Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__init__.py +8 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/huggingface_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/in_memory_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/base_engine.py +41 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/huggingface_engine.py +124 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/in_memory_engine.py +40 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__pycache__/ds_kernel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/configs.h +96 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/kernel_matmul.cuh +272 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_mma.cuh +137 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_core.cuh +246 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_gmem.cuh +86 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_paralleldequant.cuh +127 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/weight_prepacking.h +209 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/cutlass_ops.cpp +19 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__pycache__/mixed_gemm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm.cu +93 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm.py +64 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm_api.h +57 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/mixed_moe_gemm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/moe_gemm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/mixed_moe_gemm.py +67 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.cu +175 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.h +24 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.py +60 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm_api.h +64 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/shared_resources/weight_variant.h +11 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/activation_type.h +17 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/conversion_utils.h +640 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/ds_kernel_utils.h +58 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/memory_access_utils.h +1115 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/reduction_utils.h +778 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__pycache__/blocked_flash.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/attention_atom.h +39 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.cpp +101 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.h +16 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.py +107 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/flash.h +74 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/embed/__init__.py +6 -0
.gitattributes
CHANGED
@@ -141,3 +141,4 @@ venv/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310-x86_6
|
|
141 |
venv/lib/python3.10/site-packages/tokenizers/tokenizers.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
142 |
venv/lib/python3.10/site-packages/numpy.libs/libopenblas64_p-r0-0cf96a72.3.23.dev.so filter=lfs diff=lfs merge=lfs -text
|
143 |
venv/lib/python3.10/site-packages/scipy.libs/libopenblasp-r0-24bff013.3.26.dev.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
141 |
venv/lib/python3.10/site-packages/tokenizers/tokenizers.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
142 |
venv/lib/python3.10/site-packages/numpy.libs/libopenblas64_p-r0-0cf96a72.3.23.dev.so filter=lfs diff=lfs merge=lfs -text
|
143 |
venv/lib/python3.10/site-packages/scipy.libs/libopenblasp-r0-24bff013.3.26.dev.so filter=lfs diff=lfs merge=lfs -text
|
144 |
+
venv/lib/python3.10/site-packages/scipy/special/cython_special.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .base_engine import CheckpointEngineBase
|
7 |
+
from .in_memory_engine import InMemoryModelEngine
|
8 |
+
from .huggingface_engine import HuggingFaceCheckpointEngine
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (387 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/huggingface_engine.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/__pycache__/in_memory_engine.cpython-310.pyc
ADDED
Binary file (1.96 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/base_engine.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from typing import Iterable, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
#from .huggingface_engine import HuggingFaceCheckpointEngine
|
12 |
+
|
13 |
+
MEGATRON = 'megatron'
|
14 |
+
HUGGINGFACE = 'huggingface'
|
15 |
+
|
16 |
+
|
17 |
+
class CheckpointEngineBase(ABC):
|
18 |
+
"""
|
19 |
+
Abstract interface for checkpoint engines to implement.
|
20 |
+
|
21 |
+
There is no ``__init__`` method here by design, since the creation of the checkpoint
|
22 |
+
engine will happen outside the policy/engine code. The tradeoff being made here is
|
23 |
+
that we will write different frontends for different checkpoint engines, but these
|
24 |
+
frontends can be tailored to the specific checkpoint engine/model source needs.
|
25 |
+
"""
|
26 |
+
|
27 |
+
@abstractmethod
|
28 |
+
def parameters(self) -> Iterable[Tuple[str, torch.Tensor]]:
|
29 |
+
"""
|
30 |
+
This method should create a generator of tuples of the form (name, parameter) for
|
31 |
+
all parameters in the model. The name should be the fully qualified name of the
|
32 |
+
parameter, and the parameter should be a torch.Tensor.
|
33 |
+
|
34 |
+
The expected use of a checkpoint engine is the following:
|
35 |
+
```python
|
36 |
+
for name, parameter in checkpoint_engine.parameters():
|
37 |
+
container_map.map_param(name, parameter)
|
38 |
+
```
|
39 |
+
For a concrete use example, see ``InferenceV2Policy``.
|
40 |
+
"""
|
41 |
+
...
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/huggingface_engine.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import torch
|
9 |
+
from .base_engine import CheckpointEngineBase
|
10 |
+
from typing import Iterable, Tuple
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
from ..logging import inference_logger
|
14 |
+
|
15 |
+
|
16 |
+
class HuggingFaceCheckpointEngine(CheckpointEngineBase):
|
17 |
+
|
18 |
+
def __init__(self, model_name_or_path: str, auth_token: str = None) -> None:
|
19 |
+
super().__init__()
|
20 |
+
from transformers import AutoConfig, GenerationConfig
|
21 |
+
|
22 |
+
self.model_name_or_path = model_name_or_path
|
23 |
+
self.auth_token = auth_token
|
24 |
+
self.model_config = AutoConfig.from_pretrained(self.model_name_or_path)
|
25 |
+
# Define this property here so we can use it in the model implementation
|
26 |
+
if not hasattr(self.model_config, "max_seq_length"):
|
27 |
+
if hasattr(self.model_config, "max_position_embeddings"):
|
28 |
+
self.model_config.max_seq_length = self.model_config.max_position_embeddings
|
29 |
+
else:
|
30 |
+
generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
|
31 |
+
self.model_config.max_seq_length = generation_config.max_length
|
32 |
+
self._local_checkpoint_dir = None
|
33 |
+
self._all_ckpt_paths = self._fetch_checkpoint_files()
|
34 |
+
|
35 |
+
def _fetch_checkpoint_files(self):
|
36 |
+
"""
|
37 |
+
Fetch the checkpoint files from the HuggingFace Hub.
|
38 |
+
"""
|
39 |
+
# TODO(jeff): for models like llama-2 the user will have to provide an auth `token`,
|
40 |
+
# currently coming from the ckpt engine init but maybe a catch all kwargs for other
|
41 |
+
# snapshot download parameters would be more flexible.
|
42 |
+
|
43 |
+
from huggingface_hub import snapshot_download, list_repo_tree
|
44 |
+
|
45 |
+
def model_has_safetensors(model_name_or_path: str) -> bool:
|
46 |
+
if os.path.isdir(model_name_or_path):
|
47 |
+
file_list = os.listdir(model_name_or_path)
|
48 |
+
else:
|
49 |
+
file_list = [rf.path for rf in list_repo_tree(model_name_or_path)]
|
50 |
+
for f in file_list:
|
51 |
+
if f.endswith(".safetensors"):
|
52 |
+
return True
|
53 |
+
return False
|
54 |
+
|
55 |
+
if os.path.isdir(self.model_name_or_path):
|
56 |
+
self._local_checkpoint_dir = self.model_name_or_path
|
57 |
+
else:
|
58 |
+
# We need to download the checkpoint files from HF
|
59 |
+
if model_has_safetensors(self.model_name_or_path):
|
60 |
+
# Prioritize downloading safetensors if they are available
|
61 |
+
allow_patterns = ["*.safetensors", "*.json"]
|
62 |
+
else:
|
63 |
+
# Fallback to bin files when safetensors are not present
|
64 |
+
allow_patterns = ["*.bin", "*.json", "*.pt"]
|
65 |
+
self._local_checkpoint_dir = snapshot_download(self.model_name_or_path,
|
66 |
+
allow_patterns=allow_patterns,
|
67 |
+
revision=None,
|
68 |
+
token=self.auth_token)
|
69 |
+
|
70 |
+
assert os.path.isdir(
|
71 |
+
self._local_checkpoint_dir
|
72 |
+
), f"Checkpoint dir {self._local_checkpoint_dir} is not a directory, cannot load checkpoint."
|
73 |
+
|
74 |
+
# Set the appropriate file names based on whether we have safetensors or not
|
75 |
+
if model_has_safetensors(self._local_checkpoint_dir):
|
76 |
+
from safetensors.torch import load_file
|
77 |
+
model_param_json_fname = "model.safetensors.index.json"
|
78 |
+
model_file_fname = "model.safetensors"
|
79 |
+
self._checkpoint_load_fn = load_file
|
80 |
+
else:
|
81 |
+
model_param_json_fname = "pytorch_model.bin.index.json"
|
82 |
+
model_file_fname = "pytorch_model.bin"
|
83 |
+
self._checkpoint_load_fn = partial(torch.load, map_location="cpu")
|
84 |
+
|
85 |
+
model_param_json = os.path.join(self._local_checkpoint_dir, model_param_json_fname)
|
86 |
+
|
87 |
+
if not os.path.isfile(model_param_json):
|
88 |
+
# We don't need any json as all such HF models will have pytorch_model.bin
|
89 |
+
all_checkpoint_files = [os.path.join(self._local_checkpoint_dir, model_file_fname)]
|
90 |
+
else:
|
91 |
+
param_map = json.load(open(model_param_json, "r"))
|
92 |
+
|
93 |
+
# weight_map -> { "lm_head.weight": "pytorch_model-00002-of-00002.bin", ... }
|
94 |
+
weight_map = param_map["weight_map"]
|
95 |
+
|
96 |
+
# unique set of all checkpoint files
|
97 |
+
all_checkpoint_files = set(weight_map.values())
|
98 |
+
|
99 |
+
# get absolute path of all unique checkpoint files
|
100 |
+
all_checkpoint_files = [os.path.join(self._local_checkpoint_dir, f) for f in all_checkpoint_files]
|
101 |
+
|
102 |
+
return all_checkpoint_files
|
103 |
+
|
104 |
+
def parameters(self) -> Iterable[Tuple[str, torch.Tensor]]:
|
105 |
+
"""
|
106 |
+
Generator of model parameters (satisfies the CheckpointEngineBase interface).
|
107 |
+
"""
|
108 |
+
for checkpoint in self._all_ckpt_paths:
|
109 |
+
inference_logger().info(f"Loading checkpoint: {checkpoint}")
|
110 |
+
checkpoint_sd = self._checkpoint_load_fn(checkpoint)
|
111 |
+
param_keys = list(checkpoint_sd.keys())
|
112 |
+
for param_name in param_keys:
|
113 |
+
param = checkpoint_sd[param_name]
|
114 |
+
yield param_name, param
|
115 |
+
|
116 |
+
del checkpoint_sd
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
# To test, add your auth_token here and run `python huggingface_engine.py`
|
121 |
+
engine = HuggingFaceCheckpointEngine(model_name_or_path="meta-llama/Llama-2-7b-hf",
|
122 |
+
auth_token="hf_xxxxxxxxxxxxxxxxx")
|
123 |
+
for name, param in engine.parameters():
|
124 |
+
print(name, param.shape)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/checkpoint/in_memory_engine.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Iterable, Tuple
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .base_engine import CheckpointEngineBase
|
10 |
+
|
11 |
+
|
12 |
+
class InMemoryModelEngine(CheckpointEngineBase):
|
13 |
+
"""
|
14 |
+
This "checkpoint" engine uses the existing interface to enable loading parameters into an
|
15 |
+
inference model from a model already instantiated in memory. In general, this is not the
|
16 |
+
recommended way to use the inference engine, and should only be used when absolutely necessary.
|
17 |
+
|
18 |
+
The primary limitation of this approach is that the model must be fully instantiated in memory.
|
19 |
+
In a tensor parallel scenario, this means that the model is either replicated many times in host
|
20 |
+
memory. Currently, it is also recommended to only use this approach for models held in host memory.
|
21 |
+
|
22 |
+
In order to free the memory held by this copy of the model, we delete the model in the first call
|
23 |
+
to `parameters`, so it is not safe to make this call twice.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, model: torch.nn.Module) -> None:
|
27 |
+
"""
|
28 |
+
Create virtual checkpoint engine for the provided module.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
model (torch.nn.Module): Model to load parameters from.
|
32 |
+
"""
|
33 |
+
super().__init__()
|
34 |
+
self.model = model
|
35 |
+
|
36 |
+
def parameters(self) -> Iterable[Tuple[str, torch.Tensor]]:
|
37 |
+
for name, parameter in self.model.named_parameters():
|
38 |
+
yield name, parameter
|
39 |
+
|
40 |
+
del self.model
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (244 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/__pycache__/ds_kernel.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/configs.h
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef CONFIGS_H
|
9 |
+
#define CONFIGS_H
|
10 |
+
|
11 |
+
// #define DEBUG_MODE
|
12 |
+
#define PIPELINE_LEVEL_GMEM 2
|
13 |
+
#define PIPELINE_LEVEL_SMEM 2 // only support 2
|
14 |
+
|
15 |
+
/************************ Hardware Parameters ************************/
|
16 |
+
#define WARP_SIZE 32
|
17 |
+
#define REG_BIT_WIDTH 32
|
18 |
+
// mma: M=16 K=16 N=8
|
19 |
+
#define MMA_8 8
|
20 |
+
#define MMA_16 16
|
21 |
+
// for memory access
|
22 |
+
#define THREAD_OPT_ACCESS_BIT_WIDTH_128 128 // LDS.128, cp_async.128, ...
|
23 |
+
#define BIT_WIDTH_PER_HALF 16 // Half precision: FP16
|
24 |
+
|
25 |
+
/******************** Register Allocation For GEMM ********************/
|
26 |
+
#define REG_PER_THREAD_C_TENSOR_16_16 8 // 8 for FP32 Accumulation
|
27 |
+
/********************** Memory Padding Parameters **********************/
|
28 |
+
// Eliminating bank-conflict
|
29 |
+
#define PADDING_BYTES_16 16 // Padding 16 bytes each column
|
30 |
+
#define PADDING_SHARED_MEM_FOR_B_8 \
|
31 |
+
8 // Padding 8 half each column, during CopyFromGlobalToShared() for B
|
32 |
+
#define PADDING_SHARED_MEM_FOR_C_4 \
|
33 |
+
4 // Padding 4 float each column, during StoreToSharedMemoryFromRegister() for C
|
34 |
+
/************************* WARP Tiling part-1 *************************/
|
35 |
+
#define WARP_ROW_MMA_TENSORS 4
|
36 |
+
#define WARP_M (WARP_ROW_MMA_TENSORS * MMA_16) // 64
|
37 |
+
#define WARP_K_MMA_TENSORS 4
|
38 |
+
#define WARP_K (WARP_K_MMA_TENSORS * MMA_16) // 64
|
39 |
+
template <int BLOCK_ROW_WARPS_, int BLOCK_COL_WARPS_, int WARP_COL_MMA_TENSORS_>
|
40 |
+
struct TilingConfig {
|
41 |
+
// Depending on "n" dimension of the GEMM
|
42 |
+
static constexpr int BLOCK_ROW_WARPS = BLOCK_ROW_WARPS_;
|
43 |
+
static constexpr int BLOCK_COL_WARPS = BLOCK_COL_WARPS_;
|
44 |
+
static constexpr int WARP_COL_MMA_TENSORS = WARP_COL_MMA_TENSORS_;
|
45 |
+
/************************* WARP Tiling part-2 *************************/
|
46 |
+
static constexpr int WARP_N = WARP_COL_MMA_TENSORS * MMA_8;
|
47 |
+
/*************************Thread Block Tiling *************************/
|
48 |
+
static constexpr int TILE_M = WARP_M * BLOCK_ROW_WARPS;
|
49 |
+
static constexpr int TILE_N = MMA_8 * WARP_COL_MMA_TENSORS * BLOCK_COL_WARPS;
|
50 |
+
static constexpr int TILE_K = WARP_K;
|
51 |
+
/********************** #Thread per Thread Block **********************/
|
52 |
+
static constexpr int BLOCK_WARPS = BLOCK_ROW_WARPS * BLOCK_COL_WARPS;
|
53 |
+
static constexpr int BLOCK_THREADS = BLOCK_WARPS * WARP_SIZE;
|
54 |
+
/******************************* Others *******************************/
|
55 |
+
static constexpr int SMEM_SIZE_B_TILE = TILE_N * (TILE_K + PADDING_BYTES_16) * 2 *
|
56 |
+
PIPELINE_LEVEL_GMEM; // sizeof(half)=2, doubleBuffer=2
|
57 |
+
static constexpr int SMEM_SIZE_C_TILE =
|
58 |
+
TILE_N * (TILE_M + PADDING_BYTES_16) * 4; // sizeof(float)=4
|
59 |
+
};
|
60 |
+
|
61 |
+
/************************ General Config for Quant-LLM **********************/
|
62 |
+
#define WEIGHT_FRAG1_BIT_WIDTH 2
|
63 |
+
#define WEIGHT_FRAG2_BIT_WIDTH 4
|
64 |
+
#define WEIGHT_BIT_WIDTH (WEIGHT_FRAG1_BIT_WIDTH + WEIGHT_FRAG2_BIT_WIDTH) // 6
|
65 |
+
// #define QUANT_GROUP_SIZE_DIVIDED_BY_64 4 //
|
66 |
+
// QuantGroupSize: 4*64 = 256
|
67 |
+
/*************************** 64*64 Weghts of A WARP *************************/
|
68 |
+
#define WEIGHT_PER_UNIT (WARP_M * WARP_K) // 64*64
|
69 |
+
#define SMEM_SIZE_IN_BYTES_PER_WARP_A1 \
|
70 |
+
(WEIGHT_PER_UNIT * WEIGHT_FRAG1_BIT_WIDTH / \
|
71 |
+
8) // 1024 Bytes #doubleBuffer not takedn into consideration
|
72 |
+
#define SMEM_SIZE_IN_BYTES_PER_WARP_A2 \
|
73 |
+
(WEIGHT_PER_UNIT * WEIGHT_FRAG2_BIT_WIDTH / \
|
74 |
+
8) // 2048 Bytes #doubleBuffer not takedn into consideration
|
75 |
+
#define SMEM_SIZE_A1_TILE \
|
76 |
+
(SMEM_SIZE_IN_BYTES_PER_WARP_A1 * 4 * \
|
77 |
+
PIPELINE_LEVEL_GMEM) // #WARP=4, #Trible-Buffer for 3-level pipeline for A = 12 KB; double
|
78 |
+
// buffer for 2-level pipeline A= 8 KB.
|
79 |
+
#define SMEM_SIZE_A2_TILE \
|
80 |
+
(SMEM_SIZE_IN_BYTES_PER_WARP_A2 * 4 * \
|
81 |
+
PIPELINE_LEVEL_GMEM) // #WARP=4, #Trible-Buffer for 3-level pipeline for A = 24 KB; double
|
82 |
+
// buffer for 2-level pipeline A= 16 KB.
|
83 |
+
/******************** Global Memory Layout For QUANTIZED DATA ******************/
|
84 |
+
#define NUM_INT4_PER_UNIT_2BIT_FRAG (WEIGHT_PER_UNIT * WEIGHT_FRAG1_BIT_WIDTH / 128) // 64
|
85 |
+
#define NUM_INT4_PER_UNIT_4BIT_FRAG (WEIGHT_PER_UNIT * WEIGHT_FRAG2_BIT_WIDTH / 128) // 128
|
86 |
+
/******************** Register Allocation For QUANTIZED DATA ******************/
|
87 |
+
#define WEIGHT_PER_THREAD (WEIGHT_PER_UNIT / WARP_SIZE) // 128
|
88 |
+
#define REG_PER_THREAD_2BIT_FRAG (WEIGHT_PER_THREAD / REG_BIT_WIDTH * 2) // 8
|
89 |
+
#define REG_PER_THREAD_4BIT_FRAG (WEIGHT_PER_THREAD / REG_BIT_WIDTH * 4) // 16
|
90 |
+
/******************** Register Allocation For QUANT Scales ******************/
|
91 |
+
#define WARP_REG_QUANT_SCALE 4 // 8 rows per thread -> 8 FP16 scales -> 4 registers
|
92 |
+
#define WARP_REG_QUANT_SCALE_DISTRIBUTED \
|
93 |
+
1 // T0-T3, T4-T7, ..., T28-T31 share the same scales, using shfl to get all the scales for
|
94 |
+
// each thread
|
95 |
+
|
96 |
+
#endif // CONFIGS_H
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/kernel_matmul.cuh
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_KERNEL_MATMUL_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_KERNEL_MATMUL_CUH
|
10 |
+
|
11 |
+
#include "configs.h"
|
12 |
+
#include "utils_core.cuh"
|
13 |
+
#include "utils_gmem.cuh"
|
14 |
+
|
15 |
+
/*
|
16 |
+
* C = A*B
|
17 |
+
* A: row major with ahead-of-time layout transformation, FP6
|
18 |
+
* B: col major, FP16
|
19 |
+
* C: col major, FP16
|
20 |
+
*/
|
21 |
+
template <typename TilingConfig, typename OutputDataType>
|
22 |
+
__global__ void QUANT_GEMM_Kernel(const uint4* Weight1,
|
23 |
+
const uint4* Weight2,
|
24 |
+
const half* Scales,
|
25 |
+
const half* B,
|
26 |
+
OutputDataType* C,
|
27 |
+
const size_t M_Global,
|
28 |
+
const size_t N_Global,
|
29 |
+
const size_t K_Global,
|
30 |
+
int Split_K)
|
31 |
+
{
|
32 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 900
|
33 |
+
|
34 |
+
#ifdef DEBUG_MODE
|
35 |
+
assert(K_Global % TilingConfig::TILE_K == 0);
|
36 |
+
assert(M_Global % TilingConfig::TILE_M == 0);
|
37 |
+
assert(gridDim.y == Split_K * (M_Global / TilingConfig::TILE_M));
|
38 |
+
#endif
|
39 |
+
extern __shared__ __align__(128)
|
40 |
+
half smem[]; // Dynamic shared memory for FP16 A tiles, 128 Bytes aligned
|
41 |
+
half(*smem_array)[WARP_K + PADDING_SHARED_MEM_FOR_B_8] =
|
42 |
+
reinterpret_cast<half(*)[WARP_K + PADDING_SHARED_MEM_FOR_B_8]>(
|
43 |
+
smem +
|
44 |
+
(SMEM_SIZE_A1_TILE + SMEM_SIZE_A2_TILE) / 2); // Dynamic shared memory for FP16 B tiles
|
45 |
+
__shared__ half QuantScales[64 * TilingConfig::BLOCK_WARPS]; // static shared memory for
|
46 |
+
// quantization scales, 64 row per
|
47 |
+
// warp * 4 warps = 512 Bytes
|
48 |
+
// Thread Block Mapping, considering SplitK
|
49 |
+
const size_t BatchID = blockIdx.y / (M_Global / TilingConfig::TILE_M);
|
50 |
+
const size_t x = blockIdx.x; // Output Block ID: (BlockID_Row = y; BlockID_Col = x )
|
51 |
+
const size_t y =
|
52 |
+
blockIdx.y %
|
53 |
+
(M_Global / TilingConfig::TILE_M); // Output Block ID: (BlockID_Row = y; BlockID_Col = x )
|
54 |
+
const size_t Tile_Start_M = y * TilingConfig::TILE_M;
|
55 |
+
const size_t Tile_Start_N = x * TilingConfig::TILE_N;
|
56 |
+
const size_t NumColumnToCopy = (N_Global - Tile_Start_N) < TilingConfig::TILE_N
|
57 |
+
? (N_Global - Tile_Start_N)
|
58 |
+
: TilingConfig::TILE_N;
|
59 |
+
const size_t NumBlock_K = K_Global / TilingConfig::TILE_K;
|
60 |
+
const size_t AverageNumBlock_K = NumBlock_K / Split_K;
|
61 |
+
const size_t ExtraNumBlock_K = NumBlock_K - AverageNumBlock_K * Split_K;
|
62 |
+
size_t NumIter = AverageNumBlock_K;
|
63 |
+
if (BatchID < ExtraNumBlock_K) NumIter++;
|
64 |
+
size_t StartBlockID_K = AverageNumBlock_K * BatchID;
|
65 |
+
if (BatchID < ExtraNumBlock_K)
|
66 |
+
StartBlockID_K += BatchID;
|
67 |
+
else
|
68 |
+
StartBlockID_K += ExtraNumBlock_K;
|
69 |
+
// Warp ID.
|
70 |
+
const int warpId = threadIdx.x / WARP_SIZE;
|
71 |
+
int WARP_i =
|
72 |
+
warpId / TilingConfig::BLOCK_COL_WARPS; // WARP_i: row number; WARP_j: column number
|
73 |
+
// int WARP_j = warpId % TilingConfig::BLOCK_COL_WARPS;
|
74 |
+
// Global Memory Address for Matrix A (Weight)
|
75 |
+
// ///////////////////////////////////////////////////////////////////////// StartPTR for each
|
76 |
+
// ThreadBlock(TB)
|
77 |
+
const uint4* TB_StartGPTR_A1 =
|
78 |
+
Weight1 + (y * TilingConfig::BLOCK_ROW_WARPS) * NumBlock_K * NUM_INT4_PER_UNIT_2BIT_FRAG;
|
79 |
+
const uint4* TB_StartGPTR_A2 =
|
80 |
+
Weight2 + (y * TilingConfig::BLOCK_ROW_WARPS) * NumBlock_K * NUM_INT4_PER_UNIT_4BIT_FRAG;
|
81 |
+
// StartPTR for each WARP.
|
82 |
+
const uint4* WARP_StartGPTR_A1 =
|
83 |
+
TB_StartGPTR_A1 + WARP_i * NumBlock_K * NUM_INT4_PER_UNIT_2BIT_FRAG;
|
84 |
+
const uint4* WARP_StartGPTR_A2 =
|
85 |
+
TB_StartGPTR_A2 + WARP_i * NumBlock_K * NUM_INT4_PER_UNIT_4BIT_FRAG;
|
86 |
+
// StartPTR for each WARP, considering SplitK
|
87 |
+
const size_t WARP_Start_UnitID_K = StartBlockID_K;
|
88 |
+
WARP_StartGPTR_A1 += WARP_Start_UnitID_K * NUM_INT4_PER_UNIT_2BIT_FRAG;
|
89 |
+
WARP_StartGPTR_A2 += WARP_Start_UnitID_K * NUM_INT4_PER_UNIT_4BIT_FRAG;
|
90 |
+
// Copying A tile from Global to Shared, using double-buffer
|
91 |
+
// ////////////////////////////////////////////////////////// StartSPTR for each ThreadBlock
|
92 |
+
uint32_t* AFrag_2BIT_SPTR = reinterpret_cast<uint32_t*>(smem);
|
93 |
+
uint32_t* AFrag_4BIT_SPTR =
|
94 |
+
AFrag_2BIT_SPTR +
|
95 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4 * TilingConfig::BLOCK_WARPS *
|
96 |
+
PIPELINE_LEVEL_GMEM; // 8 buffers including double buffers, 12 for trible buffers
|
97 |
+
// StartSPTR for each WARP
|
98 |
+
AFrag_2BIT_SPTR += warpId * SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4;
|
99 |
+
AFrag_4BIT_SPTR += warpId * SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 4;
|
100 |
+
// Pre-fetch of A tile
|
101 |
+
for (int i = 0; i < PIPELINE_LEVEL_GMEM - 1; i++) {
|
102 |
+
CopyFromGlobalToShared_A<SMEM_SIZE_IN_BYTES_PER_WARP_A1>(
|
103 |
+
AFrag_2BIT_SPTR + i * SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4 * 4, WARP_StartGPTR_A1);
|
104 |
+
CopyFromGlobalToShared_A<SMEM_SIZE_IN_BYTES_PER_WARP_A2>(
|
105 |
+
AFrag_4BIT_SPTR + i * SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 4 * 4, WARP_StartGPTR_A2);
|
106 |
+
WARP_StartGPTR_A1 += SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 16;
|
107 |
+
WARP_StartGPTR_A2 += SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 16;
|
108 |
+
}
|
109 |
+
// Global Memory Address for Matrix A (QuantScale)
|
110 |
+
// /////////////////////////////////////////////////////////////////////
|
111 |
+
const half* TB_StartGPTR_A_Scale = Scales + (y * TilingConfig::BLOCK_ROW_WARPS) * 64;
|
112 |
+
const half* WARP_StartGPTR_A_Scales = TB_StartGPTR_A_Scale + WARP_i * 64;
|
113 |
+
CopyFromGlobalToShared_Scales(QuantScales + WARP_i * 64, WARP_StartGPTR_A_Scales);
|
114 |
+
// Copying B tile from Global to Shared, considering SplitK
|
115 |
+
// /////////////////////////////////////////////////////////////
|
116 |
+
const half* BTile_GPTR = B + Tile_Start_N * K_Global + StartBlockID_K * TilingConfig::TILE_K;
|
117 |
+
for (int i = 0; i < PIPELINE_LEVEL_GMEM - 1; i++) {
|
118 |
+
CopyFromGlobalToShared<TilingConfig::TILE_N, TilingConfig::BLOCK_WARPS>(
|
119 |
+
smem_array + i * TilingConfig::TILE_N, BTile_GPTR, K_Global, NumColumnToCopy);
|
120 |
+
BTile_GPTR += TilingConfig::TILE_K;
|
121 |
+
}
|
122 |
+
// Register Allocation for A,B, and C, Initilazed to Zeros
|
123 |
+
// /////////////////////////////////////////////////////////////////////
|
124 |
+
constexpr int NumRegSets_a =
|
125 |
+
WARP_ROW_MMA_TENSORS; // 1 set = 4 registers, containing a 16*16 MMA block
|
126 |
+
constexpr int NumRegSets_b = (TilingConfig::WARP_COL_MMA_TENSORS == 1)
|
127 |
+
? 1
|
128 |
+
: TilingConfig::WARP_COL_MMA_TENSORS /
|
129 |
+
2; // 1 set = 4 registers, containing a 16*16 MMA block
|
130 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
131 |
+
uint32_t a[NumRegSets_a * PIPELINE_LEVEL_SMEM]
|
132 |
+
[4]; // double/Trible buffer is used // Registers to store decompressed FP6
|
133 |
+
uint32_t b[NumRegSets_b * PIPELINE_LEVEL_SMEM]
|
134 |
+
[4]; // double/Triple buffer is used // Register to store FP16 B matrix (a slice)
|
135 |
+
#endif
|
136 |
+
float c[NumRegSets_a * NumRegSets_b][REG_PER_THREAD_C_TENSOR_16_16];
|
137 |
+
for (int i = 0; i < NumRegSets_a * NumRegSets_b; i++)
|
138 |
+
for (int j = 0; j < REG_PER_THREAD_C_TENSOR_16_16; j++) c[i][j] = 0.0f;
|
139 |
+
//
|
140 |
+
cp_async_wait_all();
|
141 |
+
__syncthreads();
|
142 |
+
|
143 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
144 |
+
uint32_t Scales_RPTR[4]; // 4 Registers per thread for Quantization Scales
|
145 |
+
ExtractFromSharedToReg_Scales(Scales_RPTR, QuantScales + WARP_i * 64);
|
146 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
147 |
+
// Initializing the Software Pipeline: writing registers.
