Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/10.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__init__.py +53 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/_reduction.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/common_types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/cpp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/functional.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/grad.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/init.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/__pycache__/parameter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/_reduction.py +47 -0
- venv/lib/python3.10/site-packages/torch/nn/common_types.py +42 -0
- venv/lib/python3.10/site-packages/torch/nn/cpp.py +88 -0
- venv/lib/python3.10/site-packages/torch/nn/functional.py +0 -0
- venv/lib/python3.10/site-packages/torch/nn/functional.pyi +682 -0
- venv/lib/python3.10/site-packages/torch/nn/grad.py +189 -0
- venv/lib/python3.10/site-packages/torch/nn/init.py +626 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/__init__.py +35 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__init__.py +31 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/fused.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/fused.py +30 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__init__.py +31 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/conv_fused.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_fused.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_relu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/conv_fused.py +37 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_fused.py +15 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_relu.py +15 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__init__.py +13 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/__init__.py +1 -0
ckpts/universal/global_step120/zero/10.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753db498886b0970ef05041cab3603b75cc30f6ba852156452ada9e0c25a2977
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ba863251b7c23925746dff9082ae599badeb4067575eeeaa22dd51242660040
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c553688fbf3bc565373940f4c5024d8c58e3461784e2400b1f92fe224acaaaa0
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/26.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d7924df01a2b0ff858ad0228241b8e948f8429d76619518aabfb278b94a5b5
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d9f4229e89115daf3fbd9dfcd302b87934f98c66c9d939d62a329af7e1c2e91
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92192f6e4909580afb7198c0ccd041ef87360774e17ba574c8275b84e7156067
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:045ba55ef5492f12a1502f8fb90bb7cc9643867a1ebee814d028c0e1b9e1257e
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc
ADDED
Binary file (3.11 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc
ADDED
Binary file (6.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc
ADDED
Binary file (8.67 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (18.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc
ADDED
Binary file (555 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (3.73 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc
ADDED
Binary file (266 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc
ADDED
Binary file (5.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
2 |
+
from .parameter import (
|
3 |
+
Parameter as Parameter,
|
4 |
+
UninitializedParameter as UninitializedParameter,
|
5 |
+
UninitializedBuffer as UninitializedBuffer,
|
6 |
+
)
|
7 |
+
from .parallel import DataParallel as DataParallel
|
8 |
+
from . import init
|
9 |
+
from . import functional
|
10 |
+
from . import utils
|
11 |
+
from . import attention
|
12 |
+
|
13 |
+
|
14 |
+
def factory_kwargs(kwargs):
|
15 |
+
r"""Return a canonicalized dict of factory kwargs.
|
16 |
+
|
17 |
+
Given kwargs, returns a canonicalized dict of factory kwargs that can be directly passed
|
18 |
+
to factory functions like torch.empty, or errors if unrecognized kwargs are present.
|
19 |
+
|
20 |
+
This function makes it simple to write code like this::
|
21 |
+
|
22 |
+
class MyModule(nn.Module):
|
23 |
+
def __init__(self, **kwargs):
|
24 |
+
factory_kwargs = torch.nn.factory_kwargs(kwargs)
|
25 |
+
self.weight = Parameter(torch.empty(10, **factory_kwargs))
|
26 |
+
|
27 |
+
Why should you use this function instead of just passing `kwargs` along directly?
|
28 |
+
|
29 |
+
1. This function does error validation, so if there are unexpected kwargs we will
|
30 |
+
immediately report an error, instead of deferring it to the factory call
|
31 |
+
2. This function supports a special `factory_kwargs` argument, which can be used to
|
32 |
+
explicitly specify a kwarg to be used for factory functions, in the event one of the
|
33 |
+
factory kwargs conflicts with an already existing argument in the signature (e.g.
|
34 |
+
in the signature ``def f(dtype, **kwargs)``, you can specify ``dtype`` for factory
|
35 |
+
functions, as distinct from the dtype argument, by saying
|
36 |
+
``f(dtype1, factory_kwargs={"dtype": dtype2})``)
|
37 |
+
"""
|
38 |
+
if kwargs is None:
|
39 |
+
return {}
|
40 |
+
simple_keys = {"device", "dtype", "memory_format"}
|
41 |
+
expected_keys = simple_keys | {"factory_kwargs"}
|
42 |
+
if not kwargs.keys() <= expected_keys:
|
43 |
+
raise TypeError(f"unexpected kwargs {kwargs.keys() - expected_keys}")
|
44 |
+
|
45 |
+
# guarantee no input kwargs is untouched
|
46 |
+
r = dict(kwargs.get("factory_kwargs", {}))
|
47 |
+
for k in simple_keys:
|
48 |
+
if k in kwargs:
|
49 |
+
if k in r:
|
50 |
+
raise TypeError(f"{k} specified twice, in **kwargs and in factory_kwargs")
|
51 |
+
r[k] = kwargs[k]
|
52 |
+
|
53 |
+
return r
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.15 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/_reduction.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/common_types.cpython-310.pyc
ADDED
Binary file (1.02 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/cpp.cpython-310.pyc
ADDED
Binary file (3.45 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/functional.cpython-310.pyc
ADDED
Binary file (177 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/grad.cpython-310.pyc
ADDED
Binary file (8.46 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/init.cpython-310.pyc
ADDED
Binary file (19.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/__pycache__/parameter.cpython-310.pyc
ADDED
Binary file (9.01 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/_reduction.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
# NB: Keep this file in sync with enums in aten/src/ATen/core/Reduction.h
|
5 |
+
|
6 |
+
|
7 |
+
def get_enum(reduction: str) -> int:
|
8 |
+
if reduction == 'none':
|
9 |
+
ret = 0
|
10 |
+
elif reduction == 'mean':
|
11 |
+
ret = 1
|
12 |
+
elif reduction == 'elementwise_mean':
|
13 |
+
warnings.warn("reduction='elementwise_mean' is deprecated, please use reduction='mean' instead.")
|
14 |
+
ret = 1
|
15 |
+
elif reduction == 'sum':
|
16 |
+
ret = 2
|
17 |
+
else:
|
18 |
+
ret = -1 # TODO: remove once JIT exceptions support control flow
|
19 |
+
raise ValueError(f"{reduction} is not a valid value for reduction")
|
20 |
+
return ret
|
21 |
+
|
22 |
+
# In order to support previous versions, accept boolean size_average and reduce
|
23 |
+
# and convert them into the new constants for now
|
24 |
+
|
25 |
+
|
26 |
+
# We use these functions in torch/legacy as well, in which case we'll silence the warning
|
27 |
+
def legacy_get_string(size_average: Optional[bool], reduce: Optional[bool], emit_warning: bool = True) -> str:
|
28 |
+
warning = "size_average and reduce args will be deprecated, please use reduction='{}' instead."
|
29 |
+
|
30 |
+
if size_average is None:
|
31 |
+
size_average = True
|
32 |
+
if reduce is None:
|
33 |
+
reduce = True
|
34 |
+
|
35 |
+
if size_average and reduce:
|
36 |
+
ret = 'mean'
|
37 |
+
elif reduce:
|
38 |
+
ret = 'sum'
|
39 |
+
else:
|
40 |
+
ret = 'none'
|
41 |
+
if emit_warning:
|
42 |
+
warnings.warn(warning.format(ret))
|
43 |
+
return ret
|
44 |
+
|
45 |
+
|
46 |
+
def legacy_get_enum(size_average: Optional[bool], reduce: Optional[bool], emit_warning: bool = True) -> int:
|
47 |
+
return get_enum(legacy_get_string(size_average, reduce, emit_warning))
|
venv/lib/python3.10/site-packages/torch/nn/common_types.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypeVar, Union, Tuple, Optional
|
2 |
+
from .. import Tensor
|
3 |
+
|
4 |
+
# Create some useful type aliases
|
5 |
+
|
6 |
+
# Template for arguments which can be supplied as a tuple, or which can be a scalar which PyTorch will internally
|
7 |
+
# broadcast to a tuple.
|
8 |
+
# Comes in several variants: A tuple of unknown size, and a fixed-size tuple for 1d, 2d, or 3d operations.
|
9 |
+
T = TypeVar('T')
|
10 |
+
_scalar_or_tuple_any_t = Union[T, Tuple[T, ...]]
|
11 |
+
_scalar_or_tuple_1_t = Union[T, Tuple[T]]
|
12 |
+
_scalar_or_tuple_2_t = Union[T, Tuple[T, T]]
|
13 |
+
_scalar_or_tuple_3_t = Union[T, Tuple[T, T, T]]
|
14 |
+
_scalar_or_tuple_4_t = Union[T, Tuple[T, T, T, T]]
|
15 |
+
_scalar_or_tuple_5_t = Union[T, Tuple[T, T, T, T, T]]
|
16 |
+
_scalar_or_tuple_6_t = Union[T, Tuple[T, T, T, T, T, T]]
|
17 |
+
|
18 |
+
# For arguments which represent size parameters (eg, kernel size, padding)
|
19 |
+
_size_any_t = _scalar_or_tuple_any_t[int]
|
20 |
+
_size_1_t = _scalar_or_tuple_1_t[int]
|
21 |
+
_size_2_t = _scalar_or_tuple_2_t[int]
|
22 |
+
_size_3_t = _scalar_or_tuple_3_t[int]
|
23 |
+
_size_4_t = _scalar_or_tuple_4_t[int]
|
24 |
+
_size_5_t = _scalar_or_tuple_5_t[int]
|
25 |
+
_size_6_t = _scalar_or_tuple_6_t[int]
|
26 |
+
|
27 |
+
# For arguments which represent optional size parameters (eg, adaptive pool parameters)
|
28 |
+
_size_any_opt_t = _scalar_or_tuple_any_t[Optional[int]]
|
29 |
+
_size_2_opt_t = _scalar_or_tuple_2_t[Optional[int]]
|
30 |
+
_size_3_opt_t = _scalar_or_tuple_3_t[Optional[int]]
|
31 |
+
|
32 |
+
# For arguments that represent a ratio to adjust each dimension of an input with (eg, upsampling parameters)
|
33 |
+
_ratio_2_t = _scalar_or_tuple_2_t[float]
|
34 |
+
_ratio_3_t = _scalar_or_tuple_3_t[float]
|
35 |
+
_ratio_any_t = _scalar_or_tuple_any_t[float]
|
36 |
+
|
37 |
+
_tensor_list_t = _scalar_or_tuple_any_t[Tensor]
|
38 |
+
|
39 |
+
# For the return value of max pooling operations that may or may not return indices.
|
40 |
+
# With the proposed 'Literal' feature to Python typing, it might be possible to
|
41 |
+
# eventually eliminate this.
|
42 |
+
_maybe_indices_t = _scalar_or_tuple_2_t[Tensor]
|
venv/lib/python3.10/site-packages/torch/nn/cpp.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functionality for Python <-> C++ frontend inter-op."""
|
2 |
+
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class OrderedDictWrapper:
|
7 |
+
"""A wrapper around a C++ OrderedDict.
|
8 |
+
|
9 |
+
It dynamically evaluates the OrderedDict getter on a bound C++ module, such
|
10 |
+
that new changes on the C++ side are picked up. Otherwise accessing e.g.
