applied-ai-018 commited on
Commit
c50def9
·
verified ·
1 Parent(s): 32ccbe6

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/15.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step120/zero/16.post_attention_layernorm.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step120/zero/16.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step120/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step120/zero/9.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step120/zero/9.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim.h +30 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_native.h +23 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h +91 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_native.h +40 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log.h +44 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sdp_choice_ops.h +28 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sgd_native.h +26 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd.h +39 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_from_padded_ops.h +39 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_compositeexplicitautograd_dispatch.h +25 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_unsafe_ops.h +28 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h +21 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_native.h +23 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_semi_structured_native.h +21 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact3d_backward_meta.h +27 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_bsr_tensor_args_compositeimplicitautograd_dispatch.h +23 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/addr_cpu_dispatch.h +25 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/arcsin.h +44 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_meta.h +27 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_native.h +28 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_or_ops.h +105 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_backward_cuda_dispatch.h +24 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_backward_overrideable.h +91 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cross.h +39 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h +24 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h +30 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill_compositeexplicitautograd_dispatch.h +28 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_compositeexplicitautograd_dispatch.h +26 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward.h +39 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_jvp_cpu_dispatch.h +23 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_jvp_ops.h +39 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_meta_dispatch.h +26 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_distributed_ops.h +28 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_ops.h +28 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/kthvalue_cuda_dispatch.h +24 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/lcm_meta_dispatch.h +26 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_solve_meta.h +27 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lu_solve_cuda_dispatch.h +25 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_softmax_compositeexplicitautograd_dispatch.h +24 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/masked_scatter_meta_dispatch.h +23 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool3d_cuda_dispatch.h +28 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear.h +39 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_max_pool2d_native.h +22 -0
ckpts/universal/global_step120/zero/15.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b26a2e00056393a18595f7e1003eb2603bb86f57d5ebd9a4821a0e0d6f0634b
3
+ size 33555533
ckpts/universal/global_step120/zero/16.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:656b0990fa457c6575f05f78a4496f7ecabc0c812a4538260a7a7ad770d6ef8a
3
+ size 9372
ckpts/universal/global_step120/zero/16.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:044c68d1994a465223c1da6204b8e229ce64e9954308d8bb84b203b816c70b0d
3
+ size 9387
ckpts/universal/global_step120/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d342dc4d3d3899427cf9a0047ebac8305ee3a105ad2547a44e0ca3430547ae61
3
+ size 33555627
ckpts/universal/global_step120/zero/9.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:552f1e5a74e3abf39d2c4d21f46acbc70b475ae2c998f3979218875377a91c9e
3
+ size 33555612
ckpts/universal/global_step120/zero/9.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e19259063a8a6cdd3a0a7927058227593f71aea77625842e6e78f40922899613
3
+ size 33555627
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_add_batch_dim_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor
26
+ inline at::Tensor _add_batch_dim(const at::Tensor & self, int64_t batch_dim, int64_t level) {
27
+ return at::_ops::_add_batch_dim::call(self, batch_dim, level);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _cholesky_solve_helper_out(const at::Tensor & self, const at::Tensor & A, bool upper, at::Tensor & out);
20
+ TORCH_API at::Tensor _cholesky_solve_helper_cpu(const at::Tensor & self, const at::Tensor & A, bool upper);
21
+ TORCH_API at::Tensor _cholesky_solve_helper_cuda(const at::Tensor & self, const at::Tensor & A, bool upper);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_cudnn_rnn_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
27
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
32
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
33
+ }
34
+ }
35
+
36
+ // aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
38
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
43
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
44
+ }
45
+ }
46
+
47
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
48
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
49
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
54
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
55
+ }
56
+ }
57
+
58
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
59
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
60
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
65
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
66
+ }
67
+ }
68
+
69
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
70
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
71
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
76
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
77
+ }
78
+ }
79
+
80
