applied-ai-018 commited on
Commit
a87b023
·
verified ·
1 Parent(s): 71302c3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step20/zero/9.attention.dense.weight/exp_avg_sq.pt +3 -0
  3. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/config.yaml +43 -0
  4. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log +34 -0
  5. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/requirements.txt +155 -0
  6. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-metadata.json +850 -0
  7. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-summary.json +1 -0
  8. lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/run-kt8p2r8k.wandb +0 -0
  9. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/config.yaml +284 -0
  10. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/media/table/evaluation/eval_results_1_9c87687b44ab0685fb7b.table.json +1 -0
  11. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/output.log +592 -0
  12. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/requirements.txt +153 -0
  13. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/wandb-metadata.json +850 -0
  14. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/wandb-summary.json +1 -0
  15. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug-internal.log +0 -0
  16. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug.log +36 -0
  17. lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/run-wg4623zd.wandb +0 -0
  18. venv/lib/python3.10/site-packages/transformers/models/align/__init__.py +73 -0
  19. venv/lib/python3.10/site-packages/transformers/models/align/convert_align_tf_to_hf.py +389 -0
  20. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__init__.py +89 -0
  21. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/__init__.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/configuration_bridgetower.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/image_processing_bridgetower.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/modeling_bridgetower.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/processing_bridgetower.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/transformers/models/bridgetower/configuration_bridgetower.py +349 -0
  27. venv/lib/python3.10/site-packages/transformers/models/bridgetower/image_processing_bridgetower.py +561 -0
  28. venv/lib/python3.10/site-packages/transformers/models/bridgetower/modeling_bridgetower.py +1898 -0
  29. venv/lib/python3.10/site-packages/transformers/models/bridgetower/processing_bridgetower.py +119 -0
  30. venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__init__.py +85 -0
  31. venv/lib/python3.10/site-packages/transformers/models/conditional_detr/modeling_conditional_detr.py +0 -0
  32. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__init__.py +62 -0
  33. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/__init__.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/configuration_gpt_neox_japanese.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/modeling_gpt_neox_japanese.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/tokenization_gpt_neox_japanese.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +120 -0
  38. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +729 -0
  39. venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +368 -0
  40. venv/lib/python3.10/site-packages/transformers/models/qwen2/__init__.py +80 -0
  41. venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/__init__.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/configuration_qwen2.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/modeling_qwen2.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/transformers/models/qwen2/configuration_qwen2.py +143 -0
  47. venv/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py +1397 -0
  48. venv/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2.py +339 -0
  49. venv/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py +134 -0
  50. venv/lib/python3.10/site-packages/transformers/models/rwkv/__init__.py +60 -0
ckpts/universal/global_step20/zero/8.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fbeb14f061a13d56478cbd35cc6559ba3db71af4a967cccb7c57836a8c7bfb4
3
+ size 33555627
ckpts/universal/global_step20/zero/9.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8bc781cef30250dca4fd0478bd1dbd45684da0731128585fefda573e190cc1
3
+ size 16778411
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/config.yaml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb_version: 1
2
+
3
+ _wandb:
4
+ desc: null
5
+ value:
6
+ python_version: 3.10.12
7
+ cli_version: 0.17.0
8
+ framework: huggingface
9
+ huggingface_version: 4.41.0
10
+ is_jupyter_run: false
11
+ is_kaggle_kernel: false
12
+ start_time: 1716403768
13
+ t:
14
+ 1:
15
+ - 1
16
+ - 5
17
+ - 11
18
+ - 49
19
+ - 51
20
+ - 53
21
+ - 55
22
+ - 71
23
+ - 98
24
+ - 100
25
+ 2:
26
+ - 1
27
+ - 5
28
+ - 11
29
+ - 49
30
+ - 51
31
+ - 53
32
+ - 55
33
+ - 71
34
+ - 98
35
+ - 100
36
+ 3:
37
+ - 23
38
+ 4: 3.10.12
39
+ 5: 0.17.0
40
+ 6: 4.41.0
41
+ 8:
42
+ - 5
43
+ 13: linux-x86_64
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/output.log ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 2024-05-22:18:49:28,921 INFO [__main__.py:251] Verbosity set to INFO
3
+ 2024-05-22:18:49:37,334 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
4
+ 2024-05-22:18:49:37,335 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
5
+ 2024-05-22:18:49:37,335 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000'}
6
+ 2024-05-22:18:49:39,753 INFO [huggingface.py:164] Using device 'cuda'
7
+ Traceback (most recent call last):
8
+ File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
9
+ return _run_code(code, main_globals, None,
10
+ File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
11
+ exec(code, run_globals)
12
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
13
+ cli_evaluate()
14
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
15
+ results = evaluator.simple_evaluate(
16
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
17
+ return fn(*args, **kwargs)
18
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
19
+ lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
20
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
21
+ return cls(**args, **args2)
22
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
23
+ self._get_config(
24
+ File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
25
+ self._config = transformers.AutoConfig.from_pretrained(
26
+ File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
27
+ config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
28
+ File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
29
+ config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
30
+ File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
31
+ resolved_config_file = cached_file(
32
+ File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
33
+ raise EnvironmentError(
34
+ OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000/tree/main' for available files.
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/requirements.txt ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DataProperty==1.0.1
2
+ GitPython==3.1.43
3
+ Jinja2==3.1.4
4
+ Markdown==3.6
5
+ MarkupSafe==2.1.5
6
+ Pillow-SIMD==7.0.0.post3
7
+ PyYAML==6.0
8
+ Werkzeug==3.0.3
9
+ absl-py==2.1.0
10
+ accelerate==0.30.1
11
+ aiohttp==3.9.5
12
+ aiosignal==1.3.1
13
+ async-timeout==4.0.3
14
+ attrs==23.2.0
15
+ av==9.2.0
16
+ cachetools==5.3.3
17
+ certifi==2024.2.2
18
+ cffi==1.15.1
19
+ cfgv==3.4.0
20
+ chardet==5.2.0
21
+ charset-normalizer==3.3.2
22
+ click==8.1.7
23
+ cmake==3.29.2
24
+ colorama==0.4.6
25
+ datasets==2.19.1
26
+ deepspeed==0.12.4+hpu.synapse.v1.15.1
27
+ dill==0.3.8
28
+ distlib==0.3.8
29
+ docker-pycreds==0.4.0
30
+ einops==0.8.0
31
+ evaluate==0.4.2
32
+ exceptiongroup==1.2.1
33
+ expecttest==0.2.1
34
+ filelock==3.14.0
35
+ frozenlist==1.4.1
36
+ fsspec==2024.3.1
37
+ gitdb==4.0.11
38
+ google-auth-oauthlib==0.4.6
39
+ google-auth==2.29.0
40
+ grpcio==1.63.0
41
+ habana-media-loader==1.15.1.15
42
+ habana-pyhlml==1.15.1.15
43
+ habana-torch-dataloader==1.15.1.15
44
+ habana-torch-plugin==1.15.1.15
45
+ habana_gpu_migration==1.15.1.15
46
+ habana_quantization_toolkit==1.15.1.15
47
+ hjson==3.1.0
48
+ huggingface-hub==0.23.1
49
+ identify==2.5.36
50
+ idna==3.7
51
+ iniconfig==2.0.0
52
+ joblib==1.4.2
53
+ jsonlines==4.0.0
54
+ lightning-habana==1.4.0
55
+ lightning-utilities==0.11.2
56
+ lightning==2.2.0.post0
57
+ lm_eval==0.4.2
58
+ lm_eval==0.4.2
59
+ lm_eval==0.4.2
60
+ lxml==5.2.2
61
+ mbstrdecoder==1.1.3
62
+ more-itertools==10.2.0
63
+ mpi4py==3.1.4
64
+ mpmath==1.3.0
65
+ multidict==6.0.5
66
+ multiprocess==0.70.16
67
+ networkx==3.3
68
+ ninja==1.11.1.1
69
+ nltk==3.8.1
70
+ nodeenv==1.8.0
71
+ numexpr==2.10.0
72
+ numpy==1.23.5
73
+ oauthlib==3.2.2
74
+ packaging==24.0
75
+ pandas==2.0.1
76
+ pathspec==0.12.1
77
+ pathvalidate==3.2.0
78
+ peft==0.11.1
79
+ perfetto==0.7.0
80
+ pillow==10.3.0
81
+ pip==22.0.2
82
+ pip==23.3.1
83
+ platformdirs==4.2.1
84
+ pluggy==1.5.0
85
+ portalocker==2.8.2
86
+ pre-commit==3.3.3
87
+ pretty-errors==1.2.25
88
+ protobuf==3.20.3
89
+ psutil==5.9.8
90
+ py-cpuinfo==9.0.0
91
+ pyarrow-hotfix==0.6
92
+ pyarrow==16.1.0
93
+ pyasn1==0.6.0
94
+ pyasn1_modules==0.4.0
95
+ pybind11==2.10.4
96
+ pycparser==2.22
97
+ pydantic==1.10.13
98
+ pynvml==8.0.4
99
+ pytablewriter==1.2.0
100
+ pytest==8.2.0
101
+ python-dateutil==2.9.0.post0
102
+ pytorch-lightning==2.2.4
103
+ pytz==2024.1
104
+ regex==2023.5.5
105
+ requests-oauthlib==2.0.0
106
+ requests==2.31.0
107
+ rouge_score==0.1.2
108
+ rsa==4.9
109
+ sacrebleu==2.4.2
110
+ safetensors==0.4.3
111
+ scikit-learn==1.5.0
112
+ scipy==1.13.0
113
+ sentencepiece==0.2.0
114
+ sentry-sdk==2.2.1
115
+ setproctitle==1.3.3
116
+ setuptools==59.6.0
117
+ setuptools==69.5.1
118
+ six==1.16.0
119
+ smmap==5.0.1
120
+ sqlitedict==2.1.0
121
+ symengine==0.11.0
122
+ sympy==1.12
123
+ tabledata==1.3.3
124
+ tabulate==0.9.0
125
+ tcolorpy==0.1.6
126
+ tdqm==0.0.1
127
+ tensorboard-data-server==0.6.1
128
+ tensorboard-plugin-wit==1.8.1
129
+ tensorboard==2.11.2
130
+ threadpoolctl==3.5.0
131
+ tokenizers==0.19.1
132
+ tomli==2.0.1
133
+ torch==2.2.0a0+git8964477
134
+ torch_tb_profiler==0.4.0
135
+ torchaudio==2.2.0+08901ad
136
+ torchdata==0.7.1+5e6f7b7
137
+ torchmetrics==1.4.0
138
+ torchtext==0.17.0+400da5c
139
+ torchvision==0.17.0+b2383d4
140
+ tqdm-multiprocess==0.0.11
141
+ tqdm==4.66.4
142
+ transformers==4.41.0
143
+ typepy==1.3.2
144
+ typing_extensions==4.11.0
145
+ tzdata==2024.1
146
+ urllib3==1.26.18
147
+ virtualenv==20.26.1
148
+ wandb==0.17.0
149
+ wheel==0.37.1
150
+ wheel==0.43.0
151
+ word2number==1.1
152
+ xxhash==3.4.1
153
+ yamllint==1.35.1
154
+ yarl==1.9.4
155
+ zstandard==0.22.0
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-metadata.json ADDED
@@ -0,0 +1,850 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
3
+ "python": "3.10.12",
4
+ "heartbeatAt": "2024-05-22T18:49:28.717571",
5
+ "startedAt": "2024-05-22T18:49:28.186831",
6
+ "docker": null,
7
+ "cuda": null,
8
+ "args": [
9
+ "--model",
10
+ "hf",
11
+ "--model_args",
12
+ "pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000",
13
+ "--tasks",
14
+ "hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
15
+ "--batch_size",
16
+ "auto",
17
+ "--wandb_args",
18
+ "project=bharatgpt,group=trial_expt_2"
19
+ ],
20
+ "state": "running",
21
+ "program": "-m lm_eval.__main__",
22
+ "codePathLocal": null,
23
+ "git": {
24
+ "remote": "https://github.com/EleutherAI/lm-evaluation-harness",
25
+ "commit": null
26
+ },
27
+ "email": null,
28
+ "root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
29
+ "host": "peacock-evaluation-worker-0",
30
+ "username": "root",
31
+ "executable": "/usr/bin/python3",
32
+ "cpu_count": 80,
33
+ "cpu_count_logical": 160,
34
+ "cpu_freq": {
35
+ "current": 2327.1428562499996,
36
+ "min": 800.0,
37
+ "max": 3400.0
38
+ },
39
+ "cpu_freq_per_core": [
40
+ {
41
+ "current": 3400.0,
42
+ "min": 800.0,
43
+ "max": 3400.0
44
+ },
45
+ {
46
+ "current": 3400.0,
47
+ "min": 800.0,
48
+ "max": 3400.0
49
+ },
50
+ {
51
+ "current": 2300.0,
52
+ "min": 800.0,
53
+ "max": 3400.0
54
+ },
55
+ {
56
+ "current": 2300.0,
57
+ "min": 800.0,
58
+ "max": 3400.0
59
+ },
60
+ {
61
+ "current": 2300.0,
62
+ "min": 800.0,
63
+ "max": 3400.0
64
+ },
65
+ {
66
+ "current": 2300.0,
67
+ "min": 800.0,
68
+ "max": 3400.0
69
+ },
70
+ {
71
+ "current": 2300.0,
72
+ "min": 800.0,
73
+ "max": 3400.0
74
+ },
75
+ {
76
+ "current": 2300.0,
77
+ "min": 800.0,
78
+ "max": 3400.0
79
+ },
80
+ {
81
+ "current": 2300.0,
82
+ "min": 800.0,
83
+ "max": 3400.0
84
+ },
85
+ {
86
+ "current": 2300.0,
87
+ "min": 800.0,
88
+ "max": 3400.0
89
+ },
90
+ {
91
+ "current": 2300.0,
92
+ "min": 800.0,
93
+ "max": 3400.0
94
+ },
95
+ {
96
+ "current": 2300.0,
97
+ "min": 800.0,
98
+ "max": 3400.0
99
+ },
100
+ {
101
+ "current": 2300.0,
102
+ "min": 800.0,
103
+ "max": 3400.0
104
+ },
105
+ {
106
+ "current": 2300.0,
107
+ "min": 800.0,
108
+ "max": 3400.0
109
+ },
110
+ {
111
+ "current": 2300.0,
112
+ "min": 800.0,
113
+ "max": 3400.0
114
+ },
115
+ {
116
+ "current": 2300.0,
117
+ "min": 800.0,
118
+ "max": 3400.0
119
+ },
120
+ {
121
+ "current": 2300.0,
122
+ "min": 800.0,
123
+ "max": 3400.0
124
+ },
125
+ {
126
+ "current": 2300.0,
127
+ "min": 800.0,
128
+ "max": 3400.0
129
+ },
130
+ {
131
+ "current": 2300.0,
132
+ "min": 800.0,
133
+ "max": 3400.0
134
+ },
135
+ {
136
+ "current": 2300.0,
137
+ "min": 800.0,
138
+ "max": 3400.0
139
+ },
140
+ {
141
+ "current": 2300.0,
142
+ "min": 800.0,
143
+ "max": 3400.0
144
+ },
145
+ {
146
+ "current": 2300.0,
147
+ "min": 800.0,
148
+ "max": 3400.0
149
+ },
150
+ {
151
+ "current": 2300.0,
152
+ "min": 800.0,
153
+ "max": 3400.0
154
+ },
155
+ {
156
+ "current": 2300.0,
157
+ "min": 800.0,
158
+ "max": 3400.0
159
+ },
160
+ {
161
+ "current": 2300.0,
162
+ "min": 800.0,
163
+ "max": 3400.0
164
+ },
165
+ {
166
+ "current": 2300.0,
167
+ "min": 800.0,
168
+ "max": 3400.0
169
+ },
170
+ {
171
+ "current": 2300.0,
172
+ "min": 800.0,
173
+ "max": 3400.0
174
+ },
175
+ {
176
+ "current": 2300.0,
177
+ "min": 800.0,
178
+ "max": 3400.0
179
+ },
180
+ {
181
+ "current": 2300.0,
182
+ "min": 800.0,
183
+ "max": 3400.0
184
+ },
185
+ {
186
+ "current": 2300.0,
187
+ "min": 800.0,
188
+ "max": 3400.0
189
+ },
190
+ {
191
+ "current": 2300.0,
192
+ "min": 800.0,
193
+ "max": 3400.0
194
+ },
195
+ {
196
+ "current": 2300.0,
197
+ "min": 800.0,
198
+ "max": 3400.0
199
+ },
200
+ {
201
+ "current": 2300.0,
202
+ "min": 800.0,
203
+ "max": 3400.0
204
+ },
205
+ {
206
+ "current": 2300.0,
207
+ "min": 800.0,
208
+ "max": 3400.0
209
+ },
210
+ {
211
+ "current": 2300.0,
212
+ "min": 800.0,
213
+ "max": 3400.0
214
+ },
215
+ {
216
+ "current": 2300.0,
217
+ "min": 800.0,
218
+ "max": 3400.0
219
+ },
220
+ {
221
+ "current": 2300.0,
222
+ "min": 800.0,
223
+ "max": 3400.0
224
+ },
225
+ {
226
+ "current": 2300.0,
227
+ "min": 800.0,
228
+ "max": 3400.0
229
+ },
230
+ {
231
+ "current": 2300.0,
232
+ "min": 800.0,
233
+ "max": 3400.0
234
+ },
235
+ {
236
+ "current": 2300.0,
237
+ "min": 800.0,
238
+ "max": 3400.0
239
+ },
240
+ {
241
+ "current": 3400.0,
242
+ "min": 800.0,
243
+ "max": 3400.0
244
+ },
245
+ {
246
+ "current": 2300.0,
247
+ "min": 800.0,
248
+ "max": 3400.0
249
+ },
250
+ {
251
+ "current": 2300.0,
252
+ "min": 800.0,
253
+ "max": 3400.0
254
+ },
255
+ {
256
+ "current": 2300.0,
257
+ "min": 800.0,
258
+ "max": 3400.0
259
+ },
260
+ {
261
+ "current": 2300.0,
262
+ "min": 800.0,
263
+ "max": 3400.0
264
+ },
265
+ {
266
+ "current": 2300.0,
267
+ "min": 800.0,
268
+ "max": 3400.0
269
+ },
270
+ {
271
+ "current": 2300.0,
272
+ "min": 800.0,
273
+ "max": 3400.0
274
+ },
275
+ {
276
+ "current": 2300.0,
277
+ "min": 800.0,
278
+ "max": 3400.0
279
+ },
280
+ {
281
+ "current": 2300.0,
282
+ "min": 800.0,
283
+ "max": 3400.0
284
+ },
285
+ {
286
+ "current": 2300.0,
287
+ "min": 800.0,
288
+ "max": 3400.0
289
+ },
290
+ {
291
+ "current": 2300.0,
292
+ "min": 800.0,
293
+ "max": 3400.0
294
+ },
295
+ {
296
+ "current": 2300.0,
297
+ "min": 800.0,
298
+ "max": 3400.0
299
+ },
300
+ {
301
+ "current": 2300.0,
302
+ "min": 800.0,
303
+ "max": 3400.0
304
+ },
305
+ {
306
+ "current": 2300.0,
307
+ "min": 800.0,
308
+ "max": 3400.0
309
+ },
310
+ {
311
+ "current": 2300.0,
312
+ "min": 800.0,
313
+ "max": 3400.0
314
+ },
315
+ {
316
+ "current": 2300.0,
317
+ "min": 800.0,
318
+ "max": 3400.0
319
+ },
320
+ {
321
+ "current": 2300.0,
322
+ "min": 800.0,
323
+ "max": 3400.0
324
+ },
325
+ {
326
+ "current": 2300.0,
327
+ "min": 800.0,
328
+ "max": 3400.0
329
+ },
330
+ {
331
+ "current": 2300.0,
332
+ "min": 800.0,
333
+ "max": 3400.0
334
+ },
335
+ {
336
+ "current": 2300.0,
337
+ "min": 800.0,
338
+ "max": 3400.0
339
+ },
340
+ {
341
+ "current": 2300.0,
342
+ "min": 800.0,
343
+ "max": 3400.0
344
+ },
345
+ {
346
+ "current": 2300.0,
347
+ "min": 800.0,
348
+ "max": 3400.0
349
+ },
350
+ {
351
+ "current": 2300.0,
352
+ "min": 800.0,
353
+ "max": 3400.0
354
+ },
355
+ {
356
+ "current": 2300.0,
357
+ "min": 800.0,
358
+ "max": 3400.0
359
+ },
360
+ {
361
+ "current": 2300.0,
362
+ "min": 800.0,
363
+ "max": 3400.0
364
+ },
365
+ {
366
+ "current": 2300.0,
367
+ "min": 800.0,
368
+ "max": 3400.0
369
+ },
370
+ {
371
+ "current": 2300.0,
372
+ "min": 800.0,
373
+ "max": 3400.0
374
+ },
375
+ {
376
+ "current": 2300.0,
377
+ "min": 800.0,
378
+ "max": 3400.0
379
+ },
380
+ {
381
+ "current": 2300.0,
382
+ "min": 800.0,
383
+ "max": 3400.0
384
+ },
385
+ {
386
+ "current": 2300.0,
387
+ "min": 800.0,
388
+ "max": 3400.0
389
+ },
390
+ {
391
+ "current": 2300.0,
392
+ "min": 800.0,
393
+ "max": 3400.0
394
+ },
395
+ {
396
+ "current": 2300.0,
397
+ "min": 800.0,
398
+ "max": 3400.0
399
+ },
400
+ {
401
+ "current": 2300.0,
402
+ "min": 800.0,
403
+ "max": 3400.0
404
+ },
405
+ {
406
+ "current": 2300.0,
407
+ "min": 800.0,
408
+ "max": 3400.0
409
+ },
410
+ {
411
+ "current": 2300.0,
412
+ "min": 800.0,
413
+ "max": 3400.0
414
+ },
415
+ {
416
+ "current": 2300.0,
417
+ "min": 800.0,
418
+ "max": 3400.0
419
+ },
420
+ {
421
+ "current": 2300.0,
422
+ "min": 800.0,
423
+ "max": 3400.0
424
+ },
425
+ {
426
+ "current": 2300.0,
427
+ "min": 800.0,
428
+ "max": 3400.0
429
+ },
430
+ {
431
+ "current": 2300.0,
432
+ "min": 800.0,
433
+ "max": 3400.0
434
+ },
435
+ {
436
+ "current": 2300.0,
437
+ "min": 800.0,
438
+ "max": 3400.0
439
+ },
440
+ {
441
+ "current": 3400.0,
442
+ "min": 800.0,
443
+ "max": 3400.0
444
+ },
445
+ {
446
+ "current": 2300.0,
447
+ "min": 800.0,
448
+ "max": 3400.0
449
+ },
450
+ {
451
+ "current": 2300.0,
452
+ "min": 800.0,
453
+ "max": 3400.0
454
+ },
455
+ {
456
+ "current": 2300.0,
457
+ "min": 800.0,
458
+ "max": 3400.0
459
+ },
460
+ {
461
+ "current": 2300.0,
462
+ "min": 800.0,
463
+ "max": 3400.0
464
+ },
465
+ {
466
+ "current": 2300.0,
467
+ "min": 800.0,
468
+ "max": 3400.0
469
+ },
470
+ {
471
+ "current": 2300.0,
472
+ "min": 800.0,
473
+ "max": 3400.0
474
+ },
475
+ {
476
+ "current": 2300.0,
477
+ "min": 800.0,
478
+ "max": 3400.0
479
+ },
480
+ {
481
+ "current": 2300.0,
482
+ "min": 800.0,
483
+ "max": 3400.0
484
+ },
485
+ {
486
+ "current": 2300.0,
487
+ "min": 800.0,
488
+ "max": 3400.0
489
+ },
490
+ {
491
+ "current": 2300.0,
492
+ "min": 800.0,
493
+ "max": 3400.0
494
+ },
495
+ {
496
+ "current": 2300.0,
497
+ "min": 800.0,
498
+ "max": 3400.0
499
+ },
500
+ {
501
+ "current": 2300.0,
502
+ "min": 800.0,
503
+ "max": 3400.0
504
+ },
505
+ {
506
+ "current": 2300.0,
507
+ "min": 800.0,
508
+ "max": 3400.0
509
+ },
510
+ {
511
+ "current": 2300.0,
512
+ "min": 800.0,
513
+ "max": 3400.0
514
+ },
515
+ {
516
+ "current": 2300.0,
517
+ "min": 800.0,
518
+ "max": 3400.0
519
+ },
520
+ {
521
+ "current": 2300.0,
522
+ "min": 800.0,
523
+ "max": 3400.0
524
+ },
525
+ {
526
+ "current": 2300.0,
527
+ "min": 800.0,
528
+ "max": 3400.0
529
+ },
530
+ {
531
+ "current": 2300.0,
532
+ "min": 800.0,
533
+ "max": 3400.0
534
+ },
535
+ {
536
+ "current": 2300.0,
537
+ "min": 800.0,
538
+ "max": 3400.0
539
+ },
540
+ {
541
+ "current": 2300.0,
542
+ "min": 800.0,
543
+ "max": 3400.0
544
+ },
545
+ {
546
+ "current": 2300.0,
547
+ "min": 800.0,
548
+ "max": 3400.0
549
+ },
550
+ {
551
+ "current": 2300.0,
552
+ "min": 800.0,
553
+ "max": 3400.0
554
+ },
555
+ {
556
+ "current": 2300.0,
557
+ "min": 800.0,
558
+ "max": 3400.0
559
+ },
560
+ {
561
+ "current": 2300.0,
562
+ "min": 800.0,
563
+ "max": 3400.0
564
+ },
565
+ {
566
+ "current": 2300.0,
567
+ "min": 800.0,
568
+ "max": 3400.0
569
+ },
570
+ {
571
+ "current": 2300.0,
572
+ "min": 800.0,
573
+ "max": 3400.0
574
+ },
575
+ {
576
+ "current": 2300.0,
577
+ "min": 800.0,
578
+ "max": 3400.0
579
+ },
580
+ {
581
+ "current": 2300.0,
582
+ "min": 800.0,
583
+ "max": 3400.0
584
+ },
585
+ {
586
+ "current": 2300.0,
587
+ "min": 800.0,
588
+ "max": 3400.0
589
+ },
590
+ {
591
+ "current": 2300.0,
592
+ "min": 800.0,
593
+ "max": 3400.0
594
+ },
595
+ {
596
+ "current": 2300.0,
597
+ "min": 800.0,
598
+ "max": 3400.0
599
+ },
600
+ {
601
+ "current": 2300.0,
602
+ "min": 800.0,
603
+ "max": 3400.0
604
+ },
605
+ {
606
+ "current": 2300.0,
607
+ "min": 800.0,
608
+ "max": 3400.0
609
+ },
610
+ {
611
+ "current": 2300.0,
612
+ "min": 800.0,
613
+ "max": 3400.0
614
+ },
615
+ {
616
+ "current": 2300.0,
617
+ "min": 800.0,
618
+ "max": 3400.0
619
+ },
620
+ {
621
+ "current": 2300.0,
622
+ "min": 800.0,
623
+ "max": 3400.0
624
+ },
625
+ {
626
+ "current": 2300.0,
627
+ "min": 800.0,
628
+ "max": 3400.0
629
+ },
630
+ {
631
+ "current": 2300.0,
632
+ "min": 800.0,
633
+ "max": 3400.0
634
+ },
635
+ {
636
+ "current": 2300.0,
637
+ "min": 800.0,
638
+ "max": 3400.0
639
+ },
640
+ {
641
+ "current": 2300.0,
642
+ "min": 800.0,
643
+ "max": 3400.0
644
+ },
645
+ {
646
+ "current": 2300.0,
647
+ "min": 800.0,
648
+ "max": 3400.0
649
+ },
650
+ {
651
+ "current": 2300.0,
652
+ "min": 800.0,
653
+ "max": 3400.0
654
+ },
655
+ {
656
+ "current": 2300.0,
657
+ "min": 800.0,
658
+ "max": 3400.0
659
+ },
660
+ {
661
+ "current": 2300.0,
662
+ "min": 800.0,
663
+ "max": 3400.0
664
+ },
665
+ {
666
+ "current": 2300.0,
667
+ "min": 800.0,
668
+ "max": 3400.0
669
+ },
670
+ {
671
+ "current": 2300.0,
672
+ "min": 800.0,
673
+ "max": 3400.0
674
+ },
675
+ {
676
+ "current": 2300.0,
677
+ "min": 800.0,
678
+ "max": 3400.0
679
+ },
680
+ {
681
+ "current": 2300.0,
682
+ "min": 800.0,
683
+ "max": 3400.0
684
+ },
685
+ {
686
+ "current": 2300.0,
687
+ "min": 800.0,
688
+ "max": 3400.0
689
+ },
690
+ {
691
+ "current": 2300.0,
692
+ "min": 800.0,
693
+ "max": 3400.0
694
+ },
695
+ {
696
+ "current": 2300.0,
697
+ "min": 800.0,
698
+ "max": 3400.0
699
+ },
700
+ {
701
+ "current": 2300.0,
702
+ "min": 800.0,
703
+ "max": 3400.0
704
+ },
705
+ {
706
+ "current": 2300.0,
707
+ "min": 800.0,
708
+ "max": 3400.0
709
+ },
710
+ {
711
+ "current": 2300.0,
712
+ "min": 800.0,
713
+ "max": 3400.0
714
+ },
715
+ {
716
+ "current": 2300.0,
717
+ "min": 800.0,
718
+ "max": 3400.0
719
+ },
720
+ {
721
+ "current": 2300.0,
722
+ "min": 800.0,
723
+ "max": 3400.0
724
+ },
725
+ {
726
+ "current": 2300.0,
727
+ "min": 800.0,
728
+ "max": 3400.0
729
+ },
730
+ {
731
+ "current": 2300.0,
732
+ "min": 800.0,
733
+ "max": 3400.0
734
+ },
735
+ {
736
+ "current": 2300.0,
737
+ "min": 800.0,
738
+ "max": 3400.0
739
+ },
740
+ {
741
+ "current": 2300.0,
742
+ "min": 800.0,
743
+ "max": 3400.0
744
+ },
745
+ {
746
+ "current": 2300.0,
747
+ "min": 800.0,
748
+ "max": 3400.0
749
+ },
750
+ {
751
+ "current": 2300.0,
752
+ "min": 800.0,
753
+ "max": 3400.0
754
+ },
755
+ {
756
+ "current": 2300.0,
757
+ "min": 800.0,
758
+ "max": 3400.0
759
+ },
760
+ {
761
+ "current": 2300.0,
762
+ "min": 800.0,
763
+ "max": 3400.0
764
+ },
765
+ {
766
+ "current": 2300.0,
767
+ "min": 800.0,
768
+ "max": 3400.0
769
+ },
770
+ {
771
+ "current": 2300.0,
772
+ "min": 800.0,
773
+ "max": 3400.0
774
+ },
775
+ {
776
+ "current": 2300.0,
777
+ "min": 800.0,
778
+ "max": 3400.0
779
+ },
780
+ {
781
+ "current": 2300.0,
782
+ "min": 800.0,
783
+ "max": 3400.0
784
+ },
785
+ {
786
+ "current": 2300.0,
787
+ "min": 800.0,
788
+ "max": 3400.0
789
+ },
790
+ {
791
+ "current": 2300.0,
792
+ "min": 800.0,
793
+ "max": 3400.0
794
+ },
795
+ {
796
+ "current": 2300.0,
797
+ "min": 800.0,
798
+ "max": 3400.0
799
+ },
800
+ {
801
+ "current": 2300.0,
802
+ "min": 800.0,
803
+ "max": 3400.0
804
+ },
805
+ {
806
+ "current": 2300.0,
807
+ "min": 800.0,
808
+ "max": 3400.0
809
+ },
810
+ {
811
+ "current": 2300.0,
812
+ "min": 800.0,
813
+ "max": 3400.0
814
+ },
815
+ {
816
+ "current": 2300.0,
817
+ "min": 800.0,
818
+ "max": 3400.0
819
+ },
820
+ {
821
+ "current": 2300.0,
822
+ "min": 800.0,
823
+ "max": 3400.0
824
+ },
825
+ {
826
+ "current": 2300.0,
827
+ "min": 800.0,
828
+ "max": 3400.0
829
+ },
830
+ {
831
+ "current": 2300.0,
832
+ "min": 800.0,
833
+ "max": 3400.0
834
+ },
835
+ {
836
+ "current": 2300.0,
837
+ "min": 800.0,
838
+ "max": 3400.0
839
+ }
840
+ ],
841
+ "disk": {
842
+ "/": {
843
+ "total": 877.6341285705566,
844
+ "used": 211.64437866210938
845
+ }
846
+ },
847
+ "memory": {
848
+ "total": 1007.4379997253418
849
+ }
850
+ }
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/files/wandb-summary.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_wandb": {"runtime": 11}}
lm-evaluation-harness/wandb/run-20240522_184928-kt8p2r8k/run-kt8p2r8k.wandb ADDED
Binary file (4.04 kB). View file
 
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/config.yaml ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb_version: 1
2
+
3
+ _wandb:
4
+ desc: null
5
+ value:
6
+ python_version: 3.10.12
7
+ cli_version: 0.17.0
8
+ framework: huggingface
9
+ huggingface_version: 4.36.2
10
+ is_jupyter_run: false
11
+ is_kaggle_kernel: false
12
+ start_time: 1717073967
13
+ t:
14
+ 1:
15
+ - 1
16
+ - 5
17
+ - 11
18
+ - 49
19
+ - 51
20
+ - 53
21
+ - 55
22
+ - 71
23
+ - 98
24
+ - 100
25
+ 2:
26
+ - 1
27
+ - 5
28
+ - 11
29
+ - 49
30
+ - 51
31
+ - 53
32
+ - 55
33
+ - 71
34
+ - 98
35
+ - 100
36
+ 3:
37
+ - 2
38
+ - 13
39
+ - 23
40
+ - 62
41
+ 4: 3.10.12
42
+ 5: 0.17.0
43
+ 6: 4.36.2
44
+ 8:
45
+ - 5
46
+ 13: linux-x86_64
47
+ task_configs:
48
+ desc: null
49
+ value:
50
+ arc_easy:
51
+ task: arc_easy
52
+ group:
53
+ - ai2_arc
54
+ dataset_path: allenai/ai2_arc
55
+ dataset_name: ARC-Easy
56
+ training_split: train
57
+ validation_split: validation
58
+ test_split: test
59
+ doc_to_text: 'Question: {{question}}
60
+
61
+ Answer:'
62
+ doc_to_target: '{{choices.label.index(answerKey)}}'
63
+ doc_to_choice: '{{choices.text}}'
64
+ description: ''
65
+ target_delimiter: ' '
66
+ fewshot_delimiter: '
67
+
68
+
69
+ '
70
+ num_fewshot: 0
71
+ metric_list:
72
+ - metric: acc
73
+ aggregation: mean
74
+ higher_is_better: true
75
+ - metric: acc_norm
76
+ aggregation: mean
77
+ higher_is_better: true
78
+ output_type: multiple_choice
79
+ repeats: 1
80
+ should_decontaminate: true
81
+ doc_to_decontamination_query: 'Question: {{question}}
82
+
83
+ Answer:'
84
+ metadata:
85
+ version: 1.0
86
+ boolq:
87
+ task: boolq
88
+ group:
89
+ - super-glue-lm-eval-v1
90
+ dataset_path: super_glue
91
+ dataset_name: boolq
92
+ training_split: train
93
+ validation_split: validation
94
+ doc_to_text: '{{passage}}
95
+
96
+ Question: {{question}}?
97
+
98
+ Answer:'
99
+ doc_to_target: label
100
+ doc_to_choice:
101
+ - 'no'
102
+ - 'yes'
103
+ description: ''
104
+ target_delimiter: ' '
105
+ fewshot_delimiter: '
106
+
107
+
108
+ '
109
+ num_fewshot: 0
110
+ metric_list:
111
+ - metric: acc
112
+ output_type: multiple_choice
113
+ repeats: 1
114
+ should_decontaminate: true
115
+ doc_to_decontamination_query: passage
116
+ metadata:
117
+ version: 2.0
118
+ copa:
119
+ task: copa
120
+ group:
121
+ - super-glue-lm-eval-v1
122
+ dataset_path: super_glue
123
+ dataset_name: copa
124
+ training_split: train
125
+ validation_split: validation
126
+ doc_to_text: "def doc_to_text(doc):\n # Drop the period\n connector =\
127
+ \ {\n \"cause\": \"because\",\n \"effect\": \"therefore\",\n\
128
+ \ }[doc[\"question\"]]\n return doc[\"premise\"].strip()[:-1] + f\"\
129
+ \ {connector}\"\n"
130
+ doc_to_target: "def doc_to_target(doc):\n correct_choice = doc[\"choice1\"\
131
+ ] if doc[\"label\"] == 0 else doc[\"choice2\"]\n # Connect the sentences\n\
132
+ \ return \" \" + convert_choice(correct_choice)\n"
133
+ doc_to_choice: "def doc_to_choice(doc):\n return [\" \" + convert_choice(doc[\"\
134
+ choice1\"]), \" \" + convert_choice(doc[\"choice2\"])]\n"
135
+ description: ''
136
+ target_delimiter: ' '
137
+ fewshot_delimiter: '
138
+
139
+
140
+ '
141
+ num_fewshot: 0
142
+ metric_list:
143
+ - metric: acc
144
+ output_type: multiple_choice
145
+ repeats: 1
146
+ should_decontaminate: false
147
+ metadata:
148
+ version: 1.0
149
+ mrpc:
150
+ task: mrpc
151
+ group: glue
152
+ dataset_path: glue
153
+ dataset_name: mrpc
154
+ training_split: train
155
+ validation_split: validation
156
+ doc_to_text: 'Sentence 1: {{sentence1}}
157
+
158
+ Sentence 2: {{sentence2}}
159
+
160
+ Question: Do both sentences mean the same thing?