|
11 |
+
``cpp_module._parameters`` just once would get a frozen copy of the parameters
|
12 |
+
at the time of access. ``torch.nn.Module`` accesses ``_parameters`` et al. via ``self.__dict__``
|
13 |
+
so using properties does not work.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, cpp_module, attr):
|
17 |
+
self.cpp_module = cpp_module
|
18 |
+
self.attr = attr
|
19 |
+
|
20 |
+
@property
|
21 |
+
def cpp_dict(self):
|
22 |
+
return getattr(self.cpp_module, self.attr)
|
23 |
+
|
24 |
+
# Magic methods cannot be assigned dynamically and bypass ``getattr``, so we
|
25 |
+
# must manually override them.
|
26 |
+
|
27 |
+
def items(self):
|
28 |
+
return self.cpp_dict.items()
|
29 |
+
|
30 |
+
def keys(self):
|
31 |
+
return self.cpp_dict.keys()
|
32 |
+
|
33 |
+
def values(self):
|
34 |
+
return self.cpp_dict.values()
|
35 |
+
|
36 |
+
def __iter__(self):
|
37 |
+
return self.cpp_dict.__iter__()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return self.cpp_dict.__len__()
|
41 |
+
|
42 |
+
def __contains__(self, key):
|
43 |
+
return self.cpp_dict.__contains__(key)
|
44 |
+
|
45 |
+
def __getitem__(self, key):
|
46 |
+
return self.cpp_dict.__getitem__(key)
|
47 |
+
|
48 |
+
|
49 |
+
class ModuleWrapper(nn.Module):
|
50 |
+
"""A subclass of ``torch.nn.Module`` that wraps a C++ frontend module and delegates all access."""
|
51 |
+
|
52 |
+
def __init__(self, cpp_module):
|
53 |
+
# Assign before the super class constructor so ``self.training`` can be
|
54 |
+
# assigned to in the super class constructor.
|
55 |
+
self.cpp_module = cpp_module
|
56 |
+
super().__init__()
|
57 |
+
self._parameters = OrderedDictWrapper(cpp_module, "_parameters") # type: ignore[assignment]
|
58 |
+
self._buffers: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_buffers") # type: ignore[assignment]
|
59 |
+
self._modules: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_modules") # type: ignore[assignment]
|
60 |
+
for attr in dir(cpp_module):
|
61 |
+
# Skip magic methods and the three attributes above.
|
62 |
+
if not attr.startswith("_"):
|
63 |
+
setattr(self, attr, getattr(self.cpp_module, attr))
|
64 |
+
|
65 |
+
def _apply(self, fn, recurse=True):
|
66 |
+
for param in self.parameters():
|
67 |
+
# Tensors stored in modules are graph leaves, and we don't
|
68 |
+
# want to create copy nodes, so we have to unpack the data.
|
69 |
+
param.data = fn(param.data)
|
70 |
+
if param._grad is not None:
|
71 |
+
param._grad.data = fn(param._grad.data)
|
72 |
+
|
73 |
+
for buf in self.buffers():
|
74 |
+
buf.data = fn(buf.data)
|
75 |
+
|
76 |
+
return self
|
77 |
+
|
78 |
+
# nn.Module defines training as a boolean
|
79 |
+
@property # type: ignore[override]
|
80 |
+
def training(self):
|
81 |
+
return self.cpp_module.training
|
82 |
+
|
83 |
+
@training.setter
|
84 |
+
def training(self, mode):
|
85 |
+
self.cpp_module.train(mode)
|
86 |
+
|
87 |
+
def __repr__(self):
|
88 |
+
return self.cpp_module.__repr__()
|
venv/lib/python3.10/site-packages/torch/nn/functional.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/nn/functional.pyi
ADDED
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
Dict,
|
5 |
+
List,
|
6 |
+
Literal,
|
7 |
+
Optional,
|
8 |
+
overload,
|
9 |
+
Sequence,
|
10 |
+
Tuple,
|
11 |
+
Union,
|
12 |
+
)
|
13 |
+
|
14 |
+
from torch import Tensor
|
15 |
+
from torch.types import _dtype, _int, _size
|
16 |
+
|
17 |
+
from .common_types import (
|
18 |
+
_ratio_any_t,
|
19 |
+
_size_1_t,
|
20 |
+
_size_2_opt_t,
|
21 |
+
_size_2_t,
|
22 |
+
_size_3_opt_t,
|
23 |
+
_size_3_t,
|
24 |
+
_size_any_t,
|
25 |
+
)
|
26 |
+
|
27 |
+
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
|
28 |
+
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
|
29 |
+
# is wide-spread.
|
30 |
+
|
31 |
+
# from mypy_extensions import TypedDict
|
32 |
+
|
33 |
+
# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
|
34 |
+
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
|
35 |
+
|
36 |
+
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
|
37 |
+
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
|
38 |
+
|
39 |
+
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
|
40 |
+
#
|
41 |
+
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
|
42 |
+
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
|
43 |
+
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
|
44 |
+
#
|
45 |
+
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
|
46 |
+
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
|
47 |
+
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
|
48 |
+
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
|
49 |
+
def fractional_max_pool2d_with_indices(
|
50 |
+
input: Tensor,
|
51 |
+
kernel_size: _size,
|
52 |
+
output_size: Optional[_size] = ...,
|
53 |
+
output_ratio: Optional[_ratio_any_t] = ...,
|
54 |
+
return_indices: bool = ...,
|
55 |
+
_random_samples: Optional[Tensor] = ...,
|
56 |
+
) -> Tuple[Tensor, Tensor]: ...
|
57 |
+
def fractional_max_pool3d_with_indices(
|
58 |
+
input: Tensor,
|
59 |
+
kernel_size: _size,
|
60 |
+
output_size: Optional[_size] = ...,
|
61 |
+
output_ratio: Optional[_ratio_any_t] = ...,
|
62 |
+
return_indices: bool = ...,
|
63 |
+
_random_samples: Optional[Tensor] = ...,
|
64 |
+
) -> Tuple[Tensor, Tensor]: ...
|
65 |
+
def max_pool1d_with_indices(
|
66 |
+
input: Tensor,
|
67 |
+
kernel_size: _size,
|
68 |
+
stride: Optional[_size] = ...,
|
69 |
+
padding: _size = ...,
|
70 |
+
dilation: _size = ...,
|
71 |
+
ceil_mode: bool = ...,
|
72 |
+
return_indices: bool = ...,
|
73 |
+
) -> Tuple[Tensor, Tensor]: ...
|
74 |
+
def max_pool2d_with_indices(
|
75 |
+
input: Tensor,
|
76 |
+
kernel_size: _size,
|
77 |
+
stride: Optional[_size] = ...,
|
78 |
+
padding: _size = ...,
|
79 |
+
dilation: _size = ...,
|
80 |
+
ceil_mode: bool = ...,
|
81 |
+
return_indices: bool = ...,
|
82 |
+
) -> Tuple[Tensor, Tensor]: ...
|
83 |
+
def max_pool3d_with_indices(
|
84 |
+
input: Tensor,
|
85 |
+
kernel_size: _size,
|
86 |
+
stride: Optional[_size] = ...,
|
87 |
+
padding: _size = ...,
|
88 |
+
dilation: _size = ...,
|
89 |
+
ceil_mode: bool = ...,
|
90 |
+
return_indices: bool = ...,
|
91 |
+
) -> Tuple[Tensor, Tensor]: ...
|
92 |
+
def max_unpool1d(
|
93 |
+
input: Tensor,
|
94 |
+
indices: Tensor,
|
95 |
+
kernel_size: _size,
|
96 |
+
stride: Optional[_size] = ...,
|
97 |
+
padding: _size = ...,
|
98 |
+
output_size: Optional[_size] = ...,
|
99 |
+
) -> Tensor: ...
|
100 |
+
def max_unpool2d(
|
101 |
+
input: Tensor,
|
102 |
+
indices: Tensor,
|
103 |
+
kernel_size: _size,
|
104 |
+
stride: Optional[_size] = ...,
|
105 |
+
padding: _size = ...,
|
106 |
+
output_size: Optional[_size] = ...,
|
107 |
+
) -> Tensor: ...
|
108 |
+
def max_unpool3d(
|
109 |
+
input: Tensor,
|
110 |
+
indices: Tensor,
|
111 |
+
kernel_size: _size,
|
112 |
+
stride: Optional[_size] = ...,
|
113 |
+
padding: _size = ...,
|
114 |
+
output_size: Optional[_size] = ...,
|
115 |
+
) -> Tensor: ...
|
116 |
+
def lp_pool1d(
|
117 |
+
input: Tensor,
|
118 |
+
norm_type: float,
|
119 |
+
kernel_size: _size_1_t,
|
120 |
+
stride: Union[Optional[_size], Optional[int]] = ...,
|
121 |
+
ceil_mode: bool = ...,
|
122 |
+
) -> Tensor: ...
|
123 |
+
def lp_pool2d(
|
124 |
+
input: Tensor,
|
125 |
+
norm_type: float,
|
126 |
+
kernel_size: _size_2_t,
|
127 |
+
stride: Union[Optional[_size], Optional[int]] = ...,
|
128 |
+
ceil_mode: bool = ...,
|
129 |
+
) -> Tensor: ...
|
130 |
+
def lp_pool3d(
|
131 |
+
input: Tensor,
|
132 |
+
norm_type: float,
|
133 |
+
kernel_size: _size_3_t,
|
134 |
+
stride: Union[Optional[_size], Optional[int]] = ...,
|
135 |
+
ceil_mode: bool = ...,
|
136 |
+
) -> Tensor: ...
|
137 |
+
def adaptive_max_pool1d_with_indices(
|
138 |
+
input: Tensor,
|
139 |
+
output_size: _size,
|
140 |
+
return_indices: bool = ...,
|
141 |
+
) -> Tuple[Tensor, Tensor]: ...
|
142 |
+
def adaptive_max_pool2d_with_indices(
|
143 |
+
input: Tensor,
|
144 |
+
output_size: _size_2_opt_t,
|
145 |
+
return_indices: bool = ...,
|
146 |
+
) -> Tuple[Tensor, Tensor]: ...
|
147 |
+
def adaptive_max_pool3d_with_indices(
|
148 |
+
input: Tensor,
|
149 |
+
output_size: _size_3_opt_t,
|
150 |
+
return_indices: bool = ...,
|
151 |
+
) -> Tuple[Tensor, Tensor]: ...
|
152 |
+
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
|
153 |
+
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
|
154 |
+
def dropout(
|
155 |
+
input: Tensor,
|
156 |
+
p: float = ...,
|
157 |
+
training: bool = ...,
|
158 |
+
inplace: bool = ...,
|
159 |
+
) -> Tensor: ...
|
160 |
+
def alpha_dropout(
|
161 |
+
input: Tensor,
|
162 |
+
p: float = ...,
|
163 |
+
training: bool = ...,
|
164 |
+
inplace: bool = ...,
|
165 |
+
) -> Tensor: ...
|
166 |
+
def dropout1d(
|
167 |
+
input: Tensor,
|
168 |
+
p: float = ...,
|
169 |
+
training: bool = ...,
|
170 |
+
inplace: bool = ...,
|
171 |
+
) -> Tensor: ...
|
172 |
+
def dropout2d(
|
173 |
+
input: Tensor,
|
174 |
+
p: float = ...,
|
175 |
+
training: bool = ...,
|
176 |
+
inplace: bool = ...,
|
177 |
+
) -> Tensor: ...
|
178 |
+
def dropout3d(
|
179 |
+
input: Tensor,
|
180 |
+
p: float = ...,
|
181 |
+
training: bool = ...,
|
182 |
+
inplace: bool = ...,
|
183 |
+
) -> Tensor: ...
|
184 |
+
def feature_alpha_dropout(
|
185 |
+
input: Tensor,
|
186 |
+
p: float = ...,
|
187 |
+
training: bool = ...,
|
188 |
+
inplace: bool = ...,
|
189 |
+
) -> Tensor: ...
