Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/25.attention.dense.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/__check_build/__init__.py +47 -0
- venv/lib/python3.10/site-packages/sklearn/__check_build/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__check_build/_check_build.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/__init__.py +5 -0
- venv/lib/python3.10/site-packages/sklearn/externals/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_arff.py +1107 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/_structures.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/version.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/_structures.py +90 -0
- venv/lib/python3.10/site-packages/sklearn/externals/_packaging/version.py +535 -0
- venv/lib/python3.10/site-packages/sklearn/externals/conftest.py +6 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__init__.py +42 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_classification.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_kde.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_lof.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_nca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_nearest_centroid.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_regression.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_unsupervised.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_ball_tree.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_kd_tree.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_kde.py +365 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_lof.py +516 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_nearest_centroid.py +261 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_partition_nodes.pxd +10 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/_quad_tree.pxd +92 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_ball_tree.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_kd_tree.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_kde.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_lof.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_nca.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_nearest_centroid.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors_pipeline.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors_tree.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_quad_tree.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_ball_tree.py +200 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_graph.py +101 -0
- venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_kd_tree.py +100 -0
ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66b98c071654fe4be7652e90d5a47ba2e1d74f367a2dda69a2c23b018c2f07fe
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc2953903facfdb139199004fc6c3711f8fba6bc6cf251d016623fb4cabdbb08
|
3 |
+
size 9293
|
ckpts/universal/global_step40/zero/25.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb2d62594d78b56c8c7deef4a0fb4709e206d5ee0c30690fd1972a44939cbc8d
|
3 |
+
size 16778396
|
venv/lib/python3.10/site-packages/sklearn/__check_build/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Module to give helpful messages to the user that did not
|
2 |
+
compile scikit-learn properly.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
|
6 |
+
INPLACE_MSG = """
|
7 |
+
It appears that you are importing a local scikit-learn source tree. For
|
8 |
+
this, you need to have an inplace install. Maybe you are in the source
|
9 |
+
directory and you need to try from another location."""
|
10 |
+
|
11 |
+
STANDARD_MSG = """
|
12 |
+
If you have used an installer, please check that it is suited for your
|
13 |
+
Python version, your operating system and your platform."""
|
14 |
+
|
15 |
+
|
16 |
+
def raise_build_error(e):
|
17 |
+
# Raise a comprehensible error and list the contents of the
|
18 |
+
# directory to help debugging on the mailing list.
|
19 |
+
local_dir = os.path.split(__file__)[0]
|
20 |
+
msg = STANDARD_MSG
|
21 |
+
if local_dir == "sklearn/__check_build":
|
22 |
+
# Picking up the local install: this will work only if the
|
23 |
+
# install is an 'inplace build'
|
24 |
+
msg = INPLACE_MSG
|
25 |
+
dir_content = list()
|
26 |
+
for i, filename in enumerate(os.listdir(local_dir)):
|
27 |
+
if (i + 1) % 3:
|
28 |
+
dir_content.append(filename.ljust(26))
|
29 |
+
else:
|
30 |
+
dir_content.append(filename + "\n")
|
31 |
+
raise ImportError("""%s
|
32 |
+
___________________________________________________________________________
|
33 |
+
Contents of %s:
|
34 |
+
%s
|
35 |
+
___________________________________________________________________________
|
36 |
+
It seems that scikit-learn has not been built correctly.
|
37 |
+
|
38 |
+
If you have installed scikit-learn from source, please do not forget
|
39 |
+
to build the package before using it: run `python setup.py install` or
|
40 |
+
`make` in the source directory.
|
41 |
+
%s""" % (e, local_dir, "".join(dir_content).strip(), msg))
|
42 |
+
|
43 |
+
|
44 |
+
try:
|
45 |
+
from ._check_build import check_build # noqa
|
46 |
+
except ImportError as e:
|
47 |
+
raise_build_error(e)
|
venv/lib/python3.10/site-packages/sklearn/__check_build/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__check_build/_check_build.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (51.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/externals/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
External, bundled dependencies.
|
4 |
+
|
5 |
+
"""
|
venv/lib/python3.10/site-packages/sklearn/externals/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (231 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/externals/_arff.py
ADDED
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# =============================================================================
|
2 |
+
# Federal University of Rio Grande do Sul (UFRGS)
|
3 |
+
# Connectionist Artificial Intelligence Laboratory (LIAC)
|
4 |
+
# Renato de Pontes Pereira - [email protected]
|
5 |
+
# =============================================================================
|
6 |
+
# Copyright (c) 2011 Renato de Pontes Pereira, renato.ppontes at gmail dot com
|
7 |
+
#
|
8 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
9 |
+
# of this software and associated documentation files (the "Software"), to deal
|
10 |
+
# in the Software without restriction, including without limitation the rights
|
11 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12 |
+
# copies of the Software, and to permit persons to whom the Software is
|
13 |
+
# furnished to do so, subject to the following conditions:
|
14 |
+
#
|
15 |
+
# The above copyright notice and this permission notice shall be included in
|
16 |
+
# all copies or substantial portions of the Software.
|
17 |
+
#
|
18 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
19 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
20 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
21 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
22 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
23 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
24 |
+
# SOFTWARE.
|
25 |
+
# =============================================================================
|
26 |
+
|
27 |
+
'''
|
28 |
+
The liac-arff module implements functions to read and write ARFF files in
|
29 |
+
Python. It was created in the Connectionist Artificial Intelligence Laboratory
|
30 |
+
(LIAC), which takes place at the Federal University of Rio Grande do Sul
|
31 |
+
(UFRGS), in Brazil.
|
32 |
+
|
33 |
+
ARFF (Attribute-Relation File Format) is an file format specially created for
|
34 |
+
describe datasets which are commonly used for machine learning experiments and
|
35 |
+
software. This file format was created to be used in Weka, the best
|
36 |
+
representative software for machine learning automated experiments.
|
37 |
+
|
38 |
+
An ARFF file can be divided into two sections: header and data. The Header
|
39 |
+
describes the metadata of the dataset, including a general description of the
|
40 |
+
dataset, its name and its attributes. The source below is an example of a
|
41 |
+
header section in a XOR dataset::
|
42 |
+
|
43 |
+
%
|
44 |
+
% XOR Dataset
|
45 |
+
%
|
46 |
+
% Created by Renato Pereira
|
47 | |
48 |
+
% http://inf.ufrgs.br/~rppereira
|
49 |
+
%
|
50 |
+
%
|
51 |
+
@RELATION XOR
|
52 |
+
|
53 |
+
@ATTRIBUTE input1 REAL
|
54 |
+
@ATTRIBUTE input2 REAL
|
55 |
+
@ATTRIBUTE y REAL
|
56 |
+
|
57 |
+
The Data section of an ARFF file describes the observations of the dataset, in
|
58 |
+
the case of XOR dataset::
|
59 |
+
|
60 |
+
@DATA
|
61 |
+
0.0,0.0,0.0
|
62 |
+
0.0,1.0,1.0
|
63 |
+
1.0,0.0,1.0
|
64 |
+
1.0,1.0,0.0
|
65 |
+
%
|
66 |
+
%
|
67 |
+
%
|
68 |
+
|
69 |
+
Notice that several lines are starting with an ``%`` symbol, denoting a
|
70 |
+
comment, thus, lines with ``%`` at the beginning will be ignored, except by the
|
71 |
+
description part at the beginning of the file. The declarations ``@RELATION``,
|
72 |
+
``@ATTRIBUTE``, and ``@DATA`` are all case insensitive and obligatory.
|
73 |
+
|
74 |
+
For more information and details about the ARFF file description, consult
|
75 |
+
http://www.cs.waikato.ac.nz/~ml/weka/arff.html
|
76 |
+
|
77 |
+
|
78 |
+
ARFF Files in Python
|
79 |
+
~~~~~~~~~~~~~~~~~~~~
|
80 |
+
|
81 |
+
This module uses built-ins python objects to represent a deserialized ARFF
|
82 |
+
file. A dictionary is used as the container of the data and metadata of ARFF,
|
83 |
+
and have the following keys:
|
84 |
+
|
85 |
+
- **description**: (OPTIONAL) a string with the description of the dataset.
|
86 |
+
- **relation**: (OBLIGATORY) a string with the name of the dataset.
|
87 |
+
- **attributes**: (OBLIGATORY) a list of attributes with the following
|
88 |
+
template::
|
89 |
+
|
90 |
+
(attribute_name, attribute_type)
|
91 |
+
|
92 |
+
the attribute_name is a string, and attribute_type must be an string
|
93 |
+
or a list of strings.
|
94 |
+
- **data**: (OBLIGATORY) a list of data instances. Each data instance must be
|
95 |
+
a list with values, depending on the attributes.
|
96 |
+
|
97 |
+
The above keys must follow the case which were described, i.e., the keys are
|
98 |
+
case sensitive. The attribute type ``attribute_type`` must be one of these
|
99 |
+
strings (they are not case sensitive): ``NUMERIC``, ``INTEGER``, ``REAL`` or
|
100 |
+
``STRING``. For nominal attributes, the ``atribute_type`` must be a list of
|
101 |
+
strings.
|
102 |
+
|
103 |
+
In this format, the XOR dataset presented above can be represented as a python
|
104 |
+
object as::
|
105 |
+
|
106 |
+
xor_dataset = {
|
107 |
+
'description': 'XOR Dataset',
|
108 |
+
'relation': 'XOR',
|
109 |
+
'attributes': [
|
110 |
+
('input1', 'REAL'),
|
111 |
+
('input2', 'REAL'),
|
112 |
+
('y', 'REAL'),
|
113 |
+
],
|
114 |
+
'data': [
|
115 |
+
[0.0, 0.0, 0.0],
|
116 |
+
[0.0, 1.0, 1.0],
|
117 |
+
[1.0, 0.0, 1.0],
|
118 |
+
[1.0, 1.0, 0.0]
|
119 |
+
]
|
120 |
+
}
|
121 |
+
|
122 |
+
|
123 |
+
Features
|
124 |
+
~~~~~~~~
|
125 |
+
|
126 |
+
This module provides several features, including:
|
127 |
+
|
128 |
+
- Read and write ARFF files using python built-in structures, such dictionaries
|
129 |
+
and lists;
|
130 |
+
- Supports `scipy.sparse.coo <http://docs.scipy
|
131 |
+
.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix>`_
|
132 |
+
and lists of dictionaries as used by SVMLight
|
133 |
+
- Supports the following attribute types: NUMERIC, REAL, INTEGER, STRING, and
|
134 |
+
NOMINAL;
|
135 |
+
- Has an interface similar to other built-in modules such as ``json``, or
|
136 |
+
``zipfile``;
|
137 |
+
- Supports read and write the descriptions of files;
|
138 |
+
- Supports missing values and names with spaces;
|
139 |
+
- Supports unicode values and names;
|
140 |
+
- Fully compatible with Python 2.7+, Python 3.5+, pypy and pypy3;
|
141 |
+
- Under `MIT License <http://opensource.org/licenses/MIT>`_
|
142 |
+
|
143 |
+
'''
|
144 |
+
__author__ = 'Renato de Pontes Pereira, Matthias Feurer, Joel Nothman'
|
145 |
+
__author_email__ = ('[email protected], '
|
146 |
+
'[email protected], '
|
147 |
+
'[email protected]')
|
148 |
+
__version__ = '2.4.0'
|
149 |
+
|
150 |
+
import re
|
151 |
+
import csv
|
152 |
+
from typing import TYPE_CHECKING
|
153 |
+
from typing import Optional, List, Dict, Any, Iterator, Union, Tuple
|
154 |
+
|
155 |
+
# CONSTANTS ===================================================================
|
156 |
+
_SIMPLE_TYPES = ['NUMERIC', 'REAL', 'INTEGER', 'STRING']
|
157 |
+
|
158 |
+
_TK_DESCRIPTION = '%'
|
159 |
+
_TK_COMMENT = '%'
|
160 |
+
_TK_RELATION = '@RELATION'
|
161 |
+
_TK_ATTRIBUTE = '@ATTRIBUTE'
|
162 |
+
_TK_DATA = '@DATA'
|
163 |
+
|
164 |
+
_RE_RELATION = re.compile(r'^([^\{\}%,\s]*|\".*\"|\'.*\')$', re.UNICODE)
|
165 |
+
_RE_ATTRIBUTE = re.compile(r'^(\".*\"|\'.*\'|[^\{\}%,\s]*)\s+(.+)$', re.UNICODE)
|
166 |
+
_RE_QUOTE_CHARS = re.compile(r'["\'\\\s%,\000-\031]', re.UNICODE)
|
167 |
+
_RE_ESCAPE_CHARS = re.compile(r'(?=["\'\\%])|[\n\r\t\000-\031]')
|
168 |
+
_RE_SPARSE_LINE = re.compile(r'^\s*\{.*\}\s*$', re.UNICODE)
|
169 |
+
_RE_NONTRIVIAL_DATA = re.compile('["\'{}\\s]', re.UNICODE)
|
170 |
+
|
171 |
+
ArffDenseDataType = Iterator[List]
|
172 |
+
ArffSparseDataType = Tuple[List, ...]
|
173 |
+
|
174 |
+
|
175 |
+
if TYPE_CHECKING:
|
176 |
+
# typing_extensions is available when mypy is installed
|
177 |
+
from typing_extensions import TypedDict
|
178 |
+
|
179 |
+
class ArffContainerType(TypedDict):
|
180 |
+
description: str
|
181 |
+
relation: str
|
182 |
+
attributes: List
|
183 |
+
data: Union[ArffDenseDataType, ArffSparseDataType]
|
184 |
+
|
185 |
+
else:
|
186 |
+
ArffContainerType = Dict[str, Any]
|
187 |
+
|
188 |
+
|
189 |
+
def _build_re_values():
|
190 |
+
quoted_re = r'''
|
191 |
+
" # open quote followed by zero or more of:
|
192 |
+
(?:
|
193 |
+
(?<!\\) # no additional backslash
|
194 |
+
(?:\\\\)* # maybe escaped backslashes
|
195 |
+
\\" # escaped quote
|
196 |
+
|
|
197 |
+
\\[^"] # escaping a non-quote
|
198 |
+
|
|
199 |
+
[^"\\] # non-quote char
|
200 |
+
)*
|
201 |
+
" # close quote
|
202 |
+
'''
|
203 |
+
# a value is surrounded by " or by ' or contains no quotables
|
204 |
+
value_re = r'''(?:
|
205 |
+
%s| # a value may be surrounded by "
|
206 |
+
%s| # or by '
|
207 |
+
[^,\s"'{}]+ # or may contain no characters requiring quoting
|
208 |
+
)''' % (quoted_re,
|
209 |
+
quoted_re.replace('"', "'"))
|
210 |
+
|
211 |
+
# This captures (value, error) groups. Because empty values are allowed,
|
212 |
+
# we cannot just look for empty values to handle syntax errors.
|
213 |
+
# We presume the line has had ',' prepended...
|
214 |
+
dense = re.compile(r'''(?x)
|
215 |
+
, # may follow ','
|
216 |
+
\s*
|
217 |
+
((?=,)|$|{value_re}) # empty or value
|
218 |
+
|
|
219 |
+
(\S.*) # error
|
220 |
+
'''.format(value_re=value_re))
|
221 |
+
|
222 |
+
# This captures (key, value) groups and will have an empty key/value
|
223 |
+
# in case of syntax errors.
|
224 |
+
# It does not ensure that the line starts with '{' or ends with '}'.
|
225 |
+
sparse = re.compile(r'''(?x)
|
226 |
+
(?:^\s*\{|,) # may follow ',', or '{' at line start
|
227 |
+
\s*
|
228 |
+
(\d+) # attribute key
|
229 |
+
\s+
|
230 |
+
(%(value_re)s) # value
|
231 |
+
|
|
232 |
+
(?!}\s*$) # not an error if it's }$
|
233 |
+
(?!^\s*{\s*}\s*$) # not an error if it's ^{}$
|
234 |
+
\S.* # error
|
235 |
+
''' % {'value_re': value_re})
|
236 |
+
return dense, sparse
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
_RE_DENSE_VALUES, _RE_SPARSE_KEY_VALUES = _build_re_values()
|
241 |
+
|
242 |
+
|
243 |
+
_ESCAPE_SUB_MAP = {
|
244 |
+
'\\\\': '\\',
|
245 |
+
'\\"': '"',
|
246 |
+
"\\'": "'",
|
247 |
+
'\\t': '\t',
|
248 |
+
'\\n': '\n',
|
249 |
+
'\\r': '\r',
|
250 |
+
'\\b': '\b',
|
251 |
+
'\\f': '\f',
|
252 |
+
'\\%': '%',
|
253 |
+
}
|
254 |
+
_UNESCAPE_SUB_MAP = {chr(i): '\\%03o' % i for i in range(32)}
|
255 |
+
_UNESCAPE_SUB_MAP.update({v: k for k, v in _ESCAPE_SUB_MAP.items()})
|
256 |
+
_UNESCAPE_SUB_MAP[''] = '\\'
|
257 |
+
_ESCAPE_SUB_MAP.update({'\\%d' % i: chr(i) for i in range(10)})
|
258 |
+
|
259 |
+
|
260 |
+
def _escape_sub_callback(match):
|
261 |
+
s = match.group()
|
262 |
+
if len(s) == 2:
|
263 |
+
try:
|
264 |
+
return _ESCAPE_SUB_MAP[s]
|
265 |
+
except KeyError:
|
266 |
+
raise ValueError('Unsupported escape sequence: %s' % s)
|
267 |
+
if s[1] == 'u':
|
268 |
+
return chr(int(s[2:], 16))
|
269 |
+
else:
|
270 |
+
return chr(int(s[1:], 8))
|
271 |
+
|
272 |
+
|
273 |
+
def _unquote(v):
|
274 |
+
if v[:1] in ('"', "'"):
|
275 |
+
return re.sub(r'\\([0-9]{1,3}|u[0-9a-f]{4}|.)', _escape_sub_callback,
|
276 |
+
v[1:-1])
|
277 |
+
elif v in ('?', ''):
|
278 |
+
return None
|
279 |
+
else:
|
280 |
+
return v
|
281 |
+
|
282 |
+
|
283 |
+
def _parse_values(s):
|
284 |
+
'''(INTERNAL) Split a line into a list of values'''
|
285 |
+
if not _RE_NONTRIVIAL_DATA.search(s):
|
286 |
+
# Fast path for trivial cases (unfortunately we have to handle missing
|
287 |
+
# values because of the empty string case :(.)
|
288 |
+
return [None if s in ('?', '') else s
|
289 |
+
for s in next(csv.reader([s]))]
|
290 |
+
|
291 |
+
# _RE_DENSE_VALUES tokenizes despite quoting, whitespace, etc.
|
292 |
+
values, errors = zip(*_RE_DENSE_VALUES.findall(',' + s))
|
293 |
+
if not any(errors):
|
294 |
+
return [_unquote(v) for v in values]
|
295 |
+
if _RE_SPARSE_LINE.match(s):
|
296 |
+
try:
|
297 |
+
return {int(k): _unquote(v)
|
298 |
+
for k, v in _RE_SPARSE_KEY_VALUES.findall(s)}
|
299 |
+
except ValueError:
|
300 |
+
# an ARFF syntax error in sparse data
|
301 |
+
for match in _RE_SPARSE_KEY_VALUES.finditer(s):
|
302 |
+
if not match.group(1):
|
303 |
+
raise BadLayout('Error parsing %r' % match.group())
|
304 |
+
raise BadLayout('Unknown parsing error')
|
305 |
+
else:
|
306 |
+
# an ARFF syntax error
|
307 |
+
for match in _RE_DENSE_VALUES.finditer(s):
|
308 |
+
if match.group(2):
|
309 |
+
raise BadLayout('Error parsing %r' % match.group())
|
310 |
+
raise BadLayout('Unknown parsing error')
|
311 |
+
|
312 |
+
|
313 |
+
DENSE = 0 # Constant value representing a dense matrix
|
314 |
+
COO = 1 # Constant value representing a sparse matrix in coordinate format
|
315 |
+
LOD = 2 # Constant value representing a sparse matrix in list of
|
316 |
+
# dictionaries format
|
317 |
+
DENSE_GEN = 3 # Generator of dictionaries
|
318 |
+
LOD_GEN = 4 # Generator of dictionaries
|
319 |
+
_SUPPORTED_DATA_STRUCTURES = [DENSE, COO, LOD, DENSE_GEN, LOD_GEN]
|
320 |
+
|
321 |
+
|
322 |
+
# EXCEPTIONS ==================================================================
|
323 |
+
class ArffException(Exception):
|
324 |
+
message: Optional[str] = None
|
325 |
+
|
326 |
+
def __init__(self):
|
327 |
+
self.line = -1
|
328 |
+
|
329 |
+
def __str__(self):
|
330 |
+
return self.message%self.line
|
331 |
+
|
332 |
+
class BadRelationFormat(ArffException):
|
333 |
+
'''Error raised when the relation declaration is in an invalid format.'''
