Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/14.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/14.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/annotate_warns.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/autocast.h +15 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/bailout_graph.h +34 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/batch_mm.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/check_strict_fusion.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/clear_profiling.h +19 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/clear_undefinedness.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/common_subexpression_elimination.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_pooling.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/create_autodiff_subgraphs.h +19 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/device_type_analysis.h +13 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dtype_analysis.h +17 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/eliminate_no_ops.h +17 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/erase_number_types.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fixup_trace_scope_blocks.h +47 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_conv_bn.h +37 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/freeze_module.h +36 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_concat_linear.h +13 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_graph_optimizations.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_folding.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_ops_to_mkldnn.h +15 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_relu.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_fuser.h +37 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/guard_elimination.h +19 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/hoist_conv_packed_params.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_autodiff_subgraphs.h +15 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_fork_wait.h +16 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_forked_closures.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inliner.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inplace_check.h +11 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/insert_guards.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/integer_value_refinement.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/liveness.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/loop_unrolling.h +36 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_graph.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_tuples.h +20 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/metal_rewrite.h +17 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mkldnn_rewrite.h +34 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mobile_optimizer_type.h +13 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onednn_graph_fuser.h +64 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/pass_manager.h +136 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole.h +20 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_alias_sensitive.h +17 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_list_idioms.h +72 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/prepack_folding.h +17 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/dedup_module_uses.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/finalize.h +63 -0
ckpts/universal/global_step20/zero/14.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a8575ec2d83c8ea458a1f0ae4819061f99fb199d013258aab3988a68cdd7783
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/14.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b713ee72f75b4debab054e71a88b7a269c0a95a44ba53ec3022093be4a45b478
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/annotate_warns.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void AnnotateWarns(const std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
} // namespace jit
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/autocast.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
TORCH_API void Autocast(const std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
TORCH_API bool setAutocastMode(bool value);
|
12 |
+
TORCH_API bool autocastEnabled();
|
13 |
+
|
14 |
+
} // namespace jit
|
15 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/bailout_graph.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
// Replaces prim::Guard nodes with prim::BailOut nodes and
|
17 |
+
// computes sets of inputs needed to resume execution at
|
18 |
+
// bailout points
|
19 |
+
TORCH_API void InsertBailOuts(std::shared_ptr<Graph> graph);
|
20 |
+
|
21 |
+
// Builds a bailout graph into `target` (which is an empty graph)
|
22 |
+
// for a given bailout point `bailout_index`
|
23 |
+
// from the original graph `orig` (the original unoptimized graph)
|
24 |
+
// BailOut graphs allow Interpreter to resume
|
25 |
+
// execution of the (un/de)optimized graph (i.e.
|
26 |
+
// a graph that doesn't rely on any assumptions derived from
|
27 |
+
// on profiling information) from a given BailOut point
|
28 |
+
// should any of the assumptions fail for an actual input.
|
29 |
+
TORCH_API std::shared_ptr<Graph> BuildBailOutGraphFrom(
|
30 |
+
int64_t bailout_index,
|
31 |
+
const std::shared_ptr<Graph>& orig,
|
32 |
+
const std::shared_ptr<Graph>& target);
|
33 |
+
} // namespace jit
|
34 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/batch_mm.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void BatchMM(std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void CanonicalizeOps(const std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/check_strict_fusion.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
TORCH_API void CheckStrictFusion(std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/clear_profiling.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <torch/csrc/Export.h>
|
7 |
+
#include <torch/csrc/jit/ir/ir.h>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace jit {
|
11 |
+
|
12 |
+
TORCH_API void unprofileGraphInputs(const std::shared_ptr<Graph>& graph);
|
13 |
+
TORCH_API void unprofileBlock(Block* start_block);
|
14 |
+
// Unprofiles all the node outputs in a block.
|
15 |
+
|
16 |
+
TORCH_API void ClearProfilingInformation(const std::shared_ptr<Graph>& graph);
|
17 |
+
|
18 |
+
} // namespace jit
|
19 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/clear_undefinedness.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <torch/csrc/Export.h>
|
7 |
+
#include <torch/csrc/jit/ir/ir.h>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace jit {
|
11 |
+
|
12 |
+
// Undefinedness makes argument matching fail for regular tensor operations
|
13 |
+
// if 1+ arguments are undefined or possibly undefined tensors.
|
14 |
+
// Technically, undefined tensors are **not** tensors as the regular tensor
|
15 |
+
// operations do not know how to handle them.
|
16 |
+
// However, in practice, there are guards and conversion operators that
|
17 |
+
// **always** gate regular operations if undefined tensors may be present
|
18 |
+
// Eventually, we would love to move to the world where we use optionals
|
19 |
+
// in lieu of undefined tensors.
|
20 |
+
// When this happens, this pass will be removed
|
21 |
+
TORCH_API void ClearUndefinedness(const std::shared_ptr<Graph>& graph);
|
22 |
+
|
23 |
+
} // namespace jit
|
24 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/common_subexpression_elimination.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API bool EliminateCommonSubexpression(
|
9 |
+
const std::shared_ptr<Graph>& graph);
|
10 |
+
}
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_pooling.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void ConstantPooling(const std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/create_autodiff_subgraphs.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
#include <cstddef>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace jit {
|
10 |
+
|
11 |
+
// insert GraphExecutor nodes that group together
|
12 |
+
// subgraphs that are differentiable by the jit's autodiff passes
|
13 |
+
// threshold - minimum number of nodes that will appear in a block
|
14 |
+
// returns all differentiable blocks that have been found
|
15 |
+
TORCH_API std::vector<Node*> CreateAutodiffSubgraphs(
|
16 |
+
const std::shared_ptr<Graph>& graph,
|
17 |
+
size_t threshold = 2);
|
18 |
+
} // namespace jit
|
19 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/device_type_analysis.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
struct Graph;
|
8 |
+
|
9 |
+
// Propagates Device type info throughout the given graph.
