applied-ai-018 commited on
Commit
f082c83
·
verified ·
1 Parent(s): d07b5c9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step60/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt +3 -0
  7. venv/lib/python3.10/site-packages/numpy/core/_asarray.pyi +42 -0
  8. venv/lib/python3.10/site-packages/numpy/core/_methods.py +234 -0
  9. venv/lib/python3.10/site-packages/numpy/core/_type_aliases.pyi +13 -0
  10. venv/lib/python3.10/site-packages/numpy/core/arrayprint.py +1725 -0
  11. venv/lib/python3.10/site-packages/numpy/core/defchararray.pyi +421 -0
  12. venv/lib/python3.10/site-packages/numpy/core/memmap.py +338 -0
  13. venv/lib/python3.10/site-packages/numpy/core/numerictypes.py +689 -0
  14. venv/lib/python3.10/site-packages/numpy/core/numerictypes.pyi +156 -0
  15. venv/lib/python3.10/site-packages/numpy/core/records.pyi +234 -0
  16. venv/lib/python3.10/site-packages/numpy/core/shape_base.pyi +123 -0
  17. venv/lib/python3.10/site-packages/numpy/core/tests/__init__.py +0 -0
  18. venv/lib/python3.10/site-packages/numpy/core/tests/_locales.py +74 -0
  19. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  20. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  21. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arctan.csv +1429 -0
  22. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  23. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  24. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-cos.csv +1375 -0
  25. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-exp.csv +412 -0
  26. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-expm1.csv +1429 -0
  27. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-log10.csv +1629 -0
  28. venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-tan.csv +1429 -0
  29. venv/lib/python3.10/site-packages/numpy/core/tests/test__exceptions.py +88 -0
  30. venv/lib/python3.10/site-packages/numpy/core/tests/test_abc.py +54 -0
  31. venv/lib/python3.10/site-packages/numpy/core/tests/test_api.py +615 -0
  32. venv/lib/python3.10/site-packages/numpy/core/tests/test_array_coercion.py +898 -0
  33. venv/lib/python3.10/site-packages/numpy/core/tests/test_array_interface.py +219 -0
  34. venv/lib/python3.10/site-packages/numpy/core/tests/test_arraymethod.py +85 -0
  35. venv/lib/python3.10/site-packages/numpy/core/tests/test_arrayprint.py +1047 -0
  36. venv/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py +154 -0
  37. venv/lib/python3.10/site-packages/numpy/core/tests/test_casting_unittests.py +819 -0
  38. venv/lib/python3.10/site-packages/numpy/core/tests/test_conversion_utils.py +208 -0
  39. venv/lib/python3.10/site-packages/numpy/core/tests/test_cpu_dispatcher.py +43 -0
  40. venv/lib/python3.10/site-packages/numpy/core/tests/test_cpu_features.py +404 -0
  41. venv/lib/python3.10/site-packages/numpy/core/tests/test_custom_dtypes.py +253 -0
  42. venv/lib/python3.10/site-packages/numpy/core/tests/test_cython.py +135 -0
  43. venv/lib/python3.10/site-packages/numpy/core/tests/test_datetime.py +0 -0
  44. venv/lib/python3.10/site-packages/numpy/core/tests/test_defchararray.py +686 -0
  45. venv/lib/python3.10/site-packages/numpy/core/tests/test_deprecations.py +817 -0
  46. venv/lib/python3.10/site-packages/numpy/core/tests/test_dtype.py +1906 -0
  47. venv/lib/python3.10/site-packages/numpy/core/tests/test_errstate.py +61 -0
  48. venv/lib/python3.10/site-packages/numpy/core/tests/test_extint128.py +219 -0
  49. venv/lib/python3.10/site-packages/numpy/core/tests/test_function_base.py +446 -0
  50. venv/lib/python3.10/site-packages/numpy/core/tests/test_getlimits.py +194 -0
ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbe3b633902dc1298c88d9d87562e008cef07fa1582c497943c73aae9ae9a4b1
3
+ size 33555612
ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c41807f5e5fc00855aeb3c77e779c17f189b751034d90662cdcc46047a4c57d1
3
+ size 33555627
ckpts/universal/global_step40/zero/12.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e75b6672ca975f56e977ccab584b4c129259b9f77d2420d77503e709bc067d95
3
+ size 33555533
ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4715350990727519ff41d55f03bec3ee92d0c9fa9d6f7de9bdc70c5533611b54
3
+ size 33555612
ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:093ed27fb5aefdc4e9e37a657a7c82b8787c56eb664fc1c921d11e130f2c1e9d
3
+ size 33555533
ckpts/universal/global_step60/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db5ff3edc95abf296e4e12b0b5e53e7496fed36f45d7023e584cff4cf9ae1a5
3
+ size 415237291
venv/lib/python3.10/site-packages/numpy/core/_asarray.pyi ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Iterable
2
+ from typing import Any, TypeVar, Union, overload, Literal
3
+
4
+ from numpy import ndarray
5
+ from numpy._typing import DTypeLike, _SupportsArrayFunc
6
+
7
+ _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
8
+
9
+ _Requirements = Literal[
10
+ "C", "C_CONTIGUOUS", "CONTIGUOUS",
11
+ "F", "F_CONTIGUOUS", "FORTRAN",
12
+ "A", "ALIGNED",
13
+ "W", "WRITEABLE",
14
+ "O", "OWNDATA"
15
+ ]
16
+ _E = Literal["E", "ENSUREARRAY"]
17
+ _RequirementsWithE = Union[_Requirements, _E]
18
+
19
+ @overload
20
+ def require(
21
+ a: _ArrayType,
22
+ dtype: None = ...,
23
+ requirements: None | _Requirements | Iterable[_Requirements] = ...,
24
+ *,
25
+ like: _SupportsArrayFunc = ...
26
+ ) -> _ArrayType: ...
27
+ @overload
28
+ def require(
29
+ a: object,
30
+ dtype: DTypeLike = ...,
31
+ requirements: _E | Iterable[_RequirementsWithE] = ...,
32
+ *,
33
+ like: _SupportsArrayFunc = ...
34
+ ) -> ndarray[Any, Any]: ...
35
+ @overload
36
+ def require(
37
+ a: object,
38
+ dtype: DTypeLike = ...,
39
+ requirements: None | _Requirements | Iterable[_Requirements] = ...,
40
+ *,
41
+ like: _SupportsArrayFunc = ...
42
+ ) -> ndarray[Any, Any]: ...
venv/lib/python3.10/site-packages/numpy/core/_methods.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Array methods which are called by both the C-code for the method
3
+ and the Python code for the NumPy-namespace function
4
+
5
+ """
6
+ import warnings
7
+ from contextlib import nullcontext
8
+
9
+ from numpy.core import multiarray as mu
10
+ from numpy.core import umath as um
11
+ from numpy.core.multiarray import asanyarray
12
+ from numpy.core import numerictypes as nt
13
+ from numpy.core import _exceptions
14
+ from numpy.core._ufunc_config import _no_nep50_warning
15
+ from numpy._globals import _NoValue
16
+ from numpy.compat import pickle, os_fspath
17
+
18
+ # save those O(100) nanoseconds!
19
+ umr_maximum = um.maximum.reduce
20
+ umr_minimum = um.minimum.reduce
21
+ umr_sum = um.add.reduce
22
+ umr_prod = um.multiply.reduce
23
+ umr_any = um.logical_or.reduce
24
+ umr_all = um.logical_and.reduce
25
+
26
+ # Complex types to -> (2,)float view for fast-path computation in _var()
27
+ _complex_to_float = {
28
+ nt.dtype(nt.csingle) : nt.dtype(nt.single),
29
+ nt.dtype(nt.cdouble) : nt.dtype(nt.double),
30
+ }
31
+ # Special case for windows: ensure double takes precedence
32
+ if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
33
+ _complex_to_float.update({
34
+ nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
35
+ })
36
+
37
+ # avoid keyword arguments to speed up parsing, saves about 15%-20% for very
38
+ # small reductions
39
+ def _amax(a, axis=None, out=None, keepdims=False,
40
+ initial=_NoValue, where=True):
41
+ return umr_maximum(a, axis, None, out, keepdims, initial, where)
42
+
43
+ def _amin(a, axis=None, out=None, keepdims=False,
44
+ initial=_NoValue, where=True):
45
+ return umr_minimum(a, axis, None, out, keepdims, initial, where)
46
+
47
+ def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
48
+ initial=_NoValue, where=True):
49
+ return umr_sum(a, axis, dtype, out, keepdims, initial, where)
50
+
51
+ def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
52
+ initial=_NoValue, where=True):
53
+ return umr_prod(a, axis, dtype, out, keepdims, initial, where)
54
+
55
+ def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
56
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
57
+ if where is True:
58
+ return umr_any(a, axis, dtype, out, keepdims)
59
+ return umr_any(a, axis, dtype, out, keepdims, where=where)
60
+
61
+ def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
62
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
63
+ if where is True:
64
+ return umr_all(a, axis, dtype, out, keepdims)
65
+ return umr_all(a, axis, dtype, out, keepdims, where=where)
66
+
67
+ def _count_reduce_items(arr, axis, keepdims=False, where=True):
68
+ # fast-path for the default case
69
+ if where is True:
70
+ # no boolean mask given, calculate items according to axis
71
+ if axis is None:
72
+ axis = tuple(range(arr.ndim))
73
+ elif not isinstance(axis, tuple):
74
+ axis = (axis,)
75
+ items = 1
76
+ for ax in axis:
77
+ items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
78
+ items = nt.intp(items)
79
+ else:
80
+ # TODO: Optimize case when `where` is broadcast along a non-reduction
81
+ # axis and full sum is more excessive than needed.
82
+
83
+ # guarded to protect circular imports
84
+ from numpy.lib.stride_tricks import broadcast_to
85
+ # count True values in (potentially broadcasted) boolean mask
86
+ items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
87
+ keepdims)
88
+ return items
89
+
90
+ def _clip(a, min=None, max=None, out=None, **kwargs):
91
+ if min is None and max is None:
92
+ raise ValueError("One of max or min must be given")
93
+
94
+ if min is None:
95
+ return um.minimum(a, max, out=out, **kwargs)
96
+ elif max is None:
97
+ return um.maximum(a, min, out=out, **kwargs)
98
+ else:
99
+ return um.clip(a, min, max, out=out, **kwargs)
100
+
101
+ def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
102
+ arr = asanyarray(a)
103
+
104
+ is_float16_result = False
105
+
106
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
107
+ if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
108
+ warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
109
+
110
+ # Cast bool, unsigned int, and int to float64 by default
111
+ if dtype is None:
112
+ if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
113
+ dtype = mu.dtype('f8')
114
+ elif issubclass(arr.dtype.type, nt.float16):
115
+ dtype = mu.dtype('f4')
116
+ is_float16_result = True
117
+
118
+ ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
119
+ if isinstance(ret, mu.ndarray):
120
+ with _no_nep50_warning():
121
+ ret = um.true_divide(
122
+ ret, rcount, out=ret, casting='unsafe', subok=False)
123
+ if is_float16_result and out is None:
124
+ ret = arr.dtype.type(ret)
125
+ elif hasattr(ret, 'dtype'):
126
+ if is_float16_result:
127
+ ret = arr.dtype.type(ret / rcount)
128
+ else:
129
+ ret = ret.dtype.type(ret / rcount)
130
+ else:
131
+ ret = ret / rcount
132
+
133
+ return ret
134
+
135
+ def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
136
+ where=True):
137
+ arr = asanyarray(a)
138
+
139
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
140
+ # Make this warning show up on top.
141
+ if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
142
+ warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
143
+ stacklevel=2)
144
+
145
+ # Cast bool, unsigned int, and int to float64 by default
146
+ if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
147
+ dtype = mu.dtype('f8')
148
+
149
+ # Compute the mean.
150
+ # Note that if dtype is not of inexact type then arraymean will
151
+ # not be either.
152
+ arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
153
+ # The shape of rcount has to match arrmean to not change the shape of out
154
+ # in broadcasting. Otherwise, it cannot be stored back to arrmean.
155
+ if rcount.ndim == 0:
156
+ # fast-path for default case when where is True
157
+ div = rcount
158
+ else:
159
+ # matching rcount to arrmean when where is specified as array
160
+ div = rcount.reshape(arrmean.shape)
161
+ if isinstance(arrmean, mu.ndarray):
162
+ with _no_nep50_warning():
163
+ arrmean = um.true_divide(arrmean, div, out=arrmean,
164
+ casting='unsafe', subok=False)
165
+ elif hasattr(arrmean, "dtype"):
166
+ arrmean = arrmean.dtype.type(arrmean / rcount)
167
+ else:
168
+ arrmean = arrmean / rcount
169
+
170
+ # Compute sum of squared deviations from mean
171
+ # Note that x may not be inexact and that we need it to be an array,
172
+ # not a scalar.
173
+ x = asanyarray(arr - arrmean)
174
+
175
+ if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
176
+ x = um.multiply(x, x, out=x)
177
+ # Fast-paths for built-in complex types
178
+ elif x.dtype in _complex_to_float:
179
+ xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
180
+ um.multiply(xv, xv, out=xv)
181
+ x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
182
+ # Most general case; includes handling object arrays containing imaginary
183
+ # numbers and complex types with non-native byteorder
184
+ else:
185
+ x = um.multiply(x, um.conjugate(x), out=x).real
186
+
187
+ ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
188
+
189
+ # Compute degrees of freedom and make sure it is not negative.
190
+ rcount = um.maximum(rcount - ddof, 0)
191
+
192
+ # divide by degrees of freedom
193
+ if isinstance(ret, mu.ndarray):
194
+ with _no_nep50_warning():
195
+ ret = um.true_divide(
196
+ ret, rcount, out=ret, casting='unsafe', subok=False)
197
+ elif hasattr(ret, 'dtype'):
198
+ ret = ret.dtype.type(ret / rcount)
199
+ else:
200
+ ret = ret / rcount
201
+
202
+ return ret
203
+
204
+ def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
205
+ where=True):
206
+ ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
207
+ keepdims=keepdims, where=where)
208
+
209
+ if isinstance(ret, mu.ndarray):
210
+ ret = um.sqrt(ret, out=ret)
211
+ elif hasattr(ret, 'dtype'):
212
+ ret = ret.dtype.type(um.sqrt(ret))
213
+ else:
214
+ ret = um.sqrt(ret)
215
+
216
+ return ret
217
+
218
+ def _ptp(a, axis=None, out=None, keepdims=False):
219
+ return um.subtract(
220
+ umr_maximum(a, axis, None, out, keepdims),
221
+ umr_minimum(a, axis, None, None, keepdims),
222
+ out
223
+ )
224
+
225
+ def _dump(self, file, protocol=2):
226
+ if hasattr(file, 'write'):
227
+ ctx = nullcontext(file)
228
+ else:
229
+ ctx = open(os_fspath(file), "wb")
230
+ with ctx as f:
231
+ pickle.dump(self, f, protocol=protocol)
232
+
233
+ def _dumps(self, protocol=2):
234
+ return pickle.dumps(self, protocol=protocol)
venv/lib/python3.10/site-packages/numpy/core/_type_aliases.pyi ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, TypedDict
2
+
3
+ from numpy import generic, signedinteger, unsignedinteger, floating, complexfloating
4
+
5
+ class _SCTypes(TypedDict):
6
+ int: list[type[signedinteger[Any]]]
7
+ uint: list[type[unsignedinteger[Any]]]
8
+ float: list[type[floating[Any]]]
9
+ complex: list[type[complexfloating[Any, Any]]]
10
+ others: list[type]
11
+
12
+ sctypeDict: dict[int | str, type[generic]]
13
+ sctypes: _SCTypes
venv/lib/python3.10/site-packages/numpy/core/arrayprint.py ADDED
@@ -0,0 +1,1725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Array printing function
2
+
3
+ $Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
4
+
5
+ """
6
+ __all__ = ["array2string", "array_str", "array_repr", "set_string_function",
7
+ "set_printoptions", "get_printoptions", "printoptions",
8
+ "format_float_positional", "format_float_scientific"]
9
+ __docformat__ = 'restructuredtext'
10
+
11
+ #
12
+ # Written by Konrad Hinsen <[email protected]>
13
+ # last revision: 1996-3-13
14
+ # modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
15
+ # and by Perry Greenfield 2000-4-1 for numarray
16
+ # and by Travis Oliphant 2005-8-22 for numpy
17
+
18
+
19
+ # Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
20
+ # scalars but for different purposes. scalartypes.c.src has str/reprs for when
21
+ # the scalar is printed on its own, while arrayprint.py has strs for when
22
+ # scalars are printed inside an ndarray. Only the latter strs are currently
23
+ # user-customizable.
24
+
25
+ import functools
26
+ import numbers
27
+ import sys
28
+ try:
29
+ from _thread import get_ident
30
+ except ImportError:
31
+ from _dummy_thread import get_ident
32
+
33
+ import numpy as np
34
+ from . import numerictypes as _nt
35
+ from .umath import absolute, isinf, isfinite, isnat
36
+ from . import multiarray
37
+ from .multiarray import (array, dragon4_positional, dragon4_scientific,
38
+ datetime_as_string, datetime_data, ndarray,
39
+ set_legacy_print_mode)
40
+ from .fromnumeric import any
41
+ from .numeric import concatenate, asarray, errstate
42
+ from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
43
+ flexible)
44
+ from .overrides import array_function_dispatch, set_module
45
+ import operator
46
+ import warnings
47
+ import contextlib
48
+
49
+ _format_options = {
50
+ 'edgeitems': 3, # repr N leading and trailing items of each dimension
51
+ 'threshold': 1000, # total items > triggers array summarization
52
+ 'floatmode': 'maxprec',
53
+ 'precision': 8, # precision of floating point representations
54
+ 'suppress': False, # suppress printing small floating values in exp format
55
+ 'linewidth': 75,
56
+ 'nanstr': 'nan',
57
+ 'infstr': 'inf',
58
+ 'sign': '-',
59
+ 'formatter': None,
60
+ # Internally stored as an int to simplify comparisons; converted from/to
61
+ # str/False on the way in/out.
62
+ 'legacy': sys.maxsize}
63
+
64
+ def _make_options_dict(precision=None, threshold=None, edgeitems=None,
65
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
66
+ sign=None, formatter=None, floatmode=None, legacy=None):
67
+ """
68
+ Make a dictionary out of the non-None arguments, plus conversion of
69
+ *legacy* and sanity checks.
70
+ """
71
+
72
+ options = {k: v for k, v in locals().items() if v is not None}
73
+
74
+ if suppress is not None:
75
+ options['suppress'] = bool(suppress)
76
+
77
+ modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
78
+ if floatmode not in modes + [None]:
79
+ raise ValueError("floatmode option must be one of " +
80
+ ", ".join('"{}"'.format(m) for m in modes))
81
+
82
+ if sign not in [None, '-', '+', ' ']:
83
+ raise ValueError("sign option must be one of ' ', '+', or '-'")
84
+
85
+ if legacy == False:
86
+ options['legacy'] = sys.maxsize
87
+ elif legacy == '1.13':
88
+ options['legacy'] = 113
89
+ elif legacy == '1.21':
90
+ options['legacy'] = 121
91
+ elif legacy is None:
92
+ pass # OK, do nothing.
93
+ else:
94
+ warnings.warn(
95
+ "legacy printing option can currently only be '1.13', '1.21', or "
96
+ "`False`", stacklevel=3)
97
+
98
+ if threshold is not None:
99
+ # forbid the bad threshold arg suggested by stack overflow, gh-12351
100
+ if not isinstance(threshold, numbers.Number):
101
+ raise TypeError("threshold must be numeric")
102
+ if np.isnan(threshold):
103
+ raise ValueError("threshold must be non-NAN, try "
104
+ "sys.maxsize for untruncated representation")
105
+
106
+ if precision is not None:
107
+ # forbid the bad precision arg as suggested by issue #18254
108
+ try:
109
+ options['precision'] = operator.index(precision)
110
+ except TypeError as e:
111
+ raise TypeError('precision must be an integer') from e
112
+
113
+ return options
114
+
115
+
116
+ @set_module('numpy')
117
+ def set_printoptions(precision=None, threshold=None, edgeitems=None,
118
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
119
+ formatter=None, sign=None, floatmode=None, *, legacy=None):
120
+ """
121
+ Set printing options.
122
+
123
+ These options determine the way floating point numbers, arrays and
124
+ other NumPy objects are displayed.
125
+
126
+ Parameters
127
+ ----------
128
+ precision : int or None, optional
129
+ Number of digits of precision for floating point output (default 8).
130
+ May be None if `floatmode` is not `fixed`, to print as many digits as
131
+ necessary to uniquely specify the value.
132
+ threshold : int, optional
133
+ Total number of array elements which trigger summarization
134
+ rather than full repr (default 1000).
135
+ To always use the full repr without summarization, pass `sys.maxsize`.
136
+ edgeitems : int, optional
137
+ Number of array items in summary at beginning and end of
138
+ each dimension (default 3).
139
+ linewidth : int, optional
140
+ The number of characters per line for the purpose of inserting
141
+ line breaks (default 75).
142
+ suppress : bool, optional
143
+ If True, always print floating point numbers using fixed point
144
+ notation, in which case numbers equal to zero in the current precision
145
+ will print as zero. If False, then scientific notation is used when
146
+ absolute value of the smallest number is < 1e-4 or the ratio of the
147
+ maximum absolute value to the minimum is > 1e3. The default is False.
148
+ nanstr : str, optional
149
+ String representation of floating point not-a-number (default nan).
150
+ infstr : str, optional
151
+ String representation of floating point infinity (default inf).
152
+ sign : string, either '-', '+', or ' ', optional
153
+ Controls printing of the sign of floating-point types. If '+', always
154
+ print the sign of positive values. If ' ', always prints a space
155
+ (whitespace character) in the sign position of positive values. If
156
+ '-', omit the sign character of positive values. (default '-')
157
+ formatter : dict of callables, optional
158
+ If not None, the keys should indicate the type(s) that the respective
159
+ formatting function applies to. Callables should return a string.
160
+ Types that are not specified (by their corresponding keys) are handled
161
+ by the default formatters. Individual types for which a formatter
162
+ can be set are:
163
+
164
+ - 'bool'
165
+ - 'int'
166
+ - 'timedelta' : a `numpy.timedelta64`
167
+ - 'datetime' : a `numpy.datetime64`
168
+ - 'float'
169
+ - 'longfloat' : 128-bit floats
170
+ - 'complexfloat'
171
+ - 'longcomplexfloat' : composed of two 128-bit floats
172
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
173
+ - 'object' : `np.object_` arrays
174
+
175
+ Other keys that can be used to set a group of types at once are:
176
+
177
+ - 'all' : sets all types
178
+ - 'int_kind' : sets 'int'
179
+ - 'float_kind' : sets 'float' and 'longfloat'
180
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
181
+ - 'str_kind' : sets 'numpystr'
182
+ floatmode : str, optional
183
+ Controls the interpretation of the `precision` option for
184
+ floating-point types. Can take the following values
185
+ (default maxprec_equal):
186
+
187
+ * 'fixed': Always print exactly `precision` fractional digits,
188
+ even if this would print more or fewer digits than
189
+ necessary to specify the value uniquely.
190
+ * 'unique': Print the minimum number of fractional digits necessary
191
+ to represent each value uniquely. Different elements may
192
+ have a different number of digits. The value of the
193
+ `precision` option is ignored.
194
+ * 'maxprec': Print at most `precision` fractional digits, but if
195
+ an element can be uniquely represented with fewer digits
196
+ only print it with that many.
197
+ * 'maxprec_equal': Print at most `precision` fractional digits,
198
+ but if every element in the array can be uniquely
199
+ represented with an equal number of fewer digits, use that
200
+ many digits for all elements.
201
+ legacy : string or `False`, optional
202
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
203
+ approximates numpy 1.13 print output by including a space in the sign
204
+ position of floats and different behavior for 0d arrays. This also
205
+ enables 1.21 legacy printing mode (described below).
206
+
207
+ If set to the string `'1.21'` enables 1.21 legacy printing mode. This
208
+ approximates numpy 1.21 print output of complex structured dtypes
209
+ by not inserting spaces after commas that separate fields and after
210
+ colons.
211
+
212
+ If set to `False`, disables legacy mode.
213
+
214
+ Unrecognized strings will be ignored with a warning for forward
215
+ compatibility.
216
+
217
+ .. versionadded:: 1.14.0
218
+ .. versionchanged:: 1.22.0
219
+
220
+ See Also
221
+ --------
222
+ get_printoptions, printoptions, set_string_function, array2string
223
+
224
+ Notes
225
+ -----
226
+ `formatter` is always reset with a call to `set_printoptions`.
227
+
228
+ Use `printoptions` as a context manager to set the values temporarily.
229
+
230
+ Examples
231
+ --------
232
+ Floating point precision can be set:
233
+
234
+ >>> np.set_printoptions(precision=4)
235
+ >>> np.array([1.123456789])
236
+ [1.1235]
237
+
238
+ Long arrays can be summarised:
239
+
240
+ >>> np.set_printoptions(threshold=5)
241
+ >>> np.arange(10)
242
+ array([0, 1, 2, ..., 7, 8, 9])
243
+
244
+ Small results can be suppressed:
245
+
246
+ >>> eps = np.finfo(float).eps
247
+ >>> x = np.arange(4.)
248
+ >>> x**2 - (x + eps)**2
249
+ array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
250
+ >>> np.set_printoptions(suppress=True)
251
+ >>> x**2 - (x + eps)**2
252
+ array([-0., -0., 0., 0.])
253
+
254
+ A custom formatter can be used to display array elements as desired:
255
+
256
+ >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
257
+ >>> x = np.arange(3)
258
+ >>> x
259
+ array([int: 0, int: -1, int: -2])
260
+ >>> np.set_printoptions() # formatter gets reset
261
+ >>> x
262
+ array([0, 1, 2])
263
+
264
+ To put back the default options, you can use:
265
+
266
+ >>> np.set_printoptions(edgeitems=3, infstr='inf',
267
+ ... linewidth=75, nanstr='nan', precision=8,
268
+ ... suppress=False, threshold=1000, formatter=None)
269
+
270
+ Also to temporarily override options, use `printoptions` as a context manager:
271
+
272
+ >>> with np.printoptions(precision=2, suppress=True, threshold=5):
273
+ ... np.linspace(0, 10, 10)
274
+ array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
275
+
276
+ """
277
+ opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
278
+ suppress, nanstr, infstr, sign, formatter,
279
+ floatmode, legacy)
280
+ # formatter is always reset
281
+ opt['formatter'] = formatter
282
+ _format_options.update(opt)
283
+
284
+ # set the C variable for legacy mode
285
+ if _format_options['legacy'] == 113:
286
+ set_legacy_print_mode(113)
287
+ # reset the sign option in legacy mode to avoid confusion
288
+ _format_options['sign'] = '-'
289
+ elif _format_options['legacy'] == 121:
290
+ set_legacy_print_mode(121)
291
+ elif _format_options['legacy'] == sys.maxsize:
292
+ set_legacy_print_mode(0)
293
+
294
+
295
+ @set_module('numpy')
296
+ def get_printoptions():
297
+ """
298
+ Return the current print options.
299
+
300
+ Returns
301
+ -------
302
+ print_opts : dict
303
+ Dictionary of current print options with keys
304
+
305
+ - precision : int
306
+ - threshold : int
307
+ - edgeitems : int
308
+ - linewidth : int
309
+ - suppress : bool
310
+ - nanstr : str
311
+ - infstr : str
312
+ - formatter : dict of callables
313
+ - sign : str
314
+
315
+ For a full description of these options, see `set_printoptions`.
316
+
317
+ See Also
318
+ --------
319
+ set_printoptions, printoptions, set_string_function
320
+
321
+ """
322
+ opts = _format_options.copy()
323
+ opts['legacy'] = {
324
+ 113: '1.13', 121: '1.21', sys.maxsize: False,
325
+ }[opts['legacy']]
326
+ return opts
327
+
328
+
329
+ def _get_legacy_print_mode():
330
+ """Return the legacy print mode as an int."""
331
+ return _format_options['legacy']
332
+
333
+
334
+ @set_module('numpy')
335
+ @contextlib.contextmanager
336
+ def printoptions(*args, **kwargs):
337
+ """Context manager for setting print options.
338
+
339
+ Set print options for the scope of the `with` block, and restore the old
340
+ options at the end. See `set_printoptions` for the full description of
341
+ available options.
342
+
343
+ Examples
344
+ --------
345
+
346
+ >>> from numpy.testing import assert_equal
347
+ >>> with np.printoptions(precision=2):
348
+ ... np.array([2.0]) / 3
349
+ array([0.67])
350
+
351
+ The `as`-clause of the `with`-statement gives the current print options:
352
+
353
+ >>> with np.printoptions(precision=2) as opts:
354
+ ... assert_equal(opts, np.get_printoptions())
355
+
356
+ See Also
357
+ --------
358
+ set_printoptions, get_printoptions
359
+
360
+ """
361
+ opts = np.get_printoptions()
362
+ try:
363
+ np.set_printoptions(*args, **kwargs)
364
+ yield np.get_printoptions()
365
+ finally:
366
+ np.set_printoptions(**opts)
367
+
368
+
369
+ def _leading_trailing(a, edgeitems, index=()):
370
+ """
371
+ Keep only the N-D corners (leading and trailing edges) of an array.
372
+
373
+ Should be passed a base-class ndarray, since it makes no guarantees about
374
+ preserving subclasses.
375
+ """
376
+ axis = len(index)
377
+ if axis == a.ndim:
378
+ return a[index]
379
+
380
+ if a.shape[axis] > 2*edgeitems:
381
+ return concatenate((
382
+ _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
383
+ _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
384
+ ), axis=axis)
385
+ else:
386
+ return _leading_trailing(a, edgeitems, index + np.index_exp[:])
387
+
388
+
389
+ def _object_format(o):
390
+ """ Object arrays containing lists should be printed unambiguously """
391
+ if type(o) is list:
392
+ fmt = 'list({!r})'
393
+ else:
394
+ fmt = '{!r}'
395
+ return fmt.format(o)
396
+
397
+ def repr_format(x):
398
+ return repr(x)
399
+
400
+ def str_format(x):
401
+ return str(x)
402
+
403
+ def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
404
+ formatter, **kwargs):
405
+ # note: extra arguments in kwargs are ignored
406
+
407
+ # wrapped in lambdas to avoid taking a code path with the wrong type of data
408
+ formatdict = {
409
+ 'bool': lambda: BoolFormat(data),
410
+ 'int': lambda: IntegerFormat(data),
411
+ 'float': lambda: FloatingFormat(
412
+ data, precision, floatmode, suppress, sign, legacy=legacy),
413
+ 'longfloat': lambda: FloatingFormat(
414
+ data, precision, floatmode, suppress, sign, legacy=legacy),
415
+ 'complexfloat': lambda: ComplexFloatingFormat(
416
+ data, precision, floatmode, suppress, sign, legacy=legacy),
417
+ 'longcomplexfloat': lambda: ComplexFloatingFormat(
418
+ data, precision, floatmode, suppress, sign, legacy=legacy),
419
+ 'datetime': lambda: DatetimeFormat(data, legacy=legacy),
420
+ 'timedelta': lambda: TimedeltaFormat(data),
421
+ 'object': lambda: _object_format,
422
+ 'void': lambda: str_format,
423
+ 'numpystr': lambda: repr_format}
424
+
425
+ # we need to wrap values in `formatter` in a lambda, so that the interface
426
+ # is the same as the above values.
427
+ def indirect(x):
428
+ return lambda: x
429
+
430
+ if formatter is not None:
431
+ fkeys = [k for k in formatter.keys() if formatter[k] is not None]
432
+ if 'all' in fkeys:
433
+ for key in formatdict.keys():
434
+ formatdict[key] = indirect(formatter['all'])
435
+ if 'int_kind' in fkeys:
436
+ for key in ['int']:
437
+ formatdict[key] = indirect(formatter['int_kind'])
438
+ if 'float_kind' in fkeys:
439
+ for key in ['float', 'longfloat']:
440
+ formatdict[key] = indirect(formatter['float_kind'])
441
+ if 'complex_kind' in fkeys:
442
+ for key in ['complexfloat', 'longcomplexfloat']:
443
+ formatdict[key] = indirect(formatter['complex_kind'])
444
+ if 'str_kind' in fkeys:
445
+ formatdict['numpystr'] = indirect(formatter['str_kind'])
446
+ for key in formatdict.keys():
447
+ if key in fkeys:
448
+ formatdict[key] = indirect(formatter[key])
449
+
450
+ return formatdict
451
+
452
+ def _get_format_function(data, **options):
453
+ """
454
+ find the right formatting function for the dtype_
455
+ """
456
+ dtype_ = data.dtype
457
+ dtypeobj = dtype_.type
458
+ formatdict = _get_formatdict(data, **options)
459
+ if dtypeobj is None:
460
+ return formatdict["numpystr"]()
461
+ elif issubclass(dtypeobj, _nt.bool_):
462
+ return formatdict['bool']()
463
+ elif issubclass(dtypeobj, _nt.integer):
464
+ if issubclass(dtypeobj, _nt.timedelta64):
465
+ return formatdict['timedelta']()
466
+ else:
467
+ return formatdict['int']()
468
+ elif issubclass(dtypeobj, _nt.floating):
469
+ if issubclass(dtypeobj, _nt.longfloat):
470
+ return formatdict['longfloat']()
471
+ else:
472
+ return formatdict['float']()
473
+ elif issubclass(dtypeobj, _nt.complexfloating):
474
+ if issubclass(dtypeobj, _nt.clongfloat):
475
+ return formatdict['longcomplexfloat']()
476
+ else:
477
+ return formatdict['complexfloat']()
478
+ elif issubclass(dtypeobj, (_nt.str_, _nt.bytes_)):
479
+ return formatdict['numpystr']()
480
+ elif issubclass(dtypeobj, _nt.datetime64):
481
+ return formatdict['datetime']()
482
+ elif issubclass(dtypeobj, _nt.object_):
483
+ return formatdict['object']()
484
+ elif issubclass(dtypeobj, _nt.void):
485
+ if dtype_.names is not None:
486
+ return StructuredVoidFormat.from_data(data, **options)
487
+ else:
488
+ return formatdict['void']()
489
+ else:
490
+ return formatdict['numpystr']()
491
+
492
+
493
+ def _recursive_guard(fillvalue='...'):
494
+ """
495
+ Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
496
+
497
+ Decorates a function such that if it calls itself with the same first
498
+ argument, it returns `fillvalue` instead of recursing.
499
+
500
+ Largely copied from reprlib.recursive_repr
501
+ """
502
+
503
+ def decorating_function(f):
504
+ repr_running = set()
505
+
506
+ @functools.wraps(f)
507
+ def wrapper(self, *args, **kwargs):
508
+ key = id(self), get_ident()
509
+ if key in repr_running:
510
+ return fillvalue
511
+ repr_running.add(key)
512
+ try:
513
+ return f(self, *args, **kwargs)
514
+ finally:
515
+ repr_running.discard(key)
516
+
517
+ return wrapper
518
+
519
+ return decorating_function
520
+
521
+
522
+ # gracefully handle recursive calls, when object arrays contain themselves
523
+ @_recursive_guard()
524
+ def _array2string(a, options, separator=' ', prefix=""):
525
+ # The formatter __init__s in _get_format_function cannot deal with
526
+ # subclasses yet, and we also need to avoid recursion issues in
527
+ # _formatArray with subclasses which return 0d arrays in place of scalars
528
+ data = asarray(a)
529
+ if a.shape == ():
530
+ a = data
531
+
532
+ if a.size > options['threshold']:
533
+ summary_insert = "..."
534
+ data = _leading_trailing(data, options['edgeitems'])
535
+ else:
536
+ summary_insert = ""
537
+
538
+ # find the right formatting function for the array
539
+ format_function = _get_format_function(data, **options)
540
+
541
+ # skip over "["
542
+ next_line_prefix = " "
543
+ # skip over array(
544
+ next_line_prefix += " "*len(prefix)
545
+
546
+ lst = _formatArray(a, format_function, options['linewidth'],
547
+ next_line_prefix, separator, options['edgeitems'],
548
+ summary_insert, options['legacy'])
549
+ return lst
550
+
551
+
552
+ def _array2string_dispatcher(
553
+ a, max_line_width=None, precision=None,
554
+ suppress_small=None, separator=None, prefix=None,
555
+ style=None, formatter=None, threshold=None,
556
+ edgeitems=None, sign=None, floatmode=None, suffix=None,
557
+ *, legacy=None):
558
+ return (a,)
559
+
560
+
561
+ @array_function_dispatch(_array2string_dispatcher, module='numpy')
562
+ def array2string(a, max_line_width=None, precision=None,
563
+ suppress_small=None, separator=' ', prefix="",
564
+ style=np._NoValue, formatter=None, threshold=None,
565
+ edgeitems=None, sign=None, floatmode=None, suffix="",
566
+ *, legacy=None):
567
+ """
568
+ Return a string representation of an array.
569
+
570
+ Parameters
571
+ ----------
572
+ a : ndarray
573
+ Input array.
574
+ max_line_width : int, optional
575
+ Inserts newlines if text is longer than `max_line_width`.
576
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
577
+ precision : int or None, optional
578
+ Floating point precision.
579
+ Defaults to ``numpy.get_printoptions()['precision']``.
580
+ suppress_small : bool, optional
581
+ Represent numbers "very close" to zero as zero; default is False.
582
+ Very close is defined by precision: if the precision is 8, e.g.,
583
+ numbers smaller (in absolute value) than 5e-9 are represented as
584
+ zero.
585
+ Defaults to ``numpy.get_printoptions()['suppress']``.
586
+ separator : str, optional
587
+ Inserted between elements.
588
+ prefix : str, optional
589
+ suffix : str, optional
590
+ The length of the prefix and suffix strings are used to respectively
591
+ align and wrap the output. An array is typically printed as::
592
+
593
+ prefix + array2string(a) + suffix
594
+
595
+ The output is left-padded by the length of the prefix string, and
596
+ wrapping is forced at the column ``max_line_width - len(suffix)``.
597
+ It should be noted that the content of prefix and suffix strings are
598
+ not included in the output.
599
+ style : _NoValue, optional
600
+ Has no effect, do not use.
601
+
602
+ .. deprecated:: 1.14.0
603
+ formatter : dict of callables, optional
604
+ If not None, the keys should indicate the type(s) that the respective
605
+ formatting function applies to. Callables should return a string.
606
+ Types that are not specified (by their corresponding keys) are handled
607
+ by the default formatters. Individual types for which a formatter
608
+ can be set are:
609
+
610
+ - 'bool'
611
+ - 'int'
612
+ - 'timedelta' : a `numpy.timedelta64`
613
+ - 'datetime' : a `numpy.datetime64`
614
+ - 'float'
615
+ - 'longfloat' : 128-bit floats
616
+ - 'complexfloat'
617
+ - 'longcomplexfloat' : composed of two 128-bit floats
618
+ - 'void' : type `numpy.void`
619
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
620
+
621
+ Other keys that can be used to set a group of types at once are:
622
+
623
+ - 'all' : sets all types
624
+ - 'int_kind' : sets 'int'
625
+ - 'float_kind' : sets 'float' and 'longfloat'
626
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
627
+ - 'str_kind' : sets 'numpystr'
628
+ threshold : int, optional
629
+ Total number of array elements which trigger summarization
630
+ rather than full repr.
631
+ Defaults to ``numpy.get_printoptions()['threshold']``.
632
+ edgeitems : int, optional
633
+ Number of array items in summary at beginning and end of
634
+ each dimension.
635
+ Defaults to ``numpy.get_printoptions()['edgeitems']``.
636
+ sign : string, either '-', '+', or ' ', optional
637
+ Controls printing of the sign of floating-point types. If '+', always
638
+ print the sign of positive values. If ' ', always prints a space
639
+ (whitespace character) in the sign position of positive values. If
640
+ '-', omit the sign character of positive values.
641
+ Defaults to ``numpy.get_printoptions()['sign']``.
642
+ floatmode : str, optional
643
+ Controls the interpretation of the `precision` option for
644
+ floating-point types.
645
+ Defaults to ``numpy.get_printoptions()['floatmode']``.
646
+ Can take the following values:
647
+
648
+ - 'fixed': Always print exactly `precision` fractional digits,
649
+ even if this would print more or fewer digits than
650
+ necessary to specify the value uniquely.
651
+ - 'unique': Print the minimum number of fractional digits necessary
652
+ to represent each value uniquely. Different elements may
653
+ have a different number of digits. The value of the
654
+ `precision` option is ignored.
655
+ - 'maxprec': Print at most `precision` fractional digits, but if
656
+ an element can be uniquely represented with fewer digits
657
+ only print it with that many.
658
+ - 'maxprec_equal': Print at most `precision` fractional digits,
659
+ but if every element in the array can be uniquely
660
+ represented with an equal number of fewer digits, use that
661
+ many digits for all elements.
662
+ legacy : string or `False`, optional
663
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
664
+ approximates numpy 1.13 print output by including a space in the sign
665
+ position of floats and different behavior for 0d arrays. If set to
666
+ `False`, disables legacy mode. Unrecognized strings will be ignored
667
+ with a warning for forward compatibility.
668
+
669
+ .. versionadded:: 1.14.0
670
+
671
+ Returns
672
+ -------
673
+ array_str : str
674
+ String representation of the array.
675
+
676
+ Raises
677
+ ------
678
+ TypeError
679
+ if a callable in `formatter` does not return a string.
680
+
681
+ See Also
682
+ --------
683
+ array_str, array_repr, set_printoptions, get_printoptions
684
+
685
+ Notes
686
+ -----
687
+ If a formatter is specified for a certain type, the `precision` keyword is
688
+ ignored for that type.
689
+
690
+ This is a very flexible function; `array_repr` and `array_str` are using
691
+ `array2string` internally so keywords with the same name should work
692
+ identically in all three functions.
693
+
694
+ Examples
695
+ --------
696
+ >>> x = np.array([1e-16,1,2,3])
697
+ >>> np.array2string(x, precision=2, separator=',',
698
+ ... suppress_small=True)
699
+ '[0.,1.,2.,3.]'
700
+
701
+ >>> x = np.arange(3.)
702
+ >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
703
+ '[0.00 1.00 2.00]'
704
+
705
+ >>> x = np.arange(3)
706
+ >>> np.array2string(x, formatter={'int':lambda x: hex(x)})
707
+ '[0x0 0x1 0x2]'
708
+
709
+ """
710
+
711
+ overrides = _make_options_dict(precision, threshold, edgeitems,
712
+ max_line_width, suppress_small, None, None,
713
+ sign, formatter, floatmode, legacy)
714
+ options = _format_options.copy()
715
+ options.update(overrides)
716
+
717
+ if options['legacy'] <= 113:
718
+ if style is np._NoValue:
719
+ style = repr
720
+
721
+ if a.shape == () and a.dtype.names is None:
722
+ return style(a.item())
723
+ elif style is not np._NoValue:
724
+ # Deprecation 11-9-2017 v1.14
725
+ warnings.warn("'style' argument is deprecated and no longer functional"
726
+ " except in 1.13 'legacy' mode",
727
+ DeprecationWarning, stacklevel=2)
728
+
729
+ if options['legacy'] > 113:
730
+ options['linewidth'] -= len(suffix)
731
+
732
+ # treat as a null array if any of shape elements == 0
733
+ if a.size == 0:
734
+ return "[]"
735
+
736
+ return _array2string(a, options, separator, prefix)
737
+
738
+
739
+ def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
740
+ needs_wrap = len(line) + len(word) > line_width
741
+ if legacy > 113:
742
+ # don't wrap lines if it won't help
743
+ if len(line) <= len(next_line_prefix):
744
+ needs_wrap = False
745
+
746
+ if needs_wrap:
747
+ s += line.rstrip() + "\n"
748
+ line = next_line_prefix
749
+ line += word
750
+ return s, line
751
+
752
+
753
+ def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
754
+ """
755
+ Extends line with nicely formatted (possibly multi-line) string ``word``.
756
+ """
757
+ words = word.splitlines()
758
+ if len(words) == 1 or legacy <= 113:
759
+ return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
760
+
761
+ max_word_length = max(len(word) for word in words)
762
+ if (len(line) + max_word_length > line_width and
763
+ len(line) > len(next_line_prefix)):
764
+ s += line.rstrip() + '\n'
765
+ line = next_line_prefix + words[0]
766
+ indent = next_line_prefix
767
+ else:
768
+ indent = len(line)*' '
769
+ line += words[0]
770
+
771
+ for word in words[1::]:
772
+ s += line.rstrip() + '\n'
773
+ line = indent + word
774
+
775
+ suffix_length = max_word_length - len(words[-1])
776
+ line += suffix_length*' '
777
+
778
+ return s, line
779
+
780
+ def _formatArray(a, format_function, line_width, next_line_prefix,
781
+ separator, edge_items, summary_insert, legacy):
782
+ """formatArray is designed for two modes of operation:
783
+
784
+ 1. Full output
785
+
786
+ 2. Summarized output
787
+
788
+ """
789
+ def recurser(index, hanging_indent, curr_width):
790
+ """
791
+ By using this local function, we don't need to recurse with all the
792
+ arguments. Since this function is not created recursively, the cost is
793
+ not significant
794
+ """
795
+ axis = len(index)
796
+ axes_left = a.ndim - axis
797
+
798
+ if axes_left == 0:
799
+ return format_function(a[index])
800
+
801
+ # when recursing, add a space to align with the [ added, and reduce the
802
+ # length of the line by 1
803
+ next_hanging_indent = hanging_indent + ' '
804
+ if legacy <= 113:
805
+ next_width = curr_width
806
+ else:
807
+ next_width = curr_width - len(']')
808
+
809
+ a_len = a.shape[axis]
810
+ show_summary = summary_insert and 2*edge_items < a_len
811
+ if show_summary:
812
+ leading_items = edge_items
813
+ trailing_items = edge_items
814
+ else:
815
+ leading_items = 0
816
+ trailing_items = a_len
817
+
818
+ # stringify the array with the hanging indent on the first line too
819
+ s = ''
820
+
821
+ # last axis (rows) - wrap elements if they would not fit on one line
822
+ if axes_left == 1:
823
+ # the length up until the beginning of the separator / bracket
824
+ if legacy <= 113:
825
+ elem_width = curr_width - len(separator.rstrip())
826
+ else:
827
+ elem_width = curr_width - max(len(separator.rstrip()), len(']'))
828
+
829
+ line = hanging_indent
830
+ for i in range(leading_items):
831
+ word = recurser(index + (i,), next_hanging_indent, next_width)
832
+ s, line = _extendLine_pretty(
833
+ s, line, word, elem_width, hanging_indent, legacy)
834
+ line += separator
835
+
836
+ if show_summary:
837
+ s, line = _extendLine(
838
+ s, line, summary_insert, elem_width, hanging_indent, legacy)
839
+ if legacy <= 113:
840
+ line += ", "
841
+ else:
842
+ line += separator
843
+
844
+ for i in range(trailing_items, 1, -1):
845
+ word = recurser(index + (-i,), next_hanging_indent, next_width)
846
+ s, line = _extendLine_pretty(
847
+ s, line, word, elem_width, hanging_indent, legacy)
848
+ line += separator
849
+
850
+ if legacy <= 113:
851
+ # width of the separator is not considered on 1.13
852
+ elem_width = curr_width
853
+ word = recurser(index + (-1,), next_hanging_indent, next_width)
854
+ s, line = _extendLine_pretty(
855
+ s, line, word, elem_width, hanging_indent, legacy)
856
+
857
+ s += line
858
+
859
+ # other axes - insert newlines between rows
860
+ else:
861
+ s = ''
862
+ line_sep = separator.rstrip() + '\n'*(axes_left - 1)
863
+
864
+ for i in range(leading_items):
865
+ nested = recurser(index + (i,), next_hanging_indent, next_width)
866
+ s += hanging_indent + nested + line_sep
867
+
868
+ if show_summary:
869
+ if legacy <= 113:
870
+ # trailing space, fixed nbr of newlines, and fixed separator
871
+ s += hanging_indent + summary_insert + ", \n"
872
+ else:
873
+ s += hanging_indent + summary_insert + line_sep
874
+
875
+ for i in range(trailing_items, 1, -1):
876
+ nested = recurser(index + (-i,), next_hanging_indent,
877
+ next_width)
878
+ s += hanging_indent + nested + line_sep
879
+
880
+ nested = recurser(index + (-1,), next_hanging_indent, next_width)
881
+ s += hanging_indent + nested
882
+
883
+ # remove the hanging indent, and wrap in []
884
+ s = '[' + s[len(hanging_indent):] + ']'
885
+ return s
886
+
887
+ try:
888
+ # invoke the recursive part with an initial index and prefix
889
+ return recurser(index=(),
890
+ hanging_indent=next_line_prefix,
891
+ curr_width=line_width)
892
+ finally:
893
+ # recursive closures have a cyclic reference to themselves, which
894
+ # requires gc to collect (gh-10620). To avoid this problem, for
895
+ # performance and PyPy friendliness, we break the cycle:
896
+ recurser = None
897
+
898
+ def _none_or_positive_arg(x, name):
899
+ if x is None:
900
+ return -1
901
+ if x < 0:
902
+ raise ValueError("{} must be >= 0".format(name))
903
+ return x
904
+
905
+ class FloatingFormat:
906
+ """ Formatter for subtypes of np.floating """
907
+ def __init__(self, data, precision, floatmode, suppress_small, sign=False,
908
+ *, legacy=None):
909
+ # for backcompatibility, accept bools
910
+ if isinstance(sign, bool):
911
+ sign = '+' if sign else '-'
912
+
913
+ self._legacy = legacy
914
+ if self._legacy <= 113:
915
+ # when not 0d, legacy does not support '-'
916
+ if data.shape != () and sign == '-':
917
+ sign = ' '
918
+
919
+ self.floatmode = floatmode
920
+ if floatmode == 'unique':
921
+ self.precision = None
922
+ else:
923
+ self.precision = precision
924
+
925
+ self.precision = _none_or_positive_arg(self.precision, 'precision')
926
+
927
+ self.suppress_small = suppress_small
928
+ self.sign = sign
929
+ self.exp_format = False
930
+ self.large_exponent = False
931
+
932
+ self.fillFormat(data)
933
+
934
+ def fillFormat(self, data):
935
+ # only the finite values are used to compute the number of digits
936
+ finite_vals = data[isfinite(data)]
937
+
938
+ # choose exponential mode based on the non-zero finite values:
939
+ abs_non_zero = absolute(finite_vals[finite_vals != 0])
940
+ if len(abs_non_zero) != 0:
941
+ max_val = np.max(abs_non_zero)
942
+ min_val = np.min(abs_non_zero)
943
+ with errstate(over='ignore'): # division can overflow
944
+ if max_val >= 1.e8 or (not self.suppress_small and
945
+ (min_val < 0.0001 or max_val/min_val > 1000.)):
946
+ self.exp_format = True
947
+
948
+ # do a first pass of printing all the numbers, to determine sizes
949
+ if len(finite_vals) == 0:
950
+ self.pad_left = 0
951
+ self.pad_right = 0
952
+ self.trim = '.'
953
+ self.exp_size = -1
954
+ self.unique = True
955
+ self.min_digits = None
956
+ elif self.exp_format:
957
+ trim, unique = '.', True
958
+ if self.floatmode == 'fixed' or self._legacy <= 113:
959
+ trim, unique = 'k', False
960
+ strs = (dragon4_scientific(x, precision=self.precision,
961
+ unique=unique, trim=trim, sign=self.sign == '+')
962
+ for x in finite_vals)
963
+ frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
964
+ int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
965
+ self.exp_size = max(len(s) for s in exp_strs) - 1
966
+
967
+ self.trim = 'k'
968
+ self.precision = max(len(s) for s in frac_part)
969
+ self.min_digits = self.precision
970
+ self.unique = unique
971
+
972
+ # for back-compat with np 1.13, use 2 spaces & sign and full prec
973
+ if self._legacy <= 113:
974
+ self.pad_left = 3
975
+ else:
976
+ # this should be only 1 or 2. Can be calculated from sign.
977
+ self.pad_left = max(len(s) for s in int_part)
978
+ # pad_right is only needed for nan length calculation
979
+ self.pad_right = self.exp_size + 2 + self.precision
980
+ else:
981
+ trim, unique = '.', True
982
+ if self.floatmode == 'fixed':
983
+ trim, unique = 'k', False
984
+ strs = (dragon4_positional(x, precision=self.precision,
985
+ fractional=True,
986
+ unique=unique, trim=trim,
987
+ sign=self.sign == '+')
988
+ for x in finite_vals)
989
+ int_part, frac_part = zip(*(s.split('.') for s in strs))
990
+ if self._legacy <= 113:
991
+ self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
992
+ else:
993
+ self.pad_left = max(len(s) for s in int_part)
994
+ self.pad_right = max(len(s) for s in frac_part)
995
+ self.exp_size = -1
996
+ self.unique = unique
997
+
998
+ if self.floatmode in ['fixed', 'maxprec_equal']:
999
+ self.precision = self.min_digits = self.pad_right
1000
+ self.trim = 'k'
1001
+ else:
1002
+ self.trim = '.'
1003
+ self.min_digits = 0
1004
+
1005
+ if self._legacy > 113:
1006
+ # account for sign = ' ' by adding one to pad_left
1007
+ if self.sign == ' ' and not any(np.signbit(finite_vals)):
1008
+ self.pad_left += 1
1009
+
1010
+ # if there are non-finite values, may need to increase pad_left
1011
+ if data.size != finite_vals.size:
1012
+ neginf = self.sign != '-' or any(data[isinf(data)] < 0)
1013
+ nanlen = len(_format_options['nanstr'])
1014
+ inflen = len(_format_options['infstr']) + neginf
1015
+ offset = self.pad_right + 1 # +1 for decimal pt
1016
+ self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)
1017
+
1018
+ def __call__(self, x):
1019
+ if not np.isfinite(x):
1020
+ with errstate(invalid='ignore'):
1021
+ if np.isnan(x):
1022
+ sign = '+' if self.sign == '+' else ''
1023
+ ret = sign + _format_options['nanstr']
1024
+ else: # isinf
1025
+ sign = '-' if x < 0 else '+' if self.sign == '+' else ''
1026
+ ret = sign + _format_options['infstr']
1027
+ return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret
1028
+
1029
+ if self.exp_format:
1030
+ return dragon4_scientific(x,
1031
+ precision=self.precision,
1032
+ min_digits=self.min_digits,
1033
+ unique=self.unique,
1034
+ trim=self.trim,
1035
+ sign=self.sign == '+',
1036
+ pad_left=self.pad_left,
1037
+ exp_digits=self.exp_size)
1038
+ else:
1039
+ return dragon4_positional(x,
1040
+ precision=self.precision,
1041
+ min_digits=self.min_digits,
1042
+ unique=self.unique,
1043
+ fractional=True,
1044
+ trim=self.trim,
1045
+ sign=self.sign == '+',
1046
+ pad_left=self.pad_left,
1047
+ pad_right=self.pad_right)
1048
+
1049
+
1050
+ @set_module('numpy')
1051
+ def format_float_scientific(x, precision=None, unique=True, trim='k',
1052
+ sign=False, pad_left=None, exp_digits=None,
1053
+ min_digits=None):
1054
+ """
1055
+ Format a floating-point scalar as a decimal string in scientific notation.
1056
+
1057
+ Provides control over rounding, trimming and padding. Uses and assumes
1058
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
1059
+
1060
+ Parameters
1061
+ ----------
1062
+ x : python float or numpy floating scalar
1063
+ Value to format.
1064
+ precision : non-negative integer or None, optional
1065
+ Maximum number of digits to print. May be None if `unique` is
1066
+ `True`, but must be an integer if unique is `False`.
1067
+ unique : boolean, optional
1068
+ If `True`, use a digit-generation strategy which gives the shortest
1069
+ representation which uniquely identifies the floating-point number from
1070
+ other values of the same type, by judicious rounding. If `precision`
1071
+ is given fewer digits than necessary can be printed. If `min_digits`
1072
+ is given more can be printed, in which cases the last digit is rounded
1073
+ with unbiased rounding.
1074
+ If `False`, digits are generated as if printing an infinite-precision
1075
+ value and stopping after `precision` digits, rounding the remaining
1076
+ value with unbiased rounding
1077
+ trim : one of 'k', '.', '0', '-', optional
1078
+ Controls post-processing trimming of trailing digits, as follows:
1079
+
1080
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
1081
+ * '.' : trim all trailing zeros, leave decimal point
1082
+ * '0' : trim all but the zero before the decimal point. Insert the
1083
+ zero if it is missing.
1084
+ * '-' : trim trailing zeros and any trailing decimal point
1085
+ sign : boolean, optional
1086
+ Whether to show the sign for positive values.
1087
+ pad_left : non-negative integer, optional
1088
+ Pad the left side of the string with whitespace until at least that
1089
+ many characters are to the left of the decimal point.
1090
+ exp_digits : non-negative integer, optional
1091
+ Pad the exponent with zeros until it contains at least this many digits.
1092
+ If omitted, the exponent will be at least 2 digits.
1093
+ min_digits : non-negative integer or None, optional
1094
+ Minimum number of digits to print. This only has an effect for
1095
+ `unique=True`. In that case more digits than necessary to uniquely
1096
+ identify the value may be printed and rounded unbiased.
1097
+
1098
+ -- versionadded:: 1.21.0
1099
+
1100
+ Returns
1101
+ -------
1102
+ rep : string
1103
+ The string representation of the floating point value
1104
+
1105
+ See Also
1106
+ --------
1107
+ format_float_positional
1108
+
1109
+ Examples
1110
+ --------
1111
+ >>> np.format_float_scientific(np.float32(np.pi))
1112
+ '3.1415927e+00'
1113
+ >>> s = np.float32(1.23e24)
1114
+ >>> np.format_float_scientific(s, unique=False, precision=15)
1115
+ '1.230000071797338e+24'
1116
+ >>> np.format_float_scientific(s, exp_digits=4)
1117
+ '1.23e+0024'
1118
+ """
1119
+ precision = _none_or_positive_arg(precision, 'precision')
1120
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
1121
+ exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
1122
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
1123
+ if min_digits > 0 and precision > 0 and min_digits > precision:
1124
+ raise ValueError("min_digits must be less than or equal to precision")
1125
+ return dragon4_scientific(x, precision=precision, unique=unique,
1126
+ trim=trim, sign=sign, pad_left=pad_left,
1127
+ exp_digits=exp_digits, min_digits=min_digits)
1128
+
1129
+
1130
+ @set_module('numpy')
1131
+ def format_float_positional(x, precision=None, unique=True,
1132
+ fractional=True, trim='k', sign=False,
1133
+ pad_left=None, pad_right=None, min_digits=None):
1134
+ """
1135
+ Format a floating-point scalar as a decimal string in positional notation.
1136
+
1137
+ Provides control over rounding, trimming and padding. Uses and assumes
1138
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
1139
+
1140
+ Parameters
1141
+ ----------
1142
+ x : python float or numpy floating scalar
1143
+ Value to format.
1144
+ precision : non-negative integer or None, optional
1145
+ Maximum number of digits to print. May be None if `unique` is
1146
+ `True`, but must be an integer if unique is `False`.
1147
+ unique : boolean, optional
1148
+ If `True`, use a digit-generation strategy which gives the shortest
1149
+ representation which uniquely identifies the floating-point number from
1150
+ other values of the same type, by judicious rounding. If `precision`
1151
+ is given fewer digits than necessary can be printed, or if `min_digits`
1152
+ is given more can be printed, in which cases the last digit is rounded
1153
+ with unbiased rounding.
1154
+ If `False`, digits are generated as if printing an infinite-precision
1155
+ value and stopping after `precision` digits, rounding the remaining
1156
+ value with unbiased rounding
1157
+ fractional : boolean, optional
1158
+ If `True`, the cutoffs of `precision` and `min_digits` refer to the
1159
+ total number of digits after the decimal point, including leading
1160
+ zeros.
1161
+ If `False`, `precision` and `min_digits` refer to the total number of
1162
+ significant digits, before or after the decimal point, ignoring leading
1163
+ zeros.
1164
+ trim : one of 'k', '.', '0', '-', optional
1165
+ Controls post-processing trimming of trailing digits, as follows:
1166
+
1167
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
1168
+ * '.' : trim all trailing zeros, leave decimal point
1169
+ * '0' : trim all but the zero before the decimal point. Insert the
1170
+ zero if it is missing.
1171
+ * '-' : trim trailing zeros and any trailing decimal point
1172
+ sign : boolean, optional
1173
+ Whether to show the sign for positive values.
1174
+ pad_left : non-negative integer, optional
1175
+ Pad the left side of the string with whitespace until at least that
1176
+ many characters are to the left of the decimal point.
1177
+ pad_right : non-negative integer, optional
1178
+ Pad the right side of the string with whitespace until at least that
1179
+ many characters are to the right of the decimal point.
1180
+ min_digits : non-negative integer or None, optional
1181
+ Minimum number of digits to print. Only has an effect if `unique=True`
1182
+ in which case additional digits past those necessary to uniquely
1183
+ identify the value may be printed, rounding the last additional digit.
1184
+
1185
+ -- versionadded:: 1.21.0
1186
+
1187
+ Returns
1188
+ -------
1189
+ rep : string
1190
+ The string representation of the floating point value
1191
+
1192
+ See Also
1193
+ --------
1194
+ format_float_scientific
1195
+
1196
+ Examples
1197
+ --------
1198
+ >>> np.format_float_positional(np.float32(np.pi))
1199
+ '3.1415927'
1200
+ >>> np.format_float_positional(np.float16(np.pi))
1201
+ '3.14'
1202
+ >>> np.format_float_positional(np.float16(0.3))
1203
+ '0.3'
1204
+ >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
1205
+ '0.3000488281'
1206
+ """
1207
+ precision = _none_or_positive_arg(precision, 'precision')
1208
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
1209
+ pad_right = _none_or_positive_arg(pad_right, 'pad_right')
1210
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
1211
+ if not fractional and precision == 0:
1212
+ raise ValueError("precision must be greater than 0 if "
1213
+ "fractional=False")
1214
+ if min_digits > 0 and precision > 0 and min_digits > precision:
1215
+ raise ValueError("min_digits must be less than or equal to precision")
1216
+ return dragon4_positional(x, precision=precision, unique=unique,
1217
+ fractional=fractional, trim=trim,
1218
+ sign=sign, pad_left=pad_left,
1219
+ pad_right=pad_right, min_digits=min_digits)
1220
+
1221
+
1222
+ class IntegerFormat:
1223
+ def __init__(self, data):
1224
+ if data.size > 0:
1225
+ max_str_len = max(len(str(np.max(data))),
1226
+ len(str(np.min(data))))
1227
+ else:
1228
+ max_str_len = 0
1229
+ self.format = '%{}d'.format(max_str_len)
1230
+
1231
+ def __call__(self, x):
1232
+ return self.format % x
1233
+
1234
+
1235
+ class BoolFormat:
1236
+ def __init__(self, data, **kwargs):
1237
+ # add an extra space so " True" and "False" have the same length and
1238
+ # array elements align nicely when printed, except in 0d arrays
1239
+ self.truestr = ' True' if data.shape != () else 'True'
1240
+
1241
+ def __call__(self, x):
1242
+ return self.truestr if x else "False"
1243
+
1244
+
1245
+ class ComplexFloatingFormat:
1246
+ """ Formatter for subtypes of np.complexfloating """
1247
+ def __init__(self, x, precision, floatmode, suppress_small,
1248
+ sign=False, *, legacy=None):
1249
+ # for backcompatibility, accept bools
1250
+ if isinstance(sign, bool):
1251
+ sign = '+' if sign else '-'
1252
+
1253
+ floatmode_real = floatmode_imag = floatmode
1254
+ if legacy <= 113:
1255
+ floatmode_real = 'maxprec_equal'
1256
+ floatmode_imag = 'maxprec'
1257
+
1258
+ self.real_format = FloatingFormat(
1259
+ x.real, precision, floatmode_real, suppress_small,
1260
+ sign=sign, legacy=legacy
1261
+ )
1262
+ self.imag_format = FloatingFormat(
1263
+ x.imag, precision, floatmode_imag, suppress_small,
1264
+ sign='+', legacy=legacy
1265
+ )
1266
+
1267
+ def __call__(self, x):
1268
+ r = self.real_format(x.real)
1269
+ i = self.imag_format(x.imag)
1270
+
1271
+ # add the 'j' before the terminal whitespace in i
1272
+ sp = len(i.rstrip())
1273
+ i = i[:sp] + 'j' + i[sp:]
1274
+
1275
+ return r + i
1276
+
1277
+
1278
+ class _TimelikeFormat:
1279
+ def __init__(self, data):
1280
+ non_nat = data[~isnat(data)]
1281
+ if len(non_nat) > 0:
1282
+ # Max str length of non-NaT elements
1283
+ max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
1284
+ len(self._format_non_nat(np.min(non_nat))))
1285
+ else:
1286
+ max_str_len = 0
1287
+ if len(non_nat) < data.size:
1288
+ # data contains a NaT
1289
+ max_str_len = max(max_str_len, 5)
1290
+ self._format = '%{}s'.format(max_str_len)
1291
+ self._nat = "'NaT'".rjust(max_str_len)
1292
+
1293
+ def _format_non_nat(self, x):
1294
+ # override in subclass
1295
+ raise NotImplementedError
1296
+
1297
+ def __call__(self, x):
1298
+ if isnat(x):
1299
+ return self._nat
1300
+ else:
1301
+ return self._format % self._format_non_nat(x)
1302
+
1303
+
1304
+ class DatetimeFormat(_TimelikeFormat):
1305
+ def __init__(self, x, unit=None, timezone=None, casting='same_kind',
1306
+ legacy=False):
1307
+ # Get the unit from the dtype
1308
+ if unit is None:
1309
+ if x.dtype.kind == 'M':
1310
+ unit = datetime_data(x.dtype)[0]
1311
+ else:
1312
+ unit = 's'
1313
+
1314
+ if timezone is None:
1315
+ timezone = 'naive'
1316
+ self.timezone = timezone
1317
+ self.unit = unit
1318
+ self.casting = casting
1319
+ self.legacy = legacy
1320
+
1321
+ # must be called after the above are configured
1322
+ super().__init__(x)
1323
+
1324
+ def __call__(self, x):
1325
+ if self.legacy <= 113:
1326
+ return self._format_non_nat(x)
1327
+ return super().__call__(x)
1328
+
1329
+ def _format_non_nat(self, x):
1330
+ return "'%s'" % datetime_as_string(x,
1331
+ unit=self.unit,
1332
+ timezone=self.timezone,
1333
+ casting=self.casting)
1334
+
1335
+
1336
+ class TimedeltaFormat(_TimelikeFormat):
1337
+ def _format_non_nat(self, x):
1338
+ return str(x.astype('i8'))
1339
+
1340
+
1341
+ class SubArrayFormat:
1342
+ def __init__(self, format_function, **options):
1343
+ self.format_function = format_function
1344
+ self.threshold = options['threshold']
1345
+ self.edge_items = options['edgeitems']
1346
+
1347
+ def __call__(self, a):
1348
+ self.summary_insert = "..." if a.size > self.threshold else ""
1349
+ return self.format_array(a)
1350
+
1351
+ def format_array(self, a):
1352
+ if np.ndim(a) == 0:
1353
+ return self.format_function(a)
1354
+
1355
+ if self.summary_insert and a.shape[0] > 2*self.edge_items:
1356
+ formatted = (
1357
+ [self.format_array(a_) for a_ in a[:self.edge_items]]
1358
+ + [self.summary_insert]
1359
+ + [self.format_array(a_) for a_ in a[-self.edge_items:]]
1360
+ )
1361
+ else:
1362
+ formatted = [self.format_array(a_) for a_ in a]
1363
+
1364
+ return "[" + ", ".join(formatted) + "]"
1365
+
1366
+
1367
+ class StructuredVoidFormat:
1368
+ """
1369
+ Formatter for structured np.void objects.
1370
+
1371
+ This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),
1372
+ as alias scalars lose their field information, and the implementation
1373
+ relies upon np.void.__getitem__.
1374
+ """
1375
+ def __init__(self, format_functions):
1376
+ self.format_functions = format_functions
1377
+
1378
+ @classmethod
1379
+ def from_data(cls, data, **options):
1380
+ """
1381
+ This is a second way to initialize StructuredVoidFormat, using the raw data
1382
+ as input. Added to avoid changing the signature of __init__.
1383
+ """
1384
+ format_functions = []
1385
+ for field_name in data.dtype.names:
1386
+ format_function = _get_format_function(data[field_name], **options)
1387
+ if data.dtype[field_name].shape != ():
1388
+ format_function = SubArrayFormat(format_function, **options)
1389
+ format_functions.append(format_function)
1390
+ return cls(format_functions)
1391
+
1392
+ def __call__(self, x):
1393
+ str_fields = [
1394
+ format_function(field)
1395
+ for field, format_function in zip(x, self.format_functions)
1396
+ ]
1397
+ if len(str_fields) == 1:
1398
+ return "({},)".format(str_fields[0])
1399
+ else:
1400
+ return "({})".format(", ".join(str_fields))
1401
+
1402
+
1403
+ def _void_scalar_repr(x):
1404
+ """
1405
+ Implements the repr for structured-void scalars. It is called from the
1406
+ scalartypes.c.src code, and is placed here because it uses the elementwise
1407
+ formatters defined above.
1408
+ """
1409
+ return StructuredVoidFormat.from_data(array(x), **_format_options)(x)
1410
+
1411
+
1412
+ _typelessdata = [int_, float_, complex_, bool_]
1413
+
1414
+
1415
+ def dtype_is_implied(dtype):
1416
+ """
1417
+ Determine if the given dtype is implied by the representation of its values.
1418
+
1419
+ Parameters
1420
+ ----------
1421
+ dtype : dtype
1422
+ Data type
1423
+
1424
+ Returns
1425
+ -------
1426
+ implied : bool
1427
+ True if the dtype is implied by the representation of its values.
1428
+
1429
+ Examples
1430
+ --------
1431
+ >>> np.core.arrayprint.dtype_is_implied(int)
1432
+ True
1433
+ >>> np.array([1, 2, 3], int)
1434
+ array([1, 2, 3])
1435
+ >>> np.core.arrayprint.dtype_is_implied(np.int8)
1436
+ False
1437
+ >>> np.array([1, 2, 3], np.int8)
1438
+ array([1, 2, 3], dtype=int8)
1439
+ """
1440
+ dtype = np.dtype(dtype)
1441
+ if _format_options['legacy'] <= 113 and dtype.type == bool_:
1442
+ return False
1443
+
1444
+ # not just void types can be structured, and names are not part of the repr
1445
+ if dtype.names is not None:
1446
+ return False
1447
+
1448
+ # should care about endianness *unless size is 1* (e.g., int8, bool)
1449
+ if not dtype.isnative:
1450
+ return False
1451
+
1452
+ return dtype.type in _typelessdata
1453
+
1454
+
1455
+ def dtype_short_repr(dtype):
1456
+ """
1457
+ Convert a dtype to a short form which evaluates to the same dtype.
1458
+
1459
+ The intent is roughly that the following holds
1460
+
1461
+ >>> from numpy import *
1462
+ >>> dt = np.int64([1, 2]).dtype
1463
+ >>> assert eval(dtype_short_repr(dt)) == dt
1464
+ """
1465
+ if type(dtype).__repr__ != np.dtype.__repr__:
1466
+ # TODO: Custom repr for user DTypes, logic should likely move.
1467
+ return repr(dtype)
1468
+ if dtype.names is not None:
1469
+ # structured dtypes give a list or tuple repr
1470
+ return str(dtype)
1471
+ elif issubclass(dtype.type, flexible):
1472
+ # handle these separately so they don't give garbage like str256
1473
+ return "'%s'" % str(dtype)
1474
+
1475
+ typename = dtype.name
1476
+ if not dtype.isnative:
1477
+ # deal with cases like dtype('<u2') that are identical to an
1478
+ # established dtype (in this case uint16)
1479
+ # except that they have a different endianness.
1480
+ return "'%s'" % str(dtype)
1481
+ # quote typenames which can't be represented as python variable names
1482
+ if typename and not (typename[0].isalpha() and typename.isalnum()):
1483
+ typename = repr(typename)
1484
+ return typename
1485
+
1486
+
1487
+ def _array_repr_implementation(
1488
+ arr, max_line_width=None, precision=None, suppress_small=None,
1489
+ array2string=array2string):
1490
+ """Internal version of array_repr() that allows overriding array2string."""
1491
+ if max_line_width is None:
1492
+ max_line_width = _format_options['linewidth']
1493
+
1494
+ if type(arr) is not ndarray:
1495
+ class_name = type(arr).__name__
1496
+ else:
1497
+ class_name = "array"
1498
+
1499
+ skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0
1500
+
1501
+ prefix = class_name + "("
1502
+ suffix = ")" if skipdtype else ","
1503
+
1504
+ if (_format_options['legacy'] <= 113 and
1505
+ arr.shape == () and not arr.dtype.names):
1506
+ lst = repr(arr.item())
1507
+ elif arr.size > 0 or arr.shape == (0,):
1508
+ lst = array2string(arr, max_line_width, precision, suppress_small,
1509
+ ', ', prefix, suffix=suffix)
1510
+ else: # show zero-length shape unless it is (0,)
1511
+ lst = "[], shape=%s" % (repr(arr.shape),)
1512
+
1513
+ arr_str = prefix + lst + suffix
1514
+
1515
+ if skipdtype:
1516
+ return arr_str
1517
+
1518
+ dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))
1519
+
1520
+ # compute whether we should put dtype on a new line: Do so if adding the
1521
+ # dtype would extend the last line past max_line_width.
1522
+ # Note: This line gives the correct result even when rfind returns -1.
1523
+ last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
1524
+ spacer = " "
1525
+ if _format_options['legacy'] <= 113:
1526
+ if issubclass(arr.dtype.type, flexible):
1527
+ spacer = '\n' + ' '*len(class_name + "(")
1528
+ elif last_line_len + len(dtype_str) + 1 > max_line_width:
1529
+ spacer = '\n' + ' '*len(class_name + "(")
1530
+
1531
+ return arr_str + spacer + dtype_str
1532
+
1533
+
1534
+ def _array_repr_dispatcher(
1535
+ arr, max_line_width=None, precision=None, suppress_small=None):
1536
+ return (arr,)
1537
+
1538
+
1539
+ @array_function_dispatch(_array_repr_dispatcher, module='numpy')
1540
+ def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
1541
+ """
1542
+ Return the string representation of an array.
1543
+
1544
+ Parameters
1545
+ ----------
1546
+ arr : ndarray
1547
+ Input array.
1548
+ max_line_width : int, optional
1549
+ Inserts newlines if text is longer than `max_line_width`.
1550
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
1551
+ precision : int, optional
1552
+ Floating point precision.
1553
+ Defaults to ``numpy.get_printoptions()['precision']``.
1554
+ suppress_small : bool, optional
1555
+ Represent numbers "very close" to zero as zero; default is False.
1556
+ Very close is defined by precision: if the precision is 8, e.g.,
1557
+ numbers smaller (in absolute value) than 5e-9 are represented as
1558
+ zero.
1559
+ Defaults to ``numpy.get_printoptions()['suppress']``.
1560
+
1561
+ Returns
1562
+ -------
1563
+ string : str
1564
+ The string representation of an array.
1565
+
1566
+ See Also
1567
+ --------
1568
+ array_str, array2string, set_printoptions
1569
+
1570
+ Examples
1571
+ --------
1572
+ >>> np.array_repr(np.array([1,2]))
1573
+ 'array([1, 2])'
1574
+ >>> np.array_repr(np.ma.array([0.]))
1575
+ 'MaskedArray([0.])'
1576
+ >>> np.array_repr(np.array([], np.int32))
1577
+ 'array([], dtype=int32)'
1578
+
1579
+ >>> x = np.array([1e-6, 4e-7, 2, 3])
1580
+ >>> np.array_repr(x, precision=6, suppress_small=True)
1581
+ 'array([0.000001, 0. , 2. , 3. ])'
1582
+
1583
+ """
1584
+ return _array_repr_implementation(
1585
+ arr, max_line_width, precision, suppress_small)
1586
+
1587
+
1588
+ @_recursive_guard()
1589
+ def _guarded_repr_or_str(v):
1590
+ if isinstance(v, bytes):
1591
+ return repr(v)
1592
+ return str(v)
1593
+
1594
+
1595
+ def _array_str_implementation(
1596
+ a, max_line_width=None, precision=None, suppress_small=None,
1597
+ array2string=array2string):
1598
+ """Internal version of array_str() that allows overriding array2string."""
1599
+ if (_format_options['legacy'] <= 113 and
1600
+ a.shape == () and not a.dtype.names):
1601
+ return str(a.item())
1602
+
1603
+ # the str of 0d arrays is a special case: It should appear like a scalar,
1604
+ # so floats are not truncated by `precision`, and strings are not wrapped
1605
+ # in quotes. So we return the str of the scalar value.
1606
+ if a.shape == ():
1607
+ # obtain a scalar and call str on it, avoiding problems for subclasses
1608
+ # for which indexing with () returns a 0d instead of a scalar by using
1609
+ # ndarray's getindex. Also guard against recursive 0d object arrays.
1610
+ return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
1611
+
1612
+ return array2string(a, max_line_width, precision, suppress_small, ' ', "")
1613
+
1614
+
1615
+ def _array_str_dispatcher(
1616
+ a, max_line_width=None, precision=None, suppress_small=None):
1617
+ return (a,)
1618
+
1619
+
1620
+ @array_function_dispatch(_array_str_dispatcher, module='numpy')
1621
+ def array_str(a, max_line_width=None, precision=None, suppress_small=None):
1622
+ """
1623
+ Return a string representation of the data in an array.
1624
+
1625
+ The data in the array is returned as a single string. This function is
1626
+ similar to `array_repr`, the difference being that `array_repr` also
1627
+ returns information on the kind of array and its data type.
1628
+
1629
+ Parameters
1630
+ ----------
1631
+ a : ndarray
1632
+ Input array.
1633
+ max_line_width : int, optional
1634
+ Inserts newlines if text is longer than `max_line_width`.
1635
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
1636
+ precision : int, optional
1637
+ Floating point precision.
1638
+ Defaults to ``numpy.get_printoptions()['precision']``.
1639
+ suppress_small : bool, optional
1640
+ Represent numbers "very close" to zero as zero; default is False.
1641
+ Very close is defined by precision: if the precision is 8, e.g.,
1642
+ numbers smaller (in absolute value) than 5e-9 are represented as
1643
+ zero.
1644
+ Defaults to ``numpy.get_printoptions()['suppress']``.
1645
+
1646
+ See Also
1647
+ --------
1648
+ array2string, array_repr, set_printoptions
1649
+
1650
+ Examples
1651
+ --------
1652
+ >>> np.array_str(np.arange(3))
1653
+ '[0 1 2]'
1654
+
1655
+ """
1656
+ return _array_str_implementation(
1657
+ a, max_line_width, precision, suppress_small)
1658
+
1659
+
1660
+ # needed if __array_function__ is disabled
1661
+ _array2string_impl = getattr(array2string, '__wrapped__', array2string)
1662
+ _default_array_str = functools.partial(_array_str_implementation,
1663
+ array2string=_array2string_impl)
1664
+ _default_array_repr = functools.partial(_array_repr_implementation,
1665
+ array2string=_array2string_impl)
1666
+
1667
+
1668
+ def set_string_function(f, repr=True):
1669
+ """
1670
+ Set a Python function to be used when pretty printing arrays.
1671
+
1672
+ Parameters
1673
+ ----------
1674
+ f : function or None
1675
+ Function to be used to pretty print arrays. The function should expect
1676
+ a single array argument and return a string of the representation of
1677
+ the array. If None, the function is reset to the default NumPy function
1678
+ to print arrays.
1679
+ repr : bool, optional
1680
+ If True (default), the function for pretty printing (``__repr__``)
1681
+ is set, if False the function that returns the default string
1682
+ representation (``__str__``) is set.
1683
+
1684
+ See Also
1685
+ --------
1686
+ set_printoptions, get_printoptions
1687
+
1688
+ Examples
1689
+ --------
1690
+ >>> def pprint(arr):
1691
+ ... return 'HA! - What are you going to do now?'
1692
+ ...
1693
+ >>> np.set_string_function(pprint)
1694
+ >>> a = np.arange(10)
1695
+ >>> a
1696
+ HA! - What are you going to do now?
1697
+ >>> _ = a
1698
+ >>> # [0 1 2 3 4 5 6 7 8 9]
1699
+
1700
+ We can reset the function to the default:
1701
+
1702
+ >>> np.set_string_function(None)
1703
+ >>> a
1704
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
1705
+
1706
+ `repr` affects either pretty printing or normal string representation.
1707
+ Note that ``__repr__`` is still affected by setting ``__str__``
1708
+ because the width of each array element in the returned string becomes
1709
+ equal to the length of the result of ``__str__()``.
1710
+
1711
+ >>> x = np.arange(4)
1712
+ >>> np.set_string_function(lambda x:'random', repr=False)
1713
+ >>> x.__str__()
1714
+ 'random'
1715
+ >>> x.__repr__()
1716
+ 'array([0, 1, 2, 3])'
1717
+
1718
+ """
1719
+ if f is None:
1720
+ if repr:
1721
+ return multiarray.set_string_function(_default_array_repr, 1)
1722
+ else:
1723
+ return multiarray.set_string_function(_default_array_str, 0)
1724
+ else:
1725
+ return multiarray.set_string_function(f, repr)
venv/lib/python3.10/site-packages/numpy/core/defchararray.pyi ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Literal as L,
3
+ overload,
4
+ TypeVar,
5
+ Any,
6
+ )
7
+
8
+ from numpy import (
9
+ chararray as chararray,
10
+ dtype,
11
+ str_,
12
+ bytes_,
13
+ int_,
14
+ bool_,
15
+ object_,
16
+ _OrderKACF,
17
+ )
18
+
19
+ from numpy._typing import (
20
+ NDArray,
21
+ _ArrayLikeStr_co as U_co,
22
+ _ArrayLikeBytes_co as S_co,
23
+ _ArrayLikeInt_co as i_co,
24
+ _ArrayLikeBool_co as b_co,
25
+ )
26
+
27
+ from numpy.core.multiarray import compare_chararrays as compare_chararrays
28
+
29
+ _SCT = TypeVar("_SCT", str_, bytes_)
30
+ _CharArray = chararray[Any, dtype[_SCT]]
31
+
32
+ __all__: list[str]
33
+
34
+ # Comparison
35
+ @overload
36
+ def equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
37
+ @overload
38
+ def equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
39
+
40
+ @overload
41
+ def not_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
42
+ @overload
43
+ def not_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
44
+
45
+ @overload
46
+ def greater_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
47
+ @overload
48
+ def greater_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
49
+
50
+ @overload
51
+ def less_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
52
+ @overload
53
+ def less_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
54
+
55
+ @overload
56
+ def greater(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
57
+ @overload
58
+ def greater(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
59
+
60
+ @overload
61
+ def less(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
62
+ @overload
63
+ def less(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
64
+
65
+ # String operations
66
+ @overload
67
+ def add(x1: U_co, x2: U_co) -> NDArray[str_]: ...
68
+ @overload
69
+ def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ...
70
+
71
+ @overload
72
+ def multiply(a: U_co, i: i_co) -> NDArray[str_]: ...
73
+ @overload
74
+ def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ...
75
+
76
+ @overload
77
+ def mod(a: U_co, value: Any) -> NDArray[str_]: ...
78
+ @overload
79
+ def mod(a: S_co, value: Any) -> NDArray[bytes_]: ...
80
+
81
+ @overload
82
+ def capitalize(a: U_co) -> NDArray[str_]: ...
83
+ @overload
84
+ def capitalize(a: S_co) -> NDArray[bytes_]: ...
85
+
86
+ @overload
87
+ def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
88
+ @overload
89
+ def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
90
+
91
+ def decode(
92
+ a: S_co,
93
+ encoding: None | str = ...,
94
+ errors: None | str = ...,
95
+ ) -> NDArray[str_]: ...
96
+
97
+ def encode(
98
+ a: U_co,
99
+ encoding: None | str = ...,
100
+ errors: None | str = ...,
101
+ ) -> NDArray[bytes_]: ...
102
+
103
+ @overload
104
+ def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
105
+ @overload
106
+ def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
107
+
108
+ @overload
109
+ def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
110
+ @overload
111
+ def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
112
+
113
+ @overload
114
+ def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
115
+ @overload
116
+ def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
117
+
118
+ @overload
119
+ def lower(a: U_co) -> NDArray[str_]: ...
120
+ @overload
121
+ def lower(a: S_co) -> NDArray[bytes_]: ...
122
+
123
+ @overload
124
+ def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
125
+ @overload
126
+ def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
127
+
128
+ @overload
129
+ def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
130
+ @overload
131
+ def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
132
+
133
+ @overload
134
+ def replace(
135
+ a: U_co,
136
+ old: U_co,
137
+ new: U_co,
138
+ count: None | i_co = ...,
139
+ ) -> NDArray[str_]: ...
140
+ @overload
141
+ def replace(
142
+ a: S_co,
143
+ old: S_co,
144
+ new: S_co,
145
+ count: None | i_co = ...,
146
+ ) -> NDArray[bytes_]: ...
147
+
148
+ @overload
149
+ def rjust(
150
+ a: U_co,
151
+ width: i_co,
152
+ fillchar: U_co = ...,
153
+ ) -> NDArray[str_]: ...
154
+ @overload
155
+ def rjust(
156
+ a: S_co,
157
+ width: i_co,
158
+ fillchar: S_co = ...,
159
+ ) -> NDArray[bytes_]: ...
160
+
161
+ @overload
162
+ def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
163
+ @overload
164
+ def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
165
+
166
+ @overload
167
+ def rsplit(
168
+ a: U_co,
169
+ sep: None | U_co = ...,
170
+ maxsplit: None | i_co = ...,
171
+ ) -> NDArray[object_]: ...
172
+ @overload
173
+ def rsplit(
174
+ a: S_co,
175
+ sep: None | S_co = ...,
176
+ maxsplit: None | i_co = ...,
177
+ ) -> NDArray[object_]: ...
178
+
179
+ @overload
180
+ def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
181
+ @overload
182
+ def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
183
+
184
+ @overload
185
+ def split(
186
+ a: U_co,
187
+ sep: None | U_co = ...,
188
+ maxsplit: None | i_co = ...,
189
+ ) -> NDArray[object_]: ...
190
+ @overload
191
+ def split(
192
+ a: S_co,
193
+ sep: None | S_co = ...,
194
+ maxsplit: None | i_co = ...,
195
+ ) -> NDArray[object_]: ...
196
+
197
+ @overload
198
+ def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
199
+ @overload
200
+ def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
201
+
202
+ @overload
203
+ def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
204
+ @overload
205
+ def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
206
+
207
+ @overload
208
+ def swapcase(a: U_co) -> NDArray[str_]: ...
209
+ @overload
210
+ def swapcase(a: S_co) -> NDArray[bytes_]: ...
211
+
212
+ @overload
213
+ def title(a: U_co) -> NDArray[str_]: ...
214
+ @overload
215
+ def title(a: S_co) -> NDArray[bytes_]: ...
216
+
217
+ @overload
218
+ def translate(
219
+ a: U_co,
220
+ table: U_co,
221
+ deletechars: None | U_co = ...,
222
+ ) -> NDArray[str_]: ...
223
+ @overload
224
+ def translate(
225
+ a: S_co,
226
+ table: S_co,
227
+ deletechars: None | S_co = ...,
228
+ ) -> NDArray[bytes_]: ...
229
+
230
+ @overload
231
+ def upper(a: U_co) -> NDArray[str_]: ...
232
+ @overload
233
+ def upper(a: S_co) -> NDArray[bytes_]: ...
234
+
235
+ @overload
236
+ def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
237
+ @overload
238
+ def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
239
+
240
+ # String information
241
+ @overload
242
+ def count(
243
+ a: U_co,
244
+ sub: U_co,
245
+ start: i_co = ...,
246
+ end: None | i_co = ...,
247
+ ) -> NDArray[int_]: ...
248
+ @overload
249
+ def count(
250
+ a: S_co,
251
+ sub: S_co,
252
+ start: i_co = ...,
253
+ end: None | i_co = ...,
254
+ ) -> NDArray[int_]: ...
255
+
256
+ @overload
257
+ def endswith(
258
+ a: U_co,
259
+ suffix: U_co,
260
+ start: i_co = ...,
261
+ end: None | i_co = ...,
262
+ ) -> NDArray[bool_]: ...
263
+ @overload
264
+ def endswith(
265
+ a: S_co,
266
+ suffix: S_co,
267
+ start: i_co = ...,
268
+ end: None | i_co = ...,
269
+ ) -> NDArray[bool_]: ...
270
+
271
+ @overload
272
+ def find(
273
+ a: U_co,
274
+ sub: U_co,
275
+ start: i_co = ...,
276
+ end: None | i_co = ...,
277
+ ) -> NDArray[int_]: ...
278
+ @overload
279
+ def find(
280
+ a: S_co,
281
+ sub: S_co,
282
+ start: i_co = ...,
283
+ end: None | i_co = ...,
284
+ ) -> NDArray[int_]: ...
285
+
286
+ @overload
287
+ def index(
288
+ a: U_co,
289
+ sub: U_co,
290
+ start: i_co = ...,
291
+ end: None | i_co = ...,
292
+ ) -> NDArray[int_]: ...
293
+ @overload
294
+ def index(
295
+ a: S_co,
296
+ sub: S_co,
297
+ start: i_co = ...,
298
+ end: None | i_co = ...,
299
+ ) -> NDArray[int_]: ...
300
+
301
+ def isalpha(a: U_co | S_co) -> NDArray[bool_]: ...
302
+ def isalnum(a: U_co | S_co) -> NDArray[bool_]: ...
303
+ def isdecimal(a: U_co | S_co) -> NDArray[bool_]: ...
304
+ def isdigit(a: U_co | S_co) -> NDArray[bool_]: ...
305
+ def islower(a: U_co | S_co) -> NDArray[bool_]: ...
306
+ def isnumeric(a: U_co | S_co) -> NDArray[bool_]: ...
307
+ def isspace(a: U_co | S_co) -> NDArray[bool_]: ...
308
+ def istitle(a: U_co | S_co) -> NDArray[bool_]: ...
309
+ def isupper(a: U_co | S_co) -> NDArray[bool_]: ...
310
+
311
+ @overload
312
+ def rfind(
313
+ a: U_co,
314
+ sub: U_co,
315
+ start: i_co = ...,
316
+ end: None | i_co = ...,
317
+ ) -> NDArray[int_]: ...
318
+ @overload
319
+ def rfind(
320
+ a: S_co,
321
+ sub: S_co,
322
+ start: i_co = ...,
323
+ end: None | i_co = ...,
324
+ ) -> NDArray[int_]: ...
325
+
326
+ @overload
327
+ def rindex(
328
+ a: U_co,
329
+ sub: U_co,
330
+ start: i_co = ...,
331
+ end: None | i_co = ...,
332
+ ) -> NDArray[int_]: ...
333
+ @overload
334
+ def rindex(
335
+ a: S_co,
336
+ sub: S_co,
337
+ start: i_co = ...,
338
+ end: None | i_co = ...,
339
+ ) -> NDArray[int_]: ...
340
+
341
+ @overload
342
+ def startswith(
343
+ a: U_co,
344
+ prefix: U_co,
345
+ start: i_co = ...,
346
+ end: None | i_co = ...,
347
+ ) -> NDArray[bool_]: ...
348
+ @overload
349
+ def startswith(
350
+ a: S_co,
351
+ prefix: S_co,
352
+ start: i_co = ...,
353
+ end: None | i_co = ...,
354
+ ) -> NDArray[bool_]: ...
355
+
356
+ def str_len(A: U_co | S_co) -> NDArray[int_]: ...
357
+
358
+ # Overload 1 and 2: str- or bytes-based array-likes
359
+ # overload 3: arbitrary object with unicode=False (-> bytes_)
360
+ # overload 4: arbitrary object with unicode=True (-> str_)
361
+ @overload
362
+ def array(
363
+ obj: U_co,
364
+ itemsize: None | int = ...,
365
+ copy: bool = ...,
366
+ unicode: L[False] = ...,
367
+ order: _OrderKACF = ...,
368
+ ) -> _CharArray[str_]: ...
369
+ @overload
370
+ def array(
371
+ obj: S_co,
372
+ itemsize: None | int = ...,
373
+ copy: bool = ...,
374
+ unicode: L[False] = ...,
375
+ order: _OrderKACF = ...,
376
+ ) -> _CharArray[bytes_]: ...
377
+ @overload
378
+ def array(
379
+ obj: object,
380
+ itemsize: None | int = ...,
381
+ copy: bool = ...,
382
+ unicode: L[False] = ...,
383
+ order: _OrderKACF = ...,
384
+ ) -> _CharArray[bytes_]: ...
385
+ @overload
386
+ def array(
387
+ obj: object,
388
+ itemsize: None | int = ...,
389
+ copy: bool = ...,
390
+ unicode: L[True] = ...,
391
+ order: _OrderKACF = ...,
392
+ ) -> _CharArray[str_]: ...
393
+
394
+ @overload
395
+ def asarray(
396
+ obj: U_co,
397
+ itemsize: None | int = ...,
398
+ unicode: L[False] = ...,
399
+ order: _OrderKACF = ...,
400
+ ) -> _CharArray[str_]: ...
401
+ @overload
402
+ def asarray(
403
+ obj: S_co,
404
+ itemsize: None | int = ...,
405
+ unicode: L[False] = ...,
406
+ order: _OrderKACF = ...,
407
+ ) -> _CharArray[bytes_]: ...
408
+ @overload
409
+ def asarray(
410
+ obj: object,
411
+ itemsize: None | int = ...,
412
+ unicode: L[False] = ...,
413
+ order: _OrderKACF = ...,
414
+ ) -> _CharArray[bytes_]: ...
415
+ @overload
416
+ def asarray(
417
+ obj: object,
418
+ itemsize: None | int = ...,
419
+ unicode: L[True] = ...,
420
+ order: _OrderKACF = ...,
421
+ ) -> _CharArray[str_]: ...
venv/lib/python3.10/site-packages/numpy/core/memmap.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import nullcontext
2
+
3
+ import numpy as np
4
+ from .._utils import set_module
5
+ from .numeric import uint8, ndarray, dtype
6
+ from numpy.compat import os_fspath, is_pathlib_path
7
+
8
+ __all__ = ['memmap']
9
+
10
+ dtypedescr = dtype
11
+ valid_filemodes = ["r", "c", "r+", "w+"]
12
+ writeable_filemodes = ["r+", "w+"]
13
+
14
+ mode_equivalents = {
15
+ "readonly":"r",
16
+ "copyonwrite":"c",
17
+ "readwrite":"r+",
18
+ "write":"w+"
19
+ }
20
+
21
+
22
+ @set_module('numpy')
23
+ class memmap(ndarray):
24
+ """Create a memory-map to an array stored in a *binary* file on disk.
25
+
26
+ Memory-mapped files are used for accessing small segments of large files
27
+ on disk, without reading the entire file into memory. NumPy's
28
+ memmap's are array-like objects. This differs from Python's ``mmap``
29
+ module, which uses file-like objects.
30
+
31
+ This subclass of ndarray has some unpleasant interactions with
32
+ some operations, because it doesn't quite fit properly as a subclass.
33
+ An alternative to using this subclass is to create the ``mmap``
34
+ object yourself, then create an ndarray with ndarray.__new__ directly,
35
+ passing the object created in its 'buffer=' parameter.
36
+
37
+ This class may at some point be turned into a factory function
38
+ which returns a view into an mmap buffer.
39
+
40
+ Flush the memmap instance to write the changes to the file. Currently there
41
+ is no API to close the underlying ``mmap``. It is tricky to ensure the
42
+ resource is actually closed, since it may be shared between different
43
+ memmap instances.
44
+
45
+
46
+ Parameters
47
+ ----------
48
+ filename : str, file-like object, or pathlib.Path instance
49
+ The file name or file object to be used as the array data buffer.
50
+ dtype : data-type, optional
51
+ The data-type used to interpret the file contents.
52
+ Default is `uint8`.
53
+ mode : {'r+', 'r', 'w+', 'c'}, optional
54
+ The file is opened in this mode:
55
+
56
+ +------+-------------------------------------------------------------+
57
+ | 'r' | Open existing file for reading only. |
58
+ +------+-------------------------------------------------------------+
59
+ | 'r+' | Open existing file for reading and writing. |
60
+ +------+-------------------------------------------------------------+
61
+ | 'w+' | Create or overwrite existing file for reading and writing. |
62
+ | | If ``mode == 'w+'`` then `shape` must also be specified. |
63
+ +------+-------------------------------------------------------------+
64
+ | 'c' | Copy-on-write: assignments affect data in memory, but |
65
+ | | changes are not saved to disk. The file on disk is |
66
+ | | read-only. |
67
+ +------+-------------------------------------------------------------+
68
+
69
+ Default is 'r+'.
70
+ offset : int, optional
71
+ In the file, array data starts at this offset. Since `offset` is
72
+ measured in bytes, it should normally be a multiple of the byte-size
73
+ of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
74
+ file are valid; The file will be extended to accommodate the
75
+ additional data. By default, ``memmap`` will start at the beginning of
76
+ the file, even if ``filename`` is a file pointer ``fp`` and
77
+ ``fp.tell() != 0``.
78
+ shape : tuple, optional
79
+ The desired shape of the array. If ``mode == 'r'`` and the number
80
+ of remaining bytes after `offset` is not a multiple of the byte-size
81
+ of `dtype`, you must specify `shape`. By default, the returned array
82
+ will be 1-D with the number of elements determined by file size
83
+ and data-type.
84
+ order : {'C', 'F'}, optional
85
+ Specify the order of the ndarray memory layout:
86
+ :term:`row-major`, C-style or :term:`column-major`,
87
+ Fortran-style. This only has an effect if the shape is
88
+ greater than 1-D. The default order is 'C'.
89
+
90
+ Attributes
91
+ ----------
92
+ filename : str or pathlib.Path instance
93
+ Path to the mapped file.
94
+ offset : int
95
+ Offset position in the file.
96
+ mode : str
97
+ File mode.
98
+
99
+ Methods
100
+ -------
101
+ flush
102
+ Flush any changes in memory to file on disk.
103
+ When you delete a memmap object, flush is called first to write
104
+ changes to disk.
105
+
106
+
107
+ See also
108
+ --------
109
+ lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
110
+
111
+ Notes
112
+ -----
113
+ The memmap object can be used anywhere an ndarray is accepted.
114
+ Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
115
+ ``True``.
116
+
117
+ Memory-mapped files cannot be larger than 2GB on 32-bit systems.
118
+
119
+ When a memmap causes a file to be created or extended beyond its
120
+ current size in the filesystem, the contents of the new part are
121
+ unspecified. On systems with POSIX filesystem semantics, the extended
122
+ part will be filled with zero bytes.
123
+
124
+ Examples
125
+ --------
126
+ >>> data = np.arange(12, dtype='float32')
127
+ >>> data.resize((3,4))
128
+
129
+ This example uses a temporary file so that doctest doesn't write
130
+ files to your directory. You would use a 'normal' filename.
131
+
132
+ >>> from tempfile import mkdtemp
133
+ >>> import os.path as path
134
+ >>> filename = path.join(mkdtemp(), 'newfile.dat')
135
+
136
+ Create a memmap with dtype and shape that matches our data:
137
+
138
+ >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
139
+ >>> fp
140
+ memmap([[0., 0., 0., 0.],
141
+ [0., 0., 0., 0.],
142
+ [0., 0., 0., 0.]], dtype=float32)
143
+
144
+ Write data to memmap array:
145
+
146
+ >>> fp[:] = data[:]
147
+ >>> fp
148
+ memmap([[ 0., 1., 2., 3.],
149
+ [ 4., 5., 6., 7.],
150
+ [ 8., 9., 10., 11.]], dtype=float32)
151
+
152
+ >>> fp.filename == path.abspath(filename)
153
+ True
154
+
155
+ Flushes memory changes to disk in order to read them back
156
+
157
+ >>> fp.flush()
158
+
159
+ Load the memmap and verify data was stored:
160
+
161
+ >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
162
+ >>> newfp
163
+ memmap([[ 0., 1., 2., 3.],
164
+ [ 4., 5., 6., 7.],
165
+ [ 8., 9., 10., 11.]], dtype=float32)
166
+
167
+ Read-only memmap:
168
+
169
+ >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
170
+ >>> fpr.flags.writeable
171
+ False
172
+
173
+ Copy-on-write memmap:
174
+
175
+ >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
176
+ >>> fpc.flags.writeable
177
+ True
178
+
179
+ It's possible to assign to copy-on-write array, but values are only
180
+ written into the memory copy of the array, and not written to disk:
181
+
182
+ >>> fpc
183
+ memmap([[ 0., 1., 2., 3.],
184
+ [ 4., 5., 6., 7.],
185
+ [ 8., 9., 10., 11.]], dtype=float32)
186
+ >>> fpc[0,:] = 0
187
+ >>> fpc
188
+ memmap([[ 0., 0., 0., 0.],
189
+ [ 4., 5., 6., 7.],
190
+ [ 8., 9., 10., 11.]], dtype=float32)
191
+
192
+ File on disk is unchanged:
193
+
194
+ >>> fpr
195
+ memmap([[ 0., 1., 2., 3.],
196
+ [ 4., 5., 6., 7.],
197
+ [ 8., 9., 10., 11.]], dtype=float32)
198
+
199
+ Offset into a memmap:
200
+
201
+ >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
202
+ >>> fpo
203
+ memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
204
+
205
+ """
206
+
207
+ __array_priority__ = -100.0
208
+
209
+ def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
210
+ shape=None, order='C'):
211
+ # Import here to minimize 'import numpy' overhead
212
+ import mmap
213
+ import os.path
214
+ try:
215
+ mode = mode_equivalents[mode]
216
+ except KeyError as e:
217
+ if mode not in valid_filemodes:
218
+ raise ValueError(
219
+ "mode must be one of {!r} (got {!r})"
220
+ .format(valid_filemodes + list(mode_equivalents.keys()), mode)
221
+ ) from None
222
+
223
+ if mode == 'w+' and shape is None:
224
+ raise ValueError("shape must be given if mode == 'w+'")
225
+
226
+ if hasattr(filename, 'read'):
227
+ f_ctx = nullcontext(filename)
228
+ else:
229
+ f_ctx = open(os_fspath(filename), ('r' if mode == 'c' else mode)+'b')
230
+
231
+ with f_ctx as fid:
232
+ fid.seek(0, 2)
233
+ flen = fid.tell()
234
+ descr = dtypedescr(dtype)
235
+ _dbytes = descr.itemsize
236
+
237
+ if shape is None:
238
+ bytes = flen - offset
239
+ if bytes % _dbytes:
240
+ raise ValueError("Size of available data is not a "
241
+ "multiple of the data-type size.")
242
+ size = bytes // _dbytes
243
+ shape = (size,)
244
+ else:
245
+ if not isinstance(shape, tuple):
246
+ shape = (shape,)
247
+ size = np.intp(1) # avoid default choice of np.int_, which might overflow
248
+ for k in shape:
249
+ size *= k
250
+
251
+ bytes = int(offset + size*_dbytes)
252
+
253
+ if mode in ('w+', 'r+') and flen < bytes:
254
+ fid.seek(bytes - 1, 0)
255
+ fid.write(b'\0')
256
+ fid.flush()
257
+
258
+ if mode == 'c':
259
+ acc = mmap.ACCESS_COPY
260
+ elif mode == 'r':
261
+ acc = mmap.ACCESS_READ
262
+ else:
263
+ acc = mmap.ACCESS_WRITE
264
+
265
+ start = offset - offset % mmap.ALLOCATIONGRANULARITY
266
+ bytes -= start
267
+ array_offset = offset - start
268
+ mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
269
+
270
+ self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
271
+ offset=array_offset, order=order)
272
+ self._mmap = mm
273
+ self.offset = offset
274
+ self.mode = mode
275
+
276
+ if is_pathlib_path(filename):
277
+ # special case - if we were constructed with a pathlib.path,
278
+ # then filename is a path object, not a string
279
+ self.filename = filename.resolve()
280
+ elif hasattr(fid, "name") and isinstance(fid.name, str):
281
+ # py3 returns int for TemporaryFile().name
282
+ self.filename = os.path.abspath(fid.name)
283
+ # same as memmap copies (e.g. memmap + 1)
284
+ else:
285
+ self.filename = None
286
+
287
+ return self
288
+
289
+ def __array_finalize__(self, obj):
290
+ if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
291
+ self._mmap = obj._mmap
292
+ self.filename = obj.filename
293
+ self.offset = obj.offset
294
+ self.mode = obj.mode
295
+ else:
296
+ self._mmap = None
297
+ self.filename = None
298
+ self.offset = None
299
+ self.mode = None
300
+
301
+ def flush(self):
302
+ """
303
+ Write any changes in the array to the file on disk.
304
+
305
+ For further information, see `memmap`.
306
+
307
+ Parameters
308
+ ----------
309
+ None
310
+
311
+ See Also
312
+ --------
313
+ memmap
314
+
315
+ """
316
+ if self.base is not None and hasattr(self.base, 'flush'):
317
+ self.base.flush()
318
+
319
+ def __array_wrap__(self, arr, context=None):
320
+ arr = super().__array_wrap__(arr, context)
321
+
322
+ # Return a memmap if a memmap was given as the output of the
323
+ # ufunc. Leave the arr class unchanged if self is not a memmap
324
+ # to keep original memmap subclasses behavior
325
+ if self is arr or type(self) is not memmap:
326
+ return arr
327
+ # Return scalar instead of 0d memmap, e.g. for np.sum with
328
+ # axis=None
329
+ if arr.shape == ():
330
+ return arr[()]
331
+ # Return ndarray otherwise
332
+ return arr.view(np.ndarray)
333
+
334
+ def __getitem__(self, index):
335
+ res = super().__getitem__(index)
336
+ if type(res) is memmap and res._mmap is None:
337
+ return res.view(type=ndarray)
338
+ return res
venv/lib/python3.10/site-packages/numpy/core/numerictypes.py ADDED
@@ -0,0 +1,689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ numerictypes: Define the numeric type objects
3
+
4
+ This module is designed so "from numerictypes import \\*" is safe.
5
+ Exported symbols include:
6
+
7
+ Dictionary with all registered number types (including aliases):
8
+ sctypeDict
9
+
10
+ Type objects (not all will be available, depends on platform):
11
+ see variable sctypes for which ones you have
12
+
13
+ Bit-width names
14
+
15
+ int8 int16 int32 int64 int128
16
+ uint8 uint16 uint32 uint64 uint128
17
+ float16 float32 float64 float96 float128 float256
18
+ complex32 complex64 complex128 complex192 complex256 complex512
19
+ datetime64 timedelta64
20
+
21
+ c-based names
22
+
23
+ bool_
24
+
25
+ object_
26
+
27
+ void, str_, unicode_
28
+
29
+ byte, ubyte,
30
+ short, ushort
31
+ intc, uintc,
32
+ intp, uintp,
33
+ int_, uint,
34
+ longlong, ulonglong,
35
+
36
+ single, csingle,
37
+ float_, complex_,
38
+ longfloat, clongfloat,
39
+
40
+ As part of the type-hierarchy: xx -- is bit-width
41
+
42
+ generic
43
+ +-> bool_ (kind=b)
44
+ +-> number
45
+ | +-> integer
46
+ | | +-> signedinteger (intxx) (kind=i)
47
+ | | | byte
48
+ | | | short
49
+ | | | intc
50
+ | | | intp
51
+ | | | int_
52
+ | | | longlong
53
+ | | \\-> unsignedinteger (uintxx) (kind=u)
54
+ | | ubyte
55
+ | | ushort
56
+ | | uintc
57
+ | | uintp
58
+ | | uint_
59
+ | | ulonglong
60
+ | +-> inexact
61
+ | +-> floating (floatxx) (kind=f)
62
+ | | half
63
+ | | single
64
+ | | float_ (double)
65
+ | | longfloat
66
+ | \\-> complexfloating (complexxx) (kind=c)
67
+ | csingle (singlecomplex)
68
+ | complex_ (cfloat, cdouble)
69
+ | clongfloat (longcomplex)
70
+ +-> flexible
71
+ | +-> character
72
+ | | str_ (string_, bytes_) (kind=S) [Python 2]
73
+ | | unicode_ (kind=U) [Python 2]
74
+ | |
75
+ | | bytes_ (string_) (kind=S) [Python 3]
76
+ | | str_ (unicode_) (kind=U) [Python 3]
77
+ | |
78
+ | \\-> void (kind=V)
79
+ \\-> object_ (not used much) (kind=O)
80
+
81
+ """
82
+ import numbers
83
+ import warnings
84
+
85
+ from .multiarray import (
86
+ ndarray, array, dtype, datetime_data, datetime_as_string,
87
+ busday_offset, busday_count, is_busday, busdaycalendar
88
+ )
89
+ from .._utils import set_module
90
+
91
+ # we add more at the bottom
92
+ __all__ = ['sctypeDict', 'sctypes',
93
+ 'ScalarType', 'obj2sctype', 'cast', 'nbytes', 'sctype2char',
94
+ 'maximum_sctype', 'issctype', 'typecodes', 'find_common_type',
95
+ 'issubdtype', 'datetime_data', 'datetime_as_string',
96
+ 'busday_offset', 'busday_count', 'is_busday', 'busdaycalendar',
97
+ ]
98
+
99
+ # we don't need all these imports, but we need to keep them for compatibility
100
+ # for users using np.core.numerictypes.UPPER_TABLE
101
+ from ._string_helpers import (
102
+ english_lower, english_upper, english_capitalize, LOWER_TABLE, UPPER_TABLE
103
+ )
104
+
105
+ from ._type_aliases import (
106
+ sctypeDict,
107
+ allTypes,
108
+ bitname,
109
+ sctypes,
110
+ _concrete_types,
111
+ _concrete_typeinfo,
112
+ _bits_of,
113
+ )
114
+ from ._dtype import _kind_name
115
+
116
+ # we don't export these for import *, but we do want them accessible
117
+ # as numerictypes.bool, etc.
118
+ from builtins import bool, int, float, complex, object, str, bytes
119
+ from numpy.compat import long, unicode
120
+
121
+
122
+ # We use this later
123
+ generic = allTypes['generic']
124
+
125
+ genericTypeRank = ['bool', 'int8', 'uint8', 'int16', 'uint16',
126
+ 'int32', 'uint32', 'int64', 'uint64', 'int128',
127
+ 'uint128', 'float16',
128
+ 'float32', 'float64', 'float80', 'float96', 'float128',
129
+ 'float256',
130
+ 'complex32', 'complex64', 'complex128', 'complex160',
131
+ 'complex192', 'complex256', 'complex512', 'object']
132
+
133
+ @set_module('numpy')
134
+ def maximum_sctype(t):
135
+ """
136
+ Return the scalar type of highest precision of the same kind as the input.
137
+
138
+ Parameters
139
+ ----------
140
+ t : dtype or dtype specifier
141
+ The input data type. This can be a `dtype` object or an object that
142
+ is convertible to a `dtype`.
143
+
144
+ Returns
145
+ -------
146
+ out : dtype
147
+ The highest precision data type of the same kind (`dtype.kind`) as `t`.
148
+
149
+ See Also
150
+ --------
151
+ obj2sctype, mintypecode, sctype2char
152
+ dtype
153
+
154
+ Examples
155
+ --------
156
+ >>> np.maximum_sctype(int)
157
+ <class 'numpy.int64'>
158
+ >>> np.maximum_sctype(np.uint8)
159
+ <class 'numpy.uint64'>
160
+ >>> np.maximum_sctype(complex)
161
+ <class 'numpy.complex256'> # may vary
162
+
163
+ >>> np.maximum_sctype(str)
164
+ <class 'numpy.str_'>
165
+
166
+ >>> np.maximum_sctype('i2')
167
+ <class 'numpy.int64'>
168
+ >>> np.maximum_sctype('f4')
169
+ <class 'numpy.float128'> # may vary
170
+
171
+ """
172
+ g = obj2sctype(t)
173
+ if g is None:
174
+ return t
175
+ t = g
176
+ base = _kind_name(dtype(t))
177
+ if base in sctypes:
178
+ return sctypes[base][-1]
179
+ else:
180
+ return t
181
+
182
+
183
+ @set_module('numpy')
184
+ def issctype(rep):
185
+ """
186
+ Determines whether the given object represents a scalar data-type.
187
+
188
+ Parameters
189
+ ----------
190
+ rep : any
191
+ If `rep` is an instance of a scalar dtype, True is returned. If not,
192
+ False is returned.
193
+
194
+ Returns
195
+ -------
196
+ out : bool
197
+ Boolean result of check whether `rep` is a scalar dtype.
198
+
199
+ See Also
200
+ --------
201
+ issubsctype, issubdtype, obj2sctype, sctype2char
202
+
203
+ Examples
204
+ --------
205
+ >>> np.issctype(np.int32)
206
+ True
207
+ >>> np.issctype(list)
208
+ False
209
+ >>> np.issctype(1.1)
210
+ False
211
+
212
+ Strings are also a scalar type:
213
+
214
+ >>> np.issctype(np.dtype('str'))
215
+ True
216
+
217
+ """
218
+ if not isinstance(rep, (type, dtype)):
219
+ return False
220
+ try:
221
+ res = obj2sctype(rep)
222
+ if res and res != object_:
223
+ return True
224
+ return False
225
+ except Exception:
226
+ return False
227
+
228
+
229
+ @set_module('numpy')
230
+ def obj2sctype(rep, default=None):
231
+ """
232
+ Return the scalar dtype or NumPy equivalent of Python type of an object.
233
+
234
+ Parameters
235
+ ----------
236
+ rep : any
237
+ The object of which the type is returned.
238
+ default : any, optional
239
+ If given, this is returned for objects whose types can not be
240
+ determined. If not given, None is returned for those objects.
241
+
242
+ Returns
243
+ -------
244
+ dtype : dtype or Python type
245
+ The data type of `rep`.
246
+
247
+ See Also
248
+ --------
249
+ sctype2char, issctype, issubsctype, issubdtype, maximum_sctype
250
+
251
+ Examples
252
+ --------
253
+ >>> np.obj2sctype(np.int32)
254
+ <class 'numpy.int32'>
255
+ >>> np.obj2sctype(np.array([1., 2.]))
256
+ <class 'numpy.float64'>
257
+ >>> np.obj2sctype(np.array([1.j]))
258
+ <class 'numpy.complex128'>
259
+
260
+ >>> np.obj2sctype(dict)
261
+ <class 'numpy.object_'>
262
+ >>> np.obj2sctype('string')
263
+
264
+ >>> np.obj2sctype(1, default=list)
265
+ <class 'list'>
266
+
267
+ """
268
+ # prevent abstract classes being upcast
269
+ if isinstance(rep, type) and issubclass(rep, generic):
270
+ return rep
271
+ # extract dtype from arrays
272
+ if isinstance(rep, ndarray):
273
+ return rep.dtype.type
274
+ # fall back on dtype to convert
275
+ try:
276
+ res = dtype(rep)
277
+ except Exception:
278
+ return default
279
+ else:
280
+ return res.type
281
+
282
+
283
+ @set_module('numpy')
284
+ def issubclass_(arg1, arg2):
285
+ """
286
+ Determine if a class is a subclass of a second class.
287
+
288
+ `issubclass_` is equivalent to the Python built-in ``issubclass``,
289
+ except that it returns False instead of raising a TypeError if one
290
+ of the arguments is not a class.
291
+
292
+ Parameters
293
+ ----------
294
+ arg1 : class
295
+ Input class. True is returned if `arg1` is a subclass of `arg2`.
296
+ arg2 : class or tuple of classes.
297
+ Input class. If a tuple of classes, True is returned if `arg1` is a
298
+ subclass of any of the tuple elements.
299
+
300
+ Returns
301
+ -------
302
+ out : bool
303
+ Whether `arg1` is a subclass of `arg2` or not.
304
+
305
+ See Also
306
+ --------
307
+ issubsctype, issubdtype, issctype
308
+
309
+ Examples
310
+ --------
311
+ >>> np.issubclass_(np.int32, int)
312
+ False
313
+ >>> np.issubclass_(np.int32, float)
314
+ False
315
+ >>> np.issubclass_(np.float64, float)
316
+ True
317
+
318
+ """
319
+ try:
320
+ return issubclass(arg1, arg2)
321
+ except TypeError:
322
+ return False
323
+
324
+
325
+ @set_module('numpy')
326
+ def issubsctype(arg1, arg2):
327
+ """
328
+ Determine if the first argument is a subclass of the second argument.
329
+
330
+ Parameters
331
+ ----------
332
+ arg1, arg2 : dtype or dtype specifier
333
+ Data-types.
334
+
335
+ Returns
336
+ -------
337
+ out : bool
338
+ The result.
339
+
340
+ See Also
341
+ --------
342
+ issctype, issubdtype, obj2sctype
343
+
344
+ Examples
345
+ --------
346
+ >>> np.issubsctype('S8', str)
347
+ False
348
+ >>> np.issubsctype(np.array([1]), int)
349
+ True
350
+ >>> np.issubsctype(np.array([1]), float)
351
+ False
352
+
353
+ """
354
+ return issubclass(obj2sctype(arg1), obj2sctype(arg2))
355
+
356
+
357
+ @set_module('numpy')
358
+ def issubdtype(arg1, arg2):
359
+ r"""
360
+ Returns True if first argument is a typecode lower/equal in type hierarchy.
361
+
362
+ This is like the builtin :func:`issubclass`, but for `dtype`\ s.
363
+
364
+ Parameters
365
+ ----------
366
+ arg1, arg2 : dtype_like
367
+ `dtype` or object coercible to one
368
+
369
+ Returns
370
+ -------
371
+ out : bool
372
+
373
+ See Also
374
+ --------
375
+ :ref:`arrays.scalars` : Overview of the numpy type hierarchy.
376
+ issubsctype, issubclass_
377
+
378
+ Examples
379
+ --------
380
+ `issubdtype` can be used to check the type of arrays:
381
+
382
+ >>> ints = np.array([1, 2, 3], dtype=np.int32)
383
+ >>> np.issubdtype(ints.dtype, np.integer)
384
+ True
385
+ >>> np.issubdtype(ints.dtype, np.floating)
386
+ False
387
+
388
+ >>> floats = np.array([1, 2, 3], dtype=np.float32)
389
+ >>> np.issubdtype(floats.dtype, np.integer)
390
+ False
391
+ >>> np.issubdtype(floats.dtype, np.floating)
392
+ True
393
+
394
+ Similar types of different sizes are not subdtypes of each other:
395
+
396
+ >>> np.issubdtype(np.float64, np.float32)
397
+ False
398
+ >>> np.issubdtype(np.float32, np.float64)
399
+ False
400
+
401
+ but both are subtypes of `floating`:
402
+
403
+ >>> np.issubdtype(np.float64, np.floating)
404
+ True
405
+ >>> np.issubdtype(np.float32, np.floating)
406
+ True
407
+
408
+ For convenience, dtype-like objects are allowed too:
409
+
410
+ >>> np.issubdtype('S1', np.string_)
411
+ True
412
+ >>> np.issubdtype('i4', np.signedinteger)
413
+ True
414
+
415
+ """
416
+ if not issubclass_(arg1, generic):
417
+ arg1 = dtype(arg1).type
418
+ if not issubclass_(arg2, generic):
419
+ arg2 = dtype(arg2).type
420
+
421
+ return issubclass(arg1, arg2)
422
+
423
+
424
+ # This dictionary allows look up based on any alias for an array data-type
425
+ class _typedict(dict):
426
+ """
427
+ Base object for a dictionary for look-up with any alias for an array dtype.
428
+
429
+ Instances of `_typedict` can not be used as dictionaries directly,
430
+ first they have to be populated.
431
+
432
+ """
433
+
434
+ def __getitem__(self, obj):
435
+ return dict.__getitem__(self, obj2sctype(obj))
436
+
437
+ nbytes = _typedict()
438
+ _alignment = _typedict()
439
+ _maxvals = _typedict()
440
+ _minvals = _typedict()
441
+ def _construct_lookups():
442
+ for name, info in _concrete_typeinfo.items():
443
+ obj = info.type
444
+ nbytes[obj] = info.bits // 8
445
+ _alignment[obj] = info.alignment
446
+ if len(info) > 5:
447
+ _maxvals[obj] = info.max
448
+ _minvals[obj] = info.min
449
+ else:
450
+ _maxvals[obj] = None
451
+ _minvals[obj] = None
452
+
453
+ _construct_lookups()
454
+
455
+
456
+ @set_module('numpy')
457
+ def sctype2char(sctype):
458
+ """
459
+ Return the string representation of a scalar dtype.
460
+
461
+ Parameters
462
+ ----------
463
+ sctype : scalar dtype or object
464
+ If a scalar dtype, the corresponding string character is
465
+ returned. If an object, `sctype2char` tries to infer its scalar type
466
+ and then return the corresponding string character.
467
+
468
+ Returns
469
+ -------
470
+ typechar : str
471
+ The string character corresponding to the scalar type.
472
+
473
+ Raises
474
+ ------
475
+ ValueError
476
+ If `sctype` is an object for which the type can not be inferred.
477
+
478
+ See Also
479
+ --------
480
+ obj2sctype, issctype, issubsctype, mintypecode
481
+
482
+ Examples
483
+ --------
484
+ >>> for sctype in [np.int32, np.double, np.complex_, np.string_, np.ndarray]:
485
+ ... print(np.sctype2char(sctype))
486
+ l # may vary
487
+ d
488
+ D
489
+ S
490
+ O
491
+
492
+ >>> x = np.array([1., 2-1.j])
493
+ >>> np.sctype2char(x)
494
+ 'D'
495
+ >>> np.sctype2char(list)
496
+ 'O'
497
+
498
+ """
499
+ sctype = obj2sctype(sctype)
500
+ if sctype is None:
501
+ raise ValueError("unrecognized type")
502
+ if sctype not in _concrete_types:
503
+ # for compatibility
504
+ raise KeyError(sctype)
505
+ return dtype(sctype).char
506
+
507
+ # Create dictionary of casting functions that wrap sequences
508
+ # indexed by type or type character
509
+ cast = _typedict()
510
+ for key in _concrete_types:
511
+ cast[key] = lambda x, k=key: array(x, copy=False).astype(k)
512
+
513
+
514
+ def _scalar_type_key(typ):
515
+ """A ``key`` function for `sorted`."""
516
+ dt = dtype(typ)
517
+ return (dt.kind.lower(), dt.itemsize)
518
+
519
+
520
+ ScalarType = [int, float, complex, bool, bytes, str, memoryview]
521
+ ScalarType += sorted(_concrete_types, key=_scalar_type_key)
522
+ ScalarType = tuple(ScalarType)
523
+
524
+
525
+ # Now add the types we've determined to this module
526
+ for key in allTypes:
527
+ globals()[key] = allTypes[key]
528
+ __all__.append(key)
529
+
530
+ del key
531
+
532
+ typecodes = {'Character':'c',
533
+ 'Integer':'bhilqp',
534
+ 'UnsignedInteger':'BHILQP',
535
+ 'Float':'efdg',
536
+ 'Complex':'FDG',
537
+ 'AllInteger':'bBhHiIlLqQpP',
538
+ 'AllFloat':'efdgFDG',
539
+ 'Datetime': 'Mm',
540
+ 'All':'?bhilqpBHILQPefdgFDGSUVOMm'}
541
+
542
+ # backwards compatibility --- deprecated name
543
+ # Formal deprecation: Numpy 1.20.0, 2020-10-19 (see numpy/__init__.py)
544
+ typeDict = sctypeDict
545
+
546
+ # b -> boolean
547
+ # u -> unsigned integer
548
+ # i -> signed integer
549
+ # f -> floating point
550
+ # c -> complex
551
+ # M -> datetime
552
+ # m -> timedelta
553
+ # S -> string
554
+ # U -> Unicode string
555
+ # V -> record
556
+ # O -> Python object
557
+ _kind_list = ['b', 'u', 'i', 'f', 'c', 'S', 'U', 'V', 'O', 'M', 'm']
558
+
559
+ __test_types = '?'+typecodes['AllInteger'][:-2]+typecodes['AllFloat']+'O'
560
+ __len_test_types = len(__test_types)
561
+
562
+ # Keep incrementing until a common type both can be coerced to
563
+ # is found. Otherwise, return None
564
+ def _find_common_coerce(a, b):
565
+ if a > b:
566
+ return a
567
+ try:
568
+ thisind = __test_types.index(a.char)
569
+ except ValueError:
570
+ return None
571
+ return _can_coerce_all([a, b], start=thisind)
572
+
573
+ # Find a data-type that all data-types in a list can be coerced to
574
+ def _can_coerce_all(dtypelist, start=0):
575
+ N = len(dtypelist)
576
+ if N == 0:
577
+ return None
578
+ if N == 1:
579
+ return dtypelist[0]
580
+ thisind = start
581
+ while thisind < __len_test_types:
582
+ newdtype = dtype(__test_types[thisind])
583
+ numcoerce = len([x for x in dtypelist if newdtype >= x])
584
+ if numcoerce == N:
585
+ return newdtype
586
+ thisind += 1
587
+ return None
588
+
589
+ def _register_types():
590
+ numbers.Integral.register(integer)
591
+ numbers.Complex.register(inexact)
592
+ numbers.Real.register(floating)
593
+ numbers.Number.register(number)
594
+
595
+ _register_types()
596
+
597
+
598
+ @set_module('numpy')
599
+ def find_common_type(array_types, scalar_types):
600
+ """
601
+ Determine common type following standard coercion rules.
602
+
603
+ .. deprecated:: NumPy 1.25
604
+
605
+ This function is deprecated, use `numpy.promote_types` or
606
+ `numpy.result_type` instead. To achieve semantics for the
607
+ `scalar_types` argument, use `numpy.result_type` and pass the Python
608
+ values `0`, `0.0`, or `0j`.
609
+ This will give the same results in almost all cases.
610
+ More information and rare exception can be found in the
611
+ `NumPy 1.25 release notes <https://numpy.org/devdocs/release/1.25.0-notes.html>`_.
612
+
613
+ Parameters
614
+ ----------
615
+ array_types : sequence
616
+ A list of dtypes or dtype convertible objects representing arrays.
617
+ scalar_types : sequence
618
+ A list of dtypes or dtype convertible objects representing scalars.
619
+
620
+ Returns
621
+ -------
622
+ datatype : dtype
623
+ The common data type, which is the maximum of `array_types` ignoring
624
+ `scalar_types`, unless the maximum of `scalar_types` is of a
625
+ different kind (`dtype.kind`). If the kind is not understood, then
626
+ None is returned.
627
+
628
+ See Also
629
+ --------
630
+ dtype, common_type, can_cast, mintypecode
631
+
632
+ Examples
633
+ --------
634
+ >>> np.find_common_type([], [np.int64, np.float32, complex])
635
+ dtype('complex128')
636
+ >>> np.find_common_type([np.int64, np.float32], [])
637
+ dtype('float64')
638
+
639
+ The standard casting rules ensure that a scalar cannot up-cast an
640
+ array unless the scalar is of a fundamentally different kind of data
641
+ (i.e. under a different hierarchy in the data type hierarchy) then
642
+ the array:
643
+
644
+ >>> np.find_common_type([np.float32], [np.int64, np.float64])
645
+ dtype('float32')
646
+
647
+ Complex is of a different type, so it up-casts the float in the
648
+ `array_types` argument:
649
+
650
+ >>> np.find_common_type([np.float32], [complex])
651
+ dtype('complex128')
652
+
653
+ Type specifier strings are convertible to dtypes and can therefore
654
+ be used instead of dtypes:
655
+
656
+ >>> np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
657
+ dtype('complex128')
658
+
659
+ """
660
+ # Deprecated 2022-11-07, NumPy 1.25
661
+ warnings.warn(
662
+ "np.find_common_type is deprecated. Please use `np.result_type` "
663
+ "or `np.promote_types`.\n"
664
+ "See https://numpy.org/devdocs/release/1.25.0-notes.html and the "
665
+ "docs for more information. (Deprecated NumPy 1.25)",
666
+ DeprecationWarning, stacklevel=2)
667
+
668
+ array_types = [dtype(x) for x in array_types]
669
+ scalar_types = [dtype(x) for x in scalar_types]
670
+
671
+ maxa = _can_coerce_all(array_types)
672
+ maxsc = _can_coerce_all(scalar_types)
673
+
674
+ if maxa is None:
675
+ return maxsc
676
+
677
+ if maxsc is None:
678
+ return maxa
679
+
680
+ try:
681
+ index_a = _kind_list.index(maxa.kind)
682
+ index_sc = _kind_list.index(maxsc.kind)
683
+ except ValueError:
684
+ return None
685
+
686
+ if index_sc > index_a:
687
+ return _find_common_coerce(maxsc, maxa)
688
+ else:
689
+ return maxa
venv/lib/python3.10/site-packages/numpy/core/numerictypes.pyi ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import types
3
+ from collections.abc import Iterable
4
+ from typing import (
5
+ Literal as L,
6
+ Union,
7
+ overload,
8
+ Any,
9
+ TypeVar,
10
+ Protocol,
11
+ TypedDict,
12
+ )
13
+
14
+ from numpy import (
15
+ ndarray,
16
+ dtype,
17
+ generic,
18
+ bool_,
19
+ ubyte,
20
+ ushort,
21
+ uintc,
22
+ uint,
23
+ ulonglong,
24
+ byte,
25
+ short,
26
+ intc,
27
+ int_,
28
+ longlong,
29
+ half,
30
+ single,
31
+ double,
32
+ longdouble,
33
+ csingle,
34
+ cdouble,
35
+ clongdouble,
36
+ datetime64,
37
+ timedelta64,
38
+ object_,
39
+ str_,
40
+ bytes_,
41
+ void,
42
+ )
43
+
44
+ from numpy.core._type_aliases import (
45
+ sctypeDict as sctypeDict,
46
+ sctypes as sctypes,
47
+ )
48
+
49
+ from numpy._typing import DTypeLike, ArrayLike, _DTypeLike
50
+
51
+ _T = TypeVar("_T")
52
+ _SCT = TypeVar("_SCT", bound=generic)
53
+
54
+ class _CastFunc(Protocol):
55
+ def __call__(
56
+ self, x: ArrayLike, k: DTypeLike = ...
57
+ ) -> ndarray[Any, dtype[Any]]: ...
58
+
59
+ class _TypeCodes(TypedDict):
60
+ Character: L['c']
61
+ Integer: L['bhilqp']
62
+ UnsignedInteger: L['BHILQP']
63
+ Float: L['efdg']
64
+ Complex: L['FDG']
65
+ AllInteger: L['bBhHiIlLqQpP']
66
+ AllFloat: L['efdgFDG']
67
+ Datetime: L['Mm']
68
+ All: L['?bhilqpBHILQPefdgFDGSUVOMm']
69
+
70
+ class _typedict(dict[type[generic], _T]):
71
+ def __getitem__(self, key: DTypeLike) -> _T: ...
72
+
73
+ if sys.version_info >= (3, 10):
74
+ _TypeTuple = Union[
75
+ type[Any],
76
+ types.UnionType,
77
+ tuple[Union[type[Any], types.UnionType, tuple[Any, ...]], ...],
78
+ ]
79
+ else:
80
+ _TypeTuple = Union[
81
+ type[Any],
82
+ tuple[Union[type[Any], tuple[Any, ...]], ...],
83
+ ]
84
+
85
+ __all__: list[str]
86
+
87
+ @overload
88
+ def maximum_sctype(t: _DTypeLike[_SCT]) -> type[_SCT]: ...
89
+ @overload
90
+ def maximum_sctype(t: DTypeLike) -> type[Any]: ...
91
+
92
+ @overload
93
+ def issctype(rep: dtype[Any] | type[Any]) -> bool: ...
94
+ @overload
95
+ def issctype(rep: object) -> L[False]: ...
96
+
97
+ @overload
98
+ def obj2sctype(rep: _DTypeLike[_SCT], default: None = ...) -> None | type[_SCT]: ...
99
+ @overload
100
+ def obj2sctype(rep: _DTypeLike[_SCT], default: _T) -> _T | type[_SCT]: ...
101
+ @overload
102
+ def obj2sctype(rep: DTypeLike, default: None = ...) -> None | type[Any]: ...
103
+ @overload
104
+ def obj2sctype(rep: DTypeLike, default: _T) -> _T | type[Any]: ...
105
+ @overload
106
+ def obj2sctype(rep: object, default: None = ...) -> None: ...
107
+ @overload
108
+ def obj2sctype(rep: object, default: _T) -> _T: ...
109
+
110
+ @overload
111
+ def issubclass_(arg1: type[Any], arg2: _TypeTuple) -> bool: ...
112
+ @overload
113
+ def issubclass_(arg1: object, arg2: object) -> L[False]: ...
114
+
115
+ def issubsctype(arg1: DTypeLike, arg2: DTypeLike) -> bool: ...
116
+
117
+ def issubdtype(arg1: DTypeLike, arg2: DTypeLike) -> bool: ...
118
+
119
+ def sctype2char(sctype: DTypeLike) -> str: ...
120
+
121
+ cast: _typedict[_CastFunc]
122
+ nbytes: _typedict[int]
123
+ typecodes: _TypeCodes
124
+ ScalarType: tuple[
125
+ type[int],
126
+ type[float],
127
+ type[complex],
128
+ type[bool],
129
+ type[bytes],
130
+ type[str],
131
+ type[memoryview],
132
+ type[bool_],
133
+ type[csingle],
134
+ type[cdouble],
135
+ type[clongdouble],
136
+ type[half],
137
+ type[single],
138
+ type[double],
139
+ type[longdouble],
140
+ type[byte],
141
+ type[short],
142
+ type[intc],
143
+ type[int_],
144
+ type[longlong],
145
+ type[timedelta64],
146
+ type[datetime64],
147
+ type[object_],
148
+ type[bytes_],
149
+ type[str_],
150
+ type[ubyte],
151
+ type[ushort],
152
+ type[uintc],
153
+ type[uint],
154
+ type[ulonglong],
155
+ type[void],
156
+ ]
venv/lib/python3.10/site-packages/numpy/core/records.pyi ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections.abc import Sequence, Iterable
3
+ from typing import (
4
+ Any,
5
+ TypeVar,
6
+ overload,
7
+ Protocol,
8
+ )
9
+
10
+ from numpy import (
11
+ format_parser as format_parser,
12
+ record as record,
13
+ recarray as recarray,
14
+ dtype,
15
+ generic,
16
+ void,
17
+ _ByteOrder,
18
+ _SupportsBuffer,
19
+ )
20
+
21
+ from numpy._typing import (
22
+ ArrayLike,
23
+ DTypeLike,
24
+ NDArray,
25
+ _ShapeLike,
26
+ _ArrayLikeVoid_co,
27
+ _NestedSequence,
28
+ )
29
+
30
+ _SCT = TypeVar("_SCT", bound=generic)
31
+
32
+ _RecArray = recarray[Any, dtype[_SCT]]
33
+
34
+ class _SupportsReadInto(Protocol):
35
+ def seek(self, offset: int, whence: int, /) -> object: ...
36
+ def tell(self, /) -> int: ...
37
+ def readinto(self, buffer: memoryview, /) -> int: ...
38
+
39
+ __all__: list[str]
40
+
41
+ @overload
42
+ def fromarrays(
43
+ arrayList: Iterable[ArrayLike],
44
+ dtype: DTypeLike = ...,
45
+ shape: None | _ShapeLike = ...,
46
+ formats: None = ...,
47
+ names: None = ...,
48
+ titles: None = ...,
49
+ aligned: bool = ...,
50
+ byteorder: None = ...,
51
+ ) -> _RecArray[Any]: ...
52
+ @overload
53
+ def fromarrays(
54
+ arrayList: Iterable[ArrayLike],
55
+ dtype: None = ...,
56
+ shape: None | _ShapeLike = ...,
57
+ *,
58
+ formats: DTypeLike,
59
+ names: None | str | Sequence[str] = ...,
60
+ titles: None | str | Sequence[str] = ...,
61
+ aligned: bool = ...,
62
+ byteorder: None | _ByteOrder = ...,
63
+ ) -> _RecArray[record]: ...
64
+
65
+ @overload
66
+ def fromrecords(
67
+ recList: _ArrayLikeVoid_co | tuple[Any, ...] | _NestedSequence[tuple[Any, ...]],
68
+ dtype: DTypeLike = ...,
69
+ shape: None | _ShapeLike = ...,
70
+ formats: None = ...,
71
+ names: None = ...,
72
+ titles: None = ...,
73
+ aligned: bool = ...,
74
+ byteorder: None = ...,
75
+ ) -> _RecArray[record]: ...
76
+ @overload
77
+ def fromrecords(
78
+ recList: _ArrayLikeVoid_co | tuple[Any, ...] | _NestedSequence[tuple[Any, ...]],
79
+ dtype: None = ...,
80
+ shape: None | _ShapeLike = ...,
81
+ *,
82
+ formats: DTypeLike,
83
+ names: None | str | Sequence[str] = ...,
84
+ titles: None | str | Sequence[str] = ...,
85
+ aligned: bool = ...,
86
+ byteorder: None | _ByteOrder = ...,
87
+ ) -> _RecArray[record]: ...
88
+
89
+ @overload
90
+ def fromstring(
91
+ datastring: _SupportsBuffer,
92
+ dtype: DTypeLike,
93
+ shape: None | _ShapeLike = ...,
94
+ offset: int = ...,
95
+ formats: None = ...,
96
+ names: None = ...,
97
+ titles: None = ...,
98
+ aligned: bool = ...,
99
+ byteorder: None = ...,
100
+ ) -> _RecArray[record]: ...
101
+ @overload
102
+ def fromstring(
103
+ datastring: _SupportsBuffer,
104
+ dtype: None = ...,
105
+ shape: None | _ShapeLike = ...,
106
+ offset: int = ...,
107
+ *,
108
+ formats: DTypeLike,
109
+ names: None | str | Sequence[str] = ...,
110
+ titles: None | str | Sequence[str] = ...,
111
+ aligned: bool = ...,
112
+ byteorder: None | _ByteOrder = ...,
113
+ ) -> _RecArray[record]: ...
114
+
115
+ @overload
116
+ def fromfile(
117
+ fd: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsReadInto,
118
+ dtype: DTypeLike,
119
+ shape: None | _ShapeLike = ...,
120
+ offset: int = ...,
121
+ formats: None = ...,
122
+ names: None = ...,
123
+ titles: None = ...,
124
+ aligned: bool = ...,
125
+ byteorder: None = ...,
126
+ ) -> _RecArray[Any]: ...
127
+ @overload
128
+ def fromfile(
129
+ fd: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsReadInto,
130
+ dtype: None = ...,
131
+ shape: None | _ShapeLike = ...,
132
+ offset: int = ...,
133
+ *,
134
+ formats: DTypeLike,
135
+ names: None | str | Sequence[str] = ...,
136
+ titles: None | str | Sequence[str] = ...,
137
+ aligned: bool = ...,
138
+ byteorder: None | _ByteOrder = ...,
139
+ ) -> _RecArray[record]: ...
140
+
141
+ @overload
142
+ def array(
143
+ obj: _SCT | NDArray[_SCT],
144
+ dtype: None = ...,
145
+ shape: None | _ShapeLike = ...,
146
+ offset: int = ...,
147
+ formats: None = ...,
148
+ names: None = ...,
149
+ titles: None = ...,
150
+ aligned: bool = ...,
151
+ byteorder: None = ...,
152
+ copy: bool = ...,
153
+ ) -> _RecArray[_SCT]: ...
154
+ @overload
155
+ def array(
156
+ obj: ArrayLike,
157
+ dtype: DTypeLike,
158
+ shape: None | _ShapeLike = ...,
159
+ offset: int = ...,
160
+ formats: None = ...,
161
+ names: None = ...,
162
+ titles: None = ...,
163
+ aligned: bool = ...,
164
+ byteorder: None = ...,
165
+ copy: bool = ...,
166
+ ) -> _RecArray[Any]: ...
167
+ @overload
168
+ def array(
169
+ obj: ArrayLike,
170
+ dtype: None = ...,
171
+ shape: None | _ShapeLike = ...,
172
+ offset: int = ...,
173
+ *,
174
+ formats: DTypeLike,
175
+ names: None | str | Sequence[str] = ...,
176
+ titles: None | str | Sequence[str] = ...,
177
+ aligned: bool = ...,
178
+ byteorder: None | _ByteOrder = ...,
179
+ copy: bool = ...,
180
+ ) -> _RecArray[record]: ...
181
+ @overload
182
+ def array(
183
+ obj: None,
184
+ dtype: DTypeLike,
185
+ shape: _ShapeLike,
186
+ offset: int = ...,
187
+ formats: None = ...,
188
+ names: None = ...,
189
+ titles: None = ...,
190
+ aligned: bool = ...,
191
+ byteorder: None = ...,
192
+ copy: bool = ...,
193
+ ) -> _RecArray[Any]: ...
194
+ @overload
195
+ def array(
196
+ obj: None,
197
+ dtype: None = ...,
198
+ *,
199
+ shape: _ShapeLike,
200
+ offset: int = ...,
201
+ formats: DTypeLike,
202
+ names: None | str | Sequence[str] = ...,
203
+ titles: None | str | Sequence[str] = ...,
204
+ aligned: bool = ...,
205
+ byteorder: None | _ByteOrder = ...,
206
+ copy: bool = ...,
207
+ ) -> _RecArray[record]: ...
208
+ @overload
209
+ def array(
210
+ obj: _SupportsReadInto,
211
+ dtype: DTypeLike,
212
+ shape: None | _ShapeLike = ...,
213
+ offset: int = ...,
214
+ formats: None = ...,
215
+ names: None = ...,
216
+ titles: None = ...,
217
+ aligned: bool = ...,
218
+ byteorder: None = ...,
219
+ copy: bool = ...,
220
+ ) -> _RecArray[Any]: ...
221
+ @overload
222
+ def array(
223
+ obj: _SupportsReadInto,
224
+ dtype: None = ...,
225
+ shape: None | _ShapeLike = ...,
226
+ offset: int = ...,
227
+ *,
228
+ formats: DTypeLike,
229
+ names: None | str | Sequence[str] = ...,
230
+ titles: None | str | Sequence[str] = ...,
231
+ aligned: bool = ...,
232
+ byteorder: None | _ByteOrder = ...,
233
+ copy: bool = ...,
234
+ ) -> _RecArray[record]: ...
venv/lib/python3.10/site-packages/numpy/core/shape_base.pyi ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Sequence
2
+ from typing import TypeVar, overload, Any, SupportsIndex
3
+
4
+ from numpy import generic, _CastingKind
5
+ from numpy._typing import (
6
+ NDArray,
7
+ ArrayLike,
8
+ DTypeLike,
9
+ _ArrayLike,
10
+ _DTypeLike,
11
+ )
12
+
13
+ _SCT = TypeVar("_SCT", bound=generic)
14
+ _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
15
+
16
+ __all__: list[str]
17
+
18
+ @overload
19
+ def atleast_1d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
20
+ @overload
21
+ def atleast_1d(arys: ArrayLike, /) -> NDArray[Any]: ...
22
+ @overload
23
+ def atleast_1d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
24
+
25
+ @overload
26
+ def atleast_2d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
27
+ @overload
28
+ def atleast_2d(arys: ArrayLike, /) -> NDArray[Any]: ...
29
+ @overload
30
+ def atleast_2d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
31
+
32
+ @overload
33
+ def atleast_3d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
34
+ @overload
35
+ def atleast_3d(arys: ArrayLike, /) -> NDArray[Any]: ...
36
+ @overload
37
+ def atleast_3d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
38
+
39
+ @overload
40
+ def vstack(
41
+ tup: Sequence[_ArrayLike[_SCT]],
42
+ *,
43
+ dtype: None = ...,
44
+ casting: _CastingKind = ...
45
+ ) -> NDArray[_SCT]: ...
46
+ @overload
47
+ def vstack(
48
+ tup: Sequence[ArrayLike],
49
+ *,
50
+ dtype: _DTypeLike[_SCT],
51
+ casting: _CastingKind = ...
52
+ ) -> NDArray[_SCT]: ...
53
+ @overload
54
+ def vstack(
55
+ tup: Sequence[ArrayLike],
56
+ *,
57
+ dtype: DTypeLike = ...,
58
+ casting: _CastingKind = ...
59
+ ) -> NDArray[Any]: ...
60
+
61
+ @overload
62
+ def hstack(
63
+ tup: Sequence[_ArrayLike[_SCT]],
64
+ *,
65
+ dtype: None = ...,
66
+ casting: _CastingKind = ...
67
+ ) -> NDArray[_SCT]: ...
68
+ @overload
69
+ def hstack(
70
+ tup: Sequence[ArrayLike],
71
+ *,
72
+ dtype: _DTypeLike[_SCT],
73
+ casting: _CastingKind = ...
74
+ ) -> NDArray[_SCT]: ...
75
+ @overload
76
+ def hstack(
77
+ tup: Sequence[ArrayLike],
78
+ *,
79
+ dtype: DTypeLike = ...,
80
+ casting: _CastingKind = ...
81
+ ) -> NDArray[Any]: ...
82
+
83
+ @overload
84
+ def stack(
85
+ arrays: Sequence[_ArrayLike[_SCT]],
86
+ axis: SupportsIndex = ...,
87
+ out: None = ...,
88
+ *,
89
+ dtype: None = ...,
90
+ casting: _CastingKind = ...
91
+ ) -> NDArray[_SCT]: ...
92
+ @overload
93
+ def stack(
94
+ arrays: Sequence[ArrayLike],
95
+ axis: SupportsIndex = ...,
96
+ out: None = ...,
97
+ *,
98
+ dtype: _DTypeLike[_SCT],
99
+ casting: _CastingKind = ...
100
+ ) -> NDArray[_SCT]: ...
101
+ @overload
102
+ def stack(
103
+ arrays: Sequence[ArrayLike],
104
+ axis: SupportsIndex = ...,
105
+ out: None = ...,
106
+ *,
107
+ dtype: DTypeLike = ...,
108
+ casting: _CastingKind = ...
109
+ ) -> NDArray[Any]: ...
110
+ @overload
111
+ def stack(
112
+ arrays: Sequence[ArrayLike],
113
+ axis: SupportsIndex = ...,
114
+ out: _ArrayType = ...,
115
+ *,
116
+ dtype: DTypeLike = ...,
117
+ casting: _CastingKind = ...
118
+ ) -> _ArrayType: ...
119
+
120
+ @overload
121
+ def block(arrays: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
122
+ @overload
123
+ def block(arrays: ArrayLike) -> NDArray[Any]: ...
venv/lib/python3.10/site-packages/numpy/core/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/numpy/core/tests/_locales.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Provide class for testing in French locale
2
+
3
+ """
4
+ import sys
5
+ import locale
6
+
7
+ import pytest
8
+
9
+ __ALL__ = ['CommaDecimalPointLocale']
10
+
11
+
12
+ def find_comma_decimal_point_locale():
13
+ """See if platform has a decimal point as comma locale.
14
+
15
+ Find a locale that uses a comma instead of a period as the
16
+ decimal point.
17
+
18
+ Returns
19
+ -------
20
+ old_locale: str
21
+ Locale when the function was called.
22
+ new_locale: {str, None)
23
+ First French locale found, None if none found.
24
+
25
+ """
26
+ if sys.platform == 'win32':
27
+ locales = ['FRENCH']
28
+ else:
29
+ locales = ['fr_FR', 'fr_FR.UTF-8', 'fi_FI', 'fi_FI.UTF-8']
30
+
31
+ old_locale = locale.getlocale(locale.LC_NUMERIC)
32
+ new_locale = None
33
+ try:
34
+ for loc in locales:
35
+ try:
36
+ locale.setlocale(locale.LC_NUMERIC, loc)
37
+ new_locale = loc
38
+ break
39
+ except locale.Error:
40
+ pass
41
+ finally:
42
+ locale.setlocale(locale.LC_NUMERIC, locale=old_locale)
43
+ return old_locale, new_locale
44
+
45
+
46
+ class CommaDecimalPointLocale:
47
+ """Sets LC_NUMERIC to a locale with comma as decimal point.
48
+
49
+ Classes derived from this class have setup and teardown methods that run
50
+ tests with locale.LC_NUMERIC set to a locale where commas (',') are used as
51
+ the decimal point instead of periods ('.'). On exit the locale is restored
52
+ to the initial locale. It also serves as context manager with the same
53
+ effect. If no such locale is available, the test is skipped.
