Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/4.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_export/__init__.py +406 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/error.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/exported_program.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/non_strict_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/pass_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/verifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/__pycache__/wrappers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/db/__init__.py +5 -0
- venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/case.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/gen_example.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/logging.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/db/case.py +188 -0
- venv/lib/python3.10/site-packages/torch/_export/db/gen_example.py +28 -0
- venv/lib/python3.10/site-packages/torch/_export/db/logging.py +2 -0
- venv/lib/python3.10/site-packages/torch/_export/error.py +56 -0
- venv/lib/python3.10/site-packages/torch/_export/exported_program.py +50 -0
- venv/lib/python3.10/site-packages/torch/_export/non_strict_utils.py +258 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_base.py +435 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/node_metadata.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/proxy_value.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/node_metadata.py +32 -0
- venv/lib/python3.10/site-packages/torch/_export/pass_infra/proxy_value.py +41 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/add_runtime_assertions_for_constraints_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/collect_tracepoints_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/functionalize_side_effectful_ops_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/lift_constants_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/remove_runtime_assertions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_set_grad_with_hop_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_sym_size_ops_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_view_ops_with_view_copy_ops_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py +231 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/collect_tracepoints_pass.py +66 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/functionalize_side_effectful_ops_pass.py +94 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/lift_constants_pass.py +248 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/remove_runtime_assertions.py +26 -0
- venv/lib/python3.10/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py +141 -0
ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:956ca64ef4a7075c8b0ef9f8de8307de62d20b7f2b8d08de58f7fba9c0992e33
|
3 |
+
size 50332828
|
ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e544829b3c44de36ef1d5a4ca8d2a84caa18e54c23fe7a907a09d2089d90300f
|
3 |
+
size 50332843
|
ckpts/universal/global_step120/zero/24.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:452cd4dc39ef7c537e714dadd022b0d9fcaf927534119dca7e5805630e2e771e
|
3 |
+
size 50332749
|
ckpts/universal/global_step120/zero/4.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35e18b8ce54fe43eb1d7911b9a6d4ef4c4657e3289bde46259e470d849a1953f
|
3 |
+
size 16778411
|
ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70553f24ab2bc4cf7401a6764ff87b9cb83fe747c6d56b3433700b0fc8435170
|
3 |
+
size 50332828
|
ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd393b8e3bb757baeee963a4c3cc73afff5e1c92237b64638151eab8d9179f13
|
3 |
+
size 50332843
|
ckpts/universal/global_step120/zero/9.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71d21345e9a10694321bb7df7472028fa55661344314a260e140cec783cec684
|
3 |
+
size 50332749
|
venv/lib/python3.10/site-packages/torch/_export/__init__.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import dataclasses
|
3 |
+
import functools
|
4 |
+
import io
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import sys
|
9 |
+
import types
|
10 |
+
import warnings
|
11 |
+
import weakref
|
12 |
+
import zipfile
|
13 |
+
from collections import OrderedDict
|
14 |
+
from contextlib import contextmanager
|
15 |
+
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
from unittest.mock import patch
|
18 |
+
|
19 |
+
import sympy
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch._dynamo
|
23 |
+
import torch.fx
|
24 |
+
import torch.utils._pytree as pytree
|
25 |
+
|
26 |
+
from torch._decomp import core_aten_decompositions, get_decompositions
|
27 |
+
from torch._dispatch.python import enable_python_dispatcher
|
28 |
+
from torch._dynamo.exc import UserError, UserErrorType
|
29 |
+
from torch._dynamo.source import ConstantSource
|
30 |
+
from torch._export.passes.collect_tracepoints_pass import CollectTracepointsPass
|
31 |
+
from torch._functorch.aot_autograd import aot_export_module, GraphSignature
|
32 |
+
from torch._functorch.eager_transforms import functionalize
|
33 |
+
from torch._guards import detect_fake_mode
|
34 |
+
from torch._inductor import config
|
35 |
+
from torch._ops import OpOverload
|
36 |
+
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
|
37 |
+
from torch._subclasses.functional_tensor import FunctionalTensor
|
38 |
+
from torch._utils_internal import log_export_usage
|
39 |
+
from torch.export._tree_utils import reorder_kwargs
|
40 |
+
from torch.export._unlift import _create_stateful_graph_module
|
41 |
+
from torch.export.dynamic_shapes import (
|
42 |
+
_process_constraints,
|
43 |
+
_process_dynamic_shapes,
|
44 |
+
Constraint,
|
45 |
+
dims,
|
46 |
+
dynamic_dim,
|
47 |
+
)
|
48 |
+
from torch.export.exported_program import (
|
49 |
+
_disable_prexisiting_fake_mode,
|
50 |
+
ExportedProgram,
|
51 |
+
ModuleCallEntry,
|
52 |
+
ModuleCallSignature,
|
53 |
+
)
|
54 |
+
from torch.export.graph_signature import (
|
55 |
+
_sig_to_specs,
|
56 |
+
ArgumentSpec,
|
57 |
+
ConstantArgument,
|
58 |
+
ExportGraphSignature,
|
59 |
+
InputKind,
|
60 |
+
InputSpec,
|
61 |
+
OutputKind,
|
62 |
+
OutputSpec,
|
63 |
+
SymIntArgument,
|
64 |
+
TensorArgument,
|
65 |
+
)
|
66 |
+
from torch.fx import traceback as fx_traceback
|
67 |
+
from torch.fx._compatibility import compatibility
|
68 |
+
from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode
|
69 |
+
from torch.fx.experimental.symbolic_shapes import (
|
70 |
+
ConstraintViolationError,
|
71 |
+
GuardOnDataDependentSymNode,
|
72 |
+
ShapeEnv,
|
73 |
+
StrictMinMaxConstraint,
|
74 |
+
)
|
75 |
+
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
|
76 |
+
from torch.utils._sympy.value_ranges import ValueRangeError, ValueRanges
|
77 |
+
|
78 |
+
from .passes.add_runtime_assertions_for_constraints_pass import (
|
79 |
+
_AddRuntimeAssertionsForInlineConstraintsPass,
|
80 |
+
)
|
81 |
+
from .wrappers import _wrap_submodules
|
82 |
+
|
83 |
+
|
84 |
+
@dataclasses.dataclass
|
85 |
+
class ExportDynamoConfig:
|
86 |
+
"""
|
87 |
+
Manage Export-specific configurations of Dynamo.
|
88 |
+
"""
|
89 |
+
allow_rnn: bool = True
|
90 |
+
|
91 |
+
|
92 |
+
@compatibility(is_backward_compatible=False)
|
93 |
+
def capture_pre_autograd_graph(
|
94 |
+
f: torch.nn.Module,
|
95 |
+
args: Tuple[Any],
|
96 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
97 |
+
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None,
|
98 |
+
) -> torch.nn.Module:
|
99 |
+
"""
|
100 |
+
A helper function that is intended to trace a module before any pre-autograd
|
101 |
+
decomposition is run. The produced module will be "non-functional" and
|
102 |
+
composed of aten operators. Later this API will be deleted in favor of more general
|
103 |
+
torch.export API.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
f: nn.Module to be traced
|
107 |
+
|
108 |
+
args: example positional inputs.
|
109 |
+
|
110 |
+
kwargs: optional example keyword inputs.
|
111 |
+
|
112 |
+
dynamic_shapes: Should either be:
|
113 |
+
1) a dict from argument names of ``f`` to their dynamic shape specifications,
|
114 |
+
2) a tuple that specifies dynamic shape specifications for each input in original order.
|
115 |
+
If you are specifying dynamism on keyword args, you will need to pass them in the order that
|
116 |
+
is defined in the original function signature.
|
117 |
+
|
118 |
+
The dynamic shape of a tensor argument can be specified as either
|
119 |
+
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
|
120 |
+
not required to include static dimension indices in this dict, but when they are,
|
121 |
+
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
|
122 |
+
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
|
123 |
+
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
|
124 |
+
recursively specified by using mappings or sequences of contained specifications.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
An nn.Module containing the traced method.
|
128 |
+
|
129 |
+
"""
|
130 |
+
from torch.export._trace import _convert_input_to_fake, DEFAULT_EXPORT_DYNAMO_CONFIG
|
131 |
+
from torch.export.dynamic_shapes import _process_dynamic_shapes
|
132 |
+
|
133 |
+
log_export_usage(event="export.private_api", flags={"capture_pre_autograd_graph"})
|
134 |
+
|
135 |
+
assert isinstance(f, torch.nn.Module), "Expected an nn.Module instance."
|
136 |
+
|
137 |
+
if kwargs is None:
|
138 |
+
kwargs = {}
|
139 |
+
|
140 |
+
constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes)
|
141 |
+
|
142 |
+
# Do not decompose dropout for exported models, because in eval mode the dropout
|
143 |
+
# op disappears from the graph, which makes it difficult to switch to train mode.
|
144 |
+
# See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832.
|
145 |
+
decomp_table = {
|
146 |
+
op: op.decompose
|
147 |
+
for op in FunctionalTensor.maybe_aliasing_or_mutating_ops
|
148 |
+
if op != torch.ops.aten.dropout.default
|
149 |
+
}
|
150 |
+
with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)):
|
151 |
+
m = torch._dynamo.export(
|
152 |
+
f,
|
153 |
+
constraints=constraints,
|
154 |
+
assume_static_by_default=True,
|
155 |
+
tracing_mode="symbolic",
|
156 |
+
decomposition_table=decomp_table,
|
157 |
+
pre_dispatch=True,
|
158 |
+
aten_graph=True,
|
159 |
+
_log_export_usage=False,
|
160 |
+
)(
|
161 |
+
*args,
|
162 |
+
**kwargs,
|
163 |
+
)[0]
|
164 |
+
|
165 |
+
_, _, _, fake_mode = _convert_input_to_fake(m, args, kwargs)
|
166 |
+
|
167 |
+
m.meta["inline_constraints"] = {
|
168 |
+
k: v
|
169 |
+
for k, v in fake_mode.shape_env.var_to_range.items()
|
170 |
+
if re.match(r"^[if]\d+$", str(k))
|
171 |
+
}
|
172 |
+
|
173 |
+
if isinstance(f, torch.nn.Module):
|
174 |
+
from torch.export._trace import _restore_state_dict
|
175 |
+
_restore_state_dict(f, m)
|
176 |
+
|
177 |
+
flat_args, _ = pytree.tree_flatten((args, kwargs or {}))
|
178 |
+
range_constraints = _process_constraints(fake_mode, m, 0, flat_args)
|
179 |
+
|
180 |
+
module = _create_stateful_graph_module(
|
181 |
+
m,
|
182 |
+
range_constraints=range_constraints,
|
183 |
+
)
|
184 |
+
|
185 |
+
error_message = \
|
186 |
+
"""
|
187 |
+
Calling train() or eval() is not supported for exported models.
|
188 |
+
Alternatively, you may override these methods to do custom user behavior as follows:
|
189 |
+
|
190 |
+
def _my_train(self, mode: bool = True):
|
191 |
+
...
|
192 |
+
|
193 |
+
def _my_eval(self):
|
194 |
+
...
|
195 |
+
|
196 |
+
model.train = types.MethodType(_my_train, model)
|
197 |
+
model.eval = types.MethodType(_my_eval, model)
|
198 |
+
"""
|
199 |
+
|
200 |
+
def _train(self, mode: bool = True):
|
201 |
+
raise NotImplementedError(error_message)
|
202 |
+
|
203 |
+
def _eval(self, mode: bool = True):
|
204 |
+
raise NotImplementedError(error_message)
|
205 |
+
|
206 |
+
module.train = types.MethodType(_train, module) # type: ignore[method-assign]
|
207 |
+
module.eval = types.MethodType(_eval, module) # type: ignore[method-assign]
|
208 |
+
return module
|
209 |
+
|
210 |
+
|
211 |
+
def save(
|
212 |
+
ep: ExportedProgram,
|
213 |
+
f: Union[str, os.PathLike, io.BytesIO],
|
214 |
+
*,
|
215 |
+
extra_files: Optional[Dict[str, Any]] = None,
|
216 |
+
opset_version: Optional[Dict[str, int]] = None,
|
217 |
+
) -> None:
|
218 |
+
if not isinstance(ep, ExportedProgram):
|
219 |
+
raise TypeError(f"save() expects an ExportedProgram but got {type(ep)}")
|
220 |
+
|
221 |
+
from .serde.serialize import serialize, SerializedArtifact
|
222 |
+
from .serde.schema import SCHEMA_VERSION
|
223 |
+
artifact: SerializedArtifact = serialize(ep, opset_version)
|
224 |
+
|
225 |
+
if isinstance(f, (str, os.PathLike)):
|
226 |
+
f = os.fspath(f)
|
227 |
+
|
228 |
+
with zipfile.ZipFile(f, 'w') as zipf:
|
229 |
+
# Save every field the SerializedArtifact to a file
|
230 |
+
assert isinstance(artifact.exported_program, bytes)
|
231 |
+
zipf.writestr("serialized_exported_program.json", artifact.exported_program)
|
232 |
+
zipf.writestr("serialized_state_dict.pt", artifact.state_dict)
|
233 |
+
zipf.writestr("serialized_constants.pt", artifact.constants)
|
234 |
+
|
235 |
+
zipf.writestr('version', ".".join(map(str, SCHEMA_VERSION)))
|
236 |
+
|
237 |
+
# Add extra files if provided
|
238 |
+
if extra_files:
|
239 |
+
for extra_file_name, content in extra_files.items():
|
240 |
+
encoded_content = content.encode('utf-8')
|
241 |
+
zipf.writestr(f"extra_files/{extra_file_name}", encoded_content)
|
242 |
+
|
243 |
+
|
244 |
+
def load(
|
245 |
+
f: Union[str, os.PathLike, io.BytesIO],
|
246 |
+
*,
|
247 |
+
extra_files: Optional[Dict[str, Any]] = None,
|
248 |
+
expected_opset_version: Optional[Dict[str, int]] = None,
|
249 |
+
) -> ExportedProgram:
|
250 |
+
if isinstance(f, (str, os.PathLike)):
|
251 |
+
f = os.fspath(f)
|
252 |
+
|
253 |
+
extra_files = extra_files or {}
|
254 |
+
|
255 |
+
with zipfile.ZipFile(f, 'r') as zipf:
|
256 |
+
# Check the version
|
257 |
+
version = zipf.read('version').decode().split('.')
