytest.raises(KeyError, match=re.escape(repr(key))):
149
+ # GH#36148 as of 2.0 we require tzawareness-compat
150
+ ts[key]
151
+
152
+ result = ts.copy()
153
+ # GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing,
154
+ # so setting it as a new key casts to object rather than matching
155
+ # rng[4]
156
+ result[naive] = ts.iloc[4]
157
+ assert result.index.dtype == object
158
+ tm.assert_index_equal(result.index[:-1], rng.astype(object))
159
+ assert result.index[-1] == naive
160
+
161
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
162
+ with pytest.raises(TypeError, match=msg):
163
+ # GH#36148 require tzawareness compat as of 2.0
164
+ ts[naive : datetime(1990, 1, 1, 7)]
165
+
166
+ result = ts.copy()
167
+ with pytest.raises(TypeError, match=msg):
168
+ # GH#36148 require tzawareness compat as of 2.0
169
+ result[naive : datetime(1990, 1, 1, 7)] = 0
170
+ with pytest.raises(TypeError, match=msg):
171
+ # GH#36148 require tzawareness compat as of 2.0
172
+ result[naive : datetime(1990, 1, 1, 7)] = 99
173
+ # the __setitems__ here failed, so result should still match ts
174
+ tm.assert_series_equal(result, ts)
175
+
176
+ lb = naive
177
+ rb = datetime(1990, 1, 1, 7)
178
+ msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime"
179
+ with pytest.raises(TypeError, match=msg):
180
+ # tznaive vs tzaware comparison is invalid
181
+ # see GH#18376, GH#18162
182
+ ts[(ts.index >= lb) & (ts.index <= rb)]
183
+
184
+ lb = Timestamp(naive).tz_localize(rng.tzinfo)
185
+ rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo)
186
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
187
+ expected = ts[4:8]
188
+ tm.assert_series_equal(result, expected)
189
+
190
+ result = ts[ts.index[4]]
191
+ expected = ts.iloc[4]
192
+ assert result == expected
193
+
194
+ result = ts[ts.index[4:8]]
195
+ expected = ts[4:8]
196
+ tm.assert_series_equal(result, expected)
197
+
198
+ result = ts.copy()
199
+ result[ts.index[4:8]] = 0
200
+ result.iloc[4:8] = ts.iloc[4:8]
201
+ tm.assert_series_equal(result, ts)
202
+
203
+ # also test partial date slicing
204
+ result = ts["1990-01-02"]
205
+ expected = ts[24:48]
206
+ tm.assert_series_equal(result, expected)
207
+
208
+ result = ts.copy()
209
+ result["1990-01-02"] = 0
210
+ result["1990-01-02"] = ts[24:48]
211
+ tm.assert_series_equal(result, ts)
212
+
213
+
214
+ def test_getitem_setitem_periodindex():
215
+ N = 50
216
+ rng = period_range("1/1/1990", periods=N, freq="h")
217
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
218
+
219
+ result = ts["1990-01-01 04"]
220
+ expected = ts.iloc[4]
221
+ assert result == expected
222
+
223
+ result = ts.copy()
224
+ result["1990-01-01 04"] = 0
225
+ result["1990-01-01 04"] = ts.iloc[4]
226
+ tm.assert_series_equal(result, ts)
227
+
228
+ result = ts["1990-01-01 04":"1990-01-01 07"]
229
+ expected = ts[4:8]
230
+ tm.assert_series_equal(result, expected)
231
+
232
+ result = ts.copy()
233
+ result["1990-01-01 04":"1990-01-01 07"] = 0
234
+ result["1990-01-01 04":"1990-01-01 07"] = ts[4:8]
235
+ tm.assert_series_equal(result, ts)
236
+
237
+ lb = "1990-01-01 04"
238
+ rb = "1990-01-01 07"
239
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
240
+ expected = ts[4:8]
241
+ tm.assert_series_equal(result, expected)
242
+
243
+ # GH 2782
244
+ result = ts[ts.index[4]]
245
+ expected = ts.iloc[4]
246
+ assert result == expected
247
+
248
+ result = ts[ts.index[4:8]]
249
+ expected = ts[4:8]
250
+ tm.assert_series_equal(result, expected)
251
+
252
+ result = ts.copy()
253
+ result[ts.index[4:8]] = 0
254
+ result.iloc[4:8] = ts.iloc[4:8]
255
+ tm.assert_series_equal(result, ts)
256
+
257
+
258
+ def test_datetime_indexing():
259
+ index = date_range("1/1/2000", "1/7/2000")
260
+ index = index.repeat(3)
261
+
262
+ s = Series(len(index), index=index)
263
+ stamp = Timestamp("1/8/2000")
264
+
265
+ with pytest.raises(KeyError, match=re.escape(repr(stamp))):
266
+ s[stamp]
267
+ s[stamp] = 0
268
+ assert s[stamp] == 0
269
+
270
+ # not monotonic
271
+ s = Series(len(index), index=index)
272
+ s = s[::-1]
273
+
274
+ with pytest.raises(KeyError, match=re.escape(repr(stamp))):
275
+ s[stamp]
276
+ s[stamp] = 0
277
+ assert s[stamp] == 0
278
+
279
+
280
+ # test duplicates in time series
281
+
282
+
283
+ def test_indexing_with_duplicate_datetimeindex(
284
+ rand_series_with_duplicate_datetimeindex,
285
+ ):
286
+ ts = rand_series_with_duplicate_datetimeindex
287
+
288
+ uniques = ts.index.unique()
289
+ for date in uniques:
290
+ result = ts[date]
291
+
292
+ mask = ts.index == date
293
+ total = (ts.index == date).sum()
294
+ expected = ts[mask]
295
+ if total > 1:
296
+ tm.assert_series_equal(result, expected)
297
+ else:
298
+ tm.assert_almost_equal(result, expected.iloc[0])
299
+
300
+ cp = ts.copy()
301
+ cp[date] = 0
302
+ expected = Series(np.where(mask, 0, ts), index=ts.index)
303
+ tm.assert_series_equal(cp, expected)
304
+
305
+ key = datetime(2000, 1, 6)
306
+ with pytest.raises(KeyError, match=re.escape(repr(key))):
307
+ ts[key]
308
+
309
+ # new index
310
+ ts[datetime(2000, 1, 6)] = 0
311
+ assert ts[datetime(2000, 1, 6)] == 0
312
+
313
+
314
+ def test_loc_getitem_over_size_cutoff(monkeypatch):
315
+ # #1821
316
+
317
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
318
+
319
+ # create large list of non periodic datetime
320
+ dates = []
321
+ sec = timedelta(seconds=1)
322
+ half_sec = timedelta(microseconds=500000)
323
+ d = datetime(2011, 12, 5, 20, 30)
324
+ n = 1100
325
+ for i in range(n):
326
+ dates.append(d)
327
+ dates.append(d + sec)
328
+ dates.append(d + sec + half_sec)
329
+ dates.append(d + sec + sec + half_sec)
330
+ d += 3 * sec
331
+
332
+ # duplicate some values in the list
333
+ duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20)
334
+ for p in duplicate_positions:
335
+ dates[p + 1] = dates[p]
336
+
337
+ df = DataFrame(
338
+ np.random.default_rng(2).standard_normal((len(dates), 4)),
339
+ index=dates,
340
+ columns=list("ABCD"),
341
+ )
342
+
343
+ pos = n * 3
344
+ timestamp = df.index[pos]
345
+ assert timestamp in df.index
346
+
347
+ # it works!
348
+ df.loc[timestamp]
349
+ assert len(df.loc[[timestamp]]) > 0
350
+
351
+
352
+ def test_indexing_over_size_cutoff_period_index(monkeypatch):
353
+ # GH 27136
354
+
355
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
356
+
357
+ n = 1100
358
+ idx = period_range("1/1/2000", freq="min", periods=n)
359
+ assert idx._engine.over_size_threshold
360
+
361
+ s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
362
+
363
+ pos = n - 1
364
+ timestamp = idx[pos]
365
+ assert timestamp in s.index
366
+
367
+ # it works!
368
+ s[timestamp]
369
+ assert len(s.loc[[timestamp]]) > 0
370
+
371
+
372
+ def test_indexing_unordered():
373
+ # GH 2437
374
+ rng = date_range(start="2011-01-01", end="2011-01-15")
375
+ ts = Series(np.random.default_rng(2).random(len(rng)), index=rng)
376
+ ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]])
377
+
378
+ for t in ts.index:
379
+ expected = ts[t]
380
+ result = ts2[t]
381
+ assert expected == result
382
+
383
+ # GH 3448 (ranges)
384
+ def compare(slobj):
385
+ result = ts2[slobj].copy()
386
+ result = result.sort_index()
387
+ expected = ts[slobj]
388
+ expected.index = expected.index._with_freq(None)
389
+ tm.assert_series_equal(result, expected)
390
+
391
+ for key in [
392
+ slice("2011-01-01", "2011-01-15"),
393
+ slice("2010-12-30", "2011-01-15"),
394
+ slice("2011-01-01", "2011-01-16"),
395
+ # partial ranges
396
+ slice("2011-01-01", "2011-01-6"),
397
+ slice("2011-01-06", "2011-01-8"),
398
+ slice("2011-01-06", "2011-01-12"),
399
+ ]:
400
+ with pytest.raises(
401
+ KeyError, match="Value based partial slicing on non-monotonic"
402
+ ):
403
+ compare(key)
404
+
405
+ # single values
406
+ result = ts2["2011"].sort_index()
407
+ expected = ts["2011"]
408
+ expected.index = expected.index._with_freq(None)
409
+ tm.assert_series_equal(result, expected)
410
+
411
+
412
+ def test_indexing_unordered2():
413
+ # diff freq
414
+ rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME")
415
+ ts = Series(np.arange(len(rng)), index=rng)
416
+ ts = ts.take(np.random.default_rng(2).permutation(20))
417
+
418
+ result = ts["2005"]
419
+ for t in result.index:
420
+ assert t.year == 2005
421
+
422
+
423
+ def test_indexing():
424
+ idx = date_range("2001-1-1", periods=20, freq="ME")
425
+ ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
426
+
427
+ # getting
428
+
429
+ # GH 3070, make sure semantics work on Series/Frame
430
+ result = ts["2001"]
431
+ tm.assert_series_equal(result, ts.iloc[:12])
432
+
433
+ df = DataFrame({"A": ts.copy()})
434
+
435
+ # GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves
436
+ # like any other key, so raises
437
+ with pytest.raises(KeyError, match="2001"):
438
+ df["2001"]
439
+
440
+ # setting
441
+ ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
442
+ expected = ts.copy()
443
+ expected.iloc[:12] = 1
444
+ ts["2001"] = 1
445
+ tm.assert_series_equal(ts, expected)
446
+
447
+ expected = df.copy()
448
+ expected.iloc[:12, 0] = 1
449
+ df.loc["2001", "A"] = 1
450
+ tm.assert_frame_equal(df, expected)
451
+
452
+
453
+ def test_getitem_str_month_with_datetimeindex():
454
+ # GH3546 (not including times on the last day)
455
+ idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h")
456
+ ts = Series(range(len(idx)), index=idx)
457
+ expected = ts["2013-05"]
458
+ tm.assert_series_equal(expected, ts)
459
+
460
+ idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s")
461
+ ts = Series(range(len(idx)), index=idx)
462
+ expected = ts["2013-05"]
463
+ tm.assert_series_equal(expected, ts)
464
+
465
+
466
+ def test_getitem_str_year_with_datetimeindex():
467
+ idx = [
468
+ Timestamp("2013-05-31 00:00"),
469
+ Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)),
470
+ ]
471
+ ts = Series(range(len(idx)), index=idx)
472
+ expected = ts["2013"]
473
+ tm.assert_series_equal(expected, ts)
474
+
475
+
476
+ def test_getitem_str_second_with_datetimeindex():
477
+ # GH14826, indexing with a seconds resolution string / datetime object
478
+ df = DataFrame(
479
+ np.random.default_rng(2).random((5, 5)),
480
+ columns=["open", "high", "low", "close", "volume"],
481
+ index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"),
482
+ )
483
+
484
+ # this is a single date, so will raise
485
+ with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"):
486
+ df["2012-01-02 18:01:02"]
487
+
488
+ msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)"
489
+ with pytest.raises(KeyError, match=msg):
490
+ df[df.index[2]]
491
+
492
+
493
+ def test_compare_datetime_with_all_none():
494
+ # GH#54870
495
+ ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]")
496
+ ser2 = Series([None, None])
497
+ result = ser > ser2
498
+ expected = Series([False, False])
499
+ tm.assert_series_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Index,
5
+ Series,
6
+ date_range,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestSeriesDelItem:
12
+ def test_delitem(self):
13
+ # GH#5542
14
+ # should delete the item inplace
15
+ s = Series(range(5))
16
+ del s[0]
17
+
18
+ expected = Series(range(1, 5), index=range(1, 5))
19
+ tm.assert_series_equal(s, expected)
20
+
21
+ del s[1]
22
+ expected = Series(range(2, 5), index=range(2, 5))
23
+ tm.assert_series_equal(s, expected)
24
+
25
+ # only 1 left, del, add, del
26
+ s = Series(1)
27
+ del s[0]
28
+ tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64")))
29
+ s[0] = 1
30
+ tm.assert_series_equal(s, Series(1))
31
+ del s[0]
32
+ tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64")))
33
+
34
+ def test_delitem_object_index(self, using_infer_string):
35
+ # Index(dtype=object)
36
+ dtype = "string[pyarrow_numpy]" if using_infer_string else object
37
+ s = Series(1, index=Index(["a"], dtype=dtype))
38
+ del s["a"]
39
+ tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype)))
40
+ s["a"] = 1
41
+ tm.assert_series_equal(s, Series(1, index=Index(["a"], dtype=dtype)))
42
+ del s["a"]
43
+ tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype)))
44
+
45
+ def test_delitem_missing_key(self):
46
+ # empty
47
+ s = Series(dtype=object)
48
+
49
+ with pytest.raises(KeyError, match=r"^0$"):
50
+ del s[0]
51
+
52
+ def test_delitem_extension_dtype(self):
53
+ # GH#40386
54
+ # DatetimeTZDtype
55
+ dti = date_range("2016-01-01", periods=3, tz="US/Pacific")
56
+ ser = Series(dti)
57
+
58
+ expected = ser[[0, 2]]
59
+ del ser[1]
60
+ assert ser.dtype == dti.dtype
61
+ tm.assert_series_equal(ser, expected)
62
+
63
+ # PeriodDtype
64
+ pi = dti.tz_localize(None).to_period("D")
65
+ ser = Series(pi)
66
+
67
+ expected = ser[:2]
68
+ del ser[2]
69
+ assert ser.dtype == pi.dtype
70
+ tm.assert_series_equal(ser, expected)
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ Index,
8
+ Series,
9
+ date_range,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ def test_get():
15
+ # GH 6383
16
+ s = Series(
17
+ np.array(
18
+ [
19
+ 43,
20
+ 48,
21
+ 60,
22
+ 48,
23
+ 50,
24
+ 51,
25
+ 50,
26
+ 45,
27
+ 57,
28
+ 48,
29
+ 56,
30
+ 45,
31
+ 51,
32
+ 39,
33
+ 55,
34
+ 43,
35
+ 54,
36
+ 52,
37
+ 51,
38
+ 54,
39
+ ]
40
+ )
41
+ )
42
+
43
+ result = s.get(25, 0)
44
+ expected = 0
45
+ assert result == expected
46
+
47
+ s = Series(
48
+ np.array(
49
+ [
50
+ 43,
51
+ 48,
52
+ 60,
53
+ 48,
54
+ 50,
55
+ 51,
56
+ 50,
57
+ 45,
58
+ 57,
59
+ 48,
60
+ 56,
61
+ 45,
62
+ 51,
63
+ 39,
64
+ 55,
65
+ 43,
66
+ 54,
67
+ 52,
68
+ 51,
69
+ 54,
70
+ ]
71
+ ),
72
+ index=Index(
73
+ [
74
+ 25.0,
75
+ 36.0,
76
+ 49.0,
77
+ 64.0,
78
+ 81.0,
79
+ 100.0,
80
+ 121.0,
81
+ 144.0,
82
+ 169.0,
83
+ 196.0,
84
+ 1225.0,
85
+ 1296.0,
86
+ 1369.0,
87
+ 1444.0,
88
+ 1521.0,
89
+ 1600.0,
90
+ 1681.0,
91
+ 1764.0,
92
+ 1849.0,
93
+ 1936.0,
94
+ ],
95
+ dtype=np.float64,
96
+ ),
97
+ )
98
+
99
+ result = s.get(25, 0)
100
+ expected = 43
101
+ assert result == expected
102
+
103
+ # GH 7407
104
+ # with a boolean accessor
105
+ df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
106
+ vc = df.i.value_counts()
107
+ result = vc.get(99, default="Missing")
108
+ assert result == "Missing"
109
+
110
+ vc = df.b.value_counts()
111
+ result = vc.get(False, default="Missing")
112
+ assert result == 3
113
+
114
+ result = vc.get(True, default="Missing")
115
+ assert result == "Missing"
116
+
117
+
118
+ def test_get_nan(float_numpy_dtype):
119
+ # GH 8569
120
+ s = Index(range(10), dtype=float_numpy_dtype).to_series()
121
+ assert s.get(np.nan) is None
122
+ assert s.get(np.nan, default="Missing") == "Missing"
123
+
124
+
125
+ def test_get_nan_multiple(float_numpy_dtype):
126
+ # GH 8569
127
+ # ensure that fixing "test_get_nan" above hasn't broken get
128
+ # with multiple elements
129
+ s = Index(range(10), dtype=float_numpy_dtype).to_series()
130
+
131
+ idx = [2, 30]
132
+ assert s.get(idx) is None
133
+
134
+ idx = [2, np.nan]
135
+ assert s.get(idx) is None
136
+
137
+ # GH 17295 - all missing keys
138
+ idx = [20, 30]
139
+ assert s.get(idx) is None
140
+
141
+ idx = [np.nan, np.nan]
142
+ assert s.get(idx) is None
143
+
144
+
145
+ def test_get_with_default():
146
+ # GH#7725
147
+ d0 = ["a", "b", "c", "d"]
148
+ d1 = np.arange(4, dtype="int64")
149
+
150
+ for data, index in ((d0, d1), (d1, d0)):
151
+ s = Series(data, index=index)
152
+ for i, d in zip(index, data):
153
+ assert s.get(i) == d
154
+ assert s.get(i, d) == d
155
+ assert s.get(i, "z") == d
156
+
157
+ assert s.get("e", "z") == "z"
158
+ assert s.get("e", "e") == "e"
159
+
160
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
161
+ warn = None
162
+ if index is d0:
163
+ warn = FutureWarning
164
+ with tm.assert_produces_warning(warn, match=msg):
165
+ assert s.get(10, "z") == "z"
166
+ assert s.get(10, 10) == 10
167
+
168
+
169
+ @pytest.mark.parametrize(
170
+ "arr",
171
+ [
172
+ np.random.default_rng(2).standard_normal(10),
173
+ DatetimeIndex(date_range("2020-01-01", periods=10), name="a").tz_localize(
174
+ tz="US/Eastern"
175
+ ),
176
+ ],
177
+ )
178
+ def test_get_with_ea(arr):
179
+ # GH#21260
180
+ ser = Series(arr, index=[2 * i for i in range(len(arr))])
181
+ assert ser.get(4) == ser.iloc[2]
182
+
183
+ result = ser.get([4, 6])
184
+ expected = ser.iloc[[2, 3]]
185
+ tm.assert_series_equal(result, expected)
186
+
187
+ result = ser.get(slice(2))
188
+ expected = ser.iloc[[0, 1]]
189
+ tm.assert_series_equal(result, expected)
190
+
191
+ assert ser.get(-1) is None
192
+ assert ser.get(ser.index.max() + 1) is None
193
+
194
+ ser = Series(arr[:6], index=list("abcdef"))
195
+ assert ser.get("c") == ser.iloc[2]
196
+
197
+ result = ser.get(slice("b", "d"))
198
+ expected = ser.iloc[[1, 2, 3]]
199
+ tm.assert_series_equal(result, expected)
200
+
201
+ result = ser.get("Z")
202
+ assert result is None
203
+
204
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
205
+ with tm.assert_produces_warning(FutureWarning, match=msg):
206
+ assert ser.get(4) == ser.iloc[4]
207
+ with tm.assert_produces_warning(FutureWarning, match=msg):
208
+ assert ser.get(-1) == ser.iloc[-1]
209
+ with tm.assert_produces_warning(FutureWarning, match=msg):
210
+ assert ser.get(len(ser)) is None
211
+
212
+ # GH#21257
213
+ ser = Series(arr)
214
+ ser2 = ser[::2]
215
+ assert ser2.get(1) is None
216
+
217
+
218
+ def test_getitem_get(string_series, object_series):
219
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
220
+
221
+ for obj in [string_series, object_series]:
222
+ idx = obj.index[5]
223
+
224
+ assert obj[idx] == obj.get(idx)
225
+ assert obj[idx] == obj.iloc[5]
226
+
227
+ with tm.assert_produces_warning(FutureWarning, match=msg):
228
+ assert string_series.get(-1) == string_series.get(string_series.index[-1])
229
+ assert string_series.iloc[5] == string_series.get(string_series.index[5])
230
+
231
+
232
+ def test_get_none():
233
+ # GH#5652
234
+ s1 = Series(dtype=object)
235
+ s2 = Series(dtype=object, index=list("abc"))
236
+ for s in [s1, s2]:
237
+ result = s.get(None)
238
+ assert result is None
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Series.__getitem__ test classes are organized by the type of key passed.