161
+
162
+ Answer:'
163
+ doc_to_target: label
164
+ doc_to_choice:
165
+ - 'no'
166
+ - 'yes'
167
+ description: ''
168
+ target_delimiter: ' '
169
+ fewshot_delimiter: '
170
+
171
+
172
+ '
173
+ num_fewshot: 0
174
+ metric_list:
175
+ - metric: acc
176
+ - metric: f1
177
+ output_type: multiple_choice
178
+ repeats: 1
179
+ should_decontaminate: false
180
+ metadata:
181
+ version: 1.0
182
+ piqa:
183
+ task: piqa
184
+ dataset_path: piqa
185
+ training_split: train
186
+ validation_split: validation
187
+ doc_to_text: 'Question: {{goal}}
188
+
189
+ Answer:'
190
+ doc_to_target: label
191
+ doc_to_choice: '{{[sol1, sol2]}}'
192
+ description: ''
193
+ target_delimiter: ' '
194
+ fewshot_delimiter: '
195
+
196
+
197
+ '
198
+ num_fewshot: 0
199
+ metric_list:
200
+ - metric: acc
201
+ aggregation: mean
202
+ higher_is_better: true
203
+ - metric: acc_norm
204
+ aggregation: mean
205
+ higher_is_better: true
206
+ output_type: multiple_choice
207
+ repeats: 1
208
+ should_decontaminate: true
209
+ doc_to_decontamination_query: goal
210
+ metadata:
211
+ version: 1.0
212
+ sst2:
213
+ task: sst2
214
+ group: glue
215
+ dataset_path: glue
216
+ dataset_name: sst2
217
+ training_split: train
218
+ validation_split: validation
219
+ doc_to_text: '{{sentence}}
220
+
221
+ Question: Is this sentence positive or negative?
222
+
223
+ Answer:'
224
+ doc_to_target: label
225
+ doc_to_choice:
226
+ - negative
227
+ - positive
228
+ description: ''
229
+ target_delimiter: ' '
230
+ fewshot_delimiter: '
231
+
232
+
233
+ '
234
+ num_fewshot: 0
235
+ metric_list:
236
+ - metric: acc
237
+ output_type: multiple_choice
238
+ repeats: 1
239
+ should_decontaminate: false
240
+ metadata:
241
+ version: 1.0
242
+ winogrande:
243
+ task: winogrande
244
+ dataset_path: winogrande
245
+ dataset_name: winogrande_xl
246
+ training_split: train
247
+ validation_split: validation
248
+ doc_to_text: "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n\
249
+ \ return answer_to_num[doc[\"answer\"]]\n"
250
+ doc_to_target: "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"\
251
+ _\") + 1\n return doc[\"sentence\"][idx:].strip()\n"
252
+ doc_to_choice: "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"\
253
+ _\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"\
254
+ sentence\"][:idx] + opt for opt in options]\n"
255
+ description: ''
256
+ target_delimiter: ' '
257
+ fewshot_delimiter: '
258
+
259
+
260
+ '
261
+ num_fewshot: 0
262
+ metric_list:
263
+ - metric: acc
264
+ aggregation: mean
265
+ higher_is_better: true
266
+ output_type: multiple_choice
267
+ repeats: 1
268
+ should_decontaminate: true
269
+ doc_to_decontamination_query: sentence
270
+ metadata:
271
+ version: 1.0
272
+ cli_configs:
273
+ desc: null
274
+ value:
275
+ model: hf
276
+ model_args: pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer
277
+ batch_size: auto
278
+ batch_sizes:
279
+ - 64
280
+ device: null
281
+ use_cache: null
282
+ limit: null
283
+ bootstrap_iters: 100000
284
+ gen_kwargs: null
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/media/table/evaluation/eval_results_1_9c87687b44ab0685fb7b.table.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"columns": ["Tasks", "Version", "Filter", "num_fewshot", "Metric", "Value", "Stderr"], "data": [["winogrande", 1.0, "none", 0, "acc", "0.4861878453038674", "0.0140"], ["sst2", 1.0, "none", 0, "acc", "0.49655963302752293", "0.0169"], ["piqa", 1.0, "none", 0, "acc", "0.5136017410228509", "0.0117"], ["piqa", 1.0, "none", 0, "acc_norm", "0.48258977149075083", "0.0117"], ["mrpc", 1.0, "none", 0, "acc", "0.3161764705882353", "0.0230"], ["mrpc", 1.0, "none", 0, "f1", "0.0", "0.0000"], ["copa", 1.0, "none", 0, "acc", "0.6", "0.0492"], ["boolq", 2.0, "none", 0, "acc", "0.37767584097859325", "0.0085"], ["arc_easy", 1.0, "none", 0, "acc", "0.2529461279461279", "0.0089"], ["arc_easy", 1.0, "none", 0, "acc_norm", "0.25336700336700335", "0.0089"]]}
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/output.log ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 2024-05-30:12:59:28,500 INFO [__main__.py:251] Verbosity set to INFO
3
+ 2024-05-30:12:59:37,836 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'boolq', 'copa', 'mrpc', 'piqa', 'sst2', 'winogrande']
4
+ 2024-05-30:12:59:37,837 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
5
+ 2024-05-30:12:59:37,837 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000', 'tokenizer': '/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer'}
6
+ 2024-05-30:12:59:40,131 INFO [huggingface.py:164] Using device 'cuda'
7
+ /usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/torch/cuda/memory.py:36: UserWarning: No need to call empty_cache on HPU. It manages the memory internally in an effcient way.
8
+ warnings.warn(
9
+ Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
10
+ Downloading readme: 100%|██████████| 9.00k/9.00k [00:00<00:00, 14.1MB/s]
11
+ Downloading data: 100%|██████████| 331k/331k [00:00<00:00, 1.86MB/s]
12
+ Downloading data: 100%|██████████| 346k/346k [00:00<00:00, 4.59MB/s]
13
+ Downloading data: 100%|██████████| 86.1k/86.1k [00:00<00:00, 1.14MB/s]
14
+ Generating train split: 100%|██████████| 2251/2251 [00:00<00:00, 42582.05 examples/s]
15
+ Generating test split: 100%|██████████| 2376/2376 [00:00<00:00, 331415.57 examples/s]
16
+ Generating validation split: 100%|██████████| 570/570 [00:00<00:00, 152861.46 examples/s]
17
+ 2024-05-30:13:00:10,175 WARNING [task.py:763] [Task: boolq] metric acc is defined, but aggregation is not. using default aggregation=mean
18
+ 2024-05-30:13:00:10,175 WARNING [task.py:775] [Task: boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
19
+ /usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for super_glue contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/super_glue
20
+ You can avoid this message in future by passing the argument `trust_remote_code=True`.
21
+ Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
22
+ warnings.warn(
23
+ Downloading builder script: 100%|██████████| 30.7k/30.7k [00:00<00:00, 41.1MB/s]
24
+ Downloading readme: 100%|██████████| 18.2k/18.2k [00:00<00:00, 30.5MB/s]
25
+ Downloading data: 100%|██████████| 4.12M/4.12M [00:00<00:00, 17.5MB/s]
26
+ Generating train split: 100%|██████████| 9427/9427 [00:00<00:00, 22302.36 examples/s]
27
+ Generating validation split: 100%|██████████| 3270/3270 [00:00<00:00, 19757.63 examples/s]
28
+ Generating test split: 100%|██████████| 3245/3245 [00:00<00:00, 22659.61 examples/s]
29
+ 2024-05-30:13:00:14,119 WARNING [task.py:763] [Task: copa] metric acc is defined, but aggregation is not. using default aggregation=mean
30
+ 2024-05-30:13:00:14,119 WARNING [task.py:775] [Task: copa] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
31
+ Downloading data: 100%|██████████| 44.0k/44.0k [00:00<00:00, 48.8MB/s]
32
+ Generating train split: 100%|██████████| 400/400 [00:00<00:00, 16209.24 examples/s]
33
+ Generating validation split: 100%|██████████| 100/100 [00:00<00:00, 12743.22 examples/s]
34
+ Generating test split: 100%|██████████| 500/500 [00:00<00:00, 17484.13 examples/s]
35
+ 2024-05-30:13:00:16,198 WARNING [task.py:763] [Task: mrpc] metric acc is defined, but aggregation is not. using default aggregation=mean
36
+ 2024-05-30:13:00:16,198 WARNING [task.py:775] [Task: mrpc] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
37
+ 2024-05-30:13:00:16,198 WARNING [task.py:763] [Task: mrpc] metric f1 is defined, but aggregation is not. using default aggregation=f1
38
+ 2024-05-30:13:00:16,198 WARNING [task.py:775] [Task: mrpc] metric f1 is defined, but higher_is_better is not. using default higher_is_better=True
39
+ Downloading readme: 100%|██████████| 35.3k/35.3k [00:00<00:00, 42.5MB/s]
40
+ Downloading data: 100%|██████████| 649k/649k [00:00<00:00, 4.44MB/s]
41
+ Downloading data: 100%|██████████| 75.7k/75.7k [00:00<00:00, 513kB/s]
42
+ Downloading data: 100%|██████████| 308k/308k [00:00<00:00, 1.43MB/s]
43
+ Generating train split: 100%|██████████| 3668/3668 [00:00<00:00, 409930.91 examples/s]
44
+ Generating validation split: 100%|██████████| 408/408 [00:00<00:00, 174655.65 examples/s]
45
+ Generating test split: 100%|██████████| 1725/1725 [00:00<00:00, 384440.72 examples/s]
46
+ /usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for piqa contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/piqa
47
+ You can avoid this message in future by passing the argument `trust_remote_code=True`.
48
+ Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
49
+ warnings.warn(
50
+ Downloading builder script: 100%|██████████| 5.36k/5.36k [00:00<00:00, 12.1MB/s]
51
+ Downloading readme: 100%|██████████| 8.41k/8.41k [00:00<00:00, 17.3MB/s]
52
+ Downloading data: 100%|██████████| 1.82M/1.82M [00:00<00:00, 4.17MB/s]
53
+ Downloading data: 100%|██████████| 815k/815k [00:00<00:00, 23.8MB/s]
54
+ Generating train split: 100%|██████████| 16113/16113 [00:00<00:00, 24119.62 examples/s]
55
+ Generating test split: 100%|██████████| 3084/3084 [00:00<00:00, 24246.44 examples/s]
56
+ Generating validation split: 100%|██████████| 1838/1838 [00:00<00:00, 24180.73 examples/s]
57
+ 2024-05-30:13:00:26,733 WARNING [task.py:763] [Task: sst2] metric acc is defined, but aggregation is not. using default aggregation=mean
58
+ 2024-05-30:13:00:26,733 WARNING [task.py:775] [Task: sst2] metric acc is defined, but higher_is_better is not. using default higher_is_better=True
59
+ Downloading data: 100%|██████████| 3.11M/3.11M [00:00<00:00, 21.0MB/s]
60
+ Downloading data: 100%|██████████| 72.8k/72.8k [00:00<00:00, 510kB/s]
61
+ Downloading data: 100%|██████████| 148k/148k [00:00<00:00, 1.02MB/s]
62
+ Generating train split: 100%|██████████| 67349/67349 [00:00<00:00, 1427196.66 examples/s]
63
+ Generating validation split: 100%|██████████| 872/872 [00:00<00:00, 378107.42 examples/s]
64
+ Generating test split: 100%|██████████| 1821/1821 [00:00<00:00, 413414.21 examples/s]
65
+ /usr/local/lib/python3.10/dist-packages/datasets/load.py:1486: FutureWarning: The repository for winogrande contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/winogrande
66
+ You can avoid this message in future by passing the argument `trust_remote_code=True`.
67
+ Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
68
+ warnings.warn(
69
+ Downloading builder script: 100%|██████████| 5.65k/5.65k [00:00<00:00, 12.4MB/s]
70
+ Downloading readme: 100%|██████████| 9.97k/9.97k [00:00<00:00, 20.5MB/s]
71
+ Downloading data: 100%|██████████| 3.40M/3.40M [00:00<00:00, 7.08MB/s]
72
+ Generating train split: 100%|██████████| 40398/40398 [00:01<00:00, 24456.13 examples/s]
73
+ Generating test split: 100%|██████████| 1767/1767 [00:00<00:00, 24232.17 examples/s]
74
+ Generating validation split: 100%|██████████| 1267/1267 [00:00<00:00, 23665.92 examples/s]
75
+ 2024-05-30:13:00:39,614 INFO [task.py:395] Building contexts for winogrande on rank 0...
76
+ 100%|██████████| 1267/1267 [00:00<00:00, 67713.85it/s]
77
+ 2024-05-30:13:00:39,696 INFO [task.py:395] Building contexts for sst2 on rank 0...
78
+ 100%|██████████| 872/872 [00:00<00:00, 2590.42it/s]
79
+ 2024-05-30:13:00:40,061 INFO [task.py:395] Building contexts for piqa on rank 0...
80
+ 100%|██████████| 1838/1838 [00:01<00:00, 1096.81it/s]
81
+ 2024-05-30:13:00:41,812 INFO [task.py:395] Building contexts for mrpc on rank 0...
82
+ 100%|██████████| 408/408 [00:00<00:00, 1914.16it/s]
83
+ 2024-05-30:13:00:42,044 INFO [task.py:395] Building contexts for copa on rank 0...
84
+ 100%|██████████| 100/100 [00:00<00:00, 60707.83it/s]
85
+ 2024-05-30:13:00:42,052 INFO [task.py:395] Building contexts for boolq on rank 0...
86
+ 100%|██████████| 3270/3270 [00:01<00:00, 1948.70it/s]
87
+ 2024-05-30:13:00:43,861 INFO [task.py:395] Building contexts for arc_easy on rank 0...
88
+ 100%|██████████| 2376/2376 [00:02<00:00, 1078.90it/s]
89
+ 2024-05-30:13:00:46,207 INFO [evaluator.py:379] Running loglikelihood requests
90
+ Token indices sequence length is longer than the specified maximum sequence length for this model (1333 > 1024). Running this sequence through the model will result in indexing errors
91
+ Running loglikelihood requests: 0%| | 0/25011 [00:00<?, ?it/s]
92
+ Passed argument batch_size = auto:1. Detecting largest batch size
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+ Running loglikelihood requests: 100%|██████████| 25011/25011 [55:51<00:00, 7.46it/s]
576
+ bootstrapping for stddev: f1_score
577
+
578
+
579
+ 100%|██████████| 100/100 [02:10<00:00, 1.31s/it]
580
+ hf (pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (64)
581
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
582
+ |----------|------:|------|-----:|--------|-----:|---|-----:|
583
+ |winogrande| 1|none | 0|acc |0.4862|± |0.0140|
584
+ |sst2 | 1|none | 0|acc |0.4966|± |0.0169|
585
+ |piqa | 1|none | 0|acc |0.5136|± |0.0117|
586
+ | | |none | 0|acc_norm|0.4826|± |0.0117|
587
+ |mrpc | 1|none | 0|acc |0.3162|± |0.0230|
588
+ | | |none | 0|f1 |0.0000|± |0.0000|
589
+ |copa | 1|none | 0|acc |0.6000|± |0.0492|
590
+ |boolq | 2|none | 0|acc |0.3777|± |0.0085|
591
+ |arc_easy | 1|none | 0|acc |0.2529|± |0.0089|
592
+ | | |none | 0|acc_norm|0.2534|± |0.0089|
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/requirements.txt ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DataProperty==1.0.1
2
+ GitPython==3.1.43
3
+ Jinja2==3.1.3
4
+ Markdown==3.6
5
+ MarkupSafe==2.1.5
6
+ Pillow-SIMD==7.0.0.post3
7
+ PyYAML==6.0
8
+ Werkzeug==3.0.2
9
+ absl-py==2.1.0
10
+ accelerate==0.30.1
11
+ aiohttp==3.9.4
12
+ aiosignal==1.3.1
13
+ async-timeout==4.0.3
14
+ attrs==23.2.0
15
+ av==9.2.0
16
+ cachetools==5.3.3
17
+ certifi==2024.2.2
18
+ cffi==1.15.1
19
+ cfgv==3.4.0
20
+ chardet==5.2.0
21
+ charset-normalizer==3.3.2
22
+ click==8.1.7
23
+ cmake==3.29.2
24
+ colorama==0.4.6
25
+ datasets==2.19.1
26
+ deepspeed==0.12.4+hpu.synapse.v1.15.1
27
+ dill==0.3.8
28
+ distlib==0.3.8
29
+ docker-pycreds==0.4.0
30
+ einops==0.8.0
31
+ evaluate==0.4.2
32
+ exceptiongroup==1.2.0
33
+ expecttest==0.2.1
34
+ filelock==3.13.4
35
+ frozenlist==1.4.1
36
+ fsspec==2024.3.1
37
+ gitdb==4.0.11
38
+ google-auth-oauthlib==0.4.6
39
+ google-auth==2.29.0
40
+ grpcio==1.62.1
41
+ habana-media-loader==1.15.1.15
42
+ habana-pyhlml==1.15.1.15
43
+ habana-torch-dataloader==1.15.1.15
44
+ habana-torch-plugin==1.15.1.15
45
+ habana_gpu_migration==1.15.1.15
46
+ habana_quantization_toolkit==1.15.1.15
47
+ hjson==3.1.0
48
+ huggingface-hub==0.23.2
49
+ identify==2.5.35
50
+ idna==3.7
51
+ iniconfig==2.0.0
52
+ joblib==1.4.2
53
+ jsonlines==4.0.0
54
+ lightning-habana==1.4.0
55
+ lightning-utilities==0.11.2
56
+ lightning==2.2.0.post0
57
+ lm_eval==0.4.2
58
+ lm_eval==0.4.2
59
+ lm_eval==0.4.2
60
+ lxml==5.2.2
61
+ mbstrdecoder==1.1.3
62
+ more-itertools==10.2.0
63
+ mpi4py==3.1.4
64
+ mpmath==1.3.0
65
+ multidict==6.0.5
66
+ multiprocess==0.70.16
67
+ networkx==3.3
68
+ ninja==1.11.1.1
69
+ nltk==3.8.1
70
+ nodeenv==1.8.0
71
+ numexpr==2.10.0
72
+ numpy==1.23.5
73
+ oauthlib==3.2.2
74
+ packaging==24.0
75
+ pandas==2.0.1
76
+ pathspec==0.12.1
77
+ pathvalidate==3.2.0
78
+ peft==0.11.1
79
+ perfetto==0.7.0
80
+ pip==22.0.2
81
+ pip==23.3.1
82
+ platformdirs==4.2.0
83
+ pluggy==1.4.0
84
+ portalocker==2.8.2
85
+ pre-commit==3.3.3
86
+ protobuf==3.20.3
87
+ psutil==5.9.8
88
+ py-cpuinfo==9.0.0
89
+ pyarrow-hotfix==0.6
90
+ pyarrow==16.1.0
91
+ pyasn1==0.6.0
92
+ pyasn1_modules==0.4.0
93
+ pybind11==2.10.4
94
+ pycparser==2.22
95
+ pydantic==1.10.13
96
+ pynvml==8.0.4
97
+ pytablewriter==1.2.0
98
+ pytest==8.1.1
99
+ python-dateutil==2.9.0.post0
100
+ pytorch-lightning==2.2.2
101
+ pytz==2024.1
102
+ regex==2023.5.5
103
+ requests-oauthlib==2.0.0
104
+ requests==2.31.0
105
+ rouge_score==0.1.2
106
+ rsa==4.9
107
+ sacrebleu==2.4.2
108
+ safetensors==0.4.3
109
+ scikit-learn==1.5.0
110
+ scipy==1.13.1
111
+ sentencepiece==0.2.0
112
+ sentry-sdk==2.3.1
113
+ setproctitle==1.3.3
114
+ setuptools==59.6.0
115
+ setuptools==69.5.1
116
+ six==1.16.0
117
+ smmap==5.0.1
118
+ sqlitedict==2.1.0
119
+ symengine==0.11.0
120
+ sympy==1.12
121
+ tabledata==1.3.3
122
+ tabulate==0.9.0
123
+ tcolorpy==0.1.6
124
+ tdqm==0.0.1
125
+ tensorboard-data-server==0.6.1
126
+ tensorboard-plugin-wit==1.8.1
127
+ tensorboard==2.11.2
128
+ threadpoolctl==3.5.0
129
+ tokenizers==0.15.2
130
+ tomli==2.0.1
131
+ torch==2.2.0a0+git8964477
132
+ torch_tb_profiler==0.4.0
133
+ torchaudio==2.2.0+08901ad
134
+ torchdata==0.7.1+5e6f7b7
135
+ torchmetrics==1.3.2
136
+ torchtext==0.17.0+400da5c
137
+ torchvision==0.17.0+b2383d4
138
+ tqdm-multiprocess==0.0.11
139
+ tqdm==4.66.2
140
+ transformers==4.36.2
141
+ typepy==1.3.2
142
+ typing_extensions==4.11.0
143
+ tzdata==2024.1
144
+ urllib3==1.26.18
145
+ virtualenv==20.25.1
146
+ wandb==0.17.0
147
+ wheel==0.37.1
148
+ wheel==0.43.0
149
+ word2number==1.1
150
+ xxhash==3.4.1
151
+ yamllint==1.35.1
152
+ yarl==1.9.4
153
+ zstandard==0.22.0
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/wandb-metadata.json ADDED
@@ -0,0 +1,850 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
3
+ "python": "3.10.12",
4
+ "heartbeatAt": "2024-05-30T12:59:28.263936",
5
+ "startedAt": "2024-05-30T12:59:27.773552",
6
+ "docker": null,
7
+ "cuda": null,
8
+ "args": [
9
+ "--model",
10
+ "hf",
11
+ "--model_args",
12
+ "pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer",
13
+ "--tasks",
14
+ "winogrande,sst2,mrpc,arc_easy,copa,piqa,boolq",
15
+ "--batch_size",
16
+ "auto",
17
+ "--wandb_args",
18
+ "project=english-eval,group=exp2,name=global_step70000"
19
+ ],
20
+ "state": "running",
21
+ "program": "-m lm_eval.__main__",
22
+ "codePathLocal": null,
23
+ "git": {
24
+ "remote": "https://github.com/EleutherAI/lm-evaluation-harness",
25
+ "commit": null
26
+ },
27
+ "email": null,
28
+ "root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
29
+ "host": "peacock-evaluation-debug-35-worker-0",
30
+ "username": "root",
31
+ "executable": "/usr/bin/python3",
32
+ "cpu_count": 80,
33
+ "cpu_count_logical": 160,
34
+ "cpu_freq": {
35
+ "current": 2366.7911937500003,
36
+ "min": 800.0,
37
+ "max": 3400.0
38
+ },
39
+ "cpu_freq_per_core": [
40
+ {
41
+ "current": 3400.0,
42
+ "min": 800.0,
43
+ "max": 3400.0
44
+ },
45
+ {
46
+ "current": 3400.0,
47
+ "min": 800.0,
48
+ "max": 3400.0
49
+ },
50
+ {
51
+ "current": 2300.0,
52
+ "min": 800.0,
53
+ "max": 3400.0
54
+ },
55
+ {
56
+ "current": 2300.0,
57
+ "min": 800.0,
58
+ "max": 3400.0
59
+ },
60
+ {
61
+ "current": 2300.0,
62
+ "min": 800.0,
63
+ "max": 3400.0
64
+ },
65
+ {
66
+ "current": 2300.0,
67
+ "min": 800.0,
68
+ "max": 3400.0
69
+ },
70
+ {
71
+ "current": 2300.0,
72
+ "min": 800.0,
73
+ "max": 3400.0
74
+ },
75
+ {
76
+ "current": 2300.0,
77
+ "min": 800.0,
78
+ "max": 3400.0
79
+ },
80
+ {
81
+ "current": 2300.0,
82
+ "min": 800.0,
83
+ "max": 3400.0
84
+ },
85
+ {
86
+ "current": 2300.0,
87
+ "min": 800.0,
88
+ "max": 3400.0
89
+ },
90
+ {
91
+ "current": 2300.0,
92
+ "min": 800.0,
93
+ "max": 3400.0
94
+ },
95
+ {
96
+ "current": 2300.0,
97
+ "min": 800.0,
98
+ "max": 3400.0
99
+ },
100
+ {
101
+ "current": 2300.0,
102
+ "min": 800.0,
103
+ "max": 3400.0
104
+ },
105
+ {
106
+ "current": 2300.0,
107
+ "min": 800.0,
108
+ "max": 3400.0
109
+ },
110
+ {
111
+ "current": 2300.0,
112
+ "min": 800.0,
113
+ "max": 3400.0
114
+ },
115
+ {
116
+ "current": 2300.0,
117
+ "min": 800.0,
118
+ "max": 3400.0
119
+ },
120
+ {
121
+ "current": 2300.0,
122
+ "min": 800.0,
123
+ "max": 3400.0
124
+ },
125
+ {
126
+ "current": 2300.0,
127
+ "min": 800.0,
128
+ "max": 3400.0
129
+ },
130
+ {
131
+ "current": 2300.0,
132
+ "min": 800.0,
133
+ "max": 3400.0
134
+ },
135
+ {
136
+ "current": 2300.0,
137
+ "min": 800.0,
138
+ "max": 3400.0
139
+ },
140
+ {
141
+ "current": 2300.0,
142
+ "min": 800.0,
143
+ "max": 3400.0
144
+ },
145
+ {
146
+ "current": 2300.0,
147
+ "min": 800.0,
148
+ "max": 3400.0
149
+ },
150
+ {
151
+ "current": 2300.0,
152
+ "min": 800.0,
153
+ "max": 3400.0
154
+ },
155
+ {
156
+ "current": 2300.0,
157
+ "min": 800.0,
158
+ "max": 3400.0
159
+ },
160
+ {
161
+ "current": 2300.0,
162
+ "min": 800.0,
163
+ "max": 3400.0
164
+ },
165
+ {
166
+ "current": 2300.0,
167
+ "min": 800.0,
168
+ "max": 3400.0
169
+ },
170
+ {
171
+ "current": 2300.0,
172
+ "min": 800.0,
173
+ "max": 3400.0
174
+ },
175
+ {
176
+ "current": 2300.0,
177
+ "min": 800.0,
178
+ "max": 3400.0
179
+ },
180
+ {
181
+ "current": 2300.0,
182
+ "min": 800.0,
183
+ "max": 3400.0
184
+ },
185
+ {
186
+ "current": 2300.0,
187
+ "min": 800.0,
188
+ "max": 3400.0
189
+ },
190
+ {
191
+ "current": 2300.0,
192
+ "min": 800.0,
193
+ "max": 3400.0
194
+ },
195
+ {
196
+ "current": 2300.0,
197
+ "min": 800.0,
198
+ "max": 3400.0
199
+ },
200
+ {
201
+ "current": 2300.0,
202
+ "min": 800.0,
203
+ "max": 3400.0
204
+ },
205
+ {
206
+ "current": 2300.0,
207
+ "min": 800.0,
208
+ "max": 3400.0
209
+ },
210
+ {
211
+ "current": 2300.0,
212
+ "min": 800.0,
213
+ "max": 3400.0
214
+ },
215
+ {
216
+ "current": 2300.0,
217
+ "min": 800.0,
218
+ "max": 3400.0
219
+ },
220
+ {
221
+ "current": 2300.0,
222
+ "min": 800.0,
223
+ "max": 3400.0
224
+ },
225
+ {
226
+ "current": 2300.0,
227
+ "min": 800.0,
228
+ "max": 3400.0
229
+ },
230
+ {
231
+ "current": 2300.0,
232
+ "min": 800.0,
233
+ "max": 3400.0
234
+ },
235
+ {
236
+ "current": 2300.0,
237
+ "min": 800.0,
238
+ "max": 3400.0
239
+ },
240
+ {
241
+ "current": 3400.0,
242
+ "min": 800.0,
243
+ "max": 3400.0
244
+ },
245
+ {
246
+ "current": 2300.0,
247
+ "min": 800.0,
248
+ "max": 3400.0
249
+ },
250
+ {
251
+ "current": 2300.0,
252
+ "min": 800.0,
253
+ "max": 3400.0
254
+ },
255
+ {
256
+ "current": 2300.0,
257
+ "min": 800.0,
258
+ "max": 3400.0
259
+ },
260
+ {
261
+ "current": 2300.0,
262
+ "min": 800.0,
263
+ "max": 3400.0
264
+ },
265
+ {
266
+ "current": 2300.0,
267
+ "min": 800.0,
268
+ "max": 3400.0
269
+ },
270
+ {
271
+ "current": 2300.0,
272
+ "min": 800.0,
273
+ "max": 3400.0
274
+ },
275
+ {
276
+ "current": 2300.0,
277
+ "min": 800.0,
278
+ "max": 3400.0
279
+ },
280
+ {
281
+ "current": 2300.0,
282
+ "min": 800.0,
283
+ "max": 3400.0
284
+ },
285
+ {
286
+ "current": 2300.0,
287
+ "min": 800.0,
288
+ "max": 3400.0
289
+ },
290
+ {
291
+ "current": 2300.0,
292
+ "min": 800.0,
293
+ "max": 3400.0
294
+ },
295
+ {
296
+ "current": 2300.0,
297
+ "min": 800.0,
298
+ "max": 3400.0
299
+ },
300
+ {
301
+ "current": 2300.0,
302
+ "min": 800.0,
303
+ "max": 3400.0
304
+ },
305
+ {
306
+ "current": 2300.0,
307
+ "min": 800.0,
308
+ "max": 3400.0
309
+ },
310
+ {
311
+ "current": 2300.0,
312
+ "min": 800.0,
313
+ "max": 3400.0
314
+ },
315
+ {
316
+ "current": 2300.0,
317
+ "min": 800.0,
318
+ "max": 3400.0
319
+ },
320
+ {
321
+ "current": 2300.0,
322
+ "min": 800.0,
323
+ "max": 3400.0
324
+ },
325
+ {
326
+ "current": 2300.0,
327
+ "min": 800.0,
328
+ "max": 3400.0
329
+ },
330
+ {
331
+ "current": 2300.0,
332
+ "min": 800.0,
333
+ "max": 3400.0
334
+ },
335
+ {
336
+ "current": 2300.0,
337
+ "min": 800.0,
338
+ "max": 3400.0
339
+ },
340
+ {
341
+ "current": 2300.0,
342
+ "min": 800.0,
343
+ "max": 3400.0
344
+ },
345
+ {
346
+ "current": 2300.0,
347
+ "min": 800.0,
348
+ "max": 3400.0
349
+ },
350
+ {
351
+ "current": 2300.0,
352
+ "min": 800.0,
353
+ "max": 3400.0
354
+ },
355
+ {
356
+ "current": 2300.0,
357
+ "min": 800.0,
358
+ "max": 3400.0
359
+ },
360
+ {
361
+ "current": 2300.0,
362
+ "min": 800.0,
363
+ "max": 3400.0
364
+ },
365
+ {
366
+ "current": 2300.0,
367
+ "min": 800.0,
368
+ "max": 3400.0
369
+ },
370
+ {
371
+ "current": 2300.0,
372
+ "min": 800.0,
373
+ "max": 3400.0
374
+ },
375
+ {
376
+ "current": 2300.0,
377
+ "min": 800.0,
378
+ "max": 3400.0
379
+ },
380
+ {
381
+ "current": 2300.0,
382
+ "min": 800.0,
383
+ "max": 3400.0
384
+ },
385
+ {
386
+ "current": 2300.0,
387
+ "min": 800.0,
388
+ "max": 3400.0
389
+ },
390
+ {
391
+ "current": 2300.0,
392
+ "min": 800.0,
393
+ "max": 3400.0
394
+ },
395
+ {
396
+ "current": 2300.0,
397
+ "min": 800.0,
398
+ "max": 3400.0
399
+ },
400
+ {
401
+ "current": 2300.0,
402
+ "min": 800.0,
403
+ "max": 3400.0
404
+ },
405
+ {
406
+ "current": 2300.0,
407
+ "min": 800.0,
408
+ "max": 3400.0
409
+ },
410
+ {
411
+ "current": 2300.0,
412
+ "min": 800.0,
413
+ "max": 3400.0
414
+ },
415
+ {
416
+ "current": 2300.0,
417
+ "min": 800.0,
418
+ "max": 3400.0
419
+ },
420
+ {
421
+ "current": 2300.0,
422
+ "min": 800.0,
423
+ "max": 3400.0
424
+ },
425
+ {
426
+ "current": 2300.0,
427
+ "min": 800.0,
428
+ "max": 3400.0
429
+ },
430
+ {
431
+ "current": 2300.0,
432
+ "min": 800.0,
433
+ "max": 3400.0
434
+ },
435
+ {
436
+ "current": 2300.0,
437
+ "min": 800.0,
438
+ "max": 3400.0
439
+ },
440
+ {
441
+ "current": 3400.0,
442
+ "min": 800.0,
443
+ "max": 3400.0
444
+ },
445
+ {
446
+ "current": 2300.0,
447
+ "min": 800.0,
448
+ "max": 3400.0
449
+ },
450
+ {
451
+ "current": 2300.0,
452
+ "min": 800.0,
453
+ "max": 3400.0
454
+ },
455
+ {
456
+ "current": 2300.0,
457
+ "min": 800.0,
458
+ "max": 3400.0
459
+ },
460
+ {
461
+ "current": 2300.0,
462
+ "min": 800.0,
463
+ "max": 3400.0
464
+ },
465
+ {
466
+ "current": 2300.0,
467
+ "min": 800.0,
468
+ "max": 3400.0
469
+ },
470
+ {
471
+ "current": 2300.0,
472
+ "min": 800.0,
473
+ "max": 3400.0
474
+ },
475
+ {
476
+ "current": 2300.0,
477
+ "min": 800.0,
478
+ "max": 3400.0
479
+ },
480
+ {
481
+ "current": 2300.0,
482
+ "min": 800.0,
483
+ "max": 3400.0
484
+ },
485
+ {
486
+ "current": 2300.0,
487
+ "min": 800.0,
488
+ "max": 3400.0
489
+ },
490
+ {
491
+ "current": 2300.0,
492
+ "min": 800.0,
493
+ "max": 3400.0
494
+ },
495
+ {
496
+ "current": 2300.0,
497
+ "min": 800.0,
498
+ "max": 3400.0
499
+ },
500
+ {
501
+ "current": 2300.0,
502
+ "min": 800.0,
503
+ "max": 3400.0
504
+ },
505
+ {
506
+ "current": 2300.0,
507
+ "min": 800.0,
508
+ "max": 3400.0
509
+ },
510
+ {
511
+ "current": 2300.0,
512
+ "min": 800.0,
513
+ "max": 3400.0
514
+ },
515
+ {
516
+ "current": 2300.0,
517
+ "min": 800.0,
518
+ "max": 3400.0
519
+ },
520
+ {
521
+ "current": 2300.0,
522
+ "min": 800.0,
523
+ "max": 3400.0
524
+ },
525
+ {
526
+ "current": 2300.0,
527
+ "min": 800.0,
528
+ "max": 3400.0
529
+ },
530
+ {
531
+ "current": 2300.0,
532
+ "min": 800.0,
533
+ "max": 3400.0
534
+ },
535
+ {
536
+ "current": 2300.0,
537
+ "min": 800.0,
538
+ "max": 3400.0
539
+ },
540
+ {
541
+ "current": 2300.0,
542
+ "min": 800.0,
543
+ "max": 3400.0
544
+ },
545
+ {
546
+ "current": 2300.0,
547
+ "min": 800.0,
548
+ "max": 3400.0
549
+ },
550
+ {
551
+ "current": 2300.0,
552
+ "min": 800.0,
553
+ "max": 3400.0
554
+ },
555
+ {
556
+ "current": 2300.0,
557
+ "min": 800.0,
558
+ "max": 3400.0
559
+ },
560
+ {
561
+ "current": 2300.0,
562
+ "min": 800.0,
563
+ "max": 3400.0
564
+ },
565
+ {
566
+ "current": 2300.0,
567
+ "min": 800.0,
568
+ "max": 3400.0
569
+ },
570
+ {
571
+ "current": 2300.0,
572
+ "min": 800.0,
573
+ "max": 3400.0
574
+ },
575
+ {
576
+ "current": 2300.0,
577
+ "min": 800.0,
578
+ "max": 3400.0
579
+ },
580
+ {
581
+ "current": 2300.0,
582
+ "min": 800.0,
583
+ "max": 3400.0
584
+ },
585
+ {
586
+ "current": 2300.0,
587
+ "min": 800.0,
588
+ "max": 3400.0
589
+ },
590
+ {
591
+ "current": 2300.0,
592
+ "min": 800.0,
593
+ "max": 3400.0
594
+ },
595
+ {
596
+ "current": 2300.0,
597
+ "min": 800.0,
598
+ "max": 3400.0
599
+ },
600
+ {
601
+ "current": 2300.0,
602
+ "min": 800.0,
603
+ "max": 3400.0
604
+ },
605
+ {
606
+ "current": 2300.0,
607
+ "min": 800.0,
608
+ "max": 3400.0
609
+ },
610
+ {
611
+ "current": 2300.0,
612
+ "min": 800.0,
613
+ "max": 3400.0
614
+ },
615
+ {
616
+ "current": 2300.0,
617
+ "min": 800.0,
618
+ "max": 3400.0
619
+ },
620
+ {
621
+ "current": 2300.0,
622
+ "min": 800.0,
623
+ "max": 3400.0
624
+ },
625
+ {
626
+ "current": 2300.0,
627
+ "min": 800.0,
628
+ "max": 3400.0
629
+ },
630
+ {
631
+ "current": 2300.0,
632
+ "min": 800.0,
633
+ "max": 3400.0
634
+ },
635
+ {
636
+ "current": 2300.0,
637
+ "min": 800.0,
638
+ "max": 3400.0
639
+ },
640
+ {
641
+ "current": 2300.0,
642
+ "min": 800.0,
643
+ "max": 3400.0
644
+ },
645
+ {
646
+ "current": 2300.0,
647
+ "min": 800.0,
648
+ "max": 3400.0
649
+ },
650
+ {
651
+ "current": 2300.0,
652
+ "min": 800.0,
653
+ "max": 3400.0
654
+ },
655
+ {
656
+ "current": 2300.0,
657
+ "min": 800.0,
658
+ "max": 3400.0
659
+ },
660
+ {
661
+ "current": 2300.0,
662
+ "min": 800.0,
663
+ "max": 3400.0
664
+ },
665
+ {
666
+ "current": 2300.0,
667
+ "min": 800.0,
668
+ "max": 3400.0
669
+ },
670
+ {
671
+ "current": 2300.0,
672
+ "min": 800.0,
673
+ "max": 3400.0
674
+ },
675
+ {
676
+ "current": 2300.0,
677
+ "min": 800.0,
678
+ "max": 3400.0
679
+ },
680
+ {
681
+ "current": 2300.0,
682
+ "min": 800.0,
683
+ "max": 3400.0
684
+ },
685
+ {
686
+ "current": 2300.0,
687
+ "min": 800.0,
688
+ "max": 3400.0
689
+ },
690
+ {
691
+ "current": 2300.0,
692
+ "min": 800.0,
693
+ "max": 3400.0
694
+ },
695
+ {
696
+ "current": 2300.0,
697
+ "min": 800.0,
698
+ "max": 3400.0
699
+ },
700
+ {
701
+ "current": 2300.0,
702
+ "min": 800.0,
703
+ "max": 3400.0
704
+ },
705
+ {
706
+ "current": 2300.0,
707
+ "min": 800.0,
708
+ "max": 3400.0
709
+ },
710
+ {
711
+ "current": 2300.0,
712
+ "min": 800.0,
713
+ "max": 3400.0
714
+ },
715
+ {
716
+ "current": 2300.0,
717
+ "min": 800.0,
718
+ "max": 3400.0
719
+ },
720
+ {
721
+ "current": 2300.0,
722
+ "min": 800.0,
723
+ "max": 3400.0
724
+ },
725
+ {
726
+ "current": 2300.0,
727
+ "min": 800.0,
728
+ "max": 3400.0
729
+ },
730
+ {
731
+ "current": 2300.0,
732
+ "min": 800.0,
733
+ "max": 3400.0
734
+ },
735
+ {
736
+ "current": 2300.0,
737
+ "min": 800.0,
738
+ "max": 3400.0
739
+ },
740
+ {
741
+ "current": 2300.0,
742
+ "min": 800.0,
743
+ "max": 3400.0
744
+ },
745
+ {
746
+ "current": 2300.0,
747
+ "min": 800.0,
748
+ "max": 3400.0
749
+ },
750
+ {
751
+ "current": 2300.0,
752
+ "min": 800.0,
753
+ "max": 3400.0
754
+ },
755
+ {
756
+ "current": 2300.0,
757
+ "min": 800.0,
758
+ "max": 3400.0
759
+ },
760
+ {
761
+ "current": 2300.0,
762
+ "min": 800.0,
763
+ "max": 3400.0
764
+ },
765
+ {
766
+ "current": 2300.0,
767
+ "min": 800.0,
768
+ "max": 3400.0
769
+ },
770
+ {
771
+ "current": 2300.0,
772
+ "min": 800.0,
773
+ "max": 3400.0
774
+ },
775
+ {
776
+ "current": 2300.0,
777
+ "min": 800.0,
778
+ "max": 3400.0
779
+ },
780
+ {
781
+ "current": 2300.0,
782
+ "min": 800.0,
783
+ "max": 3400.0
784
+ },
785
+ {
786
+ "current": 2300.0,
787
+ "min": 800.0,
788
+ "max": 3400.0
789
+ },
790
+ {
791
+ "current": 2300.0,
792
+ "min": 800.0,
793
+ "max": 3400.0
794
+ },
795
+ {
796
+ "current": 2300.0,
797
+ "min": 800.0,
798
+ "max": 3400.0
799
+ },
800
+ {
801
+ "current": 2300.0,
802
+ "min": 800.0,
803
+ "max": 3400.0
804
+ },
805
+ {
806
+ "current": 2300.0,
807
+ "min": 800.0,
808
+ "max": 3400.0
809
+ },
810
+ {
811
+ "current": 2300.0,
812
+ "min": 800.0,
813
+ "max": 3400.0
814
+ },
815
+ {
816
+ "current": 2300.0,
817
+ "min": 800.0,
818
+ "max": 3400.0
819
+ },
820
+ {
821
+ "current": 2300.0,
822
+ "min": 800.0,
823
+ "max": 3400.0
824
+ },
825
+ {
826
+ "current": 2300.0,
827
+ "min": 800.0,
828
+ "max": 3400.0
829
+ },
830
+ {
831
+ "current": 2300.0,
832
+ "min": 800.0,
833
+ "max": 3400.0
834
+ },
835
+ {
836
+ "current": 2300.0,
837
+ "min": 800.0,
838
+ "max": 3400.0
839
+ }
840
+ ],
841
+ "disk": {
842
+ "/": {
843
+ "total": 877.6341285705566,
844
+ "used": 192.04769897460938
845
+ }
846
+ },
847
+ "memory": {
848
+ "total": 1007.4379920959473
849
+ }
850
+ }
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/files/wandb-summary.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"winogrande/alias": "winogrande", "sst2/alias": "sst2", "piqa/alias": "piqa", "mrpc/alias": "mrpc", "copa/alias": "copa", "boolq/alias": "boolq", "arc_easy/alias": "arc_easy", "winogrande/acc": 0.4861878453038674, "winogrande/acc_stderr": 0.014047122916440422, "sst2/acc": 0.49655963302752293, "sst2/acc_stderr": 0.01694145263275272, "piqa/acc": 0.5136017410228509, "piqa/acc_stderr": 0.011661506839823784, "piqa/acc_norm": 0.48258977149075083, "piqa/acc_norm_stderr": 0.011658749823107691, "mrpc/acc": 0.3161764705882353, "mrpc/acc_stderr": 0.023048336668420193, "mrpc/f1": 0.0, "mrpc/f1_stderr": 0.0, "copa/acc": 0.6, "copa/acc_stderr": 0.04923659639173309, "boolq/acc": 0.37767584097859325, "boolq/acc_stderr": 0.008479309208281641, "arc_easy/acc": 0.2529461279461279, "arc_easy/acc_stderr": 0.008919862739165604, "arc_easy/acc_norm": 0.25336700336700335, "arc_easy/acc_norm_stderr": 0.008924765424529262, "_timestamp": 1717077579.812849, "_runtime": 3612.01855802536, "_step": 1, "evaluation/eval_results": {"_type": "table-file", "sha256": "9c87687b44ab0685fb7b82fd3443388298eab88292dc5e23c9e733bbb322fcf7", "size": 745, "artifact_path": "wandb-client-artifact://q2v1w3zvymy8k8uhe93sh5q1kn94qlo75741qs0gdb04jaxw3v7s6hsbks2131rq1h6xrs8d68kzir7yv1uaa3ngkqwebvmlsa8x6e5g2yqr8kiinzxbhs2f82ljl0z1/evaluation/eval_results.table.json", "_latest_artifact_path": "wandb-client-artifact://o4hc2so4usqygkby5rqx32e25cxz4719vlailyndzwfasbzvlvwgjwagn5u97f3crzvwj247srg4p977iahqwz9uj7pttf8o5so39ui7iwdgybxn8al5mp3hwsowe4wc:latest/evaluation/eval_results.table.json", "path": "media/table/evaluation/eval_results_1_9c87687b44ab0685fb7b.table.json", "ncols": 7, "nrows": 10}, "_wandb": {"runtime": 3611}}
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug.log ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
2
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Configure stats pid to 744
3
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
4
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
5
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
6
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
7
+ 2024-05-30 12:59:27,788 WARNING MainThread:744 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
8
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
9
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_setup.py:_flush():76] Applying login settings: {}
10
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug.log
11
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/logs/debug-internal.log
12
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:init():560] calling init triggers
13
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
14
+ config: {}
15
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:init():610] starting backend
16
+ 2024-05-30 12:59:27,788 INFO MainThread:744 [wandb_init.py:init():614] setting up manager
17
+ 2024-05-30 12:59:27,792 INFO MainThread:744 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
18
+ 2024-05-30 12:59:27,794 INFO MainThread:744 [wandb_init.py:init():622] backend started and connected
19
+ 2024-05-30 12:59:27,797 INFO MainThread:744 [wandb_init.py:init():711] updated telemetry
20
+ 2024-05-30 12:59:27,806 INFO MainThread:744 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
21
+ 2024-05-30 12:59:28,069 INFO MainThread:744 [wandb_run.py:_on_init():2396] communicating current version
22
+ 2024-05-30 12:59:28,181 INFO MainThread:744 [wandb_run.py:_on_init():2405] got version response
23
+ 2024-05-30 12:59:28,182 INFO MainThread:744 [wandb_init.py:init():795] starting run threads in backend
24
+ 2024-05-30 12:59:28,496 INFO MainThread:744 [wandb_run.py:_console_start():2374] atexit reg
25
+ 2024-05-30 12:59:28,496 INFO MainThread:744 [wandb_run.py:_redirect():2229] redirect: wrap_raw
26
+ 2024-05-30 12:59:28,496 INFO MainThread:744 [wandb_run.py:_redirect():2294] Wrapping output streams.