|
10 |
+
TORCH_API bool DeviceTypePropagation(std::shared_ptr<Graph>& graph);
|
11 |
+
|
12 |
+
} // namespace jit
|
13 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dtype_analysis.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
struct Graph;
|
10 |
+
|
11 |
+
// Propagate tensor properties (e.g., dtype, device, is_contiguous, layout)
|
12 |
+
// propagation on all tensor objects. Currently, we only support dtype
|
13 |
+
// propagation
|
14 |
+
TORCH_API bool DtypePropagation(std::shared_ptr<Graph>& graph);
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/eliminate_no_ops.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Remove ops that do nothing on the forward pass (like aten::detach).
|
9 |
+
// This pass is invoked as a part of freeze_module.
|
10 |
+
// This function also takes a set of custom ops to eliminate. All ops in this
|
11 |
+
// set must take their output as their first input, i.e. x = f(x, ...)
|
12 |
+
TORCH_API bool EliminateNoOps(
|
13 |
+
std::shared_ptr<Graph>& graph,
|
14 |
+
std::unordered_set<c10::Symbol> custom_ops = {});
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/erase_number_types.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Erase NumberType information. This is necessary for and only used in
|
9 |
+
// exporting to ONNX. This pass ensures that no remaining Values have
|
10 |
+
// NumberType types, replacing them with tensors.
|
11 |
+
// The following things are done to erase NumberType info:
|
12 |
+
// - NumberType outputs are changed to DynamicType.
|
13 |
+
// - prim::Constant nodes which are numbers get changed into 0-dim tensors of
|
14 |
+
// the corresponding type
|
15 |
+
// - prim::TensorToNum, aten::Float, aten::Int and prim::NumToTensor nodes
|
16 |
+
// are erased.
|
17 |
+
//
|
18 |
+
// The pass assumes that DCE will be called sometime after.
|
19 |
+
TORCH_API void EraseNumberTypes(const std::shared_ptr<Graph>& graph);
|
20 |
+
TORCH_API void EraseNumberTypesOnBlock(Block* block);
|
21 |
+
|
22 |
+
} // namespace jit
|
23 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fixup_trace_scope_blocks.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
// Directly after tracing, we have an ill-formed graph with blocks inserted.
|
10 |
+
// Example:
|
11 |
+
//
|
12 |
+
// graph(%self : ClassType<Module>,
|
13 |
+
// %input.1 : Float(3, 4)):
|
14 |
+
// %1 : ClassType<Module> = prim::GetAttr[name="relu1"](%self)
|
15 |
+
// %2 : ClassType<Module> = prim::GetAttr[name="relu2"](%self)
|
16 |
+
// %3 : ClassType<Module> = prim::GetAttr[name="rrr"](%2)
|
17 |
+
// = prim::TracedModuleForward[scope="__module.relu1"]()
|
18 |
+
// block0():
|
19 |
+
// %input : Float(3, 4) = aten::relu(%input.1),
|
20 |
+
// -> ()
|
21 |
+
// = prim::TracedModuleForward[scope="__module.relu2"](),
|
22 |
+
// block0():
|
23 |
+
// = prim::TracedModuleForward[scope="__module.relu2.rrr"](),
|
24 |
+
// block0():
|
25 |
+
// %6 : Float(3, 4) = aten::relu(%input),
|
26 |
+
// -> ()
|
27 |
+
// -> ()
|
28 |
+
// return (%6)
|
29 |
+
//
|
30 |
+
// In this pass, we:
|
31 |
+
// 1) Lift Value defs to as high of a scope as needed to ensure that
|
32 |
+
// they dominate all their uses. For example, `input` in the above
|
33 |
+
// graph needs to be lifted to the top-level block so that its use
|
34 |
+
// in the second `relu` operator is dominated.
|
35 |
+
// 2) Lambda lift the blocks. This ensures that all values used within
|
36 |
+
// each scope have their defs captured.
|
37 |
+
// 3) Convert the scope blocks into methods on their respective Modules,
|
38 |
+
// and convert TracedModuleForward nodes to CallMethod nodes into those
|
39 |
+
// methods.
|
40 |
+
//
|
41 |
+
// Then, we'll have a well-formed graph with proper method calls.
|
42 |
+
TORCH_API void FixupTraceScopeBlocks(
|
43 |
+
std::shared_ptr<Graph>& graph,
|
44 |
+
Module* self);
|
45 |
+
|
46 |
+
} // namespace jit
|
47 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_conv_bn.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
/** \brief Fold Conv2d-BatchNorm2d into Conv2d in all methods of this
|
9 |
+
* module and all its submodules, forward is included by default.
|
10 |
+
*
|
11 |
+
* The weight and bias of the Conv2d are correspondingly updated. Should only be
|
12 |
+
* used on modules in eval mode.