3
+ """
4
+ from datetime import (
5
+ date,
6
+ datetime,
7
+ time,
8
+ )
9
+
10
+ import numpy as np
11
+ import pytest
12
+
13
+ from pandas._libs.tslibs import (
14
+ conversion,
15
+ timezones,
16
+ )
17
+
18
+ from pandas.core.dtypes.common import is_scalar
19
+
20
+ import pandas as pd
21
+ from pandas import (
22
+ Categorical,
23
+ DataFrame,
24
+ DatetimeIndex,
25
+ Index,
26
+ Series,
27
+ Timestamp,
28
+ date_range,
29
+ period_range,
30
+ timedelta_range,
31
+ )
32
+ import pandas._testing as tm
33
+ from pandas.core.indexing import IndexingError
34
+
35
+ from pandas.tseries.offsets import BDay
36
+
37
+
38
+ class TestSeriesGetitemScalars:
39
+ def test_getitem_object_index_float_string(self):
40
+ # GH#17286
41
+ ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0]))
42
+ assert ser["a"] == 1
43
+ assert ser[1.0] == 1
44
+
45
+ def test_getitem_float_keys_tuple_values(self):
46
+ # see GH#13509
47
+
48
+ # unique Index
49
+ ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo")
50
+ result = ser[0.0]
51
+ assert result == (1, 1)
52
+
53
+ # non-unique Index
54
+ expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo")
55
+ ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo")
56
+
57
+ result = ser[0.0]
58
+ tm.assert_series_equal(result, expected)
59
+
60
+ def test_getitem_unrecognized_scalar(self):
61
+ # GH#32684 a scalar key that is not recognized by lib.is_scalar
62
+
63
+ # a series that might be produced via `frame.dtypes`
64
+ ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")])
65
+
66
+ key = ser.index[1]
67
+
68
+ result = ser[key]
69
+ assert result == 2
70
+
71
+ def test_getitem_negative_out_of_bounds(self):
72
+ ser = Series(["a"] * 10, index=["a"] * 10)
73
+
74
+ msg = "index -11 is out of bounds for axis 0 with size 10|index out of bounds"
75
+ warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
76
+ with pytest.raises(IndexError, match=msg):
77
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
78
+ ser[-11]
79
+
80
+ def test_getitem_out_of_bounds_indexerror(self, datetime_series):
81
+ # don't segfault, GH#495
82
+ msg = r"index \d+ is out of bounds for axis 0 with size \d+"
83
+ warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
84
+ with pytest.raises(IndexError, match=msg):
85
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
86
+ datetime_series[len(datetime_series)]
87
+
88
+ def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self):
89
+ # GH#917
90
+ # With a RangeIndex, an int key gives a KeyError
91
+ ser = Series([], dtype=object)
92
+ with pytest.raises(KeyError, match="-1"):
93
+ ser[-1]
94
+
95
+ def test_getitem_keyerror_with_integer_index(self, any_int_numpy_dtype):
96
+ dtype = any_int_numpy_dtype
97
+ ser = Series(
98
+ np.random.default_rng(2).standard_normal(6),
99
+ index=Index([0, 0, 1, 1, 2, 2], dtype=dtype),
100
+ )
101
+
102
+ with pytest.raises(KeyError, match=r"^5$"):
103
+ ser[5]
104
+
105
+ with pytest.raises(KeyError, match=r"^'c'$"):
106
+ ser["c"]
107
+
108
+ # not monotonic
109
+ ser = Series(
110
+ np.random.default_rng(2).standard_normal(6), index=[2, 2, 0, 0, 1, 1]
111
+ )
112
+
113
+ with pytest.raises(KeyError, match=r"^5$"):
114
+ ser[5]
115
+
116
+ with pytest.raises(KeyError, match=r"^'c'$"):
117
+ ser["c"]
118
+
119
+ def test_getitem_int64(self, datetime_series):
120
+ idx = np.int64(5)
121
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
122
+ with tm.assert_produces_warning(FutureWarning, match=msg):
123
+ res = datetime_series[idx]
124
+ assert res == datetime_series.iloc[5]
125
+
126
+ def test_getitem_full_range(self):
127
+ # github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7
128
+ ser = Series(range(5), index=list(range(5)))
129
+ result = ser[list(range(5))]
130
+ tm.assert_series_equal(result, ser)
131
+
132
+ # ------------------------------------------------------------------
133
+ # Series with DatetimeIndex
134
+
135
+ @pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"])
136
+ def test_getitem_pydatetime_tz(self, tzstr):
137
+ tz = timezones.maybe_get_tz(tzstr)
138
+
139
+ index = date_range(
140
+ start="2012-12-24 16:00", end="2012-12-24 18:00", freq="h", tz=tzstr
141
+ )
142
+ ts = Series(index=index, data=index.hour)
143
+ time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
144
+
145
+ dt = datetime(2012, 12, 24, 17, 0)
146
+ time_datetime = conversion.localize_pydatetime(dt, tz)
147
+ assert ts[time_pandas] == ts[time_datetime]
148
+
149
+ @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
150
+ def test_string_index_alias_tz_aware(self, tz):
151
+ rng = date_range("1/1/2000", periods=10, tz=tz)
152
+ ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
153
+
154
+ result = ser["1/3/2000"]
155
+ tm.assert_almost_equal(result, ser.iloc[2])
156
+
157
+ def test_getitem_time_object(self):
158
+ rng = date_range("1/1/2000", "1/5/2000", freq="5min")
159
+ ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
160
+
161
+ mask = (rng.hour == 9) & (rng.minute == 30)
162
+ result = ts[time(9, 30)]
163
+ expected = ts[mask]
164
+ result.index = result.index._with_freq(None)
165
+ tm.assert_series_equal(result, expected)
166
+
167
+ # ------------------------------------------------------------------
168
+ # Series with CategoricalIndex
169
+
170
+ def test_getitem_scalar_categorical_index(self):
171
+ cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
172
+
173
+ ser = Series([1, 2], index=cats)
174
+
175
+ expected = ser.iloc[0]
176
+ result = ser[cats[0]]
177
+ assert result == expected
178
+
179
+ def test_getitem_numeric_categorical_listlike_matches_scalar(self):
180
+ # GH#15470
181
+ ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0]))
182
+
183
+ # 0 is treated as a label
184
+ assert ser[0] == "c"
185
+
186
+ # the listlike analogue should also be treated as labels
187
+ res = ser[[0]]
188
+ expected = ser.iloc[-1:]
189
+ tm.assert_series_equal(res, expected)
190
+
191
+ res2 = ser[[0, 1, 2]]
192
+ tm.assert_series_equal(res2, ser.iloc[::-1])
193
+
194
+ def test_getitem_integer_categorical_not_positional(self):
195
+ # GH#14865
196
+ ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category"))
197
+ assert ser.get(3) == "c"
198
+ assert ser[3] == "c"
199
+
200
+ def test_getitem_str_with_timedeltaindex(self):
201
+ rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
202
+ ser = Series(np.arange(len(rng)), index=rng)
203
+
204
+ key = "6 days, 23:11:12"
205
+ indexer = rng.get_loc(key)
206
+ assert indexer == 133
207
+
208
+ result = ser[key]
209
+ assert result == ser.iloc[133]
210
+
211
+ msg = r"^Timedelta\('50 days 00:00:00'\)$"
212
+ with pytest.raises(KeyError, match=msg):
213
+ rng.get_loc("50 days")
214
+ with pytest.raises(KeyError, match=msg):
215
+ ser["50 days"]
216
+
217
+ def test_getitem_bool_index_positional(self):
218
+ # GH#48653
219
+ ser = Series({True: 1, False: 0})
220
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
221
+ with tm.assert_produces_warning(FutureWarning, match=msg):
222
+ result = ser[0]
223
+ assert result == 1
224
+
225
+
226
+ class TestSeriesGetitemSlices:
227
+ def test_getitem_partial_str_slice_with_datetimeindex(self):
228
+ # GH#34860
229
+ arr = date_range("1/1/2008", "1/1/2009")
230
+ ser = arr.to_series()
231
+ result = ser["2008"]
232
+
233
+ rng = date_range(start="2008-01-01", end="2008-12-31")
234
+ expected = Series(rng, index=rng)
235
+
236
+ tm.assert_series_equal(result, expected)
237
+
238
+ def test_getitem_slice_strings_with_datetimeindex(self):
239
+ idx = DatetimeIndex(
240
+ ["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]
241
+ )
242
+
243
+ ts = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
244
+
245
+ result = ts["1/2/2000":]
246
+ expected = ts[1:]
247
+ tm.assert_series_equal(result, expected)
248
+
249
+ result = ts["1/2/2000":"1/3/2000"]
250
+ expected = ts[1:4]
251
+ tm.assert_series_equal(result, expected)
252
+
253
+ def test_getitem_partial_str_slice_with_timedeltaindex(self):
254
+ rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
255
+ ser = Series(np.arange(len(rng)), index=rng)
256
+
257
+ result = ser["5 day":"6 day"]
258
+ expected = ser.iloc[86:134]
259
+ tm.assert_series_equal(result, expected)
260
+
261
+ result = ser["5 day":]
262
+ expected = ser.iloc[86:]
263
+ tm.assert_series_equal(result, expected)
264
+
265
+ result = ser[:"6 day"]
266
+ expected = ser.iloc[:134]
267
+ tm.assert_series_equal(result, expected)
268
+
269
+ def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self):
270
+ # higher reso
271
+ rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
272
+ ser = Series(np.arange(len(rng)), index=rng)
273
+
274
+ result = ser["1 day 10:11:12":]
275
+ expected = ser.iloc[0:]
276
+ tm.assert_series_equal(result, expected)
277
+
278
+ result = ser["1 day 10:11:12.001":]
279
+ expected = ser.iloc[1000:]
280
+ tm.assert_series_equal(result, expected)
281
+
282
+ result = ser["1 days, 10:11:12.001001"]
283
+ assert result == ser.iloc[1001]
284
+
285
+ def test_getitem_slice_2d(self, datetime_series):
286
+ # GH#30588 multi-dimensional indexing deprecated
287
+ with pytest.raises(ValueError, match="Multi-dimensional indexing"):
288
+ datetime_series[:, np.newaxis]
289
+
290
+ def test_getitem_median_slice_bug(self):
291
+ index = date_range("20090415", "20090519", freq="2B")
292
+ ser = Series(np.random.default_rng(2).standard_normal(13), index=index)
293
+
294
+ indexer = [slice(6, 7, None)]
295
+ msg = "Indexing with a single-item list"
296
+ with pytest.raises(ValueError, match=msg):
297
+ # GH#31299
298
+ ser[indexer]
299
+ # but we're OK with a single-element tuple
300
+ result = ser[(indexer[0],)]
301
+ expected = ser[indexer[0]]
302
+ tm.assert_series_equal(result, expected)
303
+
304
+ @pytest.mark.parametrize(
305
+ "slc, positions",
306
+ [
307
+ [slice(date(2018, 1, 1), None), [0, 1, 2]],
308
+ [slice(date(2019, 1, 2), None), [2]],
309
+ [slice(date(2020, 1, 1), None), []],
310
+ [slice(None, date(2020, 1, 1)), [0, 1, 2]],
311
+ [slice(None, date(2019, 1, 1)), [0]],
312
+ ],
313
+ )
314
+ def test_getitem_slice_date(self, slc, positions):
315
+ # https://github.com/pandas-dev/pandas/issues/31501
316
+ ser = Series(
317
+ [0, 1, 2],
318
+ DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
319
+ )
320
+ result = ser[slc]
321
+ expected = ser.take(positions)
322
+ tm.assert_series_equal(result, expected)
323
+
324
+ def test_getitem_slice_float_raises(self, datetime_series):
325
+ msg = (
326
+ "cannot do slice indexing on DatetimeIndex with these indexers "
327
+ r"\[{key}\] of type float"
328
+ )
329
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
330
+ datetime_series[4.0:10.0]
331
+
332
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
333
+ datetime_series[4.5:10.0]
334
+
335
+ def test_getitem_slice_bug(self):
336
+ ser = Series(range(10), index=list(range(10)))
337
+ result = ser[-12:]
338
+ tm.assert_series_equal(result, ser)
339
+
340
+ result = ser[-7:]
341
+ tm.assert_series_equal(result, ser[3:])
342
+
343
+ result = ser[:-12]
344
+ tm.assert_series_equal(result, ser[:0])
345
+
346
+ def test_getitem_slice_integers(self):
347
+ ser = Series(
348
+ np.random.default_rng(2).standard_normal(8),
349
+ index=[2, 4, 6, 8, 10, 12, 14, 16],
350
+ )
351
+
352
+ result = ser[:4]
353
+ expected = Series(ser.values[:4], index=[2, 4, 6, 8])
354
+ tm.assert_series_equal(result, expected)
355
+
356
+
357
+ class TestSeriesGetitemListLike:
358
+ @pytest.mark.parametrize("box", [list, np.array, Index, Series])
359
+ def test_getitem_no_matches(self, box):
360
+ # GH#33462 we expect the same behavior for list/ndarray/Index/Series
361
+ ser = Series(["A", "B"])
362
+
363
+ key = Series(["C"], dtype=object)
364
+ key = box(key)
365
+
366
+ msg = (
367
+ r"None of \[Index\(\['C'\], dtype='object|string'\)\] are in the \[index\]"
368
+ )
369
+ with pytest.raises(KeyError, match=msg):
370
+ ser[key]
371
+
372
+ def test_getitem_intlist_intindex_periodvalues(self):
373
+ ser = Series(period_range("2000-01-01", periods=10, freq="D"))
374
+
375
+ result = ser[[2, 4]]
376
+ exp = Series(
377
+ [pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")],
378
+ index=[2, 4],
379
+ dtype="Period[D]",
380
+ )
381
+ tm.assert_series_equal(result, exp)
382
+ assert result.dtype == "Period[D]"
383
+
384
+ @pytest.mark.parametrize("box", [list, np.array, Index])
385
+ def test_getitem_intlist_intervalindex_non_int(self, box):
386
+ # GH#33404 fall back to positional since ints are unambiguous
387
+ dti = date_range("2000-01-03", periods=3)._with_freq(None)
388
+ ii = pd.IntervalIndex.from_breaks(dti)
389
+ ser = Series(range(len(ii)), index=ii)
390
+
391
+ expected = ser.iloc[:1]
392
+ key = box([0])
393
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
394
+ with tm.assert_produces_warning(FutureWarning, match=msg):
395
+ result = ser[key]
396
+ tm.assert_series_equal(result, expected)
397
+
398
+ @pytest.mark.parametrize("box", [list, np.array, Index])
399
+ @pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64])
400
+ def test_getitem_intlist_multiindex_numeric_level(self, dtype, box):
401
+ # GH#33404 do _not_ fall back to positional since ints are ambiguous
402
+ idx = Index(range(4)).astype(dtype)
403
+ dti = date_range("2000-01-03", periods=3)
404
+ mi = pd.MultiIndex.from_product([idx, dti])
405
+ ser = Series(range(len(mi))[::-1], index=mi)
406
+
407
+ key = box([5])
408
+ with pytest.raises(KeyError, match="5"):
409
+ ser[key]
410
+
411
+ def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype):
412
+ # GH #37218
413
+ ser = Series([1, 2, 3])
414
+ key = np.array([4], dtype=any_unsigned_int_numpy_dtype)
415
+
416
+ with pytest.raises(KeyError, match="4"):
417
+ ser[key]
418
+ with pytest.raises(KeyError, match="4"):
419
+ ser.loc[key]
420
+
421
+
422
+ class TestGetitemBooleanMask:
423
+ def test_getitem_boolean(self, string_series):
424
+ ser = string_series
425
+ mask = ser > ser.median()
426
+
427
+ # passing list is OK
428
+ result = ser[list(mask)]
429
+ expected = ser[mask]
430
+ tm.assert_series_equal(result, expected)
431
+ tm.assert_index_equal(result.index, ser.index[mask])
432
+
433
+ def test_getitem_boolean_empty(self):
434
+ ser = Series([], dtype=np.int64)
435
+ ser.index.name = "index_name"
436
+ ser = ser[ser.isna()]
437
+ assert ser.index.name == "index_name"
438
+ assert ser.dtype == np.int64
439
+
440
+ # GH#5877
441
+ # indexing with empty series
442
+ ser = Series(["A", "B"], dtype=object)
443
+ expected = Series(dtype=object, index=Index([], dtype="int64"))
444
+ result = ser[Series([], dtype=object)]
445
+ tm.assert_series_equal(result, expected)
446
+
447
+ # invalid because of the boolean indexer
448
+ # that's empty or not-aligned
449
+ msg = (
450
+ r"Unalignable boolean Series provided as indexer \(index of "
451
+ r"the boolean Series and of the indexed object do not match"
452
+ )
453
+ with pytest.raises(IndexingError, match=msg):
454
+ ser[Series([], dtype=bool)]
455
+
456
+ with pytest.raises(IndexingError, match=msg):
457
+ ser[Series([True], dtype=bool)]
458
+
459
+ def test_getitem_boolean_object(self, string_series):
460
+ # using column from DataFrame
461
+
462
+ ser = string_series
463
+ mask = ser > ser.median()
464
+ omask = mask.astype(object)
465
+
466
+ # getitem
467
+ result = ser[omask]
468
+ expected = ser[mask]
469
+ tm.assert_series_equal(result, expected)
470
+
471
+ # setitem
472
+ s2 = ser.copy()
473
+ cop = ser.copy()
474
+ cop[omask] = 5
475
+ s2[mask] = 5
476
+ tm.assert_series_equal(cop, s2)
477
+
478
+ # nans raise exception
479
+ omask[5:10] = np.nan
480
+ msg = "Cannot mask with non-boolean array containing NA / NaN values"
481
+ with pytest.raises(ValueError, match=msg):
482
+ ser[omask]
483
+ with pytest.raises(ValueError, match=msg):
484
+ ser[omask] = 5
485
+
486
+ def test_getitem_boolean_dt64_copies(self):
487
+ # GH#36210
488
+ dti = date_range("2016-01-01", periods=4, tz="US/Pacific")
489
+ key = np.array([True, True, False, False])
490
+
491
+ ser = Series(dti._data)
492
+
493
+ res = ser[key]
494
+ assert res._values._ndarray.base is None
495
+
496
+ # compare with numeric case for reference
497
+ ser2 = Series(range(4))
498
+ res2 = ser2[key]
499
+ assert res2._values.base is None
