Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/23.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/23.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/euclidtools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/monomials.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/multivariate_resultants.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polytools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/algebraicfield.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domain.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gaussiandomains.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/polynomialring.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrational.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/quotientring.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/rationalfield.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/tests/test_domains.py +1270 -0
- venv/lib/python3.10/site-packages/sympy/polys/domains/tests/test_quotientring.py +52 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py +15 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a79c26837e5e1261bb8df5f53463bca0955fe1cbc767306114215d135deb4265
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:945610025c9bd8455ff2af170585cbd5081a9105c2fc68a9aff6dfd9d5b05edb
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/12.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ef41b1c3339126dc370ebbd5ed7ad118c5703680f21b886bef02c0218d2462b
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/23.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b954caf5c36821e0a54a0b1b7fad4fd058494fa54b382d80859cb3261b9e258e
|
3 |
+
size 16778396
|
ckpts/universal/global_step80/zero/23.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e768a62dc459a94256304a9d1359f93dda912be3d366faabe653958d76e949c
|
3 |
+
size 16778411
|
ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37e66bc6b72bd770b0e41e08bbce4eca34577ee11ca51e39c03f105876542248
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2cb6d3a787f0a7ad6e85e4762e6e4b24f07a1f692a4944aec56fcdb476b5b00
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/6.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4835f3a8bfd698242f3933033f5064cd06c6e678f73c4ed9c0b832c2c9496255
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daf06bb8e3b1f13cac3f6bcb5737a0f75d79b6b42fb73a599fd8d1b6526a0a51
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc
ADDED
Binary file (507 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/euclidtools.cpython-310.pyc
ADDED
Binary file (37.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc
ADDED
Binary file (33.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc
ADDED
Binary file (6.94 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc
ADDED
Binary file (18.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc
ADDED
Binary file (53.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc
ADDED
Binary file (22.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/monomials.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/multivariate_resultants.cpython-310.pyc
ADDED
Binary file (17.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc
ADDED
Binary file (55.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc
ADDED
Binary file (132 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc
ADDED
Binary file (31 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/polytools.cpython-310.pyc
ADDED
Binary file (176 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc
ADDED
Binary file (47.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc
ADDED
Binary file (51.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/algebraicfield.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domain.cpython-310.pyc
ADDED
Binary file (35.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gaussiandomains.cpython-310.pyc
ADDED
Binary file (20.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/polynomialring.cpython-310.pyc
ADDED
Binary file (7.91 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrational.cpython-310.pyc
ADDED
Binary file (802 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/quotientring.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/rationalfield.cpython-310.pyc
ADDED
Binary file (6.28 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/domains/tests/test_domains.py
ADDED
@@ -0,0 +1,1270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """
|
2 |
+
|
3 |
+
from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Integer,
|
4 |
+
Rational, oo, pi, _illegal)
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.functions.elementary.exponential import exp
|
7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
8 |
+
from sympy.functions.elementary.trigonometric import sin
|
9 |
+
from sympy.polys.polytools import Poly
|
10 |
+
from sympy.abc import x, y, z
|
11 |
+
|
12 |
+
from sympy.external.gmpy import HAS_GMPY
|
13 |
+
|
14 |
+
from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, EXRAW, ZZ_gmpy,
|
15 |
+
ZZ_python, QQ_gmpy, QQ_python)
|
16 |
+
from sympy.polys.domains.algebraicfield import AlgebraicField
|
17 |
+
from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I
|
18 |
+
from sympy.polys.domains.polynomialring import PolynomialRing
|
19 |
+
from sympy.polys.domains.realfield import RealField
|
20 |
+
|
21 |
+
from sympy.polys.numberfields.subfield import field_isomorphism
|
22 |
+
from sympy.polys.rings import ring
|
23 |
+
from sympy.polys.specialpolys import cyclotomic_poly
|
24 |
+
from sympy.polys.fields import field
|
25 |
+
|
26 |
+
from sympy.polys.agca.extensions import FiniteExtension
|
27 |
+
|
28 |
+
from sympy.polys.polyerrors import (
|
29 |
+
UnificationFailed,
|
30 |
+
GeneratorsError,
|
31 |
+
CoercionFailed,
|
32 |
+
NotInvertible,
|
33 |
+
DomainError)
|
34 |
+
|
35 |
+
from sympy.testing.pytest import raises
|
36 |
+
|
37 |
+
from itertools import product
|
38 |
+
|
39 |
+
ALG = QQ.algebraic_field(sqrt(2), sqrt(3))
|
40 |
+
|
41 |
+
def unify(K0, K1):
|
42 |
+
return K0.unify(K1)
|
43 |
+
|
44 |
+
def test_Domain_unify():
|
45 |
+
F3 = GF(3)
|
46 |
+
|
47 |
+
assert unify(F3, F3) == F3
|
48 |
+
assert unify(F3, ZZ) == ZZ
|
49 |
+
assert unify(F3, QQ) == QQ
|
50 |
+
assert unify(F3, ALG) == ALG
|
51 |
+
assert unify(F3, RR) == RR
|
52 |
+
assert unify(F3, CC) == CC
|
53 |
+
assert unify(F3, ZZ[x]) == ZZ[x]
|
54 |
+
assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
|
55 |
+
assert unify(F3, EX) == EX
|
56 |
+
|
57 |
+
assert unify(ZZ, F3) == ZZ
|
58 |
+
assert unify(ZZ, ZZ) == ZZ
|
59 |
+
assert unify(ZZ, QQ) == QQ
|
60 |
+
assert unify(ZZ, ALG) == ALG
|
61 |
+
assert unify(ZZ, RR) == RR
|
62 |
+
assert unify(ZZ, CC) == CC
|
63 |
+
assert unify(ZZ, ZZ[x]) == ZZ[x]
|
64 |
+
assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
|
65 |
+
assert unify(ZZ, EX) == EX
|
66 |
+
|
67 |
+
assert unify(QQ, F3) == QQ
|
68 |
+
assert unify(QQ, ZZ) == QQ
|
69 |
+
assert unify(QQ, QQ) == QQ
|
70 |
+
assert unify(QQ, ALG) == ALG
|
71 |
+
assert unify(QQ, RR) == RR
|
72 |
+
assert unify(QQ, CC) == CC
|
73 |
+
assert unify(QQ, ZZ[x]) == QQ[x]
|
74 |
+
assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
|
75 |
+
assert unify(QQ, EX) == EX
|
76 |
+
|
77 |
+
assert unify(ZZ_I, F3) == ZZ_I
|
78 |
+
assert unify(ZZ_I, ZZ) == ZZ_I
|
79 |
+
assert unify(ZZ_I, ZZ_I) == ZZ_I
|
80 |
+
assert unify(ZZ_I, QQ) == QQ_I
|
81 |
+
assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
|
82 |
+
assert unify(ZZ_I, RR) == CC
|
83 |
+
assert unify(ZZ_I, CC) == CC
|
84 |
+
assert unify(ZZ_I, ZZ[x]) == ZZ_I[x]
|
85 |
+
assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x]
|
86 |
+
assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x)
|
87 |
+
assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x)
|
88 |
+
assert unify(ZZ_I, EX) == EX
|
89 |
+
|
90 |
+
assert unify(QQ_I, F3) == QQ_I
|
91 |
+
assert unify(QQ_I, ZZ) == QQ_I
|
92 |
+
assert unify(QQ_I, ZZ_I) == QQ_I
|
93 |
+
assert unify(QQ_I, QQ) == QQ_I
|
94 |
+
assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
|
95 |
+
assert unify(QQ_I, RR) == CC
|
96 |
+
assert unify(QQ_I, CC) == CC
|
97 |
+
assert unify(QQ_I, ZZ[x]) == QQ_I[x]
|
98 |
+
assert unify(QQ_I, ZZ_I[x]) == QQ_I[x]
|
99 |
+
assert unify(QQ_I, QQ[x]) == QQ_I[x]
|
100 |
+
assert unify(QQ_I, QQ_I[x]) == QQ_I[x]
|
101 |
+
assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x)
|
102 |
+
assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x)
|
103 |
+
assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x)
|
104 |
+
assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x)
|
105 |
+
assert unify(QQ_I, EX) == EX
|
106 |
+
|
107 |
+
assert unify(RR, F3) == RR
|
108 |
+
assert unify(RR, ZZ) == RR
|
109 |
+
assert unify(RR, QQ) == RR
|
110 |
+
assert unify(RR, ALG) == RR
|
111 |
+
assert unify(RR, RR) == RR
|
112 |
+
assert unify(RR, CC) == CC
|
113 |
+
assert unify(RR, ZZ[x]) == RR[x]
|
114 |
+
assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
|
115 |
+
assert unify(RR, EX) == EX
|
116 |
+
assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)
|
117 |
+
|
118 |
+
assert unify(CC, F3) == CC
|
119 |
+
assert unify(CC, ZZ) == CC
|
120 |
+
assert unify(CC, QQ) == CC
|
121 |
+
assert unify(CC, ALG) == CC
|
122 |
+
assert unify(CC, RR) == CC
|
123 |
+
assert unify(CC, CC) == CC
|
124 |
+
assert unify(CC, ZZ[x]) == CC[x]
|
125 |
+
assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
|
126 |
+
assert unify(CC, EX) == EX
|
127 |
+
|
128 |
+
assert unify(ZZ[x], F3) == ZZ[x]
|
129 |
+
assert unify(ZZ[x], ZZ) == ZZ[x]
|
130 |
+
assert unify(ZZ[x], QQ) == QQ[x]
|
131 |
+
assert unify(ZZ[x], ALG) == ALG[x]
|
132 |
+
assert unify(ZZ[x], RR) == RR[x]
|
133 |
+
assert unify(ZZ[x], CC) == CC[x]
|
134 |
+
assert unify(ZZ[x], ZZ[x]) == ZZ[x]
|
135 |
+
assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
|
136 |
+
assert unify(ZZ[x], EX) == EX
|
137 |
+
|
138 |
+
assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
|
139 |
+
assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
|
140 |
+
assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
|
141 |
+
assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
|
142 |
+
assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
|
143 |
+
assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
|
144 |
+
assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
|
145 |
+
assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
|
146 |
+
assert unify(ZZ.frac_field(x), EX) == EX
|
147 |
+
|
148 |
+
assert unify(EX, F3) == EX
|
149 |
+
assert unify(EX, ZZ) == EX
|
150 |
+
assert unify(EX, QQ) == EX
|
151 |
+
assert unify(EX, ALG) == EX
|
152 |
+
assert unify(EX, RR) == EX
|
153 |
+
assert unify(EX, CC) == EX
|
154 |
+
assert unify(EX, ZZ[x]) == EX
|
155 |
+
assert unify(EX, ZZ.frac_field(x)) == EX
|
156 |
+
assert unify(EX, EX) == EX
|
157 |
+
|
158 |
+
def test_Domain_unify_composite():
|
159 |
+
assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
|
160 |
+
assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
|
161 |
+
assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
|
162 |
+
assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)
|
163 |
+
|
164 |
+
assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
|
165 |
+
assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
|
166 |
+
assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
|
167 |
+
assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)
|
168 |
+
|
169 |
+
assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
|
170 |
+
assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
|
171 |
+
assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
|
172 |
+
assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
|
173 |
+
|
174 |
+
assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
|
175 |
+
assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
176 |
+
assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
177 |
+
assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
178 |
+
|
179 |
+
assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
|
180 |
+
assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
|
181 |
+
assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
|
182 |
+
assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)
|
183 |
+
|
184 |
+
assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
|
185 |
+
assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
|
186 |
+
assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
|
187 |
+
assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)
|
188 |
+
|
189 |
+
assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
|
190 |
+
assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
|
191 |
+
assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
|
192 |
+
assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
|
193 |
+
|
194 |
+
assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
|
195 |
+
assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
|
196 |
+
assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
|
197 |
+
assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
|
198 |
+
|
199 |
+
assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
|
200 |
+
assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
|
201 |
+
assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
|
202 |
+
assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
|
203 |
+
|
204 |
+
assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
|
205 |
+
assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
|
206 |
+
assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
|
207 |
+
assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
|
208 |
+
|
209 |
+
assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
|
210 |
+
assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
211 |
+
assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
212 |
+
assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
|
213 |
+
|
214 |
+
assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
|
215 |
+
assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
|
216 |
+
assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
|
217 |
+
assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
|
218 |
+
|
219 |
+
assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
|
220 |
+
assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
|
221 |
+
assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
|
222 |
+
assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
|
223 |
+
|
224 |
+
assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
|
225 |
+
assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
|
226 |
+
assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
|
227 |
+
assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
|
228 |
+
|
229 |
+
assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
|
230 |
+
assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
|
231 |
+
assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
|
232 |
+
assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
|
233 |
+
|
234 |
+
assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
|
235 |
+
assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
|
236 |
+
assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
|
237 |
+
assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
|
238 |
+
|
239 |
+
assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
|
240 |
+
assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
|
241 |
+
assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
|
242 |
+
assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)
|
243 |
+
|
244 |
+
assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
|
245 |
+
assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
|
246 |
+
assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
|
247 |
+
assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
|
248 |
+
|
249 |
+
assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
|
250 |
+
assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
|
251 |
+
assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
|
252 |
+
assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
|
253 |
+
|
254 |
+
assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
|
255 |
+
assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
|
256 |
+
assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
|
257 |
+
assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
|
258 |
+
|
259 |
+
assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
|
260 |
+
assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
|
261 |
+
assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
|
262 |
+
assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)
|
263 |
+
|
264 |
+
assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
|
265 |
+
assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
|
266 |
+
assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
|
267 |
+
assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)
|
268 |
+
|
269 |
+
assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
|
270 |
+
assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
|
271 |
+
assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
|
272 |
+
assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)
|
273 |
+
|
274 |
+
assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
|
275 |
+
assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
|
276 |
+
assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
|
277 |
+
assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
|
278 |
+
|
279 |
+
def test_Domain_unify_algebraic():
|
280 |
+
sqrt5 = QQ.algebraic_field(sqrt(5))
|
281 |
+
sqrt7 = QQ.algebraic_field(sqrt(7))
|
282 |
+
sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7))
|
283 |
+
|
284 |
+
assert sqrt5.unify(sqrt7) == sqrt57
|
285 |
+
|
286 |
+
assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y]
|
287 |
+
assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y]
|
288 |
+
|
289 |
+
assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y)
|
290 |
+
assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y)
|
291 |
+
|
292 |
+
assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y]
|
293 |
+
assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y]
|
294 |
+
|
295 |
+
assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y)
|
296 |
+
assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y)
|
297 |
+
|
298 |
+
def test_Domain_unify_FiniteExtension():
|
299 |
+
KxZZ = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ))
|
300 |
+
KxQQ = FiniteExtension(Poly(x**2 - 2, x, domain=QQ))
|
301 |
+
KxZZy = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y]))
|
302 |
+
KxQQy = FiniteExtension(Poly(x**2 - 2, x, domain=QQ[y]))
|
303 |
+
|
304 |
+
assert KxZZ.unify(KxZZ) == KxZZ
|
305 |
+
assert KxQQ.unify(KxQQ) == KxQQ
|
306 |
+
assert KxZZy.unify(KxZZy) == KxZZy
|
307 |
+
assert KxQQy.unify(KxQQy) == KxQQy
|
308 |
+
|
309 |
+
assert KxZZ.unify(ZZ) == KxZZ
|
310 |
+
assert KxZZ.unify(QQ) == KxQQ
|
311 |
+
assert KxQQ.unify(ZZ) == KxQQ
|
312 |
+
assert KxQQ.unify(QQ) == KxQQ
|
313 |
+
|
314 |
+
assert KxZZ.unify(ZZ[y]) == KxZZy
|
315 |
+
assert KxZZ.unify(QQ[y]) == KxQQy
|
316 |
+
assert KxQQ.unify(ZZ[y]) == KxQQy
|
317 |
+
assert KxQQ.unify(QQ[y]) == KxQQy
|
318 |
+
|
319 |
+
assert KxZZy.unify(ZZ) == KxZZy
|
320 |
+
assert KxZZy.unify(QQ) == KxQQy
|
321 |
+
assert KxQQy.unify(ZZ) == KxQQy
|
322 |
+
assert KxQQy.unify(QQ) == KxQQy
|
323 |
+
|
324 |
+
assert KxZZy.unify(ZZ[y]) == KxZZy
|
325 |
+
assert KxZZy.unify(QQ[y]) == KxQQy
|
326 |
+
assert KxQQy.unify(ZZ[y]) == KxQQy
|
327 |
+
assert KxQQy.unify(QQ[y]) == KxQQy
|
328 |
+
|
329 |
+
K = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y]))
|
330 |
+
assert K.unify(ZZ) == K
|
331 |
+
assert K.unify(ZZ[x]) == K
|
332 |
+
assert K.unify(ZZ[y]) == K
|
333 |
+
assert K.unify(ZZ[x, y]) == K
|
334 |
+
|
335 |
+
Kz = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y, z]))
|
336 |
+
assert K.unify(ZZ[z]) == Kz
|
337 |
+
assert K.unify(ZZ[x, z]) == Kz
|
338 |
+
assert K.unify(ZZ[y, z]) == Kz
|
339 |
+
assert K.unify(ZZ[x, y, z]) == Kz
|
340 |
+
|
341 |
+
Kx = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ))
|
342 |
+
Ky = FiniteExtension(Poly(y**2 - 2, y, domain=ZZ))
|
343 |
+
Kxy = FiniteExtension(Poly(y**2 - 2, y, domain=Kx))
|
344 |
+
assert Kx.unify(Kx) == Kx
|
345 |
+
assert Ky.unify(Ky) == Ky
|
346 |
+
assert Kx.unify(Ky) == Kxy
|
347 |
+
assert Ky.unify(Kx) == Kxy
|
348 |
+
|
349 |
+
def test_Domain_unify_with_symbols():
|
350 |
+
raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z)))
|
351 |
+
raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z)))
|
352 |
+
|
353 |
+
def test_Domain__contains__():
|
354 |
+
assert (0 in EX) is True
|
355 |
+
assert (0 in ZZ) is True
|
356 |
+
assert (0 in QQ) is True
|
357 |
+
assert (0 in RR) is True
|
358 |
+
assert (0 in CC) is True
|
359 |
+
assert (0 in ALG) is True
|
360 |
+
assert (0 in ZZ[x, y]) is True
|
361 |
+
assert (0 in QQ[x, y]) is True
|
362 |
+
assert (0 in RR[x, y]) is True
|
363 |
+
|
364 |
+
assert (-7 in EX) is True
|
365 |
+
assert (-7 in ZZ) is True
|
366 |
+
assert (-7 in QQ) is True
|
367 |
+
assert (-7 in RR) is True
|
368 |
+
assert (-7 in CC) is True
|
369 |
+
assert (-7 in ALG) is True
|
370 |
+
assert (-7 in ZZ[x, y]) is True
|
371 |
+
assert (-7 in QQ[x, y]) is True
|
372 |
+
assert (-7 in RR[x, y]) is True
|
373 |
+
|
374 |
+
assert (17 in EX) is True
|
375 |
+
assert (17 in ZZ) is True
|
376 |
+
assert (17 in QQ) is True
|
377 |
+
assert (17 in RR) is True
|
378 |
+
assert (17 in CC) is True
|
379 |
+
assert (17 in ALG) is True
|
380 |
+
assert (17 in ZZ[x, y]) is True
|
381 |
+
assert (17 in QQ[x, y]) is True
|
382 |
+
assert (17 in RR[x, y]) is True
|
383 |
+
|
384 |
+
assert (Rational(-1, 7) in EX) is True
|
385 |
+
assert (Rational(-1, 7) in ZZ) is False
|
386 |
+
assert (Rational(-1, 7) in QQ) is True
|
387 |
+
assert (Rational(-1, 7) in RR) is True
|
388 |
+
assert (Rational(-1, 7) in CC) is True
|
389 |
+
assert (Rational(-1, 7) in ALG) is True
|
390 |
+
assert (Rational(-1, 7) in ZZ[x, y]) is False
|
391 |
+
assert (Rational(-1, 7) in QQ[x, y]) is True
|
392 |
+
assert (Rational(-1, 7) in RR[x, y]) is True
|
393 |
+
|
394 |
+
assert (Rational(3, 5) in EX) is True
|
395 |
+
assert (Rational(3, 5) in ZZ) is False
|
396 |
+
assert (Rational(3, 5) in QQ) is True
|
397 |
+
assert (Rational(3, 5) in RR) is True
|
398 |
+
assert (Rational(3, 5) in CC) is True
|
399 |
+
assert (Rational(3, 5) in ALG) is True
|
400 |
+
assert (Rational(3, 5) in ZZ[x, y]) is False
|
401 |
+
assert (Rational(3, 5) in QQ[x, y]) is True
|
402 |
+
assert (Rational(3, 5) in RR[x, y]) is True
|
403 |
+
|
404 |
+
assert (3.0 in EX) is True
|
405 |
+
assert (3.0 in ZZ) is True
|
406 |
+
assert (3.0 in QQ) is True
|
407 |
+
assert (3.0 in RR) is True
|
408 |
+
assert (3.0 in CC) is True
|
409 |
+
assert (3.0 in ALG) is True
|
410 |
+
assert (3.0 in ZZ[x, y]) is True
|
411 |
+
assert (3.0 in QQ[x, y]) is True
|
412 |
+