27
+ 2024-05-30 12:59:28,496 INFO MainThread:744 [wandb_run.py:_redirect():2319] Redirects installed.
28
+ 2024-05-30 12:59:28,497 INFO MainThread:744 [wandb_init.py:init():838] run started, returning control to user process
29
+ 2024-05-30 13:59:39,187 INFO MainThread:744 [wandb_run.py:_config_callback():1376] config_cb None None {'task_configs': {'arc_easy': {'task': 'arc_easy', 'group': ['ai2_arc'], 'dataset_path': 'allenai/ai2_arc', 'dataset_name': 'ARC-Easy', 'training_split': 'train', 'validation_split': 'validation', 'test_split': 'test', 'doc_to_text': 'Question: {{question}}\nAnswer:', 'doc_to_target': '{{choices.label.index(answerKey)}}', 'doc_to_choice': '{{choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'boolq': {'task': 'boolq', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'boolq', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{passage}}\nQuestion: {{question}}?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'passage', 'metadata': {'version': 2.0}}, 'copa': {'task': 'copa', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'copa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n # Drop the period\n connector = {\n "cause": "because",\n "effect": "therefore",\n }[doc["question"]]\n return doc["premise"].strip()[:-1] + f" {connector}"\n', 'doc_to_target': 'def doc_to_target(doc):\n correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]\n # Connect the sentences\n return " " + convert_choice(correct_choice)\n', 'doc_to_choice': 'def doc_to_choice(doc):\n return [" " + convert_choice(doc["choice1"]), " " + convert_choice(doc["choice2"])]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'mrpc': {'task': 'mrpc', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'mrpc', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}, {'metric': 'f1'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'piqa': {'task': 'piqa', 'dataset_path': 'piqa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Question: {{goal}}\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': '{{[sol1, sol2]}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'goal', 'metadata': {'version': 1.0}}, 'sst2': {'task': 'sst2', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'sst2', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['negative', 'positive'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'winogrande': {'task': 'winogrande', 'dataset_path': 'winogrande', 'dataset_name': 'winogrande_xl', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n answer_to_num = {"1": 0, "2": 1}\n return answer_to_num[doc["answer"]]\n', 'doc_to_target': 'def doc_to_target(doc):\n idx = doc["sentence"].index("_") + 1\n return doc["sentence"][idx:].strip()\n', 'doc_to_choice': 'def doc_to_choice(doc):\n idx = doc["sentence"].index("_")\n options = [doc["option1"], doc["option2"]]\n return [doc["sentence"][:idx] + opt for opt in options]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'sentence', 'metadata': {'version': 1.0}}}, 'cli_configs': {'model': 'hf', 'model_args': 'pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer', 'batch_size': 'auto', 'batch_sizes': [64], 'device': None, 'use_cache': None, 'limit': None, 'bootstrap_iters': 100000, 'gen_kwargs': None}}
30
+ 2024-05-30 13:59:40,118 INFO MainThread:744 [wandb_run.py:_finish():2103] finishing run smlgenai/english-eval/wg4623zd
31
+ 2024-05-30 13:59:40,118 INFO MainThread:744 [wandb_run.py:_atexit_cleanup():2343] got exitcode: 0
32
+ 2024-05-30 13:59:40,118 INFO MainThread:744 [wandb_run.py:_restore():2326] restore
33
+ 2024-05-30 13:59:40,139 INFO MainThread:744 [wandb_run.py:_restore():2332] restore done
34
+ 2024-05-30 13:59:46,205 INFO MainThread:744 [wandb_run.py:_footer_history_summary_info():3994] rendering history
35
+ 2024-05-30 13:59:46,206 INFO MainThread:744 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
36
+ 2024-05-30 13:59:46,212 INFO MainThread:744 [wandb_run.py:_footer_sync_info():3953] logging synced files
lm-evaluation-harness/wandb/run-20240530_125927-wg4623zd/run-wg4623zd.wandb ADDED
Binary file (966 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/align/__init__.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_torch_available,
20
+ )
21
+
22
+
23
+ _import_structure = {
24
+ "configuration_align": [
25
+ "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP",
26
+ "AlignConfig",
27
+ "AlignTextConfig",
28
+ "AlignVisionConfig",
29
+ ],
30
+ "processing_align": ["AlignProcessor"],
31
+ }
32
+
33
+ try:
34
+ if not is_torch_available():
35
+ raise OptionalDependencyNotAvailable()
36
+ except OptionalDependencyNotAvailable:
37
+ pass
38
+ else:
39
+ _import_structure["modeling_align"] = [
40
+ "ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST",
41
+ "AlignModel",
42
+ "AlignPreTrainedModel",
43
+ "AlignTextModel",
44
+ "AlignVisionModel",
45
+ ]
46
+
47
+ if TYPE_CHECKING:
48
+ from .configuration_align import (
49
+ ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP,
50
+ AlignConfig,
51
+ AlignTextConfig,
52
+ AlignVisionConfig,
53
+ )
54
+ from .processing_align import AlignProcessor
55
+
56
+ try:
57
+ if not is_torch_available():
58
+ raise OptionalDependencyNotAvailable()
59
+ except OptionalDependencyNotAvailable:
60
+ pass
61
+ else:
62
+ from .modeling_align import (
63
+ ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST,
64
+ AlignModel,
65
+ AlignPreTrainedModel,
66
+ AlignTextModel,
67
+ AlignVisionModel,
68
+ )
69
+
70
+ else:
71
+ import sys
72
+
73
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/align/convert_align_tf_to_hf.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert ALIGN checkpoints from the original repository."""
16
+
17
+ import argparse
18
+ import os
19
+
20
+ import align
21
+ import numpy as np
22
+ import requests
23
+ import tensorflow as tf
24
+ import torch
25
+ from PIL import Image
26
+ from tokenizer import Tokenizer
27
+
28
+ from transformers import (
29
+ AlignConfig,
30
+ AlignModel,
31
+ AlignProcessor,
32
+ BertConfig,
33
+ BertTokenizer,
34
+ EfficientNetConfig,
35
+ EfficientNetImageProcessor,
36
+ )
37
+ from transformers.utils import logging
38
+
39
+
40
+ logging.set_verbosity_info()
41
+ logger = logging.get_logger(__name__)
42
+
43
+
44
+ def preprocess(image):
45
+ image = tf.image.resize(image, (346, 346))
46
+ image = tf.image.crop_to_bounding_box(image, (346 - 289) // 2, (346 - 289) // 2, 289, 289)
47
+ return image
48
+
49
+
50
+ def get_align_config():
51
+ vision_config = EfficientNetConfig.from_pretrained("google/efficientnet-b7")
52
+ vision_config.image_size = 289
53
+ vision_config.hidden_dim = 640
54
+ vision_config.id2label = {"0": "LABEL_0", "1": "LABEL_1"}
55
+ vision_config.label2id = {"LABEL_0": 0, "LABEL_1": 1}
56
+ vision_config.depthwise_padding = []
57
+
58
+ text_config = BertConfig()
59
+ config = AlignConfig.from_text_vision_configs(
60
+ text_config=text_config, vision_config=vision_config, projection_dim=640
61
+ )
62
+ return config
63
+
64
+
65
+ # We will verify our results on an image of cute cats
66
+ def prepare_img():
67
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
68
+ im = Image.open(requests.get(url, stream=True).raw)
69
+ return im
70
+
71
+
72
+ def get_processor():
73
+ image_processor = EfficientNetImageProcessor(
74
+ do_center_crop=True,
75
+ rescale_factor=1 / 127.5,
76
+ rescale_offset=True,
77
+ do_normalize=False,
78
+ include_top=False,
79
+ resample=Image.BILINEAR,
80
+ )
81
+ tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
82
+ tokenizer.model_max_length = 64
83
+ processor = AlignProcessor(image_processor=image_processor, tokenizer=tokenizer)
84
+ return processor
85
+
86
+
87
+ # here we list all keys to be renamed (original name on the left, our name on the right)
88
+ def rename_keys(original_param_names):
89
+ # EfficientNet image encoder
90
+ block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
91
+ block_names = list(set(block_names))
92
+ block_names = sorted(block_names)
93
+ num_blocks = len(block_names)
94
+ block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
95
+
96
+ rename_keys = []
97
+ rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
98
+ rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
99
+ rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
100
+ rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
101
+ rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
102
+
103
+ for b in block_names:
104
+ hf_b = block_name_mapping[b]
105
+ rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
106
+ rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
107
+ rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
108
+ rename_keys.append(
109
+ (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
110
+ )
111
+ rename_keys.append(
112
+ (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
113
+ )
114
+ rename_keys.append(
115
+ (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
116
+ )
117
+ rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
118
+ rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
119
+ rename_keys.append(
120
+ (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
121
+ )
122
+ rename_keys.append(
123
+ (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
124
+ )
125
+
126
+ rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
127
+ rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
128
+ rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
129
+ rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
130
+ rename_keys.append(
131
+ (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
132
+ )
133
+ rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
134
+ rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
135
+ rename_keys.append(
136
+ (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
137
+ )
138
+ rename_keys.append(
139
+ (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
140
+ )
141
+
142
+ key_mapping = {}
143
+ for item in rename_keys:
144
+ if item[0] in original_param_names:
145
+ key_mapping[item[0]] = "vision_model." + item[1]
146
+
147
+ # BERT text encoder
148
+ rename_keys = []
149
+ old = "tf_bert_model/bert"
150
+ new = "text_model"
151
+ for i in range(12):
152
+ rename_keys.append(
153
+ (
154
+ f"{old}/encoder/layer_._{i}/attention/self/query/kernel:0",
155
+ f"{new}.encoder.layer.{i}.attention.self.query.weight",
156
+ )
157
+ )
158
+ rename_keys.append(
159
+ (
160
+ f"{old}/encoder/layer_._{i}/attention/self/query/bias:0",
161
+ f"{new}.encoder.layer.{i}.attention.self.query.bias",
162
+ )
163
+ )
164
+ rename_keys.append(
165
+ (
166
+ f"{old}/encoder/layer_._{i}/attention/self/key/kernel:0",
167
+ f"{new}.encoder.layer.{i}.attention.self.key.weight",
168
+ )
169
+ )
170
+ rename_keys.append(
171
+ (
172
+ f"{old}/encoder/layer_._{i}/attention/self/key/bias:0",
173
+ f"{new}.encoder.layer.{i}.attention.self.key.bias",
174
+ )
175
+ )
176
+ rename_keys.append(
177
+ (
178
+ f"{old}/encoder/layer_._{i}/attention/self/value/kernel:0",
179
+ f"{new}.encoder.layer.{i}.attention.self.value.weight",
180
+ )
181
+ )
182
+ rename_keys.append(
183
+ (
184
+ f"{old}/encoder/layer_._{i}/attention/self/value/bias:0",
185
+ f"{new}.encoder.layer.{i}.attention.self.value.bias",
186
+ )
187
+ )
188
+ rename_keys.append(
189
+ (
190
+ f"{old}/encoder/layer_._{i}/attention/output/dense/kernel:0",
191
+ f"{new}.encoder.layer.{i}.attention.output.dense.weight",
192
+ )
193
+ )
194
+ rename_keys.append(
195
+ (
196
+ f"{old}/encoder/layer_._{i}/attention/output/dense/bias:0",
197
+ f"{new}.encoder.layer.{i}.attention.output.dense.bias",
198
+ )
199
+ )
200
+ rename_keys.append(
201
+ (
202
+ f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/gamma:0",
203
+ f"{new}.encoder.layer.{i}.attention.output.LayerNorm.weight",
204
+ )
205
+ )
206
+ rename_keys.append(
207
+ (
208
+ f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/beta:0",
209
+ f"{new}.encoder.layer.{i}.attention.output.LayerNorm.bias",
210
+ )
211
+ )
212
+ rename_keys.append(
213
+ (
214
+ f"{old}/encoder/layer_._{i}/intermediate/dense/kernel:0",
215
+ f"{new}.encoder.layer.{i}.intermediate.dense.weight",
216
+ )
217
+ )
218
+ rename_keys.append(
219
+ (
220
+ f"{old}/encoder/layer_._{i}/intermediate/dense/bias:0",
221
+ f"{new}.encoder.layer.{i}.intermediate.dense.bias",
222
+ )
223
+ )
224
+ rename_keys.append(
225
+ (f"{old}/encoder/layer_._{i}/output/dense/kernel:0", f"{new}.encoder.layer.{i}.output.dense.weight")
226
+ )
227
+ rename_keys.append(
228
+ (f"{old}/encoder/layer_._{i}/output/dense/bias:0", f"{new}.encoder.layer.{i}.output.dense.bias")
229
+ )
230
+ rename_keys.append(
231
+ (f"{old}/encoder/layer_._{i}/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.output.LayerNorm.weight")
232
+ )
233
+ rename_keys.append(
234
+ (f"{old}/encoder/layer_._{i}/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.output.LayerNorm.bias")
235
+ )
236
+
237
+ rename_keys.append((f"{old}/embeddings/word_embeddings/weight:0", f"{new}.embeddings.word_embeddings.weight"))
238
+ rename_keys.append(
239
+ (f"{old}/embeddings/position_embeddings/embeddings:0", f"{new}.embeddings.position_embeddings.weight")
240
+ )
241
+ rename_keys.append(
242
+ (f"{old}/embeddings/token_type_embeddings/embeddings:0", f"{new}.embeddings.token_type_embeddings.weight")
243
+ )
244
+ rename_keys.append((f"{old}/embeddings/LayerNorm/gamma:0", f"{new}.embeddings.LayerNorm.weight"))
245
+ rename_keys.append((f"{old}/embeddings/LayerNorm/beta:0", f"{new}.embeddings.LayerNorm.bias"))
246
+
247
+ rename_keys.append((f"{old}/pooler/dense/kernel:0", f"{new}.pooler.dense.weight"))
248
+ rename_keys.append((f"{old}/pooler/dense/bias:0", f"{new}.pooler.dense.bias"))
249
+ rename_keys.append(("dense/kernel:0", "text_projection.weight"))
250
+ rename_keys.append(("dense/bias:0", "text_projection.bias"))
251
+ rename_keys.append(("dense/bias:0", "text_projection.bias"))
252
+ rename_keys.append(("temperature:0", "temperature"))
253
+
254
+ for item in rename_keys:
255
+ if item[0] in original_param_names:
256
+ key_mapping[item[0]] = item[1]
257
+ return key_mapping
258
+
259
+
260
+ def replace_params(hf_params, tf_params, key_mapping):
261
+ list(hf_params.keys())
262
+
263
+ for key, value in tf_params.items():
264
+ if key not in key_mapping:
265
+ continue
266
+
267
+ hf_key = key_mapping[key]
268
+ if "_conv" in key and "kernel" in key:
269
+ new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
270
+ elif "embeddings" in key:
271
+ new_hf_value = torch.from_numpy(value)
272
+ elif "depthwise_kernel" in key:
273
+ new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
274
+ elif "kernel" in key:
275
+ new_hf_value = torch.from_numpy(np.transpose(value))
276
+ elif "temperature" in key:
277
+ new_hf_value = value
278
+ elif "bn/gamma" or "bn/beta" in key:
279
+ new_hf_value = torch.from_numpy(np.transpose(value)).squeeze()
280
+ else:
281
+ new_hf_value = torch.from_numpy(value)
282
+
283
+ # Replace HF parameters with original TF model parameters
284
+ hf_params[hf_key].copy_(new_hf_value)
285
+
286
+
287
+ @torch.no_grad()
288
+ def convert_align_checkpoint(checkpoint_path, pytorch_dump_folder_path, save_model, push_to_hub):
289
+ """
290
+ Copy/paste/tweak model's weights to our ALIGN structure.
291
+ """
292
+ # Load original model
293
+ seq_length = 64
294
+ tok = Tokenizer(seq_length)
295
+ original_model = align.Align("efficientnet-b7", "bert-base", 640, seq_length, tok.get_vocab_size())
296
+ original_model.compile()
297
+ original_model.load_weights(checkpoint_path)
298
+
299
+ tf_params = original_model.trainable_variables
300
+ tf_non_train_params = original_model.non_trainable_variables
301
+ tf_params = {param.name: param.numpy() for param in tf_params}
302
+ for param in tf_non_train_params:
303
+ tf_params[param.name] = param.numpy()
304
+ tf_param_names = list(tf_params.keys())
305
+
306
+ # Load HuggingFace model
307
+ config = get_align_config()
308
+ hf_model = AlignModel(config).eval()
309
+ hf_params = hf_model.state_dict()
310
+
311
+ # Create src-to-dst parameter name mapping dictionary
312
+ print("Converting parameters...")
313
+ key_mapping = rename_keys(tf_param_names)
314
+ replace_params(hf_params, tf_params, key_mapping)
315
+
316
+ # Initialize processor
317
+ processor = get_processor()
318
+ inputs = processor(
319
+ images=prepare_img(), text="A picture of a cat", padding="max_length", max_length=64, return_tensors="pt"
320
+ )
321
+
322
+ # HF model inference
323
+ hf_model.eval()
324
+ with torch.no_grad():
325
+ outputs = hf_model(**inputs)
326
+
327
+ hf_image_features = outputs.image_embeds.detach().numpy()
328
+ hf_text_features = outputs.text_embeds.detach().numpy()
329
+
330
+ # Original model inference
331
+ original_model.trainable = False
332
+ tf_image_processor = EfficientNetImageProcessor(
333
+ do_center_crop=True,
334
+ do_rescale=False,
335
+ do_normalize=False,
336
+ include_top=False,
337
+ resample=Image.BILINEAR,
338
+ )
339
+ image = tf_image_processor(images=prepare_img(), return_tensors="tf", data_format="channels_last")["pixel_values"]
340
+ text = tok(tf.constant(["A picture of a cat"]))
341
+
342
+ image_features = original_model.image_encoder(image, training=False)
343
+ text_features = original_model.text_encoder(text, training=False)
344
+
345
+ image_features = tf.nn.l2_normalize(image_features, axis=-1)
346
+ text_features = tf.nn.l2_normalize(text_features, axis=-1)
347
+
348
+ # Check whether original and HF model outputs match -> np.allclose
349
+ if not np.allclose(image_features, hf_image_features, atol=1e-3):
350
+ raise ValueError("The predicted image features are not the same.")
351
+ if not np.allclose(text_features, hf_text_features, atol=1e-3):
352
+ raise ValueError("The predicted text features are not the same.")
353
+ print("Model outputs match!")
354
+
355
+ if save_model:
356
+ # Create folder to save model
357
+ if not os.path.isdir(pytorch_dump_folder_path):
358
+ os.mkdir(pytorch_dump_folder_path)
359
+ # Save converted model and image processor
360
+ hf_model.save_pretrained(pytorch_dump_folder_path)
361
+ processor.save_pretrained(pytorch_dump_folder_path)
362
+
363
+ if push_to_hub:
364
+ # Push model and image processor to hub
365
+ print("Pushing converted ALIGN to the hub...")
366
+ processor.push_to_hub("align-base")
367
+ hf_model.push_to_hub("align-base")
368
+
369
+
370
+ if __name__ == "__main__":
371
+ parser = argparse.ArgumentParser()
372
+ # Required parameters
373
+ parser.add_argument(
374
+ "--checkpoint_path",
375
+ default="./weights/model-weights",
376
+ type=str,
377
+ help="Path to the pretrained TF ALIGN checkpoint.",
378
+ )
379
+ parser.add_argument(
380
+ "--pytorch_dump_folder_path",
381
+ default="hf_model",
382
+ type=str,
383
+ help="Path to the output PyTorch model directory.",
384
+ )
385
+ parser.add_argument("--save_model", action="store_true", help="Save model to local")
386
+ parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
387
+
388
+ args = parser.parse_args()
389
+ convert_align_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__init__.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_bridgetower": [
21
+ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "BridgeTowerConfig",
23
+ "BridgeTowerTextConfig",
24
+ "BridgeTowerVisionConfig",
25
+ ],
26
+ "processing_bridgetower": ["BridgeTowerProcessor"],
27
+ }
28
+
29
+ try:
30
+ if not is_vision_available():
31
+ raise OptionalDependencyNotAvailable()
32
+ except OptionalDependencyNotAvailable:
33
+ pass
34
+ else:
35
+ _import_structure["image_processing_bridgetower"] = ["BridgeTowerImageProcessor"]
36
+
37
+ try:
38
+ if not is_torch_available():
39
+ raise OptionalDependencyNotAvailable()
40
+ except OptionalDependencyNotAvailable:
41
+ pass
42
+ else:
43
+ _import_structure["modeling_bridgetower"] = [
44
+ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST",
45
+ "BridgeTowerForContrastiveLearning",
46
+ "BridgeTowerForImageAndTextRetrieval",
47
+ "BridgeTowerForMaskedLM",
48
+ "BridgeTowerModel",
49
+ "BridgeTowerPreTrainedModel",
50
+ ]
51
+
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_bridgetower import (
55
+ BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ BridgeTowerConfig,
57
+ BridgeTowerTextConfig,
58
+ BridgeTowerVisionConfig,
59
+ )
60
+ from .processing_bridgetower import BridgeTowerProcessor
61
+
62
+ try:
63
+ if not is_vision_available():
64
+ raise OptionalDependencyNotAvailable()
65
+ except OptionalDependencyNotAvailable:
66
+ pass
67
+ else:
68
+ from .image_processing_bridgetower import BridgeTowerImageProcessor
69
+
70
+ try:
71
+ if not is_torch_available():
72
+ raise OptionalDependencyNotAvailable()
73
+ except OptionalDependencyNotAvailable:
74
+ pass
75
+ else:
76
+ from .modeling_bridgetower import (
77
+ BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
78
+ BridgeTowerForContrastiveLearning,
79
+ BridgeTowerForImageAndTextRetrieval,
80
+ BridgeTowerForMaskedLM,
81
+ BridgeTowerModel,
82
+ BridgeTowerPreTrainedModel,
83
+ )
84
+
85
+
86
+ else:
87
+ import sys
88
+
89
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.39 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/configuration_bridgetower.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/image_processing_bridgetower.cpython-310.pyc ADDED
Binary file (21.7 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/modeling_bridgetower.cpython-310.pyc ADDED
Binary file (58.5 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/processing_bridgetower.cpython-310.pyc ADDED
Binary file (4.23 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/bridgetower/configuration_bridgetower.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License=, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing=, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS=,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ BridgeTower model configuration"""
16
+
17
+ import os
18
+ from typing import Union
19
+
20
+ from ...configuration_utils import PretrainedConfig
21
+ from ...utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
28
+
29
+
30
+ class BridgeTowerVisionConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the bridgetower-base
34
+ [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ hidden_size (`int`, *optional*, defaults to 768):
41
+ Dimensionality of the encoder layers and the pooler layer.
42
+ num_hidden_layers (`int`, *optional*, defaults to 12):
43
+ Number of hidden layers in visual encoder model.
44
+ patch_size (`int`, *optional*, defaults to 16):
45
+ The size (resolution) of each patch.
46
+ image_size (`int`, *optional*, defaults to 288):
47
+ The size (resolution) of each image.
48
+ initializer_factor (`float`, *optional*, defaults to 1):
49
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
50
+ testing).
51
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
52
+ The epsilon used by the layer normalization layers.
53
+ stop_gradient (`bool`, *optional*, defaults to `False`):
54
+ Whether to stop gradient for training.
55
+ share_layernorm (`bool`, *optional*, defaults to `True`):
56
+ Whether LayerNorm layers are shared.
57
+ remove_last_layer (`bool`, *optional*, defaults to `False`):
58
+ Whether to remove the last layer from the vision encoder.
59
+
60
+
61
+ Example:
62
+
63
+ ```python
64
+ >>> from transformers import BridgeTowerVisionConfig
65
+
66
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
67
+ >>> configuration = BridgeTowerVisionConfig()
68
+
69
+ >>> # Accessing the configuration
70
+ >>> configuration
71
+ ```"""
72
+
73
+ model_type = "bridgetower_vision_model"
74
+
75
+ def __init__(
76
+ self,
77
+ hidden_size=768,
78
+ num_hidden_layers=12,
79
+ num_channels=3,
80
+ patch_size=16,
81
+ image_size=288,
82
+ initializer_factor=1,
83
+ layer_norm_eps=1e-05,
84
+ stop_gradient=False,
85
+ share_layernorm=True,
86
+ remove_last_layer=False,
87
+ **kwargs,
88
+ ):
89
+ super().__init__(**kwargs)
90
+ self.hidden_size = hidden_size
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_channels = num_channels
93
+ self.patch_size = patch_size
94
+ self.image_size = image_size
95
+ self.initializer_factor = initializer_factor
96
+ self.layer_norm_eps = layer_norm_eps
97
+ self.stop_gradient = stop_gradient
98
+ self.share_layernorm = share_layernorm
99
+ self.remove_last_layer = remove_last_layer
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if config_dict.get("model_type") == "bridgetower":
106
+ config_dict = config_dict["text_config"]
107
+
108
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
115
+
116
+
117
+ class BridgeTowerTextConfig(PretrainedConfig):
118
+ r"""
119
+ This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
120
+ are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
121
+ of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
122
+ architecture.
123
+
124
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
125
+ documentation from [`PretrainedConfig`] for more information.
126
+
127
+ Args:
128
+ vocab_size (`int`, *optional*, defaults to 50265):
129
+ Vocabulary size of the text part of the model. Defines the number of different tokens that can be
130
+ represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
131
+ hidden_size (`int`, *optional*, defaults to 768):
132
+ Dimensionality of the encoder layers and the pooler layer.
133
+ num_hidden_layers (`int`, *optional*, defaults to 12):
134
+ Number of hidden layers in the Transformer encoder.
135
+ num_attention_heads (`int`, *optional*, defaults to 12):
136
+ Number of attention heads for each attention layer in the Transformer encoder.
137
+ intermediate_size (`int`, *optional*, defaults to 3072):
138
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
139
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
140
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
141
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
142
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
143
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
144
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
145
+ The dropout ratio for the attention probabilities.
146
+ max_position_embeddings (`int`, *optional*, defaults to 514):
147
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
148
+ just in case (e.g., 512 or 1024 or 2048).
149
+ type_vocab_size (`int`, *optional*, defaults to 2):
150
+ The vocabulary size of the `token_type_ids`.
151
+ initializer_factor (`float`, *optional*, defaults to 1):
152
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
153
+ testing).
154
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
155
+ The epsilon used by the layer normalization layers.
156
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
157
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
158
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
159
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
160
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
161
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
162
+ is_decoder (`bool`, *optional*, defaults to `False`):
163
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
164
+ use_cache (`bool`, *optional*, defaults to `True`):
165
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
166
+ relevant if `config.is_decoder=True`.
