Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- lm-evaluation-harness/tests/testdata/anagrams1-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/arithmetic_2da-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_npi_present_1-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_gender-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_french_disability-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_french_religion-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/headqa_en-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_computer_science-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/lambada_mt_it-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/math_precalc-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/openbookqa-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/pile_gutenberg-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_pile-cc-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_uspto-v0-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/qnli-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/race-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/squad2-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/swag-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/toxigen-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/triviaqa-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/wic-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/wmt14-en-fr-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-en-zh-v1-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wsc-v0-res.json +1 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/__init__.py +59 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py +287 -0
- venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py +195 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/__init__.py +75 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py +284 -0
- venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py +278 -0
ckpts/universal/global_step20/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:314e9e440891db9a772e572b6c0492fec68fc0b8d36ead67bcd523a147b9cbdd
|
3 |
+
size 33555612
|
lm-evaluation-harness/tests/testdata/anagrams1-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"anagrams1": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"anagrams1": 0}}
|
lm-evaluation-harness/tests/testdata/arithmetic_2da-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
6ca1ca6ebd7cac4420d5005f7f35b0edbc921377f5e4f8874cc176e4fb6d79d4
|
lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_determiner_noun_agreement_irregular_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_determiner_noun_agreement_irregular_2": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ceede5b38248a62125a74a8332602b8eac5ef40864f071ad8d86e7971e07219d
|
lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_left_branch_island_echo_question": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_left_branch_island_echo_question": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a3a702a3335c79b02b36caf37c68069050c2a8a3a03c3610c09afc39d2b83fb1
|
lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_matrix_question_npi_licensor_present": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_matrix_question_npi_licensor_present": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_npi_present_1-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3ef532a85e0ee8f8ff779bc7ddc873d515969a708da84a4eb4a85b7c843cf244
|
lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
290e7eddacea4ec16989af697f2ee3373fdd9aef4b452bf887184c6e2f6e7d9d
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_gender-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2bf62b7cc678f64ffad4a6e6715ff76a2b984bfe8d1165da4b76b3b4dfafb2f9
|
lm-evaluation-harness/tests/testdata/crows_pairs_french_disability-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_french_disability": {"likelihood_difference": 0.31387939561315326, "likelihood_difference_stderr": 0.027598132299657168, "pct_stereotype": 0.36363636363636365, "pct_stereotype_stderr": 0.05966637484671758}}, "versions": {"crows_pairs_french_disability": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_french_religion-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_french_religion": {"likelihood_difference": 0.32691651640972225, "likelihood_difference_stderr": 0.021833493193249474, "pct_stereotype": 0.45217391304347826, "pct_stereotype_stderr": 0.046614569799583463}}, "versions": {"crows_pairs_french_religion": 0}}
|
lm-evaluation-harness/tests/testdata/headqa_en-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
09da45119b12a0144e3081f8fb790c2a22af7b9c3aac42f54423d348a711fbf5
|
lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
b3b27e9dbad587377d3c8cab1072782de883e245da93a563bd8b3099017b1fc0
|
lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-college_medicine": {"acc": 0.27167630057803466, "acc_norm": 0.2543352601156069, "acc_norm_stderr": 0.0332055644308557, "acc_stderr": 0.03391750322321659}}, "versions": {"hendrycksTest-college_medicine": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_computer_science-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
870d5a6300c527077aaf6baa3e750e75fa840b41657cf82549f39b768b14862d
|
lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-machine_learning": {"acc": 0.23214285714285715, "acc_norm": 0.22321428571428573, "acc_norm_stderr": 0.039523019677025116, "acc_stderr": 0.04007341809755806}}, "versions": {"hendrycksTest-machine_learning": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-sociology": {"acc": 0.23383084577114427, "acc_norm": 0.24875621890547264, "acc_norm_stderr": 0.030567675938916707, "acc_stderr": 0.02992941540834838}}, "versions": {"hendrycksTest-sociology": 0}}
|
lm-evaluation-harness/tests/testdata/lambada_mt_it-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
fd87c6c5cf4e0499c5f9f80e5bd7ee6a4f3d2991902a0cc3ec9e6eaf22d6760a
|
lm-evaluation-harness/tests/testdata/math_precalc-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"math_precalc": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_precalc": 0}}
|
lm-evaluation-harness/tests/testdata/openbookqa-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
78a49a0ca1a47373adb33463b1d092e6bc0d8f4b01bcb380ada48065037849d7
|
lm-evaluation-harness/tests/testdata/pile_gutenberg-v1-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
02a559f74a9105145e7d4d9c5ddea372b5b4938f5368dc8ffafc39cbe3b4c7ef