54
+
55
+ .. versionadded:: 1.15.0
56
+
57
+ """
58
+ (cur_locale, tst_locale) = find_comma_decimal_point_locale()
59
+
60
+ def setup_method(self):
61
+ if self.tst_locale is None:
62
+ pytest.skip("No French locale available")
63
+ locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale)
64
+
65
+ def teardown_method(self):
66
+ locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale)
67
+
68
+ def __enter__(self):
69
+ if self.tst_locale is None:
70
+ pytest.skip("No French locale available")
71
+ locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale)
72
+
73
+ def __exit__(self, type, value, traceback):
74
+ locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale)
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arcsin.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0xbe7d3a7c,0xbe7fe217,4
3
+ np.float32,0x3dc102f0,0x3dc14c60,4
4
+ np.float32,0xbe119c28,0xbe121aef,4
5
+ np.float32,0xbe51cd68,0xbe534c75,4
6
+ np.float32,0x3c04a300,0x3c04a35f,4
7
+ np.float32,0xbf4f0b62,0xbf712a69,4
8
+ np.float32,0x3ef61a5c,0x3f005cf6,4
9
+ np.float32,0xbf13024c,0xbf1c97df,4
10
+ np.float32,0x3e93b580,0x3e95d6b5,4
11
+ np.float32,0x3e44e7b8,0x3e4623a5,4
12
+ np.float32,0xbe35df20,0xbe36d773,4
13
+ np.float32,0x3eecd2c0,0x3ef633cf,4
14
+ np.float32,0x3f2772ba,0x3f36862a,4
15
+ np.float32,0x3e211ea8,0x3e21cac5,4
16
+ np.float32,0x3e3b3d90,0x3e3c4cc6,4
17
+ np.float32,0x3f37c962,0x3f4d018c,4
18
+ np.float32,0x3e92ad88,0x3e94c31a,4
19
+ np.float32,0x3f356ffc,0x3f49a766,4
20
+ np.float32,0x3f487ba2,0x3f665254,4
21
+ np.float32,0x3f061c46,0x3f0d27ae,4
22
+ np.float32,0xbee340a2,0xbeeb7722,4
23
+ np.float32,0xbe85aede,0xbe874026,4
24
+ np.float32,0x3f34cf9a,0x3f48c474,4
25
+ np.float32,0x3e29a690,0x3e2a6fbd,4
26
+ np.float32,0xbeb29428,0xbeb669d1,4
27
+ np.float32,0xbe606d40,0xbe624370,4
28
+ np.float32,0x3dae6860,0x3dae9e85,4
29
+ np.float32,0xbf04872b,0xbf0b4d25,4
30
+ np.float32,0x3f2080e2,0x3f2d7ab0,4
31
+ np.float32,0xbec77dcc,0xbecceb27,4
32
+ np.float32,0x3e0dda10,0x3e0e4f38,4
33
+ np.float32,0xbefaf970,0xbf03262c,4
34
+ np.float32,0x3f576a0c,0x3f7ffee6,4
35
+ np.float32,0x3f222382,0x3f2f95d6,4
36
+ np.float32,0x7fc00000,0x7fc00000,4
37
+ np.float32,0x3e41c468,0x3e42f14e,4
38
+ np.float32,0xbf2f64dd,0xbf4139a8,4
39
+ np.float32,0xbf60ef90,0xbf895956,4
40
+ np.float32,0xbf67c855,0xbf90eff0,4
41
+ np.float32,0xbed35aee,0xbed9df00,4
42
+ np.float32,0xbf2c7d92,0xbf3d448f,4
43
+ np.float32,0x3f7b1604,0x3faff122,4
44
+ np.float32,0xbf7c758b,0xbfb3bf87,4
45
+ np.float32,0x3ecda1c8,0x3ed39acf,4
46
+ np.float32,0x3f3af8ae,0x3f519fcb,4
47
+ np.float32,0xbf16e6a3,0xbf2160fd,4
48
+ np.float32,0x3f0c97d2,0x3f14d668,4
49
+ np.float32,0x3f0a8060,0x3f1257b9,4
50
+ np.float32,0x3f27905a,0x3f36ad57,4
51
+ np.float32,0x3eeaeba4,0x3ef40efe,4
52
+ np.float32,0x3e58dde0,0x3e5a8580,4
53
+ np.float32,0xbf0cabe2,0xbf14ee6b,4
54
+ np.float32,0xbe805ca8,0xbe81bf03,4
55
+ np.float32,0x3f5462ba,0x3f7a7b85,4
56
+ np.float32,0xbee235d0,0xbeea4d8b,4
57
+ np.float32,0xbe880cb0,0xbe89b426,4
58
+ np.float32,0x80000001,0x80000001,4
59
+ np.float32,0x3f208c00,0x3f2d88f6,4
60
+ np.float32,0xbf34f3d2,0xbf48f7a2,4
61
+ np.float32,0x3f629428,0x3f8b1763,4
62
+ np.float32,0xbf52a900,0xbf776b4a,4
63
+ np.float32,0xbd17f8d0,0xbd1801be,4
64
+ np.float32,0xbef7cada,0xbf0153d1,4
65
+ np.float32,0x3f7d3b90,0x3fb63967,4
66
+ np.float32,0xbd6a20b0,0xbd6a4160,4
67
+ np.float32,0x3f740496,0x3fa1beb7,4
68
+ np.float32,0x3ed8762c,0x3edf7dd9,4
69
+ np.float32,0x3f53b066,0x3f793d42,4
70
+ np.float32,0xbe9de718,0xbea084f9,4
71
+ np.float32,0x3ea3ae90,0x3ea69b4b,4
72
+ np.float32,0x3f1b8f00,0x3f273183,4
73
+ np.float32,0x3f5cd6ac,0x3f852ead,4
74
+ np.float32,0x3f29d510,0x3f39b169,4
75
+ np.float32,0x3ee2a934,0x3eeace33,4
76
+ np.float32,0x3eecac94,0x3ef608c2,4
77
+ np.float32,0xbea915e2,0xbeac5203,4
78
+ np.float32,0xbd316e90,0xbd317cc8,4
79
+ np.float32,0xbf70b495,0xbf9c97b6,4
80
+ np.float32,0xbe80d976,0xbe823ff3,4
81
+ np.float32,0x3e9205f8,0x3e94143f,4
82
+ np.float32,0x3f49247e,0x3f676296,4
83
+ np.float32,0x3d9030c0,0x3d904f50,4
84
+ np.float32,0x3e4df058,0x3e4f5a5c,4
85
+ np.float32,0xbe1fd360,0xbe207b58,4
86
+ np.float32,0xbf69dc7c,0xbf937006,4
87
+ np.float32,0x3f36babe,0x3f4b7df3,4
88
+ np.float32,0xbe8c9758,0xbe8e6bb7,4
89
+ np.float32,0xbf4de72d,0xbf6f3c20,4
90
+ np.float32,0xbecdad68,0xbed3a780,4
91
+ np.float32,0xbf73e2cf,0xbfa18702,4
92
+ np.float32,0xbece16a8,0xbed41a75,4
93
+ np.float32,0x3f618a96,0x3f89fc6d,4
94
+ np.float32,0xbf325853,0xbf454ea9,4
95
+ np.float32,0x3f138568,0x3f1d3828,4
96
+ np.float32,0xbf56a6e9,0xbf7e9748,4
97
+ np.float32,0x3ef5d594,0x3f0035bf,4
98
+ np.float32,0xbf408220,0xbf59dfaa,4
99
+ np.float32,0xbed120e6,0xbed76dd5,4
100
+ np.float32,0xbf6dbda5,0xbf986cee,4
101
+ np.float32,0x3f744a38,0x3fa23282,4
102
+ np.float32,0xbe4b56d8,0xbe4cb329,4
103
+ np.float32,0x3f54c5f2,0x3f7b2d97,4
104
+ np.float32,0xbd8b1c90,0xbd8b3801,4
105
+ np.float32,0x3ee19a48,0x3ee9a03b,4
106
+ np.float32,0x3f48460e,0x3f65fc3d,4
107
+ np.float32,0x3eb541c0,0x3eb9461e,4
108
+ np.float32,0xbea7d098,0xbeaaf98c,4
109
+ np.float32,0xbda99e40,0xbda9d00c,4
110
+ np.float32,0xbefb2ca6,0xbf03438d,4
111
+ np.float32,0x3f4256be,0x3f5cab0b,4
112
+ np.float32,0xbdbdb198,0xbdbdf74d,4
113
+ np.float32,0xbf325b5f,0xbf4552e9,4
114
+ np.float32,0xbf704d1a,0xbf9c00b4,4
115
+ np.float32,0x3ebb1d04,0x3ebf8cf8,4
116
+ np.float32,0xbed03566,0xbed66bf1,4
117
+ np.float32,0x3e8fcee8,0x3e91c501,4
118
+ np.float32,0xbf2e1eec,0xbf3f7b9d,4
119
+ np.float32,0x3f33c4d2,0x3f474cac,4
120
+ np.float32,0x3f598ef4,0x3f8201b4,4
121
+ np.float32,0x3e09bb30,0x3e0a2660,4
122
+ np.float32,0x3ed4e228,0x3edb8cdb,4
123
+ np.float32,0x3eb7a190,0x3ebbd0a1,4
124
+ np.float32,0xbd9ae630,0xbd9b0c18,4
125
+ np.float32,0x3f43020e,0x3f5db2d7,4
126
+ np.float32,0xbec06ac0,0xbec542d4,4
127
+ np.float32,0x3f3dfde0,0x3f561674,4
128
+ np.float32,0xbf64084a,0xbf8cabe6,4
129
+ np.float32,0xbd6f95b0,0xbd6fb8b7,4
130
+ np.float32,0x3f268640,0x3f354e2d,4
131
+ np.float32,0xbe72b4bc,0xbe7509b2,4
132
+ np.float32,0xbf3414fa,0xbf47bd5a,4
133
+ np.float32,0xbf375218,0xbf4c566b,4
134
+ np.float32,0x3f203c1a,0x3f2d2273,4
135
+ np.float32,0xbd503530,0xbd504c2b,4
136
+ np.float32,0xbc45e540,0xbc45e67b,4
137
+ np.float32,0xbf175c4f,0xbf21f2c6,4
138
+ np.float32,0x3f7432a6,0x3fa20b2b,4
139
+ np.float32,0xbf43367f,0xbf5e03d8,4
140
+ np.float32,0x3eb3997c,0x3eb780c4,4
141
+ np.float32,0x3e5574c8,0x3e570878,4
142
+ np.float32,0xbf04b57b,0xbf0b8349,4
143
+ np.float32,0x3f6216d8,0x3f8a914b,4
144
+ np.float32,0xbf57a237,0xbf80337d,4
145
+ np.float32,0xbee1403a,0xbee93bee,4
146
+ np.float32,0xbeaf9b9a,0xbeb33f3b,4
147
+ np.float32,0xbf109374,0xbf19a223,4
148
+ np.float32,0xbeae6824,0xbeb1f810,4
149
+ np.float32,0xbcff9320,0xbcff9dbe,4
150
+ np.float32,0x3ed205c0,0x3ed868a9,4
151
+ np.float32,0x3d897c30,0x3d8996ad,4
152
+ np.float32,0xbf2899d2,0xbf380d4c,4
153
+ np.float32,0xbf54cb0b,0xbf7b36c2,4
154
+ np.float32,0x3ea8e8ec,0x3eac2262,4
155
+ np.float32,0x3ef5e1a0,0x3f003c9d,4
156
+ np.float32,0xbf00c81e,0xbf06f1e2,4
157
+ np.float32,0xbf346775,0xbf483181,4
158
+ np.float32,0x3f7a4fe4,0x3fae077c,4
159
+ np.float32,0x3f00776e,0x3f06948f,4
160
+ np.float32,0xbe0a3078,0xbe0a9cbc,4
161
+ np.float32,0xbeba0b06,0xbebe66be,4
162
+ np.float32,0xbdff4e38,0xbdfff8b2,4
163
+ np.float32,0xbe927f70,0xbe9492ff,4
164
+ np.float32,0x3ebb07e0,0x3ebf7642,4
165
+ np.float32,0x3ebcf8e0,0x3ec18c95,4
166
+ np.float32,0x3f49bdfc,0x3f685b51,4
167
+ np.float32,0x3cbc29c0,0x3cbc2dfd,4
168
+ np.float32,0xbe9e951a,0xbea13bf1,4
169
+ np.float32,0xbe8c237c,0xbe8df33d,4
170
+ np.float32,0x3e17f198,0x3e1881c4,4
171
+ np.float32,0xbd0b5220,0xbd0b5902,4
172
+ np.float32,0xbf34c4a2,0xbf48b4f5,4
173
+ np.float32,0xbedaa814,0xbee1ea94,4
174
+ np.float32,0x3ebf5d6c,0x3ec42053,4
175
+ np.float32,0x3cd04b40,0x3cd050ff,4
176
+ np.float32,0xbec33fe0,0xbec85244,4
177
+ np.float32,0xbf00b27a,0xbf06d8d8,4
178
+ np.float32,0x3f15d7be,0x3f201243,4
179
+ np.float32,0xbe3debd0,0xbe3f06f7,4
180
+ np.float32,0xbea81704,0xbeab4418,4
181
+ np.float32,0x1,0x1,4
182
+ np.float32,0x3f49e6ba,0x3f689d8b,4
183
+ np.float32,0x3f351030,0x3f491fc0,4
184
+ np.float32,0x3e607de8,0x3e625482,4
185
+ np.float32,0xbe8dbbe4,0xbe8f9c0e,4
186
+ np.float32,0x3edbf350,0x3ee35924,4
187
+ np.float32,0xbf0c84c4,0xbf14bf9c,4
188
+ np.float32,0x3eb218b0,0x3eb5e61a,4
189
+ np.float32,0x3e466dd0,0x3e47b138,4
190
+ np.float32,0xbe8ece94,0xbe90ba01,4
191
+ np.float32,0xbe82ec2a,0xbe84649a,4
192
+ np.float32,0xbf7e1f10,0xbfb98b9e,4
193
+ np.float32,0xbf2d00ea,0xbf3df688,4
194
+ np.float32,0x3db7cdd0,0x3db80d36,4
195
+ np.float32,0xbe388b98,0xbe398f25,4
196
+ np.float32,0xbd86cb40,0xbd86e436,4
197
+ np.float32,0x7f7fffff,0x7fc00000,4
198
+ np.float32,0x3f472a60,0x3f6436c6,4
199
+ np.float32,0xbf5b2c1d,0xbf838d87,4
200
+ np.float32,0x3f0409ea,0x3f0abad8,4
201
+ np.float32,0x3f47dd0e,0x3f6553f0,4
202
+ np.float32,0x3e3eab00,0x3e3fc98a,4
203
+ np.float32,0xbf7c2a7f,0xbfb2e19b,4
204
+ np.float32,0xbeda0048,0xbee13112,4
205
+ np.float32,0x3f46600a,0x3f62f5b2,4
206
+ np.float32,0x3f45aef4,0x3f61de43,4
207
+ np.float32,0x3dd40a50,0x3dd46bc4,4
208
+ np.float32,0xbf6cdd0b,0xbf974191,4
209
+ np.float32,0x3f78de4c,0x3faac725,4
210
+ np.float32,0x3f3c39a4,0x3f53777f,4
211
+ np.float32,0xbe2a30ec,0xbe2afc0b,4
212
+ np.float32,0xbf3c0ef0,0xbf533887,4
213
+ np.float32,0x3ecb6548,0x3ed12a53,4
214
+ np.float32,0x3eb994e8,0x3ebde7fc,4
215
+ np.float32,0x3d4c1ee0,0x3d4c3487,4
216
+ np.float32,0xbf52cb6d,0xbf77a7eb,4
217
+ np.float32,0x3eb905d4,0x3ebd4e80,4
218
+ np.float32,0x3e712428,0x3e736d72,4
219
+ np.float32,0xbf79ee6e,0xbfad22be,4
220
+ np.float32,0x3de6f8b0,0x3de776c1,4
221
+ np.float32,0x3e9b2898,0x3e9da325,4
222
+ np.float32,0x3ea09b20,0x3ea35d20,4
223
+ np.float32,0x3d0ea9a0,0x3d0eb103,4
224
+ np.float32,0xbd911500,0xbd913423,4
225
+ np.float32,0x3e004618,0x3e009c97,4
226
+ np.float32,0x3f5e0e5a,0x3f86654c,4
227
+ np.float32,0x3f2e6300,0x3f3fd88b,4
228
+ np.float32,0x3e0cf5d0,0x3e0d68c3,4
229
+ np.float32,0x3d6a16c0,0x3d6a376c,4
230
+ np.float32,0x3f7174aa,0x3f9db53c,4
231
+ np.float32,0xbe04bba0,0xbe051b81,4
232
+ np.float32,0xbe6fdcb4,0xbe721c92,4
233
+ np.float32,0x3f4379f0,0x3f5e6c31,4
234
+ np.float32,0xbf680098,0xbf913257,4
235
+ np.float32,0xbf3c31ca,0xbf536bea,4
236
+ np.float32,0x3f59db58,0x3f824a4e,4
237
+ np.float32,0xbf3ffc84,0xbf591554,4
238
+ np.float32,0x3d1d5160,0x3d1d5b48,4
239
+ np.float32,0x3f6c64ae,0x3f96a3da,4
240
+ np.float32,0xbf1b49fd,0xbf26daaa,4
241
+ np.float32,0x3ec80be0,0x3ecd8576,4
242
+ np.float32,0x3f3becc0,0x3f530629,4
243
+ np.float32,0xbea93890,0xbeac76c1,4
244
+ np.float32,0x3f5b3acc,0x3f839bbd,4
245
+ np.float32,0xbf5d6818,0xbf85bef9,4
246
+ np.float32,0x3f794266,0x3fab9fa6,4
247
+ np.float32,0xbee8eb7c,0xbef1cf3b,4
248
+ np.float32,0xbf360a06,0xbf4a821e,4
249
+ np.float32,0x3f441cf6,0x3f5f693d,4
250
+ np.float32,0x3e60de40,0x3e62b742,4
251
+ np.float32,0xbebb3d7e,0xbebfafdc,4
252
+ np.float32,0x3e56a3a0,0x3e583e28,4
253
+ np.float32,0x3f375bfe,0x3f4c6499,4
254
+ np.float32,0xbf384d7d,0xbf4dbf9a,4
255
+ np.float32,0x3efb03a4,0x3f032c06,4
256
+ np.float32,0x3f1d5d10,0x3f29794d,4
257
+ np.float32,0xbe25f7dc,0xbe26b41d,4
258
+ np.float32,0x3f6d2f88,0x3f97aebb,4
259
+ np.float32,0xbe9fa100,0xbea255cb,4
260
+ np.float32,0xbf21dafa,0xbf2f382a,4
261
+ np.float32,0x3d3870e0,0x3d3880d9,4
262
+ np.float32,0x3eeaf00c,0x3ef413f4,4
263
+ np.float32,0xbc884ea0,0xbc88503c,4
264
+ np.float32,0xbf7dbdad,0xbfb80b6d,4
265
+ np.float32,0xbf4eb713,0xbf709b46,4
266
+ np.float32,0xbf1c0ad4,0xbf27cd92,4
267
+ np.float32,0x3f323088,0x3f451737,4
268
+ np.float32,0x3e405d88,0x3e4183e1,4
269
+ np.float32,0x3d7ad580,0x3d7afdb4,4
270
+ np.float32,0xbf207338,0xbf2d6927,4
271
+ np.float32,0xbecf7948,0xbed59e1a,4
272
+ np.float32,0x3f16ff94,0x3f217fde,4
273
+ np.float32,0xbdf19588,0xbdf225dd,4
274
+ np.float32,0xbf4d9654,0xbf6eb442,4
275
+ np.float32,0xbf390b9b,0xbf4ed220,4
276
+ np.float32,0xbe155a74,0xbe15e354,4
277
+ np.float32,0x3f519e4c,0x3f759850,4
278
+ np.float32,0xbee3f08c,0xbeec3b84,4
279
+ np.float32,0xbf478be7,0xbf64d23b,4
280
+ np.float32,0xbefdee50,0xbf04d92a,4
281
+ np.float32,0x3e8def78,0x3e8fd1bc,4
282
+ np.float32,0x3e3df2a8,0x3e3f0dee,4
283
+ np.float32,0xbf413e22,0xbf5afd97,4
284
+ np.float32,0xbf1b8bc4,0xbf272d71,4
285
+ np.float32,0xbf31e5be,0xbf44af22,4
286
+ np.float32,0x3de7e080,0x3de86010,4
287
+ np.float32,0xbf5ddf7e,0xbf863645,4
288
+ np.float32,0x3f3eba6a,0x3f57306e,4
289
+ np.float32,0xff7fffff,0x7fc00000,4
290
+ np.float32,0x3ec22d5c,0x3ec72973,4
291
+ np.float32,0x80800000,0x80800000,4
292
+ np.float32,0x3f032e0c,0x3f09ba82,4
293
+ np.float32,0x3d74bd60,0x3d74e2b7,4
294
+ np.float32,0xbea0d61e,0xbea39b42,4
295
+ np.float32,0xbefdfa78,0xbf04e02a,4
296
+ np.float32,0x3e5cb220,0x3e5e70ec,4
297
+ np.float32,0xbe239e54,0xbe2452a4,4
298
+ np.float32,0x3f452738,0x3f61090e,4
299
+ np.float32,0x3e99a2e0,0x3e9c0a66,4
300
+ np.float32,0x3e4394d8,0x3e44ca5f,4
301
+ np.float32,0x3f4472e2,0x3f5fef14,4
302
+ np.float32,0xbf46bc70,0xbf638814,4
303
+ np.float32,0xbf0b910f,0xbf139c7a,4
304
+ np.float32,0x3f36b4a6,0x3f4b753f,4
305
+ np.float32,0x3e0bf478,0x3e0c64f6,4
306
+ np.float32,0x3ce02480,0x3ce02ba9,4
307
+ np.float32,0xbd904b10,0xbd9069b1,4
308
+ np.float32,0xbf7f5d72,0xbfc00b70,4
309
+ np.float32,0x3f62127e,0x3f8a8ca8,4
310
+ np.float32,0xbf320253,0xbf44d6e4,4
311
+ np.float32,0x3f2507be,0x3f335833,4
312
+ np.float32,0x3f299284,0x3f395887,4
313
+ np.float32,0xbd8211b0,0xbd82281d,4
314
+ np.float32,0xbd3374c0,0xbd338376,4
315
+ np.float32,0x3f36c56a,0x3f4b8d30,4
316
+ np.float32,0xbf51f704,0xbf76331f,4
317
+ np.float32,0xbe9871ca,0xbe9acab2,4
318
+ np.float32,0xbe818d8c,0xbe82fa0f,4
319
+ np.float32,0x3f08b958,0x3f103c18,4
320
+ np.float32,0x3f22559a,0x3f2fd698,4
321
+ np.float32,0xbf11f388,0xbf1b4db8,4
322
+ np.float32,0x3ebe1990,0x3ec2c359,4
323
+ np.float32,0xbe75ab38,0xbe7816b6,4
324
+ np.float32,0x3e96102c,0x3e984c99,4
325
+ np.float32,0xbe80d9d2,0xbe824052,4
326
+ np.float32,0x3ef47588,0x3efeda7f,4
327
+ np.float32,0xbe45e524,0xbe4725ea,4
328
+ np.float32,0x3f7f9e7a,0x3fc213ff,4
329
+ np.float32,0x3f1d3c36,0x3f294faa,4
330
+ np.float32,0xbf3c58db,0xbf53a591,4
331
+ np.float32,0x3f0d3d20,0x3f159c69,4
332
+ np.float32,0x3f744be6,0x3fa23552,4
333
+ np.float32,0x3f2e0cea,0x3f3f630e,4
334
+ np.float32,0x3e193c10,0x3e19cff7,4
335
+ np.float32,0xbf4150ac,0xbf5b19dd,4
336
+ np.float32,0xbf145f72,0xbf1e4355,4
337
+ np.float32,0xbb76cc00,0xbb76cc26,4
338
+ np.float32,0x3f756780,0x3fa41b3e,4
339
+ np.float32,0x3ea9b868,0x3eacfe3c,4
340
+ np.float32,0x3d07c920,0x3d07cf7f,4
341
+ np.float32,0xbf2263d4,0xbf2fe8ff,4
342
+ np.float32,0x3e53b3f8,0x3e553daa,4
343
+ np.float32,0xbf785be8,0xbfa9b5ba,4
344
+ np.float32,0x3f324f7a,0x3f454254,4
345
+ np.float32,0xbf2188f2,0xbf2ece5b,4
346
+ np.float32,0xbe33781c,0xbe3466a2,4
347
+ np.float32,0xbd3cf120,0xbd3d024c,4
348
+ np.float32,0x3f06b18a,0x3f0dd70f,4
349
+ np.float32,0x3f40d63e,0x3f5a5f6a,4
350
+ np.float32,0x3f752340,0x3fa3a41e,4
351
+ np.float32,0xbe1cf1c0,0xbe1d90bc,4
352
+ np.float32,0xbf02d948,0xbf0957d7,4
353
+ np.float32,0x3f73bed0,0x3fa14bf7,4
354
+ np.float32,0x3d914920,0x3d916864,4
355
+ np.float32,0x7fa00000,0x7fe00000,4
356
+ np.float32,0xbe67a5d8,0xbe69aba7,4
357
+ np.float32,0x3f689c4a,0x3f91eb9f,4
358
+ np.float32,0xbf196e00,0xbf248601,4
359
+ np.float32,0xbf50dacb,0xbf7444fe,4
360
+ np.float32,0x3f628b86,0x3f8b0e1e,4
361
+ np.float32,0x3f6ee2f2,0x3f99fe7f,4
362
+ np.float32,0x3ee5df40,0x3eee6492,4
363
+ np.float32,0x3f501746,0x3f72f41b,4
364
+ np.float32,0xbf1f0f18,0xbf2ba164,4
365
+ np.float32,0xbf1a8bfd,0xbf25ec01,4
366
+ np.float32,0xbd4926f0,0xbd493ba9,4
367
+ np.float32,0xbf4e364f,0xbf6fc17b,4
368
+ np.float32,0x3e50c578,0x3e523ed4,4
369
+ np.float32,0x3f65bf10,0x3f8e95ce,4
370
+ np.float32,0xbe8d75a2,0xbe8f52f2,4
371
+ np.float32,0xbf3f557e,0xbf581962,4
372
+ np.float32,0xbeff2bfc,0xbf05903a,4
373
+ np.float32,0x3f5e8bde,0x3f86e3d8,4
374
+ np.float32,0xbf7a0012,0xbfad4b9b,4
375
+ np.float32,0x3edefce0,0x3ee6b790,4
376
+ np.float32,0xbf0003de,0xbf060f09,4
377
+ np.float32,0x3efc4650,0x3f03e548,4
378
+ np.float32,0x3f4582e4,0x3f6198f5,4
379
+ np.float32,0x3f10086c,0x3f18f9d0,4
380
+ np.float32,0x3f1cd304,0x3f28ca77,4
381
+ np.float32,0x3f683366,0x3f916e8d,4
382
+ np.float32,0xbed49392,0xbedb3675,4
383
+ np.float32,0xbf6fe5f6,0xbf9b6c0e,4
384
+ np.float32,0xbf59b416,0xbf8224f6,4
385
+ np.float32,0x3d20c960,0x3d20d3f4,4
386
+ np.float32,0x3f6b00d6,0x3f94dbe7,4
387
+ np.float32,0x3f6c26ae,0x3f965352,4
388
+ np.float32,0xbf370ea6,0xbf4bf5dd,4
389
+ np.float32,0x3dfe7230,0x3dff1af1,4
390
+ np.float32,0xbefc21a8,0xbf03d038,4
391
+ np.float32,0x3f16a990,0x3f21156a,4
392
+ np.float32,0xbef8ac0c,0xbf01d48f,4
393
+ np.float32,0x3f170de8,0x3f21919d,4
394
+ np.float32,0x3db9ef80,0x3dba3122,4
395
+ np.float32,0x3d696400,0x3d698461,4
396
+ np.float32,0x3f007aa2,0x3f069843,4
397
+ np.float32,0x3f22827c,0x3f3010a9,4
398
+ np.float32,0x3f3650dc,0x3f4ae6f1,4
399
+ np.float32,0xbf1d8037,0xbf29a5e1,4
400
+ np.float32,0xbf08fdc4,0xbf108d0e,4
401
+ np.float32,0xbd8df350,0xbd8e1079,4
402
+ np.float32,0xbf36bb32,0xbf4b7e98,4
403
+ np.float32,0x3f2e3756,0x3f3f9ced,4
404
+ np.float32,0x3d5a6f20,0x3d5a89aa,4
405
+ np.float32,0x3f55d568,0x3f7d1889,4
406
+ np.float32,0x3e1ed110,0x3e1f75d9,4
407
+ np.float32,0x3e7386b8,0x3e75e1dc,4
408
+ np.float32,0x3f48ea0e,0x3f670434,4
409
+ np.float32,0x3e921fb0,0x3e942f14,4
410
+ np.float32,0xbf0d4d0b,0xbf15af7f,4
411
+ np.float32,0x3f179ed2,0x3f224549,4
412
+ np.float32,0xbf3a328e,0xbf507e6d,4
413
+ np.float32,0xbf74591a,0xbfa24b6e,4
414
+ np.float32,0x3ec7d1c4,0x3ecd4657,4
415
+ np.float32,0xbf6ecbed,0xbf99de85,4
416
+ np.float32,0x3db0bd00,0x3db0f559,4
417
+ np.float32,0x7f800000,0x7fc00000,4
418
+ np.float32,0x3e0373b8,0x3e03d0d6,4
419
+ np.float32,0xbf439784,0xbf5e9a04,4
420
+ np.float32,0xbef97a9e,0xbf024ac6,4
421
+ np.float32,0x3e4d71a8,0x3e4ed90a,4
422
+ np.float32,0xbf14d868,0xbf1ed7e3,4
423
+ np.float32,0xbf776870,0xbfa7ce37,4
424
+ np.float32,0xbe32a500,0xbe339038,4
425
+ np.float32,0xbf326d8a,0xbf456c3d,4
426
+ np.float32,0xbe9b758c,0xbe9df3e7,4
427
+ np.float32,0x3d9515a0,0x3d95376a,4
428
+ np.float32,0x3e3f7320,0x3e40953e,4
429
+ np.float32,0xbee57e7e,0xbeedf84f,4
430
+ np.float32,0x3e821e94,0x3e838ffd,4
431
+ np.float32,0x3f74beaa,0x3fa2f721,4
432
+ np.float32,0xbe9b7672,0xbe9df4d9,4
433
+ np.float32,0x3f4041fc,0x3f597e71,4
434
+ np.float32,0xbe9ea7c4,0xbea14f92,4
435
+ np.float32,0xbf800000,0xbfc90fdb,4
436
+ np.float32,0x3e04fb90,0x3e055bfd,4
437
+ np.float32,0xbf14d3d6,0xbf1ed245,4
438
+ np.float32,0xbe84ebec,0xbe86763e,4
439
+ np.float32,0x3f08e568,0x3f107039,4
440
+ np.float32,0x3d8dc9e0,0x3d8de6ef,4
441
+ np.float32,0x3ea4549c,0x3ea74a94,4
442
+ np.float32,0xbebd2806,0xbec1bf51,4
443
+ np.float32,0x3f311a26,0x3f439498,4
444
+ np.float32,0xbf3d2222,0xbf54cf7e,4
445
+ np.float32,0x3e00c500,0x3e011c81,4
446
+ np.float32,0xbe35ed1c,0xbe36e5a9,4
447
+ np.float32,0xbd4ec020,0xbd4ed6a0,4
448
+ np.float32,0x3e1eb088,0x3e1f54eb,4
449
+ np.float32,0x3cf94840,0x3cf9521a,4
450
+ np.float32,0xbf010c5d,0xbf0740e0,4
451
+ np.float32,0xbf3bd63b,0xbf52e502,4
452
+ np.float32,0x3f233f30,0x3f310542,4
453
+ np.float32,0x3ea24128,0x3ea519d7,4
454
+ np.float32,0x3f478b38,0x3f64d124,4
455
+ np.float32,0x3f1e0c6c,0x3f2a57ec,4
456
+ np.float32,0xbf3ad294,0xbf51680a,4
457
+ np.float32,0x3ede0554,0x3ee5a4b4,4
458
+ np.float32,0x3e451a98,0x3e46577d,4
459
+ np.float32,0x3f520164,0x3f764542,4
460
+ np.float32,0x0,0x0,4
461
+ np.float32,0xbd056cd0,0xbd0572db,4
462
+ np.float32,0xbf58b018,0xbf812f5e,4
463
+ np.float32,0x3e036eb0,0x3e03cbc3,4
464
+ np.float32,0x3d1377a0,0x3d137fc9,4
465
+ np.float32,0xbf692d3a,0xbf929a2c,4
466
+ np.float32,0xbec60fb8,0xbecb5dea,4
467
+ np.float32,0x3ed23340,0x3ed89a8e,4
468
+ np.float32,0x3c87f040,0x3c87f1d9,4
469
+ np.float32,0x3dac62f0,0x3dac9737,4
470
+ np.float32,0xbed97c16,0xbee09f02,4
471
+ np.float32,0xbf2d5f3c,0xbf3e769c,4
472
+ np.float32,0xbc3b7c40,0xbc3b7d4c,4
473
+ np.float32,0x3ed998ec,0x3ee0bedd,4
474
+ np.float32,0x3dd86630,0x3dd8cdcb,4
475
+ np.float32,0x3e8b4304,0x3e8d09ea,4
476
+ np.float32,0x3f51e6b0,0x3f761697,4
477
+ np.float32,0x3ec51f24,0x3eca5923,4
478
+ np.float32,0xbf647430,0xbf8d2307,4
479
+ np.float32,0x3f253d9c,0x3f339eb2,4
480
+ np.float32,0x3dc969d0,0x3dc9bd4b,4
481
+ np.float32,0xbc2f1300,0xbc2f13da,4
482
+ np.float32,0xbf170007,0xbf21806d,4
483
+ np.float32,0x3f757d10,0x3fa4412e,4
484
+ np.float32,0xbe7864ac,0xbe7ae564,4
485
+ np.float32,0x3f2ffe90,0x3f420cfb,4
486
+ np.float32,0xbe576138,0xbe590012,4
487
+ np.float32,0xbf517a21,0xbf755959,4
488
+ np.float32,0xbf159cfe,0xbf1fc9d5,4
489
+ np.float32,0xbf638b2a,0xbf8c22cf,4
490
+ np.float32,0xff800000,0x7fc00000,4
491
+ np.float32,0x3ed19ca0,0x3ed7f569,4
492
+ np.float32,0x3f7c4460,0x3fb32d26,4
493
+ np.float32,0x3ebfae6c,0x3ec477ab,4
494
+ np.float32,0x3dd452d0,0x3dd4b4a8,4
495
+ np.float32,0x3f471482,0x3f6413fb,4
496
+ np.float32,0xbf49d704,0xbf6883fe,4
497
+ np.float32,0xbd42c4e0,0xbd42d7af,4
498
+ np.float32,0xbeb02994,0xbeb3d668,4
499
+ np.float32,0x3f4d1fd8,0x3f6dedd2,4
500
+ np.float32,0x3efb591c,0x3f035d11,4
501
+ np.float32,0x80000000,0x80000000,4
502
+ np.float32,0xbf50f782,0xbf7476ad,4
503
+ np.float32,0x3d7232c0,0x3d7256f0,4
504
+ np.float32,0x3f649460,0x3f8d46bb,4
505
+ np.float32,0x3f5561bc,0x3f7c46a9,4
506
+ np.float32,0x3e64f6a0,0x3e66ea5d,4
507
+ np.float32,0x3e5b0470,0x3e5cb8f9,4
508
+ np.float32,0xbe9b6b2c,0xbe9de904,4
509
+ np.float32,0x3f6c33f4,0x3f966486,4
510
+ np.float32,0x3f5cee54,0x3f854613,4
511
+ np.float32,0x3ed3e044,0x3eda716e,4
512
+ np.float32,0xbf3cac7f,0xbf542131,4
513
+ np.float32,0x3c723500,0x3c723742,4
514
+ np.float32,0x3de59900,0x3de614d3,4
515
+ np.float32,0xbdf292f8,0xbdf32517,4
516
+ np.float32,0x3f05c8b2,0x3f0cc59b,4
517
+ np.float32,0xbf1ab182,0xbf261b14,4
518
+ np.float32,0xbda396f0,0xbda3c39a,4
519
+ np.float32,0xbf270ed0,0xbf360231,4
520
+ np.float32,0x3f2063e6,0x3f2d557e,4
521
+ np.float32,0x3c550280,0x3c550409,4
522
+ np.float32,0xbe103b48,0xbe10b679,4
523
+ np.float32,0xbebae390,0xbebf4f40,4
524
+ np.float32,0x3f3bc868,0x3f52d0aa,4
525
+ np.float32,0xbd62f880,0xbd631647,4
526
+ np.float32,0xbe7a38f4,0xbe7cc833,4
527
+ np.float32,0x3f09d796,0x3f118f39,4
528
+ np.float32,0xbf5fa558,0xbf8802d0,4
529
+ np.float32,0x3f111cc8,0x3f1a48b0,4
530
+ np.float32,0x3e831958,0x3e849356,4
531
+ np.float32,0xbf614dbd,0xbf89bc3b,4
532
+ np.float32,0xbd521510,0xbd522cac,4
533
+ np.float32,0x3f05af22,0x3f0ca7a0,4
534
+ np.float32,0xbf1ac60e,0xbf2634df,4
535
+ np.float32,0xbf6bd05e,0xbf95e3fe,4
536
+ np.float32,0xbd1fa6e0,0xbd1fb13b,4
537
+ np.float32,0xbeb82f7a,0xbebc68b1,4
538
+ np.float32,0xbd92aaf8,0xbd92cb23,4
539
+ np.float32,0xbe073a54,0xbe079fbf,4
540
+ np.float32,0xbf198655,0xbf24a468,4
541
+ np.float32,0x3f62f6d8,0x3f8b81ba,4
542
+ np.float32,0x3eef4310,0x3ef8f4f9,4
543
+ np.float32,0x3e8988e0,0x3e8b3eae,4
544
+ np.float32,0xbf3ddba5,0xbf55e367,4
545
+ np.float32,0x3dc6d2e0,0x3dc7232b,4
546
+ np.float32,0xbf31040e,0xbf437601,4
547
+ np.float32,0x3f1bb74a,0x3f276442,4
548
+ np.float32,0xbf0075d2,0xbf0692b3,4
549
+ np.float32,0xbf606ce0,0xbf88d0ff,4
550
+ np.float32,0xbf083856,0xbf0fa39d,4
551
+ np.float32,0xbdb25b20,0xbdb2950a,4
552
+ np.float32,0xbeb86860,0xbebca5ae,4
553
+ np.float32,0x3de83160,0x3de8b176,4
554
+ np.float32,0xbf33a98f,0xbf472664,4
555
+ np.float32,0x3e7795f8,0x3e7a1058,4
556
+ np.float32,0x3e0ca6f8,0x3e0d192a,4
557
+ np.float32,0xbf1aef60,0xbf2668c3,4
558
+ np.float32,0xbda53b58,0xbda5695e,4
559
+ np.float32,0xbf178096,0xbf221fc5,4
560
+ np.float32,0xbf0a4159,0xbf120ccf,4
561
+ np.float32,0x3f7bca36,0x3fb1d0df,4
562
+ np.float32,0xbef94360,0xbf022b26,4
563
+ np.float32,0xbef16f36,0xbefb6ad6,4
564
+ np.float32,0x3f53a7e6,0x3f792e25,4
565
+ np.float32,0xbf7c536f,0xbfb35993,4
566
+ np.float32,0xbe84aaa0,0xbe8632a2,4
567
+ np.float32,0x3ecb3998,0x3ed0fab9,4
568
+ np.float32,0x3f539304,0x3f79090a,4
569
+ np.float32,0xbf3c7816,0xbf53d3b3,4
570
+ np.float32,0xbe7a387c,0xbe7cc7b7,4
571
+ np.float32,0x3f7000e4,0x3f9b92b1,4
572
+ np.float32,0x3e08fd70,0x3e0966e5,4
573
+ np.float32,0x3db97ba0,0x3db9bcc8,4
574
+ np.float32,0xbee99056,0xbef2886a,4
575
+ np.float32,0xbf0668da,0xbf0d819e,4
576
+ np.float32,0x3e58a408,0x3e5a4a51,4
577
+ np.float32,0x3f3440b8,0x3f47faed,4
578
+ np.float32,0xbf19a2ce,0xbf24c7ff,4
579
+ np.float32,0xbe75e990,0xbe7856ee,4
580
+ np.float32,0x3f3c865c,0x3f53e8cb,4
581
+ np.float32,0x3e5e03d0,0x3e5fcac9,4
582
+ np.float32,0x3edb8e34,0x3ee2e932,4
583
+ np.float32,0xbf7e1f5f,0xbfb98ce4,4
584
+ np.float32,0xbf7372ff,0xbfa0d0ae,4
585
+ np.float32,0xbf3ee850,0xbf577548,4
586
+ np.float32,0x3ef19658,0x3efb9737,4
587
+ np.float32,0xbe8088de,0xbe81ecaf,4
588
+ np.float32,0x800000,0x800000,4
589
+ np.float32,0xbde39dd8,0xbde4167a,4
590
+ np.float32,0xbf065d7a,0xbf0d7441,4
591
+ np.float32,0xbde52c78,0xbde5a79b,4
592
+ np.float32,0xbe3a28c0,0xbe3b333e,4
593
+ np.float32,0x3f6e8b3c,0x3f998516,4
594
+ np.float32,0x3f3485c2,0x3f485c39,4
595
+ np.float32,0x3e6f2c68,0x3e71673e,4
596
+ np.float32,0xbe4ec9cc,0xbe50385e,4
597
+ np.float32,0xbf1c3bb0,0xbf280b39,4
598
+ np.float32,0x3ec8ea18,0x3ece76f7,4
599
+ np.float32,0x3e26b5f8,0x3e2774c9,4
600
+ np.float32,0x3e1e4a38,0x3e1eed5c,4
601
+ np.float32,0xbee7a106,0xbef05c6b,4
602
+ np.float32,0xbf305928,0xbf4289d8,4
603
+ np.float32,0x3f0c431c,0x3f147118,4
604
+ np.float32,0xbe57ba6c,0xbe595b52,4
605
+ np.float32,0x3eabc9cc,0x3eaf2fc7,4
606
+ np.float32,0xbef1ed24,0xbefbf9ae,4
607
+ np.float32,0xbf61b576,0xbf8a29cc,4
608
+ np.float32,0x3e9c1ff4,0x3e9ea6cb,4
609
+ np.float32,0x3f6c53b2,0x3f968dbe,4
610
+ np.float32,0x3e2d1b80,0x3e2df156,4
611
+ np.float32,0x3e9f2f70,0x3ea1de4a,4
612
+ np.float32,0xbf5861ee,0xbf80e61a,4
613
+ np.float32,0x3f429144,0x3f5d0505,4
614
+ np.float32,0x3e235cc8,0x3e24103e,4
615
+ np.float32,0xbf354879,0xbf496f6a,4
616
+ np.float32,0xbf20a146,0xbf2da447,4
617
+ np.float32,0x3e8d8968,0x3e8f6785,4
618
+ np.float32,0x3f3fbc94,0x3f58b4c1,4
619
+ np.float32,0x3f2c5f50,0x3f3d1b9f,4
620
+ np.float32,0x3f7bf0f8,0x3fb23d23,4
621
+ np.float32,0xbf218282,0xbf2ec60f,4
622
+ np.float32,0x3f2545aa,0x3f33a93e,4
623
+ np.float32,0xbf4b17be,0xbf6a9018,4
624
+ np.float32,0xbb9df700,0xbb9df728,4
625
+ np.float32,0x3f685d54,0x3f91a06c,4
626
+ np.float32,0x3efdfe2c,0x3f04e24c,4
627
+ np.float32,0x3ef1c5a0,0x3efbccd9,4
628
+ np.float32,0xbf41d731,0xbf5be76e,4
629
+ np.float32,0x3ebd1360,0x3ec1a919,4
630
+ np.float32,0xbf706bd4,0xbf9c2d58,4
631
+ np.float32,0x3ea525e4,0x3ea8279d,4
632
+ np.float32,0xbe51f1b0,0xbe537186,4
633
+ np.float32,0x3f5e8cf6,0x3f86e4f4,4
634
+ np.float32,0xbdad2520,0xbdad5a19,4
635
+ np.float32,0xbf5c5704,0xbf84b0e5,4
636
+ np.float32,0x3f47b54e,0x3f65145e,4
637
+ np.float32,0x3eb4fc78,0x3eb8fc0c,4
638
+ np.float32,0x3dca1450,0x3dca68a1,4
639
+ np.float32,0x3eb02a74,0x3eb3d757,4
640
+ np.float32,0x3f74ae6a,0x3fa2db75,4
641
+ np.float32,0x3f800000,0x3fc90fdb,4
642
+ np.float32,0xbdb46a00,0xbdb4a5f2,4
643
+ np.float32,0xbe9f2ba6,0xbea1da4e,4
644
+ np.float32,0x3f0afa70,0x3f12e8f7,4
645
+ np.float32,0xbf677b20,0xbf909547,4
646
+ np.float32,0x3eff9188,0x3f05cacf,4
647
+ np.float32,0x3f720562,0x3f9e911b,4
648
+ np.float32,0xbf7180d8,0xbf9dc794,4
649
+ np.float32,0xbee7d076,0xbef0919d,4
650
+ np.float32,0x3f0432ce,0x3f0aea95,4
651
+ np.float32,0x3f3bc4c8,0x3f52cb54,4
652
+ np.float32,0xbea72f30,0xbeaa4ebe,4
653
+ np.float32,0x3e90ed00,0x3e92ef33,4
654
+ np.float32,0xbda63670,0xbda6654a,4
655
+ np.float32,0xbf5a6f85,0xbf82d7e0,4
656
+ np.float32,0x3e6e8808,0x3e70be34,4
657
+ np.float32,0xbf4f3822,0xbf71768f,4
658
+ np.float32,0x3e5c8a68,0x3e5e483f,4
659
+ np.float32,0xbf0669d4,0xbf0d82c4,4
660
+ np.float32,0xbf79f77c,0xbfad37b0,4
661
+ np.float32,0x3f25c82c,0x3f345453,4
662
+ np.float32,0x3f1b2948,0x3f26b188,4
663
+ np.float32,0x3ef7e288,0x3f016159,4
664
+ np.float32,0x3c274280,0x3c27433e,4
665
+ np.float32,0xbf4c8fa0,0xbf6cfd5e,4
666
+ np.float32,0x3ea4ccb4,0x3ea7c966,4
667
+ np.float32,0xbf7b157e,0xbfafefca,4
668
+ np.float32,0xbee4c2b0,0xbeed264d,4
669
+ np.float32,0xbc1fd640,0xbc1fd6e6,4
670
+ np.float32,0x3e892308,0x3e8ad4f6,4
671
+ np.float32,0xbf3f69c7,0xbf5837ed,4
672
+ np.float32,0x3ec879e8,0x3ecdfd05,4
673
+ np.float32,0x3f07a8c6,0x3f0efa30,4
674
+ np.float32,0x3f67b880,0x3f90dd4d,4
675
+ np.float32,0x3e8a11c8,0x3e8bccd5,4
676
+ np.float32,0x3f7df6fc,0x3fb8e935,4
677
+ np.float32,0xbef3e498,0xbefe3599,4
678
+ np.float32,0xbf18ad7d,0xbf2395d8,4
679
+ np.float32,0x3f2bce74,0x3f3c57f5,4
680
+ np.float32,0xbf38086e,0xbf4d5c2e,4
681
+ np.float32,0x3f772d7a,0x3fa75c35,4
682
+ np.float32,0xbf3b6e24,0xbf524c00,4
683
+ np.float32,0xbdd39108,0xbdd3f1d4,4
684
+ np.float32,0xbf691f6b,0xbf928974,4
685
+ np.float32,0x3f146188,0x3f1e45e4,4
686
+ np.float32,0xbf56045b,0xbf7d6e03,4
687
+ np.float32,0xbf4b2ee4,0xbf6ab622,4
688
+ np.float32,0xbf3fa3f6,0xbf588f9d,4
689
+ np.float32,0x3f127bb0,0x3f1bf398,4
690
+ np.float32,0x3ed858a0,0x3edf5d3e,4
691
+ np.float32,0xbd6de3b0,0xbd6e05fa,4
692
+ np.float32,0xbecc662c,0xbed24261,4
693
+ np.float32,0xbd6791d0,0xbd67b170,4
694
+ np.float32,0xbf146016,0xbf1e441e,4
695
+ np.float32,0xbf61f04c,0xbf8a6841,4
696
+ np.float32,0xbe7f16d0,0xbe80e6e7,4
697
+ np.float32,0xbebf93e6,0xbec45b10,4
698
+ np.float32,0xbe8a59fc,0xbe8c17d1,4
699
+ np.float32,0xbebc7a0c,0xbec10426,4
700
+ np.float32,0xbf2a682e,0xbf3a7649,4
701
+ np.float32,0xbe18d0cc,0xbe19637b,4
702
+ np.float32,0x3d7f5100,0x3d7f7b66,4
703
+ np.float32,0xbf10f5fa,0xbf1a1998,4
704
+ np.float32,0x3f25e956,0x3f347fdc,4
705
+ np.float32,0x3e6e8658,0x3e70bc78,4
706
+ np.float32,0x3f21a5de,0x3f2ef3a5,4
707
+ np.float32,0xbf4e71d4,0xbf702607,4
708
+ np.float32,0xbf49d6b6,0xbf688380,4
709
+ np.float32,0xbdb729c0,0xbdb7687c,4
710
+ np.float32,0xbf63e1f4,0xbf8c81c7,4
711
+ np.float32,0x3dda6cb0,0x3ddad73e,4
712
+ np.float32,0x3ee1bc40,0x3ee9c612,4
713
+ np.float32,0x3ebdb5f8,0x3ec2581b,4
714
+ np.float32,0x3f7d9576,0x3fb77646,4
715
+ np.float32,0x3e087140,0x3e08d971,4
716
+ np.float64,0xbfdba523cfb74a48,0xbfdc960ddd9c0506,3
717
+ np.float64,0x3fb51773622a2ee0,0x3fb51d93f77089d5,3
718
+ np.float64,0x3fc839f6d33073f0,0x3fc85f9a47dfe8e6,3
719
+ np.float64,0xbfecba2d82f9745b,0xbff1d55416c6c993,3
720
+ np.float64,0x3fd520fe47aa41fc,0x3fd58867f1179634,3
721
+ np.float64,0x3fe1b369c56366d4,0x3fe2c1ac9dd2c45a,3
722
+ np.float64,0xbfec25a7cd784b50,0xbff133417389b12d,3
723
+ np.float64,0xbfd286342ea50c68,0xbfd2cb0bca22e66d,3
724
+ np.float64,0x3fd5f6fe5eabedfc,0x3fd66bad16680d08,3
725
+ np.float64,0xbfe863a87570c751,0xbfebbb9b637eb6dc,3
726
+ np.float64,0x3fc97f5b4d32feb8,0x3fc9ab5066d8eaec,3
727
+ np.float64,0xbfcb667af936ccf4,0xbfcb9d3017047a1d,3
728
+ np.float64,0xbfd1b7b9afa36f74,0xbfd1f3c175706154,3
729
+ np.float64,0x3fef97385b7f2e70,0x3ff6922a1a6c709f,3
730
+ np.float64,0xbfd13e4205a27c84,0xbfd1757c993cdb74,3
731
+ np.float64,0xbfd18d88aca31b12,0xbfd1c7dd75068f7d,3
732
+ np.float64,0x3fe040ce0f60819c,0x3fe10c59d2a27089,3
733
+ np.float64,0xbfddc7deddbb8fbe,0xbfdef9de5baecdda,3
734
+ np.float64,0xbfcf6e96193edd2c,0xbfcfc1bb7396b9a3,3
735
+ np.float64,0x3fd544f494aa89e8,0x3fd5ae850e2b37dd,3
736
+ np.float64,0x3fe15b381fe2b670,0x3fe25841c7bfe2af,3
737
+ np.float64,0xbfde793420bcf268,0xbfdfc2ddc7b4a341,3
738
+ np.float64,0x3fd0d5db30a1abb8,0x3fd1092cef4aa4fb,3
739
+ np.float64,0x3fe386a08c670d42,0x3fe50059bbf7f491,3
740
+ np.float64,0xbfe0aae3a96155c8,0xbfe1880ef13e95ce,3
741
+ np.float64,0xbfe80eeb03f01dd6,0xbfeb39e9f107e944,3
742
+ np.float64,0xbfd531af3caa635e,0xbfd59a178f17552a,3
743
+ np.float64,0x3fcced14ab39da28,0x3fcd2d9a806337ef,3
744
+ np.float64,0xbfdb4c71bcb698e4,0xbfdc33d9d9daf708,3
745
+ np.float64,0xbfde7375ecbce6ec,0xbfdfbc5611bc48ff,3
746
+ np.float64,0x3fecc5707a798ae0,0x3ff1e2268d778017,3
747
+ np.float64,0x3fe8f210a1f1e422,0x3fec9b3349a5baa2,3
748
+ np.float64,0x3fe357f9b8e6aff4,0x3fe4c5a0b89a9228,3
749
+ np.float64,0xbfe0f863b761f0c8,0xbfe1e3283494c3d4,3
750
+ np.float64,0x3fd017c395a02f88,0x3fd044761f2f4a66,3
751
+ np.float64,0x3febeb4746f7d68e,0x3ff0f6b955e7feb6,3
752
+ np.float64,0xbfbdaaeeae3b55e0,0xbfbdbc0950109261,3
753
+ np.float64,0xbfea013095f40261,0xbfee5b8fe8ad8593,3
754
+ np.float64,0xbfe9f87b7973f0f7,0xbfee4ca3a8438d72,3
755
+ np.float64,0x3fd37f77cfa6fef0,0x3fd3d018c825f057,3
756
+ np.float64,0x3fb0799cee20f340,0x3fb07c879e7cb63f,3
757
+ np.float64,0xbfdcfd581cb9fab0,0xbfde15e35314b52d,3
758
+ np.float64,0xbfd49781b8a92f04,0xbfd4f6fa1516fefc,3
759
+ np.float64,0x3fb3fcb6d627f970,0x3fb401ed44a713a8,3
760
+ np.float64,0x3fd5737ef8aae6fc,0x3fd5dfe42d4416c7,3
761
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,3
762
+ np.float64,0xbfe56ae780ead5cf,0xbfe776ea5721b900,3
763
+ np.float64,0x3fd4567786a8acf0,0x3fd4b255421c161a,3
764
+ np.float64,0x3fef6fb58cfedf6c,0x3ff62012dfcf0a33,3
765
+ np.float64,0xbfd1dbcd3da3b79a,0xbfd2194fd628f74d,3
766
+ np.float64,0x3fd9350016b26a00,0x3fd9e8b01eb023e9,3
767
+ np.float64,0xbfe4fb3a69e9f675,0xbfe6e1d2c9eca56c,3
768
+ np.float64,0x3fe9fe0f73f3fc1e,0x3fee5631cfd39772,3
769
+ np.float64,0xbfd51c1bc6aa3838,0xbfd5833b3bd53543,3
770
+ np.float64,0x3fc64158e12c82b0,0x3fc65e7352f237d7,3
771
+ np.float64,0x3fd0d8ee1ba1b1dc,0x3fd10c5c99a16f0e,3
772
+ np.float64,0x3fd5554e15aaaa9c,0x3fd5bfdb9ec9e873,3
773
+ np.float64,0x3fe61ce209ec39c4,0x3fe869bc4c28437d,3
774
+ np.float64,0xbfe4e42c8c69c859,0xbfe6c356dac7e2db,3
775
+ np.float64,0xbfe157021062ae04,0xbfe2533ed39f4212,3
776
+ np.float64,0x3fe844066cf0880c,0x3feb8aea0b7bd0a4,3
777
+ np.float64,0x3fe55016586aa02c,0x3fe752e4b2a67b9f,3
778
+ np.float64,0x3fdabce619b579cc,0x3fdb95809bc789d9,3
779
+ np.float64,0x3fee03bae37c0776,0x3ff3778ba38ca882,3
780
+ np.float64,0xbfeb2f5844f65eb0,0xbff03dd1b767d3c8,3
781
+ np.float64,0x3fedcfdbaffb9fb8,0x3ff32e81d0639164,3
782
+ np.float64,0x3fe06fc63ee0df8c,0x3fe142fc27f92eaf,3
783
+ np.float64,0x3fe7ce90fd6f9d22,0x3fead8f832bbbf5d,3
784
+ np.float64,0xbfbc0015ce380028,0xbfbc0e7470e06e86,3
785
+ np.float64,0xbfe9b3de90f367bd,0xbfedd857931dfc6b,3
786
+ np.float64,0xbfcb588f5936b120,0xbfcb8ef0124a4f21,3
787
+ np.float64,0x3f8d376a503a6f00,0x3f8d37ab43e7988d,3
788
+ np.float64,0xbfdb123a40b62474,0xbfdbf38b6cf5db92,3
789
+ np.float64,0xbfee7da6be7cfb4e,0xbff433042cd9d5eb,3
790
+ np.float64,0xbfc4c9e01b2993c0,0xbfc4e18dbafe37ef,3
791
+ np.float64,0x3fedd42faffba860,0x3ff334790cd18a19,3
792
+ np.float64,0x3fe9cdf772f39bee,0x3fee044f87b856ab,3
793
+ np.float64,0x3fe0245881e048b2,0x3fe0eb5a1f739c8d,3
794
+ np.float64,0xbfe4712bd9e8e258,0xbfe62cb3d82034aa,3
795
+ np.float64,0x3fe9a16b46f342d6,0x3fedb972b2542551,3
796
+ np.float64,0xbfe57ab4536af568,0xbfe78c34b03569c2,3
797
+ np.float64,0x3fb6d6ceb22dada0,0x3fb6de976964d6dd,3
798
+ np.float64,0x3fc3ac23a3275848,0x3fc3c02de53919b8,3
799
+ np.float64,0xbfccb531e7396a64,0xbfccf43ec69f6281,3
800
+ np.float64,0xbfd2f07fc8a5e100,0xbfd33a35a8c41b62,3
801
+ np.float64,0xbfe3e5dd04e7cbba,0xbfe57940157c27ba,3
802
+ np.float64,0x3feefe40757dfc80,0x3ff51bc72b846af6,3
803
+ np.float64,0x8000000000000001,0x8000000000000001,3
804
+ np.float64,0x3fecb7b766796f6e,0x3ff1d28972a0fc7e,3
805
+ np.float64,0xbfea1bf1357437e2,0xbfee89a6532bfd71,3
806
+ np.float64,0xbfca3983b7347308,0xbfca696463b791ef,3
807
+ np.float64,0x10000000000000,0x10000000000000,3
808
+ np.float64,0xbf886b45d030d680,0xbf886b6bbc04314b,3
809
+ np.float64,0x3fd5224bb5aa4498,0x3fd589c92e82218f,3
810
+ np.float64,0xbfec799874f8f331,0xbff18d5158b8e640,3
811
+ np.float64,0xbf88124410302480,0xbf88126863350a16,3
812
+ np.float64,0xbfe37feaaa66ffd6,0xbfe4f7e24382e79d,3
813
+ np.float64,0x3fd777eca1aeefd8,0x3fd8076ead6d55dc,3
814
+ np.float64,0x3fecaaeb3af955d6,0x3ff1c4159fa3e965,3
815
+ np.float64,0xbfeb81e4e6f703ca,0xbff08d4e4c77fada,3
816
+ np.float64,0xbfd7d0a0edafa142,0xbfd866e37010312e,3
817
+ np.float64,0x3feda48c00fb4918,0x3ff2f3fd33c36307,3
818
+ np.float64,0x3feb87ecc4770fda,0x3ff09336e490deda,3
819
+ np.float64,0xbfefd78ad27faf16,0xbff78abbafb50ac1,3
820
+ np.float64,0x3fe58e918c6b1d24,0x3fe7a70b38cbf016,3
821
+ np.float64,0x3fda163b95b42c78,0x3fdade86b88ba4ee,3
822
+ np.float64,0x3fe8fc1aaf71f836,0x3fecab3f93b59df5,3
823
+ np.float64,0xbf8de56f903bcac0,0xbf8de5b527cec797,3
824
+ np.float64,0xbfec112db2f8225b,0xbff11dd648de706f,3
825
+ np.float64,0x3fc3214713264290,0x3fc333b1c862f7d0,3
826
+ np.float64,0xbfeb5e5836f6bcb0,0xbff06ac364b49177,3
827
+ np.float64,0x3fc23d9777247b30,0x3fc24d8ae3bcb615,3
828
+ np.float64,0xbfdf0eed65be1dda,0xbfe036cea9b9dfb6,3
829
+ np.float64,0xbfb2d5c85a25ab90,0xbfb2da24bb409ff3,3
830
+ np.float64,0xbfecdda0c3f9bb42,0xbff1fdf94fc6e89e,3
831
+ np.float64,0x3fdfe79154bfcf24,0x3fe0b338e0476a9d,3
832
+ np.float64,0xbfd712ac6bae2558,0xbfd79abde21f287b,3
833
+ np.float64,0x3fea3f148a747e2a,0x3feec6bed9d4fa04,3
834
+ np.float64,0x3fd4879e4ca90f3c,0x3fd4e632fa4e2edd,3
835
+ np.float64,0x3fe9137a9e7226f6,0x3fecd0c441088d6a,3
836
+ np.float64,0xbfc75bf4ef2eb7e8,0xbfc77da8347d742d,3
837
+ np.float64,0xbfd94090a0b28122,0xbfd9f5458816ed5a,3
838
+ np.float64,0x3fde439cbcbc8738,0x3fdf85fbf496b61f,3
839
+ np.float64,0xbfe18bacdce3175a,0xbfe29210e01237f7,3
840
+ np.float64,0xbfd58ec413ab1d88,0xbfd5fcd838f0a934,3
841
+ np.float64,0xbfeae5af2d75cb5e,0xbfeff1de1b4a06be,3
842
+ np.float64,0x3fb64d1a162c9a30,0x3fb65458fb831354,3
843
+ np.float64,0x3fc18b1e15231640,0x3fc1994c6ffd7a6a,3
844
+ np.float64,0xbfd7b881bcaf7104,0xbfd84ce89a9ee8c7,3
845
+ np.float64,0x3feb916a40f722d4,0x3ff09c8aa851d7c4,3
846
+ np.float64,0x3fdab5fbb5b56bf8,0x3fdb8de43961bbde,3
847
+ np.float64,0x3fe4f35402e9e6a8,0x3fe6d75dc5082894,3
848
+ np.float64,0x3fe2fdb2e5e5fb66,0x3fe454e32a5d2182,3
849
+ np.float64,0x3fe8607195f0c0e4,0x3febb6a4c3bf6a5c,3
850
+ np.float64,0x3fd543ca9aaa8794,0x3fd5ad49203ae572,3
851
+ np.float64,0x3fe8e05ca1f1c0ba,0x3fec7eff123dcc58,3
852
+ np.float64,0x3fe298b6ca65316e,0x3fe3d81d2927c4dd,3
853
+ np.float64,0x3fcfecea733fd9d8,0x3fd0220f1d0faf78,3
854
+ np.float64,0xbfe2e739f065ce74,0xbfe439004e73772a,3
855
+ np.float64,0xbfd1ae6b82a35cd8,0xbfd1ea129a5ee756,3
856
+ np.float64,0xbfeb7edff576fdc0,0xbff08a5a638b8a8b,3
857
+ np.float64,0x3fe5b645ff6b6c8c,0x3fe7dcee1faefe3f,3
858
+ np.float64,0xbfd478427ba8f084,0xbfd4d5fc7c239e60,3
859
+ np.float64,0xbfe39904e3e7320a,0xbfe517972b30b1e5,3
860
+ np.float64,0xbfd3b75b6ba76eb6,0xbfd40acf20a6e074,3
861
+ np.float64,0x3fd596267aab2c4c,0x3fd604b01faeaf75,3
862
+ np.float64,0x3fe134463762688c,0x3fe229fc36784a72,3
863
+ np.float64,0x3fd25dadf7a4bb5c,0x3fd2a0b9e04ea060,3
864
+ np.float64,0xbfc05d3e0b20ba7c,0xbfc068bd2bb9966f,3
865
+ np.float64,0x3f8cf517b039ea00,0x3f8cf556ed74b163,3
866
+ np.float64,0x3fda87361cb50e6c,0x3fdb5a75af897e7f,3
867
+ np.float64,0x3fe53e1926ea7c32,0x3fe73acf01b8ff31,3
868
+ np.float64,0x3fe2e94857e5d290,0x3fe43b8cc820f9c7,3
869
+ np.float64,0x3fd81fe6acb03fcc,0x3fd8bc623c0068cf,3
870
+ np.float64,0xbfddf662c3bbecc6,0xbfdf2e76dc90786e,3
871
+ np.float64,0x3fece174fbf9c2ea,0x3ff2026a1a889580,3
872
+ np.float64,0xbfdc83c5b8b9078c,0xbfdd8dcf6ee3b7da,3
873
+ np.float64,0x3feaf5448f75ea8a,0x3ff0075b108bcd0d,3
874
+ np.float64,0xbfebf32f7ef7e65f,0xbff0fed42aaa826a,3
875
+ np.float64,0x3fe389e5e8e713cc,0x3fe5047ade055ccb,3
876
+ np.float64,0x3f635cdcc026ba00,0x3f635cddeea082ce,3
877
+ np.float64,0x3fae580f543cb020,0x3fae5c9d5108a796,3
878
+ np.float64,0x3fec9fafce793f60,0x3ff1b77bec654f00,3
879
+ np.float64,0x3fb19d226e233a40,0x3fb1a0b32531f7ee,3
880
+ np.float64,0xbfdf9a71e7bf34e4,0xbfe086cef88626c7,3
881
+ np.float64,0x8010000000000000,0x8010000000000000,3
882
+ np.float64,0xbfef170ba2fe2e17,0xbff54ed4675f5b8a,3
883
+ np.float64,0xbfcc6e2f8f38dc60,0xbfccab65fc34d183,3
884
+ np.float64,0x3fee756c4bfcead8,0x3ff4258782c137e6,3
885
+ np.float64,0xbfd461c218a8c384,0xbfd4be3e391f0ff4,3
886
+ np.float64,0xbfe3b64686e76c8d,0xbfe53caa16d6c90f,3
887
+ np.float64,0xbfc1c65d8d238cbc,0xbfc1d51e58f82403,3
888
+ np.float64,0x3fe6e06c63edc0d8,0x3fe97cb832eeb6a2,3
889
+ np.float64,0xbfc9fc20b933f840,0xbfca2ab004312d85,3
890
+ np.float64,0xbfe29aa6df65354e,0xbfe3da7ecf3ba466,3
891
+ np.float64,0x3fea4df7d1749bf0,0x3feee0d448bd4746,3
892
+ np.float64,0xbfedec6161fbd8c3,0xbff3563e1d943aa2,3
893
+ np.float64,0x3fdb6f0437b6de08,0x3fdc5a1888b1213d,3
894
+ np.float64,0xbfe270cbd3e4e198,0xbfe3a72ac27a0b0c,3
895
+ np.float64,0xbfdfff8068bfff00,0xbfe0c1088e3b8983,3
896
+ np.float64,0xbfd28edbe6a51db8,0xbfd2d416c8ed363e,3
897
+ np.float64,0xbfb4e35f9229c6c0,0xbfb4e9531d2a737f,3
898
+ np.float64,0xbfee6727e97cce50,0xbff40e7717576e46,3
899
+ np.float64,0xbfddb5fbddbb6bf8,0xbfdee5aad78f5361,3
900
+ np.float64,0xbfdf9d3e9dbf3a7e,0xbfe0886b191f2957,3
901
+ np.float64,0x3fa57e77042afce0,0x3fa5801518ea9342,3
902
+ np.float64,0x3f95c4e4882b89c0,0x3f95c55003c8e714,3
903
+ np.float64,0x3fd9b10f61b36220,0x3fda6fe5d635a8aa,3
904
+ np.float64,0xbfe2973411652e68,0xbfe3d641fe9885fd,3
905
+ np.float64,0xbfee87bd5a7d0f7b,0xbff443bea81b3fff,3
906
+ np.float64,0x3f9ea064c83d40c0,0x3f9ea19025085b2f,3
907
+ np.float64,0xbfe4b823dfe97048,0xbfe689623d30dc75,3
908
+ np.float64,0xbfa06a326c20d460,0xbfa06aeacbcd3eb8,3
909
+ np.float64,0x3fe1e5c4c1e3cb8a,0x3fe2fe44b822f20e,3
910
+ np.float64,0x3f99dafaa833b600,0x3f99dbaec10a1a0a,3
911
+ np.float64,0xbfed7cb3877af967,0xbff2bfe9e556aaf9,3
912
+ np.float64,0x3fd604f2e2ac09e4,0x3fd67a89408ce6ba,3
913
+ np.float64,0x3fec57b60f78af6c,0x3ff16881f46d60f7,3
914
+ np.float64,0xbfea2e3a17745c74,0xbfeea95c7190fd42,3
915
+ np.float64,0xbfd60a7c37ac14f8,0xbfd6806ed642de35,3
916
+ np.float64,0xbfe544b9726a8973,0xbfe743ac399d81d7,3
917
+ np.float64,0xbfd13520faa26a42,0xbfd16c02034a8fe0,3
918
+ np.float64,0xbfea9ea59ff53d4b,0xbfef70538ee12e00,3
919
+ np.float64,0x3fd66633f8accc68,0x3fd6e23c13ab0e9e,3
920
+ np.float64,0xbfe4071bd3e80e38,0xbfe5a3c9ba897d81,3
921
+ np.float64,0xbfbe1659fa3c2cb0,0xbfbe2831d4fed196,3
922
+ np.float64,0xbfd3312777a6624e,0xbfd37df09b9baeba,3
923
+ np.float64,0x3fd13997caa27330,0x3fd170a4900c8907,3
924
+ np.float64,0xbfe7cbc235ef9784,0xbfead4c4d6cbf129,3
925
+ np.float64,0xbfe1456571628acb,0xbfe23e4ec768c8e2,3
926
+ np.float64,0xbfedf1a044fbe340,0xbff35da96773e176,3
927
+ np.float64,0x3fce38b1553c7160,0x3fce8270709774f9,3
928
+ np.float64,0xbfecb01761f9602f,0xbff1c9e9d382f1f8,3
929
+ np.float64,0xbfe0a03560e1406b,0xbfe17b8d5a1ca662,3
930
+ np.float64,0x3fe50f37cbea1e70,0x3fe6fc55e1ae7da6,3
931
+ np.float64,0xbfe12d64a0625aca,0xbfe221d3a7834e43,3
932
+ np.float64,0xbf6fb288403f6500,0xbf6fb28d6f389db6,3
933
+ np.float64,0x3fda831765b50630,0x3fdb55eecae58ca9,3
934
+ np.float64,0x3fe1a0fe4c6341fc,0x3fe2ab9564304425,3
935
+ np.float64,0xbfef2678a77e4cf1,0xbff56ff42b2797bb,3
936
+ np.float64,0xbfab269c1c364d40,0xbfab29df1cd48779,3
937
+ np.float64,0x3fe8ec82a271d906,0x3fec92567d7a6675,3
938
+ np.float64,0xbfc235115f246a24,0xbfc244ee567682ea,3
939
+ np.float64,0x3feef5bf8d7deb80,0x3ff50ad4875ee9bd,3
940
+ np.float64,0x3fe768b5486ed16a,0x3fea421356160e65,3
941
+ np.float64,0xbfd4255684a84aae,0xbfd47e8baf7ec7f6,3
942
+ np.float64,0x3fc7f67f2b2fed00,0x3fc81ae83cf92dd5,3
943
+ np.float64,0x3fe9b1b19a736364,0x3fedd4b0e24ee741,3
944
+ np.float64,0x3fb27eb9e624fd70,0x3fb282dacd89ce28,3
945
+ np.float64,0xbfd490b710a9216e,0xbfd4efcdeb213458,3
946
+ np.float64,0xbfd1347b2ca268f6,0xbfd16b55dece2d38,3
947
+ np.float64,0x3fc6a5668d2d4ad0,0x3fc6c41452c0c087,3
948
+ np.float64,0xbfca7b209f34f640,0xbfcaac710486f6bd,3
949
+ np.float64,0x3fc23a1a47247438,0x3fc24a047fd4c27a,3
950
+ np.float64,0x3fdb1413a8b62828,0x3fdbf595e2d994bc,3
951
+ np.float64,0xbfea69b396f4d367,0xbfef11bdd2b0709a,3
952
+ np.float64,0x3fd14c9958a29934,0x3fd1846161b10422,3
953
+ np.float64,0xbfe205f44be40be8,0xbfe325283aa3c6a8,3
954
+ np.float64,0x3fecd03c9ef9a07a,0x3ff1ee85aaf52a01,3
955
+ np.float64,0x3fe34281d7e68504,0x3fe4aab63e6de816,3
956
+ np.float64,0xbfe120e2376241c4,0xbfe213023ab03939,3
957
+ np.float64,0xbfe951edc4f2a3dc,0xbfed3615e38576f8,3
958
+ np.float64,0x3fe5a2286f6b4450,0x3fe7c196e0ec10ed,3
959
+ np.float64,0xbfed7a3e1f7af47c,0xbff2bcc0793555d2,3
960
+ np.float64,0x3fe050274960a04e,0x3fe11e2e256ea5cc,3
961
+ np.float64,0xbfcfa71f653f4e40,0xbfcffc11483d6a06,3
962
+ np.float64,0x3f6ead2e403d5a00,0x3f6ead32f314c052,3
963
+ np.float64,0x3fe3a2a026674540,0x3fe523bfe085f6ec,3
964
+ np.float64,0xbfe294a62e65294c,0xbfe3d31ebd0b4ca2,3
965
+ np.float64,0xbfb4894d06291298,0xbfb48ef4b8e256b8,3
966
+ np.float64,0xbfc0c042c1218084,0xbfc0cc98ac2767c4,3
967
+ np.float64,0xbfc6a32cb52d4658,0xbfc6c1d1597ed06b,3
968
+ np.float64,0xbfd30f7777a61eee,0xbfd35aa39fee34eb,3
969
+ np.float64,0x3fe7fc2c2eeff858,0x3feb1d8a558b5537,3
970
+ np.float64,0x7fefffffffffffff,0x7ff8000000000000,3
971
+ np.float64,0xbfdadf917bb5bf22,0xbfdbbbae9a9f67a0,3
972
+ np.float64,0xbfcf0395e13e072c,0xbfcf5366015f7362,3
973
+ np.float64,0xbfe8644c9170c899,0xbfebbc98e74a227d,3
974
+ np.float64,0x3fc3b2d8e52765b0,0x3fc3c6f7d44cffaa,3
975
+ np.float64,0x3fc57407b92ae810,0x3fc58e12ccdd47a1,3
976
+ np.float64,0x3fd56a560daad4ac,0x3fd5d62b8dfcc058,3
977
+ np.float64,0x3fd595deefab2bbc,0x3fd6046420b2f79b,3
978
+ np.float64,0xbfd5360f50aa6c1e,0xbfd59ebaacd815b8,3
979
+ np.float64,0x3fdfb6aababf6d54,0x3fe0970b8aac9f61,3
980
+ np.float64,0x3ff0000000000000,0x3ff921fb54442d18,3
981
+ np.float64,0xbfeb3a8958f67513,0xbff04872e8278c79,3
982
+ np.float64,0x3f9e1ea6683c3d40,0x3f9e1fc326186705,3
983
+ np.float64,0x3fe6b6d5986d6dac,0x3fe94175bd60b19d,3
984
+ np.float64,0xbfee4d90b77c9b21,0xbff3e60e9134edc2,3
985
+ np.float64,0x3fd806ce0cb00d9c,0x3fd8a14c4855a8f5,3
986
+ np.float64,0x3fd54acc75aa9598,0x3fd5b4b72fcbb5df,3
987
+ np.float64,0xbfe59761f16b2ec4,0xbfe7b2fa5d0244ac,3
988
+ np.float64,0xbfcd4fa3513a9f48,0xbfcd92d0814a5383,3
989
+ np.float64,0xbfdc827523b904ea,0xbfdd8c577b53053c,3
990
+ np.float64,0xbfd4bb7f34a976fe,0xbfd51d00d9a99360,3
991
+ np.float64,0xbfe818bc87f03179,0xbfeb48d1ea0199c5,3
992
+ np.float64,0xbfa8a2e15c3145c0,0xbfa8a5510ba0e45c,3
993
+ np.float64,0xbfb6d15f422da2c0,0xbfb6d922689da015,3
994
+ np.float64,0x3fcd04eaab3a09d8,0x3fcd46131746ef08,3
995
+ np.float64,0x3fcfb5cfbb3f6ba0,0x3fd0059d308237f3,3
996
+ np.float64,0x3fe8dcf609f1b9ec,0x3fec7997973010b6,3
997
+ np.float64,0xbfdf1834d7be306a,0xbfe03c1d4e2b48f0,3
998
+ np.float64,0x3fee82ae50fd055c,0x3ff43b545066fe1a,3
999
+ np.float64,0xbfde039c08bc0738,0xbfdf3d6ed4d2ee5c,3
1000
+ np.float64,0x3fec07389bf80e72,0x3ff1137ed0acd161,3
1001
+ np.float64,0xbfef44c010fe8980,0xbff5b488ad22a4c5,3
1002
+ np.float64,0x3f76e722e02dce00,0x3f76e72ab2759d88,3
1003
+ np.float64,0xbfcaa9e6053553cc,0xbfcadc41125fca93,3
1004
+ np.float64,0x3fed6088147ac110,0x3ff29c06c4ef35fc,3
1005
+ np.float64,0x3fd32bd836a657b0,0x3fd3785fdb75909f,3
1006
+ np.float64,0xbfeedbb1d97db764,0xbff4d87f6c82a93c,3
1007
+ np.float64,0xbfe40f31d5e81e64,0xbfe5ae292cf258a2,3
1008
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,3
1009
+ np.float64,0xbfeb2b25bc76564c,0xbff039d81388550c,3
1010
+ np.float64,0x3fec5008fa78a012,0x3ff1604195801da3,3
1011
+ np.float64,0x3fce2d4f293c5aa0,0x3fce76b99c2db4da,3
1012
+ np.float64,0xbfdc435412b886a8,0xbfdd45e7b7813f1e,3
1013
+ np.float64,0x3fdf2c9d06be593c,0x3fe047cb03c141b6,3
1014
+ np.float64,0x3fddefc61ebbdf8c,0x3fdf26fb8fad9fae,3
1015
+ np.float64,0x3fab50218436a040,0x3fab537395eaf3bb,3
1016
+ np.float64,0xbfd5b95a8fab72b6,0xbfd62a191a59343a,3
1017
+ np.float64,0x3fdbf803b4b7f008,0x3fdcf211578e98c3,3
1018
+ np.float64,0xbfec8c255979184b,0xbff1a1bee108ed30,3
1019
+ np.float64,0x3fe33cdaffe679b6,0x3fe4a3a318cd994f,3
1020
+ np.float64,0x3fd8cf585cb19eb0,0x3fd97a408bf3c38c,3
1021
+ np.float64,0x3fe919dde07233bc,0x3fecdb0ea13a2455,3
1022
+ np.float64,0xbfd5ba35e4ab746c,0xbfd62b024805542d,3
1023
+ np.float64,0x3fd2f933e7a5f268,0x3fd343527565e97c,3
1024
+ np.float64,0xbfe5b9f8ddeb73f2,0xbfe7e1f772c3e438,3
1025
+ np.float64,0x3fe843cd92f0879c,0x3feb8a92d68eae3e,3
1026
+ np.float64,0xbfd096b234a12d64,0xbfd0c7beca2c6605,3
1027
+ np.float64,0xbfef3363da7e66c8,0xbff58c98dde6c27c,3
1028
+ np.float64,0x3fd51b01ddaa3604,0x3fd582109d89ead1,3
1029
+ np.float64,0x3fea0f10ff741e22,0x3fee736c2d2a2067,3
1030
+ np.float64,0x3fc276e7b724edd0,0x3fc28774520bc6d4,3
1031
+ np.float64,0xbfef9abc9f7f3579,0xbff69d49762b1889,3
1032
+ np.float64,0x3fe1539ec0e2a73e,0x3fe24f370b7687d0,3
1033
+ np.float64,0x3fad72350c3ae460,0x3fad765e7766682a,3
1034
+ np.float64,0x3fa289a47c251340,0x3fa28aae12f41646,3
1035
+ np.float64,0xbfe5c488e5eb8912,0xbfe7f05d7e7dcddb,3
1036
+ np.float64,0xbfc22ef1d7245de4,0xbfc23ebeb990a1b8,3
1037
+ np.float64,0x3fe59a0b80eb3418,0x3fe7b695fdcba1de,3
1038
+ np.float64,0xbfe9cad619f395ac,0xbfedff0514d91e2c,3
1039
+ np.float64,0x3fc8bc74eb3178e8,0x3fc8e48cb22da666,3
1040
+ np.float64,0xbfc5389a3f2a7134,0xbfc551cd6febc544,3
1041
+ np.float64,0x3fce82feb33d0600,0x3fceceecce2467ef,3
1042
+ np.float64,0x3fda346791b468d0,0x3fdaff95154a4ca6,3
1043
+ np.float64,0x3fd04501fea08a04,0x3fd073397b32607e,3
1044
+ np.float64,0xbfb6be498a2d7c90,0xbfb6c5f93aeb0e57,3
1045
+ np.float64,0x3fe1f030dd63e062,0x3fe30ad8fb97cce0,3
1046
+ np.float64,0xbfee3fb36dfc7f67,0xbff3d0a5e380b86f,3
1047
+ np.float64,0xbfa876773c30ecf0,0xbfa878d9d3df6a3f,3
1048
+ np.float64,0x3fdb58296eb6b054,0x3fdc40ceffb17f82,3
1049
+ np.float64,0xbfea16b5d8742d6c,0xbfee809b99fd6adc,3
1050
+ np.float64,0xbfdc5062b6b8a0c6,0xbfdd547623275fdb,3
1051
+ np.float64,0x3fef6db242fedb64,0x3ff61ab4cdaef467,3
1052
+ np.float64,0xbfc9f778f933eef0,0xbfca25eef1088167,3
1053
+ np.float64,0xbfd22063eba440c8,0xbfd260c8766c69cf,3
1054
+ np.float64,0x3fdd2379f2ba46f4,0x3fde40b025cb1ffa,3
1055
+ np.float64,0xbfea967af2f52cf6,0xbfef61a178774636,3
1056
+ np.float64,0x3fe4f5b49fe9eb6a,0x3fe6da8311a5520e,3
1057
+ np.float64,0x3feccde17b799bc2,0x3ff1ebd0ea228b71,3
1058
+ np.float64,0x3fe1bb76506376ec,0x3fe2cb56fca01840,3
1059
+ np.float64,0xbfef94e583ff29cb,0xbff68aeab8ba75a2,3
1060
+ np.float64,0x3fed024a55fa0494,0x3ff228ea5d456e9d,3
1061
+ np.float64,0xbfe877b2a8f0ef65,0xbfebdaa1a4712459,3
1062
+ np.float64,0x3fef687a8d7ed0f6,0x3ff60cf5fef8d448,3
1063
+ np.float64,0xbfeeb2dc8afd65b9,0xbff48dda6a906cd6,3
1064
+ np.float64,0x3fdb2e28aeb65c50,0x3fdc12620655eb7a,3
1065
+ np.float64,0x3fedc1863afb830c,0x3ff31ae823315e83,3
1066
+ np.float64,0xbfe6b1bb546d6376,0xbfe93a38163e3a59,3
1067
+ np.float64,0x3fe479c78468f390,0x3fe637e5c0fc5730,3
1068
+ np.float64,0x3fbad1fade35a3f0,0x3fbade9a43ca05cf,3
1069
+ np.float64,0xbfe2d1c563e5a38b,0xbfe41e712785900c,3
1070
+ np.float64,0xbfc08c33ed211868,0xbfc09817a752d500,3
1071
+ np.float64,0xbfecce0935f99c12,0xbff1ebfe84524037,3
1072
+ np.float64,0x3fce4ef0e73c9de0,0x3fce995638a3dc48,3
1073
+ np.float64,0xbfd2fb2343a5f646,0xbfd345592517ca18,3
1074
+ np.float64,0x3fd848f7cdb091f0,0x3fd8e8bee5f7b49a,3
1075
+ np.float64,0x3fe532b7d2ea6570,0x3fe72b9ac747926a,3
1076
+ np.float64,0x3fd616aadcac2d54,0x3fd68d692c5cad42,3
1077
+ np.float64,0x3fd7720eb3aee41c,0x3fd801206a0e1e43,3
1078
+ np.float64,0x3fee835a35fd06b4,0x3ff43c7175eb7a54,3
1079
+ np.float64,0xbfe2e8f70b65d1ee,0xbfe43b2800a947a7,3
1080
+ np.float64,0xbfed38f45d7a71e9,0xbff26acd6bde7174,3
1081
+ np.float64,0xbfc0c62661218c4c,0xbfc0d28964d66120,3
1082
+ np.float64,0x3fe97940bef2f282,0x3fed76b986a74ee3,3
1083
+ np.float64,0x3fc96f7dc532def8,0x3fc99b20044c8fcf,3
1084
+ np.float64,0xbfd60201eeac0404,0xbfd677675efaaedc,3
1085
+ np.float64,0x3fe63c0867ec7810,0x3fe894f060200140,3
1086
+ np.float64,0xbfef6144b37ec289,0xbff5fa589a515ba8,3
1087
+ np.float64,0xbfde2da0c8bc5b42,0xbfdf6d0b59e3232a,3
1088
+ np.float64,0xbfd7401612ae802c,0xbfd7cb74ddd413b9,3
1089
+ np.float64,0x3fe41c012de83802,0x3fe5be9d87da3f82,3
1090
+ np.float64,0x3fdf501609bea02c,0x3fe05c1d96a2270b,3
1091
+ np.float64,0x3fcf9fa1233f3f40,0x3fcff45598e72f07,3
1092
+ np.float64,0x3fd4e3895ea9c714,0x3fd547580d8392a2,3
1093
+ np.float64,0x3fe1e8ff5fe3d1fe,0x3fe3022a0b86a2ab,3
1094
+ np.float64,0xbfe0aa55956154ab,0xbfe18768823da589,3
1095
+ np.float64,0x3fb2a0aa26254150,0x3fb2a4e1faff1c93,3
1096
+ np.float64,0x3fd3823417a70468,0x3fd3d2f808dbb167,3
1097
+ np.float64,0xbfaed323643da640,0xbfaed7e9bef69811,3
1098
+ np.float64,0x3fe661e8c4ecc3d2,0x3fe8c9c535f43c16,3
1099
+ np.float64,0xbfa429777c2852f0,0xbfa42acd38ba02a6,3
1100
+ np.float64,0x3fb5993ea22b3280,0x3fb59fd353e47397,3
1101
+ np.float64,0x3fee62d21efcc5a4,0x3ff40788f9278ade,3
1102
+ np.float64,0xbf813fb810227f80,0xbf813fc56d8f3c53,3
1103
+ np.float64,0x3fd56205deaac40c,0x3fd5cd59671ef193,3
1104
+ np.float64,0x3fd31a4de5a6349c,0x3fd365fe401b66e8,3
1105
+ np.float64,0xbfec7cc7a478f98f,0xbff190cf69703ca4,3
1106
+ np.float64,0xbf755881a02ab100,0xbf755887f52e7794,3
1107
+ np.float64,0x3fdd1c92e6ba3924,0x3fde38efb4e8605c,3
1108
+ np.float64,0x3fdf49da80be93b4,0x3fe0588af8dd4a34,3
1109
+ np.float64,0x3fe1fcdbf2e3f9b8,0x3fe31a27b9d273f2,3
1110
+ np.float64,0x3fe2a0f18be541e4,0x3fe3e23b159ce20f,3
1111
+ np.float64,0xbfed0f1561fa1e2b,0xbff23820fc0a54ca,3
1112
+ np.float64,0x3fe34a006c669400,0x3fe4b419b9ed2b83,3
1113
+ np.float64,0xbfd51be430aa37c8,0xbfd583005a4d62e7,3
1114
+ np.float64,0x3fe5ec4e336bd89c,0x3fe826caad6b0f65,3
1115
+ np.float64,0xbfdad71b1fb5ae36,0xbfdbb25bef8b53d8,3
1116
+ np.float64,0xbfe8eac2d871d586,0xbfec8f8cac7952f9,3
1117
+ np.float64,0xbfe1d5aef663ab5e,0xbfe2eae14b7ccdfd,3
1118
+ np.float64,0x3fec11d3157823a6,0x3ff11e8279506753,3
1119
+ np.float64,0xbfe67ff1166cffe2,0xbfe8f3e61c1dfd32,3
1120
+ np.float64,0xbfd101eecda203de,0xbfd136e0e9557022,3
1121
+ np.float64,0x3fde6c9e5cbcd93c,0x3fdfb48ee7efe134,3
1122
+ np.float64,0x3fec3ede9c787dbe,0x3ff14dead1e5cc1c,3
1123
+ np.float64,0x3fe7a022086f4044,0x3fea93ce2980b161,3
1124
+ np.float64,0xbfc3b2b1b7276564,0xbfc3c6d02d60bb21,3
1125
+ np.float64,0x7ff0000000000000,0x7ff8000000000000,3
1126
+ np.float64,0x3fe60b5647ec16ac,0x3fe8517ef0544b40,3
1127
+ np.float64,0xbfd20ab654a4156c,0xbfd24a2f1b8e4932,3
1128
+ np.float64,0xbfe4aa1e2f69543c,0xbfe677005cbd2646,3
1129
+ np.float64,0xbfc831cc0b306398,0xbfc8574910d0b86d,3
1130
+ np.float64,0xbfc3143495262868,0xbfc3267961b79198,3
1131
+ np.float64,0x3fc14d64c1229ac8,0x3fc15afea90a319d,3
1132
+ np.float64,0x3fc0a5a207214b48,0x3fc0b1bd2f15c1b0,3
1133
+ np.float64,0xbfc0b8351521706c,0xbfc0c4792672d6db,3
1134
+ np.float64,0xbfdc383600b8706c,0xbfdd398429e163bd,3
1135
+ np.float64,0x3fd9e17321b3c2e8,0x3fdaa4c4d140a622,3
1136
+ np.float64,0xbfd44f079ea89e10,0xbfd4aa7d6deff4ab,3
1137
+ np.float64,0xbfc3de52a927bca4,0xbfc3f2f8f65f4c3f,3
1138
+ np.float64,0x3fe7779d566eef3a,0x3fea57f8592dbaad,3
1139
+ np.float64,0xbfe309039e661207,0xbfe462f47f9a64e5,3
1140
+ np.float64,0x3fd8e06d08b1c0dc,0x3fd98cc946e440a6,3
1141
+ np.float64,0x3fdde66c9ebbccd8,0x3fdf1c68009a8dc1,3
1142
+ np.float64,0x3fd4369c6ba86d38,0x3fd490bf460a69e4,3
1143
+ np.float64,0xbfe132252fe2644a,0xbfe22775e109cc2e,3
1144
+ np.float64,0x3fee15483c7c2a90,0x3ff39111de89036f,3
1145
+ np.float64,0xbfc1d5ee8123abdc,0xbfc1e4d66c6871a5,3
1146
+ np.float64,0x3fc851c52b30a388,0x3fc877d93fb4ae1a,3
1147
+ np.float64,0x3fdaade707b55bd0,0x3fdb85001661fffe,3
1148
+ np.float64,0xbfe79fb7f96f3f70,0xbfea9330ec27ac10,3
1149
+ np.float64,0xbfe8b0f725f161ee,0xbfec3411c0e4517a,3
1150
+ np.float64,0xbfea79f5f374f3ec,0xbfef2e9dd9270488,3
1151
+ np.float64,0x3fe0b5fe5b616bfc,0x3fe19512a36a4534,3
1152
+ np.float64,0xbfad7c622c3af8c0,0xbfad808fea96a804,3
1153
+ np.float64,0xbfe3e24dbce7c49c,0xbfe574b4c1ea9818,3
1154
+ np.float64,0xbfe80b038af01607,0xbfeb33fec279576a,3
1155
+ np.float64,0xbfef69e2ea7ed3c6,0xbff610a5593a18bc,3
1156
+ np.float64,0x3fdcc0bb39b98178,0x3fddd1f8c9a46430,3
1157
+ np.float64,0xbfba39976a347330,0xbfba4563bb5369a4,3
1158
+ np.float64,0xbfebf9768ef7f2ed,0xbff10548ab725f74,3
1159
+ np.float64,0xbfec21c066f84381,0xbff12f2803ba052f,3
1160
+ np.float64,0xbfca216a6b3442d4,0xbfca50c5e1e5748e,3
1161
+ np.float64,0x3fd5e40da4abc81c,0x3fd65783f9a22946,3
1162
+ np.float64,0x3fc235ca17246b98,0x3fc245a8f453173f,3
1163
+ np.float64,0x3fecb5b867796b70,0x3ff1d046a0bfda69,3
1164
+ np.float64,0x3fcb457fef368b00,0x3fcb7b6daa8165a7,3
1165
+ np.float64,0xbfa5ed6f7c2bdae0,0xbfa5ef27244e2e42,3
1166
+ np.float64,0x3fecf618a1f9ec32,0x3ff21a86cc104542,3
1167
+ np.float64,0x3fe9d95413f3b2a8,0x3fee178dcafa11fc,3
1168
+ np.float64,0xbfe93a5357f274a7,0xbfed0f9a565da84a,3
1169
+ np.float64,0xbfeb9e45ff773c8c,0xbff0a93cab8e258d,3
1170
+ np.float64,0x3fcbd9d0bd37b3a0,0x3fcc134e87cae241,3
1171
+ np.float64,0x3fe55d4db76aba9c,0x3fe764a0e028475a,3
1172
+ np.float64,0xbfc8a6fc71314df8,0xbfc8ceaafbfc59a7,3
1173
+ np.float64,0x3fe0615fa660c2c0,0x3fe1323611c4cbc2,3
1174
+ np.float64,0x3fb965558632cab0,0x3fb9700b84de20ab,3
1175
+ np.float64,0x8000000000000000,0x8000000000000000,3
1176
+ np.float64,0x3fe76776c6eeceee,0x3fea40403e24a9f1,3
1177
+ np.float64,0x3fe3b7f672676fec,0x3fe53ece71a1a1b1,3
1178
+ np.float64,0xbfa9b82ba4337050,0xbfa9baf15394ca64,3
1179
+ np.float64,0xbfe31faf49663f5e,0xbfe47f31b1ca73dc,3
1180
+ np.float64,0xbfcc4c6beb3898d8,0xbfcc88c5f814b2c1,3
1181
+ np.float64,0x3fd481530aa902a8,0x3fd4df8df03bc155,3
1182
+ np.float64,0x3fd47593b8a8eb28,0x3fd4d327ab78a1a8,3
1183
+ np.float64,0x3fd70e6ccbae1cd8,0x3fd7962fe8b63d46,3
1184
+ np.float64,0x3fd25191f7a4a324,0x3fd2941623c88e02,3
1185
+ np.float64,0x3fd0603ef0a0c07c,0x3fd08f64e97588dc,3
1186
+ np.float64,0xbfc653bae52ca774,0xbfc6711e5e0d8ea9,3
1187
+ np.float64,0xbfd11db8fea23b72,0xbfd153b63c6e8812,3
1188
+ np.float64,0xbfea9bde25f537bc,0xbfef6b52268e139a,3
1189
+ np.float64,0x1,0x1,3
1190
+ np.float64,0xbfefd3806d7fa701,0xbff776dcef9583ca,3
1191
+ np.float64,0xbfe0fb8cfde1f71a,0xbfe1e6e2e774a8f8,3
1192
+ np.float64,0x3fea384534f4708a,0x3feebadaa389be0d,3
1193
+ np.float64,0x3feff761c97feec4,0x3ff866157b9d072d,3
1194
+ np.float64,0x3fe7131ccb6e263a,0x3fe9c58b4389f505,3
1195
+ np.float64,0x3fe9084f7872109e,0x3fecbed0355dbc8f,3
1196
+ np.float64,0x3f708e89e0211d00,0x3f708e8cd4946b9e,3
1197
+ np.float64,0xbfe39185f067230c,0xbfe50e1cd178244d,3
1198
+ np.float64,0x3fd67cc1a9acf984,0x3fd6fa514784b48c,3
1199
+ np.float64,0xbfecaef005f95de0,0xbff1c89c9c3ef94a,3
1200
+ np.float64,0xbfe12eec81e25dd9,0xbfe223a4285bba9a,3
1201
+ np.float64,0x3fbe7f9faa3cff40,0x3fbe92363525068d,3
1202
+ np.float64,0xbfe1950b2b632a16,0xbfe29d45fc1e4ce9,3
1203
+ np.float64,0x3fe45049e6e8a094,0x3fe6020de759e383,3
1204
+ np.float64,0x3fe4d10c8969a21a,0x3fe6aa1fe42cbeb9,3
1205
+ np.float64,0xbfe9d04658f3a08d,0xbfee08370a0dbf0c,3
1206
+ np.float64,0x3fe14fb314e29f66,0x3fe24a8d73663521,3
1207
+ np.float64,0xbfef4abfe4fe9580,0xbff5c2c1ff1250ca,3
1208
+ np.float64,0xbfe6162b366c2c56,0xbfe86073ac3c6243,3
1209
+ np.float64,0x3feffe781e7ffcf0,0x3ff8d2cbedd6a1b5,3
1210
+ np.float64,0xbff0000000000000,0xbff921fb54442d18,3
1211
+ np.float64,0x3fc1dc45ad23b888,0x3fc1eb3d9bddda58,3
1212
+ np.float64,0xbfe793f6fcef27ee,0xbfea81c93d65aa64,3
1213
+ np.float64,0x3fdef6d2bbbdeda4,0x3fe029079d42efb5,3
1214
+ np.float64,0xbfdf0ac479be1588,0xbfe0346dbc95963f,3
1215
+ np.float64,0xbfd33927d7a67250,0xbfd38653f90a5b73,3
1216
+ np.float64,0xbfe248b072e49161,0xbfe37631ef6572e1,3
1217
+ np.float64,0xbfc8ceb6af319d6c,0xbfc8f7288657f471,3
1218
+ np.float64,0x3fdd7277fcbae4f0,0x3fde99886e6766ef,3
1219
+ np.float64,0xbfe0d30c6561a619,0xbfe1b72f90bf53d6,3
1220
+ np.float64,0xbfcb0fe07d361fc0,0xbfcb448e2eae9542,3
1221
+ np.float64,0xbfe351f57fe6a3eb,0xbfe4be13eef250f2,3
1222
+ np.float64,0x3fe85ec02cf0bd80,0x3febb407e2e52e4c,3
1223
+ np.float64,0x3fc8bc59b53178b0,0x3fc8e470f65800ec,3
1224
+ np.float64,0xbfd278d447a4f1a8,0xbfd2bd133c9c0620,3
1225
+ np.float64,0x3feda5cfd87b4ba0,0x3ff2f5ab4324f43f,3
1226
+ np.float64,0xbfd2b32a36a56654,0xbfd2fa09c36afd34,3
1227
+ np.float64,0xbfed4a81cb7a9504,0xbff28077a4f4fff4,3
1228
+ np.float64,0x3fdf079bf9be0f38,0x3fe0329f7fb13f54,3
1229
+ np.float64,0x3fd14097f6a28130,0x3fd177e9834ec23f,3
1230
+ np.float64,0xbfaeab11843d5620,0xbfaeafc5531eb6b5,3
1231
+ np.float64,0xbfac3f8c14387f20,0xbfac433893d53360,3
1232
+ np.float64,0xbfc139d7ed2273b0,0xbfc14743adbbe660,3
1233
+ np.float64,0x3fe78cb02cef1960,0x3fea7707f76edba9,3
1234
+ np.float64,0x3fefe16b41ffc2d6,0x3ff7bff36a7aa7b8,3
1235
+ np.float64,0x3fec5260d378a4c2,0x3ff162c588b0da38,3
1236
+ np.float64,0x3fedb146f17b628e,0x3ff304f90d3a15d1,3
1237
+ np.float64,0x3fd1fd45f7a3fa8c,0x3fd23c2dc3929e20,3
1238
+ np.float64,0x3fe0898a5ee11314,0x3fe1610c63e726eb,3
1239
+ np.float64,0x3fe7719946eee332,0x3fea4f205eecb59f,3
1240
+ np.float64,0x3fe955218972aa44,0x3fed3b530c1f7651,3
1241
+ np.float64,0x3fe0ccbf4461997e,0x3fe1afc7b4587836,3
1242
+ np.float64,0xbfe9204314f24086,0xbfece5605780e346,3
1243
+ np.float64,0xbfe552017feaa403,0xbfe755773cbd74d5,3
1244
+ np.float64,0x3fd8ce4b32b19c98,0x3fd9791c8dd44eae,3
1245
+ np.float64,0x3fef89acd9ff135a,0x3ff668f78adf7ced,3
1246
+ np.float64,0x3fc9d713ad33ae28,0x3fca04da6c293bbd,3
1247
+ np.float64,0xbfe22d9c4de45b38,0xbfe3553effadcf92,3
1248
+ np.float64,0x3fa5cda38c2b9b40,0x3fa5cf53c5787482,3
1249
+ np.float64,0x3fa878ebdc30f1e0,0x3fa87b4f2bf1d4c3,3
1250
+ np.float64,0x3fe8030353700606,0x3feb27e196928789,3
1251
+ np.float64,0x3fb50607222a0c10,0x3fb50c188ce391e6,3
1252
+ np.float64,0x3fd9ba4ab4b37494,0x3fda79fa8bd40f45,3
1253
+ np.float64,0x3fb564598e2ac8b0,0x3fb56abe42d1ba13,3
1254
+ np.float64,0xbfd1177c83a22efa,0xbfd14d3d7ef30cc4,3
1255
+ np.float64,0xbfd952cec7b2a59e,0xbfda09215d17c0ac,3
1256
+ np.float64,0x3fe1d8066663b00c,0x3fe2edb35770b8dd,3
1257
+ np.float64,0xbfc89427a3312850,0xbfc8bb7a7c389497,3
1258
+ np.float64,0xbfe86ebfd3f0dd80,0xbfebccc2ba0f506c,3
1259
+ np.float64,0x3fc390578b2720b0,0x3fc3a40cb7f5f728,3
1260
+ np.float64,0xbfd122f9b8a245f4,0xbfd15929dc57a897,3
1261
+ np.float64,0x3f8d0636d03a0c80,0x3f8d06767de576df,3
1262
+ np.float64,0xbfe4b55d8b696abb,0xbfe685be537a9637,3
1263
+ np.float64,0xbfdfd51cf9bfaa3a,0xbfe0a894fcff0c76,3
1264
+ np.float64,0xbfd37c1f52a6f83e,0xbfd3cc9593c37aad,3
1265
+ np.float64,0x3fd0e8283ea1d050,0x3fd11c25c800785a,3
1266
+ np.float64,0x3fd3160784a62c10,0x3fd36183a6c2880c,3
1267
+ np.float64,0x3fd4c66e57a98cdc,0x3fd5288fe3394eff,3
1268
+ np.float64,0x3fee2f7e3afc5efc,0x3ff3b8063eb30cdc,3
1269
+ np.float64,0xbfe526773a6a4cee,0xbfe71b4364215b18,3
1270
+ np.float64,0x3fea01181e740230,0x3fee5b65eccfd130,3
1271
+ np.float64,0xbfe51c03f76a3808,0xbfe70d5919d37587,3
1272
+ np.float64,0x3fd97e1375b2fc28,0x3fda3845da40b22b,3
1273
+ np.float64,0x3fd5c14a14ab8294,0x3fd632890d07ed03,3
1274
+ np.float64,0xbfec9b474279368e,0xbff1b28f50584fe3,3
1275
+ np.float64,0x3fe0139ca860273a,0x3fe0d7fc377f001c,3
1276
+ np.float64,0x3fdb080c9db61018,0x3fdbe85056358fa0,3
1277
+ np.float64,0xbfdd72ceb1bae59e,0xbfde99ea171661eb,3
1278
+ np.float64,0xbfe64e934fec9d26,0xbfe8aec2ef24be63,3
1279
+ np.float64,0x3fd1036a93a206d4,0x3fd1386adabe01bd,3
1280
+ np.float64,0x3febc9d4a5f793aa,0x3ff0d4c069f1e67d,3
1281
+ np.float64,0xbfe547a16fea8f43,0xbfe747902fe6fb4d,3
1282
+ np.float64,0x3fc289b0f9251360,0x3fc29a709de6bdd9,3
1283
+ np.float64,0xbfe694494a6d2892,0xbfe9108f3dc133e2,3
1284
+ np.float64,0x3fd827dfe4b04fc0,0x3fd8c4fe40532b91,3
1285
+ np.float64,0xbfe8b89418f17128,0xbfec400c5a334b2e,3
1286
+ np.float64,0x3fed5605147aac0a,0x3ff28ed1f612814a,3
1287
+ np.float64,0xbfed36af31fa6d5e,0xbff26804e1f71af0,3
1288
+ np.float64,0x3fdbb01c02b76038,0x3fdca2381558bbf0,3
1289
+ np.float64,0x3fe2a951666552a2,0x3fe3ec88f780f9e6,3
1290
+ np.float64,0x3fe662defbecc5be,0x3fe8cb1dbfca98ab,3
1291
+ np.float64,0x3fd098b1b3a13164,0x3fd0c9d064e4eaf2,3
1292
+ np.float64,0x3fefa10edeff421e,0x3ff6b1c6187b18a8,3
1293
+ np.float64,0xbfec4feb7a789fd7,0xbff16021ef37a219,3
1294
+ np.float64,0x3fd8e415bbb1c82c,0x3fd990c1f8b786bd,3
1295
+ np.float64,0xbfead5a09275ab41,0xbfefd44fab5b4f6e,3
1296
+ np.float64,0xbfe8666c16f0ccd8,0xbfebbfe0c9f2a9ae,3
1297
+ np.float64,0x3fdc962132b92c44,0x3fdda2525a6f406c,3
1298
+ np.float64,0xbfe2037f03e406fe,0xbfe3222ec2a3449e,3
1299
+ np.float64,0xbfec82c27e790585,0xbff197626ea9df1e,3
1300
+ np.float64,0x3fd2b4e03ca569c0,0x3fd2fbd3c7fda23e,3
1301
+ np.float64,0xbfe9b0dee5f361be,0xbfedd34f6d3dfe8a,3
1302
+ np.float64,0x3feef45cd17de8ba,0x3ff508180687b591,3
1303
+ np.float64,0x3f82c39bf0258700,0x3f82c3ad24c3b3f1,3
1304
+ np.float64,0xbfca848cfd350918,0xbfcab612ce258546,3
1305
+ np.float64,0x3fd6442aaaac8854,0x3fd6bdea54016e48,3
1306
+ np.float64,0x3fe550799e6aa0f4,0x3fe75369c9ea5b1e,3
1307
+ np.float64,0xbfe0e9d5a361d3ac,0xbfe1d20011139d89,3
1308
+ np.float64,0x3fbfc9ff1e3f9400,0x3fbfdf0ea6885c80,3
1309
+ np.float64,0xbfa187e8b4230fd0,0xbfa188c95072092e,3
1310
+ np.float64,0x3fcd28c9533a5190,0x3fcd6ae879c21b47,3
1311
+ np.float64,0x3fc6227ec52c4500,0x3fc63f1fbb441d29,3
1312
+ np.float64,0x3fe9b7a2ed736f46,0x3feddeab49b2d176,3
1313
+ np.float64,0x3fd4aee93da95dd4,0x3fd50fb3b71e0339,3
1314
+ np.float64,0xbfe164dacf62c9b6,0xbfe263bb2f7dd5d9,3
1315
+ np.float64,0x3fec62e525f8c5ca,0x3ff17496416d9921,3
1316
+ np.float64,0x3fdd363ee0ba6c7c,0x3fde55c6a49a5f86,3
1317
+ np.float64,0x3fe65cbf75ecb97e,0x3fe8c28d31ff3ebd,3
1318
+ np.float64,0xbfe76d27ca6eda50,0xbfea4899e3661425,3
1319
+ np.float64,0xbfc305738d260ae8,0xbfc3178dcfc9d30f,3
1320
+ np.float64,0xbfd3aa2a54a75454,0xbfd3fcf1e1ce8328,3
1321
+ np.float64,0x3fd1609fc9a2c140,0x3fd1992efa539b9f,3
1322
+ np.float64,0xbfac1291bc382520,0xbfac162cc7334b4d,3
1323
+ np.float64,0xbfedb461ea7b68c4,0xbff309247850455d,3
1324
+ np.float64,0xbfe8d2adf8f1a55c,0xbfec6947be90ba92,3
1325
+ np.float64,0xbfd7128965ae2512,0xbfd79a9855bcfc5a,3
1326
+ np.float64,0x3fe8deb09471bd62,0x3fec7c56b3aee531,3
1327
+ np.float64,0xbfe5f4d329ebe9a6,0xbfe8327ea8189af8,3
1328
+ np.float64,0xbfd3b46ac9a768d6,0xbfd407b80b12ff17,3
1329
+ np.float64,0x3fec899d7cf9133a,0x3ff19ef26baca36f,3
1330
+ np.float64,0xbfec192fd5783260,0xbff126306e507fd0,3
1331
+ np.float64,0x3fe945bdaef28b7c,0x3fed222f787310bf,3
1332
+ np.float64,0xbfeff9635d7ff2c7,0xbff87d6773f318eb,3
1333
+ np.float64,0xbfd604b81cac0970,0xbfd67a4aa852559a,3
1334
+ np.float64,0x3fcd1cc9d53a3990,0x3fcd5e962e237c24,3
1335
+ np.float64,0xbfed77b0fffaef62,0xbff2b97a1c9b6483,3
1336
+ np.float64,0xbfc9c69325338d28,0xbfc9f401500402fb,3
1337
+ np.float64,0xbfdf97e246bf2fc4,0xbfe0855601ea9db3,3
1338
+ np.float64,0x3fc7e6304f2fcc60,0x3fc80a4e718504cd,3
1339
+ np.float64,0x3fec3b599e7876b4,0x3ff14a2d1b9c68e6,3
1340
+ np.float64,0xbfe98618e1f30c32,0xbfed8bfbb31c394a,3
1341
+ np.float64,0xbfe59b3c0feb3678,0xbfe7b832d6df81de,3
1342
+ np.float64,0xbfe54ce2fe6a99c6,0xbfe74e9a85be4116,3
1343
+ np.float64,0x3fc9db49cb33b690,0x3fca092737ef500a,3
1344
+ np.float64,0xbfb4a922ae295248,0xbfb4aee4e39078a9,3
1345
+ np.float64,0xbfd0e542e0a1ca86,0xbfd11925208d66af,3
1346
+ np.float64,0x3fd70543f2ae0a88,0x3fd78c5e9238a3ee,3
1347
+ np.float64,0x3fd67f7a7facfef4,0x3fd6fd3998df8545,3
1348
+ np.float64,0xbfe40b643d6816c8,0xbfe5a947e427f298,3
1349
+ np.float64,0xbfcd85f69b3b0bec,0xbfcdcaa24b75f1a3,3
1350
+ np.float64,0x3fec705fb4f8e0c0,0x3ff1833c82163ee2,3
1351
+ np.float64,0x3fb37650ea26eca0,0x3fb37b20c16fb717,3
1352
+ np.float64,0x3fe5ebfa55ebd7f4,0x3fe826578d716e70,3
1353
+ np.float64,0x3fe991dfe5f323c0,0x3fed9f8a4bf1f588,3
1354
+ np.float64,0xbfd658bd0aacb17a,0xbfd6d3dd06e54900,3
1355
+ np.float64,0xbfc24860252490c0,0xbfc258701a0b9290,3
1356
+ np.float64,0xbfefb8d763ff71af,0xbff705b6ea4a569d,3
1357
+ np.float64,0x3fb8fcb4ae31f970,0x3fb906e809e7899f,3
1358
+ np.float64,0x3fce6343cb3cc688,0x3fceae41d1629625,3
1359
+ np.float64,0xbfd43d5a11a87ab4,0xbfd497da25687e07,3
1360
+ np.float64,0xbfe9568851f2ad11,0xbfed3d9e5fe83a76,3
1361
+ np.float64,0x3fe1b66153e36cc2,0x3fe2c53c7e016271,3
1362
+ np.float64,0x3fef27452bfe4e8a,0x3ff571b3486ed416,3
1363
+ np.float64,0x3fca87c0a7350f80,0x3fcab958a7bb82d4,3
1364
+ np.float64,0xbfd8776a8fb0eed6,0xbfd91afaf2f50edf,3
1365
+ np.float64,0x3fe9522a76f2a454,0x3fed3679264e1525,3
1366
+ np.float64,0x3fea14ff2cf429fe,0x3fee7da6431cc316,3
1367
+ np.float64,0x3fe970618bf2e0c4,0x3fed68154d54dd97,3
1368
+ np.float64,0x3fd3410cfca68218,0x3fd38e9b21792240,3
1369
+ np.float64,0xbf6a8070c0350100,0xbf6a8073c7c34517,3
1370
+ np.float64,0xbfbe449de23c8938,0xbfbe56c8e5e4d98b,3
1371
+ np.float64,0x3fedbc92e27b7926,0x3ff314313216d8e6,3
1372
+ np.float64,0xbfe3be4706677c8e,0xbfe546d3ceb85aea,3
1373
+ np.float64,0x3fe30cd6d76619ae,0x3fe467b6f2664a8d,3
1374
+ np.float64,0x3fd7d69b21afad38,0x3fd86d54284d05ad,3
1375
+ np.float64,0xbfe501001fea0200,0xbfe6e978afcff4d9,3
1376
+ np.float64,0xbfe44ba3d8e89748,0xbfe5fc0a31cd1e3e,3
1377
+ np.float64,0x3fec52f7c078a5f0,0x3ff16367acb209b2,3
1378
+ np.float64,0xbfcb19efcb3633e0,0xbfcb4ed9235a7d47,3
1379
+ np.float64,0xbfab86796c370cf0,0xbfab89df7bf15710,3
1380
+ np.float64,0xbfb962feda32c600,0xbfb96db1e1679c98,3
1381
+ np.float64,0x3fe0dd14e861ba2a,0x3fe1c2fc72810567,3
1382
+ np.float64,0x3fe41bcc6de83798,0x3fe5be59b7f9003b,3
1383
+ np.float64,0x3fc82f4c4f305e98,0x3fc854bd9798939f,3
1384
+ np.float64,0xbfcd143a613a2874,0xbfcd55cbd1619d84,3
1385
+ np.float64,0xbfd52da61baa5b4c,0xbfd595d0b3543439,3
1386
+ np.float64,0xbfb71b4a8e2e3698,0xbfb7235a4ab8432f,3
1387
+ np.float64,0xbfec141a19782834,0xbff120e1e39fc856,3
1388
+ np.float64,0xbfdba9319db75264,0xbfdc9a8ca2578bb2,3
1389
+ np.float64,0xbfbce5d74639cbb0,0xbfbcf5a4878cfa51,3
1390
+ np.float64,0x3fde67f7b3bccff0,0x3fdfaf45a9f843ad,3
1391
+ np.float64,0xbfe12d87bc625b10,0xbfe221fd4476eb71,3
1392
+ np.float64,0x3fe35b8f6be6b71e,0x3fe4ca20f65179e1,3
1393
+ np.float64,0xbfdbada1d3b75b44,0xbfdc9f78b19f93d1,3
1394
+ np.float64,0xbfc60159c52c02b4,0xbfc61d79b879f598,3
1395
+ np.float64,0x3fd6b81c38ad7038,0x3fd739c27bfa16d8,3
1396
+ np.float64,0xbfd646a253ac8d44,0xbfd6c08c19612bbb,3
1397
+ np.float64,0xbfe6babef0ed757e,0xbfe94703d0bfa311,3
1398
+ np.float64,0xbfed5671f1faace4,0xbff28f5a3f3683d0,3
1399
+ np.float64,0x3fc01d1e85203a40,0x3fc02817ec0dfd38,3
1400
+ np.float64,0xbfe9188a61f23115,0xbfecd8eb5da84223,3
1401
+ np.float64,0x3fdca3bab9b94774,0x3fddb1868660c239,3
1402
+ np.float64,0xbfa255750c24aaf0,0xbfa25675f7b36343,3
1403
+ np.float64,0x3fb3602db626c060,0x3fb364ed2d5b2876,3
1404
+ np.float64,0xbfd30a14bda6142a,0xbfd354ff703b8862,3
1405
+ np.float64,0xbfe1cfe381639fc7,0xbfe2e3e720b968c8,3
1406
+ np.float64,0xbfd2af6a4fa55ed4,0xbfd2f61e190bcd1f,3
1407
+ np.float64,0xbfe93c50937278a1,0xbfed12d64bb10d73,3
1408
+ np.float64,0x3fddd8bc44bbb178,0x3fdf0ced7f9005cc,3
1409
+ np.float64,0x3fdb2bc73cb65790,0x3fdc0fc0e18e425e,3
1410
+ np.float64,0xbfd073f6aba0e7ee,0xbfd0a3cb5468a961,3
1411
+ np.float64,0x3fed4bad7b7a975a,0x3ff281ebeb75e414,3
1412
+ np.float64,0xbfdc75b50bb8eb6a,0xbfdd7e1a7631cb22,3
1413
+ np.float64,0x3fd458a90fa8b154,0x3fd4b4a5817248ce,3
1414
+ np.float64,0x3feead5db57d5abc,0x3ff484286fab55ff,3
1415
+ np.float64,0x3fb3894382271280,0x3fb38e217b4e7905,3
1416
+ np.float64,0xffefffffffffffff,0x7ff8000000000000,3
1417
+ np.float64,0xbfe428212ae85042,0xbfe5ce36f226bea8,3
1418
+ np.float64,0xbfc08b39f7211674,0xbfc0971b93ebc7ad,3
1419
+ np.float64,0xbfc2e7cf5525cfa0,0xbfc2f994eb72b623,3
1420
+ np.float64,0xbfdb0d85afb61b0c,0xbfdbee5a2de3c5db,3
1421
+ np.float64,0xfff0000000000000,0x7ff8000000000000,3
1422
+ np.float64,0xbfd0d36af7a1a6d6,0xbfd106a5f05ef6ff,3
1423
+ np.float64,0xbfc333d0912667a0,0xbfc3467162b7289a,3
1424
+ np.float64,0x3fcdababc53b5758,0x3fcdf16458c20fa8,3
1425
+ np.float64,0x3fd0821b38a10438,0x3fd0b26e3e0b9185,3
1426
+ np.float64,0x0,0x0,3
1427
+ np.float64,0x3feb7f70edf6fee2,0x3ff08ae81854bf20,3
1428
+ np.float64,0x3fe6e075716dc0ea,0x3fe97cc5254be6ff,3
1429
+ np.float64,0x3fea13b682f4276e,0x3fee7b6f18073b5b,3
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arcsinh.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0xbf24142a,0xbf1a85ef,2
3
+ np.float32,0x3e71cf91,0x3e6f9e37,2
4
+ np.float32,0xe52a7,0xe52a7,2
5
+ np.float32,0x3ef1e074,0x3ee9add9,2
6
+ np.float32,0x806160ac,0x806160ac,2
7
+ np.float32,0x7e2d59a2,0x42af4798,2
8
+ np.float32,0xbf32cac9,0xbf26bf96,2
9
+ np.float32,0x3f081701,0x3f026142,2
10
+ np.float32,0x3f23cc88,0x3f1a499c,2
11
+ np.float32,0xbf090d94,0xbf033ad0,2
12
+ np.float32,0x803af2fc,0x803af2fc,2
13
+ np.float32,0x807eb17e,0x807eb17e,2
14
+ np.float32,0x5c0d8e,0x5c0d8e,2
15
+ np.float32,0x3f7b79d2,0x3f5e6b1d,2
16
+ np.float32,0x806feeae,0x806feeae,2
17
+ np.float32,0x3e4b423a,0x3e49f274,2
18
+ np.float32,0x3f49e5ac,0x3f394a41,2
19
+ np.float32,0x3f18cd4e,0x3f10ef35,2
20
+ np.float32,0xbed75734,0xbed17322,2
21
+ np.float32,0x7f591151,0x42b28085,2
22
+ np.float32,0xfefe9da6,0xc2b16f51,2
23
+ np.float32,0xfeac90fc,0xc2b0a82a,2
24
+ np.float32,0x805c198e,0x805c198e,2
25
+ np.float32,0x7f66d6df,0x42b2a004,2
26
+ np.float32,0x505438,0x505438,2
27
+ np.float32,0xbf39a209,0xbf2c5255,2
28
+ np.float32,0x7fa00000,0x7fe00000,2
29
+ np.float32,0xc84cb,0xc84cb,2
30
+ np.float32,0x7f07d6f5,0x42b19088,2
31
+ np.float32,0x79d7e4,0x79d7e4,2
32
+ np.float32,0xff32f6a0,0xc2b21db1,2
33
+ np.float32,0x7c005c05,0x42a9222e,2
34
+ np.float32,0x3ec449aa,0x3ebfc5ae,2
35
+ np.float32,0x800ec323,0x800ec323,2
36
+ np.float32,0xff1c904c,0xc2b1d93a,2
37
+ np.float32,0x7f4eca52,0x42b267b0,2
38
+ np.float32,0x3ee06540,0x3ed9c514,2
39
+ np.float32,0x6aab4,0x6aab4,2
40
+ np.float32,0x3e298d8c,0x3e28c99e,2
41
+ np.float32,0xbf38d162,0xbf2ba94a,2
42
+ np.float32,0x2d9083,0x2d9083,2
43
+ np.float32,0x7eae5032,0x42b0ad52,2
44
+ np.float32,0x3ead5b3c,0x3eaa3443,2
45
+ np.float32,0x806fef66,0x806fef66,2
46
+ np.float32,0x3f5b614e,0x3f46ca71,2
47
+ np.float32,0xbf4c906a,0xbf3b60fc,2
48
+ np.float32,0x8049453e,0x8049453e,2
49
+ np.float32,0x3d305220,0x3d304432,2
50
+ np.float32,0x2e1a89,0x2e1a89,2
51
+ np.float32,0xbf4e74ec,0xbf3cdacf,2
52
+ np.float32,0x807a827a,0x807a827a,2
53
+ np.float32,0x80070745,0x80070745,2
54
+ np.float32,0xbe1ba2fc,0xbe1b0b28,2
55
+ np.float32,0xbe5131d0,0xbe4fc421,2
56
+ np.float32,0x5bfd98,0x5bfd98,2
57
+ np.float32,0xbd8e1a48,0xbd8dfd27,2
58
+ np.float32,0x8006c160,0x8006c160,2
59
+ np.float32,0x346490,0x346490,2
60
+ np.float32,0xbdbdf060,0xbdbdaaf0,2
61
+ np.float32,0x3ea9d0c4,0x3ea6d8c7,2
62
+ np.float32,0xbf2aaa28,0xbf200916,2
63
+ np.float32,0xbf160c26,0xbf0e9047,2
64
+ np.float32,0x80081fd4,0x80081fd4,2
65
+ np.float32,0x7db44283,0x42adf8b6,2
66
+ np.float32,0xbf1983f8,0xbf118bf5,2
67
+ np.float32,0x2c4a35,0x2c4a35,2
68
+ np.float32,0x6165a7,0x6165a7,2
69
+ np.float32,0xbe776b44,0xbe75129f,2
70
+ np.float32,0xfe81841a,0xc2b0153b,2
71
+ np.float32,0xbf7d1b2f,0xbf5f9461,2
72
+ np.float32,0x80602d36,0x80602d36,2
73
+ np.float32,0xfe8d5046,0xc2b041dd,2
74
+ np.float32,0xfe5037bc,0xc2afa56d,2
75
+ np.float32,0x4bbea6,0x4bbea6,2
76
+ np.float32,0xfea039de,0xc2b0822d,2
77
+ np.float32,0x7ea627a4,0x42b094c7,2
78
+ np.float32,0x3f556198,0x3f423591,2
79
+ np.float32,0xfedbae04,0xc2b123c1,2
80
+ np.float32,0xbe30432c,0xbe2f6744,2
81
+ np.float32,0x80202c77,0x80202c77,2
82
+ np.float32,0xff335cc1,0xc2b21ed5,2
83
+ np.float32,0x3e1e1ebe,0x3e1d7f95,2
84
+ np.float32,0x8021c9c0,0x8021c9c0,2
85
+ np.float32,0x7dc978,0x7dc978,2
86
+ np.float32,0xff6cfabc,0xc2b2ad75,2
87
+ np.float32,0x7f2bd542,0x42b208e0,2
88
+ np.float32,0x53bf33,0x53bf33,2
89
+ np.float32,0x804e04bb,0x804e04bb,2
90
+ np.float32,0x3f30d2f9,0x3f2521ca,2
91
+ np.float32,0x3dfde876,0x3dfd4316,2
92
+ np.float32,0x46f8b1,0x46f8b1,2
93
+ np.float32,0xbd5f9e20,0xbd5f81ba,2
94
+ np.float32,0x807d6a22,0x807d6a22,2
95
+ np.float32,0xff3881da,0xc2b22d50,2
96
+ np.float32,0x1b1cb5,0x1b1cb5,2
97
+ np.float32,0x3f75f2d0,0x3f5a7435,2
98
+ np.float32,0xfee39c1a,0xc2b135e9,2
99
+ np.float32,0x7f79f14a,0x42b2c8b9,2
100
+ np.float32,0x8000e2d1,0x8000e2d1,2
101
+ np.float32,0xab779,0xab779,2
102
+ np.float32,0xbede6690,0xbed7f102,2
103
+ np.float32,0x76e20d,0x76e20d,2
104
+ np.float32,0x3ed714cb,0x3ed135e9,2
105
+ np.float32,0xbeaa6f44,0xbea76f31,2
106
+ np.float32,0x7f7dc8b1,0x42b2d089,2
107
+ np.float32,0x108cb2,0x108cb2,2
108
+ np.float32,0x7d37ba82,0x42ac9f94,2
109
+ np.float32,0x3f31d068,0x3f25f221,2
110
+ np.float32,0x8010a331,0x8010a331,2
111
+ np.float32,0x3f2fdc7c,0x3f2456cd,2
112
+ np.float32,0x7f7a9a67,0x42b2ca13,2
113
+ np.float32,0x3f2acb31,0x3f202492,2
114
+ np.float32,0x7f54fa94,0x42b276c9,2
115
+ np.float32,0x3ebf8a70,0x3ebb553c,2
116
+ np.float32,0x7f75b1a7,0x42b2bff2,2
117
+ np.float32,0x7daebe07,0x42ade8cc,2
118
+ np.float32,0xbd3a3ef0,0xbd3a2e86,2
119
+ np.float32,0x8078ec9e,0x8078ec9e,2
120
+ np.float32,0x3eda206a,0x3ed403ec,2
121
+ np.float32,0x3f7248f2,0x3f57cd77,2
122
+ np.float32,0x805d55ba,0x805d55ba,2
123
+ np.float32,0xff30dc3e,0xc2b217a3,2
124
+ np.float32,0xbe12b27c,0xbe123333,2
125
+ np.float32,0xbf6ed9cf,0xbf554cd0,2
126
+ np.float32,0xbed9eb5c,0xbed3d31c,2
127
+ np.float32,0xbf1c9aea,0xbf14307b,2
128
+ np.float32,0x3f540ac4,0x3f412de2,2
129
+ np.float32,0x800333ac,0x800333ac,2
130
+ np.float32,0x3f74cdb4,0x3f59a09a,2
131
+ np.float32,0xbf41dc41,0xbf32ee6f,2
132
+ np.float32,0xff2c7804,0xc2b20ac4,2
133
+ np.float32,0x514493,0x514493,2
134
+ np.float32,0xbddf1220,0xbddea1cf,2
135
+ np.float32,0xfeaf74de,0xc2b0b0ab,2
136
+ np.float32,0xfe5dfb30,0xc2afc633,2
137
+ np.float32,0xbf4785c4,0xbf376bdb,2
138
+ np.float32,0x80191cd3,0x80191cd3,2
139
+ np.float32,0xfe44f708,0xc2af88fb,2
140
+ np.float32,0x3d4cd8a0,0x3d4cc2ca,2
141
+ np.float32,0x7f572eff,0x42b27c0f,2
142
+ np.float32,0x8031bacb,0x8031bacb,2
143
+ np.float32,0x7f2ea684,0x42b21133,2
144
+ np.float32,0xbea1976a,0xbe9f05bb,2
145
+ np.float32,0x3d677b41,0x3d675bc1,2
146
+ np.float32,0x3f61bf24,0x3f4b9870,2
147
+ np.float32,0x7ef55ddf,0x42b15c5f,2
148
+ np.float32,0x3eabcb20,0x3ea8b91c,2
149
+ np.float32,0xff73d9ec,0xc2b2bc18,2
150
+ np.float32,0x77b9f5,0x77b9f5,2
151
+ np.float32,0x4c6c6c,0x4c6c6c,2
152
+ np.float32,0x7ed09c94,0x42b10949,2
153
+ np.float32,0xdeeec,0xdeeec,2
154
+ np.float32,0x7eac5858,0x42b0a782,2
155
+ np.float32,0x7e190658,0x42af07bd,2
156
+ np.float32,0xbe3c8980,0xbe3b7ce2,2
157
+ np.float32,0x8059e86e,0x8059e86e,2
158
+ np.float32,0xff201836,0xc2b1e4a5,2
159
+ np.float32,0xbeac109c,0xbea8fafb,2
160
+ np.float32,0x7edd1e2b,0x42b12718,2
161
+ np.float32,0x639cd8,0x639cd8,2
162
+ np.float32,0x3f5e4cae,0x3f490059,2
163
+ np.float32,0x3d84c185,0x3d84a9c4,2
164
+ np.float32,0xbe8c1130,0xbe8a605b,2
165
+ np.float32,0x80000000,0x80000000,2
166
+ np.float32,0x3f1da5e4,0x3f151404,2
167
+ np.float32,0x7f75a873,0x42b2bfdf,2
168
+ np.float32,0xbd873540,0xbd871c28,2
169
+ np.float32,0xbe8e5e10,0xbe8c9808,2
170
+ np.float32,0x7f004bf2,0x42b17347,2
171
+ np.float32,0x800000,0x800000,2
172
+ np.float32,0xbf6d6b79,0xbf544095,2
173
+ np.float32,0x7ed7b563,0x42b11a6a,2
174
+ np.float32,0x80693745,0x80693745,2
175
+ np.float32,0x3ee0f608,0x3eda49a8,2
176
+ np.float32,0xfe1285a4,0xc2aef181,2
177
+ np.float32,0x72d946,0x72d946,2
178
+ np.float32,0x6a0dca,0x6a0dca,2
179
+ np.float32,0x3f5c9df6,0x3f47ba99,2
180
+ np.float32,0xff002af6,0xc2b172c4,2
181
+ np.float32,0x3f4ac98f,0x3f39fd0a,2
182
+ np.float32,0x8066acf7,0x8066acf7,2
183
+ np.float32,0xbcaa4e60,0xbcaa4b3c,2
184
+ np.float32,0x80162813,0x80162813,2
185
+ np.float32,0xff34b318,0xc2b222a2,2
186
+ np.float32,0x7f1ce33c,0x42b1da49,2
187
+ np.float32,0x3f0e55ab,0x3f07ddb0,2
188
+ np.float32,0x7c75d996,0x42aa6eec,2
189
+ np.float32,0xbf221bc6,0xbf18dc89,2
190
+ np.float32,0x3f5a1a4c,0x3f45d1d4,2
191
+ np.float32,0x7f2451b8,0x42b1f1fb,2
192
+ np.float32,0x3ec55ca0,0x3ec0c655,2
193
+ np.float32,0x3f752dc2,0x3f59e600,2
194
+ np.float32,0xbe33f638,0xbe330c4d,2
195
+ np.float32,0x3e2a9148,0x3e29c9d8,2
196
+ np.float32,0x3f3362a1,0x3f273c01,2
197
+ np.float32,0x5f83b3,0x5f83b3,2
198
+ np.float32,0x3e362488,0x3e353216,2
199
+ np.float32,0x140bcf,0x140bcf,2
200
+ np.float32,0x7e3e96df,0x42af7822,2
201
+ np.float32,0xbebc7082,0xbeb86ce6,2
202
+ np.float32,0xbe92a92e,0xbe90b9d2,2
203
+ np.float32,0xff3d8afc,0xc2b23b19,2
204
+ np.float32,0x804125e3,0x804125e3,2
205
+ np.float32,0x3f3675d1,0x3f29bedb,2
206
+ np.float32,0xff70bb09,0xc2b2b57f,2
207
+ np.float32,0x3f29681c,0x3f1efcd2,2
208
+ np.float32,0xbdc70380,0xbdc6b3a8,2
209
+ np.float32,0x54e0dd,0x54e0dd,2
210
+ np.float32,0x3d545de0,0x3d54458c,2
211
+ np.float32,0x7f800000,0x7f800000,2
212
+ np.float32,0x8014a4c2,0x8014a4c2,2
213
+ np.float32,0xbe93f58a,0xbe91f938,2
214
+ np.float32,0x17de33,0x17de33,2
215
+ np.float32,0xfefb679a,0xc2b168d2,2
216
+ np.float32,0xbf23423e,0xbf19d511,2
217
+ np.float32,0x7e893fa1,0x42b032ec,2
218
+ np.float32,0x3f44fe2d,0x3f356bda,2
219
+ np.float32,0xbebb2e78,0xbeb73e8f,2
220
+ np.float32,0x3f5632e0,0x3f42d633,2
221
+ np.float32,0x3ddd8698,0x3ddd1896,2
222
+ np.float32,0x80164ea7,0x80164ea7,2
223
+ np.float32,0x80087b37,0x80087b37,2
224
+ np.float32,0xbf06ab1e,0xbf011f95,2
225
+ np.float32,0x3db95524,0x3db9149f,2
226
+ np.float32,0x7aa1fbb3,0x42a570a1,2
227
+ np.float32,0xbd84fc48,0xbd84e467,2
228
+ np.float32,0x3d65c6f5,0x3d65a826,2
229
+ np.float32,0xfe987800,0xc2b068c4,2
230
+ np.float32,0x7ec59532,0x42b0ed7a,2
231
+ np.float32,0x3ea0232c,0x3e9da29a,2
232
+ np.float32,0x80292a08,0x80292a08,2
233
+ np.float32,0x734cfe,0x734cfe,2
234
+ np.float32,0x3f3b6d63,0x3f2dc596,2
235
+ np.float32,0x3f27bcc1,0x3f1d97e6,2
236
+ np.float32,0xfe1da554,0xc2af16f9,2
237
+ np.float32,0x7c91f5,0x7c91f5,2
238
+ np.float32,0xfe4e78cc,0xc2afa11e,2
239
+ np.float32,0x7e4b4e08,0x42af9933,2
240
+ np.float32,0xfe0949ec,0xc2aed02e,2
241
+ np.float32,0x7e2f057f,0x42af4c81,2
242
+ np.float32,0xbf200ae0,0xbf171ce1,2
243
+ np.float32,0x3ebcc244,0x3eb8b99e,2
244
+ np.float32,0xbf68f58d,0xbf50f7aa,2
245
+ np.float32,0x4420b1,0x4420b1,2
246
+ np.float32,0x3f5b61bf,0x3f46cac7,2
247
+ np.float32,0x3fec78,0x3fec78,2
248
+ np.float32,0x7f4183c8,0x42b245b7,2
249
+ np.float32,0xbf10587c,0xbf099ee2,2
250
+ np.float32,0x0,0x0,2
251
+ np.float32,0x7ec84dc3,0x42b0f47a,2
252
+ np.float32,0x3f5fbd7b,0x3f4a166d,2
253
+ np.float32,0xbd884eb8,0xbd883502,2
254
+ np.float32,0xfe3f10a4,0xc2af7969,2
255
+ np.float32,0xff3f4920,0xc2b23fc9,2
256
+ np.float32,0x8013900f,0x8013900f,2
257
+ np.float32,0x8003529d,0x8003529d,2
258
+ np.float32,0xbf032384,0xbefbfb3c,2
259
+ np.float32,0xff418c7c,0xc2b245ce,2
260
+ np.float32,0xbec0aad0,0xbebc633b,2
261
+ np.float32,0xfdbff178,0xc2ae18de,2
262
+ np.float32,0x68ab15,0x68ab15,2
263
+ np.float32,0xbdfc4a88,0xbdfba848,2
264
+ np.float32,0xbf5adec6,0xbf466747,2
265
+ np.float32,0x807d5dcc,0x807d5dcc,2
266
+ np.float32,0x61d144,0x61d144,2
267
+ np.float32,0x807e3a03,0x807e3a03,2
268
+ np.float32,0x1872f2,0x1872f2,2
269
+ np.float32,0x7f2a272c,0x42b203d8,2
270
+ np.float32,0xfe7f8314,0xc2b00e3a,2
271
+ np.float32,0xbe42aeac,0xbe418737,2
272
+ np.float32,0x8024b614,0x8024b614,2
273
+ np.float32,0xbe41b6b8,0xbe40939a,2
274
+ np.float32,0xa765c,0xa765c,2
275
+ np.float32,0x7ea74f4b,0x42b09853,2
276
+ np.float32,0x7f7ef631,0x42b2d2e7,2
277
+ np.float32,0x7eaef5e6,0x42b0af38,2
278
+ np.float32,0xff733d85,0xc2b2bacf,2
279
+ np.float32,0x537ac0,0x537ac0,2
280
+ np.float32,0xbeca4790,0xbec55b1d,2
281
+ np.float32,0x80117314,0x80117314,2
282
+ np.float32,0xfe958536,0xc2b05ec5,2
283
+ np.float32,0x8066ecc2,0x8066ecc2,2
284
+ np.float32,0xbf56baf3,0xbf433e82,2
285
+ np.float32,0x1f7fd7,0x1f7fd7,2
286
+ np.float32,0x3e942104,0x3e9222fc,2
287
+ np.float32,0xfeaffe82,0xc2b0b23c,2
288
+ np.float32,0xfe0e02b0,0xc2aee17e,2
289
+ np.float32,0xbf800000,0xbf61a1b3,2
290
+ np.float32,0x800b7e49,0x800b7e49,2
291
+ np.float32,0x6c514f,0x6c514f,2
292
+ np.float32,0xff800000,0xff800000,2
293
+ np.float32,0x7f7d9a45,0x42b2d02b,2
294
+ np.float32,0x800c9c69,0x800c9c69,2
295
+ np.float32,0x274b14,0x274b14,2
296
+ np.float32,0xbf4b22b0,0xbf3a42e2,2
297
+ np.float32,0x63e5ae,0x63e5ae,2
298
+ np.float32,0xbe18facc,0xbe186a90,2
299
+ np.float32,0x7e137351,0x42aef4bd,2
300
+ np.float32,0x80518ffd,0x80518ffd,2
301
+ np.float32,0xbf0a8ffc,0xbf048f0d,2
302
+ np.float32,0x841d,0x841d,2
303
+ np.float32,0x7edfdc9e,0x42b12d69,2
304
+ np.float32,0xfd1092b0,0xc2ac24de,2
305
+ np.float32,0x7e2c9bdf,0x42af4566,2
306
+ np.float32,0x7f7fffff,0x42b2d4fc,2
307
+ np.float32,0x3f4954a6,0x3f38d853,2
308
+ np.float32,0xbe83efd2,0xbe8284c3,2
309
+ np.float32,0x800e8e02,0x800e8e02,2
310
+ np.float32,0x78ad39,0x78ad39,2
311
+ np.float32,0x7eb0f967,0x42b0b514,2
312
+ np.float32,0xbe39aa94,0xbe38a9ee,2
313
+ np.float32,0x80194e7b,0x80194e7b,2
314
+ np.float32,0x3cf3a340,0x3cf39a0f,2
315
+ np.float32,0x3ed3117a,0x3ecd8173,2
316
+ np.float32,0x7f530b11,0x42b2721c,2
317
+ np.float32,0xff756ba2,0xc2b2bf60,2
318
+ np.float32,0x15ea25,0x15ea25,2
319
+ np.float32,0x803cbb64,0x803cbb64,2
320
+ np.float32,0x3f34722d,0x3f281a2c,2
321
+ np.float32,0x3ddd88e0,0x3ddd1adb,2
322
+ np.float32,0x3f54244c,0x3f41418b,2
323
+ np.float32,0x3e0adb98,0x3e0a6f8b,2
324
+ np.float32,0x80800000,0x80800000,2
325
+ np.float32,0x58902b,0x58902b,2
326
+ np.float32,0xfe3b50b8,0xc2af6f43,2
327
+ np.float32,0xfe0846d0,0xc2aecc64,2
328
+ np.float32,0xbe0299d0,0xbe023fd4,2
329
+ np.float32,0x18dde6,0x18dde6,2
330
+ np.float32,0x8039fe8b,0x8039fe8b,2
331
+ np.float32,0x8015d179,0x8015d179,2
332
+ np.float32,0x3f551322,0x3f41f947,2
333
+ np.float32,0x2ab387,0x2ab387,2
334
+ np.float32,0xbf7e311e,0xbf6059d0,2
335
+ np.float32,0xbdba58a8,0xbdba1713,2
336
+ np.float32,0xbf1d008a,0xbf148724,2
337
+ np.float32,0xbf6b9c97,0xbf52ec98,2
338
+ np.float32,0x802acf04,0x802acf04,2
339
+ np.float32,0x1,0x1,2
340
+ np.float32,0xbe9e16d6,0xbe9bade3,2
341
+ np.float32,0xbf048a14,0xbefe78c7,2
342
+ np.float32,0x7e432ad3,0x42af8449,2
343
+ np.float32,0xbdcc7fe0,0xbdcc2944,2
344
+ np.float32,0x6dfc27,0x6dfc27,2
345
+ np.float32,0xfef6eed8,0xc2b15fa1,2
346
+ np.float32,0xbeeff6e8,0xbee7f2e4,2
347
+ np.float32,0x7e3a6ca8,0x42af6cd2,2
348
+ np.float32,0xff2c82e8,0xc2b20ae4,2
349
+ np.float32,0x3e9f8d74,0x3e9d13b0,2
350
+ np.float32,0x7ea36191,0x42b08c29,2
351
+ np.float32,0x7f734bed,0x42b2baed,2
352
+ np.float32,0x7f2df96d,0x42b20f37,2
353
+ np.float32,0x5036fd,0x5036fd,2
354
+ np.float32,0x806eab38,0x806eab38,2
355
+ np.float32,0xbe9db90e,0xbe9b5446,2
356
+ np.float32,0xfeef6fac,0xc2b14fd9,2
357
+ np.float32,0xc2bf7,0xc2bf7,2
358
+ np.float32,0xff53ec3d,0xc2b2743d,2
359
+ np.float32,0x7e837637,0x42b01cde,2
360
+ np.float32,0xbefb5934,0xbef23662,2
361
+ np.float32,0x3f6cec80,0x3f53e371,2
362
+ np.float32,0x3e86e7de,0x3e85643f,2
363
+ np.float32,0x3f09cb42,0x3f03e1ef,2
364
+ np.float32,0xbec3d236,0xbebf5620,2
365
+ np.float32,0xfedef246,0xc2b12b50,2
366
+ np.float32,0xbf08d6a8,0xbf030a62,2
367
+ np.float32,0x8036cbf9,0x8036cbf9,2
368
+ np.float32,0x3f74d3e3,0x3f59a512,2
369
+ np.float32,0x6a600c,0x6a600c,2
370
+ np.float32,0xfd1295b0,0xc2ac2bf1,2
371
+ np.float32,0xbeb61142,0xbeb26efa,2
372
+ np.float32,0x80216556,0x80216556,2
373
+ np.float32,0xbf1fa0f6,0xbf16c30a,2
374
+ np.float32,0x3e0af8e1,0x3e0a8c90,2
375
+ np.float32,0x80434709,0x80434709,2
376
+ np.float32,0x49efd9,0x49efd9,2
377
+ np.float32,0x7f7cce6c,0x42b2ce8f,2
378
+ np.float32,0x6e5450,0x6e5450,2
379
+ np.float32,0x7f0fc115,0x42b1ad86,2
380
+ np.float32,0x632db0,0x632db0,2
381
+ np.float32,0x3f6f4c2a,0x3f55a064,2
382
+ np.float32,0x7ec4f273,0x42b0ebd3,2
383
+ np.float32,0x61ae1e,0x61ae1e,2
384
+ np.float32,0x5f47c4,0x5f47c4,2
385
+ np.float32,0xbf3c8f62,0xbf2eaf54,2
386
+ np.float32,0xfca38900,0xc2ab0113,2
387
+ np.float32,0x3ec89d52,0x3ec3ce78,2
388
+ np.float32,0xbe0e3f70,0xbe0dcb53,2
389
+ np.float32,0x805d3156,0x805d3156,2
390
+ np.float32,0x3eee33f8,0x3ee65a4e,2
391
+ np.float32,0xbeda7e9a,0xbed45a90,2
392
+ np.float32,0x7e2fac7b,0x42af4e69,2
393
+ np.float32,0x7efd0e28,0x42b16c2c,2
394
+ np.float32,0x3f0c7b17,0x3f063e46,2
395
+ np.float32,0xbf395bec,0xbf2c198f,2
396
+ np.float32,0xfdf1c3f8,0xc2ae8f05,2
397
+ np.float32,0xbe11f4e4,0xbe117783,2
398
+ np.float32,0x7eddc901,0x42b128a3,2
399
+ np.float32,0x3f4bad09,0x3f3aaf33,2
400
+ np.float32,0xfefb5d76,0xc2b168bd,2
401
+ np.float32,0x3ed3a4cf,0x3ece09a3,2
402
+ np.float32,0x7ec582e4,0x42b0ed4a,2
403
+ np.float32,0x3dc2268a,0x3dc1dc64,2
404
+ np.float32,0x3ef9b17c,0x3ef0b9c9,2
405
+ np.float32,0x2748ac,0x2748ac,2
406
+ np.float32,0xfed6a602,0xc2b117e4,2
407
+ np.float32,0xbefc9c36,0xbef35832,2
408
+ np.float32,0x7e0476,0x7e0476,2
409
+ np.float32,0x804be1a0,0x804be1a0,2
410
+ np.float32,0xbefbc1c2,0xbef2943a,2
411
+ np.float32,0xbd4698f0,0xbd46850a,2
412
+ np.float32,0x688627,0x688627,2
413
+ np.float32,0x3f7f7685,0x3f61406f,2
414
+ np.float32,0x827fb,0x827fb,2
415
+ np.float32,0x3f503264,0x3f3e34fd,2
416
+ np.float32,0x7f5458d1,0x42b27543,2
417
+ np.float32,0x800ac01f,0x800ac01f,2
418
+ np.float32,0x6188dd,0x6188dd,2
419
+ np.float32,0x806ac0ba,0x806ac0ba,2
420
+ np.float32,0xbe14493c,0xbe13c5cc,2
421
+ np.float32,0x3f77542c,0x3f5b72ae,2
422
+ np.float32,0xfeaacab6,0xc2b0a2df,2
423
+ np.float32,0x7f2893d5,0x42b1ff15,2
424
+ np.float32,0x66b528,0x66b528,2
425
+ np.float32,0xbf653e24,0xbf4e3573,2
426
+ np.float32,0x801a2853,0x801a2853,2
427
+ np.float32,0x3f3d8c98,0x3f2f7b04,2
428
+ np.float32,0xfdffbad8,0xc2aeabc5,2
429
+ np.float32,0x3dd50f,0x3dd50f,2
430
+ np.float32,0x3f325a4c,0x3f266353,2
431
+ np.float32,0xfcc48ec0,0xc2ab5f3f,2
432
+ np.float32,0x3e6f5b9a,0x3e6d3ae5,2
433
+ np.float32,0x3dbcd62b,0x3dbc91ee,2
434
+ np.float32,0xbf7458d9,0xbf594c1c,2
435
+ np.float32,0xff5adb24,0xc2b284b9,2
436
+ np.float32,0x807b246d,0x807b246d,2
437
+ np.float32,0x3f800000,0x3f61a1b3,2
438
+ np.float32,0x231a28,0x231a28,2
439
+ np.float32,0xbdc66258,0xbdc61341,2
440
+ np.float32,0x3c84b4b4,0x3c84b338,2
441
+ np.float32,0xbf215894,0xbf183783,2
442
+ np.float32,0xff4ee298,0xc2b267ec,2
443
+ np.float32,0x801ef52e,0x801ef52e,2
444
+ np.float32,0x1040b0,0x1040b0,2
445
+ np.float32,0xff545582,0xc2b2753b,2
446
+ np.float32,0x3f3b9dda,0x3f2decaf,2
447
+ np.float32,0x730f99,0x730f99,2
448
+ np.float32,0xff7fffff,0xc2b2d4fc,2
449
+ np.float32,0xff24cc5e,0xc2b1f379,2
450
+ np.float32,0xbe9b456a,0xbe98fc0b,2
451
+ np.float32,0x188fb,0x188fb,2
452
+ np.float32,0x3f5c7ce2,0x3f47a18a,2
453
+ np.float32,0x7fc00000,0x7fc00000,2
454
+ np.float32,0x806ea4da,0x806ea4da,2
455
+ np.float32,0xfe810570,0xc2b01345,2
456
+ np.float32,0x8036af89,0x8036af89,2
457
+ np.float32,0x8043cec6,0x8043cec6,2
458
+ np.float32,0x80342bb3,0x80342bb3,2
459
+ np.float32,0x1a2bd4,0x1a2bd4,2
460
+ np.float32,0x3f6248c2,0x3f4bff9a,2
461
+ np.float32,0x8024eb35,0x8024eb35,2
462
+ np.float32,0x7ea55872,0x42b09247,2
463
+ np.float32,0x806d6e56,0x806d6e56,2
464
+ np.float32,0x25c21a,0x25c21a,2
465
+ np.float32,0x3f4e95f3,0x3f3cf483,2
466
+ np.float32,0x15ca38,0x15ca38,2
467
+ np.float32,0x803f01b2,0x803f01b2,2
468
+ np.float32,0xbe731634,0xbe70dc10,2
469
+ np.float32,0x3e80cee4,0x3e7ef933,2
470
+ np.float32,0x3ef6dda5,0x3eee2e7b,2
471
+ np.float32,0x3f3dfdc2,0x3f2fd5ed,2
472
+ np.float32,0xff0492a7,0xc2b18411,2
473
+ np.float32,0xbf1d0adf,0xbf148ff3,2
474
+ np.float32,0xfcf75460,0xc2abd4e3,2
475
+ np.float32,0x3f46fca6,0x3f36ffa6,2
476
+ np.float32,0xbe63b5c0,0xbe61dfb3,2
477
+ np.float32,0xff019bec,0xc2b1787d,2
478
+ np.float32,0x801f14a9,0x801f14a9,2
479
+ np.float32,0x3f176cfa,0x3f0fc051,2
480
+ np.float32,0x3f69d976,0x3f51a015,2
481
+ np.float32,0x3f4917cb,0x3f38a87a,2
482
+ np.float32,0x3b2a0bea,0x3b2a0bdd,2
483
+ np.float32,0xbf41d857,0xbf32eb50,2
484
+ np.float32,0xbf08841a,0xbf02c18f,2
485
+ np.float32,0x7ec86f14,0x42b0f4d0,2
486
+ np.float32,0xbf7d15d1,0xbf5f9090,2
487
+ np.float32,0xbd080550,0xbd07feea,2
488
+ np.float32,0xbf6f1bef,0xbf557d26,2
489
+ np.float32,0xfebc282c,0xc2b0d473,2
490
+ np.float32,0x3e68d2f5,0x3e66dd03,2
491
+ np.float32,0x3f3ed8fe,0x3f3085d5,2
492
+ np.float32,0xff2f78ae,0xc2b2139a,2
493
+ np.float32,0xff647a70,0xc2b29ac1,2
494
+ np.float32,0xfd0859a0,0xc2ac06e2,2
495
+ np.float32,0x3ea578a8,0x3ea2b7e1,2
496
+ np.float32,0x6c58c6,0x6c58c6,2
497
+ np.float32,0xff23f26a,0xc2b1f0d2,2
498
+ np.float32,0x800902a4,0x800902a4,2
499
+ np.float32,0xfe8ba64e,0xc2b03bcd,2
500
+ np.float32,0x3f091143,0x3f033e0f,2
501
+ np.float32,0x8017c4bd,0x8017c4bd,2
502
+ np.float32,0xbf708fd4,0xbf568c8c,2
503
+ np.float32,0x3be1d8,0x3be1d8,2
504
+ np.float32,0x80091f07,0x80091f07,2
505
+ np.float32,0x68eabe,0x68eabe,2
506
+ np.float32,0xfe9ab2c8,0xc2b07033,2
507
+ np.float32,0x3eabe752,0x3ea8d3d7,2
508
+ np.float32,0xbf7adcb2,0xbf5dfaf5,2
509
+ np.float32,0x801ecc01,0x801ecc01,2
510
+ np.float32,0xbf5570a9,0xbf424123,2
511
+ np.float32,0x3e89eecd,0x3e88510e,2
512
+ np.float32,0xfeb2feee,0xc2b0bae4,2
513
+ np.float32,0xbeb25ec2,0xbeaef22b,2
514
+ np.float32,0x201e49,0x201e49,2
515
+ np.float32,0x800a35f6,0x800a35f6,2
516
+ np.float32,0xbf02d449,0xbefb6e2a,2
517
+ np.float32,0x3f062bea,0x3f00aef6,2
518
+ np.float32,0x7f5219ff,0x42b26fd2,2
519
+ np.float32,0xbd4561d0,0xbd454e47,2
520
+ np.float32,0x3f6c4789,0x3f536a4b,2
521
+ np.float32,0x7f58b06d,0x42b27fa1,2
522
+ np.float32,0x7f132f39,0x42b1b999,2
523
+ np.float32,0x3e05dcb4,0x3e057bd8,2
524
+ np.float32,0x7f526045,0x42b2707d,2
525
+ np.float32,0x3f6117d0,0x3f4b1adb,2
526
+ np.float32,0xbf21f47d,0xbf18bb57,2
527
+ np.float32,0x1a26d6,0x1a26d6,2
528
+ np.float32,0x46b114,0x46b114,2
529
+ np.float32,0x3eb24518,0x3eaed9ef,2
530
+ np.float32,0xfe2139c8,0xc2af2278,2
531
+ np.float32,0xbf7c36fb,0xbf5ef1f6,2
532
+ np.float32,0x3f193834,0x3f114af7,2
533
+ np.float32,0xff3ea650,0xc2b23e14,2
534
+ np.float32,0xfeeb3bca,0xc2b146c7,2
535
+ np.float32,0x7e8b8ca0,0x42b03b6f,2
536
+ np.float32,0x3eed903d,0x3ee5c5d2,2
537
+ np.float32,0xbdc73740,0xbdc6e72a,2
538
+ np.float32,0x7e500307,0x42afa4ec,2
539
+ np.float32,0xe003c,0xe003c,2
540
+ np.float32,0x3e612bb4,0x3e5f64fd,2
541
+ np.float32,0xfd81e248,0xc2ad50e6,2
542
+ np.float32,0x766a4f,0x766a4f,2
543
+ np.float32,0x3e8708c9,0x3e858414,2
544
+ np.float32,0xbf206c58,0xbf176f7f,2
545
+ np.float32,0x7e93aeb0,0x42b0586f,2
546
+ np.float32,0xfd9d36b8,0xc2adb2ad,2
547
+ np.float32,0xff1f4e0e,0xc2b1e21d,2
548
+ np.float32,0x3f22bd5a,0x3f1964f8,2
549
+ np.float32,0x7f6a517a,0x42b2a7ad,2
550
+ np.float32,0xff6ca773,0xc2b2acc1,2
551
+ np.float32,0x7f6bf453,0x42b2ab3d,2
552
+ np.float32,0x3edfdd64,0x3ed9489f,2
553
+ np.float32,0xbeafc5ba,0xbeac7daa,2
554
+ np.float32,0x7d862039,0x42ad615b,2
555
+ np.float32,0xbe9d2002,0xbe9ac1fc,2
556
+ np.float32,0xbdcc54c0,0xbdcbfe5b,2
557
+ np.float32,0xbf1bc0aa,0xbf13762a,2
558
+ np.float32,0xbf4679ce,0xbf36984b,2
559
+ np.float32,0x3ef45696,0x3eebe713,2
560
+ np.float32,0xff6eb999,0xc2b2b137,2
561
+ np.float32,0xbe4b2e4c,0xbe49dee8,2
562
+ np.float32,0x3f498951,0x3f3901b7,2
563
+ np.float32,0xbe9692f4,0xbe947be1,2
564
+ np.float32,0xbf44ce26,0xbf3545c8,2
565
+ np.float32,0x805787a8,0x805787a8,2
566
+ np.float32,0xbf342650,0xbf27dc26,2
567
+ np.float32,0x3edafbf0,0x3ed4cdd2,2
568
+ np.float32,0x3f6fb858,0x3f55ef63,2
569
+ np.float32,0xff227d0a,0xc2b1ec3f,2
570
+ np.float32,0xfeb9a202,0xc2b0cd89,2
571
+ np.float32,0x7f5b12c1,0x42b2853b,2
572
+ np.float32,0x584578,0x584578,2
573
+ np.float32,0x7ec0b76f,0x42b0e0b5,2
574
+ np.float32,0x3f57f54b,0x3f442f10,2
575
+ np.float32,0x7eef3620,0x42b14f5d,2
576
+ np.float32,0x4525b5,0x4525b5,2
577
+ np.float32,0x801bd407,0x801bd407,2
578
+ np.float32,0xbed1f166,0xbecc7703,2
579
+ np.float32,0x3f57e732,0x3f442449,2
580
+ np.float32,0x80767cd5,0x80767cd5,2
581
+ np.float32,0xbef1a7d2,0xbee97aa3,2
582
+ np.float32,0x3dd5b1af,0x3dd54ee6,2
583
+ np.float32,0x960c,0x960c,2
584
+ np.float32,0x7c392d41,0x42a9ddd1,2
585
+ np.float32,0x3f5c9a34,0x3f47b7c1,2
586
+ np.float32,0x3f5cecee,0x3f47f667,2
587
+ np.float32,0xbee482ce,0xbedd8899,2
588
+ np.float32,0x8066ba7e,0x8066ba7e,2
589
+ np.float32,0x7ed76127,0x42b119a2,2
590
+ np.float32,0x805ca40b,0x805ca40b,2
591
+ np.float32,0x7f5ed5d1,0x42b28df3,2
592
+ np.float32,0xfe9e1b1e,0xc2b07b5b,2
593
+ np.float32,0x3f0201a2,0x3ef9f6c4,2
594
+ np.float32,0xbf2e6430,0xbf232039,2
595
+ np.float32,0x80326b4d,0x80326b4d,2
596
+ np.float32,0x3f11dc7c,0x3f0af06e,2
597
+ np.float32,0xbe89c42e,0xbe8827e6,2
598
+ np.float32,0x3f3c69f8,0x3f2e9133,2
599
+ np.float32,0x806326a9,0x806326a9,2
600
+ np.float32,0x3f1c5286,0x3f13f2b6,2
601
+ np.float32,0xff5c0ead,0xc2b28786,2
602
+ np.float32,0xff32b952,0xc2b21d01,2
603
+ np.float32,0x7dd27c4e,0x42ae4815,2
604
+ np.float32,0xbf7a6816,0xbf5da7a2,2
605
+ np.float32,0xfeac72f8,0xc2b0a7d1,2
606
+ np.float32,0x335ad7,0x335ad7,2
607
+ np.float32,0xbe682da4,0xbe663bcc,2
608
+ np.float32,0x3f2df244,0x3f22c208,2
609
+ np.float32,0x80686e8e,0x80686e8e,2
610
+ np.float32,0x7f50120f,0x42b26ad9,2
611
+ np.float32,0x3dbc596a,0x3dbc15b3,2
612
+ np.float32,0xbf4f2868,0xbf3d666d,2
613
+ np.float32,0x80000001,0x80000001,2
614
+ np.float32,0xff66c059,0xc2b29fd2,2
615
+ np.float32,0xfe8bbcaa,0xc2b03c1f,2
616
+ np.float32,0x3ece6a51,0x3ec93271,2
617
+ np.float32,0x7f06cd26,0x42b18c9a,2
618
+ np.float32,0x7e41e6dc,0x42af80f5,2
619
+ np.float32,0x7d878334,0x42ad669f,2
620
+ np.float32,0xfe8c5c4c,0xc2b03e67,2
621
+ np.float32,0x337a05,0x337a05,2
622
+ np.float32,0x3e63801d,0x3e61ab58,2
623
+ np.float32,0x62c315,0x62c315,2
624
+ np.float32,0x802aa888,0x802aa888,2
625
+ np.float32,0x80038b43,0x80038b43,2
626
+ np.float32,0xff5c1271,0xc2b2878f,2
627
+ np.float32,0xff4184a5,0xc2b245b9,2
628
+ np.float32,0x7ef58f4b,0x42b15cc6,2
629
+ np.float32,0x7f42d8ac,0x42b2493a,2
630
+ np.float32,0x806609f2,0x806609f2,2
631
+ np.float32,0x801e763b,0x801e763b,2
632
+ np.float32,0x7f2bc073,0x42b208a2,2
633
+ np.float32,0x801d7d7f,0x801d7d7f,2
634
+ np.float32,0x7d415dc1,0x42acb9c2,2
635
+ np.float32,0xbf624ff9,0xbf4c0502,2
636
+ np.float32,0xbf603afd,0xbf4a74e2,2
637
+ np.float32,0x8007fe42,0x8007fe42,2
638
+ np.float32,0x800456db,0x800456db,2
639
+ np.float32,0x620871,0x620871,2
640
+ np.float32,0x3e9c6c1e,0x3e9a15fa,2
641
+ np.float32,0x4245d,0x4245d,2
642
+ np.float32,0x8035bde9,0x8035bde9,2
643
+ np.float32,0xbf597418,0xbf45533c,2
644
+ np.float32,0x3c730f80,0x3c730d38,2
645
+ np.float32,0x3f7cd8ed,0x3f5f6540,2
646
+ np.float32,0x807e49c3,0x807e49c3,2
647
+ np.float32,0x3d6584c0,0x3d65660c,2
648
+ np.float32,0xff42a744,0xc2b248b8,2
649
+ np.float32,0xfedc6f56,0xc2b12583,2
650
+ np.float32,0x806263a4,0x806263a4,2
651
+ np.float32,0x175a17,0x175a17,2
652
+ np.float32,0x3f1e8537,0x3f15d208,2
653
+ np.float32,0x4055b5,0x4055b5,2
654
+ np.float32,0x438aa6,0x438aa6,2
655
+ np.float32,0x8038507f,0x8038507f,2
656
+ np.float32,0xbed75348,0xbed16f85,2
657
+ np.float32,0x7f07b7d6,0x42b19012,2
658
+ np.float32,0xfe8b9d30,0xc2b03bac,2
659
+ np.float32,0x805c501c,0x805c501c,2
660
+ np.float32,0x3ef22b1d,0x3ee9f159,2
661
+ np.float32,0x802b6759,0x802b6759,2
662
+ np.float32,0x45281a,0x45281a,2
663
+ np.float32,0xbf7e9970,0xbf60a3cf,2
664
+ np.float32,0xbf14d152,0xbf0d8062,2
665
+ np.float32,0x3d9ff950,0x3d9fcfc8,2
666
+ np.float32,0x7865d9,0x7865d9,2
667
+ np.float32,0xbee67fa4,0xbedf58eb,2
668
+ np.float32,0x7dc822d1,0x42ae2e44,2
669
+ np.float32,0x3f3af0fe,0x3f2d612c,2
670
+ np.float32,0xbefea106,0xbef5274e,2
671
+ np.float32,0xbf758a3f,0xbf5a28c5,2
672
+ np.float32,0xbf331bdd,0xbf270209,2
673
+ np.float32,0x7f51c901,0x42b26f0d,2
674
+ np.float32,0x3f67c33b,0x3f5014d8,2
675
+ np.float32,0xbbc9d980,0xbbc9d92c,2
676
+ np.float32,0xbc407540,0xbc40741e,2
677
+ np.float32,0x7eed9a3c,0x42b14be9,2
678
+ np.float32,0x1be0fe,0x1be0fe,2
679
+ np.float32,0xbf6b4913,0xbf52af1f,2
680
+ np.float32,0xbda8eba8,0xbda8bac6,2
681
+ np.float32,0x8004bcea,0x8004bcea,2
682
+ np.float32,0xff6f6afe,0xc2b2b2b3,2
683
+ np.float32,0xbf205810,0xbf175e50,2
684
+ np.float32,0x80651944,0x80651944,2
685
+ np.float32,0xbec73016,0xbec27a3f,2
686
+ np.float32,0x5701b9,0x5701b9,2
687
+ np.float32,0xbf1062ce,0xbf09a7df,2
688
+ np.float32,0x3e0306ae,0x3e02abd1,2
689
+ np.float32,0x7bfc62,0x7bfc62,2
690
+ np.float32,0xbf48dd3c,0xbf387a6b,2
691
+ np.float32,0x8009573e,0x8009573e,2
692
+ np.float32,0x660a2c,0x660a2c,2
693
+ np.float32,0xff2280da,0xc2b1ec4b,2
694
+ np.float32,0xbf7034fe,0xbf564a54,2
695
+ np.float32,0xbeeb448e,0xbee3b045,2
696
+ np.float32,0xff4e949c,0xc2b2672b,2
697
+ np.float32,0xbf3c4486,0xbf2e7309,2
698
+ np.float32,0x7eb086d8,0x42b0b3c8,2
699
+ np.float32,0x7eac8aca,0x42b0a817,2
700
+ np.float32,0xfd3d2d60,0xc2acae8b,2
701
+ np.float32,0xbf363226,0xbf2987bd,2
702
+ np.float32,0x7f02e524,0x42b17d8c,2
703
+ np.float32,0x8049a148,0x8049a148,2
704
+ np.float32,0x147202,0x147202,2
705
+ np.float32,0x8031d3f6,0x8031d3f6,2
706
+ np.float32,0xfe78bf68,0xc2b0007d,2
707
+ np.float32,0x7ebd16d0,0x42b0d6fb,2
708
+ np.float32,0xbdaed2e8,0xbdae9cbb,2
709
+ np.float32,0x802833ae,0x802833ae,2
710
+ np.float32,0x7f62adf6,0x42b296b5,2
711
+ np.float32,0xff2841c0,0xc2b1fe1b,2
712
+ np.float32,0xbeb2c47e,0xbeaf523b,2
713
+ np.float32,0x7e42a36e,0x42af82e6,2
714
+ np.float32,0x41ea29,0x41ea29,2
715
+ np.float32,0xbcaaa800,0xbcaaa4d7,2
716
+ np.float64,0x3fed71f27ebae3e5,0x3fea5c6095012ca6,2
717
+ np.float64,0x224dc392449b9,0x224dc392449b9,2
718
+ np.float64,0x3fdf897a7d3f12f5,0x3fde620339360992,2
719
+ np.float64,0xbfe1f99a5123f334,0xbfe124a57cfaf556,2
720
+ np.float64,0xbfd9725c3bb2e4b8,0xbfd8d1e3f75110c7,2
721
+ np.float64,0x3fe38977546712ee,0x3fe27d9d37f4b91f,2
722
+ np.float64,0xbfc36c29e526d854,0xbfc3594743ee45c4,2
723
+ np.float64,0xbfe5cbec332b97d8,0xbfe4638802316849,2
724
+ np.float64,0x2ff35efe5fe6d,0x2ff35efe5fe6d,2
725
+ np.float64,0x7fd3f828e227f051,0x40862a7d4a40b1e0,2
726
+ np.float64,0xffd06fc11620df82,0xc08628ee8f1bf6c8,2
727
+ np.float64,0x3fe5321bf4aa6438,0x3fe3e3d9fa453199,2
728
+ np.float64,0xffd07a323ca0f464,0xc08628f3a2930f8c,2
729
+ np.float64,0x3fdf7abe7abef57c,0x3fde54cb193d49cb,2
730
+ np.float64,0x40941f1881285,0x40941f1881285,2
731
+ np.float64,0xffef18defc7e31bd,0xc0863393f2c9f061,2
732
+ np.float64,0xbfe379f871e6f3f1,0xbfe270620cb68347,2
733
+ np.float64,0xffec829848f90530,0xc08632e210edaa2b,2
734
+ np.float64,0x80070c00574e1801,0x80070c00574e1801,2
735
+ np.float64,0xffce7654b23ceca8,0xc086285291e89975,2
736
+ np.float64,0x7fc9932daa33265a,0x408626ec6cc2b807,2
737
+ np.float64,0x355ee98c6abde,0x355ee98c6abde,2
738
+ np.float64,0x3fac54962c38a920,0x3fac50e40b6c19f2,2
739
+ np.float64,0x800857984af0af31,0x800857984af0af31,2
740
+ np.float64,0x7fea6a3d55f4d47a,0x40863245bf39f179,2
741
+ np.float64,0x3fdb8fab33371f56,0x3fdac5ffc9e1c347,2
742
+ np.float64,0x800a887a7bf510f5,0x800a887a7bf510f5,2
743
+ np.float64,0xbfbdbda3c63b7b48,0xbfbdac9dd5a2d3e8,2
744
+ np.float64,0xbfd4a2457b29448a,0xbfd44acb3b316d6d,2
745
+ np.float64,0x7fd5329a502a6534,0x40862af789b528b5,2
746
+ np.float64,0x3fd96a7bceb2d4f8,0x3fd8ca92104d6cd6,2
747
+ np.float64,0x3fde6a0cd6bcd41a,0x3fdd5f4b85abf749,2
748
+ np.float64,0xbfc7faaff32ff560,0xbfc7d7560b8c4a52,2
749
+ np.float64,0x7fec381b2f787035,0x408632cd0e9c095c,2
750
+ np.float64,0x1fc2eb543f85e,0x1fc2eb543f85e,2
751
+ np.float64,0x7ac6000af58c1,0x7ac6000af58c1,2
752
+ np.float64,0xffe060a87920c150,0xc0862e72c37d5a4e,2
753
+ np.float64,0xbfb7d8c89e2fb190,0xbfb7cffd3c3f8e3a,2
754
+ np.float64,0x3fd91033deb22068,0x3fd87695b067aa1e,2
755
+ np.float64,0x3fec1aff01b835fe,0x3fe95d5cbd729af7,2
756
+ np.float64,0x7fb97f69ec32fed3,0x4086215aaae5c697,2
757
+ np.float64,0x7feaf1e4e5f5e3c9,0x4086326e6ca6a2bb,2
758
+ np.float64,0x800537e44d0a6fc9,0x800537e44d0a6fc9,2
759
+ np.float64,0x800b2a0d0d36541a,0x800b2a0d0d36541a,2
760
+ np.float64,0x3fe2193846e43270,0x3fe140308550138e,2
761
+ np.float64,0x5e2a0a32bc542,0x5e2a0a32bc542,2
762
+ np.float64,0xffe5888b09eb1116,0xc08630a348783aa3,2
763
+ np.float64,0xbfceb9b5033d736c,0xbfce701049c10435,2
764
+ np.float64,0x7fe5d68589abad0a,0x408630c00ce63f23,2
765
+ np.float64,0x8009b5457ff36a8b,0x8009b5457ff36a8b,2
766
+ np.float64,0xbfb5518c2e2aa318,0xbfb54b42638ca718,2
767
+ np.float64,0x3f9c58469838b080,0x3f9c575974fbcd7b,2
768
+ np.float64,0x3fe8db4b4731b697,0x3fe6dc9231587966,2
769
+ np.float64,0x8007d0f77f4fa1f0,0x8007d0f77f4fa1f0,2
770
+ np.float64,0x7fe79eef542f3dde,0x40863160c673c67f,2
771
+ np.float64,0xffbdc0b6163b8170,0xc0862296be4bf032,2
772
+ np.float64,0x3fbb8d3312371a66,0x3fbb7fa76fb4cf8d,2
773
+ np.float64,0xffd8a0eedbb141de,0xc0862c2ac6e512f0,2
774
+ np.float64,0x7fee99d8d87d33b1,0x4086337301c4c8df,2
775
+ np.float64,0xffe7479b552e8f36,0xc0863142fba0f0ec,2
776
+ np.float64,0xffedf8ef4abbf1de,0xc08633488068fe69,2
777
+ np.float64,0x895c4d9f12b8a,0x895c4d9f12b8a,2
778
+ np.float64,0x29b4caf05369a,0x29b4caf05369a,2
779
+ np.float64,0xbfefb90d657f721b,0xbfec01efa2425b35,2
780
+ np.float64,0xde07c3bdbc0f9,0xde07c3bdbc0f9,2
781
+ np.float64,0x7feae9fd02f5d3f9,0x4086326c1368ed5a,2
782
+ np.float64,0x3feab792da756f26,0x3fe84f6e15338ed7,2
783
+ np.float64,0xbfeff8ed72fff1db,0xbfec2f35da06daaf,2
784
+ np.float64,0x8004b2c132896583,0x8004b2c132896583,2
785
+ np.float64,0xbf9fcb00103f9600,0xbf9fc9b1751c569e,2
786
+ np.float64,0x4182b72e83058,0x4182b72e83058,2
787
+ np.float64,0x90820d812105,0x90820d812105,2
788
+ np.float64,0xbfdec9a0ba3d9342,0xbfddb585df607ce1,2
789
+ np.float64,0x7fdc0a69a03814d2,0x40862d347f201b63,2
790
+ np.float64,0xbfef0708937e0e11,0xbfeb82d27f8ea97f,2
791
+ np.float64,0xffda57e4ddb4afca,0xc0862cb49e2e0c4c,2
792
+ np.float64,0xbfa30b9af4261730,0xbfa30a7b4a633060,2
793
+ np.float64,0x7feb57fcc4b6aff9,0x4086328c83957a0b,2
794
+ np.float64,0x7fe6759153eceb22,0x408630f980433963,2
795
+ np.float64,0x7fdd3278c8ba64f1,0x40862d87445243e9,2
796
+ np.float64,0xd3b8e6b9a771d,0xd3b8e6b9a771d,2
797
+ np.float64,0x6267dc88c4cfc,0x6267dc88c4cfc,2
798
+ np.float64,0x7fedd3cf00bba79d,0x4086333e91712ff5,2
799
+ np.float64,0xffbe512ce03ca258,0xc08622bd39314cea,2
800
+ np.float64,0xbfe71742ca6e2e86,0xbfe572ccbf2d010d,2
801
+ np.float64,0x8002fb048c65f60a,0x8002fb048c65f60a,2
802
+ np.float64,0x800d9d9ddf7b3b3c,0x800d9d9ddf7b3b3c,2
803
+ np.float64,0xbfeaf6230df5ec46,0xbfe87f5d751ec3d5,2
804
+ np.float64,0xbfe69973a42d32e8,0xbfe50c680f7002fe,2
805
+ np.float64,0x3fe309cf87e613a0,0x3fe21048714ce1ac,2
806
+ np.float64,0x800435d17a286ba4,0x800435d17a286ba4,2
807
+ np.float64,0x7fefffffffffffff,0x408633ce8fb9f87e,2
808
+ np.float64,0x3fe36ade1766d5bc,0x3fe26379fb285dde,2
809
+ np.float64,0x3f98d8d94831b1c0,0x3f98d839885dc527,2
810
+ np.float64,0xbfd08f7ae5211ef6,0xbfd0618ab5293e1e,2
811
+ np.float64,0xbfcf630bd53ec618,0xbfcf14a0cd20704d,2
812
+ np.float64,0xbfe58f0ca6eb1e1a,0xbfe4312225df8e28,2
813
+ np.float64,0xffef4f6406be9ec7,0xc08633a1ed1d27e5,2
814
+ np.float64,0x7fe10120b3e20240,0x40862ebfaf94e6e8,2
815
+ np.float64,0xffe96c52fbb2d8a5,0xc08631f75d9a59a0,2
816
+ np.float64,0xbfe448a333e89146,0xbfe31fee44c3ec43,2
817
+ np.float64,0x80045ff4e788bfeb,0x80045ff4e788bfeb,2
818
+ np.float64,0x7fefaa2f823f545e,0x408633b8fea29524,2
819
+ np.float64,0xffea6b8bf234d717,0xc0863246248e5960,2
820
+ np.float64,0xbfdb085d80b610bc,0xbfda498b15b43eec,2
821
+ np.float64,0xbfd5e12da3abc25c,0xbfd57970e2b8aecc,2
822
+ np.float64,0x3fcc84928a390925,0x3fcc497c417a89f3,2
823
+ np.float64,0xbfdcb713bf396e28,0xbfdbd46c5e731fd9,2
824
+ np.float64,0xffdf50c0453ea180,0xc0862e16b5562f25,2
825
+ np.float64,0x800342c2f7268587,0x800342c2f7268587,2
826
+ np.float64,0x7feb8b6d743716da,0x4086329b8248de2c,2
827
+ np.float64,0x800a9b18b4953632,0x800a9b18b4953632,2
828
+ np.float64,0xffedaf0d12fb5e19,0xc0863334af82de1a,2
829
+ np.float64,0x800aebda4ab5d7b5,0x800aebda4ab5d7b5,2
830
+ np.float64,0xbfa9f5848433eb10,0xbfa9f2ac7ac065d4,2
831
+ np.float64,0x3fea375928f46eb2,0x3fe7ec9f10eeac7d,2
832
+ np.float64,0x3fd6c213fead8428,0x3fd64dcc1eff5f1b,2
833
+ np.float64,0xbfa0476f44208ee0,0xbfa046bb986007ac,2
834
+ np.float64,0x6c8e18aed91c4,0x6c8e18aed91c4,2
835
+ np.float64,0x8000000000000001,0x8000000000000001,2
836
+ np.float64,0x7fea86b5ba350d6a,0x4086324e59f13027,2
837
+ np.float64,0x2316c3b0462d9,0x2316c3b0462d9,2
838
+ np.float64,0x3fec4e3281389c65,0x3fe983c5c9d65940,2
839
+ np.float64,0x3fbb87c47f772,0x3fbb87c47f772,2
840
+ np.float64,0x8004af00fdc95e03,0x8004af00fdc95e03,2
841
+ np.float64,0xbfd316db9ba62db8,0xbfd2d12765b9d155,2
842
+ np.float64,0x3fec1a7a99f834f6,0x3fe95cf941889b3d,2
843
+ np.float64,0x3feff7e1477fefc3,0x3fec2e782392d4b9,2
844
+ np.float64,0xbfc683ea042d07d4,0xbfc66698cfa5026e,2
845
+ np.float64,0x3fdbc8aaa9b79154,0x3fdafa50e6fc3fff,2
846
+ np.float64,0xfb3b630ff676d,0xfb3b630ff676d,2
847
+ np.float64,0x7fe715ef8eae2bde,0x40863131d794b41f,2
848
+ np.float64,0x7fefa06c11bf40d7,0x408633b686c7996a,2
849
+ np.float64,0x80002a40f5205483,0x80002a40f5205483,2
850
+ np.float64,0x7fe95f3c74b2be78,0x408631f33e37bf76,2
851
+ np.float64,0x3fb2977b32252ef0,0x3fb2934eaf5a4be8,2
852
+ np.float64,0x3fc0f3dbc821e7b8,0x3fc0e745288c84c3,2
853
+ np.float64,0x3fda98da56b531b5,0x3fd9e2b19447dacc,2
854
+ np.float64,0x3f95b9d5202b73aa,0x3f95b96a53282949,2
855
+ np.float64,0x3fdc1ace7738359d,0x3fdb4597d31df7ff,2
856
+ np.float64,0xffeac5bb2e358b76,0xc0863261452ab66c,2
857
+ np.float64,0xbfefb1b78f7f636f,0xbfebfcb9be100ced,2
858
+ np.float64,0xf5c9e191eb93c,0xf5c9e191eb93c,2
859
+ np.float64,0x3fe83a977630752f,0x3fe65d0df90ff6ef,2
860
+ np.float64,0x3fc317515d262ea0,0x3fc3056072b719f0,2
861
+ np.float64,0x7fe2dcfab225b9f4,0x40862f94257c28a2,2
862
+ np.float64,0xca2b115794562,0xca2b115794562,2
863
+ np.float64,0x3fd495301aa92a60,0x3fd43e57108761d5,2
864
+ np.float64,0x800ccc4293199885,0x800ccc4293199885,2
865
+ np.float64,0xc8d3173d91a63,0xc8d3173d91a63,2
866
+ np.float64,0xbf2541bb7e4a8,0xbf2541bb7e4a8,2
867
+ np.float64,0xbfe9a330df334662,0xbfe779816573f5be,2
868
+ np.float64,0xffd5e4c8252bc990,0xc0862b39b3ca5d72,2
869
+ np.float64,0x3fe90f3a53721e75,0x3fe70585ae09531d,2
870
+ np.float64,0xbfe2b5ddc7a56bbc,0xbfe1c7fa91a675ed,2
871
+ np.float64,0xbf981a0360303400,0xbf9819719345073a,2
872
+ np.float64,0x19174b0e322ea,0x19174b0e322ea,2
873
+ np.float64,0xbfd2f71a1725ee34,0xbfd2b2b6f7cd10b1,2
874
+ np.float64,0x80056e83236add07,0x80056e83236add07,2
875
+ np.float64,0x7fe4bc41d9697883,0x40863055f20ce0cb,2
876
+ np.float64,0xffe76e06c46edc0d,0xc086315024b25559,2
877
+ np.float64,0x3fe3c4f0f96789e2,0x3fe2b04b584609bf,2
878
+ np.float64,0x3fe6cfc533ed9f8a,0x3fe538b4d784d5ee,2
879
+ np.float64,0x7fd234a640a4694c,0x408629bfead4f0b2,2
880
+ np.float64,0x3fdbc49c9ab78939,0x3fdaf698a83d08e2,2
881
+ np.float64,0x3fe4c5336ee98a66,0x3fe388c6ddb60e0a,2
882
+ np.float64,0xf4b9497be9729,0xf4b9497be9729,2
883
+ np.float64,0x3fb312be12262580,0x3fb30e3c847c1d16,2
884
+ np.float64,0x3fe9554218f2aa84,0x3fe73c8b311c7a98,2
885
+ np.float64,0xff899816a0333040,0xc08610bfb2cd8559,2
886
+ np.float64,0x8006008ad52c0116,0x8006008ad52c0116,2
887
+ np.float64,0x3fd7d47be4afa8f8,0x3fd74fa71ec17fd0,2
888
+ np.float64,0x8010000000000000,0x8010000000000000,2
889
+ np.float64,0xdf2a9943be553,0xdf2a9943be553,2
890
+ np.float64,0xbfeb86bf1eb70d7e,0xbfe8ed797580ba5c,2
891
+ np.float64,0x800e2c0c28bc5818,0x800e2c0c28bc5818,2
892
+ np.float64,0xbfe2be65d4657ccc,0xbfe1cf578dec2323,2
893
+ np.float64,0xbfedea3a5afbd475,0xbfeab490bf05e585,2
894
+ np.float64,0xbfe04b1583a0962b,0xbfdf523dfd7be25c,2
895
+ np.float64,0x75929bb4eb254,0x75929bb4eb254,2
896
+ np.float64,0x3fd7b4968caf692d,0x3fd731c0938ff97c,2
897
+ np.float64,0x60bd8fd2c17b3,0x60bd8fd2c17b3,2
898
+ np.float64,0xbfdaf15e70b5e2bc,0xbfda345a95ce18fe,2
899
+ np.float64,0x7fdd7c35c2baf86b,0x40862d9b5f40c6b2,2
900
+ np.float64,0x7feeb4d2ab7d69a4,0x4086337a0c0dffaf,2
901
+ np.float64,0xffe65b5a1decb6b4,0xc08630f024420efb,2
902
+ np.float64,0x7feb272b30764e55,0x4086327e2e553aa2,2
903
+ np.float64,0x3fd27513e8a4ea28,0x3fd235ea49670f6a,2
904
+ np.float64,0x3fe6541a6aeca834,0x3fe4d3a5b69fd1b6,2
905
+ np.float64,0xbfe0c6ca0f618d94,0xbfe017058259efdb,2
906
+ np.float64,0x7fc1bf07b7237e0e,0x4086240000fa5a52,2
907
+ np.float64,0x7fe96af9c0f2d5f3,0x408631f6f0f4faa2,2
908
+ np.float64,0x3fe0728be7a0e518,0x3fdf9881a5869de9,2
909
+ np.float64,0xffe8ea4441b1d488,0xc08631ce0685ae7e,2
910
+ np.float64,0xffd0b973f02172e8,0xc08629121e7fdf85,2
911
+ np.float64,0xffe37b907a26f720,0xc0862fd6529401a0,2
912
+ np.float64,0x3fe0ee826461dd05,0x3fe03a2a424a1b40,2
913
+ np.float64,0xbfe8073c92300e79,0xbfe6340cbd179ac1,2
914
+ np.float64,0x800768383f8ed071,0x800768383f8ed071,2
915
+ np.float64,0x8002e467c7c5c8d0,0x8002e467c7c5c8d0,2
916
+ np.float64,0xbfd8d53ea5b1aa7e,0xbfd83fa7243289d7,2
917
+ np.float64,0xffebefce2bb7df9c,0xc08632b874f4f8dc,2
918
+ np.float64,0xffe3be9eb9277d3d,0xc0862ff1ac70ad0b,2
919
+ np.float64,0xffe2f8a82e65f150,0xc0862f9fd9e77d86,2
920
+ np.float64,0xbfa01d151c203a30,0xbfa01c66dc13a70a,2
921
+ np.float64,0x800877062d30ee0d,0x800877062d30ee0d,2
922
+ np.float64,0xaade16a755bc3,0xaade16a755bc3,2
923
+ np.float64,0xbfeb1abc70363579,0xbfe89b52c3b003aa,2
924
+ np.float64,0x80097d0b2ad2fa17,0x80097d0b2ad2fa17,2
925
+ np.float64,0x8001499907429333,0x8001499907429333,2
926
+ np.float64,0x3fe8db2aaf71b656,0x3fe6dc7873f1b235,2
927
+ np.float64,0x5cfeadc4b9fd6,0x5cfeadc4b9fd6,2
928
+ np.float64,0xff3f77d1fe7ef,0xff3f77d1fe7ef,2
929
+ np.float64,0xffeecd56f9bd9aad,0xc08633806cb1163d,2
930
+ np.float64,0xbf96f3ca582de7a0,0xbf96f34c6b8e1c85,2
931
+ np.float64,0x7ed6b44afdad7,0x7ed6b44afdad7,2
932
+ np.float64,0x80071808da4e3012,0x80071808da4e3012,2
933
+ np.float64,0x3feb8aee2bf715dc,0x3fe8f0a55516615c,2
934
+ np.float64,0x800038f62e2071ed,0x800038f62e2071ed,2
935
+ np.float64,0x3fb13f9af2227f30,0x3fb13c456ced8e08,2
936
+ np.float64,0xffd584d1812b09a4,0xc0862b165558ec0c,2
937
+ np.float64,0x800b20c30fb64186,0x800b20c30fb64186,2
938
+ np.float64,0x80024f9646e49f2d,0x80024f9646e49f2d,2
939
+ np.float64,0xffefffffffffffff,0xc08633ce8fb9f87e,2
940
+ np.float64,0x3fdddbcb5bbbb797,0x3fdcde981111f650,2
941
+ np.float64,0xffed14077f3a280e,0xc086330a795ad634,2
942
+ np.float64,0x800fec2da7ffd85b,0x800fec2da7ffd85b,2
943
+ np.float64,0x3fe8205ffc7040c0,0x3fe6482318d217f9,2
944
+ np.float64,0x3013e5226027d,0x3013e5226027d,2
945
+ np.float64,0xffe4e5aad469cb55,0xc0863065dc2fb4e3,2
946
+ np.float64,0x5cb0f7b2b9620,0x5cb0f7b2b9620,2
947
+ np.float64,0xbfeb4537d2768a70,0xbfe8bbb2c1d3bff9,2
948
+ np.float64,0xbfd859e297b0b3c6,0xbfd7cc807948bf9d,2
949
+ np.float64,0x71f00b8ce3e02,0x71f00b8ce3e02,2
950
+ np.float64,0xf5c1b875eb837,0xf5c1b875eb837,2
951
+ np.float64,0xa0f35c8141e8,0xa0f35c8141e8,2
952
+ np.float64,0xffe24860b42490c1,0xc0862f54222f616e,2
953
+ np.float64,0xffcd9ae8583b35d0,0xc08628181e643a42,2
954
+ np.float64,0x7fe9b710c7736e21,0x4086320ec033490f,2
955
+ np.float64,0x3fd2b9ca1d257394,0x3fd277e631f0c0b3,2
956
+ np.float64,0x23559bfc46ab4,0x23559bfc46ab4,2
957
+ np.float64,0x8002adf75e455bef,0x8002adf75e455bef,2
958
+ np.float64,0xbfefa4d75cbf49af,0xbfebf392e51d6a1a,2
959
+ np.float64,0xffcfef263e3fde4c,0xc08628b336adb611,2
960
+ np.float64,0x80061acaa8ec3596,0x80061acaa8ec3596,2
961
+ np.float64,0x7fc1b33be0236677,0x408623faaddcc17e,2
962
+ np.float64,0x7fe3a84083675080,0x40862fe8972e41e1,2
963
+ np.float64,0xbfe756c1276ead82,0xbfe5a6318b061e1b,2
964
+ np.float64,0xbfae4b71b43c96e0,0xbfae46ed0b6203a4,2
965
+ np.float64,0x800421c6d0a8438e,0x800421c6d0a8438e,2
966
+ np.float64,0x8009ad56fe335aae,0x8009ad56fe335aae,2
967
+ np.float64,0xbfe71afc976e35f9,0xbfe575d21f3d7193,2
968
+ np.float64,0x7fec0bbe4c38177c,0x408632c0710f1d8a,2
969
+ np.float64,0x750e1daeea1c4,0x750e1daeea1c4,2
970
+ np.float64,0x800501d4240a03a9,0x800501d4240a03a9,2
971
+ np.float64,0x800794955cef292b,0x800794955cef292b,2
972
+ np.float64,0x3fdf8a87f5bf1510,0x3fde62f4f00cfa19,2
973
+ np.float64,0xbfebebdbc7f7d7b8,0xbfe939e51ba1340c,2
974
+ np.float64,0xbfe3a16217a742c4,0xbfe292039dd08a71,2
975
+ np.float64,0x3fed6cd04c3ad9a1,0x3fea58995973f74b,2
976
+ np.float64,0xffcad8787335b0f0,0xc086274fbb35dd37,2
977
+ np.float64,0x3fcb178e3d362f1c,0x3fcae4c9f3e6dddc,2
978
+ np.float64,0xbfcadc669435b8cc,0xbfcaaae7cf075420,2
979
+ np.float64,0x7fe0e3906321c720,0x40862eb1bacc5c43,2
980
+ np.float64,0xff8ad5edb035abc0,0xc0861120b6404d0b,2
981
+ np.float64,0x3fe175a21562eb44,0x3fe0b13120a46549,2
982
+ np.float64,0xbfeb4c4a5f769895,0xbfe8c1147f1c9d8f,2
983
+ np.float64,0x7fca22f4e63445e9,0x40862718e9b4094e,2
984
+ np.float64,0x3fe4269d0c684d3a,0x3fe3032aa2015c53,2
985
+ np.float64,0x3fef551c09beaa38,0x3febbabe03f49c83,2
986
+ np.float64,0xffd843df9fb087c0,0xc0862c0c52d5e5d9,2
987
+ np.float64,0x7fc497e2ca292fc5,0x40862530bbd9fcc7,2
988
+ np.float64,0x3fee02919efc0523,0x3feac655588a4acd,2
989
+ np.float64,0x7fed1e52c0fa3ca5,0x4086330d4ddd8a2c,2
990
+ np.float64,0xba04d4ef7409b,0xba04d4ef7409b,2
991
+ np.float64,0x3fee22d0937c45a2,0x3feaddd4ca66b447,2
992
+ np.float64,0xffeb2558cf764ab1,0xc086327da4e84053,2
993
+ np.float64,0xbfe103d987e207b3,0xbfe04d04818ad1ff,2
994
+ np.float64,0x3f9fd7fed03faffe,0x3f9fd6ae9a45be84,2
995
+ np.float64,0x800a53ec4c34a7d9,0x800a53ec4c34a7d9,2
996
+ np.float64,0xbfe2feb17f65fd63,0xbfe206b9d33a78a2,2
997
+ np.float64,0x989bdd613139,0x989bdd613139,2
998
+ np.float64,0xbfdd0ad3fb3a15a8,0xbfdc20c32a530741,2
999
+ np.float64,0xbfc4222163284444,0xbfc40d1c612784b5,2
1000
+ np.float64,0xc30cf5c78619f,0xc30cf5c78619f,2
1001
+ np.float64,0x3fe913bd6732277b,0x3fe70912f76bad71,2
1002
+ np.float64,0x98f175f531e2f,0x98f175f531e2f,2
1003
+ np.float64,0x3fed8c1f717b183f,0x3fea6f9fb3af3423,2
1004
+ np.float64,0x7fee46b085bc8d60,0x4086335d269eb7e9,2
1005
+ np.float64,0x8007480f564e901f,0x8007480f564e901f,2
1006
+ np.float64,0xc9b96e179372e,0xc9b96e179372e,2
1007
+ np.float64,0x3fe44deac4289bd6,0x3fe32463a74a69e7,2
1008
+ np.float64,0x80021d6c5c243ad9,0x80021d6c5c243ad9,2
1009
+ np.float64,0xbfebc805a6f7900b,0xbfe91edcf65a1c19,2
1010
+ np.float64,0x80044748adc88e92,0x80044748adc88e92,2
1011
+ np.float64,0x4007ee44800fe,0x4007ee44800fe,2
1012
+ np.float64,0xbfe24307a4648610,0xbfe1648ad5c47b6f,2
1013
+ np.float64,0xbfee6d3a93fcda75,0xbfeb13e1a3196e78,2
1014
+ np.float64,0x3fe49a287f293451,0x3fe364a11b9f0068,2
1015
+ np.float64,0x80052b37ceaa5670,0x80052b37ceaa5670,2
1016
+ np.float64,0xbfd42be893a857d2,0xbfd3da05dac7c286,2
1017
+ np.float64,0xffb4bbe4ac2977c8,0xc0861fb31bda6956,2
1018
+ np.float64,0xbfc732a4142e6548,0xbfc7129a4eafa399,2
1019
+ np.float64,0x7fd0696791a0d2ce,0x408628eb7756cb9c,2
1020
+ np.float64,0x3fe46c8f8d68d91f,0x3fe33e3df16187c1,2
1021
+ np.float64,0x3fe3a28f1ce7451e,0x3fe293043238d08c,2
1022
+ np.float64,0xffedc4eb723b89d6,0xc086333a92258c15,2
1023
+ np.float64,0x8000d15b4c41a2b7,0x8000d15b4c41a2b7,2
1024
+ np.float64,0xffeb73450236e689,0xc08632947b0148ab,2
1025
+ np.float64,0xffe68cf4722d19e8,0xc0863101d08d77bd,2
1026
+ np.float64,0x800c70eb4698e1d7,0x800c70eb4698e1d7,2
1027
+ np.float64,0xffa94387ff529,0xffa94387ff529,2
1028
+ np.float64,0x7fe3835d996706ba,0x40862fd985ff8e7d,2
1029
+ np.float64,0x3fe55e476feabc8e,0x3fe408a15594ec52,2
1030
+ np.float64,0xffc69672222d2ce4,0xc08625ee0c4c0f6a,2
1031
+ np.float64,0xbf9d900b883b2020,0xbf9d8efe811d36df,2
1032
+ np.float64,0xbfdb9b9755b7372e,0xbfdad0f2aa2cb110,2
1033
+ np.float64,0xffeade6073b5bcc0,0xc08632689f17a25d,2
1034
+ np.float64,0xffd1d6a6baa3ad4e,0xc086299630a93a7b,2
1035
+ np.float64,0x7fd05ba25620b744,0x408628e4be1ef845,2
1036
+ np.float64,0xbfc7d422d52fa844,0xbfc7b170a61531bf,2
1037
+ np.float64,0x3fd5196797aa32d0,0x3fd4bc0f0e7d8e1d,2
1038
+ np.float64,0x617594a4c2eb3,0x617594a4c2eb3,2
1039
+ np.float64,0x7fd779bc4caef378,0x40862bc89271b882,2
1040
+ np.float64,0xffd2fb262ba5f64c,0xc0862a15561e9524,2
1041
+ np.float64,0x72fd661ae5fad,0x72fd661ae5fad,2
1042
+ np.float64,0x3fecf441f339e884,0x3fe9ff880d584f64,2
1043
+ np.float64,0x7fc3a8968827512c,0x408624d198b05c61,2
1044
+ np.float64,0x3fe7a25c56ef44b9,0x3fe5e32509a7c32d,2
1045
+ np.float64,0x7fd117d514222fa9,0x4086293ec640d5f2,2
1046
+ np.float64,0x3fe37dfe5ee6fbfc,0x3fe273d1bcaa1ef0,2
1047
+ np.float64,0xbfed4cd19d7a99a3,0xbfea41064cba4c8b,2
1048
+ np.float64,0x8003ff12aaa7fe26,0x8003ff12aaa7fe26,2
1049
+ np.float64,0x3fcbc3d1193787a2,0x3fcb8d39e3e88264,2
1050
+ np.float64,0xe9ba1a91d3744,0xe9ba1a91d3744,2
1051
+ np.float64,0x8002ab71998556e4,0x8002ab71998556e4,2
1052
+ np.float64,0x800110057922200c,0x800110057922200c,2
1053
+ np.float64,0xbfe3b7af19a76f5e,0xbfe2a502fc0a2882,2
1054
+ np.float64,0x7fd9de9d5e33bd3a,0x40862c8f73cccabf,2
1055
+ np.float64,0xbfba0f0a86341e18,0xbfba0392f44c2771,2
1056
+ np.float64,0x8000000000000000,0x8000000000000000,2
1057
+ np.float64,0x7fe5d162e96ba2c5,0x408630be2b15e01b,2
1058
+ np.float64,0x800b7f0eac76fe1e,0x800b7f0eac76fe1e,2
1059
+ np.float64,0xff98bed150317da0,0xc086160633164f5f,2
1060
+ np.float64,0x3fef91fd70ff23fb,0x3febe629709d0ae7,2
1061
+ np.float64,0x7fe5bea7f16b7d4f,0x408630b749f445e9,2
1062
+ np.float64,0xbfe3dc428467b885,0xbfe2c41ea93fab07,2
1063
+ np.float64,0xbfeba1fbfcf743f8,0xbfe9021b52851bb9,2
1064
+ np.float64,0x7fd2fb2108a5f641,0x40862a1553f45830,2
1065
+ np.float64,0x7feb8199a4370332,0x40863298a7169dad,2
1066
+ np.float64,0x800f97ff8d7f2fff,0x800f97ff8d7f2fff,2
1067
+ np.float64,0x3fd5e20b6b2bc417,0x3fd57a42bd1c0993,2
1068
+ np.float64,0x8006b4072dad680f,0x8006b4072dad680f,2
1069
+ np.float64,0x605dccf2c0bba,0x605dccf2c0bba,2
1070
+ np.float64,0x3fc705ed142e0bda,0x3fc6e69971d86f73,2
1071
+ np.float64,0xffd2ba1aad257436,0xc08629f9bc918f8b,2
1072
+ np.float64,0x8002954e23c52a9d,0x8002954e23c52a9d,2
1073
+ np.float64,0xbfecc65da7798cbb,0xbfe9dd745be18562,2
1074
+ np.float64,0x7fc66110482cc220,0x408625db0db57ef8,2
1075
+ np.float64,0x3fcd09446d3a1289,0x3fcccaf2dd0a41ea,2
1076
+ np.float64,0x3febe7095437ce13,0x3fe93642d1e73b2a,2
1077
+ np.float64,0x8004773c7da8ee7a,0x8004773c7da8ee7a,2
1078
+ np.float64,0x8001833241230665,0x8001833241230665,2
1079
+ np.float64,0x3fe6a262db6d44c6,0x3fe513b3dab5adce,2
1080
+ np.float64,0xe6282cc1cc506,0xe6282cc1cc506,2
1081
+ np.float64,0x800b9d8553973b0b,0x800b9d8553973b0b,2
1082
+ np.float64,0x3fdfbe0c7b3f7c19,0x3fde912375d867a8,2
1083
+ np.float64,0x7fd5ac11ebab5823,0x40862b24dfc6d08e,2
1084
+ np.float64,0x800e4b7cb1fc96f9,0x800e4b7cb1fc96f9,2
1085
+ np.float64,0x3fe14706da628e0e,0x3fe0883aec2a917a,2
1086
+ np.float64,0x7fc963f97532c7f2,0x408626dd9b0cafe1,2
1087
+ np.float64,0xbfe9c250b5b384a2,0xbfe791c5eabcb05d,2
1088
+ np.float64,0x3fe8d16e6c71a2dd,0x3fe6d4c7a33a0bf4,2
1089
+ np.float64,0x3fe474ae4628e95d,0x3fe34515c93f4733,2
1090
+ np.float64,0x3fbf3257ee3e64b0,0x3fbf1eb530e126ea,2
1091
+ np.float64,0x8005f089b3abe114,0x8005f089b3abe114,2
1092
+ np.float64,0x3fece07bccf9c0f8,0x3fe9f0dc228124d5,2
1093
+ np.float64,0xbfc52521632a4a44,0xbfc50ccebdf59c2c,2
1094
+ np.float64,0x7fdf53beb13ea77c,0x40862e177918195e,2
1095
+ np.float64,0x8003d9f6ad07b3ee,0x8003d9f6ad07b3ee,2
1096
+ np.float64,0xffeacf96bbb59f2d,0xc086326436b38b1a,2