167
+
168
+ Example:
169
+
170
+ ```python
171
+ >>> from transformers import BridgeTowerTextConfig
172
+
173
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
174
+ >>> configuration = BridgeTowerTextConfig()
175
+
176
+ >>> # Accessing the configuration
177
+ >>> configuration
178
+ ```"""
179
+
180
+ model_type = "bridgetower_text_model"
181
+
182
+ def __init__(
183
+ self,
184
+ vocab_size=50265,
185
+ hidden_size=768,
186
+ num_hidden_layers=12,
187
+ num_attention_heads=12,
188
+ initializer_factor=1,
189
+ intermediate_size=3072,
190
+ hidden_act="gelu",
191
+ hidden_dropout_prob=0.1,
192
+ attention_probs_dropout_prob=0.1,
193
+ max_position_embeddings=514,
194
+ type_vocab_size=1,
195
+ layer_norm_eps=1e-05,
196
+ pad_token_id=1,
197
+ bos_token_id=0,
198
+ eos_token_id=2,
199
+ position_embedding_type="absolute",
200
+ use_cache=True,
201
+ **kwargs,
202
+ ):
203
+ super().__init__(**kwargs)
204
+
205
+ self.vocab_size = vocab_size
206
+ self.hidden_size = hidden_size
207
+ self.num_hidden_layers = num_hidden_layers
208
+ self.num_attention_heads = num_attention_heads
209
+ self.hidden_act = hidden_act
210
+ self.initializer_factor = initializer_factor
211
+ self.intermediate_size = intermediate_size
212
+ self.hidden_dropout_prob = hidden_dropout_prob
213
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
214
+ self.max_position_embeddings = max_position_embeddings
215
+ self.type_vocab_size = type_vocab_size
216
+ self.layer_norm_eps = layer_norm_eps
217
+ self.position_embedding_type = position_embedding_type
218
+ self.use_cache = use_cache
219
+ self.pad_token_id = pad_token_id
220
+ self.bos_token_id = bos_token_id
221
+ self.eos_token_id = eos_token_id
222
+
223
+ @classmethod
224
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
225
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
226
+
227
+ if config_dict.get("model_type") == "bridgetower":
228
+ config_dict = config_dict["text_config"]
229
+
230
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
231
+ logger.warning(
232
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
233
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
234
+ )
235
+
236
+ return cls.from_dict(config_dict, **kwargs)
237
+
238
+
239
+ class BridgeTowerConfig(PretrainedConfig):
240
+ r"""
241
+ This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
242
+ BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
243
+ configuration with the defaults will yield a similar configuration to that of the bridgetower-base
244
+ [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
245
+
246
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
247
+ documentation from [`PretrainedConfig`] for more information.
248
+
249
+ Args:
250
+ share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
251
+ Whether cross modal transformer layers are shared.
252
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
253
+ The non-linear activation function (function or string) in the encoder and pooler.
254
+ hidden_size (`int`, *optional*, defaults to 768):
255
+ Dimensionality of the encoder layers and the pooler layer.
256
+ initializer_factor (`float`, *optional*, defaults to 1):
257
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
258
+ testing).
259
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
260
+ The epsilon used by the layer normalization layers.
261
+ share_link_tower_layers (`bool`, *optional*, defaults to `False`):
262
+ Whether the bride/link tower layers are shared.
263
+ link_tower_type (`str`, *optional*, defaults to `"add"`):
264
+ Type of the bridge/link layer.
265
+ num_attention_heads (`int`, *optional*, defaults to 12):
266
+ Number of attention heads for each attention layer in the Transformer encoder.
267
+ num_hidden_layers (`int`, *optional*, defaults to 6):
268
+ Number of hidden layers in the Transformer encoder.
269
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
270
+ Whether to tie input and output embeddings.
271
+ init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
272
+ Whether to init LayerNorm from the vision encoder.
273
+ text_config (`dict`, *optional*):
274
+ Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
275
+ vision_config (`dict`, *optional*):
276
+ Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].
277
+
278
+ Example:
279
+
280
+ ```python
281
+ >>> from transformers import BridgeTowerModel, BridgeTowerConfig
282
+
283
+ >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
284
+ >>> configuration = BridgeTowerConfig()
285
+
286
+ >>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
287
+ >>> model = BridgeTowerModel(configuration)
288
+
289
+ >>> # Accessing the model configuration
290
+ >>> configuration = model.config
291
+ ```"""
292
+
293
+ model_type = "bridgetower"
294
+
295
+ def __init__(
296
+ self,
297
+ share_cross_modal_transformer_layers=True,
298
+ hidden_act="gelu",
299
+ hidden_size=768,
300
+ initializer_factor=1,
301
+ layer_norm_eps=1e-05,
302
+ share_link_tower_layers=False,
303
+ link_tower_type="add",
304
+ num_attention_heads=12,
305
+ num_hidden_layers=6,
306
+ tie_word_embeddings=False,
307
+ init_layernorm_from_vision_encoder=False,
308
+ text_config=None,
309
+ vision_config=None,
310
+ **kwargs,
311
+ ):
312
+ # TODO: remove this once the Hub files are updated.
313
+ _ = kwargs.pop("text_config_dict", None)
314
+ _ = kwargs.pop("vision_config_dict", None)
315
+
316
+ super().__init__(**kwargs)
317
+ self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers
318
+ self.hidden_act = hidden_act
319
+ self.hidden_size = hidden_size
320
+ self.initializer_factor = initializer_factor
321
+ self.layer_norm_eps = layer_norm_eps
322
+ self.share_link_tower_layers = share_link_tower_layers
323
+ self.link_tower_type = link_tower_type
324
+ self.num_attention_heads = num_attention_heads
325
+ self.num_hidden_layers = num_hidden_layers
326
+ self.tie_word_embeddings = tie_word_embeddings
327
+ self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder
328
+
329
+ if text_config is None:
330
+ text_config = {}
331
+ logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.")
332
+
333
+ if vision_config is None:
334
+ vision_config = {}
335
+ logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.")
336
+
337
+ self.text_config = BridgeTowerTextConfig(**text_config)
338
+ self.vision_config = BridgeTowerVisionConfig(**vision_config)
339
+
340
+ @classmethod
341
+ def from_text_vision_configs(
342
+ cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs
343
+ ):
344
+ r"""
345
+ Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns:
346
+ [`BridgeTowerConfig`]: An instance of a configuration object
347
+ """
348
+
349
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
venv/lib/python3.10/site-packages/transformers/models/bridgetower/image_processing_bridgetower.py ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for BridgeTower."""
16
+
17
+ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import PaddingMode, center_crop, pad, resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ OPENAI_CLIP_MEAN,
25
+ OPENAI_CLIP_STD,
26
+ ChannelDimension,
27
+ ImageInput,
28
+ PILImageResampling,
29
+ get_image_size,
30
+ infer_channel_dimension_format,
31
+ is_batched,
32
+ is_scaled_image,
33
+ to_numpy_array,
34
+ valid_images,
35
+ validate_kwargs,
36
+ validate_preprocess_arguments,
37
+ )
38
+ from ...utils import TensorType, is_vision_available, logging
39
+
40
+
41
+ if is_vision_available():
42
+ import PIL
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+
47
+ # Copied from transformers.models.vilt.image_processing_vilt.max_across_indices
48
+ def max_across_indices(values: Iterable[Any]) -> List[Any]:
49
+ """
50
+ Return the maximum value across all indices of an iterable of values.
51
+ """
52
+ return [max(values_i) for values_i in zip(*values)]
53
+
54
+
55
+ # Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
56
+ def make_pixel_mask(
57
+ image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
58
+ ) -> np.ndarray:
59
+ """
60
+ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
61
+
62
+ Args:
63
+ image (`np.ndarray`):
64
+ Image to make the pixel mask for.
65
+ output_size (`Tuple[int, int]`):
66
+ Output size of the mask.
67
+ """
68
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
69
+ mask = np.zeros(output_size, dtype=np.int64)
70
+ mask[:input_height, :input_width] = 1
71
+ return mask
72
+
73
+
74
+ # Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
75
+ def get_max_height_width(
76
+ images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
77
+ ) -> List[int]:
78
+ """
79
+ Get the maximum height and width across all images in a batch.
80
+ """
81
+ if input_data_format is None:
82
+ input_data_format = infer_channel_dimension_format(images[0])
83
+
84
+ if input_data_format == ChannelDimension.FIRST:
85
+ _, max_height, max_width = max_across_indices([img.shape for img in images])
86
+ elif input_data_format == ChannelDimension.LAST:
87
+ max_height, max_width, _ = max_across_indices([img.shape for img in images])
88
+ else:
89
+ raise ValueError(f"Invalid channel dimension format: {input_data_format}")
90
+ return (max_height, max_width)
91
+
92
+
93
+ # Copied from transformers.models.vilt.image_processing_vilt.get_resize_output_image_size
94
+ def get_resize_output_image_size(
95
+ input_image: np.ndarray,
96
+ shorter: int = 800,
97
+ longer: int = 1333,
98
+ size_divisor: int = 32,
99
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
100
+ ) -> Tuple[int, int]:
101
+ input_height, input_width = get_image_size(input_image, input_data_format)
102
+ min_size, max_size = shorter, longer
103
+
104
+ scale = min_size / min(input_height, input_width)
105
+
106
+ if input_height < input_width:
107
+ new_height = min_size
108
+ new_width = scale * input_width
109
+ else:
110
+ new_height = scale * input_height
111
+ new_width = min_size
112
+
113
+ if max(new_height, new_width) > max_size:
114
+ scale = max_size / max(new_height, new_width)
115
+ new_height = scale * new_height
116
+ new_width = scale * new_width
117
+
118
+ new_height, new_width = int(new_height + 0.5), int(new_width + 0.5)
119
+ new_height = new_height // size_divisor * size_divisor
120
+ new_width = new_width // size_divisor * size_divisor
121
+
122
+ return new_height, new_width
123
+
124
+
125
+ class BridgeTowerImageProcessor(BaseImageProcessor):
126
+ r"""
127
+ Constructs a BridgeTower image processor.
128
+
129
+ Args:
130
+ do_resize (`bool`, *optional*, defaults to `True`):
131
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
132
+ `do_resize` parameter in the `preprocess` method.
133
+ size (`Dict[str, int]` *optional*, defaults to `{'shortest_edge': 288}`):
134
+ Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under
135
+ `int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if
136
+ `do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method.
137
+ size_divisor (`int`, *optional*, defaults to 32):
138
+ The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize`
139
+ is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method.
140
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
141
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
142
+ overridden by the `resample` parameter in the `preprocess` method.
143
+ do_rescale (`bool`, *optional*, defaults to `True`):
144
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
145
+ parameter in the `preprocess` method.
146
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
147
+ Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
148
+ overridden by the `rescale_factor` parameter in the `preprocess` method.
149
+ do_normalize (`bool`, *optional*, defaults to `True`):
150
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
151
+ method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
152
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
153
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
154
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
155
+ overridden by the `image_mean` parameter in the `preprocess` method.
156
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
157
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
158
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
159
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
160
+ do_center_crop (`bool`, *optional*, defaults to `True`):
161
+ Whether to center crop the image. Can be overridden by the `do_center_crop` parameter in the `preprocess`
162
+ method.
163
+ crop_size (`Dict[str, int]`, *optional*):
164
+ Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
165
+ Can be overridden by the `crop_size` parameter in the `preprocess` method. If unset defaults to `size`,
166
+ do_pad (`bool`, *optional*, defaults to `True`):
167
+ Whether to pad the image to the `(max_height, max_width)` of the images in the batch. Can be overridden by
168
+ the `do_pad` parameter in the `preprocess` method.
169
+ """
170
+
171
+ model_input_names = ["pixel_values"]
172
+
173
+ def __init__(
174
+ self,
175
+ do_resize: bool = True,
176
+ size: Dict[str, int] = None,
177
+ size_divisor: int = 32,
178
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
179
+ do_rescale: bool = True,
180
+ rescale_factor: Union[int, float] = 1 / 255,
181
+ do_normalize: bool = True,
182
+ image_mean: Optional[Union[float, List[float]]] = None,
183
+ image_std: Optional[Union[float, List[float]]] = None,
184
+ do_center_crop: bool = True,
185
+ crop_size: Dict[str, int] = None,
186
+ do_pad: bool = True,
187
+ **kwargs,
188
+ ) -> None:
189
+ if "pad_and_return_pixel_mask" in kwargs:
190
+ do_pad = kwargs.pop("pad_and_return_pixel_mask")
191
+
192
+ super().__init__(**kwargs)
193
+ size = size if size is not None else {"shortest_edge": 288}
194
+ size = get_size_dict(size, default_to_square=False)
195
+
196
+ self.do_resize = do_resize
197
+ self.size = size
198
+ self.size_divisor = size_divisor
199
+ self.resample = resample
200
+ self.do_rescale = do_rescale
201
+ self.rescale_factor = rescale_factor
202
+ self.do_normalize = do_normalize
203
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
204
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
205
+ self.do_pad = do_pad
206
+ self.do_center_crop = do_center_crop
207
+ self.crop_size = crop_size
208
+ self._valid_processor_keys = [
209
+ "images",
210
+ "do_resize",
211
+ "size",
212
+ "size_divisor",
213
+ "resample",
214
+ "do_rescale",
215
+ "rescale_factor",
216
+ "do_normalize",
217
+ "image_mean",
218
+ "image_std",
219
+ "do_pad",
220
+ "do_center_crop",
221
+ "crop_size",
222
+ "return_tensors",
223
+ "data_format",
224
+ "input_data_format",
225
+ ]
226
+
227
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.resize
228
+ def resize(
229
+ self,
230
+ image: np.ndarray,
231
+ size: Dict[str, int],
232
+ size_divisor: int = 32,
233
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
234
+ data_format: Optional[Union[str, ChannelDimension]] = None,
235
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
236
+ **kwargs,
237
+ ) -> np.ndarray:
238
+ """
239
+ Resize an image.
240
+
241
+ Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the
242
+ longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then
243
+ resized to the max size while preserving the aspect ratio.
244
+
245
+ Args:
246
+ image (`np.ndarray`):
247
+ Image to resize.
248
+ size (`Dict[str, int]`):
249
+ Controls the size of the output image. Should be of the form `{"shortest_edge": int}`.
250
+ size_divisor (`int`, defaults to 32):
251
+ The image is resized to a size that is a multiple of this value.
252
+ resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
253
+ Resampling filter to use when resiizing the image.
254
+ data_format (`str` or `ChannelDimension`, *optional*):
255
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
256
+ input_data_format (`str` or `ChannelDimension`, *optional*):
257
+ The channel dimension format of the input image. If not provided, it will be inferred.
258
+ """
259
+ size = get_size_dict(size, default_to_square=False)
260
+ if "shortest_edge" not in size:
261
+ raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
262
+ shorter = size["shortest_edge"]
263
+ longer = int(1333 / 800 * shorter)
264
+ output_size = get_resize_output_image_size(
265
+ image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format
266
+ )
267
+ return resize(
268
+ image,
269
+ size=output_size,
270
+ resample=resample,
271
+ data_format=data_format,
272
+ input_data_format=input_data_format,
273
+ **kwargs,
274
+ )
275
+
276
+ def center_crop(
277
+ self,
278
+ image: np.ndarray,
279
+ size: Dict[str, int],
280
+ data_format: Optional[Union[str, ChannelDimension]] = None,
281
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
282
+ **kwargs,
283
+ ) -> np.ndarray:
284
+ """
285
+ Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
286
+ any edge, the image is padded with 0's and then center cropped.
287
+
288
+ Args:
289
+ image (`np.ndarray`):
290
+ Image to center crop.
291
+ size (`Dict[str, int]`):
292
+ Size of the output image in the form `{"height": h, "width": w}`.
293
+ data_format (`str` or `ChannelDimension`, *optional*):
294
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
295
+ input_data_format (`ChannelDimension` or `str`, *optional*):
296
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
297
+ image.
298
+ """
299
+ output_size = size["shortest_edge"]
300
+ return center_crop(
301
+ image,
302
+ size=(output_size, output_size),
303
+ data_format=data_format,
304
+ input_data_format=input_data_format,
305
+ **kwargs,
306
+ )
307
+
308
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
309
+ def _pad_image(
310
+ self,
311
+ image: np.ndarray,
312
+ output_size: Tuple[int, int],
313
+ constant_values: Union[float, Iterable[float]] = 0,
314
+ data_format: Optional[ChannelDimension] = None,
315
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
316
+ ) -> np.ndarray:
317
+ """
318
+ Pad an image with zeros to the given size.
319
+ """
320
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
321
+ output_height, output_width = output_size
322
+
323
+ pad_bottom = output_height - input_height
324
+ pad_right = output_width - input_width
325
+ padding = ((0, pad_bottom), (0, pad_right))
326
+ padded_image = pad(
327
+ image,
328
+ padding,
329
+ mode=PaddingMode.CONSTANT,
330
+ constant_values=constant_values,
331
+ data_format=data_format,
332
+ input_data_format=input_data_format,
333
+ )
334
+ return padded_image
335
+
336
+ # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad
337
+ def pad(
338
+ self,
339
+ images: List[np.ndarray],
340
+ constant_values: Union[float, Iterable[float]] = 0,
341
+ return_pixel_mask: bool = True,
342
+ return_tensors: Optional[Union[str, TensorType]] = None,
343
+ data_format: Optional[ChannelDimension] = None,
344
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
345
+ ) -> BatchFeature:
346
+ """
347
+ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
348
+ in the batch and optionally returns their corresponding pixel mask.
349
+
350
+ Args:
351
+ image (`np.ndarray`):
352
+ Image to pad.
353
+ constant_values (`float` or `Iterable[float]`, *optional*):
354
+ The value to use for the padding if `mode` is `"constant"`.
355
+ return_pixel_mask (`bool`, *optional*, defaults to `True`):
356
+ Whether to return a pixel mask.
357
+ return_tensors (`str` or `TensorType`, *optional*):
358
+ The type of tensors to return. Can be one of:
359
+ - Unset: Return a list of `np.ndarray`.
360
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
361
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
362
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
363
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
364
+ data_format (`str` or `ChannelDimension`, *optional*):
365
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
366
+ input_data_format (`ChannelDimension` or `str`, *optional*):
367
+ The channel dimension format of the input image. If not provided, it will be inferred.
368
+ """
369
+ pad_size = get_max_height_width(images, input_data_format=input_data_format)
370
+
371
+ padded_images = [
372
+ self._pad_image(
373
+ image,
374
+ pad_size,
375
+ constant_values=constant_values,
376
+ data_format=data_format,
377
+ input_data_format=input_data_format,
378
+ )
379
+ for image in images
380
+ ]
381
+ data = {"pixel_values": padded_images}
382
+
383
+ if return_pixel_mask:
384
+ masks = [
385
+ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
386
+ for image in images
387
+ ]
388
+ data["pixel_mask"] = masks
389
+
390
+ return BatchFeature(data=data, tensor_type=return_tensors)
391
+
392
+ def preprocess(
393
+ self,
394
+ images: ImageInput,
395
+ do_resize: Optional[bool] = None,
396
+ size: Optional[Dict[str, int]] = None,
397
+ size_divisor: Optional[int] = None,
398
+ resample: PILImageResampling = None,
399
+ do_rescale: Optional[bool] = None,
400
+ rescale_factor: Optional[float] = None,
401
+ do_normalize: Optional[bool] = None,
402
+ image_mean: Optional[Union[float, List[float]]] = None,
403
+ image_std: Optional[Union[float, List[float]]] = None,
404
+ do_pad: Optional[bool] = None,
405
+ do_center_crop: Optional[bool] = None,
406
+ crop_size: Dict[str, int] = None,
407
+ return_tensors: Optional[Union[str, TensorType]] = None,
408
+ data_format: ChannelDimension = ChannelDimension.FIRST,
409
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
410
+ **kwargs,
411
+ ) -> PIL.Image.Image:
412
+ """
413
+ Preprocess an image or batch of images.
414
+
415
+ Args:
416
+ images (`ImageInput`):
417
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
418
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
419
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
420
+ Whether to resize the image.
421
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
422
+ Controls the size of the image after `resize`. The shortest edge of the image is resized to
423
+ `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
424
+ is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
425
+ edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
426
+ size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
427
+ The image is resized to a size that is a multiple of this value.
428
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
429
+ Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
430
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
431
+ Whether to rescale the image values between [0 - 1].
432
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
433
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
434
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
435
+ Whether to normalize the image.
436
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
437
+ Image mean to normalize the image by if `do_normalize` is set to `True`.
438
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
439
+ Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
440
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
441
+ Whether to pad the image to the (max_height, max_width) in the batch. If `True`, a pixel mask is also
442
+ created and returned.
443
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
444
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the
445
+ image is padded with 0's and then center cropped.
446
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
447
+ Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
448
+ padded with zeros and then cropped
449
+ return_tensors (`str` or `TensorType`, *optional*):
450
+ The type of tensors to return. Can be one of:
451
+ - Unset: Return a list of `np.ndarray`.
452
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
453
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
454
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
455
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
456
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
457
+ The channel dimension format for the output image. Can be one of:
458
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
459
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
460
+ - Unset: Use the channel dimension format of the input image.
461
+ input_data_format (`ChannelDimension` or `str`, *optional*):
462
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
463
+ from the input image. Can be one of:
464
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
465
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
466
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
467
+ """
468
+ do_resize = do_resize if do_resize is not None else self.do_resize
469
+ size_divisor = size_divisor if size_divisor is not None else self.size_divisor
470
+ resample = resample if resample is not None else self.resample
471
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
472
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
473
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
474
+ image_mean = image_mean if image_mean is not None else self.image_mean
475
+ image_std = image_std if image_std is not None else self.image_std
476
+ do_pad = do_pad if do_pad is not None else self.do_pad
477
+ do_center_crop if do_center_crop is not None else self.do_center_crop
478
+ # For backwards compatibility. Initial version of this processor was cropping to the "size" argument, which
479
+ # it should default to if crop_size is undefined.
480
+ crop_size = (
481
+ crop_size if crop_size is not None else (self.crop_size if self.crop_size is not None else self.size)
482
+ )
483
+
484
+ size = size if size is not None else self.size
485
+ size = get_size_dict(size, default_to_square=False)
486
+
487
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
488
+
489
+ if not is_batched(images):
490
+ images = [images]
491
+
492
+ if not valid_images(images):
493
+ raise ValueError(
494
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
495
+ "torch.Tensor, tf.Tensor or jax.ndarray."
496
+ )
497
+ # Here, crop_size is used only if it is set, else size will be used.
498
+ validate_preprocess_arguments(
499
+ do_rescale=do_rescale,
500
+ rescale_factor=rescale_factor,
501
+ do_normalize=do_normalize,
502
+ image_mean=image_mean,
503
+ image_std=image_std,
504
+ do_pad=do_pad,
505
+ size_divisibility=size_divisor,
506
+ do_center_crop=do_center_crop,
507
+ crop_size=crop_size,
508
+ do_resize=do_resize,
509
+ size=size,
510
+ resample=resample,
511
+ )
512
+ # All transformations expect numpy arrays.
513
+ images = [to_numpy_array(image) for image in images]
514
+
515
+ if is_scaled_image(images[0]) and do_rescale:
516
+ logger.warning_once(
517
+ "It looks like you are trying to rescale already rescaled images. If the input"
518
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
519
+ )
520
+
521
+ if do_resize:
522
+ images = [
523
+ self.resize(
524
+ image=image,
525
+ size=size,
526
+ size_divisor=size_divisor,
527
+ resample=resample,
528
+ input_data_format=input_data_format,
529
+ )
530
+ for image in images
531
+ ]
532
+
533
+ if do_center_crop:
534
+ images = [
535
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
536
+ ]
537
+
538
+ if do_rescale:
539
+ images = [
540
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
541
+ for image in images
542
+ ]
543
+
544
+ if do_normalize:
545
+ images = [
546
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
547
+ for image in images
548
+ ]
549
+
550
+ images = [
551
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
552
+ ]
553
+
554
+ if do_pad:
555
+ encoded_outputs = self.pad(
556
+ images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format
557
+ )
558
+ else:
559
+ encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
560
+
561
+ return encoded_outputs
venv/lib/python3.10/site-packages/transformers/models/bridgetower/modeling_bridgetower.py ADDED
@@ -0,0 +1,1898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch BridgeTower Model"""
16
+
17
+ import math
18
+ from collections import OrderedDict
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from ...activations import ACT2FN, QuickGELUActivation
28
+ from ...modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ MaskedLMOutput,
32
+ ModelOutput,
33
+ SequenceClassifierOutput,
34
+ )
35
+ from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward
36
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
37
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
38
+ from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig
39
+
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = "BridgeTowerConfig"
44
+ _CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base"
45
+ _TOKENIZER_FOR_DOC = "RobertaTokenizer"
46
+
47
+
48
+ from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
49
+
50
+
51
+ BRIDGETOWER_START_DOCSTRING = r"""
52
+ This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
53
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
54
+ behavior.
55
+
56
+ Parameters:
57
+ config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model.
58
+ Initializing with a config file does not load the weights associated with the model, only the
59
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
60
+ """
61
+
62
+ BRIDGETOWER_INPUTS_DOCSTRING = r"""
63
+ Args:
64
+ input_ids (`torch.LongTensor` of shape `({0})`):
65
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
66
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
67
+ IDs?](../glossary#input-ids)
68
+
69
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
70
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
71
+ - 1 for tokens that are **not masked**,
72
+ - 0 for tokens that are **masked**.
73
+ [What are attention masks?](../glossary#attention-mask)
74
+
75
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
76
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
77
+ 1]`:
78
+ - 0 corresponds to a *sentence A* token,
79
+ - 1 corresponds to a *sentence B* token.
80
+ [What are token type IDs?](../glossary#token-type-ids)
81
+
82
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
83
+ Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See
84
+ [`BridgeTowerImageProcessor.__call__`] for details.
85
+
86
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
87
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
88
+
89
+ - 1 for pixels that are real (i.e. **not masked**),
90
+ - 0 for pixels that are padding (i.e. **masked**).
91
+ `What are attention masks? <../glossary.html#attention-mask>`__
92
+
93
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
94
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
95
+ - 1 indicates the head is **not masked**,
96
+ - 0 indicates the head is **masked**.
97
+
98
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
99
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
100
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
101
+ model's internal embedding lookup matrix.
102
+
103
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
104
+ Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.
105
+ This is useful if you want more control over how to convert `pixel_values` into patch embeddings.
106
+
107
+ image_token_type_idx (`int`, *optional*):
108
+ - The token type ids for images.
109
+
110
+ output_attentions (`bool`, *optional*):
111
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
112
+ tensors for more detail.
113
+
114
+ output_hidden_states (`bool`, *optional*):
115
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
116
+ more detail.
117
+ return_dict (`bool`, *optional*):
118
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
119
+ """
120
+
121
+
122
+ @dataclass
123
+ class BridgeTowerModelOutput(ModelOutput):
124
+ """
125
+ Output type of [`BridgeTowerModel`].
126
+
127
+ Args:
128
+ text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`):
129
+ Sequence of hidden-states at the text output of the last layer of the model.
130
+ image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`):
131
+ Sequence of hidden-states at the image output of the last layer of the model.
132
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`):
133
+ Concatenation of last layer hidden-state of the first token of the text and image sequence (classification
134
+ token), respectively, after further processing through layers used for auxiliary pretraining tasks.
135
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
136
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
137
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
138
+ the model at the output of each layer plus the optional initial embedding outputs.
139
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
140
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
141
+ sequence_length)`.
142
+
143
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
144
+ heads.
145
+ """
146
+
147
+ text_features: torch.FloatTensor = None
148
+ image_features: torch.FloatTensor = None
149
+ pooler_output: torch.FloatTensor = None
150
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
151
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
152
+
153
+
154
+ @dataclass
155
+ class BridgeTowerContrastiveOutput(ModelOutput):
156
+ """
157
+ Output type of ['BridgeTowerForContrastiveLearning']
158
+
159
+ Args:
160
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`:
161
+ Image-text contrastive loss.
162
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
163
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
164
+ text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
165
+ The text embeddings obtained by applying the projection layer to the pooler_output.
166
+ image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
167
+ The image embeddings obtained by applying the projection layer to the pooler_output.
168
+ cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
169
+ The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output.
170
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
171
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
172
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
173
+ the model at the output of each layer plus the optional initial embedding outputs.
174
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
175
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
176
+ sequence_length)`.
177
+ """
178
+
179
+ loss: Optional[torch.FloatTensor] = None
180
+ logits: torch.FloatTensor = None
181
+ text_embeds: Optional[Tuple[torch.FloatTensor]] = None
182
+ image_embeds: Optional[Tuple[torch.FloatTensor]] = None
183
+ cross_embeds: Optional[Tuple[torch.FloatTensor]] = None
184
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
185
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
186
+
187
+
188
+ class BridgeTowerResidualAttention(nn.Module):
189
+ def __init__(self, config):
190
+ super().__init__()
191
+
192
+ self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64)
193
+ self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
194
+ self.mlp = nn.ModuleDict(
195
+ OrderedDict(
196
+ [
197
+ ("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)),
198
+ ("gelu", QuickGELUActivation()),
199
+ ("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)),
200
+ ]
201
+ )
202
+ )
203
+ self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
204
+ self.attn_mask = None
205
+
206
+ def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor):
207
+ if attention_mask is not None:
208
+ attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device)
209
+ self.attn_mask = (
210
+ self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device)
211
+ if self.attn_mask is not None
212
+ else None
213
+ )
214
+ return self.attn(
215
+ hidden_state,
216
+ hidden_state,
217
+ hidden_state,
218
+ need_weights=False,
219
+ attn_mask=self.attn_mask,
220
+ key_padding_mask=attention_mask,
221
+ )[0]
222
+
223
+ def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None):
224
+ residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask)
225
+ hidden_state = self.ln_2(residual_state)
226
+ for _, layer in self.mlp.items():
227
+ hidden_state = layer(hidden_state)
228
+ hidden_state = residual_state + hidden_state
229
+ return hidden_state
230
+
231
+
232
+ class BridgeTowerTransformer(nn.Module):
233
+ def __init__(self, config):
234
+ super().__init__()
235
+ self.hidden_size = config.hidden_size
236
+ self.num_hidden_layers = config.num_hidden_layers
237
+ if config.remove_last_layer:
238
+ self.resblocks = nn.ModuleList(
239
+ [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)]
240
+ )
241
+ else:
242
+ self.resblocks = nn.ModuleList(
243
+ [BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)]
244
+ )
245
+ self.stop_gradient = config.stop_gradient
246
+
247
+ def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
248
+ hidden_states = []
249
+ for block in self.resblocks:
250
+ hidden_state = block(hidden_state, attention_mask)
251
+ if self.stop_gradient:
252
+ hidden_states.append(hidden_state.detach())
253
+ else:
254
+ hidden_states.append(hidden_state)
255
+ return hidden_states
256
+
257
+
258
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->BridgeTower
259
+ class BridgeTowerVisionEmbeddings(nn.Module):
260
+ def __init__(self, config: BridgeTowerVisionConfig):
261
+ super().__init__()
262
+ self.config = config
263
+ self.embed_dim = config.hidden_size
264
+ self.image_size = config.image_size
265
+ self.patch_size = config.patch_size
266
+
267
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
268
+
269
+ self.patch_embedding = nn.Conv2d(
270
+ in_channels=config.num_channels,
271
+ out_channels=self.embed_dim,
272
+ kernel_size=self.patch_size,
273
+ stride=self.patch_size,
274
+ bias=False,
275
+ )
276
+
277
+ self.num_patches = (self.image_size // self.patch_size) ** 2
278
+ self.num_positions = self.num_patches + 1
279
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
280
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
281
+
282
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
283
+ batch_size = pixel_values.shape[0]
284
+ target_dtype = self.patch_embedding.weight.dtype
285
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
286
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
287
+
288
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
289
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
290
+ embeddings = embeddings + self.position_embedding(self.position_ids)
291
+ return embeddings
292
+
293
+
294
+ class BridgeTowerVisionTransformer(nn.Module):
295
+ def __init__(self, config):
296
+ super().__init__()
297
+
298
+ self.embeddings = BridgeTowerVisionEmbeddings(config)
299
+ self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
300
+ self.transformer = BridgeTowerTransformer(config)
301
+ self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
302
+ self.share_layernorm = config.share_layernorm
303
+ if not config.share_layernorm:
304
+ self.ln_separate = nn.ModuleList(
305
+ [nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)]
306
+ )
307
+
308
+ def forward(self, pixel_values: torch.Tensor, attention_mask):
309
+ hidden_states = self.embeddings(pixel_values)
310
+ hidden_states = self.ln_pre(hidden_states)
311
+ # NLD -> LND
312
+ hidden_states = hidden_states.permute(1, 0, 2)
313
+
314
+ hidden_states = self.transformer(hidden_states, attention_mask)
315
+ # shape = [num_hidden_layers, hidden_size, *, grid ** 2]
316
+ hidden_states = torch.stack(hidden_states, dim=0)
317
+ # shape = [num_hidden_layers, *, hidden_size, grid ** 2]
318
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
319
+ if self.share_layernorm:
320
+ hidden_states = self.ln_post(hidden_states)
321
+ else:
322
+ hidden_states_stack = []
323
+ for hidden_states, ln in zip(hidden_states, self.ln_separate):
324
+ hidden_states = ln(hidden_states)
325
+ hidden_states_stack.append(hidden_states)
326
+ # shape = [num_hidden_layers, *, hidden_size, grid ** 2]
327
+ hidden_states = torch.stack(hidden_states_stack, dim=0)
328
+ return hidden_states
329
+
330
+ def forward_pre(self, pixel_values: torch.Tensor):
331
+ hidden_states = self.embeddings(pixel_values)
332
+ hidden_states = self.ln_pre(hidden_states)
333
+ # NLD -> LND
334
+ hidden_states = hidden_states.permute(1, 0, 2)
335
+ return hidden_states
336
+
337
+ def forward_post(self, hidden_state: torch.Tensor):
338
+ visual_output_post = hidden_state.permute(1, 0, 2)
339
+ visual_output_post = self.ln_post(visual_output_post)
340
+ return visual_output_post
341
+
342
+
343
+ class BridgeTowerLinkTower(nn.Module):
344
+ def __init__(self, config):
345
+ super().__init__()
346
+ self.link_tower_type = config.link_tower_type
347
+ self.hidden_size = config.hidden_size
348
+ if config.link_tower_type in ["add", "scaled_add", "interpolate"]:
349
+ if config.link_tower_type == "scaled_add":
350
+ self.scaled_factor = nn.Parameter(torch.tensor(1.0))
351
+ elif config.link_tower_type == "interpolate":
352
+ self.beta = nn.Parameter(torch.tensor(0.5))
353
+ self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
354
+ else:
355
+ raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented")
356
+
357
+ def forward(self, hidden_states, cross_modal_hidden_states, attention_mask):
358
+ if self.link_tower_type == "add":
359
+ return self.LayerNorm(hidden_states + cross_modal_hidden_states)
360
+ elif self.link_tower_type == "scaled_add":
361
+ return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states)
362
+ elif self.link_tower_type == "interpolate":
363
+ return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta)
364
+ else:
365
+ raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented")
366
+
367
+
368
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BridgeTower
369
+ class BridgeTowerSelfOutput(nn.Module):
370
+ def __init__(self, config):
371
+ super().__init__()
372
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
373
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
374
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
375
+
376
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
377
+ hidden_states = self.dense(hidden_states)
378
+ hidden_states = self.dropout(hidden_states)
379
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
380
+ return hidden_states
381
+
382
+
383
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BridgeTower
384
+ class BridgeTowerIntermediate(nn.Module):
385
+ def __init__(self, config):
386
+ super().__init__()
387
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
388
+ if isinstance(config.hidden_act, str):
389
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
390
+ else:
391
+ self.intermediate_act_fn = config.hidden_act
392
+
393
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
394
+ hidden_states = self.dense(hidden_states)
395
+ hidden_states = self.intermediate_act_fn(hidden_states)
396
+ return hidden_states
397
+
398
+
399
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BridgeTower
400
+ class BridgeTowerOutput(nn.Module):
401
+ def __init__(self, config):
402
+ super().__init__()
403
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
404
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
405
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
406
+
407
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
408
+ hidden_states = self.dense(hidden_states)
409
+ hidden_states = self.dropout(hidden_states)
410
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
411
+ return hidden_states
412
+
413
+
414
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BridgeTower
415
+ class BridgeTowerPooler(nn.Module):
416
+ def __init__(self, config):
417
+ super().__init__()
418
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
419
+ self.activation = nn.Tanh()
420
+
421
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
422
+ # We "pool" the model by simply taking the hidden state corresponding
423
+ # to the first token.
424
+ first_token_tensor = hidden_states[:, 0]
425
+ pooled_output = self.dense(first_token_tensor)
426
+ pooled_output = self.activation(pooled_output)
427
+ return pooled_output
428
+
429
+
430
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->BridgeTower
431
+ class BridgeTowerSelfAttention(nn.Module):
432
+ def __init__(self, config, position_embedding_type=None):
433
+ super().__init__()
434
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
435
+ raise ValueError(
436
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
437
+ f"heads ({config.num_attention_heads})"
438
+ )
439
+
440
+ self.num_attention_heads = config.num_attention_heads
441
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
442
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
443
+
444
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
445
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
446
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
447
+
448
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
449
+ self.position_embedding_type = position_embedding_type or getattr(
450
+ config, "position_embedding_type", "absolute"
451
+ )
452
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
453
+ self.max_position_embeddings = config.max_position_embeddings
454
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
455
+
456
+ self.is_decoder = config.is_decoder
457
+
458
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
459
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
460
+ x = x.view(new_x_shape)
461
+ return x.permute(0, 2, 1, 3)
462
+
463
+ def forward(
464
+ self,
465
+ hidden_states: torch.Tensor,
466
+ attention_mask: Optional[torch.FloatTensor] = None,
467
+ head_mask: Optional[torch.FloatTensor] = None,
468
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
469
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
470
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
471
+ output_attentions: Optional[bool] = False,
472
+ ) -> Tuple[torch.Tensor]:
473
+ mixed_query_layer = self.query(hidden_states)
474
+
475
+ # If this is instantiated as a cross-attention module, the keys
476
+ # and values come from an encoder; the attention mask needs to be
477
+ # such that the encoder's padding tokens are not attended to.