|
190 |
+
def threshold(
|
191 |
+
input: Tensor,
|
192 |
+
threshold: float,
|
193 |
+
value: float,
|
194 |
+
inplace: bool = ...,
|
195 |
+
) -> Tensor: ...
|
196 |
+
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
197 |
+
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
|
198 |
+
def hardtanh(
|
199 |
+
input: Tensor,
|
200 |
+
min_val: float = ...,
|
201 |
+
max_val: float = ...,
|
202 |
+
inplace: bool = ...,
|
203 |
+
) -> Tensor: ...
|
204 |
+
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
205 |
+
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
206 |
+
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
207 |
+
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
208 |
+
def leaky_relu(
|
209 |
+
input: Tensor,
|
210 |
+
negative_slope: float = ...,
|
211 |
+
inplace: bool = ...,
|
212 |
+
) -> Tensor: ...
|
213 |
+
def rrelu(
|
214 |
+
input: Tensor,
|
215 |
+
lower: float = ...,
|
216 |
+
upper: float = ...,
|
217 |
+
training: bool = ...,
|
218 |
+
inplace: bool = ...,
|
219 |
+
) -> Tensor: ...
|
220 |
+
def tanhshrink(input: Any): ...
|
221 |
+
def softsign(input: Any): ...
|
222 |
+
def softmin(
|
223 |
+
input: Tensor,
|
224 |
+
dim: Optional[int] = ...,
|
225 |
+
_stacklevel: int = ...,
|
226 |
+
dtype: Optional[_dtype] = ...,
|
227 |
+
) -> Tensor: ...
|
228 |
+
def softmax(
|
229 |
+
input: Tensor,
|
230 |
+
dim: Optional[int] = ...,
|
231 |
+
_stacklevel: int = ...,
|
232 |
+
dtype: Optional[_dtype] = ...,
|
233 |
+
) -> Tensor: ...
|
234 |
+
def gumbel_softmax(
|
235 |
+
logits: Tensor,
|
236 |
+
tau: float = ...,
|
237 |
+
hard: bool = ...,
|
238 |
+
eps: float = ...,
|
239 |
+
dim: int = ...,
|
240 |
+
) -> Tensor: ...
|
241 |
+
def log_softmax(
|
242 |
+
input: Tensor,
|
243 |
+
dim: Optional[int] = ...,
|
244 |
+
_stacklevel: int = ...,
|
245 |
+
dtype: Optional[_dtype] = ...,
|
246 |
+
) -> Tensor: ...
|
247 |
+
def tanh(input: Any): ...
|
248 |
+
def sigmoid(input: Any) -> Tensor: ...
|
249 |
+
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
|
250 |
+
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
|
251 |
+
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
252 |
+
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
253 |
+
def embedding(
|
254 |
+
input: Tensor,
|
255 |
+
weight: Tensor,
|
256 |
+
padding_idx: Optional[int] = ...,
|
257 |
+
max_norm: Optional[float] = ...,
|
258 |
+
norm_type: float = ...,
|
259 |
+
scale_grad_by_freq: bool = ...,
|
260 |
+
sparse: bool = ...,
|
261 |
+
) -> Tensor: ...
|
262 |
+
def embedding_bag(
|
263 |
+
input: Tensor,
|
264 |
+
weight: Tensor,
|
265 |
+
offsets: Optional[Tensor] = ...,
|
266 |
+
max_norm: Optional[float] = ...,
|
267 |
+
norm_type: float = ...,
|
268 |
+
scale_grad_by_freq: bool = ...,
|
269 |
+
mode: str = ...,
|
270 |
+
sparse: bool = ...,
|
271 |
+
per_sample_weights: Optional[Tensor] = ...,
|
272 |
+
include_last_offset: bool = ...,
|
273 |
+
padding_idx: Optional[int] = ...,
|
274 |
+
) -> Tensor: ...
|
275 |
+
def batch_norm(
|
276 |
+
input: Tensor,
|
277 |
+
running_mean: Optional[Tensor],
|
278 |
+
running_var: Optional[Tensor],
|
279 |
+
weight: Optional[Tensor] = ...,
|
280 |
+
bias: Optional[Tensor] = ...,
|
281 |
+
training: bool = ...,
|
282 |
+
momentum: float = ...,
|
283 |
+
eps: float = ...,
|
284 |
+
) -> Tensor: ...
|
285 |
+
def instance_norm(
|
286 |
+
input: Tensor,
|
287 |
+
running_mean: Optional[Tensor] = ...,
|
288 |
+
running_var: Optional[Tensor] = ...,
|
289 |
+
weight: Optional[Tensor] = ...,
|
290 |
+
bias: Optional[Tensor] = ...,
|
291 |
+
use_input_stats: bool = ...,
|
292 |
+
momentum: float = ...,
|
293 |
+
eps: float = ...,
|
294 |
+
) -> Tensor: ...
|
295 |
+
def layer_norm(
|
296 |
+
input: Tensor,
|
297 |
+
normalized_shape: Sequence[int],
|
298 |
+
weight: Optional[Tensor] = ...,
|
299 |
+
bias: Optional[Tensor] = ...,
|
300 |
+
eps: float = ...,
|
301 |
+
) -> Tensor: ...
|
302 |
+
def group_norm(
|
303 |
+
input: Tensor,
|
304 |
+
num_groups: int,
|
305 |
+
weight: Optional[Tensor] = ...,
|
306 |
+
bias: Optional[Tensor] = ...,
|
307 |
+
eps: float = ...,
|
308 |
+
) -> Tensor: ...
|
309 |
+
def local_response_norm(
|
310 |
+
input: Tensor,
|
311 |
+
size: int,
|
312 |
+
alpha: float = ...,
|
313 |
+
beta: float = ...,
|
314 |
+
k: float = ...,
|
315 |
+
) -> Tensor: ...
|
316 |
+
def ctc_loss(
|
317 |
+
log_probs: Tensor,
|
318 |
+
targets: Tensor,
|
319 |
+
input_lengths: Tensor,
|
320 |
+
target_lengths: Tensor,
|
321 |
+
blank: int = ...,
|
322 |
+
reduction: str = ...,
|
323 |
+
zero_infinity: bool = ...,
|
324 |
+
) -> Tensor: ...
|
325 |
+
def nll_loss(
|
326 |
+
input: Tensor,
|
327 |
+
target: Tensor,
|
328 |
+
weight: Optional[Tensor] = ...,
|
329 |
+
size_average: Optional[bool] = ...,
|
330 |
+
ignore_index: int = ...,
|
331 |
+
reduce: Optional[bool] = ...,
|
332 |
+
reduction: str = ...,
|
333 |
+
) -> Tensor: ...
|
334 |
+
def poisson_nll_loss(
|
335 |
+
input: Tensor,
|
336 |
+
target: Tensor,
|
337 |
+
log_input: bool = ...,
|
338 |
+
full: bool = ...,
|
339 |
+
size_average: Optional[bool] = ...,
|
340 |
+
eps: float = ...,
|
341 |
+
reduce: Optional[bool] = ...,
|
342 |
+
reduction: str = ...,
|
343 |
+
) -> Tensor: ...
|
344 |
+
def gaussian_nll_loss(
|
345 |
+
input: Tensor,
|
346 |
+
target: Tensor,
|
347 |
+
var: Tensor,
|
348 |
+
full: Optional[bool] = ...,
|
349 |
+
eps: Optional[float] = ...,
|
350 |
+
reduction: Optional[str] = ...,
|
351 |
+
) -> Tensor: ...
|
352 |
+
def kl_div(
|
353 |
+
input: Tensor,
|
354 |
+
target: Tensor,
|
355 |
+
size_average: Optional[bool] = ...,
|
356 |
+
reduce: Optional[bool] = ...,
|
357 |
+
reduction: str = ...,
|
358 |
+
log_target: bool = ...,
|
359 |
+
) -> Tensor: ...
|
360 |
+
def cross_entropy(
|
361 |
+
input: Tensor,
|
362 |
+
target: Tensor,
|
363 |
+
weight: Optional[Tensor] = ...,
|
364 |
+
size_average: Optional[bool] = ...,
|
365 |
+
ignore_index: int = ...,
|
366 |
+
reduce: Optional[bool] = ...,
|
367 |
+
reduction: str = ...,
|
368 |
+
label_smoothing: float = ...,
|
369 |
+
) -> Tensor: ...
|
370 |
+
def binary_cross_entropy(
|
371 |
+
input: Tensor,
|
372 |
+
target: Tensor,
|
373 |
+
weight: Optional[Tensor] = ...,
|
374 |
+
size_average: Optional[bool] = ...,
|
375 |
+
reduce: Optional[bool] = ...,
|
376 |
+
reduction: str = ...,
|
377 |
+
) -> Tensor: ...
|
378 |
+
def binary_cross_entropy_with_logits(
|
379 |
+
input: Tensor,
|
380 |
+
target: Tensor,
|
381 |
+
weight: Optional[Tensor] = ...,
|
382 |
+
size_average: Optional[bool] = ...,
|
383 |
+
reduce: Optional[bool] = ...,
|
384 |
+
reduction: str = ...,
|
385 |
+
pos_weight: Optional[Tensor] = ...,
|
386 |
+
) -> Tensor: ...
|
387 |
+
def smooth_l1_loss(
|
388 |
+
input: Tensor,
|
389 |
+
target: Tensor,
|
390 |
+
size_average: Optional[bool] = ...,
|
391 |
+
reduce: Optional[bool] = ...,
|
392 |
+
reduction: str = ...,
|
393 |
+
beta: float = ...,
|
394 |
+
) -> Tensor: ...
|
395 |
+
def huber_loss(
|
396 |
+
input: Tensor,
|
397 |
+
target: Tensor,
|
398 |
+
reduction: str = ...,
|
399 |
+
delta: float = ...,
|
400 |
+
) -> Tensor: ...
|
401 |
+
def l1_loss(
|
402 |
+
input: Tensor,
|
403 |
+
target: Tensor,
|
404 |
+
size_average: Optional[bool] = ...,
|
405 |
+
reduce: Optional[bool] = ...,
|
406 |
+
reduction: str = ...,
|
407 |
+
) -> Tensor: ...
|
408 |
+
def mse_loss(
|
409 |
+
input: Tensor,
|
410 |
+
target: Tensor,
|
411 |
+
size_average: Optional[bool] = ...,
|
412 |
+
reduce: Optional[bool] = ...,
|
413 |
+
reduction: str = ...,
|
414 |
+
) -> Tensor: ...
|
415 |
+
def margin_ranking_loss(
|
416 |
+
input1: Tensor,
|
417 |
+
input2: Tensor,
|
418 |
+
target: Tensor,
|
419 |
+
margin: float = ...,
|
420 |
+
size_average: Optional[bool] = ...,
|
421 |
+
reduce: Optional[bool] = ...,
|
422 |
+
reduction: str = ...,
|
423 |
+
) -> Tensor: ...
|
424 |
+
def hinge_embedding_loss(
|
425 |
+
input: Tensor,
|
426 |
+
target: Tensor,
|
427 |
+
margin: float = ...,
|
428 |
+
size_average: Optional[bool] = ...,
|
429 |
+
reduce: Optional[bool] = ...,
|
430 |
+
reduction: str = ...,
|
431 |
+
) -> Tensor: ...
|
432 |
+
def multilabel_margin_loss(
|
433 |
+
input: Tensor,
|
434 |
+
target: Tensor,
|
435 |
+
size_average: Optional[bool] = ...,
|
436 |
+
reduce: Optional[bool] = ...,
|
437 |
+
reduction: str = ...,
|
438 |
+
) -> Tensor: ...