|
lm-evaluation-harness/tests/testdata/pile_pile-cc-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_pile-cc": {"bits_per_byte": 0.0001620742639125056, "byte_perplexity": 1.0001123476295946, "word_perplexity": 1.0006738958554477}}, "versions": {"pile_pile-cc": 1}}
|
lm-evaluation-harness/tests/testdata/pile_uspto-v0-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
789b2bdb31564d512b70f801316f49320a26c83ba361226bac0afb255341d477
|
lm-evaluation-harness/tests/testdata/qnli-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
4281d4ff5cf1244358b0ea0220c67863c69fbade850696b43e8ff05138e01e12
|
lm-evaluation-harness/tests/testdata/race-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"race": {"acc": 0.23253588516746412, "acc_stderr": 0.013074460615265295}}, "versions": {"race": 0}}
|
lm-evaluation-harness/tests/testdata/squad2-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"squad2": {"HasAns_exact": 0.0, "HasAns_f1": 0.0, "NoAns_exact": 0.0, "NoAns_f1": 0.0, "best_exact": 50.07159100480081, "best_f1": 50.07159100480081, "exact": 0.0, "f1": 0.0}}, "versions": {"squad2": 1}}
|
lm-evaluation-harness/tests/testdata/swag-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"swag": {"acc": 0.2482255323402979, "acc_norm": 0.24882535239428172, "acc_norm_stderr": 0.00305666959496067, "acc_stderr": 0.003054201832644171}}, "versions": {"swag": 0}}
|
lm-evaluation-harness/tests/testdata/toxigen-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"toxigen": {"acc": 0.5053191489361702, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.016283609940023203, "acc_stderr": 0.016315959984563776}}, "versions": {"toxigen": 0}}
|
lm-evaluation-harness/tests/testdata/triviaqa-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
f8ec05b306b9f6187c0f8117cae441fb85a7a2e4670f4f9a1a3b632b1978421a
|
lm-evaluation-harness/tests/testdata/wic-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
403a08da05e4c44d7e3dd3358382a7ba489c41d223e24cd1a9ed82ef1a2d004b
|
lm-evaluation-harness/tests/testdata/wmt14-en-fr-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
368ae7eec0f902b5123f2d5197caa5109a23942011c53fe68d9eaeee20180e46
|
lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
c1d9f7283755fbdd7ecd6cc4278b0ac25a80ac256b7071ea5f839ccd038e5974
|
lm-evaluation-harness/tests/testdata/wmt20-en-zh-v1-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
67f0333ddbcb07d7a9ac12919129a18fe4fea24e4826a11bbdde4fd5ed5ed83f
|
lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1fd846f3c0104e794eb380dae7f648592092ab8bf59234c26d0a671bbbc28df1
|
lm-evaluation-harness/tests/testdata/wsc-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"wsc": {"acc": 0.5480769230769231, "acc_stderr": 0.049038186969314335}}, "versions": {"wsc": 0}}
|
venv/lib/python3.10/site-packages/transformers/models/barthez/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_sentencepiece_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_barthez"] = ["BarthezTokenizer"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_tokenizers_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"]
|
37 |
+
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
try:
|
41 |
+
if not is_sentencepiece_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
from .tokenization_barthez import BarthezTokenizer
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_tokenizers_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .tokenization_barthez_fast import BarthezTokenizerFast
|
55 |
+
|
56 |
+
else:
|
57 |
+
import sys
|
58 |
+
|
59 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (922 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc
ADDED
Binary file (7.11 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for the BARThez model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
SPIECE_UNDERLINE = "▁"
|
34 |
+
|
35 |
+
# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
|
36 |
+
|
37 |
+
|
38 |
+
class BarthezTokenizer(PreTrainedTokenizer):
|
39 |
+
"""
|
40 |
+
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
|
41 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
42 |
+
|
43 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
44 |
+
this superclass for more information regarding those methods.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_file (`str`):
|
48 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
49 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
50 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
51 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
52 |
+
|
53 |
+
<Tip>
|
54 |
+
|
55 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
56 |
+
sequence. The token used is the `cls_token`.
|
57 |
+
|
58 |
+
</Tip>
|
59 |
+
|
60 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
61 |
+
The end of sequence token.
|
62 |
+
|
63 |
+
<Tip>
|
64 |
+
|
65 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
66 |
+
The token used is the `sep_token`.
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
71 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
72 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
73 |
+
token of a sequence built with special tokens.
|
74 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
75 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
76 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
77 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
78 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
79 |
+
token instead.
|
80 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
81 |
+
The token used for padding, for example when batching sequences of different lengths.
|
82 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
83 |
+
The token used for masking values. This is the token used when training this model with masked language
|
84 |
+
modeling. This is the token which the model will try to predict.
|
85 |
+
sp_model_kwargs (`dict`, *optional*):
|
86 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
87 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
88 |
+
to set:
|
89 |
+
|
90 |
+
- `enable_sampling`: Enable subword regularization.
|
91 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
92 |
+
|
93 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
94 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
95 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
96 |
+
using forward-filtering-and-backward-sampling algorithm.
|
97 |
+
|
98 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
99 |
+
BPE-dropout.