478
+ is_cross_attention = encoder_hidden_states is not None
479
+
480
+ if is_cross_attention and past_key_value is not None:
481
+ # reuse k,v, cross_attentions
482
+ key_layer = past_key_value[0]
483
+ value_layer = past_key_value[1]
484
+ attention_mask = encoder_attention_mask
485
+ elif is_cross_attention:
486
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
487
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
488
+ attention_mask = encoder_attention_mask
489
+ elif past_key_value is not None:
490
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
491
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
492
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
493
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
494
+ else:
495
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
496
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
497
+
498
+ query_layer = self.transpose_for_scores(mixed_query_layer)
499
+
500
+ use_cache = past_key_value is not None
501
+ if self.is_decoder:
502
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
503
+ # Further calls to cross_attention layer can then reuse all cross-attention
504
+ # key/value_states (first "if" case)
505
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
506
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
507
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
508
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
509
+ past_key_value = (key_layer, value_layer)
510
+
511
+ # Take the dot product between "query" and "key" to get the raw attention scores.
512
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
513
+
514
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
515
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
516
+ if use_cache:
517
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
518
+ -1, 1
519
+ )
520
+ else:
521
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
522
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
523
+ distance = position_ids_l - position_ids_r
524
+
525
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
526
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
527
+
528
+ if self.position_embedding_type == "relative_key":
529
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
530
+ attention_scores = attention_scores + relative_position_scores
531
+ elif self.position_embedding_type == "relative_key_query":
532
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
533
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
534
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
535
+
536
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
537
+ if attention_mask is not None:
538
+ # Apply the attention mask is (precomputed for all layers in BridgeTowerModel forward() function)
539
+ attention_scores = attention_scores + attention_mask
540
+
541
+ # Normalize the attention scores to probabilities.
542
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
543
+
544
+ # This is actually dropping out entire tokens to attend to, which might
545
+ # seem a bit unusual, but is taken from the original Transformer paper.
546
+ attention_probs = self.dropout(attention_probs)
547
+
548
+ # Mask heads if we want to
549
+ if head_mask is not None:
550
+ attention_probs = attention_probs * head_mask
551
+
552
+ context_layer = torch.matmul(attention_probs, value_layer)
553
+
554
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
555
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
556
+ context_layer = context_layer.view(new_context_layer_shape)
557
+
558
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
559
+
560
+ if self.is_decoder:
561
+ outputs = outputs + (past_key_value,)
562
+ return outputs
563
+
564
+
565
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BridgeTower
566
+ class BridgeTowerAttention(nn.Module):
567
+ def __init__(self, config, position_embedding_type=None):
568
+ super().__init__()
569
+ self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type)
570
+ self.output = BridgeTowerSelfOutput(config)
571
+ self.pruned_heads = set()
572
+
573
+ def prune_heads(self, heads):
574
+ if len(heads) == 0:
575
+ return
576
+ heads, index = find_pruneable_heads_and_indices(
577
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
578
+ )
579
+
580
+ # Prune linear layers
581
+ self.self.query = prune_linear_layer(self.self.query, index)
582
+ self.self.key = prune_linear_layer(self.self.key, index)
583
+ self.self.value = prune_linear_layer(self.self.value, index)
584
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
585
+
586
+ # Update hyper params and store pruned heads
587
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
588
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
589
+ self.pruned_heads = self.pruned_heads.union(heads)
590
+
591
+ def forward(
592
+ self,
593
+ hidden_states: torch.Tensor,
594
+ attention_mask: Optional[torch.FloatTensor] = None,
595
+ head_mask: Optional[torch.FloatTensor] = None,
596
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
597
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
598
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
599
+ output_attentions: Optional[bool] = False,
600
+ ) -> Tuple[torch.Tensor]:
601
+ self_outputs = self.self(
602
+ hidden_states,
603
+ attention_mask,
604
+ head_mask,
605
+ encoder_hidden_states,
606
+ encoder_attention_mask,
607
+ past_key_value,
608
+ output_attentions,
609
+ )
610
+ attention_output = self.output(self_outputs[0], hidden_states)
611
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
612
+ return outputs
613
+
614
+
615
+ class BridgeTowerBertCrossLayer(nn.Module):
616
+ def __init__(self, config):
617
+ super().__init__()
618
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
619
+ self.seq_len_dim = 1
620
+ self.attention = BridgeTowerAttention(config)
621
+ self.is_decoder = config.is_decoder
622
+ self.add_cross_attention = config.add_cross_attention
623
+ self.crossattention = BridgeTowerAttention(config)
624
+ self.intermediate = BridgeTowerIntermediate(config)
625
+ self.output = BridgeTowerOutput(config)
626
+
627
+ def forward(
628
+ self,
629
+ hidden_states,
630
+ encoder_hidden_states,
631
+ attention_mask=None,
632
+ head_mask=None,
633
+ encoder_attention_mask=None,
634
+ past_key_value=None,
635
+ output_attentions=False,
636
+ ):
637
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
638
+ self_attention_outputs = self.attention(
639
+ hidden_states,
640
+ attention_mask=attention_mask,
641
+ head_mask=None,
642
+ output_attentions=output_attentions,
643
+ past_key_value=None,
644
+ )
645
+ attention_output = self_attention_outputs[0]
646
+
647
+ # if decoder, the last output is tuple of self-attn cache
648
+ # add self attentions if we output attention weights
649
+ outputs = self_attention_outputs[1:]
650
+
651
+ cross_attention_outputs = self.crossattention(
652
+ attention_output,
653
+ attention_mask=attention_mask,
654
+ head_mask=head_mask,
655
+ encoder_hidden_states=encoder_hidden_states,
656
+ encoder_attention_mask=encoder_attention_mask,
657
+ past_key_value=past_key_value,
658
+ output_attentions=output_attentions,
659
+ )
660
+ attention_output = cross_attention_outputs[0]
661
+ # add cross attentions if we output attention weights
662
+ outputs = outputs + cross_attention_outputs[1:-1]
663
+
664
+ layer_output = apply_chunking_to_forward(
665
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
666
+ )
667
+ outputs = (layer_output,) + outputs
668
+
669
+ return outputs
670
+
671
+ def feed_forward_chunk(self, attention_output):
672
+ intermediate_output = self.intermediate(attention_output)
673
+ layer_output = self.output(intermediate_output, attention_output)
674
+ return layer_output
675
+
676
+
677
+ class BridgeTowerTextLayer(nn.Module):
678
+ def __init__(self, config):
679
+ super().__init__()
680
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
681
+ self.seq_len_dim = 1
682
+ self.attention = BridgeTowerAttention(config)
683
+ self.is_decoder = config.is_decoder
684
+ self.add_cross_attention = config.add_cross_attention
685
+ if self.add_cross_attention:
686
+ if not self.is_decoder:
687
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
688
+ self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute")
689
+ self.intermediate = BridgeTowerIntermediate(config)
690
+ self.output = BridgeTowerOutput(config)
691
+
692
+ def forward(
693
+ self,
694
+ hidden_states: torch.Tensor,
695
+ attention_mask: Optional[torch.FloatTensor] = None,
696
+ head_mask: Optional[torch.FloatTensor] = None,
697
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
698
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
699
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
700
+ output_attentions: Optional[bool] = False,
701
+ ) -> Tuple[torch.Tensor]:
702
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
703
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
704
+ self_attention_outputs = self.attention(
705
+ hidden_states,
706
+ attention_mask,
707
+ head_mask,
708
+ output_attentions=output_attentions,
709
+ past_key_value=self_attn_past_key_value,
710
+ )
711
+ attention_output = self_attention_outputs[0]
712
+
713
+ # if decoder, the last output is tuple of self-attn cache
714
+ if self.is_decoder:
715
+ outputs = self_attention_outputs[1:-1]
716
+ present_key_value = self_attention_outputs[-1]
717
+ else:
718
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
719
+
720
+ cross_attn_present_key_value = None
721
+ if self.is_decoder and encoder_hidden_states is not None:
722
+ if not hasattr(self, "crossattention"):
723
+ raise ValueError(
724
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
725
+ " by setting `config.add_cross_attention=True`"
726
+ )
727
+
728
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
729
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
730
+ cross_attention_outputs = self.crossattention(
731
+ attention_output,
732
+ attention_mask,
733
+ head_mask,
734
+ encoder_hidden_states,
735
+ encoder_attention_mask,
736
+ cross_attn_past_key_value,
737
+ output_attentions,
738
+ )
739
+ attention_output = cross_attention_outputs[0]
740
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
741
+
742
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
743
+ cross_attn_present_key_value = cross_attention_outputs[-1]
744
+ present_key_value = present_key_value + cross_attn_present_key_value
745
+
746
+ layer_output = apply_chunking_to_forward(
747
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
748
+ )
749
+ outputs = (layer_output,) + outputs
750
+
751
+ # if decoder, return the attn key/values as the last output
752
+ if self.is_decoder:
753
+ outputs = outputs + (present_key_value,)
754
+
755
+ return outputs
756
+
757
+ def feed_forward_chunk(self, attention_output):
758
+ intermediate_output = self.intermediate(attention_output)
759
+ layer_output = self.output(intermediate_output, attention_output)
760
+ return layer_output
761
+
762
+
763
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->BridgeTowerText
764
+ class BridgeTowerTextEncoder(nn.Module):
765
+ def __init__(self, config):
766
+ super().__init__()
767
+ self.config = config
768
+ self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)])
769
+ self.gradient_checkpointing = False
770
+
771
+ def forward(
772
+ self,
773
+ hidden_states: torch.Tensor,
774
+ attention_mask: Optional[torch.FloatTensor] = None,
775
+ head_mask: Optional[torch.FloatTensor] = None,
776
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
777
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
778
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
779
+ use_cache: Optional[bool] = None,
780
+ output_attentions: Optional[bool] = False,
781
+ output_hidden_states: Optional[bool] = False,
782
+ return_dict: Optional[bool] = True,
783
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
784
+ all_hidden_states = () if output_hidden_states else None
785
+ all_self_attentions = () if output_attentions else None
786
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
787
+
788
+ if self.gradient_checkpointing and self.training:
789
+ if use_cache:
790
+ logger.warning_once(
791
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
792
+ )
793
+ use_cache = False
794
+
795
+ next_decoder_cache = () if use_cache else None
796
+ for i, layer_module in enumerate(self.layer):
797
+ if output_hidden_states:
798
+ all_hidden_states = all_hidden_states + (hidden_states,)
799
+
800
+ layer_head_mask = head_mask[i] if head_mask is not None else None
801
+ past_key_value = past_key_values[i] if past_key_values is not None else None
802
+
803
+ if self.gradient_checkpointing and self.training:
804
+ layer_outputs = self._gradient_checkpointing_func(
805
+ layer_module.__call__,
806
+ hidden_states,
807
+ attention_mask,
808
+ layer_head_mask,
809
+ encoder_hidden_states,
810
+ encoder_attention_mask,
811
+ past_key_value,
812
+ output_attentions,
813
+ )
814
+ else:
815
+ layer_outputs = layer_module(
816
+ hidden_states,
817
+ attention_mask,
818
+ layer_head_mask,
819
+ encoder_hidden_states,
820
+ encoder_attention_mask,
821
+ past_key_value,
822
+ output_attentions,
823
+ )
824
+
825
+ hidden_states = layer_outputs[0]
826
+ if use_cache:
827
+ next_decoder_cache += (layer_outputs[-1],)
828
+ if output_attentions:
829
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
830
+ if self.config.add_cross_attention:
831
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
832
+
833
+ if output_hidden_states:
834
+ all_hidden_states = all_hidden_states + (hidden_states,)
835
+
836
+ if not return_dict:
837
+ return tuple(
838
+ v
839
+ for v in [
840
+ hidden_states,
841
+ next_decoder_cache,
842
+ all_hidden_states,
843
+ all_self_attentions,
844
+ all_cross_attentions,
845
+ ]
846
+ if v is not None
847
+ )
848
+ return BaseModelOutputWithPastAndCrossAttentions(
849
+ last_hidden_state=hidden_states,
850
+ past_key_values=next_decoder_cache,
851
+ hidden_states=all_hidden_states,
852
+ attentions=all_self_attentions,
853
+ cross_attentions=all_cross_attentions,
854
+ )
855
+
856
+
857
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->BridgeTowerText
858
+ class BridgeTowerTextEmbeddings(nn.Module):
859
+ """
860
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
861
+ """
862
+
863
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
864
+ def __init__(self, config):
865
+ super().__init__()
866
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
867
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
868
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
869
+
870
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
871
+ # any TensorFlow checkpoint file
872
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
873
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
874
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
875
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
876
+ self.register_buffer(
877
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
878
+ )
879
+ self.register_buffer(
880
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
881
+ )
882
+
883
+ # End copy
884
+ self.padding_idx = config.pad_token_id
885
+ self.position_embeddings = nn.Embedding(
886
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
887
+ )
888
+
889
+ def forward(
890
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
891
+ ):
892
+ if position_ids is None:
893
+ if input_ids is not None:
894
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
895
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
896
+ else:
897
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
898
+
899
+ if input_ids is not None:
900
+ input_shape = input_ids.size()
901
+ else:
902
+ input_shape = inputs_embeds.size()[:-1]
903
+
904
+ seq_length = input_shape[1]
905
+
906
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
907
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
908
+ # issue #5664
909
+ if token_type_ids is None:
910
+ if hasattr(self, "token_type_ids"):
911
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
912
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
913
+ token_type_ids = buffered_token_type_ids_expanded
914
+ else:
915
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
916
+
917
+ if inputs_embeds is None:
918
+ inputs_embeds = self.word_embeddings(input_ids)
919
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
920
+
921
+ embeddings = inputs_embeds + token_type_embeddings
922
+ if self.position_embedding_type == "absolute":
923
+ position_embeddings = self.position_embeddings(position_ids)
924
+ embeddings += position_embeddings
925
+ embeddings = self.LayerNorm(embeddings)
926
+ embeddings = self.dropout(embeddings)
927
+ return embeddings
928
+
929
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
930
+ """
931
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
932
+
933
+ Args:
934
+ inputs_embeds: torch.Tensor
935
+
936
+ Returns: torch.Tensor
937
+ """
938
+ input_shape = inputs_embeds.size()[:-1]
939
+ sequence_length = input_shape[1]
940
+
941
+ position_ids = torch.arange(
942
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
943
+ )
944
+ return position_ids.unsqueeze(0).expand(input_shape)
945
+
946
+
947
+ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
948
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
949
+ """
950
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
951
+ are ignored. This is modified from fairseq's `utils.make_positions`.
952
+
953
+ Args:
954
+ x: torch.Tensor x:
955
+
956
+ Returns: torch.Tensor
957
+ """
958
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
959
+ mask = input_ids.ne(padding_idx).int()
960
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
961
+ return incremental_indices.long() + padding_idx
962
+
963
+
964
+ class BridgeTowerPreTrainedModel(PreTrainedModel):
965
+ """
966
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
967
+ models.
968
+ """
969
+
970
+ config_class = BridgeTowerConfig
971
+ base_model_prefix = "bridgetower"
972
+ supports_gradient_checkpointing = False
973
+ _no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"]
974
+ _skip_keys_device_placement = "past_key_values"
975
+
976
+ def _init_weights(self, module):
977
+ if isinstance(module, BridgeTowerVisionModel):
978
+ proj_std = (module.visual.transformer.hidden_size**-0.5) * (
979
+ (2 * module.visual.transformer.num_hidden_layers) ** -0.5
980
+ )
981
+ attn_std = module.visual.transformer.hidden_size**-0.5
982
+ fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5
983
+ for block in module.visual.transformer.resblocks:
984
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor)
985
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor)
986
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor)
987
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor)
988
+
989
+ nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor)
990
+ nn.init.normal_(
991
+ module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor
992
+ )
993
+ elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)):
994
+ module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor)
995
+ elif isinstance(module, nn.LayerNorm):
996
+ module.bias.data.zero_()
997
+ module.weight.data.fill_(1.0)
998
+
999
+ if isinstance(module, nn.Linear) and module.bias is not None:
1000
+ module.bias.data.zero_()
1001
+
1002
+
1003
+ class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
1004
+ config_class = BridgeTowerVisionConfig
1005
+
1006
+ def __init__(self, config):
1007
+ super().__init__(config)
1008
+ self.visual = BridgeTowerVisionTransformer(config)
1009
+
1010
+ @property
1011
+ def dtype(self):
1012
+ return self.visual.embeddings.patch_embedding.weight.dtype
1013
+
1014
+ def forward(self, image, image_mask=None):
1015
+ return self.visual(image.type(self.dtype), image_mask)
1016
+
1017
+
1018
+ class BridgeTowerTextModel(BridgeTowerPreTrainedModel):
1019
+ """
1020
+
1021
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1022
+ cross-attention is added between the self-attention layers, following the architecture described in *Attention is
1023
+ all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
1024
+ Kaiser and Illia Polosukhin.
1025
+
1026
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1027
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1028
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1029
+
1030
+ .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
1031
+
1032
+ """
1033
+
1034
+ config_class = BridgeTowerTextConfig
1035
+
1036
+ def __init__(self, config, add_pooling_layer=True):
1037
+ super().__init__(config)
1038
+ self.config = config
1039
+
1040
+ self.embeddings = BridgeTowerTextEmbeddings(config)
1041
+ self.encoder = BridgeTowerTextEncoder(config)
1042
+
1043
+ self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None
1044
+
1045
+ # Initialize weights and apply final processing
1046
+ self.post_init()
1047
+
1048
+ def get_input_embeddings(self):
1049
+ return self.embeddings.word_embeddings
1050
+
1051
+ def set_input_embeddings(self, value):
1052
+ self.embeddings.word_embeddings = value
1053
+
1054
+ def _prune_heads(self, heads_to_prune):
1055
+ """
1056
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1057
+ class PreTrainedModel
1058
+ """
1059
+ for layer, heads in heads_to_prune.items():
1060
+ self.encoder.layer[layer].attention.prune_heads(heads)
1061
+
1062
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.forward
1063
+ def forward(
1064
+ self,
1065
+ input_ids: Optional[torch.Tensor] = None,
1066
+ attention_mask: Optional[torch.Tensor] = None,
1067
+ token_type_ids: Optional[torch.Tensor] = None,
1068
+ position_ids: Optional[torch.Tensor] = None,
1069
+ head_mask: Optional[torch.Tensor] = None,
1070
+ inputs_embeds: Optional[torch.Tensor] = None,
1071
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1072
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1073
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1074
+ use_cache: Optional[bool] = None,
1075
+ output_attentions: Optional[bool] = None,
1076
+ output_hidden_states: Optional[bool] = None,
1077
+ return_dict: Optional[bool] = None,
1078
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1079
+ r"""
1080
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1081
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1082
+ the model is configured as a decoder.
1083
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1084
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1085
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1086
+
1087
+ - 1 for tokens that are **not masked**,
1088
+ - 0 for tokens that are **masked**.
1089
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1090
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1091
+
1092
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1093
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1094
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1095
+ use_cache (`bool`, *optional*):
1096
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1097
+ `past_key_values`).
1098
+ """
1099
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1100
+ output_hidden_states = (
1101
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1102
+ )
1103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1104
+
1105
+ if self.config.is_decoder:
1106
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1107
+ else:
1108
+ use_cache = False
1109
+
1110
+ if input_ids is not None and inputs_embeds is not None:
1111
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1112
+ elif input_ids is not None:
1113
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1114
+ input_shape = input_ids.size()
1115
+ elif inputs_embeds is not None:
1116
+ input_shape = inputs_embeds.size()[:-1]
1117
+ else:
1118
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1119
+
1120
+ batch_size, seq_length = input_shape
1121
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1122
+
1123
+ # past_key_values_length
1124
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1125
+
1126
+ if attention_mask is None:
1127
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1128
+
1129
+ if token_type_ids is None:
1130
+ if hasattr(self.embeddings, "token_type_ids"):
1131
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1132
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
1133
+ token_type_ids = buffered_token_type_ids_expanded
1134
+ else:
1135
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1136
+
1137
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1138
+ # ourselves in which case we just need to make it broadcastable to all heads.
1139
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1140
+
1141
+ # If a 2D or 3D attention mask is provided for the cross-attention
1142
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1143
+ if self.config.is_decoder and encoder_hidden_states is not None:
1144
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1145
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1146
+ if encoder_attention_mask is None:
1147
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1148
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1149
+ else:
1150
+ encoder_extended_attention_mask = None
1151
+
1152
+ # Prepare head mask if needed
1153
+ # 1.0 in head_mask indicate we keep the head
1154
+ # attention_probs has shape bsz x n_heads x N x N
1155
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1156
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1157
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1158
+
1159
+ embedding_output = self.embeddings(
1160
+ input_ids=input_ids,
1161
+ position_ids=position_ids,
1162
+ token_type_ids=token_type_ids,
1163
+ inputs_embeds=inputs_embeds,
1164
+ past_key_values_length=past_key_values_length,
1165
+ )
1166
+ encoder_outputs = self.encoder(
1167
+ embedding_output,
1168
+ attention_mask=extended_attention_mask,
1169
+ head_mask=head_mask,
1170
+ encoder_hidden_states=encoder_hidden_states,
1171
+ encoder_attention_mask=encoder_extended_attention_mask,
1172
+ past_key_values=past_key_values,
1173
+ use_cache=use_cache,
1174
+ output_attentions=output_attentions,
1175
+ output_hidden_states=output_hidden_states,
1176
+ return_dict=return_dict,
1177
+ )
1178
+ sequence_output = encoder_outputs[0]
1179
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1180
+
1181
+ if not return_dict:
1182
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1183
+
1184
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1185
+ last_hidden_state=sequence_output,
1186
+ pooler_output=pooled_output,
1187
+ past_key_values=encoder_outputs.past_key_values,
1188
+ hidden_states=encoder_outputs.hidden_states,
1189
+ attentions=encoder_outputs.attentions,
1190
+ cross_attentions=encoder_outputs.cross_attentions,
1191
+ )
1192
+
1193
+
1194
+ @add_start_docstrings(
1195
+ "The bare BridgeTower Model transformer outputting BridgeTowerModelOutput object without any specific head on"
1196
+ " top.",
1197
+ BRIDGETOWER_START_DOCSTRING,
1198
+ )
1199
+ class BridgeTowerModel(BridgeTowerPreTrainedModel):
1200
+ def __init__(self, config):
1201
+ super().__init__(config)
1202
+ self.config = config
1203
+ vision_config = config.vision_config
1204
+ text_config = config.text_config
1205
+
1206
+ if config.share_cross_modal_transformer_layers:
1207
+ self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size)
1208
+ self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size)
1209
+ else:
1210
+ self.cross_modal_text_transform = nn.ModuleList(
1211
+ [nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
1212
+ )
1213
+ self.cross_modal_image_transform = nn.ModuleList(
1214
+ [nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
1215
+ )
1216
+
1217
+ self.token_type_embeddings = nn.Embedding(2, config.hidden_size)
1218
+
1219
+ self.vision_model = BridgeTowerVisionModel(vision_config)
1220
+
1221
+ self.text_model = BridgeTowerTextModel(text_config)
1222
+
1223
+ if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder:
1224
+ for ln in self.vision_model.visual.cross_modal_ln_separate:
1225
+ ln.weight.data = self.vision_model.visual.ln_post.weight.data
1226
+ ln.bias.data = self.vision_model.visual.ln_post.bias.data
1227
+
1228
+ self.cross_modal_image_layers = nn.ModuleList(
1229
+ [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
1230
+ )
1231
+ self.cross_modal_text_layers = nn.ModuleList(
1232
+ [BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
1233
+ )
1234
+
1235
+ # Class token => Linear => Tanh
1236
+ self.cross_modal_image_pooler = BridgeTowerPooler(config)
1237
+ self.cross_modal_text_pooler = BridgeTowerPooler(config)
1238
+
1239
+ # Initialize BridgeTower Components
1240
+ self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1241
+ self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1242
+
1243
+ if config.share_link_tower_layers:
1244
+ self.cross_modal_text_link_tower = BridgeTowerLinkTower(config)
1245
+ self.cross_modal_image_link_tower = BridgeTowerLinkTower(config)
1246
+ else:
1247
+ self.cross_modal_text_link_tower = nn.ModuleList(
1248
+ [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
1249
+ )
1250
+ self.cross_modal_image_link_tower = nn.ModuleList(
1251
+ [BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
1252
+ )
1253
+
1254
+ self.post_init()
1255
+
1256
+ def get_input_embeddings(self):
1257
+ return self.text_model.get_input_embeddings()
1258
+
1259
+ def set_input_embeddings(self, value):
1260
+ self.text_model.set_input_embeddings(value)
1261
+
1262
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1263
+ @replace_return_docstrings(output_type=BridgeTowerModelOutput, config_class=_CONFIG_FOR_DOC)
1264
+ def forward(
1265
+ self,
1266
+ input_ids: Optional[torch.LongTensor] = None,
1267
+ attention_mask: Optional[torch.FloatTensor] = None,
1268
+ token_type_ids: Optional[torch.LongTensor] = None,
1269
+ pixel_values: Optional[torch.FloatTensor] = None,
1270
+ pixel_mask: Optional[torch.LongTensor] = None,
1271
+ head_mask: Optional[torch.FloatTensor] = None,
1272
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1273
+ image_embeds: Optional[torch.FloatTensor] = None,
1274
+ image_token_type_idx: Optional[int] = None,
1275
+ output_attentions: Optional[bool] = None,
1276
+ output_hidden_states: Optional[bool] = None,
1277
+ return_dict: Optional[bool] = None,
1278
+ labels: Optional[torch.LongTensor] = None,
1279
+ ) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]:
1280
+ r"""
1281
+ output_hidden_states (`bool`, *optional*):
1282
+ If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and
1283
+ cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image,
1284
+ hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding
1285
+ modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and
1286
+ `hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and
1287
+ `cross_modal_image_hidden_states` of each brdige layer.
1288
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1289
+ Labels are currently not supported.
1290
+ Returns:
1291
+
1292
+ Examples:
1293
+
1294
+ ```python
1295
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerModel
1296
+ >>> from PIL import Image
1297
+ >>> import requests
1298
+
1299
+ >>> # prepare image and text
1300
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1301
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1302
+ >>> text = "hello world"
1303
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base")
1304
+ >>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base")
1305
+
1306
+ >>> inputs = processor(image, text, return_tensors="pt")
1307
+ >>> outputs = model(**inputs)
1308
+ >>> outputs.keys()
1309
+ odict_keys(['text_features', 'image_features', 'pooler_output'])
1310
+ ```"""
1311
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1312
+ output_hidden_states = (
1313
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1314
+ )
1315
+ all_hidden_states_text = () if output_hidden_states else None
1316
+ all_hidden_states_image = () if output_hidden_states else None
1317
+ all_hidden_states_cross = () if output_hidden_states else None
1318
+ all_hidden_states = () if output_hidden_states else None
1319
+ all_self_attentions = () if output_attentions else None
1320
+
1321
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1322
+ image_token_type_idx = image_token_type_idx if image_token_type_idx else 1
1323
+ input_shape = input_ids.size()
1324
+ text_embeds = self.text_model.embeddings(input_ids=input_ids)
1325
+
1326
+ if output_hidden_states:
1327
+ all_hidden_states_text += (text_embeds,)
1328
+
1329
+ if attention_mask is None:
1330
+ attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device)
1331
+ extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to(
1332
+ input_ids.device
1333
+ )
1334
+
1335
+ # The split_index determines how many layers of the uni-modal encoder are applied before the cross-modal encoder
1336
+ split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1
1337
+
1338
+ # Run the first 'split_index' layers of the textual encoder
1339
+ for layer in self.text_model.encoder.layer[:split_index]:
1340
+ text_embeds = layer(text_embeds, extend_text_masks)[0]
1341
+
1342
+ if output_hidden_states:
1343
+ all_hidden_states_text += (text_embeds,)
1344
+
1345
+ if image_embeds is None:
1346
+ image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype))
1347
+ else:
1348
+ # Permute as BridgeTowerResidualAttention has batch_first=True
1349
+ image_embeds = image_embeds.permute(1, 0, 2)
1350
+
1351
+ if output_hidden_states:
1352
+ all_hidden_states_image += (image_embeds,)
1353
+
1354
+ # Run the first 'split_index' layers of the visual encoder
1355
+ for block in self.vision_model.visual.transformer.resblocks[:split_index]:
1356
+ image_embeds = block(image_embeds)
1357
+ if output_hidden_states:
1358
+ all_hidden_states_image += (image_embeds,)
1359
+
1360
+ image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype))
1361
+
1362
+ # first layer is a special case because we don't have the output from the cross-encoder yet
1363
+ cross_modal_text = self.cross_modal_text_transform(text_embeds)
1364
+
1365
+ text_token_type_embeddings = self.token_type_embeddings(
1366
+ torch.zeros(1, dtype=torch.long, device=input_ids.device)
1367
+ ).expand_as(cross_modal_text)
1368
+
1369
+ cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings)
1370
+
1371
+ image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln)
1372
+ image_token_type_embeddings = self.token_type_embeddings(
1373
+ torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device)
1374
+ ).expand_as(image_embeds_with_ln)
1375
+
1376
+ image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings
1377
+ cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln)
1378
+
1379
+ pixel_mask = torch.ones(
1380
+ (cross_modal_image.size(0), cross_modal_image.size(1)),
1381
+ dtype=torch.long,
1382
+ device=input_ids.device,
1383
+ )
1384
+ extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to(
1385
+ input_ids.device
1386
+ )
1387
+
1388
+ layer_outputs_text = self.cross_modal_text_layers[0](
1389
+ cross_modal_text,
1390
+ cross_modal_image,
1391
+ attention_mask=extend_text_masks,
1392
+ encoder_attention_mask=extend_image_masks,
1393
+ output_attentions=output_attentions,
1394
+ )
1395
+ cross_text_features = layer_outputs_text[0]
1396
+
1397
+ layer_outputs_image = self.cross_modal_image_layers[0](
1398
+ cross_modal_image,
1399
+ cross_modal_text,
1400
+ attention_mask=extend_image_masks,
1401
+ encoder_attention_mask=extend_text_masks,
1402
+ output_attentions=output_attentions,
1403
+ )
1404
+ cross_image_features = layer_outputs_image[0]
1405
+
1406
+ if output_hidden_states:
1407
+ all_hidden_states_cross += ((cross_text_features, cross_image_features),)
1408
+
1409
+ if output_attentions:
1410
+ all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
1411
+
1412
+ link_layer_index = 0
1413
+
1414
+ # Each of the top 6 layers of the visual and textual encoders ([split_index:]) is connected to each layer of
1415
+ # the cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder.
1416
+ for i in range(split_index, len(self.text_model.encoder.layer)):
1417
+ text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0]
1418
+ image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type(
1419
+ self.vision_model.dtype
1420
+ )
1421
+ image_embeds_with_ln = (
1422
+ self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds))
1423
+ + image_token_type_embeddings
1424
+ )
1425
+
1426
+ text_link_tower = self.cross_modal_text_link_tower[link_layer_index]
1427
+ image_link_tower = self.cross_modal_image_link_tower[link_layer_index]
1428
+
1429
+ # Bridge layers for textual and visual encoders
1430
+ cross_text_features_ = text_link_tower(
1431
+ self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings,
1432
+ cross_text_features,
1433
+ extend_text_masks,
1434
+ )
1435
+ cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks)
1436
+
1437
+ # Cross-modal encoder via bridge layers of textual and visual encoders
1438
+ layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1](
1439
+ cross_text_features_,
1440
+ cross_image_features_,
1441
+ attention_mask=extend_text_masks,
1442
+ encoder_attention_mask=extend_image_masks,
1443
+ output_attentions=output_attentions,
1444
+ )
1445
+ cross_text_features = layer_outputs_text[0]
1446
+
1447
+ layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1](
1448
+ cross_image_features_,
1449
+ cross_text_features_,
1450
+ attention_mask=extend_image_masks,
1451
+ encoder_attention_mask=extend_text_masks,
1452
+ output_attentions=output_attentions,
1453
+ )
1454
+ cross_image_features = layer_outputs_image[0]
1455
+
1456
+ link_layer_index += 1
1457
+
1458
+ if output_hidden_states:
1459
+ all_hidden_states_text += (text_embeds,)
1460
+ all_hidden_states_image += (image_embeds,)
1461
+ all_hidden_states_cross += ((cross_text_features, cross_image_features),)
1462
+
1463
+ if output_attentions:
1464
+ all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
1465
+
1466
+ # Concatenate the cls token of the text and image features to get the final represtation
1467
+ text_features, image_features = cross_text_features, cross_image_features
1468
+ cls_features = self.get_cls_features(text_features, image_features)
1469
+
1470
+ if output_hidden_states:
1471
+ all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross)
1472
+
1473
+ if not return_dict:
1474
+ return tuple(
1475
+ v
1476
+ for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions]
1477
+ if v is not None
1478
+ )
1479
+
1480
+ return BridgeTowerModelOutput(
1481
+ text_features=text_features,
1482
+ image_features=image_features,
1483
+ pooler_output=cls_features,
1484
+ hidden_states=all_hidden_states,
1485
+ attentions=all_self_attentions,
1486
+ )
1487
+
1488
+ def get_cls_features(self, text_features, image_features):
1489
+ cls_features_text = self.cross_modal_text_pooler(text_features)
1490
+ cls_features_image = self.cross_modal_image_pooler(image_features)
1491
+ return torch.cat([cls_features_text, cls_features_image], dim=-1)
1492
+
1493
+
1494
+ # Copied from transformers.models.vilt.modeling_vilt.ViltPredictionHeadTransform with Vilt->BridgeTower
1495
+ class BridgeTowerPredictionHeadTransform(nn.Module):
1496
+ def __init__(self, config):
1497
+ super().__init__()
1498
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1499
+ if isinstance(config.hidden_act, str):
1500
+ self.transform_act_fn = ACT2FN[config.hidden_act]
1501
+ else:
1502
+ self.transform_act_fn = config.hidden_act
1503
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1504
+
1505
+ def forward(self, hidden_states):
1506
+ hidden_states = self.dense(hidden_states)
1507
+ hidden_states = self.transform_act_fn(hidden_states)
1508
+ hidden_states = self.LayerNorm(hidden_states)
1509
+ return hidden_states
1510
+
1511
+
1512
+ class BridgeTowerMLMHead(nn.Module):
1513
+ def __init__(self, config, weight=None):
1514
+ super().__init__()
1515
+ self.config = config
1516
+ self.transform = BridgeTowerPredictionHeadTransform(config)
1517
+ self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False)
1518
+ self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size))
1519
+ if weight is not None:
1520
+ self.decoder.weight = weight
1521
+
1522
+ def forward(self, x):
1523
+ mlm_score = self.transform(x)
1524
+ mlm_score = self.decoder(mlm_score) + self.bias
1525
+ return mlm_score
1526
+
1527
+
1528
+ class BridgeTowerITMHead(nn.Module):
1529
+ def __init__(self, hidden_size):
1530
+ super().__init__()
1531
+ self.fc = nn.Linear(hidden_size, 2)
1532
+
1533
+ def forward(self, x):
1534
+ itm_score = self.fc(x)
1535
+ return itm_score
1536
+
1537
+
1538
+ @add_start_docstrings(
1539
+ """
1540
+ BridgeTower Model with a language modeling head on top as done during pretraining.
1541
+ """,
1542
+ BRIDGETOWER_START_DOCSTRING,
1543
+ )
1544
+ class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel):
1545
+ _tied_weights_keys = ["mlm_score.decoder.weight"]
1546
+
1547
+ def __init__(self, config):
1548
+ super().__init__(config)
1549
+
1550
+ self.bridgetower = BridgeTowerModel(config)
1551
+ self.mlm_score = BridgeTowerMLMHead(config)
1552
+
1553
+ # Initialize weights and apply final processing
1554
+ self.post_init()
1555
+
1556
+ def get_output_embeddings(self):
1557
+ return self.mlm_score.decoder
1558
+
1559
+ def set_output_embeddings(self, new_embeddings):
1560
+ self.mlm_score.decoder = new_embeddings
1561
+
1562
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1563
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
1564
+ def forward(
1565
+ self,
1566
+ input_ids: Optional[torch.LongTensor] = None,
1567
+ attention_mask: Optional[torch.FloatTensor] = None,
1568
+ token_type_ids: Optional[torch.LongTensor] = None,
1569
+ pixel_values: Optional[torch.FloatTensor] = None,
1570
+ pixel_mask: Optional[torch.LongTensor] = None,
1571
+ head_mask: Optional[torch.FloatTensor] = None,
1572
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1573
+ image_embeds: Optional[torch.FloatTensor] = None,
1574
+ output_attentions: Optional[bool] = None,
1575
+ output_hidden_states: Optional[bool] = None,
1576
+ return_dict: Optional[bool] = None,
1577
+ labels: Optional[torch.LongTensor] = None,
1578
+ ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
1579
+ r"""
1580
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1581
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1582
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1583
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1584
+ Returns:
1585
+
1586
+ Examples:
1587
+
1588
+ ```python
1589
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
1590
+ >>> from PIL import Image
1591
+ >>> import requests
1592
+
1593
+ >>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
1594
+ >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
1595
+ >>> text = "a <mask> looking out of the window"
1596
+
1597
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1598
+ >>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1599
+
1600
+ >>> # prepare inputs
1601
+ >>> encoding = processor(image, text, return_tensors="pt")
1602
+
1603
+ >>> # forward pass
1604
+ >>> outputs = model(**encoding)
1605
+
1606
+ >>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
1607
+
1608
+ >>> print(results)
1609
+ .a cat looking out of the window.