1097
+ np.float64,0xdccaea29b995e,0xdccaea29b995e,2
1098
+ np.float64,0x5948d21eb291b,0x5948d21eb291b,2
1099
+ np.float64,0x10000000000000,0x10000000000000,2
1100
+ np.float64,0x7fef6d2c543eda58,0x408633a98593cdf5,2
1101
+ np.float64,0x7feda454f47b48a9,0x40863331cb6dc9f7,2
1102
+ np.float64,0x3fdd377cecba6ef8,0x3fdc4968f74a9c83,2
1103
+ np.float64,0x800644096d4c8814,0x800644096d4c8814,2
1104
+ np.float64,0xbfe33ca15ae67942,0xbfe23be5de832bd8,2
1105
+ np.float64,0xffce9582bd3d2b04,0xc086285abdf9bf9d,2
1106
+ np.float64,0x3fe6621e86acc43d,0x3fe4df231bfa93e1,2
1107
+ np.float64,0xee7d19e9dcfa3,0xee7d19e9dcfa3,2
1108
+ np.float64,0x800be5997277cb33,0x800be5997277cb33,2
1109
+ np.float64,0x82069041040e,0x82069041040e,2
1110
+ np.float64,0x800d6efdc19addfc,0x800d6efdc19addfc,2
1111
+ np.float64,0x7fb27770ee24eee1,0x40861ec5ed91b839,2
1112
+ np.float64,0x3fd506064caa0c0d,0x3fd4a9a66353fefd,2
1113
+ np.float64,0xbfeca9b36bf95367,0xbfe9c81f03ba37b8,2
1114
+ np.float64,0xffeab1b7bab5636f,0xc086325b47f61f2b,2
1115
+ np.float64,0xffc99f5b2e333eb8,0xc08626f03b08b412,2
1116
+ np.float64,0x3fbf1a71bc3e34e3,0x3fbf06fbcaa5de58,2
1117
+ np.float64,0x3fe75015736ea02b,0x3fe5a0cd8d763d8d,2
1118
+ np.float64,0xffe6a7442fad4e88,0xc086310b20addba4,2
1119
+ np.float64,0x3fe5d62ff86bac60,0x3fe46c033195bf28,2
1120
+ np.float64,0x7fd0b1f0362163df,0x4086290e857dc1be,2
1121
+ np.float64,0xbe0353737c06b,0xbe0353737c06b,2
1122
+ np.float64,0x7fec912d8739225a,0x408632e627704635,2
1123
+ np.float64,0xded8ba2fbdb18,0xded8ba2fbdb18,2
1124
+ np.float64,0x7fec0b53fdf816a7,0x408632c052bc1bd2,2
1125
+ np.float64,0x7fe9640d12b2c819,0x408631f4c2ba54d8,2
1126
+ np.float64,0x800be714eeb7ce2a,0x800be714eeb7ce2a,2
1127
+ np.float64,0xbfcf444a793e8894,0xbfcef6c126b54853,2
1128
+ np.float64,0xffeb20cf1bf6419e,0xc086327c4e6ffe80,2
1129
+ np.float64,0xc07de22180fd,0xc07de22180fd,2
1130
+ np.float64,0xffed129d387a253a,0xc086330a15ad0adb,2
1131
+ np.float64,0x3fd9e94fedb3d2a0,0x3fd94049924706a8,2
1132
+ np.float64,0x7fe6ba488c2d7490,0x40863111d51e7861,2
1133
+ np.float64,0xbfebbdf25db77be5,0xbfe91740ad7ba521,2
1134
+ np.float64,0x7fbc6c3c4838d878,0x40862239160cb613,2
1135
+ np.float64,0xbfefa82ecebf505e,0xbfebf5f31957dffd,2
1136
+ np.float64,0x800bebeb7ad7d7d7,0x800bebeb7ad7d7d7,2
1137
+ np.float64,0x7fecccc6f8f9998d,0x408632f6c6da8aac,2
1138
+ np.float64,0xcbe4926197ca,0xcbe4926197ca,2
1139
+ np.float64,0x2c5d9fd858bb5,0x2c5d9fd858bb5,2
1140
+ np.float64,0xbfe9fb021073f604,0xbfe7bddc61f1151a,2
1141
+ np.float64,0xbfebb18572f7630b,0xbfe90ddc5002313f,2
1142
+ np.float64,0x13bb0d3227763,0x13bb0d3227763,2
1143
+ np.float64,0x3feefa5e5cbdf4bd,0x3feb79b9e8ce16bf,2
1144
+ np.float64,0x3fc97f086132fe10,0x3fc9549fc8e15ecb,2
1145
+ np.float64,0xffe70887c06e110f,0xc086312d30fd31cf,2
1146
+ np.float64,0xa00c113540182,0xa00c113540182,2
1147
+ np.float64,0x800950984772a131,0x800950984772a131,2
1148
+ np.float64,0x1,0x1,2
1149
+ np.float64,0x3fd83b4026b07680,0x3fd7afdc659d9a34,2
1150
+ np.float64,0xbfe32348fbe64692,0xbfe226292a706a1a,2
1151
+ np.float64,0x800b894dcc77129c,0x800b894dcc77129c,2
1152
+ np.float64,0xeb2ca419d6595,0xeb2ca419d6595,2
1153
+ np.float64,0xbff0000000000000,0xbfec34366179d427,2
1154
+ np.float64,0x3feb269e99f64d3d,0x3fe8a4634b927a21,2
1155
+ np.float64,0xbfe83149d7706294,0xbfe655a2b245254e,2
1156
+ np.float64,0xbfe6eef3ca6ddde8,0xbfe5521310e24d16,2
1157
+ np.float64,0x3fea89a4b7b51349,0x3fe82c1fc69edcec,2
1158
+ np.float64,0x800f2a8bf17e5518,0x800f2a8bf17e5518,2
1159
+ np.float64,0x800f71fac29ee3f6,0x800f71fac29ee3f6,2
1160
+ np.float64,0xe7cb31f1cf966,0xe7cb31f1cf966,2
1161
+ np.float64,0x3b0f8752761f2,0x3b0f8752761f2,2
1162
+ np.float64,0x3fea27dea3744fbd,0x3fe7e0a4705476b2,2
1163
+ np.float64,0xbfa97c019c32f800,0xbfa97950c1257b92,2
1164
+ np.float64,0xffeff13647ffe26c,0xc08633cadc7105ed,2
1165
+ np.float64,0x3feee162353dc2c4,0x3feb67c2da0fbce8,2
1166
+ np.float64,0x80088c0807911810,0x80088c0807911810,2
1167
+ np.float64,0x3fe936ab1db26d56,0x3fe72489bc69719d,2
1168
+ np.float64,0xa2f84bd545f0a,0xa2f84bd545f0a,2
1169
+ np.float64,0xbfed445ed27a88be,0xbfea3acac0aaf482,2
1170
+ np.float64,0x800faf3e69df5e7d,0x800faf3e69df5e7d,2
1171
+ np.float64,0x3fc145a330228b46,0x3fc13853f11b1c90,2
1172
+ np.float64,0xbfe25ec5abe4bd8c,0xbfe17c9e9b486f07,2
1173
+ np.float64,0x3fe119b160e23363,0x3fe0604b10178966,2
1174
+ np.float64,0x7fe0cbf2836197e4,0x40862ea6831e5f4a,2
1175
+ np.float64,0x3fe75dd3b4eebba8,0x3fe5abe80fd628fb,2
1176
+ np.float64,0x3f7c391000387220,0x3f7c39015d8f3a36,2
1177
+ np.float64,0x899d9cad133b4,0x899d9cad133b4,2
1178
+ np.float64,0x3fe5f0e34febe1c6,0x3fe4820cefe138fc,2
1179
+ np.float64,0x7fe060dfdba0c1bf,0x40862e72de8afcd0,2
1180
+ np.float64,0xbfae42f7103c85f0,0xbfae3e7630819c60,2
1181
+ np.float64,0x35f1f2c06be5,0x35f1f2c06be5,2
1182
+ np.float64,0xffc5194d362a329c,0xc086256266c8b7ad,2
1183
+ np.float64,0xbfda034f1b34069e,0xbfd95860a44c43ad,2
1184
+ np.float64,0x32bcebca6579e,0x32bcebca6579e,2
1185
+ np.float64,0xbfd1751ebca2ea3e,0xbfd13f79f45bf75c,2
1186
+ np.float64,0x3fee4fa1e5bc9f44,0x3feafe69e0d6c1c7,2
1187
+ np.float64,0x7f9c03cd5038079a,0x4086170459172900,2
1188
+ np.float64,0x7fc5fb6d6d2bf6da,0x408625b6651cfc73,2
1189
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,2
1190
+ np.float64,0xffd1a8162ca3502c,0xc0862981333931ad,2
1191
+ np.float64,0x7fc415c198282b82,0x408624fd8c155d1b,2
1192
+ np.float64,0xffda37fbe7b46ff8,0xc0862caae7865c43,2
1193
+ np.float64,0xbfef4312257e8624,0xbfebadd89f3ee31c,2
1194
+ np.float64,0xbfec45e1fd788bc4,0xbfe97d8b14db6274,2
1195
+ np.float64,0xbfe6fdcfd26dfba0,0xbfe55e25b770d00a,2
1196
+ np.float64,0x7feb66d424f6cda7,0x40863290d9ff7ea2,2
1197
+ np.float64,0x8b08a29916115,0x8b08a29916115,2
1198
+ np.float64,0xffe12ca25c625944,0xc0862ed40d769f72,2
1199
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,2
1200
+ np.float64,0x804925e100925,0x804925e100925,2
1201
+ np.float64,0xcebf3e019d9,0xcebf3e019d9,2
1202
+ np.float64,0xbfd5d75d4aabaeba,0xbfd57027671dedf7,2
1203
+ np.float64,0x800b829ecd37053e,0x800b829ecd37053e,2
1204
+ np.float64,0x800b1205daf6240c,0x800b1205daf6240c,2
1205
+ np.float64,0x3fdf7e9889befd31,0x3fde583fdff406c3,2
1206
+ np.float64,0x7ff0000000000000,0x7ff0000000000000,2
1207
+ np.float64,0x3fdc09760d3812ec,0x3fdb35b55c8090c6,2
1208
+ np.float64,0x800c4d99e4f89b34,0x800c4d99e4f89b34,2
1209
+ np.float64,0xffbaa6772e354cf0,0xc08621b535badb2f,2
1210
+ np.float64,0xbfc91188fd322310,0xbfc8e933b5d25ea7,2
1211
+ np.float64,0xffc1b947f4237290,0xc08623fd69164251,2
1212
+ np.float64,0x3fc6ab3b252d5678,0x3fc68d50bbac106d,2
1213
+ np.float64,0xffac8eb968391d70,0xc0861cb734833355,2
1214
+ np.float64,0xffe29a35c365346b,0xc0862f77a1aed6d8,2
1215
+ np.float64,0x3fde14b9543c2973,0x3fdd122697779015,2
1216
+ np.float64,0xbf10f5400021e000,0xbf10f53fffef1383,2
1217
+ np.float64,0xffe0831aa3e10635,0xc0862e838553d0ca,2
1218
+ np.float64,0x3fccbadbcf3975b8,0x3fcc7e768d0154ec,2
1219
+ np.float64,0x3fe092ef66e125df,0x3fdfd212a7116c9b,2
1220
+ np.float64,0xbfd727f039ae4fe0,0xbfd6adad040b2334,2
1221
+ np.float64,0xbfe4223b93a84477,0xbfe2ff7587364db4,2
1222
+ np.float64,0x3f4e5c3a003cb874,0x3f4e5c39b75c70f7,2
1223
+ np.float64,0x800e76b1a87ced63,0x800e76b1a87ced63,2
1224
+ np.float64,0x3fed2b7368fa56e7,0x3fea2863b9131b8c,2
1225
+ np.float64,0xffadb76ec43b6ee0,0xc0861d08ae79f20c,2
1226
+ np.float64,0x800b6a0cd1f6d41a,0x800b6a0cd1f6d41a,2
1227
+ np.float64,0xffee6aa943fcd552,0xc0863366a24250d5,2
1228
+ np.float64,0xbfe68cbc4e6d1978,0xbfe502040591aa5b,2
1229
+ np.float64,0xff859a38002b3480,0xc0860f64726235cc,2
1230
+ np.float64,0x3474d13e68e9b,0x3474d13e68e9b,2
1231
+ np.float64,0xffc11d49f6223a94,0xc08623b5c2df9712,2
1232
+ np.float64,0x800d82d019bb05a0,0x800d82d019bb05a0,2
1233
+ np.float64,0xbfe2af0192255e03,0xbfe1c20e38106388,2
1234
+ np.float64,0x3fe97d13c032fa28,0x3fe75bba11a65f86,2
1235
+ np.float64,0x7fcd457e133a8afb,0x40862800e80f5863,2
1236
+ np.float64,0x9d7254cf3ae4b,0x9d7254cf3ae4b,2
1237
+ np.float64,0x8003047675a608ee,0x8003047675a608ee,2
1238
+ np.float64,0x3fead6cd7d75ad9a,0x3fe8676138e5ff93,2
1239
+ np.float64,0x3fea6ee3b0f4ddc7,0x3fe817838a2bcbe3,2
1240
+ np.float64,0x3feed0edea7da1dc,0x3feb5bea3cb12fe2,2
1241
+ np.float64,0x88003fe510008,0x88003fe510008,2
1242
+ np.float64,0x3fe64cadc56c995c,0x3fe4cd8ead87fc79,2
1243
+ np.float64,0xaae30c5955c62,0xaae30c5955c62,2
1244
+ np.float64,0x7fc8c97cae3192f8,0x408626ac579f4fc5,2
1245
+ np.float64,0xbfc2bc0e8b25781c,0xbfc2ab188fdab7dc,2
1246
+ np.float64,0xc8f8e5e791f1d,0xc8f8e5e791f1d,2
1247
+ np.float64,0x3fecfaa5d6f9f54c,0x3fea0444dabe5a15,2
1248
+ np.float64,0xbfeb93740ff726e8,0xbfe8f71a9ab13baf,2
1249
+ np.float64,0xffd951236c32a246,0xc0862c633a4661eb,2
1250
+ np.float64,0x3fddbc5fcd3b78c0,0x3fdcc21c1a0a9246,2
1251
+ np.float64,0xbfd242443da48488,0xbfd20512d91f7924,2
1252
+ np.float64,0x2a3689b2546d2,0x2a3689b2546d2,2
1253
+ np.float64,0xffe24c67382498ce,0xc0862f55e4ea6283,2
1254
+ np.float64,0x800cbfce22197f9c,0x800cbfce22197f9c,2
1255
+ np.float64,0x8002269428044d29,0x8002269428044d29,2
1256
+ np.float64,0x7fd44babbd289756,0x40862a9e79b51c3b,2
1257
+ np.float64,0x3feea056a27d40ad,0x3feb38dcddb682f0,2
1258
+ np.float64,0xffeca8174b39502e,0xc08632ec8f88a5b2,2
1259
+ np.float64,0x7fbe0853a03c10a6,0x408622a9e8d53a9e,2
1260
+ np.float64,0xbfa9704b2432e090,0xbfa96d9dfc8c0cc2,2
1261
+ np.float64,0x800bda28fab7b452,0x800bda28fab7b452,2
1262
+ np.float64,0xbfb0ffa2f621ff48,0xbfb0fc71f405e82a,2
1263
+ np.float64,0xbfe66c04216cd808,0xbfe4e73ea3b58cf6,2
1264
+ np.float64,0x3fe336ea5d266dd5,0x3fe236ffcf078c62,2
1265
+ np.float64,0xbfe7729ae6aee536,0xbfe5bcad4b8ac62d,2
1266
+ np.float64,0x558cfc96ab1a0,0x558cfc96ab1a0,2
1267
+ np.float64,0xbfe7d792aaefaf26,0xbfe60de1b8f0279d,2
1268
+ np.float64,0xffd19ef6bda33dee,0xc086297d0ffee3c7,2
1269
+ np.float64,0x666b3ab4ccd68,0x666b3ab4ccd68,2
1270
+ np.float64,0xffa3d89e3c27b140,0xc08619cdeb2c1e49,2
1271
+ np.float64,0xbfb1728f7f62f,0xbfb1728f7f62f,2
1272
+ np.float64,0x3fc76319f32ec634,0x3fc74247bd005e20,2
1273
+ np.float64,0xbfbf1caee23e3960,0xbfbf0934c13d70e2,2
1274
+ np.float64,0x7fe79626f32f2c4d,0x4086315dcc68a5cb,2
1275
+ np.float64,0xffee78c4603cf188,0xc086336a572c05c2,2
1276
+ np.float64,0x3fce546eda3ca8de,0x3fce0d8d737fd31d,2
1277
+ np.float64,0xa223644d4446d,0xa223644d4446d,2
1278
+ np.float64,0x3fecea878b79d510,0x3fe9f850d50973f6,2
1279
+ np.float64,0x3fc20e0ea1241c1d,0x3fc1fedda87c5e75,2
1280
+ np.float64,0xffd1c5a99ca38b54,0xc086298e8e94cd47,2
1281
+ np.float64,0x7feb2c299d765852,0x4086327fa6db2808,2
1282
+ np.float64,0xcaf9d09595f3a,0xcaf9d09595f3a,2
1283
+ np.float64,0xbfe293bf21e5277e,0xbfe1aa7f6ac274ef,2
1284
+ np.float64,0xbfbaa3c8ce354790,0xbfba97891df19c01,2
1285
+ np.float64,0x3faf5784543eaf09,0x3faf5283acc7d71d,2
1286
+ np.float64,0x7fc014f8f62029f1,0x40862336531c662d,2
1287
+ np.float64,0xbfe0d9ac2d61b358,0xbfe027bce36699ca,2
1288
+ np.float64,0x8003e112ff27c227,0x8003e112ff27c227,2
1289
+ np.float64,0xffec0d4151381a82,0xc08632c0df718dd0,2
1290
+ np.float64,0x7fa2156fb0242ade,0x4086190f7587d708,2
1291
+ np.float64,0xd698358dad307,0xd698358dad307,2
1292
+ np.float64,0xbfed8d1b0efb1a36,0xbfea70588ef9ba18,2
1293
+ np.float64,0xbfd2cae6a92595ce,0xbfd28851e2185dee,2
1294
+ np.float64,0xffe7a36764ef46ce,0xc086316249c9287a,2
1295
+ np.float64,0xbfdb8ad8e5b715b2,0xbfdac19213c14315,2
1296
+ np.float64,0x3b5dba6076bc,0x3b5dba6076bc,2
1297
+ np.float64,0x800e6e8347bcdd07,0x800e6e8347bcdd07,2
1298
+ np.float64,0x800bea9f3fb7d53f,0x800bea9f3fb7d53f,2
1299
+ np.float64,0x7fb6d0e5fc2da1cb,0x4086207714c4ab85,2
1300
+ np.float64,0x0,0x0,2
1301
+ np.float64,0xbfe2aa1e1465543c,0xbfe1bdd550ef2966,2
1302
+ np.float64,0x7fd3f6a47fa7ed48,0x40862a7caea33055,2
1303
+ np.float64,0x800094e292c129c6,0x800094e292c129c6,2
1304
+ np.float64,0x800e1500ecbc2a02,0x800e1500ecbc2a02,2
1305
+ np.float64,0xbfd8ff6f97b1fee0,0xbfd866f84346ecdc,2
1306
+ np.float64,0x681457d0d028c,0x681457d0d028c,2
1307
+ np.float64,0x3feed0b5987da16b,0x3feb5bc1ab424984,2
1308
+ np.float64,0x3fdbcb34cdb79668,0x3fdafca540f32c06,2
1309
+ np.float64,0xbfdc9eacdcb93d5a,0xbfdbbe274aa8aeb0,2
1310
+ np.float64,0xffe6e35d526dc6ba,0xc08631203df38ed2,2
1311
+ np.float64,0x3fcac1cc65358398,0x3fca90de41889613,2
1312
+ np.float64,0xbfebf07a55b7e0f5,0xbfe93d6007db0c67,2
1313
+ np.float64,0xbfd7a7b1e7af4f64,0xbfd725a9081c22cb,2
1314
+ np.float64,0x800232bd7de4657c,0x800232bd7de4657c,2
1315
+ np.float64,0x7fb1dae43c23b5c7,0x40861e80f5c0a64e,2
1316
+ np.float64,0x8013ded70027c,0x8013ded70027c,2
1317
+ np.float64,0x7fc4373a59286e74,0x4086250ad60575d0,2
1318
+ np.float64,0xbfe9980fd6733020,0xbfe770d1352d0ed3,2
1319
+ np.float64,0x8008a66b8dd14cd7,0x8008a66b8dd14cd7,2
1320
+ np.float64,0xbfaebc67f83d78d0,0xbfaeb7b015848478,2
1321
+ np.float64,0xffd0c52762218a4e,0xc0862917b564afc6,2
1322
+ np.float64,0xbfd503860aaa070c,0xbfd4a74618441561,2
1323
+ np.float64,0x5bdacabcb7b5a,0x5bdacabcb7b5a,2
1324
+ np.float64,0xf3623cffe6c48,0xf3623cffe6c48,2
1325
+ np.float64,0x7fe16c6c7ea2d8d8,0x40862ef18d90201f,2
1326
+ np.float64,0x3ff0000000000000,0x3fec34366179d427,2
1327
+ np.float64,0x7fe19cbc84233978,0x40862f079dcbc169,2
1328
+ np.float64,0x3fcfd3d6933fa7ad,0x3fcf822187907f6b,2
1329
+ np.float64,0x8007d65d672facbc,0x8007d65d672facbc,2
1330
+ np.float64,0xffca6115aa34c22c,0xc086272bd7728750,2
1331
+ np.float64,0xbfe77ab1556ef562,0xbfe5c332fb55b66e,2
1332
+ np.float64,0x8001ed797c23daf4,0x8001ed797c23daf4,2
1333
+ np.float64,0x7fdd3d16cb3a7a2d,0x40862d8a2c869281,2
1334
+ np.float64,0x75f36beaebe6e,0x75f36beaebe6e,2
1335
+ np.float64,0xffda3c2798b47850,0xc0862cac2d3435df,2
1336
+ np.float64,0xbfa37cc3c426f980,0xbfa37b8f9d3ec4b7,2
1337
+ np.float64,0x80030ea8bd061d52,0x80030ea8bd061d52,2
1338
+ np.float64,0xffe41f7617683eec,0xc08630188a3e135e,2
1339
+ np.float64,0x800e40590dfc80b2,0x800e40590dfc80b2,2
1340
+ np.float64,0x3fea950d80f52a1c,0x3fe834e74481e66f,2
1341
+ np.float64,0xffec95e39a792bc6,0xc08632e779150084,2
1342
+ np.float64,0xbfd54310ecaa8622,0xbfd4e39c4d767002,2
1343
+ np.float64,0xffd40c9971a81932,0xc0862a85764eb2f4,2
1344
+ np.float64,0xb0a2230761445,0xb0a2230761445,2
1345
+ np.float64,0x80092973661252e7,0x80092973661252e7,2
1346
+ np.float64,0x7fb13b030a227605,0x40861e380aeb5549,2
1347
+ np.float64,0x3fbd5d8db23abb1b,0x3fbd4d2a0b94af36,2
1348
+ np.float64,0xbfd6cb8567ad970a,0xbfd656b19ab8fa61,2
1349
+ np.float64,0xbfe7c0fd346f81fa,0xbfe5fbc28807c794,2
1350
+ np.float64,0xffd586579eab0cb0,0xc0862b16e65c0754,2
1351
+ np.float64,0x8000e52da461ca5c,0x8000e52da461ca5c,2
1352
+ np.float64,0x3fc69d17112d3a2e,0x3fc67f63fe1fea1c,2
1353
+ np.float64,0x3fd36ba892a6d750,0x3fd3225be1fa87af,2
1354
+ np.float64,0x7fe2850598e50a0a,0x40862f6e7fcd6c1a,2
1355
+ np.float64,0x80074a4dacce949c,0x80074a4dacce949c,2
1356
+ np.float64,0x3fe25eea4d64bdd5,0x3fe17cbe5fefbd4e,2
1357
+ np.float64,0xbfe250c08be4a181,0xbfe17074c520e5de,2
1358
+ np.float64,0x8000f5665481eacd,0x8000f5665481eacd,2
1359
+ np.float64,0x7fdb3172f83662e5,0x40862cf5a46764f1,2
1360
+ np.float64,0x7fd8ed82d631db05,0x40862c4380658afa,2
1361
+ np.float64,0xffec5163feb8a2c7,0xc08632d4366aab06,2
1362
+ np.float64,0x800ff14ac6ffe296,0x800ff14ac6ffe296,2
1363
+ np.float64,0xbfc7cc7aea2f98f4,0xbfc7a9e9cb38f023,2
1364
+ np.float64,0xbfd50cdfc32a19c0,0xbfd4b0282b452fb2,2
1365
+ np.float64,0xbfec256d75b84adb,0xbfe965328c1860b2,2
1366
+ np.float64,0xffe860c4cdb0c189,0xc08631a164b7059a,2
1367
+ np.float64,0xbfe23de164247bc3,0xbfe16011bffa4651,2
1368
+ np.float64,0xcc96b39d992d7,0xcc96b39d992d7,2
1369
+ np.float64,0xbfec43acf938875a,0xbfe97be3a13b50c3,2
1370
+ np.float64,0xc4f587bb89eb1,0xc4f587bb89eb1,2
1371
+ np.float64,0xbfcd971d9a3b2e3c,0xbfcd5537ad15dab4,2
1372
+ np.float64,0xffcaf00d8035e01c,0xc0862756bf2cdf8f,2
1373
+ np.float64,0x8008c26f93f184e0,0x8008c26f93f184e0,2
1374
+ np.float64,0xfff0000000000000,0xfff0000000000000,2
1375
+ np.float64,0xbfd13552c3a26aa6,0xbfd101e5e252eb7b,2
1376
+ np.float64,0x7fe497235e292e46,0x4086304792fb423a,2
1377
+ np.float64,0x7fd6dc0192adb802,0x40862b921a5e935d,2
1378
+ np.float64,0xf16d49a1e2da9,0xf16d49a1e2da9,2
1379
+ np.float64,0xffef6b1b71bed636,0xc08633a8feed0178,2
1380
+ np.float64,0x7fe15ec62f62bd8b,0x40862eeb46b193dc,2
1381
+ np.float64,0x3fef4369ec7e86d4,0x3febae1768be52cc,2
1382
+ np.float64,0x4f84e8e89f09e,0x4f84e8e89f09e,2
1383
+ np.float64,0xbfe19e71ade33ce4,0xbfe0d4fad05e0ebc,2
1384
+ np.float64,0xbfe7e1df1defc3be,0xbfe616233e15b3d0,2
1385
+ np.float64,0x7fe9349afdb26935,0x408631e5c1c5c6cd,2
1386
+ np.float64,0xff90c35ac82186c0,0xc08612e896a06467,2
1387
+ np.float64,0xbfe88bf8807117f1,0xbfe69dc786464422,2
1388
+ np.float64,0x3feaf9ff6475f3fe,0x3fe8825132410d18,2
1389
+ np.float64,0x9ff487a33fe91,0x9ff487a33fe91,2
1390
+ np.float64,0x7fedb30159bb6602,0x40863335c0419322,2
1391
+ np.float64,0x800bddf6ed77bbee,0x800bddf6ed77bbee,2
1392
+ np.float64,0x3fd919df133233be,0x3fd87f963b9584ce,2
1393
+ np.float64,0x7fd64da3b52c9b46,0x40862b5fa9dd3b6d,2
1394
+ np.float64,0xbfce288db43c511c,0xbfcde2d953407ae8,2
1395
+ np.float64,0x3fe88bc72771178e,0x3fe69da05e9e9b4e,2
1396
+ np.float64,0x800feafe259fd5fc,0x800feafe259fd5fc,2
1397
+ np.float64,0x3febbbff4a7777ff,0x3fe915c78f6a280f,2
1398
+ np.float64,0xbfefbde4417f7bc9,0xbfec055f4fb2cd21,2
1399
+ np.float64,0xf13ca103e2794,0xf13ca103e2794,2
1400
+ np.float64,0x3fe6423884ec8471,0x3fe4c4f97eaa876a,2
1401
+ np.float64,0x800ca01c8cb94039,0x800ca01c8cb94039,2
1402
+ np.float64,0x3fbc5073f638a0e0,0x3fbc41c163ac0001,2
1403
+ np.float64,0xbfda0d83cfb41b08,0xbfd961d4cacc82cf,2
1404
+ np.float64,0x800f37b8f17e6f72,0x800f37b8f17e6f72,2
1405
+ np.float64,0x7fe0b08cd7216119,0x40862e996becb771,2
1406
+ np.float64,0xffd4222a40a84454,0xc0862a8e0c984917,2
1407
+ np.float64,0x7feb3df98ff67bf2,0x40863284e3a86ee6,2
1408
+ np.float64,0x8001d5d291e3aba6,0x8001d5d291e3aba6,2
1409
+ np.float64,0xbfd3c21629a7842c,0xbfd3750095a5894a,2
1410
+ np.float64,0xbfd069eb48a0d3d6,0xbfd03d2b1c2ae9db,2
1411
+ np.float64,0xffeb1be2973637c4,0xc086327ada954662,2
1412
+ np.float64,0x3fc659f97e2cb3f3,0x3fc63d497a451f10,2
1413
+ np.float64,0xbfeb624bc776c498,0xbfe8d1cf7c0626ca,2
1414
+ np.float64,0xffeedf26e23dbe4d,0xc08633850baab425,2
1415
+ np.float64,0xffe70da48a6e1b48,0xc086312ef75d5036,2
1416
+ np.float64,0x2b4f4830569ea,0x2b4f4830569ea,2
1417
+ np.float64,0xffe82e7fcfb05cff,0xc0863190d4771f75,2
1418
+ np.float64,0x3fcc2c1fd5385840,0x3fcbf3211ddc5123,2
1419
+ np.float64,0x7fe22ced5a6459da,0x40862f481629ee6a,2
1420
+ np.float64,0x7fe13d2895e27a50,0x40862edbbc411899,2
1421
+ np.float64,0x3fd54c4280aa9884,0x3fd4ec55a946c5d7,2
1422
+ np.float64,0xffd75b8e01aeb71c,0xc0862bbe42d76e5e,2
1423
+ np.float64,0x7f1d5376fe3ab,0x7f1d5376fe3ab,2
1424
+ np.float64,0x3fe6ec6c902dd8d9,0x3fe55004f35192bd,2
1425
+ np.float64,0x5634504aac68b,0x5634504aac68b,2
1426
+ np.float64,0x3feedb0d83bdb61b,0x3feb633467467ce6,2
1427
+ np.float64,0x3fddb1c0dcbb6380,0x3fdcb87a02daf1fa,2
1428
+ np.float64,0xbfa832da443065b0,0xbfa8308c70257209,2
1429
+ np.float64,0x87a9836b0f531,0x87a9836b0f531,2
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arctan.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0x3f338252,0x3f1c8d9c,3
3
+ np.float32,0x7e569df2,0x3fc90fdb,3
4
+ np.float32,0xbf347e25,0xbf1d361f,3
5
+ np.float32,0xbf0a654e,0xbefdbfd2,3
6
+ np.float32,0x8070968e,0x8070968e,3
7
+ np.float32,0x803cfb27,0x803cfb27,3
8
+ np.float32,0x8024362e,0x8024362e,3
9
+ np.float32,0xfd55dca0,0xbfc90fdb,3
10
+ np.float32,0x592b82,0x592b82,3
11
+ np.float32,0x802eb8e1,0x802eb8e1,3
12
+ np.float32,0xbc5fef40,0xbc5febae,3
13
+ np.float32,0x3f1f6ce8,0x3f0e967c,3
14
+ np.float32,0x20bedc,0x20bedc,3
15
+ np.float32,0xbf058860,0xbef629c7,3
16
+ np.float32,0x311504,0x311504,3
17
+ np.float32,0xbd23f560,0xbd23defa,3
18
+ np.float32,0x800ff4e8,0x800ff4e8,3
19
+ np.float32,0x355009,0x355009,3
20
+ np.float32,0x3f7be42e,0x3f46fdb3,3
21
+ np.float32,0xbf225f7c,0xbf10b364,3
22
+ np.float32,0x8074fa9e,0x8074fa9e,3
23
+ np.float32,0xbea4b418,0xbe9f59ce,3
24
+ np.float32,0xbe909c14,0xbe8cf045,3
25
+ np.float32,0x80026bee,0x80026bee,3
26
+ np.float32,0x3d789c20,0x3d784e25,3
27
+ np.float32,0x7f56a4ba,0x3fc90fdb,3
28
+ np.float32,0xbf70d141,0xbf413db7,3
29
+ np.float32,0xbf2c4886,0xbf17a505,3
30
+ np.float32,0x7e2993bf,0x3fc90fdb,3
31
+ np.float32,0xbe2c8a30,0xbe2aef28,3
32
+ np.float32,0x803f82d9,0x803f82d9,3
33
+ np.float32,0x3f062fbc,0x3ef730a1,3
34
+ np.float32,0x3f349ee0,0x3f1d4bfa,3
35
+ np.float32,0x3eccfb69,0x3ec2f9e8,3
36
+ np.float32,0x7e8a85dd,0x3fc90fdb,3
37
+ np.float32,0x25331,0x25331,3
38
+ np.float32,0x464f19,0x464f19,3
39
+ np.float32,0x8035c818,0x8035c818,3
40
+ np.float32,0x802e5799,0x802e5799,3
41
+ np.float32,0x64e1c0,0x64e1c0,3
42
+ np.float32,0x701cc2,0x701cc2,3
43
+ np.float32,0x265c57,0x265c57,3
44
+ np.float32,0x807a053f,0x807a053f,3
45
+ np.float32,0x3bd2c412,0x3bd2c354,3
46
+ np.float32,0xff28f1c8,0xbfc90fdb,3
47
+ np.float32,0x7f08f08b,0x3fc90fdb,3
48
+ np.float32,0x800c50e4,0x800c50e4,3
49
+ np.float32,0x369674,0x369674,3
50
+ np.float32,0xbf5b7db3,0xbf3571bf,3
51
+ np.float32,0x7edcf5e2,0x3fc90fdb,3
52
+ np.float32,0x800e5d4b,0x800e5d4b,3
53
+ np.float32,0x80722554,0x80722554,3
54
+ np.float32,0x693f33,0x693f33,3
55
+ np.float32,0x800844e4,0x800844e4,3
56
+ np.float32,0xbf111b82,0xbf0402ec,3
57
+ np.float32,0x7df9c9ac,0x3fc90fdb,3
58
+ np.float32,0xbf6619a6,0xbf3b6f57,3
59
+ np.float32,0x8002fafe,0x8002fafe,3
60
+ np.float32,0xfe1e67f8,0xbfc90fdb,3
61
+ np.float32,0x3f7f4bf8,0x3f48b5b7,3
62
+ np.float32,0x7f017b20,0x3fc90fdb,3
63
+ np.float32,0x2d9b07,0x2d9b07,3
64
+ np.float32,0x803aa174,0x803aa174,3
65
+ np.float32,0x7d530336,0x3fc90fdb,3
66
+ np.float32,0x80662195,0x80662195,3
67
+ np.float32,0xfd5ebcf0,0xbfc90fdb,3
68
+ np.float32,0xbe7b8dcc,0xbe76ab59,3
69
+ np.float32,0x7f2bacaf,0x3fc90fdb,3
70
+ np.float32,0x3f194fc4,0x3f0a229e,3
71
+ np.float32,0x7ee21cdf,0x3fc90fdb,3
72
+ np.float32,0x3f5a17fc,0x3f34a307,3
73
+ np.float32,0x7f100c58,0x3fc90fdb,3
74
+ np.float32,0x7e9128f5,0x3fc90fdb,3
75
+ np.float32,0xbf2107c6,0xbf0fbdb4,3
76
+ np.float32,0xbd29c800,0xbd29af22,3
77
+ np.float32,0xbf5af499,0xbf3522a6,3
78
+ np.float32,0x801bde44,0x801bde44,3
79
+ np.float32,0xfeb4761a,0xbfc90fdb,3
80
+ np.float32,0x3d88aa1b,0x3d887650,3
81
+ np.float32,0x7eba5e0b,0x3fc90fdb,3
82
+ np.float32,0x803906bd,0x803906bd,3
83
+ np.float32,0x80101512,0x80101512,3
84
+ np.float32,0x7e898f83,0x3fc90fdb,3
85
+ np.float32,0x806406d3,0x806406d3,3
86
+ np.float32,0x7ed20fc0,0x3fc90fdb,3
87
+ np.float32,0x20827d,0x20827d,3
88
+ np.float32,0x3f361359,0x3f1e43fe,3
89
+ np.float32,0xfe4ef8d8,0xbfc90fdb,3
90
+ np.float32,0x805e7d2d,0x805e7d2d,3
91
+ np.float32,0xbe4316b0,0xbe40c745,3
92
+ np.float32,0xbf0a1c06,0xbefd4e5a,3
93
+ np.float32,0x3e202860,0x3e1edee1,3
94
+ np.float32,0xbeb32a2c,0xbeac5899,3
95
+ np.float32,0xfe528838,0xbfc90fdb,3
96
+ np.float32,0x2f73e2,0x2f73e2,3
97
+ np.float32,0xbe16e010,0xbe15cc27,3
98
+ np.float32,0x3f50d6c5,0x3f2f2d75,3
99
+ np.float32,0xbe88a6a2,0xbe8589c7,3
100
+ np.float32,0x3ee36060,0x3ed5fb36,3
101
+ np.float32,0x6c978b,0x6c978b,3
102
+ np.float32,0x7f1b735f,0x3fc90fdb,3
103
+ np.float32,0x3dad8256,0x3dad1885,3
104
+ np.float32,0x807f5094,0x807f5094,3
105
+ np.float32,0x65c358,0x65c358,3
106
+ np.float32,0xff315ce4,0xbfc90fdb,3
107
+ np.float32,0x7411a6,0x7411a6,3
108
+ np.float32,0x80757b04,0x80757b04,3
109
+ np.float32,0x3eec73a6,0x3edd82f4,3
110
+ np.float32,0xfe9f69e8,0xbfc90fdb,3
111
+ np.float32,0x801f4fa8,0x801f4fa8,3
112
+ np.float32,0xbf6f2fae,0xbf405f79,3
113
+ np.float32,0xfea206b6,0xbfc90fdb,3
114
+ np.float32,0x3f257301,0x3f12e1ee,3
115
+ np.float32,0x7ea6a506,0x3fc90fdb,3
116
+ np.float32,0x80800000,0x80800000,3
117
+ np.float32,0xff735c2d,0xbfc90fdb,3
118
+ np.float32,0x80197f95,0x80197f95,3
119
+ np.float32,0x7f4a354f,0x3fc90fdb,3
120
+ np.float32,0xff320c00,0xbfc90fdb,3
121
+ np.float32,0x3f2659de,0x3f138484,3
122
+ np.float32,0xbe5451bc,0xbe515a52,3
123
+ np.float32,0x3f6e228c,0x3f3fcf7c,3
124
+ np.float32,0x66855a,0x66855a,3
125
+ np.float32,0x8034b3a3,0x8034b3a3,3
126
+ np.float32,0xbe21a2fc,0xbe20505d,3
127
+ np.float32,0x7f79e2dc,0x3fc90fdb,3
128
+ np.float32,0xbe19a8e0,0xbe18858c,3
129
+ np.float32,0x10802c,0x10802c,3
130
+ np.float32,0xfeee579e,0xbfc90fdb,3
131
+ np.float32,0x3f3292c8,0x3f1becc0,3
132
+ np.float32,0xbf595a71,0xbf34350a,3
133
+ np.float32,0xbf7c3373,0xbf4725f4,3
134
+ np.float32,0xbdd30938,0xbdd24b36,3
135
+ np.float32,0x153a17,0x153a17,3
136
+ np.float32,0x807282a0,0x807282a0,3
137
+ np.float32,0xfe817322,0xbfc90fdb,3
138
+ np.float32,0x3f1b3628,0x3f0b8771,3
139
+ np.float32,0x41be8f,0x41be8f,3
140
+ np.float32,0x7f4a8343,0x3fc90fdb,3
141
+ np.float32,0x3dc4ea2b,0x3dc44fae,3
142
+ np.float32,0x802aac25,0x802aac25,3
143
+ np.float32,0xbf20e1d7,0xbf0fa284,3
144
+ np.float32,0xfd91a1b0,0xbfc90fdb,3
145
+ np.float32,0x3f0d5476,0x3f012265,3
146
+ np.float32,0x21c916,0x21c916,3
147
+ np.float32,0x807df399,0x807df399,3
148
+ np.float32,0x7e207b4c,0x3fc90fdb,3
149
+ np.float32,0x8055f8ff,0x8055f8ff,3
150
+ np.float32,0x7edf3b01,0x3fc90fdb,3
151
+ np.float32,0x803a8df3,0x803a8df3,3
152
+ np.float32,0x3ce3b002,0x3ce3a101,3
153
+ np.float32,0x3f62dd54,0x3f39a248,3
154
+ np.float32,0xff33ae10,0xbfc90fdb,3
155
+ np.float32,0x7e3de69d,0x3fc90fdb,3
156
+ np.float32,0x8024581e,0x8024581e,3
157
+ np.float32,0xbf4ac99d,0xbf2b807a,3
158
+ np.float32,0x3f157d19,0x3f074d8c,3
159
+ np.float32,0xfed383f4,0xbfc90fdb,3
160
+ np.float32,0xbf5a39fa,0xbf34b6b8,3
161
+ np.float32,0x800d757d,0x800d757d,3
162
+ np.float32,0x807d606b,0x807d606b,3
163
+ np.float32,0x3e828f89,0x3e7fac2d,3
164
+ np.float32,0x7a6604,0x7a6604,3
165
+ np.float32,0x7dc7e72b,0x3fc90fdb,3
166
+ np.float32,0x80144146,0x80144146,3
167
+ np.float32,0x7c2eed69,0x3fc90fdb,3
168
+ np.float32,0x3f5b4d8c,0x3f3555fc,3
169
+ np.float32,0xfd8b7778,0xbfc90fdb,3
170
+ np.float32,0xfc9d9140,0xbfc90fdb,3
171
+ np.float32,0xbea265d4,0xbe9d4232,3
172
+ np.float32,0xbe9344d0,0xbe8f65da,3
173
+ np.float32,0x3f71f19a,0x3f41d65b,3
174
+ np.float32,0x804a3f59,0x804a3f59,3
175
+ np.float32,0x3e596290,0x3e563476,3
176
+ np.float32,0x3e994ee4,0x3e94f546,3
177
+ np.float32,0xbc103e00,0xbc103d0c,3
178
+ np.float32,0xbf1cd896,0xbf0cb889,3
179
+ np.float32,0x7f52b080,0x3fc90fdb,3
180
+ np.float32,0xff584452,0xbfc90fdb,3
181
+ np.float32,0x58b26b,0x58b26b,3
182
+ np.float32,0x3f23cd4c,0x3f11b799,3
183
+ np.float32,0x707d7,0x707d7,3
184
+ np.float32,0xff732cff,0xbfc90fdb,3
185
+ np.float32,0x3e41c2a6,0x3e3f7f0f,3
186
+ np.float32,0xbf7058e9,0xbf40fdcf,3
187
+ np.float32,0x7dca9857,0x3fc90fdb,3
188
+ np.float32,0x7f0eb44b,0x3fc90fdb,3
189
+ np.float32,0x8000405c,0x8000405c,3
190
+ np.float32,0x4916ab,0x4916ab,3
191
+ np.float32,0x4811a8,0x4811a8,3
192
+ np.float32,0x3d69bf,0x3d69bf,3
193
+ np.float32,0xfeadcf1e,0xbfc90fdb,3
194
+ np.float32,0x3e08dbbf,0x3e080d58,3
195
+ np.float32,0xff031f88,0xbfc90fdb,3
196
+ np.float32,0xbe09cab8,0xbe08f818,3
197
+ np.float32,0x21d7cd,0x21d7cd,3
198
+ np.float32,0x3f23230d,0x3f113ea9,3
199
+ np.float32,0x7e8a48d4,0x3fc90fdb,3
200
+ np.float32,0x413869,0x413869,3
201
+ np.float32,0x7e832990,0x3fc90fdb,3
202
+ np.float32,0x800f5c09,0x800f5c09,3
203
+ np.float32,0x7f5893b6,0x3fc90fdb,3
204
+ np.float32,0x7f06b5b1,0x3fc90fdb,3
205
+ np.float32,0xbe1cbee8,0xbe1b89d6,3
206
+ np.float32,0xbf279f14,0xbf1468a8,3
207
+ np.float32,0xfea86060,0xbfc90fdb,3
208
+ np.float32,0x3e828174,0x3e7f91bb,3
209
+ np.float32,0xff682c82,0xbfc90fdb,3
210
+ np.float32,0x4e20f3,0x4e20f3,3
211
+ np.float32,0x7f17d7e9,0x3fc90fdb,3
212
+ np.float32,0x80671f92,0x80671f92,3
213
+ np.float32,0x7f6dd100,0x3fc90fdb,3
214
+ np.float32,0x3f219a4d,0x3f102695,3
215
+ np.float32,0x803c9808,0x803c9808,3
216
+ np.float32,0x3c432ada,0x3c43287d,3
217
+ np.float32,0xbd3db450,0xbd3d91a2,3
218
+ np.float32,0x3baac135,0x3baac0d0,3
219
+ np.float32,0xff7fffe1,0xbfc90fdb,3
220
+ np.float32,0xfe38a6f4,0xbfc90fdb,3
221
+ np.float32,0x3dfb0a04,0x3df9cb04,3
222
+ np.float32,0x800b05c2,0x800b05c2,3
223
+ np.float32,0x644163,0x644163,3
224
+ np.float32,0xff03a025,0xbfc90fdb,3
225
+ np.float32,0x3f7d506c,0x3f47b641,3
226
+ np.float32,0xff0e682a,0xbfc90fdb,3
227
+ np.float32,0x3e09b7b0,0x3e08e567,3
228
+ np.float32,0x7f72a216,0x3fc90fdb,3
229
+ np.float32,0x7f800000,0x3fc90fdb,3
230
+ np.float32,0x8050a281,0x8050a281,3
231
+ np.float32,0x7edafa2f,0x3fc90fdb,3
232
+ np.float32,0x3f4e0df6,0x3f2d7f2f,3
233
+ np.float32,0xbf6728e0,0xbf3c050f,3
234
+ np.float32,0x3e904ce4,0x3e8ca6eb,3
235
+ np.float32,0x0,0x0,3
236
+ np.float32,0xfd215070,0xbfc90fdb,3
237
+ np.float32,0x7e406b15,0x3fc90fdb,3
238
+ np.float32,0xbf2803c9,0xbf14af18,3
239
+ np.float32,0x5950c8,0x5950c8,3
240
+ np.float32,0xbeddcec8,0xbed14faa,3
241
+ np.float32,0xbec6457e,0xbebd2aa5,3
242
+ np.float32,0xbf42843c,0xbf2656db,3
243
+ np.float32,0x3ee9cba8,0x3edb5163,3
244
+ np.float32,0xbe30c954,0xbe2f0f90,3
245
+ np.float32,0xbeee6b44,0xbedf216f,3
246
+ np.float32,0xbe35d818,0xbe33f7cd,3
247
+ np.float32,0xbe47c630,0xbe454bc6,3
248
+ np.float32,0x801b146f,0x801b146f,3
249
+ np.float32,0x7f6788da,0x3fc90fdb,3
250
+ np.float32,0x3eaef088,0x3ea8927d,3
251
+ np.float32,0x3eb5983e,0x3eae81fc,3
252
+ np.float32,0x40b51d,0x40b51d,3
253
+ np.float32,0xfebddd04,0xbfc90fdb,3
254
+ np.float32,0x3e591aee,0x3e55efea,3
255
+ np.float32,0xbe2b6b48,0xbe29d81f,3
256
+ np.float32,0xff4a8826,0xbfc90fdb,3
257
+ np.float32,0x3e791df0,0x3e745eac,3
258
+ np.float32,0x7c8f681f,0x3fc90fdb,3
259
+ np.float32,0xfe7a15c4,0xbfc90fdb,3
260
+ np.float32,0x3c8963,0x3c8963,3
261
+ np.float32,0x3f0afa0a,0x3efea5cc,3
262
+ np.float32,0xbf0d2680,0xbf00ff29,3
263
+ np.float32,0x3dc306b0,0x3dc27096,3
264
+ np.float32,0x7f4cf105,0x3fc90fdb,3
265
+ np.float32,0xbe196060,0xbe183ea4,3
266
+ np.float32,0x5caf1c,0x5caf1c,3
267
+ np.float32,0x801f2852,0x801f2852,3
268
+ np.float32,0xbe01aa0c,0xbe00fa53,3
269
+ np.float32,0x3f0cfd32,0x3f00df7a,3
270
+ np.float32,0x7d82038e,0x3fc90fdb,3
271
+ np.float32,0x7f7b927f,0x3fc90fdb,3
272
+ np.float32,0xbe93b2e4,0xbe8fcb7f,3
273
+ np.float32,0x1ffe8c,0x1ffe8c,3
274
+ np.float32,0x3faaf6,0x3faaf6,3
275
+ np.float32,0x3e32b1b8,0x3e30e9ab,3
276
+ np.float32,0x802953c0,0x802953c0,3
277
+ np.float32,0xfe5d9844,0xbfc90fdb,3
278
+ np.float32,0x3e1a59d0,0x3e193292,3
279
+ np.float32,0x801c6edc,0x801c6edc,3
280
+ np.float32,0x1ecf41,0x1ecf41,3
281
+ np.float32,0xfe56b09c,0xbfc90fdb,3
282
+ np.float32,0x7e878351,0x3fc90fdb,3
283
+ np.float32,0x3f401e2c,0x3f24cfcb,3
284
+ np.float32,0xbf204a40,0xbf0f35bb,3
285
+ np.float32,0x3e155a98,0x3e144ee1,3
286
+ np.float32,0xbf34f929,0xbf1d8838,3
287
+ np.float32,0x801bbf70,0x801bbf70,3
288
+ np.float32,0x7e7c9730,0x3fc90fdb,3
289
+ np.float32,0x7cc23432,0x3fc90fdb,3
290
+ np.float32,0xbf351638,0xbf1d9b97,3
291
+ np.float32,0x80152094,0x80152094,3
292
+ np.float32,0x3f2d731c,0x3f187219,3
293
+ np.float32,0x804ab0b7,0x804ab0b7,3
294
+ np.float32,0x37d6db,0x37d6db,3
295
+ np.float32,0xbf3ccc56,0xbf22acbf,3
296
+ np.float32,0x3e546f8c,0x3e5176e7,3
297
+ np.float32,0xbe90e87e,0xbe8d3707,3
298
+ np.float32,0x48256c,0x48256c,3
299
+ np.float32,0x7e2468d0,0x3fc90fdb,3
300
+ np.float32,0x807af47e,0x807af47e,3
301
+ np.float32,0x3ed4b221,0x3ec996f0,3
302
+ np.float32,0x3d3b1956,0x3d3af811,3
303
+ np.float32,0xbe69d93c,0xbe65e7f0,3
304
+ np.float32,0xff03ff14,0xbfc90fdb,3
305
+ np.float32,0x801e79dc,0x801e79dc,3
306
+ np.float32,0x3f467c53,0x3f28d63d,3
307
+ np.float32,0x3eab6baa,0x3ea56a1c,3
308
+ np.float32,0xbf15519c,0xbf072d1c,3
309
+ np.float32,0x7f0bd8e8,0x3fc90fdb,3
310
+ np.float32,0xbe1e0d1c,0xbe1cd053,3
311
+ np.float32,0x8016edab,0x8016edab,3
312
+ np.float32,0x7ecaa09b,0x3fc90fdb,3
313
+ np.float32,0x3f72e6d9,0x3f4257a8,3
314
+ np.float32,0xbefe787e,0xbeec29a4,3
315
+ np.float32,0xbee989e8,0xbedb1af9,3
316
+ np.float32,0xbe662db0,0xbe626a45,3
317
+ np.float32,0x495bf7,0x495bf7,3
318
+ np.float32,0x26c379,0x26c379,3
319
+ np.float32,0x7f54d41a,0x3fc90fdb,3
320
+ np.float32,0x801e7dd9,0x801e7dd9,3
321
+ np.float32,0x80000000,0x80000000,3
322
+ np.float32,0xfa3d3000,0xbfc90fdb,3
323
+ np.float32,0xfa3cb800,0xbfc90fdb,3
324
+ np.float32,0x264894,0x264894,3
325
+ np.float32,0xff6de011,0xbfc90fdb,3
326
+ np.float32,0x7e9045b2,0x3fc90fdb,3
327
+ np.float32,0x3f2253a8,0x3f10aaf4,3
328
+ np.float32,0xbd462bf0,0xbd460469,3
329
+ np.float32,0x7f1796af,0x3fc90fdb,3
330
+ np.float32,0x3e718858,0x3e6d3279,3
331
+ np.float32,0xff437d7e,0xbfc90fdb,3
332
+ np.float32,0x805ae7cb,0x805ae7cb,3
333
+ np.float32,0x807e32e9,0x807e32e9,3
334
+ np.float32,0x3ee0bafc,0x3ed3c453,3
335
+ np.float32,0xbf721dee,0xbf41edc3,3
336
+ np.float32,0xfec9f792,0xbfc90fdb,3
337
+ np.float32,0x7f050720,0x3fc90fdb,3
338
+ np.float32,0x182261,0x182261,3
339
+ np.float32,0x3e39e678,0x3e37e5be,3
340
+ np.float32,0x7e096e4b,0x3fc90fdb,3
341
+ np.float32,0x103715,0x103715,3
342
+ np.float32,0x3f7e7741,0x3f484ae4,3
343
+ np.float32,0x3e29aea5,0x3e28277c,3
344
+ np.float32,0x58c183,0x58c183,3
345
+ np.float32,0xff72fdb2,0xbfc90fdb,3
346
+ np.float32,0xbd9a9420,0xbd9a493c,3
347
+ np.float32,0x7f1e07e7,0x3fc90fdb,3
348
+ np.float32,0xff79f522,0xbfc90fdb,3
349
+ np.float32,0x7c7d0e96,0x3fc90fdb,3
350
+ np.float32,0xbeba9e8e,0xbeb2f504,3
351
+ np.float32,0xfd880a80,0xbfc90fdb,3
352
+ np.float32,0xff7f2a33,0xbfc90fdb,3
353
+ np.float32,0x3e861ae0,0x3e83289c,3
354
+ np.float32,0x7f0161c1,0x3fc90fdb,3
355
+ np.float32,0xfe844ff8,0xbfc90fdb,3
356
+ np.float32,0xbebf4b98,0xbeb7128e,3
357
+ np.float32,0x652bee,0x652bee,3
358
+ np.float32,0xff188a4b,0xbfc90fdb,3
359
+ np.float32,0xbf800000,0xbf490fdb,3
360
+ np.float32,0x80418711,0x80418711,3
361
+ np.float32,0xbeb712d4,0xbeafd1f6,3
362
+ np.float32,0xbf7cee28,0xbf478491,3
363
+ np.float32,0xfe66c59c,0xbfc90fdb,3
364
+ np.float32,0x4166a2,0x4166a2,3
365
+ np.float32,0x3dfa1a2c,0x3df8deb5,3
366
+ np.float32,0xbdbfbcb8,0xbdbf2e0f,3
367
+ np.float32,0xfe60ef70,0xbfc90fdb,3
368
+ np.float32,0xfe009444,0xbfc90fdb,3
369
+ np.float32,0xfeb27aa0,0xbfc90fdb,3
370
+ np.float32,0xbe99f7bc,0xbe95902b,3
371
+ np.float32,0x8043d28d,0x8043d28d,3
372
+ np.float32,0xfe5328c4,0xbfc90fdb,3
373
+ np.float32,0x8017b27e,0x8017b27e,3
374
+ np.float32,0x3ef1d2cf,0x3ee1ebd7,3
375
+ np.float32,0x805ddd90,0x805ddd90,3
376
+ np.float32,0xbf424263,0xbf262d17,3
377
+ np.float32,0xfc99dde0,0xbfc90fdb,3
378
+ np.float32,0xbf7ec13b,0xbf487015,3
379
+ np.float32,0xbef727ea,0xbee64377,3
380
+ np.float32,0xff15ce95,0xbfc90fdb,3
381
+ np.float32,0x1fbba4,0x1fbba4,3
382
+ np.float32,0x3f3b2368,0x3f2198a9,3
383
+ np.float32,0xfefda26e,0xbfc90fdb,3
384
+ np.float32,0x801519ad,0x801519ad,3
385
+ np.float32,0x80473fa2,0x80473fa2,3
386
+ np.float32,0x7e7a8bc1,0x3fc90fdb,3
387
+ np.float32,0x3e8a9289,0x3e87548a,3
388
+ np.float32,0x3ed68987,0x3ecb2872,3
389
+ np.float32,0x805bca66,0x805bca66,3
390
+ np.float32,0x8079c4e3,0x8079c4e3,3
391
+ np.float32,0x3a2510,0x3a2510,3
392
+ np.float32,0x7eedc598,0x3fc90fdb,3
393
+ np.float32,0x80681956,0x80681956,3
394
+ np.float32,0xff64c778,0xbfc90fdb,3
395
+ np.float32,0x806bbc46,0x806bbc46,3
396
+ np.float32,0x433643,0x433643,3
397
+ np.float32,0x705b92,0x705b92,3
398
+ np.float32,0xff359392,0xbfc90fdb,3
399
+ np.float32,0xbee78672,0xbed96fa7,3
400
+ np.float32,0x3e21717b,0x3e202010,3
401
+ np.float32,0xfea13c34,0xbfc90fdb,3
402
+ np.float32,0x2c8895,0x2c8895,3
403
+ np.float32,0x3ed33290,0x3ec84f7c,3
404
+ np.float32,0x3e63031e,0x3e5f662e,3
405
+ np.float32,0x7e30907b,0x3fc90fdb,3
406
+ np.float32,0xbe293708,0xbe27b310,3
407
+ np.float32,0x3ed93738,0x3ecd6ea3,3
408
+ np.float32,0x9db7e,0x9db7e,3
409
+ np.float32,0x3f7cd1b8,0x3f47762c,3
410
+ np.float32,0x3eb5143c,0x3eae0cb0,3
411
+ np.float32,0xbe69b234,0xbe65c2d7,3
412
+ np.float32,0x3f6e74de,0x3f3ffb97,3
413
+ np.float32,0x5d0559,0x5d0559,3
414
+ np.float32,0x3e1e8c30,0x3e1d4c70,3
415
+ np.float32,0xbf2d1878,0xbf1833ef,3
416
+ np.float32,0xff2adf82,0xbfc90fdb,3
417
+ np.float32,0x8012e2c1,0x8012e2c1,3
418
+ np.float32,0x7f031be3,0x3fc90fdb,3
419
+ np.float32,0x805ff94e,0x805ff94e,3
420
+ np.float32,0x3e9d5b27,0x3e98aa31,3
421
+ np.float32,0x3f56d5cf,0x3f32bc9e,3
422
+ np.float32,0x3eaa0412,0x3ea4267f,3
423
+ np.float32,0xbe899ea4,0xbe86712f,3
424
+ np.float32,0x800f2f48,0x800f2f48,3
425
+ np.float32,0x3f1c2269,0x3f0c33ea,3
426
+ np.float32,0x3f4a5f64,0x3f2b3f28,3
427
+ np.float32,0x80739318,0x80739318,3
428
+ np.float32,0x806e9b47,0x806e9b47,3
429
+ np.float32,0x3c8cd300,0x3c8ccf73,3
430
+ np.float32,0x7f39a39d,0x3fc90fdb,3
431
+ np.float32,0x3ec95d61,0x3ebfd9dc,3
432
+ np.float32,0xff351ff8,0xbfc90fdb,3
433
+ np.float32,0xff3a8f58,0xbfc90fdb,3
434
+ np.float32,0x7f313ec0,0x3fc90fdb,3
435
+ np.float32,0x803aed13,0x803aed13,3
436
+ np.float32,0x7f771d9b,0x3fc90fdb,3
437
+ np.float32,0x8045a6d6,0x8045a6d6,3
438
+ np.float32,0xbc85f280,0xbc85ef72,3
439
+ np.float32,0x7e9c68f5,0x3fc90fdb,3
440
+ np.float32,0xbf0f9379,0xbf02d975,3
441
+ np.float32,0x7e97bcb1,0x3fc90fdb,3
442
+ np.float32,0x804a07d5,0x804a07d5,3
443
+ np.float32,0x802e6117,0x802e6117,3
444
+ np.float32,0x7ed5e388,0x3fc90fdb,3
445
+ np.float32,0x80750455,0x80750455,3
446
+ np.float32,0xff4a8325,0xbfc90fdb,3
447
+ np.float32,0xbedb6866,0xbecf497c,3
448
+ np.float32,0x52ea3b,0x52ea3b,3
449
+ np.float32,0xff773172,0xbfc90fdb,3
450
+ np.float32,0xbeaa8ff0,0xbea4a46e,3
451
+ np.float32,0x7eef2058,0x3fc90fdb,3
452
+ np.float32,0x3f712472,0x3f4169d3,3
453
+ np.float32,0xff6c8608,0xbfc90fdb,3
454
+ np.float32,0xbf6eaa41,0xbf40182a,3
455
+ np.float32,0x3eb03c24,0x3ea9bb34,3
456
+ np.float32,0xfe118cd4,0xbfc90fdb,3
457
+ np.float32,0x3e5b03b0,0x3e57c378,3
458
+ np.float32,0x7f34d92d,0x3fc90fdb,3
459
+ np.float32,0x806c3418,0x806c3418,3
460
+ np.float32,0x7f3074e3,0x3fc90fdb,3
461
+ np.float32,0x8002df02,0x8002df02,3
462
+ np.float32,0x3f6df63a,0x3f3fb7b7,3
463
+ np.float32,0xfd2b4100,0xbfc90fdb,3
464
+ np.float32,0x80363d5c,0x80363d5c,3
465
+ np.float32,0xbeac1f98,0xbea60bd6,3
466
+ np.float32,0xff7fffff,0xbfc90fdb,3
467
+ np.float32,0x80045097,0x80045097,3
468
+ np.float32,0xfe011100,0xbfc90fdb,3
469
+ np.float32,0x80739ef5,0x80739ef5,3
470
+ np.float32,0xff3976ed,0xbfc90fdb,3
471
+ np.float32,0xbe18e3a0,0xbe17c49e,3
472
+ np.float32,0xbe289294,0xbe2712f6,3
473
+ np.float32,0x3f1d41e7,0x3f0d050e,3
474
+ np.float32,0x39364a,0x39364a,3
475
+ np.float32,0x8072b77e,0x8072b77e,3
476
+ np.float32,0x3f7cfec0,0x3f478cf6,3
477
+ np.float32,0x2f68f6,0x2f68f6,3
478
+ np.float32,0xbf031fb8,0xbef25c84,3
479
+ np.float32,0xbf0b842c,0xbeff7afc,3
480
+ np.float32,0x3f081e7e,0x3efa3676,3
481
+ np.float32,0x7f7fffff,0x3fc90fdb,3
482
+ np.float32,0xff15da0e,0xbfc90fdb,3
483
+ np.float32,0x3d2001b2,0x3d1fece1,3
484
+ np.float32,0x7f76efef,0x3fc90fdb,3
485
+ np.float32,0x3f2405dd,0x3f11dfb7,3
486
+ np.float32,0xa0319,0xa0319,3
487
+ np.float32,0x3e23d2bd,0x3e227255,3
488
+ np.float32,0xbd4d4c50,0xbd4d205e,3
489
+ np.float32,0x382344,0x382344,3
490
+ np.float32,0x21bbf,0x21bbf,3
491
+ np.float32,0xbf209e82,0xbf0f7239,3
492
+ np.float32,0xff03bf9f,0xbfc90fdb,3
493
+ np.float32,0x7b1789,0x7b1789,3
494
+ np.float32,0xff314944,0xbfc90fdb,3
495
+ np.float32,0x1a63eb,0x1a63eb,3
496
+ np.float32,0x803dc983,0x803dc983,3
497
+ np.float32,0x3f0ff558,0x3f0323dc,3
498
+ np.float32,0x3f544f2c,0x3f313f58,3
499
+ np.float32,0xff032948,0xbfc90fdb,3
500
+ np.float32,0x7f4933cc,0x3fc90fdb,3
501
+ np.float32,0x7f14c5ed,0x3fc90fdb,3
502
+ np.float32,0x803aeebf,0x803aeebf,3
503
+ np.float32,0xbf0d4c0f,0xbf011bf5,3
504
+ np.float32,0xbeaf8de2,0xbea91f57,3
505
+ np.float32,0xff3ae030,0xbfc90fdb,3
506
+ np.float32,0xbb362d00,0xbb362ce1,3
507
+ np.float32,0x3d1f79e0,0x3d1f6544,3
508
+ np.float32,0x3f56e9d9,0x3f32c860,3
509
+ np.float32,0x3f723e5e,0x3f41fee2,3
510
+ np.float32,0x4c0179,0x4c0179,3
511
+ np.float32,0xfee36132,0xbfc90fdb,3
512
+ np.float32,0x619ae6,0x619ae6,3
513
+ np.float32,0xfde5d670,0xbfc90fdb,3
514
+ np.float32,0xff079ac5,0xbfc90fdb,3
515
+ np.float32,0x3e974fbd,0x3e931fae,3
516
+ np.float32,0x8020ae6b,0x8020ae6b,3
517
+ np.float32,0x6b5af1,0x6b5af1,3
518
+ np.float32,0xbeb57cd6,0xbeae69a3,3
519
+ np.float32,0x806e7eb2,0x806e7eb2,3
520
+ np.float32,0x7e666edb,0x3fc90fdb,3
521
+ np.float32,0xbf458c18,0xbf283ff0,3
522
+ np.float32,0x3e50518e,0x3e4d8399,3
523
+ np.float32,0x3e9ce224,0x3e983b98,3
524
+ np.float32,0x3e6bc067,0x3e67b6c6,3
525
+ np.float32,0x13783d,0x13783d,3
526
+ np.float32,0xff3d518c,0xbfc90fdb,3
527
+ np.float32,0xfeba5968,0xbfc90fdb,3
528
+ np.float32,0xbf0b9f76,0xbeffa50f,3
529
+ np.float32,0xfe174900,0xbfc90fdb,3
530
+ np.float32,0x3f38bb0a,0x3f200527,3
531
+ np.float32,0x7e94a77d,0x3fc90fdb,3
532
+ np.float32,0x29d776,0x29d776,3
533
+ np.float32,0xbf4e058d,0xbf2d7a15,3
534
+ np.float32,0xbd94abc8,0xbd946923,3
535
+ np.float32,0xbee62db0,0xbed85124,3
536
+ np.float32,0x800000,0x800000,3
537
+ np.float32,0xbef1df7e,0xbee1f636,3
538
+ np.float32,0xbcf3cd20,0xbcf3bab5,3
539
+ np.float32,0x80007b05,0x80007b05,3
540
+ np.float32,0x3d9b3f2e,0x3d9af351,3
541
+ np.float32,0xbf714a68,0xbf417dee,3
542
+ np.float32,0xbf2a2d37,0xbf163069,3
543
+ np.float32,0x8055104f,0x8055104f,3
544
+ np.float32,0x7f5c40d7,0x3fc90fdb,3
545
+ np.float32,0x1,0x1,3
546
+ np.float32,0xff35f3a6,0xbfc90fdb,3
547
+ np.float32,0xd9c7c,0xd9c7c,3
548
+ np.float32,0xbf440cfc,0xbf274f22,3
549
+ np.float32,0x8050ac43,0x8050ac43,3
550
+ np.float32,0x63ee16,0x63ee16,3
551
+ np.float32,0x7d90419b,0x3fc90fdb,3
552
+ np.float32,0xfee22198,0xbfc90fdb,3
553
+ np.float32,0xc2ead,0xc2ead,3
554
+ np.float32,0x7f5cd6a6,0x3fc90fdb,3
555
+ np.float32,0x3f6fab7e,0x3f40a184,3
556
+ np.float32,0x3ecf998c,0x3ec53a73,3
557
+ np.float32,0x7e5271f0,0x3fc90fdb,3
558
+ np.float32,0x67c016,0x67c016,3
559
+ np.float32,0x2189c8,0x2189c8,3
560
+ np.float32,0x27d892,0x27d892,3
561
+ np.float32,0x3f0d02c4,0x3f00e3c0,3
562
+ np.float32,0xbf69ebca,0xbf3d8862,3
563
+ np.float32,0x3e60c0d6,0x3e5d3ebb,3
564
+ np.float32,0x3f45206c,0x3f27fc66,3
565
+ np.float32,0xbf6b47dc,0xbf3e4592,3
566
+ np.float32,0xfe9be2e2,0xbfc90fdb,3
567
+ np.float32,0x7fa00000,0x7fe00000,3
568
+ np.float32,0xff271562,0xbfc90fdb,3
569
+ np.float32,0x3e2e5270,0x3e2caaaf,3
570
+ np.float32,0x80222934,0x80222934,3
571
+ np.float32,0xbd01d220,0xbd01c701,3
572
+ np.float32,0x223aa0,0x223aa0,3
573
+ np.float32,0x3f4b5a7e,0x3f2bd967,3
574
+ np.float32,0x3f217d85,0x3f101200,3
575
+ np.float32,0xbf57663a,0xbf331144,3
576
+ np.float32,0x3f219862,0x3f102536,3
577
+ np.float32,0x28a28c,0x28a28c,3
578
+ np.float32,0xbf3f55f4,0xbf244f86,3
579
+ np.float32,0xbf3de287,0xbf236092,3
580
+ np.float32,0xbf1c1ce2,0xbf0c2fe3,3
581
+ np.float32,0x80000001,0x80000001,3
582
+ np.float32,0x3db695d0,0x3db61a90,3
583
+ np.float32,0x6c39bf,0x6c39bf,3
584
+ np.float32,0x7e33a12f,0x3fc90fdb,3
585
+ np.float32,0x67623a,0x67623a,3
586
+ np.float32,0x3e45dc54,0x3e4373b6,3
587
+ np.float32,0x7f62fa68,0x3fc90fdb,3
588
+ np.float32,0x3f0e1d01,0x3f01bbe5,3
589
+ np.float32,0x3f13dc69,0x3f0615f5,3
590
+ np.float32,0x246703,0x246703,3
591
+ np.float32,0xbf1055b5,0xbf036d07,3
592
+ np.float32,0x7f46d3d0,0x3fc90fdb,3
593
+ np.float32,0x3d2b8086,0x3d2b66e5,3
594
+ np.float32,0xbf03be44,0xbef35776,3
595
+ np.float32,0x3f800000,0x3f490fdb,3
596
+ np.float32,0xbec8d226,0xbebf613d,3
597
+ np.float32,0x3d8faf00,0x3d8f72d4,3
598
+ np.float32,0x170c4e,0x170c4e,3
599
+ np.float32,0xff14c0f0,0xbfc90fdb,3
600
+ np.float32,0xff16245d,0xbfc90fdb,3
601
+ np.float32,0x7f44ce6d,0x3fc90fdb,3
602
+ np.float32,0xbe8175d8,0xbe7d9aeb,3
603
+ np.float32,0x3df7a4a1,0x3df67254,3
604
+ np.float32,0xfe2cc46c,0xbfc90fdb,3
605
+ np.float32,0x3f284e63,0x3f14e335,3
606
+ np.float32,0x7e46e5d6,0x3fc90fdb,3
607
+ np.float32,0x397be4,0x397be4,3
608
+ np.float32,0xbf2560bc,0xbf12d50b,3
609
+ np.float32,0x3ed9b8c1,0x3ecddc60,3
610
+ np.float32,0xfec18c5a,0xbfc90fdb,3
611
+ np.float32,0x64894d,0x64894d,3
612
+ np.float32,0x36a65d,0x36a65d,3
613
+ np.float32,0x804ffcd7,0x804ffcd7,3
614
+ np.float32,0x800f79e4,0x800f79e4,3
615
+ np.float32,0x5d45ac,0x5d45ac,3
616
+ np.float32,0x6cdda0,0x6cdda0,3
617
+ np.float32,0xbf7f2077,0xbf489fe5,3
618
+ np.float32,0xbf152f78,0xbf0713a1,3
619
+ np.float32,0x807bf344,0x807bf344,3
620
+ np.float32,0x3f775023,0x3f44a4d8,3
621
+ np.float32,0xbf3edf67,0xbf240365,3
622
+ np.float32,0x7eed729c,0x3fc90fdb,3
623
+ np.float32,0x14cc29,0x14cc29,3
624
+ np.float32,0x7edd7b6b,0x3fc90fdb,3
625
+ np.float32,0xbf3c6e2c,0xbf226fb7,3
626
+ np.float32,0x51b9ad,0x51b9ad,3
627
+ np.float32,0x3f617ee8,0x3f38dd7c,3
628
+ np.float32,0xff800000,0xbfc90fdb,3
629
+ np.float32,0x7f440ea0,0x3fc90fdb,3
630
+ np.float32,0x3e639893,0x3e5ff49e,3
631
+ np.float32,0xbd791bb0,0xbd78cd3c,3
632
+ np.float32,0x8059fcbc,0x8059fcbc,3
633
+ np.float32,0xbf7d1214,0xbf4796bd,3
634
+ np.float32,0x3ef368fa,0x3ee33788,3
635
+ np.float32,0xbecec0f4,0xbec48055,3
636
+ np.float32,0xbc83d940,0xbc83d656,3
637
+ np.float32,0xbce01220,0xbce003d4,3
638
+ np.float32,0x803192a5,0x803192a5,3
639
+ np.float32,0xbe40e0c0,0xbe3ea4f0,3
640
+ np.float32,0xfb692600,0xbfc90fdb,3
641
+ np.float32,0x3f1bec65,0x3f0c0c88,3
642
+ np.float32,0x7f042798,0x3fc90fdb,3
643
+ np.float32,0xbe047374,0xbe03b83b,3
644
+ np.float32,0x7f7c6630,0x3fc90fdb,3
645
+ np.float32,0x7f58dae3,0x3fc90fdb,3
646
+ np.float32,0x80691c92,0x80691c92,3
647
+ np.float32,0x7dbe76,0x7dbe76,3
648
+ np.float32,0xbf231384,0xbf11339d,3
649
+ np.float32,0xbef4acf8,0xbee43f8b,3
650
+ np.float32,0x3ee9f9d0,0x3edb7793,3
651
+ np.float32,0x3f0064f6,0x3eee04a8,3
652
+ np.float32,0x313732,0x313732,3
653
+ np.float32,0xfd58cf80,0xbfc90fdb,3
654
+ np.float32,0x3f7a2bc9,0x3f461d30,3
655
+ np.float32,0x7f7681af,0x3fc90fdb,3
656
+ np.float32,0x7f504211,0x3fc90fdb,3
657
+ np.float32,0xfeae0c00,0xbfc90fdb,3
658
+ np.float32,0xbee14396,0xbed436d1,3
659
+ np.float32,0x7fc00000,0x7fc00000,3
660
+ np.float32,0x693406,0x693406,3
661
+ np.float32,0x3eb4a679,0x3eadab1b,3
662
+ np.float32,0x550505,0x550505,3
663
+ np.float32,0xfd493d10,0xbfc90fdb,3
664
+ np.float32,0x3f4fc907,0x3f2e8b2c,3
665
+ np.float32,0x80799aa4,0x80799aa4,3
666
+ np.float32,0xff1ea89b,0xbfc90fdb,3
667
+ np.float32,0xff424510,0xbfc90fdb,3
668
+ np.float32,0x7f68d026,0x3fc90fdb,3
669
+ np.float32,0xbea230ca,0xbe9d1200,3
670
+ np.float32,0x7ea585da,0x3fc90fdb,3
671
+ np.float32,0x3f3db211,0x3f23414c,3
672
+ np.float32,0xfea4d964,0xbfc90fdb,3
673
+ np.float32,0xbf17fe18,0xbf092984,3
674
+ np.float32,0x7cc8a2,0x7cc8a2,3
675
+ np.float32,0xff0330ba,0xbfc90fdb,3
676
+ np.float32,0x3f769835,0x3f444592,3
677
+ np.float32,0xeb0ac,0xeb0ac,3
678
+ np.float32,0x7f7e45de,0x3fc90fdb,3
679
+ np.float32,0xbdb510a8,0xbdb49873,3
680
+ np.float32,0x3ebf900b,0x3eb74e9c,3
681
+ np.float32,0xbf21bbce,0xbf103e89,3
682
+ np.float32,0xbf3f4682,0xbf24459d,3
683
+ np.float32,0x7eb6e9c8,0x3fc90fdb,3
684
+ np.float32,0xbf42532d,0xbf2637be,3
685
+ np.float32,0xbd3b2600,0xbd3b04b4,3
686
+ np.float32,0x3f1fa9aa,0x3f0ec23e,3
687
+ np.float32,0x7ed6a0f1,0x3fc90fdb,3
688
+ np.float32,0xff4759a1,0xbfc90fdb,3
689
+ np.float32,0x6d26e3,0x6d26e3,3
690
+ np.float32,0xfe1108e0,0xbfc90fdb,3
691
+ np.float32,0xfdf76900,0xbfc90fdb,3
692
+ np.float32,0xfec66f22,0xbfc90fdb,3
693
+ np.float32,0xbf3d097f,0xbf22d458,3
694
+ np.float32,0x3d85be25,0x3d858d99,3
695
+ np.float32,0x7f36739f,0x3fc90fdb,3
696
+ np.float32,0x7bc0a304,0x3fc90fdb,3
697
+ np.float32,0xff48dd90,0xbfc90fdb,3
698
+ np.float32,0x48cab0,0x48cab0,3
699
+ np.float32,0x3ed3943c,0x3ec8a2ef,3
700
+ np.float32,0xbf61488e,0xbf38bede,3
701
+ np.float32,0x3f543df5,0x3f313525,3
702
+ np.float32,0x5cf2ca,0x5cf2ca,3
703
+ np.float32,0x572686,0x572686,3
704
+ np.float32,0x80369c7c,0x80369c7c,3
705
+ np.float32,0xbd2c1d20,0xbd2c0338,3
706
+ np.float32,0x3e255428,0x3e23ea0b,3
707
+ np.float32,0xbeba9ee0,0xbeb2f54c,3
708
+ np.float32,0x8015c165,0x8015c165,3
709
+ np.float32,0x3d31f488,0x3d31d7e6,3
710
+ np.float32,0x3f68591c,0x3f3cac43,3
711
+ np.float32,0xf5ed5,0xf5ed5,3
712
+ np.float32,0xbf3b1d34,0xbf21949e,3
713
+ np.float32,0x1f0343,0x1f0343,3
714
+ np.float32,0x3f0e52b5,0x3f01e4ef,3
715
+ np.float32,0x7f57c596,0x3fc90fdb,3
716
+ np.float64,0x7fd8e333ddb1c667,0x3ff921fb54442d18,3
717
+ np.float64,0x800bcc9cdad7993a,0x800bcc9cdad7993a,3
718
+ np.float64,0x3fcd6f81df3adf00,0x3fcceebbafc5d55e,3
719
+ np.float64,0x3fed7338a57ae671,0x3fe7ce3e5811fc0a,3
720
+ np.float64,0x7fe64994fcac9329,0x3ff921fb54442d18,3
721
+ np.float64,0xfa5a6345f4b4d,0xfa5a6345f4b4d,3
722
+ np.float64,0xe9dcd865d3b9b,0xe9dcd865d3b9b,3
723
+ np.float64,0x7fea6cffabf4d9fe,0x3ff921fb54442d18,3
724
+ np.float64,0xa9e1de6153c3c,0xa9e1de6153c3c,3
725
+ np.float64,0xab6bdc5356d7c,0xab6bdc5356d7c,3
726
+ np.float64,0x80062864a02c50ca,0x80062864a02c50ca,3
727
+ np.float64,0xbfdac03aa7b58076,0xbfd9569f3230128d,3
728
+ np.float64,0xbfe61b77752c36ef,0xbfe3588f51b8be8f,3
729
+ np.float64,0x800bc854c8d790aa,0x800bc854c8d790aa,3
730
+ np.float64,0x3feed1a2da3da346,0x3fe887f9b8ea031f,3
731
+ np.float64,0x3fe910d3697221a7,0x3fe54365a53d840e,3
732
+ np.float64,0x7fe7ab4944ef5692,0x3ff921fb54442d18,3
733
+ np.float64,0x3fa462f1a028c5e3,0x3fa460303a6a4e69,3
734
+ np.float64,0x800794f1a3af29e4,0x800794f1a3af29e4,3
735
+ np.float64,0x3fee6fe7fafcdfd0,0x3fe854f863816d55,3
736
+ np.float64,0x8000000000000000,0x8000000000000000,3
737
+ np.float64,0x7f336472fe66d,0x7f336472fe66d,3
738
+ np.float64,0xffb1623ac822c478,0xbff921fb54442d18,3
739
+ np.float64,0x3fbacd68ce359ad2,0x3fbab480b3638846,3
740
+ np.float64,0xffd5c02706ab804e,0xbff921fb54442d18,3
741
+ np.float64,0xbfd4daf03d29b5e0,0xbfd42928f069c062,3
742
+ np.float64,0x800c6e85dbd8dd0c,0x800c6e85dbd8dd0c,3
743
+ np.float64,0x800e3599c5bc6b34,0x800e3599c5bc6b34,3
744
+ np.float64,0x2c0d654c581ad,0x2c0d654c581ad,3
745
+ np.float64,0xbfdd3eb13fba7d62,0xbfdb6e8143302de7,3
746
+ np.float64,0x800b60cb8776c197,0x800b60cb8776c197,3
747
+ np.float64,0x80089819ad113034,0x80089819ad113034,3
748
+ np.float64,0x29fe721453fcf,0x29fe721453fcf,3
749
+ np.float64,0x3fe8722f4df0e45f,0x3fe4e026d9eadb4d,3
750
+ np.float64,0xffd1fbcd01a3f79a,0xbff921fb54442d18,3
751
+ np.float64,0x7fc74e1e982e9c3c,0x3ff921fb54442d18,3
752
+ np.float64,0x800c09d3d15813a8,0x800c09d3d15813a8,3
753
+ np.float64,0xbfeee4578b3dc8af,0xbfe891ab3d6c3ce4,3
754
+ np.float64,0xffdd01a6f33a034e,0xbff921fb54442d18,3
755
+ np.float64,0x7fcc130480382608,0x3ff921fb54442d18,3
756
+ np.float64,0xffcbb6bd1d376d7c,0xbff921fb54442d18,3
757
+ np.float64,0xc068a53780d15,0xc068a53780d15,3
758
+ np.float64,0xbfc974f15532e9e4,0xbfc92100b355f3e7,3
759
+ np.float64,0x3fe6da79442db4f3,0x3fe3d87393b082e7,3
760
+ np.float64,0xd9d9be4db3b38,0xd9d9be4db3b38,3
761
+ np.float64,0x5ea50a20bd4a2,0x5ea50a20bd4a2,3
762
+ np.float64,0xbfe5597f7d2ab2ff,0xbfe2d3ccc544b52b,3
763
+ np.float64,0x80019364e4e326cb,0x80019364e4e326cb,3
764
+ np.float64,0x3fed2902c3fa5206,0x3fe7a5e1df07e5c1,3
765
+ np.float64,0xbfa7b72b5c2f6e50,0xbfa7b2d545b3cc1f,3
766
+ np.float64,0xffdb60dd43b6c1ba,0xbff921fb54442d18,3
767
+ np.float64,0x81a65d8b034cc,0x81a65d8b034cc,3
768
+ np.float64,0x8000c30385818608,0x8000c30385818608,3
769
+ np.float64,0x6022f5f4c045f,0x6022f5f4c045f,3
770
+ np.float64,0x8007a2bb810f4578,0x8007a2bb810f4578,3
771
+ np.float64,0x7fdc68893238d111,0x3ff921fb54442d18,3
772
+ np.float64,0x7fd443454ea8868a,0x3ff921fb54442d18,3
773
+ np.float64,0xffe6b04209ed6084,0xbff921fb54442d18,3
774
+ np.float64,0x7fcd9733d13b2e67,0x3ff921fb54442d18,3
775
+ np.float64,0xf5ee80a9ebdd0,0xf5ee80a9ebdd0,3
776
+ np.float64,0x3fe3788e8de6f11e,0x3fe17dec7e6843a0,3
777
+ np.float64,0x3fee36f62f7c6dec,0x3fe836f832515b43,3
778
+ np.float64,0xf6cb49aded969,0xf6cb49aded969,3
779
+ np.float64,0x3fd2b15ea4a562bc,0x3fd22fdc09920e67,3
780
+ np.float64,0x7fccf6aef139ed5d,0x3ff921fb54442d18,3
781
+ np.float64,0x3fd396b8ce272d72,0x3fd3026118857bd4,3
782
+ np.float64,0x7fe53d3c80ea7a78,0x3ff921fb54442d18,3
783
+ np.float64,0x3feae88fc4f5d120,0x3fe65fb04b18ef7a,3
784
+ np.float64,0x3fedc643747b8c86,0x3fe7fafa6c20e25a,3
785
+ np.float64,0xffdb2dc0df365b82,0xbff921fb54442d18,3
786
+ np.float64,0xbfa2af3658255e70,0xbfa2ad17348f4253,3
787
+ np.float64,0x3f8aa77b30354ef6,0x3f8aa71892336a69,3
788
+ np.float64,0xbfdd1b1efbba363e,0xbfdb510dcd186820,3
789
+ np.float64,0x800f50d99c5ea1b3,0x800f50d99c5ea1b3,3
790
+ np.float64,0xff6ed602403dac00,0xbff921fb54442d18,3
791
+ np.float64,0x800477d71aa8efaf,0x800477d71aa8efaf,3
792
+ np.float64,0xbfe729a9e86e5354,0xbfe40ca78d9eefcf,3
793
+ np.float64,0x3fd81ab2d4303566,0x3fd70d7e3937ea22,3
794
+ np.float64,0xb617cbab6c2fa,0xb617cbab6c2fa,3
795
+ np.float64,0x7fefffffffffffff,0x3ff921fb54442d18,3
796
+ np.float64,0xffa40933ac281260,0xbff921fb54442d18,3
797
+ np.float64,0xbfe1ede621e3dbcc,0xbfe057bb2b341ced,3
798
+ np.float64,0xbfec700f03b8e01e,0xbfe73fb190bc722e,3
799
+ np.float64,0x6e28af02dc517,0x6e28af02dc517,3
800
+ np.float64,0x3fe37ad37ae6f5a7,0x3fe17f94674818a9,3
801
+ np.float64,0x8000cbdeeae197bf,0x8000cbdeeae197bf,3
802
+ np.float64,0x3fe8fd1f01f1fa3e,0x3fe5372bbec5d72c,3
803
+ np.float64,0x3f8f9229103f2452,0x3f8f918531894256,3
804
+ np.float64,0x800536858e0a6d0c,0x800536858e0a6d0c,3
805
+ np.float64,0x7fe82bb4f9f05769,0x3ff921fb54442d18,3
806
+ np.float64,0xffc1c2fb592385f8,0xbff921fb54442d18,3
807
+ np.float64,0x7f924ddfc0249bbf,0x3ff921fb54442d18,3
808
+ np.float64,0xffd5e125c52bc24c,0xbff921fb54442d18,3
809
+ np.float64,0xbfef0d8738be1b0e,0xbfe8a6ef17b16c10,3
810
+ np.float64,0x3fc9c8875233910f,0x3fc9715e708503cb,3
811
+ np.float64,0xbfe2d926f4e5b24e,0xbfe108956e61cbb3,3
812
+ np.float64,0x7fd61c496dac3892,0x3ff921fb54442d18,3
813
+ np.float64,0x7fed545c6b7aa8b8,0x3ff921fb54442d18,3
814
+ np.float64,0x8003746fea86e8e1,0x8003746fea86e8e1,3
815
+ np.float64,0x3fdf515e75bea2bd,0x3fdd201a5585caa3,3
816
+ np.float64,0xffda87c8ee350f92,0xbff921fb54442d18,3
817
+ np.float64,0xffc675d8e22cebb0,0xbff921fb54442d18,3
818
+ np.float64,0xffcdc173433b82e8,0xbff921fb54442d18,3
819
+ np.float64,0xffed9df1517b3be2,0xbff921fb54442d18,3
820
+ np.float64,0x3fd6a2eec72d45de,0x3fd5c1f1d7dcddcf,3
821
+ np.float64,0xffec116a66f822d4,0xbff921fb54442d18,3
822
+ np.float64,0x8007c2a2458f8545,0x8007c2a2458f8545,3
823
+ np.float64,0x3fe4ee80d969dd02,0x3fe2895076094668,3
824
+ np.float64,0x3fe3cae7116795ce,0x3fe1b9c07e0d03a7,3
825
+ np.float64,0xbfd81bf8d8b037f2,0xbfd70e9bbbb4ca57,3
826
+ np.float64,0x800c88ccd1f9119a,0x800c88ccd1f9119a,3
827
+ np.float64,0xffdab2aee2b5655e,0xbff921fb54442d18,3
828
+ np.float64,0x3fe743d227ee87a4,0x3fe41dcaef186d96,3
829
+ np.float64,0x3fb060fd0220c1fa,0x3fb05b47f56ebbb4,3
830
+ np.float64,0xbfd3f03772a7e06e,0xbfd3541522377291,3
831
+ np.float64,0x190a5ae03216,0x190a5ae03216,3
832
+ np.float64,0x3fe48c71916918e4,0x3fe24442f45b3183,3
833
+ np.float64,0x800862470590c48e,0x800862470590c48e,3
834
+ np.float64,0x7fd3ced89d279db0,0x3ff921fb54442d18,3
835
+ np.float64,0x3feb3d9b4ab67b37,0x3fe69140cf2623f7,3
836
+ np.float64,0xbc3f296b787e5,0xbc3f296b787e5,3
837
+ np.float64,0xbfed6b905dfad721,0xbfe7ca1881a8c0fd,3
838
+ np.float64,0xbfe621c2aaac4386,0xbfe35cd1969a82db,3
839
+ np.float64,0x8009e7b17593cf63,0x8009e7b17593cf63,3
840
+ np.float64,0x80045f580ca8beb1,0x80045f580ca8beb1,3
841
+ np.float64,0xbfea2e177e745c2f,0xbfe5f13971633339,3
842
+ np.float64,0x3fee655787fccab0,0x3fe84f6b98b6de26,3
843
+ np.float64,0x3fc9cde92f339bd0,0x3fc9768a88b2c97c,3
844
+ np.float64,0x3fc819c3b3303388,0x3fc7d25e1526e731,3
845
+ np.float64,0x3fd3e848d2a7d090,0x3fd34cd9e6af558f,3
846
+ np.float64,0x3fe19dacac633b5a,0x3fe01a6b4d27adc2,3
847
+ np.float64,0x800b190da316321c,0x800b190da316321c,3
848
+ np.float64,0xd5c69711ab8d3,0xd5c69711ab8d3,3
849
+ np.float64,0xbfdc31bed7b8637e,0xbfda8ea3c1309d6d,3
850
+ np.float64,0xbfd02ba007a05740,0xbfcfad86f0d756dc,3
851
+ np.float64,0x3fe874473d70e88e,0x3fe4e1793cd82123,3
852
+ np.float64,0xffb465585c28cab0,0xbff921fb54442d18,3
853
+ np.float64,0xbfb5d8e13e2bb1c0,0xbfb5cb5c7807fc4d,3
854
+ np.float64,0xffe80f933bf01f26,0xbff921fb54442d18,3
855
+ np.float64,0x7feea783f5fd4f07,0x3ff921fb54442d18,3
856
+ np.float64,0xbfae6665f43cccd0,0xbfae5d45b0a6f90a,3
857
+ np.float64,0x800bd6ef5a77addf,0x800bd6ef5a77addf,3
858
+ np.float64,0x800d145babda28b8,0x800d145babda28b8,3
859
+ np.float64,0x39de155473bc3,0x39de155473bc3,3
860
+ np.float64,0x3fefbd6bb1ff7ad8,0x3fe9008e73a3296e,3
861
+ np.float64,0x3fc40bca3d281798,0x3fc3e2710e167007,3
862
+ np.float64,0x3fcae0918335c120,0x3fca7e09e704a678,3
863
+ np.float64,0x51287fbea2511,0x51287fbea2511,3
864
+ np.float64,0x7fa6bc33a82d7866,0x3ff921fb54442d18,3
865
+ np.float64,0xe72a2bebce546,0xe72a2bebce546,3
866
+ np.float64,0x3fe1c8fd686391fa,0x3fe03b9622aeb4e3,3
867
+ np.float64,0x3fe2a73ac3654e76,0x3fe0e36bc1ee4ac4,3
868
+ np.float64,0x59895218b312b,0x59895218b312b,3
869
+ np.float64,0xc6dc25c78db85,0xc6dc25c78db85,3
870
+ np.float64,0xbfc06cfac520d9f4,0xbfc0561f85d2c907,3
871
+ np.float64,0xbfea912dc4f5225c,0xbfe62c3b1c01c793,3
872
+ np.float64,0x3fb78ce89a2f19d0,0x3fb77bfcb65a67d3,3
873
+ np.float64,0xbfece5cdea39cb9c,0xbfe78103d24099e5,3
874
+ np.float64,0x30d3054e61a61,0x30d3054e61a61,3
875
+ np.float64,0xbfd3fe26fba7fc4e,0xbfd360c8447c4f7a,3
876
+ np.float64,0x800956072a92ac0f,0x800956072a92ac0f,3
877
+ np.float64,0x7fe639b3b6ec7366,0x3ff921fb54442d18,3
878
+ np.float64,0x800ee30240bdc605,0x800ee30240bdc605,3
879
+ np.float64,0x7fef6af0d2bed5e1,0x3ff921fb54442d18,3
880
+ np.float64,0xffefce8725ff9d0d,0xbff921fb54442d18,3
881
+ np.float64,0x3fe2e311da65c624,0x3fe10ff1623089dc,3
882
+ np.float64,0xbfe7e5cbe56fcb98,0xbfe486c3daeda67c,3
883
+ np.float64,0x80095bc14472b783,0x80095bc14472b783,3
884
+ np.float64,0xffef0cb4553e1968,0xbff921fb54442d18,3
885
+ np.float64,0xe3e60567c7cc1,0xe3e60567c7cc1,3
886
+ np.float64,0xffde919f06bd233e,0xbff921fb54442d18,3
887
+ np.float64,0x3fe3f9632e27f2c6,0x3fe1db49ebd21c4e,3
888
+ np.float64,0x9dee9a233bdd4,0x9dee9a233bdd4,3
889
+ np.float64,0xbfe3bb0602e7760c,0xbfe1ae41b6d4c488,3
890
+ np.float64,0x3fc46945a128d288,0x3fc43da54c6c6a2a,3
891
+ np.float64,0x7fdef149ac3de292,0x3ff921fb54442d18,3
892
+ np.float64,0x800a96c76d752d8f,0x800a96c76d752d8f,3
893
+ np.float64,0x3f971a32382e3464,0x3f9719316b9e9baf,3
894
+ np.float64,0x7fe97bcf15b2f79d,0x3ff921fb54442d18,3
895
+ np.float64,0x7fea894558f5128a,0x3ff921fb54442d18,3
896
+ np.float64,0x3fc9e3be1933c780,0x3fc98b847c3923eb,3
897
+ np.float64,0x3f7accac40359959,0x3f7acc9330741b64,3
898
+ np.float64,0xa80c136950183,0xa80c136950183,3
899
+ np.float64,0x3fe408732b2810e6,0x3fe1e61e7cbc8824,3
900
+ np.float64,0xffa775bc042eeb80,0xbff921fb54442d18,3
901
+ np.float64,0x3fbf04bd223e0980,0x3fbede37b8fc697e,3
902
+ np.float64,0x7fd999b34c333366,0x3ff921fb54442d18,3
903
+ np.float64,0xe72146dfce429,0xe72146dfce429,3
904
+ np.float64,0x4f511ee49ea24,0x4f511ee49ea24,3
905
+ np.float64,0xffb3e6e58827cdc8,0xbff921fb54442d18,3
906
+ np.float64,0x3fd1f180cfa3e300,0x3fd17e85b2871de2,3
907
+ np.float64,0x97c8e45b2f91d,0x97c8e45b2f91d,3
908
+ np.float64,0xbfeeb20e88fd641d,0xbfe8778f878440bf,3
909
+ np.float64,0xbfe1fc6dee23f8dc,0xbfe062c815a93cde,3
910
+ np.float64,0xab4bf71f5697f,0xab4bf71f5697f,3
911
+ np.float64,0xa9675a2952cec,0xa9675a2952cec,3
912
+ np.float64,0xbfef3ea4a33e7d49,0xbfe8c02743ebc1b6,3
913
+ np.float64,0x3fe22a2eafa4545d,0x3fe08577afca52a9,3
914
+ np.float64,0x3fe8a08daaf1411c,0x3fe4fd5a34f05305,3
915
+ np.float64,0xbfc6cda77b2d9b50,0xbfc6910bcfa0cf4f,3
916
+ np.float64,0x3fec398394387307,0x3fe7211dd5276500,3
917
+ np.float64,0x3fe36c95c626d92c,0x3fe1752e5aa2357b,3
918
+ np.float64,0xffd8b9e7073173ce,0xbff921fb54442d18,3
919
+ np.float64,0xffe19f043ae33e08,0xbff921fb54442d18,3
920
+ np.float64,0x800e3640709c6c81,0x800e3640709c6c81,3
921
+ np.float64,0x3fe7d6c20aafad84,0x3fe47d1a3307d9c8,3
922
+ np.float64,0x80093fd63b727fad,0x80093fd63b727fad,3
923
+ np.float64,0xffe1a671a4634ce3,0xbff921fb54442d18,3
924
+ np.float64,0xbfe53a6b386a74d6,0xbfe2be41859cb10d,3
925
+ np.float64,0xbfed149a097a2934,0xbfe79ab7e3e93c1c,3
926
+ np.float64,0x7fc2769a5724ed34,0x3ff921fb54442d18,3
927
+ np.float64,0xffd01e4e99a03c9e,0xbff921fb54442d18,3
928
+ np.float64,0xa61f38434c3e7,0xa61f38434c3e7,3
929
+ np.float64,0x800ad4ac5195a959,0x800ad4ac5195a959,3
930
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,3
931
+ np.float64,0x80034a45b6c6948c,0x80034a45b6c6948c,3
932
+ np.float64,0x6350b218c6a17,0x6350b218c6a17,3
933
+ np.float64,0xfff0000000000000,0xbff921fb54442d18,3
934
+ np.float64,0x3fe363e759e6c7cf,0x3fe16ed58d80f9ce,3
935
+ np.float64,0xffe3b98e59e7731c,0xbff921fb54442d18,3
936
+ np.float64,0x3fdbf7b40337ef68,0x3fda5df7ad3c80f9,3
937
+ np.float64,0xbfe9cdf784739bef,0xbfe5b74f346ef93d,3
938
+ np.float64,0xbfc321bea326437c,0xbfc2fdc0d4ff7561,3
939
+ np.float64,0xbfe40f77d2a81ef0,0xbfe1eb28c4ae4dde,3
940
+ np.float64,0x7fe071806960e300,0x3ff921fb54442d18,3
941
+ np.float64,0x7fd269006ea4d200,0x3ff921fb54442d18,3
942
+ np.float64,0x80017a56e0e2f4af,0x80017a56e0e2f4af,3
943
+ np.float64,0x8004b4ea09a969d5,0x8004b4ea09a969d5,3
944
+ np.float64,0xbfedbb01e63b7604,0xbfe7f4f0e84297df,3
945
+ np.float64,0x3fe44454826888a9,0x3fe210ff6d005706,3
946
+ np.float64,0xbfe0e77e6ea1cefd,0xbfdf1a977da33402,3
947
+ np.float64,0xbfed6d4c8c3ada99,0xbfe7cb0932093f60,3
948
+ np.float64,0x1d74cb9e3ae9a,0x1d74cb9e3ae9a,3
949
+ np.float64,0x80082a785d1054f1,0x80082a785d1054f1,3
950
+ np.float64,0x3fe58393266b0726,0x3fe2f0d8e91d4887,3
951
+ np.float64,0xffe4028899680510,0xbff921fb54442d18,3
952
+ np.float64,0x783a2e5af0746,0x783a2e5af0746,3
953
+ np.float64,0x7fcdce88e73b9d11,0x3ff921fb54442d18,3
954
+ np.float64,0x3fc58672a72b0ce5,0x3fc5535e090e56e2,3
955
+ np.float64,0x800889c839b11391,0x800889c839b11391,3
956
+ np.float64,0xffe5e05c466bc0b8,0xbff921fb54442d18,3
957
+ np.float64,0xbfcbef6ebe37dedc,0xbfcb810752468f49,3
958
+ np.float64,0xffe9408563b2810a,0xbff921fb54442d18,3
959
+ np.float64,0xbfee4738367c8e70,0xbfe83f8e5dd7602f,3
960
+ np.float64,0xbfe4aeb587295d6b,0xbfe25c7a0c76a454,3
961
+ np.float64,0xffc9aea0a7335d40,0xbff921fb54442d18,3
962
+ np.float64,0xe1e02199c3c04,0xe1e02199c3c04,3
963
+ np.float64,0xbfbd9400783b2800,0xbfbd729345d1d14f,3
964
+ np.float64,0x7a5418bcf4a84,0x7a5418bcf4a84,3
965
+ np.float64,0x3fdc1c2fa5b83860,0x3fda7c935965ae72,3
966
+ np.float64,0x80076a9f58ced53f,0x80076a9f58ced53f,3
967
+ np.float64,0x3fedc4bf957b897f,0x3fe7fa2a83148f1c,3
968
+ np.float64,0x800981b8a9d30372,0x800981b8a9d30372,3
969
+ np.float64,0xffe1082311621046,0xbff921fb54442d18,3
970
+ np.float64,0xe0091f89c0124,0xe0091f89c0124,3
971
+ np.float64,0xbfce8d674f3d1ad0,0xbfcdfdbf2ddaa0ca,3
972
+ np.float64,0x800516e72eaa2dcf,0x800516e72eaa2dcf,3
973
+ np.float64,0xffe61ee64c6c3dcc,0xbff921fb54442d18,3
974
+ np.float64,0x7fed2683cafa4d07,0x3ff921fb54442d18,3
975
+ np.float64,0xffd4faf27729f5e4,0xbff921fb54442d18,3
976
+ np.float64,0x7fe308fa842611f4,0x3ff921fb54442d18,3
977
+ np.float64,0x3fc612a62b2c2550,0x3fc5db9ddbd4e159,3
978
+ np.float64,0xbfe5b01e766b603d,0xbfe30f72a875e988,3
979
+ np.float64,0x3fc2dd8b9a25bb17,0x3fc2bb06246b9f78,3
980
+ np.float64,0x8170908102e12,0x8170908102e12,3
981
+ np.float64,0x800c1c8a8a583915,0x800c1c8a8a583915,3
982
+ np.float64,0xffe5d91e8b6bb23c,0xbff921fb54442d18,3
983
+ np.float64,0xffd140adee22815c,0xbff921fb54442d18,3
984
+ np.float64,0xbfe2f1f5f8e5e3ec,0xbfe11afa5d749952,3
985
+ np.float64,0xbfed6d1d587ada3b,0xbfe7caef9ecf7651,3
986
+ np.float64,0x3fe9b85e67f370bd,0x3fe5aa3474768982,3
987
+ np.float64,0x7fdc8932edb91265,0x3ff921fb54442d18,3
988
+ np.float64,0x7fd136bc54a26d78,0x3ff921fb54442d18,3
989
+ np.float64,0x800a1ea12a343d43,0x800a1ea12a343d43,3
990
+ np.float64,0x3fec6a5c1b78d4b8,0x3fe73c82235c3f8f,3
991
+ np.float64,0x800fbf6a00df7ed4,0x800fbf6a00df7ed4,3
992
+ np.float64,0xbfd0e6e0cda1cdc2,0xbfd0864bf8cad294,3
993
+ np.float64,0x3fc716df482e2dbf,0x3fc6d7fbfd4a8470,3
994
+ np.float64,0xbfe75990936eb321,0xbfe42bffec3fa0d7,3
995
+ np.float64,0x3fd58e54a02b1ca9,0x3fd4cace1107a5cc,3
996
+ np.float64,0xbfc9c04136338084,0xbfc9696ad2591d54,3
997
+ np.float64,0xdd1f0147ba3e0,0xdd1f0147ba3e0,3
998
+ np.float64,0x5c86a940b90e,0x5c86a940b90e,3
999
+ np.float64,0xbfecae3b8e795c77,0xbfe7624d4988c612,3
1000
+ np.float64,0xffd0370595206e0c,0xbff921fb54442d18,3
1001
+ np.float64,0xbfdc26d443384da8,0xbfda857ecd33ba9f,3
1002
+ np.float64,0xbfd1c849d9a39094,0xbfd15849449cc378,3
1003
+ np.float64,0xffee04acdb3c0959,0xbff921fb54442d18,3
1004
+ np.float64,0xbfded1056dbda20a,0xbfdcb83b30e1528c,3
1005
+ np.float64,0x7fb7b826622f704c,0x3ff921fb54442d18,3
1006
+ np.float64,0xbfee4df8ae7c9bf1,0xbfe8431df9dfd05d,3
1007
+ np.float64,0x7fe7f3670e2fe6cd,0x3ff921fb54442d18,3
1008
+ np.float64,0x8008ac9ae0d15936,0x8008ac9ae0d15936,3
1009
+ np.float64,0x800dce9f3b3b9d3f,0x800dce9f3b3b9d3f,3
1010
+ np.float64,0x7fbb19db203633b5,0x3ff921fb54442d18,3
1011
+ np.float64,0x3fe56c7f302ad8fe,0x3fe2e0eec3ad45fd,3
1012
+ np.float64,0x7fe82c05c570580b,0x3ff921fb54442d18,3
1013
+ np.float64,0xc0552b7780aa6,0xc0552b7780aa6,3
1014
+ np.float64,0x39d40e3073a83,0x39d40e3073a83,3
1015
+ np.float64,0x3fd8db54d731b6aa,0x3fd7b589b3ee9b20,3
1016
+ np.float64,0xffcdd355233ba6ac,0xbff921fb54442d18,3
1017
+ np.float64,0x3fbe97b3a43d2f67,0x3fbe72bca9be0348,3
1018
+ np.float64,0xbff0000000000000,0xbfe921fb54442d18,3
1019
+ np.float64,0xbfb4f55e6229eac0,0xbfb4e96df18a75a7,3
1020
+ np.float64,0xbfc66399ba2cc734,0xbfc62a3298bd96fc,3
1021
+ np.float64,0x3fd00988bb201311,0x3fcf6d67a9374c38,3
1022
+ np.float64,0x7fe471867d28e30c,0x3ff921fb54442d18,3
1023
+ np.float64,0xbfe38e0e64271c1d,0xbfe18d9888b7523b,3
1024
+ np.float64,0x8009dc127573b825,0x8009dc127573b825,3
1025
+ np.float64,0x800047bde4608f7d,0x800047bde4608f7d,3
1026
+ np.float64,0xffeede42c77dbc85,0xbff921fb54442d18,3
1027
+ np.float64,0xd8cf6d13b19ee,0xd8cf6d13b19ee,3
1028
+ np.float64,0xbfd08fb302a11f66,0xbfd034b1f8235e23,3
1029
+ np.float64,0x7fdb404c0b368097,0x3ff921fb54442d18,3
1030
+ np.float64,0xbfd6ba0438ad7408,0xbfd5d673e3276ec1,3
1031
+ np.float64,0xffd9568027b2ad00,0xbff921fb54442d18,3
1032
+ np.float64,0xbfb313b73e262770,0xbfb30ab4acb4fa67,3
1033
+ np.float64,0xbfe2dc1a15e5b834,0xbfe10ac5f8f3acd3,3
1034
+ np.float64,0xbfee426bf4bc84d8,0xbfe83d061df91edd,3
1035
+ np.float64,0xd9142c2fb2286,0xd9142c2fb2286,3
1036
+ np.float64,0x7feb0d11dff61a23,0x3ff921fb54442d18,3
1037
+ np.float64,0x800fea5b509fd4b7,0x800fea5b509fd4b7,3
1038
+ np.float64,0x3fe1a8818da35103,0x3fe022ba1bdf366e,3
1039
+ np.float64,0x8010000000000000,0x8010000000000000,3
1040
+ np.float64,0xbfd8fc6de6b1f8dc,0xbfd7d24726ed8dcc,3
1041
+ np.float64,0xf4b3dc2de967c,0xf4b3dc2de967c,3
1042
+ np.float64,0x8af0409b15e08,0x8af0409b15e08,3
1043
+ np.float64,0x3fb21e6934243cd2,0x3fb216b065f8709a,3
1044
+ np.float64,0x3fc53069392a60d2,0x3fc4ffa931211fb9,3
1045
+ np.float64,0xffc955812c32ab04,0xbff921fb54442d18,3
1046
+ np.float64,0xbfe3de42b1a7bc86,0xbfe1c7bd1324de75,3
1047
+ np.float64,0x1dc149a03b82a,0x1dc149a03b82a,3
1048
+ np.float64,0x8001bc5a24a378b5,0x8001bc5a24a378b5,3
1049
+ np.float64,0x3da14c407b44,0x3da14c407b44,3
1050
+ np.float64,0x80025e8da924bd1c,0x80025e8da924bd1c,3
1051
+ np.float64,0xbfcb0141c9360284,0xbfca9d572ea5e1f3,3
1052
+ np.float64,0xc90036fd92007,0xc90036fd92007,3
1053
+ np.float64,0x138312c427063,0x138312c427063,3
1054
+ np.float64,0x800dda3a963bb475,0x800dda3a963bb475,3
1055
+ np.float64,0x3fe9339934f26732,0x3fe558e723291f78,3
1056
+ np.float64,0xbfea8357027506ae,0xbfe6240826faaf48,3
1057
+ np.float64,0x7fe04735cae08e6b,0x3ff921fb54442d18,3
1058
+ np.float64,0x3fe29aca3c653594,0x3fe0da214c8bc6a4,3
1059
+ np.float64,0x3fbe1f09a03c3e13,0x3fbdfbbefef0155b,3
1060
+ np.float64,0x816ee4ad02ddd,0x816ee4ad02ddd,3
1061
+ np.float64,0xffddd1b31d3ba366,0xbff921fb54442d18,3
1062
+ np.float64,0x3fe2e01e0625c03c,0x3fe10dc0bd6677c2,3
1063
+ np.float64,0x3fec6bcf1978d79e,0x3fe73d518cddeb7c,3
1064
+ np.float64,0x7fe01aaaf8603555,0x3ff921fb54442d18,3
1065
+ np.float64,0xdf300cc5be602,0xdf300cc5be602,3
1066
+ np.float64,0xbfe71c01a36e3804,0xbfe403af80ce47b8,3
1067
+ np.float64,0xffa5be00ac2b7c00,0xbff921fb54442d18,3
1068
+ np.float64,0xbfda9ba711b5374e,0xbfd93775e3ac6bda,3
1069
+ np.float64,0xbfe56d8a27eadb14,0xbfe2e1a7185e8e6d,3
1070
+ np.float64,0x800f1bc937be3792,0x800f1bc937be3792,3
1071
+ np.float64,0x800a61d93c74c3b3,0x800a61d93c74c3b3,3
1072
+ np.float64,0x7fe71a52fcae34a5,0x3ff921fb54442d18,3
1073
+ np.float64,0x7fb4aef256295de4,0x3ff921fb54442d18,3
1074
+ np.float64,0x3fe6c1e861ed83d1,0x3fe3c828f281a7ef,3
1075
+ np.float64,0x3fba128402342508,0x3fb9fb94cf141860,3
1076
+ np.float64,0x3fee55a7ecfcab50,0x3fe8472a9af893ee,3
1077
+ np.float64,0x3fe586f31b2b0de6,0x3fe2f32bce9e91bc,3
1078
+ np.float64,0xbfbb1d1442363a28,0xbfbb034c7729d5f2,3
1079
+ np.float64,0xc78b4d3f8f16a,0xc78b4d3f8f16a,3
1080
+ np.float64,0x7fdbc277d4b784ef,0x3ff921fb54442d18,3
1081
+ np.float64,0xbfa728ca2c2e5190,0xbfa724c04e73ccbd,3
1082
+ np.float64,0x7fefc7b2143f8f63,0x3ff921fb54442d18,3
1083
+ np.float64,0x3fd153a3dda2a748,0x3fd0ebccd33a4dca,3
1084
+ np.float64,0xbfe18a6eace314de,0xbfe00ba32ec89d30,3
1085
+ np.float64,0x7feef518537dea30,0x3ff921fb54442d18,3
1086
+ np.float64,0x8005f007cd4be010,0x8005f007cd4be010,3
1087
+ np.float64,0x7fd890b840b12170,0x3ff921fb54442d18,3
1088
+ np.float64,0x7feed0582ebda0af,0x3ff921fb54442d18,3
1089
+ np.float64,0x1013f53220280,0x1013f53220280,3
1090
+ np.float64,0xbfe77273986ee4e7,0xbfe43c375a8bf6de,3
1091
+ np.float64,0x7fe3ab8918675711,0x3ff921fb54442d18,3
1092
+ np.float64,0xbfc6ad515b2d5aa4,0xbfc671b2f7f86624,3
1093
+ np.float64,0x7fcd86231d3b0c45,0x3ff921fb54442d18,3
1094
+ np.float64,0xffe2523299a4a464,0xbff921fb54442d18,3
1095
+ np.float64,0x7fcadc5a1b35b8b3,0x3ff921fb54442d18,3
1096
+ np.float64,0x3fe5e020c4ebc042,0x3fe330418eec75bd,3
1097
+ np.float64,0x7fe332a9dc266553,0x3ff921fb54442d18,3
1098
+ np.float64,0xfa11dc21f425,0xfa11dc21f425,3
1099
+ np.float64,0xbec800177d900,0xbec800177d900,3
1100
+ np.float64,0x3fcadd057835ba0b,0x3fca7aa42face8bc,3
1101
+ np.float64,0xbfe6b9a206ad7344,0xbfe3c2a9719803de,3
1102
+ np.float64,0x3fbb4250b63684a0,0x3fbb281e9cefc519,3
1103
+ np.float64,0x7fef8787517f0f0e,0x3ff921fb54442d18,3
1104
+ np.float64,0x8001315c2d6262b9,0x8001315c2d6262b9,3
1105
+ np.float64,0xbfd94e3cf2b29c7a,0xbfd819257d36f56c,3
1106
+ np.float64,0xf1f325abe3e65,0xf1f325abe3e65,3
1107
+ np.float64,0x7fd6c07079ad80e0,0x3ff921fb54442d18,3
1108
+ np.float64,0x7fe328b075a65160,0x3ff921fb54442d18,3
1109
+ np.float64,0x7fe7998f812f331e,0x3ff921fb54442d18,3
1110
+ np.float64,0xffe026bb65604d76,0xbff921fb54442d18,3
1111
+ np.float64,0xffd6c06de8ad80dc,0xbff921fb54442d18,3
1112
+ np.float64,0x3fcd5a37bf3ab46f,0x3fccda82935d98ce,3
1113
+ np.float64,0xffc3e5a45227cb48,0xbff921fb54442d18,3
1114
+ np.float64,0x3febf7dd8177efbc,0x3fe6fc0bb999883e,3
1115
+ np.float64,0x7fd7047ea92e08fc,0x3ff921fb54442d18,3
1116
+ np.float64,0x35b3fc406b680,0x35b3fc406b680,3
1117
+ np.float64,0x7fd52e97632a5d2e,0x3ff921fb54442d18,3
1118
+ np.float64,0x3fd464d401a8c9a8,0x3fd3be2967fc97c3,3
1119
+ np.float64,0x800e815b2ebd02b6,0x800e815b2ebd02b6,3
1120
+ np.float64,0x3fca8428af350850,0x3fca257b466b8970,3
1121
+ np.float64,0x8007b7526f6f6ea6,0x8007b7526f6f6ea6,3
1122
+ np.float64,0x82f60a8f05ec2,0x82f60a8f05ec2,3
1123
+ np.float64,0x3fb71a5d0a2e34c0,0x3fb70a629ef8e2a2,3
1124
+ np.float64,0x7fc8570c7d30ae18,0x3ff921fb54442d18,3
1125
+ np.float64,0x7fe5528e77eaa51c,0x3ff921fb54442d18,3
1126
+ np.float64,0xffc20dbbf1241b78,0xbff921fb54442d18,3
1127
+ np.float64,0xeb13368fd6267,0xeb13368fd6267,3
1128
+ np.float64,0x7fe7d529056faa51,0x3ff921fb54442d18,3
1129
+ np.float64,0x3fecd02eabf9a05d,0x3fe77516f0ba1ac4,3
1130
+ np.float64,0x800fcba6a09f974d,0x800fcba6a09f974d,3
1131
+ np.float64,0x7fe7e8e015afd1bf,0x3ff921fb54442d18,3
1132
+ np.float64,0xbfd271a382a4e348,0xbfd1f513a191c595,3
1133
+ np.float64,0x9f1014013e21,0x9f1014013e21,3
1134
+ np.float64,0x3fc05da47f20bb49,0x3fc04708a13a3a47,3
1135
+ np.float64,0x3fe0f427dda1e850,0x3fdf2e60ba8678b9,3
1136
+ np.float64,0xbfecb29fa539653f,0xbfe764bc791c45dd,3
1137
+ np.float64,0x45881ec68b104,0x45881ec68b104,3
1138
+ np.float64,0x8000000000000001,0x8000000000000001,3
1139
+ np.float64,0x3fe9c67ee1338cfe,0x3fe5b2c7b3df6ce8,3
1140
+ np.float64,0x7fedb8fef6bb71fd,0x3ff921fb54442d18,3
1141
+ np.float64,0x3fe54f6aaaea9ed6,0x3fe2ccd1df2abaa9,3
1142
+ np.float64,0x7feff58a1bbfeb13,0x3ff921fb54442d18,3
1143
+ np.float64,0x7fe3b62827276c4f,0x3ff921fb54442d18,3
1144
+ np.float64,0x3fe5feb682ebfd6d,0x3fe345105bc6d980,3
1145
+ np.float64,0x3fe49f38d9693e72,0x3fe2518b2824757f,3
1146
+ np.float64,0x8006bfd27c6d7fa6,0x8006bfd27c6d7fa6,3
1147
+ np.float64,0x3fc13409e2226814,0x3fc119ce0c01a5a2,3
1148
+ np.float64,0x95f8c7212bf19,0x95f8c7212bf19,3
1149
+ np.float64,0x3fd9f0fa6133e1f5,0x3fd8a567515edecf,3
1150
+ np.float64,0x3fef95cbe5ff2b98,0x3fe8ec88c768ba0b,3
1151
+ np.float64,0x3fbed28bba3da510,0x3fbeacbf136e51c2,3
1152
+ np.float64,0xbfd3987aeca730f6,0xbfd303fca58e3e60,3
1153
+ np.float64,0xbfed0f90cbfa1f22,0xbfe797f59249410d,3
1154
+ np.float64,0xffe55d8cbf2abb19,0xbff921fb54442d18,3
1155
+ np.float64,0x3feb4d9fc6769b40,0x3fe69a88131a1f1f,3
1156
+ np.float64,0x80085569acd0aad4,0x80085569acd0aad4,3
1157
+ np.float64,0x20557a6e40ab0,0x20557a6e40ab0,3
1158
+ np.float64,0x3fead2fd5df5a5fb,0x3fe653091f33b27f,3
1159
+ np.float64,0x3fe7b9983eaf7330,0x3fe46a50c4b5235e,3
1160
+ np.float64,0xffdad237ffb5a470,0xbff921fb54442d18,3
1161
+ np.float64,0xbfe5cc39a4eb9874,0xbfe322ad3a903f93,3
1162
+ np.float64,0x800ad6eecb35adde,0x800ad6eecb35adde,3
1163
+ np.float64,0xffec620f6438c41e,0xbff921fb54442d18,3
1164
+ np.float64,0xbfe5ef29122bde52,0xbfe33a7dfcc255e2,3
1165
+ np.float64,0x3fd451e7d0a8a3d0,0x3fd3acfa4939af10,3
1166
+ np.float64,0x8003ea93c127d528,0x8003ea93c127d528,3
1167
+ np.float64,0x800b48d37c9691a7,0x800b48d37c9691a7,3
1168
+ np.float64,0x3fe7e202acafc405,0x3fe484558246069b,3
1169
+ np.float64,0x80070c9b686e1938,0x80070c9b686e1938,3
1170
+ np.float64,0xbfda90bbc6352178,0xbfd92e25fcd12288,3
1171
+ np.float64,0x800e1ffebb1c3ffe,0x800e1ffebb1c3ffe,3
1172
+ np.float64,0x3ff0000000000000,0x3fe921fb54442d18,3
1173
+ np.float64,0xffd8cfdd46319fba,0xbff921fb54442d18,3
1174
+ np.float64,0x7fd8cd4182319a82,0x3ff921fb54442d18,3
1175
+ np.float64,0x3fed8bb778bb176f,0x3fe7db7c77c4c694,3
1176
+ np.float64,0x3fc74a70302e94e0,0x3fc709e95d6defec,3
1177
+ np.float64,0x3fe87269d070e4d4,0x3fe4e04bcc4a2137,3
1178
+ np.float64,0x7fb48223f6290447,0x3ff921fb54442d18,3
1179
+ np.float64,0xffe8ec444b71d888,0xbff921fb54442d18,3
1180
+ np.float64,0x7fde17d280bc2fa4,0x3ff921fb54442d18,3
1181
+ np.float64,0x3fd1cbde01a397bc,0x3fd15b9bb7b3147b,3
1182
+ np.float64,0x800883a64451074d,0x800883a64451074d,3
1183
+ np.float64,0x7fe3160a3f262c13,0x3ff921fb54442d18,3
1184
+ np.float64,0xbfe051d4d9a0a3aa,0xbfde2ecf14dc75fb,3
1185
+ np.float64,0xbfd89de689b13bce,0xbfd780176d1a28a3,3
1186
+ np.float64,0x3fecde2bf779bc58,0x3fe77ccf10bdd8e2,3
1187
+ np.float64,0xffe75774dc6eaee9,0xbff921fb54442d18,3
1188
+ np.float64,0x7fe834414d706882,0x3ff921fb54442d18,3
1189
+ np.float64,0x1,0x1,3
1190
+ np.float64,0xbfea5e4e4a74bc9c,0xbfe60e0601711835,3
1191
+ np.float64,0xffec248d4cb8491a,0xbff921fb54442d18,3
1192
+ np.float64,0xffd9942c2c332858,0xbff921fb54442d18,3
1193
+ np.float64,0xa9db36a553b67,0xa9db36a553b67,3
1194
+ np.float64,0x7fec630718b8c60d,0x3ff921fb54442d18,3
1195
+ np.float64,0xbfd062188f20c432,0xbfd009ecd652be89,3
1196
+ np.float64,0x8001b84e3023709d,0x8001b84e3023709d,3
1197
+ np.float64,0xbfe9e26d7cb3c4db,0xbfe5c3b157ecf668,3
1198
+ np.float64,0xbfef66ddf33ecdbc,0xbfe8d4b1f6410a24,3
1199
+ np.float64,0x3fd8d7109431ae21,0x3fd7b1d4860719a2,3
1200
+ np.float64,0xffee0f53107c1ea5,0xbff921fb54442d18,3
1201
+ np.float64,0x80000b4fd60016a0,0x80000b4fd60016a0,3
1202
+ np.float64,0xbfd99ff6e5333fee,0xbfd85fb3cbdaa049,3
1203
+ np.float64,0xbfe9cfd268339fa5,0xbfe5b86ef021a1b1,3
1204
+ np.float64,0xe32eace1c65d6,0xe32eace1c65d6,3
1205
+ np.float64,0xffc81f6627303ecc,0xbff921fb54442d18,3
1206
+ np.float64,0x7fe98dadde331b5b,0x3ff921fb54442d18,3
1207
+ np.float64,0xbfbcebd11e39d7a0,0xbfbccc8ec47883c7,3
1208
+ np.float64,0x7fe164880f22c90f,0x3ff921fb54442d18,3
1209
+ np.float64,0x800467c0cae8cf82,0x800467c0cae8cf82,3
1210
+ np.float64,0x800071e4b140e3ca,0x800071e4b140e3ca,3
1211
+ np.float64,0xbfc87a7eae30f4fc,0xbfc82fbc55bb0f24,3
1212
+ np.float64,0xffb2e0e23225c1c8,0xbff921fb54442d18,3
1213
+ np.float64,0x20ef338041df,0x20ef338041df,3
1214
+ np.float64,0x7fe6de71ca6dbce3,0x3ff921fb54442d18,3
1215
+ np.float64,0x5d1fa026ba3f5,0x5d1fa026ba3f5,3
1216
+ np.float64,0xffd112a9ce222554,0xbff921fb54442d18,3
1217
+ np.float64,0x3fb351f66626a3ed,0x3fb3489ab578c452,3
1218
+ np.float64,0x7fef7b2bd3bef657,0x3ff921fb54442d18,3
1219
+ np.float64,0xffe144f5d4e289eb,0xbff921fb54442d18,3
1220
+ np.float64,0xffd63a6750ac74ce,0xbff921fb54442d18,3
1221
+ np.float64,0x7fd2d8bb25a5b175,0x3ff921fb54442d18,3
1222
+ np.float64,0x3fec5920a078b242,0x3fe732dcffcf6521,3
1223
+ np.float64,0x80009a8b7f813518,0x80009a8b7f813518,3
1224
+ np.float64,0x3fdea220893d4441,0x3fdc921edf6bf3d8,3
1225
+ np.float64,0x8006cee2208d9dc5,0x8006cee2208d9dc5,3
1226
+ np.float64,0xdd0b0081ba17,0xdd0b0081ba17,3
1227
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,3
1228
+ np.float64,0xbfdac33955358672,0xbfd9592bce7daf1f,3
1229
+ np.float64,0x7fe8301d7170603a,0x3ff921fb54442d18,3
1230
+ np.float64,0xbfc1d34d8523a69c,0xbfc1b62449af9684,3
1231
+ np.float64,0x800c62239458c447,0x800c62239458c447,3
1232
+ np.float64,0xffd398c009a73180,0xbff921fb54442d18,3
1233
+ np.float64,0xbfe0c6d9ee218db4,0xbfdee777557f4401,3
1234
+ np.float64,0x3feccdd373799ba7,0x3fe773c9c2263f89,3
1235
+ np.float64,0xbfd21898bda43132,0xbfd1a2be8545fcc5,3
1236
+ np.float64,0x3fd77019b62ee033,0x3fd67793cabdf267,3
1237
+ np.float64,0x7fa609cad42c1395,0x3ff921fb54442d18,3
1238
+ np.float64,0x7fb4eaea5a29d5d4,0x3ff921fb54442d18,3
1239
+ np.float64,0x3fc570dc9a2ae1b9,0x3fc53e5f6218a799,3
1240
+ np.float64,0x800344ae8466895e,0x800344ae8466895e,3
1241
+ np.float64,0xbfc7c985252f930c,0xbfc784d60fa27bac,3
1242
+ np.float64,0xffaa2929fc345250,0xbff921fb54442d18,3
1243
+ np.float64,0xffe63e5ee9ac7cbe,0xbff921fb54442d18,3
1244
+ np.float64,0x73f0280ce7e06,0x73f0280ce7e06,3
1245
+ np.float64,0xffc525f8822a4bf0,0xbff921fb54442d18,3
1246
+ np.float64,0x7fd744d00aae899f,0x3ff921fb54442d18,3
1247
+ np.float64,0xbfe0fe590761fcb2,0xbfdf3e493e8b1f32,3
1248
+ np.float64,0xfae04ae7f5c0a,0xfae04ae7f5c0a,3
1249
+ np.float64,0xef821939df043,0xef821939df043,3
1250
+ np.float64,0x7fef6135843ec26a,0x3ff921fb54442d18,3
1251
+ np.float64,0xbfebf34dcbf7e69c,0xbfe6f97588a8f911,3
1252
+ np.float64,0xbfeec0b498fd8169,0xbfe87f2eceeead12,3
1253
+ np.float64,0x7fb67161b42ce2c2,0x3ff921fb54442d18,3
1254
+ np.float64,0x3fdcfd998639fb33,0x3fdb38934927c096,3
1255
+ np.float64,0xffda5960bc34b2c2,0xbff921fb54442d18,3
1256
+ np.float64,0xbfe11f8c71223f19,0xbfdf71fe770c96ab,3
1257
+ np.float64,0x3fe4ac1bab695838,0x3fe25aa4517b8322,3
1258
+ np.float64,0x3f730458a02608b1,0x3f73044fabb5e999,3
1259
+ np.float64,0x3fdb14ffcdb62a00,0x3fd99ea6c241a3ed,3
1260
+ np.float64,0xbfc93208cd326410,0xbfc8e09d78b6d4db,3
1261
+ np.float64,0x19e734dc33ce8,0x19e734dc33ce8,3
1262
+ np.float64,0x3fe5e98428abd308,0x3fe336a6a085eb55,3
1263
+ np.float64,0x7fec672a1378ce53,0x3ff921fb54442d18,3
1264
+ np.float64,0x800f8bd8d4ff17b2,0x800f8bd8d4ff17b2,3
1265
+ np.float64,0xbfe5a12e4e6b425c,0xbfe30533f99d5d06,3
1266
+ np.float64,0x75a34cb0eb46a,0x75a34cb0eb46a,3
1267
+ np.float64,0x7fe1d21d16a3a439,0x3ff921fb54442d18,3
1268
+ np.float64,0x7ff0000000000000,0x3ff921fb54442d18,3
1269
+ np.float64,0xffe0f50db261ea1b,0xbff921fb54442d18,3
1270
+ np.float64,0xbfd9dc22feb3b846,0xbfd8937ec965a501,3
1271
+ np.float64,0x8009d68e48d3ad1d,0x8009d68e48d3ad1d,3
1272
+ np.float64,0xbfe2eba620e5d74c,0xbfe1164d7d273c60,3
1273
+ np.float64,0x992efa09325e0,0x992efa09325e0,3
1274
+ np.float64,0x3fdab640ea356c82,0x3fd94e20cab88db2,3
1275
+ np.float64,0x69a6f04ad34df,0x69a6f04ad34df,3
1276
+ np.float64,0x3fe397df25272fbe,0x3fe194bd1a3a6192,3
1277
+ np.float64,0xebcce9fdd799d,0xebcce9fdd799d,3
1278
+ np.float64,0x3fbb49490c369292,0x3fbb2f02eccc497d,3
1279
+ np.float64,0xffd871f980b0e3f4,0xbff921fb54442d18,3
1280
+ np.float64,0x800348f6966691ee,0x800348f6966691ee,3
1281
+ np.float64,0xbfebc270a7f784e1,0xbfe6dda8d0d80f26,3
1282
+ np.float64,0xffd6d559b1adaab4,0xbff921fb54442d18,3
1283
+ np.float64,0x3fec3635c0b86c6c,0x3fe71f420256e43e,3
1284
+ np.float64,0x7fbc82ad7039055a,0x3ff921fb54442d18,3
1285
+ np.float64,0x7f873050602e60a0,0x3ff921fb54442d18,3
1286
+ np.float64,0x3fca44b8c3348970,0x3fc9e8a1a1a2d96e,3
1287
+ np.float64,0x3fe0fc308fe1f861,0x3fdf3aeb469ea225,3
1288
+ np.float64,0x7fefc27de8bf84fb,0x3ff921fb54442d18,3
1289
+ np.float64,0x8005f3f3916be7e8,0x8005f3f3916be7e8,3
1290
+ np.float64,0xbfd4278c7c284f18,0xbfd38678988873b6,3
1291
+ np.float64,0x435eafc486bd7,0x435eafc486bd7,3
1292
+ np.float64,0xbfd01f5199203ea4,0xbfcf96631f2108a3,3
1293
+ np.float64,0xffd5ee9185abdd24,0xbff921fb54442d18,3
1294
+ np.float64,0xffedb363257b66c5,0xbff921fb54442d18,3
1295
+ np.float64,0x800d68e6e11ad1ce,0x800d68e6e11ad1ce,3
1296
+ np.float64,0xbfcf687f8e3ed100,0xbfceccb771b0d39a,3
1297
+ np.float64,0x7feb3b9ef2f6773d,0x3ff921fb54442d18,3
1298
+ np.float64,0x3fe15ec5ca62bd8c,0x3fdfd3fab9d96f81,3
1299
+ np.float64,0x10000000000000,0x10000000000000,3
1300
+ np.float64,0xd2386f81a470e,0xd2386f81a470e,3
1301
+ np.float64,0xb9feed4573fde,0xb9feed4573fde,3
1302
+ np.float64,0x3fe7ed25c9efda4c,0x3fe48b7b72db4014,3
1303
+ np.float64,0xbfe01478726028f1,0xbfddcd1f5a2efc59,3
1304
+ np.float64,0x9946d02f328da,0x9946d02f328da,3
1305
+ np.float64,0xbfe3bb67f06776d0,0xbfe1ae88aa81c5a6,3
1306
+ np.float64,0xbfd3fd8a4c27fb14,0xbfd3603982e3b78d,3
1307
+ np.float64,0xffd5c3ab912b8758,0xbff921fb54442d18,3
1308
+ np.float64,0xffd5f502b12bea06,0xbff921fb54442d18,3
1309
+ np.float64,0xbfc64981ec2c9304,0xbfc610e0382b1fa6,3
1310
+ np.float64,0xffec42e3413885c6,0xbff921fb54442d18,3
1311
+ np.float64,0x80084eb4ed109d6a,0x80084eb4ed109d6a,3
1312
+ np.float64,0xbfd17cac9fa2f95a,0xbfd112020588a4b3,3
1313
+ np.float64,0xbfd06c1359a0d826,0xbfd0134a28aa9a66,3
1314
+ np.float64,0x7fdc3d7c03b87af7,0x3ff921fb54442d18,3
1315
+ np.float64,0x7bdf5aaaf7bec,0x7bdf5aaaf7bec,3
1316
+ np.float64,0xbfee3cd966fc79b3,0xbfe83a14bc07ac3b,3
1317
+ np.float64,0x7fec910da3f9221a,0x3ff921fb54442d18,3
1318
+ np.float64,0xffb4ea667029d4d0,0xbff921fb54442d18,3
1319
+ np.float64,0x800103d7cce207b0,0x800103d7cce207b0,3
1320
+ np.float64,0x7fbb229a6c364534,0x3ff921fb54442d18,3
1321
+ np.float64,0x0,0x0,3
1322
+ np.float64,0xffd8fccd0331f99a,0xbff921fb54442d18,3
1323
+ np.float64,0xbfd0784ae1a0f096,0xbfd01ebff62e39ad,3
1324
+ np.float64,0xbfed2ec9b3ba5d93,0xbfe7a9099410bc76,3
1325
+ np.float64,0x800690b8d16d2172,0x800690b8d16d2172,3
1326
+ np.float64,0x7fc061b26520c364,0x3ff921fb54442d18,3
1327
+ np.float64,0x8007ec47054fd88f,0x8007ec47054fd88f,3
1328
+ np.float64,0x775546b6eeaa9,0x775546b6eeaa9,3
1329
+ np.float64,0x8005e00fb56bc020,0x8005e00fb56bc020,3
1330
+ np.float64,0xbfe510f8d0ea21f2,0xbfe2a16862b5a37f,3
1331
+ np.float64,0xffd87a6bf3b0f4d8,0xbff921fb54442d18,3
1332
+ np.float64,0x800906e3d0520dc8,0x800906e3d0520dc8,3
1333
+ np.float64,0x2296f000452f,0x2296f000452f,3
1334
+ np.float64,0xbfe3189fa2e63140,0xbfe1378c0e005be4,3
1335
+ np.float64,0xb4d2447f69a49,0xb4d2447f69a49,3
1336
+ np.float64,0xffd056a24a20ad44,0xbff921fb54442d18,3
1337
+ np.float64,0xbfe3b23fe4e76480,0xbfe1a7e5840fcbeb,3
1338
+ np.float64,0x80018ee270831dc6,0x80018ee270831dc6,3
1339
+ np.float64,0x800df89f245bf13e,0x800df89f245bf13e,3
1340
+ np.float64,0x3fee1409d7bc2814,0x3fe824779d133232,3
1341
+ np.float64,0xbfef8d81667f1b03,0xbfe8e85523620368,3
1342
+ np.float64,0xffd8a6519b314ca4,0xbff921fb54442d18,3
1343
+ np.float64,0x7fc7bc86f32f790d,0x3ff921fb54442d18,3
1344
+ np.float64,0xffea6159e674c2b3,0xbff921fb54442d18,3
1345
+ np.float64,0x3fe153c3fba2a788,0x3fdfc2f74769d300,3
1346
+ np.float64,0xffc4261ef3284c3c,0xbff921fb54442d18,3
1347
+ np.float64,0x7fe8a8961ff1512b,0x3ff921fb54442d18,3
1348
+ np.float64,0xbfe3fb1fd167f640,0xbfe1dc89dcb7ecdf,3
1349
+ np.float64,0x3fd88577c2b10af0,0x3fd76acc09660704,3
1350
+ np.float64,0x3fe128ec27e251d8,0x3fdf808fc7ebcd8f,3
1351
+ np.float64,0xbfed6ca7c4fad950,0xbfe7caafe9a3e213,3
1352
+ np.float64,0xbf9a3912b8347220,0xbf9a379b3349352e,3
1353
+ np.float64,0xbfd724d7bcae49b0,0xbfd6351efa2a5fc5,3
1354
+ np.float64,0xbfed59700a7ab2e0,0xbfe7c043014c694c,3
1355
+ np.float64,0x8002ad435bc55a87,0x8002ad435bc55a87,3
1356
+ np.float64,0xffe46ed345a8dda6,0xbff921fb54442d18,3
1357
+ np.float64,0x7fd2f1d1d825e3a3,0x3ff921fb54442d18,3
1358
+ np.float64,0xbfea0265e23404cc,0xbfe5d6fb3fd30464,3
1359
+ np.float64,0xbfd17e049122fc0a,0xbfd113421078bbae,3
1360
+ np.float64,0xffea03b986b40772,0xbff921fb54442d18,3
1361
+ np.float64,0x800b55331a16aa67,0x800b55331a16aa67,3
1362
+ np.float64,0xbfc6fcafbf2df960,0xbfc6be9ecd0ebc1f,3
1363
+ np.float64,0xd6a36017ad46c,0xd6a36017ad46c,3
1364
+ np.float64,0xbfe9ba86dfb3750e,0xbfe5ab840cb0ef86,3
1365
+ np.float64,0x75c4a108eb895,0x75c4a108eb895,3
1366
+ np.float64,0x8008d6bc8051ad79,0x8008d6bc8051ad79,3
1367
+ np.float64,0xbfd3dc5984a7b8b4,0xbfd341f78e0528ec,3
1368
+ np.float64,0xffe1cbb01aa39760,0xbff921fb54442d18,3
1369
+ np.float64,0x3fc7e292f52fc526,0x3fc79d0ce9365767,3
1370
+ np.float64,0xbfcbeae2bd37d5c4,0xbfcb7cb034f82467,3
1371
+ np.float64,0x8000f0c62e21e18d,0x8000f0c62e21e18d,3
1372
+ np.float64,0xbfe23d8bc6247b18,0xbfe09418ee35c3c7,3
1373
+ np.float64,0x717394bae2e73,0x717394bae2e73,3
1374
+ np.float64,0xffa2ef1cc425de40,0xbff921fb54442d18,3
1375
+ np.float64,0x3fd938c229b27184,0x3fd806900735c99d,3
1376
+ np.float64,0x800bf3ec8a77e7d9,0x800bf3ec8a77e7d9,3
1377
+ np.float64,0xffeef41dd57de83b,0xbff921fb54442d18,3
1378
+ np.float64,0x8008df97e5b1bf30,0x8008df97e5b1bf30,3
1379
+ np.float64,0xffe9ab9d0db35739,0xbff921fb54442d18,3
1380
+ np.float64,0x99ff391333fe7,0x99ff391333fe7,3
1381
+ np.float64,0x3fb864b4a630c969,0x3fb851e883ea2cf9,3
1382
+ np.float64,0x22c1230a45825,0x22c1230a45825,3
1383
+ np.float64,0xff2336fbfe467,0xff2336fbfe467,3
1384
+ np.float64,0xbfd488f4cea911ea,0xbfd3def0490f5414,3
1385
+ np.float64,0x3fa379c78426f38f,0x3fa377607370800b,3
1386
+ np.float64,0xbfb0873302210e68,0xbfb08155b78dfd53,3
1387
+ np.float64,0xbfdf9ff7c2bf3ff0,0xbfdd5f658e357ad2,3
1388
+ np.float64,0x800978719192f0e4,0x800978719192f0e4,3
1389
+ np.float64,0xbfba8759ea350eb0,0xbfba6f325013b9e5,3
1390
+ np.float64,0xbfdd3e6b06ba7cd6,0xbfdb6e472b6091b0,3
1391
+ np.float64,0x7fe0c334a7a18668,0x3ff921fb54442d18,3
1392
+ np.float64,0xbfeb971feb772e40,0xbfe6c4e0f61404d1,3
1393
+ np.float64,0x3fe2a50968e54a13,0x3fe0e1c8b8d96e85,3
1394
+ np.float64,0x800fa9c5515f538b,0x800fa9c5515f538b,3
1395
+ np.float64,0x800f8532fbbf0a66,0x800f8532fbbf0a66,3
1396
+ np.float64,0x167d6f1e2cfaf,0x167d6f1e2cfaf,3
1397
+ np.float64,0xffee88e769fd11ce,0xbff921fb54442d18,3
1398
+ np.float64,0xbfeecc8529fd990a,0xbfe885520cdad8ea,3
1399
+ np.float64,0xffefffffffffffff,0xbff921fb54442d18,3
1400
+ np.float64,0xbfef6a566afed4ad,0xbfe8d6767b4c4235,3
1401
+ np.float64,0xffec12415af82482,0xbff921fb54442d18,3
1402
+ np.float64,0x3678a20a6cf15,0x3678a20a6cf15,3
1403
+ np.float64,0xffe468d54ee8d1aa,0xbff921fb54442d18,3
1404
+ np.float64,0x800ad6006795ac01,0x800ad6006795ac01,3
1405
+ np.float64,0x8001d5b61063ab6d,0x8001d5b61063ab6d,3
1406
+ np.float64,0x800dfcd1863bf9a3,0x800dfcd1863bf9a3,3
1407
+ np.float64,0xc9fbff6f93f80,0xc9fbff6f93f80,3
1408
+ np.float64,0xffe55c20f9eab842,0xbff921fb54442d18,3
1409
+ np.float64,0xbfcb596b6536b2d8,0xbfcaf1b339c5c615,3
1410
+ np.float64,0xbfe092689ea124d1,0xbfde94fa58946e51,3
1411
+ np.float64,0x3fe9ec733af3d8e6,0x3fe5c9bf5dee2623,3
1412
+ np.float64,0x3fe30f3d83261e7b,0x3fe1309fd6620e03,3
1413
+ np.float64,0xffd31d7f84263b00,0xbff921fb54442d18,3
1414
+ np.float64,0xbfe88d2d3e711a5a,0xbfe4f12b5a136178,3
1415
+ np.float64,0xffc81e4ce1303c98,0xbff921fb54442d18,3
1416
+ np.float64,0xffe5b96ebfab72dd,0xbff921fb54442d18,3
1417
+ np.float64,0x512f0502a25e1,0x512f0502a25e1,3
1418
+ np.float64,0x7fa3a376982746ec,0x3ff921fb54442d18,3
1419
+ np.float64,0x80005b5f2f60b6bf,0x80005b5f2f60b6bf,3
1420
+ np.float64,0xc337cc69866fa,0xc337cc69866fa,3
1421
+ np.float64,0x3fe7719c4caee339,0x3fe43bab42b19e64,3
1422
+ np.float64,0x7fde7ec1d93cfd83,0x3ff921fb54442d18,3
1423
+ np.float64,0x3fd2f38f3825e71e,0x3fd26cc7b1dd0acb,3
1424
+ np.float64,0x7fce298b993c5316,0x3ff921fb54442d18,3
1425
+ np.float64,0x56ae3b2cad5c8,0x56ae3b2cad5c8,3
1426
+ np.float64,0x3fe9299f2bf2533e,0x3fe552bddd999e72,3
1427
+ np.float64,0x7feff3a4823fe748,0x3ff921fb54442d18,3
1428
+ np.float64,0xbfd05c670aa0b8ce,0xbfd00494d78e9e97,3
1429
+ np.float64,0xffe745323eae8a64,0xbff921fb54442d18,3
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-arctanh.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0x3ee82930,0x3efa60fd,2
3
+ np.float32,0x3f0aa640,0x3f1b3e13,2
4
+ np.float32,0x3ec1a21c,0x3ecbbf8d,2
5
+ np.float32,0x3cdb1740,0x3cdb24a1,2
6
+ np.float32,0xbf28b6f3,0xbf4a86ac,2
7
+ np.float32,0xbe490dcc,0xbe4bb2eb,2
8
+ np.float32,0x80000001,0x80000001,2
9
+ np.float32,0xbf44f9dd,0xbf826ce1,2
10
+ np.float32,0xbf1d66c4,0xbf37786b,2
11
+ np.float32,0x3f0ad26a,0x3f1b7c9b,2
12
+ np.float32,0x3f7b6c54,0x4016aab0,2
13
+ np.float32,0xbf715bb8,0xbfe1a0bc,2
14
+ np.float32,0xbee8a562,0xbefafd6a,2
15
+ np.float32,0x3db94d00,0x3db9cf16,2
16
+ np.float32,0x3ee2970c,0x3ef368b3,2
17
+ np.float32,0x3f3f8614,0x3f77fdca,2
18
+ np.float32,0xbf1fb5f0,0xbf3b3789,2
19
+ np.float32,0x3f798dc0,0x400b96bb,2
20
+ np.float32,0x3e975d64,0x3e9c0573,2
21
+ np.float32,0xbe3f1908,0xbe415d1f,2
22
+ np.float32,0x3f2cea38,0x3f52192e,2
23
+ np.float32,0x3e82f1ac,0x3e85eaa1,2
24
+ np.float32,0x3eab6b30,0x3eb24acd,2
25
+ np.float32,0xbe9bb90c,0xbea0cf5f,2
26
+ np.float32,0xbf43e847,0xbf81202f,2
27
+ np.float32,0xbd232fa0,0xbd2345c0,2
28
+ np.float32,0xbbabbc00,0xbbabbc67,2
29
+ np.float32,0xbf0b2975,0xbf1bf808,2
30
+ np.float32,0xbef5ab0a,0xbf05d305,2
31
+ np.float32,0x3f2cad16,0x3f51a8e2,2
32
+ np.float32,0xbef75940,0xbf06eb08,2
33
+ np.float32,0xbf0c1216,0xbf1d4325,2
34
+ np.float32,0x3e7bdc08,0x3e8090c2,2
35
+ np.float32,0x3da14e10,0x3da1a3c5,2
36
+ np.float32,0x3f627412,0x3fb2bf21,2
37
+ np.float32,0xbd6d08c0,0xbd6d4ca0,2
38
+ np.float32,0x3f3e2368,0x3f74df8b,2
39
+ np.float32,0xbe0df104,0xbe0edc77,2
40
+ np.float32,0x3e8a265c,0x3e8da833,2
41
+ np.float32,0xbdccdbb0,0xbdcd8ba8,2
42
+ np.float32,0x3eb080c4,0x3eb80a44,2
43
+ np.float32,0x3e627800,0x3e6645fe,2
44
+ np.float32,0xbd8be0b0,0xbd8c1886,2
45
+ np.float32,0xbf3282ac,0xbf5cae8c,2
46
+ np.float32,0xbe515910,0xbe545707,2
47
+ np.float32,0xbf2e64ac,0xbf54d637,2
48
+ np.float32,0x3e0fc230,0x3e10b6de,2
49
+ np.float32,0x3eb13ca0,0x3eb8df94,2
50
+ np.float32,0x3f07a3ca,0x3f170572,2
51
+ np.float32,0x3f2c7026,0x3f513935,2
52
+ np.float32,0x3f3c4ec8,0x3f70d67c,2
53
+ np.float32,0xbee9cce8,0xbefc724f,2
54
+ np.float32,0xbe53ca60,0xbe56e3f3,2
55
+ np.float32,0x3dd9e9a0,0x3ddabd98,2
56
+ np.float32,0x3f38b8d4,0x3f69319b,2
57
+ np.float32,0xbe176dc4,0xbe188c1d,2
58
+ np.float32,0xbf322f2e,0xbf5c0c51,2
59
+ np.float32,0xbe9b8676,0xbea097a2,2
60
+ np.float32,0xbca44280,0xbca44823,2
61
+ np.float32,0xbe2b0248,0xbe2ca036,2
62
+ np.float32,0x3d101e80,0x3d102dbd,2
63
+ np.float32,0xbf4eb610,0xbf8f526d,2
64
+ np.float32,0xbec32a50,0xbecd89d1,2
65
+ np.float32,0x3d549100,0x3d54c1ee,2
66
+ np.float32,0x3f78e55e,0x40087025,2
67
+ np.float32,0x3e592798,0x3e5c802d,2
68
+ np.float32,0x3de045d0,0x3de12cfb,2
69
+ np.float32,0xbdad28e0,0xbdad92f7,2
70
+ np.float32,0x3e9a69e0,0x3e9f5e59,2
71
+ np.float32,0x3e809778,0x3e836716,2
72
+ np.float32,0xbf3278d9,0xbf5c9b6d,2
73
+ np.float32,0x3f39fa00,0x3f6bd4a5,2
74
+ np.float32,0xbec8143c,0xbed34ffa,2
75
+ np.float32,0x3ddb7f40,0x3ddc57e6,2
76
+ np.float32,0x3f0e8342,0x3f20c634,2
77
+ np.float32,0x3f353dda,0x3f6213a4,2
78
+ np.float32,0xbe96b400,0xbe9b4bea,2
79
+ np.float32,0x3e626580,0x3e66328a,2
80
+ np.float32,0xbde091c8,0xbde179df,2
81
+ np.float32,0x3eb47b5c,0x3ebc91ca,2
82
+ np.float32,0xbf282182,0xbf497f2f,2
83
+ np.float32,0x3ea9f64c,0x3eb0a748,2
84
+ np.float32,0x3f28dd4e,0x3f4aca86,2
85
+ np.float32,0xbf71de18,0xbfe3f587,2
86
+ np.float32,0x7fa00000,0x7fe00000,2
87
+ np.float32,0xbf6696a6,0xbfbcf11a,2
88
+ np.float32,0xbc853ae0,0xbc853de2,2
89
+ np.float32,0xbeced246,0xbedb51b8,2
90
+ np.float32,0x3f3472a4,0x3f607e00,2
91
+ np.float32,0xbee90124,0xbefb7117,2
92
+ np.float32,0x3eb45b90,0x3ebc6d7c,2
93
+ np.float32,0xbe53ead0,0xbe5705d6,2
94
+ np.float32,0x3f630c80,0x3fb420e2,2
95
+ np.float32,0xbf408cd0,0xbf7a56a2,2
96
+ np.float32,0x3dda4ed0,0x3ddb23f1,2
97
+ np.float32,0xbf37ae88,0xbf67096b,2
98
+ np.float32,0xbdd48c28,0xbdd550c9,2
99
+ np.float32,0xbf5745b0,0xbf9cb4a4,2
100
+ np.float32,0xbf44e6fc,0xbf8255c1,2
101
+ np.float32,0x3f5c8e6a,0x3fa65020,2
102
+ np.float32,0xbea45fe8,0xbeaa6630,2
103
+ np.float32,0x3f08bdee,0x3f188ef5,2
104
+ np.float32,0x3ec77e74,0x3ed29f4b,2
105
+ np.float32,0xbf1a1d3c,0xbf324029,2
106
+ np.float32,0x3cad7340,0x3cad79e3,2
107
+ np.float32,0xbf4fac2e,0xbf90b72a,2
108
+ np.float32,0x3f58516e,0x3f9e8330,2
109
+ np.float32,0x3f442008,0x3f816391,2
110
+ np.float32,0xbf6e0c6c,0xbfd42854,2
111
+ np.float32,0xbf266f7a,0xbf4689b2,2
112
+ np.float32,0x3eb7e2f0,0x3ec077ba,2
113
+ np.float32,0xbf320fd0,0xbf5bcf83,2
114
+ np.float32,0xbf6a76b9,0xbfc80a11,2
115
+ np.float32,0xbf2a91b4,0xbf4dd526,2
116
+ np.float32,0x3f176e30,0x3f2e150e,2
117
+ np.float32,0xbdcccad0,0xbdcd7a9c,2
118
+ np.float32,0x3f60a8a4,0x3faebbf7,2
119
+ np.float32,0x3d9706f0,0x3d974d40,2
120
+ np.float32,0x3ef3cd34,0x3f049d58,2
121
+ np.float32,0xbf73c615,0xbfed79fe,2
122
+ np.float32,0x3df1b170,0x3df2d31b,2
123
+ np.float32,0x3f632a46,0x3fb466c7,2
124
+ np.float32,0xbf3ea18e,0xbf75f9ce,2
125
+ np.float32,0xbf3ea05c,0xbf75f71f,2
126
+ np.float32,0xbdd76750,0xbdd83403,2
127
+ np.float32,0xbca830c0,0xbca836cd,2
128
+ np.float32,0x3f1d4162,0x3f373c59,2
129
+ np.float32,0x3c115700,0x3c1157fa,2
130
+ np.float32,0x3dae8ab0,0x3daef758,2
131
+ np.float32,0xbcad5020,0xbcad56bf,2
132
+ np.float32,0x3ee299c4,0x3ef36c15,2
133
+ np.float32,0xbf7f566c,0xc054c3bd,2
134
+ np.float32,0x3f0cc698,0x3f1e4557,2
135
+ np.float32,0xbe75c648,0xbe7aaa04,2
136
+ np.float32,0x3ea29238,0x3ea86417,2
137
+ np.float32,0x3f09d9c0,0x3f1a1d61,2
138
+ np.float32,0x3f67275c,0x3fbe74b3,2
139
+ np.float32,0x3e1a4e18,0x3e1b7d3a,2
140
+ np.float32,0xbef6e3fc,0xbf069e98,2
141
+ np.float32,0xbf6038ac,0xbfadc9fd,2
142
+ np.float32,0xbe46bdd4,0xbe494b7f,2
143
+ np.float32,0xbf4df1f4,0xbf8e3a98,2
144
+ np.float32,0x3d094dc0,0x3d095aed,2
145
+ np.float32,0x3f44c7d2,0x3f822fa3,2
146
+ np.float32,0xbea30816,0xbea8e737,2
147
+ np.float32,0xbe3c27c4,0xbe3e511b,2
148
+ np.float32,0x3f3bb47c,0x3f6f8789,2
149
+ np.float32,0xbe423760,0xbe4498c3,2
150
+ np.float32,0x3ece1a74,0x3eda7634,2
151
+ np.float32,0x3f14d1f6,0x3f2a1a89,2
152
+ np.float32,0xbf4d9e8f,0xbf8dc4c1,2
153
+ np.float32,0xbe92968e,0xbe96cd7f,2
154
+ np.float32,0x3e99e6c0,0x3e9ece26,2
155
+ np.float32,0xbf397361,0xbf6ab878,2
156
+ np.float32,0xbf4fcea4,0xbf90e99f,2
157
+ np.float32,0x3de37640,0x3de46779,2
158
+ np.float32,0x3eb1b604,0x3eb9698c,2
159
+ np.float32,0xbf52d0a2,0xbf957361,2
160
+ np.float32,0xbe20435c,0xbe21975a,2
161
+ np.float32,0x3f437a58,0x3f809bf1,2
162
+ np.float32,0x3f27d1cc,0x3f48f335,2
163
+ np.float32,0x3f7d4ff2,0x4027d1e2,2
164
+ np.float32,0xbef732e4,0xbf06d205,2
165
+ np.float32,0x3f4a0ae6,0x3f88e18e,2
166
+ np.float32,0x3f800000,0x7f800000,2
167
+ np.float32,0x3e3e56a0,0x3e4093ba,2
168
+ np.float32,0xbed2fcfa,0xbee0517d,2
169
+ np.float32,0xbe0e0114,0xbe0eecd7,2
170
+ np.float32,0xbe808574,0xbe8353db,2
171
+ np.float32,0x3f572e2a,0x3f9c8c86,2
172
+ np.float32,0x80800000,0x80800000,2
173
+ np.float32,0x3f3f3c82,0x3f775703,2
174
+ np.float32,0xbf6e2482,0xbfd4818b,2
175
+ np.float32,0xbf3943b0,0xbf6a5439,2
176
+ np.float32,0x3f6e42ac,0x3fd4f1ea,2
177
+ np.float32,0x3eb676c4,0x3ebed619,2
178
+ np.float32,0xbe5e56c4,0xbe61ef6c,2
179
+ np.float32,0x3eea200c,0x3efcdb65,2
180
+ np.float32,0x3e3d2c78,0x3e3f5ef8,2
181
+ np.float32,0xbdfd8fb0,0xbdfede71,2
182
+ np.float32,0xbee69c8a,0xbef86e89,2
183
+ np.float32,0x3e9efca0,0x3ea46a1c,2
184
+ np.float32,0x3e4c2498,0x3e4ee9ee,2
185
+ np.float32,0xbf3cc93c,0xbf71e21d,2
186
+ np.float32,0x3ee0d77c,0x3ef13d2b,2
187
+ np.float32,0xbefbcd2a,0xbf09d6a3,2
188
+ np.float32,0x3f6dbe5c,0x3fd30a3e,2
189
+ np.float32,0x3dae63e0,0x3daed03f,2
190
+ np.float32,0xbd5001e0,0xbd502fb9,2
191
+ np.float32,0x3f59632a,0x3fa067c8,2
192
+ np.float32,0x3f0d355a,0x3f1ee452,2
193
+ np.float32,0x3f2cbe5c,0x3f51c896,2
194
+ np.float32,0x3c5e6e80,0x3c5e7200,2
195
+ np.float32,0xbe8ac49c,0xbe8e52f0,2
196
+ np.float32,0x3f54e576,0x3f98c0e6,2
197
+ np.float32,0xbeaa0762,0xbeb0ba7c,2
198
+ np.float32,0x3ec81e88,0x3ed35c21,2
199
+ np.float32,0x3f5a6738,0x3fa23fb6,2
200
+ np.float32,0xbf24a682,0xbf43784a,2
201
+ np.float32,0x1,0x1,2
202
+ np.float32,0x3ee6bc24,0x3ef89630,2
203
+ np.float32,0x3f19444a,0x3f30ecf5,2
204
+ np.float32,0x3ec1fc70,0x3ecc28fc,2
205
+ np.float32,0xbf706e14,0xbfdd92fb,2
206
+ np.float32,0x3eccb630,0x3ed8cd98,2
207
+ np.float32,0xbcdf7aa0,0xbcdf88d3,2
208
+ np.float32,0xbe450da8,0xbe478a8e,2
209
+ np.float32,0x3ec9c210,0x3ed54c0b,2
210
+ np.float32,0xbf3b86ca,0xbf6f24d1,2
211
+ np.float32,0x3edcc7a0,0x3eec3a5c,2
212
+ np.float32,0x3f075d5c,0x3f16a39a,2
213
+ np.float32,0xbf5719ce,0xbf9c69de,2
214
+ np.float32,0x3f62cb22,0x3fb3885a,2
215
+ np.float32,0x3f639216,0x3fb55c93,2
216
+ np.float32,0xbf473ee7,0xbf85413a,2
217
+ np.float32,0xbf01b66c,0xbf0eea86,2
218
+ np.float32,0x3e872d80,0x3e8a74f8,2
219
+ np.float32,0xbf60957e,0xbfae925c,2
220
+ np.float32,0xbf6847b2,0xbfc1929b,2
221
+ np.float32,0x3f78bb94,0x4007b363,2
222
+ np.float32,0xbf47efdb,0xbf8622db,2
223
+ np.float32,0xbe1f2308,0xbe206fd6,2
224
+ np.float32,0xbf414926,0xbf7c0a7e,2
225
+ np.float32,0x3eecc268,0x3f00194d,2
226
+ np.float32,0x3eb086d0,0x3eb81120,2
227
+ np.float32,0xbef1af80,0xbf033ff5,2
228
+ np.float32,0xbf454e56,0xbf82d4aa,2
229
+ np.float32,0x3e622560,0x3e65ef20,2
230
+ np.float32,0x3f50d2b2,0x3f926a83,2
231
+ np.float32,0x3eb2c45c,0x3eba9d2c,2
232
+ np.float32,0x3e42d1a0,0x3e4538c9,2
233
+ np.float32,0xbf24cc5c,0xbf43b8e3,2
234
+ np.float32,0x3e8c6464,0x3e90141a,2
235
+ np.float32,0xbf3abff2,0xbf6d79c5,2
236
+ np.float32,0xbec8f2e6,0xbed456fa,2
237
+ np.float32,0xbf787b38,0xc00698b4,2
238
+ np.float32,0xbf58d5cd,0xbf9f6c03,2
239
+ np.float32,0x3df4ee20,0x3df61ba8,2
240
+ np.float32,0xbf34581e,0xbf604951,2
241
+ np.float32,0xbeba5cf4,0xbec35119,2
242
+ np.float32,0xbf76c22d,0xbfffc51c,2
243
+ np.float32,0x3ef63b2c,0x3f0630b4,2
244
+ np.float32,0x3eeadb64,0x3efdc877,2
245
+ np.float32,0x3dfd8c70,0x3dfedb24,2
246
+ np.float32,0x3f441600,0x3f81576d,2
247
+ np.float32,0x3f23a0d8,0x3f41bbf6,2
248
+ np.float32,0x3cb84d40,0x3cb85536,2
249
+ np.float32,0xbf25cb5c,0xbf456e38,2
250
+ np.float32,0xbc108540,0xbc108636,2
251
+ np.float32,0xbc5b9140,0xbc5b949e,2
252
+ np.float32,0xbf62ff40,0xbfb401dd,2
253
+ np.float32,0x3e8e0710,0x3e91d93e,2
254
+ np.float32,0x3f1b6ae0,0x3f344dfd,2
255
+ np.float32,0xbf4dbbbe,0xbf8dedea,2
256
+ np.float32,0x3f1a5fb2,0x3f32a880,2
257
+ np.float32,0xbe56bd00,0xbe59f8cb,2
258
+ np.float32,0xbf490a5c,0xbf87902d,2
259
+ np.float32,0xbf513072,0xbf92f717,2
260
+ np.float32,0x3e73ee28,0x3e78b542,2
261
+ np.float32,0x3f0a4c7a,0x3f1abf2c,2
262
+ np.float32,0x3e10d5c8,0x3e11d00b,2
263
+ np.float32,0xbf771aac,0xc001207e,2
264
+ np.float32,0x3efe2f54,0x3f0b6a46,2
265
+ np.float32,0xbea5f3ea,0xbeac291f,2
266
+ np.float32,0xbf1a73e8,0xbf32c845,2
267
+ np.float32,0x3ebcc82c,0x3ec61c4f,2
268
+ np.float32,0xbf24f492,0xbf43fd9a,2
269
+ np.float32,0x3ecbd908,0x3ed7c691,2
270
+ np.float32,0x3f461c5e,0x3f83d3f0,2
271
+ np.float32,0x3eed0524,0x3f0043c1,2
272
+ np.float32,0x3d06e840,0x3d06f4bf,2
273
+ np.float32,0x3eb6c974,0x3ebf34d7,2
274
+ np.float32,0xbf1c85e1,0xbf36100f,2
275
+ np.float32,0x3ed697d0,0x3ee4ad04,2
276
+ np.float32,0x3eab0484,0x3eb1d733,2
277
+ np.float32,0xbf3b02f2,0xbf6e0935,2
278
+ np.float32,0xbeeab154,0xbefd9334,2
279
+ np.float32,0xbf695372,0xbfc49881,2
280
+ np.float32,0x3e8aaa7c,0x3e8e36be,2
281
+ np.float32,0xbf208754,0xbf3c8f7b,2
282
+ np.float32,0xbe0dbf28,0xbe0ea9a1,2
283
+ np.float32,0x3ca780c0,0x3ca786ba,2
284
+ np.float32,0xbeb320b4,0xbebb065e,2
285
+ np.float32,0x3f13c698,0x3f288821,2
286
+ np.float32,0xbe8cbbec,0xbe9072c4,2
287
+ np.float32,0x3f1ed534,0x3f39c8df,2
288
+ np.float32,0x3e1ca450,0x3e1de190,2
289
+ np.float32,0x3f54be1c,0x3f988134,2
290
+ np.float32,0x3f34e4ee,0x3f6161b4,2
291
+ np.float32,0xbf7e6913,0xc038b246,2
292
+ np.float32,0x3d3c3f20,0x3d3c6119,2
293
+ np.float32,0x3ca9dc80,0x3ca9e2bc,2
294
+ np.float32,0xbf577ea2,0xbf9d161a,2
295
+ np.float32,0xbedb22c8,0xbeea3644,2
296
+ np.float32,0x3f22a044,0x3f400bfa,2
297
+ np.float32,0xbe214b8c,0xbe22a637,2
298
+ np.float32,0x3e8cd300,0x3e908bbc,2
299
+ np.float32,0xbec4d214,0xbecf7a58,2
300
+ np.float32,0x3e9399a4,0x3e97e7e4,2
301
+ np.float32,0xbee6a1a2,0xbef874ed,2
302
+ np.float32,0xbf323742,0xbf5c1bfd,2
303
+ np.float32,0x3f48b882,0x3f8725ac,2
304
+ np.float32,0xbf4d4dba,0xbf8d532e,2
305
+ np.float32,0xbf59640a,0xbfa0695a,2
306
+ np.float32,0xbf2ad562,0xbf4e4f03,2
307
+ np.float32,0x3e317d98,0x3e334d03,2
308
+ np.float32,0xbf6a5b71,0xbfc7b5a2,2
309
+ np.float32,0x3e87b434,0x3e8b05cf,2
310
+ np.float32,0xbf1c344c,0xbf358dee,2
311
+ np.float32,0x3e449428,0x3e470c65,2
312
+ np.float32,0xbf2c0f2f,0xbf508808,2
313
+ np.float32,0xbec5b5ac,0xbed0859c,2
314
+ np.float32,0xbf4aa956,0xbf89b4b1,2
315
+ np.float32,0x3f6dd374,0x3fd35717,2
316
+ np.float32,0x3f45f76c,0x3f83a5ef,2
317
+ np.float32,0xbed1fba8,0xbedf1bd5,2
318
+ np.float32,0xbd26b2d0,0xbd26ca66,2
319
+ np.float32,0xbe9817c2,0xbe9cd1c3,2
320
+ np.float32,0x3e725988,0x3e770875,2
321
+ np.float32,0xbf1a8ded,0xbf32f132,2
322
+ np.float32,0xbe695860,0xbe6d83d3,2
323
+ np.float32,0x3d8cecd0,0x3d8d25ea,2
324
+ np.float32,0x3f574706,0x3f9cb6ec,2
325
+ np.float32,0xbf5c5a1f,0xbfa5eaf3,2
326
+ np.float32,0x3e7a7c88,0x3e7fab83,2
327
+ np.float32,0xff800000,0xffc00000,2
328
+ np.float32,0x3f66396a,0x3fbbfbb0,2
329
+ np.float32,0x3ed6e588,0x3ee50b53,2
330
+ np.float32,0xbb56d500,0xbb56d532,2
331
+ np.float32,0x3ebd23fc,0x3ec6869a,2
332
+ np.float32,0xbf70d490,0xbfdf4af5,2
333
+ np.float32,0x3e514f88,0x3e544d15,2
334
+ np.float32,0x3e660f98,0x3e6a0dac,2
335
+ np.float32,0xbf034da1,0xbf1110bb,2
336
+ np.float32,0xbf60d9be,0xbfaf2714,2
337
+ np.float32,0x3df67b10,0x3df7ae64,2
338
+ np.float32,0xbeeedc0a,0xbf017010,2
339
+ np.float32,0xbe149224,0xbe15a072,2
340
+ np.float32,0x3f455084,0x3f82d759,2
341
+ np.float32,0x3f210f9e,0x3f3d7093,2
342
+ np.float32,0xbeaea3e0,0xbeb5edd3,2
343
+ np.float32,0x3e0724b0,0x3e07efad,2
344
+ np.float32,0x3f09a784,0x3f19d6ac,2
345
+ np.float32,0xbf044340,0xbf125ee8,2
346
+ np.float32,0xbf71adc9,0xbfe315fe,2
347
+ np.float32,0x3efd3870,0x3f0ac6a8,2
348
+ np.float32,0xbf53c7a6,0xbf96f6df,2
349
+ np.float32,0xbf3cf784,0xbf7247af,2
350
+ np.float32,0x3e0ce9e0,0x3e0dd035,2
351
+ np.float32,0xbd3051a0,0xbd306d89,2
352
+ np.float32,0x3ecab804,0x3ed66f77,2
353
+ np.float32,0x3e984350,0x3e9d0189,2
354
+ np.float32,0x3edd1c00,0x3eeca20b,2
355
+ np.float32,0xbe8e22a0,0xbe91f71b,2
356
+ np.float32,0x3ebebc18,0x3ec85fd6,2
357
+ np.float32,0xba275c00,0xba275c01,2
358
+ np.float32,0x3f1d8190,0x3f37a385,2
359
+ np.float32,0x3f17343e,0x3f2dbbfe,2
360
+ np.float32,0x3caa8000,0x3caa864e,2
361
+ np.float32,0x3e7a7308,0x3e7fa168,2
362
+ np.float32,0x3f7359a6,0x3feb3e1a,2
363
+ np.float32,0xbf7ad15a,0xc012a743,2
364
+ np.float32,0xbf122efb,0xbf262812,2
365
+ np.float32,0xbf03ba04,0xbf11a3fa,2
366
+ np.float32,0x3ed7a90c,0x3ee5f8d4,2
367
+ np.float32,0xbe23e318,0xbe254eed,2
368
+ np.float32,0xbe2866f4,0xbe29f20a,2
369
+ np.float32,0xbeaedff2,0xbeb631d0,2
370
+ np.float32,0x0,0x0,2
371
+ np.float32,0x3ef2a034,0x3f03dafd,2
372
+ np.float32,0x3f35806c,0x3f62994e,2
373
+ np.float32,0xbf655e19,0xbfb9c718,2
374
+ np.float32,0x3f5d54ce,0x3fa7d4f4,2
375
+ np.float32,0x3f33e64a,0x3f5f67e3,2
376
+ np.float32,0x3ebf4010,0x3ec8f923,2
377
+ np.float32,0xbe050dc8,0xbe05cf70,2
378
+ np.float32,0x3f61693e,0x3fb063b0,2
379
+ np.float32,0xbd94ac00,0xbd94ef12,2
380
+ np.float32,0x3e9de008,0x3ea32f61,2
381
+ np.float32,0xbe3d042c,0xbe3f3540,2
382
+ np.float32,0x3e8fdfc0,0x3e93d9e4,2
383
+ np.float32,0x3f28bc48,0x3f4a9019,2
384
+ np.float32,0x3edea928,0x3eee8b09,2
385
+ np.float32,0xbf05f673,0xbf14b362,2
386
+ np.float32,0xbf360730,0xbf63a914,2
387
+ np.float32,0xbe3fb454,0xbe41fe0a,2
388
+ np.float32,0x3f6d99a8,0x3fd28552,2
389
+ np.float32,0xbf3ae866,0xbf6dd052,2
390
+ np.float32,0x3f5b1164,0x3fa37aec,2
391
+ np.float32,0xbf64a451,0xbfb7f61b,2
392
+ np.float32,0xbdd79bd0,0xbdd86919,2
393
+ np.float32,0x3e89fc00,0x3e8d7a85,2
394
+ np.float32,0x3f4bf690,0x3f8b77ea,2
395
+ np.float32,0x3cbdf280,0x3cbdfb38,2
396
+ np.float32,0x3f138f98,0x3f2835b4,2
397
+ np.float32,0xbe33967c,0xbe3576bc,2
398
+ np.float32,0xbf298164,0xbf4bedda,2
399
+ np.float32,0x3e9955cc,0x3e9e2edb,2
400
+ np.float32,0xbf79b383,0xc00c56c0,2
401
+ np.float32,0x3ea0834c,0x3ea61aea,2
402
+ np.float32,0xbf511184,0xbf92c89a,2
403
+ np.float32,0x3f4d9fba,0x3f8dc666,2
404
+ np.float32,0x3f3387c2,0x3f5ead80,2
405
+ np.float32,0x3e3f7360,0x3e41babb,2
406
+ np.float32,0xbf3cc4d6,0xbf71d879,2
407
+ np.float32,0x3f2e4402,0x3f54994e,2
408
+ np.float32,0x3e6a7118,0x3e6eabff,2
409
+ np.float32,0xbf05d83e,0xbf1489cc,2
410
+ np.float32,0xbdce4fd8,0xbdcf039a,2
411
+ np.float32,0xbf03e2f4,0xbf11dbaf,2
412
+ np.float32,0x3f1ea0a0,0x3f397375,2
413
+ np.float32,0x3f7aff54,0x4013cb1b,2
414
+ np.float32,0x3f5ef158,0x3fab1801,2
415
+ np.float32,0xbe33bcc8,0xbe359e40,2
416
+ np.float32,0xbf04dd0e,0xbf133111,2
417
+ np.float32,0xbf14f887,0xbf2a54d1,2
418
+ np.float32,0x3f75c37a,0x3ff9196e,2
419
+ np.float32,0x3f35c3c8,0x3f6320f2,2
420
+ np.float32,0x3f53bb94,0x3f96e3c3,2
421
+ np.float32,0x3f4d473e,0x3f8d4a19,2
422
+ np.float32,0xbdfe19e0,0xbdff6ac9,2
423
+ np.float32,0xbf7f0cc4,0xc049342d,2
424
+ np.float32,0xbdbfc778,0xbdc057bb,2
425
+ np.float32,0xbf7575b7,0xbff73067,2
426
+ np.float32,0xbe9df488,0xbea34609,2
427
+ np.float32,0xbefbd3c6,0xbf09daff,2
428
+ np.float32,0x3f19962c,0x3f316cbd,2
429
+ np.float32,0x3f7acec6,0x40129732,2
430
+ np.float32,0xbf5db7de,0xbfa89a21,2
431
+ np.float32,0x3f62f444,0x3fb3e830,2
432
+ np.float32,0xbf522adb,0xbf94737f,2
433
+ np.float32,0xbef6ceb2,0xbf0690ba,2
434
+ np.float32,0xbf57c41e,0xbf9d8db0,2
435
+ np.float32,0x3eb3360c,0x3ebb1eb0,2
436
+ np.float32,0x3f29327e,0x3f4b618e,2
437
+ np.float32,0xbf08d099,0xbf18a916,2
438
+ np.float32,0x3ea21014,0x3ea7d369,2
439
+ np.float32,0x3f39e516,0x3f6ba861,2
440
+ np.float32,0x3e7c4f28,0x3e80ce08,2
441
+ np.float32,0xbec5a7f8,0xbed07582,2
442
+ np.float32,0xbf0b1b46,0xbf1be3e7,2
443
+ np.float32,0xbef0e0ec,0xbf02bb2e,2
444
+ np.float32,0x3d835a30,0x3d838869,2
445
+ np.float32,0x3f08aa40,0x3f18736e,2
446
+ np.float32,0x3eb0e4c8,0x3eb87bcd,2
447
+ np.float32,0x3eb3821c,0x3ebb7564,2
448
+ np.float32,0xbe3a7320,0xbe3c8d5a,2
449
+ np.float32,0x3e43f8c0,0x3e466b10,2
450
+ np.float32,0x3e914288,0x3e955b69,2
451
+ np.float32,0x3ec7d800,0x3ed308e7,2
452
+ np.float32,0x3e603df8,0x3e63eef2,2
453
+ np.float32,0x3f225cac,0x3f3f9ac6,2
454
+ np.float32,0x3e3db8f0,0x3e3ff06b,2
455
+ np.float32,0x3f358d78,0x3f62b38c,2
456
+ np.float32,0xbed9bd64,0xbee88158,2
457
+ np.float32,0x800000,0x800000,2
458
+ np.float32,0x3f1adfce,0x3f337230,2
459
+ np.float32,0xbefdc346,0xbf0b229d,2
460
+ np.float32,0xbf091018,0xbf190208,2
461
+ np.float32,0xbf800000,0xff800000,2
462
+ np.float32,0x3f27c2c4,0x3f48d8db,2
463
+ np.float32,0x3ef59c80,0x3f05c993,2
464
+ np.float32,0x3e18a340,0x3e19c893,2
465
+ np.float32,0x3f209610,0x3f3ca7c5,2
466
+ np.float32,0x3f69cc22,0x3fc60087,2
467
+ np.float32,0xbf66cf07,0xbfbd8721,2
468
+ np.float32,0xbf768098,0xbffdfcc4,2
469
+ np.float32,0x3df27a40,0x3df39ec4,2
470
+ np.float32,0x3daf5bd0,0x3dafca02,2
471
+ np.float32,0x3f53f2be,0x3f973b41,2
472
+ np.float32,0xbf7edcbc,0xc0436ce3,2
473
+ np.float32,0xbdf61db8,0xbdf74fae,2
474
+ np.float32,0x3e2c9328,0x3e2e3cb2,2
475
+ np.float32,0x3f1a4570,0x3f327f41,2
476
+ np.float32,0xbf766306,0xbffd32f1,2
477
+ np.float32,0xbf468b9d,0xbf845f0f,2
478
+ np.float32,0x3e398970,0x3e3b9bb1,2
479
+ np.float32,0xbbefa900,0xbbefaa18,2
480
+ np.float32,0xbf54c989,0xbf9893ad,2
481
+ np.float32,0x3f262cf6,0x3f46169d,2
482
+ np.float32,0x3f638a8a,0x3fb54a98,2
483
+ np.float32,0xbeb36c78,0xbebb5cb8,2
484
+ np.float32,0xbeac4d42,0xbeb34993,2
485
+ np.float32,0x3f1d1942,0x3f36fbf2,2
486
+ np.float32,0xbf5d49ba,0xbfa7bf07,2
487
+ np.float32,0xbf182b5c,0xbf2f38d0,2
488
+ np.float32,0x3f41a742,0x3f7ce5ef,2
489
+ np.float32,0x3f0b9a6c,0x3f1c9898,2
490
+ np.float32,0x3e847494,0x3e8788f3,2
491
+ np.float32,0xbde41608,0xbde50941,2
492
+ np.float32,0x3f693944,0x3fc44b5a,2
493
+ np.float32,0x3f0386b2,0x3f115e37,2
494
+ np.float32,0x3f3a08b0,0x3f6bf3c1,2
495
+ np.float32,0xbf78ee64,0xc0089977,2
496
+ np.float32,0xbf013a11,0xbf0e436e,2
497
+ np.float32,0x3f00668e,0x3f0d2836,2
498
+ np.float32,0x3e6d9850,0x3e720081,2
499
+ np.float32,0x3eacf578,0x3eb4075d,2
500
+ np.float32,0x3f18aef8,0x3f3004b4,2
501
+ np.float32,0x3de342f0,0x3de43385,2
502
+ np.float32,0x3e56cee8,0x3e5a0b85,2
503
+ np.float32,0xbf287912,0xbf4a1966,2
504
+ np.float32,0x3e92c948,0x3e9704c2,2
505
+ np.float32,0x3c07d080,0x3c07d14c,2
506
+ np.float32,0xbe90f6a0,0xbe9508e0,2
507
+ np.float32,0x3e8b4f28,0x3e8ee884,2
508
+ np.float32,0xbf35b56c,0xbf6303ff,2
509
+ np.float32,0xbef512b8,0xbf057027,2
510
+ np.float32,0x3e36c630,0x3e38c0cd,2
511
+ np.float32,0x3f0b3ca8,0x3f1c134a,2
512
+ np.float32,0x3e4cd610,0x3e4fa2c5,2
513
+ np.float32,0xbf5a8372,0xbfa273a3,2
514
+ np.float32,0xbecaad3c,0xbed662ae,2
515
+ np.float32,0xbec372d2,0xbecddeac,2
516
+ np.float32,0x3f6fb2b2,0x3fda8a22,2
517
+ np.float32,0x3f365f28,0x3f645b5a,2
518
+ np.float32,0xbecd00fa,0xbed926a4,2
519
+ np.float32,0xbebafa32,0xbec40672,2
520
+ np.float32,0xbf235b73,0xbf4146c4,2
521
+ np.float32,0x3f7a4658,0x400f6e2c,2
522
+ np.float32,0x3f35e824,0x3f636a54,2
523
+ np.float32,0x3cb87640,0x3cb87e3c,2
524
+ np.float32,0xbf296288,0xbf4bb6ee,2
525
+ np.float32,0x7f800000,0xffc00000,2
526
+ np.float32,0xbf4de86e,0xbf8e2d1a,2
527
+ np.float32,0xbf4ace12,0xbf89e5f3,2
528
+ np.float32,0x3d65a300,0x3d65e0b5,2
529
+ np.float32,0xbe10c534,0xbe11bf21,2
530
+ np.float32,0xbeba3c1c,0xbec32b3e,2
531
+ np.float32,0x3e87eaf8,0x3e8b40b8,2
532
+ np.float32,0x3d5c3bc0,0x3d5c722d,2
533
+ np.float32,0x3e8c14b8,0x3e8fbdf8,2
534
+ np.float32,0xbf06c6f0,0xbf15d327,2
535
+ np.float32,0xbe0f1e30,0xbe100f96,2
536
+ np.float32,0xbee244b0,0xbef30251,2
537
+ np.float32,0x3f2a21b0,0x3f4d0c1d,2
538
+ np.float32,0xbf5f7f81,0xbfac408e,2
539
+ np.float32,0xbe3dba2c,0xbe3ff1b2,2
540
+ np.float32,0x3f3ffc22,0x3f790abf,2
541
+ np.float32,0x3edc3dac,0x3eeb90fd,2
542
+ np.float32,0x7f7fffff,0xffc00000,2
543
+ np.float32,0x3ecfaaac,0x3edc5485,2
544
+ np.float32,0x3f0affbe,0x3f1bbcd9,2
545
+ np.float32,0x3f5f2264,0x3fab7dca,2
546
+ np.float32,0x3f37394c,0x3f66186c,2
547
+ np.float32,0xbe6b2f6c,0xbe6f74e3,2
548
+ np.float32,0x3f284772,0x3f49c1f1,2
549
+ np.float32,0xbdf27bc8,0xbdf3a051,2
550
+ np.float32,0xbc8b14e0,0xbc8b184c,2
551
+ np.float32,0x3f6a867c,0x3fc83b07,2
552
+ np.float32,0x3f1ec876,0x3f39b429,2
553
+ np.float32,0x3f6fd9a8,0x3fdb28d6,2
554
+ np.float32,0xbf473cca,0xbf853e8c,2
555
+ np.float32,0x3e23eff8,0x3e255c23,2
556
+ np.float32,0x3ebefdfc,0x3ec8ac5d,2
557
+ np.float32,0x3f6c8c22,0x3fced2b1,2
558
+ np.float32,0x3f168388,0x3f2cad44,2
559
+ np.float32,0xbece2410,0xbeda81ac,2
560
+ np.float32,0x3f5532f0,0x3f993eea,2
561
+ np.float32,0x3ef1938c,0x3f032dfa,2
562
+ np.float32,0xbef05268,0xbf025fba,2
563
+ np.float32,0x3f552e4a,0x3f993754,2
564
+ np.float32,0x3e9ed068,0x3ea4392d,2
565
+ np.float32,0xbe1a0c24,0xbe1b39be,2
566
+ np.float32,0xbf2623aa,0xbf46068c,2
567
+ np.float32,0xbe1cc300,0xbe1e00fc,2
568
+ np.float32,0xbe9c0576,0xbea12397,2
569
+ np.float32,0xbd827338,0xbd82a07e,2
570
+ np.float32,0x3f0fc31a,0x3f229786,2
571
+ np.float32,0x3e577810,0x3e5abc7d,2
572
+ np.float32,0x3e0e1cb8,0x3e0f0906,2
573
+ np.float32,0x3e84d344,0x3e87ee73,2
574
+ np.float32,0xbf39c45e,0xbf6b6337,2
575
+ np.float32,0x3edfb25c,0x3eefd273,2
576
+ np.float32,0x3e016398,0x3e021596,2
577
+ np.float32,0xbefeb1be,0xbf0bc0de,2
578
+ np.float32,0x3f37e104,0x3f677196,2
579
+ np.float32,0x3f545316,0x3f97d500,2
580
+ np.float32,0xbefc165a,0xbf0a06ed,2
581
+ np.float32,0xbf0923e6,0xbf191dcd,2
582
+ np.float32,0xbf386508,0xbf68831f,2
583
+ np.float32,0xbf3d4630,0xbf72f4e1,2
584
+ np.float32,0x3f3dbe82,0x3f73ff13,2
585
+ np.float32,0xbf703de4,0xbfdcc7e2,2
586
+ np.float32,0xbf531482,0xbf95dd1a,2
587
+ np.float32,0xbf0af1b6,0xbf1ba8f4,2
588
+ np.float32,0xbec8fd9c,0xbed463a4,2
589
+ np.float32,0xbe230320,0xbe24691a,2
590
+ np.float32,0xbf7de541,0xc02faf38,2
591
+ np.float32,0x3efd2360,0x3f0ab8b7,2
592
+ np.float32,0x3db7f350,0x3db87291,2
593
+ np.float32,0x3e74c510,0x3e799924,2
594
+ np.float32,0x3da549c0,0x3da5a5fc,2
595
+ np.float32,0x3e8a3bc4,0x3e8dbf4a,2
596
+ np.float32,0xbf69f086,0xbfc66e84,2
597
+ np.float32,0x3f323f8e,0x3f5c2c17,2
598
+ np.float32,0x3ec0ae3c,0x3ecaa334,2
599
+ np.float32,0xbebe8966,0xbec824fc,2
600
+ np.float32,0x3f34691e,0x3f606b13,2
601
+ np.float32,0x3f13790e,0x3f2813f5,2
602
+ np.float32,0xbf61c027,0xbfb12618,2
603
+ np.float32,0x3e90c690,0x3e94d4a1,2
604
+ np.float32,0xbefce8f0,0xbf0a920e,2
605
+ np.float32,0xbf5c0e8a,0xbfa559a7,2
606
+ np.float32,0x3f374f60,0x3f6645b6,2
607
+ np.float32,0x3f25f6fa,0x3f45b967,2
608
+ np.float32,0x3f2421aa,0x3f42963a,2
609
+ np.float32,0x3ebfa328,0x3ec96c57,2
610
+ np.float32,0x3e3bef28,0x3e3e1685,2
611
+ np.float32,0x3ea3fa3c,0x3ea9f4dd,2
612
+ np.float32,0x3f362b8e,0x3f63f2b2,2
613
+ np.float32,0xbedcef18,0xbeec6ada,2
614
+ np.float32,0xbdd29c88,0xbdd35bd0,2
615
+ np.float32,0x3f261aea,0x3f45f76f,2
616
+ np.float32,0xbe62c470,0xbe66965e,2
617
+ np.float32,0x7fc00000,0x7fc00000,2
618
+ np.float32,0xbee991aa,0xbefc277b,2
619
+ np.float32,0xbf571960,0xbf9c6923,2
620
+ np.float32,0xbe6fb410,0xbe743b41,2
621
+ np.float32,0x3eb1bed0,0x3eb9738d,2
622
+ np.float32,0x80000000,0x80000000,2
623
+ np.float32,0x3eddcbe4,0x3eed7a69,2
624
+ np.float32,0xbf2a81ba,0xbf4db86d,2
625
+ np.float32,0x3f74da54,0x3ff38737,2
626
+ np.float32,0xbeb6bff4,0xbebf29f4,2
627
+ np.float32,0x3f445752,0x3f81a698,2
628
+ np.float32,0x3ed081b4,0x3edd5618,2
629
+ np.float32,0xbee73802,0xbef931b4,2
630
+ np.float32,0xbd13f2a0,0xbd14031c,2
631
+ np.float32,0xbb4d1200,0xbb4d122c,2
632
+ np.float32,0xbee8777a,0xbefac393,2
633
+ np.float32,0x3f42047c,0x3f7dc06c,2
634
+ np.float32,0xbd089270,0xbd089f67,2
635
+ np.float32,0xbf628c16,0xbfb2f66b,2
636
+ np.float32,0x3e72e098,0x3e77978d,2
637
+ np.float32,0x3ed967cc,0x3ee818e4,2
638
+ np.float32,0x3e284c80,0x3e29d6d9,2
639
+ np.float32,0x3f74e8ba,0x3ff3dbef,2
640
+ np.float32,0x3f013e86,0x3f0e4969,2
641
+ np.float32,0xbf610d4f,0xbfaf983c,2
642
+ np.float32,0xbf3c8d36,0xbf715eba,2
643
+ np.float32,0xbedbc756,0xbeeaffdb,2
644
+ np.float32,0x3e143ec8,0x3e154b4c,2
645
+ np.float32,0xbe1c9808,0xbe1dd4fc,2
646
+ np.float32,0xbe887a1e,0xbe8bdac5,2
647
+ np.float32,0xbe85c4bc,0xbe88f17a,2
648
+ np.float32,0x3f35967e,0x3f62c5b4,2
649
+ np.float32,0x3ea2c4a4,0x3ea89c2d,2
650
+ np.float32,0xbc8703c0,0xbc8706e1,2
651
+ np.float32,0xbf13d52c,0xbf289dff,2
652
+ np.float32,0xbf63bb56,0xbfb5bf29,2
653
+ np.float32,0xbf61c5ef,0xbfb13319,2
654
+ np.float32,0xbf128410,0xbf26a675,2
655
+ np.float32,0x3f03fcf2,0x3f11ff13,2
656
+ np.float32,0xbe49c924,0xbe4c75cd,2
657
+ np.float32,0xbf211a9c,0xbf3d82c5,2
658
+ np.float32,0x3f7e9d52,0x403d1b42,2
659
+ np.float32,0x3edfefd4,0x3ef01e71,2
660
+ np.float32,0x3ebc5bd8,0x3ec59efb,2
661
+ np.float32,0x3d7b02e0,0x3d7b537f,2
662
+ np.float32,0xbf1163ba,0xbf24fb43,2
663
+ np.float32,0x3f5072f2,0x3f91dbf1,2
664
+ np.float32,0xbee700ce,0xbef8ec60,2
665
+ np.float32,0x3f534168,0x3f962359,2
666
+ np.float32,0x3e6d6c40,0x3e71d1ef,2
667
+ np.float32,0x3def9d70,0x3df0b7a8,2
668
+ np.float32,0x3e89cf80,0x3e8d4a8a,2
669
+ np.float32,0xbf687ca7,0xbfc2290f,2
670
+ np.float32,0x3f35e134,0x3f635c51,2
671
+ np.float32,0x3e59eef8,0x3e5d50fa,2
672
+ np.float32,0xbf65c9e1,0xbfbada61,2
673
+ np.float32,0xbf759292,0xbff7e43d,2
674
+ np.float32,0x3f4635a0,0x3f83f372,2
675
+ np.float32,0x3f29baaa,0x3f4c53f1,2
676
+ np.float32,0x3f6b15a6,0x3fc9fe04,2
677
+ np.float32,0x3edabc88,0x3ee9b922,2
678
+ np.float32,0x3ef382e0,0x3f046d4d,2
679
+ np.float32,0xbe351310,0xbe36ff7f,2
680
+ np.float32,0xbf05c935,0xbf14751c,2
681
+ np.float32,0xbf0e7c50,0xbf20bc24,2
682
+ np.float32,0xbf69bc94,0xbfc5d1b8,2
683
+ np.float32,0xbed41aca,0xbee1aa23,2
684
+ np.float32,0x3f518c08,0x3f938162,2
685
+ np.float32,0xbf3d7974,0xbf73661a,2
686
+ np.float32,0x3f1951a6,0x3f3101c9,2
687
+ np.float32,0xbeb3f436,0xbebbf787,2
688
+ np.float32,0xbf77a190,0xc0031d43,2
689
+ np.float32,0x3eb5b3cc,0x3ebdf6e7,2
690
+ np.float32,0xbed534b4,0xbee2fed2,2
691
+ np.float32,0xbe53e1b8,0xbe56fc56,2
692
+ np.float32,0x3f679e20,0x3fbfb91c,2
693
+ np.float32,0xff7fffff,0xffc00000,2
694
+ np.float32,0xbf7b9bcb,0xc0180073,2
695
+ np.float32,0xbf5635e8,0xbf9aea15,2
696
+ np.float32,0xbe5a3318,0xbe5d9856,2
697
+ np.float32,0xbe003284,0xbe00df9a,2
698
+ np.float32,0x3eb119a4,0x3eb8b7d6,2
699
+ np.float32,0xbf3bccf8,0xbf6fbc84,2
700
+ np.float32,0x3f36f600,0x3f658ea8,2
701
+ np.float32,0x3f1ea834,0x3f397fc2,2
702
+ np.float32,0xbe7cfb54,0xbe8129b3,2
703
+ np.float32,0xbe9b3746,0xbea0406a,2
704
+ np.float32,0x3edc0f90,0x3eeb586c,2
705
+ np.float32,0x3e1842e8,0x3e19660c,2
706
+ np.float32,0xbd8f10b0,0xbd8f4c70,2
707
+ np.float32,0xbf064aca,0xbf1527a2,2
708
+ np.float32,0x3e632e58,0x3e6705be,2
709
+ np.float32,0xbef28ba4,0xbf03cdbb,2
710
+ np.float32,0x3f27b21e,0x3f48bbaf,2
711
+ np.float32,0xbe6f30d4,0xbe73b06e,2
712
+ np.float32,0x3f3e6cb0,0x3f75834b,2
713
+ np.float32,0xbf264aa5,0xbf4649f0,2
714
+ np.float32,0xbf690775,0xbfc3b978,2
715
+ np.float32,0xbf3e4a38,0xbf753632,2
716
+ np.float64,0x3fe12bbe8c62577e,0x3fe32de8e5f961b0,2
717
+ np.float64,0x3fc9b8909b337120,0x3fca1366da00efff,2
718
+ np.float64,0x3feaee4245f5dc84,0x3ff3a011ea0432f3,2
719
+ np.float64,0xbfe892c000f12580,0xbff03e5adaed6f0c,2
720
+ np.float64,0xbf9be8de4837d1c0,0xbf9beaa367756bd1,2
721
+ np.float64,0x3fe632e58fec65cc,0x3feb5ccc5114ca38,2
722
+ np.float64,0x3fe78a0ef7ef141e,0x3fee1b4521d8eb6c,2
723
+ np.float64,0x3feec27a65fd84f4,0x3fff643c8318e81e,2
724
+ np.float64,0x3fbed6efce3dade0,0x3fbefd76cff00111,2
725
+ np.float64,0xbfe3a05fab6740c0,0xbfe6db078aeeb0ca,2
726
+ np.float64,0x3fdca11a56b94234,0x3fdece9e6eacff1b,2
727
+ np.float64,0x3fe0fb15aae1f62c,0x3fe2e9e095ec2089,2
728
+ np.float64,0x3fede12abf7bc256,0x3ffafd0ff4142807,2
729
+ np.float64,0x3feb919edcf7233e,0x3ff4c9aa0bc2432f,2
730
+ np.float64,0x3fd39633b5a72c68,0x3fd43c2e6d5f441c,2
731
+ np.float64,0x3fd9efcbfeb3df98,0x3fdb83f03e58f91c,2
732
+ np.float64,0x3fe2867a36650cf4,0x3fe525858c8ce72e,2
733
+ np.float64,0x3fdacbb8f3b59770,0x3fdc8cd431b6e3ff,2
734
+ np.float64,0x3fcc120503382408,0x3fcc88a8fa43e1c6,2
735
+ np.float64,0xbfd99ff4eab33fea,0xbfdb24a20ae3687d,2
736
+ np.float64,0xbfe8caf0157195e0,0xbff083b8dd0941d3,2
737
+ np.float64,0x3fddc9bf92bb9380,0x3fe022aac0f761d5,2
738
+ np.float64,0x3fe2dbb66e65b76c,0x3fe5a6e7caf3f1f2,2
739
+ np.float64,0x3fe95f5c4a72beb8,0x3ff1444697e96138,2
740
+ np.float64,0xbfc6b163d92d62c8,0xbfc6ef6e006658a1,2
741
+ np.float64,0x3fdf1b2616be364c,0x3fe0fcbd2848c9e8,2
742
+ np.float64,0xbfdca1ccf7b9439a,0xbfdecf7dc0eaa663,2
743
+ np.float64,0x3fe078d6a260f1ae,0x3fe236a7c66ef6c2,2
744
+ np.float64,0x3fdf471bb9be8e38,0x3fe11990ec74e704,2
745
+ np.float64,0xbfe417626be82ec5,0xbfe79c9aa5ed2e2f,2
746
+ np.float64,0xbfeb9cf5677739eb,0xbff4dfc24c012c90,2
747
+ np.float64,0x3f8d9142b03b2280,0x3f8d91c9559d4779,2
748
+ np.float64,0x3fb052c67220a590,0x3fb05873c90d1cd6,2
749
+ np.float64,0x3fd742e2c7ae85c4,0x3fd860128947d15d,2
750
+ np.float64,0x3fec2e2a2bf85c54,0x3ff60eb554bb8d71,2
751
+ np.float64,0xbfeb2b8bc8f65718,0xbff40b734679497a,2
752
+ np.float64,0x3fe25f8e0d64bf1c,0x3fe4eb381d077803,2
753
+ np.float64,0x3fe56426256ac84c,0x3fe9dafbe79370f0,2
754
+ np.float64,0x3feecc1e5d7d983c,0x3fffa49bedc7aa25,2
755
+ np.float64,0xbfc88ce94b3119d4,0xbfc8dbba0fdee2d2,2
756
+ np.float64,0xbfabcf51ac379ea0,0xbfabd6552aa63da3,2
757
+ np.float64,0xbfccc8b849399170,0xbfcd48d6ff057a4d,2
758
+ np.float64,0x3fd2f831e8a5f064,0x3fd38e67b0dda905,2
759
+ np.float64,0x3fcafdcd6135fb98,0x3fcb670ae2ef4d36,2
760
+ np.float64,0x3feda6042efb4c08,0x3ffa219442ac4ea5,2
761
+ np.float64,0x3fed382b157a7056,0x3ff8bc01bc6d10bc,2
762
+ np.float64,0x3fed858a50fb0b14,0x3ff9b1c05cb6cc0f,2
763
+ np.float64,0x3fcc3960653872c0,0x3fccb2045373a3d1,2
764
+ np.float64,0xbfec5177e478a2f0,0xbff65eb4557d94eb,2
765
+ np.float64,0x3feafe0d5e75fc1a,0x3ff3bb4a260a0dcb,2
766
+ np.float64,0x3fe08bc87ee11790,0x3fe25078aac99d31,2
767
+ np.float64,0xffefffffffffffff,0xfff8000000000000,2
768
+ np.float64,0x3f79985ce0333100,0x3f799872b591d1cb,2
769
+ np.float64,0xbfd4001cf9a8003a,0xbfd4b14b9035b94f,2
770
+ np.float64,0x3fe54a17e6ea9430,0x3fe9ac0f18682343,2
771
+ np.float64,0xbfb4e07fea29c100,0xbfb4ec6520dd0689,2
772
+ np.float64,0xbfed2b6659fa56cd,0xbff895ed57dc1450,2
773
+ np.float64,0xbfe81fc8b5f03f92,0xbfef6b95e72a7a7c,2
774
+ np.float64,0xbfe6aced16ed59da,0xbfec4ce131ee3704,2
775
+ np.float64,0xbfe599f30ceb33e6,0xbfea3d07c1cd78e2,2
776
+ np.float64,0xbfe0ff278b61fe4f,0xbfe2ef8b5efa89ed,2
777
+ np.float64,0xbfe3e9406467d281,0xbfe750e43e841736,2
778
+ np.float64,0x3fcc6b52cf38d6a8,0x3fcce688f4fb2cf1,2
779
+ np.float64,0xbfc890e8133121d0,0xbfc8dfdfee72d258,2
780
+ np.float64,0x3fe46e81dbe8dd04,0x3fe82e09783811a8,2
781
+ np.float64,0x3fd94455e5b288ac,0x3fdab7cef2de0b1f,2
782
+ np.float64,0xbfe82151fff042a4,0xbfef6f254c9696ca,2