assert (3.0 in RR[x, y]) is True
|
413 |
+
|
414 |
+
assert (3.14 in EX) is True
|
415 |
+
assert (3.14 in ZZ) is False
|
416 |
+
assert (3.14 in QQ) is True
|
417 |
+
assert (3.14 in RR) is True
|
418 |
+
assert (3.14 in CC) is True
|
419 |
+
assert (3.14 in ALG) is True
|
420 |
+
assert (3.14 in ZZ[x, y]) is False
|
421 |
+
assert (3.14 in QQ[x, y]) is True
|
422 |
+
assert (3.14 in RR[x, y]) is True
|
423 |
+
|
424 |
+
assert (oo in ALG) is False
|
425 |
+
assert (oo in ZZ[x, y]) is False
|
426 |
+
assert (oo in QQ[x, y]) is False
|
427 |
+
|
428 |
+
assert (-oo in ZZ) is False
|
429 |
+
assert (-oo in QQ) is False
|
430 |
+
assert (-oo in ALG) is False
|
431 |
+
assert (-oo in ZZ[x, y]) is False
|
432 |
+
assert (-oo in QQ[x, y]) is False
|
433 |
+
|
434 |
+
assert (sqrt(7) in EX) is True
|
435 |
+
assert (sqrt(7) in ZZ) is False
|
436 |
+
assert (sqrt(7) in QQ) is False
|
437 |
+
assert (sqrt(7) in RR) is True
|
438 |
+
assert (sqrt(7) in CC) is True
|
439 |
+
assert (sqrt(7) in ALG) is False
|
440 |
+
assert (sqrt(7) in ZZ[x, y]) is False
|
441 |
+
assert (sqrt(7) in QQ[x, y]) is False
|
442 |
+
assert (sqrt(7) in RR[x, y]) is True
|
443 |
+
|
444 |
+
assert (2*sqrt(3) + 1 in EX) is True
|
445 |
+
assert (2*sqrt(3) + 1 in ZZ) is False
|
446 |
+
assert (2*sqrt(3) + 1 in QQ) is False
|
447 |
+
assert (2*sqrt(3) + 1 in RR) is True
|
448 |
+
assert (2*sqrt(3) + 1 in CC) is True
|
449 |
+
assert (2*sqrt(3) + 1 in ALG) is True
|
450 |
+
assert (2*sqrt(3) + 1 in ZZ[x, y]) is False
|
451 |
+
assert (2*sqrt(3) + 1 in QQ[x, y]) is False
|
452 |
+
assert (2*sqrt(3) + 1 in RR[x, y]) is True
|
453 |
+
|
454 |
+
assert (sin(1) in EX) is True
|
455 |
+
assert (sin(1) in ZZ) is False
|
456 |
+
assert (sin(1) in QQ) is False
|
457 |
+
assert (sin(1) in RR) is True
|
458 |
+
assert (sin(1) in CC) is True
|
459 |
+
assert (sin(1) in ALG) is False
|
460 |
+
assert (sin(1) in ZZ[x, y]) is False
|
461 |
+
assert (sin(1) in QQ[x, y]) is False
|
462 |
+
assert (sin(1) in RR[x, y]) is True
|
463 |
+
|
464 |
+
assert (x**2 + 1 in EX) is True
|
465 |
+
assert (x**2 + 1 in ZZ) is False
|
466 |
+
assert (x**2 + 1 in QQ) is False
|
467 |
+
assert (x**2 + 1 in RR) is False
|
468 |
+
assert (x**2 + 1 in CC) is False
|
469 |
+
assert (x**2 + 1 in ALG) is False
|
470 |
+
assert (x**2 + 1 in ZZ[x]) is True
|
471 |
+
assert (x**2 + 1 in QQ[x]) is True
|
472 |
+
assert (x**2 + 1 in RR[x]) is True
|
473 |
+
assert (x**2 + 1 in ZZ[x, y]) is True
|
474 |
+
assert (x**2 + 1 in QQ[x, y]) is True
|
475 |
+
assert (x**2 + 1 in RR[x, y]) is True
|
476 |
+
|
477 |
+
assert (x**2 + y**2 in EX) is True
|
478 |
+
assert (x**2 + y**2 in ZZ) is False
|
479 |
+
assert (x**2 + y**2 in QQ) is False
|
480 |
+
assert (x**2 + y**2 in RR) is False
|
481 |
+
assert (x**2 + y**2 in CC) is False
|
482 |
+
assert (x**2 + y**2 in ALG) is False
|
483 |
+
assert (x**2 + y**2 in ZZ[x]) is False
|
484 |
+
assert (x**2 + y**2 in QQ[x]) is False
|
485 |
+
assert (x**2 + y**2 in RR[x]) is False
|
486 |
+
assert (x**2 + y**2 in ZZ[x, y]) is True
|
487 |
+
assert (x**2 + y**2 in QQ[x, y]) is True
|
488 |
+
assert (x**2 + y**2 in RR[x, y]) is True
|
489 |
+
|
490 |
+
assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False
|
491 |
+
|
492 |
+
|
493 |
+
def test_issue_14433():
|
494 |
+
assert (Rational(2, 3)*x in QQ.frac_field(1/x)) is True
|
495 |
+
assert (1/x in QQ.frac_field(x)) is True
|
496 |
+
assert ((x**2 + y**2) in QQ.frac_field(1/x, 1/y)) is True
|
497 |
+
assert ((x + y) in QQ.frac_field(1/x, y)) is True
|
498 |
+
assert ((x - y) in QQ.frac_field(x, 1/y)) is True
|
499 |
+
|
500 |
+
|
501 |
+
def test_Domain_get_ring():
|
502 |
+
assert ZZ.has_assoc_Ring is True
|
503 |
+
assert QQ.has_assoc_Ring is True
|
504 |
+
assert ZZ[x].has_assoc_Ring is True
|
505 |
+
assert QQ[x].has_assoc_Ring is True
|
506 |
+
assert ZZ[x, y].has_assoc_Ring is True
|
507 |
+
assert QQ[x, y].has_assoc_Ring is True
|
508 |
+
assert ZZ.frac_field(x).has_assoc_Ring is True
|
509 |
+
assert QQ.frac_field(x).has_assoc_Ring is True
|
510 |
+
assert ZZ.frac_field(x, y).has_assoc_Ring is True
|
511 |
+
assert QQ.frac_field(x, y).has_assoc_Ring is True
|
512 |
+
|
513 |
+
assert EX.has_assoc_Ring is False
|
514 |
+
assert RR.has_assoc_Ring is False
|
515 |
+
assert ALG.has_assoc_Ring is False
|
516 |
+
|
517 |
+
assert ZZ.get_ring() == ZZ
|
518 |
+
assert QQ.get_ring() == ZZ
|
519 |
+
assert ZZ[x].get_ring() == ZZ[x]
|
520 |
+
assert QQ[x].get_ring() == QQ[x]
|
521 |
+
assert ZZ[x, y].get_ring() == ZZ[x, y]
|
522 |
+
assert QQ[x, y].get_ring() == QQ[x, y]
|
523 |
+
assert ZZ.frac_field(x).get_ring() == ZZ[x]
|
524 |
+
assert QQ.frac_field(x).get_ring() == QQ[x]
|
525 |
+
assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
|
526 |
+
assert QQ.frac_field(x, y).get_ring() == QQ[x, y]
|
527 |
+
|
528 |
+
assert EX.get_ring() == EX
|
529 |
+
|
530 |
+
assert RR.get_ring() == RR
|
531 |
+
# XXX: This should also be like RR
|
532 |
+
raises(DomainError, lambda: ALG.get_ring())
|
533 |
+
|
534 |
+
|
535 |
+
def test_Domain_get_field():
|
536 |
+
assert EX.has_assoc_Field is True
|
537 |
+
assert ZZ.has_assoc_Field is True
|
538 |
+
assert QQ.has_assoc_Field is True
|
539 |
+
assert RR.has_assoc_Field is True
|
540 |
+
assert ALG.has_assoc_Field is True
|
541 |
+
assert ZZ[x].has_assoc_Field is True
|
542 |
+
assert QQ[x].has_assoc_Field is True
|
543 |
+
assert ZZ[x, y].has_assoc_Field is True
|
544 |
+
assert QQ[x, y].has_assoc_Field is True
|
545 |
+
|
546 |
+
assert EX.get_field() == EX
|
547 |
+
assert ZZ.get_field() == QQ
|
548 |
+
assert QQ.get_field() == QQ
|
549 |
+
assert RR.get_field() == RR
|
550 |
+
assert ALG.get_field() == ALG
|
551 |
+
assert ZZ[x].get_field() == ZZ.frac_field(x)
|
552 |
+
assert QQ[x].get_field() == QQ.frac_field(x)
|
553 |
+
assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
|
554 |
+
assert QQ[x, y].get_field() == QQ.frac_field(x, y)
|
555 |
+
|
556 |
+
|
557 |
+
def test_Domain_get_exact():
|
558 |
+
assert EX.get_exact() == EX
|
559 |
+
assert ZZ.get_exact() == ZZ
|
560 |
+
assert QQ.get_exact() == QQ
|
561 |
+
assert RR.get_exact() == QQ
|
562 |
+
assert ALG.get_exact() == ALG
|
563 |
+
assert ZZ[x].get_exact() == ZZ[x]
|
564 |
+
assert QQ[x].get_exact() == QQ[x]
|
565 |
+
assert ZZ[x, y].get_exact() == ZZ[x, y]
|
566 |
+
assert QQ[x, y].get_exact() == QQ[x, y]
|
567 |
+
assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
|
568 |
+
assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
|
569 |
+
assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
|
570 |
+
assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
|
571 |
+
|
572 |
+
|
573 |
+
def test_Domain_is_unit():
|
574 |
+
nums = [-2, -1, 0, 1, 2]
|
575 |
+
invring = [False, True, False, True, False]
|
576 |
+
invfield = [True, True, False, True, True]
|
577 |
+
ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x)
|
578 |
+
assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring
|
579 |
+
assert [QQ.is_unit(QQ(n)) for n in nums] == invfield
|
580 |
+
assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring
|
581 |
+
assert [QQx.is_unit(QQx(n)) for n in nums] == invfield
|
582 |
+
assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield
|
583 |
+
assert ZZx.is_unit(ZZx(x)) is False
|
584 |
+
assert QQx.is_unit(QQx(x)) is False
|
585 |
+
assert QQxf.is_unit(QQxf(x)) is True
|
586 |
+
|
587 |
+
|
588 |
+
def test_Domain_convert():
|
589 |
+
|
590 |
+
def check_element(e1, e2, K1, K2, K3):
|
591 |
+
assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)
|
592 |
+
assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)
|
593 |
+
|
594 |
+
def check_domains(K1, K2):
|
595 |
+
K3 = K1.unify(K2)
|
596 |
+