|
13 |
+
*/
|
14 |
+
TORCH_API Module FoldConvBatchNorm(const Module& module);
|
15 |
+
|
16 |
+
struct TORCH_API ConvBNParameters {
|
17 |
+
at::Tensor conv_w;
|
18 |
+
at::Tensor conv_b;
|
19 |
+
at::Tensor bn_rm;
|
20 |
+
at::Tensor bn_rv;
|
21 |
+
double bn_eps = 0.0;
|
22 |
+
at::Tensor bn_w;
|
23 |
+
at::Tensor bn_b;
|
24 |
+
};
|
25 |
+
|
26 |
+
/**
|
27 |
+
* Given the current weight and bias tensors of a Conv module and parameters
|
28 |
+
* of the BatchNorm module we're folding with, compute the updated values
|
29 |
+
* for the weight and bias.
|
30 |
+
*
|
31 |
+
* The function is basically copied from torch/nn/utils/fusion.py
|
32 |
+
*/
|
33 |
+
TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
|
34 |
+
const ConvBNParameters& p);
|
35 |
+
|
36 |
+
} // namespace jit
|
37 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/freeze_module.h
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/** \brief This file defines freezing Torchscript module API.
|
2 |
+
*
|
3 |
+
* This API has python-binding and can be invoked directly or as a part of
|
4 |
+
* general optimization pipeline.
|
5 |
+
*/
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <torch/csrc/jit/api/module.h>
|
9 |
+
#include <torch/csrc/jit/ir/ir.h>
|
10 |
+
|
11 |
+
/** \brief Freeze Module, i.e., Assume all attributes are constants.
|
12 |
+
*
|
13 |
+
* Freezing module is a functionality that allows the JIT to internalize
|
14 |
+
* immutable attributes. Combined with inlining, the module is aggressively
|
15 |
+
* optimized and significant overhead is optimized away. The freezeModule API
|
16 |
+
* produces a cloned frozen module.
|
17 |
+
*/
|
18 |
+
|
19 |
+
namespace torch {
|
20 |
+
namespace jit {
|
21 |
+
|
22 |
+
TORCH_API Module freeze_module(
|
23 |
+
const Module& module,
|
24 |
+
std::vector<std::string> preservedAttrs = std::vector<std::string>(),
|
25 |
+
bool freezeInterfaces = true,
|
26 |
+
bool preserveParameters = false);
|
27 |
+
|
28 |
+
// Clone-free version of freeze_module. This modifies the module inplace.
|
29 |
+
// Use this version to avoid extra memory usage incurred by cloning the module.
|
30 |
+
TORCH_API void freeze_module_inplace(
|
31 |
+
Module* module,
|
32 |
+
std::vector<std::string> preservedAttrs = std::vector<std::string>(),
|
33 |
+
bool freezeInterfaces = true,
|
34 |
+
bool preserveParameters = false);
|
35 |
+
} // namespace jit
|
36 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_concat_linear.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Concats multiple linear ops with the same Tensor input
|
9 |
+
// into a single linear op.
|
10 |
+
TORCH_API bool FrozenConcatLinear(std::shared_ptr<Graph>& graph);
|
11 |
+
|
12 |
+
} // namespace jit
|
13 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_graph_optimizations.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
/** \brief Runs a set of Optimizations that Optimize Frozen Graphs
|
6 |
+
*
|
7 |
+
* Currently this set of optimizations is:
|
8 |
+
* - FoldFrozenConvBatchnorm
|
9 |
+
* - FoldFrozenConvAddOrSub
|
10 |
+
* - FoldFrozenConvMulOrDiv
|
11 |
+
* - FoldFrozenLinearBatchnorm
|
12 |
+
*/
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace jit {
|
16 |
+
|
17 |
+
TORCH_API void OptimizeFrozenGraph(
|
18 |
+
std::shared_ptr<Graph>& graph,
|
19 |
+
bool optimize_numerics = true);
|
20 |
+
|
21 |
+
} // namespace jit
|
22 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_folding.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Fuses Linear -> BatchNormNd into a single Linear by
|
9 |
+
// folding batchnorm weights into linear weights.
|
10 |
+
// This pass only works on Frozen Graphs; otherwise it is a No-Op.
|
11 |
+
TORCH_API bool FoldFrozenLinearBatchnorm(std::shared_ptr<Graph>& graph);
|
12 |
+
|
13 |
+
} // namespace jit
|
14 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_ops_to_mkldnn.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Converts operators & their parameters to mkldnn if it is profitable
|
9 |
+
// Currently encompassing Conv2d and Conv3d, and Linear
|
10 |
+
// Op must be in float32 and mkldnn must be built
|
11 |
+
// This pass only works on frozen graph
|
12 |
+
TORCH_API void ConvertFrozenOpsToMKLDNN(std::shared_ptr<Graph>& graph);
|
13 |
+
|
14 |
+
} // namespace jit
|
15 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_relu.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
TORCH_API void FuseAddRelu(script::Module& module);
|
9 |
+
TORCH_API void FuseAddRelu(std::shared_ptr<Graph>& graph);
|
10 |
+
} // namespace jit
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_fuser.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API bool canFuseOnCPULegacy();
|
9 |
+
TORCH_API void overrideCanFuseOnCPULegacy(bool value);
|
10 |
+
|
11 |
+
// NB: Be sure to run DCE before fusion, because dead instructions
|
12 |
+
// can prevent fusion opportunities from being exploited.
|
13 |
+
// On Windows will noop, NYI
|
14 |
+
TORCH_API void FuseGraph(
|
15 |
+
std::shared_ptr<Graph>& graph,
|
16 |
+
bool strict_fuser_check = false);
|
17 |
+
|
18 |
+
// \brief Custom fusion pass using a node-level callback to
|
19 |
+
// determine the inclusion of nodes in a subgraph.
