Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/17.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/__init__.py +19 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/__pycache__/_mappings.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__pycache__/activation_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/activation_sparsifier.py +418 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__init__.py +7 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/base_data_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/data_norm_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/quantization_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/base_data_sparsifier.py +309 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/data_norm_sparsifier.py +153 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/_data_sparstity_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/data_sparsity.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/_data_sparstity_utils.py +39 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/data_sparsity.py +165 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/quantization_utils.py +130 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/FPGM_pruner.py +93 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/__init__.py +8 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/base_structured_sparsifier.py +310 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/lstm_saliency_pruner.py +48 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/match_utils.py +59 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/parametrization.py +59 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/prune_functions.py +475 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/_mappings.py +18 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/base_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/nearly_diagonal_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/weight_norm_sparsifier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py +353 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/nearly_diagonal_sparsifier.py +55 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/utils.py +136 -0
- venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/weight_norm_sparsifier.py +200 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__pycache__/_decomposed.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/17.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ab46f7f61a85a3fc5d3ca51ed1d3a251475eb42cf5e77d079b13d7dab20013
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a1cbd65d46255e5cc77587f09f30d33aedce37e6761f9c97740c290dc8629d7
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:607d9516890621a677964a3165b7c988b6b9cc955db106a28c9e9e3f92c232cd
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/17.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab58c8f2361b8c9914ef13068d1539dcdc22acf953cffa3f10a9e3e4b8a1425
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dae4ced58b9af1a60c89ec4cf0844502a145c8ffe95c7c9af012ac7ef71b044
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/ao/pruning/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Variables
|
2 |
+
from ._mappings import get_dynamic_sparse_quantized_mapping
|
3 |
+
from ._mappings import get_static_sparse_quantized_mapping
|
4 |
+
|
5 |
+
# Sparsifier
|
6 |
+
from .sparsifier.base_sparsifier import BaseSparsifier
|
7 |
+
from .sparsifier.weight_norm_sparsifier import WeightNormSparsifier
|
8 |
+
from .sparsifier.nearly_diagonal_sparsifier import NearlyDiagonalSparsifier
|
9 |
+
|
10 |
+
# Scheduler
|
11 |
+
from .scheduler.base_scheduler import BaseScheduler
|
12 |
+
from .scheduler.lambda_scheduler import LambdaSL
|
13 |
+
from .scheduler.cubic_scheduler import CubicSL
|
14 |
+
|
15 |
+
# Parametrizations
|
16 |
+
from .sparsifier.utils import FakeSparsity
|
17 |
+
from .sparsifier.utils import module_to_fqn
|
18 |
+
from .sparsifier.utils import fqn_to_module
|
19 |
+
from .sparsifier.utils import get_arg_info_from_tensor_fqn
|
venv/lib/python3.10/site-packages/torch/ao/pruning/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (895 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/__pycache__/_mappings.cpython-310.pyc
ADDED
Binary file (708 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (220 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/__pycache__/activation_sparsifier.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/activation_sparsifier.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional
|
2 |
+
import torch
|
3 |
+
from collections import defaultdict
|
4 |
+
from torch import nn
|
5 |
+
import copy
|
6 |
+
from ...sparsifier.utils import fqn_to_module, module_to_fqn
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
__all__ = ['ActivationSparsifier']
|
10 |
+
|
11 |
+
|
12 |
+
class ActivationSparsifier:
|
13 |
+
r"""
|
14 |
+
The Activation sparsifier class aims to sparsify/prune activations in a neural
|
15 |
+
network. The idea is to attach the sparsifier to a layer (or layers) and it
|
16 |
+
zeroes out the activations based on the mask_fn (or sparsification function)
|
17 |
+
input by the user.
|
18 |
+
The mask_fn is applied once all the inputs are aggregated and reduced i.e.
|
19 |
+
mask = mask_fn(reduce_fn(aggregate_fn(activations)))
|
20 |
+
|
21 |
+
Note::
|
22 |
+
The sparsification mask is computed on the input **before it goes through the attached layer**.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
model (nn.Module):
|
26 |
+
The model whose layers will be sparsified. The layers that needs to be
|
27 |
+
sparsified should be added separately using the register_layer() function
|
28 |
+
aggregate_fn (Optional, Callable):
|
29 |
+
default aggregate_fn that is used if not specified while registering the layer.
|
30 |
+
specifies how inputs should be aggregated over time.
|
31 |
+
The aggregate_fn should usually take 2 torch tensors and return the aggregated tensor.
|
32 |
+
Example
|
33 |
+
def add_agg_fn(tensor1, tensor2): return tensor1 + tensor2
|
34 |
+
reduce_fn (Optional, Callable):
|
35 |
+
default reduce_fn that is used if not specified while registering the layer.
|
36 |
+
reduce_fn will be called on the aggregated tensor i.e. the tensor obtained after
|
37 |
+
calling agg_fn() on all inputs.
|
38 |
+
Example
|
39 |
+
def mean_reduce_fn(agg_tensor): return agg_tensor.mean(dim=0)
|
40 |
+
mask_fn (Optional, Callable):
|
41 |
+
default mask_fn that is used to create the sparsification mask using the tensor obtained after
|
42 |
+
calling the reduce_fn(). This is used by default if a custom one is passed in the
|
43 |
+
register_layer().
|
44 |
+
Note that the mask_fn() definition should contain the sparse arguments that is passed in sparse_config
|
45 |
+
arguments.
|
46 |
+
features (Optional, list):
|
47 |
+
default selected features to sparsify.
|
48 |
+
If this is non-empty, then the mask_fn will be applied for each feature of the input.
|
49 |
+
For example,
|
50 |
+
mask = [mask_fn(reduce_fn(aggregated_fn(input[feature])) for feature in features]
|
51 |
+
feature_dim (Optional, int):
|
52 |
+
default dimension of input features. Again, features along this dim will be chosen
|
53 |
+
for sparsification.
|
54 |
+
sparse_config (Dict):
|
55 |
+
Default configuration for the mask_fn. This config will be passed
|
56 |
+
with the mask_fn()
|
57 |
+
|
58 |
+
Example:
|
59 |
+
>>> # xdoctest: +SKIP
|
60 |
+
>>> model = SomeModel()
|
61 |
+
>>> act_sparsifier = ActivationSparsifier(...) # init activation sparsifier
|
62 |
+
>>> # Initialize aggregate_fn
|
63 |
+
>>> def agg_fn(x, y):
|
64 |
+
>>> return x + y
|
65 |
+
>>>
|
66 |
+
>>> # Initialize reduce_fn
|
67 |
+
>>> def reduce_fn(x):
|
68 |
+
>>> return torch.mean(x, dim=0)
|
69 |
+
>>>
|
70 |
+
>>> # Initialize mask_fn
|
71 |
+
>>> def mask_fn(data):
|
72 |
+
>>> return torch.eye(data.shape).to(data.device)
|
73 |
+
>>>
|
74 |
+
>>>
|
75 |
+
>>> act_sparsifier.register_layer(model.some_layer, aggregate_fn=agg_fn, reduce_fn=reduce_fn, mask_fn=mask_fn)
|
76 |
+
>>>
|
77 |
+
>>> # start training process
|
78 |
+
>>> for _ in [...]:
|
79 |
+
>>> # epoch starts
|
80 |
+
>>> # model.forward(), compute_loss() and model.backwards()
|
81 |
+
>>> # epoch ends
|
82 |
+
>>> act_sparsifier.step()
|
83 |
+
>>> # end training process
|
84 |
+
>>> sparsifier.squash_mask()
|
85 |
+
"""
|
86 |
+
def __init__(self, model: nn.Module, aggregate_fn=None, reduce_fn=None, mask_fn=None,
|
87 |
+
features=None, feature_dim=None, **sparse_config):
|
88 |
+
self.model = model
|
89 |
+
self.defaults: Dict[str, Any] = defaultdict()
|
90 |
+
self.defaults['sparse_config'] = sparse_config
|
91 |
+
|
92 |
+
# functions
|
93 |
+
self.defaults['aggregate_fn'] = aggregate_fn
|
94 |
+
self.defaults['reduce_fn'] = reduce_fn
|
95 |
+
self.defaults['mask_fn'] = mask_fn
|
96 |
+
|
97 |
+
# default feature and feature_dim
|
98 |
+
self.defaults['features'] = features
|
99 |
+
self.defaults['feature_dim'] = feature_dim
|
100 |
+
|
101 |
+
self.data_groups: Dict[str, Dict] = defaultdict(dict) # contains all relevant info w.r.t each registered layer
|
102 |
+
|
103 |
+
self.state: Dict[str, Any] = defaultdict(dict) # layer name -> mask
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def _safe_rail_checks(args):
|
107 |
+
"""Makes sure that some of the functions and attributes are not passed incorrectly
|
108 |
+
"""
|
109 |
+
|
110 |
+
# if features are not None, then feature_dim must not be None
|
111 |
+
features, feature_dim = args['features'], args['feature_dim']
|
112 |
+
if features is not None:
|
113 |
+
assert feature_dim is not None, "need feature dim to select features"
|
114 |
+
|
115 |
+
# all the *_fns should be callable
|
116 |
+
fn_keys = ['aggregate_fn', 'reduce_fn', 'mask_fn']
|
117 |
+
for key in fn_keys:
|
118 |
+
fn = args[key]
|
119 |
+
assert callable(fn), 'function should be callable'
|
120 |
+
|
121 |
+
def _aggregate_hook(self, name):
|
122 |
+
"""Returns hook that computes aggregate of activations passing through.
|
123 |
+
"""
|
124 |
+
|
125 |
+
# gather some data
|
126 |
+
feature_dim = self.data_groups[name]['feature_dim']
|
127 |
+
features = self.data_groups[name]['features']
|
128 |
+
agg_fn = self.data_groups[name]['aggregate_fn']
|
129 |
+
|
130 |
+
def hook(module, input) -> None:
|
131 |
+
input_data = input[0]
|
132 |
+
|
133 |
+
data = self.data_groups[name].get('data') # aggregated data
|
134 |
+
if features is None:
|
135 |
+
# no features associated, data should not be a list
|
136 |
+
if data is None:
|
137 |
+
data = torch.zeros_like(input_data)
|
138 |
+
self.state[name]['mask'] = torch.ones_like(input_data)
|
139 |
+
out_data = agg_fn(data, input_data)
|
140 |
+
else:
|
141 |
+
# data should be a list [aggregated over each feature only]
|
142 |
+
if data is None:
|
143 |
+
out_data = [0 for _ in range(0, len(features))] # create one incase of 1st forward
|
144 |
+
self.state[name]['mask'] = [0 for _ in range(0, len(features))]
|
145 |
+
else:
|
146 |
+
out_data = data # a list
|
147 |
+
|
148 |
+
# compute aggregate over each feature
|
149 |
+
for feature_idx in range(len(features)):
|
150 |
+
# each feature is either a list or scalar, convert it to torch tensor
|
151 |
+
feature_tensor = torch.Tensor([features[feature_idx]]).long().to(input_data.device)
|
152 |
+
data_feature = torch.index_select(input_data, feature_dim, feature_tensor)
|
153 |
+
if data is None:
|
154 |
+
curr_data = torch.zeros_like(data_feature)
|
155 |
+
self.state[name]['mask'][feature_idx] = torch.ones_like(data_feature)
|
156 |
+
else:
|
157 |
+
curr_data = data[feature_idx]
|
158 |
+
out_data[feature_idx] = agg_fn(curr_data, data_feature)
|
159 |
+
self.data_groups[name]['data'] = out_data
|
160 |
+
return hook
|
161 |
+
|
162 |
+
def register_layer(self, layer: nn.Module, aggregate_fn=None, reduce_fn=None,
|
163 |
+
mask_fn=None, features=None, feature_dim=None, **sparse_config):
|
164 |
+
r"""
|
165 |
+
Registers a layer for sparsification. The layer should be part of self.model.
|
166 |
+
Specifically, registers a pre-forward hook to the layer. The hook will apply the aggregate_fn
|
167 |
+
and store the aggregated activations that is input over each step.
|
168 |
+
|
169 |
+
Note::
|
170 |
+
- There is no need to pass in the name of the layer as it is automatically computed as per
|
171 |
+
the fqn convention.
|
172 |
+
|
173 |
+
- All the functions (fn) passed as argument will be called at a dim, feature level.
|
174 |
+
"""
|
175 |
+
name = module_to_fqn(self.model, layer)
|
176 |
+
assert name is not None, "layer not found in the model" # satisfy mypy
|
177 |
+
|
178 |
+
if name in self.data_groups: # unregister layer if already present
|
179 |
+
warnings.warn("layer already attached to the sparsifier, deregistering the layer and registering with new config")
|
180 |
+
self.unregister_layer(name=name)
|
181 |
+
|
182 |
+
local_args = copy.deepcopy(self.defaults)
|
183 |
+
update_dict = {
|
184 |
+
'aggregate_fn': aggregate_fn,
|
185 |
+
'reduce_fn': reduce_fn,
|
186 |
+
'mask_fn': mask_fn,
|
187 |
+
'features': features,
|
188 |
+
'feature_dim': feature_dim,
|
189 |
+
'layer': layer
|
190 |
+
}
|
191 |
+
local_args.update((arg, val) for arg, val in update_dict.items() if val is not None)
|
192 |
+
local_args['sparse_config'].update(sparse_config)
|
193 |
+
|
194 |
+
self._safe_rail_checks(local_args)
|
195 |
+
|
196 |
+
self.data_groups[name] = local_args
|
197 |
+
agg_hook = layer.register_forward_pre_hook(self._aggregate_hook(name=name))
|
198 |
+
|
199 |
+
self.state[name]['mask'] = None # mask will be created when model forward is called.
|
200 |
+
|
201 |
+
# attach agg hook
|
202 |
+
self.data_groups[name]['hook'] = agg_hook
|
203 |
+
|
204 |
+
# for serialization purposes, we know whether aggregate_hook is attached
|
205 |
+
# or sparsify_hook()
|
206 |
+
self.data_groups[name]['hook_state'] = "aggregate" # aggregate hook is attached
|
207 |
+
|
208 |
+
def get_mask(self, name: Optional[str] = None, layer: Optional[nn.Module] = None):
|
209 |
+
"""
|
210 |
+
Returns mask associated to the layer.
|
211 |
+
|
212 |
+
The mask is
|
213 |
+
- a torch tensor is features for that layer is None.
|
214 |
+
- a list of torch tensors for each feature, otherwise
|
215 |
+
|
216 |
+
Note::
|
217 |
+
The shape of the mask is unknown until model.forward() is applied.
|
218 |
+
Hence, if get_mask() is called before model.forward(), an
|
219 |
+
error will be raised.
|
220 |
+
"""
|
221 |
+
assert name is not None or layer is not None, "Need at least name or layer obj to retrieve mask"
|
222 |
+
|
223 |
+
if name is None:
|
224 |
+
assert layer is not None
|
225 |
+
name = module_to_fqn(self.model, layer)
|
226 |
+
assert name is not None, "layer not found in the specified model"
|
227 |
+
|
228 |
+
if name not in self.state:
|
229 |
+
raise ValueError("Error: layer with the given name not found")
|
230 |
+
|
231 |
+
mask = self.state[name].get('mask', None)
|
232 |
+
|
233 |
+
if mask is None:
|
234 |
+
raise ValueError("Error: shape unknown, call layer() routine at least once to infer mask")
|
235 |
+
return mask
|
236 |
+
|
237 |
+
def unregister_layer(self, name):
|
238 |
+
"""Detaches the sparsifier from the layer
|
239 |
+
"""
|
240 |
+
|
241 |
+
# detach any hooks attached
|
242 |
+
self.data_groups[name]['hook'].remove()
|
243 |
+
|
244 |
+
# pop from the state dict
|
245 |
+
self.state.pop(name)
|
246 |
+
|
247 |
+
# pop from the data groups
|
248 |
+
self.data_groups.pop(name)
|
249 |
+
|
250 |
+
def step(self):
|
251 |
+
"""Internally calls the update_mask() function for each layer
|
252 |
+
"""
|
253 |
+
with torch.no_grad():
|
254 |
+
for name, configs in self.data_groups.items():
|
255 |
+
data = configs['data']
|
256 |
+
self.update_mask(name, data, configs)
|
257 |
+
|
258 |
+
self.data_groups[name].pop('data') # reset the accumulated data
|
259 |
+
|
260 |
+
def update_mask(self, name, data, configs):
|
261 |
+
"""
|
262 |
+
Called for each registered layer and does the following-
|
263 |
+
1. apply reduce_fn on the aggregated activations
|
264 |
+
2. use mask_fn to compute the sparsification mask
|
265 |
+
|
266 |
+
Note:
|
267 |
+
the reduce_fn and mask_fn is called for each feature, dim over the data
|
268 |
+
"""
|
269 |
+
mask = self.get_mask(name)
|
270 |
+
sparse_config = configs['sparse_config']
|
271 |
+
features = configs['features']
|
272 |
+
reduce_fn = configs['reduce_fn']
|
273 |
+
mask_fn = configs['mask_fn']
|
274 |
+
if features is None:
|
275 |
+
data = reduce_fn(data)
|
276 |
+
mask.data = mask_fn(data, **sparse_config)
|
277 |
+
else:
|
278 |
+
for feature_idx in range(len(features)):
|
279 |
+
data_feature = reduce_fn(data[feature_idx])
|
280 |
+
mask[feature_idx].data = mask_fn(data_feature, **sparse_config)
|
281 |
+
|
282 |
+
def _sparsify_hook(self, name):
|
283 |
+
"""Returns hook that applies sparsification mask to input entering the attached layer
|
284 |
+
"""
|
285 |
+
mask = self.get_mask(name)
|
286 |
+
features = self.data_groups[name]['features']
|
287 |
+
feature_dim = self.data_groups[name]['feature_dim']
|
288 |
+
|
289 |
+
def hook(module, input):
|
290 |
+
input_data = input[0]
|
291 |
+
if features is None:
|
292 |
+
# apply to all the features
|
293 |
+
return input_data * mask
|
294 |
+
else:
|
295 |
+
# apply per feature, feature_dim
|
296 |
+
for feature_idx in range(0, len(features)):
|
297 |
+
feature = torch.Tensor([features[feature_idx]]).long().to(input_data.device)
|
298 |
+
sparsified = torch.index_select(input_data, feature_dim, feature) * mask[feature_idx]
|
299 |
+
input_data.index_copy_(feature_dim, feature, sparsified)
|
300 |
+
return input_data
|
301 |
+
return hook
|
302 |
+
|
303 |
+
def squash_mask(self, attach_sparsify_hook=True, **kwargs):
|
304 |
+
"""
|
305 |
+
Unregisters aggregate hook that was applied earlier and registers sparsification hooks if
|
306 |
+
attach_sparsify_hook = True.
|
307 |
+
"""
|
308 |
+
for name, configs in self.data_groups.items():
|
309 |
+
# unhook agg hook
|
310 |
+
configs['hook'].remove()
|
311 |
+
configs.pop('hook')
|
312 |
+
self.data_groups[name]['hook_state'] = "None"
|
313 |
+
if attach_sparsify_hook:
|
314 |
+
configs['hook'] = configs['layer'].register_forward_pre_hook(self._sparsify_hook(name))
|
315 |
+
configs['hook_state'] = "sparsify" # signals that sparsify hook is now attached
|
316 |
+
|
317 |
+
def _get_serializable_data_groups(self):
|
318 |
+
"""Exclude hook and layer from the config keys before serializing
|
319 |
+
|
320 |
+
TODO: Might have to treat functions (reduce_fn, mask_fn etc) in a different manner while serializing.
|
321 |
+
For time-being, functions are treated the same way as other attributes
|
322 |
+
"""
|
323 |
+
data_groups: Dict[str, Any] = defaultdict()
|
324 |
+
for name, config in self.data_groups.items():
|
325 |
+
new_config = {key: value for key, value in config.items() if key not in ['hook', 'layer']}
|
326 |
+
data_groups[name] = new_config
|
327 |
+
return data_groups
|
328 |
+
|
329 |
+
def _convert_mask(self, states_dict, sparse_coo=True):
|
330 |
+
r"""Converts the mask to sparse coo or dense depending on the `sparse_coo` argument.