check_element(K3.convert_from( K1.one, K1), K3.one, K1, K2, K3)
|
597 |
+
check_element(K3.convert_from( K2.one, K2), K3.one, K1, K2, K3)
|
598 |
+
check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3)
|
599 |
+
check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3)
|
600 |
+
|
601 |
+
def composite_domains(K):
|
602 |
+
domains = [
|
603 |
+
K,
|
604 |
+
K[y], K[z], K[y, z],
|
605 |
+
K.frac_field(y), K.frac_field(z), K.frac_field(y, z),
|
606 |
+
# XXX: These should be tested and made to work...
|
607 |
+
# K.old_poly_ring(y), K.old_frac_field(y),
|
608 |
+
]
|
609 |
+
return domains
|
610 |
+
|
611 |
+
QQ2 = QQ.algebraic_field(sqrt(2))
|
612 |
+
QQ3 = QQ.algebraic_field(sqrt(3))
|
613 |
+
doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC]
|
614 |
+
|
615 |
+
for i, K1 in enumerate(doms):
|
616 |
+
for K2 in doms[i:]:
|
617 |
+
for K3 in composite_domains(K1):
|
618 |
+
for K4 in composite_domains(K2):
|
619 |
+
check_domains(K3, K4)
|
620 |
+
|
621 |
+
assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)
|
622 |
+
|
623 |
+
R, xr = ring("x", ZZ)
|
624 |
+
assert ZZ.convert(xr - xr) == 0
|
625 |
+
assert ZZ.convert(xr - xr, R.to_domain()) == 0
|
626 |
+
|
627 |
+
assert CC.convert(ZZ_I(1, 2)) == CC(1, 2)
|
628 |
+
assert CC.convert(QQ_I(1, 2)) == CC(1, 2)
|
629 |
+
|
630 |
+
K1 = QQ.frac_field(x)
|
631 |
+
K2 = ZZ.frac_field(x)
|
632 |
+
K3 = QQ[x]
|
633 |
+
K4 = ZZ[x]
|
634 |
+
Ks = [K1, K2, K3, K4]
|
635 |
+
for Ka, Kb in product(Ks, Ks):
|
636 |
+
assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x)
|
637 |
+
|
638 |
+
assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2))
|
639 |
+
|
640 |
+
|
641 |
+
def test_GlobalPolynomialRing_convert():
|
642 |
+
K1 = QQ.old_poly_ring(x)
|
643 |
+
K2 = QQ[x]
|
644 |
+
assert K1.convert(x) == K1.convert(K2.convert(x), K2)
|
645 |
+
assert K2.convert(x) == K2.convert(K1.convert(x), K1)
|
646 |
+
|
647 |
+
K1 = QQ.old_poly_ring(x, y)
|
648 |
+
K2 = QQ[x]
|
649 |
+
assert K1.convert(x) == K1.convert(K2.convert(x), K2)
|
650 |
+
#assert K2.convert(x) == K2.convert(K1.convert(x), K1)
|
651 |
+
|
652 |
+
K1 = ZZ.old_poly_ring(x, y)
|
653 |
+
K2 = QQ[x]
|
654 |
+
assert K1.convert(x) == K1.convert(K2.convert(x), K2)
|
655 |
+
#assert K2.convert(x) == K2.convert(K1.convert(x), K1)
|
656 |
+
|
657 |
+
|
658 |
+
def test_PolynomialRing__init():
|
659 |
+
R, = ring("", ZZ)
|
660 |
+
assert ZZ.poly_ring() == R.to_domain()
|
661 |
+
|
662 |
+
|
663 |
+
def test_FractionField__init():
|
664 |
+
F, = field("", ZZ)
|
665 |
+
assert ZZ.frac_field() == F.to_domain()
|
666 |
+
|
667 |
+
|
668 |
+
def test_FractionField_convert():
|
669 |
+
K = QQ.frac_field(x)
|
670 |
+
assert K.convert(QQ(2, 3), QQ) == K.from_sympy(Rational(2, 3))
|
671 |
+
K = QQ.frac_field(x)
|
672 |
+
assert K.convert(ZZ(2), ZZ) == K.from_sympy(Integer(2))
|
673 |
+
|
674 |
+
|
675 |
+
def test_inject():
|
676 |
+
assert ZZ.inject(x, y, z) == ZZ[x, y, z]
|
677 |
+
assert ZZ[x].inject(y, z) == ZZ[x, y, z]
|
678 |
+
assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z)
|
679 |
+
raises(GeneratorsError, lambda: ZZ[x].inject(x))
|
680 |
+
|
681 |
+
|
682 |
+
def test_drop():
|
683 |
+
assert ZZ.drop(x) == ZZ
|
684 |
+
assert ZZ[x].drop(x) == ZZ
|
685 |
+
assert ZZ[x, y].drop(x) == ZZ[y]
|
686 |
+
assert ZZ.frac_field(x).drop(x) == ZZ
|
687 |
+
assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y)
|
688 |
+
assert ZZ[x][y].drop(y) == ZZ[x]
|
689 |
+
assert ZZ[x][y].drop(x) == ZZ[y]
|
690 |
+
assert ZZ.frac_field(x)[y].drop(x) == ZZ[y]
|
691 |
+
assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x)
|
692 |
+
Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y]))
|
693 |
+
K = FiniteExtension(Poly(x**2-1, x, domain=ZZ))
|
694 |
+
assert Ky.drop(y) == K
|
695 |
+
raises(GeneratorsError, lambda: Ky.drop(x))
|
696 |
+
|
697 |
+
|
698 |
+
def test_Domain_map():
|
699 |
+
seq = ZZ.map([1, 2, 3, 4])
|
700 |
+
|
701 |
+
assert all(ZZ.of_type(elt) for elt in seq)
|
702 |
+
|
703 |
+
seq = ZZ.map([[1, 2, 3, 4]])
|
704 |
+
|
705 |
+
assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1
|
706 |
+
|
707 |
+
|
708 |
+
def test_Domain___eq__():
|
709 |
+
assert (ZZ[x, y] == ZZ[x, y]) is True
|
710 |
+
assert (QQ[x, y] == QQ[x, y]) is True
|
711 |
+
|
712 |
+
assert (ZZ[x, y] == QQ[x, y]) is False
|
713 |
+
assert (QQ[x, y] == ZZ[x, y]) is False
|
714 |
+
|
715 |
+
assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
|
716 |
+
assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True
|
717 |
+
|
718 |
+
assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
|
719 |
+
assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False
|
720 |
+
|
721 |
+
assert RealField()[x] == RR[x]
|
722 |
+
|
723 |
+
|
724 |
+
def test_Domain__algebraic_field():
|
725 |
+
alg = ZZ.algebraic_field(sqrt(2))
|
726 |
+
assert alg.ext.minpoly == Poly(x**2 - 2)
|
727 |
+
assert alg.dom == QQ
|
728 |
+
|
729 |
+
alg = QQ.algebraic_field(sqrt(2))
|
730 |
+
assert alg.ext.minpoly == Poly(x**2 - 2)
|
731 |
+
assert alg.dom == QQ
|
732 |
+
|
733 |
+
alg = alg.algebraic_field(sqrt(3))
|
734 |
+
assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1)
|
735 |
+
assert alg.dom == QQ
|
736 |
+
|
737 |
+
|
738 |
+
def test_Domain_alg_field_from_poly():
|
739 |
+
f = Poly(x**2 - 2)
|
740 |
+
g = Poly(x**2 - 3)
|
741 |
+
h = Poly(x**4 - 10*x**2 + 1)
|
742 |
+
|
743 |
+
alg = ZZ.alg_field_from_poly(f)
|
744 |
+
assert alg.ext.minpoly == f
|
745 |
+
assert alg.dom == QQ
|
746 |
+
|
747 |
+
alg = QQ.alg_field_from_poly(f)
|
748 |
+
assert alg.ext.minpoly == f
|
749 |
+
assert alg.dom == QQ
|
750 |
+
|
751 |
+
alg = alg.alg_field_from_poly(g)
|
752 |
+
assert alg.ext.minpoly == h
|
753 |
+
assert alg.dom == QQ
|
754 |
+
|
755 |
+
|
756 |
+
def test_Domain_cyclotomic_field():
|
757 |
+
K = ZZ.cyclotomic_field(12)
|
758 |
+
assert K.ext.minpoly == Poly(cyclotomic_poly(12))
|
759 |
+
assert K.dom == QQ
|
760 |
+
|
761 |
+
F = QQ.cyclotomic_field(3)
|
762 |
+
assert F.ext.minpoly == Poly(cyclotomic_poly(3))
|
763 |
+
assert F.dom == QQ
|
764 |
+
|
765 |
+
E = F.cyclotomic_field(4)
|
766 |
+
assert field_isomorphism(E.ext, K.ext) is not None
|
767 |
+
assert E.dom == QQ
|
768 |
+
|
769 |
+
|
770 |
+
def test_PolynomialRing_from_FractionField():
|
771 |
+
F, x,y = field("x,y", ZZ)
|
772 |
+
R, X,Y = ring("x,y", ZZ)
|
773 |
+
|
774 |
+
f = (x**2 + y**2)/(x + 1)
|
775 |
+
g = (x**2 + y**2)/4
|
776 |
+
h = x**2 + y**2
|
777 |
+
|
778 |
+
assert R.to_domain().from_FractionField(f, F.to_domain()) is None
|
779 |
+
assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
|
780 |
+
assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
|
781 |
+
|
782 |
+
F, x,y = field("x,y", QQ)
|
783 |
+
R, X,Y = ring("x,y", QQ)
|
784 |
+
|
785 |
+
f = (x**2 + y**2)/(x + 1)
|
786 |
+
g = (x**2 + y**2)/4
|
787 |
+
h = x**2 + y**2
|
788 |
+
|
789 |
+
assert R.to_domain().from_FractionField(f, F.to_domain()) is None
|
790 |
+
assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
|
791 |
+
assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
|
792 |
+
|
793 |
+
def test_FractionField_from_PolynomialRing():
|
794 |
+
R, x,y = ring("x,y", QQ)
|
795 |
+
F, X,Y = field("x,y", ZZ)
|
796 |
+
|
797 |
+
f = 3*x**2 + 5*y**2
|
798 |
+
g = x**2/3 + y**2/5
|
799 |
+
|
800 |
+
assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2
|
801 |
+
assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15
|
802 |
+
|
803 |
+
def test_FF_of_type():
|
804 |
+
assert FF(3).of_type(FF(3)(1)) is True
|
805 |
+
assert FF(5).of_type(FF(5)(3)) is True
|
806 |
+
assert FF(5).of_type(FF(7)(3)) is False
|
807 |
+
|
808 |
+
|
809 |
+
def test___eq__():
|
810 |
+
assert not QQ[x] == ZZ[x]
|
811 |
+
