Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/output.log +28 -0
- lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/wandb-metadata.json +810 -0
- lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/wandb-summary.json +1 -0
- venv/lib/python3.10/site-packages/transformers/models/altclip/__init__.py +71 -0
- venv/lib/python3.10/site-packages/transformers/models/altclip/configuration_altclip.py +402 -0
- venv/lib/python3.10/site-packages/transformers/models/altclip/modeling_altclip.py +1693 -0
- venv/lib/python3.10/site-packages/transformers/models/altclip/processing_altclip.py +131 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/__init__.py +59 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm.py +344 -0
- venv/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm_fast.py +237 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__init__.py +75 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/configuration_deformable_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/convert_deformable_detr_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/feature_extraction_deformable_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/image_processing_deformable_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/load_custom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/modeling_deformable_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/configuration_deformable_detr.py +277 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/convert_deformable_detr_to_pytorch.py +237 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/feature_extraction_deformable_detr.py +43 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/image_processing_deformable_detr.py +1553 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/load_custom.py +49 -0
- venv/lib/python3.10/site-packages/transformers/models/deformable_detr/modeling_deformable_detr.py +0 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/__init__.py +58 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/configuration_jamba.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/modeling_jamba.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/configuration_jamba.py +223 -0
- venv/lib/python3.10/site-packages/transformers/models/jamba/modeling_jamba.py +1882 -0
- venv/lib/python3.10/site-packages/transformers/models/maskformer/__init__.py +86 -0
- venv/lib/python3.10/site-packages/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py +730 -0
- venv/lib/python3.10/site-packages/transformers/models/maskformer/modeling_maskformer_swin.py +912 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/__init__.py +70 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/configuration_mega.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/convert_mega_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/modeling_mega.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/configuration_mega.py +242 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py +291 -0
- venv/lib/python3.10/site-packages/transformers/models/mega/modeling_mega.py +0 -0
- venv/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py +73 -0
- venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc +0 -0
ckpts/universal/global_step20/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deac2a55fcd86f5cc694c603b449726cab93ec94aed43ae043638f87f246f947
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d183029d9400f181c59684ec18be25a2b52abdeeae1b1fcb089b165c71c7d80
|
3 |
+
size 33555627
|
lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/output.log
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-14:16:34:29,286 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-14:16:34:33,982 INFO [__main__.py:335] Selected Tasks: ['indiccopa-hi']
|
4 |
+
2024-05-14:16:34:33,984 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-14:16:34:33,984 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/data/cronscript/ckpts//hf_ckpt//global_step100'}
|
6 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/core/register.py:145: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
|
7 |
+
return func(*args, **kwargs)
|
8 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/torch/cuda/memory.py:36: UserWarning: No need to call empty_cache on HPU. It manages the memory internally in an effcient way.
|
9 |
+
warnings.warn(
|
10 |
+
[2024-05-14 16:34:41,205] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
|
11 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
|
12 |
+
warnings.warn(
|
13 |
+
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
|
14 |
+
2024-05-14:16:34:41,615 WARNING [task.py:763] [Task: indiccopa-hi] metric acc is defined, but aggregation is not. using default aggregation=mean
|
15 |
+
2024-05-14:16:34:41,616 WARNING [task.py:775] [Task: indiccopa-hi] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
|
16 |
+
/usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for ai4bharat/IndicCOPA contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/ai4bharat/IndicCOPA
|
17 |
+
You can avoid this message in future by passing the argument `trust_remote_code=True`.
|
18 |
+
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
|
19 |
+
warnings.warn(
|
20 |
+
2024-05-14:16:34:42,901 WARNING [task.py:322] [Task: indiccopa-hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
21 |
+
2024-05-14:16:34:42,901 WARNING [task.py:322] [Task: indiccopa-hi] has_training_docs and has_validation_docs are False, using test_docs as fewshot_docs but this is not recommended.
|
22 |
+
2024-05-14:16:34:42,920 INFO [task.py:395] Building contexts for indiccopa-hi on rank 3...
|
23 |
+
Passed argument batch_size = auto:1. Detecting largest batch size
|
24 |
+
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 56/56 [00:00<00:00, 107991.28it/s]
|
25 |
+
2024-05-14:16:34:44,718 INFO [evaluator.py:379] Running loglikelihood requests
|
26 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/torch/cuda/memory.py:36: UserWarning: No need to call empty_cache on HPU. It manages the memory internally in an effcient way.
|
27 |
+
warnings.warn(
|
28 |
+
Determined largest batch size: 64
|
lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/wandb-metadata.json
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-14T16:34:29.154200",
|
5 |
+
"startedAt": "2024-05-14T16:34:28.708355",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/data/cronscript/ckpts//hf_ckpt//global_step100",
|
13 |
+
"--tasks",
|
14 |
+
"indiccopa-hi",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/data/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "vizzhy-150-3",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 76,
|
33 |
+
"cpu_count_logical": 152,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 3396.061605263158,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3300.0,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3300.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 3300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 3400.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 3280.656,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 3400.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 3400.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 3284.865,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 3400.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 3223.887,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 3400.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 3400.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 3244.473,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 3400.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 3400.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 3400.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 3400.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 3400.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 3400.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 3400.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 3400.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 3400.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 3400.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 3400.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 3400.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 3400.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 3400.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 3400.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 3400.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 3400.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 3400.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 3400.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 3291.536,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 3400.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 3206.218,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 3400.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 3400.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 3400.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 3400.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 3400.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 3400.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 3400.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 3400.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 3400.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 3400.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 3400.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 3400.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 3400.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 3400.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 3400.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 3400.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 3400.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 3400.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 3400.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 3400.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 3400.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 3400.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 3400.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 3400.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 3400.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 3400.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 3400.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 3400.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 3400.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 3400.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 3400.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 3400.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 3400.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 3400.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 3400.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 3400.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 3400.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 3400.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 3400.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 3400.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 3400.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 3400.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 3400.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 3400.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 3400.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 3400.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 3400.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 3400.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 3400.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 3400.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 3400.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 3400.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 3400.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 3400.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 3400.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 3400.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 3400.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 3400.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 3220.102,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 3400.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 3400.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 3400.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 3400.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 3400.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 3300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 3400.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 3400.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 3400.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 3400.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 3400.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 3400.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 3400.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 3400.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 3400.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 3400.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 3400.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 3400.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 3400.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 3400.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 3400.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 3400.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 3400.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 3400.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 3400.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 3400.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 3400.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 3400.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 3400.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 3400.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 3400.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 3400.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 3400.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 3400.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 3400.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 3400.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 3400.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 3400.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 3400.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 3400.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 3400.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 3400.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 3400.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 3400.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 3400.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 3400.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 3400.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 3400.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 3400.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 3400.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 3400.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 3400.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 3400.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 3400.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 3400.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 3400.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
}
|
800 |
+
],
|
801 |
+
"disk": {
|
802 |
+
"/": {
|
803 |
+
"total": 866.4415092468262,
|
804 |
+
"used": 863.5445137023926
|
805 |
+
}
|
806 |
+
},
|
807 |
+
"memory": {
|
808 |
+
"total": 1007.5000267028809
|
809 |
+
}
|
810 |
+
}
|
lm-evaluation-harness/wandb/run-20240514_163428-dlwc10vq/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 23}}
|
venv/lib/python3.10/site-packages/transformers/models/altclip/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_altclip": [
|
21 |
+
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"AltCLIPConfig",
|
23 |
+
"AltCLIPTextConfig",
|
24 |
+
"AltCLIPVisionConfig",
|
25 |
+
],
|
26 |
+
"processing_altclip": ["AltCLIPProcessor"],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_torch_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["modeling_altclip"] = [
|
36 |
+
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
37 |
+
"AltCLIPPreTrainedModel",
|
38 |
+
"AltCLIPModel",
|
39 |
+
"AltCLIPTextModel",
|
40 |
+
"AltCLIPVisionModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_altclip import (
|
46 |
+
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
AltCLIPConfig,
|
48 |
+
AltCLIPTextConfig,
|
49 |
+
AltCLIPVisionConfig,
|
50 |
+
)
|
51 |
+
from .processing_altclip import AltCLIPProcessor
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_torch_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .modeling_altclip import (
|
60 |
+
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
61 |
+
AltCLIPModel,
|
62 |
+
AltCLIPPreTrainedModel,
|
63 |
+
AltCLIPTextModel,
|
64 |
+
AltCLIPVisionModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/altclip/configuration_altclip.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" AltCLIP model configuration"""
|
16 |
+
import os
|
17 |
+
from typing import Union
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class AltCLIPTextConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`AltCLIPTextModel`]. It is used to instantiate a
|
32 |
+
AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the AltCLIP
|
34 |
+
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 250002):
|
42 |
+
Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`AltCLIPTextModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
52 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 514):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
type_vocab_size (`int`, *optional*, defaults to 1):
|
63 |
+
The vocabulary size of the `token_type_ids` passed when calling [`AltCLIPTextModel`]
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
initializer_factor (`float`, *optional*, defaults to 0.02):
|
67 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
68 |
+
testing).
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
pad_token_id (`int`, *optional*, defaults to 1): The id of the *padding* token.
|
72 |
+
bos_token_id (`int`, *optional*, defaults to 0): The id of the *beginning-of-sequence* token.
|
73 |
+
eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
|
74 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
75 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
76 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
77 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
78 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
79 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
80 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
81 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
83 |
+
relevant if `config.is_decoder=True`.
|
84 |
+
project_dim (`int`, *optional*, defaults to 768):
|
85 |
+
The dimentions of the teacher model before the mapping layer.
|
86 |
+
|
87 |
+
Examples:
|
88 |
+
|
89 |
+
```python
|
90 |
+
>>> from transformers import AltCLIPTextModel, AltCLIPTextConfig
|
91 |
+
|
92 |
+
>>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
|
93 |
+
>>> configuration = AltCLIPTextConfig()
|
94 |
+
|
95 |
+
>>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
|
96 |
+
>>> model = AltCLIPTextModel(configuration)
|
97 |
+
|
98 |
+
>>> # Accessing the model configuration
|
99 |
+
>>> configuration = model.config
|
100 |
+
```"""
|
101 |
+
|
102 |
+
model_type = "altclip_text_model"
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
vocab_size=250002,
|
107 |
+
hidden_size=1024,
|
108 |
+
num_hidden_layers=24,
|
109 |
+
num_attention_heads=16,
|
110 |
+
intermediate_size=4096,
|
111 |
+
hidden_act="gelu",
|
112 |
+
hidden_dropout_prob=0.1,
|
113 |
+
attention_probs_dropout_prob=0.1,
|
114 |
+
max_position_embeddings=514,
|
115 |
+
type_vocab_size=1,
|
116 |
+
initializer_range=0.02,
|
117 |
+
initializer_factor=0.02,
|
118 |
+
layer_norm_eps=1e-05,
|
119 |
+
pad_token_id=1,
|
120 |
+
bos_token_id=0,
|
121 |
+
eos_token_id=2,
|
122 |
+
position_embedding_type="absolute",
|
123 |
+
use_cache=True,
|
124 |
+
project_dim=768,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
128 |
+
|
129 |
+
self.vocab_size = vocab_size
|
130 |
+
self.hidden_size = hidden_size
|
131 |
+
self.num_hidden_layers = num_hidden_layers
|
132 |
+
self.num_attention_heads = num_attention_heads
|
133 |
+
self.hidden_act = hidden_act
|
134 |
+
self.intermediate_size = intermediate_size
|
135 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
136 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.type_vocab_size = type_vocab_size
|
139 |
+
self.initializer_range = initializer_range
|
140 |
+
self.initializer_factor = initializer_factor
|
141 |
+
self.layer_norm_eps = layer_norm_eps
|
142 |
+
self.position_embedding_type = position_embedding_type
|
143 |
+
self.use_cache = use_cache
|
144 |
+
self.project_dim = project_dim
|
145 |
+
|
146 |
+
|
147 |
+
class AltCLIPVisionConfig(PretrainedConfig):
|
148 |
+
r"""
|
149 |
+
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
|
150 |
+
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
151 |
+
with the defaults will yield a similar configuration to that of the AltCLIP
|
152 |
+
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
|
153 |
+
|
154 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
155 |
+
documentation from [`PretrainedConfig`] for more information.
|
156 |
+
|
157 |
+
|
158 |
+
Args:
|
159 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
160 |
+
Dimensionality of the encoder layers and the pooler layer.
|
161 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
162 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
163 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
164 |
+
Dimentionality of text and vision projection layers.
|
165 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
168 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
169 |
+
num_channels (`int`, *optional*, defaults to 3):
|
170 |
+
The number of input channels.
|
171 |
+
image_size (`int`, *optional*, defaults to 224):
|
172 |
+
The size (resolution) of each image.
|
173 |
+
patch_size (`int`, *optional*, defaults to 32):
|
174 |
+
The size (resolution) of each patch.
|
175 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
176 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
177 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
178 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
179 |
+
The epsilon used by the layer normalization layers.
|
180 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
181 |
+
The dropout ratio for the attention probabilities.
|
182 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
183 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
184 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
185 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
186 |
+
testing).
|
187 |
+
|
188 |
+
Example:
|
189 |
+
|
190 |
+
```python
|
191 |
+
>>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel
|
192 |
+
|
193 |
+
>>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
|
194 |
+
>>> configuration = AltCLIPVisionConfig()
|
195 |
+
|
196 |
+
>>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
|
197 |
+
>>> model = AltCLIPVisionModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```"""
|
202 |
+
|
203 |
+
model_type = "altclip_vision_model"
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
hidden_size=768,
|
208 |
+
intermediate_size=3072,
|
209 |
+
projection_dim=512,
|
210 |
+
num_hidden_layers=12,
|
211 |
+
num_attention_heads=12,
|
212 |
+
num_channels=3,
|
213 |
+
image_size=224,
|
214 |
+
patch_size=32,
|
215 |
+
hidden_act="quick_gelu",
|
216 |
+
layer_norm_eps=1e-5,
|
217 |
+
attention_dropout=0.0,
|
218 |
+
initializer_range=0.02,
|
219 |
+
initializer_factor=1.0,
|
220 |
+
**kwargs,
|
221 |
+
):
|
222 |
+
super().__init__(**kwargs)
|
223 |
+
|
224 |
+
self.hidden_size = hidden_size
|
225 |
+
self.intermediate_size = intermediate_size
|
226 |
+
self.projection_dim = projection_dim
|
227 |
+
self.num_hidden_layers = num_hidden_layers
|
228 |
+
self.num_attention_heads = num_attention_heads
|
229 |
+
self.num_channels = num_channels
|
230 |
+
self.patch_size = patch_size
|
231 |
+
self.image_size = image_size
|
232 |
+
self.initializer_range = initializer_range
|
233 |
+
self.initializer_factor = initializer_factor
|
234 |
+
self.attention_dropout = attention_dropout
|
235 |
+
self.layer_norm_eps = layer_norm_eps
|
236 |
+
self.hidden_act = hidden_act
|
237 |
+
|
238 |
+
@classmethod
|
239 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
240 |
+
cls._set_token_in_kwargs(kwargs)
|
241 |
+
|
242 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
243 |
+
|
244 |
+
# get the vision config dict if we are loading from AltCLIPConfig
|
245 |
+
if config_dict.get("model_type") == "altclip":
|
246 |
+
config_dict = config_dict["vision_config"]
|
247 |
+
|
248 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
249 |
+
logger.warning(
|
250 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
251 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
252 |
+
)
|
253 |
+
|
254 |
+
return cls.from_dict(config_dict, **kwargs)
|
255 |
+
|
256 |
+
|
257 |
+
class AltCLIPConfig(PretrainedConfig):
|
258 |
+
r"""
|
259 |
+
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
|
260 |
+
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
261 |
+
with the defaults will yield a similar configuration to that of the AltCLIP
|
262 |
+
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
|
263 |
+
|
264 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
265 |
+
documentation from [`PretrainedConfig`] for more information.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
text_config (`dict`, *optional*):
|
269 |
+
Dictionary of configuration options used to initialize [`AltCLIPTextConfig`].
|
270 |
+
vision_config (`dict`, *optional*):
|
271 |
+
Dictionary of configuration options used to initialize [`AltCLIPVisionConfig`].
|
272 |
+
projection_dim (`int`, *optional*, defaults to 768):
|
273 |
+
Dimentionality of text and vision projection layers.
|
274 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
275 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
|
276 |
+
kwargs (*optional*):
|
277 |
+
Dictionary of keyword arguments.
|
278 |
+
|
279 |
+
Example:
|
280 |
+
|
281 |
+
```python
|
282 |
+
>>> from transformers import AltCLIPConfig, AltCLIPModel
|
283 |
+
|
284 |
+
>>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
|
285 |
+
>>> configuration = AltCLIPConfig()
|
286 |
+
|
287 |
+
>>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
|
288 |
+
>>> model = AltCLIPModel(configuration)
|
289 |
+
|
290 |
+
>>> # Accessing the model configuration
|
291 |
+
>>> configuration = model.config
|
292 |
+
|
293 |
+
>>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig
|
294 |
+
|
295 |
+
>>> # Initializing a AltCLIPText and AltCLIPVision configuration
|
296 |
+
>>> config_text = AltCLIPTextConfig()
|
297 |
+
>>> config_vision = AltCLIPVisionConfig()
|
298 |
+
|
299 |
+
>>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)
|
300 |
+
```"""
|
301 |
+
|
302 |
+
model_type = "altclip"
|
303 |
+
|
304 |
+
def __init__(
|
305 |
+
self, text_config=None, vision_config=None, projection_dim=768, logit_scale_init_value=2.6592, **kwargs
|
306 |
+
):
|
307 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
308 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
309 |
+
# of confusion!).
|
310 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
311 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
312 |
+
|
313 |
+
super().__init__(**kwargs)
|
314 |
+
|
315 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
316 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
317 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
318 |
+
if text_config_dict is not None:
|
319 |
+
if text_config is None:
|
320 |
+
text_config = {}
|
321 |
+
|
322 |
+
# This is the complete result when using `text_config_dict`.
|
323 |
+
_text_config_dict = AltCLIPTextConfig(**text_config_dict).to_dict()
|
324 |
+
|
325 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
326 |
+
for key, value in _text_config_dict.items():
|
327 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
328 |
+
# If specified in `text_config_dict`
|
329 |
+
if key in text_config_dict:
|
330 |
+
message = (
|
331 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
332 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
333 |
+
)
|
334 |
+
# If inferred from default argument values (just to be super careful)
|
335 |
+
else:
|
336 |
+
message = (
|
337 |
+
f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The "
|
338 |
+
f'value `text_config["{key}"]` will be overriden.'
|
339 |
+
)
|
340 |
+
logger.info(message)
|
341 |
+
|
342 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
343 |
+
text_config.update(_text_config_dict)
|
344 |
+
|
345 |
+
if vision_config_dict is not None:
|
346 |
+
if vision_config is None:
|
347 |
+
vision_config = {}
|
348 |
+
|
349 |
+
# This is the complete result when using `vision_config_dict`.
|
350 |
+
_vision_config_dict = AltCLIPVisionConfig(**vision_config_dict).to_dict()
|
351 |
+
# convert keys to string instead of integer
|
352 |
+
if "id2label" in _vision_config_dict:
|
353 |
+
_vision_config_dict["id2label"] = {
|
354 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
355 |
+
}
|
356 |
+
|
357 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
358 |
+
for key, value in _vision_config_dict.items():
|
359 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
360 |
+
# If specified in `vision_config_dict`
|
361 |
+
if key in vision_config_dict:
|
362 |
+
message = (
|
363 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
364 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
365 |
+
)
|
366 |
+
# If inferred from default argument values (just to be super careful)
|
367 |
+
else:
|
368 |
+
message = (
|
369 |
+
f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. "
|
370 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
371 |
+
)
|
372 |
+
logger.info(message)
|
373 |
+
|
374 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
375 |
+
vision_config.update(_vision_config_dict)
|
376 |
+
|
377 |
+
if text_config is None:
|
378 |
+
text_config = {}
|
379 |
+
logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.")
|
380 |
+
|
381 |
+
if vision_config is None:
|
382 |
+
vision_config = {}
|
383 |
+
logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.")
|
384 |
+
|
385 |
+
self.text_config = AltCLIPTextConfig(**text_config)
|
386 |
+
self.vision_config = AltCLIPVisionConfig(**vision_config)
|
387 |
+
|
388 |
+
self.projection_dim = projection_dim
|
389 |
+
self.logit_scale_init_value = logit_scale_init_value
|
390 |
+
self.initializer_factor = 1.0
|
391 |
+
|
392 |
+
@classmethod
|
393 |
+
def from_text_vision_configs(cls, text_config: AltCLIPTextConfig, vision_config: AltCLIPVisionConfig, **kwargs):
|
394 |
+
r"""
|
395 |
+
Instantiate a [`AltCLIPConfig`] (or a derived class) from altclip text model configuration and altclip vision
|
396 |
+
model configuration.
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
[`AltCLIPConfig`]: An instance of a configuration object
|
400 |
+
"""
|
401 |
+
|
402 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/altclip/modeling_altclip.py
ADDED
@@ -0,0 +1,1693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The BAAI Teams Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch AltCLIP model."""
|
16 |
+
import math
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Any, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import (
|
26 |
+
BaseModelOutput,
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
BaseModelOutputWithPooling,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndProjection,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
35 |
+
from .configuration_altclip import AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CHECKPOINT_FOR_DOC = "BAAI/AltCLIP"
|
41 |
+
_CONFIG_FOR_DOC = "AltCLIPConfig"
|
42 |
+
|
43 |
+
|
44 |
+
from ..deprecated._archive_maps import ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
45 |
+
|
46 |
+
|
47 |
+
ALTCLIP_START_DOCSTRING = r"""
|
48 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
49 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
50 |
+
etc.)
|
51 |
+
|
52 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
53 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
54 |
+
and behavior.
|
55 |
+
|
56 |
+
Parameters:
|
57 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
58 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
59 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
60 |
+
"""
|
61 |
+
|
62 |
+
ALTCLIP_TEXT_INPUTS_DOCSTRING = r"""
|
63 |
+
Args:
|
64 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
65 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
66 |
+
it.
|
67 |
+
|
68 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
69 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
70 |
+
|
71 |
+
[What are input IDs?](../glossary#input-ids)
|
72 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
73 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
74 |
+
|
75 |
+
- 1 for tokens that are **not masked**,
|
76 |
+
- 0 for tokens that are **masked**.
|
77 |
+
|
78 |
+
[What are attention masks?](../glossary#attention-mask)
|
79 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
80 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
81 |
+
config.max_position_embeddings - 1]`.
|
82 |
+
|
83 |
+
[What are position IDs?](../glossary#position-ids)
|
84 |
+
output_attentions (`bool`, *optional*):
|
85 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
86 |
+
tensors for more detail.
|
87 |
+
output_hidden_states (`bool`, *optional*):
|
88 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
89 |
+
more detail.
|
90 |
+
return_dict (`bool`, *optional*):
|
91 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
92 |
+
"""
|
93 |
+
|
94 |
+
ALTCLIP_VISION_INPUTS_DOCSTRING = r"""
|
95 |
+
Args:
|
96 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
97 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
98 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
99 |
+
output_attentions (`bool`, *optional*):
|
100 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
101 |
+
tensors for more detail.
|
102 |
+
output_hidden_states (`bool`, *optional*):
|
103 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
104 |
+
more detail.
|
105 |
+
return_dict (`bool`, *optional*):
|
106 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
107 |
+
"""
|
108 |
+
|
109 |
+
ALTCLIP_INPUTS_DOCSTRING = r"""
|
110 |
+
Args:
|
111 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
112 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
113 |
+
it.
|
114 |
+
|
115 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
116 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
117 |
+
|
118 |
+
[What are input IDs?](../glossary#input-ids)
|
119 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
120 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
121 |
+
|
122 |
+
- 1 for tokens that are **not masked**,
|
123 |
+
- 0 for tokens that are **masked**.
|
124 |
+
|
125 |
+
[What are attention masks?](../glossary#attention-mask)
|
126 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
127 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
128 |
+
config.max_position_embeddings - 1]`.
|
129 |
+
|
130 |
+
[What are position IDs?](../glossary#position-ids)
|
131 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
132 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
133 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
134 |
+
return_loss (`bool`, *optional*):
|
135 |
+
Whether or not to return the contrastive loss.
|
136 |
+
output_attentions (`bool`, *optional*):
|
137 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
138 |
+
tensors for more detail.
|
139 |
+
output_hidden_states (`bool`, *optional*):
|
140 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
141 |
+
more detail.
|
142 |
+
return_dict (`bool`, *optional*):
|
143 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
# contrastive loss function, adapted from
|
148 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
149 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
150 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
151 |
+
|
152 |
+
|
153 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
154 |
+
caption_loss = contrastive_loss(similarity)
|
155 |
+
image_loss = contrastive_loss(similarity.t())
|
156 |
+
return (caption_loss + image_loss) / 2.0
|
157 |
+
|
158 |
+
|
159 |
+
@dataclass
|
160 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->AltCLIP
|
161 |
+
class AltCLIPOutput(ModelOutput):
|
162 |
+
"""
|
163 |
+
Args:
|
164 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
165 |
+
Contrastive loss for image-text similarity.
|
166 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
167 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
168 |
+
similarity scores.
|
169 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
170 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
171 |
+
similarity scores.
|
172 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
173 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`AltCLIPTextModel`].
|
174 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
175 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`AltCLIPVisionModel`].
|
176 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
177 |
+
The output of the [`AltCLIPTextModel`].
|
178 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
179 |
+
The output of the [`AltCLIPVisionModel`].
|
180 |
+
"""
|
181 |
+
|
182 |
+
loss: Optional[torch.FloatTensor] = None
|
183 |
+
logits_per_image: torch.FloatTensor = None
|
184 |
+
logits_per_text: torch.FloatTensor = None
|
185 |
+
text_embeds: torch.FloatTensor = None
|
186 |
+
image_embeds: torch.FloatTensor = None
|
187 |
+
text_model_output: BaseModelOutputWithPooling = None
|
188 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
189 |
+
|
190 |
+
def to_tuple(self) -> Tuple[Any]:
|
191 |
+
return tuple(
|
192 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
193 |
+
for k in self.keys()
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->AltRoberta
|
198 |
+
class AltRobertaEmbeddings(nn.Module):
|
199 |
+
"""
|
200 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
201 |
+
"""
|
202 |
+
|
203 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
204 |
+
def __init__(self, config):
|
205 |
+
super().__init__()
|
206 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
207 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
208 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
209 |
+
|
210 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
211 |
+
# any TensorFlow checkpoint file
|
212 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
213 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
214 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
215 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
216 |
+
self.register_buffer(
|
217 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
218 |
+
)
|
219 |
+
self.register_buffer(
|
220 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
221 |
+
)
|
222 |
+
|
223 |
+
# End copy
|
224 |
+
self.padding_idx = config.pad_token_id
|
225 |
+
self.position_embeddings = nn.Embedding(
|
226 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
227 |
+
)
|
228 |
+
|
229 |
+
def forward(
|
230 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
231 |
+
):
|
232 |
+
if position_ids is None:
|
233 |
+
if input_ids is not None:
|
234 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
235 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
236 |
+
else:
|
237 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
238 |
+
|
239 |
+
if input_ids is not None:
|
240 |
+
input_shape = input_ids.size()
|
241 |
+
else:
|
242 |
+
input_shape = inputs_embeds.size()[:-1]
|
243 |
+
|
244 |
+
seq_length = input_shape[1]
|
245 |
+
|
246 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
247 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
248 |
+
# issue #5664
|
249 |
+
if token_type_ids is None:
|
250 |
+
if hasattr(self, "token_type_ids"):
|
251 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
252 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
253 |
+
token_type_ids = buffered_token_type_ids_expanded
|
254 |
+
else:
|
255 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
256 |
+
|
257 |
+
if inputs_embeds is None:
|
258 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
259 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
260 |
+
|
261 |
+
embeddings = inputs_embeds + token_type_embeddings
|
262 |
+
if self.position_embedding_type == "absolute":
|
263 |
+
position_embeddings = self.position_embeddings(position_ids)
|
264 |
+
embeddings += position_embeddings
|
265 |
+
embeddings = self.LayerNorm(embeddings)
|
266 |
+
embeddings = self.dropout(embeddings)
|
267 |
+
return embeddings
|
268 |
+
|
269 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
270 |
+
"""
|
271 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
inputs_embeds: torch.Tensor
|
275 |
+
|
276 |
+
Returns: torch.Tensor
|
277 |
+
"""
|
278 |
+
input_shape = inputs_embeds.size()[:-1]
|
279 |
+
sequence_length = input_shape[1]
|
280 |
+
|
281 |
+
position_ids = torch.arange(
|
282 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
283 |
+
)
|
284 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
285 |
+
|
286 |
+
|
287 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->AltRoberta
|
288 |
+
class AltRobertaSelfAttention(nn.Module):
|
289 |
+
def __init__(self, config, position_embedding_type=None):
|
290 |
+
super().__init__()
|
291 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
292 |
+
raise ValueError(
|
293 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
294 |
+
f"heads ({config.num_attention_heads})"
|
295 |
+
)
|
296 |
+
|
297 |
+
self.num_attention_heads = config.num_attention_heads
|
298 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
299 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
300 |
+
|
301 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
302 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
303 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
304 |
+
|
305 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
306 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
307 |
+
config, "position_embedding_type", "absolute"
|
308 |
+
)
|
309 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
310 |
+
self.max_position_embeddings = config.max_position_embeddings
|
311 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
312 |
+
|
313 |
+
self.is_decoder = config.is_decoder
|
314 |
+
|
315 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
316 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
317 |
+
x = x.view(new_x_shape)
|
318 |
+
return x.permute(0, 2, 1, 3)
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
hidden_states: torch.Tensor,
|
323 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
324 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
325 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
326 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
327 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
328 |
+
output_attentions: Optional[bool] = False,
|
329 |
+
) -> Tuple[torch.Tensor]:
|
330 |
+
mixed_query_layer = self.query(hidden_states)
|
331 |
+
|
332 |
+
# If this is instantiated as a cross-attention module, the keys
|
333 |
+
# and values come from an encoder; the attention mask needs to be
|
334 |
+
# such that the encoder's padding tokens are not attended to.
|
335 |
+
is_cross_attention = encoder_hidden_states is not None
|
336 |
+
|
337 |
+
if is_cross_attention and past_key_value is not None:
|
338 |
+
# reuse k,v, cross_attentions
|
339 |
+
key_layer = past_key_value[0]
|
340 |
+
value_layer = past_key_value[1]
|
341 |
+
attention_mask = encoder_attention_mask
|
342 |
+
elif is_cross_attention:
|
343 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
344 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
345 |
+
attention_mask = encoder_attention_mask
|
346 |
+
elif past_key_value is not None:
|
347 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
348 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
349 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
350 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
351 |
+
else:
|
352 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
353 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
354 |
+
|
355 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
356 |
+
|
357 |
+
use_cache = past_key_value is not None
|
358 |
+
if self.is_decoder:
|
359 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
360 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
361 |
+
# key/value_states (first "if" case)
|
362 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
363 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
364 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
365 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
366 |
+
past_key_value = (key_layer, value_layer)
|
367 |
+
|
368 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
369 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
370 |
+
|
371 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
372 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
373 |
+
if use_cache:
|
374 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
375 |
+
-1, 1
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
379 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
380 |
+
distance = position_ids_l - position_ids_r
|
381 |
+
|
382 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
383 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
384 |
+
|
385 |
+
if self.position_embedding_type == "relative_key":
|
386 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
387 |
+
attention_scores = attention_scores + relative_position_scores
|
388 |
+
elif self.position_embedding_type == "relative_key_query":
|
389 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
390 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
391 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
392 |
+
|
393 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
394 |
+
if attention_mask is not None:
|
395 |
+
# Apply the attention mask is (precomputed for all layers in AltRobertaModel forward() function)
|
396 |
+
attention_scores = attention_scores + attention_mask
|
397 |
+
|
398 |
+
# Normalize the attention scores to probabilities.
|
399 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
400 |
+
|
401 |
+
# This is actually dropping out entire tokens to attend to, which might
|
402 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
403 |
+
attention_probs = self.dropout(attention_probs)
|
404 |
+
|
405 |
+
# Mask heads if we want to
|
406 |
+
if head_mask is not None:
|
407 |
+
attention_probs = attention_probs * head_mask
|
408 |
+
|
409 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
410 |
+
|
411 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
412 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
413 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
414 |
+
|
415 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
416 |
+
|
417 |
+
if self.is_decoder:
|
418 |
+
outputs = outputs + (past_key_value,)
|
419 |
+
return outputs
|
420 |
+
|
421 |
+
|
422 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput
|
423 |
+
class AltRobertaSelfOutput(nn.Module):
|
424 |
+
def __init__(self, config):
|
425 |
+
super().__init__()
|
426 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
427 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
428 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
429 |
+
|
430 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
431 |
+
hidden_states = self.dense(hidden_states)
|
432 |
+
hidden_states = self.dropout(hidden_states)
|
433 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
434 |
+
return hidden_states
|
435 |
+
|
436 |
+
|
437 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->AltRoberta
|
438 |
+
class AltRobertaAttention(nn.Module):
|
439 |
+
def __init__(self, config, position_embedding_type=None):
|
440 |
+
super().__init__()
|
441 |
+
self.self = AltRobertaSelfAttention(config, position_embedding_type=position_embedding_type)
|
442 |
+
self.output = AltRobertaSelfOutput(config)
|
443 |
+
self.pruned_heads = set()
|
444 |
+
|
445 |
+
def prune_heads(self, heads):
|
446 |
+
if len(heads) == 0:
|
447 |
+
return
|
448 |
+
heads, index = find_pruneable_heads_and_indices(
|
449 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
450 |
+
)
|
451 |
+
|
452 |
+
# Prune linear layers
|
453 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
454 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
455 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
456 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
457 |
+
|
458 |
+
# Update hyper params and store pruned heads
|
459 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
460 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
461 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
462 |
+
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
hidden_states: torch.Tensor,
|
466 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
467 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
468 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
469 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
470 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
471 |
+
output_attentions: Optional[bool] = False,
|
472 |
+
) -> Tuple[torch.Tensor]:
|
473 |
+
self_outputs = self.self(
|
474 |
+
hidden_states,
|
475 |
+
attention_mask,
|
476 |
+
head_mask,
|
477 |
+
encoder_hidden_states,
|
478 |
+
encoder_attention_mask,
|
479 |
+
past_key_value,
|
480 |
+
output_attentions,
|
481 |
+
)
|
482 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
483 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
484 |
+
return outputs
|
485 |
+
|
486 |
+
|
487 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->AltRoberta
|
488 |
+
class AltRobertaIntermediate(nn.Module):
|
489 |
+
def __init__(self, config):
|
490 |
+
super().__init__()
|
491 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
492 |
+
if isinstance(config.hidden_act, str):
|
493 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
494 |
+
else:
|
495 |
+
self.intermediate_act_fn = config.hidden_act
|
496 |
+
|
497 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
498 |
+
hidden_states = self.dense(hidden_states)
|
499 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
500 |
+
return hidden_states
|
501 |
+
|
502 |
+
|
503 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput
|
504 |
+
class AltRobertaOutput(nn.Module):
|
505 |
+
def __init__(self, config):
|
506 |
+
super().__init__()
|
507 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
508 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
509 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
510 |
+
|
511 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
512 |
+
hidden_states = self.dense(hidden_states)
|
513 |
+
hidden_states = self.dropout(hidden_states)
|
514 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
515 |
+
return hidden_states
|
516 |
+
|
517 |
+
|
518 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->AltRoberta
|
519 |
+
class AltRobertaLayer(nn.Module):
|
520 |
+
def __init__(self, config):
|
521 |
+
super().__init__()
|
522 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
523 |
+
self.seq_len_dim = 1
|
524 |
+
self.attention = AltRobertaAttention(config)
|
525 |
+
self.is_decoder = config.is_decoder
|
526 |
+
self.add_cross_attention = config.add_cross_attention
|
527 |
+
if self.add_cross_attention:
|
528 |
+
if not self.is_decoder:
|
529 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
530 |
+
self.crossattention = AltRobertaAttention(config, position_embedding_type="absolute")
|
531 |
+
self.intermediate = AltRobertaIntermediate(config)
|
532 |
+
self.output = AltRobertaOutput(config)
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states: torch.Tensor,
|
537 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
538 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
539 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
540 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
541 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
542 |
+
output_attentions: Optional[bool] = False,
|
543 |
+
) -> Tuple[torch.Tensor]:
|
544 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
545 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
546 |
+
self_attention_outputs = self.attention(
|
547 |
+
hidden_states,
|
548 |
+
attention_mask,
|
549 |
+
head_mask,
|
550 |
+
output_attentions=output_attentions,
|
551 |
+
past_key_value=self_attn_past_key_value,
|
552 |
+
)
|
553 |
+
attention_output = self_attention_outputs[0]
|
554 |
+
|
555 |
+
# if decoder, the last output is tuple of self-attn cache
|
556 |
+
if self.is_decoder:
|
557 |
+
outputs = self_attention_outputs[1:-1]
|
558 |
+
present_key_value = self_attention_outputs[-1]
|
559 |
+
else:
|
560 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
561 |
+
|
562 |
+
cross_attn_present_key_value = None
|
563 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
564 |
+
if not hasattr(self, "crossattention"):
|
565 |
+
raise ValueError(
|
566 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
567 |
+
" by setting `config.add_cross_attention=True`"
|
568 |
+
)
|
569 |
+
|
570 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
571 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
572 |
+
cross_attention_outputs = self.crossattention(
|
573 |
+
attention_output,
|
574 |
+
attention_mask,
|
575 |
+
head_mask,
|
576 |
+
encoder_hidden_states,
|
577 |
+
encoder_attention_mask,
|
578 |
+
cross_attn_past_key_value,
|
579 |
+
output_attentions,
|
580 |
+
)
|
581 |
+
attention_output = cross_attention_outputs[0]
|
582 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
583 |
+
|
584 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
585 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
586 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
587 |
+
|
588 |
+
layer_output = apply_chunking_to_forward(
|
589 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
590 |
+
)
|
591 |
+
outputs = (layer_output,) + outputs
|
592 |
+
|
593 |
+
# if decoder, return the attn key/values as the last output
|
594 |
+
if self.is_decoder:
|
595 |
+
outputs = outputs + (present_key_value,)
|
596 |
+
|
597 |
+
return outputs
|
598 |
+
|
599 |
+
def feed_forward_chunk(self, attention_output):
|
600 |
+
intermediate_output = self.intermediate(attention_output)
|
601 |
+
layer_output = self.output(intermediate_output, attention_output)
|
602 |
+
return layer_output
|
603 |
+
|
604 |
+
|
605 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->AltRoberta
|
606 |
+
class AltRobertaEncoder(nn.Module):
|
607 |
+
def __init__(self, config):
|
608 |
+
super().__init__()
|
609 |
+
self.config = config
|
610 |
+
self.layer = nn.ModuleList([AltRobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
611 |
+
self.gradient_checkpointing = False
|
612 |
+
|
613 |
+
def forward(
|
614 |
+
self,
|
615 |
+
hidden_states: torch.Tensor,
|
616 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
617 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
618 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
619 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
620 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
621 |
+
use_cache: Optional[bool] = None,
|
622 |
+
output_attentions: Optional[bool] = False,
|
623 |
+
output_hidden_states: Optional[bool] = False,
|
624 |
+
return_dict: Optional[bool] = True,
|
625 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
626 |
+
all_hidden_states = () if output_hidden_states else None
|
627 |
+
all_self_attentions = () if output_attentions else None
|
628 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
629 |
+
|
630 |
+
if self.gradient_checkpointing and self.training:
|
631 |
+
if use_cache:
|
632 |
+
logger.warning_once(
|
633 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
634 |
+
)
|
635 |
+
use_cache = False
|
636 |
+
|
637 |
+
next_decoder_cache = () if use_cache else None
|
638 |
+
for i, layer_module in enumerate(self.layer):
|
639 |
+
if output_hidden_states:
|
640 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
641 |
+
|
642 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
643 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
644 |
+
|
645 |
+
if self.gradient_checkpointing and self.training:
|
646 |
+
layer_outputs = self._gradient_checkpointing_func(
|
647 |
+
layer_module.__call__,
|
648 |
+
hidden_states,
|
649 |
+
attention_mask,
|
650 |
+
layer_head_mask,
|
651 |
+
encoder_hidden_states,
|
652 |
+
encoder_attention_mask,
|
653 |
+
past_key_value,
|
654 |
+
output_attentions,
|
655 |
+
)
|
656 |
+
else:
|
657 |
+
layer_outputs = layer_module(
|
658 |
+
hidden_states,
|
659 |
+
attention_mask,
|
660 |
+
layer_head_mask,
|
661 |
+
encoder_hidden_states,
|
662 |
+
encoder_attention_mask,
|
663 |
+
past_key_value,
|
664 |
+
output_attentions,
|
665 |
+
)
|
666 |
+
|
667 |
+
hidden_states = layer_outputs[0]
|
668 |
+
if use_cache:
|
669 |
+
next_decoder_cache += (layer_outputs[-1],)
|
670 |
+
if output_attentions:
|
671 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
672 |
+
if self.config.add_cross_attention:
|
673 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
674 |
+
|
675 |
+
if output_hidden_states:
|
676 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
677 |
+
|
678 |
+
if not return_dict:
|
679 |
+
return tuple(
|
680 |
+
v
|
681 |
+
for v in [
|
682 |
+
hidden_states,
|
683 |
+
next_decoder_cache,
|
684 |
+
all_hidden_states,
|
685 |
+
all_self_attentions,
|
686 |
+
all_cross_attentions,
|
687 |
+
]
|
688 |
+
if v is not None
|
689 |
+
)
|
690 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
691 |
+
last_hidden_state=hidden_states,
|
692 |
+
past_key_values=next_decoder_cache,
|
693 |
+
hidden_states=all_hidden_states,
|
694 |
+
attentions=all_self_attentions,
|
695 |
+
cross_attentions=all_cross_attentions,
|
696 |
+
)
|
697 |
+
|
698 |
+
|
699 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
|
700 |
+
class AltRobertaPooler(nn.Module):
|
701 |
+
def __init__(self, config):
|
702 |
+
super().__init__()
|
703 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
704 |
+
self.activation = nn.Tanh()
|
705 |
+
|
706 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
707 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
708 |
+
# to the first token.
|
709 |
+
first_token_tensor = hidden_states[:, 0]
|
710 |
+
pooled_output = self.dense(first_token_tensor)
|
711 |
+
pooled_output = self.activation(pooled_output)
|
712 |
+
return pooled_output
|
713 |
+
|
714 |
+
|
715 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->AltCLIP
|
716 |
+
class AltCLIPAttention(nn.Module):
|
717 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
718 |
+
|
719 |
+
def __init__(self, config):
|
720 |
+
super().__init__()
|
721 |
+
self.config = config
|
722 |
+
self.embed_dim = config.hidden_size
|
723 |
+
self.num_heads = config.num_attention_heads
|
724 |
+
self.head_dim = self.embed_dim // self.num_heads
|
725 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
726 |
+
raise ValueError(
|
727 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
728 |
+
f" {self.num_heads})."