|
258 |
+
from .serde.schema import SCHEMA_VERSION
|
259 |
+
|
260 |
+
assert len(version) == len(SCHEMA_VERSION)
|
261 |
+
if version[0] != str(SCHEMA_VERSION[0]):
|
262 |
+
raise RuntimeError(
|
263 |
+
f"Serialized version {version} does not match our current "
|
264 |
+
f"schema version {SCHEMA_VERSION}."
|
265 |
+
)
|
266 |
+
|
267 |
+
from .serde.serialize import deserialize, SerializedArtifact
|
268 |
+
|
269 |
+
# Load serialized_ep and serialized_state_dict from the zip file
|
270 |
+
|
271 |
+
serialized_exported_program: Optional[bytes] = None
|
272 |
+
serialized_state_dict: Optional[bytes] = None
|
273 |
+
serialized_constants: Optional[bytes] = None
|
274 |
+
|
275 |
+
for file_info in zipf.infolist():
|
276 |
+
file_content = zipf.read(file_info.filename)
|
277 |
+
|
278 |
+
if file_info.filename == "serialized_exported_program.json":
|
279 |
+
serialized_exported_program = file_content
|
280 |
+
elif file_info.filename == "serialized_state_dict.json":
|
281 |
+
warnings.warn("This version of file is deprecated")
|
282 |
+
serialized_state_dict = file_content
|
283 |
+
elif file_info.filename == "serialized_constants.json":
|
284 |
+
warnings.warn("This version of file is deprecated")
|
285 |
+
serialized_constants = file_content
|
286 |
+
elif file_info.filename == "serialized_state_dict.pt":
|
287 |
+
serialized_state_dict = file_content
|
288 |
+
elif file_info.filename == "serialized_constants.pt":
|
289 |
+
serialized_constants = file_content
|
290 |
+
elif file_info.filename.startswith("extra_files"):
|
291 |
+
filename = file_info.filename.split("/", 1)[1]
|
292 |
+
extra_files[filename] = file_content.decode('utf-8')
|
293 |
+
|
294 |
+
assert serialized_exported_program is not None
|
295 |
+
assert serialized_state_dict is not None
|
296 |
+
assert serialized_constants is not None
|
297 |
+
artifact: SerializedArtifact = SerializedArtifact(
|
298 |
+
serialized_exported_program,
|
299 |
+
serialized_state_dict,
|
300 |
+
serialized_constants,
|
301 |
+
)
|
302 |
+
|
303 |
+
# Deserialize ExportedProgram
|
304 |
+
ep = deserialize(artifact, expected_opset_version)
|
305 |
+
|
306 |
+
return ep
|
307 |
+
|
308 |
+
|
309 |
+
def aot_compile(
|
310 |
+
f: Callable,
|
311 |
+
args: Tuple[Any],
|
312 |
+
kwargs: Optional[Dict[str, Any]] = None,
|
313 |
+
*,
|
314 |
+
dynamic_shapes: Optional[Dict[str, Any]] = None,
|
315 |
+
options: Optional[Dict[str, Any]] = None,
|
316 |
+
remove_runtime_assertions: bool = False,
|
317 |
+
disable_constraint_solver: bool = False,
|
318 |
+
) -> str:
|
319 |
+
"""
|
320 |
+
Note: this function is not stable yet
|
321 |
+
|
322 |
+
Traces either an nn.Module's forward function or just a callable with PyTorch
|
323 |
+
operations inside, generates executable cpp code from the program, and returns
|
324 |
+
the path to the generated shared library
|
325 |
+
|
326 |
+
Args:
|
327 |
+
f: the `nn.Module` or callable to trace.
|
328 |
+
|
329 |
+
args: example positional inputs.
|
330 |
+
|
331 |
+
kwargs: optional example keyword inputs.
|
332 |
+
|
333 |
+
dynamic_shapes: Should either be:
|
334 |
+
1) a dict from argument names of ``f`` to their dynamic shape specifications,
|
335 |
+
2) a tuple that specifies dynamic shape specifications for each input in original order.
|
336 |
+
If you are specifying dynamism on keyword args, you will need to pass them in the order that
|
337 |
+
is defined in the original function signature.
|
338 |
+
|
339 |
+
The dynamic shape of a tensor argument can be specified as either
|
340 |
+
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
|
341 |
+
not required to include static dimension indices in this dict, but when they are,
|
342 |
+
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
|
343 |
+
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
|
344 |
+
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
|
345 |
+
recursively specified by using mappings or sequences of contained specifications.
|
346 |
+
|
347 |
+
options: A dictionary of options to control inductor
|
348 |
+
|
349 |
+
disable_constraint_solver: Whether the dim constraint solver must be disabled.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
Path to the generated shared library
|
353 |
+
"""
|
354 |
+
from torch.export._trace import _export_to_torch_ir
|
355 |
+
from torch._inductor.decomposition import select_decomp_table
|
356 |
+
|
357 |
+
constraints = _process_dynamic_shapes(f, args, kwargs, dynamic_shapes)
|
358 |
+
|
359 |
+
if config.is_predispatch:
|
360 |
+
gm = torch.export._trace._export(f, args, kwargs, constraints, pre_dispatch=True).module()
|
361 |
+
else:
|
362 |
+
# We want to export to Torch IR here to utilize the pre_grad passes in
|
363 |
+
# inductor, which run on Torch IR.
|
364 |
+
gm = _export_to_torch_ir(
|
365 |
+
f,
|
366 |
+
args,
|
367 |
+
kwargs,
|
368 |
+
constraints,
|
369 |
+
disable_constraint_solver=disable_constraint_solver,
|
370 |
+
# Disabling this flag, because instead we can rely on the mapping
|
371 |
+
# dynamo_flat_name_to_original_fqn which is coming from Dynamo.
|
372 |
+
restore_fqn=False,
|
373 |
+
)
|
374 |
+
flat_example_inputs = pytree.arg_tree_leaves(*args, **(kwargs or {}))
|
375 |
+
|
376 |
+
with torch.no_grad():
|
377 |
+
so_path = torch._inductor.aot_compile(gm, flat_example_inputs, options) # type: ignore[arg-type]
|
378 |
+
|
379 |
+
return so_path
|
380 |
+
|
381 |
+
def aot_load(so_path: str, device: str) -> Callable:
|
382 |
+
"""
|
383 |
+
Loads a shared library generated by aot_compile and returns a callable
|
384 |
+
|
385 |
+
Args:
|
386 |
+
so_path: Path to the shared library
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
A callable
|
390 |
+
"""
|
391 |
+
if device == "cpu":
|
392 |
+
runner = torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1) # type: ignore[call-arg]
|
393 |
+
elif device == "cuda" or device.startswith("cuda:"):
|
394 |
+
runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device) # type: ignore[assignment, call-arg]
|
395 |
+
else:
|
396 |
+
raise RuntimeError("Unsupported device " + device)
|
397 |
+
|
398 |
+
def optimized(*args, **kwargs):
|
399 |
+
call_spec = runner.get_call_spec() # type: ignore[attr-defined]
|
400 |
+
in_spec = pytree.treespec_loads(call_spec[0])
|
401 |
+
out_spec = pytree.treespec_loads(call_spec[1])
|
402 |
+
flat_inputs = pytree.tree_flatten((args, reorder_kwargs(kwargs, in_spec)))[0]
|
403 |
+
flat_outputs = runner.run(flat_inputs) # type: ignore[attr-defined]
|
404 |
+
return pytree.tree_unflatten(flat_outputs, out_spec)
|
405 |
+
|
406 |
+
return optimized
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (13.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/error.cpython-310.pyc
ADDED
Binary file (2.08 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/exported_program.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/non_strict_utils.cpython-310.pyc
ADDED
Binary file (6.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/pass_base.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/verifier.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/__pycache__/wrappers.cpython-310.pyc
ADDED
Binary file (4.27 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/db/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/case.cpython-310.pyc
ADDED
Binary file (5.45 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/gen_example.cpython-310.pyc
ADDED
Binary file (833 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/db/__pycache__/logging.cpython-310.pyc
ADDED
Binary file (321 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/db/case.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import re
|
3 |
+
import string
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from enum import Enum
|
6 |
+
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
7 |
+
from types import ModuleType
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
_TAGS: Dict[str, Dict[str, Any]] = {
|
12 |
+
"torch": {
|
13 |
+
"cond": {},
|
14 |
+
"dynamic-shape": {},
|
15 |
+
"escape-hatch": {},
|
16 |
+
"map": {},
|
17 |
+
"dynamic-value": {},
|
18 |
+
"operator": {},
|
19 |
+
"mutation": {},
|
20 |
+
},
|
21 |
+
"python": {
|
22 |
+
"assert": {},
|
23 |
+
"builtin": {},
|
24 |
+
"closure": {},
|
25 |
+
"context-manager": {},
|
26 |
+
"control-flow": {},
|
27 |
+
"data-structure": {},
|
28 |
+
"standard-library": {},
|
29 |
+
"object-model": {},
|
30 |
+
},
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class SupportLevel(Enum):
|
35 |
+
"""
|
36 |
+
Indicates at what stage the feature
|
37 |
+
used in the example is handled in export.
|
38 |
+
"""
|
39 |
+
|
40 |
+
SUPPORTED = 1
|
41 |
+
NOT_SUPPORTED_YET = 0
|
42 |
+
|
43 |
+
|
44 |
+
class ExportArgs:
|
45 |
+
__slots__ = ("args", "kwargs")
|
46 |
+
|
47 |
+
def __init__(self, *args, **kwargs):
|
48 |
+
self.args = args
|
49 |
+
self.kwargs = kwargs
|
50 |
+
|
51 |
+
|
52 |
+
InputsType = Union[Tuple[Any, ...], ExportArgs]
|
53 |
+
|
54 |
+
|
55 |
+
def check_inputs_type(x):
|
56 |
+
if not isinstance(x, (ExportArgs, tuple)):
|
57 |
+
raise ValueError(
|
58 |
+
f"Expecting inputs type to be either a tuple, or ExportArgs, got: {type(x)}"
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def _validate_tag(tag: str):
|
63 |
+
parts = tag.split(".")
|
64 |
+
t = _TAGS
|
65 |
+
for part in parts:
|
66 |
+
assert set(part) <= set(
|
67 |
+
string.ascii_lowercase + "-"
|
68 |
+
), f"Tag contains invalid characters: {part}"
|
69 |
+
if part in t:
|
70 |
+
t = t[part]
|
71 |
+
else:
|
72 |
+
raise ValueError(f"Tag {tag} is not found in registered tags.")
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass(frozen=True)
|
76 |
+
class ExportCase:
|
77 |
+
example_inputs: InputsType
|
78 |
+
description: str # A description of the use case.
|
79 |
+
model: torch.nn.Module
|
80 |
+
name: str
|
81 |
+
extra_inputs: Optional[InputsType] = None # For testing graph generalization.
|
82 |
+
# Tags associated with the use case. (e.g dynamic-shape, escape-hatch)
|
83 |
+
tags: Set[str] = field(default_factory=set)
|
84 |
+
support_level: SupportLevel = SupportLevel.SUPPORTED
|
85 |
+
dynamic_shapes: Optional[Dict[str, Any]] = None
|
86 |
+
|
87 |
+
def __post_init__(self):
|
88 |
+
check_inputs_type(self.example_inputs)
|
89 |
+
if self.extra_inputs is not None:
|
90 |
+
check_inputs_type(self.extra_inputs)
|
91 |
+
|
92 |
+
for tag in self.tags:
|
93 |
+
_validate_tag(tag)
|
94 |
+
|
95 |
+
if not isinstance(self.description, str) or len(self.description) == 0:
|
96 |
+
raise ValueError(f'Invalid description: "{self.description}"')
|
97 |
+
|
98 |
+
|
99 |
+
_EXAMPLE_CASES: Dict[str, ExportCase] = {}
|
100 |
+
_MODULES: Set[ModuleType] = set()
|
101 |
+
_EXAMPLE_CONFLICT_CASES: Dict[str, List[ExportCase]] = {}
|
102 |
+
_EXAMPLE_REWRITE_CASES: Dict[str, List[ExportCase]] = {}
|
103 |
+
|
104 |
+
|
105 |
+
def register_db_case(case: ExportCase) -> None:
|
106 |
+
"""
|
107 |
+
Registers a user provided ExportCase into example bank.
|
108 |
+
"""
|
109 |
+
if case.name in _EXAMPLE_CASES:
|
110 |
+
if case.name not in _EXAMPLE_CONFLICT_CASES:
|
111 |
+
_EXAMPLE_CONFLICT_CASES[case.name] = [_EXAMPLE_CASES[case.name]]
|
112 |
+
_EXAMPLE_CONFLICT_CASES[case.name].append(case)
|
113 |
+
return
|
114 |
+
|
115 |
+
_EXAMPLE_CASES[case.name] = case
|
116 |
+
|
117 |
+
|
118 |
+
def to_snake_case(name):
|
119 |
+
name = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
|
120 |
+
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", name).lower()
|
121 |
+
|
122 |
+
|
123 |
+
def _make_export_case(m, name, configs):
|
124 |
+
if not issubclass(m, torch.nn.Module):
|
125 |
+
raise TypeError("Export case class should be a torch.nn.Module.")
|
126 |
+
m = m()
|
127 |
+
|
128 |
+
if "description" not in configs:
|
129 |
+
# Fallback to docstring if description is missing.
|
130 |
+
assert (
|
131 |
+
m.__doc__ is not None
|
132 |
+
), f"Could not find description or docstring for export case: {m}"
|
133 |
+
configs = {**configs, "description": m.__doc__}
|
134 |
+
return ExportCase(**{**configs, "model": m, "name": name})
|
135 |
+
|
136 |
+
|
137 |
+
def export_case(**kwargs):
|
138 |
+
"""
|
139 |
+
Decorator for registering a user provided case into example bank.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def wrapper(m):
|
143 |
+
configs = kwargs
|
144 |
+
module = inspect.getmodule(m)
|
145 |
+
if module in _MODULES:
|
146 |
+
raise RuntimeError("export_case should only be used once per example file.")
|
147 |
+
|
148 |
+
assert module is not None
|
149 |
+
_MODULES.add(module)
|
150 |
+
normalized_name = to_snake_case(m.__name__)
|
151 |
+
module_name = module.__name__.split(".")[-1]
|
152 |
+
if module_name != normalized_name:
|
153 |
+
raise RuntimeError(
|
154 |
+
f'Module name "{module.__name__}" is inconsistent with exported program '
|
155 |
+
+ f'name "{m.__name__}". Please rename the module to "{normalized_name}".'