|
148 |
+
// ////////////////////////////////////////////////////////////////////////////////////////////////
|
149 |
+
initialize_mma_slice<TilingConfig>(
|
150 |
+
a, b, AFrag_2BIT_SPTR, AFrag_4BIT_SPTR, smem_array, Scales_RPTR);
|
151 |
+
#endif
|
152 |
+
// The outer loop.
|
153 |
+
// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
154 |
+
#pragma unroll(1)
|
155 |
+
for (size_t tile_id_k = 0; tile_id_k < NumIter; tile_id_k++) {
|
156 |
+
// Trible-Buffer for A Tile
|
157 |
+
uint32_t* __restrict__ read_SPTR_Frag1 =
|
158 |
+
AFrag_2BIT_SPTR + ((tile_id_k + 0) % PIPELINE_LEVEL_GMEM) *
|
159 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4 *
|
160 |
+
4; // 1024 (1)*4: 4 WARPs; (2)/4: int*+1 = char*+16
|
161 |
+
uint32_t* __restrict__ read_SPTR_Frag2 =
|
162 |
+
AFrag_4BIT_SPTR + ((tile_id_k + 0) % PIPELINE_LEVEL_GMEM) *
|
163 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 4 *
|
164 |
+
4; // 2048 (1)*4: 4 WARPs; (2)/4: int*+1 = char*+16
|
165 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
166 |
+
uint32_t* __restrict__ read2_SPTR_Frag1 =
|
167 |
+
AFrag_2BIT_SPTR +
|
168 |
+
((tile_id_k + 1) % PIPELINE_LEVEL_GMEM) * SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4 * 4;
|
169 |
+
uint32_t* __restrict__ read2_SPTR_Frag2 =
|
170 |
+
AFrag_4BIT_SPTR +
|
171 |
+
((tile_id_k + 1) % PIPELINE_LEVEL_GMEM) * SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 4 * 4;
|
172 |
+
#endif
|
173 |
+
uint32_t* __restrict__ write_SPTR_Frag1 =
|
174 |
+
AFrag_2BIT_SPTR + ((tile_id_k + (PIPELINE_LEVEL_GMEM - 1)) % PIPELINE_LEVEL_GMEM) *
|
175 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 4 *
|
176 |
+
4; // 1024 (1)*4: 4 WARPs; (2)/4: int*+1 = char*+16
|
177 |
+
uint32_t* __restrict__ write_SPTR_Frag2 =
|
178 |
+
AFrag_4BIT_SPTR + ((tile_id_k + (PIPELINE_LEVEL_GMEM - 1)) % PIPELINE_LEVEL_GMEM) *
|
179 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 4 *
|
180 |
+
4; // 2048 (1)*4: 4 WARPs; (2)/4: int*+1 = char*+16
|
181 |
+
// Trible-Buffer for B Tile
|
182 |
+
half __restrict__(*read_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8] =
|
183 |
+
smem_array + ((tile_id_k + 0) % PIPELINE_LEVEL_GMEM) * TilingConfig::TILE_N;
|
184 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
185 |
+
half __restrict__(*read2_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8] =
|
186 |
+
smem_array + ((tile_id_k + 1) % PIPELINE_LEVEL_GMEM) * TilingConfig::TILE_N;
|
187 |
+
#endif
|
188 |
+
half __restrict__(*write_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8] =
|
189 |
+
smem_array +
|
190 |
+
((tile_id_k + (PIPELINE_LEVEL_GMEM - 1)) % PIPELINE_LEVEL_GMEM) * TilingConfig::TILE_N;
|
191 |
+
//
|
192 |
+
bool GlobalCopy = (tile_id_k + PIPELINE_LEVEL_GMEM - 1) < NumIter;
|
193 |
+
// Copying A tile from Global to Register, Bypassing L1, using double-buffer
|
194 |
+
CopyFromGlobalToShared_A<SMEM_SIZE_IN_BYTES_PER_WARP_A1>(
|
195 |
+
write_SPTR_Frag1, WARP_StartGPTR_A1, GlobalCopy);
|
196 |
+
CopyFromGlobalToShared_A<SMEM_SIZE_IN_BYTES_PER_WARP_A2>(
|
197 |
+
write_SPTR_Frag2, WARP_StartGPTR_A2, GlobalCopy);
|
198 |
+
// copying B tile from GlobalMemory to SharedMemory
|
199 |
+
CopyFromGlobalToShared<TilingConfig::TILE_N, TilingConfig::BLOCK_WARPS>(
|
200 |
+
write_SPTR, BTile_GPTR, K_Global, NumColumnToCopy, GlobalCopy);
|
201 |
+
cp_async_group_commit();
|
202 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
203 |
+
core_mma_slice<TilingConfig>(c,
|
204 |
+
a,
|
205 |
+
b,
|
206 |
+
read_SPTR_Frag1,
|
207 |
+
read_SPTR_Frag2,
|
208 |
+
read_SPTR,
|
209 |
+
Scales_RPTR,
|
210 |
+
1); // read_SPTR_Frag1, read_SPTR_Frag2 are different for each
|
211 |
+
// WARP; read_SPTR is shared among WARPs
|
212 |
+
core_mma_slice<TilingConfig>(
|
213 |
+
c, a, b, read_SPTR_Frag1, read_SPTR_Frag2, read_SPTR, Scales_RPTR, 2);
|
214 |
+
core_mma_slice<TilingConfig>(
|
215 |
+
c, a, b, read_SPTR_Frag1, read_SPTR_Frag2, read_SPTR, Scales_RPTR, 3);
|
216 |
+
// Barriers and Synchronizations
|
217 |
+
cp_async_wait_group<PIPELINE_LEVEL_GMEM - 2>();
|
218 |
+
__syncthreads();
|
219 |
+
core_mma_slice<TilingConfig>(
|
220 |
+
c, a, b, read2_SPTR_Frag1, read2_SPTR_Frag2, read2_SPTR, Scales_RPTR, 0);
|
221 |
+
// Updating global PTRs
|
222 |
+
WARP_StartGPTR_A1 +=
|
223 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 16; // 4KB/16=256 (1)/16: int4*+1 = char*+16
|
224 |
+
WARP_StartGPTR_A2 +=
|
225 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 16; // 8KB/16=512 (1)/16: int4*+1 = char*+16
|
226 |
+
BTile_GPTR += TilingConfig::TILE_K;
|
227 |
+
#else
|
228 |
+
PipelinedCoreLoop<TilingConfig>(
|
229 |
+
c,
|
230 |
+
read_SPTR,
|
231 |
+
read_SPTR_Frag1,
|
232 |
+
read_SPTR_Frag2,
|
233 |
+
Scales_RPTR); // read_SPTR_Frag1, read_SPTR_Frag2 are different for each WARP;
|
234 |
+
// read_SPTR is shared among WARPs
|
235 |
+
// Updating global PTRs
|
236 |
+
WARP_StartGPTR_A1 +=
|
237 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A1 / 16; // 4KB/16=256 (1)/16: int4*+1 = char*+16
|
238 |
+
WARP_StartGPTR_A2 +=
|
239 |
+
SMEM_SIZE_IN_BYTES_PER_WARP_A2 / 16; // 8KB/16=512 (1)/16: int4*+1 = char*+16
|
240 |
+
BTile_GPTR += TilingConfig::TILE_K;
|
241 |
+
// Barriers and Synchronizations
|
242 |
+
cp_async_wait_group<PIPELINE_LEVEL_GMEM - 2>();
|
243 |
+
__syncthreads();
|
244 |
+
#endif
|
245 |
+
}
|
246 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
247 |
+
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
248 |
+
// Store the C fragments to shared memory.
|
249 |
+
float(*smem_CFrag)[TilingConfig::TILE_M + PADDING_SHARED_MEM_FOR_C_4] =
|
250 |
+
reinterpret_cast<float(*)[TilingConfig::TILE_M + PADDING_SHARED_MEM_FOR_C_4]>(smem);
|
251 |
+
StoreToSharedMemoryFromRegister<TilingConfig>(smem_CFrag, c);
|
252 |
+
__syncthreads();
|
253 |
+
// Now that shared memory contains all the D tiles, stream them to global memory.
|
254 |
+
OutputDataType* BlockGlobalPTR =
|
255 |
+
C + BatchID * (M_Global * N_Global) + Tile_Start_M + Tile_Start_N * M_Global;
|
256 |
+
for (size_t i = warpId; i < NumColumnToCopy; i += TilingConfig::BLOCK_WARPS) // i-th column
|
257 |
+
#pragma unroll
|
258 |
+
for (size_t j = threadIdx.x % WARP_SIZE; j < TilingConfig::TILE_M;
|
259 |
+
j += WARP_SIZE) // j-th row
|
260 |
+
{
|
261 |
+
if constexpr (std::is_same<OutputDataType, half>::value)
|
262 |
+
BlockGlobalPTR[j + i * M_Global] = __float2half_rn(smem_CFrag[i][j]);
|
263 |
+
else
|
264 |
+
BlockGlobalPTR[j + i * M_Global] = smem_CFrag[i][j];
|
265 |
+
}
|
266 |
+
|
267 |
+
#else
|
268 |
+
#warning "The FP6 functions are only available on Ampere GPUs."
|
269 |
+
#endif
|
270 |
+
}
|
271 |
+
|
272 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_mma.cuh
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_PTX_MMA_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_PTX_MMA_CUH
|
10 |
+
|
11 |
+
#include <cuda.h>
|
12 |
+
#include <cuda_fp16.h>
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
#include <assert.h>
|
16 |
+
#include "configs.h"
|
17 |
+
|
18 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
19 |
+
template <typename TilingConfig>
|
20 |
+
__device__ __forceinline__ void B_FromSharedToReg(
|
21 |
+
uint32_t __restrict__ Reg[][4],
|
22 |
+
half __restrict__ (*read_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
23 |
+
int slice_id)
|
24 |
+
{
|
25 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
26 |
+
#ifdef DEBUG_MODE
|
27 |
+
static_assert((TilingConfig::WARP_COL_MMA_TENSORS == 1) ||
|
28 |
+
(TilingConfig::WARP_COL_MMA_TENSORS % 2 == 0));
|
29 |
+
#endif
|
30 |
+
|
31 |
+
const int warpId = threadIdx.x / WARP_SIZE;
|
32 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
33 |
+
int WARP_j = warpId % TilingConfig::BLOCK_COL_WARPS;
|
34 |
+
int warp_start_col = TilingConfig::WARP_COL_MMA_TENSORS * MMA_8 *
|
35 |
+
WARP_j; // each warp may start from reading warp_start_col'th column of
|
36 |
+
// the B tile in shared memory
|
37 |
+
#ifdef DEBUG_MODE
|
38 |
+
assert(warp_start_col == 0);
|
39 |
+
#endif
|
40 |
+
|
41 |
+
int col = (lane_id % 8) + (lane_id / 16) * 8;
|
42 |
+
int row = (lane_id % 16) / 8 * 8;
|
43 |
+
uint32_t smem_local_ptr = static_cast<uint32_t>(
|
44 |
+
__cvta_generic_to_shared(&read_SPTR[warp_start_col + col][slice_id * MMA_16 + row]));
|
45 |
+
if (TilingConfig::WARP_COL_MMA_TENSORS == 1) {
|
46 |
+
asm volatile("ldmatrix.sync.aligned.x2.m8n8.shared.b16 {%0, %1}, [%2];\n"
|
47 |
+
: "=r"(Reg[0][0]), "=r"(Reg[0][1])
|
48 |
+
: "r"(smem_local_ptr));
|
49 |
+
} else {
|
50 |
+
#pragma unroll
|
51 |
+
for (int i = 0; i < TilingConfig::WARP_COL_MMA_TENSORS / 2; i++) {
|
52 |
+
asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n"
|
53 |
+
: "=r"(Reg[i][0]), "=r"(Reg[i][1]), "=r"(Reg[i][2]), "=r"(Reg[i][3])
|
54 |
+
: "r"(smem_local_ptr));
|
55 |
+
smem_local_ptr += 16 * (WARP_K + PADDING_SHARED_MEM_FOR_B_8) * sizeof(half);
|
56 |
+
}
|
57 |
+
}
|
58 |
+
#else
|
59 |
+
#warning "The matrix load functions are only supported on Ampere and newer architectures"
|
60 |
+
#endif
|
61 |
+
}
|
62 |
+
#else
|
63 |
+
// Debug: Whether ldmatrix.trans is required???
|
64 |
+
// B is in column-major
|
65 |
+
template <typename TilingConfig>
|
66 |
+
__device__ __forceinline__ void B_FromSharedToReg(
|
67 |
+
uint32_t __restrict__ Reg[][4],
|
68 |
+
half __restrict__ (*read_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
69 |
+
int k_offset)
|
70 |
+
{
|
71 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
72 |
+
#ifdef DEBUG_MODE
|
73 |
+
static_assert((TilingConfig::WARP_COL_MMA_TENSORS == 1) ||
|
74 |
+
(TilingConfig::WARP_COL_MMA_TENSORS % 2 == 0));
|
75 |
+
#endif
|
76 |
+
|
77 |
+
const int warpId = threadIdx.x / WARP_SIZE;
|
78 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
79 |
+
int WARP_j = warpId % TilingConfig::BLOCK_COL_WARPS;
|
80 |
+
int warp_start_col = TilingConfig::WARP_COL_MMA_TENSORS * MMA_8 *
|
81 |
+
WARP_j; // each warp may start from reading warp_start_col'th column of
|
82 |
+
// the B tile in shared memory
|
83 |
+
#ifdef DEBUG_MODE
|
84 |
+
assert(warp_start_col == 0);
|
85 |
+
#endif
|
86 |
+
|
87 |
+
int col = (lane_id % 8) + (lane_id / 16) * 8;
|
88 |
+
int row = (lane_id % 16) / 8 * 8;
|
89 |
+
uint32_t smem_local_ptr = static_cast<uint32_t>(
|
90 |
+
__cvta_generic_to_shared(&read_SPTR[warp_start_col + col][k_offset + row]));
|
91 |
+
if (TilingConfig::WARP_COL_MMA_TENSORS == 1) {
|
92 |
+
asm volatile("ldmatrix.sync.aligned.x2.m8n8.shared.b16 {%0, %1}, [%2];\n"
|
93 |
+
: "=r"(Reg[0][0]), "=r"(Reg[0][1])
|
94 |
+
: "r"(smem_local_ptr));
|
95 |
+
} else {
|
96 |
+
#pragma unroll
|
97 |
+
for (int i = 0; i < TilingConfig::WARP_COL_MMA_TENSORS / 2; i++) {
|
98 |
+
asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n"
|
99 |
+
: "=r"(Reg[i][0]), "=r"(Reg[i][1]), "=r"(Reg[i][2]), "=r"(Reg[i][3])
|
100 |
+
: "r"(smem_local_ptr));
|
101 |
+
smem_local_ptr += 16 * (WARP_K + PADDING_SHARED_MEM_FOR_B_8) * sizeof(half);
|
102 |
+
}
|
103 |
+
}
|
104 |
+
#else
|
105 |
+
#warning "The matrix load functions are only supported on Ampere and newer architectures"
|
106 |
+
#endif
|
107 |
+
}
|
108 |
+
#endif
|
109 |
+
|
110 |
+
__device__ __forceinline__ void MMA_FP16_M16N8K16(uint32_t __restrict__ c[],
|
111 |
+
uint32_t __restrict__* a,
|
112 |
+
uint32_t __restrict__* b)
|
113 |
+
{
|
114 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
115 |
+
asm volatile(
|
116 |
+
"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
|
117 |
+
"{ %0, %1, %2, %3},"
|
118 |
+
"{ %4, %5, %6, %7 },"
|
119 |
+
"{ %8, %9 },"
|
120 |
+
"{ %10, %11, %12, %13 };"
|
121 |
+
: "=r"(c[0]), "=r"(c[1]), "=r"(c[2]), "=r"(c[3])
|
122 |
+
: "r"(a[0]),
|
123 |
+
"r"(a[1]),
|
124 |
+
"r"(a[2]),
|
125 |
+
"r"(a[3]),
|
126 |
+
"r"(b[0]),
|
127 |
+
"r"(b[1]),
|
128 |
+
"r"(c[0]),
|
129 |
+
"r"(c[1]),
|
130 |
+
"r"(c[2]),
|
131 |
+
"r"(c[3]));
|
132 |
+
#else
|
133 |
+
#warning "The mma functions are only implemented for Ampere and newer architectures"
|
134 |
+
#endif
|
135 |
+
}
|
136 |
+
|
137 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_core.cuh
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_UTILS_CORE_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_UTILS_CORE_CUH
|
10 |
+
|
11 |
+
#include <assert.h>
|
12 |
+
|
13 |
+
#include "configs.h"
|
14 |
+
#include "ptx_mma.cuh"
|
15 |
+
#include "utils_paralleldequant.cuh"
|
16 |
+
|
17 |
+
#ifdef PIPELINE_LEVEL_SMEM
|
18 |
+
template <int NUM_INT_PER_THREAD>
|
19 |
+
__device__ __forceinline__ void CopyFromSharedToRegister_AFrag(uint32_t Reg[],
|
20 |
+
uint32_t* SPTR,
|
21 |
+
int slice_id)
|
22 |
+
{
|
23 |
+
SPTR += slice_id * (NUM_INT_PER_THREAD * WARP_SIZE);
|
24 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
25 |
+
#pragma unroll
|
26 |
+
for (int i = 0; i < NUM_INT_PER_THREAD; i++) { Reg[i] = SPTR[lane_id + i * WARP_SIZE]; }
|
27 |
+
}
|
28 |
+
|
29 |
+
template <typename TilingConfig>
|
30 |
+
__device__ __forceinline__ void initialize_mma_slice(
|
31 |
+
uint32_t (*a)[4],
|
32 |
+
uint32_t (*b)[4],
|
33 |
+
uint32_t* __restrict__ A1_SPTR_read,
|
34 |
+
uint32_t* __restrict__ A2_SPTR_read,
|
35 |
+
half __restrict__ (*B_SPTR_read)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
36 |
+
uint32_t* RPTR_Scales)
|
37 |
+
{
|
38 |
+
// Writing registers
|
39 |
+
// Registers to store FP6 fragments for a slice (64*16) of A matrix => 32 FP6 per thread => 6
|
40 |
+
// register per thread;
|
41 |
+
uint32_t a_1[2]; // NO double buffer
|
42 |
+
uint32_t a_2[4]; // NO double buffer
|
43 |
+
CopyFromSharedToRegister_AFrag<2>(a_1, A1_SPTR_read, 0);
|
44 |
+
CopyFromSharedToRegister_AFrag<4>(a_2, A2_SPTR_read, 0);
|
45 |
+
Dequant_32FP6_4Way(a, a_1, a_2, RPTR_Scales); // SIMT Dequant: dequantizing FP6 to FP16 at
|
46 |
+
// register level, dequantizing a slice each time
|
47 |
+
B_FromSharedToReg<TilingConfig>(b, B_SPTR_read, 0); // Loading B from shared to registers
|
48 |
+
}
|
49 |
+
|
50 |
+
template <typename TilingConfig>
|
51 |
+
__device__ __forceinline__ void core_mma_slice(
|
52 |
+
float c[][REG_PER_THREAD_C_TENSOR_16_16],
|
53 |
+
uint32_t (*a)[4],
|
54 |
+
uint32_t (*b)[4],
|
55 |
+
uint32_t* __restrict__ A1_SPTR_read,
|
56 |
+
uint32_t* __restrict__ A2_SPTR_read,
|
57 |
+
half __restrict__ (*B_SPTR_read)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
58 |
+
uint32_t* RPTR_Scales,
|
59 |
+
int slice_id) // writing slice[slice_id] to registers, k=0 -> slice_id=1 for prefetching
|
60 |
+
{
|
61 |
+
#ifdef DEBUG_MODE
|
62 |
+
assert(
|
63 |
+
(TilingConfig::WARP_COL_MMA_TENSORS == 1) ||
|
64 |
+
(TilingConfig::WARP_COL_MMA_TENSORS % 2 ==
|
65 |
+
0)); // if WARP_COL_MMA_TENSORS == 1, B tile in registers is padded to a 16*16 MMA block
|
66 |
+
#endif
|
67 |
+
const int NumRegSets_a =
|
68 |
+
WARP_ROW_MMA_TENSORS; // 1 set = 4 registers, containing a 16*16 MMA block
|
69 |
+
const int NumRegSets_b = (TilingConfig::WARP_COL_MMA_TENSORS == 1)
|
70 |
+
? 1
|
71 |
+
: TilingConfig::WARP_COL_MMA_TENSORS /
|
72 |
+
2; // 1 set = 4 registers, containing a 16*16 MMA block
|
73 |
+
uint32_t(*c_uint_ptr)[REG_PER_THREAD_C_TENSOR_16_16] =
|
74 |
+
reinterpret_cast<uint32_t(*)[REG_PER_THREAD_C_TENSOR_16_16]>(
|
75 |
+
c); // Registers for accumulated FP32 results
|
76 |
+
|
77 |
+
// Setting RPTRs for double buffers
|
78 |
+
uint32_t(*a_read)[4] = a;
|
79 |
+
uint32_t(*a_write)[4] = a;
|
80 |
+
uint32_t(*b_read)[4] = b;
|
81 |
+
uint32_t(*b_write)[4] = b;
|
82 |
+
if (slice_id % 2 == 1) {
|
83 |
+
b_write += NumRegSets_b;
|
84 |
+
a_write += NumRegSets_a;
|
85 |
+
} else {
|
86 |
+
b_read += NumRegSets_b;
|
87 |
+
a_read += NumRegSets_a;
|
88 |
+
}
|
89 |
+
|
90 |
+
// Reading registers and issuing core tensor core computations (a slice of A and B tile in shared
|
91 |
+
// memory)
|
92 |
+
#pragma unroll
|
93 |
+
for (int i = 0; i < WARP_ROW_MMA_TENSORS; i++) {
|
94 |
+
if (TilingConfig::WARP_COL_MMA_TENSORS == 1) {
|
95 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i], a_read[i], b_read[0]);
|
96 |
+
} else {
|
97 |
+
#pragma unroll
|
98 |
+
for (int j = 0; j < TilingConfig::WARP_COL_MMA_TENSORS / 2; j++) {
|
99 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i + j * WARP_ROW_MMA_TENSORS], a_read[i], b_read[j]);
|
100 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i + j * WARP_ROW_MMA_TENSORS] + 4,
|
101 |
+
a_read[i],
|
102 |
+
b_read[j] + 2); // c+4; b+2
|
103 |
+
}
|
104 |
+
}
|
105 |
+
}
|
106 |
+
|
107 |
+
// Writing registers
|
108 |
+
// Registers to store FP6 fragments for a slice (64*16) of A matrix => 32 FP6 per thread => 6
|
109 |
+
// register per thread;
|
110 |
+
uint32_t a_1[2]; // NO double buffer
|
111 |
+
uint32_t a_2[4]; // NO double buffer
|
112 |
+
CopyFromSharedToRegister_AFrag<2>(a_1, A1_SPTR_read, slice_id);
|
113 |
+
CopyFromSharedToRegister_AFrag<4>(a_2, A2_SPTR_read, slice_id);
|
114 |
+
Dequant_32FP6_4Way(
|
115 |
+
a_write, a_1, a_2, RPTR_Scales); // SIMT Dequant: dequantizing FP6 to FP16 at register
|
116 |
+
// level, dequantizing a slice each time
|
117 |
+
B_FromSharedToReg<TilingConfig>(
|
118 |
+
b_write, B_SPTR_read, slice_id); // Loading B from shared to registers
|
119 |
+
}
|
120 |
+
|
121 |
+
#else
|
122 |
+
// Old version with naive pipeline design
|
123 |
+
template <int NUM_INT_PER_THREAD>
|
124 |
+
__device__ __forceinline__ void CopyFromSharedToRegister_AFrag(uint32_t Reg[], uint32_t* SPTR)
|
125 |
+
{
|
126 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
127 |
+
#pragma unroll
|
128 |
+
for (int i = 0; i < NUM_INT_PER_THREAD; i++) { Reg[i] = SPTR[lane_id + i * WARP_SIZE]; }
|
129 |
+
}
|
130 |
+
template <typename TilingConfig>
|
131 |
+
__device__ __forceinline__ void PipelinedCoreLoop(
|
132 |
+
float c[][REG_PER_THREAD_C_TENSOR_16_16],
|
133 |
+
half __restrict__ (*read_SPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
134 |
+
uint32_t* __restrict__ read_SPTR_Frag1,
|
135 |
+
uint32_t* __restrict__ read_SPTR_Frag2,
|
136 |
+
uint32_t* RPTR_Scales)
|
137 |
+
{
|
138 |
+
#ifdef DEBUG_MODE
|
139 |
+
assert(
|
140 |
+
(TilingConfig::WARP_COL_MMA_TENSORS == 1) ||
|
141 |
+
(TilingConfig::WARP_COL_MMA_TENSORS % 2 ==
|
142 |
+
0)); // if WARP_COL_MMA_TENSORS == 1, B tile in registers is padded to a 16*16 MMA block
|
143 |
+
#endif
|
144 |
+
const int NumRegSets_a =
|
145 |
+
WARP_ROW_MMA_TENSORS; // 1 set = 4 registers, containing a 16*16 MMA block
|
146 |
+
const int NumRegSets_b = (TilingConfig::WARP_COL_MMA_TENSORS == 1)
|
147 |
+
? 1
|
148 |
+
: TilingConfig::WARP_COL_MMA_TENSORS /
|
149 |
+
2; // 1 set = 4 registers, containing a 16*16 MMA block
|
150 |
+
|
151 |
+
// Registers to store FP32 results
|
152 |
+
uint32_t(*c_uint_ptr)[REG_PER_THREAD_C_TENSOR_16_16] =
|
153 |
+
reinterpret_cast<uint32_t(*)[REG_PER_THREAD_C_TENSOR_16_16]>(c);
|
154 |
+
// Registers to store FP6 fragments for a slice (64*16) of A matrix => 32 FP6 per thread => 6
|
155 |
+
// register per thread;
|
156 |
+
uint32_t a_1[2 * 2]; // double buffer is used
|
157 |
+
uint32_t a_2[4 * 2]; // double buffer is used
|
158 |
+
// Registers to store decompressed FP6
|
159 |
+
uint32_t a[NumRegSets_a * 1][4]; // No double buffer
|
160 |
+
// Register to store FP16 B matrix (a slice)
|
161 |
+
uint32_t b[NumRegSets_b * 2][4]; // double buffer is used
|
162 |
+
|
163 |
+
// Overlapped Smem and TC pipeline: pre-loading from shared to registers
|
164 |
+
CopyFromSharedToRegister_AFrag<2>(a_1, read_SPTR_Frag1);
|
165 |
+
CopyFromSharedToRegister_AFrag<4>(a_2, read_SPTR_Frag2);
|
166 |
+
B_FromSharedToReg<TilingConfig>(b, read_SPTR, 0);
|
167 |
+
|
168 |
+
#pragma unroll
|
169 |
+
for (int k = 0; k < WARP_K_MMA_TENSORS; k++) {
|
170 |
+
uint32_t(*b_read)[4] = b;
|
171 |
+
uint32_t(*b_write)[4] = b;
|
172 |
+
uint32_t* a_1_read = a_1;
|
173 |
+
uint32_t* a_1_write = a_1;
|
174 |
+
uint32_t* a_2_read = a_2;
|
175 |
+
uint32_t* a_2_write = a_2;
|
176 |
+
if (k % 2 == 0) {
|
177 |
+
b_write += NumRegSets_b;
|
178 |
+
a_1_write += 2;
|
179 |
+
a_2_write += 4;
|
180 |
+
} else {
|
181 |
+
b_read += NumRegSets_b;
|
182 |
+
a_1_read += 2;
|
183 |
+
a_2_read += 4;
|
184 |
+
}
|
185 |
+
// data loading
|
186 |
+
if (k + 1 < WARP_K_MMA_TENSORS) {
|
187 |
+
// updating SPTR for fragment1 and fragment2
|
188 |
+
read_SPTR_Frag1 += 2 * WARP_SIZE;
|
189 |
+
read_SPTR_Frag2 += 4 * WARP_SIZE;
|
190 |
+
CopyFromSharedToRegister_AFrag<2>(a_1_write, read_SPTR_Frag1);
|
191 |
+
CopyFromSharedToRegister_AFrag<4>(a_2_write, read_SPTR_Frag2);
|
192 |
+
B_FromSharedToReg<TilingConfig>(b_write, read_SPTR, (k + 1) * MMA_16);
|
193 |
+
}
|
194 |
+
// SIMT Dequant + Tensor Core computations
|
195 |
+
Dequant_32FP6_4Way(
|
196 |
+
a, a_1_read, a_2_read, RPTR_Scales); // Dequantizing FP6 to FP16 at register level,
|
197 |
+
// dequantizing a slice each time
|
198 |
+
#pragma unroll
|
199 |
+
for (int i = 0; i < WARP_ROW_MMA_TENSORS; i++) {
|
200 |
+
if (TilingConfig::WARP_COL_MMA_TENSORS == 1)
|
201 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i], a[i], b_read[0]);
|
202 |
+
else {
|
203 |
+
#pragma unroll
|
204 |
+
for (int j = 0; j < TilingConfig::WARP_COL_MMA_TENSORS / 2; j++) {
|
205 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i + j * WARP_ROW_MMA_TENSORS], a[i], b_read[j]);
|
206 |
+
MMA_FP16_M16N8K16(c_uint_ptr[i + j * WARP_ROW_MMA_TENSORS] + 4,
|
207 |
+
a[i],
|
208 |
+
b_read[j] + 2); // c+4; b+2
|
209 |
+
}
|
210 |
+
}
|
211 |
+
}
|
212 |
+
}
|
213 |
+
}
|
214 |
+
#endif // #ifdef PIPELINE_LEVEL_SMEM
|
215 |
+
|
216 |
+
template <typename TilingConfig>
|
217 |
+
__device__ __forceinline__ void StoreToSharedMemoryFromRegister(
|
218 |
+
float (*smem_CFrag)[TilingConfig::TILE_M + PADDING_SHARED_MEM_FOR_C_4],
|
219 |
+
float c[][REG_PER_THREAD_C_TENSOR_16_16])
|
220 |
+
{
|
221 |
+
const int lane_id = threadIdx.x % WARP_SIZE;
|
222 |
+
const int warpId = threadIdx.x / WARP_SIZE;
|
223 |
+
int warp_row_offset = warpId * (MMA_16 * WARP_ROW_MMA_TENSORS);
|
224 |
+
#pragma unroll
|
225 |
+
for (int i = 0; i < WARP_ROW_MMA_TENSORS; i++) {
|
226 |
+
#pragma unroll
|
227 |
+
for (int j = 0; j < TilingConfig::WARP_COL_MMA_TENSORS;
|
228 |
+
j++) { // Dealing with one 16*8 Tensor
|
229 |
+
int RegSetID = i + (j / 2) * WARP_ROW_MMA_TENSORS;
|
230 |
+
int RegOffset = (j % 2) * (REG_PER_THREAD_C_TENSOR_16_16 / 2);
|
231 |
+
int Tensor_row_offset = warp_row_offset + i * MMA_16;
|
232 |
+
int Tensor_col_offset = j * MMA_8;
|
233 |
+
#pragma unroll
|
234 |
+
for (int r = 0; r < REG_PER_THREAD_C_TENSOR_16_16 / 2; r++) {
|
235 |
+
int row_offset = lane_id / 4;
|
236 |
+
if (r >= 2) row_offset += 8;
|
237 |
+
int col_offset = (lane_id % 4) * 2;
|
238 |
+
if (r % 2 == 1) col_offset += 1;
|
239 |
+
smem_CFrag[Tensor_col_offset + col_offset][Tensor_row_offset + row_offset] =
|
240 |
+
c[RegSetID][r + RegOffset];
|
241 |
+
}
|
242 |
+
}
|
243 |
+
}
|
244 |
+
}
|
245 |
+
|
246 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_gmem.cuh
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_UTILS_GMEM_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_UTILS_GMEM_CUH
|
10 |
+
|
11 |
+
#include <assert.h>
|
12 |
+
#include "configs.h"
|
13 |
+
#include "ptx_cp.async.cuh"
|
14 |
+
|
15 |
+
/*
|
16 |
+
* Copying A1/A2 from global memory to shared memory.