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
81
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
82
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
87
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_native.h ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API void _foreach_div_Scalar_out(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
20
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_scalar_kernel_slow(at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void foreach_tensor_div_scalar_kernel_slow_(at::TensorList self, const at::Scalar & scalar);
22
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_scalar_kernel_cuda(at::TensorList self, const at::Scalar & scalar);
23
+ TORCH_API void foreach_tensor_div_scalar_kernel_cuda_(at::TensorList self, const at::Scalar & scalar);
24
+ TORCH_API void _foreach_div_List_out(at::TensorList self, at::TensorList other, at::TensorList out);
25
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_list_kernel_slow(at::TensorList self, at::TensorList other);
26
+ TORCH_API void foreach_tensor_div_list_kernel_slow_(at::TensorList self, at::TensorList other);
27
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_list_kernel_cuda(at::TensorList self, at::TensorList other);
28
+ TORCH_API void foreach_tensor_div_list_kernel_cuda_(at::TensorList self, at::TensorList other);
29
+ TORCH_API void _foreach_div_ScalarList_out(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
30
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_scalarlist_kernel_slow(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
31
+ TORCH_API void foreach_tensor_div_scalarlist_kernel_slow_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
32
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_scalarlist_kernel_cuda(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
33
+ TORCH_API void foreach_tensor_div_scalarlist_kernel_cuda_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
34
+ TORCH_API void _foreach_div_Tensor_out(at::TensorList self, const at::Tensor & other, at::TensorList out);
35
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_tensor_kernel_slow(at::TensorList self, const at::Tensor & other);
36
+ TORCH_API void foreach_tensor_div_tensor_kernel_slow_(at::TensorList self, const at::Tensor & other);
37
+ TORCH_API ::std::vector<at::Tensor> foreach_tensor_div_tensor_kernel_cuda(at::TensorList self, const at::Tensor & other);
38
+ TORCH_API void foreach_tensor_div_tensor_kernel_cuda_(at::TensorList self, const at::Tensor & other);
39
+ } // namespace native
40
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_log_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_log(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_log(at::TensorList self) {
27
+ return at::_ops::_foreach_log::call(self);
28
+ }
29
+
30
+ // aten::_foreach_log_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_log_(at::TensorList self) {
32
+ return at::_ops::_foreach_log_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_log.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_log_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_log_out::call(self, out);
38
+ }
39
+ // aten::_foreach_log.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_log_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_log_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sdp_choice_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _fused_sdp_choice {
18
+ using schema = int64_t (const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, double, bool, c10::optional<double>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_sdp_choice")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_sdp_choice(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> int")
24
+ static int64_t call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & attn_mask, double dropout_p, bool is_causal, c10::optional<double> scale);
25
+ static int64_t redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & attn_mask, double dropout_p, bool is_causal, c10::optional<double> scale);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sgd_native.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_sgd(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
20
+ TORCH_API void _fused_sgd_out(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
21
+ TORCH_API void _fused_sgd_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
22
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_sgd(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, const at::Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
23
+ TORCH_API void _fused_sgd_tensor_lr_out(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, const at::Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
24
+ TORCH_API void _fused_sgd_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList momentum_buffer_list, double weight_decay, double momentum, const at::Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
25
+ } // namespace native
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_linalg_svd_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _linalg_svd(const at::Tensor & A, bool full_matrices=false, bool compute_uv=true, c10::optional<c10::string_view> driver=c10::nullopt) {
27
+ return at::_ops::_linalg_svd::call(A, full_matrices, compute_uv, driver);
28
+ }
29
+
30
+ // aten::_linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _linalg_svd_out(at::Tensor & U, at::Tensor & S, at::Tensor & Vh, const at::Tensor & A, bool full_matrices=false, bool compute_uv=true, c10::optional<c10::string_view> driver=c10::nullopt) {
32
+ return at::_ops::_linalg_svd_U::call(A, full_matrices, compute_uv, driver, U, S, Vh);
33
+ }
34
+ // aten::_linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _linalg_svd_outf(const at::Tensor & A, bool full_matrices, bool compute_uv, c10::optional<c10::string_view> driver, at::Tensor & U, at::Tensor & S, at::Tensor & Vh) {
36
+ return at::_ops::_linalg_svd_U::call(A, full_matrices, compute_uv, driver, U, S, Vh);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_from_padded_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _nested_from_padded {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_from_padded")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & padded, const at::Tensor & cpu_nested_shape_example, bool fuse_transform_0213);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & padded, const at::Tensor & cpu_nested_shape_example, bool fuse_transform_0213);
26
+ };
27
+
28