|
100 |
+
|
101 |
+
Attributes:
|
102 |
+
sp_model (`SentencePieceProcessor`):
|
103 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
104 |
+
"""
|
105 |
+
|
106 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
107 |
+
model_input_names = ["input_ids", "attention_mask"]
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_file,
|
112 |
+
bos_token="<s>",
|
113 |
+
eos_token="</s>",
|
114 |
+
sep_token="</s>",
|
115 |
+
cls_token="<s>",
|
116 |
+
unk_token="<unk>",
|
117 |
+
pad_token="<pad>",
|
118 |
+
mask_token="<mask>",
|
119 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
120 |
+
**kwargs,
|
121 |
+
) -> None:
|
122 |
+
# Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way
|
123 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
124 |
+
|
125 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
126 |
+
|
127 |
+
self.vocab_file = vocab_file
|
128 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
129 |
+
self.sp_model.Load(str(vocab_file))
|
130 |
+
super().__init__(
|
131 |
+
bos_token=bos_token,
|
132 |
+
eos_token=eos_token,
|
133 |
+
unk_token=unk_token,
|
134 |
+
sep_token=sep_token,
|
135 |
+
cls_token=cls_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
mask_token=mask_token,
|
138 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
139 |
+
**kwargs,
|
140 |
+
)
|
141 |
+
|
142 |
+
def build_inputs_with_special_tokens(
|
143 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
144 |
+
) -> List[int]:
|
145 |
+
"""
|
146 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
147 |
+
adding special tokens. A BARThez sequence has the following format:
|
148 |
+
|
149 |
+
- single sequence: `<s> X </s>`
|
150 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs to which the special tokens will be added.
|
155 |
+
token_ids_1 (`List[int]`, *optional*):
|
156 |
+
Optional second list of IDs for sequence pairs.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
160 |
+
"""
|
161 |
+
|
162 |
+
if token_ids_1 is None:
|
163 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
164 |
+
cls = [self.cls_token_id]
|
165 |
+
sep = [self.sep_token_id]
|
166 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
167 |
+
|
168 |
+
def get_special_tokens_mask(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
173 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
token_ids_0 (`List[int]`):
|
177 |
+
List of IDs.
|
178 |
+
token_ids_1 (`List[int]`, *optional*):
|
179 |
+
Optional second list of IDs for sequence pairs.
|
180 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
181 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
185 |
+
"""
|
186 |
+
if already_has_special_tokens:
|
187 |
+
return super().get_special_tokens_mask(
|
188 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
189 |
+
)
|
190 |
+
|
191 |
+
if token_ids_1 is None:
|
192 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
193 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
194 |
+
|
195 |
+
def create_token_type_ids_from_sequences(
|
196 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
197 |
+
) -> List[int]:
|
198 |
+
"""
|
199 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
token_ids_0 (`List[int]`):
|
203 |
+
List of IDs.
|
204 |
+
token_ids_1 (`List[int]`, *optional*):
|
205 |
+
Optional second list of IDs for sequence pairs.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
`List[int]`: List of zeros.
|
209 |
+
"""
|
210 |
+
sep = [self.sep_token_id]
|
211 |
+
cls = [self.cls_token_id]
|
212 |
+
|
213 |
+
if token_ids_1 is None:
|
214 |
+
return len(cls + token_ids_0 + sep) * [0]
|
215 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
216 |
+
|
217 |
+
@property
|
218 |
+
def vocab_size(self):
|
219 |
+
return len(self.sp_model)
|
220 |
+
|
221 |
+
def get_vocab(self):
|
222 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
223 |
+
vocab.update(self.added_tokens_encoder)
|
224 |
+
return vocab
|
225 |
+
|
226 |
+
def _tokenize(self, text: str) -> List[str]:
|
227 |
+
return self.sp_model.encode(text, out_type=str)
|
228 |
+
|
229 |
+
def _convert_token_to_id(self, token):
|
230 |
+
"""Converts a token (str) in an id using the vocab."""