|
17 |
+
* Usually 1024 or 2048 Bytes
|
18 |
+
*/
|
19 |
+
template <int SMEM_SIZE_IN_BYTES_PER_WARP>
|
20 |
+
__device__ __forceinline__ void CopyFromGlobalToShared_A(uint32_t* SPTR,
|
21 |
+
const uint4* GPTR,
|
22 |
+
bool pred_guard = true)
|
23 |
+
{
|
24 |
+
#ifdef DEBUG_MODE
|
25 |
+
static_assert(SMEM_SIZE_IN_BYTES_PER_WARP / WARP_SIZE % 16 == 0);
|
26 |
+
#endif
|
27 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
28 |
+
half* SPTR_HALF = reinterpret_cast<half*>(SPTR);
|
29 |
+
const half* GPTR_HALF = reinterpret_cast<const half*>(GPTR);
|
30 |
+
SPTR_HALF += lane_id * 8;
|
31 |
+
GPTR_HALF += lane_id * 8;
|
32 |
+
#pragma unroll
|
33 |
+
for (int i = 0; i < SMEM_SIZE_IN_BYTES_PER_WARP / WARP_SIZE / 16; i++) {
|
34 |
+
cp_async<16>(SPTR_HALF, GPTR_HALF, pred_guard);
|
35 |
+
SPTR_HALF += 256; // Forward 512 Bytes
|
36 |
+
GPTR_HALF += 256; // Forward 512 Bytes
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
/*
|
41 |
+
* Copying 64 Quant Scales (FP16) from global memory to shared memory.
|
42 |
+
*/
|
43 |
+
__device__ __forceinline__ void CopyFromGlobalToShared_Scales(half* SPTR_QuantScales,
|
44 |
+
const half* GPTR_A_Scales)
|
45 |
+
{
|
46 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
47 |
+
int Offset_Shared = lane_id * 2;
|
48 |
+
int Offset_Global = lane_id / 4 + (lane_id % 4) * 16;
|
49 |
+
for (int i = 0; i < 2; i++)
|
50 |
+
SPTR_QuantScales[Offset_Shared + i] = GPTR_A_Scales[Offset_Global + i * 8];
|
51 |
+
}
|
52 |
+
|
53 |
+
/*
|
54 |
+
* (1) Copying X rows * 64 columns of FP16 values, originally in row major
|
55 |
+
* (2) Copying 64 rows * X columns of FP16 values, originally in column major
|
56 |
+
* 16 Bytes per thread -> 512 Bytes per WARP = 4 line per WARP = 1 line per 8 Threads
|
57 |
+
*/
|
58 |
+
template <int MaxNumOfLinesToCopy, int BLOCK_WARPS>
|
59 |
+
__device__ __forceinline__ void CopyFromGlobalToShared(
|
60 |
+
half __restrict__ (*SharedPTR)[WARP_K + PADDING_SHARED_MEM_FOR_B_8],
|
61 |
+
const half* GlobalPTR,
|
62 |
+
const int GlobalStride,
|
63 |
+
const int NumOfLinesLeft, // To support arbitrary N dimensions.
|
64 |
+
bool Pred = true)
|
65 |
+
{
|
66 |
+
// static parameters: 1 Group (8 Threads) can copy 1 line (64 FP16) each time
|
67 |
+
const int NumOfThreads = BLOCK_WARPS * WARP_SIZE;
|
68 |
+
const int NumOfGroups = NumOfThreads / 8;
|
69 |
+
const int MaxIteration = (MaxNumOfLinesToCopy - 1) / NumOfGroups + 1;
|
70 |
+
// runtime variables
|
71 |
+
const int line_id = threadIdx.x / 8;
|
72 |
+
const int line_offset = (threadIdx.x % 8) * 8;
|
73 |
+
// PTR for source global memory and target shared memory
|
74 |
+
GlobalPTR += line_id * GlobalStride + line_offset;
|
75 |
+
SharedPTR += line_id;
|
76 |
+
#pragma unroll
|
77 |
+
for (int i = 0; i < MaxIteration; i++) {
|
78 |
+
bool AsyncCopyPred = (line_id + i * NumOfGroups) < NumOfLinesLeft && Pred;
|
79 |
+
cp_async<16>(&(*SharedPTR)[line_offset], GlobalPTR, AsyncCopyPred);
|
80 |
+
//
|
81 |
+
GlobalPTR += NumOfGroups * GlobalStride;
|
82 |
+
SharedPTR += NumOfGroups;
|
83 |
+
}
|
84 |
+
}
|
85 |
+
|
86 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/utils_paralleldequant.cuh
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_UTILS_PARALLELDEQUANT_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_UTILS_PARALLELDEQUANT_CUH
|
10 |
+
|
11 |
+
#include <cuda.h>
|
12 |
+
#include <cuda_fp16.h>
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
/*
|
16 |
+
* Input: R1
|
17 |
+
* Outputs: R1, R2
|
18 |
+
* Note: Simplified Exponent calculation is applied.
|
19 |
+
*/
|
20 |
+
__device__ __forceinline__ void FP6_FP16_Cast_4Way(u_int32_t* R1, u_int32_t* R2)
|
21 |
+
{
|
22 |
+
*R2 = *R1 & 0x80808080;
|
23 |
+
*R1 = *R1 >> 2;
|
24 |
+
*R1 = *R1 & 0x1f1f1f1f;
|
25 |
+
*R2 = *R2 | *R1;
|
26 |
+
*R1 = *R2 & 0x9f009f00;
|
27 |
+
*R2 = *R2 & 0x009f009f;
|
28 |
+
*R2 = *R2 << 8;
|
29 |
+
}
|
30 |
+
|
31 |
+
/*
|
32 |
+
* Input: R1
|
33 |
+
* Outputs: R1, R2
|
34 |
+
* Note: Simplified Exponent calculation is NOT applied.
|
35 |
+
*/
|
36 |
+
__device__ __forceinline__ void FP6_FP16_Cast_4Way_Naive(u_int32_t* R1, u_int32_t* R2)
|
37 |
+
{
|
38 |
+
//*R2 = *R1 & 0x80808080;
|
39 |
+
*R2 = *R1 & 0xc0c0c0c0;
|
40 |
+
*R1 = *R1 >> 2;
|
41 |
+
//*R1 = *R1 & 0x1f1f1f1f;
|
42 |
+
*R1 = *R1 & 0x0f0f0f0f;
|
43 |
+
*R2 = *R2 | *R1;
|
44 |
+
//
|
45 |
+
//*R1 = *R2 & 0x9f009f00;
|
46 |
+
//*R2 = *R2 & 0x009f009f;
|
47 |
+
*R1 = *R2 & 0xcf00cf00;
|
48 |
+
if (!(*R1 & 0x40000000) && (*R1 & 0x0c000000)) *R1 = *R1 | 0x30000000;
|
49 |
+
if (!(*R1 & 0x00004000) && (*R1 & 0x00000c00)) *R1 = *R1 | 0x00003000;
|
50 |
+
*R2 = *R2 & 0x00cf00cf;
|
51 |
+
if (!(*R2 & 0x00400000) && (*R2 & 0x000c0000)) *R2 = *R2 | 0x00300000;
|
52 |
+
if (!(*R2 & 0x00000040) && (*R2 & 0x0000000c)) *R2 = *R2 | 0x00000030;
|
53 |
+
//
|
54 |
+
*R2 = *R2 << 8;
|
55 |
+
//*R1 = 0x3c003c00;
|
56 |
+
//*R2 = 0x3c003c00;
|
57 |
+
}
|
58 |
+
|
59 |
+
__device__ __forceinline__ u_int32_t MultScale(u_int32_t PackedFP16Pair, half Scale)
|
60 |
+
{
|
61 |
+
half* FP16_1 = reinterpret_cast<half*>(&PackedFP16Pair);
|
62 |
+
half* FP16_2 = FP16_1 + 1;
|
63 |
+
uint32_t output;
|
64 |
+
half* output_half_ptr = reinterpret_cast<half*>(&output);
|
65 |
+
output_half_ptr[0] = __hmul(__hmul(*FP16_1, __float2half(4096.0f)), Scale);
|
66 |
+
output_half_ptr[1] = __hmul(__hmul(*FP16_2, __float2half(4096.0f)), Scale);
|
67 |
+
return output;
|
68 |
+
}
|
69 |
+
|
70 |
+
__device__ __forceinline__ void Dequant_32FP6_4Way(u_int32_t __restrict__ Reg[][4],
|
71 |
+
u_int32_t __restrict__* read_RPTR_Frag1,
|
72 |
+
u_int32_t __restrict__* read_RPTR_Frag2,
|
73 |
+
u_int32_t* Scales)
|
74 |
+
{
|
75 |
+
u_int32_t* OutputRegs = reinterpret_cast<u_int32_t*>(Reg);
|
76 |
+
u_int32_t* Frag1_PTR = read_RPTR_Frag1;
|
77 |
+
u_int32_t* Frag2_PTR = read_RPTR_Frag2;
|
78 |
+
half* Scale_RPTR = reinterpret_cast<half*>(Scales);
|
79 |
+
u_int32_t Packed_FP6 = 0;
|
80 |
+
u_int32_t tmp = 0;
|
81 |
+
// Dequantizing 32 FP6, each Loop dequantizing 4 FP6
|
82 |
+
#pragma unroll(8)
|
83 |
+
for (int i = 0; i < 8; i++) {
|
84 |
+
// Frag1
|
85 |
+
Packed_FP6 = (*Frag1_PTR) & 0xc0c0c0c0;
|
86 |
+
if (i % 4 == 3)
|
87 |
+
Frag1_PTR++;
|
88 |
+
else
|
89 |
+
(*Frag1_PTR) = (*Frag1_PTR) << 2;
|
90 |
+
// Frag2
|
91 |
+
tmp = (*Frag2_PTR) & 0xf0f0f0f0;
|
92 |
+
tmp = tmp >> 2;
|
93 |
+
if (i % 2 == 1)
|
94 |
+
Frag2_PTR++;
|
95 |
+
else
|
96 |
+
(*Frag2_PTR) = (*Frag2_PTR) << 4;
|
97 |
+
// Packed_FP6
|
98 |
+
Packed_FP6 = Packed_FP6 | tmp;
|
99 |
+
//
|
100 |
+
FP6_FP16_Cast_4Way(&Packed_FP6, &tmp);
|
101 |
+
//
|
102 |
+
*OutputRegs = MultScale(Packed_FP6, Scale_RPTR[0]); // Muliply FP16 scales
|
103 |
+
OutputRegs += 1;
|
104 |
+
*OutputRegs = MultScale(tmp, Scale_RPTR[1]); // Muliply FP16 scales
|
105 |
+
OutputRegs += 1;
|
106 |
+
// Updating offset for FP16 scales for every two iterations
|
107 |
+
if (i % 2 == 1) Scale_RPTR += 2;
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
/*
|
112 |
+
*
|
113 |
+
*/
|
114 |
+
__device__ __forceinline__ void ExtractFromSharedToReg_Scales(uint32_t* Scales,
|
115 |
+
half* WARP_SPTR_Scales)
|
116 |
+
{
|
117 |
+
int lane_id = threadIdx.x % WARP_SIZE;
|
118 |
+
uint32_t* SPTR_uint = reinterpret_cast<uint32_t*>(WARP_SPTR_Scales);
|
119 |
+
uint32_t tmpReg = SPTR_uint[lane_id];
|
120 |
+
#pragma unroll
|
121 |
+
for (int i = 0; i < 4; i++) {
|
122 |
+
// T __shfl_sync(unsigned mask, T var, int srcLane, int width=warpSize);
|
123 |
+
Scales[i] = __shfl_sync(0xffffffff, tmpReg, i, 4);
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/weight_prepacking.h
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_WEIGHT_PREPACKING_H
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_WEIGHT_PREPACKING_H
|
10 |
+
|
11 |
+
#include <assert.h>
|
12 |
+
#include <stdio.h>
|
13 |
+
#include <vector>
|
14 |
+
|
15 |
+
using namespace std;
|
16 |
+
|
17 |
+
void Padding_8_FP6_To_8_Bytes(unsigned char Padded_FP6[],
|
18 |
+
unsigned char* FP6_Array) // padding 0 to the lowerest bit location
|
19 |
+
{
|
20 |
+
Padded_FP6[0] = FP6_Array[0] & 0xfc;
|
21 |
+
Padded_FP6[1] = (FP6_Array[0] << 6) | ((FP6_Array[1] >> 2) & 0xfc);
|
22 |
+
Padded_FP6[2] = (FP6_Array[1] << 4) | ((FP6_Array[2] >> 4) & 0xfc);
|
23 |
+
Padded_FP6[3] = FP6_Array[2] << 2;
|
24 |
+
Padded_FP6[4] = FP6_Array[3] & 0xfc;
|
25 |
+
Padded_FP6[5] = (FP6_Array[3] << 6) | ((FP6_Array[4] >> 2) & 0xfc);
|
26 |
+
Padded_FP6[6] = (FP6_Array[4] << 4) | ((FP6_Array[5] >> 4) & 0xfc);
|
27 |
+
Padded_FP6[7] = FP6_Array[5] << 2;
|
28 |
+
}
|
29 |
+
|
30 |
+
unsigned char Extract_2_Bits_From_4_PaddedFP6(unsigned char B1,
|
31 |
+
unsigned char B2,
|
32 |
+
unsigned char B3,
|
33 |
+
unsigned char B4)
|
34 |
+
{
|
35 |
+
unsigned char out;
|
36 |
+
out = (B1 & 0xc0) | ((B2 & 0xc0) >> 2) | ((B3 & 0xc0) >> 4) | ((B4 & 0xc0) >> 6);
|
37 |
+
return out;
|
38 |
+
}
|
39 |
+
|
40 |
+
unsigned char Extract_4_Bits_From_2_PaddedFP6(
|
41 |
+
unsigned char B1,
|
42 |
+
unsigned char
|
43 |
+
B2) // The highest two bits are already extracted by Extract_2_Bits_From_4_PaddedFP6();
|
44 |
+
{
|
45 |
+
unsigned char out;
|
46 |
+
out = ((B1 << 2) & 0xf0) | ((B2 >> 2) & 0x0f);
|
47 |
+
return out;
|
48 |
+
}
|
49 |
+
|
50 |
+
// dealing with 4 1*8 blocks of FP6
|
51 |
+
void Assign_32_FP6_To_4_Thread(vector<unsigned char> Seg_2bit[],
|
52 |
+
vector<unsigned char> Seg_4bit[],
|
53 |
+
unsigned char* PTR_1,
|
54 |
+
unsigned char* PTR_2,
|
55 |
+
unsigned char* PTR_3,
|
56 |
+
unsigned char* PTR_4)
|
57 |
+
{
|
58 |
+
unsigned char Padded_8_FP8[4][8];
|
59 |
+
Padding_8_FP6_To_8_Bytes(Padded_8_FP8[0], PTR_1);
|
60 |
+
Padding_8_FP6_To_8_Bytes(Padded_8_FP8[1], PTR_2);
|
61 |
+
Padding_8_FP6_To_8_Bytes(Padded_8_FP8[2], PTR_3);
|
62 |
+
Padding_8_FP6_To_8_Bytes(Padded_8_FP8[3], PTR_4);
|
63 |
+
//
|
64 |
+
unsigned char Seg1_Byte1_T[4];
|
65 |
+
unsigned char Seg1_Byte2_T[4];
|
66 |
+
unsigned char Seg2_Byte1_T[4];
|
67 |
+
unsigned char Seg2_Byte2_T[4];
|
68 |
+
unsigned char Seg2_Byte3_T[4];
|
69 |
+
unsigned char Seg2_Byte4_T[4];
|
70 |
+
for (int t = 0; t < 4; t++) {
|
71 |
+
Seg1_Byte1_T[t] = Extract_2_Bits_From_4_PaddedFP6(Padded_8_FP8[0][0 + t * 2],
|
72 |
+
Padded_8_FP8[0][1 + t * 2],
|
73 |
+
Padded_8_FP8[1][0 + t * 2],
|
74 |
+
Padded_8_FP8[1][1 + t * 2]);
|
75 |
+
Seg1_Byte2_T[t] = Extract_2_Bits_From_4_PaddedFP6(Padded_8_FP8[2][0 + t * 2],
|
76 |
+
Padded_8_FP8[2][1 + t * 2],
|
77 |
+
Padded_8_FP8[3][0 + t * 2],
|
78 |
+
Padded_8_FP8[3][1 + t * 2]);
|
79 |
+
Seg2_Byte1_T[t] =
|
80 |
+
Extract_4_Bits_From_2_PaddedFP6(Padded_8_FP8[0][0 + t * 2], Padded_8_FP8[0][1 + t * 2]);
|
81 |
+
Seg2_Byte2_T[t] =
|
82 |
+
Extract_4_Bits_From_2_PaddedFP6(Padded_8_FP8[1][0 + t * 2], Padded_8_FP8[1][1 + t * 2]);
|
83 |
+
Seg2_Byte3_T[t] =
|
84 |
+
Extract_4_Bits_From_2_PaddedFP6(Padded_8_FP8[2][0 + t * 2], Padded_8_FP8[2][1 + t * 2]);
|
85 |
+
Seg2_Byte4_T[t] =
|
86 |
+
Extract_4_Bits_From_2_PaddedFP6(Padded_8_FP8[3][0 + t * 2], Padded_8_FP8[3][1 + t * 2]);
|
87 |
+
}
|
88 |
+
//
|
89 |
+
for (int t = 0; t < 4; t++) {
|
90 |
+
Seg_2bit[t].push_back(Seg1_Byte1_T[t]);
|
91 |
+
Seg_2bit[t].push_back(Seg1_Byte2_T[t]);
|
92 |
+
Seg_4bit[t].push_back(Seg2_Byte1_T[t]);
|
93 |
+
Seg_4bit[t].push_back(Seg2_Byte2_T[t]);
|
94 |
+
Seg_4bit[t].push_back(Seg2_Byte3_T[t]);
|
95 |
+
Seg_4bit[t].push_back(Seg2_Byte4_T[t]);
|
96 |
+
}
|
97 |
+
return;
|
98 |
+
}
|
99 |
+
|
100 |
+
void BitInterleaving_2bit(unsigned char* PTR_4Bytes)
|
101 |
+
{
|
102 |
+
unsigned int* PTR_UINT = reinterpret_cast<unsigned int*>(PTR_4Bytes);
|
103 |
+
unsigned int input = *PTR_UINT;
|
104 |
+
//
|
105 |
+
// int order_2bit[16] = {1,5,9,13,3,7,11,15,2,6,10,14,4,8,12,16}; // pre-defined order for
|
106 |
+
// bit-interleaving in QuantLLM
|
107 |
+
int order_2bit[16] = {
|
108 |
+
2, 6, 10, 14, 4, 8, 12, 16, 1, 5, 9, 13, 3, 7, 11, 15}; // pre-defined order for
|
109 |
+
// bit-interleaving in QuantLLM
|
110 |
+
unsigned int Frags_2bit[16]; // The highest 2 bits are used to store the extracted fragments.
|
111 |
+
for (int i = 0; i < 16; i++) Frags_2bit[i] = (input << 2 * (order_2bit[i] - 1)) & 0xc0000000;
|
112 |
+
//
|
113 |
+
unsigned int output = 0x00000000;
|
114 |
+
for (int i = 0; i < 16; i++) output |= (Frags_2bit[i] >> (i * 2));
|
115 |
+
//
|
116 |
+
*PTR_UINT = output;
|
117 |
+
}
|
118 |
+
|
119 |
+
void BitInterleaving_4bit(unsigned char* PTR_4Bytes)
|
120 |
+
{
|
121 |
+
unsigned int* PTR_UINT = reinterpret_cast<unsigned int*>(PTR_4Bytes);
|
122 |
+
unsigned int input = *PTR_UINT;
|
123 |
+
//
|
124 |
+
// int order_4bit[8] = {1,5,3,7,2,6,4,8}; // pre-defined order for bit-interleaving in QuantLLM
|
125 |
+
int order_4bit[8] = {
|
126 |
+
2, 6, 4, 8, 1, 5, 3, 7}; // pre-defined order for bit-interleaving in QuantLLM
|
127 |
+
unsigned int Frags_4bit[8]; // The highest4 bits are used to store the extracted fragments.
|
128 |
+
for (int i = 0; i < 8; i++) Frags_4bit[i] = (input << 4 * (order_4bit[i] - 1)) & 0xf0000000;
|
129 |
+
//
|
130 |
+
unsigned int output = 0x00000000;
|
131 |
+
for (int i = 0; i < 8; i++) output |= (Frags_4bit[i] >> (i * 4));
|
132 |
+
//
|
133 |
+
*PTR_UINT = output;
|
134 |
+
}
|
135 |
+
|
136 |
+
/*
|
137 |
+
* Inputs:
|
138 |
+
* (1) unsigned char Weight_6bit [M*K*6/8]
|
139 |
+
* Outputs:
|
140 |
+
* (1) unsigned char Weight_2bit [M*K*2/8]
|
141 |
+
* (2) unsigned char Weight_4bit [M*K*4/8]
|
142 |
+
*
|
143 |
+
* Assumption: Weight_6bit, Weight_2bit, Weight_4bit all stored continuously in row-major.
|
144 |
+
* 8 FP6 = 6 Bytes
|
145 |
+
* 8 FP4 = 4 Bytes
|
146 |
+
* 8 FP2 = 2 Bytes
|
147 |
+
*/
|
148 |
+
void weight_matrix_prepacking(int* FP6Weights, size_t M, size_t K)
|
149 |
+
{
|
150 |
+
assert(M % 64 == 0);
|
151 |
+
assert(K % 64 == 0);
|
152 |
+
//
|
153 |
+
unsigned char* Weight_6bit = reinterpret_cast<unsigned char*>(FP6Weights);
|
154 |
+
unsigned char* Weight_2bit = Weight_6bit;
|
155 |
+
unsigned char* Weight_4bit = Weight_6bit + M * K * 2 / 8;
|
156 |
+
//
|
157 |
+
vector<unsigned char> A_Segment_2bit[32];
|
158 |
+
vector<unsigned char> A_Segment_4bit[32];
|
159 |
+
//
|
160 |
+
size_t BytesPerRow = K * 6 / 8;
|
161 |
+
// Pass-1: (1) 2+4 split; (2) assign weights to 32 threads.
|
162 |
+
for (size_t i = 0; i < M / 64; i++) //
|
163 |
+
{
|
164 |
+
for (size_t j = 0; j < K / 16; j++) {
|
165 |
+
for (size_t k = 0; k < 64 / 16; k++) {
|
166 |
+
size_t row = i * 64 + k * 16;
|
167 |
+
size_t col = j * 16;
|
168 |
+
unsigned char* StartPTR_1 = Weight_6bit + row * BytesPerRow + col * 6 / 8;
|
169 |
+
unsigned char* StartPTR_2 = StartPTR_1 + 8 * BytesPerRow;
|
170 |
+
unsigned char* StartPTR_3 = StartPTR_1 + 8 * 6 / 8;
|
171 |
+
unsigned char* StartPTR_4 = StartPTR_2 + 8 * 6 / 8;
|
172 |
+
// Dealing with each 16*16 blocks then...