|
729 |
+
)
|
730 |
+
self.scale = self.head_dim**-0.5
|
731 |
+
self.dropout = config.attention_dropout
|
732 |
+
|
733 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
734 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
735 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
736 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
737 |
+
|
738 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
739 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
740 |
+
|
741 |
+
def forward(
|
742 |
+
self,
|
743 |
+
hidden_states: torch.Tensor,
|
744 |
+
attention_mask: Optional[torch.Tensor] = None,
|
745 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
746 |
+
output_attentions: Optional[bool] = False,
|
747 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
748 |
+
"""Input shape: Batch x Time x Channel"""
|
749 |
+
|
750 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
751 |
+
|
752 |
+
# get query proj
|
753 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
754 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
755 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
756 |
+
|
757 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
758 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
759 |
+
key_states = key_states.view(*proj_shape)
|
760 |
+
value_states = value_states.view(*proj_shape)
|
761 |
+
|
762 |
+
src_len = key_states.size(1)
|
763 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
764 |
+
|
765 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
766 |
+
raise ValueError(
|
767 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
768 |
+
f" {attn_weights.size()}"
|
769 |
+
)
|
770 |
+
|
771 |
+
# apply the causal_attention_mask first
|
772 |
+
if causal_attention_mask is not None:
|
773 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
774 |
+
raise ValueError(
|
775 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
776 |
+
f" {causal_attention_mask.size()}"
|
777 |
+
)
|
778 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
779 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
780 |
+
|
781 |
+
if attention_mask is not None:
|
782 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
783 |
+
raise ValueError(
|
784 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
785 |
+
)
|
786 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
787 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
788 |
+
|
789 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
790 |
+
|
791 |
+
if output_attentions:
|
792 |
+
# this operation is a bit akward, but it's required to
|
793 |
+
# make sure that attn_weights keeps its gradient.
|
794 |
+
# In order to do so, attn_weights have to reshaped
|
795 |
+
# twice and have to be reused in the following
|
796 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
797 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
798 |
+
else:
|
799 |
+
attn_weights_reshaped = None
|
800 |
+
|
801 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
802 |
+
|
803 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
804 |
+
|
805 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
806 |
+
raise ValueError(
|
807 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
808 |
+
f" {attn_output.size()}"
|
809 |
+
)
|
810 |
+
|
811 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
812 |
+
attn_output = attn_output.transpose(1, 2)
|
813 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
814 |
+
|
815 |
+
attn_output = self.out_proj(attn_output)
|
816 |
+
|
817 |
+
return attn_output, attn_weights_reshaped
|
818 |
+
|
819 |
+
|
820 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->AltCLIP
|
821 |
+
class AltCLIPMLP(nn.Module):
|
822 |
+
def __init__(self, config):
|
823 |
+
super().__init__()
|
824 |
+
self.config = config
|
825 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
826 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
827 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
828 |
+
|
829 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
830 |
+
hidden_states = self.fc1(hidden_states)
|
831 |
+
hidden_states = self.activation_fn(hidden_states)
|
832 |
+
hidden_states = self.fc2(hidden_states)
|
833 |
+
return hidden_states
|
834 |
+
|
835 |
+
|
836 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->AltCLIP
|
837 |
+
class AltCLIPEncoderLayer(nn.Module):
|
838 |
+
def __init__(self, config: AltCLIPConfig):
|
839 |
+
super().__init__()
|
840 |
+
self.embed_dim = config.hidden_size
|
841 |
+
self.self_attn = AltCLIPAttention(config)
|
842 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
843 |
+
self.mlp = AltCLIPMLP(config)
|
844 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
845 |
+
|
846 |
+
def forward(
|
847 |
+
self,
|
848 |
+
hidden_states: torch.Tensor,
|
849 |
+
attention_mask: torch.Tensor,
|
850 |
+
causal_attention_mask: torch.Tensor,
|
851 |
+
output_attentions: Optional[bool] = False,
|
852 |
+
) -> Tuple[torch.FloatTensor]:
|
853 |
+
"""
|
854 |
+
Args:
|
855 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
856 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
857 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
858 |
+
`(config.encoder_attention_heads,)`.
|
859 |
+
output_attentions (`bool`, *optional*):
|
860 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
861 |
+
returned tensors for more detail.
|
862 |
+
"""
|
863 |
+
residual = hidden_states
|
864 |
+
|
865 |
+
hidden_states = self.layer_norm1(hidden_states)
|
866 |
+
hidden_states, attn_weights = self.self_attn(
|
867 |
+
hidden_states=hidden_states,
|
868 |
+
attention_mask=attention_mask,
|
869 |
+
causal_attention_mask=causal_attention_mask,
|
870 |
+
output_attentions=output_attentions,
|
871 |
+
)
|
872 |
+
hidden_states = residual + hidden_states
|
873 |
+
|
874 |
+
residual = hidden_states
|
875 |
+
hidden_states = self.layer_norm2(hidden_states)
|
876 |
+
hidden_states = self.mlp(hidden_states)
|
877 |
+
hidden_states = residual + hidden_states
|
878 |
+
|
879 |
+
outputs = (hidden_states,)
|
880 |
+
|
881 |
+
if output_attentions:
|
882 |
+
outputs += (attn_weights,)
|
883 |
+
|
884 |
+
return outputs
|
885 |
+
|
886 |
+
|
887 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->AltCLIP
|
888 |
+
class AltCLIPEncoder(nn.Module):
|
889 |
+
"""
|
890 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
891 |
+
[`AltCLIPEncoderLayer`].
|
892 |
+
|
893 |
+
Args:
|
894 |
+
config: AltCLIPConfig
|
895 |
+
"""
|
896 |
+
|
897 |
+
def __init__(self, config: AltCLIPConfig):
|
898 |
+
super().__init__()
|
899 |
+
self.config = config
|
900 |
+
self.layers = nn.ModuleList([AltCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
901 |
+
self.gradient_checkpointing = False
|
902 |
+
|
903 |
+
def forward(
|
904 |
+
self,
|
905 |
+
inputs_embeds,
|
906 |
+
attention_mask: Optional[torch.Tensor] = None,
|
907 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
908 |
+
output_attentions: Optional[bool] = None,
|
909 |
+
output_hidden_states: Optional[bool] = None,
|
910 |
+
return_dict: Optional[bool] = None,
|
911 |
+
) -> Union[Tuple, BaseModelOutput]:
|
912 |
+
r"""
|
913 |
+
Args:
|
914 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
915 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
916 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
917 |
+
than the model's internal embedding lookup matrix.
|
918 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
919 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
920 |
+
|
921 |
+
- 1 for tokens that are **not masked**,
|
922 |
+
- 0 for tokens that are **masked**.
|
923 |
+
|
924 |
+
[What are attention masks?](../glossary#attention-mask)
|
925 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
926 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
927 |
+
|
928 |
+
- 1 for tokens that are **not masked**,
|
929 |
+
- 0 for tokens that are **masked**.
|
930 |
+
|
931 |
+
[What are attention masks?](../glossary#attention-mask)
|
932 |
+
output_attentions (`bool`, *optional*):
|
933 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
934 |
+
returned tensors for more detail.
|
935 |
+
output_hidden_states (`bool`, *optional*):
|
936 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
937 |
+
for more detail.
|
938 |
+
return_dict (`bool`, *optional*):
|
939 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
940 |
+
"""
|
941 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
942 |
+
output_hidden_states = (
|
943 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
944 |
+
)
|
945 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
946 |
+
|
947 |
+
encoder_states = () if output_hidden_states else None
|
948 |
+
all_attentions = () if output_attentions else None
|
949 |
+
|
950 |
+
hidden_states = inputs_embeds
|
951 |
+
for idx, encoder_layer in enumerate(self.layers):
|
952 |
+
if output_hidden_states:
|
953 |
+
encoder_states = encoder_states + (hidden_states,)
|
954 |
+
if self.gradient_checkpointing and self.training:
|
955 |
+
layer_outputs = self._gradient_checkpointing_func(
|
956 |
+
encoder_layer.__call__,
|
957 |
+
hidden_states,
|
958 |
+
attention_mask,
|
959 |
+
causal_attention_mask,
|
960 |
+
output_attentions,
|
961 |
+
)
|
962 |
+
else:
|
963 |
+
layer_outputs = encoder_layer(
|
964 |
+
hidden_states,
|
965 |
+
attention_mask,
|
966 |
+
causal_attention_mask,
|
967 |
+
output_attentions=output_attentions,
|
968 |
+
)
|
969 |
+
|
970 |
+
hidden_states = layer_outputs[0]
|
971 |
+
|
972 |
+
if output_attentions:
|
973 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
974 |
+
|
975 |
+
if output_hidden_states:
|
976 |
+
encoder_states = encoder_states + (hidden_states,)
|
977 |
+
|
978 |
+
if not return_dict:
|
979 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
980 |
+
return BaseModelOutput(
|
981 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
982 |
+
)
|
983 |
+
|
984 |
+
|
985 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->AltCLIP
|
986 |
+
class AltCLIPVisionEmbeddings(nn.Module):
|
987 |
+
def __init__(self, config: AltCLIPVisionConfig):
|
988 |
+
super().__init__()
|
989 |
+
self.config = config
|
990 |
+
self.embed_dim = config.hidden_size
|
991 |
+
self.image_size = config.image_size
|
992 |
+
self.patch_size = config.patch_size
|
993 |
+
|
994 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
995 |
+
|
996 |
+
self.patch_embedding = nn.Conv2d(
|
997 |
+
in_channels=config.num_channels,
|
998 |
+
out_channels=self.embed_dim,
|
999 |
+
kernel_size=self.patch_size,
|
1000 |
+
stride=self.patch_size,
|
1001 |
+
bias=False,
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
1005 |
+
self.num_positions = self.num_patches + 1
|
1006 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
1007 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
1008 |
+
|
1009 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
1010 |
+
batch_size = pixel_values.shape[0]
|
1011 |
+
target_dtype = self.patch_embedding.weight.dtype
|
1012 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
1013 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
1014 |
+
|
1015 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
1016 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
1017 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
1018 |
+
return embeddings
|
1019 |
+
|
1020 |
+
|
1021 |
+
class AltCLIPPreTrainedModel(PreTrainedModel):
|
1022 |
+
"""
|
1023 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1024 |
+
models.
|
1025 |
+
"""
|
1026 |
+
|
1027 |
+
config_class = AltCLIPConfig
|
1028 |
+
base_model_prefix = "altclip"
|
1029 |
+
supports_gradient_checkpointing = True
|
1030 |
+
|
1031 |
+
def _init_weights(self, module):
|
1032 |
+
"""Initialize the weights"""
|
1033 |
+
factor = self.config.initializer_factor
|
1034 |
+
if isinstance(module, AltCLIPVisionEmbeddings):
|
1035 |
+
factor = self.config.initializer_factor
|
1036 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
1037 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
1038 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
1039 |
+
elif isinstance(module, AltCLIPAttention):
|
1040 |
+
factor = self.config.initializer_factor
|
1041 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
1042 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
1043 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
1044 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
1045 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
1046 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
1047 |
+
elif isinstance(module, AltCLIPMLP):
|
1048 |
+
factor = self.config.initializer_factor
|
1049 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
1050 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
1051 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
1052 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
1053 |
+
elif isinstance(module, AltCLIPModel):
|
1054 |
+
nn.init.normal_(
|
1055 |
+
module.text_projection.weight,
|
1056 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
1057 |
+
)
|
1058 |
+
module.text_projection._is_hf_initialized = True
|
1059 |
+
nn.init.normal_(
|
1060 |
+
module.visual_projection.weight,
|
1061 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
1062 |
+
)
|
1063 |
+
module.visual_projection._is_hf_initialized = True
|
1064 |
+
elif isinstance(module, nn.LayerNorm):
|
1065 |
+
module.bias.data.zero_()
|
1066 |
+
module.weight.data.fill_(1.0)
|
1067 |
+
elif isinstance(module, nn.Linear):
|
1068 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
|
1069 |
+
if module.bias is not None:
|
1070 |
+
module.bias.data.zero_()
|
1071 |
+
elif isinstance(module, nn.Embedding):
|
1072 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
|
1073 |
+
if module.padding_idx is not None:
|
1074 |
+
module.weight.data[module.padding_idx].zero_()
|
1075 |
+
|
1076 |
+
|
1077 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer with CLIPVisionTransformer->AltCLIPVisionTransformer,CLIPVisionConfig->AltCLIPVisionConfig,CLIPVisionEmbeddings->AltCLIPVisionEmbeddings,CLIPEncoder->AltCLIPEncoder,CLIP_VISION_INPUTS_DOCSTRING->ALTCLIP_VISION_INPUTS_DOCSTRING
|
1078 |
+
class AltCLIPVisionTransformer(nn.Module):
|
1079 |
+
def __init__(self, config: AltCLIPVisionConfig):
|
1080 |
+
super().__init__()
|
1081 |
+
self.config = config
|
1082 |
+
embed_dim = config.hidden_size
|
1083 |
+
|
1084 |
+
self.embeddings = AltCLIPVisionEmbeddings(config)
|
1085 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1086 |
+
self.encoder = AltCLIPEncoder(config)
|
1087 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1088 |
+
|
1089 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
|
1090 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
|
1091 |
+
def forward(
|
1092 |
+
self,
|
1093 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1094 |
+
output_attentions: Optional[bool] = None,
|
1095 |
+
output_hidden_states: Optional[bool] = None,
|
1096 |
+
return_dict: Optional[bool] = None,
|
1097 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1098 |
+
r"""
|
1099 |
+
Returns:
|
1100 |
+
|
1101 |
+
"""
|
1102 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1103 |
+
output_hidden_states = (
|
1104 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1105 |
+
)
|
1106 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1107 |
+
|
1108 |
+
if pixel_values is None:
|
1109 |
+
raise ValueError("You have to specify pixel_values")
|
1110 |
+
|
1111 |
+
hidden_states = self.embeddings(pixel_values)
|
1112 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
1113 |
+
|
1114 |
+
encoder_outputs = self.encoder(
|
1115 |
+
inputs_embeds=hidden_states,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
output_hidden_states=output_hidden_states,
|
1118 |
+
return_dict=return_dict,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
last_hidden_state = encoder_outputs[0]
|
1122 |
+
pooled_output = last_hidden_state[:, 0, :]
|
1123 |
+
pooled_output = self.post_layernorm(pooled_output)
|
1124 |
+
|
1125 |
+
if not return_dict:
|
1126 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1127 |
+
|
1128 |
+
return BaseModelOutputWithPooling(
|
1129 |
+
last_hidden_state=last_hidden_state,
|
1130 |
+
pooler_output=pooled_output,
|
1131 |
+
hidden_states=encoder_outputs.hidden_states,
|
1132 |
+
attentions=encoder_outputs.attentions,
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
|
1136 |
+
class AltCLIPVisionModel(AltCLIPPreTrainedModel):
|
1137 |
+
config_class = AltCLIPVisionConfig
|
1138 |
+
main_input_name = "pixel_values"
|
1139 |
+
|
1140 |
+
def __init__(self, config: AltCLIPVisionConfig):
|
1141 |
+
super().__init__(config)
|
1142 |
+
self.vision_model = AltCLIPVisionTransformer(config)
|
1143 |
+
# Initialize weights and apply final processing
|
1144 |
+
self.post_init()
|
1145 |
+
|
1146 |
+
def get_input_embeddings(self) -> nn.Module:
|
1147 |
+
return self.vision_model.embeddings.patch_embedding
|
1148 |
+
|
1149 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
|
1150 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
|
1151 |
+
def forward(
|
1152 |
+
self,
|
1153 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1154 |
+
output_attentions: Optional[bool] = None,
|
1155 |
+
output_hidden_states: Optional[bool] = None,
|
1156 |
+
return_dict: Optional[bool] = None,
|
1157 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1158 |
+
r"""
|
1159 |
+
Returns:
|
1160 |
+
|
1161 |
+
Examples:
|
1162 |
+
|
1163 |
+
```python
|
1164 |
+
>>> from PIL import Image
|
1165 |
+
>>> import requests
|
1166 |
+
>>> from transformers import AutoProcessor, AltCLIPVisionModel
|
1167 |
+
|
1168 |
+
>>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
|
1169 |
+
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
|
1170 |
+
|
1171 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1172 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1173 |
+
|
1174 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1175 |
+
|
1176 |
+
>>> outputs = model(**inputs)
|
1177 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1178 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1179 |
+
```"""
|
1180 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1181 |
+
|
1182 |
+
return self.vision_model(
|
1183 |
+
pixel_values=pixel_values,
|
1184 |
+
output_attentions=output_attentions,
|
1185 |
+
output_hidden_states=output_hidden_states,
|
1186 |
+
return_dict=return_dict,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
|
1190 |
+
class AltRobertaModel(AltCLIPPreTrainedModel):
|
1191 |
+
"""
|
1192 |
+
|
1193 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
1194 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
1195 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
1196 |
+
Kaiser and Illia Polosukhin.
|
1197 |
+
|
1198 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
1199 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
1200 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
1201 |
+
|
1202 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
1203 |
+
|
1204 |
+
"""
|
1205 |
+
|
1206 |
+
config_class = AltCLIPTextConfig
|
1207 |
+
|
1208 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->AltRoberta
|
1209 |
+
def __init__(self, config, add_pooling_layer=True):
|
1210 |
+
super().__init__(config)
|
1211 |
+
self.config = config
|
1212 |
+
|
1213 |
+
self.embeddings = AltRobertaEmbeddings(config)
|
1214 |
+
self.encoder = AltRobertaEncoder(config)
|
1215 |
+
|
1216 |
+
self.pooler = AltRobertaPooler(config) if add_pooling_layer else None
|
1217 |
+
|
1218 |
+
# Initialize weights and apply final processing
|
1219 |
+
self.post_init()
|
1220 |
+
|
1221 |
+
def get_input_embeddings(self):
|
1222 |
+
return self.embeddings.word_embeddings
|
1223 |
+
|
1224 |
+
def set_input_embeddings(self, value):
|
1225 |
+
self.embeddings.word_embeddings = value
|
1226 |
+
|
1227 |
+
def _prune_heads(self, heads_to_prune):
|
1228 |
+
"""
|
1229 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1230 |
+
class PreTrainedModel
|
1231 |
+
"""
|
1232 |
+
for layer, heads in heads_to_prune.items():
|
1233 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1234 |
+
|
1235 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
1236 |
+
def forward(
|
1237 |
+
self,
|
1238 |
+
input_ids: Optional[torch.Tensor] = None,
|
1239 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1240 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1241 |
+
position_ids: Optional[torch.Tensor] = None,
|
1242 |
+
head_mask: Optional[torch.Tensor] = None,
|
1243 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1244 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1245 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1246 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1247 |
+
use_cache: Optional[bool] = None,
|
1248 |
+
output_attentions: Optional[bool] = None,
|
1249 |
+
output_hidden_states: Optional[bool] = None,
|
1250 |
+
return_dict: Optional[bool] = None,
|
1251 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
1252 |
+
r"""
|
1253 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1254 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1255 |
+
the model is configured as a decoder.
|
1256 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1257 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1258 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1259 |
+
|
1260 |
+
- 1 for tokens that are **not masked**,
|
1261 |
+
- 0 for tokens that are **masked**.
|
1262 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1263 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1264 |
+
|
1265 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1266 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1267 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1268 |
+
use_cache (`bool`, *optional*):
|
1269 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1270 |
+
`past_key_values`).
|
1271 |
+
"""
|
1272 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1273 |
+
output_hidden_states = (
|
1274 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1275 |
+
)
|
1276 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1277 |
+
|
1278 |
+
if self.config.is_decoder:
|
1279 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1280 |
+
else:
|
1281 |
+
use_cache = False
|
1282 |
+
|
1283 |
+
if input_ids is not None and inputs_embeds is not None:
|
1284 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1285 |
+
elif input_ids is not None:
|
1286 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1287 |
+
input_shape = input_ids.size()
|
1288 |
+
elif inputs_embeds is not None:
|
1289 |
+
input_shape = inputs_embeds.size()[:-1]
|
1290 |
+
else:
|
1291 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1292 |
+
|
1293 |
+
batch_size, seq_length = input_shape
|
1294 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1295 |
+
|
1296 |
+
# past_key_values_length
|
1297 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1298 |
+
|
1299 |
+
if attention_mask is None:
|
1300 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1301 |
+
|
1302 |
+
if token_type_ids is None:
|
1303 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1304 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1305 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1306 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1307 |
+
else:
|
1308 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1309 |
+
|
1310 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1311 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1312 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1313 |
+
|
1314 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1315 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1316 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1317 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1318 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1319 |
+
if encoder_attention_mask is None:
|
1320 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1321 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1322 |
+
else:
|
1323 |
+
encoder_extended_attention_mask = None
|
1324 |
+
|
1325 |
+
# Prepare head mask if needed
|
1326 |
+
# 1.0 in head_mask indicate we keep the head
|
1327 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1328 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1329 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1330 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1331 |
+
|
1332 |
+
embedding_output = self.embeddings(
|
1333 |
+
input_ids=input_ids,
|
1334 |
+
position_ids=position_ids,
|
1335 |
+
token_type_ids=token_type_ids,
|
1336 |
+
inputs_embeds=inputs_embeds,
|
1337 |
+
past_key_values_length=past_key_values_length,
|
1338 |
+
)
|
1339 |
+
encoder_outputs = self.encoder(
|
1340 |
+
embedding_output,
|
1341 |
+
attention_mask=extended_attention_mask,
|
1342 |
+
head_mask=head_mask,
|
1343 |
+
encoder_hidden_states=encoder_hidden_states,
|
1344 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1345 |
+
past_key_values=past_key_values,
|
1346 |
+
use_cache=use_cache,
|
1347 |
+
output_attentions=output_attentions,
|
1348 |
+
output_hidden_states=output_hidden_states,
|
1349 |
+
return_dict=return_dict,
|
1350 |
+
)
|
1351 |
+
sequence_output = encoder_outputs[0]
|
1352 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1353 |
+
|
1354 |
+
if not return_dict:
|
1355 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1356 |
+
|
1357 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1358 |
+
last_hidden_state=sequence_output,
|
1359 |
+
pooler_output=pooled_output,
|
1360 |
+
past_key_values=encoder_outputs.past_key_values,
|
1361 |
+
hidden_states=encoder_outputs.hidden_states,
|
1362 |
+
attentions=encoder_outputs.attentions,
|
1363 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
|
1367 |
+
class AltCLIPTextModel(AltCLIPPreTrainedModel):
|
1368 |
+
config_class = AltCLIPTextConfig
|
1369 |
+
|
1370 |
+
def __init__(self, config):
|
1371 |
+
super().__init__(config)
|
1372 |
+
self.roberta = AltRobertaModel(config, add_pooling_layer=False)
|
1373 |
+
self.transformation = nn.Linear(config.hidden_size, config.project_dim)
|
1374 |
+
self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1375 |
+
self.post_init()
|
1376 |
+
|
1377 |
+
def get_input_embeddings(self) -> nn.Module:
|
1378 |
+
return self.roberta.embeddings.word_embeddings
|
1379 |
+
|
1380 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
1381 |
+
self.roberta.embeddings.word_embeddings = value
|
1382 |
+
|
1383 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
|
1384 |
+
return super().resize_token_embeddings(new_num_tokens)
|
1385 |
+
|
1386 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
|
1387 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndProjection, config_class=AltCLIPTextConfig)
|
1388 |
+
def forward(
|
1389 |
+
self,
|
1390 |
+
input_ids: Optional[torch.Tensor] = None,
|
1391 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1392 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1393 |
+
position_ids: Optional[torch.Tensor] = None,
|
1394 |
+
head_mask: Optional[torch.Tensor] = None,
|
1395 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1396 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1397 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1398 |
+
output_attentions: Optional[bool] = None,
|
1399 |
+
return_dict: Optional[bool] = None,
|
1400 |
+
output_hidden_states: Optional[bool] = None,
|
1401 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndProjection]:
|
1402 |
+
r"""
|
1403 |
+
Returns:
|
1404 |
+
|
1405 |
+
Examples:
|
1406 |
+
|
1407 |
+
```python
|
1408 |
+
>>> from transformers import AutoProcessor, AltCLIPTextModel
|
1409 |
+
|
1410 |
+
>>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
|
1411 |
+
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
|
1412 |
+
|
1413 |
+
>>> texts = ["it's a cat", "it's a dog"]
|
1414 |
+
|
1415 |
+
>>> inputs = processor(text=texts, padding=True, return_tensors="pt")
|
1416 |
+
|
1417 |
+
>>> outputs = model(**inputs)
|
1418 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1419 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1420 |
+
```"""
|
1421 |
+
|
1422 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1423 |
+
|
1424 |
+
outputs = self.roberta(
|
1425 |
+
input_ids=input_ids,
|
1426 |
+
attention_mask=attention_mask,
|
1427 |
+
token_type_ids=token_type_ids,
|
1428 |
+
position_ids=position_ids,
|
1429 |
+
head_mask=head_mask,
|
1430 |
+
inputs_embeds=inputs_embeds,
|
1431 |
+
encoder_hidden_states=encoder_hidden_states,
|
1432 |
+
encoder_attention_mask=encoder_attention_mask,
|
1433 |
+
output_attentions=output_attentions,
|
1434 |
+
output_hidden_states=output_hidden_states,
|
1435 |
+
return_dict=return_dict,
|
1436 |
+
)
|
1437 |
+
|
1438 |
+
# last module outputs
|
1439 |
+
sequence_output = outputs[0]
|
1440 |
+
|
1441 |
+
# project every module
|
1442 |
+
sequence_output = self.pre_LN(sequence_output)
|
1443 |
+
|
1444 |
+
# pooler
|
1445 |
+
projection_state = self.transformation(sequence_output)
|
1446 |
+
pooler_output = projection_state[:, 0]
|
1447 |
+
|
1448 |
+
if not return_dict:
|
1449 |
+
return (projection_state, pooler_output) + outputs[2:4]
|
1450 |
+
|
1451 |
+
return BaseModelOutputWithPoolingAndProjection(
|
1452 |
+
last_hidden_state=projection_state,
|
1453 |
+
pooler_output=pooler_output,
|
1454 |
+
hidden_states=outputs.hidden_states,
|
1455 |
+
attentions=outputs.attentions,
|
1456 |
+
)
|
1457 |
+
|
1458 |
+
|
1459 |
+
class AltCLIPModel(AltCLIPPreTrainedModel):
|
1460 |
+
config_class = AltCLIPConfig
|
1461 |
+
|
1462 |
+
def __init__(self, config: AltCLIPConfig):
|
1463 |
+
super().__init__(config)
|
1464 |
+
|
1465 |
+
if not isinstance(config.vision_config, AltCLIPVisionConfig):
|
1466 |
+
raise ValueError(
|
1467 |
+
"config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
|
1468 |
+
f" {type(config.vision_config)}."
|
1469 |
+
)
|
1470 |
+
if not isinstance(config.text_config, AltCLIPTextConfig):
|
1471 |
+
raise ValueError(
|
1472 |
+
"config.text_config is expected to be of type AltCLIPTextConfig but is of type"
|
1473 |
+
f" {type(config.text_config)}."
|
1474 |
+
)
|
1475 |
+
|
1476 |
+
text_config = config.text_config
|
1477 |
+
vision_config = config.vision_config
|
1478 |
+
|
1479 |
+
self.projection_dim = config.projection_dim
|
1480 |
+
self.text_embed_dim = text_config.project_dim
|
1481 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1482 |
+
|
1483 |
+
self.text_model = AltCLIPTextModel(text_config)
|
1484 |
+
self.vision_model = AltCLIPVisionTransformer(vision_config)
|
1485 |
+
|
1486 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
1487 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
1488 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
1489 |
+
|
1490 |
+
# Initialize weights and apply final processing
|
1491 |
+
self.post_init()
|
1492 |
+
|
1493 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
|
1494 |
+
def get_text_features(
|
1495 |
+
self,
|
1496 |
+
input_ids: Optional[torch.Tensor] = None,
|
1497 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1498 |
+
position_ids: Optional[torch.Tensor] = None,
|
1499 |
+
token_type_ids=None,
|
1500 |
+
output_attentions: Optional[bool] = None,
|
1501 |
+
output_hidden_states: Optional[bool] = None,
|
1502 |
+
return_dict: Optional[bool] = None,
|
1503 |
+
) -> torch.FloatTensor:
|
1504 |
+
r"""
|
1505 |
+
Returns:
|
1506 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1507 |
+
applying the projection layer to the pooled output of [`AltCLIPTextModel`].
|
1508 |
+
|
1509 |
+
Examples:
|
1510 |
+
|
1511 |
+
```python
|
1512 |
+
>>> from transformers import AutoProcessor, AltCLIPModel
|
1513 |
+
|
1514 |
+
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
|
1515 |
+
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
|
1516 |
+
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1517 |
+
>>> text_features = model.get_text_features(**inputs)
|
1518 |
+
```"""
|
1519 |
+
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1520 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1521 |
+
output_hidden_states = (
|
1522 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1523 |
+
)
|
1524 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1525 |
+
|
1526 |
+
text_outputs = self.text_model(
|
1527 |
+
input_ids=input_ids,
|
1528 |
+
attention_mask=attention_mask,
|
1529 |
+
position_ids=position_ids,
|
1530 |
+
token_type_ids=token_type_ids,
|
1531 |
+
output_attentions=output_attentions,
|
1532 |
+
output_hidden_states=output_hidden_states,
|
1533 |
+
return_dict=return_dict,
|
1534 |
+
)
|
1535 |
+
pooled_output = text_outputs[1]
|
1536 |
+
text_features = self.text_projection(pooled_output)
|
1537 |
+
|
1538 |
+
return text_features
|
1539 |
+
|
1540 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
|
1541 |
+
def get_image_features(
|
1542 |
+
self,
|
1543 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1544 |
+
output_attentions: Optional[bool] = None,
|
1545 |
+
output_hidden_states: Optional[bool] = None,
|
1546 |
+
return_dict: Optional[bool] = None,
|
1547 |
+
) -> torch.FloatTensor:
|
1548 |
+
r"""
|
1549 |
+
Returns:
|
1550 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1551 |
+
applying the projection layer to the pooled output of [`AltCLIPVisionModel`].
|
1552 |
+
|
1553 |
+
Examples:
|
1554 |
+
|
1555 |
+
```python
|
1556 |
+
>>> from PIL import Image
|
1557 |
+
>>> import requests
|
1558 |
+
>>> from transformers import AutoProcessor, AltCLIPModel
|
1559 |
+
|
1560 |
+
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
|
1561 |
+
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
|
1562 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1563 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1564 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1565 |
+
>>> image_features = model.get_image_features(**inputs)
|
1566 |
+
```"""
|
1567 |
+
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1568 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1569 |
+
output_hidden_states = (
|
1570 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1571 |
+
)
|
1572 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1573 |
+
|
1574 |
+
vision_outputs = self.vision_model(
|
1575 |
+
pixel_values=pixel_values,
|
1576 |
+
output_attentions=output_attentions,
|
1577 |
+
output_hidden_states=output_hidden_states,
|
1578 |
+
return_dict=return_dict,
|
1579 |
+
)
|
1580 |
+
|
1581 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1582 |
+
image_features = self.visual_projection(pooled_output)
|
1583 |
+
|
1584 |
+
return image_features
|
1585 |
+
|
1586 |
+
@add_start_docstrings_to_model_forward(ALTCLIP_INPUTS_DOCSTRING)
|
1587 |
+
@replace_return_docstrings(output_type=AltCLIPOutput, config_class=AltCLIPConfig)
|
1588 |
+
def forward(
|
1589 |
+
self,
|
1590 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1591 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1592 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1594 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1595 |
+
return_loss: Optional[bool] = None,
|
1596 |
+
output_attentions: Optional[bool] = None,
|
1597 |
+
output_hidden_states: Optional[bool] = None,
|
1598 |
+
return_dict: Optional[bool] = None,
|
1599 |
+
) -> Union[Tuple, AltCLIPOutput]:
|
1600 |
+
r"""
|
1601 |
+
Returns:
|
1602 |
+
|
1603 |
+
Examples:
|
1604 |
+
|
1605 |
+
```python
|
1606 |
+
>>> from PIL import Image
|
1607 |
+
>>> import requests
|
1608 |
+
>>> from transformers import AutoProcessor, AltCLIPModel
|
1609 |
+
|
1610 |
+
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
|
1611 |
+
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
|
1612 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1613 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1614 |
+
>>> inputs = processor(
|
1615 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1616 |
+
... )
|
1617 |
+
>>> outputs = model(**inputs)
|
1618 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1619 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1620 |
+
```"""
|
1621 |
+
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1622 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1623 |
+
output_hidden_states = (
|
1624 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1625 |
+
)
|
1626 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1627 |
+
|
1628 |
+
text_outputs = self.text_model(
|
1629 |
+
input_ids=input_ids,
|
1630 |
+
attention_mask=attention_mask,
|
1631 |
+
token_type_ids=token_type_ids,
|
1632 |
+
position_ids=position_ids,
|
1633 |
+
output_attentions=output_attentions,
|
1634 |
+
output_hidden_states=output_hidden_states,
|
1635 |
+
return_dict=return_dict,
|
1636 |
+
)
|
1637 |
+
|
1638 |
+
vision_outputs = self.vision_model(
|
1639 |
+
pixel_values=pixel_values,
|
1640 |
+
output_attentions=output_attentions,
|
1641 |
+
output_hidden_states=output_hidden_states,
|
1642 |
+
return_dict=return_dict,
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
image_embeds = vision_outputs[1]
|
1646 |
+
image_embeds = self.visual_projection(image_embeds)
|
1647 |
+
|
1648 |
+
text_embeds = text_outputs[1]
|
1649 |
+
text_embeds = self.text_projection(text_embeds)
|
1650 |
+
|
1651 |
+
# normalized features
|
1652 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1653 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1654 |
+
|
1655 |
+
# cosine similarity as logits
|
1656 |
+
logit_scale = self.logit_scale.exp()
|
1657 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1658 |
+
logits_per_image = logits_per_text.T
|
1659 |
+
|
1660 |
+
loss = None
|
1661 |
+
if return_loss:
|
1662 |
+
loss = clip_loss(logits_per_text)
|
1663 |
+
|
1664 |
+
if not return_dict:
|
1665 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1666 |
+
return ((loss,) + output) if loss is not None else output
|
1667 |
+
|
1668 |
+
return AltCLIPOutput(
|
1669 |
+
loss=loss,
|
1670 |
+
logits_per_image=logits_per_image,
|
1671 |
+
logits_per_text=logits_per_text,
|
1672 |
+
text_embeds=text_embeds,
|
1673 |
+
image_embeds=image_embeds,
|
1674 |
+
text_model_output=text_outputs,
|
1675 |
+
vision_model_output=vision_outputs,
|
1676 |
+
)
|
1677 |
+
|
1678 |
+
|
1679 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
1680 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1681 |
+
"""
|
1682 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1683 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1684 |
+
|
1685 |
+
Args:
|
1686 |
+
x: torch.Tensor x:
|
1687 |
+
|
1688 |
+
Returns: torch.Tensor
|
1689 |
+
"""
|
1690 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1691 |
+
mask = input_ids.ne(padding_idx).int()
|
1692 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1693 |
+
return incremental_indices.long() + padding_idx
|
venv/lib/python3.10/site-packages/transformers/models/altclip/processing_altclip.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for AltCLIP
|
17 |
+
"""
|
18 |
+
import warnings
|
19 |
+
|
20 |
+
from ...processing_utils import ProcessorMixin
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
|
23 |
+
|
24 |
+
class AltCLIPProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
|
27 |
+
processor.
|
28 |
+
|
29 |
+
[`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
|
30 |
+
the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
34 |
+
The image processor is a required input.
|
35 |
+
tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
|
36 |
+
The tokenizer is a required input.
|
37 |
+
"""
|
38 |
+
|
39 |
+
attributes = ["image_processor", "tokenizer"]
|
40 |
+
image_processor_class = "CLIPImageProcessor"
|
41 |
+
tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
|
42 |
+
|
43 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
44 |
+
feature_extractor = None
|
45 |
+
if "feature_extractor" in kwargs:
|
46 |
+
warnings.warn(
|
47 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
48 |
+
" instead.",
|
49 |
+
FutureWarning,
|
50 |
+
)
|
51 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
52 |
+
|
53 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
54 |
+
if image_processor is None:
|
55 |
+
raise ValueError("You need to specify an `image_processor`.")
|
56 |
+
if tokenizer is None:
|
57 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
58 |
+
|
59 |
+
super().__init__(image_processor, tokenizer)
|
60 |
+
|
61 |
+
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
62 |
+
"""
|
63 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
64 |
+
and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
|
65 |
+
`None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
66 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
67 |
+
of the above two methods for more information.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
71 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
72 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
73 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
74 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
75 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
76 |
+
tensor. Both channels-first and channels-last formats are supported.
|
77 |
+
|
78 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
79 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
80 |
+
|
81 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
82 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
83 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
84 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
88 |
+
|
89 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
90 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
91 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
92 |
+
`None`).
|
93 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
94 |
+
"""
|
95 |
+
|
96 |
+
if text is None and images is None:
|
97 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
98 |
+
|
99 |
+
if text is not None:
|
100 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
101 |
+
|
102 |
+
if images is not None:
|
103 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
104 |
+
|
105 |
+
if text is not None and images is not None:
|
106 |
+
encoding["pixel_values"] = image_features.pixel_values
|
107 |
+
return encoding
|
108 |
+
elif text is not None:
|
109 |
+
return encoding
|
110 |
+
else:
|
111 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
112 |
+
|
113 |
+
def batch_decode(self, *args, **kwargs):
|
114 |
+
"""
|
115 |
+
This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
|
116 |
+
Please refer to the docstring of this method for more information.
|
117 |
+
"""
|
118 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
119 |
+
|
120 |
+
def decode(self, *args, **kwargs):
|
121 |
+
"""
|
122 |
+
This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
|
123 |
+
refer to the docstring of this method for more information.
|
124 |
+
"""
|
125 |
+
return self.tokenizer.decode(*args, **kwargs)
|
126 |
+
|
127 |
+
@property
|
128 |
+
def model_input_names(self):
|
129 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
130 |
+
image_processor_input_names = self.image_processor.model_input_names
|
131 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
venv/lib/python3.10/site-packages/transformers/models/cpm/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_sentencepiece_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_cpm"] = ["CpmTokenizer"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_tokenizers_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["tokenization_cpm_fast"] = ["CpmTokenizerFast"]
|
37 |
+
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
try:
|
41 |
+
if not is_sentencepiece_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .tokenization_cpm import CpmTokenizer
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_tokenizers_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .tokenization_cpm_fast import CpmTokenizerFast
|
55 |
+
|
56 |
+
else:
|
57 |
+
import sys
|
58 |
+
|
59 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (902 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cpm/__pycache__/tokenization_cpm_fast.cpython-310.pyc
ADDED
Binary file (9.33 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes."""
|
16 |
+
import os
|
17 |
+
import unicodedata
|
18 |
+
from shutil import copyfile
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple
|
20 |
+
|
21 |
+
import sentencepiece as spm
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
24 |
+
from ...utils import SPIECE_UNDERLINE, logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
30 |
+
|
31 |
+
|
32 |
+
class CpmTokenizer(PreTrainedTokenizer):
|
33 |
+
"""Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models."""
|
34 |
+
|
35 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
do_lower_case=False,
|
41 |
+
remove_space=True,
|
42 |
+
keep_accents=False,
|
43 |
+
bos_token="<s>",
|
44 |
+
eos_token="</s>",
|
45 |
+
unk_token="<unk>",
|
46 |
+
sep_token="<sep>",
|
47 |
+
pad_token="<pad>",
|
48 |
+
cls_token="<cls>",
|
49 |
+
mask_token="<mask>",
|
50 |
+
additional_special_tokens=["<eop>", "<eod>"],
|
51 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
52 |
+
**kwargs,
|
53 |
+
) -> None:
|
54 |
+
"""
|
55 |
+
Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and
|
56 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
57 |
+
|
58 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should
|
59 |
+
refer to this superclass for more information regarding those methods.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_file (`str`):
|
63 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
|
64 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
65 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether to lowercase the input when tokenizing.
|
67 |
+
remove_space (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
|
69 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to keep accents when tokenizing.
|
71 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
72 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier
|
73 |
+
token.
|
74 |
+
|
75 |
+
<Tip>
|
76 |
+
|
77 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
78 |
+
sequence. The token used is the `cls_token`.
|
79 |
+
|
80 |
+
</Tip>
|
81 |
+
|
82 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
83 |
+
The end of sequence token.
|
84 |
+
|
85 |
+
<Tip>
|
86 |
+
|
87 |
+
When building a sequence using special tokens, this is not the token that is used for the end of
|
88 |
+
sequence. The token used is the `sep_token`.
|
89 |
+
|
90 |
+
</Tip>
|
91 |
+
|
92 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
93 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be
|
94 |
+
this token instead.
|
95 |
+
sep_token (`str`, *optional*, defaults to `"<sep>"`):
|
96 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
97 |
+
for sequence classification or for a text and a question for question answering. It is also used as the
|
98 |
+
last token of a sequence built with special tokens.
|
99 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
100 |
+
The token used for padding, for example when batching sequences of different lengths.
|
101 |
+
cls_token (`str`, *optional*, defaults to `"<cls>"`):
|
102 |
+
The classifier token which is used when doing sequence classification (classification of the whole
|
103 |
+
sequence instead of per-token classification). It is the first token of the sequence when built with
|
104 |
+
special tokens.
|
105 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
106 |
+
The token used for masking values. This is the token used when training this model with masked language
|
107 |
+
modeling. This is the token which the model will try to predict.
|
108 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
|
109 |
+
Additional special tokens used by the tokenizer.
|
110 |
+
|
111 |
+
Attributes:
|
112 |
+
sp_model (`SentencePieceProcessor`):
|
113 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
114 |
+
"""
|
115 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
116 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
117 |
+
|
118 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
119 |
+
|
120 |
+
self.do_lower_case = do_lower_case
|
121 |
+
self.remove_space = remove_space
|
122 |
+
self.keep_accents = keep_accents
|
123 |
+
self.vocab_file = vocab_file
|
124 |
+
|
125 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
126 |
+
self.sp_model.Load(vocab_file)
|
127 |
+
|
128 |
+
try:
|
129 |
+
import jieba
|
130 |
+
except ModuleNotFoundError as error:
|
131 |
+
raise error.__class__(
|
132 |
+
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
|
133 |
+
"See https://pypi.org/project/jieba/ for installation."
|
134 |
+
)
|
135 |
+
self.jieba = jieba
|
136 |
+
self.translator = str.maketrans(" \n", "\u2582\u2583")
|
137 |
+
|
138 |
+
super().__init__(
|
139 |
+
do_lower_case=do_lower_case,
|
140 |
+
remove_space=remove_space,
|
141 |
+
keep_accents=keep_accents,
|
142 |
+
bos_token=bos_token,
|
143 |
+
eos_token=eos_token,
|
144 |
+
unk_token=unk_token,
|
145 |
+
sep_token=sep_token,
|
146 |
+
pad_token=pad_token,
|
147 |
+
cls_token=cls_token,
|
148 |
+
mask_token=mask_token,
|
149 |
+
additional_special_tokens=additional_special_tokens,
|
150 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
self._pad_token_type_id = 3
|
155 |
+
|
156 |
+
@property
|
157 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
|
158 |
+
def vocab_size(self):
|
159 |
+
return len(self.sp_model)
|
160 |
+
|
161 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_vocab
|
162 |
+
def get_vocab(self):
|
163 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
164 |
+
vocab.update(self.added_tokens_encoder)
|
165 |
+
return vocab
|
166 |
+
|
167 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__getstate__
|
168 |
+
def __getstate__(self):
|
169 |
+
state = self.__dict__.copy()
|
170 |
+
state["sp_model"] = None
|
171 |
+
return state
|
172 |
+
|
173 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__setstate__
|
174 |
+
def __setstate__(self, d):
|
175 |
+
self.__dict__ = d
|
176 |
+
|
177 |
+
# for backward compatibility
|
178 |
+
if not hasattr(self, "sp_model_kwargs"):
|
179 |
+
self.sp_model_kwargs = {}
|
180 |
+
|
181 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
182 |
+
self.sp_model.Load(self.vocab_file)
|
183 |
+
|
184 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.preprocess_text
|
185 |
+
def preprocess_text(self, inputs):
|
186 |
+
if self.remove_space:
|
187 |
+
outputs = " ".join(inputs.strip().split())
|
188 |
+
else:
|
189 |
+
outputs = inputs
|
190 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
191 |
+
|
192 |
+
if not self.keep_accents:
|
193 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
194 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
195 |
+
if self.do_lower_case:
|
196 |
+
outputs = outputs.lower()
|
197 |
+
|
198 |
+
return outputs
|
199 |
+
|
200 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._tokenize
|
201 |
+
def _tokenize(self, text: str) -> List[str]:
|
202 |
+
"""Tokenize a string."""
|
203 |
+
text = self.preprocess_text(text)
|
204 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
205 |
+
new_pieces = []
|
206 |
+
for piece in pieces:
|
207 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
208 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
209 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
210 |
+
if len(cur_pieces[0]) == 1:
|
211 |
+
cur_pieces = cur_pieces[1:]
|
212 |
+
else:
|
213 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
214 |
+
cur_pieces.append(piece[-1])
|
215 |
+
new_pieces.extend(cur_pieces)
|
216 |
+
else:
|
217 |
+
new_pieces.append(piece)
|
218 |
+
|
219 |
+
return new_pieces
|
220 |
+
|
221 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_token_to_id
|
222 |
+
def _convert_token_to_id(self, token):
|
223 |
+
"""Converts a token (str) in an id using the vocab."""
|
224 |
+
return self.sp_model.PieceToId(token)
|
225 |
+
|
226 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_id_to_token
|
227 |
+
def _convert_id_to_token(self, index):
|
228 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
229 |
+
return self.sp_model.IdToPiece(index)
|
230 |
+
|
231 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.convert_tokens_to_string
|
232 |
+
def convert_tokens_to_string(self, tokens):
|
233 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
234 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
235 |
+
return out_string
|
236 |
+
|
237 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.build_inputs_with_special_tokens
|
238 |
+
def build_inputs_with_special_tokens(
|
239 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
240 |
+
) -> List[int]:
|
241 |
+
"""
|
242 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
243 |
+
adding special tokens. An XLNet sequence has the following format:
|
244 |
+
|
245 |
+
- single sequence: `X <sep> <cls>`
|
246 |
+
- pair of sequences: `A <sep> B <sep> <cls>`
|
247 |
+
|
248 |
+
Args:
|
249 |
+
token_ids_0 (`List[int]`):
|
250 |
+
List of IDs to which the special tokens will be added.
|
251 |
+
token_ids_1 (`List[int]`, *optional*):
|
252 |
+
Optional second list of IDs for sequence pairs.