assert not QQ.frac_field(x) == ZZ.frac_field(x)
|
812 |
+
|
813 |
+
|
814 |
+
def test_RealField_from_sympy():
|
815 |
+
assert RR.convert(S.Zero) == RR.dtype(0)
|
816 |
+
assert RR.convert(S(0.0)) == RR.dtype(0.0)
|
817 |
+
assert RR.convert(S.One) == RR.dtype(1)
|
818 |
+
assert RR.convert(S(1.0)) == RR.dtype(1.0)
|
819 |
+
assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
|
820 |
+
|
821 |
+
|
822 |
+
def test_not_in_any_domain():
|
823 |
+
check = list(_illegal) + [x] + [
|
824 |
+
float(i) for i in _illegal[:3]]
|
825 |
+
for dom in (ZZ, QQ, RR, CC, EX):
|
826 |
+
for i in check:
|
827 |
+
if i == x and dom == EX:
|
828 |
+
continue
|
829 |
+
assert i not in dom, (i, dom)
|
830 |
+
raises(CoercionFailed, lambda: dom.convert(i))
|
831 |
+
|
832 |
+
|
833 |
+
def test_ModularInteger():
|
834 |
+
F3 = FF(3)
|
835 |
+
|
836 |
+
a = F3(0)
|
837 |
+
assert isinstance(a, F3.dtype) and a == 0
|
838 |
+
a = F3(1)
|
839 |
+
assert isinstance(a, F3.dtype) and a == 1
|
840 |
+
a = F3(2)
|
841 |
+
assert isinstance(a, F3.dtype) and a == 2
|
842 |
+
a = F3(3)
|
843 |
+
assert isinstance(a, F3.dtype) and a == 0
|
844 |
+
a = F3(4)
|
845 |
+
assert isinstance(a, F3.dtype) and a == 1
|
846 |
+
|
847 |
+
a = F3(F3(0))
|
848 |
+
assert isinstance(a, F3.dtype) and a == 0
|
849 |
+
a = F3(F3(1))
|
850 |
+
assert isinstance(a, F3.dtype) and a == 1
|
851 |
+
a = F3(F3(2))
|
852 |
+
assert isinstance(a, F3.dtype) and a == 2
|
853 |
+
a = F3(F3(3))
|
854 |
+
assert isinstance(a, F3.dtype) and a == 0
|
855 |
+
a = F3(F3(4))
|
856 |
+
assert isinstance(a, F3.dtype) and a == 1
|
857 |
+
|
858 |
+
a = -F3(1)
|
859 |
+
assert isinstance(a, F3.dtype) and a == 2
|
860 |
+
a = -F3(2)
|
861 |
+
assert isinstance(a, F3.dtype) and a == 1
|
862 |
+
|
863 |
+
a = 2 + F3(2)
|
864 |
+
assert isinstance(a, F3.dtype) and a == 1
|
865 |
+
a = F3(2) + 2
|
866 |
+
assert isinstance(a, F3.dtype) and a == 1
|
867 |
+
a = F3(2) + F3(2)
|
868 |
+
assert isinstance(a, F3.dtype) and a == 1
|
869 |
+
a = F3(2) + F3(2)
|
870 |
+
assert isinstance(a, F3.dtype) and a == 1
|
871 |
+
|
872 |
+
a = 3 - F3(2)
|
873 |
+
assert isinstance(a, F3.dtype) and a == 1
|
874 |
+
a = F3(3) - 2
|
875 |
+
assert isinstance(a, F3.dtype) and a == 1
|
876 |
+
a = F3(3) - F3(2)
|
877 |
+
assert isinstance(a, F3.dtype) and a == 1
|
878 |
+
a = F3(3) - F3(2)
|
879 |
+
assert isinstance(a, F3.dtype) and a == 1
|
880 |
+
|
881 |
+
a = 2*F3(2)
|
882 |
+
assert isinstance(a, F3.dtype) and a == 1
|
883 |
+
a = F3(2)*2
|
884 |
+
assert isinstance(a, F3.dtype) and a == 1
|
885 |
+
a = F3(2)*F3(2)
|
886 |
+
assert isinstance(a, F3.dtype) and a == 1
|
887 |
+
a = F3(2)*F3(2)
|
888 |
+
assert isinstance(a, F3.dtype) and a == 1
|
889 |
+
|
890 |
+
a = 2/F3(2)
|
891 |
+
assert isinstance(a, F3.dtype) and a == 1
|
892 |
+
a = F3(2)/2
|
893 |
+
assert isinstance(a, F3.dtype) and a == 1
|
894 |
+
a = F3(2)/F3(2)
|
895 |
+
assert isinstance(a, F3.dtype) and a == 1
|
896 |
+
a = F3(2)/F3(2)
|
897 |
+
assert isinstance(a, F3.dtype) and a == 1
|
898 |
+
|
899 |
+
a = 1 % F3(2)
|
900 |
+
assert isinstance(a, F3.dtype) and a == 1
|
901 |
+
a = F3(1) % 2
|
902 |
+
assert isinstance(a, F3.dtype) and a == 1
|
903 |
+
a = F3(1) % F3(2)
|
904 |
+
assert isinstance(a, F3.dtype) and a == 1
|
905 |
+
a = F3(1) % F3(2)
|
906 |
+
assert isinstance(a, F3.dtype) and a == 1
|
907 |
+
|
908 |
+
a = F3(2)**0
|
909 |
+
assert isinstance(a, F3.dtype) and a == 1
|
910 |
+
a = F3(2)**1
|
911 |
+
assert isinstance(a, F3.dtype) and a == 2
|
912 |
+
a = F3(2)**2
|
913 |
+
assert isinstance(a, F3.dtype) and a == 1
|
914 |
+
|
915 |
+
F7 = FF(7)
|
916 |
+
|
917 |
+
a = F7(3)**100000000000
|
918 |
+
assert isinstance(a, F7.dtype) and a == 4
|
919 |
+
a = F7(3)**-100000000000
|
920 |
+
assert isinstance(a, F7.dtype) and a == 2
|
921 |
+
a = F7(3)**S(2)
|
922 |
+
assert isinstance(a, F7.dtype) and a == 2
|
923 |
+
|
924 |
+
assert bool(F3(3)) is False
|
925 |
+
assert bool(F3(4)) is True
|
926 |
+
|
927 |
+
F5 = FF(5)
|
928 |
+
|
929 |
+
a = F5(1)**(-1)
|
930 |
+
assert isinstance(a, F5.dtype) and a == 1
|
931 |
+
a = F5(2)**(-1)
|
932 |
+
assert isinstance(a, F5.dtype) and a == 3
|
933 |
+
a = F5(3)**(-1)
|
934 |
+
assert isinstance(a, F5.dtype) and a == 2
|
935 |
+
a = F5(4)**(-1)
|
936 |
+
assert isinstance(a, F5.dtype) and a == 4
|
937 |
+
|
938 |
+
assert (F5(1) < F5(2)) is True
|
939 |
+
assert (F5(1) <= F5(2)) is True
|
940 |
+
assert (F5(1) > F5(2)) is False
|
941 |
+
assert (F5(1) >= F5(2)) is False
|
942 |
+
|
943 |
+
assert (F5(3) < F5(2)) is False
|
944 |
+
assert (F5(3) <= F5(2)) is False
|
945 |
+
assert (F5(3) > F5(2)) is True
|
946 |
+
assert (F5(3) >= F5(2)) is True
|
947 |
+
|
948 |
+
assert (F5(1) < F5(7)) is True
|
949 |
+
assert (F5(1) <= F5(7)) is True
|
950 |
+
assert (F5(1) > F5(7)) is False
|
951 |
+
assert (F5(1) >= F5(7)) is False
|
952 |
+
|
953 |
+
assert (F5(3) < F5(7)) is False
|
954 |
+
assert (F5(3) <= F5(7)) is False
|
955 |
+
assert (F5(3) > F5(7)) is True
|
956 |
+
assert (F5(3) >= F5(7)) is True
|
957 |
+
|
958 |
+
assert (F5(1) < 2) is True
|
959 |
+
assert (F5(1) <= 2) is True
|
960 |
+
assert (F5(1) > 2) is False
|
961 |
+
assert (F5(1) >= 2) is False
|
962 |
+
|
963 |
+
assert (F5(3) < 2) is False
|
964 |
+
assert (F5(3) <= 2) is False
|
965 |
+
assert (F5(3) > 2) is True
|
966 |
+
assert (F5(3) >= 2) is True
|
967 |
+
|
968 |
+
assert (F5(1) < 7) is True
|
969 |
+
assert (F5(1) <= 7) is True
|
970 |
+
assert (F5(1) > 7) is False
|
971 |
+
assert (F5(1) >= 7) is False
|
972 |
+
|
973 |
+
assert (F5(3) < 7) is False
|
974 |
+
assert (F5(3) <= 7) is False
|
975 |
+
assert (F5(3) > 7) is True
|
976 |
+
assert (F5(3) >= 7) is True
|
977 |
+
|
978 |
+
raises(NotInvertible, lambda: F5(0)**(-1))
|
979 |
+
raises(NotInvertible, lambda: F5(5)**(-1))
|
980 |
+
|
981 |
+
raises(ValueError, lambda: FF(0))
|
982 |
+
raises(ValueError, lambda: FF(2.1))
|
983 |
+
|
984 |
+
def test_QQ_int():
|
985 |
+
assert int(QQ(2**2000, 3**1250)) == 455431
|
986 |
+
assert int(QQ(2**100, 3)) == 422550200076076467165567735125
|
987 |
+
|
988 |
+
def test_RR_double():
|
989 |
+
assert RR(3.14) > 1e-50
|
990 |
+
assert RR(1e-13) > 1e-50
|
991 |
+
assert RR(1e-14) > 1e-50
|
992 |
+
assert RR(1e-15) > 1e-50
|
993 |
+
assert RR(1e-20) > 1e-50
|
994 |
+
assert RR(1e-40) > 1e-50
|
995 |
+
|
996 |
+
def test_RR_Float():
|
997 |
+
f1 = Float("1.01")
|
998 |
+
f2 = Float("1.0000000000000000000001")
|
999 |
+
assert f1._prec == 53
|
1000 |
+
assert f2._prec == 80
|
1001 |
+
assert RR(f1)-1 > 1e-50
|
1002 |
+
assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's
|
1003 |
+
|
1004 |
+
RR2 = RealField(prec=f2._prec)
|
1005 |
+
assert RR2(f1)-1 > 1e-50
|
1006 |
+
assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's
|
1007 |
+
|
1008 |
+
|
1009 |
+
def test_CC_double():
|
1010 |
+
assert CC(3.14).real > 1e-50
|
1011 |
+
assert CC(1e-13).real > 1e-50
|
1012 |
+
assert CC(1e-14).real > 1e-50
|
1013 |
+
assert CC(1e-15).real > 1e-50
|
1014 |
+
assert CC(1e-20).real > 1e-50
|
1015 |
+
assert CC(1e-40).real > 1e-50
|
1016 |
+
|
1017 |
+
assert CC(3.14j).imag > 1e-50
|
1018 |
+
assert CC(1e-13j).imag > 1e-50
|
1019 |
+
assert CC(1e-14j).imag > 1e-50
|
1020 |
+
assert CC(1e-15j).imag > 1e-50
|
1021 |
+
assert CC(1e-20j).imag > 1e-50
|
1022 |
+
assert CC(1e-40j).imag > 1e-50
|
1023 |
+
|
1024 |
+
|
1025 |
+
def test_gaussian_domains():
|
1026 |
+
I = S.ImaginaryUnit
|
1027 |
+
a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5*I)]
|
1028 |
+
assert ZZ_I.gcd(a, b) == b
|
1029 |
+
assert ZZ_I.gcd(a, c) == b
|
1030 |
+
assert ZZ_I.lcm(a, b) == a
|
1031 |
+
assert ZZ_I.lcm(a, c) == d
|
1032 |
+
assert ZZ_I(3, 4) != QQ_I(3, 4) # XXX is this right or should QQ->ZZ if possible?