|
173 |
+
for (int l = 0; l < 8; l++)
|
174 |
+
Assign_32_FP6_To_4_Thread(&A_Segment_2bit[l * 4],
|
175 |
+
&A_Segment_4bit[l * 4],
|
176 |
+
StartPTR_1 + l * BytesPerRow,
|
177 |
+
StartPTR_2 + l * BytesPerRow,
|
178 |
+
StartPTR_3 + l * BytesPerRow,
|
179 |
+
StartPTR_4 + l * BytesPerRow);
|
180 |
+
}
|
181 |
+
}
|
182 |
+
}
|
183 |
+
// Verifying the length of 2_bit segments and 4_bit segments
|
184 |
+
size_t BytesPerThread_2bit = M * K * 2 / 8 / 32;
|
185 |
+
size_t BytesPerThread_4bit = M * K * 4 / 8 / 32;
|
186 |
+
for (int i = 0; i < 32; i++) {
|
187 |
+
assert(A_Segment_2bit[i].size() == BytesPerThread_2bit);
|
188 |
+
assert(A_Segment_4bit[i].size() == BytesPerThread_4bit);
|
189 |
+
}
|
190 |
+
// Pass-2: Optimizing coleasced global memory access
|
191 |
+
for (size_t i = 0; i < BytesPerThread_2bit / 4; i++)
|
192 |
+
for (int t = 0; t < 32; t++)
|
193 |
+
for (int b = 0; b < 4; b++)
|
194 |
+
Weight_2bit[i * 128 + t * 4 + (3 - b)] =
|
195 |
+
A_Segment_2bit[t]
|
196 |
+
[i * 4 + b]; // why (3-b): special byte order within a register
|
197 |
+
for (size_t i = 0; i < BytesPerThread_4bit / 4; i++)
|
198 |
+
for (int t = 0; t < 32; t++)
|
199 |
+
for (int b = 0; b < 4; b++)
|
200 |
+
Weight_4bit[i * 128 + t * 4 + (3 - b)] =
|
201 |
+
A_Segment_4bit[t][i * 4 + b]; // why (3-b):special byte order within a register
|
202 |
+
// Pass-3: Bit-level interleaving
|
203 |
+
for (size_t i = 0; i < BytesPerThread_2bit * 32 / 4; i++)
|
204 |
+
BitInterleaving_2bit(Weight_2bit + 4 * i);
|
205 |
+
for (size_t i = 0; i < BytesPerThread_4bit * 32 / 4; i++)
|
206 |
+
BitInterleaving_4bit(Weight_4bit + 4 * i);
|
207 |
+
}
|
208 |
+
|
209 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .mixed_gemm import *
|
7 |
+
from .moe_gemm import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (257 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/cutlass_ops.cpp
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
#include "mixed_gemm.h"
|
9 |
+
#include "moe_gemm.h"
|
10 |
+
|
11 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
12 |
+
{
|
13 |
+
// mixed_gemm.h
|
14 |
+
m.def("mixed_gemm", &mixed_gemm, "Mixed-precision GEMM");
|
15 |
+
|
16 |
+
// moe_gemm.h
|
17 |
+
m.def("moe_gemm", &moe_gemm, "MultiGEMM for MoE (16-bit weights)");
|
18 |
+
m.def("mixed_moe_gemm", &mixed_moe_gemm, "MultiGEMM for MoE (4-bit/8-bit weights)");
|
19 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .mixed_gemm import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (248 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/__pycache__/mixed_gemm.cpython-310.pyc
ADDED
Binary file (2.63 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm.cu
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
#include "mixed_gemm.h"
|
8 |
+
#include "mixed_gemm_api.h"
|
9 |
+
#include "weight_variant.h"
|
10 |
+
|
11 |
+
// Switch helpers inspired by
|
12 |
+
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
13 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
14 |
+
|
15 |
+
#define ACT_DTYPE_SWITCH(COND, ...) \
|
16 |
+
[&] { \
|
17 |
+
if (COND) { \
|
18 |
+
using ActivationDtype = __half; \
|
19 |
+
return __VA_ARGS__(); \
|
20 |
+
} else { \
|
21 |
+
using ActivationDtype = __nv_bfloat16; \
|
22 |
+
return __VA_ARGS__(); \
|
23 |
+
} \
|
24 |
+
}()
|
25 |
+
|
26 |
+
#define WEIGHT_VARIANT_SWITCH(COND, ...) \
|
27 |
+
[&] { \
|
28 |
+
if (COND) { \
|
29 |
+
constexpr WeightVariant WVariant = WeightVariant::kFP8; \
|
30 |
+
return __VA_ARGS__(); \
|
31 |
+
} else { \
|
32 |
+
constexpr WeightVariant WVariant = WeightVariant::kFP4; \
|
33 |
+
return __VA_ARGS__(); \
|
34 |
+
} \
|
35 |
+
}()
|
36 |
+
|
37 |
+
void mixed_gemm(at::Tensor& output,
|
38 |
+
at::Tensor& hidden_states,
|
39 |
+
at::Tensor& weight,
|
40 |
+
at::Tensor& scales,
|
41 |
+
c10::optional<at::Tensor>& bias,
|
42 |
+
int num_bits,
|
43 |
+
int activation_raw)
|
44 |
+
{
|
45 |
+
TORCH_CHECK(output.dtype() == hidden_states.dtype(),
|
46 |
+
"Output and hidden states must have the same dtype");
|
47 |
+
TORCH_CHECK(num_bits == 4 || num_bits == 8, "Data width must be 4 or 8");
|
48 |
+
TORCH_CHECK(output.size(0) == hidden_states.size(0), "Token dimension mismatch");
|
49 |
+
|
50 |
+
int32_t m = output.size(0);
|
51 |
+
int32_t k = hidden_states.size(1);
|
52 |
+
int32_t n = weight.size(1);
|
53 |
+
|
54 |
+
TORCH_CHECK(weight.size(0) == k, "Weight dimension mismatch");
|
55 |
+
|
56 |
+
ACT_DTYPE_SWITCH(hidden_states.dtype() == torch::kFloat16, [&] {
|
57 |
+
WEIGHT_VARIANT_SWITCH(num_bits == 8, [&] {
|
58 |
+
fastertransformer::CutlassFpAIntBGemmRunner<ActivationDtype, WVariant> runner =
|
59 |
+
*MixedGemmContext<ActivationDtype, WVariant>::Instance().GeMM_Runner();
|
60 |
+
|
61 |
+
ActivationType activation_type = (ActivationType)activation_raw;
|
62 |
+
if (!bias.has_value() && activation_type == ActivationType::IDENTITY) {
|
63 |
+
runner.gemm((ActivationDtype*)hidden_states.data_ptr(),
|
64 |
+
(const char*)weight.data_ptr(),
|
65 |
+
(ActivationDtype*)scales.data_ptr(),
|
66 |
+
(ActivationDtype*)output.data_ptr(),
|
67 |
+
m,
|
68 |
+
n,
|
69 |
+
k,
|
70 |
+
nullptr,
|
71 |
+
0,
|
72 |
+
at::cuda::getCurrentCUDAStream());
|
73 |
+
return;
|
74 |
+
} else {
|
75 |
+
ActivationDtype* bias_ptr = nullptr;
|
76 |
+
if (bias.has_value()) { bias_ptr = (ActivationDtype*)bias.value().data_ptr(); }
|
77 |
+
runner.gemm_bias_act((ActivationDtype*)hidden_states.data_ptr(),
|
78 |
+
(char*)weight.data_ptr(),
|
79 |
+
(ActivationDtype*)scales.data_ptr(),
|
80 |
+
bias_ptr,
|
81 |
+
(ActivationDtype*)output.data_ptr(),
|
82 |
+
m,
|
83 |
+
n,
|
84 |
+
k,
|
85 |
+
activation_type,
|
86 |
+
nullptr,
|
87 |
+
0,
|
88 |
+
at::cuda::getCurrentCUDAStream());
|
89 |
+
return;
|
90 |
+
}
|
91 |
+
});
|
92 |
+
});
|
93 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ... import DSKernelBase
|
9 |
+
from ....inference_utils import ActivationType, DtypeEnum
|
10 |
+
from deepspeed.ops.op_builder import InferenceCutlassBuilder
|
11 |
+
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
|
15 |
+
class MixedGEMM(DSKernelBase):
|
16 |
+
"""
|
17 |
+
CUTLASS implementation of MoE GEMM.
|
18 |
+
"""
|
19 |
+
|
20 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
21 |
+
supported_act_fns = [ActivationType.GELU, ActivationType.SILU, ActivationType.RELU, ActivationType.IDENTITY]
|
22 |
+
|
23 |
+
def __init__(self, fp_dtype: DtypeEnum, act_fn: ActivationType, num_bits: int) -> None:
|
24 |
+
|
25 |
+
if not isinstance(fp_dtype, DtypeEnum):
|
26 |
+
fp_dtype = DtypeEnum(fp_dtype)
|
27 |
+
|
28 |
+
if fp_dtype not in MixedGEMM.supported_dtypes:
|
29 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
30 |
+
fp_dtype, MixedGEMM.supported_dtypes))
|
31 |
+
|
32 |
+
if act_fn not in MixedGEMM.supported_act_fns:
|
33 |
+
raise ValueError("Unsupported activation function: {}, supported_act_fns are {}".format(
|
34 |
+
act_fn, MixedGEMM.supported_act_fns))
|
35 |
+
|
36 |
+
if num_bits != 4 and num_bits != 8:
|
37 |
+
raise ValueError("Unsupported num_bits: {}, supported num_bits are 4 and 8".format(num_bits))
|
38 |
+
|
39 |
+
inf_module = InferenceCutlassBuilder().load()
|
40 |
+
self.num_bits = num_bits
|
41 |
+
self.kernel = inf_module.moe_gemm
|
42 |
+
self.act_fn = act_fn
|
43 |
+
|
44 |
+
def __call__(self,
|
45 |
+
output: torch.Tensor,
|
46 |
+
hidden_states: torch.Tensor,
|
47 |
+
weights: torch.Tensor,
|
48 |
+
scales: torch.Tensor,
|
49 |
+
biases: Optional[torch.Tensor] = None) -> None:
|
50 |
+
"""
|
51 |
+
Performs a MoE GEMM. Note that the stride between token inputs must be even (the distance between byte 1 of token 0 and token 1 must be the same as the distance between byte 1 of token 1 and token 2).
|
52 |
+
|
53 |
+
Arguments:
|
54 |
+
output (torch.Tensor): The output of the MoE GEMM of shape [n_tokens, out_neurons].
|
55 |
+
hidden_states (torch.Tensor): The direct input for the MoE GEMM of shape [n_tokens, in_neurons].
|
56 |
+
weights (torch.Tensor): The weights of shape [in_neurons, out_neurons]. These weights must be contiguous.
|
57 |
+
scales (torch.Tensor): The scales of shape [out_neurons]. These scales must be contiguous.
|
58 |
+
biases (torch.Tensor): The biases of shape [out_neurons]. These biases must be contiguous.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
output
|
62 |
+
"""
|
63 |
+
self.kernel(output, hidden_states, weights, biases, self.num_bits, self.act_fn)
|
64 |
+
return output
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/mixed_gemm/mixed_gemm_api.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "activation_type.h"
|
7 |
+
#include "weight_variant.h"
|
8 |
+
|
9 |
+
namespace fastertransformer {
|
10 |
+
|
11 |
+
template <typename T, WeightVariant V>
|
12 |
+
class CutlassFpAIntBGemmRunner {
|
13 |
+
public:
|
14 |
+
void gemm(const T* A,
|
15 |
+
const char* B,
|
16 |
+
const T* weight_scales,
|
17 |
+
T* C,
|
18 |
+
int m,
|
19 |
+
int n,
|
20 |
+
int k,
|
21 |
+
char* workspace_ptr,
|
22 |
+
const size_t workspace_bytes,
|
23 |
+
cudaStream_t stream);
|
24 |
+
|
25 |
+
void gemm_bias_act(const T* A,
|
26 |
+
const char* B,
|
27 |
+
const T* weight_scales,
|
28 |
+
const T* biases,
|
29 |
+
T* C,
|
30 |
+
int m,
|
31 |
+
int n,
|
32 |
+
int k,
|
33 |
+
ActivationType activation_type,
|
34 |
+
char* workspace_ptr,
|
35 |
+
const size_t workspace_bytes,
|
36 |
+
cudaStream_t stream);
|
37 |
+
};
|
38 |
+
|
39 |
+
} // namespace fastertransformer
|
40 |
+
|
41 |
+
template <typename T, WeightVariant V>
|
42 |
+
class MixedGemmContext {
|
43 |
+
public:
|
44 |
+
MixedGemmContext() { _runner = new fastertransformer::CutlassFpAIntBGemmRunner<T, V>(); }
|
45 |
+
|
46 |
+
virtual ~MixedGemmContext() { delete _runner; }
|
47 |
+
|
48 |
+
static MixedGemmContext& Instance()
|
49 |
+
{
|
50 |
+
static MixedGemmContext _ctx;
|
51 |
+
return _ctx;
|
52 |
+
}
|
53 |
+
|
54 |
+
fastertransformer::CutlassFpAIntBGemmRunner<T, V>* GeMM_Runner() const { return _runner; }
|
55 |
+
|
56 |
+
fastertransformer::CutlassFpAIntBGemmRunner<T, V>* _runner;
|
57 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .mixed_moe_gemm import *
|
7 |
+
from .moe_gemm import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (270 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/mixed_moe_gemm.cpython-310.pyc
ADDED
Binary file (2.87 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/__pycache__/moe_gemm.cpython-310.pyc
ADDED
Binary file (2.55 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/mixed_moe_gemm.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ... import DSKernelBase
|
9 |
+
from ....inference_utils import ActivationType, DtypeEnum
|
10 |
+
from deepspeed.ops.op_builder import InferenceCutlassBuilder
|
11 |
+
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
|
15 |
+
class MixedMoEGEMM(DSKernelBase):
|
16 |
+
"""
|
17 |
+
CUTLASS implementation of MoE GEMM.
|
18 |
+
"""
|
19 |
+
|
20 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
21 |
+
supported_act_fns = [ActivationType.GELU, ActivationType.SILU, ActivationType.RELU, ActivationType.IDENTITY]
|
22 |
+
|
23 |
+
def __init__(self, fp_dtype: DtypeEnum, act_fn: ActivationType, num_bits: int) -> None:
|
24 |
+
|
25 |
+
if not isinstance(fp_dtype, DtypeEnum):
|
26 |
+
fp_dtype = DtypeEnum(fp_dtype)
|
27 |
+
|
28 |
+
if fp_dtype not in MixedMoEGEMM.supported_dtypes:
|
29 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
30 |
+
fp_dtype, MixedMoEGEMM.supported_dtypes))
|
31 |
+
|
32 |
+
if act_fn not in MixedMoEGEMM.supported_act_fns:
|
33 |
+
raise ValueError("Unsupported activation function: {}, supported_act_fns are {}".format(
|
34 |
+
act_fn, MixedMoEGEMM.supported_act_fns))
|
35 |
+
|
36 |
+
if num_bits != 4 and num_bits != 8:
|
37 |
+
raise ValueError("Unsupported num_bits: {}, supported num_bits are 4 and 8".format(num_bits))
|
38 |
+
|
39 |
+
inf_module = InferenceCutlassBuilder().load()
|
40 |
+
self.num_bits = num_bits
|
41 |
+
self.kernel = inf_module.moe_gemm
|
42 |
+
self.act_fn = act_fn
|
43 |
+
|
44 |
+
def __call__(self,
|
45 |
+
ordered_output: torch.Tensor,
|
46 |
+
ordered_input: torch.Tensor,
|
47 |
+
weights: torch.Tensor,
|
48 |
+
scales: torch.Tensor,
|
49 |
+
total_rows_before_expert: torch.Tensor,
|
50 |
+
biases: Optional[torch.Tensor] = None) -> None:
|
51 |
+
"""
|
52 |
+
Performs a MoE GEMM. Note that the stride between token inputs must be even (the distance between byte 1 of token 0 and token 1 must be the same as the distance between byte 1 of token 1 and token 2).
|
53 |
+
|
54 |
+
Arguments:
|
55 |
+
ordered_output (torch.Tensor): The output of the MoE GEMM of shape [n_tokens, out_neurons].
|
56 |
+
ordered_input (torch.Tensor): The direct input for the MoE GEMM of shape [n_tokens, in_neurons].
|
57 |
+
weights (torch.Tensor): The weights of shape [n_experts, in_neurons, out_neurons]. These weights must be contiguous.
|
58 |
+
scales (torch.Tensor): The scales of shape [n_experts, out_neurons]. These scales must be contiguous.
|
59 |
+
total_rows_before_expert (torch.Tensor): The total number of rows before each expert of shape [n_experts].
|
60 |
+
biases (torch.Tensor): The biases of shape [n_experts, out_neurons]. These biases must be contiguous.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
ordered_output
|
64 |
+
"""
|
65 |
+
self.kernel(ordered_output, ordered_input, weights, scales, biases, total_rows_before_expert, self.num_bits,
|
66 |
+
self.act_fn)
|
67 |
+
return ordered_output
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.cu
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
#include "moe_gemm.h"
|
8 |
+
#include "moe_gemm_api.h"
|
9 |
+
#include "weight_variant.h"
|
10 |
+
|
11 |
+
// Switch helpers inspired by
|
12 |
+
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
13 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
14 |
+
|
15 |
+
#define HIDDEN_DTYPE_SWITCH(COND, ...) \
|
16 |
+
[&] { \
|
17 |
+
if (COND) { \
|
18 |
+
using ActivationDtype = __half; \
|
19 |
+
constexpr WeightVariant WVariant = WeightVariant::kFP16; \
|
20 |
+
return __VA_ARGS__(); \
|
21 |
+
} else { \
|
22 |
+
using ActivationDtype = __nv_bfloat16; \
|
23 |
+
constexpr WeightVariant WVariant = WeightVariant::kBF16; \
|
24 |
+
return __VA_ARGS__(); \
|
25 |
+
} \
|
26 |
+
}()
|
27 |
+
|
28 |
+
void moe_gemm(at::Tensor& output,
|
29 |
+
at::Tensor& hidden_states,
|
30 |
+
at::Tensor& weight,
|
31 |
+
c10::optional<at::Tensor>& bias,
|
32 |
+
at::Tensor& total_rows_before_expert,
|
33 |
+
int activation_raw)
|
34 |
+
{
|
35 |
+
TORCH_CHECK(output.dtype() == hidden_states.dtype(),
|
36 |
+
"Output and hidden states must have the same dtype");
|
37 |
+
TORCH_CHECK(output.dtype() == weight.dtype(), "Output and weight must have the same dtype");
|
38 |
+
|
39 |
+
int64_t total_rows = hidden_states.size(0);
|
40 |
+
int64_t gemm_k = hidden_states.size(1);
|
41 |
+
int64_t gemm_n = weight.size(2);
|
42 |
+
int num_experts = weight.size(0);
|
43 |
+
|
44 |
+
TORCH_CHECK(total_rows == output.size(0), "Total rows dimension mismatch");
|
45 |
+
TORCH_CHECK(gemm_k == weight.size(1), "GEMM K dimension mismatch");
|
46 |
+
TORCH_CHECK(gemm_n == output.size(1), "GEMM N dimension mismatch");
|
47 |
+
TORCH_CHECK(num_experts == total_rows_before_expert.size(0), "Number of experts mismatch");
|
48 |
+
|
49 |
+
HIDDEN_DTYPE_SWITCH(hidden_states.dtype() == torch::kFloat16, [&] {
|
50 |
+
fastertransformer::MoeGemmRunner<ActivationDtype, WVariant> runner =
|
51 |
+
*MoeGemmContext<ActivationDtype, WVariant>::Instance().GeMM_Runner();
|
52 |
+
|
53 |
+
ActivationType activation_type = (ActivationType)activation_raw;
|
54 |
+
if (!bias.has_value() && activation_type == ActivationType::IDENTITY) {
|
55 |
+
runner.moe_gemm((ActivationDtype*)hidden_states.data_ptr(),
|
56 |
+
(char*)weight.data_ptr(),
|
57 |
+
nullptr,
|
58 |
+
(ActivationDtype*)output.data_ptr(),
|
59 |
+
(int64_t*)total_rows_before_expert.data_ptr(),
|
60 |
+
total_rows,
|
61 |
+
gemm_n,
|
62 |
+
gemm_k,
|
63 |
+
num_experts,
|
64 |
+
at::cuda::getCurrentCUDAStream());
|
65 |
+
return;
|
66 |
+
} else {
|
67 |
+
ActivationDtype* bias_ptr = nullptr;
|
68 |
+
if (bias.has_value()) {
|
69 |
+
bias_ptr = (ActivationDtype*)bias.value().data_ptr();
|
70 |
+
TORCH_CHECK(num_experts == bias.value().size(0), "Number of experts mismatch");
|
71 |
+
TORCH_CHECK(gemm_n == bias.value().size(1), "GEMM N dimension mismatch");
|
72 |
+
}
|
73 |
+
runner.moe_gemm_bias_act((ActivationDtype*)hidden_states.data_ptr(),
|
74 |
+
(char*)weight.data_ptr(),
|
75 |
+
nullptr,
|
76 |
+
bias_ptr,
|
77 |
+
(ActivationDtype*)output.data_ptr(),
|
78 |
+
(int64_t*)total_rows_before_expert.data_ptr(),
|
79 |
+
total_rows,
|
80 |
+
gemm_n,
|
81 |
+
gemm_k,
|
82 |
+
num_experts,
|
83 |
+
activation_type,
|
84 |
+
at::cuda::getCurrentCUDAStream());
|
85 |
+
return;
|
86 |
+
}
|
87 |
+
});
|
88 |
+
}
|
89 |
+
|
90 |
+
#define ACT_DTYPE_SWITCH(COND, ...) \
|
91 |
+
[&] { \
|
92 |
+
if (COND) { \
|
93 |
+
using ActivationDtype = __half; \
|
94 |
+
return __VA_ARGS__(); \
|
95 |
+
} else { \
|
96 |
+
using ActivationDtype = __nv_bfloat16; \
|
97 |
+
return __VA_ARGS__(); \
|
98 |
+
} \
|
99 |
+
}()
|
100 |
+
|
101 |
+
#define WEIGHT_VARIANT_SWITCH(COND, ...) \
|
102 |
+
[&] { \
|
103 |
+
if (COND) { \
|
104 |
+
constexpr WeightVariant WVariant = WeightVariant::kFP8; \
|
105 |
+
return __VA_ARGS__(); \
|
106 |
+
} else { \
|
107 |
+
constexpr WeightVariant WVariant = WeightVariant::kFP4; \
|
108 |
+
return __VA_ARGS__(); \
|
109 |
+
} \
|
110 |
+
}()
|
111 |
+
|
112 |
+
void mixed_moe_gemm(at::Tensor& output,
|
113 |
+
at::Tensor& hidden_states,
|
114 |
+
at::Tensor& weight,
|
115 |
+
at::Tensor& scales,
|
116 |
+
c10::optional<at::Tensor>& bias,
|
117 |
+
at::Tensor& total_rows_before_expert,
|
118 |
+
int num_bits,
|
119 |
+
int activation_raw)
|
120 |
+
{
|
121 |
+
TORCH_CHECK(output.dtype() == hidden_states.dtype(),
|
122 |
+
"Output and hidden states must have the same dtype");
|
123 |
+
|
124 |
+
int64_t total_rows = hidden_states.size(0);
|
125 |
+
int64_t gemm_k = hidden_states.size(1);
|
126 |
+
int64_t gemm_n = weight.size(2);
|
127 |
+
int num_experts = weight.size(0);
|
128 |
+
|
129 |
+
TORCH_CHECK(total_rows == output.size(0), "Total rows dimension mismatch");
|
130 |
+
TORCH_CHECK(gemm_k == weight.size(1), "GEMM K dimension mismatch");
|
131 |
+
TORCH_CHECK(gemm_n == output.size(1), "GEMM N dimension mismatch");
|
132 |
+
TORCH_CHECK(num_experts == total_rows_before_expert.size(0), "Number of experts mismatch");
|
133 |
+
|
134 |
+
ACT_DTYPE_SWITCH(hidden_states.dtype() == torch::kFloat16, [&] {
|
135 |
+
WEIGHT_VARIANT_SWITCH(num_bits == 8, [&] {
|
136 |
+
fastertransformer::MoeGemmRunner<ActivationDtype, WVariant> runner =
|
137 |
+
*MoeGemmContext<ActivationDtype, WVariant>::Instance().GeMM_Runner();
|
138 |
+
|
139 |
+
ActivationType activation_type = (ActivationType)activation_raw;
|
140 |
+
if (!bias.has_value() && activation_type == ActivationType::IDENTITY) {
|
141 |
+
runner.moe_gemm((ActivationDtype*)hidden_states.data_ptr(),
|
142 |
+
(char*)weight.data_ptr(),
|
143 |
+
(ActivationDtype*)scales.data_ptr(),
|
144 |
+
(ActivationDtype*)output.data_ptr(),
|
145 |
+
(int64_t*)total_rows_before_expert.data_ptr(),
|
146 |
+
total_rows,
|
147 |
+
gemm_n,
|
148 |
+
gemm_k,
|
149 |
+
num_experts,
|
150 |
+
at::cuda::getCurrentCUDAStream());
|
151 |
+
return;
|
152 |
+
} else {
|
153 |
+
ActivationDtype* bias_ptr = nullptr;
|
154 |
+
if (bias.has_value()) {
|
155 |
+
bias_ptr = (ActivationDtype*)bias.value().data_ptr();
|
156 |
+
TORCH_CHECK(num_experts == bias.value().size(0), "Number of experts mismatch");
|
157 |
+
TORCH_CHECK(gemm_n == bias.value().size(1), "GEMM N dimension mismatch");
|
158 |
+
}
|
159 |
+
runner.moe_gemm_bias_act((ActivationDtype*)hidden_states.data_ptr(),
|
160 |
+
(char*)weight.data_ptr(),
|
161 |
+
(ActivationDtype*)scales.data_ptr(),
|
162 |
+
bias_ptr,
|
163 |
+
(ActivationDtype*)output.data_ptr(),
|
164 |
+
(int64_t*)total_rows_before_expert.data_ptr(),
|
165 |
+
total_rows,
|
166 |
+
gemm_n,
|
167 |
+
gemm_k,
|
168 |
+
num_experts,
|
169 |
+
activation_type,
|
170 |
+
at::cuda::getCurrentCUDAStream());
|
171 |
+
return;
|
172 |
+
}
|
173 |
+
});
|
174 |
+
});
|
175 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <torch/extension.h>
|
9 |
+
|
10 |
+
void moe_gemm(at::Tensor& output,
|
11 |
+
at::Tensor& hidden_states,
|
12 |
+
at::Tensor& weight,
|
13 |
+
c10::optional<at::Tensor>& bias,
|
14 |
+
at::Tensor& total_rows_before_expert,
|
15 |
+
int activation_raw);
|
16 |
+
|
17 |
+
void mixed_moe_gemm(at::Tensor& output,
|
18 |
+
at::Tensor& hidden_states,
|
19 |
+
at::Tensor& weight,
|
20 |
+
at::Tensor& scales,
|
21 |
+
c10::optional<at::Tensor>& bias,
|
22 |
+
at::Tensor& total_rows_before_expert,
|
23 |
+
int num_bits,
|
24 |
+
int activation_raw);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ... import DSKernelBase
|
9 |
+
from ....inference_utils import ActivationType, DtypeEnum
|
10 |
+
from deepspeed.ops.op_builder import InferenceCutlassBuilder
|
11 |
+
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
|
15 |
+
class MoEGEMM(DSKernelBase):
|
16 |
+
"""
|
17 |
+
CUTLASS implementation of MoE GEMM.
|
18 |
+
"""
|
19 |
+
|
20 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
21 |
+
supported_act_fns = [ActivationType.GELU, ActivationType.SILU, ActivationType.RELU, ActivationType.IDENTITY]
|
22 |
+
|
23 |
+
def __init__(self, fp_dtype: DtypeEnum, act_fn: ActivationType) -> None:
|
24 |
+
|
25 |
+
if not isinstance(fp_dtype, DtypeEnum):
|
26 |
+
fp_dtype = DtypeEnum(fp_dtype)
|
27 |
+
|
28 |
+
if fp_dtype not in MoEGEMM.supported_dtypes:
|
29 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
30 |
+
fp_dtype, MoEGEMM.supported_dtypes))
|
31 |
+
|
32 |
+
if act_fn not in MoEGEMM.supported_act_fns:
|
33 |
+
raise ValueError("Unsupported activation function: {}, supported_act_fns are {}".format(
|
34 |
+
act_fn, MoEGEMM.supported_act_fns))
|
35 |
+
|
36 |
+
inf_module = InferenceCutlassBuilder().load()
|
37 |
+
self.kernel = inf_module.moe_gemm
|
38 |
+
self.act_fn = act_fn
|
39 |
+
|
40 |
+
def __call__(self,
|
41 |
+
ordered_output: torch.Tensor,
|
42 |
+
ordered_input: torch.Tensor,
|
43 |
+
weights: torch.Tensor,
|
44 |
+
total_rows_before_expert: torch.Tensor,
|
45 |
+
biases: Optional[torch.Tensor] = None) -> None:
|
46 |
+
"""
|
47 |
+
Performs a MoE GEMM. Note that the stride between token inputs must be even (the distance between byte 1 of token 0 and token 1 must be the same as the distance between byte 1 of token 1 and token 2).
|
48 |
+
|
49 |
+
Arguments:
|
50 |
+
ordered_output (torch.Tensor): The output of the MoE GEMM of shape [n_tokens, out_neurons].
|
51 |
+
ordered_input (torch.Tensor): The direct input for the MoE GEMM of shape [n_tokens, in_neurons].
|
52 |
+
weights (torch.Tensor): The weights of shape [n_experts, in_neurons, out_neurons]. These weights must be contiguous.
|
53 |
+
total_rows_before_expert (torch.Tensor): The total number of rows before each expert of shape [n_experts].
|
54 |
+
biases (torch.Tensor): The biases of shape [n_experts, out_neurons]. These biases must be contiguous.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
ordered_output
|
58 |
+
"""
|
59 |
+
self.kernel(ordered_output, ordered_input, weights, biases, total_rows_before_expert, self.act_fn)
|
60 |
+
return ordered_output
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/moe_gemm/moe_gemm_api.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "activation_type.h"
|
7 |
+
#include "weight_variant.h"
|
8 |
+
|
9 |
+
namespace fastertransformer {
|
10 |
+
|
11 |
+
template <typename T, /*The type used for activations/scales/compute*/
|
12 |
+
WeightVariant V /* The type for the MoE weights */>
|
13 |
+
class MoeGemmRunner {
|
14 |
+
public:
|
15 |
+
MoeGemmRunner();
|
16 |
+
|
17 |
+
void moe_gemm_bias_act(const T* A,
|
18 |
+
const char* B,
|
19 |
+
const T* weight_scales,
|
20 |
+
const T* biases,
|
21 |
+
T* C,
|
22 |
+
int64_t* total_rows_before_expert,
|
23 |
+
int64_t total_rows,
|
24 |
+
int64_t gemm_n,
|
25 |
+
int64_t gemm_k,
|
26 |
+
int num_experts,
|
27 |
+
ActivationType activation_type,
|
28 |
+
cudaStream_t stream);
|
29 |
+
|
30 |
+
void moe_gemm(const T* A,
|
31 |
+
const char* B,
|
32 |
+
const T* weight_scales,
|
33 |
+
T* C,
|
34 |
+
int64_t* total_rows_before_expert,
|
35 |
+
int64_t total_rows,
|
36 |
+
int64_t gemm_n,
|
37 |
+
int64_t gemm_k,
|
38 |
+
int num_experts,
|
39 |
+
cudaStream_t stream);
|
40 |
+
|
41 |
+
private:
|
42 |
+
int sm_;
|
43 |
+
int multi_processor_count_;
|
44 |
+
};
|
45 |
+
|
46 |
+
} // namespace fastertransformer
|
47 |
+
|
48 |
+
template <typename T, WeightVariant V>
|
49 |
+
class MoeGemmContext {
|
50 |
+
public:
|
51 |
+
MoeGemmContext() { _runner = new fastertransformer::MoeGemmRunner<T, V>(); }
|
52 |
+
|
53 |
+
virtual ~MoeGemmContext() { delete _runner; }
|
54 |
+
|
55 |
+
static MoeGemmContext& Instance()
|
56 |
+
{
|
57 |
+
static MoeGemmContext _ctx;
|
58 |
+
return _ctx;
|
59 |
+
}
|
60 |
+
|
61 |
+
fastertransformer::MoeGemmRunner<T, V>* GeMM_Runner() const { return _runner; }
|
62 |
+
|
63 |
+
fastertransformer::MoeGemmRunner<T, V>* _runner;
|
64 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/cutlass_ops/shared_resources/weight_variant.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// Data structure that allows us to abstract internal CUTLASS datatypes/mappings
|
7 |
+
// to the DeepSpeed-Kernels repo.