|
331 |
+
If `sparse_coo=True`, then the mask is stored as sparse coo else dense tensor
|
332 |
+
"""
|
333 |
+
states = copy.deepcopy(states_dict)
|
334 |
+
for state in states.values():
|
335 |
+
if state['mask'] is not None:
|
336 |
+
if isinstance(state['mask'], List):
|
337 |
+
for idx in range(len(state['mask'])):
|
338 |
+
if sparse_coo:
|
339 |
+
state['mask'][idx] = state['mask'][idx].to_sparse_coo()
|
340 |
+
else:
|
341 |
+
state['mask'][idx] = state['mask'][idx].to_dense()
|
342 |
+
else:
|
343 |
+
if sparse_coo:
|
344 |
+
state['mask'] = state['mask'].to_sparse_coo()
|
345 |
+
else:
|
346 |
+
state['mask'] = state['mask'].to_dense()
|
347 |
+
return states
|
348 |
+
|
349 |
+
def state_dict(self) -> Dict[str, Any]:
|
350 |
+
r"""Returns the state of the sparsifier as a :class:`dict`.
|
351 |
+
|
352 |
+
It contains:
|
353 |
+
* state - contains name -> mask mapping.
|
354 |
+
* data_groups - a dictionary containing all config information for each
|
355 |
+
layer
|
356 |
+
* defaults - the default config while creating the constructor
|
357 |
+
"""
|
358 |
+
data_groups = self._get_serializable_data_groups()
|
359 |
+
state = self._convert_mask(self.state)
|
360 |
+
return {
|
361 |
+
'state': state,
|
362 |
+
'data_groups': data_groups,
|
363 |
+
'defaults': self.defaults
|
364 |
+
}
|
365 |
+
|
366 |
+
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
367 |
+
r"""The load_state_dict() restores the state of the sparsifier based on the state_dict
|
368 |
+
|
369 |
+
Args:
|
370 |
+
* state_dict - the dictionary that to which the current sparsifier needs to be restored to
|
371 |
+
"""
|
372 |
+
state = state_dict['state']
|
373 |
+
data_groups, defaults = state_dict['data_groups'], state_dict['defaults']
|
374 |
+
|
375 |
+
self.__set_state__({'state': state, 'data_groups': data_groups, 'defaults': defaults})
|
376 |
+
|
377 |
+
def __get_state__(self) -> Dict[str, Any]:
|
378 |
+
|
379 |
+
data_groups = self._get_serializable_data_groups()
|
380 |
+
state = self._convert_mask(self.state)
|
381 |
+
return {
|
382 |
+
'defaults': self.defaults,
|
383 |
+
'state': state,
|
384 |
+
'data_groups': data_groups,
|
385 |
+
}
|
386 |
+
|
387 |
+
def __set_state__(self, state: Dict[str, Any]) -> None:
|
388 |
+
state['state'] = self._convert_mask(state['state'], sparse_coo=False) # convert mask to dense tensor
|
389 |
+
self.__dict__.update(state)
|
390 |
+
|
391 |
+
# need to attach layer and hook info into the data_groups
|
392 |
+
for name, config in self.data_groups.items():
|
393 |
+
# fetch layer
|
394 |
+
layer = fqn_to_module(self.model, name)
|
395 |
+
assert layer is not None # satisfy mypy
|
396 |
+
|
397 |
+
# if agg_mode is True, then layer in aggregate mode
|
398 |
+
if "hook_state" in config and config['hook_state'] == "aggregate":
|
399 |
+
hook = layer.register_forward_pre_hook(self._aggregate_hook(name))
|
400 |
+
|
401 |
+
elif "hook_state" in config and config["hook_state"] == "sparsify":
|
402 |
+
hook = layer.register_forward_pre_hook(self._sparsify_hook(name))
|
403 |
+
|
404 |
+
config['layer'] = layer
|
405 |
+
config['hook'] = hook # type: ignore[possibly-undefined]
|
406 |
+
|
407 |
+
def __repr__(self):
|
408 |
+
format_string = self.__class__.__name__ + ' ('
|
409 |
+
for name, config in self.data_groups.items():
|
410 |
+
format_string += '\n'
|
411 |
+
format_string += '\tData Group\n'
|
412 |
+
format_string += f'\t name: {name}\n'
|
413 |
+
for key in sorted(config.keys()):
|
414 |
+
if key in ['data', 'hook', 'reduce_fn', 'mask_fn', 'aggregate_fn']:
|
415 |
+
continue
|
416 |
+
format_string += f'\t {key}: {config[key]}\n'
|
417 |
+
format_string += ')'
|
418 |
+
return format_string
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_data_sparsifier import BaseDataSparsifier
|
2 |
+
from .data_norm_sparsifier import DataNormSparsifier
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"BaseDataSparsifier",
|
6 |
+
"DataNormSparsifier",
|
7 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (373 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/base_data_sparsifier.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/data_norm_sparsifier.cpython-310.pyc
ADDED
Binary file (5.35 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/__pycache__/quantization_utils.cpython-310.pyc
ADDED
Binary file (4.09 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/base_data_sparsifier.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import torch
|
3 |
+
from typing import Optional, Tuple, List, Any, Dict
|
4 |
+
from ...sparsifier import base_sparsifier
|
5 |
+
from collections import defaultdict
|
6 |
+
from torch import nn
|
7 |
+
import copy
|
8 |
+
from ...sparsifier import utils
|
9 |
+
from torch.nn.utils import parametrize
|
10 |
+
import sys
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
if not sys.warnoptions:
|
14 |
+
# to suppress repeated warnings when being used in a training loop.
|
15 |
+
warnings.simplefilter("once")
|
16 |
+
|
17 |
+
__all__ = ['BaseDataSparsifier']
|
18 |
+
|
19 |
+
EMBEDDING_TYPES = {
|
20 |
+
nn.Embedding,
|
21 |
+
nn.EmbeddingBag,
|
22 |
+
}
|
23 |
+
|
24 |
+
SUPPORTED_TYPES = {
|
25 |
+
torch.Tensor,
|
26 |
+
nn.Parameter,
|
27 |
+
*EMBEDDING_TYPES,
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class _Container(nn.Module):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
class BaseDataSparsifier(base_sparsifier.BaseSparsifier):
|
36 |
+
r"""
|
37 |
+
Base Data Sparsifier class for all Data sparsifiers.
|
38 |
+
The abstract class accepts raw torch tensors / embedding / embedding bags (refer to SUPPORTED_TYPES above)
|
39 |
+
to prepare for sparsification.
|
40 |
+
In this case, mask (and parametrizations) is owned by the class and not by the user.
|
41 |
+
Specifically, the container object inside the class maintains the mask and parametrizations of the input data
|
42 |
+
|
43 |
+
Args:
|
44 |
+
data_list (list of tuples)
|
45 |
+
list of (name, data) tuples to sparsify. Lookup SUPPORTED_TYPES
|
46 |
+
for type of data. Internally, a container module handles the data sparsification.
|
47 |
+
|
48 |
+
defaults (dict)
|
49 |
+
default configurations will be attached to the
|
50 |
+
configuration. Only the keys that don't exist in the `config` will
|
51 |
+
be updated.
|
52 |
+
Example::
|
53 |
+
>>> # xdoctest: +SKIP
|
54 |
+
>>> data_list = [('tensor_1', torch.randn(3,3)), ('tensor_2', torch.randn(4,4))]
|
55 |
+
>>> defaults = {'sparsity_level': 0.7}
|
56 |
+
>>> sparsifier = DerivedDataSparsifier(data_list = data_list, **defaults) # Some sparsifier that inherits BaseDataSparsifier
|
57 |
+
>>> new_tensor_to_add = {'name': 'tensor_3', 'data': torch.randn(5,5), 'sparsity_level': 0.3}
|
58 |
+
>>> sparsifier.add_data(**new_tensor_to_add)
|
59 |
+
>>> # tensor_1 and tensor_2 will have sparsity_level of 0.7 but tensor_3 will have sparsity_level=0.3
|
60 |
+
"""
|
61 |
+
def __init__(self, data_list: Optional[List[Tuple[str, Any]]] = None, **defaults):
|
62 |
+
super().__init__(defaults=defaults)
|
63 |
+
|
64 |
+
self._container = _Container()
|
65 |
+
|
66 |
+
self.data_groups: Dict[str, Dict] = defaultdict(dict) # name -> {**config}
|
67 |
+
if data_list is not None:
|
68 |
+
# add data with default config here
|
69 |
+
[self.add_data(name, data, **self.defaults) for name, data in data_list]
|
70 |
+
|
71 |
+
def prepare(self):
|
72 |
+
raise NotImplementedError("this function is undefined for this class")
|
73 |
+
|
74 |
+
def _extract_weight(self, data):
|
75 |
+
# extract the weight parameter instead of underlying data
|
76 |
+
if type(data) in [torch.Tensor, nn.Parameter]:
|
77 |
+
return data
|
78 |
+
elif type(data) in EMBEDDING_TYPES:
|
79 |
+
return data.weight
|
80 |
+
|
81 |
+
def add_data(self, name: str, data, reuse_mask=True, **config):
|
82 |
+
r""" Configures and parametrizes the internal container model with name and data.
|
83 |
+
|
84 |
+
**Note**:
|
85 |
+
1. If the data with name already exists, it replaces the data.
|
86 |
+
2. While replacing, the old mask is reused when `reuse_mask=True`
|
87 |
+
3. If `reuse_mask=True`, then the replacing data needs to have the same shape as that of old data.
|
88 |
+
4. By default, the config of the replaced data is used as config for the replacing data, unless something
|
89 |
+
is specified in the config dictionary.
|
90 |
+
"""
|
91 |
+
assert type(data) in SUPPORTED_TYPES, \
|
92 |
+
"specified data type not supported at the moment"
|
93 |
+
local_args = copy.deepcopy(self.defaults)
|
94 |
+
local_args.update(config)
|
95 |
+
weight = self._extract_weight(data)
|
96 |
+
|
97 |
+
# Bookkeeping in the container class
|
98 |
+
mask = local_args.get('mask', torch.ones_like(weight))
|
99 |
+
param_class = local_args.get('parametrization', utils.FakeSparsity)
|
100 |
+
|
101 |
+
if name in self.state:
|
102 |
+
# If the named data already exists - replace
|
103 |
+
warnings.warn("Replacing existing data of the same name. - Did you mean a different name?")
|
104 |
+
|
105 |
+
# reuse old config
|
106 |
+
old_args = self.data_groups[name]
|
107 |
+
local_args = copy.deepcopy(old_args)
|
108 |
+
local_args.update(config)
|
109 |
+
|
110 |
+
if reuse_mask:
|
111 |
+
current_data = self.get_data(name=name)
|
112 |
+
assert weight.shape == current_data.shape, \
|
113 |
+
"to retain the old mask, the shape of the new data must be the same as the previous one"
|
114 |
+
mask = self.get_mask(name=name) # reuse mask instead of creating a new one
|
115 |
+
|
116 |
+
self._delete_data(name=name)
|
117 |
+
|
118 |
+
# parameter creates a deepcopy of the weight inside, so create a buffer
|
119 |
+
self._container.register_buffer(name=name, tensor=weight)
|
120 |
+
parametrize.register_parametrization(self._container, name, param_class(mask))
|
121 |
+
self.state[name]['mask'] = mask
|
122 |
+
self.data_groups[name] = local_args
|
123 |
+
return getattr(self._container, name)
|
124 |
+
|
125 |
+
def get_data(self, name: str, return_original: bool = True):
|
126 |
+
r"""Returns weight tensor (or data)
|
127 |
+
Args:
|
128 |
+
- name: name of the data to be returned
|
129 |
+
- return_original returns weight tensor without applying parametrization if True
|
130 |
+
else - returns the sparsified version (parametrized)
|
131 |
+
"""
|
132 |
+
if name not in self.data_groups:
|
133 |
+
raise ValueError("data with specified name does not exist")
|
134 |
+
|
135 |
+
if return_original:
|
136 |
+
if not parametrize.is_parametrized(self._container, name):
|
137 |
+
raise ValueError("mask squashed - original mask value does not exist")
|
138 |
+
data = getattr(self._container.parametrizations, name).original
|
139 |
+
return data
|
140 |
+
else:
|
141 |
+
return getattr(self._container, name)
|
142 |
+
|
143 |
+
def _convert_mask(self, states, sparse_coo=True):
|
144 |
+
r"""Converts the mask to sparse coo or dense tensors depending on the `sparse_coo` argument.
|
145 |
+
"""
|
146 |
+
states = copy.deepcopy(states)
|
147 |
+
for state in states.values():
|
148 |
+
if sparse_coo:
|
149 |
+
state['mask'] = state['mask'].to_sparse_coo()
|
150 |
+
else:
|
151 |
+
state['mask'] = state['mask'].to_dense()
|
152 |
+
|
153 |
+
return states
|
154 |
+
|
155 |
+
def state_dict(self):
|
156 |
+
r"""Returns the state of the optimizer as a :class:`dict`.
|
157 |
+
|
158 |
+
It contains:
|
159 |
+
* state - contains name -> mask mapping.
|
160 |
+
* data_groups - a list containing all sparsity configuration groups
|
161 |
+
with the key name specifying the name of the data
|
162 |
+
* container_state_dict - the state dictionary of the internal
|
163 |
+
container model used for sparsification
|
164 |
+
"""
|
165 |
+
state = self._convert_mask(self.state)
|
166 |
+
return {
|
167 |
+
'state': state,
|
168 |
+
'data_groups': self.data_groups,
|
169 |
+
'_container': self._container.state_dict()
|
170 |
+
}
|
171 |
+
|
172 |
+
def _load_container_from_state(self, states, data_groups, container_state_dict):
|
173 |
+
r"""This restores the state of the container specifically based on the data present in state and data_groups
|
174 |
+
If the data was parametrized, then the data would be added to the container and then parametrized,
|
175 |
+
else it would just add the attribute the container.
|
176 |
+
"""
|
177 |
+
for name, state in states.items():
|
178 |
+
config_name = data_groups.get(name, None)
|
179 |
+
if config_name is None:
|
180 |
+
raise RuntimeError(f"Error loading {name}")
|
181 |
+
|
182 |
+
# check if the data with such a name was parametrized, if so parametrize
|
183 |
+
# otherwise just set the attribute and continue
|
184 |
+
parametrized_name = f'parametrizations.{name}.original'
|
185 |
+
parametrized = False
|
186 |
+
data = container_state_dict.get(name, None)
|
187 |
+
if name in container_state_dict:
|
188 |
+
# the parametrization was probably removed for this
|
189 |
+
data = container_state_dict.get(name)
|
190 |
+
|
191 |
+
elif parametrized_name in container_state_dict:
|
192 |
+
# so the weight was parametrized
|
193 |
+
data = container_state_dict.get(parametrized_name)
|
194 |
+
parametrized = True
|
195 |
+
|
196 |
+
else:
|
197 |
+
raise RuntimeError(f"Error loading {name}")
|
198 |
+
|
199 |
+
self._container.register_buffer(name=name, tensor=data)
|
200 |
+
|
201 |
+
if parametrized:
|
202 |
+
# register parameter if parametrized
|
203 |
+
mask = state.get('mask', torch.ones_like(data))
|
204 |
+
param_class = data_groups.get('parametrization', utils.FakeSparsity) # change once public_api for utils is fixed!
|
205 |
+
parametrize.register_parametrization(self._container, name, param_class(mask))
|
206 |
+
|
207 |
+
def load_state_dict(self, state_dict, strict=True):
|
208 |
+
r"""The load_state_dict() restores the state of the sparsifier based on the state_dict
|
209 |
+
|
210 |
+
Args:
|
211 |
+
* state_dict - the dictionary that to which the current sparsifier needs to be restored to
|
212 |
+
* strict - If True - the sparsifier is reset and is restored exactly to the state in state_dict.
|
213 |
+
If False - the current sparsifier is not reset before loading the state_dict i.e. data added
|
214 |
+
before loading the state_dict is not erased.
|
215 |
+
"""
|
216 |
+
states = copy.deepcopy(state_dict['state'])
|
217 |
+
data_groups = copy.deepcopy(state_dict['data_groups'])
|
218 |
+
container_state_dict = copy.deepcopy(state_dict['_container'])
|
219 |
+
|
220 |
+
states = self._convert_mask(states, sparse_coo=False) # convert sparse coo mask to dense
|
221 |
+
if strict:
|
222 |
+
# if strict load -> then reset container
|
223 |
+
self._container = _Container()
|
224 |
+
|
225 |
+
self._load_container_from_state(states, data_groups, container_state_dict)
|
226 |
+
|
227 |
+
if not strict:
|
228 |
+
states.update(self.state)
|
229 |
+
data_groups.update(self.data_groups)
|
230 |
+
|
231 |
+
self.__setstate__({'state': states, 'data_groups': data_groups})
|
232 |
+
|
233 |
+
def __setstate__(self, state):
|
234 |
+
if '_container' in state: # If container object is in state then load model
|
235 |
+
container_dict = state.pop('_container')
|
236 |
+
self._container = _Container()
|
237 |
+
state['state'] = self._convert_mask(state['state'], sparse_coo=False) # convert sparse coo mask to dense
|
238 |
+
self._load_container_from_state(state['state'], state['data_groups'], container_dict)
|
239 |
+
|
240 |
+
self.__dict__.update(state)
|
241 |
+
|
242 |
+
def __getstate__(self):
|
243 |
+
state = self._convert_mask(self.state)
|
244 |
+
return {
|
245 |
+
'defaults': self.defaults,
|
246 |
+
'state': state,
|
247 |
+
'data_groups': self.data_groups,
|
248 |
+
'_container': self._container.state_dict()
|
249 |
+
}
|
250 |
+
|
251 |
+
def __repr__(self):
|
252 |
+
format_string = self.__class__.__name__ + ' ('
|
253 |
+
for name, sparse_args in self.data_groups.items():
|
254 |
+
format_string += '\n'
|
255 |
+
format_string += '\tData Group\n'
|
256 |
+
format_string += f'\t name: {name}\n'
|
257 |
+
for key in sorted(sparse_args.keys()):
|
258 |
+
if key == 'data':
|
259 |
+
continue
|
260 |
+
format_string += f'\t {key}: {sparse_args[key]}\n'
|
261 |
+
format_string += ')'
|
262 |
+
return format_string
|
263 |
+
|
264 |
+
def get_mask(self, name: str):
|
265 |
+
if name not in self.state:
|
266 |
+
raise ValueError("data with specified name does not exist")
|
267 |
+
return self.state[name]['mask']
|
268 |
+
|
269 |
+
def squash_mask(self, *args, leave_parametrized=True, names=None, **kwargs):
|
270 |
+
r"""Squashes the sparse masks into the appropriate tensors. Also, accepts list of strings
|
271 |
+
to squash mask for. If none, squashes mask for all the keys
|
272 |
+
kwargs:
|
273 |
+
* names: list of strings to squash mask for
|
274 |
+
* sparsified: if true - applies the mask before squashing
|
275 |
+
if false - does not apply the mask before squashing
|
276 |
+
"""
|
277 |
+
if names is None:
|
278 |
+
names = list(self.data_groups.keys())
|
279 |
+
for name in names:
|
280 |
+
parametrize.remove_parametrizations(self._container, name, leave_parametrized=leave_parametrized)
|
281 |
+
|
282 |
+
def step(self):
|
283 |
+
if not self.enable_mask_update:
|
284 |
+
return
|
285 |
+
with torch.no_grad():
|
286 |
+
for name, config in self.data_groups.items():
|
287 |
+
# get non-sparsified data
|
288 |
+
data = self.get_data(name)
|
289 |
+
# need name for the mask otherwise can directly pass mask?
|
290 |
+
self.update_mask(name, data, **config)
|
291 |
+
|
292 |
+
@abc.abstractmethod
|
293 |
+
def update_mask(self, name, data, **kwargs):
|
294 |
+
pass
|
295 |
+
|
296 |
+
def _delete_data(self, name):
|
297 |
+
"""Detaches some data from the sparsifier.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
name (str)
|
301 |
+
Name of the data to be removed from the sparsifier
|
302 |
+
|
303 |
+
Note:
|
304 |
+
Currently private. Kind of used as a helper function when replacing data of the same name
|
305 |
+
"""
|
306 |
+
self.squash_mask(names=[name], leave_parametrized=False) # do not apply the mask while deleting
|
307 |
+
delattr(self._container, name)
|
308 |
+
self.state.pop(name)
|
309 |
+
self.data_groups.pop(name)
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/data_norm_sparsifier.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
from functools import reduce
|
4 |
+
from typing import Any, List, Optional, Tuple
|
5 |
+
|
6 |
+
from .base_data_sparsifier import BaseDataSparsifier
|
7 |
+
import operator
|
8 |
+
|
9 |
+
__all__ = ['DataNormSparsifier']
|
10 |
+
|
11 |
+
|
12 |
+
class DataNormSparsifier(BaseDataSparsifier):
|
13 |
+
r"""L1-Norm Sparsifier
|
14 |
+
This sparsifier computes the *L1-norm* of every sparse block and "zeroes-out" the
|
15 |
+
ones with the lowest norm. The level of sparsity defines how many of the
|
16 |
+
blocks is removed.