|
334 |
+
message = 'Bad @RELATION format, at line %d.'
|
335 |
+
|
336 |
+
class BadAttributeFormat(ArffException):
|
337 |
+
'''Error raised when some attribute declaration is in an invalid format.'''
|
338 |
+
message = 'Bad @ATTRIBUTE format, at line %d.'
|
339 |
+
|
340 |
+
class BadDataFormat(ArffException):
|
341 |
+
'''Error raised when some data instance is in an invalid format.'''
|
342 |
+
def __init__(self, value):
|
343 |
+
super().__init__()
|
344 |
+
self.message = (
|
345 |
+
'Bad @DATA instance format in line %d: ' +
|
346 |
+
('%s' % value)
|
347 |
+
)
|
348 |
+
|
349 |
+
class BadAttributeType(ArffException):
|
350 |
+
'''Error raised when some invalid type is provided into the attribute
|
351 |
+
declaration.'''
|
352 |
+
message = 'Bad @ATTRIBUTE type, at line %d.'
|
353 |
+
|
354 |
+
class BadAttributeName(ArffException):
|
355 |
+
'''Error raised when an attribute name is provided twice the attribute
|
356 |
+
declaration.'''
|
357 |
+
|
358 |
+
def __init__(self, value, value2):
|
359 |
+
super().__init__()
|
360 |
+
self.message = (
|
361 |
+
('Bad @ATTRIBUTE name %s at line' % value) +
|
362 |
+
' %d, this name is already in use in line' +
|
363 |
+
(' %d.' % value2)
|
364 |
+
)
|
365 |
+
|
366 |
+
class BadNominalValue(ArffException):
|
367 |
+
'''Error raised when a value in used in some data instance but is not
|
368 |
+
declared into it respective attribute declaration.'''
|
369 |
+
|
370 |
+
def __init__(self, value):
|
371 |
+
super().__init__()
|
372 |
+
self.message = (
|
373 |
+
('Data value %s not found in nominal declaration, ' % value)
|
374 |
+
+ 'at line %d.'
|
375 |
+
)
|
376 |
+
|
377 |
+
class BadNominalFormatting(ArffException):
|
378 |
+
'''Error raised when a nominal value with space is not properly quoted.'''
|
379 |
+
def __init__(self, value):
|
380 |
+
super().__init__()
|
381 |
+
self.message = (
|
382 |
+
('Nominal data value "%s" not properly quoted in line ' % value) +
|
383 |
+
'%d.'
|
384 |
+
)
|
385 |
+
|
386 |
+
class BadNumericalValue(ArffException):
|
387 |
+
'''Error raised when and invalid numerical value is used in some data
|
388 |
+
instance.'''
|
389 |
+
message = 'Invalid numerical value, at line %d.'
|
390 |
+
|
391 |
+
class BadStringValue(ArffException):
|
392 |
+
'''Error raise when a string contains space but is not quoted.'''
|
393 |
+
message = 'Invalid string value at line %d.'
|
394 |
+
|
395 |
+
class BadLayout(ArffException):
|
396 |
+
'''Error raised when the layout of the ARFF file has something wrong.'''
|
397 |
+
message = 'Invalid layout of the ARFF file, at line %d.'
|
398 |
+
|
399 |
+
def __init__(self, msg=''):
|
400 |
+
super().__init__()
|
401 |
+
if msg:
|
402 |
+
self.message = BadLayout.message + ' ' + msg.replace('%', '%%')
|
403 |
+
|
404 |
+
|
405 |
+
class BadObject(ArffException):
|
406 |
+
'''Error raised when the object representing the ARFF file has something
|
407 |
+
wrong.'''
|
408 |
+
def __init__(self, msg='Invalid object.'):
|
409 |
+
self.msg = msg
|
410 |
+
|
411 |
+
def __str__(self):
|
412 |
+
return '%s' % self.msg
|
413 |
+
|
414 |
+
# =============================================================================
|
415 |
+
|
416 |
+
# INTERNAL ====================================================================
|
417 |
+
def _unescape_sub_callback(match):
|
418 |
+
return _UNESCAPE_SUB_MAP[match.group()]
|
419 |
+
|
420 |
+
|
421 |
+
def encode_string(s):
|
422 |
+
if _RE_QUOTE_CHARS.search(s):
|
423 |
+
return "'%s'" % _RE_ESCAPE_CHARS.sub(_unescape_sub_callback, s)
|
424 |
+
return s
|
425 |
+
|
426 |
+
|
427 |
+
class EncodedNominalConversor:
|
428 |
+
def __init__(self, values):
|
429 |
+
self.values = {v: i for i, v in enumerate(values)}
|
430 |
+
self.values[0] = 0
|
431 |
+
|
432 |
+
def __call__(self, value):
|
433 |
+
try:
|
434 |
+
return self.values[value]
|
435 |
+
except KeyError:
|
436 |
+
raise BadNominalValue(value)
|
437 |
+
|
438 |
+
|
439 |
+
class NominalConversor:
|
440 |
+
def __init__(self, values):
|
441 |
+
self.values = set(values)
|
442 |
+
self.zero_value = values[0]
|
443 |
+
|
444 |
+
def __call__(self, value):
|
445 |
+
if value not in self.values:
|
446 |
+
if value == 0:
|
447 |
+
# Sparse decode
|
448 |
+
# See issue #52: nominals should take their first value when
|
449 |
+
# unspecified in a sparse matrix. Naturally, this is consistent
|
450 |
+
# with EncodedNominalConversor.
|
451 |
+
return self.zero_value
|
452 |
+
raise BadNominalValue(value)
|
453 |
+
return str(value)
|
454 |
+
|
455 |
+
|
456 |
+
class DenseGeneratorData:
|
457 |
+
'''Internal helper class to allow for different matrix types without
|
458 |
+
making the code a huge collection of if statements.'''
|
459 |
+
|
460 |
+
def decode_rows(self, stream, conversors):
|
461 |
+
for row in stream:
|
462 |
+
values = _parse_values(row)
|
463 |
+
|
464 |
+
if isinstance(values, dict):
|
465 |
+
if values and max(values) >= len(conversors):
|
466 |
+
raise BadDataFormat(row)
|
467 |
+
# XXX: int 0 is used for implicit values, not '0'
|
468 |
+
values = [values[i] if i in values else 0 for i in
|
469 |
+
range(len(conversors))]
|
470 |
+
else:
|
471 |
+
if len(values) != len(conversors):
|
472 |
+
raise BadDataFormat(row)
|
473 |
+
|
474 |
+
yield self._decode_values(values, conversors)
|
475 |
+
|
476 |
+
@staticmethod
|
477 |
+
def _decode_values(values, conversors):
|
478 |
+
try:
|
479 |
+
values = [None if value is None else conversor(value)
|
480 |
+
for conversor, value
|
481 |
+
in zip(conversors, values)]
|
482 |
+
except ValueError as exc:
|
483 |
+
if 'float: ' in str(exc):
|
484 |
+
raise BadNumericalValue()
|
485 |
+
return values
|
486 |
+
|
487 |
+
def encode_data(self, data, attributes):
|
488 |
+
'''(INTERNAL) Encodes a line of data.
|
489 |
+
|
490 |
+
Data instances follow the csv format, i.e, attribute values are
|
491 |
+
delimited by commas. After converted from csv.
|
492 |
+
|
493 |
+
:param data: a list of values.
|
494 |
+
:param attributes: a list of attributes. Used to check if data is valid.
|
495 |
+
:return: a string with the encoded data line.
|
496 |
+
'''
|
497 |
+
current_row = 0
|
498 |
+
|
499 |
+
for inst in data:
|
500 |
+
if len(inst) != len(attributes):
|
501 |
+
raise BadObject(
|
502 |
+
'Instance %d has %d attributes, expected %d' %
|
503 |
+
(current_row, len(inst), len(attributes))
|
504 |
+
)
|
505 |
+
|
506 |
+
new_data = []
|
507 |
+
for value in inst:
|
508 |
+
if value is None or value == '' or value != value:
|
509 |
+
s = '?'
|
510 |
+
else:
|
511 |
+
s = encode_string(str(value))
|
512 |
+
new_data.append(s)
|
513 |
+
|
514 |
+
current_row += 1
|
515 |
+
yield ','.join(new_data)
|
516 |
+
|
517 |
+
|
518 |
+
class _DataListMixin:
|
519 |
+
"""Mixin to return a list from decode_rows instead of a generator"""
|
520 |
+
def decode_rows(self, stream, conversors):
|
521 |
+
return list(super().decode_rows(stream, conversors))
|
522 |
+
|
523 |
+
|
524 |
+
class Data(_DataListMixin, DenseGeneratorData):
|
525 |
+
pass
|
526 |
+
|
527 |
+
|
528 |
+
class COOData:
|
529 |
+
def decode_rows(self, stream, conversors):
|
530 |
+
data, rows, cols = [], [], []
|
531 |
+
for i, row in enumerate(stream):
|
532 |
+
values = _parse_values(row)
|
533 |
+
if not isinstance(values, dict):
|
534 |
+
raise BadLayout()
|
535 |
+
if not values:
|
536 |
+
continue
|
537 |
+
row_cols, values = zip(*sorted(values.items()))
|
538 |
+
try:
|
539 |
+
values = [value if value is None else conversors[key](value)
|
540 |
+
for key, value in zip(row_cols, values)]
|
541 |
+
except ValueError as exc:
|
542 |
+
if 'float: ' in str(exc):
|
543 |
+
raise BadNumericalValue()
|
544 |
+
raise
|
545 |
+
except IndexError:
|
546 |
+
# conversor out of range
|
547 |
+
raise BadDataFormat(row)
|
548 |
+
|
549 |
+
data.extend(values)
|
550 |
+
rows.extend([i] * len(values))
|
551 |
+
cols.extend(row_cols)
|
552 |
+
|
553 |
+
return data, rows, cols
|
554 |
+
|
555 |
+
def encode_data(self, data, attributes):
|
556 |
+
num_attributes = len(attributes)
|
557 |
+
new_data = []
|
558 |
+
current_row = 0
|
559 |
+
|
560 |
+
row = data.row
|
561 |
+
col = data.col
|
562 |
+
data = data.data
|
563 |
+
|
564 |
+
# Check if the rows are sorted
|
565 |
+
if not all(row[i] <= row[i + 1] for i in range(len(row) - 1)):
|
566 |
+
raise ValueError("liac-arff can only output COO matrices with "
|
567 |
+
"sorted rows.")
|
568 |
+
|
569 |
+
for v, col, row in zip(data, col, row):
|
570 |
+
if row > current_row:
|
571 |
+
# Add empty rows if necessary
|
572 |
+
while current_row < row:
|
573 |
+
yield " ".join(["{", ','.join(new_data), "}"])
|
574 |
+
new_data = []
|
575 |
+
current_row += 1
|
576 |
+
|
577 |
+
if col >= num_attributes:
|
578 |
+
raise BadObject(
|
579 |
+
'Instance %d has at least %d attributes, expected %d' %
|
580 |
+
(current_row, col + 1, num_attributes)
|
581 |
+
)
|
582 |
+
|
583 |
+
if v is None or v == '' or v != v:
|
584 |
+
s = '?'
|
585 |
+
else:
|
586 |
+
s = encode_string(str(v))
|
587 |
+
new_data.append("%d %s" % (col, s))
|
588 |
+
|
589 |
+
yield " ".join(["{", ','.join(new_data), "}"])
|
590 |
+
|
591 |
+
class LODGeneratorData:
|
592 |
+
def decode_rows(self, stream, conversors):
|
593 |
+
for row in stream:
|
594 |
+
values = _parse_values(row)
|
595 |
+
|
596 |
+
if not isinstance(values, dict):
|
597 |
+
raise BadLayout()
|
598 |
+
try:
|
599 |
+
yield {key: None if value is None else conversors[key](value)
|
600 |
+
for key, value in values.items()}
|
601 |
+
except ValueError as exc:
|
602 |
+
if 'float: ' in str(exc):
|
603 |
+
raise BadNumericalValue()
|
604 |
+
raise
|
605 |
+
except IndexError:
|
606 |
+
# conversor out of range
|
607 |
+
raise BadDataFormat(row)
|
608 |
+
|
609 |
+
def encode_data(self, data, attributes):
|
610 |
+
current_row = 0
|
611 |
+
|
612 |
+
num_attributes = len(attributes)
|
613 |
+
for row in data:
|
614 |
+
new_data = []
|
615 |
+
|
616 |
+
if len(row) > 0 and max(row) >= num_attributes:
|
617 |
+
raise BadObject(
|
618 |
+
'Instance %d has %d attributes, expected %d' %
|
619 |
+
(current_row, max(row) + 1, num_attributes)
|
620 |
+
)
|
621 |
+
|
622 |
+
for col in sorted(row):
|
623 |
+
v = row[col]
|
624 |
+
if v is None or v == '' or v != v:
|
625 |
+
s = '?'
|
626 |
+
else:
|
627 |
+
s = encode_string(str(v))
|
628 |
+
new_data.append("%d %s" % (col, s))
|
629 |
+
|
630 |
+
current_row += 1
|
631 |
+
yield " ".join(["{", ','.join(new_data), "}"])
|
632 |
+
|
633 |
+
class LODData(_DataListMixin, LODGeneratorData):
|
634 |
+
pass
|
635 |
+
|
636 |
+
|
637 |
+
def _get_data_object_for_decoding(matrix_type):
|
638 |
+
if matrix_type == DENSE:
|
639 |
+
return Data()
|
640 |
+
elif matrix_type == COO:
|
641 |
+
return COOData()
|
642 |
+
elif matrix_type == LOD:
|
643 |
+
return LODData()
|
644 |
+
elif matrix_type == DENSE_GEN:
|
645 |
+
return DenseGeneratorData()
|
646 |
+
elif matrix_type == LOD_GEN:
|
647 |
+
return LODGeneratorData()
|
648 |
+
else:
|
649 |
+
raise ValueError("Matrix type %s not supported." % str(matrix_type))
|
650 |
+
|
651 |
+
def _get_data_object_for_encoding(matrix):
|
652 |
+
# Probably a scipy.sparse
|
653 |
+
if hasattr(matrix, 'format'):
|
654 |
+
if matrix.format == 'coo':
|
655 |
+
return COOData()
|
656 |
+
else:
|
657 |
+
raise ValueError('Cannot guess matrix format!')
|
658 |
+
elif isinstance(matrix[0], dict):
|
659 |
+
return LODData()
|
660 |
+
else:
|
661 |
+
return Data()
|
662 |
+
|
663 |
+
# =============================================================================
|
664 |
+
|
665 |
+
# ADVANCED INTERFACE ==========================================================
|
666 |
+
class ArffDecoder:
|
667 |
+
'''An ARFF decoder.'''
|
668 |
+
|
669 |
+
def __init__(self):
|
670 |
+
'''Constructor.'''
|
671 |
+
self._conversors = []
|
672 |
+
self._current_line = 0
|
673 |
+
|
674 |
+
def _decode_comment(self, s):
|
675 |
+
'''(INTERNAL) Decodes a comment line.
|
676 |
+
|
677 |
+
Comments are single line strings starting, obligatorily, with the ``%``
|
678 |
+
character, and can have any symbol, including whitespaces or special
|
679 |
+
characters.
|
680 |
+
|
681 |
+
This method must receive a normalized string, i.e., a string without
|
682 |
+
padding, including the "\r\n" characters.
|
683 |
+
|
684 |
+
:param s: a normalized string.
|
685 |
+
:return: a string with the decoded comment.
|
686 |
+
'''
|
687 |
+
res = re.sub(r'^\%( )?', '', s)
|
688 |
+
return res
|
689 |
+
|
690 |
+
def _decode_relation(self, s):
|
691 |
+
'''(INTERNAL) Decodes a relation line.
|
692 |
+
|
693 |
+
The relation declaration is a line with the format ``@RELATION
|
694 |
+
<relation-name>``, where ``relation-name`` is a string. The string must
|
695 |
+
start with alphabetic character and must be quoted if the name includes
|
696 |
+
spaces, otherwise this method will raise a `BadRelationFormat` exception.
|
697 |
+
|
698 |
+
This method must receive a normalized string, i.e., a string without
|
699 |
+
padding, including the "\r\n" characters.
|
700 |
+
|
701 |
+
:param s: a normalized string.
|
702 |
+
:return: a string with the decoded relation name.
|
703 |
+
'''
|
704 |
+
_, v = s.split(' ', 1)
|
705 |
+
v = v.strip()
|
706 |
+
|
707 |
+
if not _RE_RELATION.match(v):
|
708 |
+
raise BadRelationFormat()
|
709 |
+
|
710 |
+
res = str(v.strip('"\''))
|
711 |
+
return res
|
712 |
+
|
713 |
+
def _decode_attribute(self, s):
|
714 |
+
'''(INTERNAL) Decodes an attribute line.
|
715 |
+
|
716 |
+
The attribute is the most complex declaration in an arff file. All
|
717 |
+
attributes must follow the template::
|
718 |
+
|
719 |
+
@attribute <attribute-name> <datatype>
|
720 |
+
|
721 |
+
where ``attribute-name`` is a string, quoted if the name contains any
|
722 |
+
whitespace, and ``datatype`` can be:
|
723 |
+
|
724 |
+
- Numerical attributes as ``NUMERIC``, ``INTEGER`` or ``REAL``.
|
725 |
+
- Strings as ``STRING``.
|
726 |
+
- Dates (NOT IMPLEMENTED).
|
727 |
+
- Nominal attributes with format:
|
728 |
+
|
729 |
+
{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...}
|
730 |
+
|
731 |
+
The nominal names follow the rules for the attribute names, i.e., they
|
732 |
+
must be quoted if the name contains whitespaces.
|
733 |
+
|
734 |
+
This method must receive a normalized string, i.e., a string without
|
735 |
+
padding, including the "\r\n" characters.
|
736 |
+
|
737 |
+
:param s: a normalized string.
|
738 |
+
:return: a tuple (ATTRIBUTE_NAME, TYPE_OR_VALUES).
|
739 |
+
'''
|
740 |
+
_, v = s.split(' ', 1)
|
741 |
+
v = v.strip()
|
742 |
+
|
743 |
+
# Verify the general structure of declaration
|
744 |
+
m = _RE_ATTRIBUTE.match(v)
|
745 |
+
if not m:
|
746 |
+
raise BadAttributeFormat()
|
747 |
+
|
748 |
+
# Extracts the raw name and type
|
749 |
+
name, type_ = m.groups()
|
750 |
+
|
751 |
+
# Extracts the final name
|
752 |
+
name = str(name.strip('"\''))
|
753 |
+
|
754 |
+
# Extracts the final type
|
755 |
+
if type_[:1] == "{" and type_[-1:] == "}":
|
756 |
+
try:
|
757 |
+
type_ = _parse_values(type_.strip('{} '))
|
758 |
+
except Exception:
|
759 |
+
raise BadAttributeType()
|
760 |
+
if isinstance(type_, dict):
|
761 |
+
raise BadAttributeType()
|
762 |
+
|
763 |
+
else:
|
764 |
+
# If not nominal, verify the type name
|
765 |
+
type_ = str(type_).upper()
|
766 |
+
if type_ not in ['NUMERIC', 'REAL', 'INTEGER', 'STRING']:
|
767 |
+
raise BadAttributeType()
|
768 |
+
|
769 |
+
return (name, type_)
|
770 |
+
|
771 |
+
def _decode(self, s, encode_nominal=False, matrix_type=DENSE):
|
772 |
+
'''Do the job the ``encode``.'''