500
+
501
+ def test_getitem_boolean_corner(self, datetime_series):
502
+ ts = datetime_series
503
+ mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
504
+
505
+ msg = (
506
+ r"Unalignable boolean Series provided as indexer \(index of "
507
+ r"the boolean Series and of the indexed object do not match"
508
+ )
509
+ with pytest.raises(IndexingError, match=msg):
510
+ ts[mask_shifted]
511
+
512
+ with pytest.raises(IndexingError, match=msg):
513
+ ts.loc[mask_shifted]
514
+
515
+ def test_getitem_boolean_different_order(self, string_series):
516
+ ordered = string_series.sort_values()
517
+
518
+ sel = string_series[ordered > 0]
519
+ exp = string_series[string_series > 0]
520
+ tm.assert_series_equal(sel, exp)
521
+
522
+ def test_getitem_boolean_contiguous_preserve_freq(self):
523
+ rng = date_range("1/1/2000", "3/1/2000", freq="B")
524
+
525
+ mask = np.zeros(len(rng), dtype=bool)
526
+ mask[10:20] = True
527
+
528
+ masked = rng[mask]
529
+ expected = rng[10:20]
530
+ assert expected.freq == rng.freq
531
+ tm.assert_index_equal(masked, expected)
532
+
533
+ mask[22] = True
534
+ masked = rng[mask]
535
+ assert masked.freq is None
536
+
537
+
538
+ class TestGetitemCallable:
539
+ def test_getitem_callable(self):
540
+ # GH#12533
541
+ ser = Series(4, index=list("ABCD"))
542
+ result = ser[lambda x: "A"]
543
+ assert result == ser.loc["A"]
544
+
545
+ result = ser[lambda x: ["A", "B"]]
546
+ expected = ser.loc[["A", "B"]]
547
+ tm.assert_series_equal(result, expected)
548
+
549
+ result = ser[lambda x: [True, False, True, True]]
550
+ expected = ser.iloc[[0, 2, 3]]
551
+ tm.assert_series_equal(result, expected)
552
+
553
+
554
+ def test_getitem_generator(string_series):
555
+ gen = (x > 0 for x in string_series)
556
+ result = string_series[gen]
557
+ result2 = string_series[iter(string_series > 0)]
558
+ expected = string_series[string_series > 0]
559
+ tm.assert_series_equal(result, expected)
560
+ tm.assert_series_equal(result2, expected)
561
+
562
+
563
+ @pytest.mark.parametrize(
564
+ "series",
565
+ [
566
+ Series([0, 1]),
567
+ Series(date_range("2012-01-01", periods=2)),
568
+ Series(date_range("2012-01-01", periods=2, tz="CET")),
569
+ ],
570
+ )
571
+ def test_getitem_ndim_deprecated(series):
572
+ with pytest.raises(ValueError, match="Multi-dimensional indexing"):
573
+ series[:, None]
574
+
575
+
576
+ def test_getitem_multilevel_scalar_slice_not_implemented(
577
+ multiindex_year_month_day_dataframe_random_data,
578
+ ):
579
+ # not implementing this for now
580
+ df = multiindex_year_month_day_dataframe_random_data
581
+ ser = df["A"]
582
+
583
+ msg = r"\(2000, slice\(3, 4, None\)\)"
584
+ with pytest.raises(TypeError, match=msg):
585
+ ser[2000, 3:4]
586
+
587
+
588
+ def test_getitem_dataframe_raises():
589
+ rng = list(range(10))
590
+ ser = Series(10, index=rng)
591
+ df = DataFrame(rng, index=rng)
592
+ msg = (
593
+ "Indexing a Series with DataFrame is not supported, "
594
+ "use the appropriate DataFrame column"
595
+ )
596
+ with pytest.raises(TypeError, match=msg):
597
+ ser[df > 5]
598
+
599
+
600
+ def test_getitem_assignment_series_alignment():
601
+ # https://github.com/pandas-dev/pandas/issues/37427
602
+ # with getitem, when assigning with a Series, it is not first aligned
603
+ ser = Series(range(10))
604
+ idx = np.array([2, 4, 9])
605
+ ser[idx] = Series([10, 11, 12])
606
+ expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12])
607
+ tm.assert_series_equal(ser, expected)
608
+
609
+
610
+ def test_getitem_duplicate_index_mistyped_key_raises_keyerror():
611
+ # GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError
612
+ ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
613
+ with pytest.raises(KeyError, match="None"):
614
+ ser[None]
615
+
616
+ with pytest.raises(KeyError, match="None"):
617
+ ser.index.get_loc(None)
618
+
619
+ with pytest.raises(KeyError, match="None"):
620
+ ser.index._engine.get_loc(None)
621
+
622
+
623
+ def test_getitem_1tuple_slice_without_multiindex():
624
+ ser = Series(range(5))
625
+ key = (slice(3),)
626
+
627
+ result = ser[key]
628
+ expected = ser[key[0]]
629
+ tm.assert_series_equal(result, expected)
630
+
631
+
632
+ def test_getitem_preserve_name(datetime_series):
633
+ result = datetime_series[datetime_series > 0]
634
+ assert result.name == datetime_series.name
635
+
636
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
637
+ with tm.assert_produces_warning(FutureWarning, match=msg):
638
+ result = datetime_series[[0, 2, 4]]
639
+ assert result.name == datetime_series.name
640
+
641
+ result = datetime_series[5:10]
642
+ assert result.name == datetime_series.name
643
+
644
+
645
+ def test_getitem_with_integer_labels():
646
+ # integer indexes, be careful
647
+ ser = Series(
648
+ np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
649
+ )
650
+ inds = [0, 2, 5, 7, 8]
651
+ arr_inds = np.array([0, 2, 5, 7, 8])
652
+ with pytest.raises(KeyError, match="not in index"):
653
+ ser[inds]
654
+
655
+ with pytest.raises(KeyError, match="not in index"):
656
+ ser[arr_inds]
657
+
658
+
659
+ def test_getitem_missing(datetime_series):
660
+ # missing
661
+ d = datetime_series.index[0] - BDay()
662
+ msg = r"Timestamp\('1999-12-31 00:00:00'\)"
663
+ with pytest.raises(KeyError, match=msg):
664
+ datetime_series[d]
665
+
666
+
667
+ def test_getitem_fancy(string_series, object_series):
668
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
669
+ with tm.assert_produces_warning(FutureWarning, match=msg):
670
+ slice1 = string_series[[1, 2, 3]]
671
+ slice2 = object_series[[1, 2, 3]]
672
+ assert string_series.index[2] == slice1.index[1]
673
+ assert object_series.index[2] == slice2.index[1]
674
+ assert string_series.iloc[2] == slice1.iloc[1]
675
+ assert object_series.iloc[2] == slice2.iloc[1]
676
+
677
+
678
+ def test_getitem_box_float64(datetime_series):
679
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
680
+ with tm.assert_produces_warning(FutureWarning, match=msg):
681
+ value = datetime_series[5]
682
+ assert isinstance(value, np.float64)
683
+
684
+
685
+ def test_getitem_unordered_dup():
686
+ obj = Series(range(5), index=["c", "a", "a", "b", "b"])
687
+ assert is_scalar(obj["c"])
688
+ assert obj["c"] == 0
689
+
690
+
691
+ def test_getitem_dups():
692
+ ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64)
693
+ expected = Series([3, 4], index=["C", "C"], dtype=np.int64)
694
+ result = ser["C"]
695
+ tm.assert_series_equal(result, expected)
696
+
697
+
698
+ def test_getitem_categorical_str():
699
+ # GH#31765
700
+ ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"]))
701
+ result = ser["a"]
702
+ expected = ser.iloc[[0, 3]]
703
+ tm.assert_series_equal(result, expected)
704
+
705
+
706
+ def test_slice_can_reorder_not_uniquely_indexed():
707
+ ser = Series(1, index=["a", "a", "b", "b", "c"])
708
+ ser[::-1] # it works!
709
+
710
+
711
+ @pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"])
712
+ def test_duplicated_index_getitem_positional_indexer(index_vals):
713
+ # GH 11747
714
+ s = Series(range(5), index=list(index_vals))
715
+
716
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
717
+ with tm.assert_produces_warning(FutureWarning, match=msg):
718
+ result = s[3]
719
+ assert result == 3
720
+
721
+
722
+ class TestGetitemDeprecatedIndexers:
723
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
724
+ def test_getitem_dict_and_set_deprecated(self, key):
725
+ # GH#42825 enforced in 2.0
726
+ ser = Series([1, 2, 3])
727
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
728
+ ser[key]
729
+
730
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
731
+ def test_setitem_dict_and_set_disallowed(self, key):
732
+ # GH#42825 enforced in 2.0
733
+ ser = Series([1, 2, 3])
734
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
735
+ ser[key] = 1
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test get/set & misc """
2
+ from datetime import timedelta
3
+ import re
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas.errors import IndexingError
9
+
10
+ from pandas import (
11
+ NA,
12
+ DataFrame,
13
+ Index,
14
+ IndexSlice,
15
+ MultiIndex,
16
+ NaT,
17
+ Series,
18
+ Timedelta,
19
+ Timestamp,
20
+ concat,
21
+ date_range,
22
+ isna,
23
+ period_range,
24
+ timedelta_range,
25
+ )
26
+ import pandas._testing as tm
27
+
28
+
29
+ def test_basic_indexing():
30
+ s = Series(
31
+ np.random.default_rng(2).standard_normal(5), index=["a", "b", "a", "a", "b"]
32
+ )
33
+
34
+ warn_msg = "Series.__[sg]etitem__ treating keys as positions is deprecated"
35
+ msg = "index 5 is out of bounds for axis 0 with size 5"
36
+ with pytest.raises(IndexError, match=msg):
37
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
38
+ s[5]
39
+ with pytest.raises(IndexError, match=msg):
40
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
41
+ s[5] = 0
42
+
43
+ with pytest.raises(KeyError, match=r"^'c'$"):
44
+ s["c"]
45
+
46
+ s = s.sort_index()
47
+
48
+ with pytest.raises(IndexError, match=msg):
49
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
50
+ s[5]
51
+ msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$"
52
+ with pytest.raises(IndexError, match=msg):
53
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
54
+ s[5] = 0
55
+
56
+
57
+ def test_getitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
58
+ # GH51053
59
+ dtype = any_numeric_dtype
60
+ idx = Index([1, 0, 1], dtype=dtype)
61
+ ser = Series(range(3), index=idx)
62
+ result = ser[1]
63
+ expected = Series([0, 2], index=Index([1, 1], dtype=dtype))
64
+ tm.assert_series_equal(result, expected, check_exact=True)
65
+
66
+
67
+ def test_setitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
68
+ # GH51053
69
+ dtype = any_numeric_dtype
70
+ idx = Index([1, 0, 1], dtype=dtype)
71
+ ser = Series(range(3), index=idx)
72
+ ser[1] = 10
73
+ expected = Series([10, 1, 10], index=idx)
74
+ tm.assert_series_equal(ser, expected, check_exact=True)
75
+
76
+
77
+ def test_basic_getitem_with_labels(datetime_series):
78
+ indices = datetime_series.index[[5, 10, 15]]
79
+
80
+ result = datetime_series[indices]
81
+ expected = datetime_series.reindex(indices)
82
+ tm.assert_series_equal(result, expected)
83
+
84
+ result = datetime_series[indices[0] : indices[2]]
85
+ expected = datetime_series.loc[indices[0] : indices[2]]
86
+ tm.assert_series_equal(result, expected)
87
+
88
+
89
+ def test_basic_getitem_dt64tz_values():
90
+ # GH12089
91
+ # with tz for values
92
+ ser = Series(
93
+ date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"]
94
+ )
95
+ expected = Timestamp("2011-01-01", tz="US/Eastern")
96
+ result = ser.loc["a"]
97
+ assert result == expected
98
+ result = ser.iloc[0]
99
+ assert result == expected
100
+ result = ser["a"]
101
+ assert result == expected
102
+
103
+
104
+ def test_getitem_setitem_ellipsis(using_copy_on_write, warn_copy_on_write):
105
+ s = Series(np.random.default_rng(2).standard_normal(10))
106
+
107
+ result = s[...]
108
+ tm.assert_series_equal(result, s)
109
+
110
+ with tm.assert_cow_warning(warn_copy_on_write):
111
+ s[...] = 5
112
+ if not using_copy_on_write:
113
+ assert (result == 5).all()
114
+
115
+
116
+ @pytest.mark.parametrize(
117
+ "result_1, duplicate_item, expected_1",
118
+ [
119
+ [
120
+ Series({1: 12, 2: [1, 2, 2, 3]}),
121
+ Series({1: 313}),
122
+ Series({1: 12}, dtype=object),
123
+ ],
124
+ [
125
+ Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}),
126
+ Series({1: [1, 2, 3]}),
127
+ Series({1: [1, 2, 3]}),
128
+ ],
129
+ ],
130
+ )
131
+ def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1):
132
+ # GH 17610
133
+ result = result_1._append(duplicate_item)
134
+ expected = expected_1._append(duplicate_item)
135
+ tm.assert_series_equal(result[1], expected)
136
+ assert result[2] == result_1[2]
137
+
138
+
139
+ def test_getitem_setitem_integers():
140
+ # caused bug without test
141
+ s = Series([1, 2, 3], ["a", "b", "c"])
142
+
143
+ assert s.iloc[0] == s["a"]
144
+ s.iloc[0] = 5
145
+ tm.assert_almost_equal(s["a"], 5)
146
+
147
+
148
+ def test_series_box_timestamp():
149
+ rng = date_range("20090415", "20090519", freq="B")
150
+ ser = Series(rng)
151
+ assert isinstance(ser[0], Timestamp)
152
+ assert isinstance(ser.at[1], Timestamp)
153
+ assert isinstance(ser.iat[2], Timestamp)
154
+ assert isinstance(ser.loc[3], Timestamp)
155
+ assert isinstance(ser.iloc[4], Timestamp)
156
+
157
+ ser = Series(rng, index=rng)
158
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
159
+ with tm.assert_produces_warning(FutureWarning, match=msg):
160
+ assert isinstance(ser[0], Timestamp)
161
+ assert isinstance(ser.at[rng[1]], Timestamp)
162
+ assert isinstance(ser.iat[2], Timestamp)
163
+ assert isinstance(ser.loc[rng[3]], Timestamp)
164
+ assert isinstance(ser.iloc[4], Timestamp)
165
+
166
+
167
+ def test_series_box_timedelta():
168
+ rng = timedelta_range("1 day 1 s", periods=5, freq="h")
169
+ ser = Series(rng)
170
+ assert isinstance(ser[0], Timedelta)
171
+ assert isinstance(ser.at[1], Timedelta)
172
+ assert isinstance(ser.iat[2], Timedelta)
173
+ assert isinstance(ser.loc[3], Timedelta)
174
+ assert isinstance(ser.iloc[4], Timedelta)
175
+
176
+
177
+ def test_getitem_ambiguous_keyerror(indexer_sl):
178
+ ser = Series(range(10), index=list(range(0, 20, 2)))
179
+ with pytest.raises(KeyError, match=r"^1$"):
180
+ indexer_sl(ser)[1]
181
+
182
+
183
+ def test_getitem_dups_with_missing(indexer_sl):
184
+ # breaks reindex, so need to use .loc internally
185
+ # GH 4246
186
+ ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"])
187
+ with pytest.raises(KeyError, match=re.escape("['bam'] not in index")):
188
+ indexer_sl(ser)[["foo", "bar", "bah", "bam"]]
189
+
190
+
191
+ def test_setitem_ambiguous_keyerror(indexer_sl):
192
+ s = Series(range(10), index=list(range(0, 20, 2)))
193
+
194
+ # equivalent of an append
195
+ s2 = s.copy()
196
+ indexer_sl(s2)[1] = 5
197
+ expected = concat([s, Series([5], index=[1])])
198
+ tm.assert_series_equal(s2, expected)
199
+
200
+
201
+ def test_setitem(datetime_series):
202
+ datetime_series[datetime_series.index[5]] = np.nan
203
+ datetime_series.iloc[[1, 2, 17]] = np.nan
204
+ datetime_series.iloc[6] = np.nan
205
+ assert np.isnan(datetime_series.iloc[6])
206
+ assert np.isnan(datetime_series.iloc[2])
207
+ datetime_series[np.isnan(datetime_series)] = 5
208
+ assert not np.isnan(datetime_series.iloc[2])
209
+
210
+
211
+ def test_setslice(datetime_series):
212
+ sl = datetime_series[5:20]
213
+ assert len(sl) == len(sl.index)
214
+ assert sl.index.is_unique is True
215
+
216
+
217
+ def test_basic_getitem_setitem_corner(datetime_series):
218
+ # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2]
219
+ msg = "key of type tuple not found and not a MultiIndex"
220
+ with pytest.raises(KeyError, match=msg):
221
+ datetime_series[:, 2]
222
+ with pytest.raises(KeyError, match=msg):
223
+ datetime_series[:, 2] = 2
224
+
225
+ # weird lists. [slice(0, 5)] raises but not two slices
226
+ msg = "Indexing with a single-item list"
227
+ with pytest.raises(ValueError, match=msg):
228
+ # GH#31299
229
+ datetime_series[[slice(None, 5)]]
230
+
231
+ # but we're OK with a single-element tuple
232
+ result = datetime_series[(slice(None, 5),)]
233
+ expected = datetime_series[:5]
234
+ tm.assert_series_equal(result, expected)
235
+
236
+ # OK
237
+ msg = r"unhashable type(: 'slice')?"
238
+ with pytest.raises(TypeError, match=msg):
239
+ datetime_series[[5, [None, None]]]
240
+ with pytest.raises(TypeError, match=msg):
241
+ datetime_series[[5, [None, None]]] = 2
242
+
243
+
244
+ def test_slice(string_series, object_series, using_copy_on_write, warn_copy_on_write):
245
+ original = string_series.copy()
246
+ numSlice = string_series[10:20]
247
+ numSliceEnd = string_series[-10:]
248
+ objSlice = object_series[10:20]
249
+
250
+ assert string_series.index[9] not in numSlice.index
251
+ assert object_series.index[9] not in objSlice.index
252
+
253
+ assert len(numSlice) == len(numSlice.index)
254
+ assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]]
255
+
256
+ assert numSlice.index[1] == string_series.index[11]
257
+ tm.assert_numpy_array_equal(np.array(numSliceEnd), np.array(string_series)[-10:])
258
+
259
+ # Test return view.