|
17 |
+
This sparsifier is controlled by three variables:
|
18 |
+
1. `sparsity_level` defines the number of *sparse blocks* that are zeroed-out
|
19 |
+
2. `sparse_block_shape` defines the shape of the sparse blocks. Note that
|
20 |
+
the sparse blocks originate at the zero-index of the tensor.
|
21 |
+
3. `zeros_per_block` is the number of zeros that we are expecting in each
|
22 |
+
sparse block. By default we assume that all elements within a block are
|
23 |
+
zeroed-out. However, setting this variable sets the target number of
|
24 |
+
zeros per block. The zeros within each block are chosen as the *smallest
|
25 |
+
absolute values*.
|
26 |
+
Args:
|
27 |
+
sparsity_level: The target level of sparsity
|
28 |
+
sparse_block_shape: The shape of a sparse block
|
29 |
+
zeros_per_block: Number of zeros in a sparse block
|
30 |
+
Note::
|
31 |
+
All arguments to the DataNormSparsifier constructor are "default"
|
32 |
+
arguments and could be overriden by the configuration provided in the
|
33 |
+
`add_data` step.
|
34 |
+
"""
|
35 |
+
def __init__(self, data_list: Optional[List[Tuple[str, Any]]] = None, sparsity_level: float = 0.5,
|
36 |
+
sparse_block_shape: Tuple[int, int] = (1, 4),
|
37 |
+
zeros_per_block: Optional[int] = None, norm: str = 'L1'):
|
38 |
+
if zeros_per_block is None:
|
39 |
+
zeros_per_block = reduce(operator.mul, sparse_block_shape)
|
40 |
+
|
41 |
+
assert norm in ['L1', 'L2'], "only L1 and L2 norm supported at the moment"
|
42 |
+
|
43 |
+
defaults = {'sparsity_level': sparsity_level, 'sparse_block_shape': sparse_block_shape,
|
44 |
+
'zeros_per_block': zeros_per_block}
|
45 |
+
self.norm = norm
|
46 |
+
super().__init__(data_list=data_list, **defaults)
|
47 |
+
|
48 |
+
def __get_scatter_folded_mask(self, data, dim, indices, output_size, sparse_block_shape):
|
49 |
+
mask = torch.ones_like(data)
|
50 |
+
mask.scatter_(dim=dim, index=indices, value=0) # zeroing out
|
51 |
+
mask = F.fold(mask, output_size=output_size, kernel_size=sparse_block_shape,
|
52 |
+
stride=sparse_block_shape)
|
53 |
+
mask = mask.to(torch.int8)
|
54 |
+
return mask
|
55 |
+
|
56 |
+
def __get_block_level_mask(self, data,
|
57 |
+
sparse_block_shape, zeros_per_block):
|
58 |
+
|
59 |
+
# Assume data is a squeezed tensor
|
60 |
+
height, width = data.shape[-2], data.shape[-1]
|
61 |
+
block_height, block_width = sparse_block_shape
|
62 |
+
values_per_block = block_height * block_width
|
63 |
+
|
64 |
+
# just return zeros if zeroing all elements in block
|
65 |
+
if values_per_block == zeros_per_block:
|
66 |
+
return torch.zeros_like(data, dtype=torch.int8)
|
67 |
+
|
68 |
+
# creating additional height and width to support padding
|
69 |
+
dh = (block_height - height % block_height) % block_height
|
70 |
+
dw = (block_width - width % block_width) % block_width
|
71 |
+
|
72 |
+
# create a new padded tensor like data (to match the block_shape)
|
73 |
+
padded_data = torch.ones(height + dh, width + dw, dtype=data.dtype, device=data.device)
|
74 |
+
padded_data = padded_data * torch.nan # can also be replaced with 0 to stop the removal of edge data
|
75 |
+
padded_data[0:height, 0:width] = data
|
76 |
+
unfolded_data = F.unfold(padded_data[None, None, :], kernel_size=sparse_block_shape,
|
77 |
+
stride=sparse_block_shape)
|
78 |
+
|
79 |
+
_, sorted_idx = torch.sort(unfolded_data, dim=1)
|
80 |
+
sorted_idx = sorted_idx[:, :zeros_per_block, :] # zero out zeros_per_block number of elements
|
81 |
+
|
82 |
+
mask = self.__get_scatter_folded_mask(data=unfolded_data, dim=1, indices=sorted_idx, output_size=padded_data.shape,
|
83 |
+
sparse_block_shape=sparse_block_shape)
|
84 |
+
|
85 |
+
mask = mask.squeeze(0).squeeze(0)[:height, :width].contiguous() # remove padding and make contiguous
|
86 |
+
return mask
|
87 |
+
|
88 |
+
def __get_data_level_mask(self, data, sparsity_level,
|
89 |
+
sparse_block_shape):
|
90 |
+
|
91 |
+
height, width = data.shape[-2], data.shape[-1]
|
92 |
+
block_height, block_width = sparse_block_shape
|
93 |
+
dh = (block_height - height % block_height) % block_height
|
94 |
+
dw = (block_width - width % block_width) % block_width
|
95 |
+
|
96 |
+
data_norm = F.avg_pool2d(data[None, None, :], kernel_size=sparse_block_shape,
|
97 |
+
stride=sparse_block_shape, ceil_mode=True)
|
98 |
+
|
99 |
+
values_per_block = reduce(operator.mul, sparse_block_shape)
|
100 |
+
|
101 |
+
data_norm = data_norm.flatten()
|
102 |
+
num_blocks = len(data_norm)
|
103 |
+
|
104 |
+
data_norm = data_norm.repeat(1, values_per_block, 1) # get similar shape after unfold
|
105 |
+
_, sorted_idx = torch.sort(data_norm, dim=2)
|
106 |
+
|
107 |
+
threshold_idx = round(sparsity_level * num_blocks) # number of blocks to remove
|
108 |
+
sorted_idx = sorted_idx[:, :, :threshold_idx]
|
109 |
+
|
110 |
+
mask = self.__get_scatter_folded_mask(data=data_norm, dim=2, indices=sorted_idx,
|
111 |
+
output_size=(height + dh, width + dw),
|
112 |
+
sparse_block_shape=sparse_block_shape)
|
113 |
+
|
114 |
+
mask = mask.squeeze(0).squeeze(0)[:height, :width] # squeeze only the first 2 dimension
|
115 |
+
return mask
|
116 |
+
|
117 |
+
def update_mask(self, name, data, sparsity_level,
|
118 |
+
sparse_block_shape, zeros_per_block, **kwargs):
|
119 |
+
|
120 |
+
values_per_block = reduce(operator.mul, sparse_block_shape)
|
121 |
+
if zeros_per_block > values_per_block:
|
122 |
+
raise ValueError("Number of zeros per block cannot be more than "
|
123 |
+
"the total number of elements in that block.")
|
124 |
+
if zeros_per_block < 0:
|
125 |
+
raise ValueError("Number of zeros per block should be positive.")
|
126 |
+
|
127 |
+
if self.norm == 'L1':
|
128 |
+
data_norm = torch.abs(data).squeeze() # absolute value based (L1)
|
129 |
+
else:
|
130 |
+
data_norm = (data * data).squeeze() # square every element for L2
|
131 |
+
|
132 |
+
if len(data_norm.shape) > 2: # only supports 2 dimensional data at the moment
|
133 |
+
raise ValueError("only supports 2-D at the moment")
|
134 |
+
|
135 |
+
elif len(data_norm.shape) == 1: # in case the data is bias (or 1D)
|
136 |
+
data_norm = data_norm[None, :]
|
137 |
+
|
138 |
+
mask = self.get_mask(name)
|
139 |
+
if sparsity_level <= 0 or zeros_per_block == 0:
|
140 |
+
mask.data = torch.ones_like(mask)
|
141 |
+
elif sparsity_level >= 1.0 and (zeros_per_block == values_per_block):
|
142 |
+
mask.data = torch.zeros_like(mask)
|
143 |
+
|
144 |
+
# Fetch the high level mask that zeros out entire blocks
|
145 |
+
data_lvl_mask = self.__get_data_level_mask(data=data_norm, sparsity_level=sparsity_level,
|
146 |
+
sparse_block_shape=sparse_block_shape)
|
147 |
+
|
148 |
+
# Fetch block level mask that zeros out 'zeros_per_block' number of elements in every block
|
149 |
+
block_lvl_mask = self.__get_block_level_mask(data=data_norm, sparse_block_shape=sparse_block_shape,
|
150 |
+
zeros_per_block=zeros_per_block)
|
151 |
+
|
152 |
+
# zero out the entries inside those blocks whose block is sparsified
|
153 |
+
mask.data = torch.where(data_lvl_mask == 1, data_lvl_mask, block_lvl_mask)
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (224 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (234 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/_data_sparstity_utils.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/__pycache__/data_sparsity.cpython-310.pyc
ADDED
Binary file (6.22 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/_data_sparstity_utils.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from torch.ao.pruning._experimental.data_sparsifier.base_data_sparsifier import SUPPORTED_TYPES
|
3 |
+
|
4 |
+
logger: logging.Logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
|
7 |
+
def _attach_model_to_data_sparsifier(module, data_sparsifier, config=None):
|
8 |
+
"""Attaches a data sparsifier to all the layers of the module.
|
9 |
+
Essentially, loop over all the weight parameters in the module and
|
10 |
+
attach it to the data sparsifier.
|
11 |
+
Note::
|
12 |
+
The '.' in the layer names are replaced with '_' (refer to _get_valid_name() below)
|
13 |
+
before attaching to the sparsifier. This is because, the data
|
14 |
+
sparsifier uses a dummy model inside to store the weight parameters.
|
15 |
+
"""
|
16 |
+
if config is None:
|
17 |
+
config = {}
|
18 |
+
for name, parameter in module.named_parameters():
|
19 |
+
if type(parameter) in SUPPORTED_TYPES:
|
20 |
+
valid_name = _get_valid_name(name)
|
21 |
+
# will be defaulted to default configs
|
22 |
+
data_sparsifier.add_data(name=valid_name, data=parameter, **config.get(valid_name, {}))
|
23 |
+
|
24 |
+
|
25 |
+
def _get_valid_name(name):
|
26 |
+
return name.replace('.', '_') # . is not allowed as a name
|
27 |
+
|
28 |
+
|
29 |
+
def _log_sparsified_level(model, data_sparsifier) -> None:
|
30 |
+
# Show the level of sparsity AFTER step:
|
31 |
+
for name, parameter in model.named_parameters():
|
32 |
+
if type(parameter) not in SUPPORTED_TYPES:
|
33 |
+
continue
|
34 |
+
valid_name = _get_valid_name(name)
|
35 |
+
mask = data_sparsifier.get_mask(name=valid_name)
|
36 |
+
sparsity_level = 1.0 - mask.float().mean()
|
37 |
+
logger.info(
|
38 |
+
"Sparsity in layer %s = % .2%", name, sparsity_level
|
39 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/lightning/callbacks/data_sparsity.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from copy import deepcopy
|
3 |
+
import torch
|
4 |
+
from typing import Any, Optional, Dict
|
5 |
+
import pytorch_lightning as pl # type: ignore[import]
|
6 |
+
|
7 |
+
from ._data_sparstity_utils import (
|
8 |
+
_attach_model_to_data_sparsifier,
|
9 |
+
_log_sparsified_level,
|
10 |
+
_get_valid_name
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
class PostTrainingDataSparsity(pl.callbacks.Callback):
|
15 |
+
"""Lightning callback that enables post-training sparsity.
|
16 |
+
|
17 |
+
This callback aims to sparsify the model inside lightning module after training.
|
18 |
+
**Note that the model is copied and then sparsified, so the existing model is not modified**
|
19 |
+
|
20 |
+
The sparsified model can be used for comparison and can be accessed using
|
21 |
+
<callback_obj>.sparsified
|
22 |
+
|
23 |
+
Args:
|
24 |
+
data_sparsifier_class (some implemented class of BaseDataSparsifier)
|
25 |
+
The data sparsifier object of this class is created when the
|
26 |
+
training starts.
|
27 |
+
Note: Objects should not be passed in here as they are created
|
28 |
+
once the training completes.
|
29 |
+
|
30 |
+
data_sparsifier_args (Dict)
|
31 |
+
Dictionary of args to be passed to the data sparsifier.
|
32 |
+
Note: data_list arg should be ignored
|
33 |
+
|
34 |
+
Hooks implemented:
|
35 |
+
on_fit_end()
|
36 |
+
1. copies the model and attaches it to the sparsifier
|
37 |
+
2. sparsier step() is called
|
38 |
+
3. squashes the mask()
|
39 |
+
"""
|
40 |
+
def __init__(self, data_sparsifier_class, data_sparsifier_args):
|
41 |
+
super().__init__()
|
42 |
+
self.data_sparsifier_class = data_sparsifier_class
|
43 |
+
self.data_sparsifier_args = data_sparsifier_args
|
44 |
+
self.data_sparsifier: Any = None
|
45 |
+
self.sparsified: Optional[torch.nn.Module] = None
|
46 |
+
|
47 |
+
def on_fit_end(self, trainer, pl_module) -> None:
|
48 |
+
self.sparsified = deepcopy(pl_module.model).eval()
|
49 |
+
self.data_sparsifier = self.data_sparsifier_class(**self.data_sparsifier_args)
|
50 |
+
|
51 |
+
_attach_model_to_data_sparsifier(self.sparsified, self.data_sparsifier)
|
52 |
+
|
53 |
+
self.data_sparsifier.step()
|
54 |
+
|
55 |
+
self.data_sparsifier.squash_mask() # currently squashes params for all mask
|
56 |
+
|
57 |
+
_log_sparsified_level(self.sparsified, self.data_sparsifier)
|
58 |
+
|
59 |
+
|
60 |
+
class TrainingAwareDataSparsity(pl.callbacks.Callback):
|
61 |
+
"""Lightning callback that enables in-training sparsity.
|
62 |
+
|
63 |
+
This callback aims to sparsify the model inside lightning module during training.
|
64 |
+
**Note that the model is copied and then sparsified, so the existing model is not modified**
|
65 |
+
|
66 |
+
The sparsified model can be used for comparison and can be accessed using
|
67 |
+
<callback_obj>.sparsified
|
68 |
+
|
69 |
+
Args:
|
70 |
+
data_sparsifier_class (some implemented class of BaseDataSparsifier)
|
71 |
+
The data sparsifier object of this class is created when the
|
72 |
+
training starts.
|
73 |
+
Note: Objects should not be passed in here as they are created
|
74 |
+
when the training starts.
|
75 |
+
|
76 |
+
data_sparsifier_args (Dict)
|
77 |
+
Dictionary of args to be passed to the data sparsifier.
|
78 |
+
Note: data_list arg should be ignored
|
79 |
+
|
80 |
+
data_scheduler_class (some implemented class of BaseDataScheduler)
|
81 |
+
The data scheduler of this class is created when the training starts
|
82 |
+
Note: Objects should not be passed in here as they are created
|
83 |
+
when the training starts.
|
84 |
+
|
85 |
+
data_scheduler_args(Dict)
|
86 |
+
Dictionary of args to be passed to the data scheduler.
|
87 |
+
**Note: data_sparsifier arg should be ignored as the recipe
|
88 |
+
creates and pass sparsifier object into the class**
|
89 |
+
|
90 |
+
Hooks implemented:
|
91 |
+
on_train_start()
|
92 |
+
Data sparsifier and scheduler objects are created.
|
93 |
+
Pytorch model attached to the sparsifier
|
94 |
+
|
95 |
+
on_train_epoch_start()
|
96 |
+
Loads the state_dict of the data sparsifier
|
97 |
+
|
98 |
+
on_train_epoch_end()
|
99 |
+
1. Copies the model and attaches it to the sparsifier
|
100 |
+
2. sparsifier step() and scheduler step()
|
101 |
+
3. Dump state_dict of the current sparsifier
|
102 |
+
|
103 |
+
on_train_end()
|
104 |
+
squash mask
|
105 |
+
"""
|
106 |
+
def __init__(self, data_sparsifier_class, data_sparsifier_args,
|
107 |
+
data_scheduler_class, data_scheduler_args):
|
108 |
+
super().__init__()
|
109 |
+
# data sparsifier objects
|
110 |
+
self.data_sparsifier_class = data_sparsifier_class
|
111 |
+
self.data_sparsifier_args = data_sparsifier_args
|
112 |
+
|
113 |
+
# scheduler objects
|
114 |
+
self.data_scheduler_class = data_scheduler_class
|
115 |
+
self.data_scheduler_args = data_scheduler_args
|
116 |
+
|
117 |
+
# fields
|
118 |
+
self.data_sparsifier: Any = None
|
119 |
+
self.data_scheduler: Any = None
|
120 |
+
self.sparsified: Optional[torch.nn.Module] = None
|
121 |
+
|
122 |
+
self.data_sparsifier_state_dict: Any = None
|
123 |
+
|
124 |
+
def on_train_start(self, trainer, pl_module) -> None:
|
125 |
+
# create sparsifier
|
126 |
+
self.data_sparsifier = self.data_sparsifier_class(**self.data_sparsifier_args)
|
127 |
+
self.sparsified = deepcopy(pl_module.model)
|
128 |
+
|
129 |
+
_attach_model_to_data_sparsifier(self.sparsified, self.data_sparsifier) # just to populate the base_sl in the scheduler
|
130 |
+
|
131 |
+
# create scheduler
|
132 |
+
args = deepcopy(self.data_scheduler_args)
|
133 |
+
args['data_sparsifier'] = self.data_sparsifier
|
134 |
+
self.data_scheduler = self.data_scheduler_class(**args)
|
135 |
+
|
136 |
+
def on_train_epoch_start(self, trainer, pl_module):
|
137 |
+
if self.data_sparsifier_state_dict is None:
|
138 |
+
return # probably first epoch
|
139 |
+
|
140 |
+
# load the existing config for each data
|
141 |
+
self.data_sparsifier.load_state_dict(self.data_sparsifier_state_dict)
|
142 |
+
|
143 |
+
def __create_config_based_on_state(self, pl_module):
|
144 |
+
config: Dict = defaultdict()
|
145 |
+
if self.data_sparsifier_state_dict is None:
|
146 |
+
return config
|
147 |
+
for name, _ in pl_module.model.named_parameters():
|
148 |
+
valid_name = _get_valid_name(name)
|
149 |
+
config[valid_name] = self.data_sparsifier.data_groups[valid_name]
|
150 |
+
|
151 |
+
return config
|
152 |
+
|
153 |
+
def on_train_epoch_end(self, trainer, pl_module):
|
154 |
+
self.sparsified = deepcopy(pl_module.model)
|
155 |
+
config = self.__create_config_based_on_state(pl_module)
|
156 |
+
|
157 |
+
# attach model to the data sparsifier
|
158 |
+
_attach_model_to_data_sparsifier(self.sparsified, self.data_sparsifier, config=config)
|
159 |
+
self.data_sparsifier.step()
|
160 |
+
self.data_scheduler.step()
|
161 |
+
|
162 |
+
self.data_sparsifier_state_dict = self.data_sparsifier.state_dict()
|
163 |
+
|
164 |
+
def on_train_end(self, trainer, pl_module):
|
165 |
+
self.data_sparsifier.squash_mask()
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/quantization_utils.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.ao.pruning.sparsifier.utils import module_to_fqn, fqn_to_module
|
4 |
+
from typing import Dict, List, Optional
|
5 |
+
|
6 |
+
SUPPORTED_MODULES = {
|
7 |
+
nn.Embedding,
|
8 |
+
nn.EmbeddingBag
|
9 |
+
}
|
10 |
+
|
11 |
+
|
12 |
+
def _fetch_all_embeddings(model):
|
13 |
+
"""Fetches Embedding and EmbeddingBag modules from the model
|
14 |
+
"""
|
15 |
+
embedding_modules = []
|
16 |
+
stack = [model]
|
17 |
+
while stack:
|
18 |
+
module = stack.pop()
|
19 |
+
for _, child in module.named_children():
|
20 |
+
fqn_name = module_to_fqn(model, child)
|
21 |
+
if type(child) in SUPPORTED_MODULES:
|
22 |
+
embedding_modules.append((fqn_name, child))
|
23 |
+
else:
|
24 |
+
stack.append(child)
|
25 |
+
return embedding_modules
|
26 |
+
|
27 |
+
|
28 |
+
def post_training_sparse_quantize(model,
|
29 |
+
data_sparsifier_class,
|
30 |
+
sparsify_first=True,
|
31 |
+
select_embeddings: Optional[List[nn.Module]] = None,
|
32 |
+
**sparse_config):
|
33 |
+
"""Takes in a model and applies sparsification and quantization to only embeddings & embeddingbags.