783
+ np.float64,0x3fcee1ac1d3dc358,0x3fcf80a6ed07070a,2
784
+ np.float64,0x3fcce8f90939d1f0,0x3fcd6ad18d34f8b5,2
785
+ np.float64,0x3fd6afe56fad5fcc,0x3fd7b7567526b1fb,2
786
+ np.float64,0x3fb1a77092234ee0,0x3fb1ae9fe0d176fc,2
787
+ np.float64,0xbfeb758b0d76eb16,0xbff493d105652edc,2
788
+ np.float64,0xbfb857c24e30af88,0xbfb86aa4da3be53f,2
789
+ np.float64,0x3fe89064eff120ca,0x3ff03b7c5b3339a8,2
790
+ np.float64,0xbfc1bd2fef237a60,0xbfc1da99893473ed,2
791
+ np.float64,0xbfe5ad6e2eeb5adc,0xbfea60ed181b5c05,2
792
+ np.float64,0x3fd5a66358ab4cc8,0x3fd6899e640aeb1f,2
793
+ np.float64,0xbfe198e832e331d0,0xbfe3c8c9496d0de5,2
794
+ np.float64,0xbfdaa5c0d7b54b82,0xbfdc5ed7d3c5ce49,2
795
+ np.float64,0x3fcceccb6939d998,0x3fcd6ed88c2dd3a5,2
796
+ np.float64,0xbfe44413eae88828,0xbfe7e6cd32b34046,2
797
+ np.float64,0xbfc7cbeccf2f97d8,0xbfc8139a2626edae,2
798
+ np.float64,0x3fbf31e4fa3e63d0,0x3fbf59c6e863255e,2
799
+ np.float64,0x3fdf03fa05be07f4,0x3fe0ed953f7989ad,2
800
+ np.float64,0x3fe7f4eaceefe9d6,0x3fef092ca7e2ac39,2
801
+ np.float64,0xbfc084e9d92109d4,0xbfc09ca10fd6aaea,2
802
+ np.float64,0xbf88cfbf70319f80,0xbf88d00effa6d897,2
803
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,2
804
+ np.float64,0xbfa0176e9c202ee0,0xbfa018ca0a6ceef3,2
805
+ np.float64,0xbfd88d0815b11a10,0xbfd9dfc6c6bcbe4e,2
806
+ np.float64,0x3fe89f7730713eee,0x3ff04de52fb536f3,2
807
+ np.float64,0xbfedc9707bfb92e1,0xbffaa25fcf9dd6da,2
808
+ np.float64,0x3fe936d1a6726da4,0x3ff10e40c2d94bc9,2
809
+ np.float64,0x3fdb64aec7b6c95c,0x3fdd473177317b3f,2
810
+ np.float64,0xbfee4f9aaefc9f35,0xbffcdd212667003c,2
811
+ np.float64,0x3fe3730067e6e600,0x3fe692b0a0babf5f,2
812
+ np.float64,0xbfc257e58924afcc,0xbfc27871f8c218d7,2
813
+ np.float64,0x3fe62db12dec5b62,0x3feb52c61b97d9f6,2
814
+ np.float64,0xbfe3ff491367fe92,0xbfe774f1b3a96fd6,2
815
+ np.float64,0x3fea43255274864a,0x3ff28b0c4b7b8d21,2
816
+ np.float64,0xbfea37923c746f24,0xbff27962159f2072,2
817
+ np.float64,0x3fcd0ac3c73a1588,0x3fcd8e6f8de41755,2
818
+ np.float64,0xbfdccafde6b995fc,0xbfdf030fea8a0630,2
819
+ np.float64,0x3fdba35268b746a4,0x3fdd94094f6f50c1,2
820
+ np.float64,0x3fc68ea1d92d1d40,0x3fc6cb8d07cbb0e4,2
821
+ np.float64,0xbfb88b1f6e311640,0xbfb89e7af4e58778,2
822
+ np.float64,0xbfedc7cadffb8f96,0xbffa9c3766227956,2
823
+ np.float64,0x3fe7928d3eef251a,0x3fee2dcf2ac7961b,2
824
+ np.float64,0xbfeff42ede7fe85e,0xc00cef6b0f1e8323,2
825
+ np.float64,0xbfebf07fa477e0ff,0xbff5893f99e15236,2
826
+ np.float64,0x3fe3002ab9660056,0x3fe5defba550c583,2
827
+ np.float64,0x3feb8f4307f71e86,0x3ff4c517ec8d6de9,2
828
+ np.float64,0x3fd3c16f49a782e0,0x3fd46becaacf74da,2
829
+ np.float64,0x3fc7613df12ec278,0x3fc7a52b2a3c3368,2
830
+ np.float64,0xbfe33af560e675eb,0xbfe63a6528ff1587,2
831
+ np.float64,0xbfde86495abd0c92,0xbfe09bd7ba05b461,2
832
+ np.float64,0x3fe1e7fb4ee3cff6,0x3fe43b04311c0ab6,2
833
+ np.float64,0xbfc528b6bd2a516c,0xbfc55ae0a0c184c8,2
834
+ np.float64,0xbfd81025beb0204c,0xbfd94dd72d804613,2
835
+ np.float64,0x10000000000000,0x10000000000000,2
836
+ np.float64,0x3fc1151c47222a38,0x3fc12f5aad80a6bf,2
837
+ np.float64,0x3feafa136775f426,0x3ff3b46854da0b3a,2
838
+ np.float64,0x3fed2da0747a5b40,0x3ff89c85b658459e,2
839
+ np.float64,0x3fda2a4b51b45498,0x3fdbca0d908ddbbd,2
840
+ np.float64,0xbfd04cf518a099ea,0xbfd0aae0033b9e4c,2
841
+ np.float64,0xbfb9065586320ca8,0xbfb91adb7e31f322,2
842
+ np.float64,0xbfd830b428b06168,0xbfd973ca3c484d8d,2
843
+ np.float64,0x3fc952f7ed32a5f0,0x3fc9a9994561fc1a,2
844
+ np.float64,0xbfeb06c83c760d90,0xbff3ca77b326df20,2
845
+ np.float64,0xbfeb1c98ac763931,0xbff3f0d0900f6149,2
846
+ np.float64,0x3fdf061dbebe0c3c,0x3fe0eefb32b48d17,2
847
+ np.float64,0xbf9acbaf28359760,0xbf9acd4024be9fec,2
848
+ np.float64,0x3fec0adde2f815bc,0x3ff5c1628423794d,2
849
+ np.float64,0xbfc4bc750d2978ec,0xbfc4eba43f590b94,2
850
+ np.float64,0x3fdbe47878b7c8f0,0x3fdde44a2b500d73,2
851
+ np.float64,0x3fe160d18162c1a4,0x3fe378cff08f18f0,2
852
+ np.float64,0x3fc3b58dfd276b18,0x3fc3de01d3802de9,2
853
+ np.float64,0x3fa860343430c060,0x3fa864ecd07ec962,2
854
+ np.float64,0x3fcaebfb4b35d7f8,0x3fcb546512d1b4c7,2
855
+ np.float64,0x3fe3fda558e7fb4a,0x3fe772412e5776de,2
856
+ np.float64,0xbfe8169f2c702d3e,0xbfef5666c9a10f6d,2
857
+ np.float64,0x3feda78e9efb4f1e,0x3ffa270712ded769,2
858
+ np.float64,0xbfda483161b49062,0xbfdbedfbf2e850ba,2
859
+ np.float64,0x3fd7407cf3ae80f8,0x3fd85d4f52622743,2
860
+ np.float64,0xbfd63de4d4ac7bca,0xbfd73550a33e3c32,2
861
+ np.float64,0xbfd9c30b90b38618,0xbfdb4e7695c856f3,2
862
+ np.float64,0x3fcd70c00b3ae180,0x3fcdfa0969e0a119,2
863
+ np.float64,0x3feb4f127f769e24,0x3ff44bf42514e0f4,2
864
+ np.float64,0xbfec1db44af83b69,0xbff5ea54aed1f8e9,2
865
+ np.float64,0x3fd68ff051ad1fe0,0x3fd792d0ed6d6122,2
866
+ np.float64,0x3fe0a048a5614092,0x3fe26c80a826b2a2,2
867
+ np.float64,0x3fd59f3742ab3e70,0x3fd6818563fcaf80,2
868
+ np.float64,0x3fca26ecf9344dd8,0x3fca867ceb5d7ba8,2
869
+ np.float64,0x3fdc1d547ab83aa8,0x3fde2a9cea866484,2
870
+ np.float64,0xbfc78df6312f1bec,0xbfc7d3719b698a39,2
871
+ np.float64,0x3fe754e72b6ea9ce,0x3feda89ea844a2e5,2
872
+ np.float64,0x3fe740c1a4ee8184,0x3fed7dc56ec0c425,2
873
+ np.float64,0x3fe77566a9eeeace,0x3fedee6f408df6de,2
874
+ np.float64,0xbfbbf5bf8e37eb80,0xbfbc126a223781b4,2
875
+ np.float64,0xbfe0acb297615965,0xbfe27d86681ca2b5,2
876
+ np.float64,0xbfc20a0487241408,0xbfc228f5f7d52ce8,2
877
+ np.float64,0xfff0000000000000,0xfff8000000000000,2
878
+ np.float64,0x3fef98a4dbff314a,0x40043cfb60bd46fa,2
879
+ np.float64,0x3fd059102ca0b220,0x3fd0b7d2be6d7822,2
880
+ np.float64,0x3fe89f18a1f13e32,0x3ff04d714bbbf400,2
881
+ np.float64,0x3fd45b6275a8b6c4,0x3fd516a44a276a4b,2
882
+ np.float64,0xbfe04463e86088c8,0xbfe1ef9dfc9f9a53,2
883
+ np.float64,0xbfe086e279610dc5,0xbfe249c9c1040a13,2
884
+ np.float64,0x3f89c9b110339380,0x3f89ca0a641454b5,2
885
+ np.float64,0xbfb5f5b4322beb68,0xbfb6038dc3fd1516,2
886
+ np.float64,0x3fe6eae76f6dd5ce,0x3feccabae04d5c14,2
887
+ np.float64,0x3fa9ef6c9c33dee0,0x3fa9f51c9a8c8a2f,2
888
+ np.float64,0xbfe171b45f62e368,0xbfe390ccc4c01bf6,2
889
+ np.float64,0x3fb2999442253330,0x3fb2a1fc006804b5,2
890
+ np.float64,0x3fd124bf04a24980,0x3fd1927abb92472d,2
891
+ np.float64,0xbfe6e05938edc0b2,0xbfecb519ba78114f,2
892
+ np.float64,0x3fed466ee6fa8cde,0x3ff8e75405b50490,2
893
+ np.float64,0xbfb999aa92333358,0xbfb9afa4f19f80a2,2
894
+ np.float64,0xbfe98969ed7312d4,0xbff17d887b0303e7,2
895
+ np.float64,0x3fe782843e6f0508,0x3fee0adbeebe3486,2
896
+ np.float64,0xbfe232fcc26465fa,0xbfe4a90a68d46040,2
897
+ np.float64,0x3fd190a90fa32154,0x3fd206f56ffcdca2,2
898
+ np.float64,0xbfc4f8b75929f170,0xbfc5298b2d4e7740,2
899
+ np.float64,0xbfba3a63d63474c8,0xbfba520835c2fdc2,2
900
+ np.float64,0xbfb7708eea2ee120,0xbfb781695ec17846,2
901
+ np.float64,0x3fed9fb7a5fb3f70,0x3ffa0b717bcd1609,2
902
+ np.float64,0xbfc1b158cd2362b0,0xbfc1ce87345f3473,2
903
+ np.float64,0x3f963478082c6900,0x3f96355c3000953b,2
904
+ np.float64,0x3fc5050e532a0a20,0x3fc536397f38f616,2
905
+ np.float64,0x3fe239f9eee473f4,0x3fe4b360da3b2faa,2
906
+ np.float64,0xbfd66bd80eacd7b0,0xbfd769a29fd784c0,2
907
+ np.float64,0x3fc57cdad52af9b8,0x3fc5b16b937f5f72,2
908
+ np.float64,0xbfd3c36a0aa786d4,0xbfd46e1cd0b4eddc,2
909
+ np.float64,0x3feff433487fe866,0x400cf0ea1def3161,2
910
+ np.float64,0xbfed5577807aaaef,0xbff915e8f6bfdf22,2
911
+ np.float64,0xbfca0dd3eb341ba8,0xbfca6c4d11836cb6,2
912
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,2
913
+ np.float64,0xbf974deaa82e9be0,0xbf974ef26a3130d1,2
914
+ np.float64,0xbfe7f425e1efe84c,0xbfef076cb00d649d,2
915
+ np.float64,0xbfe4413605e8826c,0xbfe7e20448b8a4b1,2
916
+ np.float64,0xbfdfad202cbf5a40,0xbfe15cd9eb2be707,2
917
+ np.float64,0xbfe43261ee6864c4,0xbfe7c952c951fe33,2
918
+ np.float64,0xbfec141225782824,0xbff5d54d33861d98,2
919
+ np.float64,0x3fd0f47abaa1e8f4,0x3fd15e8691a7f1c2,2
920
+ np.float64,0x3fd378f0baa6f1e0,0x3fd41bea4a599081,2
921
+ np.float64,0xbfb52523462a4a48,0xbfb5317fa7f436e2,2
922
+ np.float64,0x3fcb30797d3660f0,0x3fcb9c174ea401ff,2
923
+ np.float64,0xbfd48480dea90902,0xbfd5446e02c8b329,2
924
+ np.float64,0xbfee4ae3ab7c95c7,0xbffcc650340ba274,2
925
+ np.float64,0xbfeab086d075610e,0xbff3387f4e83ae26,2
926
+ np.float64,0x3fa17cddf422f9c0,0x3fa17e9bf1b25736,2
927
+ np.float64,0xbfe3064536e60c8a,0xbfe5e86aa5244319,2
928
+ np.float64,0x3feb2882c5765106,0x3ff40604c7d97d44,2
929
+ np.float64,0xbfa6923ff42d2480,0xbfa695ff57b2fc3f,2
930
+ np.float64,0xbfa8bdbdcc317b80,0xbfa8c2ada0d94aa7,2
931
+ np.float64,0x3fe7f16b8e6fe2d8,0x3fef013948c391a6,2
932
+ np.float64,0x3fe4e7169f69ce2e,0x3fe8fceef835050a,2
933
+ np.float64,0x3fed877638fb0eec,0x3ff9b83694127959,2
934
+ np.float64,0xbfe0cc9ecf61993e,0xbfe2a978234cbde5,2
935
+ np.float64,0xbfe977e79672efcf,0xbff16589ea494a38,2
936
+ np.float64,0xbfe240130ae48026,0xbfe4bc69113e0d7f,2
937
+ np.float64,0x3feb1e9b70763d36,0x3ff3f4615938a491,2
938
+ np.float64,0xbfdf197dfcbe32fc,0xbfe0fba78a0fc816,2
939
+ np.float64,0xbfee0f8543fc1f0a,0xbffbb9d9a4ee5387,2
940
+ np.float64,0x3fe88d2191f11a44,0x3ff037843b5b6313,2
941
+ np.float64,0xbfd11bb850a23770,0xbfd188c1cef40007,2
942
+ np.float64,0xbfa1b36e9c2366e0,0xbfa1b53d1d8a8bc4,2
943
+ np.float64,0xbfea2d70d9f45ae2,0xbff26a0629e36b3e,2
944
+ np.float64,0xbfd9188703b2310e,0xbfda83f9ddc18348,2
945
+ np.float64,0xbfee194894fc3291,0xbffbe3c83b61e7cb,2
946
+ np.float64,0xbfe093b4a9e1276a,0xbfe25b4ad6f8f83d,2
947
+ np.float64,0x3fea031489f4062a,0x3ff22accc000082e,2
948
+ np.float64,0xbfc6c0827b2d8104,0xbfc6ff0a94326381,2
949
+ np.float64,0x3fef5cd340feb9a6,0x4002659c5a1b34af,2
950
+ np.float64,0x8010000000000000,0x8010000000000000,2
951
+ np.float64,0x3fd97cb533b2f96c,0x3fdafab28aaae8e3,2
952
+ np.float64,0x3fe2123334642466,0x3fe478bd83a8ce02,2
953
+ np.float64,0xbfd9a69637b34d2c,0xbfdb2c87c6b6fb8c,2
954
+ np.float64,0x3fc58def7f2b1be0,0x3fc5c2ff724a9f61,2
955
+ np.float64,0xbfedd5da1f7babb4,0xbffad15949b7fb22,2
956
+ np.float64,0x3fe90e92a0721d26,0x3ff0d9b64323efb8,2
957
+ np.float64,0x3fd34b9442a69728,0x3fd3e9f8fe80654e,2
958
+ np.float64,0xbfc5f509ab2bea14,0xbfc62d2ad325c59f,2
959
+ np.float64,0x3feb245634f648ac,0x3ff3fe91a46acbe1,2
960
+ np.float64,0x3fd101e539a203cc,0x3fd16cf52ae6d203,2
961
+ np.float64,0xbfc51e9ba72a3d38,0xbfc5507d00521ba3,2
962
+ np.float64,0x3fe5fe1683ebfc2e,0x3feaf7dd8b1f92b0,2
963
+ np.float64,0x3fc362e59126c5c8,0x3fc389601814170b,2
964
+ np.float64,0x3fea34dbd77469b8,0x3ff27542eb721e7e,2
965
+ np.float64,0xbfc13ed241227da4,0xbfc159d42c0a35a9,2
966
+ np.float64,0xbfe6df118cedbe23,0xbfecb27bb5d3f784,2
967
+ np.float64,0x3fd92895f6b2512c,0x3fda96f5f94b625e,2
968
+ np.float64,0xbfe7ea3aa76fd476,0xbfeef0e93939086e,2
969
+ np.float64,0xbfc855498330aa94,0xbfc8a1ff690c9533,2
970
+ np.float64,0x3fd9f27b3ab3e4f8,0x3fdb8726979afc3b,2
971
+ np.float64,0x3fc65d52232cbaa8,0x3fc698ac4367afba,2
972
+ np.float64,0x3fd1271dd0a24e3c,0x3fd195087649d54e,2
973
+ np.float64,0xbfe983445df30689,0xbff175158b773b90,2
974
+ np.float64,0xbfe0d9b13261b362,0xbfe2bb8908fc9e6e,2
975
+ np.float64,0x3fd7671f2aaece40,0x3fd889dccbf21629,2
976
+ np.float64,0x3fe748aebfee915e,0x3fed8e970d94c17d,2
977
+ np.float64,0x3fea756e4e74eadc,0x3ff2d947ef3a54f4,2
978
+ np.float64,0x3fde22311cbc4464,0x3fe05b4ce9df1fdd,2
979
+ np.float64,0x3fe2b55ec1e56abe,0x3fe56c6849e3985a,2
980
+ np.float64,0x3fed7b47437af68e,0x3ff98f8e82de99a0,2
981
+ np.float64,0x3fec8184b179030a,0x3ff6d03aaf0135ba,2
982
+ np.float64,0x3fc9ea825533d508,0x3fca4776d7190e71,2
983
+ np.float64,0xbfe8ddd58b71bbab,0xbff09b770ed7bc9a,2
984
+ np.float64,0xbfed41741bfa82e8,0xbff8d81c2a9fc615,2
985
+ np.float64,0x3fe0a73888e14e72,0x3fe27602ad9a3726,2
986
+ np.float64,0xbfe9d0a565f3a14b,0xbff1e1897b628f66,2
987
+ np.float64,0x3fda12b381b42568,0x3fdbadbec22fbd5a,2
988
+ np.float64,0x3fef0081187e0102,0x4000949eff8313c2,2
989
+ np.float64,0x3fef6942b67ed286,0x4002b7913eb1ee76,2
990
+ np.float64,0x3fda10f882b421f0,0x3fdbababa2d6659d,2
991
+ np.float64,0x3fe5828971eb0512,0x3fea122b5088315a,2
992
+ np.float64,0x3fe9d4b53ff3a96a,0x3ff1e75c148bda01,2
993
+ np.float64,0x3fe95d246bf2ba48,0x3ff1414a61a136ec,2
994
+ np.float64,0x3f9e575eb83caec0,0x3f9e59a4f17179e3,2
995
+ np.float64,0x3fdb0a20b5b61440,0x3fdcd8a56178a17f,2
996
+ np.float64,0xbfdef425e3bde84c,0xbfe0e33eeacf3861,2
997
+ np.float64,0x3fd6afcf6bad5fa0,0x3fd7b73d47288347,2
998
+ np.float64,0x3fe89256367124ac,0x3ff03dd9f36ce40e,2
999
+ np.float64,0x3fe7e560fcefcac2,0x3feee5ef8688b60b,2
1000
+ np.float64,0x3fedef55e1fbdeac,0x3ffb350ee1df986b,2
1001
+ np.float64,0xbfe44b926de89725,0xbfe7f3539910c41f,2
1002
+ np.float64,0x3fc58310f32b0620,0x3fc5b7cfdba15bd0,2
1003
+ np.float64,0x3f736d256026da00,0x3f736d2eebe91a90,2
1004
+ np.float64,0x3feb012d2076025a,0x3ff3c0b5d21a7259,2
1005
+ np.float64,0xbfe466a6c468cd4e,0xbfe820c9c197601f,2
1006
+ np.float64,0x3fe1aba8aa635752,0x3fe3e3b73920f64c,2
1007
+ np.float64,0x3fe5597c336ab2f8,0x3fe9c7bc4b765b15,2
1008
+ np.float64,0x3fe1004ac5e20096,0x3fe2f12116e99821,2
1009
+ np.float64,0x3fecbc67477978ce,0x3ff76377434dbdad,2
1010
+ np.float64,0x3fe0e64515e1cc8a,0x3fe2ccf5447c1579,2
1011
+ np.float64,0x3febcfa874f79f50,0x3ff54528f0822144,2
1012
+ np.float64,0x3fc36915ed26d228,0x3fc38fb5b28d3f72,2
1013
+ np.float64,0xbfe01213e5e02428,0xbfe1ac0e1e7418f1,2
1014
+ np.float64,0x3fcd97875b3b2f10,0x3fce22fe3fc98702,2
1015
+ np.float64,0xbfe30383c5e60708,0xbfe5e427e62cc957,2
1016
+ np.float64,0xbfde339bf9bc6738,0xbfe0667f337924f5,2
1017
+ np.float64,0xbfda7c1c49b4f838,0xbfdc2c8801ce654a,2
1018
+ np.float64,0x3fb6b3489e2d6690,0x3fb6c29650387b92,2
1019
+ np.float64,0xbfe1fd4d76e3fa9b,0xbfe45a1f60077678,2
1020
+ np.float64,0xbf67c5e0402f8c00,0xbf67c5e49fce115a,2
1021
+ np.float64,0xbfd4f9aa2da9f354,0xbfd5c759603d0b9b,2
1022
+ np.float64,0x3fe83c227bf07844,0x3fefada9f1bd7fa9,2
1023
+ np.float64,0xbf97f717982fee20,0xbf97f836701a8cd5,2
1024
+ np.float64,0x3fe9688a2472d114,0x3ff150aa575e7d51,2
1025
+ np.float64,0xbfc5a9779d2b52f0,0xbfc5df56509c48b1,2
1026
+ np.float64,0xbfe958d5f472b1ac,0xbff13b813f9bee20,2
1027
+ np.float64,0xbfd7b3b944af6772,0xbfd8e276c2b2920f,2
1028
+ np.float64,0x3fed10198e7a2034,0x3ff8469c817572f0,2
1029
+ np.float64,0xbfeeecc4517dd989,0xc000472b1f858be3,2
1030
+ np.float64,0xbfdbcce47eb799c8,0xbfddc734aa67812b,2
1031
+ np.float64,0xbfd013ee24a027dc,0xbfd06df3089384ca,2
1032
+ np.float64,0xbfd215f2bfa42be6,0xbfd29774ffe26a74,2
1033
+ np.float64,0x3fdfd0ae67bfa15c,0x3fe1746e3a963a9f,2
1034
+ np.float64,0xbfc84aa10b309544,0xbfc896f0d25b723a,2
1035
+ np.float64,0xbfcd0c627d3a18c4,0xbfcd9024c73747a9,2
1036
+ np.float64,0x3fd87df6dbb0fbec,0x3fd9ce1dde757f31,2
1037
+ np.float64,0xbfdad85e05b5b0bc,0xbfdc9c2addb6ce47,2
1038
+ np.float64,0xbfee4f8977fc9f13,0xbffcdccd68e514b3,2
1039
+ np.float64,0x3fa5c290542b8520,0x3fa5c5ebdf09ca70,2
1040
+ np.float64,0xbfd7e401d2afc804,0xbfd91a7e4eb5a026,2
1041
+ np.float64,0xbfe33ff73b667fee,0xbfe6423cc6eb07d7,2
1042
+ np.float64,0x3fdfb7d6c4bf6fac,0x3fe163f2e8175177,2
1043
+ np.float64,0xbfd515d69eaa2bae,0xbfd5e6eedd6a1598,2
1044
+ np.float64,0x3fb322232e264440,0x3fb32b49d91c3cbe,2
1045
+ np.float64,0xbfe20ac39e641587,0xbfe46dd4b3803f19,2
1046
+ np.float64,0x3fe282dc18e505b8,0x3fe520152120c297,2
1047
+ np.float64,0xbfc905a4cd320b48,0xbfc95929b74865fb,2
1048
+ np.float64,0x3fe0ae3b83615c78,0x3fe27fa1dafc825b,2
1049
+ np.float64,0xbfc1bfed0f237fdc,0xbfc1dd6466225cdf,2
1050
+ np.float64,0xbfeca4d47d7949a9,0xbff72761a34fb682,2
1051
+ np.float64,0xbfe8cf8c48f19f18,0xbff0897ebc003626,2
1052
+ np.float64,0xbfe1aaf0a36355e2,0xbfe3e2ae7b17a286,2
1053
+ np.float64,0x3fe2ca442e659488,0x3fe58c3a2fb4f14a,2
1054
+ np.float64,0xbfda3c2deeb4785c,0xbfdbdf89fe96a243,2
1055
+ np.float64,0xbfdc12bfecb82580,0xbfde1d81dea3c221,2
1056
+ np.float64,0xbfe2d6d877e5adb1,0xbfe59f73e22c1fc7,2
1057
+ np.float64,0x3fe5f930636bf260,0x3feaee96a462e4de,2
1058
+ np.float64,0x3fcf3c0ea53e7820,0x3fcfe0b0f92be7e9,2
1059
+ np.float64,0xbfa5bb90f42b7720,0xbfa5bee9424004cc,2
1060
+ np.float64,0xbfe2fb3a3265f674,0xbfe5d75b988bb279,2
1061
+ np.float64,0x3fcaec7aab35d8f8,0x3fcb54ea582fff6f,2
1062
+ np.float64,0xbfd8d3228db1a646,0xbfda322297747fbc,2
1063
+ np.float64,0x3fedd2e0ad7ba5c2,0x3ffac6002b65c424,2
1064
+ np.float64,0xbfd9edeca2b3dbda,0xbfdb81b2b7785e33,2
1065
+ np.float64,0xbfef5febb17ebfd7,0xc002796b15950960,2
1066
+ np.float64,0x3fde22f787bc45f0,0x3fe05bcc624b9ba2,2
1067
+ np.float64,0xbfc716a4ab2e2d48,0xbfc758073839dd44,2
1068
+ np.float64,0xbf9bed852837db00,0xbf9bef4b2a3f3bdc,2
1069
+ np.float64,0x3fef8f88507f1f10,0x4003e5e566444571,2
1070
+ np.float64,0xbfdc1bbed6b8377e,0xbfde28a64e174e60,2
1071
+ np.float64,0x3fe02d30eae05a62,0x3fe1d064ec027cd3,2
1072
+ np.float64,0x3fd9dbb500b3b76c,0x3fdb6bea40162279,2
1073
+ np.float64,0x3fe353ff1d66a7fe,0x3fe661b3358c925e,2
1074
+ np.float64,0x3fac3ebfb4387d80,0x3fac4618effff2b0,2
1075
+ np.float64,0x3fe63cf0ba6c79e2,0x3feb7030cff5f434,2
1076
+ np.float64,0x3fd0e915f8a1d22c,0x3fd152464597b510,2
1077
+ np.float64,0xbfd36987cda6d310,0xbfd40af049d7621e,2
1078
+ np.float64,0xbfdc5b4dc7b8b69c,0xbfde7790a35da2bc,2
1079
+ np.float64,0x3feee7ff4a7dcffe,0x40003545989e07c7,2
1080
+ np.float64,0xbfeb2c8308765906,0xbff40d2e6469249e,2
1081
+ np.float64,0x3fe535a894ea6b52,0x3fe98781648550d0,2
1082
+ np.float64,0xbfef168eb9fe2d1d,0xc000f274ed3cd312,2
1083
+ np.float64,0x3fc3e2d98927c5b0,0x3fc40c6991b8900c,2
1084
+ np.float64,0xbfcd8fe3e73b1fc8,0xbfce1aec7f9b7f7d,2
1085
+ np.float64,0xbfd55d8c3aaabb18,0xbfd6378132ee4892,2
1086
+ np.float64,0xbfe424a66168494d,0xbfe7b289d72c98b3,2
1087
+ np.float64,0x3fd81af13eb035e4,0x3fd95a6a9696ab45,2
1088
+ np.float64,0xbfe3016722e602ce,0xbfe5e0e46db228cd,2
1089
+ np.float64,0x3fe9a20beff34418,0x3ff19faca17fc468,2
1090
+ np.float64,0xbfe2124bc7e42498,0xbfe478e19927e723,2
1091
+ np.float64,0x3fd96f8622b2df0c,0x3fdaeb08da6b08ae,2
1092
+ np.float64,0x3fecd6796579acf2,0x3ff7a7d02159e181,2
1093
+ np.float64,0x3fe60015df6c002c,0x3feafba6f2682a61,2
1094
+ np.float64,0x3fc7181cf72e3038,0x3fc7598c2cc3c3b4,2
1095
+ np.float64,0xbfce6e2e0b3cdc5c,0xbfcf0621b3e37115,2
1096
+ np.float64,0xbfe52a829e6a5505,0xbfe973a785980af9,2
1097
+ np.float64,0x3fed4bbac37a9776,0x3ff8f7a0e68a2bbe,2
1098
+ np.float64,0x3fabdfaacc37bf60,0x3fabe6bab42bd246,2
1099
+ np.float64,0xbfcd9598cb3b2b30,0xbfce20f3c4c2c261,2
1100
+ np.float64,0x3fd717d859ae2fb0,0x3fd82e88eca09ab1,2
1101
+ np.float64,0x3fe28ccb18e51996,0x3fe52f071d2694fd,2
1102
+ np.float64,0xbfe43f064ae87e0c,0xbfe7de5eab36b5b9,2
1103
+ np.float64,0x7fefffffffffffff,0xfff8000000000000,2
1104
+ np.float64,0xbfb39b045a273608,0xbfb3a4dd3395fdd5,2
1105
+ np.float64,0xbfb3358bae266b18,0xbfb33ece5e95970a,2
1106
+ np.float64,0xbfeeafb6717d5f6d,0xbffeec3f9695b575,2
1107
+ np.float64,0xbfe7a321afef4644,0xbfee522dd80f41f4,2
1108
+ np.float64,0x3fe3a17e5be742fc,0x3fe6dcd32af51e92,2
1109
+ np.float64,0xbfc61694bd2c2d28,0xbfc64fbbd835f6e7,2
1110
+ np.float64,0xbfd795906faf2b20,0xbfd8bf89b370655c,2
1111
+ np.float64,0xbfe4b39b59e96736,0xbfe8a3c5c645b6e3,2
1112
+ np.float64,0x3fd310af3ba62160,0x3fd3a9442e825e1c,2
1113
+ np.float64,0xbfd45198a6a8a332,0xbfd50bc10311a0a3,2
1114
+ np.float64,0x3fd0017eaaa002fc,0x3fd05a472a837999,2
1115
+ np.float64,0xbfea974d98752e9b,0xbff30f67f1835183,2
1116
+ np.float64,0xbf978f60582f1ec0,0xbf979070e1c2b59d,2
1117
+ np.float64,0x3fe1c715d4e38e2c,0x3fe40b479e1241a2,2
1118
+ np.float64,0xbfccb965cd3972cc,0xbfcd38b40c4a352d,2
1119
+ np.float64,0xbfd9897048b312e0,0xbfdb09d55624c2a3,2
1120
+ np.float64,0x3fe7f5de4befebbc,0x3fef0b56be259f9c,2
1121
+ np.float64,0x3fcc6c6d4338d8d8,0x3fcce7b20ed68a78,2
1122
+ np.float64,0xbfe63884046c7108,0xbfeb67a3b945c3ee,2
1123
+ np.float64,0xbfce64e2ad3cc9c4,0xbfcefc47fae2e81f,2
1124
+ np.float64,0x3fefeb57b27fd6b0,0x400ab2eac6321cfb,2
1125
+ np.float64,0x3fe679627e6cf2c4,0x3febe6451b6ee0c4,2
1126
+ np.float64,0x3fc5f710172bee20,0x3fc62f40f85cb040,2
1127
+ np.float64,0x3fc34975e52692e8,0x3fc36f58588c7fa2,2
1128
+ np.float64,0x3fe8a3784cf146f0,0x3ff052ced9bb9406,2
1129
+ np.float64,0x3fd11a607ca234c0,0x3fd1874f876233fe,2
1130
+ np.float64,0x3fb2d653f625aca0,0x3fb2df0f4c9633f3,2
1131
+ np.float64,0x3fe555f39eeaabe8,0x3fe9c15ee962a28c,2
1132
+ np.float64,0xbfea297e3bf452fc,0xbff264107117f709,2
1133
+ np.float64,0x3fe1581cdde2b03a,0x3fe36c79acedf99c,2
1134
+ np.float64,0x3fd4567063a8ace0,0x3fd51123dbd9106f,2
1135
+ np.float64,0x3fa3883aec271080,0x3fa38aa86ec71218,2
1136
+ np.float64,0x3fe40e5d7de81cba,0x3fe78dbb9b568850,2
1137
+ np.float64,0xbfe9a2f7347345ee,0xbff1a0f4faa05041,2
1138
+ np.float64,0x3f9eef03a83dde00,0x3f9ef16caa0c1478,2
1139
+ np.float64,0xbfcb4641d1368c84,0xbfcbb2e7ff8c266d,2
1140
+ np.float64,0xbfa8403b2c308070,0xbfa844e148b735b7,2
1141
+ np.float64,0xbfe1875cd6e30eba,0xbfe3afadc08369f5,2
1142
+ np.float64,0xbfdd3c3d26ba787a,0xbfdf919b3e296766,2
1143
+ np.float64,0x3fcd6c4c853ad898,0x3fcdf55647b518b8,2
1144
+ np.float64,0xbfe360a173e6c143,0xbfe6759eb3a08cf2,2
1145
+ np.float64,0x3fe5a13147eb4262,0x3fea4a5a060f5adb,2
1146
+ np.float64,0x3feb3cdd7af679ba,0x3ff42aae0cf61234,2
1147
+ np.float64,0x3fe5205128ea40a2,0x3fe9618f3d0c54af,2
1148
+ np.float64,0x3fce35343f3c6a68,0x3fcec9c4e612b050,2
1149
+ np.float64,0xbfc345724d268ae4,0xbfc36b3ce6338e6a,2
1150
+ np.float64,0x3fedc4fc0e7b89f8,0x3ffa91c1d775c1f7,2
1151
+ np.float64,0x3fe41fbf21683f7e,0x3fe7aa6c174a0e65,2
1152
+ np.float64,0xbfc7a1a5d32f434c,0xbfc7e7d27a4c5241,2
1153
+ np.float64,0x3fd3e33eaca7c67c,0x3fd4915264441e2f,2
1154
+ np.float64,0x3feb3f02f6f67e06,0x3ff42e942249e596,2
1155
+ np.float64,0x3fdb75fcb0b6ebf8,0x3fdd5c63f98b6275,2
1156
+ np.float64,0x3fd6476603ac8ecc,0x3fd74020b164cf38,2
1157
+ np.float64,0x3fed535372faa6a6,0x3ff90f3791821841,2
1158
+ np.float64,0x3fe8648ead70c91e,0x3ff006a62befd7ed,2
1159
+ np.float64,0x3fd0f90760a1f210,0x3fd1636b39bb1525,2
1160
+ np.float64,0xbfca052443340a48,0xbfca633d6e777ae0,2
1161
+ np.float64,0xbfa6a5e3342d4bc0,0xbfa6a9ac6a488f5f,2
1162
+ np.float64,0x3fd5598038aab300,0x3fd632f35c0c3d52,2
1163
+ np.float64,0xbfdf66218fbecc44,0xbfe12df83b19f300,2
1164
+ np.float64,0x3fe78e15b56f1c2c,0x3fee240d12489cd1,2
1165
+ np.float64,0x3fe3d6a7b3e7ad50,0x3fe7329dcf7401e2,2
1166
+ np.float64,0xbfddb8e97bbb71d2,0xbfe017ed6d55a673,2
1167
+ np.float64,0xbfd57afd55aaf5fa,0xbfd658a9607c3370,2
1168
+ np.float64,0xbfdba4c9abb74994,0xbfdd95d69e5e8814,2
1169
+ np.float64,0xbfe71d8090ee3b01,0xbfed3390be6d2eef,2
1170
+ np.float64,0xbfc738ac0f2e7158,0xbfc77b3553b7c026,2
1171
+ np.float64,0x3f873656302e6c80,0x3f873697556ae011,2
1172
+ np.float64,0x3fe559491d6ab292,0x3fe9c7603b12c608,2
1173
+ np.float64,0xbfe262776864c4ef,0xbfe4ef905dda8599,2
1174
+ np.float64,0x3fe59d8917eb3b12,0x3fea439f44b7573f,2
1175
+ np.float64,0xbfd4b5afb5a96b60,0xbfd57b4e3df4dbc8,2
1176
+ np.float64,0x3fe81158447022b0,0x3fef4a3cea3eb6a9,2
1177
+ np.float64,0xbfeb023441f60468,0xbff3c27f0fc1a4dc,2
1178
+ np.float64,0x3fefb212eaff6426,0x40055fc6d949cf44,2
1179
+ np.float64,0xbfe1300ac1e26016,0xbfe333f297a1260e,2
1180
+ np.float64,0xbfeae0a2f575c146,0xbff388d58c380b8c,2
1181
+ np.float64,0xbfeddd8e55fbbb1d,0xbffaef045b2e21d9,2
1182
+ np.float64,0x3fec7c6c1d78f8d8,0x3ff6c3ebb019a8e5,2
1183
+ np.float64,0xbfe27e071f64fc0e,0xbfe518d2ff630f33,2
1184
+ np.float64,0x8000000000000001,0x8000000000000001,2
1185
+ np.float64,0x3fc5872abf2b0e58,0x3fc5bc083105db76,2
1186
+ np.float64,0x3fe65114baeca22a,0x3feb9745b82ef15a,2
1187
+ np.float64,0xbfc783abe52f0758,0xbfc7c8cb23f93e79,2
1188
+ np.float64,0x3fe4b7a5dd696f4c,0x3fe8aab9d492f0ca,2
1189
+ np.float64,0xbf91a8e8a82351e0,0xbf91a95b6ae806f1,2
1190
+ np.float64,0xbfee482eb77c905d,0xbffcb952830e715a,2
1191
+ np.float64,0x3fba0eee2a341de0,0x3fba261d495e3a1b,2
1192
+ np.float64,0xbfeb8876ae7710ed,0xbff4b7f7f4343506,2
1193
+ np.float64,0xbfe4d29e46e9a53c,0xbfe8d9547a601ba7,2
1194
+ np.float64,0xbfe12413b8e24828,0xbfe3232656541d10,2
1195
+ np.float64,0x3fc0bd8f61217b20,0x3fc0d63f937f0aa4,2
1196
+ np.float64,0xbfd3debafda7bd76,0xbfd48c534e5329e4,2
1197
+ np.float64,0x3fc0f92de921f258,0x3fc112eb7d47349b,2
1198
+ np.float64,0xbfe576b95f6aed72,0xbfe9fca859239b3c,2
1199
+ np.float64,0x3fd10e520da21ca4,0x3fd17a546e4152f7,2
1200
+ np.float64,0x3fcef917eb3df230,0x3fcf998677a8fa8f,2
1201
+ np.float64,0x3fdfcf863abf9f0c,0x3fe173a98af1cb13,2
1202
+ np.float64,0x3fc28c4b4f251898,0x3fc2adf43792e917,2
1203
+ np.float64,0x3fceb837ad3d7070,0x3fcf54a63b7d8c5c,2
1204
+ np.float64,0x3fc0140a05202818,0x3fc029e4f75330cb,2
1205
+ np.float64,0xbfd76c3362aed866,0xbfd88fb9e790b4e8,2
1206
+ np.float64,0xbfe475300868ea60,0xbfe8395334623e1f,2
1207
+ np.float64,0x3fea70b9b4f4e174,0x3ff2d1dad92173ba,2
1208
+ np.float64,0xbfe2edbd4965db7a,0xbfe5c29449a9365d,2
1209
+ np.float64,0xbfddf86f66bbf0de,0xbfe0408439cada9b,2
1210
+ np.float64,0xbfb443cdfa288798,0xbfb44eae796ad3ea,2
1211
+ np.float64,0xbf96a8a0482d5140,0xbf96a992b6ef073b,2
1212
+ np.float64,0xbfd279db2fa4f3b6,0xbfd3043db6acbd9e,2
1213
+ np.float64,0x3fe5d99088ebb322,0x3feab30be14e1605,2
1214
+ np.float64,0xbfe1a917abe35230,0xbfe3e0063d0f5f63,2
1215
+ np.float64,0x3fc77272f52ee4e8,0x3fc7b6f8ab6f4591,2
1216
+ np.float64,0x3fd6b62146ad6c44,0x3fd7be77eef8390a,2
1217
+ np.float64,0xbfe39fd9bc673fb4,0xbfe6da30dc4eadde,2
1218
+ np.float64,0x3fe35545c066aa8c,0x3fe663b5873e4d4b,2
1219
+ np.float64,0xbfcbbeffb3377e00,0xbfcc317edf7f6992,2
1220
+ np.float64,0xbfe28a58366514b0,0xbfe52b5734579ffa,2
1221
+ np.float64,0xbfbf0c87023e1910,0xbfbf33d970a0dfa5,2
1222
+ np.float64,0xbfd31144cba6228a,0xbfd3a9e84f9168f9,2
1223
+ np.float64,0xbfe5c044056b8088,0xbfea83d607c1a88a,2
1224
+ np.float64,0x3fdaabdf18b557c0,0x3fdc663ee8eddc83,2
1225
+ np.float64,0xbfeb883006f71060,0xbff4b76feff615be,2
1226
+ np.float64,0xbfebaef41d775de8,0xbff5034111440754,2
1227
+ np.float64,0x3fd9b6eb3bb36dd8,0x3fdb3fff5071dacf,2
1228
+ np.float64,0x3fe4e33c45e9c678,0x3fe8f637779ddedf,2
1229
+ np.float64,0x3fe52213a06a4428,0x3fe964adeff5c14e,2
1230
+ np.float64,0x3fe799254cef324a,0x3fee3c3ecfd3cdc5,2
1231
+ np.float64,0x3fd0533f35a0a680,0x3fd0b19a003469d3,2
1232
+ np.float64,0x3fec7ef5c7f8fdec,0x3ff6ca0abe055048,2
1233
+ np.float64,0xbfd1b5da82a36bb6,0xbfd22f357acbee79,2
1234
+ np.float64,0xbfd8f9c652b1f38c,0xbfda5faacbce9cf9,2
1235
+ np.float64,0x3fc8fc818b31f900,0x3fc94fa9a6aa53c8,2
1236
+ np.float64,0x3fcf42cc613e8598,0x3fcfe7dc128f33f2,2
1237
+ np.float64,0x3fd393a995a72754,0x3fd4396127b19305,2
1238
+ np.float64,0x3fec7b7df9f8f6fc,0x3ff6c1ae51753ef2,2
1239
+ np.float64,0x3fc07f175b20fe30,0x3fc096b55c11568c,2
1240
+ np.float64,0xbf979170082f22e0,0xbf979280d9555f44,2
1241
+ np.float64,0xbfb9d110c633a220,0xbfb9e79ba19b3c4a,2
1242
+ np.float64,0x3fedcd7d417b9afa,0x3ffab19734e86d58,2
1243
+ np.float64,0xbfec116f27f822de,0xbff5cf9425cb415b,2
1244
+ np.float64,0xbfec4fa0bef89f42,0xbff65a771982c920,2
1245
+ np.float64,0x3f94d4452829a880,0x3f94d501789ad11c,2
1246
+ np.float64,0xbfefe5ede27fcbdc,0xc009c440d3c2a4ce,2
1247
+ np.float64,0xbfe7e5f7b5efcbf0,0xbfeee74449aee1db,2
1248
+ np.float64,0xbfeb71dc8976e3b9,0xbff48cd84ea54ed2,2
1249
+ np.float64,0xbfe4cdb65f699b6c,0xbfe8d0d3bce901ef,2
1250
+ np.float64,0x3fb78ef1ee2f1de0,0x3fb7a00e7d183c48,2
1251
+ np.float64,0x3fb681864a2d0310,0x3fb6906fe64b4cd7,2
1252
+ np.float64,0xbfd2ad3b31a55a76,0xbfd33c57b5985399,2
1253
+ np.float64,0x3fdcdaaa95b9b554,0x3fdf16b99628db1e,2
1254
+ np.float64,0x3fa4780b7428f020,0x3fa47ad6ce9b8081,2
1255
+ np.float64,0x3fc546b0ad2a8d60,0x3fc579b361b3b18f,2
1256
+ np.float64,0x3feaf98dd6f5f31c,0x3ff3b38189c3539c,2
1257
+ np.float64,0x3feb0b2eca76165e,0x3ff3d22797083f9a,2
1258
+ np.float64,0xbfdc02ae3ab8055c,0xbfde099ecb5dbacf,2
1259
+ np.float64,0x3fd248bf17a49180,0x3fd2ceb77b346d1d,2
1260
+ np.float64,0x3fe349d666e693ac,0x3fe651b9933a8853,2
1261
+ np.float64,0xbfca526fc534a4e0,0xbfcab3e83f0d9b93,2
1262
+ np.float64,0x3fc156421722ac88,0x3fc171b38826563b,2
1263
+ np.float64,0xbfe4244569e8488b,0xbfe7b1e93e7d4f92,2
1264
+ np.float64,0x3fe010faabe021f6,0x3fe1aa961338886d,2
1265
+ np.float64,0xbfc52dacb72a5b58,0xbfc55ffa50eba380,2
1266
+ np.float64,0x8000000000000000,0x8000000000000000,2
1267
+ np.float64,0x3fea1d4865f43a90,0x3ff251b839eb4817,2
1268
+ np.float64,0xbfa0f65c8421ecc0,0xbfa0f7f37c91be01,2
1269
+ np.float64,0x3fcab29c0b356538,0x3fcb1863edbee184,2
1270
+ np.float64,0x3fe7949162ef2922,0x3fee323821958b88,2
1271
+ np.float64,0x3fdaf9288ab5f250,0x3fdcc400190a4839,2
1272
+ np.float64,0xbfe13ece6be27d9d,0xbfe348ba07553179,2
1273
+ np.float64,0x3f8a0c4fd0341880,0x3f8a0cabdf710185,2
1274
+ np.float64,0x3fdd0442a2ba0884,0x3fdf4b016c4da452,2
1275
+ np.float64,0xbfaf06d2343e0da0,0xbfaf1090b1600422,2
1276
+ np.float64,0xbfd3b65225a76ca4,0xbfd45fa49ae76cca,2
1277
+ np.float64,0x3fef5d75fefebaec,0x400269a5e7c11891,2
1278
+ np.float64,0xbfe048e35ce091c6,0xbfe1f5af45dd64f8,2
1279
+ np.float64,0xbfe27d4599e4fa8b,0xbfe517b07843d04c,2
1280
+ np.float64,0xbfe6f2a637ede54c,0xbfecdaa730462576,2
1281
+ np.float64,0x3fc63fbb752c7f78,0x3fc67a2854974109,2
1282
+ np.float64,0x3fedda6bfbfbb4d8,0x3ffae2e6131f3475,2
1283
+ np.float64,0x3fe7a6f5286f4dea,0x3fee5a9b1ef46016,2
1284
+ np.float64,0xbfd4ea8bcea9d518,0xbfd5b66ab7e5cf00,2
1285
+ np.float64,0x3fdc116568b822cc,0x3fde1bd4d0d9fd6c,2
1286
+ np.float64,0x3fdc45cb1bb88b98,0x3fde5cd1d2751032,2
1287
+ np.float64,0x3feabd932f757b26,0x3ff34e06e56a62a1,2
1288
+ np.float64,0xbfae5dbe0c3cbb80,0xbfae66e062ac0d65,2
1289
+ np.float64,0xbfdb385a00b670b4,0xbfdd10fedf3a58a7,2
1290
+ np.float64,0xbfebb14755f7628f,0xbff507e123a2b47c,2
1291
+ np.float64,0x3fe6de2fdfedbc60,0x3fecb0ae6e131da2,2
1292
+ np.float64,0xbfd86de640b0dbcc,0xbfd9bb4dbf0bf6af,2
1293
+ np.float64,0x3fe39e86d9e73d0e,0x3fe6d811c858d5d9,2
1294
+ np.float64,0x7ff0000000000000,0xfff8000000000000,2
1295
+ np.float64,0x3fa8101684302020,0x3fa814a12176e937,2
1296
+ np.float64,0x3fefdd5ad37fbab6,0x4008a08c0b76fbb5,2
1297
+ np.float64,0x3fe645c727ec8b8e,0x3feb814ebc470940,2
1298
+ np.float64,0x3fe3ba79dce774f4,0x3fe70500db564cb6,2
1299
+ np.float64,0xbfe0e5a254e1cb44,0xbfe2cc13940c6d9a,2
1300
+ np.float64,0x3fe2cac62465958c,0x3fe58d008c5e31f8,2
1301
+ np.float64,0xbfd3ffb531a7ff6a,0xbfd4b0d88cff2040,2
1302
+ np.float64,0x3fe0929104612522,0x3fe259bc42dce788,2
1303
+ np.float64,0x1,0x1,2
1304
+ np.float64,0xbfe7db77e6efb6f0,0xbfeecf93e8a61cb3,2
1305
+ np.float64,0xbfe37e9559e6fd2a,0xbfe6a514e29cb7aa,2
1306
+ np.float64,0xbfc53a843f2a7508,0xbfc56d2e9ad8b716,2
1307
+ np.float64,0xbfedb04485fb6089,0xbffa4615d4334ec3,2
1308
+ np.float64,0xbfc44349b1288694,0xbfc46f484b6f1cd6,2
1309
+ np.float64,0xbfe265188264ca31,0xbfe4f37d61cd9e17,2
1310
+ np.float64,0xbfd030351da0606a,0xbfd08c2537287ee1,2
1311
+ np.float64,0x3fd8fb131db1f628,0x3fda613363ca601e,2
1312
+ np.float64,0xbff0000000000000,0xfff0000000000000,2
1313
+ np.float64,0xbfe48d9a60691b35,0xbfe862c02d8fec1e,2
1314
+ np.float64,0x3fd185e050a30bc0,0x3fd1fb4c614ddb07,2
1315
+ np.float64,0xbfe4a5807e694b01,0xbfe88b8ff2d6caa7,2
1316
+ np.float64,0xbfc934d7ad3269b0,0xbfc98a405d25a666,2
1317
+ np.float64,0xbfea0e3c62741c79,0xbff23b4bd3a7b15d,2
1318
+ np.float64,0x3fe7244071ee4880,0x3fed41b27ba6bb22,2
1319
+ np.float64,0xbfd419f81ba833f0,0xbfd4cdf71b4533a3,2
1320
+ np.float64,0xbfe1e73a34e3ce74,0xbfe439eb15fa6baf,2
1321
+ np.float64,0x3fcdd9a63f3bb350,0x3fce68e1c401eff0,2
1322
+ np.float64,0x3fd1b5960ba36b2c,0x3fd22eeb566f1976,2
1323
+ np.float64,0x3fe9ad18e0735a32,0x3ff1af23c534260d,2
1324
+ np.float64,0xbfd537918aaa6f24,0xbfd60ccc8df0962b,2
1325
+ np.float64,0x3fcba3d3c73747a8,0x3fcc14fd5e5c49ad,2
1326
+ np.float64,0x3fd367e3c0a6cfc8,0x3fd40921b14e288e,2
1327
+ np.float64,0x3fe94303c6f28608,0x3ff11e62db2db6ac,2
1328
+ np.float64,0xbfcc5f77fd38bef0,0xbfccda110c087519,2
1329
+ np.float64,0xbfd63b74d7ac76ea,0xbfd7328af9f37402,2
1330
+ np.float64,0xbfe5321289ea6425,0xbfe9811ce96609ad,2
1331
+ np.float64,0xbfde910879bd2210,0xbfe0a2cd0ed1d368,2
1332
+ np.float64,0xbfcc9d9bad393b38,0xbfcd1b722a0b1371,2
1333
+ np.float64,0xbfe6dd39e16dba74,0xbfecaeb7c8c069f6,2
1334
+ np.float64,0xbfe98316eff3062e,0xbff174d7347d48bf,2
1335
+ np.float64,0xbfda88f8d1b511f2,0xbfdc3c0e75dad903,2
1336
+ np.float64,0x3fd400d8c2a801b0,0x3fd4b21bacff1f5d,2
1337
+ np.float64,0xbfe1ed335863da66,0xbfe4429e45e99779,2
1338
+ np.float64,0xbf3423a200284800,0xbf3423a20acb0342,2
1339
+ np.float64,0xbfe97bc59672f78b,0xbff16ad1adc44a33,2
1340
+ np.float64,0xbfeeca60d7fd94c2,0xbfff98d7f18f7728,2
1341
+ np.float64,0x3fd1eb13b2a3d628,0x3fd268e6ff4d56ce,2
1342
+ np.float64,0xbfa5594c242ab2a0,0xbfa55c77d6740a39,2
1343
+ np.float64,0x3fe72662006e4cc4,0x3fed462a9dedbfee,2
1344
+ np.float64,0x3fef4bb221fe9764,0x4001fe4f4cdfedb2,2
1345
+ np.float64,0xbfe938d417f271a8,0xbff110e78724ca2b,2
1346
+ np.float64,0xbfcc29ab2f385358,0xbfcca182140ef541,2
1347
+ np.float64,0x3fe18cd42c6319a8,0x3fe3b77e018165e7,2
1348
+ np.float64,0xbfec6c5cae78d8b9,0xbff69d8e01309b48,2
1349
+ np.float64,0xbfd5723da7aae47c,0xbfd64ecde17da471,2
1350
+ np.float64,0xbfe3096722e612ce,0xbfe5ed43634f37ff,2
1351
+ np.float64,0xbfdacaceb1b5959e,0xbfdc8bb826bbed39,2
1352
+ np.float64,0x3fc59a57cb2b34b0,0x3fc5cfc4a7c9bac8,2
1353
+ np.float64,0x3f84adce10295b80,0x3f84adfc1f1f6e97,2
1354
+ np.float64,0x3fdd5b28bbbab650,0x3fdfb8b906d77df4,2
1355
+ np.float64,0x3fdebf94c6bd7f28,0x3fe0c10188e1bc7c,2
1356
+ np.float64,0x3fdb30c612b6618c,0x3fdd07bf18597821,2
1357
+ np.float64,0x3fe7eeb3176fdd66,0x3feefb0be694b855,2
1358
+ np.float64,0x0,0x0,2
1359
+ np.float64,0xbfe10057e9e200b0,0xbfe2f13365e5b1c9,2
1360
+ np.float64,0xbfeb61a82376c350,0xbff46e665d3a60f5,2
1361
+ np.float64,0xbfe7f54aec6fea96,0xbfef0a0759f726dc,2
1362
+ np.float64,0xbfe4f6da3de9edb4,0xbfe9187d85bd1ab5,2
1363
+ np.float64,0xbfeb8be1b3f717c4,0xbff4be8efaab2e75,2
1364
+ np.float64,0x3fed40bc31fa8178,0x3ff8d5ec4a7f3e9b,2
1365
+ np.float64,0xbfe40f8711681f0e,0xbfe78fa5c62b191b,2
1366
+ np.float64,0x3fd1034d94a2069c,0x3fd16e78e9efb85b,2
1367
+ np.float64,0x3fc74db15b2e9b60,0x3fc790f26e894098,2
1368
+ np.float64,0x3fd912a88cb22550,0x3fda7d0ab3b21308,2
1369
+ np.float64,0x3fd8948a3bb12914,0x3fd9e8950c7874c8,2
1370
+ np.float64,0xbfa7ada5242f5b50,0xbfa7b1f8db50c104,2
1371
+ np.float64,0x3feeb2e1c27d65c4,0x3fff000b7d09c9b7,2
1372
+ np.float64,0x3fe9d46cbbf3a8da,0x3ff1e6f405265a6e,2
1373
+ np.float64,0xbfe2480b77e49017,0xbfe4c83b9b37bf0c,2
1374
+ np.float64,0x3fe950ea9372a1d6,0x3ff130e62468bf2c,2
1375
+ np.float64,0x3fefa7272a7f4e4e,0x4004d8c9bf31ab58,2
1376
+ np.float64,0xbfe7309209ee6124,0xbfed5b94acef917a,2
1377
+ np.float64,0x3fd05e8c64a0bd18,0x3fd0bdb11e0903c6,2
1378
+ np.float64,0x3fd9236043b246c0,0x3fda90ccbe4bab1e,2
1379
+ np.float64,0xbfdc3d6805b87ad0,0xbfde5266e17154c3,2
1380
+ np.float64,0x3fe5e6bad76bcd76,0x3feacbc306c63445,2
1381
+ np.float64,0x3ff0000000000000,0x7ff0000000000000,2
1382
+ np.float64,0xbfde3d7390bc7ae8,0xbfe06cd480bd0196,2
1383
+ np.float64,0xbfd3e2e3c0a7c5c8,0xbfd490edc0a45e26,2
1384
+ np.float64,0x3fe39871d76730e4,0x3fe6ce54d1719953,2
1385
+ np.float64,0x3fdff00ebcbfe01c,0x3fe1894b6655a6d0,2
1386
+ np.float64,0x3f91b7ad58236f40,0x3f91b8213bcb8b0b,2
1387
+ np.float64,0xbfd99f48f7b33e92,0xbfdb23d544f62591,2
1388
+ np.float64,0x3fae3512cc3c6a20,0x3fae3e10939fd7b5,2
1389
+ np.float64,0x3fcc4cf3db3899e8,0x3fccc698a15176d6,2
1390
+ np.float64,0xbfd0927e39a124fc,0xbfd0f5522e2bc030,2
1391
+ np.float64,0x3fcee859633dd0b0,0x3fcf87bdef7a1e82,2
1392
+ np.float64,0xbfe2a8b69565516d,0xbfe5593437b6659a,2
1393
+ np.float64,0x3fecf61e20f9ec3c,0x3ff7fda16b0209d4,2
1394
+ np.float64,0xbfbf37571e3e6eb0,0xbfbf5f4e1379a64c,2
1395
+ np.float64,0xbfd54e1b75aa9c36,0xbfd626223b68971a,2
1396
+ np.float64,0x3fe1035a56e206b4,0x3fe2f5651ca0f4b0,2
1397
+ np.float64,0x3fe4992989e93254,0x3fe876751afa70dc,2
1398
+ np.float64,0x3fc8c313d3318628,0x3fc913faf15d1562,2
1399
+ np.float64,0x3f99f6ba8833ed80,0x3f99f8274fb94828,2
1400
+ np.float64,0xbfd4a58af0a94b16,0xbfd56947c276e04f,2
1401
+ np.float64,0x3fc66f8c872cdf18,0x3fc6ab7a14372a73,2
1402
+ np.float64,0x3fc41eee0d283de0,0x3fc449ff1ff0e7a6,2
1403
+ np.float64,0x3fefd04d287fa09a,0x4007585010cfa9b0,2
1404
+ np.float64,0x3fce9e746f3d3ce8,0x3fcf39514bbe5070,2
1405
+ np.float64,0xbfe8056f72700adf,0xbfef2ee2c13e67ba,2
1406
+ np.float64,0x3fdd6b1ec0bad63c,0x3fdfccf2ba144fa8,2
1407
+ np.float64,0x3fd92ee432b25dc8,0x3fda9e6b96b2b142,2
1408
+ np.float64,0xbfc4d18f9529a320,0xbfc50150fb4de0cc,2
1409
+ np.float64,0xbfe09939a7613274,0xbfe262d703c317af,2
1410
+ np.float64,0xbfd130b132a26162,0xbfd19f5a00ae29c4,2
1411
+ np.float64,0x3fa06e21d420dc40,0x3fa06f93aba415fb,2
1412
+ np.float64,0x3fc5c48fbd2b8920,0x3fc5fb3bfad3bf55,2
1413
+ np.float64,0xbfdfa2bacbbf4576,0xbfe155f839825308,2
1414
+ np.float64,0x3fe3e1fa0f67c3f4,0x3fe745081dd4fd03,2
1415
+ np.float64,0x3fdae58289b5cb04,0x3fdcac1f6789130a,2
1416
+ np.float64,0xbf8ed3ba103da780,0xbf8ed452a9cc1442,2
1417
+ np.float64,0xbfec06b46f780d69,0xbff5b86f30d70908,2
1418
+ np.float64,0xbfe990c13b732182,0xbff187a90ae611f8,2
1419
+ np.float64,0xbfdd46c738ba8d8e,0xbfdf9eee0a113230,2
1420
+ np.float64,0x3fe08b83f3611708,0x3fe2501b1c77035c,2
1421
+ np.float64,0xbfd501b65baa036c,0xbfd5d05de3fceac8,2
1422
+ np.float64,0xbfcf4fa21f3e9f44,0xbfcff5829582c0b6,2
1423
+ np.float64,0xbfefbc0bfbff7818,0xc005eca1a2c56b38,2
1424
+ np.float64,0xbfe1ba6959e374d2,0xbfe3f8f88d128ce5,2
1425
+ np.float64,0xbfd4e74ee3a9ce9e,0xbfd5b2cabeb45e6c,2
1426
+ np.float64,0xbfe77c38eaeef872,0xbfedfd332d6f1c75,2
1427
+ np.float64,0x3fa9b5e4fc336bc0,0x3fa9bb6f6b80b4af,2
1428
+ np.float64,0xbfecba63917974c7,0xbff75e44df7f8e81,2
1429
+ np.float64,0x3fd6cf17b2ad9e30,0x3fd7db0b93b7f2b5,2
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-cbrt.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0x3ee7054c,0x3f4459ea,2
3
+ np.float32,0x7d1e2489,0x54095925,2
4
+ np.float32,0x7ee5edf5,0x549b992b,2
5
+ np.float32,0x380607,0x2a425e72,2
6
+ np.float32,0x34a8f3,0x2a3e6603,2
7
+ np.float32,0x3eee2844,0x3f465a45,2
8
+ np.float32,0x59e49c,0x2a638d0a,2
9
+ np.float32,0xbf72c77a,0xbf7b83d4,2
10
+ np.float32,0x7f2517b4,0x54af8bf0,2
11
+ np.float32,0x80068a69,0xa9bdfe8b,2
12
+ np.float32,0xbe8e3578,0xbf270775,2
13
+ np.float32,0xbe4224dc,0xbf131119,2
14
+ np.float32,0xbe0053b8,0xbf001be2,2
15
+ np.float32,0x70e8d,0x29c2ddc5,2
16
+ np.float32,0xff63f7b5,0xd4c37b7f,2
17
+ np.float32,0x3f00bbed,0x3f4b9335,2
18
+ np.float32,0x3f135f4e,0x3f54f5d4,2
19
+ np.float32,0xbe13a488,0xbf063d13,2
20
+ np.float32,0x3f14ec78,0x3f55b478,2
21
+ np.float32,0x7ec35cfb,0x54935fbf,2
22
+ np.float32,0x7d41c589,0x5412f904,2
23
+ np.float32,0x3ef8a16e,0x3f4937f7,2
24
+ np.float32,0x3f5d8464,0x3f73f279,2
25
+ np.float32,0xbeec85ac,0xbf45e5cb,2
26
+ np.float32,0x7f11f722,0x54a87cb1,2
27
+ np.float32,0x8032c085,0xaa3c1219,2
28
+ np.float32,0x80544bac,0xaa5eb9f2,2
29
+ np.float32,0x3e944a10,0x3f296065,2
30
+ np.float32,0xbf29fe50,0xbf5f5796,2
31
+ np.float32,0x7e204d8d,0x545b03d5,2
32
+ np.float32,0xfe1d0254,0xd4598127,2
33
+ np.float32,0x80523129,0xaa5cdba9,2
34
+ np.float32,0x806315fa,0xaa6b0eaf,2
35
+ np.float32,0x3ed3d2a4,0x3f3ec117,2
36
+ np.float32,0x7ee15007,0x549a8cc0,2
37
+ np.float32,0x801ffb5e,0xaa213d4f,2
38
+ np.float32,0x807f9f4a,0xaa7fbf76,2
39
+ np.float32,0xbe45e854,0xbf1402d3,2
40
+ np.float32,0x3d9e2e70,0x3eda0b64,2
41
+ np.float32,0x51f404,0x2a5ca4d7,2
42
+ np.float32,0xbe26a8b0,0xbf0bc54d,2
43
+ np.float32,0x22c99a,0x2a25d2a7,2
44
+ np.float32,0xbf71248b,0xbf7af2d5,2
45
+ np.float32,0x7219fe,0x2a76608e,2
46
+ np.float32,0x7f16fd7d,0x54aa6610,2
47
+ np.float32,0x80716faa,0xaa75e5b9,2
48
+ np.float32,0xbe24f9a4,0xbf0b4c65,2
49
+ np.float32,0x800000,0x2a800000,2
50
+ np.float32,0x80747456,0xaa780f27,2
51
+ np.float32,0x68f9e8,0x2a6fa035,2
52
+ np.float32,0x3f6a297e,0x3f7880d8,2
53
+ np.float32,0x3f28b973,0x3f5ec8f6,2
54
+ np.float32,0x7f58c577,0x54c03a70,2
55
+ np.float32,0x804befcc,0xaa571b4f,2
56
+ np.float32,0x3e2be027,0x3f0d36cf,2
57
+ np.float32,0xfe7e80a4,0xd47f7ff7,2
58
+ np.float32,0xfe9d444a,0xd489181b,2
59
+ np.float32,0x3db3e790,0x3ee399d6,2
60
+ np.float32,0xbf154c3e,0xbf55e23e,2
61
+ np.float32,0x3d1096b7,0x3ea7f4aa,2
62
+ np.float32,0x7fc00000,0x7fc00000,2
63
+ np.float32,0x804e2521,0xaa592c06,2
64
+ np.float32,0xbeda2f00,0xbf40a513,2
65
+ np.float32,0x3f191788,0x3f57ae30,2
66
+ np.float32,0x3ed24ade,0x3f3e4b34,2
67
+ np.float32,0x807fadb4,0xaa7fc917,2
68
+ np.float32,0xbe0a06dc,0xbf034234,2
69
+ np.float32,0x3f250bba,0x3f5d276d,2
70
+ np.float32,0x7e948b00,0x548682c8,2
71
+ np.float32,0xfe65ecdc,0xd476fed2,2
72
+ np.float32,0x6fdbdd,0x2a74c095,2
73
+ np.float32,0x800112de,0xa9500fa6,2
74
+ np.float32,0xfe63225c,0xd475fdee,2
75
+ np.float32,0x7f3d9acd,0x54b7d648,2
76
+ np.float32,0xfc46f480,0xd3bacf87,2
77
+ np.float32,0xfe5deaac,0xd47417ff,2
78
+ np.float32,0x60ce53,0x2a693d93,2
79
+ np.float32,0x6a6e2f,0x2a70ba2c,2
80
+ np.float32,0x7f43f0f1,0x54b9dcd0,2
81
+ np.float32,0xbf6170c9,0xbf756104,2
82
+ np.float32,0xbe5c9f74,0xbf197852,2
83
+ np.float32,0xff1502b0,0xd4a9a693,2
84
+ np.float32,0x8064f6af,0xaa6c886e,2
85
+ np.float32,0xbf380564,0xbf6552e5,2
86
+ np.float32,0xfeb9b7dc,0xd490e85f,2
87
+ np.float32,0x7f34f941,0x54b5010d,2
88
+ np.float32,0xbe9d4ca0,0xbf2cbd5f,2
89
+ np.float32,0x3f6e43d2,0x3f79f240,2
90
+ np.float32,0xbdad0530,0xbee0a8f2,2
91
+ np.float32,0x3da18459,0x3edb9105,2
92
+ np.float32,0xfd968340,0xd42a3808,2
93
+ np.float32,0x3ea03e64,0x3f2dcf96,2
94
+ np.float32,0x801d2f5b,0xaa1c6525,2
95
+ np.float32,0xbf47d92d,0xbf6bb7e9,2
96
+ np.float32,0x55a6b9,0x2a5fe9fb,2
97
+ np.float32,0x77a7c2,0x2a7a4fb8,2
98
+ np.float32,0xfebbc16e,0xd4916f88,2
99
+ np.float32,0x3f5d3d6e,0x3f73d86a,2
100
+ np.float32,0xfccd2b60,0xd3edcacb,2
101
+ np.float32,0xbd026460,0xbea244b0,2
102
+ np.float32,0x3e55bd,0x2a4968e4,2
103
+ np.float32,0xbe7b5708,0xbf20490d,2
104
+ np.float32,0xfe413cf4,0xd469171f,2
105
+ np.float32,0x7710e3,0x2a79e657,2
106
+ np.float32,0xfc932520,0xd3d4d9ca,2
107
+ np.float32,0xbf764a1b,0xbf7cb8aa,2
108
+ np.float32,0x6b1923,0x2a713aca,2
109
+ np.float32,0xfe4dcd04,0xd46e092d,2
110
+ np.float32,0xff3085ac,0xd4b381f8,2
111
+ np.float32,0x3f72c438,0x3f7b82b4,2
112
+ np.float32,0xbf6f0c6e,0xbf7a3852,2
113
+ np.float32,0x801d2b1b,0xaa1c5d8d,2
114
+ np.float32,0x3e9db91e,0x3f2ce50d,2
115
+ np.float32,0x3f684f9d,0x3f77d8c5,2
116
+ np.float32,0x7dc784,0x2a7e82cc,2
117
+ np.float32,0x7d2c88e9,0x540d64f8,2
118
+ np.float32,0x807fb708,0xaa7fcf51,2
119
+ np.float32,0x8003c49a,0xa99e16e0,2
120
+ np.float32,0x3ee4f5b8,0x3f43c3ff,2
121
+ np.float32,0xfe992c5e,0xd487e4ec,2
122
+ np.float32,0x4b4dfa,0x2a568216,2
123
+ np.float32,0x3d374c80,0x3eb5c6a8,2
124
+ np.float32,0xbd3a4700,0xbeb6c15c,2
125
+ np.float32,0xbf13cb80,0xbf5529e5,2
126
+ np.float32,0xbe7306d4,0xbf1e7f91,2
127
+ np.float32,0xbf800000,0xbf800000,2
128
+ np.float32,0xbea42efe,0xbf2f394e,2
129
+ np.float32,0x3e1981d0,0x3f07fe2c,2
130
+ np.float32,0x3f17ea1d,0x3f572047,2
131
+ np.float32,0x7dc1e0,0x2a7e7efe,2
132
+ np.float32,0x80169c08,0xaa0fa320,2
133
+ np.float32,0x3f3e1972,0x3f67d248,2
134
+ np.float32,0xfe5d3c88,0xd473d815,2
135
+ np.float32,0xbf677448,0xbf778aac,2
136
+ np.float32,0x7e799b7d,0x547dd9e4,2
137
+ np.float32,0x3f00bb2c,0x3f4b92cf,2
138
+ np.float32,0xbeb29f9c,0xbf343798,2
139
+ np.float32,0xbd6b7830,0xbec59a86,2
140
+ np.float32,0x807a524a,0xaa7c282a,2
141
+ np.float32,0xbe0a7a04,0xbf0366ab,2
142
+ np.float32,0x80237470,0xaa26e061,2
143
+ np.float32,0x3ccbc0f6,0x3e95744f,2
144
+ np.float32,0x3edec6bc,0x3f41fcb6,2
145
+ np.float32,0x3f635198,0x3f760efa,2
146
+ np.float32,0x800eca4f,0xa9f960d8,2
147
+ np.float32,0x3f800000,0x3f800000,2
148
+ np.float32,0xff4eeb9e,0xd4bd456a,2
149
+ np.float32,0x56f4e,0x29b29e70,2
150
+ np.float32,0xff5383a0,0xd4bea95c,2
151
+ np.float32,0x3f4c3a77,0x3f6d6d94,2
152
+ np.float32,0x3f6c324a,0x3f79388c,2
153
+ np.float32,0xbebdc092,0xbf37e27c,2
154
+ np.float32,0xff258956,0xd4afb42e,2
155
+ np.float32,0xdc78c,0x29f39012,2
156
+ np.float32,0xbf2db06a,0xbf60f2f5,2
157
+ np.float32,0xbe3c5808,0xbf119660,2
158
+ np.float32,0xbf1ba866,0xbf58e0f4,2
159
+ np.float32,0x80377640,0xaa41b79d,2
160
+ np.float32,0x4fdc4d,0x2a5abfea,2
161
+ np.float32,0x7f5e7560,0x54c1e516,2
162
+ np.float32,0xfeb4d3f2,0xd48f9fde,2
163
+ np.float32,0x3f12a622,0x3f549c7d,2
164
+ np.float32,0x7f737ed7,0x54c7d2dc,2
165
+ np.float32,0xa0ddc,0x29db456d,2
166
+ np.float32,0xfe006740,0xd44b6689,2
167
+ np.float32,0x3f17dfd4,0x3f571b6c,2
168
+ np.float32,0x67546e,0x2a6e5dd1,2
169
+ np.float32,0xff0d0f11,0xd4a693e2,2
170
+ np.float32,0xbd170090,0xbeaa6738,2
171
+ np.float32,0x5274a0,0x2a5d1806,2
172
+ np.float32,0x3e154fe0,0x3f06be1a,2
173
+ np.float32,0x7ddb302e,0x5440f0a7,2
174
+ np.float32,0x3f579d10,0x3f71c2af,2
175
+ np.float32,0xff2bc5bb,0xd4b1e20c,2
176
+ np.float32,0xfee8fa6a,0xd49c4872,2
177
+ np.float32,0xbea551b0,0xbf2fa07b,2
178
+ np.float32,0xfeabc75c,0xd48d3004,2
179
+ np.float32,0x7f50a5a8,0x54bdcbd1,2
180
+ np.float32,0x50354b,0x2a5b110d,2
181
+ np.float32,0x7d139f13,0x54063b6b,2
182
+ np.float32,0xbeee1b08,0xbf465699,2
183
+ np.float32,0xfe5e1650,0xd47427fe,2
184
+ np.float32,0x7f7fffff,0x54cb2ff5,2
185
+ np.float32,0xbf52ede8,0xbf6fff35,2
186
+ np.float32,0x804bba81,0xaa56e8f1,2
187
+ np.float32,0x6609e2,0x2a6d5e94,2
188
+ np.float32,0x692621,0x2a6fc1d6,2
189
+ np.float32,0xbf288bb6,0xbf5eb4d3,2
190
+ np.float32,0x804f28c4,0xaa5a1b82,2
191
+ np.float32,0xbdaad2a8,0xbedfb46e,2
192
+ np.float32,0x5e04f8,0x2a66fb13,2
193
+ np.float32,0x804c10da,0xaa573a81,2
194
+ np.float32,0xbe412764,0xbf12d0fd,2
195
+ np.float32,0x801c35cc,0xaa1aa250,2
196
+ np.float32,0x6364d4,0x2a6b4cf9,2
197
+ np.float32,0xbf6d3cea,0xbf79962f,2
198
+ np.float32,0x7e5a9935,0x5472defb,2
199
+ np.float32,0xbe73a38c,0xbf1ea19c,2
200
+ np.float32,0xbd35e950,0xbeb550f2,2
201
+ np.float32,0x46cc16,0x2a5223d6,2
202
+ np.float32,0x3f005288,0x3f4b5b97,2
203
+ np.float32,0x8034e8b7,0xaa3eb2be,2
204
+ np.float32,0xbea775fc,0xbf3061cf,2
205
+ np.float32,0xea0e9,0x29f87751,2
206
+ np.float32,0xbf38faaf,0xbf65b89d,2
207
+ np.float32,0xbedf3184,0xbf421bb0,2
208
+ np.float32,0xbe04250c,0xbf015def,2
209
+ np.float32,0x7f56dae8,0x54bfa901,2
210
+ np.float32,0xfebe3e04,0xd492132e,2
211
+ np.float32,0x3e4dc326,0x3f15f19e,2
212
+ np.float32,0x803da197,0xaa48a621,2
213
+ np.float32,0x7eeb35aa,0x549cc7c6,2
214
+ np.float32,0xfebb3eb6,0xd4914dc0,2
215
+ np.float32,0xfed17478,0xd496d5e2,2
216
+ np.float32,0x80243694,0xaa280ed2,2
217
+ np.float32,0x8017e666,0xaa1251d3,2
218
+ np.float32,0xbf07e942,0xbf4f4a3e,2
219
+ np.float32,0xbf578fa6,0xbf71bdab,2
220
+ np.float32,0x7ed8d80f,0x549896b6,2
221
+ np.float32,0x3f2277ae,0x3f5bff11,2
222
+ np.float32,0x7e6f195b,0x547a3cd4,2
223
+ np.float32,0xbf441559,0xbf6a3a91,2
224
+ np.float32,0x7f1fb427,0x54ad9d8d,2
225
+ np.float32,0x71695f,0x2a75e12d,2
226
+ np.float32,0xbd859588,0xbece19a1,2
227
+ np.float32,0x7f5702fc,0x54bfb4eb,2
228
+ np.float32,0x3f040008,0x3f4d4842,2
229
+ np.float32,0x3de00ca5,0x3ef4df89,2
230
+ np.float32,0x3eeabb03,0x3f45658c,2
231
+ np.float32,0x3dfe5e65,0x3eff7480,2
232
+ np.float32,0x1,0x26a14518,2
233
+ np.float32,0x8065e400,0xaa6d4130,2
234
+ np.float32,0xff50e1bb,0xd4bdde07,2
235
+ np.float32,0xbe88635a,0xbf24b7e9,2
236
+ np.float32,0x3f46bfab,0x3f6b4908,2
237
+ np.float32,0xbd85c3c8,0xbece3168,2
238
+ np.float32,0xbe633f64,0xbf1afdb1,2
239
+ np.float32,0xff2c7706,0xd4b21f2a,2
240
+ np.float32,0xbf02816c,0xbf4c812a,2
241
+ np.float32,0x80653aeb,0xaa6cbdab,2
242
+ np.float32,0x3eef1d10,0x3f469e24,2
243
+ np.float32,0x3d9944bf,0x3ed7c36a,2
244
+ np.float32,0x1b03d4,0x2a186b2b,2
245
+ np.float32,0x3f251b7c,0x3f5d2e76,2
246
+ np.float32,0x3edebab0,0x3f41f937,2
247
+ np.float32,0xfefc2148,0xd4a073ff,2
248
+ np.float32,0x7448ee,0x2a77f051,2
249
+ np.float32,0x3bb8a400,0x3e3637ee,2
250
+ np.float32,0x57df36,0x2a61d527,2
251
+ np.float32,0xfd8b9098,0xd425fccb,2
252
+ np.float32,0x7f67627e,0x54c4744d,2
253
+ np.float32,0x801165d7,0xaa039fba,2
254
+ np.float32,0x53aae5,0x2a5e2bfd,2
255
+ np.float32,0x8014012b,0xaa09e4f1,2
256
+ np.float32,0x3f7a2d53,0x3f7e0b4b,2
257
+ np.float32,0x3f5fb700,0x3f74c052,2
258
+ np.float32,0x7f192a06,0x54ab366c,2
259
+ np.float32,0x3f569611,0x3f71603b,2
260
+ np.float32,0x25e2dc,0x2a2a9b65,2
261
+ np.float32,0x8036465e,0xaa405342,2
262
+ np.float32,0x804118e1,0xaa4c5785,2
263
+ np.float32,0xbef08d3e,0xbf4703e1,2
264
+ np.float32,0x3447e2,0x2a3df0be,2
265
+ np.float32,0xbf2a350b,0xbf5f6f8c,2
266
+ np.float32,0xbec87e3e,0xbf3b4a73,2
267
+ np.float32,0xbe99a4a8,0xbf2b6412,2
268
+ np.float32,0x2ea2ae,0x2a36d77e,2
269
+ np.float32,0xfcb69600,0xd3e4b9e3,2
270
+ np.float32,0x717700,0x2a75eb06,2
271
+ np.float32,0xbf4e81ce,0xbf6e4ecc,2
272
+ np.float32,0xbe2021ac,0xbf09ebee,2
273
+ np.float32,0xfef94eee,0xd49fda31,2
274
+ np.float32,0x8563e,0x29ce0015,2
275
+ np.float32,0x7f5d0ca5,0x54c17c0f,2
276
+ np.float32,0x3f16459a,0x3f56590f,2
277
+ np.float32,0xbe12f7bc,0xbf0608a0,2
278
+ np.float32,0x3f10fd3d,0x3f53ce5f,2
279
+ np.float32,0x3ca5e1b0,0x3e8b8d96,2
280
+ np.float32,0xbe5288e0,0xbf17181f,2
281
+ np.float32,0xbf7360f6,0xbf7bb8c9,2
282
+ np.float32,0x7e989d33,0x5487ba88,2
283
+ np.float32,0x3ea7b5dc,0x3f307839,2
284
+ np.float32,0x7e8da0c9,0x548463f0,2
285
+ np.float32,0xfeaf7888,0xd48e3122,2
286
+ np.float32,0x7d90402d,0x5427d321,2
287
+ np.float32,0x72e309,0x2a76f0ee,2
288
+ np.float32,0xbe1faa34,0xbf09c998,2
289
+ np.float32,0xbf2b1652,0xbf5fd1f4,2
290
+ np.float32,0x8051eb0c,0xaa5c9cca,2
291
+ np.float32,0x7edf02bf,0x549a058e,2
292
+ np.float32,0x7fa00000,0x7fe00000,2
293
+ np.float32,0x3f67f873,0x3f77b9c1,2
294
+ np.float32,0x3f276b63,0x3f5e358c,2
295
+ np.float32,0x7eeb4bf2,0x549cccb9,2
296
+ np.float32,0x3bfa2c,0x2a46d675,2
297
+ np.float32,0x3e133c50,0x3f061d75,2
298
+ np.float32,0x3ca302c0,0x3e8abe4a,2
299
+ np.float32,0x802e152e,0xaa361dd5,2
300
+ np.float32,0x3f504810,0x3f6efd0a,2
301
+ np.float32,0xbf43e0b5,0xbf6a2599,2
302
+ np.float32,0x80800000,0xaa800000,2
303
+ np.float32,0x3f1c0980,0x3f590e03,2
304
+ np.float32,0xbf0084f6,0xbf4b7638,2
305
+ np.float32,0xfee72d32,0xd49be10d,2
306
+ np.float32,0x3f3c00ed,0x3f66f763,2
307
+ np.float32,0x80511e81,0xaa5be492,2
308
+ np.float32,0xfdd1b8a0,0xd43e1f0d,2
309
+ np.float32,0x7d877474,0x54245785,2
310
+ np.float32,0x7f110bfe,0x54a82207,2
311
+ np.float32,0xff800000,0xff800000,2
312
+ np.float32,0x6b6a2,0x29bfa706,2
313
+ np.float32,0xbf5bdfd9,0xbf7357b7,2
314
+ np.float32,0x8025bfa3,0xaa2a6676,2
315
+ np.float32,0x3a3581,0x2a44dd3a,2
316
+ np.float32,0x542c2a,0x2a5e9e2f,2
317
+ np.float32,0xbe1d5650,0xbf091d57,2
318
+ np.float32,0x3e97760d,0x3f2a935e,2
319
+ np.float32,0x7f5dcde2,0x54c1b460,2
320
+ np.float32,0x800bde1e,0xa9e7bbaf,2
321
+ np.float32,0x3e6b9e61,0x3f1cdf07,2
322
+ np.float32,0x7d46c003,0x54143884,2
323
+ np.float32,0x80073fbb,0xa9c49e67,2
324
+ np.float32,0x503c23,0x2a5b1748,2
325
+ np.float32,0x7eb7b070,0x549060c8,2
326
+ np.float32,0xe9d8f,0x29f86456,2
327
+ np.float32,0xbeedd4f0,0xbf464320,2
328
+ np.float32,0x3f40d5d6,0x3f68eda1,2
329
+ np.float32,0xff201f28,0xd4adc44b,2
330
+ np.float32,0xbdf61e98,0xbefca9c7,2
331
+ np.float32,0x3e8a0dc9,0x3f2562e3,2
332
+ np.float32,0xbc0c0c80,0xbe515f61,2
333
+ np.float32,0x2b3c15,0x2a3248e3,2
334
+ np.float32,0x42a7bb,0x2a4df592,2
335
+ np.float32,0x7f337947,0x54b480af,2
336
+ np.float32,0xfec21db4,0xd4930f4b,2
337
+ np.float32,0x7f4fdbf3,0x54bd8e94,2
338
+ np.float32,0x1e2253,0x2a1e1286,2
339
+ np.float32,0x800c4c80,0xa9ea819e,2
340
+ np.float32,0x7e96f5b7,0x54873c88,2
341
+ np.float32,0x7ce4e131,0x53f69ed4,2
342
+ np.float32,0xbead8372,0xbf327b63,2
343
+ np.float32,0x3e15ca7e,0x3f06e2f3,2
344
+ np.float32,0xbf63e17b,0xbf7642da,2
345
+ np.float32,0xff5bdbdb,0xd4c122f9,2
346
+ np.float32,0x3f44411e,0x3f6a4bfd,2
347
+ np.float32,0xfd007da0,0xd40029d2,2
348
+ np.float32,0xbe940168,0xbf2944b7,2
349
+ np.float32,0x80000000,0x80000000,2
350
+ np.float32,0x3d28e356,0x3eb0e1b8,2
351
+ np.float32,0x3eb9fcd8,0x3f36a918,2
352
+ np.float32,0x4f6410,0x2a5a51eb,2
353
+ np.float32,0xbdf18e30,0xbefb1775,2
354
+ np.float32,0x32edbd,0x2a3c49e3,2
355
+ np.float32,0x801f70a5,0xaa2052da,2
356
+ np.float32,0x8045a045,0xaa50f98c,2
357
+ np.float32,0xbdd6cb00,0xbef17412,2
358
+ np.float32,0x3f118f2c,0x3f541557,2
359
+ np.float32,0xbe65c378,0xbf1b8f95,2
360
+ np.float32,0xfd9a9060,0xd42bbb8b,2
361
+ np.float32,0x3f04244f,0x3f4d5b0f,2
362
+ np.float32,0xff05214b,0xd4a3656f,2
363
+ np.float32,0xfe342cd0,0xd463b706,2
364
+ np.float32,0x3f3409a8,0x3f63a836,2
365
+ np.float32,0x80205db2,0xaa21e1e5,2
366
+ np.float32,0xbf37c982,0xbf653a03,2
367
+ np.float32,0x3f36ce8f,0x3f64d17e,2
368
+ np.float32,0x36ffda,0x2a412d61,2
369
+ np.float32,0xff569752,0xd4bf94e6,2
370
+ np.float32,0x802fdb0f,0xaa386c3a,2
371
+ np.float32,0x7ec55a87,0x5493df71,2
372
+ np.float32,0x7f2234c7,0x54ae847e,2
373
+ np.float32,0xbf02df76,0xbf4cb23d,2
374
+ np.float32,0x3d68731a,0x3ec4c156,2
375
+ np.float32,0x8146,0x2921cd8e,2
376
+ np.float32,0x80119364,0xaa041235,2
377
+ np.float32,0xfe6c1c00,0xd47930b5,2
378
+ np.float32,0x8070da44,0xaa757996,2
379
+ np.float32,0xfefbf50c,0xd4a06a9d,2
380
+ np.float32,0xbf01b6a8,0xbf4c170a,2
381
+ np.float32,0x110702,0x2a02aedb,2
382
+ np.float32,0xbf063cd4,0xbf4e6f87,2
383
+ np.float32,0x3f1ff178,0x3f5ad9dd,2
384
+ np.float32,0xbf76dcd4,0xbf7cead0,2
385
+ np.float32,0x80527281,0xaa5d1620,2
386
+ np.float32,0xfea96df8,0xd48c8a7f,2
387
+ np.float32,0x68db02,0x2a6f88b0,2
388
+ np.float32,0x62d971,0x2a6adec7,2
389
+ np.float32,0x3e816fe0,0x3f21df04,2
390
+ np.float32,0x3f586379,0x3f720cc0,2
391
+ np.float32,0x804a3718,0xaa5577ff,2
392
+ np.float32,0x2e2506,0x2a3632b2,2
393
+ np.float32,0x3f297d,0x2a4a4bf3,2
394
+ np.float32,0xbe37aba8,0xbf105f88,2
395
+ np.float32,0xbf18b264,0xbf577ea7,2
396
+ np.float32,0x7f50d02d,0x54bdd8b5,2
397
+ np.float32,0xfee296dc,0xd49ad757,2
398
+ np.float32,0x7ec5137e,0x5493cdb1,2
399
+ np.float32,0x3f4811f4,0x3f6bce3a,2
400
+ np.float32,0xfdff32a0,0xd44af991,2
401
+ np.float32,0x3f6ef140,0x3f7a2ed6,2
402
+ np.float32,0x250838,0x2a2950b5,2
403
+ np.float32,0x25c28e,0x2a2a6ada,2
404
+ np.float32,0xbe875e50,0xbf244e90,2
405
+ np.float32,0x3e3bdff8,0x3f11776a,2
406
+ np.float32,0x3e9fe493,0x3f2daf17,2
407
+ np.float32,0x804d8599,0xaa5897d9,2
408
+ np.float32,0x3f0533da,0x3f4de759,2
409
+ np.float32,0xbe63023c,0xbf1aefc8,2
410
+ np.float32,0x80636e5e,0xaa6b547f,2
411
+ np.float32,0xff112958,0xd4a82d5d,2
412
+ np.float32,0x3e924112,0x3f28991f,2
413
+ np.float32,0xbe996ffc,0xbf2b507a,2
414
+ np.float32,0x802a7cda,0xaa314081,2
415
+ np.float32,0x8022b524,0xaa25b21e,2
416
+ np.float32,0x3f0808c8,0x3f4f5a43,2
417
+ np.float32,0xbef0ec2a,0xbf471e0b,2
418
+ np.float32,0xff4c2345,0xd4bc6b3c,2
419
+ np.float32,0x25ccc8,0x2a2a7a3b,2
420
+ np.float32,0x7f4467d6,0x54ba0260,2
421
+ np.float32,0x7f506539,0x54bdb846,2
422
+ np.float32,0x412ab4,0x2a4c6a2a,2
423
+ np.float32,0x80672c4a,0xaa6e3ef0,2
424
+ np.float32,0xbddfb7f8,0xbef4c0ac,2
425
+ np.float32,0xbf250bb9,0xbf5d276c,2
426
+ np.float32,0x807dca65,0xaa7e84bd,2
427
+ np.float32,0xbf63b8e0,0xbf763438,2
428
+ np.float32,0xbeed1b0c,0xbf460f6b,2
429
+ np.float32,0x8021594f,0xaa238136,2
430
+ np.float32,0xbebc74c8,0xbf377710,2
431
+ np.float32,0x3e9f8e3b,0x3f2d8fce,2
432
+ np.float32,0x7f50ca09,0x54bdd6d8,2
433
+ np.float32,0x805797c1,0xaa6197df,2
434
+ np.float32,0x3de198f9,0x3ef56f98,2
435
+ np.float32,0xf154d,0x29fb0392,2
436
+ np.float32,0xff7fffff,0xd4cb2ff5,2
437
+ np.float32,0xfed22fa8,0xd49702c4,2
438
+ np.float32,0xbf733736,0xbf7baa64,2
439
+ np.float32,0xbf206a8a,0xbf5b1108,2
440
+ np.float32,0xbca49680,0xbe8b3078,2
441
+ np.float32,0xfecba794,0xd4956e1a,2
442
+ np.float32,0x80126582,0xaa061886,2
443
+ np.float32,0xfee5cc82,0xd49b919f,2
444
+ np.float32,0xbf7ad6ae,0xbf7e4491,2
445
+ np.float32,0x7ea88c81,0x548c4c0c,2
446
+ np.float32,0xbf493a0d,0xbf6c4255,2
447
+ np.float32,0xbf06dda0,0xbf4ec1d4,2
448
+ np.float32,0xff3f6e84,0xd4b86cf6,2
449
+ np.float32,0x3e4fe093,0x3f1674b0,2
450
+ np.float32,0x8048ad60,0xaa53fbde,2
451
+ np.float32,0x7ebb7112,0x54915ac5,2
452
+ np.float32,0x5bd191,0x2a652a0d,2
453
+ np.float32,0xfe3121d0,0xd4626cfb,2
454
+ np.float32,0x7e4421c6,0x546a3f83,2
455
+ np.float32,0x19975b,0x2a15b14f,2
456
+ np.float32,0x801c8087,0xaa1b2a64,2
457
+ np.float32,0xfdf6e950,0xd448c0f6,2
458
+ np.float32,0x74e711,0x2a786083,2
459
+ np.float32,0xbf2b2f2e,0xbf5fdccb,2
460
+ np.float32,0x7ed19ece,0x5496e00b,2
461
+ np.float32,0x7f6f8322,0x54c6ba63,2
462
+ np.float32,0x3e90316d,0x3f27cd69,2
463
+ np.float32,0x7ecb42ce,0x54955571,2
464
+ np.float32,0x3f6d49be,0x3f799aaf,2
465
+ np.float32,0x8053d327,0xaa5e4f9a,2
466
+ np.float32,0x7ebd7361,0x5491df3e,2
467
+ np.float32,0xfdb6eed0,0xd435a7aa,2
468
+ np.float32,0x7f3e79f4,0x54b81e4b,2
469
+ np.float32,0xfe83afa6,0xd4813794,2
470
+ np.float32,0x37c443,0x2a421246,2
471
+ np.float32,0xff075a10,0xd4a44cd8,2
472
+ np.float32,0x3ebc5fe0,0x3f377047,2
473
+ np.float32,0x739694,0x2a77714e,2
474
+ np.float32,0xfe832946,0xd4810b91,2
475
+ np.float32,0x7f2638e6,0x54aff235,2
476
+ np.float32,0xfe87f7a6,0xd4829a3f,2
477
+ np.float32,0x3f50f3f8,0x3f6f3eb8,2
478
+ np.float32,0x3eafa3d0,0x3f333548,2
479
+ np.float32,0xbec26ee6,0xbf39626f,2
480
+ np.float32,0x7e6f924f,0x547a66ff,2
481
+ np.float32,0x7f0baa46,0x54a606f8,2
482
+ np.float32,0xbf6dfc49,0xbf79d939,2
483
+ np.float32,0x7f005709,0x54a1699d,2
484
+ np.float32,0x7ee3d7ef,0x549b2057,2
485
+ np.float32,0x803709a4,0xaa4138d7,2
486
+ np.float32,0x3f7bf49a,0x3f7ea509,2
487
+ np.float32,0x509db7,0x2a5b6ff5,2
488
+ np.float32,0x7eb1b0d4,0x548ec9ff,2
489
+ np.float32,0x7eb996ec,0x5490dfce,2
490
+ np.float32,0xbf1fcbaa,0xbf5ac89e,2
491
+ np.float32,0x3e2c9a98,0x3f0d69cc,2
492
+ np.float32,0x3ea77994,0x3f306312,2
493
+ np.float32,0x3f3cbfe4,0x3f67457c,2
494
+ np.float32,0x8422a,0x29cd5a30,2
495
+ np.float32,0xbd974558,0xbed6d264,2
496
+ np.float32,0xfecee77a,0xd496387f,2
497
+ np.float32,0x3f51876b,0x3f6f76f1,2
498
+ np.float32,0x3b1a25,0x2a45ddad,2
499
+ np.float32,0xfe9912f0,0xd487dd67,2
500
+ np.float32,0x3f3ab13d,0x3f666d99,2
501
+ np.float32,0xbf35565a,0xbf64341b,2
502
+ np.float32,0x7d4e84aa,0x54162091,2
503
+ np.float32,0x4c2570,0x2a574dea,2
504
+ np.float32,0x7e82dca6,0x5480f26b,2
505
+ np.float32,0x7f5503e7,0x54bf1c8d,2
506
+ np.float32,0xbeb85034,0xbf361c59,2
507
+ np.float32,0x80460a69,0xaa516387,2
508
+ np.float32,0x805fbbab,0xaa68602c,2
509
+ np.float32,0x7d4b4c1b,0x541557b8,2
510
+ np.float32,0xbefa9a0a,0xbf49bfbc,2
511
+ np.float32,0x3dbd233f,0x3ee76e09,2
512
+ np.float32,0x58b6df,0x2a628d50,2
513
+ np.float32,0xfcdcc180,0xd3f3aad9,2
514
+ np.float32,0x423a37,0x2a4d8487,2
515
+ np.float32,0xbed8b32a,0xbf403507,2
516
+ np.float32,0x3f68e85d,0x3f780f0b,2
517
+ np.float32,0x7ee13c4b,0x549a883d,2
518
+ np.float32,0xff2ed4c5,0xd4b2eec1,2
519
+ np.float32,0xbf54dadc,0xbf70b99a,2
520
+ np.float32,0x3f78b0af,0x3f7d8a32,2
521
+ np.float32,0x3f377372,0x3f651635,2
522
+ np.float32,0xfdaa6178,0xd43166bc,2
523
+ np.float32,0x8060c337,0xaa6934a6,2
524
+ np.float32,0x7ec752c2,0x54945cf6,2
525
+ np.float32,0xbd01a760,0xbea1f624,2
526
+ np.float32,0x6f6599,0x2a746a35,2
527
+ np.float32,0x3f6315b0,0x3f75f95b,2
528
+ np.float32,0x7f2baf32,0x54b1da44,2
529
+ np.float32,0x3e400353,0x3f1286d8,2
530
+ np.float32,0x40d3bf,0x2a4c0f15,2
531
+ np.float32,0x7f733aca,0x54c7c03d,2
532
+ np.float32,0x7e5c5407,0x5473828b,2
533
+ np.float32,0x80191703,0xaa14b56a,2
534
+ np.float32,0xbf4fc144,0xbf6ec970,2
535
+ np.float32,0xbf1137a7,0xbf53eacd,2
536
+ np.float32,0x80575410,0xaa615db3,2
537
+ np.float32,0xbd0911d0,0xbea4fe07,2
538
+ np.float32,0x3e98534a,0x3f2ae643,2
539
+ np.float32,0x3f3b089a,0x3f669185,2
540
+ np.float32,0x4fc752,0x2a5aacc1,2
541
+ np.float32,0xbef44ddc,0xbf480b6e,2
542
+ np.float32,0x80464217,0xaa519af4,2
543
+ np.float32,0x80445fae,0xaa4fb6de,2
544
+ np.float32,0x80771cf4,0xaa79eec8,2
545
+ np.float32,0xfd9182e8,0xd4284fed,2
546
+ np.float32,0xff0a5d16,0xd4a58288,2
547
+ np.float32,0x3f33e169,0x3f63973e,2
548
+ np.float32,0x8021a247,0xaa23f820,2
549
+ np.float32,0xbf362522,0xbf648ab8,2
550
+ np.float32,0x3f457cd7,0x3f6ac95e,2
551
+ np.float32,0xbcadf400,0xbe8dc7e2,2
552
+ np.float32,0x80237210,0xaa26dca7,2
553
+ np.float32,0xbf1293c9,0xbf54939f,2
554
+ np.float32,0xbc5e73c0,0xbe744a37,2
555
+ np.float32,0x3c03f980,0x3e4d44df,2
556
+ np.float32,0x7da46f,0x2a7e6b20,2
557
+ np.float32,0x5d4570,0x2a665dd0,2
558
+ np.float32,0x3e93fbac,0x3f294287,2
559
+ np.float32,0x7e6808fd,0x5477bfa4,2
560
+ np.float32,0xff5aa9a6,0xd4c0c925,2
561
+ np.float32,0xbf5206ba,0xbf6fa767,2
562
+ np.float32,0xbf6e513e,0xbf79f6f1,2
563
+ np.float32,0x3ed01c0f,0x3f3da20f,2
564
+ np.float32,0xff47d93d,0xd4bb1704,2
565
+ np.float32,0x7f466cfd,0x54baa514,2
566
+ np.float32,0x665e10,0x2a6d9fc8,2
567
+ np.float32,0x804d0629,0xaa5820e8,2
568
+ np.float32,0x7e0beaa0,0x54514e7e,2
569
+ np.float32,0xbf7fcb6c,0xbf7fee78,2
570
+ np.float32,0x3f6c5b03,0x3f7946dd,2
571
+ np.float32,0x3e941504,0x3f294c30,2
572
+ np.float32,0xbf2749ad,0xbf5e26a1,2
573
+ np.float32,0xfec2a00a,0xd493302d,2
574
+ np.float32,0x3f15a358,0x3f560bce,2
575
+ np.float32,0x3f15c4e7,0x3f561bcd,2
576
+ np.float32,0xfedc8692,0xd499728c,2
577
+ np.float32,0x7e8f6902,0x5484f180,2
578
+ np.float32,0x7f663d62,0x54c42136,2
579
+ np.float32,0x8027ea62,0xaa2d99b4,2
580
+ np.float32,0x3f3d093d,0x3f67636d,2
581
+ np.float32,0x7f118c33,0x54a85382,2
582
+ np.float32,0x803e866a,0xaa499d43,2
583
+ np.float32,0x80053632,0xa9b02407,2
584
+ np.float32,0xbf36dd66,0xbf64d7af,2
585
+ np.float32,0xbf560358,0xbf71292b,2
586
+ np.float32,0x139a8,0x29596bc0,2
587
+ np.float32,0xbe04f75c,0xbf01a26c,2
588
+ np.float32,0xfe1c3268,0xd45920fa,2
589
+ np.float32,0x7ec77f72,0x5494680c,2
590
+ np.float32,0xbedde724,0xbf41bbba,2
591
+ np.float32,0x3e81dbe0,0x3f220bfd,2
592
+ np.float32,0x800373ac,0xa99989d4,2
593
+ np.float32,0x3f7f859a,0x3f7fd72d,2
594
+ np.float32,0x3eb9dc7e,0x3f369e80,2
595
+ np.float32,0xff5f8eb7,0xd4c236b1,2
596
+ np.float32,0xff1c03cb,0xd4ac44ac,2
597
+ np.float32,0x18cfe1,0x2a14285b,2
598
+ np.float32,0x7f21b075,0x54ae54fd,2
599
+ np.float32,0xff490bd8,0xd4bb7680,2
600
+ np.float32,0xbf15dc22,0xbf5626de,2
601
+ np.float32,0xfe1d5a10,0xd459a9a3,2
602
+ np.float32,0x750544,0x2a7875e4,2
603
+ np.float32,0x8023d5df,0xaa2778b3,2
604
+ np.float32,0x3e42aa08,0x3f1332b2,2
605
+ np.float32,0x3ecaa751,0x3f3bf60d,2
606
+ np.float32,0x0,0x0,2
607
+ np.float32,0x80416da6,0xaa4cb011,2
608
+ np.float32,0x3f4ea9ae,0x3f6e5e22,2
609
+ np.float32,0x2113f4,0x2a230f8e,2
610
+ np.float32,0x3f35c2e6,0x3f64619a,2
611
+ np.float32,0xbf50db8a,0xbf6f3564,2
612
+ np.float32,0xff4d5cea,0xd4bccb8a,2
613
+ np.float32,0x7ee54420,0x549b72d2,2
614
+ np.float32,0x64ee68,0x2a6c81f7,2
615
+ np.float32,0x5330da,0x2a5dbfc2,2
616
+ np.float32,0x80047f88,0xa9a7b467,2
617
+ np.float32,0xbda01078,0xbedae800,2
618
+ np.float32,0xfe96d05a,0xd487315f,2
619
+ np.float32,0x8003cc10,0xa99e7ef4,2
620
+ np.float32,0x8007b4ac,0xa9c8aa3d,2
621
+ np.float32,0x5d4bcf,0x2a66630e,2
622
+ np.float32,0xfdd0c0b0,0xd43dd403,2
623
+ np.float32,0xbf7a1d82,0xbf7e05f0,2
624
+ np.float32,0x74ca33,0x2a784c0f,2
625
+ np.float32,0x804f45e5,0xaa5a3640,2
626
+ np.float32,0x7e6d16aa,0x547988c4,2
627
+ np.float32,0x807d5762,0xaa7e3714,2
628
+ np.float32,0xfecf93d0,0xd4966229,2
629
+ np.float32,0xfecbd25c,0xd4957890,2
630
+ np.float32,0xff7db31c,0xd4ca93b0,2
631
+ np.float32,0x3dac9e18,0x3ee07c4a,2
632
+ np.float32,0xbf4b2d28,0xbf6d0509,2
633
+ np.float32,0xbd4f4c50,0xbebd62e0,2
634
+ np.float32,0xbd2eac40,0xbeb2e0ee,2
635
+ np.float32,0x3d01b69b,0x3ea1fc7b,2
636
+ np.float32,0x7ec63902,0x549416ed,2
637
+ np.float32,0xfcc47700,0xd3ea616d,2
638
+ np.float32,0xbf5ddec2,0xbf7413a1,2
639
+ np.float32,0xff6a6110,0xd4c54c52,2
640
+ np.float32,0xfdfae2a0,0xd449d335,2
641
+ np.float32,0x7e54868c,0x547099cd,2
642
+ np.float32,0x802b5b88,0xaa327413,2
643
+ np.float32,0x80440e72,0xaa4f647a,2
644
+ np.float32,0x3e313c94,0x3f0eaad5,2
645
+ np.float32,0x3ebb492a,0x3f3715a2,2
646
+ np.float32,0xbef56286,0xbf4856d5,2
647
+ np.float32,0x3f0154ba,0x3f4be3a0,2
648
+ np.float32,0xff2df86c,0xd4b2a376,2
649
+ np.float32,0x3ef6a850,0x3f48af57,2
650
+ np.float32,0x3d8d33e1,0x3ed1f22d,2
651
+ np.float32,0x4dd9b9,0x2a58e615,2
652
+ np.float32,0x7f1caf83,0x54ac83c9,2
653
+ np.float32,0xbf7286b3,0xbf7b6d73,2
654
+ np.float32,0x80064f88,0xa9bbbd9f,2
655
+ np.float32,0xbf1f55fa,0xbf5a92db,2
656
+ np.float32,0x546a81,0x2a5ed516,2
657
+ np.float32,0xbe912880,0xbf282d0a,2
658
+ np.float32,0x5df587,0x2a66ee6e,2
659
+ np.float32,0x801f706c,0xaa205279,2
660
+ np.float32,0x58cb6d,0x2a629ece,2
661
+ np.float32,0xfe754f8c,0xd47c62da,2
662
+ np.float32,0xbefb6f4c,0xbf49f8e7,2
663
+ np.float32,0x80000001,0xa6a14518,2
664
+ np.float32,0xbf067837,0xbf4e8df4,2
665
+ np.float32,0x3e8e715c,0x3f271ee4,2
666
+ np.float32,0x8009de9b,0xa9d9ebc8,2
667
+ np.float32,0xbf371ff1,0xbf64f36e,2
668
+ np.float32,0x7f5ce661,0x54c170e4,2
669
+ np.float32,0x3f3c47d1,0x3f671467,2
670
+ np.float32,0xfea5e5a6,0xd48b8eb2,2
671
+ np.float32,0xff62b17f,0xd4c31e15,2
672
+ np.float32,0xff315932,0xd4b3c98f,2
673
+ np.float32,0xbf1c3ca8,0xbf5925b9,2
674
+ np.float32,0x7f800000,0x7f800000,2
675
+ np.float32,0xfdf20868,0xd4476c3b,2
676
+ np.float32,0x5b790e,0x2a64e052,2
677
+ np.float32,0x3f5ddf4e,0x3f7413d4,2
678
+ np.float32,0x7f1a3182,0x54ab9861,2
679
+ np.float32,0x3f4b906e,0x3f6d2b9d,2
680
+ np.float32,0x7ebac760,0x54912edb,2
681
+ np.float32,0x7f626d3f,0x54c30a7e,2
682
+ np.float32,0x3e27b058,0x3f0c0edc,2
683
+ np.float32,0x8041e69c,0xaa4d2de8,2
684
+ np.float32,0x3f42cee0,0x3f69b84a,2
685
+ np.float32,0x7ec5fe83,0x5494085b,2
686
+ np.float32,0x9d3e6,0x29d99cde,2
687
+ np.float32,0x3edc50c0,0x3f41452d,2
688
+ np.float32,0xbf2c463a,0xbf60562c,2
689
+ np.float32,0x800bfa33,0xa9e871e8,2
690
+ np.float32,0x7c9f2c,0x2a7dba4d,2
691
+ np.float32,0x7f2ef9fd,0x54b2fb73,2
692
+ np.float32,0x80741847,0xaa77cdb9,2
693
+ np.float32,0x7e9c462a,0x5488ce1b,2
694
+ np.float32,0x3ea47ec1,0x3f2f55a9,2
695
+ np.float32,0x7f311c43,0x54b3b4f5,2
696
+ np.float32,0x3d8f4c73,0x3ed2facd,2
697
+ np.float32,0x806d7bd2,0xaa7301ef,2
698
+ np.float32,0xbf633d24,0xbf760799,2
699
+ np.float32,0xff4f9a3f,0xd4bd7a99,2
700
+ np.float32,0x3f6021ca,0x3f74e73d,2
701
+ np.float32,0x7e447015,0x546a5eac,2
702
+ np.float32,0x6bff3c,0x2a71e711,2
703
+ np.float32,0xe9c9f,0x29f85f06,2
704
+ np.float32,0x8009fe14,0xa9dad277,2
705
+ np.float32,0x807cf79c,0xaa7df644,2
706
+ np.float32,0xff440e1b,0xd4b9e608,2
707
+ np.float32,0xbddf9a50,0xbef4b5db,2
708
+ np.float32,0x7f3b1c39,0x54b706fc,2
709
+ np.float32,0x3c7471a0,0x3e7c16a7,2
710
+ np.float32,0x8065b02b,0xaa6d18ee,2
711
+ np.float32,0x7f63a3b2,0x54c36379,2
712
+ np.float32,0xbe9c9d92,0xbf2c7d33,2
713
+ np.float32,0x3d93aad3,0x3ed51a2e,2
714
+ np.float32,0xbf41b040,0xbf694571,2
715
+ np.float32,0x80396b9e,0xaa43f899,2
716
+ np.float64,0x800fa025695f404b,0xaaa4000ff64bb00c,2
717
+ np.float64,0xbfecc00198f98003,0xbfeee0b623fbd94b,2
718
+ np.float64,0x7f9eeb60b03dd6c0,0x55291bf8554bb303,2
719
+ np.float64,0x3fba74485634e890,0x3fde08710bdb148d,2
720
+ np.float64,0xbfdd9a75193b34ea,0xbfe8bf711660a2f5,2
721
+ np.float64,0xbfcf92e17a3f25c4,0xbfe4119eda6f3773,2
722
+ np.float64,0xbfe359e2ba66b3c6,0xbfeb0f7ae97ea142,2
723
+ np.float64,0x20791a5640f24,0x2a9441f13d262bed,2
724
+ np.float64,0x3fe455fbfae8abf8,0x3feb830d63e1022c,2
725
+ np.float64,0xbd112b7b7a226,0x2aa238c097ec269a,2
726
+ np.float64,0x93349ba126694,0x2aa0c363cd74465a,2
727
+ np.float64,0x20300cd440602,0x2a9432b4f4081209,2
728
+ np.float64,0x3fdcfae677b9f5cc,0x3fe892a9ee56fe8d,2
729
+ np.float64,0xbfefaae3f7bf55c8,0xbfefe388066132c4,2
730
+ np.float64,0x1a7d6eb634faf,0x2a92ed9851d29ab5,2
731
+ np.float64,0x7fd5308d39aa6119,0x553be444e30326c6,2
732
+ np.float64,0xff811c7390223900,0xd5205cb404952fa7,2
733
+ np.float64,0x80083d24aff07a4a,0xaaa0285cf764d898,2
734
+ np.float64,0x800633810ccc6703,0xaa9d65341419586b,2
735
+ np.float64,0x800ff456223fe8ac,0xaaa423bbcc24dff1,2
736
+ np.float64,0x7fde5c99aebcb932,0x553f71be7d6d9daa,2
737
+ np.float64,0x3fed961c4b3b2c39,0x3fef2ca146270cac,2
738
+ np.float64,0x7fe744d30c6e89a5,0x554220a4cdc78e62,2
739
+ np.float64,0x3fd8f527c7b1ea50,0x3fe76101085be1cb,2
740
+ np.float64,0xbfc96a14b232d428,0xbfe2ab1a8962606c,2
741
+ np.float64,0xffe85f540cf0bea7,0xd54268dff964519a,2
742
+ np.float64,0x800e3be0fe7c77c2,0xaaa3634efd7f020b,2
743
+ np.float64,0x3feb90d032f721a0,0x3fee72a4579e8b12,2
744
+ np.float64,0xffe05674aaa0ace9,0xd5401c9e3fb4abcf,2
745
+ np.float64,0x3fefc2e32c3f85c6,0x3fefeb940924bf42,2
746
+ np.float64,0xbfecfd89e9f9fb14,0xbfeef6addf73ee49,2
747
+ np.float64,0xf5862717eb0c5,0x2aa3e1428780382d,2
748
+ np.float64,0xffc3003b32260078,0xd53558f92202dcdb,2
749
+ np.float64,0x3feb4c152c36982a,0x3fee5940f7da0825,2
750
+ np.float64,0x3fe7147b002e28f6,0x3fecb2948f46d1e3,2
751
+ np.float64,0x7fe00ad9b4a015b2,0x5540039d15e1da54,2
752
+ np.float64,0x8010000000000000,0xaaa428a2f98d728b,2
753
+ np.float64,0xbfd3a41bfea74838,0xbfe595ab45b1be91,2
754
+ np.float64,0x7fdbfd6e5537fadc,0x553e9a6e1107b8d0,2
755
+ np.float64,0x800151d9d9a2a3b4,0xaa918cd8fb63f40f,2
756
+ np.float64,0x7fe6828401ad0507,0x5541eda05dcd1fcf,2
757
+ np.float64,0x3fdae1e7a1b5c3d0,0x3fe7f711e72ecc35,2
758
+ np.float64,0x7fdf4936133e926b,0x553fc29c8d5edea3,2
759
+ np.float64,0x80079de12d4f3bc3,0xaa9f7b06a9286da4,2
760
+ np.float64,0x3fe1261cade24c39,0x3fe9fe09488e417a,2
761
+ np.float64,0xbfc20dce21241b9c,0xbfe0a842fb207a28,2
762
+ np.float64,0x3fe3285dfa2650bc,0x3feaf85215f59ef9,2
763
+ np.float64,0x7fe42b93aea85726,0x554148c3c3bb35e3,2
764
+ np.float64,0xffe6c74e7f6d8e9c,0xd541ffd13fa36dbd,2
765
+ np.float64,0x3fe73ea139ee7d42,0x3fecc402242ab7d3,2
766
+ np.float64,0xffbd4b46be3a9690,0xd53392de917c72e4,2
767
+ np.float64,0x800caed8df395db2,0xaaa2a811a02e6be4,2
768
+ np.float64,0x800aacdb6c9559b7,0xaaa19d6fbc8feebf,2
769
+ np.float64,0x839fb4eb073f7,0x2aa0264b98327c12,2
770
+ np.float64,0xffd0157ba9a02af8,0xd5397157a11c0d05,2
771
+ np.float64,0x7fddc8ff173b91fd,0x553f3e7663fb2ac7,2
772
+ np.float64,0x67b365facf66d,0x2a9dd4d838b0d853,2
773
+ np.float64,0xffe12e7fc7225cff,0xd5406272a83a8e1b,2
774
+ np.float64,0x7fea5b19a034b632,0x5542e567658b3e36,2
775
+ np.float64,0x124989d824932,0x2a90ba8dc7a39532,2
776
+ np.float64,0xffe12ef098225de0,0xd54062968450a078,2
777
+ np.float64,0x3fea2f44a3f45e8a,0x3fedee3c461f4716,2
778
+ np.float64,0x3fe6b033e66d6068,0x3fec88c8035e06b1,2
779
+ np.float64,0x3fe928a2ccf25146,0x3fed88d4cde7a700,2
780
+ np.float64,0x3feead27e97d5a50,0x3fef8d7537d82e60,2
781
+ np.float64,0x8003ab80b6875702,0xaa98adfedd7715a9,2
782
+ np.float64,0x45a405828b481,0x2a9a1fa99a4eff1e,2
783
+ np.float64,0x8002ddebad85bbd8,0xaa96babfda4e0031,2
784
+ np.float64,0x3fc278c32824f186,0x3fe0c8e7c979fbd5,2
785
+ np.float64,0x2e10fffc5c221,0x2a96c30a766d06fa,2
786
+ np.float64,0xffd6ba8c2ead7518,0xd53c8d1d92bc2788,2
787
+ np.float64,0xbfeb5ec3a036bd87,0xbfee602bbf0a0d01,2
788
+ np.float64,0x3fed5bd58f7ab7ab,0x3fef181bf591a4a7,2
789
+ np.float64,0x7feb5274a5b6a4e8,0x55431fcf81876218,2
790
+ np.float64,0xaf8fd6cf5f1fb,0x2aa1c6edbb1e2aaf,2
791
+ np.float64,0x7fece718f179ce31,0x55437c74efb90933,2
792
+ np.float64,0xbfa3c42d0c278860,0xbfd5a16407c77e73,2
793
+ np.float64,0x800b5cff0576b9fe,0xaaa1fc4ecb0dec4f,2
794
+ np.float64,0x800be89ae557d136,0xaaa244d115fc0963,2
795
+ np.float64,0x800d2578f5ba4af2,0xaaa2e18a3a3fc134,2
796
+ np.float64,0x80090ff93e321ff3,0xaaa0add578e3cc3c,2
797
+ np.float64,0x28c5a240518c,0x2a81587cccd7e202,2
798
+ np.float64,0x7fec066929780cd1,0x55434971435d1069,2
799
+ np.float64,0x7fc84d4d15309a99,0x55372c204515694f,2
800
+ np.float64,0xffe070a75de0e14e,0xd54025365046dad2,2
801
+ np.float64,0x7fe5b27cc36b64f9,0x5541b5b822f0b6ca,2
802
+ np.float64,0x3fdea35ac8bd46b6,0x3fe9086a0fb792c2,2
803
+ np.float64,0xbfe79996f7af332e,0xbfece9571d37a5b3,2
804
+ np.float64,0xffdfb47f943f6900,0xd53fe6c14c3366db,2
805
+ np.float64,0xc015cf63802ba,0x2aa2517164d075f4,2
806
+ np.float64,0x7feba98948375312,0x5543340b5b1f1181,2
807
+ np.float64,0x8008678e6550cf1d,0xaaa043e7cea90da5,2
808
+ np.float64,0x3fb11b92fa223726,0x3fd9f8b53be4d90b,2
809
+ np.float64,0x7fc9b18cf0336319,0x55379b42da882047,2
810
+ np.float64,0xbfe5043e736a087d,0xbfebd0c67db7a8e3,2
811
+ np.float64,0x7fde88546a3d10a8,0x553f80cfe5bcf5fe,2
812
+ np.float64,0x8006a6c82dcd4d91,0xaa9e171d182ba049,2
813
+ np.float64,0xbfa0f707ac21ee10,0xbfd48e5d3faa1699,2
814
+ np.float64,0xbfe7716bffaee2d8,0xbfecd8e6abfb8964,2
815
+ np.float64,0x9511ccab2a23a,0x2aa0d56d748f0313,2
816
+ np.float64,0x8003ddb9b847bb74,0xaa991ca06fd9d308,2
817
+ np.float64,0x80030710fac60e23,0xaa9725845ac95fe8,2
818
+ np.float64,0xffece5bbaeb9cb76,0xd5437c2670f894f4,2
819
+ np.float64,0x3fd9be5c72b37cb9,0x3fe79f2e932a5708,2
820
+ np.float64,0x1f050cca3e0a3,0x2a93f36499fe5228,2
821
+ np.float64,0x3fd5422becaa8458,0x3fe6295d6150df58,2
822
+ np.float64,0xffd72c050e2e580a,0xd53cbc52d73b495f,2
823
+ np.float64,0xbfe66d5235ecdaa4,0xbfec6ca27e60bf23,2
824
+ np.float64,0x17ac49a42f58a,0x2a923b5b757087a0,2
825
+ np.float64,0xffd39edc40273db8,0xd53b2f7bb99b96bf,2
826
+ np.float64,0x7fde6cf009bcd9df,0x553f77614eb30d75,2
827
+ np.float64,0x80042b4c3fa85699,0xaa99c05fbdd057db,2
828
+ np.float64,0xbfde5547f8bcaa90,0xbfe8f3147d67a940,2
829
+ np.float64,0xbfdd02f9bf3a05f4,0xbfe894f2048aa3fe,2
830
+ np.float64,0xbfa20ec82c241d90,0xbfd4fd02ee55aac7,2
831
+ np.float64,0x8002f670f8c5ece3,0xaa96fad7e53dd479,2
832
+ np.float64,0x80059f24d7eb3e4a,0xaa9c7312dae0d7bc,2
833
+ np.float64,0x7fe6ae7423ad5ce7,0x5541f9430be53062,2
834
+ np.float64,0xe135ea79c26be,0x2aa350d8f8c526e1,2
835
+ np.float64,0x3fec188ce4f8311a,0x3feea44d21c23f68,2
836
+ np.float64,0x800355688286aad2,0xaa97e6ca51eb8357,2
837
+ np.float64,0xa2d6530b45acb,0x2aa15635bbd366e8,2
838
+ np.float64,0x600e0150c01c1,0x2a9d1456ea6c239c,2
839
+ np.float64,0x8009c30863338611,0xaaa118f94b188bcf,2
840
+ np.float64,0x3fe7e4c0dfefc982,0x3fed07e8480b8c07,2
841
+ np.float64,0xbfddac6407bb58c8,0xbfe8c46f63a50225,2
842
+ np.float64,0xbc85e977790bd,0x2aa2344636ed713d,2
843
+ np.float64,0xfff0000000000000,0xfff0000000000000,2
844
+ np.float64,0xffcd1570303a2ae0,0xd5389a27d5148701,2
845
+ np.float64,0xbf937334d026e660,0xbfd113762e4e29a7,2
846
+ np.float64,0x3fdbfdaa9b37fb55,0x3fe84a425fdff7df,2
847
+ np.float64,0xffc10800f5221000,0xd5349535ffe12030,2
848
+ np.float64,0xaf40f3755e81f,0x2aa1c443af16cd27,2
849
+ np.float64,0x800f7da34f7efb47,0xaaa3f14bf25fc89f,2
850
+ np.float64,0xffe4a60125a94c02,0xd5416b764a294128,2
851
+ np.float64,0xbf8e25aa903c4b40,0xbfcf5ebc275b4789,2
852
+ np.float64,0x3fca681bbb34d038,0x3fe2e882bcaee320,2
853
+ np.float64,0xbfd0f3c9c1a1e794,0xbfe48d0df7b47572,2
854
+ np.float64,0xffeb99b49d373368,0xd5433060dc641910,2
855
+ np.float64,0x3fe554fb916aa9f8,0x3febf437cf30bd67,2
856
+ np.float64,0x80079518d0af2a32,0xaa9f6ee87044745a,2
857
+ np.float64,0x5e01a8a0bc036,0x2a9cdf0badf222c3,2
858
+ np.float64,0xbfea9831b3f53064,0xbfee1601ee953ab3,2
859
+ np.float64,0xbfc369d1a826d3a4,0xbfe110b675c311e0,2
860
+ np.float64,0xa82e640d505cd,0x2aa1863d4e523b9c,2
861
+ np.float64,0x3fe506d70a2a0dae,0x3febd1eba3aa83fa,2
862
+ np.float64,0xcbacba7197598,0x2aa2adeb9927f1f2,2
863
+ np.float64,0xc112d6038225b,0x2aa25978f12038b0,2
864
+ np.float64,0xffa7f5f44c2febf0,0xd52d0ede02d4e18b,2
865
+ np.float64,0x8006f218e34de433,0xaa9e870cf373b4eb,2
866
+ np.float64,0xffe6d9a5d06db34b,0xd54204a4adc608c7,2
867
+ np.float64,0x7fe717210eae2e41,0x554214bf3e2b5228,2
868
+ np.float64,0xbfdd4b45cdba968c,0xbfe8a94c7f225f8e,2
869
+ np.float64,0x883356571066b,0x2aa055ab0b2a8833,2
870
+ np.float64,0x3fe307fc02a60ff8,0x3feae9175053288f,2
871
+ np.float64,0x3fefa985f77f530c,0x3fefe31289446615,2
872
+ np.float64,0x8005698a98aad316,0xaa9c17814ff7d630,2
873
+ np.float64,0x3fea77333c74ee66,0x3fee098ba70e10fd,2
874
+ np.float64,0xbfd1d00b0023a016,0xbfe4e497fd1cbea1,2
875
+ np.float64,0x80009b0c39813619,0xaa8b130a6909cc3f,2
876
+ np.float64,0x3fdbeb896fb7d714,0x3fe84502ba5437f8,2
877
+ np.float64,0x3fb6e7e3562dcfc7,0x3fdca00d35c389ad,2
878
+ np.float64,0xb2d46ebf65a8e,0x2aa1e2fe158d0838,2
879
+ np.float64,0xbfd5453266aa8a64,0xbfe62a6a74c8ef6e,2
880
+ np.float64,0x7fe993aa07732753,0x5542b5438bf31cb7,2
881
+ np.float64,0xbfda5a098cb4b414,0xbfe7ce6d4d606203,2
882
+ np.float64,0xbfe40c3ce068187a,0xbfeb61a32c57a6d0,2
883
+ np.float64,0x3fcf17671d3e2ed0,0x3fe3f753170ab686,2
884
+ np.float64,0xbfe4f814b6e9f02a,0xbfebcb67c60b7b08,2
885
+ np.float64,0x800efedf59fdfdbf,0xaaa3ba4ed44ad45a,2
886
+ np.float64,0x800420b556e8416b,0xaa99aa7fb14edeab,2
887
+ np.float64,0xbf6e4ae6403c9600,0xbfc3cb2b29923989,2
888
+ np.float64,0x3fda5c760a34b8ec,0x3fe7cf2821c52391,2
889
+ np.float64,0x7f898faac0331f55,0x5522b44a01408188,2
890
+ np.float64,0x3fd55af4b7aab5e9,0x3fe631f6d19503b3,2
891
+ np.float64,0xbfa30a255c261450,0xbfd55caf0826361d,2
892
+ np.float64,0x7fdfb801343f7001,0x553fe7ee50b9199a,2
893
+ np.float64,0x7fa89ee91c313dd1,0x552d528ca2a4d659,2
894
+ np.float64,0xffea72921d34e524,0xd542eb01af2e470d,2
895
+ np.float64,0x3feddf0f33fbbe1e,0x3fef462b67fc0a91,2
896
+ np.float64,0x3fe36700b566ce01,0x3feb1596caa8eff7,2
897
+ np.float64,0x7fe6284a25ac5093,0x5541d58be3956601,2
898
+ np.float64,0xffda16f7c8b42df0,0xd53de4f722485205,2
899
+ np.float64,0x7f9355b94026ab72,0x552578cdeb41d2ca,2
900
+ np.float64,0xffd3a9b022275360,0xd53b347b02dcea21,2
901
+ np.float64,0x3fcb7f4f4a36fe9f,0x3fe32a40e9f6c1aa,2
902
+ np.float64,0x7fdb958836372b0f,0x553e746103f92111,2
903
+ np.float64,0x3fd37761c0a6eec4,0x3fe5853c5654027e,2
904
+ np.float64,0x3fe449f1a2e893e4,0x3feb7d9e4eacc356,2
905
+ np.float64,0x80077dfbef0efbf9,0xaa9f4ed788d2fadd,2
906
+ np.float64,0x4823aa7890476,0x2a9a6eb4b653bad5,2
907
+ np.float64,0xbfede01a373bc034,0xbfef468895fbcd29,2
908
+ np.float64,0xbfe2bac5f125758c,0xbfeac4811c4dd66f,2
909
+ np.float64,0x3fec10373af8206e,0x3feea14529e0f178,2
910
+ np.float64,0x3fe305e30ca60bc6,0x3feae81a2f9d0302,2
911
+ np.float64,0xa9668c5f52cd2,0x2aa1910e3a8f2113,2
912
+ np.float64,0xbfd98b1717b3162e,0xbfe78f75995335d2,2
913
+ np.float64,0x800fa649c35f4c94,0xaaa402ae79026a8f,2
914
+ np.float64,0xbfb07dacf620fb58,0xbfd9a7d33d93a30f,2
915
+ np.float64,0x80015812f382b027,0xaa91a843e9c85c0e,2
916
+ np.float64,0x3fc687d96c2d0fb3,0x3fe1ef0ac16319c5,2
917
+ np.float64,0xbfecad2ecd795a5e,0xbfeed9f786697af0,2
918
+ np.float64,0x1608c1242c119,0x2a91cd11e9b4ccd2,2
919
+ np.float64,0x6df775e8dbeef,0x2a9e6ba8c71130eb,2
920
+ np.float64,0xffe96e9332b2dd26,0xd542ac342d06299b,2
921
+ np.float64,0x7fecb6a3b8396d46,0x5543718af8162472,2
922
+ np.float64,0x800d379f893a6f3f,0xaaa2ea36bbcb9308,2
923
+ np.float64,0x3f924cdb202499b6,0x3fd0bb90af8d1f79,2
924
+ np.float64,0x0,0x0,2
925
+ np.float64,0x7feaf3b365f5e766,0x5543099a160e2427,2
926
+ np.float64,0x3fea169ed0742d3e,0x3fede4d526e404f8,2
927
+ np.float64,0x7feaf5f2f775ebe5,0x55430a2196c5f35a,2
928
+ np.float64,0xbfc80d4429301a88,0xbfe2541f2ddd3334,2
929
+ np.float64,0xffc75203b32ea408,0xd536db2837068689,2
930
+ np.float64,0xffed2850e63a50a1,0xd5438b1217b72b8a,2
931
+ np.float64,0x7fc16b0e7f22d61c,0x5534bcd0bfddb6f0,2
932
+ np.float64,0x7feee8ed09fdd1d9,0x5543ed5b3ca483ab,2
933
+ np.float64,0x7fb6c7ee662d8fdc,0x5531fffb5d46dafb,2
934
+ np.float64,0x3fd77cebf8aef9d8,0x3fe6e9242e2bd29d,2
935
+ np.float64,0x3f81c33f70238680,0x3fca4c7f3c9848f7,2
936
+ np.float64,0x3fd59fea92ab3fd5,0x3fe649c1558cadd5,2
937
+ np.float64,0xffeba82d4bf7505a,0xd54333bad387f7bd,2
938
+ np.float64,0xffd37630e1a6ec62,0xd53b1ca62818c670,2
939
+ np.float64,0xffec2c1e70b8583c,0xd5435213dcd27c22,2
940
+ np.float64,0x7fec206971f840d2,0x55434f6660a8ae41,2
941
+ np.float64,0x3fed2964adba52c9,0x3fef0642fe72e894,2
942
+ np.float64,0xffd08e30d6211c62,0xd539b060e0ae02da,2
943
+ np.float64,0x3e5f976c7cbf4,0x2a992e6ff991a122,2
944
+ np.float64,0xffe6eee761adddce,0xd5420a393c67182f,2
945
+ np.float64,0xbfe8ec9a31f1d934,0xbfed714426f58147,2
946
+ np.float64,0x7fefffffffffffff,0x554428a2f98d728b,2
947
+ np.float64,0x3fb3ae8b2c275d16,0x3fdb36b81b18a546,2
948
+ np.float64,0x800f73df4dfee7bf,0xaaa3ed1a3e2cf49c,2
949
+ np.float64,0xffd0c8873b21910e,0xd539ce6a3eab5dfd,2
950
+ np.float64,0x3facd6c49439ad80,0x3fd8886f46335df1,2
951
+ np.float64,0x3935859c726b2,0x2a98775f6438dbb1,2
952
+ np.float64,0x7feed879fbfdb0f3,0x5543e9d1ac239469,2
953
+ np.float64,0xbfe84dd990f09bb3,0xbfed323af09543b1,2
954
+ np.float64,0xbfe767cc5a6ecf98,0xbfecd4f39aedbacb,2
955
+ np.float64,0xffd8bd91d5b17b24,0xd53d5eb3734a2609,2
956
+ np.float64,0xbfe13edeb2a27dbe,0xbfea0a856f0b9656,2
957
+ np.float64,0xd933dd53b267c,0x2aa3158784e428c9,2
958
+ np.float64,0xbfef6fef987edfdf,0xbfefcfb1c160462b,2
959
+ np.float64,0x8009eeda4893ddb5,0xaaa13268a41045b1,2
960
+ np.float64,0xab48c7a156919,0x2aa1a1a9c124c87d,2
961
+ np.float64,0xa997931d532f3,0x2aa192bfe5b7bbb4,2
962
+ np.float64,0xffe39ce8b1e739d1,0xd5411fa1c5c2cbd8,2
963
+ np.float64,0x7e7ac2f6fcf59,0x2a9fdf6f263a9e9f,2
964
+ np.float64,0xbfee1e35a6fc3c6b,0xbfef5c25d32b4047,2
965
+ np.float64,0xffe5589c626ab138,0xd5419d220cc9a6da,2
966
+ np.float64,0x7fe12509bf224a12,0x55405f7036dc5932,2
967
+ np.float64,0xa6f15ba94de2c,0x2aa17b3367b1fc1b,2
968
+ np.float64,0x3fca8adbfa3515b8,0x3fe2f0ca775749e5,2
969
+ np.float64,0xbfcb03aa21360754,0xbfe30d5b90ca41f7,2
970
+ np.float64,0x3fefafb2da7f5f66,0x3fefe5251aead4e7,2
971
+ np.float64,0xffd90a59d23214b4,0xd53d7cf63a644f0e,2
972
+ np.float64,0x3fba499988349333,0x3fddf84154fab7e5,2
973
+ np.float64,0x800a76a0bc54ed42,0xaaa17f68cf67f2fa,2
974
+ np.float64,0x3fea33d15bb467a3,0x3fedeff7f445b2ff,2
975
+ np.float64,0x8005d9b0726bb362,0xaa9cd48624afeca9,2
976
+ np.float64,0x7febf42e9a77e85c,0x55434541d8073376,2
977
+ np.float64,0xbfedfc4469bbf889,0xbfef505989f7ee7d,2
978
+ np.float64,0x8001211f1422423f,0xaa90a9889d865349,2
979
+ np.float64,0x800e852f7fdd0a5f,0xaaa3845f11917f8e,2
980
+ np.float64,0xffefd613c87fac27,0xd5441fd17ec669b4,2
981
+ np.float64,0x7fed2a74543a54e8,0x55438b8c637da8b8,2
982
+ np.float64,0xb83d50ff707aa,0x2aa210b4fc11e4b2,2
983
+ np.float64,0x10000000000000,0x2aa428a2f98d728b,2
984
+ np.float64,0x474ad9208e97,0x2a84e5a31530368a,2
985
+ np.float64,0xffd0c5498ea18a94,0xd539ccc0e5cb425e,2
986
+ np.float64,0x8001a8e9c82351d4,0xaa92f1aee6ca5b7c,2
987
+ np.float64,0xd28db1e5a51b6,0x2aa2e328c0788f4a,2
988
+ np.float64,0x3bf734ac77ee7,0x2a98da65c014b761,2
989
+ np.float64,0x3fe56e17c96adc30,0x3febff2b6b829b7a,2
990
+ np.float64,0x7783113eef063,0x2a9f46c3f09eb42c,2
991
+ np.float64,0x3fd69d4e42ad3a9d,0x3fe69f83a21679f4,2
992
+ np.float64,0x3fd34f4841a69e90,0x3fe5766b3c771616,2
993
+ np.float64,0x3febb49895b76931,0x3fee7fcb603416c9,2
994
+ np.float64,0x7fe8d6cb55f1ad96,0x554286c3b3bf4313,2
995
+ np.float64,0xbfe67c6ba36cf8d8,0xbfec730218f2e284,2
996
+ np.float64,0xffef9d97723f3b2e,0xd54413e38b6c29be,2
997
+ np.float64,0x12d8cd2a25b1b,0x2a90e5ccd37b8563,2
998
+ np.float64,0x81fe019103fc0,0x2aa01524155e73c5,2
999
+ np.float64,0x7fe95d546f72baa8,0x5542a7fabfd425ff,2
1000
+ np.float64,0x800e742f1f9ce85e,0xaaa37cbe09e1f874,2
1001
+ np.float64,0xffd96bd3a732d7a8,0xd53da3086071264a,2
1002
+ np.float64,0x4ef2691e9de4e,0x2a9b3d316047fd6d,2
1003
+ np.float64,0x1a91684c3522e,0x2a92f25913c213de,2
1004
+ np.float64,0x3d5151b87aa2b,0x2a9909dbd9a44a84,2
1005
+ np.float64,0x800d9049435b2093,0xaaa31424e32d94a2,2
1006
+ np.float64,0xffe5b25fcc2b64bf,0xd541b5b0416b40b5,2
1007
+ np.float64,0xffe0eb784c21d6f0,0xd5404d083c3d6bc6,2
1008
+ np.float64,0x8007ceefbf0f9de0,0xaa9fbe0d739368b4,2
1009
+ np.float64,0xb78529416f0b,0x2a8ca3b29b5b3f18,2
1010
+ np.float64,0x7fba61130034c225,0x5532e6d4ca0f2918,2
1011
+ np.float64,0x3fba8d67ae351acf,0x3fde11efd6239b09,2
1012
+ np.float64,0x3fe7f24c576fe498,0x3fed0d63947a854d,2
1013
+ np.float64,0x2bb58dec576b3,0x2a965de7fca12aff,2
1014
+ np.float64,0xbfe86ceec4f0d9de,0xbfed3ea7f1d084e2,2
1015
+ np.float64,0x7fd1a7f7bca34fee,0x553a3f01b67fad2a,2
1016
+ np.float64,0x3fd9a43acfb34874,0x3fe7972dc5d8dfd6,2
1017
+ np.float64,0x7fd9861acdb30c35,0x553dad3b1bbb3b4d,2
1018
+ np.float64,0xffecc0c388398186,0xd54373d3b903deec,2
1019
+ np.float64,0x3fa6f86e9c2df0e0,0x3fd6bdbe40fcf710,2
1020
+ np.float64,0x800ddd99815bbb33,0xaaa33820d2f889bb,2
1021
+ np.float64,0x7fe087089b610e10,0x55402c868348a6d3,2
1022
+ np.float64,0x3fdf43d249be87a5,0x3fe933d29fbf7c23,2
1023
+ np.float64,0x7fe4f734c7a9ee69,0x5541822e56c40725,2
1024
+ np.float64,0x3feb39a9d3b67354,0x3fee526bf1f69f0e,2
1025
+ np.float64,0x3fe61454a0ec28a9,0x3fec46d7c36f7566,2
1026
+ np.float64,0xbfeafaa0a375f541,0xbfee3af2e49d457a,2
1027
+ np.float64,0x3fda7378e1b4e6f0,0x3fe7d613a3f92c40,2
1028
+ np.float64,0xe3e31c5fc7c64,0x2aa3645c12e26171,2
1029
+ np.float64,0xbfe97a556df2f4ab,0xbfeda8aa84cf3544,2
1030
+ np.float64,0xff612f9c80225f00,0xd514a51e5a2a8a97,2
1031
+ np.float64,0x800c51c8a0f8a391,0xaaa279fe7d40b50b,2
1032
+ np.float64,0xffd6f9d2312df3a4,0xd53ca783a5f8d110,2
1033
+ np.float64,0xbfead48bd7f5a918,0xbfee2cb2f89c5e57,2
1034
+ np.float64,0x800f5949e89eb294,0xaaa3e1a67a10cfef,2
1035
+ np.float64,0x800faf292b7f5e52,0xaaa40675e0c96cfd,2
1036
+ np.float64,0xbfedc238453b8470,0xbfef3c179d2d0209,2
1037
+ np.float64,0x3feb0443c5760888,0x3fee3e8bf29089c2,2
1038
+ np.float64,0xb26f69e164ded,0x2aa1df9f3dd7d765,2
1039
+ np.float64,0x3fcacdc053359b80,0x3fe300a67765b667,2
1040
+ np.float64,0x3fe8b274647164e8,0x3fed5a4cd4da8155,2
1041
+ np.float64,0x291e6782523ce,0x2a95ea7ac1b13a68,2
1042
+ np.float64,0xbfc4fc094e29f814,0xbfe1838671fc8513,2
1043
+ np.float64,0x3fbf1301f23e2600,0x3fdfb03a6f13e597,2
1044
+ np.float64,0xffeb36554ab66caa,0xd543193d8181e4f9,2
1045
+ np.float64,0xbfd969a52db2d34a,0xbfe78528ae61f16d,2
1046
+ np.float64,0x800cccd04d3999a1,0xaaa2b6b7a2d2d2d6,2
1047
+ np.float64,0x808eb4cb011d7,0x2aa005effecb2b4a,2
1048
+ np.float64,0x7fe839b3f9b07367,0x55425f61e344cd6d,2
1049
+ np.float64,0xbfeb25b6ed764b6e,0xbfee4b0234fee365,2
1050
+ np.float64,0xffefffffffffffff,0xd54428a2f98d728b,2
1051
+ np.float64,0xbfe01305da60260c,0xbfe9700b784af7e9,2
1052
+ np.float64,0xffcbf36b0a37e6d8,0xd538474b1d74ffe1,2
1053
+ np.float64,0xffaeebe3e83dd7c0,0xd52fa2e8dabf7209,2
1054
+ np.float64,0xbfd9913bf0b32278,0xbfe7915907aab13c,2
1055
+ np.float64,0xbfe7d125d9efa24c,0xbfecfff563177706,2
1056
+ np.float64,0xbfee98d23cbd31a4,0xbfef867ae393e446,2
1057
+ np.float64,0x3fe30efb67e61df6,0x3feaec6344633d11,2
1058
+ np.float64,0x1,0x2990000000000000,2
1059
+ np.float64,0x7fd5524fd3aaa49f,0x553bf30d18ab877e,2
1060
+ np.float64,0xc98b403f93168,0x2aa29d2fadb13c07,2
1061
+ np.float64,0xffe57080046ae100,0xd541a3b1b687360e,2
1062
+ np.float64,0x7fe20bade5e4175b,0x5540a79b94294f40,2
1063
+ np.float64,0x3fe155400a22aa80,0x3fea15c45f5b5837,2
1064
+ np.float64,0x7fe428dc8f6851b8,0x554147fd2ce93cc1,2
1065
+ np.float64,0xffefb77eb67f6efc,0xd544195dcaff4980,2
1066
+ np.float64,0x3fe49e733b293ce6,0x3feba394b833452a,2
1067
+ np.float64,0x38e01e3e71c05,0x2a986b2c955bad21,2
1068
+ np.float64,0x7fe735eb376e6bd5,0x55421cc51290d92d,2
1069
+ np.float64,0xbfd81d8644b03b0c,0xbfe71ce6d6fbd51a,2
1070
+ np.float64,0x8009a32325134647,0xaaa10645d0e6b0d7,2
1071
+ np.float64,0x56031ab8ac064,0x2a9c074be40b1f80,2
1072
+ np.float64,0xff8989aa30331340,0xd522b2d319a0ac6e,2
1073
+ np.float64,0xbfd6c183082d8306,0xbfe6ab8ffb3a8293,2
1074
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,2
1075
+ np.float64,0xbfe17b68b1e2f6d2,0xbfea28dac8e0c457,2
1076
+ np.float64,0x3fbb50e42236a1c8,0x3fde5b090d51e3bd,2
1077
+ np.float64,0xffc2bb7cbf2576f8,0xd5353f1b3571c17f,2
1078
+ np.float64,0xbfe7576bca6eaed8,0xbfecce388241f47c,2
1079
+ np.float64,0x3fe7b52b04ef6a56,0x3fecf495bef99e7e,2
1080
+ np.float64,0xffe5511af82aa236,0xd5419b11524e8350,2
1081
+ np.float64,0xbfe66d5edf2cdabe,0xbfec6ca7d7b5be8c,2
1082
+ np.float64,0xc84a0ba790942,0x2aa29346f16a2cb4,2
1083
+ np.float64,0x6db5e7a0db6be,0x2a9e659c0e8244a0,2
1084
+ np.float64,0x7fef8f7b647f1ef6,0x554410e67af75d27,2
1085
+ np.float64,0xbfe2b4ada7e5695c,0xbfeac1997ec5a064,2
1086
+ np.float64,0xbfe99372e03326e6,0xbfedb2662b287543,2
1087
+ np.float64,0x3fa45d352428ba6a,0x3fd5d8a895423abb,2
1088
+ np.float64,0x3fa029695c2052d3,0x3fd439f858998886,2
1089
+ np.float64,0xffe0a9bd3261537a,0xd54037d0cd8bfcda,2
1090
+ np.float64,0xbfef83e09a7f07c1,0xbfefd66a4070ce73,2
1091
+ np.float64,0x7fee3dcc31fc7b97,0x5543c8503869407e,2
1092
+ np.float64,0xffbd16f1603a2de0,0xd533872fa5be978b,2
1093
+ np.float64,0xbfe8173141b02e62,0xbfed1c478614c6f4,2
1094
+ np.float64,0xbfef57aa277eaf54,0xbfefc77fdab27771,2
1095
+ np.float64,0x7fe883a02f31073f,0x554271ff0e3208da,2
1096
+ np.float64,0xe3adb63bc75b7,0x2aa362d833d0e41c,2
1097
+ np.float64,0x8001c430bac38862,0xaa93575026d26510,2
1098
+ np.float64,0x12fb347225f67,0x2a90f00eb9edb3fe,2
1099
+ np.float64,0x3fe53f83cbaa7f08,0x3febead40de452c2,2
1100
+ np.float64,0xbfe7f67227efece4,0xbfed0f10e32ad220,2
1101
+ np.float64,0xb8c5b45d718b7,0x2aa2152912cda86d,2
1102
+ np.float64,0x3fd23bb734a4776e,0x3fe50e5d3008c095,2
1103
+ np.float64,0x8001fd558ee3faac,0xaa941faa1f7ed450,2
1104
+ np.float64,0xffe6bbeda9ed77db,0xd541fcd185a63afa,2
1105
+ np.float64,0x4361d79086c3c,0x2a99d692237c30b7,2
1106
+ np.float64,0xbfd012f004a025e0,0xbfe43093e290fd0d,2
1107
+ np.float64,0xffe1d8850423b10a,0xd54097cf79d8d01e,2
1108
+ np.float64,0x3fccf4df7939e9bf,0x3fe37f8cf8be6436,2
1109
+ np.float64,0x8000546bc6c0a8d8,0xaa861bb3588556f2,2
1110
+ np.float64,0xbfecb4d6ba7969ae,0xbfeedcb6239135fe,2
1111
+ np.float64,0xbfaeb425cc3d6850,0xbfd90cfc103bb896,2
1112
+ np.float64,0x800ec037ec7d8070,0xaaa39eae8bde9774,2
1113
+ np.float64,0xbfeeaf863dfd5f0c,0xbfef8e4514772a8a,2
1114
+ np.float64,0xffec67c6c4b8cf8d,0xd5435fad89f900cf,2
1115
+ np.float64,0x3fda4498da348932,0x3fe7c7f6b3f84048,2
1116
+ np.float64,0xbfd05fd3dea0bfa8,0xbfe4509265a9b65f,2
1117
+ np.float64,0x3fe42cc713a8598e,0x3feb706ba9cd533c,2
1118
+ np.float64,0xec22d4d7d845b,0x2aa39f8cccb9711c,2
1119
+ np.float64,0x7fda30606c3460c0,0x553deea865065196,2
1120
+ np.float64,0xbfd58cba8bab1976,0xbfe64327ce32d611,2
1121
+ np.float64,0xadd521c75baa4,0x2aa1b7efce201a98,2
1122
+ np.float64,0x7fed43c1027a8781,0x55439131832b6429,2
1123
+ np.float64,0x800bee278fb7dc4f,0xaaa247a71e776db4,2
1124
+ np.float64,0xbfe9be5dd2737cbc,0xbfedc2f9501755b0,2
1125
+ np.float64,0x8003f4854447e90b,0xaa994d9b5372b13b,2
1126
+ np.float64,0xbfe5d0f867eba1f1,0xbfec29f8dd8b33a4,2
1127
+ np.float64,0x3fd79102d5af2206,0x3fe6efaa7a1efddb,2
1128
+ np.float64,0xbfeae783c835cf08,0xbfee33cdb4a44e81,2
1129
+ np.float64,0x3fcf1713e83e2e28,0x3fe3f7414753ddfb,2
1130
+ np.float64,0xffe5ab3cff2b567a,0xd541b3bf0213274a,2
1131
+ np.float64,0x7fe0fc65d8a1f8cb,0x554052761ac96386,2
1132
+ np.float64,0x7e81292efd026,0x2a9fdff8c01ae86f,2
1133
+ np.float64,0x80091176039222ec,0xaaa0aebf0565dfa6,2
1134
+ np.float64,0x800d2bf5ab5a57ec,0xaaa2e4a4c31e7e29,2
1135
+ np.float64,0xffd1912ea923225e,0xd53a33b2856726ab,2
1136
+ np.float64,0x800869918ed0d323,0xaaa0453408e1295d,2
1137
+ np.float64,0xffba0898fa341130,0xd532d19b202a9646,2
1138
+ np.float64,0xbfe09fac29613f58,0xbfe9b9687b5811a1,2
1139
+ np.float64,0xbfbd4ae82e3a95d0,0xbfdf1220f6f0fdfa,2
1140
+ np.float64,0xffea11d27bb423a4,0xd542d3d3e1522474,2
1141
+ np.float64,0xbfe6b05705ad60ae,0xbfec88d6bcab2683,2
1142
+ np.float64,0x3fe624a3f2ec4948,0x3fec4dcc78ddf871,2
1143
+ np.float64,0x53483018a6907,0x2a9bba8f92006b69,2
1144
+ np.float64,0xbfec0a6eeb7814de,0xbfee9f2a741248d7,2
1145
+ np.float64,0x3fe8c8ce6371919d,0x3fed63250c643482,2
1146
+ np.float64,0xbfe26b0ef964d61e,0xbfea9e511db83437,2
1147
+ np.float64,0xffa0408784208110,0xd52987f62c369ae9,2
1148
+ np.float64,0xffc153abc322a758,0xd534b384b5c5fe63,2
1149
+ np.float64,0xbfbdce88a63b9d10,0xbfdf4065ef0b01d4,2
1150
+ np.float64,0xffed4a4136fa9482,0xd54392a450f8b0af,2
1151
+ np.float64,0x8007aa18748f5432,0xaa9f8bd2226d4299,2
1152
+ np.float64,0xbfdab4d3e8b569a8,0xbfe7e9a5402540e5,2
1153
+ np.float64,0x7fe68914f92d1229,0x5541ef5e78fa35de,2
1154
+ np.float64,0x800a538bb1b4a718,0xaaa16bc487711295,2
1155
+ np.float64,0xffe02edbc8605db7,0xd5400f8f713df890,2
1156
+ np.float64,0xffe8968053712d00,0xd54276b9cc7f460a,2
1157
+ np.float64,0x800a4ce211d499c5,0xaaa1680491deb40c,2
1158
+ np.float64,0x3f988080f8310102,0x3fd2713691e99329,2
1159
+ np.float64,0xf64e42a7ec9c9,0x2aa3e6a7af780878,2
1160
+ np.float64,0xff73cc7100279900,0xd51b4478c3409618,2
1161
+ np.float64,0x71e6722ce3ccf,0x2a9ec76ddf296ce0,2
1162
+ np.float64,0x8006ca16ab0d942e,0xaa9e4bfd862af570,2
1163
+ np.float64,0x8000000000000000,0x8000000000000000,2
1164
+ np.float64,0xbfed373e02ba6e7c,0xbfef0b2b7bb767b3,2
1165
+ np.float64,0xa6cb0f694d962,0x2aa179dd16b0242b,2
1166
+ np.float64,0x7fec14626cf828c4,0x55434ca55b7c85d5,2
1167
+ np.float64,0x3fcda404513b4808,0x3fe3a68e8d977752,2
1168
+ np.float64,0xbfeb94995f772933,0xbfee74091d288b81,2
1169
+ np.float64,0x3fce2299a13c4530,0x3fe3c2603f28d23b,2
1170
+ np.float64,0xffd07f4534a0fe8a,0xd539a8a6ebc5a603,2
1171
+ np.float64,0x7fdb1c651e3638c9,0x553e478a6385c86b,2
1172
+ np.float64,0x3fec758336f8eb06,0x3feec5f3b92c8b28,2
1173
+ np.float64,0x796fc87cf2dfa,0x2a9f7184a4ad8c49,2
1174
+ np.float64,0x3fef9ba866ff3750,0x3fefde6a446fc2cd,2
1175
+ np.float64,0x964d26c72c9a5,0x2aa0e143f1820179,2
1176
+ np.float64,0xbfef6af750bed5ef,0xbfefce04870a97bd,2
1177
+ np.float64,0x3fe2f3961aa5e72c,0x3feadf769321a3ff,2
1178
+ np.float64,0xbfd6b706e9ad6e0e,0xbfe6a8141c5c3b5d,2
1179
+ np.float64,0x7fe0ecc40a21d987,0x55404d72c2b46a82,2
1180
+ np.float64,0xbfe560d19deac1a3,0xbfebf962681a42a4,2
1181
+ np.float64,0xbfea37170ab46e2e,0xbfedf136ee9df02b,2
1182
+ np.float64,0xbfebf78947b7ef12,0xbfee9847ef160257,2
1183
+ np.float64,0x800551f8312aa3f1,0xaa9bee7d3aa5491b,2
1184
+ np.float64,0xffed2513897a4a26,0xd5438a58c4ae28ec,2
1185
+ np.float64,0x7fd962d75cb2c5ae,0x553d9f8a0c2016f3,2
1186
+ np.float64,0x3fefdd8512bfbb0a,0x3feff47d8da7424d,2
1187
+ np.float64,0xbfefa5b43bff4b68,0xbfefe1ca42867af0,2
1188
+ np.float64,0xbfc8a2853531450c,0xbfe279bb7b965729,2
1189
+ np.float64,0x800c8843bc391088,0xaaa2951344e7b29b,2
1190
+ np.float64,0x7fe22587bae44b0e,0x5540af8bb58cfe86,2
1191
+ np.float64,0xbfe159fae822b3f6,0xbfea182394eafd8d,2
1192
+ np.float64,0xbfe6fdfd50edfbfa,0xbfeca93f2a3597d0,2
1193
+ np.float64,0xbfe5cd5afaeb9ab6,0xbfec286a8ce0470f,2
1194
+ np.float64,0xbfc84bb97f309774,0xbfe263ef0f8f1f6e,2
1195
+ np.float64,0x7fd9c1e548b383ca,0x553dc4556874ecb9,2
1196
+ np.float64,0x7fda43d33bb487a5,0x553df60f61532fc0,2
1197
+ np.float64,0xbfe774bd25eee97a,0xbfecda42e8578c1f,2
1198
+ np.float64,0x800df1f5ab9be3ec,0xaaa34184712e69db,2
1199
+ np.float64,0xbff0000000000000,0xbff0000000000000,2
1200
+ np.float64,0x3fe14ec21b629d84,0x3fea128244215713,2
1201
+ np.float64,0x7fc1ce7843239cf0,0x5534e3fa8285b7b8,2
1202
+ np.float64,0xbfe922b204724564,0xbfed86818687d649,2
1203
+ np.float64,0x3fc58924fb2b1248,0x3fe1aa715ff6ebbf,2
1204
+ np.float64,0x8008b637e4d16c70,0xaaa0760b53abcf46,2
1205
+ np.float64,0xffbf55bd4c3eab78,0xd53404a23091a842,2
1206
+ np.float64,0x9f6b4a753ed6a,0x2aa136ef9fef9596,2
1207
+ np.float64,0xbfd11da7f8a23b50,0xbfe49deb493710d8,2
1208
+ np.float64,0x800a2f07fcd45e10,0xaaa157237c98b4f6,2
1209
+ np.float64,0x3fdd4defa4ba9bdf,0x3fe8aa0bcf895f4f,2
1210
+ np.float64,0x7fe9b0ab05f36155,0x5542bc5335414473,2
1211
+ np.float64,0x3fe89c97de313930,0x3fed51a1189b8982,2
1212
+ np.float64,0x3fdd45c8773a8b91,0x3fe8a7c2096fbf5a,2
1213
+ np.float64,0xbfeb6f64daf6deca,0xbfee665167ef43ad,2
1214
+ np.float64,0xffdf9da1c4bf3b44,0xd53fdf141944a983,2
1215
+ np.float64,0x3fde092ed0bc125c,0x3fe8de25bfbfc2db,2
1216
+ np.float64,0xbfcb21f96b3643f4,0xbfe3147904c258cf,2
1217
+ np.float64,0x800c9c934f993927,0xaaa29f17c43f021b,2
1218
+ np.float64,0x9b91814d37230,0x2aa11329e59bf6b0,2
1219
+ np.float64,0x3fe28a7e0b6514fc,0x3feaad6d23e2eadd,2
1220
+ np.float64,0xffecf38395f9e706,0xd5437f3ee1cd61e4,2
1221
+ np.float64,0x3fcade92a935bd25,0x3fe3049f4c1da1d0,2
1222
+ np.float64,0x800ab25d95d564bc,0xaaa1a076d7c66e04,2
1223
+ np.float64,0xffc0989e1e21313c,0xd53467f3b8158298,2
1224
+ np.float64,0x3fd81523eeb02a48,0x3fe71a38d2da8a82,2
1225
+ np.float64,0x7fe5b9dd402b73ba,0x5541b7b9b8631010,2
1226
+ np.float64,0x2c160d94582c3,0x2a966e51b503a3d1,2
1227
+ np.float64,0x2c416ffa5882f,0x2a9675aaef8b29c4,2
1228
+ np.float64,0x7fefe2ff01bfc5fd,0x55442289faf22b86,2
1229
+ np.float64,0xbfd469bf5d28d37e,0xbfe5dd239ffdc7eb,2
1230
+ np.float64,0xbfdd56f3eabaade8,0xbfe8ac93244ca17b,2
1231
+ np.float64,0xbfe057b89160af71,0xbfe9941557340bb3,2
1232
+ np.float64,0x800c50e140b8a1c3,0xaaa2798ace9097ee,2
1233
+ np.float64,0xbfda5a8984b4b514,0xbfe7ce93d65a56b0,2
1234
+ np.float64,0xbfcd6458323ac8b0,0xbfe39872514127bf,2
1235
+ np.float64,0x3fefb1f5ebff63ec,0x3fefe5e761b49b89,2
1236
+ np.float64,0x3fea3abc1df47578,0x3fedf29a1c997863,2
1237
+ np.float64,0x7fcb4a528e3694a4,0x553815f169667213,2
1238
+ np.float64,0x8c77da7b18efc,0x2aa080e52bdedb54,2
1239
+ np.float64,0x800e5dde4c5cbbbd,0xaaa372b16fd8b1ad,2
1240
+ np.float64,0x3fd2976038a52ec0,0x3fe5316b4f79fdbc,2
1241
+ np.float64,0x69413a0ed2828,0x2a9dfacd9cb44286,2
1242
+ np.float64,0xbfebbac0bdb77582,0xbfee820d9288b631,2
1243
+ np.float64,0x1a12aa7c34256,0x2a92d407e073bbfe,2
1244
+ np.float64,0xbfc41a27c3283450,0xbfe143c8665b0d3c,2
1245
+ np.float64,0xffe4faa41369f548,0xd54183230e0ce613,2
1246
+ np.float64,0xbfdeae81f23d5d04,0xbfe90b734bf35b68,2
1247
+ np.float64,0x3fc984ba58330975,0x3fe2b19e9052008e,2
1248
+ np.float64,0x7fe6e51b8d2dca36,0x554207a74ae2bb39,2
1249
+ np.float64,0x80081a58a81034b2,0xaaa0117d4aff11c8,2
1250
+ np.float64,0x7fde3fddfe3c7fbb,0x553f67d0082acc67,2
1251
+ np.float64,0x3fac7c999038f933,0x3fd86ec2f5dc3aa4,2
1252
+ np.float64,0x7fa26b4c4c24d698,0x552a9e6ea8545c18,2
1253
+ np.float64,0x3fdacd06e6b59a0e,0x3fe7f0dc0e8f9c6d,2
1254
+ np.float64,0x80064b62cbec96c6,0xaa9d8ac0506fdd05,2
1255
+ np.float64,0xb858116170b1,0x2a8caea703d9ccc8,2
1256
+ np.float64,0xbfe8d94ccef1b29a,0xbfed69a8782cbf3d,2
1257
+ np.float64,0x8005607d6a6ac0fc,0xaa9c07cf8620b037,2
1258
+ np.float64,0xbfe66a52daacd4a6,0xbfec6b5e403e6864,2
1259
+ np.float64,0x7fc398c2e0273185,0x5535918245894606,2
1260
+ np.float64,0x74b2d7dce965c,0x2a9f077020defdbc,2
1261
+ np.float64,0x7fe8f7a4d9b1ef49,0x55428eeae210e8eb,2
1262
+ np.float64,0x80027deddc84fbdc,0xaa95b11ff9089745,2
1263
+ np.float64,0xffeba2a94e774552,0xd5433273f6568902,2
1264
+ np.float64,0x80002f8259405f05,0xaa8240b68d7b9dc4,2
1265
+ np.float64,0xbfdf0d84883e1b0a,0xbfe92532c69c5802,2
1266
+ np.float64,0xbfcdfa7b6b3bf4f8,0xbfe3b997a84d0914,2
1267
+ np.float64,0x800c18b04e183161,0xaaa25d46d60b15c6,2
1268
+ np.float64,0xffeaf1e37c35e3c6,0xd543092cd929ac19,2
1269
+ np.float64,0xbfc5aa07752b5410,0xbfe1b36ab5ec741f,2
1270
+ np.float64,0x3fe5c491d1eb8924,0x3fec24a1c3f6a178,2
1271
+ np.float64,0xbfeb736937f6e6d2,0xbfee67cd296e6fa9,2
1272
+ np.float64,0xffec3d5718787aad,0xd5435602e1a2cc43,2
1273
+ np.float64,0x7fe71e1da86e3c3a,0x55421691ead882cb,2
1274
+ np.float64,0x3fdd6ed0c93adda2,0x3fe8b341d066c43c,2
1275
+ np.float64,0x7fbe3d7a203c7af3,0x5533c83e53283430,2
1276
+ np.float64,0x3fdc20cb56384197,0x3fe854676360aba9,2
1277
+ np.float64,0xb7a1ac636f436,0x2aa20b9d40d66e78,2
1278
+ np.float64,0x3fb1491bb8229237,0x3fda0fabad1738ee,2
1279
+ np.float64,0xbfdf9c0ce73f381a,0xbfe94b716dbe35ee,2
1280
+ np.float64,0xbfbd4f0ad23a9e18,0xbfdf1397329a2dce,2
1281
+ np.float64,0xbfe4e0caac69c196,0xbfebc119b8a181cd,2
1282
+ np.float64,0x5753641aaea6d,0x2a9c2ba3e92b0cd2,2
1283
+ np.float64,0x72bb814ae5771,0x2a9eda92fada66de,2
1284
+ np.float64,0x57ed8f5aafdb3,0x2a9c3c2e1d42e609,2
1285
+ np.float64,0xffec33359c38666a,0xd54353b2acd0daf1,2
1286
+ np.float64,0x3fa5fe6e8c2bfce0,0x3fd66a0b3bf2720a,2
1287
+ np.float64,0xffe2dc8d7ca5b91a,0xd540e6ebc097d601,2
1288
+ np.float64,0x7fd99d260eb33a4b,0x553db626c9c75f78,2
1289
+ np.float64,0xbfe2dd73e425bae8,0xbfead4fc4b93a727,2
1290
+ np.float64,0xdcd4a583b9a95,0x2aa33094c9a17ad7,2
1291
+ np.float64,0x7fb0af6422215ec7,0x553039a606e8e64f,2
1292
+ np.float64,0x7fdfab6227bf56c3,0x553fe3b26164aeda,2
1293
+ np.float64,0x1e4d265e3c9a6,0x2a93cba8a1a8ae6d,2
1294
+ np.float64,0xbfdc7d097238fa12,0xbfe86ee2f24fd473,2
1295
+ np.float64,0x7fe5d35d29eba6b9,0x5541bea5878bce2b,2
1296
+ np.float64,0xffcb886a903710d4,0xd53828281710aab5,2
1297
+ np.float64,0xffe058c7ffe0b190,0xd5401d61e9a7cbcf,2
1298
+ np.float64,0x3ff0000000000000,0x3ff0000000000000,2
1299
+ np.float64,0xffd5b1c1132b6382,0xd53c1c839c098340,2
1300
+ np.float64,0x3fe2e7956725cf2b,0x3fead9c907b9d041,2
1301
+ np.float64,0x800a8ee293951dc6,0xaaa18ce3f079f118,2
1302
+ np.float64,0x7febcd3085b79a60,0x55433c47e1f822ad,2
1303
+ np.float64,0x3feb0e14cd761c2a,0x3fee423542102546,2
1304
+ np.float64,0x3fb45e6d0628bcda,0x3fdb86db67d0c992,2
1305
+ np.float64,0x7fa836e740306dce,0x552d2907cb8118b2,2
1306
+ np.float64,0x3fd15ba25b22b745,0x3fe4b6b018409d78,2
1307
+ np.float64,0xbfb59980ce2b3300,0xbfdc1206274cb51d,2
1308
+ np.float64,0x3fdef1b87fbde371,0x3fe91dafc62124a1,2
1309
+ np.float64,0x7fed37a4337a6f47,0x55438e7e0b50ae37,2
1310
+ np.float64,0xffe6c87633ad90ec,0xd542001f216ab448,2
1311
+ np.float64,0x8008d2548ab1a4a9,0xaaa087ad272d8e17,2
1312
+ np.float64,0xbfd1d6744da3ace8,0xbfe4e71965adda74,2
1313
+ np.float64,0xbfb27f751224fee8,0xbfdaa82132775406,2
1314
+ np.float64,0x3fe2b336ae65666d,0x3feac0e6b13ec2d2,2
1315
+ np.float64,0xffc6bac2262d7584,0xd536a951a2eecb49,2
1316
+ np.float64,0x7fdb661321b6cc25,0x553e62dfd7fcd3f3,2
1317
+ np.float64,0xffe83567d5706acf,0xd5425e4bb5027568,2
1318
+ np.float64,0xbf7f0693e03e0d00,0xbfc9235314d53f82,2
1319
+ np.float64,0x3feb32b218766564,0x3fee4fd5847f3722,2
1320
+ np.float64,0x3fec25d33df84ba6,0x3feea91fcd4aebab,2
1321
+ np.float64,0x7fe17abecb22f57d,0x55407a8ba661207c,2
1322
+ np.float64,0xbfe5674b1eeace96,0xbfebfc351708dc70,2
1323
+ np.float64,0xbfe51a2d2f6a345a,0xbfebda702c9d302a,2
1324
+ np.float64,0x3fec05584af80ab0,0x3fee9d502a7bf54d,2
1325
+ np.float64,0xffda8871dcb510e4,0xd53e10105f0365b5,2
1326
+ np.float64,0xbfc279c31824f388,0xbfe0c9354d871484,2
1327
+ np.float64,0x1cbed61e397dc,0x2a937364712cd518,2
1328
+ np.float64,0x800787d198af0fa4,0xaa9f5c847affa1d2,2
1329
+ np.float64,0x80079f6d65af3edc,0xaa9f7d2863368bbd,2
1330
+ np.float64,0xb942f1e97285e,0x2aa2193e0c513b7f,2
1331
+ np.float64,0x7fe9078263320f04,0x554292d85dee2c18,2
1332
+ np.float64,0xbfe4de0761a9bc0f,0xbfebbfe04116b829,2
1333
+ np.float64,0xbfdbe6f3fc37cde8,0xbfe843aea59a0749,2
1334
+ np.float64,0xffcb6c0de136d81c,0xd5381fd9c525b813,2
1335
+ np.float64,0x9b6bda9336d7c,0x2aa111c924c35386,2
1336
+ np.float64,0x3fe17eece422fdda,0x3fea2a9bacd78607,2
1337
+ np.float64,0xd8011c49b0024,0x2aa30c87574fc0c6,2
1338
+ np.float64,0xbfc0a08b3f214118,0xbfe034d48f0d8dc0,2
1339
+ np.float64,0x3fd60adb1eac15b8,0x3fe66e42e4e7e6b5,2
1340
+ np.float64,0x80011d68ea023ad3,0xaa909733befbb962,2
1341
+ np.float64,0xffb35ac32426b588,0xd5310c4be1c37270,2
1342
+ np.float64,0x3fee8b56c9bd16ae,0x3fef81d8d15f6939,2
1343
+ np.float64,0x3fdc10a45e382149,0x3fe84fbe4cf11e68,2
1344
+ np.float64,0xbfc85dc45e30bb88,0xbfe2687b5518abde,2
1345
+ np.float64,0x3fd53b85212a770a,0x3fe6270d6d920d0f,2
1346
+ np.float64,0x800fc158927f82b1,0xaaa40e303239586f,2
1347
+ np.float64,0x11af5e98235ed,0x2a908b04a790083f,2
1348
+ np.float64,0xbfe2a097afe54130,0xbfeab80269eece99,2
1349
+ np.float64,0xbfd74ac588ae958c,0xbfe6d8ca3828d0b8,2
1350
+ np.float64,0xffea18ab2ef43156,0xd542d579ab31df1e,2
1351
+ np.float64,0xbfecda7058f9b4e1,0xbfeeea29c33b7913,2
1352
+ np.float64,0x3fc4ac56ed2958b0,0x3fe16d3e2bd7806d,2
1353
+ np.float64,0x3feccc898cb99913,0x3feee531f217dcfa,2
1354
+ np.float64,0xffeb3a64c5b674c9,0xd5431a30a41f0905,2
1355
+ np.float64,0x3fe5a7ee212b4fdc,0x3fec1844af9076fc,2
1356
+ np.float64,0x80080fdb52301fb7,0xaaa00a8b4274db67,2
1357
+ np.float64,0x800b3e7e47d67cfd,0xaaa1ec2876959852,2
1358
+ np.float64,0x80063fb8ee2c7f73,0xaa9d7875c9f20d6f,2
1359
+ np.float64,0x7fdacf80d0b59f01,0x553e2acede4c62a8,2
1360
+ np.float64,0x401e9b24803d4,0x2a996a0a75d0e093,2
1361
+ np.float64,0x3fe6c29505ed852a,0x3fec907a6d8c10af,2
1362
+ np.float64,0x8005c04ee2cb809f,0xaa9caa9813faef46,2
1363
+ np.float64,0xbfe1360f21e26c1e,0xbfea06155d6985b6,2
1364
+ np.float64,0xffc70606682e0c0c,0xd536c239b9d4be0a,2
1365
+ np.float64,0x800e639afefcc736,0xaaa37547d0229a26,2
1366
+ np.float64,0x3fe5589290aab125,0x3febf5c925c4e6db,2
1367
+ np.float64,0x8003b59330276b27,0xaa98c47e44524335,2
1368
+ np.float64,0x800d67ec22dacfd8,0xaaa301251b6a730a,2
1369
+ np.float64,0x7fdaeb5025b5d69f,0x553e35397dfe87eb,2
1370
+ np.float64,0x3fdae32a24b5c654,0x3fe7f771bc108f6c,2
1371
+ np.float64,0xffe6c1fc93ad83f8,0xd541fe6a6a716756,2
1372
+ np.float64,0xbfd7b9c1d32f7384,0xbfe6fcdae563d638,2
1373
+ np.float64,0x800e1bea06fc37d4,0xaaa354c0bf61449c,2
1374
+ np.float64,0xbfd78f097aaf1e12,0xbfe6ef068329bdf4,2
1375
+ np.float64,0x7fea6a400874d47f,0x5542e905978ad722,2
1376
+ np.float64,0x8008b4377cb1686f,0xaaa074c87eee29f9,2
1377
+ np.float64,0x8002f3fb8d45e7f8,0xaa96f47ac539b614,2
1378
+ np.float64,0xbfcf2b3fd13e5680,0xbfe3fb91c0cc66ad,2
1379
+ np.float64,0xffecca2f5279945e,0xd54375f361075927,2
1380
+ np.float64,0x7ff0000000000000,0x7ff0000000000000,2
1381
+ np.float64,0x7f84d5a5a029ab4a,0x552178d1d4e8640e,2
1382
+ np.float64,0x3fea8a4b64351497,0x3fee10c332440eb2,2
1383
+ np.float64,0x800fe01ac1dfc036,0xaaa41b34d91a4bee,2
1384
+ np.float64,0x3fc0b3d8872167b1,0x3fe03b178d354f8d,2
1385
+ np.float64,0x5ee8b0acbdd17,0x2a9cf69f2e317729,2
1386
+ np.float64,0x8006ef0407adde09,0xaa9e82888f3dd83e,2
1387
+ np.float64,0x7fdbb08a07b76113,0x553e7e4e35b938b9,2
1388
+ np.float64,0x49663f9c92cc9,0x2a9a95e0affe5108,2
1389
+ np.float64,0x7fd9b87e79b370fc,0x553dc0b5cff3dc7d,2
1390
+ np.float64,0xbfd86ae657b0d5cc,0xbfe73584d02bdd2b,2
1391
+ np.float64,0x3fd4d4a13729a942,0x3fe6030a962aaaf8,2
1392
+ np.float64,0x7fcc246bcb3848d7,0x5538557309449bba,2
1393
+ np.float64,0xbfdc86a7d5b90d50,0xbfe871a2983c2a29,2
1394
+ np.float64,0xd2a6e995a54dd,0x2aa2e3e9c0fdd6c0,2
1395
+ np.float64,0x3f92eb447825d680,0x3fd0eb4fd2ba16d2,2
1396
+ np.float64,0x800d4001697a8003,0xaaa2ee358661b75c,2
1397
+ np.float64,0x3fd3705fd1a6e0c0,0x3fe582a6f321d7d6,2
1398
+ np.float64,0xbfcfdf51533fbea4,0xbfe421c3bdd9f2a3,2
1399
+ np.float64,0x3fe268e87964d1d1,0x3fea9d47e08aad8a,2
1400
+ np.float64,0x24b8901e49713,0x2a951adeefe7b31b,2
1401
+ np.float64,0x3fedb35d687b66bb,0x3fef36e440850bf8,2
1402
+ np.float64,0x3fb7ab5cbe2f56c0,0x3fdcf097380721c6,2
1403
+ np.float64,0x3f8c4eaa10389d54,0x3fceb7ecb605b73b,2
1404
+ np.float64,0xbfed831ed6fb063e,0xbfef25f462a336f1,2
1405
+ np.float64,0x7fd8c52112318a41,0x553d61b0ee609f58,2
1406
+ np.float64,0xbfe71c4ff76e38a0,0xbfecb5d32e789771,2
1407
+ np.float64,0xbfe35fb7b166bf70,0xbfeb12328e75ee6b,2
1408
+ np.float64,0x458e1a3a8b1c4,0x2a9a1cebadc81342,2
1409
+ np.float64,0x8003c1b3ad478368,0xaa98df5ed060b28c,2
1410
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,2
1411
+ np.float64,0x7fe17098c162e131,0x5540775a9a3a104f,2
1412
+ np.float64,0xbfd95cb71732b96e,0xbfe7812acf7ea511,2
1413
+ np.float64,0x8000000000000001,0xa990000000000000,2
1414
+ np.float64,0xbfde0e7d9ebc1cfc,0xbfe8df9ca9e49a5b,2
1415
+ np.float64,0xffef4f67143e9ecd,0xd5440348a6a2f231,2
1416
+ np.float64,0x7fe37d23c826fa47,0x5541165de17caa03,2
1417
+ np.float64,0xbfcc0e5f85381cc0,0xbfe34b44b0deefe9,2
1418
+ np.float64,0x3fe858f1c470b1e4,0x3fed36ab90557d89,2
1419
+ np.float64,0x800e857278fd0ae5,0xaaa3847d13220545,2
1420
+ np.float64,0x3febd31a66f7a635,0x3fee8af90e66b043,2
1421
+ np.float64,0x7fd3fde1b127fbc2,0x553b5b186a49b968,2
1422
+ np.float64,0x3fd3dabb8b27b577,0x3fe5a99b446bed26,2
1423
+ np.float64,0xffeb4500f1768a01,0xd5431cab828e254a,2
1424
+ np.float64,0xffccca8fc6399520,0xd53884f8b505e79e,2
1425
+ np.float64,0xffeee9406b7dd280,0xd543ed6d27a1a899,2
1426
+ np.float64,0xffecdde0f0f9bbc1,0xd5437a6258b14092,2
1427
+ np.float64,0xe6b54005cd6a8,0x2aa378c25938dfda,2
1428
+ np.float64,0x7fe610f1022c21e1,0x5541cf460b972925,2
1429
+ np.float64,0xbfe5a170ec6b42e2,0xbfec1576081e3232,2
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-cos.csv ADDED
@@ -0,0 +1,1375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ ## +ve denormals ##
3
+ np.float32,0x004b4716,0x3f800000,2
4
+ np.float32,0x007b2490,0x3f800000,2
5
+ np.float32,0x007c99fa,0x3f800000,2
6
+ np.float32,0x00734a0c,0x3f800000,2
7
+ np.float32,0x0070de24,0x3f800000,2
8
+ np.float32,0x007fffff,0x3f800000,2
9
+ np.float32,0x00000001,0x3f800000,2
10
+ ## -ve denormals ##
11
+ np.float32,0x80495d65,0x3f800000,2
12
+ np.float32,0x806894f6,0x3f800000,2
13
+ np.float32,0x80555a76,0x3f800000,2
14
+ np.float32,0x804e1fb8,0x3f800000,2
15
+ np.float32,0x80687de9,0x3f800000,2
16
+ np.float32,0x807fffff,0x3f800000,2
17
+ np.float32,0x80000001,0x3f800000,2
18
+ ## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
19
+ np.float32,0x00000000,0x3f800000,2
20
+ np.float32,0x80000000,0x3f800000,2
21
+ np.float32,0x00800000,0x3f800000,2
22
+ np.float32,0x80800000,0x3f800000,2
23
+ ## 1.00f + 0x00000001 ##
24
+ np.float32,0x3f800000,0x3f0a5140,2
25
+ np.float32,0x3f800001,0x3f0a513f,2
26
+ np.float32,0x3f800002,0x3f0a513d,2
27
+ np.float32,0xc090a8b0,0xbe4332ce,2
28
+ np.float32,0x41ce3184,0x3f4d1de1,2
29
+ np.float32,0xc1d85848,0xbeaa8980,2
30
+ np.float32,0x402b8820,0xbf653aa3,2
31
+ np.float32,0x42b4e454,0xbf4a338b,2
32
+ np.float32,0x42a67a60,0x3c58202e,2
33
+ np.float32,0x41d92388,0xbed987c7,2
34
+ np.float32,0x422dd66c,0x3f5dcab3,2
35
+ np.float32,0xc28f5be6,0xbf5688d8,2
36
+ np.float32,0x41ab2674,0xbf53aa3b,2
37
+ np.float32,0x3f490fdb,0x3f3504f3,2
38
+ np.float32,0xbf490fdb,0x3f3504f3,2
39
+ np.float32,0x3fc90fdb,0xb33bbd2e,2
40
+ np.float32,0xbfc90fdb,0xb33bbd2e,2
41
+ np.float32,0x40490fdb,0xbf800000,2
42
+ np.float32,0xc0490fdb,0xbf800000,2
43
+ np.float32,0x3fc90fdb,0xb33bbd2e,2
44
+ np.float32,0xbfc90fdb,0xb33bbd2e,2
45
+ np.float32,0x40490fdb,0xbf800000,2
46
+ np.float32,0xc0490fdb,0xbf800000,2
47
+ np.float32,0x40c90fdb,0x3f800000,2
48
+ np.float32,0xc0c90fdb,0x3f800000,2
49
+ np.float32,0x4016cbe4,0xbf3504f3,2
50
+ np.float32,0xc016cbe4,0xbf3504f3,2
51
+ np.float32,0x4096cbe4,0x324cde2e,2
52
+ np.float32,0xc096cbe4,0x324cde2e,2
53
+ np.float32,0x4116cbe4,0xbf800000,2
54
+ np.float32,0xc116cbe4,0xbf800000,2
55
+ np.float32,0x40490fdb,0xbf800000,2
56
+ np.float32,0xc0490fdb,0xbf800000,2
57
+ np.float32,0x40c90fdb,0x3f800000,2
58
+ np.float32,0xc0c90fdb,0x3f800000,2
59
+ np.float32,0x41490fdb,0x3f800000,2
60
+ np.float32,0xc1490fdb,0x3f800000,2
61
+ np.float32,0x407b53d2,0xbf3504f1,2
62
+ np.float32,0xc07b53d2,0xbf3504f1,2
63
+ np.float32,0x40fb53d2,0xb4b5563d,2
64
+ np.float32,0xc0fb53d2,0xb4b5563d,2
65
+ np.float32,0x417b53d2,0xbf800000,2
66
+ np.float32,0xc17b53d2,0xbf800000,2
67
+ np.float32,0x4096cbe4,0x324cde2e,2
68
+ np.float32,0xc096cbe4,0x324cde2e,2
69
+ np.float32,0x4116cbe4,0xbf800000,2
70
+ np.float32,0xc116cbe4,0xbf800000,2
71
+ np.float32,0x4196cbe4,0x3f800000,2
72
+ np.float32,0xc196cbe4,0x3f800000,2
73
+ np.float32,0x40afede0,0x3f3504f7,2
74
+ np.float32,0xc0afede0,0x3f3504f7,2
75
+ np.float32,0x412fede0,0x353222c4,2
76
+ np.float32,0xc12fede0,0x353222c4,2
77
+ np.float32,0x41afede0,0xbf800000,2
78
+ np.float32,0xc1afede0,0xbf800000,2
79
+ np.float32,0x40c90fdb,0x3f800000,2
80
+ np.float32,0xc0c90fdb,0x3f800000,2
81
+ np.float32,0x41490fdb,0x3f800000,2
82
+ np.float32,0xc1490fdb,0x3f800000,2
83
+ np.float32,0x41c90fdb,0x3f800000,2
84
+ np.float32,0xc1c90fdb,0x3f800000,2
85
+ np.float32,0x40e231d6,0x3f3504f3,2
86
+ np.float32,0xc0e231d6,0x3f3504f3,2
87
+ np.float32,0x416231d6,0xb319a6a2,2
88
+ np.float32,0xc16231d6,0xb319a6a2,2
89
+ np.float32,0x41e231d6,0xbf800000,2
90
+ np.float32,0xc1e231d6,0xbf800000,2
91
+ np.float32,0x40fb53d2,0xb4b5563d,2
92
+ np.float32,0xc0fb53d2,0xb4b5563d,2
93
+ np.float32,0x417b53d2,0xbf800000,2
94
+ np.float32,0xc17b53d2,0xbf800000,2
95
+ np.float32,0x41fb53d2,0x3f800000,2
96
+ np.float32,0xc1fb53d2,0x3f800000,2
97
+ np.float32,0x410a3ae7,0xbf3504fb,2
98
+ np.float32,0xc10a3ae7,0xbf3504fb,2
99
+ np.float32,0x418a3ae7,0x35b08908,2
100
+ np.float32,0xc18a3ae7,0x35b08908,2
101
+ np.float32,0x420a3ae7,0xbf800000,2
102
+ np.float32,0xc20a3ae7,0xbf800000,2
103
+ np.float32,0x4116cbe4,0xbf800000,2
104
+ np.float32,0xc116cbe4,0xbf800000,2
105
+ np.float32,0x4196cbe4,0x3f800000,2
106
+ np.float32,0xc196cbe4,0x3f800000,2
107
+ np.float32,0x4216cbe4,0x3f800000,2
108
+ np.float32,0xc216cbe4,0x3f800000,2
109
+ np.float32,0x41235ce2,0xbf3504ef,2
110
+ np.float32,0xc1235ce2,0xbf3504ef,2
111
+ np.float32,0x41a35ce2,0xb53889b6,2
112
+ np.float32,0xc1a35ce2,0xb53889b6,2
113
+ np.float32,0x42235ce2,0xbf800000,2
114
+ np.float32,0xc2235ce2,0xbf800000,2
115
+ np.float32,0x412fede0,0x353222c4,2
116
+ np.float32,0xc12fede0,0x353222c4,2
117
+ np.float32,0x41afede0,0xbf800000,2
118
+ np.float32,0xc1afede0,0xbf800000,2
119
+ np.float32,0x422fede0,0x3f800000,2
120
+ np.float32,0xc22fede0,0x3f800000,2
121
+ np.float32,0x413c7edd,0x3f3504f4,2
122
+ np.float32,0xc13c7edd,0x3f3504f4,2
123
+ np.float32,0x41bc7edd,0x33800add,2
124
+ np.float32,0xc1bc7edd,0x33800add,2
125
+ np.float32,0x423c7edd,0xbf800000,2
126
+ np.float32,0xc23c7edd,0xbf800000,2
127
+ np.float32,0x41490fdb,0x3f800000,2
128
+ np.float32,0xc1490fdb,0x3f800000,2
129
+ np.float32,0x41c90fdb,0x3f800000,2
130
+ np.float32,0xc1c90fdb,0x3f800000,2
131
+ np.float32,0x42490fdb,0x3f800000,2
132
+ np.float32,0xc2490fdb,0x3f800000,2
133
+ np.float32,0x4155a0d9,0x3f3504eb,2
134
+ np.float32,0xc155a0d9,0x3f3504eb,2
135
+ np.float32,0x41d5a0d9,0xb5b3bc81,2
136
+ np.float32,0xc1d5a0d9,0xb5b3bc81,2
137
+ np.float32,0x4255a0d9,0xbf800000,2
138
+ np.float32,0xc255a0d9,0xbf800000,2
139
+ np.float32,0x416231d6,0xb319a6a2,2
140
+ np.float32,0xc16231d6,0xb319a6a2,2
141
+ np.float32,0x41e231d6,0xbf800000,2
142
+ np.float32,0xc1e231d6,0xbf800000,2
143
+ np.float32,0x426231d6,0x3f800000,2
144
+ np.float32,0xc26231d6,0x3f800000,2
145
+ np.float32,0x416ec2d4,0xbf3504f7,2
146
+ np.float32,0xc16ec2d4,0xbf3504f7,2
147
+ np.float32,0x41eec2d4,0x353ef0a7,2
148
+ np.float32,0xc1eec2d4,0x353ef0a7,2
149
+ np.float32,0x426ec2d4,0xbf800000,2
150
+ np.float32,0xc26ec2d4,0xbf800000,2
151
+ np.float32,0x417b53d2,0xbf800000,2
152
+ np.float32,0xc17b53d2,0xbf800000,2
153
+ np.float32,0x41fb53d2,0x3f800000,2
154
+ np.float32,0xc1fb53d2,0x3f800000,2
155
+ np.float32,0x427b53d2,0x3f800000,2
156
+ np.float32,0xc27b53d2,0x3f800000,2
157
+ np.float32,0x4183f268,0xbf3504e7,2
158
+ np.float32,0xc183f268,0xbf3504e7,2
159
+ np.float32,0x4203f268,0xb6059a13,2
160
+ np.float32,0xc203f268,0xb6059a13,2
161
+ np.float32,0x4283f268,0xbf800000,2
162
+ np.float32,0xc283f268,0xbf800000,2
163
+ np.float32,0x418a3ae7,0x35b08908,2
164
+ np.float32,0xc18a3ae7,0x35b08908,2
165
+ np.float32,0x420a3ae7,0xbf800000,2
166
+ np.float32,0xc20a3ae7,0xbf800000,2
167
+ np.float32,0x428a3ae7,0x3f800000,2
168
+ np.float32,0xc28a3ae7,0x3f800000,2
169
+ np.float32,0x41908365,0x3f3504f0,2
170
+ np.float32,0xc1908365,0x3f3504f0,2
171
+ np.float32,0x42108365,0xb512200d,2
172
+ np.float32,0xc2108365,0xb512200d,2
173
+ np.float32,0x42908365,0xbf800000,2
174
+ np.float32,0xc2908365,0xbf800000,2
175
+ np.float32,0x4196cbe4,0x3f800000,2
176
+ np.float32,0xc196cbe4,0x3f800000,2
177
+ np.float32,0x4216cbe4,0x3f800000,2
178
+ np.float32,0xc216cbe4,0x3f800000,2
179
+ np.float32,0x4296cbe4,0x3f800000,2
180
+ np.float32,0xc296cbe4,0x3f800000,2
181
+ np.float32,0x419d1463,0x3f3504ef,2
182
+ np.float32,0xc19d1463,0x3f3504ef,2
183
+ np.float32,0x421d1463,0xb5455799,2
184
+ np.float32,0xc21d1463,0xb5455799,2
185
+ np.float32,0x429d1463,0xbf800000,2
186
+ np.float32,0xc29d1463,0xbf800000,2
187
+ np.float32,0x41a35ce2,0xb53889b6,2
188
+ np.float32,0xc1a35ce2,0xb53889b6,2
189
+ np.float32,0x42235ce2,0xbf800000,2
190
+ np.float32,0xc2235ce2,0xbf800000,2
191
+ np.float32,0x42a35ce2,0x3f800000,2
192
+ np.float32,0xc2a35ce2,0x3f800000,2
193
+ np.float32,0x41a9a561,0xbf3504ff,2
194
+ np.float32,0xc1a9a561,0xbf3504ff,2
195
+ np.float32,0x4229a561,0x360733d0,2
196
+ np.float32,0xc229a561,0x360733d0,2
197
+ np.float32,0x42a9a561,0xbf800000,2
198
+ np.float32,0xc2a9a561,0xbf800000,2
199
+ np.float32,0x41afede0,0xbf800000,2
200
+ np.float32,0xc1afede0,0xbf800000,2
201
+ np.float32,0x422fede0,0x3f800000,2
202
+ np.float32,0xc22fede0,0x3f800000,2
203
+ np.float32,0x42afede0,0x3f800000,2
204
+ np.float32,0xc2afede0,0x3f800000,2
205
+ np.float32,0x41b6365e,0xbf3504f6,2
206
+ np.float32,0xc1b6365e,0xbf3504f6,2
207
+ np.float32,0x4236365e,0x350bb91c,2
208
+ np.float32,0xc236365e,0x350bb91c,2
209
+ np.float32,0x42b6365e,0xbf800000,2
210
+ np.float32,0xc2b6365e,0xbf800000,2
211
+ np.float32,0x41bc7edd,0x33800add,2
212
+ np.float32,0xc1bc7edd,0x33800add,2
213
+ np.float32,0x423c7edd,0xbf800000,2
214
+ np.float32,0xc23c7edd,0xbf800000,2
215
+ np.float32,0x42bc7edd,0x3f800000,2
216
+ np.float32,0xc2bc7edd,0x3f800000,2
217
+ np.float32,0x41c2c75c,0x3f3504f8,2
218
+ np.float32,0xc1c2c75c,0x3f3504f8,2
219
+ np.float32,0x4242c75c,0x354bbe8a,2
220
+ np.float32,0xc242c75c,0x354bbe8a,2
221
+ np.float32,0x42c2c75c,0xbf800000,2
222
+ np.float32,0xc2c2c75c,0xbf800000,2
223
+ np.float32,0x41c90fdb,0x3f800000,2
224
+ np.float32,0xc1c90fdb,0x3f800000,2
225
+ np.float32,0x42490fdb,0x3f800000,2
226
+ np.float32,0xc2490fdb,0x3f800000,2
227
+ np.float32,0x42c90fdb,0x3f800000,2
228
+ np.float32,0xc2c90fdb,0x3f800000,2
229
+ np.float32,0x41cf585a,0x3f3504e7,2
230
+ np.float32,0xc1cf585a,0x3f3504e7,2
231
+ np.float32,0x424f585a,0xb608cd8c,2
232
+ np.float32,0xc24f585a,0xb608cd8c,2
233
+ np.float32,0x42cf585a,0xbf800000,2
234
+ np.float32,0xc2cf585a,0xbf800000,2
235
+ np.float32,0x41d5a0d9,0xb5b3bc81,2
236
+ np.float32,0xc1d5a0d9,0xb5b3bc81,2
237
+ np.float32,0x4255a0d9,0xbf800000,2
238
+ np.float32,0xc255a0d9,0xbf800000,2
239
+ np.float32,0x42d5a0d9,0x3f800000,2
240
+ np.float32,0xc2d5a0d9,0x3f800000,2
241
+ np.float32,0x41dbe958,0xbf350507,2
242
+ np.float32,0xc1dbe958,0xbf350507,2
243
+ np.float32,0x425be958,0x365eab75,2
244
+ np.float32,0xc25be958,0x365eab75,2
245
+ np.float32,0x42dbe958,0xbf800000,2
246
+ np.float32,0xc2dbe958,0xbf800000,2
247
+ np.float32,0x41e231d6,0xbf800000,2
248
+ np.float32,0xc1e231d6,0xbf800000,2
249
+ np.float32,0x426231d6,0x3f800000,2
250
+ np.float32,0xc26231d6,0x3f800000,2
251
+ np.float32,0x42e231d6,0x3f800000,2
252
+ np.float32,0xc2e231d6,0x3f800000,2
253
+ np.float32,0x41e87a55,0xbf3504ef,2
254
+ np.float32,0xc1e87a55,0xbf3504ef,2
255
+ np.float32,0x42687a55,0xb552257b,2
256
+ np.float32,0xc2687a55,0xb552257b,2
257
+ np.float32,0x42e87a55,0xbf800000,2
258
+ np.float32,0xc2e87a55,0xbf800000,2
259
+ np.float32,0x41eec2d4,0x353ef0a7,2
260
+ np.float32,0xc1eec2d4,0x353ef0a7,2
261
+ np.float32,0x426ec2d4,0xbf800000,2
262
+ np.float32,0xc26ec2d4,0xbf800000,2
263
+ np.float32,0x42eec2d4,0x3f800000,2
264
+ np.float32,0xc2eec2d4,0x3f800000,2
265
+ np.float32,0x41f50b53,0x3f3504ff,2
266
+ np.float32,0xc1f50b53,0x3f3504ff,2
267
+ np.float32,0x42750b53,0x360a6748,2
268
+ np.float32,0xc2750b53,0x360a6748,2
269
+ np.float32,0x42f50b53,0xbf800000,2
270
+ np.float32,0xc2f50b53,0xbf800000,2
271
+ np.float32,0x41fb53d2,0x3f800000,2
272
+ np.float32,0xc1fb53d2,0x3f800000,2
273
+ np.float32,0x427b53d2,0x3f800000,2
274
+ np.float32,0xc27b53d2,0x3f800000,2
275
+ np.float32,0x42fb53d2,0x3f800000,2
276
+ np.float32,0xc2fb53d2,0x3f800000,2
277
+ np.float32,0x4200ce28,0x3f3504f6,2
278
+ np.float32,0xc200ce28,0x3f3504f6,2
279
+ np.float32,0x4280ce28,0x34fdd672,2
280
+ np.float32,0xc280ce28,0x34fdd672,2
281
+ np.float32,0x4300ce28,0xbf800000,2
282
+ np.float32,0xc300ce28,0xbf800000,2
283
+ np.float32,0x4203f268,0xb6059a13,2
284
+ np.float32,0xc203f268,0xb6059a13,2
285
+ np.float32,0x4283f268,0xbf800000,2
286
+ np.float32,0xc283f268,0xbf800000,2
287
+ np.float32,0x4303f268,0x3f800000,2
288
+ np.float32,0xc303f268,0x3f800000,2
289
+ np.float32,0x420716a7,0xbf3504f8,2
290
+ np.float32,0xc20716a7,0xbf3504f8,2
291
+ np.float32,0x428716a7,0x35588c6d,2
292
+ np.float32,0xc28716a7,0x35588c6d,2
293
+ np.float32,0x430716a7,0xbf800000,2
294
+ np.float32,0xc30716a7,0xbf800000,2
295
+ np.float32,0x420a3ae7,0xbf800000,2
296
+ np.float32,0xc20a3ae7,0xbf800000,2
297
+ np.float32,0x428a3ae7,0x3f800000,2
298
+ np.float32,0xc28a3ae7,0x3f800000,2
299
+ np.float32,0x430a3ae7,0x3f800000,2
300
+ np.float32,0xc30a3ae7,0x3f800000,2
301
+ np.float32,0x420d5f26,0xbf3504e7,2
302
+ np.float32,0xc20d5f26,0xbf3504e7,2
303
+ np.float32,0x428d5f26,0xb60c0105,2
304
+ np.float32,0xc28d5f26,0xb60c0105,2
305
+ np.float32,0x430d5f26,0xbf800000,2
306
+ np.float32,0xc30d5f26,0xbf800000,2
307
+ np.float32,0x42108365,0xb512200d,2
308
+ np.float32,0xc2108365,0xb512200d,2
309
+ np.float32,0x42908365,0xbf800000,2
310
+ np.float32,0xc2908365,0xbf800000,2
311
+ np.float32,0x43108365,0x3f800000,2
312
+ np.float32,0xc3108365,0x3f800000,2
313
+ np.float32,0x4213a7a5,0x3f350507,2
314
+ np.float32,0xc213a7a5,0x3f350507,2
315
+ np.float32,0x4293a7a5,0x3661deee,2
316
+ np.float32,0xc293a7a5,0x3661deee,2
317
+ np.float32,0x4313a7a5,0xbf800000,2
318
+ np.float32,0xc313a7a5,0xbf800000,2
319
+ np.float32,0x4216cbe4,0x3f800000,2
320
+ np.float32,0xc216cbe4,0x3f800000,2
321
+ np.float32,0x4296cbe4,0x3f800000,2
322
+ np.float32,0xc296cbe4,0x3f800000,2
323
+ np.float32,0x4316cbe4,0x3f800000,2
324
+ np.float32,0xc316cbe4,0x3f800000,2
325
+ np.float32,0x4219f024,0x3f3504d8,2
326
+ np.float32,0xc219f024,0x3f3504d8,2
327
+ np.float32,0x4299f024,0xb69bde6c,2
328
+ np.float32,0xc299f024,0xb69bde6c,2
329
+ np.float32,0x4319f024,0xbf800000,2
330
+ np.float32,0xc319f024,0xbf800000,2
331
+ np.float32,0x421d1463,0xb5455799,2
332
+ np.float32,0xc21d1463,0xb5455799,2
333
+ np.float32,0x429d1463,0xbf800000,2
334
+ np.float32,0xc29d1463,0xbf800000,2
335
+ np.float32,0x431d1463,0x3f800000,2
336
+ np.float32,0xc31d1463,0x3f800000,2
337
+ np.float32,0x422038a3,0xbf350516,2
338
+ np.float32,0xc22038a3,0xbf350516,2
339
+ np.float32,0x42a038a3,0x36c6cd61,2
340
+ np.float32,0xc2a038a3,0x36c6cd61,2
341
+ np.float32,0x432038a3,0xbf800000,2
342
+ np.float32,0xc32038a3,0xbf800000,2
343
+ np.float32,0x42235ce2,0xbf800000,2
344
+ np.float32,0xc2235ce2,0xbf800000,2
345
+ np.float32,0x42a35ce2,0x3f800000,2
346
+ np.float32,0xc2a35ce2,0x3f800000,2
347
+ np.float32,0x43235ce2,0x3f800000,2
348
+ np.float32,0xc3235ce2,0x3f800000,2