|
8 |
+
|
9 |
+
#pragma once
|
10 |
+
|
11 |
+
enum WeightVariant { kFP16, kBF16, kFP8, kFP4 };
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/activation_type.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
enum ActivationType {
|
9 |
+
GELU = 0,
|
10 |
+
RELU = 1,
|
11 |
+
SILU = 2,
|
12 |
+
GEGLU = 3,
|
13 |
+
ReGLU = 4,
|
14 |
+
SiGLU = 5,
|
15 |
+
IDENTITY = 6,
|
16 |
+
InvalidType = -1
|
17 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/conversion_utils.h
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
|
10 |
+
#include <stdint.h>
|
11 |
+
|
12 |
+
#ifdef BF16_AVAILABLE
|
13 |
+
#include <cuda_bf16.h>
|
14 |
+
#endif
|
15 |
+
|
16 |
+
namespace conversion {
|
17 |
+
|
18 |
+
// Basic primitive for constructing conversions
|
19 |
+
template <typename TO, typename FROM>
|
20 |
+
DS_D_INLINE TO to(FROM val)
|
21 |
+
{
|
22 |
+
return to(val);
|
23 |
+
}
|
24 |
+
|
25 |
+
// Specializations
|
26 |
+
|
27 |
+
/********************* Identity Conversions *********************/
|
28 |
+
/*
|
29 |
+
Identity conversions are useful in templated functions where we might have
|
30 |
+
a fixed destination type. For example, I might have a kernel that accepts
|
31 |
+
__half, __nv_bfloat16, and float but always want to do the core computation
|
32 |
+
at floating point:
|
33 |
+
|
34 |
+
T mem_value = input[idx];
|
35 |
+
float compute_value = conversion::to<float, T>(mem_value);
|
36 |
+
|
37 |
+
In practice, we should be able to elide the second template parameter:
|
38 |
+
float compute_val = conversion::to<float>(mem_value);
|
39 |
+
|
40 |
+
In this case, we need an implementation to handle the T = float case
|
41 |
+
|
42 |
+
NOTE: The type inferencing system appears to be unable to handle inferring the first
|
43 |
+
template parameter, even in the trivial case.
|
44 |
+
*/
|
45 |
+
|
46 |
+
// Floating point types
|
47 |
+
template <>
|
48 |
+
DS_D_INLINE double to(double val)
|
49 |
+
{
|
50 |
+
return val;
|
51 |
+
}
|
52 |
+
template <>
|
53 |
+
DS_D_INLINE float to(float val)
|
54 |
+
{
|
55 |
+
return val;
|
56 |
+
}
|
57 |
+
template <>
|
58 |
+
DS_D_INLINE __half to(__half val)
|
59 |
+
{
|
60 |
+
return val;
|
61 |
+
}
|
62 |
+
#ifdef BF16_AVAILABLE
|
63 |
+
template <>
|
64 |
+
DS_D_INLINE __nv_bfloat16 to(__nv_bfloat16 val)
|
65 |
+
{
|
66 |
+
return val;
|
67 |
+
}
|
68 |
+
#endif
|
69 |
+
|
70 |
+
// Integer types
|
71 |
+
template <>
|
72 |
+
DS_D_INLINE int8_t to(int8_t val)
|
73 |
+
{
|
74 |
+
return val;
|
75 |
+
}
|
76 |
+
template <>
|
77 |
+
DS_D_INLINE uint8_t to(uint8_t val)
|
78 |
+
{
|
79 |
+
return val;
|
80 |
+
}
|
81 |
+
template <>
|
82 |
+
DS_D_INLINE int16_t to(int16_t val)
|
83 |
+
{
|
84 |
+
return val;
|
85 |
+
}
|
86 |
+
template <>
|
87 |
+
DS_D_INLINE uint16_t to(uint16_t val)
|
88 |
+
{
|
89 |
+
return val;
|
90 |
+
}
|
91 |
+
template <>
|
92 |
+
DS_D_INLINE int32_t to(int32_t val)
|
93 |
+
{
|
94 |
+
return val;
|
95 |
+
}
|
96 |
+
template <>
|
97 |
+
DS_D_INLINE uint32_t to(uint32_t val)
|
98 |
+
{
|
99 |
+
return val;
|
100 |
+
}
|
101 |
+
template <>
|
102 |
+
DS_D_INLINE int64_t to(int64_t val)
|
103 |
+
{
|
104 |
+
return val;
|
105 |
+
}
|
106 |
+
template <>
|
107 |
+
DS_D_INLINE uint64_t to(uint64_t val)
|
108 |
+
{
|
109 |
+
return val;
|
110 |
+
}
|
111 |
+
|
112 |
+
// TODO: evaluate if we want bools
|
113 |
+
|
114 |
+
/********************* To Double Conversions *********************/
|
115 |
+
|
116 |
+
// * to double variants
|
117 |
+
|
118 |
+
// Would normally like to not use C cast, but this is an important enough conversion
|
119 |
+
// to keep
|
120 |
+
template <>
|
121 |
+
DS_D_INLINE double to(float val)
|
122 |
+
{
|
123 |
+
#ifdef PTX_AVAILABLE
|
124 |
+
double ret_val;
|
125 |
+
asm("ctv.rn.f64.f32 %0, %1;\n" : "=d"(ret_val) : "f"(val));
|
126 |
+
return ret_val;
|
127 |
+
#else
|
128 |
+
return double(val);
|
129 |
+
#endif
|
130 |
+
}
|
131 |
+
// Note: there is a CVT instruction for __half -> double, but there's no inline interface
|
132 |
+
// for passing a single half value
|
133 |
+
template <>
|
134 |
+
DS_D_INLINE double to(__half val)
|
135 |
+
{
|
136 |
+
return to<double>(__half2float(val));
|
137 |
+
}
|
138 |
+
template <>
|
139 |
+
DS_D_INLINE double to(int64_t val)
|
140 |
+
{
|
141 |
+
return __ll2double_rn(val);
|
142 |
+
}
|
143 |
+
template <>
|
144 |
+
DS_D_INLINE double to(int32_t val)
|
145 |
+
{
|
146 |
+
return __int2double_rn(val);
|
147 |
+
}
|
148 |
+
template <>
|
149 |
+
DS_D_INLINE double to(int16_t val)
|
150 |
+
{
|
151 |
+
return __int2double_rn(val);
|
152 |
+
}
|
153 |
+
template <>
|
154 |
+
DS_D_INLINE double to(int8_t val)
|
155 |
+
{
|
156 |
+
return __int2double_rn(val);
|
157 |
+
}
|
158 |
+
template <>
|
159 |
+
DS_D_INLINE double to(uint64_t val)
|
160 |
+
{
|
161 |
+
return __ull2double_rn(val);
|
162 |
+
}
|
163 |
+
template <>
|
164 |
+
DS_D_INLINE double to(uint32_t val)
|
165 |
+
{
|
166 |
+
return __uint2double_rn(val);
|
167 |
+
}
|
168 |
+
template <>
|
169 |
+
DS_D_INLINE double to(uint16_t val)
|
170 |
+
{
|
171 |
+
return __uint2double_rn(val);
|
172 |
+
}
|
173 |
+
template <>
|
174 |
+
DS_D_INLINE double to(uint8_t val)
|
175 |
+
{
|
176 |
+
return __uint2double_rn(val);
|
177 |
+
}
|
178 |
+
|
179 |
+
// Same applies here
|
180 |
+
#ifdef BF16_AVAILABLE
|
181 |
+
template <>
|
182 |
+
DS_D_INLINE double to(__nv_bfloat16 val)
|
183 |
+
{
|
184 |
+
return to<double>(__bfloat162float(val));
|
185 |
+
}
|
186 |
+
#endif
|
187 |
+
|
188 |
+
/********************* To Float Conversions *********************/
|
189 |
+
|
190 |
+
template <>
|
191 |
+
DS_D_INLINE float to(double val)
|
192 |
+
{
|
193 |
+
return __double2float_rn(val);
|
194 |
+
}
|
195 |
+
template <>
|
196 |
+
DS_D_INLINE float to(__half val)
|
197 |
+
{
|
198 |
+
return __half2float(val);
|
199 |
+
}
|
200 |
+
template <>
|
201 |
+
DS_D_INLINE float to(int64_t val)
|
202 |
+
{
|
203 |
+
return __ll2float_rn(val);
|
204 |
+
}
|
205 |
+
template <>
|
206 |
+
DS_D_INLINE float to(int32_t val)
|
207 |
+
{
|
208 |
+
return __int2float_rn(val);
|
209 |
+
}
|
210 |
+
template <>
|
211 |
+
DS_D_INLINE float to(int16_t val)
|
212 |
+
{
|
213 |
+
return __int2float_rn(val);
|
214 |
+
}
|
215 |
+
template <>
|
216 |
+
DS_D_INLINE float to(int8_t val)
|
217 |
+
{
|
218 |
+
return __int2float_rn(val);
|
219 |
+
}
|
220 |
+
template <>
|
221 |
+
DS_D_INLINE float to(uint64_t val)
|
222 |
+
{
|
223 |
+
return __ull2float_rn(val);
|
224 |
+
}
|
225 |
+
template <>
|
226 |
+
DS_D_INLINE float to(uint32_t val)
|
227 |
+
{
|
228 |
+
return __uint2float_rn(val);
|
229 |
+
}
|
230 |
+
template <>
|
231 |
+
DS_D_INLINE float to(uint16_t val)
|
232 |
+
{
|
233 |
+
return __uint2float_rn(val);
|
234 |
+
}
|
235 |
+
template <>
|
236 |
+
DS_D_INLINE float to(uint8_t val)
|
237 |
+
{
|
238 |
+
return __uint2float_rn(val);
|
239 |
+
}
|
240 |
+
|
241 |
+
#ifdef BF16_AVAILABLE
|
242 |
+
template <>
|
243 |
+
DS_D_INLINE float to(__nv_bfloat16 val)
|
244 |
+
{
|
245 |
+
return __bfloat162float(val);
|
246 |
+
}
|
247 |
+
#endif
|
248 |
+
|
249 |
+
/********************* To Float2 Conversions *********************/
|
250 |
+
template <>
|
251 |
+
DS_D_INLINE float2 to(__half2 val)
|
252 |
+
{
|
253 |
+
return __half22float2(val);
|
254 |
+
}
|
255 |
+
|
256 |
+
#ifdef BF16_AVAILABLE
|
257 |
+
template <>
|
258 |
+
DS_D_INLINE float2 to(__nv_bfloat162 val)
|
259 |
+
{
|
260 |
+
return __bfloat1622float2(val);
|
261 |
+
}
|
262 |
+
#endif
|
263 |
+
|
264 |
+
/********************* To Half Conversions *********************/
|
265 |
+
template <>
|
266 |
+
DS_D_INLINE __half to(double val)
|
267 |
+
{
|
268 |
+
#ifdef __HIP_PLATFORM_AMD__
|
269 |
+
float val_f = __double2float_rn(val);
|
270 |
+
return __float2half(val_f);
|
271 |
+
#else
|
272 |
+
return __double2half(val);
|
273 |
+
#endif
|
274 |
+
}
|
275 |
+
template <>
|
276 |
+
DS_D_INLINE __half to(float val)
|
277 |
+
{
|
278 |
+
return __float2half(val);
|
279 |
+
}
|
280 |
+
template <>
|
281 |
+
DS_D_INLINE __half to(int64_t val)
|
282 |
+
{
|
283 |
+
return __ll2half_rn(val);
|
284 |
+
}
|
285 |
+
template <>
|
286 |
+
DS_D_INLINE __half to(int32_t val)
|
287 |
+
{
|
288 |
+
return __int2half_rn(val);
|
289 |
+
}
|
290 |
+
template <>
|
291 |
+
DS_D_INLINE __half to(int16_t val)
|
292 |
+
{
|
293 |
+
return __short2half_rn(val);
|
294 |
+
}
|
295 |
+
template <>
|
296 |
+
DS_D_INLINE __half to(int8_t val)
|
297 |
+
{
|
298 |
+
return __int2half_rn(val);
|
299 |
+
}
|
300 |
+
template <>
|
301 |
+
DS_D_INLINE __half to(uint64_t val)
|
302 |
+
{
|
303 |
+
return __ull2half_rn(val);
|
304 |
+
}
|
305 |
+
template <>
|
306 |
+
DS_D_INLINE __half to(uint32_t val)
|
307 |
+
{
|
308 |
+
return __uint2half_rn(val);
|
309 |
+
}
|
310 |
+
template <>
|
311 |
+
DS_D_INLINE __half to(uint16_t val)
|
312 |
+
{
|
313 |
+
return __ushort2half_rn(val);
|
314 |
+
}
|
315 |
+
template <>
|
316 |
+
DS_D_INLINE __half to(uint8_t val)
|
317 |
+
{
|
318 |
+
return __uint2half_rn(val);
|
319 |
+
}
|
320 |
+
|
321 |
+
#ifdef BF16_AVAILABLE
|
322 |
+
// No direct conversion
|
323 |
+
template <>
|
324 |
+
DS_D_INLINE __half to(__nv_bfloat16 val)
|
325 |
+
{
|
326 |
+
return to<__half>(to<float>(val));
|
327 |
+
}
|
328 |
+
#endif
|
329 |
+
|
330 |
+
/********************* To Half2 Conversions *********************/
|
331 |
+
template <>
|
332 |
+
DS_D_INLINE __half2 to(float2 val)
|
333 |
+
{
|
334 |
+
return __float22half2_rn(val);
|
335 |
+
}
|
336 |
+
template <>
|
337 |
+
DS_D_INLINE __half2 to(float val)
|
338 |
+
{
|
339 |
+
return __float2half2_rn(val);
|
340 |
+
}
|
341 |
+
|
342 |
+
#ifdef BF16_AVAILABLE
|
343 |
+
// No direct conversion
|
344 |
+
template <>
|
345 |
+
DS_D_INLINE __half2 to(__nv_bfloat162 val)
|
346 |
+
{
|
347 |
+
return to<__half2>(to<float2>(val));
|
348 |
+
}
|
349 |
+
#endif
|
350 |
+
|
351 |
+
/********************* To BF16 Conversions *********************/
|
352 |
+
#ifdef BF16_AVAILABLE
|
353 |
+
template <>
|
354 |
+
DS_D_INLINE __nv_bfloat16 to(double val)
|
355 |
+
{
|
356 |
+
return __double2bfloat16(val);
|
357 |
+
}
|
358 |
+
template <>
|
359 |
+
DS_D_INLINE __nv_bfloat16 to(float val)
|
360 |
+
{
|
361 |
+
return __float2bfloat16(val);
|
362 |
+
}
|
363 |
+
template <>
|
364 |
+
DS_D_INLINE __nv_bfloat16 to(int64_t val)
|
365 |
+
{
|
366 |
+
return __ll2bfloat16_rn(val);
|
367 |
+
}
|
368 |
+
template <>
|
369 |
+
DS_D_INLINE __nv_bfloat16 to(int32_t val)
|
370 |
+
{
|
371 |
+
return __int2bfloat16_rn(val);
|
372 |
+
}
|
373 |
+
template <>
|
374 |
+
DS_D_INLINE __nv_bfloat16 to(int16_t val)
|
375 |
+
{
|
376 |
+
return __short2bfloat16_rn(val);
|
377 |
+
}
|
378 |
+
template <>
|
379 |
+
DS_D_INLINE __nv_bfloat16 to(int8_t val)
|
380 |
+
{
|
381 |
+
return __int2bfloat16_rn(val);
|
382 |
+
}
|
383 |
+
template <>
|
384 |
+
DS_D_INLINE __nv_bfloat16 to(uint64_t val)
|
385 |
+
{
|
386 |
+
return __ull2bfloat16_rn(val);
|
387 |
+
}
|
388 |
+
template <>
|
389 |
+
DS_D_INLINE __nv_bfloat16 to(uint32_t val)
|
390 |
+
{
|
391 |
+
return __uint2bfloat16_rn(val);
|
392 |
+
}
|
393 |
+
template <>
|
394 |
+
DS_D_INLINE __nv_bfloat16 to(uint16_t val)
|
395 |
+
{
|
396 |
+
return __ushort2bfloat16_rn(val);
|
397 |
+
}
|
398 |
+
template <>
|
399 |
+
DS_D_INLINE __nv_bfloat16 to(uint8_t val)
|
400 |
+
{
|
401 |
+
return __uint2bfloat16_rn(val);
|
402 |
+
}
|
403 |
+
#endif
|
404 |
+
|
405 |
+
/********************* To BF162 Conversions *********************/
|
406 |
+
#ifdef BF16_AVAILABLE
|
407 |
+
template <>
|
408 |
+
DS_D_INLINE __nv_bfloat162 to(float2 val)
|
409 |
+
{
|
410 |
+
return __float22bfloat162_rn(val);
|
411 |
+
}
|
412 |
+
template <>
|
413 |
+
DS_D_INLINE __nv_bfloat162 to(float val)
|
414 |
+
{
|
415 |
+
return __float2bfloat162_rn(val);
|
416 |
+
}
|
417 |
+
template <>
|
418 |
+
DS_D_INLINE __nv_bfloat162 to(__half2 val)
|
419 |
+
{
|
420 |
+
return to<__nv_bfloat162>(to<float2>(val));
|
421 |
+
}
|
422 |
+
#endif
|
423 |
+
|
424 |
+
/********************* To INT64_T Conversions *********************/
|
425 |
+
template <>
|
426 |
+
DS_D_INLINE int64_t to(double val)
|
427 |
+
{
|
428 |
+
return __double2ll_rn(val);
|
429 |
+
}
|
430 |
+
template <>
|
431 |
+
DS_D_INLINE int64_t to(float val)
|
432 |
+
{
|
433 |
+
return __float2ll_rn(val);
|
434 |
+
}
|
435 |
+
template <>
|
436 |
+
DS_D_INLINE int64_t to(__half val)
|
437 |
+
{
|
438 |
+
return __half2ll_rn(val);
|
439 |
+
}
|
440 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
441 |
+
// to demand an PTX at this time
|
442 |
+
|
443 |
+
#ifdef BF16_AVAILABLE
|
444 |
+
template <>
|
445 |
+
DS_D_INLINE int64_t to(__nv_bfloat16 val)
|
446 |
+
{
|
447 |
+
return __bfloat162ll_rn(val);
|
448 |
+
}
|
449 |
+
#endif
|
450 |
+
|
451 |
+
/********************* To INT32_T Conversions *********************/
|
452 |
+
template <>
|
453 |
+
DS_D_INLINE int32_t to(double val)
|
454 |
+
{
|
455 |
+
return __double2int_rn(val);
|
456 |
+
}
|
457 |
+
template <>
|
458 |
+
DS_D_INLINE int32_t to(float val)
|
459 |
+
{
|
460 |
+
return __float2int_rn(val);
|
461 |
+
}
|
462 |
+
template <>
|
463 |
+
DS_D_INLINE int32_t to(__half val)
|
464 |
+
{
|
465 |
+
return __half2int_rn(val);
|
466 |
+
}
|
467 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
468 |
+
// to demand an PTX at this time
|
469 |
+
|
470 |
+
#ifdef BF16_AVAILABLE
|
471 |
+
template <>
|
472 |
+
DS_D_INLINE int32_t to(__nv_bfloat16 val)
|
473 |
+
{
|
474 |
+
return __bfloat162int_rn(val);
|
475 |
+
}
|
476 |
+
#endif
|
477 |
+
|
478 |
+
/********************* To INT16_T Conversions *********************/
|
479 |
+
template <>
|
480 |
+
DS_D_INLINE int16_t to(double val)
|
481 |
+
{
|
482 |
+
return __double2int_rn(val);
|
483 |
+
}
|
484 |
+
template <>
|
485 |
+
DS_D_INLINE int16_t to(float val)
|
486 |
+
{
|
487 |
+
return __float2int_rn(val);
|
488 |
+
}
|
489 |
+
template <>
|
490 |
+
DS_D_INLINE int16_t to(__half val)
|
491 |
+
{
|
492 |
+
return __half2int_rn(val);
|
493 |
+
}
|
494 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
495 |
+
// to demand an PTX at this time
|
496 |
+
|
497 |
+
#ifdef BF16_AVAILABLE
|
498 |
+
template <>
|
499 |
+
DS_D_INLINE int16_t to(__nv_bfloat16 val)
|
500 |
+
{
|
501 |
+
return __bfloat162int_rn(val);
|
502 |
+
}
|
503 |
+
#endif
|
504 |
+
|
505 |
+
/********************* To INT8_T Conversions *********************/
|
506 |
+
template <>
|
507 |
+
DS_D_INLINE int8_t to(double val)
|
508 |
+
{
|
509 |
+
return __double2int_rn(val);
|
510 |
+
}
|
511 |
+
template <>
|
512 |
+
DS_D_INLINE int8_t to(float val)
|
513 |
+
{
|
514 |
+
return __float2int_rn(val);
|
515 |
+
}
|
516 |
+
template <>
|
517 |
+
DS_D_INLINE int8_t to(__half val)
|
518 |
+
{
|
519 |
+
return __half2int_rn(val);
|
520 |
+
}
|
521 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
522 |
+
// to demand an PTX at this time
|
523 |
+
|
524 |
+
#ifdef BF16_AVAILABLE
|
525 |
+
template <>
|
526 |
+
DS_D_INLINE int8_t to(__nv_bfloat16 val)
|
527 |
+
{
|
528 |
+
return __bfloat162int_rn(val);
|
529 |
+
}
|
530 |
+
#endif
|
531 |
+
|
532 |
+
/********************* To UINT64_T Conversions *********************/
|
533 |
+
template <>
|
534 |
+
DS_D_INLINE uint64_t to(double val)
|
535 |
+
{
|
536 |
+
return __double2ull_rn(val);
|
537 |
+
}
|
538 |
+
template <>
|
539 |
+
DS_D_INLINE uint64_t to(float val)
|
540 |
+
{
|
541 |
+
return __float2ull_rn(val);
|
542 |
+
}
|
543 |
+
template <>
|
544 |
+
DS_D_INLINE uint64_t to(__half val)
|
545 |
+
{
|
546 |
+
return __half2ull_rn(val);
|
547 |
+
}
|
548 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
549 |
+
// to demand an PTX at this time
|
550 |
+
|
551 |
+
#ifdef BF16_AVAILABLE
|
552 |
+
template <>
|
553 |
+
DS_D_INLINE uint64_t to(__nv_bfloat16 val)
|
554 |
+
{
|
555 |
+
return __bfloat162ull_rn(val);
|
556 |
+
}
|
557 |
+
#endif
|
558 |
+
|
559 |
+
/********************* To UINT32_T Conversions *********************/
|
560 |
+
template <>
|
561 |
+
DS_D_INLINE uint32_t to(double val)
|
562 |
+
{
|
563 |
+
return __double2uint_rn(val);
|
564 |
+
}
|
565 |
+
template <>
|
566 |
+
DS_D_INLINE uint32_t to(float val)
|
567 |
+
{
|
568 |
+
return __float2uint_rn(val);
|
569 |
+
}
|
570 |
+
template <>
|
571 |
+
DS_D_INLINE uint32_t to(__half val)
|
572 |
+
{
|
573 |
+
return __half2uint_rn(val);
|
574 |
+
}
|
575 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
576 |
+
// to demand an PTX at this time
|
577 |
+
|
578 |
+
#ifdef BF16_AVAILABLE
|
579 |
+
template <>
|
580 |
+
DS_D_INLINE uint32_t to(__nv_bfloat16 val)
|
581 |
+
{
|
582 |
+
return __bfloat162uint_rn(val);
|
583 |
+
}
|
584 |
+
#endif
|
585 |
+
|
586 |
+
/********************* To UINT16_T Conversions *********************/
|
587 |
+
template <>
|
588 |
+
DS_D_INLINE uint16_t to(double val)
|
589 |
+
{
|
590 |
+
return __double2uint_rn(val);
|
591 |
+
}
|
592 |
+
template <>
|
593 |
+
DS_D_INLINE uint16_t to(float val)
|
594 |
+
{
|
595 |
+
return __float2uint_rn(val);
|
596 |
+
}
|
597 |
+
template <>
|
598 |
+
DS_D_INLINE uint16_t to(__half val)
|
599 |
+
{
|
600 |
+
return __half2uint_rn(val);
|
601 |
+
}
|
602 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
603 |
+
// to demand an PTX at this time
|
604 |
+
|
605 |
+
#ifdef BF16_AVAILABLE
|
606 |
+
template <>
|
607 |
+
DS_D_INLINE uint16_t to(__nv_bfloat16 val)
|
608 |
+
{
|
609 |
+
return __bfloat162uint_rn(val);
|
610 |
+
}
|
611 |
+
#endif
|
612 |
+
|
613 |
+
/********************* To UINT8_T Conversions *********************/
|
614 |
+
template <>
|
615 |
+
DS_D_INLINE uint8_t to(double val)
|
616 |
+
{
|
617 |
+
return __double2uint_rn(val);
|
618 |
+
}
|
619 |
+
template <>
|
620 |
+
DS_D_INLINE uint8_t to(float val)
|
621 |
+
{
|
622 |
+
return __float2uint_rn(val);
|
623 |
+
}
|
624 |
+
template <>
|
625 |
+
DS_D_INLINE uint8_t to(__half val)
|
626 |
+
{
|
627 |
+
return __half2uint_rn(val);
|
628 |
+
}
|
629 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
630 |
+
// to demand an PTX at this time
|
631 |
+
|
632 |
+
#ifdef BF16_AVAILABLE
|
633 |
+
template <>
|
634 |
+
DS_D_INLINE uint8_t to(__nv_bfloat16 val)
|
635 |
+
{
|
636 |
+
return __bfloat162uint_rn(val);
|
637 |
+
}
|
638 |
+
#endif
|
639 |
+
|
640 |
+
} // namespace conversion
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/ds_kernel_utils.h
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Centralized header file for preprocessor macros and constants
|
8 |
+
used throughout the codebase.