+ struct TORCH_API _nested_from_padded_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_from_padded")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_from_padded.out(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & padded, const at::Tensor & cpu_nested_shape_example, bool fuse_transform_0213, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & padded, const at::Tensor & cpu_nested_shape_example, bool fuse_transform_0213, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _new_zeros_with_same_feature_meta(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims=0);
21
+ TORCH_API at::Tensor & _new_zeros_with_same_feature_meta_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims=0);
22
+ TORCH_API at::Tensor & _new_zeros_with_same_feature_meta_outf(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_unsafe_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _sparse_compressed_tensor_unsafe {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_compressed_tensor_unsafe")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _sparse_mm_reduce_impl_backward_sparse_csr_cpu(const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _standard_gamma_out(const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out);
20
+ TORCH_API at::Tensor _s_gamma_cpu(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt);
21
+ TORCH_API at::Tensor _s_gamma_cuda(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_semi_structured_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _to_sparse_semi_structured(const at::Tensor & dense);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact3d_backward_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured__upsample_nearest_exact3d_backward : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & grad_output, at::ArrayRef<int64_t> output_size, at::ArrayRef<int64_t> input_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_bsr_tensor_args_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API void _validate_sparse_bsr_tensor_args(const at::Tensor & crow_indices, const at::Tensor & col_indices, const at::Tensor & values, at::IntArrayRef size);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/addr_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor addr(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
21
+ TORCH_API at::Tensor & addr_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
22
+ TORCH_API at::Tensor & addr_outf(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arcsin.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/arcsin_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::arcsin(Tensor self) -> Tensor
26
+ inline at::Tensor arcsin(const at::Tensor & self) {
27
+ return at::_ops::arcsin::call(self);
28
+ }
29
+
30
+ // aten::arcsin_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & arcsin_(at::Tensor & self) {
32
+ return at::_ops::arcsin_::call(self);
33
+ }
34
+
35
+ // aten::arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & arcsin_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::arcsin_out::call(self, out);
38
+ }
39
+ // aten::arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & arcsin_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::arcsin_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_bitwise_left_shift_Tensor : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, const at::Tensor & other);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/bitwise_left_shift_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_bitwise_left_shift_out : public at::meta::structured_bitwise_left_shift_Tensor {
20
+ void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor bitwise_left_shift(const at::Tensor & self, const at::Scalar & other);
23
+ TORCH_API at::Tensor & bitwise_left_shift_out(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
24
+ TORCH_API at::Tensor & bitwise_left_shift_(at::Tensor & self, const at::Scalar & other);
25
+ TORCH_API at::Tensor bitwise_left_shift(const at::Scalar & self, const at::Tensor & other);
26
+ TORCH_API at::Tensor & bitwise_left_shift_Scalar_Tensor_out(const at::Scalar & self, const at::Tensor & other, at::Tensor & out);
27
+ } // namespace native
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_or_ops.h ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API bitwise_or_Tensor_out {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API bitwise_or_Scalar_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
37
+ };
38
+
39
+ struct TORCH_API bitwise_or_Scalar {
40
+ using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor")
46
+ static at::Tensor call(const at::Tensor & self, const at::Scalar & other);
47
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other);
48
+ };
49
+
50
+ struct TORCH_API bitwise_or_Scalar_Tensor {
51
+ using schema = at::Tensor (const at::Scalar &, const at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_Tensor")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> Tensor")
57
+ static at::Tensor call(const at::Scalar & self, const at::Tensor & other);
58
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & other);
59
+ };
60
+
61
+ struct TORCH_API bitwise_or_Tensor {
62
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor")
68
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
69
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
70
+ };
71
+
72
+ struct TORCH_API bitwise_or__Scalar {
73
+ using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or_")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)")
79
+ static at::Tensor & call(at::Tensor & self, const at::Scalar & other);
80
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other);
81
+ };
82
+
83
+ struct TORCH_API bitwise_or__Tensor {
84
+ using schema = at::Tensor & (at::Tensor &, const at::Tensor &);
85
+ using ptr_schema = schema*;
86
+ // See Note [static constexpr char* members for windows NVCC]
87
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or_")
88
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
89
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)")
90
+ static at::Tensor & call(at::Tensor & self, const at::Tensor & other);
91
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other);
92
+ };
93
+
94
+ struct TORCH_API bitwise_or_Scalar_Tensor_out {
95
+ using schema = at::Tensor & (const at::Scalar &, const at::Tensor &, at::Tensor &);
96
+ using ptr_schema = schema*;
97
+ // See Note [static constexpr char* members for windows NVCC]
98
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bitwise_or")
99
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_Tensor_out")
100
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bitwise_or.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)")