349
+ np.float32,0x42268121,0xbf3504f6,2
350
+ np.float32,0xc2268121,0xbf3504f6,2
351
+ np.float32,0x42a68121,0x34e43aac,2
352
+ np.float32,0xc2a68121,0x34e43aac,2
353
+ np.float32,0x43268121,0xbf800000,2
354
+ np.float32,0xc3268121,0xbf800000,2
355
+ np.float32,0x4229a561,0x360733d0,2
356
+ np.float32,0xc229a561,0x360733d0,2
357
+ np.float32,0x42a9a561,0xbf800000,2
358
+ np.float32,0xc2a9a561,0xbf800000,2
359
+ np.float32,0x4329a561,0x3f800000,2
360
+ np.float32,0xc329a561,0x3f800000,2
361
+ np.float32,0x422cc9a0,0x3f3504f8,2
362
+ np.float32,0xc22cc9a0,0x3f3504f8,2
363
+ np.float32,0x42acc9a0,0x35655a50,2
364
+ np.float32,0xc2acc9a0,0x35655a50,2
365
+ np.float32,0x432cc9a0,0xbf800000,2
366
+ np.float32,0xc32cc9a0,0xbf800000,2
367
+ np.float32,0x422fede0,0x3f800000,2
368
+ np.float32,0xc22fede0,0x3f800000,2
369
+ np.float32,0x42afede0,0x3f800000,2
370
+ np.float32,0xc2afede0,0x3f800000,2
371
+ np.float32,0x432fede0,0x3f800000,2
372
+ np.float32,0xc32fede0,0x3f800000,2
373
+ np.float32,0x4233121f,0x3f3504e7,2
374
+ np.float32,0xc233121f,0x3f3504e7,2
375
+ np.float32,0x42b3121f,0xb60f347d,2
376
+ np.float32,0xc2b3121f,0xb60f347d,2
377
+ np.float32,0x4333121f,0xbf800000,2
378
+ np.float32,0xc333121f,0xbf800000,2
379
+ np.float32,0x4236365e,0x350bb91c,2
380
+ np.float32,0xc236365e,0x350bb91c,2
381
+ np.float32,0x42b6365e,0xbf800000,2
382
+ np.float32,0xc2b6365e,0xbf800000,2
383
+ np.float32,0x4336365e,0x3f800000,2
384
+ np.float32,0xc336365e,0x3f800000,2
385
+ np.float32,0x42395a9e,0xbf350507,2
386
+ np.float32,0xc2395a9e,0xbf350507,2
387
+ np.float32,0x42b95a9e,0x36651267,2
388
+ np.float32,0xc2b95a9e,0x36651267,2
389
+ np.float32,0x43395a9e,0xbf800000,2
390
+ np.float32,0xc3395a9e,0xbf800000,2
391
+ np.float32,0x423c7edd,0xbf800000,2
392
+ np.float32,0xc23c7edd,0xbf800000,2
393
+ np.float32,0x42bc7edd,0x3f800000,2
394
+ np.float32,0xc2bc7edd,0x3f800000,2
395
+ np.float32,0x433c7edd,0x3f800000,2
396
+ np.float32,0xc33c7edd,0x3f800000,2
397
+ np.float32,0x423fa31d,0xbf3504d7,2
398
+ np.float32,0xc23fa31d,0xbf3504d7,2
399
+ np.float32,0x42bfa31d,0xb69d7828,2
400
+ np.float32,0xc2bfa31d,0xb69d7828,2
401
+ np.float32,0x433fa31d,0xbf800000,2
402
+ np.float32,0xc33fa31d,0xbf800000,2
403
+ np.float32,0x4242c75c,0x354bbe8a,2
404
+ np.float32,0xc242c75c,0x354bbe8a,2
405
+ np.float32,0x42c2c75c,0xbf800000,2
406
+ np.float32,0xc2c2c75c,0xbf800000,2
407
+ np.float32,0x4342c75c,0x3f800000,2
408
+ np.float32,0xc342c75c,0x3f800000,2
409
+ np.float32,0x4245eb9c,0x3f350517,2
410
+ np.float32,0xc245eb9c,0x3f350517,2
411
+ np.float32,0x42c5eb9c,0x36c8671d,2
412
+ np.float32,0xc2c5eb9c,0x36c8671d,2
413
+ np.float32,0x4345eb9c,0xbf800000,2
414
+ np.float32,0xc345eb9c,0xbf800000,2
415
+ np.float32,0x42490fdb,0x3f800000,2
416
+ np.float32,0xc2490fdb,0x3f800000,2
417
+ np.float32,0x42c90fdb,0x3f800000,2
418
+ np.float32,0xc2c90fdb,0x3f800000,2
419
+ np.float32,0x43490fdb,0x3f800000,2
420
+ np.float32,0xc3490fdb,0x3f800000,2
421
+ np.float32,0x424c341a,0x3f3504f5,2
422
+ np.float32,0xc24c341a,0x3f3504f5,2
423
+ np.float32,0x42cc341a,0x34ca9ee6,2
424
+ np.float32,0xc2cc341a,0x34ca9ee6,2
425
+ np.float32,0x434c341a,0xbf800000,2
426
+ np.float32,0xc34c341a,0xbf800000,2
427
+ np.float32,0x424f585a,0xb608cd8c,2
428
+ np.float32,0xc24f585a,0xb608cd8c,2
429
+ np.float32,0x42cf585a,0xbf800000,2
430
+ np.float32,0xc2cf585a,0xbf800000,2
431
+ np.float32,0x434f585a,0x3f800000,2
432
+ np.float32,0xc34f585a,0x3f800000,2
433
+ np.float32,0x42527c99,0xbf3504f9,2
434
+ np.float32,0xc2527c99,0xbf3504f9,2
435
+ np.float32,0x42d27c99,0x35722833,2
436
+ np.float32,0xc2d27c99,0x35722833,2
437
+ np.float32,0x43527c99,0xbf800000,2
438
+ np.float32,0xc3527c99,0xbf800000,2
439
+ np.float32,0x4255a0d9,0xbf800000,2
440
+ np.float32,0xc255a0d9,0xbf800000,2
441
+ np.float32,0x42d5a0d9,0x3f800000,2
442
+ np.float32,0xc2d5a0d9,0x3f800000,2
443
+ np.float32,0x4355a0d9,0x3f800000,2
444
+ np.float32,0xc355a0d9,0x3f800000,2
445
+ np.float32,0x4258c518,0xbf3504e6,2
446
+ np.float32,0xc258c518,0xbf3504e6,2
447
+ np.float32,0x42d8c518,0xb61267f6,2
448
+ np.float32,0xc2d8c518,0xb61267f6,2
449
+ np.float32,0x4358c518,0xbf800000,2
450
+ np.float32,0xc358c518,0xbf800000,2
451
+ np.float32,0x425be958,0x365eab75,2
452
+ np.float32,0xc25be958,0x365eab75,2
453
+ np.float32,0x42dbe958,0xbf800000,2
454
+ np.float32,0xc2dbe958,0xbf800000,2
455
+ np.float32,0x435be958,0x3f800000,2
456
+ np.float32,0xc35be958,0x3f800000,2
457
+ np.float32,0x425f0d97,0x3f350508,2
458
+ np.float32,0xc25f0d97,0x3f350508,2
459
+ np.float32,0x42df0d97,0x366845e0,2
460
+ np.float32,0xc2df0d97,0x366845e0,2
461
+ np.float32,0x435f0d97,0xbf800000,2
462
+ np.float32,0xc35f0d97,0xbf800000,2
463
+ np.float32,0x426231d6,0x3f800000,2
464
+ np.float32,0xc26231d6,0x3f800000,2
465
+ np.float32,0x42e231d6,0x3f800000,2
466
+ np.float32,0xc2e231d6,0x3f800000,2
467
+ np.float32,0x436231d6,0x3f800000,2
468
+ np.float32,0xc36231d6,0x3f800000,2
469
+ np.float32,0x42655616,0x3f3504d7,2
470
+ np.float32,0xc2655616,0x3f3504d7,2
471
+ np.float32,0x42e55616,0xb69f11e5,2
472
+ np.float32,0xc2e55616,0xb69f11e5,2
473
+ np.float32,0x43655616,0xbf800000,2
474
+ np.float32,0xc3655616,0xbf800000,2
475
+ np.float32,0x42687a55,0xb552257b,2
476
+ np.float32,0xc2687a55,0xb552257b,2
477
+ np.float32,0x42e87a55,0xbf800000,2
478
+ np.float32,0xc2e87a55,0xbf800000,2
479
+ np.float32,0x43687a55,0x3f800000,2
480
+ np.float32,0xc3687a55,0x3f800000,2
481
+ np.float32,0x426b9e95,0xbf350517,2
482
+ np.float32,0xc26b9e95,0xbf350517,2
483
+ np.float32,0x42eb9e95,0x36ca00d9,2
484
+ np.float32,0xc2eb9e95,0x36ca00d9,2
485
+ np.float32,0x436b9e95,0xbf800000,2
486
+ np.float32,0xc36b9e95,0xbf800000,2
487
+ np.float32,0x426ec2d4,0xbf800000,2
488
+ np.float32,0xc26ec2d4,0xbf800000,2
489
+ np.float32,0x42eec2d4,0x3f800000,2
490
+ np.float32,0xc2eec2d4,0x3f800000,2
491
+ np.float32,0x436ec2d4,0x3f800000,2
492
+ np.float32,0xc36ec2d4,0x3f800000,2
493
+ np.float32,0x4271e713,0xbf3504f5,2
494
+ np.float32,0xc271e713,0xbf3504f5,2
495
+ np.float32,0x42f1e713,0x34b10321,2
496
+ np.float32,0xc2f1e713,0x34b10321,2
497
+ np.float32,0x4371e713,0xbf800000,2
498
+ np.float32,0xc371e713,0xbf800000,2
499
+ np.float32,0x42750b53,0x360a6748,2
500
+ np.float32,0xc2750b53,0x360a6748,2
501
+ np.float32,0x42f50b53,0xbf800000,2
502
+ np.float32,0xc2f50b53,0xbf800000,2
503
+ np.float32,0x43750b53,0x3f800000,2
504
+ np.float32,0xc3750b53,0x3f800000,2
505
+ np.float32,0x42782f92,0x3f3504f9,2
506
+ np.float32,0xc2782f92,0x3f3504f9,2
507
+ np.float32,0x42f82f92,0x357ef616,2
508
+ np.float32,0xc2f82f92,0x357ef616,2
509
+ np.float32,0x43782f92,0xbf800000,2
510
+ np.float32,0xc3782f92,0xbf800000,2
511
+ np.float32,0x427b53d2,0x3f800000,2
512
+ np.float32,0xc27b53d2,0x3f800000,2
513
+ np.float32,0x42fb53d2,0x3f800000,2
514
+ np.float32,0xc2fb53d2,0x3f800000,2
515
+ np.float32,0x437b53d2,0x3f800000,2
516
+ np.float32,0xc37b53d2,0x3f800000,2
517
+ np.float32,0x427e7811,0x3f3504e6,2
518
+ np.float32,0xc27e7811,0x3f3504e6,2
519
+ np.float32,0x42fe7811,0xb6159b6f,2
520
+ np.float32,0xc2fe7811,0xb6159b6f,2
521
+ np.float32,0x437e7811,0xbf800000,2
522
+ np.float32,0xc37e7811,0xbf800000,2
523
+ np.float32,0x4280ce28,0x34fdd672,2
524
+ np.float32,0xc280ce28,0x34fdd672,2
525
+ np.float32,0x4300ce28,0xbf800000,2
526
+ np.float32,0xc300ce28,0xbf800000,2
527
+ np.float32,0x4380ce28,0x3f800000,2
528
+ np.float32,0xc380ce28,0x3f800000,2
529
+ np.float32,0x42826048,0xbf350508,2
530
+ np.float32,0xc2826048,0xbf350508,2
531
+ np.float32,0x43026048,0x366b7958,2
532
+ np.float32,0xc3026048,0x366b7958,2
533
+ np.float32,0x43826048,0xbf800000,2
534
+ np.float32,0xc3826048,0xbf800000,2
535
+ np.float32,0x4283f268,0xbf800000,2
536
+ np.float32,0xc283f268,0xbf800000,2
537
+ np.float32,0x4303f268,0x3f800000,2
538
+ np.float32,0xc303f268,0x3f800000,2
539
+ np.float32,0x4383f268,0x3f800000,2
540
+ np.float32,0xc383f268,0x3f800000,2
541
+ np.float32,0x42858487,0xbf350504,2
542
+ np.float32,0xc2858487,0xbf350504,2
543
+ np.float32,0x43058487,0x363ea8be,2
544
+ np.float32,0xc3058487,0x363ea8be,2
545
+ np.float32,0x43858487,0xbf800000,2
546
+ np.float32,0xc3858487,0xbf800000,2
547
+ np.float32,0x428716a7,0x35588c6d,2
548
+ np.float32,0xc28716a7,0x35588c6d,2
549
+ np.float32,0x430716a7,0xbf800000,2
550
+ np.float32,0xc30716a7,0xbf800000,2
551
+ np.float32,0x438716a7,0x3f800000,2
552
+ np.float32,0xc38716a7,0x3f800000,2
553
+ np.float32,0x4288a8c7,0x3f350517,2
554
+ np.float32,0xc288a8c7,0x3f350517,2
555
+ np.float32,0x4308a8c7,0x36cb9a96,2
556
+ np.float32,0xc308a8c7,0x36cb9a96,2
557
+ np.float32,0x4388a8c7,0xbf800000,2
558
+ np.float32,0xc388a8c7,0xbf800000,2
559
+ np.float32,0x428a3ae7,0x3f800000,2
560
+ np.float32,0xc28a3ae7,0x3f800000,2
561
+ np.float32,0x430a3ae7,0x3f800000,2
562
+ np.float32,0xc30a3ae7,0x3f800000,2
563
+ np.float32,0x438a3ae7,0x3f800000,2
564
+ np.float32,0xc38a3ae7,0x3f800000,2
565
+ np.float32,0x428bcd06,0x3f3504f5,2
566
+ np.float32,0xc28bcd06,0x3f3504f5,2
567
+ np.float32,0x430bcd06,0x3497675b,2
568
+ np.float32,0xc30bcd06,0x3497675b,2
569
+ np.float32,0x438bcd06,0xbf800000,2
570
+ np.float32,0xc38bcd06,0xbf800000,2
571
+ np.float32,0x428d5f26,0xb60c0105,2
572
+ np.float32,0xc28d5f26,0xb60c0105,2
573
+ np.float32,0x430d5f26,0xbf800000,2
574
+ np.float32,0xc30d5f26,0xbf800000,2
575
+ np.float32,0x438d5f26,0x3f800000,2
576
+ np.float32,0xc38d5f26,0x3f800000,2
577
+ np.float32,0x428ef146,0xbf350526,2
578
+ np.float32,0xc28ef146,0xbf350526,2
579
+ np.float32,0x430ef146,0x3710bc40,2
580
+ np.float32,0xc30ef146,0x3710bc40,2
581
+ np.float32,0x438ef146,0xbf800000,2
582
+ np.float32,0xc38ef146,0xbf800000,2
583
+ np.float32,0x42908365,0xbf800000,2
584
+ np.float32,0xc2908365,0xbf800000,2
585
+ np.float32,0x43108365,0x3f800000,2
586
+ np.float32,0xc3108365,0x3f800000,2
587
+ np.float32,0x43908365,0x3f800000,2
588
+ np.float32,0xc3908365,0x3f800000,2
589
+ np.float32,0x42921585,0xbf3504e6,2
590
+ np.float32,0xc2921585,0xbf3504e6,2
591
+ np.float32,0x43121585,0xb618cee8,2
592
+ np.float32,0xc3121585,0xb618cee8,2
593
+ np.float32,0x43921585,0xbf800000,2
594
+ np.float32,0xc3921585,0xbf800000,2
595
+ np.float32,0x4293a7a5,0x3661deee,2
596
+ np.float32,0xc293a7a5,0x3661deee,2
597
+ np.float32,0x4313a7a5,0xbf800000,2
598
+ np.float32,0xc313a7a5,0xbf800000,2
599
+ np.float32,0x4393a7a5,0x3f800000,2
600
+ np.float32,0xc393a7a5,0x3f800000,2
601
+ np.float32,0x429539c5,0x3f350536,2
602
+ np.float32,0xc29539c5,0x3f350536,2
603
+ np.float32,0x431539c5,0x373bab34,2
604
+ np.float32,0xc31539c5,0x373bab34,2
605
+ np.float32,0x439539c5,0xbf800000,2
606
+ np.float32,0xc39539c5,0xbf800000,2
607
+ np.float32,0x4296cbe4,0x3f800000,2
608
+ np.float32,0xc296cbe4,0x3f800000,2
609
+ np.float32,0x4316cbe4,0x3f800000,2
610
+ np.float32,0xc316cbe4,0x3f800000,2
611
+ np.float32,0x4396cbe4,0x3f800000,2
612
+ np.float32,0xc396cbe4,0x3f800000,2
613
+ np.float32,0x42985e04,0x3f3504d7,2
614
+ np.float32,0xc2985e04,0x3f3504d7,2
615
+ np.float32,0x43185e04,0xb6a2455d,2
616
+ np.float32,0xc3185e04,0xb6a2455d,2
617
+ np.float32,0x43985e04,0xbf800000,2
618
+ np.float32,0xc3985e04,0xbf800000,2
619
+ np.float32,0x4299f024,0xb69bde6c,2
620
+ np.float32,0xc299f024,0xb69bde6c,2
621
+ np.float32,0x4319f024,0xbf800000,2
622
+ np.float32,0xc319f024,0xbf800000,2
623
+ np.float32,0x4399f024,0x3f800000,2
624
+ np.float32,0xc399f024,0x3f800000,2
625
+ np.float32,0x429b8243,0xbf3504ea,2
626
+ np.float32,0xc29b8243,0xbf3504ea,2
627
+ np.float32,0x431b8243,0xb5cb2eb8,2
628
+ np.float32,0xc31b8243,0xb5cb2eb8,2
629
+ np.float32,0x439b8243,0xbf800000,2
630
+ np.float32,0xc39b8243,0xbf800000,2
631
+ np.float32,0x435b2047,0x3f3504c1,2
632
+ np.float32,0x42a038a2,0xb5e4ca7e,2
633
+ np.float32,0x432038a2,0xbf800000,2
634
+ np.float32,0x4345eb9b,0xbf800000,2
635
+ np.float32,0x42c5eb9b,0xb5de638c,2
636
+ np.float32,0x42eb9e94,0xb5d7fc9b,2
637
+ np.float32,0x4350ea79,0x3631dadb,2
638
+ np.float32,0x42dbe957,0xbf800000,2
639
+ np.float32,0x425be957,0xb505522a,2
640
+ np.float32,0x435be957,0x3f800000,2
641
+ np.float32,0x46027eb2,0x3e7d94c9,2
642
+ np.float32,0x4477baed,0xbe7f1824,2
643
+ np.float32,0x454b8024,0x3e7f5268,2
644
+ np.float32,0x455d2c09,0x3e7f40cb,2
645
+ np.float32,0x4768d3de,0xba14b4af,2
646
+ np.float32,0x46c1e7cd,0x3e7fb102,2
647
+ np.float32,0x44a52949,0xbe7dc9d5,2
648
+ np.float32,0x4454633a,0x3e7dbc7d,2
649
+ np.float32,0x4689810b,0x3e7eb02b,2
650
+ np.float32,0x473473cd,0xbe7eef6f,2
651
+ np.float32,0x44a5193f,0x3e7e1b1f,2
652
+ np.float32,0x46004b36,0x3e7dac59,2
653
+ np.float32,0x467f604b,0x3d7ffd3a,2
654
+ np.float32,0x45ea1805,0x3dffd2e0,2
655
+ np.float32,0x457b6af3,0x3dff7831,2
656
+ np.float32,0x44996159,0xbe7d85f4,2
657
+ np.float32,0x47883553,0xbb80584e,2
658
+ np.float32,0x44e19f0c,0xbdffcfe6,2
659
+ np.float32,0x472b3bf6,0xbe7f7a82,2
660
+ np.float32,0x4600bb4e,0x3a135e33,2
661
+ np.float32,0x449f4556,0x3e7e42e5,2
662
+ np.float32,0x474e9420,0x3dff77b2,2
663
+ np.float32,0x45cbdb23,0x3dff7240,2
664
+ np.float32,0x44222747,0x3dffb039,2
665
+ np.float32,0x4772e419,0xbdff74b8,2
666
+ np.float64,0x1,0x3ff0000000000000,1
667
+ np.float64,0x8000000000000001,0x3ff0000000000000,1
668
+ np.float64,0x10000000000000,0x3ff0000000000000,1
669
+ np.float64,0x8010000000000000,0x3ff0000000000000,1
670
+ np.float64,0x7fefffffffffffff,0xbfefffe62ecfab75,1
671
+ np.float64,0xffefffffffffffff,0xbfefffe62ecfab75,1
672
+ np.float64,0x7ff0000000000000,0xfff8000000000000,1
673
+ np.float64,0xfff0000000000000,0xfff8000000000000,1
674
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,1
675
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,1
676
+ np.float64,0xbfc28bd9dd2517b4,0x3fefaa28ba13a702,1
677
+ np.float64,0x3fb673c62e2ce790,0x3fefe083847a717f,1
678
+ np.float64,0xbfe3e1dac7e7c3b6,0x3fea0500ba099f3a,1
679
+ np.float64,0xbfbe462caa3c8c58,0x3fefc6c8b9c1c87c,1
680
+ np.float64,0xbfb9353576326a68,0x3fefd8513e50e6b1,1
681
+ np.float64,0xbfc05e798520bcf4,0x3fefbd1ad81cf089,1
682
+ np.float64,0xbfe3ca3be2e79478,0x3fea12b995ea6574,1
683
+ np.float64,0xbfde875d46bd0eba,0x3fec6d888662a824,1
684
+ np.float64,0x3fafc4e02c3f89c0,0x3feff03c34bffd69,1
685
+ np.float64,0xbf98855848310ac0,0x3feffda6c1588bdb,1
686
+ np.float64,0x3fe66c51186cd8a2,0x3fe875c61c630ecb,1
687
+ np.float64,0xbfedff1c3b7bfe38,0x3fe2f0c8c9e8fa39,1
688
+ np.float64,0x3fd6082267ac1044,0x3fee1f6023695050,1
689
+ np.float64,0xbfe78449b06f0894,0x3fe7bda2b223850e,1
690
+ np.float64,0x3feedb8e63fdb71c,0x3fe23d5dfd2dd33f,1
691
+ np.float64,0xbfc0a9de3d2153bc,0x3fefbaadf5e5285e,1
692
+ np.float64,0x3fc04c67432098d0,0x3fefbdae07b7de8d,1
693
+ np.float64,0xbfeeef84c4fddf0a,0x3fe22cf37f309d88,1
694
+ np.float64,0x3fc04bb025209760,0x3fefbdb3d7d34ecf,1
695
+ np.float64,0x3fd6b84d48ad709c,0x3fee013403da6e2a,1
696
+ np.float64,0x3fec1ae25d7835c4,0x3fe46e62195cf274,1
697
+ np.float64,0xbfdc6fdf9bb8dfc0,0x3fece48dc78bbb2e,1
698
+ np.float64,0x3fb4db2c9229b660,0x3fefe4d42f79bf49,1
699
+ np.float64,0xbfc0ed698521dad4,0x3fefb8785ea658c9,1
700
+ np.float64,0xbfee82772b7d04ee,0x3fe2864a80efe8e9,1
701
+ np.float64,0x3fd575b664aaeb6c,0x3fee37c669a12879,1
702
+ np.float64,0x3fe4afb1c5e95f64,0x3fe98b177194439c,1
703
+ np.float64,0x3fd93962f9b272c4,0x3fed8bef61876294,1
704
+ np.float64,0x3fd97ae025b2f5c0,0x3fed7f4cfbf4d300,1
705
+ np.float64,0xbfd9afdb1bb35fb6,0x3fed74fdc44dabb1,1
706
+ np.float64,0x3f8ae65e3035cc80,0x3fefff4b1a0ea62b,1
707
+ np.float64,0xbfe7e58664efcb0d,0x3fe77c02a1cbb670,1
708
+ np.float64,0x3fe5f68b37ebed16,0x3fe8c10f849a5d4d,1
709
+ np.float64,0x3fd9137d61b226fc,0x3fed9330eb4815a1,1
710
+ np.float64,0x3fc146d019228da0,0x3fefb57e2d4d52f8,1
711
+ np.float64,0xbfda6036edb4c06e,0x3fed521b2b578679,1
712
+ np.float64,0xbfe78ddfb0ef1bc0,0x3fe7b734319a77e4,1
713
+ np.float64,0x3fe0877823610ef0,0x3febd33a993dd786,1
714
+ np.float64,0x3fbc61af2e38c360,0x3fefcdb4f889756d,1
715
+ np.float64,0x3fd4dcdca4a9b9b8,0x3fee50962ffea5ae,1
716
+ np.float64,0xbfe03cb29f607965,0x3febf7dbf640a75a,1
717
+ np.float64,0xbfc81de407303bc8,0x3fef6f066cef64bc,1
718
+ np.float64,0x3fd8dea42db1bd48,0x3fed9d3e00dbe0b3,1
719
+ np.float64,0x3feac75e94f58ebe,0x3fe56f1f47f97896,1
720
+ np.float64,0x3fb3a1ea6e2743d0,0x3fefe7ec1247cdaa,1
721
+ np.float64,0x3fd695c0f4ad2b80,0x3fee0730bd40883d,1
722
+ np.float64,0xbfd2c631f5a58c64,0x3feea20cbd1105d7,1
723
+ np.float64,0xbfe978a8e1f2f152,0x3fe663014d40ad7a,1
724
+ np.float64,0x3fd8b6b76ab16d70,0x3feda4c879aacc19,1
725
+ np.float64,0x3feaafd30e755fa6,0x3fe5809514c28453,1
726
+ np.float64,0x3fe1e37dc263c6fc,0x3feb20f9ad1f3f5c,1
727
+ np.float64,0x3fd0ec7c24a1d8f8,0x3feee34048f43b75,1
728
+ np.float64,0xbfe3881cbf67103a,0x3fea38d7886e6f53,1
729
+ np.float64,0xbfd7023957ae0472,0x3fedf4471c765a1c,1
730
+ np.float64,0xbfebc51c4ef78a38,0x3fe4b01c424e297b,1
731
+ np.float64,0xbfe20a93eae41528,0x3feb0c2aa321d2e0,1
732
+ np.float64,0x3fef39be867e737e,0x3fe1efaba9164d27,1
733
+ np.float64,0x3fe8ea9576f1d52a,0x3fe6c7a8826ce1be,1
734
+ np.float64,0x3fea921d91f5243c,0x3fe5968c6cf78963,1
735
+ np.float64,0x3fd7ee5d31afdcbc,0x3fedc9f19d43fe61,1
736
+ np.float64,0xbfe3ed581767dab0,0x3fe9fe4ee2f2b1cd,1
737
+ np.float64,0xbfc40923d5281248,0x3fef9bd8ee9f6e68,1
738
+ np.float64,0x3fe411a834682350,0x3fe9e9103854f057,1
739
+ np.float64,0xbfedf6ccdf7bed9a,0x3fe2f77ad6543246,1
740
+ np.float64,0xbfe8788a44f0f114,0x3fe7172f3aa0c742,1
741
+ np.float64,0xbfce728f173ce520,0x3fef1954083bea04,1
742
+ np.float64,0xbfd64dd0acac9ba2,0x3fee138c3293c246,1
743
+ np.float64,0xbfe00669f5600cd4,0x3fec121443945350,1
744
+ np.float64,0xbfe7152ba2ee2a58,0x3fe8079465d09846,1
745
+ np.float64,0x3fe8654d8f70ca9c,0x3fe7247c94f09596,1
746
+ np.float64,0x3fea68045cf4d008,0x3fe5b58cfe81a243,1
747
+ np.float64,0xbfcd4779073a8ef4,0x3fef2a9d78153fa5,1
748
+ np.float64,0xbfdb4456e5b688ae,0x3fed23b11614203f,1
749
+ np.float64,0x3fcb5d59cd36bab0,0x3fef45818216a515,1
750
+ np.float64,0xbfd914ff5ab229fe,0x3fed92e73746fea8,1
751
+ np.float64,0x3fe4d211db69a424,0x3fe97653f433d15f,1
752
+ np.float64,0xbfdbbb9224b77724,0x3fed0adb593dde80,1
753
+ np.float64,0x3fd424ceafa8499c,0x3fee6d9124795d33,1
754
+ np.float64,0x3feb5968f976b2d2,0x3fe501d116efbf54,1
755
+ np.float64,0x3fee7d92a2fcfb26,0x3fe28a479b6a9dcf,1
756
+ np.float64,0x3fc308e9972611d0,0x3fefa595f4df0c89,1
757
+ np.float64,0x3fda79cd77b4f39c,0x3fed4cf8e69ba1f8,1
758
+ np.float64,0x3fcbcf42d5379e88,0x3fef3f6a6a77c187,1
759
+ np.float64,0x3fe13a1da662743c,0x3feb79504faea888,1
760
+ np.float64,0xbfee4435f07c886c,0x3fe2b8ea98d2fc29,1
761
+ np.float64,0x3fd65d68ccacbad0,0x3fee10e1ac7ada89,1
762
+ np.float64,0x3fef2f89bb7e5f14,0x3fe1f81e882cc3f4,1
763
+ np.float64,0xbfef0a7769fe14ef,0x3fe216bf384fc646,1
764
+ np.float64,0x3fc065277320ca50,0x3fefbce44835c193,1
765
+ np.float64,0x3fe9c1a74d73834e,0x3fe62e9ee0c2f2bf,1
766
+ np.float64,0x3fd9d96e5db3b2dc,0x3fed6cd88eb51f6a,1
767
+ np.float64,0x3fe02bf1c56057e4,0x3febfffc24b5a7ba,1
768
+ np.float64,0xbfd6814350ad0286,0x3fee0ab9ad318b84,1
769
+ np.float64,0x3f9fcbec583f97c0,0x3feffc0d0f1d8e75,1
770
+ np.float64,0x3fe23524e5e46a4a,0x3feaf55372949a06,1
771
+ np.float64,0xbfbdc95f6a3b92c0,0x3fefc89c21d44995,1
772
+ np.float64,0x3fe961bb9cf2c378,0x3fe6735d6e1cca58,1
773
+ np.float64,0xbfe8f1c370f1e387,0x3fe6c29d1be8bee9,1
774
+ np.float64,0x3fd880d43ab101a8,0x3fedaee3c7ccfc96,1
775
+ np.float64,0xbfedb37005fb66e0,0x3fe32d91ef2e3bd3,1
776
+ np.float64,0xfdce287bfb9c5,0x3ff0000000000000,1
777
+ np.float64,0x9aa1b9e735437,0x3ff0000000000000,1
778
+ np.float64,0x6beac6e0d7d59,0x3ff0000000000000,1
779
+ np.float64,0x47457aae8e8b0,0x3ff0000000000000,1
780
+ np.float64,0x35ff13b46bfe3,0x3ff0000000000000,1
781
+ np.float64,0xb9c0c82b73819,0x3ff0000000000000,1
782
+ np.float64,0x1a8dc21a351b9,0x3ff0000000000000,1
783
+ np.float64,0x7e87ef6afd0ff,0x3ff0000000000000,1
784
+ np.float64,0x620a6588c414d,0x3ff0000000000000,1
785
+ np.float64,0x7f366000fe6e,0x3ff0000000000000,1
786
+ np.float64,0x787e39f4f0fc8,0x3ff0000000000000,1
787
+ np.float64,0xf5134f1fea26a,0x3ff0000000000000,1
788
+ np.float64,0xbce700ef79ce0,0x3ff0000000000000,1
789
+ np.float64,0x144d7cc8289b1,0x3ff0000000000000,1
790
+ np.float64,0xb9fbc5b973f79,0x3ff0000000000000,1
791
+ np.float64,0xc3d6292d87ac5,0x3ff0000000000000,1
792
+ np.float64,0xc1084e618210a,0x3ff0000000000000,1
793
+ np.float64,0xb6b9eca56d73e,0x3ff0000000000000,1
794
+ np.float64,0xc7ac4b858f58a,0x3ff0000000000000,1
795
+ np.float64,0x516d75d2a2daf,0x3ff0000000000000,1
796
+ np.float64,0x9dc089d93b811,0x3ff0000000000000,1
797
+ np.float64,0x7b5f2840f6be6,0x3ff0000000000000,1
798
+ np.float64,0x121d3ce8243a9,0x3ff0000000000000,1
799
+ np.float64,0xf0be0337e17c1,0x3ff0000000000000,1
800
+ np.float64,0xff58a5cbfeb15,0x3ff0000000000000,1
801
+ np.float64,0xdaf1d07fb5e3a,0x3ff0000000000000,1
802
+ np.float64,0x61d95382c3b2b,0x3ff0000000000000,1
803
+ np.float64,0xe4df943fc9bf3,0x3ff0000000000000,1
804
+ np.float64,0xf72ac2bdee559,0x3ff0000000000000,1
805
+ np.float64,0x12dafbf625b60,0x3ff0000000000000,1
806
+ np.float64,0xee11d427dc23b,0x3ff0000000000000,1
807
+ np.float64,0xf4f8eb37e9f1e,0x3ff0000000000000,1
808
+ np.float64,0xad7cb5df5af97,0x3ff0000000000000,1
809
+ np.float64,0x59fc9b06b3f94,0x3ff0000000000000,1
810
+ np.float64,0x3c3e65e4787ce,0x3ff0000000000000,1
811
+ np.float64,0xe37bc993c6f79,0x3ff0000000000000,1
812
+ np.float64,0x13bd6330277ad,0x3ff0000000000000,1
813
+ np.float64,0x56cc2800ad986,0x3ff0000000000000,1
814
+ np.float64,0x6203b8fcc4078,0x3ff0000000000000,1
815
+ np.float64,0x75c7c8b8eb8fa,0x3ff0000000000000,1
816
+ np.float64,0x5ebf8e00bd7f2,0x3ff0000000000000,1
817
+ np.float64,0xda81f2f1b503f,0x3ff0000000000000,1
818
+ np.float64,0x6adb17d6d5b64,0x3ff0000000000000,1
819
+ np.float64,0x1ba68eee374d3,0x3ff0000000000000,1
820
+ np.float64,0xeecf6fbbdd9ee,0x3ff0000000000000,1
821
+ np.float64,0x24d6dd8e49add,0x3ff0000000000000,1
822
+ np.float64,0xdf7cb81bbef97,0x3ff0000000000000,1
823
+ np.float64,0xafd7be1b5faf8,0x3ff0000000000000,1
824
+ np.float64,0xdb90ca35b721a,0x3ff0000000000000,1
825
+ np.float64,0xa72903a14e521,0x3ff0000000000000,1
826
+ np.float64,0x14533ee028a7,0x3ff0000000000000,1
827
+ np.float64,0x7951540cf2a2b,0x3ff0000000000000,1
828
+ np.float64,0x22882be045106,0x3ff0000000000000,1
829
+ np.float64,0x136270d626c4f,0x3ff0000000000000,1
830
+ np.float64,0x6a0f5744d41ec,0x3ff0000000000000,1
831
+ np.float64,0x21e0d1aa43c1b,0x3ff0000000000000,1
832
+ np.float64,0xee544155dca88,0x3ff0000000000000,1
833
+ np.float64,0xcbe8aac797d16,0x3ff0000000000000,1
834
+ np.float64,0x6c065e80d80e,0x3ff0000000000000,1
835
+ np.float64,0xe57f0411cafe1,0x3ff0000000000000,1
836
+ np.float64,0xdec3a6bdbd875,0x3ff0000000000000,1
837
+ np.float64,0xf4d23a0fe9a48,0x3ff0000000000000,1
838
+ np.float64,0xda77ef47b4efe,0x3ff0000000000000,1
839
+ np.float64,0x8c405c9b1880c,0x3ff0000000000000,1
840
+ np.float64,0x4eced5149d9db,0x3ff0000000000000,1
841
+ np.float64,0x16b6552c2d6cc,0x3ff0000000000000,1
842
+ np.float64,0x6fbc262cdf785,0x3ff0000000000000,1
843
+ np.float64,0x628c3844c5188,0x3ff0000000000000,1
844
+ np.float64,0x6d827d2cdb050,0x3ff0000000000000,1
845
+ np.float64,0xd1bfdf29a37fc,0x3ff0000000000000,1
846
+ np.float64,0xd85400fdb0a80,0x3ff0000000000000,1
847
+ np.float64,0xcc420b2d98842,0x3ff0000000000000,1
848
+ np.float64,0xac41d21b5883b,0x3ff0000000000000,1
849
+ np.float64,0x432f18d4865e4,0x3ff0000000000000,1
850
+ np.float64,0xe7e89a1bcfd14,0x3ff0000000000000,1
851
+ np.float64,0x9b1141d536228,0x3ff0000000000000,1
852
+ np.float64,0x6805f662d00bf,0x3ff0000000000000,1
853
+ np.float64,0xc76552358ecab,0x3ff0000000000000,1
854
+ np.float64,0x4ae8ffee95d21,0x3ff0000000000000,1
855
+ np.float64,0x4396c096872d9,0x3ff0000000000000,1
856
+ np.float64,0x6e8e55d4dd1cb,0x3ff0000000000000,1
857
+ np.float64,0x4c2e33dc985c7,0x3ff0000000000000,1
858
+ np.float64,0xbce814a579d03,0x3ff0000000000000,1
859
+ np.float64,0x911681b5222d0,0x3ff0000000000000,1
860
+ np.float64,0x5f90a4b2bf215,0x3ff0000000000000,1
861
+ np.float64,0x26f76be84deee,0x3ff0000000000000,1
862
+ np.float64,0xb2f7536165eeb,0x3ff0000000000000,1
863
+ np.float64,0x4de4e6089bc9d,0x3ff0000000000000,1
864
+ np.float64,0xf2e016afe5c03,0x3ff0000000000000,1
865
+ np.float64,0xb9b7b949736f7,0x3ff0000000000000,1
866
+ np.float64,0x3363ea1866c7e,0x3ff0000000000000,1
867
+ np.float64,0xd1a3bd6ba3478,0x3ff0000000000000,1
868
+ np.float64,0xae89f3595d13f,0x3ff0000000000000,1
869
+ np.float64,0xddbd9601bb7c,0x3ff0000000000000,1
870
+ np.float64,0x5de41a06bbc84,0x3ff0000000000000,1
871
+ np.float64,0xfd58c86dfab19,0x3ff0000000000000,1
872
+ np.float64,0x24922e8c49247,0x3ff0000000000000,1
873
+ np.float64,0xcda040339b408,0x3ff0000000000000,1
874
+ np.float64,0x5fe500b2bfca1,0x3ff0000000000000,1
875
+ np.float64,0x9214abb924296,0x3ff0000000000000,1
876
+ np.float64,0x800609fe0a2c13fd,0x3ff0000000000000,1
877
+ np.float64,0x800c7c6fe518f8e0,0x3ff0000000000000,1
878
+ np.float64,0x800a1a9491b4352a,0x3ff0000000000000,1
879
+ np.float64,0x800b45e0e8968bc2,0x3ff0000000000000,1
880
+ np.float64,0x8008497e57d092fd,0x3ff0000000000000,1
881
+ np.float64,0x800b9c0af0173816,0x3ff0000000000000,1
882
+ np.float64,0x800194cccb43299a,0x3ff0000000000000,1
883
+ np.float64,0x8001c91ef183923f,0x3ff0000000000000,1
884
+ np.float64,0x800f25b5ccde4b6c,0x3ff0000000000000,1
885
+ np.float64,0x800ce63ccc79cc7a,0x3ff0000000000000,1
886
+ np.float64,0x800d8fb2e83b1f66,0x3ff0000000000000,1
887
+ np.float64,0x80083cd06f7079a1,0x3ff0000000000000,1
888
+ np.float64,0x800823598e9046b3,0x3ff0000000000000,1
889
+ np.float64,0x8001c1319de38264,0x3ff0000000000000,1
890
+ np.float64,0x800f2b68543e56d1,0x3ff0000000000000,1
891
+ np.float64,0x80022a4f4364549f,0x3ff0000000000000,1
892
+ np.float64,0x800f51badf7ea376,0x3ff0000000000000,1
893
+ np.float64,0x8003fbf31e27f7e7,0x3ff0000000000000,1
894
+ np.float64,0x800d4c00e2fa9802,0x3ff0000000000000,1
895
+ np.float64,0x800023b974804774,0x3ff0000000000000,1
896
+ np.float64,0x800860778990c0ef,0x3ff0000000000000,1
897
+ np.float64,0x800a15c241542b85,0x3ff0000000000000,1
898
+ np.float64,0x8003097d9dc612fc,0x3ff0000000000000,1
899
+ np.float64,0x800d77d8541aefb1,0x3ff0000000000000,1
900
+ np.float64,0x80093804ab52700a,0x3ff0000000000000,1
901
+ np.float64,0x800d2b3bfd7a5678,0x3ff0000000000000,1
902
+ np.float64,0x800da24bcd5b4498,0x3ff0000000000000,1
903
+ np.float64,0x8006eee1c28dddc4,0x3ff0000000000000,1
904
+ np.float64,0x80005137fa40a271,0x3ff0000000000000,1
905
+ np.float64,0x8007a3fbc22f47f8,0x3ff0000000000000,1
906
+ np.float64,0x800dcd97071b9b2e,0x3ff0000000000000,1
907
+ np.float64,0x80065b36048cb66d,0x3ff0000000000000,1
908
+ np.float64,0x8004206ba72840d8,0x3ff0000000000000,1
909
+ np.float64,0x8007e82b98cfd058,0x3ff0000000000000,1
910
+ np.float64,0x8001a116ed23422f,0x3ff0000000000000,1
911
+ np.float64,0x800c69e9ff18d3d4,0x3ff0000000000000,1
912
+ np.float64,0x8003843688e7086e,0x3ff0000000000000,1
913
+ np.float64,0x800335e3b8866bc8,0x3ff0000000000000,1
914
+ np.float64,0x800e3308f0bc6612,0x3ff0000000000000,1
915
+ np.float64,0x8002a9ec55c553d9,0x3ff0000000000000,1
916
+ np.float64,0x80001c2084e03842,0x3ff0000000000000,1
917
+ np.float64,0x800bc2bbd8d78578,0x3ff0000000000000,1
918
+ np.float64,0x800ae6bcc555cd7a,0x3ff0000000000000,1
919
+ np.float64,0x80083f7a13907ef5,0x3ff0000000000000,1
920
+ np.float64,0x800d83ed76db07db,0x3ff0000000000000,1
921
+ np.float64,0x800a12251974244b,0x3ff0000000000000,1
922
+ np.float64,0x800a69c95714d393,0x3ff0000000000000,1
923
+ np.float64,0x800cd5a85639ab51,0x3ff0000000000000,1
924
+ np.float64,0x800e0e1837bc1c31,0x3ff0000000000000,1
925
+ np.float64,0x8007b5ca39ef6b95,0x3ff0000000000000,1
926
+ np.float64,0x800cf961cad9f2c4,0x3ff0000000000000,1
927
+ np.float64,0x80066e8fc14cdd20,0x3ff0000000000000,1
928
+ np.float64,0x8001cb8c7b43971a,0x3ff0000000000000,1
929
+ np.float64,0x800002df68a005c0,0x3ff0000000000000,1
930
+ np.float64,0x8003e6681567ccd1,0x3ff0000000000000,1
931
+ np.float64,0x800b039126b60723,0x3ff0000000000000,1
932
+ np.float64,0x800d2e1b663a5c37,0x3ff0000000000000,1
933
+ np.float64,0x800188b3e2a31169,0x3ff0000000000000,1
934
+ np.float64,0x8001f272e943e4e7,0x3ff0000000000000,1
935
+ np.float64,0x800d7f53607afea7,0x3ff0000000000000,1
936
+ np.float64,0x80092cafa4f25960,0x3ff0000000000000,1
937
+ np.float64,0x800fc009f07f8014,0x3ff0000000000000,1
938
+ np.float64,0x8003da896507b514,0x3ff0000000000000,1
939
+ np.float64,0x800d4d1b4c3a9a37,0x3ff0000000000000,1
940
+ np.float64,0x8007a835894f506c,0x3ff0000000000000,1
941
+ np.float64,0x80057ba0522af741,0x3ff0000000000000,1
942
+ np.float64,0x8009b7054b336e0b,0x3ff0000000000000,1
943
+ np.float64,0x800b2c6c125658d9,0x3ff0000000000000,1
944
+ np.float64,0x8008b1840ad16308,0x3ff0000000000000,1
945
+ np.float64,0x8007ea0e3befd41d,0x3ff0000000000000,1
946
+ np.float64,0x800dd658683bacb1,0x3ff0000000000000,1
947
+ np.float64,0x8008cda48fd19b49,0x3ff0000000000000,1
948
+ np.float64,0x8003acca14c75995,0x3ff0000000000000,1
949
+ np.float64,0x8008bd152d717a2b,0x3ff0000000000000,1
950
+ np.float64,0x80010d1ea3621a3e,0x3ff0000000000000,1
951
+ np.float64,0x800130b78b826170,0x3ff0000000000000,1
952
+ np.float64,0x8002cf3a46e59e75,0x3ff0000000000000,1
953
+ np.float64,0x800b76e7fa76edd0,0x3ff0000000000000,1
954
+ np.float64,0x800e065fe1dc0cc0,0x3ff0000000000000,1
955
+ np.float64,0x8000dd527ea1baa6,0x3ff0000000000000,1
956
+ np.float64,0x80032cb234665965,0x3ff0000000000000,1
957
+ np.float64,0x800affc1acb5ff84,0x3ff0000000000000,1
958
+ np.float64,0x80074be23fee97c5,0x3ff0000000000000,1
959
+ np.float64,0x8004f83eafc9f07e,0x3ff0000000000000,1
960
+ np.float64,0x800b02a115560543,0x3ff0000000000000,1
961
+ np.float64,0x800b324a55766495,0x3ff0000000000000,1
962
+ np.float64,0x800ffbcfd69ff7a0,0x3ff0000000000000,1
963
+ np.float64,0x800830bc7b906179,0x3ff0000000000000,1
964
+ np.float64,0x800cbafe383975fd,0x3ff0000000000000,1
965
+ np.float64,0x8001ee42bfe3dc86,0x3ff0000000000000,1
966
+ np.float64,0x8005b00fdc0b6020,0x3ff0000000000000,1
967
+ np.float64,0x8005e7addd0bcf5c,0x3ff0000000000000,1
968
+ np.float64,0x8001ae4cb0635c9a,0x3ff0000000000000,1
969
+ np.float64,0x80098a9941131533,0x3ff0000000000000,1
970
+ np.float64,0x800334c929466993,0x3ff0000000000000,1
971
+ np.float64,0x8009568239d2ad05,0x3ff0000000000000,1
972
+ np.float64,0x800f0639935e0c73,0x3ff0000000000000,1
973
+ np.float64,0x800cebce7499d79d,0x3ff0000000000000,1
974
+ np.float64,0x800482ee4c2905dd,0x3ff0000000000000,1
975
+ np.float64,0x8007b7bd9e2f6f7c,0x3ff0000000000000,1
976
+ np.float64,0x3fe654469f2ca88d,0x3fe8853f6c01ffb3,1
977
+ np.float64,0x3feb4d7297369ae5,0x3fe50ad5bb621408,1
978
+ np.float64,0x3feef53ba43dea77,0x3fe2283f356f8658,1
979
+ np.float64,0x3fddf564eabbeaca,0x3fec8ec0e0dead9c,1
980
+ np.float64,0x3fd3a69078274d21,0x3fee80e05c320000,1
981
+ np.float64,0x3fecdafe5d39b5fd,0x3fe3d91a5d440fd9,1
982
+ np.float64,0x3fd93286bc32650d,0x3fed8d40696cd10e,1
983
+ np.float64,0x3fc0d34eb821a69d,0x3fefb954023d4284,1
984
+ np.float64,0x3fc7b4b9a02f6973,0x3fef73e8739787ce,1
985
+ np.float64,0x3fe08c839a611907,0x3febd0bc6f5641cd,1
986
+ np.float64,0x3fb3d1758627a2eb,0x3fefe776f6183f96,1
987
+ np.float64,0x3fef93c9ff3f2794,0x3fe1a4d2f622627d,1
988
+ np.float64,0x3fea8d0041351a01,0x3fe59a52a1c78c9e,1
989
+ np.float64,0x3fe3e26a30e7c4d4,0x3fea04ad3e0bbf8d,1
990
+ np.float64,0x3fe5a34c9f6b4699,0x3fe8f57c5ccd1eab,1
991
+ np.float64,0x3fc21ef859243df1,0x3fefae0b68a3a2e7,1
992
+ np.float64,0x3fed7dd585fafbab,0x3fe35860041e5b0d,1
993
+ np.float64,0x3fe5abacf22b575a,0x3fe8f03d8b6ef0f2,1
994
+ np.float64,0x3fe426451f284c8a,0x3fe9dcf21f13205b,1
995
+ np.float64,0x3fc01f6456203ec9,0x3fefbf19e2a8e522,1
996
+ np.float64,0x3fe1cf2772239e4f,0x3feb2bbd645c7697,1
997
+ np.float64,0x3fd18c4ace231896,0x3feecdfdd086c110,1
998
+ np.float64,0x3fe8387d5b7070fb,0x3fe74358f2ec4910,1
999
+ np.float64,0x3fdce51c2239ca38,0x3feccb2ae5459632,1
1000
+ np.float64,0x3fe5b0f2e4eb61e6,0x3fe8ecef4dbe4277,1
1001
+ np.float64,0x3fe1ceeb08a39dd6,0x3feb2bdd4dcfb3df,1
1002
+ np.float64,0x3febc5899d778b13,0x3fe4afc8dd8ad228,1
1003
+ np.float64,0x3fe7a47fbe2f48ff,0x3fe7a7fd9b352ea5,1
1004
+ np.float64,0x3fe7f74e1fafee9c,0x3fe76feb2755b247,1
1005
+ np.float64,0x3fe2bfad04e57f5a,0x3feaa9b46adddaeb,1
1006
+ np.float64,0x3fd06a090320d412,0x3feef40c334f8fba,1
1007
+ np.float64,0x3fdc97297d392e53,0x3fecdc16a3e22fcb,1
1008
+ np.float64,0x3fdc1a3f3838347e,0x3fecf6db2769d404,1
1009
+ np.float64,0x3fcca90096395201,0x3fef338156fcd218,1
1010
+ np.float64,0x3fed464733fa8c8e,0x3fe38483f0465d91,1
1011
+ np.float64,0x3fe7e067d82fc0d0,0x3fe77f7c8c9de896,1
1012
+ np.float64,0x3fc014fa0b2029f4,0x3fefbf6d84c933f8,1
1013
+ np.float64,0x3fd3bf1524277e2a,0x3fee7d2997b74dec,1
1014
+ np.float64,0x3fec153b86782a77,0x3fe472bb5497bb2a,1
1015
+ np.float64,0x3fd3e4d9d5a7c9b4,0x3fee776842691902,1
1016
+ np.float64,0x3fea6c0e2c74d81c,0x3fe5b2954cb458d9,1
1017
+ np.float64,0x3fee8f6a373d1ed4,0x3fe27bb9e348125b,1
1018
+ np.float64,0x3fd30c6dd42618dc,0x3fee97d2cab2b0bc,1
1019
+ np.float64,0x3fe4f90e6d69f21d,0x3fe95ea3dd4007f2,1
1020
+ np.float64,0x3fe271d467e4e3a9,0x3fead470d6d4008b,1
1021
+ np.float64,0x3fef2983897e5307,0x3fe1fd1a4debe33b,1
1022
+ np.float64,0x3fe980cc83b30199,0x3fe65d2fb8a0eb46,1
1023
+ np.float64,0x3fdfdf53db3fbea8,0x3fec1cf95b2a1cc7,1
1024
+ np.float64,0x3fe4d5307ba9aa61,0x3fe974701b4156cb,1
1025
+ np.float64,0x3fdb4e2345b69c47,0x3fed21aa6c146512,1
1026
+ np.float64,0x3fe3f7830327ef06,0x3fe9f85f6c88c2a8,1
1027
+ np.float64,0x3fca915fb63522bf,0x3fef502b73a52ecf,1
1028
+ np.float64,0x3fe66d3709ecda6e,0x3fe87531d7372d7a,1
1029
+ np.float64,0x3fd86000bcb0c001,0x3fedb5018dd684ca,1
1030
+ np.float64,0x3fe516e5feea2dcc,0x3fe94c68b111404e,1
1031
+ np.float64,0x3fd83c53dd3078a8,0x3fedbb9e5dd9e165,1
1032
+ np.float64,0x3fedfeeb673bfdd7,0x3fe2f0f0253c5d5d,1
1033
+ np.float64,0x3fe0dc6f9c21b8df,0x3feba8e2452410c2,1
1034
+ np.float64,0x3fbe154d643c2a9b,0x3fefc780a9357457,1
1035
+ np.float64,0x3fe5f63986abec73,0x3fe8c1434951a40a,1
1036
+ np.float64,0x3fbce0e50839c1ca,0x3fefcbeeaa27de75,1
1037
+ np.float64,0x3fd7ef5c5c2fdeb9,0x3fedc9c3022495b3,1
1038
+ np.float64,0x3fc1073914220e72,0x3fefb79de80fc0fd,1
1039
+ np.float64,0x3fe1a93c3d235278,0x3feb3fb21f86ac67,1
1040
+ np.float64,0x3fe321ee53e643dd,0x3fea72e2999f1e22,1
1041
+ np.float64,0x3fa881578c3102af,0x3feff69e6e51e0d6,1
1042
+ np.float64,0x3fd313482a262690,0x3fee96d161199495,1
1043
+ np.float64,0x3fe7272cd6ae4e5a,0x3fe7fbacbd0d8f43,1
1044
+ np.float64,0x3fd6cf4015ad9e80,0x3fedfd3513d544b8,1
1045
+ np.float64,0x3fc67b7e6d2cf6fd,0x3fef81f5c16923a4,1
1046
+ np.float64,0x3fa1999c14233338,0x3feffb2913a14184,1
1047
+ np.float64,0x3fc74eb8dd2e9d72,0x3fef78909a138e3c,1
1048
+ np.float64,0x3fc0b9274921724f,0x3fefba2ebd5f3e1c,1
1049
+ np.float64,0x3fd53fa156aa7f43,0x3fee40a18e952e88,1
1050
+ np.float64,0x3feaccbca4b59979,0x3fe56b22b33eb713,1
1051
+ np.float64,0x3fe6a01e3a2d403c,0x3fe8543fbd820ecc,1
1052
+ np.float64,0x3fd392a869a72551,0x3fee83e0ffe0e8de,1
1053
+ np.float64,0x3fe44d8928689b12,0x3fe9c5bf3c8fffdb,1
1054
+ np.float64,0x3fca3f209f347e41,0x3fef5461b6fa0924,1
1055
+ np.float64,0x3fee9e84b07d3d09,0x3fe26f638f733549,1
1056
+ np.float64,0x3faf49acb03e9359,0x3feff0b583cd8c48,1
1057
+ np.float64,0x3fea874b2af50e96,0x3fe59e882fa6febf,1
1058
+ np.float64,0x3fc50b72772a16e5,0x3fef918777dc41be,1
1059
+ np.float64,0x3fe861d1d4f0c3a4,0x3fe726e44d9d42c2,1
1060
+ np.float64,0x3fcadd2e2535ba5c,0x3fef4c3e2b56da38,1
1061
+ np.float64,0x3fea59c29cb4b385,0x3fe5c0043e586439,1
1062
+ np.float64,0x3fc1ffef0d23ffde,0x3fefaf22be452d13,1
1063
+ np.float64,0x3fc2d8dbc125b1b8,0x3fefa75b646d8e4e,1
1064
+ np.float64,0x3fd66c6471acd8c9,0x3fee0e5038b895c0,1
1065
+ np.float64,0x3fd0854adfa10a96,0x3feef0945bcc5c99,1
1066
+ np.float64,0x3feaac7076f558e1,0x3fe58316c23a82ad,1
1067
+ np.float64,0x3fdda49db3bb493b,0x3feca0e347c0ad6f,1
1068
+ np.float64,0x3fe43a539de874a7,0x3fe9d11d722d4822,1
1069
+ np.float64,0x3feeee3ebbfddc7d,0x3fe22dffd251e9af,1
1070
+ np.float64,0x3f8ee2c5b03dc58b,0x3fefff11855a7b6c,1
1071
+ np.float64,0x3fcd7107c63ae210,0x3fef2840bb55ca52,1
1072
+ np.float64,0x3f8d950d203b2a1a,0x3fefff253a08e40e,1
1073
+ np.float64,0x3fd40a5e57a814bd,0x3fee71a633c761fc,1
1074
+ np.float64,0x3fee836ec83d06de,0x3fe28580975be2fd,1
1075
+ np.float64,0x3fd7bbe87f2f77d1,0x3fedd31f661890cc,1
1076
+ np.float64,0xbfe05bf138a0b7e2,0x3febe8a000d96e47,1
1077
+ np.float64,0xbf88bddd90317bc0,0x3fefff66f6e2ff26,1
1078
+ np.float64,0xbfdc9cbb12393976,0x3fecdae2982335db,1
1079
+ np.float64,0xbfd85b4eccb0b69e,0x3fedb5e0dd87f702,1
1080
+ np.float64,0xbfe5c326cb2b864e,0x3fe8e180f525fa12,1
1081
+ np.float64,0xbfe381a0e4a70342,0x3fea3c8e5e3ab78e,1
1082
+ np.float64,0xbfe58d892c2b1b12,0x3fe9031551617aed,1
1083
+ np.float64,0xbfd7f3a52cafe74a,0x3fedc8fa97edd080,1
1084
+ np.float64,0xbfef3417bc7e682f,0x3fe1f45989f6a009,1
1085
+ np.float64,0xbfddfb8208bbf704,0x3fec8d5fa9970773,1
1086
+ np.float64,0xbfdab69bcc356d38,0x3fed40b2f6c347c6,1
1087
+ np.float64,0xbfed3f7cf17a7efa,0x3fe389e4ff4d9235,1
1088
+ np.float64,0xbfe47675d9a8ecec,0x3fe9ad6829a69e94,1
1089
+ np.float64,0xbfd030e2902061c6,0x3feefb3f811e024f,1
1090
+ np.float64,0xbfc376ac7226ed58,0x3fefa1798712b37e,1
1091
+ np.float64,0xbfdb7e54a0b6fcaa,0x3fed17a974c4bc28,1
1092
+ np.float64,0xbfdb7d5d5736faba,0x3fed17dcf31a8d84,1
1093
+ np.float64,0xbf876bd6502ed7c0,0x3fefff76dce6232c,1
1094
+ np.float64,0xbfd211e6c02423ce,0x3feebba41f0a1764,1
1095
+ np.float64,0xbfb443e3962887c8,0x3fefe658953629d4,1
1096
+ np.float64,0xbfe81b09e9b03614,0x3fe757882e4fdbae,1
1097
+ np.float64,0xbfdcb905d2b9720c,0x3fecd4c22cfe84e5,1
1098
+ np.float64,0xbfe3b62d99276c5b,0x3fea1e5520b3098d,1
1099
+ np.float64,0xbfbf05b25c3e0b68,0x3fefc3ecc04bca8e,1
1100
+ np.float64,0xbfdedc885b3db910,0x3fec59e22feb49f3,1
1101
+ np.float64,0xbfe33aa282667545,0x3fea64f2d55ec471,1
1102
+ np.float64,0xbfec84745a3908e9,0x3fe41cb3214e7044,1
1103
+ np.float64,0xbfddefdff1bbdfc0,0x3fec8fff88d4d0ec,1
1104
+ np.float64,0xbfd26ae6aca4d5ce,0x3feeaf208c7fedf6,1
1105
+ np.float64,0xbfee010591fc020b,0x3fe2ef3e57211a5e,1
1106
+ np.float64,0xbfb8cfddca319fb8,0x3fefd98d8f7918ed,1
1107
+ np.float64,0xbfe991648f3322c9,0x3fe6514e54670bae,1
1108
+ np.float64,0xbfee63fd087cc7fa,0x3fe29f1bfa3297cc,1
1109
+ np.float64,0xbfe1685942a2d0b2,0x3feb617f5f839eee,1
1110
+ np.float64,0xbfc6fc2fd62df860,0x3fef7c4698fd58cf,1
1111
+ np.float64,0xbfe42723d3a84e48,0x3fe9dc6ef7243e90,1
1112
+ np.float64,0xbfc3a7e89d274fd0,0x3fef9f99e3314e77,1
1113
+ np.float64,0xbfeb4c9521f6992a,0x3fe50b7c919bc6d8,1
1114
+ np.float64,0xbf707b34e020f680,0x3fefffef05e30264,1
1115
+ np.float64,0xbfc078478e20f090,0x3fefbc479305d5aa,1
1116
+ np.float64,0xbfd494ac4ca92958,0x3fee5c11f1cd8269,1
1117
+ np.float64,0xbfdaf888a035f112,0x3fed3346ae600469,1
1118
+ np.float64,0xbfa5d8ed502bb1e0,0x3feff88b0f262609,1
1119
+ np.float64,0xbfeec0cbfffd8198,0x3fe253543b2371cb,1
1120
+ np.float64,0xbfe594b5986b296b,0x3fe8fe9b39fb3940,1
1121
+ np.float64,0xbfc8ece7c631d9d0,0x3fef652bd0611ac7,1
1122
+ np.float64,0xbfd8ffeca0b1ffda,0x3fed96ebdf9b65cb,1
1123
+ np.float64,0xbfba9b221e353648,0x3fefd3cc21e2f15c,1
1124
+ np.float64,0xbfca63a52c34c74c,0x3fef52848eb9ed3b,1
1125
+ np.float64,0xbfe588e9b06b11d4,0x3fe905f7403e8881,1
1126
+ np.float64,0xbfc76f82db2edf04,0x3fef77138fe9bbc2,1
1127
+ np.float64,0xbfeeb3f334bd67e6,0x3fe25ddadb1096d6,1
1128
+ np.float64,0xbfbf2b64ce3e56c8,0x3fefc35a9555f6df,1
1129
+ np.float64,0xbfe9920e4ff3241c,0x3fe650d4ab8f5c42,1
1130
+ np.float64,0xbfb4a54c02294a98,0x3fefe55fc85ae5e9,1
1131
+ np.float64,0xbfe353b0c766a762,0x3fea56c02d17e4b7,1
1132
+ np.float64,0xbfd99961a4b332c4,0x3fed795fcd00dbf9,1
1133
+ np.float64,0xbfef191ddabe323c,0x3fe20aa79524f636,1
1134
+ np.float64,0xbfb25d060224ba10,0x3fefeaeee5cc8c0b,1
1135
+ np.float64,0xbfe6022428ec0448,0x3fe8b9b46e776194,1
1136
+ np.float64,0xbfed1a236cba3447,0x3fe3a76bee0d9861,1
1137
+ np.float64,0xbfc59671e72b2ce4,0x3fef8bc4daef6f14,1
1138
+ np.float64,0xbfdf2711703e4e22,0x3fec4886a8c9ceb5,1
1139
+ np.float64,0xbfeb7e207536fc41,0x3fe4e610c783f168,1
1140
+ np.float64,0xbfe6cdf5bcad9bec,0x3fe8365f8a59bc81,1
1141
+ np.float64,0xbfe55294adaaa52a,0x3fe927b0af5ccd09,1
1142
+ np.float64,0xbfdf4a88913e9512,0x3fec4036df58ba74,1
1143
+ np.float64,0xbfebb7efe4376fe0,0x3fe4ba276006992d,1
1144
+ np.float64,0xbfe09f29cfa13e54,0x3febc77f4f9c95e7,1
1145
+ np.float64,0xbfdf8c75653f18ea,0x3fec30ac924e4f46,1
1146
+ np.float64,0xbfefd601c7ffac04,0x3fe16d6f21bcb9c1,1
1147
+ np.float64,0xbfeae97ff5f5d300,0x3fe555bb5b87efe9,1
1148
+ np.float64,0xbfed427f02fa84fe,0x3fe387830db093bc,1
1149
+ np.float64,0xbfa33909cc267210,0x3feffa3a1bcb50dd,1
1150
+ np.float64,0xbfe9aa4bf5f35498,0x3fe63f6e98f6aa0f,1
1151
+ np.float64,0xbfe2d7349b25ae69,0x3fea9caa7c331e7e,1
1152
+ np.float64,0xbfcdbb2a3a3b7654,0x3fef2401c9659e4b,1
1153
+ np.float64,0xbfc8a90919315214,0x3fef686fe7fc0513,1
1154
+ np.float64,0xbfe62a98df2c5532,0x3fe89ff22a02cc6b,1
1155
+ np.float64,0xbfdc0f67b3b81ed0,0x3fecf928b637798f,1
1156
+ np.float64,0xbfebb32bf6f76658,0x3fe4bdc893c09698,1
1157
+ np.float64,0xbfec067996380cf3,0x3fe47e132741db97,1
1158
+ np.float64,0xbfd9774e1d32ee9c,0x3fed7ffe1e87c434,1
1159
+ np.float64,0xbfef989890bf3131,0x3fe1a0d025c80cf4,1
1160
+ np.float64,0xbfe59887e62b3110,0x3fe8fc382a3d4197,1
1161
+ np.float64,0xbfdea0a11e3d4142,0x3fec67b987e236ec,1
1162
+ np.float64,0xbfe2ec495825d892,0x3fea90efb231602d,1
1163
+ np.float64,0xbfb329c5c2265388,0x3fefe90f1b8209c3,1
1164
+ np.float64,0xbfdcd2dcd339a5ba,0x3feccf24c60b1478,1
1165
+ np.float64,0xbfe537ea18aa6fd4,0x3fe938237e217fe0,1
1166
+ np.float64,0xbfe8675ce170ceba,0x3fe723105925ce3a,1
1167
+ np.float64,0xbfd70723acae0e48,0x3fedf369ac070e65,1
1168
+ np.float64,0xbfea9d8692b53b0d,0x3fe58e1ee42e3fdb,1
1169
+ np.float64,0xbfcfeb96653fd72c,0x3fef029770033bdc,1
1170
+ np.float64,0xbfcc06c92d380d94,0x3fef3c69797d9b0a,1
1171
+ np.float64,0xbfe16b7c4f62d6f8,0x3feb5fdf9f0a9a07,1
1172
+ np.float64,0xbfed4d7a473a9af4,0x3fe37ecee27b1eb7,1
1173
+ np.float64,0xbfe6a6f6942d4ded,0x3fe84fccdf762b19,1
1174
+ np.float64,0xbfda46d867348db0,0x3fed572d928fa657,1
1175
+ np.float64,0xbfdbd9482db7b290,0x3fed049b5f907b52,1
1176
+ np.float64,0x7fe992ceb933259c,0xbfeb15af92aad70e,1
1177
+ np.float64,0x7fe3069204a60d23,0xbfe5eeff454240e9,1
1178
+ np.float64,0x7fe729dbf32e53b7,0xbfefe0528a330e4c,1
1179
+ np.float64,0x7fec504fb638a09e,0x3fd288e95dbedf65,1
1180
+ np.float64,0x7fe1d30167a3a602,0xbfeffc41f946fd02,1
1181
+ np.float64,0x7fed7f8ffd3aff1f,0x3fefe68ec604a19d,1
1182
+ np.float64,0x7fd2f23635a5e46b,0x3fea63032efbb447,1
1183
+ np.float64,0x7fd4c86db1a990da,0x3fdf6b9f7888db5d,1
1184
+ np.float64,0x7fe7554db6eeaa9a,0x3fe1b41476861bb0,1
1185
+ np.float64,0x7fe34e823ba69d03,0x3fefc435532e6294,1
1186
+ np.float64,0x7fec5c82fef8b905,0x3fef8f0c6473034f,1
1187
+ np.float64,0x7feba221bff74442,0xbfea95b81eb19b47,1
1188
+ np.float64,0x7fe74808a5ae9010,0xbfd3aa322917c3e5,1
1189
+ np.float64,0x7fdf41b7e0be836f,0x3fd14283c7147282,1
1190
+ np.float64,0x7fec09892f381311,0x3fe5240376ae484b,1
1191
+ np.float64,0x7faaf80bf435f017,0x3fe20227fa811423,1
1192
+ np.float64,0x7f8422d8402845b0,0x3fe911714593b8a0,1
1193
+ np.float64,0x7fd23a7fada474fe,0x3feff9f40aa37e9c,1
1194
+ np.float64,0x7fef4a4806fe948f,0x3fec6eca89cb4a62,1
1195
+ np.float64,0x7fe1e71cf763ce39,0xbfea6ac63f9ba457,1
1196
+ np.float64,0x7fe3e555be27caaa,0xbfe75b305d0dbbfd,1
1197
+ np.float64,0x7fcb8bac96371758,0xbfe8b126077f9d4c,1
1198
+ np.float64,0x7fc98e2c84331c58,0x3fef9092eb0bc85a,1
1199
+ np.float64,0x7fe947cf2b728f9d,0xbfebfff2c5b7d198,1
1200
+ np.float64,0x7feee8058c3dd00a,0xbfef21ebaae2eb17,1
1201
+ np.float64,0x7fef61d8d5bec3b1,0xbfdf1a032fb1c864,1
1202
+ np.float64,0x7fcf714b6f3ee296,0x3fe6fc89a8084098,1
1203
+ np.float64,0x7fa9a8b44c335168,0xbfeb16c149cea943,1
1204
+ np.float64,0x7fd175c482a2eb88,0xbfef64d341e73f88,1
1205
+ np.float64,0x7feab8e6a87571cc,0x3feb10069c397464,1
1206
+ np.float64,0x7fe3ade72de75bcd,0x3fd1753e333d5790,1
1207
+ np.float64,0x7fb26d87d224db0f,0xbfe753d36b18f4ca,1
1208
+ np.float64,0x7fdb7ef159b6fde2,0x3fe5c0a6044d3607,1
1209
+ np.float64,0x7fd5af86422b5f0c,0x3fe77193c95f6484,1
1210
+ np.float64,0x7fee9e00b07d3c00,0x3fe864d494596845,1
1211
+ np.float64,0x7fef927a147f24f3,0xbfe673b14715693d,1
1212
+ np.float64,0x7fd0aea63c215d4b,0xbfeff435f119fce9,1
1213
+ np.float64,0x7fd02e3796a05c6e,0x3fe4f7e3706e9a3d,1
1214
+ np.float64,0x7fd3ed61da27dac3,0xbfefef2f057f168c,1
1215
+ np.float64,0x7fefaca0d4ff5941,0x3fd3e8ad205cd4ab,1
1216
+ np.float64,0x7feb659e06f6cb3b,0x3fd64d803203e027,1
1217
+ np.float64,0x7fc94ccfaf32999e,0x3fee04922209369a,1
1218
+ np.float64,0x7feb4ec294f69d84,0xbfd102763a056c89,1
1219
+ np.float64,0x7fe2ada6ac655b4c,0x3fef4f6792aa6093,1
1220
+ np.float64,0x7fe5f40fdc2be81f,0xbfb4a6327186eee8,1
1221
+ np.float64,0x7fe7584bc3eeb097,0xbfd685b8ff94651d,1
1222
+ np.float64,0x7fe45d276be8ba4e,0x3fee53b13f7e442f,1
1223
+ np.float64,0x7fe6449b3d6c8935,0xbfe7e08bafa75251,1
1224
+ np.float64,0x7f8d62e6b03ac5cc,0x3fe73d30762f38fd,1
1225
+ np.float64,0x7fe3a76f72a74ede,0xbfeb48a28bc60968,1
1226
+ np.float64,0x7fd057706920aee0,0x3fdece8fa06f626c,1
1227
+ np.float64,0x7fe45ae158e8b5c2,0x3fe7a70f47b4d349,1
1228
+ np.float64,0x7fea8a5a983514b4,0x3fefb053d5f9ddd7,1
1229
+ np.float64,0x7fdd1e86ab3a3d0c,0x3fe3cded1b93816b,1
1230
+ np.float64,0x7fdb456108b68ac1,0xbfe37574c0b9bf8f,1
1231
+ np.float64,0x7fe972602432e4bf,0x3fef9a26e65ec01c,1
1232
+ np.float64,0x7fdbe2385637c470,0x3fed541df57969e1,1
1233
+ np.float64,0x7fe57f03602afe06,0x3fbd90f595cbbd94,1
1234
+ np.float64,0x7feb0ceb68f619d6,0xbfeae9cb8ee5261f,1
1235
+ np.float64,0x7fe6abfe6c6d57fc,0xbfef40a6edaca26f,1
1236
+ np.float64,0x7fe037ea08606fd3,0xbfda817d75858597,1
1237
+ np.float64,0x7fdd75a52dbaeb49,0x3feef2a0d91d6aa1,1
1238
+ np.float64,0x7fe8f9af66b1f35e,0xbfedfceef2a3bfc9,1
1239
+ np.float64,0x7fedf762b53beec4,0x3fd8b4f21ef69ee3,1
1240
+ np.float64,0x7fe99295b7f3252a,0x3feffc24d970383e,1
1241
+ np.float64,0x7fe797b0172f2f5f,0x3fee089aa56f7ce8,1
1242
+ np.float64,0x7fed89dcc97b13b9,0xbfcfa2bb0c3ea41f,1
1243
+ np.float64,0x7fae9e8d5c3d3d1a,0xbfe512ffe16c6b08,1
1244
+ np.float64,0x7fefaecbe27f5d97,0x3fbfc718a5e972f1,1
1245
+ np.float64,0x7fce0236d93c046d,0xbfa9b7cd790db256,1
1246
+ np.float64,0x7fa9689aac32d134,0x3feced501946628a,1
1247
+ np.float64,0x7feb1469e93628d3,0x3fef2a988e7673ed,1
1248
+ np.float64,0x7fdba78344b74f06,0xbfe092e78965b30c,1
1249
+ np.float64,0x7fece54c3fb9ca97,0x3fd3cfd184bed2e6,1
1250
+ np.float64,0x7fdb84212b370841,0xbfe25ebf2db6ee55,1
1251
+ np.float64,0x7fbe3e8bf23c7d17,0x3fe2ee72df573345,1
1252
+ np.float64,0x7fe43d9803687b2f,0xbfed2eff6a9e66a0,1
1253
+ np.float64,0x7fb0f9c00a21f37f,0x3feff70f3276fdb7,1
1254
+ np.float64,0x7fea0c6cbbb418d8,0xbfefa612494798b2,1
1255
+ np.float64,0x7fe4b3239e296646,0xbfe74dd959af8cdc,1
1256
+ np.float64,0x7fe5c6a773eb8d4e,0xbfd06944048f8d2b,1
1257
+ np.float64,0x7fb1c1278223824e,0xbfeb533a34655bde,1
1258
+ np.float64,0x7fd21c09ee243813,0xbfe921ccbc9255c3,1
1259
+ np.float64,0x7fe051020c20a203,0x3fbd519d700c1f2f,1
1260
+ np.float64,0x7fe0c76845e18ed0,0x3fefb9595191a31b,1
1261
+ np.float64,0x7fe6b0b57b6d616a,0xbf8c59a8ba5fcd9a,1
1262
+ np.float64,0x7fd386c460270d88,0x3fe8ffea5d1a5c46,1
1263
+ np.float64,0x7feeb884713d7108,0x3fee9b2247ef6c0d,1
1264
+ np.float64,0x7fd85f71b6b0bee2,0xbfefc30ec3e28f07,1
1265
+ np.float64,0x7fc341366426826c,0x3fd4234d35386d3b,1
1266
+ np.float64,0x7fe56482dd6ac905,0x3fe7189de6a50668,1
1267
+ np.float64,0x7fec67a2e3f8cf45,0xbfef86d0b940f37f,1
1268
+ np.float64,0x7fe38b202fe7163f,0x3feb90b75caa2030,1
1269
+ np.float64,0x7fdcbc64883978c8,0x3fed4f758fbf64d4,1
1270
+ np.float64,0x7fea5f0598f4be0a,0x3fdd503a417b3d4d,1
1271
+ np.float64,0x7fda3b6bcf3476d7,0x3fea6e9af3f7f9f5,1
1272
+ np.float64,0x7fc7d7896c2faf12,0x3fda2bebc36a2363,1
1273
+ np.float64,0x7fe7e8e2626fd1c4,0xbfe7d5e390c4cc3f,1
1274
+ np.float64,0x7fde0f3d7abc1e7a,0xbfede7a0ecfa3606,1
1275
+ np.float64,0x7fc692b8f52d2571,0x3feff0cd7ab6f61b,1
1276
+ np.float64,0xff92d1fce825a400,0xbfc921c36fc014fa,1
1277
+ np.float64,0xffdec3af2fbd875e,0xbfed6a77e6a0364e,1
1278
+ np.float64,0xffef46e7d9be8dcf,0xbfed7d39476f7e27,1
1279
+ np.float64,0xffe2c2ce4525859c,0x3fe1757261316bc9,1
1280
+ np.float64,0xffe27c8b5864f916,0xbfefe017c0d43457,1
1281
+ np.float64,0xffe184d7442309ae,0x3fa1fb8c49dba596,1
1282
+ np.float64,0xffddf5f98d3bebf4,0x3fee4f8eaa5f847e,1
1283
+ np.float64,0xffee3ef354fc7de6,0xbfebfd60fa51b2ba,1
1284
+ np.float64,0xffdecb3e85bd967e,0x3fbfad2667a8b468,1
1285
+ np.float64,0xffe4ee900b29dd20,0xbfdc02dc626f91cd,1
1286
+ np.float64,0xffd3179f6da62f3e,0xbfe2cfe442511776,1
1287
+ np.float64,0xffe99ef7cef33def,0x3f50994542a7f303,1
1288
+ np.float64,0xffe2b66b1ae56cd6,0xbfefe3e066eb6329,1
1289
+ np.float64,0xff8f72aff03ee540,0x3fe9c46224cf5003,1
1290
+ np.float64,0xffd29beb85a537d8,0x3fefcb0b6166be71,1
1291
+ np.float64,0xffaef02d4c3de060,0xbfef5fb71028fc72,1
1292
+ np.float64,0xffd39a2a89273456,0x3fe6d4b183205dca,1
1293
+ np.float64,0xffef8a9392ff1526,0x3fedb99fbf402468,1
1294
+ np.float64,0xffb9b3f31e3367e8,0x3fee1005270fcf80,1
1295
+ np.float64,0xffed9d5c693b3ab8,0x3fd110f4b02365d5,1
1296
+ np.float64,0xffeaba45f9f5748b,0x3fe499e0a6f4afb2,1
1297
+ np.float64,0xffdba3f70d3747ee,0xbfca0c30493ae519,1
1298
+ np.float64,0xffa35b985426b730,0xbfdb625df56bcf45,1
1299
+ np.float64,0xffccbc9728397930,0x3fc53cbc59020704,1
1300
+ np.float64,0xffef73c942bee792,0xbfdc647a7a5e08be,1
1301
+ np.float64,0xffcb5acfb236b5a0,0x3feeb4ec038c39fc,1
1302
+ np.float64,0xffea116fe2b422df,0x3fefe03b6ae0b435,1
1303
+ np.float64,0xffe97de6e7b2fbcd,0xbfd2025698fab9eb,1
1304
+ np.float64,0xffdddba314bbb746,0x3fd31f0fdb8f93be,1
1305
+ np.float64,0xffd613a24a2c2744,0xbfebbb1efae884b3,1
1306
+ np.float64,0xffe3d938aa67b271,0xbfc2099cead3d3be,1
1307
+ np.float64,0xffdf08c2e33e1186,0xbfefd236839b900d,1
1308
+ np.float64,0xffea6ba8bd34d751,0x3fe8dfc032114719,1
1309
+ np.float64,0xffe3202083e64040,0x3fed513b81432a22,1
1310
+ np.float64,0xffb2397db62472f8,0xbfee7d7fe1c3f76c,1
1311
+ np.float64,0xffd9d0682ab3a0d0,0x3fe0bcf9e531ad79,1
1312
+ np.float64,0xffc293df202527c0,0xbfe58d0bdece5e64,1
1313
+ np.float64,0xffe1422c7da28458,0xbf81bd72595f2341,1
1314
+ np.float64,0xffd64e4ed4ac9c9e,0x3fa4334cc011c703,1
1315
+ np.float64,0xffe40a970ae8152e,0x3fead3d258b55b7d,1
1316
+ np.float64,0xffc8c2f2223185e4,0xbfef685f07c8b9fd,1
1317
+ np.float64,0xffe4b2f7216965ee,0x3fe3861d3d896a83,1
1318
+ np.float64,0xffdb531db3b6a63c,0x3fe18cb8332dd59d,1
1319
+ np.float64,0xffe8e727a3b1ce4e,0xbfe57b15abb677b9,1
1320
+ np.float64,0xffe530c1e12a6184,0xbfb973ea5535e48f,1
1321
+ np.float64,0xffe6f7849cedef08,0x3fd39a37ec5af4b6,1
1322
+ np.float64,0xffead62a78b5ac54,0x3fe69b3f6c7aa24b,1
1323
+ np.float64,0xffeefdd725fdfbad,0xbfc08a456111fdd5,1
1324
+ np.float64,0xffe682182fed0430,0x3fecc7c1292761d2,1
1325
+ np.float64,0xffee0ca8dcbc1951,0x3fef6cc361ef2c19,1
1326
+ np.float64,0xffec9b338f393666,0x3fefa9ab8e0471b5,1
1327
+ np.float64,0xffe13c5e29a278bc,0xbfef8da74ad83398,1
1328
+ np.float64,0xffd7bd48c62f7a92,0x3fe3468cd4ac9d34,1
1329
+ np.float64,0xffedd0ed14bba1d9,0xbfd563a83477077b,1
1330
+ np.float64,0xffe86b83f3f0d707,0x3fe9eb3c658e4b2d,1
1331
+ np.float64,0xffd6a4db4bad49b6,0xbfc7e11276166e17,1
1332
+ np.float64,0xffc29e8404253d08,0x3fd35971961c789f,1
1333
+ np.float64,0xffe27cf3d664f9e7,0xbfeca0f73c72f810,1
1334
+ np.float64,0xffc34152352682a4,0x3fef384e564c002c,1
1335
+ np.float64,0xffe395728ba72ae4,0x3f8fe18c2de86eba,1
1336
+ np.float64,0xffed86c4fbbb0d89,0x3fef709db881c672,1
1337
+ np.float64,0xffe8a98d37f1531a,0x3fd4879c8f73c3dc,1
1338
+ np.float64,0xffb8ce9fea319d40,0xbfb853c8fe46b08d,1
1339
+ np.float64,0xffe7f26db8efe4db,0xbfec1cfd3e5c2ac1,1
1340
+ np.float64,0xffd7935b77af26b6,0x3fb7368c89b2a460,1
1341
+ np.float64,0xffc5840ed02b081c,0x3fd92220b56631f3,1
1342
+ np.float64,0xffc36a873926d510,0x3fa84d61baf61811,1
1343
+ np.float64,0xffe06ea583e0dd4a,0x3feb647e348b9e39,1
1344
+ np.float64,0xffe6a33031ed4660,0xbfe096b851dc1a0a,1
1345
+ np.float64,0xffe001c938e00392,0x3fe4eece77623e7a,1
1346
+ np.float64,0xffc1e4f23b23c9e4,0xbfdb9bb1f83f6ac4,1
1347
+ np.float64,0xffecd3ecbab9a7d9,0x3fbafb1f800f177d,1
1348
+ np.float64,0xffc2d3016825a604,0xbfef650e8b0d6afb,1
1349
+ np.float64,0xffe222cb68e44596,0x3fde3690e44de5bd,1
1350
+ np.float64,0xffe5bb145e2b7628,0x3fedbb98e23c9dc1,1
1351
+ np.float64,0xffe9e5823b73cb04,0xbfee41661016c03c,1
1352
+ np.float64,0xffd234a00ba46940,0x3fda0312cda580c2,1
1353
+ np.float64,0xffe0913ed6e1227d,0xbfed508bb529bd23,1
1354
+ np.float64,0xffe8e3596171c6b2,0xbfdc33e1c1d0310e,1
1355
+ np.float64,0xffef9c6835ff38cf,0x3fea8ce6d27dfba3,1
1356
+ np.float64,0xffdd3bcf66ba779e,0x3fe50523d2b6470e,1
1357
+ np.float64,0xffe57e8cf06afd1a,0xbfee600933347247,1
1358
+ np.float64,0xffe0d8c65fa1b18c,0x3fe75091f93d5e4c,1
1359
+ np.float64,0xffea7c8c16b4f918,0x3fee681724795198,1
1360
+ np.float64,0xffe34f7a05269ef4,0xbfe3c3e179676f13,1
1361
+ np.float64,0xffd28894a6a5112a,0xbfe5d1027aee615d,1
1362
+ np.float64,0xffc73be6f22e77cc,0x3fe469bbc08b472a,1
1363
+ np.float64,0xffe7f71b066fee36,0x3fe7ed136c8fdfaa,1
1364
+ np.float64,0xffebc13e29f7827c,0x3fefcdc6e677d314,1
1365
+ np.float64,0xffd53e9c942a7d3a,0x3fea5a02c7341749,1
1366
+ np.float64,0xffd7191b23ae3236,0x3fea419b66023443,1
1367
+ np.float64,0xffe9480325b29006,0xbfefeaff5fa38cd5,1
1368
+ np.float64,0xffba46dc0e348db8,0xbfefa54f4de28eba,1
1369
+ np.float64,0xffdd4cc31eba9986,0x3fe60bb41fe1c4da,1
1370
+ np.float64,0xffe13a70dea274e1,0xbfaa9192f7bd6c9b,1
1371
+ np.float64,0xffde25127bbc4a24,0x3f7c75f45e29be7d,1
1372
+ np.float64,0xffe4076543a80eca,0x3fea5aad50d2f687,1
1373
+ np.float64,0xffe61512acec2a25,0xbfefffeb67401649,1
1374
+ np.float64,0xffef812ec1ff025d,0xbfe919c7c073c766,1
1375
+ np.float64,0xffd5552aeaaaaa56,0x3fc89d38ab047396,1
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-exp.csv ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ ## +ve denormals ##
3
+ np.float32,0x004b4716,0x3f800000,3
4
+ np.float32,0x007b2490,0x3f800000,3
5
+ np.float32,0x007c99fa,0x3f800000,3
6
+ np.float32,0x00734a0c,0x3f800000,3
7
+ np.float32,0x0070de24,0x3f800000,3
8
+ np.float32,0x00495d65,0x3f800000,3
9
+ np.float32,0x006894f6,0x3f800000,3
10
+ np.float32,0x00555a76,0x3f800000,3
11
+ np.float32,0x004e1fb8,0x3f800000,3
12
+ np.float32,0x00687de9,0x3f800000,3
13
+ ## -ve denormals ##
14
+ np.float32,0x805b59af,0x3f800000,3
15
+ np.float32,0x807ed8ed,0x3f800000,3
16
+ np.float32,0x807142ad,0x3f800000,3
17
+ np.float32,0x80772002,0x3f800000,3
18
+ np.float32,0x8062abcb,0x3f800000,3
19
+ np.float32,0x8045e31c,0x3f800000,3
20
+ np.float32,0x805f01c2,0x3f800000,3
21
+ np.float32,0x80506432,0x3f800000,3
22
+ np.float32,0x8060089d,0x3f800000,3
23
+ np.float32,0x8071292f,0x3f800000,3
24
+ ## floats that output a denormal ##
25
+ np.float32,0xc2cf3fc1,0x00000001,3
26
+ np.float32,0xc2c79726,0x00000021,3
27
+ np.float32,0xc2cb295d,0x00000005,3
28
+ np.float32,0xc2b49e6b,0x00068c4c,3
29
+ np.float32,0xc2ca8116,0x00000008,3
30
+ np.float32,0xc2c23f82,0x000001d7,3
31
+ np.float32,0xc2cb69c0,0x00000005,3
32
+ np.float32,0xc2cc1f4d,0x00000003,3
33
+ np.float32,0xc2ae094e,0x00affc4c,3
34
+ np.float32,0xc2c86c44,0x00000015,3
35
+ ## random floats between -87.0f and 88.0f ##
36
+ np.float32,0x4030d7e0,0x417d9a05,3
37
+ np.float32,0x426f60e8,0x6aa1be2c,3
38
+ np.float32,0x41a1b220,0x4e0efc11,3
39
+ np.float32,0xc20cc722,0x26159da7,3
40
+ np.float32,0x41c492bc,0x512ec79d,3
41
+ np.float32,0x40980210,0x42e73a0e,3
42
+ np.float32,0xbf1f7b80,0x3f094de3,3
43
+ np.float32,0x42a678a4,0x7b87a383,3
44
+ np.float32,0xc20f3cfd,0x25a1c304,3
45
+ np.float32,0x423ff34c,0x6216467f,3
46
+ np.float32,0x00000000,0x3f800000,3
47
+ ## floats that cause an overflow ##
48
+ np.float32,0x7f06d8c1,0x7f800000,3
49
+ np.float32,0x7f451912,0x7f800000,3
50
+ np.float32,0x7ecceac3,0x7f800000,3
51
+ np.float32,0x7f643b45,0x7f800000,3
52
+ np.float32,0x7e910ea0,0x7f800000,3
53
+ np.float32,0x7eb4756b,0x7f800000,3
54
+ np.float32,0x7f4ec708,0x7f800000,3
55
+ np.float32,0x7f6b4551,0x7f800000,3
56
+ np.float32,0x7d8edbda,0x7f800000,3
57
+ np.float32,0x7f730718,0x7f800000,3
58
+ np.float32,0x42b17217,0x7f7fff84,3
59
+ np.float32,0x42b17218,0x7f800000,3
60
+ np.float32,0x42b17219,0x7f800000,3
61
+ np.float32,0xfef2b0bc,0x00000000,3
62
+ np.float32,0xff69f83e,0x00000000,3
63
+ np.float32,0xff4ecb12,0x00000000,3
64
+ np.float32,0xfeac6d86,0x00000000,3
65
+ np.float32,0xfde0cdb8,0x00000000,3
66
+ np.float32,0xff26aef4,0x00000000,3
67
+ np.float32,0xff6f9277,0x00000000,3
68
+ np.float32,0xff7adfc4,0x00000000,3
69
+ np.float32,0xff0ad40e,0x00000000,3
70
+ np.float32,0xff6fd8f3,0x00000000,3
71
+ np.float32,0xc2cff1b4,0x00000001,3
72
+ np.float32,0xc2cff1b5,0x00000000,3
73
+ np.float32,0xc2cff1b6,0x00000000,3
74
+ np.float32,0x7f800000,0x7f800000,3
75
+ np.float32,0xff800000,0x00000000,3
76
+ np.float32,0x4292f27c,0x7480000a,3
77
+ np.float32,0x42a920be,0x7c7fff94,3
78
+ np.float32,0x41c214c9,0x50ffffd9,3
79
+ np.float32,0x41abe686,0x4effffd9,3
80
+ np.float32,0x4287db5a,0x707fffd3,3
81
+ np.float32,0x41902cbb,0x4c800078,3
82
+ np.float32,0x42609466,0x67ffffeb,3
83
+ np.float32,0x41a65af5,0x4e7fffd1,3
84
+ np.float32,0x417f13ff,0x4affffc9,3
85
+ np.float32,0x426d0e6c,0x6a3504f2,3
86
+ np.float32,0x41bc8934,0x507fff51,3
87
+ np.float32,0x42a7bdde,0x7c0000d6,3
88
+ np.float32,0x4120cf66,0x46b504f6,3
89
+ np.float32,0x4244da8f,0x62ffff1a,3
90
+ np.float32,0x41a0cf69,0x4e000034,3
91
+ np.float32,0x41cd2bec,0x52000005,3
92
+ np.float32,0x42893e41,0x7100009e,3
93
+ np.float32,0x41b437e1,0x4fb50502,3
94
+ np.float32,0x41d8430f,0x5300001d,3
95
+ np.float32,0x4244da92,0x62ffffda,3
96
+ np.float32,0x41a0cf63,0x4dffffa9,3
97
+ np.float32,0x3eb17218,0x3fb504f3,3
98
+ np.float32,0x428729e8,0x703504dc,3
99
+ np.float32,0x41a0cf67,0x4e000014,3
100
+ np.float32,0x4252b77d,0x65800011,3
101
+ np.float32,0x41902cb9,0x4c800058,3
102
+ np.float32,0x42a0cf67,0x79800052,3
103
+ np.float32,0x4152b77b,0x48ffffe9,3
104
+ np.float32,0x41265af3,0x46ffffc8,3
105
+ np.float32,0x42187e0b,0x5affff9a,3
106
+ np.float32,0xc0d2b77c,0x3ab504f6,3
107
+ np.float32,0xc283b2ac,0x10000072,3
108
+ np.float32,0xc1cff1b4,0x2cb504f5,3
109
+ np.float32,0xc05dce9e,0x3d000000,3
110
+ np.float32,0xc28ec9d2,0x0bfffea5,3
111
+ np.float32,0xc23c893a,0x1d7fffde,3
112
+ np.float32,0xc2a920c0,0x027fff6c,3
113
+ np.float32,0xc1f9886f,0x2900002b,3
114
+ np.float32,0xc2c42920,0x000000b5,3
115
+ np.float32,0xc2893e41,0x0dfffec5,3
116
+ np.float32,0xc2c4da93,0x00000080,3
117
+ np.float32,0xc17f1401,0x3400000c,3
118
+ np.float32,0xc1902cb6,0x327fffaf,3
119
+ np.float32,0xc27c4e3b,0x11ffffc5,3
120
+ np.float32,0xc268e5c5,0x157ffe9d,3
121
+ np.float32,0xc2b4e953,0x0005a826,3
122
+ np.float32,0xc287db5a,0x0e800016,3
123
+ np.float32,0xc207db5a,0x2700000b,3
124
+ np.float32,0xc2b2d4fe,0x000ffff1,3
125
+ np.float32,0xc268e5c0,0x157fffdd,3
126
+ np.float32,0xc22920bd,0x2100003b,3
127
+ np.float32,0xc2902caf,0x0b80011e,3
128
+ np.float32,0xc1902cba,0x327fff2f,3
129
+ np.float32,0xc2ca6625,0x00000008,3
130
+ np.float32,0xc280ece8,0x10fffeb5,3
131
+ np.float32,0xc2918f94,0x0b0000ea,3
132
+ np.float32,0xc29b43d5,0x077ffffc,3
133
+ np.float32,0xc1e61ff7,0x2ab504f5,3
134
+ np.float32,0xc2867878,0x0effff15,3
135
+ np.float32,0xc2a2324a,0x04fffff4,3
136
+ #float64
137
+ ## near zero ##
138
+ np.float64,0x8000000000000000,0x3ff0000000000000,2
139
+ np.float64,0x8010000000000000,0x3ff0000000000000,2
140
+ np.float64,0x8000000000000001,0x3ff0000000000000,2
141
+ np.float64,0x8360000000000000,0x3ff0000000000000,2
142
+ np.float64,0x9a70000000000000,0x3ff0000000000000,2
143
+ np.float64,0xb9b0000000000000,0x3ff0000000000000,2
144
+ np.float64,0xb810000000000000,0x3ff0000000000000,2
145
+ np.float64,0xbc30000000000000,0x3ff0000000000000,2
146
+ np.float64,0xb6a0000000000000,0x3ff0000000000000,2
147
+ np.float64,0x0000000000000000,0x3ff0000000000000,2
148
+ np.float64,0x0010000000000000,0x3ff0000000000000,2
149
+ np.float64,0x0000000000000001,0x3ff0000000000000,2
150
+ np.float64,0x0360000000000000,0x3ff0000000000000,2
151
+ np.float64,0x1a70000000000000,0x3ff0000000000000,2
152
+ np.float64,0x3c30000000000000,0x3ff0000000000000,2
153
+ np.float64,0x36a0000000000000,0x3ff0000000000000,2
154
+ np.float64,0x39b0000000000000,0x3ff0000000000000,2
155
+ np.float64,0x3810000000000000,0x3ff0000000000000,2
156
+ ## underflow ##
157
+ np.float64,0xc0c6276800000000,0x0000000000000000,2
158
+ np.float64,0xc0c62d918ce2421d,0x0000000000000000,2
159
+ np.float64,0xc0c62d918ce2421e,0x0000000000000000,2
160
+ np.float64,0xc0c62d91a0000000,0x0000000000000000,2
161
+ np.float64,0xc0c62d9180000000,0x0000000000000000,2
162
+ np.float64,0xc0c62dea45ee3e06,0x0000000000000000,2
163
+ np.float64,0xc0c62dea45ee3e07,0x0000000000000000,2
164
+ np.float64,0xc0c62dea40000000,0x0000000000000000,2
165
+ np.float64,0xc0c62dea60000000,0x0000000000000000,2
166
+ np.float64,0xc0875f1120000000,0x0000000000000000,2
167
+ np.float64,0xc0875f113c30b1c8,0x0000000000000000,2
168
+ np.float64,0xc0875f1140000000,0x0000000000000000,2
169
+ np.float64,0xc093480000000000,0x0000000000000000,2
170
+ np.float64,0xffefffffffffffff,0x0000000000000000,2
171
+ np.float64,0xc7efffffe0000000,0x0000000000000000,2
172
+ ## overflow ##
173
+ np.float64,0x40862e52fefa39ef,0x7ff0000000000000,2
174
+ np.float64,0x40872e42fefa39ef,0x7ff0000000000000,2
175
+ ## +/- INF, +/- NAN ##
176
+ np.float64,0x7ff0000000000000,0x7ff0000000000000,2
177
+ np.float64,0xfff0000000000000,0x0000000000000000,2
178
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,2
179
+ np.float64,0xfff8000000000000,0xfff8000000000000,2
180
+ ## output denormal ##
181
+ np.float64,0xc087438520000000,0x0000000000000001,2
182
+ np.float64,0xc08743853f2f4461,0x0000000000000001,2
183
+ np.float64,0xc08743853f2f4460,0x0000000000000001,2
184
+ np.float64,0xc087438540000000,0x0000000000000001,2
185
+ ## between -745.13321910 and 709.78271289 ##
186
+ np.float64,0xbff760cd14774bd9,0x3fcdb14ced00ceb6,2
187
+ np.float64,0xbff760cd20000000,0x3fcdb14cd7993879,2
188
+ np.float64,0xbff760cd00000000,0x3fcdb14d12fbd264,2
189
+ np.float64,0xc07f1cf360000000,0x130c1b369af14fda,2
190
+ np.float64,0xbeb0000000000000,0x3feffffe00001000,2
191
+ np.float64,0xbd70000000000000,0x3fefffffffffe000,2
192
+ np.float64,0xc084fd46e5c84952,0x0360000000000139,2
193
+ np.float64,0xc084fd46e5c84953,0x035ffffffffffe71,2
194
+ np.float64,0xc084fd46e0000000,0x0360000b9096d32c,2
195
+ np.float64,0xc084fd4700000000,0x035fff9721d12104,2
196
+ np.float64,0xc086232bc0000000,0x0010003af5e64635,2
197
+ np.float64,0xc086232bdd7abcd2,0x001000000000007c,2
198
+ np.float64,0xc086232bdd7abcd3,0x000ffffffffffe7c,2
199
+ np.float64,0xc086232be0000000,0x000ffffaf57a6fc9,2
200
+ np.float64,0xc086233920000000,0x000fe590e3b45eb0,2
201
+ np.float64,0xc086233938000000,0x000fe56133493c57,2
202
+ np.float64,0xc086233940000000,0x000fe5514deffbbc,2
203
+ np.float64,0xc086234c98000000,0x000fbf1024c32ccb,2
204
+ np.float64,0xc086234ca0000000,0x000fbf0065bae78d,2
205
+ np.float64,0xc086234c80000000,0x000fbf3f623a7724,2
206
+ np.float64,0xc086234ec0000000,0x000fbad237c846f9,2
207
+ np.float64,0xc086234ec8000000,0x000fbac27cfdec97,2
208
+ np.float64,0xc086234ee0000000,0x000fba934cfd3dc2,2
209
+ np.float64,0xc086234ef0000000,0x000fba73d7f618d9,2
210
+ np.float64,0xc086234f00000000,0x000fba54632dddc0,2
211
+ np.float64,0xc0862356e0000000,0x000faae0945b761a,2
212
+ np.float64,0xc0862356f0000000,0x000faac13eb9a310,2
213
+ np.float64,0xc086235700000000,0x000faaa1e9567b0a,2
214
+ np.float64,0xc086236020000000,0x000f98cd75c11ed7,2
215
+ np.float64,0xc086236ca0000000,0x000f8081b4d93f89,2
216
+ np.float64,0xc086236cb0000000,0x000f8062b3f4d6c5,2
217
+ np.float64,0xc086236cc0000000,0x000f8043b34e6f8c,2
218
+ np.float64,0xc086238d98000000,0x000f41220d9b0d2c,2
219
+ np.float64,0xc086238da0000000,0x000f4112cc80a01f,2
220
+ np.float64,0xc086238d80000000,0x000f414fd145db5b,2
221
+ np.float64,0xc08624fd00000000,0x000cbfce8ea1e6c4,2
222
+ np.float64,0xc086256080000000,0x000c250747fcd46e,2
223
+ np.float64,0xc08626c480000000,0x000a34f4bd975193,2
224
+ np.float64,0xbf50000000000000,0x3feff800ffeaac00,2
225
+ np.float64,0xbe10000000000000,0x3fefffffff800000,2
226
+ np.float64,0xbcd0000000000000,0x3feffffffffffff8,2
227
+ np.float64,0xc055d589e0000000,0x38100004bf94f63e,2
228
+ np.float64,0xc055d58a00000000,0x380ffff97f292ce8,2
229
+ np.float64,0xbfd962d900000000,0x3fe585a4b00110e1,2
230
+ np.float64,0x3ff4bed280000000,0x400d411e7a58a303,2
231
+ np.float64,0x3fff0b3620000000,0x401bd7737ffffcf3,2
232
+ np.float64,0x3ff0000000000000,0x4005bf0a8b145769,2
233
+ np.float64,0x3eb0000000000000,0x3ff0000100000800,2
234
+ np.float64,0x3d70000000000000,0x3ff0000000001000,2
235
+ np.float64,0x40862e42e0000000,0x7fefff841808287f,2
236
+ np.float64,0x40862e42fefa39ef,0x7fefffffffffff2a,2
237
+ np.float64,0x40862e0000000000,0x7feef85a11e73f2d,2
238
+ np.float64,0x4000000000000000,0x401d8e64b8d4ddae,2
239
+ np.float64,0x4009242920000000,0x40372a52c383a488,2
240
+ np.float64,0x4049000000000000,0x44719103e4080b45,2
241
+ np.float64,0x4008000000000000,0x403415e5bf6fb106,2
242
+ np.float64,0x3f50000000000000,0x3ff00400800aab55,2
243
+ np.float64,0x3e10000000000000,0x3ff0000000400000,2
244
+ np.float64,0x3cd0000000000000,0x3ff0000000000004,2
245
+ np.float64,0x40562e40a0000000,0x47effed088821c3f,2
246
+ np.float64,0x40562e42e0000000,0x47effff082e6c7ff,2
247
+ np.float64,0x40562e4300000000,0x47f00000417184b8,2
248
+ np.float64,0x3fe8000000000000,0x4000ef9db467dcf8,2
249
+ np.float64,0x402b12e8d4f33589,0x412718f68c71a6fe,2
250
+ np.float64,0x402b12e8d4f3358a,0x412718f68c71a70a,2
251
+ np.float64,0x402b12e8c0000000,0x412718f59a7f472e,2
252
+ np.float64,0x402b12e8e0000000,0x412718f70c0eac62,2
253
+ ##use 1th entry
254
+ np.float64,0x40631659AE147CB4,0x4db3a95025a4890f,2
255
+ np.float64,0xC061B87D2E85A4E2,0x332640c8e2de2c51,2
256
+ np.float64,0x405A4A50BE243AF4,0x496a45e4b7f0339a,2
257
+ np.float64,0xC0839898B98EC5C6,0x0764027828830df4,2
258
+ #use 2th entry
259
+ np.float64,0xC072428C44B6537C,0x2596ade838b96f3e,2
260
+ np.float64,0xC053057C5E1AE9BF,0x3912c8fad18fdadf,2
261
+ np.float64,0x407E89C78328BAA3,0x6bfe35d5b9a1a194,2
262
+ np.float64,0x4083501B6DD87112,0x77a855503a38924e,2
263
+ #use 3th entry
264
+ np.float64,0x40832C6195F24540,0x7741e73c80e5eb2f,2
265
+ np.float64,0xC083D4CD557C2EC9,0x06b61727c2d2508e,2
266
+ np.float64,0x400C48F5F67C99BD,0x404128820f02b92e,2
267
+ np.float64,0x4056E36D9B2DF26A,0x4830f52ff34a8242,2
268
+ #use 4th entry
269
+ np.float64,0x4080FF700D8CBD06,0x70fa70df9bc30f20,2
270
+ np.float64,0x406C276D39E53328,0x543eb8e20a8f4741,2
271
+ np.float64,0xC070D6159BBD8716,0x27a4a0548c904a75,2
272
+ np.float64,0xC052EBCF8ED61F83,0x391c0e92368d15e4,2
273
+ #use 5th entry
274
+ np.float64,0xC061F892A8AC5FBE,0x32f807a89efd3869,2
275
+ np.float64,0x4021D885D2DBA085,0x40bd4dc86d3e3270,2
276
+ np.float64,0x40767AEEEE7D4FCF,0x605e22851ee2afb7,2
277
+ np.float64,0xC0757C5D75D08C80,0x20f0751599b992a2,2
278
+ #use 6th entry
279
+ np.float64,0x405ACF7A284C4CE3,0x499a4e0b7a27027c,2
280
+ np.float64,0xC085A6C9E80D7AF5,0x0175914009d62ec2,2
281
+ np.float64,0xC07E4C02F86F1DAE,0x1439269b29a9231e,2
282
+ np.float64,0x4080D80F9691CC87,0x7088a6cdafb041de,2
283
+ #use 7th entry
284
+ np.float64,0x407FDFD84FBA0AC1,0x6deb1ae6f9bc4767,2
285
+ np.float64,0x40630C06A1A2213D,0x4dac7a9d51a838b7,2
286
+ np.float64,0x40685FDB30BB8B4F,0x5183f5cc2cac9e79,2
287
+ np.float64,0x408045A2208F77F4,0x6ee299e08e2aa2f0,2
288
+ #use 8th entry
289
+ np.float64,0xC08104E391F5078B,0x0ed397b7cbfbd230,2
290
+ np.float64,0xC031501CAEFAE395,0x3e6040fd1ea35085,2
291
+ np.float64,0xC079229124F6247C,0x1babf4f923306b1e,2
292
+ np.float64,0x407FB65F44600435,0x6db03beaf2512b8a,2
293
+ #use 9th entry
294
+ np.float64,0xC07EDEE8E8E8A5AC,0x136536cec9cbef48,2
295
+ np.float64,0x4072BB4086099A14,0x5af4d3c3008b56cc,2
296
+ np.float64,0x4050442A2EC42CB4,0x45cd393bd8fad357,2
297
+ np.float64,0xC06AC28FB3D419B4,0x2ca1b9d3437df85f,2
298
+ #use 10th entry
299
+ np.float64,0x40567FC6F0A68076,0x480c977fd5f3122e,2
300
+ np.float64,0x40620A2F7EDA59BB,0x4cf278e96f4ce4d7,2
301
+ np.float64,0xC085044707CD557C,0x034aad6c968a045a,2
302
+ np.float64,0xC07374EA5AC516AA,0x23dd6afdc03e83d5,2
303
+ #use 11th entry
304
+ np.float64,0x4073CC95332619C1,0x5c804b1498bbaa54,2
305
+ np.float64,0xC0799FEBBE257F31,0x1af6a954c43b87d2,2
306
+ np.float64,0x408159F19EA424F6,0x7200858efcbfc84d,2
307
+ np.float64,0x404A81F6F24C0792,0x44b664a07ce5bbfa,2
308
+ #use 12th entry
309
+ np.float64,0x40295FF1EFB9A741,0x4113c0e74c52d7b0,2
310
+ np.float64,0x4073975F4CC411DA,0x5c32be40b4fec2c1,2
311
+ np.float64,0x406E9DE52E82A77E,0x56049c9a3f1ae089,2
312
+ np.float64,0x40748C2F52560ED9,0x5d93bc14fd4cd23b,2
313
+ #use 13th entry
314
+ np.float64,0x4062A553CDC4D04C,0x4d6266bfde301318,2
315
+ np.float64,0xC079EC1D63598AB7,0x1a88cb184dab224c,2
316
+ np.float64,0xC0725C1CB3167427,0x25725b46f8a081f6,2
317
+ np.float64,0x407888771D9B45F9,0x6353b1ec6bd7ce80,2
318
+ #use 14th entry
319
+ np.float64,0xC082CBA03AA89807,0x09b383723831ce56,2
320
+ np.float64,0xC083A8961BB67DD7,0x0735b118d5275552,2
321
+ np.float64,0xC076BC6ECA12E7E3,0x1f2222679eaef615,2
322
+ np.float64,0xC072752503AA1A5B,0x254eb832242c77e1,2
323
+ #use 15th entry
324
+ np.float64,0xC058800792125DEC,0x371882372a0b48d4,2
325
+ np.float64,0x4082909FD863E81C,0x7580d5f386920142,2
326
+ np.float64,0xC071616F8FB534F9,0x26dbe20ef64a412b,2
327
+ np.float64,0x406D1AB571CAA747,0x54ee0d55cb38ac20,2
328
+ #use 16th entry
329
+ np.float64,0x406956428B7DAD09,0x52358682c271237f,2
330
+ np.float64,0xC07EFC2D9D17B621,0x133b3e77c27a4d45,2
331
+ np.float64,0xC08469BAC5BA3CCA,0x050863e5f42cc52f,2
332
+ np.float64,0x407189D9626386A5,0x593cb1c0b3b5c1d3,2
333
+ #use 17th entry
334
+ np.float64,0x4077E652E3DEB8C6,0x6269a10dcbd3c752,2
335
+ np.float64,0x407674C97DB06878,0x605485dcc2426ec2,2
336
+ np.float64,0xC07CE9969CF4268D,0x16386cf8996669f2,2
337
+ np.float64,0x40780EE32D5847C4,0x62a436bd1abe108d,2
338
+ #use 18th entry
339
+ np.float64,0x4076C3AA5E1E8DA1,0x60c62f56a5e72e24,2
340
+ np.float64,0xC0730AFC7239B9BE,0x24758ead095cec1e,2
341
+ np.float64,0xC085CC2B9C420DDB,0x0109cdaa2e5694c1,2
342
+ np.float64,0x406D0765CB6D7AA4,0x54e06f8dd91bd945,2
343
+ #use 19th entry
344
+ np.float64,0xC082D011F3B495E7,0x09a6647661d279c2,2
345
+ np.float64,0xC072826AF8F6AFBC,0x253acd3cd224507e,2
346
+ np.float64,0x404EB9C4810CEA09,0x457933dbf07e8133,2
347
+ np.float64,0x408284FBC97C58CE,0x755f6eb234aa4b98,2
348
+ #use 20th entry
349
+ np.float64,0x40856008CF6EDC63,0x7d9c0b3c03f4f73c,2
350
+ np.float64,0xC077CB2E9F013B17,0x1d9b3d3a166a55db,2
351
+ np.float64,0xC0479CA3C20AD057,0x3bad40e081555b99,2
352
+ np.float64,0x40844CD31107332A,0x7a821d70aea478e2,2
353
+ #use 21th entry
354
+ np.float64,0xC07C8FCC0BFCC844,0x16ba1cc8c539d19b,2
355
+ np.float64,0xC085C4E9A3ABA488,0x011ff675ba1a2217,2
356
+ np.float64,0x4074D538B32966E5,0x5dfd9d78043c6ad9,2
357
+ np.float64,0xC0630CA16902AD46,0x3231a446074cede6,2
358
+ #use 22th entry
359
+ np.float64,0xC06C826733D7D0B7,0x2b5f1078314d41e1,2
360
+ np.float64,0xC0520DF55B2B907F,0x396c13a6ce8e833e,2
361
+ np.float64,0xC080712072B0F437,0x107eae02d11d98ea,2
362
+ np.float64,0x40528A6150E19EFB,0x469fdabda02228c5,2
363
+ #use 23th entry
364
+ np.float64,0xC07B1D74B6586451,0x18d1253883ae3b48,2
365
+ np.float64,0x4045AFD7867DAEC0,0x43d7d634fc4c5d98,2
366
+ np.float64,0xC07A08B91F9ED3E2,0x1a60973e6397fc37,2
367
+ np.float64,0x407B3ECF0AE21C8C,0x673e03e9d98d7235,2
368
+ #use 24th entry
369
+ np.float64,0xC078AEB6F30CEABF,0x1c530b93ab54a1b3,2
370
+ np.float64,0x4084495006A41672,0x7a775b6dc7e63064,2
371
+ np.float64,0x40830B1C0EBF95DD,0x76e1e6eed77cfb89,2
372
+ np.float64,0x407D93E8F33D8470,0x6a9adbc9e1e4f1e5,2
373
+ #use 25th entry
374
+ np.float64,0x4066B11A09EFD9E8,0x504dd528065c28a7,2
375
+ np.float64,0x408545823723AEEB,0x7d504a9b1844f594,2
376
+ np.float64,0xC068C711F2CA3362,0x2e104f3496ea118e,2
377
+ np.float64,0x407F317FCC3CA873,0x6cf0732c9948ebf4,2
378
+ #use 26th entry
379
+ np.float64,0x407AFB3EBA2ED50F,0x66dc28a129c868d5,2
380
+ np.float64,0xC075377037708ADE,0x21531a329f3d793e,2
381
+ np.float64,0xC07C30066A1F3246,0x174448baa16ded2b,2
382
+ np.float64,0xC06689A75DE2ABD3,0x2fad70662fae230b,2
383
+ #use 27th entry
384
+ np.float64,0x4081514E9FCCF1E0,0x71e673b9efd15f44,2
385
+ np.float64,0xC0762C710AF68460,0x1ff1ed7d8947fe43,2
386
+ np.float64,0xC0468102FF70D9C4,0x3be0c3a8ff3419a3,2
387
+ np.float64,0xC07EA4CEEF02A83E,0x13b908f085102c61,2
388
+ #use 28th entry
389
+ np.float64,0xC06290B04AE823C4,0x328a83da3c2e3351,2
390
+ np.float64,0xC0770EB1D1C395FB,0x1eab281c1f1db5fe,2
391
+ np.float64,0xC06F5D4D838A5BAE,0x29500ea32fb474ea,2
392
+ np.float64,0x40723B3133B54C5D,0x5a3c82c7c3a2b848,2
393
+ #use 29th entry
394
+ np.float64,0x4085E6454CE3B4AA,0x7f20319b9638d06a,2
395
+ np.float64,0x408389F2A0585D4B,0x7850667c58aab3d0,2
396
+ np.float64,0xC0382798F9C8AE69,0x3dc1c79fe8739d6d,2
397
+ np.float64,0xC08299D827608418,0x0a4335f76cdbaeb5,2
398
+ #use 30th entry
399
+ np.float64,0xC06F3DED43301BF1,0x2965670ae46750a8,2
400
+ np.float64,0xC070CAF6BDD577D9,0x27b4aa4ffdd29981,2
401
+ np.float64,0x4078529AD4B2D9F2,0x6305c12755d5e0a6,2
402
+ np.float64,0xC055B14E75A31B96,0x381c2eda6d111e5d,2
403
+ #use 31th entry
404
+ np.float64,0x407B13EE414FA931,0x6700772c7544564d,2
405
+ np.float64,0x407EAFDE9DE3EC54,0x6c346a0e49724a3c,2
406
+ np.float64,0xC08362F398B9530D,0x07ffeddbadf980cb,2
407
+ np.float64,0x407E865CDD9EEB86,0x6bf866cac5e0d126,2
408
+ #use 32th entry
409
+ np.float64,0x407FB62DBC794C86,0x6db009f708ac62cb,2
410
+ np.float64,0xC063D0BAA68CDDDE,0x31a3b2a51ce50430,2
411
+ np.float64,0xC05E7706A2231394,0x34f24bead6fab5c9,2
412
+ np.float64,0x4083E3A06FDE444E,0x79527b7a386d1937,2
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-expm1.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0x80606724,0x80606724,3
3
+ np.float32,0xbf16790f,0xbee38e14,3
4
+ np.float32,0xbf1778a1,0xbee4a97f,3
5
+ np.float32,0x7d4fc610,0x7f800000,3
6
+ np.float32,0xbec30a20,0xbea230d5,3
7
+ np.float32,0x3eae8a36,0x3ecffac5,3
8
+ np.float32,0xbf1f08f1,0xbeece93c,3
9
+ np.float32,0x80374376,0x80374376,3
10
+ np.float32,0x3f2e04ca,0x3f793115,3
11
+ np.float32,0x7e2c7e36,0x7f800000,3
12
+ np.float32,0xbf686cae,0xbf18bcf0,3
13
+ np.float32,0xbf5518cd,0xbf10a3da,3
14
+ np.float32,0x807e233c,0x807e233c,3
15
+ np.float32,0x7f4edd54,0x7f800000,3
16
+ np.float32,0x7ed70088,0x7f800000,3
17
+ np.float32,0x801675da,0x801675da,3
18
+ np.float32,0x806735d5,0x806735d5,3
19
+ np.float32,0xfe635fec,0xbf800000,3
20
+ np.float32,0xfed88a0a,0xbf800000,3
21
+ np.float32,0xff52c052,0xbf800000,3
22
+ np.float32,0x7fc00000,0x7fc00000,3
23
+ np.float32,0xff4f65f9,0xbf800000,3
24
+ np.float32,0xfe0f6c20,0xbf800000,3
25
+ np.float32,0x80322b30,0x80322b30,3
26
+ np.float32,0xfb757000,0xbf800000,3
27
+ np.float32,0x3c81e0,0x3c81e0,3
28
+ np.float32,0x79d56a,0x79d56a,3
29
+ np.float32,0x8029d7af,0x8029d7af,3
30
+ np.float32,0x8058a593,0x8058a593,3
31
+ np.float32,0x3f3a13c7,0x3f88c75c,3
32
+ np.float32,0x2a6b05,0x2a6b05,3
33
+ np.float32,0xbd64c960,0xbd5e83ae,3
34
+ np.float32,0x80471052,0x80471052,3
35
+ np.float32,0xbe5dd950,0xbe47766c,3
36
+ np.float32,0xfd8f88f0,0xbf800000,3
37
+ np.float32,0x75a4b7,0x75a4b7,3
38
+ np.float32,0x3f726f2e,0x3fc9fb7d,3
39
+ np.float32,0x3ed6795c,0x3f053115,3
40
+ np.float32,0x17d7f5,0x17d7f5,3
41
+ np.float32,0xbf4cf19b,0xbf0d094f,3
42
+ np.float32,0x3e0ec532,0x3e1933c6,3
43
+ np.float32,0xff084016,0xbf800000,3
44
+ np.float32,0x800829aa,0x800829aa,3
45
+ np.float32,0x806d7302,0x806d7302,3
46
+ np.float32,0x7f59d9da,0x7f800000,3
47
+ np.float32,0x15f8b9,0x15f8b9,3
48
+ np.float32,0x803befb3,0x803befb3,3
49
+ np.float32,0x525043,0x525043,3
50
+ np.float32,0x51a647,0x51a647,3
51
+ np.float32,0xbf1cfce4,0xbeeab3d9,3
52
+ np.float32,0x3f1f27a4,0x3f5cb1d2,3
53
+ np.float32,0xbebc3a04,0xbe9d8142,3
54
+ np.float32,0xbeea548c,0xbebc07e5,3
55
+ np.float32,0x3f47401c,0x3f96c2a3,3
56
+ np.float32,0x806b1ea3,0x806b1ea3,3
57
+ np.float32,0x3ea56bb8,0x3ec3450c,3
58
+ np.float32,0x3f7b4963,0x3fd597b5,3
59
+ np.float32,0x7f051fa0,0x7f800000,3
60
+ np.float32,0x1d411c,0x1d411c,3
61
+ np.float32,0xff0b6a35,0xbf800000,3
62
+ np.float32,0xbead63c0,0xbe9314f7,3
63
+ np.float32,0x3738be,0x3738be,3
64
+ np.float32,0x3f138cc8,0x3f479155,3
65
+ np.float32,0x800a539f,0x800a539f,3
66
+ np.float32,0x801b0ebd,0x801b0ebd,3
67
+ np.float32,0x318fcd,0x318fcd,3
68
+ np.float32,0x3ed67556,0x3f052e06,3
69
+ np.float32,0x702886,0x702886,3
70
+ np.float32,0x80000001,0x80000001,3
71
+ np.float32,0x70a174,0x70a174,3
72
+ np.float32,0x4f9c66,0x4f9c66,3
73
+ np.float32,0x3e3e1927,0x3e50e351,3
74
+ np.float32,0x7eac9a4d,0x7f800000,3
75
+ np.float32,0x4b7407,0x4b7407,3
76
+ np.float32,0x7f5bd2fd,0x7f800000,3
77
+ np.float32,0x3eaafc58,0x3ecaffbd,3
78
+ np.float32,0xbc989360,0xbc9729e2,3
79
+ np.float32,0x3f470e5c,0x3f968c7b,3
80
+ np.float32,0x4c5672,0x4c5672,3
81
+ np.float32,0xff2b2ee2,0xbf800000,3
82
+ np.float32,0xbf28a104,0xbef7079b,3
83
+ np.float32,0x2c6175,0x2c6175,3
84
+ np.float32,0x3d7e4fb0,0x3d832f9f,3
85
+ np.float32,0x763276,0x763276,3
86
+ np.float32,0x3cf364,0x3cf364,3
87
+ np.float32,0xbf7ace75,0xbf1fe48c,3
88
+ np.float32,0xff19e858,0xbf800000,3
89
+ np.float32,0x80504c70,0x80504c70,3
90
+ np.float32,0xff390210,0xbf800000,3
91
+ np.float32,0x8046a743,0x8046a743,3
92
+ np.float32,0x80000000,0x80000000,3
93
+ np.float32,0x806c51da,0x806c51da,3
94
+ np.float32,0x806ab38f,0x806ab38f,3
95
+ np.float32,0x3f3de863,0x3f8cc538,3
96
+ np.float32,0x7f6d45bb,0x7f800000,3
97
+ np.float32,0xfd16ec60,0xbf800000,3
98
+ np.float32,0x80513cba,0x80513cba,3
99
+ np.float32,0xbf68996b,0xbf18cefa,3
100
+ np.float32,0xfe039f2c,0xbf800000,3
101
+ np.float32,0x3f013207,0x3f280c55,3
102
+ np.float32,0x7ef4bc07,0x7f800000,3
103
+ np.float32,0xbe8b65ac,0xbe741069,3
104
+ np.float32,0xbf7a8186,0xbf1fc7a6,3
105
+ np.float32,0x802532e5,0x802532e5,3
106
+ np.float32,0x32c7df,0x32c7df,3
107
+ np.float32,0x3ce4dceb,0x3ce81701,3
108
+ np.float32,0xfe801118,0xbf800000,3
109
+ np.float32,0x3d905f20,0x3d9594fb,3
110
+ np.float32,0xbe11ed28,0xbe080168,3
111
+ np.float32,0x59e773,0x59e773,3
112
+ np.float32,0x3e9a2547,0x3eb3dd57,3
113
+ np.float32,0x7ecb7c67,0x7f800000,3
114
+ np.float32,0x7f69a67e,0x7f800000,3
115
+ np.float32,0xff121e11,0xbf800000,3
116
+ np.float32,0x3f7917cb,0x3fd2ad8c,3
117
+ np.float32,0xbf1a7da8,0xbee7fc0c,3
118
+ np.float32,0x3f077e66,0x3f329c40,3
119
+ np.float32,0x3ce8e040,0x3cec37b3,3
120
+ np.float32,0xbf3f0b8e,0xbf069f4d,3
121
+ np.float32,0x3f52f194,0x3fa3c9d6,3
122
+ np.float32,0xbf0e7422,0xbeda80f2,3
123
+ np.float32,0xfd67e230,0xbf800000,3
124
+ np.float32,0xff14d9a9,0xbf800000,3
125
+ np.float32,0x3f3546e3,0x3f83dc2b,3
126
+ np.float32,0x3e152e3a,0x3e20983d,3
127
+ np.float32,0x4a89a3,0x4a89a3,3
128
+ np.float32,0x63217,0x63217,3
129
+ np.float32,0xbeb9e2a8,0xbe9be153,3
130
+ np.float32,0x7e9fa049,0x7f800000,3
131
+ np.float32,0x7f58110c,0x7f800000,3
132
+ np.float32,0x3e88290c,0x3e9bfba9,3
133
+ np.float32,0xbf2cb206,0xbefb3494,3
134
+ np.float32,0xff5880c4,0xbf800000,3
135
+ np.float32,0x7ecff3ac,0x7f800000,3
136
+ np.float32,0x3f4b3de6,0x3f9b23fd,3
137
+ np.float32,0xbebd2048,0xbe9e208c,3
138
+ np.float32,0xff08f7a2,0xbf800000,3
139
+ np.float32,0xff473330,0xbf800000,3
140
+ np.float32,0x1,0x1,3
141
+ np.float32,0xbf5dc239,0xbf14584b,3
142
+ np.float32,0x458e3f,0x458e3f,3
143
+ np.float32,0xbdb8a650,0xbdb091f8,3
144
+ np.float32,0xff336ffc,0xbf800000,3
145
+ np.float32,0x3c60bd00,0x3c624966,3
146
+ np.float32,0xbe16a4f8,0xbe0c1664,3
147
+ np.float32,0x3f214246,0x3f60a0f0,3
148
+ np.float32,0x7fa00000,0x7fe00000,3
149
+ np.float32,0x7e08737e,0x7f800000,3
150
+ np.float32,0x3f70574c,0x3fc74b8e,3
151
+ np.float32,0xbed5745c,0xbeae8c77,3
152
+ np.float32,0x361752,0x361752,3
153
+ np.float32,0x3eb276d6,0x3ed584ea,3
154
+ np.float32,0x3f03fc1e,0x3f2cb1a5,3
155
+ np.float32,0x3fafd1,0x3fafd1,3
156
+ np.float32,0x7e50d74c,0x7f800000,3
157
+ np.float32,0x3eeca5,0x3eeca5,3
158
+ np.float32,0x5dc963,0x5dc963,3
159
+ np.float32,0x7f0e63ae,0x7f800000,3
160
+ np.float32,0x8021745f,0x8021745f,3
161
+ np.float32,0xbf5881a9,0xbf121d07,3
162
+ np.float32,0x7dadc7fd,0x7f800000,3
163
+ np.float32,0xbf2c0798,0xbefa86bb,3
164
+ np.float32,0x3e635f50,0x3e7e97a9,3
165
+ np.float32,0xbf2053fa,0xbeee4c0e,3
166
+ np.float32,0x3e8eee2b,0x3ea4dfcc,3
167
+ np.float32,0xfc8a03c0,0xbf800000,3
168
+ np.float32,0xfd9e4948,0xbf800000,3
169
+ np.float32,0x801e817e,0x801e817e,3
170
+ np.float32,0xbf603a27,0xbf1560c3,3
171
+ np.float32,0x7f729809,0x7f800000,3
172
+ np.float32,0x3f5a1864,0x3fac0e04,3
173
+ np.float32,0x3e7648b8,0x3e8b3677,3
174
+ np.float32,0x3edade24,0x3f088bc1,3
175
+ np.float32,0x65e16e,0x65e16e,3
176
+ np.float32,0x3f24aa50,0x3f671117,3
177
+ np.float32,0x803cb1d0,0x803cb1d0,3
178
+ np.float32,0xbe7b1858,0xbe5eadcc,3
179
+ np.float32,0xbf19bb27,0xbee726fb,3
180
+ np.float32,0xfd1f6e60,0xbf800000,3
181
+ np.float32,0xfeb0de60,0xbf800000,3
182
+ np.float32,0xff511a52,0xbf800000,3
183
+ np.float32,0xff7757f7,0xbf800000,3
184
+ np.float32,0x463ff5,0x463ff5,3
185
+ np.float32,0x3f770d12,0x3fcffcc2,3
186
+ np.float32,0xbf208562,0xbeee80dc,3
187
+ np.float32,0x6df204,0x6df204,3
188
+ np.float32,0xbf62d24f,0xbf1673fb,3
189
+ np.float32,0x3dfcf210,0x3e069d5f,3
190
+ np.float32,0xbef26002,0xbec114d7,3
191
+ np.float32,0x7f800000,0x7f800000,3
192
+ np.float32,0x7f30fb85,0x7f800000,3
193
+ np.float32,0x7ee5dfef,0x7f800000,3
194
+ np.float32,0x3f317829,0x3f800611,3
195
+ np.float32,0x3f4b0bbd,0x3f9aec88,3
196
+ np.float32,0x7edf708c,0x7f800000,3
197
+ np.float32,0xff071260,0xbf800000,3
198
+ np.float32,0x3e7b8c30,0x3e8e9198,3
199
+ np.float32,0x3f33778b,0x3f82077f,3
200
+ np.float32,0x3e8cd11d,0x3ea215fd,3
201
+ np.float32,0x8004483d,0x8004483d,3
202
+ np.float32,0x801633e3,0x801633e3,3
203
+ np.float32,0x7e76eb15,0x7f800000,3
204
+ np.float32,0x3c1571,0x3c1571,3
205
+ np.float32,0x7de3de52,0x7f800000,3
206
+ np.float32,0x804ae906,0x804ae906,3
207
+ np.float32,0x7f3a2616,0x7f800000,3
208
+ np.float32,0xff7fffff,0xbf800000,3
209
+ np.float32,0xff5d17e4,0xbf800000,3
210
+ np.float32,0xbeaa6704,0xbe90f252,3
211
+ np.float32,0x7e6a43af,0x7f800000,3
212
+ np.float32,0x2a0f35,0x2a0f35,3
213
+ np.float32,0xfd8fece0,0xbf800000,3
214
+ np.float32,0xfeef2e2a,0xbf800000,3
215
+ np.float32,0xff800000,0xbf800000,3
216
+ np.float32,0xbeefcc52,0xbebf78e4,3
217
+ np.float32,0x3db6c490,0x3dbf2bd5,3
218
+ np.float32,0x8290f,0x8290f,3
219
+ np.float32,0xbeace648,0xbe92bb7f,3
220
+ np.float32,0x801fea79,0x801fea79,3
221
+ np.float32,0x3ea6c230,0x3ec51ebf,3
222
+ np.float32,0x3e5f2ca3,0x3e795c8a,3
223
+ np.float32,0x3eb6f634,0x3edbeb9f,3
224
+ np.float32,0xff790b45,0xbf800000,3
225
+ np.float32,0x3d82e240,0x3d872816,3
226
+ np.float32,0x3f0d6a57,0x3f3cc7db,3
227
+ np.float32,0x7f08531a,0x7f800000,3
228
+ np.float32,0x702b6d,0x702b6d,3
229
+ np.float32,0x7d3a3c38,0x7f800000,3
230
+ np.float32,0x3d0a7fb3,0x3d0cddf3,3
231
+ np.float32,0xff28084c,0xbf800000,3
232
+ np.float32,0xfeee8804,0xbf800000,3
233
+ np.float32,0x804094eb,0x804094eb,3
234
+ np.float32,0x7acb39,0x7acb39,3
235
+ np.float32,0x3f01c07a,0x3f28f88c,3
236
+ np.float32,0x3e05c500,0x3e0ee674,3
237
+ np.float32,0xbe6f7c38,0xbe558ac1,3
238
+ np.float32,0x803b1f4b,0x803b1f4b,3
239
+ np.float32,0xbf76561f,0xbf1e332b,3
240
+ np.float32,0xff30d368,0xbf800000,3
241
+ np.float32,0x7e2e1f38,0x7f800000,3
242
+ np.float32,0x3ee085b8,0x3f0ce7c0,3
243
+ np.float32,0x8064c4a7,0x8064c4a7,3
244
+ np.float32,0xa7c1d,0xa7c1d,3
245
+ np.float32,0x3f27498a,0x3f6c14bc,3
246
+ np.float32,0x137ca,0x137ca,3
247
+ np.float32,0x3d0a5c60,0x3d0cb969,3
248
+ np.float32,0x80765f1f,0x80765f1f,3
249
+ np.float32,0x80230a71,0x80230a71,3
250
+ np.float32,0x3f321ed2,0x3f80acf4,3
251
+ np.float32,0x7d61e7f4,0x7f800000,3
252
+ np.float32,0xbf39f7f2,0xbf0430f7,3
253
+ np.float32,0xbe2503f8,0xbe1867e8,3
254
+ np.float32,0x29333d,0x29333d,3
255
+ np.float32,0x7edc5a0e,0x7f800000,3
256
+ np.float32,0xbe81a8a2,0xbe651663,3
257
+ np.float32,0x7f76ab6d,0x7f800000,3
258
+ np.float32,0x7f46111f,0x7f800000,3
259
+ np.float32,0xff0fc888,0xbf800000,3
260
+ np.float32,0x805ece89,0x805ece89,3
261
+ np.float32,0xc390b,0xc390b,3
262
+ np.float32,0xff64bdee,0xbf800000,3
263
+ np.float32,0x3dd07e4e,0x3ddb79bd,3
264
+ np.float32,0xfecc1f10,0xbf800000,3
265
+ np.float32,0x803f5177,0x803f5177,3
266
+ np.float32,0x802a24d2,0x802a24d2,3
267
+ np.float32,0x7f27d0cc,0x7f800000,3
268
+ np.float32,0x3ef57c98,0x3f1d7e88,3
269
+ np.float32,0x7b848d,0x7b848d,3
270
+ np.float32,0x7f7fffff,0x7f800000,3
271
+ np.float32,0xfe889c46,0xbf800000,3
272
+ np.float32,0xff2d6dc5,0xbf800000,3
273
+ np.float32,0x3f53a186,0x3fa492a6,3
274
+ np.float32,0xbf239c94,0xbef1c90c,3
275
+ np.float32,0xff7c0f4e,0xbf800000,3
276
+ np.float32,0x3e7c69a9,0x3e8f1f3a,3
277
+ np.float32,0xbf47c9e9,0xbf0ab2a9,3
278
+ np.float32,0xbc1eaf00,0xbc1deae9,3
279
+ np.float32,0x3f4a6d39,0x3f9a3d8e,3
280
+ np.float32,0x3f677930,0x3fbc26eb,3
281
+ np.float32,0x3f45eea1,0x3f955418,3
282
+ np.float32,0x7f61a1f8,0x7f800000,3
283
+ np.float32,0xff58c7c6,0xbf800000,3
284
+ np.float32,0x80239801,0x80239801,3
285
+ np.float32,0xff56e616,0xbf800000,3
286
+ np.float32,0xff62052c,0xbf800000,3
287
+ np.float32,0x8009b615,0x8009b615,3
288
+ np.float32,0x293d6b,0x293d6b,3
289
+ np.float32,0xfe9e585c,0xbf800000,3
290
+ np.float32,0x7f58ff4b,0x7f800000,3
291
+ np.float32,0x10937c,0x10937c,3
292
+ np.float32,0x7f5cc13f,0x7f800000,3
293
+ np.float32,0x110c5d,0x110c5d,3
294
+ np.float32,0x805e51fc,0x805e51fc,3
295
+ np.float32,0xbedcf70a,0xbeb3766c,3
296
+ np.float32,0x3f4d5e42,0x3f9d8091,3
297
+ np.float32,0xff5925a0,0xbf800000,3
298
+ np.float32,0x7e87cafa,0x7f800000,3
299
+ np.float32,0xbf6474b2,0xbf171fee,3
300
+ np.float32,0x4b39b2,0x4b39b2,3
301
+ np.float32,0x8020cc28,0x8020cc28,3
302
+ np.float32,0xff004ed8,0xbf800000,3
303
+ np.float32,0xbf204cf5,0xbeee448d,3
304
+ np.float32,0x3e30cf10,0x3e40fdb1,3
305
+ np.float32,0x80202bee,0x80202bee,3
306
+ np.float32,0xbf55a985,0xbf10e2bc,3
307
+ np.float32,0xbe297dd8,0xbe1c351c,3
308
+ np.float32,0x5780d9,0x5780d9,3
309
+ np.float32,0x7ef729fa,0x7f800000,3
310
+ np.float32,0x8039a3b5,0x8039a3b5,3
311
+ np.float32,0x7cdd3f,0x7cdd3f,3
312
+ np.float32,0x7ef0145a,0x7f800000,3
313
+ np.float32,0x807ad7ae,0x807ad7ae,3
314
+ np.float32,0x7f6c2643,0x7f800000,3
315
+ np.float32,0xbec56124,0xbea3c929,3
316
+ np.float32,0x512c3b,0x512c3b,3
317
+ np.float32,0xbed3effe,0xbead8c1e,3
318
+ np.float32,0x7f5e0a4d,0x7f800000,3
319
+ np.float32,0x3f315316,0x3f7fc200,3
320
+ np.float32,0x7eca5727,0x7f800000,3
321
+ np.float32,0x7f4834f3,0x7f800000,3
322
+ np.float32,0x8004af6d,0x8004af6d,3
323
+ np.float32,0x3f223ca4,0x3f6277e3,3
324
+ np.float32,0x7eea4fdd,0x7f800000,3
325
+ np.float32,0x3e7143e8,0x3e880763,3
326
+ np.float32,0xbf737008,0xbf1d160e,3
327
+ np.float32,0xfc408b00,0xbf800000,3
328
+ np.float32,0x803912ca,0x803912ca,3
329
+ np.float32,0x7db31f4e,0x7f800000,3
330
+ np.float32,0xff578b54,0xbf800000,3
331
+ np.float32,0x3f068ec4,0x3f31062b,3
332
+ np.float32,0x35f64f,0x35f64f,3
333
+ np.float32,0x80437df4,0x80437df4,3
334
+ np.float32,0x568059,0x568059,3
335
+ np.float32,0x8005f8ba,0x8005f8ba,3
336
+ np.float32,0x6824ad,0x6824ad,3
337
+ np.float32,0xff3fdf30,0xbf800000,3
338
+ np.float32,0xbf6f7682,0xbf1b89d6,3
339
+ np.float32,0x3dcea8a0,0x3dd971f5,3
340
+ np.float32,0x3ee32a62,0x3f0ef5a9,3
341
+ np.float32,0xbf735bcd,0xbf1d0e3d,3
342
+ np.float32,0x7e8c7c28,0x7f800000,3
343
+ np.float32,0x3ed552bc,0x3f045161,3
344
+ np.float32,0xfed90a8a,0xbf800000,3
345
+ np.float32,0xbe454368,0xbe336d2a,3
346
+ np.float32,0xbf171d26,0xbee4442d,3
347
+ np.float32,0x80652bf9,0x80652bf9,3
348
+ np.float32,0xbdbaaa20,0xbdb26914,3
349
+ np.float32,0x3f56063d,0x3fa7522e,3
350
+ np.float32,0x3d3d4fd3,0x3d41c13f,3
351
+ np.float32,0x80456040,0x80456040,3
352
+ np.float32,0x3dc15586,0x3dcac0ef,3
353
+ np.float32,0x7f753060,0x7f800000,3
354
+ np.float32,0x7f7d8039,0x7f800000,3
355
+ np.float32,0xfdebf280,0xbf800000,3
356
+ np.float32,0xbf1892c3,0xbee5e116,3
357
+ np.float32,0xbf0f1468,0xbedb3878,3
358
+ np.float32,0x40d85c,0x40d85c,3
359
+ np.float32,0x3f93dd,0x3f93dd,3
360
+ np.float32,0xbf5730fd,0xbf118c24,3
361
+ np.float32,0xfe17aa44,0xbf800000,3
362
+ np.float32,0x3dc0baf4,0x3dca1716,3
363
+ np.float32,0xbf3433d8,0xbf015efb,3
364
+ np.float32,0x1c59f5,0x1c59f5,3
365
+ np.float32,0x802b1540,0x802b1540,3
366
+ np.float32,0xbe47df6c,0xbe35936e,3
367
+ np.float32,0xbe8e7070,0xbe78af32,3
368
+ np.float32,0xfe7057f4,0xbf800000,3
369
+ np.float32,0x80668b69,0x80668b69,3
370
+ np.float32,0xbe677810,0xbe4f2c2d,3
371
+ np.float32,0xbe7a2f1c,0xbe5df733,3
372
+ np.float32,0xfeb79e3c,0xbf800000,3
373
+ np.float32,0xbeb6e320,0xbe99c9e8,3
374
+ np.float32,0xfea188f2,0xbf800000,3
375
+ np.float32,0x7dcaeb15,0x7f800000,3
376
+ np.float32,0x1be567,0x1be567,3
377
+ np.float32,0xbf4041cc,0xbf07320d,3
378
+ np.float32,0x3f721aa7,0x3fc98e9a,3
379
+ np.float32,0x7f5aa835,0x7f800000,3
380
+ np.float32,0x15180e,0x15180e,3
381
+ np.float32,0x3f73d739,0x3fcbccdb,3
382
+ np.float32,0xbeecd380,0xbebd9b36,3
383
+ np.float32,0x3f2caec7,0x3f768fea,3
384
+ np.float32,0xbeaf65f2,0xbe9482bb,3
385
+ np.float32,0xfe6aa384,0xbf800000,3
386
+ np.float32,0xbf4f2c0a,0xbf0e085e,3
387
+ np.float32,0xbf2b5907,0xbef9d431,3
388
+ np.float32,0x3e855e0d,0x3e985960,3
389
+ np.float32,0x8056cc64,0x8056cc64,3
390
+ np.float32,0xff746bb5,0xbf800000,3
391
+ np.float32,0x3e0332f6,0x3e0bf986,3
392
+ np.float32,0xff637720,0xbf800000,3
393
+ np.float32,0xbf330676,0xbf00c990,3
394
+ np.float32,0x3ec449a1,0x3eef3862,3
395
+ np.float32,0x766541,0x766541,3
396
+ np.float32,0xfe2edf6c,0xbf800000,3
397
+ np.float32,0xbebb28ca,0xbe9cc3e2,3
398
+ np.float32,0x3f16c930,0x3f4d5ce4,3
399
+ np.float32,0x7f1a9a4a,0x7f800000,3
400
+ np.float32,0x3e9ba1,0x3e9ba1,3
401
+ np.float32,0xbf73d5f6,0xbf1d3d69,3
402
+ np.float32,0xfdc8a8b0,0xbf800000,3
403
+ np.float32,0x50f051,0x50f051,3
404
+ np.float32,0xff0add02,0xbf800000,3
405
+ np.float32,0x1e50bf,0x1e50bf,3
406
+ np.float32,0x3f04d287,0x3f2e1948,3
407
+ np.float32,0x7f1e50,0x7f1e50,3
408
+ np.float32,0x2affb3,0x2affb3,3
409
+ np.float32,0x80039f07,0x80039f07,3
410
+ np.float32,0x804ba79e,0x804ba79e,3
411
+ np.float32,0x7b5a8eed,0x7f800000,3
412
+ np.float32,0x3e1a8b28,0x3e26d0a7,3
413
+ np.float32,0x3ea95f29,0x3ec8bfa4,3
414
+ np.float32,0x7e09fa55,0x7f800000,3
415
+ np.float32,0x7eacb1b3,0x7f800000,3
416
+ np.float32,0x3e8ad7c0,0x3e9f7dec,3
417
+ np.float32,0x7e0e997c,0x7f800000,3
418
+ np.float32,0x3f4422b4,0x3f936398,3
419
+ np.float32,0x806bd222,0x806bd222,3
420
+ np.float32,0x677ae6,0x677ae6,3
421
+ np.float32,0x62cf68,0x62cf68,3
422
+ np.float32,0x7e4e594e,0x7f800000,3
423
+ np.float32,0x80445fd1,0x80445fd1,3
424
+ np.float32,0xff3a0d04,0xbf800000,3
425
+ np.float32,0x8052b256,0x8052b256,3
426
+ np.float32,0x3cb34440,0x3cb53e11,3
427
+ np.float32,0xbf0e3865,0xbeda3c6d,3
428
+ np.float32,0x3f49f5df,0x3f99ba17,3
429
+ np.float32,0xbed75a22,0xbeafcc09,3
430
+ np.float32,0xbf7aec64,0xbf1fefc8,3
431
+ np.float32,0x7f35a62d,0x7f800000,3
432
+ np.float32,0xbf787b03,0xbf1f03fc,3
433
+ np.float32,0x8006a62a,0x8006a62a,3
434
+ np.float32,0x3f6419e7,0x3fb803c7,3
435
+ np.float32,0x3ecea2e5,0x3efe8f01,3
436
+ np.float32,0x80603577,0x80603577,3
437
+ np.float32,0xff73198c,0xbf800000,3
438
+ np.float32,0x7def110a,0x7f800000,3
439
+ np.float32,0x544efd,0x544efd,3
440
+ np.float32,0x3f052340,0x3f2ea0fc,3
441
+ np.float32,0xff306666,0xbf800000,3
442
+ np.float32,0xbf800000,0xbf21d2a7,3
443
+ np.float32,0xbed3e150,0xbead826a,3
444
+ np.float32,0x3f430c99,0x3f92390f,3
445
+ np.float32,0xbf4bffa4,0xbf0c9c73,3
446
+ np.float32,0xfd97a710,0xbf800000,3
447
+ np.float32,0x3cadf0fe,0x3cafcd1a,3
448
+ np.float32,0x807af7b4,0x807af7b4,3
449
+ np.float32,0xbc508600,0xbc4f33bc,3
450
+ np.float32,0x7f3e0ec7,0x7f800000,3
451
+ np.float32,0xbe51334c,0xbe3d36f7,3
452
+ np.float32,0xfe7b7fb4,0xbf800000,3
453
+ np.float32,0xfed9c45e,0xbf800000,3
454
+ np.float32,0x3da024eb,0x3da6926a,3
455
+ np.float32,0x7eed9e76,0x7f800000,3
456
+ np.float32,0xbf2b8f1f,0xbefa0b91,3
457
+ np.float32,0x3f2b9286,0x3f746318,3
458
+ np.float32,0xfe8af49c,0xbf800000,3
459
+ np.float32,0x9c4f7,0x9c4f7,3
460
+ np.float32,0x801d7543,0x801d7543,3
461
+ np.float32,0xbf66474a,0xbf17de66,3
462
+ np.float32,0xbf562155,0xbf1116b1,3
463
+ np.float32,0x46a8de,0x46a8de,3
464
+ np.float32,0x8053fe6b,0x8053fe6b,3
465
+ np.float32,0xbf6ee842,0xbf1b51f3,3
466
+ np.float32,0xbf6ad78e,0xbf19b565,3
467
+ np.float32,0xbf012574,0xbecad7ff,3
468
+ np.float32,0x748364,0x748364,3
469
+ np.float32,0x8073f59b,0x8073f59b,3
470
+ np.float32,0xff526825,0xbf800000,3
471
+ np.float32,0xfeb02dc4,0xbf800000,3
472
+ np.float32,0x8033eb1c,0x8033eb1c,3
473
+ np.float32,0x3f3685ea,0x3f8520cc,3
474
+ np.float32,0x7f657902,0x7f800000,3
475
+ np.float32,0xbf75eac4,0xbf1e0a1f,3
476
+ np.float32,0xfe67f384,0xbf800000,3
477
+ np.float32,0x3f56d3cc,0x3fa83faf,3
478
+ np.float32,0x44a4ce,0x44a4ce,3
479
+ np.float32,0x1dc4b3,0x1dc4b3,3
480
+ np.float32,0x4fb3b2,0x4fb3b2,3
481
+ np.float32,0xbea904a4,0xbe8ff3ed,3
482
+ np.float32,0x7e668f16,0x7f800000,3
483
+ np.float32,0x7f538378,0x7f800000,3
484
+ np.float32,0x80541709,0x80541709,3
485
+ np.float32,0x80228040,0x80228040,3
486
+ np.float32,0x7ef9694e,0x7f800000,3
487
+ np.float32,0x3f5fca9b,0x3fb2ce54,3
488
+ np.float32,0xbe9c43c2,0xbe86ab84,3
489
+ np.float32,0xfecee000,0xbf800000,3
490
+ np.float32,0x5a65c2,0x5a65c2,3
491
+ np.float32,0x3f736572,0x3fcb3985,3
492
+ np.float32,0xbf2a03f7,0xbef87600,3
493
+ np.float32,0xfe96b488,0xbf800000,3
494
+ np.float32,0xfedd8800,0xbf800000,3
495
+ np.float32,0x80411804,0x80411804,3
496
+ np.float32,0x7edcb0a6,0x7f800000,3
497
+ np.float32,0x2bb882,0x2bb882,3
498
+ np.float32,0x3f800000,0x3fdbf0a9,3
499
+ np.float32,0x764b27,0x764b27,3
500
+ np.float32,0x7e92035d,0x7f800000,3
501
+ np.float32,0x3e80facb,0x3e92ae1d,3
502
+ np.float32,0x8040b81a,0x8040b81a,3
503
+ np.float32,0x7f487fe4,0x7f800000,3
504
+ np.float32,0xbc641780,0xbc6282ed,3
505
+ np.float32,0x804b0bb9,0x804b0bb9,3
506
+ np.float32,0x7d0b7c39,0x7f800000,3
507
+ np.float32,0xff072080,0xbf800000,3
508
+ np.float32,0xbed7aff8,0xbeb00462,3
509
+ np.float32,0x35e247,0x35e247,3
510
+ np.float32,0xbf7edd19,0xbf216766,3
511
+ np.float32,0x8004a539,0x8004a539,3
512
+ np.float32,0xfdfc1790,0xbf800000,3
513
+ np.float32,0x8037a841,0x8037a841,3
514
+ np.float32,0xfed0a8a8,0xbf800000,3
515
+ np.float32,0x7f1f1697,0x7f800000,3
516
+ np.float32,0x3f2ccc6e,0x3f76ca23,3
517
+ np.float32,0x35eada,0x35eada,3
518
+ np.float32,0xff111f42,0xbf800000,3
519
+ np.float32,0x3ee1ab7f,0x3f0dcbbe,3
520
+ np.float32,0xbf6e89ee,0xbf1b2cd4,3
521
+ np.float32,0x3f58611c,0x3faa0cdc,3
522
+ np.float32,0x1ac6a6,0x1ac6a6,3
523
+ np.float32,0xbf1286fa,0xbedf2312,3
524
+ np.float32,0x7e451137,0x7f800000,3
525
+ np.float32,0xbe92c326,0xbe7f3405,3
526
+ np.float32,0x3f2fdd16,0x3f7cd87b,3
527
+ np.float32,0xbe5c0ea0,0xbe4604c2,3
528
+ np.float32,0xbdb29968,0xbdab0883,3
529
+ np.float32,0x3964,0x3964,3
530
+ np.float32,0x3f0dc236,0x3f3d60a0,3
531
+ np.float32,0x7c3faf06,0x7f800000,3
532
+ np.float32,0xbef41f7a,0xbec22b16,3
533
+ np.float32,0x3f4c0289,0x3f9bfdcc,3
534
+ np.float32,0x806084e9,0x806084e9,3
535
+ np.float32,0x3ed1d8dd,0x3f01b0c1,3
536
+ np.float32,0x806d8d8b,0x806d8d8b,3
537
+ np.float32,0x3f052180,0x3f2e9e0a,3
538
+ np.float32,0x803d85d5,0x803d85d5,3
539
+ np.float32,0x3e0afd70,0x3e14dd48,3
540
+ np.float32,0x2fbc63,0x2fbc63,3
541
+ np.float32,0x2e436f,0x2e436f,3
542
+ np.float32,0xbf7b19e6,0xbf2000da,3
543
+ np.float32,0x3f34022e,0x3f829362,3
544
+ np.float32,0x3d2b40e0,0x3d2ee246,3
545
+ np.float32,0x3f5298b4,0x3fa3649b,3
546
+ np.float32,0xbdb01328,0xbda8b7de,3
547
+ np.float32,0x7f693c81,0x7f800000,3
548
+ np.float32,0xbeb1abc0,0xbe961edc,3
549
+ np.float32,0x801d9b5d,0x801d9b5d,3
550
+ np.float32,0x80628668,0x80628668,3
551
+ np.float32,0x800f57dd,0x800f57dd,3
552
+ np.float32,0x8017c94f,0x8017c94f,3
553
+ np.float32,0xbf16f5f4,0xbee418b8,3
554
+ np.float32,0x3e686476,0x3e827022,3
555
+ np.float32,0xbf256796,0xbef3abd9,3
556
+ np.float32,0x7f1b4485,0x7f800000,3
557
+ np.float32,0xbea0b3cc,0xbe89ed21,3
558
+ np.float32,0xfee08b2e,0xbf800000,3
559
+ np.float32,0x523cb4,0x523cb4,3
560
+ np.float32,0x3daf2cb2,0x3db6e273,3
561
+ np.float32,0xbd531c40,0xbd4dc323,3
562
+ np.float32,0x80078fe5,0x80078fe5,3
563
+ np.float32,0x80800000,0x80800000,3
564
+ np.float32,0x3f232438,0x3f642d1a,3
565
+ np.float32,0x3ec29446,0x3eecb7c0,3
566
+ np.float32,0x3dbcd2a4,0x3dc5cd1d,3
567
+ np.float32,0x7f045b0d,0x7f800000,3
568
+ np.float32,0x7f22e6d1,0x7f800000,3
569
+ np.float32,0xbf5d3430,0xbf141c80,3
570
+ np.float32,0xbe03ec70,0xbdf78ee6,3
571
+ np.float32,0x3e93ec9a,0x3eab822f,3
572
+ np.float32,0x7f3b9262,0x7f800000,3
573
+ np.float32,0x65ac6a,0x65ac6a,3
574
+ np.float32,0x3db9a8,0x3db9a8,3
575
+ np.float32,0xbf37ab59,0xbf031306,3
576
+ np.float32,0x33c40e,0x33c40e,3
577
+ np.float32,0x7f7a478f,0x7f800000,3
578
+ np.float32,0xbe8532d0,0xbe6a906f,3
579
+ np.float32,0x801c081d,0x801c081d,3
580
+ np.float32,0xbe4212a0,0xbe30ca73,3
581
+ np.float32,0xff0b603e,0xbf800000,3
582
+ np.float32,0x4554dc,0x4554dc,3
583
+ np.float32,0x3dd324be,0x3dde695e,3
584
+ np.float32,0x3f224c44,0x3f629557,3
585
+ np.float32,0x8003cd79,0x8003cd79,3
586
+ np.float32,0xbf31351c,0xbeffc2fd,3
587
+ np.float32,0x8034603a,0x8034603a,3
588
+ np.float32,0xbf6fcb70,0xbf1bab24,3
589
+ np.float32,0x804eb67e,0x804eb67e,3
590
+ np.float32,0xff05c00e,0xbf800000,3
591
+ np.float32,0x3eb5b36f,0x3eda1ec7,3
592
+ np.float32,0x3f1ed7f9,0x3f5c1d90,3
593
+ np.float32,0x3f052d8a,0x3f2eb24b,3
594
+ np.float32,0x5ddf51,0x5ddf51,3
595
+ np.float32,0x7e50c11c,0x7f800000,3
596
+ np.float32,0xff74f55a,0xbf800000,3
597
+ np.float32,0x4322d,0x4322d,3
598
+ np.float32,0x3f16f8a9,0x3f4db27a,3
599
+ np.float32,0x3f4f23d6,0x3f9f7c2c,3
600
+ np.float32,0xbf706c1e,0xbf1bea0a,3
601
+ np.float32,0x3f2cbd52,0x3f76ac77,3
602
+ np.float32,0xf3043,0xf3043,3
603
+ np.float32,0xfee79de0,0xbf800000,3
604
+ np.float32,0x7e942f69,0x7f800000,3
605
+ np.float32,0x180139,0x180139,3
606
+ np.float32,0xff69c678,0xbf800000,3
607
+ np.float32,0x3f46773f,0x3f95e840,3
608
+ np.float32,0x804aae1c,0x804aae1c,3
609
+ np.float32,0x3eb383b4,0x3ed7024c,3
610
+ np.float32,0x8032624e,0x8032624e,3
611
+ np.float32,0xbd0a0f80,0xbd07c27d,3
612
+ np.float32,0xbf1c9b98,0xbeea4a61,3
613
+ np.float32,0x7f370999,0x7f800000,3
614
+ np.float32,0x801931f9,0x801931f9,3
615
+ np.float32,0x3f6f45ce,0x3fc5eea0,3
616
+ np.float32,0xff0ab4cc,0xbf800000,3
617
+ np.float32,0x4c043d,0x4c043d,3
618
+ np.float32,0x8002a599,0x8002a599,3
619
+ np.float32,0xbc4a6080,0xbc4921d7,3
620
+ np.float32,0x3f008d14,0x3f26fb72,3
621
+ np.float32,0x7f48b3d9,0x7f800000,3
622
+ np.float32,0x7cb2ec7e,0x7f800000,3
623
+ np.float32,0xbf1338bd,0xbedfeb61,3
624
+ np.float32,0x0,0x0,3
625
+ np.float32,0xbf2f5b64,0xbefde71c,3
626
+ np.float32,0xbe422974,0xbe30dd56,3
627
+ np.float32,0x3f776be8,0x3fd07950,3
628
+ np.float32,0xbf3e97a1,0xbf06684a,3
629
+ np.float32,0x7d28cb26,0x7f800000,3
630
+ np.float32,0x801618d2,0x801618d2,3
631
+ np.float32,0x807e4f83,0x807e4f83,3
632
+ np.float32,0x8006b07d,0x8006b07d,3
633
+ np.float32,0xfea1c042,0xbf800000,3
634
+ np.float32,0xff24ef74,0xbf800000,3
635
+ np.float32,0xfef7ab16,0xbf800000,3
636
+ np.float32,0x70b771,0x70b771,3
637
+ np.float32,0x7daeb64e,0x7f800000,3
638
+ np.float32,0xbe66e378,0xbe4eb59c,3
639
+ np.float32,0xbead1534,0xbe92dcf7,3
640
+ np.float32,0x7e6769b8,0x7f800000,3
641
+ np.float32,0x7ecd0890,0x7f800000,3
642
+ np.float32,0xbe7380d8,0xbe58b747,3
643
+ np.float32,0x3efa6f2f,0x3f218265,3
644
+ np.float32,0x3f59dada,0x3fabc5eb,3
645
+ np.float32,0xff0f2d20,0xbf800000,3
646
+ np.float32,0x8060210e,0x8060210e,3
647
+ np.float32,0x3ef681e8,0x3f1e51c8,3
648
+ np.float32,0x77a6dd,0x77a6dd,3
649
+ np.float32,0xbebfdd0e,0xbea00399,3
650
+ np.float32,0xfe889b72,0xbf800000,3
651
+ np.float32,0x8049ed2c,0x8049ed2c,3
652
+ np.float32,0x3b089dc4,0x3b08c23e,3
653
+ np.float32,0xbf13c7c4,0xbee08c28,3
654
+ np.float32,0x3efa13b9,0x3f2137d7,3
655
+ np.float32,0x3e9385dc,0x3eaaf914,3
656
+ np.float32,0x7e0e6a43,0x7f800000,3
657
+ np.float32,0x7df6d63f,0x7f800000,3
658
+ np.float32,0x3f3efead,0x3f8dea03,3
659
+ np.float32,0xff52548c,0xbf800000,3
660
+ np.float32,0x803ff9d8,0x803ff9d8,3
661
+ np.float32,0x3c825823,0x3c836303,3
662
+ np.float32,0xfc9e97a0,0xbf800000,3
663
+ np.float32,0xfe644f48,0xbf800000,3
664
+ np.float32,0x802f5017,0x802f5017,3
665
+ np.float32,0x3d5753b9,0x3d5d1661,3
666
+ np.float32,0x7f2a55d2,0x7f800000,3
667
+ np.float32,0x7f4dabfe,0x7f800000,3
668
+ np.float32,0x3f49492a,0x3f98fc47,3
669
+ np.float32,0x3f4d1589,0x3f9d2f82,3
670
+ np.float32,0xff016208,0xbf800000,3
671
+ np.float32,0xbf571cb7,0xbf118365,3
672
+ np.float32,0xbf1ef297,0xbeecd136,3
673
+ np.float32,0x36266b,0x36266b,3
674
+ np.float32,0xbed07b0e,0xbeab4129,3
675
+ np.float32,0x7f553365,0x7f800000,3
676
+ np.float32,0xfe9bb8c6,0xbf800000,3
677
+ np.float32,0xbeb497d6,0xbe982e19,3
678
+ np.float32,0xbf27af6c,0xbef60d16,3
679
+ np.float32,0x55cf51,0x55cf51,3
680
+ np.float32,0x3eab1db0,0x3ecb2e4f,3
681
+ np.float32,0x3e777603,0x3e8bf62f,3
682
+ np.float32,0x7f10e374,0x7f800000,3
683
+ np.float32,0xbf1f6480,0xbeed4b8d,3
684
+ np.float32,0x40479d,0x40479d,3
685
+ np.float32,0x156259,0x156259,3
686
+ np.float32,0x3d852e30,0x3d899b2d,3
687
+ np.float32,0x80014ff3,0x80014ff3,3
688
+ np.float32,0xbd812fa8,0xbd7a645c,3
689
+ np.float32,0x800ab780,0x800ab780,3
690
+ np.float32,0x3ea02ff4,0x3ebc13bd,3
691
+ np.float32,0x7e858b8e,0x7f800000,3
692
+ np.float32,0x75d63b,0x75d63b,3
693
+ np.float32,0xbeb15c94,0xbe95e6e3,3
694
+ np.float32,0x3da0cee0,0x3da74a39,3
695
+ np.float32,0xff21c01c,0xbf800000,3
696
+ np.float32,0x8049b5eb,0x8049b5eb,3
697
+ np.float32,0x80177ab0,0x80177ab0,3
698
+ np.float32,0xff137a50,0xbf800000,3
699
+ np.float32,0x3f7febba,0x3fdbd51c,3
700
+ np.float32,0x8041e4dd,0x8041e4dd,3
701
+ np.float32,0x99b8c,0x99b8c,3
702
+ np.float32,0x5621ba,0x5621ba,3
703
+ np.float32,0x14b534,0x14b534,3
704
+ np.float32,0xbe2eb3a8,0xbe209c95,3
705
+ np.float32,0x7e510c28,0x7f800000,3
706
+ np.float32,0x804ec2f2,0x804ec2f2,3
707
+ np.float32,0x3f662406,0x3fba82b0,3
708
+ np.float32,0x800000,0x800000,3
709
+ np.float32,0x3f3120d6,0x3f7f5d96,3
710
+ np.float32,0x7f179b8e,0x7f800000,3
711
+ np.float32,0x7f65278e,0x7f800000,3
712
+ np.float32,0xfeb50f52,0xbf800000,3
713
+ np.float32,0x7f051bd1,0x7f800000,3
714
+ np.float32,0x7ea0558d,0x7f800000,3
715
+ np.float32,0xbd0a96c0,0xbd08453f,3
716
+ np.float64,0xee82da5ddd05c,0xee82da5ddd05c,3
717
+ np.float64,0x800c3a22d7f87446,0x800c3a22d7f87446,3
718
+ np.float64,0xbfd34b20eaa69642,0xbfd0a825e7688d3e,3
719
+ np.float64,0x3fd6a0f2492d41e5,0x3fdb253b906057b3,3
720
+ np.float64,0xbfda13d8783427b0,0xbfd56b1d76684332,3
721
+ np.float64,0xbfe50b5a99ea16b5,0xbfded7dd82c6f746,3
722
+ np.float64,0x3f82468fc0248d20,0x3f825b7fa9378ee9,3
723
+ np.float64,0x7ff0000000000000,0x7ff0000000000000,3
724
+ np.float64,0x856e50290adca,0x856e50290adca,3
725
+ np.float64,0x7fde55a5fa3cab4b,0x7ff0000000000000,3
726
+ np.float64,0x7fcf2c8dd93e591b,0x7ff0000000000000,3
727
+ np.float64,0x8001b3a0e3236743,0x8001b3a0e3236743,3
728
+ np.float64,0x8000fdb14821fb63,0x8000fdb14821fb63,3
729
+ np.float64,0xbfe3645e08e6c8bc,0xbfdd161362a5e9ef,3
730
+ np.float64,0x7feb34d28b3669a4,0x7ff0000000000000,3
731
+ np.float64,0x80099dd810933bb1,0x80099dd810933bb1,3
732
+ np.float64,0xbfedbcc1097b7982,0xbfe35d86414d53dc,3
733
+ np.float64,0x7fdc406fbdb880de,0x7ff0000000000000,3
734
+ np.float64,0x800c4bf85ab897f1,0x800c4bf85ab897f1,3
735
+ np.float64,0x3fd8f7b0e0b1ef60,0x3fde89b497ae20d8,3
736
+ np.float64,0xffe4fced5c69f9da,0xbff0000000000000,3
737
+ np.float64,0xbfe54d421fea9a84,0xbfdf1be0cbfbfcba,3
738
+ np.float64,0x800af72f3535ee5f,0x800af72f3535ee5f,3
739
+ np.float64,0x3fe24e6570e49ccb,0x3fe8b3a86d970411,3
740
+ np.float64,0xbfdd7b22d0baf646,0xbfd79fac2e4f7558,3
741
+ np.float64,0xbfe6a7654c6d4eca,0xbfe03c1f13f3b409,3
742
+ np.float64,0x3fe2c3eb662587d7,0x3fe98566e625d4f5,3
743
+ np.float64,0x3b1ef71e763e0,0x3b1ef71e763e0,3
744
+ np.float64,0xffed03c6baba078d,0xbff0000000000000,3
745
+ np.float64,0x3febac19d0b75834,0x3ff5fdacc9d51bcd,3
746
+ np.float64,0x800635d6794c6bae,0x800635d6794c6bae,3
747
+ np.float64,0xbfe8cafc827195f9,0xbfe1411438608ae1,3
748
+ np.float64,0x7feeb616a83d6c2c,0x7ff0000000000000,3
749
+ np.float64,0x3fd52d62a2aa5ac5,0x3fd91a07a7f18f44,3
750
+ np.float64,0x80036996b8a6d32e,0x80036996b8a6d32e,3
751
+ np.float64,0x2b1945965632a,0x2b1945965632a,3
752
+ np.float64,0xbfecb5e8c9796bd2,0xbfe2f40fca276aa2,3
753
+ np.float64,0x3fe8669ed4f0cd3e,0x3ff24c89fc9cdbff,3
754
+ np.float64,0x71e9f65ee3d3f,0x71e9f65ee3d3f,3
755
+ np.float64,0xbfd5ab262bab564c,0xbfd261ae108ef79e,3
756
+ np.float64,0xbfe7091342ee1226,0xbfe06bf5622d75f6,3
757
+ np.float64,0x49e888d093d12,0x49e888d093d12,3
758
+ np.float64,0x2272f3dc44e5f,0x2272f3dc44e5f,3
759
+ np.float64,0x7fe98736e0b30e6d,0x7ff0000000000000,3
760
+ np.float64,0x30fa9cde61f54,0x30fa9cde61f54,3
761
+ np.float64,0x7fdc163fc0382c7f,0x7ff0000000000000,3
762
+ np.float64,0xffb40d04ee281a08,0xbff0000000000000,3
763
+ np.float64,0xffe624617f2c48c2,0xbff0000000000000,3
764
+ np.float64,0x3febb582bd376b05,0x3ff608da584d1716,3
765
+ np.float64,0xfc30a5a5f8615,0xfc30a5a5f8615,3
766
+ np.float64,0x3fef202efd7e405e,0x3ffa52009319b069,3
767
+ np.float64,0x8004d0259829a04c,0x8004d0259829a04c,3
768
+ np.float64,0x800622dc71ec45ba,0x800622dc71ec45ba,3
769
+ np.float64,0xffefffffffffffff,0xbff0000000000000,3
770
+ np.float64,0x800e89113c9d1223,0x800e89113c9d1223,3
771
+ np.float64,0x7fba7fde3034ffbb,0x7ff0000000000000,3
772
+ np.float64,0xbfeea31e807d463d,0xbfe3b7369b725915,3
773
+ np.float64,0x3feb7c9589f6f92c,0x3ff5c56cf71b0dff,3
774
+ np.float64,0x3fd52d3b59aa5a77,0x3fd919d0f683fd07,3
775
+ np.float64,0x800de90a43fbd215,0x800de90a43fbd215,3
776
+ np.float64,0x3fe7eb35a9efd66b,0x3ff1c940dbfc6ef9,3
777
+ np.float64,0xbda0adcb7b416,0xbda0adcb7b416,3
778
+ np.float64,0x7fc5753e3a2aea7b,0x7ff0000000000000,3
779
+ np.float64,0xffdd101d103a203a,0xbff0000000000000,3
780
+ np.float64,0x7fcb54f56836a9ea,0x7ff0000000000000,3
781
+ np.float64,0xbfd61c8d6eac391a,0xbfd2b23bc0a2cef4,3
782
+ np.float64,0x3feef55de37deabc,0x3ffa198639a0161d,3
783
+ np.float64,0x7fe4ffbfaea9ff7e,0x7ff0000000000000,3
784
+ np.float64,0x9d1071873a20e,0x9d1071873a20e,3
785
+ np.float64,0x3fef1ecb863e3d97,0x3ffa502a81e09cfc,3
786
+ np.float64,0xad2da12b5a5b4,0xad2da12b5a5b4,3
787
+ np.float64,0xffe614b74c6c296e,0xbff0000000000000,3
788
+ np.float64,0xffe60d3f286c1a7e,0xbff0000000000000,3
789
+ np.float64,0x7fda7d91f4b4fb23,0x7ff0000000000000,3
790
+ np.float64,0x800023f266a047e6,0x800023f266a047e6,3
791
+ np.float64,0x7fdf5f9ad23ebf35,0x7ff0000000000000,3
792
+ np.float64,0x3fa7459f002e8b3e,0x3fa7cf178dcf0af6,3
793
+ np.float64,0x3fe9938d61f3271b,0x3ff39516a13caec3,3
794
+ np.float64,0xbfd59314c3ab262a,0xbfd250830f73efd2,3
795
+ np.float64,0xbfc7e193f72fc328,0xbfc5c924339dd7a8,3
796
+ np.float64,0x7fec1965f17832cb,0x7ff0000000000000,3
797
+ np.float64,0xbfd932908eb26522,0xbfd4d4312d272580,3
798
+ np.float64,0xbfdf2d08e2be5a12,0xbfd8add1413b0b1b,3
799
+ np.float64,0x7fdcf7cc74b9ef98,0x7ff0000000000000,3
800
+ np.float64,0x7fc79300912f2600,0x7ff0000000000000,3
801
+ np.float64,0xffd4bd8f23297b1e,0xbff0000000000000,3
802
+ np.float64,0x41869ce0830e,0x41869ce0830e,3
803
+ np.float64,0x3fe5dcec91ebb9da,0x3fef5e213598cbd4,3
804
+ np.float64,0x800815d9c2902bb4,0x800815d9c2902bb4,3
805
+ np.float64,0x800ba1a4b877434a,0x800ba1a4b877434a,3
806
+ np.float64,0x80069d7bdc4d3af8,0x80069d7bdc4d3af8,3
807
+ np.float64,0xcf00d4339e01b,0xcf00d4339e01b,3
808
+ np.float64,0x80072b71bd4e56e4,0x80072b71bd4e56e4,3
809
+ np.float64,0x80059ca6fbab394f,0x80059ca6fbab394f,3
810
+ np.float64,0x3fe522fc092a45f8,0x3fedf212682bf894,3
811
+ np.float64,0x7fe17f384ea2fe70,0x7ff0000000000000,3
812
+ np.float64,0x0,0x0,3
813
+ np.float64,0x3f72bb4c20257698,0x3f72c64766b52069,3
814
+ np.float64,0x7fbc97c940392f92,0x7ff0000000000000,3
815
+ np.float64,0xffc5904ebd2b209c,0xbff0000000000000,3
816
+ np.float64,0xbfe34fb55b669f6a,0xbfdcff81dd30a49d,3
817
+ np.float64,0x8007ccda006f99b5,0x8007ccda006f99b5,3
818
+ np.float64,0x3fee50e4c8fca1ca,0x3ff9434c7750ad0f,3
819
+ np.float64,0x7fee7b07c67cf60f,0x7ff0000000000000,3
820
+ np.float64,0x3fdcce4a5a399c95,0x3fe230c83f28218a,3
821
+ np.float64,0x7fee5187b37ca30e,0x7ff0000000000000,3
822
+ np.float64,0x3fc48f6a97291ed8,0x3fc64db6200a9833,3
823
+ np.float64,0xc7fec3498ffd9,0xc7fec3498ffd9,3
824
+ np.float64,0x800769c59d2ed38c,0x800769c59d2ed38c,3
825
+ np.float64,0xffe69ede782d3dbc,0xbff0000000000000,3
826
+ np.float64,0x3fecd9770979b2ee,0x3ff76a1f2f0f08f2,3
827
+ np.float64,0x5aa358a8b546c,0x5aa358a8b546c,3
828
+ np.float64,0xbfe795a0506f2b40,0xbfe0afcc52c0166b,3
829
+ np.float64,0xffd4ada1e8a95b44,0xbff0000000000000,3
830
+ np.float64,0xffcac1dc213583b8,0xbff0000000000000,3
831
+ np.float64,0xffe393c15fa72782,0xbff0000000000000,3
832
+ np.float64,0xbfcd6a3c113ad478,0xbfca47a2157b9cdd,3
833
+ np.float64,0xffedde20647bbc40,0xbff0000000000000,3
834
+ np.float64,0x3fd0d011b1a1a024,0x3fd33a57945559f4,3
835
+ np.float64,0x3fef27e29f7e4fc6,0x3ffa5c314e0e3d69,3
836
+ np.float64,0xffe96ff71f72dfee,0xbff0000000000000,3
837
+ np.float64,0xffe762414f2ec482,0xbff0000000000000,3
838
+ np.float64,0x3fc2dcfd3d25b9fa,0x3fc452f41682a12e,3
839
+ np.float64,0xbfbdb125b63b6248,0xbfbc08e6553296d4,3
840
+ np.float64,0x7b915740f724,0x7b915740f724,3
841
+ np.float64,0x60b502b2c16a1,0x60b502b2c16a1,3
842
+ np.float64,0xbfeb38b0be367162,0xbfe254f6782cfc47,3
843
+ np.float64,0x800dc39a3edb8735,0x800dc39a3edb8735,3
844
+ np.float64,0x3fea4fb433349f68,0x3ff468b97cf699f5,3
845
+ np.float64,0xbfd49967962932d0,0xbfd19ceb41ff4cd0,3
846
+ np.float64,0xbfebf75cd377eeba,0xbfe2a576bdbccccc,3
847
+ np.float64,0xbfb653d65c2ca7b0,0xbfb561ab8fcb3f26,3
848
+ np.float64,0xffe3f34b8727e696,0xbff0000000000000,3
849
+ np.float64,0x3fdd798064baf301,0x3fe2b7c130a6fc63,3
850
+ np.float64,0x3febe027e6b7c050,0x3ff63bac1b22e12d,3
851
+ np.float64,0x7fcaa371af3546e2,0x7ff0000000000000,3
852
+ np.float64,0xbfe6ee980a2ddd30,0xbfe05f0bc5dc80d2,3
853
+ np.float64,0xc559c33f8ab39,0xc559c33f8ab39,3
854
+ np.float64,0x84542c2b08a86,0x84542c2b08a86,3
855
+ np.float64,0xbfe5645e046ac8bc,0xbfdf3398dc3cc1bd,3
856
+ np.float64,0x3fee8c48ae7d1892,0x3ff9902899480526,3
857
+ np.float64,0x3fb706471c2e0c8e,0x3fb817787aace8db,3
858
+ np.float64,0x7fefe78f91ffcf1e,0x7ff0000000000000,3
859
+ np.float64,0xbfcf6d560b3edaac,0xbfcbddc72a2130df,3
860
+ np.float64,0x7fd282bfd925057f,0x7ff0000000000000,3
861
+ np.float64,0x3fb973dbee32e7b8,0x3fbac2c87cbd0215,3
862
+ np.float64,0x3fd1ce38ff239c72,0x3fd4876de5164420,3
863
+ np.float64,0x8008ac2e3c31585d,0x8008ac2e3c31585d,3
864
+ np.float64,0x3fa05e06dc20bc00,0x3fa0a1b7de904dce,3
865
+ np.float64,0x7fd925f215324be3,0x7ff0000000000000,3
866
+ np.float64,0x3f949d95d0293b2c,0x3f94d31197d51874,3
867
+ np.float64,0xffdded9e67bbdb3c,0xbff0000000000000,3
868
+ np.float64,0x3fed390dcfba721c,0x3ff7e08c7a709240,3
869
+ np.float64,0x7fe6e62300adcc45,0x7ff0000000000000,3
870
+ np.float64,0xbfd779bc312ef378,0xbfd3a6cb64bb0181,3
871
+ np.float64,0x3fe43e9877287d31,0x3fec3e100ef935fd,3
872
+ np.float64,0x210b68e44216e,0x210b68e44216e,3
873
+ np.float64,0x3fcdffc1e73bff84,0x3fd0e729d02ec539,3
874
+ np.float64,0xcea10c0f9d422,0xcea10c0f9d422,3
875
+ np.float64,0x7feb97a82d772f4f,0x7ff0000000000000,3
876
+ np.float64,0x9b4b4d953696a,0x9b4b4d953696a,3
877
+ np.float64,0x3fd1bd8e95237b1d,0x3fd4716dd34cf828,3
878
+ np.float64,0x800fc273841f84e7,0x800fc273841f84e7,3
879
+ np.float64,0xbfd2aef167255de2,0xbfd0340f30d82f18,3
880
+ np.float64,0x800d021a551a0435,0x800d021a551a0435,3
881
+ np.float64,0xffebf934a8b7f268,0xbff0000000000000,3
882
+ np.float64,0x3fd819849fb03308,0x3fdd43bca0aac749,3
883
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,3
884
+ np.float64,0x27c34b064f86a,0x27c34b064f86a,3
885
+ np.float64,0x7fef4f5a373e9eb3,0x7ff0000000000000,3
886
+ np.float64,0x7fd92fccce325f99,0x7ff0000000000000,3
887
+ np.float64,0x800520869d6a410e,0x800520869d6a410e,3
888
+ np.float64,0x3fccbcaddf397958,0x3fd01bf6b0c4d97f,3
889
+ np.float64,0x80039ebfc4273d80,0x80039ebfc4273d80,3
890
+ np.float64,0xbfed1f0b3c7a3e16,0xbfe31ea6e4c69141,3
891
+ np.float64,0x7fee1bb7c4bc376f,0x7ff0000000000000,3
892
+ np.float64,0xbfa8bee1d8317dc0,0xbfa8283b7dbf95a9,3
893
+ np.float64,0x3fe797db606f2fb6,0x3ff171b1c2bc8fe5,3
894
+ np.float64,0xbfee2ecfdbbc5da0,0xbfe38a3f0a43d14e,3
895
+ np.float64,0x3fe815c7f1302b90,0x3ff1f65165c45d71,3
896
+ np.float64,0xbfbb265c94364cb8,0xbfb9c27ec61a9a1d,3
897
+ np.float64,0x3fcf1cab5d3e3957,0x3fd19c07444642f9,3
898
+ np.float64,0xbfe6ae753f6d5cea,0xbfe03f99666dbe17,3
899
+ np.float64,0xbfd18a2a73a31454,0xbfceaee204aca016,3
900
+ np.float64,0x3fb8a1dffc3143c0,0x3fb9db38341ab1a3,3
901
+ np.float64,0x7fd2a0376025406e,0x7ff0000000000000,3
902
+ np.float64,0x7fe718c0e3ae3181,0x7ff0000000000000,3
903
+ np.float64,0x3fb264d42424c9a8,0x3fb3121f071d4db4,3
904
+ np.float64,0xd27190a7a4e32,0xd27190a7a4e32,3
905
+ np.float64,0xbfe467668c68cecd,0xbfde2c4616738d5e,3
906
+ np.float64,0x800ab9a2b9357346,0x800ab9a2b9357346,3
907
+ np.float64,0x7fcbd108d537a211,0x7ff0000000000000,3
908
+ np.float64,0x3fb79bba6e2f3770,0x3fb8bb2c140d3445,3
909
+ np.float64,0xffefa7165e3f4e2c,0xbff0000000000000,3
910
+ np.float64,0x7fb40185a428030a,0x7ff0000000000000,3
911
+ np.float64,0xbfe9e3d58e73c7ab,0xbfe1c04d51c83d69,3
912
+ np.float64,0x7fef5b97b17eb72e,0x7ff0000000000000,3
913
+ np.float64,0x800a2957683452af,0x800a2957683452af,3
914
+ np.float64,0x800f54f1925ea9e3,0x800f54f1925ea9e3,3
915
+ np.float64,0xeffa4e77dff4a,0xeffa4e77dff4a,3
916
+ np.float64,0xffbe501aa03ca038,0xbff0000000000000,3
917
+ np.float64,0x8006c651bced8ca4,0x8006c651bced8ca4,3
918
+ np.float64,0x3fe159faff22b3f6,0x3fe708f78efbdbed,3
919
+ np.float64,0x800e7d59a31cfab3,0x800e7d59a31cfab3,3
920
+ np.float64,0x3fe6ac2f272d585e,0x3ff07ee5305385c3,3
921
+ np.float64,0x7fd014c054202980,0x7ff0000000000000,3
922
+ np.float64,0xbfe4800b11e90016,0xbfde4648c6f29ce5,3
923
+ np.float64,0xbfe6738470ece709,0xbfe0227b5b42b713,3
924
+ np.float64,0x3fed052add3a0a56,0x3ff7a01819e65c6e,3
925
+ np.float64,0xffe03106f120620e,0xbff0000000000000,3
926
+ np.float64,0x7fe11df4d4e23be9,0x7ff0000000000000,3
927
+ np.float64,0xbfcea25d7b3d44bc,0xbfcb3e808e7ce852,3
928
+ np.float64,0xd0807b03a1010,0xd0807b03a1010,3
929
+ np.float64,0x8004eda4fec9db4b,0x8004eda4fec9db4b,3
930
+ np.float64,0x3fceb5c98d3d6b90,0x3fd15a894b15dd9f,3
931
+ np.float64,0xbfee27228afc4e45,0xbfe38741702f3c0b,3
932
+ np.float64,0xbfe606278c6c0c4f,0xbfdfd7cb6093652d,3
933
+ np.float64,0xbfd66f59bc2cdeb4,0xbfd2ecb2297f6afc,3
934
+ np.float64,0x4aee390095dc8,0x4aee390095dc8,3
935
+ np.float64,0xbfe391355d67226a,0xbfdd46ddc0997014,3
936
+ np.float64,0xffd27765e7a4eecc,0xbff0000000000000,3
937
+ np.float64,0xbfe795e20a2f2bc4,0xbfe0afebc66c4dbd,3
938
+ np.float64,0x7fc9a62e81334c5c,0x7ff0000000000000,3
939
+ np.float64,0xffe4e57e52a9cafc,0xbff0000000000000,3
940
+ np.float64,0x7fac326c8c3864d8,0x7ff0000000000000,3
941
+ np.float64,0x3fe8675f6370cebf,0x3ff24d5863029c15,3
942
+ np.float64,0x7fcf4745e73e8e8b,0x7ff0000000000000,3
943
+ np.float64,0x7fcc9aec9f3935d8,0x7ff0000000000000,3
944
+ np.float64,0x3fec2e8fcab85d20,0x3ff699ccd0b2fed6,3
945
+ np.float64,0x3fd110a968222153,0x3fd38e81a88c2d13,3
946
+ np.float64,0xffb3a68532274d08,0xbff0000000000000,3
947
+ np.float64,0xf0e562bbe1cad,0xf0e562bbe1cad,3
948
+ np.float64,0xbfe815b9e5f02b74,0xbfe0ec9f5023aebc,3
949
+ np.float64,0xbf5151d88022a400,0xbf514f80c465feea,3
950
+ np.float64,0x2547e3144a8fd,0x2547e3144a8fd,3
951
+ np.float64,0x3fedcc0c28fb9818,0x3ff899612fbeb4c5,3
952
+ np.float64,0x3fdc3d1c0f387a38,0x3fe1bf6e2d39bd75,3
953
+ np.float64,0x7fe544dbe62a89b7,0x7ff0000000000000,3
954
+ np.float64,0x8001500e48e2a01d,0x8001500e48e2a01d,3
955
+ np.float64,0xbfed3b2b09fa7656,0xbfe329f3e7bada64,3
956
+ np.float64,0xbfe76a943aeed528,0xbfe09b24e3aa3f79,3
957
+ np.float64,0x3fe944330e328866,0x3ff33d472dee70c5,3
958
+ np.float64,0x8004bbbd6cc9777c,0x8004bbbd6cc9777c,3
959
+ np.float64,0xbfe28133fb650268,0xbfdc1ac230ac4ef5,3
960
+ np.float64,0xc1370af7826e2,0xc1370af7826e2,3
961
+ np.float64,0x7fcfa47f5f3f48fe,0x7ff0000000000000,3
962
+ np.float64,0xbfa3002a04260050,0xbfa2a703a538b54e,3
963
+ np.float64,0xffef44f3903e89e6,0xbff0000000000000,3
964
+ np.float64,0xc32cce298659a,0xc32cce298659a,3
965
+ np.float64,0x7b477cc2f68f0,0x7b477cc2f68f0,3
966
+ np.float64,0x40a7f4ec814ff,0x40a7f4ec814ff,3
967
+ np.float64,0xffee38edf67c71db,0xbff0000000000000,3
968
+ np.float64,0x3fe23f6f1ce47ede,0x3fe8992b8bb03499,3
969
+ np.float64,0x7fc8edfe7f31dbfc,0x7ff0000000000000,3
970
+ np.float64,0x800bb8e6fb3771ce,0x800bb8e6fb3771ce,3
971
+ np.float64,0xbfe11d364ee23a6c,0xbfda82a0c2ef9e46,3
972
+ np.float64,0xbfeb993cb4b7327a,0xbfe27df565da85dc,3
973
+ np.float64,0x10000000000000,0x10000000000000,3
974
+ np.float64,0x3fc1f997d723f330,0x3fc34c5cff060af1,3
975
+ np.float64,0x6e326fa0dc64f,0x6e326fa0dc64f,3
976
+ np.float64,0x800fa30c2c5f4618,0x800fa30c2c5f4618,3
977
+ np.float64,0x7fed16ad603a2d5a,0x7ff0000000000000,3
978
+ np.float64,0x9411cf172823a,0x9411cf172823a,3
979
+ np.float64,0xffece51d4cb9ca3a,0xbff0000000000000,3
980
+ np.float64,0x3fdda3d1453b47a3,0x3fe2d954f7849890,3
981
+ np.float64,0xffd58330172b0660,0xbff0000000000000,3
982
+ np.float64,0xbfc6962ae52d2c54,0xbfc4b4bdf0069f17,3
983
+ np.float64,0xbfb4010a8e280218,0xbfb33e1236f7efa0,3
984
+ np.float64,0x7fd0444909208891,0x7ff0000000000000,3
985
+ np.float64,0xbfe027a24de04f44,0xbfd95e9064101e7c,3
986
+ np.float64,0xa6f3f3214de9,0xa6f3f3214de9,3
987
+ np.float64,0xbfe112eb0fe225d6,0xbfda768f7cbdf346,3
988
+ np.float64,0xbfe99e90d4b33d22,0xbfe1a153e45a382a,3
989
+ np.float64,0xffecb34f8e79669e,0xbff0000000000000,3
990
+ np.float64,0xbfdf32c9653e6592,0xbfd8b159caf5633d,3
991
+ np.float64,0x3fe9519829b2a330,0x3ff34c0a8152e20f,3
992
+ np.float64,0xffd08ec8a7a11d92,0xbff0000000000000,3
993
+ np.float64,0xffd19b71b6a336e4,0xbff0000000000000,3
994
+ np.float64,0x7feda6b9377b4d71,0x7ff0000000000000,3
995
+ np.float64,0x800fda2956bfb453,0x800fda2956bfb453,3
996
+ np.float64,0x3fe54f601bea9ec0,0x3fee483cb03cbde4,3
997
+ np.float64,0xbfe2a8ad5ee5515a,0xbfdc46ee7a10bf0d,3
998
+ np.float64,0xbfd336c8bd266d92,0xbfd09916d432274a,3
999
+ np.float64,0xfff0000000000000,0xbff0000000000000,3
1000
+ np.float64,0x3fd9a811a9b35024,0x3fdf8fa68cc048e3,3
1001
+ np.float64,0x3fe078c68520f18d,0x3fe58aecc1f9649b,3
1002
+ np.float64,0xbfc6d5aa3a2dab54,0xbfc4e9ea84f3d73c,3
1003
+ np.float64,0xf9682007f2d04,0xf9682007f2d04,3
1004
+ np.float64,0x3fee54523dbca8a4,0x3ff947b826de81f4,3
1005
+ np.float64,0x80461e5d008c4,0x80461e5d008c4,3
1006
+ np.float64,0x3fdd6d12d5bada26,0x3fe2ade8dee2fa02,3
1007
+ np.float64,0x3fcd5f0dfd3abe18,0x3fd081d6cd25731d,3
1008
+ np.float64,0x7fa36475c826c8eb,0x7ff0000000000000,3
1009
+ np.float64,0xbfdf3ce052be79c0,0xbfd8b78baccfb908,3
1010
+ np.float64,0x7fcd890dd13b121b,0x7ff0000000000000,3
1011
+ np.float64,0x8000000000000001,0x8000000000000001,3
1012
+ np.float64,0x800ec0f4281d81e8,0x800ec0f4281d81e8,3
1013
+ np.float64,0xbfba960116352c00,0xbfb94085424496d9,3
1014
+ np.float64,0x3fdddedc9bbbbdb8,0x3fe30853fe4ef5ce,3
1015
+ np.float64,0x238092a847013,0x238092a847013,3
1016
+ np.float64,0xbfe38d4803271a90,0xbfdd429a955c46af,3
1017
+ np.float64,0xbfd4c9067329920c,0xbfd1bf6255ed91a4,3
1018
+ np.float64,0xbfbee213923dc428,0xbfbd17ce1bda6088,3
1019
+ np.float64,0xffd5a2d337ab45a6,0xbff0000000000000,3
1020
+ np.float64,0x7fe21bfcf82437f9,0x7ff0000000000000,3
1021
+ np.float64,0x3fe2a2714da544e3,0x3fe949594a74ea25,3
1022
+ np.float64,0x800e05cf8ebc0b9f,0x800e05cf8ebc0b9f,3
1023
+ np.float64,0x559a1526ab343,0x559a1526ab343,3
1024
+ np.float64,0xffe6a1b7906d436e,0xbff0000000000000,3
1025
+ np.float64,0xffef27d6253e4fab,0xbff0000000000000,3
1026
+ np.float64,0xbfe0f90ab0a1f216,0xbfda5828a1edde48,3
1027
+ np.float64,0x9675d2ab2cebb,0x9675d2ab2cebb,3
1028
+ np.float64,0xffee0f7eecfc1efd,0xbff0000000000000,3
1029
+ np.float64,0x2ec005625d801,0x2ec005625d801,3
1030
+ np.float64,0x7fde35ff14bc6bfd,0x7ff0000000000000,3
1031
+ np.float64,0xffe03f36d9e07e6d,0xbff0000000000000,3
1032
+ np.float64,0x7fe09ff7c4213fef,0x7ff0000000000000,3
1033
+ np.float64,0xffeac29dd1b5853b,0xbff0000000000000,3
1034
+ np.float64,0x3fb63120aa2c6241,0x3fb72ea3de98a853,3
1035
+ np.float64,0xffd079eb84a0f3d8,0xbff0000000000000,3
1036
+ np.float64,0xbfd3c2cc75a78598,0xbfd1005996880b3f,3
1037
+ np.float64,0x7fb80507ee300a0f,0x7ff0000000000000,3
1038
+ np.float64,0xffe8006105f000c1,0xbff0000000000000,3
1039
+ np.float64,0x8009138b0ab22716,0x8009138b0ab22716,3
1040
+ np.float64,0xbfd6dfb40b2dbf68,0xbfd33b8e4008e3b0,3
1041
+ np.float64,0xbfe7c2cf9bef859f,0xbfe0c55c807460df,3
1042
+ np.float64,0xbfe75fe4da6ebfca,0xbfe09600256d3b81,3
1043
+ np.float64,0xffd662fc73acc5f8,0xbff0000000000000,3
1044
+ np.float64,0x20b99dbc41735,0x20b99dbc41735,3
1045
+ np.float64,0x3fe10b38ade21671,0x3fe68229a9bbeefc,3
1046
+ np.float64,0x3743b99c6e878,0x3743b99c6e878,3
1047
+ np.float64,0xff9eb5ed903d6be0,0xbff0000000000000,3
1048
+ np.float64,0x3ff0000000000000,0x3ffb7e151628aed3,3
1049
+ np.float64,0xffb9e0569e33c0b0,0xbff0000000000000,3
1050
+ np.float64,0x7fd39c804fa73900,0x7ff0000000000000,3
1051
+ np.float64,0x3fe881ef67f103df,0x3ff269dd704b7129,3
1052
+ np.float64,0x1b6eb40236dd7,0x1b6eb40236dd7,3
1053
+ np.float64,0xbfe734ea432e69d4,0xbfe0813e6355d02f,3
1054