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
256 |
+
"""
|
257 |
+
sep = [self.sep_token_id]
|
258 |
+
cls = [self.cls_token_id]
|
259 |
+
if token_ids_1 is None:
|
260 |
+
return token_ids_0 + sep + cls
|
261 |
+
return token_ids_0 + sep + token_ids_1 + sep + cls
|
262 |
+
|
263 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_special_tokens_mask
|
264 |
+
def get_special_tokens_mask(
|
265 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
266 |
+
) -> List[int]:
|
267 |
+
"""
|
268 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
269 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
token_ids_0 (`List[int]`):
|
273 |
+
List of IDs.
|
274 |
+
token_ids_1 (`List[int]`, *optional*):
|
275 |
+
Optional second list of IDs for sequence pairs.
|
276 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
277 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
281 |
+
"""
|
282 |
+
|
283 |
+
if already_has_special_tokens:
|
284 |
+
return super().get_special_tokens_mask(
|
285 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
286 |
+
)
|
287 |
+
|
288 |
+
if token_ids_1 is not None:
|
289 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1]
|
290 |
+
return ([0] * len(token_ids_0)) + [1, 1]
|
291 |
+
|
292 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.create_token_type_ids_from_sequences
|
293 |
+
def create_token_type_ids_from_sequences(
|
294 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
295 |
+
) -> List[int]:
|
296 |
+
"""
|
297 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
|
298 |
+
sequence pair mask has the following format:
|
299 |
+
|
300 |
+
```
|
301 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
302 |
+
| first sequence | second sequence |
|
303 |
+
```
|
304 |
+
|
305 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
306 |
+
|
307 |
+
Args:
|
308 |
+
token_ids_0 (`List[int]`):
|
309 |
+
List of IDs.
|
310 |
+
token_ids_1 (`List[int]`, *optional*):
|
311 |
+
Optional second list of IDs for sequence pairs.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
315 |
+
"""
|
316 |
+
sep = [self.sep_token_id]
|
317 |
+
cls_segment_id = [2]
|
318 |
+
|
319 |
+
if token_ids_1 is None:
|
320 |
+
return len(token_ids_0 + sep) * [0] + cls_segment_id
|
321 |
+
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
|
322 |
+
|
323 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.save_vocabulary
|
324 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
325 |
+
if not os.path.isdir(save_directory):
|
326 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
327 |
+
return
|
328 |
+
out_vocab_file = os.path.join(
|
329 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
330 |
+
)
|
331 |
+
|
332 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
333 |
+
copyfile(self.vocab_file, out_vocab_file)
|
334 |
+
elif not os.path.isfile(self.vocab_file):
|
335 |
+
with open(out_vocab_file, "wb") as fi:
|
336 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
337 |
+
fi.write(content_spiece_model)
|
338 |
+
|
339 |
+
return (out_vocab_file,)
|
340 |
+
|
341 |
+
def _decode(self, *args, **kwargs):
|
342 |
+
text = super()._decode(*args, **kwargs)
|
343 |
+
text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n")
|
344 |
+
return text
|
venv/lib/python3.10/site-packages/transformers/models/cpm/tokenization_cpm_fast.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes."""
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from ...tokenization_utils_fast import AddedToken, PreTrainedTokenizerFast
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
|
27 |
+
|
28 |
+
|
29 |
+
class CpmTokenizerFast(PreTrainedTokenizerFast):
|
30 |
+
"""Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models."""
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
vocab_file=None,
|
35 |
+
tokenizer_file=None,
|
36 |
+
do_lower_case=False,
|
37 |
+
remove_space=True,
|
38 |
+
keep_accents=False,
|
39 |
+
bos_token="<s>",
|
40 |
+
eos_token="</s>",
|
41 |
+
unk_token="<unk>",
|
42 |
+
sep_token="<sep>",
|
43 |
+
pad_token="<pad>",
|
44 |
+
cls_token="<cls>",
|
45 |
+
mask_token="<mask>",
|
46 |
+
additional_special_tokens=["<eop>", "<eod>"],
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and
|
51 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
52 |
+
|
53 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should
|
54 |
+
refer to this superclass for more information regarding those methods.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
vocab_file (`str`):
|
58 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
|
59 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
60 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether to lowercase the input when tokenizing.
|
62 |
+
remove_space (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
|
64 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether to keep accents when tokenizing.
|
66 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
67 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier
|
68 |
+
token.
|
69 |
+
|
70 |
+
<Tip>
|
71 |
+
|
72 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
73 |
+
sequence. The token used is the `cls_token`.
|
74 |
+
|
75 |
+
</Tip>
|
76 |
+
|
77 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
78 |
+
The end of sequence token.
|
79 |
+
|
80 |
+
<Tip>
|
81 |
+
|
82 |
+
When building a sequence using special tokens, this is not the token that is used for the end of
|
83 |
+
sequence. The token used is the `sep_token`.
|
84 |
+
|
85 |
+
</Tip>
|
86 |
+
|
87 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
88 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be
|
89 |
+
this token instead.
|
90 |
+
sep_token (`str`, *optional*, defaults to `"<sep>"`):
|
91 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
92 |
+
for sequence classification or for a text and a question for question answering. It is also used as the
|
93 |
+
last token of a sequence built with special tokens.
|
94 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
95 |
+
The token used for padding, for example when batching sequences of different lengths.
|
96 |
+
cls_token (`str`, *optional*, defaults to `"<cls>"`):
|
97 |
+
The classifier token which is used when doing sequence classification (classification of the whole
|
98 |
+
sequence instead of per-token classification). It is the first token of the sequence when built with
|
99 |
+
special tokens.
|
100 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
101 |
+
The token used for masking values. This is the token used when training this model with masked language
|
102 |
+
modeling. This is the token which the model will try to predict.
|
103 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
|
104 |
+
Additional special tokens used by the tokenizer.
|
105 |
+
|
106 |
+
Attributes:
|
107 |
+
sp_model (`SentencePieceProcessor`):
|
108 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
109 |
+
"""
|
110 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
111 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
112 |
+
|
113 |
+
super().__init__(
|
114 |
+
vocab_file=vocab_file,
|
115 |
+
tokenizer_file=tokenizer_file,
|
116 |
+
do_lower_case=do_lower_case,
|
117 |
+
remove_space=remove_space,
|
118 |
+
keep_accents=keep_accents,
|
119 |
+
bos_token=bos_token,
|
120 |
+
eos_token=eos_token,
|
121 |
+
unk_token=unk_token,
|
122 |
+
sep_token=sep_token,
|
123 |
+
pad_token=pad_token,
|
124 |
+
cls_token=cls_token,
|
125 |
+
mask_token=mask_token,
|
126 |
+
additional_special_tokens=additional_special_tokens,
|
127 |
+
**kwargs,
|
128 |
+
)
|
129 |
+
|
130 |
+
self._pad_token_type_id = 3
|
131 |
+
self.do_lower_case = do_lower_case
|
132 |
+
self.remove_space = remove_space
|
133 |
+
self.keep_accents = keep_accents
|
134 |
+
self.vocab_file = vocab_file
|
135 |
+
|
136 |
+
try:
|
137 |
+
import jieba
|
138 |
+
except ModuleNotFoundError as error:
|
139 |
+
raise error.__class__(
|
140 |
+
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
|
141 |
+
"See https://pypi.org/project/jieba/ for installation."
|
142 |
+
)
|
143 |
+
self.jieba = jieba
|
144 |
+
self.translator = str.maketrans(" \n", "\u2582\u2583")
|
145 |
+
|
146 |
+
@property
|
147 |
+
def can_save_slow_tokenizer(self) -> bool:
|
148 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
149 |
+
|
150 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.build_inputs_with_special_tokens
|
151 |
+
def build_inputs_with_special_tokens(
|
152 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
153 |
+
) -> List[int]:
|
154 |
+
"""
|
155 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
156 |
+
adding special tokens. An XLNet sequence has the following format:
|
157 |
+
|
158 |
+
- single sequence: `X <sep> <cls>`
|
159 |
+
- pair of sequences: `A <sep> B <sep> <cls>`
|
160 |
+
|
161 |
+
Args:
|
162 |
+
token_ids_0 (`List[int]`):
|
163 |
+
List of IDs to which the special tokens will be added.
|
164 |
+
token_ids_1 (`List[int]`, *optional*):
|
165 |
+
Optional second list of IDs for sequence pairs.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
169 |
+
"""
|
170 |
+
sep = [self.sep_token_id]
|
171 |
+
cls = [self.cls_token_id]
|
172 |
+
if token_ids_1 is None:
|
173 |
+
return token_ids_0 + sep + cls
|
174 |
+
return token_ids_0 + sep + token_ids_1 + sep + cls
|
175 |
+
|
176 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.create_token_type_ids_from_sequences
|
177 |
+
def create_token_type_ids_from_sequences(
|
178 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
179 |
+
) -> List[int]:
|
180 |
+
"""
|
181 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
|
182 |
+
sequence pair mask has the following format:
|
183 |
+
|
184 |
+
```
|
185 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
186 |
+
| first sequence | second sequence |
|
187 |
+
```
|
188 |
+
|
189 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
190 |
+
|
191 |
+
Args:
|
192 |
+
token_ids_0 (`List[int]`):
|
193 |
+
List of IDs.
|
194 |
+
token_ids_1 (`List[int]`, *optional*):
|
195 |
+
Optional second list of IDs for sequence pairs.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
199 |
+
"""
|
200 |
+
sep = [self.sep_token_id]
|
201 |
+
cls_segment_id = [2]
|
202 |
+
|
203 |
+
if token_ids_1 is None:
|
204 |
+
return len(token_ids_0 + sep) * [0] + cls_segment_id
|
205 |
+
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
|
206 |
+
|
207 |
+
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.save_vocabulary
|
208 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
209 |
+
if not self.can_save_slow_tokenizer:
|
210 |
+
raise ValueError(
|
211 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
212 |
+
"tokenizer."
|
213 |
+
)
|
214 |
+
|
215 |
+
if not os.path.isdir(save_directory):
|
216 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
217 |
+
return
|
218 |
+
out_vocab_file = os.path.join(
|
219 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
220 |
+
)
|
221 |
+
|
222 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
223 |
+
copyfile(self.vocab_file, out_vocab_file)
|
224 |
+
|
225 |
+
return (out_vocab_file,)
|
226 |
+
|
227 |
+
def _batch_encode_plus(self, batch_text_or_text_pairs, *args, **kwargs):
|
228 |
+
batch_text_or_text_pairs = [
|
229 |
+
" ".join([x.translate(self.translator) for x in self.jieba.cut(text, cut_all=False)])
|
230 |
+
for text in batch_text_or_text_pairs
|
231 |
+
]
|
232 |
+
return super()._batch_encode_plus(batch_text_or_text_pairs, *args, **kwargs)
|
233 |
+
|
234 |
+
def _decode(self, *args, **kwargs):
|
235 |
+
text = super()._decode(*args, **kwargs)
|
236 |
+
text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n")
|
237 |
+
return text
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_deformable_detr": ["DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeformableDetrConfig"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_vision_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["feature_extraction_deformable_detr"] = ["DeformableDetrFeatureExtractor"]
|
31 |
+
_import_structure["image_processing_deformable_detr"] = ["DeformableDetrImageProcessor"]
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_torch_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["modeling_deformable_detr"] = [
|
40 |
+
"DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
41 |
+
"DeformableDetrForObjectDetection",
|
42 |
+
"DeformableDetrModel",
|
43 |
+
"DeformableDetrPreTrainedModel",
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_deformable_detr import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DeformableDetrConfig
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_vision_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .feature_extraction_deformable_detr import DeformableDetrFeatureExtractor
|
57 |
+
from .image_processing_deformable_detr import DeformableDetrImageProcessor
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_torch_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
from .modeling_deformable_detr import (
|
66 |
+
DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
67 |
+
DeformableDetrForObjectDetection,
|
68 |
+
DeformableDetrModel,
|
69 |
+
DeformableDetrPreTrainedModel,
|
70 |
+
)
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/configuration_deformable_detr.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/convert_deformable_detr_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.84 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/feature_extraction_deformable_detr.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/image_processing_deformable_detr.cpython-310.pyc
ADDED
Binary file (51.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/load_custom.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/modeling_deformable_detr.cpython-310.pyc
ADDED
Binary file (89.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/configuration_deformable_detr.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Deformable DETR model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ..auto import CONFIG_MAPPING
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class DeformableDetrConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`DeformableDetrModel`]. It is used to instantiate
|
31 |
+
a Deformable DETR model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the Deformable DETR
|
33 |
+
[SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
use_timm_backbone (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
|
41 |
+
API.
|
42 |
+
backbone_config (`PretrainedConfig` or `dict`, *optional*):
|
43 |
+
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
|
44 |
+
case it will default to `ResNetConfig()`.
|
45 |
+
num_channels (`int`, *optional*, defaults to 3):
|
46 |
+
The number of input channels.
|
47 |
+
num_queries (`int`, *optional*, defaults to 300):
|
48 |
+
Number of object queries, i.e. detection slots. This is the maximal number of objects
|
49 |
+
[`DeformableDetrModel`] can detect in a single image. In case `two_stage` is set to `True`, we use
|
50 |
+
`two_stage_num_proposals` instead.
|
51 |
+
d_model (`int`, *optional*, defaults to 256):
|
52 |
+
Dimension of the layers.
|
53 |
+
encoder_layers (`int`, *optional*, defaults to 6):
|
54 |
+
Number of encoder layers.
|
55 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
56 |
+
Number of decoder layers.
|
57 |
+
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
58 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
59 |
+
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
60 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
61 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 1024):
|
62 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
63 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 1024):
|
64 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
65 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
66 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
67 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
68 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
70 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
71 |
+
The dropout ratio for the attention probabilities.
|
72 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
73 |
+
The dropout ratio for activations inside the fully connected layer.
|
74 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
init_xavier_std (`float`, *optional*, defaults to 1):
|
77 |
+
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
|
78 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
79 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
80 |
+
for more details.
|
81 |
+
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
83 |
+
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
|
84 |
+
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
|
85 |
+
backbone (`str`, *optional*, defaults to `"resnet50"`):
|
86 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
87 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
88 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
89 |
+
use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether to use pretrained weights for the backbone.
|
91 |
+
backbone_kwargs (`dict`, *optional*):
|
92 |
+
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
93 |
+
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
94 |
+
dilation (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
|
96 |
+
`use_timm_backbone` = `True`.
|
97 |
+
class_cost (`float`, *optional*, defaults to 1):
|
98 |
+
Relative weight of the classification error in the Hungarian matching cost.
|
99 |
+
bbox_cost (`float`, *optional*, defaults to 5):
|
100 |
+
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
101 |
+
giou_cost (`float`, *optional*, defaults to 2):
|
102 |
+
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
103 |
+
mask_loss_coefficient (`float`, *optional*, defaults to 1):
|
104 |
+
Relative weight of the Focal loss in the panoptic segmentation loss.
|
105 |
+
dice_loss_coefficient (`float`, *optional*, defaults to 1):
|
106 |
+
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
|
107 |
+
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
108 |
+
Relative weight of the L1 bounding box loss in the object detection loss.
|
109 |
+
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
110 |
+
Relative weight of the generalized IoU loss in the object detection loss.
|
111 |
+
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
112 |
+
Relative classification weight of the 'no-object' class in the object detection loss.
|
113 |
+
num_feature_levels (`int`, *optional*, defaults to 4):
|
114 |
+
The number of input feature levels.
|
115 |
+
encoder_n_points (`int`, *optional*, defaults to 4):
|
116 |
+
The number of sampled keys in each feature level for each attention head in the encoder.
|
117 |
+
decoder_n_points (`int`, *optional*, defaults to 4):
|
118 |
+
The number of sampled keys in each feature level for each attention head in the decoder.
|
119 |
+
two_stage (`bool`, *optional*, defaults to `False`):
|
120 |
+
Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of
|
121 |
+
Deformable DETR, which are further fed into the decoder for iterative bounding box refinement.
|
122 |
+
two_stage_num_proposals (`int`, *optional*, defaults to 300):
|
123 |
+
The number of region proposals to be generated, in case `two_stage` is set to `True`.
|
124 |
+
with_box_refine (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes
|
126 |
+
based on the predictions from the previous layer.
|
127 |
+
focal_alpha (`float`, *optional*, defaults to 0.25):
|
128 |
+
Alpha parameter in the focal loss.
|
129 |
+
disable_custom_kernels (`bool`, *optional*, defaults to `False`):
|
130 |
+
Disable the use of custom CUDA and CPU kernels. This option is necessary for the ONNX export, as custom
|
131 |
+
kernels are not supported by PyTorch ONNX export.
|
132 |
+
|
133 |
+
Examples:
|
134 |
+
|
135 |
+
```python
|
136 |
+
>>> from transformers import DeformableDetrConfig, DeformableDetrModel
|
137 |
+
|
138 |
+
>>> # Initializing a Deformable DETR SenseTime/deformable-detr style configuration
|
139 |
+
>>> configuration = DeformableDetrConfig()
|
140 |
+
|
141 |
+
>>> # Initializing a model (with random weights) from the SenseTime/deformable-detr style configuration
|
142 |
+
>>> model = DeformableDetrModel(configuration)
|
143 |
+
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```"""
|
147 |
+
|
148 |
+
model_type = "deformable_detr"
|
149 |
+
attribute_map = {
|
150 |
+
"hidden_size": "d_model",
|
151 |
+
"num_attention_heads": "encoder_attention_heads",
|
152 |
+
}
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
use_timm_backbone=True,
|
157 |
+
backbone_config=None,
|
158 |
+
num_channels=3,
|
159 |
+
num_queries=300,
|
160 |
+
max_position_embeddings=1024,
|
161 |
+
encoder_layers=6,
|
162 |
+
encoder_ffn_dim=1024,
|
163 |
+
encoder_attention_heads=8,
|
164 |
+
decoder_layers=6,
|
165 |
+
decoder_ffn_dim=1024,
|
166 |
+
decoder_attention_heads=8,
|
167 |
+
encoder_layerdrop=0.0,
|
168 |
+
is_encoder_decoder=True,
|
169 |
+
activation_function="relu",
|
170 |
+
d_model=256,
|
171 |
+
dropout=0.1,
|
172 |
+
attention_dropout=0.0,
|
173 |
+
activation_dropout=0.0,
|
174 |
+
init_std=0.02,
|
175 |
+
init_xavier_std=1.0,
|
176 |
+
return_intermediate=True,
|
177 |
+
auxiliary_loss=False,
|
178 |
+
position_embedding_type="sine",
|
179 |
+
backbone="resnet50",
|
180 |
+
use_pretrained_backbone=True,
|
181 |
+
backbone_kwargs=None,
|
182 |
+
dilation=False,
|
183 |
+
num_feature_levels=4,
|
184 |
+
encoder_n_points=4,
|
185 |
+
decoder_n_points=4,
|
186 |
+
two_stage=False,
|
187 |
+
two_stage_num_proposals=300,
|
188 |
+
with_box_refine=False,
|
189 |
+
class_cost=1,
|
190 |
+
bbox_cost=5,
|
191 |
+
giou_cost=2,
|
192 |
+
mask_loss_coefficient=1,
|
193 |
+
dice_loss_coefficient=1,
|
194 |
+
bbox_loss_coefficient=5,
|
195 |
+
giou_loss_coefficient=2,
|
196 |
+
eos_coefficient=0.1,
|
197 |
+
focal_alpha=0.25,
|
198 |
+
disable_custom_kernels=False,
|
199 |
+
**kwargs,
|
200 |
+
):
|
201 |
+
if not use_timm_backbone and use_pretrained_backbone:
|
202 |
+
raise ValueError(
|
203 |
+
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
|
204 |
+
)
|
205 |
+
|
206 |
+
if backbone_config is not None and backbone is not None:
|
207 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
208 |
+
|
209 |
+
if backbone_config is not None and use_timm_backbone:
|
210 |
+
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
|
211 |
+
|
212 |
+
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
213 |
+
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
214 |
+
|
215 |
+
if not use_timm_backbone:
|
216 |
+
if backbone_config is None:
|
217 |
+
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
|
218 |
+
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
|
219 |
+
elif isinstance(backbone_config, dict):
|
220 |
+
backbone_model_type = backbone_config.get("model_type")
|
221 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
222 |
+
backbone_config = config_class.from_dict(backbone_config)
|
223 |
+
self.use_timm_backbone = use_timm_backbone
|
224 |
+
self.backbone_config = backbone_config
|
225 |
+
self.num_channels = num_channels
|
226 |
+
self.num_queries = num_queries
|
227 |
+
self.max_position_embeddings = max_position_embeddings
|
228 |
+
self.d_model = d_model
|
229 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
230 |
+
self.encoder_layers = encoder_layers
|
231 |
+
self.encoder_attention_heads = encoder_attention_heads
|
232 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
233 |
+
self.decoder_layers = decoder_layers
|
234 |
+
self.decoder_attention_heads = decoder_attention_heads
|
235 |
+
self.dropout = dropout
|
236 |
+
self.attention_dropout = attention_dropout
|
237 |
+
self.activation_dropout = activation_dropout
|
238 |
+
self.activation_function = activation_function
|
239 |
+
self.init_std = init_std
|
240 |
+
self.init_xavier_std = init_xavier_std
|
241 |
+
self.encoder_layerdrop = encoder_layerdrop
|
242 |
+
self.auxiliary_loss = auxiliary_loss
|
243 |
+
self.position_embedding_type = position_embedding_type
|
244 |
+
self.backbone = backbone
|
245 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
246 |
+
self.backbone_kwargs = backbone_kwargs
|
247 |
+
self.dilation = dilation
|
248 |
+
# deformable attributes
|
249 |
+
self.num_feature_levels = num_feature_levels
|
250 |
+
self.encoder_n_points = encoder_n_points
|
251 |
+
self.decoder_n_points = decoder_n_points
|
252 |
+
self.two_stage = two_stage
|
253 |
+
self.two_stage_num_proposals = two_stage_num_proposals
|
254 |
+
self.with_box_refine = with_box_refine
|
255 |
+
if two_stage is True and with_box_refine is False:
|
256 |
+
raise ValueError("If two_stage is True, with_box_refine must be True.")
|
257 |
+
# Hungarian matcher
|
258 |
+
self.class_cost = class_cost
|
259 |
+
self.bbox_cost = bbox_cost
|
260 |
+
self.giou_cost = giou_cost
|
261 |
+
# Loss coefficients
|
262 |
+
self.mask_loss_coefficient = mask_loss_coefficient
|
263 |
+
self.dice_loss_coefficient = dice_loss_coefficient
|
264 |
+
self.bbox_loss_coefficient = bbox_loss_coefficient
|
265 |
+
self.giou_loss_coefficient = giou_loss_coefficient
|
266 |
+
self.eos_coefficient = eos_coefficient
|
267 |
+
self.focal_alpha = focal_alpha
|
268 |
+
self.disable_custom_kernels = disable_custom_kernels
|
269 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def num_attention_heads(self) -> int:
|
273 |
+
return self.encoder_attention_heads
|
274 |
+
|
275 |
+
@property
|
276 |
+
def hidden_size(self) -> int:
|
277 |
+
return self.d_model
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/convert_deformable_detr_to_pytorch.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Deformable DETR checkpoints."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import cached_download, hf_hub_url
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import DeformableDetrConfig, DeformableDetrForObjectDetection, DeformableDetrImageProcessor
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def rename_key(orig_key):
|
36 |
+
if "backbone.0.body" in orig_key:
|
37 |
+
orig_key = orig_key.replace("backbone.0.body", "backbone.conv_encoder.model")
|
38 |
+
if "transformer" in orig_key:
|
39 |
+
orig_key = orig_key.replace("transformer.", "")
|
40 |
+
if "norm1" in orig_key:
|
41 |
+
if "encoder" in orig_key:
|
42 |
+
orig_key = orig_key.replace("norm1", "self_attn_layer_norm")
|
43 |
+
else:
|
44 |
+
orig_key = orig_key.replace("norm1", "encoder_attn_layer_norm")
|
45 |
+
if "norm2" in orig_key:
|
46 |
+
if "encoder" in orig_key:
|
47 |
+
orig_key = orig_key.replace("norm2", "final_layer_norm")
|
48 |
+
else:
|
49 |
+
orig_key = orig_key.replace("norm2", "self_attn_layer_norm")
|
50 |
+
if "norm3" in orig_key:
|
51 |
+
orig_key = orig_key.replace("norm3", "final_layer_norm")
|
52 |
+
if "linear1" in orig_key:
|
53 |
+
orig_key = orig_key.replace("linear1", "fc1")
|
54 |
+
if "linear2" in orig_key:
|
55 |
+
orig_key = orig_key.replace("linear2", "fc2")
|
56 |
+
if "query_embed" in orig_key:
|
57 |
+
orig_key = orig_key.replace("query_embed", "query_position_embeddings")
|
58 |
+
if "cross_attn" in orig_key:
|
59 |
+
orig_key = orig_key.replace("cross_attn", "encoder_attn")
|
60 |
+
|
61 |
+
return orig_key
|
62 |
+
|
63 |
+
|
64 |
+
def read_in_q_k_v(state_dict):
|
65 |
+
# transformer decoder self-attention layers
|
66 |
+
for i in range(6):
|
67 |
+
# read in weights + bias of input projection layer of self-attention
|
68 |
+
in_proj_weight = state_dict.pop(f"decoder.layers.{i}.self_attn.in_proj_weight")
|
69 |
+
in_proj_bias = state_dict.pop(f"decoder.layers.{i}.self_attn.in_proj_bias")
|
70 |
+
# next, add query, keys and values (in that order) to the state dict
|
71 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
72 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
73 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
74 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
75 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
76 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
77 |
+
|
78 |
+
|
79 |
+
# We will verify our results on an image of cute cats
|
80 |
+
def prepare_img():
|
81 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
82 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
83 |
+
|
84 |
+
return im
|
85 |
+
|
86 |
+
|
87 |
+
@torch.no_grad()
|
88 |
+
def convert_deformable_detr_checkpoint(
|
89 |
+
checkpoint_path,
|
90 |
+
single_scale,
|
91 |
+
dilation,
|
92 |
+
with_box_refine,
|
93 |
+
two_stage,
|
94 |
+
pytorch_dump_folder_path,
|
95 |
+
push_to_hub,
|
96 |
+
):
|
97 |
+
"""
|
98 |
+
Copy/paste/tweak model's weights to our Deformable DETR structure.
|
99 |
+
"""
|
100 |
+
|
101 |
+
# load default config
|
102 |
+
config = DeformableDetrConfig()
|
103 |
+
# set config attributes
|
104 |
+
if single_scale:
|
105 |
+
config.num_feature_levels = 1
|
106 |
+
config.dilation = dilation
|
107 |
+
config.with_box_refine = with_box_refine
|
108 |
+
config.two_stage = two_stage
|
109 |
+
# set labels
|
110 |
+
config.num_labels = 91
|
111 |
+
repo_id = "huggingface/label-files"
|
112 |
+
filename = "coco-detection-id2label.json"
|
113 |
+
id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
|
114 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
115 |
+
config.id2label = id2label
|
116 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
117 |
+
|
118 |
+
# load image processor
|
119 |
+
image_processor = DeformableDetrImageProcessor(format="coco_detection")
|
120 |
+
|
121 |
+
# prepare image
|
122 |
+
img = prepare_img()
|
123 |
+
encoding = image_processor(images=img, return_tensors="pt")
|
124 |
+
pixel_values = encoding["pixel_values"]
|
125 |
+
|
126 |
+
logger.info("Converting model...")
|
127 |
+
|
128 |
+
# load original state dict
|
129 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
|
130 |
+
# rename keys
|
131 |
+
for key in state_dict.copy().keys():
|
132 |
+
val = state_dict.pop(key)
|
133 |
+
state_dict[rename_key(key)] = val
|
134 |
+
# query, key and value matrices need special treatment
|
135 |
+
read_in_q_k_v(state_dict)
|
136 |
+
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
|
137 |
+
prefix = "model."
|
138 |
+
for key in state_dict.copy().keys():
|
139 |
+
if not key.startswith("class_embed") and not key.startswith("bbox_embed"):
|
140 |
+
val = state_dict.pop(key)
|
141 |
+
state_dict[prefix + key] = val
|
142 |
+
# finally, create HuggingFace model and load state dict
|
143 |
+
model = DeformableDetrForObjectDetection(config)
|
144 |
+
model.load_state_dict(state_dict)
|
145 |
+
model.eval()
|
146 |
+
|
147 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
148 |
+
model.to(device)
|
149 |
+
# verify our conversion
|
150 |
+
outputs = model(pixel_values.to(device))
|
151 |
+
|
152 |
+
expected_logits = torch.tensor(
|
153 |
+
[[-9.6645, -4.3449, -5.8705], [-9.7035, -3.8504, -5.0724], [-10.5634, -5.3379, -7.5116]]
|
154 |
+
)
|
155 |
+
expected_boxes = torch.tensor([[0.8693, 0.2289, 0.2492], [0.3150, 0.5489, 0.5845], [0.5563, 0.7580, 0.8518]])
|
156 |
+
|
157 |
+
if single_scale:
|
158 |
+
expected_logits = torch.tensor(
|
159 |
+
[[-9.9051, -4.2541, -6.4852], [-9.6947, -4.0854, -6.8033], [-10.0665, -5.8470, -7.7003]]
|
160 |
+
)
|
161 |
+
expected_boxes = torch.tensor([[0.7292, 0.4991, 0.5532], [0.7959, 0.2426, 0.4236], [0.7582, 0.3518, 0.4451]])
|
162 |
+
|
163 |
+
if single_scale and dilation:
|
164 |
+
expected_logits = torch.tensor(
|
165 |
+
[[-8.9652, -4.1074, -5.6635], [-9.0596, -4.9447, -6.6075], [-10.1178, -4.5275, -6.2671]]
|
166 |
+
)
|
167 |
+
expected_boxes = torch.tensor([[0.7665, 0.4130, 0.4769], [0.8364, 0.1841, 0.3391], [0.6261, 0.3895, 0.7978]])
|
168 |
+
|
169 |
+
if with_box_refine:
|
170 |
+
expected_logits = torch.tensor(
|
171 |
+
[[-8.8895, -5.4187, -6.8153], [-8.4706, -6.1668, -7.6184], [-9.0042, -5.5359, -6.9141]]
|
172 |
+
)
|
173 |
+
expected_boxes = torch.tensor([[0.7828, 0.2208, 0.4323], [0.0892, 0.5996, 0.1319], [0.5524, 0.6389, 0.8914]])
|
174 |
+
|
175 |
+
if with_box_refine and two_stage:
|
176 |
+
expected_logits = torch.tensor(
|
177 |
+
[[-6.7108, -4.3213, -6.3777], [-8.9014, -6.1799, -6.7240], [-6.9315, -4.4735, -6.2298]]
|
178 |
+
)
|
179 |
+
expected_boxes = torch.tensor([[0.2583, 0.5499, 0.4683], [0.7652, 0.9068, 0.4882], [0.5490, 0.2763, 0.0564]])
|
180 |
+
|
181 |
+
print("Logits:", outputs.logits[0, :3, :3])
|
182 |
+
|
183 |
+
assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4)
|
184 |
+
assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4)
|
185 |
+
|
186 |
+
print("Everything ok!")
|
187 |
+
|
188 |
+
# Save model and image processor
|
189 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
190 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
191 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
192 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
193 |
+
|
194 |
+
# Push to hub
|
195 |
+
if push_to_hub:
|
196 |
+
model_name = "deformable-detr"
|
197 |
+
model_name += "-single-scale" if single_scale else ""
|
198 |
+
model_name += "-dc5" if dilation else ""
|
199 |
+
model_name += "-with-box-refine" if with_box_refine else ""
|
200 |
+
model_name += "-two-stage" if two_stage else ""
|
201 |
+
print("Pushing model to hub...")
|
202 |
+
model.push_to_hub(repo_path_or_name=model_name, organization="nielsr", commit_message="Add model")
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == "__main__":
|
206 |
+
parser = argparse.ArgumentParser()
|
207 |
+
|
208 |
+
parser.add_argument(
|
209 |
+
"--checkpoint_path",
|
210 |
+
type=str,
|
211 |
+
default="/home/niels/checkpoints/deformable_detr/r50_deformable_detr-checkpoint.pth",
|
212 |
+
help="Path to Pytorch checkpoint (.pth file) you'd like to convert.",
|
213 |
+
)
|
214 |
+
parser.add_argument("--single_scale", action="store_true", help="Whether to set config.num_features_levels = 1.")
|
215 |
+
parser.add_argument("--dilation", action="store_true", help="Whether to set config.dilation=True.")
|
216 |
+
parser.add_argument("--with_box_refine", action="store_true", help="Whether to set config.with_box_refine=True.")
|
217 |
+
parser.add_argument("--two_stage", action="store_true", help="Whether to set config.two_stage=True.")
|
218 |
+
parser.add_argument(
|
219 |
+
"--pytorch_dump_folder_path",
|
220 |
+
default=None,
|
221 |
+
type=str,
|
222 |
+
required=True,
|
223 |
+
help="Path to the folder to output PyTorch model.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
227 |
+
)
|
228 |
+
args = parser.parse_args()
|
229 |
+
convert_deformable_detr_checkpoint(
|
230 |
+
args.checkpoint_path,
|
231 |
+
args.single_scale,
|
232 |
+
args.dilation,
|
233 |
+
args.with_box_refine,
|
234 |
+
args.two_stage,
|
235 |
+
args.pytorch_dump_folder_path,
|
236 |
+
args.push_to_hub,
|
237 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/feature_extraction_deformable_detr.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for Deformable DETR."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...image_transforms import rgb_to_id as _rgb_to_id
|
20 |
+
from ...utils import logging
|
21 |
+
from .image_processing_deformable_detr import DeformableDetrImageProcessor
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def rgb_to_id(x):
|
28 |
+
warnings.warn(
|
29 |
+
"rgb_to_id has moved and will not be importable from this module from v5. "
|
30 |
+
"Please import from transformers.image_transforms instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
return _rgb_to_id(x)
|
34 |
+
|
35 |
+
|
36 |
+
class DeformableDetrFeatureExtractor(DeformableDetrImageProcessor):
|
37 |
+
def __init__(self, *args, **kwargs) -> None:
|
38 |
+
warnings.warn(
|
39 |
+
"The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
40 |
+
" Please use DeformableDetrImageProcessor instead.",
|
41 |
+
FutureWarning,
|
42 |
+
)
|
43 |
+
super().__init__(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/image_processing_deformable_detr.py
ADDED
@@ -0,0 +1,1553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Deformable DETR."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import pathlib
|
19 |
+
from collections import defaultdict
|
20 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...feature_extraction_utils import BatchFeature
|
25 |
+
from ...image_processing_utils import BaseImageProcessor, get_size_dict
|
26 |
+
from ...image_transforms import (
|
27 |
+
PaddingMode,
|
28 |
+
center_to_corners_format,
|
29 |
+
corners_to_center_format,
|
30 |
+
id_to_rgb,
|
31 |
+
pad,
|
32 |
+
rescale,
|
33 |
+
resize,
|
34 |
+
rgb_to_id,
|
35 |
+
to_channel_dimension_format,
|
36 |
+
)
|
37 |
+
from ...image_utils import (
|
38 |
+
IMAGENET_DEFAULT_MEAN,
|
39 |
+
IMAGENET_DEFAULT_STD,
|
40 |
+
AnnotationFormat,
|
41 |
+
AnnotationType,
|
42 |
+
ChannelDimension,
|
43 |
+
ImageInput,
|
44 |
+
PILImageResampling,
|
45 |
+
get_image_size,
|
46 |
+
infer_channel_dimension_format,
|
47 |
+
is_scaled_image,
|
48 |
+
make_list_of_images,
|
49 |
+
to_numpy_array,
|
50 |
+
valid_images,
|
51 |
+
validate_annotations,
|
52 |
+
validate_kwargs,
|
53 |
+
validate_preprocess_arguments,
|
54 |
+
)
|
55 |
+
from ...utils import (
|
56 |
+
TensorType,
|
57 |
+
is_flax_available,
|
58 |
+
is_jax_tensor,
|
59 |
+
is_scipy_available,
|
60 |
+
is_tf_available,
|
61 |
+
is_tf_tensor,
|
62 |
+
is_torch_available,
|
63 |
+
is_torch_tensor,
|
64 |
+
is_vision_available,
|
65 |
+
logging,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
if is_torch_available():
|
70 |
+
import torch
|
71 |
+
from torch import nn
|
72 |
+
|
73 |
+
|
74 |
+
if is_vision_available():
|
75 |
+
import PIL
|
76 |
+
|
77 |
+
if is_scipy_available():
|
78 |
+
import scipy.special
|
79 |
+
import scipy.stats
|
80 |
+
|
81 |
+
|
82 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
83 |
+
|
84 |
+
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
|
88 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
|
89 |
+
"""
|
90 |
+
Computes the output image size given the input image size and the desired output size.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
image_size (`Tuple[int, int]`):
|
94 |
+
The input image size.
|
95 |
+
size (`int`):
|
96 |
+
The desired output size.
|
97 |
+
max_size (`int`, *optional*):
|
98 |
+
The maximum allowed output size.
|
99 |
+
"""
|
100 |
+
height, width = image_size
|
101 |
+
if max_size is not None:
|
102 |
+
min_original_size = float(min((height, width)))
|
103 |
+
max_original_size = float(max((height, width)))
|
104 |
+
if max_original_size / min_original_size * size > max_size:
|
105 |
+
size = int(round(max_size * min_original_size / max_original_size))
|
106 |
+
|
107 |
+
if (height <= width and height == size) or (width <= height and width == size):
|
108 |
+
return height, width
|
109 |
+
|
110 |
+
if width < height:
|
111 |
+
ow = size
|
112 |
+
oh = int(size * height / width)
|
113 |
+
else:
|
114 |
+
oh = size
|
115 |
+
ow = int(size * width / height)
|
116 |
+
return (oh, ow)
|
117 |
+
|
118 |
+
|
119 |
+
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
|
120 |
+
def get_resize_output_image_size(
|
121 |
+
input_image: np.ndarray,
|
122 |
+
size: Union[int, Tuple[int, int], List[int]],
|
123 |
+
max_size: Optional[int] = None,
|
124 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
125 |
+
) -> Tuple[int, int]:
|
126 |
+
"""
|
127 |
+
Computes the output image size given the input image size and the desired output size. If the desired output size
|
128 |
+
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
|
129 |
+
image size is computed by keeping the aspect ratio of the input image size.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
input_image (`np.ndarray`):
|
133 |
+
The image to resize.
|
134 |
+
size (`int` or `Tuple[int, int]` or `List[int]`):
|
135 |
+
The desired output size.
|
136 |
+
max_size (`int`, *optional*):
|
137 |
+
The maximum allowed output size.
|
138 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
139 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
140 |
+
"""
|
141 |
+
image_size = get_image_size(input_image, input_data_format)
|
142 |
+
if isinstance(size, (list, tuple)):
|
143 |
+
return size
|
144 |
+
|
145 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
146 |
+
|
147 |
+
|
148 |
+
# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
|
149 |
+
def get_numpy_to_framework_fn(arr) -> Callable:
|
150 |
+
"""
|
151 |
+
Returns a function that converts a numpy array to the framework of the input array.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
arr (`np.ndarray`): The array to convert.
|
155 |
+
"""
|
156 |
+
if isinstance(arr, np.ndarray):
|
157 |
+
return np.array
|
158 |
+
if is_tf_available() and is_tf_tensor(arr):
|
159 |
+
import tensorflow as tf
|
160 |
+
|
161 |
+
return tf.convert_to_tensor
|
162 |
+
if is_torch_available() and is_torch_tensor(arr):
|
163 |
+
import torch
|
164 |
+
|
165 |
+
return torch.tensor
|
166 |
+
if is_flax_available() and is_jax_tensor(arr):
|
167 |
+
import jax.numpy as jnp
|
168 |
+
|
169 |
+
return jnp.array
|
170 |
+
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
|
174 |
+
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
|
175 |
+
"""
|
176 |
+
Squeezes an array, but only if the axis specified has dim 1.
|
177 |
+
"""
|
178 |
+
if axis is None:
|
179 |
+
return arr.squeeze()
|
180 |
+
|
181 |
+
try:
|
182 |
+
return arr.squeeze(axis=axis)
|
183 |
+
except ValueError:
|
184 |
+
return arr
|
185 |
+
|
186 |
+
|
187 |
+
# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
|
188 |
+
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
189 |
+
image_height, image_width = image_size
|
190 |
+
norm_annotation = {}
|
191 |
+
for key, value in annotation.items():
|
192 |
+
if key == "boxes":
|
193 |
+
boxes = value
|
194 |
+
boxes = corners_to_center_format(boxes)
|
195 |
+
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
|
196 |
+
norm_annotation[key] = boxes
|
197 |
+
else:
|
198 |
+
norm_annotation[key] = value
|
199 |
+
return norm_annotation
|
200 |
+
|
201 |
+
|
202 |
+
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
|
203 |
+
def max_across_indices(values: Iterable[Any]) -> List[Any]:
|
204 |
+
"""
|
205 |
+
Return the maximum value across all indices of an iterable of values.
|
206 |
+
"""
|
207 |
+
return [max(values_i) for values_i in zip(*values)]
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
|
211 |
+
def get_max_height_width(
|
212 |
+
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
213 |
+
) -> List[int]:
|
214 |
+
"""
|
215 |
+
Get the maximum height and width across all images in a batch.
|
216 |
+
"""
|
217 |
+
if input_data_format is None:
|
218 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
219 |
+
|
220 |
+
if input_data_format == ChannelDimension.FIRST:
|
221 |
+
_, max_height, max_width = max_across_indices([img.shape for img in images])
|
222 |
+
elif input_data_format == ChannelDimension.LAST:
|
223 |
+
max_height, max_width, _ = max_across_indices([img.shape for img in images])
|
224 |
+
else:
|
225 |
+
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
|
226 |
+
return (max_height, max_width)
|
227 |
+
|
228 |
+
|
229 |
+
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
|
230 |
+
def make_pixel_mask(
|
231 |
+
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
232 |
+
) -> np.ndarray:
|
233 |
+
"""
|
234 |
+
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
image (`np.ndarray`):
|
238 |
+
Image to make the pixel mask for.
|
239 |
+
output_size (`Tuple[int, int]`):
|
240 |
+
Output size of the mask.
|
241 |
+
"""
|
242 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
243 |
+
mask = np.zeros(output_size, dtype=np.int64)
|
244 |
+
mask[:input_height, :input_width] = 1
|
245 |
+
return mask
|
246 |
+
|
247 |
+
|
248 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
|
249 |
+
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
|
250 |
+
"""
|
251 |
+
Convert a COCO polygon annotation to a mask.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
segmentations (`List[List[float]]`):
|
255 |
+
List of polygons, each polygon represented by a list of x-y coordinates.