|
34 |
+
The quantization step can happen before or after sparsification depending on the `sparsify_first` argument.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
- model (nn.Module)
|
38 |
+
model whose embeddings needs to be sparsified
|
39 |
+
- data_sparsifier_class (type of data sparsifier)
|
40 |
+
Type of sparsification that needs to be applied to model
|
41 |
+
- sparsify_first (bool)
|
42 |
+
if true, sparsifies first and then quantizes
|
43 |
+
otherwise, quantizes first and then sparsifies.
|
44 |
+
- select_embeddings (List of Embedding modules)
|
45 |
+
List of embedding modules to in the model to be sparsified & quantized.
|
46 |
+
If None, all embedding modules with be sparsified
|
47 |
+
- sparse_config (Dict)
|
48 |
+
config that will be passed to the constructor of data sparsifier object.
|
49 |
+
|
50 |
+
Note:
|
51 |
+
1. When `sparsify_first=False`, quantization occurs first followed by sparsification.
|
52 |
+
- before sparsifying, the embedding layers are dequantized.
|
53 |
+
- scales and zero-points are saved
|
54 |
+
- embedding layers are sparsified and `squash_mask` is applied
|
55 |
+
- embedding weights are requantized using the saved scales and zero-points
|
56 |
+
2. When `sparsify_first=True`, sparsification occurs first followed by quantization.
|
57 |
+
- embeddings are sparsified first
|
58 |
+
- quantization is applied on the sparsified embeddings
|
59 |
+
"""
|
60 |
+
data_sparsifier = data_sparsifier_class(**sparse_config)
|
61 |
+
|
62 |
+
# if select_embeddings is None, perform it on all embeddings
|
63 |
+
if select_embeddings is None:
|
64 |
+
embedding_modules = _fetch_all_embeddings(model)
|
65 |
+
|
66 |
+
else:
|
67 |
+
embedding_modules = []
|
68 |
+
assert isinstance(select_embeddings, List), "the embedding_modules must be a list of embedding modules"
|
69 |
+
for emb in select_embeddings:
|
70 |
+
assert type(emb) in SUPPORTED_MODULES, "the embedding_modules list must be an embedding or embedding bags"
|
71 |
+
fqn_name = module_to_fqn(model, emb)
|
72 |
+
assert fqn_name is not None, "the embedding modules must be part of input model"
|
73 |
+
embedding_modules.append((fqn_name, emb))
|
74 |
+
|
75 |
+
if sparsify_first:
|
76 |
+
# sparsify
|
77 |
+
for name, emb_module in embedding_modules:
|
78 |
+
valid_name = name.replace('.', '_')
|
79 |
+
data_sparsifier.add_data(name=valid_name, data=emb_module)
|
80 |
+
|
81 |
+
data_sparsifier.step()
|
82 |
+
data_sparsifier.squash_mask()
|
83 |
+
|
84 |
+
# quantize
|
85 |
+
for _, emb_module in embedding_modules:
|
86 |
+
emb_module.qconfig = torch.ao.quantization.float_qparams_weight_only_qconfig
|
87 |
+
|
88 |
+
torch.ao.quantization.prepare(model, inplace=True)
|
89 |
+
torch.ao.quantization.convert(model, inplace=True)
|
90 |
+
|
91 |
+
else:
|
92 |
+
# quantize
|
93 |
+
for _, emb_module in embedding_modules:
|
94 |
+
emb_module.qconfig = torch.ao.quantization.float_qparams_weight_only_qconfig
|
95 |
+
|
96 |
+
torch.ao.quantization.prepare(model, inplace=True)
|
97 |
+
torch.ao.quantization.convert(model, inplace=True)
|
98 |
+
|
99 |
+
# retrieve scale & zero_points
|
100 |
+
quantize_params: Dict[str, Dict] = {'scales': {}, 'zero_points': {},
|
101 |
+
'dequant_weights': {}, 'axis': {},
|
102 |
+
'dtype': {}}
|
103 |
+
|
104 |
+
for name, _ in embedding_modules:
|
105 |
+
quantized_emb = fqn_to_module(model, name)
|
106 |
+
assert quantized_emb is not None # satisfy mypy
|
107 |
+
|
108 |
+
quantized_weight = quantized_emb.weight() # type: ignore[operator]
|
109 |
+
quantize_params['scales'][name] = quantized_weight.q_per_channel_scales()
|
110 |
+
quantize_params['zero_points'][name] = quantized_weight.q_per_channel_zero_points()
|
111 |
+
quantize_params['dequant_weights'][name] = torch.dequantize(quantized_weight)
|
112 |
+
quantize_params['axis'][name] = quantized_weight.q_per_channel_axis()
|
113 |
+
quantize_params['dtype'][name] = quantized_weight.dtype
|
114 |
+
|
115 |
+
# attach data to sparsifier
|
116 |
+
data_sparsifier.add_data(name=name.replace('.', '_'), data=quantize_params['dequant_weights'][name])
|
117 |
+
|
118 |
+
data_sparsifier.step()
|
119 |
+
data_sparsifier.squash_mask()
|
120 |
+
|
121 |
+
for name, _ in embedding_modules:
|
122 |
+
quantized_emb = fqn_to_module(model, name)
|
123 |
+
assert quantized_emb is not None # satisfy mypy
|
124 |
+
requantized_vector = torch.quantize_per_channel(quantize_params['dequant_weights'][name],
|
125 |
+
scales=quantize_params['scales'][name],
|
126 |
+
zero_points=quantize_params['zero_points'][name],
|
127 |
+
dtype=quantize_params['dtype'][name],
|
128 |
+
axis=quantize_params['axis'][name])
|
129 |
+
|
130 |
+
quantized_emb.set_weight(requantized_vector) # type: ignore[operator]
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/FPGM_pruner.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .base_structured_sparsifier import BaseStructuredSparsifier
|
6 |
+
|
7 |
+
__all__ = ["FPGMPruner"]
|
8 |
+
|
9 |
+
|
10 |
+
class FPGMPruner(BaseStructuredSparsifier):
|
11 |
+
r"""Filter Pruning via Geometric Median (FPGM) Structured Pruner
|
12 |
+
This sparsifier prune fliter (row) in a tensor according to distances among filters according to
|
13 |
+
`Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration <https://arxiv.org/abs/1811.00250>`_.
|
14 |
+
|
15 |
+
This sparsifier is controlled by three variables:
|
16 |
+
1. `sparsity_level` defines the number of filters (rows) that are zeroed-out.
|
17 |
+
2. `dist` defines the distance measurement type. Default: 3 (L2 distance).
|
18 |
+
Available options are: [1, 2, (custom callable distance function)].
|
19 |
+
|
20 |
+
Note::
|
21 |
+
Inputs should be a 4D convolutional tensor of shape (N, C, H, W).
|
22 |
+
- N: output channels size
|
23 |
+
- C: input channels size
|
24 |
+
- H: height of kernel
|
25 |
+
- W: width of kernel
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self, sparsity_level: float = 0.5, dist: Optional[Union[Callable, int]] = None
|
30 |
+
):
|
31 |
+
defaults = {
|
32 |
+
"sparsity_level": sparsity_level,
|
33 |
+
}
|
34 |
+
|
35 |
+
if dist is None:
|
36 |
+
dist = 2
|
37 |
+
|
38 |
+
if callable(dist):
|
39 |
+
self.dist_fn = dist
|
40 |
+
elif dist == 1:
|
41 |
+
self.dist_fn = lambda x: torch.cdist(x, x, p=1)
|
42 |
+
elif dist == 2:
|
43 |
+
self.dist_fn = lambda x: torch.cdist(x, x, p=2)
|
44 |
+
else:
|
45 |
+
raise NotImplementedError("Distance function is not yet implemented.")
|
46 |
+
super().__init__(defaults=defaults)
|
47 |
+
|
48 |
+
def _compute_distance(self, t):
|
49 |
+
r"""Compute distance across all entries in tensor `t` along all dimension
|
50 |
+
except for the one identified by dim.
|
51 |
+
Args:
|
52 |
+
t (torch.Tensor): tensor representing the parameter to prune
|
53 |
+
Returns:
|
54 |
+
distance (torch.Tensor): distance computed across filtters
|
55 |
+
"""
|
56 |
+
dim = 0 # prune filter (row)
|
57 |
+
|
58 |
+
size = t.size(dim)
|
59 |
+
slc = [slice(None)] * t.dim()
|
60 |
+
|
61 |
+
# flatten the tensor along the dimension
|
62 |
+
t_flatten = [
|
63 |
+
t[tuple(slc[:dim] + [slice(i, i + 1)] + slc[dim + 1 :])].reshape(-1)
|
64 |
+
for i in range(size)
|
65 |
+
]
|
66 |
+
t_flatten = torch.stack(t_flatten)
|
67 |
+
|
68 |
+
# distance measurement
|
69 |
+
dist_matrix = self.dist_fn(t_flatten)
|
70 |
+
|
71 |
+
# more similar with other filter indicates large in the sum of row
|
72 |
+
distance = torch.sum(torch.abs(dist_matrix), 1)
|
73 |
+
|
74 |
+
return distance
|
75 |
+
|
76 |
+
def update_mask(self, module, tensor_name, sparsity_level, **kwargs):
|
77 |
+
tensor_weight = getattr(module, tensor_name)
|
78 |
+
mask = getattr(module.parametrizations, tensor_name)[0].mask
|
79 |
+
|
80 |
+
if sparsity_level <= 0:
|
81 |
+
mask.data = torch.ones_like(mask).bool()
|
82 |
+
elif sparsity_level >= 1.0:
|
83 |
+
mask.data = torch.zeros_like(mask).bool()
|
84 |
+
else:
|
85 |
+
distance = self._compute_distance(tensor_weight)
|
86 |
+
|
87 |
+
tensor_size = tensor_weight.shape[0] # prune filter (row)
|
88 |
+
nparams_toprune = round(sparsity_level * tensor_size)
|
89 |
+
nparams_toprune = min(
|
90 |
+
max(nparams_toprune, 0), tensor_size
|
91 |
+
) # clamp to [0, tensor_size]
|
92 |
+
topk = torch.topk(distance, k=nparams_toprune, largest=False)
|
93 |
+
mask[topk.indices] = False
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_structured_sparsifier import BaseStructuredSparsifier
|
2 |
+
from .parametrization import (
|
3 |
+
FakeStructuredSparsity,
|
4 |
+
BiasHook,
|
5 |
+
)
|
6 |
+
from .saliency_pruner import SaliencyPruner
|
7 |
+
from .lstm_saliency_pruner import LSTMSaliencyPruner
|
8 |
+
from .FPGM_pruner import FPGMPruner
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/base_structured_sparsifier.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain
|
2 |
+
from operator import getitem
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
from torch.fx import symbolic_trace
|
7 |
+
from torch.nn.utils import parametrize
|
8 |
+
from typing import Type, Set, Dict, Callable, Tuple, Optional, Union
|
9 |
+
|
10 |
+
from torch.ao.pruning import BaseSparsifier
|
11 |
+
from .parametrization import FakeStructuredSparsity, BiasHook, module_contains_param
|
12 |
+
from .match_utils import apply_match, MatchAllNode
|
13 |
+
from .prune_functions import (
|
14 |
+
prune_linear,
|
15 |
+
prune_linear_linear,
|
16 |
+
prune_linear_activation_linear,
|
17 |
+
prune_conv2d,
|
18 |
+
prune_conv2d_conv2d,
|
19 |
+
prune_conv2d_activation_conv2d,
|
20 |
+
prune_conv2d_activation_pool_conv2d,
|
21 |
+
prune_conv2d_pool_activation_conv2d,
|
22 |
+
prune_conv2d_pool_flatten_linear,
|
23 |
+
prune_lstm_output_linear,
|
24 |
+
prune_lstm_output_layernorm_linear,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def _get_supported_structured_pruning_modules():
|
29 |
+
SUPPORTED_STRUCTURED_PRUNING_MODULES = { # added to config if None given
|
30 |
+
nn.Linear,
|
31 |
+
nn.Conv2d,
|
32 |
+
nn.LSTM,
|
33 |
+
}
|
34 |
+
return SUPPORTED_STRUCTURED_PRUNING_MODULES
|
35 |
+
|
36 |
+
|
37 |
+
def _get_supported_activation_functions():
|
38 |
+
SUPPORTED_ACTIVATION_FUNCTIONS = {
|
39 |
+
F.relu,
|
40 |
+
F.rrelu,
|
41 |
+
F.hardtanh,
|
42 |
+
F.relu6,
|
43 |
+
F.sigmoid,
|
44 |
+
F.hardsigmoid,
|
45 |
+
F.tanh,
|
46 |
+
F.silu,
|
47 |
+
F.mish,
|
48 |
+
F.hardswish,
|
49 |
+
F.elu,
|
50 |
+
F.celu,
|
51 |
+
F.selu,
|
52 |
+
F.hardshrink,
|
53 |
+
F.leaky_relu,
|
54 |
+
F.logsigmoid,
|
55 |
+
F.softplus,
|
56 |
+
F.prelu,
|
57 |
+
F.softsign,
|
58 |
+
F.tanhshrink,
|
59 |
+
F.gelu,
|
60 |
+
}
|
61 |
+
return SUPPORTED_ACTIVATION_FUNCTIONS
|
62 |
+
|
63 |
+
|
64 |
+
def _get_supported_activation_modules():
|
65 |
+
SUPPORTED_ACTIVATION_MODULES = {
|
66 |
+
nn.ReLU,
|
67 |
+
nn.RReLU,
|
68 |
+
nn.Hardtanh,
|
69 |
+
nn.ReLU6,
|
70 |
+
nn.Sigmoid,
|
71 |
+
nn.Hardsigmoid,
|
72 |
+
nn.Tanh,
|
73 |
+
nn.SiLU,
|
74 |
+
nn.Mish,
|
75 |
+
nn.Hardswish,
|
76 |
+
nn.ELU,
|
77 |
+
nn.CELU,
|
78 |
+
nn.SELU,
|
79 |
+
nn.Hardshrink,
|
80 |
+
nn.LeakyReLU,
|
81 |
+
nn.LogSigmoid,
|
82 |
+
nn.Softplus,
|
83 |
+
nn.PReLU,
|
84 |
+
nn.Softsign,
|
85 |
+
nn.Tanhshrink,
|
86 |
+
nn.GELU,
|
87 |
+
}
|
88 |
+
return SUPPORTED_ACTIVATION_MODULES
|
89 |
+
|
90 |
+
|
91 |
+
def _get_default_structured_pruning_patterns() -> Dict[
|
92 |
+
Tuple[Union[Type[nn.Module], Callable, MatchAllNode, str], ...],
|
93 |
+
Callable[..., None],
|
94 |
+
]:
|
95 |
+
"""
|
96 |
+
Returns the patterns for conv2d / linear conversion for each element in the activation functions/modules defined above.
|
97 |
+
"""
|
98 |
+
patterns: Dict[
|
99 |
+
Tuple[Union[Type[nn.Module], Callable, MatchAllNode, str], ...],
|
100 |
+
Callable[..., None],
|
101 |
+
] = {
|
102 |
+
# linear -> linear
|
103 |
+
(nn.Linear, "output"): prune_linear,
|
104 |
+
(nn.Linear, nn.Linear): prune_linear_linear,
|
105 |
+
# conv2d -> conv2d
|
106 |
+
(nn.Conv2d, "output"): prune_conv2d,
|
107 |
+
(nn.Conv2d, nn.Conv2d): prune_conv2d_conv2d,
|
108 |
+
# TODO LSTM Structured pruning does not support returned state currently.
|
109 |
+
# Should find a way to explicitly match getitem(0) instead of getitem.
|
110 |
+
# This will also require changing the pruning function.
|
111 |
+
# lstm -> getitem(0) -> linear
|
112 |
+
(nn.LSTM, getitem, nn.Linear): prune_lstm_output_linear,
|
113 |
+
# lstm -> getitem(0) -> layernorm -> linear
|
114 |
+
(nn.LSTM, getitem, nn.LayerNorm, nn.Linear): prune_lstm_output_layernorm_linear,
|
115 |
+
}
|
116 |
+
|
117 |
+
for activation in chain(
|
118 |
+
_get_supported_activation_functions(), _get_supported_activation_modules()
|
119 |
+
):
|
120 |
+
patterns.update(
|
121 |
+
{
|
122 |
+
# linear -> activation -> linear
|
123 |
+
(nn.Linear, activation, nn.Linear): prune_linear_activation_linear,
|
124 |
+
# conv2d -> activation -> conv2d
|
125 |
+
(nn.Conv2d, activation, nn.Conv2d): prune_conv2d_activation_conv2d,
|
126 |
+
# conv2d -> activation -> pool -> conv2d
|
127 |
+
(
|
128 |
+
nn.Conv2d,
|
129 |
+
activation,
|
130 |
+
nn.AvgPool2d,
|
131 |
+
nn.Conv2d,
|
132 |
+
): prune_conv2d_activation_pool_conv2d,
|
133 |
+
(
|
134 |
+
nn.Conv2d,
|
135 |
+
activation,
|
136 |
+
F.avg_pool2d,
|
137 |
+
nn.Conv2d,
|
138 |
+
): prune_conv2d_activation_pool_conv2d,
|
139 |
+
(
|
140 |
+
nn.Conv2d,
|
141 |
+
activation,
|
142 |
+
nn.MaxPool2d,
|
143 |
+
nn.Conv2d,
|
144 |
+
): prune_conv2d_activation_pool_conv2d,
|
145 |
+
(
|
146 |
+
nn.Conv2d,
|
147 |
+
activation,
|
148 |
+
F.max_pool2d,
|
149 |
+
nn.Conv2d,
|
150 |
+
): prune_conv2d_activation_pool_conv2d,
|
151 |
+
# conv2d -> pool -> activation -> conv2d
|
152 |
+
(
|
153 |
+
nn.Conv2d,
|
154 |
+
nn.AvgPool2d,
|
155 |
+
activation,
|
156 |
+
nn.Conv2d,
|
157 |
+
): prune_conv2d_pool_activation_conv2d,
|
158 |
+
(
|
159 |
+
nn.Conv2d,
|
160 |
+
F.avg_pool2d,
|
161 |
+
activation,
|
162 |
+
nn.Conv2d,
|
163 |
+
): prune_conv2d_pool_activation_conv2d,
|
164 |
+
(
|
165 |
+
nn.Conv2d,
|
166 |
+
nn.MaxPool2d,
|
167 |
+
activation,
|
168 |
+
nn.Conv2d,
|
169 |
+
): prune_conv2d_pool_activation_conv2d,
|
170 |
+
(
|
171 |
+
nn.Conv2d,
|
172 |
+
F.max_pool2d,
|
173 |
+
activation,
|
174 |
+
nn.Conv2d,
|
175 |
+
): prune_conv2d_pool_activation_conv2d,
|
176 |
+
# conv2d -> adaptive pool -> flatten -> linear
|
177 |
+
(
|
178 |
+
nn.Conv2d,
|
179 |
+
nn.AdaptiveAvgPool2d,
|
180 |
+
nn.Flatten,
|
181 |
+
nn.Linear,
|
182 |
+
): prune_conv2d_pool_flatten_linear,
|
183 |
+
(
|
184 |
+
nn.Conv2d,
|
185 |
+
nn.AdaptiveAvgPool2d,
|
186 |
+
torch.flatten,
|
187 |
+
nn.Linear,
|
188 |
+
): prune_conv2d_pool_flatten_linear,
|
189 |
+
(
|
190 |
+
nn.Conv2d,
|
191 |
+
nn.AdaptiveMaxPool2d,
|
192 |
+
nn.Flatten,
|
193 |
+
nn.Linear,
|
194 |
+
): prune_conv2d_pool_flatten_linear,
|
195 |
+
(
|
196 |
+
nn.Conv2d,
|
197 |
+
nn.AdaptiveMaxPool2d,
|
198 |
+
torch.flatten,
|
199 |
+
nn.Linear,
|
200 |
+
): prune_conv2d_pool_flatten_linear,
|
201 |
+
}
|
202 |
+
)
|
203 |
+
return patterns
|
204 |
+
|
205 |
+
|
206 |
+
class BaseStructuredSparsifier(BaseSparsifier):
|
207 |
+
r"""Base class for structured pruning.