+ np.float64,0xffcf48f3743e91e8,0xbff0000000000000,3
1055
+ np.float64,0xffed10bcf6fa2179,0xbff0000000000000,3
1056
+ np.float64,0x3fef07723b7e0ee4,0x3ffa3156123f3c15,3
1057
+ np.float64,0xffe45c704aa8b8e0,0xbff0000000000000,3
1058
+ np.float64,0xb7b818d96f703,0xb7b818d96f703,3
1059
+ np.float64,0x42fcc04085f99,0x42fcc04085f99,3
1060
+ np.float64,0xbfda7ced01b4f9da,0xbfd5b0ce1e5524ae,3
1061
+ np.float64,0xbfe1e5963d63cb2c,0xbfdb6a87b6c09185,3
1062
+ np.float64,0x7fdfa18003bf42ff,0x7ff0000000000000,3
1063
+ np.float64,0xbfe3790a43e6f214,0xbfdd2c9a38b4f089,3
1064
+ np.float64,0xffe0ff5b9ae1feb6,0xbff0000000000000,3
1065
+ np.float64,0x80085a7d3110b4fb,0x80085a7d3110b4fb,3
1066
+ np.float64,0xffd6bfa6622d7f4c,0xbff0000000000000,3
1067
+ np.float64,0xbfef5ddc7cfebbb9,0xbfe3fe170521593e,3
1068
+ np.float64,0x3fc21773fa242ee8,0x3fc36ebda1f91a72,3
1069
+ np.float64,0x7fc04d98da209b31,0x7ff0000000000000,3
1070
+ np.float64,0xbfeba3b535b7476a,0xbfe282602e3c322e,3
1071
+ np.float64,0xffd41fb5c1a83f6c,0xbff0000000000000,3
1072
+ np.float64,0xf87d206df0fa4,0xf87d206df0fa4,3
1073
+ np.float64,0x800060946fc0c12a,0x800060946fc0c12a,3
1074
+ np.float64,0x3fe69d5f166d3abe,0x3ff06fdddcf4ca93,3
1075
+ np.float64,0x7fe9b5793b336af1,0x7ff0000000000000,3
1076
+ np.float64,0x7fe0dd4143e1ba82,0x7ff0000000000000,3
1077
+ np.float64,0xbfa8eaea3c31d5d0,0xbfa8522e397da3bd,3
1078
+ np.float64,0x119f0078233e1,0x119f0078233e1,3
1079
+ np.float64,0xbfd78a207aaf1440,0xbfd3b225bbf2ab4f,3
1080
+ np.float64,0xc66a6d4d8cd4e,0xc66a6d4d8cd4e,3
1081
+ np.float64,0xe7fc4b57cff8a,0xe7fc4b57cff8a,3
1082
+ np.float64,0x800883e8091107d0,0x800883e8091107d0,3
1083
+ np.float64,0x3fa6520c842ca419,0x3fa6d06e1041743a,3
1084
+ np.float64,0x3fa563182c2ac630,0x3fa5d70e27a84c97,3
1085
+ np.float64,0xe6a30b61cd462,0xe6a30b61cd462,3
1086
+ np.float64,0x3fee85dac37d0bb6,0x3ff987cfa41a9778,3
1087
+ np.float64,0x3fe8f621db71ec44,0x3ff2e7b768a2e9d0,3
1088
+ np.float64,0x800f231d861e463b,0x800f231d861e463b,3
1089
+ np.float64,0xbfe22eb07c645d61,0xbfdbbdbb853ab4c6,3
1090
+ np.float64,0x7fd2dda2dea5bb45,0x7ff0000000000000,3
1091
+ np.float64,0xbfd09b79a0a136f4,0xbfcd4147606ffd27,3
1092
+ np.float64,0xca039cc394074,0xca039cc394074,3
1093
+ np.float64,0x8000000000000000,0x8000000000000000,3
1094
+ np.float64,0xcb34575d9668b,0xcb34575d9668b,3
1095
+ np.float64,0x3fea62c1f3f4c584,0x3ff47e6dc67ec89f,3
1096
+ np.float64,0x7fe544c8606a8990,0x7ff0000000000000,3
1097
+ np.float64,0xffe0a980c4615301,0xbff0000000000000,3
1098
+ np.float64,0x3fdd67d5f8bacfac,0x3fe2a9c3421830f1,3
1099
+ np.float64,0xffe41d3dda283a7b,0xbff0000000000000,3
1100
+ np.float64,0xffeed59e5ffdab3c,0xbff0000000000000,3
1101
+ np.float64,0xffeeae8326fd5d05,0xbff0000000000000,3
1102
+ np.float64,0x800d70b4fa7ae16a,0x800d70b4fa7ae16a,3
1103
+ np.float64,0xffec932e6839265c,0xbff0000000000000,3
1104
+ np.float64,0xee30b185dc616,0xee30b185dc616,3
1105
+ np.float64,0x7fc3cf4397279e86,0x7ff0000000000000,3
1106
+ np.float64,0xbfeab34f1875669e,0xbfe21b868229de7d,3
1107
+ np.float64,0xf45f5f7de8bec,0xf45f5f7de8bec,3
1108
+ np.float64,0x3fad2c4b203a5896,0x3fae0528b568f3cf,3
1109
+ np.float64,0xbfe2479543e48f2a,0xbfdbd9e57cf64028,3
1110
+ np.float64,0x3fd41a1473283429,0x3fd79df2bc60debb,3
1111
+ np.float64,0x3febb5155ef76a2a,0x3ff608585afd698b,3
1112
+ np.float64,0xffe21f5303e43ea6,0xbff0000000000000,3
1113
+ np.float64,0x7fe9ef390833de71,0x7ff0000000000000,3
1114
+ np.float64,0xffe8ee873d71dd0e,0xbff0000000000000,3
1115
+ np.float64,0x7fd7cbc55e2f978a,0x7ff0000000000000,3
1116
+ np.float64,0x80081f9080d03f21,0x80081f9080d03f21,3
1117
+ np.float64,0x7fecbafc8b3975f8,0x7ff0000000000000,3
1118
+ np.float64,0x800b6c4b0b16d896,0x800b6c4b0b16d896,3
1119
+ np.float64,0xbfaa0fc2d4341f80,0xbfa968cdf32b98ad,3
1120
+ np.float64,0x3fec79fe4078f3fc,0x3ff6f5361a4a5d93,3
1121
+ np.float64,0xbfb14b79de2296f0,0xbfb0b93b75ecec11,3
1122
+ np.float64,0x800009d084c013a2,0x800009d084c013a2,3
1123
+ np.float64,0x4a4cdfe29499d,0x4a4cdfe29499d,3
1124
+ np.float64,0xbfe721c2d56e4386,0xbfe077f541987d76,3
1125
+ np.float64,0x3e5f539e7cbeb,0x3e5f539e7cbeb,3
1126
+ np.float64,0x3fd23f044c247e09,0x3fd51ceafcdd64aa,3
1127
+ np.float64,0x3fc70785b02e0f0b,0x3fc93b2a37eb342a,3
1128
+ np.float64,0xbfe7ab4ec7af569e,0xbfe0ba28eecbf6b0,3
1129
+ np.float64,0x800c1d4134583a83,0x800c1d4134583a83,3
1130
+ np.float64,0xffd9a73070334e60,0xbff0000000000000,3
1131
+ np.float64,0x68a4bf24d1499,0x68a4bf24d1499,3
1132
+ np.float64,0x7feba9d9507753b2,0x7ff0000000000000,3
1133
+ np.float64,0xbfe9d747db73ae90,0xbfe1bab53d932010,3
1134
+ np.float64,0x800a9a4aed953496,0x800a9a4aed953496,3
1135
+ np.float64,0xffcb89b0ad371360,0xbff0000000000000,3
1136
+ np.float64,0xbfc62388b82c4710,0xbfc4547be442a38c,3
1137
+ np.float64,0x800a006d187400db,0x800a006d187400db,3
1138
+ np.float64,0x3fcef2fbd33de5f8,0x3fd18177b2150148,3
1139
+ np.float64,0x8000b74e3da16e9d,0x8000b74e3da16e9d,3
1140
+ np.float64,0x25be536e4b7cb,0x25be536e4b7cb,3
1141
+ np.float64,0x3fa86e189430dc31,0x3fa905b4684c9f01,3
1142
+ np.float64,0xa7584b114eb0a,0xa7584b114eb0a,3
1143
+ np.float64,0x800331133c866227,0x800331133c866227,3
1144
+ np.float64,0x3fb52b48142a5690,0x3fb611a6f6e7c664,3
1145
+ np.float64,0x3fe825797cf04af2,0x3ff206fd60e98116,3
1146
+ np.float64,0x3fd0bec4e5217d8a,0x3fd323db3ffd59b2,3
1147
+ np.float64,0x907b43a120f7,0x907b43a120f7,3
1148
+ np.float64,0x3fed31eb1d3a63d6,0x3ff7d7a91c6930a4,3
1149
+ np.float64,0x7f97a13d782f427a,0x7ff0000000000000,3
1150
+ np.float64,0xffc7121a702e2434,0xbff0000000000000,3
1151
+ np.float64,0xbfe8bb4cbbf1769a,0xbfe139d7f46f1fb1,3
1152
+ np.float64,0xbfe3593cc5a6b27a,0xbfdd09ec91d6cd48,3
1153
+ np.float64,0x7fcff218ff9ff,0x7fcff218ff9ff,3
1154
+ np.float64,0x3fe73651d4ae6ca4,0x3ff10c5c1d21d127,3
1155
+ np.float64,0x80054e396eaa9c74,0x80054e396eaa9c74,3
1156
+ np.float64,0x3fe527d5f9aa4fac,0x3fedfb7743db9b53,3
1157
+ np.float64,0x7fec6f28c5f8de51,0x7ff0000000000000,3
1158
+ np.float64,0x3fcd2bbff53a5780,0x3fd061987416b49b,3
1159
+ np.float64,0xffd1f0046423e008,0xbff0000000000000,3
1160
+ np.float64,0x80034d97fac69b31,0x80034d97fac69b31,3
1161
+ np.float64,0x3faa803f14350080,0x3fab32e3f8073be4,3
1162
+ np.float64,0x3fcf8da0163f1b40,0x3fd1e42ba2354c8e,3
1163
+ np.float64,0x3fd573c2632ae785,0x3fd97c37609d18d7,3
1164
+ np.float64,0x7f922960482452c0,0x7ff0000000000000,3
1165
+ np.float64,0x800ebd0c5d3d7a19,0x800ebd0c5d3d7a19,3
1166
+ np.float64,0xbfee63b7807cc76f,0xbfe39ec7981035db,3
1167
+ np.float64,0xffdc023f8e380480,0xbff0000000000000,3
1168
+ np.float64,0x3fe3ffa02c67ff40,0x3febc7f8b900ceba,3
1169
+ np.float64,0x36c508b86d8a2,0x36c508b86d8a2,3
1170
+ np.float64,0x3fc9fbb0f133f760,0x3fcccee9f6ba801c,3
1171
+ np.float64,0x3fd75c1d5faeb83b,0x3fdc3150f9eff99e,3
1172
+ np.float64,0x3fe9a8d907b351b2,0x3ff3accc78a31df8,3
1173
+ np.float64,0x3fdd8fdcafbb1fb8,0x3fe2c97c97757994,3
1174
+ np.float64,0x3fb10c34ca22186a,0x3fb1a0cc42c76b86,3
1175
+ np.float64,0xbff0000000000000,0xbfe43a54e4e98864,3
1176
+ np.float64,0xffd046aefda08d5e,0xbff0000000000000,3
1177
+ np.float64,0x80067989758cf314,0x80067989758cf314,3
1178
+ np.float64,0x3fee9d77763d3aef,0x3ff9a67ff0841ba5,3
1179
+ np.float64,0xffe4d3cbf8e9a798,0xbff0000000000000,3
1180
+ np.float64,0x800f9cab273f3956,0x800f9cab273f3956,3
1181
+ np.float64,0x800a5c84f9f4b90a,0x800a5c84f9f4b90a,3
1182
+ np.float64,0x4fd377009fa8,0x4fd377009fa8,3
1183
+ np.float64,0xbfe7ba26af6f744e,0xbfe0c13ce45d6f95,3
1184
+ np.float64,0x609c8a86c1392,0x609c8a86c1392,3
1185
+ np.float64,0x7fe4d0296ea9a052,0x7ff0000000000000,3
1186
+ np.float64,0x59847bccb3090,0x59847bccb3090,3
1187
+ np.float64,0xbfdf944157bf2882,0xbfd8ed092bacad43,3
1188
+ np.float64,0xbfe7560a632eac15,0xbfe091405ec34973,3
1189
+ np.float64,0x3fea0699f4340d34,0x3ff415eb72089230,3
1190
+ np.float64,0x800a5533f374aa68,0x800a5533f374aa68,3
1191
+ np.float64,0xbf8e8cdb103d19c0,0xbf8e52cffcb83774,3
1192
+ np.float64,0x3fe87d9e52f0fb3d,0x3ff2653952344b81,3
1193
+ np.float64,0x7fca3950f73472a1,0x7ff0000000000000,3
1194
+ np.float64,0xffd5d1068aaba20e,0xbff0000000000000,3
1195
+ np.float64,0x3fd1a5f169a34be4,0x3fd4524b6ef17f91,3
1196
+ np.float64,0x3fdc4b95a8b8972c,0x3fe1caafd8652bf7,3
1197
+ np.float64,0x3fe333f65a6667ed,0x3fea502fb1f8a578,3
1198
+ np.float64,0xbfc117aaac222f54,0xbfc00018a4b84b6e,3
1199
+ np.float64,0x7fecf2efdf39e5df,0x7ff0000000000000,3
1200
+ np.float64,0x4e99d83e9d33c,0x4e99d83e9d33c,3
1201
+ np.float64,0x800d18937bda3127,0x800d18937bda3127,3
1202
+ np.float64,0x3fd6c67778ad8cef,0x3fdb5aba70a3ea9e,3
1203
+ np.float64,0x3fdbb71770b76e2f,0x3fe157ae8da20bc5,3
1204
+ np.float64,0xbfe9faf6ebf3f5ee,0xbfe1ca963d83f17f,3
1205
+ np.float64,0x80038850ac0710a2,0x80038850ac0710a2,3
1206
+ np.float64,0x8006beb72f8d7d6f,0x8006beb72f8d7d6f,3
1207
+ np.float64,0x3feead67bffd5acf,0x3ff9bb43e8b15e2f,3
1208
+ np.float64,0xbfd1174b89222e98,0xbfcdff9972799907,3
1209
+ np.float64,0x7fee2c077cfc580e,0x7ff0000000000000,3
1210
+ np.float64,0xbfbdbd904e3b7b20,0xbfbc13f4916ed466,3
1211
+ np.float64,0xffee47b8fe3c8f71,0xbff0000000000000,3
1212
+ np.float64,0xffd161884222c310,0xbff0000000000000,3
1213
+ np.float64,0xbfd42f27c4a85e50,0xbfd14fa8d67ba5ee,3
1214
+ np.float64,0x7fefffffffffffff,0x7ff0000000000000,3
1215
+ np.float64,0x8008151791b02a30,0x8008151791b02a30,3
1216
+ np.float64,0xbfba79029234f208,0xbfb926616cf41755,3
1217
+ np.float64,0x8004c486be29890e,0x8004c486be29890e,3
1218
+ np.float64,0x7fe5325a252a64b3,0x7ff0000000000000,3
1219
+ np.float64,0x5a880f04b5103,0x5a880f04b5103,3
1220
+ np.float64,0xbfe6f4b7702de96f,0xbfe06209002dd72c,3
1221
+ np.float64,0xbfdf8b3739bf166e,0xbfd8e783efe3c30f,3
1222
+ np.float64,0xbfe32571c8e64ae4,0xbfdcd128b9aa49a1,3
1223
+ np.float64,0xbfe97c98c172f932,0xbfe1920ac0fc040f,3
1224
+ np.float64,0x3fd0b513a2a16a28,0x3fd31744e3a1bf0a,3
1225
+ np.float64,0xffe3ab70832756e0,0xbff0000000000000,3
1226
+ np.float64,0x80030f055ce61e0b,0x80030f055ce61e0b,3
1227
+ np.float64,0xffd5f3b21b2be764,0xbff0000000000000,3
1228
+ np.float64,0x800c1f2d6c783e5b,0x800c1f2d6c783e5b,3
1229
+ np.float64,0x80075f4f148ebe9f,0x80075f4f148ebe9f,3
1230
+ np.float64,0xbfa5a046f42b4090,0xbfa52cfbf8992256,3
1231
+ np.float64,0xffd6702583ace04c,0xbff0000000000000,3
1232
+ np.float64,0x800dc0a5cf1b814c,0x800dc0a5cf1b814c,3
1233
+ np.float64,0x14f2203a29e45,0x14f2203a29e45,3
1234
+ np.float64,0x800421a40ee84349,0x800421a40ee84349,3
1235
+ np.float64,0xbfea7c279df4f84f,0xbfe2037fff3ed877,3
1236
+ np.float64,0xbfe9b41ddcf3683c,0xbfe1aafe18a44bf8,3
1237
+ np.float64,0xffe7b037022f606e,0xbff0000000000000,3
1238
+ np.float64,0x800bafb648775f6d,0x800bafb648775f6d,3
1239
+ np.float64,0x800b81681d5702d1,0x800b81681d5702d1,3
1240
+ np.float64,0x3fe29f8dc8653f1c,0x3fe9442da1c32c6b,3
1241
+ np.float64,0xffef9a05dc7f340b,0xbff0000000000000,3
1242
+ np.float64,0x800c8c65a65918cb,0x800c8c65a65918cb,3
1243
+ np.float64,0xffe99df0d5f33be1,0xbff0000000000000,3
1244
+ np.float64,0x9afeb22535fd7,0x9afeb22535fd7,3
1245
+ np.float64,0x7fc620dd822c41ba,0x7ff0000000000000,3
1246
+ np.float64,0x29c2cdf25385b,0x29c2cdf25385b,3
1247
+ np.float64,0x2d92284e5b246,0x2d92284e5b246,3
1248
+ np.float64,0xffc794aa942f2954,0xbff0000000000000,3
1249
+ np.float64,0xbfe7ed907eafdb21,0xbfe0d9a7b1442497,3
1250
+ np.float64,0xbfd4e0d4aea9c1aa,0xbfd1d09366dba2a7,3
1251
+ np.float64,0xa70412c34e083,0xa70412c34e083,3
1252
+ np.float64,0x41dc0ee083b9,0x41dc0ee083b9,3
1253
+ np.float64,0x8000ece20da1d9c5,0x8000ece20da1d9c5,3
1254
+ np.float64,0x3fdf3dae103e7b5c,0x3fe42314bf826bc5,3
1255
+ np.float64,0x3fe972533c72e4a6,0x3ff3703761e70f04,3
1256
+ np.float64,0xffba1d2b82343a58,0xbff0000000000000,3
1257
+ np.float64,0xe0086c83c010e,0xe0086c83c010e,3
1258
+ np.float64,0x3fe6fb0dde6df61c,0x3ff0cf5fae01aa08,3
1259
+ np.float64,0x3fcfaf057e3f5e0b,0x3fd1f98c1fd20139,3
1260
+ np.float64,0xbfdca19d9239433c,0xbfd7158745192ca9,3
1261
+ np.float64,0xffb17f394e22fe70,0xbff0000000000000,3
1262
+ np.float64,0x7fe40f05c7681e0b,0x7ff0000000000000,3
1263
+ np.float64,0x800b3c575d5678af,0x800b3c575d5678af,3
1264
+ np.float64,0x7fa4ab20ac295640,0x7ff0000000000000,3
1265
+ np.float64,0xbfd2fff4f6a5ffea,0xbfd07069bb50e1a6,3
1266
+ np.float64,0xbfef81b9147f0372,0xbfe40b845a749787,3
1267
+ np.float64,0x7fd7400e54ae801c,0x7ff0000000000000,3
1268
+ np.float64,0x3fd4401a17a88034,0x3fd7d20fb76a4f3d,3
1269
+ np.float64,0xbfd3e907fd27d210,0xbfd11c64b7577fc5,3
1270
+ np.float64,0x7fe34bed9ae697da,0x7ff0000000000000,3
1271
+ np.float64,0x80039119c0472234,0x80039119c0472234,3
1272
+ np.float64,0xbfe2e36ac565c6d6,0xbfdc88454ee997b3,3
1273
+ np.float64,0xbfec57204478ae40,0xbfe2cd3183de1d2d,3
1274
+ np.float64,0x7fed7e2a12fafc53,0x7ff0000000000000,3
1275
+ np.float64,0x7fd5c5fa7d2b8bf4,0x7ff0000000000000,3
1276
+ np.float64,0x3fdcf368d6b9e6d0,0x3fe24decce1ebd35,3
1277
+ np.float64,0xbfe0ebfcf2e1d7fa,0xbfda48c9247ae8cf,3
1278
+ np.float64,0xbfe10dbea2e21b7e,0xbfda707d68b59674,3
1279
+ np.float64,0xbfdf201b6ebe4036,0xbfd8a5df27742fdf,3
1280
+ np.float64,0xffe16555be62caab,0xbff0000000000000,3
1281
+ np.float64,0xffc23a5db22474bc,0xbff0000000000000,3
1282
+ np.float64,0xffe1cbb3f8a39768,0xbff0000000000000,3
1283
+ np.float64,0x8007b823be0f7048,0x8007b823be0f7048,3
1284
+ np.float64,0xbfa5d1f3042ba3e0,0xbfa55c97cd77bf6e,3
1285
+ np.float64,0xbfe316a074662d41,0xbfdcc0da4e7334d0,3
1286
+ np.float64,0xbfdfab2bf2bf5658,0xbfd8fb046b88b51f,3
1287
+ np.float64,0xfacc9dabf5994,0xfacc9dabf5994,3
1288
+ np.float64,0xffe7e420a4efc841,0xbff0000000000000,3
1289
+ np.float64,0x800bb986cd57730e,0x800bb986cd57730e,3
1290
+ np.float64,0xbfe314fa38e629f4,0xbfdcbf09302c3bf5,3
1291
+ np.float64,0x7fc56b17772ad62e,0x7ff0000000000000,3
1292
+ np.float64,0x8006a87d54ad50fb,0x8006a87d54ad50fb,3
1293
+ np.float64,0xbfe6633e4a6cc67c,0xbfe01a67c3b3ff32,3
1294
+ np.float64,0x3fe0ff56eb21feae,0x3fe66df01defb0fb,3
1295
+ np.float64,0xffc369cfc126d3a0,0xbff0000000000000,3
1296
+ np.float64,0x7fe8775d9a30eeba,0x7ff0000000000000,3
1297
+ np.float64,0x3fb53db13e2a7b60,0x3fb625a7279cdac3,3
1298
+ np.float64,0xffee76e7e6fcedcf,0xbff0000000000000,3
1299
+ np.float64,0xb45595b568ab3,0xb45595b568ab3,3
1300
+ np.float64,0xffa09a1d50213440,0xbff0000000000000,3
1301
+ np.float64,0x7d11dc16fa23c,0x7d11dc16fa23c,3
1302
+ np.float64,0x7fd4cc2928299851,0x7ff0000000000000,3
1303
+ np.float64,0x6a30e0ead461d,0x6a30e0ead461d,3
1304
+ np.float64,0x7fd3ee735a27dce6,0x7ff0000000000000,3
1305
+ np.float64,0x8008d7084b31ae11,0x8008d7084b31ae11,3
1306
+ np.float64,0x3fe469353fe8d26a,0x3fec8e7e2df38590,3
1307
+ np.float64,0x3fcecef2743d9de5,0x3fd16a888b715dfd,3
1308
+ np.float64,0x460130d68c027,0x460130d68c027,3
1309
+ np.float64,0xbfd76510c62eca22,0xbfd398766b741d6e,3
1310
+ np.float64,0x800ec88c2a5d9118,0x800ec88c2a5d9118,3
1311
+ np.float64,0x3fac969c6c392d40,0x3fad66ca6a1e583c,3
1312
+ np.float64,0x3fe5c616bf6b8c2e,0x3fef30f931e8dde5,3
1313
+ np.float64,0xb4cb6cd56996e,0xb4cb6cd56996e,3
1314
+ np.float64,0xffc3eacf8827d5a0,0xbff0000000000000,3
1315
+ np.float64,0x3fe1ceaf60e39d5f,0x3fe7d31e0a627cf9,3
1316
+ np.float64,0xffea69b42ff4d368,0xbff0000000000000,3
1317
+ np.float64,0x800ff8aef99ff15e,0x800ff8aef99ff15e,3
1318
+ np.float64,0x6c3953f0d872b,0x6c3953f0d872b,3
1319
+ np.float64,0x8007ca5a0d0f94b5,0x8007ca5a0d0f94b5,3
1320
+ np.float64,0x800993ce3ad3279d,0x800993ce3ad3279d,3
1321
+ np.float64,0x3fe5a4d1516b49a2,0x3feeef67b22ac65b,3
1322
+ np.float64,0x8003d7512a67aea3,0x8003d7512a67aea3,3
1323
+ np.float64,0x33864430670c9,0x33864430670c9,3
1324
+ np.float64,0xbfdbf477e3b7e8f0,0xbfd6a63f1b36f424,3
1325
+ np.float64,0x3fb5da92582bb525,0x3fb6d04ef1a1d31a,3
1326
+ np.float64,0xe38aae71c7156,0xe38aae71c7156,3
1327
+ np.float64,0x3fcaf5590a35eab2,0x3fce01ed6eb6188e,3
1328
+ np.float64,0x800deba9b05bd754,0x800deba9b05bd754,3
1329
+ np.float64,0x7fee0cde287c19bb,0x7ff0000000000000,3
1330
+ np.float64,0xbfe0c2ae70e1855d,0xbfda17fa64d84fcf,3
1331
+ np.float64,0x518618faa30c4,0x518618faa30c4,3
1332
+ np.float64,0xbfeb4c49b8769894,0xbfe25d52cd7e529f,3
1333
+ np.float64,0xbfeb3aa21b367544,0xbfe255cae1df4cfd,3
1334
+ np.float64,0xffd23f1c5d247e38,0xbff0000000000000,3
1335
+ np.float64,0xff9a75132034ea20,0xbff0000000000000,3
1336
+ np.float64,0xbfef9d96307f3b2c,0xbfe415e8b6ce0e50,3
1337
+ np.float64,0x8004046f2f0808df,0x8004046f2f0808df,3
1338
+ np.float64,0x3fe15871aea2b0e3,0x3fe706532ea5c770,3
1339
+ np.float64,0x7fd86b1576b0d62a,0x7ff0000000000000,3
1340
+ np.float64,0xbfc240a5c724814c,0xbfc102c7971ca455,3
1341
+ np.float64,0xffd8ea670bb1d4ce,0xbff0000000000000,3
1342
+ np.float64,0xbfeb1ddd1ff63bba,0xbfe2497c4e27bb8e,3
1343
+ np.float64,0x3fcd47e0a33a8fc1,0x3fd0734444150d83,3
1344
+ np.float64,0xe00b6a65c016e,0xe00b6a65c016e,3
1345
+ np.float64,0xbfc7d582142fab04,0xbfc5bf1fbe755a4c,3
1346
+ np.float64,0x8cc91ca11993,0x8cc91ca11993,3
1347
+ np.float64,0x7fdbc530e3b78a61,0x7ff0000000000000,3
1348
+ np.float64,0x7fee437522bc86e9,0x7ff0000000000000,3
1349
+ np.float64,0xffe9e09ae2b3c135,0xbff0000000000000,3
1350
+ np.float64,0x8002841cada5083a,0x8002841cada5083a,3
1351
+ np.float64,0x3fd6b485f8ad690c,0x3fdb412135932699,3
1352
+ np.float64,0x80070e8d0b0e1d1b,0x80070e8d0b0e1d1b,3
1353
+ np.float64,0x7fed5df165babbe2,0x7ff0000000000000,3
1354
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,3
1355
+ np.float64,0x7fe99d08cd333a11,0x7ff0000000000000,3
1356
+ np.float64,0xdfff4201bfff,0xdfff4201bfff,3
1357
+ np.float64,0x800ccf7aaf999ef6,0x800ccf7aaf999ef6,3
1358
+ np.float64,0x3fddb05aad3b60b5,0x3fe2e34bdd1dd9d5,3
1359
+ np.float64,0xbfe5e1c60e6bc38c,0xbfdfb3275cc1675f,3
1360
+ np.float64,0x8004fe674269fccf,0x8004fe674269fccf,3
1361
+ np.float64,0x7fe9280363325006,0x7ff0000000000000,3
1362
+ np.float64,0xf605b9f1ec0b7,0xf605b9f1ec0b7,3
1363
+ np.float64,0x800c7c214018f843,0x800c7c214018f843,3
1364
+ np.float64,0x7fd97eb6b9b2fd6c,0x7ff0000000000000,3
1365
+ np.float64,0x7fd03f8fb6207f1e,0x7ff0000000000000,3
1366
+ np.float64,0x7fc526b64d2a4d6c,0x7ff0000000000000,3
1367
+ np.float64,0xbfef1a7c42fe34f9,0xbfe3e4b4399e0fcf,3
1368
+ np.float64,0xffdde10a2fbbc214,0xbff0000000000000,3
1369
+ np.float64,0xbfdd274f72ba4e9e,0xbfd76aa73788863c,3
1370
+ np.float64,0xbfecf7f77af9efef,0xbfe30ee2ae03fed1,3
1371
+ np.float64,0xffde709322bce126,0xbff0000000000000,3
1372
+ np.float64,0x268b5dac4d16d,0x268b5dac4d16d,3
1373
+ np.float64,0x8005c099606b8134,0x8005c099606b8134,3
1374
+ np.float64,0xffcf54c1593ea984,0xbff0000000000000,3
1375
+ np.float64,0xbfee9b8ebabd371d,0xbfe3b44f2663139d,3
1376
+ np.float64,0x3faf0330643e0661,0x3faff88fab74b447,3
1377
+ np.float64,0x7fe1c6011be38c01,0x7ff0000000000000,3
1378
+ np.float64,0xbfe9d58053b3ab01,0xbfe1b9ea12242485,3
1379
+ np.float64,0xbfe15a80fee2b502,0xbfdaca2aa7d1231a,3
1380
+ np.float64,0x7fe0d766d8a1aecd,0x7ff0000000000000,3
1381
+ np.float64,0x800f65e6a21ecbcd,0x800f65e6a21ecbcd,3
1382
+ np.float64,0x7fc85e45a530bc8a,0x7ff0000000000000,3
1383
+ np.float64,0x3fcc240e5438481d,0x3fcf7954fc080ac3,3
1384
+ np.float64,0xffddd49da2bba93c,0xbff0000000000000,3
1385
+ np.float64,0x1376f36c26edf,0x1376f36c26edf,3
1386
+ np.float64,0x3feffb7af17ff6f6,0x3ffb77f0ead2f881,3
1387
+ np.float64,0x3fd9354ea9b26a9d,0x3fdee4e4c8db8239,3
1388
+ np.float64,0xffdf7beed4bef7de,0xbff0000000000000,3
1389
+ np.float64,0xbfdef256ecbde4ae,0xbfd889b0e213a019,3
1390
+ np.float64,0x800d78bd1e7af17a,0x800d78bd1e7af17a,3
1391
+ np.float64,0xb66d66276cdad,0xb66d66276cdad,3
1392
+ np.float64,0x7fd8f51138b1ea21,0x7ff0000000000000,3
1393
+ np.float64,0xffe8c9c302b19385,0xbff0000000000000,3
1394
+ np.float64,0x8000be4cf5417c9b,0x8000be4cf5417c9b,3
1395
+ np.float64,0xbfe2293a25645274,0xbfdbb78a8c547c68,3
1396
+ np.float64,0xce8392c19d08,0xce8392c19d08,3
1397
+ np.float64,0xbfe075736b60eae7,0xbfd9bc0f6e34a283,3
1398
+ np.float64,0xbfe8d6fe6a71adfd,0xbfe1469ba80b4915,3
1399
+ np.float64,0xffe0c7993fa18f32,0xbff0000000000000,3
1400
+ np.float64,0x3fce5210fd3ca422,0x3fd11b40a1270a95,3
1401
+ np.float64,0x6c0534a8d80a7,0x6c0534a8d80a7,3
1402
+ np.float64,0x23c1823647831,0x23c1823647831,3
1403
+ np.float64,0x3fc901253732024a,0x3fcb9d264accb07c,3
1404
+ np.float64,0x3fe42b8997685714,0x3fec1a39e207b6e4,3
1405
+ np.float64,0x3fec4fd00fb89fa0,0x3ff6c1fdd0c262c8,3
1406
+ np.float64,0x8007b333caaf6668,0x8007b333caaf6668,3
1407
+ np.float64,0x800f9275141f24ea,0x800f9275141f24ea,3
1408
+ np.float64,0xffbba361a23746c0,0xbff0000000000000,3
1409
+ np.float64,0xbfee4effa9fc9dff,0xbfe396c11d0cd524,3
1410
+ np.float64,0x3e47e84c7c8fe,0x3e47e84c7c8fe,3
1411
+ np.float64,0x3fe80eb7b1301d6f,0x3ff1eed318a00153,3
1412
+ np.float64,0x7fd3f4c5b4a7e98a,0x7ff0000000000000,3
1413
+ np.float64,0x158abab02b158,0x158abab02b158,3
1414
+ np.float64,0x1,0x1,3
1415
+ np.float64,0x1f1797883e2f4,0x1f1797883e2f4,3
1416
+ np.float64,0x3feec055d03d80ac,0x3ff9d3fb0394de33,3
1417
+ np.float64,0x8010000000000000,0x8010000000000000,3
1418
+ np.float64,0xbfd070860ea0e10c,0xbfccfeec2828efef,3
1419
+ np.float64,0x80015c8b3e82b917,0x80015c8b3e82b917,3
1420
+ np.float64,0xffef9956d9ff32ad,0xbff0000000000000,3
1421
+ np.float64,0x7fe7f087dd2fe10f,0x7ff0000000000000,3
1422
+ np.float64,0x8002e7718665cee4,0x8002e7718665cee4,3
1423
+ np.float64,0x3fdfb9adb2bf735c,0x3fe4887a86214c1e,3
1424
+ np.float64,0xffc7747dfb2ee8fc,0xbff0000000000000,3
1425
+ np.float64,0x3fec309bb5386137,0x3ff69c44e1738547,3
1426
+ np.float64,0xffdbe2bf9ab7c580,0xbff0000000000000,3
1427
+ np.float64,0xbfe6a274daed44ea,0xbfe039aff2be9d48,3
1428
+ np.float64,0x7fd5a4e4efab49c9,0x7ff0000000000000,3
1429
+ np.float64,0xffbe6aaeb03cd560,0xbff0000000000000,3
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-log10.csv ADDED
@@ -0,0 +1,1629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0x3f6fd5c8,0xbce80e8e,4
3
+ np.float32,0x3ea4ab17,0xbefc3deb,4
4
+ np.float32,0x3e87a133,0xbf13b0b7,4
5
+ np.float32,0x3f0d9069,0xbe83bb19,4
6
+ np.float32,0x3f7b9269,0xbbf84f47,4
7
+ np.float32,0x3f7a9ffa,0xbc16fd97,4
8
+ np.float32,0x7f535d34,0x4219cb66,4
9
+ np.float32,0x3e79ad7c,0xbf1ce857,4
10
+ np.float32,0x7e8bfd3b,0x4217dfe9,4
11
+ np.float32,0x3f2d2ee9,0xbe2dcec6,4
12
+ np.float32,0x572e04,0xc21862e4,4
13
+ np.float32,0x7f36f8,0xc217bad5,4
14
+ np.float32,0x3f7982fb,0xbc36aaed,4
15
+ np.float32,0x45b019,0xc218c67c,4
16
+ np.float32,0x3f521c46,0xbdafb3e3,4
17
+ np.float32,0x80000001,0x7fc00000,4
18
+ np.float32,0x3f336c81,0xbe1e107f,4
19
+ np.float32,0x3eac92d7,0xbef1d0bb,4
20
+ np.float32,0x47bdfc,0xc218b990,4
21
+ np.float32,0x7f2d94c8,0x421973d1,4
22
+ np.float32,0x7d53ff8d,0x4214fbb6,4
23
+ np.float32,0x3f581e4e,0xbd96a079,4
24
+ np.float32,0x7ddaf20d,0x42163e4e,4
25
+ np.float32,0x3f341d3c,0xbe1c5b4c,4
26
+ np.float32,0x7ef04ba9,0x4218d032,4
27
+ np.float32,0x620ed2,0xc2182e99,4
28
+ np.float32,0x507850,0xc2188682,4
29
+ np.float32,0x7d08f9,0xc217c284,4
30
+ np.float32,0x7f0cf2aa,0x42191734,4
31
+ np.float32,0x3f109a17,0xbe7e04fe,4
32
+ np.float32,0x7f426152,0x4219a625,4
33
+ np.float32,0x7f32d5a3,0x42198113,4
34
+ np.float32,0x2e14b2,0xc2197e6f,4
35
+ np.float32,0x3a5acd,0xc219156a,4
36
+ np.float32,0x50a565,0xc2188589,4
37
+ np.float32,0x5b751c,0xc2184d97,4
38
+ np.float32,0x7e4149f6,0x42173b22,4
39
+ np.float32,0x3dc34bf9,0xbf82a42a,4
40
+ np.float32,0x3d12bc28,0xbfb910d6,4
41
+ np.float32,0x7ebd2584,0x421865c1,4
42
+ np.float32,0x7f6b3375,0x4219faeb,4
43
+ np.float32,0x7fa00000,0x7fe00000,4
44
+ np.float32,0x3f35fe7d,0xbe17bd33,4
45
+ np.float32,0x7db45c87,0x4215e818,4
46
+ np.float32,0x3efff366,0xbe9a2b8d,4
47
+ np.float32,0x3eb331d0,0xbee971a3,4
48
+ np.float32,0x3f259d5f,0xbe41ae2e,4
49
+ np.float32,0x3eab85ec,0xbef32c4a,4
50
+ np.float32,0x7f194b8a,0x42193c8c,4
51
+ np.float32,0x3f11a614,0xbe7acfc7,4
52
+ np.float32,0x5b17,0xc221f16b,4
53
+ np.float32,0x3f33dadc,0xbe1cff4d,4
54
+ np.float32,0x3cda1506,0xbfc9920f,4
55
+ np.float32,0x3f6856f1,0xbd2c8290,4
56
+ np.float32,0x7f3357fb,0x42198257,4
57
+ np.float32,0x7f56f329,0x4219d2e1,4
58
+ np.float32,0x3ef84108,0xbea0f595,4
59
+ np.float32,0x3f72340f,0xbcc51916,4
60
+ np.float32,0x3daf28,0xc218fcbd,4
61
+ np.float32,0x131035,0xc21b06f4,4
62
+ np.float32,0x3f275c3b,0xbe3d0487,4
63
+ np.float32,0x3ef06130,0xbea82069,4
64
+ np.float32,0x3f57f3b0,0xbd974fef,4
65
+ np.float32,0x7f6c4a78,0x4219fcfa,4
66
+ np.float32,0x7e8421d0,0x4217c639,4
67
+ np.float32,0x3f17a479,0xbe68e08e,4
68
+ np.float32,0x7f03774e,0x4218f83b,4
69
+ np.float32,0x441a33,0xc218d0b8,4
70
+ np.float32,0x539158,0xc21875b6,4
71
+ np.float32,0x3e8fcc75,0xbf0d3018,4
72
+ np.float32,0x7ef74130,0x4218dce4,4
73
+ np.float32,0x3ea6f4fa,0xbef92c38,4
74
+ np.float32,0x7f3948ab,0x421990d5,4
75
+ np.float32,0x7db6f8f5,0x4215ee7c,4
76
+ np.float32,0x3ee44a2f,0xbeb399e5,4
77
+ np.float32,0x156c59,0xc21ad30d,4
78
+ np.float32,0x3f21ee53,0xbe4baf16,4
79
+ np.float32,0x3f2c08f4,0xbe30c424,4
80
+ np.float32,0x3f49885c,0xbdd4c6a9,4
81
+ np.float32,0x3eae0b9c,0xbeefed54,4
82
+ np.float32,0x1b5c1f,0xc21a6646,4
83
+ np.float32,0x3e7330e2,0xbf1fd592,4
84
+ np.float32,0x3ebbeb4c,0xbededf82,4
85
+ np.float32,0x427154,0xc218dbb1,4
86
+ np.float32,0x3f6b8b4b,0xbd142498,4
87
+ np.float32,0x8e769,0xc21c5981,4
88
+ np.float32,0x3e9db557,0xbf02ec1c,4
89
+ np.float32,0x3f001bef,0xbe99f019,4
90
+ np.float32,0x3e58b48c,0xbf2ca77a,4
91
+ np.float32,0x3d46c16b,0xbfa8327c,4
92
+ np.float32,0x7eeeb305,0x4218cd3b,4
93
+ np.float32,0x3e3f163d,0xbf3aa446,4
94
+ np.float32,0x3f66c872,0xbd3877d9,4
95
+ np.float32,0x7f7162f8,0x421a0677,4
96
+ np.float32,0x3edca3bc,0xbebb2e28,4
97
+ np.float32,0x3dc1055b,0xbf834afa,4
98
+ np.float32,0x12b16f,0xc21b0fad,4
99
+ np.float32,0x3f733898,0xbcb62e16,4
100
+ np.float32,0x3e617af8,0xbf283db0,4
101
+ np.float32,0x7e86577a,0x4217cd99,4
102
+ np.float32,0x3f0ba3c7,0xbe86c633,4
103
+ np.float32,0x3f4cad25,0xbdc70247,4
104
+ np.float32,0xb6cdf,0xc21bea9f,4
105
+ np.float32,0x3f42971a,0xbdf3f49e,4
106
+ np.float32,0x3e6ccad2,0xbf22cc78,4
107
+ np.float32,0x7f2121b2,0x421952b8,4
108
+ np.float32,0x3f6d3f55,0xbd075366,4
109
+ np.float32,0x3f524f,0xc218f117,4
110
+ np.float32,0x3e95b5d9,0xbf08b56a,4
111
+ np.float32,0x7f6ae47d,0x4219fa56,4
112
+ np.float32,0x267539,0xc219ceda,4
113
+ np.float32,0x3ef72f6d,0xbea1eb2e,4
114
+ np.float32,0x2100b2,0xc21a12e2,4
115
+ np.float32,0x3d9777d1,0xbf90c4e7,4
116
+ np.float32,0x44c6f5,0xc218cc56,4
117
+ np.float32,0x7f2a613d,0x42196b8a,4
118
+ np.float32,0x390a25,0xc2191f8d,4
119
+ np.float32,0x3f1de5ad,0xbe56e703,4
120
+ np.float32,0x2f59ce,0xc2197258,4
121
+ np.float32,0x7f3b12a1,0x4219951b,4
122
+ np.float32,0x3ecb66d4,0xbecd44ca,4
123
+ np.float32,0x7e74ff,0xc217bd7d,4
124
+ np.float32,0x7ed83f78,0x4218a14d,4
125
+ np.float32,0x685994,0xc21812f1,4
126
+ np.float32,0xbf800000,0x7fc00000,4
127
+ np.float32,0x736f47,0xc217e60b,4
128
+ np.float32,0x7f09c371,0x42190d0a,4
129
+ np.float32,0x3f7ca51d,0xbbbbbce0,4
130
+ np.float32,0x7f4b4d3b,0x4219ba1a,4
131
+ np.float32,0x3f6c4471,0xbd0eb076,4
132
+ np.float32,0xd944e,0xc21b9dcf,4
133
+ np.float32,0x7cb06ffc,0x421375cd,4
134
+ np.float32,0x586187,0xc2185cce,4
135
+ np.float32,0x3f3cbf5b,0xbe078911,4
136
+ np.float32,0x3f30b504,0xbe24d983,4
137
+ np.float32,0x3f0a16ba,0xbe8941fd,4
138
+ np.float32,0x5c43b0,0xc21849af,4
139
+ np.float32,0x3dad74f6,0xbf893bd5,4
140
+ np.float32,0x3c586958,0xbff087a6,4
141
+ np.float32,0x3e8307a8,0xbf1786ba,4
142
+ np.float32,0x7dcd1776,0x4216213d,4
143
+ np.float32,0x3f44d107,0xbde9d662,4
144
+ np.float32,0x3e2e6823,0xbf44cbec,4
145
+ np.float32,0x3d87ea27,0xbf96caca,4
146
+ np.float32,0x3e0c715b,0xbf5ce07e,4
147
+ np.float32,0x7ec9cd5a,0x4218828e,4
148
+ np.float32,0x3e26c0b4,0xbf49c93e,4
149
+ np.float32,0x75b94e,0xc217dd50,4
150
+ np.float32,0x3df7b9f5,0xbf6ad7f4,4
151
+ np.float32,0x0,0xff800000,4
152
+ np.float32,0x3f284795,0xbe3a94da,4
153
+ np.float32,0x7ee49092,0x4218b9f0,4
154
+ np.float32,0x7f4c20e0,0x4219bbe8,4
155
+ np.float32,0x3efbbce8,0xbe9ddc4b,4
156
+ np.float32,0x12274a,0xc21b1cb4,4
157
+ np.float32,0x5fa1b1,0xc21839be,4
158
+ np.float32,0x7f0b210e,0x4219116d,4
159
+ np.float32,0x3f67092a,0xbd368545,4
160
+ np.float32,0x3d572721,0xbfa3ca5b,4
161
+ np.float32,0x3f7913ce,0xbc431028,4
162
+ np.float32,0x3b0613,0xc2191059,4
163
+ np.float32,0x3e1d16c0,0xbf506c6f,4
164
+ np.float32,0xab130,0xc21c081d,4
165
+ np.float32,0x3e23ac97,0xbf4bdb9d,4
166
+ np.float32,0x7ef52368,0x4218d911,4
167
+ np.float32,0x7f38e686,0x42198fe9,4
168
+ np.float32,0x3f106a21,0xbe7e9897,4
169
+ np.float32,0x3ecef8d5,0xbec96644,4
170
+ np.float32,0x3ec37e02,0xbed61683,4
171
+ np.float32,0x3efbd063,0xbe9dcb17,4
172
+ np.float32,0x3f318fe3,0xbe22b402,4
173
+ np.float32,0x7e5e5228,0x4217795d,4
174
+ np.float32,0x72a046,0xc217e92c,4
175
+ np.float32,0x7f6f970b,0x421a0324,4
176
+ np.float32,0x3ed871b4,0xbebf72fb,4
177
+ np.float32,0x7a2eaa,0xc217ccc8,4
178
+ np.float32,0x3e819655,0xbf18c1d7,4
179
+ np.float32,0x80800000,0x7fc00000,4
180
+ np.float32,0x7eab0719,0x421838f9,4
181
+ np.float32,0x7f0763cb,0x4219054f,4
182
+ np.float32,0x3f191672,0xbe64a8af,4
183
+ np.float32,0x7d4327,0xc217c1b6,4
184
+ np.float32,0x3f724ba6,0xbcc3bea3,4
185
+ np.float32,0x60fe06,0xc2183375,4
186
+ np.float32,0x48cd59,0xc218b30b,4
187
+ np.float32,0x3f7fec2b,0xb909d3f3,4
188
+ np.float32,0x1c7bb9,0xc21a5460,4
189
+ np.float32,0x24d8a8,0xc219e1e4,4
190
+ np.float32,0x3e727c52,0xbf20283c,4
191
+ np.float32,0x4bc460,0xc218a14a,4
192
+ np.float32,0x63e313,0xc2182661,4
193
+ np.float32,0x7f625581,0x4219e9d4,4
194
+ np.float32,0x3eeb3e77,0xbeacedc0,4
195
+ np.float32,0x7ef27a47,0x4218d437,4
196
+ np.float32,0x27105a,0xc219c7e6,4
197
+ np.float32,0x22a10b,0xc219fd7d,4
198
+ np.float32,0x3f41e907,0xbdf711ab,4
199
+ np.float32,0x7c1fbf95,0x4212155b,4
200
+ np.float32,0x7e5acceb,0x42177244,4
201
+ np.float32,0x3e0892fa,0xbf5ffb83,4
202
+ np.float32,0x3ea0e51d,0xbf00b2c0,4
203
+ np.float32,0x3e56fc29,0xbf2d8a51,4
204
+ np.float32,0x7ee724ed,0x4218beed,4
205
+ np.float32,0x7ebf142b,0x42186a46,4
206
+ np.float32,0x7f6cf35c,0x4219fe37,4
207
+ np.float32,0x3f11abf7,0xbe7abdcd,4
208
+ np.float32,0x588d7a,0xc2185bf1,4
209
+ np.float32,0x3f6e81d2,0xbcfbcf97,4
210
+ np.float32,0x3f1b6be8,0xbe5dee2b,4
211
+ np.float32,0x7f3815e0,0x42198df2,4
212
+ np.float32,0x3f5bfc88,0xbd86d93d,4
213
+ np.float32,0x3f3775d0,0xbe142bbc,4
214
+ np.float32,0x78a958,0xc217d25a,4
215
+ np.float32,0x2ff7c3,0xc2196c96,4
216
+ np.float32,0x4b9c0,0xc21d733c,4
217
+ np.float32,0x3ec025af,0xbed9ecf3,4
218
+ np.float32,0x6443f0,0xc21824b3,4
219
+ np.float32,0x3f754e28,0xbc97d299,4
220
+ np.float32,0x3eaa91d3,0xbef4699d,4
221
+ np.float32,0x3e5f2837,0xbf296478,4
222
+ np.float32,0xe5676,0xc21b85a4,4
223
+ np.float32,0x3f6859f2,0xbd2c6b90,4
224
+ np.float32,0x3f68686b,0xbd2bfcc6,4
225
+ np.float32,0x4b39b8,0xc218a47b,4
226
+ np.float32,0x630ac4,0xc2182a28,4
227
+ np.float32,0x160980,0xc21ac67d,4
228
+ np.float32,0x3ed91c4d,0xbebec3fd,4
229
+ np.float32,0x7ec27b0d,0x4218721f,4
230
+ np.float32,0x3f3c0a5f,0xbe09344b,4
231
+ np.float32,0x3dbff9c1,0xbf839841,4
232
+ np.float32,0x7f0e8ea7,0x42191c40,4
233
+ np.float32,0x3f36b162,0xbe1608e4,4
234
+ np.float32,0x228bb3,0xc219fe90,4
235
+ np.float32,0x2fdd30,0xc2196d8c,4
236
+ np.float32,0x3e8fce8e,0xbf0d2e79,4
237
+ np.float32,0x3f36acc7,0xbe16141a,4
238
+ np.float32,0x7f44b51c,0x4219ab70,4
239
+ np.float32,0x3ec3371c,0xbed66736,4
240
+ np.float32,0x4388a2,0xc218d473,4
241
+ np.float32,0x3f5aa6c3,0xbd8c4344,4
242
+ np.float32,0x7f09fce4,0x42190dc3,4
243
+ np.float32,0x7ed7854a,0x42189fce,4
244
+ np.float32,0x7f4da83a,0x4219bf3a,4
245
+ np.float32,0x3db8da28,0xbf85b25a,4
246
+ np.float32,0x7f449686,0x4219ab2b,4
247
+ np.float32,0x2eb25,0xc21e498c,4
248
+ np.float32,0x3f2bcc08,0xbe3161bd,4
249
+ np.float32,0x36c923,0xc219317b,4
250
+ np.float32,0x3d52a866,0xbfa4f6d2,4
251
+ np.float32,0x3f7d6688,0xbb913e4e,4
252
+ np.float32,0x3f5a6ba4,0xbd8d33e3,4
253
+ np.float32,0x719740,0xc217ed35,4
254
+ np.float32,0x78a472,0xc217d26c,4
255
+ np.float32,0x7ee33d0c,0x4218b759,4
256
+ np.float32,0x7f668c1d,0x4219f208,4
257
+ np.float32,0x3e29c600,0xbf47ca46,4
258
+ np.float32,0x3f3cefc3,0xbe071712,4
259
+ np.float32,0x3e224ebd,0xbf4cca41,4
260
+ np.float32,0x7f1417be,0x42192d31,4
261
+ np.float32,0x7f29d7d5,0x42196a23,4
262
+ np.float32,0x3338ce,0xc2194f65,4
263
+ np.float32,0x2a7897,0xc219a2b6,4
264
+ np.float32,0x3d6bc3d8,0xbf9eb468,4
265
+ np.float32,0x3f6bd7bf,0xbd11e392,4
266
+ np.float32,0x7f6d26bf,0x4219fe98,4
267
+ np.float32,0x3f52d378,0xbdacadb5,4
268
+ np.float32,0x3efac453,0xbe9eb84a,4
269
+ np.float32,0x3f692eb7,0xbd261184,4
270
+ np.float32,0x3f6a0bb5,0xbd1f7ec1,4
271
+ np.float32,0x3f037a49,0xbe942aa8,4
272
+ np.float32,0x3f465bd4,0xbde2e530,4
273
+ np.float32,0x7ef0f47b,0x4218d16a,4
274
+ np.float32,0x637127,0xc218285e,4
275
+ np.float32,0x3f41e511,0xbdf723d7,4
276
+ np.float32,0x7f800000,0x7f800000,4
277
+ np.float32,0x3f3342d5,0xbe1e77d5,4
278
+ np.float32,0x7f57cfe6,0x4219d4a9,4
279
+ np.float32,0x3e4358ed,0xbf3830a7,4
280
+ np.float32,0x3ce25f15,0xbfc77f2b,4
281
+ np.float32,0x7ed057e7,0x421890be,4
282
+ np.float32,0x7ce154d9,0x4213e295,4
283
+ np.float32,0x3ee91984,0xbeaef703,4
284
+ np.float32,0x7e4e919c,0x421758af,4
285
+ np.float32,0x6830e7,0xc218139e,4
286
+ np.float32,0x3f12f08e,0xbe76e328,4
287
+ np.float32,0x7f0a7a32,0x42190f56,4
288
+ np.float32,0x7f38e,0xc21c8bd3,4
289
+ np.float32,0x3e01def9,0xbf6593e3,4
290
+ np.float32,0x3f5c8c6d,0xbd849432,4
291
+ np.float32,0x3eed8747,0xbeaac7a3,4
292
+ np.float32,0x3cadaa0e,0xbfd63b21,4
293
+ np.float32,0x3f7532a9,0xbc996178,4
294
+ np.float32,0x31f3ac,0xc2195a8f,4
295
+ np.float32,0x3f0e0f97,0xbe82f3af,4
296
+ np.float32,0x3f2a1f35,0xbe35bd3f,4
297
+ np.float32,0x3f4547b2,0xbde7bebd,4
298
+ np.float32,0x3f7988a6,0xbc36094c,4
299
+ np.float32,0x74464c,0xc217e2d2,4
300
+ np.float32,0x7f7518be,0x421a0d3f,4
301
+ np.float32,0x7e97fa0a,0x42180473,4
302
+ np.float32,0x584e3a,0xc2185d2f,4
303
+ np.float32,0x3e7291f3,0xbf201e52,4
304
+ np.float32,0xc0a05,0xc21bd359,4
305
+ np.float32,0x3a3177,0xc21916a6,4
306
+ np.float32,0x4f417f,0xc2188d45,4
307
+ np.float32,0x263fce,0xc219d145,4
308
+ np.float32,0x7e1d58,0xc217beb1,4
309
+ np.float32,0x7f056af3,0x4218fec9,4
310
+ np.float32,0x3f21c181,0xbe4c2a3f,4
311
+ np.float32,0x7eca4956,0x4218839f,4
312
+ np.float32,0x3e58afa8,0xbf2ca9fd,4
313
+ np.float32,0x3f40d583,0xbdfc04ef,4
314
+ np.float32,0x7f432fbb,0x4219a7fc,4
315
+ np.float32,0x43aaa4,0xc218d393,4
316
+ np.float32,0x7f2c9b62,0x42197150,4
317
+ np.float32,0x5c3876,0xc21849e5,4
318
+ np.float32,0x7f2034e8,0x42195029,4
319
+ np.float32,0x7e5be772,0x42177481,4
320
+ np.float32,0x80000000,0xff800000,4
321
+ np.float32,0x3f5be03b,0xbd874bb0,4
322
+ np.float32,0x3e32494f,0xbf4259be,4
323
+ np.float32,0x3e1f4671,0xbf4ee30b,4
324
+ np.float32,0x4606cc,0xc218c454,4
325
+ np.float32,0x425cbc,0xc218dc3b,4
326
+ np.float32,0x7dd9b8bf,0x42163bd0,4
327
+ np.float32,0x3f0465d0,0xbe929db7,4
328
+ np.float32,0x3f735077,0xbcb4d0fa,4
329
+ np.float32,0x4d6a43,0xc21897b8,4
330
+ np.float32,0x3e27d600,0xbf4910f5,4
331
+ np.float32,0x3f06e0cc,0xbe8e7d24,4
332
+ np.float32,0x3f3fd064,0xbe005e45,4
333
+ np.float32,0x176f1,0xc21f7c2d,4
334
+ np.float32,0x3eb64e6f,0xbee59d9c,4
335
+ np.float32,0x7f0f075d,0x42191db8,4
336
+ np.float32,0x3f718cbe,0xbcceb621,4
337
+ np.float32,0x3ead7bda,0xbef0a54a,4
338
+ np.float32,0x7f77c1a8,0x421a120c,4
339
+ np.float32,0x3f6a79c5,0xbd1c3afd,4
340
+ np.float32,0x3e992d1f,0xbf062a02,4
341
+ np.float32,0x3e6f6335,0xbf219639,4
342
+ np.float32,0x7f6d9a3e,0x4219ff70,4
343
+ np.float32,0x557ed1,0xc2186b91,4
344
+ np.float32,0x3f13a456,0xbe74c457,4
345
+ np.float32,0x15c2dc,0xc21acc17,4
346
+ np.float32,0x71f36f,0xc217ebcc,4
347
+ np.float32,0x748dea,0xc217e1c1,4
348
+ np.float32,0x7f0f32e0,0x42191e3f,4
349
+ np.float32,0x5b1da8,0xc2184f41,4
350
+ np.float32,0x3d865d3a,0xbf976e11,4
351
+ np.float32,0x3f800000,0x0,4
352
+ np.float32,0x7f67b56d,0x4219f444,4
353
+ np.float32,0x6266a1,0xc2182d0c,4
354
+ np.float32,0x3ec9c5e4,0xbecf0e6b,4
355
+ np.float32,0x6a6a0e,0xc2180a3b,4
356
+ np.float32,0x7e9db6fd,0x421814ef,4
357
+ np.float32,0x3e7458f7,0xbf1f4e88,4
358
+ np.float32,0x3ead8016,0xbef09fdc,4
359
+ np.float32,0x3e263d1c,0xbf4a211e,4
360
+ np.float32,0x7f6b3329,0x4219faeb,4
361
+ np.float32,0x800000,0xc217b818,4
362
+ np.float32,0x3f0654c7,0xbe8f6471,4
363
+ np.float32,0x3f281b71,0xbe3b0990,4
364
+ np.float32,0x7c4c8e,0xc217c524,4
365
+ np.float32,0x7d113a87,0x4214537d,4
366
+ np.float32,0x734b5f,0xc217e696,4
367
+ np.float32,0x7f079d05,0x4219060b,4
368
+ np.float32,0x3ee830b1,0xbeafd58b,4
369
+ np.float32,0x3f1c3b8b,0xbe5b9d96,4
370
+ np.float32,0x3f2bf0c6,0xbe3102aa,4
371
+ np.float32,0x7ddffe22,0x42164871,4
372
+ np.float32,0x3f1e58b4,0xbe55a37f,4
373
+ np.float32,0x5f3edf,0xc2183b8a,4
374
+ np.float32,0x7f1fb6ec,0x42194eca,4
375
+ np.float32,0x3f78718e,0xbc55311e,4
376
+ np.float32,0x3e574b7d,0xbf2d6152,4
377
+ np.float32,0x7eab27c6,0x4218394e,4
378
+ np.float32,0x7f34603c,0x421984e5,4
379
+ np.float32,0x3f3a8b57,0xbe0cc1ca,4
380
+ np.float32,0x3f744181,0xbca7134e,4
381
+ np.float32,0x3f7e3bc4,0xbb45156b,4
382
+ np.float32,0x93ab4,0xc21c498b,4
383
+ np.float32,0x7ed5541e,0x42189b42,4
384
+ np.float32,0x6bf8ec,0xc21803c4,4
385
+ np.float32,0x757395,0xc217de58,4
386
+ np.float32,0x7f177214,0x42193726,4
387
+ np.float32,0x59935f,0xc21856d6,4
388
+ np.float32,0x2cd9ba,0xc2198a78,4
389
+ np.float32,0x3ef6fd5c,0xbea2183c,4
390
+ np.float32,0x3ebb6c63,0xbedf75e0,4
391
+ np.float32,0x7f43272c,0x4219a7e9,4
392
+ np.float32,0x7f42e67d,0x4219a755,4
393
+ np.float32,0x3f3f744f,0xbe0133f6,4
394
+ np.float32,0x7f5fddaa,0x4219e4f4,4
395
+ np.float32,0x3dc9874f,0xbf80e529,4
396
+ np.float32,0x3f2efe64,0xbe292ec8,4
397
+ np.float32,0x3e0406a6,0xbf63bf7c,4
398
+ np.float32,0x3cdbb0aa,0xbfc92984,4
399
+ np.float32,0x3e6597e7,0xbf263b30,4
400
+ np.float32,0x3f0c1153,0xbe861807,4
401
+ np.float32,0x7fce16,0xc217b8c6,4
402
+ np.float32,0x3f5f4e5f,0xbd730dc6,4
403
+ np.float32,0x3ed41ffa,0xbec3ee69,4
404
+ np.float32,0x3f216c78,0xbe4d1446,4
405
+ np.float32,0x3f123ed7,0xbe78fe4b,4
406
+ np.float32,0x7f7e0ca9,0x421a1d34,4
407
+ np.float32,0x7e318af4,0x42171558,4
408
+ np.float32,0x7f1e1659,0x42194a3d,4
409
+ np.float32,0x34d12a,0xc21941c2,4
410
+ np.float32,0x3d9566ad,0xbf918870,4
411
+ np.float32,0x3e799a47,0xbf1cf0e5,4
412
+ np.float32,0x3e89dd6f,0xbf11df76,4
413
+ np.float32,0x32f0d3,0xc21951d8,4
414
+ np.float32,0x7e89d17e,0x4217d8f6,4
415
+ np.float32,0x1f3b38,0xc21a2b6b,4
416
+ np.float32,0x7ee9e060,0x4218c427,4
417
+ np.float32,0x31a673,0xc2195d41,4
418
+ np.float32,0x5180f1,0xc21880d5,4
419
+ np.float32,0x3cd36f,0xc21902f8,4
420
+ np.float32,0x3bb63004,0xc01050cb,4
421
+ np.float32,0x3e8ee9d1,0xbf0ddfde,4
422
+ np.float32,0x3d2a7da3,0xbfb0b970,4
423
+ np.float32,0x3ea58107,0xbefb1dc3,4
424
+ np.float32,0x7f6760b0,0x4219f3a2,4
425
+ np.float32,0x7f7f9e08,0x421a1ff0,4
426
+ np.float32,0x37e7f1,0xc219287b,4
427
+ np.float32,0x3ef7eb53,0xbea14267,4
428
+ np.float32,0x3e2eb581,0xbf449aa5,4
429
+ np.float32,0x3da7671c,0xbf8b3568,4
430
+ np.float32,0x7af36f7b,0x420f33ee,4
431
+ np.float32,0x3eb3602c,0xbee93823,4
432
+ np.float32,0x3f68bcff,0xbd2975de,4
433
+ np.float32,0x3ea7cefb,0xbef80a9d,4
434
+ np.float32,0x3f329689,0xbe202414,4
435
+ np.float32,0x7f0c7c80,0x421915be,4
436
+ np.float32,0x7f4739b8,0x4219b118,4
437
+ np.float32,0x73af58,0xc217e515,4
438
+ np.float32,0x7f13eb2a,0x42192cab,4
439
+ np.float32,0x30f2d9,0xc2196395,4
440
+ np.float32,0x7ea7066c,0x42182e71,4
441
+ np.float32,0x669fec,0xc2181a5b,4
442
+ np.float32,0x3f7d6876,0xbb90d1ef,4
443
+ np.float32,0x3f08a4ef,0xbe8b9897,4
444
+ np.float32,0x7f2a906c,0x42196c05,4
445
+ np.float32,0x3ed3ca42,0xbec44856,4
446
+ np.float32,0x9d27,0xc220fee2,4
447
+ np.float32,0x3e4508a1,0xbf373c03,4
448
+ np.float32,0x3e41f8de,0xbf38f9bb,4
449
+ np.float32,0x3e912714,0xbf0c255b,4
450
+ np.float32,0xff800000,0x7fc00000,4
451
+ np.float32,0x7eefd13d,0x4218cf4f,4
452
+ np.float32,0x3f491674,0xbdd6bded,4
453
+ np.float32,0x3ef49512,0xbea445c9,4
454
+ np.float32,0x3f045b79,0xbe92af15,4
455
+ np.float32,0x3ef6c412,0xbea24bd5,4
456
+ np.float32,0x3e6f3c28,0xbf21a85d,4
457
+ np.float32,0x3ef71839,0xbea2000e,4
458
+ np.float32,0x1,0xc23369f4,4
459
+ np.float32,0x3e3fcfe4,0xbf3a3876,4
460
+ np.float32,0x3e9d7a65,0xbf0315b2,4
461
+ np.float32,0x20b7c4,0xc21a16bd,4
462
+ np.float32,0x7f707b10,0x421a04cb,4
463
+ np.float32,0x7fc00000,0x7fc00000,4
464
+ np.float32,0x3f285ebd,0xbe3a57ac,4
465
+ np.float32,0x74c9ea,0xc217e0dc,4
466
+ np.float32,0x3f6501f2,0xbd4634ab,4
467
+ np.float32,0x3f248959,0xbe4495cc,4
468
+ np.float32,0x7e915ff0,0x4217f0b3,4
469
+ np.float32,0x7edbb910,0x4218a864,4
470
+ np.float32,0x3f7042dd,0xbce1bddb,4
471
+ np.float32,0x6f08c9,0xc217f754,4
472
+ np.float32,0x7f423993,0x4219a5ca,4
473
+ np.float32,0x3f125704,0xbe78b4cd,4
474
+ np.float32,0x7ef7f5ae,0x4218de28,4
475
+ np.float32,0x3f2dd940,0xbe2c1a33,4
476
+ np.float32,0x3f1ca78e,0xbe5a6a8b,4
477
+ np.float32,0x244863,0xc219e8be,4
478
+ np.float32,0x3f2614fe,0xbe406d6b,4
479
+ np.float32,0x3e75e7a3,0xbf1e99b5,4
480
+ np.float32,0x2bdd6e,0xc2199459,4
481
+ np.float32,0x7e49e279,0x42174e7b,4
482
+ np.float32,0x3e3bb09a,0xbf3ca2cd,4
483
+ np.float32,0x649f06,0xc2182320,4
484
+ np.float32,0x7f4a44e1,0x4219b7d6,4
485
+ np.float32,0x400473,0xc218ec3a,4
486
+ np.float32,0x3edb19ad,0xbebcbcad,4
487
+ np.float32,0x3d8ee956,0xbf94006c,4
488
+ np.float32,0x7e91c603,0x4217f1eb,4
489
+ np.float32,0x221384,0xc21a04a6,4
490
+ np.float32,0x7f7dd660,0x421a1cd5,4
491
+ np.float32,0x7ef34609,0x4218d5ac,4
492
+ np.float32,0x7f5ed529,0x4219e2e5,4
493
+ np.float32,0x7f1bf685,0x42194438,4
494
+ np.float32,0x3cdd094a,0xbfc8d294,4
495
+ np.float32,0x7e87fc8e,0x4217d303,4
496
+ np.float32,0x7f53d971,0x4219cc6b,4
497
+ np.float32,0xabc8b,0xc21c0646,4
498
+ np.float32,0x7f5011e6,0x4219c46a,4
499
+ np.float32,0x7e460638,0x421745e5,4
500
+ np.float32,0xa8126,0xc21c0ffd,4
501
+ np.float32,0x3eec2a66,0xbeac0f2d,4
502
+ np.float32,0x3f3a1213,0xbe0de340,4
503
+ np.float32,0x7f5908db,0x4219d72c,4
504
+ np.float32,0x7e0ad3c5,0x4216a7f3,4
505
+ np.float32,0x3f2de40e,0xbe2bfe90,4
506
+ np.float32,0x3d0463c5,0xbfbec8e4,4
507
+ np.float32,0x7c7cde0b,0x4212e19a,4
508
+ np.float32,0x74c24f,0xc217e0f9,4
509
+ np.float32,0x3f14b4cb,0xbe71929b,4
510
+ np.float32,0x3e94e192,0xbf09537f,4
511
+ np.float32,0x3eebde71,0xbeac56bd,4
512
+ np.float32,0x3f65e413,0xbd3f5b8a,4
513
+ np.float32,0x7e109199,0x4216b9f9,4
514
+ np.float32,0x3f22f5d0,0xbe48ddc0,4
515
+ np.float32,0x3e22d3bc,0xbf4c6f4d,4
516
+ np.float32,0x3f7a812f,0xbc1a680b,4
517
+ np.float32,0x3f67f361,0xbd2f7d7c,4
518
+ np.float32,0x3f1caa63,0xbe5a6281,4
519
+ np.float32,0x3f306fde,0xbe2587ab,4
520
+ np.float32,0x3e8df9d3,0xbf0e9b2f,4
521
+ np.float32,0x3eaaccc4,0xbef41cd4,4
522
+ np.float32,0x7f3f65ec,0x42199f45,4
523
+ np.float32,0x3dc706e0,0xbf8196ec,4
524
+ np.float32,0x3e14eaba,0xbf565cf6,4
525
+ np.float32,0xcc60,0xc2208a09,4
526
+ np.float32,0x358447,0xc2193be7,4
527
+ np.float32,0x3dcecade,0xbf7eec70,4
528
+ np.float32,0x3f20b4f8,0xbe4f0ef0,4
529
+ np.float32,0x7e7c979f,0x4217b222,4
530
+ np.float32,0x7f2387b9,0x4219594a,4
531
+ np.float32,0x3f6f6e5c,0xbcee0e05,4
532
+ np.float32,0x7f19ad81,0x42193da8,4
533
+ np.float32,0x5635e1,0xc21867dd,4
534
+ np.float32,0x4c5e97,0xc2189dc4,4
535
+ np.float32,0x7f35f97f,0x421988d1,4
536
+ np.float32,0x7f685224,0x4219f571,4
537
+ np.float32,0x3eca0616,0xbecec7b8,4
538
+ np.float32,0x3f436d0d,0xbdf024ca,4
539
+ np.float32,0x12a97d,0xc21b106a,4
540
+ np.float32,0x7f0fdc93,0x4219204d,4
541
+ np.float32,0x3debfb42,0xbf703e65,4
542
+ np.float32,0x3c6c54d2,0xbfeba291,4
543
+ np.float32,0x7e5d7491,0x421777a1,4
544
+ np.float32,0x3f4bd2f0,0xbdcab87d,4
545
+ np.float32,0x3f7517f4,0xbc9ae510,4
546
+ np.float32,0x3f71a59a,0xbccd480d,4
547
+ np.float32,0x3f514653,0xbdb33f61,4
548
+ np.float32,0x3f4e6ea4,0xbdbf694b,4
549
+ np.float32,0x3eadadec,0xbef06526,4
550
+ np.float32,0x3f3b41c1,0xbe0b0fbf,4
551
+ np.float32,0xc35a,0xc2209e1e,4
552
+ np.float32,0x384982,0xc2192575,4
553
+ np.float32,0x3464c3,0xc2194556,4
554
+ np.float32,0x7f5e20d9,0x4219e17d,4
555
+ np.float32,0x3ea18b62,0xbf004016,4
556
+ np.float32,0x63a02b,0xc218278c,4
557
+ np.float32,0x7ef547ba,0x4218d953,4
558
+ np.float32,0x3f2496fb,0xbe4470f4,4
559
+ np.float32,0x7ea0c8c6,0x42181d81,4
560
+ np.float32,0x3f42ba60,0xbdf35372,4
561
+ np.float32,0x7e40d9,0xc217be34,4
562
+ np.float32,0x3e95883b,0xbf08d750,4
563
+ np.float32,0x3e0cddf3,0xbf5c8aa8,4
564
+ np.float32,0x3f2305d5,0xbe48b20a,4
565
+ np.float32,0x7f0d0941,0x4219177b,4
566
+ np.float32,0x3f7b98d3,0xbbf6e477,4
567
+ np.float32,0x3f687cdc,0xbd2b6057,4
568
+ np.float32,0x3f42ce91,0xbdf2f73d,4
569
+ np.float32,0x3ee00fc0,0xbeb7c217,4
570
+ np.float32,0x7f3d483a,0x42199a53,4
571
+ np.float32,0x3e1e08eb,0xbf4fc18d,4
572
+ np.float32,0x7e202ff5,0x4216e798,4
573
+ np.float32,0x582898,0xc2185ded,4
574
+ np.float32,0x3e3552b1,0xbf40790c,4
575
+ np.float32,0x3d3f7c87,0xbfaa44b6,4
576
+ np.float32,0x669d8e,0xc2181a65,4
577
+ np.float32,0x3f0e21b4,0xbe82d757,4
578
+ np.float32,0x686f95,0xc2181293,4
579
+ np.float32,0x3f48367f,0xbdda9ead,4
580
+ np.float32,0x3dc27802,0xbf82e0a0,4
581
+ np.float32,0x3f6ac40c,0xbd1a07d4,4
582
+ np.float32,0x3bba6d,0xc2190b12,4
583
+ np.float32,0x3ec7b6b0,0xbed15665,4
584
+ np.float32,0x3f1f9ca4,0xbe521955,4
585
+ np.float32,0x3ef2f147,0xbea5c4b8,4
586
+ np.float32,0x7c65f769,0x4212b762,4
587
+ np.float32,0x7e98e162,0x42180716,4
588
+ np.float32,0x3f0f0c09,0xbe8169ea,4
589
+ np.float32,0x3d67f03b,0xbf9f9d48,4
590
+ np.float32,0x7f3751e4,0x42198c18,4
591
+ np.float32,0x7f1fac61,0x42194ead,4
592
+ np.float32,0x3e9b698b,0xbf048d89,4
593
+ np.float32,0x7e66507b,0x42178913,4
594
+ np.float32,0x7f5cb680,0x4219dea5,4
595
+ np.float32,0x234700,0xc219f53e,4
596
+ np.float32,0x3d9984ad,0xbf900591,4
597
+ np.float32,0x3f33a3f2,0xbe1d872a,4
598
+ np.float32,0x3eaf52b6,0xbeee4cf4,4
599
+ np.float32,0x7f078930,0x421905ca,4
600
+ np.float32,0x3f083b39,0xbe8c44df,4
601
+ np.float32,0x3e3823f8,0xbf3ec231,4
602
+ np.float32,0x3eef6f5d,0xbea9008c,4
603
+ np.float32,0x6145e1,0xc218322c,4
604
+ np.float32,0x16d9ae,0xc21ab65f,4
605
+ np.float32,0x7e543376,0x421764a5,4
606
+ np.float32,0x3ef77ccb,0xbea1a5a0,4
607
+ np.float32,0x3f4a443f,0xbdd18af5,4
608
+ np.float32,0x8f209,0xc21c5770,4
609
+ np.float32,0x3ecac126,0xbecdfa33,4
610
+ np.float32,0x3e8662f9,0xbf14b6c7,4
611
+ np.float32,0x23759a,0xc219f2f4,4
612
+ np.float32,0xf256d,0xc21b6d3f,4
613
+ np.float32,0x3f579f93,0xbd98aaa2,4
614
+ np.float32,0x3ed4cc8e,0xbec339cb,4
615
+ np.float32,0x3ed25400,0xbec5d2a1,4
616
+ np.float32,0x3ed6f8ba,0xbec0f795,4
617
+ np.float32,0x7f36efd9,0x42198b2a,4
618
+ np.float32,0x7f5169dd,0x4219c746,4
619
+ np.float32,0x7de18a20,0x42164b80,4
620
+ np.float32,0x3e8de526,0xbf0eab61,4
621
+ np.float32,0x3de0cbcd,0xbf75a47e,4
622
+ np.float32,0xe265f,0xc21b8b82,4
623
+ np.float32,0x3df3cdbd,0xbf6c9e40,4
624
+ np.float32,0x3f38a25a,0xbe115589,4
625
+ np.float32,0x7f01f2c0,0x4218f311,4
626
+ np.float32,0x3da7d5f4,0xbf8b10a5,4
627
+ np.float32,0x4d4fe8,0xc2189850,4
628
+ np.float32,0x3cc96d9d,0xbfcdfc8d,4
629
+ np.float32,0x259a88,0xc219d8d7,4
630
+ np.float32,0x7f1d5102,0x42194810,4
631
+ np.float32,0x7e17ca91,0x4216cfa7,4
632
+ np.float32,0x3f73d110,0xbcad7a8f,4
633
+ np.float32,0x3f009383,0xbe9920ed,4
634
+ np.float32,0x7e22af,0xc217be9f,4
635
+ np.float32,0x3f7de2ce,0xbb6c0394,4
636
+ np.float32,0x3edd0cd2,0xbebac45a,4
637
+ np.float32,0x3ec9b5c1,0xbecf2035,4
638
+ np.float32,0x3168c5,0xc2195f6b,4
639
+ np.float32,0x3e935522,0xbf0a7d18,4
640
+ np.float32,0x3e494077,0xbf34e120,4
641
+ np.float32,0x3f52ed06,0xbdac41ec,4
642
+ np.float32,0x3f73d51e,0xbcad3f65,4
643
+ np.float32,0x3f03d453,0xbe939295,4
644
+ np.float32,0x7ef4ee68,0x4218d8b1,4
645
+ np.float32,0x3ed0e2,0xc218f4a7,4
646
+ np.float32,0x4efab8,0xc2188ed3,4
647
+ np.float32,0x3dbd5632,0xbf845d3b,4
648
+ np.float32,0x7eecad4f,0x4218c972,4
649
+ np.float32,0x9d636,0xc21c2d32,4
650
+ np.float32,0x3e5f3b6b,0xbf295ae7,4
651
+ np.float32,0x7f4932df,0x4219b57a,4
652
+ np.float32,0x4b59b5,0xc218a3be,4
653
+ np.float32,0x3e5de97f,0xbf2a03b4,4
654
+ np.float32,0x3f1c479d,0xbe5b7b3c,4
655
+ np.float32,0x3f42e7e4,0xbdf283a5,4
656
+ np.float32,0x2445,0xc2238af2,4
657
+ np.float32,0x7aa71b43,0x420e8c9e,4
658
+ np.float32,0x3ede6e4e,0xbeb961e1,4
659
+ np.float32,0x7f05dd3b,0x42190045,4
660
+ np.float32,0x3ef5b55c,0xbea3404b,4
661
+ np.float32,0x7f738624,0x421a0a62,4
662
+ np.float32,0x3e7d50a1,0xbf1b4cb4,4
663
+ np.float32,0x3f44cc4a,0xbde9ebcc,4
664
+ np.float32,0x7e1a7b0b,0x4216d777,4
665
+ np.float32,0x3f1d9868,0xbe57c0da,4
666
+ np.float32,0x1ebee2,0xc21a3263,4
667
+ np.float32,0x31685f,0xc2195f6e,4
668
+ np.float32,0x368a8e,0xc2193379,4
669
+ np.float32,0xa9847,0xc21c0c2e,4
670
+ np.float32,0x3bd3b3,0xc2190a56,4
671
+ np.float32,0x3961e4,0xc2191ce3,4
672
+ np.float32,0x7e13a243,0x4216c34e,4
673
+ np.float32,0x7f7b1790,0x421a17ff,4
674
+ np.float32,0x3e55f020,0xbf2e1545,4
675
+ np.float32,0x3f513861,0xbdb37aa8,4
676
+ np.float32,0x3dd9e754,0xbf791ad2,4
677
+ np.float32,0x5e8d86,0xc2183ec9,4
678
+ np.float32,0x26b796,0xc219cbdd,4
679
+ np.float32,0x429daa,0xc218da89,4
680
+ np.float32,0x3f477caa,0xbdddd9ba,4
681
+ np.float32,0x3f0e5114,0xbe828d45,4
682
+ np.float32,0x3f54f362,0xbda3c286,4
683
+ np.float32,0x6eac1c,0xc217f8c8,4
684
+ np.float32,0x3f04c479,0xbe91fef5,4
685
+ np.float32,0x3e993765,0xbf06228e,4
686
+ np.float32,0x3eafd99f,0xbeeda21b,4
687
+ np.float32,0x3f2a759e,0xbe34db96,4
688
+ np.float32,0x3f05adfb,0xbe907937,4
689
+ np.float32,0x3f6e2dfc,0xbd005980,4
690
+ np.float32,0x3f2f2daa,0xbe28b6b5,4
691
+ np.float32,0x15e746,0xc21ac931,4
692
+ np.float32,0x7d34ca26,0x4214b4e5,4
693
+ np.float32,0x7ebd175c,0x4218659f,4
694
+ np.float32,0x7f1ed26b,0x42194c4c,4
695
+ np.float32,0x2588b,0xc21eaab0,4
696
+ np.float32,0x3f0065e3,0xbe996fe2,4
697
+ np.float32,0x3f610376,0xbd658122,4
698
+ np.float32,0x451995,0xc218ca41,4
699
+ np.float32,0x70e083,0xc217f002,4
700
+ np.float32,0x7e19821a,0x4216d4a8,4
701
+ np.float32,0x3e7cd9a0,0xbf1b80fb,4
702
+ np.float32,0x7f1a8f18,0x42194033,4
703
+ np.float32,0x3f008fee,0xbe99271f,4
704
+ np.float32,0xff7fffff,0x7fc00000,4
705
+ np.float32,0x7f31d826,0x42197e9b,4
706
+ np.float32,0x3f18cf12,0xbe657838,4
707
+ np.float32,0x3e5c1bc7,0xbf2aebf9,4
708
+ np.float32,0x3e3d3993,0xbf3bbaf8,4
709
+ np.float32,0x68457a,0xc2181347,4
710
+ np.float32,0x7ddf7561,0x42164761,4
711
+ np.float32,0x7f47341b,0x4219b10c,4
712
+ np.float32,0x4d3ecd,0xc21898b2,4
713
+ np.float32,0x7f43dee8,0x4219a98b,4
714
+ np.float32,0x3f0def7c,0xbe8325f5,4
715
+ np.float32,0x3d5a551f,0xbfa2f994,4
716
+ np.float32,0x7ed26602,0x4218951b,4
717
+ np.float32,0x3ee7fa5b,0xbeb0099a,4
718
+ np.float32,0x7ef74ea8,0x4218dcfc,4
719
+ np.float32,0x6a3bb2,0xc2180afd,4
720
+ np.float32,0x7f4c1e6e,0x4219bbe3,4
721
+ np.float32,0x3e26f625,0xbf49a5a2,4
722
+ np.float32,0xb8482,0xc21be70b,4
723
+ np.float32,0x3f32f077,0xbe1f445b,4
724
+ np.float32,0x7dd694b6,0x4216355a,4
725
+ np.float32,0x7f3d62fd,0x42199a92,4
726
+ np.float32,0x3f48e41a,0xbdd79cbf,4
727
+ np.float32,0x338fc3,0xc2194c75,4
728
+ np.float32,0x3e8355f0,0xbf174462,4
729
+ np.float32,0x7f487e83,0x4219b3eb,4
730
+ np.float32,0x2227f7,0xc21a039b,4
731
+ np.float32,0x7e4383dd,0x4217403a,4
732
+ np.float32,0x52d28b,0xc21879b2,4
733
+ np.float32,0x12472c,0xc21b19a9,4
734
+ np.float32,0x353530,0xc2193e7b,4
735
+ np.float32,0x3f4e4728,0xbdc0137a,4
736
+ np.float32,0x3bf169,0xc2190979,4
737
+ np.float32,0x3eb3ee2e,0xbee8885f,4
738
+ np.float32,0x3f03e3c0,0xbe937892,4
739
+ np.float32,0x3c9f8408,0xbfdaf47f,4
740
+ np.float32,0x40e792,0xc218e61b,4
741
+ np.float32,0x5a6b29,0xc21852ab,4
742
+ np.float32,0x7f268b83,0x4219616a,4
743
+ np.float32,0x3ee25997,0xbeb57fa7,4
744
+ np.float32,0x3f175324,0xbe69cf53,4
745
+ np.float32,0x3f781d91,0xbc5e9827,4
746
+ np.float32,0x7dba5210,0x4215f68c,4
747
+ np.float32,0x7f1e66,0xc217bb2b,4
748
+ np.float32,0x7f7fffff,0x421a209b,4
749
+ np.float32,0x3f646202,0xbd4b10b8,4
750
+ np.float32,0x575248,0xc218622b,4
751
+ np.float32,0x7c67faa1,0x4212bb42,4
752
+ np.float32,0x7f1683f2,0x42193469,4
753
+ np.float32,0x1a3864,0xc21a7931,4
754
+ np.float32,0x7f30ad75,0x42197bae,4
755
+ np.float32,0x7f1c9d05,0x42194612,4
756
+ np.float32,0x3e791795,0xbf1d2b2c,4
757
+ np.float32,0x7e9ebc19,0x421817cd,4
758
+ np.float32,0x4999b7,0xc218ae31,4
759
+ np.float32,0x3d130e2c,0xbfb8f1cc,4
760
+ np.float32,0x3f7e436f,0xbb41bb07,4
761
+ np.float32,0x3ee00241,0xbeb7cf7d,4
762
+ np.float32,0x7e496181,0x42174d5f,4
763
+ np.float32,0x7efe58be,0x4218e978,4
764
+ np.float32,0x3f5e5b0c,0xbd7aa43f,4
765
+ np.float32,0x7ee4c6ab,0x4218ba59,4
766
+ np.float32,0x3f6da8c6,0xbd043d7e,4
767
+ np.float32,0x3e3e6e0f,0xbf3b064b,4
768
+ np.float32,0x3f0143b3,0xbe97f10a,4
769
+ np.float32,0x79170f,0xc217d0c6,4
770
+ np.float32,0x517645,0xc218810f,4
771
+ np.float32,0x3f1f9960,0xbe52226e,4
772
+ np.float32,0x2a8df9,0xc219a1d6,4
773
+ np.float32,0x2300a6,0xc219f8b8,4
774
+ np.float32,0x3ee31355,0xbeb4c97a,4
775
+ np.float32,0x3f20b05f,0xbe4f1ba9,4
776
+ np.float32,0x3ee64249,0xbeb1b0ff,4
777
+ np.float32,0x3a94b7,0xc21913b2,4
778
+ np.float32,0x7ef7ef43,0x4218de1d,4
779
+ np.float32,0x3f1abb5d,0xbe5fe872,4
780
+ np.float32,0x7f65360b,0x4219ef72,4
781
+ np.float32,0x3d315d,0xc219004c,4
782
+ np.float32,0x3f26bbc4,0xbe3eafb9,4
783
+ np.float32,0x3ee8c6e9,0xbeaf45de,4
784
+ np.float32,0x7e5f1452,0x42177ae1,4
785
+ np.float32,0x3f32e777,0xbe1f5aba,4
786
+ np.float32,0x4d39a1,0xc21898d0,4
787
+ np.float32,0x3e59ad15,0xbf2c2841,4
788
+ np.float32,0x3f4be746,0xbdca5fc4,4
789
+ np.float32,0x72e4fd,0xc217e821,4
790
+ np.float32,0x1af0b8,0xc21a6d25,4
791
+ np.float32,0x3f311147,0xbe23f18d,4
792
+ np.float32,0x3f1ecebb,0xbe545880,4
793
+ np.float32,0x7e90d293,0x4217ef02,4
794
+ np.float32,0x3e3b366a,0xbf3ceb46,4
795
+ np.float32,0x3f133239,0xbe761c96,4
796
+ np.float32,0x7541ab,0xc217df15,4
797
+ np.float32,0x3d8c8275,0xbf94f1a1,4
798
+ np.float32,0x483b92,0xc218b689,4
799
+ np.float32,0x3eb0dbed,0xbeec5c6b,4
800
+ np.float32,0x3f00c676,0xbe98c8e2,4
801
+ np.float32,0x3f445ac2,0xbdebed7c,4
802
+ np.float32,0x3d2af4,0xc219007a,4
803
+ np.float32,0x7f196ee1,0x42193cf2,4
804
+ np.float32,0x290c94,0xc219b1db,4
805
+ np.float32,0x3f5dbdc9,0xbd7f9019,4
806
+ np.float32,0x3e80c62e,0xbf1974fc,4
807
+ np.float32,0x3ec9ed2c,0xbecee326,4
808
+ np.float32,0x7f469d60,0x4219afbb,4
809
+ np.float32,0x3f698413,0xbd2386ce,4
810
+ np.float32,0x42163f,0xc218de14,4
811
+ np.float32,0x67a554,0xc21815f4,4
812
+ np.float32,0x3f4bff74,0xbdc9f651,4
813
+ np.float32,0x16a743,0xc21aba39,4
814
+ np.float32,0x2eb8b0,0xc219784b,4
815
+ np.float32,0x3eed9be1,0xbeaab45b,4
816
+ np.float64,0x7fe0d76873e1aed0,0x40733f9d783bad7a,2
817
+ np.float64,0x3fe22626bb244c4d,0xbfcf86a59864eea2,2
818
+ np.float64,0x7f874113d02e8227,0x407324f54c4015b8,2
819
+ np.float64,0x3fe40a46a9e8148d,0xbfca0411f533fcb9,2
820
+ np.float64,0x3fd03932eea07266,0xbfe312bc9cf5649e,2
821
+ np.float64,0x7fee5d2a1b3cba53,0x407343b5f56367a0,2
822
+ np.float64,0x3feb7bda4a76f7b5,0xbfb0ea2c6edc784a,2
823
+ np.float64,0x3fd6cd831a2d9b06,0xbfdcaf2e1a5faf51,2
824
+ np.float64,0x98324e273064a,0xc0733e0e4c6d11c6,2
825
+ np.float64,0x7fe1dd63b363bac6,0x4073400667c405c3,2
826
+ np.float64,0x3fec5971f178b2e4,0xbfaaef32a7d94563,2
827
+ np.float64,0x17abc07e2f579,0xc0734afca4da721e,2
828
+ np.float64,0x3feec6ab5cfd8d57,0xbf9157f3545a8235,2
829
+ np.float64,0x3fe3ae9622a75d2c,0xbfcb04b5ad254581,2
830
+ np.float64,0x7fea73d854b4e7b0,0x407342c0a548f4c5,2
831
+ np.float64,0x7fe29babf4653757,0x4073404eeb5fe714,2
832
+ np.float64,0x7fd3a55d85a74aba,0x40733bde72e86c27,2
833
+ np.float64,0x3fe83ce305f079c6,0xbfbee3511e85e0f1,2
834
+ np.float64,0x3fd72087ea2e4110,0xbfdc4ab30802d7c2,2
835
+ np.float64,0x7feb54ddab76a9ba,0x407342facb6f3ede,2
836
+ np.float64,0xc57e34a18afd,0xc0734f82ec815baa,2
837
+ np.float64,0x7a8cb97ef5198,0xc0733f8fb3777a67,2
838
+ np.float64,0x7fe801032c300205,0x40734213dbe4eda9,2
839
+ np.float64,0x3aefb1f475df7,0xc07344a5f08a0584,2
840
+ np.float64,0x7fee85f1dd3d0be3,0x407343bf4441c2a7,2
841
+ np.float64,0x3fdc7f1055b8fe21,0xbfd67d300630e893,2
842
+ np.float64,0xe8ecddb3d1d9c,0xc0733b194f18f466,2
843
+ np.float64,0x3fdf2b23c73e5648,0xbfd3ff6872c1f887,2
844
+ np.float64,0x3fdba4aef2b7495e,0xbfd7557205e18b7b,2
845
+ np.float64,0x3fe2ac34c6e5586a,0xbfcdf1dac69bfa08,2
846
+ np.float64,0x3fc9852628330a4c,0xbfe66914f0fb9b0a,2
847
+ np.float64,0x7fda211acf344235,0x40733dd9c2177aeb,2
848
+ np.float64,0x3fe9420eb432841d,0xbfba4dd969a32575,2
849
+ np.float64,0xb2f9d1ed65f3a,0xc0733cedfb6527ff,2
850
+ np.float64,0x3fe9768a68f2ed15,0xbfb967c39c35c435,2
851
+ np.float64,0x7fe8268462b04d08,0x4073421eaed32734,2
852
+ np.float64,0x3fcf331f063e663e,0xbfe39e2f4b427ca9,2
853
+ np.float64,0x7fd4eb9e2b29d73b,0x40733c4e4141418d,2
854
+ np.float64,0x7fd2bba658a5774c,0x40733b89cd53d5b1,2
855
+ np.float64,0x3fdfdf04913fbe09,0xbfd360c7fd9d251b,2
856
+ np.float64,0x3fca5bfd0534b7fa,0xbfe5f5f844b2b20c,2
857
+ np.float64,0x3feacd5032f59aa0,0xbfb3b5234ba8bf7b,2
858
+ np.float64,0x7fe9241cec724839,0x4073426631362cec,2
859
+ np.float64,0x3fe57aca20eaf594,0xbfc628e3ac2c6387,2
860
+ np.float64,0x3fec6553ca38caa8,0xbfaa921368d3b222,2
861
+ np.float64,0x3fe1e9676563d2cf,0xbfd020f866ba9b24,2
862
+ np.float64,0x3fd5590667aab20d,0xbfde8458af5a4fd6,2
863
+ np.float64,0x3fdf7528f43eea52,0xbfd3bdb438d6ba5e,2
864
+ np.float64,0xb8dddc5571bbc,0xc0733cb4601e5bb2,2
865
+ np.float64,0xe6d4e1fbcda9c,0xc0733b295ef4a4ba,2
866
+ np.float64,0x3fe7019d962e033b,0xbfc257c0a6e8de16,2
867
+ np.float64,0x3f94ef585029deb1,0xbffb07e5dfb0e936,2
868
+ np.float64,0x7fc863b08030c760,0x4073388e28d7b354,2
869
+ np.float64,0xf684443bed089,0xc0733ab46cfbff9a,2
870
+ np.float64,0x7fe00e901d201d1f,0x40733f489c05a0f0,2
871
+ np.float64,0x9e5c0a273cb82,0xc0733dc7af797e19,2
872
+ np.float64,0x7fe49734f0692e69,0x4073410303680df0,2
873
+ np.float64,0x7fb7b584442f6b08,0x4073338acff72502,2
874
+ np.float64,0x3f99984c30333098,0xbff9a2642a6ed8cc,2
875
+ np.float64,0x7fea2fcda8745f9a,0x407342aeae7f5e64,2
876
+ np.float64,0xe580caadcb01a,0xc0733b33a3639217,2
877
+ np.float64,0x1899ab3831336,0xc0734ab823729417,2
878
+ np.float64,0x39bd4c76737aa,0xc07344ca6fac6d21,2
879
+ np.float64,0xd755b2dbaeab7,0xc0733ba4fe19f2cc,2
880
+ np.float64,0x3f952bebf82a57d8,0xbffaf3e7749c2512,2
881
+ np.float64,0x3fe62ee5d72c5dcc,0xbfc45e3cb5baad08,2
882
+ np.float64,0xb1264a7d624ca,0xc0733d003a1d0a66,2
883
+ np.float64,0x3fc4bd1bcd297a38,0xbfe94b3058345c46,2
884
+ np.float64,0x7fc5758bb32aeb16,0x407337aa7805497f,2
885
+ np.float64,0x3fb0edcaf421db96,0xbff2dfb09c405294,2
886
+ np.float64,0x3fd240fceaa481fa,0xbfe16f356bb36134,2
887
+ np.float64,0x38c0c62a7181a,0xc07344e916d1e9b7,2
888
+ np.float64,0x3fe98f2b3bf31e56,0xbfb8fc6eb622a820,2
889
+ np.float64,0x3fe2bdf99c257bf3,0xbfcdbd0dbbae4d0b,2
890
+ np.float64,0xce4b390d9c967,0xc0733bf14ada3134,2
891
+ np.float64,0x3fd2ad607ba55ac1,0xbfe11da15167b37b,2
892
+ np.float64,0x3fd8154f11b02a9e,0xbfdb2a6fabb9a026,2
893
+ np.float64,0xf37849fde6f09,0xc0733aca8c64344c,2
894
+ np.float64,0x3fcbae43b2375c87,0xbfe547f267c8e570,2
895
+ np.float64,0x3fcd46fd7d3a8dfb,0xbfe48070f7232929,2
896
+ np.float64,0x7fcdd245273ba489,0x407339f3d907b101,2
897
+ np.float64,0x3fac75cd0838eb9a,0xbff4149d177b057b,2
898
+ np.float64,0x7fe8ff3fd7f1fe7f,0x4073425bf968ba6f,2
899
+ np.float64,0x7febadaa4df75b54,0x407343113a91f0e9,2
900
+ np.float64,0x7fd5e4649c2bc8c8,0x40733c9f0620b065,2
901
+ np.float64,0x903429812069,0xc07351b255e27887,2
902
+ np.float64,0x3fe1d8c51c63b18a,0xbfd03ad448c1f1ee,2
903
+ np.float64,0x3fe573ea646ae7d5,0xbfc63ab0bfd0e601,2
904
+ np.float64,0x3f83b3f3c02767e8,0xc00022677e310649,2
905
+ np.float64,0x7fd15d1582a2ba2a,0x40733b02c469c1d6,2
906
+ np.float64,0x3fe63d3dabec7a7b,0xbfc43a56ee97b27e,2
907
+ np.float64,0x7fe3a452fb2748a5,0x407340af1973c228,2
908
+ np.float64,0x3fafac6b303f58d6,0xbff35651703ae9f2,2
909
+ np.float64,0x513ddd24a27bc,0xc073426af96aaebb,2
910
+ np.float64,0x3fef152246be2a45,0xbf89df79d7719282,2
911
+ np.float64,0x3fe8c923e9f19248,0xbfbc67228e8db5f6,2
912
+ np.float64,0x3fd6e2325fadc465,0xbfdc9602fb0b950f,2
913
+ np.float64,0x3fe9616815f2c2d0,0xbfb9c4311a3b415b,2
914
+ np.float64,0x2fe4e4005fc9d,0xc0734616fe294395,2
915
+ np.float64,0x3fbceb02dc39d606,0xbfee4e68f1c7886f,2
916
+ np.float64,0x7fe35e843d66bd07,0x407340963b066ad6,2
917
+ np.float64,0x7fecd6c648f9ad8c,0x4073435a4c176e94,2
918
+ np.float64,0x7fcbd72bf437ae57,0x4073397994b85665,2
919
+ np.float64,0x3feff6443b3fec88,0xbf40eb380d5318ae,2
920
+ np.float64,0x7fb9373cf6326e79,0x407333f869edef08,2
921
+ np.float64,0x63790d9cc6f22,0xc0734102d4793cda,2
922
+ np.float64,0x3f9de6efe83bcde0,0xbff88db6f0a6b56e,2
923
+ np.float64,0xe00f2dc1c01f,0xc0734ea26ab84ff2,2
924
+ np.float64,0xd7a9aa8baf536,0xc0733ba248fa33ab,2
925
+ np.float64,0x3fee0089ea7c0114,0xbf9cab936ac31c4b,2
926
+ np.float64,0x3fdec0d51cbd81aa,0xbfd45ed8878c5860,2
927
+ np.float64,0x7fe91bf5e9f237eb,0x40734263f005081d,2
928
+ np.float64,0x34ea7d1e69d50,0xc07345659dde7444,2
929
+ np.float64,0x7fe67321a3ace642,0x4073419cc8130d95,2
930
+ np.float64,0x9d1aeb2f3a35e,0xc0733dd5d506425c,2
931
+ np.float64,0x7fbb01df003603bd,0x4073347282f1391d,2
932
+ np.float64,0x42b945b285729,0xc07343c92d1bbef9,2
933
+ np.float64,0x7fc92799b8324f32,0x407338c51e3f0733,2
934
+ np.float64,0x3fe119c19b223383,0xbfd16ab707f65686,2
935
+ np.float64,0x3fc9f9ac5333f359,0xbfe62a2f91ec0dff,2
936
+ np.float64,0x3fd820d5a8b041ab,0xbfdb1d2586fe7b18,2
937
+ np.float64,0x10000000000000,0xc0733a7146f72a42,2
938
+ np.float64,0x3fe7e1543eafc2a8,0xbfc045362889592d,2
939
+ np.float64,0xcbc0e1819783,0xc0734f4b68e05b1c,2
940
+ np.float64,0xeb57e411d6afd,0xc0733b06efec001a,2
941
+ np.float64,0xa9b74b47536ea,0xc0733d4c7bd06ddc,2
942
+ np.float64,0x3fe56d4022eada80,0xbfc64bf8c7e3dd59,2
943
+ np.float64,0x3fd445ca27288b94,0xbfdff40aecd0f882,2
944
+ np.float64,0x3fe5af1cf5ab5e3a,0xbfc5a21d83699a04,2
945
+ np.float64,0x7fed3431eb7a6863,0x40734370aa6131e1,2
946
+ np.float64,0x3fd878dea1b0f1bd,0xbfdab8730dc00517,2
947
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,2
948
+ np.float64,0x3feba9fcc1f753fa,0xbfb03027dcecbf65,2
949
+ np.float64,0x7fca4feed6349fdd,0x4073391526327eb0,2
950
+ np.float64,0x3fe7748ddbaee91c,0xbfc144b438218065,2
951
+ np.float64,0x3fb5fbd94c2bf7b3,0xbff10ee6342c21a0,2
952
+ np.float64,0x3feb603b97f6c077,0xbfb15a1f99d6d25e,2
953
+ np.float64,0x3fe2e6fc8ce5cdf9,0xbfcd43edd7f3b4e6,2
954
+ np.float64,0x7feb2b31f7765663,0x407342f02b306688,2
955
+ np.float64,0x3fe290e2282521c4,0xbfce436deb8dbcf3,2
956
+ np.float64,0x3fe3d5adf9e7ab5c,0xbfca96b8aa55d942,2
957
+ np.float64,0x691899f2d2314,0xc07340a1026897c8,2
958
+ np.float64,0x7fe468b008e8d15f,0x407340f33eadc628,2
959
+ np.float64,0x3fb3a4c416274988,0xbff1d71da539a56e,2
960
+ np.float64,0x3fe2442b29e48856,0xbfcf2b0037322661,2
961
+ np.float64,0x3f376fbc7e6ef,0xc073442939a84643,2
962
+ np.float64,0x3fe7c78d65ef8f1b,0xbfc08157cff411de,2
963
+ np.float64,0xd4f27acba9e50,0xc0733bb8d38daa50,2
964
+ np.float64,0x5198919ea3313,0xc07342633ba7cbea,2
965
+ np.float64,0x7fd09f66f0a13ecd,0x40733ab5310b4385,2
966
+ np.float64,0x3fdfe5531dbfcaa6,0xbfd35b487c7e739f,2
967
+ np.float64,0x3fc4b0fecc2961fe,0xbfe95350c38c1640,2
968
+ np.float64,0x7fd5ae21962b5c42,0x40733c8db78b7250,2
969
+ np.float64,0x3fa4a8fcd42951fa,0xbff64e62fe602b72,2
970
+ np.float64,0x7fc8e0e25831c1c4,0x407338b179b91223,2
971
+ np.float64,0x7fdde1df6f3bc3be,0x40733ec87f9f027e,2
972
+ np.float64,0x3fd8b9ad86b1735b,0xbfda6f385532c41b,2
973
+ np.float64,0x3fd9f20ee933e41e,0xbfd91872fd858597,2
974
+ np.float64,0x7feb35332df66a65,0x407342f2b9c715f0,2
975
+ np.float64,0x7fe783dc7eaf07b8,0x407341ef41873706,2
976
+ np.float64,0x7fceee929f3ddd24,0x40733a34e3c660fd,2
977
+ np.float64,0x985b58d730b6b,0xc0733e0c6cfbb6f8,2
978
+ np.float64,0x3fef4bb55cfe976b,0xbf83cb246c6f2a78,2
979
+ np.float64,0x3fe218014f243003,0xbfcfb20ac683e1f6,2
980
+ np.float64,0x7fe43b9fbea8773e,0x407340e3d5d5d29e,2
981
+ np.float64,0x7fe148c74c62918e,0x40733fcba4367b8b,2
982
+ np.float64,0x3feea4ad083d495a,0xbf93443917f3c991,2
983
+ np.float64,0x8bcf6311179ed,0xc0733ea54d59dd31,2
984
+ np.float64,0xf4b7a2dbe96f5,0xc0733ac175182401,2
985
+ np.float64,0x543338baa8668,0xc073422b59165fe4,2
986
+ np.float64,0x3fdb467317368ce6,0xbfd7b4d515929635,2
987
+ np.float64,0x7fe3bbbc89e77778,0x407340b75cdf3de7,2
988
+ np.float64,0x7fe693377aad266e,0x407341a6af60a0f1,2
989
+ np.float64,0x3fc66210502cc421,0xbfe83bb940610a24,2
990
+ np.float64,0x7fa75638982eac70,0x40732e9da476b816,2
991
+ np.float64,0x3fe0d72a4761ae55,0xbfd1d7c82c479fab,2
992
+ np.float64,0x97dec0dd2fbd8,0xc0733e121e072804,2
993
+ np.float64,0x3fef33ec8c7e67d9,0xbf86701be6be8df1,2
994
+ np.float64,0x7fcfca9b423f9536,0x40733a65a51efb94,2
995
+ np.float64,0x9f2215633e443,0xc0733dbf043de9ed,2
996
+ np.float64,0x2469373e48d28,0xc07347fe9e904b77,2
997
+ np.float64,0x7fecc2e18cb985c2,0x407343557f58dfa2,2
998
+ np.float64,0x3fde4acbfdbc9598,0xbfd4ca559e575e74,2
999
+ np.float64,0x3fd6b11cf1ad623a,0xbfdcd1e17ef36114,2
1000
+ np.float64,0x3fc19ec494233d89,0xbfeb8ef228e8826a,2
1001
+ np.float64,0x4c89ee389913e,0xc07342d50c904f61,2
1002
+ np.float64,0x88c2046f11841,0xc0733ecc91369431,2
1003
+ np.float64,0x7fc88c13fd311827,0x40733899a125b392,2
1004
+ np.float64,0x3fcebd893a3d7b12,0xbfe3d2f35ab93765,2
1005
+ np.float64,0x3feb582a1476b054,0xbfb17ae8ec6a0465,2
1006
+ np.float64,0x7fd4369e5da86d3c,0x40733c1118b8cd67,2
1007
+ np.float64,0x3fda013fc1340280,0xbfd90831b85e98b2,2
1008
+ np.float64,0x7fed33d73fba67ad,0x4073437094ce1bd9,2
1009
+ np.float64,0x3fed3191053a6322,0xbfa468cc26a8f685,2
1010
+ np.float64,0x3fc04ed51c209daa,0xbfeca24a6f093bca,2
1011
+ np.float64,0x3fee4ac8763c9591,0xbf986458abbb90b5,2
1012
+ np.float64,0xa2d39dd145a74,0xc0733d9633651fbc,2
1013
+ np.float64,0x3fe7d9f86f2fb3f1,0xbfc0565a0b059f1c,2
1014
+ np.float64,0x3fe3250144e64a03,0xbfcc8eb2b9ae494b,2
1015
+ np.float64,0x7fe2b29507a56529,0x4073405774492075,2
1016
+ np.float64,0x7fdcdfcbe2b9bf97,0x40733e8b736b1bd8,2
1017
+ np.float64,0x3fc832730f3064e6,0xbfe7267ac9b2e7c3,2
1018
+ np.float64,0x3fc7e912e52fd226,0xbfe750dfc0aeae57,2
1019
+ np.float64,0x7fc960472f32c08d,0x407338d4b4cb3957,2
1020
+ np.float64,0x3fbdf182ea3be306,0xbfedd27150283ffb,2
1021
+ np.float64,0x3fd1e9359823d26b,0xbfe1b2ac7fd25f8d,2
1022
+ np.float64,0x7fbcf75f6039eebe,0x407334ef13eb16f8,2
1023
+ np.float64,0x3fe5a3c910eb4792,0xbfc5bf2f57c5d643,2
1024
+ np.float64,0x3fcf4f2a6e3e9e55,0xbfe391b6f065c4b8,2
1025
+ np.float64,0x3fee067873fc0cf1,0xbf9c53af0373fc0e,2
1026
+ np.float64,0xd3f08b85a7e12,0xc0733bc14357e686,2
1027
+ np.float64,0x7ff0000000000000,0x7ff0000000000000,2
1028
+ np.float64,0x3fc8635f6430c6bf,0xbfe70a7dc77749a7,2
1029
+ np.float64,0x3fe3ff5c52a7feb9,0xbfca22617c6636d5,2
1030
+ np.float64,0x3fbbae91fa375d24,0xbfeee9d4c300543f,2
1031
+ np.float64,0xe3f71b59c7ee4,0xc0733b3f99187375,2
1032
+ np.float64,0x7fca93d3be3527a6,0x40733926fd48ecd6,2
1033
+ np.float64,0x3fcd29f7223a53ee,0xbfe48e3edf32fe57,2
1034
+ np.float64,0x7fdc4ef6f8389ded,0x40733e68401cf2a6,2
1035
+ np.float64,0xe009bc81c014,0xc0734ea295ee3e5b,2
1036
+ np.float64,0x61f56c78c3eae,0xc073411e1dbd7c54,2
1037
+ np.float64,0x3fde131928bc2632,0xbfd4fda024f6927c,2
1038
+ np.float64,0x3fb21ee530243dca,0xbff266aaf0358129,2
1039
+ np.float64,0x7feaac82a4f55904,0x407342cf7809d9f9,2
1040
+ np.float64,0x3fe66ab177ecd563,0xbfc3c92d4d522819,2
1041
+ np.float64,0xfe9f9c2bfd3f4,0xc0733a7ade3a88a7,2
1042
+ np.float64,0x7fd0c5217c218a42,0x40733ac4e4c6dfa5,2
1043
+ np.float64,0x430f4ae6861ea,0xc07343c03d8a9442,2
1044
+ np.float64,0x494bff2a92981,0xc073432209d2fd16,2
1045
+ np.float64,0x3f8860e9d030c1d4,0xbffeca059ebf5e89,2
1046
+ np.float64,0x3fe43732dc286e66,0xbfc98800388bad2e,2
1047
+ np.float64,0x6443b60ec8877,0xc07340f4bab11827,2
1048
+ np.float64,0x3feda9be6d7b537d,0xbfa0dcb9a6914069,2
1049
+ np.float64,0x3fc5ceb6772b9d6d,0xbfe89868c881db70,2
1050
+ np.float64,0x3fbdf153023be2a6,0xbfedd2878c3b4949,2
1051
+ np.float64,0x7fe8f6b8e8f1ed71,0x407342599a30b273,2
1052
+ np.float64,0x3fea6fbdb8b4df7b,0xbfb53bf66f71ee96,2
1053
+ np.float64,0xc7ac3dbb8f588,0xc0733c2b525b7963,2
1054
+ np.float64,0x3fef3a91f77e7524,0xbf85b2bd3adbbe31,2
1055
+ np.float64,0x3f887cb97030f973,0xbffec21ccbb5d22a,2
1056
+ np.float64,0x8b2f1c9f165e4,0xc0733ead49300951,2
1057
+ np.float64,0x2c1cb32058397,0xc07346a951bd8d2b,2
1058
+ np.float64,0x3fe057edd620afdc,0xbfd2acf1881b7e99,2
1059
+ np.float64,0x7f82e9530025d2a5,0x4073238591dd52ce,2
1060
+ np.float64,0x3fe4e03dff69c07c,0xbfc7be96c5c006fc,2
1061
+ np.float64,0x52727b4aa4e50,0xc0734250c58ebbc1,2
1062
+ np.float64,0x3f99a62160334c43,0xbff99ea3ca09d8f9,2
1063
+ np.float64,0x3fd5314b4faa6297,0xbfdeb843daf01e03,2
1064
+ np.float64,0x3fefde89e13fbd14,0xbf5d1facb7a1e9de,2
1065
+ np.float64,0x7fb460f1a228c1e2,0x4073327d8cbc5f86,2
1066
+ np.float64,0xeb93efb3d727e,0xc0733b052a4990e4,2
1067
+ np.float64,0x3fe884baecf10976,0xbfbd9ba9cfe23713,2
1068
+ np.float64,0x7fefffffffffffff,0x40734413509f79ff,2
1069
+ np.float64,0x149dc7c6293ba,0xc0734bf26b1df025,2
1070
+ np.float64,0x64188f88c8313,0xc07340f7b8e6f4b5,2
1071
+ np.float64,0x3fdfac314abf5863,0xbfd38d3e9dba1b0e,2
1072
+ np.float64,0x3fd72052a42e40a5,0xbfdc4af30ee0b245,2
1073
+ np.float64,0x7fdd951f743b2a3e,0x40733eb68fafa838,2
1074
+ np.float64,0x65a2dd5acb45c,0xc07340dc8ed625e1,2
1075
+ np.float64,0x7fe89a79997134f2,0x4073423fbceb1cbe,2
1076
+ np.float64,0x3fe70a000d6e1400,0xbfc24381e09d02f7,2
1077
+ np.float64,0x3fe2cec160259d83,0xbfcd8b5e92354129,2
1078
+ np.float64,0x3feb9ef77a773def,0xbfb05c7b2ee6f388,2
1079
+ np.float64,0xe0d66689c1acd,0xc0733b582c779620,2
1080
+ np.float64,0x3fee86bd0ffd0d7a,0xbf94f7870502c325,2
1081
+ np.float64,0x186afc6230d60,0xc0734ac55fb66d5d,2
1082
+ np.float64,0xc0631f4b80c64,0xc0733c6d7149d373,2
1083
+ np.float64,0x3fdad1b87735a371,0xbfd82cca73ec663b,2
1084
+ np.float64,0x7fe7f6d313efeda5,0x40734210e84576ab,2
1085
+ np.float64,0x7fd7b7fce6af6ff9,0x40733d2d92ffdaaf,2
1086
+ np.float64,0x3fe6f35a28ade6b4,0xbfc27a4239b540c3,2
1087
+ np.float64,0x7fdb0b834eb61706,0x40733e17073a61f3,2
1088
+ np.float64,0x82f4661105e8d,0xc0733f19b34adeed,2
1089
+ np.float64,0x3fc77230112ee460,0xbfe796a7603c0d16,2
1090
+ np.float64,0x8000000000000000,0xfff0000000000000,2
1091
+ np.float64,0x7fb8317bc63062f7,0x407333aec761a739,2
1092
+ np.float64,0x7fd165609a22cac0,0x40733b061541ff15,2
1093
+ np.float64,0x3fed394768fa728f,0xbfa42e1596e1faf6,2
1094
+ np.float64,0x7febab693d7756d1,0x40734310a9ac828e,2
1095
+ np.float64,0x7fe809a69230134c,0x407342165b9acb69,2
1096
+ np.float64,0x3fc091d38f2123a7,0xbfec69a70fc23548,2
1097
+ np.float64,0x3fb2a8f5dc2551ec,0xbff2327f2641dd0d,2
1098
+ np.float64,0x7fc60b6fe02c16df,0x407337da5adc342c,2
1099
+ np.float64,0x3fefa53c3bbf4a78,0xbf73d1be15b73b00,2
1100
+ np.float64,0x7fee09c1717c1382,0x407343a2c479e1cb,2
1101
+ np.float64,0x8000000000000001,0x7ff8000000000000,2
1102
+ np.float64,0x3fede0b2733bc165,0xbf9e848ac2ecf604,2
1103
+ np.float64,0x3fee2ac331bc5586,0xbf9a3b699b721c9a,2
1104
+ np.float64,0x3fd4db12d829b626,0xbfdf2a413d1e453a,2
1105
+ np.float64,0x7fe605230dec0a45,0x4073417a67db06be,2
1106
+ np.float64,0x3fe378b2bf26f165,0xbfcb9dbb2b6d6832,2
1107
+ np.float64,0xc1d4c1ab83a98,0xc0733c60244cadbf,2
1108
+ np.float64,0x3feb15500e762aa0,0xbfb28c071d5efc22,2
1109
+ np.float64,0x3fe36225a626c44b,0xbfcbde4259e9047e,2
1110
+ np.float64,0x3fe7c586a72f8b0d,0xbfc08614b13ed4b2,2
1111
+ np.float64,0x7fb0f2d8cc21e5b1,0x40733135b2c7dd99,2
1112
+ np.float64,0x5957f3feb2aff,0xc07341c1df75638c,2
1113
+ np.float64,0x3fca4851bd3490a3,0xbfe6005ae5279485,2
1114
+ np.float64,0x824217d904843,0xc0733f232fd58f0f,2
1115
+ np.float64,0x4f9332269f267,0xc073428fd8e9cb32,2
1116
+ np.float64,0x3fea6f087374de11,0xbfb53ef0d03918b2,2
1117
+ np.float64,0x3fd9409ab4328135,0xbfd9d9231381e2b8,2
1118
+ np.float64,0x3fdba03b00374076,0xbfd759ec94a7ab5b,2
1119
+ np.float64,0x3fe0ce3766619c6f,0xbfd1e6912582ccf0,2
1120
+ np.float64,0x3fabd45ddc37a8bc,0xbff43c78d3188423,2
1121
+ np.float64,0x3fc3cadd592795bb,0xbfe9f1576c9b2c79,2
1122
+ np.float64,0x3fe10df049621be1,0xbfd17df2f2c28022,2
1123
+ np.float64,0x945b5d1328b6c,0xc0733e3bc06f1e75,2
1124
+ np.float64,0x7fc1c3742b2386e7,0x4073365a403d1051,2
1125
+ np.float64,0x7fdc957138b92ae1,0x40733e7977717586,2
1126
+ np.float64,0x7f943fa1a0287f42,0x407328d01de143f5,2
1127
+ np.float64,0x3fec9631c4392c64,0xbfa914b176d8f9d2,2
1128
+ np.float64,0x3fd8e7c008b1cf80,0xbfda3b9d9b6da8f4,2
1129
+ np.float64,0x7222f9fee4460,0xc073400e371516cc,2
1130
+ np.float64,0x3fe890e43eb121c8,0xbfbd64921462e823,2
1131
+ np.float64,0x3fcfd7fe2a3faffc,0xbfe3557e2f207800,2
1132
+ np.float64,0x3fed5dd1c1babba4,0xbfa318bb20db64e6,2
1133
+ np.float64,0x3fe6aa34c66d546a,0xbfc32c8a8991c11e,2
1134
+ np.float64,0x8ca79801196,0xc0736522bd5adf6a,2
1135
+ np.float64,0x3feb274079364e81,0xbfb2427b24b0ca20,2
1136
+ np.float64,0x7fe04927e4a0924f,0x40733f61c96f7f89,2
1137
+ np.float64,0x7c05f656f80bf,0xc0733f7a70555b4e,2
1138
+ np.float64,0x7fe97819eff2f033,0x4073427d4169b0f8,2
1139
+ np.float64,0x9def86e33bdf1,0xc0733dcc740b7175,2
1140
+ np.float64,0x7fedd1ef3f3ba3dd,0x40734395ceab8238,2
1141
+ np.float64,0x77bed86cef7dc,0xc0733fb8e0e9bf73,2
1142
+ np.float64,0x9274b41b24e97,0xc0733e52b16dff71,2
1143
+ np.float64,0x8010000000000000,0x7ff8000000000000,2
1144
+ np.float64,0x9c977855392ef,0xc0733ddba7d421d9,2
1145
+ np.float64,0xfb4560a3f68ac,0xc0733a9271e6a118,2
1146
+ np.float64,0xa67d9f394cfb4,0xc0733d6e9d58cc94,2
1147
+ np.float64,0x3fbfa766b03f4ecd,0xbfed0cccfecfc900,2
1148
+ np.float64,0x3fe177417522ee83,0xbfd0d45803bff01a,2
1149
+ np.float64,0x7fe85e077bb0bc0e,0x4073422e957a4aa3,2
1150
+ np.float64,0x7feeb0a6883d614c,0x407343c8f6568f7c,2
1151
+ np.float64,0xbab82edb75706,0xc0733ca2a2b20094,2
1152
+ np.float64,0xfadb44bdf5b69,0xc0733a9561b7ec04,2
1153
+ np.float64,0x3fefb9b82b3f7370,0xbf6ea776b2dcc3a9,2
1154
+ np.float64,0x7fe080ba8a610174,0x40733f795779b220,2
1155
+ np.float64,0x3f87faa1c02ff544,0xbffee76acafc92b7,2
1156
+ np.float64,0x7fed474108fa8e81,0x4073437531d4313e,2
1157
+ np.float64,0x3fdb7b229336f645,0xbfd77f583a4a067f,2
1158
+ np.float64,0x256dbf0c4adb9,0xc07347cd94e6fa81,2
1159
+ np.float64,0x3fd034ae25a0695c,0xbfe3169c15decdac,2
1160
+ np.float64,0x3a72177274e44,0xc07344b4cf7d68cd,2
1161
+ np.float64,0x7fa2522d5c24a45a,0x40732cef2f793470,2
1162
+ np.float64,0x3fb052bdde20a57c,0xbff3207fd413c848,2
1163
+ np.float64,0x3fdccfecbbb99fd9,0xbfd62ec04a1a687a,2
1164
+ np.float64,0x3fd403ac53280759,0xbfe027a31df2c8cc,2
1165
+ np.float64,0x3fab708e4036e11d,0xbff45591df4f2e8b,2
1166
+ np.float64,0x7fcfc001993f8002,0x40733a63539acf9d,2
1167
+ np.float64,0x3fd2b295dfa5652c,0xbfe119c1b476c536,2
1168
+ np.float64,0x7fe8061262b00c24,0x4073421552ae4538,2
1169
+ np.float64,0xffefffffffffffff,0x7ff8000000000000,2
1170
+ np.float64,0x7fed52093ffaa411,0x40734377c072a7e8,2
1171
+ np.float64,0xf3df902fe7bf2,0xc0733ac79a75ff7a,2
1172
+ np.float64,0x7fe13d382e227a6f,0x40733fc6fd0486bd,2
1173
+ np.float64,0x3621d5086c43b,0xc073453d31effbcd,2
1174
+ np.float64,0x3ff0000000000000,0x0,2
1175
+ np.float64,0x3fdaffea27b5ffd4,0xbfd7fd139dc1c2c5,2
1176
+ np.float64,0x7fea6536dc34ca6d,0x407342bccc564fdd,2
1177
+ np.float64,0x7fd478f00c28f1df,0x40733c27c0072fde,2
1178
+ np.float64,0x7fa72ef0502e5de0,0x40732e91e83db75c,2
1179
+ np.float64,0x7fd302970626052d,0x40733ba3ec6775f6,2
1180
+ np.float64,0x7fbb57ab0036af55,0x407334887348e613,2
1181
+ np.float64,0x3fda0ff722b41fee,0xbfd8f87b77930330,2
1182
+ np.float64,0x1e983ce23d309,0xc073493438f57e61,2
1183
+ np.float64,0x7fc90de97c321bd2,0x407338be01ffd4bd,2
1184
+ np.float64,0x7fe074b09c20e960,0x40733f7443f0dbe1,2
1185
+ np.float64,0x3fed5dec9fbabbd9,0xbfa317efb1fe8a95,2
1186
+ np.float64,0x7fdb877632b70eeb,0x40733e3697c88ba8,2
1187
+ np.float64,0x7fe4fb0067e9f600,0x40734124604b99e8,2
1188
+ np.float64,0x7fd447dc96288fb8,0x40733c1703ab2cce,2
1189
+ np.float64,0x3feb2d1e64f65a3d,0xbfb22a781df61c05,2
1190
+ np.float64,0xb6c8e6676d91d,0xc0733cc8859a0b91,2
1191
+ np.float64,0x3fdc3c2418387848,0xbfd6bec3a3c3cdb5,2
1192
+ np.float64,0x3fdecb9ccdbd973a,0xbfd4551c05721a8e,2
1193
+ np.float64,0x3feb1100e7762202,0xbfb29db911fe6768,2
1194
+ np.float64,0x3fe0444bc2a08898,0xbfd2ce69582e78c1,2
1195
+ np.float64,0x7fda403218b48063,0x40733de201d8340c,2
1196
+ np.float64,0x3fdc70421238e084,0xbfd68ba4bd48322b,2
1197
+ np.float64,0x3fe06e747c60dce9,0xbfd286bcac34a981,2
1198
+ np.float64,0x7fc1931d9623263a,0x407336473da54de4,2
1199
+ np.float64,0x229914da45323,0xc073485979ff141c,2
1200
+ np.float64,0x3fe142f92da285f2,0xbfd1280909992cb6,2
1201
+ np.float64,0xf1d02fa9e3a06,0xc0733ad6b19d71a0,2
1202
+ np.float64,0x3fb1fe9b0023fd36,0xbff27317d8252c16,2
1203
+ np.float64,0x3fa544b9242a8972,0xbff61ac38569bcfc,2
1204
+ np.float64,0x3feeb129d4fd6254,0xbf928f23ad20c1ee,2
1205
+ np.float64,0xa2510b7f44a22,0xc0733d9bc81ea0a1,2
1206
+ np.float64,0x3fca75694d34ead3,0xbfe5e8975b3646c2,2
1207
+ np.float64,0x7fece10621b9c20b,0x4073435cc3dd9a1b,2
1208
+ np.float64,0x7fe98a57d3b314af,0x4073428239b6a135,2
1209
+ np.float64,0x3fe259c62a64b38c,0xbfcee96682a0f355,2
1210
+ np.float64,0x3feaaa9b9d755537,0xbfb445779f3359af,2
1211
+ np.float64,0xdaadecfdb55be,0xc0733b899338432a,2
1212
+ np.float64,0x3fed00eae4fa01d6,0xbfa5dc8d77be5991,2
1213
+ np.float64,0x7fcc96c773392d8e,0x407339a8c5cd786e,2
1214
+ np.float64,0x3fef7b8b203ef716,0xbf7cff655ecb6424,2
1215
+ np.float64,0x7fd4008113a80101,0x40733bfe6552acb7,2
1216
+ np.float64,0x7fe99ff035b33fdf,0x407342881753ee2e,2
1217
+ np.float64,0x3ee031e87dc07,0xc0734432d736e492,2
1218
+ np.float64,0x3fddfe390f3bfc72,0xbfd510f1d9ec3e36,2
1219
+ np.float64,0x3fd9ddce74b3bb9d,0xbfd92e2d75a061bb,2
1220
+ np.float64,0x7fe5f742edebee85,0x40734176058e3a77,2
1221
+ np.float64,0x3fdb04185b360831,0xbfd7f8c63aa5e1c4,2
1222
+ np.float64,0xea2b0f43d4562,0xc0733b0fd77c8118,2
1223
+ np.float64,0x7fc3f4973527e92d,0x407337293bbb22c4,2
1224
+ np.float64,0x3fb9adfb38335bf6,0xbfeff4f3ea85821a,2
1225
+ np.float64,0x87fb98750ff73,0xc0733ed6ad83c269,2
1226
+ np.float64,0x3fe005721a200ae4,0xbfd33a9f1ebfb0ac,2
1227
+ np.float64,0xd9e04fe7b3c0a,0xc0733b901ee257f3,2
1228
+ np.float64,0x2c39102658723,0xc07346a4db63bf55,2
1229
+ np.float64,0x3f7dc28e003b851c,0xc0011c1d1233d948,2
1230
+ np.float64,0x3430fd3868620,0xc073457e24e0b70d,2
1231
+ np.float64,0xbff0000000000000,0x7ff8000000000000,2
1232
+ np.float64,0x3fd23e45e0247c8c,0xbfe17146bcf87b57,2
1233
+ np.float64,0x6599df3ecb33d,0xc07340dd2c41644c,2
1234
+ np.float64,0x3fdf074f31be0e9e,0xbfd41f6e9dbb68a5,2
1235
+ np.float64,0x7fdd6233f3bac467,0x40733eaa8f674b72,2
1236
+ np.float64,0x7fe03e8481607d08,0x40733f5d3df3b087,2
1237
+ np.float64,0x3fcc3b79f13876f4,0xbfe501bf3b379b77,2
1238
+ np.float64,0xe5d97ae3cbb30,0xc0733b30f47cbd12,2
1239
+ np.float64,0x8acbc4a115979,0xc0733eb240a4d2c6,2
1240
+ np.float64,0x3fedbdbc48bb7b79,0xbfa0470fd70c4359,2
1241
+ np.float64,0x3fde1611103c2c22,0xbfd4fae1fa8e7e5e,2
1242
+ np.float64,0x3fe09478bd2128f1,0xbfd246b7e85711dc,2
1243
+ np.float64,0x3fd6dfe8f3adbfd2,0xbfdc98ca2f32c1ad,2
1244
+ np.float64,0x72ccf274e599f,0xc0734003e5b0da63,2
1245
+ np.float64,0xe27c7265c4f8f,0xc0733b4b2d808566,2
1246
+ np.float64,0x7fee3161703c62c2,0x407343abe90f5649,2
1247
+ np.float64,0xf54fb5c1eaa0,0xc0734e01384fcf78,2
1248
+ np.float64,0xcde5924d9bcb3,0xc0733bf4b83c66c2,2
1249
+ np.float64,0x3fc46fdbe528dfb8,0xbfe97f55ef5e9683,2
1250
+ np.float64,0x7fe513528a2a26a4,0x4073412c69baceca,2
1251
+ np.float64,0x3fd29eca4aa53d95,0xbfe128801cd33ed0,2
1252
+ np.float64,0x7febb21718b7642d,0x4073431256def857,2
1253
+ np.float64,0x3fcab536c0356a6e,0xbfe5c73c59f41578,2
1254
+ np.float64,0x7fc7e9f0d82fd3e1,0x4073386b213e5dfe,2
1255
+ np.float64,0xb5b121276b624,0xc0733cd33083941c,2
1256
+ np.float64,0x7e0dd9bcfc1bc,0xc0733f5d8bf35050,2
1257
+ np.float64,0x3fd1c75106238ea2,0xbfe1cd11cccda0f4,2
1258
+ np.float64,0x9f060e673e0c2,0xc0733dc03da71909,2
1259
+ np.float64,0x7fd915a2f3322b45,0x40733d912af07189,2
1260
+ np.float64,0x3fd8cbae4431975d,0xbfda5b02ca661139,2
1261
+ np.float64,0x3fde8b411f3d1682,0xbfd48f6f710a53b6,2
1262
+ np.float64,0x3fc17a780622f4f0,0xbfebabb10c55255f,2
1263
+ np.float64,0x3fde5cbe5f3cb97d,0xbfd4b9e2e0101fb1,2
1264
+ np.float64,0x7fd859036530b206,0x40733d5c2252ff81,2
1265
+ np.float64,0xb0f5040f61ea1,0xc0733d02292f527b,2
1266
+ np.float64,0x3fde5c49ae3cb893,0xbfd4ba4db3ce2cf3,2
1267
+ np.float64,0x3fecc4518df988a3,0xbfa7af0bfc98bc65,2
1268
+ np.float64,0x3feffee03cbffdc0,0xbf0f3ede6ca7d695,2
1269
+ np.float64,0xbc5eac9b78bd6,0xc0733c92fb51c8ae,2
1270
+ np.float64,0x3fe2bb4ef765769e,0xbfcdc4f70a65dadc,2
1271
+ np.float64,0x5089443ca1129,0xc073427a7d0cde4a,2
1272
+ np.float64,0x3fd0d6e29121adc5,0xbfe28e28ece1db86,2
1273
+ np.float64,0xbe171e397c2e4,0xc0733c82cede5d02,2
1274
+ np.float64,0x4ede27be9dbc6,0xc073429fba1a4af1,2
1275
+ np.float64,0x3fe2aff3af655fe7,0xbfcde6b52a8ed3c1,2
1276
+ np.float64,0x7fd85ca295b0b944,0x40733d5d2adcccf1,2
1277
+ np.float64,0x24919bba49234,0xc07347f6ed704a6f,2
1278
+ np.float64,0x7fd74bc1eeae9783,0x40733d0d94a89011,2
1279
+ np.float64,0x3fc1cd12cb239a26,0xbfeb6a9c25c2a11d,2
1280
+ np.float64,0x3fdafbc0ac35f781,0xbfd8015ccf1f1b51,2
1281
+ np.float64,0x3fee01327c3c0265,0xbf9ca1d0d762dc18,2
1282
+ np.float64,0x3fe65bd7702cb7af,0xbfc3ee0de5c36b8d,2
1283
+ np.float64,0x7349c82ee693a,0xc0733ffc5b6eccf2,2
1284
+ np.float64,0x3fdc5906f738b20e,0xbfd6a26288eb5933,2
1285
+ np.float64,0x1,0xc07434e6420f4374,2
1286
+ np.float64,0x3fb966128a32cc25,0xbff00e0aa7273838,2
1287
+ np.float64,0x3fd501ff9a2a03ff,0xbfdef69133482121,2
1288
+ np.float64,0x194d4f3c329ab,0xc0734a861b44cfbe,2
1289
+ np.float64,0x3fec5d34f8f8ba6a,0xbfaad1b31510e70b,2
1290
+ np.float64,0x1635e4c22c6be,0xc0734b6dec650943,2
1291
+ np.float64,0x3fead2f8edb5a5f2,0xbfb39dac30a962cf,2
1292
+ np.float64,0x3f7dfa4ce03bf49a,0xc00115a112141aa7,2
1293
+ np.float64,0x3fef6827223ed04e,0xbf80a42c9edebfe9,2
1294
+ np.float64,0xe771f303cee3f,0xc0733b24a6269fe4,2
1295
+ np.float64,0x1160ccc622c1b,0xc0734d22604eacb9,2
1296
+ np.float64,0x3fc485cd08290b9a,0xbfe970723008c8c9,2
1297
+ np.float64,0x7fef99c518bf3389,0x407343fcf9ed202f,2
1298
+ np.float64,0x7fd8c1447a318288,0x40733d79a440b44d,2
1299
+ np.float64,0xaf219f955e434,0xc0733d149c13f440,2
1300
+ np.float64,0xcf45f6239e8bf,0xc0733be8ddda045d,2
1301
+ np.float64,0x7599394aeb328,0xc0733fd90fdbb0ea,2
1302
+ np.float64,0xc7f6390f8fec7,0xc0733c28bfbc66a3,2
1303
+ np.float64,0x3fd39ae96c2735d3,0xbfe0712274a8742b,2
1304
+ np.float64,0xa4d6c18f49ad8,0xc0733d805a0528f7,2
1305
+ np.float64,0x7fd9ea78d7b3d4f1,0x40733dcb2b74802a,2
1306
+ np.float64,0x3fecd251cb39a4a4,0xbfa742ed41d4ae57,2
1307
+ np.float64,0x7fed7a07cd7af40f,0x407343813476027e,2
1308
+ np.float64,0x3fd328ae7f26515d,0xbfe0c30b56a83c64,2
1309
+ np.float64,0x7fc937ff7a326ffe,0x407338c9a45b9140,2
1310
+ np.float64,0x3fcf1d31143e3a62,0xbfe3a7f760fbd6a8,2
1311
+ np.float64,0x7fb911dcbc3223b8,0x407333ee158cccc7,2
1312
+ np.float64,0x3fd352fc83a6a5f9,0xbfe0a47d2f74d283,2
1313
+ np.float64,0x7fd310753fa620e9,0x40733ba8fc4300dd,2
1314
+ np.float64,0x3febd64b4577ac97,0xbfaefd4a79f95c4b,2
1315
+ np.float64,0x6a6961a4d4d2d,0xc073408ae1687943,2
1316
+ np.float64,0x3fe4ba73d16974e8,0xbfc8239341b9e457,2
1317
+ np.float64,0x3fed8e7cac3b1cf9,0xbfa1a96a0cc5fcdc,2
1318
+ np.float64,0x7fd505ec04aa0bd7,0x40733c56f86e3531,2
1319
+ np.float64,0x3fdf166e9abe2cdd,0xbfd411e5f8569d70,2
1320
+ np.float64,0x7fe1bc6434e378c7,0x40733ff9861bdabb,2
1321
+ np.float64,0x3fd3b0b175a76163,0xbfe061ba5703f3c8,2
1322
+ np.float64,0x7fed75d7ffbaebaf,0x4073438037ba6f19,2
1323
+ np.float64,0x5a9e109cb53c3,0xc07341a8b04819c8,2
1324
+ np.float64,0x3fe14786b4e28f0d,0xbfd120b541bb880e,2
1325
+ np.float64,0x3fed4948573a9291,0xbfa3b471ff91614b,2
1326
+ np.float64,0x66aac5d8cd559,0xc07340ca9b18af46,2
1327
+ np.float64,0x3fdb48efd23691e0,0xbfd7b24c5694838b,2
1328
+ np.float64,0x7fe6da7d1eadb4f9,0x407341bc7d1fae43,2
1329
+ np.float64,0x7feb702cf336e059,0x40734301b96cc3c0,2
1330
+ np.float64,0x3fd1e60987a3cc13,0xbfe1b522cfcc3d0e,2
1331
+ np.float64,0x3feca57f50794aff,0xbfa89dc90625d39c,2
1332
+ np.float64,0x7fdc46dc56b88db8,0x40733e664294a0f9,2
1333
+ np.float64,0x8dc8fd811b920,0xc0733e8c5955df06,2
1334
+ np.float64,0xf01634abe02c7,0xc0733ae370a76d0c,2
1335
+ np.float64,0x3fc6f8d8ab2df1b1,0xbfe7df5093829464,2
1336
+ np.float64,0xda3d7597b47af,0xc0733b8d2702727a,2
1337
+ np.float64,0x7feefd53227dfaa5,0x407343da3d04db28,2
1338
+ np.float64,0x3fe2fbca3525f794,0xbfcd06e134417c08,2
1339
+ np.float64,0x7fd36d3ce226da79,0x40733bca7c322df1,2
1340
+ np.float64,0x7fec37e00b786fbf,0x4073433397b48a5b,2
1341
+ np.float64,0x3fbf133f163e267e,0xbfed4e72f1362a77,2
1342
+ np.float64,0x3fc11efbb9223df7,0xbfebf53002a561fe,2
1343
+ np.float64,0x3fc89c0e5431381d,0xbfe6ea562364bf81,2
1344
+ np.float64,0x3f9cd45da839a8bb,0xbff8ceb14669ee4b,2
1345
+ np.float64,0x23dc8fa647b93,0xc0734819aaa9b0ee,2
1346
+ np.float64,0x3fe829110d305222,0xbfbf3e60c45e2399,2
1347
+ np.float64,0x7fed8144e57b0289,0x40734382e917a02a,2
1348
+ np.float64,0x7fe033fbf7a067f7,0x40733f58bb00b20f,2
1349
+ np.float64,0xe3807f45c7010,0xc0733b43379415d1,2
1350
+ np.float64,0x3fd708fb342e11f6,0xbfdc670ef9793782,2
1351
+ np.float64,0x3fe88c924b311925,0xbfbd78210d9e7164,2
1352
+ np.float64,0x3fe0a2a7c7614550,0xbfd22efaf0472c4a,2
1353
+ np.float64,0x7fe3a37501a746e9,0x407340aecaeade41,2
1354
+ np.float64,0x3fd05077ec20a0f0,0xbfe2fedbf07a5302,2
1355
+ np.float64,0x7fd33bf61da677eb,0x40733bb8c58912aa,2
1356
+ np.float64,0x3feb29bdae76537b,0xbfb2384a8f61b5f9,2
1357
+ np.float64,0x3fec0fc14ff81f83,0xbfad3423e7ade174,2
1358
+ np.float64,0x3fd0f8b1a1a1f163,0xbfe2725dd4ccea8b,2
1359
+ np.float64,0x3fe382d26a6705a5,0xbfcb80dba4218bdf,2
1360
+ np.float64,0x3fa873f2cc30e7e6,0xbff522911cb34279,2
1361
+ np.float64,0x7fed7fd7377affad,0x4073438292f6829b,2
1362
+ np.float64,0x3feeacd8067d59b0,0xbf92cdbeda94b35e,2
1363
+ np.float64,0x7fe464d62228c9ab,0x407340f1eee19aa9,2
1364
+ np.float64,0xe997648bd32ed,0xc0733b143aa0fad3,2
1365
+ np.float64,0x7fea4869f13490d3,0x407342b5333b54f7,2
1366
+ np.float64,0x935b871926b71,0xc0733e47c6683319,2
1367
+ np.float64,0x28a9d0c05155,0xc0735a7e3532af83,2
1368
+ np.float64,0x79026548f204d,0xc0733fa6339ffa2f,2
1369
+ np.float64,0x3fdb1daaabb63b55,0xbfd7de839c240ace,2
1370
+ np.float64,0x3fc0db73b421b6e7,0xbfec2c6e36c4f416,2
1371
+ np.float64,0xb8b50ac1716b,0xc0734ff9fc60ebce,2
1372
+ np.float64,0x7fdf13e0c6be27c1,0x40733f0e44f69437,2
1373
+ np.float64,0x3fcd0cb97b3a1973,0xbfe49c34ff531273,2
1374
+ np.float64,0x3fcbac034b375807,0xbfe54913d73f180d,2
1375
+ np.float64,0x3fe091d2a2e123a5,0xbfd24b290a9218de,2
1376
+ np.float64,0xede43627dbc87,0xc0733af3c7c7f716,2
1377
+ np.float64,0x7fc037e7ed206fcf,0x407335b85fb0fedb,2
1378
+ np.float64,0x3fce7ae4c63cf5ca,0xbfe3f1350fe03f28,2
1379
+ np.float64,0x7fcdd862263bb0c3,0x407339f5458bb20e,2
1380
+ np.float64,0x4d7adf709af5d,0xc07342bf4edfadb2,2
1381
+ np.float64,0xdc6c03f3b8d81,0xc0733b7b74d6a635,2
1382
+ np.float64,0x3fe72ae0a4ee55c1,0xbfc1f4665608b21f,2
1383
+ np.float64,0xcd62f19d9ac5e,0xc0733bf92235e4d8,2
1384
+ np.float64,0xe3a7b8fdc74f7,0xc0733b4204f8e166,2
1385
+ np.float64,0x3fdafd35adb5fa6b,0xbfd7ffdca0753b36,2
1386
+ np.float64,0x3fa023e8702047d1,0xbff8059150ea1464,2
1387
+ np.float64,0x99ff336933fe7,0xc0733df961197517,2
1388
+ np.float64,0x7feeb365b9bd66ca,0x407343c995864091,2
1389
+ np.float64,0x7fe449b49f689368,0x407340e8aa3369e3,2
1390
+ np.float64,0x7faf5843043eb085,0x407330aa700136ca,2
1391
+ np.float64,0x3fd47b2922a8f652,0xbfdfab3de86f09ee,2
1392
+ np.float64,0x7fd9fc3248b3f864,0x40733dcfea6f9b3e,2
1393
+ np.float64,0xe20b0d8dc4162,0xc0733b4ea8fe7b3f,2
1394
+ np.float64,0x7feff8e0e23ff1c1,0x40734411c490ed70,2
1395
+ np.float64,0x7fa58382d02b0705,0x40732e0cf28e14fe,2
1396
+ np.float64,0xb8ad9a1b715b4,0xc0733cb630b8f2d4,2
1397
+ np.float64,0xe90abcf1d2158,0xc0733b186b04eeee,2
1398
+ np.float64,0x7fd6aa6f32ad54dd,0x40733cdccc636604,2
1399
+ np.float64,0x3fd8f84eedb1f09e,0xbfda292909a5298a,2
1400
+ np.float64,0x7fecd6b1d9f9ad63,0x4073435a472b05b5,2
1401
+ np.float64,0x3fd9f47604b3e8ec,0xbfd915e028cbf4a6,2
1402
+ np.float64,0x3fd20d9398241b27,0xbfe19691363dd508,2
1403
+ np.float64,0x3fe5ed09bbabda13,0xbfc5043dfc9c8081,2
1404
+ np.float64,0x7fbe5265363ca4c9,0x407335406f8e4fac,2
1405
+ np.float64,0xac2878af5850f,0xc0733d3311be9786,2
1406
+ np.float64,0xac2074555840f,0xc0733d3364970018,2
1407
+ np.float64,0x3fcd49b96b3a9373,0xbfe47f24c8181d9c,2
1408
+ np.float64,0x3fd10caca6a21959,0xbfe2620ae5594f9a,2
1409
+ np.float64,0xec5b87e9d8b71,0xc0733aff499e72ca,2
1410
+ np.float64,0x9d5e9fad3abd4,0xc0733dd2d70eeb4a,2
1411
+ np.float64,0x7fe3d3a24227a744,0x407340bfc2072fdb,2
1412
+ np.float64,0x3fc5f7a77c2bef4f,0xbfe87e69d502d784,2
1413
+ np.float64,0x33161a66662c4,0xc07345a436308244,2
1414
+ np.float64,0xa27acdc744f5a,0xc0733d99feb3d8ea,2
1415
+ np.float64,0x3fe2d9301565b260,0xbfcd6c914e204437,2
1416
+ np.float64,0x7fd5d111e12ba223,0x40733c98e14a6fd0,2
1417
+ np.float64,0x6c3387bed8672,0xc073406d3648171a,2
1418
+ np.float64,0x24d89fe849b15,0xc07347e97bec008c,2
1419
+ np.float64,0x3fefd763677faec7,0xbf61ae69caa9cad9,2
1420
+ np.float64,0x7fe0a4684ba148d0,0x40733f884d32c464,2
1421
+ np.float64,0x3fd5c3c939ab8792,0xbfddfaaefc1c7fca,2
1422
+ np.float64,0x3fec9b87a6b9370f,0xbfa8eb34efcc6b9b,2
1423
+ np.float64,0x3feb062431f60c48,0xbfb2ca6036698877,2
1424
+ np.float64,0x3fef97f6633f2fed,0xbf76bc742860a340,2
1425
+ np.float64,0x74477490e88ef,0xc0733fed220986bc,2
1426
+ np.float64,0x3fe4bea67ce97d4d,0xbfc818525292b0f6,2
1427
+ np.float64,0x3fc6add3a92d5ba7,0xbfe80cfdc9a90bda,2
1428
+ np.float64,0x847c9ce308f94,0xc0733f05026f5965,2
1429
+ np.float64,0x7fea53fd2eb4a7f9,0x407342b841fc4723,2
1430
+ np.float64,0x3fc55a16fc2ab42e,0xbfe8e3849130da34,2
1431
+ np.float64,0x3fbdf7d07c3befa1,0xbfedcf84b9c6c161,2
1432
+ np.float64,0x3fe5fb25aa6bf64b,0xbfc4e083ff96b116,2
1433
+ np.float64,0x61c776a8c38ef,0xc0734121611d84d7,2
1434
+ np.float64,0x3fec413164f88263,0xbfabadbd05131546,2
1435
+ np.float64,0x9bf06fe137e0e,0xc0733de315469ee0,2
1436
+ np.float64,0x2075eefc40ebf,0xc07348cae84de924,2
1437
+ np.float64,0x3fdd42e0143a85c0,0xbfd5c0b6f60b3cea,2
1438
+ np.float64,0xdbb1ab45b7636,0xc0733b8157329daf,2
1439
+ np.float64,0x3feac6d56bf58dab,0xbfb3d00771b28621,2
1440
+ np.float64,0x7fb2dc825025b904,0x407331f3e950751a,2
1441
+ np.float64,0x3fecea6efd79d4de,0xbfa689309cc0e3fe,2
1442
+ np.float64,0x3fd83abec7b0757e,0xbfdaff5c674a9c59,2
1443
+ np.float64,0x3fd396f7c0272df0,0xbfe073ee75c414ba,2
1444
+ np.float64,0x3fe10036c162006e,0xbfd1945a38342ae1,2
1445
+ np.float64,0x3fd5bbded52b77be,0xbfde04cca40d4156,2
1446
+ np.float64,0x3fe870945ab0e129,0xbfbdf72f0e6206fa,2
1447
+ np.float64,0x3fef72fddcbee5fc,0xbf7ee2dba88b1bad,2
1448
+ np.float64,0x4e111aa09c224,0xc07342b1e2b29643,2
1449
+ np.float64,0x3fd926d8b5b24db1,0xbfd9f58b78d6b061,2
1450
+ np.float64,0x3fc55679172aacf2,0xbfe8e5df687842e2,2
1451
+ np.float64,0x7f5f1749803e2e92,0x40731886e16cfc4d,2
1452
+ np.float64,0x7fea082b53b41056,0x407342a42227700e,2
1453
+ np.float64,0x3fece1d1d039c3a4,0xbfa6cb780988a469,2
1454
+ np.float64,0x3b2721d8764e5,0xc073449f6a5a4832,2
1455
+ np.float64,0x365cb7006cba,0xc0735879ba5f0b6e,2
1456
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,2
1457
+ np.float64,0x7fe606ce92ac0d9c,0x4073417aeebe97e8,2
1458
+ np.float64,0x3fe237b544a46f6b,0xbfcf50f8f76d7df9,2
1459
+ np.float64,0x3fe7265e5eee4cbd,0xbfc1ff39089ec8d0,2
1460
+ np.float64,0x7fe2bb3c5ea57678,0x4073405aaad81cf2,2
1461
+ np.float64,0x3fd811df84b023bf,0xbfdb2e670ea8d8de,2
1462
+ np.float64,0x3f6a0efd00341dfa,0xc003fac1ae831241,2
1463
+ np.float64,0x3fd0d214afa1a429,0xbfe2922080a91c72,2
1464
+ np.float64,0x3feca6a350b94d47,0xbfa894eea3a96809,2
1465
+ np.float64,0x7fe23e5c76247cb8,0x4073402bbaaf71c7,2
1466
+ np.float64,0x3fe739a1fdae7344,0xbfc1d109f66efb5d,2
1467
+ np.float64,0x3fdf4b8e283e971c,0xbfd3e28f46169cc5,2
1468
+ np.float64,0x38f2535271e4b,0xc07344e3085219fa,2
1469
+ np.float64,0x7fd263a0f9a4c741,0x40733b68d945dae0,2
1470
+ np.float64,0x7fdd941863bb2830,0x40733eb651e3dca9,2
1471
+ np.float64,0xace7279159ce5,0xc0733d2b63b5947e,2
1472
+ np.float64,0x7fe34670b2268ce0,0x4073408d92770cb5,2
1473
+ np.float64,0x7fd11fa6dfa23f4d,0x40733aea02e76ea3,2
1474
+ np.float64,0x3fe6d9cbca6db398,0xbfc2b84b5c8c7eab,2
1475
+ np.float64,0x3fd69a0274ad3405,0xbfdcee3c7e52c463,2
1476
+ np.float64,0x3feb5af671f6b5ed,0xbfb16f88d739477f,2
1477
+ np.float64,0x3feea400163d4800,0xbf934e071c64fd0b,2
1478
+ np.float64,0x3fefd6bcf17fad7a,0xbf61f711c392b119,2
1479
+ np.float64,0x3fe148d43da291a8,0xbfd11e9cd3f91cd3,2
1480
+ np.float64,0x7fedf1308b7be260,0x4073439d135656da,2
1481
+ np.float64,0x3fe614c99c6c2993,0xbfc49fd1984dfd6d,2
1482
+ np.float64,0xd6e8d4e5add1b,0xc0733ba88256026e,2
1483
+ np.float64,0xfff0000000000000,0x7ff8000000000000,2
1484
+ np.float64,0x3fb530b5562a616b,0xbff1504bcc5c8f73,2
1485
+ np.float64,0xb7da68396fb4d,0xc0733cbe2790f52e,2
1486
+ np.float64,0x7fad78e26c3af1c4,0x4073303cdbfb0a15,2
1487
+ np.float64,0x7fee5698447cad30,0x407343b474573a8b,2
1488
+ np.float64,0x3fd488325c291065,0xbfdf999296d901e7,2
1489
+ np.float64,0x2669283a4cd26,0xc073479f823109a4,2
1490
+ np.float64,0x7fef3b090afe7611,0x407343e805a3b264,2
1491
+ np.float64,0x7fe8b96ae0f172d5,0x4073424874a342ab,2
1492
+ np.float64,0x7fef409f56fe813e,0x407343e943c3cd44,2
1493
+ np.float64,0x3fed28073dfa500e,0xbfa4b17e4cd31a3a,2
1494
+ np.float64,0x7f87ecc4802fd988,0x40732527e027b24b,2
1495
+ np.float64,0x3fdda24da0bb449b,0xbfd566a43ac035af,2
1496
+ np.float64,0x179fc9e62f3fa,0xc0734b0028c80fc1,2
1497
+ np.float64,0x3fef85b0927f0b61,0xbf7ac27565d5ab4f,2
1498
+ np.float64,0x5631501aac62b,0xc0734201be12c5d4,2
1499
+ np.float64,0x3fd782e424af05c8,0xbfdbd57544f8a7c3,2
1500
+ np.float64,0x3fe603a9a6ac0753,0xbfc4caff04dc3caf,2
1501
+ np.float64,0x7fbd5225163aa449,0x40733504b88f0a56,2
1502
+ np.float64,0x3fecd27506b9a4ea,0xbfa741dd70e6b08c,2
1503
+ np.float64,0x9c99603b3932c,0xc0733ddb922dc5db,2
1504
+ np.float64,0x3fbeb57f1a3d6afe,0xbfed789ff217aa08,2
1505
+ np.float64,0x3fef9c0f85bf381f,0xbf75d5c3d6cb281a,2
1506
+ np.float64,0x3fde4afb613c95f7,0xbfd4ca2a231c9005,2
1507
+ np.float64,0x396233d472c47,0xc07344d56ee70631,2
1508
+ np.float64,0x3fb31ea1c6263d44,0xbff207356152138d,2
1509
+ np.float64,0x3fe50bdf78aa17bf,0xbfc74ae0cbffb735,2
1510
+ np.float64,0xef74c701dee99,0xc0733ae81e4bb443,2
1511
+ np.float64,0x9a3e13a1347c3,0xc0733df68b60afc7,2
1512
+ np.float64,0x33ba4f886774b,0xc073458e03f0c13e,2
1513
+ np.float64,0x3fe8ba0e9931741d,0xbfbcaadf974e8f64,2
1514
+ np.float64,0x3fe090a4cd61214a,0xbfd24d236cf365d6,2
1515
+ np.float64,0x7fd87d992930fb31,0x40733d668b73b820,2
1516
+ np.float64,0x3fe6422b296c8456,0xbfc42e070b695d01,2
1517
+ np.float64,0x3febe9334677d267,0xbfae667864606cfe,2
1518
+ np.float64,0x771a3ce4ee348,0xc0733fc274d12c97,2
1519
+ np.float64,0x3fe0413542e0826b,0xbfd2d3b08fb5b8a6,2
1520
+ np.float64,0x3fd00870ea2010e2,0xbfe33cc04cbd42e0,2
1521
+ np.float64,0x3fe74fb817ae9f70,0xbfc19c45dbf919e1,2
1522
+ np.float64,0x40382fa08071,0xc07357514ced5577,2
1523
+ np.float64,0xa14968474292d,0xc0733da71a990f3a,2
1524
+ np.float64,0x5487c740a90fa,0xc0734224622d5801,2
1525
+ np.float64,0x3fed7d8d14fafb1a,0xbfa228f7ecc2ac03,2
1526
+ np.float64,0x3fe39bb485e73769,0xbfcb3a235a722960,2
1527
+ np.float64,0x3fd01090b2202121,0xbfe335b752589a22,2
1528
+ np.float64,0x3fd21a3e7da4347d,0xbfe18cd435a7c582,2
1529
+ np.float64,0x3fe7fa855a2ff50b,0xbfc00ab0665709fe,2
1530
+ np.float64,0x3fedc0d4577b81a9,0xbfa02fef3ff553fc,2
1531
+ np.float64,0x3fe99d4906333a92,0xbfb8bf18220e5e8e,2
1532
+ np.float64,0x3fd944ee3c3289dc,0xbfd9d46071675e73,2
1533
+ np.float64,0x3fe3ed8d52e7db1b,0xbfca53f8d4aef484,2
1534
+ np.float64,0x7fe748623a6e90c3,0x407341dd97c9dd79,2
1535
+ np.float64,0x3fea1b4b98343697,0xbfb6a1560a56927f,2
1536
+ np.float64,0xe1215715c242b,0xc0733b55dbf1f0a8,2
1537
+ np.float64,0x3fd0d5bccca1ab7a,0xbfe28f1b66d7a470,2
1538
+ np.float64,0x881a962710353,0xc0733ed51848a30d,2
1539
+ np.float64,0x3fcf022afe3e0456,0xbfe3b40eabf24501,2
1540
+ np.float64,0x3fdf1ac6bbbe358d,0xbfd40e03e888288d,2
1541
+ np.float64,0x3fa51a5eac2a34bd,0xbff628a7c34d51b3,2
1542
+ np.float64,0x3fdbaf408d375e81,0xbfd74ad39d97c92a,2
1543
+ np.float64,0x3fcd2418ea3a4832,0xbfe4910b009d8b11,2
1544
+ np.float64,0x3fc7b3062a2f660c,0xbfe7706dc47993e1,2
1545
+ np.float64,0x7fb8232218304643,0x407333aaa7041a9f,2
1546
+ np.float64,0x7fd5f186362be30b,0x40733ca32fdf9cc6,2
1547
+ np.float64,0x3fe57ef1d6aafde4,0xbfc61e23d00210c7,2
1548
+ np.float64,0x7c6830baf8d07,0xc0733f74f19e9dad,2
1549
+ np.float64,0xcacbfd5595980,0xc0733c0fb49edca7,2
1550
+ np.float64,0x3fdfdeac873fbd59,0xbfd36114c56bed03,2
1551
+ np.float64,0x3fd31f0889263e11,0xbfe0ca0cc1250169,2
1552
+ np.float64,0x3fe839fbe47073f8,0xbfbef0a2abc3d63f,2
1553
+ np.float64,0x3fc36af57e26d5eb,0xbfea3553f38770b7,2
1554
+ np.float64,0x3fe73dbc44ee7b79,0xbfc1c738f8fa6b3d,2
1555
+ np.float64,0x3fd3760e4da6ec1d,0xbfe08b5b609d11e5,2
1556
+ np.float64,0x3fee1cfa297c39f4,0xbf9b06d081bc9d5b,2
1557
+ np.float64,0xdfb01561bf61,0xc0734ea55e559888,2
1558
+ np.float64,0x687bd01cd0f7b,0xc07340ab67fe1816,2
1559
+ np.float64,0x3fefc88f4cbf911f,0xbf6828c359cf19dc,2
1560
+ np.float64,0x8ad34adb15a6a,0xc0733eb1e03811e5,2
1561
+ np.float64,0x3fe2b49c12e56938,0xbfcdd8dbdbc0ce59,2
1562
+ np.float64,0x6e05037adc0a1,0xc073404f91261635,2
1563
+ np.float64,0x3fe2fd737fe5fae7,0xbfcd020407ef4d78,2
1564
+ np.float64,0x3fd0f3c0dc21e782,0xbfe2766a1ab02eae,2
1565
+ np.float64,0x28564d9850acb,0xc073474875f87c5e,2
1566
+ np.float64,0x3fe4758015a8eb00,0xbfc8ddb45134a1bd,2
1567
+ np.float64,0x7fe7f19306efe325,0x4073420f626141a7,2
1568
+ np.float64,0x7fd27f34c0a4fe69,0x40733b733d2a5b50,2
1569
+ np.float64,0x92c2366325847,0xc0733e4f04f8195a,2
1570
+ np.float64,0x3fc21f8441243f09,0xbfeb2ad23bc1ab0b,2
1571
+ np.float64,0x3fc721d3e42e43a8,0xbfe7c69bb47b40c2,2
1572
+ np.float64,0x3fe2f11a1625e234,0xbfcd26363b9c36c3,2
1573
+ np.float64,0x3fdcb585acb96b0b,0xbfd648446237cb55,2
1574
+ np.float64,0x3fd4060bf2280c18,0xbfe025fd4c8a658b,2
1575
+ np.float64,0x7fb8ae2750315c4e,0x407333d23b025d08,2
1576
+ np.float64,0x3fe3a03119a74062,0xbfcb2d6c91b38552,2
1577
+ np.float64,0x7fdd2af92bba55f1,0x40733e9d737e16e6,2
1578
+ np.float64,0x3fe50b05862a160b,0xbfc74d20815fe36b,2
1579
+ np.float64,0x164409f82c882,0xc0734b6980e19c03,2
1580
+ np.float64,0x3fe4093712a8126e,0xbfca070367fda5e3,2
1581
+ np.float64,0xae3049935c609,0xc0733d1e3608797b,2
1582
+ np.float64,0x3fd71df4b4ae3be9,0xbfdc4dcb7637600d,2
1583
+ np.float64,0x7fca01e8023403cf,0x407339006c521c49,2
1584
+ np.float64,0x3fb0c5c43e218b88,0xbff2f03211c63f25,2
1585
+ np.float64,0x3fee757af83ceaf6,0xbf95f33a6e56b454,2
1586
+ np.float64,0x3f865f1f402cbe3f,0xbfff62d9c9072bd7,2
1587
+ np.float64,0x89864e95130ca,0xc0733ec29f1e32c6,2
1588
+ np.float64,0x3fe51482bcea2905,0xbfc73414ddc8f1b7,2
1589
+ np.float64,0x7fd802f8fa3005f1,0x40733d43684e460a,2
1590
+ np.float64,0x3fbeb86ca63d70d9,0xbfed774ccca9b8f5,2
1591
+ np.float64,0x3fb355dcc826abba,0xbff1f33f9339e7a3,2
1592
+ np.float64,0x3fe506c61eaa0d8c,0xbfc7585a3f7565a6,2
1593
+ np.float64,0x7fe393f25ba727e4,0x407340a94bcea73b,2
1594
+ np.float64,0xf66f532decdeb,0xc0733ab5041feb0f,2
1595
+ np.float64,0x3fe26e872be4dd0e,0xbfceaaab466f32e0,2
1596
+ np.float64,0x3fefd9e290bfb3c5,0xbf60977d24496295,2
1597
+ np.float64,0x7fe19c5f692338be,0x40733fecef53ad95,2
1598
+ np.float64,0x3fe80365ab3006cb,0xbfbfec4090ef76ec,2
1599
+ np.float64,0x3fe88ab39eb11567,0xbfbd8099388d054d,2
1600
+ np.float64,0x3fe68fb09fad1f61,0xbfc36db9de38c2c0,2
1601
+ np.float64,0x3fe9051883b20a31,0xbfbb5b75b8cb8f24,2
1602
+ np.float64,0x3fd4708683a8e10d,0xbfdfb9b085dd8a83,2
1603
+ np.float64,0x3fe00ac11a601582,0xbfd3316af3e43500,2
1604
+ np.float64,0xd16af30ba2d5f,0xc0733bd68e8252f9,2
1605
+ np.float64,0x3fb97d654632facb,0xbff007ac1257f575,2
1606
+ np.float64,0x7fd637c10fac6f81,0x40733cb949d76546,2
1607
+ np.float64,0x7fed2cab6dba5956,0x4073436edfc3764e,2
1608
+ np.float64,0x3fed04afbbba095f,0xbfa5bfaa5074b7f4,2
1609
+ np.float64,0x0,0xfff0000000000000,2
1610
+ np.float64,0x389a1dc671345,0xc07344edd4206338,2
1611
+ np.float64,0x3fbc9ba25a393745,0xbfee74c34f49b921,2
1612
+ np.float64,0x3feee749947dce93,0xbf8f032d9cf6b5ae,2
1613
+ np.float64,0xedc4cf89db89a,0xc0733af4b2a57920,2
1614
+ np.float64,0x3fe41629eba82c54,0xbfc9e321faf79e1c,2
1615
+ np.float64,0x3feb0bcbf7b61798,0xbfb2b31e5d952869,2
1616
+ np.float64,0xad60654b5ac0d,0xc0733d26860df676,2
1617
+ np.float64,0x3fe154e1ff22a9c4,0xbfd10b416e58c867,2
1618
+ np.float64,0x7fb20e9c8a241d38,0x407331a66453b8bc,2
1619
+ np.float64,0x7fcbbaaf7d37755e,0x4073397274f28008,2
1620
+ np.float64,0x187d0fbc30fa3,0xc0734ac03cc98cc9,2
1621
+ np.float64,0x7fd153afeaa2a75f,0x40733aff00b4311d,2
1622
+ np.float64,0x3fe05310a5e0a621,0xbfd2b5386aeecaac,2
1623
+ np.float64,0x7fea863b2b750c75,0x407342c57807f700,2
1624
+ np.float64,0x3fed5f0c633abe19,0xbfa30f6cfbc4bf94,2
1625
+ np.float64,0xf227c8b3e44f9,0xc0733ad42daaec9f,2
1626
+ np.float64,0x3fe956524772aca5,0xbfb9f4cabed7081d,2
1627
+ np.float64,0xefd11af7dfa24,0xc0733ae570ed2552,2
1628
+ np.float64,0x1690fff02d221,0xc0734b51a56c2980,2
1629
+ np.float64,0x7fd2e547a825ca8e,0x40733b992d6d9635,2
venv/lib/python3.10/site-packages/numpy/core/tests/data/umath-validation-set-tan.csv ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype,input,output,ulperrortol
2
+ np.float32,0xfd97ece0,0xc11186e9,4
3
+ np.float32,0x8013bb34,0x8013bb34,4
4
+ np.float32,0x316389,0x316389,4
5
+ np.float32,0x7f7fffff,0xbf1c9eca,4
6
+ np.float32,0x3f7674bb,0x3fb7e450,4
7
+ np.float32,0x80800000,0x80800000,4
8
+ np.float32,0x7f5995e8,0xbf94106c,4
9
+ np.float32,0x74527,0x74527,4
10
+ np.float32,0x7f08caea,0xbeceddb6,4
11
+ np.float32,0x2d49b2,0x2d49b2,4
12
+ np.float32,0x3f74e5e4,0x3fb58695,4
13
+ np.float32,0x3f3fcd51,0x3f6e1e81,4
14
+ np.float32,0xbf4f3608,0xbf864d3d,4
15
+ np.float32,0xbed974a0,0xbee78c70,4
16
+ np.float32,0xff5f483c,0x3ecf3cb2,4
17
+ np.float32,0x7f4532f4,0xc0b96f7b,4
18
+ np.float32,0x3f0a4f7c,0x3f198cc0,4
19
+ np.float32,0x210193,0x210193,4
20
+ np.float32,0xfeebad7a,0xbf92eba8,4
21
+ np.float32,0xfed29f74,0xc134cab6,4
22
+ np.float32,0x803433a0,0x803433a0,4
23
+ np.float32,0x64eb46,0x64eb46,4
24
+ np.float32,0xbf54ef22,0xbf8c757b,4
25
+ np.float32,0x3f3d5fdd,0x3f69a17b,4
26
+ np.float32,0x80000001,0x80000001,4
27
+ np.float32,0x800a837a,0x800a837a,4
28
+ np.float32,0x6ff0be,0x6ff0be,4
29
+ np.float32,0xfe8f1186,0x3f518820,4
30
+ np.float32,0x804963e5,0x804963e5,4
31
+ np.float32,0xfebaa59a,0x3fa1dbb0,4
32
+ np.float32,0x637970,0x637970,4
33
+ np.float32,0x3e722a6b,0x3e76c89a,4
34
+ np.float32,0xff2b0478,0xbddccb5f,4
35
+ np.float32,0xbf7bd85b,0xbfc06821,4
36
+ np.float32,0x3ec33600,0x3ecd4126,4
37
+ np.float32,0x3e0a43b9,0x3e0b1c69,4
38
+ np.float32,0x7f7511b6,0xbe427083,4
39
+ np.float32,0x3f28c114,0x3f465a73,4
40
+ np.float32,0x3f179e1c,0x3f2c3e7c,4
41
+ np.float32,0x7b2963,0x7b2963,4
42
+ np.float32,0x3f423d06,0x3f72b442,4
43
+ np.float32,0x3f5a24c6,0x3f925508,4
44
+ np.float32,0xff18c834,0xbf79b5c8,4
45
+ np.float32,0x3f401ece,0x3f6eb6ac,4
46
+ np.float32,0x7b8a3013,0xbffab968,4
47
+ np.float32,0x80091ff0,0x80091ff0,4
48
+ np.float32,0x3f389c51,0x3f610b47,4
49
+ np.float32,0x5ea174,0x5ea174,4
50
+ np.float32,0x807a9eb2,0x807a9eb2,4
51
+ np.float32,0x806ce61e,0x806ce61e,4
52
+ np.float32,0xbe956acc,0xbe99cefc,4
53
+ np.float32,0x7e60e247,0xbf5e64a5,4
54
+ np.float32,0x7f398e24,0x404d12ed,4
55
+ np.float32,0x3d9049f8,0x3d908735,4
56
+ np.float32,0x7db17ffc,0xbf5b3d87,4
57
+ np.float32,0xff453f78,0xc0239c9f,4
58
+ np.float32,0x3f024aac,0x3f0ed802,4
59
+ np.float32,0xbe781c30,0xbe7d1508,4
60
+ np.float32,0x3f77962a,0x3fb9a28e,4
61
+ np.float32,0xff7fffff,0x3f1c9eca,4
62
+ np.float32,0x3f7152e3,0x3fb03f9d,4
63
+ np.float32,0xff7cb167,0x3f9ce831,4
64
+ np.float32,0x3e763e30,0x3e7b1a10,4
65
+ np.float32,0xbf126527,0xbf24c253,4
66
+ np.float32,0x803f6660,0x803f6660,4
67
+ np.float32,0xbf79de38,0xbfbd38b1,4
68
+ np.float32,0x8046c2f0,0x8046c2f0,4
69
+ np.float32,0x6dc74e,0x6dc74e,4
70
+ np.float32,0xbec9c45e,0xbed4e768,4
71
+ np.float32,0x3f0eedb6,0x3f1fe610,4
72
+ np.float32,0x7e031999,0xbcc13026,4
73
+ np.float32,0x7efc2fd7,0x41e4b284,4
74
+ np.float32,0xbeab7454,0xbeb22a1b,4
75
+ np.float32,0x805ee67b,0x805ee67b,4
76
+ np.float32,0x7f76e58e,0xc2436659,4
77
+ np.float32,0xbe62b024,0xbe667718,4
78
+ np.float32,0x3eea0808,0x3efbd182,4
79
+ np.float32,0xbf7fd00c,0xbfc70719,4
80
+ np.float32,0x7f27b640,0xbf0d97e0,4
81
+ np.float32,0x3f1b58a4,0x3f31b6f4,4
82
+ np.float32,0x252a9f,0x252a9f,4
83
+ np.float32,0x7f65f95a,0xbead5de3,4
84
+ np.float32,0xfc6ea780,0x42d15801,4
85
+ np.float32,0x7eac4c52,0xc0682424,4
86
+ np.float32,0xbe8a3f5a,0xbe8db54d,4
87
+ np.float32,0xbf1644e2,0xbf2a4abd,4
88
+ np.float32,0x3fc96a,0x3fc96a,4
89
+ np.float32,0x7f38c0e4,0x3cc04af8,4
90
+ np.float32,0x3f623d75,0x3f9c065d,4
91
+ np.float32,0x3ee6a51a,0x3ef7a058,4
92
+ np.float32,0x3dd11020,0x3dd1cacf,4
93
+ np.float32,0xb6918,0xb6918,4
94
+ np.float32,0xfdd7a540,0x3f22f081,4
95
+ np.float32,0x80798563,0x80798563,4
96
+ np.float32,0x3e9a8b7a,0x3e9f6a7e,4
97
+ np.float32,0xbea515d4,0xbeab0df5,4
98
+ np.float32,0xbea9b9f4,0xbeb03abe,4
99
+ np.float32,0xbf11a5fa,0xbf23b478,4
100
+ np.float32,0xfd6cadf0,0xbfa2a878,4
101
+ np.float32,0xbf6edd07,0xbfacbb78,4
102
+ np.float32,0xff5c5328,0x3e2d1552,4
103
+ np.float32,0xbea2f788,0xbea8b3f5,4
104
+ np.float32,0x802efaeb,0x802efaeb,4
105
+ np.float32,0xff1c85e5,0x41f8560e,4
106
+ np.float32,0x3f53b123,0x3f8b18e1,4
107
+ np.float32,0xff798c4a,0x4092e66f,4
108
+ np.float32,0x7f2e6fe7,0xbdcbd58f,4
109
+ np.float32,0xfe8a8196,0x3fd7fc56,4
110
+ np.float32,0x5e7ad4,0x5e7ad4,4
111
+ np.float32,0xbf23a02d,0xbf3e4533,4
112
+ np.float32,0x3f31c55c,0x3f5531bf,4
113
+ np.float32,0x80331be3,0x80331be3,4
114
+ np.float32,0x8056960a,0x8056960a,4
115
+ np.float32,0xff1c06ae,0xbfd26992,4
116
+ np.float32,0xbe0cc4b0,0xbe0da96c,4
117
+ np.float32,0x7e925ad5,0xbf8dba54,4
118
+ np.float32,0x2c8cec,0x2c8cec,4
119
+ np.float32,0x8011951e,0x8011951e,4
120
+ np.float32,0x3f2caf84,0x3f4cb89f,4
121
+ np.float32,0xbd32c220,0xbd32df33,4
122
+ np.float32,0xbec358d6,0xbecd6996,4
123
+ np.float32,0x3f6e4930,0x3fabeb92,4
124
+ np.float32,0xbf6a3afd,0xbfa65a3a,4
125
+ np.float32,0x80067764,0x80067764,4
126
+ np.float32,0x3d8df1,0x3d8df1,4
127
+ np.float32,0x7ee51cf2,0x409e4061,4
128
+ np.float32,0x435f5d,0x435f5d,4
129
+ np.float32,0xbf5b17f7,0xbf936ebe,4
130
+ np.float32,0x3ecaacb5,0x3ed5f81f,4
131
+ np.float32,0x807b0aa5,0x807b0aa5,4
132
+ np.float32,0x52b40b,0x52b40b,4
133
+ np.float32,0x146a97,0x146a97,4
134
+ np.float32,0x7f42b952,0xbfdcb413,4
135
+ np.float32,0xbf1a1af2,0xbf2fe1bb,4
136
+ np.float32,0x3f312034,0x3f541aa2,4
137
+ np.float32,0x3f281d60,0x3f4554f9,4
138
+ np.float32,0x50e451,0x50e451,4
139
+ np.float32,0xbe45838c,0xbe480016,4
140
+ np.float32,0xff7d0aeb,0x3eb0746e,4
141
+ np.float32,0x7f32a489,0xbf96af6d,4
142
+ np.float32,0xbf1b4e27,0xbf31a769,4
143
+ np.float32,0x3f242936,0x3f3f1a44,4
144
+ np.float32,0xbf7482ff,0xbfb4f201,4
145
+ np.float32,0x4bda38,0x4bda38,4
146
+ np.float32,0xbf022208,0xbf0ea2bb,4
147
+ np.float32,0x7d08ca95,0xbe904602,4
148
+ np.float32,0x7ed2f356,0xc02b55ad,4
149
+ np.float32,0xbf131204,0xbf25b734,4
150
+ np.float32,0xff3464b4,0x3fb23706,4
151
+ np.float32,0x5a97cf,0x5a97cf,4
152
+ np.float32,0xbe52db70,0xbe55e388,4
153
+ np.float32,0x3f52934f,0x3f89e2aa,4
154
+ np.float32,0xfeea866a,0x40a2b33f,4
155
+ np.float32,0x80333925,0x80333925,4
156
+ np.float32,0xfef5d13e,0xc00139ec,4
157
+ np.float32,0x3f4750ab,0x3f7c87ad,4
158
+ np.float32,0x3e41bfdd,0x3e44185a,4
159
+ np.float32,0xbf5b0572,0xbf935935,4
160
+ np.float32,0xbe93c9da,0xbe9808d8,4
161
+ np.float32,0x7f501f33,0xc0f9973c,4
162
+ np.float32,0x800af035,0x800af035,4
163
+ np.float32,0x3f29faf8,0x3f4852a8,4
164
+ np.float32,0xbe1e4c20,0xbe1f920c,4
165
+ np.float32,0xbf7e8616,0xbfc4d79d,4
166
+ np.float32,0x43ffbf,0x43ffbf,4
167
+ np.float32,0x7f28e8a9,0xbfa1ac24,4
168
+ np.float32,0xbf1f9f92,0xbf3820bc,4
169
+ np.float32,0x3f07e004,0x3f1641c4,4
170
+ np.float32,0x3ef7ea7f,0x3f06a64a,4
171
+ np.float32,0x7e013101,0x3f6080e6,4
172
+ np.float32,0x7f122a4f,0xbf0a796f,4
173
+ np.float32,0xfe096960,0x3ed7273a,4
174
+ np.float32,0x3f06abf1,0x3f14a4b2,4
175
+ np.float32,0x3e50ded3,0x3e53d0f1,4
176
+ np.float32,0x7f50b346,0x3eabb536,4
177
+ np.float32,0xff5adb0f,0xbd441972,4
178
+ np.float32,0xbecefe46,0xbedb0f66,4
179
+ np.float32,0x7da70bd4,0xbec66273,4
180
+ np.float32,0x169811,0x169811,4
181
+ np.float32,0xbee4dfee,0xbef5721a,4
182
+ np.float32,0x3efbeae3,0x3f0936e6,4
183
+ np.float32,0x8031bd61,0x8031bd61,4
184
+ np.float32,0x8048e443,0x8048e443,4
185
+ np.float32,0xff209aa6,0xbeb364cb,4
186
+ np.float32,0xff477499,0x3c1b0041,4
187
+ np.float32,0x803fe929,0x803fe929,4
188
+ np.float32,0x3f70158b,0x3fae7725,4
189
+ np.float32,0x7f795723,0x3e8e850a,4
190
+ np.float32,0x3cba99,0x3cba99,4
191
+ np.float32,0x80588d2a,0x80588d2a,4
192
+ np.float32,0x805d1f05,0x805d1f05,4
193
+ np.float32,0xff4ac09a,0xbefe614d,4
194
+ np.float32,0x804af084,0x804af084,4
195
+ np.float32,0x7c64ae63,0xc1a8b563,4
196
+ np.float32,0x8078d793,0x8078d793,4
197
+ np.float32,0x7f3e2436,0xbf8bf9d3,4
198
+ np.float32,0x7ccec1,0x7ccec1,4
199
+ np.float32,0xbf6462c7,0xbf9eb830,4
200
+ np.float32,0x3f1002ca,0x3f216843,4
201
+ np.float32,0xfe878ca6,0x409e73a5,4
202
+ np.float32,0x3bd841d9,0x3bd842a7,4
203
+ np.float32,0x7d406f41,0xbd9dcfa3,4
204
+ np.float32,0x7c6d6,0x7c6d6,4
205
+ np.float32,0x3f4ef360,0x3f86074b,4
206
+ np.float32,0x805f534a,0x805f534a,4
207
+ np.float32,0x1,0x1,4
208
+ np.float32,0x3f739ee2,0x3fb39db2,4
209
+ np.float32,0x3d0c2352,0x3d0c3153,4
210
+ np.float32,0xfe8a4f2c,0x3edd8add,4
211
+ np.float32,0x3e52eaa0,0x3e55f362,4
212
+ np.float32,0x7bde9758,0xbf5ba5cf,4
213
+ np.float32,0xff422654,0xbf41e487,4
214
+ np.float32,0x385e5b,0x385e5b,4
215
+ np.float32,0x5751dd,0x5751dd,4
216
+ np.float32,0xff6c671c,0xc03e2d6d,4
217
+ np.float32,0x1458be,0x1458be,4
218
+ np.float32,0x80153d4d,0x80153d4d,4
219
+ np.float32,0x7efd2adb,0x3e25458f,4
220
+ np.float32,0xbe161880,0xbe172e12,4
221
+ np.float32,0x7ecea1aa,0x40a66d79,4
222
+ np.float32,0xbf5b02a2,0xbf9355f0,4
223
+ np.float32,0x15d9ab,0x15d9ab,4
224
+ np.float32,0x2dc7c7,0x2dc7c7,4
225
+ np.float32,0xfebbf81a,0x4193f6e6,4
226
+ np.float32,0xfe8e3594,0xc00a6695,4
227
+ np.float32,0x185aa8,0x185aa8,4
228
+ np.float32,0x3daea156,0x3daf0e00,4
229
+ np.float32,0x3e071688,0x3e07e08e,4
230
+ np.float32,0x802db9e6,0x802db9e6,4
231
+ np.float32,0x7f7be2c4,0x3f1363dd,4
232
+ np.float32,0x7eba3f5e,0xc13eb497,4
233
+ np.float32,0x3de04a00,0x3de130a9,4
234
+ np.float32,0xbf1022bc,0xbf2194eb,4
235
+ np.float32,0xbf5b547e,0xbf93b53b,4
236
+ np.float32,0x3e867bd6,0x3e89aa10,4
237
+ np.float32,0xbea5eb5c,0xbeabfb73,4
238
+ np.float32,0x7f1efae9,0x3ffca038,4
239
+ np.float32,0xff5d0344,0xbe55dbbb,4
240
+ np.float32,0x805167e7,0x805167e7,4
241
+ np.float32,0xbdb3a020,0xbdb41667,4
242
+ np.float32,0xbedea6b4,0xbeedd5fd,4
243
+ np.float32,0x8053b45c,0x8053b45c,4
244
+ np.float32,0x7ed370e9,0x3d90eba5,4
245
+ np.float32,0xbefcd7da,0xbf09cf91,4
246
+ np.float32,0x78b9ac,0x78b9ac,4
247
+ np.float32,0xbf2f6dc0,0xbf5141ef,4
248
+ np.float32,0x802d3a7b,0x802d3a7b,4
249
+ np.float32,0xfd45d120,0x3fec31cc,4
250
+ np.float32,0xbf7e7020,0xbfc4b2af,4
251
+ np.float32,0xf04da,0xf04da,4
252
+ np.float32,0xbe9819d4,0xbe9cbd35,4
253
+ np.float32,0x8075ab35,0x8075ab35,4
254
+ np.float32,0xbf052fdc,0xbf12aa2c,4
255
+ np.float32,0x3f1530d0,0x3f28bd9f,4
256
+ np.float32,0x80791881,0x80791881,4
257
+ np.float32,0x67f309,0x67f309,4
258
+ np.float32,0x3f12f16a,0x3f2588f5,4
259
+ np.float32,0x3ecdac47,0x3ed97ff8,4
260
+ np.float32,0xbf297fb7,0xbf478c39,4
261
+ np.float32,0x8069fa80,0x8069fa80,4
262
+ np.float32,0x807f940e,0x807f940e,4
263
+ np.float32,0xbf648dc8,0xbf9eeecb,4
264
+ np.float32,0x3de873b0,0x3de9748d,4
265
+ np.float32,0x3f1aa645,0x3f30af1f,4
266
+ np.float32,0xff227a62,0x3d8283cc,4
267
+ np.float32,0xbf37187d,0xbf5e5f4c,4
268
+ np.float32,0x803b1b1f,0x803b1b1f,4
269
+ np.float32,0x3f58142a,0x3f8ff8da,4
270
+ np.float32,0x8004339e,0x8004339e,4
271
+ np.float32,0xbf0f5654,0xbf2077a4,4
272
+ np.float32,0x3f17e509,0x3f2ca598,4
273
+ np.float32,0x3f800000,0x3fc75923,4
274
+ np.float32,0xfdf79980,0x42f13047,4
275
+ np.float32,0x7f111381,0x3f13c4c9,4
276
+ np.float32,0xbea40c70,0xbea9e724,4
277
+ np.float32,0x110520,0x110520,4
278
+ np.float32,0x60490d,0x60490d,4
279
+ np.float32,0x3f6703ec,0x3fa21951,4
280
+ np.float32,0xbf098256,0xbf187652,4
281
+ np.float32,0x658951,0x658951,4
282
+ np.float32,0x3f53bf16,0x3f8b2818,4
283
+ np.float32,0xff451811,0xc0026068,4
284
+ np.float32,0x80777ee0,0x80777ee0,4
285
+ np.float32,0x3e4fcc19,0x3e52b286,4
286
+ np.float32,0x7f387ee0,0x3ce93eb6,4
287
+ np.float32,0xff51181f,0xbfca3ee4,4
288
+ np.float32,0xbf5655ae,0xbf8e0304,4
289
+ np.float32,0xff2f1dcd,0x40025471,4
290
+ np.float32,0x7f6e58e5,0xbe9930d5,4
291
+ np.float32,0x7adf11,0x7adf11,4
292
+ np.float32,0xbe9a2bc2,0xbe9f0185,4
293
+ np.float32,0x8065d3a0,0x8065d3a0,4
294
+ np.float32,0x3ed6e826,0x3ee47c45,4
295
+ np.float32,0x80598ea0,0x80598ea0,4
296
+ np.float32,0x7f10b90a,0x40437bd0,4
297
+ np.float32,0x27b447,0x27b447,4
298
+ np.float32,0x7ecd861c,0x3fce250f,4
299
+ np.float32,0x0,0x0,4
300
+ np.float32,0xbeba82d6,0xbec3394c,4
301
+ np.float32,0xbf4958b0,0xbf8048ea,4
302
+ np.float32,0x7c643e,0x7c643e,4
303
+ np.float32,0x580770,0x580770,4
304
+ np.float32,0x805bf54a,0x805bf54a,4
305
+ np.float32,0x7f1f3cee,0xbe1a54d6,4
306
+ np.float32,0xfefefdea,0x3fa84576,4
307
+ np.float32,0x7f007b7a,0x3e8a6d25,4
308
+ np.float32,0xbf177959,0xbf2c0919,4
309
+ np.float32,0xbf30fda0,0xbf53e058,4
310
+ np.float32,0x3f0576be,0x3f130861,4
311
+ np.float32,0x3f49380e,0x3f80283a,4
312
+ np.float32,0xebc56,0xebc56,4
313
+ np.float32,0x654e3b,0x654e3b,4
314
+ np.float32,0x14a4d8,0x14a4d8,4
315
+ np.float32,0xff69b3cb,0xbf822a88,4
316
+ np.float32,0xbe9b6c1c,0xbea06109,4
317
+ np.float32,0xbefddd7e,0xbf0a787b,4
318
+ np.float32,0x4c4ebb,0x4c4ebb,4
319
+ np.float32,0x7d0a74,0x7d0a74,4
320
+ np.float32,0xbebb5f80,0xbec43635,4
321
+ np.float32,0x7ee79723,0xc1c7f3f3,4
322
+ np.float32,0x7f2be4c7,0xbfa6c693,4
323
+ np.float32,0x805bc7d5,0x805bc7d5,4
324
+ np.float32,0x8042f12c,0x8042f12c,4
325
+ np.float32,0x3ef91be8,0x3f07697b,4
326
+ np.float32,0x3cf37ac0,0x3cf38d1c,4
327
+ np.float32,0x800000,0x800000,4
328
+ np.float32,0xbe1ebf4c,0xbe200806,4
329
+ np.float32,0x7f380862,0xbeb512e8,4
330
+ np.float32,0xbe320064,0xbe33d0fc,4
331
+ np.float32,0xff300b0c,0xbfadb805,4
332
+ np.float32,0x308a06,0x308a06,4
333
+ np.float32,0xbf084f6e,0xbf16d7b6,4
334
+ np.float32,0xff47cab6,0x3f892b65,4
335
+ np.float32,0xbed99f4a,0xbee7bfd5,4
336
+ np.float32,0xff7d74c0,0x3ee88c9a,4
337
+ np.float32,0x3c3d23,0x3c3d23,4
338
+ np.float32,0x8074bde8,0x8074bde8,4
339
+ np.float32,0x80042164,0x80042164,4
340
+ np.float32,0x3e97c92a,0x3e9c6500,4
341
+ np.float32,0x3b80e0,0x3b80e0,4
342
+ np.float32,0xbf16646a,0xbf2a783d,4
343
+ np.float32,0x7f3b4cb1,0xc01339be,4
344
+ np.float32,0xbf31f36e,0xbf557fd0,4
345
+ np.float32,0x7f540618,0xbe5f6fc1,4
346
+ np.float32,0x7eee47d0,0x40a27e94,4
347
+ np.float32,0x7f12f389,0xbebed654,4
348
+ np.float32,0x56cff5,0x56cff5,4
349
+ np.float32,0x8056032b,0x8056032b,4
350
+ np.float32,0x3ed34e40,0x3ee02e38,4
351
+ np.float32,0x7d51a908,0xbf19a90e,4
352
+ np.float32,0x80000000,0x80000000,4
353
+ np.float32,0xfdf73fd0,0xbf0f8cad,4
354
+ np.float32,0x7ee4fe6d,0xbf1ea7e4,4
355
+ np.float32,0x1f15ba,0x1f15ba,4
356
+ np.float32,0xd18c3,0xd18c3,4
357
+ np.float32,0x80797705,0x80797705,4
358
+ np.float32,0x7ef07091,0x3f2f3b9a,4
359
+ np.float32,0x7f552f41,0x3faf608c,4
360
+ np.float32,0x3f779977,0x3fb9a7ad,4
361
+ np.float32,0xfe1a7a50,0xbdadc4d1,4
362
+ np.float32,0xbf449cf0,0xbf7740db,4
363
+ np.float32,0xbe44e620,0xbe475cad,4
364
+ np.float32,0x3f63a098,0x3f9dc2b5,4
365
+ np.float32,0xfed40a12,0x4164533a,4
366
+ np.float32,0x7a2bbb,0x7a2bbb,4
367
+ np.float32,0xff7f7b9e,0xbeee8740,4
368
+ np.float32,0x7ee27f8b,0x4233f53b,4
369
+ np.float32,0xbf044c06,0xbf117c28,4
370
+ np.float32,0xbeffde54,0xbf0bc49f,4
371
+ np.float32,0xfeaef2e8,0x3ff258fe,4
372
+ np.float32,0x527451,0x527451,4
373
+ np.float32,0xbcef8d00,0xbcef9e7c,4
374
+ np.float32,0xbf0e20c0,0xbf1ec9b2,4
375
+ np.float32,0x8024afda,0x8024afda,4
376
+ np.float32,0x7ef6cb3e,0x422cad0b,4
377
+ np.float32,0x3c120,0x3c120,4
378
+ np.float32,0xbf125c8f,0xbf24b62c,4
379
+ np.float32,0x7e770a93,0x402c9d86,4
380
+ np.float32,0xbd30a4e0,0xbd30c0ee,4
381
+ np.float32,0xbf4d3388,0xbf843530,4
382
+ np.float32,0x3f529072,0x3f89df92,4
383
+ np.float32,0xff0270b1,0xbf81be9a,4
384
+ np.float32,0x5e07e7,0x5e07e7,4
385
+ np.float32,0x7bec32,0x7bec32,4
386
+ np.float32,0x7fc00000,0x7fc00000,4
387
+ np.float32,0x3e3ba5e0,0x3e3dc6e9,4
388
+ np.float32,0x3ecb62d4,0x3ed6ce2c,4
389
+ np.float32,0x3eb3dde8,0x3ebba68f,4
390
+ np.float32,0x8063f952,0x8063f952,4
391
+ np.float32,0x7f204aeb,0x3e88614e,4
392
+ np.float32,0xbeae1ddc,0xbeb5278e,4
393
+ np.float32,0x6829e9,0x6829e9,4
394
+ np.float32,0xbf361a99,0xbf5ca354,4
395
+ np.float32,0xbf24fbe6,0xbf406326,4
396
+ np.float32,0x3f329d41,0x3f56a061,4
397
+ np.float32,0xfed6d666,0x3e8f71a5,4
398
+ np.float32,0x337f92,0x337f92,4
399
+ np.float32,0xbe1c4970,0xbe1d8305,4
400
+ np.float32,0xbe6b7e18,0xbe6fbbde,4
401
+ np.float32,0x3f2267b9,0x3f3c61da,4
402
+ np.float32,0xbee1ee94,0xbef1d628,4
403
+ np.float32,0x7ecffc1a,0x3f02987e,4
404
+ np.float32,0xbe9b1306,0xbe9fff3b,4
405
+ np.float32,0xbeffacae,0xbf0ba468,4
406
+ np.float32,0x7f800000,0xffc00000,4
407
+ np.float32,0xfefc9aa8,0xc19de2a3,4
408
+ np.float32,0x7d7185bb,0xbf9090ec,4
409
+ np.float32,0x7edfbafd,0x3fe9352f,4
410
+ np.float32,0x4ef2ec,0x4ef2ec,4
411
+ np.float32,0x7f4cab2e,0xbff4e5dd,4
412
+ np.float32,0xff3b1788,0x3e3c22e9,4
413
+ np.float32,0x4e15ee,0x4e15ee,4
414
+ np.float32,0xbf5451e6,0xbf8bc8a7,4
415
+ np.float32,0x3f7f6d2e,0x3fc65e8b,4
416
+ np.float32,0xbf1d9184,0xbf35071b,4
417
+ np.float32,0xbf3a81cf,0xbf646d9b,4
418
+ np.float32,0xbe71acc4,0xbe7643ab,4
419
+ np.float32,0x528b7d,0x528b7d,4
420
+ np.float32,0x2cb1d0,0x2cb1d0,4
421
+ np.float32,0x3f324bf8,0x3f56161a,4
422
+ np.float32,0x80709a21,0x80709a21,4
423
+ np.float32,0x4bc448,0x4bc448,4
424
+ np.float32,0x3e8bd600,0x3e8f6b7a,4
425
+ np.float32,0xbeb97d30,0xbec20dd6,4
426
+ np.float32,0x2a5669,0x2a5669,4
427
+ np.float32,0x805f2689,0x805f2689,4
428
+ np.float32,0xfe569f50,0x3fc51952,4
429
+ np.float32,0x1de44c,0x1de44c,4
430
+ np.float32,0x3ec7036c,0x3ed1ae67,4
431
+ np.float32,0x8052b8e5,0x8052b8e5,4
432
+ np.float32,0xff740a6b,0x3f4981a8,4
433
+ np.float32,0xfee9bb70,0xc05e23be,4
434
+ np.float32,0xff4e12c9,0x4002b4ad,4
435
+ np.float32,0x803de0c2,0x803de0c2,4
436
+ np.float32,0xbf433a07,0xbf74966f,4
437
+ np.float32,0x803e60ca,0x803e60ca,4
438
+ np.float32,0xbf19ee98,0xbf2fa07a,4
439
+ np.float32,0x92929,0x92929,4
440
+ np.float32,0x7f709c27,0x4257ba2d,4
441
+ np.float32,0x803167c6,0x803167c6,4
442
+ np.float32,0xbf095ead,0xbf184607,4
443
+ np.float32,0x617060,0x617060,4
444
+ np.float32,0x2d85b3,0x2d85b3,4
445
+ np.float32,0x53d20b,0x53d20b,4
446
+ np.float32,0x3e046838,0x3e052666,4
447
+ np.float32,0xbe7c5fdc,0xbe80ce4b,4
448
+ np.float32,0x3d18d060,0x3d18e289,4
449
+ np.float32,0x804dc031,0x804dc031,4
450
+ np.float32,0x3f224166,0x3f3c26cd,4
451
+ np.float32,0x7d683e3c,0xbea24f25,4
452
+ np.float32,0xbf3a92aa,0xbf648be4,4
453
+ np.float32,0x8072670b,0x8072670b,4
454
+ np.float32,0xbe281aec,0xbe29a1bc,4
455
+ np.float32,0x7f09d918,0xc0942490,4
456
+ np.float32,0x7ca9fd07,0x4018b990,4
457
+ np.float32,0x7d36ac5d,0x3cf57184,4
458
+ np.float32,0x8039b62f,0x8039b62f,4
459
+ np.float32,0x6cad7b,0x6cad7b,4
460
+ np.float32,0x3c0fd9ab,0x3c0fda9d,4
461
+ np.float32,0x80299883,0x80299883,4
462
+ np.float32,0x3c2d0e3e,0x3c2d0fe4,4
463
+ np.float32,0x8002cf62,0x8002cf62,4
464
+ np.float32,0x801dde97,0x801dde97,4
465
+ np.float32,0x80411856,0x80411856,4
466
+ np.float32,0x6ebce8,0x6ebce8,4
467
+ np.float32,0x7b7d1a,0x7b7d1a,4
468
+ np.float32,0x8031d3de,0x8031d3de,4
469
+ np.float32,0x8005c4ab,0x8005c4ab,4
470
+ np.float32,0xbf7dd803,0xbfc3b3ef,4
471
+ np.float32,0x8017ae60,0x8017ae60,4
472
+ np.float32,0xfe9316ce,0xbfe0544a,4
473
+ np.float32,0x3f136bfe,0x3f2636ff,4
474
+ np.float32,0x3df87b80,0x3df9b57d,4
475
+ np.float32,0xff44c356,0xbf11c7ad,4
476
+ np.float32,0x4914ae,0x4914ae,4
477
+ np.float32,0x80524c21,0x80524c21,4
478
+ np.float32,0x805c7dc8,0x805c7dc8,4
479
+ np.float32,0xfed3c0aa,0xbff0c0ab,4
480
+ np.float32,0x7eb2bfbb,0xbf4600bc,4
481
+ np.float32,0xfec8df84,0x3f5bd350,4
482
+ np.float32,0x3e5431a4,0x3e5748c3,4
483
+ np.float32,0xbee6a3a0,0xbef79e86,4
484
+ np.float32,0xbf6cc9b2,0xbfa9d61a,4
485
+ np.float32,0x3f132bd5,0x3f25dbd9,4
486
+ np.float32,0x7e6d2e48,0x3f9d025b,4
487
+ np.float32,0x3edf430c,0x3eee942d,4
488
+ np.float32,0x3f0d1b8a,0x3f1d60e1,4
489
+ np.float32,0xbdf2f688,0xbdf41bfb,4
490
+ np.float32,0xbe47a284,0xbe4a33ff,4
491
+ np.float32,0x3eaa9fbc,0x3eb13be7,4
492
+ np.float32,0xfe98d45e,0x3eb84517,4
493
+ np.float32,0x7efc23b3,0x3dcc1c99,4
494
+ np.float32,0x3ca36242,0x3ca367ce,4
495
+ np.float32,0x3f76a944,0x3fb834e3,4
496
+ np.float32,0xbf45207c,0xbf783f9b,4
497
+ np.float32,0x3e7c1220,0x3e80a4f8,4
498
+ np.float32,0x3f018200,0x3f0dd14e,4
499
+ np.float32,0x3f53cdde,0x3f8b3839,4
500
+ np.float32,0xbdbacb58,0xbdbb5063,4
501
+ np.float32,0x804af68d,0x804af68d,4
502
+ np.float32,0x3e2c12fc,0x3e2db65b,4
503
+ np.float32,0x3f039433,0x3f10895a,4
504
+ np.float32,0x7ef5193d,0x3f4115f7,4
505
+ np.float32,0x8030afbe,0x8030afbe,4
506
+ np.float32,0x3f06fa2a,0x3f150d5d,4
507
+ np.float32,0x3f124442,0x3f2493d2,4
508
+ np.float32,0xbeb5b792,0xbebdc090,4
509
+ np.float32,0xbedc90a4,0xbeeb4de9,4