|
256 |
+
height (`int`):
|
257 |
+
Height of the mask.
|
258 |
+
width (`int`):
|
259 |
+
Width of the mask.
|
260 |
+
"""
|
261 |
+
try:
|
262 |
+
from pycocotools import mask as coco_mask
|
263 |
+
except ImportError:
|
264 |
+
raise ImportError("Pycocotools is not installed in your environment.")
|
265 |
+
|
266 |
+
masks = []
|
267 |
+
for polygons in segmentations:
|
268 |
+
rles = coco_mask.frPyObjects(polygons, height, width)
|
269 |
+
mask = coco_mask.decode(rles)
|
270 |
+
if len(mask.shape) < 3:
|
271 |
+
mask = mask[..., None]
|
272 |
+
mask = np.asarray(mask, dtype=np.uint8)
|
273 |
+
mask = np.any(mask, axis=2)
|
274 |
+
masks.append(mask)
|
275 |
+
if masks:
|
276 |
+
masks = np.stack(masks, axis=0)
|
277 |
+
else:
|
278 |
+
masks = np.zeros((0, height, width), dtype=np.uint8)
|
279 |
+
|
280 |
+
return masks
|
281 |
+
|
282 |
+
|
283 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DeformableDetr
|
284 |
+
def prepare_coco_detection_annotation(
|
285 |
+
image,
|
286 |
+
target,
|
287 |
+
return_segmentation_masks: bool = False,
|
288 |
+
input_data_format: Optional[Union[ChannelDimension, str]] = None,
|
289 |
+
):
|
290 |
+
"""
|
291 |
+
Convert the target in COCO format into the format expected by DeformableDetr.
|
292 |
+
"""
|
293 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
294 |
+
|
295 |
+
image_id = target["image_id"]
|
296 |
+
image_id = np.asarray([image_id], dtype=np.int64)
|
297 |
+
|
298 |
+
# Get all COCO annotations for the given image.
|
299 |
+
annotations = target["annotations"]
|
300 |
+
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
|
301 |
+
|
302 |
+
classes = [obj["category_id"] for obj in annotations]
|
303 |
+
classes = np.asarray(classes, dtype=np.int64)
|
304 |
+
|
305 |
+
# for conversion to coco api
|
306 |
+
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
|
307 |
+
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
|
308 |
+
|
309 |
+
boxes = [obj["bbox"] for obj in annotations]
|
310 |
+
# guard against no boxes via resizing
|
311 |
+
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
|
312 |
+
boxes[:, 2:] += boxes[:, :2]
|
313 |
+
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
|
314 |
+
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
|
315 |
+
|
316 |
+
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
317 |
+
|
318 |
+
new_target = {}
|
319 |
+
new_target["image_id"] = image_id
|
320 |
+
new_target["class_labels"] = classes[keep]
|
321 |
+
new_target["boxes"] = boxes[keep]
|
322 |
+
new_target["area"] = area[keep]
|
323 |
+
new_target["iscrowd"] = iscrowd[keep]
|
324 |
+
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
|
325 |
+
|
326 |
+
if annotations and "keypoints" in annotations[0]:
|
327 |
+
keypoints = [obj["keypoints"] for obj in annotations]
|
328 |
+
# Converting the filtered keypoints list to a numpy array
|
329 |
+
keypoints = np.asarray(keypoints, dtype=np.float32)
|
330 |
+
# Apply the keep mask here to filter the relevant annotations
|
331 |
+
keypoints = keypoints[keep]
|
332 |
+
num_keypoints = keypoints.shape[0]
|
333 |
+
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
|
334 |
+
new_target["keypoints"] = keypoints
|
335 |
+
|
336 |
+
if return_segmentation_masks:
|
337 |
+
segmentation_masks = [obj["segmentation"] for obj in annotations]
|
338 |
+
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
|
339 |
+
new_target["masks"] = masks[keep]
|
340 |
+
|
341 |
+
return new_target
|
342 |
+
|
343 |
+
|
344 |
+
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
|
345 |
+
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
|
346 |
+
"""
|
347 |
+
Compute the bounding boxes around the provided panoptic segmentation masks.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
masks: masks in format `[number_masks, height, width]` where N is the number of masks
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
354 |
+
"""
|
355 |
+
if masks.size == 0:
|
356 |
+
return np.zeros((0, 4))
|
357 |
+
|
358 |
+
h, w = masks.shape[-2:]
|
359 |
+
y = np.arange(0, h, dtype=np.float32)
|
360 |
+
x = np.arange(0, w, dtype=np.float32)
|
361 |
+
# see https://github.com/pytorch/pytorch/issues/50276
|
362 |
+
y, x = np.meshgrid(y, x, indexing="ij")
|
363 |
+
|
364 |
+
x_mask = masks * np.expand_dims(x, axis=0)
|
365 |
+
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
|
366 |
+
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
|
367 |
+
x_min = x.filled(fill_value=1e8)
|
368 |
+
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
|
369 |
+
|
370 |
+
y_mask = masks * np.expand_dims(y, axis=0)
|
371 |
+
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
|
372 |
+
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
|
373 |
+
y_min = y.filled(fill_value=1e8)
|
374 |
+
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
|
375 |
+
|
376 |
+
return np.stack([x_min, y_min, x_max, y_max], 1)
|
377 |
+
|
378 |
+
|
379 |
+
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DeformableDetr
|
380 |
+
def prepare_coco_panoptic_annotation(
|
381 |
+
image: np.ndarray,
|
382 |
+
target: Dict,
|
383 |
+
masks_path: Union[str, pathlib.Path],
|
384 |
+
return_masks: bool = True,
|
385 |
+
input_data_format: Union[ChannelDimension, str] = None,
|
386 |
+
) -> Dict:
|
387 |
+
"""
|
388 |
+
Prepare a coco panoptic annotation for DeformableDetr.
|
389 |
+
"""
|
390 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
391 |
+
annotation_path = pathlib.Path(masks_path) / target["file_name"]
|
392 |
+
|
393 |
+
new_target = {}
|
394 |
+
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
|
395 |
+
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
396 |
+
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
397 |
+
|
398 |
+
if "segments_info" in target:
|
399 |
+
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
|
400 |
+
masks = rgb_to_id(masks)
|
401 |
+
|
402 |
+
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
|
403 |
+
masks = masks == ids[:, None, None]
|
404 |
+
masks = masks.astype(np.uint8)
|
405 |
+
if return_masks:
|
406 |
+
new_target["masks"] = masks
|
407 |
+
new_target["boxes"] = masks_to_boxes(masks)
|
408 |
+
new_target["class_labels"] = np.array(
|
409 |
+
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
|
410 |
+
)
|
411 |
+
new_target["iscrowd"] = np.asarray(
|
412 |
+
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
|
413 |
+
)
|
414 |
+
new_target["area"] = np.asarray(
|
415 |
+
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
|
416 |
+
)
|
417 |
+
|
418 |
+
return new_target
|
419 |
+
|
420 |
+
|
421 |
+
# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
|
422 |
+
def get_segmentation_image(
|
423 |
+
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
|
424 |
+
):
|
425 |
+
h, w = input_size
|
426 |
+
final_h, final_w = target_size
|
427 |
+
|
428 |
+
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
|
429 |
+
|
430 |
+
if m_id.shape[-1] == 0:
|
431 |
+
# We didn't detect any mask :(
|
432 |
+
m_id = np.zeros((h, w), dtype=np.int64)
|
433 |
+
else:
|
434 |
+
m_id = m_id.argmax(-1).reshape(h, w)
|
435 |
+
|
436 |
+
if deduplicate:
|
437 |
+
# Merge the masks corresponding to the same stuff class
|
438 |
+
for equiv in stuff_equiv_classes.values():
|
439 |
+
for eq_id in equiv:
|
440 |
+
m_id[m_id == eq_id] = equiv[0]
|
441 |
+
|
442 |
+
seg_img = id_to_rgb(m_id)
|
443 |
+
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
|
444 |
+
return seg_img
|
445 |
+
|
446 |
+
|
447 |
+
# Copied from transformers.models.detr.image_processing_detr.get_mask_area
|
448 |
+
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
|
449 |
+
final_h, final_w = target_size
|
450 |
+
np_seg_img = seg_img.astype(np.uint8)
|
451 |
+
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
|
452 |
+
m_id = rgb_to_id(np_seg_img)
|
453 |
+
area = [(m_id == i).sum() for i in range(n_classes)]
|
454 |
+
return area
|
455 |
+
|
456 |
+
|
457 |
+
# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
|
458 |
+
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
459 |
+
probs = scipy.special.softmax(logits, axis=-1)
|
460 |
+
labels = probs.argmax(-1, keepdims=True)
|
461 |
+
scores = np.take_along_axis(probs, labels, axis=-1)
|
462 |
+
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
|
463 |
+
return scores, labels
|
464 |
+
|
465 |
+
|
466 |
+
# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample
|
467 |
+
def post_process_panoptic_sample(
|
468 |
+
out_logits: np.ndarray,
|
469 |
+
masks: np.ndarray,
|
470 |
+
boxes: np.ndarray,
|
471 |
+
processed_size: Tuple[int, int],
|
472 |
+
target_size: Tuple[int, int],
|
473 |
+
is_thing_map: Dict,
|
474 |
+
threshold=0.85,
|
475 |
+
) -> Dict:
|
476 |
+
"""
|
477 |
+
Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
|
478 |
+
|
479 |
+
Args:
|
480 |
+
out_logits (`torch.Tensor`):
|
481 |
+
The logits for this sample.
|
482 |
+
masks (`torch.Tensor`):
|
483 |
+
The predicted segmentation masks for this sample.
|
484 |
+
boxes (`torch.Tensor`):
|
485 |
+
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
|
486 |
+
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
|
487 |
+
processed_size (`Tuple[int, int]`):
|
488 |
+
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
|
489 |
+
after data augmentation but before batching.
|
490 |
+
target_size (`Tuple[int, int]`):
|
491 |
+
The target size of the image, `(height, width)` corresponding to the requested final size of the
|
492 |
+
prediction.
|
493 |
+
is_thing_map (`Dict`):
|
494 |
+
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
|
495 |
+
threshold (`float`, *optional*, defaults to 0.85):
|
496 |
+
The threshold used to binarize the segmentation masks.
|
497 |
+
"""
|
498 |
+
# we filter empty queries and detection below threshold
|
499 |
+
scores, labels = score_labels_from_class_probabilities(out_logits)
|
500 |
+
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
|
501 |
+
|
502 |
+
cur_scores = scores[keep]
|
503 |
+
cur_classes = labels[keep]
|
504 |
+
cur_boxes = center_to_corners_format(boxes[keep])
|
505 |
+
|
506 |
+
if len(cur_boxes) != len(cur_classes):
|
507 |
+
raise ValueError("Not as many boxes as there are classes")
|
508 |
+
|
509 |
+
cur_masks = masks[keep]
|
510 |
+
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
|
511 |
+
cur_masks = safe_squeeze(cur_masks, 1)
|
512 |
+
b, h, w = cur_masks.shape
|
513 |
+
|
514 |
+
# It may be that we have several predicted masks for the same stuff class.
|
515 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
516 |
+
cur_masks = cur_masks.reshape(b, -1)
|
517 |
+
stuff_equiv_classes = defaultdict(list)
|
518 |
+
for k, label in enumerate(cur_classes):
|
519 |
+
if not is_thing_map[label]:
|
520 |
+
stuff_equiv_classes[label].append(k)
|
521 |
+
|
522 |
+
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
|
523 |
+
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
|
524 |
+
|
525 |
+
# We filter out any mask that is too small
|
526 |
+
if cur_classes.size() > 0:
|
527 |
+
# We know filter empty masks as long as we find some
|
528 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
529 |
+
while filtered_small.any():
|
530 |
+
cur_masks = cur_masks[~filtered_small]
|
531 |
+
cur_scores = cur_scores[~filtered_small]
|
532 |
+
cur_classes = cur_classes[~filtered_small]
|
533 |
+
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
|
534 |
+
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
|
535 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
536 |
+
else:
|
537 |
+
cur_classes = np.ones((1, 1), dtype=np.int64)
|
538 |
+
|
539 |
+
segments_info = [
|
540 |
+
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
|
541 |
+
for i, (cat, a) in enumerate(zip(cur_classes, area))
|
542 |
+
]
|
543 |
+
del cur_classes
|
544 |
+
|
545 |
+
with io.BytesIO() as out:
|
546 |
+
PIL.Image.fromarray(seg_img).save(out, format="PNG")
|
547 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
548 |
+
|
549 |
+
return predictions
|
550 |
+
|
551 |
+
|
552 |
+
# Copied from transformers.models.detr.image_processing_detr.resize_annotation
|
553 |
+
def resize_annotation(
|
554 |
+
annotation: Dict[str, Any],
|
555 |
+
orig_size: Tuple[int, int],
|
556 |
+
target_size: Tuple[int, int],
|
557 |
+
threshold: float = 0.5,
|
558 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
559 |
+
):
|
560 |
+
"""
|
561 |
+
Resizes an annotation to a target size.
|
562 |
+
|
563 |
+
Args:
|
564 |
+
annotation (`Dict[str, Any]`):
|
565 |
+
The annotation dictionary.
|
566 |
+
orig_size (`Tuple[int, int]`):
|
567 |
+
The original size of the input image.
|
568 |
+
target_size (`Tuple[int, int]`):
|
569 |
+
The target size of the image, as returned by the preprocessing `resize` step.
|
570 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
571 |
+
The threshold used to binarize the segmentation masks.
|
572 |
+
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
|
573 |
+
The resampling filter to use when resizing the masks.
|
574 |
+
"""
|
575 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
|
576 |
+
ratio_height, ratio_width = ratios
|
577 |
+
|
578 |
+
new_annotation = {}
|
579 |
+
new_annotation["size"] = target_size
|
580 |
+
|
581 |
+
for key, value in annotation.items():
|
582 |
+
if key == "boxes":
|
583 |
+
boxes = value
|
584 |
+
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
|
585 |
+
new_annotation["boxes"] = scaled_boxes
|
586 |
+
elif key == "area":
|
587 |
+
area = value
|
588 |
+
scaled_area = area * (ratio_width * ratio_height)
|
589 |
+
new_annotation["area"] = scaled_area
|
590 |
+
elif key == "masks":
|
591 |
+
masks = value[:, None]
|
592 |
+
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
|
593 |
+
masks = masks.astype(np.float32)
|
594 |
+
masks = masks[:, 0] > threshold
|
595 |
+
new_annotation["masks"] = masks
|
596 |
+
elif key == "size":
|
597 |
+
new_annotation["size"] = target_size
|
598 |
+
else:
|
599 |
+
new_annotation[key] = value
|
600 |
+
|
601 |
+
return new_annotation
|
602 |
+
|
603 |
+
|
604 |
+
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
|
605 |
+
def binary_mask_to_rle(mask):
|
606 |
+
"""
|
607 |
+
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
|
608 |
+
|
609 |
+
Args:
|
610 |
+
mask (`torch.Tensor` or `numpy.array`):
|
611 |
+
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
|
612 |
+
segment_id or class_id.
|
613 |
+
Returns:
|
614 |
+
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
|
615 |
+
format.
|
616 |
+
"""
|
617 |
+
if is_torch_tensor(mask):
|
618 |
+
mask = mask.numpy()
|
619 |
+
|
620 |
+
pixels = mask.flatten()
|
621 |
+
pixels = np.concatenate([[0], pixels, [0]])
|
622 |
+
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
|
623 |
+
runs[1::2] -= runs[::2]
|
624 |
+
return list(runs)
|
625 |
+
|
626 |
+
|
627 |
+
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
|
628 |
+
def convert_segmentation_to_rle(segmentation):
|
629 |
+
"""
|
630 |
+
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
segmentation (`torch.Tensor` or `numpy.array`):
|
634 |
+
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
|
635 |
+
Returns:
|
636 |
+
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
|
637 |
+
"""
|
638 |
+
segment_ids = torch.unique(segmentation)
|
639 |
+
|
640 |
+
run_length_encodings = []
|
641 |
+
for idx in segment_ids:
|
642 |
+
mask = torch.where(segmentation == idx, 1, 0)
|
643 |
+
rle = binary_mask_to_rle(mask)
|
644 |
+
run_length_encodings.append(rle)
|
645 |
+
|
646 |
+
return run_length_encodings
|
647 |
+
|
648 |
+
|
649 |
+
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
|
650 |
+
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
|
651 |
+
"""
|
652 |
+
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
|
653 |
+
`labels`.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
masks (`torch.Tensor`):
|
657 |
+
A tensor of shape `(num_queries, height, width)`.
|
658 |
+
scores (`torch.Tensor`):
|
659 |
+
A tensor of shape `(num_queries)`.
|
660 |
+
labels (`torch.Tensor`):
|
661 |
+
A tensor of shape `(num_queries)`.
|
662 |
+
object_mask_threshold (`float`):
|
663 |
+
A number between 0 and 1 used to binarize the masks.
|
664 |
+
Raises:
|
665 |
+
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
|
666 |
+
Returns:
|
667 |
+
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
|
668 |
+
< `object_mask_threshold`.
|
669 |
+
"""
|
670 |
+
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
|
671 |
+
raise ValueError("mask, scores and labels must have the same shape!")
|
672 |
+
|
673 |
+
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
|
674 |
+
|
675 |
+
return masks[to_keep], scores[to_keep], labels[to_keep]
|
676 |
+
|
677 |
+
|
678 |
+
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
|
679 |
+
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
|
680 |
+
# Get the mask associated with the k class
|
681 |
+
mask_k = mask_labels == k
|
682 |
+
mask_k_area = mask_k.sum()
|
683 |
+
|
684 |
+
# Compute the area of all the stuff in query k
|
685 |
+
original_area = (mask_probs[k] >= mask_threshold).sum()
|
686 |
+
mask_exists = mask_k_area > 0 and original_area > 0
|
687 |
+
|
688 |
+
# Eliminate disconnected tiny segments
|
689 |
+
if mask_exists:
|
690 |
+
area_ratio = mask_k_area / original_area
|
691 |
+
if not area_ratio.item() > overlap_mask_area_threshold:
|
692 |
+
mask_exists = False
|
693 |
+
|
694 |
+
return mask_exists, mask_k
|
695 |
+
|
696 |
+
|
697 |
+
# Copied from transformers.models.detr.image_processing_detr.compute_segments
|
698 |
+
def compute_segments(
|
699 |
+
mask_probs,
|
700 |
+
pred_scores,
|
701 |
+
pred_labels,
|
702 |
+
mask_threshold: float = 0.5,
|
703 |
+
overlap_mask_area_threshold: float = 0.8,
|
704 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
705 |
+
target_size: Tuple[int, int] = None,
|
706 |
+
):
|
707 |
+
height = mask_probs.shape[1] if target_size is None else target_size[0]
|
708 |
+
width = mask_probs.shape[2] if target_size is None else target_size[1]
|
709 |
+
|
710 |
+
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
|
711 |
+
segments: List[Dict] = []
|
712 |
+
|
713 |
+
if target_size is not None:
|
714 |
+
mask_probs = nn.functional.interpolate(
|
715 |
+
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
|
716 |
+
)[0]
|
717 |
+
|
718 |
+
current_segment_id = 0
|
719 |
+
|
720 |
+
# Weigh each mask by its prediction score
|
721 |
+
mask_probs *= pred_scores.view(-1, 1, 1)
|
722 |
+
mask_labels = mask_probs.argmax(0) # [height, width]
|
723 |
+
|
724 |
+
# Keep track of instances of each class
|
725 |
+
stuff_memory_list: Dict[str, int] = {}
|
726 |
+
for k in range(pred_labels.shape[0]):
|
727 |
+
pred_class = pred_labels[k].item()
|
728 |
+
should_fuse = pred_class in label_ids_to_fuse
|
729 |
+
|
730 |
+
# Check if mask exists and large enough to be a segment
|
731 |
+
mask_exists, mask_k = check_segment_validity(
|
732 |
+
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
|
733 |
+
)
|
734 |
+
|
735 |
+
if mask_exists:
|
736 |
+
if pred_class in stuff_memory_list:
|
737 |
+
current_segment_id = stuff_memory_list[pred_class]
|
738 |
+
else:
|
739 |
+
current_segment_id += 1
|
740 |
+
|
741 |
+
# Add current object segment to final segmentation map
|
742 |
+
segmentation[mask_k] = current_segment_id
|
743 |
+
segment_score = round(pred_scores[k].item(), 6)
|
744 |
+
segments.append(
|
745 |
+
{
|
746 |
+
"id": current_segment_id,
|
747 |
+
"label_id": pred_class,
|
748 |
+
"was_fused": should_fuse,
|
749 |
+
"score": segment_score,
|
750 |
+
}
|
751 |
+
)
|
752 |
+
if should_fuse:
|
753 |
+
stuff_memory_list[pred_class] = current_segment_id
|
754 |
+
|
755 |
+
return segmentation, segments
|
756 |
+
|
757 |
+
|
758 |
+
class DeformableDetrImageProcessor(BaseImageProcessor):
|
759 |
+
r"""
|
760 |
+
Constructs a Deformable DETR image processor.
|
761 |
+
|
762 |
+
Args:
|
763 |
+
format (`str`, *optional*, defaults to `"coco_detection"`):
|
764 |
+
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
|
765 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
766 |
+
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
|
767 |
+
overridden by the `do_resize` parameter in the `preprocess` method.
|
768 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
|
769 |
+
Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
|
770 |
+
the `preprocess` method.
|
771 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
772 |
+
Resampling filter to use if resizing the image.
|
773 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
774 |
+
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
775 |
+
`do_rescale` parameter in the `preprocess` method.
|
776 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
777 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
778 |
+
`preprocess` method.
|
779 |
+
do_normalize:
|
780 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
781 |
+
`preprocess` method.
|
782 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
|
783 |
+
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
|
784 |
+
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
785 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
|
786 |
+
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
|
787 |
+
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
788 |
+
do_convert_annotations (`bool`, *optional*, defaults to `True`):
|
789 |
+
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
|
790 |
+
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
|
791 |
+
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
|
792 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
793 |
+
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
|
794 |
+
method. If `True` will pad the images in the batch to the largest height and width in the batch.
|
795 |
+
Padding will be applied to the bottom and right of the image with zeros.
|
796 |
+
"""
|
797 |
+
|
798 |
+
model_input_names = ["pixel_values", "pixel_mask"]
|
799 |
+
|
800 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
|
801 |
+
def __init__(
|
802 |
+
self,
|
803 |
+
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
|
804 |
+
do_resize: bool = True,
|
805 |
+
size: Dict[str, int] = None,
|
806 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
807 |
+
do_rescale: bool = True,
|
808 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
809 |
+
do_normalize: bool = True,
|
810 |
+
image_mean: Union[float, List[float]] = None,
|
811 |
+
image_std: Union[float, List[float]] = None,
|
812 |
+
do_convert_annotations: Optional[bool] = None,
|
813 |
+
do_pad: bool = True,
|
814 |
+
**kwargs,
|
815 |
+
) -> None:
|
816 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
817 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
818 |
+
|
819 |
+
if "max_size" in kwargs:
|
820 |
+
logger.warning_once(
|
821 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
822 |
+
"Please specify in `size['longest_edge'] instead`.",
|
823 |
+
)
|
824 |
+
max_size = kwargs.pop("max_size")
|
825 |
+
else:
|
826 |
+
max_size = None if size is None else 1333
|
827 |
+
|
828 |
+
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
|
829 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
830 |
+
|
831 |
+
# Backwards compatibility
|
832 |
+
if do_convert_annotations is None:
|
833 |
+
do_convert_annotations = do_normalize
|
834 |
+
|
835 |
+
super().__init__(**kwargs)
|
836 |
+
self.format = format
|
837 |
+
self.do_resize = do_resize
|
838 |
+
self.size = size
|
839 |
+
self.resample = resample
|
840 |
+
self.do_rescale = do_rescale
|
841 |
+
self.rescale_factor = rescale_factor
|
842 |
+
self.do_normalize = do_normalize
|
843 |
+
self.do_convert_annotations = do_convert_annotations
|
844 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
845 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
846 |
+
self.do_pad = do_pad
|
847 |
+
self._valid_processor_keys = [
|
848 |
+
"images",
|
849 |
+
"annotations",
|
850 |
+
"return_segmentation_masks",
|
851 |
+
"masks_path",
|
852 |
+
"do_resize",
|
853 |
+
"size",
|
854 |
+
"resample",
|
855 |
+
"do_rescale",
|
856 |
+
"rescale_factor",
|
857 |
+
"do_normalize",
|
858 |
+
"do_convert_annotations",
|
859 |
+
"image_mean",
|
860 |
+
"image_std",
|
861 |
+
"do_pad",
|
862 |
+
"format",
|
863 |
+
"return_tensors",
|
864 |
+
"data_format",
|
865 |
+
"input_data_format",
|
866 |
+
]
|
867 |
+
|
868 |
+
@classmethod
|
869 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->DeformableDetr
|
870 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
871 |
+
"""
|
872 |
+
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
|
873 |
+
created using from_dict and kwargs e.g. `DeformableDetrImageProcessor.from_pretrained(checkpoint, size=600,
|
874 |
+
max_size=800)`
|
875 |
+
"""
|
876 |
+
image_processor_dict = image_processor_dict.copy()
|
877 |
+
if "max_size" in kwargs:
|
878 |
+
image_processor_dict["max_size"] = kwargs.pop("max_size")
|
879 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
880 |
+
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
|
881 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
882 |
+
|
883 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DeformableDetr
|
884 |
+
def prepare_annotation(
|
885 |
+
self,
|
886 |
+
image: np.ndarray,
|
887 |
+
target: Dict,
|
888 |
+
format: Optional[AnnotationFormat] = None,
|
889 |
+
return_segmentation_masks: bool = None,
|
890 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
891 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
892 |
+
) -> Dict:
|
893 |
+
"""
|
894 |
+
Prepare an annotation for feeding into DeformableDetr model.
|
895 |
+
"""
|
896 |
+
format = format if format is not None else self.format
|
897 |
+
|
898 |
+
if format == AnnotationFormat.COCO_DETECTION:
|
899 |
+
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
|
900 |
+
target = prepare_coco_detection_annotation(
|
901 |
+
image, target, return_segmentation_masks, input_data_format=input_data_format
|
902 |
+
)
|
903 |
+
elif format == AnnotationFormat.COCO_PANOPTIC:
|
904 |
+
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
|
905 |
+
target = prepare_coco_panoptic_annotation(
|
906 |
+
image,
|
907 |
+
target,
|
908 |
+
masks_path=masks_path,
|
909 |
+
return_masks=return_segmentation_masks,
|
910 |
+
input_data_format=input_data_format,
|
911 |
+
)
|
912 |
+
else:
|
913 |
+
raise ValueError(f"Format {format} is not supported.")
|
914 |
+
return target
|
915 |
+
|
916 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
917 |
+
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
918 |
+
logger.warning_once(
|
919 |
+
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
920 |
+
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
921 |
+
"does not return the image anymore.",
|
922 |
+
)
|
923 |
+
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
924 |
+
return image, target
|
925 |
+
|
926 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
927 |
+
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
928 |
+
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
929 |
+
return convert_coco_poly_to_mask(*args, **kwargs)
|
930 |
+
|
931 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
|
932 |
+
def prepare_coco_detection(self, *args, **kwargs):
|
933 |
+
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
934 |
+
return prepare_coco_detection_annotation(*args, **kwargs)
|
935 |
+
|
936 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
937 |
+
def prepare_coco_panoptic(self, *args, **kwargs):
|
938 |
+
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
939 |
+
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
940 |
+
|
941 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
942 |
+
def resize(
|
943 |
+
self,
|
944 |
+
image: np.ndarray,
|
945 |
+
size: Dict[str, int],
|
946 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
947 |
+
data_format: Optional[ChannelDimension] = None,
|
948 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
949 |
+
**kwargs,
|
950 |
+
) -> np.ndarray:
|
951 |
+
"""
|
952 |
+
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
|
953 |
+
int, smaller edge of the image will be matched to this number.
|
954 |
+
|
955 |
+
Args:
|
956 |
+
image (`np.ndarray`):
|
957 |
+
Image to resize.
|
958 |
+
size (`Dict[str, int]`):
|
959 |
+
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
|
960 |
+
`height` and `width`.
|
961 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
962 |
+
Resampling filter to use if resizing the image.
|
963 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
964 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
965 |
+
image is used.
|
966 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
967 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
968 |
+
"""
|
969 |
+
if "max_size" in kwargs:
|
970 |
+
logger.warning_once(
|
971 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
972 |
+
"Please specify in `size['longest_edge'] instead`.",
|
973 |
+
)
|
974 |
+
max_size = kwargs.pop("max_size")
|
975 |
+
else:
|
976 |
+
max_size = None
|
977 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
978 |
+
if "shortest_edge" in size and "longest_edge" in size:
|
979 |
+
size = get_resize_output_image_size(
|
980 |
+
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
|
981 |
+
)
|
982 |
+
elif "height" in size and "width" in size:
|
983 |
+
size = (size["height"], size["width"])
|
984 |
+
else:
|
985 |
+
raise ValueError(
|
986 |
+
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
|
987 |
+
f" {size.keys()}."
|
988 |
+
)
|
989 |
+
image = resize(
|
990 |
+
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
991 |
+
)
|
992 |
+
return image
|
993 |
+
|
994 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
|
995 |
+
def resize_annotation(
|
996 |
+
self,
|
997 |
+
annotation,
|
998 |
+
orig_size,
|
999 |
+
size,
|
1000 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
1001 |
+
) -> Dict:
|
1002 |
+
"""
|
1003 |
+
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
|
1004 |
+
to this number.
|
1005 |
+
"""
|
1006 |
+
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
|
1007 |
+
|
1008 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
|
1009 |
+
def rescale(
|
1010 |
+
self,
|
1011 |
+
image: np.ndarray,
|
1012 |
+
rescale_factor: float,
|
1013 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
1014 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1015 |
+
) -> np.ndarray:
|
1016 |
+
"""
|
1017 |
+
Rescale the image by the given factor. image = image * rescale_factor.
|
1018 |
+
|
1019 |
+
Args:
|
1020 |
+
image (`np.ndarray`):
|
1021 |
+
Image to rescale.
|
1022 |
+
rescale_factor (`float`):
|
1023 |
+
The value to use for rescaling.
|
1024 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1025 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
1026 |
+
image is used. Can be one of:
|
1027 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1028 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1029 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
1030 |
+
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
|
1031 |
+
one of:
|
1032 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1033 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1034 |
+
"""
|
1035 |
+
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
1036 |
+
|
1037 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
|
1038 |
+
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
1039 |
+
"""
|
1040 |
+
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
|
1041 |
+
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
|
1042 |
+
"""
|
1043 |
+
return normalize_annotation(annotation, image_size=image_size)
|
1044 |
+
|
1045 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
|
1046 |
+
def _update_annotation_for_padded_image(
|
1047 |
+
self,
|
1048 |
+
annotation: Dict,
|
1049 |
+
input_image_size: Tuple[int, int],
|
1050 |
+
output_image_size: Tuple[int, int],
|
1051 |
+
padding,
|
1052 |
+
update_bboxes,
|
1053 |
+
) -> Dict:
|
1054 |
+
"""
|
1055 |
+
Update the annotation for a padded image.
|
1056 |
+
"""
|
1057 |
+
new_annotation = {}
|
1058 |
+
new_annotation["size"] = output_image_size
|
1059 |
+
|
1060 |
+
for key, value in annotation.items():
|
1061 |
+
if key == "masks":
|
1062 |
+
masks = value
|
1063 |
+
masks = pad(
|
1064 |
+
masks,
|
1065 |
+
padding,
|
1066 |
+
mode=PaddingMode.CONSTANT,
|
1067 |
+
constant_values=0,
|
1068 |
+
input_data_format=ChannelDimension.FIRST,
|
1069 |
+
)
|
1070 |
+
masks = safe_squeeze(masks, 1)
|
1071 |
+
new_annotation["masks"] = masks
|
1072 |
+
elif key == "boxes" and update_bboxes:
|
1073 |
+
boxes = value
|
1074 |
+
boxes *= np.asarray(
|
1075 |
+
[
|
1076 |
+
input_image_size[1] / output_image_size[1],
|
1077 |
+
input_image_size[0] / output_image_size[0],
|
1078 |
+
input_image_size[1] / output_image_size[1],
|
1079 |
+
input_image_size[0] / output_image_size[0],
|
1080 |
+
]
|
1081 |
+
)
|
1082 |
+
new_annotation["boxes"] = boxes
|
1083 |
+
elif key == "size":
|
1084 |
+
new_annotation["size"] = output_image_size
|
1085 |
+
else:
|
1086 |
+
new_annotation[key] = value
|
1087 |
+
return new_annotation
|
1088 |
+
|
1089 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
|
1090 |
+
def _pad_image(
|
1091 |
+
self,
|
1092 |
+
image: np.ndarray,
|
1093 |
+
output_size: Tuple[int, int],
|
1094 |
+
annotation: Optional[Dict[str, Any]] = None,
|
1095 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1096 |
+
data_format: Optional[ChannelDimension] = None,
|
1097 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1098 |
+
update_bboxes: bool = True,
|
1099 |
+
) -> np.ndarray:
|
1100 |
+
"""
|
1101 |
+
Pad an image with zeros to the given size.
|
1102 |
+
"""
|
1103 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
1104 |
+
output_height, output_width = output_size
|
1105 |
+
|
1106 |
+
pad_bottom = output_height - input_height
|
1107 |
+
pad_right = output_width - input_width
|
1108 |
+
padding = ((0, pad_bottom), (0, pad_right))
|
1109 |
+
padded_image = pad(
|
1110 |
+
image,
|
1111 |
+
padding,
|
1112 |
+
mode=PaddingMode.CONSTANT,
|
1113 |
+
constant_values=constant_values,
|
1114 |
+
data_format=data_format,
|
1115 |
+
input_data_format=input_data_format,
|
1116 |
+
)
|
1117 |
+
if annotation is not None:
|
1118 |
+
annotation = self._update_annotation_for_padded_image(
|
1119 |
+
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
|
1120 |
+
)
|
1121 |
+
return padded_image, annotation
|
1122 |
+
|
1123 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
|
1124 |
+
def pad(
|
1125 |
+
self,
|
1126 |
+
images: List[np.ndarray],
|
1127 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1128 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1129 |
+
return_pixel_mask: bool = True,
|
1130 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1131 |
+
data_format: Optional[ChannelDimension] = None,
|
1132 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1133 |
+
update_bboxes: bool = True,
|
1134 |
+
) -> BatchFeature:
|
1135 |
+
"""
|
1136 |
+
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
|
1137 |
+
in the batch and optionally returns their corresponding pixel mask.
|
1138 |
+
|
1139 |
+
Args:
|
1140 |
+
images (List[`np.ndarray`]):
|
1141 |
+
Images to pad.
|
1142 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1143 |
+
Annotations to transform according to the padding that is applied to the images.
|
1144 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
1145 |
+
The value to use for the padding if `mode` is `"constant"`.
|
1146 |
+
return_pixel_mask (`bool`, *optional*, defaults to `True`):
|
1147 |
+
Whether to return a pixel mask.
|
1148 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
1149 |
+
The type of tensors to return. Can be one of:
|
1150 |
+
- Unset: Return a list of `np.ndarray`.
|
1151 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
1152 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
1153 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
1154 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
1155 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1156 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
1157 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1158 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1159 |
+
update_bboxes (`bool`, *optional*, defaults to `True`):
|
1160 |
+
Whether to update the bounding boxes in the annotations to match the padded images. If the
|
1161 |
+
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
|
1162 |
+
format, the bounding boxes will not be updated.
|
1163 |
+
"""
|
1164 |
+
pad_size = get_max_height_width(images, input_data_format=input_data_format)
|
1165 |
+
|
1166 |
+
annotation_list = annotations if annotations is not None else [None] * len(images)
|
1167 |
+
padded_images = []
|
1168 |
+
padded_annotations = []
|
1169 |
+
for image, annotation in zip(images, annotation_list):
|
1170 |
+
padded_image, padded_annotation = self._pad_image(
|
1171 |
+
image,
|
1172 |
+
pad_size,
|
1173 |
+
annotation,
|
1174 |
+
constant_values=constant_values,
|
1175 |
+
data_format=data_format,
|
1176 |
+
input_data_format=input_data_format,
|
1177 |
+
update_bboxes=update_bboxes,
|
1178 |
+
)
|
1179 |
+
padded_images.append(padded_image)
|
1180 |
+
padded_annotations.append(padded_annotation)
|
1181 |
+
|
1182 |
+
data = {"pixel_values": padded_images}
|
1183 |
+
|
1184 |
+
if return_pixel_mask:
|
1185 |
+
masks = [
|
1186 |
+
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
|
1187 |
+
for image in images
|
1188 |
+
]
|
1189 |
+
data["pixel_mask"] = masks
|
1190 |
+
|
1191 |
+
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
|
1192 |
+
|
1193 |
+
if annotations is not None:
|
1194 |
+
encoded_inputs["labels"] = [
|
1195 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
|
1196 |
+
]
|
1197 |
+
|
1198 |
+
return encoded_inputs
|
1199 |
+
|
1200 |
+
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
|
1201 |
+
def preprocess(
|
1202 |
+
self,
|
1203 |
+
images: ImageInput,
|
1204 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1205 |
+
return_segmentation_masks: bool = None,
|
1206 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
1207 |
+
do_resize: Optional[bool] = None,
|
1208 |
+
size: Optional[Dict[str, int]] = None,
|
1209 |
+
resample=None, # PILImageResampling
|
1210 |
+
do_rescale: Optional[bool] = None,
|
1211 |
+
rescale_factor: Optional[Union[int, float]] = None,
|
1212 |
+
do_normalize: Optional[bool] = None,
|
1213 |
+
do_convert_annotations: Optional[bool] = None,
|
1214 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
1215 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
1216 |
+
do_pad: Optional[bool] = None,
|
1217 |
+
format: Optional[Union[str, AnnotationFormat]] = None,
|
1218 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
1219 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
1220 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1221 |
+
**kwargs,
|
1222 |
+
) -> BatchFeature:
|
1223 |
+
"""
|
1224 |
+
Preprocess an image or a batch of images so that it can be used by the model.
|
1225 |
+
|
1226 |
+
Args:
|
1227 |
+
images (`ImageInput`):
|
1228 |
+
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
|
1229 |
+
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
1230 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1231 |
+
List of annotations associated with the image or batch of images. If annotation is for object
|
1232 |
+
detection, the annotations should be a dictionary with the following keys:
|
1233 |
+
- "image_id" (`int`): The image id.
|
1234 |
+
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
|
1235 |
+
dictionary. An image can have no annotations, in which case the list should be empty.
|
1236 |
+
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
|
1237 |
+
- "image_id" (`int`): The image id.
|
1238 |
+
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
|
1239 |
+
An image can have no segments, in which case the list should be empty.
|
1240 |
+
- "file_name" (`str`): The file name of the image.
|
1241 |
+
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
|
1242 |
+
Whether to return segmentation masks.
|
1243 |
+
masks_path (`str` or `pathlib.Path`, *optional*):
|
1244 |
+
Path to the directory containing the segmentation masks.
|
1245 |
+
do_resize (`bool`, *optional*, defaults to self.do_resize):
|
1246 |
+
Whether to resize the image.
|
1247 |
+
size (`Dict[str, int]`, *optional*, defaults to self.size):
|
1248 |
+
Size of the image after resizing.
|
1249 |
+
resample (`PILImageResampling`, *optional*, defaults to self.resample):
|
1250 |
+
Resampling filter to use when resizing the image.
|
1251 |
+
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
|
1252 |
+
Whether to rescale the image.
|
1253 |
+
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
|
1254 |
+
Rescale factor to use when rescaling the image.
|
1255 |
+
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
|
1256 |
+
Whether to normalize the image.
|
1257 |
+
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
|
1258 |
+
Whether to convert the annotations to the format expected by the model. Converts the bounding
|
1259 |
+
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
|
1260 |
+
and in relative coordinates.
|
1261 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
|
1262 |
+
Mean to use when normalizing the image.
|
1263 |
+
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
|
1264 |
+
Standard deviation to use when normalizing the image.
|
1265 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
1266 |
+
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
1267 |
+
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
1268 |
+
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
|
1269 |
+
Format of the annotations.
|
1270 |
+
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
|
1271 |
+
Type of tensors to return. If `None`, will return the list of images.
|
1272 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
1273 |
+
The channel dimension format for the output image. Can be one of:
|
1274 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1275 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1276 |
+
- Unset: Use the channel dimension format of the input image.
|
1277 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1278 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
1279 |
+
from the input image. Can be one of:
|
1280 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1281 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1282 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
1283 |
+
"""
|
1284 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
1285 |
+
logger.warning_once(
|
1286 |
+
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
|
1287 |
+
"use `do_pad` instead."
|
1288 |
+
)
|
1289 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
1290 |
+
|
1291 |
+
max_size = None
|
1292 |
+
if "max_size" in kwargs:
|
1293 |
+
logger.warning_once(
|
1294 |
+
"The `max_size` argument is deprecated and will be removed in a future version, use"
|
1295 |
+
" `size['longest_edge']` instead."