|
208 |
+
|
209 |
+
Abstract methods that need to be implemented:
|
210 |
+
- update_mask: Function to compute a new mask for all keys in the
|
211 |
+
`groups` attribute.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
- defaults [dict]: default configurations will be attached to the
|
215 |
+
configuration. Only the keys that don't exist in the `config` will
|
216 |
+
be updated.
|
217 |
+
"""
|
218 |
+
|
219 |
+
def __init__(self, defaults, patterns=None):
|
220 |
+
super().__init__(defaults)
|
221 |
+
if patterns is None:
|
222 |
+
patterns = _get_default_structured_pruning_patterns()
|
223 |
+
self.patterns = patterns
|
224 |
+
|
225 |
+
def make_config_from_model(
|
226 |
+
self,
|
227 |
+
model: nn.Module,
|
228 |
+
SUPPORTED_MODULES: Optional[Set[Type]] = None,
|
229 |
+
) -> None:
|
230 |
+
if SUPPORTED_MODULES is None:
|
231 |
+
SUPPORTED_MODULES = _get_supported_structured_pruning_modules()
|
232 |
+
super().make_config_from_model(model, SUPPORTED_MODULES=SUPPORTED_MODULES)
|
233 |
+
|
234 |
+
def _prepare(self, *args, **kwargs) -> None:
|
235 |
+
r"""This function will attach the FakeStructuredSparsity parameterizations
|
236 |
+
and BiasHooks at the appropriate points in the model.
|
237 |
+
"""
|
238 |
+
for config in self.groups:
|
239 |
+
module = config["module"]
|
240 |
+
tensor_name = config["tensor_name"]
|
241 |
+
parametrization = config.get("parametrization", FakeStructuredSparsity)
|
242 |
+
tensor = getattr(module, tensor_name)
|
243 |
+
|
244 |
+
mask = config.get(
|
245 |
+
"mask",
|
246 |
+
torch.ones(tensor.shape[0], dtype=torch.bool, device=tensor.device),
|
247 |
+
)
|
248 |
+
self.state[config["tensor_fqn"]]["mask"] = mask
|
249 |
+
parametrize.register_parametrization(
|
250 |
+
module, tensor_name, parametrization(mask)
|
251 |
+
)
|
252 |
+
|
253 |
+
# if linear / conv, we add in bias hooks
|
254 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
255 |
+
prune_bias = config.get("prune_bias", True)
|
256 |
+
if module.bias is not None:
|
257 |
+
module.register_parameter(
|
258 |
+
"_bias", nn.Parameter(module.bias.detach())
|
259 |
+
)
|
260 |
+
module.bias = None
|
261 |
+
module.prune_bias = prune_bias
|
262 |
+
|
263 |
+
module.register_forward_hook(
|
264 |
+
BiasHook(module.parametrizations.weight[0], prune_bias)
|
265 |
+
)
|
266 |
+
|
267 |
+
def prune(self) -> None:
|
268 |
+
r"""
|
269 |
+
This function will FX symbolically trace the model and then find instances of the patterns
|
270 |
+
defined in self.patterns (by default SUPPORTED_STRUCTURED_PRUNING_PATTERNS ).
|
271 |
+
|
272 |
+
For each pattern, it will apply to corresponding conversion function, which will modify the output
|
273 |
+
and input size expected by the modules within the pattern
|
274 |
+
"""
|
275 |
+
|
276 |
+
self.traced = symbolic_trace(self.model)
|
277 |
+
modules = dict(self.traced.named_modules())
|
278 |
+
|
279 |
+
# Right now we check for matches simply by iterating across all the patterns
|
280 |
+
# if this is slow we can store patterns in a trie-structure and modify this code for faster lookup
|
281 |
+
for node in self.traced.graph.nodes:
|
282 |
+
for pattern, convert_fn in self.patterns.items():
|
283 |
+
matched = apply_match(modules, pattern, node, [])
|
284 |
+
if matched is None:
|
285 |
+
continue
|
286 |
+
|
287 |
+
first_module = modules.get(node.target)
|
288 |
+
# check if first module exists and has appropriate parameterization, otherwise skip
|
289 |
+
if (
|
290 |
+
first_module is not None
|
291 |
+
and parametrize.is_parametrized(first_module)
|
292 |
+
and module_contains_param(first_module, FakeStructuredSparsity)
|
293 |
+
):
|
294 |
+
convert_block = []
|
295 |
+
for node in matched:
|
296 |
+
if node.op == "call_module":
|
297 |
+
convert_block.append(modules.get(node.target))
|
298 |
+
elif node.op == "call_function":
|
299 |
+
convert_block.append(node.target)
|
300 |
+
convert_fn(*convert_block)
|
301 |
+
|
302 |
+
for module in self.traced.modules():
|
303 |
+
if module_contains_param(module, FakeStructuredSparsity):
|
304 |
+
raise Exception(
|
305 |
+
f"Error: {module} still contains FakeStructuredSparsity parametrizations!"
|
306 |
+
)
|
307 |
+
|
308 |
+
self.traced.graph.lint()
|
309 |
+
self.traced.recompile()
|
310 |
+
return self.traced
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/lstm_saliency_pruner.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import cast
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from .base_structured_sparsifier import BaseStructuredSparsifier, FakeStructuredSparsity
|
5 |
+
|
6 |
+
class LSTMSaliencyPruner(BaseStructuredSparsifier):
|
7 |
+
"""
|
8 |
+
Prune packed LSTM weights based on saliency.
|
9 |
+
For each layer {k} inside a LSTM, we have two packed weight matrices
|
10 |
+
- weight_ih_l{k}
|
11 |
+
- weight_hh_l{k}
|
12 |
+
|
13 |
+
These tensors pack the weights for the 4 linear layers together for efficiency.
|
14 |
+
|
15 |
+
[W_ii | W_if | W_ig | W_io]
|
16 |
+
|
17 |
+
Pruning this tensor directly will lead to weights being misassigned when unpacked.
|
18 |
+
To ensure that each packed linear layer is pruned the same amount:
|
19 |
+
1. We split the packed weight into the 4 constituent linear parts
|
20 |
+
2. Update the mask for each individual piece using saliency individually
|
21 |
+
|
22 |
+
This applies to both weight_ih_l{k} and weight_hh_l{k}.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def update_mask(self, module, tensor_name, **kwargs):
|
26 |
+
weights = getattr(module, tensor_name)
|
27 |
+
|
28 |
+
for p in getattr(module.parametrizations, tensor_name):
|
29 |
+
if isinstance(p, FakeStructuredSparsity):
|
30 |
+
mask = cast(torch.Tensor, p.mask)
|
31 |
+
|
32 |
+
# select weights based on magnitude
|
33 |
+
if weights.dim() <= 1:
|
34 |
+
raise Exception("Structured pruning can only be applied to a 2+dim weight tensor!")
|
35 |
+
# take norm over all but first dim
|
36 |
+
dims = tuple(range(1, weights.dim()))
|
37 |
+
saliency = weights.norm(dim=dims, p=1)
|
38 |
+
|
39 |
+
# handle weights in 4 groups
|
40 |
+
split_size = len(mask) // 4
|
41 |
+
masks = torch.split(mask, split_size)
|
42 |
+
saliencies = torch.split(saliency, split_size)
|
43 |
+
|
44 |
+
for keep_mask, sal in zip(masks, saliencies):
|
45 |
+
# mask smallest k values to be removed
|
46 |
+
k = int(len(keep_mask) * kwargs["sparsity_level"])
|
47 |
+
prune = sal.topk(k, largest=False, sorted=False).indices
|
48 |
+
keep_mask.data[prune] = False # modifies underlying p.mask directly
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/match_utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contains utility functions to check if a pattern is in the graph and return the matching nodes
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.ao.quantization.utils import (
|
7 |
+
MatchAllNode,
|
8 |
+
)
|
9 |
+
from torch.fx import Node
|
10 |
+
from torch.nn.utils import parametrize
|
11 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
12 |
+
|
13 |
+
def _match(modules: Dict[str, nn.ModuleDict], node: Node, current: Union[nn.Module, Any]) -> bool:
|
14 |
+
r"""
|
15 |
+
checks to see if a single node of a pattern matches
|
16 |
+
"""
|
17 |
+
if isinstance(current, type) and issubclass(current, MatchAllNode):
|
18 |
+
return True
|
19 |
+
if not isinstance(node, Node):
|
20 |
+
return False
|
21 |
+
if isinstance(current, type) and issubclass(current, torch.nn.Module):
|
22 |
+
return (
|
23 |
+
node.op == "call_module"
|
24 |
+
and parametrize.type_before_parametrizations(modules[node.target])
|
25 |
+
== current
|
26 |
+
)
|
27 |
+
elif callable(current):
|
28 |
+
return node.op == "call_function" and node.target is current
|
29 |
+
elif isinstance(current, str):
|
30 |
+
return node.target == current
|
31 |
+
return False
|
32 |
+
|
33 |
+
def apply_match(
|
34 |
+
modules: Dict[str, nn.ModuleDict],
|
35 |
+
pattern: Union[Tuple[Any], Any],
|
36 |
+
node: Node,
|
37 |
+
matched_node_pattern: List[Node],
|
38 |
+
) -> Optional[List[Node]]:
|
39 |
+
r"""
|
40 |
+
This function will return the matched nodes if the pattern matches the node given
|
41 |
+
If there is no match, it will return None
|
42 |
+
"""
|
43 |
+
if isinstance(pattern, tuple):
|
44 |
+
if len(pattern) == 1:
|
45 |
+
if _match(modules, node, pattern[0]):
|
46 |
+
return matched_node_pattern + [node]
|
47 |
+
|
48 |
+
first, *rest = pattern
|
49 |
+
if _match(modules, node, first):
|
50 |
+
if rest is None:
|
51 |
+
return matched_node_pattern + [node]
|
52 |
+
|
53 |
+
for user in node.users:
|
54 |
+
return apply_match(
|
55 |
+
modules, tuple(rest), user, matched_node_pattern + [node]
|
56 |
+
)
|
57 |
+
elif _match(modules, node, pattern):
|
58 |
+
return [node]
|
59 |
+
return None
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/parametrization.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn.utils.parametrize import is_parametrized
|
4 |
+
|
5 |
+
|
6 |
+
def module_contains_param(module, parametrization):
|
7 |
+
if is_parametrized(module):
|
8 |
+
# see if any of the module tensors have a parametriztion attached that matches the one passed in
|
9 |
+
return any(
|
10 |
+
any(isinstance(param, parametrization) for param in param_list)
|
11 |
+
for key, param_list in module.parametrizations.items()
|
12 |
+
)
|
13 |
+
return False
|
14 |
+
|
15 |
+
|
16 |
+
# Structured Pruning Parameterizations
|
17 |
+
class FakeStructuredSparsity(nn.Module):
|
18 |
+
r"""
|
19 |
+
Parametrization for Structured Pruning. Like FakeSparsity, this should be attached to
|
20 |
+
the 'weight' or any other parameter that requires a mask.
|
21 |
+
|
22 |
+
Instead of an element-wise bool mask, this parameterization uses a row-wise bool mask.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, mask):
|
26 |
+
super().__init__()
|
27 |
+
self.register_buffer("mask", mask)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
assert isinstance(self.mask, torch.Tensor)
|
31 |
+
assert self.mask.shape[0] == x.shape[0]
|
32 |
+
shape = [1] * len(x.shape)
|
33 |
+
shape[0] = -1
|
34 |
+
return self.mask.reshape(shape) * x
|
35 |
+
|
36 |
+
def state_dict(self, *args, **kwargs):
|
37 |
+
# avoid double saving masks
|
38 |
+
return {}
|
39 |
+
|
40 |
+
|
41 |
+
class BiasHook:
|
42 |
+
def __init__(self, parametrization, prune_bias):
|
43 |
+
self.param = parametrization
|
44 |
+
self.prune_bias = prune_bias
|
45 |
+
|
46 |
+
def __call__(self, module, input, output):
|
47 |
+
|
48 |
+
if getattr(module, "_bias", None) is not None:
|
49 |
+
bias = module._bias.data
|
50 |
+
if self.prune_bias:
|
51 |
+
bias[~self.param.mask] = 0
|
52 |
+
|
53 |
+
# reshape bias to broadcast over output dimensions
|
54 |
+
idx = [1] * len(output.shape)
|
55 |
+
idx[1] = -1
|
56 |
+
bias = bias.reshape(idx)
|
57 |
+
|
58 |
+
output += bias
|
59 |
+
return output
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_experimental/pruner/prune_functions.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collection of conversion functions for linear / conv2d structured pruning
|
3 |
+
Also contains utilities for bias propagation
|
4 |
+
"""
|
5 |
+
from typing import cast, List, Optional, Callable, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn, Tensor
|
9 |
+
from torch.nn.utils import parametrize
|
10 |
+
from torch.nn.utils.parametrize import ParametrizationList
|
11 |
+
from .parametrization import FakeStructuredSparsity, BiasHook
|
12 |
+
|
13 |
+
# BIAS PROPAGATION
|
14 |
+
def _remove_bias_handles(module: nn.Module) -> None:
|
15 |
+
if hasattr(module, "_forward_hooks"):
|
16 |
+
bias_hooks: List[int] = []
|
17 |
+
for key, hook in module._forward_hooks.items():
|
18 |
+
if isinstance(hook, BiasHook):
|
19 |
+
bias_hooks.append(key)
|
20 |
+
|
21 |
+
for key in bias_hooks:
|
22 |
+
del module._forward_hooks[key]
|
23 |
+
|
24 |
+
|
25 |
+
def _get_adjusted_next_layer_bias(
|
26 |
+
next_layer: nn.Module, pruned_biases: Tensor, mask: Tensor
|
27 |
+
) -> nn.Parameter:
|
28 |
+
r"""Returns new adjusted bias for the second supported module"""
|
29 |
+
if parametrize.is_parametrized(next_layer):
|
30 |
+
# need to access original weight
|
31 |
+
parametrization_dict = cast(nn.ModuleDict, next_layer.parametrizations)
|
32 |
+
weight_parameterizations = cast(
|
33 |
+
ParametrizationList, parametrization_dict.weight
|
34 |
+
)
|
35 |
+
next_weight = weight_parameterizations.original
|
36 |
+
else:
|
37 |
+
next_weight = cast(Tensor, next_layer.weight)
|
38 |
+
|
39 |
+
scaling_weight = next_weight[:, ~mask]
|
40 |
+
if isinstance(next_layer, nn.Conv2d): # checking for Conv2d
|
41 |
+
# Propagating first layer pruned biases and calculating the new second layer bias
|
42 |
+
# involves more steps since the Conv2d scaling weight has extra dimensions,
|
43 |
+
# so adding bias involves broadcasting, logically:
|
44 |
+
# for each channel k in range(oC):
|
45 |
+
# scaled_biases = sum(first_bias[pruned_idx] @ next_weight[k, pruned_idx, :, :].T)
|
46 |
+
# new_next_bias[k] = old_next_bias[k] + scaled_biases
|
47 |
+
scaling_product = torch.matmul(
|
48 |
+
pruned_biases.reshape(1, -1), torch.transpose(scaling_weight, 1, 2)
|
49 |
+
)
|
50 |
+
sum_range = list(range(len(scaling_product.shape)))[
|
51 |
+
1:
|
52 |
+
] # all but the first dimension
|
53 |
+
scaled_biases = torch.sum(scaling_product, sum_range)
|
54 |
+
elif isinstance(next_layer, nn.Linear): # Linear
|
55 |
+
scaled_biases = torch.matmul(
|
56 |
+
pruned_biases, torch.transpose(scaling_weight, 0, 1)
|
57 |
+
) # recall b2_new = b1 @ w2.T + b2
|
58 |
+
else:
|
59 |
+
raise NotImplementedError(f"Type {type(next_layer)} not supported yet.")