260
+ sl = string_series[10:20]
261
+ with tm.assert_cow_warning(warn_copy_on_write):
262
+ sl[:] = 0
263
+
264
+ if using_copy_on_write:
265
+ # Doesn't modify parent (CoW)
266
+ tm.assert_series_equal(string_series, original)
267
+ else:
268
+ assert (string_series[10:20] == 0).all()
269
+
270
+
271
+ def test_timedelta_assignment():
272
+ # GH 8209
273
+ s = Series([], dtype=object)
274
+ s.loc["B"] = timedelta(1)
275
+ tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"]))
276
+
277
+ s = s.reindex(s.index.insert(0, "A"))
278
+ tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"]))
279
+
280
+ s.loc["A"] = timedelta(1)
281
+ expected = Series(Timedelta("1 days"), index=["A", "B"])
282
+ tm.assert_series_equal(s, expected)
283
+
284
+
285
+ def test_underlying_data_conversion(using_copy_on_write):
286
+ # GH 4080
287
+ df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]})
288
+ return_value = df.set_index(["a", "b", "c"], inplace=True)
289
+ assert return_value is None
290
+ s = Series([1], index=[(2, 2, 2)])
291
+ df["val"] = 0
292
+ df_original = df.copy()
293
+ df
294
+
295
+ if using_copy_on_write:
296
+ with tm.raises_chained_assignment_error():
297
+ df["val"].update(s)
298
+ expected = df_original
299
+ else:
300
+ with tm.assert_produces_warning(FutureWarning, match="inplace method"):
301
+ df["val"].update(s)
302
+ expected = DataFrame(
303
+ {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]}
304
+ )
305
+ return_value = expected.set_index(["a", "b", "c"], inplace=True)
306
+ assert return_value is None
307
+ tm.assert_frame_equal(df, expected)
308
+
309
+
310
+ def test_preserve_refs(datetime_series):
311
+ seq = datetime_series.iloc[[5, 10, 15]]
312
+ seq.iloc[1] = np.nan
313
+ assert not np.isnan(datetime_series.iloc[10])
314
+
315
+
316
+ def test_multilevel_preserve_name(lexsorted_two_level_string_multiindex, indexer_sl):
317
+ index = lexsorted_two_level_string_multiindex
318
+ ser = Series(
319
+ np.random.default_rng(2).standard_normal(len(index)), index=index, name="sth"
320
+ )
321
+
322
+ result = indexer_sl(ser)["foo"]
323
+ assert result.name == ser.name
324
+
325
+
326
+ # miscellaneous methods
327
+
328
+
329
+ @pytest.mark.parametrize(
330
+ "index",
331
+ [
332
+ date_range("2014-01-01", periods=20, freq="MS"),
333
+ period_range("2014-01", periods=20, freq="M"),
334
+ timedelta_range("0", periods=20, freq="h"),
335
+ ],
336
+ )
337
+ def test_slice_with_negative_step(index):
338
+ keystr1 = str(index[9])
339
+ keystr2 = str(index[13])
340
+
341
+ ser = Series(np.arange(20), index)
342
+ SLC = IndexSlice
343
+
344
+ for key in [keystr1, index[9]]:
345
+ tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1])
346
+ tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1])
347
+
348
+ for key2 in [keystr2, index[13]]:
349
+ tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1])
350
+ tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1])
351
+
352
+
353
+ def test_tuple_index():
354
+ # GH 35534 - Selecting values when a Series has an Index of tuples
355
+ s = Series([1, 2], index=[("a",), ("b",)])
356
+ assert s[("a",)] == 1
357
+ assert s[("b",)] == 2
358
+ s[("b",)] = 3
359
+ assert s[("b",)] == 3
360
+
361
+
362
+ def test_frozenset_index():
363
+ # GH35747 - Selecting values when a Series has an Index of frozenset
364
+ idx0, idx1 = frozenset("a"), frozenset("b")
365
+ s = Series([1, 2], index=[idx0, idx1])
366
+ assert s[idx0] == 1
367
+ assert s[idx1] == 2
368
+ s[idx1] = 3
369
+ assert s[idx1] == 3
370
+
371
+
372
+ def test_loc_setitem_all_false_indexer():
373
+ # GH#45778
374
+ ser = Series([1, 2], index=["a", "b"])
375
+ expected = ser.copy()
376
+ rhs = Series([6, 7], index=["a", "b"])
377
+ ser.loc[ser > 100] = rhs
378
+ tm.assert_series_equal(ser, expected)
379
+
380
+
381
+ def test_loc_boolean_indexer_non_matching_index():
382
+ # GH#46551
383
+ ser = Series([1])
384
+ result = ser.loc[Series([NA, False], dtype="boolean")]
385
+ expected = Series([], dtype="int64")
386
+ tm.assert_series_equal(result, expected)
387
+
388
+
389
+ def test_loc_boolean_indexer_miss_matching_index():
390
+ # GH#46551
391
+ ser = Series([1])
392
+ indexer = Series([NA, False], dtype="boolean", index=[1, 2])
393
+ with pytest.raises(IndexingError, match="Unalignable"):
394
+ ser.loc[indexer]
395
+
396
+
397
+ def test_loc_setitem_nested_data_enlargement():
398
+ # GH#48614
399
+ df = DataFrame({"a": [1]})
400
+ ser = Series({"label": df})
401
+ ser.loc["new_label"] = df
402
+ expected = Series({"label": df, "new_label": df})
403
+ tm.assert_series_equal(ser, expected)
404
+
405
+
406
+ def test_loc_ea_numeric_index_oob_slice_end():
407
+ # GH#50161
408
+ ser = Series(1, index=Index([0, 1, 2], dtype="Int64"))
409
+ result = ser.loc[2:3]
410
+ expected = Series(1, index=Index([2], dtype="Int64"))
411
+ tm.assert_series_equal(result, expected)
412
+
413
+
414
+ def test_getitem_bool_int_key():
415
+ # GH#48653
416
+ ser = Series({True: 1, False: 0})
417
+ with pytest.raises(KeyError, match="0"):
418
+ ser.loc[0]
419
+
420
+
421
+ @pytest.mark.parametrize("val", [{}, {"b": "x"}])
422
+ @pytest.mark.parametrize("indexer", [[], [False, False], slice(0, -1), np.array([])])
423
+ def test_setitem_empty_indexer(indexer, val):
424
+ # GH#45981
425
+ df = DataFrame({"a": [1, 2], **val})
426
+ expected = df.copy()
427
+ df.loc[indexer] = 1.5
428
+ tm.assert_frame_equal(df, expected)
429
+
430
+
431
+ class TestDeprecatedIndexers:
432
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
433
+ def test_getitem_dict_and_set_deprecated(self, key):
434
+ # GH#42825 enforced in 2.0
435
+ ser = Series([1, 2])
436
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
437
+ ser.loc[key]
438
+
439
+ @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
440
+ def test_getitem_dict_and_set_deprecated_multiindex(self, key):
441
+ # GH#42825 enforced in 2.0
442
+ ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
443
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
444
+ ser.loc[key]
445
+
446
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
447
+ def test_setitem_dict_and_set_disallowed(self, key):
448
+ # GH#42825 enforced in 2.0
449
+ ser = Series([1, 2])
450
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
451
+ ser.loc[key] = 1
452
+
453
+ @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
454
+ def test_setitem_dict_and_set_disallowed_multiindex(self, key):
455
+ # GH#42825 enforced in 2.0
456
+ ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
457
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
458
+ ser.loc[key] = 1
459
+
460
+
461
+ class TestSetitemValidation:
462
+ # This is adapted from pandas/tests/arrays/masked/test_indexing.py
463
+ # but checks for warnings instead of errors.
464
+ def _check_setitem_invalid(self, ser, invalid, indexer, warn):
465
+ msg = "Setting an item of incompatible dtype is deprecated"
466
+ msg = re.escape(msg)
467
+
468
+ orig_ser = ser.copy()
469
+
470
+ with tm.assert_produces_warning(warn, match=msg):
471
+ ser[indexer] = invalid
472
+ ser = orig_ser.copy()
473
+
474
+ with tm.assert_produces_warning(warn, match=msg):
475
+ ser.iloc[indexer] = invalid
476
+ ser = orig_ser.copy()
477
+
478
+ with tm.assert_produces_warning(warn, match=msg):
479
+ ser.loc[indexer] = invalid
480
+ ser = orig_ser.copy()
481
+
482
+ with tm.assert_produces_warning(warn, match=msg):
483
+ ser[:] = invalid
484
+
485
+ _invalid_scalars = [
486
+ 1 + 2j,
487
+ "True",
488
+ "1",
489
+ "1.0",
490
+ NaT,
491
+ np.datetime64("NaT"),
492
+ np.timedelta64("NaT"),
493
+ ]
494
+ _indexers = [0, [0], slice(0, 1), [True, False, False], slice(None, None, None)]
495
+
496
+ @pytest.mark.parametrize(
497
+ "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
498
+ )
499
+ @pytest.mark.parametrize("indexer", _indexers)
500
+ def test_setitem_validation_scalar_bool(self, invalid, indexer):
501
+ ser = Series([True, False, False], dtype="bool")
502
+ self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)
503
+
504
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
505
+ @pytest.mark.parametrize("indexer", _indexers)
506
+ def test_setitem_validation_scalar_int(self, invalid, any_int_numpy_dtype, indexer):
507
+ ser = Series([1, 2, 3], dtype=any_int_numpy_dtype)
508
+ if isna(invalid) and invalid is not NaT and not np.isnat(invalid):
509
+ warn = None
510
+ else:
511
+ warn = FutureWarning
512
+ self._check_setitem_invalid(ser, invalid, indexer, warn)
513
+
514
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True])
515
+ @pytest.mark.parametrize("indexer", _indexers)
516
+ def test_setitem_validation_scalar_float(self, invalid, float_numpy_dtype, indexer):
517
+ ser = Series([1, 2, None], dtype=float_numpy_dtype)
518
+ self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_mask.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import Series
5
+ import pandas._testing as tm
6
+
7
+
8
+ def test_mask():
9
+ # compare with tested results in test_where
10
+ s = Series(np.random.default_rng(2).standard_normal(5))
11
+ cond = s > 0
12
+
13
+ rs = s.where(~cond, np.nan)
14
+ tm.assert_series_equal(rs, s.mask(cond))
15
+
16
+ rs = s.where(~cond)
17
+ rs2 = s.mask(cond)
18
+ tm.assert_series_equal(rs, rs2)
19
+
20
+ rs = s.where(~cond, -s)
21
+ rs2 = s.mask(cond, -s)
22
+ tm.assert_series_equal(rs, rs2)
23
+
24
+ cond = Series([True, False, False, True, False], index=s.index)
25
+ s2 = -(s.abs())
26
+ rs = s2.where(~cond[:3])
27
+ rs2 = s2.mask(cond[:3])
28
+ tm.assert_series_equal(rs, rs2)
29
+
30
+ rs = s2.where(~cond[:3], -s2)
31
+ rs2 = s2.mask(cond[:3], -s2)
32
+ tm.assert_series_equal(rs, rs2)
33
+
34
+ msg = "Array conditional must be same shape as self"
35
+ with pytest.raises(ValueError, match=msg):
36
+ s.mask(1)
37
+ with pytest.raises(ValueError, match=msg):
38
+ s.mask(cond[:3].values, -s)
39
+
40
+
41
+ def test_mask_casts():
42
+ # dtype changes
43
+ ser = Series([1, 2, 3, 4])
44
+ result = ser.mask(ser > 2, np.nan)
45
+ expected = Series([1, 2, np.nan, np.nan])
46
+ tm.assert_series_equal(result, expected)
47
+
48
+
49
+ def test_mask_casts2():
50
+ # see gh-21891
51
+ ser = Series([1, 2])
52
+ res = ser.mask([True, False])
53
+
54
+ exp = Series([np.nan, 2])
55
+ tm.assert_series_equal(res, exp)
56
+
57
+
58
+ def test_mask_inplace():
59
+ s = Series(np.random.default_rng(2).standard_normal(5))
60
+ cond = s > 0
61
+
62
+ rs = s.copy()
63
+ rs.mask(cond, inplace=True)
64
+ tm.assert_series_equal(rs.dropna(), s[~cond])
65
+ tm.assert_series_equal(rs, s.mask(cond))
66
+
67
+ rs = s.copy()
68
+ rs.mask(cond, -s, inplace=True)
69
+ tm.assert_series_equal(rs, s.mask(cond, -s))
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_set_value.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ def test_series_set_value():
13
+ # GH#1561
14
+
15
+ dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)]
16
+ index = DatetimeIndex(dates)
17
+
18
+ s = Series(dtype=object)
19
+ s._set_value(dates[0], 1.0)
20
+ s._set_value(dates[1], np.nan)
21
+
22
+ expected = Series([1.0, np.nan], index=index)
23
+
24
+ tm.assert_series_equal(s, expected)
25
+
26
+
27
+ def test_set_value_dt64(datetime_series):
28
+ idx = datetime_series.index[10]
29
+ res = datetime_series._set_value(idx, 0)
30
+ assert res is None
31
+ assert datetime_series[idx] == 0
32
+
33
+
34
+ def test_set_value_str_index(string_series):
35
+ # equiv
36
+ ser = string_series.copy()
37
+ res = ser._set_value("foobar", 0)
38
+ assert res is None
39
+ assert ser.index[-1] == "foobar"
40
+ assert ser["foobar"] == 0
41
+
42
+ ser2 = string_series.copy()
43
+ ser2.loc["foobar"] = 0
44
+ assert ser2.index[-1] == "foobar"
45
+ assert ser2["foobar"] == 0
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py ADDED
@@ -0,0 +1,1847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ date,
3
+ datetime,
4
+ )
5
+ from decimal import Decimal
6
+
7
+ import numpy as np
8
+ import pytest
9
+
10
+ from pandas.compat.numpy import np_version_gte1p24
11
+ from pandas.errors import IndexingError
12
+
13
+ from pandas.core.dtypes.common import is_list_like
14
+
15
+ from pandas import (
16
+ NA,
17
+ Categorical,
18
+ DataFrame,
19
+ DatetimeIndex,
20
+ Index,
21
+ Interval,
22
+ IntervalIndex,
23
+ MultiIndex,
24
+ NaT,
25
+ Period,
26
+ Series,
27
+ Timedelta,
28
+ Timestamp,
29
+ array,
30
+ concat,
31
+ date_range,
32
+ interval_range,
33
+ period_range,
34
+ timedelta_range,
35
+ )
36
+ import pandas._testing as tm
37
+
38
+ from pandas.tseries.offsets import BDay
39
+
40
+
41
+ class TestSetitemDT64Values:
42
+ def test_setitem_none_nan(self):
43
+ series = Series(date_range("1/1/2000", periods=10))
44
+ series[3] = None
45
+ assert series[3] is NaT
46
+
47
+ series[3:5] = None
48
+ assert series[4] is NaT
49
+
50
+ series[5] = np.nan
51
+ assert series[5] is NaT
52
+
53
+ series[5:7] = np.nan
54
+ assert series[6] is NaT
55
+
56
+ def test_setitem_multiindex_empty_slice(self):
57
+ # https://github.com/pandas-dev/pandas/issues/35878
58
+ idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
59
+ result = Series([1, 2], index=idx)
60
+ expected = result.copy()
61
+ result.loc[[]] = 0
62
+ tm.assert_series_equal(result, expected)
63
+
64
+ def test_setitem_with_string_index(self):
65
+ # GH#23451
66
+ # Set object dtype to avoid upcast when setting date.today()
67
+ ser = Series([1, 2, 3], index=["Date", "b", "other"], dtype=object)
68
+ ser["Date"] = date.today()
69
+ assert ser.Date == date.today()
70
+ assert ser["Date"] == date.today()
71
+
72
+ def test_setitem_tuple_with_datetimetz_values(self):
73
+ # GH#20441
74
+ arr = date_range("2017", periods=4, tz="US/Eastern")
75
+ index = [(0, 1), (0, 2), (0, 3), (0, 4)]
76
+ result = Series(arr, index=index)
77
+ expected = result.copy()
78
+ result[(0, 1)] = np.nan
79
+ expected.iloc[0] = np.nan
80
+ tm.assert_series_equal(result, expected)
81
+
82
+ @pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"])
83
+ def test_setitem_with_tz(self, tz, indexer_sli):
84
+ orig = Series(date_range("2016-01-01", freq="h", periods=3, tz=tz))
85
+ assert orig.dtype == f"datetime64[ns, {tz}]"
86
+
87
+ exp = Series(
88
+ [
89
+ Timestamp("2016-01-01 00:00", tz=tz),
90
+ Timestamp("2011-01-01 00:00", tz=tz),
91
+ Timestamp("2016-01-01 02:00", tz=tz),
92
+ ],
93
+ dtype=orig.dtype,
94
+ )
95
+
96
+ # scalar
97
+ ser = orig.copy()
98
+ indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
99
+ tm.assert_series_equal(ser, exp)
100
+
101
+ # vector
102
+ vals = Series(
103
+ [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
104
+ index=[1, 2],
105
+ dtype=orig.dtype,
106
+ )
107
+ assert vals.dtype == f"datetime64[ns, {tz}]"
108
+
109
+ exp = Series(
110
+ [
111
+ Timestamp("2016-01-01 00:00", tz=tz),
112
+ Timestamp("2011-01-01 00:00", tz=tz),
113
+ Timestamp("2012-01-01 00:00", tz=tz),
114
+ ],
115
+ dtype=orig.dtype,
116
+ )
117
+
118
+ ser = orig.copy()
119
+ indexer_sli(ser)[[1, 2]] = vals
120
+ tm.assert_series_equal(ser, exp)
121
+
122
+ def test_setitem_with_tz_dst(self, indexer_sli):
123
+ # GH#14146 trouble setting values near DST boundary
124
+ tz = "US/Eastern"
125
+ orig = Series(date_range("2016-11-06", freq="h", periods=3, tz=tz))
126
+ assert orig.dtype == f"datetime64[ns, {tz}]"
127
+
128
+ exp = Series(
129
+ [
130
+ Timestamp("2016-11-06 00:00-04:00", tz=tz),
131
+ Timestamp("2011-01-01 00:00-05:00", tz=tz),
132
+ Timestamp("2016-11-06 01:00-05:00", tz=tz),
133
+ ],
134
+ dtype=orig.dtype,
135
+ )
136
+
137
+ # scalar
138
+ ser = orig.copy()
139
+ indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
140
+ tm.assert_series_equal(ser, exp)
141
+
142
+ # vector
143
+ vals = Series(
144
+ [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
145
+ index=[1, 2],
146
+ dtype=orig.dtype,
147
+ )
148
+ assert vals.dtype == f"datetime64[ns, {tz}]"
149
+
150
+ exp = Series(
151
+ [
152
+ Timestamp("2016-11-06 00:00", tz=tz),
153
+ Timestamp("2011-01-01 00:00", tz=tz),
154
+ Timestamp("2012-01-01 00:00", tz=tz),
155
+ ],
156
+ dtype=orig.dtype,
157
+ )
158
+
159
+ ser = orig.copy()
160
+ indexer_sli(ser)[[1, 2]] = vals
161
+ tm.assert_series_equal(ser, exp)
162
+
163
+ def test_object_series_setitem_dt64array_exact_match(self):
164
+ # make sure the dt64 isn't cast by numpy to integers
165
+ # https://github.com/numpy/numpy/issues/12550
166
+
167
+ ser = Series({"X": np.nan}, dtype=object)
168
+
169
+ indexer = [True]
170
+
171
+ # "exact_match" -> size of array being set matches size of ser
172
+ value = np.array([4], dtype="M8[ns]")
173
+
174
+ ser.iloc[indexer] = value
175
+
176
+ expected = Series([value[0]], index=["X"], dtype=object)
177
+ assert all(isinstance(x, np.datetime64) for x in expected.values)
178
+
179
+ tm.assert_series_equal(ser, expected)
180
+
181
+
182
+ class TestSetitemScalarIndexer:
183
+ def test_setitem_negative_out_of_bounds(self):
184
+ ser = Series(["a"] * 10, index=["a"] * 10)
185
+
186
+ # string index falls back to positional
187
+ msg = "index -11|-1 is out of bounds for axis 0 with size 10"
188
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
189
+ with pytest.raises(IndexError, match=msg):
190
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
191
+ ser[-11] = "foo"
192
+
193
+ @pytest.mark.parametrize("indexer", [tm.loc, tm.at])
194
+ @pytest.mark.parametrize("ser_index", [0, 1])
195
+ def test_setitem_series_object_dtype(self, indexer, ser_index):
196
+ # GH#38303
197
+ ser = Series([0, 0], dtype="object")
198
+ idxr = indexer(ser)
199
+ idxr[0] = Series([42], index=[ser_index])
200
+ expected = Series([Series([42], index=[ser_index]), 0], dtype="object")
201
+ tm.assert_series_equal(ser, expected)
202
+
203
+ @pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)])
204
+ def test_setitem_series(self, index, exp_value):
205
+ # GH#38303
206
+ ser = Series([0, 0])
207
+ ser.loc[0] = Series([42], index=[index])
208
+ expected = Series([exp_value, 0])
209
+ tm.assert_series_equal(ser, expected)
210
+
211
+
212
+ class TestSetitemSlices:
213
+ def test_setitem_slice_float_raises(self, datetime_series):
214
+ msg = (
215
+ "cannot do slice indexing on DatetimeIndex with these indexers "
216
+ r"\[{key}\] of type float"