|
20 |
+
//
|
21 |
+
// This helper omits aliased inputs and fusion across control flow
|
22 |
+
// boundaries.
|
23 |
+
//
|
24 |
+
// \arg graph The graph to be modified in-place
|
25 |
+
// \arg is_fusable A callback run on each fusable node in the graph.
|
26 |
+
// \arg kind The label given to the resultant fused subgraph
|
27 |
+
// \arg arg_limit The maximum number of args the resultant fused subgraph
|
28 |
+
// should have. Note: This will likely develop into a general
|
29 |
+
// post condition on the fused subgraph.
|
30 |
+
TORCH_API void CustomFuseGraph(
|
31 |
+
std::shared_ptr<Graph>& graph,
|
32 |
+
const std::function<bool(Node*)>& is_fusable,
|
33 |
+
Symbol kind,
|
34 |
+
size_t arg_limit = std::numeric_limits<size_t>::max());
|
35 |
+
|
36 |
+
} // namespace jit
|
37 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/guard_elimination.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
TORCH_API void EliminateRedundantGuards(std::shared_ptr<Graph> graph);
|
17 |
+
|
18 |
+
} // namespace jit
|
19 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/hoist_conv_packed_params.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
void HoistConvPackedParams(script::Module& m);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_autodiff_subgraphs.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API bool canRunWithAutograd(Node* node);
|
9 |
+
|
10 |
+
TORCH_API void InlineAutodiffSubgraphs(
|
11 |
+
std::shared_ptr<Graph>& graph,
|
12 |
+
size_t threshold = 5);
|
13 |
+
|
14 |
+
} // namespace jit
|
15 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_fork_wait.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Inline Fork and Wait calls. This is used, for example, in ONNX export, where
|
9 |
+
// we do not support the explicit parallelism structures and would rather
|
10 |
+
// just have a flat graph. This inlines the forked section in the fork()
|
11 |
+
// callsite and replaces uses of the result of wait() calls with the values
|
12 |
+
// produced from the (now-inlined) forked section.
|
13 |
+
TORCH_API void InlineForkWait(const std::shared_ptr<Graph>& graph);
|
14 |
+
|
15 |
+
} // namespace jit
|
16 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_forked_closures.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
TORCH_API void inlineForkedClosures(std::shared_ptr<Graph>& to_clean);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inliner.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Inline function and method calls.
|
9 |
+
TORCH_API void Inline(Graph& graph);
|
10 |
+
|
11 |
+
TORCH_API GraphFunction* tryToGraphFunction(Node* n);
|
12 |
+
|
13 |
+
} // namespace jit
|
14 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inplace_check.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void CheckInplace(std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/insert_guards.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
TORCH_API void InsertGuards(std::shared_ptr<Graph> graph);
|
17 |
+
|
18 |
+
TORCH_API void RemoveProfilingNodes(const std::shared_ptr<Graph>& graph);
|
19 |
+
|
20 |
+
} // namespace jit
|
21 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/integer_value_refinement.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// return true if graph is modified
|
9 |
+
TORCH_API bool RefineIntegerValues(const std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/liveness.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <c10/util/sparse_bitset.h>
|
8 |
+
#include <torch/csrc/Export.h>
|
9 |
+
#include <torch/csrc/jit/ir/ir.h>
|
10 |
+
#include <list>
|
11 |
+
#include <unordered_map>
|
12 |
+
#include <vector>
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
using SparseBitVector = ::c10::SparseBitVector<256>;
|
17 |
+
|
18 |
+
// BuildLivenessSets computes "bailout" liveness which is equivalent to
|
19 |
+
// "{LIVE_IN} or {GEN}" or "{LIVE_OUT} - {KILL}"
|
20 |
+
TORCH_API std::unordered_map<Node*, std::vector<Value*>> BuildLivenessSets(
|
21 |
+
std::shared_ptr<Graph> graph);
|
22 |
+
} // namespace jit
|
23 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/loop_unrolling.h
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// return true if graph is modified
|
9 |
+
TORCH_API bool UnrollLoops(std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
// Only unrolls constant loops. Will unroll them regardless of loop block size
|
12 |
+
TORCH_API bool UnrollConstantLoops(std::shared_ptr<Graph>& graph);
|
13 |
+
|
14 |
+
TORCH_API Node* PeelLoop(Node* n, size_t times);
|
15 |
+
|
16 |
+
// return true if graph is modified
|
17 |
+
TORCH_API bool PeelProfilingLoops(const std::shared_ptr<Graph>& graph);
|
18 |
+
|
19 |
+
struct TORCH_API LoopsPeeler {
|
20 |
+
LoopsPeeler(std::function<bool(Node* n)> callback, size_t num_iterations = 1)
|
21 |
+
: callback_(std::move(callback)), num_iterations_(num_iterations) {}
|
22 |
+
|
23 |
+
bool run(const std::shared_ptr<Graph>& graph);
|
24 |
+
|
25 |
+
private:
|
26 |
+
void collectLoop(Node* n);
|
27 |
+
void collectLoops(Block* block);
|
28 |
+
void peelLoops();
|
29 |
+
|
30 |
+
std::function<bool(Node* n)> callback_ = nullptr;
|
31 |
+
Node* in_loop_ = nullptr;
|
32 |
+
std::list<Node*> loops_to_peel_;
|
33 |
+
size_t num_iterations_ = 1;
|
34 |
+
};
|
35 |
+
} // namespace jit
|
36 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_graph.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
using ModulePtr = c10::intrusive_ptr<c10::ivalue::Object>;
|
9 |
+
|
10 |
+
// Given a graph with of a method which first argument is %self, lower it to a
|
11 |
+
// graph where all attributes accesses are replaced with explicit inputs of the
|
12 |
+
// graph (rather than results of prim::GetAttr executed on %self).