|
773 |
+
|
774 |
+
# Make sure this method is idempotent
|
775 |
+
self._current_line = 0
|
776 |
+
|
777 |
+
# If string, convert to a list of lines
|
778 |
+
if isinstance(s, str):
|
779 |
+
s = s.strip('\r\n ').replace('\r\n', '\n').split('\n')
|
780 |
+
|
781 |
+
# Create the return object
|
782 |
+
obj: ArffContainerType = {
|
783 |
+
'description': '',
|
784 |
+
'relation': '',
|
785 |
+
'attributes': [],
|
786 |
+
'data': []
|
787 |
+
}
|
788 |
+
attribute_names = {}
|
789 |
+
|
790 |
+
# Create the data helper object
|
791 |
+
data = _get_data_object_for_decoding(matrix_type)
|
792 |
+
|
793 |
+
# Read all lines
|
794 |
+
STATE = _TK_DESCRIPTION
|
795 |
+
s = iter(s)
|
796 |
+
for row in s:
|
797 |
+
self._current_line += 1
|
798 |
+
# Ignore empty lines
|
799 |
+
row = row.strip(' \r\n')
|
800 |
+
if not row: continue
|
801 |
+
|
802 |
+
u_row = row.upper()
|
803 |
+
|
804 |
+
# DESCRIPTION -----------------------------------------------------
|
805 |
+
if u_row.startswith(_TK_DESCRIPTION) and STATE == _TK_DESCRIPTION:
|
806 |
+
obj['description'] += self._decode_comment(row) + '\n'
|
807 |
+
# -----------------------------------------------------------------
|
808 |
+
|
809 |
+
# RELATION --------------------------------------------------------
|
810 |
+
elif u_row.startswith(_TK_RELATION):
|
811 |
+
if STATE != _TK_DESCRIPTION:
|
812 |
+
raise BadLayout()
|
813 |
+
|
814 |
+
STATE = _TK_RELATION
|
815 |
+
obj['relation'] = self._decode_relation(row)
|
816 |
+
# -----------------------------------------------------------------
|
817 |
+
|
818 |
+
# ATTRIBUTE -------------------------------------------------------
|
819 |
+
elif u_row.startswith(_TK_ATTRIBUTE):
|
820 |
+
if STATE != _TK_RELATION and STATE != _TK_ATTRIBUTE:
|
821 |
+
raise BadLayout()
|
822 |
+
|
823 |
+
STATE = _TK_ATTRIBUTE
|
824 |
+
|
825 |
+
attr = self._decode_attribute(row)
|
826 |
+
if attr[0] in attribute_names:
|
827 |
+
raise BadAttributeName(attr[0], attribute_names[attr[0]])
|
828 |
+
else:
|
829 |
+
attribute_names[attr[0]] = self._current_line
|
830 |
+
obj['attributes'].append(attr)
|
831 |
+
|
832 |
+
if isinstance(attr[1], (list, tuple)):
|
833 |
+
if encode_nominal:
|
834 |
+
conversor = EncodedNominalConversor(attr[1])
|
835 |
+
else:
|
836 |
+
conversor = NominalConversor(attr[1])
|
837 |
+
else:
|
838 |
+
CONVERSOR_MAP = {'STRING': str,
|
839 |
+
'INTEGER': lambda x: int(float(x)),
|
840 |
+
'NUMERIC': float,
|
841 |
+
'REAL': float}
|
842 |
+
conversor = CONVERSOR_MAP[attr[1]]
|
843 |
+
|
844 |
+
self._conversors.append(conversor)
|
845 |
+
# -----------------------------------------------------------------
|
846 |
+
|
847 |
+
# DATA ------------------------------------------------------------
|
848 |
+
elif u_row.startswith(_TK_DATA):
|
849 |
+
if STATE != _TK_ATTRIBUTE:
|
850 |
+
raise BadLayout()
|
851 |
+
|
852 |
+
break
|
853 |
+
# -----------------------------------------------------------------
|
854 |
+
|
855 |
+
# COMMENT ---------------------------------------------------------
|
856 |
+
elif u_row.startswith(_TK_COMMENT):
|
857 |
+
pass
|
858 |
+
# -----------------------------------------------------------------
|
859 |
+
else:
|
860 |
+
# Never found @DATA
|
861 |
+
raise BadLayout()
|
862 |
+
|
863 |
+
def stream():
|
864 |
+
for row in s:
|
865 |
+
self._current_line += 1
|
866 |
+
row = row.strip()
|
867 |
+
# Ignore empty lines and comment lines.
|
868 |
+
if row and not row.startswith(_TK_COMMENT):
|
869 |
+
yield row
|
870 |
+
|
871 |
+
# Alter the data object
|
872 |
+
obj['data'] = data.decode_rows(stream(), self._conversors)
|
873 |
+
if obj['description'].endswith('\n'):
|
874 |
+
obj['description'] = obj['description'][:-1]
|
875 |
+
|
876 |
+
return obj
|
877 |
+
|
878 |
+
def decode(self, s, encode_nominal=False, return_type=DENSE):
|
879 |
+
'''Returns the Python representation of a given ARFF file.
|
880 |
+
|
881 |
+
When a file object is passed as an argument, this method reads lines
|
882 |
+
iteratively, avoiding to load unnecessary information to the memory.
|
883 |
+
|
884 |
+
:param s: a string or file object with the ARFF file.
|
885 |
+
:param encode_nominal: boolean, if True perform a label encoding
|
886 |
+
while reading the .arff file.
|
887 |
+
:param return_type: determines the data structure used to store the
|
888 |
+
dataset. Can be one of `arff.DENSE`, `arff.COO`, `arff.LOD`,
|
889 |
+
`arff.DENSE_GEN` or `arff.LOD_GEN`.
|
890 |
+
Consult the sections on `working with sparse data`_ and `loading
|
891 |
+
progressively`_.
|
892 |
+
'''
|
893 |
+
try:
|
894 |
+
return self._decode(s, encode_nominal=encode_nominal,
|
895 |
+
matrix_type=return_type)
|
896 |
+
except ArffException as e:
|
897 |
+
e.line = self._current_line
|
898 |
+
raise e
|
899 |
+
|
900 |
+
|
901 |
+
class ArffEncoder:
|
902 |
+
'''An ARFF encoder.'''
|
903 |
+
|
904 |
+
def _encode_comment(self, s=''):
|
905 |
+
'''(INTERNAL) Encodes a comment line.
|
906 |
+
|
907 |
+
Comments are single line strings starting, obligatorily, with the ``%``
|
908 |
+
character, and can have any symbol, including whitespaces or special
|
909 |
+
characters.
|
910 |
+
|
911 |
+
If ``s`` is None, this method will simply return an empty comment.
|
912 |
+
|
913 |
+
:param s: (OPTIONAL) string.
|
914 |
+
:return: a string with the encoded comment line.
|
915 |
+
'''
|
916 |
+
if s:
|
917 |
+
return '%s %s'%(_TK_COMMENT, s)
|
918 |
+
else:
|
919 |
+
return '%s' % _TK_COMMENT
|
920 |
+
|
921 |
+
def _encode_relation(self, name):
|
922 |
+
'''(INTERNAL) Decodes a relation line.
|
923 |
+
|
924 |
+
The relation declaration is a line with the format ``@RELATION
|
925 |
+
<relation-name>``, where ``relation-name`` is a string.
|
926 |
+
|
927 |
+
:param name: a string.
|
928 |
+
:return: a string with the encoded relation declaration.
|
929 |
+
'''
|
930 |
+
for char in ' %{},':
|
931 |
+
if char in name:
|
932 |
+
name = '"%s"'%name
|
933 |
+
break
|
934 |
+
|
935 |
+
return '%s %s'%(_TK_RELATION, name)
|
936 |
+
|
937 |
+
def _encode_attribute(self, name, type_):
|
938 |
+
'''(INTERNAL) Encodes an attribute line.
|
939 |
+
|
940 |
+
The attribute follow the template::
|
941 |
+
|
942 |
+
@attribute <attribute-name> <datatype>
|
943 |
+
|
944 |
+
where ``attribute-name`` is a string, and ``datatype`` can be:
|
945 |
+
|
946 |
+
- Numerical attributes as ``NUMERIC``, ``INTEGER`` or ``REAL``.
|
947 |
+
- Strings as ``STRING``.
|
948 |
+
- Dates (NOT IMPLEMENTED).
|
949 |
+
- Nominal attributes with format:
|
950 |
+
|
951 |
+
{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...}
|
952 |
+
|
953 |
+
This method must receive a the name of the attribute and its type, if
|
954 |
+
the attribute type is nominal, ``type`` must be a list of values.
|
955 |
+
|
956 |
+
:param name: a string.
|
957 |
+
:param type_: a string or a list of string.
|
958 |
+
:return: a string with the encoded attribute declaration.
|
959 |
+
'''
|
960 |
+
for char in ' %{},':
|
961 |
+
if char in name:
|
962 |
+
name = '"%s"'%name
|
963 |
+
break
|
964 |
+
|
965 |
+
if isinstance(type_, (tuple, list)):
|
966 |
+
type_tmp = ['%s' % encode_string(type_k) for type_k in type_]
|
967 |
+
type_ = '{%s}'%(', '.join(type_tmp))
|
968 |
+
|
969 |
+
return '%s %s %s'%(_TK_ATTRIBUTE, name, type_)
|
970 |
+
|
971 |
+
def encode(self, obj):
|
972 |
+
'''Encodes a given object to an ARFF file.
|
973 |
+
|
974 |
+
:param obj: the object containing the ARFF information.
|
975 |
+
:return: the ARFF file as an string.
|
976 |
+
'''
|
977 |
+
data = [row for row in self.iter_encode(obj)]
|
978 |
+
|
979 |
+
return '\n'.join(data)
|
980 |
+
|
981 |
+
def iter_encode(self, obj):
|
982 |
+
'''The iterative version of `arff.ArffEncoder.encode`.
|
983 |
+
|
984 |
+
This encodes iteratively a given object and return, one-by-one, the
|
985 |
+
lines of the ARFF file.
|
986 |
+
|
987 |
+
:param obj: the object containing the ARFF information.
|
988 |
+
:return: (yields) the ARFF file as strings.
|
989 |
+
'''
|
990 |
+
# DESCRIPTION
|
991 |
+
if obj.get('description', None):
|
992 |
+
for row in obj['description'].split('\n'):
|
993 |
+
yield self._encode_comment(row)
|
994 |
+
|
995 |
+
# RELATION
|
996 |
+
if not obj.get('relation'):
|
997 |
+
raise BadObject('Relation name not found or with invalid value.')
|
998 |
+
|
999 |
+
yield self._encode_relation(obj['relation'])
|
1000 |
+
yield ''
|
1001 |
+
|
1002 |
+
# ATTRIBUTES
|
1003 |
+
if not obj.get('attributes'):
|
1004 |
+
raise BadObject('Attributes not found.')
|
1005 |
+
|
1006 |
+
attribute_names = set()
|
1007 |
+
for attr in obj['attributes']:
|
1008 |
+
# Verify for bad object format
|
1009 |
+
if not isinstance(attr, (tuple, list)) or \
|
1010 |
+
len(attr) != 2 or \
|
1011 |
+
not isinstance(attr[0], str):
|
1012 |
+
raise BadObject('Invalid attribute declaration "%s"'%str(attr))
|
1013 |
+
|
1014 |
+
if isinstance(attr[1], str):
|
1015 |
+
# Verify for invalid types
|
1016 |
+
if attr[1] not in _SIMPLE_TYPES:
|
1017 |
+
raise BadObject('Invalid attribute type "%s"'%str(attr))
|
1018 |
+
|
1019 |
+
# Verify for bad object format
|
1020 |
+
elif not isinstance(attr[1], (tuple, list)):
|
1021 |
+
raise BadObject('Invalid attribute type "%s"'%str(attr))
|
1022 |
+
|
1023 |
+
# Verify attribute name is not used twice
|
1024 |
+
if attr[0] in attribute_names:
|
1025 |
+
raise BadObject('Trying to use attribute name "%s" for the '
|
1026 |
+
'second time.' % str(attr[0]))
|
1027 |
+
else:
|
1028 |
+
attribute_names.add(attr[0])
|
1029 |
+
|
1030 |
+
yield self._encode_attribute(attr[0], attr[1])
|
1031 |
+
yield ''
|
1032 |
+
attributes = obj['attributes']
|
1033 |
+
|
1034 |
+
# DATA
|
1035 |
+
yield _TK_DATA
|
1036 |
+
if 'data' in obj:
|
1037 |
+
data = _get_data_object_for_encoding(obj.get('data'))
|
1038 |
+
yield from data.encode_data(obj.get('data'), attributes)
|
1039 |
+
|
1040 |
+
yield ''
|
1041 |
+
|
1042 |
+
# =============================================================================
|
1043 |
+
|
1044 |
+
# BASIC INTERFACE =============================================================
|
1045 |
+
def load(fp, encode_nominal=False, return_type=DENSE):
|
1046 |
+
'''Load a file-like object containing the ARFF document and convert it into
|
1047 |
+
a Python object.
|
1048 |
+
|
1049 |
+
:param fp: a file-like object.
|
1050 |
+
:param encode_nominal: boolean, if True perform a label encoding
|
1051 |
+
while reading the .arff file.
|
1052 |
+
:param return_type: determines the data structure used to store the
|
1053 |
+
dataset. Can be one of `arff.DENSE`, `arff.COO`, `arff.LOD`,
|
1054 |
+
`arff.DENSE_GEN` or `arff.LOD_GEN`.
|
1055 |
+
Consult the sections on `working with sparse data`_ and `loading
|
1056 |
+
progressively`_.
|
1057 |
+
:return: a dictionary.
|
1058 |
+
'''
|
1059 |
+
decoder = ArffDecoder()
|
1060 |
+
return decoder.decode(fp, encode_nominal=encode_nominal,
|
1061 |
+
return_type=return_type)
|
1062 |
+
|
1063 |
+
def loads(s, encode_nominal=False, return_type=DENSE):
|
1064 |
+
'''Convert a string instance containing the ARFF document into a Python
|
1065 |
+
object.
|
1066 |
+
|
1067 |
+
:param s: a string object.
|
1068 |
+
:param encode_nominal: boolean, if True perform a label encoding
|
1069 |
+
while reading the .arff file.
|
1070 |
+
:param return_type: determines the data structure used to store the
|
1071 |
+
dataset. Can be one of `arff.DENSE`, `arff.COO`, `arff.LOD`,
|
1072 |
+
`arff.DENSE_GEN` or `arff.LOD_GEN`.
|
1073 |
+
Consult the sections on `working with sparse data`_ and `loading
|
1074 |
+
progressively`_.
|
1075 |
+
:return: a dictionary.
|
1076 |
+
'''
|
1077 |
+
decoder = ArffDecoder()
|
1078 |
+
return decoder.decode(s, encode_nominal=encode_nominal,
|
1079 |
+
return_type=return_type)
|
1080 |
+
|
1081 |
+
def dump(obj, fp):
|
1082 |
+
'''Serialize an object representing the ARFF document to a given file-like
|
1083 |
+
object.
|
1084 |
+
|
1085 |
+
:param obj: a dictionary.
|
1086 |
+
:param fp: a file-like object.
|
1087 |
+
'''
|
1088 |
+
encoder = ArffEncoder()
|
1089 |
+
generator = encoder.iter_encode(obj)
|
1090 |
+
|
1091 |
+
last_row = next(generator)
|
1092 |
+
for row in generator:
|
1093 |
+
fp.write(last_row + '\n')
|
1094 |
+
last_row = row
|
1095 |
+
fp.write(last_row)
|
1096 |
+
|
1097 |
+
return fp
|
1098 |
+
|
1099 |
+
def dumps(obj):
|
1100 |
+
'''Serialize an object representing the ARFF document, returning a string.
|
1101 |
+
|
1102 |
+
:param obj: a dictionary.
|
1103 |
+
:return: a string with the ARFF document.
|
1104 |
+
'''
|
1105 |
+
encoder = ArffEncoder()
|
1106 |
+
return encoder.encode(obj)
|
1107 |
+
# =============================================================================
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (196 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/_structures.cpython-310.pyc
ADDED
Binary file (3.07 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/__pycache__/version.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/_structures.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Vendoered from
|
2 |
+
https://github.com/pypa/packaging/blob/main/packaging/_structures.py
|
3 |
+
"""
|
4 |
+
# Copyright (c) Donald Stufft and individual contributors.
|
5 |
+
# All rights reserved.
|
6 |
+
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions are met:
|
9 |
+
|
10 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
11 |
+
# this list of conditions and the following disclaimer.
|
12 |
+
|
13 |
+
# 2. Redistributions in binary form must reproduce the above copyright
|
14 |
+
# notice, this list of conditions and the following disclaimer in the
|
15 |
+
# documentation and/or other materials provided with the distribution.
|
16 |
+
|
17 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
18 |
+
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
19 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
20 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
21 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
22 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
23 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
24 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
25 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27 |
+
|
28 |
+
|
29 |
+
class InfinityType:
|
30 |
+
def __repr__(self) -> str:
|
31 |
+
return "Infinity"
|
32 |
+
|
33 |
+
def __hash__(self) -> int:
|
34 |
+
return hash(repr(self))
|
35 |
+
|
36 |
+
def __lt__(self, other: object) -> bool:
|
37 |
+
return False
|
38 |
+
|
39 |
+
def __le__(self, other: object) -> bool:
|
40 |
+
return False
|
41 |
+
|
42 |
+
def __eq__(self, other: object) -> bool:
|
43 |
+
return isinstance(other, self.__class__)
|
44 |
+
|
45 |
+
def __ne__(self, other: object) -> bool:
|
46 |
+
return not isinstance(other, self.__class__)
|
47 |
+
|
48 |
+
def __gt__(self, other: object) -> bool:
|
49 |
+
return True
|
50 |
+
|
51 |
+
def __ge__(self, other: object) -> bool:
|
52 |
+
return True
|
53 |
+
|
54 |
+
def __neg__(self: object) -> "NegativeInfinityType":
|
55 |
+
return NegativeInfinity
|
56 |
+
|
57 |
+
|
58 |
+
Infinity = InfinityType()
|
59 |
+
|
60 |
+
|
61 |
+
class NegativeInfinityType:
|
62 |
+
def __repr__(self) -> str:
|
63 |
+
return "-Infinity"
|
64 |
+
|
65 |
+
def __hash__(self) -> int:
|
66 |
+
return hash(repr(self))
|
67 |
+
|
68 |
+
def __lt__(self, other: object) -> bool:
|
69 |
+
return True
|
70 |
+
|
71 |
+
def __le__(self, other: object) -> bool:
|
72 |
+
return True
|
73 |
+
|
74 |
+
def __eq__(self, other: object) -> bool:
|
75 |
+
return isinstance(other, self.__class__)
|
76 |
+
|
77 |
+
def __ne__(self, other: object) -> bool:
|
78 |
+
return not isinstance(other, self.__class__)
|
79 |
+
|
80 |
+
def __gt__(self, other: object) -> bool:
|
81 |
+
return False
|
82 |
+
|
83 |
+
def __ge__(self, other: object) -> bool:
|
84 |
+
return False
|
85 |
+
|
86 |
+
def __neg__(self: object) -> InfinityType:
|
87 |
+
return Infinity
|
88 |
+
|
89 |
+
|
90 |
+
NegativeInfinity = NegativeInfinityType()
|
venv/lib/python3.10/site-packages/sklearn/externals/_packaging/version.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Vendoered from
|
2 |
+
https://github.com/pypa/packaging/blob/main/packaging/version.py
|
3 |
+
"""
|
4 |
+
# Copyright (c) Donald Stufft and individual contributors.
|
5 |
+
# All rights reserved.
|
6 |
+
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions are met:
|
9 |
+
|
10 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
11 |
+
# this list of conditions and the following disclaimer.
|
12 |
+
|
13 |
+
# 2. Redistributions in binary form must reproduce the above copyright
|
14 |
+
# notice, this list of conditions and the following disclaimer in the
|
15 |
+
# documentation and/or other materials provided with the distribution.
|
16 |
+
|
17 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
18 |
+
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
19 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
20 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
21 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
22 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
23 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
24 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
25 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
26 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
27 |
+
|
28 |
+
import collections
|
29 |
+
import itertools
|
30 |
+
import re
|
31 |
+
import warnings
|
32 |
+
from typing import Callable, Iterator, List, Optional, SupportsInt, Tuple, Union
|
33 |
+
|
34 |
+
from ._structures import Infinity, InfinityType, NegativeInfinity, NegativeInfinityType
|
35 |
+
|
36 |
+
__all__ = ["parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN"]
|
37 |
+
|
38 |
+
InfiniteTypes = Union[InfinityType, NegativeInfinityType]
|
39 |
+
PrePostDevType = Union[InfiniteTypes, Tuple[str, int]]
|
40 |
+
SubLocalType = Union[InfiniteTypes, int, str]
|
41 |
+
LocalType = Union[
|
42 |
+
NegativeInfinityType,
|
43 |
+
Tuple[
|
44 |
+
Union[
|
45 |
+
SubLocalType,
|
46 |
+
Tuple[SubLocalType, str],
|
47 |
+
Tuple[NegativeInfinityType, SubLocalType],
|
48 |
+
],
|
49 |
+
...,
|
50 |
+
],
|
51 |
+
]
|
52 |
+
CmpKey = Tuple[
|
53 |
+
int, Tuple[int, ...], PrePostDevType, PrePostDevType, PrePostDevType, LocalType
|
54 |
+
]
|
55 |
+
LegacyCmpKey = Tuple[int, Tuple[str, ...]]
|
56 |
+
VersionComparisonMethod = Callable[
|
57 |
+
[Union[CmpKey, LegacyCmpKey], Union[CmpKey, LegacyCmpKey]], bool
|
58 |
+
]
|
59 |
+
|
60 |
+
_Version = collections.namedtuple(
|
61 |
+
"_Version", ["epoch", "release", "dev", "pre", "post", "local"]
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
def parse(version: str) -> Union["LegacyVersion", "Version"]:
|
66 |
+
"""Parse the given version from a string to an appropriate class.