|
231 |
+
return self.sp_model.PieceToId(token)
|
232 |
+
|
233 |
+
def _convert_id_to_token(self, index):
|
234 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
235 |
+
return self.sp_model.IdToPiece(index)
|
236 |
+
|
237 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
238 |
+
def convert_tokens_to_string(self, tokens):
|
239 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
240 |
+
current_sub_tokens = []
|
241 |
+
out_string = ""
|
242 |
+
prev_is_special = False
|
243 |
+
for token in tokens:
|
244 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
245 |
+
if token in self.all_special_tokens:
|
246 |
+
if not prev_is_special:
|
247 |
+
out_string += " "
|
248 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
249 |
+
prev_is_special = True
|
250 |
+
current_sub_tokens = []
|
251 |
+
else:
|
252 |
+
current_sub_tokens.append(token)
|
253 |
+
prev_is_special = False
|
254 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
255 |
+
return out_string.strip()
|
256 |
+
|
257 |
+
def __getstate__(self):
|
258 |
+
state = self.__dict__.copy()
|
259 |
+
state["sp_model"] = None
|
260 |
+
return state
|
261 |
+
|
262 |
+
def __setstate__(self, d):
|
263 |
+
self.__dict__ = d
|
264 |
+
|
265 |
+
# for backward compatibility
|
266 |
+
if not hasattr(self, "sp_model_kwargs"):
|
267 |
+
self.sp_model_kwargs = {}
|
268 |
+
|
269 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
270 |
+
self.sp_model.Load(self.vocab_file)
|
271 |
+
|
272 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
273 |
+
if not os.path.isdir(save_directory):
|
274 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
275 |
+
return
|
276 |
+
out_vocab_file = os.path.join(
|
277 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
278 |
+
)
|
279 |
+
|
280 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
281 |
+
copyfile(self.vocab_file, out_vocab_file)
|
282 |
+
elif not os.path.isfile(self.vocab_file):
|
283 |
+
with open(out_vocab_file, "wb") as fi:
|
284 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
285 |
+
fi.write(content_spiece_model)
|
286 |
+
|
287 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for the BARThez model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_barthez import BarthezTokenizer
|
29 |
+
else:
|
30 |
+
BarthezTokenizer = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
35 |
+
|
36 |
+
|
37 |
+
SPIECE_UNDERLINE = "▁"
|
38 |
+
|
39 |
+
|
40 |
+
class BarthezTokenizerFast(PreTrainedTokenizerFast):
|
41 |
+
"""
|
42 |
+
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on
|
43 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
44 |
+
|
45 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
46 |
+
refer to this superclass for more information regarding those methods.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_file (`str`):
|
50 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
51 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
52 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
53 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
58 |
+
sequence. The token used is the `cls_token`.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
63 |
+
The end of sequence token.
|
64 |
+
|
65 |
+
<Tip>
|
66 |
+
|
67 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
68 |
+
The token used is the `sep_token`.
|
69 |
+
|
70 |
+
</Tip>
|
71 |
+
|
72 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
73 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
74 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
75 |
+
token of a sequence built with special tokens.
|
76 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
77 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
78 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
79 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
80 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
81 |
+
token instead.
|
82 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
83 |
+
The token used for padding, for example when batching sequences of different lengths.
|
84 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
85 |
+
The token used for masking values. This is the token used when training this model with masked language
|
86 |
+
modeling. This is the token which the model will try to predict.
|
87 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
88 |
+
Additional special tokens used by the tokenizer.
|
89 |
+
"""
|
90 |
+
|
91 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
92 |
+
model_input_names = ["input_ids", "attention_mask"]
|
93 |
+
slow_tokenizer_class = BarthezTokenizer
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_file=None,
|
98 |
+
tokenizer_file=None,
|
99 |
+
bos_token="<s>",
|
100 |
+
eos_token="</s>",
|
101 |
+
sep_token="</s>",
|
102 |
+
cls_token="<s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token="<pad>",
|
105 |
+
mask_token="<mask>",
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
109 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
110 |
+
|
111 |
+
super().__init__(
|
112 |
+
vocab_file,
|
113 |
+
tokenizer_file=tokenizer_file,
|
114 |
+
bos_token=bos_token,
|
115 |
+
eos_token=eos_token,
|
116 |
+
unk_token=unk_token,
|
117 |
+
sep_token=sep_token,
|
118 |
+
cls_token=cls_token,
|
119 |
+
pad_token=pad_token,
|
120 |
+
mask_token=mask_token,
|
121 |
+
**kwargs,
|
122 |
+
)
|
123 |
+
|
124 |
+
self.vocab_file = vocab_file
|
125 |
+
|
126 |
+
@property
|
127 |
+
def can_save_slow_tokenizer(self) -> bool:
|
128 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
129 |
+
|
130 |
+
def build_inputs_with_special_tokens(
|
131 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
132 |
+
) -> List[int]:
|
133 |
+
"""
|
134 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
135 |
+
adding special tokens. A BARThez sequence has the following format:
|
136 |
+
|
137 |
+
- single sequence: `<s> X </s>`
|
138 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
139 |
+
|
140 |
+
Args:
|
141 |
+
token_ids_0 (`List[int]`):
|
142 |
+
List of IDs to which the special tokens will be added.
|
143 |
+
token_ids_1 (`List[int]`, *optional*):
|
144 |
+
Optional second list of IDs for sequence pairs.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
148 |
+
"""
|
149 |
+
|
150 |
+
if token_ids_1 is None:
|
151 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
152 |
+
cls = [self.cls_token_id]
|
153 |
+
sep = [self.sep_token_id]
|
154 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
155 |
+
|
156 |
+
def create_token_type_ids_from_sequences(
|
157 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
158 |
+
) -> List[int]:
|
159 |
+
"""
|
160 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
token_ids_0 (`List[int]`):
|
164 |
+
List of IDs.
|
165 |
+
token_ids_1 (`List[int]`, *optional*):
|
166 |
+
Optional second list of IDs for sequence pairs.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
`List[int]`: List of zeros.
|
170 |
+
"""
|
171 |
+
sep = [self.sep_token_id]
|
172 |
+
cls = [self.cls_token_id]
|
173 |
+
|
174 |
+
if token_ids_1 is None:
|
175 |
+
return len(cls + token_ids_0 + sep) * [0]
|
176 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
177 |
+
|
178 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
179 |
+
if not self.can_save_slow_tokenizer:
|
180 |
+
raise ValueError(
|
181 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
182 |
+
"tokenizer."