|
13 |
+
//
|
14 |
+
// Returns a tuple (graph, parameters) where the last module.parameters.size()
|
15 |
+
// inputs to the graph are the trainable parameters used in this method. The
|
16 |
+
// remaining inputs are the true inputs to the function.
|
17 |
+
TORCH_API std::pair<std::shared_ptr<Graph>, std::vector<IValue>> LowerGraph(
|
18 |
+
Graph& graph,
|
19 |
+
const ModulePtr& self);
|
20 |
+
|
21 |
+
} // namespace jit
|
22 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_tuples.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// removes tuples where TupleConstruct and TupleUnpack are matched
|
9 |
+
// but leaves tuples in place across if statements, loops, and as inputs/outputs
|
10 |
+
TORCH_API void LowerSimpleTuples(const std::shared_ptr<Graph>& graph);
|
11 |
+
|
12 |
+
// removes _all_ tuples and raises an error if some cannot be removed
|
13 |
+
// this is used by ONNX to ensure there are not tuples before conversion,
|
14 |
+
// but will not work on graphs whose inputs contain tuples.
|
15 |
+
TORCH_API void LowerAllTuples(const std::shared_ptr<Graph>& graph);
|
16 |
+
|
17 |
+
TORCH_API void LowerSimpleTuples(Block* block);
|
18 |
+
|
19 |
+
} // namespace jit
|
20 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/metal_rewrite.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/csrc/jit/api/module.h>
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <string>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
TORCH_API void metalInsertPrePackedOps(std::shared_ptr<Graph>& graph);
|
10 |
+
TORCH_API void metalInsertPrePackedOps(script::Module& module);
|
11 |
+
TORCH_API void metalFusePrePackedConvWithClamp(script::Module& module);
|
12 |
+
TORCH_API void metalFoldPrePackingOps(script::Module& module);
|
13 |
+
TORCH_API script::Module metalOptimizeForMobile(
|
14 |
+
const script::Module& module,
|
15 |
+
const std::vector<std::string>& preserved_methods);
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mkldnn_rewrite.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
#include <torch/csrc/jit/api/module.h>
|
5 |
+
#include <torch/csrc/jit/ir/ir.h>
|
6 |
+
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
7 |
+
|
8 |
+
#if AT_MKLDNN_ENABLED()
|
9 |
+
|
10 |
+
#include <ideep/tensor.hpp>
|
11 |
+
|
12 |
+
#endif // AT_MKLDNN_ENABLED()
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace jit {
|
16 |
+
|
17 |
+
#if AT_MKLDNN_ENABLED()
|
18 |
+
|
19 |
+
namespace mkldnn {
|
20 |
+
|
21 |
+
const static std::map<std::string, std::vector<torch::jit::MatchFilter>>
|
22 |
+
fusion_rewrite_map = {
|
23 |
+
{"none", {}},
|
24 |
+
{"relu", {}},
|
25 |
+
};
|
26 |
+
|
27 |
+
} // namespace mkldnn
|
28 |
+
|
29 |
+
#endif // AT_MKLDNN_ENABLED()
|
30 |
+
|
31 |
+
void FuseConvWithEltwise(std::shared_ptr<Graph>& graph);
|
32 |
+
|
33 |
+
} // namespace jit
|
34 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mobile_optimizer_type.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
enum class MobileOptimizerType : int8_t {
|
6 |
+
CONV_BN_FUSION,
|
7 |
+
INSERT_FOLD_PREPACK_OPS,
|
8 |
+
REMOVE_DROPOUT,
|
9 |
+
FUSE_ADD_RELU,
|
10 |
+
HOIST_CONV_PACKED_PARAMS,
|
11 |
+
CONV_1D_TO_2D,
|
12 |
+
VULKAN_AUTOMATIC_GPU_TRANSFER,
|
13 |
+
};
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onednn_graph_fuser.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <torch/csrc/jit/passes/pass_manager.h>
|
5 |
+
|
6 |
+
#include <ATen/Config.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace jit {
|
10 |
+
namespace fuser {
|
11 |
+
namespace onednn {
|
12 |
+
|
13 |
+
static std::atomic<bool> onednn_enabled{true};
|
14 |
+
|
15 |
+
static std::atomic<bool>& getLlgaEnabled() {
|
16 |
+
return onednn_enabled;
|
17 |
+
}
|
18 |
+
|
19 |
+
TORCH_API void fuseGraph(std::shared_ptr<Graph>& g);
|
20 |
+
|
21 |
+
} // namespace onednn
|
22 |
+
} // namespace fuser
|
23 |
+
|
24 |
+
struct C10_EXPORT RegisterLlgaFuseGraph
|
25 |
+
: public PassManager<RegisterLlgaFuseGraph> {
|
26 |
+
static bool setEnabled(bool enabled) {
|
27 |
+
TORCH_CHECK(
|
28 |
+
AT_MKLDNN_ENABLED(),
|
29 |
+
"Running oneDNN Graph fuser is only supported with MKLDNN builds.");
|
30 |
+
bool oldState = fuser::onednn::getLlgaEnabled();
|
31 |
+
fuser::onednn::getLlgaEnabled() = enabled;
|
32 |
+
if (enabled) {
|
33 |
+
registerPass(fuser::onednn::fuseGraph);
|
34 |
+
} else {
|
35 |
+
clearPass();
|
36 |
+
}
|
37 |
+
return oldState;
|
38 |
+
}
|
39 |
+
|
40 |
+
static bool isEnabled() {
|
41 |
+
return fuser::onednn::getLlgaEnabled();
|
42 |
+
}
|
43 |
+
|
44 |
+
// override PassManager::registerPass to register pre-pass
|
45 |
+
static bool registerPass(GraphPass p) {
|
46 |
+
if (!isRegistered()) {
|
47 |
+
passID(registerPrePass(std::move(p)), true);
|
48 |
+
isRegistered(true);
|
49 |
+
return false;
|
50 |
+
}
|
51 |
+
return true;
|
52 |
+
}
|
53 |
+
|
54 |
+
// override PassManager::clearPass to clear pre-pass
|
55 |
+
static void clearPass() {
|
56 |
+
if (isRegistered()) {
|
57 |
+
clearPrePass(passID());
|
58 |
+
isRegistered(true);
|
59 |
+
}
|
60 |
+
}
|
61 |
+
};
|
62 |
+
|
63 |
+
} // namespace jit
|
64 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/pass_manager.h
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
/* `getCustomPrePasses()` returns a vector of passes that will be executed
|
6 |
+
* after differentiation but before any fusion. This is the de-facto location
|
7 |
+
* for compiler backends to insert passes.