|
60 |
+
|
61 |
+
if (
|
62 |
+
parametrize.is_parametrized(next_layer)
|
63 |
+
and getattr(next_layer, "_bias", None) is not None
|
64 |
+
): # next_layer is parametrized & has original bias ._bias
|
65 |
+
adjusted_bias = nn.Parameter(scaled_biases + next_layer._bias)
|
66 |
+
elif (
|
67 |
+
not parametrize.is_parametrized(next_layer) and next_layer.bias is not None
|
68 |
+
): # next_layer not parametrized & has .bias
|
69 |
+
adjusted_bias = nn.Parameter(scaled_biases + next_layer.bias)
|
70 |
+
else: # next_layer has no bias
|
71 |
+
adjusted_bias = nn.Parameter(scaled_biases)
|
72 |
+
return adjusted_bias
|
73 |
+
|
74 |
+
|
75 |
+
def _prune_module_bias(module: nn.Module, mask: Tensor) -> None:
|
76 |
+
r"""Applies mask to given modules bias"""
|
77 |
+
# prune bias along with weights, discard pruned indices of bias
|
78 |
+
original_bias = cast(Tensor, getattr(module, "_bias", module.bias))
|
79 |
+
if original_bias is not None:
|
80 |
+
module.bias = nn.Parameter(original_bias[mask])
|
81 |
+
|
82 |
+
# remove _bias parameter
|
83 |
+
if hasattr(module, "_bias"):
|
84 |
+
delattr(module, "_bias")
|
85 |
+
|
86 |
+
|
87 |
+
def _propogate_module_bias(module: nn.Module, mask: Tensor) -> Optional[Tensor]:
|
88 |
+
r"""
|
89 |
+
In the case that we need to propagate biases, this function will return the biases we need
|
90 |
+
"""
|
91 |
+
# set current module bias
|
92 |
+
if module.bias is not None:
|
93 |
+
module.bias = nn.Parameter(cast(Tensor, module.bias)[mask])
|
94 |
+
elif getattr(module, "_bias", None) is not None:
|
95 |
+
module.bias = nn.Parameter(cast(Tensor, module._bias)[mask])
|
96 |
+
|
97 |
+
# get pruned biases to propagate to subsequent layer
|
98 |
+
if getattr(module, "_bias", None) is not None:
|
99 |
+
pruned_biases = cast(Tensor, module._bias)[~mask]
|
100 |
+
else:
|
101 |
+
pruned_biases = None
|
102 |
+
|
103 |
+
if hasattr(module, "_bias"):
|
104 |
+
delattr(module, "_bias")
|
105 |
+
|
106 |
+
return pruned_biases
|
107 |
+
|
108 |
+
|
109 |
+
# LINEAR
|
110 |
+
def _prune_linear_helper(linear: nn.Linear) -> Tensor:
|
111 |
+
# expects linear to be a parameterized linear module
|
112 |
+
parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
|
113 |
+
weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
|
114 |
+
for p in weight_parameterizations:
|
115 |
+
if isinstance(p, FakeStructuredSparsity):
|
116 |
+
mask = cast(Tensor, p.mask)
|
117 |
+
|
118 |
+
with torch.no_grad():
|
119 |
+
parametrize.remove_parametrizations(linear, "weight", leave_parametrized=True)
|
120 |
+
linear.weight = nn.Parameter(linear.weight[mask]) # type: ignore[possibly-undefined]
|
121 |
+
linear.out_features = linear.weight.shape[0]
|
122 |
+
_remove_bias_handles(linear)
|
123 |
+
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
def prune_linear(linear: nn.Linear) -> None:
|
128 |
+
mask = _prune_linear_helper(linear)
|
129 |
+
if getattr(linear, "prune_bias", False):
|
130 |
+
_prune_module_bias(linear, mask)
|
131 |
+
|
132 |
+
|
133 |
+
def prune_linear_linear(linear1: nn.Linear, linear2: nn.Linear) -> None:
|
134 |
+
prune_linear_activation_linear(linear1, None, linear2)
|
135 |
+
|
136 |
+
|
137 |
+
def prune_linear_activation_linear(
|
138 |
+
linear1: nn.Linear,
|
139 |
+
activation: Optional[Callable[[Tensor], Tensor]],
|
140 |
+
linear2: nn.Linear,
|
141 |
+
):
|
142 |
+
mask = _prune_linear_helper(linear1)
|
143 |
+
if getattr(linear1, "prune_bias", False):
|
144 |
+
_prune_module_bias(linear1, mask)
|
145 |
+
else:
|
146 |
+
pruned_biases = _propogate_module_bias(linear1, mask)
|
147 |
+
if pruned_biases is not None:
|
148 |
+
if activation:
|
149 |
+
pruned_biases = activation(pruned_biases)
|
150 |
+
linear2.bias = _get_adjusted_next_layer_bias(linear2, pruned_biases, mask)
|
151 |
+
|
152 |
+
with torch.no_grad():
|
153 |
+
if parametrize.is_parametrized(linear2):
|
154 |
+
parametrization_dict = cast(nn.ModuleDict, linear2.parametrizations)
|
155 |
+
weight_parameterizations = cast(
|
156 |
+
ParametrizationList, parametrization_dict.weight
|
157 |
+
)
|
158 |
+
|
159 |
+
weight_parameterizations.original = nn.Parameter(
|
160 |
+
weight_parameterizations.original[:, mask]
|
161 |
+
)
|
162 |
+
linear2.in_features = weight_parameterizations.original.shape[1]
|
163 |
+
else:
|
164 |
+
linear2.weight = nn.Parameter(linear2.weight[:, mask])
|
165 |
+
linear2.in_features = linear2.weight.shape[1]
|
166 |
+
|
167 |
+
|
168 |
+
# CONV2D
|
169 |
+
def _prune_conv2d_helper(conv2d: nn.Conv2d) -> Tensor:
|
170 |
+
parametrization_dict = cast(nn.ModuleDict, conv2d.parametrizations)
|
171 |
+
weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
|
172 |
+
for p in weight_parameterizations:
|
173 |
+
if isinstance(p, FakeStructuredSparsity):
|
174 |
+
mask = cast(Tensor, p.mask)
|
175 |
+
|
176 |
+
with torch.no_grad():
|
177 |
+
parametrize.remove_parametrizations(conv2d, "weight", leave_parametrized=True)
|
178 |
+
conv2d.weight = nn.Parameter(conv2d.weight[mask]) # type: ignore[possibly-undefined]
|
179 |
+
conv2d.out_channels = conv2d.weight.shape[0]
|
180 |
+
|
181 |
+
_remove_bias_handles(conv2d)
|
182 |
+
return mask
|
183 |
+
|
184 |
+
|
185 |
+
def prune_conv2d_padded(conv2d_1: nn.Conv2d) -> None:
|
186 |
+
parametrization_dict = cast(nn.ModuleDict, conv2d_1.parametrizations)
|
187 |
+
weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
|
188 |
+
for p in weight_parameterizations:
|
189 |
+
if isinstance(p, FakeStructuredSparsity):
|
190 |
+
mask = cast(Tensor, p.mask)
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
parametrize.remove_parametrizations(conv2d_1, "weight", leave_parametrized=True)
|
194 |
+
|
195 |
+
if getattr(conv2d_1, "_bias", None) is not None:
|
196 |
+
if (
|
197 |
+
conv2d_1.bias is not None
|
198 |
+
): # conv2d_1 has original bias and bias propagated from previous layer
|
199 |
+
new_bias = torch.zeros(conv2d_1.bias.shape)
|
200 |
+
new_bias[mask] = conv2d_1.bias[mask] # type: ignore[possibly-undefined]
|
201 |
+
# adjusted bias that to keep in conv2d_1
|
202 |
+
new_bias[~mask] = cast(Tensor, conv2d_1._bias)[~mask]
|
203 |
+
# pruned biases that are kept instead of propagated
|
204 |
+
conv2d_1.bias = nn.Parameter(new_bias)
|
205 |
+
else: # conv2d_1 has only original bias
|
206 |
+
conv2d_1.bias = nn.Parameter(cast(Tensor, conv2d_1._bias))
|
207 |
+
else:
|
208 |
+
# no original bias, only propagated bias
|
209 |
+
if (
|
210 |
+
conv2d_1.bias is not None
|
211 |
+
): # conv2d_1 has bias propagated from previous layer
|
212 |
+
conv2d_1.bias.data[~mask] = 0 # type: ignore[possibly-undefined]
|
213 |
+
|
214 |
+
if hasattr(conv2d_1, "_bias"):
|
215 |
+
delattr(conv2d_1, "_bias")
|
216 |
+
|
217 |
+
|
218 |
+
def prune_conv2d(conv2d: nn.Conv2d) -> None:
|
219 |
+
mask = _prune_conv2d_helper(conv2d)
|
220 |
+
if getattr(conv2d, "prune_bias", False):
|
221 |
+
_prune_module_bias(conv2d, mask)
|
222 |
+
|
223 |
+
|
224 |
+
def prune_conv2d_conv2d(conv2d_1: nn.Conv2d, conv2d_2: nn.Conv2d) -> None:
|
225 |
+
prune_conv2d_activation_conv2d(conv2d_1, None, conv2d_2)
|
226 |
+
|
227 |
+
|
228 |
+
def prune_conv2d_activation_conv2d(
|
229 |
+
conv2d_1: nn.Conv2d,
|
230 |
+
activation: Optional[Callable[[Tensor], Tensor]],
|
231 |
+
conv2d_2: nn.Conv2d,
|
232 |
+
):
|
233 |
+
r"""
|
234 |
+
Fusion Pattern for conv2d -> some activation module / function -> conv2d layers
|
235 |
+
"""
|
236 |
+
parametrization_dict = cast(nn.ModuleDict, conv2d_1.parametrizations)
|
237 |
+
weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
|
238 |
+
for p in weight_parameterizations:
|
239 |
+
if isinstance(p, FakeStructuredSparsity):
|
240 |
+
mask = cast(Tensor, p.mask)
|
241 |
+
|
242 |
+
prune_bias = getattr(conv2d_1, "prune_bias", False)
|
243 |
+
if (
|
244 |
+
hasattr(conv2d_2, "padding")
|
245 |
+
and cast(Tuple[int], conv2d_2.padding) > (0, 0)
|
246 |
+
and (conv2d_1.bias is not None or getattr(conv2d_1, "_bias", None) is not None)
|
247 |
+
):
|
248 |
+
prune_conv2d_padded(conv2d_1)
|
249 |
+
else:
|
250 |
+
mask = _prune_conv2d_helper(conv2d_1)
|
251 |
+
if prune_bias:
|
252 |
+
_prune_module_bias(conv2d_1, mask)
|
253 |
+
else:
|
254 |
+
pruned_biases = _propogate_module_bias(conv2d_1, mask)
|
255 |
+
if pruned_biases is not None:
|
256 |
+
if activation:
|
257 |
+
pruned_biases = activation(pruned_biases)
|
258 |
+
conv2d_2.bias = _get_adjusted_next_layer_bias(
|
259 |
+
conv2d_2, pruned_biases, mask
|
260 |
+
)
|
261 |
+
|
262 |
+
if (
|
263 |
+
not (
|
264 |
+
hasattr(conv2d_2, "padding")
|
265 |
+
and cast(Tuple[int], conv2d_2.padding) > (0, 0)
|
266 |
+
)
|
267 |
+
or conv2d_1.bias is None
|
268 |
+
):
|
269 |
+
with torch.no_grad():
|
270 |
+
if parametrize.is_parametrized(conv2d_2):
|
271 |
+
parametrization_dict = cast(
|
272 |
+
nn.ModuleDict, conv2d_2.parametrizations
|
273 |
+
)
|
274 |
+
weight_parameterizations = cast(
|
275 |
+
ParametrizationList, parametrization_dict.weight
|
276 |
+
)
|
277 |
+
weight_parameterizations.original = nn.Parameter(
|
278 |
+
weight_parameterizations.original[:, mask]
|
279 |
+
)
|
280 |
+
conv2d_2.in_channels = weight_parameterizations.original.shape[1]
|
281 |
+
else:
|
282 |
+
conv2d_2.weight = nn.Parameter(conv2d_2.weight[:, mask])
|
283 |
+
conv2d_2.in_channels = conv2d_2.weight.shape[1]
|
284 |
+
|
285 |
+
|
286 |
+
def prune_conv2d_pool_activation_conv2d(
|
287 |
+
c1: nn.Conv2d,
|
288 |
+
pool: nn.Module,
|
289 |
+
activation: Optional[Callable[[Tensor], Tensor]],
|
290 |
+
c2: nn.Conv2d,
|
291 |
+
) -> None:
|
292 |
+
prune_conv2d_activation_conv2d(c1, activation, c2)
|
293 |
+
|
294 |
+
|
295 |
+
def prune_conv2d_activation_pool_conv2d(
|
296 |
+
c1: nn.Conv2d,
|
297 |
+
activation: Optional[Callable[[Tensor], Tensor]],
|
298 |
+
pool: nn.Module,
|
299 |
+
c2: nn.Conv2d,
|
300 |
+
) -> None:
|
301 |
+
prune_conv2d_activation_conv2d(c1, activation, c2)
|
302 |
+
|
303 |
+
|
304 |
+
def prune_conv2d_pool_flatten_linear(
|
305 |
+
conv2d: nn.Conv2d,
|
306 |
+
pool: nn.Module,
|
307 |
+
flatten: Optional[Callable[[Tensor], Tensor]],
|
308 |
+
linear: nn.Linear,
|
309 |
+
) -> None:
|
310 |
+
mask = _prune_conv2d_helper(conv2d)
|
311 |
+
|
312 |
+
# We map the pruned indices of the Conv2d output to the flattened indices of the Linear following the Flatten layer.
|
313 |
+
# we determine the flattening scale (h * w), and readjust `first_pruned_indices`
|
314 |
+
# (each idx maps to range idx * h * w to (idx+1) * h * w), `first_valid_indices`,
|
315 |
+
# and `pruned_biases` (repeat each bias by h * w).
|
316 |
+
if parametrize.is_parametrized(linear):
|
317 |
+
parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
|
318 |
+
weight_parameterizations = cast(
|
319 |
+
ParametrizationList, parametrization_dict.weight
|
320 |
+
)
|
321 |
+
linear_ic = weight_parameterizations.original.shape[1]
|
322 |
+
else:
|
323 |
+
linear_ic = linear.weight.shape[1]
|
324 |
+
|
325 |
+
conv2d_oc = len(mask)
|
326 |
+
assert (
|
327 |
+
linear_ic % conv2d_oc == 0
|
328 |
+
), f"Flattening from dimensions {conv2d_oc} to {linear_ic} not supported"
|
329 |
+
|
330 |
+
flatten_scale = linear_ic // conv2d_oc
|
331 |
+
flattened_mask = torch.tensor(
|
332 |
+
[[val] * flatten_scale for val in mask], dtype=torch.bool, device=mask.device
|
333 |
+
).flatten()
|
334 |
+
|
335 |
+
if getattr(conv2d, "prune_bias", False):
|
336 |
+
_prune_module_bias(conv2d, mask)
|
337 |
+
else:
|
338 |
+
pruned_biases = cast(Tensor, _propogate_module_bias(conv2d, mask))
|
339 |
+
flattened_pruned_biases = torch.tensor(
|
340 |
+
[[bias] * flatten_scale for bias in pruned_biases], device=mask.device
|
341 |
+
).flatten()
|
342 |
+
linear.bias = _get_adjusted_next_layer_bias(
|
343 |
+
linear, flattened_pruned_biases, flattened_mask
|
344 |
+
)
|
345 |
+
|
346 |
+
with torch.no_grad():
|
347 |
+
if parametrize.is_parametrized(linear):
|
348 |
+
parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
|
349 |
+
weight_parameterizations = cast(
|
350 |
+
ParametrizationList, parametrization_dict.weight
|
351 |
+
)
|
352 |
+
weight_parameterizations.original = nn.Parameter(
|
353 |
+
weight_parameterizations.original[:, flattened_mask]
|
354 |
+
)
|
355 |
+
linear.in_features = weight_parameterizations.original.shape[1]
|
356 |
+
else:
|
357 |
+
linear.weight = nn.Parameter(linear.weight[:, flattened_mask])
|
358 |
+
linear.in_features = linear.weight.shape[1]
|
359 |
+
|
360 |
+
|
361 |
+
def prune_lstm_output_linear(
|
362 |
+
lstm: nn.LSTM, getitem: Callable, linear: nn.Linear
|
363 |
+
) -> None:
|
364 |
+
prune_lstm_output_layernorm_linear(lstm, getitem, None, linear)
|
365 |
+
|
366 |
+
|
367 |
+
def prune_lstm_output_layernorm_linear(
|
368 |
+
lstm: nn.LSTM,
|
369 |
+
getitem: Callable,
|
370 |
+
layernorm: Optional[nn.LayerNorm],
|
371 |
+
linear: nn.Linear,
|
372 |
+
) -> None:
|
373 |
+
for i in range(lstm.num_layers):
|
374 |
+
if parametrize.is_parametrized(lstm, f"weight_ih_l{i}"):
|
375 |
+
parametrization_dict = cast(nn.ModuleDict, lstm.parametrizations)
|
376 |
+
weight_parameterizations = cast(
|
377 |
+
ParametrizationList, parametrization_dict[f"weight_ih_l{i}"]
|
378 |
+
)
|
379 |
+
mask = weight_parameterizations[0].mask
|
380 |
+
|
381 |
+
with torch.no_grad():
|
382 |
+
parametrize.remove_parametrizations(
|
383 |
+
lstm, f"weight_ih_l{i}", leave_parametrized=True
|
384 |
+
)
|
385 |
+
setattr(
|
386 |
+
lstm,
|
387 |
+
f"weight_ih_l{i}",
|
388 |
+
nn.Parameter(getattr(lstm, f"weight_ih_l{i}")[mask]),
|
389 |
+
)
|
390 |
+
setattr(
|
391 |
+
lstm,
|
392 |
+
f"bias_ih_l{i}",
|
393 |
+
nn.Parameter(getattr(lstm, f"bias_ih_l{i}")[mask]),
|
394 |
+
)
|
395 |
+
|
396 |
+
if parametrize.is_parametrized(lstm, f"weight_hh_l{i}"):
|
397 |
+
parametrization_dict = cast(nn.ModuleDict, lstm.parametrizations)
|
398 |
+
weight_parameterizations = cast(
|
399 |
+
ParametrizationList, parametrization_dict[f"weight_hh_l{i}"]
|
400 |
+
)
|
401 |
+
mask = weight_parameterizations[0].mask
|
402 |
+
|
403 |
+
with torch.no_grad():
|
404 |
+
parametrize.remove_parametrizations(
|
405 |
+
lstm, f"weight_hh_l{i}", leave_parametrized=True
|
406 |
+
)
|
407 |
+
# splitting out hidden-hidden masks
|
408 |
+
W_hi, W_hf, W_hg, W_ho = torch.split(
|
409 |
+
getattr(lstm, f"weight_hh_l{i}"), lstm.hidden_size
|
410 |
+
)
|
411 |
+
M_hi, M_hf, M_hg, M_ho = torch.split(mask, lstm.hidden_size)
|
412 |
+
|
413 |
+
# resize each individual weight separately
|
414 |
+
W_hi = W_hi[M_hi][:, M_hi]
|
415 |
+
W_hf = W_hf[M_hf][:, M_hf]
|
416 |
+
W_hg = W_hg[M_hg][:, M_hg]
|
417 |
+
W_ho = W_ho[M_ho][:, M_ho]
|
418 |
+
|
419 |
+
# concat, use this as new weight
|
420 |
+
new_weight = torch.cat((W_hi, W_hf, W_hg, W_ho))
|
421 |
+
setattr(lstm, f"weight_hh_l{i}", nn.Parameter(new_weight))
|
422 |
+
setattr(
|
423 |
+
lstm,
|
424 |
+
f"bias_hh_l{i}",
|
425 |
+
nn.Parameter(getattr(lstm, f"bias_hh_l{i}")[mask]),
|
426 |
+
)
|
427 |
+
|
428 |
+
# If this is the final layer, then we need to prune linear layer columns
|
429 |
+
if i + 1 == lstm.num_layers:
|
430 |
+
lstm.hidden_size = int(M_hi.sum())
|
431 |
+
with torch.no_grad():
|
432 |
+
if parametrize.is_parametrized(linear):
|
433 |
+
parametrization_dict = cast(
|
434 |
+
nn.ModuleDict, linear.parametrizations
|
435 |
+
)
|
436 |
+
weight_parameterizations = cast(
|
437 |
+
ParametrizationList, parametrization_dict.weight
|
438 |
+
)
|
439 |
+
|
440 |
+
weight_parameterizations.original = nn.Parameter(
|
441 |
+
weight_parameterizations.original[:, M_ho]
|
442 |
+
)
|
443 |
+
linear.in_features = weight_parameterizations.original.shape[1]
|
444 |
+
else:
|
445 |
+
linear.weight = nn.Parameter(linear.weight[:, M_ho])
|
446 |
+
linear.in_features = linear.weight.shape[1]
|
447 |
+
|
448 |
+
# if layernorm module, prune weight and bias
|
449 |
+
if layernorm is not None:
|
450 |
+
layernorm.normalized_shape = (linear.in_features,)
|
451 |
+
layernorm.weight = nn.Parameter(layernorm.weight[M_ho])
|
452 |
+
layernorm.bias = nn.Parameter(layernorm.bias[M_ho])
|
453 |
+
|
454 |
+
# otherwise need to prune the columns of the input of the next LSTM layer
|
455 |
+
else:
|
456 |
+
with torch.no_grad():
|
457 |
+
if parametrize.is_parametrized(lstm, f"weight_ih_l{i+1}"):
|
458 |
+
parametrization_dict = cast(
|
459 |
+
nn.ModuleDict, lstm.parametrizations
|
460 |
+
)
|
461 |
+
weight_parameterizations = cast(
|
462 |
+
ParametrizationList,
|
463 |
+
getattr(parametrization_dict, f"weight_ih_l{i+1}"),
|
464 |
+
)
|
465 |
+
|
466 |
+
weight_parameterizations.original = nn.Parameter(
|
467 |
+
weight_parameterizations.original[:, M_ho]
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
next_layer_weight = getattr(lstm, f"weight_ih_l{i+1}")
|
471 |
+
setattr(
|
472 |
+
lstm,
|
473 |
+
f"weight_ih_l{i+1}",
|
474 |
+
nn.Parameter(next_layer_weight[:, M_ho]),
|
475 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/pruning/_mappings.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"get_static_sparse_quantized_mapping",
|
3 |
+
"get_dynamic_sparse_quantized_mapping",
|
4 |
+
]
|
5 |
+
|
6 |
+
def get_static_sparse_quantized_mapping():
|
7 |
+
import torch.ao.nn.sparse
|
8 |
+
_static_sparse_quantized_mapping = {
|
9 |
+
torch.nn.Linear: torch.ao.nn.sparse.quantized.Linear,
|
10 |
+
}
|
11 |
+
return _static_sparse_quantized_mapping
|
12 |
+
|
13 |
+
def get_dynamic_sparse_quantized_mapping():
|
14 |
+
import torch.ao.nn.sparse
|
15 |
+
_dynamic_sparse_quantized_mapping = {
|
16 |
+
torch.nn.Linear: torch.ao.nn.sparse.quantized.dynamic.Linear,
|
17 |
+
}
|
18 |
+
return _dynamic_sparse_quantized_mapping
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/base_sparsifier.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/nearly_diagonal_sparsifier.cpython-310.pyc
ADDED
Binary file (2.46 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.53 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/__pycache__/weight_norm_sparsifier.cpython-310.pyc
ADDED
Binary file (7.36 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import copy
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import Any, Dict, Optional, Set, Tuple, List, Type
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn.utils import parametrize
|
9 |
+
from torch.nn.utils.parametrize import type_before_parametrizations
|
10 |
+
|
11 |
+
from .utils import (
|
12 |
+
module_contains_param,
|
13 |
+
swap_module,
|
14 |
+
FakeSparsity,
|
15 |
+
get_arg_info_from_tensor_fqn,
|
16 |
+
module_to_fqn,
|
17 |
+
)
|
18 |
+
|
19 |
+
__all__ = ["BaseSparsifier"]
|
20 |
+
|
21 |
+
SUPPORTED_MODULES = {nn.Linear}
|
22 |
+
|
23 |
+
KEYS_NOT_IN_STATE_DICT = ["module", "module_fqn", "tensor_name"]
|
24 |
+
|
25 |
+
__all__ = ["BaseSparsifier"]
|
26 |
+
|
27 |
+
|
28 |
+
# TODO update desc with new config args
|
29 |
+
class BaseSparsifier(abc.ABC):
|
30 |
+
r"""Base class for all sparsifiers.