|
1296 |
+
)
|
1297 |
+
size = kwargs.pop("max_size")
|
1298 |
+
|
1299 |
+
do_resize = self.do_resize if do_resize is None else do_resize
|
1300 |
+
size = self.size if size is None else size
|
1301 |
+
size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
|
1302 |
+
resample = self.resample if resample is None else resample
|
1303 |
+
do_rescale = self.do_rescale if do_rescale is None else do_rescale
|
1304 |
+
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
|
1305 |
+
do_normalize = self.do_normalize if do_normalize is None else do_normalize
|
1306 |
+
image_mean = self.image_mean if image_mean is None else image_mean
|
1307 |
+
image_std = self.image_std if image_std is None else image_std
|
1308 |
+
do_convert_annotations = (
|
1309 |
+
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
|
1310 |
+
)
|
1311 |
+
do_pad = self.do_pad if do_pad is None else do_pad
|
1312 |
+
format = self.format if format is None else format
|
1313 |
+
|
1314 |
+
images = make_list_of_images(images)
|
1315 |
+
|
1316 |
+
if not valid_images(images):
|
1317 |
+
raise ValueError(
|
1318 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
1319 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
1320 |
+
)
|
1321 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
1322 |
+
|
1323 |
+
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
1324 |
+
validate_preprocess_arguments(
|
1325 |
+
do_rescale=do_rescale,
|
1326 |
+
rescale_factor=rescale_factor,
|
1327 |
+
do_normalize=do_normalize,
|
1328 |
+
image_mean=image_mean,
|
1329 |
+
image_std=image_std,
|
1330 |
+
do_resize=do_resize,
|
1331 |
+
size=size,
|
1332 |
+
resample=resample,
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
if annotations is not None and isinstance(annotations, dict):
|
1336 |
+
annotations = [annotations]
|
1337 |
+
|
1338 |
+
if annotations is not None and len(images) != len(annotations):
|
1339 |
+
raise ValueError(
|
1340 |
+
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
format = AnnotationFormat(format)
|
1344 |
+
if annotations is not None:
|
1345 |
+
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
|
1346 |
+
|
1347 |
+
if (
|
1348 |
+
masks_path is not None
|
1349 |
+
and format == AnnotationFormat.COCO_PANOPTIC
|
1350 |
+
and not isinstance(masks_path, (pathlib.Path, str))
|
1351 |
+
):
|
1352 |
+
raise ValueError(
|
1353 |
+
"The path to the directory containing the mask PNG files should be provided as a"
|
1354 |
+
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
# All transformations expect numpy arrays
|
1358 |
+
images = [to_numpy_array(image) for image in images]
|
1359 |
+
|
1360 |
+
if is_scaled_image(images[0]) and do_rescale:
|
1361 |
+
logger.warning_once(
|
1362 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
1363 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
if input_data_format is None:
|
1367 |
+
# We assume that all images have the same channel dimension format.
|
1368 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
1369 |
+
|
1370 |
+
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
|
1371 |
+
if annotations is not None:
|
1372 |
+
prepared_images = []
|
1373 |
+
prepared_annotations = []
|
1374 |
+
for image, target in zip(images, annotations):
|
1375 |
+
target = self.prepare_annotation(
|
1376 |
+
image,
|
1377 |
+
target,
|
1378 |
+
format,
|
1379 |
+
return_segmentation_masks=return_segmentation_masks,
|
1380 |
+
masks_path=masks_path,
|
1381 |
+
input_data_format=input_data_format,
|
1382 |
+
)
|
1383 |
+
prepared_images.append(image)
|
1384 |
+
prepared_annotations.append(target)
|
1385 |
+
images = prepared_images
|
1386 |
+
annotations = prepared_annotations
|
1387 |
+
del prepared_images, prepared_annotations
|
1388 |
+
|
1389 |
+
# transformations
|
1390 |
+
if do_resize:
|
1391 |
+
if annotations is not None:
|
1392 |
+
resized_images, resized_annotations = [], []
|
1393 |
+
for image, target in zip(images, annotations):
|
1394 |
+
orig_size = get_image_size(image, input_data_format)
|
1395 |
+
resized_image = self.resize(
|
1396 |
+
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
|
1397 |
+
)
|
1398 |
+
resized_annotation = self.resize_annotation(
|
1399 |
+
target, orig_size, get_image_size(resized_image, input_data_format)
|
1400 |
+
)
|
1401 |
+
resized_images.append(resized_image)
|
1402 |
+
resized_annotations.append(resized_annotation)
|
1403 |
+
images = resized_images
|
1404 |
+
annotations = resized_annotations
|
1405 |
+
del resized_images, resized_annotations
|
1406 |
+
else:
|
1407 |
+
images = [
|
1408 |
+
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
|
1409 |
+
for image in images
|
1410 |
+
]
|
1411 |
+
|
1412 |
+
if do_rescale:
|
1413 |
+
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
|
1414 |
+
|
1415 |
+
if do_normalize:
|
1416 |
+
images = [
|
1417 |
+
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
|
1418 |
+
]
|
1419 |
+
|
1420 |
+
if do_convert_annotations and annotations is not None:
|
1421 |
+
annotations = [
|
1422 |
+
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
|
1423 |
+
for annotation, image in zip(annotations, images)
|
1424 |
+
]
|
1425 |
+
|
1426 |
+
if do_pad:
|
1427 |
+
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
|
1428 |
+
encoded_inputs = self.pad(
|
1429 |
+
images,
|
1430 |
+
annotations=annotations,
|
1431 |
+
return_pixel_mask=True,
|
1432 |
+
data_format=data_format,
|
1433 |
+
input_data_format=input_data_format,
|
1434 |
+
update_bboxes=do_convert_annotations,
|
1435 |
+
return_tensors=return_tensors,
|
1436 |
+
)
|
1437 |
+
else:
|
1438 |
+
images = [
|
1439 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
1440 |
+
for image in images
|
1441 |
+
]
|
1442 |
+
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
1443 |
+
if annotations is not None:
|
1444 |
+
encoded_inputs["labels"] = [
|
1445 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
|
1446 |
+
]
|
1447 |
+
|
1448 |
+
return encoded_inputs
|
1449 |
+
|
1450 |
+
# POSTPROCESSING METHODS - TODO: add support for other frameworks
|
1451 |
+
def post_process(self, outputs, target_sizes):
|
1452 |
+
"""
|
1453 |
+
Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
|
1454 |
+
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1455 |
+
|
1456 |
+
Args:
|
1457 |
+
outputs ([`DeformableDetrObjectDetectionOutput`]):
|
1458 |
+
Raw outputs of the model.
|
1459 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1460 |
+
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
|
1461 |
+
original image size (before any data augmentation). For visualization, this should be the image size
|
1462 |
+
after data augment, but before padding.
|
1463 |
+
Returns:
|
1464 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1465 |
+
in the batch as predicted by the model.
|
1466 |
+
"""
|
1467 |
+
logger.warning_once(
|
1468 |
+
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
|
1469 |
+
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
|
1470 |
+
)
|
1471 |
+
|
1472 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1473 |
+
|
1474 |
+
if len(out_logits) != len(target_sizes):
|
1475 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
1476 |
+
if target_sizes.shape[1] != 2:
|
1477 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
1478 |
+
|
1479 |
+
prob = out_logits.sigmoid()
|
1480 |
+
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
|
1481 |
+
scores = topk_values
|
1482 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1483 |
+
labels = topk_indexes % out_logits.shape[2]
|
1484 |
+
boxes = center_to_corners_format(out_bbox)
|
1485 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1486 |
+
|
1487 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1488 |
+
img_h, img_w = target_sizes.unbind(1)
|
1489 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
1490 |
+
boxes = boxes * scale_fct[:, None, :]
|
1491 |
+
|
1492 |
+
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
|
1493 |
+
|
1494 |
+
return results
|
1495 |
+
|
1496 |
+
def post_process_object_detection(
|
1497 |
+
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
|
1498 |
+
):
|
1499 |
+
"""
|
1500 |
+
Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
|
1501 |
+
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1502 |
+
|
1503 |
+
Args:
|
1504 |
+
outputs ([`DetrObjectDetectionOutput`]):
|
1505 |
+
Raw outputs of the model.
|
1506 |
+
threshold (`float`, *optional*):
|
1507 |
+
Score threshold to keep object detection predictions.
|
1508 |
+
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
|
1509 |
+
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
|
1510 |
+
(height, width) of each image in the batch. If left to None, predictions will not be resized.
|
1511 |
+
top_k (`int`, *optional*, defaults to 100):
|
1512 |
+
Keep only top k bounding boxes before filtering by thresholding.
|
1513 |
+
|
1514 |
+
Returns:
|
1515 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1516 |
+
in the batch as predicted by the model.
|
1517 |
+
"""
|
1518 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1519 |
+
|
1520 |
+
if target_sizes is not None:
|
1521 |
+
if len(out_logits) != len(target_sizes):
|
1522 |
+
raise ValueError(
|
1523 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
prob = out_logits.sigmoid()
|
1527 |
+
prob = prob.view(out_logits.shape[0], -1)
|
1528 |
+
k_value = min(top_k, prob.size(1))
|
1529 |
+
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
|
1530 |
+
scores = topk_values
|
1531 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
|
1532 |
+
labels = topk_indexes % out_logits.shape[2]
|
1533 |
+
boxes = center_to_corners_format(out_bbox)
|
1534 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
1535 |
+
|
1536 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1537 |
+
if target_sizes is not None:
|
1538 |
+
if isinstance(target_sizes, List):
|
1539 |
+
img_h = torch.Tensor([i[0] for i in target_sizes])
|
1540 |
+
img_w = torch.Tensor([i[1] for i in target_sizes])
|
1541 |
+
else:
|
1542 |
+
img_h, img_w = target_sizes.unbind(1)
|
1543 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
1544 |
+
boxes = boxes * scale_fct[:, None, :]
|
1545 |
+
|
1546 |
+
results = []
|
1547 |
+
for s, l, b in zip(scores, labels, boxes):
|
1548 |
+
score = s[s > threshold]
|
1549 |
+
label = l[s > threshold]
|
1550 |
+
box = b[s > threshold]
|
1551 |
+
results.append({"scores": score, "labels": label, "boxes": box})
|
1552 |
+
|
1553 |
+
return results
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/load_custom.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Loading of Deformable DETR's CUDA kernels"""
|
16 |
+
import os
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
|
20 |
+
def load_cuda_kernels():
|
21 |
+
from torch.utils.cpp_extension import load
|
22 |
+
|
23 |
+
root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deformable_detr"
|
24 |
+
src_files = [
|
25 |
+
root / filename
|
26 |
+
for filename in [
|
27 |
+
"vision.cpp",
|
28 |
+
os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
|
29 |
+
os.path.join("cuda", "ms_deform_attn_cuda.cu"),
|
30 |
+
]
|
31 |
+
]
|
32 |
+
|
33 |
+
load(
|
34 |
+
"MultiScaleDeformableAttention",
|
35 |
+
src_files,
|
36 |
+
with_cuda=True,
|
37 |
+
extra_include_paths=[str(root)],
|
38 |
+
extra_cflags=["-DWITH_CUDA=1"],
|
39 |
+
extra_cuda_cflags=[
|
40 |
+
"-DCUDA_HAS_FP16=1",
|
41 |
+
"-D__CUDA_NO_HALF_OPERATORS__",
|
42 |
+
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
43 |
+
"-D__CUDA_NO_HALF2_OPERATORS__",
|
44 |
+
],
|
45 |
+
)
|
46 |
+
|
47 |
+
import MultiScaleDeformableAttention as MSDA
|
48 |
+
|
49 |
+
return MSDA
|
venv/lib/python3.10/site-packages/transformers/models/deformable_detr/modeling_deformable_detr.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/models/jamba/__init__.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_jamba": ["JambaConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_jamba"] = [
|
31 |
+
"JambaForCausalLM",
|
32 |
+
"JambaForSequenceClassification",
|
33 |
+
"JambaModel",
|
34 |
+
"JambaPreTrainedModel",
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
from .configuration_jamba import JambaConfig
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
from .modeling_jamba import (
|
48 |
+
JambaForCausalLM,
|
49 |
+
JambaForSequenceClassification,
|
50 |
+
JambaModel,
|
51 |
+
JambaPreTrainedModel,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
else:
|
56 |
+
import sys
|
57 |
+
|
58 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (843 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/configuration_jamba.cpython-310.pyc
ADDED
Binary file (9.97 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/modeling_jamba.cpython-310.pyc
ADDED
Binary file (51.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/jamba/configuration_jamba.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Jamba model configuration"""
|
16 |
+
import math
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class JambaConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
|
28 |
+
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model.
|
30 |
+
|
31 |
+
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
39 |
+
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`JambaModel`]
|
41 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
43 |
+
model has a output word embedding layer.
|
44 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
|
69 |
+
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
|
70 |
+
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
|
71 |
+
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
|
72 |
+
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
|
73 |
+
significantly.
|
74 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
76 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
77 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
78 |
+
The aux loss factor for the total loss.
|
79 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
80 |
+
The id of the padding token.
|
81 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
82 |
+
The id of the "beginning-of-sequence" token.
|
83 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
84 |
+
The id of the "end-of-sequence" token.
|
85 |
+
sliding_window (`int`, *optional*):
|
86 |
+
Sliding window attention window size. If not specified, will default to `None`.
|
87 |
+
max_position_embeddings (`int`, *optional*, defaults to 262144):
|
88 |
+
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
|
89 |
+
used with. It can be used with longer sequences, but performance may degrade.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
93 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
94 |
+
parameter
|
95 |
+
num_experts (`int`, *optional*, defaults to 16):
|
96 |
+
Number of experts per Sparse MLP layer.
|
97 |
+
expert_layer_period (`int`, *optional*, defaults to 2):
|
98 |
+
Once in this many layers, we will have an expert layer
|
99 |
+
expert_layer_offset (`int`, *optional*, defaults to 1):
|
100 |
+
The first layer index that contains an expert mlp layer
|
101 |
+
attn_layer_period (`int`, *optional*, defaults to 8):
|
102 |
+
Once in this many layers, we will have a vanilla attention layer
|
103 |
+
attn_layer_offset (`int`, *optional*, defaults to 4):
|
104 |
+
The first layer index that contains a vanilla attention mlp layer
|
105 |
+
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
106 |
+
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
|
107 |
+
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
|
108 |
+
`True` and kernels are not available
|
109 |
+
mamba_d_state (`int`, *optional*, defaults to 16):
|
110 |
+
The dimension the mamba state space latents
|
111 |
+
mamba_d_conv (`int`, *optional*, defaults to 4):
|
112 |
+
The size of the mamba convolution kernel
|
113 |
+
mamba_expand (`int`, *optional*, defaults to 2):
|
114 |
+
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
|
115 |
+
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
116 |
+
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
117 |
+
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
118 |
+
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
119 |
+
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
120 |
+
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
|
121 |
+
|
122 |
+
"""
|
123 |
+
|
124 |
+
model_type = "jamba"
|
125 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
126 |
+
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
vocab_size=65536,
|
130 |
+
tie_word_embeddings=False,
|
131 |
+
hidden_size=4096,
|
132 |
+
intermediate_size=14336,
|
133 |
+
num_hidden_layers=32,
|
134 |
+
num_attention_heads=32,
|
135 |
+
num_key_value_heads=8,
|
136 |
+
hidden_act="silu",
|
137 |
+
initializer_range=0.02,
|
138 |
+
rms_norm_eps=1e-6,
|
139 |
+
use_cache=True,
|
140 |
+
num_logits_to_keep=1,
|
141 |
+
output_router_logits=False,
|
142 |
+
router_aux_loss_coef=0.001,
|
143 |
+
pad_token_id=0,
|
144 |
+
bos_token_id=1,
|
145 |
+
eos_token_id=2,
|
146 |
+
sliding_window=None,
|
147 |
+
max_position_embeddings=262144,
|
148 |
+
attention_dropout=0.0,
|
149 |
+
num_experts_per_tok=2,
|
150 |
+
num_experts=16,
|
151 |
+
expert_layer_period=2,
|
152 |
+
expert_layer_offset=1,
|
153 |
+
attn_layer_period=8,
|
154 |
+
attn_layer_offset=4,
|
155 |
+
use_mamba_kernels=True,
|
156 |
+
mamba_d_state=16,
|
157 |
+
mamba_d_conv=4,
|
158 |
+
mamba_expand=2,
|
159 |
+
mamba_dt_rank="auto",
|
160 |
+
mamba_conv_bias=True,
|
161 |
+
mamba_proj_bias=False,
|
162 |
+
**kwargs,
|
163 |
+
):
|
164 |
+
self.vocab_size = vocab_size
|
165 |
+
self.tie_word_embeddings = tie_word_embeddings
|
166 |
+
self.hidden_size = hidden_size
|
167 |
+
self.intermediate_size = intermediate_size
|
168 |
+
self.num_hidden_layers = num_hidden_layers
|
169 |
+
self.num_attention_heads = num_attention_heads
|
170 |
+
self.sliding_window = sliding_window
|
171 |
+
self.max_position_embeddings = max_position_embeddings
|
172 |
+
self.attention_dropout = attention_dropout
|
173 |
+
|
174 |
+
# for backward compatibility
|
175 |
+
if num_key_value_heads is None:
|
176 |
+
num_key_value_heads = num_attention_heads
|
177 |
+
|
178 |
+
self.num_key_value_heads = num_key_value_heads
|
179 |
+
self.hidden_act = hidden_act
|
180 |
+
self.initializer_range = initializer_range
|
181 |
+
self.rms_norm_eps = rms_norm_eps
|
182 |
+
|
183 |
+
self.use_cache = use_cache
|
184 |
+
self.num_logits_to_keep = num_logits_to_keep
|
185 |
+
self.output_router_logits = output_router_logits
|
186 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
187 |
+
|
188 |
+
self.num_experts_per_tok = num_experts_per_tok
|
189 |
+
self.num_experts = num_experts
|
190 |
+
self.expert_layer_period = expert_layer_period
|
191 |
+
self.expert_layer_offset = expert_layer_offset
|
192 |
+
self.attn_layer_period = attn_layer_period
|
193 |
+
self.attn_layer_offset = attn_layer_offset
|
194 |
+
|
195 |
+
self.use_mamba_kernels = use_mamba_kernels
|
196 |
+
self.mamba_d_state = mamba_d_state
|
197 |
+
self.mamba_d_conv = mamba_d_conv
|
198 |
+
self.mamba_expand = mamba_expand
|
199 |
+
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
200 |
+
self.mamba_conv_bias = mamba_conv_bias
|
201 |
+
self.mamba_proj_bias = mamba_proj_bias
|
202 |
+
|
203 |
+
super().__init__(
|
204 |
+
pad_token_id=pad_token_id,
|
205 |
+
bos_token_id=bos_token_id,
|
206 |
+
eos_token_id=eos_token_id,
|
207 |
+
tie_word_embeddings=tie_word_embeddings,
|
208 |
+
**kwargs,
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def layers_block_type(self):
|
213 |
+
return [
|
214 |
+
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba"
|
215 |
+
for i in range(self.num_hidden_layers)
|
216 |
+
]
|
217 |
+
|
218 |
+
@property
|
219 |
+
def layers_num_experts(self):
|
220 |
+
return [
|
221 |
+
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1
|
222 |
+
for i in range(self.num_hidden_layers)
|
223 |
+
]
|
venv/lib/python3.10/site-packages/transformers/models/jamba/modeling_jamba.py
ADDED
@@ -0,0 +1,1882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Jamba model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from ...activations import ACT2FN
|
32 |
+
from ...cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
|
33 |
+
from ...modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
)
|
36 |
+
from ...modeling_outputs import (
|
37 |
+
MoeCausalLMOutputWithPast,
|
38 |
+
MoeModelOutputWithPast,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
)
|
41 |
+
from ...modeling_utils import PreTrainedModel
|
42 |
+
from ...utils import (
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
is_flash_attn_greater_or_equal_2_10,
|
46 |
+
logging,
|
47 |
+
replace_return_docstrings,
|
48 |
+
)
|
49 |
+
from ...utils.import_utils import (
|
50 |
+
is_causal_conv1d_available,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_mamba_ssm_available,
|
53 |
+
)
|
54 |
+
from .configuration_jamba import JambaConfig
|
55 |
+
|
56 |
+
|
57 |
+
if is_flash_attn_2_available():
|
58 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
59 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
60 |
+
|
61 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
62 |
+
|
63 |
+
|
64 |
+
if is_mamba_ssm_available():
|
65 |
+
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
66 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
67 |
+
else:
|
68 |
+
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
69 |
+
|
70 |
+
if is_causal_conv1d_available():
|
71 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
72 |
+
else:
|
73 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
74 |
+
|
75 |
+
is_fast_path_available = all(
|
76 |
+
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
logger = logging.get_logger(__name__)
|
81 |
+
|
82 |
+
_CONFIG_FOR_DOC = "JambaConfig"
|
83 |
+
|
84 |
+
|
85 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
|
86 |
+
def load_balancing_loss_func(
|
87 |
+
router_logits: torch.Tensor,
|
88 |
+
num_experts: torch.Tensor = None,
|
89 |
+
top_k=2,
|
90 |
+
attention_mask: Optional[torch.Tensor] = None,
|
91 |
+
) -> float:
|
92 |
+
r"""
|
93 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
94 |
+
|
95 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
96 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
97 |
+
experts is too unbalanced.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
router_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
101 |
+
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
|
102 |
+
shape [batch_size X sequence_length, num_experts].
|
103 |
+
attention_mask (`torch.Tensor`, None):
|
104 |
+
The attention_mask used in forward function
|
105 |
+
shape [batch_size X sequence_length] if not None.
|
106 |
+
num_experts (`int`, *optional*):
|
107 |
+
Number of experts
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
The auxiliary loss.
|
111 |
+
"""
|
112 |
+
if router_logits is None or not isinstance(router_logits, tuple):
|
113 |
+
return 0
|
114 |
+
|
115 |
+
if isinstance(router_logits, tuple):
|
116 |
+
compute_device = router_logits[0].device
|
117 |
+
concatenated_router_logits = torch.cat(
|
118 |
+
[layer_router.to(compute_device) for layer_router in router_logits], dim=0
|
119 |
+
)
|
120 |
+
|
121 |
+
routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
|
122 |
+
|
123 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
124 |
+
|
125 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
126 |
+
|
127 |
+
if attention_mask is None:
|
128 |
+
# Compute the percentage of tokens routed to each experts
|
129 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
130 |
+
|
131 |
+
# Compute the average probability of routing to these experts
|
132 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
133 |
+
else:
|
134 |
+
batch_size, sequence_length = attention_mask.shape
|
135 |
+
num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
|
136 |
+
|
137 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
138 |
+
expert_attention_mask = (
|
139 |
+
attention_mask[None, :, :, None, None]
|
140 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
141 |
+
.reshape(-1, top_k, num_experts)
|
142 |
+
.to(compute_device)
|
143 |
+
)
|
144 |
+
|
145 |
+
# Compute the percentage of tokens routed to each experts
|
146 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
147 |
+
expert_attention_mask, dim=0
|
148 |
+
)
|
149 |
+
|
150 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
151 |
+
router_per_expert_attention_mask = (
|
152 |
+
attention_mask[None, :, :, None]
|
153 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
154 |
+
.reshape(-1, num_experts)
|
155 |
+
.to(compute_device)
|
156 |
+
)
|
157 |
+
|
158 |
+
# Compute the average probability of routing to these experts
|
159 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
160 |
+
router_per_expert_attention_mask, dim=0
|
161 |
+
)
|
162 |
+
|
163 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
164 |
+
return overall_loss * num_experts
|
165 |
+
|
166 |
+
|
167 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
168 |
+
def _get_unpad_data(attention_mask):
|
169 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
170 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
171 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
172 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
173 |
+
return (
|
174 |
+
indices,
|
175 |
+
cu_seqlens,
|
176 |
+
max_seqlen_in_batch,
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
|
181 |
+
class JambaRMSNorm(nn.Module):
|
182 |
+
def __init__(self, hidden_size, eps=1e-6):
|
183 |
+
"""
|
184 |
+
JambaRMSNorm is equivalent to T5LayerNorm
|
185 |
+
"""
|
186 |
+
super().__init__()
|
187 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
188 |
+
self.variance_epsilon = eps
|
189 |
+
|
190 |
+
def forward(self, hidden_states):
|
191 |
+
input_dtype = hidden_states.dtype
|
192 |
+
hidden_states = hidden_states.to(torch.float32)
|
193 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
194 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
195 |
+
return self.weight * hidden_states.to(input_dtype)
|
196 |
+
|
197 |
+
|
198 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
199 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
200 |
+
"""
|
201 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
202 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
203 |
+
"""
|
204 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
205 |
+
if n_rep == 1:
|
206 |
+
return hidden_states
|
207 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
208 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
209 |
+
|
210 |
+
|
211 |
+
class HybridMambaAttentionDynamicCache(DynamicCache):
|
212 |
+
"""
|
213 |
+
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
|
214 |
+
(which has a constant shape regardless of seq_len).
|
215 |
+
|
216 |
+
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
|
217 |
+
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
|
218 |
+
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
|
219 |
+
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
|
220 |
+
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
|
221 |
+
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
|
222 |
+
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
|
226 |
+
self.dtype = dtype
|
227 |
+
self.layers_block_type = config.layers_block_type
|
228 |
+
self.has_previous_state = False # only used by mamba
|
229 |
+
intermediate_size = config.mamba_expand * config.hidden_size
|
230 |
+
ssm_state_size = config.mamba_d_state
|
231 |
+
conv_kernel_size = config.mamba_d_conv
|
232 |
+
self.conv_states = []
|
233 |
+
self.ssm_states = []
|
234 |
+
for i in range(config.num_hidden_layers):
|
235 |
+
if self.layers_block_type[i] == "mamba":
|
236 |
+
self.conv_states += [
|
237 |
+
torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
238 |
+
]
|
239 |
+
self.ssm_states += [
|
240 |
+
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
241 |
+
]
|
242 |
+
else:
|
243 |
+
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
|
244 |
+
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
|
245 |
+
|
246 |
+
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
247 |
+
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
|
248 |
+
|
249 |
+
def update(
|
250 |
+
self,
|
251 |
+
key_states: torch.Tensor,
|
252 |
+
value_states: torch.Tensor,
|
253 |
+
layer_idx: int,
|
254 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
255 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
256 |
+
# Update the cache
|
257 |
+
if self.key_cache[layer_idx].shape[-1] == 0:
|
258 |
+
self.key_cache[layer_idx] = key_states
|
259 |
+
self.value_cache[layer_idx] = value_states
|
260 |
+
else:
|
261 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
|
262 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
|
263 |
+
|
264 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
265 |
+
|
266 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
267 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
268 |
+
for layer_idx in range(len(self.key_cache)):
|
269 |
+
device = self.key_cache[layer_idx].device
|
270 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
271 |
+
device = self.value_cache[layer_idx].device
|
272 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
273 |
+
|
274 |
+
device = self.conv_states[layer_idx].device
|
275 |
+
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
|
276 |
+
device = self.ssm_states[layer_idx].device
|
277 |
+
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
|
278 |
+
|
279 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
280 |
+
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
|
281 |
+
|
282 |
+
@classmethod
|
283 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
284 |
+
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
|
285 |
+
|
286 |
+
|
287 |
+
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
|
288 |
+
class JambaAttention(nn.Module):
|
289 |
+
"""
|
290 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
291 |
+
and "Generating Long Sequences with Sparse Transformers".
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
|
295 |
+
super().__init__()
|
296 |
+
self.config = config
|
297 |
+
self.layer_idx = layer_idx
|
298 |
+
if layer_idx is None:
|
299 |
+
logger.warning_once(
|
300 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
301 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
302 |
+
"when creating this class."
|
303 |
+
)
|
304 |
+
|
305 |
+
self.hidden_size = config.hidden_size
|
306 |
+
self.num_heads = config.num_attention_heads
|
307 |
+
self.head_dim = self.hidden_size // self.num_heads
|
308 |
+
self.num_key_value_heads = config.num_key_value_heads
|
309 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
310 |
+
self.is_causal = True
|
311 |
+
self.attention_dropout = config.attention_dropout
|
312 |
+
|
313 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
314 |
+
raise ValueError(
|
315 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
316 |
+
f" and `num_heads`: {self.num_heads})."
|
317 |
+
)
|
318 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
319 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
320 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
321 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
hidden_states: torch.Tensor,
|
326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
327 |
+
position_ids: Optional[torch.LongTensor] = None,
|
328 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
329 |
+
output_attentions: bool = False,
|
330 |
+
use_cache: bool = False,
|
331 |
+
cache_position: Optional[torch.LongTensor] = None,
|
332 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
333 |
+
bsz, q_len, _ = hidden_states.size()
|
334 |
+
|
335 |
+
query_states = self.q_proj(hidden_states)
|
336 |
+
key_states = self.k_proj(hidden_states)
|
337 |
+
value_states = self.v_proj(hidden_states)
|
338 |
+
|
339 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
340 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
341 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
342 |
+
|
343 |
+
if past_key_value is not None:
|
344 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
345 |
+
|
346 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
347 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
348 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
349 |
+
|
350 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
351 |
+
|
352 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
353 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
354 |
+
attn_weights = attn_weights + causal_mask
|
355 |
+
|
356 |
+
# upcast attention to fp32
|
357 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
358 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
359 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
360 |
+
|
361 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
362 |
+
raise ValueError(
|
363 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
364 |
+
f" {attn_output.size()}"
|
365 |
+
)
|
366 |
+
|
367 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
368 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
369 |
+
|
370 |
+
attn_output = self.o_proj(attn_output)
|
371 |
+
|
372 |
+
if not output_attentions:
|
373 |
+
attn_weights = None
|
374 |
+
|
375 |
+
return attn_output, attn_weights, past_key_value
|
376 |
+
|
377 |
+
|
378 |
+
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
|
379 |
+
class JambaFlashAttention2(JambaAttention):
|
380 |
+
"""
|
381 |
+
Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
|
382 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
383 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
384 |
+
"""
|
385 |
+
|
386 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
387 |
+
def __init__(self, *args, **kwargs):
|
388 |
+
super().__init__(*args, **kwargs)
|
389 |
+
|
390 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
391 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
392 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
393 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
394 |
+
|
395 |
+
def forward(
|
396 |
+
self,
|
397 |
+
hidden_states: torch.Tensor,
|
398 |
+
attention_mask: Optional[torch.Tensor] = None,
|
399 |
+
position_ids: Optional[torch.LongTensor] = None,
|
400 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
401 |
+
output_attentions: bool = False,
|
402 |
+
use_cache: bool = False,
|
403 |
+
cache_position: Optional[torch.LongTensor] = None,
|
404 |
+
**kwargs,
|
405 |
+
):
|
406 |
+
bsz, q_len, _ = hidden_states.size()
|
407 |
+
|
408 |
+
query_states = self.q_proj(hidden_states)
|
409 |
+
key_states = self.k_proj(hidden_states)
|
410 |
+
value_states = self.v_proj(hidden_states)
|
411 |
+
|
412 |
+
# Flash attention requires the input to have the shape
|
413 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
414 |
+
# therefore we just need to keep the original shape
|
415 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
416 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
417 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
418 |
+
|
419 |
+
kv_seq_len = cache_position[-1]
|
420 |
+
|
421 |
+
use_sliding_windows = (
|
422 |
+
_flash_supports_window_size
|
423 |
+
and getattr(self.config, "sliding_window", None) is not None
|
424 |
+
and kv_seq_len > self.config.sliding_window
|
425 |
+
)
|
426 |
+
|
427 |
+
if not _flash_supports_window_size:
|
428 |
+
logger.warning_once(
|
429 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
430 |
+
" make sure to upgrade flash-attn library."
|
431 |
+
)
|
432 |
+
|
433 |
+
if past_key_value is not None:
|
434 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
435 |
+
cache_has_contents = cache_position[0] > 0
|
436 |
+
if (
|
437 |
+
getattr(self.config, "sliding_window", None) is not None
|
438 |
+
and kv_seq_len > self.config.sliding_window
|
439 |
+
and cache_has_contents
|
440 |
+
):
|
441 |
+
slicing_tokens = 1 - self.config.sliding_window
|
442 |
+
|
443 |
+
past_key = past_key_value[self.layer_idx][0]
|
444 |
+
past_value = past_key_value[self.layer_idx][1]
|
445 |
+
|
446 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
447 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
448 |
+
|
449 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
450 |
+
raise ValueError(
|
451 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
452 |
+
f" {past_key.shape}"
|
453 |
+
)
|
454 |
+
|
455 |
+
if attention_mask is not None:
|
456 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
457 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
458 |
+
|
459 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
460 |
+
|
461 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
462 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
463 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
464 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
465 |
+
|
466 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
467 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
468 |
+
# cast them back in float16 just to be sure everything works as expected.
|
469 |
+
input_dtype = query_states.dtype
|
470 |
+
if input_dtype == torch.float32:
|
471 |
+
if torch.is_autocast_enabled():
|
472 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
473 |
+
# Handle the case where the model is quantized
|
474 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
475 |
+
target_dtype = self.config._pre_quantization_dtype
|
476 |
+
else:
|
477 |
+
target_dtype = self.q_proj.weight.dtype
|
478 |
+
|
479 |
+
logger.warning_once(
|
480 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
481 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
482 |
+
f" {target_dtype}."
|
483 |
+
)
|
484 |
+
|
485 |
+
query_states = query_states.to(target_dtype)
|
486 |
+
key_states = key_states.to(target_dtype)
|
487 |
+
value_states = value_states.to(target_dtype)
|
488 |
+
|
489 |
+
# Reashape to the expected shape for Flash Attention
|
490 |
+
query_states = query_states.transpose(1, 2)
|
491 |
+
key_states = key_states.transpose(1, 2)
|
492 |
+
value_states = value_states.transpose(1, 2)
|
493 |
+
|
494 |
+
attn_output = self._flash_attention_forward(
|
495 |
+
query_states,
|
496 |
+
key_states,
|
497 |
+
value_states,
|
498 |
+
attention_mask,
|
499 |
+
q_len,
|
500 |
+
dropout=dropout_rate,
|
501 |
+
use_sliding_windows=use_sliding_windows,
|
502 |
+
)
|
503 |
+
|
504 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
505 |
+
attn_output = self.o_proj(attn_output)
|
506 |
+
|
507 |
+
if not output_attentions:
|
508 |
+
attn_weights = None
|
509 |
+
|
510 |
+
return attn_output, attn_weights, past_key_value
|
511 |
+
|
512 |
+
def _flash_attention_forward(
|
513 |
+
self,
|
514 |
+
query_states,
|
515 |
+
key_states,
|
516 |
+
value_states,
|
517 |
+
attention_mask,
|
518 |
+
query_length,
|
519 |
+
dropout=0.0,
|
520 |
+
softmax_scale=None,
|
521 |
+
use_sliding_windows=False,
|
522 |
+
):
|
523 |
+
"""
|
524 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
525 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
query_states (`torch.Tensor`):
|
529 |
+
Input query states to be passed to Flash Attention API
|
530 |
+
key_states (`torch.Tensor`):
|
531 |
+
Input key states to be passed to Flash Attention API
|
532 |
+
value_states (`torch.Tensor`):
|
533 |
+
Input value states to be passed to Flash Attention API
|
534 |
+
attention_mask (`torch.Tensor`):
|
535 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
536 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
537 |
+
dropout (`float`, *optional*):
|
538 |
+
Attention dropout
|
539 |
+
softmax_scale (`float`, *optional*):
|
540 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
541 |
+
use_sliding_windows (`bool`, *optional*):
|
542 |
+
Whether to activate sliding window attention.
|
543 |
+
"""
|
544 |
+
if not self._flash_attn_uses_top_left_mask:
|
545 |
+
causal = self.is_causal
|
546 |
+
else:
|
547 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
548 |
+
causal = self.is_causal and query_length != 1
|
549 |
+
|
550 |
+
# Contains at least one padding token in the sequence
|
551 |
+
if attention_mask is not None:
|
552 |
+
batch_size = query_states.shape[0]
|
553 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
554 |
+
query_states, key_states, value_states, attention_mask, query_length
|
555 |
+
)
|
556 |
+
|
557 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
558 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
559 |
+
|
560 |
+
if not use_sliding_windows:
|
561 |
+
attn_output_unpad = flash_attn_varlen_func(
|
562 |
+
query_states,
|
563 |
+
key_states,
|
564 |
+
value_states,
|
565 |
+
cu_seqlens_q=cu_seqlens_q,
|
566 |
+
cu_seqlens_k=cu_seqlens_k,
|
567 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
568 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
569 |
+
dropout_p=dropout,
|
570 |
+
softmax_scale=softmax_scale,
|
571 |
+
causal=causal,
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
attn_output_unpad = flash_attn_varlen_func(
|
575 |
+
query_states,
|
576 |
+
key_states,
|
577 |
+
value_states,
|
578 |
+
cu_seqlens_q=cu_seqlens_q,
|
579 |
+
cu_seqlens_k=cu_seqlens_k,
|
580 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
581 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
582 |
+
dropout_p=dropout,
|
583 |
+
softmax_scale=softmax_scale,
|
584 |
+
causal=causal,
|
585 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
586 |
+
)
|
587 |
+
|
588 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
589 |
+
else:
|
590 |
+
if not use_sliding_windows:
|
591 |
+
attn_output = flash_attn_func(
|
592 |
+
query_states,
|
593 |
+
key_states,
|
594 |
+
value_states,
|
595 |
+
dropout,
|
596 |
+
softmax_scale=softmax_scale,
|
597 |
+
causal=causal,
|
598 |
+
)
|
599 |
+
else:
|
600 |
+
attn_output = flash_attn_func(
|
601 |
+
query_states,
|
602 |
+
key_states,
|
603 |
+
value_states,
|
604 |
+
dropout,
|
605 |
+
softmax_scale=softmax_scale,
|
606 |
+
causal=causal,
|
607 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
608 |
+
)
|
609 |
+
|
610 |
+
return attn_output
|
611 |
+
|
612 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralFlashAttention2._upad_input
|
613 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
614 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
615 |
+
|
616 |
+
# On the first iteration we need to properly re-create the padding mask
|
617 |
+
# by slicing it on the proper place
|
618 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
619 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
620 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
621 |
+
|
622 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
623 |
+
|
624 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
625 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
626 |
+
|
627 |
+
if query_length == kv_seq_len:
|
628 |
+
query_layer = index_first_axis(
|
629 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
630 |
+
)
|
631 |
+
cu_seqlens_q = cu_seqlens_k
|
632 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
633 |
+
indices_q = indices_k
|
634 |
+
elif query_length == 1:
|
635 |
+
max_seqlen_in_batch_q = 1
|
636 |
+
cu_seqlens_q = torch.arange(
|
637 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
638 |
+
) # There is a memcpy here, that is very bad.
|
639 |
+
indices_q = cu_seqlens_q[:-1]
|
640 |
+
query_layer = query_layer.squeeze(1)
|
641 |
+
else:
|
642 |
+
# The -q_len: slice assumes left padding.
|
643 |
+
attention_mask = attention_mask[:, -query_length:]
|
644 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
645 |
+
|
646 |
+
return (
|
647 |
+
query_layer,
|
648 |
+
key_layer,
|
649 |
+
value_layer,
|
650 |
+
indices_q,
|
651 |
+
(cu_seqlens_q, cu_seqlens_k),
|
652 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
653 |
+
)
|
654 |
+
|
655 |
+
|
656 |
+
# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
|
657 |
+
class JambaSdpaAttention(JambaAttention):
|
658 |
+
"""
|
659 |
+
Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
660 |
+
`JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
661 |
+
SDPA API.
|
662 |
+
"""
|
663 |
+
|
664 |
+
# Adapted from JambaAttention.forward
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
hidden_states: torch.Tensor,
|
668 |
+
attention_mask: Optional[torch.Tensor] = None,
|
669 |
+
position_ids: Optional[torch.LongTensor] = None,
|
670 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
671 |
+
output_attentions: bool = False,
|
672 |
+
use_cache: bool = False,
|
673 |
+
cache_position: Optional[torch.LongTensor] = None,
|
674 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
675 |
+
if output_attentions:
|
676 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
677 |
+
logger.warning_once(
|
678 |
+
"JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
679 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
680 |
+
)
|
681 |
+
return super().forward(
|
682 |
+
hidden_states=hidden_states,
|
683 |
+
attention_mask=attention_mask,
|
684 |
+
position_ids=position_ids,
|
685 |
+
past_key_value=past_key_value,
|
686 |
+
output_attentions=output_attentions,
|
687 |
+
use_cache=use_cache,
|
688 |
+
)
|
689 |
+
|
690 |
+
bsz, q_len, _ = hidden_states.size()
|
691 |
+
|
692 |
+
query_states = self.q_proj(hidden_states)
|
693 |
+
key_states = self.k_proj(hidden_states)
|
694 |
+
value_states = self.v_proj(hidden_states)
|
695 |
+
|
696 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
697 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
698 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
699 |
+
|
700 |
+
if past_key_value is not None:
|
701 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
702 |
+
|
703 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
704 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
705 |
+
|
706 |
+
causal_mask = attention_mask
|
707 |
+
if attention_mask is not None:
|
708 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
709 |
+
|
710 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
711 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
712 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
713 |
+
query_states = query_states.contiguous()
|
714 |
+
key_states = key_states.contiguous()
|
715 |
+
value_states = value_states.contiguous()
|
716 |
+
|
717 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
718 |
+
query_states,
|
719 |
+
key_states,
|
720 |
+
value_states,
|
721 |
+
attn_mask=causal_mask,
|
722 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
723 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
724 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
725 |
+
)
|
726 |
+
|
727 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
728 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
729 |
+
|
730 |
+
attn_output = self.o_proj(attn_output)
|
731 |
+
|
732 |
+
return attn_output, None, past_key_value
|
733 |
+
|
734 |
+
|
735 |
+
JAMBA_ATTENTION_CLASSES = {
|
736 |
+
"eager": JambaAttention,
|
737 |
+
"flash_attention_2": JambaFlashAttention2,
|
738 |
+
"sdpa": JambaSdpaAttention,
|
739 |
+
}
|
740 |
+
|
741 |
+
|
742 |
+
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
|
743 |
+
class JambaMambaMixer(nn.Module):
|
744 |
+
"""
|
745 |
+
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
746 |
+
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
747 |
+
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
748 |
+
and is why Mamba is called **selective** state spaces)
|
749 |
+
"""
|
750 |
+
|
751 |
+
def __init__(self, config: JambaConfig, layer_idx):
|
752 |
+
super().__init__()
|
753 |
+
self.config = config
|
754 |
+
self.layer_idx = layer_idx
|
755 |
+
self.hidden_size = config.hidden_size
|
756 |
+
self.ssm_state_size = config.mamba_d_state
|
757 |
+
self.conv_kernel_size = config.mamba_d_conv
|
758 |
+
self.intermediate_size = config.mamba_expand * config.hidden_size
|
759 |
+
self.time_step_rank = config.mamba_dt_rank
|
760 |
+
self.use_conv_bias = config.mamba_conv_bias
|
761 |
+
self.use_bias = config.mamba_proj_bias
|
762 |
+
self.conv1d = nn.Conv1d(
|
763 |
+
in_channels=self.intermediate_size,
|
764 |
+
out_channels=self.intermediate_size,
|
765 |
+
bias=self.use_conv_bias,
|
766 |
+
kernel_size=self.conv_kernel_size,
|
767 |
+
groups=self.intermediate_size,
|
768 |
+
padding=self.conv_kernel_size - 1,
|
769 |
+
)
|
770 |
+
|
771 |
+
self.activation = config.hidden_act
|
772 |
+
self.act = ACT2FN[config.hidden_act]
|
773 |
+
|
774 |
+
self.use_fast_kernels = config.use_mamba_kernels
|
775 |
+
|
776 |
+
# projection of the input hidden states
|
777 |
+
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
|
778 |
+
# selective projection used to make dt, B and C input dependant
|
779 |
+
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
780 |
+
# time step projection (discretization)
|
781 |
+
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
782 |
+
|
783 |
+
# S4D real initialization. These are not discretized!
|
784 |
+
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
785 |
+
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
786 |
+
A = A.expand(self.intermediate_size, -1).contiguous()
|
787 |
+
|
788 |
+
self.A_log = nn.Parameter(torch.log(A))
|
789 |
+
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
790 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
|
791 |
+
|
792 |
+
self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
|
793 |
+
self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
|
794 |
+
self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
|
795 |
+
|
796 |
+
if not is_fast_path_available:
|
797 |
+
logger.warning_once(
|
798 |
+
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
799 |
+
" is None. To install follow https://github.com/state-spaces/mamba/#installation and"
|
800 |
+
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
|
801 |
+
)
|
802 |
+
|
803 |
+
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None):
|
804 |
+
batch_size, seq_len, _ = hidden_states.shape
|
805 |
+
use_precomputed_states = (
|
806 |
+
cache_params is not None
|
807 |
+
and cache_params.has_previous_state
|
808 |
+
and seq_len == 1
|
809 |
+
and cache_params.conv_states[self.layer_idx].shape[0]
|
810 |
+
== cache_params.ssm_states[self.layer_idx].shape[0]
|
811 |
+
== batch_size
|
812 |
+
)
|
813 |
+
# 1. Gated MLP's linear projection
|
814 |
+
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
815 |
+
|
816 |
+
# We can't use `mamba_inner_fn` even if in training and without cache params because we have the
|
817 |
+
# inner layernorms which isn't supported by this fused kernel
|
818 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
819 |
+
|
820 |
+
# 2. Convolution sequence transformation
|
821 |
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
822 |
+
if use_precomputed_states:
|
823 |
+
hidden_states = causal_conv1d_update(
|
824 |
+
hidden_states.squeeze(-1),
|
825 |
+
cache_params.conv_states[self.layer_idx],
|
826 |
+
conv_weights,
|
827 |
+
self.conv1d.bias,
|
828 |
+
self.activation,
|
829 |
+
)
|
830 |
+
hidden_states = hidden_states.unsqueeze(-1)
|
831 |
+
else:
|
832 |
+
if cache_params is not None:
|
833 |
+
conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
|
834 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
835 |
+
hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
|
836 |
+
|
837 |
+
# 3. State Space Model sequence transformation
|
838 |
+
# 3.a. input varying initialization of time_step, B and C
|
839 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
840 |
+
time_step, B, C = torch.split(
|
841 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
842 |
+
)
|
843 |
+
|
844 |
+
time_step = self.dt_layernorm(time_step)
|
845 |
+
B = self.b_layernorm(B)
|
846 |
+
C = self.c_layernorm(C)
|
847 |
+
|
848 |
+
# Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
|
849 |
+
# This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
|
850 |
+
# in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
|
851 |
+
# linear layers, and requires to call the forward pass directly.
|
852 |
+
# The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
|
853 |
+
time_proj_bias = self.dt_proj.bias
|
854 |
+
self.dt_proj.bias = None
|
855 |
+
discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
|
856 |
+
self.dt_proj.bias = time_proj_bias
|
857 |
+
|
858 |
+
A = -torch.exp(self.A_log.float())
|
859 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
860 |
+
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
|
861 |
+
if use_precomputed_states:
|
862 |
+
scan_outputs = selective_state_update(
|
863 |
+
cache_params.ssm_states[self.layer_idx],
|
864 |
+
hidden_states[..., 0],
|
865 |
+
discrete_time_step[..., 0],
|
866 |
+
A,
|
867 |
+
B[:, 0],
|
868 |
+
C[:, 0],
|
869 |
+
self.D,
|
870 |
+
gate[..., 0],
|
871 |
+
time_proj_bias,
|
872 |
+
dt_softplus=True,
|
873 |
+
).unsqueeze(-1)
|
874 |
+
else:
|
875 |
+
scan_outputs, ssm_state = selective_scan_fn(
|
876 |
+
hidden_states,
|
877 |
+
discrete_time_step,
|
878 |
+
A,
|
879 |
+
B.transpose(1, 2),
|
880 |
+
C.transpose(1, 2),
|
881 |
+
self.D.float(),
|
882 |
+
gate,
|
883 |
+
time_proj_bias,
|
884 |
+
delta_softplus=True,
|
885 |
+
return_last_state=True,
|
886 |
+
)
|
887 |
+
if ssm_state is not None and cache_params is not None:
|
888 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
889 |
+
|
890 |
+
# 4. Final linear projection
|
891 |
+
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
892 |
+
|
893 |
+
return contextualized_states
|
894 |
+
|
895 |
+
# fmt: off
|
896 |
+
def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None):
|
897 |
+
batch_size, seq_len, _ = input_states.shape
|
898 |
+
dtype = input_states.dtype
|
899 |
+
# 1. Gated MLP's linear projection
|
900 |
+
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
901 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
902 |
+
|
903 |
+
use_cache = isinstance(cache_params,HybridMambaAttentionDynamicCache)
|
904 |
+
# 2. Convolution sequence transformation
|
905 |
+
if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
|
906 |
+
if self.training:
|
907 |
+
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
|
908 |
+
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
909 |
+
else:
|
910 |
+
ssm_state = cache_params.ssm_states[self.layer_idx]
|
911 |
+
|
912 |
+
if cache_params.has_previous_state and seq_len == 1 and \
|
913 |
+
cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
|
914 |
+
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
915 |
+
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
916 |
+
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
917 |
+
cache_params.conv_states[self.layer_idx] = conv_state
|
918 |
+
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
919 |
+
if self.use_conv_bias:
|
920 |
+
hidden_states += self.conv1d.bias
|
921 |
+
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
922 |
+
else:
|
923 |
+
conv_state = nn.functional.pad(
|
924 |
+
hidden_states,
|
925 |
+
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
926 |
+
)
|
927 |
+
cache_params.conv_states[self.layer_idx] = conv_state
|
928 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
929 |
+
else:
|
930 |
+
ssm_state = torch.zeros(
|
931 |
+
(batch_size, self.intermediate_size, self.ssm_state_size),
|
932 |
+
device=hidden_states.device, dtype=dtype
|
933 |
+
)
|
934 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
935 |
+
|
936 |
+
# 3. State Space Model sequence transformation
|
937 |
+
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
938 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
939 |
+
time_step, B, C = torch.split(
|
940 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
941 |
+
)
|
942 |
+
|
943 |
+
time_step = self.dt_layernorm(time_step)
|
944 |
+
B = self.b_layernorm(B)
|
945 |
+
C = self.c_layernorm(C)
|
946 |
+
|
947 |
+
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
948 |
+
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
949 |
+
|
950 |
+
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
951 |
+
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
|
952 |
+
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
|
953 |
+
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
|
954 |
+
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
955 |
+
|
956 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
957 |
+
scan_outputs = []
|
958 |
+
for i in range(seq_len):
|
959 |
+
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
|
960 |
+
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
|
961 |
+
scan_outputs.append(scan_output[:, :, 0])
|
962 |
+
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediade_size, seq_len]
|
963 |
+
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
964 |
+
scan_output = (scan_output * self.act(gate))
|
965 |
+
|
966 |
+
if use_cache:
|
967 |
+
cache_params.ssm_states[self.layer_idx] = ssm_state
|
968 |
+
|
969 |
+
# 4. Final linear projection
|
970 |
+
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
971 |
+
return contextualized_states
|
972 |
+
# fmt: on
|
973 |
+
|
974 |
+
def forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None):
|
975 |
+
if self.use_fast_kernels:
|
976 |
+
if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
|
977 |
+
raise ValueError(
|
978 |
+
"Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
|
979 |
+
)
|
980 |
+
return self.cuda_kernels_forward(hidden_states, cache_params)
|
981 |
+
return self.slow_forward(hidden_states, cache_params)
|
982 |
+
|
983 |
+
|
984 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
|
985 |
+
class JambaMLP(nn.Module):
|
986 |
+
def __init__(self, config):
|
987 |
+
super().__init__()
|
988 |
+
self.config = config
|
989 |
+
self.hidden_size = config.hidden_size
|
990 |
+
self.intermediate_size = config.intermediate_size
|
991 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
992 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
993 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
994 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
995 |
+
|
996 |
+
def forward(self, x):
|
997 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
998 |
+
|
999 |
+
|
1000 |
+
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
|
1001 |
+
class JambaSparseMoeBlock(nn.Module):
|
1002 |
+
"""
|
1003 |
+
This implementation is
|
1004 |
+
strictly equivalent to standard MoE with full capacity (no
|
1005 |
+
dropped tokens). It's faster since it formulates MoE operations
|
1006 |
+
in terms of block-sparse operations to accomodate imbalanced
|
1007 |
+
assignments of tokens to experts, whereas standard MoE either
|
1008 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
1009 |
+
capacity factor to number of experts and thus waste computation
|
1010 |
+
and memory on padding.