|
8 |
+
*
|
9 |
+
* `getCustomPostPasses()` returns a vector of passes that will be
|
10 |
+
* executed after differentiation and after fusion (if any). This is the
|
11 |
+
* location for fusion cleanup passes if they are needed.
|
12 |
+
*
|
13 |
+
* Static registration of a pass can be done by creating a global
|
14 |
+
* `Register{Pre,Post}Pass r(Pass)` variable in a compilation unit.
|
15 |
+
*
|
16 |
+
* pass_manager.h uses a Meyer's singleton to store a vector of `Pass`es, which
|
17 |
+
* modify the IR graph in place.
|
18 |
+
*/
|
19 |
+
|
20 |
+
namespace torch {
|
21 |
+
namespace jit {
|
22 |
+
|
23 |
+
// A pass modifies a Graph in place.
|
24 |
+
using GraphPass = std::function<void(std::shared_ptr<Graph>&)>;
|
25 |
+
|
26 |
+
// Since Passes are std::functions, we associate a UUID to each pass, this way
|
27 |
+
// if we want to deregister a pass, we have something to reference it by.
|
28 |
+
using GraphPassNameType = unsigned int;
|
29 |
+
|
30 |
+
// Graph pass entries have a name associated with them
|
31 |
+
using GraphPassEntry = std::pair<GraphPass, GraphPassNameType>;
|
32 |
+
|
33 |
+
// Return currently registered passes. Passes are stored in a static vector
|
34 |
+
TORCH_API std::vector<std::pair<GraphPass, GraphPassNameType>>&
|
35 |
+
getCustomPostPasses();
|
36 |
+
TORCH_API std::vector<std::pair<GraphPass, GraphPassNameType>>&
|
37 |
+
getCustomPrePasses();
|
38 |
+
|
39 |
+
TORCH_API GraphPassNameType registerPostPass(GraphPass p);
|
40 |
+
TORCH_API GraphPassNameType registerPrePass(GraphPass p);
|
41 |
+
|
42 |
+
// Look up pass by name passed in, remove it from registered passes
|
43 |
+
TORCH_API void clearPostPass(GraphPassNameType p);
|
44 |
+
TORCH_API void clearPrePass(GraphPassNameType p);
|
45 |
+
|
46 |
+
// Remove all passes
|
47 |
+
TORCH_API void clearAllPostPasses();
|
48 |
+
TORCH_API void clearAllPrePasses();
|
49 |
+
|
50 |
+
// LEGACY CALL
|
51 |
+
struct TORCH_API RegisterPostPass {
|
52 |
+
RegisterPostPass(GraphPass p);
|
53 |
+
};
|
54 |
+
|
55 |
+
using RegisterPass = RegisterPostPass;
|
56 |
+
|
57 |
+
/*
|
58 |
+
* PassManager is a wrapper on the register/clear PostPass functions above. It
|
59 |
+
* will register the pass provided in "registerPass" and will hold on to its
|
60 |
+
* associated name that way clearPass can be later called and will delete the
|
61 |
+
* pass used to register when called.
|
62 |
+
*
|
63 |
+
* PassManager is templated because we want static variables based on a
|
64 |
+
* particular GraphPass. When deriving from PassManager, you should send as the
|
65 |
+
* template parameter your derived class as you would for the curiously
|
66 |
+
* recurring template pattern. This template parameter isn't actually used and
|
67 |
+
* is simply done to prevent static members from being shared across derived
|
68 |
+
* types.
|
69 |
+
*/
|
70 |
+
template <typename DerivedType>
|
71 |
+
struct C10_EXPORT PassManager {
|
72 |
+
private:
|
73 |
+
// We want this class to be abstract because it's
|
74 |
+
virtual void abstract() = 0;
|
75 |
+
|
76 |
+
protected:
|
77 |
+
/*
|
78 |
+
* isRegistered() will return if a pass has been registered
|
79 |
+
* isRegistered(true) will change the value of the internal static bool
|
80 |
+
*
|
81 |
+
* There's an internal static bool to this function to keep track of the
|
82 |
+
* state, this is so when functions are derived from this class, they don't
|
83 |
+
* have to worry about initializing the static members.