|
156 |
+
)
|
157 |
+
|
158 |
+
case = _make_export_case(m, module_name, configs)
|
159 |
+
register_db_case(case)
|
160 |
+
return case
|
161 |
+
|
162 |
+
return wrapper
|
163 |
+
|
164 |
+
|
165 |
+
def export_rewrite_case(**kwargs):
|
166 |
+
def wrapper(m):
|
167 |
+
configs = kwargs
|
168 |
+
|
169 |
+
parent = configs.pop("parent")
|
170 |
+
assert isinstance(parent, ExportCase)
|
171 |
+
key = parent.name
|
172 |
+
if key not in _EXAMPLE_REWRITE_CASES:
|
173 |
+
_EXAMPLE_REWRITE_CASES[key] = []
|
174 |
+
|
175 |
+
configs["example_inputs"] = parent.example_inputs
|
176 |
+
case = _make_export_case(m, to_snake_case(m.__name__), configs)
|
177 |
+
_EXAMPLE_REWRITE_CASES[key].append(case)
|
178 |
+
return case
|
179 |
+
|
180 |
+
return wrapper
|
181 |
+
|
182 |
+
|
183 |
+
def normalize_inputs(x: InputsType) -> ExportArgs:
|
184 |
+
if isinstance(x, tuple):
|
185 |
+
return ExportArgs(*x)
|
186 |
+
|
187 |
+
assert isinstance(x, ExportArgs)
|
188 |
+
return x
|
venv/lib/python3.10/site-packages/torch/_export/db/gen_example.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import torch._export.db.examples as examples
|
5 |
+
|
6 |
+
TEMPLATE = '''import torch
|
7 |
+
|
8 |
+
from torch._export.db.case import export_case
|
9 |
+
|
10 |
+
|
11 |
+
@export_case(
|
12 |
+
example_inputs=(torch.randn(3, 2),),
|
13 |
+
tags={{}},
|
14 |
+
)
|
15 |
+
def {case_name}(x):
|
16 |
+
"""
|
17 |
+
"""
|
18 |
+
|
19 |
+
return
|
20 |
+
'''
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
assert len(sys.argv) == 2
|
24 |
+
root_dir = examples.__name__.replace(".", "/")
|
25 |
+
assert os.path.exists(root_dir)
|
26 |
+
with open(os.path.join(root_dir, sys.argv[1] + ".py"), "w") as f:
|
27 |
+
print("Writing to", f.name, "...")
|
28 |
+
f.write(TEMPLATE.format(case_name=sys.argv[1]))
|
venv/lib/python3.10/site-packages/torch/_export/db/logging.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
def exportdb_error_message(case_name: str):
|
2 |
+
return ""
|
venv/lib/python3.10/site-packages/torch/_export/error.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
|
4 |
+
class ExportErrorType(Enum):
|
5 |
+
# User providing invalid inputs to either tracer, or other public facing APIs
|
6 |
+
INVALID_INPUT_TYPE = 1
|
7 |
+
|
8 |
+
# User returning values from their models that we don’t support.
|
9 |
+
INVALID_OUTPUT_TYPE = 2
|
10 |
+
|
11 |
+
# Generated IR does not conform to Export IR Specification.
|
12 |
+
VIOLATION_OF_SPEC = 3
|
13 |
+
|
14 |
+
# User’s code contains types and functionalities we don’t support.
|
15 |
+
NOT_SUPPORTED = 4
|
16 |
+
|
17 |
+
# User's code didn't provide necessary details for us to successfully trace and export.
|
18 |
+
# For example, we use a lot of decorators and ask users to annotate their model.
|
19 |
+
MISSING_PROPERTY = 5
|
20 |
+
|
21 |
+
# User is using an API without proper initialization step.
|
22 |
+
UNINITIALIZED = 6
|
23 |
+
|
24 |
+
|
25 |
+
def internal_assert(pred: bool, assert_msg: str) -> None:
|
26 |
+
"""
|
27 |
+
This is exir's custom assert method. It internally just throws InternalError.
|
28 |
+
Note that the sole purpose is to throw our own error while maintaining similar syntax
|
29 |
+
as python assert.
|
30 |
+
"""
|
31 |
+
|
32 |
+
if not pred:
|
33 |
+
raise InternalError(assert_msg)
|
34 |
+
|
35 |
+
|
36 |
+
class InternalError(Exception):
|
37 |
+
"""
|
38 |
+
Raised when an internal invariance is violated in EXIR stack.
|
39 |
+
Should hint users to report a bug to dev and expose the original
|
40 |
+
error message.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, message: str) -> None:
|
44 |
+
super().__init__(message)
|
45 |
+
|
46 |
+
|
47 |
+
class ExportError(Exception):
|
48 |
+
"""
|
49 |
+
This type of exception is raised for errors that are directly caused by the user
|
50 |
+
code. In general, user errors happen during model authoring, tracing, using our public
|
51 |
+
facing APIs, and writing graph passes.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, error_code: ExportErrorType, message: str) -> None:
|
55 |
+
prefix = f"[{error_code}]: "
|
56 |
+
super().__init__(prefix + message)
|
venv/lib/python3.10/site-packages/torch/_export/exported_program.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.fx
|
6 |
+
|
7 |
+
|
8 |
+
# TODO(ycao): This is added to avoid breaking existing code temporarily.
|
9 |
+
# Remove when migration is done.
|
10 |
+
from torch.export.graph_signature import (
|
11 |
+
ExportBackwardSignature,
|
12 |
+
ExportGraphSignature,
|
13 |
+
)
|
14 |
+
|
15 |
+
from torch.export.exported_program import (
|
16 |
+
ExportedProgram,
|
17 |
+
ModuleCallEntry,
|
18 |
+
ModuleCallSignature,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"ExportBackwardSignature",
|
25 |
+
"ExportGraphSignature",
|
26 |
+
"ExportedProgram",
|
27 |
+
"ModuleCallEntry",
|
28 |
+
"ModuleCallSignature",
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
def _create_graph_module_for_export(root, graph):
|
33 |
+
try:
|
34 |
+
gm = torch.fx.GraphModule(root, graph)
|
35 |
+
except SyntaxError:
|
36 |
+
# If custom objects stored in memory are being used in the graph,
|
37 |
+
# the generated python code will result in a syntax error on the custom
|
38 |
+
# object, since it is unable to parse the in-memory object. However
|
39 |
+
# we can still run the graph eagerly through torch.fx.Interpreter,
|
40 |
+
# so we will bypass this error.
|
41 |
+
warnings.warn(
|
42 |
+
"Unable to execute the generated python source code from "
|
43 |
+
"the graph. The graph module will no longer be directly callable, "
|
44 |
+
"but you can still run the ExportedProgram, and if needed, you can "
|
45 |
+
"run the graph module eagerly using torch.fx.Interpreter."
|
46 |
+
)
|
47 |
+
gm = torch.fx.GraphModule(root, torch.fx.Graph())
|
48 |
+
gm._graph = graph
|
49 |
+
|
50 |
+
return gm
|
venv/lib/python3.10/site-packages/torch/_export/non_strict_utils.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from collections import defaultdict
|
3 |
+
from typing import Any, Callable, Dict, List, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._dynamo.source import (
|
7 |
+
AttrSource,
|
8 |
+
GetItemSource,
|
9 |
+
LocalSource,
|
10 |
+
TensorProperty,
|
11 |
+
TensorPropertySource,
|
12 |
+
)
|
13 |
+
from torch._dynamo.variables.builder import TrackedFake
|
14 |
+
from torch._export.passes.add_runtime_assertions_for_constraints_pass import InputDim
|
15 |
+
from torch._guards import Source
|
16 |
+
from torch._subclasses.fake_tensor import FakeTensorMode
|
17 |
+
from torch.export import Constraint
|
18 |
+
from torch.export.graph_signature import CustomObjArgument
|
19 |
+
from torch.fx.experimental.symbolic_shapes import (
|
20 |
+
ConstraintViolationError,
|
21 |
+
DimDynamic,
|
22 |
+
EqualityConstraint,
|
23 |
+
ShapeEnv,
|
24 |
+
StatelessSymbolicContext,
|
25 |
+
)
|
26 |
+
from torch.utils._pytree import (
|
27 |
+
GetAttrKey,
|
28 |
+
KeyPath,
|
29 |
+
MappingKey,
|
30 |
+
SequenceKey,
|
31 |
+
tree_map_with_path,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def key_path_to_source(kp: KeyPath) -> Source:
|
36 |
+
"""
|
37 |
+
Given a key path, return the source for the key path.
|
38 |
+
"""
|
39 |
+
source: Source = LocalSource("args")
|
40 |
+
for k in kp:
|
41 |
+
if isinstance(k, SequenceKey):
|
42 |
+
source = GetItemSource(source, k.idx)
|
43 |
+
elif isinstance(k, MappingKey):
|
44 |
+
source = GetItemSource(source, k.key)
|
45 |
+
elif isinstance(k, GetAttrKey):
|
46 |
+
source = AttrSource(source, k.name)
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Unknown KeyEntry {k}")
|
49 |
+
|
50 |
+
return source
|
51 |
+
|
52 |
+
|
53 |
+
def _is_constant_argument(t):
|
54 |
+
return t is None or isinstance(t, (int, float, bool, str))
|
55 |
+
|
56 |
+
|
57 |
+
def fakify(
|
58 |
+
mode: FakeTensorMode,
|
59 |
+
kp: KeyPath,
|
60 |
+
t: Any,
|
61 |
+
t_constraints: Dict[int, Dict[int, Constraint]],
|
62 |
+
sources: Dict[Tuple[int, int], List[Source]],
|
63 |
+
):
|
64 |
+
source = key_path_to_source(kp)
|
65 |
+
if _is_constant_argument(t) or isinstance(t, torch.ScriptObject):
|
66 |
+
return t
|
67 |
+
if not isinstance(t, torch.Tensor):
|
68 |
+
raise ValueError(f"Unsupported input type {type(t)}")
|
69 |
+
n_dims = len(t.shape)
|
70 |
+
symbolic_context = StatelessSymbolicContext(
|
71 |
+
dynamic_sizes=[DimDynamic.STATIC] * n_dims,
|
72 |
+
constraint_sizes=[None] * n_dims,
|
73 |
+
)
|
74 |
+
t_id = id(t)
|
75 |
+
if t_id in t_constraints:
|
76 |
+
for i, constraint in t_constraints[t_id].items():
|
77 |
+
symbolic_context.constraint_sizes[i] = constraint.constraint_range
|
78 |
+
symbolic_context.dynamic_sizes[i] = DimDynamic.DYNAMIC
|
79 |
+
src = TensorPropertySource(base=source, prop=TensorProperty.SIZE, idx=i)
|
80 |
+
sources[(t_id, i)].append(src)
|
81 |
+
mode.shape_env.source_name_to_debug_name[src.name()] = constraint.debug_name
|
82 |
+
fake = mode.from_tensor(t, source=source, symbolic_context=symbolic_context)
|
83 |
+
mode.shape_env.tracked_fakes.append(TrackedFake(fake, source, symbolic_context))
|
84 |
+
return fake
|
85 |
+
|
86 |
+
|
87 |
+
def make_fake_params_buffers(
|
88 |
+
fake_mode: FakeTensorMode,
|
89 |
+
params_buffers: Dict[str, torch.Tensor],
|
90 |
+
) -> Dict[str, Union[torch.Tensor, torch.nn.Parameter]]:
|
91 |
+
faked_params_buffers = {}
|
92 |
+
for key, value in params_buffers.items():
|
93 |
+
faked_params_buffers[key] = fake_mode.from_tensor(value, static_shapes=True)
|
94 |
+
return faked_params_buffers
|
95 |
+
|
96 |
+
|
97 |
+
def make_fake_inputs(nn_module, args, kwargs, constraints):
|
98 |
+
"""
|
99 |
+
Given an nn module, example inputs, and constraints, return a new fake mode,
|
100 |
+
fake inputs created in that mode whose dynamic shape dimensions are constrained
|
101 |
+
by the given ranges, and sources for pairs of dynamic shape dimensions that are
|
102 |
+
constrained to be equal.
|
103 |
+
"""
|
104 |
+
# TODO(avik): refactor Dynamo to avoid duplication of the following code
|
105 |
+
# between non-strict and strict.
|
106 |
+
# Specifically, here (non-strict) we do the following pre-tracing steps:
|
107 |
+
# - Fakify inputs.
|
108 |
+
# - Process input shape equalities.
|
109 |
+
# In strict, these steps are spread across multiple files:
|
110 |
+
# - output_graph.py fakifies inputs.
|
111 |
+
# - [post-tracing] guards.py processes input shape equalities.
|
112 |
+
|
113 |
+
t_constraints: Dict[int, Dict[int, Constraint]] = defaultdict(dict)
|
114 |
+
for constraint in constraints:
|
115 |
+
t_constraints[constraint.t_id][constraint.dim] = constraint
|
116 |
+
if constraint.shared is not None:
|
117 |
+
t_constraints[constraint.shared.t_id][constraint.shared.dim] = constraint
|
118 |
+
|
119 |
+
code = nn_module.forward.__code__
|
120 |
+
co_fields = {
|
121 |
+
"co_name": code.co_name,
|
122 |
+
"co_filename": code.co_filename,
|
123 |
+
"co_firstlineno": code.co_firstlineno,
|
124 |
+
}
|
125 |
+
|
126 |
+
fake_mode = FakeTensorMode(
|
127 |
+
shape_env=ShapeEnv(tracked_fakes=[], co_fields=co_fields),
|
128 |
+
allow_non_fake_inputs=True,
|
129 |
+
)
|
130 |
+
if fake_mode.shape_env is None or fake_mode.shape_env.tracked_fakes is None:
|
131 |
+
raise ValueError(
|
132 |
+
"Detected fake_mode does not have a shape_env with tracked fakes. "
|
133 |
+
"If you constructed the module under a FakeTensorMode, "
|
134 |
+
"please initialize it like: FakeTensorMode(shape_env=ShapeEnv(tracked_fakes=[]))"
|
135 |
+
)
|
136 |
+
|
137 |
+
with fake_mode:
|
138 |
+
original_signature = inspect.signature(nn_module.forward)
|
139 |
+
sources: Dict[Tuple[int, int], List[Source]] = defaultdict(list)
|
140 |
+
fake_args, fake_kwargs = tree_map_with_path(
|
141 |
+
lambda kp, val: fakify(fake_mode, kp, val, t_constraints, sources),
|
142 |
+
(args, kwargs),
|
143 |
+
)
|
144 |
+
|
145 |
+
from sympy import Symbol
|
146 |
+
|
147 |
+
source_pairs: List[Tuple[Source, Source]] = []
|
148 |
+
derived_equalities: List[Tuple[Source, Union[Source, Symbol], Callable]] = []
|
149 |
+
phantom_symbols: Dict[str, Symbol] = {}
|
150 |
+
for constraint in constraints:
|
151 |
+
torch.export.dynamic_shapes._process_equalities(
|
152 |
+
constraint,
|
153 |
+
lambda t_id, dim: sources[(t_id, dim)],
|
154 |
+
fake_mode.shape_env,
|
155 |
+
source_pairs,
|
156 |
+
derived_equalities,
|
157 |
+
phantom_symbols,
|
158 |
+
)
|
159 |
+
|
160 |
+
equalities_inputs = EqualityConstraint(
|
161 |
+
source_pairs=source_pairs,
|
162 |
+
derived_equalities=derived_equalities,
|
163 |
+
phantom_symbols=list(phantom_symbols.values()),
|
164 |
+
warn_only=False,
|
165 |
+
)
|
166 |
+
return fake_mode, fake_args, fake_kwargs, equalities_inputs, original_signature
|
167 |
+
|
168 |
+
|
169 |
+
def make_constraints(
|
170 |
+
fake_mode,
|
171 |
+
equalities_inputs,
|
172 |
+
original_signature,
|
173 |
+
gm,
|
174 |
+
):
|
175 |
+
"""
|
176 |
+
Given a fake mode, sources pairs corresponding to equal dynamic shape dimensions,
|
177 |
+
and a graph module, produce guards on the fake mode's shape env (raising constraint
|
178 |
+
violations if any), solve (to suggest simplifications or fixes), and return the
|
179 |
+
resulting range constraints and equality constraints.