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
|
13 |
+
#include <cuda.h>
|
14 |
+
#include <cuda_fp16.h>
|
15 |
+
|
16 |
+
#ifdef BF16_AVAILABLE
|
17 |
+
#include <cuda_bf16.h>
|
18 |
+
#endif
|
19 |
+
|
20 |
+
#define DS_HD_INLINE __host__ __device__ __forceinline__
|
21 |
+
#define DS_D_INLINE __device__ __forceinline__
|
22 |
+
|
23 |
+
#ifdef __HIP_PLATFORM_AMD__
|
24 |
+
|
25 |
+
// constexpr variant of warpSize for templating
|
26 |
+
constexpr int hw_warp_size = 64;
|
27 |
+
#define HALF_PRECISION_AVAILABLE = 1
|
28 |
+
#include <hip/hip_cooperative_groups.h>
|
29 |
+
#include <hip/hip_fp16.h>
|
30 |
+
|
31 |
+
#else // !__HIP_PLATFORM_AMD__
|
32 |
+
|
33 |
+
// constexpr variant of warpSize for templating
|
34 |
+
constexpr int hw_warp_size = 32;
|
35 |
+
|
36 |
+
#if __CUDA_ARCH__ >= 530
|
37 |
+
#define HALF_PRECISION_AVAILABLE = 1
|
38 |
+
#define PTX_AVAILABLE
|
39 |
+
#endif // __CUDA_ARCH__ >= 530
|
40 |
+
|
41 |
+
#if __CUDA_ARCH__ >= 800
|
42 |
+
#define ASYNC_COPY_AVAILABLE
|
43 |
+
#endif // __CUDA_ARCH__ >= 800
|
44 |
+
|
45 |
+
#include <cooperative_groups.h>
|
46 |
+
#include <cuda_fp16.h>
|
47 |
+
|
48 |
+
#endif //__HIP_PLATFORM_AMD__
|
49 |
+
|
50 |
+
inline int next_pow2(const int val)
|
51 |
+
{
|
52 |
+
int rounded_val = val - 1;
|
53 |
+
rounded_val |= rounded_val >> 1;
|
54 |
+
rounded_val |= rounded_val >> 2;
|
55 |
+
rounded_val |= rounded_val >> 4;
|
56 |
+
rounded_val |= rounded_val >> 8;
|
57 |
+
return rounded_val + 1;
|
58 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/memory_access_utils.h
ADDED
@@ -0,0 +1,1115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
|
11 |
+
/////////////////////////////// Memory Access Utils ///////////////////////////////
|
12 |
+
namespace mem_access {
|
13 |
+
|
14 |
+
enum class LoadPolicy {
|
15 |
+
CacheAll, // Cache at all levels
|
16 |
+
CacheGlobal, // Cache at L2 only
|
17 |
+
CacheStreaming // Cache with evict first policy
|
18 |
+
};
|
19 |
+
|
20 |
+
enum class StorePolicy {
|
21 |
+
Writeback, // Cache in L1, write-back on eviction
|
22 |
+
CacheGlobal, // Bypass L1, write-back on eviction
|
23 |
+
CacheStreaming // Allocate cache line with evict first policy
|
24 |
+
};
|
25 |
+
|
26 |
+
template <int AccessSize, LoadPolicy policy = LoadPolicy::CacheAll>
|
27 |
+
__device__ __forceinline__ void load_global(void* dst, const void* src);
|
28 |
+
|
29 |
+
template <int AccessSize, LoadPolicy policy = LoadPolicy::CacheAll>
|
30 |
+
__device__ __forceinline__ void load_global(void* dst, const void* src, bool do_access);
|
31 |
+
|
32 |
+
// Shared accesses have no cache policy
|
33 |
+
template <int AccessSize>
|
34 |
+
__device__ __forceinline__ void load_shared(void* dst, const void* src);
|
35 |
+
|
36 |
+
template <int AccessSize>
|
37 |
+
__device__ __forceinline__ void load_shared(void* dst, const void* src, bool do_access);
|
38 |
+
|
39 |
+
template <int AccessSize, StorePolicy policy = StorePolicy::Writeback>
|
40 |
+
__device__ __forceinline__ void store_global(void* dst, const void* src);
|
41 |
+
|
42 |
+
// Shared accesses have no cache policy
|
43 |
+
template <int AccessSize>
|
44 |
+
__device__ __forceinline__ void store_shared(void* dst, const void* src);
|
45 |
+
|
46 |
+
#ifdef ASYNC_COPY_AVAILABLE
|
47 |
+
template <int AccessSize>
|
48 |
+
__device__ __forceinline__ void memcpy_async(void* shr, const void* gbl);
|
49 |
+
|
50 |
+
template <int AccessSize>
|
51 |
+
__device__ __forceinline__ void memcpy_async_nop(void* shr, const void* gbl, bool predicate);
|
52 |
+
|
53 |
+
template <int AccessSize>
|
54 |
+
__device__ __forceinline__ void memcpy_async_zero(void* shr, const void* gbl, bool predicate);
|
55 |
+
|
56 |
+
__device__ __forceinline__ void memcpy_async_fence();
|
57 |
+
|
58 |
+
template <int stages>
|
59 |
+
__device__ __forceinline__ void memcpy_async_wait();
|
60 |
+
|
61 |
+
template <int stages>
|
62 |
+
__device__ __forceinline__ void tail_complete_wait(int remaining_stages);
|
63 |
+
#endif
|
64 |
+
|
65 |
+
// Util for tracking pipeline buffers
|
66 |
+
// TODO: Evaluate whether this should also be guarded by ASYNC_COPY_AVAILABLE
|
67 |
+
template <int max>
|
68 |
+
class BufferTracker {
|
69 |
+
public:
|
70 |
+
int current_state;
|
71 |
+
|
72 |
+
__device__ __forceinline__ BufferTracker() : current_state(0) {}
|
73 |
+
|
74 |
+
__device__ __forceinline__ int get()
|
75 |
+
{
|
76 |
+
int return_val = current_state++;
|
77 |
+
current_state = (current_state == max ? 0 : current_state);
|
78 |
+
return return_val;
|
79 |
+
}
|
80 |
+
};
|
81 |
+
|
82 |
+
__device__ __forceinline__ uint32_t lane_id()
|
83 |
+
{
|
84 |
+
#ifdef PTX_AVAILABLE
|
85 |
+
unsigned int lane_id;
|
86 |
+
asm volatile("mov.u32 %0, %%laneid;" : "=r"(lane_id));
|
87 |
+
return lane_id;
|
88 |
+
#else
|
89 |
+
return threadIdx.x & (warpSize - 1); // Portable
|
90 |
+
#endif
|
91 |
+
}
|
92 |
+
|
93 |
+
/////////// Load Global ///////////
|
94 |
+
template <>
|
95 |
+
__device__ __forceinline__ void load_global<16>(void* dst, const void* src)
|
96 |
+
{
|
97 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
98 |
+
#ifdef PTX_AVAILABLE
|
99 |
+
asm volatile("ld.global.ca.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
100 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
101 |
+
: "l"(src));
|
102 |
+
#else
|
103 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
104 |
+
data[0] = src_cast[0];
|
105 |
+
#endif
|
106 |
+
}
|
107 |
+
|
108 |
+
template <>
|
109 |
+
__device__ __forceinline__ void load_global<16>(void* dst, const void* src, bool do_access)
|
110 |
+
{
|
111 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
112 |
+
#ifdef PTX_AVAILABLE
|
113 |
+
asm volatile(
|
114 |
+
"{\n"
|
115 |
+
"\t.reg .pred p;\n"
|
116 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
117 |
+
"\tmov.b32 %0, 0;\n"
|
118 |
+
"\tmov.b32 %1, 0;\n"
|
119 |
+
"\tmov.b32 %2, 0;\n"
|
120 |
+
"\tmov.b32 %3, 0;\n"
|
121 |
+
"\t@p ld.global.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
122 |
+
"}\n"
|
123 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
124 |
+
: "l"(src), "r"((int)do_access));
|
125 |
+
#else
|
126 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
127 |
+
if (do_access) {
|
128 |
+
data[0] = src_cast[0];
|
129 |
+
} else {
|
130 |
+
data[0].x = 0;
|
131 |
+
data[0].y = 0;
|
132 |
+
data[0].z = 0;
|
133 |
+
data[0].w = 0;
|
134 |
+
}
|
135 |
+
#endif
|
136 |
+
}
|
137 |
+
|
138 |
+
template <>
|
139 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
140 |
+
{
|
141 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
142 |
+
#ifdef PTX_AVAILABLE
|
143 |
+
asm volatile("ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
144 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
145 |
+
: "l"(src));
|
146 |
+
#else
|
147 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
148 |
+
data[0] = src_cast[0];
|
149 |
+
#endif
|
150 |
+
}
|
151 |
+
|
152 |
+
template <>
|
153 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheGlobal>(void* dst,
|
154 |
+
const void* src,
|
155 |
+
bool do_access)
|
156 |
+
{
|
157 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
158 |
+
#ifdef PTX_AVAILABLE
|
159 |
+
asm volatile(
|
160 |
+
"{\n"
|
161 |
+
"\t.reg .pred p;\n"
|
162 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
163 |
+
"\tmov.b32 %0, 0;\n"
|
164 |
+
"\tmov.b32 %1, 0;\n"
|
165 |
+
"\tmov.b32 %2, 0;\n"
|
166 |
+
"\tmov.b32 %3, 0;\n"
|
167 |
+
"\t@p ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
168 |
+
"}\n"
|
169 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
170 |
+
: "l"(src), "r"((int)do_access));
|
171 |
+
#else
|
172 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
173 |
+
if (do_access) {
|
174 |
+
data[0] = src_cast[0];
|
175 |
+
} else {
|
176 |
+
data[0].x = 0;
|
177 |
+
data[0].y = 0;
|
178 |
+
data[0].z = 0;
|
179 |
+
data[0].w = 0;
|
180 |
+
}
|
181 |
+
#endif
|
182 |
+
}
|
183 |
+
|
184 |
+
template <>
|
185 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheStreaming>(void* dst,
|
186 |
+
const void* src)
|
187 |
+
{
|
188 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
189 |
+
#ifdef PTX_AVAILABLE
|
190 |
+
asm volatile("ld.global.cs.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
191 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
192 |
+
: "l"(src));
|
193 |
+
#else
|
194 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
195 |
+
data[0] = src_cast[0];
|
196 |
+
#endif
|
197 |
+
}
|
198 |
+
|
199 |
+
template <>
|
200 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheStreaming>(void* dst,
|
201 |
+
const void* src,
|
202 |
+
bool do_access)
|
203 |
+
{
|
204 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
205 |
+
#ifdef PTX_AVAILABLE
|
206 |
+
asm volatile(
|
207 |
+
"{\n"
|
208 |
+
"\t.reg .pred p;\n"
|
209 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
210 |
+
"\tmov.b32 %0, 0;\n"
|
211 |
+
"\tmov.b32 %1, 0;\n"
|
212 |
+
"\tmov.b32 %2, 0;\n"
|
213 |
+
"\tmov.b32 %3, 0;\n"
|
214 |
+
"\t@p ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
215 |
+
"}\n"
|
216 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
217 |
+
: "l"(src), "r"((int)do_access));
|
218 |
+
#else
|
219 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
220 |
+
if (do_access) {
|
221 |
+
data[0] = src_cast[0];
|
222 |
+
} else {
|
223 |
+
data[0].x = 0;
|
224 |
+
data[0].y = 0;
|
225 |
+
data[0].z = 0;
|
226 |
+
data[0].w = 0;
|
227 |
+
}
|
228 |
+
#endif
|
229 |
+
}
|
230 |
+
|
231 |
+
template <>
|
232 |
+
__device__ __forceinline__ void load_global<8>(void* dst, const void* src)
|
233 |
+
{
|
234 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
235 |
+
#ifdef PTX_AVAILABLE
|
236 |
+
asm volatile("ld.global.ca.v2.u32 {%0, %1}, [%2];\n"
|
237 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
238 |
+
: "l"(src));
|
239 |
+
#else
|
240 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
241 |
+
data[0] = src_cast[0];
|
242 |
+
#endif
|
243 |
+
}
|
244 |
+
|
245 |
+
template <>
|
246 |
+
__device__ __forceinline__ void load_global<8>(void* dst, const void* src, bool do_access)
|
247 |
+
{
|
248 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
249 |
+
#ifdef PTX_AVAILABLE
|
250 |
+
asm volatile(
|
251 |
+
"{\n"
|
252 |
+
"\t.reg .pred p;\n"
|
253 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
254 |
+
"\tmov.b32 %0, 0;\n"
|
255 |
+
"\tmov.b32 %1, 0;\n"
|
256 |
+
"\t@p ld.global.v2.u32 {%0, %1}, [%2];\n"
|
257 |
+
"}\n"
|
258 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
259 |
+
: "l"(src), "r"((int)do_access));
|
260 |
+
#else
|
261 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
262 |
+
if (do_access) {
|
263 |
+
data[0] = src_cast[0];
|
264 |
+
} else {
|
265 |
+
data[0].x = 0;
|
266 |
+
data[0].y = 0;
|
267 |
+
}
|
268 |
+
#endif
|
269 |
+
}
|
270 |
+
|
271 |
+
template <>
|
272 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
273 |
+
{
|
274 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
275 |
+
#ifdef PTX_AVAILABLE
|
276 |
+
asm volatile("ld.global.cg.v2.u32 {%0, %1}, [%2];\n"
|
277 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
278 |
+
: "l"(src));
|
279 |
+
#else
|
280 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
281 |
+
data[0] = src_cast[0];
|
282 |
+
#endif
|
283 |
+
}
|
284 |
+
|
285 |
+
template <>
|
286 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheGlobal>(void* dst,
|
287 |
+
const void* src,
|
288 |
+
bool do_access)
|
289 |
+
{
|
290 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
291 |
+
#ifdef PTX_AVAILABLE
|
292 |
+
asm volatile(
|
293 |
+
"{\n"
|
294 |
+
"\t.reg .pred p;\n"
|
295 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
296 |
+
"\tmov.b32 %0, 0;\n"
|
297 |
+
"\tmov.b32 %1, 0;\n"
|
298 |
+
"\t@p ld.global.cg.v2.u32 {%0, %1}, [%2];\n"
|
299 |
+
"}\n"
|
300 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
301 |
+
: "l"(src), "r"((int)do_access));
|
302 |
+
#else
|
303 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
304 |
+
if (do_access) {
|
305 |
+
data[0] = src_cast[0];
|
306 |
+
} else {
|
307 |
+
data[0].x = 0;
|
308 |
+
data[0].y = 0;
|
309 |
+
}
|
310 |
+
#endif
|
311 |
+
}
|
312 |
+
|
313 |
+
template <>
|
314 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheStreaming>(void* dst,
|
315 |
+
const void* src)
|
316 |
+
{
|
317 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
318 |
+
#ifdef PTX_AVAILABLE
|
319 |
+
asm volatile("ld.global.cs.v2.u32 {%0, %1}, [%2];\n"
|
320 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
321 |
+
: "l"(src));
|
322 |
+
#else
|
323 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
324 |
+
data[0] = src_cast[0];
|
325 |
+
#endif
|
326 |
+
}
|
327 |
+
|
328 |
+
template <>
|
329 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheStreaming>(void* dst,
|
330 |
+
const void* src,
|
331 |
+
bool do_access)
|
332 |
+
{
|
333 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
334 |
+
#ifdef PTX_AVAILABLE
|
335 |
+
asm volatile(
|
336 |
+
"{\n"
|
337 |
+
"\t.reg .pred p;\n"
|
338 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
339 |
+
"\tmov.b32 %0, 0;\n"
|
340 |
+
"\tmov.b32 %1, 0;\n"
|
341 |
+
"\t@p ld.global.cs.v2.u32 {%0, %1}, [%2];\n"
|
342 |
+
"}\n"
|
343 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
344 |
+
: "l"(src), "r"((int)do_access));
|
345 |
+
#else
|
346 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
347 |
+
if (do_access) {
|
348 |
+
data[0] = src_cast[0];
|
349 |
+
} else {
|
350 |
+
data[0].x = 0;
|
351 |
+
data[0].y = 0;
|
352 |
+
}
|
353 |
+
#endif
|
354 |
+
}
|
355 |
+
|
356 |
+
template <>
|
357 |
+
__device__ __forceinline__ void load_global<4>(void* dst, const void* src)
|
358 |
+
{
|
359 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
360 |
+
#ifdef PTX_AVAILABLE
|
361 |
+
asm volatile("ld.global.ca.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
362 |
+
#else
|
363 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
364 |
+
data[0] = src_cast[0];
|
365 |
+
#endif
|
366 |
+
}
|
367 |
+
|
368 |
+
template <>
|
369 |
+
__device__ __forceinline__ void load_global<4>(void* dst, const void* src, bool do_access)
|
370 |
+
{
|
371 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
372 |
+
#ifdef PTX_AVAILABLE
|
373 |
+
asm volatile(
|
374 |
+
"{\n"
|
375 |
+
"\t.reg .pred p;\n"
|
376 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
377 |
+
"\tmov.b32 %0, 0;\n"
|
378 |
+
"\t@p ld.global.u32 {%0}, [%1];\n"
|
379 |
+
"}\n"
|
380 |
+
: "=r"(data[0])
|
381 |
+
: "l"(src), "r"((int)do_access));
|
382 |
+
#else
|
383 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
384 |
+
if (do_access) {
|
385 |
+
data[0] = src_cast[0];
|
386 |
+
} else {
|
387 |
+
data[0] = 0;
|
388 |
+
}
|
389 |
+
#endif
|
390 |
+
}
|
391 |
+
|
392 |
+
template <>
|
393 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
394 |
+
{
|
395 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
396 |
+
#ifdef PTX_AVAILABLE
|
397 |
+
asm volatile("ld.global.cg.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
398 |
+
#else
|
399 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
400 |
+
data[0] = src_cast[0];
|
401 |
+
#endif
|
402 |
+
}
|
403 |
+
|
404 |
+
template <>
|
405 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheGlobal>(void* dst,
|
406 |
+
const void* src,
|
407 |
+
bool do_access)
|
408 |
+
{
|
409 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
410 |
+
#ifdef PTX_AVAILABLE
|
411 |
+
asm volatile(
|
412 |
+
"{\n"
|
413 |
+
"\t.reg .pred p;\n"
|
414 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
415 |
+
"\tmov.b32 %0, 0;\n"
|
416 |
+
"\t@p ld.global.cg.u32 {%0}, [%1];\n"
|
417 |
+
"}\n"
|
418 |
+
: "=r"(data[0])
|
419 |
+
: "l"(src), "r"((int)do_access));
|
420 |
+
#else
|
421 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
422 |
+
if (do_access) {
|
423 |
+
data[0] = src_cast[0];
|
424 |
+
} else {
|
425 |
+
data[0] = 0;
|
426 |
+
}
|
427 |
+
#endif
|
428 |
+
}
|
429 |
+
|
430 |
+
template <>
|
431 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheStreaming>(void* dst,
|
432 |
+
const void* src)
|
433 |
+
{
|
434 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
435 |
+
#ifdef PTX_AVAILABLE
|
436 |
+
asm volatile("ld.global.cs.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
437 |
+
#else
|
438 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
439 |
+
data[0] = src_cast[0];
|
440 |
+
#endif
|
441 |
+
}
|
442 |
+
|
443 |
+
template <>
|
444 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheStreaming>(void* dst,
|
445 |
+
const void* src,
|
446 |
+
bool do_access)
|
447 |
+
{
|
448 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
449 |
+
#ifdef PTX_AVAILABLE
|
450 |
+
asm volatile(
|
451 |
+
"{\n"
|
452 |
+
"\t.reg .pred p;\n"
|
453 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
454 |
+
"\tmov.b32 %0, 0;\n"
|
455 |
+
"\t@p ld.global.cs.u32 {%0}, [%1];\n"
|
456 |
+
"}\n"
|
457 |
+
: "=r"(data[0])
|
458 |
+
: "l"(src), "r"((int)do_access));
|
459 |
+
#else
|
460 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
461 |
+
if (do_access) {
|
462 |
+
data[0] = src_cast[0];
|
463 |
+
} else {
|
464 |
+
data[0] = 0;
|
465 |
+
}
|
466 |
+
#endif
|
467 |
+
}
|
468 |
+
|
469 |
+
template <>
|
470 |
+
__device__ __forceinline__ void load_global<2>(void* dst, const void* src)
|
471 |
+
{
|
472 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
473 |
+
#ifdef PTX_AVAILABLE
|
474 |
+
asm volatile("ld.global.ca.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
475 |
+
#else
|
476 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
477 |
+
data[0] = src_cast[0];
|
478 |
+
#endif
|
479 |
+
}
|
480 |
+
|
481 |
+
template <>
|
482 |
+
__device__ __forceinline__ void load_global<2>(void* dst, const void* src, bool do_access)
|
483 |
+
{
|
484 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
485 |
+
#ifdef PTX_AVAILABLE
|
486 |
+
asm volatile(
|
487 |
+
"{\n"
|
488 |
+
"\t.reg .pred p;\n"
|
489 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
490 |
+
"\tmov.u16 %0, 0;\n"
|
491 |
+
"\t@p ld.global.u16 {%0}, [%1];\n"
|
492 |
+
"}\n"
|
493 |
+
: "=h"(*data)
|
494 |
+
: "l"(src), "r"((int)do_access));
|
495 |
+
#else
|
496 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
497 |
+
if (do_access) {
|
498 |
+
data[0] = src_cast[0];
|
499 |
+
} else {
|
500 |
+
data[0] = 0;
|
501 |
+
}
|
502 |
+
#endif
|
503 |
+
}
|
504 |
+
|
505 |
+
template <>
|
506 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
507 |
+
{
|
508 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
509 |
+
#ifdef PTX_AVAILABLE
|
510 |
+
asm volatile("ld.global.cg.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
511 |
+
#else
|
512 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
513 |
+
data[0] = src_cast[0];
|
514 |
+
#endif
|
515 |
+
}
|
516 |
+
|
517 |
+
template <>
|
518 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheGlobal>(void* dst,
|
519 |
+
const void* src,
|
520 |
+
bool do_access)
|
521 |
+
{
|
522 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
523 |
+
#ifdef PTX_AVAILABLE
|
524 |
+
asm volatile(
|
525 |
+
"{\n"
|
526 |
+
"\t.reg .pred p;\n"
|
527 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
528 |
+
"\tmov.u16 %0, 0;\n"
|
529 |
+
"\t@p ld.global.cg.u16 {%0}, [%1];\n"
|
530 |
+
"}\n"
|
531 |
+
: "=h"(*data)
|
532 |
+
: "l"(src), "r"((int)do_access));
|
533 |
+
#else
|
534 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
535 |
+
if (do_access) {
|
536 |
+
data[0] = src_cast[0];
|
537 |
+
} else {
|
538 |
+
data[0] = 0;
|
539 |
+
}
|
540 |
+
#endif
|
541 |
+
}
|
542 |
+
|
543 |
+
template <>
|
544 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheStreaming>(void* dst,
|
545 |
+
const void* src)
|
546 |
+
{
|
547 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
548 |
+
#ifdef PTX_AVAILABLE
|
549 |
+
asm volatile("ld.global.cs.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
550 |
+
#else
|
551 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
552 |
+
data[0] = src_cast[0];
|
553 |
+
#endif
|
554 |
+
}
|
555 |
+
|
556 |
+
template <>
|
557 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheStreaming>(void* dst,
|
558 |
+
const void* src,
|
559 |
+
bool do_access)
|
560 |
+
{
|
561 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
562 |
+
#ifdef PTX_AVAILABLE
|
563 |
+
asm volatile(
|
564 |
+
"{\n"
|
565 |
+
"\t.reg .pred p;\n"
|
566 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
567 |
+
"\tmov.u16 %0, 0;\n"
|
568 |
+
"\t@p ld.global.cs.u16 {%0}, [%1];\n"
|
569 |
+
"}\n"
|
570 |
+
: "=h"(*data)
|
571 |
+
: "l"(src), "r"((int)do_access));
|
572 |
+
#else
|
573 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
574 |
+
if (do_access) {
|
575 |
+
data[0] = src_cast[0];
|
576 |
+
} else {
|
577 |
+
data[0] = 0;
|
578 |
+
}
|
579 |
+
#endif
|
580 |
+
}
|
581 |
+
|
582 |
+
/////////// Load Shared ///////////
|
583 |
+
namespace internal {
|
584 |
+
|
585 |
+
#ifdef PTX_AVAILABLE
|
586 |
+
__device__ __forceinline__ unsigned convert_to_shared(const void* ptr)
|
587 |
+
{
|
588 |
+
#if __CUDACC_VER_MAJOR__ >= 11
|
589 |
+
// In CUDA 11 we have a builtin intrinsic
|
590 |
+
return __cvta_generic_to_shared(ptr);
|
591 |
+
#else
|
592 |
+
unsigned ret_val;
|
593 |
+
asm volatile(
|
594 |
+
"{\n"
|
595 |
+
"\t.reg .u64 p1;\n"
|
596 |
+
"\tcvta.to.shared.u64 p1, %1\n"
|
597 |
+
"\tcvt.u32.u64 %0, p1;\n"
|
598 |
+
"}\n"
|
599 |
+
: "=r"(ret_val)
|
600 |
+
: "l"(ptr));
|
601 |
+
return ret_val;
|
602 |
+
#endif
|
603 |
+
}
|
604 |
+
#endif
|
605 |
+
|
606 |
+
} // namespace internal
|
607 |
+
|
608 |
+
template <>
|
609 |
+
__device__ __forceinline__ void load_shared<16>(void* dst, const void* src)
|
610 |
+
{
|
611 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
612 |
+
#ifdef PTX_AVAILABLE
|
613 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
614 |
+
|
615 |
+
asm volatile("ld.shared.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
616 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
617 |
+
: "r"(src_shr));
|
618 |
+
#else
|
619 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
620 |
+
data[0] = src_cast[0];
|
621 |
+
#endif
|
622 |
+
}
|
623 |
+
|
624 |
+
template <>
|
625 |
+
__device__ __forceinline__ void load_shared<16>(void* dst, const void* src, bool do_access)
|
626 |
+
{
|
627 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
628 |
+
#ifdef PTX_AVAILABLE
|
629 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
630 |
+
|
631 |
+
asm volatile(
|
632 |
+
"{\n"
|
633 |
+
"\t.reg .pred p;\n"
|
634 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
635 |
+
"\tmov.b32 %0, 0;\n"
|
636 |
+
"\tmov.b32 %1, 0;\n"
|
637 |
+
"\tmov.b32 %2, 0;\n"
|
638 |
+
"\tmov.b32 %3, 0;\n"
|
639 |
+
"\t@p ld.shared.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
640 |
+
"}\n"
|
641 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
642 |
+
: "r"(src_shr), "r"((int)do_access));
|
643 |
+
#else
|
644 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
645 |
+
if (do_access) {
|
646 |
+
data[0] = src_cast[0];
|
647 |
+
} else {
|
648 |
+
data[0].x = 0;
|
649 |
+
data[0].y = 0;
|
650 |
+
data[0].z = 0;
|
651 |
+
data[0].w = 0;
|
652 |
+
}
|
653 |
+
#endif
|
654 |
+
}
|
655 |
+
|
656 |
+
template <>
|
657 |
+
__device__ __forceinline__ void load_shared<8>(void* dst, const void* src)
|
658 |
+
{
|
659 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
660 |
+
#ifdef PTX_AVAILABLE
|
661 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
662 |
+
|
663 |
+
asm volatile("ld.shared.v2.u32 {%0, %1}, [%2];\n"
|
664 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
665 |
+
: "r"(src_shr));
|
666 |
+
#else
|
667 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
668 |
+
data[0] = src_cast[0];
|
669 |
+
#endif
|
670 |
+
}
|
671 |
+
|
672 |
+
template <>
|
673 |
+
__device__ __forceinline__ void load_shared<8>(void* dst, const void* src, bool do_access)
|
674 |
+
{
|
675 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
676 |
+
#ifdef PTX_AVAILABLE
|
677 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
678 |
+
|
679 |
+
asm volatile(
|
680 |
+
"{\n"
|
681 |
+
"\t.reg .pred p;\n"
|
682 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
683 |
+
"\tmov.b32 %0, 0;\n"
|
684 |
+
"\tmov.b32 %1, 0;\n"
|
685 |
+
"\t@p ld.shared.v2.u32 {%0, %1}, [%2];\n"
|
686 |
+
"}\n"
|
687 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
688 |
+
: "r"(src_shr), "r"((int)do_access));
|
689 |
+
#else
|
690 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
691 |
+
if (do_access) {
|
692 |
+
data[0] = src_cast[0];
|
693 |
+
} else {
|
694 |
+
data[0].x = 0;
|
695 |
+
data[0].y = 0;
|
696 |
+
}
|
697 |
+
#endif
|
698 |
+
}
|
699 |
+
|
700 |
+
template <>
|
701 |
+
__device__ __forceinline__ void load_shared<4>(void* dst, const void* src)
|
702 |
+
{
|
703 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
704 |
+
#ifdef PTX_AVAILABLE
|
705 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
706 |
+
|
707 |
+
asm volatile("ld.shared.u32 {%0}, [%1];\n" : "=r"(*data) : "r"(src_shr));
|
708 |
+
#else
|
709 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
710 |
+
data[0] = src_cast[0];
|
711 |
+
#endif
|
712 |
+
}
|
713 |
+
|
714 |
+
template <>
|
715 |
+
__device__ __forceinline__ void load_shared<4>(void* dst, const void* src, bool do_access)
|
716 |
+
{
|
717 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
718 |
+
#ifdef PTX_AVAILABLE
|
719 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
720 |
+
|
721 |
+
asm volatile(
|
722 |
+
"{\n"
|
723 |
+
"\t.reg .pred p;\n"
|
724 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
725 |
+
"\tmov.b32 %0, 0;\n"
|
726 |
+
"\t@p ld.shared.u32 %0, [%1];\n"
|
727 |
+
"}\n"
|
728 |
+
: "=r"(data[0])
|
729 |
+
: "r"(src_shr), "r"((int)do_access));
|
730 |
+
#else
|
731 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
732 |
+
if (do_access) {
|
733 |
+
data[0] = src_cast[0];
|
734 |
+
} else {
|
735 |
+
data[0] = 0;
|
736 |
+
}
|
737 |
+
#endif
|
738 |
+
}
|
739 |
+
|
740 |
+
/////////// Store Global ///////////
|
741 |
+
|
742 |
+
template <>
|
743 |
+
__device__ __forceinline__ void store_global<16>(void* dst, const void* src)
|
744 |
+
{
|
745 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
746 |
+
#ifdef PTX_AVAILABLE
|
747 |
+
asm volatile("st.global.wb.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
748 |
+
:
|
749 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
750 |
+
: "memory");
|
751 |
+
#else
|
752 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
753 |
+
dst_cast[0] = data[0];
|
754 |
+
#endif
|
755 |
+
}
|
756 |
+
|
757 |
+
template <>
|
758 |
+
__device__ __forceinline__ void store_global<16, StorePolicy::CacheGlobal>(void* dst,
|
759 |
+
const void* src)
|
760 |
+
{
|
761 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
762 |
+
#ifdef PTX_AVAILABLE
|
763 |
+
asm volatile("st.global.cg.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
764 |
+
:
|
765 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
766 |
+
: "memory");
|
767 |
+
#else
|
768 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
769 |
+
dst_cast[0] = data[0];
|
770 |
+
#endif
|
771 |
+
}
|
772 |
+
|
773 |
+
template <>
|
774 |
+
__device__ __forceinline__ void store_global<16, StorePolicy::CacheStreaming>(void* dst,
|
775 |
+
const void* src)
|
776 |
+
{
|
777 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
778 |
+
#ifdef PTX_AVAILABLE
|
779 |
+
asm volatile("st.global.cs.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
780 |
+
:
|
781 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
782 |
+
: "memory");
|
783 |
+
#else
|
784 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
785 |
+
dst_cast[0] = data[0];
|
786 |
+
#endif
|
787 |
+
}
|
788 |
+
|
789 |
+
template <>
|
790 |
+
__device__ __forceinline__ void store_global<8>(void* dst, const void* src)
|
791 |
+
{
|
792 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
793 |
+
#ifdef PTX_AVAILABLE
|
794 |
+
asm volatile("st.global.wb.v2.u32 [%0], {%1, %2};\n"
|
795 |
+
:
|
796 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
797 |
+
#else
|
798 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
799 |
+
dst_cast[0] = data[0];
|
800 |
+
#endif
|
801 |
+
}
|
802 |
+
|
803 |
+
template <>
|
804 |
+
__device__ __forceinline__ void store_global<8, StorePolicy::CacheGlobal>(void* dst,
|
805 |
+
const void* src)
|
806 |
+
{
|
807 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
808 |
+
#ifdef PTX_AVAILABLE
|
809 |
+
asm volatile("st.global.cg.v2.u32 [%0], {%1, %2};\n"
|
810 |
+
:
|
811 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
812 |
+
#else
|
813 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
814 |
+
dst_cast[0] = data[0];
|
815 |
+
#endif
|
816 |
+
}
|
817 |
+
|
818 |
+
template <>
|
819 |
+
__device__ __forceinline__ void store_global<8, StorePolicy::CacheStreaming>(void* dst,
|
820 |
+
const void* src)
|
821 |
+
{
|
822 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
823 |
+
#ifdef PTX_AVAILABLE
|
824 |
+
asm volatile("st.global.cs.v2.u32 [%0], {%1, %2};\n"
|
825 |
+
:
|
826 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
827 |
+
#else
|
828 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
829 |
+
dst_cast[0] = data[0];
|
830 |
+
#endif
|
831 |
+
}
|
832 |
+
|
833 |
+
template <>
|
834 |
+
__device__ __forceinline__ void store_global<4>(void* dst, const void* src)
|
835 |
+
{
|
836 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
837 |
+
#ifdef PTX_AVAILABLE
|
838 |
+
asm volatile("st.global.wb.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
839 |
+
#else
|
840 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
841 |
+
dst_cast[0] = data[0];
|
842 |
+
#endif
|
843 |
+
}
|
844 |
+
|
845 |
+
template <>
|
846 |
+
__device__ __forceinline__ void store_global<4, StorePolicy::CacheGlobal>(void* dst,
|
847 |
+
const void* src)
|
848 |
+
{
|
849 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
850 |
+
#ifdef PTX_AVAILABLE
|
851 |
+
asm volatile("st.global.cg.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
852 |
+
#else
|
853 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
854 |
+
dst_cast[0] = data[0];
|
855 |
+
#endif
|
856 |
+
}
|
857 |
+
|
858 |
+
template <>
|
859 |
+
__device__ __forceinline__ void store_global<4, StorePolicy::CacheStreaming>(void* dst,
|
860 |
+
const void* src)
|
861 |
+
{
|
862 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
863 |
+
#ifdef PTX_AVAILABLE
|
864 |
+
asm volatile("st.global.cs.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
865 |
+
#else
|
866 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
867 |
+
dst_cast[0] = data[0];
|
868 |
+
#endif
|
869 |
+
}
|
870 |
+
|
871 |
+
/////////// Store Shared ///////////
|
872 |
+
|
873 |
+
template <>
|
874 |
+
__device__ __forceinline__ void store_shared<16>(void* dst, const void* src)
|
875 |
+
{
|
876 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
877 |
+
#ifdef PTX_AVAILABLE
|
878 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
879 |
+
|
880 |
+
asm volatile("st.shared.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
881 |
+
:
|
882 |
+
: "r"(dst_int), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w));
|
883 |
+
#else
|
884 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
885 |
+
dst_cast[0] = data[0];
|
886 |
+
#endif
|
887 |
+
}
|
888 |
+
|
889 |
+
template <>
|
890 |
+
__device__ __forceinline__ void store_shared<8>(void* dst, const void* src)
|
891 |
+
{
|
892 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
893 |
+
#ifdef PTX_AVAILABLE
|
894 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
895 |
+
|
896 |
+
asm volatile("st.shared.v2.u32 [%0], {%1, %2};\n"
|
897 |
+
:
|
898 |
+
: "r"(dst_int), "r"(data[0].x), "r"(data[0].y));
|
899 |
+
#else
|
900 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
901 |
+
dst_cast[0] = data[0];
|
902 |
+
#endif
|
903 |
+
}
|
904 |
+
|
905 |
+
template <>
|
906 |
+
__device__ __forceinline__ void store_shared<4>(void* dst, const void* src)
|
907 |
+
{
|
908 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
909 |
+
#ifdef PTX_AVAILABLE
|
910 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
911 |
+
|
912 |
+
asm volatile("st.shared.u32 [%0], %1;\n" : : "r"(dst_int), "r"(*data));
|
913 |
+
#else
|
914 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
915 |
+
dst_cast[0] = data[0];
|
916 |
+
#endif
|
917 |
+
}
|
918 |
+
|
919 |
+
/////////// Asynchronous Memory Copy ///////////
|
920 |
+
|
921 |
+
#ifdef ASYNC_COPY_AVAILABLE
|
922 |
+
template <int AccessSize>
|
923 |
+
__device__ __forceinline__ void memcpy_async(void* shr, const void* gbl)
|
924 |
+
{
|
925 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
926 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
927 |
+
|
928 |
+
asm volatile("cp.async.ca.shared.global [%0], [%1], %2;\n"
|
929 |
+
:
|
930 |
+
: "r"(shr_int), "l"(gbl), "n"(AccessSize));
|
931 |
+
}
|
932 |
+
|
933 |
+
template <int AccessSize>
|
934 |
+
__device__ __forceinline__ void memcpy_async_nop(void* shr, const void* gbl, bool predicate)
|
935 |
+
{
|
936 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
937 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
938 |
+
|
939 |
+
asm volatile(
|
940 |
+
"{\n"
|
941 |
+
" .reg .pred p;\n"
|
942 |
+
" setp.ne.b32 p, %0, 0;\n"
|
943 |
+
" @p cp.async.ca.shared.global [%1], [%2], %3;\n"
|
944 |
+
"}\n"
|
945 |
+
:
|
946 |
+
: "r"((int)predicate), "r"(shr_int), "l"(gbl), "n"(AccessSize));
|
947 |
+
}
|
948 |
+
|
949 |
+
template <int AccessSize>
|
950 |
+
__device__ __forceinline__ void memcpy_async_zero(void* shr, const void* gbl, bool predicate)
|
951 |
+
{
|
952 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
953 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
954 |
+
int bytes_to_copy = (predicate ? AccessSize : 0);
|
955 |
+
|
956 |
+
asm volatile("cp.async.ca.shared.global [%0], [%1], %2, %3;\n"
|
957 |
+
:
|
958 |
+
: "r"(shr_int), "l"(gbl), "n"(AccessSize), "r"(bytes_to_copy));
|
959 |
+
}
|
960 |
+
|
961 |
+
template <int AccessSize>
|
962 |
+
__device__ __forceinline__ void memcpy_async_zero_nop(void* shr,
|
963 |
+
const void* gbl,
|
964 |
+
bool zero_predicate,
|
965 |
+
bool nop_predicate)
|
966 |
+
{
|
967 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
968 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
969 |
+
int bytes_to_copy = (zero_predicate ? AccessSize : 0);
|
970 |
+
|
971 |
+
asm volatile(
|
972 |
+
"{\n"
|
973 |
+
" .reg .pred p;\n"
|
974 |
+
" setp.ne.b32 p, %0, 0;\n"
|
975 |
+
" @p cp.async.ca.shared.global [%1], [%2], %3, %4;\n"
|
976 |
+
"}\n"
|
977 |
+
:
|
978 |
+
: "r"((int)nop_predicate), "r"(shr_int), "l"(gbl), "n"(AccessSize), "r"(bytes_to_copy));
|
979 |
+
}
|
980 |
+
|
981 |
+
// Cache global variants. Separate interface to require deliberate use of them.