|
31 |
+
|
32 |
+
Abstract methods that need to be implemented:
|
33 |
+
|
34 |
+
- update_mask: Function to compute a new mask for all keys in the
|
35 |
+
`groups`.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
- model [nn.Module]: model to configure. The model itself is not saved
|
39 |
+
but used for the state_dict saving / loading.
|
40 |
+
- config [list]: configuration elements should be a dict map that includes
|
41 |
+
`tensor_fqn` of tensors to sparsify
|
42 |
+
- defaults [dict]: default configurations will be attached to the
|
43 |
+
configuration. Only the keys that don't exist in the `config` will
|
44 |
+
be updated.
|
45 |
+
|
46 |
+
Example::
|
47 |
+
|
48 |
+
>>> # xdoctest: +SKIP("Can't instantiate abstract class BaseSparsifier with abstract method update_mask")
|
49 |
+
>>> config = [{'tensor_fqn': 'layer1.weight', 'tensor_fqn': 'linear2.weight2', 'sparsity_level': 0.5}]
|
50 |
+
>>> defaults = {'sparsity_level': 0.7}
|
51 |
+
>>> # model.layer1.weight will have `sparsity_level` = 0.7 (getting default)
|
52 |
+
>>> sparsifier = BaseSparsifier(config, defaults)
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, defaults: Optional[Dict[str, Any]] = None):
|
56 |
+
super().__init__()
|
57 |
+
self.defaults: Dict[str, Any] = defaults or {}
|
58 |
+
|
59 |
+
self.state: Dict[str, Dict] = defaultdict(dict)
|
60 |
+
self.groups: List[Dict[str, Any]] = []
|
61 |
+
self.enable_mask_update = True
|
62 |
+
|
63 |
+
def __getstate__(self) -> Dict[str, Any]:
|
64 |
+
return {
|
65 |
+
"defaults": self.defaults,
|
66 |
+
"state": self.state,
|
67 |
+
"groups": self.groups,
|
68 |
+
}
|
69 |
+
|
70 |
+
def __setstate__(self, state: Dict[str, Dict[str, Any]]) -> None:
|
71 |
+
self.__dict__.update(state)
|
72 |
+
|
73 |
+
def __repr__(self):
|
74 |
+
format_string = self.__class__.__name__ + " ("
|
75 |
+
for i, sparse_args in enumerate(self.groups):
|
76 |
+
module = sparse_args["module"]
|
77 |
+
format_string += "\n"
|
78 |
+
format_string += f"\tGroup {i}\n"
|
79 |
+
format_string += f"\t module: {module}\n"
|
80 |
+
for key in sorted(sparse_args.keys()):
|
81 |
+
if key == "module":
|
82 |
+
continue
|
83 |
+
format_string += f"\t {key}: {sparse_args[key]}\n"
|
84 |
+
format_string += ")"
|
85 |
+
return format_string
|
86 |
+
|
87 |
+
def state_dict(self) -> Dict[str, Any]:
|
88 |
+
r"""Returns the state of the optimizer as a :class:`dict`.
|
89 |
+
|
90 |
+
It contains:
|
91 |
+
* state - current state of the sparsification.
|
92 |
+
* groups - a list containing all sparsity configuration groups
|
93 |
+
with the key 'tensor_fqn' specifying the path to the sparsified tensor within a model
|
94 |
+
|
95 |
+
TODO: Need a clean way of loading the state of the "prepared" module
|
96 |
+
"""
|
97 |
+
|
98 |
+
groups: List[Dict[str, Any]] = [
|
99 |
+
dict(
|
100 |
+
filter(
|
101 |
+
lambda key_value: key_value[0] not in KEYS_NOT_IN_STATE_DICT,
|
102 |
+
mg.items(),
|
103 |
+
)
|
104 |
+
)
|
105 |
+
for mg in self.groups
|
106 |
+
]
|
107 |
+
|
108 |
+
return {
|
109 |
+
"state": self.state,
|
110 |
+
"groups": groups,
|
111 |
+
}
|
112 |
+
|
113 |
+
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True):
|
114 |
+
groups = copy.deepcopy(state_dict["groups"])
|
115 |
+
states = state_dict["state"]
|
116 |
+
for tensor_fqn, s in states.items():
|
117 |
+
arg_info = get_arg_info_from_tensor_fqn(self.model, tensor_fqn)
|
118 |
+
module = arg_info["module"]
|
119 |
+
tensor_name = arg_info["tensor_name"]
|
120 |
+
if strict and module is None:
|
121 |
+
raise RuntimeError(f"Error loading {tensor_fqn} into the model")
|
122 |
+
|
123 |
+
found = False
|
124 |
+
for p in module.parametrizations[tensor_name]:
|
125 |
+
if isinstance(p, FakeSparsity):
|
126 |
+
found = True
|
127 |
+
break
|
128 |
+
if not found:
|
129 |
+
p = FakeSparsity(torch.ones(getattr(module, tensor_name).shape))
|
130 |
+
parametrize.register_parametrization(module, tensor_name, p)
|
131 |
+
if s.get("mask", None) is not None:
|
132 |
+
mask = s.pop("mask")
|
133 |
+
p.mask = mask
|
134 |
+
|
135 |
+
for mg in groups:
|
136 |
+
if mg["tensor_fqn"] == tensor_fqn:
|
137 |
+
mg.update(arg_info)
|
138 |
+
self.__setstate__({"state": states, "groups": groups})
|
139 |
+
|
140 |
+
def make_config_from_model(
|
141 |
+
self,
|
142 |
+
model: nn.Module,
|
143 |
+
SUPPORTED_MODULES: Set[Type] = SUPPORTED_MODULES,
|
144 |
+
) -> None:
|
145 |
+
self.config = []
|
146 |
+
stack = [model]
|
147 |
+
while stack:
|
148 |
+
module = stack.pop()
|
149 |
+
for name, child in module.named_children():
|
150 |
+
if type(child) in SUPPORTED_MODULES:
|
151 |
+
module_fqn = module_to_fqn(model, child)
|
152 |
+
assert isinstance(module_fqn, str) # for mypy
|
153 |
+
self.config.append({"tensor_fqn": module_fqn + ".weight"})
|
154 |
+
else:
|
155 |
+
stack.append(child)
|
156 |
+
|
157 |
+
def prepare(self, model, config):
|
158 |
+
r"""Prepares a model, by adding the parametrizations.
|
159 |
+
|
160 |
+
Note::
|
161 |
+
|
162 |
+
The model is modified inplace. If you need to preserve the original
|
163 |
+
model, use copy.deepcopy.
|
164 |
+
"""
|
165 |
+
self.model = model # TODO: Need to figure out how to load without this.
|
166 |
+
self.config = config
|
167 |
+
|
168 |
+
# If no config -- try getting all the supported layers
|
169 |
+
if self.config is None:
|
170 |
+
self.make_config_from_model(model)
|
171 |
+
|
172 |
+
# TODO: Remove the configuration by reference ('module')
|
173 |
+
for module_config in self.config:
|
174 |
+
assert isinstance(module_config, dict), (
|
175 |
+
"config elements should be dicts not modules i.e.:"
|
176 |
+
"[{`tensor_fqn`: `foo.bar.weight`}, {`tensor_fqn`: ... }, ...]"
|
177 |
+
)
|
178 |
+
|
179 |
+
assert isinstance(self.defaults, Dict) # for mypy
|
180 |
+
local_args = copy.deepcopy(self.defaults)
|
181 |
+
local_args.update(module_config)
|
182 |
+
|
183 |
+
tensor_fqn = local_args.get("tensor_fqn", None)
|
184 |
+
assert tensor_fqn is not None, (
|
185 |
+
"tensor_fqn is a required argument in the sparsity config which"
|
186 |
+
"replaces previous `module` and [module]`fqn` arguments"
|
187 |
+
)
|
188 |
+
|
189 |
+
# populate all information from tensor_fqn
|
190 |
+
info_from_tensor_fqn = get_arg_info_from_tensor_fqn(model, tensor_fqn)
|
191 |
+
|
192 |
+
# check that whatever was put into local_args agrees with what was obtained
|
193 |
+
# from tensor_fqn
|
194 |
+
for key in info_from_tensor_fqn.keys():
|
195 |
+
if key in local_args:
|
196 |
+
assert (
|
197 |
+
info_from_tensor_fqn[key] == local_args[key]
|
198 |
+
or (
|
199 |
+
key == "tensor_fqn"
|
200 |
+
and "." + info_from_tensor_fqn[key] == local_args[key]
|
201 |
+
)
|
202 |
+
# info_from_tensor_fqn will chop leading '.' from tensor_fqn so ignore that
|
203 |
+
), (
|
204 |
+
f"Given both `{key}` and `tensor_fqn` in the config, it is expected them to agree!"
|
205 |
+
)
|
206 |
+
local_args.update(info_from_tensor_fqn)
|
207 |
+
self.groups.append(local_args)
|
208 |
+
self._prepare()
|
209 |
+
|
210 |
+
def _prepare(self, *args, **kwargs):
|
211 |
+
r"""Adds mask parametrization to the layer weight"""
|
212 |
+
for config in self.groups:
|
213 |
+
module = config["module"]
|
214 |
+
tensor_name = config["tensor_name"]
|
215 |
+
parametrization = config.get("parametrization", FakeSparsity)
|
216 |
+
mask = config.get("mask", torch.ones_like(getattr(module, tensor_name)))
|
217 |
+
self.state[config["tensor_fqn"]]["mask"] = mask
|
218 |
+
parametrize.register_parametrization(
|
219 |
+
module, tensor_name, parametrization(mask)
|
220 |
+
)
|
221 |
+
|
222 |
+
def squash_mask(
|
223 |
+
self,
|
224 |
+
params_to_keep: Optional[Tuple[str, ...]] = None,
|
225 |
+
params_to_keep_per_layer: Optional[Dict[str, Tuple[str, ...]]] = None,
|
226 |
+
*args,
|
227 |
+
**kwargs,
|
228 |
+
):
|
229 |
+
r"""Squashes the sparse masks into the appropriate tensors.
|
230 |
+
|
231 |
+
If either the `params_to_keep` or `params_to_keep_per_layer` is set,
|
232 |
+
the module will have a `sparse_params` dict attached to it.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
params_to_keep: List of keys to save in the module or a dict
|
236 |
+
representing the modules and keys that will have
|
237 |
+
sparsity parameters saved
|
238 |
+
params_to_keep_per_layer: Dict to specify the params that should be
|
239 |
+
saved for specific layers. The keys in the dict
|
240 |
+
should be the module fqn, while the values should
|
241 |
+
be a list of strings with the names of the variables
|
242 |
+
to save in the `sparse_params`
|
243 |
+
|
244 |
+
Examples:
|
245 |
+
>>> # xdoctest: +SKIP("locals are undefined")
|
246 |
+
>>> # Don't save any sparse params
|
247 |
+
>>> sparsifier.squash_mask()
|
248 |
+
>>> hasattr(model.submodule1, 'sparse_params')
|
249 |
+
False
|
250 |
+
|
251 |
+
>>> # Keep sparse params per layer
|
252 |
+
>>> sparsifier.squash_mask(
|
253 |
+
... params_to_keep_per_layer={
|
254 |
+
... 'submodule1.linear1': ('foo', 'bar'),
|
255 |
+
... 'submodule2.linear42': ('baz',)
|
256 |
+
... })
|
257 |
+
>>> print(model.submodule1.linear1.sparse_params)
|
258 |
+
{'foo': 42, 'bar': 24}
|
259 |
+
>>> print(model.submodule2.linear42.sparse_params)
|
260 |
+
{'baz': 0.1}
|
261 |
+
|
262 |
+
>>> # Keep sparse params for all layers
|
263 |
+
>>> sparsifier.squash_mask(params_to_keep=('foo', 'bar'))
|
264 |
+
>>> print(model.submodule1.linear1.sparse_params)
|
265 |
+
{'foo': 42, 'bar': 24}
|
266 |
+
>>> print(model.submodule2.linear42.sparse_params)
|
267 |
+
{'foo': 42, 'bar': 24}
|
268 |
+
|
269 |
+
>>> # Keep some sparse params for all layers, and specific ones for
|
270 |
+
>>> # some other layers
|
271 |
+
>>> sparsifier.squash_mask(
|
272 |
+
... params_to_keep=('foo', 'bar'),
|
273 |
+
... params_to_keep_per_layer={
|
274 |
+
... 'submodule2.linear42': ('baz',)
|
275 |
+
... })
|
276 |
+
>>> print(model.submodule1.linear1.sparse_params)
|
277 |
+
{'foo': 42, 'bar': 24}
|
278 |
+
>>> print(model.submodule2.linear42.sparse_params)
|
279 |
+
{'foo': 42, 'bar': 24, 'baz': 0.1}
|
280 |
+
"""
|
281 |
+
for config in self.groups:
|
282 |
+
module = config["module"]
|
283 |
+
tensor_name = config["tensor_name"]
|
284 |
+
parametrize.remove_parametrizations(
|
285 |
+
module, tensor_name, leave_parametrized=True
|
286 |
+
)
|
287 |
+
sparse_params = {}
|
288 |
+
if params_to_keep is not None:
|
289 |
+
global_params = {k: config[k] for k in params_to_keep}
|
290 |
+
sparse_params.update(global_params)
|
291 |
+
if params_to_keep_per_layer is not None:
|
292 |
+
params = params_to_keep_per_layer.get(config["module_fqn"], None)
|
293 |
+
if params is not None:
|
294 |
+
per_layer_params = {k: config[k] for k in params}
|
295 |
+
sparse_params.update(per_layer_params)
|
296 |
+
if sparse_params:
|
297 |
+
# TODO handle multiple tensor being quantized on a single module, where to store sparse_params?
|
298 |
+
module.sparse_params = sparse_params
|
299 |
+
|
300 |
+
def convert(
|
301 |
+
self,
|
302 |
+
module: nn.Module,
|
303 |
+
mapping: Optional[Dict[Type[nn.Module], Type[nn.Module]]] = None,
|
304 |
+
inplace: bool = False,
|
305 |
+
parameterization: Type[nn.Module] = FakeSparsity,
|
306 |
+
):
|
307 |
+
r"""Converts submodules in input module to a different module according to `mapping`
|
308 |
+
by calling `from_dense` method on the target module class
|
309 |
+
Args:
|
310 |
+
module: input module
|
311 |
+
mapping: a dictionary that maps from source module type to target
|
312 |
+
module type, can be overwritten to allow swapping user defined
|
313 |
+
Modules
|
314 |
+
inplace: carry out model transformations in-place, the original module
|
315 |
+
is mutated
|
316 |
+
"""
|
317 |
+
if mapping is None:
|
318 |
+
raise NotImplementedError("Need to auto generate mapping ")
|
319 |
+
if not inplace:
|
320 |
+
module = copy.deepcopy(module)
|
321 |
+
|
322 |
+
reassign = {}
|
323 |
+
for name, mod in module.named_children():
|
324 |
+
# leaf node
|
325 |
+
if (
|
326 |
+
module_contains_param(mod, parameterization)
|
327 |
+
and type_before_parametrizations(mod) in mapping
|
328 |
+
):
|
329 |
+
reassign[name] = swap_module(mod, mapping)
|
330 |
+
else:
|
331 |
+
# recurse
|
332 |
+
reassign[name] = self.convert(
|
333 |
+
mod,
|
334 |
+
mapping=mapping,
|
335 |
+
inplace=True,
|
336 |
+
parameterization=parameterization,
|
337 |
+
)
|
338 |
+
|
339 |
+
for key, value in reassign.items():
|
340 |
+
module._modules[key] = value
|
341 |
+
|
342 |
+
return module
|
343 |
+
|
344 |
+
def step(self, use_path: bool = True) -> None:
|
345 |
+
if not self.enable_mask_update:
|
346 |
+
return
|
347 |
+
with torch.no_grad():
|
348 |
+
for config in self.groups:
|
349 |
+
self.update_mask(**config)
|
350 |
+
|
351 |
+
@abc.abstractmethod
|
352 |
+
def update_mask(self, module: nn.Module, tensor_name: str, **kwargs):
|
353 |
+
pass
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/nearly_diagonal_sparsifier.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from . import base_sparsifier
|
4 |
+
|
5 |
+
|
6 |
+
class NearlyDiagonalSparsifier(base_sparsifier.BaseSparsifier):
|
7 |
+
r"""Nearly Diagonal Sparsifier
|
8 |
+
|
9 |
+
This sparsifier creates a nearly diagonal mask to be applied to the weight matrix.
|
10 |
+
Nearly Diagonal Matrix is a matrix that contains non-zero elements near the diagonal and the rest are zero.
|
11 |
+
An example of a nearly diagonal matrix with degree (or nearliness) 3 and 5 are follows respectively.
|
12 |
+
1 1 0 0 1 1 1 0
|
13 |
+
1 1 1 0 1 1 1 1
|
14 |
+
0 1 1 1 1 1 1 1
|
15 |
+
0 0 1 1 0 1 1 1
|
16 |
+
Note that a nearly diagonal matrix with degree 1 is just a matrix with main diagonal populated
|
17 |
+
|
18 |
+
This sparsifier is controlled by one variable:
|
19 |
+
1. `nearliness` defines the number of non-zero diagonal lines that are closest to the main diagonal.