|
183 |
+
)
|
184 |
+
|
185 |
+
if not os.path.isdir(save_directory):
|
186 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
187 |
+
return
|
188 |
+
out_vocab_file = os.path.join(
|
189 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
190 |
+
)
|
191 |
+
|
192 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
193 |
+
copyfile(self.vocab_file, out_vocab_file)
|
194 |
+
|
195 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/detr/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig", "DetrOnnxConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_vision_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"]
|
29 |
+
_import_structure["image_processing_detr"] = ["DetrImageProcessor"]
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_detr"] = [
|
38 |
+
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"DetrForObjectDetection",
|
40 |
+
"DetrForSegmentation",
|
41 |
+
"DetrModel",
|
42 |
+
"DetrPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig, DetrOnnxConfig
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_vision_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .feature_extraction_detr import DetrFeatureExtractor
|
56 |
+
from .image_processing_detr import DetrImageProcessor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_detr import (
|
65 |
+
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
DetrForObjectDetection,
|
67 |
+
DetrForSegmentation,
|
68 |
+
DetrModel,
|
69 |
+
DetrPreTrainedModel,
|
70 |
+
)
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc
ADDED
Binary file (86.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DETR model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
from ..auto import CONFIG_MAPPING
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class DetrConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
|
37 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
38 |
+
defaults will yield a similar configuration to that of the DETR
|
39 |
+
[facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
use_timm_backbone (`bool`, *optional*, defaults to `True`):
|
46 |
+
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
|
47 |
+
API.
|
48 |
+
backbone_config (`PretrainedConfig` or `dict`, *optional*):
|
49 |
+
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
|
50 |
+
case it will default to `ResNetConfig()`.
|
51 |
+
num_channels (`int`, *optional*, defaults to 3):
|
52 |
+
The number of input channels.
|
53 |
+
num_queries (`int`, *optional*, defaults to 100):
|
54 |
+
Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
|
55 |
+
detect in a single image. For COCO, we recommend 100 queries.
|
56 |
+
d_model (`int`, *optional*, defaults to 256):
|
57 |
+
Dimension of the layers.
|
58 |
+
encoder_layers (`int`, *optional*, defaults to 6):
|
59 |
+
Number of encoder layers.
|
60 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
61 |
+
Number of decoder layers.
|
62 |
+
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
63 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
64 |
+
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
65 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
66 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
67 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
68 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
69 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
70 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
71 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
72 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
73 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
74 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
75 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
76 |
+
The dropout ratio for the attention probabilities.
|
77 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for activations inside the fully connected layer.
|
79 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
80 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
81 |
+
init_xavier_std (`float`, *optional*, defaults to 1):
|
82 |
+
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
|
83 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
84 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
85 |
+
for more details.
|
86 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
87 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
88 |
+
for more details.
|
89 |
+
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
90 |
+
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
91 |
+
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
|
92 |
+
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
|
93 |
+
backbone (`str`, *optional*, defaults to `"resnet50"`):
|
94 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
95 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
96 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
97 |
+
use_pretrained_backbone (`bool`, *optional*, `True`):
|
98 |
+
Whether to use pretrained weights for the backbone.
|
99 |
+
backbone_kwargs (`dict`, *optional*):
|
100 |
+
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
101 |
+
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
102 |
+
dilation (`bool`, *optional*, defaults to `False`):
|
103 |
+
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
|
104 |
+
`use_timm_backbone` = `True`.
|
105 |
+
class_cost (`float`, *optional*, defaults to 1):
|
106 |
+
Relative weight of the classification error in the Hungarian matching cost.
|
107 |
+
bbox_cost (`float`, *optional*, defaults to 5):
|
108 |
+
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
109 |
+
giou_cost (`float`, *optional*, defaults to 2):
|
110 |
+
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
111 |
+
mask_loss_coefficient (`float`, *optional*, defaults to 1):
|
112 |
+
Relative weight of the Focal loss in the panoptic segmentation loss.
|
113 |
+
dice_loss_coefficient (`float`, *optional*, defaults to 1):
|
114 |
+
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
|
115 |
+
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
116 |
+
Relative weight of the L1 bounding box loss in the object detection loss.
|
117 |
+
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
118 |
+
Relative weight of the generalized IoU loss in the object detection loss.
|
119 |
+
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
120 |
+
Relative classification weight of the 'no-object' class in the object detection loss.