|
439 |
+
def soft_margin_loss(
|
440 |
+
input: Tensor,
|
441 |
+
target: Tensor,
|
442 |
+
size_average: Optional[bool] = ...,
|
443 |
+
reduce: Optional[bool] = ...,
|
444 |
+
reduction: str = ...,
|
445 |
+
) -> Tensor: ...
|
446 |
+
def multilabel_soft_margin_loss(
|
447 |
+
input: Tensor,
|
448 |
+
target: Tensor,
|
449 |
+
weight: Optional[Tensor] = ...,
|
450 |
+
size_average: Optional[bool] = ...,
|
451 |
+
reduce: Optional[bool] = ...,
|
452 |
+
reduction: str = ...,
|
453 |
+
) -> Tensor: ...
|
454 |
+
def cosine_embedding_loss(
|
455 |
+
input1: Tensor,
|
456 |
+
input2: Tensor,
|
457 |
+
target: Tensor,
|
458 |
+
margin: float = ...,
|
459 |
+
size_average: Optional[bool] = ...,
|
460 |
+
reduce: Optional[bool] = ...,
|
461 |
+
reduction: str = ...,
|
462 |
+
) -> Tensor: ...
|
463 |
+
def multi_margin_loss(
|
464 |
+
input: Tensor,
|
465 |
+
target: Tensor,
|
466 |
+
p: int = ...,
|
467 |
+
margin: float = ...,
|
468 |
+
weight: Optional[Tensor] = ...,
|
469 |
+
size_average: Optional[bool] = ...,
|
470 |
+
reduce: Optional[bool] = ...,
|
471 |
+
reduction: str = ...,
|
472 |
+
) -> Tensor: ...
|
473 |
+
def upsample(
|
474 |
+
input: Any,
|
475 |
+
size: Optional[Any] = ...,
|
476 |
+
scale_factor: Optional[Any] = ...,
|
477 |
+
mode: str = ...,
|
478 |
+
align_corners: Optional[Any] = ...,
|
479 |
+
): ...
|
480 |
+
def interpolate(
|
481 |
+
input: Any,
|
482 |
+
size: Optional[Any] = ...,
|
483 |
+
scale_factor: Optional[Any] = ...,
|
484 |
+
mode: str = ...,
|
485 |
+
align_corners: Optional[Any] = ...,
|
486 |
+
recompute_scale_factor: Optional[Any] = ...,
|
487 |
+
antialias: bool = ...,
|
488 |
+
): ...
|
489 |
+
def upsample_nearest(
|
490 |
+
input: Any,
|
491 |
+
size: Optional[Any] = ...,
|
492 |
+
scale_factor: Optional[Any] = ...,
|
493 |
+
): ...
|
494 |
+
def upsample_bilinear(
|
495 |
+
input: Any,
|
496 |
+
size: Optional[Any] = ...,
|
497 |
+
scale_factor: Optional[Any] = ...,
|
498 |
+
): ...
|
499 |
+
def grid_sample(
|
500 |
+
input: Tensor,
|
501 |
+
grid: Tensor,
|
502 |
+
mode: str = ...,
|
503 |
+
padding_mode: str = ...,
|
504 |
+
align_corners: Optional[Any] = ...,
|
505 |
+
) -> Tensor: ...
|
506 |
+
def affine_grid(
|
507 |
+
theta: Tensor,
|
508 |
+
size: List[int],
|
509 |
+
align_corners: Optional[Any] = ...,
|
510 |
+
) -> Tensor: ...
|
511 |
+
def triplet_margin_loss(
|
512 |
+
anchor: Tensor,
|
513 |
+
positive: Tensor,
|
514 |
+
negative: Tensor,
|
515 |
+
margin: float = ...,
|
516 |
+
p: float = ...,
|
517 |
+
eps: float = ...,
|
518 |
+
swap: bool = ...,
|
519 |
+
size_average: Optional[bool] = ...,
|
520 |
+
reduce: Optional[bool] = ...,
|
521 |
+
reduction: str = ...,
|
522 |
+
) -> Tensor: ...
|
523 |
+
def triplet_margin_with_distance_loss(
|
524 |
+
anchor: Tensor,
|
525 |
+
positive: Tensor,
|
526 |
+
negative: Tensor,
|
527 |
+
*,
|
528 |
+
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = ...,
|
529 |
+
margin: float = ...,
|
530 |
+
swap: bool = ...,
|
531 |
+
reduction: str = ...,
|
532 |
+
) -> Tensor: ...
|
533 |
+
def normalize(
|
534 |
+
input: Tensor,
|
535 |
+
p: float = ...,
|
536 |
+
dim: int = ...,
|
537 |
+
eps: float = ...,
|
538 |
+
out: Optional[Tensor] = ...,
|
539 |
+
) -> Tensor: ...
|
540 |
+
def assert_int_or_pair(
|
541 |
+
arg: Any,
|
542 |
+
arg_name: Any,
|
543 |
+
message: Any,
|
544 |
+
) -> None: ...
|
545 |
+
def unfold(
|
546 |
+
input: Tensor,
|
547 |
+
kernel_size: _size_any_t,
|
548 |
+
dilation: _size_any_t = ...,
|
549 |
+
padding: _size_any_t = ...,
|
550 |
+
stride: _size_any_t = ...,
|
551 |
+
) -> Tensor: ...
|
552 |
+
def fold(
|
553 |
+
input: Tensor,
|
554 |
+
output_size: _size_any_t,
|
555 |
+
kernel_size: _size_any_t,
|
556 |
+
dilation: _size_any_t = ...,
|
557 |
+
padding: _size_any_t = ...,
|
558 |
+
stride: _size_any_t = ...,
|
559 |
+
) -> Tensor: ...
|
560 |
+
def _canonical_mask(
|
561 |
+
mask: Optional[Tensor],
|
562 |
+
mask_name: str,
|
563 |
+
other_type: Optional[_dtype],
|
564 |
+
other_name: str,
|
565 |
+
target_type: _dtype,
|
566 |
+
check_other: bool = True,
|
567 |
+
) -> Optional[Tensor]: ...
|
568 |
+
def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ...
|
569 |
+
def multi_head_attention_forward(
|
570 |
+
query: Tensor,
|
571 |
+
key: Tensor,
|
572 |
+
value: Tensor,
|
573 |
+
embed_dim_to_check: int,
|
574 |
+
num_heads: int,
|
575 |
+
in_proj_weight: Optional[Tensor],
|
576 |
+
in_proj_bias: Optional[Tensor],
|
577 |
+
bias_k: Optional[Tensor],
|
578 |
+
bias_v: Optional[Tensor],
|
579 |
+
add_zero_attn: bool,
|
580 |
+
dropout_p: float,
|
581 |
+
out_proj_weight: Tensor,
|
582 |
+
out_proj_bias: Optional[Tensor],
|
583 |
+
training: bool = True,
|
584 |
+
key_padding_mask: Optional[Tensor] = None,
|
585 |
+
need_weights: bool = True,
|
586 |
+
attn_mask: Optional[Tensor] = None,
|
587 |
+
use_separate_proj_weight: bool = False,
|
588 |
+
q_proj_weight: Optional[Tensor] = None,
|
589 |
+
k_proj_weight: Optional[Tensor] = None,
|
590 |
+
v_proj_weight: Optional[Tensor] = None,
|
591 |
+
static_k: Optional[Tensor] = None,
|
592 |
+
static_v: Optional[Tensor] = None,
|
593 |
+
average_attn_weights: bool = True,
|
594 |
+
is_causal: bool = False,
|
595 |
+
) -> Tuple[Tensor, Optional[Tensor]]: ...
|
596 |
+
|
597 |
+
from .. import conv1d as conv1d
|
598 |
+
from .. import conv2d as conv2d
|
599 |
+
from .. import conv3d as conv3d
|
600 |
+
from .. import conv_transpose1d as conv_transpose1d
|
601 |
+
from .. import conv_transpose2d as conv_transpose2d
|
602 |
+
from .. import conv_transpose3d as conv_transpose3d
|
603 |
+
from .. import conv_tbc as conv_tbc
|
604 |
+
from .. import avg_pool1d as avg_pool1d
|
605 |
+
from .. import adaptive_avg_pool1d as adaptive_avg_pool1d
|
606 |
+
from .. import relu_ as relu_
|
607 |
+
from .. import selu_ as selu_
|
608 |
+
from .. import celu_ as celu_
|
609 |
+
from .. import prelu as prelu
|
610 |
+
from .. import rrelu_ as rrelu_
|
611 |
+
from .. import hardshrink as hardshrink
|
612 |
+
from .. import bilinear as bilinear
|
613 |
+
from .. import pixel_shuffle as pixel_shuffle
|
614 |
+
from .. import pixel_unshuffle as pixel_unshuffle
|
615 |
+
from .. import channel_shuffle as channel_shuffle
|
616 |
+
from .. import native_channel_shuffle as native_channel_shuffle
|
617 |
+
from .. import pairwise_distance as pairwise_distance
|
618 |
+
from .. import pdist as pdist
|
619 |
+
from .. import cosine_similarity as cosine_similarity
|
620 |
+
from .._C._nn import avg_pool2d as avg_pool2d
|
621 |
+
from .._C._nn import avg_pool3d as avg_pool3d
|
622 |
+
from .._C._nn import hardtanh_ as hardtanh_
|
623 |
+
from .._C._nn import elu_ as elu_
|
624 |
+
from .._C._nn import leaky_relu_ as leaky_relu_
|
625 |
+
from .._C._nn import gelu as gelu
|
626 |
+
from .._C._nn import softplus as softplus
|
627 |
+
from .._C._nn import softshrink as softshrink
|
628 |
+
from .._C._nn import linear as linear
|
629 |
+
from .._C._nn import pad as pad
|
630 |
+
from .._C._nn import one_hot as one_hot
|
631 |
+
from .._C._nn import scaled_dot_product_attention as scaled_dot_product_attention
|
632 |
+
from .._C._nn import log_sigmoid
|
633 |
+
logsigmoid = log_sigmoid
|
634 |
+
|
635 |
+
@overload
|
636 |
+
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
637 |
+
@overload
|
638 |
+
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
639 |
+
@overload
|
640 |
+
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
641 |
+
@overload
|
642 |
+
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
643 |
+
@overload
|
644 |
+
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
645 |
+
@overload
|
646 |
+
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
647 |
+
@overload
|
648 |
+
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
649 |
+
@overload
|
650 |
+
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
651 |
+
@overload
|
652 |
+
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
653 |
+
@overload
|
654 |
+
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
|
655 |
+
@overload
|
656 |
+
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
657 |
+
@overload
|
658 |
+
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
659 |
+
@overload
|
660 |
+
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
|
661 |
+
@overload
|
662 |
+
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
663 |
+
@overload
|
664 |
+
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
665 |
+
@overload
|
666 |
+
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
667 |
+
@overload
|
668 |
+
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
669 |
+
@overload
|
670 |
+
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
671 |
+
@overload
|
672 |
+
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
673 |
+
@overload
|
674 |
+
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
675 |
+
@overload
|
676 |
+
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
677 |
+
@overload
|
678 |
+
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
679 |
+
@overload
|
680 |
+
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
681 |
+
@overload
|
682 |
+
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
venv/lib/python3.10/site-packages/torch/nn/grad.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gradient interface."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from .modules.utils import _single, _pair, _triple
|
5 |
+
|
6 |
+
|
7 |
+
def conv1d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
8 |
+
r"""Compute the gradient of conv1d with respect to the input of the convolution.