|
1011 |
+
"""
|
1012 |
+
|
1013 |
+
def __init__(self, config: JambaConfig):
|
1014 |
+
super().__init__()
|
1015 |
+
self.hidden_dim = config.hidden_size
|
1016 |
+
self.ffn_dim = config.intermediate_size
|
1017 |
+
self.num_experts = config.num_experts
|
1018 |
+
self.top_k = config.num_experts_per_tok
|
1019 |
+
|
1020 |
+
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
1021 |
+
self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
|
1022 |
+
|
1023 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
1024 |
+
""" """
|
1025 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
1026 |
+
|
1027 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
1028 |
+
# router_logits: (batch * sequence_length, n_experts)
|
1029 |
+
router_logits = self.router(hidden_states)
|
1030 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
1031 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
1032 |
+
# we cast back to the input dtype
|
1033 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
1034 |
+
|
1035 |
+
final_hidden_states = torch.zeros(
|
1036 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
# One hot encode the selected experts to create an expert mask
|
1040 |
+
# this will be used to easily index which expert is going to be sollicitated
|
1041 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
1042 |
+
|
1043 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
1044 |
+
for expert_idx in range(self.num_experts):
|
1045 |
+
expert_layer = self.experts[expert_idx]
|
1046 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
1047 |
+
|
1048 |
+
if top_x.shape[0] == 0:
|
1049 |
+
continue
|
1050 |
+
|
1051 |
+
# Index the correct hidden states and compute the expert hidden state for
|
1052 |
+
# the current expert. We need to make sure to multiply the output hidden
|
1053 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
1054 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
1055 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
1056 |
+
|
1057 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
1058 |
+
# the `top_x` tensor here.
|
1059 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
1060 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
1061 |
+
return final_hidden_states, router_logits
|
1062 |
+
|
1063 |
+
|
1064 |
+
class JambaAttentionDecoderLayer(nn.Module):
|
1065 |
+
def __init__(self, config: JambaConfig, layer_idx: int):
|
1066 |
+
super().__init__()
|
1067 |
+
num_experts = config.layers_num_experts[layer_idx]
|
1068 |
+
self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
1069 |
+
|
1070 |
+
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
|
1071 |
+
self.feed_forward = ffn_layer_class(config)
|
1072 |
+
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1073 |
+
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1074 |
+
|
1075 |
+
def forward(
|
1076 |
+
self,
|
1077 |
+
hidden_states: torch.Tensor,
|
1078 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1079 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1080 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
1081 |
+
output_attentions: Optional[bool] = False,
|
1082 |
+
output_router_logits: Optional[bool] = False,
|
1083 |
+
use_cache: Optional[bool] = False,
|
1084 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1085 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1086 |
+
"""
|
1087 |
+
Args:
|
1088 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1089 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1090 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1091 |
+
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
|
1092 |
+
output_attentions (`bool`, *optional*):
|
1093 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1094 |
+
returned tensors for more detail.
|
1095 |
+
output_router_logits (`bool`, *optional*):
|
1096 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1097 |
+
should not be returned during inference.
|
1098 |
+
use_cache (`bool`, *optional*):
|
1099 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1100 |
+
(see `past_key_values`).
|
1101 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1102 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1103 |
+
"""
|
1104 |
+
|
1105 |
+
residual = hidden_states
|
1106 |
+
|
1107 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1108 |
+
|
1109 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1110 |
+
hidden_states=hidden_states,
|
1111 |
+
attention_mask=attention_mask,
|
1112 |
+
position_ids=position_ids,
|
1113 |
+
past_key_value=past_key_value,
|
1114 |
+
output_attentions=output_attentions,
|
1115 |
+
use_cache=use_cache,
|
1116 |
+
cache_position=cache_position,
|
1117 |
+
)
|
1118 |
+
|
1119 |
+
# residual connection after attention
|
1120 |
+
hidden_states = residual + hidden_states
|
1121 |
+
|
1122 |
+
# feed-forward (experts/MLP)
|
1123 |
+
residual = hidden_states
|
1124 |
+
hidden_states = self.pre_ff_layernorm(hidden_states)
|
1125 |
+
ff_outputs = self.feed_forward(hidden_states)
|
1126 |
+
if isinstance(ff_outputs, tuple):
|
1127 |
+
hidden_states, router_logits = ff_outputs
|
1128 |
+
else:
|
1129 |
+
hidden_states, router_logits = ff_outputs, None
|
1130 |
+
hidden_states = residual + hidden_states
|
1131 |
+
|
1132 |
+
outputs = (hidden_states,)
|
1133 |
+
|
1134 |
+
if output_attentions:
|
1135 |
+
outputs += (self_attn_weights,)
|
1136 |
+
|
1137 |
+
if use_cache:
|
1138 |
+
outputs += (present_key_value,)
|
1139 |
+
|
1140 |
+
if output_router_logits:
|
1141 |
+
outputs += (router_logits,)
|
1142 |
+
|
1143 |
+
return outputs
|
1144 |
+
|
1145 |
+
|
1146 |
+
class JambaMambaDecoderLayer(nn.Module):
|
1147 |
+
def __init__(self, config: JambaConfig, layer_idx: int):
|
1148 |
+
super().__init__()
|
1149 |
+
num_experts = config.layers_num_experts[layer_idx]
|
1150 |
+
self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
|
1151 |
+
|
1152 |
+
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
|
1153 |
+
self.feed_forward = ffn_layer_class(config)
|
1154 |
+
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1155 |
+
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1156 |
+
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
hidden_states: torch.Tensor,
|
1160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1161 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1162 |
+
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
|
1163 |
+
output_attentions: Optional[bool] = False,
|
1164 |
+
output_router_logits: Optional[bool] = False,
|
1165 |
+
use_cache: Optional[bool] = False,
|
1166 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1167 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1168 |
+
"""
|
1169 |
+
Args:
|
1170 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1171 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1172 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1173 |
+
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
|
1174 |
+
output_attentions (`bool`, *optional*):
|
1175 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1176 |
+
returned tensors for more detail.
|
1177 |
+
output_router_logits (`bool`, *optional*):
|
1178 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1179 |
+
should not be returned during inference.
|
1180 |
+
use_cache (`bool`, *optional*):
|
1181 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1182 |
+
(see `past_key_values`).
|
1183 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1184 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1185 |
+
"""
|
1186 |
+
|
1187 |
+
residual = hidden_states
|
1188 |
+
|
1189 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1190 |
+
|
1191 |
+
hidden_states = self.mamba(
|
1192 |
+
hidden_states=hidden_states,
|
1193 |
+
cache_params=past_key_value,
|
1194 |
+
)
|
1195 |
+
self_attn_weights = None
|
1196 |
+
|
1197 |
+
# residual connection after mamba
|
1198 |
+
hidden_states = residual + hidden_states
|
1199 |
+
|
1200 |
+
# feed-forward (experts/MLP)
|
1201 |
+
residual = hidden_states
|
1202 |
+
hidden_states = self.pre_ff_layernorm(hidden_states)
|
1203 |
+
ff_outputs = self.feed_forward(hidden_states)
|
1204 |
+
if isinstance(ff_outputs, tuple):
|
1205 |
+
hidden_states, router_logits = ff_outputs
|
1206 |
+
else:
|
1207 |
+
hidden_states, router_logits = ff_outputs, None
|
1208 |
+
hidden_states = residual + hidden_states
|
1209 |
+
|
1210 |
+
outputs = (hidden_states,)
|
1211 |
+
|
1212 |
+
if output_attentions:
|
1213 |
+
outputs += (self_attn_weights,)
|
1214 |
+
|
1215 |
+
if use_cache:
|
1216 |
+
outputs += (past_key_value,)
|
1217 |
+
|
1218 |
+
if output_router_logits:
|
1219 |
+
outputs += (router_logits,)
|
1220 |
+
|
1221 |
+
return outputs
|
1222 |
+
|
1223 |
+
|
1224 |
+
JAMBA_START_DOCSTRING = r"""
|
1225 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1226 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1227 |
+
etc.)
|
1228 |
+
|
1229 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1230 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1231 |
+
and behavior.
|
1232 |
+
|
1233 |
+
Parameters:
|
1234 |
+
config ([`JambaConfig`]):
|
1235 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1236 |
+
load the weights associated with the model, only the configuration. Check out the
|
1237 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1238 |
+
"""
|
1239 |
+
|
1240 |
+
|
1241 |
+
@add_start_docstrings(
|
1242 |
+
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
1243 |
+
JAMBA_START_DOCSTRING,
|
1244 |
+
)
|
1245 |
+
class JambaPreTrainedModel(PreTrainedModel):
|
1246 |
+
config_class = JambaConfig
|
1247 |
+
base_model_prefix = "model"
|
1248 |
+
supports_gradient_checkpointing = True
|
1249 |
+
_no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
|
1250 |
+
_skip_keys_device_placement = "past_key_values"
|
1251 |
+
_supports_flash_attn_2 = True
|
1252 |
+
_supports_sdpa = True
|
1253 |
+
_supports_cache_class = True
|
1254 |
+
|
1255 |
+
def _init_weights(self, module):
|
1256 |
+
std = self.config.initializer_range
|
1257 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
1258 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1259 |
+
if module.bias is not None:
|
1260 |
+
module.bias.data.zero_()
|
1261 |
+
elif isinstance(module, nn.Embedding):
|
1262 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1263 |
+
if module.padding_idx is not None:
|
1264 |
+
module.weight.data[module.padding_idx].zero_()
|
1265 |
+
|
1266 |
+
|
1267 |
+
JAMBA_INPUTS_DOCSTRING = r"""
|
1268 |
+
Args:
|
1269 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1270 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1271 |
+
it.
|
1272 |
+
|
1273 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1274 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1275 |
+
|
1276 |
+
[What are input IDs?](../glossary#input-ids)
|
1277 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1278 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1279 |
+
|
1280 |
+
- 1 for tokens that are **not masked**,
|
1281 |
+
- 0 for tokens that are **masked**.
|
1282 |
+
|
1283 |
+
[What are attention masks?](../glossary#attention-mask)
|
1284 |
+
|
1285 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1286 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1287 |
+
|
1288 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1289 |
+
`past_key_values`).
|
1290 |
+
|
1291 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1292 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1293 |
+
information on the default strategy.
|
1294 |
+
|
1295 |
+
- 1 indicates the head is **not masked**,
|
1296 |
+
- 0 indicates the head is **masked**.
|
1297 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1298 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1299 |
+
config.n_positions - 1]`.
|
1300 |
+
|
1301 |
+
[What are position IDs?](../glossary#position-ids)
|
1302 |
+
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1303 |
+
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
|
1304 |
+
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
|
1305 |
+
`past_key_values` input) to speed up sequential decoding.
|
1306 |
+
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
|
1307 |
+
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
|
1308 |
+
`(batch_size, d_inner, d_state)` respectively.
|
1309 |
+
See the `HybridMambaAttentionDynamicCache` class for more details.
|
1310 |
+
|
1311 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
|
1312 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1313 |
+
`input_ids` of shape `(batch_size, sequence_length)`.
|
1314 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1315 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1316 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1317 |
+
model's internal embedding lookup matrix.
|
1318 |
+
use_cache (`bool`, *optional*):
|
1319 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1320 |
+
`past_key_values`).
|
1321 |
+
output_attentions (`bool`, *optional*):
|
1322 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1323 |
+
tensors for more detail.
|
1324 |
+
output_hidden_states (`bool`, *optional*):
|
1325 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1326 |
+
more detail.
|
1327 |
+
output_router_logits (`bool`, *optional*):
|
1328 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1329 |
+
should not be returned during inference.
|
1330 |
+
return_dict (`bool`, *optional*):
|
1331 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1332 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1333 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1334 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1335 |
+
the complete sequence length.
|
1336 |
+
"""
|
1337 |
+
|
1338 |
+
ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
|
1339 |
+
|
1340 |
+
|
1341 |
+
@add_start_docstrings(
|
1342 |
+
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
|
1343 |
+
JAMBA_START_DOCSTRING,
|
1344 |
+
)
|
1345 |
+
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
|
1346 |
+
class JambaModel(JambaPreTrainedModel):
|
1347 |
+
"""
|
1348 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]
|
1349 |
+
|
1350 |
+
Args:
|
1351 |
+
config: JambaConfig
|
1352 |
+
"""
|
1353 |
+
|
1354 |
+
def __init__(self, config: JambaConfig):
|
1355 |
+
super().__init__(config)
|
1356 |
+
self.padding_idx = config.pad_token_id
|
1357 |
+
self.vocab_size = config.vocab_size
|
1358 |
+
|
1359 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1360 |
+
decoder_layers = []
|
1361 |
+
for i in range(config.num_hidden_layers):
|
1362 |
+
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
|
1363 |
+
decoder_layers.append(layer_class(config, layer_idx=i))
|
1364 |
+
self.layers = nn.ModuleList(decoder_layers)
|
1365 |
+
|
1366 |
+
self._attn_implementation = config._attn_implementation
|
1367 |
+
self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1368 |
+
|
1369 |
+
self.gradient_checkpointing = False
|
1370 |
+
# Initialize weights and apply final processing
|
1371 |
+
self.post_init()
|
1372 |
+
|
1373 |
+
def get_input_embeddings(self):
|
1374 |
+
return self.embed_tokens
|
1375 |
+
|
1376 |
+
def set_input_embeddings(self, value):
|
1377 |
+
self.embed_tokens = value
|
1378 |
+
|
1379 |
+
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
|
1380 |
+
def forward(
|
1381 |
+
self,
|
1382 |
+
input_ids: torch.LongTensor = None,
|
1383 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1384 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1385 |
+
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
|
1386 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1387 |
+
use_cache: Optional[bool] = None,
|
1388 |
+
output_attentions: Optional[bool] = None,
|
1389 |
+
output_hidden_states: Optional[bool] = None,
|
1390 |
+
output_router_logits: Optional[bool] = None,
|
1391 |
+
return_dict: Optional[bool] = None,
|
1392 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1393 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1394 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1395 |
+
output_router_logits = (
|
1396 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1397 |
+
)
|
1398 |
+
output_hidden_states = (
|
1399 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1400 |
+
)
|
1401 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1402 |
+
|
1403 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1404 |
+
|
1405 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1406 |
+
raise ValueError(
|
1407 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1411 |
+
logger.warning_once(
|
1412 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1413 |
+
)
|
1414 |
+
use_cache = False
|
1415 |
+
|
1416 |
+
if inputs_embeds is None:
|
1417 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1418 |
+
hidden_states = inputs_embeds
|
1419 |
+
|
1420 |
+
if use_cache and past_key_values is None:
|
1421 |
+
logger.warning_once(
|
1422 |
+
"Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
|
1423 |
+
"provided, so no cache will be returned."
|
1424 |
+
)
|
1425 |
+
|
1426 |
+
if cache_position is None:
|
1427 |
+
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
|
1428 |
+
if position_ids is None:
|
1429 |
+
position_ids = cache_position.unsqueeze(0)
|
1430 |
+
|
1431 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
1432 |
+
|
1433 |
+
all_hidden_states = () if output_hidden_states else None
|
1434 |
+
all_self_attns = () if output_attentions else None
|
1435 |
+
all_router_logits = () if output_router_logits else None
|
1436 |
+
|
1437 |
+
for decoder_layer in self.layers:
|
1438 |
+
if output_hidden_states:
|
1439 |
+
all_hidden_states += (hidden_states,)
|
1440 |
+
|
1441 |
+
if self.gradient_checkpointing and self.training:
|
1442 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1443 |
+
decoder_layer.__call__,
|
1444 |
+
hidden_states,
|
1445 |
+
causal_mask,
|
1446 |
+
position_ids,
|
1447 |
+
past_key_values,
|
1448 |
+
output_attentions,
|
1449 |
+
output_router_logits,
|
1450 |
+
use_cache,
|
1451 |
+
cache_position,
|
1452 |
+
)
|
1453 |
+
else:
|
1454 |
+
layer_outputs = decoder_layer(
|
1455 |
+
hidden_states,
|
1456 |
+
attention_mask=causal_mask,
|
1457 |
+
position_ids=position_ids,
|
1458 |
+
past_key_value=past_key_values,
|
1459 |
+
output_attentions=output_attentions,
|
1460 |
+
output_router_logits=output_router_logits,
|
1461 |
+
use_cache=use_cache,
|
1462 |
+
cache_position=cache_position,
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
hidden_states = layer_outputs[0]
|
1466 |
+
|
1467 |
+
if output_attentions:
|
1468 |
+
if layer_outputs[1] is not None:
|
1469 |
+
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
|
1470 |
+
all_self_attns += (layer_outputs[1],)
|
1471 |
+
|
1472 |
+
if output_router_logits:
|
1473 |
+
if layer_outputs[-1] is not None:
|
1474 |
+
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
|
1475 |
+
all_router_logits += (layer_outputs[-1],)
|
1476 |
+
|
1477 |
+
hidden_states = self.final_layernorm(hidden_states)
|
1478 |
+
|
1479 |
+
# add hidden states from the last decoder layer
|
1480 |
+
if output_hidden_states:
|
1481 |
+
all_hidden_states += (hidden_states,)
|
1482 |
+
|
1483 |
+
if past_key_values and not past_key_values.has_previous_state:
|
1484 |
+
past_key_values.has_previous_state = True
|
1485 |
+
|
1486 |
+
next_cache = None if not use_cache else past_key_values
|
1487 |
+
|
1488 |
+
if not return_dict:
|
1489 |
+
return tuple(
|
1490 |
+
v
|
1491 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1492 |
+
if v is not None
|
1493 |
+
)
|
1494 |
+
return MoeModelOutputWithPast(
|
1495 |
+
last_hidden_state=hidden_states,
|
1496 |
+
past_key_values=next_cache,
|
1497 |
+
hidden_states=all_hidden_states,
|
1498 |
+
attentions=all_self_attns,
|
1499 |
+
router_logits=all_router_logits,
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
1503 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1504 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1505 |
+
return attention_mask
|
1506 |
+
return None
|
1507 |
+
|
1508 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1509 |
+
min_dtype = torch.finfo(dtype).min
|
1510 |
+
sequence_length = input_tensor.shape[1]
|
1511 |
+
target_length = cache_position[-1] + 1
|
1512 |
+
|
1513 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1514 |
+
if sequence_length != 1:
|
1515 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1516 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1517 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1518 |
+
if attention_mask is not None:
|
1519 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1520 |
+
if attention_mask.dim() == 2:
|
1521 |
+
mask_length = attention_mask.shape[-1]
|
1522 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1523 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1524 |
+
|
1525 |
+
if (
|
1526 |
+
self.config._attn_implementation == "sdpa"
|
1527 |
+
and attention_mask is not None
|
1528 |
+
and attention_mask.device.type == "cuda"
|
1529 |
+
):
|
1530 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1531 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1532 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1533 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1534 |
+
|
1535 |
+
return causal_mask
|
1536 |
+
|
1537 |
+
|
1538 |
+
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
|
1539 |
+
class JambaForCausalLM(JambaPreTrainedModel):
|
1540 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1541 |
+
|
1542 |
+
def __init__(self, config: JambaConfig):
|
1543 |
+
super().__init__(config)
|
1544 |
+
self.model = JambaModel(config)
|
1545 |
+
self.vocab_size = config.vocab_size
|
1546 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1547 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1548 |
+
self.num_experts = config.num_experts
|
1549 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1550 |
+
# Initialize weights and apply final processing
|
1551 |
+
self.post_init()
|
1552 |
+
|
1553 |
+
def get_input_embeddings(self):
|
1554 |
+
return self.model.embed_tokens
|
1555 |
+
|
1556 |
+
def set_input_embeddings(self, value):
|
1557 |
+
self.model.embed_tokens = value
|
1558 |
+
|
1559 |
+
def get_output_embeddings(self):
|
1560 |
+
return self.lm_head
|
1561 |
+
|
1562 |
+
def set_output_embeddings(self, new_embeddings):
|
1563 |
+
self.lm_head = new_embeddings
|
1564 |
+
|
1565 |
+
def set_decoder(self, decoder):
|
1566 |
+
self.model = decoder
|
1567 |
+
|
1568 |
+
def get_decoder(self):
|
1569 |
+
return self.model
|
1570 |
+
|
1571 |
+
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
|
1572 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1573 |
+
# Ignore copy
|
1574 |
+
def forward(
|
1575 |
+
self,
|
1576 |
+
input_ids: torch.LongTensor = None,
|
1577 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1578 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1579 |
+
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
|
1580 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1581 |
+
labels: Optional[torch.LongTensor] = None,
|
1582 |
+
use_cache: Optional[bool] = None,
|
1583 |
+
output_attentions: Optional[bool] = None,
|
1584 |
+
output_hidden_states: Optional[bool] = None,
|
1585 |
+
output_router_logits: Optional[bool] = None,
|
1586 |
+
return_dict: Optional[bool] = None,
|
1587 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1588 |
+
num_logits_to_keep: Optional[Union[int, None]] = None,
|
1589 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1590 |
+
r"""
|
1591 |
+
Args:
|
1592 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1593 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1594 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1595 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1596 |
+
|
1597 |
+
num_logits_to_keep (`int` or `None`, *optional*):
|
1598 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all
|
1599 |
+
`input_ids`. Only last token logits are needed for generation, and calculating them only for that token
|
1600 |
+
can save memory, which becomes pretty significant for long sequences.
|
1601 |
+
|
1602 |
+
Returns:
|
1603 |
+
|
1604 |
+
Example:
|
1605 |
+
|
1606 |
+
```python
|
1607 |
+
>>> from transformers import AutoTokenizer, JambaForCausalLM
|
1608 |
+
|
1609 |
+
>>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
|
1610 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
|
1611 |
+
|
1612 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1613 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1614 |
+
|
1615 |
+
>>> # Generate
|
1616 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1617 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1618 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1619 |
+
```"""
|
1620 |
+
|
1621 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1622 |
+
output_router_logits = (
|
1623 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
output_hidden_states = (
|
1627 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1628 |
+
)
|
1629 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1630 |
+
|
1631 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1632 |
+
outputs = self.model(
|
1633 |
+
input_ids=input_ids,
|
1634 |
+
attention_mask=attention_mask,
|
1635 |
+
position_ids=position_ids,
|
1636 |
+
past_key_values=past_key_values,
|
1637 |
+
inputs_embeds=inputs_embeds,
|
1638 |
+
use_cache=use_cache,
|
1639 |
+
output_attentions=output_attentions,
|
1640 |
+
output_hidden_states=output_hidden_states,
|
1641 |
+
output_router_logits=output_router_logits,
|
1642 |
+
cache_position=cache_position,
|
1643 |
+
return_dict=return_dict,
|
1644 |
+
)
|
1645 |
+
|
1646 |
+
hidden_states = outputs[0]
|
1647 |
+
if num_logits_to_keep is None:
|
1648 |
+
logits = self.lm_head(hidden_states)
|
1649 |
+
else:
|
1650 |
+
logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :])
|
1651 |
+
logits = logits.float()
|
1652 |
+
|
1653 |
+
loss = None
|
1654 |
+
if labels is not None:
|
1655 |
+
# Shift so that tokens < n predict n
|
1656 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1657 |
+
shift_labels = labels[..., 1:].contiguous()
|
1658 |
+
# Flatten the tokens
|
1659 |
+
loss_fct = CrossEntropyLoss()
|
1660 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1661 |
+
shift_labels = shift_labels.view(-1)
|
1662 |
+
# Enable model parallelism
|
1663 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1664 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1665 |
+
|
1666 |
+
aux_loss = None
|
1667 |
+
if output_router_logits:
|
1668 |
+
aux_loss = load_balancing_loss_func(
|
1669 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1670 |
+
self.num_experts,
|
1671 |
+
self.num_experts_per_tok,
|
1672 |
+
attention_mask,
|
1673 |
+
)
|
1674 |
+
if labels is not None:
|
1675 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1676 |
+
|
1677 |
+
if not return_dict:
|
1678 |
+
output = (logits,) + outputs[1:]
|
1679 |
+
if output_router_logits:
|
1680 |
+
output = (aux_loss,) + output
|
1681 |
+
return (loss,) + output if loss is not None else output
|
1682 |
+
|
1683 |
+
return MoeCausalLMOutputWithPast(
|
1684 |
+
loss=loss,
|
1685 |
+
aux_loss=aux_loss,
|
1686 |
+
logits=logits,
|
1687 |
+
past_key_values=outputs.past_key_values,
|
1688 |
+
hidden_states=outputs.hidden_states,
|
1689 |
+
attentions=outputs.attentions,
|
1690 |
+
router_logits=outputs.router_logits,
|
1691 |
+
)
|
1692 |
+
|
1693 |
+
def prepare_inputs_for_generation(
|
1694 |
+
self,
|
1695 |
+
input_ids,
|
1696 |
+
past_key_values=None,
|
1697 |
+
attention_mask=None,
|
1698 |
+
inputs_embeds=None,
|
1699 |
+
output_router_logits=False,
|
1700 |
+
cache_position=None,
|
1701 |
+
**kwargs,
|
1702 |
+
):
|
1703 |
+
empty_past_kv = past_key_values is None
|
1704 |
+
|
1705 |
+
# Omit tokens covered by past_key_values
|
1706 |
+
if not empty_past_kv:
|
1707 |
+
past_length = cache_position[0] if cache_position is not None else attention_mask.shape[1]
|
1708 |
+
max_cache_length = self.config.sliding_window
|
1709 |
+
# Keep only the unprocessed tokens:
|
1710 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1711 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1712 |
+
# input)
|
1713 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1714 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1715 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1716 |
+
# input_ids based on the past_length.
|
1717 |
+
elif past_length < input_ids.shape[1]:
|
1718 |
+
input_ids = input_ids[:, past_length:]
|
1719 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1720 |
+
|
1721 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1722 |
+
if (
|
1723 |
+
max_cache_length is not None
|
1724 |
+
and attention_mask is not None
|
1725 |
+
and past_length + input_ids.shape[1] > max_cache_length
|
1726 |
+
):
|
1727 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1728 |
+
else:
|
1729 |
+
past_key_values = HybridMambaAttentionDynamicCache(
|
1730 |
+
self.config, input_ids.shape[0], self.dtype, device=self.device
|
1731 |
+
)
|
1732 |
+
|
1733 |
+
position_ids = kwargs.get("position_ids", None)
|
1734 |
+
if attention_mask is not None and position_ids is None:
|
1735 |
+
# create position_ids on the fly for batch generation
|
1736 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1737 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1738 |
+
if not empty_past_kv:
|
1739 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1740 |
+
|
1741 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1742 |
+
if inputs_embeds is not None and empty_past_kv:
|
1743 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1744 |
+
else:
|
1745 |
+
model_inputs = {"input_ids": input_ids}
|
1746 |
+
|
1747 |
+
model_inputs.update(
|
1748 |
+
{
|
1749 |
+
"position_ids": position_ids,
|
1750 |
+
"past_key_values": past_key_values,
|
1751 |
+
"use_cache": kwargs.get("use_cache"),
|
1752 |
+
"attention_mask": attention_mask,
|
1753 |
+
"output_router_logits": output_router_logits,
|
1754 |
+
"num_logits_to_keep": self.config.num_logits_to_keep,
|
1755 |
+
"cache_position": cache_position,
|
1756 |
+
}
|
1757 |
+
)
|
1758 |
+
return model_inputs
|
1759 |
+
|
1760 |
+
|
1761 |
+
@add_start_docstrings(
|
1762 |
+
"""
|
1763 |
+
The Jamba Model with a sequence classification head on top (linear layer).
|
1764 |
+
|
1765 |
+
[`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1766 |
+
(e.g. GPT-2) do.
|
1767 |
+
|
1768 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1769 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1770 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1771 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1772 |
+
each row of the batch).
|
1773 |
+
""",
|
1774 |
+
JAMBA_START_DOCSTRING,
|
1775 |
+
)
|
1776 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA
|
1777 |
+
class JambaForSequenceClassification(JambaPreTrainedModel):
|
1778 |
+
def __init__(self, config):
|
1779 |
+
super().__init__(config)
|
1780 |
+
self.num_labels = config.num_labels
|
1781 |
+
self.model = JambaModel(config)
|
1782 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1783 |
+
|
1784 |
+
# Initialize weights and apply final processing
|
1785 |
+
self.post_init()
|
1786 |
+
|
1787 |
+
def get_input_embeddings(self):
|
1788 |
+
return self.model.embed_tokens
|
1789 |
+
|
1790 |
+
def set_input_embeddings(self, value):
|
1791 |
+
self.model.embed_tokens = value
|
1792 |
+
|
1793 |
+
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
|
1794 |
+
def forward(
|
1795 |
+
self,
|
1796 |
+
input_ids: torch.LongTensor = None,
|
1797 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1798 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1799 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1800 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1801 |
+
labels: Optional[torch.LongTensor] = None,
|
1802 |
+
use_cache: Optional[bool] = None,
|
1803 |
+
output_attentions: Optional[bool] = None,
|
1804 |
+
output_hidden_states: Optional[bool] = None,
|
1805 |
+
return_dict: Optional[bool] = None,
|
1806 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1807 |
+
r"""
|
1808 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1809 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1810 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1811 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1812 |
+
"""
|
1813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1814 |
+
|
1815 |
+
transformer_outputs = self.model(
|
1816 |
+
input_ids,
|
1817 |
+
attention_mask=attention_mask,
|
1818 |
+
position_ids=position_ids,
|
1819 |
+
past_key_values=past_key_values,
|
1820 |
+
inputs_embeds=inputs_embeds,
|
1821 |
+
use_cache=use_cache,
|
1822 |
+
output_attentions=output_attentions,
|
1823 |
+
output_hidden_states=output_hidden_states,
|
1824 |
+
return_dict=return_dict,
|
1825 |
+
)
|
1826 |
+
hidden_states = transformer_outputs[0]
|
1827 |
+
logits = self.score(hidden_states)
|
1828 |
+
|
1829 |
+
if input_ids is not None:
|
1830 |
+
batch_size = input_ids.shape[0]
|
1831 |
+
else:
|
1832 |
+
batch_size = inputs_embeds.shape[0]
|
1833 |
+
|
1834 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1835 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1836 |
+
if self.config.pad_token_id is None:
|
1837 |
+
sequence_lengths = -1
|
1838 |
+
else:
|
1839 |
+
if input_ids is not None:
|
1840 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1841 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1842 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1843 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1844 |
+
else:
|
1845 |
+
sequence_lengths = -1
|
1846 |
+
|
1847 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1848 |
+
|
1849 |
+
loss = None
|
1850 |
+
if labels is not None:
|
1851 |
+
labels = labels.to(logits.device)
|
1852 |
+
if self.config.problem_type is None:
|
1853 |
+
if self.num_labels == 1:
|
1854 |
+
self.config.problem_type = "regression"
|
1855 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1856 |
+
self.config.problem_type = "single_label_classification"
|
1857 |
+
else:
|
1858 |
+
self.config.problem_type = "multi_label_classification"
|
1859 |
+
|
1860 |
+
if self.config.problem_type == "regression":
|
1861 |
+
loss_fct = MSELoss()
|
1862 |
+
if self.num_labels == 1:
|
1863 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1864 |
+
else:
|
1865 |
+
loss = loss_fct(pooled_logits, labels)
|
1866 |
+
elif self.config.problem_type == "single_label_classification":
|
1867 |
+
loss_fct = CrossEntropyLoss()
|
1868 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1869 |
+
elif self.config.problem_type == "multi_label_classification":
|
1870 |
+
loss_fct = BCEWithLogitsLoss()
|
1871 |
+
loss = loss_fct(pooled_logits, labels)
|
1872 |
+
if not return_dict:
|
1873 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1874 |
+
return ((loss,) + output) if loss is not None else output
|
1875 |
+
|
1876 |
+
return SequenceClassifierOutputWithPast(
|
1877 |
+
loss=loss,
|
1878 |
+
logits=pooled_logits,
|
1879 |
+
past_key_values=transformer_outputs.past_key_values,
|
1880 |
+
hidden_states=transformer_outputs.hidden_states,
|
1881 |
+
attentions=transformer_outputs.attentions,
|
1882 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/maskformer/__init__.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"],
|
21 |
+
"configuration_maskformer_swin": ["MaskFormerSwinConfig"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_vision_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["feature_extraction_maskformer"] = ["MaskFormerFeatureExtractor"]
|
31 |
+
_import_structure["image_processing_maskformer"] = ["MaskFormerImageProcessor"]
|
32 |
+
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_maskformer"] = [
|
41 |
+
"MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
42 |
+
"MaskFormerForInstanceSegmentation",
|
43 |
+
"MaskFormerModel",
|
44 |
+
"MaskFormerPreTrainedModel",
|
45 |
+
]
|
46 |
+
_import_structure["modeling_maskformer_swin"] = [
|
47 |
+
"MaskFormerSwinBackbone",
|
48 |
+
"MaskFormerSwinModel",
|
49 |
+
"MaskFormerSwinPreTrainedModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
|
54 |
+
from .configuration_maskformer_swin import MaskFormerSwinConfig
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_vision_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
|
63 |
+
from .image_processing_maskformer import MaskFormerImageProcessor
|
64 |
+
try:
|
65 |
+
if not is_torch_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .modeling_maskformer import (
|
71 |
+
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
72 |
+
MaskFormerForInstanceSegmentation,
|
73 |
+
MaskFormerModel,
|
74 |
+
MaskFormerPreTrainedModel,
|
75 |
+
)
|
76 |
+
from .modeling_maskformer_swin import (
|
77 |
+
MaskFormerSwinBackbone,
|
78 |
+
MaskFormerSwinModel,
|
79 |
+
MaskFormerSwinPreTrainedModel,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
else:
|
84 |
+
import sys
|
85 |
+
|
86 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import sys
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from pathlib import Path
|
19 |
+
from pprint import pformat
|
20 |
+
from typing import Any, Dict, Iterator, List, Set, Tuple
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
import torchvision.transforms as T
|
25 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
26 |
+
from detectron2.config import get_cfg
|
27 |
+
from detectron2.data import MetadataCatalog
|
28 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
29 |
+
from PIL import Image
|
30 |
+
from torch import Tensor, nn
|
31 |
+
|
32 |
+
from transformers.models.maskformer.feature_extraction_maskformer import MaskFormerImageProcessor
|
33 |
+
from transformers.models.maskformer.modeling_maskformer import (
|
34 |
+
MaskFormerConfig,
|
35 |
+
MaskFormerForInstanceSegmentation,
|
36 |
+
MaskFormerForInstanceSegmentationOutput,
|
37 |
+
MaskFormerModel,
|
38 |
+
MaskFormerModelOutput,
|
39 |
+
)
|
40 |
+
from transformers.utils import logging
|
41 |
+
|
42 |
+
|
43 |
+
StateDict = Dict[str, Tensor]
|
44 |
+
|
45 |
+
logging.set_verbosity_info()
|
46 |
+
logger = logging.get_logger()
|
47 |
+
|
48 |
+
torch.manual_seed(0)
|
49 |
+
|
50 |
+
|
51 |
+
class TrackedStateDict:
|
52 |
+
def __init__(self, to_track: Dict):
|
53 |
+
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
to_track (Dict): The dictionary we wish to track
|
57 |
+
"""
|
58 |
+
self.to_track = to_track
|
59 |
+
self._seen: Set[str] = set()
|
60 |
+
|
61 |
+
def __getitem__(self, key: str) -> Any:
|
62 |
+
return self.to_track[key]
|
63 |
+
|
64 |
+
def __setitem__(self, key: str, item: Any):
|
65 |
+
self._seen.add(key)
|
66 |
+
self.to_track[key] = item
|
67 |
+
|
68 |
+
def diff(self) -> List[str]:
|
69 |
+
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
|
70 |
+
This is an effective method to check if we have update all the keys
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
List[str]: List of keys not yet updated
|
74 |
+
"""
|
75 |
+
return set(self.to_track.keys()) - self._seen
|
76 |
+
|
77 |
+
def copy(self) -> Dict:
|
78 |
+
# proxy the call to the internal dictionary
|
79 |
+
return self.to_track.copy()
|
80 |
+
|
81 |
+
|
82 |
+
# We will verify our results on an image of cute cats
|
83 |
+
def prepare_img():
|
84 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
85 |
+
img_data = requests.get(url, stream=True).raw
|
86 |
+
im = Image.open(img_data)
|
87 |
+
return im
|
88 |
+
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class Args:
|
92 |
+
"""Fake command line arguments needed by maskformer/detectron implementation"""
|
93 |
+
|
94 |
+
config_file: str
|
95 |
+
|
96 |
+
|
97 |
+
def setup_cfg(args: Args):
|
98 |
+
# load config from file and command-line arguments
|
99 |
+
cfg = get_cfg()
|
100 |
+
add_deeplab_config(cfg)
|
101 |
+
add_mask_former_config(cfg)
|
102 |
+
cfg.merge_from_file(args.config_file)
|
103 |
+
cfg.freeze()
|
104 |
+
return cfg
|
105 |
+
|
106 |
+
|
107 |
+
class OriginalMaskFormerConfigToOursConverter:
|
108 |
+
def __call__(self, original_config: object) -> MaskFormerConfig:
|
109 |
+
model = original_config.MODEL
|
110 |
+
mask_former = model.MASK_FORMER
|
111 |
+
swin = model.SWIN
|
112 |
+
|
113 |
+
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0])
|
114 |
+
id2label = dict(enumerate(dataset_catalog.stuff_classes))
|
115 |
+
label2id = {label: idx for idx, label in id2label.items()}
|
116 |
+
|
117 |
+
config: MaskFormerConfig = MaskFormerConfig(
|
118 |
+
fpn_feature_size=model.SEM_SEG_HEAD.CONVS_DIM,
|
119 |
+
mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM,
|
120 |
+
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
|
121 |
+
no_object_weight=mask_former.NO_OBJECT_WEIGHT,
|
122 |
+
num_queries=mask_former.NUM_OBJECT_QUERIES,
|
123 |
+
backbone_config={
|
124 |
+
"pretrain_img_size": swin.PRETRAIN_IMG_SIZE,
|
125 |
+
"image_size": swin.PRETRAIN_IMG_SIZE,
|
126 |
+
"in_channels": 3,
|
127 |
+
"patch_size": swin.PATCH_SIZE,
|
128 |
+
"embed_dim": swin.EMBED_DIM,
|
129 |
+
"depths": swin.DEPTHS,
|
130 |
+
"num_heads": swin.NUM_HEADS,
|
131 |
+
"window_size": swin.WINDOW_SIZE,
|
132 |
+
"drop_path_rate": swin.DROP_PATH_RATE,
|
133 |
+
"model_type": "swin",
|
134 |
+
},
|
135 |
+
dice_weight=mask_former.DICE_WEIGHT,
|
136 |
+
ce_weight=1.0,
|
137 |
+
mask_weight=mask_former.MASK_WEIGHT,
|
138 |
+
decoder_config={
|
139 |
+
"model_type": "detr",
|
140 |
+
"max_position_embeddings": 1024,
|
141 |
+
"encoder_layers": 6,
|
142 |
+
"encoder_ffn_dim": 2048,
|
143 |
+
"encoder_attention_heads": 8,
|
144 |
+
"decoder_layers": mask_former.DEC_LAYERS,
|
145 |
+
"decoder_ffn_dim": mask_former.DIM_FEEDFORWARD,
|
146 |
+
"decoder_attention_heads": mask_former.NHEADS,
|
147 |
+
"encoder_layerdrop": 0.0,
|
148 |
+
"decoder_layerdrop": 0.0,
|
149 |
+
"d_model": mask_former.HIDDEN_DIM,
|
150 |
+
"dropout": mask_former.DROPOUT,
|
151 |
+
"attention_dropout": 0.0,
|
152 |
+
"activation_dropout": 0.0,
|
153 |
+
"init_std": 0.02,
|
154 |
+
"init_xavier_std": 1.0,
|
155 |
+
"scale_embedding": False,
|
156 |
+
"auxiliary_loss": False,
|
157 |
+
"dilation": False,
|
158 |
+
# default pretrained config values
|
159 |
+
},
|
160 |
+
id2label=id2label,
|
161 |
+
label2id=label2id,
|
162 |
+
)
|
163 |
+
|
164 |
+
return config
|
165 |
+
|
166 |
+
|
167 |
+
class OriginalMaskFormerConfigToImageProcessorConverter:
|
168 |
+
def __call__(self, original_config: object) -> MaskFormerImageProcessor:
|
169 |
+
model = original_config.MODEL
|
170 |
+
model_input = original_config.INPUT
|
171 |
+
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST[0])
|
172 |
+
|
173 |
+
return MaskFormerImageProcessor(
|
174 |
+
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
|
175 |
+
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
|
176 |
+
size=model_input.MIN_SIZE_TEST,
|
177 |
+
max_size=model_input.MAX_SIZE_TEST,
|
178 |
+
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
|
179 |
+
ignore_index=dataset_catalog.ignore_label,
|
180 |
+
size_divisibility=32, # 32 is required by swin
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
class OriginalMaskFormerCheckpointToOursConverter:
|
185 |
+
def __init__(self, original_model: nn.Module, config: MaskFormerConfig):
|
186 |
+
self.original_model = original_model
|
187 |
+
self.config = config
|
188 |
+
|
189 |
+
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
|
190 |
+
for src_key, dst_key in renamed_keys:
|
191 |
+
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
|
192 |
+
|
193 |
+
def replace_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: MaskFormerConfig):
|
194 |
+
dst_prefix: str = "pixel_level_module.encoder"
|
195 |
+
src_prefix: str = "backbone"
|
196 |
+
|
197 |
+
renamed_keys = [
|
198 |
+
(
|
199 |
+
f"{src_prefix}.patch_embed.proj.weight",
|
200 |
+
f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight",
|
201 |
+
),
|
202 |
+
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"),
|
203 |
+
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"),
|
204 |
+
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"),
|
205 |
+
]
|
206 |
+
num_layers = len(config.backbone_config.depths)
|
207 |
+
for layer_idx in range(num_layers):
|
208 |
+
for block_idx in range(config.backbone_config.depths[layer_idx]):
|
209 |
+
renamed_keys.extend(
|
210 |
+
[ # src, dst
|
211 |
+
(
|
212 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
|
213 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
|
214 |
+
),
|
215 |
+
(
|
216 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
|
217 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
|
218 |
+
),
|
219 |
+
(
|
220 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
|
221 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
|
222 |
+
),
|
223 |
+
]
|
224 |
+
)
|
225 |
+
# now we need to handle the attentions
|
226 |
+
# read in weights + bias of input projection layer of cross-attention
|
227 |
+
|
228 |
+
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
|
229 |
+
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
|
230 |
+
|
231 |
+
size = src_att_weight.shape[0]
|
232 |
+
offset = size // 3
|
233 |
+
dst_state_dict[
|
234 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
|
235 |
+
] = src_att_weight[:offset, :]
|
236 |
+
dst_state_dict[
|
237 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
|
238 |
+
] = src_att_bias[:offset]
|
239 |
+
|
240 |
+
dst_state_dict[
|
241 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
|
242 |
+
] = src_att_weight[offset : offset * 2, :]
|
243 |
+
dst_state_dict[
|
244 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
|
245 |
+
] = src_att_bias[offset : offset * 2]
|
246 |
+
|
247 |
+
dst_state_dict[
|
248 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
|
249 |
+
] = src_att_weight[-offset:, :]
|
250 |
+
dst_state_dict[
|
251 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
|
252 |
+
] = src_att_bias[-offset:]
|
253 |
+
|
254 |
+
# let's pop them
|
255 |
+
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
|
256 |
+
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
|
257 |
+
# proj
|
258 |
+
renamed_keys.extend(
|
259 |
+
[
|
260 |
+
(
|
261 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
|
262 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
|
263 |
+
),
|
264 |
+
(
|
265 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
|
266 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
|
267 |
+
),
|
268 |
+
]
|
269 |
+
)
|
270 |
+
|
271 |
+
# second norm
|
272 |
+
renamed_keys.extend(
|
273 |
+
[
|
274 |
+
(
|
275 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
|
276 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
|
277 |
+
),
|
278 |
+
(
|
279 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
|
280 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
|
281 |
+
),
|
282 |
+
]
|
283 |
+
)
|
284 |
+
|
285 |
+
# mlp
|
286 |
+
renamed_keys.extend(
|
287 |
+
[
|
288 |
+
(
|
289 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
|
290 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
|
291 |
+
),
|
292 |
+
(
|
293 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
|
294 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
|
295 |
+
),
|
296 |
+
(
|
297 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
|
298 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
|
299 |
+
),
|
300 |
+
(
|
301 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
|
302 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
|
303 |
+
),
|
304 |
+
]
|
305 |
+
)
|
306 |
+
|
307 |
+
renamed_keys.extend(
|
308 |
+
[
|
309 |
+
(
|
310 |
+
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
|
311 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
|
312 |
+
)
|
313 |
+
]
|
314 |
+
)
|
315 |
+
|
316 |
+
if layer_idx < num_layers - 1:
|
317 |
+
# patch merging
|
318 |
+
renamed_keys.extend(
|
319 |
+
[
|
320 |
+
(
|
321 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
|
322 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight",
|
323 |
+
),
|
324 |
+
(
|
325 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
|
326 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight",
|
327 |
+
),
|
328 |
+
(
|
329 |
+
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
|
330 |
+
f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias",
|
331 |
+
),
|
332 |
+
]
|
333 |
+
)
|
334 |
+
|
335 |
+
# hidden states norms
|
336 |
+
renamed_keys.extend(
|
337 |
+
[
|
338 |
+
(
|
339 |
+
f"{src_prefix}.norm{layer_idx}.weight",
|
340 |
+
f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight",
|
341 |
+
),
|
342 |
+
(
|
343 |
+
f"{src_prefix}.norm{layer_idx}.bias",
|
344 |
+
f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias",
|
345 |
+
),
|
346 |
+
]
|
347 |
+
)
|
348 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
349 |
+
|
350 |
+
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
351 |
+
dst_prefix: str = "pixel_level_module.decoder"
|
352 |
+
src_prefix: str = "sem_seg_head.pixel_decoder"
|
353 |
+
|
354 |
+
self.replace_backbone(dst_state_dict, src_state_dict, self.config)
|
355 |
+
|
356 |
+
def rename_keys_for_conv(detectron_conv: str, mine_conv: str):
|
357 |
+
return [
|
358 |
+
(f"{detectron_conv}.weight", f"{mine_conv}.0.weight"),
|
359 |
+
# 2 cuz the have act in the middle -> rename it
|
360 |
+
(f"{detectron_conv}.norm.weight", f"{mine_conv}.1.weight"),
|
361 |
+
(f"{detectron_conv}.norm.bias", f"{mine_conv}.1.bias"),
|
362 |
+
]