|
121 |
+
|
122 |
+
Examples:
|
123 |
+
|
124 |
+
```python
|
125 |
+
>>> from transformers import DetrConfig, DetrModel
|
126 |
+
|
127 |
+
>>> # Initializing a DETR facebook/detr-resnet-50 style configuration
|
128 |
+
>>> configuration = DetrConfig()
|
129 |
+
|
130 |
+
>>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
|
131 |
+
>>> model = DetrModel(configuration)
|
132 |
+
|
133 |
+
>>> # Accessing the model configuration
|
134 |
+
>>> configuration = model.config
|
135 |
+
```"""
|
136 |
+
|
137 |
+
model_type = "detr"
|
138 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
139 |
+
attribute_map = {
|
140 |
+
"hidden_size": "d_model",
|
141 |
+
"num_attention_heads": "encoder_attention_heads",
|
142 |
+
}
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
use_timm_backbone=True,
|
147 |
+
backbone_config=None,
|
148 |
+
num_channels=3,
|
149 |
+
num_queries=100,
|
150 |
+
encoder_layers=6,
|
151 |
+
encoder_ffn_dim=2048,
|
152 |
+
encoder_attention_heads=8,
|
153 |
+
decoder_layers=6,
|
154 |
+
decoder_ffn_dim=2048,
|
155 |
+
decoder_attention_heads=8,
|
156 |
+
encoder_layerdrop=0.0,
|
157 |
+
decoder_layerdrop=0.0,
|
158 |
+
is_encoder_decoder=True,
|
159 |
+
activation_function="relu",
|
160 |
+
d_model=256,
|
161 |
+
dropout=0.1,
|
162 |
+
attention_dropout=0.0,
|
163 |
+
activation_dropout=0.0,
|
164 |
+
init_std=0.02,
|
165 |
+
init_xavier_std=1.0,
|
166 |
+
auxiliary_loss=False,
|
167 |
+
position_embedding_type="sine",
|
168 |
+
backbone="resnet50",
|
169 |
+
use_pretrained_backbone=True,
|
170 |
+
backbone_kwargs=None,
|
171 |
+
dilation=False,
|
172 |
+
class_cost=1,
|
173 |
+
bbox_cost=5,
|
174 |
+
giou_cost=2,
|
175 |
+
mask_loss_coefficient=1,
|
176 |
+
dice_loss_coefficient=1,
|
177 |
+
bbox_loss_coefficient=5,
|
178 |
+
giou_loss_coefficient=2,
|
179 |
+
eos_coefficient=0.1,
|
180 |
+
**kwargs,
|
181 |
+
):
|
182 |
+
if not use_timm_backbone and use_pretrained_backbone:
|
183 |
+
raise ValueError(
|
184 |
+
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
|
185 |
+
)
|
186 |
+
|
187 |
+
if backbone_config is not None and backbone is not None:
|
188 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
189 |
+
|
190 |
+
if backbone_config is not None and use_timm_backbone:
|
191 |
+
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
|
192 |
+
|
193 |
+
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
194 |
+
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
195 |
+
|
196 |
+
if not use_timm_backbone:
|
197 |
+
if backbone_config is None:
|
198 |
+
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
|
199 |
+
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
|
200 |
+
elif isinstance(backbone_config, dict):
|
201 |
+
backbone_model_type = backbone_config.get("model_type")
|
202 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
203 |
+
backbone_config = config_class.from_dict(backbone_config)
|
204 |
+
# set timm attributes to None
|
205 |
+
dilation, backbone, use_pretrained_backbone = None, None, None
|
206 |
+
|
207 |
+
self.use_timm_backbone = use_timm_backbone
|
208 |
+
self.backbone_config = backbone_config
|
209 |
+
self.num_channels = num_channels
|
210 |
+
self.num_queries = num_queries
|
211 |
+
self.d_model = d_model
|
212 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
213 |
+
self.encoder_layers = encoder_layers
|
214 |
+
self.encoder_attention_heads = encoder_attention_heads
|
215 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
216 |
+
self.decoder_layers = decoder_layers
|
217 |
+
self.decoder_attention_heads = decoder_attention_heads
|
218 |
+
self.dropout = dropout
|
219 |
+
self.attention_dropout = attention_dropout
|
220 |
+
self.activation_dropout = activation_dropout
|
221 |
+
self.activation_function = activation_function
|
222 |
+
self.init_std = init_std
|
223 |
+
self.init_xavier_std = init_xavier_std
|
224 |
+
self.encoder_layerdrop = encoder_layerdrop
|
225 |
+
self.decoder_layerdrop = decoder_layerdrop
|
226 |
+
self.num_hidden_layers = encoder_layers
|
227 |
+
self.auxiliary_loss = auxiliary_loss
|
228 |
+
self.position_embedding_type = position_embedding_type
|
229 |
+
self.backbone = backbone
|
230 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
231 |
+
self.backbone_kwargs = backbone_kwargs
|
232 |
+
self.dilation = dilation
|
233 |
+
# Hungarian matcher
|
234 |
+
self.class_cost = class_cost
|
235 |
+
self.bbox_cost = bbox_cost
|
236 |
+
self.giou_cost = giou_cost
|
237 |
+
# Loss coefficients
|
238 |
+
self.mask_loss_coefficient = mask_loss_coefficient
|
239 |
+
self.dice_loss_coefficient = dice_loss_coefficient
|
240 |
+
self.bbox_loss_coefficient = bbox_loss_coefficient
|
241 |
+
self.giou_loss_coefficient = giou_loss_coefficient
|
242 |
+
self.eos_coefficient = eos_coefficient
|
243 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
244 |
+
|
245 |
+
@property
|
246 |
+
def num_attention_heads(self) -> int:
|
247 |
+
return self.encoder_attention_heads
|
248 |
+
|
249 |
+
@property
|
250 |
+
def hidden_size(self) -> int:
|
251 |
+
return self.d_model
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs):
|
255 |
+
"""Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
backbone_config ([`PretrainedConfig`]):
|
259 |
+
The backbone configuration.