217
+ )
218
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
219
+ datetime_series[4.0:10.0] = 0
220
+
221
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
222
+ datetime_series[4.5:10.0] = 0
223
+
224
+ def test_setitem_slice(self):
225
+ ser = Series(range(10), index=list(range(10)))
226
+ ser[-12:] = 0
227
+ assert (ser == 0).all()
228
+
229
+ ser[:-12] = 5
230
+ assert (ser == 0).all()
231
+
232
+ def test_setitem_slice_integers(self):
233
+ ser = Series(
234
+ np.random.default_rng(2).standard_normal(8),
235
+ index=[2, 4, 6, 8, 10, 12, 14, 16],
236
+ )
237
+
238
+ ser[:4] = 0
239
+ assert (ser[:4] == 0).all()
240
+ assert not (ser[4:] == 0).any()
241
+
242
+ def test_setitem_slicestep(self):
243
+ # caught this bug when writing tests
244
+ series = Series(
245
+ np.arange(20, dtype=np.float64), index=np.arange(20, dtype=np.int64)
246
+ )
247
+
248
+ series[::2] = 0
249
+ assert (series[::2] == 0).all()
250
+
251
+ def test_setitem_multiindex_slice(self, indexer_sli):
252
+ # GH 8856
253
+ mi = MultiIndex.from_product(([0, 1], list("abcde")))
254
+ result = Series(np.arange(10, dtype=np.int64), mi)
255
+ indexer_sli(result)[::4] = 100
256
+ expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi)
257
+ tm.assert_series_equal(result, expected)
258
+
259
+
260
+ class TestSetitemBooleanMask:
261
+ def test_setitem_mask_cast(self):
262
+ # GH#2746
263
+ # need to upcast
264
+ ser = Series([1, 2], index=[1, 2], dtype="int64")
265
+ ser[[True, False]] = Series([0], index=[1], dtype="int64")
266
+ expected = Series([0, 2], index=[1, 2], dtype="int64")
267
+
268
+ tm.assert_series_equal(ser, expected)
269
+
270
+ def test_setitem_mask_align_and_promote(self):
271
+ # GH#8387: test that changing types does not break alignment
272
+ ts = Series(
273
+ np.random.default_rng(2).standard_normal(100), index=np.arange(100, 0, -1)
274
+ ).round(5)
275
+ mask = ts > 0
276
+ left = ts.copy()
277
+ right = ts[mask].copy().map(str)
278
+ with tm.assert_produces_warning(
279
+ FutureWarning, match="item of incompatible dtype"
280
+ ):
281
+ left[mask] = right
282
+ expected = ts.map(lambda t: str(t) if t > 0 else t)
283
+ tm.assert_series_equal(left, expected)
284
+
285
+ def test_setitem_mask_promote_strs(self):
286
+ ser = Series([0, 1, 2, 0])
287
+ mask = ser > 0
288
+ ser2 = ser[mask].map(str)
289
+ with tm.assert_produces_warning(
290
+ FutureWarning, match="item of incompatible dtype"
291
+ ):
292
+ ser[mask] = ser2
293
+
294
+ expected = Series([0, "1", "2", 0])
295
+ tm.assert_series_equal(ser, expected)
296
+
297
+ def test_setitem_mask_promote(self):
298
+ ser = Series([0, "foo", "bar", 0])
299
+ mask = Series([False, True, True, False])
300
+ ser2 = ser[mask]
301
+ ser[mask] = ser2
302
+
303
+ expected = Series([0, "foo", "bar", 0])
304
+ tm.assert_series_equal(ser, expected)
305
+
306
+ def test_setitem_boolean(self, string_series):
307
+ mask = string_series > string_series.median()
308
+
309
+ # similar indexed series
310
+ result = string_series.copy()
311
+ result[mask] = string_series * 2
312
+ expected = string_series * 2
313
+ tm.assert_series_equal(result[mask], expected[mask])
314
+
315
+ # needs alignment
316
+ result = string_series.copy()
317
+ result[mask] = (string_series * 2)[0:5]
318
+ expected = (string_series * 2)[0:5].reindex_like(string_series)
319
+ expected[-mask] = string_series[mask]
320
+ tm.assert_series_equal(result[mask], expected[mask])
321
+
322
+ def test_setitem_boolean_corner(self, datetime_series):
323
+ ts = datetime_series
324
+ mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
325
+
326
+ msg = (
327
+ r"Unalignable boolean Series provided as indexer \(index of "
328
+ r"the boolean Series and of the indexed object do not match"
329
+ )
330
+ with pytest.raises(IndexingError, match=msg):
331
+ ts[mask_shifted] = 1
332
+
333
+ with pytest.raises(IndexingError, match=msg):
334
+ ts.loc[mask_shifted] = 1
335
+
336
+ def test_setitem_boolean_different_order(self, string_series):
337
+ ordered = string_series.sort_values()
338
+
339
+ copy = string_series.copy()
340
+ copy[ordered > 0] = 0
341
+
342
+ expected = string_series.copy()
343
+ expected[expected > 0] = 0
344
+
345
+ tm.assert_series_equal(copy, expected)
346
+
347
+ @pytest.mark.parametrize("func", [list, np.array, Series])
348
+ def test_setitem_boolean_python_list(self, func):
349
+ # GH19406
350
+ ser = Series([None, "b", None])
351
+ mask = func([True, False, True])
352
+ ser[mask] = ["a", "c"]
353
+ expected = Series(["a", "b", "c"])
354
+ tm.assert_series_equal(ser, expected)
355
+
356
+ def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype):
357
+ # GH: 26468
358
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
359
+ ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
360
+ expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype)
361
+ tm.assert_series_equal(ser, expected)
362
+
363
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
364
+ ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
365
+ tm.assert_series_equal(ser, expected)
366
+
367
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
368
+ loc_ser = Series(range(4), dtype=any_numeric_ea_dtype)
369
+ ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1]
370
+ tm.assert_series_equal(ser, expected)
371
+
372
+ def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self):
373
+ # GH#30567
374
+ ser = Series([None] * 10)
375
+ mask = [False] * 3 + [True] * 5 + [False] * 2
376
+ ser[mask] = range(5)
377
+ result = ser
378
+ expected = Series([None] * 3 + list(range(5)) + [None] * 2, dtype=object)
379
+ tm.assert_series_equal(result, expected)
380
+
381
+ def test_setitem_nan_with_bool(self):
382
+ # GH 13034
383
+ result = Series([True, False, True])
384
+ with tm.assert_produces_warning(
385
+ FutureWarning, match="item of incompatible dtype"
386
+ ):
387
+ result[0] = np.nan
388
+ expected = Series([np.nan, False, True], dtype=object)
389
+ tm.assert_series_equal(result, expected)
390
+
391
+ def test_setitem_mask_smallint_upcast(self):
392
+ orig = Series([1, 2, 3], dtype="int8")
393
+ alt = np.array([999, 1000, 1001], dtype=np.int64)
394
+
395
+ mask = np.array([True, False, True])
396
+
397
+ ser = orig.copy()
398
+ with tm.assert_produces_warning(
399
+ FutureWarning, match="item of incompatible dtype"
400
+ ):
401
+ ser[mask] = Series(alt)
402
+ expected = Series([999, 2, 1001])
403
+ tm.assert_series_equal(ser, expected)
404
+
405
+ ser2 = orig.copy()
406
+ with tm.assert_produces_warning(
407
+ FutureWarning, match="item of incompatible dtype"
408
+ ):
409
+ ser2.mask(mask, alt, inplace=True)
410
+ tm.assert_series_equal(ser2, expected)
411
+
412
+ ser3 = orig.copy()
413
+ res = ser3.where(~mask, Series(alt))
414
+ tm.assert_series_equal(res, expected)
415
+
416
+ def test_setitem_mask_smallint_no_upcast(self):
417
+ # like test_setitem_mask_smallint_upcast, but while we can't hold 'alt',
418
+ # we *can* hold alt[mask] without casting
419
+ orig = Series([1, 2, 3], dtype="uint8")
420
+ alt = Series([245, 1000, 246], dtype=np.int64)
421
+
422
+ mask = np.array([True, False, True])
423
+
424
+ ser = orig.copy()
425
+ ser[mask] = alt
426
+ expected = Series([245, 2, 246], dtype="uint8")
427
+ tm.assert_series_equal(ser, expected)
428
+
429
+ ser2 = orig.copy()
430
+ ser2.mask(mask, alt, inplace=True)
431
+ tm.assert_series_equal(ser2, expected)
432
+
433
+ # TODO: ser.where(~mask, alt) unnecessarily upcasts to int64
434
+ ser3 = orig.copy()
435
+ res = ser3.where(~mask, alt)
436
+ tm.assert_series_equal(res, expected, check_dtype=False)
437
+
438
+
439
+ class TestSetitemViewCopySemantics:
440
+ def test_setitem_invalidates_datetime_index_freq(self, using_copy_on_write):
441
+ # GH#24096 altering a datetime64tz Series inplace invalidates the
442
+ # `freq` attribute on the underlying DatetimeIndex
443
+
444
+ dti = date_range("20130101", periods=3, tz="US/Eastern")
445
+ ts = dti[1]
446
+ ser = Series(dti)
447
+ assert ser._values is not dti
448
+ if using_copy_on_write:
449
+ assert ser._values._ndarray.base is dti._data._ndarray.base
450
+ else:
451
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
452
+ assert dti.freq == "D"
453
+ ser.iloc[1] = NaT
454
+ assert ser._values.freq is None
455
+
456
+ # check that the DatetimeIndex was not altered in place
457
+ assert ser._values is not dti
458
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
459
+ assert dti[1] == ts
460
+ assert dti.freq == "D"
461
+
462
+ def test_dt64tz_setitem_does_not_mutate_dti(self, using_copy_on_write):
463
+ # GH#21907, GH#24096
464
+ dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
465
+ ts = dti[0]
466
+ ser = Series(dti)
467
+ assert ser._values is not dti
468
+ if using_copy_on_write:
469
+ assert ser._values._ndarray.base is dti._data._ndarray.base
470
+ assert ser._mgr.arrays[0]._ndarray.base is dti._data._ndarray.base
471
+ else:
472
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
473
+ assert ser._mgr.arrays[0]._ndarray.base is not dti._data._ndarray.base
474
+
475
+ assert ser._mgr.arrays[0] is not dti
476
+
477
+ ser[::3] = NaT
478
+ assert ser[0] is NaT
479
+ assert dti[0] == ts
480
+
481
+
482
+ class TestSetitemCallable:
483
+ def test_setitem_callable_key(self):
484
+ # GH#12533
485
+ ser = Series([1, 2, 3, 4], index=list("ABCD"))
486
+ ser[lambda x: "A"] = -1
487
+
488
+ expected = Series([-1, 2, 3, 4], index=list("ABCD"))
489
+ tm.assert_series_equal(ser, expected)
490
+
491
+ def test_setitem_callable_other(self):
492
+ # GH#13299
493
+ inc = lambda x: x + 1
494
+
495
+ # set object dtype to avoid upcast when setting inc
496
+ ser = Series([1, 2, -1, 4], dtype=object)
497
+ ser[ser < 0] = inc
498
+
499
+ expected = Series([1, 2, inc, 4])
500
+ tm.assert_series_equal(ser, expected)
501
+
502
+
503
+ class TestSetitemWithExpansion:
504
+ def test_setitem_empty_series(self):
505
+ # GH#10193
506
+ key = Timestamp("2012-01-01")
507
+ series = Series(dtype=object)
508
+ series[key] = 47
509
+ expected = Series(47, [key])
510
+ tm.assert_series_equal(series, expected)
511
+
512
+ def test_setitem_empty_series_datetimeindex_preserves_freq(self):
513
+ # GH#33573 our index should retain its freq
514
+ dti = DatetimeIndex([], freq="D", dtype="M8[ns]")
515
+ series = Series([], index=dti, dtype=object)
516
+ key = Timestamp("2012-01-01")
517
+ series[key] = 47
518
+ expected = Series(47, DatetimeIndex([key], freq="D").as_unit("ns"))
519
+ tm.assert_series_equal(series, expected)
520
+ assert series.index.freq == expected.index.freq
521
+
522
+ def test_setitem_empty_series_timestamp_preserves_dtype(self):
523
+ # GH 21881
524
+ timestamp = Timestamp(1412526600000000000)
525
+ series = Series([timestamp], index=["timestamp"], dtype=object)
526
+ expected = series["timestamp"]
527
+
528
+ series = Series([], dtype=object)
529
+ series["anything"] = 300.0
530
+ series["timestamp"] = timestamp
531
+ result = series["timestamp"]
532
+ assert result == expected
533
+
534
+ @pytest.mark.parametrize(
535
+ "td",
536
+ [
537
+ Timedelta("9 days"),
538
+ Timedelta("9 days").to_timedelta64(),
539
+ Timedelta("9 days").to_pytimedelta(),
540
+ ],
541
+ )
542
+ def test_append_timedelta_does_not_cast(self, td, using_infer_string, request):
543
+ # GH#22717 inserting a Timedelta should _not_ cast to int64
544
+ if using_infer_string and not isinstance(td, Timedelta):
545
+ # TODO: GH#56010
546
+ request.applymarker(pytest.mark.xfail(reason="inferred as string"))
547
+
548
+ expected = Series(["x", td], index=[0, "td"], dtype=object)
549
+
550
+ ser = Series(["x"])
551
+ ser["td"] = td
552
+ tm.assert_series_equal(ser, expected)
553
+ assert isinstance(ser["td"], Timedelta)
554
+
555
+ ser = Series(["x"])
556
+ ser.loc["td"] = Timedelta("9 days")
557
+ tm.assert_series_equal(ser, expected)
558
+ assert isinstance(ser["td"], Timedelta)
559
+
560
+ def test_setitem_with_expansion_type_promotion(self):
561
+ # GH#12599
562
+ ser = Series(dtype=object)
563
+ ser["a"] = Timestamp("2016-01-01")
564
+ ser["b"] = 3.0
565
+ ser["c"] = "foo"
566
+ expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
567
+ tm.assert_series_equal(ser, expected)
568
+
569
+ def test_setitem_not_contained(self, string_series):
570
+ # set item that's not contained
571
+ ser = string_series.copy()
572
+ assert "foobar" not in ser.index
573
+ ser["foobar"] = 1
574
+
575
+ app = Series([1], index=["foobar"], name="series")
576
+ expected = concat([string_series, app])
577
+ tm.assert_series_equal(ser, expected)
578
+
579
+ def test_setitem_keep_precision(self, any_numeric_ea_dtype):
580
+ # GH#32346
581
+ ser = Series([1, 2], dtype=any_numeric_ea_dtype)
582
+ ser[2] = 10
583
+ expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype)
584
+ tm.assert_series_equal(ser, expected)
585
+
586
+ @pytest.mark.parametrize(
587
+ "na, target_na, dtype, target_dtype, indexer, warn",
588
+ [
589
+ (NA, NA, "Int64", "Int64", 1, None),
590
+ (NA, NA, "Int64", "Int64", 2, None),
591
+ (NA, np.nan, "int64", "float64", 1, None),
592
+ (NA, np.nan, "int64", "float64", 2, None),
593
+ (NaT, NaT, "int64", "object", 1, FutureWarning),
594
+ (NaT, NaT, "int64", "object", 2, None),
595
+ (np.nan, NA, "Int64", "Int64", 1, None),
596
+ (np.nan, NA, "Int64", "Int64", 2, None),
597
+ (np.nan, NA, "Float64", "Float64", 1, None),
598
+ (np.nan, NA, "Float64", "Float64", 2, None),
599
+ (np.nan, np.nan, "int64", "float64", 1, None),
600
+ (np.nan, np.nan, "int64", "float64", 2, None),
601
+ ],
602
+ )
603
+ def test_setitem_enlarge_with_na(
604
+ self, na, target_na, dtype, target_dtype, indexer, warn
605
+ ):
606
+ # GH#32346
607
+ ser = Series([1, 2], dtype=dtype)
608
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
609
+ ser[indexer] = na
610
+ expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na]
611
+ expected = Series(expected_values, dtype=target_dtype)
612
+ tm.assert_series_equal(ser, expected)
613
+
614
+ def test_setitem_enlargement_object_none(self, nulls_fixture, using_infer_string):
615
+ # GH#48665
616
+ ser = Series(["a", "b"])
617
+ ser[3] = nulls_fixture
618
+ dtype = (
619
+ "string[pyarrow_numpy]"
620
+ if using_infer_string and not isinstance(nulls_fixture, Decimal)
621
+ else object
622
+ )
623
+ expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3], dtype=dtype)
624
+ tm.assert_series_equal(ser, expected)
625
+ if using_infer_string:
626
+ ser[3] is np.nan
627
+ else:
628
+ assert ser[3] is nulls_fixture
629
+
630
+
631
+ def test_setitem_scalar_into_readonly_backing_data():
632
+ # GH#14359: test that you cannot mutate a read only buffer
633
+
634
+ array = np.zeros(5)
635
+ array.flags.writeable = False # make the array immutable
636
+ series = Series(array, copy=False)
637
+
638
+ for n in series.index:
639
+ msg = "assignment destination is read-only"
640
+ with pytest.raises(ValueError, match=msg):
641
+ series[n] = 1
642
+
643
+ assert array[n] == 0
644
+
645
+
646
+ def test_setitem_slice_into_readonly_backing_data():
647
+ # GH#14359: test that you cannot mutate a read only buffer
648
+
649
+ array = np.zeros(5)
650
+ array.flags.writeable = False # make the array immutable
651
+ series = Series(array, copy=False)
652
+
653
+ msg = "assignment destination is read-only"
654
+ with pytest.raises(ValueError, match=msg):
655
+ series[1:3] = 1
656
+
657
+ assert not array.any()
658
+
659
+
660
+ def test_setitem_categorical_assigning_ops():
661
+ orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
662
+ ser = orig.copy()
663
+ ser[:] = "a"
664
+ exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
665
+ tm.assert_series_equal(ser, exp)
666
+
667
+ ser = orig.copy()
668
+ ser[1] = "a"
669
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
670
+ tm.assert_series_equal(ser, exp)
671
+
672
+ ser = orig.copy()
673
+ ser[ser.index > 0] = "a"
674
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
675
+ tm.assert_series_equal(ser, exp)
676
+
677
+ ser = orig.copy()
678
+ ser[[False, True]] = "a"
679
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
680
+ tm.assert_series_equal(ser, exp)
681
+
682
+ ser = orig.copy()
683
+ ser.index = ["x", "y"]
684
+ ser["y"] = "a"
685
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"])
686
+ tm.assert_series_equal(ser, exp)
687
+
688
+
689
+ def test_setitem_nan_into_categorical():
690
+ # ensure that one can set something to np.nan
691
+ ser = Series(Categorical([1, 2, 3]))
692
+ exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
693
+ ser[1] = np.nan
694
+ tm.assert_series_equal(ser, exp)
695
+
696
+
697
+ class TestSetitemCasting:
698
+ @pytest.mark.parametrize("unique", [True, False])
699
+ @pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type)
700
+ def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique):
701
+ # dont cast these 3-like values to bool
702
+ ser = Series([True, False])
703
+ if not unique:
704
+ ser.index = [1, 1]
705
+
706
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
707
+ indexer_sli(ser)[1] = val
708
+ assert type(ser.iloc[1]) == type(val)
709
+
710
+ expected = Series([True, val], dtype=object, index=ser.index)
711
+ if not unique and indexer_sli is not tm.iloc:
712
+ expected = Series([val, val], dtype=object, index=[1, 1])
713
+ tm.assert_series_equal(ser, expected)
714
+
715
+ def test_setitem_boolean_array_into_npbool(self):
716
+ # GH#45462
717
+ ser = Series([True, False, True])
718
+ values = ser._values
719
+ arr = array([True, False, None])
720
+
721
+ ser[:2] = arr[:2] # no NAs -> can set inplace
722
+ assert ser._values is values
723
+
724
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
725
+ ser[1:] = arr[1:] # has an NA -> cast to boolean dtype
726
+ expected = Series(arr)
727
+ tm.assert_series_equal(ser, expected)
728
+
729
+
730
+ class SetitemCastingEquivalents:
731
+ """
732
+ Check each of several methods that _should_ be equivalent to `obj[key] = val`
733
+
734
+ We assume that
735
+ - obj.index is the default Index(range(len(obj)))
736
+ - the setitem does not expand the obj
737
+ """
738
+
739
+ @pytest.fixture
740
+ def is_inplace(self, obj, expected):
741
+ """
742
+ Whether we expect the setting to be in-place or not.