|
20 |
+
Currently - supports only odd number
|
21 |
+
|
22 |
+
Note:
|
23 |
+
This can be accelerated (vectorized) once the Spdiagonal feature (PR: #78439) is landed or the banded matrix
|
24 |
+
feature is landed: https://stackoverflow.com/questions/52463972/generating-banded-matrices-using-numpy
|
25 |
+
|
26 |
+
Args:
|
27 |
+
nearliness: The degree of nearliness (default = 1)
|
28 |
+
|
29 |
+
"""
|
30 |
+
def __init__(self, nearliness: int = 1):
|
31 |
+
defaults = {'nearliness': nearliness}
|
32 |
+
super().__init__(defaults=defaults)
|
33 |
+
|
34 |
+
def update_mask(self, module, tensor_name, nearliness,
|
35 |
+
**kwargs):
|
36 |
+
mask = getattr(module.parametrizations, tensor_name)[0].mask
|
37 |
+
mask.data = torch.zeros_like(mask)
|
38 |
+
if nearliness <= 0:
|
39 |
+
return
|
40 |
+
|
41 |
+
tensor = getattr(module, tensor_name)
|
42 |
+
height, width = tensor.shape
|
43 |
+
|
44 |
+
if nearliness % 2 == 0:
|
45 |
+
raise ValueError("nearliness can only be an odd number")
|
46 |
+
dist_to_diagonal = nearliness // 2
|
47 |
+
# check
|
48 |
+
if dist_to_diagonal >= min(height, width):
|
49 |
+
raise ValueError("nearliness cannot be larger than the dimensions of tensor.")
|
50 |
+
|
51 |
+
for row in range(0, height):
|
52 |
+
# Bounds of entries that needs to be set to 1
|
53 |
+
low = max(0, row - dist_to_diagonal)
|
54 |
+
high = min(width, row + dist_to_diagonal + 1)
|
55 |
+
mask[row, low:high].fill_(1)
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/utils.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional, Type
|
2 |
+
from torch.nn.utils.parametrize import type_before_parametrizations, is_parametrized
|
3 |
+
from itertools import chain
|
4 |
+
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"module_contains_param",
|
9 |
+
"swap_module",
|
10 |
+
"module_to_fqn",
|
11 |
+
"fqn_to_module",
|
12 |
+
"get_arg_info_from_tensor_fqn",
|
13 |
+
"FakeSparsity",
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def module_contains_param(module: nn.Module, parametrization: Type[nn.Module]) -> bool:
|
18 |
+
if is_parametrized(module):
|
19 |
+
# see if any of the module tensors have a parametriztion attached that matches the one passed in
|
20 |
+
return any(
|
21 |
+
any(isinstance(param, parametrization) for param in param_list)
|
22 |
+
for key, param_list in module.parametrizations.items() # type: ignore[union-attr,operator]
|
23 |
+
)
|
24 |
+
return False
|
25 |
+
|
26 |
+
|
27 |
+
def swap_module(
|
28 |
+
mod: nn.Module, mapping: Dict[Type[nn.Module], Type[nn.Module]]
|
29 |
+
) -> nn.Module:
|
30 |
+
r"""Swaps the module using from_dense according to the mapping passed in.
|
31 |
+
Args:
|
32 |
+
mod: input module
|
33 |
+
mapping: a dictionary that maps from nn module to sparse nn module
|
34 |
+
Return:
|
35 |
+
The corresponding sparse module of `mod` according to mapping, created using from_dense
|
36 |
+
"""
|
37 |
+
if type_before_parametrizations(mod) in mapping:
|
38 |
+
sparse_mod = mapping[type_before_parametrizations(mod)]
|
39 |
+
|
40 |
+
# TODO Fix this typing, as Type[Module] has no attribute "from_dense"
|
41 |
+
new_mod = sparse_mod.from_dense(mod) # type: ignore[attr-defined]
|
42 |
+
|
43 |
+
# Preserve module's pre forward hooks. They'll be called on quantized input
|
44 |
+
for pre_hook_fn in mod._forward_pre_hooks.values():
|
45 |
+
new_mod.register_forward_pre_hook(pre_hook_fn)
|
46 |
+
# Preserve module's post forward hooks except _observer_forward_hook
|
47 |
+
# After convert they'll work with quantized output
|
48 |
+
for hook_fn in mod._forward_hooks.values():
|
49 |
+
new_mod.register_forward_hook(hook_fn)
|
50 |
+
|
51 |
+
# respect device affinity when swapping modules
|
52 |
+
devices = {p.device for p in chain(mod.parameters(), mod.buffers())}
|
53 |
+
assert len(devices) <= 1, (
|
54 |
+
f"swap_module only works with cpu or single-device CUDA modules, but got devices {devices}"
|
55 |
+
)
|
56 |
+
device = next(iter(devices)) if len(devices) > 0 else None
|
57 |
+
if device:
|
58 |
+
new_mod.to(device)
|
59 |
+
|
60 |
+
return new_mod
|
61 |
+
|
62 |
+
else:
|
63 |
+
return mod
|
64 |
+
|
65 |
+
|
66 |
+
def module_to_fqn(
|
67 |
+
model: nn.Module, module: nn.Module, prefix: str = ""
|
68 |
+
) -> Optional[str]:
|
69 |
+
"""
|
70 |
+
Returns the fqn for a module or None if module not a descendent of model.
|
71 |
+
"""
|
72 |
+
if module is model:
|
73 |
+
return ""
|
74 |
+
for name, child in model.named_children():
|
75 |
+
fqn = module_to_fqn(child, module, ".")
|
76 |
+
if isinstance(fqn, str):
|
77 |
+
return prefix + name + fqn
|
78 |
+
return None
|
79 |
+
|
80 |
+
|
81 |
+
def fqn_to_module(model: Optional[nn.Module], path: str) -> Optional[nn.Module]:
|
82 |
+
"""
|
83 |
+
Given an fqn, returns the corresponding module or tensor or None if the fqn given by `path`
|
84 |
+
doesn't correspond to anything. Similar to model.get_submodule(path) but works for tensors.
|
85 |
+
"""
|
86 |
+
if path != "":
|
87 |
+
for name in path.split("."):
|
88 |
+
model = getattr(model, name, None)
|
89 |
+
return model
|
90 |
+
|
91 |
+
|
92 |
+
def get_arg_info_from_tensor_fqn(model: nn.Module, tensor_fqn: str) -> Dict[str, Any]:
|
93 |
+
"""
|
94 |
+
Uses tensor_fqn to obtain a dict containing module_fqn, module and tensor_name
|
95 |
+
"""
|
96 |
+
# string manip to split tensor_fqn into module_fqn and tensor_name
|
97 |
+
# if tensor_fqn is 'weight' then module_fqn and tensor_name are '' and 'weight'
|
98 |
+
# if tensor_fqn is 'linear.weight' then module_fqn and tensor_name are 'linear' and 'weight'
|
99 |
+
tensor_name = tensor_fqn.split(".")[-1]
|
100 |
+
module_fqn = tensor_fqn[: -len(tensor_name) - ("." in tensor_fqn)]
|
101 |
+
|
102 |
+
module = fqn_to_module(model, module_fqn)
|
103 |
+
|
104 |
+
return {
|
105 |
+
"module_fqn": module_fqn,
|
106 |
+
"module": module,
|
107 |
+
"tensor_name": tensor_name,
|
108 |
+
"tensor_fqn": tensor_fqn,
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
# Parametrizations
|
113 |
+
class FakeSparsity(nn.Module):
|
114 |
+
r"""Parametrization for the weights. Should be attached to the 'weight' or
|
115 |
+
any other parameter that requires a mask applied to it.
|
116 |
+
|
117 |
+
Note::
|
118 |
+
|
119 |
+
Once the mask is passed, the variable should not change the id. The
|
120 |
+
contents of the mask can change, but the mask reference itself should
|
121 |
+
not.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, mask):
|
125 |
+
super().__init__()
|
126 |
+
self.register_buffer("mask", mask)
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
assert self.mask.shape == x.shape
|
130 |
+
return self.mask * x
|
131 |
+
|
132 |
+
def state_dict(self, *args, **kwargs):
|
133 |
+
# We don't want to let the parametrizations to save the mask.
|
134 |
+
# That way we make sure that the linear module doesn't store the masks
|
135 |
+
# alongside their parametrizations.
|
136 |
+
return {}
|
venv/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/weight_norm_sparsifier.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
from typing import Callable, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from .base_sparsifier import BaseSparsifier
|
8 |
+
import operator
|
9 |
+
|
10 |
+
__all__ = ["WeightNormSparsifier"]
|
11 |
+
|
12 |
+
def _flat_idx_to_2d(idx, shape):
|
13 |
+
rows = idx // shape[1]
|
14 |
+
cols = idx % shape[1]
|
15 |
+
return rows, cols
|
16 |
+
|
17 |
+
class WeightNormSparsifier(BaseSparsifier):
|
18 |
+
r"""Weight-Norm Sparsifier
|
19 |
+
|
20 |
+
This sparsifier computes the norm of every sparse block and "zeroes-out" the
|
21 |
+
ones with the lowest norm. The level of sparsity defines how many of the
|
22 |
+
blocks is removed.
|
23 |
+
|
24 |
+
This sparsifier is controlled by three variables:
|
25 |
+
1. `sparsity_level` defines the number of *sparse blocks* that are zeroed-out
|
26 |
+
2. `sparse_block_shape` defines the shape of the sparse blocks. Note that
|
27 |
+
the sparse blocks originate at the zero-index of the tensor.
|
28 |
+
3. `zeros_per_block` is the number of zeros that we are expecting in each
|
29 |
+
sparse block. By default we assume that all elements within a block are
|
30 |
+
zeroed-out. However, setting this variable sets the target number of
|
31 |
+
zeros per block. The zeros within each block are chosen as the *smallest
|
32 |
+
absolute values*.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
|
36 |
+
sparsity_level: The target level of sparsity
|
37 |
+
sparse_block_shape: The shape of a sparse block (see note below)
|
38 |
+
zeros_per_block: Number of zeros in a sparse block
|
39 |
+
norm: Norm to use. Could be either `int` or a callable.
|
40 |
+
If `int`, only L1 and L2 are implemented.
|
41 |
+
|
42 |
+
Note::
|
43 |
+
The `sparse_block_shape` is tuple representing (block_ROWS, block_COLS),
|
44 |
+
irrespective of what the rows / cols mean in the data tensor. That means,
|
45 |
+
if you were to sparsify a weight tensor in the nn.Linear, which has a
|
46 |
+
weight shape `(Cout, Cin)`, the `block_ROWS` would refer to the output
|
47 |
+
channels, while the `block_COLS` would refer to the input channels.
|
48 |
+
|
49 |
+
Note::
|
50 |
+
All arguments to the WeightNormSparsifier constructor are "default"
|
51 |
+
arguments and could be overriden by the configuration provided in the
|
52 |
+
`prepare` step.
|
53 |
+
"""
|
54 |
+
def __init__(self,
|
55 |
+
sparsity_level: float = 0.5,
|
56 |
+
sparse_block_shape: Tuple[int, int] = (1, 4),
|
57 |
+
zeros_per_block: Optional[int] = None,
|
58 |
+
norm: Optional[Union[Callable, int]] = None):
|
59 |
+
if zeros_per_block is None:
|
60 |
+
zeros_per_block = reduce(operator.mul, sparse_block_shape)
|
61 |
+
defaults = {
|
62 |
+
"sparsity_level": sparsity_level,
|
63 |
+
"sparse_block_shape": sparse_block_shape,
|
64 |
+
"zeros_per_block": zeros_per_block,
|
65 |
+
}
|
66 |
+
if norm is None:
|
67 |
+
norm = 2
|
68 |
+
if callable(norm):
|
69 |
+
self.norm_fn = norm
|
70 |
+
elif norm == 1:
|
71 |
+
self.norm_fn = lambda T: T.abs()
|
72 |
+
elif norm == 2:
|
73 |
+
self.norm_fn = lambda T: T * T
|
74 |
+
else:
|
75 |
+
raise NotImplementedError(f"L-{norm} is not yet implemented.")
|
76 |
+
super().__init__(defaults=defaults)
|
77 |
+
|
78 |
+
def _scatter_fold_block_mask(self, output_shape, dim, indices, block_shape,
|
79 |
+
mask=None, input_shape=None, device=None):
|
80 |
+
r"""Creates patches of size `block_shape` after scattering the indices."""
|
81 |
+
if mask is None:
|
82 |
+
assert input_shape is not None
|
83 |
+
mask = torch.ones(input_shape, device=device)
|
84 |
+
mask.scatter_(dim=dim, index=indices, value=0)
|
85 |
+
mask.data = F.fold(mask, output_size=output_shape, kernel_size=block_shape, stride=block_shape)
|
86 |
+
return mask
|
87 |
+
|
88 |
+
def _make_tensor_mask(self, data, input_shape, sparsity_level, sparse_block_shape, mask=None):
|
89 |
+
r"""Creates a tensor-level mask.
|
90 |
+
|
91 |
+
Tensor-level mask is described as a mask, where the granularity of sparsification of the
|
92 |
+
smallest patch is the sparse_block_shape. That means, that for a given mask and a
|
93 |
+
sparse_block_shape, the smallest "patch" of zeros/ones could be the sparse_block_shape.
|
94 |
+
|
95 |
+
In this context, `sparsity_level` describes the fraction of sparse patches.
|
96 |
+
"""
|
97 |
+
h, w = data.shape[-2:]
|
98 |
+
block_h, block_w = sparse_block_shape
|
99 |
+
dh = (block_h - h % block_h) % block_h
|
100 |
+
dw = (block_w - w % block_w) % block_w
|
101 |
+
|
102 |
+
if mask is None:
|
103 |
+
mask = torch.ones(h + dh, w + dw, device=data.device)
|
104 |
+
|
105 |
+
if sparsity_level >= 1.0:
|
106 |
+
mask.data = torch.zeros_like(mask)
|
107 |
+
return mask
|
108 |
+
elif sparsity_level <= 0.0:
|
109 |
+
mask.data = torch.ones_like(mask)
|
110 |
+
return mask
|
111 |
+
|
112 |
+
values_per_block = reduce(operator.mul, sparse_block_shape)
|
113 |
+
if values_per_block > 1:
|
114 |
+
# Reduce the data
|
115 |
+
data = F.avg_pool2d(
|
116 |
+
data[None, None, :], kernel_size=sparse_block_shape, stride=sparse_block_shape, ceil_mode=True
|
117 |
+
)
|
118 |
+
data = data.flatten()
|
119 |
+
num_blocks = len(data)
|
120 |
+
|
121 |
+
data = data.repeat(1, values_per_block, 1)
|
122 |
+
|
123 |
+
threshold_idx = int(round(sparsity_level * num_blocks))
|
124 |
+
threshold_idx = max(0, min(num_blocks - 1, threshold_idx)) # Sanity check
|
125 |
+
_, sorted_idx = torch.topk(data, k=threshold_idx, dim=2, largest=False)
|
126 |
+
|
127 |
+
# Temp reshape for mask
|
128 |
+
mask_reshape = mask.reshape(data.shape) # data might be reshaped
|
129 |
+
self._scatter_fold_block_mask(
|
130 |
+
dim=2, output_shape=(h + dh, w + dw),
|
131 |
+
indices=sorted_idx, block_shape=sparse_block_shape, mask=mask_reshape
|
132 |
+
)
|
133 |
+
mask.data = mask_reshape.squeeze().reshape(mask.shape)[:h, :w].contiguous()
|
134 |
+
return mask
|
135 |
+
|
136 |
+
def _make_block_mask(self, data, sparse_block_shape, zeros_per_block, mask=None):
|
137 |
+
r"""Creates a block-level mask.
|
138 |
+
|
139 |
+
Block-level mask is described as a mask, where the granularity of sparsification of the
|
140 |
+
largest patch is the sparse_block_shape. That means that for a given mask and a
|
141 |
+
sparse_block_shape, the sparsity is computed only within a patch of a size sparse_block_shape.
|
142 |
+
|
143 |
+
In this context the `zeros_per_block` describes the number of zeroed-out elements within a patch.
|
144 |
+
"""
|
145 |
+
h, w = data.shape[-2:]
|
146 |
+
block_h, block_w = sparse_block_shape
|
147 |
+
dh = (block_h - h % block_h) % block_h
|
148 |
+
dw = (block_w - w % block_w) % block_w
|
149 |
+
values_per_block = reduce(operator.mul, sparse_block_shape)
|
150 |
+
|
151 |
+
if mask is None:
|
152 |
+
mask = torch.ones((h + dh, w + dw), device=data.device)
|
153 |
+
|
154 |
+
if values_per_block == zeros_per_block:
|
155 |
+
# Everything should be sparsified
|
156 |
+
mask.data = torch.zeros_like(mask)
|
157 |
+
return mask
|
158 |
+
|
159 |
+
# create a new padded tensor like data (to match the block_shape)
|
160 |
+
padded_data = torch.ones(h + dh, w + dw, dtype=data.dtype, device=data.device)
|
161 |
+
padded_data.fill_(torch.nan)
|
162 |
+
padded_data[:h, :w] = data
|
163 |
+
unfolded_data = F.unfold(padded_data[None, None, :], kernel_size=sparse_block_shape, stride=sparse_block_shape)
|
164 |
+
|
165 |
+
# Temp reshape for mask
|
166 |
+
mask_reshape = mask.reshape(unfolded_data.shape)
|
167 |
+
_, sorted_idx = torch.topk(unfolded_data, k=zeros_per_block, dim=1, largest=False)
|
168 |
+
|
169 |
+
self._scatter_fold_block_mask(
|
170 |
+
dim=1, indices=sorted_idx, output_shape=padded_data.shape, block_shape=sparse_block_shape, mask=mask_reshape
|
171 |
+
)
|
172 |
+
|
173 |
+
mask.data = mask_reshape.squeeze().reshape(mask.shape).contiguous()
|
174 |
+
return mask
|
175 |
+
|
176 |
+
def update_mask(self, module, tensor_name, sparsity_level, sparse_block_shape,
|
177 |
+
zeros_per_block, **kwargs):
|
178 |
+
values_per_block = reduce(operator.mul, sparse_block_shape)
|
179 |
+
if zeros_per_block > values_per_block:
|
180 |
+
raise ValueError(
|
181 |
+
"Number of zeros per block cannot be more than the total number of elements in that block."
|
182 |
+
)
|
183 |
+
if zeros_per_block < 0:
|
184 |
+
raise ValueError("Number of zeros per block should be positive.")
|
185 |
+
|
186 |
+
mask = getattr(module.parametrizations, tensor_name)[0].mask
|
187 |
+
if sparsity_level <= 0 or zeros_per_block == 0:
|
188 |
+
mask.data = torch.ones_like(mask)
|
189 |
+
elif sparsity_level >= 1.0 and (zeros_per_block == values_per_block):
|
190 |
+
mask.data = torch.zeros_like(mask)
|
191 |
+
else:
|
192 |
+
ww = self.norm_fn(getattr(module, tensor_name))
|
193 |
+
tensor_mask = self._make_tensor_mask(
|
194 |
+
data=ww, input_shape=ww.shape, sparsity_level=sparsity_level, sparse_block_shape=sparse_block_shape
|
195 |
+
)
|
196 |
+
if values_per_block != zeros_per_block:
|
197 |
+
block_mask = self._make_block_mask(data=ww, sparse_block_shape=sparse_block_shape,
|
198 |
+
zeros_per_block=zeros_per_block)
|
199 |
+
tensor_mask = torch.logical_or(tensor_mask, block_mask)
|
200 |
+
mask.data = tensor_mask
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (279 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__pycache__/_decomposed.cpython-310.pyc
ADDED
Binary file (26.7 kB). View file
|
|