|
260 |
+
Returns:
|
261 |
+
[`DetrConfig`]: An instance of a configuration object
|
262 |
+
"""
|
263 |
+
return cls(backbone_config=backbone_config, **kwargs)
|
264 |
+
|
265 |
+
|
266 |
+
class DetrOnnxConfig(OnnxConfig):
|
267 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
268 |
+
|
269 |
+
@property
|
270 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
271 |
+
return OrderedDict(
|
272 |
+
[
|
273 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
274 |
+
("pixel_mask", {0: "batch"}),
|
275 |
+
]
|
276 |
+
)
|
277 |
+
|
278 |
+
@property
|
279 |
+
def atol_for_validation(self) -> float:
|
280 |
+
return 1e-5
|
281 |
+
|
282 |
+
@property
|
283 |
+
def default_onnx_opset(self) -> int:
|
284 |
+
return 12
|
venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert DETR checkpoints with timm backbone."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from collections import OrderedDict
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logging.set_verbosity_info()
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
36 |
+
rename_keys = []
|
37 |
+
for i in range(6):
|
38 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
39 |
+
rename_keys.append(
|
40 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
|
41 |
+
)
|
42 |
+
rename_keys.append(
|
43 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
|
44 |
+
)
|
45 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
|
46 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
|
47 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
|
48 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
|
49 |
+
rename_keys.append(
|
50 |
+
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
|
51 |
+
)
|
52 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
|
53 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
|
54 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
|
55 |
+
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
|
56 |
+
rename_keys.append(
|
57 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
|
58 |
+
)
|
59 |
+
rename_keys.append(
|
60 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
|
61 |
+
)
|
62 |
+
rename_keys.append(
|
63 |
+
(
|
64 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
|
65 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
|
66 |
+
)
|
67 |
+
)
|
68 |
+
rename_keys.append(
|
69 |
+
(
|
70 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
|
71 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
|
72 |
+
)
|
73 |
+
)
|
74 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
|
75 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
|
76 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
|
77 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
|
78 |
+
rename_keys.append(
|
79 |
+
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
|
80 |
+
)
|
81 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
|
82 |
+
rename_keys.append(
|
83 |
+
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
|
84 |
+
)
|
85 |
+
rename_keys.append(
|
86 |
+
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
|
87 |
+
)
|
88 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
|
89 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
|
90 |
+
|
91 |
+
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
|
92 |
+
rename_keys.extend(
|
93 |
+
[
|
94 |
+
("input_proj.weight", "input_projection.weight"),
|
95 |
+
("input_proj.bias", "input_projection.bias"),
|
96 |
+
("query_embed.weight", "query_position_embeddings.weight"),
|
97 |
+
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
|
98 |
+
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
|
99 |
+
("class_embed.weight", "class_labels_classifier.weight"),
|
100 |
+
("class_embed.bias", "class_labels_classifier.bias"),
|
101 |
+
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
|
102 |
+
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
|
103 |
+
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
|
104 |
+
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
|
105 |
+
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
|
106 |
+
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
|
107 |
+
]
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def rename_key(state_dict, old, new):
|
112 |
+
val = state_dict.pop(old)
|
113 |
+
state_dict[new] = val
|
114 |
+
|
115 |
+
|
116 |
+
def rename_backbone_keys(state_dict):
|
117 |
+
new_state_dict = OrderedDict()
|
118 |
+
for key, value in state_dict.items():
|
119 |
+
if "backbone.0.body" in key:
|
120 |
+
new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model")
|
121 |
+
new_state_dict[new_key] = value
|
122 |
+
else:
|
123 |
+
new_state_dict[key] = value
|
124 |
+
|
125 |
+
return new_state_dict
|
126 |
+
|
127 |
+
|
128 |
+
def read_in_q_k_v(state_dict, is_panoptic=False):
|
129 |
+
prefix = ""
|
130 |
+
if is_panoptic:
|
131 |
+
prefix = "detr."