101
+ static at::Tensor & call(const at::Scalar & self, const at::Tensor & other, at::Tensor & out);
102
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & other, at::Tensor & out);
103
+ };
104
+
105
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::OptionalIntArrayRef bias_sizes, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward_symint(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::OptionalSymIntArrayRef bias_sizes, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_backward_overrideable.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/convolution_backward_overrideable_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward_overrideable(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
27
+ return at::_ops::convolution_backward_overrideable::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward_overrideable(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
32
+ return at::_ops::convolution_backward_overrideable::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask);
33
+ }
34
+ }
35
+
36
+ // aten::convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward_overrideable_symint(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
38
+ return at::_ops::convolution_backward_overrideable::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> convolution_backward_overrideable(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
43
+ return at::_ops::convolution_backward_overrideable::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask);
44
+ }
45
+ }
46
+
47
+ // aten::convolution_backward_overrideable.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
48
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
49
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask, out0, out1, out2);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
54
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask, out0, out1, out2);
55
+ }
56
+ }
57
+
58
+ // aten::convolution_backward_overrideable.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
59
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
60
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask, out0, out1, out2);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
65
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask, out0, out1, out2);
66
+ }
67
+ }
68
+
69
+ // aten::convolution_backward_overrideable.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
70
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
71
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask, out0, out1, out2);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
76
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask, out0, out1, out2);
77
+ }
78
+ }
79
+
80
+ // aten::convolution_backward_overrideable.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
81
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_symint_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
82
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask, out0, out1, out2);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> convolution_backward_overrideable_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
87
+ return at::_ops::convolution_backward_overrideable_out::call(grad_output, input, weight, stride, padding, dilation, transposed, output_padding, groups, output_mask, out0, out1, out2);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cross.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/cross_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & cross_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, c10::optional<int64_t> dim=c10::nullopt) {
27
+ return at::_ops::cross_out::call(self, other, dim, out);
28
+ }
29
+ // aten::cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & cross_outf(const at::Tensor & self, const at::Tensor & other, c10::optional<int64_t> dim, at::Tensor & out) {
31
+ return at::_ops::cross_out::call(self, other, dim, out);
32
+ }
33
+
34
+ // aten::cross(Tensor self, Tensor other, int? dim=None) -> Tensor
35
+ inline at::Tensor cross(const at::Tensor & self, const at::Tensor & other, c10::optional<int64_t> dim=c10::nullopt) {
36
+ return at::_ops::cross::call(self, other, dim);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor cross_entropy_loss(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, int64_t ignore_index=-100, double label_smoothing=0.0);
21
+ TORCH_API at::Tensor cross_entropy_loss_symint(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, c10::SymInt ignore_index=-100, double label_smoothing=0.0);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
26
+ inline at::Tensor fbgemm_linear_fp16_weight_fp32_activation(const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias) {
27
+ return at::_ops::fbgemm_linear_fp16_weight_fp32_activation::call(input, packed_weight, bias);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor fill(const at::Tensor & self, const at::Scalar & value);
21
+ TORCH_API at::Tensor & fill_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & value);
22
+ TORCH_API at::Tensor & fill_outf(const at::Tensor & self, const at::Scalar & value, at::Tensor & out);
23
+ TORCH_API at::Tensor fill(const at::Tensor & self, const at::Tensor & value);
24
+ TORCH_API at::Tensor & fill_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & value);
25
+ TORCH_API at::Tensor & fill_outf(const at::Tensor & self, const at::Tensor & value, at::Tensor & out);
26
+
27
+ } // namespace compositeexplicitautograd
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmod_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor fmod(const at::Tensor & self, const at::Scalar & other);
21
+ TORCH_API at::Tensor & fmod_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other);
22
+ TORCH_API at::Tensor & fmod_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & fmod_(at::Tensor & self, const at::Scalar & other);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fractional_max_pool3d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fractional_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & fractional_max_pool3d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices) {
27
+ return at::_ops::fractional_max_pool3d_backward_grad_input::call(grad_output, self, kernel_size, output_size, indices, grad_input);
28
+ }
29
+ // aten::fractional_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
30
+ inline at::Tensor & fractional_max_pool3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input) {
31
+ return at::_ops::fractional_max_pool3d_backward_grad_input::call(grad_output, self, kernel_size, output_size, indices, grad_input);