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
version : str
|
71 |
+
Version in a string format, eg. "0.9.1" or "1.2.dev0".
|
72 |
+
|
73 |
+
Returns
|
74 |
+
-------
|
75 |
+
version : :class:`Version` object or a :class:`LegacyVersion` object
|
76 |
+
Returned class depends on the given version: if is a valid
|
77 |
+
PEP 440 version or a legacy version.
|
78 |
+
"""
|
79 |
+
try:
|
80 |
+
return Version(version)
|
81 |
+
except InvalidVersion:
|
82 |
+
return LegacyVersion(version)
|
83 |
+
|
84 |
+
|
85 |
+
class InvalidVersion(ValueError):
|
86 |
+
"""
|
87 |
+
An invalid version was found, users should refer to PEP 440.
|
88 |
+
"""
|
89 |
+
|
90 |
+
|
91 |
+
class _BaseVersion:
|
92 |
+
_key: Union[CmpKey, LegacyCmpKey]
|
93 |
+
|
94 |
+
def __hash__(self) -> int:
|
95 |
+
return hash(self._key)
|
96 |
+
|
97 |
+
# Please keep the duplicated `isinstance` check
|
98 |
+
# in the six comparisons hereunder
|
99 |
+
# unless you find a way to avoid adding overhead function calls.
|
100 |
+
def __lt__(self, other: "_BaseVersion") -> bool:
|
101 |
+
if not isinstance(other, _BaseVersion):
|
102 |
+
return NotImplemented
|
103 |
+
|
104 |
+
return self._key < other._key
|
105 |
+
|
106 |
+
def __le__(self, other: "_BaseVersion") -> bool:
|
107 |
+
if not isinstance(other, _BaseVersion):
|
108 |
+
return NotImplemented
|
109 |
+
|
110 |
+
return self._key <= other._key
|
111 |
+
|
112 |
+
def __eq__(self, other: object) -> bool:
|
113 |
+
if not isinstance(other, _BaseVersion):
|
114 |
+
return NotImplemented
|
115 |
+
|
116 |
+
return self._key == other._key
|
117 |
+
|
118 |
+
def __ge__(self, other: "_BaseVersion") -> bool:
|
119 |
+
if not isinstance(other, _BaseVersion):
|
120 |
+
return NotImplemented
|
121 |
+
|
122 |
+
return self._key >= other._key
|
123 |
+
|
124 |
+
def __gt__(self, other: "_BaseVersion") -> bool:
|
125 |
+
if not isinstance(other, _BaseVersion):
|
126 |
+
return NotImplemented
|
127 |
+
|
128 |
+
return self._key > other._key
|
129 |
+
|
130 |
+
def __ne__(self, other: object) -> bool:
|
131 |
+
if not isinstance(other, _BaseVersion):
|
132 |
+
return NotImplemented
|
133 |
+
|
134 |
+
return self._key != other._key
|
135 |
+
|
136 |
+
|
137 |
+
class LegacyVersion(_BaseVersion):
|
138 |
+
def __init__(self, version: str) -> None:
|
139 |
+
self._version = str(version)
|
140 |
+
self._key = _legacy_cmpkey(self._version)
|
141 |
+
|
142 |
+
warnings.warn(
|
143 |
+
"Creating a LegacyVersion has been deprecated and will be "
|
144 |
+
"removed in the next major release",
|
145 |
+
DeprecationWarning,
|
146 |
+
)
|
147 |
+
|
148 |
+
def __str__(self) -> str:
|
149 |
+
return self._version
|
150 |
+
|
151 |
+
def __repr__(self) -> str:
|
152 |
+
return f"<LegacyVersion('{self}')>"
|
153 |
+
|
154 |
+
@property
|
155 |
+
def public(self) -> str:
|
156 |
+
return self._version
|
157 |
+
|
158 |
+
@property
|
159 |
+
def base_version(self) -> str:
|
160 |
+
return self._version
|
161 |
+
|
162 |
+
@property
|
163 |
+
def epoch(self) -> int:
|
164 |
+
return -1
|
165 |
+
|
166 |
+
@property
|
167 |
+
def release(self) -> None:
|
168 |
+
return None
|
169 |
+
|
170 |
+
@property
|
171 |
+
def pre(self) -> None:
|
172 |
+
return None
|
173 |
+
|
174 |
+
@property
|
175 |
+
def post(self) -> None:
|
176 |
+
return None
|
177 |
+
|
178 |
+
@property
|
179 |
+
def dev(self) -> None:
|
180 |
+
return None
|
181 |
+
|
182 |
+
@property
|
183 |
+
def local(self) -> None:
|
184 |
+
return None
|
185 |
+
|
186 |
+
@property
|
187 |
+
def is_prerelease(self) -> bool:
|
188 |
+
return False
|
189 |
+
|
190 |
+
@property
|
191 |
+
def is_postrelease(self) -> bool:
|
192 |
+
return False
|
193 |
+
|
194 |
+
@property
|
195 |
+
def is_devrelease(self) -> bool:
|
196 |
+
return False
|
197 |
+
|
198 |
+
|
199 |
+
_legacy_version_component_re = re.compile(r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE)
|
200 |
+
|
201 |
+
_legacy_version_replacement_map = {
|
202 |
+
"pre": "c",
|
203 |
+
"preview": "c",
|
204 |
+
"-": "final-",
|
205 |
+
"rc": "c",
|
206 |
+
"dev": "@",
|
207 |
+
}
|
208 |
+
|
209 |
+
|
210 |
+
def _parse_version_parts(s: str) -> Iterator[str]:
|
211 |
+
for part in _legacy_version_component_re.split(s):
|
212 |
+
part = _legacy_version_replacement_map.get(part, part)
|
213 |
+
|
214 |
+
if not part or part == ".":
|
215 |
+
continue
|
216 |
+
|
217 |
+
if part[:1] in "0123456789":
|
218 |
+
# pad for numeric comparison
|
219 |
+
yield part.zfill(8)
|
220 |
+
else:
|
221 |
+
yield "*" + part
|
222 |
+
|
223 |
+
# ensure that alpha/beta/candidate are before final
|
224 |
+
yield "*final"
|
225 |
+
|
226 |
+
|
227 |
+
def _legacy_cmpkey(version: str) -> LegacyCmpKey:
|
228 |
+
|
229 |
+
# We hardcode an epoch of -1 here. A PEP 440 version can only have a epoch
|
230 |
+
# greater than or equal to 0. This will effectively put the LegacyVersion,
|
231 |
+
# which uses the defacto standard originally implemented by setuptools,
|
232 |
+
# as before all PEP 440 versions.
|
233 |
+
epoch = -1
|
234 |
+
|
235 |
+
# This scheme is taken from pkg_resources.parse_version setuptools prior to
|
236 |
+
# it's adoption of the packaging library.
|
237 |
+
parts: List[str] = []
|
238 |
+
for part in _parse_version_parts(version.lower()):
|
239 |
+
if part.startswith("*"):
|
240 |
+
# remove "-" before a prerelease tag
|
241 |
+
if part < "*final":
|
242 |
+
while parts and parts[-1] == "*final-":
|
243 |
+
parts.pop()
|
244 |
+
|
245 |
+
# remove trailing zeros from each series of numeric parts
|
246 |
+
while parts and parts[-1] == "00000000":
|
247 |
+
parts.pop()
|
248 |
+
|
249 |
+
parts.append(part)
|
250 |
+
|
251 |
+
return epoch, tuple(parts)
|
252 |
+
|
253 |
+
|
254 |
+
# Deliberately not anchored to the start and end of the string, to make it
|
255 |
+
# easier for 3rd party code to reuse
|
256 |
+
VERSION_PATTERN = r"""
|
257 |
+
v?
|
258 |
+
(?:
|
259 |
+
(?:(?P<epoch>[0-9]+)!)? # epoch
|
260 |
+
(?P<release>[0-9]+(?:\.[0-9]+)*) # release segment
|
261 |
+
(?P<pre> # pre-release
|
262 |
+
[-_\.]?
|
263 |
+
(?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))
|
264 |
+
[-_\.]?
|
265 |
+
(?P<pre_n>[0-9]+)?
|
266 |
+
)?
|
267 |
+
(?P<post> # post release
|
268 |
+
(?:-(?P<post_n1>[0-9]+))
|
269 |
+
|
|
270 |
+
(?:
|
271 |
+
[-_\.]?
|
272 |
+
(?P<post_l>post|rev|r)
|
273 |
+
[-_\.]?
|
274 |
+
(?P<post_n2>[0-9]+)?
|
275 |
+
)
|
276 |
+
)?
|
277 |
+
(?P<dev> # dev release
|
278 |
+
[-_\.]?
|
279 |
+
(?P<dev_l>dev)
|
280 |
+
[-_\.]?
|
281 |
+
(?P<dev_n>[0-9]+)?
|
282 |
+
)?
|
283 |
+
)
|
284 |
+
(?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version
|
285 |
+
"""
|
286 |
+
|
287 |
+
|
288 |
+
class Version(_BaseVersion):
|
289 |
+
|
290 |
+
_regex = re.compile(r"^\s*" + VERSION_PATTERN + r"\s*$", re.VERBOSE | re.IGNORECASE)
|
291 |
+
|
292 |
+
def __init__(self, version: str) -> None:
|
293 |
+
|
294 |
+
# Validate the version and parse it into pieces
|
295 |
+
match = self._regex.search(version)
|
296 |
+
if not match:
|
297 |
+
raise InvalidVersion(f"Invalid version: '{version}'")
|
298 |
+
|
299 |
+
# Store the parsed out pieces of the version
|
300 |
+
self._version = _Version(
|
301 |
+
epoch=int(match.group("epoch")) if match.group("epoch") else 0,
|
302 |
+
release=tuple(int(i) for i in match.group("release").split(".")),
|
303 |
+
pre=_parse_letter_version(match.group("pre_l"), match.group("pre_n")),
|
304 |
+
post=_parse_letter_version(
|
305 |
+
match.group("post_l"), match.group("post_n1") or match.group("post_n2")
|
306 |
+
),
|
307 |
+
dev=_parse_letter_version(match.group("dev_l"), match.group("dev_n")),
|
308 |
+
local=_parse_local_version(match.group("local")),
|
309 |
+
)
|
310 |
+
|
311 |
+
# Generate a key which will be used for sorting
|
312 |
+
self._key = _cmpkey(
|
313 |
+
self._version.epoch,
|
314 |
+
self._version.release,
|
315 |
+
self._version.pre,
|
316 |
+
self._version.post,
|
317 |
+
self._version.dev,
|
318 |
+
self._version.local,
|
319 |
+
)
|
320 |
+
|
321 |
+
def __repr__(self) -> str:
|
322 |
+
return f"<Version('{self}')>"
|
323 |
+
|
324 |
+
def __str__(self) -> str:
|
325 |
+
parts = []
|
326 |
+
|
327 |
+
# Epoch
|
328 |
+
if self.epoch != 0:
|
329 |
+
parts.append(f"{self.epoch}!")
|
330 |
+
|
331 |
+
# Release segment
|
332 |
+
parts.append(".".join(str(x) for x in self.release))
|
333 |
+
|
334 |
+
# Pre-release
|
335 |
+
if self.pre is not None:
|
336 |
+
parts.append("".join(str(x) for x in self.pre))
|
337 |
+
|
338 |
+
# Post-release
|
339 |
+
if self.post is not None:
|
340 |
+
parts.append(f".post{self.post}")
|
341 |
+
|
342 |
+
# Development release
|
343 |
+
if self.dev is not None:
|
344 |
+
parts.append(f".dev{self.dev}")
|
345 |
+
|
346 |
+
# Local version segment
|
347 |
+
if self.local is not None:
|
348 |
+
parts.append(f"+{self.local}")
|
349 |
+
|
350 |
+
return "".join(parts)
|
351 |
+
|
352 |
+
@property
|
353 |
+
def epoch(self) -> int:
|
354 |
+
_epoch: int = self._version.epoch
|
355 |
+
return _epoch
|
356 |
+
|
357 |
+
@property
|
358 |
+
def release(self) -> Tuple[int, ...]:
|
359 |
+
_release: Tuple[int, ...] = self._version.release
|
360 |
+
return _release
|
361 |
+
|
362 |
+
@property
|
363 |
+
def pre(self) -> Optional[Tuple[str, int]]:
|
364 |
+
_pre: Optional[Tuple[str, int]] = self._version.pre
|
365 |
+
return _pre
|
366 |
+
|
367 |
+
@property
|
368 |
+
def post(self) -> Optional[int]:
|
369 |
+
return self._version.post[1] if self._version.post else None
|
370 |
+
|
371 |
+
@property
|
372 |
+
def dev(self) -> Optional[int]:
|
373 |
+
return self._version.dev[1] if self._version.dev else None
|
374 |
+
|
375 |
+
@property
|
376 |
+
def local(self) -> Optional[str]:
|
377 |
+
if self._version.local:
|
378 |
+
return ".".join(str(x) for x in self._version.local)
|
379 |
+
else:
|
380 |
+
return None
|
381 |
+
|
382 |
+
@property
|
383 |
+
def public(self) -> str:
|
384 |
+
return str(self).split("+", 1)[0]
|
385 |
+
|
386 |
+
@property
|
387 |
+
def base_version(self) -> str:
|
388 |
+
parts = []
|
389 |
+
|
390 |
+
# Epoch
|
391 |
+
if self.epoch != 0:
|
392 |
+
parts.append(f"{self.epoch}!")
|
393 |
+
|
394 |
+
# Release segment
|
395 |
+
parts.append(".".join(str(x) for x in self.release))
|
396 |
+
|
397 |
+
return "".join(parts)
|
398 |
+
|
399 |
+
@property
|
400 |
+
def is_prerelease(self) -> bool:
|
401 |
+
return self.dev is not None or self.pre is not None
|
402 |
+
|
403 |
+
@property
|
404 |
+
def is_postrelease(self) -> bool:
|
405 |
+
return self.post is not None
|
406 |
+
|
407 |
+
@property
|
408 |
+
def is_devrelease(self) -> bool:
|
409 |
+
return self.dev is not None
|
410 |
+
|
411 |
+
@property
|
412 |
+
def major(self) -> int:
|
413 |
+
return self.release[0] if len(self.release) >= 1 else 0
|
414 |
+
|
415 |
+
@property
|
416 |
+
def minor(self) -> int:
|
417 |
+
return self.release[1] if len(self.release) >= 2 else 0
|
418 |
+
|
419 |
+
@property
|
420 |
+
def micro(self) -> int:
|
421 |
+
return self.release[2] if len(self.release) >= 3 else 0
|
422 |
+
|
423 |
+
|
424 |
+
def _parse_letter_version(
|
425 |
+
letter: str, number: Union[str, bytes, SupportsInt]
|
426 |
+
) -> Optional[Tuple[str, int]]:
|
427 |
+
|
428 |
+
if letter:
|
429 |
+
# We consider there to be an implicit 0 in a pre-release if there is
|
430 |
+
# not a numeral associated with it.
|
431 |
+
if number is None:
|
432 |
+
number = 0
|
433 |
+
|
434 |
+
# We normalize any letters to their lower case form
|
435 |
+
letter = letter.lower()
|
436 |
+
|
437 |
+
# We consider some words to be alternate spellings of other words and
|
438 |
+
# in those cases we want to normalize the spellings to our preferred
|
439 |
+
# spelling.
|
440 |
+
if letter == "alpha":
|
441 |
+
letter = "a"
|
442 |
+
elif letter == "beta":
|
443 |
+
letter = "b"
|
444 |
+
elif letter in ["c", "pre", "preview"]:
|
445 |
+
letter = "rc"
|
446 |
+
elif letter in ["rev", "r"]:
|
447 |
+
letter = "post"
|
448 |
+
|
449 |
+
return letter, int(number)
|
450 |
+
if not letter and number:
|
451 |
+
# We assume if we are given a number, but we are not given a letter
|
452 |
+
# then this is using the implicit post release syntax (e.g. 1.0-1)
|
453 |
+
letter = "post"
|
454 |
+
|
455 |
+
return letter, int(number)
|
456 |
+
|
457 |
+
return None
|
458 |
+
|
459 |
+
|
460 |
+
_local_version_separators = re.compile(r"[\._-]")
|
461 |
+
|
462 |
+
|
463 |
+
def _parse_local_version(local: str) -> Optional[LocalType]:
|
464 |
+
"""
|
465 |
+
Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
|
466 |
+
"""
|
467 |
+
if local is not None:
|
468 |
+
return tuple(
|
469 |
+
part.lower() if not part.isdigit() else int(part)
|
470 |
+
for part in _local_version_separators.split(local)
|
471 |
+
)
|
472 |
+
return None
|
473 |
+
|
474 |
+
|
475 |
+
def _cmpkey(
|
476 |
+
epoch: int,
|
477 |
+
release: Tuple[int, ...],
|
478 |
+
pre: Optional[Tuple[str, int]],
|
479 |
+
post: Optional[Tuple[str, int]],
|
480 |
+
dev: Optional[Tuple[str, int]],
|
481 |
+
local: Optional[Tuple[SubLocalType]],
|
482 |
+
) -> CmpKey:
|
483 |
+
|
484 |
+
# When we compare a release version, we want to compare it with all of the
|
485 |
+
# trailing zeros removed. So we'll use a reverse the list, drop all the now
|
486 |
+
# leading zeros until we come to something non zero, then take the rest
|
487 |
+
# re-reverse it back into the correct order and make it a tuple and use
|
488 |
+
# that for our sorting key.
|
489 |
+
_release = tuple(
|
490 |
+
reversed(list(itertools.dropwhile(lambda x: x == 0, reversed(release))))
|
491 |
+
)
|
492 |
+
|
493 |
+
# We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
|
494 |
+
# We'll do this by abusing the pre segment, but we _only_ want to do this
|
495 |
+
# if there is not a pre or a post segment. If we have one of those then
|
496 |
+
# the normal sorting rules will handle this case correctly.
|
497 |
+
if pre is None and post is None and dev is not None:
|
498 |
+
_pre: PrePostDevType = NegativeInfinity
|
499 |
+
# Versions without a pre-release (except as noted above) should sort after
|
500 |
+
# those with one.
|
501 |
+
elif pre is None:
|
502 |
+
_pre = Infinity
|
503 |
+
else:
|
504 |
+
_pre = pre
|
505 |
+
|
506 |
+
# Versions without a post segment should sort before those with one.
|
507 |
+
if post is None:
|
508 |
+
_post: PrePostDevType = NegativeInfinity
|
509 |
+
|
510 |
+
else:
|
511 |
+
_post = post
|
512 |
+
|
513 |
+
# Versions without a development segment should sort after those with one.
|
514 |
+
if dev is None:
|
515 |
+
_dev: PrePostDevType = Infinity
|
516 |
+
|
517 |
+
else:
|
518 |
+
_dev = dev
|
519 |
+
|
520 |
+
if local is None:
|
521 |
+
# Versions without a local segment should sort before those with one.
|
522 |
+
_local: LocalType = NegativeInfinity
|
523 |
+
else:
|
524 |
+
# Versions with a local segment need that segment parsed to implement
|
525 |
+
# the sorting rules in PEP440.
|
526 |
+
# - Alpha numeric segments sort before numeric segments
|
527 |
+
# - Alpha numeric segments sort lexicographically
|
528 |
+
# - Numeric segments sort numerically
|
529 |
+
# - Shorter versions sort before longer versions when the prefixes
|
530 |
+
# match exactly
|
531 |
+
_local = tuple(
|
532 |
+
(i, "") if isinstance(i, int) else (NegativeInfinity, i) for i in local
|
533 |
+
)
|
534 |
+
|
535 |
+
return epoch, _release, _pre, _post, _dev, _local
|
venv/lib/python3.10/site-packages/sklearn/externals/conftest.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Do not collect any tests in externals. This is more robust than using
|
2 |
+
# --ignore because --ignore needs a path and it is not convenient to pass in
|
3 |
+
# the externals path (very long install-dependent path in site-packages) when
|
4 |
+
# using --pyargs
|
5 |
+
def pytest_ignore_collect(path, config):
|
6 |
+
return True
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__init__.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.neighbors` module implements the k-nearest neighbors
|
3 |
+
algorithm.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from ._ball_tree import BallTree
|
7 |
+
from ._base import VALID_METRICS, VALID_METRICS_SPARSE, sort_graph_by_row_values
|
8 |
+
from ._classification import KNeighborsClassifier, RadiusNeighborsClassifier
|
9 |
+
from ._graph import (
|
10 |
+
KNeighborsTransformer,
|
11 |
+
RadiusNeighborsTransformer,
|
12 |
+
kneighbors_graph,
|
13 |
+
radius_neighbors_graph,
|
14 |
+
)
|
15 |
+
from ._kd_tree import KDTree
|
16 |
+
from ._kde import KernelDensity
|
17 |
+
from ._lof import LocalOutlierFactor
|
18 |
+
from ._nca import NeighborhoodComponentsAnalysis
|
19 |
+
from ._nearest_centroid import NearestCentroid
|
20 |
+
from ._regression import KNeighborsRegressor, RadiusNeighborsRegressor
|
21 |
+
from ._unsupervised import NearestNeighbors
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"BallTree",
|
25 |
+
"KDTree",
|
26 |
+
"KNeighborsClassifier",
|
27 |
+
"KNeighborsRegressor",
|
28 |
+
"KNeighborsTransformer",
|
29 |
+
"NearestCentroid",
|
30 |
+
"NearestNeighbors",
|
31 |
+
"RadiusNeighborsClassifier",
|
32 |
+
"RadiusNeighborsRegressor",
|
33 |
+
"RadiusNeighborsTransformer",
|
34 |
+
"kneighbors_graph",
|
35 |
+
"radius_neighbors_graph",
|
36 |
+
"KernelDensity",
|
37 |
+
"LocalOutlierFactor",
|
38 |
+
"NeighborhoodComponentsAnalysis",
|
39 |
+
"sort_graph_by_row_values",
|
40 |
+
"VALID_METRICS",
|
41 |
+
"VALID_METRICS_SPARSE",
|
42 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (34.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_classification.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_graph.cpython-310.pyc
ADDED
Binary file (22.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_kde.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_lof.cpython-310.pyc
ADDED
Binary file (18.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_nca.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_nearest_centroid.cpython-310.pyc
ADDED
Binary file (7.77 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_regression.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/__pycache__/_unsupervised.cpython-310.pyc
ADDED
Binary file (6.42 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_ball_tree.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (774 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_kd_tree.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (774 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_kde.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Kernel Density Estimation
|
3 |
+
-------------------------
|
4 |
+
"""
|
5 |
+
# Author: Jake Vanderplas <[email protected]>
|
6 |
+
import itertools
|
7 |
+
from numbers import Integral, Real
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.special import gammainc
|
11 |
+
|
12 |
+
from ..base import BaseEstimator, _fit_context
|
13 |
+
from ..neighbors._base import VALID_METRICS
|
14 |
+
from ..utils import check_random_state
|
15 |
+
from ..utils._param_validation import Interval, StrOptions
|
16 |
+
from ..utils.extmath import row_norms
|
17 |
+
from ..utils.validation import _check_sample_weight, check_is_fitted
|
18 |
+
from ._ball_tree import BallTree
|
19 |
+
from ._kd_tree import KDTree
|
20 |
+
|
21 |
+
VALID_KERNELS = [
|
22 |
+
"gaussian",
|
23 |
+
"tophat",
|
24 |
+
"epanechnikov",
|
25 |
+
"exponential",
|
26 |
+
"linear",
|
27 |
+
"cosine",
|
28 |
+
]
|
29 |
+
|
30 |
+
TREE_DICT = {"ball_tree": BallTree, "kd_tree": KDTree}
|
31 |
+
|
32 |
+
|
33 |
+
# TODO: implement a brute force version for testing purposes
|
34 |
+
# TODO: create a density estimation base class?
|
35 |
+
class KernelDensity(BaseEstimator):
|
36 |
+
"""Kernel Density Estimation.
|
37 |
+
|
38 |
+
Read more in the :ref:`User Guide <kernel_density>`.
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
bandwidth : float or {"scott", "silverman"}, default=1.0
|
43 |
+
The bandwidth of the kernel. If bandwidth is a float, it defines the
|
44 |
+
bandwidth of the kernel. If bandwidth is a string, one of the estimation
|
45 |
+
methods is implemented.
|
46 |
+
|
47 |
+
algorithm : {'kd_tree', 'ball_tree', 'auto'}, default='auto'
|
48 |
+
The tree algorithm to use.
|
49 |
+
|
50 |
+
kernel : {'gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', \
|
51 |
+
'cosine'}, default='gaussian'
|
52 |
+
The kernel to use.
|
53 |
+
|
54 |
+
metric : str, default='euclidean'
|
55 |
+
Metric to use for distance computation. See the
|
56 |
+
documentation of `scipy.spatial.distance
|
57 |
+
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
58 |
+
the metrics listed in
|
59 |
+
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
60 |
+
values.
|
61 |
+
|
62 |
+
Not all metrics are valid with all algorithms: refer to the
|
63 |
+
documentation of :class:`BallTree` and :class:`KDTree`. Note that the
|
64 |
+
normalization of the density output is correct only for the Euclidean
|
65 |
+
distance metric.
|
66 |
+
|
67 |
+
atol : float, default=0
|
68 |
+
The desired absolute tolerance of the result. A larger tolerance will
|
69 |
+
generally lead to faster execution.
|
70 |
+
|
71 |
+
rtol : float, default=0
|
72 |
+
The desired relative tolerance of the result. A larger tolerance will
|
73 |
+
generally lead to faster execution.
|
74 |
+
|
75 |
+
breadth_first : bool, default=True
|
76 |
+
If true (default), use a breadth-first approach to the problem.
|
77 |
+
Otherwise use a depth-first approach.
|
78 |
+
|
79 |
+
leaf_size : int, default=40
|
80 |
+
Specify the leaf size of the underlying tree. See :class:`BallTree`
|
81 |
+
or :class:`KDTree` for details.
|
82 |
+
|
83 |
+
metric_params : dict, default=None
|
84 |
+
Additional parameters to be passed to the tree for use with the
|
85 |
+
metric. For more information, see the documentation of
|
86 |
+
:class:`BallTree` or :class:`KDTree`.
|
87 |
+
|
88 |
+
Attributes
|
89 |
+
----------
|
90 |
+
n_features_in_ : int
|
91 |
+
Number of features seen during :term:`fit`.
|
92 |
+
|
93 |
+
.. versionadded:: 0.24
|
94 |
+
|
95 |
+
tree_ : ``BinaryTree`` instance
|
96 |
+
The tree algorithm for fast generalized N-point problems.
|
97 |
+
|
98 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
99 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
100 |
+
has feature names that are all strings.
|
101 |
+
|
102 |
+
bandwidth_ : float
|
103 |
+
Value of the bandwidth, given directly by the bandwidth parameter or
|
104 |
+
estimated using the 'scott' or 'silverman' method.
|
105 |
+
|
106 |
+
.. versionadded:: 1.0
|
107 |
+
|
108 |
+
See Also
|
109 |
+
--------
|
110 |
+
sklearn.neighbors.KDTree : K-dimensional tree for fast generalized N-point
|
111 |
+
problems.
|
112 |
+
sklearn.neighbors.BallTree : Ball tree for fast generalized N-point
|
113 |
+
problems.
|
114 |
+
|
115 |
+
Examples
|
116 |
+
--------
|
117 |
+
Compute a gaussian kernel density estimate with a fixed bandwidth.
|
118 |
+
|
119 |
+
>>> from sklearn.neighbors import KernelDensity
|
120 |
+
>>> import numpy as np
|
121 |
+
>>> rng = np.random.RandomState(42)
|
122 |
+
>>> X = rng.random_sample((100, 3))
|
123 |
+
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X)
|
124 |
+
>>> log_density = kde.score_samples(X[:3])
|
125 |
+
>>> log_density
|
126 |
+
array([-1.52955942, -1.51462041, -1.60244657])
|
127 |
+
"""
|
128 |
+
|
129 |
+
_parameter_constraints: dict = {
|
130 |
+
"bandwidth": [
|
131 |
+
Interval(Real, 0, None, closed="neither"),
|
132 |
+
StrOptions({"scott", "silverman"}),
|
133 |
+
],
|
134 |
+
"algorithm": [StrOptions(set(TREE_DICT.keys()) | {"auto"})],
|
135 |
+
"kernel": [StrOptions(set(VALID_KERNELS))],
|
136 |
+
"metric": [
|
137 |
+
StrOptions(
|
138 |
+
set(itertools.chain(*[VALID_METRICS[alg] for alg in TREE_DICT.keys()]))
|
139 |
+
)
|
140 |
+
],
|
141 |
+
"atol": [Interval(Real, 0, None, closed="left")],
|
142 |
+
"rtol": [Interval(Real, 0, None, closed="left")],
|
143 |
+
"breadth_first": ["boolean"],
|
144 |
+
"leaf_size": [Interval(Integral, 1, None, closed="left")],
|
145 |
+
"metric_params": [None, dict],
|
146 |
+
}
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
*,
|
151 |
+
bandwidth=1.0,
|
152 |
+
algorithm="auto",
|
153 |
+
kernel="gaussian",
|
154 |
+
metric="euclidean",
|
155 |
+
atol=0,
|
156 |
+
rtol=0,
|
157 |
+
breadth_first=True,
|
158 |
+
leaf_size=40,
|
159 |
+
metric_params=None,
|
160 |
+
):
|
161 |
+
self.algorithm = algorithm
|
162 |
+
self.bandwidth = bandwidth
|
163 |
+
self.kernel = kernel
|
164 |
+
self.metric = metric
|
165 |
+
self.atol = atol
|
166 |
+
self.rtol = rtol
|
167 |
+
self.breadth_first = breadth_first
|
168 |
+
self.leaf_size = leaf_size
|
169 |
+
self.metric_params = metric_params
|
170 |
+
|
171 |
+
def _choose_algorithm(self, algorithm, metric):
|
172 |
+
# given the algorithm string + metric string, choose the optimal
|
173 |
+
# algorithm to compute the result.
|
174 |
+
if algorithm == "auto":
|
175 |
+
# use KD Tree if possible
|
176 |
+
if metric in KDTree.valid_metrics:
|
177 |
+
return "kd_tree"
|
178 |
+
elif metric in BallTree.valid_metrics:
|
179 |
+
return "ball_tree"
|
180 |
+
else: # kd_tree or ball_tree
|
181 |
+
if metric not in TREE_DICT[algorithm].valid_metrics:
|
182 |
+
raise ValueError(
|
183 |
+
"invalid metric for {0}: '{1}'".format(TREE_DICT[algorithm], metric)
|
184 |
+
)
|
185 |
+
return algorithm
|
186 |
+
|
187 |
+
@_fit_context(
|
188 |
+
# KernelDensity.metric is not validated yet
|
189 |
+
prefer_skip_nested_validation=False
|
190 |
+
)
|
191 |
+
def fit(self, X, y=None, sample_weight=None):
|
192 |
+
"""Fit the Kernel Density model on the data.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
X : array-like of shape (n_samples, n_features)
|
197 |
+
List of n_features-dimensional data points. Each row
|
198 |
+
corresponds to a single data point.
|
199 |
+
|
200 |
+
y : None
|
201 |
+
Ignored. This parameter exists only for compatibility with
|
202 |
+
:class:`~sklearn.pipeline.Pipeline`.
|
203 |
+
|
204 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
205 |
+
List of sample weights attached to the data X.
|
206 |
+
|
207 |
+
.. versionadded:: 0.20
|
208 |
+
|
209 |
+
Returns
|
210 |
+
-------
|
211 |
+
self : object
|
212 |
+
Returns the instance itself.
|
213 |
+
"""
|
214 |
+
algorithm = self._choose_algorithm(self.algorithm, self.metric)
|
215 |
+
|
216 |
+
if isinstance(self.bandwidth, str):
|
217 |
+
if self.bandwidth == "scott":
|
218 |
+
self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))
|
219 |
+
elif self.bandwidth == "silverman":
|
220 |
+
self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (
|
221 |
+
-1 / (X.shape[1] + 4)
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
self.bandwidth_ = self.bandwidth
|
225 |
+
|
226 |
+
X = self._validate_data(X, order="C", dtype=np.float64)
|
227 |
+
|
228 |
+
if sample_weight is not None:
|
229 |
+
sample_weight = _check_sample_weight(
|
230 |
+
sample_weight, X, dtype=np.float64, only_non_negative=True
|
231 |
+
)
|
232 |
+
|
233 |
+
kwargs = self.metric_params
|
234 |
+
if kwargs is None:
|
235 |
+
kwargs = {}
|
236 |
+
self.tree_ = TREE_DICT[algorithm](
|
237 |
+
X,
|
238 |
+
metric=self.metric,
|
239 |
+
leaf_size=self.leaf_size,
|
240 |
+
sample_weight=sample_weight,
|
241 |
+
**kwargs,
|
242 |
+
)
|
243 |
+
return self
|
244 |
+
|
245 |
+
def score_samples(self, X):
|
246 |
+
"""Compute the log-likelihood of each sample under the model.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
X : array-like of shape (n_samples, n_features)
|
251 |
+
An array of points to query. Last dimension should match dimension
|
252 |
+
of training data (n_features).
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
density : ndarray of shape (n_samples,)
|
257 |
+
Log-likelihood of each sample in `X`. These are normalized to be
|
258 |
+
probability densities, so values will be low for high-dimensional
|
259 |
+
data.
|
260 |
+
"""
|
261 |
+
check_is_fitted(self)
|
262 |
+
# The returned density is normalized to the number of points.
|
263 |
+
# For it to be a probability, we must scale it. For this reason
|
264 |
+
# we'll also scale atol.
|
265 |
+
X = self._validate_data(X, order="C", dtype=np.float64, reset=False)
|
266 |
+
if self.tree_.sample_weight is None:
|
267 |
+
N = self.tree_.data.shape[0]
|
268 |
+
else:
|
269 |
+
N = self.tree_.sum_weight
|
270 |
+
atol_N = self.atol * N
|
271 |
+
log_density = self.tree_.kernel_density(
|
272 |
+
X,
|
273 |
+
h=self.bandwidth_,
|
274 |
+
kernel=self.kernel,
|
275 |
+
atol=atol_N,
|
276 |
+
rtol=self.rtol,
|
277 |
+
breadth_first=self.breadth_first,
|
278 |
+
return_log=True,
|
279 |
+
)
|
280 |
+
log_density -= np.log(N)
|
281 |
+
return log_density
|
282 |
+
|
283 |
+
def score(self, X, y=None):
|
284 |
+
"""Compute the total log-likelihood under the model.
|
285 |
+
|
286 |
+
Parameters
|
287 |
+
----------
|
288 |
+
X : array-like of shape (n_samples, n_features)
|
289 |
+
List of n_features-dimensional data points. Each row
|
290 |
+
corresponds to a single data point.
|
291 |
+
|
292 |
+
y : None
|
293 |
+
Ignored. This parameter exists only for compatibility with
|
294 |
+
:class:`~sklearn.pipeline.Pipeline`.
|
295 |
+
|
296 |
+
Returns
|
297 |
+
-------
|
298 |
+
logprob : float
|
299 |
+
Total log-likelihood of the data in X. This is normalized to be a
|
300 |
+
probability density, so the value will be low for high-dimensional
|
301 |
+
data.
|
302 |
+
"""
|
303 |
+
return np.sum(self.score_samples(X))
|
304 |
+
|
305 |
+
def sample(self, n_samples=1, random_state=None):
|
306 |
+
"""Generate random samples from the model.
|
307 |
+
|
308 |
+
Currently, this is implemented only for gaussian and tophat kernels.
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
n_samples : int, default=1
|
313 |
+
Number of samples to generate.
|
314 |
+
|
315 |
+
random_state : int, RandomState instance or None, default=None
|
316 |
+
Determines random number generation used to generate
|
317 |
+
random samples. Pass an int for reproducible results
|
318 |
+
across multiple function calls.
|
319 |
+
See :term:`Glossary <random_state>`.
|
320 |
+
|
321 |
+
Returns
|
322 |
+
-------
|
323 |
+
X : array-like of shape (n_samples, n_features)
|
324 |
+
List of samples.
|
325 |
+
"""
|
326 |
+
check_is_fitted(self)
|
327 |
+
# TODO: implement sampling for other valid kernel shapes
|
328 |
+
if self.kernel not in ["gaussian", "tophat"]:
|
329 |
+
raise NotImplementedError()
|
330 |
+
|
331 |
+
data = np.asarray(self.tree_.data)
|
332 |
+
|
333 |
+
rng = check_random_state(random_state)
|
334 |
+
u = rng.uniform(0, 1, size=n_samples)
|
335 |
+
if self.tree_.sample_weight is None:
|
336 |
+
i = (u * data.shape[0]).astype(np.int64)
|
337 |
+
else:
|
338 |
+
cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))
|
339 |
+
sum_weight = cumsum_weight[-1]
|
340 |
+
i = np.searchsorted(cumsum_weight, u * sum_weight)
|
341 |
+
if self.kernel == "gaussian":
|
342 |
+
return np.atleast_2d(rng.normal(data[i], self.bandwidth_))
|
343 |
+
|
344 |
+
elif self.kernel == "tophat":
|
345 |
+
# we first draw points from a d-dimensional normal distribution,
|
346 |
+
# then use an incomplete gamma function to map them to a uniform
|
347 |
+
# d-dimensional tophat distribution.
|
348 |
+
dim = data.shape[1]
|
349 |
+
X = rng.normal(size=(n_samples, dim))
|
350 |
+
s_sq = row_norms(X, squared=True)
|
351 |
+
correction = (
|
352 |
+
gammainc(0.5 * dim, 0.5 * s_sq) ** (1.0 / dim)
|
353 |
+
* self.bandwidth_
|
354 |
+
/ np.sqrt(s_sq)
|
355 |
+
)
|
356 |
+
return data[i] + X * correction[:, np.newaxis]
|
357 |
+
|
358 |
+
def _more_tags(self):
|
359 |
+
return {
|
360 |
+
"_xfail_checks": {
|
361 |
+
"check_sample_weights_invariance": (
|
362 |
+
"sample_weight must have positive values"
|
363 |
+
),
|
364 |
+
}
|
365 |
+
}
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_lof.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Nicolas Goix <[email protected]>
|
2 |
+
# Alexandre Gramfort <[email protected]>
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from numbers import Real
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from ..base import OutlierMixin, _fit_context
|
11 |
+
from ..utils import check_array
|
12 |
+
from ..utils._param_validation import Interval, StrOptions
|
13 |
+
from ..utils.metaestimators import available_if
|
14 |
+
from ..utils.validation import check_is_fitted
|
15 |
+
from ._base import KNeighborsMixin, NeighborsBase
|
16 |
+
|
17 |
+
__all__ = ["LocalOutlierFactor"]
|
18 |
+
|
19 |
+
|
20 |
+
class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):
|
21 |
+
"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF).
|
22 |
+
|
23 |
+
The anomaly score of each sample is called the Local Outlier Factor.
|
24 |
+
It measures the local deviation of the density of a given sample with respect
|
25 |
+
to its neighbors.
|
26 |
+
It is local in that the anomaly score depends on how isolated the object
|
27 |
+
is with respect to the surrounding neighborhood.
|
28 |
+
More precisely, locality is given by k-nearest neighbors, whose distance
|
29 |
+
is used to estimate the local density.
|
30 |
+
By comparing the local density of a sample to the local densities of its
|
31 |
+
neighbors, one can identify samples that have a substantially lower density
|
32 |
+
than their neighbors. These are considered outliers.
|
33 |
+
|
34 |
+
.. versionadded:: 0.19
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
n_neighbors : int, default=20
|
39 |
+
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
40 |
+
If n_neighbors is larger than the number of samples provided,
|
41 |
+
all samples will be used.
|
42 |
+
|
43 |
+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
44 |
+
Algorithm used to compute the nearest neighbors:
|
45 |
+
|
46 |
+
- 'ball_tree' will use :class:`BallTree`
|
47 |
+
- 'kd_tree' will use :class:`KDTree`
|
48 |
+
- 'brute' will use a brute-force search.
|
49 |
+
- 'auto' will attempt to decide the most appropriate algorithm
|
50 |
+
based on the values passed to :meth:`fit` method.