510
+ np.float32,0x3f3ff8,0x3f3ff8,4
511
+ np.float32,0x3ee75bc5,0x3ef881e4,4
512
+ np.float32,0xfe80e3de,0xbf5cd535,4
513
+ np.float32,0xf52eb,0xf52eb,4
514
+ np.float32,0x80660ee8,0x80660ee8,4
515
+ np.float32,0x3e173a58,0x3e185648,4
516
+ np.float32,0xfe49520c,0xbf728d7c,4
517
+ np.float32,0xbecbb8ec,0xbed73373,4
518
+ np.float32,0xbf027ae0,0xbf0f173e,4
519
+ np.float32,0xbcab6740,0xbcab6da8,4
520
+ np.float32,0xbf2a15e2,0xbf487e11,4
521
+ np.float32,0x3b781b,0x3b781b,4
522
+ np.float32,0x44f559,0x44f559,4
523
+ np.float32,0xff6a0ca6,0xc174d7c3,4
524
+ np.float32,0x6460ef,0x6460ef,4
525
+ np.float32,0xfe58009c,0x3ee2bb30,4
526
+ np.float32,0xfec3c038,0x3e30d617,4
527
+ np.float32,0x7f0687c0,0xbf62c820,4
528
+ np.float32,0xbf44655e,0xbf76d589,4
529
+ np.float32,0xbf42968c,0xbf735e78,4
530
+ np.float32,0x80385503,0x80385503,4
531
+ np.float32,0xbea7e3a2,0xbeae2d59,4
532
+ np.float32,0x3dd0b770,0x3dd17131,4
533
+ np.float32,0xbf4bc185,0xbf82b907,4
534
+ np.float32,0xfefd7d64,0xbee05650,4
535
+ np.float32,0xfaac3c00,0xbff23bc9,4
536
+ np.float32,0xbf562f0d,0xbf8dd7f4,4
537
+ np.float32,0x7fa00000,0x7fe00000,4
538
+ np.float32,0x3e01bdb8,0x3e027098,4
539
+ np.float32,0x3e2868ab,0x3e29f19e,4
540
+ np.float32,0xfec55f2e,0x3f39f304,4
541
+ np.float32,0xed4e,0xed4e,4
542
+ np.float32,0x3e2b7330,0x3e2d11fa,4
543
+ np.float32,0x7f738542,0x40cbbe16,4
544
+ np.float32,0x3f123521,0x3f247e71,4
545
+ np.float32,0x73572c,0x73572c,4
546
+ np.float32,0x804936c8,0x804936c8,4
547
+ np.float32,0x803b80d8,0x803b80d8,4
548
+ np.float32,0x7f566c57,0xbee2855a,4
549
+ np.float32,0xff0e3bd8,0xbff0543f,4
550
+ np.float32,0x7d2b2fe7,0xbf94ba4c,4
551
+ np.float32,0xbf0da470,0xbf1e1dc2,4
552
+ np.float32,0xbd276500,0xbd277ce0,4
553
+ np.float32,0xfcd15dc0,0x403ccc2a,4
554
+ np.float32,0x80071e59,0x80071e59,4
555
+ np.float32,0xbe9b0c34,0xbe9ff7be,4
556
+ np.float32,0x3f4f9069,0x3f86ac50,4
557
+ np.float32,0x80042a95,0x80042a95,4
558
+ np.float32,0x7de28e39,0x3bc9b7f4,4
559
+ np.float32,0xbf641935,0xbf9e5af8,4
560
+ np.float32,0x8034f068,0x8034f068,4
561
+ np.float32,0xff33a3d2,0xbf408e75,4
562
+ np.float32,0xbcc51540,0xbcc51efc,4
563
+ np.float32,0xff6d1ddf,0x3ef58f0e,4
564
+ np.float32,0xbf64dfc4,0xbf9f5725,4
565
+ np.float32,0xff068a06,0x3eea8987,4
566
+ np.float32,0xff01c0af,0x3f24cdfe,4
567
+ np.float32,0x3f4def7e,0x3f84f802,4
568
+ np.float32,0xbf1b4ae7,0xbf31a299,4
569
+ np.float32,0x8077df2d,0x8077df2d,4
570
+ np.float32,0x3f0155c5,0x3f0d9785,4
571
+ np.float32,0x5a54b2,0x5a54b2,4
572
+ np.float32,0x7f271f9e,0x3efb2ef3,4
573
+ np.float32,0xbf0ff2ec,0xbf215217,4
574
+ np.float32,0x7f500130,0xbf8a7fdd,4
575
+ np.float32,0xfed9891c,0xbf65c872,4
576
+ np.float32,0xfecbfaae,0x403bdbc2,4
577
+ np.float32,0x3f3a5aba,0x3f642772,4
578
+ np.float32,0x7ebc681e,0xbd8df059,4
579
+ np.float32,0xfe05e400,0xbfe35d74,4
580
+ np.float32,0xbf295ace,0xbf4750ea,4
581
+ np.float32,0x7ea055b2,0x3f62d6be,4
582
+ np.float32,0xbd00b520,0xbd00bff9,4
583
+ np.float32,0xbf7677aa,0xbfb7e8cf,4
584
+ np.float32,0x3e83f788,0x3e86f816,4
585
+ np.float32,0x801f6710,0x801f6710,4
586
+ np.float32,0x801133cc,0x801133cc,4
587
+ np.float32,0x41da2a,0x41da2a,4
588
+ np.float32,0xff1622fd,0x3f023650,4
589
+ np.float32,0x806c7a72,0x806c7a72,4
590
+ np.float32,0x3f10779c,0x3f220bb4,4
591
+ np.float32,0xbf08cf94,0xbf17848d,4
592
+ np.float32,0xbecb55b4,0xbed6bebd,4
593
+ np.float32,0xbf0a1528,0xbf193d7b,4
594
+ np.float32,0x806a16bd,0x806a16bd,4
595
+ np.float32,0xc222a,0xc222a,4
596
+ np.float32,0x3930de,0x3930de,4
597
+ np.float32,0x3f5c3588,0x3f94bca2,4
598
+ np.float32,0x1215ad,0x1215ad,4
599
+ np.float32,0x3ed15030,0x3eddcf67,4
600
+ np.float32,0x7da83b2e,0x3fce0d39,4
601
+ np.float32,0x32b0a8,0x32b0a8,4
602
+ np.float32,0x805aed6b,0x805aed6b,4
603
+ np.float32,0x3ef8e02f,0x3f074346,4
604
+ np.float32,0xbdeb6780,0xbdec7250,4
605
+ np.float32,0x3f6e3cec,0x3fabda61,4
606
+ np.float32,0xfefd467a,0x3ef7821a,4
607
+ np.float32,0xfef090fe,0x3bb752a2,4
608
+ np.float32,0x8019c538,0x8019c538,4
609
+ np.float32,0x3e8cf284,0x3e909e81,4
610
+ np.float32,0xbe6c6618,0xbe70b0a2,4
611
+ np.float32,0x7f50a539,0x3f367be1,4
612
+ np.float32,0x8019fe2f,0x8019fe2f,4
613
+ np.float32,0x800c3f48,0x800c3f48,4
614
+ np.float32,0xfd054cc0,0xc0f52802,4
615
+ np.float32,0x3d0cca20,0x3d0cd853,4
616
+ np.float32,0xbf4a7c44,0xbf816e74,4
617
+ np.float32,0x3f46fc40,0x3f7be153,4
618
+ np.float32,0x807c5849,0x807c5849,4
619
+ np.float32,0xd7e41,0xd7e41,4
620
+ np.float32,0x70589b,0x70589b,4
621
+ np.float32,0x80357b95,0x80357b95,4
622
+ np.float32,0x3de239f0,0x3de326a5,4
623
+ np.float32,0x800b08e3,0x800b08e3,4
624
+ np.float32,0x807ec946,0x807ec946,4
625
+ np.float32,0x3e2e4b83,0x3e2fff76,4
626
+ np.float32,0x3f198e0f,0x3f2f12a6,4
627
+ np.float32,0xbecb1aca,0xbed67979,4
628
+ np.float32,0x80134082,0x80134082,4
629
+ np.float32,0x3f3a269f,0x3f63ca05,4
630
+ np.float32,0x3f1381e4,0x3f265622,4
631
+ np.float32,0xff293080,0xbf10be6f,4
632
+ np.float32,0xff800000,0xffc00000,4
633
+ np.float32,0x37d196,0x37d196,4
634
+ np.float32,0x7e57eea7,0x3e7d8138,4
635
+ np.float32,0x804b1dae,0x804b1dae,4
636
+ np.float32,0x7d9508f9,0xc1075b35,4
637
+ np.float32,0x3f7bf468,0x3fc095e0,4
638
+ np.float32,0x55472c,0x55472c,4
639
+ np.float32,0x3ecdcd86,0x3ed9a738,4
640
+ np.float32,0x3ed9be0f,0x3ee7e4e9,4
641
+ np.float32,0x3e7e0ddb,0x3e81b2fe,4
642
+ np.float32,0x7ee6c1d3,0x3f850634,4
643
+ np.float32,0x800f6fad,0x800f6fad,4
644
+ np.float32,0xfefb3bd6,0xbff68ecc,4
645
+ np.float32,0x8013d6e2,0x8013d6e2,4
646
+ np.float32,0x3f3a2cb6,0x3f63d4ee,4
647
+ np.float32,0xff383c84,0x3e7854bb,4
648
+ np.float32,0x3f21946e,0x3f3b1cea,4
649
+ np.float32,0xff322ea2,0x3fb22f31,4
650
+ np.float32,0x8065a024,0x8065a024,4
651
+ np.float32,0x7f395e30,0xbefe0de1,4
652
+ np.float32,0x5b52db,0x5b52db,4
653
+ np.float32,0x7f7caea7,0x3dac8ded,4
654
+ np.float32,0xbf0431f8,0xbf1159b2,4
655
+ np.float32,0x7f15b25b,0xc02a3833,4
656
+ np.float32,0x80131abc,0x80131abc,4
657
+ np.float32,0x7e829d81,0xbeb2e93d,4
658
+ np.float32,0x3f2c64d7,0x3f4c3e4d,4
659
+ np.float32,0x7f228d48,0xc1518c74,4
660
+ np.float32,0xfc3c6f40,0xbf00d585,4
661
+ np.float32,0x7f754f0f,0x3e2152f5,4
662
+ np.float32,0xff65d32b,0xbe8bd56c,4
663
+ np.float32,0xfea6b8c0,0x41608655,4
664
+ np.float32,0x3f7d4b05,0x3fc2c96a,4
665
+ np.float32,0x3f463230,0x3f7a54da,4
666
+ np.float32,0x805117bb,0x805117bb,4
667
+ np.float32,0xbf2ad4f7,0xbf49b30e,4
668
+ np.float32,0x3eaa01ff,0x3eb08b56,4
669
+ np.float32,0xff7a02bb,0x3f095f73,4
670
+ np.float32,0x759176,0x759176,4
671
+ np.float32,0x803c18d5,0x803c18d5,4
672
+ np.float32,0xbe0722d8,0xbe07ed16,4
673
+ np.float32,0x3f4b4a99,0x3f823fc6,4
674
+ np.float32,0x3f7d0451,0x3fc25463,4
675
+ np.float32,0xfee31e40,0xbfb41091,4
676
+ np.float32,0xbf733d2c,0xbfb30cf1,4
677
+ np.float32,0x7ed81015,0x417c380c,4
678
+ np.float32,0x7daafc3e,0xbe2a37ed,4
679
+ np.float32,0x3e44f82b,0x3e476f67,4
680
+ np.float32,0x7c8d99,0x7c8d99,4
681
+ np.float32,0x3f7aec5a,0x3fbee991,4
682
+ np.float32,0xff09fd55,0x3e0709d3,4
683
+ np.float32,0xff4ba4df,0x4173c01f,4
684
+ np.float32,0x3f43d944,0x3f75c7bd,4
685
+ np.float32,0xff6a9106,0x40a10eff,4
686
+ np.float32,0x3bc8341c,0x3bc834bf,4
687
+ np.float32,0x3eea82,0x3eea82,4
688
+ np.float32,0xfea36a3c,0x435729b2,4
689
+ np.float32,0x7dcc1fb0,0x3e330053,4
690
+ np.float32,0x3f616ae6,0x3f9b01ae,4
691
+ np.float32,0x8030963f,0x8030963f,4
692
+ np.float32,0x10d1e2,0x10d1e2,4
693
+ np.float32,0xfeb9a8a6,0x40e6daac,4
694
+ np.float32,0xbe1aba00,0xbe1bea3a,4
695
+ np.float32,0x3cb6b4ea,0x3cb6bcac,4
696
+ np.float32,0x3d8b0b64,0x3d8b422f,4
697
+ np.float32,0x7b6894,0x7b6894,4
698
+ np.float32,0x3e89dcde,0x3e8d4b4b,4
699
+ np.float32,0x3f12b952,0x3f253974,4
700
+ np.float32,0x1c316c,0x1c316c,4
701
+ np.float32,0x7e2da535,0x3f95fe6b,4
702
+ np.float32,0x3ae9a494,0x3ae9a4a4,4
703
+ np.float32,0xbc5f5500,0xbc5f588b,4
704
+ np.float32,0x3e7850fc,0x3e7d4d0e,4
705
+ np.float32,0xbf800000,0xbfc75923,4
706
+ np.float32,0x3e652d69,0x3e691502,4
707
+ np.float32,0xbf6bdd26,0xbfa89129,4
708
+ np.float32,0x3f441cfc,0x3f764a02,4
709
+ np.float32,0x7f5445ff,0xc0906191,4
710
+ np.float32,0x807b2ee3,0x807b2ee3,4
711
+ np.float32,0xbeb6cab8,0xbebef9c0,4
712
+ np.float32,0xff737277,0xbf327011,4
713
+ np.float32,0xfc832aa0,0x402fd52e,4
714
+ np.float32,0xbf0c7538,0xbf1c7c0f,4
715
+ np.float32,0x7e1301c7,0xbf0ee63e,4
716
+ np.float64,0xbfe0ef7df7a1defc,0xbfe2b76a8d8aeb35,4
717
+ np.float64,0x7fdd9c2eae3b385c,0xbfc00d6885485039,4
718
+ np.float64,0xbfb484c710290990,0xbfb4900e0a527555,4
719
+ np.float64,0x7fe73e5d6cee7cba,0x3fefbf70a56b60d3,4
720
+ np.float64,0x800a110aa8d42216,0x800a110aa8d42216,4
721
+ np.float64,0xffedd4f3f3bba9e7,0xbff076f8c4124919,4
722
+ np.float64,0x800093407f812682,0x800093407f812682,4
723
+ np.float64,0x800a23150e54462a,0x800a23150e54462a,4
724
+ np.float64,0xbfb1076864220ed0,0xbfb10dd95a74b733,4
725
+ np.float64,0x3fed1f8b37fa3f16,0x3ff496100985211f,4
726
+ np.float64,0x3fdf762f84beec5f,0x3fe1223eb04a17e0,4
727
+ np.float64,0x53fd4e0aa7faa,0x53fd4e0aa7faa,4
728
+ np.float64,0x3fdbd283bdb7a507,0x3fddb7ec9856a546,4
729
+ np.float64,0xbfe43f449d687e89,0xbfe77724a0d3072b,4
730
+ np.float64,0x618b73bcc316f,0x618b73bcc316f,4
731
+ np.float64,0x67759424ceeb3,0x67759424ceeb3,4
732
+ np.float64,0xbfe4b6f7d9a96df0,0xbfe831371f3bd7a8,4
733
+ np.float64,0x800a531b8b74a637,0x800a531b8b74a637,4
734
+ np.float64,0xffeeffd5c37dffab,0x3fea140cbc2c3726,4
735
+ np.float64,0x3fe648e2002c91c4,0x3feac1b8816f972a,4
736
+ np.float64,0x800f16242a1e2c48,0x800f16242a1e2c48,4
737
+ np.float64,0xffeeff8e1dbdff1b,0xc000b555f117dce7,4
738
+ np.float64,0x3fdf1cf73fbe39f0,0x3fe0e9032401135b,4
739
+ np.float64,0x7fe19c388b633870,0x3fd5271b69317d5b,4
740
+ np.float64,0x918f226d231e5,0x918f226d231e5,4
741
+ np.float64,0x4cc19ab499834,0x4cc19ab499834,4
742
+ np.float64,0xbd3121d57a624,0xbd3121d57a624,4
743
+ np.float64,0xbfd145d334a28ba6,0xbfd1b468866124d6,4
744
+ np.float64,0x8bdbf41517b7f,0x8bdbf41517b7f,4
745
+ np.float64,0x3fd1b8cb3ea37198,0x3fd2306b13396cae,4
746
+ np.float64,0xbfd632a959ac6552,0xbfd7220fcfb5ef78,4
747
+ np.float64,0x1cdaafc639b57,0x1cdaafc639b57,4
748
+ np.float64,0x3febdcce1577b99c,0x3ff2fe076195a2bc,4
749
+ np.float64,0x7fca6e945934dd28,0x3ff43040df7024e8,4
750
+ np.float64,0x3fbe08e78e3c11cf,0x3fbe2c60e6b48f75,4
751
+ np.float64,0x7fc1ed0d0523da19,0x3ff55f8dcad9440f,4
752
+ np.float64,0xbfdc729b8cb8e538,0xbfde7b6e15dd60c4,4
753
+ np.float64,0x3fd219404f243281,0x3fd298d7b3546531,4
754
+ np.float64,0x3fe715c3f56e2b88,0x3fec255b5a59456e,4
755
+ np.float64,0x7fe8b88e74b1711c,0x3ff60efd2c81d13d,4
756
+ np.float64,0xa1d2b9fd43a57,0xa1d2b9fd43a57,4
757
+ np.float64,0xffc1818223230304,0xbfb85c6c1e8018e7,4
758
+ np.float64,0x3fde38ac8b3c7159,0x3fe0580c7e228576,4
759
+ np.float64,0x8008faf7b491f5f0,0x8008faf7b491f5f0,4
760
+ np.float64,0xffe7a1d751af43ae,0xbf7114cd7bbcd981,4
761
+ np.float64,0xffec2db1b4b85b62,0xbff5cae759667f83,4
762
+ np.float64,0x7fefce1ae27f9c35,0x3ff4b8b88f4876cf,4
763
+ np.float64,0x7fd1ff56a523feac,0xbff342ce192f14dd,4
764
+ np.float64,0x80026b3e3f84d67d,0x80026b3e3f84d67d,4
765
+ np.float64,0xffedee5879bbdcb0,0xc02fae11508b2be0,4
766
+ np.float64,0x8003c0dc822781ba,0x8003c0dc822781ba,4
767
+ np.float64,0xffe38a79eca714f4,0xc008aa23b7a63980,4
768
+ np.float64,0xbfda70411eb4e082,0xbfdc0d7e29c89010,4
769
+ np.float64,0x800a5e34f574bc6a,0x800a5e34f574bc6a,4
770
+ np.float64,0x3fc19fac6e233f59,0x3fc1bc66ac0d73d4,4
771
+ np.float64,0x3a8a61ea7514d,0x3a8a61ea7514d,4
772
+ np.float64,0x3fb57b536e2af6a0,0x3fb588451f72f44c,4
773
+ np.float64,0x7fd68c6d082d18d9,0xc032ac926b665c9a,4
774
+ np.float64,0xd5b87cfdab710,0xd5b87cfdab710,4
775
+ np.float64,0xfe80b20bfd017,0xfe80b20bfd017,4
776
+ np.float64,0x3fef8781e37f0f04,0x3ff8215fe2c1315a,4
777
+ np.float64,0xffedddbb9c3bbb76,0x3fd959b82258a32a,4
778
+ np.float64,0x3fc7d41f382fa83e,0x3fc81b94c3a091ba,4
779
+ np.float64,0xffc3275dcf264ebc,0x3fb2b3d4985c6078,4
780
+ np.float64,0x7fe34d2b7ba69a56,0x40001f3618e3c7c9,4
781
+ np.float64,0x3fd64ae35fac95c7,0x3fd73d77e0b730f8,4
782
+ np.float64,0x800e53bf6b3ca77f,0x800e53bf6b3ca77f,4
783
+ np.float64,0xbfddf7c9083bef92,0xbfe02f392744d2d1,4
784
+ np.float64,0x1c237cc038471,0x1c237cc038471,4
785
+ np.float64,0x3fe4172beea82e58,0x3fe739b4bf16bc7e,4
786
+ np.float64,0xfa950523f52a1,0xfa950523f52a1,4
787
+ np.float64,0xffc839a2c5307344,0xbff70ff8a3c9247f,4
788
+ np.float64,0x264f828c4c9f1,0x264f828c4c9f1,4
789
+ np.float64,0x148a650a2914e,0x148a650a2914e,4
790
+ np.float64,0x3fe8d255c0b1a4ac,0x3fef623c3ea8d6e3,4
791
+ np.float64,0x800f4fbb28be9f76,0x800f4fbb28be9f76,4
792
+ np.float64,0x7fdca57bcfb94af7,0x3ff51207563fb6cb,4
793
+ np.float64,0x3fe4944107692882,0x3fe7fad593235364,4
794
+ np.float64,0x800119b4f1a2336b,0x800119b4f1a2336b,4
795
+ np.float64,0xbfe734075e6e680e,0xbfec5b35381069f2,4
796
+ np.float64,0xffeb3c00db767801,0xbfbbd7d22df7b4b3,4
797
+ np.float64,0xbfe95c658cb2b8cb,0xbff03ad5e0bc888a,4
798
+ np.float64,0xffeefeb58fbdfd6a,0xbfd5c9264deb0e11,4
799
+ np.float64,0x7fccc80fde39901f,0xc012c60f914f3ca2,4
800
+ np.float64,0x3fe5da289c2bb451,0x3fea07ad00a0ca63,4
801
+ np.float64,0x800e364b0a5c6c96,0x800e364b0a5c6c96,4
802
+ np.float64,0x3fcf9ea7d23f3d50,0x3fd023b72e8c9dcf,4
803
+ np.float64,0x800a475cfc948eba,0x800a475cfc948eba,4
804
+ np.float64,0xffd4e0d757a9c1ae,0xbfa89d573352e011,4
805
+ np.float64,0xbfd4dbec8229b7da,0xbfd5a165f12c7c40,4
806
+ np.float64,0xffe307ab51260f56,0x3fe6b1639da58c3f,4
807
+ np.float64,0xbfe6955a546d2ab4,0xbfeb44ae2183fee9,4
808
+ np.float64,0xbfca1f18f5343e30,0xbfca7d804ccccdf4,4
809
+ np.float64,0xe9f4dfebd3e9c,0xe9f4dfebd3e9c,4
810
+ np.float64,0xfff0000000000000,0xfff8000000000000,4
811
+ np.float64,0x8008e69c0fb1cd38,0x8008e69c0fb1cd38,4
812
+ np.float64,0xbfead1ccf975a39a,0xbff1c84b3db8ca93,4
813
+ np.float64,0x25a982424b531,0x25a982424b531,4
814
+ np.float64,0x8010000000000000,0x8010000000000000,4
815
+ np.float64,0x80056204ea0ac40b,0x80056204ea0ac40b,4
816
+ np.float64,0x800d1442d07a2886,0x800d1442d07a2886,4
817
+ np.float64,0xbfaef3dadc3de7b0,0xbfaefd85ae6205f0,4
818
+ np.float64,0x7fe969ce4b32d39c,0xbff3c4364fc6778f,4
819
+ np.float64,0x7fe418bac0a83175,0x402167d16b1efe0b,4
820
+ np.float64,0x3fd7c82a25af9054,0x3fd8f0c701315672,4
821
+ np.float64,0x80013782a7826f06,0x80013782a7826f06,4
822
+ np.float64,0x7fc031c7ee20638f,0x400747ab705e6904,4
823
+ np.float64,0x3fe8cf327ff19e65,0x3fef5c14f8aafa89,4
824
+ np.float64,0xbfe331a416a66348,0xbfe5e2290a098dd4,4
825
+ np.float64,0x800607b2116c0f65,0x800607b2116c0f65,4
826
+ np.float64,0x7fb40448f0280891,0xbfd43d4f0ffa1d64,4
827
+ np.float64,0x7fefffffffffffff,0xbf74530cfe729484,4
828
+ np.float64,0x3fe39b5444a736a9,0x3fe67eaa0b6acf27,4
829
+ np.float64,0x3fee4733c4fc8e68,0x3ff631eabeef9696,4
830
+ np.float64,0xbfec840f3b79081e,0xbff3cc8563ab2e74,4
831
+ np.float64,0xbfc8f6854c31ed0c,0xbfc948caacb3bba0,4
832
+ np.float64,0xffbcf754a639eea8,0xbfc88d17cad3992b,4
833
+ np.float64,0x8000bd3163417a64,0x8000bd3163417a64,4
834
+ np.float64,0x3fe766d0eaeecda2,0x3fecb660882f7024,4
835
+ np.float64,0xb6cc30156d986,0xb6cc30156d986,4
836
+ np.float64,0xffc0161f9f202c40,0x3fe19bdefe5cf8b1,4
837
+ np.float64,0xffe1e462caa3c8c5,0x3fe392c47feea17b,4
838
+ np.float64,0x30a36a566146e,0x30a36a566146e,4
839
+ np.float64,0x3fa996f580332deb,0x3fa99c6b4f2abebe,4
840
+ np.float64,0x3fba71716e34e2e0,0x3fba899f35edba1d,4
841
+ np.float64,0xbfe8f7e5e971efcc,0xbfefac431a0e3d55,4
842
+ np.float64,0xf48f1803e91e3,0xf48f1803e91e3,4
843
+ np.float64,0x7fe3edc0a127db80,0xc03d1a579a5d74a8,4
844
+ np.float64,0xffeba82056375040,0x3fdfd701308700db,4
845
+ np.float64,0xbfeb5a924cf6b524,0xbff2640de7cd107f,4
846
+ np.float64,0xfa4cd1a9f499a,0xfa4cd1a9f499a,4
847
+ np.float64,0x800de1be7b9bc37d,0x800de1be7b9bc37d,4
848
+ np.float64,0xffd44e56ad289cae,0x3fdf4b8085db9b67,4
849
+ np.float64,0xbfe4fb3aea69f676,0xbfe89d2cc46fcc50,4
850
+ np.float64,0xbfe596495d6b2c92,0xbfe997a589a1f632,4
851
+ np.float64,0x6f55a2b8deab5,0x6f55a2b8deab5,4
852
+ np.float64,0x7fe72dc4712e5b88,0x4039c4586b28c2bc,4
853
+ np.float64,0x89348bd712692,0x89348bd712692,4
854
+ np.float64,0xffe062156120c42a,0x4005f0580973bc77,4
855
+ np.float64,0xbfeabc714d7578e2,0xbff1b07e2fa57dc0,4
856
+ np.float64,0x8003a56b3e874ad7,0x8003a56b3e874ad7,4
857
+ np.float64,0x800eeadfb85dd5c0,0x800eeadfb85dd5c0,4
858
+ np.float64,0x46d77a4c8daf0,0x46d77a4c8daf0,4
859
+ np.float64,0x8000c06e7dc180de,0x8000c06e7dc180de,4
860
+ np.float64,0x3fe428d211e851a4,0x3fe754b1c00a89bc,4
861
+ np.float64,0xc5be11818b7c2,0xc5be11818b7c2,4
862
+ np.float64,0x7fefc244893f8488,0x401133dc54f52de5,4
863
+ np.float64,0x3fde30eee93c61de,0x3fe0532b827543a6,4
864
+ np.float64,0xbfd447f48b288fea,0xbfd4fd0654f90718,4
865
+ np.float64,0xbfde98dc7b3d31b8,0xbfe094df12f84a06,4
866
+ np.float64,0x3fed2c1a1dfa5834,0x3ff4a6c4f3470a65,4
867
+ np.float64,0xbfe992165073242d,0xbff071ab039c9177,4
868
+ np.float64,0x3fd0145d1b2028ba,0x3fd06d3867b703dc,4
869
+ np.float64,0x3fe179457362f28b,0x3fe3722f1d045fda,4
870
+ np.float64,0x800e28964fbc512d,0x800e28964fbc512d,4
871
+ np.float64,0x8004a5d785294bb0,0x8004a5d785294bb0,4
872
+ np.float64,0xbfd652f2272ca5e4,0xbfd7469713125120,4
873
+ np.float64,0x7fe61f49036c3e91,0xbf9b6ccdf2d87e70,4
874
+ np.float64,0xffb7d47dd02fa8f8,0xc004449a82320b13,4
875
+ np.float64,0x3feb82f996b705f3,0x3ff29336c738a4c5,4
876
+ np.float64,0x3fbb7fceea36ffa0,0x3fbb9b02c8ad7f93,4
877
+ np.float64,0x80004519fb208a35,0x80004519fb208a35,4
878
+ np.float64,0xbfe0539114e0a722,0xbfe1e86dc5aa039c,4
879
+ np.float64,0x0,0x0,4
880
+ np.float64,0xbfe99d1125f33a22,0xbff07cf8ec04300f,4
881
+ np.float64,0xffd4fbeecc29f7de,0x3ffab76775a8455f,4
882
+ np.float64,0xbfbf1c618e3e38c0,0xbfbf43d2764a8333,4
883
+ np.float64,0x800cae02a9d95c06,0x800cae02a9d95c06,4
884
+ np.float64,0x3febc47d3bf788fa,0x3ff2e0d7cf8ef509,4
885
+ np.float64,0x3fef838f767f071f,0x3ff81aeac309bca0,4
886
+ np.float64,0xbfd5e70716abce0e,0xbfd6ccb033ef7a35,4
887
+ np.float64,0x3f9116fa60222df5,0x3f9117625f008e0b,4
888
+ np.float64,0xffe02b1e5f20563c,0xbfe6b2ec293520b7,4
889
+ np.float64,0xbf9b5aec3036b5e0,0xbf9b5c96c4c7f951,4
890
+ np.float64,0xfdb0169bfb603,0xfdb0169bfb603,4
891
+ np.float64,0x7fcdd1d51c3ba3a9,0x401f0e12fa0b7570,4
892
+ np.float64,0xbfd088103fa11020,0xbfd0e8c4a333ffb2,4
893
+ np.float64,0x3fe22df82ee45bf0,0x3fe46d03a7c14de2,4
894
+ np.float64,0xbfd57b0c28aaf618,0xbfd65349a6191de5,4
895
+ np.float64,0x3fe0a42f50a1485f,0x3fe252e26775d9a4,4
896
+ np.float64,0x800fab4e363f569c,0x800fab4e363f569c,4
897
+ np.float64,0xffe9f0ed63f3e1da,0xbfe278c341b171d5,4
898
+ np.float64,0x7fe26c244664d848,0xbfb325269dad1996,4
899
+ np.float64,0xffe830410bf06081,0xc00181a39f606e96,4
900
+ np.float64,0x800c548a0c78a914,0x800c548a0c78a914,4
901
+ np.float64,0x800f94761ebf28ec,0x800f94761ebf28ec,4
902
+ np.float64,0x3fe5984845eb3091,0x3fe99aeb653c666d,4
903
+ np.float64,0x7fe93e5bf8f27cb7,0xc010d159fa27396a,4
904
+ np.float64,0xffefffffffffffff,0x3f74530cfe729484,4
905
+ np.float64,0x4c83f1269907f,0x4c83f1269907f,4
906
+ np.float64,0x3fde0065a8bc00cc,0x3fe034a1cdf026d4,4
907
+ np.float64,0x800743810d6e8703,0x800743810d6e8703,4
908
+ np.float64,0x80040662d5280cc6,0x80040662d5280cc6,4
909
+ np.float64,0x3fed20b2c5ba4166,0x3ff497988519d7aa,4
910
+ np.float64,0xffe8fa15e5f1f42b,0x3fff82ca76d797b4,4
911
+ np.float64,0xbb72e22f76e5d,0xbb72e22f76e5d,4
912
+ np.float64,0x7fc18ffa7c231ff4,0xbff4b8b4c3315026,4
913
+ np.float64,0xbfe8d1ac44f1a358,0xbfef60efc4f821e3,4
914
+ np.float64,0x3fd38c1fe8271840,0x3fd42dc37ff7262b,4
915
+ np.float64,0xe577bee5caef8,0xe577bee5caef8,4
916
+ np.float64,0xbff0000000000000,0xbff8eb245cbee3a6,4
917
+ np.float64,0xffcb3a9dd436753c,0x3fcd1a3aff1c3fc7,4
918
+ np.float64,0x7fe44bf2172897e3,0x3ff60bfe82a379f4,4
919
+ np.float64,0x8009203823924071,0x8009203823924071,4
920
+ np.float64,0x7fef8e0abc7f1c14,0x3fe90e4962d47ce5,4
921
+ np.float64,0xffda50004434a000,0x3fb50dee03e1418b,4
922
+ np.float64,0x7fe2ff276ea5fe4e,0xc0355b7d2a0a8d9d,4
923
+ np.float64,0x3fd0711ba5a0e238,0x3fd0d03823d2d259,4
924
+ np.float64,0xe7625b03cec4c,0xe7625b03cec4c,4
925
+ np.float64,0xbfd492c8d7a92592,0xbfd55006cde8d300,4
926
+ np.float64,0x8001fee99f23fdd4,0x8001fee99f23fdd4,4
927
+ np.float64,0x7ff4000000000000,0x7ffc000000000000,4
928
+ np.float64,0xfa15df97f42bc,0xfa15df97f42bc,4
929
+ np.float64,0xbfec3fdca9787fb9,0xbff377164b13c7a9,4
930
+ np.float64,0xbcec10e579d82,0xbcec10e579d82,4
931
+ np.float64,0xbfc3b4e2132769c4,0xbfc3dd1fcc7150a6,4
932
+ np.float64,0x80045b149ee8b62a,0x80045b149ee8b62a,4
933
+ np.float64,0xffe044554c2088aa,0xbff741436d558785,4
934
+ np.float64,0xffcc65f09f38cbe0,0xc0172b4adc2d317d,4
935
+ np.float64,0xf68b2d3bed166,0xf68b2d3bed166,4
936
+ np.float64,0x7fc7f44c572fe898,0x3fec69f3b1eca790,4
937
+ np.float64,0x3fac51f61438a3ec,0x3fac595d34156002,4
938
+ np.float64,0xbfeaa9f256f553e5,0xbff19bfdf5984326,4
939
+ np.float64,0x800e4742149c8e84,0x800e4742149c8e84,4
940
+ np.float64,0xbfc493df132927c0,0xbfc4c1ba4268ead9,4
941
+ np.float64,0xbfbf0c56383e18b0,0xbfbf3389fcf50c72,4
942
+ np.float64,0xbf978a0e082f1420,0xbf978b1dd1da3d3c,4
943
+ np.float64,0xbfe04375356086ea,0xbfe1d34c57314dd1,4
944
+ np.float64,0x3feaeeb29b75dd65,0x3ff1e8b772374979,4
945
+ np.float64,0xbfe15e42c3a2bc86,0xbfe34d45d56c5c15,4
946
+ np.float64,0x3fe507429a6a0e85,0x3fe8b058176b3225,4
947
+ np.float64,0x3feee2b26c3dc565,0x3ff71b73203de921,4
948
+ np.float64,0xbfd496577aa92cae,0xbfd553fa7fe15a5f,4
949
+ np.float64,0x7fe2c10953e58212,0x3fc8ead6a0d14bbf,4
950
+ np.float64,0x800035b77aa06b70,0x800035b77aa06b70,4
951
+ np.float64,0x2329201e46525,0x2329201e46525,4
952
+ np.float64,0xbfe6225c9a6c44b9,0xbfea80861590fa02,4
953
+ np.float64,0xbfd6925030ad24a0,0xbfd78e70b1c2215d,4
954
+ np.float64,0xbfd82225c4b0444c,0xbfd958a60f845b39,4
955
+ np.float64,0xbb03d8a17609,0xbb03d8a17609,4
956
+ np.float64,0x7fc33967b12672ce,0x40001e00c9af4002,4
957
+ np.float64,0xff9373c6d026e780,0xbff308654a459d3d,4
958
+ np.float64,0x3feab1f9c5f563f4,0x3ff1a4e0fd2f093d,4
959
+ np.float64,0xbf993ef768327de0,0xbf994046b64e308b,4
960
+ np.float64,0xffb87382fc30e708,0xbfde0accb83c891b,4
961
+ np.float64,0x800bb3a118176743,0x800bb3a118176743,4
962
+ np.float64,0x800c810250d90205,0x800c810250d90205,4
963
+ np.float64,0xbfd2c4eb9ba589d8,0xbfd3539508b4a4a8,4
964
+ np.float64,0xbee1f5437dc3f,0xbee1f5437dc3f,4
965
+ np.float64,0x3fc07aeab520f5d8,0x3fc0926272f9d8e2,4
966
+ np.float64,0xbfe23747a3246e90,0xbfe47a20a6e98687,4
967
+ np.float64,0x3fde1296debc252c,0x3fe0401143ff6b5c,4
968
+ np.float64,0xbfcec8c2f73d9184,0xbfcf644e25ed3b74,4
969
+ np.float64,0xff9314f2c82629e0,0x40559a0f9099dfd1,4
970
+ np.float64,0xbfe27487afa4e910,0xbfe4d0e01200bde6,4
971
+ np.float64,0xffb3d6637627acc8,0x3fe326d4b1e1834f,4
972
+ np.float64,0xffe6f84d642df09a,0x3fc73fa9f57c3acb,4
973
+ np.float64,0xffe67cf76fecf9ee,0xc01cf48c97937ef9,4
974
+ np.float64,0x7fdc73fc12b8e7f7,0xbfcfcecde9331104,4
975
+ np.float64,0xffdcf8789239f0f2,0x3fe345e3b8e28776,4
976
+ np.float64,0x800a70af5314e15f,0x800a70af5314e15f,4
977
+ np.float64,0xffc862300730c460,0x3fc4e9ea813beca7,4
978
+ np.float64,0xbfcc6961bd38d2c4,0xbfcce33bfa6c6bd1,4
979
+ np.float64,0xbfc9b76bbf336ed8,0xbfca117456ac37e5,4
980
+ np.float64,0x7fb86e829430dd04,0x400a5bd7a18e302d,4
981
+ np.float64,0x7fb9813ef833027d,0xbfe5a6494f143625,4
982
+ np.float64,0x8005085e2c2a10bd,0x8005085e2c2a10bd,4
983
+ np.float64,0xffe5af099d6b5e12,0x40369bbe31e03e06,4
984
+ np.float64,0xffde03b1fd3c0764,0x3ff061120aa1f52a,4
985
+ np.float64,0x7fa4eb6cdc29d6d9,0x3fe9defbe9010322,4
986
+ np.float64,0x800803f4b11007ea,0x800803f4b11007ea,4
987
+ np.float64,0x7febd50f6df7aa1e,0xbffcf540ccf220dd,4
988
+ np.float64,0x7fed454f08fa8a9d,0xbffc2a8b81079403,4
989
+ np.float64,0xbfed7e8c69bafd19,0xbff5161e51ba6634,4
990
+ np.float64,0xffef92e78eff25ce,0xbffefeecddae0ad3,4
991
+ np.float64,0x7fe5b9b413ab7367,0xbfc681ba29704176,4
992
+ np.float64,0x29284e805252,0x29284e805252,4
993
+ np.float64,0xffed3955bcfa72ab,0xbfc695acb5f468de,4
994
+ np.float64,0x3fe464ee1ca8c9dc,0x3fe7b140ce50fdca,4
995
+ np.float64,0xffe522ae4bea455c,0x3feb957c146e66ef,4
996
+ np.float64,0x8000000000000000,0x8000000000000000,4
997
+ np.float64,0x3fd0c353a2a186a8,0x3fd1283aaa43a411,4
998
+ np.float64,0x3fdb30a749b6614f,0x3fdcf40df006ed10,4
999
+ np.float64,0x800109213cc21243,0x800109213cc21243,4
1000
+ np.float64,0xbfe72aa0c5ee5542,0xbfec4a713f513bc5,4
1001
+ np.float64,0x800865344ad0ca69,0x800865344ad0ca69,4
1002
+ np.float64,0x7feb7df60eb6fbeb,0x3fb1df06a67aa22f,4
1003
+ np.float64,0x3fe83a5dd93074bc,0x3fee3d63cda72636,4
1004
+ np.float64,0xbfde70e548bce1ca,0xbfe07b8e19c9dac6,4
1005
+ np.float64,0xbfeea38d537d471b,0xbff6bb18c230c0be,4
1006
+ np.float64,0x3fefeebbc47fdd78,0x3ff8cdaa53b7c7b4,4
1007
+ np.float64,0x7fe6512e20eca25b,0xbff623cee44a22b5,4
1008
+ np.float64,0xf8fa5ca3f1f4c,0xf8fa5ca3f1f4c,4
1009
+ np.float64,0x7fd12d00ed225a01,0xbfe90d518ea61faf,4
1010
+ np.float64,0x80027db43504fb69,0x80027db43504fb69,4
1011
+ np.float64,0xffc10a01aa221404,0x3fcc2065b3d0157b,4
1012
+ np.float64,0xbfef8286e87f050e,0xbff8193a54449b59,4
1013
+ np.float64,0xbfc73178092e62f0,0xbfc7735072ba4593,4
1014
+ np.float64,0x3fc859d70630b3ae,0x3fc8a626522af1c0,4
1015
+ np.float64,0x3fe4654c4268ca99,0x3fe7b1d2913eda1a,4
1016
+ np.float64,0xbfce93cd843d279c,0xbfcf2c2ef16a0957,4
1017
+ np.float64,0xffbcaa16d4395430,0xbfd511ced032d784,4
1018
+ np.float64,0xbfe91f980e723f30,0xbfeffb39cf8c7746,4
1019
+ np.float64,0x800556fb6f0aadf8,0x800556fb6f0aadf8,4
1020
+ np.float64,0xffd009cde520139c,0x3fe4fa83b1e93d28,4
1021
+ np.float64,0x7febc0675e3780ce,0x3feb53930c004dae,4
1022
+ np.float64,0xbfe7f975bdeff2ec,0xbfedc36e6729b010,4
1023
+ np.float64,0x45aff57c8b5ff,0x45aff57c8b5ff,4
1024
+ np.float64,0xbfec7ebd0138fd7a,0xbff3c5cab680aae0,4
1025
+ np.float64,0x8009448003b28900,0x8009448003b28900,4
1026
+ np.float64,0x3fca4b992d349732,0x3fcaabebcc86aa9c,4
1027
+ np.float64,0x3fca069161340d20,0x3fca63ecc742ff3a,4
1028
+ np.float64,0x80063bc80bec7791,0x80063bc80bec7791,4
1029
+ np.float64,0xbfe1764bffe2ec98,0xbfe36e1cb30cec94,4
1030
+ np.float64,0xffd0dba72f21b74e,0x3fb1834964d57ef6,4
1031
+ np.float64,0xbfe31848fc263092,0xbfe5bd066445cbc3,4
1032
+ np.float64,0xbfd1fb227323f644,0xbfd278334e27f02d,4
1033
+ np.float64,0xffdc59069fb8b20e,0xbfdfc363f559ea2c,4
1034
+ np.float64,0x3fdea52a52bd4a55,0x3fe09cada4e5344c,4
1035
+ np.float64,0x3f715e55a022bd00,0x3f715e5c72a2809e,4
1036
+ np.float64,0x1d1ac6023a35a,0x1d1ac6023a35a,4
1037
+ np.float64,0x7feacc71627598e2,0x400486b82121da19,4
1038
+ np.float64,0xa0287fa340510,0xa0287fa340510,4
1039
+ np.float64,0xffe352c5abe6a58b,0xc002623346060543,4
1040
+ np.float64,0x7fed577a23baaef3,0x3fda19bc8fa3b21f,4
1041
+ np.float64,0x3fde8dd5263d1baa,0x3fe08de0fedf7029,4
1042
+ np.float64,0x3feddd3be2bbba78,0x3ff599b2f3e018cc,4
1043
+ np.float64,0xc7a009f58f401,0xc7a009f58f401,4
1044
+ np.float64,0xbfef03d5a4fe07ab,0xbff74ee08681f47b,4
1045
+ np.float64,0x7fe2cf60eea59ec1,0x3fe905fb44f8cc60,4
1046
+ np.float64,0xbfe498fcab6931fa,0xbfe8023a6ff8becf,4
1047
+ np.float64,0xbfef7142acfee285,0xbff7fd196133a595,4
1048
+ np.float64,0xd214ffdba42a0,0xd214ffdba42a0,4
1049
+ np.float64,0x8006de7d78cdbcfc,0x8006de7d78cdbcfc,4
1050
+ np.float64,0xb247d34f648fb,0xb247d34f648fb,4
1051
+ np.float64,0xbfdd5bece6bab7da,0xbfdf9ba63ca2c5b2,4
1052
+ np.float64,0x7fe874650af0e8c9,0x3fe74204e122c10f,4
1053
+ np.float64,0x800768c49baed18a,0x800768c49baed18a,4
1054
+ np.float64,0x3fb4c0a192298140,0x3fb4cc4c8aa43300,4
1055
+ np.float64,0xbfa740531c2e80a0,0xbfa7446b7c74ae8e,4
1056
+ np.float64,0x7fe10d6edf221add,0x3fedbcd2eae26657,4
1057
+ np.float64,0xbfe9175d0f722eba,0xbfefeaca7f32c6e3,4
1058
+ np.float64,0x953e11d32a7c2,0x953e11d32a7c2,4
1059
+ np.float64,0x80032df90c465bf3,0x80032df90c465bf3,4
1060
+ np.float64,0xffec5b799638b6f2,0xbfe95cd2c69be12c,4
1061
+ np.float64,0xffe0c3cfa9a1879f,0x3fe20b99b0c108ce,4
1062
+ np.float64,0x3fb610d8e22c21b2,0x3fb61ee0d6c16df8,4
1063
+ np.float64,0xffe16bb39962d766,0xc016d370381b6b42,4
1064
+ np.float64,0xbfdc72edb238e5dc,0xbfde7bd2de10717a,4
1065
+ np.float64,0xffed52dee3baa5bd,0xc01994c08899129a,4
1066
+ np.float64,0xffa92aab08325550,0xbff2b881ce363cbd,4
1067
+ np.float64,0x7fe028282de0504f,0xc0157ff96c69a9c7,4
1068
+ np.float64,0xbfdb2151bf3642a4,0xbfdce196fcc35857,4
1069
+ np.float64,0x3fcffbd13c3ff7a2,0x3fd0554b5f0371ac,4
1070
+ np.float64,0x800d206bff1a40d8,0x800d206bff1a40d8,4
1071
+ np.float64,0x458f818c8b1f1,0x458f818c8b1f1,4
1072
+ np.float64,0x800a7b56a234f6ae,0x800a7b56a234f6ae,4
1073
+ np.float64,0xffe3d86161e7b0c2,0xbff58d0dbde9f188,4
1074
+ np.float64,0xe8ed82e3d1db1,0xe8ed82e3d1db1,4
1075
+ np.float64,0x3fe234e0176469c0,0x3fe476bd36b96a75,4
1076
+ np.float64,0xbfc7cb9c132f9738,0xbfc812c46e185e0b,4
1077
+ np.float64,0xbfeba116c1f7422e,0xbff2b6b7563ad854,4
1078
+ np.float64,0x7fe7041de62e083b,0x3f5d2b42aca47274,4
1079
+ np.float64,0xbfcf60f4ff3ec1e8,0xbfd002eb83406436,4
1080
+ np.float64,0xbfc06067a520c0d0,0xbfc0776e5839ecda,4
1081
+ np.float64,0x4384965a87093,0x4384965a87093,4
1082
+ np.float64,0xd2ed9d01a5db4,0xd2ed9d01a5db4,4
1083
+ np.float64,0x3fbea88cb63d5119,0x3fbece49cc34a379,4
1084
+ np.float64,0x3fe7e982ebefd306,0x3feda5bd4c435d43,4
1085
+ np.float64,0xffdb60a3e036c148,0xbfcb7ed21e7a8f49,4
1086
+ np.float64,0x7fdba9231eb75245,0xbfd750cab1536398,4
1087
+ np.float64,0x800d593534dab26b,0x800d593534dab26b,4
1088
+ np.float64,0xffdf15fb683e2bf6,0x3fb3aaea23357f06,4
1089
+ np.float64,0xbfd6f8a2e5adf146,0xbfd802e509d67c67,4
1090
+ np.float64,0x3feeaa31513d5463,0x3ff6c52147dc053c,4
1091
+ np.float64,0xf2f6dfd3e5edc,0xf2f6dfd3e5edc,4
1092
+ np.float64,0x7fd58d8279ab1b04,0x403243f23d02af2a,4
1093
+ np.float64,0x8000000000000001,0x8000000000000001,4
1094
+ np.float64,0x3fdffb8e0ebff71c,0x3fe1786cb0a6b0f3,4
1095
+ np.float64,0xc999826b93331,0xc999826b93331,4
1096
+ np.float64,0xffc4966f19292ce0,0x3ff0836c75c56cc7,4
1097
+ np.float64,0x7fef95a4b2ff2b48,0xbfbbe2c27c78154f,4
1098
+ np.float64,0xb8f1307f71e26,0xb8f1307f71e26,4
1099
+ np.float64,0x3fe807bc7eb00f79,0x3fedde19f2d3c42d,4
1100
+ np.float64,0x5e4b6580bc98,0x5e4b6580bc98,4
1101
+ np.float64,0xffe19353576326a6,0xc0278c51fee07d36,4
1102
+ np.float64,0xbfb0ca6f3e2194e0,0xbfb0d09be673fa72,4
1103
+ np.float64,0x3fea724211b4e484,0x3ff15ee06f0a0a13,4
1104
+ np.float64,0xbfda21e1c4b443c4,0xbfdbb041f3c86832,4
1105
+ np.float64,0x8008082b24901057,0x8008082b24901057,4
1106
+ np.float64,0xbfd031aa4ea06354,0xbfd08c77729634bb,4
1107
+ np.float64,0xbfc407e153280fc4,0xbfc432275711df5f,4
1108
+ np.float64,0xbb4fa4b5769f5,0xbb4fa4b5769f5,4
1109
+ np.float64,0x7fed6d1daffada3a,0xc037a14bc7b41fab,4
1110
+ np.float64,0xffeee589943dcb12,0x3ff2abfe47037778,4
1111
+ np.float64,0x301379d260270,0x301379d260270,4
1112
+ np.float64,0xbfec2fefc2b85fe0,0xbff36362c0363e06,4
1113
+ np.float64,0xbfe0b1c82e216390,0xbfe264f503f7c22c,4
1114
+ np.float64,0xbfea2bce78f4579d,0xbff112d6f07935ea,4
1115
+ np.float64,0x18508ef230a13,0x18508ef230a13,4
1116
+ np.float64,0x800667a74d6ccf4f,0x800667a74d6ccf4f,4
1117
+ np.float64,0x79ce5c8cf39cc,0x79ce5c8cf39cc,4
1118
+ np.float64,0x3feda61c8efb4c39,0x3ff54c9ade076f54,4
1119
+ np.float64,0x3fe27e06b0e4fc0d,0x3fe4de665c1dc3ca,4
1120
+ np.float64,0xbfd15fea2722bfd4,0xbfd1d081c55813b0,4
1121
+ np.float64,0xbfe5222c4cea4458,0xbfe8db62deb7d2ad,4
1122
+ np.float64,0xbfe8a16c33b142d8,0xbfef02d5831592a8,4
1123
+ np.float64,0x3fdb60e7c4b6c1d0,0x3fdd2e4265c4c3b6,4
1124
+ np.float64,0x800076d62b60edad,0x800076d62b60edad,4
1125
+ np.float64,0xbfec8f1527791e2a,0xbff3da7ed3641e8d,4
1126
+ np.float64,0x2af03bfe55e08,0x2af03bfe55e08,4
1127
+ np.float64,0xa862ee0950c5e,0xa862ee0950c5e,4
1128
+ np.float64,0x7fea5a7c1eb4b4f7,0xbffa6f07d28ef211,4
1129
+ np.float64,0x90e118fb21c23,0x90e118fb21c23,4
1130
+ np.float64,0xbfead0721bf5a0e4,0xbff1c6c7a771a128,4
1131
+ np.float64,0x3f63f4a4c027e94a,0x3f63f4a75665da67,4
1132
+ np.float64,0x3fece0efa579c1e0,0x3ff443bec52f021e,4
1133
+ np.float64,0xbfdbe743b737ce88,0xbfddd129bff89c15,4
1134
+ np.float64,0x3fd48c9b8fa91938,0x3fd5492a630a8cb5,4
1135
+ np.float64,0x3ff0000000000000,0x3ff8eb245cbee3a6,4
1136
+ np.float64,0xbfd51ea33baa3d46,0xbfd5ebd5dc710204,4
1137
+ np.float64,0x3fcfbab0183f7560,0x3fd032a054580b00,4
1138
+ np.float64,0x8007abce13cf579d,0x8007abce13cf579d,4
1139
+ np.float64,0xbfef0f4723be1e8e,0xbff760c7008e8913,4
1140
+ np.float64,0x8006340f524c681f,0x8006340f524c681f,4
1141
+ np.float64,0x87b7d7010f71,0x87b7d7010f71,4
1142
+ np.float64,0x3fe9422da9b2845b,0x3ff02052e6148c45,4
1143
+ np.float64,0x7fddd259b93ba4b2,0xc000731aa33d84b6,4
1144
+ np.float64,0x3fe0156d12202ada,0x3fe1972ba309cb29,4
1145
+ np.float64,0x8004f1264b89e24d,0x8004f1264b89e24d,4
1146
+ np.float64,0x3fececdcacb9d9b9,0x3ff4534d5861f731,4
1147
+ np.float64,0x3fd1790ab822f215,0x3fd1eb97b1bb6fb4,4
1148
+ np.float64,0xffce5d11863cba24,0xbfcb4f38c17210da,4
1149
+ np.float64,0x800a30c32a546187,0x800a30c32a546187,4
1150
+ np.float64,0x3fa58cc61c2b198c,0x3fa59008add7233e,4
1151
+ np.float64,0xbfe0ac77d62158f0,0xbfe25de3dba0bc4a,4
1152
+ np.float64,0xeb8c5753d718b,0xeb8c5753d718b,4
1153
+ np.float64,0x3fee5438dafca872,0x3ff644fef7e7adb5,4
1154
+ np.float64,0x3faad1eb2c35a3e0,0x3faad83499f94057,4
1155
+ np.float64,0x3fe39152c46722a6,0x3fe66fba0b96ab6e,4
1156
+ np.float64,0xffd6fd17712dfa2e,0xc010d697d1ab8731,4
1157
+ np.float64,0x5214a888a4296,0x5214a888a4296,4
1158
+ np.float64,0x8000127a5da024f5,0x8000127a5da024f5,4
1159
+ np.float64,0x7feb3a366cb6746c,0x3fbe49bd8d5f213a,4
1160
+ np.float64,0xca479501948f3,0xca479501948f3,4
1161
+ np.float64,0x7fe7c799ce6f8f33,0xbfd796cd98dc620c,4
1162
+ np.float64,0xffe20bcf30a4179e,0xbff8ca5453fa088f,4
1163
+ np.float64,0x3fe624638a6c48c7,0x3fea83f123832c3c,4
1164
+ np.float64,0xbfe5f1377c6be26f,0xbfea2e143a2d522c,4
1165
+ np.float64,0x7fd193f9f8a327f3,0xbfb04ee2602574d4,4
1166
+ np.float64,0xbfe7419d2fee833a,0xbfec737f140d363d,4
1167
+ np.float64,0x1,0x1,4
1168
+ np.float64,0x7fe2ac246c655848,0x3fd14fee3237727a,4
1169
+ np.float64,0xa459b42948b37,0xa459b42948b37,4
1170
+ np.float64,0x3fb26155ae24c2ab,0x3fb2696fc446d4c6,4
1171
+ np.float64,0xbfdd7b332e3af666,0xbfdfc296c21f1aa8,4
1172
+ np.float64,0xbfe00dbda4a01b7c,0xbfe18d2b060f0506,4
1173
+ np.float64,0x8003bb22d3e77646,0x8003bb22d3e77646,4
1174
+ np.float64,0x3fee21b0a57c4361,0x3ff5fb6a21dc911c,4
1175
+ np.float64,0x80ca69270194d,0x80ca69270194d,4
1176
+ np.float64,0xbfd6d80350adb006,0xbfd7ddb501edbde0,4
1177
+ np.float64,0xd2f8b801a5f2,0xd2f8b801a5f2,4
1178
+ np.float64,0xbfe856b3f170ad68,0xbfee7334fdc49296,4
1179
+ np.float64,0x3fed5c1b20bab836,0x3ff4e73ee5d5c7f3,4
1180
+ np.float64,0xbfd58085a5ab010c,0xbfd6596ddc381ffa,4
1181
+ np.float64,0x3fe4f0134b29e027,0x3fe88b70602fbd21,4
1182
+ np.float64,0xffc9098fdc321320,0x4011c334a74a92cf,4
1183
+ np.float64,0x794749bef28ea,0x794749bef28ea,4
1184
+ np.float64,0xbfc86b547f30d6a8,0xbfc8b84a4fafe0af,4
1185
+ np.float64,0x7fe1356b9da26ad6,0x3fd270bca208d899,4
1186
+ np.float64,0x7fca0ef1aa341de2,0xbff851044c0734fa,4
1187
+ np.float64,0x80064cb8b62c9972,0x80064cb8b62c9972,4
1188
+ np.float64,0xffd3a09a83a74136,0x3ffb66dae0accdf5,4
1189
+ np.float64,0x800e301aa15c6035,0x800e301aa15c6035,4
1190
+ np.float64,0x800e51f323bca3e6,0x800e51f323bca3e6,4
1191
+ np.float64,0x7ff0000000000000,0xfff8000000000000,4
1192
+ np.float64,0x800c4278c87884f2,0x800c4278c87884f2,4
1193
+ np.float64,0xbfe8481649f0902c,0xbfee576772695096,4
1194
+ np.float64,0xffe2344e3fa4689c,0x3fb10442ec0888de,4
1195
+ np.float64,0xbfeada313d75b462,0xbff1d1aee3fab3a9,4
1196
+ np.float64,0x8009ddfb1333bbf7,0x8009ddfb1333bbf7,4
1197
+ np.float64,0x7fed3314c93a6629,0x3ff7a9b12dc1cd37,4
1198
+ np.float64,0x3fd55c26da2ab84e,0x3fd630a7b8aac78a,4
1199
+ np.float64,0x800cdb5203f9b6a4,0x800cdb5203f9b6a4,4
1200
+ np.float64,0xffd04a875da0950e,0x4009a13810ab121d,4
1201
+ np.float64,0x800f1acb527e3597,0x800f1acb527e3597,4
1202
+ np.float64,0xbf9519bf282a3380,0xbf951a82e9b955ff,4
1203
+ np.float64,0x3fcd7a42fa3af486,0x3fce028f3c51072d,4
1204
+ np.float64,0xbfdd3e21b73a7c44,0xbfdf769f2ff2480b,4
1205
+ np.float64,0xffd4361e2aa86c3c,0xbfc211ce8e9f792c,4
1206
+ np.float64,0x7fccf97f6939f2fe,0xbff8464bad830f06,4
1207
+ np.float64,0x800ce47fb939c900,0x800ce47fb939c900,4
1208
+ np.float64,0xffe9e51df173ca3b,0xbfceaf990d652c4e,4
1209
+ np.float64,0x3fe05bba5b20b775,0x3fe1f326e4455442,4
1210
+ np.float64,0x800a29b4b134536a,0x800a29b4b134536a,4
1211
+ np.float64,0xe6f794b7cdef3,0xe6f794b7cdef3,4
1212
+ np.float64,0xffb5b688ce2b6d10,0x3ff924bb97ae2f6d,4
1213
+ np.float64,0x7fa74105d82e820b,0x3fd49643aaa9eee4,4
1214
+ np.float64,0x80020d15f7a41a2d,0x80020d15f7a41a2d,4
1215
+ np.float64,0x3fd6a983d5ad5308,0x3fd7a8cc8835b5b8,4
1216
+ np.float64,0x7fcd9798f03b2f31,0x3fc534c2f7bf4721,4
1217
+ np.float64,0xffdd31873a3a630e,0xbfe3171fcdffb3f7,4
1218
+ np.float64,0x80075183234ea307,0x80075183234ea307,4
1219
+ np.float64,0x82f3132505e63,0x82f3132505e63,4
1220
+ np.float64,0x3febfd9cb837fb39,0x3ff325bbf812515d,4
1221
+ np.float64,0xbfb4630fda28c620,0xbfb46e1f802ec278,4
1222
+ np.float64,0x3feeed7c89fddafa,0x3ff72c20ce5a9ee4,4
1223
+ np.float64,0x7fd3dcb3c127b967,0x40123d27ec9ec31d,4
1224
+ np.float64,0xbfe923450c72468a,0xbff00149c5742725,4
1225
+ np.float64,0x7fdef7f91abdeff1,0xbfe02ceb21f7923d,4
1226
+ np.float64,0x7fdd70d28fbae1a4,0xbfefcc5c9d10cdfd,4
1227
+ np.float64,0x800ca445a8d9488c,0x800ca445a8d9488c,4
1228
+ np.float64,0x7fec2754e1f84ea9,0x40173f6c1c97f825,4
1229
+ np.float64,0x7fcbca31f7379463,0x401e26bd2667075b,4
1230
+ np.float64,0x8003fa1d0847f43b,0x8003fa1d0847f43b,4
1231
+ np.float64,0xffe95cf85932b9f0,0xc01308e60278aa11,4
1232
+ np.float64,0x8009c53948f38a73,0x8009c53948f38a73,4
1233
+ np.float64,0x3fdcca9226b99524,0x3fdee7a008f75d41,4
1234
+ np.float64,0xbfe9ee241f33dc48,0xbff0d16bfff6c8e9,4
1235
+ np.float64,0xbfb3365058266ca0,0xbfb33f9176ebb51d,4
1236
+ np.float64,0x7fa98e10f4331c21,0x3fdee04ffd31314e,4
1237
+ np.float64,0xbfe1a11aea634236,0xbfe3a8e3d84fda38,4
1238
+ np.float64,0xbfd8df051131be0a,0xbfda342805d1948b,4
1239
+ np.float64,0x3d49a2407a935,0x3d49a2407a935,4
1240
+ np.float64,0xfc51eefff8a3e,0xfc51eefff8a3e,4
1241
+ np.float64,0xda63950bb4c73,0xda63950bb4c73,4
1242
+ np.float64,0x80050f3d4fea1e7b,0x80050f3d4fea1e7b,4
1243
+ np.float64,0x3fcdbd6e453b7ae0,0x3fce497478c28e77,4
1244
+ np.float64,0x7ebd4932fd7aa,0x7ebd4932fd7aa,4
1245
+ np.float64,0x7fa3904eac27209c,0xc0015f3125efc151,4
1246
+ np.float64,0x7fc59f956b2b3f2a,0xc00c012e7a2c281f,4
1247
+ np.float64,0xbfd436d716a86dae,0xbfd4ea13533a942b,4
1248
+ np.float64,0x9347ae3d268f6,0x9347ae3d268f6,4
1249
+ np.float64,0xffd001764d2002ec,0xbffab3462e515623,4
1250
+ np.float64,0x3fe6f406662de80d,0x3febe9bac3954999,4
1251
+ np.float64,0x3f943ecaf8287d96,0x3f943f77dee5e77f,4
1252
+ np.float64,0x3fd6250efcac4a1c,0x3fd712afa947d56f,4
1253
+ np.float64,0xbfe849ff777093ff,0xbfee5b089d03391f,4
1254
+ np.float64,0xffd3b8ef8f2771e0,0x4000463ff7f29214,4
1255
+ np.float64,0xbfc3bae9252775d4,0xbfc3e34c133f1933,4
1256
+ np.float64,0xbfea93943df52728,0xbff18355e4fc341d,4
1257
+ np.float64,0x3fc4d922ad29b245,0x3fc508d66869ef29,4
1258
+ np.float64,0x4329694a8652e,0x4329694a8652e,4
1259
+ np.float64,0x8834f1a71069e,0x8834f1a71069e,4
1260
+ np.float64,0xe0e5be8dc1cb8,0xe0e5be8dc1cb8,4
1261
+ np.float64,0x7fef4d103afe9a1f,0xc0047b88b94554fe,4
1262
+ np.float64,0x3fe9b57af4f36af6,0x3ff0963831d51c3f,4
1263
+ np.float64,0x3fe081e2fa6103c6,0x3fe22572e41be655,4
1264
+ np.float64,0x3fd78cf7b42f19ef,0x3fd8acafa1ad776a,4
1265
+ np.float64,0x7fbffd58d43ffab1,0x3fb16092c7de6036,4
1266
+ np.float64,0xbfe1e8bfae23d180,0xbfe40c1c6277dd52,4
1267
+ np.float64,0x800a9f59fb153eb4,0x800a9f59fb153eb4,4
1268
+ np.float64,0xffebe14e33b7c29c,0x3fe0ec532f4deedd,4
1269
+ np.float64,0xffc36ca00426d940,0xc000806a712d6e83,4
1270
+ np.float64,0xbfcc2be82d3857d0,0xbfcca2a7d372ec64,4
1271
+ np.float64,0x800c03b908780772,0x800c03b908780772,4
1272
+ np.float64,0xf315a64be62b5,0xf315a64be62b5,4
1273
+ np.float64,0xbfe644043cec8808,0xbfeab974d3dc6d80,4
1274
+ np.float64,0x3fedb7de3cbb6fbc,0x3ff56549a5acd324,4
1275
+ np.float64,0xbfb1a875522350e8,0xbfb1afa41dee338d,4
1276
+ np.float64,0xffee8d4a407d1a94,0x3fead1749a636ff6,4
1277
+ np.float64,0x8004061c13080c39,0x8004061c13080c39,4
1278
+ np.float64,0x3fe650ae7feca15c,0x3feacefb8bc25f64,4
1279
+ np.float64,0x3fda8340e6b50682,0x3fdc24275cab1df8,4
1280
+ np.float64,0x8009084344321087,0x8009084344321087,4
1281
+ np.float64,0x7fdd19cb823a3396,0xbfd1d8fb35d89e3f,4
1282
+ np.float64,0xbfe893172571262e,0xbfeee716b592b93c,4
1283
+ np.float64,0x8ff5acc11fec,0x8ff5acc11fec,4
1284
+ np.float64,0xbfdca0c57cb9418a,0xbfdeb42465a1b59e,4
1285
+ np.float64,0xffd77bd2a3aef7a6,0x4012cd69e85b82d8,4
1286
+ np.float64,0xbfe6ea78982dd4f1,0xbfebd8ec61fb9e1f,4
1287
+ np.float64,0x7fe14b1d80a2963a,0xc02241642102cf71,4
1288
+ np.float64,0x3fe712bf286e257e,0x3fec20012329a7fb,4
1289
+ np.float64,0x7fcb6fa4d636df49,0x400b899d14a886b3,4
1290
+ np.float64,0x3fb82cb39a305960,0x3fb83f29c5f0822e,4
1291
+ np.float64,0x7fed694c8b3ad298,0xbfe2724373c69808,4
1292
+ np.float64,0xbfcd21229f3a4244,0xbfcda497fc3e1245,4
1293
+ np.float64,0x564d3770ac9a8,0x564d3770ac9a8,4
1294
+ np.float64,0xf4409e13e8814,0xf4409e13e8814,4
1295
+ np.float64,0x80068dca9a8d1b96,0x80068dca9a8d1b96,4
1296
+ np.float64,0xbfe13f82afe27f06,0xbfe3236ddded353f,4
1297
+ np.float64,0x80023f8114647f03,0x80023f8114647f03,4
1298
+ np.float64,0xeafba7dfd5f75,0xeafba7dfd5f75,4
1299
+ np.float64,0x3feca74ddeb94e9c,0x3ff3f95dcce5a227,4
1300
+ np.float64,0x10000000000000,0x10000000000000,4
1301
+ np.float64,0xbfebdb4141f7b682,0xbff2fc29823ac64a,4
1302
+ np.float64,0xbfcd75ee2f3aebdc,0xbfcdfdfd87cc6a29,4
1303
+ np.float64,0x7fc010cda420219a,0x3fae4ca2cf1f2657,4
1304
+ np.float64,0x1a90209e35205,0x1a90209e35205,4
1305
+ np.float64,0x8008057d01900afa,0x8008057d01900afa,4
1306
+ np.float64,0x3f9cb5f280396be5,0x3f9cb7dfb4e4be4e,4
1307
+ np.float64,0xffe1bbb60b63776c,0xc00011b1ffcb2561,4
1308
+ np.float64,0xffda883f6fb5107e,0x4044238ef4e2a198,4
1309
+ np.float64,0x3fc07c0b4a20f817,0x3fc09387de9eebcf,4
1310
+ np.float64,0x8003a9ebc0c753d8,0x8003a9ebc0c753d8,4
1311
+ np.float64,0x1d7fd5923affc,0x1d7fd5923affc,4
1312
+ np.float64,0xbfe9cd8cf9b39b1a,0xbff0af43e567ba4a,4
1313
+ np.float64,0x11285cb42250c,0x11285cb42250c,4
1314
+ np.float64,0xffe81ae1ccb035c3,0xbfe038be7eb563a6,4
1315
+ np.float64,0xbfe56473b1eac8e8,0xbfe94654d8ab9e75,4
1316
+ np.float64,0x3fee904619fd208c,0x3ff69e198152fe17,4
1317
+ np.float64,0xbfeeb9a2cbfd7346,0xbff6dc8d96da78cd,4
1318
+ np.float64,0x8006cdfa59ed9bf5,0x8006cdfa59ed9bf5,4
1319
+ np.float64,0x8008f2366d31e46d,0x8008f2366d31e46d,4
1320
+ np.float64,0x8008d5f91e31abf3,0x8008d5f91e31abf3,4
1321
+ np.float64,0x3fe85886f8b0b10e,0x3fee76af16f5a126,4
1322
+ np.float64,0x3fefb9b2b73f7365,0x3ff8745128fa3e3b,4
1323
+ np.float64,0x7fdf3e721f3e7ce3,0xbfb19381541ca2a8,4
1324
+ np.float64,0x3fd2768c41a4ed18,0x3fd2fe2f85a3f3a6,4
1325
+ np.float64,0xbfcabe3c6a357c78,0xbfcb239fb88bc260,4
1326
+ np.float64,0xffdffb6a3dbff6d4,0xbff7af4759fd557c,4
1327
+ np.float64,0x800817f75f302fef,0x800817f75f302fef,4
1328
+ np.float64,0xbfe6a1d1762d43a3,0xbfeb5a399a095ef3,4
1329
+ np.float64,0x7fd6f32f912de65e,0x40016dedc51aabd0,4
1330
+ np.float64,0x3fc6cb26652d964d,0x3fc7099f047d924a,4
1331
+ np.float64,0x3fe8b975d67172ec,0x3fef31946123c0e7,4
1332
+ np.float64,0xffe44a09d1e89413,0x3fdee9e5eac6e540,4
1333
+ np.float64,0xbfece76d4cb9cedb,0xbff44c34849d07ba,4
1334
+ np.float64,0x7feb76027036ec04,0x3fe08595a5e263ac,4
1335
+ np.float64,0xffe194f591a329ea,0x3fbe5bd626400a70,4
1336
+ np.float64,0xbfc170698122e0d4,0xbfc18c3de8b63565,4
1337
+ np.float64,0x3fc82b2c0f305658,0x3fc875c3b5fbcd08,4
1338
+ np.float64,0x3fd5015634aa02ac,0x3fd5cb1df07213c3,4
1339
+ np.float64,0x7fe640884b6c8110,0xbff66255a420abb5,4
1340
+ np.float64,0x5a245206b448b,0x5a245206b448b,4
1341
+ np.float64,0xffe9d9fa2f73b3f4,0xc0272b0dd34ab9bf,4
1342
+ np.float64,0x3fd990e8aab321d0,0x3fdb04cd3a29bcc3,4
1343
+ np.float64,0xde9dda8bbd3bc,0xde9dda8bbd3bc,4
1344
+ np.float64,0xbfe81b32b4703666,0xbfee029937fa9f5a,4
1345
+ np.float64,0xbfe68116886d022d,0xbfeb21c62081cb73,4
1346
+ np.float64,0x3fb8da191231b432,0x3fb8ee28c71507d3,4
1347
+ np.float64,0x3fb111395a222273,0x3fb117b57de3dea4,4
1348
+ np.float64,0xffbafadc6a35f5b8,0x3ffcc6d2370297b9,4
1349
+ np.float64,0x8002ca475b05948f,0x8002ca475b05948f,4
1350
+ np.float64,0xbfeafef57875fdeb,0xbff1fb1315676f24,4
1351
+ np.float64,0x7fcda427d73b484f,0xbff9f70212694d17,4
1352
+ np.float64,0xffe2517b3ba4a2f6,0xc029ca6707305bf4,4
1353
+ np.float64,0x7fc5ee156b2bdc2a,0xbff8384b59e9056e,4
1354
+ np.float64,0xbfec22af3278455e,0xbff3530fe25816b4,4
1355
+ np.float64,0x6b5a8c2cd6b52,0x6b5a8c2cd6b52,4
1356
+ np.float64,0xffdaf6c4b935ed8a,0x4002f00ce58affcf,4
1357
+ np.float64,0x800a41813c748303,0x800a41813c748303,4
1358
+ np.float64,0xbfd09a1269213424,0xbfd0fc0a0c5de8eb,4
1359
+ np.float64,0x7fa2cb74d42596e9,0x3fc3d40e000fa69d,4
1360
+ np.float64,0x7ff8000000000000,0x7ff8000000000000,4
1361
+ np.float64,0x3fbfbf8ed63f7f1e,0x3fbfe97bcad9f53a,4
1362
+ np.float64,0x7fe0ebba65a1d774,0x401b0f17b28618df,4
1363
+ np.float64,0x3fd02c3a25a05874,0x3fd086aa55b19c9c,4
1364
+ np.float64,0xec628f95d8c52,0xec628f95d8c52,4
1365
+ np.float64,0x3fd319329fa63264,0x3fd3afb04e0dec63,4
1366
+ np.float64,0x180e0ade301c2,0x180e0ade301c2,4
1367
+ np.float64,0xbfe8d78324f1af06,0xbfef6c66153064ee,4
1368
+ np.float64,0xffb89fa200313f48,0xbfeb96ff2d9358dc,4
1369
+ np.float64,0x7fe6abcf86ed579e,0xc0269f4de86365ec,4
1370
+ np.float64,0x7fdff8cd65bff19a,0xbfd0f7c6b9052c9a,4
1371
+ np.float64,0xbfd2e3a53d25c74a,0xbfd37520cda5f6b2,4
1372
+ np.float64,0x7fe844b096708960,0x3ff696a6182e5a7a,4
1373
+ np.float64,0x7fdce0c7a3b9c18e,0x3fd42875d69ed379,4
1374
+ np.float64,0xffba5a91cc34b520,0x4001b571e8991951,4
1375
+ np.float64,0xffe78fe4a6ef1fc9,0x3ff4507b31f5b3bc,4
1376
+ np.float64,0xbfd7047493ae08ea,0xbfd810618a53fffb,4
1377
+ np.float64,0xc6559def8cab4,0xc6559def8cab4,4
1378
+ np.float64,0x3fe75d67a76ebacf,0x3feca56817de65e4,4
1379
+ np.float64,0xffd24adbd6a495b8,0xc012c491addf2df5,4
1380
+ np.float64,0x7fed35e28dba6bc4,0x403a0fa555ff7ec6,4
1381
+ np.float64,0x80078c4afa0f1897,0x80078c4afa0f1897,4
1382
+ np.float64,0xa6ec39114dd87,0xa6ec39114dd87,4
1383
+ np.float64,0x7fb1bd33ba237a66,0x4010092bb6810fd4,4
1384
+ np.float64,0x800ecf215edd9e43,0x800ecf215edd9e43,4
1385
+ np.float64,0x3fb7c169242f82d2,0x3fb7d2ed30c462e6,4
1386
+ np.float64,0xbf71b46d60236900,0xbf71b4749a10c112,4
1387
+ np.float64,0x800d7851787af0a3,0x800d7851787af0a3,4
1388
+ np.float64,0x3fcb4a45e7369488,0x3fcbb61701a1bcec,4
1389
+ np.float64,0x3fd4e3682429c6d0,0x3fd5a9bcb916eb94,4
1390
+ np.float64,0x800497564c292ead,0x800497564c292ead,4
1391
+ np.float64,0xbfca3737a1346e70,0xbfca96a86ae5d687,4
1392
+ np.float64,0x19aa87e03356,0x19aa87e03356,4
1393
+ np.float64,0xffb2593fe624b280,0xc05fedb99b467ced,4
1394
+ np.float64,0xbfdd8748fbbb0e92,0xbfdfd1a7df17252c,4
1395
+ np.float64,0x8004c7afc7098f60,0x8004c7afc7098f60,4
1396
+ np.float64,0x7fde48b2bf3c9164,0xbfe36ef1158ed420,4
1397
+ np.float64,0xbfec8e0eb0f91c1d,0xbff3d9319705a602,4
1398
+ np.float64,0xffea1be204f437c3,0xc0144f67298c3e6f,4
1399
+ np.float64,0x7fdb906b593720d6,0xbfce99233396eda7,4
1400
+ np.float64,0x3fef0f114ffe1e22,0x3ff76072a258a51b,4
1401
+ np.float64,0x3fe3e284c8e7c50a,0x3fe6e9b05e17c999,4
1402
+ np.float64,0xbfbda9eef23b53e0,0xbfbdcc1abb443597,4
1403
+ np.float64,0x3feb6454d4f6c8aa,0x3ff26f65a85baba4,4
1404
+ np.float64,0x3fea317439f462e8,0x3ff118e2187ef33f,4
1405
+ np.float64,0x376ad0646ed5b,0x376ad0646ed5b,4
1406
+ np.float64,0x7fdd461a1c3a8c33,0x3f7ba20fb79e785f,4
1407
+ np.float64,0xebc520a3d78a4,0xebc520a3d78a4,4
1408
+ np.float64,0x3fca90fe53352200,0x3fcaf45c7fae234d,4
1409
+ np.float64,0xbfe80dd1de701ba4,0xbfede97e12cde9de,4
1410
+ np.float64,0x3fd242b00ea48560,0x3fd2c5cf9bf69a31,4
1411
+ np.float64,0x7fe46c057828d80a,0xbfe2f76837488f94,4
1412
+ np.float64,0x3fc162bea322c580,0x3fc17e517c958867,4
1413
+ np.float64,0xffebf0452ff7e08a,0x3ffc3fd95c257b54,4
1414
+ np.float64,0xffd88043c6310088,0x4008b05598d0d95f,4
1415
+ np.float64,0x800d8c49da5b1894,0x800d8c49da5b1894,4
1416
+ np.float64,0xbfed33b487ba6769,0xbff4b0ea941f8a6a,4
1417
+ np.float64,0x16b881e22d711,0x16b881e22d711,4
1418
+ np.float64,0x288bae0051177,0x288bae0051177,4
1419
+ np.float64,0xffc83a0fe8307420,0x4006eff03da17f86,4
1420
+ np.float64,0x3fc7868b252f0d18,0x3fc7cb4954290324,4
1421
+ np.float64,0xbfe195514b232aa2,0xbfe398aae6c8ed76,4
1422
+ np.float64,0x800c001ae7f80036,0x800c001ae7f80036,4
1423
+ np.float64,0x7feb82abe7370557,0xbff1e13fe6fad23c,4
1424
+ np.float64,0xffecf609cdf9ec13,0xc0112aa1805ae59e,4
1425
+ np.float64,0xffddd654f63bacaa,0x3fe46cce899f710d,4
1426
+ np.float64,0x3fe2163138642c62,0x3fe44b9c760acd4c,4
1427
+ np.float64,0x4e570dc09cae2,0x4e570dc09cae2,4
1428
+ np.float64,0x7fe9e8d091f3d1a0,0xc000fe20f8e9a4b5,4
1429
+ np.float64,0x7fe60042952c0084,0x3fd0aa740f394c2a,4
venv/lib/python3.10/site-packages/numpy/core/tests/test__exceptions.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests of the ._exceptions module. Primarily for exercising the __str__ methods.
3
+ """
4
+
5
+ import pickle
6
+
7
+ import pytest
8
+ import numpy as np
9
+
10
+ _ArrayMemoryError = np.core._exceptions._ArrayMemoryError
11
+ _UFuncNoLoopError = np.core._exceptions._UFuncNoLoopError
12
+
13
+ class TestArrayMemoryError:
14
+ def test_pickling(self):
15
+ """ Test that _ArrayMemoryError can be pickled """
16
+ error = _ArrayMemoryError((1023,), np.dtype(np.uint8))
17
+ res = pickle.loads(pickle.dumps(error))
18
+ assert res._total_size == error._total_size
19
+
20
+ def test_str(self):
21
+ e = _ArrayMemoryError((1023,), np.dtype(np.uint8))
22
+ str(e) # not crashing is enough
23
+
24
+ # testing these properties is easier than testing the full string repr
25
+ def test__size_to_string(self):
26
+ """ Test e._size_to_string """
27
+ f = _ArrayMemoryError._size_to_string
28
+ Ki = 1024
29
+ assert f(0) == '0 bytes'
30
+ assert f(1) == '1 bytes'
31
+ assert f(1023) == '1023 bytes'
32
+ assert f(Ki) == '1.00 KiB'
33
+ assert f(Ki+1) == '1.00 KiB'
34
+ assert f(10*Ki) == '10.0 KiB'
35
+ assert f(int(999.4*Ki)) == '999. KiB'
36
+ assert f(int(1023.4*Ki)) == '1023. KiB'
37
+ assert f(int(1023.5*Ki)) == '1.00 MiB'
38
+ assert f(Ki*Ki) == '1.00 MiB'
39
+
40
+ # 1023.9999 Mib should round to 1 GiB
41
+ assert f(int(Ki*Ki*Ki*0.9999)) == '1.00 GiB'
42
+ assert f(Ki*Ki*Ki*Ki*Ki*Ki) == '1.00 EiB'
43
+ # larger than sys.maxsize, adding larger prefixes isn't going to help
44
+ # anyway.
45
+ assert f(Ki*Ki*Ki*Ki*Ki*Ki*123456) == '123456. EiB'
46
+
47
+ def test__total_size(self):
48
+ """ Test e._total_size """
49
+ e = _ArrayMemoryError((1,), np.dtype(np.uint8))
50
+ assert e._total_size == 1
51
+
52
+ e = _ArrayMemoryError((2, 4), np.dtype((np.uint64, 16)))
53
+ assert e._total_size == 1024
54
+
55
+
56
+ class TestUFuncNoLoopError:
57
+ def test_pickling(self):
58
+ """ Test that _UFuncNoLoopError can be pickled """
59
+ assert isinstance(pickle.dumps(_UFuncNoLoopError), bytes)
60
+
61
+
62
+ @pytest.mark.parametrize("args", [
63
+ (2, 1, None),
64
+ (2, 1, "test_prefix"),
65
+ ("test message",),
66
+ ])
67
+ class TestAxisError:
68
+ def test_attr(self, args):
69
+ """Validate attribute types."""
70
+ exc = np.AxisError(*args)
71
+ if len(args) == 1:
72
+ assert exc.axis is None
73
+ assert exc.ndim is None
74
+ else:
75
+ axis, ndim, *_ = args
76
+ assert exc.axis == axis
77
+ assert exc.ndim == ndim
78
+
79
+ def test_pickling(self, args):
80
+ """Test that `AxisError` can be pickled."""
81
+ exc = np.AxisError(*args)
82
+ exc2 = pickle.loads(pickle.dumps(exc))
83
+
84
+ assert type(exc) is type(exc2)
85
+ for name in ("axis", "ndim", "args"):
86
+ attr1 = getattr(exc, name)
87
+ attr2 = getattr(exc2, name)
88
+ assert attr1 == attr2, name
venv/lib/python3.10/site-packages/numpy/core/tests/test_abc.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.testing import assert_
2
+
3
+ import numbers
4
+
5
+ import numpy as np
6
+ from numpy.core.numerictypes import sctypes
7
+
8
+ class TestABC:
9
+ def test_abstract(self):
10
+ assert_(issubclass(np.number, numbers.Number))
11
+
12
+ assert_(issubclass(np.inexact, numbers.Complex))
13
+ assert_(issubclass(np.complexfloating, numbers.Complex))
14
+ assert_(issubclass(np.floating, numbers.Real))
15
+
16
+ assert_(issubclass(np.integer, numbers.Integral))
17
+ assert_(issubclass(np.signedinteger, numbers.Integral))
18
+ assert_(issubclass(np.unsignedinteger, numbers.Integral))
19
+
20
+ def test_floats(self):
21
+ for t in sctypes['float']:
22
+ assert_(isinstance(t(), numbers.Real),
23
+ f"{t.__name__} is not instance of Real")
24
+ assert_(issubclass(t, numbers.Real),
25
+ f"{t.__name__} is not subclass of Real")
26
+ assert_(not isinstance(t(), numbers.Rational),
27
+ f"{t.__name__} is instance of Rational")
28
+ assert_(not issubclass(t, numbers.Rational),
29
+ f"{t.__name__} is subclass of Rational")
30
+
31
+ def test_complex(self):
32
+ for t in sctypes['complex']:
33
+ assert_(isinstance(t(), numbers.Complex),
34
+ f"{t.__name__} is not instance of Complex")
35
+ assert_(issubclass(t, numbers.Complex),
36
+ f"{t.__name__} is not subclass of Complex")
37
+ assert_(not isinstance(t(), numbers.Real),
38
+ f"{t.__name__} is instance of Real")
39
+ assert_(not issubclass(t, numbers.Real),
40
+ f"{t.__name__} is subclass of Real")
41
+
42
+ def test_int(self):
43
+ for t in sctypes['int']:
44
+ assert_(isinstance(t(), numbers.Integral),
45
+ f"{t.__name__} is not instance of Integral")
46
+ assert_(issubclass(t, numbers.Integral),
47
+ f"{t.__name__} is not subclass of Integral")
48
+
49
+ def test_uint(self):
50
+ for t in sctypes['uint']:
51
+ assert_(isinstance(t(), numbers.Integral),
52
+ f"{t.__name__} is not instance of Integral")
53
+ assert_(issubclass(t, numbers.Integral),
54
+ f"{t.__name__} is not subclass of Integral")
venv/lib/python3.10/site-packages/numpy/core/tests/test_api.py ADDED
@@ -0,0 +1,615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ import numpy as np
4
+ from numpy.core._rational_tests import rational
5
+ import pytest
6
+ from numpy.testing import (
7
+ assert_, assert_equal, assert_array_equal, assert_raises, assert_warns,
8
+ HAS_REFCOUNT
9
+ )
10
+
11
+
12
+ def test_array_array():
13
+ tobj = type(object)
14
+ ones11 = np.ones((1, 1), np.float64)
15
+ tndarray = type(ones11)
16
+ # Test is_ndarray
17
+ assert_equal(np.array(ones11, dtype=np.float64), ones11)
18
+ if HAS_REFCOUNT:
19
+ old_refcount = sys.getrefcount(tndarray)
20
+ np.array(ones11)
21
+ assert_equal(old_refcount, sys.getrefcount(tndarray))
22
+
23
+ # test None
24
+ assert_equal(np.array(None, dtype=np.float64),
25
+ np.array(np.nan, dtype=np.float64))
26
+ if HAS_REFCOUNT:
27
+ old_refcount = sys.getrefcount(tobj)
28
+ np.array(None, dtype=np.float64)
29
+ assert_equal(old_refcount, sys.getrefcount(tobj))
30
+
31
+ # test scalar
32
+ assert_equal(np.array(1.0, dtype=np.float64),
33
+ np.ones((), dtype=np.float64))
34
+ if HAS_REFCOUNT:
35
+ old_refcount = sys.getrefcount(np.float64)
36
+ np.array(np.array(1.0, dtype=np.float64), dtype=np.float64)
37
+ assert_equal(old_refcount, sys.getrefcount(np.float64))
38
+
39
+ # test string
40
+ S2 = np.dtype((bytes, 2))
41
+ S3 = np.dtype((bytes, 3))
42
+ S5 = np.dtype((bytes, 5))
43
+ assert_equal(np.array(b"1.0", dtype=np.float64),
44
+ np.ones((), dtype=np.float64))
45
+ assert_equal(np.array(b"1.0").dtype, S3)
46
+ assert_equal(np.array(b"1.0", dtype=bytes).dtype, S3)
47
+ assert_equal(np.array(b"1.0", dtype=S2), np.array(b"1."))
48
+ assert_equal(np.array(b"1", dtype=S5), np.ones((), dtype=S5))
49
+
50
+ # test string
51
+ U2 = np.dtype((str, 2))
52
+ U3 = np.dtype((str, 3))
53
+ U5 = np.dtype((str, 5))
54
+ assert_equal(np.array("1.0", dtype=np.float64),
55
+ np.ones((), dtype=np.float64))
56
+ assert_equal(np.array("1.0").dtype, U3)
57
+ assert_equal(np.array("1.0", dtype=str).dtype, U3)
58
+ assert_equal(np.array("1.0", dtype=U2), np.array(str("1.")))
59
+ assert_equal(np.array("1", dtype=U5), np.ones((), dtype=U5))
60
+
61
+ builtins = getattr(__builtins__, '__dict__', __builtins__)
62
+ assert_(hasattr(builtins, 'get'))
63
+
64
+ # test memoryview
65
+ dat = np.array(memoryview(b'1.0'), dtype=np.float64)
66
+ assert_equal(dat, [49.0, 46.0, 48.0])
67
+ assert_(dat.dtype.type is np.float64)
68
+
69
+ dat = np.array(memoryview(b'1.0'))
70
+ assert_equal(dat, [49, 46, 48])
71
+ assert_(dat.dtype.type is np.uint8)
72
+
73
+ # test array interface
74
+ a = np.array(100.0, dtype=np.float64)
75
+ o = type("o", (object,),
76
+ dict(__array_interface__=a.__array_interface__))
77
+ assert_equal(np.array(o, dtype=np.float64), a)
78
+
79
+ # test array_struct interface
80
+ a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')],
81
+ dtype=[('f0', int), ('f1', float), ('f2', str)])
82
+ o = type("o", (object,),
83
+ dict(__array_struct__=a.__array_struct__))
84
+ ## wasn't what I expected... is np.array(o) supposed to equal a ?
85
+ ## instead we get a array([...], dtype=">V18")
86
+ assert_equal(bytes(np.array(o).data), bytes(a.data))
87
+
88
+ # test array
89
+ o = type("o", (object,),
90
+ dict(__array__=lambda *x: np.array(100.0, dtype=np.float64)))()
91
+ assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64))
92
+
93
+ # test recursion
94
+ nested = 1.5
95
+ for i in range(np.MAXDIMS):
96
+ nested = [nested]
97
+
98
+ # no error
99
+ np.array(nested)
100
+
101
+ # Exceeds recursion limit
102
+ assert_raises(ValueError, np.array, [nested], dtype=np.float64)
103
+
104
+ # Try with lists...
105
+ # float32
106
+ assert_equal(np.array([None] * 10, dtype=np.float32),
107
+ np.full((10,), np.nan, dtype=np.float32))
108
+ assert_equal(np.array([[None]] * 10, dtype=np.float32),
109
+ np.full((10, 1), np.nan, dtype=np.float32))
110
+ assert_equal(np.array([[None] * 10], dtype=np.float32),
111
+ np.full((1, 10), np.nan, dtype=np.float32))
112
+ assert_equal(np.array([[None] * 10] * 10, dtype=np.float32),
113
+ np.full((10, 10), np.nan, dtype=np.float32))
114
+ # float64
115
+ assert_equal(np.array([None] * 10, dtype=np.float64),
116
+ np.full((10,), np.nan, dtype=np.float64))
117
+ assert_equal(np.array([[None]] * 10, dtype=np.float64),
118
+ np.full((10, 1), np.nan, dtype=np.float64))
119
+ assert_equal(np.array([[None] * 10], dtype=np.float64),
120
+ np.full((1, 10), np.nan, dtype=np.float64))
121
+ assert_equal(np.array([[None] * 10] * 10, dtype=np.float64),
122
+ np.full((10, 10), np.nan, dtype=np.float64))
123
+
124
+ assert_equal(np.array([1.0] * 10, dtype=np.float64),
125
+ np.ones((10,), dtype=np.float64))
126
+ assert_equal(np.array([[1.0]] * 10, dtype=np.float64),
127
+ np.ones((10, 1), dtype=np.float64))
128
+ assert_equal(np.array([[1.0] * 10], dtype=np.float64),
129
+ np.ones((1, 10), dtype=np.float64))
130
+ assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64),
131
+ np.ones((10, 10), dtype=np.float64))
132
+
133
+ # Try with tuples
134
+ assert_equal(np.array((None,) * 10, dtype=np.float64),
135
+ np.full((10,), np.nan, dtype=np.float64))
136
+ assert_equal(np.array([(None,)] * 10, dtype=np.float64),
137
+ np.full((10, 1), np.nan, dtype=np.float64))
138
+ assert_equal(np.array([(None,) * 10], dtype=np.float64),
139
+ np.full((1, 10), np.nan, dtype=np.float64))
140
+ assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64),
141
+ np.full((10, 10), np.nan, dtype=np.float64))
142
+
143
+ assert_equal(np.array((1.0,) * 10, dtype=np.float64),
144
+ np.ones((10,), dtype=np.float64))
145
+ assert_equal(np.array([(1.0,)] * 10, dtype=np.float64),
146
+ np.ones((10, 1), dtype=np.float64))
147
+ assert_equal(np.array([(1.0,) * 10], dtype=np.float64),
148
+ np.ones((1, 10), dtype=np.float64))
149
+ assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64),
150
+ np.ones((10, 10), dtype=np.float64))
151
+
152
+ @pytest.mark.parametrize("array", [True, False])
153
+ def test_array_impossible_casts(array):
154
+ # All builtin types can be forcibly cast, at least theoretically,
155
+ # but user dtypes cannot necessarily.
156
+ rt = rational(1, 2)
157
+ if array:
158
+ rt = np.array(rt)
159
+ with assert_raises(TypeError):
160
+ np.array(rt, dtype="M8")
161
+
162
+
163
+ # TODO: remove when fastCopyAndTranspose deprecation expires
164
+ @pytest.mark.parametrize("a",
165
+ (
166
+ np.array(2), # 0D array
167
+ np.array([3, 2, 7, 0]), # 1D array
168
+ np.arange(6).reshape(2, 3) # 2D array
169
+ ),
170
+ )
171
+ def test_fastCopyAndTranspose(a):
172
+ with pytest.deprecated_call():
173
+ b = np.fastCopyAndTranspose(a)
174
+ assert_equal(b, a.T)
175
+ assert b.flags.owndata
176
+
177
+
178
+ def test_array_astype():
179
+ a = np.arange(6, dtype='f4').reshape(2, 3)
180
+ # Default behavior: allows unsafe casts, keeps memory layout,
181
+ # always copies.
182
+ b = a.astype('i4')
183
+ assert_equal(a, b)
184
+ assert_equal(b.dtype, np.dtype('i4'))
185
+ assert_equal(a.strides, b.strides)
186
+ b = a.T.astype('i4')
187
+ assert_equal(a.T, b)
188
+ assert_equal(b.dtype, np.dtype('i4'))
189
+ assert_equal(a.T.strides, b.strides)
190
+ b = a.astype('f4')
191
+ assert_equal(a, b)
192
+ assert_(not (a is b))
193
+
194
+ # copy=False parameter can sometimes skip a copy
195
+ b = a.astype('f4', copy=False)
196
+ assert_(a is b)
197
+
198
+ # order parameter allows overriding of the memory layout,
199
+ # forcing a copy if the layout is wrong
200
+ b = a.astype('f4', order='F', copy=False)
201
+ assert_equal(a, b)
202
+ assert_(not (a is b))
203
+ assert_(b.flags.f_contiguous)
204
+
205
+ b = a.astype('f4', order='C', copy=False)
206
+ assert_equal(a, b)
207
+ assert_(a is b)
208
+ assert_(b.flags.c_contiguous)
209
+
210
+ # casting parameter allows catching bad casts
211
+ b = a.astype('c8', casting='safe')
212
+ assert_equal(a, b)
213
+ assert_equal(b.dtype, np.dtype('c8'))
214
+
215
+ assert_raises(TypeError, a.astype, 'i4', casting='safe')
216
+
217
+ # subok=False passes through a non-subclassed array
218
+ b = a.astype('f4', subok=0, copy=False)
219
+ assert_(a is b)
220
+
221
+ class MyNDArray(np.ndarray):
222
+ pass
223
+
224
+ a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray)
225
+
226
+ # subok=True passes through a subclass
227
+ b = a.astype('f4', subok=True, copy=False)
228
+ assert_(a is b)
229
+
230
+ # subok=True is default, and creates a subtype on a cast
231
+ b = a.astype('i4', copy=False)
232
+ assert_equal(a, b)
233
+ assert_equal(type(b), MyNDArray)
234
+
235
+ # subok=False never returns a subclass
236
+ b = a.astype('f4', subok=False, copy=False)
237
+ assert_equal(a, b)
238
+ assert_(not (a is b))
239
+ assert_(type(b) is not MyNDArray)
240
+
241
+ # Make sure converting from string object to fixed length string
242
+ # does not truncate.
243
+ a = np.array([b'a'*100], dtype='O')
244
+ b = a.astype('S')
245
+ assert_equal(a, b)
246
+ assert_equal(b.dtype, np.dtype('S100'))
247
+ a = np.array(['a'*100], dtype='O')
248
+ b = a.astype('U')
249
+ assert_equal(a, b)
250
+ assert_equal(b.dtype, np.dtype('U100'))
251
+
252
+ # Same test as above but for strings shorter than 64 characters
253
+ a = np.array([b'a'*10], dtype='O')
254
+ b = a.astype('S')
255
+ assert_equal(a, b)
256
+ assert_equal(b.dtype, np.dtype('S10'))
257
+ a = np.array(['a'*10], dtype='O')
258
+ b = a.astype('U')
259
+ assert_equal(a, b)
260
+ assert_equal(b.dtype, np.dtype('U10'))
261
+
262
+ a = np.array(123456789012345678901234567890, dtype='O').astype('S')
263
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
264
+ a = np.array(123456789012345678901234567890, dtype='O').astype('U')
265
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
266
+
267
+ a = np.array([123456789012345678901234567890], dtype='O').astype('S')
268
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
269
+ a = np.array([123456789012345678901234567890], dtype='O').astype('U')
270
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
271
+
272
+ a = np.array(123456789012345678901234567890, dtype='S')
273
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
274
+ a = np.array(123456789012345678901234567890, dtype='U')
275
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
276
+
277
+ a = np.array('a\u0140', dtype='U')
278
+ b = np.ndarray(buffer=a, dtype='uint32', shape=2)
279
+ assert_(b.size == 2)
280
+
281
+ a = np.array([1000], dtype='i4')
282
+ assert_raises(TypeError, a.astype, 'S1', casting='safe')
283
+
284
+ a = np.array(1000, dtype='i4')
285
+ assert_raises(TypeError, a.astype, 'U1', casting='safe')
286
+
287
+ # gh-24023
288
+ assert_raises(TypeError, a.astype)
289
+
290
+ @pytest.mark.parametrize("dt", ["S", "U"])
291
+ def test_array_astype_to_string_discovery_empty(dt):
292
+ # See also gh-19085
293
+ arr = np.array([""], dtype=object)
294
+ # Note, the itemsize is the `0 -> 1` logic, which should change.
295
+ # The important part the test is rather that it does not error.
296
+ assert arr.astype(dt).dtype.itemsize == np.dtype(f"{dt}1").itemsize
297
+
298
+ # check the same thing for `np.can_cast` (since it accepts arrays)
299
+ assert np.can_cast(arr, dt, casting="unsafe")
300
+ assert not np.can_cast(arr, dt, casting="same_kind")
301
+ # as well as for the object as a descriptor:
302
+ assert np.can_cast("O", dt, casting="unsafe")
303
+
304
+ @pytest.mark.parametrize("dt", ["d", "f", "S13", "U32"])
305
+ def test_array_astype_to_void(dt):
306
+ dt = np.dtype(dt)
307
+ arr = np.array([], dtype=dt)
308
+ assert arr.astype("V").dtype.itemsize == dt.itemsize
309
+
310
+ def test_object_array_astype_to_void():
311
+ # This is different to `test_array_astype_to_void` as object arrays
312
+ # are inspected. The default void is "V8" (8 is the length of double)
313
+ arr = np.array([], dtype="O").astype("V")
314
+ assert arr.dtype == "V8"
315
+
316
+ @pytest.mark.parametrize("t",
317
+ np.sctypes['uint'] + np.sctypes['int'] + np.sctypes['float']
318
+ )
319
+ def test_array_astype_warning(t):
320
+ # test ComplexWarning when casting from complex to float or int
321
+ a = np.array(10, dtype=np.complex_)
322
+ assert_warns(np.ComplexWarning, a.astype, t)
323
+
324
+ @pytest.mark.parametrize(["dtype", "out_dtype"],
325
+ [(np.bytes_, np.bool_),
326
+ (np.str_, np.bool_),
327
+ (np.dtype("S10,S9"), np.dtype("?,?"))])
328
+ def test_string_to_boolean_cast(dtype, out_dtype):
329
+ """
330
+ Currently, for `astype` strings are cast to booleans effectively by
331
+ calling `bool(int(string)`. This is not consistent (see gh-9875) and
332
+ will eventually be deprecated.
333
+ """
334
+ arr = np.array(["10", "10\0\0\0", "0\0\0", "0"], dtype=dtype)
335
+ expected = np.array([True, True, False, False], dtype=out_dtype)
336
+ assert_array_equal(arr.astype(out_dtype), expected)
337
+
338
+ @pytest.mark.parametrize(["dtype", "out_dtype"],
339
+ [(np.bytes_, np.bool_),
340
+ (np.str_, np.bool_),
341
+ (np.dtype("S10,S9"), np.dtype("?,?"))])
342
+ def test_string_to_boolean_cast_errors(dtype, out_dtype):
343
+ """
344
+ These currently error out, since cast to integers fails, but should not
345
+ error out in the future.
346
+ """
347
+ for invalid in ["False", "True", "", "\0", "non-empty"]:
348
+ arr = np.array([invalid], dtype=dtype)
349
+ with assert_raises(ValueError):
350
+ arr.astype(out_dtype)
351
+
352
+ @pytest.mark.parametrize("str_type", [str, bytes, np.str_, np.unicode_])
353
+ @pytest.mark.parametrize("scalar_type",
354
+ [np.complex64, np.complex128, np.clongdouble])
355
+ def test_string_to_complex_cast(str_type, scalar_type):
356
+ value = scalar_type(b"1+3j")
357
+ assert scalar_type(value) == 1+3j
358
+ assert np.array([value], dtype=object).astype(scalar_type)[()] == 1+3j
359
+ assert np.array(value).astype(scalar_type)[()] == 1+3j
360
+ arr = np.zeros(1, dtype=scalar_type)
361
+ arr[0] = value
362
+ assert arr[0] == 1+3j
363
+
364
+ @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
365
+ def test_none_to_nan_cast(dtype):
366
+ # Note that at the time of writing this test, the scalar constructors
367
+ # reject None
368
+ arr = np.zeros(1, dtype=dtype)
369
+ arr[0] = None
370
+ assert np.isnan(arr)[0]
371
+ assert np.isnan(np.array(None, dtype=dtype))[()]
372
+ assert np.isnan(np.array([None], dtype=dtype))[0]
373
+ assert np.isnan(np.array(None).astype(dtype))[()]
374
+
375
+ def test_copyto_fromscalar():
376
+ a = np.arange(6, dtype='f4').reshape(2, 3)
377
+
378
+ # Simple copy
379
+ np.copyto(a, 1.5)
380
+ assert_equal(a, 1.5)
381
+ np.copyto(a.T, 2.5)
382
+ assert_equal(a, 2.5)
383
+
384
+ # Where-masked copy
385
+ mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
386
+ np.copyto(a, 3.5, where=mask)
387
+ assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
388
+ mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
389
+ np.copyto(a.T, 4.5, where=mask)
390
+ assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
391
+
392
+ def test_copyto():
393
+ a = np.arange(6, dtype='i4').reshape(2, 3)
394
+
395
+ # Simple copy
396
+ np.copyto(a, [[3, 1, 5], [6, 2, 1]])
397
+ assert_equal(a, [[3, 1, 5], [6, 2, 1]])
398
+
399
+ # Overlapping copy should work
400
+ np.copyto(a[:, :2], a[::-1, 1::-1])
401
+ assert_equal(a, [[2, 6, 5], [1, 3, 1]])
402
+
403
+ # Defaults to 'same_kind' casting
404
+ assert_raises(TypeError, np.copyto, a, 1.5)
405
+
406
+ # Force a copy with 'unsafe' casting, truncating 1.5 to 1
407
+ np.copyto(a, 1.5, casting='unsafe')
408
+ assert_equal(a, 1)
409
+
410
+ # Copying with a mask
411
+ np.copyto(a, 3, where=[True, False, True])
412
+ assert_equal(a, [[3, 1, 3], [3, 1, 3]])
413
+
414
+ # Casting rule still applies with a mask
415
+ assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True])
416
+
417
+ # Lists of integer 0's and 1's is ok too
418
+ np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]])
419
+ assert_equal(a, [[3, 4, 4], [4, 1, 3]])
420
+
421
+ # Overlapping copy with mask should work
422
+ np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]])
423
+ assert_equal(a, [[3, 4, 4], [4, 3, 3]])
424
+
425
+ # 'dst' must be an array
426
+ assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4])
427
+
428
+ def test_copyto_permut():
429
+ # test explicit overflow case
430
+ pad = 500
431
+ l = [True] * pad + [True, True, True, True]
432
+ r = np.zeros(len(l)-pad)
433
+ d = np.ones(len(l)-pad)
434
+ mask = np.array(l)[pad:]
435
+ np.copyto(r, d, where=mask[::-1])
436
+
437
+ # test all permutation of possible masks, 9 should be sufficient for
438
+ # current 4 byte unrolled code
439
+ power = 9
440
+ d = np.ones(power)
441
+ for i in range(2**power):
442
+ r = np.zeros(power)
443
+ l = [(i & x) != 0 for x in range(power)]
444
+ mask = np.array(l)
445
+ np.copyto(r, d, where=mask)
446
+ assert_array_equal(r == 1, l)
447
+ assert_equal(r.sum(), sum(l))
448
+
449
+ r = np.zeros(power)
450
+ np.copyto(r, d, where=mask[::-1])
451
+ assert_array_equal(r == 1, l[::-1])
452
+ assert_equal(r.sum(), sum(l))
453
+
454
+ r = np.zeros(power)
455
+ np.copyto(r[::2], d[::2], where=mask[::2])
456
+ assert_array_equal(r[::2] == 1, l[::2])
457
+ assert_equal(r[::2].sum(), sum(l[::2]))
458
+
459
+ r = np.zeros(power)
460
+ np.copyto(r[::2], d[::2], where=mask[::-2])
461
+ assert_array_equal(r[::2] == 1, l[::-2])
462
+ assert_equal(r[::2].sum(), sum(l[::-2]))
463
+
464
+ for c in [0xFF, 0x7F, 0x02, 0x10]:
465
+ r = np.zeros(power)
466
+ mask = np.array(l)
467
+ imask = np.array(l).view(np.uint8)
468
+ imask[mask != 0] = c
469
+ np.copyto(r, d, where=mask)
470
+ assert_array_equal(r == 1, l)
471
+ assert_equal(r.sum(), sum(l))
472
+
473
+ r = np.zeros(power)
474
+ np.copyto(r, d, where=True)
475
+ assert_equal(r.sum(), r.size)
476
+ r = np.ones(power)
477
+ d = np.zeros(power)
478
+ np.copyto(r, d, where=False)
479
+ assert_equal(r.sum(), r.size)
480
+
481
+ def test_copy_order():
482
+ a = np.arange(24).reshape(2, 1, 3, 4)
483
+ b = a.copy(order='F')
484
+ c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3)
485
+
486
+ def check_copy_result(x, y, ccontig, fcontig, strides=False):
487
+ assert_(not (x is y))
488
+ assert_equal(x, y)
489
+ assert_equal(res.flags.c_contiguous, ccontig)
490
+ assert_equal(res.flags.f_contiguous, fcontig)
491
+
492
+ # Validate the initial state of a, b, and c
493
+ assert_(a.flags.c_contiguous)
494
+ assert_(not a.flags.f_contiguous)
495
+ assert_(not b.flags.c_contiguous)
496
+ assert_(b.flags.f_contiguous)
497
+ assert_(not c.flags.c_contiguous)
498
+ assert_(not c.flags.f_contiguous)
499
+
500
+ # Copy with order='C'
501
+ res = a.copy(order='C')
502
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
503
+ res = b.copy(order='C')
504
+ check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
505
+ res = c.copy(order='C')
506
+ check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
507
+ res = np.copy(a, order='C')
508
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
509
+ res = np.copy(b, order='C')
510
+ check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
511
+ res = np.copy(c, order='C')
512
+ check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
513
+
514
+ # Copy with order='F'
515
+ res = a.copy(order='F')
516
+ check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
517
+ res = b.copy(order='F')
518
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
519
+ res = c.copy(order='F')
520
+ check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
521
+ res = np.copy(a, order='F')
522
+ check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
523
+ res = np.copy(b, order='F')
524
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
525
+ res = np.copy(c, order='F')
526
+ check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
527
+
528
+ # Copy with order='K'
529
+ res = a.copy(order='K')
530
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
531
+ res = b.copy(order='K')
532
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
533
+ res = c.copy(order='K')
534
+ check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
535
+ res = np.copy(a, order='K')
536
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
537
+ res = np.copy(b, order='K')
538
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
539
+ res = np.copy(c, order='K')
540
+ check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
541
+
542
+ def test_contiguous_flags():
543
+ a = np.ones((4, 4, 1))[::2,:,:]
544
+ a.strides = a.strides[:2] + (-123,)
545
+ b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4)
546
+
547
+ def check_contig(a, ccontig, fcontig):
548
+ assert_(a.flags.c_contiguous == ccontig)
549
+ assert_(a.flags.f_contiguous == fcontig)
550
+
551
+ # Check if new arrays are correct:
552
+ check_contig(a, False, False)
553
+ check_contig(b, False, False)
554
+ check_contig(np.empty((2, 2, 0, 2, 2)), True, True)
555
+ check_contig(np.array([[[1], [2]]], order='F'), True, True)
556
+ check_contig(np.empty((2, 2)), True, False)
557
+ check_contig(np.empty((2, 2), order='F'), False, True)
558
+
559
+ # Check that np.array creates correct contiguous flags:
560
+ check_contig(np.array(a, copy=False), False, False)
561
+ check_contig(np.array(a, copy=False, order='C'), True, False)
562
+ check_contig(np.array(a, ndmin=4, copy=False, order='F'), False, True)
563
+
564
+ # Check slicing update of flags and :
565
+ check_contig(a[0], True, True)
566
+ check_contig(a[None, ::4, ..., None], True, True)
567
+ check_contig(b[0, 0, ...], False, True)
568
+ check_contig(b[:, :, 0:0, :, :], True, True)
569
+
570
+ # Test ravel and squeeze.
571
+ check_contig(a.ravel(), True, True)
572
+ check_contig(np.ones((1, 3, 1)).squeeze(), True, True)
573
+
574
+ def test_broadcast_arrays():
575
+ # Test user defined dtypes
576
+ a = np.array([(1, 2, 3)], dtype='u4,u4,u4')
577
+ b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')
578
+ result = np.broadcast_arrays(a, b)
579
+ assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4'))
580
+ assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
581
+
582
+ @pytest.mark.parametrize(["shape", "fill_value", "expected_output"],
583
+ [((2, 2), [5.0, 6.0], np.array([[5.0, 6.0], [5.0, 6.0]])),
584
+ ((3, 2), [1.0, 2.0], np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]))])
585
+ def test_full_from_list(shape, fill_value, expected_output):
586
+ output = np.full(shape, fill_value)
587
+ assert_equal(output, expected_output)
588
+
589
+ def test_astype_copyflag():
590
+ # test the various copyflag options
591
+ arr = np.arange(10, dtype=np.intp)
592
+
593
+ res_true = arr.astype(np.intp, copy=True)
594
+ assert not np.may_share_memory(arr, res_true)
595
+ res_always = arr.astype(np.intp, copy=np._CopyMode.ALWAYS)
596
+ assert not np.may_share_memory(arr, res_always)
597
+
598
+ res_false = arr.astype(np.intp, copy=False)
599
+ # `res_false is arr` currently, but check `may_share_memory`.
600
+ assert np.may_share_memory(arr, res_false)
601
+ res_if_needed = arr.astype(np.intp, copy=np._CopyMode.IF_NEEDED)
602
+ # `res_if_needed is arr` currently, but check `may_share_memory`.
603
+ assert np.may_share_memory(arr, res_if_needed)
604
+
605
+ res_never = arr.astype(np.intp, copy=np._CopyMode.NEVER)
606
+ assert np.may_share_memory(arr, res_never)
607
+
608
+ # Simple tests for when a copy is necessary:
609
+ res_false = arr.astype(np.float64, copy=False)
610
+ assert_array_equal(res_false, arr)
611
+ res_if_needed = arr.astype(np.float64,
612
+ copy=np._CopyMode.IF_NEEDED)
613
+ assert_array_equal(res_if_needed, arr)
614
+ assert_raises(ValueError, arr.astype, np.float64,
615
+ copy=np._CopyMode.NEVER)
venv/lib/python3.10/site-packages/numpy/core/tests/test_array_coercion.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for array coercion, mainly through testing `np.array` results directly.
3
+ Note that other such tests exist, e.g., in `test_api.py` and many corner-cases
4
+ are tested (sometimes indirectly) elsewhere.
5
+ """
6
+
7
+ from itertools import permutations, product
8
+
9
+ import pytest
10
+ from pytest import param
11
+
12
+ import numpy as np
13
+ from numpy.core._rational_tests import rational
14
+ from numpy.core._multiarray_umath import _discover_array_parameters
15
+
16
+ from numpy.testing import (
17
+ assert_array_equal, assert_warns, IS_PYPY)
18
+
19
+
20
+ def arraylikes():
21
+ """
22
+ Generator for functions converting an array into various array-likes.
23
+ If full is True (default) it includes array-likes not capable of handling
24
+ all dtypes.
25
+ """
26
+ # base array:
27
+ def ndarray(a):
28
+ return a
29
+
30
+ yield param(ndarray, id="ndarray")
31
+
32
+ # subclass:
33
+ class MyArr(np.ndarray):
34
+ pass
35
+
36
+ def subclass(a):
37
+ return a.view(MyArr)
38
+
39
+ yield subclass
40
+
41
+ class _SequenceLike():
42
+ # Older NumPy versions, sometimes cared whether a protocol array was
43
+ # also _SequenceLike. This shouldn't matter, but keep it for now
44
+ # for __array__ and not the others.
45
+ def __len__(self):
46
+ raise TypeError
47
+
48
+ def __getitem__(self):
49
+ raise TypeError
50
+
51
+ # Array-interface
52
+ class ArrayDunder(_SequenceLike):
53
+ def __init__(self, a):
54
+ self.a = a
55
+
56
+ def __array__(self, dtype=None):
57
+ return self.a
58
+
59
+ yield param(ArrayDunder, id="__array__")
60
+
61
+ # memory-view
62
+ yield param(memoryview, id="memoryview")
63
+
64
+ # Array-interface
65
+ class ArrayInterface:
66
+ def __init__(self, a):
67
+ self.a = a # need to hold on to keep interface valid
68
+ self.__array_interface__ = a.__array_interface__
69
+
70
+ yield param(ArrayInterface, id="__array_interface__")
71
+
72
+ # Array-Struct
73
+ class ArrayStruct:
74
+ def __init__(self, a):
75
+ self.a = a # need to hold on to keep struct valid
76
+ self.__array_struct__ = a.__array_struct__
77
+
78
+ yield param(ArrayStruct, id="__array_struct__")
79
+
80
+
81
+ def scalar_instances(times=True, extended_precision=True, user_dtype=True):
82
+ # Hard-coded list of scalar instances.
83
+ # Floats:
84
+ yield param(np.sqrt(np.float16(5)), id="float16")
85
+ yield param(np.sqrt(np.float32(5)), id="float32")
86
+ yield param(np.sqrt(np.float64(5)), id="float64")
87
+ if extended_precision:
88
+ yield param(np.sqrt(np.longdouble(5)), id="longdouble")
89
+
90
+ # Complex:
91
+ yield param(np.sqrt(np.complex64(2+3j)), id="complex64")
92
+ yield param(np.sqrt(np.complex128(2+3j)), id="complex128")
93
+ if extended_precision:
94
+ yield param(np.sqrt(np.longcomplex(2+3j)), id="clongdouble")
95
+
96
+ # Bool:
97
+ # XFAIL: Bool should be added, but has some bad properties when it
98
+ # comes to strings, see also gh-9875
99
+ # yield param(np.bool_(0), id="bool")
100
+
101
+ # Integers:
102
+ yield param(np.int8(2), id="int8")
103
+ yield param(np.int16(2), id="int16")
104
+ yield param(np.int32(2), id="int32")
105
+ yield param(np.int64(2), id="int64")
106
+
107
+ yield param(np.uint8(2), id="uint8")
108
+ yield param(np.uint16(2), id="uint16")
109
+ yield param(np.uint32(2), id="uint32")
110
+ yield param(np.uint64(2), id="uint64")
111
+
112
+ # Rational:
113
+ if user_dtype:
114
+ yield param(rational(1, 2), id="rational")
115
+
116
+ # Cannot create a structured void scalar directly:
117
+ structured = np.array([(1, 3)], "i,i")[0]
118
+ assert isinstance(structured, np.void)
119
+ assert structured.dtype == np.dtype("i,i")
120
+ yield param(structured, id="structured")
121
+
122
+ if times:
123
+ # Datetimes and timedelta
124
+ yield param(np.timedelta64(2), id="timedelta64[generic]")
125
+ yield param(np.timedelta64(23, "s"), id="timedelta64[s]")
126
+ yield param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)")
127
+
128
+ yield param(np.datetime64("NaT"), id="datetime64[generic](NaT)")
129
+ yield param(np.datetime64("2020-06-07 12:43", "ms"), id="datetime64[ms]")
130
+
131
+ # Strings and unstructured void:
132
+ yield param(np.bytes_(b"1234"), id="bytes")
133
+ yield param(np.str_("2345"), id="unicode")
134
+ yield param(np.void(b"4321"), id="unstructured_void")
135
+
136
+
137
+ def is_parametric_dtype(dtype):
138
+ """Returns True if the dtype is a parametric legacy dtype (itemsize
139
+ is 0, or a datetime without units)
140
+ """
141
+ if dtype.itemsize == 0:
142
+ return True
143
+ if issubclass(dtype.type, (np.datetime64, np.timedelta64)):
144
+ if dtype.name.endswith("64"):
145
+ # Generic time units
146
+ return True
147
+ return False
148
+
149
+
150
+ class TestStringDiscovery:
151
+ @pytest.mark.parametrize("obj",
152
+ [object(), 1.2, 10**43, None, "string"],
153
+ ids=["object", "1.2", "10**43", "None", "string"])
154
+ def test_basic_stringlength(self, obj):
155
+ length = len(str(obj))
156
+ expected = np.dtype(f"S{length}")
157
+
158
+ assert np.array(obj, dtype="S").dtype == expected
159
+ assert np.array([obj], dtype="S").dtype == expected
160
+
161
+ # A nested array is also discovered correctly
162
+ arr = np.array(obj, dtype="O")
163
+ assert np.array(arr, dtype="S").dtype == expected
164
+ # Also if we use the dtype class
165
+ assert np.array(arr, dtype=type(expected)).dtype == expected
166
+ # Check that .astype() behaves identical
167
+ assert arr.astype("S").dtype == expected
168
+ # The DType class is accepted by `.astype()`
169
+ assert arr.astype(type(np.dtype("S"))).dtype == expected
170
+
171
+ @pytest.mark.parametrize("obj",
172
+ [object(), 1.2, 10**43, None, "string"],
173
+ ids=["object", "1.2", "10**43", "None", "string"])
174
+ def test_nested_arrays_stringlength(self, obj):
175
+ length = len(str(obj))
176
+ expected = np.dtype(f"S{length}")
177
+ arr = np.array(obj, dtype="O")
178
+ assert np.array([arr, arr], dtype="S").dtype == expected
179
+
180
+ @pytest.mark.parametrize("arraylike", arraylikes())
181
+ def test_unpack_first_level(self, arraylike):
182
+ # We unpack exactly one level of array likes
183
+ obj = np.array([None])
184
+ obj[0] = np.array(1.2)
185
+ # the length of the included item, not of the float dtype
186
+ length = len(str(obj[0]))
187
+ expected = np.dtype(f"S{length}")
188
+
189
+ obj = arraylike(obj)
190
+ # casting to string usually calls str(obj)
191
+ arr = np.array([obj], dtype="S")
192
+ assert arr.shape == (1, 1)
193
+ assert arr.dtype == expected
194
+
195
+
196
+ class TestScalarDiscovery:
197
+ def test_void_special_case(self):
198
+ # Void dtypes with structures discover tuples as elements
199
+ arr = np.array((1, 2, 3), dtype="i,i,i")
200
+ assert arr.shape == ()
201
+ arr = np.array([(1, 2, 3)], dtype="i,i,i")
202
+ assert arr.shape == (1,)
203
+
204
+ def test_char_special_case(self):
205
+ arr = np.array("string", dtype="c")
206
+ assert arr.shape == (6,)
207
+ assert arr.dtype.char == "c"
208
+ arr = np.array(["string"], dtype="c")
209
+ assert arr.shape == (1, 6)
210
+ assert arr.dtype.char == "c"
211
+
212
+ def test_char_special_case_deep(self):
213
+ # Check that the character special case errors correctly if the
214
+ # array is too deep:
215
+ nested = ["string"] # 2 dimensions (due to string being sequence)
216
+ for i in range(np.MAXDIMS - 2):
217
+ nested = [nested]
218
+
219
+ arr = np.array(nested, dtype='c')
220
+ assert arr.shape == (1,) * (np.MAXDIMS - 1) + (6,)
221
+ with pytest.raises(ValueError):
222
+ np.array([nested], dtype="c")
223
+
224
+ def test_unknown_object(self):
225
+ arr = np.array(object())
226
+ assert arr.shape == ()
227
+ assert arr.dtype == np.dtype("O")
228
+
229
+ @pytest.mark.parametrize("scalar", scalar_instances())
230
+ def test_scalar(self, scalar):
231
+ arr = np.array(scalar)
232
+ assert arr.shape == ()
233
+ assert arr.dtype == scalar.dtype
234
+
235
+ arr = np.array([[scalar, scalar]])
236
+ assert arr.shape == (1, 2)
237
+ assert arr.dtype == scalar.dtype
238
+
239
+ # Additionally to string this test also runs into a corner case
240
+ # with datetime promotion (the difference is the promotion order).
241
+ @pytest.mark.filterwarnings("ignore:Promotion of numbers:FutureWarning")
242
+ def test_scalar_promotion(self):
243
+ for sc1, sc2 in product(scalar_instances(), scalar_instances()):
244
+ sc1, sc2 = sc1.values[0], sc2.values[0]
245
+ # test all combinations:
246
+ try:
247
+ arr = np.array([sc1, sc2])
248
+ except (TypeError, ValueError):
249
+ # The promotion between two times can fail
250
+ # XFAIL (ValueError): Some object casts are currently undefined
251
+ continue
252
+ assert arr.shape == (2,)
253
+ try:
254
+ dt1, dt2 = sc1.dtype, sc2.dtype
255
+ expected_dtype = np.promote_types(dt1, dt2)
256
+ assert arr.dtype == expected_dtype
257
+ except TypeError as e:
258
+ # Will currently always go to object dtype
259
+ assert arr.dtype == np.dtype("O")
260
+
261
+ @pytest.mark.parametrize("scalar", scalar_instances())
262
+ def test_scalar_coercion(self, scalar):
263
+ # This tests various scalar coercion paths, mainly for the numerical
264
+ # types. It includes some paths not directly related to `np.array`.
265
+ if isinstance(scalar, np.inexact):
266
+ # Ensure we have a full-precision number if available
267
+ scalar = type(scalar)((scalar * 2)**0.5)
268
+
269
+ if type(scalar) is rational:
270
+ # Rational generally fails due to a missing cast. In the future
271
+ # object casts should automatically be defined based on `setitem`.
272
+ pytest.xfail("Rational to object cast is undefined currently.")
273
+
274
+ # Use casting from object:
275
+ arr = np.array(scalar, dtype=object).astype(scalar.dtype)
276
+
277
+ # Test various ways to create an array containing this scalar:
278
+ arr1 = np.array(scalar).reshape(1)
279
+ arr2 = np.array([scalar])
280
+ arr3 = np.empty(1, dtype=scalar.dtype)
281
+ arr3[0] = scalar
282
+ arr4 = np.empty(1, dtype=scalar.dtype)
283
+ arr4[:] = [scalar]
284
+ # All of these methods should yield the same results
285
+ assert_array_equal(arr, arr1)
286
+ assert_array_equal(arr, arr2)
287
+ assert_array_equal(arr, arr3)
288
+ assert_array_equal(arr, arr4)
289
+
290
+ @pytest.mark.xfail(IS_PYPY, reason="`int(np.complex128(3))` fails on PyPy")
291
+ @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
292
+ @pytest.mark.parametrize("cast_to", scalar_instances())
293
+ def test_scalar_coercion_same_as_cast_and_assignment(self, cast_to):
294
+ """
295
+ Test that in most cases:
296
+ * `np.array(scalar, dtype=dtype)`
297
+ * `np.empty((), dtype=dtype)[()] = scalar`
298
+ * `np.array(scalar).astype(dtype)`
299
+ should behave the same. The only exceptions are parametric dtypes
300
+ (mainly datetime/timedelta without unit) and void without fields.
301
+ """
302
+ dtype = cast_to.dtype # use to parametrize only the target dtype
303
+
304
+ for scalar in scalar_instances(times=False):
305
+ scalar = scalar.values[0]
306
+
307
+ if dtype.type == np.void:
308
+ if scalar.dtype.fields is not None and dtype.fields is None:
309
+ # Here, coercion to "V6" works, but the cast fails.
310
+ # Since the types are identical, SETITEM takes care of
311
+ # this, but has different rules than the cast.
312
+ with pytest.raises(TypeError):
313
+ np.array(scalar).astype(dtype)
314
+ np.array(scalar, dtype=dtype)
315
+ np.array([scalar], dtype=dtype)
316
+ continue
317
+
318
+ # The main test, we first try to use casting and if it succeeds
319
+ # continue below testing that things are the same, otherwise
320
+ # test that the alternative paths at least also fail.
321
+ try:
322
+ cast = np.array(scalar).astype(dtype)
323
+ except (TypeError, ValueError, RuntimeError):
324
+ # coercion should also raise (error type may change)
325
+ with pytest.raises(Exception):
326
+ np.array(scalar, dtype=dtype)
327
+
328
+ if (isinstance(scalar, rational) and
329
+ np.issubdtype(dtype, np.signedinteger)):
330
+ return
331
+
332
+ with pytest.raises(Exception):
333
+ np.array([scalar], dtype=dtype)
334
+ # assignment should also raise
335
+ res = np.zeros((), dtype=dtype)
336
+ with pytest.raises(Exception):
337
+ res[()] = scalar
338
+
339
+ return
340
+
341
+ # Non error path:
342
+ arr = np.array(scalar, dtype=dtype)
343
+ assert_array_equal(arr, cast)
344
+ # assignment behaves the same
345
+ ass = np.zeros((), dtype=dtype)
346
+ ass[()] = scalar
347
+ assert_array_equal(ass, cast)
348
+
349
+ @pytest.mark.parametrize("pyscalar", [10, 10.32, 10.14j, 10**100])
350
+ def test_pyscalar_subclasses(self, pyscalar):
351
+ """NumPy arrays are read/write which means that anything but invariant
352
+ behaviour is on thin ice. However, we currently are happy to discover
353
+ subclasses of Python float, int, complex the same as the base classes.
354
+ This should potentially be deprecated.
355
+ """
356
+ class MyScalar(type(pyscalar)):
357
+ pass
358
+
359
+ res = np.array(MyScalar(pyscalar))
360
+ expected = np.array(pyscalar)
361
+ assert_array_equal(res, expected)
362
+
363
+ @pytest.mark.parametrize("dtype_char", np.typecodes["All"])
364
+ def test_default_dtype_instance(self, dtype_char):
365
+ if dtype_char in "SU":
366
+ dtype = np.dtype(dtype_char + "1")
367
+ elif dtype_char == "V":
368
+ # Legacy behaviour was to use V8. The reason was float64 being the
369
+ # default dtype and that having 8 bytes.
370
+ dtype = np.dtype("V8")
371
+ else:
372
+ dtype = np.dtype(dtype_char)
373
+
374
+ discovered_dtype, _ = _discover_array_parameters([], type(dtype))
375
+
376
+ assert discovered_dtype == dtype
377
+ assert discovered_dtype.itemsize == dtype.itemsize
378
+
379
+ @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
380
+ @pytest.mark.parametrize(["scalar", "error"],
381
+ [(np.float64(np.nan), ValueError),
382
+ (np.array(-1).astype(np.ulonglong)[()], OverflowError)])
383
+ def test_scalar_to_int_coerce_does_not_cast(self, dtype, scalar, error):
384
+ """
385
+ Signed integers are currently different in that they do not cast other
386
+ NumPy scalar, but instead use scalar.__int__(). The hardcoded
387
+ exception to this rule is `np.array(scalar, dtype=integer)`.
388
+ """
389
+ dtype = np.dtype(dtype)
390
+
391
+ # This is a special case using casting logic. It warns for the NaN
392
+ # but allows the cast (giving undefined behaviour).
393
+ with np.errstate(invalid="ignore"):
394
+ coerced = np.array(scalar, dtype=dtype)
395
+ cast = np.array(scalar).astype(dtype)
396
+ assert_array_equal(coerced, cast)
397
+
398
+ # However these fail:
399
+ with pytest.raises(error):
400
+ np.array([scalar], dtype=dtype)
401
+ with pytest.raises(error):
402
+ cast[()] = scalar
403
+
404
+
405
+ class TestTimeScalars:
406
+ @pytest.mark.parametrize("dtype", [np.int64, np.float32])
407
+ @pytest.mark.parametrize("scalar",
408
+ [param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)"),
409
+ param(np.timedelta64(123, "s"), id="timedelta64[s]"),
410
+ param(np.datetime64("NaT", "generic"), id="datetime64[generic](NaT)"),
411
+ param(np.datetime64(1, "D"), id="datetime64[D]")],)
412
+ def test_coercion_basic(self, dtype, scalar):
413
+ # Note the `[scalar]` is there because np.array(scalar) uses stricter
414
+ # `scalar.__int__()` rules for backward compatibility right now.
415
+ arr = np.array(scalar, dtype=dtype)
416
+ cast = np.array(scalar).astype(dtype)
417
+ assert_array_equal(arr, cast)
418
+
419
+ ass = np.ones((), dtype=dtype)
420
+ if issubclass(dtype, np.integer):
421
+ with pytest.raises(TypeError):
422
+ # raises, as would np.array([scalar], dtype=dtype), this is
423
+ # conversion from times, but behaviour of integers.
424
+ ass[()] = scalar
425
+ else:
426
+ ass[()] = scalar
427
+ assert_array_equal(ass, cast)
428
+
429
+ @pytest.mark.parametrize("dtype", [np.int64, np.float32])
430
+ @pytest.mark.parametrize("scalar",
431
+ [param(np.timedelta64(123, "ns"), id="timedelta64[ns]"),
432
+ param(np.timedelta64(12, "generic"), id="timedelta64[generic]")])
433
+ def test_coercion_timedelta_convert_to_number(self, dtype, scalar):
434
+ # Only "ns" and "generic" timedeltas can be converted to numbers
435
+ # so these are slightly special.
436
+ arr = np.array(scalar, dtype=dtype)
437
+ cast = np.array(scalar).astype(dtype)
438
+ ass = np.ones((), dtype=dtype)
439
+ ass[()] = scalar # raises, as would np.array([scalar], dtype=dtype)
440
+
441
+ assert_array_equal(arr, cast)
442
+ assert_array_equal(cast, cast)
443
+
444
+ @pytest.mark.parametrize("dtype", ["S6", "U6"])
445
+ @pytest.mark.parametrize(["val", "unit"],
446
+ [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
447
+ def test_coercion_assignment_datetime(self, val, unit, dtype):
448
+ # String from datetime64 assignment is currently special cased to
449
+ # never use casting. This is because casting will error in this
450
+ # case, and traditionally in most cases the behaviour is maintained
451
+ # like this. (`np.array(scalar, dtype="U6")` would have failed before)
452
+ # TODO: This discrepancy _should_ be resolved, either by relaxing the
453
+ # cast, or by deprecating the first part.
454
+ scalar = np.datetime64(val, unit)
455
+ dtype = np.dtype(dtype)
456
+ cut_string = dtype.type(str(scalar)[:6])
457
+
458
+ arr = np.array(scalar, dtype=dtype)
459
+ assert arr[()] == cut_string
460
+ ass = np.ones((), dtype=dtype)
461
+ ass[()] = scalar
462
+ assert ass[()] == cut_string
463
+
464
+ with pytest.raises(RuntimeError):
465
+ # However, unlike the above assignment using `str(scalar)[:6]`
466
+ # due to being handled by the string DType and not be casting
467
+ # the explicit cast fails:
468
+ np.array(scalar).astype(dtype)
469
+
470
+
471
+ @pytest.mark.parametrize(["val", "unit"],
472
+ [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
473
+ def test_coercion_assignment_timedelta(self, val, unit):
474
+ scalar = np.timedelta64(val, unit)
475
+
476
+ # Unlike datetime64, timedelta allows the unsafe cast:
477
+ np.array(scalar, dtype="S6")
478
+ cast = np.array(scalar).astype("S6")
479
+ ass = np.ones((), dtype="S6")
480
+ ass[()] = scalar
481
+ expected = scalar.astype("S")[:6]
482
+ assert cast[()] == expected
483
+ assert ass[()] == expected
484
+
485
+ class TestNested:
486
+ def test_nested_simple(self):
487
+ initial = [1.2]
488
+ nested = initial
489
+ for i in range(np.MAXDIMS - 1):
490
+ nested = [nested]
491
+
492
+ arr = np.array(nested, dtype="float64")
493
+ assert arr.shape == (1,) * np.MAXDIMS
494
+ with pytest.raises(ValueError):
495
+ np.array([nested], dtype="float64")
496
+
497
+ with pytest.raises(ValueError, match=".*would exceed the maximum"):
498
+ np.array([nested]) # user must ask for `object` explicitly
499
+
500
+ arr = np.array([nested], dtype=object)
501
+ assert arr.dtype == np.dtype("O")
502
+ assert arr.shape == (1,) * np.MAXDIMS
503
+ assert arr.item() is initial
504
+
505
+ def test_pathological_self_containing(self):
506
+ # Test that this also works for two nested sequences
507
+ l = []
508
+ l.append(l)
509
+ arr = np.array([l, l, l], dtype=object)
510
+ assert arr.shape == (3,) + (1,) * (np.MAXDIMS - 1)
511
+
512
+ # Also check a ragged case:
513
+ arr = np.array([l, [None], l], dtype=object)
514
+ assert arr.shape == (3, 1)
515
+
516
+ @pytest.mark.parametrize("arraylike", arraylikes())
517
+ def test_nested_arraylikes(self, arraylike):
518
+ # We try storing an array like into an array, but the array-like
519
+ # will have too many dimensions. This means the shape discovery
520
+ # decides that the array-like must be treated as an object (a special
521
+ # case of ragged discovery). The result will be an array with one
522
+ # dimension less than the maximum dimensions, and the array being
523
+ # assigned to it (which does work for object or if `float(arraylike)`
524
+ # works).
525
+ initial = arraylike(np.ones((1, 1)))
526
+
527
+ nested = initial
528
+ for i in range(np.MAXDIMS - 1):
529
+ nested = [nested]
530
+
531
+ with pytest.raises(ValueError, match=".*would exceed the maximum"):
532
+ # It will refuse to assign the array into
533
+ np.array(nested, dtype="float64")
534
+
535
+ # If this is object, we end up assigning a (1, 1) array into (1,)
536
+ # (due to running out of dimensions), this is currently supported but
537
+ # a special case which is not ideal.
538
+ arr = np.array(nested, dtype=object)
539
+ assert arr.shape == (1,) * np.MAXDIMS
540
+ assert arr.item() == np.array(initial).item()
541
+
542
+ @pytest.mark.parametrize("arraylike", arraylikes())
543
+ def test_uneven_depth_ragged(self, arraylike):
544
+ arr = np.arange(4).reshape((2, 2))
545
+ arr = arraylike(arr)
546
+
547
+ # Array is ragged in the second dimension already:
548
+ out = np.array([arr, [arr]], dtype=object)
549
+ assert out.shape == (2,)
550
+ assert out[0] is arr
551
+ assert type(out[1]) is list
552
+
553
+ # Array is ragged in the third dimension:
554
+ with pytest.raises(ValueError):
555
+ # This is a broadcast error during assignment, because
556
+ # the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails.
557
+ np.array([arr, [arr, arr]], dtype=object)
558
+
559
+ def test_empty_sequence(self):
560
+ arr = np.array([[], [1], [[1]]], dtype=object)
561
+ assert arr.shape == (3,)
562
+
563
+ # The empty sequence stops further dimension discovery, so the
564
+ # result shape will be (0,) which leads to an error during:
565
+ with pytest.raises(ValueError):
566
+ np.array([[], np.empty((0, 1))], dtype=object)
567
+
568
+ def test_array_of_different_depths(self):
569
+ # When multiple arrays (or array-likes) are included in a
570
+ # sequences and have different depth, we currently discover
571
+ # as many dimensions as they share. (see also gh-17224)
572
+ arr = np.zeros((3, 2))
573
+ mismatch_first_dim = np.zeros((1, 2))
574
+ mismatch_second_dim = np.zeros((3, 3))
575
+
576
+ dtype, shape = _discover_array_parameters(
577
+ [arr, mismatch_second_dim], dtype=np.dtype("O"))
578
+ assert shape == (2, 3)
579
+
580
+ dtype, shape = _discover_array_parameters(
581
+ [arr, mismatch_first_dim], dtype=np.dtype("O"))
582
+ assert shape == (2,)
583
+ # The second case is currently supported because the arrays
584
+ # can be stored as objects:
585
+ res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O"))
586
+ assert res[0] is arr
587
+ assert res[1] is mismatch_first_dim
588
+
589
+
590
+ class TestBadSequences:
591
+ # These are tests for bad objects passed into `np.array`, in general
592
+ # these have undefined behaviour. In the old code they partially worked
593
+ # when now they will fail. We could (and maybe should) create a copy
594
+ # of all sequences to be safe against bad-actors.
595
+
596
+ def test_growing_list(self):
597
+ # List to coerce, `mylist` will append to it during coercion
598
+ obj = []
599
+ class mylist(list):
600
+ def __len__(self):
601
+ obj.append([1, 2])
602
+ return super().__len__()
603
+
604
+ obj.append(mylist([1, 2]))
605
+
606
+ with pytest.raises(RuntimeError):
607
+ np.array(obj)
608
+
609
+ # Note: We do not test a shrinking list. These do very evil things
610
+ # and the only way to fix them would be to copy all sequences.
611
+ # (which may be a real option in the future).
612
+
613
+ def test_mutated_list(self):
614
+ # List to coerce, `mylist` will mutate the first element
615
+ obj = []
616
+ class mylist(list):
617
+ def __len__(self):
618
+ obj[0] = [2, 3] # replace with a different list.
619
+ return super().__len__()
620
+
621
+ obj.append([2, 3])
622
+ obj.append(mylist([1, 2]))
623
+ # Does not crash:
624
+ np.array(obj)
625
+
626
+ def test_replace_0d_array(self):
627
+ # List to coerce, `mylist` will mutate the first element
628
+ obj = []
629
+ class baditem:
630
+ def __len__(self):
631
+ obj[0][0] = 2 # replace with a different list.
632
+ raise ValueError("not actually a sequence!")
633
+
634
+ def __getitem__(self):
635
+ pass
636
+
637
+ # Runs into a corner case in the new code, the `array(2)` is cached
638
+ # so replacing it invalidates the cache.
639
+ obj.append([np.array(2), baditem()])
640
+ with pytest.raises(RuntimeError):
641
+ np.array(obj)
642
+
643
+
644
+ class TestArrayLikes:
645
+ @pytest.mark.parametrize("arraylike", arraylikes())
646
+ def test_0d_object_special_case(self, arraylike):
647
+ arr = np.array(0.)
648
+ obj = arraylike(arr)
649
+ # A single array-like is always converted:
650
+ res = np.array(obj, dtype=object)
651
+ assert_array_equal(arr, res)
652
+
653
+ # But a single 0-D nested array-like never:
654
+ res = np.array([obj], dtype=object)
655
+ assert res[0] is obj
656
+
657
+ @pytest.mark.parametrize("arraylike", arraylikes())
658
+ @pytest.mark.parametrize("arr", [np.array(0.), np.arange(4)])
659
+ def test_object_assignment_special_case(self, arraylike, arr):
660
+ obj = arraylike(arr)
661
+ empty = np.arange(1, dtype=object)
662
+ empty[:] = [obj]
663
+ assert empty[0] is obj
664
+
665
+ def test_0d_generic_special_case(self):
666
+ class ArraySubclass(np.ndarray):
667
+ def __float__(self):
668
+ raise TypeError("e.g. quantities raise on this")
669
+
670
+ arr = np.array(0.)
671
+ obj = arr.view(ArraySubclass)
672
+ res = np.array(obj)
673
+ # The subclass is simply cast:
674
+ assert_array_equal(arr, res)
675
+
676
+ # If the 0-D array-like is included, __float__ is currently
677
+ # guaranteed to be used. We may want to change that, quantities
678
+ # and masked arrays half make use of this.
679
+ with pytest.raises(TypeError):
680
+ np.array([obj])
681
+
682
+ # The same holds for memoryview:
683
+ obj = memoryview(arr)
684
+ res = np.array(obj)
685
+ assert_array_equal(arr, res)
686
+ with pytest.raises(ValueError):
687
+ # The error type does not matter much here.
688
+ np.array([obj])
689
+
690
+ def test_arraylike_classes(self):
691
+ # The classes of array-likes should generally be acceptable to be
692
+ # stored inside a numpy (object) array. This tests all of the
693
+ # special attributes (since all are checked during coercion).
694
+ arr = np.array(np.int64)
695
+ assert arr[()] is np.int64
696
+ arr = np.array([np.int64])
697
+ assert arr[0] is np.int64
698
+
699
+ # This also works for properties/unbound methods:
700
+ class ArrayLike:
701
+ @property
702
+ def __array_interface__(self):
703
+ pass
704
+
705
+ @property
706
+ def __array_struct__(self):
707
+ pass
708
+
709
+ def __array__(self):
710
+ pass
711
+
712
+ arr = np.array(ArrayLike)
713
+ assert arr[()] is ArrayLike
714
+ arr = np.array([ArrayLike])
715
+ assert arr[0] is ArrayLike
716
+
717
+ @pytest.mark.skipif(
718
+ np.dtype(np.intp).itemsize < 8, reason="Needs 64bit platform")
719
+ def test_too_large_array_error_paths(self):
720
+ """Test the error paths, including for memory leaks"""
721
+ arr = np.array(0, dtype="uint8")
722
+ # Guarantees that a contiguous copy won't work:
723
+ arr = np.broadcast_to(arr, 2**62)
724
+
725
+ for i in range(5):
726
+ # repeat, to ensure caching cannot have an effect:
727
+ with pytest.raises(MemoryError):
728
+ np.array(arr)
729
+ with pytest.raises(MemoryError):
730
+ np.array([arr])
731
+
732
+ @pytest.mark.parametrize("attribute",
733
+ ["__array_interface__", "__array__", "__array_struct__"])
734
+ @pytest.mark.parametrize("error", [RecursionError, MemoryError])
735
+ def test_bad_array_like_attributes(self, attribute, error):
736
+ # RecursionError and MemoryError are considered fatal. All errors
737
+ # (except AttributeError) should probably be raised in the future,
738
+ # but shapely made use of it, so it will require a deprecation.
739
+
740
+ class BadInterface:
741
+ def __getattr__(self, attr):
742
+ if attr == attribute:
743
+ raise error
744
+ super().__getattr__(attr)
745
+
746
+ with pytest.raises(error):
747
+ np.array(BadInterface())
748
+
749
+ @pytest.mark.parametrize("error", [RecursionError, MemoryError])
750
+ def test_bad_array_like_bad_length(self, error):
751
+ # RecursionError and MemoryError are considered "critical" in
752
+ # sequences. We could expand this more generally though. (NumPy 1.20)
753
+ class BadSequence:
754
+ def __len__(self):
755
+ raise error
756
+ def __getitem__(self):
757
+ # must have getitem to be a Sequence
758
+ return 1
759
+
760
+ with pytest.raises(error):
761
+ np.array(BadSequence())
762
+
763
+
764
+ class TestAsArray:
765
+ """Test expected behaviors of ``asarray``."""
766
+
767
+ def test_dtype_identity(self):
768
+ """Confirm the intended behavior for *dtype* kwarg.
769
+
770
+ The result of ``asarray()`` should have the dtype provided through the
771
+ keyword argument, when used. This forces unique array handles to be
772
+ produced for unique np.dtype objects, but (for equivalent dtypes), the
773
+ underlying data (the base object) is shared with the original array
774
+ object.
775
+
776
+ Ref https://github.com/numpy/numpy/issues/1468
777
+ """
778
+ int_array = np.array([1, 2, 3], dtype='i')
779
+ assert np.asarray(int_array) is int_array
780
+
781
+ # The character code resolves to the singleton dtype object provided
782
+ # by the numpy package.
783
+ assert np.asarray(int_array, dtype='i') is int_array
784
+
785
+ # Derive a dtype from n.dtype('i'), but add a metadata object to force
786
+ # the dtype to be distinct.
787
+ unequal_type = np.dtype('i', metadata={'spam': True})
788
+ annotated_int_array = np.asarray(int_array, dtype=unequal_type)
789
+ assert annotated_int_array is not int_array
790
+ assert annotated_int_array.base is int_array
791
+ # Create an equivalent descriptor with a new and distinct dtype
792
+ # instance.
793
+ equivalent_requirement = np.dtype('i', metadata={'spam': True})
794
+ annotated_int_array_alt = np.asarray(annotated_int_array,
795
+ dtype=equivalent_requirement)
796
+ assert unequal_type == equivalent_requirement
797
+ assert unequal_type is not equivalent_requirement
798
+ assert annotated_int_array_alt is not annotated_int_array
799
+ assert annotated_int_array_alt.dtype is equivalent_requirement
800
+
801
+ # Check the same logic for a pair of C types whose equivalence may vary
802
+ # between computing environments.
803
+ # Find an equivalent pair.
804
+ integer_type_codes = ('i', 'l', 'q')
805
+ integer_dtypes = [np.dtype(code) for code in integer_type_codes]
806
+ typeA = None
807
+ typeB = None
808
+ for typeA, typeB in permutations(integer_dtypes, r=2):
809
+ if typeA == typeB:
810
+ assert typeA is not typeB
811
+ break
812
+ assert isinstance(typeA, np.dtype) and isinstance(typeB, np.dtype)
813
+
814
+ # These ``asarray()`` calls may produce a new view or a copy,
815
+ # but never the same object.
816
+ long_int_array = np.asarray(int_array, dtype='l')
817
+ long_long_int_array = np.asarray(int_array, dtype='q')
818
+ assert long_int_array is not int_array
819
+ assert long_long_int_array is not int_array
820
+ assert np.asarray(long_int_array, dtype='q') is not long_int_array
821
+ array_a = np.asarray(int_array, dtype=typeA)
822
+ assert typeA == typeB
823
+ assert typeA is not typeB
824
+ assert array_a.dtype is typeA
825
+ assert array_a is not np.asarray(array_a, dtype=typeB)
826
+ assert np.asarray(array_a, dtype=typeB).dtype is typeB
827
+ assert array_a is np.asarray(array_a, dtype=typeB).base
828
+
829
+
830
+ class TestSpecialAttributeLookupFailure:
831
+ # An exception was raised while fetching the attribute
832
+
833
+ class WeirdArrayLike:
834
+ @property
835
+ def __array__(self):
836
+ raise RuntimeError("oops!")
837
+
838
+ class WeirdArrayInterface:
839
+ @property
840
+ def __array_interface__(self):
841
+ raise RuntimeError("oops!")
842
+
843
+ def test_deprecated(self):
844
+ with pytest.raises(RuntimeError):
845
+ np.array(self.WeirdArrayLike())
846
+ with pytest.raises(RuntimeError):
847
+ np.array(self.WeirdArrayInterface())
848
+
849
+
850
+ def test_subarray_from_array_construction():
851
+ # Arrays are more complex, since they "broadcast" on success:
852
+ arr = np.array([1, 2])
853
+
854
+ res = arr.astype("(2)i,")
855
+ assert_array_equal(res, [[1, 1], [2, 2]])
856
+
857
+ res = np.array(arr, dtype="(2)i,")
858
+
859
+ assert_array_equal(res, [[1, 1], [2, 2]])
860
+
861
+ res = np.array([[(1,), (2,)], arr], dtype="(2)i,")
862
+ assert_array_equal(res, [[[1, 1], [2, 2]], [[1, 1], [2, 2]]])
863
+
864
+ # Also try a multi-dimensional example:
865
+ arr = np.arange(5 * 2).reshape(5, 2)
866
+ expected = np.broadcast_to(arr[:, :, np.newaxis, np.newaxis], (5, 2, 2, 2))
867
+
868
+ res = arr.astype("(2,2)f")
869
+ assert_array_equal(res, expected)
870
+
871
+ res = np.array(arr, dtype="(2,2)f")
872
+ assert_array_equal(res, expected)
873
+
874
+
875
+ def test_empty_string():
876
+ # Empty strings are unfortunately often converted to S1 and we need to
877
+ # make sure we are filling the S1 and not the (possibly) detected S0
878
+ # result. This should likely just return S0 and if not maybe the decision
879
+ # to return S1 should be moved.
880
+ res = np.array([""] * 10, dtype="S")
881
+ assert_array_equal(res, np.array("\0", "S1"))
882
+ assert res.dtype == "S1"
883
+
884
+ arr = np.array([""] * 10, dtype=object)
885
+
886
+ res = arr.astype("S")
887
+ assert_array_equal(res, b"")
888
+ assert res.dtype == "S1"
889
+
890
+ res = np.array(arr, dtype="S")
891
+ assert_array_equal(res, b"")
892
+ # TODO: This is arguably weird/wrong, but seems old:
893
+ assert res.dtype == f"S{np.dtype('O').itemsize}"
894
+
895
+ res = np.array([[""] * 10, arr], dtype="S")
896
+ assert_array_equal(res, b"")
897
+ assert res.shape == (2, 10)
898
+ assert res.dtype == "S1"
venv/lib/python3.10/site-packages/numpy/core/tests/test_array_interface.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import pytest
3
+ import numpy as np
4
+ from numpy.testing import extbuild
5
+
6
+
7
+ @pytest.fixture
8
+ def get_module(tmp_path):
9
+ """ Some codes to generate data and manage temporary buffers use when
10
+ sharing with numpy via the array interface protocol.
11
+ """
12
+
13
+ if not sys.platform.startswith('linux'):
14
+ pytest.skip('link fails on cygwin')
15
+
16
+ prologue = '''
17
+ #include <Python.h>
18
+ #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
19
+ #include <numpy/arrayobject.h>
20
+ #include <stdio.h>
21
+ #include <math.h>
22
+
23
+ NPY_NO_EXPORT
24
+ void delete_array_struct(PyObject *cap) {
25
+
26
+ /* get the array interface structure */
27
+ PyArrayInterface *inter = (PyArrayInterface*)
28
+ PyCapsule_GetPointer(cap, NULL);
29
+
30
+ /* get the buffer by which data was shared */
31
+ double *ptr = (double*)PyCapsule_GetContext(cap);
32
+
33
+ /* for the purposes of the regression test set the elements
34
+ to nan */
35
+ for (npy_intp i = 0; i < inter->shape[0]; ++i)
36
+ ptr[i] = nan("");
37
+
38
+ /* free the shared buffer */
39
+ free(ptr);
40
+
41
+ /* free the array interface structure */
42
+ free(inter->shape);
43
+ free(inter);
44
+
45
+ fprintf(stderr, "delete_array_struct\\ncap = %ld inter = %ld"
46
+ " ptr = %ld\\n", (long)cap, (long)inter, (long)ptr);
47
+ }
48
+ '''
49
+
50
+ functions = [
51
+ ("new_array_struct", "METH_VARARGS", """
52
+
53
+ long long n_elem = 0;
54
+ double value = 0.0;
55
+
56
+ if (!PyArg_ParseTuple(args, "Ld", &n_elem, &value)) {
57
+ Py_RETURN_NONE;
58
+ }
59
+
60
+ /* allocate and initialize the data to share with numpy */
61
+ long long n_bytes = n_elem*sizeof(double);
62
+ double *data = (double*)malloc(n_bytes);
63
+
64
+ if (!data) {
65
+ PyErr_Format(PyExc_MemoryError,
66
+ "Failed to malloc %lld bytes", n_bytes);
67
+
68
+ Py_RETURN_NONE;
69
+ }
70
+
71
+ for (long long i = 0; i < n_elem; ++i) {
72
+ data[i] = value;
73
+ }
74
+
75
+ /* calculate the shape and stride */
76
+ int nd = 1;
77
+
78
+ npy_intp *ss = (npy_intp*)malloc(2*nd*sizeof(npy_intp));
79
+ npy_intp *shape = ss;
80
+ npy_intp *stride = ss + nd;
81
+
82
+ shape[0] = n_elem;
83
+ stride[0] = sizeof(double);
84
+
85
+ /* construct the array interface */
86
+ PyArrayInterface *inter = (PyArrayInterface*)
87
+ malloc(sizeof(PyArrayInterface));
88
+
89
+ memset(inter, 0, sizeof(PyArrayInterface));
90
+
91
+ inter->two = 2;
92
+ inter->nd = nd;
93
+ inter->typekind = 'f';
94
+ inter->itemsize = sizeof(double);
95
+ inter->shape = shape;
96
+ inter->strides = stride;
97
+ inter->data = data;
98
+ inter->flags = NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED |
99
+ NPY_ARRAY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS;
100
+
101
+ /* package into a capsule */
102
+ PyObject *cap = PyCapsule_New(inter, NULL, delete_array_struct);
103
+
104
+ /* save the pointer to the data */
105
+ PyCapsule_SetContext(cap, data);
106
+
107
+ fprintf(stderr, "new_array_struct\\ncap = %ld inter = %ld"
108
+ " ptr = %ld\\n", (long)cap, (long)inter, (long)data);
109
+
110
+ return cap;
111
+ """)
112
+ ]
113
+
114
+ more_init = "import_array();"
115
+
116
+ try:
117
+ import array_interface_testing
118
+ return array_interface_testing
119
+ except ImportError:
120
+ pass
121
+
122
+ # if it does not exist, build and load it
123
+ return extbuild.build_and_import_extension('array_interface_testing',
124
+ functions,
125
+ prologue=prologue,
126
+ include_dirs=[np.get_include()],
127
+ build_dir=tmp_path,
128
+ more_init=more_init)
129
+
130
+
131
+ # FIXME: numpy.testing.extbuild uses `numpy.distutils`, so this won't work on
132
+ # Python 3.12 and up.
133
+ @pytest.mark.skipif(sys.version_info >= (3, 12), reason="no numpy.distutils")
134
+ @pytest.mark.slow
135
+ def test_cstruct(get_module):
136
+
137
+ class data_source:
138
+ """
139
+ This class is for testing the timing of the PyCapsule destructor
140
+ invoked when numpy release its reference to the shared data as part of
141
+ the numpy array interface protocol. If the PyCapsule destructor is
142
+ called early the shared data is freed and invalid memory accesses will
143
+ occur.
144
+ """
145
+
146
+ def __init__(self, size, value):
147
+ self.size = size
148
+ self.value = value
149
+
150
+ @property
151
+ def __array_struct__(self):
152
+ return get_module.new_array_struct(self.size, self.value)
153
+
154
+ # write to the same stream as the C code
155
+ stderr = sys.__stderr__
156
+
157
+ # used to validate the shared data.
158
+ expected_value = -3.1415
159
+ multiplier = -10000.0
160
+
161
+ # create some data to share with numpy via the array interface
162
+ # assign the data an expected value.
163
+ stderr.write(' ---- create an object to share data ---- \n')
164
+ buf = data_source(256, expected_value)
165
+ stderr.write(' ---- OK!\n\n')
166
+
167
+ # share the data
168
+ stderr.write(' ---- share data via the array interface protocol ---- \n')
169
+ arr = np.array(buf, copy=False)
170
+ stderr.write('arr.__array_interface___ = %s\n' % (
171
+ str(arr.__array_interface__)))
172
+ stderr.write('arr.base = %s\n' % (str(arr.base)))
173
+ stderr.write(' ---- OK!\n\n')
174
+
175
+ # release the source of the shared data. this will not release the data
176
+ # that was shared with numpy, that is done in the PyCapsule destructor.
177
+ stderr.write(' ---- destroy the object that shared data ---- \n')
178
+ buf = None
179
+ stderr.write(' ---- OK!\n\n')
180
+
181
+ # check that we got the expected data. If the PyCapsule destructor we
182
+ # defined was prematurely called then this test will fail because our
183
+ # destructor sets the elements of the array to NaN before free'ing the
184
+ # buffer. Reading the values here may also cause a SEGV
185
+ assert np.allclose(arr, expected_value)
186
+
187
+ # read the data. If the PyCapsule destructor we defined was prematurely
188
+ # called then reading the values here may cause a SEGV and will be reported
189
+ # as invalid reads by valgrind
190
+ stderr.write(' ---- read shared data ---- \n')
191
+ stderr.write('arr = %s\n' % (str(arr)))
192
+ stderr.write(' ---- OK!\n\n')
193
+
194
+ # write to the shared buffer. If the shared data was prematurely deleted
195
+ # this will may cause a SEGV and valgrind will report invalid writes
196
+ stderr.write(' ---- modify shared data ---- \n')
197
+ arr *= multiplier
198
+ expected_value *= multiplier
199
+ stderr.write('arr.__array_interface___ = %s\n' % (
200
+ str(arr.__array_interface__)))
201
+ stderr.write('arr.base = %s\n' % (str(arr.base)))
202
+ stderr.write(' ---- OK!\n\n')
203
+
204
+ # read the data. If the shared data was prematurely deleted this
205
+ # will may cause a SEGV and valgrind will report invalid reads
206
+ stderr.write(' ---- read modified shared data ---- \n')
207
+ stderr.write('arr = %s\n' % (str(arr)))
208
+ stderr.write(' ---- OK!\n\n')
209
+
210
+ # check that we got the expected data. If the PyCapsule destructor we
211
+ # defined was prematurely called then this test will fail because our
212
+ # destructor sets the elements of the array to NaN before free'ing the
213
+ # buffer. Reading the values here may also cause a SEGV
214
+ assert np.allclose(arr, expected_value)
215
+
216
+ # free the shared data, the PyCapsule destructor should run here
217
+ stderr.write(' ---- free shared data ---- \n')
218
+ arr = None
219
+ stderr.write(' ---- OK!\n\n')
venv/lib/python3.10/site-packages/numpy/core/tests/test_arraymethod.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file tests the generic aspects of ArrayMethod. At the time of writing
3
+ this is private API, but when added, public API may be added here.
4
+ """
5
+
6
+ from __future__ import annotations
7
+
8
+ import sys
9
+ import types
10
+ from typing import Any
11
+
12
+ import pytest
13
+
14
+ import numpy as np
15
+ from numpy.core._multiarray_umath import _get_castingimpl as get_castingimpl
16
+
17
+
18
+ class TestResolveDescriptors:
19
+ # Test mainly error paths of the resolve_descriptors function,
20
+ # note that the `casting_unittests` tests exercise this non-error paths.
21
+
22
+ # Casting implementations are the main/only current user:
23
+ method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f")))
24
+
25
+ @pytest.mark.parametrize("args", [
26
+ (True,), # Not a tuple.
27
+ ((None,)), # Too few elements
28
+ ((None, None, None),), # Too many
29
+ ((None, None),), # Input dtype is None, which is invalid.
30
+ ((np.dtype("d"), True),), # Output dtype is not a dtype
31
+ ((np.dtype("f"), None),), # Input dtype does not match method
32
+ ])
33
+ def test_invalid_arguments(self, args):
34
+ with pytest.raises(TypeError):
35
+ self.method._resolve_descriptors(*args)
36
+
37
+
38
+ class TestSimpleStridedCall:
39
+ # Test mainly error paths of the resolve_descriptors function,
40
+ # note that the `casting_unittests` tests exercise this non-error paths.
41
+
42
+ # Casting implementations are the main/only current user:
43
+ method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f")))
44
+
45
+ @pytest.mark.parametrize(["args", "error"], [
46
+ ((True,), TypeError), # Not a tuple
47
+ (((None,),), TypeError), # Too few elements
48
+ ((None, None), TypeError), # Inputs are not arrays.
49
+ (((None, None, None),), TypeError), # Too many
50
+ (((np.arange(3), np.arange(3)),), TypeError), # Incorrect dtypes
51
+ (((np.ones(3, dtype=">d"), np.ones(3, dtype="<f")),),
52
+ TypeError), # Does not support byte-swapping
53
+ (((np.ones((2, 2), dtype="d"), np.ones((2, 2), dtype="f")),),
54
+ ValueError), # not 1-D
55
+ (((np.ones(3, dtype="d"), np.ones(4, dtype="f")),),
56
+ ValueError), # different length
57
+ (((np.frombuffer(b"\0x00"*3*2, dtype="d"),
58
+ np.frombuffer(b"\0x00"*3, dtype="f")),),
59
+ ValueError), # output not writeable
60
+ ])
61
+ def test_invalid_arguments(self, args, error):
62
+ # This is private API, which may be modified freely
63
+ with pytest.raises(error):
64
+ self.method._simple_strided_call(*args)
65
+
66
+
67
+ @pytest.mark.parametrize(
68
+ "cls", [np.ndarray, np.recarray, np.chararray, np.matrix, np.memmap]
69
+ )
70
+ class TestClassGetItem:
71
+ def test_class_getitem(self, cls: type[np.ndarray]) -> None:
72
+ """Test `ndarray.__class_getitem__`."""