|
84 |
+
*/
|
85 |
+
static bool isRegistered(bool flip_bit = false) {
|
86 |
+
static bool val = false;
|
87 |
+
if (flip_bit)
|
88 |
+
val = !val;
|
89 |
+
return val;
|
90 |
+
}
|
91 |
+
|
92 |
+
/*
|
93 |
+
* name() will return the name of the registered pass
|
94 |
+
* name(pass_name, true) will set the name of the pass
|
95 |
+
* Similarly to isRegistered we use an internal static variable to hold the
|
96 |
+
* name.
|
97 |
+
*/
|
98 |
+
static GraphPassNameType passID(
|
99 |
+
GraphPassNameType PassID = 0,
|
100 |
+
bool set = false) {
|
101 |
+
static GraphPassNameType pass_id = 0;
|
102 |
+
if (set)
|
103 |
+
pass_id = PassID;
|
104 |
+
return pass_id;
|
105 |
+
}
|
106 |
+
|
107 |
+
public:
|
108 |
+
// registerPass(pass) will register the pass provided and set the
|
109 |
+
// name/isRegistered functions appropriately, it returns a bool value
|
110 |
+
// indicating whether the given pass is already registered previously.
|
111 |
+
static bool registerPass(GraphPass p) {
|
112 |
+
if (!isRegistered()) {
|
113 |
+
// If we don't already have a registered pass, register pass
|
114 |
+
// hold on to its name, change isRegistered to true
|
115 |
+
passID(registerPostPass(std::move(p)), true);
|
116 |
+
isRegistered(true);
|
117 |
+
return false;
|
118 |
+
}
|
119 |
+
return true;
|
120 |
+
}
|
121 |
+
|
122 |
+
// Calls ClearPostPass(passID())
|
123 |
+
static void clearPass() {
|
124 |
+
// If the pass is registered, clear it and change isRegistered to false.
|
125 |
+
if (isRegistered()) {
|
126 |
+
clearPostPass(passID());
|
127 |
+
isRegistered(true);
|
128 |
+
}
|
129 |
+
}
|
130 |
+
|
131 |
+
// clang-tidy requires virtual destructor;
|
132 |
+
virtual ~PassManager() = default;
|
133 |
+
};
|
134 |
+
|
135 |
+
} // namespace jit
|
136 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// return true if graph is modified
|
9 |
+
TORCH_API bool PeepholeOptimize(
|
10 |
+
const std::shared_ptr<Graph>& graph,
|
11 |
+
bool disable_shape_peepholes = false);
|
12 |
+
// return true if graph is modified
|
13 |
+
TORCH_API bool PeepholeOptimize(
|
14 |
+
Block* block,
|
15 |
+
bool disable_shape_peepholes = false);
|
16 |
+
// return true if graph is modified
|
17 |
+
TORCH_API bool FuseAddMM(const std::shared_ptr<Graph>& graph);
|
18 |
+
|
19 |
+
} // namespace jit
|
20 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_alias_sensitive.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Peephole Optimizes alias sensitive peepholes
|
9 |
+
// Currently this is invoked as part of PeepholeOptimize
|
10 |
+
// return true if graph is modified
|
11 |
+
// Optimizes on TensorType if shape_peepholes is true
|
12 |
+
TORCH_API bool PeepholeOptimizeAliasSensitive(
|
13 |
+
const std::shared_ptr<Graph>& graph,
|
14 |
+
bool shape_peepholes);
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_list_idioms.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Peephole Optimizes List ops such as len(li) and li[1].
|
9 |
+
// 1. Construct/Unpack optimizations
|
10 |
+
// Given a function like this:
|
11 |
+
// def foo(a, b):
|
12 |
+
// li = [a, b]
|
13 |
+
// x, y = li
|
14 |
+
// return x, y
|
15 |
+
// This pass produces (after dead code elimination):
|
16 |
+
// def foo(a, b):
|
17 |
+
// return a, b
|
18 |
+
//
|
19 |
+
// This is only applied to lists that are not modified.
|
20 |
+
//
|
21 |
+
// 2. getitem optimizations
|
22 |
+
// Given a function like this:
|
23 |
+
// def foo(a, b):
|
24 |
+
// li = [a, b]
|
25 |
+
// x = li[0]
|
26 |
+
// return x
|
27 |
+
// This pass produces (after dead code elimination):
|
28 |
+
// def foo(a, b):
|
29 |
+
// return a
|
30 |
+
//
|
31 |
+
// This optimization can only happen if the list is not modified.
|
32 |
+
//
|
33 |
+
// 3. len optimizations
|
34 |
+
// Given a function like this:
|
35 |
+
// def foo():
|
36 |
+
// li = [1, 2]
|
37 |
+
// return len(li)
|
38 |
+
// This pass produces (after dead code elimination):
|
39 |
+
// def foo():
|
40 |
+
// return 2
|
41 |
+
//
|
42 |
+
// This has the same requirements as the getitem optimizations.
|
43 |
+
//
|
44 |
+
// 4. ListConstruct + ListConstruct
|
45 |
+
// Given a function like this:
|
46 |
+
// def foo():
|
47 |
+
// return [1, 2] + [3, 4]
|
48 |
+
// This pass produces (after dead code elimination):
|
49 |
+
// def foo():
|
50 |
+
// return [1, 2, 3, 4]
|
51 |
+
//
|
52 |
+
// This is only applied to lists that are not modified.