1610
+ ```"""
1611
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1612
+ outputs = self.bridgetower(
1613
+ input_ids,
1614
+ attention_mask=attention_mask,
1615
+ token_type_ids=token_type_ids,
1616
+ pixel_values=pixel_values,
1617
+ pixel_mask=pixel_mask,
1618
+ head_mask=head_mask,
1619
+ inputs_embeds=inputs_embeds,
1620
+ image_embeds=image_embeds,
1621
+ output_attentions=output_attentions,
1622
+ output_hidden_states=output_hidden_states,
1623
+ return_dict=return_dict,
1624
+ )
1625
+
1626
+ mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0])
1627
+ masked_lm_loss = None
1628
+ if labels is not None:
1629
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1630
+
1631
+ labels = labels.to(mlm_logits.device)
1632
+ masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1))
1633
+
1634
+ if not return_dict:
1635
+ output = tuple(mlm_logits)
1636
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1637
+
1638
+ return MaskedLMOutput(
1639
+ loss=masked_lm_loss,
1640
+ logits=mlm_logits,
1641
+ hidden_states=outputs.hidden_states,
1642
+ attentions=outputs.attentions,
1643
+ )
1644
+
1645
+
1646
+ @add_start_docstrings(
1647
+ """
1648
+ BridgeTower Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the
1649
+ [CLS] token) for image-to-text matching.
1650
+ """,
1651
+ BRIDGETOWER_START_DOCSTRING,
1652
+ )
1653
+ class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel):
1654
+ def __init__(self, config):
1655
+ super().__init__(config)
1656
+
1657
+ self.bridgetower = BridgeTowerModel(config)
1658
+
1659
+ self.itm_score = BridgeTowerITMHead(config.hidden_size * 2)
1660
+
1661
+ # Initialize weights and apply final processing
1662
+ self.post_init()
1663
+
1664
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1665
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
1666
+ def forward(
1667
+ self,
1668
+ input_ids: Optional[torch.LongTensor] = None,
1669
+ attention_mask: Optional[torch.FloatTensor] = None,
1670
+ token_type_ids: Optional[torch.LongTensor] = None,
1671
+ pixel_values: Optional[torch.FloatTensor] = None,
1672
+ pixel_mask: Optional[torch.LongTensor] = None,
1673
+ head_mask: Optional[torch.FloatTensor] = None,
1674
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1675
+ image_embeds: Optional[torch.FloatTensor] = None,
1676
+ output_attentions: Optional[bool] = None,
1677
+ output_hidden_states: Optional[bool] = None,
1678
+ return_dict: Optional[bool] = None,
1679
+ labels: Optional[torch.LongTensor] = None,
1680
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
1681
+ r"""
1682
+ labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
1683
+ Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
1684
+ The pairs with 0 will be skipped for calculation.
1685
+ Returns:
1686
+
1687
+ Examples:
1688
+
1689
+ ```python
1690
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
1691
+ >>> import requests
1692
+ >>> from PIL import Image
1693
+
1694
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1695
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1696
+ >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
1697
+
1698
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1699
+ >>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
1700
+
1701
+ >>> # forward pass
1702
+ >>> scores = dict()
1703
+ >>> for text in texts:
1704
+ ... # prepare inputs
1705
+ ... encoding = processor(image, text, return_tensors="pt")
1706
+ ... outputs = model(**encoding)
1707
+ ... scores[text] = outputs.logits[0, 1].item()
1708
+ ```"""
1709
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1710
+
1711
+ outputs = self.bridgetower(
1712
+ input_ids,
1713
+ attention_mask=attention_mask,
1714
+ token_type_ids=token_type_ids,
1715
+ pixel_values=pixel_values,
1716
+ pixel_mask=pixel_mask,
1717
+ head_mask=head_mask,
1718
+ inputs_embeds=inputs_embeds,
1719
+ image_embeds=image_embeds,
1720
+ output_attentions=output_attentions,
1721
+ output_hidden_states=output_hidden_states,
1722
+ return_dict=return_dict,
1723
+ )
1724
+
1725
+ pooler_output = outputs.pooler_output if return_dict else outputs[2]
1726
+
1727
+ logits = self.itm_score(pooler_output)
1728
+
1729
+ itm_loss = None
1730
+ if labels is not None:
1731
+ loss_fct = CrossEntropyLoss()
1732
+
1733
+ labels = labels.to(logits.device)
1734
+ itm_loss = loss_fct(logits, labels)
1735
+
1736
+ if not return_dict:
1737
+ output = tuple(logits)
1738
+ return ((itm_loss,) + output) if itm_loss is not None else output
1739
+
1740
+ return SequenceClassifierOutput(
1741
+ loss=itm_loss,
1742
+ logits=logits,
1743
+ hidden_states=outputs.hidden_states,
1744
+ attentions=outputs.attentions,
1745
+ )
1746
+
1747
+
1748
+ class BridgeTowerContrastiveHead(nn.Module):
1749
+ def __init__(self, hidden_size, embed_size):
1750
+ super().__init__()
1751
+ self.fc = nn.Linear(hidden_size, embed_size)
1752
+
1753
+ def forward(self, x):
1754
+ x = self.fc(x)
1755
+ return x
1756
+
1757
+
1758
+ @add_start_docstrings(
1759
+ """
1760
+ BridgeTower Model with a image-text contrastive head on top computing image-text contrastive loss.
1761
+ """,
1762
+ BRIDGETOWER_START_DOCSTRING,
1763
+ )
1764
+ class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel):
1765
+ def __init__(self, config):
1766
+ super().__init__(config)
1767
+
1768
+ self.bridgetower = BridgeTowerModel(config)
1769
+
1770
+ self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
1771
+ self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
1772
+ self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size)
1773
+
1774
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1775
+ # Initialize weights and apply final processing
1776
+ self.post_init()
1777
+
1778
+ @add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
1779
+ @replace_return_docstrings(output_type=BridgeTowerContrastiveOutput, config_class=_CONFIG_FOR_DOC)
1780
+ def forward(
1781
+ self,
1782
+ input_ids: Optional[torch.LongTensor] = None,
1783
+ attention_mask: Optional[torch.FloatTensor] = None,
1784
+ token_type_ids: Optional[torch.LongTensor] = None,
1785
+ pixel_values: Optional[torch.FloatTensor] = None,
1786
+ pixel_mask: Optional[torch.LongTensor] = None,
1787
+ head_mask: Optional[torch.FloatTensor] = None,
1788
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1789
+ image_embeds: Optional[torch.FloatTensor] = None,
1790
+ output_attentions: Optional[bool] = None,
1791
+ output_hidden_states: Optional[bool] = True,
1792
+ return_dict: Optional[bool] = None,
1793
+ return_loss: Optional[bool] = None,
1794
+ ) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]:
1795
+ r"""
1796
+ return_loss (`bool`, *optional*):
1797
+ Whether or not to return the contrastive loss.
1798
+ Returns:
1799
+
1800
+ Examples:
1801
+
1802
+ ```python
1803
+ >>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
1804
+ >>> import requests
1805
+ >>> from PIL import Image
1806
+ >>> import torch
1807
+
1808
+ >>> image_urls = [
1809
+ ... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg",
1810
+ ... "http://images.cocodataset.org/val2017/000000039769.jpg",
1811
+ ... ]
1812
+ >>> texts = ["two dogs in a car", "two cats sleeping on a couch"]
1813
+ >>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls]
1814
+
1815
+ >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
1816
+ >>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
1817
+
1818
+ >>> inputs = processor(images, texts, padding=True, return_tensors="pt")
1819
+ >>> loss = model(**inputs, return_loss=True).loss
1820
+
1821
+ >>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt")
1822
+ >>> loss_swapped = model(**inputs, return_loss=True).loss
1823
+
1824
+ >>> print("Loss", round(loss.item(), 4))
1825
+ Loss 0.0019
1826
+
1827
+ >>> print("Loss with swapped images", round(loss_swapped.item(), 4))
1828
+ Loss with swapped images 2.126
1829
+ ```"""
1830
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1831
+
1832
+ outputs = self.bridgetower(
1833
+ input_ids,
1834
+ attention_mask=attention_mask,
1835
+ token_type_ids=token_type_ids,
1836
+ pixel_values=pixel_values,
1837
+ pixel_mask=pixel_mask,
1838
+ head_mask=head_mask,
1839
+ inputs_embeds=inputs_embeds,
1840
+ image_embeds=image_embeds,
1841
+ output_attentions=output_attentions,
1842
+ output_hidden_states=True,
1843
+ return_dict=return_dict,
1844
+ )
1845
+
1846
+ pooler_output = outputs.pooler_output if return_dict else outputs[2]
1847
+ hidden_states_txt, hidden_states_img, hidden_states_cross_modal = (
1848
+ outputs.hidden_states if return_dict else outputs[3]
1849
+ )
1850
+
1851
+ text_embeds = hidden_states_txt[-1]
1852
+ image_embeds = hidden_states_img[-1]
1853
+
1854
+ image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds)
1855
+ image_token_type_embeddings = self.bridgetower.token_type_embeddings(
1856
+ torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device)
1857
+ ).expand_as(image_embeds_with_ln)
1858
+
1859
+ image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings
1860
+
1861
+ # normalized features
1862
+ text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2)
1863
+ image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to(
1864
+ device=text_embeds.device
1865
+ )
1866
+ cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to(
1867
+ device=text_embeds.device
1868
+ )
1869
+
1870
+ logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2)
1871
+
1872
+ logit_scale = self.logit_scale.exp().to(device=text_embeds.device)
1873
+ logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1874
+ logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale
1875
+ logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale
1876
+
1877
+ itc_loss = None
1878
+
1879
+ if return_loss:
1880
+ labels = torch.arange(len(logits), device=logits.device)
1881
+ text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels)
1882
+ text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels)
1883
+ image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels)
1884
+ itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0
1885
+
1886
+ if not return_dict:
1887
+ output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:]
1888
+ return ((itc_loss,) + output) if itc_loss is not None else output
1889
+
1890
+ return BridgeTowerContrastiveOutput(
1891
+ loss=itc_loss,
1892
+ logits=logits,
1893
+ text_embeds=text_embeds,
1894
+ image_embeds=image_embeds,
1895
+ cross_embeds=cross_embeds,
1896
+ hidden_states=outputs.hidden_states,
1897
+ attentions=outputs.attentions,
1898
+ )
venv/lib/python3.10/site-packages/transformers/models/bridgetower/processing_bridgetower.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for BridgeTower.
17
+ """
18
+
19
+ from typing import List, Optional, Union
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
23
+ from ...utils import TensorType
24
+
25
+
26
+ class BridgeTowerProcessor(ProcessorMixin):
27
+ r"""
28
+ Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
29
+ processor.
30
+
31
+ [`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
32
+ [`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
33
+ [`~BridgeTowerProcessor.decode`] for more information.
34
+
35
+ Args:
36
+ image_processor (`BridgeTowerImageProcessor`):
37
+ An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
38
+ tokenizer (`RobertaTokenizerFast`):
39
+ An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
40
+ """
41
+
42
+ attributes = ["image_processor", "tokenizer"]
43
+ image_processor_class = "BridgeTowerImageProcessor"
44
+ tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
45
+
46
+ def __init__(self, image_processor, tokenizer):
47
+ super().__init__(image_processor, tokenizer)
48
+
49
+ def __call__(
50
+ self,
51
+ images,
52
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
53
+ add_special_tokens: bool = True,
54
+ padding: Union[bool, str, PaddingStrategy] = False,
55
+ truncation: Union[bool, str, TruncationStrategy] = None,
56
+ max_length: Optional[int] = None,
57
+ stride: int = 0,
58
+ pad_to_multiple_of: Optional[int] = None,
59
+ return_token_type_ids: Optional[bool] = None,
60
+ return_attention_mask: Optional[bool] = None,
61
+ return_overflowing_tokens: bool = False,
62
+ return_special_tokens_mask: bool = False,
63
+ return_offsets_mapping: bool = False,
64
+ return_length: bool = False,
65
+ verbose: bool = True,
66
+ return_tensors: Optional[Union[str, TensorType]] = None,
67
+ **kwargs,
68
+ ) -> BatchEncoding:
69
+ """
70
+ This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
71
+ [`RobertaTokenizerFast.__call__`] to prepare text for the model.
72
+
73
+ Please refer to the docstring of the above two methods for more information.
74
+ """
75
+ encoding = self.tokenizer(
76
+ text=text,
77
+ add_special_tokens=add_special_tokens,
78
+ padding=padding,
79
+ truncation=truncation,
80
+ max_length=max_length,
81
+ stride=stride,
82
+ pad_to_multiple_of=pad_to_multiple_of,
83
+ return_token_type_ids=return_token_type_ids,
84
+ return_attention_mask=return_attention_mask,
85
+ return_overflowing_tokens=return_overflowing_tokens,
86
+ return_special_tokens_mask=return_special_tokens_mask,
87
+ return_offsets_mapping=return_offsets_mapping,
88
+ return_length=return_length,
89
+ verbose=verbose,
90
+ return_tensors=return_tensors,
91
+ **kwargs,
92
+ )
93
+ # add pixel_values + pixel_mask
94
+ encoding_image_processor = self.image_processor(
95
+ images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs
96
+ )
97
+ encoding.update(encoding_image_processor)
98
+
99
+ return encoding
100
+
101
+ def batch_decode(self, *args, **kwargs):
102
+ """
103
+ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
104
+ refer to the docstring of this method for more information.
105
+ """
106
+ return self.tokenizer.batch_decode(*args, **kwargs)
107
+
108
+ def decode(self, *args, **kwargs):
109
+ """
110
+ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
111
+ to the docstring of this method for more information.
112
+ """
113
+ return self.tokenizer.decode(*args, **kwargs)
114
+
115
+ @property
116
+ def model_input_names(self):
117
+ tokenizer_input_names = self.tokenizer.model_input_names
118
+ image_processor_input_names = self.image_processor.model_input_names
119
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/__init__.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_conditional_detr": [
22
+ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
23
+ "ConditionalDetrConfig",
24
+ "ConditionalDetrOnnxConfig",
25
+ ]
26
+ }
27
+
28
+ try:
29
+ if not is_vision_available():
30
+ raise OptionalDependencyNotAvailable()
31
+ except OptionalDependencyNotAvailable:
32
+ pass
33
+ else:
34
+ _import_structure["feature_extraction_conditional_detr"] = ["ConditionalDetrFeatureExtractor"]
35
+ _import_structure["image_processing_conditional_detr"] = ["ConditionalDetrImageProcessor"]
36
+
37
+ try:
38
+ if not is_torch_available():
39
+ raise OptionalDependencyNotAvailable()
40
+ except OptionalDependencyNotAvailable:
41
+ pass
42
+ else:
43
+ _import_structure["modeling_conditional_detr"] = [
44
+ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
45
+ "ConditionalDetrForObjectDetection",
46
+ "ConditionalDetrForSegmentation",
47
+ "ConditionalDetrModel",
48
+ "ConditionalDetrPreTrainedModel",
49
+ ]
50
+
51
+
52
+ if TYPE_CHECKING:
53
+ from .configuration_conditional_detr import (
54
+ CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
55
+ ConditionalDetrConfig,
56
+ ConditionalDetrOnnxConfig,
57
+ )
58
+
59
+ try:
60
+ if not is_vision_available():
61
+ raise OptionalDependencyNotAvailable()
62
+ except OptionalDependencyNotAvailable:
63
+ pass
64
+ else:
65
+ from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
66
+ from .image_processing_conditional_detr import ConditionalDetrImageProcessor
67
+
68
+ try:
69
+ if not is_torch_available():
70
+ raise OptionalDependencyNotAvailable()
71
+ except OptionalDependencyNotAvailable:
72
+ pass
73
+ else:
74
+ from .modeling_conditional_detr import (
75
+ CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
76
+ ConditionalDetrForObjectDetection,
77
+ ConditionalDetrForSegmentation,
78
+ ConditionalDetrModel,
79
+ ConditionalDetrPreTrainedModel,
80
+ )
81
+
82
+ else:
83
+ import sys
84
+
85
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/conditional_detr/modeling_conditional_detr.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...file_utils import _LazyModule, is_torch_available
17
+ from ...utils import OptionalDependencyNotAvailable
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"],
22
+ "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"],
23
+ }
24
+
25
+ try:
26
+ if not is_torch_available():
27
+ raise OptionalDependencyNotAvailable()
28
+ except OptionalDependencyNotAvailable:
29
+ pass
30
+ else:
31
+ _import_structure["modeling_gpt_neox_japanese"] = [
32
+ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
33
+ "GPTNeoXJapaneseForCausalLM",
34
+ "GPTNeoXJapaneseLayer",
35
+ "GPTNeoXJapaneseModel",
36
+ "GPTNeoXJapanesePreTrainedModel",
37
+ ]
38
+
39
+
40
+ if TYPE_CHECKING:
41
+ from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
42
+ from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
43
+
44
+ try:
45
+ if not is_torch_available():
46
+ raise OptionalDependencyNotAvailable()
47
+ except OptionalDependencyNotAvailable:
48
+ pass
49
+ else:
50
+ from .modeling_gpt_neox_japanese import (
51
+ GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
52
+ GPTNeoXJapaneseForCausalLM,
53
+ GPTNeoXJapaneseLayer,
54
+ GPTNeoXJapaneseModel,
55
+ GPTNeoXJapanesePreTrainedModel,
56
+ )
57
+
58
+
59
+ else:
60
+ import sys
61
+
62
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.15 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/configuration_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (5.02 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/modeling_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/tokenization_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ GPTNeoX Japanese model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class GPTNeoXJapaneseConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate
30
+ a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese
32
+ [abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be
40
+ represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`].
41
+ hidden_size (`int`, *optional*, defaults to 2560):
42
+ Dimension of the encoder layers and the pooler layer.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer encoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ intermediate_multiple_size (`int`, *optional*, defaults to 4):
48
+ Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size *
49
+ intermediate_multiple_size.
50
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
51
+ The non-linear activation function (function or string) in the encoder and pooler.
52
+ rotary_pct (`float`, *optional*, defaults to 1.00):
53
+ percentage of hidden dimensions to allocate to rotary embeddings
54
+ rotary_emb_base (`int`, *optional*, defaults to 10000)
55
+ base for computing rotary embeddings frequency
56
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
57
+ The maximum sequence length that this model might ever be used with.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
61
+ The epsilon used by the layer normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ attention_dropout (`float`, *optional*, defaults to 0.1):
66
+ The dropout ratio for the attention.
67
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
68
+ The dropout ratio for the hidden layer.
69
+ Example:
70
+
71
+ ```python
72
+ >>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel
73
+
74
+ >>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration
75
+ >>> configuration = GPTNeoXJapaneseConfig()
76
+
77
+ >>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration
78
+ >>> model = GPTNeoXJapaneseModel(configuration)
79
+
80
+ >>> # Accessing the model configuration
81
+ >>> configuration = model.config
82
+ ```"""
83
+
84
+ model_type = "gpt_neox_japanese"
85
+
86
+ def __init__(
87
+ self,
88
+ vocab_size=32000,
89
+ hidden_size=2560,
90
+ num_hidden_layers=32,
91
+ num_attention_heads=32,
92
+ intermediate_multiple_size=4,
93
+ hidden_act="gelu",
94
+ rotary_pct=1.00,
95
+ rotary_emb_base=10000,
96
+ max_position_embeddings=2048,
97
+ initializer_range=0.02,
98
+ layer_norm_eps=1e-5,
99
+ use_cache=True,
100
+ bos_token_id=31996,
101
+ eos_token_id=31999,
102
+ attention_dropout=0.1,
103
+ hidden_dropout=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
107
+ self.vocab_size = vocab_size
108
+ self.max_position_embeddings = max_position_embeddings
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.intermediate_multiple_size = intermediate_multiple_size
113
+ self.hidden_act = hidden_act
114
+ self.rotary_pct = rotary_pct
115
+ self.rotary_emb_base = rotary_emb_base
116
+ self.initializer_range = initializer_range
117
+ self.layer_norm_eps = layer_norm_eps
118
+ self.use_cache = use_cache
119
+ self.attention_dropout = attention_dropout
120
+ self.hidden_dropout = hidden_dropout
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py ADDED
@@ -0,0 +1,729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch GPTNeoX model."""
16
+
17
+ from typing import Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.utils.checkpoint
21
+ from torch import Tensor, nn
22
+ from torch.nn import CrossEntropyLoss
23
+
24
+ from ...activations import ACT2FN
25
+ from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
26
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
27
+ from ...modeling_utils import PreTrainedModel
28
+ from ...utils import logging
29
+ from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ _CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b"
35
+ _CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig"
36
+
37
+
38
+ from ..deprecated._archive_maps import GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
39
+
40
+
41
+ class GPTNeoXJapanesePreTrainedModel(PreTrainedModel):
42
+ """
43
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
44
+ models.
45
+ """
46
+
47
+ config_class = GPTNeoXJapaneseConfig
48
+ base_model_prefix = "gpt_neox_japanese"
49
+ _no_split_modules = ["GPTNeoXJapaneseLayer"]
50
+ _skip_keys_device_placement = "past_key_values"
51
+
52
+ def _init_weights(self, module):
53
+ """Initialize the weights"""
54
+ if isinstance(module, nn.Linear):
55
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
56
+ if module.bias is not None:
57
+ module.bias.data.zero_()
58
+ elif isinstance(module, nn.Embedding):
59
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
60
+ if module.padding_idx is not None:
61
+ module.weight.data[module.padding_idx].zero_()
62
+ elif isinstance(module, nn.LayerNorm):
63
+ module.bias.data.zero_()
64
+ module.weight.data.fill_(1.0)
65
+
66
+
67
+ class GPTNeoXJapaneseAttention(nn.Module):
68
+ def __init__(self, config, use_bias=False):
69
+ super().__init__()
70
+ self.num_attention_heads = config.num_attention_heads
71
+ self.hidden_size = config.hidden_size
72
+ self.head_size = self.hidden_size // self.num_attention_heads
73
+
74
+ self.rotary_ndims = int(self.head_size * config.rotary_pct)
75
+ self.rotary_emb = RotaryEmbedding(
76
+ self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base
77
+ )
78
+ self.max_positions = config.max_position_embeddings
79
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
80
+ self.norm_factor = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype())
81
+
82
+ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False)
83
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
84
+ # Activate bias if the last layer
85
+ self.use_bias = use_bias
86
+ self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None
87
+
88
+ def forward(
89
+ self,
90
+ hidden_states,
91
+ attention_mask,
92
+ head_mask=None,
93
+ layer_past=None,
94
+ use_cache=False,
95
+ output_attentions=False,
96
+ ):
97
+ has_layer_past = layer_past is not None and layer_past[0].numel() > 0
98
+
99
+ # Compute QKV
100
+ # Attention heads [batch, seq_len, hidden_size]
101
+ # --> [batch, seq_len, (np * 3 * head_size)]
102
+ qkv = self.query_key_value(hidden_states)
103
+
104
+ # [batch, seq_len, (num_heads * 3 * head_size)]
105
+ # --> [batch, seq_len, num_heads, 3 * head_size]
106
+ new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
107
+ qkv = qkv.view(*new_qkv_shape)
108
+
109
+ # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
110
+ query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
111
+ key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
112
+ value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
113
+
114
+ # Compute rotary embeddings on rotary_ndims
115
+ query_rot = query[..., : self.rotary_ndims]
116
+ query_pass = query[..., self.rotary_ndims :]
117
+ key_rot = key[..., : self.rotary_ndims]
118
+ key_pass = key[..., self.rotary_ndims :]
119
+
120
+ # Compute token offset for rotary embeddings (when decoding)
121
+ seq_len = key.shape[-2]
122
+ offset = 0
123
+ if has_layer_past:
124
+ offset = layer_past[0].shape[-2]
125
+ seq_len += offset
126
+ cos, sin = self.rotary_emb(value, seq_len=seq_len)
127
+ query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset)
128
+ query = torch.cat((query, query_pass), dim=-1)
129
+ key = torch.cat((key, key_pass), dim=-1)
130
+
131
+ # Cache QKV values
132
+ if has_layer_past:
133
+ past_key = layer_past[0]
134
+ past_value = layer_past[1]
135
+ key = torch.cat((past_key, key), dim=-2)
136
+ value = torch.cat((past_value, value), dim=-2)
137
+ present = (key, value) if use_cache else None
138
+
139
+ # Compute attention
140
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
141
+
142
+ # Reshape outputs
143
+ attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
144
+ attn_output = self.dense(attn_output)
145
+
146
+ outputs = (attn_output, present)
147
+ if output_attentions:
148
+ outputs += (attn_weights,)
149
+
150
+ return outputs, self.dense_bias
151
+
152
+ @classmethod
153
+ def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
154
+ """
155
+ Splits hidden dim into attn_head_size and num_attention_heads
156
+ """
157
+ # tensor: [bs, seq_len, hidden_size]
158
+ new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
159
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
160
+ tensor = tensor.view(new_shape)
161
+ # -> [bs, num_attention_heads, seq_len, attn_head_size]
162
+ tensor = tensor.permute(0, 2, 1, 3)
163
+ return tensor
164
+
165
+ @classmethod
166
+ def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
167
+ """
168
+ Merges attn_head_size dim and num_attn_heads dim into hidden dim
169
+ """
170
+ # tensor [bs, num_attention_heads, seq_len, attn_head_size]
171
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
172
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
173
+ tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
174
+ # -> [bs, seq_len, hidden_size]
175
+ return tensor
176
+
177
+ def _create_causal_mask(self, key_length, query_length):
178
+ causal_mask = torch.tril(
179
+ torch.ones((self.max_positions, self.max_positions), dtype=torch.bool).view(
180
+ 1, 1, self.max_positions, self.max_positions
181
+ )
182
+ )
183
+ return causal_mask[:, :, key_length - query_length : key_length, :key_length]
184
+
185
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
186
+ # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
187
+ # compute causal mask from causal mask buffer
188
+ batch_size, num_attention_heads, query_length, attn_head_size = query.size()
189
+ key_length = key.size(-2)
190
+
191
+ causal_mask = self._create_causal_mask(key_length, query_length)
192
+
193
+ query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
194
+ key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
195
+ attn_scores = torch.zeros(
196
+ batch_size * num_attention_heads,
197
+ query_length,
198
+ key_length,
199
+ dtype=query.dtype,
200
+ device=key.device,
201
+ )
202
+ attn_scores = torch.baddbmm(
203
+ attn_scores,
204
+ query,
205
+ key.transpose(1, 2),
206
+ beta=1.0,
207
+ alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
208
+ )
209
+ attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
210
+
211
+ mask_value = torch.finfo(attn_scores.dtype).min
212
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
213
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
214
+ mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
215
+ causal_mask = causal_mask.to(attn_scores.device)
216
+ attn_scores = torch.where(causal_mask, attn_scores, mask_value)
217
+
218
+ if attention_mask is not None:
219
+ # Apply the attention mask
220
+ attn_scores = attn_scores + attention_mask
221
+
222
+ attn_weights = nn.functional.softmax(attn_scores, dim=-1)
223
+ attn_weights = self.attention_dropout(attn_weights)
224
+ attn_weights = attn_weights.to(value.dtype)
225
+
226
+ # Mask heads if we want to
227
+ if head_mask is not None:
228
+ attn_weights = attn_weights * head_mask
229
+
230
+ attn_output = torch.matmul(attn_weights, value)
231
+ return attn_output, attn_weights
232
+
233
+
234
+ # Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoXRotaryEmbedding->RotaryEmbedding
235
+ class RotaryEmbedding(nn.Module):
236
+ # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__
237
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
238
+ super().__init__()
239
+
240
+ self.dim = dim
241
+ self.max_position_embeddings = max_position_embeddings
242
+ self.base = base
243
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
244
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
245
+
246
+ # Build here to make `torch.jit.trace` work.
247
+ self._set_cos_sin_cache(
248
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
249
+ )
250
+
251
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
252
+ self.max_seq_len_cached = seq_len
253
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
254
+
255
+ freqs = torch.outer(t, self.inv_freq)
256
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
257
+ emb = torch.cat((freqs, freqs), dim=-1)
258
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
259
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
260
+
261
+ def forward(self, x, seq_len=None):
262
+ # x: [bs, num_attention_heads, seq_len, head_size]
263
+ if seq_len > self.max_seq_len_cached:
264
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
265
+
266
+ return (
267
+ self.cos_cached[:seq_len],
268
+ self.sin_cached[:seq_len],
269
+ )
270
+
271
+
272
+ def rotate_half(x):
273
+ """Rotates half the hidden dims of the input."""
274
+ x1 = x[..., : x.shape[-1] // 2]
275
+ x2 = x[..., x.shape[-1] // 2 :]
276
+ return torch.cat((-x2, x1), dim=-1)
277
+
278
+
279
+ def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
280
+ cos = cos[..., offset : q.shape[-2] + offset, :]
281
+ sin = sin[..., offset : q.shape[-2] + offset, :]
282
+ q_embed = (q * cos) + (rotate_half(q) * sin)
283
+ k_embed = (k * cos) + (rotate_half(k) * sin)
284
+ return q_embed, k_embed
285
+
286
+
287
+ def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor:
288
+ """add bias to x, apply dropout and residual connection
289
+
290
+ Args:
291
+ x (Tensor): main path of output
292
+ bias (Tensor): None or attn_bias of the last attention layer
293
+ residual (Optional[Tensor]): residual value
294
+ prob (float): dropout probability
295
+ training (bool): whether in training mode or not
296
+
297
+ Returns:
298
+ Tensor: dropout(x + bias) + residual
299
+ """
300
+ if bias is not None:
301
+ x = x + bias
302
+ out = torch.nn.functional.dropout(x, p=prob, training=training)
303
+ if residual is not None:
304
+ out = residual + out
305
+ return out
306
+
307
+
308
+ class GPTNeoXJapaneseMLP(nn.Module):
309
+ def __init__(self, config):
310
+ super().__init__()
311
+ intermediate_size = int(config.hidden_size * config.intermediate_multiple_size)
312
+ self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False)
313
+ # Project back to h.
314
+ self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False)
315
+ self.act = ACT2FN[config.hidden_act]
316
+
317
+ def forward(self, hidden_states):
318
+ intermediate = self.dense_h_to_4h(hidden_states)
319
+ intermediate = self.act(intermediate)
320
+ output = self.dense_4h_to_h(intermediate)
321
+ return output
322
+
323
+
324
+ class GPTNeoXJapaneseLayer(nn.Module):
325
+ def __init__(self, config, layer_number):
326
+ super().__init__()
327
+ self.layer_number = layer_number
328
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
329
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
330
+ # activate bias only last layer
331
+ self.attention = GPTNeoXJapaneseAttention(config=config, use_bias=layer_number == config.num_hidden_layers - 1)
332
+ self.mlp = GPTNeoXJapaneseMLP(config)
333
+ self.hidden_dropout = config.hidden_dropout
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states,
338
+ attention_mask=None,
339
+ head_mask=None,
340
+ use_cache=False,
341
+ layer_past=None,
342
+ output_attentions=False,
343
+ ):
344
+ residual = hidden_states
345
+ ln_out = self.input_layernorm(hidden_states)
346
+ attention_layer_outputs, attn_bias = self.attention(
347
+ ln_out,
348
+ attention_mask=attention_mask,
349
+ layer_past=layer_past,
350
+ head_mask=head_mask,
351
+ use_cache=use_cache,
352
+ output_attentions=output_attentions,
353
+ )
354
+ attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions)
355
+ outputs = attention_layer_outputs[1:]
356
+
357
+ # attn_output = (atten_output + bias) + residual
358
+ attn_output = bias_dropout_add(
359
+ attn_output,
360
+ bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias,
361
+ residual=residual,
362
+ prob=self.hidden_dropout,
363
+ training=self.training,
364
+ )
365
+ mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
366
+
367
+ # attn_output = (mlp_output + mlp_bias) + atten_output
368
+ attn_output = bias_dropout_add(
369
+ mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training
370
+ )
371
+
372
+ if use_cache:
373
+ outputs = (attn_output,) + outputs
374
+ else:
375
+ outputs = (attn_output,) + outputs[1:]
376
+
377
+ return outputs # hidden_states, present, (attentions)
378
+
379
+
380
+ GPT_NEOX_JAPANESE_START_DOCSTRING = r"""
381
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
382
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
383
+ behavior.
384
+
385
+ Parameters:
386
+ config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model.
387
+ Initializing with a config file does not load the weights associated with the model, only the
388
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
389
+ """
390
+
391
+ GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r"""
392
+ Args:
393
+ input_ids (`torch.LongTensor` of shape `({0})`):
394
+ Indices of input sequence tokens in the vocabulary.
395
+
396
+ Indices can be obtained using [`AutoTokenizer`].
397
+
398
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
399
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
400
+
401
+ - 1 for tokens that are **not masked**,
402
+ - 0 for tokens that are **masked**.
403
+
404
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
405
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
406
+ 1]`:
407
+
408
+ - 0 corresponds to a *sentence A* token,
409
+ - 1 corresponds to a *sentence B* token.
410
+
411
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
412
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
413
+ config.max_position_embeddings - 1]`.
414
+
415
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
416
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
417
+
418
+ - 1 indicates the head is **not masked**,
419
+ - 0 indicates the head is **masked**.
420
+
421
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
422
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
423
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
424
+ model's internal embedding lookup matrix.
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
433
+ """
434
+
435
+
436
+ @add_start_docstrings(
437
+ "The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.",
438
+ GPT_NEOX_JAPANESE_START_DOCSTRING,
439
+ )
440
+ class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel):
441
+ def __init__(self, config):
442
+ super().__init__(config)
443
+ self.config = config
444
+
445
+ self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
446
+ self.layers = nn.ModuleList(
447
+ [GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)]
448
+ )
449
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
450
+
451
+ # Initialize weights and apply final processing
452
+ self.post_init()
453
+
454
+ def get_input_embeddings(self):
455
+ return self.embed_in
456
+
457
+ def set_input_embeddings(self, value):
458
+ self.embed_in = value
459
+
460
+ @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
461
+ @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
462
+ def forward(
463
+ self,
464
+ input_ids: Optional[torch.LongTensor] = None,
465
+ attention_mask: Optional[torch.FloatTensor] = None,
466
+ head_mask: Optional[torch.FloatTensor] = None,
467
+ inputs_embeds: Optional[torch.FloatTensor] = None,
468
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
469
+ use_cache: Optional[bool] = None,
470
+ output_attentions: Optional[bool] = None,
471
+ output_hidden_states: Optional[bool] = None,
472
+ return_dict: Optional[bool] = None,
473
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
474
+ r"""
475
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
476
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
477
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
478
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
479
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
480
+ use_cache (`bool`, *optional*):
481
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
482
+ `past_key_values`).
483
+
484
+ Returns:
485
+
486
+ Example:
487
+
488
+ ```python
489
+ >>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
490
+ >>> import torch
491
+
492
+ >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
493
+ >>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")
494
+
495
+ >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
496
+ >>> outputs = model(**inputs)
497
+
498
+ >>> last_hidden_states = outputs.last_hidden_state
499
+ ```
500
+ """
501
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
502
+ output_hidden_states = (
503
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
504
+ )
505
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
506
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
507
+
508
+ if input_ids is not None and inputs_embeds is not None:
509
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
510
+ elif input_ids is not None:
511
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
512
+ input_shape = input_ids.size()
513
+ elif inputs_embeds is not None:
514
+ input_shape = inputs_embeds.size()[:-1]
515
+ else:
516
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
517
+
518
+ batch_size, seq_length = input_shape
519
+
520
+ if past_key_values is None:
521
+ past_key_values = tuple([None] * self.config.num_hidden_layers)
522
+
523
+ # Attention mask.
524
+ if attention_mask is not None:
525
+ if not batch_size > 0:
526
+ raise ValueError("batch_size has to be defined and > 0")
527
+ attention_mask = attention_mask.view(batch_size, -1)
528
+ # We create a 3D attention mask from a 2D tensor mask.
529
+ # Sizes are [batch_size, 1, 1, to_seq_length]
530
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
531
+ # this attention mask is more simple than the triangular masking of causal attention
532
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
533
+ attention_mask = attention_mask[:, None, None, :]
534
+
535
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
536
+ # masked positions, this operation will create a tensor which is 0.0 for
537
+ # positions we want to attend and -10000.0 for masked positions.
538
+ # Since we are adding it to the raw scores before the softmax, this is
539
+ # effectively the same as removing these entirely.