|
982 |
+
__device__ __forceinline__ void memcpy_async_cg(void* shr, const void* gbl)
|
983 |
+
{
|
984 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
985 |
+
|
986 |
+
asm volatile("cp.async.cg.shared.global [%0], [%1], 16;\n" : : "r"(shr_int), "l"(gbl));
|
987 |
+
}
|
988 |
+
|
989 |
+
__device__ __forceinline__ void memcpy_async_nop_cg(void* shr, const void* gbl, bool predicate)
|
990 |
+
{
|
991 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
992 |
+
|
993 |
+
asm volatile(
|
994 |
+
"{\n"
|
995 |
+
" .reg .pred p;\n"
|
996 |
+
" setp.ne.b32 p, %0, 0;\n"
|
997 |
+
" @p cp.async.cg.shared.global [%1], [%2], 16;\n"
|
998 |
+
"}\n"
|
999 |
+
:
|
1000 |
+
: "r"((int)predicate), "r"(shr_int), "l"(gbl));
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
__device__ __forceinline__ void memcpy_async_zero_cg(void* shr, const void* gbl, bool predicate)
|
1004 |
+
{
|
1005 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1006 |
+
int bytes_to_copy = (predicate ? 16 : 0);
|
1007 |
+
|
1008 |
+
asm volatile("cp.async.cg.shared.global [%0], [%1], 16, %2;\n"
|
1009 |
+
:
|
1010 |
+
: "r"(shr_int), "l"(gbl), "r"(bytes_to_copy));
|
1011 |
+
}
|
1012 |
+
|
1013 |
+
__device__ __forceinline__ void memcpy_async_zero_nop_cg(void* shr,
|
1014 |
+
const void* gbl,
|
1015 |
+
bool zero_predicate,
|
1016 |
+
bool nop_predicate)
|
1017 |
+
{
|
1018 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1019 |
+
int bytes_to_copy = (zero_predicate ? 16 : 0);
|
1020 |
+
|
1021 |
+
asm volatile(
|
1022 |
+
"{\n"
|
1023 |
+
" .reg .pred p;\n"
|
1024 |
+
" setp.ne.b32 p, %0, 0;\n"
|
1025 |
+
" @p cp.async.cg.shared.global [%1], [%2], 16, %3;\n"
|
1026 |
+
"}\n"
|
1027 |
+
:
|
1028 |
+
: "r"((int)nop_predicate), "r"(shr_int), "l"(gbl), "r"(bytes_to_copy));
|
1029 |
+
}
|
1030 |
+
|
1031 |
+
__device__ __forceinline__ void memcpy_async_fence() { asm volatile("cp.async.commit_group;\n"); }
|
1032 |
+
|
1033 |
+
template <int stages>
|
1034 |
+
__device__ __forceinline__ void memcpy_async_wait()
|
1035 |
+
{
|
1036 |
+
static_assert(stages <= 8);
|
1037 |
+
|
1038 |
+
asm volatile("cp.async.wait_group %0;\n" : : "n"(stages));
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
// TODO: The tail complete should be a known compile time artifact, should try and induce this
|
1042 |
+
// without all of the branches from the call-site. This is a hacky solution.
|
1043 |
+
template <>
|
1044 |
+
__device__ __forceinline__ void tail_complete_wait<1>(int remaining_stages)
|
1045 |
+
{
|
1046 |
+
if (remaining_stages == 0) memcpy_async_wait<0>();
|
1047 |
+
}
|
1048 |
+
|
1049 |
+
template <>
|
1050 |
+
__device__ __forceinline__ void tail_complete_wait<2>(int remaining_stages)
|
1051 |
+
{
|
1052 |
+
if (remaining_stages == 1)
|
1053 |
+
memcpy_async_wait<1>();
|
1054 |
+
else if (remaining_stages == 0)
|
1055 |
+
memcpy_async_wait<0>();
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
template <>
|
1059 |
+
__device__ __forceinline__ void tail_complete_wait<3>(int remaining_stages)
|
1060 |
+
{
|
1061 |
+
if (remaining_stages == 2)
|
1062 |
+
memcpy_async_wait<2>();
|
1063 |
+
else if (remaining_stages == 1)
|
1064 |
+
memcpy_async_wait<1>();
|
1065 |
+
else if (remaining_stages == 0)
|
1066 |
+
memcpy_async_wait<0>();
|
1067 |
+
}
|
1068 |
+
|
1069 |
+
template <>
|
1070 |
+
__device__ __forceinline__ void tail_complete_wait<4>(int remaining_stages)
|
1071 |
+
{
|
1072 |
+
if (remaining_stages == 3)
|
1073 |
+
memcpy_async_wait<3>();
|
1074 |
+
else if (remaining_stages == 2)
|
1075 |
+
memcpy_async_wait<2>();
|
1076 |
+
else if (remaining_stages == 1)
|
1077 |
+
memcpy_async_wait<1>();
|
1078 |
+
else if (remaining_stages == 0)
|
1079 |
+
memcpy_async_wait<0>();
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
template <>
|
1083 |
+
__device__ __forceinline__ void tail_complete_wait<5>(int remaining_stages)
|
1084 |
+
{
|
1085 |
+
if (remaining_stages == 4)
|
1086 |
+
memcpy_async_wait<4>();
|
1087 |
+
else if (remaining_stages == 3)
|
1088 |
+
memcpy_async_wait<3>();
|
1089 |
+
else if (remaining_stages == 2)
|
1090 |
+
memcpy_async_wait<2>();
|
1091 |
+
else if (remaining_stages == 1)
|
1092 |
+
memcpy_async_wait<1>();
|
1093 |
+
else if (remaining_stages == 0)
|
1094 |
+
memcpy_async_wait<0>();
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
template <>
|
1098 |
+
__device__ __forceinline__ void tail_complete_wait<6>(int remaining_stages)
|
1099 |
+
{
|
1100 |
+
if (remaining_stages == 5)
|
1101 |
+
memcpy_async_wait<5>();
|
1102 |
+
else if (remaining_stages == 4)
|
1103 |
+
memcpy_async_wait<4>();
|
1104 |
+
else if (remaining_stages == 3)
|
1105 |
+
memcpy_async_wait<3>();
|
1106 |
+
else if (remaining_stages == 2)
|
1107 |
+
memcpy_async_wait<2>();
|
1108 |
+
else if (remaining_stages == 1)
|
1109 |
+
memcpy_async_wait<1>();
|
1110 |
+
else if (remaining_stages == 0)
|
1111 |
+
memcpy_async_wait<0>();
|
1112 |
+
}
|
1113 |
+
#endif
|
1114 |
+
|
1115 |
+
} // namespace mem_access
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/includes/reduction_utils.h
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "conversion_utils.h"
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
#include "memory_access_utils.h"
|
11 |
+
|
12 |
+
namespace cg = cooperative_groups;
|
13 |
+
|
14 |
+
namespace reduce {
|
15 |
+
|
16 |
+
enum class ROpType {
|
17 |
+
// Addition
|
18 |
+
Add,
|
19 |
+
|
20 |
+
// Maximum reduction
|
21 |
+
Max,
|
22 |
+
|
23 |
+
// Minimum reduction
|
24 |
+
Min,
|
25 |
+
};
|
26 |
+
|
27 |
+
constexpr int max_threads = 1024;
|
28 |
+
constexpr int max_warps = max_threads / hw_warp_size;
|
29 |
+
|
30 |
+
/*
|
31 |
+
High level API. The API takes in a set of operations and variables
|
32 |
+
and performs that reduction operation on that variable. The reductions
|
33 |
+
of each of the arguments are completely independent of each other (
|
34 |
+
i.e., the val1-op1 combination has no impact on val2-op2).
|
35 |
+
|
36 |
+
Example usage:
|
37 |
+
``` cpp
|
38 |
+
float max_val;
|
39 |
+
float min_val;
|
40 |
+
reduce::block<rop::Max, rop::Min>(tb, warp, max_val, min_val);
|
41 |
+
```
|
42 |
+
|
43 |
+
TODO(cmikeh2): In theory, we might be able to do this sequentially with
|
44 |
+
device functions and rely on the assembler correctly behaving. My initial
|
45 |
+
instinct is this won't work, but if it does it would reduce implementation
|
46 |
+
cost significantly.
|
47 |
+
|
48 |
+
TODO(cmikeh2): We need to support sub-block reductions. The warp intrinsic
|
49 |
+
currently supports this (more incidentally than anything else). It is not
|
50 |
+
uncommon in something like softmax or a fused attention kernel to map multiple
|
51 |
+
reductions to a thread block, but each reduction itself is only scoped
|
52 |
+
to part of the threads (i.e block size = 512, 128 threads per reduction).
|
53 |
+
*/
|
54 |
+
template <ROpType Op, int warp_bound = max_warps>
|
55 |
+
DS_D_INLINE void block(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float& val);
|
56 |
+
|
57 |
+
template <ROpType Op1, ROpType Op2, int warp_bound = max_warps>
|
58 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
59 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
60 |
+
float& val1,
|
61 |
+
float& val2);
|
62 |
+
|
63 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int warp_bound = max_warps>
|
64 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
65 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
66 |
+
float& val1,
|
67 |
+
float& val2,
|
68 |
+
float& val3);
|
69 |
+
|
70 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int warp_bound = max_warps>
|
71 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
72 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
73 |
+
float& val1,
|
74 |
+
float& val2,
|
75 |
+
float& val3,
|
76 |
+
float& val4);
|
77 |
+
|
78 |
+
/*
|
79 |
+
The partitioned block is a special case of the above where in the warps of a threadblock are
|
80 |
+
partitioned into separate independent reductions. For example, I might have an 8 warp thread block
|
81 |
+
in which each pair of warps is processing an independent piece of data. I would then reduce that
|
82 |
+
data with the something like the following:
|
83 |
+
``` cpp
|
84 |
+
float max_val;
|
85 |
+
reduce::partitioned_block<rop::Max, 2>(tb, warp, max_val);
|
86 |
+
```
|
87 |
+
After which, each pair of warps would have coherent data with each other. Note, this API will not
|
88 |
+
provide correct results if the number of warps per partition is not a power of 2.
|
89 |
+
*/
|
90 |
+
template <ROpType Op, int num_threads>
|
91 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
92 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
93 |
+
float& val);
|
94 |
+
|
95 |
+
template <ROpType Op1, ROpType Op2, int num_threads>
|
96 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
97 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
98 |
+
float& val1,
|
99 |
+
float& val2);
|
100 |
+
|
101 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int num_threads>
|
102 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
103 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
104 |
+
float& val1,
|
105 |
+
float& val2,
|
106 |
+
float& val3);
|
107 |
+
|
108 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int num_threads>
|
109 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
110 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
111 |
+
float& val1,
|
112 |
+
float& val2,
|
113 |
+
float& val3,
|
114 |
+
float& val4);
|
115 |
+
|
116 |
+
/*
|
117 |
+
Single element reduction primitives. Used inside serial collection
|
118 |
+
loops.
|
119 |
+
|
120 |
+
Example usage:
|
121 |
+
using rop = reduce::OpType;
|
122 |
+
float min = init<rop::Min>();
|
123 |
+
for (int i = 0; i < 4; i++) {
|
124 |
+
min = reduce::element<rop::Min>(min, data[i]);
|
125 |
+
}
|
126 |
+
*/
|
127 |
+
|
128 |
+
template <ROpType Op, typename T>
|
129 |
+
DS_D_INLINE T element(const T lhs, const T rhs);
|
130 |
+
|
131 |
+
template <ROpType OType, typename T = float>
|
132 |
+
DS_D_INLINE T init();
|
133 |
+
|
134 |
+
/********************** Internal reduction APIs **********************/
|
135 |
+
|
136 |
+
/*
|
137 |
+
Single element "reductions". TODO(cmikeh2): this sort of "op" concept
|
138 |
+
should be refactored into its own implementation at some point. This interface
|
139 |
+
may be easily expanded for new types/operations, but the typical reductions
|
140 |
+
we need are covered with min/max/add on float.
|
141 |
+
|
142 |
+
NOTE: there is no mean reduction because that relies on knowledge of how
|
143 |
+
many values were already reduced into each scalar. Implementing this on top
|
144 |
+
of reduce should be straightforward (can just wrap the sum reduction) and
|
145 |
+
would be a good extension of the header.
|
146 |
+
*/
|
147 |
+
|
148 |
+
DS_D_INLINE int _warp_rank()
|
149 |
+
{
|
150 |
+
const int thread_rank =
|
151 |
+
threadIdx.x + threadIdx.y * blockDim.x + threadIdx.z * blockDim.x * blockDim.y;
|
152 |
+
return thread_rank / hw_warp_size;
|
153 |
+
}
|
154 |
+
|
155 |
+
/* Float element reduce implementations */
|
156 |
+
template <>
|
157 |
+
DS_D_INLINE float element<ROpType::Add>(const float lhs, const float rhs)
|
158 |
+
{
|
159 |
+
return lhs + rhs;
|
160 |
+
}
|
161 |
+
|
162 |
+
template <>
|
163 |
+
DS_D_INLINE float element<ROpType::Max>(const float lhs, const float rhs)
|
164 |
+
{
|
165 |
+
return fmaxf(lhs, rhs);
|
166 |
+
}
|
167 |
+
|
168 |
+
template <>
|
169 |
+
DS_D_INLINE float element<ROpType::Min>(const float lhs, const float rhs)
|
170 |
+
{
|
171 |
+
return fminf(lhs, rhs);
|
172 |
+
}
|
173 |
+
|
174 |
+
/* __half element reduce implementation */
|
175 |
+
template <>
|
176 |
+
DS_D_INLINE __half element<ROpType::Add>(const __half lhs, const __half rhs)
|
177 |
+
{
|
178 |
+
return lhs + rhs;
|
179 |
+
}
|
180 |
+
|
181 |
+
template <>
|
182 |
+
DS_D_INLINE __half element<ROpType::Max>(const __half lhs, const __half rhs)
|
183 |
+
{
|
184 |
+
#if __CUDA_ARCH__ >= 800
|
185 |
+
// Intrinsic limited to Ampere + newer
|
186 |
+
return __hmax(lhs, rhs);
|
187 |
+
#else
|
188 |
+
return (lhs > rhs) ? lhs : rhs;
|
189 |
+
#endif
|
190 |
+
}
|
191 |
+
|
192 |
+
template <>
|
193 |
+
DS_D_INLINE __half element<ROpType::Min>(const __half lhs, const __half rhs)
|
194 |
+
{
|
195 |
+
#if __CUDA_ARCH__ >= 800
|
196 |
+
// Intrinsic limited to Ampere + newer
|
197 |
+
return __hmin(lhs, rhs);
|
198 |
+
#else
|
199 |
+
return (lhs < rhs) ? lhs : rhs;
|
200 |
+
#endif
|
201 |
+
}
|
202 |
+
|
203 |
+
/* __half2 element reduce implementation */
|
204 |
+
template <>
|
205 |
+
DS_D_INLINE __half2 element<ROpType::Add>(const __half2 lhs, const __half2 rhs)
|
206 |
+
{
|
207 |
+
return lhs + rhs;
|
208 |
+
}
|
209 |
+
|
210 |
+
template <>
|
211 |
+
DS_D_INLINE __half2 element<ROpType::Max>(const __half2 lhs, const __half2 rhs)
|
212 |
+
{
|
213 |
+
#if __CUDA_ARCH__ >= 800
|
214 |
+
return __hmax2(lhs, rhs);
|
215 |
+
#else
|
216 |
+
__half2 ret_val;
|
217 |
+
ret_val.x = (lhs.x > rhs.x) ? lhs.x : rhs.x;
|
218 |
+
ret_val.y = (lhs.y > rhs.y) ? lhs.y : rhs.y;
|
219 |
+
return ret_val;
|
220 |
+
#endif
|
221 |
+
}
|
222 |
+
|
223 |
+
template <>
|
224 |
+
DS_D_INLINE __half2 element<ROpType::Min>(const __half2 lhs, const __half2 rhs)
|
225 |
+
{
|
226 |
+
#if __CUDA_ARCH__ >= 800
|
227 |
+
return __hmin2(lhs, rhs);
|
228 |
+
#else
|
229 |
+
__half2 ret_val;
|
230 |
+
ret_val.x = (lhs.x < rhs.x) ? lhs.x : rhs.x;
|
231 |
+
ret_val.y = (lhs.y < rhs.y) ? lhs.y : rhs.y;
|
232 |
+
return ret_val;
|
233 |
+
#endif
|
234 |
+
}
|
235 |
+
|
236 |
+
template <>
|
237 |
+
DS_D_INLINE int32_t element<ROpType::Add>(const int32_t lhs, const int32_t rhs)
|
238 |
+
{
|
239 |
+
return lhs + rhs;
|
240 |
+
}
|
241 |
+
|
242 |
+
template <>
|
243 |
+
DS_D_INLINE int32_t element<ROpType::Max>(const int32_t lhs, const int32_t rhs)
|
244 |
+
{
|
245 |
+
return (lhs > rhs) ? lhs : rhs;
|
246 |
+
}
|
247 |
+
|
248 |
+
template <>
|
249 |
+
DS_D_INLINE int32_t element<ROpType::Min>(const int32_t lhs, const int32_t rhs)
|
250 |
+
{
|
251 |
+
return (lhs < rhs) ? lhs : rhs;
|
252 |
+
}
|
253 |
+
|
254 |
+
template <>
|
255 |
+
DS_D_INLINE uint32_t element<ROpType::Add>(const uint32_t lhs, const uint32_t rhs)
|
256 |
+
{
|
257 |
+
return lhs + rhs;
|
258 |
+
}
|
259 |
+
|
260 |
+
template <>
|
261 |
+
DS_D_INLINE uint32_t element<ROpType::Max>(const uint32_t lhs, const uint32_t rhs)
|
262 |
+
{
|
263 |
+
return (lhs > rhs) ? lhs : rhs;
|
264 |
+
}
|
265 |
+
|
266 |
+
template <>
|
267 |
+
DS_D_INLINE uint32_t element<ROpType::Min>(const uint32_t lhs, const uint32_t rhs)
|
268 |
+
{
|
269 |
+
return (lhs < rhs) ? lhs : rhs;
|
270 |
+
}
|
271 |
+
|
272 |
+
template <>
|
273 |
+
DS_D_INLINE int64_t element<ROpType::Add>(const int64_t lhs, const int64_t rhs)
|
274 |
+
{
|
275 |
+
return lhs + rhs;
|
276 |
+
}
|
277 |
+
|
278 |
+
template <>
|
279 |
+
DS_D_INLINE int64_t element<ROpType::Max>(const int64_t lhs, const int64_t rhs)
|
280 |
+
{
|
281 |
+
return (lhs > rhs) ? lhs : rhs;
|
282 |
+
}
|
283 |
+
|
284 |
+
template <>
|
285 |
+
DS_D_INLINE int64_t element<ROpType::Min>(const int64_t lhs, const int64_t rhs)
|
286 |
+
{
|
287 |
+
return (lhs < rhs) ? lhs : rhs;
|
288 |
+
}
|
289 |
+
|
290 |
+
/*
|
291 |
+
Reduction initialization primitives
|
292 |
+
*/
|
293 |
+
template <>
|
294 |
+
DS_D_INLINE float init<ROpType::Add>()
|
295 |
+
{
|
296 |
+
return 0.0f;
|
297 |
+
}
|
298 |
+
|
299 |
+
template <>
|
300 |
+
DS_D_INLINE float init<ROpType::Min>()
|
301 |
+
{
|
302 |
+
// Positive infinity
|
303 |
+
return INFINITY;
|
304 |
+
}
|
305 |
+
|
306 |
+
template <>
|
307 |
+
DS_D_INLINE float init<ROpType::Max>()
|
308 |
+
{
|
309 |
+
// Negative infinity
|
310 |
+
return -INFINITY;
|
311 |
+
}
|
312 |
+
|
313 |
+
template <>
|
314 |
+
DS_D_INLINE __half init<ROpType::Add>()
|
315 |
+
{
|
316 |
+
constexpr __half_raw zero = {0x0000};
|
317 |
+
return __half(zero);
|
318 |
+
}
|
319 |
+
|
320 |
+
template <>
|
321 |
+
DS_D_INLINE __half init<ROpType::Min>()
|
322 |
+
{
|
323 |
+
constexpr __half_raw inf = {0x7C00};
|
324 |
+
return __half(inf);
|
325 |
+
}
|
326 |
+
|
327 |
+
template <>
|
328 |
+
DS_D_INLINE __half init<ROpType::Max>()
|
329 |
+
{
|
330 |
+
constexpr __half_raw neg_inf = {0xFC00};
|
331 |
+
return __half(neg_inf);
|
332 |
+
}
|
333 |
+
|
334 |
+
template <>
|
335 |
+
DS_D_INLINE __half2 init<ROpType::Add>()
|
336 |
+
{
|
337 |
+
#ifdef __HIP_PLATFORM_AMD__
|
338 |
+
return __half2{_Float16_2{0x0000, 0x0000}};
|
339 |
+
#else
|
340 |
+
constexpr __half2_raw zero = {0x0000, 0x0000};
|
341 |
+
return __half2(zero);
|
342 |
+
#endif
|
343 |
+
}
|
344 |
+
|
345 |
+
template <>
|
346 |
+
DS_D_INLINE __half2 init<ROpType::Min>()
|
347 |
+
{
|
348 |
+
#ifdef __HIP_PLATFORM_AMD__
|
349 |
+
return __half2{_Float16_2{0x7C00, 0x7C00}};
|
350 |
+
#else
|
351 |
+
constexpr __half2_raw inf = {0x7C00, 0x7C00};
|
352 |
+
return __half2(inf);
|
353 |
+
#endif
|
354 |
+
}
|
355 |
+
|
356 |
+
template <>
|
357 |
+
DS_D_INLINE __half2 init<ROpType::Max>()
|
358 |
+
{
|
359 |
+
#ifdef __HIP_PLATFORM_AMD__
|
360 |
+
return __half2{_Float16_2{0xFC00, 0xFC00}};
|
361 |
+
#else
|
362 |
+
constexpr __half2_raw neg_inf = {0xFC00, 0xFC00};
|
363 |
+
return __half2(neg_inf);
|
364 |
+
#endif
|
365 |
+
}
|
366 |
+
|
367 |
+
template <>
|
368 |
+
DS_D_INLINE int32_t init<ROpType::Add>()
|
369 |
+
{
|
370 |
+
return 0;
|
371 |
+
}
|
372 |
+
|
373 |
+
template <>
|
374 |
+
DS_D_INLINE int32_t init<ROpType::Min>()
|
375 |
+
{
|
376 |
+
return 0x7FFFFFFF;
|
377 |
+
}
|
378 |
+
|
379 |
+
template <>
|
380 |
+
DS_D_INLINE int32_t init<ROpType::Max>()
|
381 |
+
{
|
382 |
+
return 0x80000000;
|
383 |
+
}
|
384 |
+
|
385 |
+
template <>
|
386 |
+
DS_D_INLINE uint32_t init<ROpType::Add>()
|
387 |
+
{
|
388 |
+
return 0;
|
389 |
+
}
|
390 |
+
|
391 |
+
template <>
|
392 |
+
DS_D_INLINE uint32_t init<ROpType::Min>()
|
393 |
+
{
|
394 |
+
return 0xFFFFFFFF;
|
395 |
+
}
|
396 |
+
|
397 |
+
template <>
|
398 |
+
DS_D_INLINE uint32_t init<ROpType::Max>()
|
399 |
+
{
|
400 |
+
return 0;
|
401 |
+
}
|
402 |
+
|
403 |
+
template <>
|
404 |
+
DS_D_INLINE int64_t init<ROpType::Add>()
|
405 |
+
{
|
406 |
+
return 0;
|
407 |
+
}
|
408 |
+
|
409 |
+
template <>
|
410 |
+
DS_D_INLINE int64_t init<ROpType::Min>()
|
411 |
+
{
|
412 |
+
return 0x7FFFFFFFFFFFFFFF;
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
DS_D_INLINE int64_t init<ROpType::Max>()
|
417 |
+
{
|
418 |
+
return 0x8000000000000000;
|
419 |
+
}
|
420 |
+
|
421 |
+
template <>
|
422 |
+
DS_D_INLINE uint64_t init<ROpType::Add>()
|
423 |
+
{
|
424 |
+
return 0;
|
425 |
+
}
|
426 |
+
|
427 |
+
template <>
|
428 |
+
DS_D_INLINE uint64_t init<ROpType::Min>()
|
429 |
+
{
|
430 |
+
return 0xFFFFFFFFFFFFFFFF;
|
431 |
+
}
|
432 |
+
|
433 |
+
template <>
|
434 |
+
DS_D_INLINE uint64_t init<ROpType::Max>()
|
435 |
+
{
|
436 |
+
return 0;
|
437 |
+
}
|
438 |
+
|
439 |
+
template <ROpType Op, typename T>
|
440 |
+
DS_D_INLINE void init(T* data)
|
441 |
+
{
|
442 |
+
data[0] = init<Op, T>();
|
443 |
+
}
|
444 |
+
|
445 |
+
template <ROpType Op1, ROpType Op2, typename T>
|
446 |
+
DS_D_INLINE void init(T* data)
|
447 |
+
{
|
448 |
+
data[0] = init<Op1, T>();
|
449 |
+
data[1] = init<Op2, T>();
|
450 |
+
}
|
451 |
+
|
452 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, typename T>
|
453 |
+
DS_D_INLINE void init(T* data)
|
454 |
+
{
|
455 |
+
data[0] = init<Op1, T>();
|
456 |
+
data[1] = init<Op2, T>();
|
457 |
+
data[2] = init<Op3, T>();
|
458 |
+
}
|
459 |
+
|
460 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, typename T>
|
461 |
+
DS_D_INLINE void init(T* data)
|
462 |
+
{
|
463 |
+
data[0] = init<Op1, T>();
|
464 |
+
data[1] = init<Op2, T>();
|
465 |
+
data[2] = init<Op3, T>();
|
466 |
+
data[3] = init<Op4, T>();
|
467 |
+
}
|
468 |
+
|
469 |
+
/*
|
470 |
+
Warp reduction primitives
|
471 |
+
|
472 |
+
`reduction_width` is an unsafe template parameter, that is that
|
473 |
+
when using `reduction_width` < hw_warp_size the warp is partitioned
|
474 |
+
into `hw_warp_size` / `reduction_width` groups of partial sums.