743
+ """
744
+ return expected.dtype == obj.dtype
745
+
746
+ def check_indexer(self, obj, key, expected, val, indexer, is_inplace):
747
+ orig = obj
748
+ obj = obj.copy()
749
+ arr = obj._values
750
+
751
+ indexer(obj)[key] = val
752
+ tm.assert_series_equal(obj, expected)
753
+
754
+ self._check_inplace(is_inplace, orig, arr, obj)
755
+
756
+ def _check_inplace(self, is_inplace, orig, arr, obj):
757
+ if is_inplace is None:
758
+ # We are not (yet) checking whether setting is inplace or not
759
+ pass
760
+ elif is_inplace:
761
+ if arr.dtype.kind in ["m", "M"]:
762
+ # We may not have the same DTA/TDA, but will have the same
763
+ # underlying data
764
+ assert arr._ndarray is obj._values._ndarray
765
+ else:
766
+ assert obj._values is arr
767
+ else:
768
+ # otherwise original array should be unchanged
769
+ tm.assert_equal(arr, orig._values)
770
+
771
+ def test_int_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
772
+ if not isinstance(key, int):
773
+ pytest.skip("Not relevant for int key")
774
+
775
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
776
+ self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
777
+
778
+ if indexer_sli is tm.loc:
779
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
780
+ self.check_indexer(obj, key, expected, val, tm.at, is_inplace)
781
+ elif indexer_sli is tm.iloc:
782
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
783
+ self.check_indexer(obj, key, expected, val, tm.iat, is_inplace)
784
+
785
+ rng = range(key, key + 1)
786
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
787
+ self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace)
788
+
789
+ if indexer_sli is not tm.loc:
790
+ # Note: no .loc because that handles slice edges differently
791
+ slc = slice(key, key + 1)
792
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
793
+ self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace)
794
+
795
+ ilkey = [key]
796
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
797
+ self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
798
+
799
+ indkey = np.array(ilkey)
800
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
801
+ self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
802
+
803
+ genkey = (x for x in [key])
804
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
805
+ self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
806
+
807
+ def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
808
+ if not isinstance(key, slice):
809
+ pytest.skip("Not relevant for slice key")
810
+
811
+ if indexer_sli is not tm.loc:
812
+ # Note: no .loc because that handles slice edges differently
813
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
814
+ self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
815
+
816
+ ilkey = list(range(len(obj)))[key]
817
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
818
+ self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
819
+
820
+ indkey = np.array(ilkey)
821
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
822
+ self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
823
+
824
+ genkey = (x for x in indkey)
825
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
826
+ self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
827
+
828
+ def test_mask_key(self, obj, key, expected, warn, val, indexer_sli):
829
+ # setitem with boolean mask
830
+ mask = np.zeros(obj.shape, dtype=bool)
831
+ mask[key] = True
832
+
833
+ obj = obj.copy()
834
+
835
+ if is_list_like(val) and len(val) < mask.sum():
836
+ msg = "boolean index did not match indexed array along dimension"
837
+ with pytest.raises(IndexError, match=msg):
838
+ indexer_sli(obj)[mask] = val
839
+ return
840
+
841
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
842
+ indexer_sli(obj)[mask] = val
843
+ tm.assert_series_equal(obj, expected)
844
+
845
+ def test_series_where(self, obj, key, expected, warn, val, is_inplace):
846
+ mask = np.zeros(obj.shape, dtype=bool)
847
+ mask[key] = True
848
+
849
+ if is_list_like(val) and len(val) < len(obj):
850
+ # Series.where is not valid here
851
+ msg = "operands could not be broadcast together with shapes"
852
+ with pytest.raises(ValueError, match=msg):
853
+ obj.where(~mask, val)
854
+ return
855
+
856
+ orig = obj
857
+ obj = obj.copy()
858
+ arr = obj._values
859
+
860
+ res = obj.where(~mask, val)
861
+
862
+ if val is NA and res.dtype == object:
863
+ expected = expected.fillna(NA)
864
+ elif val is None and res.dtype == object:
865
+ assert expected.dtype == object
866
+ expected = expected.copy()
867
+ expected[expected.isna()] = None
868
+ tm.assert_series_equal(res, expected)
869
+
870
+ self._check_inplace(is_inplace, orig, arr, obj)
871
+
872
+ def test_index_where(self, obj, key, expected, warn, val, using_infer_string):
873
+ mask = np.zeros(obj.shape, dtype=bool)
874
+ mask[key] = True
875
+
876
+ if using_infer_string and obj.dtype == object:
877
+ with pytest.raises(TypeError, match="Scalar must"):
878
+ Index(obj).where(~mask, val)
879
+ else:
880
+ res = Index(obj).where(~mask, val)
881
+ expected_idx = Index(expected, dtype=expected.dtype)
882
+ tm.assert_index_equal(res, expected_idx)
883
+
884
+ def test_index_putmask(self, obj, key, expected, warn, val, using_infer_string):
885
+ mask = np.zeros(obj.shape, dtype=bool)
886
+ mask[key] = True
887
+
888
+ if using_infer_string and obj.dtype == object:
889
+ with pytest.raises(TypeError, match="Scalar must"):
890
+ Index(obj).putmask(mask, val)
891
+ else:
892
+ res = Index(obj).putmask(mask, val)
893
+ tm.assert_index_equal(res, Index(expected, dtype=expected.dtype))
894
+
895
+
896
+ @pytest.mark.parametrize(
897
+ "obj,expected,key,warn",
898
+ [
899
+ pytest.param(
900
+ # GH#45568 setting a valid NA value into IntervalDtype[int] should
901
+ # cast to IntervalDtype[float]
902
+ Series(interval_range(1, 5)),
903
+ Series(
904
+ [Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)],
905
+ dtype="interval[float64]",
906
+ ),
907
+ 1,
908
+ FutureWarning,
909
+ id="interval_int_na_value",
910
+ ),
911
+ pytest.param(
912
+ # these induce dtype changes
913
+ Series([2, 3, 4, 5, 6, 7, 8, 9, 10]),
914
+ Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]),
915
+ slice(None, None, 2),
916
+ None,
917
+ id="int_series_slice_key_step",
918
+ ),
919
+ pytest.param(
920
+ Series([True, True, False, False]),
921
+ Series([np.nan, True, np.nan, False], dtype=object),
922
+ slice(None, None, 2),
923
+ FutureWarning,
924
+ id="bool_series_slice_key_step",
925
+ ),
926
+ pytest.param(
927
+ # these induce dtype changes
928
+ Series(np.arange(10)),
929
+ Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]),
930
+ slice(None, 5),
931
+ None,
932
+ id="int_series_slice_key",
933
+ ),
934
+ pytest.param(
935
+ # changes dtype GH#4463
936
+ Series([1, 2, 3]),
937
+ Series([np.nan, 2, 3]),
938
+ 0,
939
+ None,
940
+ id="int_series_int_key",
941
+ ),
942
+ pytest.param(
943
+ # changes dtype GH#4463
944
+ Series([False]),
945
+ Series([np.nan], dtype=object),
946
+ # TODO: maybe go to float64 since we are changing the _whole_ Series?
947
+ 0,
948
+ FutureWarning,
949
+ id="bool_series_int_key_change_all",
950
+ ),
951
+ pytest.param(
952
+ # changes dtype GH#4463
953
+ Series([False, True]),
954
+ Series([np.nan, True], dtype=object),
955
+ 0,
956
+ FutureWarning,
957
+ id="bool_series_int_key",
958
+ ),
959
+ ],
960
+ )
961
+ class TestSetitemCastingEquivalents(SetitemCastingEquivalents):
962
+ @pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA])
963
+ def val(self, request):
964
+ """
965
+ NA values that should generally be valid_na for *all* dtypes.
966
+
967
+ Include both python float NaN and np.float64; only np.float64 has a
968
+ `dtype` attribute.
969
+ """
970
+ return request.param
971
+
972
+
973
+ class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents):
974
+ # timedelta64 should not be treated as integers when setting into
975
+ # numeric Series
976
+
977
+ @pytest.fixture
978
+ def val(self):
979
+ td = np.timedelta64(4, "ns")
980
+ return td
981
+ # TODO: could also try np.full((1,), td)
982
+
983
+ @pytest.fixture(params=[complex, int, float])
984
+ def dtype(self, request):
985
+ return request.param
986
+
987
+ @pytest.fixture
988
+ def obj(self, dtype):
989
+ arr = np.arange(5).astype(dtype)
990
+ ser = Series(arr)
991
+ return ser
992
+
993
+ @pytest.fixture
994
+ def expected(self, dtype):
995
+ arr = np.arange(5).astype(dtype)
996
+ ser = Series(arr)
997
+ ser = ser.astype(object)
998
+ ser.iloc[0] = np.timedelta64(4, "ns")
999
+ return ser
1000
+
1001
+ @pytest.fixture
1002
+ def key(self):
1003
+ return 0
1004
+
1005
+ @pytest.fixture
1006
+ def warn(self):
1007
+ return FutureWarning
1008
+
1009
+
1010
+ class TestSetitemDT64IntoInt(SetitemCastingEquivalents):
1011
+ # GH#39619 dont cast dt64 to int when doing this setitem
1012
+
1013
+ @pytest.fixture(params=["M8[ns]", "m8[ns]"])
1014
+ def dtype(self, request):
1015
+ return request.param
1016
+
1017
+ @pytest.fixture
1018
+ def scalar(self, dtype):
1019
+ val = np.datetime64("2021-01-18 13:25:00", "ns")
1020
+ if dtype == "m8[ns]":
1021
+ val = val - val
1022
+ return val
1023
+
1024
+ @pytest.fixture
1025
+ def expected(self, scalar):
1026
+ expected = Series([scalar, scalar, 3], dtype=object)
1027
+ assert isinstance(expected[0], type(scalar))
1028
+ return expected
1029
+
1030
+ @pytest.fixture
1031
+ def obj(self):
1032
+ return Series([1, 2, 3])
1033
+
1034
+ @pytest.fixture
1035
+ def key(self):
1036
+ return slice(None, -1)
1037
+
1038
+ @pytest.fixture(params=[None, list, np.array])
1039
+ def val(self, scalar, request):
1040
+ box = request.param
1041
+ if box is None:
1042
+ return scalar
1043
+ return box([scalar, scalar])
1044
+
1045
+ @pytest.fixture
1046
+ def warn(self):
1047
+ return FutureWarning
1048
+
1049
+
1050
+ class TestSetitemNAPeriodDtype(SetitemCastingEquivalents):
1051
+ # Setting compatible NA values into Series with PeriodDtype
1052
+
1053
+ @pytest.fixture
1054
+ def expected(self, key):
1055
+ exp = Series(period_range("2000-01-01", periods=10, freq="D"))
1056
+ exp._values.view("i8")[key] = NaT._value
1057
+ assert exp[key] is NaT or all(x is NaT for x in exp[key])
1058
+ return exp
1059
+
1060
+ @pytest.fixture
1061
+ def obj(self):
1062
+ return Series(period_range("2000-01-01", periods=10, freq="D"))
1063
+
1064
+ @pytest.fixture(params=[3, slice(3, 5)])
1065
+ def key(self, request):
1066
+ return request.param
1067
+
1068
+ @pytest.fixture(params=[None, np.nan])
1069
+ def val(self, request):
1070
+ return request.param
1071
+
1072
+ @pytest.fixture
1073
+ def warn(self):
1074
+ return None
1075
+
1076
+
1077
+ class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents):
1078
+ # some nat-like values should be cast to datetime64/timedelta64 when
1079
+ # inserting into a datetime64/timedelta64 series. Others should coerce
1080
+ # to object and retain their dtypes.
1081
+ # GH#18586 for td64 and boolean mask case
1082
+
1083
+ @pytest.fixture(
1084
+ params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"]
1085
+ )
1086
+ def dtype(self, request):
1087
+ return request.param
1088
+
1089
+ @pytest.fixture
1090
+ def obj(self, dtype):
1091
+ i8vals = date_range("2016-01-01", periods=3).asi8
1092
+ idx = Index(i8vals, dtype=dtype)
1093
+ assert idx.dtype == dtype
1094
+ return Series(idx)
1095
+
1096
+ @pytest.fixture(
1097
+ params=[
1098
+ None,
1099
+ np.nan,
1100
+ NaT,
1101
+ np.timedelta64("NaT", "ns"),
1102
+ np.datetime64("NaT", "ns"),
1103
+ ]
1104
+ )
1105
+ def val(self, request):
1106
+ return request.param
1107
+
1108
+ @pytest.fixture
1109
+ def is_inplace(self, val, obj):
1110
+ # td64 -> cast to object iff val is datetime64("NaT")
1111
+ # dt64 -> cast to object iff val is timedelta64("NaT")
1112
+ # dt64tz -> cast to object with anything _but_ NaT
1113
+ return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype
1114
+
1115
+ @pytest.fixture
1116
+ def expected(self, obj, val, is_inplace):
1117
+ dtype = obj.dtype if is_inplace else object
1118
+ expected = Series([val] + list(obj[1:]), dtype=dtype)
1119
+ return expected
1120
+
1121
+ @pytest.fixture
1122
+ def key(self):
1123
+ return 0
1124
+
1125
+ @pytest.fixture
1126
+ def warn(self, is_inplace):
1127
+ return None if is_inplace else FutureWarning
1128
+
1129
+
1130
+ class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents):
1131
+ # GH#24024
1132
+ @pytest.fixture
1133
+ def obj(self):
1134
+ return Series(date_range("2000", periods=2, tz="US/Central"))
1135
+
1136
+ @pytest.fixture
1137
+ def val(self):
1138
+ return Timestamp("2000", tz="US/Eastern")
1139
+
1140
+ @pytest.fixture
1141
+ def key(self):
1142
+ return 0
1143
+
1144
+ @pytest.fixture
1145
+ def expected(self, obj, val):
1146
+ # pre-2.0 this would cast to object, in 2.0 we cast the val to
1147
+ # the target tz
1148
+ expected = Series(
1149
+ [
1150
+ val.tz_convert("US/Central"),
1151
+ Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"),
1152
+ ],
1153
+ dtype=obj.dtype,
1154
+ )
1155
+ return expected
1156
+
1157
+ @pytest.fixture
1158
+ def warn(self):
1159
+ return None
1160
+
1161
+
1162
+ @pytest.mark.parametrize(
1163
+ "obj,expected,warn",
1164
+ [
1165
+ # For numeric series, we should coerce to NaN.
1166
+ (Series([1, 2, 3]), Series([np.nan, 2, 3]), None),
1167
+ (Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0]), None),
1168
+ # For datetime series, we should coerce to NaT.
1169
+ (
1170
+ Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]),
1171
+ Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]),
1172
+ None,
1173
+ ),
1174
+ # For objects, we should preserve the None value.
1175
+ (Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"]), None),
1176
+ ],
1177
+ )
1178
+ class TestSeriesNoneCoercion(SetitemCastingEquivalents):
1179
+ @pytest.fixture
1180
+ def key(self):
1181
+ return 0
1182
+
1183
+ @pytest.fixture
1184
+ def val(self):
1185
+ return None
1186
+
1187
+
1188
+ class TestSetitemFloatIntervalWithIntIntervalValues(SetitemCastingEquivalents):
1189
+ # GH#44201 Cast to shared IntervalDtype rather than object
1190
+
1191
+ def test_setitem_example(self):
1192
+ # Just a case here to make obvious what this test class is aimed at
1193
+ idx = IntervalIndex.from_breaks(range(4))
1194
+ obj = Series(idx)
1195
+ val = Interval(0.5, 1.5)
1196
+
1197
+ with tm.assert_produces_warning(
1198
+ FutureWarning, match="Setting an item of incompatible dtype"
1199
+ ):
1200
+ obj[0] = val
1201
+ assert obj.dtype == "Interval[float64, right]"
1202
+
1203
+ @pytest.fixture
1204
+ def obj(self):
1205
+ idx = IntervalIndex.from_breaks(range(4))
1206
+ return Series(idx)
1207
+
1208
+ @pytest.fixture
1209
+ def val(self):
1210
+ return Interval(0.5, 1.5)
1211
+
1212
+ @pytest.fixture
1213
+ def key(self):
1214
+ return 0
1215
+
1216
+ @pytest.fixture
1217
+ def expected(self, obj, val):
1218
+ data = [val] + list(obj[1:])
1219
+ idx = IntervalIndex(data, dtype="Interval[float64]")
1220
+ return Series(idx)
1221
+
1222
+ @pytest.fixture
1223
+ def warn(self):
1224
+ return FutureWarning
1225
+
1226
+
1227
+ class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents):
1228
+ # GH#44261 Setting a range with sufficiently-small integers into
1229
+ # small-itemsize integer dtypes should not need to upcast
1230
+
1231
+ @pytest.fixture
1232
+ def obj(self, any_int_numpy_dtype):
1233
+ dtype = np.dtype(any_int_numpy_dtype)
1234
+ ser = Series(range(5), dtype=dtype)
1235
+ return ser
1236
+
1237
+ @pytest.fixture
1238
+ def val(self):
1239
+ return range(2, 4)
1240
+
1241
+ @pytest.fixture
1242
+ def key(self):
1243
+ return slice(0, 2)
1244
+
1245
+ @pytest.fixture
1246
+ def expected(self, any_int_numpy_dtype):
1247
+ dtype = np.dtype(any_int_numpy_dtype)
1248
+ exp = Series([2, 3, 2, 3, 4], dtype=dtype)
1249
+ return exp
1250
+
1251
+ @pytest.fixture
1252
+ def warn(self):
1253
+ return None
1254
+
1255
+
1256
+ @pytest.mark.parametrize(
1257
+ "val, warn",
1258
+ [
1259
+ (np.array([2.0, 3.0]), None),
1260
+ (np.array([2.5, 3.5]), FutureWarning),
1261
+ (
1262
+ np.array([2**65, 2**65 + 1], dtype=np.float64),
1263
+ FutureWarning,
1264
+ ), # all ints, but can't cast
1265
+ ],
1266
+ )
1267
+ class TestSetitemFloatNDarrayIntoIntegerSeries(SetitemCastingEquivalents):
1268
+ @pytest.fixture
1269
+ def obj(self):
1270
+ return Series(range(5), dtype=np.int64)
1271
+
1272
+ @pytest.fixture
1273
+ def key(self):
1274
+ return slice(0, 2)
1275
+
1276
+ @pytest.fixture
1277
+ def expected(self, val):
1278
+ if val[0] == 2:
1279
+ # NB: this condition is based on currently-hardcoded "val" cases
1280
+ dtype = np.int64
1281
+ else:
1282
+ dtype = np.float64
1283
+ res_values = np.array(range(5), dtype=dtype)
1284
+ res_values[:2] = val
1285
+ return Series(res_values)
1286
+
1287
+
1288
+ @pytest.mark.parametrize("val", [512, np.int16(512)])
1289
+ class TestSetitemIntoIntegerSeriesNeedsUpcast(SetitemCastingEquivalents):
1290
+ @pytest.fixture
1291
+ def obj(self):
1292
+ return Series([1, 2, 3], dtype=np.int8)
1293
+
1294
+ @pytest.fixture
1295
+ def key(self):
1296
+ return 1
1297
+
1298
+ @pytest.fixture
1299
+ def expected(self):
1300
+ return Series([1, 512, 3], dtype=np.int16)
1301
+
1302
+ @pytest.fixture
1303
+ def warn(self):
1304
+ return FutureWarning
1305
+
1306
+
1307
+ @pytest.mark.parametrize("val", [2**33 + 1.0, 2**33 + 1.1, 2**62])
1308
+ class TestSmallIntegerSetitemUpcast(SetitemCastingEquivalents):
1309
+ # https://github.com/pandas-dev/pandas/issues/39584#issuecomment-941212124
1310
+ @pytest.fixture
1311
+ def obj(self):
1312
+ return Series([1, 2, 3], dtype="i4")
1313
+
1314
+ @pytest.fixture
1315
+ def key(self):
1316
+ return 0
1317
+
1318
+ @pytest.fixture
1319
+ def expected(self, val):
1320
+ if val % 1 != 0:
1321
+ dtype = "f8"
1322
+ else:
1323
+ dtype = "i8"
1324
+ return Series([val, 2, 3], dtype=dtype)
1325
+
1326
+ @pytest.fixture
1327
+ def warn(self):
1328
+ return FutureWarning
1329
+
1330
+
1331
+ class CoercionTest(SetitemCastingEquivalents):
1332
+ # Tests ported from tests.indexing.test_coercion
1333
+
1334
+ @pytest.fixture
1335
+ def key(self):
1336
+ return 1
1337
+
1338
+ @pytest.fixture
1339
+ def expected(self, obj, key, val, exp_dtype):
1340
+ vals = list(obj)
1341
+ vals[key] = val
1342
+ return Series(vals, dtype=exp_dtype)
1343
+
1344
+
1345
+ @pytest.mark.parametrize(
1346
+ "val,exp_dtype,warn",
1347
+ [(np.int32(1), np.int8, None), (np.int16(2**9), np.int16, FutureWarning)],
1348
+ )
1349
+ class TestCoercionInt8(CoercionTest):
1350
+ # previously test_setitem_series_int8 in tests.indexing.test_coercion
1351
+ @pytest.fixture
1352
+ def obj(self):
1353
+ return Series([1, 2, 3, 4], dtype=np.int8)
1354
+
1355
+
1356
+ @pytest.mark.parametrize("val", [1, 1.1, 1 + 1j, True])
1357
+ @pytest.mark.parametrize("exp_dtype", [object])
1358
+ class TestCoercionObject(CoercionTest):
1359
+ # previously test_setitem_series_object in tests.indexing.test_coercion
1360
+ @pytest.fixture
1361
+ def obj(self):
1362
+ return Series(["a", "b", "c", "d"], dtype=object)
1363
+
1364
+ @pytest.fixture
1365
+ def warn(self):
1366
+ return None
1367
+
1368
+
1369
+ @pytest.mark.parametrize(
1370
+ "val,exp_dtype,warn",
1371
+ [
1372
+ (1, np.complex128, None),
1373
+ (1.1, np.complex128, None),
1374
+ (1 + 1j, np.complex128, None),
1375
+ (True, object, FutureWarning),
1376
+ ],
1377
+ )
1378
+ class TestCoercionComplex(CoercionTest):
1379
+ # previously test_setitem_series_complex128 in tests.indexing.test_coercion
1380
+ @pytest.fixture
1381
+ def obj(self):
1382
+ return Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j])
1383
+
1384
+
1385
+ @pytest.mark.parametrize(
1386
+ "val,exp_dtype,warn",
1387
+ [
1388
+ (1, object, FutureWarning),
1389
+ ("3", object, FutureWarning),
1390
+ (3, object, FutureWarning),
1391
+ (1.1, object, FutureWarning),
1392
+ (1 + 1j, object, FutureWarning),
1393
+ (True, bool, None),
1394
+ ],
1395
+ )
1396
+ class TestCoercionBool(CoercionTest):
1397
+ # previously test_setitem_series_bool in tests.indexing.test_coercion
1398
+ @pytest.fixture
1399
+ def obj(self):
1400
+ return Series([True, False, True, False], dtype=bool)
1401
+
1402
+
1403
+ @pytest.mark.parametrize(
1404
+ "val,exp_dtype,warn",
1405
+ [
1406
+ (1, np.int64, None),
1407
+ (1.1, np.float64, FutureWarning),
1408
+ (1 + 1j, np.complex128, FutureWarning),
1409
+ (True, object, FutureWarning),
1410
+ ],
1411
+ )
1412
+ class TestCoercionInt64(CoercionTest):
1413
+ # previously test_setitem_series_int64 in tests.indexing.test_coercion
1414
+ @pytest.fixture
1415
+ def obj(self):
1416
+ return Series([1, 2, 3, 4])
1417
+
1418
+
1419
+ @pytest.mark.parametrize(
1420
+ "val,exp_dtype,warn",
1421
+ [
1422
+ (1, np.float64, None),
1423
+ (1.1, np.float64, None),
1424
+ (1 + 1j, np.complex128, FutureWarning),
1425
+ (True, object, FutureWarning),
1426
+ ],
1427
+ )
1428
+ class TestCoercionFloat64(CoercionTest):
1429
+ # previously test_setitem_series_float64 in tests.indexing.test_coercion
1430
+ @pytest.fixture
1431
+ def obj(self):
1432
+ return Series([1.1, 2.2, 3.3, 4.4])
1433
+
1434
+
1435
+ @pytest.mark.parametrize(
1436
+ "val,exp_dtype,warn",
1437
+ [
1438
+ (1, np.float32, None),
1439
+ pytest.param(
1440
+ 1.1,
1441
+ np.float32,
1442
+ None,
1443
+ marks=pytest.mark.xfail(
1444
+ (
1445
+ not np_version_gte1p24
1446
+ or (np_version_gte1p24 and np._get_promotion_state() != "weak")
1447
+ ),
1448
+ reason="np.float32(1.1) ends up as 1.100000023841858, so "
1449
+ "np_can_hold_element raises and we cast to float64",
1450
+ ),
1451
+ ),
1452
+ (1 + 1j, np.complex128, FutureWarning),
1453
+ (True, object, FutureWarning),
1454
+ (np.uint8(2), np.float32, None),
1455
+ (np.uint32(2), np.float32, None),
1456
+ # float32 cannot hold np.iinfo(np.uint32).max exactly
1457
+ # (closest it can hold is 4294967300.0 which off by 5.0), so
1458
+ # we cast to float64
1459
+ (np.uint32(np.iinfo(np.uint32).max), np.float64, FutureWarning),
1460
+ (np.uint64(2), np.float32, None),
1461
+ (np.int64(2), np.float32, None),
1462
+ ],
1463
+ )
1464
+ class TestCoercionFloat32(CoercionTest):
1465
+ @pytest.fixture
1466
+ def obj(self):
1467
+ return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32)
1468
+
1469
+ def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
1470
+ super().test_slice_key(obj, key, expected, warn, val, indexer_sli, is_inplace)
1471
+
1472
+ if isinstance(val, float):
1473
+ # the xfail would xpass bc test_slice_key short-circuits
1474
+ raise AssertionError("xfail not relevant for this test.")