|
180 |
+
"""
|
181 |
+
# TODO(avik): refactor Dynamo to avoid duplication of the following code
|
182 |
+
# between non-strict and strict.
|
183 |
+
# Specifically, here (non-strict) we do the following post-tracing steps:
|
184 |
+
# - Produce guards.
|
185 |
+
# - Solve constraints.
|
186 |
+
# - Install shape metadata in IR.
|
187 |
+
# In strict, these steps are spread across multiple files:
|
188 |
+
# - guards.py produces guards.
|
189 |
+
# - eval_frame.py solves constraints
|
190 |
+
# - _trace.py installs shape metadata in IR.
|
191 |
+
|
192 |
+
shape_env = fake_mode.shape_env
|
193 |
+
placeholders = [tf.fake for tf in shape_env.tracked_fakes]
|
194 |
+
sources = [tf.source for tf in shape_env.tracked_fakes]
|
195 |
+
input_contexts = [tf.symbolic_context for tf in shape_env.tracked_fakes]
|
196 |
+
constraint_violation_error = None
|
197 |
+
try:
|
198 |
+
shape_env.produce_guards(
|
199 |
+
placeholders,
|
200 |
+
sources,
|
201 |
+
input_contexts=input_contexts,
|
202 |
+
equalities_inputs=equalities_inputs,
|
203 |
+
ignore_static=False,
|
204 |
+
)
|
205 |
+
except ConstraintViolationError as e:
|
206 |
+
constraint_violation_error = e
|
207 |
+
|
208 |
+
shape_env.frozen = True
|
209 |
+
dim_constraints = shape_env.dim_constraints
|
210 |
+
if dim_constraints is None:
|
211 |
+
# Expected when shape_env.produce_guards throws an early constraint violation error.
|
212 |
+
# There is nothing to solve for in this case.
|
213 |
+
# TODO(avik): Maybe record the constraint violation error instead and replay later?
|
214 |
+
assert constraint_violation_error
|
215 |
+
raise constraint_violation_error
|
216 |
+
dim_constraints.solve()
|
217 |
+
dim_constraints.remove_redundant_dynamic_results()
|
218 |
+
forced_specializations = dim_constraints.forced_specializations()
|
219 |
+
msg = dim_constraints.prettify_results(
|
220 |
+
original_signature, constraint_violation_error, forced_specializations
|
221 |
+
)
|
222 |
+
if constraint_violation_error:
|
223 |
+
constraint_violation_error.args = (constraint_violation_error.args[0] + msg,)
|
224 |
+
elif forced_specializations:
|
225 |
+
constraint_violation_error = ConstraintViolationError(msg)
|
226 |
+
if constraint_violation_error:
|
227 |
+
raise constraint_violation_error
|
228 |
+
|
229 |
+
range_constraints = {}
|
230 |
+
input_dims = defaultdict(list)
|
231 |
+
free_symbols = set()
|
232 |
+
for node in gm.graph.nodes:
|
233 |
+
if node.op != "placeholder":
|
234 |
+
continue
|
235 |
+
if _is_constant_argument(node.meta["val"]) or isinstance(
|
236 |
+
node.meta["val"], CustomObjArgument
|
237 |
+
):
|
238 |
+
continue
|
239 |
+
for i, d in enumerate(node.meta["val"].shape):
|
240 |
+
if isinstance(d, torch.SymInt):
|
241 |
+
# Look up the range constraint for the symbol corresponding to this shape dimension
|
242 |
+
# and store it indexed by the symbolic expression corresponding to it.
|
243 |
+
# NOTE(avik): Use node._expr instead of node.expr for the lookup here because
|
244 |
+
# we want the symbol, not its replacement, which could be an expression. Maybe
|
245 |
+
# there's a better way to do this, e.g., by (re)computing value ranges for expressions?
|
246 |
+
range_constraints[d.node.expr] = shape_env.var_to_range[d.node._expr]
|
247 |
+
input_dims[d.node.expr].append(InputDim(input_name=node.name, dim=i))
|
248 |
+
free_symbols.update(d.node.expr.free_symbols)
|
249 |
+
|
250 |
+
for symbol in free_symbols:
|
251 |
+
if symbol not in range_constraints:
|
252 |
+
# Placeholders can have symbolic shapes that are derived expressions.
|
253 |
+
# The above code will record direct range constraints for them
|
254 |
+
# so that we can do runtime assertions. In addition, for serde checks
|
255 |
+
# we want to record range constraints for their root symbols.
|
256 |
+
range_constraints[symbol] = shape_env.var_to_range[symbol]
|
257 |
+
|
258 |
+
return range_constraints
|
venv/lib/python3.10/site-packages/torch/_export/pass_base.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
import traceback
|
3 |
+
import typing
|
4 |
+
from contextlib import nullcontext
|
5 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from functorch.experimental.control_flow import _unstack_pytree
|
9 |
+
from torch import fx
|
10 |
+
from torch._dispatch.python import enable_python_dispatcher
|
11 |
+
from torch._export.pass_infra.node_metadata import NodeMetadata
|
12 |
+
from torch._export.pass_infra.proxy_value import ProxyValue
|
13 |
+
from torch._subclasses import FakeTensor, UnsupportedFakeTensorException
|
14 |
+
from torch._subclasses.fake_tensor import FakeTensorMode
|
15 |
+
from torch.fx import traceback as fx_traceback
|
16 |
+
from torch.fx.experimental.proxy_tensor import PythonKeyTracer
|
17 |
+
from torch.fx.graph import CodeGen
|
18 |
+
from torch.fx.passes.infra.pass_base import PassBase, PassResult
|
19 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
|
20 |
+
from torch.utils import _pytree as pytree
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["_ExportPassBaseDeprecatedDoNotUse"]
|
24 |
+
|
25 |
+
|
26 |
+
Argument = Any
|
27 |
+
Value = Any
|
28 |
+
Fn = Callable[..., Any]
|
29 |
+
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
|
30 |
+
|
31 |
+
|
32 |
+
_TORCH_SYM_OPS: Set[Callable] = {
|
33 |
+
torch.sym_int,
|
34 |
+
torch.sym_ite,
|
35 |
+
torch.sym_max,
|
36 |
+
torch.sym_min,
|
37 |
+
torch.sym_not,
|
38 |
+
torch.sym_sqrt,
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class ExportPassBaseError(RuntimeError):
|
43 |
+
pass
|
44 |
+
|
45 |
+
|
46 |
+
class _ExportPassBaseDeprecatedDoNotUse(PassBase):
|
47 |
+
"""
|
48 |
+
Interpreter-based pass class to help users maintain the IR spec while writing
|
49 |
+
transformations.
|
50 |
+
"""
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def _create_dummy_node_metadata():
|
54 |
+
return NodeMetadata({"stack_trace": "".join(traceback.format_stack(limit=1))})
|
55 |
+
|
56 |
+
|
57 |
+
class ExportTracer(PythonKeyTracer):
|
58 |
+
def __init__(self, callback: "_ExportPassBaseDeprecatedDoNotUse", codegen: CodeGen) -> None:
|
59 |
+
super().__init__()
|
60 |
+
self.callback = callback
|
61 |
+
self.root = torch.nn.Module()
|
62 |
+
self.graph = torch.fx.Graph()
|
63 |
+
self.graph.set_codegen(codegen)
|
64 |
+
self.tensor_attrs: Dict[str, torch.Tensor] = {} # type: ignore[assignment]
|
65 |
+
self.fake_tensor_mode: Optional[FakeTensorMode] = None
|
66 |
+
self.submodules: Dict[torch.nn.Module, str] = {}
|
67 |
+
|
68 |
+
def trace(self) -> None:
|
69 |
+
raise ExportPassBaseError("ExportTracer doesn't support trace().")
|
70 |
+
|
71 |
+
def create_arg(self, a: Argument) -> torch.fx.Node:
|
72 |
+
if isinstance(a, torch.nn.Module):
|
73 |
+
if a not in self.submodules:
|
74 |
+
name_submodule = f"submodule_{len(self.submodules)}"
|
75 |
+
self.root.add_module(name_submodule, a)
|
76 |
+
self.submodules[a] = name_submodule
|
77 |
+
elif isinstance(a, FakeTensor):
|
78 |
+
if not hasattr(a, "constant") or a.constant is None:
|
79 |
+
raise ExportPassBaseError(f"Cannot add {a} to graph.")
|
80 |
+
a = a.constant
|
81 |
+
node = super().create_arg(a)
|
82 |
+
if (
|
83 |
+
isinstance(a, torch.Tensor)
|
84 |
+
and isinstance(node, torch.fx.Node)
|
85 |
+
and node.op == "get_attr"
|
86 |
+
):
|
87 |
+
self.set_metadata(node, a)
|
88 |
+
self.callback.on_attr(ProxyValue(a, node))
|
89 |
+
return node
|
90 |
+
|
91 |
+
def set_metadata(
|
92 |
+
self, node: torch.fx.Node, value: Argument,
|
93 |
+
) -> None:
|
94 |
+
# propagate the fake tensor or sym nodes
|
95 |
+
def make_val(
|
96 |
+
x: Argument,
|
97 |
+
) -> Union[FakeTensor, torch.SymInt, torch.SymFloat, torch.SymBool, int, float, bool, str, None]:
|
98 |
+
if isinstance(x, FakeTensor):
|
99 |
+
return x
|
100 |
+
elif isinstance(x, torch.Tensor):
|
101 |
+
if x.is_quantized:
|
102 |
+
# TODO (tmanlaibaatar) properly support Quantized FakeTensor
|
103 |
+
x = torch.dequantize(x)
|
104 |
+
|
105 |
+
try:
|
106 |
+
assert self.fake_tensor_mode is not None
|
107 |
+
# TODO we should allocate static shapes
|
108 |
+
# for param/buffer values
|
109 |
+
if isinstance(x, torch.nn.Parameter):
|
110 |
+
fake_tensor = self.fake_tensor_mode.from_tensor(
|
111 |
+
x, static_shapes=True
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
fake_tensor = self.fake_tensor_mode.from_tensor(x)
|
115 |
+
except UnsupportedFakeTensorException:
|
116 |
+
# TODO: This is just a workaround to get over the
|
117 |
+
# x.as_subclass error
|
118 |
+
print(
|
119 |
+
"Fakeifying a Tensor subclass is not supported \
|
120 |
+
right now. Instead a TensorMetadata is used."