540
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
541
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
542
+
543
+ # Prepare head mask if needed
544
+ # 1.0 in head_mask indicate we keep the head
545
+ # attention_probs has shape bsz x n_heads x N x N
546
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
547
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
548
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
549
+
550
+ if inputs_embeds is None:
551
+ inputs_embeds = self.embed_in(input_ids)
552
+
553
+ hidden_states = inputs_embeds
554
+
555
+ presents = () if use_cache else None
556
+ all_attentions = () if output_attentions else None
557
+ all_hidden_states = () if output_hidden_states else None
558
+ for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
559
+ if output_hidden_states:
560
+ all_hidden_states = all_hidden_states + (hidden_states,)
561
+ outputs = layer(
562
+ hidden_states,
563
+ attention_mask=attention_mask,
564
+ head_mask=head_mask[i],
565
+ layer_past=layer_past,
566
+ use_cache=use_cache,
567
+ output_attentions=output_attentions,
568
+ )
569
+ hidden_states = outputs[0]
570
+ if use_cache is True:
571
+ presents = presents + (outputs[1],)
572
+ if output_attentions:
573
+ all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
574
+
575
+ hidden_states = self.final_layer_norm(hidden_states)
576
+ # Add last hidden state
577
+ if output_hidden_states:
578
+ all_hidden_states = all_hidden_states + (hidden_states,)
579
+
580
+ if not return_dict:
581
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
582
+
583
+ return BaseModelOutputWithPast(
584
+ last_hidden_state=hidden_states,
585
+ past_key_values=presents,
586
+ hidden_states=all_hidden_states,
587
+ attentions=all_attentions,
588
+ )
589
+
590
+
591
+ @add_start_docstrings(
592
+ """GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""",
593
+ GPT_NEOX_JAPANESE_START_DOCSTRING,
594
+ )
595
+ class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel):
596
+ _tied_weights_keys = ["embed_out.weight"]
597
+
598
+ def __init__(self, config):
599
+ super().__init__(config)
600
+ self.config = config
601
+
602
+ self.gpt_neox_japanese = GPTNeoXJapaneseModel(config)
603
+ self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
604
+
605
+ # Initialize weights and apply final processing
606
+ self.post_init()
607
+
608
+ def get_output_embeddings(self):
609
+ return self.embed_out
610
+
611
+ def set_output_embeddings(self, new_embeddings):
612
+ self.embed_out = new_embeddings
613
+
614
+ @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
615
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
616
+ def forward(
617
+ self,
618
+ input_ids: Optional[torch.LongTensor] = None,
619
+ attention_mask: Optional[torch.FloatTensor] = None,
620
+ inputs_embeds: Optional[torch.FloatTensor] = None,
621
+ head_mask: Optional[torch.FloatTensor] = None,
622
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
623
+ labels: Optional[torch.LongTensor] = None,
624
+ use_cache: Optional[bool] = None,
625
+ output_attentions: Optional[bool] = None,
626
+ output_hidden_states: Optional[bool] = None,
627
+ return_dict: Optional[bool] = None,
628
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
629
+ r"""
630
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
631
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
632
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
633
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
634
+ only required when the model is used as a decoder in a Sequence to Sequence model.
635
+
636
+ Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
637
+ `past_key_values` input) to speed up sequential decoding.
638
+
639
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
640
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
641
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
642
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
643
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
644
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
645
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
646
+ use_cache (`bool`, *optional*):
647
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
648
+ `past_key_values`).
649
+
650
+ Returns:
651
+
652
+ Example:
653
+
654
+ ```python
655
+ >>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
656
+ >>> import torch
657
+
658
+ >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
659
+ >>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
660
+ >>> config.is_decoder = True
661
+ >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)
662
+
663
+ >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
664
+ >>> outputs = model(**inputs)
665
+
666
+ >>> prediction_logits = outputs.logits
667
+ ```
668
+ """
669
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
670
+
671
+ outputs = self.gpt_neox_japanese(
672
+ input_ids,
673
+ attention_mask=attention_mask,
674
+ head_mask=head_mask,
675
+ inputs_embeds=inputs_embeds,
676
+ past_key_values=past_key_values,
677
+ use_cache=use_cache,
678
+ output_attentions=output_attentions,
679
+ output_hidden_states=output_hidden_states,
680
+ return_dict=return_dict,
681
+ )
682
+
683
+ hidden_states = outputs[0]
684
+ lm_logits = self.embed_out(hidden_states)
685
+
686
+ lm_loss = None
687
+ if labels is not None:
688
+ # move labels to correct device to enable model parallelism
689
+ labels = labels.to(lm_logits.device)
690
+
691
+ # we are doing next-token prediction; shift prediction scores and input ids by one
692
+ shift_logits = lm_logits[:, :-1, :].contiguous()
693
+ labels = labels[:, 1:].contiguous()
694
+ loss_fct = CrossEntropyLoss()
695
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
696
+
697
+ if not return_dict:
698
+ output = (lm_logits,) + outputs[1:]
699
+ return ((lm_loss,) + output) if lm_loss is not None else output
700
+
701
+ return CausalLMOutputWithPast(
702
+ loss=lm_loss,
703
+ logits=lm_logits,
704
+ past_key_values=outputs.past_key_values,
705
+ hidden_states=outputs.hidden_states,
706
+ attentions=outputs.attentions,
707
+ )
708
+
709
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
710
+ input_shape = input_ids.shape
711
+
712
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
713
+ if attention_mask is None:
714
+ attention_mask = input_ids.new_ones(input_shape)
715
+
716
+ # cut decoder_input_ids if past is used
717
+ if past_key_values and past_key_values[0] is not None:
718
+ input_ids = input_ids[:, -1:]
719
+
720
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
721
+
722
+ def _reorder_cache(self, past_key_values, beam_idx):
723
+ reordered_past = ()
724
+ for layer_past in past_key_values:
725
+ reordered_past += (
726
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
727
+ + layer_past[2:],
728
+ )
729
+ return reordered_past
venv/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for GPTNeoXJapanese."""
16
+ import collections
17
+ import json
18
+ import os
19
+ import re
20
+ from typing import Optional, Tuple
21
+
22
+ import numpy as np
23
+
24
+ from ...tokenization_utils_fast import PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
31
+
32
+
33
+ def load_vocab_and_emoji(vocab_file, emoji_file):
34
+ """Loads a vocabulary file and emoji file into a dictionary."""
35
+ with open(emoji_file, "r", encoding="utf-8") as f:
36
+ emoji = json.loads(f.read())
37
+
38
+ vocab = collections.OrderedDict()
39
+ raw_vocab = collections.OrderedDict()
40
+ ids_to_tokens = collections.OrderedDict()
41
+ with open(vocab_file, "r", encoding="utf-8") as f:
42
+ token = f.readlines()
43
+ token = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token]
44
+ for idx, b in enumerate(token):
45
+ ids_to_tokens[idx] = b
46
+ raw_vocab[",".join(b)] = idx
47
+ for wd in b:
48
+ vocab[wd] = idx
49
+
50
+ return vocab, raw_vocab, ids_to_tokens, emoji
51
+
52
+
53
+ class GPTNeoXJapaneseTokenizer(PreTrainedTokenizer):
54
+ """
55
+ This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is
56
+ used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details.
57
+ Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a
58
+ combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope
59
+ with these, this tokenizer has the following features
60
+ - Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis.
61
+ - BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character
62
+ types, such as Kanji + Hiragana or Hiragana + Katakana.
63
+ - All-byte encoding that does not require <unk>.
64
+ - Independent of UTF codes such as 2-byte and 3-byte characters
65
+ - Conversion of heterographs to the same token_id
66
+ - Emoji and Emoticon are grouped into 12 types as special tags.
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import GPTNeoXJapaneseTokenizer
72
+
73
+ >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
74
+ >>> # You can confirm both 慶応 and 慶應 are encoded to 17749
75
+ >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]
76
+ [30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281]
77
+
78
+ >>> # Both 慶応 and 慶應 are decoded to 慶応
79
+ >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"])
80
+ '吾輩は猫である🐯。実は慶応(慶応)大学出身'
81
+ ```
82
+
83
+ Args:
84
+ vocab_file (`str`):
85
+ File containing the vocabulary.
86
+ emoji_file (`str`):
87
+ File containing the emoji.
88
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
89
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
90
+ token instead.
91
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
92
+ The token used for padding
93
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
94
+ The beginning of sequence token.
95
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
96
+ The end of sequence token.
97
+ do_clean_text (`bool`, *optional*, defaults to `False`):
98
+ Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE.
99
+ """
100
+
101
+ vocab_files_names = VOCAB_FILES_NAMES
102
+ model_input_names = ["input_ids", "attention_mask"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_file,
107
+ emoji_file,
108
+ unk_token="<|endoftext|>",
109
+ pad_token="<|endoftext|>",
110
+ bos_token="<|startoftext|>",
111
+ eos_token="<|endoftext|>",
112
+ do_clean_text=False,
113
+ **kwargs,
114
+ ):
115
+ if not os.path.isfile(vocab_file):
116
+ raise ValueError(
117
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
118
+ " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
119
+ )
120
+ if not os.path.isfile(emoji_file):
121
+ raise ValueError(
122
+ f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
123
+ " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
124
+ )
125
+ self.do_clean_text = do_clean_text
126
+ self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file)
127
+ self.subword_tokenizer = SubWordJapaneseTokenizer(
128
+ vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji
129
+ )
130
+ super().__init__(
131
+ unk_token=unk_token,
132
+ pad_token=pad_token,
133
+ bos_token=bos_token,
134
+ eos_token=eos_token,
135
+ do_clean_text=do_clean_text,
136
+ **kwargs,
137
+ )
138
+
139
+ @property
140
+ def vocab_size(self):
141
+ # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
142
+ return len(self.raw_vocab)
143
+
144
+ def get_vocab(self):
145
+ return dict(self.raw_vocab, **self.added_tokens_encoder)
146
+
147
+ def _tokenize(self, text):
148
+ return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text)
149
+
150
+ def _convert_token_to_id(self, token):
151
+ """Converts a token (str) in an id using the vocab."""
152
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
153
+
154
+ def _convert_id_to_token(self, index):
155
+ """Converts an index (integer) in a token (str) using the vocab."""
156
+ return self.subword_tokenizer.convert_id_to_token(index)
157
+
158
+ def convert_tokens_to_string(self, tokens):
159
+ """Converts a sequence of tokens (string) in a single string."""
160
+ out_string = "".join(tokens).strip()
161
+ return out_string
162
+
163
+ @property
164
+ def default_chat_template(self):
165
+ """
166
+ A simple chat template that just adds BOS/EOS tokens around messages while discarding role information.
167
+ """
168
+ logger.warning_once(
169
+ "\nNo chat template is defined for this tokenizer - using the default template "
170
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
171
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
172
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
173
+ )
174
+ return (
175
+ "{% for message in messages %}"
176
+ "{{ bos_token + eos_token + message.content + eos_token }}"
177
+ "{% endfor %}"
178
+ "{% if add_generation_prompt %} {{ bos_token + eos_token }} {% endif %}"
179
+ )
180
+
181
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
182
+ index = 0
183
+ if os.path.isdir(save_directory):
184
+ vocab_file = os.path.join(
185
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
186
+ )
187
+ emoji_file = os.path.join(
188
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]
189
+ )
190
+ else:
191
+ vocab_file = (
192
+ (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
193
+ )
194
+ emoji_file = (
195
+ (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
196
+ )
197
+ with open(vocab_file, "w", encoding="utf-8") as writer:
198
+ for token_index, token in self.ids_to_tokens.items():
199
+ if index != token_index:
200
+ logger.warning(
201
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
202
+ " Please check that the vocabulary is not corrupted!"
203
+ )
204
+ index = token_index
205
+ writer.write(",".join(token) + "\n")
206
+ index += 1
207
+ with open(emoji_file, "w", encoding="utf-8") as writer:
208
+ json.dump(self.emoji, writer)
209
+ return vocab_file, emoji_file
210
+
211
+
212
+ class SubWordJapaneseTokenizer(object):
213
+ """
214
+ https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the
215
+ original repository.
216
+
217
+ MIT License
218
+
219
+ Copyright (c) 2020 tanreinama
220
+
221
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
222
+ documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
223
+ rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
224
+ permit persons to whom the Software is furnished to do so, subject to the following conditions:
225
+
226
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of
227
+ the Software.
228
+
229
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
230
+ THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
231
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
232
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
233
+ SOFTWARE.
234
+ """
235
+
236
+ def __init__(self, vocab, ids_to_tokens, emoji):
237
+ self.vocab = vocab # same as swe
238
+ self.ids_to_tokens = ids_to_tokens # same as bpe
239
+ self.emoji = emoji
240
+ self.maxlen = np.max([len(w) for w in self.vocab.keys()])
241
+ self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
242
+ self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
243
+ self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}")
244
+ self.content_repatter4 = re.compile(
245
+ r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
246
+ )
247
+ self.content_repatter5 = re.compile(
248
+ r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
249
+ )
250
+ self.content_repatter6 = re.compile(
251
+ r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*"
252
+ )
253
+ keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
254
+ blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
255
+ self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
256
+
257
+ def __len__(self):
258
+ return len(self.ids_to_tokens)
259
+
260
+ def clean_text(self, content):
261
+ content = self.content_repatter1.sub("<URL>", content)
262
+ content = self.content_repatter2.sub("<EMAIL>", content)
263
+ content = self.content_repatter3.sub("<TEL>", content)
264
+ content = self.content_repatter4.sub("<DATE>", content)
265
+ content = self.content_repatter5.sub("<DATE>", content)
266
+ content = self.content_repatter6.sub("<PRICE>", content)
267
+ content = content.translate(self.content_trans1)
268
+ while "<BLOCK><BLOCK>" in content:
269
+ content = content.replace("<BLOCK><BLOCK>", "<BLOCK>")
270
+ return content
271
+
272
+ def tokenize(self, text, clean=False):
273
+ text = text.replace(" ", "<SP>")
274
+ text = text.replace(" ", "<SP>")
275
+ text = text.replace("\r\n", "<BR>")
276
+ text = text.replace("\n", "<BR>")
277
+ text = text.replace("\r", "<BR>")
278
+ text = text.replace("\t", "<TAB>")
279
+ text = text.replace("—", "ー")
280
+ text = text.replace("−", "ー")
281
+ for k, v in self.emoji["emoji"].items():
282
+ if k in text:
283
+ text = text.replace(k, v)
284
+ if clean:
285
+ text = self.clean_text(text)
286
+
287
+ def check_simbol(x):
288
+ e = x.encode()
289
+ if len(x) == 1 and len(e) == 2:
290
+ c = (int(e[0]) << 8) + int(e[1])
291
+ if (
292
+ (c >= 0xC2A1 and c <= 0xC2BF)
293
+ or (c >= 0xC780 and c <= 0xC783)
294
+ or (c >= 0xCAB9 and c <= 0xCBBF)
295
+ or (c >= 0xCC80 and c <= 0xCDA2)
296
+ ):
297
+ return True
298
+ return False
299
+
300
+ def checku2e(x):
301
+ e = x.encode()
302
+ if len(x) == 1 and len(e) == 3:
303
+ c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2])
304
+ if c >= 0xE28080 and c <= 0xE2B07F:
305
+ return True
306
+ return False
307
+
308
+ pos = 0
309
+ result = []
310
+ while pos < len(text):
311
+ end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3
312
+ candidates = [] # (token_id, token, pos)
313
+ for e in range(end, pos, -1):
314
+ wd = text[pos:e]
315
+ if wd in self.vocab:
316
+ if wd[0] == "<" and len(wd) > 2:
317
+ candidates = [(self.vocab[wd], wd, e)]
318
+ break
319
+ else:
320
+ candidates.append((self.vocab[wd], wd, e))
321
+ if len(candidates) > 0:
322
+ # the smallest token_id is adopted
323
+ _, wd, e = sorted(candidates, key=lambda x: x[0])[0]
324
+ result.append(wd)
325
+ pos = e
326
+ else:
327
+ end = pos + 1
328
+ wd = text[pos:end]
329
+ if check_simbol(wd):
330
+ result.append("<KIGOU>")
331
+ elif checku2e(wd):
332
+ result.append("<U2000U2BFF>")
333
+ else:
334
+ for i in wd.encode("utf-8"):
335
+ result.append("<|byte%d|>" % i)
336
+ pos = end
337
+ return result
338
+
339
+ def convert_id_to_token(self, index, breakline="\n"):
340
+ words = []
341
+ byte_tokens = []
342
+ word = self.ids_to_tokens[index][0]
343
+ if word[:6] == "<|byte" and word[-2:] == "|>":
344
+ byte_tokens.append(int(word[6:-2]))
345
+ else:
346
+ if len(byte_tokens) > 0:
347
+ words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
348
+ byte_tokens = []
349
+ if word[:7] == "<|emoji" and word[-2:] == "|>":
350
+ words.append(self.emoji["emoji_inv"][word])
351
+ elif word == "<SP>":
352
+ words.append(" ")
353
+ elif word == "<BR>":
354
+ words.append(breakline)
355
+ elif word == "<TAB>":
356
+ words.append("\t")
357
+ elif word == "<BLOCK>":
358
+ words.append("▀")
359
+ elif word == "<KIGOU>":
360
+ words.append("ǀ")
361
+ elif word == "<U2000U2BFF>":
362
+ words.append("‖")
363
+ else:
364
+ words.append(word)
365
+ if len(byte_tokens) > 0:
366
+ words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
367
+ text = "".join(words)
368
+ return text
venv/lib/python3.10/site-packages/transformers/models/qwen2/__init__.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_tokenizers_available,
20
+ is_torch_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_qwen2": ["QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2Config"],
26
+ "tokenization_qwen2": ["Qwen2Tokenizer"],
27
+ }
28
+
29
+ try:
30
+ if not is_tokenizers_available():
31
+ raise OptionalDependencyNotAvailable()
32
+ except OptionalDependencyNotAvailable:
33
+ pass
34
+ else:
35
+ _import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"]
36
+
37
+ try:
38
+ if not is_torch_available():
39
+ raise OptionalDependencyNotAvailable()
40
+ except OptionalDependencyNotAvailable:
41
+ pass
42
+ else:
43
+ _import_structure["modeling_qwen2"] = [
44
+ "Qwen2ForCausalLM",
45
+ "Qwen2Model",
46
+ "Qwen2PreTrainedModel",
47
+ "Qwen2ForSequenceClassification",
48
+ ]
49
+
50
+
51
+ if TYPE_CHECKING:
52
+ from .configuration_qwen2 import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2Config
53
+ from .tokenization_qwen2 import Qwen2Tokenizer
54
+
55
+ try:
56
+ if not is_tokenizers_available():
57
+ raise OptionalDependencyNotAvailable()
58
+ except OptionalDependencyNotAvailable:
59
+ pass
60
+ else:
61
+ from .tokenization_qwen2_fast import Qwen2TokenizerFast
62
+
63
+ try:
64
+ if not is_torch_available():
65
+ raise OptionalDependencyNotAvailable()
66
+ except OptionalDependencyNotAvailable:
67
+ pass
68
+ else:
69
+ from .modeling_qwen2 import (
70
+ Qwen2ForCausalLM,
71
+ Qwen2ForSequenceClassification,
72
+ Qwen2Model,
73
+ Qwen2PreTrainedModel,
74
+ )
75
+
76
+
77
+ else:
78
+ import sys
79
+
80
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/configuration_qwen2.cpython-310.pyc ADDED
Binary file (5.79 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/modeling_qwen2.cpython-310.pyc ADDED
Binary file (39.1 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc ADDED
Binary file (3.86 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/qwen2/configuration_qwen2.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Qwen2 model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class Qwen2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
30
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of
32
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 151936):
40
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Qwen2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 22016):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*, defaults to 32):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
69
+ Whether the model's input and output word embeddings should be tied.
70
+ rope_theta (`float`, *optional*, defaults to 10000.0):
71
+ The base period of the RoPE embeddings.
72
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
73
+ Whether to use sliding window attention.
74
+ sliding_window (`int`, *optional*, defaults to 4096):
75
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
76
+ max_window_layers (`int`, *optional*, defaults to 28):
77
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
78
+ attention_dropout (`float`, *optional*, defaults to 0.0):
79
+ The dropout ratio for the attention probabilities.
80
+
81
+ ```python
82
+ >>> from transformers import Qwen2Model, Qwen2Config
83
+
84
+ >>> # Initializing a Qwen2 style configuration
85
+ >>> configuration = Qwen2Config()
86
+
87
+ >>> # Initializing a model from the Qwen2-7B style configuration
88
+ >>> model = Qwen2Model(configuration)
89
+
90
+ >>> # Accessing the model configuration
91
+ >>> configuration = model.config
92
+ ```"""
93
+
94
+ model_type = "qwen2"
95
+ keys_to_ignore_at_inference = ["past_key_values"]
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_size=151936,
100
+ hidden_size=4096,
101
+ intermediate_size=22016,
102
+ num_hidden_layers=32,
103
+ num_attention_heads=32,
104
+ num_key_value_heads=32,
105
+ hidden_act="silu",
106
+ max_position_embeddings=32768,
107
+ initializer_range=0.02,
108
+ rms_norm_eps=1e-6,
109
+ use_cache=True,
110
+ tie_word_embeddings=False,
111
+ rope_theta=10000.0,
112
+ use_sliding_window=False,
113
+ sliding_window=4096,
114
+ max_window_layers=28,
115
+ attention_dropout=0.0,
116
+ **kwargs,
117
+ ):
118
+ self.vocab_size = vocab_size
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.hidden_size = hidden_size
121
+ self.intermediate_size = intermediate_size
122
+ self.num_hidden_layers = num_hidden_layers
123
+ self.num_attention_heads = num_attention_heads
124
+ self.use_sliding_window = use_sliding_window
125
+ self.sliding_window = sliding_window
126
+ self.max_window_layers = max_window_layers
127
+
128
+ # for backward compatibility
129
+ if num_key_value_heads is None:
130
+ num_key_value_heads = num_attention_heads
131
+
132
+ self.num_key_value_heads = num_key_value_heads
133
+ self.hidden_act = hidden_act
134
+ self.initializer_range = initializer_range
135
+ self.rms_norm_eps = rms_norm_eps
136
+ self.use_cache = use_cache
137
+ self.rope_theta = rope_theta
138
+ self.attention_dropout = attention_dropout
139
+
140
+ super().__init__(
141
+ tie_word_embeddings=tie_word_embeddings,
142
+ **kwargs,
143
+ )
venv/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py ADDED
@@ -0,0 +1,1397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Qwen2 model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from ...activations import ACT2FN
33
+ from ...cache_utils import Cache, DynamicCache
34
+ from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
35
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
36
+ from ...modeling_utils import PreTrainedModel
37
+ from ...utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_qwen2 import Qwen2Config
46
+
47
+
48
+ if is_flash_attn_2_available():
49
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
50
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
51
+
52
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+
58
+ _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
59
+ _CONFIG_FOR_DOC = "Qwen2Config"
60
+
61
+
62
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
76
+ class Qwen2RMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ Qwen2RMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ hidden_states = hidden_states.to(torch.float32)
88
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+ return self.weight * hidden_states.to(input_dtype)
91
+
92
+
93
+ # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2
94
+ class Qwen2RotaryEmbedding(nn.Module):
95
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
96
+ super().__init__()
97
+
98
+ self.dim = dim
99
+ self.max_position_embeddings = max_position_embeddings
100
+ self.base = base
101
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
102
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
103
+
104
+ # Build here to make `torch.jit.trace` work.
105
+ self._set_cos_sin_cache(
106
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
107
+ )
108
+
109
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
110
+ self.max_seq_len_cached = seq_len
111
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
112
+
113
+ freqs = torch.outer(t, self.inv_freq)
114
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
115
+ emb = torch.cat((freqs, freqs), dim=-1)
116
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
117
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
118
+
119
+ def forward(self, x, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ if seq_len > self.max_seq_len_cached:
122
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
123
+
124
+ return (
125
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
126
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
127
+ )
128
+
129
+
130
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
131
+ def rotate_half(x):
132
+ """Rotates half the hidden dims of the input."""
133
+ x1 = x[..., : x.shape[-1] // 2]
134
+ x2 = x[..., x.shape[-1] // 2 :]
135
+ return torch.cat((-x2, x1), dim=-1)
136
+
137
+
138
+ # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
139
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
140
+ """Applies Rotary Position Embedding to the query and key tensors.
141
+
142
+ Args:
143
+ q (`torch.Tensor`): The query tensor.
144
+ k (`torch.Tensor`): The key tensor.
145
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
146
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
147
+ position_ids (`torch.Tensor`):
148
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
149
+ used to pass offsetted position ids when working with a KV-cache.
150
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
151
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
152
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
153
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
154
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
155
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
156
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
157
+ Returns:
158
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
159
+ """
160
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
161
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
162
+ q_embed = (q * cos) + (rotate_half(q) * sin)
163
+ k_embed = (k * cos) + (rotate_half(k) * sin)
164
+ return q_embed, k_embed
165
+
166
+
167
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
168
+ class Qwen2MLP(nn.Module):
169
+ def __init__(self, config):
170
+ super().__init__()
171
+ self.config = config
172
+ self.hidden_size = config.hidden_size
173
+ self.intermediate_size = config.intermediate_size
174
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
175
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
176
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
177
+ self.act_fn = ACT2FN[config.hidden_act]
178
+
179
+ def forward(self, x):
180
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
181
+
182
+
183
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
184
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
185
+ """
186
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
187
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
188
+ """
189
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
190
+ if n_rep == 1:
191
+ return hidden_states
192
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
193
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
194
+
195
+
196
+ class Qwen2Attention(nn.Module):
197
+ """
198
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
199
+ and "Generating Long Sequences with Sparse Transformers".
200
+ """
201
+
202
+ def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
203
+ super().__init__()
204
+ self.config = config
205
+ self.layer_idx = layer_idx
206
+ if layer_idx is None:
207
+ logger.warning_once(
208
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
209
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
210
+ "when creating this class."
211
+ )
212
+
213
+ self.hidden_size = config.hidden_size
214
+ self.num_heads = config.num_attention_heads
215
+ self.head_dim = self.hidden_size // self.num_heads
216
+ self.num_key_value_heads = config.num_key_value_heads
217
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
218
+ self.max_position_embeddings = config.max_position_embeddings
219
+ self.rope_theta = config.rope_theta
220
+ self.is_causal = True
221
+ self.attention_dropout = config.attention_dropout
222
+
223
+ if (self.head_dim * self.num_heads) != self.hidden_size:
224
+ raise ValueError(
225
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
226
+ f" and `num_heads`: {self.num_heads})."
227
+ )
228
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
229
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
230
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
231
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
232
+
233
+ self.rotary_emb = Qwen2RotaryEmbedding(
234
+ self.head_dim,
235
+ max_position_embeddings=self.max_position_embeddings,
236
+ base=self.rope_theta,
237
+ )
238
+
239
+ def forward(
240
+ self,
241
+ hidden_states: torch.Tensor,
242
+ attention_mask: Optional[torch.Tensor] = None,
243
+ position_ids: Optional[torch.LongTensor] = None,
244
+ past_key_value: Optional[Cache] = None,
245
+ output_attentions: bool = False,
246
+ use_cache: bool = False,
247
+ **kwargs,
248
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
249
+ if "padding_mask" in kwargs:
250
+ warnings.warn(
251
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
252
+ )
253
+ bsz, q_len, _ = hidden_states.size()
254
+
255
+ query_states = self.q_proj(hidden_states)
256
+ key_states = self.k_proj(hidden_states)
257
+ value_states = self.v_proj(hidden_states)
258
+
259
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
260
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
261
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
262
+
263
+ kv_seq_len = key_states.shape[-2]
264
+ if past_key_value is not None:
265
+ if self.layer_idx is None:
266
+ raise ValueError(
267
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
268
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
269
+ "with a layer index."
270
+ )
271
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
272
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
273
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
274
+
275
+ if past_key_value is not None:
276
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
277
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
278
+
279
+ # repeat k/v heads if n_kv_heads < n_heads
280
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
281
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
282
+
283
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
284
+
285
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
286
+ raise ValueError(
287
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
288
+ f" {attn_weights.size()}"
289
+ )
290
+
291
+ if attention_mask is not None:
292
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
293
+ raise ValueError(
294
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
295
+ )
296
+
297
+ attn_weights = attn_weights + attention_mask
298
+
299
+ # upcast attention to fp32
300
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
301
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
302
+ attn_output = torch.matmul(attn_weights, value_states)
303
+
304
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
305
+ raise ValueError(
306
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
307
+ f" {attn_output.size()}"
308
+ )
309
+
310
+ attn_output = attn_output.transpose(1, 2).contiguous()
311
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
312
+
313
+ attn_output = self.o_proj(attn_output)
314
+
315
+ if not output_attentions:
316
+ attn_weights = None
317
+
318
+ return attn_output, attn_weights, past_key_value
319
+
320
+
321
+ class Qwen2FlashAttention2(Qwen2Attention):
322
+ """
323
+ Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
324
+ as the weights of the module stays untouched. The only required change would be on the forward pass
325
+ where it needs to correctly call the public API of flash attention and deal with padding tokens
326
+ in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
327
+ config.max_window_layers layers.
328
+ """
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
331
+ def __init__(self, *args, **kwargs):
332
+ super().__init__(*args, **kwargs)
333
+
334
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
335
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
336
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
337
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
338
+
339
+ def forward(
340
+ self,
341
+ hidden_states: torch.Tensor,
342
+ attention_mask: Optional[torch.Tensor] = None,
343
+ position_ids: Optional[torch.LongTensor] = None,
344
+ past_key_value: Optional[Cache] = None,
345
+ output_attentions: bool = False,
346
+ use_cache: bool = False,
347
+ **kwargs,
348
+ ):
349
+ if "padding_mask" in kwargs:
350
+ warnings.warn(
351
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
352
+ )
353
+
354
+ # overwrite attention_mask with padding_mask
355
+ attention_mask = kwargs.pop("padding_mask")
356
+ bsz, q_len, _ = hidden_states.size()
357
+
358
+ query_states = self.q_proj(hidden_states)
359
+ key_states = self.k_proj(hidden_states)
360
+ value_states = self.v_proj(hidden_states)
361
+
362
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
363
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
364
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
365
+
366
+ kv_seq_len = key_states.shape[-2]
367
+ if past_key_value is not None:
368
+ if self.layer_idx is None:
369
+ raise ValueError(
370
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
371
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
372
+ "with a layer index."
373
+ )
374
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
375
+
376
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
377
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
378
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
379
+
380
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
381
+
382
+ use_sliding_windows = (
383
+ _flash_supports_window_size
384
+ and getattr(self.config, "sliding_window", None) is not None
385
+ and kv_seq_len > self.config.sliding_window
386
+ and self.config.use_sliding_window
387
+ )
388
+
389
+ if not _flash_supports_window_size:
390
+ logger.warning_once(
391
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
392
+ " make sure to upgrade flash-attn library."
393
+ )
394
+
395
+ if past_key_value is not None:
396
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
397
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
398
+ if (
399
+ getattr(self.config, "sliding_window", None) is not None
400
+ and kv_seq_len > self.config.sliding_window
401
+ and cache_has_contents
402
+ ):
403
+ slicing_tokens = 1 - self.config.sliding_window
404
+
405
+ past_key = past_key_value[self.layer_idx][0]
406
+ past_value = past_key_value[self.layer_idx][1]
407
+
408
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
409
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
410
+
411
+ if past_key.shape[-2] != self.config.sliding_window - 1:
412
+ raise ValueError(
413
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
414
+ f" {past_key.shape}"
415
+ )
416
+
417
+ if attention_mask is not None:
418
+ attention_mask = attention_mask[:, slicing_tokens:]
419
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
420
+
421
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
422
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
423
+
424
+ # repeat k/v heads if n_kv_heads < n_heads
425
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
426
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
427
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
428
+
429
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
430
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
431
+ # cast them back in float16 just to be sure everything works as expected.
432
+ input_dtype = query_states.dtype
433
+ if input_dtype == torch.float32:
434
+ if torch.is_autocast_enabled():
435
+ target_dtype = torch.get_autocast_gpu_dtype()
436
+ # Handle the case where the model is quantized
437
+ elif hasattr(self.config, "_pre_quantization_dtype"):
438
+ target_dtype = self.config._pre_quantization_dtype
439
+ else:
440
+ target_dtype = self.q_proj.weight.dtype
441
+
442
+ logger.warning_once(
443
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
444
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
445
+ f" {target_dtype}."
446
+ )
447
+
448
+ query_states = query_states.to(target_dtype)
449
+ key_states = key_states.to(target_dtype)
450
+ value_states = value_states.to(target_dtype)
451
+
452
+ # Reashape to the expected shape for Flash Attention
453
+ query_states = query_states.transpose(1, 2)
454
+ key_states = key_states.transpose(1, 2)
455
+ value_states = value_states.transpose(1, 2)
456
+
457
+ attn_output = self._flash_attention_forward(
458
+ query_states,
459
+ key_states,
460
+ value_states,
461
+ attention_mask,
462
+ q_len,
463
+ dropout=dropout_rate,
464
+ use_sliding_windows=use_sliding_windows,
465
+ )
466
+
467
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
468
+ attn_output = self.o_proj(attn_output)
469
+
470
+ if not output_attentions:
471
+ attn_weights = None
472
+
473
+ return attn_output, attn_weights, past_key_value
474
+
475
+ def _flash_attention_forward(
476
+ self,
477
+ query_states,
478
+ key_states,
479
+ value_states,
480
+ attention_mask,
481
+ query_length,
482
+ dropout=0.0,
483
+ softmax_scale=None,
484
+ use_sliding_windows=False,
485
+ ):
486
+ """
487
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
488
+ first unpad the input, then computes the attention scores and pad the final attention scores.
489
+
490
+ Args:
491
+ query_states (`torch.Tensor`):
492
+ Input query states to be passed to Flash Attention API
493
+ key_states (`torch.Tensor`):
494
+ Input key states to be passed to Flash Attention API
495
+ value_states (`torch.Tensor`):
496
+ Input value states to be passed to Flash Attention API
497
+ attention_mask (`torch.Tensor`):
498
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
499
+ position of padding tokens and 1 for the position of non-padding tokens.
500
+ dropout (`float`):
501
+ Attention dropout
502
+ softmax_scale (`float`, *optional*):
503
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
504
+ use_sliding_windows (`bool`, *optional*):
505
+ Whether to activate sliding window attention.
506
+ """
507
+ if not self._flash_attn_uses_top_left_mask:
508
+ causal = self.is_causal
509
+ else:
510
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
511
+ causal = self.is_causal and query_length != 1
512
+
513
+ # Decide whether to use SWA or not by layer index.
514
+ if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
515
+ use_sliding_windows = False
516
+
517
+ # Contains at least one padding token in the sequence
518
+ if attention_mask is not None:
519
+ batch_size = query_states.shape[0]
520
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
521
+ query_states, key_states, value_states, attention_mask, query_length
522
+ )
523
+
524
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
525
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
526
+
527
+ if not use_sliding_windows:
528
+ attn_output_unpad = flash_attn_varlen_func(
529
+ query_states,
530
+ key_states,
531
+ value_states,
532
+ cu_seqlens_q=cu_seqlens_q,
533
+ cu_seqlens_k=cu_seqlens_k,
534
+ max_seqlen_q=max_seqlen_in_batch_q,
535
+ max_seqlen_k=max_seqlen_in_batch_k,
536
+ dropout_p=dropout,
537
+ softmax_scale=softmax_scale,
538
+ causal=causal,
539
+ )
540
+ else:
541
+ attn_output_unpad = flash_attn_varlen_func(
542
+ query_states,
543
+ key_states,
544
+ value_states,
545
+ cu_seqlens_q=cu_seqlens_q,
546
+ cu_seqlens_k=cu_seqlens_k,
547
+ max_seqlen_q=max_seqlen_in_batch_q,
548
+ max_seqlen_k=max_seqlen_in_batch_k,
549
+ dropout_p=dropout,
550
+ softmax_scale=softmax_scale,
551
+ causal=causal,
552
+ window_size=(self.config.sliding_window, self.config.sliding_window),
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ if not use_sliding_windows:
558
+ attn_output = flash_attn_func(
559
+ query_states,
560
+ key_states,
561
+ value_states,
562
+ dropout,
563
+ softmax_scale=softmax_scale,
564
+ causal=causal,
565
+ )
566
+ else:
567
+ attn_output = flash_attn_func(
568
+ query_states,
569
+ key_states,
570
+ value_states,
571
+ dropout,
572
+ softmax_scale=softmax_scale,
573
+ causal=causal,
574
+ window_size=(self.config.sliding_window, self.config.sliding_window),
575
+ )
576
+
577
+ return attn_output
578
+
579
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
580
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
581
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
582
+
583
+ # On the first iteration we need to properly re-create the padding mask
584
+ # by slicing it on the proper place
585
+ if kv_seq_len != attention_mask.shape[-1]:
586
+ attention_mask_num_tokens = attention_mask.shape[-1]
587
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
588
+
589
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
590
+
591
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
592
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
593
+
594
+ if query_length == kv_seq_len:
595
+ query_layer = index_first_axis(
596
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
597
+ )
598
+ cu_seqlens_q = cu_seqlens_k
599
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
600
+ indices_q = indices_k
601
+ elif query_length == 1:
602
+ max_seqlen_in_batch_q = 1
603
+ cu_seqlens_q = torch.arange(
604
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
605
+ ) # There is a memcpy here, that is very bad.
606
+ indices_q = cu_seqlens_q[:-1]
607
+ query_layer = query_layer.squeeze(1)
608
+ else:
609
+ # The -q_len: slice assumes left padding.