|
51 |
+
|
52 |
+
Note: fitting on sparse input will override the setting of
|
53 |
+
this parameter, using brute force.
|
54 |
+
|
55 |
+
leaf_size : int, default=30
|
56 |
+
Leaf is size passed to :class:`BallTree` or :class:`KDTree`. This can
|
57 |
+
affect the speed of the construction and query, as well as the memory
|
58 |
+
required to store the tree. The optimal value depends on the
|
59 |
+
nature of the problem.
|
60 |
+
|
61 |
+
metric : str or callable, default='minkowski'
|
62 |
+
Metric to use for distance computation. Default is "minkowski", which
|
63 |
+
results in the standard Euclidean distance when p = 2. See the
|
64 |
+
documentation of `scipy.spatial.distance
|
65 |
+
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
66 |
+
the metrics listed in
|
67 |
+
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
68 |
+
values.
|
69 |
+
|
70 |
+
If metric is "precomputed", X is assumed to be a distance matrix and
|
71 |
+
must be square during fit. X may be a :term:`sparse graph`, in which
|
72 |
+
case only "nonzero" elements may be considered neighbors.
|
73 |
+
|
74 |
+
If metric is a callable function, it takes two arrays representing 1D
|
75 |
+
vectors as inputs and must return one value indicating the distance
|
76 |
+
between those vectors. This works for Scipy's metrics, but is less
|
77 |
+
efficient than passing the metric name as a string.
|
78 |
+
|
79 |
+
p : float, default=2
|
80 |
+
Parameter for the Minkowski metric from
|
81 |
+
:func:`sklearn.metrics.pairwise_distances`. When p = 1, this
|
82 |
+
is equivalent to using manhattan_distance (l1), and euclidean_distance
|
83 |
+
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
84 |
+
|
85 |
+
metric_params : dict, default=None
|
86 |
+
Additional keyword arguments for the metric function.
|
87 |
+
|
88 |
+
contamination : 'auto' or float, default='auto'
|
89 |
+
The amount of contamination of the data set, i.e. the proportion
|
90 |
+
of outliers in the data set. When fitting this is used to define the
|
91 |
+
threshold on the scores of the samples.
|
92 |
+
|
93 |
+
- if 'auto', the threshold is determined as in the
|
94 |
+
original paper,
|
95 |
+
- if a float, the contamination should be in the range (0, 0.5].
|
96 |
+
|
97 |
+
.. versionchanged:: 0.22
|
98 |
+
The default value of ``contamination`` changed from 0.1
|
99 |
+
to ``'auto'``.
|
100 |
+
|
101 |
+
novelty : bool, default=False
|
102 |
+
By default, LocalOutlierFactor is only meant to be used for outlier
|
103 |
+
detection (novelty=False). Set novelty to True if you want to use
|
104 |
+
LocalOutlierFactor for novelty detection. In this case be aware that
|
105 |
+
you should only use predict, decision_function and score_samples
|
106 |
+
on new unseen data and not on the training set; and note that the
|
107 |
+
results obtained this way may differ from the standard LOF results.
|
108 |
+
|
109 |
+
.. versionadded:: 0.20
|
110 |
+
|
111 |
+
n_jobs : int, default=None
|
112 |
+
The number of parallel jobs to run for neighbors search.
|
113 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
114 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
115 |
+
for more details.
|
116 |
+
|
117 |
+
Attributes
|
118 |
+
----------
|
119 |
+
negative_outlier_factor_ : ndarray of shape (n_samples,)
|
120 |
+
The opposite LOF of the training samples. The higher, the more normal.
|
121 |
+
Inliers tend to have a LOF score close to 1
|
122 |
+
(``negative_outlier_factor_`` close to -1), while outliers tend to have
|
123 |
+
a larger LOF score.
|
124 |
+
|
125 |
+
The local outlier factor (LOF) of a sample captures its
|
126 |
+
supposed 'degree of abnormality'.
|
127 |
+
It is the average of the ratio of the local reachability density of
|
128 |
+
a sample and those of its k-nearest neighbors.
|
129 |
+
|
130 |
+
n_neighbors_ : int
|
131 |
+
The actual number of neighbors used for :meth:`kneighbors` queries.
|
132 |
+
|
133 |
+
offset_ : float
|
134 |
+
Offset used to obtain binary labels from the raw scores.
|
135 |
+
Observations having a negative_outlier_factor smaller than `offset_`
|
136 |
+
are detected as abnormal.
|
137 |
+
The offset is set to -1.5 (inliers score around -1), except when a
|
138 |
+
contamination parameter different than "auto" is provided. In that
|
139 |
+
case, the offset is defined in such a way we obtain the expected
|
140 |
+
number of outliers in training.
|
141 |
+
|
142 |
+
.. versionadded:: 0.20
|
143 |
+
|
144 |
+
effective_metric_ : str
|
145 |
+
The effective metric used for the distance computation.
|
146 |
+
|
147 |
+
effective_metric_params_ : dict
|
148 |
+
The effective additional keyword arguments for the metric function.
|
149 |
+
|
150 |
+
n_features_in_ : int
|
151 |
+
Number of features seen during :term:`fit`.
|
152 |
+
|
153 |
+
.. versionadded:: 0.24
|
154 |
+
|
155 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
156 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
157 |
+
has feature names that are all strings.
|
158 |
+
|
159 |
+
.. versionadded:: 1.0
|
160 |
+
|
161 |
+
n_samples_fit_ : int
|
162 |
+
It is the number of samples in the fitted data.
|
163 |
+
|
164 |
+
See Also
|
165 |
+
--------
|
166 |
+
sklearn.svm.OneClassSVM: Unsupervised Outlier Detection using
|
167 |
+
Support Vector Machine.
|
168 |
+
|
169 |
+
References
|
170 |
+
----------
|
171 |
+
.. [1] Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May).
|
172 |
+
LOF: identifying density-based local outliers. In ACM sigmod record.
|
173 |
+
|
174 |
+
Examples
|
175 |
+
--------
|
176 |
+
>>> import numpy as np
|
177 |
+
>>> from sklearn.neighbors import LocalOutlierFactor
|
178 |
+
>>> X = [[-1.1], [0.2], [101.1], [0.3]]
|
179 |
+
>>> clf = LocalOutlierFactor(n_neighbors=2)
|
180 |
+
>>> clf.fit_predict(X)
|
181 |
+
array([ 1, 1, -1, 1])
|
182 |
+
>>> clf.negative_outlier_factor_
|
183 |
+
array([ -0.9821..., -1.0370..., -73.3697..., -0.9821...])
|
184 |
+
"""
|
185 |
+
|
186 |
+
_parameter_constraints: dict = {
|
187 |
+
**NeighborsBase._parameter_constraints,
|
188 |
+
"contamination": [
|
189 |
+
StrOptions({"auto"}),
|
190 |
+
Interval(Real, 0, 0.5, closed="right"),
|
191 |
+
],
|
192 |
+
"novelty": ["boolean"],
|
193 |
+
}
|
194 |
+
_parameter_constraints.pop("radius")
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
n_neighbors=20,
|
199 |
+
*,
|
200 |
+
algorithm="auto",
|
201 |
+
leaf_size=30,
|
202 |
+
metric="minkowski",
|
203 |
+
p=2,
|
204 |
+
metric_params=None,
|
205 |
+
contamination="auto",
|
206 |
+
novelty=False,
|
207 |
+
n_jobs=None,
|
208 |
+
):
|
209 |
+
super().__init__(
|
210 |
+
n_neighbors=n_neighbors,
|
211 |
+
algorithm=algorithm,
|
212 |
+
leaf_size=leaf_size,
|
213 |
+
metric=metric,
|
214 |
+
p=p,
|
215 |
+
metric_params=metric_params,
|
216 |
+
n_jobs=n_jobs,
|
217 |
+
)
|
218 |
+
self.contamination = contamination
|
219 |
+
self.novelty = novelty
|
220 |
+
|
221 |
+
def _check_novelty_fit_predict(self):
|
222 |
+
if self.novelty:
|
223 |
+
msg = (
|
224 |
+
"fit_predict is not available when novelty=True. Use "
|
225 |
+
"novelty=False if you want to predict on the training set."
|
226 |
+
)
|
227 |
+
raise AttributeError(msg)
|
228 |
+
return True
|
229 |
+
|
230 |
+
@available_if(_check_novelty_fit_predict)
|
231 |
+
def fit_predict(self, X, y=None):
|
232 |
+
"""Fit the model to the training set X and return the labels.
|
233 |
+
|
234 |
+
**Not available for novelty detection (when novelty is set to True).**
|
235 |
+
Label is 1 for an inlier and -1 for an outlier according to the LOF
|
236 |
+
score and the contamination parameter.
|
237 |
+
|
238 |
+
Parameters
|
239 |
+
----------
|
240 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
|
241 |
+
The query sample or samples to compute the Local Outlier Factor
|
242 |
+
w.r.t. the training samples.
|
243 |
+
|
244 |
+
y : Ignored
|
245 |
+
Not used, present for API consistency by convention.
|
246 |
+
|
247 |
+
Returns
|
248 |
+
-------
|
249 |
+
is_inlier : ndarray of shape (n_samples,)
|
250 |
+
Returns -1 for anomalies/outliers and 1 for inliers.
|
251 |
+
"""
|
252 |
+
|
253 |
+
# As fit_predict would be different from fit.predict, fit_predict is
|
254 |
+
# only available for outlier detection (novelty=False)
|
255 |
+
|
256 |
+
return self.fit(X)._predict()
|
257 |
+
|
258 |
+
@_fit_context(
|
259 |
+
# LocalOutlierFactor.metric is not validated yet
|
260 |
+
prefer_skip_nested_validation=False
|
261 |
+
)
|
262 |
+
def fit(self, X, y=None):
|
263 |
+
"""Fit the local outlier factor detector from the training dataset.
|
264 |
+
|
265 |
+
Parameters
|
266 |
+
----------
|
267 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
268 |
+
(n_samples, n_samples) if metric='precomputed'
|
269 |
+
Training data.
|
270 |
+
|
271 |
+
y : Ignored
|
272 |
+
Not used, present for API consistency by convention.
|
273 |
+
|
274 |
+
Returns
|
275 |
+
-------
|
276 |
+
self : LocalOutlierFactor
|
277 |
+
The fitted local outlier factor detector.
|
278 |
+
"""
|
279 |
+
self._fit(X)
|
280 |
+
|
281 |
+
n_samples = self.n_samples_fit_
|
282 |
+
if self.n_neighbors > n_samples:
|
283 |
+
warnings.warn(
|
284 |
+
"n_neighbors (%s) is greater than the "
|
285 |
+
"total number of samples (%s). n_neighbors "
|
286 |
+
"will be set to (n_samples - 1) for estimation."
|
287 |
+
% (self.n_neighbors, n_samples)
|
288 |
+
)
|
289 |
+
self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
|
290 |
+
|
291 |
+
self._distances_fit_X_, _neighbors_indices_fit_X_ = self.kneighbors(
|
292 |
+
n_neighbors=self.n_neighbors_
|
293 |
+
)
|
294 |
+
|
295 |
+
if self._fit_X.dtype == np.float32:
|
296 |
+
self._distances_fit_X_ = self._distances_fit_X_.astype(
|
297 |
+
self._fit_X.dtype,
|
298 |
+
copy=False,
|
299 |
+
)
|
300 |
+
|
301 |
+
self._lrd = self._local_reachability_density(
|
302 |
+
self._distances_fit_X_, _neighbors_indices_fit_X_
|
303 |
+
)
|
304 |
+
|
305 |
+
# Compute lof score over training samples to define offset_:
|
306 |
+
lrd_ratios_array = (
|
307 |
+
self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
|
308 |
+
)
|
309 |
+
|
310 |
+
self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
|
311 |
+
|
312 |
+
if self.contamination == "auto":
|
313 |
+
# inliers score around -1 (the higher, the less abnormal).
|
314 |
+
self.offset_ = -1.5
|
315 |
+
else:
|
316 |
+
self.offset_ = np.percentile(
|
317 |
+
self.negative_outlier_factor_, 100.0 * self.contamination
|
318 |
+
)
|
319 |
+
|
320 |
+
return self
|
321 |
+
|
322 |
+
def _check_novelty_predict(self):
|
323 |
+
if not self.novelty:
|
324 |
+
msg = (
|
325 |
+
"predict is not available when novelty=False, use "
|
326 |
+
"fit_predict if you want to predict on training data. Use "
|
327 |
+
"novelty=True if you want to use LOF for novelty detection "
|
328 |
+
"and predict on new unseen data."
|
329 |
+
)
|
330 |
+
raise AttributeError(msg)
|
331 |
+
return True
|
332 |
+
|
333 |
+
@available_if(_check_novelty_predict)
|
334 |
+
def predict(self, X=None):
|
335 |
+
"""Predict the labels (1 inlier, -1 outlier) of X according to LOF.
|
336 |
+
|
337 |
+
**Only available for novelty detection (when novelty is set to True).**
|
338 |
+
This method allows to generalize prediction to *new observations* (not
|
339 |
+
in the training set). Note that the result of ``clf.fit(X)`` then
|
340 |
+
``clf.predict(X)`` with ``novelty=True`` may differ from the result
|
341 |
+
obtained by ``clf.fit_predict(X)`` with ``novelty=False``.
|
342 |
+
|
343 |
+
Parameters
|
344 |
+
----------
|
345 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
346 |
+
The query sample or samples to compute the Local Outlier Factor
|
347 |
+
w.r.t. the training samples.
|
348 |
+
|
349 |
+
Returns
|
350 |
+
-------
|
351 |
+
is_inlier : ndarray of shape (n_samples,)
|
352 |
+
Returns -1 for anomalies/outliers and +1 for inliers.
|
353 |
+
"""
|
354 |
+
return self._predict(X)
|
355 |
+
|
356 |
+
def _predict(self, X=None):
|
357 |
+
"""Predict the labels (1 inlier, -1 outlier) of X according to LOF.
|
358 |
+
|
359 |
+
If X is None, returns the same as fit_predict(X_train).
|
360 |
+
|
361 |
+
Parameters
|
362 |
+
----------
|
363 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
|
364 |
+
The query sample or samples to compute the Local Outlier Factor
|
365 |
+
w.r.t. the training samples. If None, makes prediction on the
|
366 |
+
training data without considering them as their own neighbors.
|
367 |
+
|
368 |
+
Returns
|
369 |
+
-------
|
370 |
+
is_inlier : ndarray of shape (n_samples,)
|
371 |
+
Returns -1 for anomalies/outliers and +1 for inliers.
|
372 |
+
"""
|
373 |
+
check_is_fitted(self)
|
374 |
+
|
375 |
+
if X is not None:
|
376 |
+
X = check_array(X, accept_sparse="csr")
|
377 |
+
is_inlier = np.ones(X.shape[0], dtype=int)
|
378 |
+
is_inlier[self.decision_function(X) < 0] = -1
|
379 |
+
else:
|
380 |
+
is_inlier = np.ones(self.n_samples_fit_, dtype=int)
|
381 |
+
is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
|
382 |
+
|
383 |
+
return is_inlier
|
384 |
+
|
385 |
+
def _check_novelty_decision_function(self):
|
386 |
+
if not self.novelty:
|
387 |
+
msg = (
|
388 |
+
"decision_function is not available when novelty=False. "
|
389 |
+
"Use novelty=True if you want to use LOF for novelty "
|
390 |
+
"detection and compute decision_function for new unseen "
|
391 |
+
"data. Note that the opposite LOF of the training samples "
|
392 |
+
"is always available by considering the "
|
393 |
+
"negative_outlier_factor_ attribute."
|
394 |
+
)
|
395 |
+
raise AttributeError(msg)
|
396 |
+
return True
|
397 |
+
|
398 |
+
@available_if(_check_novelty_decision_function)
|
399 |
+
def decision_function(self, X):
|
400 |
+
"""Shifted opposite of the Local Outlier Factor of X.
|
401 |
+
|
402 |
+
Bigger is better, i.e. large values correspond to inliers.
|
403 |
+
|
404 |
+
**Only available for novelty detection (when novelty is set to True).**
|
405 |
+
The shift offset allows a zero threshold for being an outlier.
|
406 |
+
The argument X is supposed to contain *new data*: if X contains a
|
407 |
+
point from training, it considers the later in its own neighborhood.
|
408 |
+
Also, the samples in X are not considered in the neighborhood of any
|
409 |
+
point.
|
410 |
+
|
411 |
+
Parameters
|
412 |
+
----------
|
413 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
414 |
+
The query sample or samples to compute the Local Outlier Factor
|
415 |
+
w.r.t. the training samples.
|
416 |
+
|
417 |
+
Returns
|
418 |
+
-------
|
419 |
+
shifted_opposite_lof_scores : ndarray of shape (n_samples,)
|
420 |
+
The shifted opposite of the Local Outlier Factor of each input
|
421 |
+
samples. The lower, the more abnormal. Negative scores represent
|
422 |
+
outliers, positive scores represent inliers.
|
423 |
+
"""
|
424 |
+
return self.score_samples(X) - self.offset_
|
425 |
+
|
426 |
+
def _check_novelty_score_samples(self):
|
427 |
+
if not self.novelty:
|
428 |
+
msg = (
|
429 |
+
"score_samples is not available when novelty=False. The "
|
430 |
+
"scores of the training samples are always available "
|
431 |
+
"through the negative_outlier_factor_ attribute. Use "
|
432 |
+
"novelty=True if you want to use LOF for novelty detection "
|
433 |
+
"and compute score_samples for new unseen data."
|
434 |
+
)
|
435 |
+
raise AttributeError(msg)
|
436 |
+
return True
|
437 |
+
|
438 |
+
@available_if(_check_novelty_score_samples)
|
439 |
+
def score_samples(self, X):
|
440 |
+
"""Opposite of the Local Outlier Factor of X.
|
441 |
+
|
442 |
+
It is the opposite as bigger is better, i.e. large values correspond
|
443 |
+
to inliers.
|
444 |
+
|
445 |
+
**Only available for novelty detection (when novelty is set to True).**
|
446 |
+
The argument X is supposed to contain *new data*: if X contains a
|
447 |
+
point from training, it considers the later in its own neighborhood.
|
448 |
+
Also, the samples in X are not considered in the neighborhood of any
|
449 |
+
point. Because of this, the scores obtained via ``score_samples`` may
|
450 |
+
differ from the standard LOF scores.
|
451 |
+
The standard LOF scores for the training data is available via the
|
452 |
+
``negative_outlier_factor_`` attribute.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
457 |
+
The query sample or samples to compute the Local Outlier Factor
|
458 |
+
w.r.t. the training samples.