|
9 |
+
|
10 |
+
This is same as the 1D transposed convolution operator under the hood but requires
|
11 |
+
the shape of the gradient w.r.t. input to be specified explicitly.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
input_size : Shape of the input gradient tensor
|
15 |
+
weight: weight tensor (out_channels x in_channels/groups x kW)
|
16 |
+
grad_output : output gradient tensor (minibatch x out_channels x oW)
|
17 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
18 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
19 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
20 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
21 |
+
|
22 |
+
Examples::
|
23 |
+
|
24 |
+
>>> input = torch.randn(1, 1, 3, requires_grad=True)
|
25 |
+
>>> weight = torch.randn(1, 1, 1, requires_grad=True)
|
26 |
+
>>> output = F.conv1d(input, weight)
|
27 |
+
>>> grad_output = torch.randn(output.shape)
|
28 |
+
>>> grad_input = torch.autograd.grad(output, input, grad_output)
|
29 |
+
>>> F.grad.conv1d_input(input.shape, weight, grad_output)
|
30 |
+
|
31 |
+
"""
|
32 |
+
input = grad_output.new_empty(1).expand(input_size)
|
33 |
+
|
34 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
35 |
+
_single(stride), _single(padding), _single(dilation),
|
36 |
+
False, [0], groups, (True, False, False))[0]
|
37 |
+
|
38 |
+
|
39 |
+
def conv1d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
40 |
+
r"""Compute the gradient of conv1d with respect to the weight of the convolution.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
input: input tensor of shape (minibatch x in_channels x iW)
|
44 |
+
weight_size : Shape of the weight gradient tensor
|
45 |
+
grad_output : output gradient tensor (minibatch x out_channels x oW)
|
46 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
47 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
48 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
49 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
50 |
+
|
51 |
+
Examples::
|
52 |
+
|
53 |
+
>>> input = torch.randn(1, 1, 3, requires_grad=True)
|
54 |
+
>>> weight = torch.randn(1, 1, 1, requires_grad=True)
|
55 |
+
>>> output = F.conv1d(input, weight)
|
56 |
+
>>> grad_output = torch.randn(output.shape)
|
57 |
+
>>> # xdoctest: +SKIP
|
58 |
+
>>> grad_weight = torch.autograd.grad(output, filter, grad_output)
|
59 |
+
>>> F.grad.conv1d_weight(input, weight.shape, grad_output)
|
60 |
+
|
61 |
+
"""
|
62 |
+
weight = grad_output.new_empty(1).expand(weight_size)
|
63 |
+
|
64 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
65 |
+
_single(stride), _single(padding), _single(dilation),
|
66 |
+
False, [0], groups, (False, True, False))[1]
|
67 |
+
|
68 |
+
|
69 |
+
def conv2d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
70 |
+
r"""Compute the gradient of conv2d with respect to the input of the convolution.
|
71 |
+
|
72 |
+
This is same as the 2D transposed convolution operator under the hood but requires
|
73 |
+
the shape of the gradient w.r.t. input to be specified explicitly.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
input_size : Shape of the input gradient tensor
|
77 |
+
weight: weight tensor (out_channels x in_channels/groups x kH x kW)
|
78 |
+
grad_output : output gradient tensor (minibatch x out_channels x oH x oW)
|
79 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
80 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
81 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
82 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
83 |
+
|
84 |
+
Examples::
|
85 |
+
|
86 |
+
>>> input = torch.randn(1, 1, 3, 3, requires_grad=True)
|
87 |
+
>>> weight = torch.randn(1, 1, 1, 2, requires_grad=True)
|
88 |
+
>>> output = F.conv2d(input, weight)
|
89 |
+
>>> grad_output = torch.randn(output.shape)
|
90 |
+
>>> grad_input = torch.autograd.grad(output, input, grad_output)
|
91 |
+
>>> F.grad.conv2d_input(input.shape, weight, grad_output)
|
92 |
+
|
93 |
+
"""
|
94 |
+
input = grad_output.new_empty(1).expand(input_size)
|
95 |
+
|
96 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
97 |
+
_pair(stride), _pair(padding), _pair(dilation),
|
98 |
+
False, [0], groups, (True, False, False))[0]
|
99 |
+
|
100 |
+
|
101 |
+
def conv2d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
102 |
+
r"""Compute the gradient of conv2d with respect to the weight of the convolution.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
input: input tensor of shape (minibatch x in_channels x iH x iW)
|
106 |
+
weight_size : Shape of the weight gradient tensor
|
107 |
+
grad_output : output gradient tensor (minibatch x out_channels x oH x oW)
|
108 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
109 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
110 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
111 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
112 |
+
|
113 |
+
Examples::
|
114 |
+
|
115 |
+
>>> input = torch.randn(1, 1, 3, 3, requires_grad=True)
|
116 |
+
>>> weight = torch.randn(1, 1, 1, 2, requires_grad=True)
|
117 |
+
>>> output = F.conv2d(input, weight)
|
118 |
+
>>> grad_output = torch.randn(output.shape)
|
119 |
+
>>> # xdoctest: +SKIP
|
120 |
+
>>> grad_weight = torch.autograd.grad(output, filter, grad_output)
|
121 |
+
>>> F.grad.conv2d_weight(input, weight.shape, grad_output)
|
122 |
+
|
123 |
+
"""
|
124 |
+
weight = grad_output.new_empty(1).expand(weight_size)
|
125 |
+
|
126 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
127 |
+
_pair(stride), _pair(padding), _pair(dilation),
|
128 |
+
False, [0], groups, (False, True, False))[1]
|
129 |
+
|
130 |
+
|
131 |
+
def conv3d_input(input_size, weight, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
132 |
+
r"""Compute the gradient of conv3d with respect to the input of the convolution.
|
133 |
+
|
134 |
+
This is same as the 3D transposed convolution operator under the hood but requires
|
135 |
+
the shape of the gradient w.r.t. input to be specified explicitly.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
input_size : Shape of the input gradient tensor
|
139 |
+
weight: weights tensor (out_channels x in_channels/groups x kT x kH x kW)
|
140 |
+
grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW)
|
141 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
142 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
143 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
144 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
145 |
+
|
146 |
+
Examples::
|
147 |
+
|
148 |
+
>>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True)
|
149 |
+
>>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True)
|
150 |
+
>>> output = F.conv3d(input, weight)
|
151 |
+
>>> grad_output = torch.randn(output.shape)
|
152 |
+
>>> grad_input = torch.autograd.grad(output, input, grad_output)
|
153 |
+
>>> F.grad.conv3d_input(input.shape, weight, grad_output)
|
154 |
+
|
155 |
+
"""
|
156 |
+
input = grad_output.new_empty(1).expand(input_size)
|
157 |
+
|
158 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
159 |
+
_triple(stride), _triple(padding), _triple(dilation),
|
160 |
+
False, [0], groups, (True, False, False))[0]
|
161 |
+
|
162 |
+
|
163 |
+
def conv3d_weight(input, weight_size, grad_output, stride=1, padding=0, dilation=1, groups=1):
|
164 |
+
r"""Compute the gradient of conv3d with respect to the weight of the convolution.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
|
168 |
+
weight_size : Shape of the weight gradient tensor
|
169 |
+
grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW)
|
170 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
171 |
+
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
|
172 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
173 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
174 |
+
|
175 |
+
Examples::
|
176 |
+
|
177 |
+
>>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True)
|
178 |
+
>>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True)
|
179 |
+
>>> output = F.conv3d(input, weight)
|
180 |
+
>>> grad_output = torch.randn(output.shape)
|
181 |
+
>>> grad_weight = torch.autograd.grad(output, weight, grad_output)
|
182 |
+
>>> F.grad.conv3d_weight(input, weight.shape, grad_output)
|
183 |
+
|
184 |
+
"""
|
185 |
+
weight = grad_output.new_empty(1).expand(weight_size)
|
186 |
+
|
187 |
+
return torch.ops.aten.convolution_backward(grad_output, input, weight, None,
|
188 |
+
_triple(stride), _triple(padding), _triple(dilation),
|
189 |
+
False, [0], groups, (False, True, False))[1]
|
venv/lib/python3.10/site-packages/torch/nn/init.py
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This file contains utilities for initializing neural network parameters."""
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from torch import Tensor
|
6 |
+
import torch
|
7 |
+
from typing import Optional as _Optional
|
8 |
+
|
9 |
+
# These no_grad_* functions are necessary as wrappers around the parts of these
|
10 |
+
# functions that use `with torch.no_grad()`. The JIT doesn't support context
|
11 |
+
# managers, so these need to be implemented as builtins. Using these wrappers
|
12 |
+
# lets us keep those builtins small and re-usable.
|
13 |
+
def _no_grad_uniform_(tensor, a, b, generator=None):
|
14 |
+
with torch.no_grad():
|
15 |
+
return tensor.uniform_(a, b, generator=generator)
|
16 |
+
|
17 |
+
|
18 |
+
def _no_grad_normal_(tensor, mean, std, generator=None):
|
19 |
+
with torch.no_grad():
|
20 |
+
return tensor.normal_(mean, std, generator=generator)
|
21 |
+
|
22 |
+
|
23 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=None):
|
24 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
25 |
+
def norm_cdf(x):
|
26 |
+
# Computes standard normal cumulative distribution function
|
27 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
28 |
+
|
29 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
30 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
31 |
+
"The distribution of values may be incorrect.",
|
32 |
+
stacklevel=2)
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
# Values are generated by using a truncated uniform distribution and
|
36 |
+
# then using the inverse CDF for the normal distribution.
|
37 |
+
# Get upper and lower cdf values
|
38 |
+
l = norm_cdf((a - mean) / std)
|
39 |
+
u = norm_cdf((b - mean) / std)
|
40 |
+
|
41 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
42 |
+
# [2l-1, 2u-1].
|
43 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1, generator=generator)
|
44 |
+
|
45 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
46 |
+
# standard normal
|
47 |
+
tensor.erfinv_()
|
48 |
+
|
49 |
+
# Transform to proper mean, std
|
50 |
+
tensor.mul_(std * math.sqrt(2.))
|
51 |
+
tensor.add_(mean)
|
52 |
+
|
53 |
+
# Clamp to ensure it's in the proper range
|
54 |
+
tensor.clamp_(min=a, max=b)
|
55 |
+
return tensor
|
56 |
+
|
57 |
+
|
58 |
+
def _no_grad_fill_(tensor, val):
|
59 |
+
with torch.no_grad():
|
60 |
+
return tensor.fill_(val)
|
61 |
+
|
62 |
+
|
63 |
+
def _no_grad_zero_(tensor):
|
64 |
+
with torch.no_grad():
|
65 |
+
return tensor.zero_()
|
66 |
+
|
67 |
+
|
68 |
+
def calculate_gain(nonlinearity, param=None):
|
69 |
+
r"""Return the recommended gain value for the given nonlinearity function.
|
70 |
+
|
71 |
+
The values are as follows:
|
72 |
+
|
73 |
+
================= ====================================================
|
74 |
+
nonlinearity gain
|
75 |
+
================= ====================================================
|
76 |
+
Linear / Identity :math:`1`
|
77 |
+
Conv{1,2,3}D :math:`1`
|
78 |
+
Sigmoid :math:`1`
|
79 |
+
Tanh :math:`\frac{5}{3}`
|
80 |
+
ReLU :math:`\sqrt{2}`
|
81 |
+
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
|
82 |
+
SELU :math:`\frac{3}{4}`
|
83 |
+
================= ====================================================
|
84 |
+
|
85 |
+
.. warning::
|
86 |
+
In order to implement `Self-Normalizing Neural Networks`_ ,
|
87 |
+
you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.
|
88 |
+
This gives the initial weights a variance of ``1 / N``,
|
89 |
+
which is necessary to induce a stable fixed point in the forward pass.