|
121 |
+
)
|
122 |
+
fake_tensor = None
|
123 |
+
return fake_tensor
|
124 |
+
elif isinstance(x, (torch.SymInt, torch.SymFloat, torch.SymBool, int, float, bool, str)):
|
125 |
+
return x
|
126 |
+
else:
|
127 |
+
return None
|
128 |
+
|
129 |
+
node.meta["val"] = pytree.tree_map(make_val, value)
|
130 |
+
|
131 |
+
# Set the tensor_metadata for values that do not have a corresponding FakeTensor
|
132 |
+
def make_tensor_meta(x: Argument) -> Optional[TensorMetadata]:
|
133 |
+
if not isinstance(x, FakeTensor) and isinstance(x, torch.Tensor):
|
134 |
+
if x.is_quantized:
|
135 |
+
# TODO (tmanlaibaatar) properly support Quantized FakeTensor
|
136 |
+
x = torch.dequantize(x)
|
137 |
+
|
138 |
+
try:
|
139 |
+
assert self.fake_tensor_mode is not None
|
140 |
+
_ = self.fake_tensor_mode.from_tensor(x)
|
141 |
+
tensor_meta = None
|
142 |
+
except UnsupportedFakeTensorException:
|
143 |
+
# TODO: This is just a workaround to get over the
|
144 |
+
# x.as_subclass error
|
145 |
+
tensor_meta = _extract_tensor_metadata(x)
|
146 |
+
return tensor_meta
|
147 |
+
else:
|
148 |
+
return None
|
149 |
+
|
150 |
+
node.meta["tensor_meta"] = pytree.tree_map(make_tensor_meta, value)
|
151 |
+
|
152 |
+
class ExportInterpreter(fx.Interpreter):
|
153 |
+
def __init__(self, callback: "_ExportPassBaseDeprecatedDoNotUse", gm: fx.GraphModule) -> None:
|
154 |
+
super().__init__(gm)
|
155 |
+
self.callback = callback
|
156 |
+
self.node: torch.fx.Node = next(iter(gm.graph.nodes))
|
157 |
+
|
158 |
+
def placeholder(
|
159 |
+
self,
|
160 |
+
target: str,
|
161 |
+
args: Tuple[Argument, ...],
|
162 |
+
kwargs: Dict[str, Argument],
|
163 |
+
) -> ProxyValue:
|
164 |
+
arg = super().placeholder(target, args, kwargs)
|
165 |
+
return self.callback.placeholder(target, arg, NodeMetadata(self.node.meta))
|
166 |
+
|
167 |
+
def output(
|
168 |
+
self,
|
169 |
+
target: torch.fx.node.Target,
|
170 |
+
args: Tuple[Argument, ...],
|
171 |
+
kwargs: Dict[str, Argument],
|
172 |
+
) -> ProxyValue:
|
173 |
+
return self.callback.output(args[0], NodeMetadata(self.node.meta)).data
|
174 |
+
|
175 |
+
def call_function(
|
176 |
+
self,
|
177 |
+
target: torch.fx.node.Target,
|
178 |
+
args: Tuple[Argument, ...],
|
179 |
+
kwargs: Dict[str, Argument],
|
180 |
+
) -> ProxyValue:
|
181 |
+
meta = NodeMetadata(self.node.meta)
|
182 |
+
|
183 |
+
if target == operator.getitem:
|
184 |
+
value, key = args
|
185 |
+
return self.callback.call_getitem(value, key, meta)
|
186 |
+
elif getattr(target, "__module__", None) in {"_operator", "math"}:
|
187 |
+
assert callable(target)
|
188 |
+
return self.callback.call_sym(target, args, meta)
|
189 |
+
elif target in _TORCH_SYM_OPS:
|
190 |
+
assert callable(target)
|
191 |
+
return self.callback.call_sym(target, args, meta)
|
192 |
+
elif isinstance(target, (torch._ops.OpOverload, torch._ops.OpOverloadPacket)):
|
193 |
+
return self.callback.call_operator(
|
194 |
+
target,
|
195 |
+
args,
|
196 |
+
kwargs,
|
197 |
+
meta,
|
198 |
+
)
|
199 |
+
elif target == torch.ops.higher_order.cond:
|
200 |
+
pred, true_fn, false_fn, inputs = args
|
201 |
+
return self.callback.call_cond(pred, true_fn, false_fn, inputs, meta)
|
202 |
+
elif target == torch.ops.higher_order.map_impl:
|
203 |
+
f, mapped_args, operands = args # type: ignore[assignment]
|
204 |
+
return self.callback.call_map(f, mapped_args, operands, meta)
|
205 |
+
# For other unregistered HigherOrderOps, just interpret them blindly
|
206 |
+
elif isinstance(target, torch._ops.HigherOrderOperator):
|
207 |
+
return self.callback._fx(
|
208 |
+
"call_function",
|
209 |
+
target,
|
210 |
+
args,
|
211 |
+
kwargs,
|
212 |
+
meta,
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
raise ExportPassBaseError(f"Unsupported target type: {target}")
|
216 |
+
|
217 |
+
def get_attr(
|
218 |
+
self, target: str, args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
|
219 |
+
) -> Argument:
|
220 |
+
return super().get_attr(target, args, kwargs)
|
221 |
+
|
222 |
+
def call_module(
|
223 |
+
self,
|
224 |
+
target: torch.fx.node.Target,
|
225 |
+
args: Tuple[Argument, ...],
|
226 |
+
kwargs: Dict[str, Argument],
|
227 |
+
) -> None:
|
228 |
+
raise ExportPassBaseError("call_module is not supported.")
|
229 |
+
|
230 |
+
def call_method(
|
231 |
+
self, target: str, args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
|
232 |
+
) -> None:
|
233 |
+
raise ExportPassBaseError("call_method is not supported.")
|
234 |
+
|
235 |
+
def run_node(self, n: torch.fx.Node) -> Argument:
|
236 |
+
self.node = n
|
237 |
+
self.callback.node_debug_str = n.format_node()
|
238 |
+
return super().run_node(n)
|
239 |
+
|
240 |
+
def __init__(self) -> None:
|
241 |
+
self.interpreter = torch.fx.Interpreter(
|
242 |
+
torch.fx.GraphModule(torch.nn.Module(), torch.fx.Graph())
|
243 |
+
)
|
244 |
+
self.tracer = self.ExportTracer(self, CodeGen())
|
245 |
+
self.fake_tensor_mode: Optional[FakeTensorMode] = None
|
246 |
+
self._initialized = True
|
247 |
+
self.node_debug_str: typing.Optional[str] = None
|
248 |
+
|
249 |
+
def _fx(
|
250 |
+
self,
|
251 |
+
kind: str,
|
252 |
+
target: torch.fx.node.Target,
|
253 |
+
args: Tuple[Argument, ...],
|
254 |
+
kwargs: Dict[str, Argument],
|
255 |
+
meta: NodeMetadata,
|
256 |
+
) -> ProxyValue:
|
257 |
+
args_data, kwargs_data = pytree.tree_map_only(
|
258 |
+
ProxyValue, lambda x: x.data, (args, kwargs)
|
259 |
+
)
|
260 |
+
res_data = getattr(self.interpreter, kind)(target, args_data, kwargs_data)
|
261 |
+
args_proxy, kwargs_proxy = pytree.tree_map_only(
|
262 |
+
ProxyValue, lambda x: x.proxy, (args, kwargs)
|
263 |
+
)
|
264 |
+
|
265 |
+
name = None
|
266 |
+
if isinstance(target, torch._ops.OpOverload):
|
267 |
+
name = self.tracer.graph._target_to_str(target.overloadpacket.__name__)
|
268 |
+
|
269 |
+
res_proxy = self.tracer.create_proxy(kind, target, args_proxy, kwargs_proxy, name=name)
|
270 |
+
res_proxy.node.meta.update(meta.data)
|
271 |
+
self.tracer.set_metadata(res_proxy.node, res_data)
|
272 |
+
return ProxyValue(res_data, res_proxy)
|
273 |
+
|
274 |
+
def inputs(self, graph_module: torch.fx.GraphModule) -> List[Argument]:
|
275 |
+
# TODO(angelayi): Update this with what we decide to do for metadata in
|
276 |
+
# the exported graph module
|
277 |
+
if (args := graph_module.meta.get("args", None)) is not None:
|
278 |
+
return list(args)
|
279 |
+
|
280 |
+
def extract_input(node: torch.fx.Node) -> Optional[FakeTensor]:
|
281 |
+
if "val" in node.meta:
|
282 |
+
fake = node.meta["val"]
|
283 |
+
if hasattr(fake, "constant") and fake.constant is not None:
|
284 |
+
return fake.constant
|
285 |
+
return fake
|
286 |
+
elif tensor_meta := node.meta.get("tensor_meta"):
|
287 |
+
assert self.fake_tensor_mode is not None
|
288 |
+
return FakeTensor(
|
289 |
+
self.fake_tensor_mode,
|
290 |
+
torch.empty(
|
291 |
+
tensor_meta.shape,
|
292 |
+
dtype=tensor_meta.dtype,
|
293 |
+
device="meta",
|
294 |
+
requires_grad=tensor_meta.requires_grad,
|
295 |
+
memory_format=tensor_meta.memory_format,
|
296 |
+
),
|
297 |
+
torch.device("cpu"),
|
298 |
+
)
|
299 |
+
elif len(node.users) == 0:
|
300 |
+
return None
|
301 |
+
raise ExportPassBaseError(
|
302 |
+
f"Cannot construct an input for graph module: {graph_module}.",
|
303 |
+
)
|
304 |
+
|
305 |
+
return [
|
306 |
+
extract_input(node)
|
307 |
+
for node in graph_module.graph.nodes
|
308 |
+
if node.op == "placeholder"
|
309 |
+
]
|
310 |
+
|
311 |
+
def on_attr(self, attr: ProxyValue) -> None:
|
312 |
+
pass
|
313 |
+
|
314 |
+
def placeholder(self, name: str, arg: Argument, meta: NodeMetadata) -> ProxyValue:
|
315 |
+
arg_proxy = self.tracer.create_proxy("placeholder", name, (), {})
|
316 |
+
arg_proxy.node.meta = meta.data
|
317 |
+
self.tracer.set_metadata(arg_proxy.node, arg)
|
318 |
+
return ProxyValue(arg, arg_proxy)
|
319 |
+
|
320 |
+
def call_operator(
|
321 |
+
self,
|
322 |
+
op,
|
323 |
+
args: Tuple[Argument, ...],
|
324 |
+
kwargs: Dict[str, Argument],
|
325 |
+
meta: NodeMetadata,
|
326 |
+
) -> ProxyValue:
|
327 |
+
return self._fx("call_function", op, args, kwargs, meta)
|
328 |
+
|
329 |
+
def call_sym(
|
330 |
+
self,
|
331 |
+
target: Fn,
|
332 |
+
args: Tuple[Argument, ...],
|
333 |
+
meta: NodeMetadata,
|
334 |
+
) -> ProxyValue:
|
335 |
+
return self._fx("call_function", target, args, {}, meta)
|
336 |
+
|
337 |
+
def call_cond(
|
338 |
+
self,
|
339 |
+
pred: ProxyValue,
|
340 |
+
true_fn: torch.fx.GraphModule,
|
341 |
+
false_fn: torch.fx.GraphModule,
|
342 |
+
inputs: List[Argument],
|
343 |
+
meta: NodeMetadata,
|
344 |
+
) -> ProxyValue:
|
345 |
+
true_branch = self.call_submodule(true_fn, tuple(inputs))
|
346 |
+
false_branch = self.call_submodule(false_fn, tuple(inputs))
|
347 |
+
assert true_branch is not None
|
348 |
+
assert false_branch is not None
|
349 |
+
return self._fx(
|
350 |
+
"call_function",
|
351 |
+
torch.ops.higher_order.cond,
|
352 |
+
(pred, true_branch.graph_module, false_branch.graph_module, list(inputs)),
|
353 |
+
{},
|
354 |
+
meta,
|
355 |
+
)
|
356 |
+
|
357 |
+
def call_map(
|
358 |
+
self,
|
359 |
+
f: torch.fx.GraphModule,
|
360 |
+
mapped_args: List[ProxyValue],
|
361 |
+
operands: List[ProxyValue],
|
362 |
+
meta: NodeMetadata,
|
363 |
+
) -> ProxyValue:
|
364 |
+
xs = _unstack_pytree([arg.data for arg in mapped_args])[0]
|
365 |
+
f_branch = self.call_submodule(f, tuple(xs + [arg.data for arg in operands]))
|
366 |
+
assert f_branch is not None
|
367 |
+
return self._fx(
|
368 |
+
"call_function",
|
369 |
+
torch.ops.higher_order.map_impl,
|
370 |
+
(f_branch.graph_module, mapped_args, operands),
|
371 |
+
{},
|
372 |
+
meta,
|
373 |
+
)
|
374 |
+
|
375 |
+
def call_getitem(
|
376 |
+
self, value: ProxyValue, key: int, meta: NodeMetadata
|
377 |
+
) -> ProxyValue:
|
378 |
+
return self._fx("call_function", operator.getitem, (value, key), {}, meta)
|
379 |
+
|
380 |
+
def output(self, results: List[Argument], meta: NodeMetadata) -> ProxyValue:
|
381 |
+
return self._fx("output", "output", (results,), {}, meta)
|
382 |
+
|
383 |
+
def call_submodule(
|
384 |
+
self, graph_module: fx.GraphModule, inputs: Tuple[Argument, ...]
|
385 |
+
) -> PassResult:
|
386 |
+
prev_tracer, self.tracer = self.tracer, self.ExportTracer(
|
387 |
+
self, graph_module.graph._codegen
|
388 |
+
)
|
389 |
+
self.tracer.fake_tensor_mode = prev_tracer.fake_tensor_mode
|
390 |
+
interpreter = self.ExportInterpreter(self, graph_module)
|
391 |
+
prev_interpreter, self.interpreter = self.interpreter, torch.fx.Interpreter(
|
392 |
+
torch.fx.GraphModule(torch.nn.Module(), torch.fx.Graph())
|
393 |
+
)
|
394 |
+
inputs_data = pytree.tree_map_only(ProxyValue, lambda x: x.data, inputs)
|
395 |
+
with fx_traceback.preserve_node_meta():
|
396 |
+
interpreter.run(*inputs_data)
|
397 |
+
|
398 |
+
new_graph_module = torch.fx.GraphModule(self.tracer.root, self.tracer.graph)
|
399 |
+
|
400 |
+
self.tracer = prev_tracer
|
401 |
+
self.interpreter = prev_interpreter
|
402 |
+
return PassResult(
|
403 |
+
new_graph_module,
|
404 |
+
True,
|
405 |
+
)
|
406 |
+
|
407 |
+
def call(self, graph_module: fx.GraphModule) -> PassResult:
|
408 |
+
if not getattr(self, "_initialized", False):
|
409 |
+
raise ExportPassBaseError(
|
410 |
+
"ExportPass is not initialized with __init__().",
|
411 |
+
)
|
412 |
+
|
413 |
+
inputs = self.inputs(graph_module)
|
414 |
+
|
415 |
+
fake_tensor_mode = None
|
416 |
+
for i in inputs:
|
417 |
+
if isinstance(i, FakeTensor):
|
418 |
+
assert (
|
419 |
+
fake_tensor_mode is None or fake_tensor_mode is i.fake_mode
|
420 |
+
), "Multiple fake tensor mode detected."