|
132 |
+
|
133 |
+
# first: transformer encoder
|
134 |
+
for i in range(6):
|
135 |
+
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
|
136 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
|
137 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
|
138 |
+
# next, add query, keys and values (in that order) to the state dict
|
139 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
140 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
141 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
142 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
143 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
144 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
145 |
+
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
|
146 |
+
for i in range(6):
|
147 |
+
# read in weights + bias of input projection layer of self-attention
|
148 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
|
149 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
|
150 |
+
# next, add query, keys and values (in that order) to the state dict
|
151 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
152 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
153 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
154 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
155 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
156 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
157 |
+
# read in weights + bias of input projection layer of cross-attention
|
158 |
+
in_proj_weight_cross_attn = state_dict.pop(
|
159 |
+
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
|
160 |
+
)
|
161 |
+
in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
|
162 |
+
# next, add query, keys and values (in that order) of cross-attention to the state dict
|
163 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
|
164 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
|
165 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
|
166 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
|
167 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
|
168 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
|
169 |
+
|
170 |
+
|
171 |
+
# We will verify our results on an image of cute cats
|
172 |
+
def prepare_img():
|
173 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
174 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
175 |
+
|
176 |
+
return im
|
177 |
+
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def convert_detr_checkpoint(model_name, pytorch_dump_folder_path):
|
181 |
+
"""
|
182 |
+
Copy/paste/tweak model's weights to our DETR structure.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# load default config
|
186 |
+
config = DetrConfig()
|
187 |
+
# set backbone and dilation attributes
|
188 |
+
if "resnet101" in model_name:
|
189 |
+
config.backbone = "resnet101"
|
190 |
+
if "dc5" in model_name:
|
191 |
+
config.dilation = True
|
192 |
+
is_panoptic = "panoptic" in model_name
|
193 |
+
if is_panoptic:
|
194 |
+
config.num_labels = 250
|
195 |
+
else:
|
196 |
+
config.num_labels = 91
|
197 |
+
repo_id = "huggingface/label-files"
|
198 |
+
filename = "coco-detection-id2label.json"
|
199 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
200 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
201 |
+
config.id2label = id2label
|
202 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
203 |
+
|
204 |
+
# load image processor
|
205 |
+
format = "coco_panoptic" if is_panoptic else "coco_detection"
|
206 |
+
image_processor = DetrImageProcessor(format=format)
|
207 |
+
|
208 |
+
# prepare image
|
209 |
+
img = prepare_img()
|
210 |
+
encoding = image_processor(images=img, return_tensors="pt")
|
211 |
+
pixel_values = encoding["pixel_values"]
|
212 |
+
|
213 |
+
logger.info(f"Converting model {model_name}...")
|
214 |
+
|
215 |
+
# load original model from torch hub
|
216 |
+
detr = torch.hub.load("facebookresearch/detr", model_name, pretrained=True).eval()
|
217 |
+
state_dict = detr.state_dict()
|
218 |
+
# rename keys
|
219 |
+
for src, dest in rename_keys:
|
220 |
+
if is_panoptic:
|
221 |
+
src = "detr." + src
|
222 |
+
rename_key(state_dict, src, dest)
|
223 |
+
state_dict = rename_backbone_keys(state_dict)
|
224 |
+
# query, key and value matrices need special treatment
|
225 |
+
read_in_q_k_v(state_dict, is_panoptic=is_panoptic)
|
226 |
+
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
|
227 |
+
prefix = "detr.model." if is_panoptic else "model."
|
228 |
+
for key in state_dict.copy().keys():
|
229 |
+
if is_panoptic:
|
230 |
+
if (
|
231 |
+
key.startswith("detr")
|
232 |
+
and not key.startswith("class_labels_classifier")
|
233 |
+
and not key.startswith("bbox_predictor")
|
234 |
+
):
|
235 |
+
val = state_dict.pop(key)
|
236 |
+
state_dict["detr.model" + key[4:]] = val
|
237 |
+
elif "class_labels_classifier" in key or "bbox_predictor" in key:
|
238 |
+
val = state_dict.pop(key)
|
239 |
+
state_dict["detr." + key] = val
|
240 |
+
elif key.startswith("bbox_attention") or key.startswith("mask_head"):
|
241 |
+
continue
|
242 |
+
else:
|
243 |
+
val = state_dict.pop(key)
|
244 |
+
state_dict[prefix + key] = val
|
245 |
+
else:
|
246 |
+
if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
|
247 |
+
val = state_dict.pop(key)
|
248 |
+
state_dict[prefix + key] = val
|
249 |
+
# finally, create HuggingFace model and load state dict
|
250 |
+
model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config)
|
251 |
+
model.load_state_dict(state_dict)
|
252 |
+
model.eval()
|
253 |
+
# verify our conversion
|
254 |
+
original_outputs = detr(pixel_values)
|
255 |
+
outputs = model(pixel_values)
|
256 |
+
assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-4)
|
257 |
+
assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-4)
|
258 |
+
if is_panoptic:
|
259 |
+
assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4)
|
260 |
+
|
261 |
+
# Save model and image processor
|
262 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
263 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
264 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
265 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
266 |
+
|
267 |
+
|
268 |
+
if __name__ == "__main__":
|
269 |
+
parser = argparse.ArgumentParser()
|
270 |
+
|
271 |
+
parser.add_argument(
|
272 |
+
"--model_name", default="detr_resnet50", type=str, help="Name of the DETR model you'd like to convert."
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
276 |
+
)
|
277 |
+
args = parser.parse_args()
|
278 |
+
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
|