610
+ attention_mask = attention_mask[:, -query_length:]
611
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
612
+
613
+ return (
614
+ query_layer,
615
+ key_layer,
616
+ value_layer,
617
+ indices_q,
618
+ (cu_seqlens_q, cu_seqlens_k),
619
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
620
+ )
621
+
622
+
623
+ # Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2
624
+ class Qwen2SdpaAttention(Qwen2Attention):
625
+ """
626
+ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
627
+ `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
628
+ SDPA API.
629
+ """
630
+
631
+ # Adapted from Qwen2Attention.forward
632
+ def forward(
633
+ self,
634
+ hidden_states: torch.Tensor,
635
+ attention_mask: Optional[torch.Tensor] = None,
636
+ position_ids: Optional[torch.LongTensor] = None,
637
+ past_key_value: Optional[Cache] = None,
638
+ output_attentions: bool = False,
639
+ use_cache: bool = False,
640
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
641
+ if output_attentions:
642
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
643
+ logger.warning_once(
644
+ "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
645
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
646
+ )
647
+ return super().forward(
648
+ hidden_states=hidden_states,
649
+ attention_mask=attention_mask,
650
+ position_ids=position_ids,
651
+ past_key_value=past_key_value,
652
+ output_attentions=output_attentions,
653
+ use_cache=use_cache,
654
+ )
655
+
656
+ bsz, q_len, _ = hidden_states.size()
657
+
658
+ query_states = self.q_proj(hidden_states)
659
+ key_states = self.k_proj(hidden_states)
660
+ value_states = self.v_proj(hidden_states)
661
+
662
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
663
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
664
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
665
+
666
+ kv_seq_len = key_states.shape[-2]
667
+ if past_key_value is not None:
668
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
669
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
670
+
671
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
672
+
673
+ if past_key_value is not None:
674
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
675
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
676
+
677
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
678
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
679
+
680
+ if attention_mask is not None:
681
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
682
+ raise ValueError(
683
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
684
+ )
685
+
686
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
687
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
688
+ if query_states.device.type == "cuda" and attention_mask is not None:
689
+ query_states = query_states.contiguous()
690
+ key_states = key_states.contiguous()
691
+ value_states = value_states.contiguous()
692
+
693
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
694
+ query_states,
695
+ key_states,
696
+ value_states,
697
+ attn_mask=attention_mask,
698
+ dropout_p=self.attention_dropout if self.training else 0.0,
699
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
700
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
701
+ )
702
+
703
+ attn_output = attn_output.transpose(1, 2).contiguous()
704
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
705
+
706
+ attn_output = self.o_proj(attn_output)
707
+
708
+ return attn_output, None, past_key_value
709
+
710
+
711
+ QWEN2_ATTENTION_CLASSES = {
712
+ "eager": Qwen2Attention,
713
+ "flash_attention_2": Qwen2FlashAttention2,
714
+ "sdpa": Qwen2SdpaAttention,
715
+ }
716
+
717
+
718
+ class Qwen2DecoderLayer(nn.Module):
719
+ def __init__(self, config: Qwen2Config, layer_idx: int):
720
+ super().__init__()
721
+ self.hidden_size = config.hidden_size
722
+
723
+ if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
724
+ logger.warning_once(
725
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
726
+ "unexpected results may be encountered."
727
+ )
728
+ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
729
+
730
+ self.mlp = Qwen2MLP(config)
731
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
732
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
733
+
734
+ def forward(
735
+ self,
736
+ hidden_states: torch.Tensor,
737
+ attention_mask: Optional[torch.Tensor] = None,
738
+ position_ids: Optional[torch.LongTensor] = None,
739
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
740
+ output_attentions: Optional[bool] = False,
741
+ use_cache: Optional[bool] = False,
742
+ **kwargs,
743
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
744
+ if "padding_mask" in kwargs:
745
+ warnings.warn(
746
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
747
+ "Please make sure use `attention_mask` instead.`"
748
+ )
749
+ """
750
+ Args:
751
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
752
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
753
+ `(batch, sequence_length)` where padding elements are indicated by 0.
754
+ output_attentions (`bool`, *optional*):
755
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
756
+ returned tensors for more detail.
757
+ use_cache (`bool`, *optional*):
758
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
759
+ (see `past_key_values`).
760
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
761
+ """
762
+
763
+ residual = hidden_states
764
+
765
+ hidden_states = self.input_layernorm(hidden_states)
766
+
767
+ # Self Attention
768
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
769
+ hidden_states=hidden_states,
770
+ attention_mask=attention_mask,
771
+ position_ids=position_ids,
772
+ past_key_value=past_key_value,
773
+ output_attentions=output_attentions,
774
+ use_cache=use_cache,
775
+ )
776
+ hidden_states = residual + hidden_states
777
+
778
+ # Fully Connected
779
+ residual = hidden_states
780
+ hidden_states = self.post_attention_layernorm(hidden_states)
781
+ hidden_states = self.mlp(hidden_states)
782
+ hidden_states = residual + hidden_states
783
+
784
+ outputs = (hidden_states,)
785
+
786
+ if output_attentions:
787
+ outputs += (self_attn_weights,)
788
+
789
+ if use_cache:
790
+ outputs += (present_key_value,)
791
+
792
+ return outputs
793
+
794
+
795
+ QWEN2_START_DOCSTRING = r"""
796
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
797
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
798
+ etc.)
799
+
800
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
801
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
802
+ and behavior.
803
+
804
+ Parameters:
805
+ config ([`Qwen2Config`]):
806
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
807
+ load the weights associated with the model, only the configuration. Check out the
808
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
809
+ """
810
+
811
+
812
+ @add_start_docstrings(
813
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
814
+ QWEN2_START_DOCSTRING,
815
+ )
816
+ class Qwen2PreTrainedModel(PreTrainedModel):
817
+ config_class = Qwen2Config
818
+ base_model_prefix = "model"
819
+ supports_gradient_checkpointing = True
820
+ _no_split_modules = ["Qwen2DecoderLayer"]
821
+ _skip_keys_device_placement = "past_key_values"
822
+ _supports_flash_attn_2 = True
823
+ _supports_sdpa = True
824
+ _supports_cache_class = True
825
+
826
+ def _init_weights(self, module):
827
+ std = self.config.initializer_range
828
+ if isinstance(module, nn.Linear):
829
+ module.weight.data.normal_(mean=0.0, std=std)
830
+ if module.bias is not None:
831
+ module.bias.data.zero_()
832
+ elif isinstance(module, nn.Embedding):
833
+ module.weight.data.normal_(mean=0.0, std=std)
834
+ if module.padding_idx is not None:
835
+ module.weight.data[module.padding_idx].zero_()
836
+
837
+
838
+ QWEN2_INPUTS_DOCSTRING = r"""
839
+ Args:
840
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
841
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
842
+ it.
843
+
844
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
845
+ [`PreTrainedTokenizer.__call__`] for details.
846
+
847
+ [What are input IDs?](../glossary#input-ids)
848
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
849
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
850
+
851
+ - 1 for tokens that are **not masked**,
852
+ - 0 for tokens that are **masked**.
853
+
854
+ [What are attention masks?](../glossary#attention-mask)
855
+
856
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
857
+ [`PreTrainedTokenizer.__call__`] for details.
858
+
859
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
860
+ `past_key_values`).
861
+
862
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
863
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
864
+ information on the default strategy.
865
+
866
+ - 1 indicates the head is **not masked**,
867
+ - 0 indicates the head is **masked**.
868
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
869
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
870
+ config.n_positions - 1]`.
871
+
872
+ [What are position IDs?](../glossary#position-ids)
873
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
874
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
875
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
876
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
877
+
878
+ Two formats are allowed:
879
+ - a [`~cache_utils.Cache`] instance;
880
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
881
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
882
+ cache format.
883
+
884
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
885
+ legacy cache format will be returned.
886
+
887
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
888
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
889
+ of shape `(batch_size, sequence_length)`.
890
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
891
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
892
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
893
+ model's internal embedding lookup matrix.
894
+ use_cache (`bool`, *optional*):
895
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
896
+ `past_key_values`).
897
+ output_attentions (`bool`, *optional*):
898
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
899
+ tensors for more detail.
900
+ output_hidden_states (`bool`, *optional*):
901
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
902
+ more detail.
903
+ return_dict (`bool`, *optional*):
904
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
905
+ """
906
+
907
+
908
+ @add_start_docstrings(
909
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
910
+ QWEN2_START_DOCSTRING,
911
+ )
912
+ class Qwen2Model(Qwen2PreTrainedModel):
913
+ """
914
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
915
+
916
+ Args:
917
+ config: Qwen2Config
918
+ """
919
+
920
+ def __init__(self, config: Qwen2Config):
921
+ super().__init__(config)
922
+ self.padding_idx = config.pad_token_id
923
+ self.vocab_size = config.vocab_size
924
+
925
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
926
+ self.layers = nn.ModuleList(
927
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
928
+ )
929
+ self._attn_implementation = config._attn_implementation
930
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
931
+
932
+ self.gradient_checkpointing = False
933
+ # Initialize weights and apply final processing
934
+ self.post_init()
935
+
936
+ def get_input_embeddings(self):
937
+ return self.embed_tokens
938
+
939
+ def set_input_embeddings(self, value):
940
+ self.embed_tokens = value
941
+
942
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
943
+ def forward(
944
+ self,
945
+ input_ids: torch.LongTensor = None,
946
+ attention_mask: Optional[torch.Tensor] = None,
947
+ position_ids: Optional[torch.LongTensor] = None,
948
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
949
+ inputs_embeds: Optional[torch.FloatTensor] = None,
950
+ use_cache: Optional[bool] = None,
951
+ output_attentions: Optional[bool] = None,
952
+ output_hidden_states: Optional[bool] = None,
953
+ return_dict: Optional[bool] = None,
954
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
955
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
956
+ output_hidden_states = (
957
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
958
+ )
959
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
960
+
961
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
962
+
963
+ # retrieve input_ids and inputs_embeds
964
+ if input_ids is not None and inputs_embeds is not None:
965
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
966
+ elif input_ids is not None:
967
+ batch_size, seq_length = input_ids.shape
968
+ elif inputs_embeds is not None:
969
+ batch_size, seq_length, _ = inputs_embeds.shape
970
+ else:
971
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
972
+
973
+ if self.gradient_checkpointing and self.training:
974
+ if use_cache:
975
+ logger.warning_once(
976
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
977
+ )
978
+ use_cache = False
979
+
980
+ past_key_values_length = 0
981
+
982
+ if use_cache:
983
+ use_legacy_cache = not isinstance(past_key_values, Cache)
984
+ if use_legacy_cache:
985
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
986
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
987
+
988
+ if position_ids is None:
989
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
990
+ position_ids = torch.arange(
991
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
992
+ )
993
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
994
+ else:
995
+ position_ids = position_ids.view(-1, seq_length).long()
996
+
997
+ if inputs_embeds is None:
998
+ inputs_embeds = self.embed_tokens(input_ids)
999
+
1000
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1001
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1002
+ if is_padding_right:
1003
+ raise ValueError(
1004
+ "You are attempting to perform batched generation with padding_side='right'"
1005
+ " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
1006
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1007
+ )
1008
+
1009
+ if self._attn_implementation == "flash_attention_2":
1010
+ # 2d mask is passed through the layers
1011
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1012
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1013
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1014
+ # the manual implementation that requires a 4D causal mask in all cases.
1015
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1016
+ attention_mask,
1017
+ (batch_size, seq_length),
1018
+ inputs_embeds,
1019
+ past_key_values_length,
1020
+ sliding_window=self.config.sliding_window,
1021
+ )
1022
+ else:
1023
+ # 4d mask is passed through the layers
1024
+ attention_mask = _prepare_4d_causal_attention_mask(
1025
+ attention_mask,
1026
+ (batch_size, seq_length),
1027
+ inputs_embeds,
1028
+ past_key_values_length,
1029
+ sliding_window=self.config.sliding_window,
1030
+ )
1031
+
1032
+ hidden_states = inputs_embeds
1033
+
1034
+ # decoder layers
1035
+ all_hidden_states = () if output_hidden_states else None
1036
+ all_self_attns = () if output_attentions else None
1037
+ next_decoder_cache = None
1038
+
1039
+ for decoder_layer in self.layers:
1040
+ if output_hidden_states:
1041
+ all_hidden_states += (hidden_states,)
1042
+
1043
+ if self.gradient_checkpointing and self.training:
1044
+ layer_outputs = self._gradient_checkpointing_func(
1045
+ decoder_layer.__call__,
1046
+ hidden_states,
1047
+ attention_mask,
1048
+ position_ids,
1049
+ past_key_values,
1050
+ output_attentions,
1051
+ use_cache,
1052
+ )
1053
+ else:
1054
+ layer_outputs = decoder_layer(
1055
+ hidden_states,
1056
+ attention_mask=attention_mask,
1057
+ position_ids=position_ids,
1058
+ past_key_value=past_key_values,
1059
+ output_attentions=output_attentions,
1060
+ use_cache=use_cache,
1061
+ )
1062
+
1063
+ hidden_states = layer_outputs[0]
1064
+
1065
+ if use_cache:
1066
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1067
+
1068
+ if output_attentions:
1069
+ all_self_attns += (layer_outputs[1],)
1070
+
1071
+ hidden_states = self.norm(hidden_states)
1072
+
1073
+ # add hidden states from the last decoder layer
1074
+ if output_hidden_states:
1075
+ all_hidden_states += (hidden_states,)
1076
+
1077
+ next_cache = None
1078
+ if use_cache:
1079
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1080
+
1081
+ if not return_dict:
1082
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1083
+ return BaseModelOutputWithPast(
1084
+ last_hidden_state=hidden_states,
1085
+ past_key_values=next_cache,
1086
+ hidden_states=all_hidden_states,
1087
+ attentions=all_self_attns,
1088
+ )
1089
+
1090
+
1091
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
1092
+ _tied_weights_keys = ["lm_head.weight"]
1093
+
1094
+ def __init__(self, config):
1095
+ super().__init__(config)
1096
+ self.model = Qwen2Model(config)
1097
+ self.vocab_size = config.vocab_size
1098
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1099
+
1100
+ # Initialize weights and apply final processing
1101
+ self.post_init()
1102
+
1103
+ def get_input_embeddings(self):
1104
+ return self.model.embed_tokens
1105
+
1106
+ def set_input_embeddings(self, value):
1107
+ self.model.embed_tokens = value
1108
+
1109
+ def get_output_embeddings(self):
1110
+ return self.lm_head
1111
+
1112
+ def set_output_embeddings(self, new_embeddings):
1113
+ self.lm_head = new_embeddings
1114
+
1115
+ def set_decoder(self, decoder):
1116
+ self.model = decoder
1117
+
1118
+ def get_decoder(self):
1119
+ return self.model
1120
+
1121
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1122
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1123
+ def forward(
1124
+ self,
1125
+ input_ids: torch.LongTensor = None,
1126
+ attention_mask: Optional[torch.Tensor] = None,
1127
+ position_ids: Optional[torch.LongTensor] = None,
1128
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1129
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1130
+ labels: Optional[torch.LongTensor] = None,
1131
+ use_cache: Optional[bool] = None,
1132
+ output_attentions: Optional[bool] = None,
1133
+ output_hidden_states: Optional[bool] = None,
1134
+ return_dict: Optional[bool] = None,
1135
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1136
+ r"""
1137
+ Args:
1138
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1139
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1140
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1141
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1142
+
1143
+ Returns:
1144
+
1145
+ Example:
1146
+
1147
+ ```python
1148
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
1149
+
1150
+ >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1151
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1152
+
1153
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1154
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1155
+
1156
+ >>> # Generate
1157
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1158
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1159
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1160
+ ```"""
1161
+
1162
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1163
+ output_hidden_states = (
1164
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1165
+ )
1166
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1167
+
1168
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1169
+ outputs = self.model(
1170
+ input_ids=input_ids,
1171
+ attention_mask=attention_mask,
1172
+ position_ids=position_ids,
1173
+ past_key_values=past_key_values,
1174
+ inputs_embeds=inputs_embeds,
1175
+ use_cache=use_cache,
1176
+ output_attentions=output_attentions,
1177
+ output_hidden_states=output_hidden_states,
1178
+ return_dict=return_dict,
1179
+ )
1180
+
1181
+ hidden_states = outputs[0]
1182
+ logits = self.lm_head(hidden_states)
1183
+ logits = logits.float()
1184
+
1185
+ loss = None
1186
+ if labels is not None:
1187
+ # Shift so that tokens < n predict n
1188
+ shift_logits = logits[..., :-1, :].contiguous()
1189
+ shift_labels = labels[..., 1:].contiguous()
1190
+ # Flatten the tokens
1191
+ loss_fct = CrossEntropyLoss()
1192
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1193
+ shift_labels = shift_labels.view(-1)
1194
+ # Enable model parallelism
1195
+ shift_labels = shift_labels.to(shift_logits.device)
1196
+ loss = loss_fct(shift_logits, shift_labels)
1197
+
1198
+ if not return_dict:
1199
+ output = (logits,) + outputs[1:]
1200
+ return (loss,) + output if loss is not None else output
1201
+
1202
+ return CausalLMOutputWithPast(
1203
+ loss=loss,
1204
+ logits=logits,
1205
+ past_key_values=outputs.past_key_values,
1206
+ hidden_states=outputs.hidden_states,
1207
+ attentions=outputs.attentions,
1208
+ )
1209
+
1210
+ def prepare_inputs_for_generation(
1211
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1212
+ ):
1213
+ # Omit tokens covered by past_key_values
1214
+ if past_key_values is not None:
1215
+ if isinstance(past_key_values, Cache):
1216
+ cache_length = past_key_values.get_seq_length()
1217
+ past_length = past_key_values.seen_tokens
1218
+ max_cache_length = past_key_values.get_max_length()
1219
+ else:
1220
+ cache_length = past_length = past_key_values[0][0].shape[2]
1221
+ max_cache_length = None
1222
+
1223
+ # Keep only the unprocessed tokens:
1224
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1225
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1226
+ # input)
1227
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1228
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1229
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1230
+ # input_ids based on the past_length.
1231
+ elif past_length < input_ids.shape[1]:
1232
+ input_ids = input_ids[:, past_length:]
1233
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1234
+
1235
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1236
+ if (
1237
+ max_cache_length is not None
1238
+ and attention_mask is not None
1239
+ and cache_length + input_ids.shape[1] > max_cache_length
1240
+ ):
1241
+ attention_mask = attention_mask[:, -max_cache_length:]
1242
+
1243
+ position_ids = kwargs.get("position_ids", None)
1244
+ if attention_mask is not None and position_ids is None:
1245
+ # create position_ids on the fly for batch generation
1246
+ position_ids = attention_mask.long().cumsum(-1) - 1
1247
+ position_ids.masked_fill_(attention_mask == 0, 1)
1248
+ if past_key_values:
1249
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1250
+
1251
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1252
+ if inputs_embeds is not None and past_key_values is None:
1253
+ model_inputs = {"inputs_embeds": inputs_embeds}
1254
+ else:
1255
+ model_inputs = {"input_ids": input_ids}
1256
+
1257
+ model_inputs.update(
1258
+ {
1259
+ "position_ids": position_ids,
1260
+ "past_key_values": past_key_values,
1261
+ "use_cache": kwargs.get("use_cache"),
1262
+ "attention_mask": attention_mask,
1263
+ }
1264
+ )
1265
+ return model_inputs
1266
+
1267
+ @staticmethod
1268
+ def _reorder_cache(past_key_values, beam_idx):
1269
+ reordered_past = ()
1270
+ for layer_past in past_key_values:
1271
+ reordered_past += (
1272
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1273
+ )
1274
+ return reordered_past
1275
+
1276
+
1277
+ @add_start_docstrings(
1278
+ """
1279
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1280
+
1281
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1282
+ (e.g. GPT-2) do.
1283
+
1284
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1285
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1286
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1287
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1288
+ each row of the batch).
1289
+ """,
1290
+ QWEN2_START_DOCSTRING,
1291
+ )
1292
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
1293
+ def __init__(self, config):
1294
+ super().__init__(config)
1295
+ self.num_labels = config.num_labels
1296
+ self.model = Qwen2Model(config)
1297
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1298
+
1299
+ # Initialize weights and apply final processing
1300
+ self.post_init()
1301
+
1302
+ def get_input_embeddings(self):
1303
+ return self.model.embed_tokens
1304
+
1305
+ def set_input_embeddings(self, value):
1306
+ self.model.embed_tokens = value
1307
+
1308
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1309
+ def forward(
1310
+ self,
1311
+ input_ids: torch.LongTensor = None,
1312
+ attention_mask: Optional[torch.Tensor] = None,
1313
+ position_ids: Optional[torch.LongTensor] = None,
1314
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1315
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1316
+ labels: Optional[torch.LongTensor] = None,
1317
+ use_cache: Optional[bool] = None,
1318
+ output_attentions: Optional[bool] = None,
1319
+ output_hidden_states: Optional[bool] = None,
1320
+ return_dict: Optional[bool] = None,
1321
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1322
+ r"""
1323
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1324
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1325
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1326
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1327
+ """
1328
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1329
+
1330
+ transformer_outputs = self.model(
1331
+ input_ids,
1332
+ attention_mask=attention_mask,
1333
+ position_ids=position_ids,
1334
+ past_key_values=past_key_values,
1335
+ inputs_embeds=inputs_embeds,
1336
+ use_cache=use_cache,
1337
+ output_attentions=output_attentions,
1338
+ output_hidden_states=output_hidden_states,
1339
+ return_dict=return_dict,
1340
+ )
1341
+ hidden_states = transformer_outputs[0]
1342
+ logits = self.score(hidden_states)
1343
+
1344
+ if input_ids is not None:
1345
+ batch_size = input_ids.shape[0]
1346
+ else:
1347
+ batch_size = inputs_embeds.shape[0]
1348
+
1349
+ if self.config.pad_token_id is None and batch_size != 1:
1350
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1351
+ if self.config.pad_token_id is None:
1352
+ sequence_lengths = -1
1353
+ else:
1354
+ if input_ids is not None:
1355
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1356
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1357
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1358
+ sequence_lengths = sequence_lengths.to(logits.device)
1359
+ else:
1360
+ sequence_lengths = -1
1361
+
1362
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1363
+
1364
+ loss = None
1365
+ if labels is not None:
1366
+ labels = labels.to(logits.device)
1367
+ if self.config.problem_type is None:
1368
+ if self.num_labels == 1:
1369
+ self.config.problem_type = "regression"
1370
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1371
+ self.config.problem_type = "single_label_classification"
1372
+ else:
1373
+ self.config.problem_type = "multi_label_classification"
1374
+
1375
+ if self.config.problem_type == "regression":
1376
+ loss_fct = MSELoss()
1377
+ if self.num_labels == 1:
1378
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1379
+ else:
1380
+ loss = loss_fct(pooled_logits, labels)
1381
+ elif self.config.problem_type == "single_label_classification":
1382
+ loss_fct = CrossEntropyLoss()
1383
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1384
+ elif self.config.problem_type == "multi_label_classification":
1385
+ loss_fct = BCEWithLogitsLoss()
1386
+ loss = loss_fct(pooled_logits, labels)
1387
+ if not return_dict:
1388
+ output = (pooled_logits,) + transformer_outputs[1:]
1389
+ return ((loss,) + output) if loss is not None else output
1390
+
1391
+ return SequenceClassifierOutputWithPast(
1392
+ loss=loss,
1393
+ logits=pooled_logits,
1394
+ past_key_values=transformer_outputs.past_key_values,
1395
+ hidden_states=transformer_outputs.hidden_states,
1396
+ attentions=transformer_outputs.attentions,
1397
+ )
venv/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Qwen2."""
16
+
17
+ import json
18
+ import os
19
+ import unicodedata
20
+ from functools import lru_cache
21
+ from typing import Optional, Tuple
22
+
23
+ import regex as re
24
+
25
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
26
+ from ...utils import logging
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "vocab.json",
33
+ "merges_file": "merges.txt",
34
+ }
35
+
36
+
37
+ MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
38
+
39
+ PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
40
+
41
+
42
+ @lru_cache()
43
+ # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
44
+ def bytes_to_unicode():
45
+ """
46
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
47
+ characters the bpe code barfs on.
48
+
49
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
50
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
51
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
52
+ tables between utf-8 bytes and unicode strings.
53
+ """
54
+ bs = (
55
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
56
+ )
57
+ cs = bs[:]
58
+ n = 0
59
+ for b in range(2**8):
60
+ if b not in bs:
61
+ bs.append(b)
62
+ cs.append(2**8 + n)
63
+ n += 1
64
+ cs = [chr(n) for n in cs]
65
+ return dict(zip(bs, cs))
66
+
67
+
68
+ # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
69
+ def get_pairs(word):
70
+ """
71
+ Return set of symbol pairs in a word.
72
+
73
+ Word is represented as tuple of symbols (symbols being variable-length strings).
74
+ """
75
+ pairs = set()
76
+ prev_char = word[0]
77
+ for char in word[1:]:
78
+ pairs.add((prev_char, char))
79
+ prev_char = char
80
+ return pairs
81
+
82
+
83
+ class Qwen2Tokenizer(PreTrainedTokenizer):
84
+ """
85
+ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
86
+
87
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
88
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
89
+
90
+ ```python
91
+ >>> from transformers import Qwen2Tokenizer
92
+
93
+ >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
94
+ >>> tokenizer("Hello world")["input_ids"]
95
+ [9707, 1879]
96
+
97
+ >>> tokenizer(" Hello world")["input_ids"]
98
+ [21927, 1879]
99
+ ```
100
+ This is expected.
101
+
102
+ You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
103
+
104
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
105
+ this superclass for more information regarding those methods.
106
+
107
+ Args:
108
+ vocab_file (`str`):
109
+ Path to the vocabulary file.
110
+ merges_file (`str`):
111
+ Path to the merges file.
112
+ errors (`str`, *optional*, defaults to `"replace"`):
113
+ Paradigm to follow when decoding bytes to UTF-8. See
114
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
115
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
116
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
117
+ token instead.
118
+ bos_token (`str`, *optional*):
119
+ The beginning of sequence token. Not applicable for this tokenizer.
120
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
121
+ The end of sequence token.
122
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
123
+ The token used for padding, for example when batching sequences of different lengths.
124
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
125
+ Whether or not the model should cleanup the spaces that were added when splitting the input text during the
126
+ tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
127
+ split_special_tokens (`bool`, *optional*, defaults to `False`):
128
+ Whether or not the special tokens should be split during the tokenization process. The default behavior is
129
+ to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
130
+ ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
131
+ '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
132
+ """
133
+
134
+ vocab_files_names = VOCAB_FILES_NAMES
135
+ model_input_names = ["input_ids", "attention_mask"]
136
+
137
+ def __init__(
138
+ self,
139
+ vocab_file,
140
+ merges_file,
141
+ errors="replace",
142
+ unk_token="<|endoftext|>",
143
+ bos_token=None,
144
+ eos_token="<|endoftext|>",
145
+ pad_token="<|endoftext|>",
146
+ clean_up_tokenization_spaces=False,
147
+ split_special_tokens=False,
148
+ **kwargs,
149
+ ):
150
+ # Qwen vocab does not contain control tokens; added tokens need to be special
151
+ bos_token = (
152
+ AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
153
+ if isinstance(bos_token, str)
154
+ else bos_token
155
+ )
156
+ eos_token = (
157
+ AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
158
+ if isinstance(eos_token, str)
159
+ else eos_token
160
+ )
161
+ unk_token = (
162
+ AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
163
+ if isinstance(unk_token, str)
164
+ else unk_token
165
+ )
166
+ pad_token = (
167
+ AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
168
+ if isinstance(pad_token, str)
169
+ else pad_token
170
+ )
171
+
172
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
173
+ self.encoder = json.load(vocab_handle)
174
+ self.decoder = {v: k for k, v in self.encoder.items()}
175
+ self.errors = errors # how to handle errors in decoding
176
+ self.byte_encoder = bytes_to_unicode()
177
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
178
+ bpe_merges = []
179
+ with open(merges_file, encoding="utf-8") as merges_handle:
180
+ for i, line in enumerate(merges_handle):
181
+ line = line.strip()
182
+ if (i == 0 and line.startswith("#version:")) or not line:
183
+ continue
184
+ bpe_merges.append(tuple(line.split()))
185
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
186
+ # NOTE: the cache can grow without bound and will get really large for long running processes
187
+ # (esp. for texts of language that do not use space between word, e.g. Chinese); technically
188
+ # not a memory leak but appears as one.
189
+ # GPT2Tokenizer has the same problem, so let's be consistent.
190
+ self.cache = {}
191
+
192
+ self.pat = re.compile(PRETOKENIZE_REGEX)
193
+
194
+ if kwargs.get("add_prefix_space", False):
195
+ logger.warning_once(
196
+ f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
197
+ )
198
+
199
+ super().__init__(
200
+ errors=errors,
201
+ bos_token=bos_token,
202
+ eos_token=eos_token,
203
+ pad_token=pad_token,
204
+ unk_token=unk_token,
205
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
206
+ split_special_tokens=split_special_tokens,
207
+ **kwargs,
208
+ )
209
+
210
+ @property
211
+ def vocab_size(self) -> int:
212
+ return len(self.encoder)
213
+
214
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
215
+ def get_vocab(self):
216
+ return dict(self.encoder, **self.added_tokens_encoder)
217
+
218
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
219
+ def bpe(self, token):
220
+ if token in self.cache:
221
+ return self.cache[token]
222
+ word = tuple(token)
223
+ pairs = get_pairs(word)
224
+
225
+ if not pairs:
226
+ return token
227
+
228
+ while True:
229
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
230
+ if bigram not in self.bpe_ranks:
231
+ break
232
+ first, second = bigram
233
+ new_word = []
234
+ i = 0
235
+ while i < len(word):
236
+ try:
237
+ j = word.index(first, i)
238
+ except ValueError:
239
+ new_word.extend(word[i:])
240
+ break
241
+ else:
242
+ new_word.extend(word[i:j])
243
+ i = j
244
+
245
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
246
+ new_word.append(first + second)
247
+ i += 2
248
+ else:
249
+ new_word.append(word[i])
250
+ i += 1
251
+ new_word = tuple(new_word)
252
+ word = new_word
253
+ if len(word) == 1:
254
+ break
255
+ else:
256
+ pairs = get_pairs(word)
257
+ word = " ".join(word)
258
+ self.cache[token] = word
259
+ return word
260
+
261
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
262
+ def _tokenize(self, text):
263
+ """Tokenize a string."""
264
+ bpe_tokens = []
265
+ for token in re.findall(self.pat, text):
266
+ token = "".join(
267
+ self.byte_encoder[b] for b in token.encode("utf-8")
268
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
269
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
270
+ return bpe_tokens
271
+
272
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
273
+ def _convert_token_to_id(self, token):
274
+ """Converts a token (str) in an id using the vocab."""
275
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
276
+
277
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
278
+ def _convert_id_to_token(self, index):
279
+ """Converts an index (integer) in a token (str) using the vocab."""
280
+ return self.decoder.get(index)
281
+
282
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
283
+ def convert_tokens_to_string(self, tokens):
284
+ """Converts a sequence of tokens (string) in a single string."""
285
+ text = "".join(tokens)
286
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
287
+ return text
288
+
289
+ def decode(
290
+ self,
291
+ token_ids,
292
+ skip_special_tokens: bool = False,
293
+ clean_up_tokenization_spaces: Optional[bool] = False,
294
+ spaces_between_special_tokens: bool = False,
295
+ **kwargs,
296
+ ) -> str:
297
+ # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
298
+ # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
299
+ return super().decode(
300
+ token_ids,
301
+ skip_special_tokens=skip_special_tokens,
302
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
303
+ spaces_between_special_tokens=spaces_between_special_tokens,
304
+ **kwargs,
305
+ )
306
+
307
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
308
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
309
+ if not os.path.isdir(save_directory):
310
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
311
+ return
312
+ vocab_file = os.path.join(
313
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
314
+ )
315
+ merge_file = os.path.join(
316
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
317
+ )
318
+
319
+ with open(vocab_file, "w", encoding="utf-8") as f:
320
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
321
+
322
+ index = 0
323
+ with open(merge_file, "w", encoding="utf-8") as writer:
324
+ writer.write("#version: 0.2\n")
325
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
326
+ if index != token_index:
327
+ logger.warning(
328
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
329
+ " Please check that the tokenizer is not corrupted!"
330
+ )
331
+ index = token_index
332
+ writer.write(" ".join(bpe_tokens) + "\n")
333
+ index += 1
334
+
335
+ return vocab_file, merge_file
336
+
337
+ def prepare_for_tokenization(self, text, **kwargs):
338
+ text = unicodedata.normalize("NFC", text)
339
+ return (text, kwargs)
venv/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Qwen2."""
16
+
17
+ from typing import Optional, Tuple
18
+
19
+ from ...tokenization_utils import AddedToken
20
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
21
+ from ...utils import logging
22
+ from .tokenization_qwen2 import Qwen2Tokenizer
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ VOCAB_FILES_NAMES = {
28
+ "vocab_file": "vocab.json",
29
+ "merges_file": "merges.txt",
30
+ "tokenizer_file": "tokenizer.json",
31
+ }
32
+
33
+
34
+ MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
35
+
36
+
37
+ class Qwen2TokenizerFast(PreTrainedTokenizerFast):
38
+ """
39
+ Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
40
+ Byte-Pair-Encoding.
41
+
42
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
43
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
44
+
45
+ ```python
46
+ >>> from transformers import Qwen2TokenizerFast
47
+
48
+ >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
49
+ >>> tokenizer("Hello world")["input_ids"]
50
+ [9707, 1879]
51
+
52
+ >>> tokenizer(" Hello world")["input_ids"]
53
+ [21927, 1879]
54
+ ```
55
+ This is expected.
56
+
57
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
58
+ refer to this superclass for more information regarding those methods.
59
+
60
+ Args:
61
+ vocab_file (`str`, *optional*):
62
+ Path to the vocabulary file.
63
+ merges_file (`str`, *optional*):
64
+ Path to the merges file.
65
+ tokenizer_file (`str`, *optional*):
66
+ Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
67
+ contains everything needed to load the tokenizer.
68
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
69
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
70
+ token instead. Not applicable to this tokenizer.
71
+ bos_token (`str`, *optional*):
72
+ The beginning of sequence token. Not applicable for this tokenizer.
73
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
74
+ The end of sequence token.
75
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
76
+ The token used for padding, for example when batching sequences of different lengths.
77
+ """
78
+
79
+ vocab_files_names = VOCAB_FILES_NAMES
80
+ model_input_names = ["input_ids", "attention_mask"]
81
+ slow_tokenizer_class = Qwen2Tokenizer
82
+
83
+ def __init__(
84
+ self,
85
+ vocab_file=None,
86
+ merges_file=None,
87
+ tokenizer_file=None,
88
+ unk_token="<|endoftext|>",
89
+ bos_token=None,
90
+ eos_token="<|endoftext|>",
91
+ pad_token="<|endoftext|>",
92
+ **kwargs,
93
+ ):
94
+ # We need to at least pass vocab_file and merges_file to base class
95
+ # in case a slow tokenizer needs to be initialized; other can be
96
+ # configured through files.
97
+ # following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
98
+
99
+ bos_token = (
100
+ AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
101
+ if isinstance(bos_token, str)
102
+ else bos_token
103
+ )
104
+ eos_token = (
105
+ AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
106
+ if isinstance(eos_token, str)
107
+ else eos_token
108
+ )
109
+ unk_token = (
110
+ AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
111
+ if isinstance(unk_token, str)
112
+ else unk_token
113
+ )
114
+ pad_token = (
115
+ AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
116
+ if isinstance(pad_token, str)
117
+ else pad_token
118
+ )
119
+
120
+ super().__init__(
121
+ vocab_file,
122
+ merges_file,
123
+ tokenizer_file=tokenizer_file,
124
+ unk_token=unk_token,
125
+ bos_token=bos_token,
126
+ eos_token=eos_token,
127
+ pad_token=pad_token,
128
+ **kwargs,
129
+ )
130
+
131
+ # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
132
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
133
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
134
+ return tuple(files)
venv/lib/python3.10/site-packages/transformers/models/rwkv/__init__.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_torch_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_rwkv": ["RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP", "RwkvConfig", "RwkvOnnxConfig"],
26
+ }
27
+
28
+ try:
29
+ if not is_torch_available():
30
+ raise OptionalDependencyNotAvailable()
31
+ except OptionalDependencyNotAvailable:
32
+ pass
33
+ else:
34
+ _import_structure["modeling_rwkv"] = [
35
+ "RWKV_PRETRAINED_MODEL_ARCHIVE_LIST",
36
+ "RwkvForCausalLM",
37
+ "RwkvModel",
38
+ "RwkvPreTrainedModel",
39
+ ]
40
+
41
+
42
+ if TYPE_CHECKING:
43
+ from .configuration_rwkv import RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP, RwkvConfig, RwkvOnnxConfig
44
+
45
+ try:
46
+ if not is_torch_available():
47
+ raise OptionalDependencyNotAvailable()
48
+ except OptionalDependencyNotAvailable:
49
+ pass
50
+ else:
51
+ from .modeling_rwkv import (
52
+ RWKV_PRETRAINED_MODEL_ARCHIVE_LIST,
53
+ RwkvForCausalLM,
54
+ RwkvModel,
55
+ RwkvPreTrainedModel,
56
+ )
57
+ else:
58
+ import sys
59
+
60
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)