|
421 |
+
fake_tensor_mode = i.fake_mode
|
422 |
+
if fake_tensor_mode is None:
|
423 |
+
self.tracer.fake_tensor_mode = FakeTensorMode(allow_non_fake_inputs=True)
|
424 |
+
fake_tensor_mode = nullcontext() # type: ignore[assignment]
|
425 |
+
dispatcher_mode = nullcontext() # type: ignore[assignment]
|
426 |
+
else:
|
427 |
+
fake_tensor_mode.allow_non_fake_inputs = True
|
428 |
+
self.tracer.fake_tensor_mode = fake_tensor_mode
|
429 |
+
dispatcher_mode = enable_python_dispatcher() # type: ignore[assignment]
|
430 |
+
self.fake_tensor_mode = self.tracer.fake_tensor_mode
|
431 |
+
|
432 |
+
with fake_tensor_mode, dispatcher_mode: # type: ignore[assignment, union-attr]
|
433 |
+
result = self.call_submodule(graph_module, tuple(inputs))
|
434 |
+
|
435 |
+
return result
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/node_metadata.cpython-310.pyc
ADDED
Binary file (1.49 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/proxy_value.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/node_metadata.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Set
|
2 |
+
|
3 |
+
|
4 |
+
NodeMetadataValue = Any
|
5 |
+
|
6 |
+
|
7 |
+
PROTECTED_KEYS: Set[str] = {
|
8 |
+
"val",
|
9 |
+
"stack_trace",
|
10 |
+
"nn_module_stack",
|
11 |
+
"debug_handle",
|
12 |
+
"tensor_meta",
|
13 |
+
}
|
14 |
+
|
15 |
+
|
16 |
+
class NodeMetadata:
|
17 |
+
def __init__(self, data: Dict[str, Any]) -> None:
|
18 |
+
self.data: Dict[str, Any] = data.copy()
|
19 |
+
|
20 |
+
def __getitem__(self, key: str) -> NodeMetadataValue:
|
21 |
+
return self.data[key]
|
22 |
+
|
23 |
+
def __setitem__(self, key: str, value: NodeMetadataValue) -> NodeMetadataValue:
|
24 |
+
if key in PROTECTED_KEYS:
|
25 |
+
raise RuntimeError(f"Could not override node key: {key}")
|
26 |
+
self.data[key] = value
|
27 |
+
|
28 |
+
def __contains__(self, key: str) -> bool:
|
29 |
+
return key in self.data
|
30 |
+
|
31 |
+
def copy(self) -> "NodeMetadata":
|
32 |
+
return NodeMetadata(self.data.copy())
|
venv/lib/python3.10/site-packages/torch/_export/pass_infra/proxy_value.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pyre-strict
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class ProxyValue:
|
8 |
+
# pyre-ignore
|
9 |
+
def __init__(self, data, proxy: Union[torch.fx.Proxy, torch.fx.Node]):
|
10 |
+
# pyre-ignore
|
11 |
+
self.data = data
|
12 |
+
self.proxy_or_node = proxy
|
13 |
+
|
14 |
+
@property
|
15 |
+
def node(self) -> torch.fx.Node:
|
16 |
+
if isinstance(self.proxy_or_node, torch.fx.Node):
|
17 |
+
return self.proxy_or_node
|
18 |
+
assert isinstance(self.proxy_or_node, torch.fx.Proxy)
|
19 |
+
return self.proxy_or_node.node
|
20 |
+
|
21 |
+
@property
|
22 |
+
def proxy(self) -> torch.fx.Proxy:
|
23 |
+
if not isinstance(self.proxy_or_node, torch.fx.Proxy):
|
24 |
+
raise RuntimeError(
|
25 |
+
f"ProxyValue doesn't have attached Proxy object. Node: {self.proxy_or_node.format_node()}"
|
26 |
+
)
|
27 |
+
return self.proxy_or_node
|
28 |
+
|
29 |
+
def to_tensor(self) -> torch.Tensor:
|
30 |
+
assert isinstance(self.data, torch.Tensor)
|
31 |
+
return self.data
|
32 |
+
|
33 |
+
def is_tensor(self) -> bool:
|
34 |
+
return isinstance(self.data, torch.Tensor)
|
35 |
+
|
36 |
+
# pyre-ignore
|
37 |
+
def __iter__(self):
|
38 |
+
yield from self.data
|
39 |
+
|
40 |
+
def __bool__(self) -> bool:
|
41 |
+
return bool(self.data)
|
venv/lib/python3.10/site-packages/torch/_export/passes/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .replace_view_ops_with_view_copy_ops_pass import ReplaceViewOpsWithViewCopyOpsPass
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (286 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/add_runtime_assertions_for_constraints_pass.cpython-310.pyc
ADDED
Binary file (6.12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/collect_tracepoints_pass.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/functionalize_side_effectful_ops_pass.cpython-310.pyc
ADDED
Binary file (3.41 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/lift_constants_pass.cpython-310.pyc
ADDED
Binary file (6.93 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/remove_runtime_assertions.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_set_grad_with_hop_pass.cpython-310.pyc
ADDED
Binary file (3.99 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_sym_size_ops_pass.cpython-310.pyc
ADDED
Binary file (789 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_view_ops_with_view_copy_ops_pass.cpython-310.pyc
ADDED
Binary file (2.46 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import operator
|
3 |
+
import traceback
|
4 |
+
from functools import partial
|
5 |
+
from typing import Callable, Dict, List, NamedTuple, Set
|
6 |
+
|
7 |
+
import sympy
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.fx
|
11 |
+
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse, ProxyValue, PassResult
|
12 |
+
from torch.utils._sympy.value_ranges import ValueRanges
|
13 |
+
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
|
14 |
+
|
15 |
+
|
16 |
+
__all__ = ["InputDim"]
|
17 |
+
|
18 |
+
|
19 |
+
class InputDim(NamedTuple):
|
20 |
+
input_name: str
|
21 |
+
dim: int
|
22 |
+
|
23 |
+
|
24 |
+
def _convert_to_int(val):
|
25 |
+
# Convert simple sympy Integers into concrete int
|
26 |
+
if val == sympy.oo:
|
27 |
+
return math.inf
|
28 |
+
if val == -sympy.oo:
|
29 |
+
return -math.inf
|
30 |
+
if isinstance(val, sympy.Integer):
|
31 |
+
return int(val)
|
32 |
+
raise RuntimeError(
|
33 |
+
"Export constraints cannot be non-integer expressions"
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _convert_range_to_int(range: ValueRanges):
|
38 |
+
assert isinstance(range, ValueRanges)
|
39 |
+
min_val = _convert_to_int(range.lower)
|
40 |
+
max_val = _convert_to_int(range.upper)
|
41 |
+
return min_val, max_val
|
42 |
+
|
43 |
+
|
44 |
+
class _AddRuntimeAssertionsForInlineConstraintsPass(_ExportPassBaseDeprecatedDoNotUse):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
range_constraints: Dict[sympy.Symbol, ValueRanges],
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.range_constraints: Dict[sympy.Symbol, ValueRanges] = range_constraints
|
51 |
+
self._asserts_generated_unbacked_symbols: Set[sympy.Symbol] = set()
|
52 |
+
self.counter = 0
|
53 |
+
|
54 |
+
def _assert_range_constraint(self, proxy, lower, upper, assert_msg):
|
55 |
+
if lower > -math.inf:
|
56 |
+
self._insert_assert_async(operator.ge, proxy, lower, assert_msg)
|
57 |
+
|
58 |
+
if upper < math.inf:
|
59 |
+
self._insert_assert_async(operator.le, proxy, upper, assert_msg)
|
60 |
+
|
61 |
+
def _insert_assert_async(self, operator, lower, upper, assert_msg):
|
62 |
+
"""
|
63 |
+
Inserts assert_async call_function nodes in the graph. This function is
|
64 |
+
called **during** the interpreter-based pass.
|
65 |
+
"""
|
66 |
+
self.counter += 1
|
67 |
+
cmp = super().call_operator(operator, (lower, upper), {}, self._create_dummy_node_metadata())
|
68 |
+
cmp_tensor = super().call_operator(torch.ops.aten.scalar_tensor.default, (cmp,), {}, self._create_dummy_node_metadata())
|
69 |
+
super().call_operator(
|
70 |
+
torch.ops.aten._assert_async.msg,
|
71 |
+
(cmp_tensor, assert_msg),
|
72 |
+
{},
|
73 |
+
self._create_dummy_node_metadata(),
|
74 |
+
)
|
75 |
+
|
76 |
+
def call_operator(self, op, args, kwargs, meta) -> ProxyValue:
|
77 |
+
ret = super().call_operator(op, args, kwargs, meta)
|
78 |
+
if "val" not in meta:
|
79 |
+
return ret
|
80 |
+
|
81 |
+
val = meta["val"]
|
82 |
+
|
83 |
+
# In general, we may have to deal the case such as: ret[1].shape[0].
|
84 |
+
# We need first find out what symbols require assertion, then we need to follow the path
|
85 |
+
# from ret to the symbol, construct the proxies along the way and construct the messages
|
86 |
+
# piece-wise at the same time.
|
87 |
+
#
|
88 |
+
# We use post-order traversal to collect all the proxies callbacks needed, construct
|
89 |
+
# the error message callbacks, and at the top-level traversal tree we execute all the callbacks.
|
90 |
+
# We need the callbacks because, in order to call the function to create a proxy for shape[0], we
|
91 |
+
# need the proxy for shape, which further requires the proxy for ret[1], etc.
|
92 |
+
def add_assertions(val):
|
93 |
+
call_backs: List[Callable] = []
|
94 |
+
messages: List[str] = []
|
95 |
+
if isinstance(val, (torch.SymInt, torch.SymFloat, torch.SymBool)):
|
96 |
+
symbol = val.node.expr
|
97 |
+
if symbol in self.existing_inline_assertions:
|
98 |
+
return call_backs, messages
|
99 |
+
if isinstance(symbol, sympy.Symbol) and free_unbacked_symbols(symbol):
|
100 |
+
if symbol in self._asserts_generated_unbacked_symbols:
|
101 |
+
return call_backs, messages
|
102 |
+
# We only care about unbacked symints for these inline
|
103 |
+
# constraints, which are prefixed with 'u'
|
104 |
+
constraint = self.range_constraints[symbol]
|
105 |
+
min_val, max_val = _convert_range_to_int(constraint)
|
106 |
+
assert_msg = f" is outside of inline constraint [{min_val}, {max_val}]."
|
107 |
+
call_backs.append(
|
108 |
+
partial(self._assert_range_constraint, lower=min_val, upper=max_val)
|
109 |
+
)
|
110 |
+
messages.append(assert_msg)
|
111 |
+
self._asserts_generated_unbacked_symbols.add(symbol)
|
112 |
+
|
113 |
+
elif isinstance(val, torch.Tensor):
|
114 |
+
for i, sym in enumerate(val.shape):
|
115 |
+
cbs, msgs = add_assertions(sym)
|
116 |
+
for cb, msg in zip(cbs, msgs):
|
117 |
+
def sym_size_cb(proxy, assert_msg, dim):
|
118 |
+
dim_proxy = super(
|
119 |
+
_AddRuntimeAssertionsForInlineConstraintsPass,
|
120 |
+
self
|
121 |
+
).call_operator(
|
122 |
+
torch.ops.aten.sym_size.int,
|
123 |
+
(proxy, dim),
|
124 |
+
{},
|
125 |
+
self._create_dummy_node_metadata(),
|
126 |
+
)
|
127 |
+
cb(proxy=dim_proxy, assert_msg=assert_msg)
|
128 |
+
call_backs.append(partial(sym_size_cb, dim=i))
|
129 |
+
messages.append(f".shape[{i}]" + msg)
|
130 |
+
return call_backs, messages
|
131 |
+
|
132 |
+
callbacks, messages = add_assertions(val)
|
133 |
+
for cb, msg in zip(callbacks, messages):
|
134 |
+
cb(proxy=ret, assert_msg=f"{ret.node}" + msg)
|
135 |
+
return ret
|
136 |
+
|
137 |
+
def call(self, graph_module):
|
138 |
+
self.existing_inline_assertions = _get_existing_inline_assertions(
|
139 |
+
graph_module, self.range_constraints
|
140 |
+
)
|
141 |
+
|
142 |
+
# Add runtime asserts for inline constraints
|
143 |
+
val = super().call(graph_module)
|
144 |
+
|
145 |
+
# Sometimes this pass would return a wrong graph where we have mismatched
|
146 |
+
# node names in signature. Before we fix it, let's just skip it.
|
147 |
+
if self.counter == 0 and type(self) is _AddRuntimeAssertionsForInlineConstraintsPass:
|
148 |
+
return PassResult(graph_module, False)
|
149 |
+
|
150 |
+
# Populate the stack trace with dummy vals to respect IR
|
151 |
+
for node in val.graph_module.graph.nodes:
|
152 |
+
if not node.meta.get("stack_trace", None):
|
153 |
+
node.meta["stack_trace"] = "".join(traceback.format_stack(limit=1))
|
154 |
+
|
155 |
+
return PassResult(val.graph_module, val.modified)
|
156 |
+
|
157 |
+
|
158 |
+
def _get_existing_inline_assertions(
|
159 |
+
graph_module: torch.fx.GraphModule,
|
160 |
+
range_constraints: Dict[sympy.Symbol, ValueRanges],
|
161 |
+
) -> Dict[sympy.Symbol, ValueRanges]:
|
162 |
+
existing_inline_assertions: Dict[sympy.Symbol, ValueRanges] = {}
|
163 |
+
|
164 |
+
for module in graph_module.modules():
|
165 |
+
if not isinstance(module, torch.fx.GraphModule):
|
166 |
+
continue
|
167 |
+
|
168 |
+
# Find all the existing inline assertions. They will look something like:
|
169 |
+
# %_local_scalar_dense = call_function[target=torch.ops.aten._local_scalar_dense.default](args = (%arg1_1,), kwargs = {})
|
170 |
+
# %ge = call_function[target=operator.ge](args = (%_local_scalar_dense, 0), kwargs = {})
|
171 |
+
# %scalar_tensor = call_function[target=torch.ops.aten.scalar_tensor.default](args = (%ge,), kwargs = {})
|
172 |
+
# %_assert_async = call_function[target=torch.ops.aten._assert_async.msg](args = (%scalar_tensor, "..."), kwargs = {})
|
173 |
+
for node in module.graph.nodes:
|
174 |
+
if node.target != torch.ops.aten._assert_async.msg:
|
175 |
+
continue
|
176 |
+
|
177 |
+
scalar_tensor_arg = node.args[0]
|
178 |
+
if not (
|
179 |
+
scalar_tensor_arg.op == "call_function" and
|
180 |
+
scalar_tensor_arg.target == torch.ops.aten.scalar_tensor.default
|
181 |
+
):
|
182 |
+
continue
|
183 |
+
|
184 |
+
compare_arg = scalar_tensor_arg.args[0]
|
185 |
+
if not (
|
186 |
+
compare_arg.op == "call_function" and
|
187 |
+
compare_arg.target in (operator.le, operator.ge) and
|
188 |
+
len(compare_arg.args) == 2
|
189 |
+
):
|
190 |
+
continue
|
191 |
+
|
192 |
+
compare_op = compare_arg.target
|
193 |
+
maybe_symint_arg, compare_int = compare_arg.args
|
194 |
+
|
195 |
+
# x >= 0 will sometimes be canonicalized to -x <= 0, so in some
|
196 |
+
# cases the operation before the comparison is to multiply by -1. We
|
197 |
+
# can undo the canonicalization here
|
198 |
+
if (
|
199 |
+
maybe_symint_arg.op == "call_function" and
|
200 |
+
maybe_symint_arg.target == operator.mul and
|
201 |
+
maybe_symint_arg.args[0] == -1
|
202 |
+
):
|
203 |
+
maybe_symint_arg = maybe_symint_arg.args[1]
|
204 |
+
compare_op = operator.ge
|
205 |
+
compare_int = -1 * compare_int
|
206 |
+
|
207 |
+
if not (
|
208 |
+
"val" in maybe_symint_arg.meta and
|
209 |
+
isinstance(maybe_symint_arg.meta["val"], torch.SymInt)
|
210 |
+
):
|
211 |
+
continue
|
212 |
+
|
213 |
+
symint = maybe_symint_arg.meta["val"].node.expr
|
214 |
+
if not isinstance(symint, sympy.Symbol):
|
215 |
+
continue
|
216 |
+
|
217 |
+
if symint not in range_constraints:
|
218 |
+
raise RuntimeError(f"Unable to find symint {symint} in {range_constraints}")
|
219 |
+
|
220 |
+
found_range = existing_inline_assertions.get(symint, ValueRanges(-math.inf, math.inf))
|
221 |
+
|
222 |
+
if compare_arg.target == operator.le:
|
223 |
+
existing_inline_assertions[symint] = ValueRanges(
|
224 |
+
lower=found_range.lower, upper=compare_int
|
225 |
+
)
|
226 |
+
elif compare_arg.target == operator.ge:
|
227 |
+
existing_inline_assertions[symint] = ValueRanges(
|
228 |
+
lower=compare_int, upper=found_range.upper
|
229 |
+
)
|
230 |
+
|
231 |
+
return existing_inline_assertions
|
venv/lib/python3.10/site-packages/torch/_export/passes/collect_tracepoints_pass.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from torch.export.exported_program import ConstantArgument, TensorArgument
|
6 |
+
from torch.fx.passes.infra.pass_base import PassBase, PassResult
|
7 |
+
|
8 |
+
__all__ = ["CollectTracepointsPass"]
|
9 |
+
|
10 |
+
|
11 |
+
class CollectTracepointsPass(PassBase):
|
12 |
+
"""
|
13 |
+
Performs constant folding and constant propagation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, specs, sig) -> None:
|
17 |
+
super().__init__()
|
18 |
+
self.specs = specs
|
19 |
+
self.sig = sig
|
20 |
+
|
21 |
+
def call(self, gm):
|
22 |
+
def get_arg_spec(arg):
|
23 |
+
if isinstance(arg, torch.fx.Node):
|
24 |
+
if isinstance(arg.meta.get("val"), torch.Tensor):
|
25 |
+
return TensorArgument(name=arg.name)
|
26 |
+
else:
|
27 |
+
raise AssertionError(
|
28 |
+
"Symint input is not implemented yet for submodule call signature."