|
90 |
+
In contrast, the default gain for ``SELU`` sacrifices the normalization
|
91 |
+
effect for more stable gradient flow in rectangular layers.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
nonlinearity: the non-linear function (`nn.functional` name)
|
95 |
+
param: optional parameter for the non-linear function
|
96 |
+
|
97 |
+
Examples:
|
98 |
+
>>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2
|
99 |
+
|
100 |
+
.. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
|
101 |
+
"""
|
102 |
+
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
103 |
+
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
104 |
+
return 1
|
105 |
+
elif nonlinearity == 'tanh':
|
106 |
+
return 5.0 / 3
|
107 |
+
elif nonlinearity == 'relu':
|
108 |
+
return math.sqrt(2.0)
|
109 |
+
elif nonlinearity == 'leaky_relu':
|
110 |
+
if param is None:
|
111 |
+
negative_slope = 0.01
|
112 |
+
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
|
113 |
+
# True/False are instances of int, hence check above
|
114 |
+
negative_slope = param
|
115 |
+
else:
|
116 |
+
raise ValueError(f"negative_slope {param} not a valid number")
|
117 |
+
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
118 |
+
elif nonlinearity == 'selu':
|
119 |
+
return 3.0 / 4 # Value found empirically (https://github.com/pytorch/pytorch/pull/50664)
|
120 |
+
else:
|
121 |
+
raise ValueError(f"Unsupported nonlinearity {nonlinearity}")
|
122 |
+
|
123 |
+
|
124 |
+
def uniform_(
|
125 |
+
tensor: Tensor,
|
126 |
+
a: float = 0.0,
|
127 |
+
b: float = 1.0,
|
128 |
+
generator: _Optional[torch.Generator] = None,
|
129 |
+
) -> Tensor:
|
130 |
+
r"""Fill the input Tensor with values drawn from the uniform distribution.
|
131 |
+
|
132 |
+
:math:`\mathcal{U}(a, b)`.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
tensor: an n-dimensional `torch.Tensor`
|
136 |
+
a: the lower bound of the uniform distribution
|
137 |
+
b: the upper bound of the uniform distribution
|
138 |
+
generator: the torch Generator to sample from (default: None)
|
139 |
+
|
140 |
+
Examples:
|
141 |
+
>>> w = torch.empty(3, 5)
|
142 |
+
>>> nn.init.uniform_(w)
|
143 |
+
"""
|
144 |
+
if torch.overrides.has_torch_function_variadic(tensor):
|
145 |
+
return torch.overrides.handle_torch_function(
|
146 |
+
uniform_, (tensor,), tensor=tensor, a=a, b=b, generator=generator
|
147 |
+
)
|
148 |
+
return _no_grad_uniform_(tensor, a, b, generator)
|
149 |
+
|
150 |
+
|
151 |
+
def normal_(
|
152 |
+
tensor: Tensor,
|
153 |
+
mean: float = 0.0,
|
154 |
+
std: float = 1.0,
|
155 |
+
generator: _Optional[torch.Generator] = None,
|
156 |
+
) -> Tensor:
|
157 |
+
r"""Fill the input Tensor with values drawn from the normal distribution.
|
158 |
+
|
159 |
+
:math:`\mathcal{N}(\text{mean}, \text{std}^2)`.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
tensor: an n-dimensional `torch.Tensor`
|
163 |
+
mean: the mean of the normal distribution
|
164 |
+
std: the standard deviation of the normal distribution
|
165 |
+
generator: the torch Generator to sample from (default: None)
|
166 |
+
|
167 |
+
Examples:
|
168 |
+
>>> w = torch.empty(3, 5)
|
169 |
+
>>> nn.init.normal_(w)
|
170 |
+
"""
|
171 |
+
if torch.overrides.has_torch_function_variadic(tensor):
|
172 |
+
return torch.overrides.handle_torch_function(
|
173 |
+
normal_, (tensor,), tensor=tensor, mean=mean, std=std, generator=generator
|
174 |
+
)
|
175 |
+
return _no_grad_normal_(tensor, mean, std, generator)
|
176 |
+
|
177 |
+
def trunc_normal_(
|
178 |
+
tensor: Tensor,
|
179 |
+
mean: float = 0.,
|
180 |
+
std: float = 1.,
|
181 |
+
a: float = -2.,
|
182 |
+
b: float = 2.,
|
183 |
+
generator: _Optional[torch.Generator] = None
|
184 |
+
) -> Tensor:
|
185 |
+
r"""Fill the input Tensor with values drawn from a truncated normal distribution.
|
186 |
+
|
187 |
+
The values are effectively drawn from the
|
188 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
189 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
190 |
+
the bounds. The method used for generating the random values works
|
191 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
tensor: an n-dimensional `torch.Tensor`
|
195 |
+
mean: the mean of the normal distribution
|
196 |
+
std: the standard deviation of the normal distribution
|
197 |
+
a: the minimum cutoff value
|
198 |
+
b: the maximum cutoff value
|
199 |
+
generator: the torch Generator to sample from (default: None)
|
200 |
+
|
201 |
+
Examples:
|
202 |
+
>>> w = torch.empty(3, 5)
|
203 |
+
>>> nn.init.trunc_normal_(w)
|
204 |
+
"""
|
205 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=generator)
|
206 |
+
|
207 |
+
|
208 |
+
def constant_(tensor: Tensor, val: float) -> Tensor:
|
209 |
+
r"""Fill the input Tensor with the value :math:`\text{val}`.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
tensor: an n-dimensional `torch.Tensor`
|
213 |
+
val: the value to fill the tensor with
|
214 |
+
|
215 |
+
Examples:
|
216 |
+
>>> w = torch.empty(3, 5)
|
217 |
+
>>> nn.init.constant_(w, 0.3)
|
218 |
+
"""
|
219 |
+
if torch.overrides.has_torch_function_variadic(tensor):
|
220 |
+
return torch.overrides.handle_torch_function(constant_, (tensor,), tensor=tensor, val=val)
|
221 |
+
return _no_grad_fill_(tensor, val)
|
222 |
+
|
223 |
+
|
224 |
+
def ones_(tensor: Tensor) -> Tensor:
|
225 |
+
r"""Fill the input Tensor with the scalar value `1`.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
tensor: an n-dimensional `torch.Tensor`
|
229 |
+
|
230 |
+
Examples:
|
231 |
+
>>> w = torch.empty(3, 5)
|
232 |
+
>>> nn.init.ones_(w)
|
233 |
+
"""
|
234 |
+
return _no_grad_fill_(tensor, 1.)
|
235 |
+
|
236 |
+
|
237 |
+
def zeros_(tensor: Tensor) -> Tensor:
|
238 |
+
r"""Fill the input Tensor with the scalar value `0`.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
tensor: an n-dimensional `torch.Tensor`
|
242 |
+
|
243 |
+
Examples:
|
244 |
+
>>> w = torch.empty(3, 5)
|
245 |
+
>>> nn.init.zeros_(w)
|
246 |
+
"""
|
247 |
+
return _no_grad_zero_(tensor)
|
248 |
+
|
249 |
+
|
250 |
+
def eye_(tensor):
|
251 |
+
r"""Fill the 2-dimensional input `Tensor` with the identity matrix.
|
252 |
+
|
253 |
+
Preserves the identity of the inputs in `Linear` layers, where as
|
254 |
+
many inputs are preserved as possible.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
tensor: a 2-dimensional `torch.Tensor`
|
258 |
+
|
259 |
+
Examples:
|
260 |
+
>>> w = torch.empty(3, 5)
|
261 |
+
>>> nn.init.eye_(w)
|
262 |
+
"""
|
263 |
+
if tensor.ndimension() != 2:
|
264 |
+
raise ValueError("Only tensors with 2 dimensions are supported")
|
265 |
+
|
266 |
+
with torch.no_grad():
|
267 |
+
torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad)
|
268 |
+
return tensor
|
269 |
+
|
270 |
+
|
271 |
+
def dirac_(tensor, groups=1):
|
272 |
+
r"""Fill the {3, 4, 5}-dimensional input `Tensor` with the Dirac delta function.
|
273 |
+
|
274 |
+
Preserves the identity of the inputs in `Convolutional`
|
275 |
+
layers, where as many input channels are preserved as possible. In case
|
276 |
+
of groups>1, each group of channels preserves identity
|
277 |
+
|
278 |
+
Args:
|
279 |
+
tensor: a {3, 4, 5}-dimensional `torch.Tensor`
|
280 |
+
groups (int, optional): number of groups in the conv layer (default: 1)
|
281 |
+
Examples:
|
282 |
+
>>> w = torch.empty(3, 16, 5, 5)
|
283 |
+
>>> nn.init.dirac_(w)
|
284 |
+
>>> w = torch.empty(3, 24, 5, 5)
|
285 |
+
>>> nn.init.dirac_(w, 3)
|
286 |
+
"""
|
287 |
+
dimensions = tensor.ndimension()
|
288 |
+
if dimensions not in [3, 4, 5]:
|
289 |
+
raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")
|
290 |
+
|
291 |
+
sizes = tensor.size()
|
292 |
+
|
293 |
+
if sizes[0] % groups != 0:
|
294 |
+
raise ValueError('dim 0 must be divisible by groups')
|
295 |
+
|
296 |
+
out_chans_per_grp = sizes[0] // groups
|
297 |
+
min_dim = min(out_chans_per_grp, sizes[1])
|
298 |
+
|
299 |
+
with torch.no_grad():
|
300 |
+
tensor.zero_()
|
301 |
+
|
302 |
+
for g in range(groups):
|
303 |
+
for d in range(min_dim):
|
304 |
+
if dimensions == 3: # Temporal convolution
|
305 |
+
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1
|
306 |
+
elif dimensions == 4: # Spatial convolution
|
307 |
+
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
|
308 |
+
tensor.size(3) // 2] = 1
|
309 |
+
else: # Volumetric convolution
|
310 |
+
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
|
311 |
+
tensor.size(3) // 2, tensor.size(4) // 2] = 1
|
312 |
+
return tensor
|
313 |
+
|
314 |
+
|
315 |
+
def _calculate_fan_in_and_fan_out(tensor):
|
316 |
+
dimensions = tensor.dim()
|
317 |
+
if dimensions < 2:
|
318 |
+
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
319 |
+
|
320 |
+
num_input_fmaps = tensor.size(1)
|
321 |
+
num_output_fmaps = tensor.size(0)
|
322 |
+
receptive_field_size = 1
|
323 |
+
if tensor.dim() > 2:
|
324 |
+
# math.prod is not always available, accumulate the product manually
|
325 |
+
# we could use functools.reduce but that is not supported by TorchScript
|
326 |
+
for s in tensor.shape[2:]:
|
327 |
+
receptive_field_size *= s
|
328 |
+
fan_in = num_input_fmaps * receptive_field_size
|
329 |
+
fan_out = num_output_fmaps * receptive_field_size
|
330 |
+
|
331 |
+
return fan_in, fan_out
|
332 |
+
|
333 |
+
|
334 |
+
def xavier_uniform_(
|
335 |
+
tensor: Tensor, gain: float = 1.0, generator: _Optional[torch.Generator] = None
|
336 |
+
) -> Tensor:
|
337 |
+
r"""Fill the input `Tensor` with values using a Xavier uniform distribution.
|
338 |
+
|
339 |
+
The method is described in `Understanding the difficulty of training
|
340 |
+
deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010).