|
1033 |
+
assert ZZ_I(3, 0) != 3 # and should this go to Integer?
|
1034 |
+
assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational?
|
1035 |
+
assert ZZ_I(0, 0).quadrant() == 0
|
1036 |
+
assert ZZ_I(-1, 0).quadrant() == 2
|
1037 |
+
|
1038 |
+
assert QQ_I.convert(QQ(3, 2)) == QQ_I(QQ(3, 2), QQ(0))
|
1039 |
+
assert QQ_I.convert(QQ(3, 2), QQ) == QQ_I(QQ(3, 2), QQ(0))
|
1040 |
+
|
1041 |
+
for G in (QQ_I, ZZ_I):
|
1042 |
+
|
1043 |
+
q = G(3, 4)
|
1044 |
+
assert str(q) == '3 + 4*I'
|
1045 |
+
assert q.parent() == G
|
1046 |
+
assert q._get_xy(pi) == (None, None)
|
1047 |
+
assert q._get_xy(2) == (2, 0)
|
1048 |
+
assert q._get_xy(2*I) == (0, 2)
|
1049 |
+
|
1050 |
+
assert hash(q) == hash((3, 4))
|
1051 |
+
assert G(1, 2) == G(1, 2)
|
1052 |
+
assert G(1, 2) != G(1, 3)
|
1053 |
+
assert G(3, 0) == G(3)
|
1054 |
+
|
1055 |
+
assert q + q == G(6, 8)
|
1056 |
+
assert q - q == G(0, 0)
|
1057 |
+
assert 3 - q == -q + 3 == G(0, -4)
|
1058 |
+
assert 3 + q == q + 3 == G(6, 4)
|
1059 |
+
assert q * q == G(-7, 24)
|
1060 |
+
assert 3 * q == q * 3 == G(9, 12)
|
1061 |
+
assert q ** 0 == G(1, 0)
|
1062 |
+
assert q ** 1 == q
|
1063 |
+
assert q ** 2 == q * q == G(-7, 24)
|
1064 |
+
assert q ** 3 == q * q * q == G(-117, 44)
|
1065 |
+
assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25)
|
1066 |
+
assert q / 1 == QQ_I(3, 4)
|
1067 |
+
assert q / 2 == QQ_I(S(3)/2, 2)
|
1068 |
+
assert q/3 == QQ_I(1, S(4)/3)
|
1069 |
+
assert 3/q == QQ_I(S(9)/25, -S(12)/25)
|
1070 |
+
i, r = divmod(q, 2)
|
1071 |
+
assert 2*i + r == q
|
1072 |
+
i, r = divmod(2, q)
|
1073 |
+
assert q*i + r == G(2, 0)
|
1074 |
+
|
1075 |
+
raises(ZeroDivisionError, lambda: q % 0)
|
1076 |
+
raises(ZeroDivisionError, lambda: q / 0)
|
1077 |
+
raises(ZeroDivisionError, lambda: q // 0)
|
1078 |
+
raises(ZeroDivisionError, lambda: divmod(q, 0))
|
1079 |
+
raises(ZeroDivisionError, lambda: divmod(q, 0))
|
1080 |
+
raises(TypeError, lambda: q + x)
|
1081 |
+
raises(TypeError, lambda: q - x)
|
1082 |
+
raises(TypeError, lambda: x + q)
|
1083 |
+
raises(TypeError, lambda: x - q)
|
1084 |
+
raises(TypeError, lambda: q * x)
|
1085 |
+
raises(TypeError, lambda: x * q)
|
1086 |
+
raises(TypeError, lambda: q / x)
|
1087 |
+
raises(TypeError, lambda: x / q)
|
1088 |
+
raises(TypeError, lambda: q // x)
|
1089 |
+
raises(TypeError, lambda: x // q)
|
1090 |
+
|
1091 |
+
assert G.from_sympy(S(2)) == G(2, 0)
|
1092 |
+
assert G.to_sympy(G(2, 0)) == S(2)
|
1093 |
+
raises(CoercionFailed, lambda: G.from_sympy(pi))
|
1094 |
+
|
1095 |
+
PR = G.inject(x)
|
1096 |
+
assert isinstance(PR, PolynomialRing)
|
1097 |
+
assert PR.domain == G
|
1098 |
+
assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x
|
1099 |
+
|
1100 |
+
if G is QQ_I:
|
1101 |
+
AF = G.as_AlgebraicField()
|
1102 |
+
assert isinstance(AF, AlgebraicField)
|
1103 |
+
assert AF.domain == QQ
|
1104 |
+
assert AF.ext.args[0] == I
|
1105 |
+
|
1106 |
+
for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]:
|
1107 |
+
assert G.is_negative(qi) is False
|
1108 |
+
assert G.is_positive(qi) is False
|
1109 |
+
assert G.is_nonnegative(qi) is False
|
1110 |
+
assert G.is_nonpositive(qi) is False
|
1111 |
+
|
1112 |
+
domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)]
|
1113 |
+
if HAS_GMPY:
|
1114 |
+
domains += [ZZ_gmpy(), QQ_gmpy()]
|
1115 |
+
|
1116 |
+
for K in domains:
|
1117 |
+
assert G.convert(K(2)) == G(2, 0)
|
1118 |
+
assert G.convert(K(2), K) == G(2, 0)
|
1119 |
+
|
1120 |
+
for K in ZZ_I, QQ_I:
|
1121 |
+
assert G.convert(K(1, 1)) == G(1, 1)
|
1122 |
+
assert G.convert(K(1, 1), K) == G(1, 1)
|
1123 |
+
|
1124 |
+
if G == ZZ_I:
|
1125 |
+
assert repr(q) == 'ZZ_I(3, 4)'
|
1126 |
+
assert q//3 == G(1, 1)
|
1127 |
+
assert 12//q == G(1, -2)
|
1128 |
+
assert 12 % q == G(1, 2)
|
1129 |
+
assert q % 2 == G(-1, 0)
|
1130 |
+
assert i == G(0, 0)
|
1131 |
+
assert r == G(2, 0)
|
1132 |
+
assert G.get_ring() == G
|
1133 |
+
assert G.get_field() == QQ_I
|
1134 |
+
else:
|
1135 |
+
assert repr(q) == 'QQ_I(3, 4)'
|
1136 |
+
assert G.get_ring() == ZZ_I
|
1137 |
+
assert G.get_field() == G
|
1138 |
+
assert q//3 == G(1, S(4)/3)
|
1139 |
+
assert 12//q == G(S(36)/25, -S(48)/25)
|
1140 |
+
assert 12 % q == G(0, 0)
|
1141 |
+
assert q % 2 == G(0, 0)
|
1142 |
+
assert i == G(S(6)/25, -S(8)/25), (G,i)
|
1143 |
+
assert r == G(0, 0)
|
1144 |
+
q2 = G(S(3)/2, S(5)/3)
|
1145 |
+
assert G.numer(q2) == ZZ_I(9, 10)
|
1146 |
+
assert G.denom(q2) == ZZ_I(6)
|
1147 |
+
|
1148 |
+
|
1149 |
+
def test_EX_EXRAW():
|
1150 |
+
assert EXRAW.zero is S.Zero
|
1151 |
+
assert EXRAW.one is S.One
|
1152 |
+
|
1153 |
+
assert EX(1) == EX.Expression(1)
|
1154 |
+
assert EX(1).ex is S.One
|
1155 |
+
assert EXRAW(1) is S.One
|
1156 |
+
|
1157 |
+
# EX has cancelling but EXRAW does not
|
1158 |
+
assert 2*EX((x + y*x)/x) == EX(2 + 2*y) != 2*((x + y*x)/x)
|
1159 |
+
assert 2*EXRAW((x + y*x)/x) == 2*((x + y*x)/x) != (1 + y)
|
1160 |
+
|
1161 |
+
assert EXRAW.convert_from(EX(1), EX) is EXRAW.one
|
1162 |
+
assert EX.convert_from(EXRAW(1), EXRAW) == EX.one
|
1163 |
+
|
1164 |
+
assert EXRAW.from_sympy(S.One) is S.One
|
1165 |
+
assert EXRAW.to_sympy(EXRAW.one) is S.One
|
1166 |
+
raises(CoercionFailed, lambda: EXRAW.from_sympy([]))
|
1167 |
+
|
1168 |
+
assert EXRAW.get_field() == EXRAW
|
1169 |
+
|
1170 |
+
assert EXRAW.unify(EX) == EXRAW
|
1171 |
+
assert EX.unify(EXRAW) == EXRAW
|
1172 |
+
|
1173 |
+
|
1174 |
+
def test_canonical_unit():
|
1175 |
+
|
1176 |
+
for K in [ZZ, QQ, RR]: # CC?