|
29 |
+
)
|
30 |
+
else:
|
31 |
+
return ConstantArgument(value=arg)
|
32 |
+
|
33 |
+
for module in gm.modules():
|
34 |
+
if not isinstance(module, torch.fx.GraphModule):
|
35 |
+
continue
|
36 |
+
for node in module.graph.nodes:
|
37 |
+
if node.op != "call_function":
|
38 |
+
continue
|
39 |
+
if node.target == torch.ops.higher_order._export_tracepoint:
|
40 |
+
for i, arg in enumerate(node.args):
|
41 |
+
kind = node.kwargs["kind"]
|
42 |
+
if kind == "module_call_inputs":
|
43 |
+
self.specs[node.kwargs["path"]].inputs.append(
|
44 |
+
get_arg_spec(arg)
|
45 |
+
)
|
46 |
+
elif kind == "module_call_outputs":
|
47 |
+
self.specs[node.kwargs["path"]].outputs.append(
|
48 |
+
get_arg_spec(arg)
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
raise AssertionError(f"Unknown tracepoint kind: {kind}")
|
52 |
+
if isinstance(arg, torch.fx.Node):
|
53 |
+
for user in node.users:
|
54 |
+
assert user.op == "call_function"
|
55 |
+
assert user.target == operator.getitem
|
56 |
+
assert isinstance(user.args[1], int)
|
57 |
+
if user.args[1] == i:
|
58 |
+
user.replace_all_uses_with(arg)
|
59 |
+
self.sig.replace_all_uses(user.name, arg.name)
|
60 |
+
break
|
61 |
+
users = list(node.users)
|
62 |
+
for user in users:
|
63 |
+
assert len(user.users) == 0
|
64 |
+
gm.graph.erase_node(user)
|
65 |
+
gm.graph.erase_node(node)
|
66 |
+
return PassResult(gm, True)
|
venv/lib/python3.10/site-packages/torch/_export/passes/functionalize_side_effectful_ops_pass.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Dict, Optional, Tuple, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse, PassResult, Argument
|
6 |
+
from torch._export.pass_infra.node_metadata import NodeMetadata
|
7 |
+
from torch._export.pass_infra.proxy_value import ProxyValue
|
8 |
+
from torch._ops import OpOverload
|
9 |
+
|
10 |
+
aten = torch.ops.aten
|
11 |
+
|
12 |
+
_NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS: Dict[OpOverload, OpOverload] = {
|
13 |
+
aten.sym_constrain_range.default: aten._functional_sym_constrain_range,
|
14 |
+
aten._assert_async.msg: aten._functional_assert_async.msg,
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
class _FunctionalizeSideEffectfulOpsPass(_ExportPassBaseDeprecatedDoNotUse):
|
19 |
+
"""
|
20 |
+
Functionalize ops with side effect in graph module by replacing the op with
|
21 |
+
functional version of it. A new dependency token (`dep_token`) will be
|
22 |
+
created and propagated through functional ops to output.
|
23 |
+
For example:
|
24 |
+
```
|
25 |
+
def f(x):
|
26 |
+
sym_constrain_range(x.shape[0], min=1, max=3)
|
27 |
+
return x.add(3)
|
28 |
+
```
|
29 |
+
Will be transformed to:
|
30 |
+
```
|
31 |
+
def f(x):
|
32 |
+
dep_token0 = _make_dep_token()
|
33 |
+
dep_token1 = _functional_sym_constrain_range(
|
34 |
+
x.shape[0], min=1, max=3, dep_token=dep_token0
|
35 |
+
)
|
36 |
+
|
37 |
+
return x.add(3), dep_token1
|
38 |
+
```
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self) -> None:
|
42 |
+
super().__init__()
|
43 |
+
self._dep_token: Optional[ProxyValue] = None
|
44 |
+
self._next_dep_token_index: Optional[int] = None
|
45 |
+
|
46 |
+
def call(self, graph_module: torch.fx.GraphModule) -> PassResult:
|
47 |
+
# Early return if no non-functional assertions.
|
48 |
+
if not any(
|
49 |
+
n.target in _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS
|
50 |
+
for n in graph_module.graph.nodes
|
51 |
+
):
|
52 |
+
return PassResult(graph_module=graph_module, modified=False)
|
53 |
+
|
54 |
+
gm = copy.deepcopy(graph_module)
|
55 |
+
self._dep_token = None
|
56 |
+
self._next_dep_token_index = None
|
57 |
+
return super().call(gm)
|
58 |
+
|
59 |
+
def call_operator(
|
60 |
+
self,
|
61 |
+
op: OpOverload,
|
62 |
+
args: Tuple[Argument, ...],
|
63 |
+
kwargs: Dict[str, Argument],
|
64 |
+
meta: NodeMetadata,
|
65 |
+
) -> ProxyValue:
|
66 |
+
if op not in _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS:
|
67 |
+
return super().call_operator(op, args, kwargs, meta)
|
68 |
+
|
69 |
+
if self._dep_token is None:
|
70 |
+
self._dep_token = super().call_operator(
|
71 |
+
aten._make_dep_token,
|
72 |
+
args=(),
|
73 |
+
kwargs={},
|
74 |
+
meta=self._create_dummy_node_metadata(),
|
75 |
+
)
|
76 |
+
self._dep_token.node.name = "dep_token0"
|
77 |
+
self._next_dep_token_index = 1
|
78 |
+
|
79 |
+
self._dep_token = super().call_operator(
|
80 |
+
_NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS[op],
|
81 |
+
args=args,
|
82 |
+
kwargs={**kwargs, "dep_token": self._dep_token},
|
83 |
+
meta=meta,
|
84 |
+
)
|
85 |
+
assert self._next_dep_token_index is not None
|
86 |
+
self._dep_token.node.name = f"dep_token{self._next_dep_token_index}"
|
87 |
+
self._next_dep_token_index += 1
|
88 |
+
|
89 |
+
return self._dep_token
|
90 |
+
|
91 |
+
def output(self, results: List[Argument], meta: NodeMetadata) -> ProxyValue:
|
92 |
+
assert self._dep_token is not None
|
93 |
+
|
94 |
+
return super().output(results=(*results, self._dep_token), meta=meta) # type: ignore[arg-type]
|
venv/lib/python3.10/site-packages/torch/_export/passes/lift_constants_pass.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from typing import Any, Dict, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch._export.verifier import SpecViolationError
|
6 |
+
from torch._guards import detect_fake_mode
|
7 |
+
from torch.export.exported_program import (
|
8 |
+
ArgumentSpec,
|
9 |
+
CustomObjArgument,
|
10 |
+
ExportGraphSignature,
|
11 |
+
InputKind,
|
12 |
+
InputSpec,
|
13 |
+
TensorArgument,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class ConstantAttrMap(collections.abc.MutableMapping):
|
18 |
+
"""A mapping class that understands how to use module constants (tensors and
|
19 |
+
ScriptObjects) as keys. We store tensors normally, but ScriptObjects are
|
20 |
+
stored by hash, because different torch.ScriptObjects can point to the same
|
21 |
+
underlying value (but we guarantee that they will `hash()` to the same value
|
22 |
+
if that's the case).
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
# Underlying dict that we use to implement this mapping.
|
27 |
+
self._constant_attrs: Dict[Union[int, torch.Tensor], Any] = {}
|
28 |
+
# Map from the hash(ScriptObject) to the ScriptObject itself. Used for
|
29 |
+
# APIs like `__iter__` that should look like they're returning the
|
30 |
+
# original ScriptObjects.
|
31 |
+
self._script_object_map: Dict[int, torch.ScriptObject] = {}
|
32 |
+
|
33 |
+
def __getitem__(self, key: Union[torch.Tensor, torch.ScriptObject]) -> Any:
|
34 |
+
real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
|
35 |
+
assert isinstance(real_key, (int, torch.Tensor))
|
36 |
+
return self._constant_attrs[real_key]
|
37 |
+
|
38 |
+
def __setitem__(
|
39 |
+
self, key: Union[torch.Tensor, torch.ScriptObject], value: Any
|
40 |
+
) -> None:
|
41 |
+
if isinstance(key, torch.ScriptObject):
|
42 |
+
self._constant_attrs[hash(key)] = value
|
43 |
+
self._script_object_map[hash(key)] = key
|
44 |
+
elif isinstance(key, torch.Tensor):
|
45 |
+
self._constant_attrs[key] = value
|
46 |
+
else:
|
47 |
+
raise TypeError(
|
48 |
+
f"Expected key to be a tensor or ScriptObject, got {type(key)}"
|
49 |
+
)
|
50 |
+
|
51 |
+
def __delitem__(self, key):
|
52 |
+
real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
|
53 |
+
|
54 |
+
del self._constant_attrs[real_key]
|
55 |
+
|
56 |
+
def __iter__(self):
|
57 |
+
for key in self._constant_attrs:
|
58 |
+
if isinstance(key, int):
|
59 |
+
yield self._script_object_map[key]
|
60 |
+
else:
|
61 |
+
yield key
|
62 |
+
|
63 |
+
def __len__(self):
|
64 |
+
return len(self._constant_attrs)
|
65 |
+
|
66 |
+
def __contains__(self, key: object) -> bool:
|
67 |
+
real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
|
68 |
+
return real_key in self._constant_attrs
|
69 |
+
|
70 |
+
|
71 |
+
def get_constant_fqn(node: torch.fx.Node, constant_name: str) -> str:
|
72 |
+
# The FQN of the constant tensor in the state dict should
|
73 |
+
# correspond to the module where the constant tensor was
|
74 |
+
# originally used.
|
75 |
+
parent_fqn = list(node.meta["nn_module_stack"].values())[-1][0]
|
76 |
+
if len(parent_fqn) > 0:
|
77 |
+
return f"{parent_fqn}.{constant_name}"
|
78 |
+
else:
|
79 |
+
return constant_name
|
80 |
+
|
81 |
+
|
82 |
+
def lift_constants_pass(
|
83 |
+
gm: torch.fx.GraphModule,
|
84 |
+
graph_signature: ExportGraphSignature,
|
85 |
+
constant_attrs: ConstantAttrMap,
|
86 |
+
) -> Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]:
|
87 |
+
"""
|
88 |
+
Takes a graph module, graph signature, and modifies them implace to lift any
|
89 |
+
constants (tensors or custom classes) as inputs to the graph. Returns a
|
90 |
+
dictionary of names to constants.
|
91 |
+
|
92 |
+
Arguments:
|
93 |
+
gm (torch.fx.GraphModule): The graph module containing the graph and constants to lift.
|
94 |
+
graph_signature (ExportGraphSignature): This graph signature will be
|
95 |
+
mutated to add additional CONSTANT_TENSOR and CUSTOM_OBJ inputs.
|
96 |
+
constant_attrs (ConstantAttr): A mapping from a constant value to its
|
97 |
+
fully-qualified path in `gm`. This is used to maintain consistent
|
98 |
+
location of constants between the original module and the exported
|
99 |
+
version.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
A dictionary of fqn => constant value.
|
103 |
+
"""
|
104 |
+
all_constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]] = {}
|
105 |
+
|
106 |
+
inputs = graph_signature.input_specs
|
107 |
+
num_custom_obj = sum(
|
108 |
+
input_specs.kind == InputKind.CUSTOM_OBJ for input_specs in inputs
|
109 |
+
)
|
110 |
+
num_tensor_constants = sum(
|
111 |
+
input_specs.kind == InputKind.CONSTANT_TENSOR for input_specs in inputs
|
112 |
+
)
|
113 |
+
|
114 |
+
fake_mode = detect_fake_mode(
|
115 |
+
tuple(node.meta["val"] for node in gm.graph.nodes if node.op == "placeholder")
|
116 |
+
)
|
117 |
+
|
118 |
+
first_user_input_loc, first_user_input = 0, None
|
119 |
+
for node in gm.graph.nodes:
|
120 |
+
if node.op == "placeholder" and node.name in graph_signature.user_inputs:
|
121 |
+
first_user_input = node
|
122 |
+
break
|
123 |
+
first_user_input_loc += 1
|
124 |
+
|
125 |
+
lifted_objs = ConstantAttrMap()
|
126 |
+
for node in gm.graph.nodes:
|
127 |
+
if node.op == "get_attr":
|
128 |
+
constant_val = getattr(gm, node.target)
|
129 |
+
if constant_val in lifted_objs:
|
130 |
+
# We already lifted this constant elsewhere. Just rewrite uses
|
131 |
+
# of this get_attr to point to the already-existing placeholder
|
132 |
+
# node.
|
133 |
+
const_placeholder_node = lifted_objs[constant_val]
|
134 |
+
node.replace_all_uses_with(const_placeholder_node)
|
135 |
+
gm.graph.erase_node(node)
|
136 |
+
continue
|
137 |
+
|
138 |
+
# For ScriptObject and Tensor constants:
|
139 |
+
# First check if the constant was an attribute on some module by
|
140 |
+
# consulting `constant_attrs` map. If it is, use the fqn that keeps
|
141 |
+
# its location consistent with the eager module.
|
142 |
+
#
|
143 |
+
# If it's not in the `constant_attrs` map, that means it's an inline
|
144 |
+
# constant (e.g. x + torch.tensor(0)), and thus did not have a
|
145 |
+
# specific location in the eager module. In that case, just generate
|
146 |
+
# some name and attach it to the module in which it was used.
|
147 |
+
if isinstance(constant_val, torch.ScriptObject):
|
148 |
+
constant_kind = InputKind.CUSTOM_OBJ
|
149 |
+
constant_fqn = constant_attrs.get(constant_val)
|
150 |
+
if constant_fqn is not None:
|
151 |
+
_, _, constant_name = constant_fqn.rpartition(".")