|
363 |
+
|
364 |
+
renamed_keys = [
|
365 |
+
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
|
366 |
+
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
|
367 |
+
# the layers in the original one are in reverse order, stem is the last one!
|
368 |
+
]
|
369 |
+
|
370 |
+
renamed_keys.extend(rename_keys_for_conv(f"{src_prefix}.layer_4", f"{dst_prefix}.fpn.stem"))
|
371 |
+
|
372 |
+
# add all the fpn layers (here we need some config parameters to know the size in advance)
|
373 |
+
for src_i, dst_i in zip(range(3, 0, -1), range(0, 3)):
|
374 |
+
renamed_keys.extend(
|
375 |
+
rename_keys_for_conv(f"{src_prefix}.adapter_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.proj")
|
376 |
+
)
|
377 |
+
renamed_keys.extend(
|
378 |
+
rename_keys_for_conv(f"{src_prefix}.layer_{src_i}", f"{dst_prefix}.fpn.layers.{dst_i}.block")
|
379 |
+
)
|
380 |
+
|
381 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
382 |
+
|
383 |
+
def rename_keys_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
384 |
+
dst_prefix: str = "transformer_module.decoder"
|
385 |
+
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
|
386 |
+
# not sure why we are not popping direcetly here!
|
387 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
388 |
+
rename_keys = []
|
389 |
+
for i in range(self.config.decoder_config.decoder_layers):
|
390 |
+
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
|
391 |
+
rename_keys.append(
|
392 |
+
(
|
393 |
+
f"{src_prefix}.layers.{i}.self_attn.out_proj.weight",
|
394 |
+
f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight",
|
395 |
+
)
|
396 |
+
)
|
397 |
+
rename_keys.append(
|
398 |
+
(
|
399 |
+
f"{src_prefix}.layers.{i}.self_attn.out_proj.bias",
|
400 |
+
f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias",
|
401 |
+
)
|
402 |
+
)
|
403 |
+
rename_keys.append(
|
404 |
+
(
|
405 |
+
f"{src_prefix}.layers.{i}.multihead_attn.out_proj.weight",
|
406 |
+
f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.weight",
|
407 |
+
)
|
408 |
+
)
|
409 |
+
rename_keys.append(
|
410 |
+
(
|
411 |
+
f"{src_prefix}.layers.{i}.multihead_attn.out_proj.bias",
|
412 |
+
f"{dst_prefix}.layers.{i}.encoder_attn.out_proj.bias",
|
413 |
+
)
|
414 |
+
)
|
415 |
+
rename_keys.append((f"{src_prefix}.layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight"))
|
416 |
+
rename_keys.append((f"{src_prefix}.layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias"))
|
417 |
+
rename_keys.append((f"{src_prefix}.layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight"))
|
418 |
+
rename_keys.append((f"{src_prefix}.layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias"))
|
419 |
+
rename_keys.append(
|
420 |
+
(f"{src_prefix}.layers.{i}.norm1.weight", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight")
|
421 |
+
)
|
422 |
+
rename_keys.append(
|
423 |
+
(f"{src_prefix}.layers.{i}.norm1.bias", f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias")
|
424 |
+
)
|
425 |
+
rename_keys.append(
|
426 |
+
(f"{src_prefix}.layers.{i}.norm2.weight", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.weight")
|
427 |
+
)
|
428 |
+
rename_keys.append(
|
429 |
+
(f"{src_prefix}.layers.{i}.norm2.bias", f"{dst_prefix}.layers.{i}.encoder_attn_layer_norm.bias")
|
430 |
+
)
|
431 |
+
rename_keys.append(
|
432 |
+
(f"{src_prefix}.layers.{i}.norm3.weight", f"{dst_prefix}.layers.{i}.final_layer_norm.weight")
|
433 |
+
)
|
434 |
+
rename_keys.append(
|
435 |
+
(f"{src_prefix}.layers.{i}.norm3.bias", f"{dst_prefix}.layers.{i}.final_layer_norm.bias")
|
436 |
+
)
|
437 |
+
|
438 |
+
return rename_keys
|
439 |
+
|
440 |
+
def replace_q_k_v_in_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
441 |
+
dst_prefix: str = "transformer_module.decoder"
|
442 |
+
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
|
443 |
+
for i in range(self.config.decoder_config.decoder_layers):
|
444 |
+
# read in weights + bias of input projection layer of self-attention
|
445 |
+
in_proj_weight = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_weight")
|
446 |
+
in_proj_bias = src_state_dict.pop(f"{src_prefix}.layers.{i}.self_attn.in_proj_bias")
|
447 |
+
# next, add query, keys and values (in that order) to the state dict
|
448 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
449 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
450 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
451 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
452 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
453 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
454 |
+
# read in weights + bias of input projection layer of cross-attention
|
455 |
+
in_proj_weight_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_weight")
|
456 |
+
in_proj_bias_cross_attn = src_state_dict.pop(f"{src_prefix}.layers.{i}.multihead_attn.in_proj_bias")
|
457 |
+
# next, add query, keys and values (in that order) of cross-attention to the state dict
|
458 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
|
459 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
|
460 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[
|
461 |
+
256:512, :
|
462 |
+
]
|
463 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
|
464 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
|
465 |
+
dst_state_dict[f"{dst_prefix}.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
|
466 |
+
|
467 |
+
def replace_detr_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
468 |
+
dst_prefix: str = "transformer_module.decoder"
|
469 |
+
src_prefix: str = "sem_seg_head.predictor.transformer.decoder"
|
470 |
+
renamed_keys = self.rename_keys_in_detr_decoder(dst_state_dict, src_state_dict)
|
471 |
+
# add more
|
472 |
+
renamed_keys.extend(
|
473 |
+
[
|
474 |
+
(f"{src_prefix}.norm.weight", f"{dst_prefix}.layernorm.weight"),
|
475 |
+
(f"{src_prefix}.norm.bias", f"{dst_prefix}.layernorm.bias"),
|
476 |
+
]
|
477 |
+
)
|
478 |
+
|
479 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
480 |
+
|
481 |
+
self.replace_q_k_v_in_detr_decoder(dst_state_dict, src_state_dict)
|
482 |
+
|
483 |
+
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
484 |
+
dst_prefix: str = "transformer_module"
|
485 |
+
src_prefix: str = "sem_seg_head.predictor"
|
486 |
+
|
487 |
+
self.replace_detr_decoder(dst_state_dict, src_state_dict)
|
488 |
+
|
489 |
+
renamed_keys = [
|
490 |
+
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
|
491 |
+
(f"{src_prefix}.input_proj.weight", f"{dst_prefix}.input_projection.weight"),
|
492 |
+
(f"{src_prefix}.input_proj.bias", f"{dst_prefix}.input_projection.bias"),
|
493 |
+
]
|
494 |
+
|
495 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
496 |
+
|
497 |
+
def replace_instance_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
|
498 |
+
# NOTE in our case we don't have a prefix, thus we removed the "." from the keys later on!
|
499 |
+
dst_prefix: str = ""
|
500 |
+
src_prefix: str = "sem_seg_head.predictor"
|
501 |
+
|
502 |
+
renamed_keys = [
|
503 |
+
(f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"),
|
504 |
+
(f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"),
|
505 |
+
]
|
506 |
+
|
507 |
+
mlp_len = 3
|
508 |
+
for i in range(mlp_len):
|
509 |
+
renamed_keys.extend(
|
510 |
+
[
|
511 |
+
(f"{src_prefix}.mask_embed.layers.{i}.weight", f"{dst_prefix}mask_embedder.{i}.0.weight"),
|
512 |
+
(f"{src_prefix}.mask_embed.layers.{i}.bias", f"{dst_prefix}mask_embedder.{i}.0.bias"),
|
513 |
+
]
|
514 |
+
)
|
515 |
+
logger.info(f"Replacing keys {pformat(renamed_keys)}")
|
516 |
+
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
|
517 |
+
|
518 |
+
def convert(self, mask_former: MaskFormerModel) -> MaskFormerModel:
|
519 |
+
dst_state_dict = TrackedStateDict(mask_former.state_dict())
|
520 |
+
src_state_dict = self.original_model.state_dict()
|
521 |
+
|
522 |
+
self.replace_pixel_module(dst_state_dict, src_state_dict)
|
523 |
+
self.replace_transformer_module(dst_state_dict, src_state_dict)
|
524 |
+
|
525 |
+
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
|
526 |
+
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
|
527 |
+
logger.info("🙌 Done")
|
528 |
+
|
529 |
+
mask_former.load_state_dict(dst_state_dict)
|
530 |
+
|
531 |
+
return mask_former
|
532 |
+
|
533 |
+
def convert_instance_segmentation(
|
534 |
+
self, mask_former: MaskFormerForInstanceSegmentation
|
535 |
+
) -> MaskFormerForInstanceSegmentation:
|
536 |
+
dst_state_dict = TrackedStateDict(mask_former.state_dict())
|
537 |
+
src_state_dict = self.original_model.state_dict()
|
538 |
+
|
539 |
+
self.replace_instance_segmentation_module(dst_state_dict, src_state_dict)
|
540 |
+
|
541 |
+
mask_former.load_state_dict(dst_state_dict)
|
542 |
+
|
543 |
+
return mask_former
|
544 |
+
|
545 |
+
@staticmethod
|
546 |
+
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
|
547 |
+
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl")
|
548 |
+
|
549 |
+
for checkpoint in checkpoints:
|
550 |
+
logger.info(f"💪 Converting {checkpoint.stem}")
|
551 |
+
# find associated config file
|
552 |
+
config: Path = config_dir / checkpoint.parents[0].stem / "swin" / f"{checkpoint.stem}.yaml"
|
553 |
+
|
554 |
+
yield config, checkpoint
|
555 |
+
|
556 |
+
|
557 |
+
def test(original_model, our_model: MaskFormerForInstanceSegmentation, image_processor: MaskFormerImageProcessor):
|
558 |
+
with torch.no_grad():
|
559 |
+
original_model = original_model.eval()
|
560 |
+
our_model = our_model.eval()
|
561 |
+
|
562 |
+
im = prepare_img()
|
563 |
+
|
564 |
+
tr = T.Compose(
|
565 |
+
[
|
566 |
+
T.Resize((384, 384)),
|
567 |
+
T.ToTensor(),
|
568 |
+
T.Normalize(
|
569 |
+
mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
|
570 |
+
std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
|
571 |
+
),
|
572 |
+
],
|
573 |
+
)
|
574 |
+
|
575 |
+
x = tr(im).unsqueeze(0)
|
576 |
+
|
577 |
+
original_model_backbone_features = original_model.backbone(x.clone())
|
578 |
+
|
579 |
+
our_model_output: MaskFormerModelOutput = our_model.model(x.clone(), output_hidden_states=True)
|
580 |
+
|
581 |
+
for original_model_feature, our_model_feature in zip(
|
582 |
+
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
|
583 |
+
):
|
584 |
+
assert torch.allclose(
|
585 |
+
original_model_feature, our_model_feature, atol=1e-3
|
586 |
+
), "The backbone features are not the same."
|
587 |
+
|
588 |
+
original_model_pixel_out = original_model.sem_seg_head.pixel_decoder.forward_features(
|
589 |
+
original_model_backbone_features
|
590 |
+
)
|
591 |
+
|
592 |
+
assert torch.allclose(
|
593 |
+
original_model_pixel_out[0], our_model_output.pixel_decoder_last_hidden_state, atol=1e-4
|
594 |
+
), "The pixel decoder feature are not the same"
|
595 |
+
|
596 |
+
# let's test the full model
|
597 |
+
original_model_out = original_model([{"image": x.squeeze(0)}])
|
598 |
+
|
599 |
+
original_segmentation = original_model_out[0]["sem_seg"]
|
600 |
+
|
601 |
+
our_model_out: MaskFormerForInstanceSegmentationOutput = our_model(x)
|
602 |
+
|
603 |
+
our_segmentation = image_processor.post_process_segmentation(our_model_out, target_size=(384, 384))
|
604 |
+
|
605 |
+
assert torch.allclose(
|
606 |
+
original_segmentation, our_segmentation, atol=1e-3
|
607 |
+
), "The segmentation image is not the same."
|
608 |
+
|
609 |
+
logger.info("✅ Test passed!")
|
610 |
+
|
611 |
+
|
612 |
+
def get_name(checkpoint_file: Path):
|
613 |
+
model_name_raw: str = checkpoint_file.stem
|
614 |
+
# model_name_raw is something like maskformer_panoptic_swin_base_IN21k_384_bs64_554k
|
615 |
+
parent_name: str = checkpoint_file.parents[0].stem
|
616 |
+
backbone = "swin"
|
617 |
+
dataset = ""
|
618 |
+
if "coco" in parent_name:
|
619 |
+
dataset = "coco"
|
620 |
+
elif "ade" in parent_name:
|
621 |
+
dataset = "ade"
|
622 |
+
else:
|
623 |
+
raise ValueError(f"{parent_name} must be wrong since we didn't find 'coco' or 'ade' in it ")
|
624 |
+
|
625 |
+
backbone_types = ["tiny", "small", "base", "large"]
|
626 |
+
|
627 |
+
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
|
628 |
+
|
629 |
+
model_name = f"maskformer-{backbone}-{backbone_type}-{dataset}"
|
630 |
+
|
631 |
+
return model_name
|
632 |
+
|
633 |
+
|
634 |
+
if __name__ == "__main__":
|
635 |
+
parser = ArgumentParser(
|
636 |
+
description="Command line to convert the original maskformers (with swin backbone) to our implementations."
|
637 |
+
)
|
638 |
+
|
639 |
+
parser.add_argument(
|
640 |
+
"--checkpoints_dir",
|
641 |
+
type=Path,
|
642 |
+
help=(
|
643 |
+
"A directory containing the model's checkpoints. The directory has to have the following structure:"
|
644 |
+
" <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pkl"
|
645 |
+
),
|
646 |
+
)
|
647 |
+
parser.add_argument(
|
648 |
+
"--configs_dir",
|
649 |
+
type=Path,
|
650 |
+
help=(
|
651 |
+
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
|
652 |
+
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml"
|
653 |
+
),
|
654 |
+
)
|
655 |
+
parser.add_argument(
|
656 |
+
"--pytorch_dump_folder_path",
|
657 |
+
required=True,
|
658 |
+
type=Path,
|
659 |
+
help="Path to the folder to output PyTorch models.",
|
660 |
+
)
|
661 |
+
parser.add_argument(
|
662 |
+
"--maskformer_dir",
|
663 |
+
required=True,
|
664 |
+
type=Path,
|
665 |
+
help=(
|
666 |
+
"A path to MaskFormer's original implementation directory. You can download from here:"
|
667 |
+
" https://github.com/facebookresearch/MaskFormer"
|
668 |
+
),
|
669 |
+
)
|
670 |
+
|
671 |
+
args = parser.parse_args()
|
672 |
+
|
673 |
+
checkpoints_dir: Path = args.checkpoints_dir
|
674 |
+
config_dir: Path = args.configs_dir
|
675 |
+
save_directory: Path = args.pytorch_dump_folder_path
|
676 |
+
maskformer_dir: Path = args.maskformer_dir
|
677 |
+
# append the path to the parents to maskformer dir
|
678 |
+
sys.path.append(str(maskformer_dir.parent))
|
679 |
+
# and import what's needed
|
680 |
+
from MaskFormer.mask_former import add_mask_former_config
|
681 |
+
from MaskFormer.mask_former.mask_former_model import MaskFormer as OriginalMaskFormer
|
682 |
+
|
683 |
+
if not save_directory.exists():
|
684 |
+
save_directory.mkdir(parents=True)
|
685 |
+
|
686 |
+
for config_file, checkpoint_file in OriginalMaskFormerCheckpointToOursConverter.using_dirs(
|
687 |
+
checkpoints_dir, config_dir
|
688 |
+
):
|
689 |
+
image_processor = OriginalMaskFormerConfigToImageProcessorConverter()(setup_cfg(Args(config_file=config_file)))
|
690 |
+
|
691 |
+
original_config = setup_cfg(Args(config_file=config_file))
|
692 |
+
mask_former_kwargs = OriginalMaskFormer.from_config(original_config)
|
693 |
+
|
694 |
+
original_model = OriginalMaskFormer(**mask_former_kwargs).eval()
|
695 |
+
|
696 |
+
DetectionCheckpointer(original_model).load(str(checkpoint_file))
|
697 |
+
|
698 |
+
config: MaskFormerConfig = OriginalMaskFormerConfigToOursConverter()(original_config)
|
699 |
+
|
700 |
+
mask_former = MaskFormerModel(config=config).eval()
|
701 |
+
|
702 |
+
converter = OriginalMaskFormerCheckpointToOursConverter(original_model, config)
|
703 |
+
|
704 |
+
maskformer = converter.convert(mask_former)
|
705 |
+
|
706 |
+
mask_former_for_instance_segmentation = MaskFormerForInstanceSegmentation(config=config).eval()
|
707 |
+
|
708 |
+
mask_former_for_instance_segmentation.model = mask_former
|
709 |
+
mask_former_for_instance_segmentation = converter.convert_instance_segmentation(
|
710 |
+
mask_former_for_instance_segmentation
|
711 |
+
)
|
712 |
+
|
713 |
+
test(original_model, mask_former_for_instance_segmentation, image_processor)
|
714 |
+
|
715 |
+
model_name = get_name(checkpoint_file)
|
716 |
+
logger.info(f"🪄 Saving {model_name}")
|
717 |
+
|
718 |
+
image_processor.save_pretrained(save_directory / model_name)
|
719 |
+
mask_former_for_instance_segmentation.save_pretrained(save_directory / model_name)
|
720 |
+
|
721 |
+
image_processor.push_to_hub(
|
722 |
+
repo_path_or_name=save_directory / model_name,
|
723 |
+
commit_message="Add model",
|
724 |
+
use_temp_dir=True,
|
725 |
+
)
|
726 |
+
mask_former_for_instance_segmentation.push_to_hub(
|
727 |
+
repo_path_or_name=save_directory / model_name,
|
728 |
+
commit_message="Add model",
|
729 |
+
use_temp_dir=True,
|
730 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/maskformer/modeling_maskformer_swin.py
ADDED
@@ -0,0 +1,912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""MaskFormer Swin Transformer. The reason Swin Transformer is implemented here is because MaskFormer uses the hidden
|
17 |
+
states before downsampling, which is different from the default Swin Transformer."""
|
18 |
+
|
19 |
+
import collections.abc
|
20 |
+
import math
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import Tensor, nn
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...file_utils import ModelOutput
|
29 |
+
from ...modeling_outputs import BackboneOutput
|
30 |
+
from ...modeling_utils import PreTrainedModel
|
31 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
|
32 |
+
from ...utils.backbone_utils import BackboneMixin
|
33 |
+
from .configuration_maskformer_swin import MaskFormerSwinConfig
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class MaskFormerSwinModelOutputWithPooling(ModelOutput):
|
38 |
+
"""
|
39 |
+
Class for MaskFormerSwinModel's outputs that also contains the spatial dimensions of the hidden states.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
43 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
44 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
45 |
+
Last layer hidden-state after a mean pooling operation.
|
46 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
47 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
48 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
49 |
+
|
50 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
51 |
+
hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*):
|
52 |
+
A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to
|
53 |
+
`batch, channels, height, width`. Due to padding, their spatial size cannot be inferred before the
|
54 |
+
`forward` method.
|
55 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
56 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
57 |
+
sequence_length)`.
|
58 |
+
|
59 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
60 |
+
heads.
|
61 |
+
"""
|
62 |
+
|
63 |
+
last_hidden_state: torch.FloatTensor = None
|
64 |
+
pooler_output: torch.FloatTensor = None
|
65 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
66 |
+
hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None
|
67 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
68 |
+
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class MaskFormerSwinBaseModelOutput(ModelOutput):
|
72 |
+
"""
|
73 |
+
Class for SwinEncoder's outputs.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
77 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
78 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
79 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
80 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
81 |
+
|
82 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
83 |
+
hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*):
|
84 |
+
A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to
|
85 |
+
`batch, channels, height, width`. Due to padding, their spatial size cannot inferred before the `forward`
|
86 |
+
method.
|
87 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
88 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
89 |
+
sequence_length)`.
|
90 |
+
|
91 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
92 |
+
heads.
|
93 |
+
"""
|
94 |
+
|
95 |
+
last_hidden_state: torch.FloatTensor = None
|
96 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
97 |
+
hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None
|
98 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
99 |
+
|
100 |
+
|
101 |
+
# Copied from transformers.models.swin.modeling_swin.window_partition
|
102 |
+
def window_partition(input_feature, window_size):
|
103 |
+
"""
|
104 |
+
Partitions the given input into windows.
|
105 |
+
"""
|
106 |
+
batch_size, height, width, num_channels = input_feature.shape
|
107 |
+
input_feature = input_feature.view(
|
108 |
+
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
|
109 |
+
)
|
110 |
+
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
|
111 |
+
return windows
|
112 |
+
|
113 |
+
|
114 |
+
# Copied from transformers.models.swin.modeling_swin.window_reverse
|
115 |
+
def window_reverse(windows, window_size, height, width):
|
116 |
+
"""
|
117 |
+
Merges windows to produce higher resolution features.
|
118 |
+
"""
|
119 |
+
num_channels = windows.shape[-1]
|
120 |
+
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
|
121 |
+
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
|
122 |
+
return windows
|
123 |
+
|
124 |
+
|
125 |
+
# Copied from transformers.models.swin.modeling_swin.drop_path
|
126 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
127 |
+
"""
|
128 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
129 |
+
|
130 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
131 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
132 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
133 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
134 |
+
argument.
|
135 |
+
"""
|
136 |
+
if drop_prob == 0.0 or not training:
|
137 |
+
return input
|
138 |
+
keep_prob = 1 - drop_prob
|
139 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
140 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
141 |
+
random_tensor.floor_() # binarize
|
142 |
+
output = input.div(keep_prob) * random_tensor
|
143 |
+
return output
|
144 |
+
|
145 |
+
|
146 |
+
class MaskFormerSwinEmbeddings(nn.Module):
|
147 |
+
"""
|
148 |
+
Construct the patch and position embeddings.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(self, config):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
self.patch_embeddings = MaskFormerSwinPatchEmbeddings(config)
|
155 |
+
num_patches = self.patch_embeddings.num_patches
|
156 |
+
self.patch_grid = self.patch_embeddings.grid_size
|
157 |
+
|
158 |
+
if config.use_absolute_embeddings:
|
159 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
|
160 |
+
else:
|
161 |
+
self.position_embeddings = None
|
162 |
+
|
163 |
+
self.norm = nn.LayerNorm(config.embed_dim)
|
164 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
165 |
+
|
166 |
+
def forward(self, pixel_values):
|
167 |
+
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
|
168 |
+
embeddings = self.norm(embeddings)
|
169 |
+
|
170 |
+
if self.position_embeddings is not None:
|
171 |
+
embeddings = embeddings + self.position_embeddings
|
172 |
+
|
173 |
+
embeddings = self.dropout(embeddings)
|
174 |
+
|
175 |
+
return embeddings, output_dimensions
|
176 |
+
|
177 |
+
|
178 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings
|
179 |
+
class MaskFormerSwinPatchEmbeddings(nn.Module):
|
180 |
+
"""
|
181 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
182 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
183 |
+
Transformer.
|
184 |
+
"""
|
185 |
+
|
186 |
+
def __init__(self, config):
|
187 |
+
super().__init__()
|
188 |
+
image_size, patch_size = config.image_size, config.patch_size
|
189 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
190 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
191 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
192 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
193 |
+
self.image_size = image_size
|
194 |
+
self.patch_size = patch_size
|
195 |
+
self.num_channels = num_channels
|
196 |
+
self.num_patches = num_patches
|
197 |
+
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
198 |
+
|
199 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
200 |
+
|
201 |
+
def maybe_pad(self, pixel_values, height, width):
|
202 |
+
if width % self.patch_size[1] != 0:
|
203 |
+
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
|
204 |
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
205 |
+
if height % self.patch_size[0] != 0:
|
206 |
+
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
|
207 |
+
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
208 |
+
return pixel_values
|
209 |
+
|
210 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
|
211 |
+
_, num_channels, height, width = pixel_values.shape
|
212 |
+
if num_channels != self.num_channels:
|
213 |
+
raise ValueError(
|
214 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
215 |
+
)
|
216 |
+
# pad the input to be divisible by self.patch_size, if needed
|
217 |
+
pixel_values = self.maybe_pad(pixel_values, height, width)
|
218 |
+
embeddings = self.projection(pixel_values)
|
219 |
+
_, _, height, width = embeddings.shape
|
220 |
+
output_dimensions = (height, width)
|
221 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
222 |
+
|
223 |
+
return embeddings, output_dimensions
|
224 |
+
|
225 |
+
|
226 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
|
227 |
+
class MaskFormerSwinPatchMerging(nn.Module):
|
228 |
+
"""
|
229 |
+
Patch Merging Layer.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
input_resolution (`Tuple[int]`):
|
233 |
+
Resolution of input feature.
|
234 |
+
dim (`int`):
|
235 |
+
Number of input channels.
|
236 |
+
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
|
237 |
+
Normalization layer class.
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
|
241 |
+
super().__init__()
|
242 |
+
self.input_resolution = input_resolution
|
243 |
+
self.dim = dim
|
244 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
245 |
+
self.norm = norm_layer(4 * dim)
|
246 |
+
|
247 |
+
def maybe_pad(self, input_feature, height, width):
|
248 |
+
should_pad = (height % 2 == 1) or (width % 2 == 1)
|
249 |
+
if should_pad:
|
250 |
+
pad_values = (0, 0, 0, width % 2, 0, height % 2)
|
251 |
+
input_feature = nn.functional.pad(input_feature, pad_values)
|
252 |
+
|
253 |
+
return input_feature
|
254 |
+
|
255 |
+
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
|
256 |
+
height, width = input_dimensions
|
257 |
+
# `dim` is height * width
|
258 |
+
batch_size, dim, num_channels = input_feature.shape
|
259 |
+
|
260 |
+
input_feature = input_feature.view(batch_size, height, width, num_channels)
|
261 |
+
# pad input to be disible by width and height, if needed
|
262 |
+
input_feature = self.maybe_pad(input_feature, height, width)
|
263 |
+
# [batch_size, height/2, width/2, num_channels]
|
264 |
+
input_feature_0 = input_feature[:, 0::2, 0::2, :]
|
265 |
+
# [batch_size, height/2, width/2, num_channels]
|
266 |
+
input_feature_1 = input_feature[:, 1::2, 0::2, :]
|
267 |
+
# [batch_size, height/2, width/2, num_channels]
|
268 |
+
input_feature_2 = input_feature[:, 0::2, 1::2, :]
|
269 |
+
# [batch_size, height/2, width/2, num_channels]
|
270 |
+
input_feature_3 = input_feature[:, 1::2, 1::2, :]
|
271 |
+
# batch_size height/2 width/2 4*num_channels
|
272 |
+
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
|
273 |
+
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
|
274 |
+
|
275 |
+
input_feature = self.norm(input_feature)
|
276 |
+
input_feature = self.reduction(input_feature)
|
277 |
+
|
278 |
+
return input_feature
|
279 |
+
|
280 |
+
|
281 |
+
# Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->MaskFormerSwin
|
282 |
+
class MaskFormerSwinDropPath(nn.Module):
|
283 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
284 |
+
|
285 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
286 |
+
super().__init__()
|
287 |
+
self.drop_prob = drop_prob
|
288 |
+
|
289 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
290 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
291 |
+
|
292 |
+
def extra_repr(self) -> str:
|
293 |
+
return "p={}".format(self.drop_prob)
|
294 |
+
|
295 |
+
|
296 |
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->MaskFormerSwin
|
297 |
+
class MaskFormerSwinSelfAttention(nn.Module):
|
298 |
+
def __init__(self, config, dim, num_heads, window_size):
|
299 |
+
super().__init__()
|
300 |
+
if dim % num_heads != 0:
|
301 |
+
raise ValueError(
|
302 |
+
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
|
303 |
+
)
|
304 |
+
|
305 |
+
self.num_attention_heads = num_heads
|
306 |
+
self.attention_head_size = int(dim / num_heads)
|
307 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
308 |
+
self.window_size = (
|
309 |
+
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
|
310 |
+
)
|
311 |
+
|
312 |
+
self.relative_position_bias_table = nn.Parameter(
|
313 |
+
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
|
314 |
+
)
|
315 |
+
|
316 |
+
# get pair-wise relative position index for each token inside the window
|
317 |
+
coords_h = torch.arange(self.window_size[0])
|
318 |
+
coords_w = torch.arange(self.window_size[1])
|
319 |
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
320 |
+
coords_flatten = torch.flatten(coords, 1)
|
321 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
322 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
323 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
324 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
325 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
326 |
+
relative_position_index = relative_coords.sum(-1)
|
327 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
328 |
+
|
329 |
+
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
330 |
+
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
331 |
+
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
332 |
+
|
333 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
334 |
+
|
335 |
+
def transpose_for_scores(self, x):
|
336 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
337 |
+
x = x.view(new_x_shape)
|
338 |
+
return x.permute(0, 2, 1, 3)
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
hidden_states: torch.Tensor,
|
343 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
344 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
345 |
+
output_attentions: Optional[bool] = False,
|
346 |
+
) -> Tuple[torch.Tensor]:
|
347 |
+
batch_size, dim, num_channels = hidden_states.shape
|
348 |
+
mixed_query_layer = self.query(hidden_states)
|
349 |
+
|
350 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
351 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
352 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
353 |
+
|
354 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
355 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
356 |
+
|
357 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
358 |
+
|
359 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
|
360 |
+
relative_position_bias = relative_position_bias.view(
|
361 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
362 |
+
)
|
363 |
+
|
364 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
365 |
+
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
|
366 |
+
|
367 |
+
if attention_mask is not None:
|
368 |
+
# Apply the attention mask is (precomputed for all layers in MaskFormerSwinModel forward() function)
|
369 |
+
mask_shape = attention_mask.shape[0]
|
370 |
+
attention_scores = attention_scores.view(
|
371 |
+
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
|
372 |
+
)