32
+ }
33
+
34
+ // aten::fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor
35
+ inline at::Tensor fractional_max_pool3d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices) {
36
+ return at::_ops::fractional_max_pool3d_backward::call(grad_output, self, kernel_size, output_size, indices);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_jvp_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor glu_jvp(const at::Tensor & glu, const at::Tensor & x, const at::Tensor & dx, int64_t dim);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_jvp_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API glu_jvp {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::glu_jvp")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "glu_jvp(Tensor glu, Tensor x, Tensor dx, int dim) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & glu, const at::Tensor & x, const at::Tensor & dx, int64_t dim);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & glu, const at::Tensor & x, const at::Tensor & dx, int64_t dim);
26
+ };
27
+
28
+ struct TORCH_API glu_jvp_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::glu_jvp")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "glu_jvp.out(Tensor glu, Tensor x, Tensor dx, int dim, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & glu, const at::Tensor & x, const at::Tensor & dx, int64_t dim, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & glu, const at::Tensor & x, const at::Tensor & dx, int64_t dim, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor index_copy(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
21
+ TORCH_API at::Tensor & index_copy_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
22
+ TORCH_API at::Tensor & index_copy_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, at::Tensor & out);
23
+ TORCH_API at::Tensor & index_copy_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
24
+
25
+ } // namespace meta
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_distributed_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API is_distributed {
18
+ using schema = bool (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::is_distributed")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "is_distributed(Tensor self) -> bool")
24
+ static bool call(const at::Tensor & self);
25
+ static bool redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API isreal {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::isreal")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "isreal(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/kthvalue_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> kthvalue_out(at::Tensor & values, at::Tensor & indices, const at::Tensor & self, int64_t k, int64_t dim=-1, bool keepdim=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> kthvalue_outf(const at::Tensor & self, int64_t k, int64_t dim, bool keepdim, at::Tensor & values, at::Tensor & indices);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lcm_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor lcm(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & lcm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & lcm_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & lcm_(at::Tensor & self, const at::Tensor & other);
24
+
25
+ } // namespace meta
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor lift_fresh_copy(const at::Tensor & self);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_solve_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_linalg_ldl_solve : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & LD, const at::Tensor & pivots, const at::Tensor & B, bool hermitian);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_lu_solve_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor linalg_lu_solve(const at::Tensor & LU, const at::Tensor & pivots, const at::Tensor & B, bool left=true, bool adjoint=false);
21
+ TORCH_API at::Tensor & linalg_lu_solve_out(at::Tensor & out, const at::Tensor & LU, const at::Tensor & pivots, const at::Tensor & B, bool left=true, bool adjoint=false);
22
+ TORCH_API at::Tensor & linalg_lu_solve_outf(const at::Tensor & LU, const at::Tensor & pivots, const at::Tensor & B, bool left, bool adjoint, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_softmax_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & log_softmax_out(at::Tensor & out, const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & log_softmax_outf(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/masked_scatter_meta_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor & masked_scatter_(at::Tensor & self, const at::Tensor & mask, const at::Tensor & source);
21
+
22
+ } // namespace meta
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool3d_cuda_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor max_unpool3d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding);
21
+ TORCH_API at::Tensor max_unpool3d_symint(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding);
22
+ TORCH_API at::Tensor & max_unpool3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding);
23
+ TORCH_API at::Tensor & max_unpool3d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out);
24
+ TORCH_API at::Tensor & max_unpool3d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding);
25
+ TORCH_API at::Tensor & max_unpool3d_symint_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out);
26
+
27
+ } // namespace cuda
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/mkldnn_linear_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor
26
+ inline at::Tensor mkldnn_linear(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}) {
27
+ return at::_ops::mkldnn_linear::call(self, weight, bias);
28
+ }
29
+
30
+ // aten::mkldnn_linear.out(Tensor self, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & mkldnn_linear_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}) {
32
+ return at::_ops::mkldnn_linear_out::call(self, weight, bias, out);
33
+ }
34
+ // aten::mkldnn_linear.out(Tensor self, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & mkldnn_linear_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::Tensor & out) {
36
+ return at::_ops::mkldnn_linear_out::call(self, weight, bias, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_max_pool2d_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & mkldnn_max_pool2d_out(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode, at::Tensor & out);
20
+ TORCH_API at::Tensor mkldnn_max_pool2d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false);
21
+ } // namespace native
22
+ } // namespace at