|
152 |
+
else:
|
153 |
+
constant_name = f"_lifted_custom_obj{num_custom_obj}"
|
154 |
+
constant_fqn = get_constant_fqn(node, constant_name)
|
155 |
+
num_custom_obj += 1
|
156 |
+
elif isinstance(constant_val, torch.Tensor):
|
157 |
+
constant_kind = InputKind.CONSTANT_TENSOR
|
158 |
+
constant_fqn = constant_attrs.get(constant_val)
|
159 |
+
if constant_fqn is not None:
|
160 |
+
_, _, constant_name = constant_fqn.rpartition(".")
|
161 |
+
else:
|
162 |
+
constant_name = f"_lifted_tensor_constant{num_tensor_constants}"
|
163 |
+
constant_fqn = get_constant_fqn(node, constant_name)
|
164 |
+
num_tensor_constants += 1
|
165 |
+
elif isinstance(constant_val, torch.fx.GraphModule):
|
166 |
+
continue
|
167 |
+
elif "LoweredBackendModule" in type(constant_val).__name__:
|
168 |
+
continue
|
169 |
+
else:
|
170 |
+
raise SpecViolationError(
|
171 |
+
f"getattr node {node} referencing unsupported type {type(constant_val)}"
|
172 |
+
)
|
173 |
+
|
174 |
+
with gm.graph.inserting_before(first_user_input):
|
175 |
+
# Insert the constant node before the first user input
|
176 |
+
const_placeholder_node = gm.graph.placeholder(constant_name)
|
177 |
+
# match target name with its node name in case there is name collision
|
178 |
+
# and suffix is added to node name in fx
|
179 |
+
const_placeholder_node.target = const_placeholder_node.name
|
180 |
+
|
181 |
+
for k, v in node.meta.items():
|
182 |
+
const_placeholder_node.meta[k] = v
|
183 |
+
|
184 |
+
input_spec_arg: ArgumentSpec
|
185 |
+
if isinstance(constant_val, torch.Tensor):
|
186 |
+
if fake_mode is not None:
|
187 |
+
const_placeholder_node.meta["val"] = fake_mode.from_tensor(
|
188 |
+
constant_val, static_shapes=True
|
189 |
+
)
|
190 |
+
const_placeholder_node.meta["val"].constant = constant_val
|
191 |
+
else:
|
192 |
+
const_placeholder_node.meta["val"] = constant_val
|
193 |
+
input_spec_arg = TensorArgument(name=const_placeholder_node.name)
|
194 |
+
elif isinstance(constant_val, torch._C.ScriptObject):
|
195 |
+
class_fqn = constant_val._type().qualified_name() # type: ignore[attr-defined]
|
196 |
+
const_placeholder_node.meta["val"] = CustomObjArgument(
|
197 |
+
constant_fqn, class_fqn
|
198 |
+
)
|
199 |
+
input_spec_arg = CustomObjArgument(
|
200 |
+
name=const_placeholder_node.name, class_fqn=class_fqn
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
raise SpecViolationError(
|
204 |
+
f"tried to lift unsupported type {type(constant_val)} from node {node.format_node()}"
|
205 |
+
)
|
206 |
+
|
207 |
+
lifted_objs[constant_val] = const_placeholder_node
|
208 |
+
node.replace_all_uses_with(const_placeholder_node)
|
209 |
+
gm.graph.erase_node(node)
|
210 |
+
|
211 |
+
# Add the constant as a buffer to the graph signature
|
212 |
+
graph_signature.input_specs.insert(
|
213 |
+
first_user_input_loc,
|
214 |
+
InputSpec(
|
215 |
+
kind=constant_kind,
|
216 |
+
arg=input_spec_arg,
|
217 |
+
target=constant_fqn,
|
218 |
+
),
|
219 |
+
)
|
220 |
+
all_constants[constant_fqn] = constant_val
|
221 |
+
first_user_input_loc += 1
|
222 |
+
|
223 |
+
return all_constants
|
224 |
+
|
225 |
+
|
226 |
+
def rewrite_script_object_meta(
|
227 |
+
gm: torch.fx.GraphModule,
|
228 |
+
) -> Dict[str, Union[torch.Tensor, torch.ScriptObject]]:
|
229 |
+
"""When tracing, we produce a graph with an actual ScriptObject in the
|
230 |
+
meta["val"]. Eventually we want to change this behavior, when FakeMode infra
|
231 |
+
for ScriptObjects lands.
|
232 |
+
|
233 |
+
For now, we rewrie meta["val"] to be a placeholder CustomObjArgument
|
234 |
+
"""
|
235 |
+
constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]] = {}
|
236 |
+
for node in gm.graph.nodes:
|
237 |
+
if "val" not in node.meta or not isinstance(
|
238 |
+
node.meta["val"], torch.ScriptObject
|
239 |
+
):
|
240 |
+
continue
|
241 |
+
|
242 |
+
old_meta = node.meta["val"]
|
243 |
+
class_fqn = old_meta._type().qualified_name() # type: ignore[attr-defined]
|
244 |
+
new_meta = CustomObjArgument(node.name, class_fqn)
|
245 |
+
constants[node.name] = old_meta
|
246 |
+
node.meta["val"] = new_meta
|
247 |
+
|
248 |
+
return constants
|
venv/lib/python3.10/site-packages/torch/_export/passes/remove_runtime_assertions.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.fx.passes.infra.pass_base import PassBase, PassResult
|
3 |
+
|
4 |
+
|
5 |
+
class _RemoveRuntimeAssertionsPass(PassBase):
|
6 |
+
"""
|
7 |
+
Remove runtime assertions inserted by the
|
8 |
+
_AddRuntimeAssertionsForInlineConstraintsPass.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def call(self, graph_module) -> PassResult:
|
12 |
+
modified = False
|
13 |
+
for module in graph_module.modules():
|
14 |
+
if not isinstance(module, torch.fx.GraphModule):
|
15 |
+
continue
|
16 |
+
for node in module.graph.nodes:
|
17 |
+
if node.target == torch.ops.aten._assert_async.msg:
|
18 |
+
assert_async_node = node
|
19 |
+
if len(assert_async_node.users) > 0:
|
20 |
+
continue
|
21 |
+
module.graph.erase_node(assert_async_node)
|
22 |
+
# the upstream scalar_tensor <- {le, ge} <- sym_size
|
23 |
+
# linear chain of nodes of nodes is removed by the
|
24 |
+
# downstream dead code elimination
|
25 |
+
modified = True
|
26 |
+
return PassResult(graph_module, modified)
|
venv/lib/python3.10/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch._higher_order_ops.wrap import wrap_with_set_grad_enabled
|
3 |
+
|
4 |
+
from ..utils import (
|
5 |
+
node_inline_,
|
6 |
+
node_replace_,
|
7 |
+
nodes_filter,
|
8 |
+
nodes_first,
|
9 |
+
nodes_map,
|
10 |
+
sequential_split,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
def _is_set_grad_enabled_node(node: torch.fx.Node):
|
15 |
+
return (
|
16 |
+
node
|
17 |
+
and node.op == "call_function"
|
18 |
+
and node.target == torch._C._set_grad_enabled
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def _is_set_grad_enabled_sub_mod(node: torch.fx.Node, omit_if_same_with_ambient=False):
|
23 |
+
if node.op == "call_module":
|
24 |
+
assert isinstance(node.target, str)
|
25 |
+
subgm = getattr(node.graph.owning_module, node.target)
|
26 |
+
first_non_ph = nodes_first(
|
27 |
+
subgm.graph.nodes, lambda node: node.op != "placeholder"
|
28 |
+
)
|
29 |
+
if (
|
30 |
+
first_non_ph
|
31 |
+
and first_non_ph.op == "call_function"
|
32 |
+
and first_non_ph.target == torch._C._set_grad_enabled
|
33 |
+
):
|
34 |
+
return (
|
35 |
+
first_non_ph.args[0] != torch.is_grad_enabled()
|
36 |
+
if omit_if_same_with_ambient
|
37 |
+
else True
|
38 |
+
)
|
39 |
+
return False
|
40 |
+
|
41 |
+
|
42 |
+
def _replace_with_hop(node: torch.fx.Node):
|
43 |
+
assert node.op == "call_module"
|
44 |
+
graph: torch.fx.Graph = node.graph
|
45 |
+
gm: torch.fx.GraphModule = graph.owning_module
|
46 |
+
assert isinstance(node.target, str)
|
47 |
+
sub_gm = getattr(gm, node.target)
|
48 |
+
sub_graph = sub_gm.graph
|
49 |
+
set_grad_nodes = nodes_filter(sub_graph.nodes, _is_set_grad_enabled_node)
|
50 |
+
if len(set_grad_nodes) > 0:
|
51 |
+
assert len(set_grad_nodes) == 1
|
52 |
+
set_grad_node = set_grad_nodes[0]
|
53 |
+
enable_grad_val = set_grad_node.args[0]
|
54 |
+
with graph.inserting_before(node):
|
55 |
+
get_attr_node = graph.get_attr(node.target)
|
56 |
+
output_node = next(iter(reversed(sub_gm.graph.nodes)), None)
|
57 |
+
if output_node is not None:
|
58 |
+
assert len(output_node.args) == 1
|
59 |
+
output_args = output_node.args[0]
|
60 |
+
if isinstance(output_args, (tuple, list)):
|
61 |
+
call_func_node = graph.call_function(
|
62 |
+
wrap_with_set_grad_enabled,
|
63 |
+
(enable_grad_val, get_attr_node, *node.args),
|
64 |
+
{},
|
65 |
+
)
|
66 |
+
# Create the metadata
|
67 |
+
call_func_node.meta["val"] = tuple(
|
68 |
+
arg.meta["val"] for arg in output_args
|
69 |
+
)
|
70 |
+
node_replace_(node, call_func_node, delete_old=True)
|
71 |
+
|
72 |
+
# Rename the name of getitem nodes to the actual name of its contents
|
73 |
+
# for passing verifier and better readability, also propagate metadata
|
74 |
+
for get_item_node in call_func_node.users.keys():
|
75 |
+
idx: int = get_item_node.args[1]
|
76 |
+
output_node = output_args[idx]
|
77 |
+
get_item_node._rename(output_node.name)
|
78 |
+
get_item_node.meta = output_node.meta
|
79 |
+
pass
|
80 |
+
|
81 |
+
elif isinstance(output_args, torch.fx.Node):
|
82 |
+
call_func_node = graph.create_node(
|
83 |
+
"call_function",
|
84 |
+
wrap_with_set_grad_enabled,
|
85 |
+
(enable_grad_val, get_attr_node, *node.args),
|
86 |
+
{},
|
87 |
+
output_args.name,
|
88 |
+
)
|
89 |
+
call_func_node.meta = output_args.meta
|
90 |
+
node_replace_(node, call_func_node, delete_old=True)
|
91 |
+
else:
|
92 |
+
raise NotImplementedError(
|
93 |
+
f"repalce_set_grad_with_hop_pass doesnt' support output type {type(output_args)}"
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
raise NotImplementedError(
|
97 |
+
"Cannot replace a call_module with a hop if it has no output. This module will gets DCEed."
|
98 |
+
)
|
99 |
+
sub_graph.erase_node(set_grad_node)
|
100 |
+
|
101 |
+
|
102 |
+
def _remove_set_grad_and_inline(node: torch.fx.Node):
|
103 |
+
assert node.op == "call_module"
|
104 |
+
graph: torch.fx.Graph = node.graph
|
105 |
+
gm: torch.fx.GraphModule = graph.owning_module
|
106 |
+
assert isinstance(node.target, str)
|
107 |
+
sub_gm = getattr(gm, node.target)
|
108 |
+
sub_graph = sub_gm.graph
|
109 |
+
nodes_map(
|
110 |
+
sub_graph.nodes,
|
111 |
+
lambda n: sub_graph.erase_node(n) if _is_set_grad_enabled_node(n) else n,
|
112 |
+
)
|
113 |
+
node_inline_(node)
|
114 |
+
|
115 |
+
|
116 |
+
def replace_set_grad_with_hop_pass(gm: torch.fx.GraphModule):
|
117 |
+
# If there is no set_grad_enabled node, return the original graph module
|
118 |
+
need_replacing = False
|
119 |
+
for node in gm.graph.nodes:
|
120 |
+
if _is_set_grad_enabled_node(node):
|
121 |
+
need_replacing = True
|
122 |
+
|
123 |
+
if not need_replacing:
|
124 |
+
return gm
|
125 |
+
|
126 |
+
new_gm = sequential_split(gm, _is_set_grad_enabled_node)
|
127 |
+
|
128 |
+
def _maybe_inline_or_replace_with_hop(node: torch.fx.Node):
|
129 |
+
if _is_set_grad_enabled_sub_mod(node, omit_if_same_with_ambient=True):
|
130 |
+
_replace_with_hop(node)
|
131 |
+
else:
|
132 |
+
_remove_set_grad_and_inline(node)
|
133 |
+
|
134 |
+
nodes_map(
|
135 |
+
list(new_gm.graph.nodes),
|
136 |
+
lambda node: _maybe_inline_or_replace_with_hop(node)
|
137 |
+
if node.op == "call_module"
|
138 |
+
else node,
|
139 |
+
)
|
140 |
+
new_gm.graph.lint()
|
141 |
+
return new_gm
|