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
opposite_lof_scores : ndarray of shape (n_samples,)
|
463 |
+
The opposite of the Local Outlier Factor of each input samples.
|
464 |
+
The lower, the more abnormal.
|
465 |
+
"""
|
466 |
+
check_is_fitted(self)
|
467 |
+
X = check_array(X, accept_sparse="csr")
|
468 |
+
|
469 |
+
distances_X, neighbors_indices_X = self.kneighbors(
|
470 |
+
X, n_neighbors=self.n_neighbors_
|
471 |
+
)
|
472 |
+
|
473 |
+
if X.dtype == np.float32:
|
474 |
+
distances_X = distances_X.astype(X.dtype, copy=False)
|
475 |
+
|
476 |
+
X_lrd = self._local_reachability_density(
|
477 |
+
distances_X,
|
478 |
+
neighbors_indices_X,
|
479 |
+
)
|
480 |
+
|
481 |
+
lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
|
482 |
+
|
483 |
+
# as bigger is better:
|
484 |
+
return -np.mean(lrd_ratios_array, axis=1)
|
485 |
+
|
486 |
+
def _local_reachability_density(self, distances_X, neighbors_indices):
|
487 |
+
"""The local reachability density (LRD)
|
488 |
+
|
489 |
+
The LRD of a sample is the inverse of the average reachability
|
490 |
+
distance of its k-nearest neighbors.
|
491 |
+
|
492 |
+
Parameters
|
493 |
+
----------
|
494 |
+
distances_X : ndarray of shape (n_queries, self.n_neighbors)
|
495 |
+
Distances to the neighbors (in the training samples `self._fit_X`)
|
496 |
+
of each query point to compute the LRD.
|
497 |
+
|
498 |
+
neighbors_indices : ndarray of shape (n_queries, self.n_neighbors)
|
499 |
+
Neighbors indices (of each query point) among training samples
|
500 |
+
self._fit_X.
|
501 |
+
|
502 |
+
Returns
|
503 |
+
-------
|
504 |
+
local_reachability_density : ndarray of shape (n_queries,)
|
505 |
+
The local reachability density of each sample.
|
506 |
+
"""
|
507 |
+
dist_k = self._distances_fit_X_[neighbors_indices, self.n_neighbors_ - 1]
|
508 |
+
reach_dist_array = np.maximum(distances_X, dist_k)
|
509 |
+
|
510 |
+
# 1e-10 to avoid `nan' when nb of duplicates > n_neighbors_:
|
511 |
+
return 1.0 / (np.mean(reach_dist_array, axis=1) + 1e-10)
|
512 |
+
|
513 |
+
def _more_tags(self):
|
514 |
+
return {
|
515 |
+
"preserves_dtype": [np.float64, np.float32],
|
516 |
+
}
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_nearest_centroid.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Nearest Centroid Classification
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Robert Layton <[email protected]>
|
6 |
+
# Olivier Grisel <[email protected]>
|
7 |
+
#
|
8 |
+
# License: BSD 3 clause
|
9 |
+
|
10 |
+
import warnings
|
11 |
+
from numbers import Real
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from scipy import sparse as sp
|
15 |
+
|
16 |
+
from sklearn.metrics.pairwise import _VALID_METRICS
|
17 |
+
|
18 |
+
from ..base import BaseEstimator, ClassifierMixin, _fit_context
|
19 |
+
from ..metrics.pairwise import pairwise_distances_argmin
|
20 |
+
from ..preprocessing import LabelEncoder
|
21 |
+
from ..utils._param_validation import Interval, StrOptions
|
22 |
+
from ..utils.multiclass import check_classification_targets
|
23 |
+
from ..utils.sparsefuncs import csc_median_axis_0
|
24 |
+
from ..utils.validation import check_is_fitted
|
25 |
+
|
26 |
+
|
27 |
+
class NearestCentroid(ClassifierMixin, BaseEstimator):
|
28 |
+
"""Nearest centroid classifier.
|
29 |
+
|
30 |
+
Each class is represented by its centroid, with test samples classified to
|
31 |
+
the class with the nearest centroid.
|
32 |
+
|
33 |
+
Read more in the :ref:`User Guide <nearest_centroid_classifier>`.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
metric : str or callable, default="euclidean"
|
38 |
+
Metric to use for distance computation. See the documentation of
|
39 |
+
`scipy.spatial.distance
|
40 |
+
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
|
41 |
+
the metrics listed in
|
42 |
+
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
|
43 |
+
values. Note that "wminkowski", "seuclidean" and "mahalanobis" are not
|
44 |
+
supported.
|
45 |
+
|
46 |
+
The centroids for the samples corresponding to each class is
|
47 |
+
the point from which the sum of the distances (according to the metric)
|
48 |
+
of all samples that belong to that particular class are minimized.
|
49 |
+
If the `"manhattan"` metric is provided, this centroid is the median
|
50 |
+
and for all other metrics, the centroid is now set to be the mean.
|
51 |
+
|
52 |
+
.. deprecated:: 1.3
|
53 |
+
Support for metrics other than `euclidean` and `manhattan` and for
|
54 |
+
callables was deprecated in version 1.3 and will be removed in
|
55 |
+
version 1.5.
|
56 |
+
|
57 |
+
.. versionchanged:: 0.19
|
58 |
+
`metric='precomputed'` was deprecated and now raises an error
|
59 |
+
|
60 |
+
shrink_threshold : float, default=None
|
61 |
+
Threshold for shrinking centroids to remove features.
|
62 |
+
|
63 |
+
Attributes
|
64 |
+
----------
|
65 |
+
centroids_ : array-like of shape (n_classes, n_features)
|
66 |
+
Centroid of each class.
|
67 |
+
|
68 |
+
classes_ : array of shape (n_classes,)
|
69 |
+
The unique classes labels.
|
70 |
+
|
71 |
+
n_features_in_ : int
|
72 |
+
Number of features seen during :term:`fit`.
|
73 |
+
|
74 |
+
.. versionadded:: 0.24
|
75 |
+
|
76 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
77 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
78 |
+
has feature names that are all strings.
|
79 |
+
|
80 |
+
.. versionadded:: 1.0
|
81 |
+
|
82 |
+
See Also
|
83 |
+
--------
|
84 |
+
KNeighborsClassifier : Nearest neighbors classifier.
|
85 |
+
|
86 |
+
Notes
|
87 |
+
-----
|
88 |
+
When used for text classification with tf-idf vectors, this classifier is
|
89 |
+
also known as the Rocchio classifier.
|
90 |
+
|
91 |
+
References
|
92 |
+
----------
|
93 |
+
Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
|
94 |
+
multiple cancer types by shrunken centroids of gene expression. Proceedings
|
95 |
+
of the National Academy of Sciences of the United States of America,
|
96 |
+
99(10), 6567-6572. The National Academy of Sciences.
|
97 |
+
|
98 |
+
Examples
|
99 |
+
--------
|
100 |
+
>>> from sklearn.neighbors import NearestCentroid
|
101 |
+
>>> import numpy as np
|
102 |
+
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
103 |
+
>>> y = np.array([1, 1, 1, 2, 2, 2])
|
104 |
+
>>> clf = NearestCentroid()
|
105 |
+
>>> clf.fit(X, y)
|
106 |
+
NearestCentroid()
|
107 |
+
>>> print(clf.predict([[-0.8, -1]]))
|
108 |
+
[1]
|
109 |
+
"""
|
110 |
+
|
111 |
+
_valid_metrics = set(_VALID_METRICS) - {"mahalanobis", "seuclidean", "wminkowski"}
|
112 |
+
|
113 |
+
_parameter_constraints: dict = {
|
114 |
+
"metric": [
|
115 |
+
StrOptions(
|
116 |
+
_valid_metrics, deprecated=_valid_metrics - {"manhattan", "euclidean"}
|
117 |
+
),
|
118 |
+
callable,
|
119 |
+
],
|
120 |
+
"shrink_threshold": [Interval(Real, 0, None, closed="neither"), None],
|
121 |
+
}
|
122 |
+
|
123 |
+
def __init__(self, metric="euclidean", *, shrink_threshold=None):
|
124 |
+
self.metric = metric
|
125 |
+
self.shrink_threshold = shrink_threshold
|
126 |
+
|
127 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
128 |
+
def fit(self, X, y):
|
129 |
+
"""
|
130 |
+
Fit the NearestCentroid model according to the given training data.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
135 |
+
Training vector, where `n_samples` is the number of samples and
|
136 |
+
`n_features` is the number of features.
|
137 |
+
Note that centroid shrinking cannot be used with sparse matrices.
|
138 |
+
y : array-like of shape (n_samples,)
|
139 |
+
Target values.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
self : object
|
144 |
+
Fitted estimator.
|
145 |
+
"""
|
146 |
+
if isinstance(self.metric, str) and self.metric not in (
|
147 |
+
"manhattan",
|
148 |
+
"euclidean",
|
149 |
+
):
|
150 |
+
warnings.warn(
|
151 |
+
(
|
152 |
+
"Support for distance metrics other than euclidean and "
|
153 |
+
"manhattan and for callables was deprecated in version "
|
154 |
+
"1.3 and will be removed in version 1.5."
|
155 |
+
),
|
156 |
+
FutureWarning,
|
157 |
+
)
|
158 |
+
|
159 |
+
# If X is sparse and the metric is "manhattan", store it in a csc
|
160 |
+
# format is easier to calculate the median.
|
161 |
+
if self.metric == "manhattan":
|
162 |
+
X, y = self._validate_data(X, y, accept_sparse=["csc"])
|
163 |
+
else:
|
164 |
+
X, y = self._validate_data(X, y, accept_sparse=["csr", "csc"])
|
165 |
+
is_X_sparse = sp.issparse(X)
|
166 |
+
if is_X_sparse and self.shrink_threshold:
|
167 |
+
raise ValueError("threshold shrinking not supported for sparse input")
|
168 |
+
check_classification_targets(y)
|
169 |
+
|
170 |
+
n_samples, n_features = X.shape
|
171 |
+
le = LabelEncoder()
|
172 |
+
y_ind = le.fit_transform(y)
|
173 |
+
self.classes_ = classes = le.classes_
|
174 |
+
n_classes = classes.size
|
175 |
+
if n_classes < 2:
|
176 |
+
raise ValueError(
|
177 |
+
"The number of classes has to be greater than one; got %d class"
|
178 |
+
% (n_classes)
|
179 |
+
)
|
180 |
+
|
181 |
+
# Mask mapping each class to its members.
|
182 |
+
self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)
|
183 |
+
# Number of clusters in each class.
|
184 |
+
nk = np.zeros(n_classes)
|
185 |
+
|
186 |
+
for cur_class in range(n_classes):
|
187 |
+
center_mask = y_ind == cur_class
|
188 |
+
nk[cur_class] = np.sum(center_mask)
|
189 |
+
if is_X_sparse:
|
190 |
+
center_mask = np.where(center_mask)[0]
|
191 |
+
|
192 |
+
if self.metric == "manhattan":
|
193 |
+
# NumPy does not calculate median of sparse matrices.
|
194 |
+
if not is_X_sparse:
|
195 |
+
self.centroids_[cur_class] = np.median(X[center_mask], axis=0)
|
196 |
+
else:
|
197 |
+
self.centroids_[cur_class] = csc_median_axis_0(X[center_mask])
|
198 |
+
else:
|
199 |
+
# TODO(1.5) remove warning when metric is only manhattan or euclidean
|
200 |
+
if self.metric != "euclidean":
|
201 |
+
warnings.warn(
|
202 |
+
"Averaging for metrics other than "
|
203 |
+
"euclidean and manhattan not supported. "
|
204 |
+
"The average is set to be the mean."
|
205 |
+
)
|
206 |
+
self.centroids_[cur_class] = X[center_mask].mean(axis=0)
|
207 |
+
|
208 |
+
if self.shrink_threshold:
|
209 |
+
if np.all(np.ptp(X, axis=0) == 0):
|
210 |
+
raise ValueError("All features have zero variance. Division by zero.")
|
211 |
+
dataset_centroid_ = np.mean(X, axis=0)
|
212 |
+
|
213 |
+
# m parameter for determining deviation
|
214 |
+
m = np.sqrt((1.0 / nk) - (1.0 / n_samples))
|
215 |
+
# Calculate deviation using the standard deviation of centroids.
|
216 |
+
variance = (X - self.centroids_[y_ind]) ** 2
|
217 |
+
variance = variance.sum(axis=0)
|
218 |
+
s = np.sqrt(variance / (n_samples - n_classes))
|
219 |
+
s += np.median(s) # To deter outliers from affecting the results.
|
220 |
+
mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.
|
221 |
+
ms = mm * s
|
222 |
+
deviation = (self.centroids_ - dataset_centroid_) / ms
|
223 |
+
# Soft thresholding: if the deviation crosses 0 during shrinking,
|
224 |
+
# it becomes zero.
|
225 |
+
signs = np.sign(deviation)
|
226 |
+
deviation = np.abs(deviation) - self.shrink_threshold
|
227 |
+
np.clip(deviation, 0, None, out=deviation)
|
228 |
+
deviation *= signs
|
229 |
+
# Now adjust the centroids using the deviation
|
230 |
+
msd = ms * deviation
|
231 |
+
self.centroids_ = dataset_centroid_[np.newaxis, :] + msd
|
232 |
+
return self
|
233 |
+
|
234 |
+
# TODO(1.5) remove note about precomputed metric
|
235 |
+
def predict(self, X):
|
236 |
+
"""Perform classification on an array of test vectors `X`.
|
237 |
+
|
238 |
+
The predicted class `C` for each sample in `X` is returned.
|
239 |
+
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
243 |
+
Test samples.
|
244 |
+
|
245 |
+
Returns
|
246 |
+
-------
|
247 |
+
C : ndarray of shape (n_samples,)
|
248 |
+
The predicted classes.
|
249 |
+
|
250 |
+
Notes
|
251 |
+
-----
|
252 |
+
If the metric constructor parameter is `"precomputed"`, `X` is assumed
|
253 |
+
to be the distance matrix between the data to be predicted and
|
254 |
+
`self.centroids_`.
|
255 |
+
"""
|
256 |
+
check_is_fitted(self)
|
257 |
+
|
258 |
+
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
259 |
+
return self.classes_[
|
260 |
+
pairwise_distances_argmin(X, self.centroids_, metric=self.metric)
|
261 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_partition_nodes.pxd
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cython cimport floating
|
2 |
+
from ..utils._typedefs cimport float64_t, intp_t
|
3 |
+
|
4 |
+
cdef int partition_node_indices(
|
5 |
+
const floating *data,
|
6 |
+
intp_t *node_indices,
|
7 |
+
intp_t split_dim,
|
8 |
+
intp_t split_index,
|
9 |
+
intp_t n_features,
|
10 |
+
intp_t n_points) except -1
|
venv/lib/python3.10/site-packages/sklearn/neighbors/_quad_tree.pxd
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Thomas Moreau <[email protected]>
|
2 |
+
# Author: Olivier Grisel <[email protected]>
|
3 |
+
|
4 |
+
# See quad_tree.pyx for details.
|
5 |
+
|
6 |
+
cimport numpy as cnp
|
7 |
+
from ..utils._typedefs cimport float32_t, intp_t
|
8 |
+
|
9 |
+
# This is effectively an ifdef statement in Cython
|
10 |
+
# It allows us to write printf debugging lines
|
11 |
+
# and remove them at compile time
|
12 |
+
cdef enum:
|
13 |
+
DEBUGFLAG = 0
|
14 |
+
|
15 |
+
cdef float EPSILON = 1e-6
|
16 |
+
|
17 |
+
# XXX: Careful to not change the order of the arguments. It is important to
|
18 |
+
# have is_leaf and max_width consecutive as it permits to avoid padding by
|
19 |
+
# the compiler and keep the size coherent for both C and numpy data structures.
|
20 |
+
cdef struct Cell:
|
21 |
+
# Base storage structure for cells in a QuadTree object
|
22 |
+
|
23 |
+
# Tree structure
|
24 |
+
intp_t parent # Parent cell of this cell
|
25 |
+
intp_t[8] children # Array pointing to children of this cell
|
26 |
+
|
27 |
+
# Cell description
|
28 |
+
intp_t cell_id # Id of the cell in the cells array in the Tree
|
29 |
+
intp_t point_index # Index of the point at this cell (only defined
|
30 |
+
# # in non empty leaf)
|
31 |
+
bint is_leaf # Does this cell have children?
|
32 |
+
float32_t squared_max_width # Squared value of the maximum width w
|
33 |
+
intp_t depth # Depth of the cell in the tree
|
34 |
+
intp_t cumulative_size # Number of points included in the subtree with
|
35 |
+
# # this cell as a root.
|
36 |
+
|
37 |
+
# Internal constants
|
38 |
+
float32_t[3] center # Store the center for quick split of cells
|
39 |
+
float32_t[3] barycenter # Keep track of the center of mass of the cell
|
40 |
+
|
41 |
+
# Cell boundaries
|
42 |
+
float32_t[3] min_bounds # Inferior boundaries of this cell (inclusive)
|
43 |
+
float32_t[3] max_bounds # Superior boundaries of this cell (exclusive)
|
44 |
+
|
45 |
+
|
46 |
+
cdef class _QuadTree:
|
47 |
+
# The QuadTree object is a quad tree structure constructed by inserting
|
48 |
+
# recursively points in the tree and splitting cells in 4 so that each
|
49 |
+
# leaf cell contains at most one point.
|
50 |
+
# This structure also handle 3D data, inserted in trees with 8 children
|
51 |
+
# for each node.
|
52 |
+
|
53 |
+
# Parameters of the tree
|
54 |
+
cdef public int n_dimensions # Number of dimensions in X
|
55 |
+
cdef public int verbose # Verbosity of the output
|
56 |
+
cdef intp_t n_cells_per_cell # Number of children per node. (2 ** n_dimension)
|
57 |
+
|
58 |
+
# Tree inner structure
|
59 |
+
cdef public intp_t max_depth # Max depth of the tree
|
60 |
+
cdef public intp_t cell_count # Counter for node IDs
|
61 |
+
cdef public intp_t capacity # Capacity of tree, in terms of nodes
|
62 |
+
cdef public intp_t n_points # Total number of points
|
63 |
+
cdef Cell* cells # Array of nodes
|
64 |
+
|
65 |
+
# Point insertion methods
|
66 |
+
cdef int insert_point(self, float32_t[3] point, intp_t point_index,
|
67 |
+
intp_t cell_id=*) except -1 nogil
|
68 |
+
cdef intp_t _insert_point_in_new_child(self, float32_t[3] point, Cell* cell,
|
69 |
+
intp_t point_index, intp_t size=*
|
70 |
+
) noexcept nogil
|
71 |
+
cdef intp_t _select_child(self, float32_t[3] point, Cell* cell) noexcept nogil
|
72 |
+
cdef bint _is_duplicate(self, float32_t[3] point1, float32_t[3] point2) noexcept nogil
|
73 |
+
|
74 |
+
# Create a summary of the Tree compare to a query point
|
75 |
+
cdef long summarize(self, float32_t[3] point, float32_t* results,
|
76 |
+
float squared_theta=*, intp_t cell_id=*, long idx=*
|
77 |
+
) noexcept nogil
|
78 |
+
|
79 |
+
# Internal cell initialization methods
|
80 |
+
cdef void _init_cell(self, Cell* cell, intp_t parent, intp_t depth) noexcept nogil
|
81 |
+
cdef void _init_root(self, float32_t[3] min_bounds, float32_t[3] max_bounds
|
82 |
+
) noexcept nogil
|
83 |
+
|
84 |
+
# Private methods
|
85 |
+
cdef int _check_point_in_cell(self, float32_t[3] point, Cell* cell
|
86 |
+
) except -1 nogil
|
87 |
+
|
88 |
+
# Private array manipulation to manage the ``cells`` array
|
89 |
+
cdef int _resize(self, intp_t capacity) except -1 nogil
|
90 |
+
cdef int _resize_c(self, intp_t capacity=*) except -1 nogil
|
91 |
+
cdef int _get_cell(self, float32_t[3] point, intp_t cell_id=*) except -1 nogil
|
92 |
+
cdef Cell[:] _get_cell_ndarray(self)
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_ball_tree.cpython-310.pyc
ADDED
Binary file (6.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_graph.cpython-310.pyc
ADDED
Binary file (2.95 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_kd_tree.cpython-310.pyc
ADDED
Binary file (3.42 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_kde.cpython-310.pyc
ADDED
Binary file (7.34 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_lof.cpython-310.pyc
ADDED
Binary file (9.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_nca.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_nearest_centroid.cpython-310.pyc
ADDED
Binary file (4.71 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors.cpython-310.pyc
ADDED
Binary file (55.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors_pipeline.cpython-310.pyc
ADDED
Binary file (5.25 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors_tree.cpython-310.pyc
ADDED
Binary file (8.05 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/__pycache__/test_quad_tree.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_ball_tree.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_equal
|
6 |
+
|
7 |
+
from sklearn.neighbors._ball_tree import BallTree, BallTree32, BallTree64
|
8 |
+
from sklearn.utils import check_random_state
|
9 |
+
from sklearn.utils._testing import _convert_container
|
10 |
+
from sklearn.utils.validation import check_array
|
11 |
+
|
12 |
+
rng = np.random.RandomState(10)
|
13 |
+
V_mahalanobis = rng.rand(3, 3)
|
14 |
+
V_mahalanobis = np.dot(V_mahalanobis, V_mahalanobis.T)
|
15 |
+
|
16 |
+
DIMENSION = 3
|
17 |
+
|
18 |
+
METRICS = {
|
19 |
+
"euclidean": {},
|
20 |
+
"manhattan": {},
|
21 |
+
"minkowski": dict(p=3),
|
22 |
+
"chebyshev": {},
|
23 |
+
}
|
24 |
+
|
25 |
+
DISCRETE_METRICS = ["hamming", "canberra", "braycurtis"]
|
26 |
+
|
27 |
+
BOOLEAN_METRICS = [
|
28 |
+
"jaccard",
|
29 |
+
"dice",
|
30 |
+
"rogerstanimoto",
|
31 |
+
"russellrao",
|
32 |
+
"sokalmichener",
|
33 |
+
"sokalsneath",
|
34 |
+
]
|
35 |
+
|
36 |
+
BALL_TREE_CLASSES = [
|
37 |
+
BallTree64,
|
38 |
+
BallTree32,
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def brute_force_neighbors(X, Y, k, metric, **kwargs):
|
43 |
+
from sklearn.metrics import DistanceMetric
|
44 |
+
|
45 |
+
X, Y = check_array(X), check_array(Y)
|
46 |
+
D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X)
|
47 |
+
ind = np.argsort(D, axis=1)[:, :k]
|
48 |
+
dist = D[np.arange(Y.shape[0])[:, None], ind]
|
49 |
+
return dist, ind
|
50 |
+
|
51 |
+
|
52 |
+
def test_BallTree_is_BallTree64_subclass():
|
53 |
+
assert issubclass(BallTree, BallTree64)
|
54 |
+
|
55 |
+
|
56 |
+
@pytest.mark.parametrize("metric", itertools.chain(BOOLEAN_METRICS, DISCRETE_METRICS))
|
57 |
+
@pytest.mark.parametrize("array_type", ["list", "array"])
|
58 |
+
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
|
59 |
+
def test_ball_tree_query_metrics(metric, array_type, BallTreeImplementation):
|
60 |
+
rng = check_random_state(0)
|
61 |
+
if metric in BOOLEAN_METRICS:
|
62 |
+
X = rng.random_sample((40, 10)).round(0)
|
63 |
+
Y = rng.random_sample((10, 10)).round(0)
|
64 |
+
elif metric in DISCRETE_METRICS:
|
65 |
+
X = (4 * rng.random_sample((40, 10))).round(0)
|
66 |
+
Y = (4 * rng.random_sample((10, 10))).round(0)
|
67 |
+
X = _convert_container(X, array_type)
|
68 |
+
Y = _convert_container(Y, array_type)
|
69 |
+
|
70 |
+
k = 5
|
71 |
+
|
72 |
+
bt = BallTreeImplementation(X, leaf_size=1, metric=metric)
|
73 |
+
dist1, ind1 = bt.query(Y, k)
|
74 |
+
dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
|
75 |
+
assert_array_almost_equal(dist1, dist2)
|
76 |
+
|
77 |
+
|
78 |
+
@pytest.mark.parametrize(
|
79 |
+
"BallTreeImplementation, decimal_tol", zip(BALL_TREE_CLASSES, [6, 5])
|
80 |
+
)
|
81 |
+
def test_query_haversine(BallTreeImplementation, decimal_tol):
|
82 |
+
rng = check_random_state(0)
|
83 |
+
X = 2 * np.pi * rng.random_sample((40, 2))
|
84 |
+
bt = BallTreeImplementation(X, leaf_size=1, metric="haversine")
|
85 |
+
dist1, ind1 = bt.query(X, k=5)
|
86 |
+
dist2, ind2 = brute_force_neighbors(X, X, k=5, metric="haversine")
|
87 |
+
|
88 |
+
assert_array_almost_equal(dist1, dist2, decimal=decimal_tol)
|
89 |
+
assert_array_almost_equal(ind1, ind2)
|
90 |
+
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
|
93 |
+
def test_array_object_type(BallTreeImplementation):
|
94 |
+
"""Check that we do not accept object dtype array."""