|
341 |
+
The resulting tensor will have values sampled from
|
342 |
+
:math:`\mathcal{U}(-a, a)` where
|
343 |
+
|
344 |
+
.. math::
|
345 |
+
a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}
|
346 |
+
|
347 |
+
Also known as Glorot initialization.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
tensor: an n-dimensional `torch.Tensor`
|
351 |
+
gain: an optional scaling factor
|
352 |
+
generator: the torch Generator to sample from (default: None)
|
353 |
+
|
354 |
+
Examples:
|
355 |
+
>>> w = torch.empty(3, 5)
|
356 |
+
>>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
|
357 |
+
"""
|
358 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
359 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
360 |
+
a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
361 |
+
|
362 |
+
return _no_grad_uniform_(tensor, -a, a, generator)
|
363 |
+
|
364 |
+
|
365 |
+
def xavier_normal_(
|
366 |
+
tensor: Tensor,
|
367 |
+
gain: float = 1.0,
|
368 |
+
generator: _Optional[torch.Generator] = None,
|
369 |
+
) -> Tensor:
|
370 |
+
r"""Fill the input `Tensor` with values using a Xavier normal distribution.
|
371 |
+
|
372 |
+
The method is described in `Understanding the difficulty of training deep feedforward
|
373 |
+
neural networks` - Glorot, X. & Bengio, Y. (2010). The resulting tensor
|
374 |
+
will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where
|
375 |
+
|
376 |
+
.. math::
|
377 |
+
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
|
378 |
+
|
379 |
+
Also known as Glorot initialization.
|
380 |
+
|
381 |
+
Args:
|
382 |
+
tensor: an n-dimensional `torch.Tensor`
|
383 |
+
gain: an optional scaling factor
|
384 |
+
generator: the torch Generator to sample from (default: None)
|
385 |
+
|
386 |
+
Examples:
|
387 |
+
>>> w = torch.empty(3, 5)
|
388 |
+
>>> nn.init.xavier_normal_(w)
|
389 |
+
"""
|
390 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
391 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
392 |
+
|
393 |
+
return _no_grad_normal_(tensor, 0., std, generator)
|
394 |
+
|
395 |
+
|
396 |
+
def _calculate_correct_fan(tensor, mode):
|
397 |
+
mode = mode.lower()
|
398 |
+
valid_modes = ['fan_in', 'fan_out']
|
399 |
+
if mode not in valid_modes:
|
400 |
+
raise ValueError(f"Mode {mode} not supported, please use one of {valid_modes}")
|
401 |
+
|
402 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
403 |
+
return fan_in if mode == 'fan_in' else fan_out
|
404 |
+
|
405 |
+
|
406 |
+
def kaiming_uniform_(
|
407 |
+
tensor: Tensor,
|
408 |
+
a: float = 0,
|
409 |
+
mode: str = "fan_in",
|
410 |
+
nonlinearity: str = "leaky_relu",
|
411 |
+
generator: _Optional[torch.Generator] = None,
|
412 |
+
):
|
413 |
+
r"""Fill the input `Tensor` with values using a Kaiming uniform distribution.
|
414 |
+
|
415 |
+
The method is described in `Delving deep into rectifiers: Surpassing
|
416 |
+
human-level performance on ImageNet classification` - He, K. et al. (2015).
|
417 |
+
The resulting tensor will have values sampled from
|
418 |
+
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
|
419 |
+
|
420 |
+
.. math::
|
421 |
+
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
|
422 |
+
|
423 |
+
Also known as He initialization.
|
424 |
+
|
425 |
+
Args:
|
426 |
+
tensor: an n-dimensional `torch.Tensor`
|
427 |
+
a: the negative slope of the rectifier used after this layer (only
|
428 |
+
used with ``'leaky_relu'``)
|
429 |
+
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
430 |
+
preserves the magnitude of the variance of the weights in the
|
431 |
+
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
432 |
+
backwards pass.
|
433 |
+
nonlinearity: the non-linear function (`nn.functional` name),
|
434 |
+
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
435 |
+
generator: the torch Generator to sample from (default: None)
|
436 |
+
|
437 |
+
Examples:
|
438 |
+
>>> w = torch.empty(3, 5)
|
439 |
+
>>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
|
440 |
+
"""
|
441 |
+
if torch.overrides.has_torch_function_variadic(tensor):
|
442 |
+
return torch.overrides.handle_torch_function(
|
443 |
+
kaiming_uniform_,
|
444 |
+
(tensor,),
|
445 |
+
tensor=tensor,
|
446 |
+
a=a,
|
447 |
+
mode=mode,
|
448 |
+
nonlinearity=nonlinearity,
|
449 |
+
generator=generator)
|
450 |
+
|
451 |
+
if 0 in tensor.shape:
|
452 |
+
warnings.warn("Initializing zero-element tensors is a no-op")
|
453 |
+
return tensor
|
454 |
+
fan = _calculate_correct_fan(tensor, mode)
|
455 |
+
gain = calculate_gain(nonlinearity, a)
|
456 |
+
std = gain / math.sqrt(fan)
|
457 |
+
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
458 |
+
with torch.no_grad():
|
459 |
+
return tensor.uniform_(-bound, bound, generator=generator)
|
460 |
+
|
461 |
+
|
462 |
+
def kaiming_normal_(
|
463 |
+
tensor: Tensor,
|
464 |
+
a: float = 0,
|
465 |
+
mode: str = "fan_in",
|
466 |
+
nonlinearity: str = "leaky_relu",
|
467 |
+
generator: _Optional[torch.Generator] = None,
|
468 |
+
):
|
469 |
+
r"""Fill the input `Tensor` with values using a Kaiming normal distribution.
|
470 |
+
|
471 |
+
The method is described in `Delving deep into rectifiers: Surpassing
|
472 |
+
human-level performance on ImageNet classification` - He, K. et al. (2015).
|
473 |
+
The resulting tensor will have values sampled from
|
474 |
+
:math:`\mathcal{N}(0, \text{std}^2)` where
|
475 |
+
|
476 |
+
.. math::
|
477 |
+
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
|
478 |
+
|
479 |
+
Also known as He initialization.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
tensor: an n-dimensional `torch.Tensor`
|
483 |
+
a: the negative slope of the rectifier used after this layer (only
|
484 |
+
used with ``'leaky_relu'``)
|
485 |
+
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
486 |
+
preserves the magnitude of the variance of the weights in the
|
487 |
+
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
488 |
+
backwards pass.
|
489 |
+
nonlinearity: the non-linear function (`nn.functional` name),
|
490 |
+
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
491 |
+
generator: the torch Generator to sample from (default: None)
|
492 |
+
|
493 |
+
Examples:
|
494 |
+
>>> w = torch.empty(3, 5)
|
495 |
+
>>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
|
496 |
+
"""
|
497 |
+
if 0 in tensor.shape:
|
498 |
+
warnings.warn("Initializing zero-element tensors is a no-op")
|
499 |
+
return tensor
|
500 |
+
fan = _calculate_correct_fan(tensor, mode)
|
501 |
+
gain = calculate_gain(nonlinearity, a)
|
502 |
+
std = gain / math.sqrt(fan)
|
503 |
+
with torch.no_grad():
|
504 |
+
return tensor.normal_(0, std, generator=generator)
|
505 |
+
|
506 |
+
|
507 |
+
def orthogonal_(
|
508 |
+
tensor,
|
509 |
+
gain=1,
|
510 |
+
generator: _Optional[torch.Generator] = None,
|
511 |
+
):
|
512 |
+
r"""Fill the input `Tensor` with a (semi) orthogonal matrix.
|
513 |
+
|
514 |
+
Described in `Exact solutions to the nonlinear dynamics of learning in deep
|
515 |
+
linear neural networks` - Saxe, A. et al. (2013). The input tensor must have
|
516 |
+
at least 2 dimensions, and for tensors with more than 2 dimensions the
|
517 |
+
trailing dimensions are flattened.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
|
521 |
+
gain: optional scaling factor
|
522 |
+
generator: the torch Generator to sample from (default: None)
|
523 |
+
|
524 |
+
Examples:
|
525 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
|
526 |
+
>>> w = torch.empty(3, 5)
|
527 |
+
>>> nn.init.orthogonal_(w)
|
528 |
+
"""
|
529 |
+
if tensor.ndimension() < 2:
|
530 |
+
raise ValueError("Only tensors with 2 or more dimensions are supported")
|
531 |
+
|
532 |
+
if tensor.numel() == 0:
|
533 |
+
# no-op
|
534 |
+
return tensor
|
535 |
+
rows = tensor.size(0)
|
536 |
+
cols = tensor.numel() // rows
|
537 |
+
flattened = tensor.new(rows, cols).normal_(0, 1, generator=generator)
|
538 |
+
|
539 |
+
if rows < cols:
|
540 |
+
flattened.t_()
|
541 |
+
|
542 |
+
# Compute the qr factorization
|
543 |
+
q, r = torch.linalg.qr(flattened)
|
544 |
+
# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
|
545 |
+
d = torch.diag(r, 0)
|
546 |
+
ph = d.sign()
|
547 |
+
q *= ph
|
548 |
+
|
549 |
+
if rows < cols:
|
550 |
+
q.t_()
|
551 |
+
|
552 |
+
with torch.no_grad():
|
553 |
+
tensor.view_as(q).copy_(q)
|
554 |
+
tensor.mul_(gain)
|
555 |
+
return tensor
|
556 |
+
|
557 |
+
|
558 |
+
def sparse_(
|
559 |
+
tensor,
|
560 |
+
sparsity,
|
561 |
+
std=0.01,
|
562 |
+
generator: _Optional[torch.Generator] = None,
|
563 |
+
):
|
564 |
+
r"""Fill the 2D input `Tensor` as a sparse matrix.
|
565 |
+
|
566 |
+
The non-zero elements will be drawn from the normal distribution
|
567 |
+
:math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via
|
568 |
+
Hessian-free optimization` - Martens, J. (2010).
|
569 |
+
|
570 |
+
Args:
|
571 |
+
tensor: an n-dimensional `torch.Tensor`
|
572 |
+
sparsity: The fraction of elements in each column to be set to zero
|
573 |
+
std: the standard deviation of the normal distribution used to generate
|
574 |
+
the non-zero values
|
575 |
+
generator: the torch Generator to sample from (default: None)
|
576 |
+
|
577 |
+
Examples:
|
578 |
+
>>> w = torch.empty(3, 5)
|
579 |
+
>>> nn.init.sparse_(w, sparsity=0.1)
|
580 |
+
"""
|
581 |
+
if tensor.ndimension() != 2:
|
582 |
+
raise ValueError("Only tensors with 2 dimensions are supported")
|
583 |
+
|
584 |
+
rows, cols = tensor.shape
|
585 |
+
num_zeros = int(math.ceil(sparsity * rows))
|
586 |
+
|
587 |
+
with torch.no_grad():
|
588 |
+
tensor.normal_(0, std, generator=generator)
|
589 |
+
for col_idx in range(cols):
|
590 |
+
row_indices = torch.randperm(rows)
|
591 |
+
zero_indices = row_indices[:num_zeros]
|
592 |
+
tensor[zero_indices, col_idx] = 0
|
593 |
+
return tensor
|
594 |
+
|
595 |
+
|
596 |
+
# for backward compatibility
|
597 |
+
def _make_deprecate(meth):
|
598 |
+
new_name = meth.__name__
|
599 |
+
old_name = new_name[:-1]
|
600 |
+
|
601 |
+
def deprecated_init(*args, **kwargs):
|
602 |
+
warnings.warn(f"nn.init.{old_name} is now deprecated in favor of nn.init.{new_name}.", stacklevel=2)
|
603 |
+
return meth(*args, **kwargs)
|
604 |
+
|
605 |
+
deprecated_init.__doc__ = fr"""
|
606 |
+
{old_name}(...)