1475
+
1476
+
1477
+ @pytest.mark.parametrize(
1478
+ "val,exp_dtype,warn",
1479
+ [
1480
+ (Timestamp("2012-01-01"), "datetime64[ns]", None),
1481
+ (1, object, FutureWarning),
1482
+ ("x", object, FutureWarning),
1483
+ ],
1484
+ )
1485
+ class TestCoercionDatetime64(CoercionTest):
1486
+ # previously test_setitem_series_datetime64 in tests.indexing.test_coercion
1487
+
1488
+ @pytest.fixture
1489
+ def obj(self):
1490
+ return Series(date_range("2011-01-01", freq="D", periods=4))
1491
+
1492
+ @pytest.fixture
1493
+ def warn(self):
1494
+ return None
1495
+
1496
+
1497
+ @pytest.mark.parametrize(
1498
+ "val,exp_dtype,warn",
1499
+ [
1500
+ (Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]", None),
1501
+ # pre-2.0, a mis-matched tz would end up casting to object
1502
+ (Timestamp("2012-01-01", tz="US/Pacific"), "datetime64[ns, US/Eastern]", None),
1503
+ (Timestamp("2012-01-01"), object, FutureWarning),
1504
+ (1, object, FutureWarning),
1505
+ ],
1506
+ )
1507
+ class TestCoercionDatetime64TZ(CoercionTest):
1508
+ # previously test_setitem_series_datetime64tz in tests.indexing.test_coercion
1509
+ @pytest.fixture
1510
+ def obj(self):
1511
+ tz = "US/Eastern"
1512
+ return Series(date_range("2011-01-01", freq="D", periods=4, tz=tz))
1513
+
1514
+ @pytest.fixture
1515
+ def warn(self):
1516
+ return None
1517
+
1518
+
1519
+ @pytest.mark.parametrize(
1520
+ "val,exp_dtype,warn",
1521
+ [
1522
+ (Timedelta("12 day"), "timedelta64[ns]", None),
1523
+ (1, object, FutureWarning),
1524
+ ("x", object, FutureWarning),
1525
+ ],
1526
+ )
1527
+ class TestCoercionTimedelta64(CoercionTest):
1528
+ # previously test_setitem_series_timedelta64 in tests.indexing.test_coercion
1529
+ @pytest.fixture
1530
+ def obj(self):
1531
+ return Series(timedelta_range("1 day", periods=4))
1532
+
1533
+ @pytest.fixture
1534
+ def warn(self):
1535
+ return None
1536
+
1537
+
1538
+ @pytest.mark.parametrize(
1539
+ "val", ["foo", Period("2016", freq="Y"), Interval(1, 2, closed="both")]
1540
+ )
1541
+ @pytest.mark.parametrize("exp_dtype", [object])
1542
+ class TestPeriodIntervalCoercion(CoercionTest):
1543
+ # GH#45768
1544
+ @pytest.fixture(
1545
+ params=[
1546
+ period_range("2016-01-01", periods=3, freq="D"),
1547
+ interval_range(1, 5),
1548
+ ]
1549
+ )
1550
+ def obj(self, request):
1551
+ return Series(request.param)
1552
+
1553
+ @pytest.fixture
1554
+ def warn(self):
1555
+ return FutureWarning
1556
+
1557
+
1558
+ def test_20643():
1559
+ # closed by GH#45121
1560
+ orig = Series([0, 1, 2], index=["a", "b", "c"])
1561
+
1562
+ expected = Series([0, 2.7, 2], index=["a", "b", "c"])
1563
+
1564
+ ser = orig.copy()
1565
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1566
+ ser.at["b"] = 2.7
1567
+ tm.assert_series_equal(ser, expected)
1568
+
1569
+ ser = orig.copy()
1570
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1571
+ ser.loc["b"] = 2.7
1572
+ tm.assert_series_equal(ser, expected)
1573
+
1574
+ ser = orig.copy()
1575
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1576
+ ser["b"] = 2.7
1577
+ tm.assert_series_equal(ser, expected)
1578
+
1579
+ ser = orig.copy()
1580
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1581
+ ser.iat[1] = 2.7
1582
+ tm.assert_series_equal(ser, expected)
1583
+
1584
+ ser = orig.copy()
1585
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1586
+ ser.iloc[1] = 2.7
1587
+ tm.assert_series_equal(ser, expected)
1588
+
1589
+ orig_df = orig.to_frame("A")
1590
+ expected_df = expected.to_frame("A")
1591
+
1592
+ df = orig_df.copy()
1593
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1594
+ df.at["b", "A"] = 2.7
1595
+ tm.assert_frame_equal(df, expected_df)
1596
+
1597
+ df = orig_df.copy()
1598
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1599
+ df.loc["b", "A"] = 2.7
1600
+ tm.assert_frame_equal(df, expected_df)
1601
+
1602
+ df = orig_df.copy()
1603
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1604
+ df.iloc[1, 0] = 2.7
1605
+ tm.assert_frame_equal(df, expected_df)
1606
+
1607
+ df = orig_df.copy()
1608
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1609
+ df.iat[1, 0] = 2.7
1610
+ tm.assert_frame_equal(df, expected_df)
1611
+
1612
+
1613
+ def test_20643_comment():
1614
+ # https://github.com/pandas-dev/pandas/issues/20643#issuecomment-431244590
1615
+ # fixed sometime prior to GH#45121
1616
+ orig = Series([0, 1, 2], index=["a", "b", "c"])
1617
+ expected = Series([np.nan, 1, 2], index=["a", "b", "c"])
1618
+
1619
+ ser = orig.copy()
1620
+ ser.iat[0] = None
1621
+ tm.assert_series_equal(ser, expected)
1622
+
1623
+ ser = orig.copy()
1624
+ ser.iloc[0] = None
1625
+ tm.assert_series_equal(ser, expected)
1626
+
1627
+
1628
+ def test_15413():
1629
+ # fixed by GH#45121
1630
+ ser = Series([1, 2, 3])
1631
+
1632
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1633
+ ser[ser == 2] += 0.5
1634
+ expected = Series([1, 2.5, 3])
1635
+ tm.assert_series_equal(ser, expected)
1636
+
1637
+ ser = Series([1, 2, 3])
1638
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1639
+ ser[1] += 0.5
1640
+ tm.assert_series_equal(ser, expected)
1641
+
1642
+ ser = Series([1, 2, 3])
1643
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1644
+ ser.loc[1] += 0.5
1645
+ tm.assert_series_equal(ser, expected)
1646
+
1647
+ ser = Series([1, 2, 3])
1648
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1649
+ ser.iloc[1] += 0.5
1650
+ tm.assert_series_equal(ser, expected)
1651
+
1652
+ ser = Series([1, 2, 3])
1653
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1654
+ ser.iat[1] += 0.5
1655
+ tm.assert_series_equal(ser, expected)
1656
+
1657
+ ser = Series([1, 2, 3])
1658
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1659
+ ser.at[1] += 0.5
1660
+ tm.assert_series_equal(ser, expected)
1661
+
1662
+
1663
+ def test_32878_int_itemsize():
1664
+ # Fixed by GH#45121
1665
+ arr = np.arange(5).astype("i4")
1666
+ ser = Series(arr)
1667
+ val = np.int64(np.iinfo(np.int64).max)
1668
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1669
+ ser[0] = val
1670
+ expected = Series([val, 1, 2, 3, 4], dtype=np.int64)
1671
+ tm.assert_series_equal(ser, expected)
1672
+
1673
+
1674
+ def test_32878_complex_itemsize():
1675
+ arr = np.arange(5).astype("c8")
1676
+ ser = Series(arr)
1677
+ val = np.finfo(np.float64).max
1678
+ val = val.astype("c16")
1679
+
1680
+ # GH#32878 used to coerce val to inf+0.000000e+00j
1681
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1682
+ ser[0] = val
1683
+ assert ser[0] == val
1684
+ expected = Series([val, 1, 2, 3, 4], dtype="c16")
1685
+ tm.assert_series_equal(ser, expected)
1686
+
1687
+
1688
+ def test_37692(indexer_al):
1689
+ # GH#37692
1690
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1691
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1692
+ indexer_al(ser)["b"] = "test"
1693
+ expected = Series([1, "test", 3], index=["a", "b", "c"], dtype=object)
1694
+ tm.assert_series_equal(ser, expected)
1695
+
1696
+
1697
+ def test_setitem_bool_int_float_consistency(indexer_sli):
1698
+ # GH#21513
1699
+ # bool-with-int and bool-with-float both upcast to object
1700
+ # int-with-float and float-with-int are both non-casting so long
1701
+ # as the setitem can be done losslessly
1702
+ for dtype in [np.float64, np.int64]:
1703
+ ser = Series(0, index=range(3), dtype=dtype)
1704
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1705
+ indexer_sli(ser)[0] = True
1706
+ assert ser.dtype == object
1707
+
1708
+ ser = Series(0, index=range(3), dtype=bool)
1709
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1710
+ ser[0] = dtype(1)
1711
+ assert ser.dtype == object
1712
+
1713
+ # 1.0 can be held losslessly, so no casting
1714
+ ser = Series(0, index=range(3), dtype=np.int64)
1715
+ indexer_sli(ser)[0] = np.float64(1.0)
1716
+ assert ser.dtype == np.int64
1717
+
1718
+ # 1 can be held losslessly, so no casting
1719
+ ser = Series(0, index=range(3), dtype=np.float64)
1720
+ indexer_sli(ser)[0] = np.int64(1)
1721
+
1722
+
1723
+ def test_setitem_positional_with_casting():
1724
+ # GH#45070 case where in __setitem__ we get a KeyError, then when
1725
+ # we fallback we *also* get a ValueError if we try to set inplace.
1726
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1727
+
1728
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
1729
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
1730
+ ser[0] = "X"
1731
+ expected = Series(["X", 2, 3], index=["a", "b", "c"], dtype=object)
1732
+ tm.assert_series_equal(ser, expected)
1733
+
1734
+
1735
+ def test_setitem_positional_float_into_int_coerces():
1736
+ # Case where we hit a KeyError and then trying to set in-place incorrectly
1737
+ # casts a float to an int
1738
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1739
+
1740
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
1741
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
1742
+ ser[0] = 1.5
1743
+ expected = Series([1.5, 2, 3], index=["a", "b", "c"])
1744
+ tm.assert_series_equal(ser, expected)
1745
+
1746
+
1747
+ def test_setitem_int_not_positional():
1748
+ # GH#42215 deprecated falling back to positional on __setitem__ with an
1749
+ # int not contained in the index; enforced in 2.0
1750
+ ser = Series([1, 2, 3, 4], index=[1.1, 2.1, 3.0, 4.1])
1751
+ assert not ser.index._should_fallback_to_positional
1752
+ # assert not ser.index.astype(object)._should_fallback_to_positional
1753
+
1754
+ # 3.0 is in our index, so post-enforcement behavior is unchanged
1755
+ ser[3] = 10
1756
+ expected = Series([1, 2, 10, 4], index=ser.index)
1757
+ tm.assert_series_equal(ser, expected)
1758
+
1759
+ # pre-enforcement `ser[5] = 5` raised IndexError
1760
+ ser[5] = 5
1761
+ expected = Series([1, 2, 10, 4, 5], index=[1.1, 2.1, 3.0, 4.1, 5.0])
1762
+ tm.assert_series_equal(ser, expected)
1763
+
1764
+ ii = IntervalIndex.from_breaks(range(10))[::2]
1765
+ ser2 = Series(range(len(ii)), index=ii)
1766
+ exp_index = ii.astype(object).append(Index([4]))
1767
+ expected2 = Series([0, 1, 2, 3, 4, 9], index=exp_index)
1768
+ # pre-enforcement `ser2[4] = 9` interpreted 4 as positional
1769
+ ser2[4] = 9
1770
+ tm.assert_series_equal(ser2, expected2)
1771
+
1772
+ mi = MultiIndex.from_product([ser.index, ["A", "B"]])
1773
+ ser3 = Series(range(len(mi)), index=mi)
1774
+ expected3 = ser3.copy()
1775
+ expected3.loc[4] = 99
1776
+ # pre-enforcement `ser3[4] = 99` interpreted 4 as positional
1777
+ ser3[4] = 99
1778
+ tm.assert_series_equal(ser3, expected3)
1779
+
1780
+
1781
+ def test_setitem_with_bool_indexer():
1782
+ # GH#42530
1783
+
1784
+ df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
1785
+ result = df.pop("b").copy()
1786
+ result[[True, False, False]] = 9
1787
+ expected = Series(data=[9, 5, 6], name="b")
1788
+ tm.assert_series_equal(result, expected)
1789
+
1790
+ df.loc[[True, False, False], "a"] = 10
1791
+ expected = DataFrame({"a": [10, 2, 3]})
1792
+ tm.assert_frame_equal(df, expected)
1793
+
1794
+
1795
+ @pytest.mark.parametrize("size", range(2, 6))
1796
+ @pytest.mark.parametrize(
1797
+ "mask", [[True, False, False, False, False], [True, False], [False]]
1798
+ )
1799
+ @pytest.mark.parametrize(
1800
+ "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
1801
+ )
1802
+ # Test numpy arrays, lists and tuples as the input to be
1803
+ # broadcast
1804
+ @pytest.mark.parametrize(
1805
+ "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
1806
+ )
1807
+ def test_setitem_bool_indexer_dont_broadcast_length1_values(size, mask, item, box):
1808
+ # GH#44265
1809
+ # see also tests.series.indexing.test_where.test_broadcast
1810
+
1811
+ selection = np.resize(mask, size)
1812
+
1813
+ data = np.arange(size, dtype=float)
1814
+
1815
+ ser = Series(data)
1816
+
1817
+ if selection.sum() != 1:
1818
+ msg = (
1819
+ "cannot set using a list-like indexer with a different "
1820
+ "length than the value"
1821
+ )
1822
+ with pytest.raises(ValueError, match=msg):
1823
+ # GH#44265
1824
+ ser[selection] = box(item)
1825
+ else:
1826
+ # In this corner case setting is equivalent to setting with the unboxed
1827
+ # item
1828
+ ser[selection] = box(item)
1829
+
1830
+ expected = Series(np.arange(size, dtype=float))
1831
+ expected[selection] = item
1832
+ tm.assert_series_equal(ser, expected)
1833
+
1834
+
1835
+ def test_setitem_empty_mask_dont_upcast_dt64():
1836
+ dti = date_range("2016-01-01", periods=3)
1837
+ ser = Series(dti)
1838
+ orig = ser.copy()
1839
+ mask = np.zeros(3, dtype=bool)
1840
+
1841
+ ser[mask] = "foo"
1842
+ assert ser.dtype == dti.dtype # no-op -> dont upcast
1843
+ tm.assert_series_equal(ser, orig)
1844
+
1845
+ ser.mask(mask, "foo", inplace=True)
1846
+ assert ser.dtype == dti.dtype # no-op -> dont upcast
1847
+ tm.assert_series_equal(ser, orig)
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas import Series
5
+ import pandas._testing as tm
6
+
7
+
8
+ def test_take_validate_axis():
9
+ # GH#51022
10
+ ser = Series([-1, 5, 6, 2, 4])
11
+
12
+ msg = "No axis named foo for object type Series"
13
+ with pytest.raises(ValueError, match=msg):
14
+ ser.take([1, 2], axis="foo")
15
+
16
+
17
+ def test_take():
18
+ ser = Series([-1, 5, 6, 2, 4])
19
+
20
+ actual = ser.take([1, 3, 4])
21
+ expected = Series([5, 2, 4], index=[1, 3, 4])
22
+ tm.assert_series_equal(actual, expected)
23
+
24
+ actual = ser.take([-1, 3, 4])
25
+ expected = Series([4, 2, 4], index=[4, 3, 4])
26
+ tm.assert_series_equal(actual, expected)
27
+
28
+ msg = "indices are out-of-bounds"
29
+ with pytest.raises(IndexError, match=msg):
30
+ ser.take([1, 10])
31
+ with pytest.raises(IndexError, match=msg):
32
+ ser.take([2, 5])
33
+
34
+
35
+ def test_take_categorical():
36
+ # https://github.com/pandas-dev/pandas/issues/20664
37
+ ser = Series(pd.Categorical(["a", "b", "c"]))
38
+ result = ser.take([-2, -2, 0])
39
+ expected = Series(
40
+ pd.Categorical(["b", "b", "a"], categories=["a", "b", "c"]), index=[1, 1, 0]
41
+ )
42
+ tm.assert_series_equal(result, expected)
43
+
44
+
45
+ def test_take_slice_raises():
46
+ ser = Series([-1, 5, 6, 2, 4])
47
+
48
+ msg = "Series.take requires a sequence of integers, not slice"
49
+ with pytest.raises(TypeError, match=msg):
50
+ ser.take(slice(0, 3, 1))
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+
6
+ from pandas.core.dtypes.common import is_integer
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ Series,
11
+ Timestamp,
12
+ date_range,
13
+ isna,
14
+ )
15
+ import pandas._testing as tm
16
+
17
+
18
+ def test_where_unsafe_int(any_signed_int_numpy_dtype):
19
+ s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype)
20
+ mask = s < 5
21
+
22
+ s[mask] = range(2, 7)
23
+ expected = Series(
24
+ list(range(2, 7)) + list(range(5, 10)),
25
+ dtype=any_signed_int_numpy_dtype,
26
+ )
27
+
28
+ tm.assert_series_equal(s, expected)
29
+
30
+
31
+ def test_where_unsafe_float(float_numpy_dtype):
32
+ s = Series(np.arange(10), dtype=float_numpy_dtype)
33
+ mask = s < 5
34
+
35
+ s[mask] = range(2, 7)
36
+ data = list(range(2, 7)) + list(range(5, 10))
37
+ expected = Series(data, dtype=float_numpy_dtype)
38
+
39
+ tm.assert_series_equal(s, expected)
40
+
41
+
42
+ @pytest.mark.parametrize(
43
+ "dtype,expected_dtype",
44
+ [
45
+ (np.int8, np.float64),
46
+ (np.int16, np.float64),
47
+ (np.int32, np.float64),
48
+ (np.int64, np.float64),
49
+ (np.float32, np.float32),
50
+ (np.float64, np.float64),
51
+ ],
52
+ )
53
+ def test_where_unsafe_upcast(dtype, expected_dtype):
54
+ # see gh-9743
55
+ s = Series(np.arange(10), dtype=dtype)
56
+ values = [2.5, 3.5, 4.5, 5.5, 6.5]
57
+ mask = s < 5
58
+ expected = Series(values + list(range(5, 10)), dtype=expected_dtype)
59
+ warn = (
60
+ None
61
+ if np.dtype(dtype).kind == np.dtype(expected_dtype).kind == "f"
62
+ else FutureWarning
63
+ )
64
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
65
+ s[mask] = values
66
+ tm.assert_series_equal(s, expected)
67
+
68
+
69
+ def test_where_unsafe():
70
+ # see gh-9731
71
+ s = Series(np.arange(10), dtype="int64")
72
+ values = [2.5, 3.5, 4.5, 5.5]
73
+
74
+ mask = s > 5
75
+ expected = Series(list(range(6)) + values, dtype="float64")
76
+
77
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
78
+ s[mask] = values
79
+ tm.assert_series_equal(s, expected)
80
+
81
+ # see gh-3235
82
+ s = Series(np.arange(10), dtype="int64")
83
+ mask = s < 5
84
+ s[mask] = range(2, 7)
85
+ expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64")
86
+ tm.assert_series_equal(s, expected)
87
+ assert s.dtype == expected.dtype
88
+
89
+ s = Series(np.arange(10), dtype="int64")
90
+ mask = s > 5
91
+ s[mask] = [0] * 4
92
+ expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64")
93
+ tm.assert_series_equal(s, expected)
94
+
95
+ s = Series(np.arange(10))
96
+ mask = s > 5
97
+
98
+ msg = "cannot set using a list-like indexer with a different length than the value"
99
+ with pytest.raises(ValueError, match=msg):
100
+ s[mask] = [5, 4, 3, 2, 1]
101
+
102
+ with pytest.raises(ValueError, match=msg):
103
+ s[mask] = [0] * 5
104
+
105
+ # dtype changes
106
+ s = Series([1, 2, 3, 4])
107
+ result = s.where(s > 2, np.nan)
108
+ expected = Series([np.nan, np.nan, 3, 4])
109
+ tm.assert_series_equal(result, expected)
110
+
111
+ # GH 4667
112
+ # setting with None changes dtype
113
+ s = Series(range(10)).astype(float)
114
+ s[8] = None
115
+ result = s[8]
116
+ assert isna(result)
117
+
118
+ s = Series(range(10)).astype(float)
119
+ s[s > 8] = None
120
+ result = s[isna(s)]
121
+ expected = Series(np.nan, index=[9])
122
+ tm.assert_series_equal(result, expected)
123
+
124
+
125
+ def test_where():
126
+ s = Series(np.random.default_rng(2).standard_normal(5))
127
+ cond = s > 0
128
+
129
+ rs = s.where(cond).dropna()
130
+ rs2 = s[cond]
131
+ tm.assert_series_equal(rs, rs2)
132
+
133
+ rs = s.where(cond, -s)
134
+ tm.assert_series_equal(rs, s.abs())
135
+
136
+ rs = s.where(cond)
137
+ assert s.shape == rs.shape
138
+ assert rs is not s
139
+
140
+ # test alignment
141
+ cond = Series([True, False, False, True, False], index=s.index)
142
+ s2 = -(s.abs())
143
+
144
+ expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index)
145
+ rs = s2.where(cond[:3])
146
+ tm.assert_series_equal(rs, expected)
147
+
148
+ expected = s2.abs()
149
+ expected.iloc[0] = s2[0]
150
+ rs = s2.where(cond[:3], -s2)
151
+ tm.assert_series_equal(rs, expected)
152
+
153
+
154
+ def test_where_error():
155
+ s = Series(np.random.default_rng(2).standard_normal(5))
156
+ cond = s > 0
157
+
158
+ msg = "Array conditional must be same shape as self"
159
+ with pytest.raises(ValueError, match=msg):
160
+ s.where(1)
161
+ with pytest.raises(ValueError, match=msg):
162
+ s.where(cond[:3].values, -s)
163
+
164
+ # GH 2745
165
+ s = Series([1, 2])
166
+ s[[True, False]] = [0, 1]
167
+ expected = Series([0, 2])
168
+ tm.assert_series_equal(s, expected)
169
+
170
+ # failures
171
+ msg = "cannot set using a list-like indexer with a different length than the value"
172
+ with pytest.raises(ValueError, match=msg):
173
+ s[[True, False]] = [0, 2, 3]
174
+
175
+ with pytest.raises(ValueError, match=msg):
176
+ s[[True, False]] = []
177
+
178
+
179
+ @pytest.mark.parametrize("klass", [list, tuple, np.array, Series])
180
+ def test_where_array_like(klass):
181
+ # see gh-15414
182
+ s = Series([1, 2, 3])
183
+ cond = [False, True, True]
184
+ expected = Series([np.nan, 2, 3])
185
+
186
+ result = s.where(klass(cond))
187
+ tm.assert_series_equal(result, expected)
188
+
189
+
190
+ @pytest.mark.parametrize(
191
+ "cond",
192
+ [
193
+ [1, 0, 1],
194
+ Series([2, 5, 7]),
195
+ ["True", "False", "True"],
196
+ [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")],
197
+ ],
198
+ )
199
+ def test_where_invalid_input(cond):
200
+ # see gh-15414: only boolean arrays accepted
201
+ s = Series([1, 2, 3])
202
+ msg = "Boolean array expected for the condition"
203
+
204
+ with pytest.raises(ValueError, match=msg):
205
+ s.where(cond)
206
+
207
+ msg = "Array conditional must be same shape as self"
208
+ with pytest.raises(ValueError, match=msg):
209
+ s.where([True])
210
+
211
+
212
+ def test_where_ndframe_align():
213
+ msg = "Array conditional must be same shape as self"
214
+ s = Series([1, 2, 3])
215
+
216
+ cond = [True]
217
+ with pytest.raises(ValueError, match=msg):
218
+ s.where(cond)
219
+
220
+ expected = Series([1, np.nan, np.nan])
221
+
222
+ out = s.where(Series(cond))
223
+ tm.assert_series_equal(out, expected)
224
+
225
+ cond = np.array([False, True, False, True])
226
+ with pytest.raises(ValueError, match=msg):
227
+ s.where(cond)
228
+
229
+ expected = Series([np.nan, 2, np.nan])
230
+
231
+ out = s.where(Series(cond))
232
+ tm.assert_series_equal(out, expected)
233
+
234
+
235
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set ints into string")
236
+ def test_where_setitem_invalid():
237
+ # GH 2702
238
+ # make sure correct exceptions are raised on invalid list assignment
239
+
240
+ msg = (
241
+ lambda x: f"cannot set using a {x} indexer with a "
242
+ "different length than the value"
243
+ )
244
+ # slice
245
+ s = Series(list("abc"))
246
+
247
+ with pytest.raises(ValueError, match=msg("slice")):
248
+ s[0:3] = list(range(27))
249
+
250
+ s[0:3] = list(range(3))
251
+ expected = Series([0, 1, 2])
252
+ tm.assert_series_equal(s.astype(np.int64), expected)
253
+
254
+ # slice with step
255
+ s = Series(list("abcdef"))
256
+
257
+ with pytest.raises(ValueError, match=msg("slice")):
258
+ s[0:4:2] = list(range(27))
259
+
260
+ s = Series(list("abcdef"))
261
+ s[0:4:2] = list(range(2))
262
+ expected = Series([0, "b", 1, "d", "e", "f"])
263
+ tm.assert_series_equal(s, expected)
264
+
265
+ # neg slices
266
+ s = Series(list("abcdef"))
267
+
268
+ with pytest.raises(ValueError, match=msg("slice")):
269
+ s[:-1] = list(range(27))
270
+
271
+ s[-3:-1] = list(range(2))
272
+ expected = Series(["a", "b", "c", 0, 1, "f"])
273
+ tm.assert_series_equal(s, expected)
274
+
275
+ # list
276
+ s = Series(list("abc"))
277
+
278
+ with pytest.raises(ValueError, match=msg("list-like")):
279
+ s[[0, 1, 2]] = list(range(27))
280
+
281
+ s = Series(list("abc"))
282
+
283
+ with pytest.raises(ValueError, match=msg("list-like")):
284
+ s[[0, 1, 2]] = list(range(2))
285
+
286
+ # scalar
287
+ s = Series(list("abc"))
288
+ s[0] = list(range(10))
289
+ expected = Series([list(range(10)), "b", "c"])
290
+ tm.assert_series_equal(s, expected)
291
+
292
+
293
+ @pytest.mark.parametrize("size", range(2, 6))
294
+ @pytest.mark.parametrize(
295
+ "mask", [[True, False, False, False, False], [True, False], [False]]
296
+ )
297
+ @pytest.mark.parametrize(
298
+ "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
299
+ )
300
+ # Test numpy arrays, lists and tuples as the input to be
301
+ # broadcast
302
+ @pytest.mark.parametrize(
303
+ "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
304
+ )
305
+ def test_broadcast(size, mask, item, box):
306
+ # GH#8801, GH#4195
307
+ selection = np.resize(mask, size)
308
+
309
+ data = np.arange(size, dtype=float)
310
+
311
+ # Construct the expected series by taking the source
312
+ # data or item based on the selection
313
+ expected = Series(
314
+ [item if use_item else data[i] for i, use_item in enumerate(selection)]
315
+ )
316
+
317
+ s = Series(data)
318
+
319
+ s[selection] = item
320
+ tm.assert_series_equal(s, expected)
321
+
322
+ s = Series(data)
323
+ result = s.where(~selection, box(item))
324
+ tm.assert_series_equal(result, expected)
325
+
326
+ s = Series(data)
327
+ result = s.mask(selection, box(item))
328
+ tm.assert_series_equal(result, expected)
329
+
330
+
331
+ def test_where_inplace():
332
+ s = Series(np.random.default_rng(2).standard_normal(5))
333
+ cond = s > 0
334
+
335
+ rs = s.copy()
336
+
337
+ rs.where(cond, inplace=True)
338
+ tm.assert_series_equal(rs.dropna(), s[cond])
339
+ tm.assert_series_equal(rs, s.where(cond))
340
+
341
+ rs = s.copy()
342
+ rs.where(cond, -s, inplace=True)
343
+ tm.assert_series_equal(rs, s.where(cond, -s))
344
+
345
+
346
+ def test_where_dups():
347
+ # GH 4550
348
+ # where crashes with dups in index
349
+ s1 = Series(list(range(3)))
350
+ s2 = Series(list(range(3)))
351
+ comb = pd.concat([s1, s2])
352
+ result = comb.where(comb < 2)
353
+ expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2])
354
+ tm.assert_series_equal(result, expected)
355
+
356
+ # GH 4548
357
+ # inplace updating not working with dups
358
+ comb[comb < 1] = 5
359
+ expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2])
360
+ tm.assert_series_equal(comb, expected)
361
+
362
+ comb[comb < 2] += 10
363
+ expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2])
364
+ tm.assert_series_equal(comb, expected)
365
+
366
+
367
+ def test_where_numeric_with_string():
368
+ # GH 9280
369
+ s = Series([1, 2, 3])
370
+ w = s.where(s > 1, "X")
371
+
372
+ assert not is_integer(w[0])
373
+ assert is_integer(w[1])
374
+ assert is_integer(w[2])
375
+ assert isinstance(w[0], str)
376
+ assert w.dtype == "object"
377
+
378
+ w = s.where(s > 1, ["X", "Y", "Z"])
379
+ assert not is_integer(w[0])
380
+ assert is_integer(w[1])
381
+ assert is_integer(w[2])
382
+ assert isinstance(w[0], str)
383
+ assert w.dtype == "object"
384
+
385
+ w = s.where(s > 1, np.array(["X", "Y", "Z"]))
386
+ assert not is_integer(w[0])
387
+ assert is_integer(w[1])
388
+ assert is_integer(w[2])
389
+ assert isinstance(w[0], str)
390
+ assert w.dtype == "object"
391
+
392
+
393
+ @pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"])
394
+ def test_where_datetimelike_coerce(dtype):
395
+ ser = Series([1, 2], dtype=dtype)
396
+ expected = Series([10, 10])
397
+ mask = np.array([False, False])
398
+
399
+ msg = "Downcasting behavior in Series and DataFrame methods 'where'"
400
+ with tm.assert_produces_warning(FutureWarning, match=msg):
401
+ rs = ser.where(mask, [10, 10])
402
+ tm.assert_series_equal(rs, expected)
403
+
404
+ with tm.assert_produces_warning(FutureWarning, match=msg):
405
+ rs = ser.where(mask, 10)
406
+ tm.assert_series_equal(rs, expected)
407
+
408
+ with tm.assert_produces_warning(FutureWarning, match=msg):
409
+ rs = ser.where(mask, 10.0)
410
+ tm.assert_series_equal(rs, expected)
411
+
412
+ with tm.assert_produces_warning(FutureWarning, match=msg):
413
+ rs = ser.where(mask, [10.0, 10.0])
414
+ tm.assert_series_equal(rs, expected)
415
+
416
+ rs = ser.where(mask, [10.0, np.nan])
417
+ expected = Series([10, np.nan], dtype="object")
418
+ tm.assert_series_equal(rs, expected)
419
+
420
+
421
+ def test_where_datetimetz():
422
+ # GH 15701
423
+ timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"]
424
+ ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]")
425
+ rs = ser.where(Series([False, True]))
426
+ expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]")
427
+ tm.assert_series_equal(rs, expected)
428
+
429
+
430
+ def test_where_sparse():
431
+ # GH#17198 make sure we dont get an AttributeError for sp_index
432
+ ser = Series(pd.arrays.SparseArray([1, 2]))
433
+ result = ser.where(ser >= 2, 0)
434
+ expected = Series(pd.arrays.SparseArray([0, 2]))
435
+ tm.assert_series_equal(result, expected)
436
+
437
+
438
+ def test_where_empty_series_and_empty_cond_having_non_bool_dtypes():
439
+ # https://github.com/pandas-dev/pandas/issues/34592
440
+ ser = Series([], dtype=float)
441
+ result = ser.where([])
442
+ tm.assert_series_equal(result, ser)
443
+
444
+
445
+ def test_where_categorical(frame_or_series):
446
+ # https://github.com/pandas-dev/pandas/issues/18888
447
+ exp = frame_or_series(
448
+ pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]),
449
+ dtype="category",
450
+ )
451
+ df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category")
452
+ res = df.where(df != "C")
453
+ tm.assert_equal(exp, res)
454
+
455
+
456
+ def test_where_datetimelike_categorical(tz_naive_fixture):
457
+ # GH#37682
458
+ tz = tz_naive_fixture
459
+
460
+ dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
461
+ lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
462
+ rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
463
+
464
+ mask = np.array([True, True, False])
465
+
466
+ # DatetimeIndex.where
467
+ res = lvals.where(mask, rvals)
468
+ tm.assert_index_equal(res, dr)
469
+
470
+ # DatetimeArray.where
471
+ res = lvals._data._where(mask, rvals)
472
+ tm.assert_datetime_array_equal(res, dr._data)
473
+
474
+ # Series.where
475
+ res = Series(lvals).where(mask, rvals)
476
+ tm.assert_series_equal(res, Series(dr))
477
+
478
+ # DataFrame.where
479
+ res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals))
480
+
481
+ tm.assert_frame_equal(res, pd.DataFrame(dr))
venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ MultiIndex,
6
+ Series,
7
+ date_range,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ def test_xs_datetimelike_wrapping():
13
+ # GH#31630 a case where we shouldn't wrap datetime64 in Timestamp
14
+ arr = date_range("2016-01-01", periods=3)._data._ndarray
15
+
16
+ ser = Series(arr, dtype=object)
17
+ for i in range(len(ser)):
18
+ ser.iloc[i] = arr[i]
19
+ assert ser.dtype == object
20
+ assert isinstance(ser[0], np.datetime64)
21
+
22
+ result = ser.xs(0)
23
+ assert isinstance(result, np.datetime64)
24
+
25
+
26
+ class TestXSWithMultiIndex:
27
+ def test_xs_level_series(self, multiindex_dataframe_random_data):
28
+ df = multiindex_dataframe_random_data
29
+ ser = df["A"]
30
+ expected = ser[:, "two"]
31
+ result = df.xs("two", level=1)["A"]
32
+ tm.assert_series_equal(result, expected)
33
+
34
+ def test_series_getitem_multiindex_xs_by_label(self):
35
+ # GH#5684
36
+ idx = MultiIndex.from_tuples(
37
+ [("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")]
38
+ )
39
+ ser = Series([1, 2, 3, 4], index=idx)
40
+ return_value = ser.index.set_names(["L1", "L2"], inplace=True)
41
+ assert return_value is None
42
+ expected = Series([1, 3], index=["a", "b"])
43
+ return_value = expected.index.set_names(["L1"], inplace=True)
44
+ assert return_value is None
45
+
46
+ result = ser.xs("one", level="L2")
47
+ tm.assert_series_equal(result, expected)
48
+
49
+ def test_series_getitem_multiindex_xs(self):
50
+ # GH#6258
51
+ dt = list(date_range("20130903", periods=3))
52
+ idx = MultiIndex.from_product([list("AB"), dt])
53
+ ser = Series([1, 3, 4, 1, 3, 4], index=idx)
54
+ expected = Series([1, 1], index=list("AB"))
55
+
56
+ result = ser.xs("20130903", level=1)
57
+ tm.assert_series_equal(result, expected)
58
+
59
+ def test_series_xs_droplevel_false(self):
60
+ # GH: 19056
61
+ mi = MultiIndex.from_tuples(
62
+ [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
63
+ )
64
+ ser = Series([1, 1, 1], index=mi)
65
+ result = ser.xs("a", axis=0, drop_level=False)
66
+ expected = Series(
67
+ [1, 1],
68
+ index=MultiIndex.from_tuples(
69
+ [("a", "x"), ("a", "y")], names=["level1", "level2"]
70
+ ),
71
+ )
72
+ tm.assert_series_equal(result, expected)
73
+
74
+ def test_xs_key_as_list(self):
75
+ # GH#41760
76
+ mi = MultiIndex.from_tuples([("a", "x")], names=["level1", "level2"])
77
+ ser = Series([1], index=mi)
78
+ with pytest.raises(TypeError, match="list keys are not supported"):
79
+ ser.xs(["a", "x"], axis=0, drop_level=False)
80
+
81
+ with pytest.raises(TypeError, match="list keys are not supported"):
82
+ ser.xs(["a"], axis=0, drop_level=False)
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (425 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_add_prefix_suffix.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_align.cpython-310.pyc ADDED
Binary file (6.13 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc ADDED
Binary file (3.38 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc ADDED
Binary file (5.65 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (22.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc ADDED
Binary file (856 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc ADDED
Binary file (4.57 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc ADDED
Binary file (1.41 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc ADDED
Binary file (6.38 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_copy.cpython-310.pyc ADDED
Binary file (2.25 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc ADDED
Binary file (4.64 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc ADDED
Binary file (5.54 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc ADDED
Binary file (599 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc ADDED
Binary file (5.66 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_fillna.cpython-310.pyc ADDED
Binary file (25.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc ADDED
Binary file (1.95 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_info.cpython-310.pyc ADDED
Binary file (4.97 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc ADDED
Binary file (27.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc ADDED
Binary file (7.51 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc ADDED
Binary file (1.61 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc ADDED
Binary file (1.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nlargest.cpython-310.pyc ADDED
Binary file (7.5 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc ADDED
Binary file (778 Bytes). View file