|
95 |
+
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
|
96 |
+
with pytest.raises(ValueError, match="setting an array element with a sequence"):
|
97 |
+
BallTreeImplementation(X)
|
98 |
+
|
99 |
+
|
100 |
+
@pytest.mark.parametrize("BallTreeImplementation", BALL_TREE_CLASSES)
|
101 |
+
def test_bad_pyfunc_metric(BallTreeImplementation):
|
102 |
+
def wrong_returned_value(x, y):
|
103 |
+
return "1"
|
104 |
+
|
105 |
+
def one_arg_func(x):
|
106 |
+
return 1.0 # pragma: no cover
|
107 |
+
|
108 |
+
X = np.ones((5, 2))
|
109 |
+
msg = "Custom distance function must accept two vectors and return a float."
|
110 |
+
with pytest.raises(TypeError, match=msg):
|
111 |
+
BallTreeImplementation(X, metric=wrong_returned_value)
|
112 |
+
|
113 |
+
msg = "takes 1 positional argument but 2 were given"
|
114 |
+
with pytest.raises(TypeError, match=msg):
|
115 |
+
BallTreeImplementation(X, metric=one_arg_func)
|
116 |
+
|
117 |
+
|
118 |
+
@pytest.mark.parametrize("metric", itertools.chain(METRICS, BOOLEAN_METRICS))
|
119 |
+
def test_ball_tree_numerical_consistency(global_random_seed, metric):
|
120 |
+
# Results on float64 and float32 versions of a dataset must be
|
121 |
+
# numerically close.
|
122 |
+
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(
|
123 |
+
random_seed=global_random_seed, features=50
|
124 |
+
)
|
125 |
+
|
126 |
+
metric_params = METRICS.get(metric, {})
|
127 |
+
bt_64 = BallTree64(X_64, leaf_size=1, metric=metric, **metric_params)
|
128 |
+
bt_32 = BallTree32(X_32, leaf_size=1, metric=metric, **metric_params)
|
129 |
+
|
130 |
+
# Test consistency with respect to the `query` method
|
131 |
+
k = 5
|
132 |
+
dist_64, ind_64 = bt_64.query(Y_64, k=k)
|
133 |
+
dist_32, ind_32 = bt_32.query(Y_32, k=k)
|
134 |
+
assert_allclose(dist_64, dist_32, rtol=1e-5)
|
135 |
+
assert_equal(ind_64, ind_32)
|
136 |
+
assert dist_64.dtype == np.float64
|
137 |
+
assert dist_32.dtype == np.float32
|
138 |
+
|
139 |
+
# Test consistency with respect to the `query_radius` method
|
140 |
+
r = 2.38
|
141 |
+
ind_64 = bt_64.query_radius(Y_64, r=r)
|
142 |
+
ind_32 = bt_32.query_radius(Y_32, r=r)
|
143 |
+
for _ind64, _ind32 in zip(ind_64, ind_32):
|
144 |
+
assert_equal(_ind64, _ind32)
|
145 |
+
|
146 |
+
# Test consistency with respect to the `query_radius` method
|
147 |
+
# with return distances being true
|
148 |
+
ind_64, dist_64 = bt_64.query_radius(Y_64, r=r, return_distance=True)
|
149 |
+
ind_32, dist_32 = bt_32.query_radius(Y_32, r=r, return_distance=True)
|
150 |
+
for _ind64, _ind32, _dist_64, _dist_32 in zip(ind_64, ind_32, dist_64, dist_32):
|
151 |
+
assert_equal(_ind64, _ind32)
|
152 |
+
assert_allclose(_dist_64, _dist_32, rtol=1e-5)
|
153 |
+
assert _dist_64.dtype == np.float64
|
154 |
+
assert _dist_32.dtype == np.float32
|
155 |
+
|
156 |
+
|
157 |
+
@pytest.mark.parametrize("metric", itertools.chain(METRICS, BOOLEAN_METRICS))
|
158 |
+
def test_kernel_density_numerical_consistency(global_random_seed, metric):
|
159 |
+
# Test consistency with respect to the `kernel_density` method
|
160 |
+
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(random_seed=global_random_seed)
|
161 |
+
|
162 |
+
metric_params = METRICS.get(metric, {})
|
163 |
+
bt_64 = BallTree64(X_64, leaf_size=1, metric=metric, **metric_params)
|
164 |
+
bt_32 = BallTree32(X_32, leaf_size=1, metric=metric, **metric_params)
|
165 |
+
|
166 |
+
kernel = "gaussian"
|
167 |
+
h = 0.1
|
168 |
+
density64 = bt_64.kernel_density(Y_64, h=h, kernel=kernel, breadth_first=True)
|
169 |
+
density32 = bt_32.kernel_density(Y_32, h=h, kernel=kernel, breadth_first=True)
|
170 |
+
assert_allclose(density64, density32, rtol=1e-5)
|
171 |
+
assert density64.dtype == np.float64
|
172 |
+
assert density32.dtype == np.float32
|
173 |
+
|
174 |
+
|
175 |
+
def test_two_point_correlation_numerical_consistency(global_random_seed):
|
176 |
+
# Test consistency with respect to the `two_point_correlation` method
|
177 |
+
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(random_seed=global_random_seed)
|
178 |
+
|
179 |
+
bt_64 = BallTree64(X_64, leaf_size=10)
|
180 |
+
bt_32 = BallTree32(X_32, leaf_size=10)
|
181 |
+
|
182 |
+
r = np.linspace(0, 1, 10)
|
183 |
+
|
184 |
+
counts_64 = bt_64.two_point_correlation(Y_64, r=r, dualtree=True)
|
185 |
+
counts_32 = bt_32.two_point_correlation(Y_32, r=r, dualtree=True)
|
186 |
+
assert_allclose(counts_64, counts_32)
|
187 |
+
|
188 |
+
|
189 |
+
def get_dataset_for_binary_tree(random_seed, features=3):
|
190 |
+
rng = np.random.RandomState(random_seed)
|
191 |
+
_X = rng.rand(100, features)
|
192 |
+
_Y = rng.rand(5, features)
|
193 |
+
|
194 |
+
X_64 = _X.astype(dtype=np.float64, copy=False)
|
195 |
+
Y_64 = _Y.astype(dtype=np.float64, copy=False)
|
196 |
+
|
197 |
+
X_32 = _X.astype(dtype=np.float32, copy=False)
|
198 |
+
Y_32 = _Y.astype(dtype=np.float32, copy=False)
|
199 |
+
|
200 |
+
return X_64, X_32, Y_64, Y_32
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_graph.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from sklearn.metrics import euclidean_distances
|
5 |
+
from sklearn.neighbors import KNeighborsTransformer, RadiusNeighborsTransformer
|
6 |
+
from sklearn.neighbors._base import _is_sorted_by_data
|
7 |
+
from sklearn.utils._testing import assert_array_equal
|
8 |
+
|
9 |
+
|
10 |
+
def test_transformer_result():
|
11 |
+
# Test the number of neighbors returned
|
12 |
+
n_neighbors = 5
|
13 |
+
n_samples_fit = 20
|
14 |
+
n_queries = 18
|
15 |
+
n_features = 10
|
16 |
+
|
17 |
+
rng = np.random.RandomState(42)
|
18 |
+
X = rng.randn(n_samples_fit, n_features)
|
19 |
+
X2 = rng.randn(n_queries, n_features)
|
20 |
+
radius = np.percentile(euclidean_distances(X), 10)
|
21 |
+
|
22 |
+
# with n_neighbors
|
23 |
+
for mode in ["distance", "connectivity"]:
|
24 |
+
add_one = mode == "distance"
|
25 |
+
nnt = KNeighborsTransformer(n_neighbors=n_neighbors, mode=mode)
|
26 |
+
Xt = nnt.fit_transform(X)
|
27 |
+
assert Xt.shape == (n_samples_fit, n_samples_fit)
|
28 |
+
assert Xt.data.shape == (n_samples_fit * (n_neighbors + add_one),)
|
29 |
+
assert Xt.format == "csr"
|
30 |
+
assert _is_sorted_by_data(Xt)
|
31 |
+
|
32 |
+
X2t = nnt.transform(X2)
|
33 |
+
assert X2t.shape == (n_queries, n_samples_fit)
|
34 |
+
assert X2t.data.shape == (n_queries * (n_neighbors + add_one),)
|
35 |
+
assert X2t.format == "csr"
|
36 |
+
assert _is_sorted_by_data(X2t)
|
37 |
+
|
38 |
+
# with radius
|
39 |
+
for mode in ["distance", "connectivity"]:
|
40 |
+
add_one = mode == "distance"
|
41 |
+
nnt = RadiusNeighborsTransformer(radius=radius, mode=mode)
|
42 |
+
Xt = nnt.fit_transform(X)
|
43 |
+
assert Xt.shape == (n_samples_fit, n_samples_fit)
|
44 |
+
assert not Xt.data.shape == (n_samples_fit * (n_neighbors + add_one),)
|
45 |
+
assert Xt.format == "csr"
|
46 |
+
assert _is_sorted_by_data(Xt)
|
47 |
+
|
48 |
+
X2t = nnt.transform(X2)
|
49 |
+
assert X2t.shape == (n_queries, n_samples_fit)
|
50 |
+
assert not X2t.data.shape == (n_queries * (n_neighbors + add_one),)
|
51 |
+
assert X2t.format == "csr"
|
52 |
+
assert _is_sorted_by_data(X2t)
|
53 |
+
|
54 |
+
|
55 |
+
def _has_explicit_diagonal(X):
|
56 |
+
"""Return True if the diagonal is explicitly stored"""
|
57 |
+
X = X.tocoo()
|
58 |
+
explicit = X.row[X.row == X.col]
|
59 |
+
return len(explicit) == X.shape[0]
|
60 |
+
|
61 |
+
|
62 |
+
def test_explicit_diagonal():
|
63 |
+
# Test that the diagonal is explicitly stored in the sparse graph
|
64 |
+
n_neighbors = 5
|
65 |
+
n_samples_fit, n_samples_transform, n_features = 20, 18, 10
|
66 |
+
rng = np.random.RandomState(42)
|
67 |
+
X = rng.randn(n_samples_fit, n_features)
|
68 |
+
X2 = rng.randn(n_samples_transform, n_features)
|
69 |
+
|
70 |
+
nnt = KNeighborsTransformer(n_neighbors=n_neighbors)
|
71 |
+
Xt = nnt.fit_transform(X)
|
72 |
+
assert _has_explicit_diagonal(Xt)
|
73 |
+
assert np.all(Xt.data.reshape(n_samples_fit, n_neighbors + 1)[:, 0] == 0)
|
74 |
+
|
75 |
+
Xt = nnt.transform(X)
|
76 |
+
assert _has_explicit_diagonal(Xt)
|
77 |
+
assert np.all(Xt.data.reshape(n_samples_fit, n_neighbors + 1)[:, 0] == 0)
|
78 |
+
|
79 |
+
# Using transform on new data should not always have zero diagonal
|
80 |
+
X2t = nnt.transform(X2)
|
81 |
+
assert not _has_explicit_diagonal(X2t)
|
82 |
+
|
83 |
+
|
84 |
+
@pytest.mark.parametrize("Klass", [KNeighborsTransformer, RadiusNeighborsTransformer])
|
85 |
+
def test_graph_feature_names_out(Klass):
|
86 |
+
"""Check `get_feature_names_out` for transformers defined in `_graph.py`."""
|
87 |
+
|
88 |
+
n_samples_fit = 20
|
89 |
+
n_features = 10
|
90 |
+
rng = np.random.RandomState(42)
|
91 |
+
X = rng.randn(n_samples_fit, n_features)
|
92 |
+
|
93 |
+
est = Klass().fit(X)
|
94 |
+
names_out = est.get_feature_names_out()
|
95 |
+
|
96 |
+
class_name_lower = Klass.__name__.lower()
|
97 |
+
expected_names_out = np.array(
|
98 |
+
[f"{class_name_lower}{i}" for i in range(est.n_samples_fit_)],
|
99 |
+
dtype=object,
|
100 |
+
)
|
101 |
+
assert_array_equal(names_out, expected_names_out)
|
venv/lib/python3.10/site-packages/sklearn/neighbors/tests/test_kd_tree.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
from numpy.testing import assert_allclose, assert_equal
|
4 |
+
|
5 |
+
from sklearn.neighbors._kd_tree import KDTree, KDTree32, KDTree64
|
6 |
+
from sklearn.neighbors.tests.test_ball_tree import get_dataset_for_binary_tree
|
7 |
+
from sklearn.utils.parallel import Parallel, delayed
|
8 |
+
|
9 |
+
DIMENSION = 3
|
10 |
+
|
11 |
+
METRICS = {"euclidean": {}, "manhattan": {}, "chebyshev": {}, "minkowski": dict(p=3)}
|
12 |
+
|
13 |
+
KD_TREE_CLASSES = [
|
14 |
+
KDTree64,
|
15 |
+
KDTree32,
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
def test_KDTree_is_KDTree64_subclass():
|
20 |
+
assert issubclass(KDTree, KDTree64)
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.mark.parametrize("BinarySearchTree", KD_TREE_CLASSES)
|
24 |
+
def test_array_object_type(BinarySearchTree):
|
25 |
+
"""Check that we do not accept object dtype array."""
|
26 |
+
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
|
27 |
+
with pytest.raises(ValueError, match="setting an array element with a sequence"):
|
28 |
+
BinarySearchTree(X)
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.mark.parametrize("BinarySearchTree", KD_TREE_CLASSES)
|
32 |
+
def test_kdtree_picklable_with_joblib(BinarySearchTree):
|
33 |
+
"""Make sure that KDTree queries work when joblib memmaps.
|
34 |
+
|
35 |
+
Non-regression test for #21685 and #21228."""
|
36 |
+
rng = np.random.RandomState(0)
|
37 |
+
X = rng.random_sample((10, 3))
|
38 |
+
tree = BinarySearchTree(X, leaf_size=2)
|
39 |
+
|
40 |
+
# Call Parallel with max_nbytes=1 to trigger readonly memory mapping that
|
41 |
+
# use to raise "ValueError: buffer source array is read-only" in a previous
|
42 |
+
# version of the Cython code.
|
43 |
+
Parallel(n_jobs=2, max_nbytes=1)(delayed(tree.query)(data) for data in 2 * [X])
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.mark.parametrize("metric", METRICS)
|
47 |
+
def test_kd_tree_numerical_consistency(global_random_seed, metric):
|
48 |
+
# Results on float64 and float32 versions of a dataset must be
|
49 |
+
# numerically close.
|
50 |
+
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(
|
51 |
+
random_seed=global_random_seed, features=50
|
52 |
+
)
|
53 |
+
|
54 |
+
metric_params = METRICS.get(metric, {})
|
55 |
+
kd_64 = KDTree64(X_64, leaf_size=2, metric=metric, **metric_params)
|
56 |
+
kd_32 = KDTree32(X_32, leaf_size=2, metric=metric, **metric_params)
|
57 |
+
|
58 |
+
# Test consistency with respect to the `query` method
|
59 |
+
k = 4
|
60 |
+
dist_64, ind_64 = kd_64.query(Y_64, k=k)
|
61 |
+
dist_32, ind_32 = kd_32.query(Y_32, k=k)
|
62 |
+
assert_allclose(dist_64, dist_32, rtol=1e-5)
|
63 |
+
assert_equal(ind_64, ind_32)
|
64 |
+
assert dist_64.dtype == np.float64
|
65 |
+
assert dist_32.dtype == np.float32
|
66 |
+
|
67 |
+
# Test consistency with respect to the `query_radius` method
|
68 |
+
r = 2.38
|
69 |
+
ind_64 = kd_64.query_radius(Y_64, r=r)
|
70 |
+
ind_32 = kd_32.query_radius(Y_32, r=r)
|
71 |
+
for _ind64, _ind32 in zip(ind_64, ind_32):
|
72 |
+
assert_equal(_ind64, _ind32)
|
73 |
+
|
74 |
+
# Test consistency with respect to the `query_radius` method
|
75 |
+
# with return distances being true
|
76 |
+
ind_64, dist_64 = kd_64.query_radius(Y_64, r=r, return_distance=True)
|
77 |
+
ind_32, dist_32 = kd_32.query_radius(Y_32, r=r, return_distance=True)
|
78 |
+
for _ind64, _ind32, _dist_64, _dist_32 in zip(ind_64, ind_32, dist_64, dist_32):
|
79 |
+
assert_equal(_ind64, _ind32)
|
80 |
+
assert_allclose(_dist_64, _dist_32, rtol=1e-5)
|
81 |
+
assert _dist_64.dtype == np.float64
|
82 |
+
assert _dist_32.dtype == np.float32
|
83 |
+
|
84 |
+
|
85 |
+
@pytest.mark.parametrize("metric", METRICS)
|
86 |
+
def test_kernel_density_numerical_consistency(global_random_seed, metric):
|
87 |
+
# Test consistency with respect to the `kernel_density` method
|
88 |
+
X_64, X_32, Y_64, Y_32 = get_dataset_for_binary_tree(random_seed=global_random_seed)
|
89 |
+
|
90 |
+
metric_params = METRICS.get(metric, {})
|
91 |
+
kd_64 = KDTree64(X_64, leaf_size=2, metric=metric, **metric_params)
|
92 |
+
kd_32 = KDTree32(X_32, leaf_size=2, metric=metric, **metric_params)
|
93 |
+
|
94 |
+
kernel = "gaussian"
|
95 |
+
h = 0.1
|
96 |
+
density64 = kd_64.kernel_density(Y_64, h=h, kernel=kernel, breadth_first=True)
|
97 |
+
density32 = kd_32.kernel_density(Y_32, h=h, kernel=kernel, breadth_first=True)
|
98 |
+
assert_allclose(density64, density32, rtol=1e-5)
|
99 |
+
assert density64.dtype == np.float64
|
100 |
+
assert density32.dtype == np.float32
|