|
607 |
+
|
608 |
+
.. warning::
|
609 |
+
This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`.
|
610 |
+
|
611 |
+
See :func:`~torch.nn.init.{new_name}` for details."""
|
612 |
+
deprecated_init.__name__ = old_name
|
613 |
+
return deprecated_init
|
614 |
+
|
615 |
+
|
616 |
+
uniform = _make_deprecate(uniform_)
|
617 |
+
normal = _make_deprecate(normal_)
|
618 |
+
constant = _make_deprecate(constant_)
|
619 |
+
eye = _make_deprecate(eye_)
|
620 |
+
dirac = _make_deprecate(dirac_)
|
621 |
+
xavier_uniform = _make_deprecate(xavier_uniform_)
|
622 |
+
xavier_normal = _make_deprecate(xavier_normal_)
|
623 |
+
kaiming_uniform = _make_deprecate(kaiming_uniform_)
|
624 |
+
kaiming_normal = _make_deprecate(kaiming_normal_)
|
625 |
+
orthogonal = _make_deprecate(orthogonal_)
|
626 |
+
sparse = _make_deprecate(sparse_)
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.ao.nn.intrinsic import ConvBn1d
|
2 |
+
from torch.ao.nn.intrinsic import ConvBn2d
|
3 |
+
from torch.ao.nn.intrinsic import ConvBn3d
|
4 |
+
from torch.ao.nn.intrinsic import ConvBnReLU1d
|
5 |
+
from torch.ao.nn.intrinsic import ConvBnReLU2d
|
6 |
+
from torch.ao.nn.intrinsic import ConvBnReLU3d
|
7 |
+
from torch.ao.nn.intrinsic import ConvReLU1d
|
8 |
+
from torch.ao.nn.intrinsic import ConvReLU2d
|
9 |
+
from torch.ao.nn.intrinsic import ConvReLU3d
|
10 |
+
from torch.ao.nn.intrinsic import LinearReLU
|
11 |
+
from torch.ao.nn.intrinsic import BNReLU2d
|
12 |
+
from torch.ao.nn.intrinsic import BNReLU3d
|
13 |
+
from torch.ao.nn.intrinsic import LinearBn1d
|
14 |
+
from torch.ao.nn.intrinsic.modules.fused import _FusedModule # noqa: F401
|
15 |
+
|
16 |
+
# Include the subpackages in case user imports from it directly
|
17 |
+
from . import modules # noqa: F401
|
18 |
+
from . import qat # noqa: F401
|
19 |
+
from . import quantized # noqa: F401
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
'ConvBn1d',
|
23 |
+
'ConvBn2d',
|
24 |
+
'ConvBn3d',
|
25 |
+
'ConvBnReLU1d',
|
26 |
+
'ConvBnReLU2d',
|
27 |
+
'ConvBnReLU3d',
|
28 |
+
'ConvReLU1d',
|
29 |
+
'ConvReLU2d',
|
30 |
+
'ConvReLU3d',
|
31 |
+
'LinearReLU',
|
32 |
+
'BNReLU2d',
|
33 |
+
'BNReLU3d',
|
34 |
+
'LinearBn1d',
|
35 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (887 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .fused import _FusedModule # noqa: F401
|
2 |
+
from .fused import BNReLU2d
|
3 |
+
from .fused import BNReLU3d
|
4 |
+
from .fused import ConvBn1d
|
5 |
+
from .fused import ConvBn2d
|
6 |
+
from .fused import ConvBn3d
|
7 |
+
from .fused import ConvBnReLU1d
|
8 |
+
from .fused import ConvBnReLU2d
|
9 |
+
from .fused import ConvBnReLU3d
|
10 |
+
from .fused import ConvReLU1d
|
11 |
+
from .fused import ConvReLU2d
|
12 |
+
from .fused import ConvReLU3d
|
13 |
+
from .fused import LinearBn1d
|
14 |
+
from .fused import LinearReLU
|
15 |
+
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
'BNReLU2d',
|
19 |
+
'BNReLU3d',
|
20 |
+
'ConvBn1d',
|
21 |
+
'ConvBn2d',
|
22 |
+
'ConvBn3d',
|
23 |
+
'ConvBnReLU1d',
|
24 |
+
'ConvBnReLU2d',
|
25 |
+
'ConvBnReLU3d',
|
26 |
+
'ConvReLU1d',
|
27 |
+
'ConvReLU2d',
|
28 |
+
'ConvReLU3d',
|
29 |
+
'LinearBn1d',
|
30 |
+
'LinearReLU',
|
31 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (747 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/fused.cpython-310.pyc
ADDED
Binary file (797 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/modules/fused.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.ao.nn.intrinsic import BNReLU2d
|
2 |
+
from torch.ao.nn.intrinsic import BNReLU3d
|
3 |
+
from torch.ao.nn.intrinsic import ConvBn1d
|
4 |
+
from torch.ao.nn.intrinsic import ConvBn2d
|
5 |
+
from torch.ao.nn.intrinsic import ConvBn3d
|
6 |
+
from torch.ao.nn.intrinsic import ConvBnReLU1d
|
7 |
+
from torch.ao.nn.intrinsic import ConvBnReLU2d
|
8 |
+
from torch.ao.nn.intrinsic import ConvBnReLU3d
|
9 |
+
from torch.ao.nn.intrinsic import ConvReLU1d
|
10 |
+
from torch.ao.nn.intrinsic import ConvReLU2d
|
11 |
+
from torch.ao.nn.intrinsic import ConvReLU3d
|
12 |
+
from torch.ao.nn.intrinsic import LinearBn1d
|
13 |
+
from torch.ao.nn.intrinsic import LinearReLU
|
14 |
+
from torch.ao.nn.intrinsic.modules.fused import _FusedModule # noqa: F401
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
'BNReLU2d',
|
18 |
+
'BNReLU3d',
|
19 |
+
'ConvBn1d',
|
20 |
+
'ConvBn2d',
|
21 |
+
'ConvBn3d',
|
22 |
+
'ConvBnReLU1d',
|
23 |
+
'ConvBnReLU2d',
|
24 |
+
'ConvBnReLU3d',
|
25 |
+
'ConvReLU1d',
|
26 |
+
'ConvReLU2d',
|
27 |
+
'ConvReLU3d',
|
28 |
+
'LinearBn1d',
|
29 |
+
'LinearReLU',
|
30 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (214 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .linear_relu import LinearReLU
|
2 |
+
from .linear_fused import LinearBn1d
|
3 |
+
from .conv_fused import (
|
4 |
+
ConvBn1d,
|
5 |
+
ConvBn2d,
|
6 |
+
ConvBn3d,
|
7 |
+
ConvBnReLU1d,
|
8 |
+
ConvBnReLU2d,
|
9 |
+
ConvBnReLU3d,
|
10 |
+
ConvReLU1d,
|
11 |
+
ConvReLU2d,
|
12 |
+
ConvReLU3d,
|
13 |
+
update_bn_stats,
|
14 |
+
freeze_bn_stats,
|
15 |
+
)
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"LinearReLU",
|
19 |
+
"LinearBn1d",
|
20 |
+
"ConvReLU1d",
|
21 |
+
"ConvReLU2d",
|
22 |
+
"ConvReLU3d",
|
23 |
+
"ConvBn1d",
|
24 |
+
"ConvBn2d",
|
25 |
+
"ConvBn3d",
|
26 |
+
"ConvBnReLU1d",
|
27 |
+
"ConvBnReLU2d",
|
28 |
+
"ConvBnReLU3d",
|
29 |
+
"update_bn_stats",
|
30 |
+
"freeze_bn_stats",
|
31 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (642 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/conv_fused.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_fused.cpython-310.pyc
ADDED
Binary file (648 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_relu.cpython-310.pyc
ADDED
Binary file (647 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/conv_fused.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""Intrinsic QAT Modules.
|
3 |
+
|
4 |
+
This file is in the process of migration to `torch/ao/nn/intrinsic/qat`, and
|
5 |
+
is kept here for compatibility while the migration process is ongoing.
|
6 |
+
If you are adding a new entry/functionality, please, add it to the
|
7 |
+
appropriate file under the `torch/ao/nn/intrinsic/qat/modules`,
|
8 |
+
while adding an import statement here.
|
9 |
+
"""
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
# Modules
|
13 |
+
'ConvBn1d',
|
14 |
+
'ConvBnReLU1d',
|
15 |
+
'ConvReLU1d',
|
16 |
+
'ConvBn2d',
|
17 |
+
'ConvBnReLU2d',
|
18 |
+
'ConvReLU2d',
|
19 |
+
'ConvBn3d',
|
20 |
+
'ConvBnReLU3d',
|
21 |
+
'ConvReLU3d',
|
22 |
+
# Utilities
|
23 |
+
'freeze_bn_stats',
|
24 |
+
'update_bn_stats',
|
25 |
+
]
|
26 |
+
|
27 |
+
from torch.ao.nn.intrinsic.qat import ConvBn1d
|
28 |
+
from torch.ao.nn.intrinsic.qat import ConvBnReLU1d
|
29 |
+
from torch.ao.nn.intrinsic.qat import ConvReLU1d
|
30 |
+
from torch.ao.nn.intrinsic.qat import ConvBn2d
|
31 |
+
from torch.ao.nn.intrinsic.qat import ConvBnReLU2d
|
32 |
+
from torch.ao.nn.intrinsic.qat import ConvReLU2d
|
33 |
+
from torch.ao.nn.intrinsic.qat import ConvBn3d
|
34 |
+
from torch.ao.nn.intrinsic.qat import ConvBnReLU3d
|
35 |
+
from torch.ao.nn.intrinsic.qat import ConvReLU3d
|
36 |
+
from torch.ao.nn.intrinsic.qat import freeze_bn_stats
|
37 |
+
from torch.ao.nn.intrinsic.qat import update_bn_stats
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_fused.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""Intrinsic QAT Modules.
|
3 |
+
|
4 |
+
This file is in the process of migration to `torch/ao/nn/intrinsic/qat`, and
|
5 |
+
is kept here for compatibility while the migration process is ongoing.
|
6 |
+
If you are adding a new entry/functionality, please, add it to the
|
7 |
+
appropriate file under the `torch/ao/nn/intrinsic/qat/modules`,
|
8 |
+
while adding an import statement here.
|
9 |
+
"""
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
'LinearBn1d',
|
13 |
+
]
|
14 |
+
|
15 |
+
from torch.ao.nn.intrinsic.qat import LinearBn1d
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_relu.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: F401
|
2 |
+
r"""Intrinsic QAT Modules.
|
3 |
+
|
4 |
+
This file is in the process of migration to `torch/ao/nn/intrinsic/qat`, and
|
5 |
+
is kept here for compatibility while the migration process is ongoing.
|
6 |
+
If you are adding a new entry/functionality, please, add it to the
|
7 |
+
appropriate file under the `torch/ao/nn/intrinsic/qat/modules`,
|
8 |
+
while adding an import statement here.
|
9 |
+
"""
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
'LinearReLU',
|
13 |
+
]
|
14 |
+
|
15 |
+
from torch.ao.nn.intrinsic.qat import LinearReLU
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
2 |
+
# to ensure customers can use the module below
|
3 |
+
# without importing it directly
|
4 |
+
import torch.nn.intrinsic.quantized.dynamic
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'BNReLU2d',
|
8 |
+
'BNReLU3d',
|
9 |
+
'ConvReLU1d',
|
10 |
+
'ConvReLU2d',
|
11 |
+
'ConvReLU3d',
|
12 |
+
'LinearReLU',
|
13 |
+
]
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (369 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|