|
373 |
+
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
|
374 |
+
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
|
375 |
+
|
376 |
+
# Normalize the attention scores to probabilities.
|
377 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
378 |
+
|
379 |
+
# This is actually dropping out entire tokens to attend to, which might
|
380 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
381 |
+
attention_probs = self.dropout(attention_probs)
|
382 |
+
|
383 |
+
# Mask heads if we want to
|
384 |
+
if head_mask is not None:
|
385 |
+
attention_probs = attention_probs * head_mask
|
386 |
+
|
387 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
388 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
389 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
390 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
391 |
+
|
392 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
393 |
+
|
394 |
+
return outputs
|
395 |
+
|
396 |
+
|
397 |
+
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->MaskFormerSwin
|
398 |
+
class MaskFormerSwinSelfOutput(nn.Module):
|
399 |
+
def __init__(self, config, dim):
|
400 |
+
super().__init__()
|
401 |
+
self.dense = nn.Linear(dim, dim)
|
402 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
403 |
+
|
404 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
405 |
+
hidden_states = self.dense(hidden_states)
|
406 |
+
hidden_states = self.dropout(hidden_states)
|
407 |
+
|
408 |
+
return hidden_states
|
409 |
+
|
410 |
+
|
411 |
+
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->MaskFormerSwin
|
412 |
+
class MaskFormerSwinAttention(nn.Module):
|
413 |
+
def __init__(self, config, dim, num_heads, window_size):
|
414 |
+
super().__init__()
|
415 |
+
self.self = MaskFormerSwinSelfAttention(config, dim, num_heads, window_size)
|
416 |
+
self.output = MaskFormerSwinSelfOutput(config, dim)
|
417 |
+
self.pruned_heads = set()
|
418 |
+
|
419 |
+
def prune_heads(self, heads):
|
420 |
+
if len(heads) == 0:
|
421 |
+
return
|
422 |
+
heads, index = find_pruneable_heads_and_indices(
|
423 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
424 |
+
)
|
425 |
+
|
426 |
+
# Prune linear layers
|
427 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
428 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
429 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
430 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
431 |
+
|
432 |
+
# Update hyper params and store pruned heads
|
433 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
434 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
435 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states: torch.Tensor,
|
440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
441 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
output_attentions: Optional[bool] = False,
|
443 |
+
) -> Tuple[torch.Tensor]:
|
444 |
+
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
|
445 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
446 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
447 |
+
return outputs
|
448 |
+
|
449 |
+
|
450 |
+
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->MaskFormerSwin
|
451 |
+
class MaskFormerSwinIntermediate(nn.Module):
|
452 |
+
def __init__(self, config, dim):
|
453 |
+
super().__init__()
|
454 |
+
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
|
455 |
+
if isinstance(config.hidden_act, str):
|
456 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
457 |
+
else:
|
458 |
+
self.intermediate_act_fn = config.hidden_act
|
459 |
+
|
460 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
461 |
+
hidden_states = self.dense(hidden_states)
|
462 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
463 |
+
return hidden_states
|
464 |
+
|
465 |
+
|
466 |
+
# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->MaskFormerSwin
|
467 |
+
class MaskFormerSwinOutput(nn.Module):
|
468 |
+
def __init__(self, config, dim):
|
469 |
+
super().__init__()
|
470 |
+
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
|
471 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
472 |
+
|
473 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
474 |
+
hidden_states = self.dense(hidden_states)
|
475 |
+
hidden_states = self.dropout(hidden_states)
|
476 |
+
return hidden_states
|
477 |
+
|
478 |
+
|
479 |
+
class MaskFormerSwinLayer(nn.Module):
|
480 |
+
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
|
481 |
+
super().__init__()
|
482 |
+
self.shift_size = shift_size
|
483 |
+
self.window_size = config.window_size
|
484 |
+
self.input_resolution = input_resolution
|
485 |
+
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
486 |
+
self.attention = MaskFormerSwinAttention(config, dim, num_heads, self.window_size)
|
487 |
+
self.drop_path = (
|
488 |
+
MaskFormerSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
|
489 |
+
)
|
490 |
+
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
491 |
+
self.intermediate = MaskFormerSwinIntermediate(config, dim)
|
492 |
+
self.output = MaskFormerSwinOutput(config, dim)
|
493 |
+
|
494 |
+
def get_attn_mask(self, input_resolution):
|
495 |
+
if self.shift_size > 0:
|
496 |
+
# calculate attention mask for SW-MSA
|
497 |
+
height, width = input_resolution
|
498 |
+
img_mask = torch.zeros((1, height, width, 1))
|
499 |
+
height_slices = (
|
500 |
+
slice(0, -self.window_size),
|
501 |
+
slice(-self.window_size, -self.shift_size),
|
502 |
+
slice(-self.shift_size, None),
|
503 |
+
)
|
504 |
+
width_slices = (
|
505 |
+
slice(0, -self.window_size),
|
506 |
+
slice(-self.window_size, -self.shift_size),
|
507 |
+
slice(-self.shift_size, None),
|
508 |
+
)
|
509 |
+
count = 0
|
510 |
+
for height_slice in height_slices:
|
511 |
+
for width_slice in width_slices:
|
512 |
+
img_mask[:, height_slice, width_slice, :] = count
|
513 |
+
count += 1
|
514 |
+
|
515 |
+
mask_windows = window_partition(img_mask, self.window_size)
|
516 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
517 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
518 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
519 |
+
else:
|
520 |
+
attn_mask = None
|
521 |
+
return attn_mask
|
522 |
+
|
523 |
+
def maybe_pad(self, hidden_states, height, width):
|
524 |
+
pad_left = pad_top = 0
|
525 |
+
pad_rigth = (self.window_size - width % self.window_size) % self.window_size
|
526 |
+
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
|
527 |
+
pad_values = (0, 0, pad_left, pad_rigth, pad_top, pad_bottom)
|
528 |
+
hidden_states = nn.functional.pad(hidden_states, pad_values)
|
529 |
+
return hidden_states, pad_values
|
530 |
+
|
531 |
+
def forward(self, hidden_states, input_dimensions, head_mask=None, output_attentions=False):
|
532 |
+
height, width = input_dimensions
|
533 |
+
batch_size, dim, channels = hidden_states.size()
|
534 |
+
shortcut = hidden_states
|
535 |
+
|
536 |
+
hidden_states = self.layernorm_before(hidden_states)
|
537 |
+
hidden_states = hidden_states.view(batch_size, height, width, channels)
|
538 |
+
# pad hidden_states to multiples of window size
|
539 |
+
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
|
540 |
+
|
541 |
+
_, height_pad, width_pad, _ = hidden_states.shape
|
542 |
+
# cyclic shift
|
543 |
+
if self.shift_size > 0:
|
544 |
+
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
545 |
+
else:
|
546 |
+
shifted_hidden_states = hidden_states
|
547 |
+
|
548 |
+
# partition windows
|
549 |
+
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
|
550 |
+
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
|
551 |
+
attn_mask = self.get_attn_mask((height_pad, width_pad))
|
552 |
+
if attn_mask is not None:
|
553 |
+
attn_mask = attn_mask.to(hidden_states_windows.device)
|
554 |
+
|
555 |
+
self_attention_outputs = self.attention(
|
556 |
+
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
|
557 |
+
)
|
558 |
+
|
559 |
+
attention_output = self_attention_outputs[0]
|
560 |
+
|
561 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
562 |
+
|
563 |
+
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
|
564 |
+
shifted_windows = window_reverse(
|
565 |
+
attention_windows, self.window_size, height_pad, width_pad
|
566 |
+
) # B height' width' C
|
567 |
+
|
568 |
+
# reverse cyclic shift
|
569 |
+
if self.shift_size > 0:
|
570 |
+
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
571 |
+
else:
|
572 |
+
attention_windows = shifted_windows
|
573 |
+
|
574 |
+
was_padded = pad_values[3] > 0 or pad_values[5] > 0
|
575 |
+
if was_padded:
|
576 |
+
attention_windows = attention_windows[:, :height, :width, :].contiguous()
|
577 |
+
|
578 |
+
attention_windows = attention_windows.view(batch_size, height * width, channels)
|
579 |
+
|
580 |
+
hidden_states = shortcut + self.drop_path(attention_windows)
|
581 |
+
|
582 |
+
layer_output = self.layernorm_after(hidden_states)
|
583 |
+
layer_output = self.intermediate(layer_output)
|
584 |
+
layer_output = hidden_states + self.output(layer_output)
|
585 |
+
|
586 |
+
outputs = (layer_output,) + outputs
|
587 |
+
|
588 |
+
return outputs
|
589 |
+
|
590 |
+
|
591 |
+
class MaskFormerSwinStage(nn.Module):
|
592 |
+
# Copied from transformers.models.swin.modeling_swin.SwinStage.__init__ with Swin->MaskFormerSwin
|
593 |
+
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
|
594 |
+
super().__init__()
|
595 |
+
self.config = config
|
596 |
+
self.dim = dim
|
597 |
+
self.blocks = nn.ModuleList(
|
598 |
+
[
|
599 |
+
MaskFormerSwinLayer(
|
600 |
+
config=config,
|
601 |
+
dim=dim,
|
602 |
+
input_resolution=input_resolution,
|
603 |
+
num_heads=num_heads,
|
604 |
+
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
|
605 |
+
)
|
606 |
+
for i in range(depth)
|
607 |
+
]
|
608 |
+
)
|
609 |
+
|
610 |
+
# patch merging layer
|
611 |
+
if downsample is not None:
|
612 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
|
613 |
+
else:
|
614 |
+
self.downsample = None
|
615 |
+
|
616 |
+
self.pointing = False
|
617 |
+
|
618 |
+
def forward(
|
619 |
+
self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False
|
620 |
+
):
|
621 |
+
all_hidden_states = () if output_hidden_states else None
|
622 |
+
|
623 |
+
height, width = input_dimensions
|
624 |
+
for i, block_module in enumerate(self.blocks):
|
625 |
+
if output_hidden_states:
|
626 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
627 |
+
|
628 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
629 |
+
|
630 |
+
block_hidden_states = block_module(hidden_states, input_dimensions, layer_head_mask, output_attentions)
|
631 |
+
|
632 |
+
hidden_states = block_hidden_states[0]
|
633 |
+
|
634 |
+
if output_hidden_states:
|
635 |
+
all_hidden_states += (hidden_states,)
|
636 |
+
|
637 |
+
if self.downsample is not None:
|
638 |
+
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
|
639 |
+
output_dimensions = (height, width, height_downsampled, width_downsampled)
|
640 |
+
hidden_states = self.downsample(hidden_states, input_dimensions)
|
641 |
+
else:
|
642 |
+
output_dimensions = (height, width, height, width)
|
643 |
+
|
644 |
+
return hidden_states, output_dimensions, all_hidden_states
|
645 |
+
|
646 |
+
|
647 |
+
class MaskFormerSwinEncoder(nn.Module):
|
648 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoder.__init__ with Swin->MaskFormerSwin
|
649 |
+
def __init__(self, config, grid_size):
|
650 |
+
super().__init__()
|
651 |
+
self.num_layers = len(config.depths)
|
652 |
+
self.config = config
|
653 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
654 |
+
self.layers = nn.ModuleList(
|
655 |
+
[
|
656 |
+
MaskFormerSwinStage(
|
657 |
+
config=config,
|
658 |
+
dim=int(config.embed_dim * 2**i_layer),
|
659 |
+
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
|
660 |
+
depth=config.depths[i_layer],
|
661 |
+
num_heads=config.num_heads[i_layer],
|
662 |
+
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
|
663 |
+
downsample=MaskFormerSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
|
664 |
+
)
|
665 |
+
for i_layer in range(self.num_layers)
|
666 |
+
]
|
667 |
+
)
|
668 |
+
|
669 |
+
self.gradient_checkpointing = False
|
670 |
+
|
671 |
+
def forward(
|
672 |
+
self,
|
673 |
+
hidden_states,
|
674 |
+
input_dimensions,
|
675 |
+
head_mask=None,
|
676 |
+
output_attentions=False,
|
677 |
+
output_hidden_states=False,
|
678 |
+
return_dict=True,
|
679 |
+
):
|
680 |
+
all_hidden_states = () if output_hidden_states else None
|
681 |
+
all_input_dimensions = ()
|
682 |
+
all_self_attentions = () if output_attentions else None
|
683 |
+
|
684 |
+
if output_hidden_states:
|
685 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
686 |
+
|
687 |
+
for i, layer_module in enumerate(self.layers):
|
688 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
689 |
+
|
690 |
+
if self.gradient_checkpointing and self.training:
|
691 |
+
layer_hidden_states, output_dimensions, layer_all_hidden_states = self._gradient_checkpointing_func(
|
692 |
+
layer_module.__call__,
|
693 |
+
hidden_states,
|
694 |
+
layer_head_mask,
|
695 |
+
output_attentions,
|
696 |
+
)
|
697 |
+
else:
|
698 |
+
layer_hidden_states, output_dimensions, layer_all_hidden_states = layer_module(
|
699 |
+
hidden_states,
|
700 |
+
input_dimensions,
|
701 |
+
layer_head_mask,
|
702 |
+
output_attentions,
|
703 |
+
output_hidden_states,
|
704 |
+
)
|
705 |
+
|
706 |
+
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
|
707 |
+
all_input_dimensions += (input_dimensions,)
|
708 |
+
if output_hidden_states:
|
709 |
+
all_hidden_states += (layer_all_hidden_states,)
|
710 |
+
|
711 |
+
hidden_states = layer_hidden_states
|
712 |
+
|
713 |
+
if output_attentions:
|
714 |
+
all_self_attentions = all_self_attentions + (layer_all_hidden_states[1],)
|
715 |
+
|
716 |
+
if not return_dict:
|
717 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
718 |
+
|
719 |
+
return MaskFormerSwinBaseModelOutput(
|
720 |
+
last_hidden_state=hidden_states,
|
721 |
+
hidden_states=all_hidden_states,
|
722 |
+
hidden_states_spatial_dimensions=all_input_dimensions,
|
723 |
+
attentions=all_self_attentions,
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->MaskFormerSwin, swin->model
|
728 |
+
class MaskFormerSwinPreTrainedModel(PreTrainedModel):
|
729 |
+
"""
|
730 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
731 |
+
models.
|
732 |
+
"""
|
733 |
+
|
734 |
+
config_class = MaskFormerSwinConfig
|
735 |
+
base_model_prefix = "model"
|
736 |
+
main_input_name = "pixel_values"
|
737 |
+
supports_gradient_checkpointing = True
|
738 |
+
|
739 |
+
def _init_weights(self, module):
|
740 |
+
"""Initialize the weights"""
|
741 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
742 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
743 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
744 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
745 |
+
if module.bias is not None:
|
746 |
+
module.bias.data.zero_()
|
747 |
+
elif isinstance(module, nn.LayerNorm):
|
748 |
+
module.bias.data.zero_()
|
749 |
+
module.weight.data.fill_(1.0)
|
750 |
+
|
751 |
+
|
752 |
+
class MaskFormerSwinModel(MaskFormerSwinPreTrainedModel):
|
753 |
+
def __init__(self, config, add_pooling_layer=True):
|
754 |
+
super().__init__(config)
|
755 |
+
self.config = config
|
756 |
+
self.num_layers = len(config.depths)
|
757 |
+
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
|
758 |
+
|
759 |
+
self.embeddings = MaskFormerSwinEmbeddings(config)
|
760 |
+
self.encoder = MaskFormerSwinEncoder(config, self.embeddings.patch_grid)
|
761 |
+
|
762 |
+
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
763 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
764 |
+
|
765 |
+
def get_input_embeddings(self):
|
766 |
+
return self.embeddings.patch_embeddings
|
767 |
+
|
768 |
+
def _prune_heads(self, heads_to_prune):
|
769 |
+
"""
|
770 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
771 |
+
class PreTrainedModel
|
772 |
+
"""
|
773 |
+
for layer, heads in heads_to_prune.items():
|
774 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
775 |
+
|
776 |
+
def forward(
|
777 |
+
self,
|
778 |
+
pixel_values=None,
|
779 |
+
head_mask=None,
|
780 |
+
output_attentions=None,
|
781 |
+
output_hidden_states=None,
|
782 |
+
return_dict=None,
|
783 |
+
):
|
784 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
785 |
+
output_hidden_states = (
|
786 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
787 |
+
)
|
788 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
789 |
+
|
790 |
+
if pixel_values is None:
|
791 |
+
raise ValueError("You have to specify pixel_values")
|
792 |
+
|
793 |
+
# Prepare head mask if needed
|
794 |
+
# 1.0 in head_mask indicate we keep the head
|
795 |
+
# attention_probs has shape bsz x n_heads x N x N
|
796 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
797 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
798 |
+
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
|
799 |
+
|
800 |
+
embedding_output, input_dimensions = self.embeddings(pixel_values)
|
801 |
+
|
802 |
+
encoder_outputs = self.encoder(
|
803 |
+
embedding_output,
|
804 |
+
input_dimensions,
|
805 |
+
head_mask=head_mask,
|
806 |
+
output_attentions=output_attentions,
|
807 |
+
output_hidden_states=output_hidden_states,
|
808 |
+
return_dict=return_dict,
|
809 |
+
)
|
810 |
+
|
811 |
+
sequence_output = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0]
|
812 |
+
sequence_output = self.layernorm(sequence_output)
|
813 |
+
|
814 |
+
pooled_output = None
|
815 |
+
if self.pooler is not None:
|
816 |
+
pooled_output = self.pooler(sequence_output.transpose(1, 2))
|
817 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
818 |
+
|
819 |
+
if not return_dict:
|
820 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
821 |
+
|
822 |
+
hidden_states_spatial_dimensions = (input_dimensions,) + encoder_outputs.hidden_states_spatial_dimensions
|
823 |
+
|
824 |
+
return MaskFormerSwinModelOutputWithPooling(
|
825 |
+
last_hidden_state=sequence_output,
|
826 |
+
pooler_output=pooled_output,
|
827 |
+
hidden_states=encoder_outputs.hidden_states,
|
828 |
+
hidden_states_spatial_dimensions=hidden_states_spatial_dimensions,
|
829 |
+
attentions=encoder_outputs.attentions,
|
830 |
+
)
|
831 |
+
|
832 |
+
|
833 |
+
class MaskFormerSwinBackbone(MaskFormerSwinPreTrainedModel, BackboneMixin):
|
834 |
+
"""
|
835 |
+
MaskFormerSwin backbone, designed especially for the MaskFormer framework.
|
836 |
+
|
837 |
+
This classes reshapes `hidden_states` from (`batch_size, sequence_length, hidden_size)` to (`batch_size,
|
838 |
+
num_channels, height, width)`). It also adds additional layernorms after each stage.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
config (`MaskFormerSwinConfig`):
|
842 |
+
The configuration used by [`MaskFormerSwinModel`].
|
843 |
+
"""
|
844 |
+
|
845 |
+
def __init__(self, config: MaskFormerSwinConfig):
|
846 |
+
super().__init__(config)
|
847 |
+
super()._init_backbone(config)
|
848 |
+
|
849 |
+
self.model = MaskFormerSwinModel(config)
|
850 |
+
if "stem" in self.out_features:
|
851 |
+
raise ValueError("This backbone does not support 'stem' in the `out_features`.")
|
852 |
+
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
|
853 |
+
self.hidden_states_norms = nn.ModuleList(
|
854 |
+
[nn.LayerNorm(num_channels) for num_channels in self.num_features[1:]]
|
855 |
+
)
|
856 |
+
|
857 |
+
# Initialize weights and apply final processing
|
858 |
+
self.post_init()
|
859 |
+
|
860 |
+
def forward(
|
861 |
+
self,
|
862 |
+
pixel_values: Tensor,
|
863 |
+
output_hidden_states: Optional[bool] = None,
|
864 |
+
output_attentions: Optional[bool] = None,
|
865 |
+
return_dict: Optional[bool] = None,
|
866 |
+
) -> BackboneOutput:
|
867 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
868 |
+
output_hidden_states = (
|
869 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
870 |
+
)
|
871 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
872 |
+
|
873 |
+
outputs = self.model(
|
874 |
+
pixel_values, output_hidden_states=True, output_attentions=output_attentions, return_dict=True
|
875 |
+
)
|
876 |
+
|
877 |
+
# we skip the stem
|
878 |
+
hidden_states = outputs.hidden_states[1:]
|
879 |
+
|
880 |
+
# we need to reshape the hidden states to their original spatial dimensions
|
881 |
+
# spatial dimensions contains all the heights and widths of each stage, including after the embeddings
|
882 |
+
spatial_dimensions: Tuple[Tuple[int, int]] = outputs.hidden_states_spatial_dimensions
|
883 |
+
feature_maps = ()
|
884 |
+
for i, (hidden_state, stage, (height, width)) in enumerate(
|
885 |
+
zip(hidden_states, self.stage_names[1:], spatial_dimensions)
|
886 |
+
):
|
887 |
+
norm = self.hidden_states_norms[i]
|
888 |
+
# the last element corespond to the layer's last block output but before patch merging
|
889 |
+
hidden_state_unpolled = hidden_state[-1]
|
890 |
+
hidden_state_norm = norm(hidden_state_unpolled)
|
891 |
+
# the pixel decoder (FPN) expects 3D tensors (features)
|
892 |
+
batch_size, _, hidden_size = hidden_state_norm.shape
|
893 |
+
# reshape "b (h w) d -> b d h w"
|
894 |
+
hidden_state_permuted = (
|
895 |
+
hidden_state_norm.permute(0, 2, 1).view((batch_size, hidden_size, height, width)).contiguous()
|
896 |
+
)
|
897 |
+
if stage in self.out_features:
|
898 |
+
feature_maps += (hidden_state_permuted,)
|
899 |
+
|
900 |
+
if not return_dict:
|
901 |
+
output = (feature_maps,)
|
902 |
+
if output_hidden_states:
|
903 |
+
output += (outputs.hidden_states,)
|
904 |
+
if output_attentions:
|
905 |
+
output += (outputs.attentions,)
|
906 |
+
return output
|
907 |
+
|
908 |
+
return BackboneOutput(
|
909 |
+
feature_maps=feature_maps,
|
910 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
911 |
+
attentions=outputs.attentions,
|
912 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/mega/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_torch_available,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {
|
25 |
+
"configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"],
|
26 |
+
}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_mega"] = [
|
35 |
+
"MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"MegaForCausalLM",
|
37 |
+
"MegaForMaskedLM",
|
38 |
+
"MegaForMultipleChoice",
|
39 |
+
"MegaForQuestionAnswering",
|
40 |
+
"MegaForSequenceClassification",
|
41 |
+
"MegaForTokenClassification",
|
42 |
+
"MegaModel",
|
43 |
+
"MegaPreTrainedModel",
|
44 |
+
]
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .modeling_mega import (
|
56 |
+
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
57 |
+
MegaForCausalLM,
|
58 |
+
MegaForMaskedLM,
|
59 |
+
MegaForMultipleChoice,
|
60 |
+
MegaForQuestionAnswering,
|
61 |
+
MegaForSequenceClassification,
|
62 |
+
MegaForTokenClassification,
|
63 |
+
MegaModel,
|
64 |
+
MegaPreTrainedModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
else:
|
68 |
+
import sys
|
69 |
+
|
70 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/configuration_mega.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/convert_mega_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mega/__pycache__/modeling_mega.cpython-310.pyc
ADDED
Binary file (69.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mega/configuration_mega.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Mega Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MEGA configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class MegaConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`MegaModel`]. It is used to instantiate a Mega
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the Mega
|
35 |
+
[mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
43 |
+
Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`MegaModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 128):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 4):
|
48 |
+
Number of hidden layers in the Mega encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 256):
|
50 |
+
Dimensionality of the hidden size (self-attention value projection) within the Mega encoder
|
51 |
+
ema_projection_size (`int`, *optional*, defaults to 16):
|
52 |
+
Dimensionality of the MegaMultiDimensionDampedEma
|
53 |
+
bidirectional (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether the MegaMultiDimensionDampedEma used in Mega's self-attention should work bidirectionally (`True`)
|
55 |
+
or unidirectionally (`False`). Bidirectional EMA is incompatible with causal decoding, so this should be
|
56 |
+
False if you intend to use the model as a decoder.
|
57 |
+
shared_representation_size (`int`, *optional*, defaults to 64):
|
58 |
+
Dimensionality of the linear projection for shared representation of self-attention queries and keys
|
59 |
+
use_chunking (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper)
|
61 |
+
chunk_size (`int`, *optional*, defaults to -1):
|
62 |
+
If `use_chunking` is set to `True`, determines the size of the chunks to apply to the input sequence. If
|
63 |
+
chunking is used, input sequences must be padded to a multiple of `chunk_size`
|
64 |
+
truncation (`int`, *optional*):
|
65 |
+
If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma
|
66 |
+
normalize_before_mega (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to normalize before (`True`) or after (`False`) passing through Mega encoder blocks
|
68 |
+
normalization_type (`str`, *optional*, defaults to `"scalenorm"`):
|
69 |
+
Type of normalization to use in Mega encoder blocks. Choose one of `"scalenorm"`, `"layernorm"`,
|
70 |
+
`"rmsnorm"`, `"batchnorm"`, or `"syncbatchnorm"` (GPU required for syncbatchnorm)
|
71 |
+
norm_affine (`bool`, *optional*, defaults to `True`):
|
72 |
+
If `True`, applies a parameterized affine transformation to inputs during normalization
|
73 |
+
activation (`str`, *optional*, defaults to `"silu"`):
|
74 |
+
Activation function to apply within Mega encoder blocks. Choose one of `"silu"`, `"relu"`, `"linear"`,
|
75 |
+
`"gelu"`, or `"gelu_accurate"`
|
76 |
+
attention_activation (`str`, *optional*, defaults to `"softmax"`):
|
77 |
+
Activation function to apply for single-headed self-attention (a la Transformer). Choose one of
|
78 |
+
`"softmax"`, `"laplace"`, or `"relu2"`
|
79 |
+
dropout_prob (`float`, *optional*, defaults to 0.1):
|
80 |
+
The dropout probability for EMA self-attention
|
81 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
82 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
83 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
84 |
+
The dropout ratio for the attention probabilities.
|
85 |
+
use_feature_dropout (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to use feature-based (`True`) or standard dropout (`False`)
|
87 |
+
use_normalized_ffn (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to use the normalized feed-forward sub-layer in Mega blocks (`True`) or pass Mega encoder output
|
89 |
+
as-is (`False`)
|
90 |
+
nffn_hidden_size (`int`, *optional*, defaults to 256):
|
91 |
+
If using the normalized feed-forward network (NFFN) layer within Mega (`use_normalized_ffn = True`), this
|
92 |
+
is the hidden size of the NFFN
|
93 |
+
normalize_before_ffn (`bool`, *optional*, defaults to `True`):
|
94 |
+
Whether to normalize before (`True`) or after (`False`) the feed-forward portion of NFFN
|
95 |
+
nffn_activation_dropout_prob (`float`, *optional*, defaults to 0.1):
|
96 |
+
The dropout ratio for the NFFN component.
|
97 |
+
max_positions (`int`, *optional*, defaults to 2048):
|
98 |
+
The maximum sequence length to use for positional representations. For `"simple"` relative positional bias,
|
99 |
+
this is a hard limit on input length; `"rotary"` relative positional bias will extrapolate to longer
|
100 |
+
sequences
|
101 |
+
add_token_type_embeddings (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether to account for token types in embeddings. Left as optional to maintain compatibility with original
|
103 |
+
implementation while adding support for token types.
|
104 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
105 |
+
The vocabulary size of the `token_type_ids` passed when calling [`MegaModel`]. Only used if
|
106 |
+
`add_token_type_embeddings = True`
|
107 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
108 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
109 |
+
ema_delta_alpha_range (`float`, *optional*, defaults to 0.2):
|
110 |
+
The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in
|
111 |
+
MegaMultiDimensionDampedEma.
|
112 |
+
ema_beta_range (`float`, *optional*, defaults to 0.02):
|
113 |
+
The standard deviation for initializing the beta parameter (expansion matrix) in
|
114 |
+
MegaMultiDimensionDampedEma.
|
115 |
+
ema_gamma_omega_range (`float`, *optional*, defaults to 1.0):
|
116 |
+
The standard deviation for initializing the gamma (projection matrix) and omega (residual weight)
|
117 |
+
parameters in MultiDimensionEMA.
|
118 |
+
relative_positional_bias (`str`, *optional*, defaults to `"rotary"`):
|
119 |
+
Type of relative positional encoding. Choose one of `"rotary"` or `"simple"`. If `"simple"` is selected,
|
120 |
+
`max_positions` is used as a limit on input size, while `"rotary"` extrapolates beyond `max_positions`.
|
121 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
122 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
123 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
124 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
125 |
+
relevant if `config.is_decoder=True`.
|
126 |
+
classifier_dropout (`float`, *optional*):
|
127 |
+
The dropout ratio for the classification head.
|
128 |
+
add_lm_hidden_dense_layer (`bool`, *optional*, defaults to `True`):
|
129 |
+
Whether to include a hidden layer for projection between encoder outputs and LM heads (`True`) or pass
|
130 |
+
hidden states directly to LM head (`False`). Remains optional for compatibility with original
|
131 |
+
implementation
|
132 |
+
|
133 |
+
Examples:
|
134 |
+
|
135 |
+
```python
|
136 |
+
>>> from transformers import MegaConfig, MegaModel
|
137 |
+
|
138 |
+
>>> # Initializing a Mega configuration
|
139 |
+
>>> configuration = MegaConfig()
|
140 |
+
|
141 |
+
>>> # Initializing a model (with random weights) from the configuration
|
142 |
+
>>> model = MegaModel(configuration)
|
143 |
+
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```"""
|
147 |
+
|
148 |
+
model_type = "mega"
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
vocab_size=30522,
|
153 |
+
hidden_size=128,
|
154 |
+
num_hidden_layers=4,
|
155 |
+
intermediate_size=256,
|
156 |
+
ema_projection_size=16,
|
157 |
+
bidirectional=True,
|
158 |
+
shared_representation_size=64,
|
159 |
+
use_chunking=False,
|
160 |
+
chunk_size=-1,
|
161 |
+
truncation=None,
|
162 |
+
normalize_before_mega=True,
|
163 |
+
normalization_type="scalenorm",
|
164 |
+
norm_affine=True,
|
165 |
+
activation="silu",
|
166 |
+
attention_activation="softmax",
|
167 |
+
dropout_prob=0.1,
|
168 |
+
hidden_dropout_prob=0.1,
|
169 |
+
attention_probs_dropout_prob=0.1,
|
170 |
+
use_feature_dropout=False,
|
171 |
+
use_normalized_ffn=True,
|
172 |
+
nffn_hidden_size=256,
|
173 |
+
normalize_before_ffn=True,
|
174 |
+
nffn_activation_dropout_prob=0.1,
|
175 |
+
max_positions=2048,
|
176 |
+
add_token_type_embeddings=False,
|
177 |
+
type_vocab_size=2,
|
178 |
+
initializer_range=0.02,
|
179 |
+
ema_delta_alpha_range=0.2,
|
180 |
+
ema_beta_range=0.02,
|
181 |
+
ema_gamma_omega_range=1.0,
|
182 |
+
pad_token_id=1,
|
183 |
+
bos_token_id=0,
|
184 |
+
eos_token_id=2,
|
185 |
+
relative_positional_bias="rotary",
|
186 |
+
classifier_dropout=None,
|
187 |
+
use_cache=True,
|
188 |
+
add_lm_hidden_dense_layer=True,
|
189 |
+
**kwargs,
|
190 |
+
):
|
191 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
192 |
+
|
193 |
+
self.vocab_size = vocab_size
|
194 |
+
self.hidden_size = hidden_size
|
195 |
+
self.num_hidden_layers = num_hidden_layers
|
196 |
+
self.activation = activation
|
197 |
+
self.attention_activation = attention_activation
|
198 |
+
self.intermediate_size = intermediate_size
|
199 |
+
self.ema_projection_size = ema_projection_size
|
200 |
+
self.bidirectional = bidirectional
|
201 |
+
self.shared_representation_size = shared_representation_size
|
202 |
+
self.use_chunking = use_chunking
|
203 |
+
self.chunk_size = chunk_size
|
204 |
+
self.truncation = truncation
|
205 |
+
self.normalize_before_mega = normalize_before_mega
|
206 |
+
self.normalization_type = normalization_type
|
207 |
+
self.norm_affine = norm_affine
|
208 |
+
self.dropout_prob = dropout_prob
|
209 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
210 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
211 |
+
self.use_feature_dropout = use_feature_dropout
|
212 |
+
self.use_normalized_ffn = use_normalized_ffn
|
213 |
+
self.nffn_hidden_size = nffn_hidden_size
|
214 |
+
self.normalize_before_ffn = normalize_before_ffn
|
215 |
+
self.nffn_activation_dropout_prob = nffn_activation_dropout_prob
|
216 |
+
self.max_positions = max_positions
|
217 |
+
self.add_token_type_embeddings = add_token_type_embeddings
|
218 |
+
self.type_vocab_size = type_vocab_size
|
219 |
+
self.initializer_range = initializer_range
|
220 |
+
self.ema_delta_alpha_range = ema_delta_alpha_range
|
221 |
+
self.ema_beta_range = ema_beta_range
|
222 |
+
self.ema_gamma_omega_range = ema_gamma_omega_range
|
223 |
+
self.relative_positional_bias = relative_positional_bias
|
224 |
+
self.use_cache = use_cache
|
225 |
+
self.classifier_dropout = classifier_dropout
|
226 |
+
self.add_lm_hidden_dense_layer = add_lm_hidden_dense_layer
|
227 |
+
self.num_attention_heads = 1 # not used but required by Hugging Face
|
228 |
+
|
229 |
+
|
230 |
+
class MegaOnnxConfig(OnnxConfig):
|
231 |
+
@property
|
232 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
233 |
+
if self.task == "multiple-choice":
|
234 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
235 |
+
else:
|
236 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
237 |
+
return OrderedDict(
|
238 |
+
[
|
239 |
+
("input_ids", dynamic_axis),
|
240 |
+
("attention_mask", dynamic_axis),
|
241 |
+
]
|
242 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Convert Mega pretrained checkpoint. Built to convert the Masked LM checkpoint located at
|
18 |
+
https://huggingface.co/mnaylor/mega-wikitext-103
|
19 |
+
|
20 |
+
Requirements:
|
21 |
+
- clone the Mega repo and install fairseq from there
|
22 |
+
1. git clone https://github.com/facebookresearch/mega.git
|
23 |
+
2. cd mega && pip install -e
|
24 |
+
- clone the pretrained weights for the original implementation from the hugging face repo
|
25 |
+
* use this location as the path for pretrained weights
|
26 |
+
"""
|
27 |
+
import argparse
|
28 |
+
|
29 |
+
# utilities to import the model weights and config file
|
30 |
+
import os
|
31 |
+
import pickle as pkl
|
32 |
+
|
33 |
+
# PyTorch + new model classes
|
34 |
+
import torch
|
35 |
+
from torch import nn
|
36 |
+
|
37 |
+
from transformers import AutoTokenizer, MegaConfig, MegaForMaskedLM
|
38 |
+
|
39 |
+
|
40 |
+
# import the EncoderLayer class used to pretrain
|
41 |
+
# !! NOTE !! this requires the version of fairseq that is built when you install the Mega source
|
42 |
+
try:
|
43 |
+
from fairseq.modules.mega_layer import MegaEncoderLayer
|
44 |
+
except ImportError:
|
45 |
+
raise ImportError("You need to install the version of fairseq from the Mega repo!")
|
46 |
+
|
47 |
+
|
48 |
+
# define the wrapper classes used to train the MLM (see colab notebook below)
|
49 |
+
# https://colab.research.google.com/drive/1qfUO6o5HRdxBblWlw058HVyvaEPhPpH8?usp=sharing
|
50 |
+
# MegaLM outputs hidden states
|
51 |
+
class MegaLM(nn.Module):
|
52 |
+
"The base class for our Mega encoder - given input IDs, embed text and return encoder output"
|
53 |
+
|
54 |
+
def __init__(self, mega_args, depth, vocab_size):
|
55 |
+
super().__init__()
|
56 |
+
self.mega_args = mega_args
|
57 |
+
self.embedding_layer = nn.Embedding(vocab_size, self.mega_args.encoder_embed_dim)
|
58 |
+
self.encoders = nn.ModuleList([MegaEncoderLayer(self.mega_args) for _ in range(depth)])
|
59 |
+
self.depth = depth
|
60 |
+
|
61 |
+
def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0):
|
62 |
+
"""
|
63 |
+
Code for a forward pass - expects input_ids and attention_mask to come from a Hugging Face tokenizer as PyTorch
|
64 |
+
tensors, and returns a tensor of size (batch, n_classes) containing classification logits
|
65 |
+
|
66 |
+
Other options:
|
67 |
+
- batch_first: boolean indicating whether the batch dimension is first in input_ids (default: True, which
|
68 |
+
aligns with the HF tokenizer behavior)
|
69 |
+
- ignore_mask_value: the value in attention_mask that identifies tokens that should be ignored (default: 0,
|
70 |
+
which aligns with HF tokenizer)
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Mega expects embeddings to be (time, batch, embedding size), but
|
74 |
+
# Hugging Face returns tokens as (batch, time)
|
75 |
+
if batch_first:
|
76 |
+
input_ids = input_ids.T
|
77 |
+
|
78 |
+
# to make things more confusing, Mega expects the attention mask to
|
79 |
+
# be (batch, time), but with values of 0 (normal token) and 1 (ignore token)
|
80 |
+
# which is the opposite of what HF returns
|
81 |
+
if ignore_mask_value == 0:
|
82 |
+
attention_mask = 1 - attention_mask
|
83 |
+
|
84 |
+
# get token embeddings from IDs
|
85 |
+
embeds = self.embedding_layer(input_ids)
|
86 |
+
|
87 |
+
# pass through the Mega layers
|
88 |
+
# input is (time, batch, encoder dim) and output is the same
|
89 |
+
for encoder in self.encoders:
|
90 |
+
embeds = encoder(embeds, attention_mask)
|
91 |
+
|
92 |
+
# return according to the shape specified
|
93 |
+
if batch_first:
|
94 |
+
# (T, B, H) --> (B, T, H)
|
95 |
+
return torch.transpose(embeds, 0, 1)
|
96 |
+
else:
|
97 |
+
return embeds
|
98 |
+
|
99 |
+
|
100 |
+
# renamed from MegaForMaskedLM to avoid confusion with new module
|
101 |
+
class OriginalMegaForMaskedLM(nn.Module):
|
102 |
+
"A wrapper class for doing masked language modeling with Mega"
|
103 |
+
|
104 |
+
def __init__(self, mega_args, depth, vocab_size):
|
105 |
+
super().__init__()
|
106 |
+
self.mega = MegaLM(mega_args, depth, vocab_size)
|
107 |
+
self.mlm_head = nn.Linear(mega_args.encoder_embed_dim, vocab_size)
|
108 |
+
self.dropout = nn.Dropout(p=0.1)
|
109 |
+
|
110 |
+
def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0):
|
111 |
+
"""
|
112 |
+
Perform a forward pass through the Mega encoder and the masked LM head. Returns logits for each vocabulary
|
113 |
+
entry.
|
114 |
+
|
115 |
+
If `batch_first` (default to align with Hugging Face tokenizer behavior), output will have the shape (Batch
|
116 |
+
size, Sequence length, Vocab size); otherwise (S, B, V)
|
117 |
+
"""
|
118 |
+
encoder_output = self.mega(input_ids, attention_mask, batch_first, ignore_mask_value)
|
119 |
+
return self.mlm_head(self.dropout(encoder_output))
|
120 |
+
|
121 |
+
|
122 |
+
# code to convert the checkpoint located in the user-specified location
|
123 |
+
def convert_checkpoint_to_huggingface(pretrained_checkpoint_path, output_path, includes_tokenizer):
|
124 |
+
with open(os.path.join(pretrained_checkpoint_path, "model_args.pkl"), "rb") as f:
|
125 |
+
mega_original_args = pkl.load(f)
|
126 |
+
|
127 |
+
# load the original encoder
|
128 |
+
original_mlm = OriginalMegaForMaskedLM(**mega_original_args).eval()
|
129 |
+
|
130 |
+
# load its weights
|
131 |
+
print(
|
132 |
+
"Original Mega encoder:",
|
133 |
+
original_mlm.mega.load_state_dict(
|
134 |
+
torch.load(os.path.join(pretrained_checkpoint_path, "encoder_weights.pt"), map_location="cpu")
|
135 |
+
),
|
136 |
+
)
|
137 |
+
print(
|
138 |
+
"Original Mega MLM layer:",
|
139 |
+
original_mlm.mlm_head.load_state_dict(
|
140 |
+
torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu")
|
141 |
+
),
|
142 |
+
)
|
143 |
+
|
144 |
+
# create a new config from the old one
|
145 |
+
hf_config = MegaConfig(
|
146 |
+
num_hidden_layers=mega_original_args["depth"],
|
147 |
+
vocab_size=mega_original_args["vocab_size"],
|
148 |
+
hidden_size=mega_original_args["mega_args"].encoder_embed_dim,
|
149 |
+
shared_representation_size=mega_original_args["mega_args"].encoder_z_dim,
|
150 |
+
intermediate_size=mega_original_args["mega_args"].encoder_hidden_dim,
|
151 |
+
ema_projection_size=mega_original_args["mega_args"].encoder_n_dim,
|
152 |
+
dropout_prob=mega_original_args["mega_args"].dropout,
|
153 |
+
attention_probs_dropout_prob=mega_original_args["mega_args"].attention_dropout,
|
154 |
+
hidden_dropout_prob=mega_original_args["mega_args"].hidden_dropout,
|
155 |
+
activation=mega_original_args["mega_args"].activation_fn,
|
156 |
+
attention_activation=mega_original_args["mega_args"].attention_activation_fn,
|
157 |
+
bidirectional=mega_original_args["mega_args"].bidirectional,
|
158 |
+
use_chunking=mega_original_args["mega_args"].encoder_chunk_size > 0,
|
159 |
+
chunk_size=mega_original_args["mega_args"].encoder_chunk_size,
|
160 |
+
truncation=mega_original_args["mega_args"].truncation_length,
|
161 |
+
normalization_type=mega_original_args["mega_args"].normalization_type,
|
162 |
+
normalize_before_mega=True,
|
163 |
+
norm_affine=True,
|
164 |
+
use_feature_dropout=mega_original_args["mega_args"].feature_dropout,
|
165 |
+
relative_positional_bias=mega_original_args["mega_args"].rel_pos_bias,
|
166 |
+
max_positions=mega_original_args["mega_args"].max_source_positions,
|
167 |
+
nffn_hidden_size=mega_original_args["mega_args"].encoder_ffn_embed_dim,
|
168 |
+
normalize_before_ffn=mega_original_args["mega_args"].normalize_before,
|
169 |
+
# new arguments added for HF implementation
|
170 |
+
nffn_activation_dropout_prob=0.0,
|
171 |
+
add_token_type_embeddings=False,
|
172 |
+
add_lm_hidden_dense_layer=False,
|
173 |
+
)
|
174 |
+
|
175 |
+
hf_mlm = MegaForMaskedLM(hf_config).eval()
|
176 |
+
|
177 |
+
# the originl checkpoint just uses nn.Embedding for the word embeddings
|
178 |
+
# we use a wrapper module for embeddings to add support for positional embeddings
|
179 |
+
hf_mlm.mega.embedding_layer.word_embeddings.weight = original_mlm.mega.embedding_layer.weight
|
180 |
+
|
181 |
+
# modify the state dictionary of the original checkpoint to account for naming issues in the Hugging Face
|
182 |
+
# ecosystem -- any names containing "beta" or "gamma" aren't safe to use and are renamed upon _load_pretrained,
|
183 |
+
# also renaming previously confusing parameter names
|
184 |
+
original_state_dict = original_mlm.mega.encoders.state_dict()
|
185 |
+
updated_keys = {}
|
186 |
+
for module_name in original_state_dict.keys():
|
187 |
+
new_module_name = None
|
188 |
+
# have to handle gamma, beta, and alpha differently due to their use
|
189 |
+
# in multiple modules within the original repository;
|
190 |
+
# beta is used in EMA, MovingAverageGatedAttention, and RotaryRelativePositionalBias, and must be renamed due to flax/tf weights
|
191 |
+
# the EMA sublayer was renamed from "move" to "ema_gate" for readability, so that is also done here
|
192 |
+
if "beta" in module_name:
|
193 |
+
# EMA sub-layers were always called "move" in the original repo
|
194 |
+
if "move.beta" in module_name:
|
195 |
+
new_module_name = module_name.replace("move.beta", "ema_gate.ema_expansion_matrix")
|
196 |
+
elif "mega_layer.beta" in module_name:
|
197 |
+
new_module_name = module_name.replace("beta", "qk_bias")
|
198 |
+
else:
|
199 |
+
new_module_name = module_name.replace("beta", "b_param")
|
200 |
+
# beta is used in EMA and MovingAverageGatedAttention, and must be renamed due to flax/tf weights
|
201 |
+
elif "gamma" in module_name:
|
202 |
+
if "move.gamma" in module_name:
|
203 |
+
new_module_name = module_name.replace("move.gamma", "ema_gate.kernel_projection_matrix")
|
204 |
+
elif "mega_layer.gamma" in module_name:
|
205 |
+
new_module_name = module_name.replace("gamma", "qk_weight")
|
206 |
+
else:
|
207 |
+
new_module_name = module_name.replace("gamma", "g_param")
|
208 |
+
# alpha is used in EMA and positional bias; renaming to improve readability
|
209 |
+
elif "move.alpha" in module_name:
|
210 |
+
new_module_name = module_name.replace("move.alpha", "ema_gate.decay_factor")
|
211 |
+
# delta is only used in EMA; renaming to improve readability
|
212 |
+
elif "move.delta" in module_name:
|
213 |
+
new_module_name = module_name.replace("move.delta", "ema_gate.damping_factor")
|
214 |
+
# omega is only used in EMA; renaming to improve readability
|
215 |
+
elif "omega" in module_name:
|
216 |
+
new_module_name = module_name.replace("move.omega", "ema_gate.residual_weight")
|
217 |
+
|
218 |
+
if new_module_name:
|
219 |
+
updated_keys[module_name] = new_module_name
|
220 |
+
|
221 |
+
if len(updated_keys) != 0:
|
222 |
+
print(f"Renaming these keys: {updated_keys.keys()}")
|
223 |
+
else:
|
224 |
+
print("No need to rename state dict entries")
|
225 |
+
for old, new in updated_keys.items():
|
226 |
+
original_state_dict[new] = original_state_dict.pop(old)
|
227 |
+
|
228 |
+
# now attempt to load the state dictionary with updated names
|
229 |
+
# note that we now call it `mega.layers` instead of `mega.encoders` due to hugging face style
|
230 |
+
print("HF Mega encoder:", hf_mlm.mega.layers.load_state_dict(original_state_dict))
|
231 |
+
|
232 |
+
# load the MLM head weights directly
|
233 |
+
print(
|
234 |
+
"HF Mega MLM layer:",
|
235 |
+
hf_mlm.mlm_head.load_state_dict(
|
236 |
+
torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu")
|
237 |
+
),
|
238 |
+
)
|
239 |
+
|
240 |
+
# test on a randomly generated input sequence
|
241 |
+
input_ids = torch.randint(0, hf_config.vocab_size, size=(4, 256))
|
242 |
+
input_mask = torch.ones_like(input_ids)
|
243 |
+
# mask a few tokens to make sure masking is applied appropriately :)
|
244 |
+
input_mask[:, -10:] = 0
|
245 |
+
|
246 |
+
# run forward passes
|
247 |
+
original_output = original_mlm(input_ids, input_mask, batch_first=True, ignore_mask_value=0)
|
248 |
+
hf_output = hf_mlm(input_ids, input_mask)[0]
|
249 |
+
|
250 |
+
# print shapes and diff
|
251 |
+
print(f"original output {original_output.shape}")
|
252 |
+
print(f"hf output {hf_output.shape}")
|
253 |
+
print(f"max diff: {(original_output - hf_output).max()}") # 0.0
|
254 |
+
success = torch.allclose(original_output, hf_output, atol=1e-3)
|
255 |
+
|
256 |
+
if success:
|
257 |
+
print("Yay!")
|
258 |
+
hf_mlm.save_pretrained(output_path)
|
259 |
+
else:
|
260 |
+
raise RuntimeError(f"Something's broken :(\nOriginal:\n{original_output}\n\nHF\n{hf_output}\n{hf_mlm}")
|
261 |
+
|
262 |
+
if includes_tokenizer:
|
263 |
+
print("Transferring tokenizer")
|
264 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_checkpoint_path)
|
265 |
+
tokenizer.save_pretrained(output_path)
|
266 |
+
|
267 |
+
|
268 |
+
if __name__ == "__main__":
|
269 |
+
parser = argparse.ArgumentParser()
|
270 |
+
|
271 |
+
parser.add_argument(
|
272 |
+
"--pretrained_checkpoint_path",
|
273 |
+
default=None,
|
274 |
+
type=str,
|
275 |
+
required=True,
|
276 |
+
help="Point to the directory containing your model weights using the official Mega repo",
|
277 |
+
)
|
278 |
+
|
279 |
+
parser.add_argument(
|
280 |
+
"--output_path", default=None, type=str, required=True, help="Location to save the Hugging Face version"
|
281 |
+
)
|
282 |
+
|
283 |
+
parser.add_argument(
|
284 |
+
"--includes_tokenizer",
|
285 |
+
action="store_true",
|
286 |
+
help="Use this flag if there is a Hugging Face tokenizer in the original checkpoint repo",
|
287 |
+
)
|
288 |
+
|
289 |
+
args = parser.parse_args()
|
290 |
+
|
291 |
+
convert_checkpoint_to_huggingface(args.pretrained_checkpoint_path, args.output_path, args.includes_tokenizer)
|
venv/lib/python3.10/site-packages/transformers/models/mega/modeling_mega.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/models/oneformer/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig"],
|
21 |
+
"processing_oneformer": ["OneFormerProcessor"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_vision_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["image_processing_oneformer"] = ["OneFormerImageProcessor"]
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_oneformer"] = [
|
39 |
+
"ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"OneFormerForUniversalSegmentation",
|
41 |
+
"OneFormerModel",
|
42 |
+
"OneFormerPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig
|
47 |
+
from .processing_oneformer import OneFormerProcessor
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_vision_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .image_processing_oneformer import OneFormerImageProcessor
|
56 |
+
try:
|
57 |
+
if not is_torch_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .modeling_oneformer import (
|
63 |
+
ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
64 |
+
OneFormerForUniversalSegmentation,
|
65 |
+
OneFormerModel,
|
66 |
+
OneFormerPreTrainedModel,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/configuration_oneformer.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/oneformer/__pycache__/convert_to_hf_oneformer.cpython-310.pyc
ADDED
Binary file (31.7 kB). View file
|
|