|
475 |
+
|
476 |
+
If someone can figure out how to use variadic templates in a reasonable way
|
477 |
+
here (fold is C++17 only and I don't think helps and recursion feels like
|
478 |
+
huge overkill that harms readability) that would be wonderful.
|
479 |
+
*/
|
480 |
+
|
481 |
+
template <typename T, ROpType Op, int reduce_width = hw_warp_size>
|
482 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
483 |
+
{
|
484 |
+
#pragma unroll
|
485 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
486 |
+
data[0] = element<Op>(data[0], warp.shfl_xor(data[0], i));
|
487 |
+
}
|
488 |
+
}
|
489 |
+
|
490 |
+
template <typename T, ROpType Op1, ROpType Op2, int reduce_width = hw_warp_size>
|
491 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
492 |
+
{
|
493 |
+
#pragma unroll
|
494 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
495 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
496 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
497 |
+
}
|
498 |
+
}
|
499 |
+
|
500 |
+
template <typename T, ROpType Op1, ROpType Op2, ROpType Op3, int reduce_width = hw_warp_size>
|
501 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
502 |
+
{
|
503 |
+
#pragma unroll
|
504 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
505 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
506 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
507 |
+
data[2] = element<Op3>(data[2], warp.shfl_xor(data[2], i));
|
508 |
+
}
|
509 |
+
}
|
510 |
+
|
511 |
+
template <typename T,
|
512 |
+
ROpType Op1,
|
513 |
+
ROpType Op2,
|
514 |
+
ROpType Op3,
|
515 |
+
ROpType Op4,
|
516 |
+
int reduce_width = hw_warp_size>
|
517 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
518 |
+
{
|
519 |
+
#pragma unroll
|
520 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
521 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
522 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
523 |
+
data[2] = element<Op3>(data[2], warp.shfl_xor(data[2], i));
|
524 |
+
data[3] = element<Op4>(data[3], warp.shfl_xor(data[3], i));
|
525 |
+
}
|
526 |
+
}
|
527 |
+
|
528 |
+
/*
|
529 |
+
Implementation for primary block reduction that serves both `block` and
|
530 |
+
`partitioned_block`.
|
531 |
+
|
532 |
+
Total warps refers to the reduction width of the reduction, not
|
533 |
+
the number of warps in the block (which may exceed that
|
534 |
+
if the block is partitioned or if we do a conservative bound at
|
535 |
+
compile time).
|
536 |
+
*/
|
537 |
+
template <typename T, int total_warps, ROpType... Ops>
|
538 |
+
DS_D_INLINE void _block(cg::thread_block& tb,
|
539 |
+
cg::thread_block_tile<hw_warp_size>& warp_arg,
|
540 |
+
T* data)
|
541 |
+
{
|
542 |
+
constexpr int elems = sizeof...(Ops);
|
543 |
+
constexpr int bytes = sizeof(T);
|
544 |
+
// Unused when `partition_size == 1` or total_warps == 1
|
545 |
+
__shared__ T reduce_buffer[max_warps * elems];
|
546 |
+
|
547 |
+
#ifdef __HIP_PLATFORM_AMD__
|
548 |
+
const int total_threads = blockDim.x * blockDim.y * blockDim.z;
|
549 |
+
const int running_warps = total_threads / hw_warp_size;
|
550 |
+
#else
|
551 |
+
const int running_warps = warp_arg.meta_group_size();
|
552 |
+
#endif
|
553 |
+
|
554 |
+
// Always perform warp-scope reduction
|
555 |
+
_warp<T, Ops...>(warp_arg, data);
|
556 |
+
|
557 |
+
// If max_warps == 1 let's skip the runtime check
|
558 |
+
if (total_warps != 1) {
|
559 |
+
if (warp_arg.thread_rank() == 0) {
|
560 |
+
#pragma unroll
|
561 |
+
for (int i = 0; i < elems; i++) {
|
562 |
+
mem_access::store_shared<bytes>(reduce_buffer + elems * _warp_rank() + i, data + i);
|
563 |
+
}
|
564 |
+
}
|
565 |
+
|
566 |
+
// Synchronization inside block-uniform conditional is safe
|
567 |
+
tb.sync();
|
568 |
+
|
569 |
+
if (_warp_rank() == 0) {
|
570 |
+
if (warp_arg.thread_rank() < running_warps) {
|
571 |
+
#pragma unroll
|
572 |
+
for (int i = 0; i < elems; i++) {
|
573 |
+
mem_access::load_shared<bytes>(
|
574 |
+
data + i, reduce_buffer + elems * warp_arg.thread_rank() + i);
|
575 |
+
}
|
576 |
+
} else {
|
577 |
+
init<Ops...>(data);
|
578 |
+
}
|
579 |
+
|
580 |
+
_warp<T, Ops..., total_warps>(warp_arg, data);
|
581 |
+
|
582 |
+
#pragma unroll
|
583 |
+
for (int i = 0; i < elems; i++) {
|
584 |
+
mem_access::store_shared<bytes>(reduce_buffer + elems * warp_arg.thread_rank() + i,
|
585 |
+
data + i);
|
586 |
+
}
|
587 |
+
}
|
588 |
+
|
589 |
+
// Synchronization inside block-uniform conditional is safe
|
590 |
+
tb.sync();
|
591 |
+
|
592 |
+
#pragma unroll
|
593 |
+
for (int i = 0; i < elems; i++) {
|
594 |
+
mem_access::load_shared<bytes>(data + i, reduce_buffer + _warp_rank() * elems + i);
|
595 |
+
}
|
596 |
+
}
|
597 |
+
}
|
598 |
+
|
599 |
+
/*
|
600 |
+
Main API implementations. For the most part, they just convert the individual
|
601 |
+
variables into arrays, which makes working with them easier with a single
|
602 |
+
implementation. In theory, we could use the `_block` implementation as another
|
603 |
+
option, but the nature of using a pointer is a little less safe and this allows
|
604 |
+
us to obfuscate the details of the partitioned implementation.
|
605 |
+
*/
|
606 |
+
template <ROpType Op, int warp_bound>
|
607 |
+
DS_D_INLINE void block(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float& val)
|
608 |
+
{
|
609 |
+
_block<float, warp_bound, Op>(tb, warp, &val);
|
610 |
+
}
|
611 |
+
|
612 |
+
template <ROpType Op1, ROpType Op2, int warp_bound>
|
613 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
614 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
615 |
+
float& val1,
|
616 |
+
float& val2)
|
617 |
+
{
|
618 |
+
float data[2] = {val1, val2};
|
619 |
+
_block<float, warp_bound, Op1, Op2>(tb, warp, data);
|
620 |
+
val1 = data[0];
|
621 |
+
val2 = data[1];
|
622 |
+
}
|
623 |
+
|
624 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int warp_bound>
|
625 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
626 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
627 |
+
float& val1,
|
628 |
+
float& val2,
|
629 |
+
float& val3)
|
630 |
+
{
|
631 |
+
float data[3] = {val1, val2, val3};
|
632 |
+
_block<float, warp_bound, Op1, Op2, Op3>(tb, warp, data);
|
633 |
+
val1 = data[0];
|
634 |
+
val2 = data[1];
|
635 |
+
val3 = data[2];
|
636 |
+
}
|
637 |
+
|
638 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int warp_bound>
|
639 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
640 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
641 |
+
float& val1,
|
642 |
+
float& val2,
|
643 |
+
float& val3,
|
644 |
+
float& val4)
|
645 |
+
{
|
646 |
+
float data[4] = {val1, val2, val3, val4};
|
647 |
+
_block<float, warp_bound, Op1, Op2, Op3, Op4>(tb, warp, data);
|
648 |
+
val1 = data[0];
|
649 |
+
val2 = data[1];
|
650 |
+
val3 = data[2];
|
651 |
+
val4 = data[3];
|
652 |
+
}
|
653 |
+
|
654 |
+
/*
|
655 |
+
Note: for the partitioned blocks, the implementation does not support non-power of 2 blocks in order
|
656 |
+
to shorten block scale reduction length.
|
657 |
+
*/
|
658 |
+
template <ROpType Op, int num_threads>
|
659 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
660 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
661 |
+
float& val)
|
662 |
+
{
|
663 |
+
if (num_threads <= hw_warp_size) {
|
664 |
+
_warp<float, Op, num_threads>(warp, &val);
|
665 |
+
} else {
|
666 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
667 |
+
_block<float, num_warps, Op>(tb, warp, &val);
|
668 |
+
}
|
669 |
+
}
|
670 |
+
|
671 |
+
template <ROpType Op1, ROpType Op2, int num_threads>
|
672 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
673 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
674 |
+
float& val1,
|
675 |
+
float& val2)
|
676 |
+
{
|
677 |
+
float data[2] = {val1, val2};
|
678 |
+
|
679 |
+
if (num_threads <= hw_warp_size) {
|
680 |
+
_warp<float, Op1, Op2, num_threads>(warp, data);
|
681 |
+
} else {
|
682 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
683 |
+
_block<float, num_warps, Op1, Op2>(tb, warp, data);
|
684 |
+
}
|
685 |
+
|
686 |
+
val1 = data[0];
|
687 |
+
val2 = data[1];
|
688 |
+
}
|
689 |
+
|
690 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int num_threads>
|
691 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
692 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
693 |
+
float& val1,
|
694 |
+
float& val2,
|
695 |
+
float& val3)
|
696 |
+
{
|
697 |
+
float data[3] = {val1, val2, val3};
|
698 |
+
|
699 |
+
if (num_threads <= hw_warp_size) {
|
700 |
+
_warp<float, Op1, Op2, Op3, num_threads>(warp, data);
|
701 |
+
} else {
|
702 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
703 |
+
_block<float, num_warps, Op1, Op2, Op3>(tb, warp, data);
|
704 |
+
}
|
705 |
+
|
706 |
+
val1 = data[0];
|
707 |
+
val2 = data[1];
|
708 |
+
val3 = data[2];
|
709 |
+
}
|
710 |
+
|
711 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int num_threads>
|
712 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
713 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
714 |
+
float& val1,
|
715 |
+
float& val2,
|
716 |
+
float& val3,
|
717 |
+
float& val4)
|
718 |
+
{
|
719 |
+
float data[4] = {val1, val2, val3, val4};
|
720 |
+
|
721 |
+
if (num_threads <= hw_warp_size) {
|
722 |
+
_warp<float, Op1, Op2, Op3, Op4, num_threads>(warp, data);
|
723 |
+
} else {
|
724 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
725 |
+
_block<float, num_warps, Op1, Op2, Op3, Op4>(tb, warp, data);
|
726 |
+
}
|
727 |
+
|
728 |
+
val1 = data[0];
|
729 |
+
val2 = data[1];
|
730 |
+
val3 = data[2];
|
731 |
+
val4 = data[3];
|
732 |
+
}
|
733 |
+
|
734 |
+
/*
|
735 |
+
Arg-reduce is a specialization of the above. We only support this with a single reduction
|
736 |
+
parameter. This only works for max/min reductions.
|
737 |
+
*/
|
738 |
+
|
739 |
+
__align__(8) struct IdxReduceResult {
|
740 |
+
/*
|
741 |
+
NOTE: ORDERING MATTERS HERE! The idx is the least significant set of bits
|
742 |
+
and the val is the most significant. Changing the order of this declaration
|
743 |
+
will break the code.
|
744 |
+
*/
|
745 |
+
int idx;
|
746 |
+
float val;
|
747 |
+
};
|
748 |
+
|
749 |
+
template <ROpType Op, int warpBound>
|
750 |
+
DS_D_INLINE IdxReduceResult
|
751 |
+
idx_reduce(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float val, int idx)
|
752 |
+
{
|
753 |
+
IdxReduceResult res = {idx, val};
|
754 |
+
|
755 |
+
// Clear out the nan. This shouldn't be an issue for our initial applications
|
756 |
+
if (isnan(val)) res.val = init<Op>();
|
757 |
+
|
758 |
+
// Can do float compares as integers. By packing the index into the lower bits
|
759 |
+
// we can just do a single int64 rather than a branch, compare, and select.
|
760 |
+
// One side benefit of this is that it is by nature a stable algorithm and
|
761 |
+
// will always bias ties to the higher index.
|
762 |
+
int64_t* res_as_int = reinterpret_cast<int64_t*>(&res);
|
763 |
+
|
764 |
+
// The way floating point compare works is normally to perform a sign comparison
|
765 |
+
// and if they match, then do a comparison of the rest of the bits as unsigned
|
766 |
+
// integers. Since we are bundling these, that means for negative values we need
|
767 |
+
// to reverse the sort order, which we can do with an XOR.
|
768 |
+
if (val < 0) { *res_as_int ^= 0x7fffffff00000000; }
|
769 |
+
|
770 |
+
_block<int64_t, warpBound, Op>(tb, warp, res_as_int);
|
771 |
+
|
772 |
+
// Sign bit is preserved, so we can check if we need to invert the mantissa back
|
773 |
+
if (res.val < 0) { *res_as_int ^= 0x7fffffff00000000; }
|
774 |
+
|
775 |
+
return res;
|
776 |
+
}
|
777 |
+
|
778 |
+
} // namespace reduce
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .blocked_flash import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (253 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/__pycache__/blocked_flash.cpython-310.pyc
ADDED
Binary file (3.62 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/attention_atom.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cstdint>
|
9 |
+
#include "cuda.h"
|
10 |
+
|
11 |
+
struct AttentionAtom {
|
12 |
+
/*
|
13 |
+
The attention atom describes the workload of a particular query. The attention
|
14 |
+
kernel will execute each ``AttentionAtom`` for each head of the model.
|
15 |
+
*/
|
16 |
+
|
17 |
+
// Pointer to a list of KV block indices.
|
18 |
+
int32_t* block_idx_list;
|
19 |
+
|
20 |
+
// Index of first token in the ragged batch associated with this atom.
|
21 |
+
int32_t q_start_idx;
|
22 |
+
|
23 |
+
// Number of tokens in the ragged batch associated with this atom.
|
24 |
+
int32_t q_len;
|
25 |
+
|
26 |
+
// Number of key/value blocks associated with this atom. All but the last are
|
27 |
+
// assumed to be fully dense.
|
28 |
+
int32_t kv_blocks;
|
29 |
+
|
30 |
+
// Number of tokens in the last key/value block.
|
31 |
+
int32_t total_extent;
|
32 |
+
|
33 |
+
// Global index of the first token in the atom. For example, in a prompt continuation
|
34 |
+
// in which we have already processed 768 tokens, this would be 768.
|
35 |
+
int32_t global_q_idx;
|
36 |
+
|
37 |
+
// Unused
|
38 |
+
int32_t unused;
|
39 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.cpp
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/******************************************************************************
|
7 |
+
* Copyright (c) 2023, Tri Dao.
|
8 |
+
******************************************************************************/
|
9 |
+
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
|
14 |
+
#include "blocked_flash.h"
|
15 |
+
#include "flash.h"
|
16 |
+
|
17 |
+
#define CHECK_SHAPE(x, ...) \
|
18 |
+
TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), \
|
19 |
+
#x " must have shape (" #__VA_ARGS__ ")")
|
20 |
+
|
21 |
+
void flash_attn_by_atoms(at::Tensor& out,
|
22 |
+
at::Tensor& q,
|
23 |
+
at::Tensor& k,
|
24 |
+
at::Tensor& v,
|
25 |
+
at::Tensor& attention_atoms,
|
26 |
+
const float softmax_scale,
|
27 |
+
const bool is_causal)
|
28 |
+
{
|
29 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
30 |
+
|
31 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
32 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
33 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
34 |
+
|
35 |
+
auto q_dtype = q.dtype();
|
36 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
37 |
+
"FlashAttention only support fp16 and bf16 data type");
|
38 |
+
if (q_dtype == torch::kBFloat16) {
|
39 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
40 |
+
}
|
41 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
42 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
43 |
+
|
44 |
+
TORCH_CHECK(q.is_cuda(), "Input tensor must be on CUDA device");
|
45 |
+
TORCH_CHECK(k.is_cuda(), "Input tensor must be on CUDA device");
|
46 |
+
TORCH_CHECK(v.is_cuda(), "Input tensor must be on CUDA device");
|
47 |
+
|
48 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
49 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
50 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
51 |
+
|
52 |
+
const int total_q = q.size(0);
|
53 |
+
const int head_size = k.size(-1);
|
54 |
+
const int num_heads_kv = k.size(-2);
|
55 |
+
const int num_heads_q = q.size(-1) / head_size;
|
56 |
+
|
57 |
+
TORCH_CHECK(head_size <= 256, "head_size must be <= 256");
|
58 |
+
TORCH_CHECK(head_size % 8 == 0, "head_size must be divisible by 8");
|
59 |
+
TORCH_CHECK(num_heads_q % num_heads_kv == 0, "num_heads_q must be divisible by num_heads_kv");
|
60 |
+
|
61 |
+
Flash_fwd_params params;
|
62 |
+
|
63 |
+
params.is_bf16 = q.dtype() == torch::kBFloat16;
|
64 |
+
|
65 |
+
// Set the pointers and strides.
|
66 |
+
params.q_ptr = q.data_ptr();
|
67 |
+
params.k_ptr = k.data_ptr();
|
68 |
+
params.v_ptr = v.data_ptr();
|
69 |
+
params.o_ptr = out.data_ptr();
|
70 |
+
params.atoms = reinterpret_cast<AttentionAtom*>(attention_atoms.data_ptr());
|
71 |
+
|
72 |
+
// All stride are in elements, not bytes.
|
73 |
+
params.q_row_stride = q.stride(0);
|
74 |
+
params.k_row_stride = k.stride(1);
|
75 |
+
params.v_row_stride = v.stride(1);
|
76 |
+
params.o_row_stride = out.stride(0);
|
77 |
+
|
78 |
+
// Assume heads are contiguous.
|
79 |
+
params.q_head_stride = head_size;
|
80 |
+
params.k_head_stride = head_size;
|
81 |
+
params.v_head_stride = head_size;
|
82 |
+
params.o_head_stride = head_size;
|
83 |
+
|
84 |
+
// Head params
|
85 |
+
params.h = num_heads_q;
|
86 |
+
params.h_k = num_heads_kv;
|
87 |
+
params.h_h_k_ratio = num_heads_q / num_heads_kv;
|
88 |
+
params.d = head_size;
|
89 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
90 |
+
params.d_rounded = round_multiple(head_size, 32);
|
91 |
+
params.num_atoms = attention_atoms.size(0);
|
92 |
+
|
93 |
+
// Set the different scale values.
|
94 |
+
params.scale_softmax = softmax_scale;
|
95 |
+
params.scale_softmax_log2 = softmax_scale * M_LOG2E;
|
96 |
+
|
97 |
+
params.is_causal = is_causal;
|
98 |
+
|
99 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
100 |
+
run_mha_fwd(params, stream);
|
101 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <torch/extension.h>
|
9 |
+
|
10 |
+
void flash_attn_by_atoms(at::Tensor& out,
|
11 |
+
at::Tensor& q,
|
12 |
+
at::Tensor& k,
|
13 |
+
at::Tensor& v,
|
14 |
+
at::Tensor& attention_atoms,
|
15 |
+
const float softmax_scale,
|
16 |
+
const bool is_causal);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/blocked_flash.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from deepspeed.accelerator import get_accelerator
|
9 |
+
from ....inference_utils import DtypeEnum
|
10 |
+
from deepspeed.ops.op_builder import RaggedOpsBuilder
|
11 |
+
|
12 |
+
from ... import DSKernelBase
|
13 |
+
|
14 |
+
|
15 |
+
def get_q_block_size(head_size: int) -> int:
|
16 |
+
"""
|
17 |
+
Returns the query block size required by the kernel given a head size.
|
18 |
+
"""
|
19 |
+
cc_major, cc_minor = torch.cuda.get_device_capability(get_accelerator().current_device()) #ignore-cuda
|
20 |
+
|
21 |
+
if cc_major < 8:
|
22 |
+
raise RuntimeError("Blocked attention requires CUDA compute capability >= 8.0")
|
23 |
+
|
24 |
+
if head_size <= 64:
|
25 |
+
return 128
|
26 |
+
elif head_size <= 160:
|
27 |
+
if cc_minor != 0:
|
28 |
+
return 64
|
29 |
+
else:
|
30 |
+
return 128
|
31 |
+
elif head_size == 192:
|
32 |
+
return 128
|
33 |
+
elif head_size == 224:
|
34 |
+
if cc_minor != 0:
|
35 |
+
return 64
|
36 |
+
else:
|
37 |
+
return 128
|
38 |
+
else:
|
39 |
+
if cc_major == 8 and cc_minor == 0:
|
40 |
+
return 128
|
41 |
+
else:
|
42 |
+
return 64
|
43 |
+
|
44 |
+
|
45 |
+
def get_kv_block_size(head_size: int) -> int:
|
46 |
+
"""
|
47 |
+
Return preferred granulatity for blocked KV-cache implementation.
|
48 |
+
"""
|
49 |
+
cc_major, cc_minor = torch.cuda.get_device_capability(get_accelerator().current_device()) #ignore-cuda
|
50 |
+
|
51 |
+
if cc_major < 8:
|
52 |
+
raise RuntimeError("Blocked attention requires CUDA compute capability >= 8.0")
|
53 |
+
|
54 |
+
if head_size <= 64:
|
55 |
+
return 128
|
56 |
+
elif head_size != 160 or cc_minor != 0:
|
57 |
+
return 64
|
58 |
+
else:
|
59 |
+
return 32
|
60 |
+
|
61 |
+
|
62 |
+
class BlockedFlashAttn(DSKernelBase):
|
63 |
+
"""
|
64 |
+
Modified implementation of flash-attn-2 tuned for inference on blocked KV-cache and wider
|
65 |
+
range of input sequence lengths.
|
66 |
+
"""
|
67 |
+
|
68 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
69 |
+
|
70 |
+
def __init__(self, head_size: int, dtype: DtypeEnum) -> None:
|
71 |
+
"""
|
72 |
+
Triggers any compilation of the kernels.
|
73 |
+
"""
|
74 |
+
if not isinstance(dtype, DtypeEnum):
|
75 |
+
dtype = DtypeEnum(dtype)
|
76 |
+
|
77 |
+
if dtype not in BlockedFlashAttn.supported_dtypes:
|
78 |
+
raise ValueError("Unsupported data type: {}, supported data types are {}".format(
|
79 |
+
dtype, BlockedFlashAttn.supported_dtypes))
|
80 |
+
|
81 |
+
# For testing, need to revert to 32
|
82 |
+
if head_size % 16 != 0:
|
83 |
+
raise ValueError("Head size must be divisible by 32 (configured with {})".format(head_size))
|
84 |
+
|
85 |
+
inf_module = RaggedOpsBuilder().load()
|
86 |
+
self.kernel = inf_module.flash_attn_by_atoms
|
87 |
+
|
88 |
+
def __call__(self, out: torch.Tensor, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, atoms: torch.Tensor,
|
89 |
+
softmax_scale: float) -> torch.Tensor:
|
90 |
+
"""
|
91 |
+
Flash attention implementation atop a blocked KV-cache. Atoms should be pre-populated.
|
92 |
+
See attention_atom.h for further details on the structure of the information.
|
93 |
+
|
94 |
+
Arguments:
|
95 |
+
out (torch.Tensor): Output tensor of shape [tokens, hidden_size]
|
96 |
+
q (torch.Tensor): Query tensor of shape [tokens, hidden_size]
|
97 |
+
k (torch.Tensor): Key cache tensor of shape [n_blocks, block_size, n_heads_kv, head_size]. This Tensor only needs to be contiguous on the final dimension.
|
98 |
+
v (torch.Tensor): Value cache tensor of shape [n_blocks, block_size, n_heads_kv, head_size]. This Tensor only needs to be contiguous on the final dimension.
|
99 |
+
atoms (torch.Tensor): Atom information tensor of shape [num_atoms, 8] and type int32.
|
100 |
+
Not all data is readable in this format. See attention_atom.h for further details.
|
101 |
+
softmax_scale (float): Softmax scale factor.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
out (torch.Tensor): Output tensor of shape [tokens, hidden_size]
|
105 |
+
"""
|
106 |
+
self.kernel(out, q, k, v, atoms, softmax_scale, True)
|
107 |
+
return out
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/blocked_flash/flash.h
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/******************************************************************************
|
7 |
+
Copyright (c) 2023, Tri Dao.
|
8 |
+
******************************************************************************/
|
9 |
+
|
10 |
+
#pragma once
|
11 |
+
|
12 |
+
#include <cuda.h>
|
13 |
+
#include <vector>
|
14 |
+
|
15 |
+
#include "attention_atom.h"
|
16 |
+
|
17 |
+
constexpr int TOTAL_DIM = 0;
|
18 |
+
constexpr int H_DIM = 1;
|
19 |
+
constexpr int D_DIM = 2;
|
20 |
+
|
21 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
22 |
+
|
23 |
+
struct Qkv_params {
|
24 |
+
using index_t = uint32_t;
|
25 |
+
// The QKV matrices.
|
26 |
+
void* __restrict__ q_ptr;
|
27 |
+
void* __restrict__ k_ptr;
|
28 |
+
void* __restrict__ v_ptr;
|
29 |
+
|
30 |
+
// The stride between rows of the Q, K and V matrices.
|
31 |
+
index_t q_row_stride;
|
32 |
+
index_t k_row_stride;
|
33 |
+
index_t v_row_stride;
|
34 |
+
index_t q_head_stride;
|
35 |
+
index_t k_head_stride;
|
36 |
+
index_t v_head_stride;
|
37 |
+
|
38 |
+
// The number of heads.
|
39 |
+
int h, h_k;
|
40 |
+
// In the case of multi-query and grouped-query attention (MQA/GQA), nheads_k could be
|
41 |
+
// different from nheads (query).
|
42 |
+
int h_h_k_ratio; // precompute h / h_k,
|
43 |
+
};
|
44 |
+
|
45 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
46 |
+
|
47 |
+
struct Flash_fwd_params : public Qkv_params {
|
48 |
+
// The O matrix (output).
|
49 |
+
void* __restrict__ o_ptr;
|
50 |
+
|
51 |
+
// The attention metadata
|
52 |
+
AttentionAtom* __restrict__ atoms;
|
53 |
+
|
54 |
+
// Total attention atoms
|
55 |
+
int num_atoms;
|
56 |
+
|
57 |
+
// The stride between rows of O.
|
58 |
+
index_t o_row_stride;
|
59 |
+
index_t o_head_stride;
|
60 |
+
|
61 |
+
// The dimensions
|
62 |
+
int d, d_rounded;
|
63 |
+
|
64 |
+
// The scaling factors for the kernel.
|
65 |
+
float scale_softmax;
|
66 |
+
float scale_softmax_log2;
|
67 |
+
|
68 |
+
bool is_bf16;
|
69 |
+
bool is_causal;
|
70 |
+
};
|
71 |
+
|
72 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
73 |
+
|
74 |
+
void run_mha_fwd(Flash_fwd_params& params, cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/ragged_ops/embed/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .embed import RaggedEmbeddingKernel
|