|
1177 |
+
assert K.canonical_unit(K(2)) == K(1)
|
1178 |
+
assert K.canonical_unit(K(-2)) == K(-1)
|
1179 |
+
|
1180 |
+
for K in [ZZ_I, QQ_I]:
|
1181 |
+
i = K.from_sympy(I)
|
1182 |
+
assert K.canonical_unit(K(2)) == K(1)
|
1183 |
+
assert K.canonical_unit(K(2)*i) == -i
|
1184 |
+
assert K.canonical_unit(-K(2)) == K(-1)
|
1185 |
+
assert K.canonical_unit(-K(2)*i) == i
|
1186 |
+
|
1187 |
+
K = ZZ[x]
|
1188 |
+
assert K.canonical_unit(K(x + 1)) == K(1)
|
1189 |
+
assert K.canonical_unit(K(-x + 1)) == K(-1)
|
1190 |
+
|
1191 |
+
K = ZZ_I[x]
|
1192 |
+
assert K.canonical_unit(K.from_sympy(I*x)) == ZZ_I(0, -1)
|
1193 |
+
|
1194 |
+
K = ZZ_I.frac_field(x, y)
|
1195 |
+
i = K.from_sympy(I)
|
1196 |
+
assert i / i == K.one
|
1197 |
+
assert (K.one + i)/(i - K.one) == -i
|
1198 |
+
|
1199 |
+
|
1200 |
+
def test_issue_18278():
|
1201 |
+
assert str(RR(2).parent()) == 'RR'
|
1202 |
+
assert str(CC(2).parent()) == 'CC'
|
1203 |
+
|
1204 |
+
|
1205 |
+
def test_Domain_is_negative():
|
1206 |
+
I = S.ImaginaryUnit
|
1207 |
+
a, b = [CC.convert(x) for x in (2 + I, 5)]
|
1208 |
+
assert CC.is_negative(a) == False
|
1209 |
+
assert CC.is_negative(b) == False
|
1210 |
+
|
1211 |
+
|
1212 |
+
def test_Domain_is_positive():
|
1213 |
+
I = S.ImaginaryUnit
|
1214 |
+
a, b = [CC.convert(x) for x in (2 + I, 5)]
|
1215 |
+
assert CC.is_positive(a) == False
|
1216 |
+
assert CC.is_positive(b) == False
|
1217 |
+
|
1218 |
+
|
1219 |
+
def test_Domain_is_nonnegative():
|
1220 |
+
I = S.ImaginaryUnit
|
1221 |
+
a, b = [CC.convert(x) for x in (2 + I, 5)]
|
1222 |
+
assert CC.is_nonnegative(a) == False
|
1223 |
+
assert CC.is_nonnegative(b) == False
|
1224 |
+
|
1225 |
+
|
1226 |
+
def test_Domain_is_nonpositive():
|
1227 |
+
I = S.ImaginaryUnit
|
1228 |
+
a, b = [CC.convert(x) for x in (2 + I, 5)]
|
1229 |
+
assert CC.is_nonpositive(a) == False
|
1230 |
+
assert CC.is_nonpositive(b) == False
|
1231 |
+
|
1232 |
+
|
1233 |
+
def test_exponential_domain():
|
1234 |
+
K = ZZ[E]
|
1235 |
+
eK = K.from_sympy(E)
|
1236 |
+
assert K.from_sympy(exp(3)) == eK ** 3
|
1237 |
+
assert K.convert(exp(3)) == eK ** 3
|
1238 |
+
|
1239 |
+
|
1240 |
+
def test_AlgebraicField_alias():
|
1241 |
+
# No default alias:
|
1242 |
+
k = QQ.algebraic_field(sqrt(2))
|
1243 |
+
assert k.ext.alias is None
|
1244 |
+
|
1245 |
+
# For a single extension, its alias is used:
|
1246 |
+
alpha = AlgebraicNumber(sqrt(2), alias='alpha')
|
1247 |
+
k = QQ.algebraic_field(alpha)
|
1248 |
+
assert k.ext.alias.name == 'alpha'
|
1249 |
+
|
1250 |
+
# Can override the alias of a single extension:
|
1251 |
+
k = QQ.algebraic_field(alpha, alias='theta')
|
1252 |
+
assert k.ext.alias.name == 'theta'
|
1253 |
+
|
1254 |
+
# With multiple extensions, no default alias:
|
1255 |
+
k = QQ.algebraic_field(sqrt(2), sqrt(3))
|
1256 |
+
assert k.ext.alias is None
|
1257 |
+
|
1258 |
+
# With multiple extensions, no default alias, even if one of
|
1259 |
+
# the extensions has one:
|
1260 |
+
k = QQ.algebraic_field(alpha, sqrt(3))
|
1261 |
+
assert k.ext.alias is None
|
1262 |
+
|
1263 |
+
# With multiple extensions, may set an alias:
|
1264 |
+
k = QQ.algebraic_field(sqrt(2), sqrt(3), alias='theta')
|
1265 |
+
assert k.ext.alias.name == 'theta'
|
1266 |
+
|
1267 |
+
# Alias is passed to constructed field elements:
|
1268 |
+
k = QQ.algebraic_field(alpha)
|
1269 |
+
beta = k.to_alg_num(k([1, 2, 3]))
|
1270 |
+
assert beta.alias is alpha.alias
|
venv/lib/python3.10/site-packages/sympy/polys/domains/tests/test_quotientring.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for quotient rings."""
|
2 |
+
|
3 |
+
from sympy.polys.domains.integerring import ZZ
|
4 |
+
from sympy.polys.domains.rationalfield import QQ
|
5 |
+
from sympy.abc import x, y
|
6 |
+
|
7 |
+
from sympy.polys.polyerrors import NotReversible
|
8 |
+
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
|
11 |
+
|
12 |
+
def test_QuotientRingElement():
|
13 |
+
R = QQ.old_poly_ring(x)/[x**10]
|
14 |
+
X = R.convert(x)
|
15 |
+
|
16 |
+
assert X*(X + 1) == R.convert(x**2 + x)
|
17 |
+
assert X*x == R.convert(x**2)
|
18 |
+
assert x*X == R.convert(x**2)
|
19 |
+
assert X + x == R.convert(2*x)
|
20 |
+
assert x + X == 2*X
|
21 |
+
assert X**2 == R.convert(x**2)
|
22 |
+
assert 1/(1 - X) == R.convert(sum(x**i for i in range(10)))
|
23 |
+
assert X**10 == R.zero
|
24 |
+
assert X != x
|
25 |
+
|
26 |
+
raises(NotReversible, lambda: 1/X)
|
27 |
+
|
28 |
+
|
29 |
+
def test_QuotientRing():
|
30 |
+
I = QQ.old_poly_ring(x).ideal(x**2 + 1)
|
31 |
+
R = QQ.old_poly_ring(x)/I
|
32 |
+
|
33 |
+
assert R == QQ.old_poly_ring(x)/[x**2 + 1]
|
34 |
+
assert R == QQ.old_poly_ring(x)/QQ.old_poly_ring(x).ideal(x**2 + 1)
|
35 |
+
assert R != QQ.old_poly_ring(x)
|
36 |
+
|
37 |
+
assert R.convert(1)/x == -x + I
|
38 |
+
assert -1 + I == x**2 + I
|
39 |
+
assert R.convert(ZZ(1), ZZ) == 1 + I
|
40 |
+
assert R.convert(R.convert(x), R) == R.convert(x)
|
41 |
+
|
42 |
+
X = R.convert(x)
|
43 |
+
Y = QQ.old_poly_ring(x).convert(x)
|
44 |
+
assert -1 + I == X**2 + I
|
45 |
+
assert -1 + I == Y**2 + I
|
46 |
+
assert R.to_sympy(X) == x
|
47 |
+
|
48 |
+
raises(ValueError, lambda: QQ.old_poly_ring(x)/QQ.old_poly_ring(x, y).ideal(x))
|
49 |
+
|
50 |
+
R = QQ.old_poly_ring(x, order="ilex")
|
51 |
+
I = R.ideal(x)
|
52 |
+
assert R.convert(1) + I == (R/I).convert(1)
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
sympy.polys.matrices package.
|
4 |
+
|
5 |
+
The main export from this package is the DomainMatrix class which is a
|
6 |
+
lower-level implementation of matrices based on the polys Domains. This
|
7 |
+
implementation is typically a lot faster than SymPy's standard Matrix class
|
8 |
+
but is a work in progress and is still experimental.
|
9 |
+
|
10 |
+
"""
|
11 |
+
from .domainmatrix import DomainMatrix, DM
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
'DomainMatrix', 'DM',
|
15 |
+
]
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (607 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc
ADDED
Binary file (17.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc
ADDED
Binary file (8.92 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc
ADDED
Binary file (51.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc
ADDED
Binary file (4.37 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (2.12 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc
ADDED
Binary file (5.45 kB). View file
|
|