|
53 |
+
//
|
54 |
+
// 5. Slice
|
55 |
+
// Given a function like this:
|
56 |
+
// def foo():
|
57 |
+
// return [1, 2, 3, 4, 5][0:2]
|
58 |
+
// This pass produces (after deadcode elimination):
|
59 |
+
// def foo():
|
60 |
+
// return [1, 2]
|
61 |
+
//
|
62 |
+
// Currently this is invoked as part of PeepholeOptimize
|
63 |
+
// return true if graph is modified.
|
64 |
+
// If `refine_list_len` is true will attempt to refine the len of lists through
|
65 |
+
// len comparisons and assertions. This does not generally optimize pytorch
|
66 |
+
// programs so it is not called by default in PeepholeOptimize.
|
67 |
+
TORCH_API bool PeepholeOptimizeListIdioms(
|
68 |
+
const std::shared_ptr<Graph>& graph,
|
69 |
+
bool refine_list_len = false);
|
70 |
+
|
71 |
+
} // namespace jit
|
72 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/prepack_folding.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
using PrePackingOpsFilterFn = std::function<bool(Node*)>;
|
10 |
+
|
11 |
+
void PrePackingOpsFolder(
|
12 |
+
script::Module& m,
|
13 |
+
const PrePackingOpsFilterFn& is_foldable_op,
|
14 |
+
const std::string& attr_prefix);
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/dedup_module_uses.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
/** Recursively deduplicate multiple uses of the same module by
|
9 |
+
* creating an instance clone for each use of the module, which means
|
10 |
+
* the type will be the same as before and all the attributes will be
|
11 |
+
* copied, then we'll change the use of the original module to the use
|
12 |
+
* of cloned module in the Graph.
|
13 |
+
*
|
14 |
+
* This is done to ensure that modules can survive destructive passes
|
15 |
+
* without changing model behavior. For example, here:
|
16 |
+
*
|
17 |
+
* x = self.conv1(x)
|
18 |
+
* x = self.relu(x)
|
19 |
+
* x = self.conv2(x)
|
20 |
+
* x = self.relu(x)
|
21 |
+
*
|
22 |
+
* self.relu needs to be deduplicated for potential future destructive passes
|
23 |
+
* to work properly.
|
24 |
+
*/
|
25 |
+
TORCH_API void DedupModuleUses(Module& module);
|
26 |
+
|
27 |
+
} // namespace jit
|
28 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/finalize.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
|
10 |
+
/** \brief Backend specific pass to fuse dequantize - op - quantize calls
|
11 |
+
* as quantized_op calls.
|
12 |
+
*
|
13 |
+
* Right now this is a fusion for fbgemm backend and only works for quantized
|
14 |
+
* conv op, we'll extend to more ops and more backends in the future.
|
15 |
+
*
|
16 |
+
* Currently supported fusion:
|
17 |
+
* q(conv2d(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_conv2d(prepack(to_nhwc(a)),
|
18 |
+
* prepack(to_nhwc(w)),
|
19 |
+
* prepack(to_nhwc(b))))
|
20 |
+
*
|
21 |
+
* q(linear(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_linear(prepack(to_nhwc(a)),
|
22 |
+
* prepack(to_nhwc(w)),
|
23 |
+
* prepack(to_nhwc(b))))
|
24 |
+
*
|
25 |
+
* \param graph the graph we want to apply fusion
|
26 |
+
*/
|
27 |
+
TORCH_API void QuantFusion(
|
28 |
+
std::shared_ptr<Graph>& graph,
|
29 |
+
QuantType quant_type = QuantType::STATIC);
|
30 |
+
|
31 |
+
/** \brief Insert prepack and unpack function in graph
|
32 |
+
* We want add pack/unpack functions for quantized weight because later we want
|
33 |
+
* to fold the packed weight as an attribute of the module, in order to reduce
|
34 |
+
* the cost of packing the weight on the fly in quantized models.
|
35 |
+
*
|
36 |
+
* Each quantized op has it's corresponding prepack/unpack function,
|
37 |
+
* right now, we only need to do prepack/unpack for quantized::linear
|
38 |
+
* and quantized::conv2d.
|
39 |
+
*/
|
40 |
+
TORCH_API void InsertPrepackUnpack(std::shared_ptr<Graph>& graph);
|
41 |
+
|
42 |
+
/** \brief Insert pack and unpack function in all graphs
|
43 |
+
* of module
|
44 |
+
*
|
45 |
+
* Go through graphs of all the methods of all child modules
|
46 |
+
* and call InsertPrepackUnpack on the graph.
|
47 |
+
*/
|
48 |
+
TORCH_API void InsertPrepackUnpack(Module& module);
|
49 |
+
|
50 |
+
TORCH_API script::Module Finalize(
|
51 |
+
script::Module& module,
|
52 |
+
QuantType quant_type = QuantType::STATIC,
|
53 |
+
const std::vector<std::string>& preserved_attrs =
|
54 |
+
std::vector<std::string>());
|
55 |
+
|
56 |
+
TORCH_API void FoldQuantizedPrepackingOps(Module& module);
|
57 |
+
|
58 |
+
TORCH_API Module FinalizeOnDevicePTQ(
|
59 |
+
Module& module,
|
60 |
+
QuantType quant_type,
|
61 |
+
const std::string& method_name);
|
62 |
+
} // namespace jit
|
63 |
+
} // namespace torch
|