73
+ alias = cls[Any, Any]
74
+ assert isinstance(alias, types.GenericAlias)
75
+ assert alias.__origin__ is cls
76
+
77
+ @pytest.mark.parametrize("arg_len", range(4))
78
+ def test_subscript_tup(self, cls: type[np.ndarray], arg_len: int) -> None:
79
+ arg_tup = (Any,) * arg_len
80
+ if arg_len in (1, 2):
81
+ assert cls[arg_tup]
82
+ else:
83
+ match = f"Too {'few' if arg_len == 0 else 'many'} arguments"
84
+ with pytest.raises(TypeError, match=match):
85
+ cls[arg_tup]
venv/lib/python3.10/site-packages/numpy/core/tests/test_arrayprint.py ADDED
@@ -0,0 +1,1047 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import gc
3
+ from hypothesis import given
4
+ from hypothesis.extra import numpy as hynp
5
+ import pytest
6
+
7
+ import numpy as np
8
+ from numpy.testing import (
9
+ assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT,
10
+ assert_raises_regex,
11
+ )
12
+ from numpy.core.arrayprint import _typelessdata
13
+ import textwrap
14
+
15
+ class TestArrayRepr:
16
+ def test_nan_inf(self):
17
+ x = np.array([np.nan, np.inf])
18
+ assert_equal(repr(x), 'array([nan, inf])')
19
+
20
+ def test_subclass(self):
21
+ class sub(np.ndarray): pass
22
+
23
+ # one dimensional
24
+ x1d = np.array([1, 2]).view(sub)
25
+ assert_equal(repr(x1d), 'sub([1, 2])')
26
+
27
+ # two dimensional
28
+ x2d = np.array([[1, 2], [3, 4]]).view(sub)
29
+ assert_equal(repr(x2d),
30
+ 'sub([[1, 2],\n'
31
+ ' [3, 4]])')
32
+
33
+ # two dimensional with flexible dtype
34
+ xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub)
35
+ assert_equal(repr(xstruct),
36
+ "sub([[(1,), (1,)],\n"
37
+ " [(1,), (1,)]], dtype=[('a', '<i4')])"
38
+ )
39
+
40
+ @pytest.mark.xfail(reason="See gh-10544")
41
+ def test_object_subclass(self):
42
+ class sub(np.ndarray):
43
+ def __new__(cls, inp):
44
+ obj = np.asarray(inp).view(cls)
45
+ return obj
46
+
47
+ def __getitem__(self, ind):
48
+ ret = super().__getitem__(ind)
49
+ return sub(ret)
50
+
51
+ # test that object + subclass is OK:
52
+ x = sub([None, None])
53
+ assert_equal(repr(x), 'sub([None, None], dtype=object)')
54
+ assert_equal(str(x), '[None None]')
55
+
56
+ x = sub([None, sub([None, None])])
57
+ assert_equal(repr(x),
58
+ 'sub([None, sub([None, None], dtype=object)], dtype=object)')
59
+ assert_equal(str(x), '[None sub([None, None], dtype=object)]')
60
+
61
+ def test_0d_object_subclass(self):
62
+ # make sure that subclasses which return 0ds instead
63
+ # of scalars don't cause infinite recursion in str
64
+ class sub(np.ndarray):
65
+ def __new__(cls, inp):
66
+ obj = np.asarray(inp).view(cls)
67
+ return obj
68
+
69
+ def __getitem__(self, ind):
70
+ ret = super().__getitem__(ind)
71
+ return sub(ret)
72
+
73
+ x = sub(1)
74
+ assert_equal(repr(x), 'sub(1)')
75
+ assert_equal(str(x), '1')
76
+
77
+ x = sub([1, 1])
78
+ assert_equal(repr(x), 'sub([1, 1])')
79
+ assert_equal(str(x), '[1 1]')
80
+
81
+ # check it works properly with object arrays too
82
+ x = sub(None)
83
+ assert_equal(repr(x), 'sub(None, dtype=object)')
84
+ assert_equal(str(x), 'None')
85
+
86
+ # plus recursive object arrays (even depth > 1)
87
+ y = sub(None)
88
+ x[()] = y
89
+ y[()] = x
90
+ assert_equal(repr(x),
91
+ 'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
92
+ assert_equal(str(x), '...')
93
+ x[()] = 0 # resolve circular references for garbage collector
94
+
95
+ # nested 0d-subclass-object
96
+ x = sub(None)
97
+ x[()] = sub(None)
98
+ assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
99
+ assert_equal(str(x), 'None')
100
+
101
+ # gh-10663
102
+ class DuckCounter(np.ndarray):
103
+ def __getitem__(self, item):
104
+ result = super().__getitem__(item)
105
+ if not isinstance(result, DuckCounter):
106
+ result = result[...].view(DuckCounter)
107
+ return result
108
+
109
+ def to_string(self):
110
+ return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')
111
+
112
+ def __str__(self):
113
+ if self.shape == ():
114
+ return self.to_string()
115
+ else:
116
+ fmt = {'all': lambda x: x.to_string()}
117
+ return np.array2string(self, formatter=fmt)
118
+
119
+ dc = np.arange(5).view(DuckCounter)
120
+ assert_equal(str(dc), "[zero one two many many]")
121
+ assert_equal(str(dc[0]), "zero")
122
+
123
+ def test_self_containing(self):
124
+ arr0d = np.array(None)
125
+ arr0d[()] = arr0d
126
+ assert_equal(repr(arr0d),
127
+ 'array(array(..., dtype=object), dtype=object)')
128
+ arr0d[()] = 0 # resolve recursion for garbage collector
129
+
130
+ arr1d = np.array([None, None])
131
+ arr1d[1] = arr1d
132
+ assert_equal(repr(arr1d),
133
+ 'array([None, array(..., dtype=object)], dtype=object)')
134
+ arr1d[1] = 0 # resolve recursion for garbage collector
135
+
136
+ first = np.array(None)
137
+ second = np.array(None)
138
+ first[()] = second
139
+ second[()] = first
140
+ assert_equal(repr(first),
141
+ 'array(array(array(..., dtype=object), dtype=object), dtype=object)')
142
+ first[()] = 0 # resolve circular references for garbage collector
143
+
144
+ def test_containing_list(self):
145
+ # printing square brackets directly would be ambiguuous
146
+ arr1d = np.array([None, None])
147
+ arr1d[0] = [1, 2]
148
+ arr1d[1] = [3]
149
+ assert_equal(repr(arr1d),
150
+ 'array([list([1, 2]), list([3])], dtype=object)')
151
+
152
+ def test_void_scalar_recursion(self):
153
+ # gh-9345
154
+ repr(np.void(b'test')) # RecursionError ?
155
+
156
+ def test_fieldless_structured(self):
157
+ # gh-10366
158
+ no_fields = np.dtype([])
159
+ arr_no_fields = np.empty(4, dtype=no_fields)
160
+ assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')
161
+
162
+
163
+ class TestComplexArray:
164
+ def test_str(self):
165
+ rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
166
+ cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
167
+ dtypes = [np.complex64, np.cdouble, np.clongdouble]
168
+ actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
169
+ wanted = [
170
+ '[0.+0.j]', '[0.+0.j]', '[0.+0.j]',
171
+ '[0.+1.j]', '[0.+1.j]', '[0.+1.j]',
172
+ '[0.-1.j]', '[0.-1.j]', '[0.-1.j]',
173
+ '[0.+infj]', '[0.+infj]', '[0.+infj]',
174
+ '[0.-infj]', '[0.-infj]', '[0.-infj]',
175
+ '[0.+nanj]', '[0.+nanj]', '[0.+nanj]',
176
+ '[1.+0.j]', '[1.+0.j]', '[1.+0.j]',
177
+ '[1.+1.j]', '[1.+1.j]', '[1.+1.j]',
178
+ '[1.-1.j]', '[1.-1.j]', '[1.-1.j]',
179
+ '[1.+infj]', '[1.+infj]', '[1.+infj]',
180
+ '[1.-infj]', '[1.-infj]', '[1.-infj]',
181
+ '[1.+nanj]', '[1.+nanj]', '[1.+nanj]',
182
+ '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]',
183
+ '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]',
184
+ '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]',
185
+ '[-1.+infj]', '[-1.+infj]', '[-1.+infj]',
186
+ '[-1.-infj]', '[-1.-infj]', '[-1.-infj]',
187
+ '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]',
188
+ '[inf+0.j]', '[inf+0.j]', '[inf+0.j]',
189
+ '[inf+1.j]', '[inf+1.j]', '[inf+1.j]',
190
+ '[inf-1.j]', '[inf-1.j]', '[inf-1.j]',
191
+ '[inf+infj]', '[inf+infj]', '[inf+infj]',
192
+ '[inf-infj]', '[inf-infj]', '[inf-infj]',
193
+ '[inf+nanj]', '[inf+nanj]', '[inf+nanj]',
194
+ '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]',
195
+ '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]',
196
+ '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]',
197
+ '[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
198
+ '[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
199
+ '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
200
+ '[nan+0.j]', '[nan+0.j]', '[nan+0.j]',
201
+ '[nan+1.j]', '[nan+1.j]', '[nan+1.j]',
202
+ '[nan-1.j]', '[nan-1.j]', '[nan-1.j]',
203
+ '[nan+infj]', '[nan+infj]', '[nan+infj]',
204
+ '[nan-infj]', '[nan-infj]', '[nan-infj]',
205
+ '[nan+nanj]', '[nan+nanj]', '[nan+nanj]']
206
+
207
+ for res, val in zip(actual, wanted):
208
+ assert_equal(res, val)
209
+
210
+ class TestArray2String:
211
+ def test_basic(self):
212
+ """Basic test of array2string."""
213
+ a = np.arange(3)
214
+ assert_(np.array2string(a) == '[0 1 2]')
215
+ assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
216
+ assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')
217
+
218
+ def test_unexpected_kwarg(self):
219
+ # ensure than an appropriate TypeError
220
+ # is raised when array2string receives
221
+ # an unexpected kwarg
222
+
223
+ with assert_raises_regex(TypeError, 'nonsense'):
224
+ np.array2string(np.array([1, 2, 3]),
225
+ nonsense=None)
226
+
227
+ def test_format_function(self):
228
+ """Test custom format function for each element in array."""
229
+ def _format_function(x):
230
+ if np.abs(x) < 1:
231
+ return '.'
232
+ elif np.abs(x) < 2:
233
+ return 'o'
234
+ else:
235
+ return 'O'
236
+
237
+ x = np.arange(3)
238
+ x_hex = "[0x0 0x1 0x2]"
239
+ x_oct = "[0o0 0o1 0o2]"
240
+ assert_(np.array2string(x, formatter={'all':_format_function}) ==
241
+ "[. o O]")
242
+ assert_(np.array2string(x, formatter={'int_kind':_format_function}) ==
243
+ "[. o O]")
244
+ assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) ==
245
+ "[0.0000 1.0000 2.0000]")
246
+ assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}),
247
+ x_hex)
248
+ assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}),
249
+ x_oct)
250
+
251
+ x = np.arange(3.)
252
+ assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) ==
253
+ "[0.00 1.00 2.00]")
254
+ assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) ==
255
+ "[0.00 1.00 2.00]")
256
+
257
+ s = np.array(['abc', 'def'])
258
+ assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
259
+ '[abcabc defdef]')
260
+
261
+ def test_structure_format_mixed(self):
262
+ dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
263
+ x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
264
+ assert_equal(np.array2string(x),
265
+ "[('Sarah', [8., 7.]) ('John', [6., 7.])]")
266
+
267
+ np.set_printoptions(legacy='1.13')
268
+ try:
269
+ # for issue #5692
270
+ A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
271
+ A[5:].fill(np.datetime64('NaT'))
272
+ assert_equal(
273
+ np.array2string(A),
274
+ textwrap.dedent("""\
275
+ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
276
+ ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
277
+ ('NaT',) ('NaT',) ('NaT',)]""")
278
+ )
279
+ finally:
280
+ np.set_printoptions(legacy=False)
281
+
282
+ # same again, but with non-legacy behavior
283
+ assert_equal(
284
+ np.array2string(A),
285
+ textwrap.dedent("""\
286
+ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
287
+ ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
288
+ ('1970-01-01T00:00:00',) ( 'NaT',)
289
+ ( 'NaT',) ( 'NaT',)
290
+ ( 'NaT',) ( 'NaT',)]""")
291
+ )
292
+
293
+ # and again, with timedeltas
294
+ A = np.full(10, 123456, dtype=[("A", "m8[s]")])
295
+ A[5:].fill(np.datetime64('NaT'))
296
+ assert_equal(
297
+ np.array2string(A),
298
+ textwrap.dedent("""\
299
+ [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
300
+ ( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
301
+ )
302
+
303
+ def test_structure_format_int(self):
304
+ # See #8160
305
+ struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
306
+ assert_equal(np.array2string(struct_int),
307
+ "[([ 1, -1],) ([123, 1],)]")
308
+ struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
309
+ dtype=[('B', 'i4', (2, 2))])
310
+ assert_equal(np.array2string(struct_2dint),
311
+ "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]")
312
+
313
+ def test_structure_format_float(self):
314
+ # See #8172
315
+ array_scalar = np.array(
316
+ (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
317
+ assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")
318
+
319
+ def test_unstructured_void_repr(self):
320
+ a = np.array([27, 91, 50, 75, 7, 65, 10, 8,
321
+ 27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8')
322
+ assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
323
+ assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
324
+ assert_equal(repr(a),
325
+ r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n"
326
+ r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")
327
+
328
+ assert_equal(eval(repr(a), vars(np)), a)
329
+ assert_equal(eval(repr(a[0]), vars(np)), a[0])
330
+
331
+ def test_edgeitems_kwarg(self):
332
+ # previously the global print options would be taken over the kwarg
333
+ arr = np.zeros(3, int)
334
+ assert_equal(
335
+ np.array2string(arr, edgeitems=1, threshold=0),
336
+ "[0 ... 0]"
337
+ )
338
+
339
+ def test_summarize_1d(self):
340
+ A = np.arange(1001)
341
+ strA = '[ 0 1 2 ... 998 999 1000]'
342
+ assert_equal(str(A), strA)
343
+
344
+ reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
345
+ assert_equal(repr(A), reprA)
346
+
347
+ def test_summarize_2d(self):
348
+ A = np.arange(1002).reshape(2, 501)
349
+ strA = '[[ 0 1 2 ... 498 499 500]\n' \
350
+ ' [ 501 502 503 ... 999 1000 1001]]'
351
+ assert_equal(str(A), strA)
352
+
353
+ reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
354
+ ' [ 501, 502, 503, ..., 999, 1000, 1001]])'
355
+ assert_equal(repr(A), reprA)
356
+
357
+ def test_summarize_structure(self):
358
+ A = (np.arange(2002, dtype="<i8").reshape(2, 1001)
359
+ .view([('i', "<i8", (1001,))]))
360
+ strA = ("[[([ 0, 1, 2, ..., 998, 999, 1000],)]\n"
361
+ " [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]]")
362
+ assert_equal(str(A), strA)
363
+
364
+ reprA = ("array([[([ 0, 1, 2, ..., 998, 999, 1000],)],\n"
365
+ " [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]],\n"
366
+ " dtype=[('i', '<i8', (1001,))])")
367
+ assert_equal(repr(A), reprA)
368
+
369
+ B = np.ones(2002, dtype=">i8").view([('i', ">i8", (2, 1001))])
370
+ strB = "[([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)]"
371
+ assert_equal(str(B), strB)
372
+
373
+ reprB = (
374
+ "array([([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)],\n"
375
+ " dtype=[('i', '>i8', (2, 1001))])"
376
+ )
377
+ assert_equal(repr(B), reprB)
378
+
379
+ C = (np.arange(22, dtype="<i8").reshape(2, 11)
380
+ .view([('i1', "<i8"), ('i10', "<i8", (10,))]))
381
+ strC = "[[( 0, [ 1, ..., 10])]\n [(11, [12, ..., 21])]]"
382
+ assert_equal(np.array2string(C, threshold=1, edgeitems=1), strC)
383
+
384
+ def test_linewidth(self):
385
+ a = np.full(6, 1)
386
+
387
+ def make_str(a, width, **kw):
388
+ return np.array2string(a, separator="", max_line_width=width, **kw)
389
+
390
+ assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
391
+ assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
392
+ assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
393
+ ' 11]')
394
+
395
+ assert_equal(make_str(a, 8), '[111111]')
396
+ assert_equal(make_str(a, 7), '[11111\n'
397
+ ' 1]')
398
+ assert_equal(make_str(a, 5), '[111\n'
399
+ ' 111]')
400
+
401
+ b = a[None,None,:]
402
+
403
+ assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
404
+ assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]')
405
+ assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n'
406
+ ' 1]]]')
407
+
408
+ assert_equal(make_str(b, 12), '[[[111111]]]')
409
+ assert_equal(make_str(b, 9), '[[[111\n'
410
+ ' 111]]]')
411
+ assert_equal(make_str(b, 8), '[[[11\n'
412
+ ' 11\n'
413
+ ' 11]]]')
414
+
415
+ def test_wide_element(self):
416
+ a = np.array(['xxxxx'])
417
+ assert_equal(
418
+ np.array2string(a, max_line_width=5),
419
+ "['xxxxx']"
420
+ )
421
+ assert_equal(
422
+ np.array2string(a, max_line_width=5, legacy='1.13'),
423
+ "[ 'xxxxx']"
424
+ )
425
+
426
+ def test_multiline_repr(self):
427
+ class MultiLine:
428
+ def __repr__(self):
429
+ return "Line 1\nLine 2"
430
+
431
+ a = np.array([[None, MultiLine()], [MultiLine(), None]])
432
+
433
+ assert_equal(
434
+ np.array2string(a),
435
+ '[[None Line 1\n'
436
+ ' Line 2]\n'
437
+ ' [Line 1\n'
438
+ ' Line 2 None]]'
439
+ )
440
+ assert_equal(
441
+ np.array2string(a, max_line_width=5),
442
+ '[[None\n'
443
+ ' Line 1\n'
444
+ ' Line 2]\n'
445
+ ' [Line 1\n'
446
+ ' Line 2\n'
447
+ ' None]]'
448
+ )
449
+ assert_equal(
450
+ repr(a),
451
+ 'array([[None, Line 1\n'
452
+ ' Line 2],\n'
453
+ ' [Line 1\n'
454
+ ' Line 2, None]], dtype=object)'
455
+ )
456
+
457
+ class MultiLineLong:
458
+ def __repr__(self):
459
+ return "Line 1\nLooooooooooongestLine2\nLongerLine 3"
460
+
461
+ a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]])
462
+ assert_equal(
463
+ repr(a),
464
+ 'array([[None, Line 1\n'
465
+ ' LooooooooooongestLine2\n'
466
+ ' LongerLine 3 ],\n'
467
+ ' [Line 1\n'
468
+ ' LooooooooooongestLine2\n'
469
+ ' LongerLine 3 , None]], dtype=object)'
470
+ )
471
+ assert_equal(
472
+ np.array_repr(a, 20),
473
+ 'array([[None,\n'
474
+ ' Line 1\n'
475
+ ' LooooooooooongestLine2\n'
476
+ ' LongerLine 3 ],\n'
477
+ ' [Line 1\n'
478
+ ' LooooooooooongestLine2\n'
479
+ ' LongerLine 3 ,\n'
480
+ ' None]],\n'
481
+ ' dtype=object)'
482
+ )
483
+
484
+ def test_nested_array_repr(self):
485
+ a = np.empty((2, 2), dtype=object)
486
+ a[0, 0] = np.eye(2)
487
+ a[0, 1] = np.eye(3)
488
+ a[1, 0] = None
489
+ a[1, 1] = np.ones((3, 1))
490
+ assert_equal(
491
+ repr(a),
492
+ 'array([[array([[1., 0.],\n'
493
+ ' [0., 1.]]), array([[1., 0., 0.],\n'
494
+ ' [0., 1., 0.],\n'
495
+ ' [0., 0., 1.]])],\n'
496
+ ' [None, array([[1.],\n'
497
+ ' [1.],\n'
498
+ ' [1.]])]], dtype=object)'
499
+ )
500
+
501
+ @given(hynp.from_dtype(np.dtype("U")))
502
+ def test_any_text(self, text):
503
+ # This test checks that, given any value that can be represented in an
504
+ # array of dtype("U") (i.e. unicode string), ...
505
+ a = np.array([text, text, text])
506
+ # casting a list of them to an array does not e.g. truncate the value
507
+ assert_equal(a[0], text)
508
+ # and that np.array2string puts a newline in the expected location
509
+ expected_repr = "[{0!r} {0!r}\n {0!r}]".format(text)
510
+ result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3)
511
+ assert_equal(result, expected_repr)
512
+
513
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
514
+ def test_refcount(self):
515
+ # make sure we do not hold references to the array due to a recursive
516
+ # closure (gh-10620)
517
+ gc.disable()
518
+ a = np.arange(2)
519
+ r1 = sys.getrefcount(a)
520
+ np.array2string(a)
521
+ np.array2string(a)
522
+ r2 = sys.getrefcount(a)
523
+ gc.collect()
524
+ gc.enable()
525
+ assert_(r1 == r2)
526
+
527
+ class TestPrintOptions:
528
+ """Test getting and setting global print options."""
529
+
530
+ def setup_method(self):
531
+ self.oldopts = np.get_printoptions()
532
+
533
+ def teardown_method(self):
534
+ np.set_printoptions(**self.oldopts)
535
+
536
+ def test_basic(self):
537
+ x = np.array([1.5, 0, 1.234567890])
538
+ assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])")
539
+ np.set_printoptions(precision=4)
540
+ assert_equal(repr(x), "array([1.5 , 0. , 1.2346])")
541
+
542
+ def test_precision_zero(self):
543
+ np.set_printoptions(precision=0)
544
+ for values, string in (
545
+ ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
546
+ ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
547
+ ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."),
548
+ ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
549
+ x = np.array(values)
550
+ assert_equal(repr(x), "array([%s])" % string)
551
+
552
+ def test_formatter(self):
553
+ x = np.arange(3)
554
+ np.set_printoptions(formatter={'all':lambda x: str(x-1)})
555
+ assert_equal(repr(x), "array([-1, 0, 1])")
556
+
557
+ def test_formatter_reset(self):
558
+ x = np.arange(3)
559
+ np.set_printoptions(formatter={'all':lambda x: str(x-1)})
560
+ assert_equal(repr(x), "array([-1, 0, 1])")
561
+ np.set_printoptions(formatter={'int':None})
562
+ assert_equal(repr(x), "array([0, 1, 2])")
563
+
564
+ np.set_printoptions(formatter={'all':lambda x: str(x-1)})
565
+ assert_equal(repr(x), "array([-1, 0, 1])")
566
+ np.set_printoptions(formatter={'all':None})
567
+ assert_equal(repr(x), "array([0, 1, 2])")
568
+
569
+ np.set_printoptions(formatter={'int':lambda x: str(x-1)})
570
+ assert_equal(repr(x), "array([-1, 0, 1])")
571
+ np.set_printoptions(formatter={'int_kind':None})
572
+ assert_equal(repr(x), "array([0, 1, 2])")
573
+
574
+ x = np.arange(3.)
575
+ np.set_printoptions(formatter={'float':lambda x: str(x-1)})
576
+ assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
577
+ np.set_printoptions(formatter={'float_kind':None})
578
+ assert_equal(repr(x), "array([0., 1., 2.])")
579
+
580
+ def test_0d_arrays(self):
581
+ assert_equal(str(np.array('café', '<U4')), 'café')
582
+
583
+ assert_equal(repr(np.array('café', '<U4')),
584
+ "array('café', dtype='<U4')")
585
+ assert_equal(str(np.array('test', np.str_)), 'test')
586
+
587
+ a = np.zeros(1, dtype=[('a', '<i4', (3,))])
588
+ assert_equal(str(a[0]), '([0, 0, 0],)')
589
+
590
+ assert_equal(repr(np.datetime64('2005-02-25')[...]),
591
+ "array('2005-02-25', dtype='datetime64[D]')")
592
+
593
+ assert_equal(repr(np.timedelta64('10', 'Y')[...]),
594
+ "array(10, dtype='timedelta64[Y]')")
595
+
596
+ # repr of 0d arrays is affected by printoptions
597
+ x = np.array(1)
598
+ np.set_printoptions(formatter={'all':lambda x: "test"})
599
+ assert_equal(repr(x), "array(test)")
600
+ # str is unaffected
601
+ assert_equal(str(x), "1")
602
+
603
+ # check `style` arg raises
604
+ assert_warns(DeprecationWarning, np.array2string,
605
+ np.array(1.), style=repr)
606
+ # but not in legacy mode
607
+ np.array2string(np.array(1.), style=repr, legacy='1.13')
608
+ # gh-10934 style was broken in legacy mode, check it works
609
+ np.array2string(np.array(1.), legacy='1.13')
610
+
611
+ def test_float_spacing(self):
612
+ x = np.array([1., 2., 3.])
613
+ y = np.array([1., 2., -10.])
614
+ z = np.array([100., 2., -1.])
615
+ w = np.array([-100., 2., 1.])
616
+
617
+ assert_equal(repr(x), 'array([1., 2., 3.])')
618
+ assert_equal(repr(y), 'array([ 1., 2., -10.])')
619
+ assert_equal(repr(np.array(y[0])), 'array(1.)')
620
+ assert_equal(repr(np.array(y[-1])), 'array(-10.)')
621
+ assert_equal(repr(z), 'array([100., 2., -1.])')
622
+ assert_equal(repr(w), 'array([-100., 2., 1.])')
623
+
624
+ assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
625
+ assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')
626
+
627
+ x = np.array([np.inf, 100000, 1.1234])
628
+ y = np.array([np.inf, 100000, -1.1234])
629
+ z = np.array([np.inf, 1.1234, -1e120])
630
+ np.set_printoptions(precision=2)
631
+ assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])')
632
+ assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])')
633
+ assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])')
634
+
635
+ def test_bool_spacing(self):
636
+ assert_equal(repr(np.array([True, True])),
637
+ 'array([ True, True])')
638
+ assert_equal(repr(np.array([True, False])),
639
+ 'array([ True, False])')
640
+ assert_equal(repr(np.array([True])),
641
+ 'array([ True])')
642
+ assert_equal(repr(np.array(True)),
643
+ 'array(True)')
644
+ assert_equal(repr(np.array(False)),
645
+ 'array(False)')
646
+
647
+ def test_sign_spacing(self):
648
+ a = np.arange(4.)
649
+ b = np.array([1.234e9])
650
+ c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
651
+
652
+ assert_equal(repr(a), 'array([0., 1., 2., 3.])')
653
+ assert_equal(repr(np.array(1.)), 'array(1.)')
654
+ assert_equal(repr(b), 'array([1.234e+09])')
655
+ assert_equal(repr(np.array([0.])), 'array([0.])')
656
+ assert_equal(repr(c),
657
+ "array([1. +1.j , 1.12345679+1.12345679j])")
658
+ assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
659
+
660
+ np.set_printoptions(sign=' ')
661
+ assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
662
+ assert_equal(repr(np.array(1.)), 'array( 1.)')
663
+ assert_equal(repr(b), 'array([ 1.234e+09])')
664
+ assert_equal(repr(c),
665
+ "array([ 1. +1.j , 1.12345679+1.12345679j])")
666
+ assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
667
+
668
+ np.set_printoptions(sign='+')
669
+ assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
670
+ assert_equal(repr(np.array(1.)), 'array(+1.)')
671
+ assert_equal(repr(b), 'array([+1.234e+09])')
672
+ assert_equal(repr(c),
673
+ "array([+1. +1.j , +1.12345679+1.12345679j])")
674
+
675
+ np.set_printoptions(legacy='1.13')
676
+ assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
677
+ assert_equal(repr(b), 'array([ 1.23400000e+09])')
678
+ assert_equal(repr(-b), 'array([ -1.23400000e+09])')
679
+ assert_equal(repr(np.array(1.)), 'array(1.0)')
680
+ assert_equal(repr(np.array([0.])), 'array([ 0.])')
681
+ assert_equal(repr(c),
682
+ "array([ 1.00000000+1.j , 1.12345679+1.12345679j])")
683
+ # gh-10383
684
+ assert_equal(str(np.array([-1., 10])), "[ -1. 10.]")
685
+
686
+ assert_raises(TypeError, np.set_printoptions, wrongarg=True)
687
+
688
+ def test_float_overflow_nowarn(self):
689
+ # make sure internal computations in FloatingFormat don't
690
+ # warn about overflow
691
+ repr(np.array([1e4, 0.1], dtype='f2'))
692
+
693
+ def test_sign_spacing_structured(self):
694
+ a = np.ones(2, dtype='<f,<f')
695
+ assert_equal(repr(a),
696
+ "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
697
+ assert_equal(repr(a[0]), "(1., 1.)")
698
+
699
+ def test_floatmode(self):
700
+ x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
701
+ 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
702
+ y = np.array([0.2918820979355541, 0.5064172631089138,
703
+ 0.2848750619642916, 0.4342965294660567,
704
+ 0.7326538397312751, 0.3459503329096204,
705
+ 0.0862072768214508, 0.39112753029631175],
706
+ dtype=np.float64)
707
+ z = np.arange(6, dtype=np.float16)/10
708
+ c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
709
+
710
+ # also make sure 1e23 is right (is between two fp numbers)
711
+ w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64)
712
+ # note: we construct w from the strings `1eXX` instead of doing
713
+ # `10.**arange(24)` because it turns out the two are not equivalent in
714
+ # python. On some architectures `1e23 != 10.**23`.
715
+ wp = np.array([1.234e1, 1e2, 1e123])
716
+
717
+ # unique mode
718
+ np.set_printoptions(floatmode='unique')
719
+ assert_equal(repr(x),
720
+ "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
721
+ " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
722
+ assert_equal(repr(y),
723
+ "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
724
+ " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
725
+ " 0.0862072768214508 , 0.39112753029631175])")
726
+ assert_equal(repr(z),
727
+ "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
728
+ assert_equal(repr(w),
729
+ "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
730
+ " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
731
+ " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
732
+ " 1.e+24])")
733
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
734
+ assert_equal(repr(c),
735
+ "array([1. +1.j , 1.123456789+1.123456789j])")
736
+
737
+ # maxprec mode, precision=8
738
+ np.set_printoptions(floatmode='maxprec', precision=8)
739
+ assert_equal(repr(x),
740
+ "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
741
+ " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
742
+ assert_equal(repr(y),
743
+ "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
744
+ " 0.34595033, 0.08620728, 0.39112753])")
745
+ assert_equal(repr(z),
746
+ "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
747
+ assert_equal(repr(w[::5]),
748
+ "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
749
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
750
+ assert_equal(repr(c),
751
+ "array([1. +1.j , 1.12345679+1.12345679j])")
752
+
753
+ # fixed mode, precision=4
754
+ np.set_printoptions(floatmode='fixed', precision=4)
755
+ assert_equal(repr(x),
756
+ "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
757
+ " 0.2383, 0.4226], dtype=float16)")
758
+ assert_equal(repr(y),
759
+ "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
760
+ assert_equal(repr(z),
761
+ "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
762
+ assert_equal(repr(w[::5]),
763
+ "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
764
+ assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
765
+ assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
766
+ assert_equal(repr(c),
767
+ "array([1.0000+1.0000j, 1.1235+1.1235j])")
768
+ # for larger precision, representation error becomes more apparent:
769
+ np.set_printoptions(floatmode='fixed', precision=8)
770
+ assert_equal(repr(z),
771
+ "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
772
+ " 0.50000000], dtype=float16)")
773
+
774
+ # maxprec_equal mode, precision=8
775
+ np.set_printoptions(floatmode='maxprec_equal', precision=8)
776
+ assert_equal(repr(x),
777
+ "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
778
+ " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
779
+ assert_equal(repr(y),
780
+ "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
781
+ " 0.34595033, 0.08620728, 0.39112753])")
782
+ assert_equal(repr(z),
783
+ "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
784
+ assert_equal(repr(w[::5]),
785
+ "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
786
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
787
+ assert_equal(repr(c),
788
+ "array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")
789
+
790
+ # test unique special case (gh-18609)
791
+ a = np.float64.fromhex('-1p-97')
792
+ assert_equal(np.float64(np.array2string(a, floatmode='unique')), a)
793
+
794
+ def test_legacy_mode_scalars(self):
795
+ # in legacy mode, str of floats get truncated, and complex scalars
796
+ # use * for non-finite imaginary part
797
+ np.set_printoptions(legacy='1.13')
798
+ assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
799
+ assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')
800
+
801
+ np.set_printoptions(legacy=False)
802
+ assert_equal(str(np.float64(1.123456789123456789)),
803
+ '1.1234567891234568')
804
+ assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')
805
+
806
+ def test_legacy_stray_comma(self):
807
+ np.set_printoptions(legacy='1.13')
808
+ assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]')
809
+
810
+ np.set_printoptions(legacy=False)
811
+ assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]')
812
+
813
+ def test_dtype_linewidth_wrapping(self):
814
+ np.set_printoptions(linewidth=75)
815
+ assert_equal(repr(np.arange(10,20., dtype='f4')),
816
+ "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
817
+ assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\
818
+ array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
819
+ dtype=float32)"""))
820
+
821
+ styp = '<U4'
822
+ assert_equal(repr(np.ones(3, dtype=styp)),
823
+ "array(['1', '1', '1'], dtype='{}')".format(styp))
824
+ assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\
825
+ array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
826
+ dtype='{}')""".format(styp)))
827
+
828
+ @pytest.mark.parametrize(
829
+ ['native'],
830
+ [
831
+ ('bool',),
832
+ ('uint8',),
833
+ ('uint16',),
834
+ ('uint32',),
835
+ ('uint64',),
836
+ ('int8',),
837
+ ('int16',),
838
+ ('int32',),
839
+ ('int64',),
840
+ ('float16',),
841
+ ('float32',),
842
+ ('float64',),
843
+ ('U1',), # 4-byte width string
844
+ ],
845
+ )
846
+ def test_dtype_endianness_repr(self, native):
847
+ '''
848
+ there was an issue where
849
+ repr(array([0], dtype='<u2')) and repr(array([0], dtype='>u2'))
850
+ both returned the same thing:
851
+ array([0], dtype=uint16)
852
+ even though their dtypes have different endianness.
853
+ '''
854
+ native_dtype = np.dtype(native)
855
+ non_native_dtype = native_dtype.newbyteorder()
856
+ non_native_repr = repr(np.array([1], non_native_dtype))
857
+ native_repr = repr(np.array([1], native_dtype))
858
+ # preserve the sensible default of only showing dtype if nonstandard
859
+ assert ('dtype' in native_repr) ^ (native_dtype in _typelessdata),\
860
+ ("an array's repr should show dtype if and only if the type "
861
+ 'of the array is NOT one of the standard types '
862
+ '(e.g., int32, bool, float64).')
863
+ if non_native_dtype.itemsize > 1:
864
+ # if the type is >1 byte, the non-native endian version
865
+ # must show endianness.
866
+ assert non_native_repr != native_repr
867
+ assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr
868
+
869
+ def test_linewidth_repr(self):
870
+ a = np.full(7, fill_value=2)
871
+ np.set_printoptions(linewidth=17)
872
+ assert_equal(
873
+ repr(a),
874
+ textwrap.dedent("""\
875
+ array([2, 2, 2,
876
+ 2, 2, 2,
877
+ 2])""")
878
+ )
879
+ np.set_printoptions(linewidth=17, legacy='1.13')
880
+ assert_equal(
881
+ repr(a),
882
+ textwrap.dedent("""\
883
+ array([2, 2, 2,
884
+ 2, 2, 2, 2])""")
885
+ )
886
+
887
+ a = np.full(8, fill_value=2)
888
+
889
+ np.set_printoptions(linewidth=18, legacy=False)
890
+ assert_equal(
891
+ repr(a),
892
+ textwrap.dedent("""\
893
+ array([2, 2, 2,
894
+ 2, 2, 2,
895
+ 2, 2])""")
896
+ )
897
+
898
+ np.set_printoptions(linewidth=18, legacy='1.13')
899
+ assert_equal(
900
+ repr(a),
901
+ textwrap.dedent("""\
902
+ array([2, 2, 2, 2,
903
+ 2, 2, 2, 2])""")
904
+ )
905
+
906
+ def test_linewidth_str(self):
907
+ a = np.full(18, fill_value=2)
908
+ np.set_printoptions(linewidth=18)
909
+ assert_equal(
910
+ str(a),
911
+ textwrap.dedent("""\
912
+ [2 2 2 2 2 2 2 2
913
+ 2 2 2 2 2 2 2 2
914
+ 2 2]""")
915
+ )
916
+ np.set_printoptions(linewidth=18, legacy='1.13')
917
+ assert_equal(
918
+ str(a),
919
+ textwrap.dedent("""\
920
+ [2 2 2 2 2 2 2 2 2
921
+ 2 2 2 2 2 2 2 2 2]""")
922
+ )
923
+
924
+ def test_edgeitems(self):
925
+ np.set_printoptions(edgeitems=1, threshold=1)
926
+ a = np.arange(27).reshape((3, 3, 3))
927
+ assert_equal(
928
+ repr(a),
929
+ textwrap.dedent("""\
930
+ array([[[ 0, ..., 2],
931
+ ...,
932
+ [ 6, ..., 8]],
933
+
934
+ ...,
935
+
936
+ [[18, ..., 20],
937
+ ...,
938
+ [24, ..., 26]]])""")
939
+ )
940
+
941
+ b = np.zeros((3, 3, 1, 1))
942
+ assert_equal(
943
+ repr(b),
944
+ textwrap.dedent("""\
945
+ array([[[[0.]],
946
+
947
+ ...,
948
+
949
+ [[0.]]],
950
+
951
+
952
+ ...,
953
+
954
+
955
+ [[[0.]],
956
+
957
+ ...,
958
+
959
+ [[0.]]]])""")
960
+ )
961
+
962
+ # 1.13 had extra trailing spaces, and was missing newlines
963
+ np.set_printoptions(legacy='1.13')
964
+
965
+ assert_equal(
966
+ repr(a),
967
+ textwrap.dedent("""\
968
+ array([[[ 0, ..., 2],
969
+ ...,
970
+ [ 6, ..., 8]],
971
+
972
+ ...,
973
+ [[18, ..., 20],
974
+ ...,
975
+ [24, ..., 26]]])""")
976
+ )
977
+
978
+ assert_equal(
979
+ repr(b),
980
+ textwrap.dedent("""\
981
+ array([[[[ 0.]],
982
+
983
+ ...,
984
+ [[ 0.]]],
985
+
986
+
987
+ ...,
988
+ [[[ 0.]],
989
+
990
+ ...,
991
+ [[ 0.]]]])""")
992
+ )
993
+
994
+ def test_edgeitems_structured(self):
995
+ np.set_printoptions(edgeitems=1, threshold=1)
996
+ A = np.arange(5*2*3, dtype="<i8").view([('i', "<i8", (5, 2, 3))])
997
+ reprA = (
998
+ "array([([[[ 0, ..., 2], [ 3, ..., 5]], ..., "
999
+ "[[24, ..., 26], [27, ..., 29]]],)],\n"
1000
+ " dtype=[('i', '<i8', (5, 2, 3))])"
1001
+ )
1002
+ assert_equal(repr(A), reprA)
1003
+
1004
+ def test_bad_args(self):
1005
+ assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
1006
+ assert_raises(TypeError, np.set_printoptions, threshold='1')
1007
+ assert_raises(TypeError, np.set_printoptions, threshold=b'1')
1008
+
1009
+ assert_raises(TypeError, np.set_printoptions, precision='1')
1010
+ assert_raises(TypeError, np.set_printoptions, precision=1.5)
1011
+
1012
+ def test_unicode_object_array():
1013
+ expected = "array(['é'], dtype=object)"
1014
+ x = np.array(['\xe9'], dtype=object)
1015
+ assert_equal(repr(x), expected)
1016
+
1017
+
1018
+ class TestContextManager:
1019
+ def test_ctx_mgr(self):
1020
+ # test that context manager actually works
1021
+ with np.printoptions(precision=2):
1022
+ s = str(np.array([2.0]) / 3)
1023
+ assert_equal(s, '[0.67]')
1024
+
1025
+ def test_ctx_mgr_restores(self):
1026
+ # test that print options are actually restrored
1027
+ opts = np.get_printoptions()
1028
+ with np.printoptions(precision=opts['precision'] - 1,
1029
+ linewidth=opts['linewidth'] - 4):
1030
+ pass
1031
+ assert_equal(np.get_printoptions(), opts)
1032
+
1033
+ def test_ctx_mgr_exceptions(self):
1034
+ # test that print options are restored even if an exception is raised
1035
+ opts = np.get_printoptions()
1036
+ try:
1037
+ with np.printoptions(precision=2, linewidth=11):
1038
+ raise ValueError
1039
+ except ValueError:
1040
+ pass
1041
+ assert_equal(np.get_printoptions(), opts)
1042
+
1043
+ def test_ctx_mgr_as_smth(self):
1044
+ opts = {"precision": 2}
1045
+ with np.printoptions(**opts) as ctx:
1046
+ saved_opts = ctx.copy()
1047
+ assert_equal({k: saved_opts[k] for k in opts}, opts)
venv/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ from pytest import param
3
+ from numpy.testing import IS_WASM
4
+ import numpy as np
5
+
6
+
7
+ def values_and_dtypes():
8
+ """
9
+ Generate value+dtype pairs that generate floating point errors during
10
+ casts. The invalid casts to integers will generate "invalid" value
11
+ warnings, the float casts all generate "overflow".
12
+
13
+ (The Python int/float paths don't need to get tested in all the same
14
+ situations, but it does not hurt.)
15
+ """
16
+ # Casting to float16:
17
+ yield param(70000, "float16", id="int-to-f2")
18
+ yield param("70000", "float16", id="str-to-f2")
19
+ yield param(70000.0, "float16", id="float-to-f2")
20
+ yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2")
21
+ yield param(np.float64(70000.), "float16", id="double-to-f2")
22
+ yield param(np.float32(70000.), "float16", id="float-to-f2")
23
+ # Casting to float32:
24
+ yield param(10**100, "float32", id="int-to-f4")
25
+ yield param(1e100, "float32", id="float-to-f2")
26
+ yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2")
27
+ yield param(np.float64(1e300), "float32", id="double-to-f2")
28
+ # Casting to float64:
29
+ # If longdouble is double-double, its max can be rounded down to the double
30
+ # max. So we correct the double spacing (a bit weird, admittedly):
31
+ max_ld = np.finfo(np.longdouble).max
32
+ spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0))
33
+ if max_ld - spacing > np.finfo("f8").max:
34
+ yield param(np.finfo(np.longdouble).max, "float64",
35
+ id="longdouble-to-f8")
36
+
37
+ # Cast to complex32:
38
+ yield param(2e300, "complex64", id="float-to-c8")
39
+ yield param(2e300+0j, "complex64", id="complex-to-c8")
40
+ yield param(2e300j, "complex64", id="complex-to-c8")
41
+ yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8")
42
+
43
+ # Invalid float to integer casts:
44
+ with np.errstate(over="ignore"):
45
+ for to_dt in np.typecodes["AllInteger"]:
46
+ for value in [np.inf, np.nan]:
47
+ for from_dt in np.typecodes["AllFloat"]:
48
+ from_dt = np.dtype(from_dt)
49
+ from_val = from_dt.type(value)
50
+
51
+ yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}")
52
+
53
+
54
+ def check_operations(dtype, value):
55
+ """
56
+ There are many dedicated paths in NumPy which cast and should check for
57
+ floating point errors which occurred during those casts.
58
+ """
59
+ if dtype.kind != 'i':
60
+ # These assignments use the stricter setitem logic:
61
+ def assignment():
62
+ arr = np.empty(3, dtype=dtype)
63
+ arr[0] = value
64
+
65
+ yield assignment
66
+
67
+ def fill():
68
+ arr = np.empty(3, dtype=dtype)
69
+ arr.fill(value)
70
+
71
+ yield fill
72
+
73
+ def copyto_scalar():
74
+ arr = np.empty(3, dtype=dtype)
75
+ np.copyto(arr, value, casting="unsafe")
76
+
77
+ yield copyto_scalar
78
+
79
+ def copyto():
80
+ arr = np.empty(3, dtype=dtype)
81
+ np.copyto(arr, np.array([value, value, value]), casting="unsafe")
82
+
83
+ yield copyto
84
+
85
+ def copyto_scalar_masked():
86
+ arr = np.empty(3, dtype=dtype)
87
+ np.copyto(arr, value, casting="unsafe",
88
+ where=[True, False, True])
89
+
90
+ yield copyto_scalar_masked
91
+
92
+ def copyto_masked():
93
+ arr = np.empty(3, dtype=dtype)
94
+ np.copyto(arr, np.array([value, value, value]), casting="unsafe",
95
+ where=[True, False, True])
96
+
97
+ yield copyto_masked
98
+
99
+ def direct_cast():
100
+ np.array([value, value, value]).astype(dtype)
101
+
102
+ yield direct_cast
103
+
104
+ def direct_cast_nd_strided():
105
+ arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :]
106
+ arr.astype(dtype)
107
+
108
+ yield direct_cast_nd_strided
109
+
110
+ def boolean_array_assignment():
111
+ arr = np.empty(3, dtype=dtype)
112
+ arr[[True, False, True]] = np.array([value, value])
113
+
114
+ yield boolean_array_assignment
115
+
116
+ def integer_array_assignment():
117
+ arr = np.empty(3, dtype=dtype)
118
+ values = np.array([value, value])
119
+
120
+ arr[[0, 1]] = values
121
+
122
+ yield integer_array_assignment
123
+
124
+ def integer_array_assignment_with_subspace():
125
+ arr = np.empty((5, 3), dtype=dtype)
126
+ values = np.array([value, value, value])
127
+
128
+ arr[[0, 2]] = values
129
+
130
+ yield integer_array_assignment_with_subspace
131
+
132
+ def flat_assignment():
133
+ arr = np.empty((3,), dtype=dtype)
134
+ values = np.array([value, value, value])
135
+ arr.flat[:] = values
136
+
137
+ yield flat_assignment
138
+
139
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
140
+ @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
141
+ @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
142
+ def test_floatingpoint_errors_casting(dtype, value):
143
+ dtype = np.dtype(dtype)
144
+ for operation in check_operations(dtype, value):
145
+ dtype = np.dtype(dtype)
146
+
147
+ match = "invalid" if dtype.kind in 'iu' else "overflow"
148
+ with pytest.warns(RuntimeWarning, match=match):
149
+ operation()
150
+
151
+ with np.errstate(all="raise"):
152
+ with pytest.raises(FloatingPointError, match=match):
153
+ operation()
154
+
venv/lib/python3.10/site-packages/numpy/core/tests/test_casting_unittests.py ADDED
@@ -0,0 +1,819 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The tests exercise the casting machinery in a more low-level manner.
3
+ The reason is mostly to test a new implementation of the casting machinery.
4
+
5
+ Unlike most tests in NumPy, these are closer to unit-tests rather
6
+ than integration tests.
7
+ """
8
+
9
+ import pytest
10
+ import textwrap
11
+ import enum
12
+ import random
13
+ import ctypes
14
+
15
+ import numpy as np
16
+ from numpy.lib.stride_tricks import as_strided
17
+
18
+ from numpy.testing import assert_array_equal
19
+ from numpy.core._multiarray_umath import _get_castingimpl as get_castingimpl
20
+
21
+
22
+ # Simple skips object, parametric and long double (unsupported by struct)
23
+ simple_dtypes = "?bhilqBHILQefdFD"
24
+ if np.dtype("l").itemsize != np.dtype("q").itemsize:
25
+ # Remove l and L, the table was generated with 64bit linux in mind.
26
+ simple_dtypes = simple_dtypes.replace("l", "").replace("L", "")
27
+ simple_dtypes = [type(np.dtype(c)) for c in simple_dtypes]
28
+
29
+
30
+ def simple_dtype_instances():
31
+ for dtype_class in simple_dtypes:
32
+ dt = dtype_class()
33
+ yield pytest.param(dt, id=str(dt))
34
+ if dt.byteorder != "|":
35
+ dt = dt.newbyteorder()
36
+ yield pytest.param(dt, id=str(dt))
37
+
38
+
39
+ def get_expected_stringlength(dtype):
40
+ """Returns the string length when casting the basic dtypes to strings.
41
+ """
42
+ if dtype == np.bool_:
43
+ return 5
44
+ if dtype.kind in "iu":
45
+ if dtype.itemsize == 1:
46
+ length = 3
47
+ elif dtype.itemsize == 2:
48
+ length = 5
49
+ elif dtype.itemsize == 4:
50
+ length = 10
51
+ elif dtype.itemsize == 8:
52
+ length = 20
53
+ else:
54
+ raise AssertionError(f"did not find expected length for {dtype}")
55
+
56
+ if dtype.kind == "i":
57
+ length += 1 # adds one character for the sign
58
+
59
+ return length
60
+
61
+ # Note: Can't do dtype comparison for longdouble on windows
62
+ if dtype.char == "g":
63
+ return 48
64
+ elif dtype.char == "G":
65
+ return 48 * 2
66
+ elif dtype.kind == "f":
67
+ return 32 # also for half apparently.
68
+ elif dtype.kind == "c":
69
+ return 32 * 2
70
+
71
+ raise AssertionError(f"did not find expected length for {dtype}")
72
+
73
+
74
+ class Casting(enum.IntEnum):
75
+ no = 0
76
+ equiv = 1
77
+ safe = 2
78
+ same_kind = 3
79
+ unsafe = 4
80
+
81
+
82
+ def _get_cancast_table():
83
+ table = textwrap.dedent("""
84
+ X ? b h i l q B H I L Q e f d g F D G S U V O M m
85
+ ? # = = = = = = = = = = = = = = = = = = = = = . =
86
+ b . # = = = = . . . . . = = = = = = = = = = = . =
87
+ h . ~ # = = = . . . . . ~ = = = = = = = = = = . =
88
+ i . ~ ~ # = = . . . . . ~ ~ = = ~ = = = = = = . =
89
+ l . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . =
90
+ q . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . =
91
+ B . ~ = = = = # = = = = = = = = = = = = = = = . =
92
+ H . ~ ~ = = = ~ # = = = ~ = = = = = = = = = = . =
93
+ I . ~ ~ ~ = = ~ ~ # = = ~ ~ = = ~ = = = = = = . =
94
+ L . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~
95
+ Q . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~
96
+ e . . . . . . . . . . . # = = = = = = = = = = . .
97
+ f . . . . . . . . . . . ~ # = = = = = = = = = . .
98
+ d . . . . . . . . . . . ~ ~ # = ~ = = = = = = . .
99
+ g . . . . . . . . . . . ~ ~ ~ # ~ ~ = = = = = . .
100
+ F . . . . . . . . . . . . . . . # = = = = = = . .
101
+ D . . . . . . . . . . . . . . . ~ # = = = = = . .
102
+ G . . . . . . . . . . . . . . . ~ ~ # = = = = . .
103
+ S . . . . . . . . . . . . . . . . . . # = = = . .
104
+ U . . . . . . . . . . . . . . . . . . . # = = . .
105
+ V . . . . . . . . . . . . . . . . . . . . # = . .
106
+ O . . . . . . . . . . . . . . . . . . . . = # . .
107
+ M . . . . . . . . . . . . . . . . . . . . = = # .
108
+ m . . . . . . . . . . . . . . . . . . . . = = . #
109
+ """).strip().split("\n")
110
+ dtypes = [type(np.dtype(c)) for c in table[0][2::2]]
111
+
112
+ convert_cast = {".": Casting.unsafe, "~": Casting.same_kind,
113
+ "=": Casting.safe, "#": Casting.equiv,
114
+ " ": -1}
115
+
116
+ cancast = {}
117
+ for from_dt, row in zip(dtypes, table[1:]):
118
+ cancast[from_dt] = {}
119
+ for to_dt, c in zip(dtypes, row[2::2]):
120
+ cancast[from_dt][to_dt] = convert_cast[c]
121
+
122
+ return cancast
123
+
124
+ CAST_TABLE = _get_cancast_table()
125
+
126
+
127
+ class TestChanges:
128
+ """
129
+ These test cases exercise some behaviour changes
130
+ """
131
+ @pytest.mark.parametrize("string", ["S", "U"])
132
+ @pytest.mark.parametrize("floating", ["e", "f", "d", "g"])
133
+ def test_float_to_string(self, floating, string):
134
+ assert np.can_cast(floating, string)
135
+ # 100 is long enough to hold any formatted floating
136
+ assert np.can_cast(floating, f"{string}100")
137
+
138
+ def test_to_void(self):
139
+ # But in general, we do consider these safe:
140
+ assert np.can_cast("d", "V")
141
+ assert np.can_cast("S20", "V")
142
+
143
+ # Do not consider it a safe cast if the void is too smaller:
144
+ assert not np.can_cast("d", "V1")
145
+ assert not np.can_cast("S20", "V1")
146
+ assert not np.can_cast("U1", "V1")
147
+ # Structured to unstructured is just like any other:
148
+ assert np.can_cast("d,i", "V", casting="same_kind")
149
+ # Unstructured void to unstructured is actually no cast at all:
150
+ assert np.can_cast("V3", "V", casting="no")
151
+ assert np.can_cast("V0", "V", casting="no")
152
+
153
+
154
+ class TestCasting:
155
+ size = 1500 # Best larger than NPY_LOWLEVEL_BUFFER_BLOCKSIZE * itemsize
156
+
157
+ def get_data(self, dtype1, dtype2):
158
+ if dtype2 is None or dtype1.itemsize >= dtype2.itemsize:
159
+ length = self.size // dtype1.itemsize
160
+ else:
161
+ length = self.size // dtype2.itemsize
162
+
163
+ # Assume that the base array is well enough aligned for all inputs.
164
+ arr1 = np.empty(length, dtype=dtype1)
165
+ assert arr1.flags.c_contiguous
166
+ assert arr1.flags.aligned
167
+
168
+ values = [random.randrange(-128, 128) for _ in range(length)]
169
+
170
+ for i, value in enumerate(values):
171
+ # Use item assignment to ensure this is not using casting:
172
+ if value < 0 and dtype1.kind == "u":
173
+ # Manually rollover unsigned integers (-1 -> int.max)
174
+ value = value + np.iinfo(dtype1).max + 1
175
+ arr1[i] = value
176
+
177
+ if dtype2 is None:
178
+ if dtype1.char == "?":
179
+ values = [bool(v) for v in values]
180
+ return arr1, values
181
+
182
+ if dtype2.char == "?":
183
+ values = [bool(v) for v in values]
184
+
185
+ arr2 = np.empty(length, dtype=dtype2)
186
+ assert arr2.flags.c_contiguous
187
+ assert arr2.flags.aligned
188
+
189
+ for i, value in enumerate(values):
190
+ # Use item assignment to ensure this is not using casting:
191
+ if value < 0 and dtype2.kind == "u":
192
+ # Manually rollover unsigned integers (-1 -> int.max)
193
+ value = value + np.iinfo(dtype2).max + 1
194
+ arr2[i] = value
195
+
196
+ return arr1, arr2, values
197
+
198
+ def get_data_variation(self, arr1, arr2, aligned=True, contig=True):
199
+ """
200
+ Returns a copy of arr1 that may be non-contiguous or unaligned, and a
201
+ matching array for arr2 (although not a copy).
202
+ """
203
+ if contig:
204
+ stride1 = arr1.dtype.itemsize
205
+ stride2 = arr2.dtype.itemsize
206
+ elif aligned:
207
+ stride1 = 2 * arr1.dtype.itemsize
208
+ stride2 = 2 * arr2.dtype.itemsize
209
+ else:
210
+ stride1 = arr1.dtype.itemsize + 1
211
+ stride2 = arr2.dtype.itemsize + 1
212
+
213
+ max_size1 = len(arr1) * 3 * arr1.dtype.itemsize + 1
214
+ max_size2 = len(arr2) * 3 * arr2.dtype.itemsize + 1
215
+ from_bytes = np.zeros(max_size1, dtype=np.uint8)
216
+ to_bytes = np.zeros(max_size2, dtype=np.uint8)
217
+
218
+ # Sanity check that the above is large enough:
219
+ assert stride1 * len(arr1) <= from_bytes.nbytes
220
+ assert stride2 * len(arr2) <= to_bytes.nbytes
221
+
222
+ if aligned:
223
+ new1 = as_strided(from_bytes[:-1].view(arr1.dtype),
224
+ arr1.shape, (stride1,))
225
+ new2 = as_strided(to_bytes[:-1].view(arr2.dtype),
226
+ arr2.shape, (stride2,))
227
+ else:
228
+ new1 = as_strided(from_bytes[1:].view(arr1.dtype),
229
+ arr1.shape, (stride1,))
230
+ new2 = as_strided(to_bytes[1:].view(arr2.dtype),
231
+ arr2.shape, (stride2,))
232
+
233
+ new1[...] = arr1
234
+
235
+ if not contig:
236
+ # Ensure we did not overwrite bytes that should not be written:
237
+ offset = arr1.dtype.itemsize if aligned else 0
238
+ buf = from_bytes[offset::stride1].tobytes()
239
+ assert buf.count(b"\0") == len(buf)
240
+
241
+ if contig:
242
+ assert new1.flags.c_contiguous
243
+ assert new2.flags.c_contiguous
244
+ else:
245
+ assert not new1.flags.c_contiguous
246
+ assert not new2.flags.c_contiguous
247
+
248
+ if aligned:
249
+ assert new1.flags.aligned
250
+ assert new2.flags.aligned
251
+ else:
252
+ assert not new1.flags.aligned or new1.dtype.alignment == 1
253
+ assert not new2.flags.aligned or new2.dtype.alignment == 1
254
+
255
+ return new1, new2
256
+
257
+ @pytest.mark.parametrize("from_Dt", simple_dtypes)
258
+ def test_simple_cancast(self, from_Dt):
259
+ for to_Dt in simple_dtypes:
260
+ cast = get_castingimpl(from_Dt, to_Dt)
261
+
262
+ for from_dt in [from_Dt(), from_Dt().newbyteorder()]:
263
+ default = cast._resolve_descriptors((from_dt, None))[1][1]
264
+ assert default == to_Dt()
265
+ del default
266
+
267
+ for to_dt in [to_Dt(), to_Dt().newbyteorder()]:
268
+ casting, (from_res, to_res), view_off = (
269
+ cast._resolve_descriptors((from_dt, to_dt)))
270
+ assert(type(from_res) == from_Dt)
271
+ assert(type(to_res) == to_Dt)
272
+ if view_off is not None:
273
+ # If a view is acceptable, this is "no" casting
274
+ # and byte order must be matching.
275
+ assert casting == Casting.no
276
+ # The above table lists this as "equivalent"
277
+ assert Casting.equiv == CAST_TABLE[from_Dt][to_Dt]
278
+ # Note that to_res may not be the same as from_dt
279
+ assert from_res.isnative == to_res.isnative
280
+ else:
281
+ if from_Dt == to_Dt:
282
+ # Note that to_res may not be the same as from_dt
283
+ assert from_res.isnative != to_res.isnative
284
+ assert casting == CAST_TABLE[from_Dt][to_Dt]
285
+
286
+ if from_Dt is to_Dt:
287
+ assert(from_dt is from_res)
288
+ assert(to_dt is to_res)
289
+
290
+
291
+ @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
292
+ @pytest.mark.parametrize("from_dt", simple_dtype_instances())
293
+ def test_simple_direct_casts(self, from_dt):
294
+ """
295
+ This test checks numeric direct casts for dtypes supported also by the
296
+ struct module (plus complex). It tries to be test a wide range of
297
+ inputs, but skips over possibly undefined behaviour (e.g. int rollover).
298
+ Longdouble and CLongdouble are tested, but only using double precision.
299
+
300
+ If this test creates issues, it should possibly just be simplified
301
+ or even removed (checking whether unaligned/non-contiguous casts give
302
+ the same results is useful, though).
303
+ """
304
+ for to_dt in simple_dtype_instances():
305
+ to_dt = to_dt.values[0]
306
+ cast = get_castingimpl(type(from_dt), type(to_dt))
307
+
308
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
309
+ (from_dt, to_dt))
310
+
311
+ if from_res is not from_dt or to_res is not to_dt:
312
+ # Do not test this case, it is handled in multiple steps,
313
+ # each of which should is tested individually.
314
+ return
315
+
316
+ safe = casting <= Casting.safe
317
+ del from_res, to_res, casting
318
+
319
+ arr1, arr2, values = self.get_data(from_dt, to_dt)
320
+
321
+ cast._simple_strided_call((arr1, arr2))
322
+
323
+ # Check via python list
324
+ assert arr2.tolist() == values
325
+
326
+ # Check that the same results are achieved for strided loops
327
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False)
328
+ cast._simple_strided_call((arr1_o, arr2_o))
329
+
330
+ assert_array_equal(arr2_o, arr2)
331
+ assert arr2_o.tobytes() == arr2.tobytes()
332
+
333
+ # Check if alignment makes a difference, but only if supported
334
+ # and only if the alignment can be wrong
335
+ if ((from_dt.alignment == 1 and to_dt.alignment == 1) or
336
+ not cast._supports_unaligned):
337
+ return
338
+
339
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, True)
340
+ cast._simple_strided_call((arr1_o, arr2_o))
341
+
342
+ assert_array_equal(arr2_o, arr2)
343
+ assert arr2_o.tobytes() == arr2.tobytes()
344
+
345
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, False)
346
+ cast._simple_strided_call((arr1_o, arr2_o))
347
+
348
+ assert_array_equal(arr2_o, arr2)
349
+ assert arr2_o.tobytes() == arr2.tobytes()
350
+
351
+ del arr1_o, arr2_o, cast
352
+
353
+ @pytest.mark.parametrize("from_Dt", simple_dtypes)
354
+ def test_numeric_to_times(self, from_Dt):
355
+ # We currently only implement contiguous loops, so only need to
356
+ # test those.
357
+ from_dt = from_Dt()
358
+
359
+ time_dtypes = [np.dtype("M8"), np.dtype("M8[ms]"), np.dtype("M8[4D]"),
360
+ np.dtype("m8"), np.dtype("m8[ms]"), np.dtype("m8[4D]")]
361
+ for time_dt in time_dtypes:
362
+ cast = get_castingimpl(type(from_dt), type(time_dt))
363
+
364
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
365
+ (from_dt, time_dt))
366
+
367
+ assert from_res is from_dt
368
+ assert to_res is time_dt
369
+ del from_res, to_res
370
+
371
+ assert casting & CAST_TABLE[from_Dt][type(time_dt)]
372
+ assert view_off is None
373
+
374
+ int64_dt = np.dtype(np.int64)
375
+ arr1, arr2, values = self.get_data(from_dt, int64_dt)
376
+ arr2 = arr2.view(time_dt)
377
+ arr2[...] = np.datetime64("NaT")
378
+
379
+ if time_dt == np.dtype("M8"):
380
+ # This is a bit of a strange path, and could probably be removed
381
+ arr1[-1] = 0 # ensure at least one value is not NaT
382
+
383
+ # The cast currently succeeds, but the values are invalid:
384
+ cast._simple_strided_call((arr1, arr2))
385
+ with pytest.raises(ValueError):
386
+ str(arr2[-1]) # e.g. conversion to string fails
387
+ return
388
+
389
+ cast._simple_strided_call((arr1, arr2))
390
+
391
+ assert [int(v) for v in arr2.tolist()] == values
392
+
393
+ # Check that the same results are achieved for strided loops
394
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False)
395
+ cast._simple_strided_call((arr1_o, arr2_o))
396
+
397
+ assert_array_equal(arr2_o, arr2)
398
+ assert arr2_o.tobytes() == arr2.tobytes()
399
+
400
+ @pytest.mark.parametrize(
401
+ ["from_dt", "to_dt", "expected_casting", "expected_view_off",
402
+ "nom", "denom"],
403
+ [("M8[ns]", None, Casting.no, 0, 1, 1),
404
+ (str(np.dtype("M8[ns]").newbyteorder()), None,
405
+ Casting.equiv, None, 1, 1),
406
+ ("M8", "M8[ms]", Casting.safe, 0, 1, 1),
407
+ # should be invalid cast:
408
+ ("M8[ms]", "M8", Casting.unsafe, None, 1, 1),
409
+ ("M8[5ms]", "M8[5ms]", Casting.no, 0, 1, 1),
410
+ ("M8[ns]", "M8[ms]", Casting.same_kind, None, 1, 10**6),
411
+ ("M8[ms]", "M8[ns]", Casting.safe, None, 10**6, 1),
412
+ ("M8[ms]", "M8[7ms]", Casting.same_kind, None, 1, 7),
413
+ ("M8[4D]", "M8[1M]", Casting.same_kind, None, None,
414
+ # give full values based on NumPy 1.19.x
415
+ [-2**63, 0, -1, 1314, -1315, 564442610]),
416
+ ("m8[ns]", None, Casting.no, 0, 1, 1),
417
+ (str(np.dtype("m8[ns]").newbyteorder()), None,
418
+ Casting.equiv, None, 1, 1),
419
+ ("m8", "m8[ms]", Casting.safe, 0, 1, 1),
420
+ # should be invalid cast:
421
+ ("m8[ms]", "m8", Casting.unsafe, None, 1, 1),
422
+ ("m8[5ms]", "m8[5ms]", Casting.no, 0, 1, 1),
423
+ ("m8[ns]", "m8[ms]", Casting.same_kind, None, 1, 10**6),
424
+ ("m8[ms]", "m8[ns]", Casting.safe, None, 10**6, 1),
425
+ ("m8[ms]", "m8[7ms]", Casting.same_kind, None, 1, 7),
426
+ ("m8[4D]", "m8[1M]", Casting.unsafe, None, None,
427
+ # give full values based on NumPy 1.19.x
428
+ [-2**63, 0, 0, 1314, -1315, 564442610])])
429
+ def test_time_to_time(self, from_dt, to_dt,
430
+ expected_casting, expected_view_off,
431
+ nom, denom):
432
+ from_dt = np.dtype(from_dt)
433
+ if to_dt is not None:
434
+ to_dt = np.dtype(to_dt)
435
+
436
+ # Test a few values for casting (results generated with NumPy 1.19)
437
+ values = np.array([-2**63, 1, 2**63-1, 10000, -10000, 2**32])
438
+ values = values.astype(np.dtype("int64").newbyteorder(from_dt.byteorder))
439
+ assert values.dtype.byteorder == from_dt.byteorder
440
+ assert np.isnat(values.view(from_dt)[0])
441
+
442
+ DType = type(from_dt)
443
+ cast = get_castingimpl(DType, DType)
444
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
445
+ (from_dt, to_dt))
446
+ assert from_res is from_dt
447
+ assert to_res is to_dt or to_dt is None
448
+ assert casting == expected_casting
449
+ assert view_off == expected_view_off
450
+
451
+ if nom is not None:
452
+ expected_out = (values * nom // denom).view(to_res)
453
+ expected_out[0] = "NaT"
454
+ else:
455
+ expected_out = np.empty_like(values)
456
+ expected_out[...] = denom
457
+ expected_out = expected_out.view(to_dt)
458
+
459
+ orig_arr = values.view(from_dt)
460
+ orig_out = np.empty_like(expected_out)
461
+
462
+ if casting == Casting.unsafe and (to_dt == "m8" or to_dt == "M8"):
463
+ # Casting from non-generic to generic units is an error and should
464
+ # probably be reported as an invalid cast earlier.
465
+ with pytest.raises(ValueError):
466
+ cast._simple_strided_call((orig_arr, orig_out))
467
+ return
468
+
469
+ for aligned in [True, True]:
470
+ for contig in [True, True]:
471
+ arr, out = self.get_data_variation(
472
+ orig_arr, orig_out, aligned, contig)
473
+ out[...] = 0
474
+ cast._simple_strided_call((arr, out))
475
+ assert_array_equal(out.view("int64"), expected_out.view("int64"))
476
+
477
+ def string_with_modified_length(self, dtype, change_length):
478
+ fact = 1 if dtype.char == "S" else 4
479
+ length = dtype.itemsize // fact + change_length
480
+ return np.dtype(f"{dtype.byteorder}{dtype.char}{length}")
481
+
482
+ @pytest.mark.parametrize("other_DT", simple_dtypes)
483
+ @pytest.mark.parametrize("string_char", ["S", "U"])
484
+ def test_string_cancast(self, other_DT, string_char):
485
+ fact = 1 if string_char == "S" else 4
486
+
487
+ string_DT = type(np.dtype(string_char))
488
+ cast = get_castingimpl(other_DT, string_DT)
489
+
490
+ other_dt = other_DT()
491
+ expected_length = get_expected_stringlength(other_dt)
492
+ string_dt = np.dtype(f"{string_char}{expected_length}")
493
+
494
+ safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors(
495
+ (other_dt, None))
496
+ assert res_dt.itemsize == expected_length * fact
497
+ assert safety == Casting.safe # we consider to string casts "safe"
498
+ assert view_off is None
499
+ assert isinstance(res_dt, string_DT)
500
+
501
+ # These casts currently implement changing the string length, so
502
+ # check the cast-safety for too long/fixed string lengths:
503
+ for change_length in [-1, 0, 1]:
504
+ if change_length >= 0:
505
+ expected_safety = Casting.safe
506
+ else:
507
+ expected_safety = Casting.same_kind
508
+
509
+ to_dt = self.string_with_modified_length(string_dt, change_length)
510
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
511
+ (other_dt, to_dt))
512
+ assert res_dt is to_dt
513
+ assert safety == expected_safety
514
+ assert view_off is None
515
+
516
+ # The opposite direction is always considered unsafe:
517
+ cast = get_castingimpl(string_DT, other_DT)
518
+
519
+ safety, _, view_off = cast._resolve_descriptors((string_dt, other_dt))
520
+ assert safety == Casting.unsafe
521
+ assert view_off is None
522
+
523
+ cast = get_castingimpl(string_DT, other_DT)
524
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
525
+ (string_dt, None))
526
+ assert safety == Casting.unsafe
527
+ assert view_off is None
528
+ assert other_dt is res_dt # returns the singleton for simple dtypes
529
+
530
+ @pytest.mark.parametrize("string_char", ["S", "U"])
531
+ @pytest.mark.parametrize("other_dt", simple_dtype_instances())
532
+ def test_simple_string_casts_roundtrip(self, other_dt, string_char):
533
+ """
534
+ Tests casts from and to string by checking the roundtripping property.
535
+
536
+ The test also covers some string to string casts (but not all).
537
+
538
+ If this test creates issues, it should possibly just be simplified
539
+ or even removed (checking whether unaligned/non-contiguous casts give
540
+ the same results is useful, though).
541
+ """
542
+ string_DT = type(np.dtype(string_char))
543
+
544
+ cast = get_castingimpl(type(other_dt), string_DT)
545
+ cast_back = get_castingimpl(string_DT, type(other_dt))
546
+ _, (res_other_dt, string_dt), _ = cast._resolve_descriptors(
547
+ (other_dt, None))
548
+
549
+ if res_other_dt is not other_dt:
550
+ # do not support non-native byteorder, skip test in that case
551
+ assert other_dt.byteorder != res_other_dt.byteorder
552
+ return
553
+
554
+ orig_arr, values = self.get_data(other_dt, None)
555
+ str_arr = np.zeros(len(orig_arr), dtype=string_dt)
556
+ string_dt_short = self.string_with_modified_length(string_dt, -1)
557
+ str_arr_short = np.zeros(len(orig_arr), dtype=string_dt_short)
558
+ string_dt_long = self.string_with_modified_length(string_dt, 1)
559
+ str_arr_long = np.zeros(len(orig_arr), dtype=string_dt_long)
560
+
561
+ assert not cast._supports_unaligned # if support is added, should test
562
+ assert not cast_back._supports_unaligned
563
+
564
+ for contig in [True, False]:
565
+ other_arr, str_arr = self.get_data_variation(
566
+ orig_arr, str_arr, True, contig)
567
+ _, str_arr_short = self.get_data_variation(
568
+ orig_arr, str_arr_short.copy(), True, contig)
569
+ _, str_arr_long = self.get_data_variation(
570
+ orig_arr, str_arr_long, True, contig)
571
+
572
+ cast._simple_strided_call((other_arr, str_arr))
573
+
574
+ cast._simple_strided_call((other_arr, str_arr_short))
575
+ assert_array_equal(str_arr.astype(string_dt_short), str_arr_short)
576
+
577
+ cast._simple_strided_call((other_arr, str_arr_long))
578
+ assert_array_equal(str_arr, str_arr_long)
579
+
580
+ if other_dt.kind == "b":
581
+ # Booleans do not roundtrip
582
+ continue
583
+
584
+ other_arr[...] = 0
585
+ cast_back._simple_strided_call((str_arr, other_arr))
586
+ assert_array_equal(orig_arr, other_arr)
587
+
588
+ other_arr[...] = 0
589
+ cast_back._simple_strided_call((str_arr_long, other_arr))
590
+ assert_array_equal(orig_arr, other_arr)
591
+
592
+ @pytest.mark.parametrize("other_dt", ["S8", "<U8", ">U8"])
593
+ @pytest.mark.parametrize("string_char", ["S", "U"])
594
+ def test_string_to_string_cancast(self, other_dt, string_char):
595
+ other_dt = np.dtype(other_dt)
596
+
597
+ fact = 1 if string_char == "S" else 4
598
+ div = 1 if other_dt.char == "S" else 4
599
+
600
+ string_DT = type(np.dtype(string_char))
601
+ cast = get_castingimpl(type(other_dt), string_DT)
602
+
603
+ expected_length = other_dt.itemsize // div
604
+ string_dt = np.dtype(f"{string_char}{expected_length}")
605
+
606
+ safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors(
607
+ (other_dt, None))
608
+ assert res_dt.itemsize == expected_length * fact
609
+ assert isinstance(res_dt, string_DT)
610
+
611
+ expected_view_off = None
612
+ if other_dt.char == string_char:
613
+ if other_dt.isnative:
614
+ expected_safety = Casting.no
615
+ expected_view_off = 0
616
+ else:
617
+ expected_safety = Casting.equiv
618
+ elif string_char == "U":
619
+ expected_safety = Casting.safe
620
+ else:
621
+ expected_safety = Casting.unsafe
622
+
623
+ assert view_off == expected_view_off
624
+ assert expected_safety == safety
625
+
626
+ for change_length in [-1, 0, 1]:
627
+ to_dt = self.string_with_modified_length(string_dt, change_length)
628
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
629
+ (other_dt, to_dt))
630
+
631
+ assert res_dt is to_dt
632
+ if change_length <= 0:
633
+ assert view_off == expected_view_off
634
+ else:
635
+ assert view_off is None
636
+ if expected_safety == Casting.unsafe:
637
+ assert safety == expected_safety
638
+ elif change_length < 0:
639
+ assert safety == Casting.same_kind
640
+ elif change_length == 0:
641
+ assert safety == expected_safety
642
+ elif change_length > 0:
643
+ assert safety == Casting.safe
644
+
645
+ @pytest.mark.parametrize("order1", [">", "<"])
646
+ @pytest.mark.parametrize("order2", [">", "<"])
647
+ def test_unicode_byteswapped_cast(self, order1, order2):
648
+ # Very specific tests (not using the castingimpl directly)
649
+ # that tests unicode bytedwaps including for unaligned array data.
650
+ dtype1 = np.dtype(f"{order1}U30")
651
+ dtype2 = np.dtype(f"{order2}U30")
652
+ data1 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype1)
653
+ data2 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype2)
654
+ if dtype1.alignment != 1:
655
+ # alignment should always be >1, but skip the check if not
656
+ assert not data1.flags.aligned
657
+ assert not data2.flags.aligned
658
+
659
+ element = "this is a ünicode string‽"
660
+ data1[()] = element
661
+ # Test both `data1` and `data1.copy()` (which should be aligned)
662
+ for data in [data1, data1.copy()]:
663
+ data2[...] = data1
664
+ assert data2[()] == element
665
+ assert data2.copy()[()] == element
666
+
667
+ def test_void_to_string_special_case(self):
668
+ # Cover a small special case in void to string casting that could
669
+ # probably just as well be turned into an error (compare
670
+ # `test_object_to_parametric_internal_error` below).
671
+ assert np.array([], dtype="V5").astype("S").dtype.itemsize == 5
672
+ assert np.array([], dtype="V5").astype("U").dtype.itemsize == 4 * 5
673
+
674
+ def test_object_to_parametric_internal_error(self):
675
+ # We reject casting from object to a parametric type, without
676
+ # figuring out the correct instance first.
677
+ object_dtype = type(np.dtype(object))
678
+ other_dtype = type(np.dtype(str))
679
+ cast = get_castingimpl(object_dtype, other_dtype)
680
+ with pytest.raises(TypeError,
681
+ match="casting from object to the parametric DType"):
682
+ cast._resolve_descriptors((np.dtype("O"), None))
683
+
684
+ @pytest.mark.parametrize("dtype", simple_dtype_instances())
685
+ def test_object_and_simple_resolution(self, dtype):
686
+ # Simple test to exercise the cast when no instance is specified
687
+ object_dtype = type(np.dtype(object))
688
+ cast = get_castingimpl(object_dtype, type(dtype))
689
+
690
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
691
+ (np.dtype("O"), dtype))
692
+ assert safety == Casting.unsafe
693
+ assert view_off is None
694
+ assert res_dt is dtype
695
+
696
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
697
+ (np.dtype("O"), None))
698
+ assert safety == Casting.unsafe
699
+ assert view_off is None
700
+ assert res_dt == dtype.newbyteorder("=")
701
+
702
+ @pytest.mark.parametrize("dtype", simple_dtype_instances())
703
+ def test_simple_to_object_resolution(self, dtype):
704
+ # Simple test to exercise the cast when no instance is specified
705
+ object_dtype = type(np.dtype(object))
706
+ cast = get_castingimpl(type(dtype), object_dtype)
707
+
708
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
709
+ (dtype, None))
710
+ assert safety == Casting.safe
711
+ assert view_off is None
712
+ assert res_dt is np.dtype("O")
713
+
714
+ @pytest.mark.parametrize("casting", ["no", "unsafe"])
715
+ def test_void_and_structured_with_subarray(self, casting):
716
+ # test case corresponding to gh-19325
717
+ dtype = np.dtype([("foo", "<f4", (3, 2))])
718
+ expected = casting == "unsafe"
719
+ assert np.can_cast("V4", dtype, casting=casting) == expected
720
+ assert np.can_cast(dtype, "V4", casting=casting) == expected
721
+
722
+ @pytest.mark.parametrize(["to_dt", "expected_off"],
723
+ [ # Same as `from_dt` but with both fields shifted:
724
+ (np.dtype({"names": ["a", "b"], "formats": ["i4", "f4"],
725
+ "offsets": [0, 4]}), 2),
726
+ # Additional change of the names
727
+ (np.dtype({"names": ["b", "a"], "formats": ["i4", "f4"],
728
+ "offsets": [0, 4]}), 2),
729
+ # Incompatible field offset change
730
+ (np.dtype({"names": ["b", "a"], "formats": ["i4", "f4"],
731
+ "offsets": [0, 6]}), None)])
732
+ def test_structured_field_offsets(self, to_dt, expected_off):
733
+ # This checks the cast-safety and view offset for swapped and "shifted"
734
+ # fields which are viewable
735
+ from_dt = np.dtype({"names": ["a", "b"],
736
+ "formats": ["i4", "f4"],
737
+ "offsets": [2, 6]})
738
+ cast = get_castingimpl(type(from_dt), type(to_dt))
739
+ safety, _, view_off = cast._resolve_descriptors((from_dt, to_dt))
740
+ if from_dt.names == to_dt.names:
741
+ assert safety == Casting.equiv
742
+ else:
743
+ assert safety == Casting.safe
744
+ # Shifting the original data pointer by -2 will align both by
745
+ # effectively adding 2 bytes of spacing before `from_dt`.
746
+ assert view_off == expected_off
747
+
748
+ @pytest.mark.parametrize(("from_dt", "to_dt", "expected_off"), [
749
+ # Subarray cases:
750
+ ("i", "(1,1)i", 0),
751
+ ("(1,1)i", "i", 0),
752
+ ("(2,1)i", "(2,1)i", 0),
753
+ # field cases (field to field is tested explicitly also):
754
+ # Not considered viewable, because a negative offset would allow
755
+ # may structured dtype to indirectly access invalid memory.
756
+ ("i", dict(names=["a"], formats=["i"], offsets=[2]), None),
757
+ (dict(names=["a"], formats=["i"], offsets=[2]), "i", 2),
758
+ # Currently considered not viewable, due to multiple fields
759
+ # even though they overlap (maybe we should not allow that?)
760
+ ("i", dict(names=["a", "b"], formats=["i", "i"], offsets=[2, 2]),
761
+ None),
762
+ # different number of fields can't work, should probably just fail
763
+ # so it never reports "viewable":
764
+ ("i,i", "i,i,i", None),
765
+ # Unstructured void cases:
766
+ ("i4", "V3", 0), # void smaller or equal
767
+ ("i4", "V4", 0), # void smaller or equal
768
+ ("i4", "V10", None), # void is larger (no view)
769
+ ("O", "V4", None), # currently reject objects for view here.
770
+ ("O", "V8", None), # currently reject objects for view here.
771
+ ("V4", "V3", 0),
772
+ ("V4", "V4", 0),
773
+ ("V3", "V4", None),
774
+ # Note that currently void-to-other cast goes via byte-strings
775
+ # and is not a "view" based cast like the opposite direction:
776
+ ("V4", "i4", None),
777
+ # completely invalid/impossible cast:
778
+ ("i,i", "i,i,i", None),
779
+ ])
780
+ def test_structured_view_offsets_paramteric(
781
+ self, from_dt, to_dt, expected_off):
782
+ # TODO: While this test is fairly thorough, right now, it does not
783
+ # really test some paths that may have nonzero offsets (they don't
784
+ # really exists).
785
+ from_dt = np.dtype(from_dt)
786
+ to_dt = np.dtype(to_dt)
787
+ cast = get_castingimpl(type(from_dt), type(to_dt))
788
+ _, _, view_off = cast._resolve_descriptors((from_dt, to_dt))
789
+ assert view_off == expected_off
790
+
791
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
792
+ def test_object_casts_NULL_None_equivalence(self, dtype):
793
+ # None to <other> casts may succeed or fail, but a NULL'ed array must
794
+ # behave the same as one filled with None's.
795
+ arr_normal = np.array([None] * 5)
796
+ arr_NULLs = np.empty_like(arr_normal)
797
+ ctypes.memset(arr_NULLs.ctypes.data, 0, arr_NULLs.nbytes)
798
+ # If the check fails (maybe it should) the test would lose its purpose:
799
+ assert arr_NULLs.tobytes() == b"\x00" * arr_NULLs.nbytes
800
+
801
+ try:
802
+ expected = arr_normal.astype(dtype)
803
+ except TypeError:
804
+ with pytest.raises(TypeError):
805
+ arr_NULLs.astype(dtype),
806
+ else:
807
+ assert_array_equal(expected, arr_NULLs.astype(dtype))
808
+
809
+ @pytest.mark.parametrize("dtype",
810
+ np.typecodes["AllInteger"] + np.typecodes["AllFloat"])
811
+ def test_nonstandard_bool_to_other(self, dtype):
812
+ # simple test for casting bool_ to numeric types, which should not
813
+ # expose the detail that NumPy bools can sometimes take values other
814
+ # than 0 and 1. See also gh-19514.
815
+ nonstandard_bools = np.array([0, 3, -7], dtype=np.int8).view(bool)
816
+ res = nonstandard_bools.astype(dtype)
817
+ expected = [0, 1, 1]
818
+ assert_array_equal(res, expected)
819
+
venv/lib/python3.10/site-packages/numpy/core/tests/test_conversion_utils.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for numpy/core/src/multiarray/conversion_utils.c
3
+ """
4
+ import re
5
+ import sys
6
+
7
+ import pytest
8
+
9
+ import numpy as np
10
+ import numpy.core._multiarray_tests as mt
11
+ from numpy.testing import assert_warns, IS_PYPY
12
+
13
+
14
+ class StringConverterTestCase:
15
+ allow_bytes = True
16
+ case_insensitive = True
17
+ exact_match = False
18
+ warn = True
19
+
20
+ def _check_value_error(self, val):
21
+ pattern = r'\(got {}\)'.format(re.escape(repr(val)))
22
+ with pytest.raises(ValueError, match=pattern) as exc:
23
+ self.conv(val)
24
+
25
+ def _check_conv_assert_warn(self, val, expected):
26
+ if self.warn:
27
+ with assert_warns(DeprecationWarning) as exc:
28
+ assert self.conv(val) == expected
29
+ else:
30
+ assert self.conv(val) == expected
31
+
32
+ def _check(self, val, expected):
33
+ """Takes valid non-deprecated inputs for converters,
34
+ runs converters on inputs, checks correctness of outputs,
35
+ warnings and errors"""
36
+ assert self.conv(val) == expected
37
+
38
+ if self.allow_bytes:
39
+ assert self.conv(val.encode('ascii')) == expected
40
+ else:
41
+ with pytest.raises(TypeError):
42
+ self.conv(val.encode('ascii'))
43
+
44
+ if len(val) != 1:
45
+ if self.exact_match:
46
+ self._check_value_error(val[:1])
47
+ self._check_value_error(val + '\0')
48
+ else:
49
+ self._check_conv_assert_warn(val[:1], expected)
50
+
51
+ if self.case_insensitive:
52
+ if val != val.lower():
53
+ self._check_conv_assert_warn(val.lower(), expected)
54
+ if val != val.upper():
55
+ self._check_conv_assert_warn(val.upper(), expected)
56
+ else:
57
+ if val != val.lower():
58
+ self._check_value_error(val.lower())
59
+ if val != val.upper():
60
+ self._check_value_error(val.upper())
61
+
62
+ def test_wrong_type(self):
63
+ # common cases which apply to all the below
64
+ with pytest.raises(TypeError):
65
+ self.conv({})
66
+ with pytest.raises(TypeError):
67
+ self.conv([])
68
+
69
+ def test_wrong_value(self):
70
+ # nonsense strings
71
+ self._check_value_error('')
72
+ self._check_value_error('\N{greek small letter pi}')
73
+
74
+ if self.allow_bytes:
75
+ self._check_value_error(b'')
76
+ # bytes which can't be converted to strings via utf8
77
+ self._check_value_error(b"\xFF")
78
+ if self.exact_match:
79
+ self._check_value_error("there's no way this is supported")
80
+
81
+
82
+ class TestByteorderConverter(StringConverterTestCase):
83
+ """ Tests of PyArray_ByteorderConverter """
84
+ conv = mt.run_byteorder_converter
85
+ warn = False
86
+
87
+ def test_valid(self):
88
+ for s in ['big', '>']:
89
+ self._check(s, 'NPY_BIG')
90
+ for s in ['little', '<']:
91
+ self._check(s, 'NPY_LITTLE')
92
+ for s in ['native', '=']:
93
+ self._check(s, 'NPY_NATIVE')
94
+ for s in ['ignore', '|']:
95
+ self._check(s, 'NPY_IGNORE')
96
+ for s in ['swap']:
97
+ self._check(s, 'NPY_SWAP')
98
+
99
+
100
+ class TestSortkindConverter(StringConverterTestCase):
101
+ """ Tests of PyArray_SortkindConverter """
102
+ conv = mt.run_sortkind_converter
103
+ warn = False
104
+
105
+ def test_valid(self):
106
+ self._check('quicksort', 'NPY_QUICKSORT')
107
+ self._check('heapsort', 'NPY_HEAPSORT')
108
+ self._check('mergesort', 'NPY_STABLESORT') # alias
109
+ self._check('stable', 'NPY_STABLESORT')
110
+
111
+
112
+ class TestSelectkindConverter(StringConverterTestCase):
113
+ """ Tests of PyArray_SelectkindConverter """
114
+ conv = mt.run_selectkind_converter
115
+ case_insensitive = False
116
+ exact_match = True
117
+
118
+ def test_valid(self):
119
+ self._check('introselect', 'NPY_INTROSELECT')
120
+
121
+
122
+ class TestSearchsideConverter(StringConverterTestCase):
123
+ """ Tests of PyArray_SearchsideConverter """
124
+ conv = mt.run_searchside_converter
125
+ def test_valid(self):
126
+ self._check('left', 'NPY_SEARCHLEFT')
127
+ self._check('right', 'NPY_SEARCHRIGHT')
128
+
129
+
130
+ class TestOrderConverter(StringConverterTestCase):
131
+ """ Tests of PyArray_OrderConverter """
132
+ conv = mt.run_order_converter
133
+ warn = False
134
+
135
+ def test_valid(self):
136
+ self._check('c', 'NPY_CORDER')
137
+ self._check('f', 'NPY_FORTRANORDER')
138
+ self._check('a', 'NPY_ANYORDER')
139
+ self._check('k', 'NPY_KEEPORDER')
140
+
141
+ def test_flatten_invalid_order(self):
142
+ # invalid after gh-14596
143
+ with pytest.raises(ValueError):
144
+ self.conv('Z')
145
+ for order in [False, True, 0, 8]:
146
+ with pytest.raises(TypeError):
147
+ self.conv(order)
148
+
149
+
150
+ class TestClipmodeConverter(StringConverterTestCase):
151
+ """ Tests of PyArray_ClipmodeConverter """
152
+ conv = mt.run_clipmode_converter
153
+ def test_valid(self):
154
+ self._check('clip', 'NPY_CLIP')
155
+ self._check('wrap', 'NPY_WRAP')
156
+ self._check('raise', 'NPY_RAISE')
157
+
158
+ # integer values allowed here
159
+ assert self.conv(np.CLIP) == 'NPY_CLIP'
160
+ assert self.conv(np.WRAP) == 'NPY_WRAP'
161
+ assert self.conv(np.RAISE) == 'NPY_RAISE'
162
+
163
+
164
+ class TestCastingConverter(StringConverterTestCase):
165
+ """ Tests of PyArray_CastingConverter """
166
+ conv = mt.run_casting_converter
167
+ case_insensitive = False
168
+ exact_match = True
169
+
170
+ def test_valid(self):
171
+ self._check("no", "NPY_NO_CASTING")
172
+ self._check("equiv", "NPY_EQUIV_CASTING")
173
+ self._check("safe", "NPY_SAFE_CASTING")
174
+ self._check("same_kind", "NPY_SAME_KIND_CASTING")
175
+ self._check("unsafe", "NPY_UNSAFE_CASTING")
176
+
177
+
178
+ class TestIntpConverter:
179
+ """ Tests of PyArray_IntpConverter """
180
+ conv = mt.run_intp_converter
181
+
182
+ def test_basic(self):
183
+ assert self.conv(1) == (1,)
184
+ assert self.conv((1, 2)) == (1, 2)
185
+ assert self.conv([1, 2]) == (1, 2)
186
+ assert self.conv(()) == ()
187
+
188
+ def test_none(self):
189
+ # once the warning expires, this will raise TypeError
190
+ with pytest.warns(DeprecationWarning):
191
+ assert self.conv(None) == ()
192
+
193
+ @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
194
+ reason="PyPy bug in error formatting")
195
+ def test_float(self):
196
+ with pytest.raises(TypeError):
197
+ self.conv(1.0)
198
+ with pytest.raises(TypeError):
199
+ self.conv([1, 1.0])
200
+
201
+ def test_too_large(self):
202
+ with pytest.raises(ValueError):
203
+ self.conv(2**64)
204
+
205
+ def test_too_many_dims(self):
206
+ assert self.conv([1]*32) == (1,)*32
207
+ with pytest.raises(ValueError):
208
+ self.conv([1]*33)
venv/lib/python3.10/site-packages/numpy/core/tests/test_cpu_dispatcher.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.core._multiarray_umath import __cpu_features__, __cpu_baseline__, __cpu_dispatch__
2
+ from numpy.core import _umath_tests
3
+ from numpy.testing import assert_equal
4
+
5
+ def test_dispatcher():
6
+ """
7
+ Testing the utilities of the CPU dispatcher
8
+ """
9
+ targets = (
10
+ "SSE2", "SSE41", "AVX2",
11
+ "VSX", "VSX2", "VSX3",
12
+ "NEON", "ASIMD", "ASIMDHP",
13
+ "VX", "VXE"
14
+ )
15
+ highest_sfx = "" # no suffix for the baseline
16
+ all_sfx = []
17
+ for feature in reversed(targets):
18
+ # skip baseline features, by the default `CCompilerOpt` do not generate separated objects
19
+ # for the baseline, just one object combined all of them via 'baseline' option
20
+ # within the configuration statements.
21
+ if feature in __cpu_baseline__:
22
+ continue
23
+ # check compiler and running machine support
24
+ if feature not in __cpu_dispatch__ or not __cpu_features__[feature]:
25
+ continue
26
+
27
+ if not highest_sfx:
28
+ highest_sfx = "_" + feature
29
+ all_sfx.append("func" + "_" + feature)
30
+
31
+ test = _umath_tests.test_dispatch()
32
+ assert_equal(test["func"], "func" + highest_sfx)
33
+ assert_equal(test["var"], "var" + highest_sfx)
34
+
35
+ if highest_sfx:
36
+ assert_equal(test["func_xb"], "func" + highest_sfx)
37
+ assert_equal(test["var_xb"], "var" + highest_sfx)
38
+ else:
39
+ assert_equal(test["func_xb"], "nobase")
40
+ assert_equal(test["var_xb"], "nobase")
41
+
42
+ all_sfx.append("func") # add the baseline
43
+ assert_equal(test["all"], all_sfx)
venv/lib/python3.10/site-packages/numpy/core/tests/test_cpu_features.py ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys, platform, re, pytest
2
+ from numpy.core._multiarray_umath import (
3
+ __cpu_features__,
4
+ __cpu_baseline__,
5
+ __cpu_dispatch__,
6
+ )
7
+ import numpy as np
8
+ import subprocess
9
+ import pathlib
10
+ import os
11
+ import re
12
+
13
+ def assert_features_equal(actual, desired, fname):
14
+ __tracebackhide__ = True # Hide traceback for py.test
15
+ actual, desired = str(actual), str(desired)
16
+ if actual == desired:
17
+ return
18
+ detected = str(__cpu_features__).replace("'", "")
19
+ try:
20
+ with open("/proc/cpuinfo") as fd:
21
+ cpuinfo = fd.read(2048)
22
+ except Exception as err:
23
+ cpuinfo = str(err)
24
+
25
+ try:
26
+ import subprocess
27
+ auxv = subprocess.check_output(['/bin/true'], env=dict(LD_SHOW_AUXV="1"))
28
+ auxv = auxv.decode()
29
+ except Exception as err:
30
+ auxv = str(err)
31
+
32
+ import textwrap
33
+ error_report = textwrap.indent(
34
+ """
35
+ ###########################################
36
+ ### Extra debugging information
37
+ ###########################################
38
+ -------------------------------------------
39
+ --- NumPy Detections
40
+ -------------------------------------------
41
+ %s
42
+ -------------------------------------------
43
+ --- SYS / CPUINFO
44
+ -------------------------------------------
45
+ %s....
46
+ -------------------------------------------
47
+ --- SYS / AUXV
48
+ -------------------------------------------
49
+ %s
50
+ """ % (detected, cpuinfo, auxv), prefix='\r')
51
+
52
+ raise AssertionError((
53
+ "Failure Detection\n"
54
+ " NAME: '%s'\n"
55
+ " ACTUAL: %s\n"
56
+ " DESIRED: %s\n"
57
+ "%s"
58
+ ) % (fname, actual, desired, error_report))
59
+
60
+ def _text_to_list(txt):
61
+ out = txt.strip("][\n").replace("'", "").split(', ')
62
+ return None if out[0] == "" else out
63
+
64
+ class AbstractTest:
65
+ features = []
66
+ features_groups = {}
67
+ features_map = {}
68
+ features_flags = set()
69
+
70
+ def load_flags(self):
71
+ # a hook
72
+ pass
73
+ def test_features(self):
74
+ self.load_flags()
75
+ for gname, features in self.features_groups.items():
76
+ test_features = [self.cpu_have(f) for f in features]
77
+ assert_features_equal(__cpu_features__.get(gname), all(test_features), gname)
78
+
79
+ for feature_name in self.features:
80
+ cpu_have = self.cpu_have(feature_name)
81
+ npy_have = __cpu_features__.get(feature_name)
82
+ assert_features_equal(npy_have, cpu_have, feature_name)
83
+
84
+ def cpu_have(self, feature_name):
85
+ map_names = self.features_map.get(feature_name, feature_name)
86
+ if isinstance(map_names, str):
87
+ return map_names in self.features_flags
88
+ for f in map_names:
89
+ if f in self.features_flags:
90
+ return True
91
+ return False
92
+
93
+ def load_flags_cpuinfo(self, magic_key):
94
+ self.features_flags = self.get_cpuinfo_item(magic_key)
95
+
96
+ def get_cpuinfo_item(self, magic_key):
97
+ values = set()
98
+ with open('/proc/cpuinfo') as fd:
99
+ for line in fd:
100
+ if not line.startswith(magic_key):
101
+ continue
102
+ flags_value = [s.strip() for s in line.split(':', 1)]
103
+ if len(flags_value) == 2:
104
+ values = values.union(flags_value[1].upper().split())
105
+ return values
106
+
107
+ def load_flags_auxv(self):
108
+ auxv = subprocess.check_output(['/bin/true'], env=dict(LD_SHOW_AUXV="1"))
109
+ for at in auxv.split(b'\n'):
110
+ if not at.startswith(b"AT_HWCAP"):
111
+ continue
112
+ hwcap_value = [s.strip() for s in at.split(b':', 1)]
113
+ if len(hwcap_value) == 2:
114
+ self.features_flags = self.features_flags.union(
115
+ hwcap_value[1].upper().decode().split()
116
+ )
117
+
118
+ @pytest.mark.skipif(
119
+ sys.platform == 'emscripten',
120
+ reason= (
121
+ "The subprocess module is not available on WASM platforms and"
122
+ " therefore this test class cannot be properly executed."
123
+ ),
124
+ )
125
+ class TestEnvPrivation:
126
+ cwd = pathlib.Path(__file__).parent.resolve()
127
+ env = os.environ.copy()
128
+ _enable = os.environ.pop('NPY_ENABLE_CPU_FEATURES', None)
129
+ _disable = os.environ.pop('NPY_DISABLE_CPU_FEATURES', None)
130
+ SUBPROCESS_ARGS = dict(cwd=cwd, capture_output=True, text=True, check=True)
131
+ unavailable_feats = [
132
+ feat for feat in __cpu_dispatch__ if not __cpu_features__[feat]
133
+ ]
134
+ UNAVAILABLE_FEAT = (
135
+ None if len(unavailable_feats) == 0
136
+ else unavailable_feats[0]
137
+ )
138
+ BASELINE_FEAT = None if len(__cpu_baseline__) == 0 else __cpu_baseline__[0]
139
+ SCRIPT = """
140
+ def main():
141
+ from numpy.core._multiarray_umath import __cpu_features__, __cpu_dispatch__
142
+
143
+ detected = [feat for feat in __cpu_dispatch__ if __cpu_features__[feat]]
144
+ print(detected)
145
+
146
+ if __name__ == "__main__":
147
+ main()
148
+ """
149
+
150
+ @pytest.fixture(autouse=True)
151
+ def setup_class(self, tmp_path_factory):
152
+ file = tmp_path_factory.mktemp("runtime_test_script")
153
+ file /= "_runtime_detect.py"
154
+ file.write_text(self.SCRIPT)
155
+ self.file = file
156
+ return
157
+
158
+ def _run(self):
159
+ return subprocess.run(
160
+ [sys.executable, self.file],
161
+ env=self.env,
162
+ **self.SUBPROCESS_ARGS,
163
+ )
164
+
165
+ # Helper function mimicing pytest.raises for subprocess call
166
+ def _expect_error(
167
+ self,
168
+ msg,
169
+ err_type,
170
+ no_error_msg="Failed to generate error"
171
+ ):
172
+ try:
173
+ self._run()
174
+ except subprocess.CalledProcessError as e:
175
+ assertion_message = f"Expected: {msg}\nGot: {e.stderr}"
176
+ assert re.search(msg, e.stderr), assertion_message
177
+
178
+ assertion_message = (
179
+ f"Expected error of type: {err_type}; see full "
180
+ f"error:\n{e.stderr}"
181
+ )
182
+ assert re.search(err_type, e.stderr), assertion_message
183
+ else:
184
+ assert False, no_error_msg
185
+
186
+ def setup_method(self):
187
+ """Ensure that the environment is reset"""
188
+ self.env = os.environ.copy()
189
+ return
190
+
191
+ def test_runtime_feature_selection(self):
192
+ """
193
+ Ensure that when selecting `NPY_ENABLE_CPU_FEATURES`, only the
194
+ features exactly specified are dispatched.
195
+ """
196
+
197
+ # Capture runtime-enabled features
198
+ out = self._run()
199
+ non_baseline_features = _text_to_list(out.stdout)
200
+
201
+ if non_baseline_features is None:
202
+ pytest.skip(
203
+ "No dispatchable features outside of baseline detected."
204
+ )
205
+ feature = non_baseline_features[0]
206
+
207
+ # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is
208
+ # specified
209
+ self.env['NPY_ENABLE_CPU_FEATURES'] = feature
210
+ out = self._run()
211
+ enabled_features = _text_to_list(out.stdout)
212
+
213
+ # Ensure that only one feature is enabled, and it is exactly the one
214
+ # specified by `NPY_ENABLE_CPU_FEATURES`
215
+ assert set(enabled_features) == {feature}
216
+
217
+ if len(non_baseline_features) < 2:
218
+ pytest.skip("Only one non-baseline feature detected.")
219
+ # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is
220
+ # specified
221
+ self.env['NPY_ENABLE_CPU_FEATURES'] = ",".join(non_baseline_features)
222
+ out = self._run()
223
+ enabled_features = _text_to_list(out.stdout)
224
+
225
+ # Ensure that both features are enabled, and they are exactly the ones
226
+ # specified by `NPY_ENABLE_CPU_FEATURES`
227
+ assert set(enabled_features) == set(non_baseline_features)
228
+ return
229
+
230
+ @pytest.mark.parametrize("enabled, disabled",
231
+ [
232
+ ("feature", "feature"),
233
+ ("feature", "same"),
234
+ ])
235
+ def test_both_enable_disable_set(self, enabled, disabled):
236
+ """
237
+ Ensure that when both environment variables are set then an
238
+ ImportError is thrown
239
+ """
240
+ self.env['NPY_ENABLE_CPU_FEATURES'] = enabled
241
+ self.env['NPY_DISABLE_CPU_FEATURES'] = disabled
242
+ msg = "Both NPY_DISABLE_CPU_FEATURES and NPY_ENABLE_CPU_FEATURES"
243
+ err_type = "ImportError"
244
+ self._expect_error(msg, err_type)
245
+
246
+ @pytest.mark.skipif(
247
+ not __cpu_dispatch__,
248
+ reason=(
249
+ "NPY_*_CPU_FEATURES only parsed if "
250
+ "`__cpu_dispatch__` is non-empty"
251
+ )
252
+ )
253
+ @pytest.mark.parametrize("action", ["ENABLE", "DISABLE"])
254
+ def test_variable_too_long(self, action):
255
+ """
256
+ Test that an error is thrown if the environment variables are too long
257
+ to be processed. Current limit is 1024, but this may change later.
258
+ """
259
+ MAX_VAR_LENGTH = 1024
260
+ # Actual length is MAX_VAR_LENGTH + 1 due to null-termination
261
+ self.env[f'NPY_{action}_CPU_FEATURES'] = "t" * MAX_VAR_LENGTH
262
+ msg = (
263
+ f"Length of environment variable 'NPY_{action}_CPU_FEATURES' is "
264
+ f"{MAX_VAR_LENGTH + 1}, only {MAX_VAR_LENGTH} accepted"
265
+ )
266
+ err_type = "RuntimeError"
267
+ self._expect_error(msg, err_type)
268
+
269
+ @pytest.mark.skipif(
270
+ not __cpu_dispatch__,
271
+ reason=(
272
+ "NPY_*_CPU_FEATURES only parsed if "
273
+ "`__cpu_dispatch__` is non-empty"
274
+ )
275
+ )
276
+ def test_impossible_feature_disable(self):
277
+ """
278
+ Test that a RuntimeError is thrown if an impossible feature-disabling
279
+ request is made. This includes disabling a baseline feature.
280
+ """
281
+
282
+ if self.BASELINE_FEAT is None:
283
+ pytest.skip("There are no unavailable features to test with")
284
+ bad_feature = self.BASELINE_FEAT
285
+ self.env['NPY_DISABLE_CPU_FEATURES'] = bad_feature
286
+ msg = (
287
+ f"You cannot disable CPU feature '{bad_feature}', since it is "
288
+ "part of the baseline optimizations"
289
+ )
290
+ err_type = "RuntimeError"
291
+ self._expect_error(msg, err_type)
292
+
293
+ def test_impossible_feature_enable(self):
294
+ """
295
+ Test that a RuntimeError is thrown if an impossible feature-enabling
296
+ request is made. This includes enabling a feature not supported by the
297
+ machine, or disabling a baseline optimization.
298
+ """
299
+
300
+ if self.UNAVAILABLE_FEAT is None:
301
+ pytest.skip("There are no unavailable features to test with")
302
+ bad_feature = self.UNAVAILABLE_FEAT
303
+ self.env['NPY_ENABLE_CPU_FEATURES'] = bad_feature
304
+ msg = (
305
+ f"You cannot enable CPU features \\({bad_feature}\\), since "
306
+ "they are not supported by your machine."
307
+ )
308
+ err_type = "RuntimeError"
309
+ self._expect_error(msg, err_type)
310
+
311
+ # Ensure that only the bad feature gets reported
312
+ feats = f"{bad_feature}, {self.BASELINE_FEAT}"
313
+ self.env['NPY_ENABLE_CPU_FEATURES'] = feats
314
+ msg = (
315
+ f"You cannot enable CPU features \\({bad_feature}\\), since they "
316
+ "are not supported by your machine."
317
+ )
318
+ self._expect_error(msg, err_type)
319
+
320
+ is_linux = sys.platform.startswith('linux')
321
+ is_cygwin = sys.platform.startswith('cygwin')
322
+ machine = platform.machine()
323
+ is_x86 = re.match("^(amd64|x86|i386|i686)", machine, re.IGNORECASE)
324
+ @pytest.mark.skipif(
325
+ not (is_linux or is_cygwin) or not is_x86, reason="Only for Linux and x86"
326
+ )
327
+ class Test_X86_Features(AbstractTest):
328
+ features = [
329
+ "MMX", "SSE", "SSE2", "SSE3", "SSSE3", "SSE41", "POPCNT", "SSE42",
330
+ "AVX", "F16C", "XOP", "FMA4", "FMA3", "AVX2", "AVX512F", "AVX512CD",
331
+ "AVX512ER", "AVX512PF", "AVX5124FMAPS", "AVX5124VNNIW", "AVX512VPOPCNTDQ",
332
+ "AVX512VL", "AVX512BW", "AVX512DQ", "AVX512VNNI", "AVX512IFMA",
333
+ "AVX512VBMI", "AVX512VBMI2", "AVX512BITALG", "AVX512FP16",
334
+ ]
335
+ features_groups = dict(
336
+ AVX512_KNL = ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF"],
337
+ AVX512_KNM = ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF", "AVX5124FMAPS",
338
+ "AVX5124VNNIW", "AVX512VPOPCNTDQ"],
339
+ AVX512_SKX = ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL"],
340
+ AVX512_CLX = ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512VNNI"],
341
+ AVX512_CNL = ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA",
342
+ "AVX512VBMI"],
343
+ AVX512_ICL = ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA",
344
+ "AVX512VBMI", "AVX512VNNI", "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ"],
345
+ AVX512_SPR = ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ",
346
+ "AVX512VL", "AVX512IFMA", "AVX512VBMI", "AVX512VNNI",
347
+ "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ",
348
+ "AVX512FP16"],
349
+ )
350
+ features_map = dict(
351
+ SSE3="PNI", SSE41="SSE4_1", SSE42="SSE4_2", FMA3="FMA",
352
+ AVX512VNNI="AVX512_VNNI", AVX512BITALG="AVX512_BITALG", AVX512VBMI2="AVX512_VBMI2",
353
+ AVX5124FMAPS="AVX512_4FMAPS", AVX5124VNNIW="AVX512_4VNNIW", AVX512VPOPCNTDQ="AVX512_VPOPCNTDQ",
354
+ AVX512FP16="AVX512_FP16",
355
+ )
356
+ def load_flags(self):
357
+ self.load_flags_cpuinfo("flags")
358
+
359
+ is_power = re.match("^(powerpc|ppc)64", machine, re.IGNORECASE)
360
+ @pytest.mark.skipif(not is_linux or not is_power, reason="Only for Linux and Power")
361
+ class Test_POWER_Features(AbstractTest):
362
+ features = ["VSX", "VSX2", "VSX3", "VSX4"]
363
+ features_map = dict(VSX2="ARCH_2_07", VSX3="ARCH_3_00", VSX4="ARCH_3_1")
364
+
365
+ def load_flags(self):
366
+ self.load_flags_auxv()
367
+
368
+
369
+ is_zarch = re.match("^(s390x)", machine, re.IGNORECASE)
370
+ @pytest.mark.skipif(not is_linux or not is_zarch,
371
+ reason="Only for Linux and IBM Z")
372
+ class Test_ZARCH_Features(AbstractTest):
373
+ features = ["VX", "VXE", "VXE2"]
374
+
375
+ def load_flags(self):
376
+ self.load_flags_auxv()
377
+
378
+
379
+ is_arm = re.match("^(arm|aarch64)", machine, re.IGNORECASE)
380
+ @pytest.mark.skipif(not is_linux or not is_arm, reason="Only for Linux and ARM")
381
+ class Test_ARM_Features(AbstractTest):
382
+ features = [
383
+ "NEON", "ASIMD", "FPHP", "ASIMDHP", "ASIMDDP", "ASIMDFHM"
384
+ ]
385
+ features_groups = dict(
386
+ NEON_FP16 = ["NEON", "HALF"],
387
+ NEON_VFPV4 = ["NEON", "VFPV4"],
388
+ )
389
+ def load_flags(self):
390
+ self.load_flags_cpuinfo("Features")
391
+ arch = self.get_cpuinfo_item("CPU architecture")
392
+ # in case of mounting virtual filesystem of aarch64 kernel
393
+ is_rootfs_v8 = int('0'+next(iter(arch))) > 7 if arch else 0
394
+ if re.match("^(aarch64|AARCH64)", machine) or is_rootfs_v8:
395
+ self.features_map = dict(
396
+ NEON="ASIMD", HALF="ASIMD", VFPV4="ASIMD"
397
+ )
398
+ else:
399
+ self.features_map = dict(
400
+ # ELF auxiliary vector and /proc/cpuinfo on Linux kernel(armv8 aarch32)
401
+ # doesn't provide information about ASIMD, so we assume that ASIMD is supported
402
+ # if the kernel reports any one of the following ARM8 features.
403
+ ASIMD=("AES", "SHA1", "SHA2", "PMULL", "CRC32")
404
+ )
venv/lib/python3.10/site-packages/numpy/core/tests/test_custom_dtypes.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import numpy as np
4
+ from numpy.testing import assert_array_equal
5
+ from numpy.core._multiarray_umath import (
6
+ _discover_array_parameters as discover_array_params, _get_sfloat_dtype)
7
+
8
+
9
+ SF = _get_sfloat_dtype()
10
+
11
+
12
+ class TestSFloat:
13
+ def _get_array(self, scaling, aligned=True):
14
+ if not aligned:
15
+ a = np.empty(3*8 + 1, dtype=np.uint8)[1:]
16
+ a = a.view(np.float64)
17
+ a[:] = [1., 2., 3.]
18
+ else:
19
+ a = np.array([1., 2., 3.])
20
+
21
+ a *= 1./scaling # the casting code also uses the reciprocal.
22
+ return a.view(SF(scaling))
23
+
24
+ def test_sfloat_rescaled(self):
25
+ sf = SF(1.)
26
+ sf2 = sf.scaled_by(2.)
27
+ assert sf2.get_scaling() == 2.
28
+ sf6 = sf2.scaled_by(3.)
29
+ assert sf6.get_scaling() == 6.
30
+
31
+ def test_class_discovery(self):
32
+ # This does not test much, since we always discover the scaling as 1.
33
+ # But most of NumPy (when writing) does not understand DType classes
34
+ dt, _ = discover_array_params([1., 2., 3.], dtype=SF)
35
+ assert dt == SF(1.)
36
+
37
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
38
+ def test_scaled_float_from_floats(self, scaling):
39
+ a = np.array([1., 2., 3.], dtype=SF(scaling))
40
+
41
+ assert a.dtype.get_scaling() == scaling
42
+ assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.])
43
+
44
+ def test_repr(self):
45
+ # Check the repr, mainly to cover the code paths:
46
+ assert repr(SF(scaling=1.)) == "_ScaledFloatTestDType(scaling=1.0)"
47
+
48
+ def test_dtype_name(self):
49
+ assert SF(1.).name == "_ScaledFloatTestDType64"
50
+
51
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
52
+ def test_sfloat_from_float(self, scaling):
53
+ a = np.array([1., 2., 3.]).astype(dtype=SF(scaling))
54
+
55
+ assert a.dtype.get_scaling() == scaling
56
+ assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.])
57
+
58
+ @pytest.mark.parametrize("aligned", [True, False])
59
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
60
+ def test_sfloat_getitem(self, aligned, scaling):
61
+ a = self._get_array(1., aligned)
62
+ assert a.tolist() == [1., 2., 3.]
63
+
64
+ @pytest.mark.parametrize("aligned", [True, False])
65
+ def test_sfloat_casts(self, aligned):
66
+ a = self._get_array(1., aligned)
67
+
68
+ assert np.can_cast(a, SF(-1.), casting="equiv")
69
+ assert not np.can_cast(a, SF(-1.), casting="no")
70
+ na = a.astype(SF(-1.))
71
+ assert_array_equal(-1 * na.view(np.float64), a.view(np.float64))
72
+
73
+ assert np.can_cast(a, SF(2.), casting="same_kind")
74
+ assert not np.can_cast(a, SF(2.), casting="safe")
75
+ a2 = a.astype(SF(2.))
76
+ assert_array_equal(2 * a2.view(np.float64), a.view(np.float64))
77
+
78
+ @pytest.mark.parametrize("aligned", [True, False])
79
+ def test_sfloat_cast_internal_errors(self, aligned):
80
+ a = self._get_array(2e300, aligned)
81
+
82
+ with pytest.raises(TypeError,
83
+ match="error raised inside the core-loop: non-finite factor!"):
84
+ a.astype(SF(2e-300))
85
+
86
+ def test_sfloat_promotion(self):
87
+ assert np.result_type(SF(2.), SF(3.)) == SF(3.)
88
+ assert np.result_type(SF(3.), SF(2.)) == SF(3.)
89
+ # Float64 -> SF(1.) and then promotes normally, so both of this work:
90
+ assert np.result_type(SF(3.), np.float64) == SF(3.)
91
+ assert np.result_type(np.float64, SF(0.5)) == SF(1.)
92
+
93
+ # Test an undefined promotion:
94
+ with pytest.raises(TypeError):
95
+ np.result_type(SF(1.), np.int64)
96
+
97
+ def test_basic_multiply(self):
98
+ a = self._get_array(2.)
99
+ b = self._get_array(4.)
100
+
101
+ res = a * b
102
+ # multiplies dtype scaling and content separately:
103
+ assert res.dtype.get_scaling() == 8.
104
+ expected_view = a.view(np.float64) * b.view(np.float64)
105
+ assert_array_equal(res.view(np.float64), expected_view)
106
+
107
+ def test_possible_and_impossible_reduce(self):
108
+ # For reductions to work, the first and last operand must have the
109
+ # same dtype. For this parametric DType that is not necessarily true.
110
+ a = self._get_array(2.)
111
+ # Addition reductin works (as of writing requires to pass initial
112
+ # because setting a scaled-float from the default `0` fails).
113
+ res = np.add.reduce(a, initial=0.)
114
+ assert res == a.astype(np.float64).sum()
115
+
116
+ # But each multiplication changes the factor, so a reduction is not
117
+ # possible (the relaxed version of the old refusal to handle any
118
+ # flexible dtype).
119
+ with pytest.raises(TypeError,
120
+ match="the resolved dtypes are not compatible"):
121
+ np.multiply.reduce(a)
122
+
123
+ def test_basic_ufunc_at(self):
124
+ float_a = np.array([1., 2., 3.])
125
+ b = self._get_array(2.)
126
+
127
+ float_b = b.view(np.float64).copy()
128
+ np.multiply.at(float_b, [1, 1, 1], float_a)
129
+ np.multiply.at(b, [1, 1, 1], float_a)
130
+
131
+ assert_array_equal(b.view(np.float64), float_b)
132
+
133
+ def test_basic_multiply_promotion(self):
134
+ float_a = np.array([1., 2., 3.])
135
+ b = self._get_array(2.)
136
+
137
+ res1 = float_a * b
138
+ res2 = b * float_a
139
+
140
+ # one factor is one, so we get the factor of b:
141
+ assert res1.dtype == res2.dtype == b.dtype
142
+ expected_view = float_a * b.view(np.float64)
143
+ assert_array_equal(res1.view(np.float64), expected_view)
144
+ assert_array_equal(res2.view(np.float64), expected_view)
145
+
146
+ # Check that promotion works when `out` is used:
147
+ np.multiply(b, float_a, out=res2)
148
+ with pytest.raises(TypeError):
149
+ # The promoter accepts this (maybe it should not), but the SFloat
150
+ # result cannot be cast to integer:
151
+ np.multiply(b, float_a, out=np.arange(3))
152
+
153
+ def test_basic_addition(self):
154
+ a = self._get_array(2.)
155
+ b = self._get_array(4.)
156
+
157
+ res = a + b
158
+ # addition uses the type promotion rules for the result:
159
+ assert res.dtype == np.result_type(a.dtype, b.dtype)
160
+ expected_view = (a.astype(res.dtype).view(np.float64) +
161
+ b.astype(res.dtype).view(np.float64))
162
+ assert_array_equal(res.view(np.float64), expected_view)
163
+
164
+ def test_addition_cast_safety(self):
165
+ """The addition method is special for the scaled float, because it
166
+ includes the "cast" between different factors, thus cast-safety
167
+ is influenced by the implementation.
168
+ """
169
+ a = self._get_array(2.)
170
+ b = self._get_array(-2.)
171
+ c = self._get_array(3.)
172
+
173
+ # sign change is "equiv":
174
+ np.add(a, b, casting="equiv")
175
+ with pytest.raises(TypeError):
176
+ np.add(a, b, casting="no")
177
+
178
+ # Different factor is "same_kind" (default) so check that "safe" fails
179
+ with pytest.raises(TypeError):
180
+ np.add(a, c, casting="safe")
181
+
182
+ # Check that casting the output fails also (done by the ufunc here)
183
+ with pytest.raises(TypeError):
184
+ np.add(a, a, out=c, casting="safe")
185
+
186
+ @pytest.mark.parametrize("ufunc",
187
+ [np.logical_and, np.logical_or, np.logical_xor])
188
+ def test_logical_ufuncs_casts_to_bool(self, ufunc):
189
+ a = self._get_array(2.)
190
+ a[0] = 0. # make sure first element is considered False.
191
+
192
+ float_equiv = a.astype(float)
193
+ expected = ufunc(float_equiv, float_equiv)
194
+ res = ufunc(a, a)
195
+ assert_array_equal(res, expected)
196
+
197
+ # also check that the same works for reductions:
198
+ expected = ufunc.reduce(float_equiv)
199
+ res = ufunc.reduce(a)
200
+ assert_array_equal(res, expected)
201
+
202
+ # The output casting does not match the bool, bool -> bool loop:
203
+ with pytest.raises(TypeError):
204
+ ufunc(a, a, out=np.empty(a.shape, dtype=int), casting="equiv")
205
+
206
+ def test_wrapped_and_wrapped_reductions(self):
207
+ a = self._get_array(2.)
208
+ float_equiv = a.astype(float)
209
+
210
+ expected = np.hypot(float_equiv, float_equiv)
211
+ res = np.hypot(a, a)
212
+ assert res.dtype == a.dtype
213
+ res_float = res.view(np.float64) * 2
214
+ assert_array_equal(res_float, expected)
215
+
216
+ # Also check reduction (keepdims, due to incorrect getitem)
217
+ res = np.hypot.reduce(a, keepdims=True)
218
+ assert res.dtype == a.dtype
219
+ expected = np.hypot.reduce(float_equiv, keepdims=True)
220
+ assert res.view(np.float64) * 2 == expected
221
+
222
+ def test_astype_class(self):
223
+ # Very simple test that we accept `.astype()` also on the class.
224
+ # ScaledFloat always returns the default descriptor, but it does
225
+ # check the relevant code paths.
226
+ arr = np.array([1., 2., 3.], dtype=object)
227
+
228
+ res = arr.astype(SF) # passing the class class
229
+ expected = arr.astype(SF(1.)) # above will have discovered 1. scaling
230
+ assert_array_equal(res.view(np.float64), expected.view(np.float64))
231
+
232
+ def test_creation_class(self):
233
+ arr1 = np.array([1., 2., 3.], dtype=SF)
234
+ assert arr1.dtype == SF(1.)
235
+ arr2 = np.array([1., 2., 3.], dtype=SF(1.))
236
+ assert_array_equal(arr1.view(np.float64), arr2.view(np.float64))
237
+
238
+
239
+ def test_type_pickle():
240
+ # can't actually unpickle, but we can pickle (if in namespace)
241
+ import pickle
242
+
243
+ np._ScaledFloatTestDType = SF
244
+
245
+ s = pickle.dumps(SF)
246
+ res = pickle.loads(s)
247
+ assert res is SF
248
+
249
+ del np._ScaledFloatTestDType
250
+
251
+
252
+ def test_is_numeric():
253
+ assert SF._is_numeric
venv/lib/python3.10/site-packages/numpy/core/tests/test_cython.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import subprocess
4
+ import sys
5
+ import pytest
6
+
7
+ import numpy as np
8
+ from numpy.testing import IS_WASM
9
+
10
+ # This import is copied from random.tests.test_extending
11
+ try:
12
+ import cython
13
+ from Cython.Compiler.Version import version as cython_version
14
+ except ImportError:
15
+ cython = None
16
+ else:
17
+ from numpy._utils import _pep440
18
+
19
+ # Cython 0.29.30 is required for Python 3.11 and there are
20
+ # other fixes in the 0.29 series that are needed even for earlier
21
+ # Python versions.
22
+ # Note: keep in sync with the one in pyproject.toml
23
+ required_version = "0.29.30"
24
+ if _pep440.parse(cython_version) < _pep440.Version(required_version):
25
+ # too old or wrong cython, skip the test
26
+ cython = None
27
+
28
+ pytestmark = pytest.mark.skipif(cython is None, reason="requires cython")
29
+
30
+
31
+ @pytest.fixture(scope='module')
32
+ def install_temp(tmpdir_factory):
33
+ # Based in part on test_cython from random.tests.test_extending
34
+ if IS_WASM:
35
+ pytest.skip("No subprocess")
36
+
37
+ srcdir = os.path.join(os.path.dirname(__file__), 'examples', 'cython')
38
+ build_dir = tmpdir_factory.mktemp("cython_test") / "build"
39
+ os.makedirs(build_dir, exist_ok=True)
40
+ try:
41
+ subprocess.check_call(["meson", "--version"])
42
+ except FileNotFoundError:
43
+ pytest.skip("No usable 'meson' found")
44
+ if sys.platform == "win32":
45
+ subprocess.check_call(["meson", "setup",
46
+ "--buildtype=release",
47
+ "--vsenv", str(srcdir)],
48
+ cwd=build_dir,
49
+ )
50
+ else:
51
+ subprocess.check_call(["meson", "setup", str(srcdir)],
52
+ cwd=build_dir
53
+ )
54
+ subprocess.check_call(["meson", "compile", "-vv"], cwd=build_dir)
55
+
56
+ sys.path.append(str(build_dir))
57
+
58
+ def test_is_timedelta64_object(install_temp):
59
+ import checks
60
+
61
+ assert checks.is_td64(np.timedelta64(1234))
62
+ assert checks.is_td64(np.timedelta64(1234, "ns"))
63
+ assert checks.is_td64(np.timedelta64("NaT", "ns"))
64
+
65
+ assert not checks.is_td64(1)
66
+ assert not checks.is_td64(None)
67
+ assert not checks.is_td64("foo")
68
+ assert not checks.is_td64(np.datetime64("now", "s"))
69
+
70
+
71
+ def test_is_datetime64_object(install_temp):
72
+ import checks
73
+
74
+ assert checks.is_dt64(np.datetime64(1234, "ns"))
75
+ assert checks.is_dt64(np.datetime64("NaT", "ns"))
76
+
77
+ assert not checks.is_dt64(1)
78
+ assert not checks.is_dt64(None)
79
+ assert not checks.is_dt64("foo")
80
+ assert not checks.is_dt64(np.timedelta64(1234))
81
+
82
+
83
+ def test_get_datetime64_value(install_temp):
84
+ import checks
85
+
86
+ dt64 = np.datetime64("2016-01-01", "ns")
87
+
88
+ result = checks.get_dt64_value(dt64)
89
+ expected = dt64.view("i8")
90
+
91
+ assert result == expected
92
+
93
+
94
+ def test_get_timedelta64_value(install_temp):
95
+ import checks
96
+
97
+ td64 = np.timedelta64(12345, "h")
98
+
99
+ result = checks.get_td64_value(td64)
100
+ expected = td64.view("i8")
101
+
102
+ assert result == expected
103
+
104
+
105
+ def test_get_datetime64_unit(install_temp):
106
+ import checks
107
+
108
+ dt64 = np.datetime64("2016-01-01", "ns")
109
+ result = checks.get_dt64_unit(dt64)
110
+ expected = 10
111
+ assert result == expected
112
+
113
+ td64 = np.timedelta64(12345, "h")
114
+ result = checks.get_dt64_unit(td64)
115
+ expected = 5
116
+ assert result == expected
117
+
118
+
119
+ def test_abstract_scalars(install_temp):
120
+ import checks
121
+
122
+ assert checks.is_integer(1)
123
+ assert checks.is_integer(np.int8(1))
124
+ assert checks.is_integer(np.uint64(1))
125
+
126
+ def test_conv_intp(install_temp):
127
+ import checks
128
+
129
+ class myint:
130
+ def __int__(self):
131
+ return 3
132
+
133
+ # These conversion passes via `__int__`, not `__index__`:
134
+ assert checks.conv_intp(3.) == 3
135
+ assert checks.conv_intp(myint()) == 3
venv/lib/python3.10/site-packages/numpy/core/tests/test_datetime.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/numpy/core/tests/test_defchararray.py ADDED
@@ -0,0 +1,686 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import numpy as np
4
+ from numpy.core.multiarray import _vec_string
5
+ from numpy.testing import (
6
+ assert_, assert_equal, assert_array_equal, assert_raises,
7
+ assert_raises_regex
8
+ )
9
+
10
+ kw_unicode_true = {'unicode': True} # make 2to3 work properly
11
+ kw_unicode_false = {'unicode': False}
12
+
13
+ class TestBasic:
14
+ def test_from_object_array(self):
15
+ A = np.array([['abc', 2],
16
+ ['long ', '0123456789']], dtype='O')
17
+ B = np.char.array(A)
18
+ assert_equal(B.dtype.itemsize, 10)
19
+ assert_array_equal(B, [[b'abc', b'2'],
20
+ [b'long', b'0123456789']])
21
+
22
+ def test_from_object_array_unicode(self):
23
+ A = np.array([['abc', 'Sigma \u03a3'],
24
+ ['long ', '0123456789']], dtype='O')
25
+ assert_raises(ValueError, np.char.array, (A,))
26
+ B = np.char.array(A, **kw_unicode_true)
27
+ assert_equal(B.dtype.itemsize, 10 * np.array('a', 'U').dtype.itemsize)
28
+ assert_array_equal(B, [['abc', 'Sigma \u03a3'],
29
+ ['long', '0123456789']])
30
+
31
+ def test_from_string_array(self):
32
+ A = np.array([[b'abc', b'foo'],
33
+ [b'long ', b'0123456789']])
34
+ assert_equal(A.dtype.type, np.bytes_)
35
+ B = np.char.array(A)
36
+ assert_array_equal(B, A)
37
+ assert_equal(B.dtype, A.dtype)
38
+ assert_equal(B.shape, A.shape)
39
+ B[0, 0] = 'changed'
40
+ assert_(B[0, 0] != A[0, 0])
41
+ C = np.char.asarray(A)
42
+ assert_array_equal(C, A)
43
+ assert_equal(C.dtype, A.dtype)
44
+ C[0, 0] = 'changed again'
45
+ assert_(C[0, 0] != B[0, 0])
46
+ assert_(C[0, 0] == A[0, 0])
47
+
48
+ def test_from_unicode_array(self):
49
+ A = np.array([['abc', 'Sigma \u03a3'],
50
+ ['long ', '0123456789']])
51
+ assert_equal(A.dtype.type, np.str_)
52
+ B = np.char.array(A)
53
+ assert_array_equal(B, A)
54
+ assert_equal(B.dtype, A.dtype)
55
+ assert_equal(B.shape, A.shape)
56
+ B = np.char.array(A, **kw_unicode_true)
57
+ assert_array_equal(B, A)
58
+ assert_equal(B.dtype, A.dtype)
59
+ assert_equal(B.shape, A.shape)
60
+
61
+ def fail():
62
+ np.char.array(A, **kw_unicode_false)
63
+
64
+ assert_raises(UnicodeEncodeError, fail)
65
+
66
+ def test_unicode_upconvert(self):
67
+ A = np.char.array(['abc'])
68
+ B = np.char.array(['\u03a3'])
69
+ assert_(issubclass((A + B).dtype.type, np.str_))
70
+
71
+ def test_from_string(self):
72
+ A = np.char.array(b'abc')
73
+ assert_equal(len(A), 1)
74
+ assert_equal(len(A[0]), 3)
75
+ assert_(issubclass(A.dtype.type, np.bytes_))
76
+
77
+ def test_from_unicode(self):
78
+ A = np.char.array('\u03a3')
79
+ assert_equal(len(A), 1)
80
+ assert_equal(len(A[0]), 1)
81
+ assert_equal(A.itemsize, 4)
82
+ assert_(issubclass(A.dtype.type, np.str_))
83
+
84
+ class TestVecString:
85
+ def test_non_existent_method(self):
86
+
87
+ def fail():
88
+ _vec_string('a', np.bytes_, 'bogus')
89
+
90
+ assert_raises(AttributeError, fail)
91
+
92
+ def test_non_string_array(self):
93
+
94
+ def fail():
95
+ _vec_string(1, np.bytes_, 'strip')
96
+
97
+ assert_raises(TypeError, fail)
98
+
99
+ def test_invalid_args_tuple(self):
100
+
101
+ def fail():
102
+ _vec_string(['a'], np.bytes_, 'strip', 1)
103
+
104
+ assert_raises(TypeError, fail)
105
+
106
+ def test_invalid_type_descr(self):
107
+
108
+ def fail():
109
+ _vec_string(['a'], 'BOGUS', 'strip')
110
+
111
+ assert_raises(TypeError, fail)
112
+
113
+ def test_invalid_function_args(self):
114
+
115
+ def fail():
116
+ _vec_string(['a'], np.bytes_, 'strip', (1,))
117
+
118
+ assert_raises(TypeError, fail)
119
+
120
+ def test_invalid_result_type(self):
121
+
122
+ def fail():
123
+ _vec_string(['a'], np.int_, 'strip')
124
+
125
+ assert_raises(TypeError, fail)
126
+
127
+ def test_broadcast_error(self):
128
+
129
+ def fail():
130
+ _vec_string([['abc', 'def']], np.int_, 'find', (['a', 'd', 'j'],))
131
+
132
+ assert_raises(ValueError, fail)
133
+
134
+
135
+ class TestWhitespace:
136
+ def setup_method(self):
137
+ self.A = np.array([['abc ', '123 '],
138
+ ['789 ', 'xyz ']]).view(np.chararray)
139
+ self.B = np.array([['abc', '123'],
140
+ ['789', 'xyz']]).view(np.chararray)
141
+
142
+ def test1(self):
143
+ assert_(np.all(self.A == self.B))
144
+ assert_(np.all(self.A >= self.B))
145
+ assert_(np.all(self.A <= self.B))
146
+ assert_(not np.any(self.A > self.B))
147
+ assert_(not np.any(self.A < self.B))
148
+ assert_(not np.any(self.A != self.B))
149
+
150
+ class TestChar:
151
+ def setup_method(self):
152
+ self.A = np.array('abc1', dtype='c').view(np.chararray)
153
+
154
+ def test_it(self):
155
+ assert_equal(self.A.shape, (4,))
156
+ assert_equal(self.A.upper()[:2].tobytes(), b'AB')
157
+
158
+ class TestComparisons:
159
+ def setup_method(self):
160
+ self.A = np.array([['abc', '123'],
161
+ ['789', 'xyz']]).view(np.chararray)
162
+ self.B = np.array([['efg', '123 '],
163
+ ['051', 'tuv']]).view(np.chararray)
164
+
165
+ def test_not_equal(self):
166
+ assert_array_equal((self.A != self.B), [[True, False], [True, True]])
167
+
168
+ def test_equal(self):
169
+ assert_array_equal((self.A == self.B), [[False, True], [False, False]])
170
+
171
+ def test_greater_equal(self):
172
+ assert_array_equal((self.A >= self.B), [[False, True], [True, True]])
173
+
174
+ def test_less_equal(self):
175
+ assert_array_equal((self.A <= self.B), [[True, True], [False, False]])
176
+
177
+ def test_greater(self):
178
+ assert_array_equal((self.A > self.B), [[False, False], [True, True]])
179
+
180
+ def test_less(self):
181
+ assert_array_equal((self.A < self.B), [[True, False], [False, False]])
182
+
183
+ def test_type(self):
184
+ out1 = np.char.equal(self.A, self.B)
185
+ out2 = np.char.equal('a', 'a')
186
+ assert_(isinstance(out1, np.ndarray))
187
+ assert_(isinstance(out2, np.ndarray))
188
+
189
+ class TestComparisonsMixed1(TestComparisons):
190
+ """Ticket #1276"""
191
+
192
+ def setup_method(self):
193
+ TestComparisons.setup_method(self)
194
+ self.B = np.array([['efg', '123 '],
195
+ ['051', 'tuv']], np.str_).view(np.chararray)
196
+
197
+ class TestComparisonsMixed2(TestComparisons):
198
+ """Ticket #1276"""
199
+
200
+ def setup_method(self):
201
+ TestComparisons.setup_method(self)
202
+ self.A = np.array([['abc', '123'],
203
+ ['789', 'xyz']], np.str_).view(np.chararray)
204
+
205
+ class TestInformation:
206
+ def setup_method(self):
207
+ self.A = np.array([[' abc ', ''],
208
+ ['12345', 'MixedCase'],
209
+ ['123 \t 345 \0 ', 'UPPER']]).view(np.chararray)
210
+ self.B = np.array([[' \u03a3 ', ''],
211
+ ['12345', 'MixedCase'],
212
+ ['123 \t 345 \0 ', 'UPPER']]).view(np.chararray)
213
+
214
+ def test_len(self):
215
+ assert_(issubclass(np.char.str_len(self.A).dtype.type, np.integer))
216
+ assert_array_equal(np.char.str_len(self.A), [[5, 0], [5, 9], [12, 5]])
217
+ assert_array_equal(np.char.str_len(self.B), [[3, 0], [5, 9], [12, 5]])
218
+
219
+ def test_count(self):
220
+ assert_(issubclass(self.A.count('').dtype.type, np.integer))
221
+ assert_array_equal(self.A.count('a'), [[1, 0], [0, 1], [0, 0]])
222
+ assert_array_equal(self.A.count('123'), [[0, 0], [1, 0], [1, 0]])
223
+ # Python doesn't seem to like counting NULL characters
224
+ # assert_array_equal(self.A.count('\0'), [[0, 0], [0, 0], [1, 0]])
225
+ assert_array_equal(self.A.count('a', 0, 2), [[1, 0], [0, 0], [0, 0]])
226
+ assert_array_equal(self.B.count('a'), [[0, 0], [0, 1], [0, 0]])
227
+ assert_array_equal(self.B.count('123'), [[0, 0], [1, 0], [1, 0]])
228
+ # assert_array_equal(self.B.count('\0'), [[0, 0], [0, 0], [1, 0]])
229
+
230
+ def test_endswith(self):
231
+ assert_(issubclass(self.A.endswith('').dtype.type, np.bool_))
232
+ assert_array_equal(self.A.endswith(' '), [[1, 0], [0, 0], [1, 0]])
233
+ assert_array_equal(self.A.endswith('3', 0, 3), [[0, 0], [1, 0], [1, 0]])
234
+
235
+ def fail():
236
+ self.A.endswith('3', 'fdjk')
237
+
238
+ assert_raises(TypeError, fail)
239
+
240
+ def test_find(self):
241
+ assert_(issubclass(self.A.find('a').dtype.type, np.integer))
242
+ assert_array_equal(self.A.find('a'), [[1, -1], [-1, 6], [-1, -1]])
243
+ assert_array_equal(self.A.find('3'), [[-1, -1], [2, -1], [2, -1]])
244
+ assert_array_equal(self.A.find('a', 0, 2), [[1, -1], [-1, -1], [-1, -1]])
245
+ assert_array_equal(self.A.find(['1', 'P']), [[-1, -1], [0, -1], [0, 1]])
246
+
247
+ def test_index(self):
248
+
249
+ def fail():
250
+ self.A.index('a')
251
+
252
+ assert_raises(ValueError, fail)
253
+ assert_(np.char.index('abcba', 'b') == 1)
254
+ assert_(issubclass(np.char.index('abcba', 'b').dtype.type, np.integer))
255
+
256
+ def test_isalnum(self):
257
+ assert_(issubclass(self.A.isalnum().dtype.type, np.bool_))
258
+ assert_array_equal(self.A.isalnum(), [[False, False], [True, True], [False, True]])
259
+
260
+ def test_isalpha(self):
261
+ assert_(issubclass(self.A.isalpha().dtype.type, np.bool_))
262
+ assert_array_equal(self.A.isalpha(), [[False, False], [False, True], [False, True]])
263
+
264
+ def test_isdigit(self):
265
+ assert_(issubclass(self.A.isdigit().dtype.type, np.bool_))
266
+ assert_array_equal(self.A.isdigit(), [[False, False], [True, False], [False, False]])
267
+
268
+ def test_islower(self):
269
+ assert_(issubclass(self.A.islower().dtype.type, np.bool_))
270
+ assert_array_equal(self.A.islower(), [[True, False], [False, False], [False, False]])
271
+
272
+ def test_isspace(self):
273
+ assert_(issubclass(self.A.isspace().dtype.type, np.bool_))
274
+ assert_array_equal(self.A.isspace(), [[False, False], [False, False], [False, False]])
275
+
276
+ def test_istitle(self):
277
+ assert_(issubclass(self.A.istitle().dtype.type, np.bool_))
278
+ assert_array_equal(self.A.istitle(), [[False, False], [False, False], [False, False]])
279
+
280
+ def test_isupper(self):
281
+ assert_(issubclass(self.A.isupper().dtype.type, np.bool_))
282
+ assert_array_equal(self.A.isupper(), [[False, False], [False, False], [False, True]])
283
+
284
+ def test_rfind(self):
285
+ assert_(issubclass(self.A.rfind('a').dtype.type, np.integer))
286
+ assert_array_equal(self.A.rfind('a'), [[1, -1], [-1, 6], [-1, -1]])
287
+ assert_array_equal(self.A.rfind('3'), [[-1, -1], [2, -1], [6, -1]])
288
+ assert_array_equal(self.A.rfind('a', 0, 2), [[1, -1], [-1, -1], [-1, -1]])
289
+ assert_array_equal(self.A.rfind(['1', 'P']), [[-1, -1], [0, -1], [0, 2]])
290
+
291
+ def test_rindex(self):
292
+
293
+ def fail():
294
+ self.A.rindex('a')
295
+
296
+ assert_raises(ValueError, fail)
297
+ assert_(np.char.rindex('abcba', 'b') == 3)
298
+ assert_(issubclass(np.char.rindex('abcba', 'b').dtype.type, np.integer))
299
+
300
+ def test_startswith(self):
301
+ assert_(issubclass(self.A.startswith('').dtype.type, np.bool_))
302
+ assert_array_equal(self.A.startswith(' '), [[1, 0], [0, 0], [0, 0]])
303
+ assert_array_equal(self.A.startswith('1', 0, 3), [[0, 0], [1, 0], [1, 0]])
304
+
305
+ def fail():
306
+ self.A.startswith('3', 'fdjk')
307
+
308
+ assert_raises(TypeError, fail)
309
+
310
+
311
+ class TestMethods:
312
+ def setup_method(self):
313
+ self.A = np.array([[' abc ', ''],
314
+ ['12345', 'MixedCase'],
315
+ ['123 \t 345 \0 ', 'UPPER']],
316
+ dtype='S').view(np.chararray)
317
+ self.B = np.array([[' \u03a3 ', ''],
318
+ ['12345', 'MixedCase'],
319
+ ['123 \t 345 \0 ', 'UPPER']]).view(np.chararray)
320
+
321
+ def test_capitalize(self):
322
+ tgt = [[b' abc ', b''],
323
+ [b'12345', b'Mixedcase'],
324
+ [b'123 \t 345 \0 ', b'Upper']]
325
+ assert_(issubclass(self.A.capitalize().dtype.type, np.bytes_))
326
+ assert_array_equal(self.A.capitalize(), tgt)
327
+
328
+ tgt = [[' \u03c3 ', ''],
329
+ ['12345', 'Mixedcase'],
330
+ ['123 \t 345 \0 ', 'Upper']]
331
+ assert_(issubclass(self.B.capitalize().dtype.type, np.str_))
332
+ assert_array_equal(self.B.capitalize(), tgt)
333
+
334
+ def test_center(self):
335
+ assert_(issubclass(self.A.center(10).dtype.type, np.bytes_))
336
+ C = self.A.center([10, 20])
337
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
338
+
339
+ C = self.A.center(20, b'#')
340
+ assert_(np.all(C.startswith(b'#')))
341
+ assert_(np.all(C.endswith(b'#')))
342
+
343
+ C = np.char.center(b'FOO', [[10, 20], [15, 8]])
344
+ tgt = [[b' FOO ', b' FOO '],
345
+ [b' FOO ', b' FOO ']]
346
+ assert_(issubclass(C.dtype.type, np.bytes_))
347
+ assert_array_equal(C, tgt)
348
+
349
+ def test_decode(self):
350
+ A = np.char.array([b'\\u03a3'])
351
+ assert_(A.decode('unicode-escape')[0] == '\u03a3')
352
+
353
+ def test_encode(self):
354
+ B = self.B.encode('unicode_escape')
355
+ assert_(B[0][0] == str(' \\u03a3 ').encode('latin1'))
356
+
357
+ def test_expandtabs(self):
358
+ T = self.A.expandtabs()
359
+ assert_(T[2, 0] == b'123 345 \0')
360
+
361
+ def test_join(self):
362
+ # NOTE: list(b'123') == [49, 50, 51]
363
+ # so that b','.join(b'123') results to an error on Py3
364
+ A0 = self.A.decode('ascii')
365
+
366
+ A = np.char.join([',', '#'], A0)
367
+ assert_(issubclass(A.dtype.type, np.str_))
368
+ tgt = np.array([[' ,a,b,c, ', ''],
369
+ ['1,2,3,4,5', 'M#i#x#e#d#C#a#s#e'],
370
+ ['1,2,3, ,\t, ,3,4,5, ,\x00, ', 'U#P#P#E#R']])
371
+ assert_array_equal(np.char.join([',', '#'], A0), tgt)
372
+
373
+ def test_ljust(self):
374
+ assert_(issubclass(self.A.ljust(10).dtype.type, np.bytes_))
375
+
376
+ C = self.A.ljust([10, 20])
377
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
378
+
379
+ C = self.A.ljust(20, b'#')
380
+ assert_array_equal(C.startswith(b'#'), [
381
+ [False, True], [False, False], [False, False]])
382
+ assert_(np.all(C.endswith(b'#')))
383
+
384
+ C = np.char.ljust(b'FOO', [[10, 20], [15, 8]])
385
+ tgt = [[b'FOO ', b'FOO '],
386
+ [b'FOO ', b'FOO ']]
387
+ assert_(issubclass(C.dtype.type, np.bytes_))
388
+ assert_array_equal(C, tgt)
389
+
390
+ def test_lower(self):
391
+ tgt = [[b' abc ', b''],
392
+ [b'12345', b'mixedcase'],
393
+ [b'123 \t 345 \0 ', b'upper']]
394
+ assert_(issubclass(self.A.lower().dtype.type, np.bytes_))
395
+ assert_array_equal(self.A.lower(), tgt)
396
+
397
+ tgt = [[' \u03c3 ', ''],
398
+ ['12345', 'mixedcase'],
399
+ ['123 \t 345 \0 ', 'upper']]
400
+ assert_(issubclass(self.B.lower().dtype.type, np.str_))
401
+ assert_array_equal(self.B.lower(), tgt)
402
+
403
+ def test_lstrip(self):
404
+ tgt = [[b'abc ', b''],
405
+ [b'12345', b'MixedCase'],
406
+ [b'123 \t 345 \0 ', b'UPPER']]
407
+ assert_(issubclass(self.A.lstrip().dtype.type, np.bytes_))
408
+ assert_array_equal(self.A.lstrip(), tgt)
409
+
410
+ tgt = [[b' abc', b''],
411
+ [b'2345', b'ixedCase'],
412
+ [b'23 \t 345 \x00', b'UPPER']]
413
+ assert_array_equal(self.A.lstrip([b'1', b'M']), tgt)
414
+
415
+ tgt = [['\u03a3 ', ''],
416
+ ['12345', 'MixedCase'],
417
+ ['123 \t 345 \0 ', 'UPPER']]
418
+ assert_(issubclass(self.B.lstrip().dtype.type, np.str_))
419
+ assert_array_equal(self.B.lstrip(), tgt)
420
+
421
+ def test_partition(self):
422
+ P = self.A.partition([b'3', b'M'])
423
+ tgt = [[(b' abc ', b'', b''), (b'', b'', b'')],
424
+ [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')],
425
+ [(b'12', b'3', b' \t 345 \0 '), (b'UPPER', b'', b'')]]
426
+ assert_(issubclass(P.dtype.type, np.bytes_))
427
+ assert_array_equal(P, tgt)
428
+
429
+ def test_replace(self):
430
+ R = self.A.replace([b'3', b'a'],
431
+ [b'##########', b'@'])
432
+ tgt = [[b' abc ', b''],
433
+ [b'12##########45', b'MixedC@se'],
434
+ [b'12########## \t ##########45 \x00', b'UPPER']]
435
+ assert_(issubclass(R.dtype.type, np.bytes_))
436
+ assert_array_equal(R, tgt)
437
+
438
+ def test_rjust(self):
439
+ assert_(issubclass(self.A.rjust(10).dtype.type, np.bytes_))
440
+
441
+ C = self.A.rjust([10, 20])
442
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
443
+
444
+ C = self.A.rjust(20, b'#')
445
+ assert_(np.all(C.startswith(b'#')))
446
+ assert_array_equal(C.endswith(b'#'),
447
+ [[False, True], [False, False], [False, False]])
448
+
449
+ C = np.char.rjust(b'FOO', [[10, 20], [15, 8]])
450
+ tgt = [[b' FOO', b' FOO'],
451
+ [b' FOO', b' FOO']]
452
+ assert_(issubclass(C.dtype.type, np.bytes_))
453
+ assert_array_equal(C, tgt)
454
+
455
+ def test_rpartition(self):
456
+ P = self.A.rpartition([b'3', b'M'])
457
+ tgt = [[(b'', b'', b' abc '), (b'', b'', b'')],
458
+ [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')],
459
+ [(b'123 \t ', b'3', b'45 \0 '), (b'', b'', b'UPPER')]]
460
+ assert_(issubclass(P.dtype.type, np.bytes_))
461
+ assert_array_equal(P, tgt)
462
+
463
+ def test_rsplit(self):
464
+ A = self.A.rsplit(b'3')
465
+ tgt = [[[b' abc '], [b'']],
466
+ [[b'12', b'45'], [b'MixedCase']],
467
+ [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]]
468
+ assert_(issubclass(A.dtype.type, np.object_))
469
+ assert_equal(A.tolist(), tgt)
470
+
471
+ def test_rstrip(self):
472
+ assert_(issubclass(self.A.rstrip().dtype.type, np.bytes_))
473
+
474
+ tgt = [[b' abc', b''],
475
+ [b'12345', b'MixedCase'],
476
+ [b'123 \t 345', b'UPPER']]
477
+ assert_array_equal(self.A.rstrip(), tgt)
478
+
479
+ tgt = [[b' abc ', b''],
480
+ [b'1234', b'MixedCase'],
481
+ [b'123 \t 345 \x00', b'UPP']
482
+ ]
483
+ assert_array_equal(self.A.rstrip([b'5', b'ER']), tgt)
484
+
485
+ tgt = [[' \u03a3', ''],
486
+ ['12345', 'MixedCase'],
487
+ ['123 \t 345', 'UPPER']]
488
+ assert_(issubclass(self.B.rstrip().dtype.type, np.str_))
489
+ assert_array_equal(self.B.rstrip(), tgt)
490
+
491
+ def test_strip(self):
492
+ tgt = [[b'abc', b''],
493
+ [b'12345', b'MixedCase'],
494
+ [b'123 \t 345', b'UPPER']]
495
+ assert_(issubclass(self.A.strip().dtype.type, np.bytes_))
496
+ assert_array_equal(self.A.strip(), tgt)
497
+
498
+ tgt = [[b' abc ', b''],
499
+ [b'234', b'ixedCas'],
500
+ [b'23 \t 345 \x00', b'UPP']]
501
+ assert_array_equal(self.A.strip([b'15', b'EReM']), tgt)
502
+
503
+ tgt = [['\u03a3', ''],
504
+ ['12345', 'MixedCase'],
505
+ ['123 \t 345', 'UPPER']]
506
+ assert_(issubclass(self.B.strip().dtype.type, np.str_))
507
+ assert_array_equal(self.B.strip(), tgt)
508
+
509
+ def test_split(self):
510
+ A = self.A.split(b'3')
511
+ tgt = [
512
+ [[b' abc '], [b'']],
513
+ [[b'12', b'45'], [b'MixedCase']],
514
+ [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]]
515
+ assert_(issubclass(A.dtype.type, np.object_))
516
+ assert_equal(A.tolist(), tgt)
517
+
518
+ def test_splitlines(self):
519
+ A = np.char.array(['abc\nfds\nwer']).splitlines()
520
+ assert_(issubclass(A.dtype.type, np.object_))
521
+ assert_(A.shape == (1,))
522
+ assert_(len(A[0]) == 3)
523
+
524
+ def test_swapcase(self):
525
+ tgt = [[b' ABC ', b''],
526
+ [b'12345', b'mIXEDcASE'],
527
+ [b'123 \t 345 \0 ', b'upper']]
528
+ assert_(issubclass(self.A.swapcase().dtype.type, np.bytes_))
529
+ assert_array_equal(self.A.swapcase(), tgt)
530
+
531
+ tgt = [[' \u03c3 ', ''],
532
+ ['12345', 'mIXEDcASE'],
533
+ ['123 \t 345 \0 ', 'upper']]
534
+ assert_(issubclass(self.B.swapcase().dtype.type, np.str_))
535
+ assert_array_equal(self.B.swapcase(), tgt)
536
+
537
+ def test_title(self):
538
+ tgt = [[b' Abc ', b''],
539
+ [b'12345', b'Mixedcase'],
540
+ [b'123 \t 345 \0 ', b'Upper']]
541
+ assert_(issubclass(self.A.title().dtype.type, np.bytes_))
542
+ assert_array_equal(self.A.title(), tgt)
543
+
544
+ tgt = [[' \u03a3 ', ''],
545
+ ['12345', 'Mixedcase'],
546
+ ['123 \t 345 \0 ', 'Upper']]
547
+ assert_(issubclass(self.B.title().dtype.type, np.str_))
548
+ assert_array_equal(self.B.title(), tgt)
549
+
550
+ def test_upper(self):
551
+ tgt = [[b' ABC ', b''],
552
+ [b'12345', b'MIXEDCASE'],
553
+ [b'123 \t 345 \0 ', b'UPPER']]
554
+ assert_(issubclass(self.A.upper().dtype.type, np.bytes_))
555
+ assert_array_equal(self.A.upper(), tgt)
556
+
557
+ tgt = [[' \u03a3 ', ''],
558
+ ['12345', 'MIXEDCASE'],
559
+ ['123 \t 345 \0 ', 'UPPER']]
560
+ assert_(issubclass(self.B.upper().dtype.type, np.str_))
561
+ assert_array_equal(self.B.upper(), tgt)
562
+
563
+ def test_isnumeric(self):
564
+
565
+ def fail():
566
+ self.A.isnumeric()
567
+
568
+ assert_raises(TypeError, fail)
569
+ assert_(issubclass(self.B.isnumeric().dtype.type, np.bool_))
570
+ assert_array_equal(self.B.isnumeric(), [
571
+ [False, False], [True, False], [False, False]])
572
+
573
+ def test_isdecimal(self):
574
+
575
+ def fail():
576
+ self.A.isdecimal()
577
+
578
+ assert_raises(TypeError, fail)
579
+ assert_(issubclass(self.B.isdecimal().dtype.type, np.bool_))
580
+ assert_array_equal(self.B.isdecimal(), [
581
+ [False, False], [True, False], [False, False]])
582
+
583
+
584
+ class TestOperations:
585
+ def setup_method(self):
586
+ self.A = np.array([['abc', '123'],
587
+ ['789', 'xyz']]).view(np.chararray)
588
+ self.B = np.array([['efg', '456'],
589
+ ['051', 'tuv']]).view(np.chararray)
590
+
591
+ def test_add(self):
592
+ AB = np.array([['abcefg', '123456'],
593
+ ['789051', 'xyztuv']]).view(np.chararray)
594
+ assert_array_equal(AB, (self.A + self.B))
595
+ assert_(len((self.A + self.B)[0][0]) == 6)
596
+
597
+ def test_radd(self):
598
+ QA = np.array([['qabc', 'q123'],
599
+ ['q789', 'qxyz']]).view(np.chararray)
600
+ assert_array_equal(QA, ('q' + self.A))
601
+
602
+ def test_mul(self):
603
+ A = self.A
604
+ for r in (2, 3, 5, 7, 197):
605
+ Ar = np.array([[A[0, 0]*r, A[0, 1]*r],
606
+ [A[1, 0]*r, A[1, 1]*r]]).view(np.chararray)
607
+
608
+ assert_array_equal(Ar, (self.A * r))
609
+
610
+ for ob in [object(), 'qrs']:
611
+ with assert_raises_regex(ValueError,
612
+ 'Can only multiply by integers'):
613
+ A*ob
614
+
615
+ def test_rmul(self):
616
+ A = self.A
617
+ for r in (2, 3, 5, 7, 197):
618
+ Ar = np.array([[A[0, 0]*r, A[0, 1]*r],
619
+ [A[1, 0]*r, A[1, 1]*r]]).view(np.chararray)
620
+ assert_array_equal(Ar, (r * self.A))
621
+
622
+ for ob in [object(), 'qrs']:
623
+ with assert_raises_regex(ValueError,
624
+ 'Can only multiply by integers'):
625
+ ob * A
626
+
627
+ def test_mod(self):
628
+ """Ticket #856"""
629
+ F = np.array([['%d', '%f'], ['%s', '%r']]).view(np.chararray)
630
+ C = np.array([[3, 7], [19, 1]])
631
+ FC = np.array([['3', '7.000000'],
632
+ ['19', '1']]).view(np.chararray)
633
+ assert_array_equal(FC, F % C)
634
+
635
+ A = np.array([['%.3f', '%d'], ['%s', '%r']]).view(np.chararray)
636
+ A1 = np.array([['1.000', '1'], ['1', '1']]).view(np.chararray)
637
+ assert_array_equal(A1, (A % 1))
638
+
639
+ A2 = np.array([['1.000', '2'], ['3', '4']]).view(np.chararray)
640
+ assert_array_equal(A2, (A % [[1, 2], [3, 4]]))
641
+
642
+ def test_rmod(self):
643
+ assert_(("%s" % self.A) == str(self.A))
644
+ assert_(("%r" % self.A) == repr(self.A))
645
+
646
+ for ob in [42, object()]:
647
+ with assert_raises_regex(
648
+ TypeError, "unsupported operand type.* and 'chararray'"):
649
+ ob % self.A
650
+
651
+ def test_slice(self):
652
+ """Regression test for https://github.com/numpy/numpy/issues/5982"""
653
+
654
+ arr = np.array([['abc ', 'def '], ['geh ', 'ijk ']],
655
+ dtype='S4').view(np.chararray)
656
+ sl1 = arr[:]
657
+ assert_array_equal(sl1, arr)
658
+ assert_(sl1.base is arr)
659
+ assert_(sl1.base.base is arr.base)
660
+
661
+ sl2 = arr[:, :]
662
+ assert_array_equal(sl2, arr)
663
+ assert_(sl2.base is arr)
664
+ assert_(sl2.base.base is arr.base)
665
+
666
+ assert_(arr[0, 0] == b'abc')
667
+
668
+
669
+ def test_empty_indexing():
670
+ """Regression test for ticket 1948."""
671
+ # Check that indexing a chararray with an empty list/array returns an
672
+ # empty chararray instead of a chararray with a single empty string in it.
673
+ s = np.chararray((4,))
674
+ assert_(s[[]].size == 0)
675
+
676
+
677
+ @pytest.mark.parametrize(["dt1", "dt2"],
678
+ [("S", "U"), ("U", "S"), ("S", "O"), ("U", "O"),
679
+ ("S", "d"), ("S", "V")])
680
+ def test_add_types(dt1, dt2):
681
+ arr1 = np.array([1234234], dtype=dt1)
682
+ # If the following fails, e.g. use a number and test "V" explicitly
683
+ arr2 = np.array([b"423"], dtype=dt2)
684
+ with pytest.raises(TypeError,
685
+ match=f".*same dtype kind.*{arr1.dtype}.*{arr2.dtype}"):
686
+ np.char.add(arr1, arr2)
venv/lib/python3.10/site-packages/numpy/core/tests/test_deprecations.py ADDED
@@ -0,0 +1,817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests related to deprecation warnings. Also a convenient place
3
+ to document how deprecations should eventually be turned into errors.
4
+
5
+ """
6
+ import datetime
7
+ import operator
8
+ import warnings
9
+ import pytest
10
+ import tempfile
11
+ import re
12
+ import sys
13
+
14
+ import numpy as np
15
+ from numpy.testing import (
16
+ assert_raises, assert_warns, assert_, assert_array_equal, SkipTest,
17
+ KnownFailureException, break_cycles,
18
+ )
19
+
20
+ from numpy.core._multiarray_tests import fromstring_null_term_c_api
21
+
22
+ try:
23
+ import pytz
24
+ _has_pytz = True
25
+ except ImportError:
26
+ _has_pytz = False
27
+
28
+
29
+ class _DeprecationTestCase:
30
+ # Just as warning: warnings uses re.match, so the start of this message
31
+ # must match.
32
+ message = ''
33
+ warning_cls = DeprecationWarning
34
+
35
+ def setup_method(self):
36
+ self.warn_ctx = warnings.catch_warnings(record=True)
37
+ self.log = self.warn_ctx.__enter__()
38
+
39
+ # Do *not* ignore other DeprecationWarnings. Ignoring warnings
40
+ # can give very confusing results because of
41
+ # https://bugs.python.org/issue4180 and it is probably simplest to
42
+ # try to keep the tests cleanly giving only the right warning type.
43
+ # (While checking them set to "error" those are ignored anyway)
44
+ # We still have them show up, because otherwise they would be raised
45
+ warnings.filterwarnings("always", category=self.warning_cls)
46
+ warnings.filterwarnings("always", message=self.message,
47
+ category=self.warning_cls)
48
+
49
+ def teardown_method(self):
50
+ self.warn_ctx.__exit__()
51
+
52
+ def assert_deprecated(self, function, num=1, ignore_others=False,
53
+ function_fails=False,
54
+ exceptions=np._NoValue,
55
+ args=(), kwargs={}):
56
+ """Test if DeprecationWarnings are given and raised.
57
+
58
+ This first checks if the function when called gives `num`
59
+ DeprecationWarnings, after that it tries to raise these
60
+ DeprecationWarnings and compares them with `exceptions`.
61
+ The exceptions can be different for cases where this code path
62
+ is simply not anticipated and the exception is replaced.
63
+
64
+ Parameters
65
+ ----------
66
+ function : callable
67
+ The function to test
68
+ num : int
69
+ Number of DeprecationWarnings to expect. This should normally be 1.
70
+ ignore_others : bool
71
+ Whether warnings of the wrong type should be ignored (note that
72
+ the message is not checked)
73
+ function_fails : bool
74
+ If the function would normally fail, setting this will check for
75
+ warnings inside a try/except block.
76
+ exceptions : Exception or tuple of Exceptions
77
+ Exception to expect when turning the warnings into an error.
78
+ The default checks for DeprecationWarnings. If exceptions is
79
+ empty the function is expected to run successfully.
80
+ args : tuple
81
+ Arguments for `function`
82
+ kwargs : dict
83
+ Keyword arguments for `function`
84
+ """
85
+ __tracebackhide__ = True # Hide traceback for py.test
86
+
87
+ # reset the log
88
+ self.log[:] = []
89
+
90
+ if exceptions is np._NoValue:
91
+ exceptions = (self.warning_cls,)
92
+
93
+ try:
94
+ function(*args, **kwargs)
95
+ except (Exception if function_fails else tuple()):
96
+ pass
97
+
98
+ # just in case, clear the registry
99
+ num_found = 0
100
+ for warning in self.log:
101
+ if warning.category is self.warning_cls:
102
+ num_found += 1
103
+ elif not ignore_others:
104
+ raise AssertionError(
105
+ "expected %s but got: %s" %
106
+ (self.warning_cls.__name__, warning.category))
107
+ if num is not None and num_found != num:
108
+ msg = "%i warnings found but %i expected." % (len(self.log), num)
109
+ lst = [str(w) for w in self.log]
110
+ raise AssertionError("\n".join([msg] + lst))
111
+
112
+ with warnings.catch_warnings():
113
+ warnings.filterwarnings("error", message=self.message,
114
+ category=self.warning_cls)
115
+ try:
116
+ function(*args, **kwargs)
117
+ if exceptions != tuple():
118
+ raise AssertionError(
119
+ "No error raised during function call")
120
+ except exceptions:
121
+ if exceptions == tuple():
122
+ raise AssertionError(
123
+ "Error raised during function call")
124
+
125
+ def assert_not_deprecated(self, function, args=(), kwargs={}):
126
+ """Test that warnings are not raised.
127
+
128
+ This is just a shorthand for:
129
+
130
+ self.assert_deprecated(function, num=0, ignore_others=True,
131
+ exceptions=tuple(), args=args, kwargs=kwargs)
132
+ """
133
+ self.assert_deprecated(function, num=0, ignore_others=True,
134
+ exceptions=tuple(), args=args, kwargs=kwargs)
135
+
136
+
137
+ class _VisibleDeprecationTestCase(_DeprecationTestCase):
138
+ warning_cls = np.VisibleDeprecationWarning
139
+
140
+
141
+ class TestDatetime64Timezone(_DeprecationTestCase):
142
+ """Parsing of datetime64 with timezones deprecated in 1.11.0, because
143
+ datetime64 is now timezone naive rather than UTC only.
144
+
145
+ It will be quite a while before we can remove this, because, at the very
146
+ least, a lot of existing code uses the 'Z' modifier to avoid conversion
147
+ from local time to UTC, even if otherwise it handles time in a timezone
148
+ naive fashion.
149
+ """
150
+ def test_string(self):
151
+ self.assert_deprecated(np.datetime64, args=('2000-01-01T00+01',))
152
+ self.assert_deprecated(np.datetime64, args=('2000-01-01T00Z',))
153
+
154
+ @pytest.mark.skipif(not _has_pytz,
155
+ reason="The pytz module is not available.")
156
+ def test_datetime(self):
157
+ tz = pytz.timezone('US/Eastern')
158
+ dt = datetime.datetime(2000, 1, 1, 0, 0, tzinfo=tz)
159
+ self.assert_deprecated(np.datetime64, args=(dt,))
160
+
161
+
162
+ class TestArrayDataAttributeAssignmentDeprecation(_DeprecationTestCase):
163
+ """Assigning the 'data' attribute of an ndarray is unsafe as pointed
164
+ out in gh-7093. Eventually, such assignment should NOT be allowed, but
165
+ in the interests of maintaining backwards compatibility, only a Deprecation-
166
+ Warning will be raised instead for the time being to give developers time to
167
+ refactor relevant code.
168
+ """
169
+
170
+ def test_data_attr_assignment(self):
171
+ a = np.arange(10)
172
+ b = np.linspace(0, 1, 10)
173
+
174
+ self.message = ("Assigning the 'data' attribute is an "
175
+ "inherently unsafe operation and will "
176
+ "be removed in the future.")
177
+ self.assert_deprecated(a.__setattr__, args=('data', b.data))
178
+
179
+
180
+ class TestBinaryReprInsufficientWidthParameterForRepresentation(_DeprecationTestCase):
181
+ """
182
+ If a 'width' parameter is passed into ``binary_repr`` that is insufficient to
183
+ represent the number in base 2 (positive) or 2's complement (negative) form,
184
+ the function used to silently ignore the parameter and return a representation
185
+ using the minimal number of bits needed for the form in question. Such behavior
186
+ is now considered unsafe from a user perspective and will raise an error in the future.
187
+ """
188
+
189
+ def test_insufficient_width_positive(self):
190
+ args = (10,)
191
+ kwargs = {'width': 2}
192
+
193
+ self.message = ("Insufficient bit width provided. This behavior "
194
+ "will raise an error in the future.")
195
+ self.assert_deprecated(np.binary_repr, args=args, kwargs=kwargs)
196
+
197
+ def test_insufficient_width_negative(self):
198
+ args = (-5,)
199
+ kwargs = {'width': 2}
200
+
201
+ self.message = ("Insufficient bit width provided. This behavior "
202
+ "will raise an error in the future.")
203
+ self.assert_deprecated(np.binary_repr, args=args, kwargs=kwargs)
204
+
205
+
206
+ class TestDTypeAttributeIsDTypeDeprecation(_DeprecationTestCase):
207
+ # Deprecated 2021-01-05, NumPy 1.21
208
+ message = r".*`.dtype` attribute"
209
+
210
+ def test_deprecation_dtype_attribute_is_dtype(self):
211
+ class dt:
212
+ dtype = "f8"
213
+
214
+ class vdt(np.void):
215
+ dtype = "f,f"
216
+
217
+ self.assert_deprecated(lambda: np.dtype(dt))
218
+ self.assert_deprecated(lambda: np.dtype(dt()))
219
+ self.assert_deprecated(lambda: np.dtype(vdt))
220
+ self.assert_deprecated(lambda: np.dtype(vdt(1)))
221
+
222
+
223
+ class TestTestDeprecated:
224
+ def test_assert_deprecated(self):
225
+ test_case_instance = _DeprecationTestCase()
226
+ test_case_instance.setup_method()
227
+ assert_raises(AssertionError,
228
+ test_case_instance.assert_deprecated,
229
+ lambda: None)
230
+
231
+ def foo():
232
+ warnings.warn("foo", category=DeprecationWarning, stacklevel=2)
233
+
234
+ test_case_instance.assert_deprecated(foo)
235
+ test_case_instance.teardown_method()
236
+
237
+
238
+ class TestNonNumericConjugate(_DeprecationTestCase):
239
+ """
240
+ Deprecate no-op behavior of ndarray.conjugate on non-numeric dtypes,
241
+ which conflicts with the error behavior of np.conjugate.
242
+ """
243
+ def test_conjugate(self):
244
+ for a in np.array(5), np.array(5j):
245
+ self.assert_not_deprecated(a.conjugate)
246
+ for a in (np.array('s'), np.array('2016', 'M'),
247
+ np.array((1, 2), [('a', int), ('b', int)])):
248
+ self.assert_deprecated(a.conjugate)
249
+
250
+
251
+ class TestNPY_CHAR(_DeprecationTestCase):
252
+ # 2017-05-03, 1.13.0
253
+ def test_npy_char_deprecation(self):
254
+ from numpy.core._multiarray_tests import npy_char_deprecation
255
+ self.assert_deprecated(npy_char_deprecation)
256
+ assert_(npy_char_deprecation() == 'S1')
257
+
258
+
259
+ class TestPyArray_AS1D(_DeprecationTestCase):
260
+ def test_npy_pyarrayas1d_deprecation(self):
261
+ from numpy.core._multiarray_tests import npy_pyarrayas1d_deprecation
262
+ assert_raises(NotImplementedError, npy_pyarrayas1d_deprecation)
263
+
264
+
265
+ class TestPyArray_AS2D(_DeprecationTestCase):
266
+ def test_npy_pyarrayas2d_deprecation(self):
267
+ from numpy.core._multiarray_tests import npy_pyarrayas2d_deprecation
268
+ assert_raises(NotImplementedError, npy_pyarrayas2d_deprecation)
269
+
270
+
271
+ class TestDatetimeEvent(_DeprecationTestCase):
272
+ # 2017-08-11, 1.14.0
273
+ def test_3_tuple(self):
274
+ for cls in (np.datetime64, np.timedelta64):
275
+ # two valid uses - (unit, num) and (unit, num, den, None)
276
+ self.assert_not_deprecated(cls, args=(1, ('ms', 2)))
277
+ self.assert_not_deprecated(cls, args=(1, ('ms', 2, 1, None)))
278
+
279
+ # trying to use the event argument, removed in 1.7.0, is deprecated
280
+ # it used to be a uint8
281
+ self.assert_deprecated(cls, args=(1, ('ms', 2, 'event')))
282
+ self.assert_deprecated(cls, args=(1, ('ms', 2, 63)))
283
+ self.assert_deprecated(cls, args=(1, ('ms', 2, 1, 'event')))
284
+ self.assert_deprecated(cls, args=(1, ('ms', 2, 1, 63)))
285
+
286
+
287
+ class TestTruthTestingEmptyArrays(_DeprecationTestCase):
288
+ # 2017-09-25, 1.14.0
289
+ message = '.*truth value of an empty array is ambiguous.*'
290
+
291
+ def test_1d(self):
292
+ self.assert_deprecated(bool, args=(np.array([]),))
293
+
294
+ def test_2d(self):
295
+ self.assert_deprecated(bool, args=(np.zeros((1, 0)),))
296
+ self.assert_deprecated(bool, args=(np.zeros((0, 1)),))
297
+ self.assert_deprecated(bool, args=(np.zeros((0, 0)),))
298
+
299
+
300
+ class TestBincount(_DeprecationTestCase):
301
+ # 2017-06-01, 1.14.0
302
+ def test_bincount_minlength(self):
303
+ self.assert_deprecated(lambda: np.bincount([1, 2, 3], minlength=None))
304
+
305
+
306
+
307
+ class TestGeneratorSum(_DeprecationTestCase):
308
+ # 2018-02-25, 1.15.0
309
+ def test_generator_sum(self):
310
+ self.assert_deprecated(np.sum, args=((i for i in range(5)),))
311
+
312
+
313
+ class TestFromstring(_DeprecationTestCase):
314
+ # 2017-10-19, 1.14
315
+ def test_fromstring(self):
316
+ self.assert_deprecated(np.fromstring, args=('\x00'*80,))
317
+
318
+
319
+ class TestFromStringAndFileInvalidData(_DeprecationTestCase):
320
+ # 2019-06-08, 1.17.0
321
+ # Tests should be moved to real tests when deprecation is done.
322
+ message = "string or file could not be read to its end"
323
+
324
+ @pytest.mark.parametrize("invalid_str", [",invalid_data", "invalid_sep"])
325
+ def test_deprecate_unparsable_data_file(self, invalid_str):
326
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
327
+
328
+ with tempfile.TemporaryFile(mode="w") as f:
329
+ x.tofile(f, sep=',', format='%.2f')
330
+ f.write(invalid_str)
331
+
332
+ f.seek(0)
333
+ self.assert_deprecated(lambda: np.fromfile(f, sep=","))
334
+ f.seek(0)
335
+ self.assert_deprecated(lambda: np.fromfile(f, sep=",", count=5))
336
+ # Should not raise:
337
+ with warnings.catch_warnings():
338
+ warnings.simplefilter("error", DeprecationWarning)
339
+ f.seek(0)
340
+ res = np.fromfile(f, sep=",", count=4)
341
+ assert_array_equal(res, x)
342
+
343
+ @pytest.mark.parametrize("invalid_str", [",invalid_data", "invalid_sep"])
344
+ def test_deprecate_unparsable_string(self, invalid_str):
345
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
346
+ x_str = "1.51,2,3.51,4{}".format(invalid_str)
347
+
348
+ self.assert_deprecated(lambda: np.fromstring(x_str, sep=","))
349
+ self.assert_deprecated(lambda: np.fromstring(x_str, sep=",", count=5))
350
+
351
+ # The C-level API can use not fixed size, but 0 terminated strings,
352
+ # so test that as well:
353
+ bytestr = x_str.encode("ascii")
354
+ self.assert_deprecated(lambda: fromstring_null_term_c_api(bytestr))
355
+
356
+ with assert_warns(DeprecationWarning):
357
+ # this is slightly strange, in that fromstring leaves data
358
+ # potentially uninitialized (would be good to error when all is
359
+ # read, but count is larger then actual data maybe).
360
+ res = np.fromstring(x_str, sep=",", count=5)
361
+ assert_array_equal(res[:-1], x)
362
+
363
+ with warnings.catch_warnings():
364
+ warnings.simplefilter("error", DeprecationWarning)
365
+
366
+ # Should not raise:
367
+ res = np.fromstring(x_str, sep=",", count=4)
368
+ assert_array_equal(res, x)
369
+
370
+
371
+ class Test_GetSet_NumericOps(_DeprecationTestCase):
372
+ # 2018-09-20, 1.16.0
373
+ def test_get_numeric_ops(self):
374
+ from numpy.core._multiarray_tests import getset_numericops
375
+ self.assert_deprecated(getset_numericops, num=2)
376
+
377
+ # empty kwargs prevents any state actually changing which would break
378
+ # other tests.
379
+ self.assert_deprecated(np.set_numeric_ops, kwargs={})
380
+ assert_raises(ValueError, np.set_numeric_ops, add='abc')
381
+
382
+
383
+ class TestShape1Fields(_DeprecationTestCase):
384
+ warning_cls = FutureWarning
385
+
386
+ # 2019-05-20, 1.17.0
387
+ def test_shape_1_fields(self):
388
+ self.assert_deprecated(np.dtype, args=([('a', int, 1)],))
389
+
390
+
391
+ class TestNonZero(_DeprecationTestCase):
392
+ # 2019-05-26, 1.17.0
393
+ def test_zerod(self):
394
+ self.assert_deprecated(lambda: np.nonzero(np.array(0)))
395
+ self.assert_deprecated(lambda: np.nonzero(np.array(1)))
396
+
397
+
398
+ class TestToString(_DeprecationTestCase):
399
+ # 2020-03-06 1.19.0
400
+ message = re.escape("tostring() is deprecated. Use tobytes() instead.")
401
+
402
+ def test_tostring(self):
403
+ arr = np.array(list(b"test\xFF"), dtype=np.uint8)
404
+ self.assert_deprecated(arr.tostring)
405
+
406
+ def test_tostring_matches_tobytes(self):
407
+ arr = np.array(list(b"test\xFF"), dtype=np.uint8)
408
+ b = arr.tobytes()
409
+ with assert_warns(DeprecationWarning):
410
+ s = arr.tostring()
411
+ assert s == b
412
+
413
+
414
+ class TestDTypeCoercion(_DeprecationTestCase):
415
+ # 2020-02-06 1.19.0
416
+ message = "Converting .* to a dtype .*is deprecated"
417
+ deprecated_types = [
418
+ # The builtin scalar super types:
419
+ np.generic, np.flexible, np.number,
420
+ np.inexact, np.floating, np.complexfloating,
421
+ np.integer, np.unsignedinteger, np.signedinteger,
422
+ # character is a deprecated S1 special case:
423
+ np.character,
424
+ ]
425
+
426
+ def test_dtype_coercion(self):
427
+ for scalar_type in self.deprecated_types:
428
+ self.assert_deprecated(np.dtype, args=(scalar_type,))
429
+
430
+ def test_array_construction(self):
431
+ for scalar_type in self.deprecated_types:
432
+ self.assert_deprecated(np.array, args=([], scalar_type,))
433
+
434
+ def test_not_deprecated(self):
435
+ # All specific types are not deprecated:
436
+ for group in np.sctypes.values():
437
+ for scalar_type in group:
438
+ self.assert_not_deprecated(np.dtype, args=(scalar_type,))
439
+
440
+ for scalar_type in [type, dict, list, tuple]:
441
+ # Typical python types are coerced to object currently:
442
+ self.assert_not_deprecated(np.dtype, args=(scalar_type,))
443
+
444
+
445
+ class BuiltInRoundComplexDType(_DeprecationTestCase):
446
+ # 2020-03-31 1.19.0
447
+ deprecated_types = [np.csingle, np.cdouble, np.clongdouble]
448
+ not_deprecated_types = [
449
+ np.int8, np.int16, np.int32, np.int64,
450
+ np.uint8, np.uint16, np.uint32, np.uint64,
451
+ np.float16, np.float32, np.float64,
452
+ ]
453
+
454
+ def test_deprecated(self):
455
+ for scalar_type in self.deprecated_types:
456
+ scalar = scalar_type(0)
457
+ self.assert_deprecated(round, args=(scalar,))
458
+ self.assert_deprecated(round, args=(scalar, 0))
459
+ self.assert_deprecated(round, args=(scalar,), kwargs={'ndigits': 0})
460
+
461
+ def test_not_deprecated(self):
462
+ for scalar_type in self.not_deprecated_types:
463
+ scalar = scalar_type(0)
464
+ self.assert_not_deprecated(round, args=(scalar,))
465
+ self.assert_not_deprecated(round, args=(scalar, 0))
466
+ self.assert_not_deprecated(round, args=(scalar,), kwargs={'ndigits': 0})
467
+
468
+
469
+ class TestIncorrectAdvancedIndexWithEmptyResult(_DeprecationTestCase):
470
+ # 2020-05-27, NumPy 1.20.0
471
+ message = "Out of bound index found. This was previously ignored.*"
472
+
473
+ @pytest.mark.parametrize("index", [([3, 0],), ([0, 0], [3, 0])])
474
+ def test_empty_subspace(self, index):
475
+ # Test for both a single and two/multiple advanced indices. These
476
+ # This will raise an IndexError in the future.
477
+ arr = np.ones((2, 2, 0))
478
+ self.assert_deprecated(arr.__getitem__, args=(index,))
479
+ self.assert_deprecated(arr.__setitem__, args=(index, 0.))
480
+
481
+ # for this array, the subspace is only empty after applying the slice
482
+ arr2 = np.ones((2, 2, 1))
483
+ index2 = (slice(0, 0),) + index
484
+ self.assert_deprecated(arr2.__getitem__, args=(index2,))
485
+ self.assert_deprecated(arr2.__setitem__, args=(index2, 0.))
486
+
487
+ def test_empty_index_broadcast_not_deprecated(self):
488
+ arr = np.ones((2, 2, 2))
489
+
490
+ index = ([[3], [2]], []) # broadcast to an empty result.
491
+ self.assert_not_deprecated(arr.__getitem__, args=(index,))
492
+ self.assert_not_deprecated(arr.__setitem__,
493
+ args=(index, np.empty((2, 0, 2))))
494
+
495
+
496
+ class TestNonExactMatchDeprecation(_DeprecationTestCase):
497
+ # 2020-04-22
498
+ def test_non_exact_match(self):
499
+ arr = np.array([[3, 6, 6], [4, 5, 1]])
500
+ # misspelt mode check
501
+ self.assert_deprecated(lambda: np.ravel_multi_index(arr, (7, 6), mode='Cilp'))
502
+ # using completely different word with first character as R
503
+ self.assert_deprecated(lambda: np.searchsorted(arr[0], 4, side='Random'))
504
+
505
+
506
+ class TestMatrixInOuter(_DeprecationTestCase):
507
+ # 2020-05-13 NumPy 1.20.0
508
+ message = (r"add.outer\(\) was passed a numpy matrix as "
509
+ r"(first|second) argument.")
510
+
511
+ def test_deprecated(self):
512
+ arr = np.array([1, 2, 3])
513
+ m = np.array([1, 2, 3]).view(np.matrix)
514
+ self.assert_deprecated(np.add.outer, args=(m, m), num=2)
515
+ self.assert_deprecated(np.add.outer, args=(arr, m))
516
+ self.assert_deprecated(np.add.outer, args=(m, arr))
517
+ self.assert_not_deprecated(np.add.outer, args=(arr, arr))
518
+
519
+
520
+ class FlatteningConcatenateUnsafeCast(_DeprecationTestCase):
521
+ # NumPy 1.20, 2020-09-03
522
+ message = "concatenate with `axis=None` will use same-kind casting"
523
+
524
+ def test_deprecated(self):
525
+ self.assert_deprecated(np.concatenate,
526
+ args=(([0.], [1.]),),
527
+ kwargs=dict(axis=None, out=np.empty(2, dtype=np.int64)))
528
+
529
+ def test_not_deprecated(self):
530
+ self.assert_not_deprecated(np.concatenate,
531
+ args=(([0.], [1.]),),
532
+ kwargs={'axis': None, 'out': np.empty(2, dtype=np.int64),
533
+ 'casting': "unsafe"})
534
+
535
+ with assert_raises(TypeError):
536
+ # Tests should notice if the deprecation warning is given first...
537
+ np.concatenate(([0.], [1.]), out=np.empty(2, dtype=np.int64),
538
+ casting="same_kind")
539
+
540
+
541
+ class TestDeprecatedUnpickleObjectScalar(_DeprecationTestCase):
542
+ # Deprecated 2020-11-24, NumPy 1.20
543
+ """
544
+ Technically, it should be impossible to create numpy object scalars,
545
+ but there was an unpickle path that would in theory allow it. That
546
+ path is invalid and must lead to the warning.
547
+ """
548
+ message = "Unpickling a scalar with object dtype is deprecated."
549
+
550
+ def test_deprecated(self):
551
+ ctor = np.core.multiarray.scalar
552
+ self.assert_deprecated(lambda: ctor(np.dtype("O"), 1))
553
+
554
+
555
+ class TestSingleElementSignature(_DeprecationTestCase):
556
+ # Deprecated 2021-04-01, NumPy 1.21
557
+ message = r"The use of a length 1"
558
+
559
+ def test_deprecated(self):
560
+ self.assert_deprecated(lambda: np.add(1, 2, signature="d"))
561
+ self.assert_deprecated(lambda: np.add(1, 2, sig=(np.dtype("l"),)))
562
+
563
+
564
+ class TestCtypesGetter(_DeprecationTestCase):
565
+ # Deprecated 2021-05-18, Numpy 1.21.0
566
+ warning_cls = DeprecationWarning
567
+ ctypes = np.array([1]).ctypes
568
+
569
+ @pytest.mark.parametrize(
570
+ "name", ["get_data", "get_shape", "get_strides", "get_as_parameter"]
571
+ )
572
+ def test_deprecated(self, name: str) -> None:
573
+ func = getattr(self.ctypes, name)
574
+ self.assert_deprecated(lambda: func())
575
+
576
+ @pytest.mark.parametrize(
577
+ "name", ["data", "shape", "strides", "_as_parameter_"]
578
+ )
579
+ def test_not_deprecated(self, name: str) -> None:
580
+ self.assert_not_deprecated(lambda: getattr(self.ctypes, name))
581
+
582
+
583
+ PARTITION_DICT = {
584
+ "partition method": np.arange(10).partition,
585
+ "argpartition method": np.arange(10).argpartition,
586
+ "partition function": lambda kth: np.partition(np.arange(10), kth),
587
+ "argpartition function": lambda kth: np.argpartition(np.arange(10), kth),
588
+ }
589
+
590
+
591
+ @pytest.mark.parametrize("func", PARTITION_DICT.values(), ids=PARTITION_DICT)
592
+ class TestPartitionBoolIndex(_DeprecationTestCase):
593
+ # Deprecated 2021-09-29, NumPy 1.22
594
+ warning_cls = DeprecationWarning
595
+ message = "Passing booleans as partition index is deprecated"
596
+
597
+ def test_deprecated(self, func):
598
+ self.assert_deprecated(lambda: func(True))
599
+ self.assert_deprecated(lambda: func([False, True]))
600
+
601
+ def test_not_deprecated(self, func):
602
+ self.assert_not_deprecated(lambda: func(1))
603
+ self.assert_not_deprecated(lambda: func([0, 1]))
604
+
605
+
606
+ class TestMachAr(_DeprecationTestCase):
607
+ # Deprecated 2022-11-22, NumPy 1.25
608
+ warning_cls = DeprecationWarning
609
+
610
+ def test_deprecated_module(self):
611
+ self.assert_deprecated(lambda: getattr(np.core, "MachAr"))
612
+
613
+
614
+ class TestQuantileInterpolationDeprecation(_DeprecationTestCase):
615
+ # Deprecated 2021-11-08, NumPy 1.22
616
+ @pytest.mark.parametrize("func",
617
+ [np.percentile, np.quantile, np.nanpercentile, np.nanquantile])
618
+ def test_deprecated(self, func):
619
+ self.assert_deprecated(
620
+ lambda: func([0., 1.], 0., interpolation="linear"))
621
+ self.assert_deprecated(
622
+ lambda: func([0., 1.], 0., interpolation="nearest"))
623
+
624
+ @pytest.mark.parametrize("func",
625
+ [np.percentile, np.quantile, np.nanpercentile, np.nanquantile])
626
+ def test_both_passed(self, func):
627
+ with warnings.catch_warnings():
628
+ # catch the DeprecationWarning so that it does not raise:
629
+ warnings.simplefilter("always", DeprecationWarning)
630
+ with pytest.raises(TypeError):
631
+ func([0., 1.], 0., interpolation="nearest", method="nearest")
632
+
633
+
634
+ class TestMemEventHook(_DeprecationTestCase):
635
+ # Deprecated 2021-11-18, NumPy 1.23
636
+ def test_mem_seteventhook(self):
637
+ # The actual tests are within the C code in
638
+ # multiarray/_multiarray_tests.c.src
639
+ import numpy.core._multiarray_tests as ma_tests
640
+ with pytest.warns(DeprecationWarning,
641
+ match='PyDataMem_SetEventHook is deprecated'):
642
+ ma_tests.test_pydatamem_seteventhook_start()
643
+ # force an allocation and free of a numpy array
644
+ # needs to be larger then limit of small memory cacher in ctors.c
645
+ a = np.zeros(1000)
646
+ del a
647
+ break_cycles()
648
+ with pytest.warns(DeprecationWarning,
649
+ match='PyDataMem_SetEventHook is deprecated'):
650
+ ma_tests.test_pydatamem_seteventhook_end()
651
+
652
+
653
+ class TestArrayFinalizeNone(_DeprecationTestCase):
654
+ message = "Setting __array_finalize__ = None"
655
+
656
+ def test_use_none_is_deprecated(self):
657
+ # Deprecated way that ndarray itself showed nothing needs finalizing.
658
+ class NoFinalize(np.ndarray):
659
+ __array_finalize__ = None
660
+
661
+ self.assert_deprecated(lambda: np.array(1).view(NoFinalize))
662
+
663
+ class TestAxisNotMAXDIMS(_DeprecationTestCase):
664
+ # Deprecated 2022-01-08, NumPy 1.23
665
+ message = r"Using `axis=32` \(MAXDIMS\) is deprecated"
666
+
667
+ def test_deprecated(self):
668
+ a = np.zeros((1,)*32)
669
+ self.assert_deprecated(lambda: np.repeat(a, 1, axis=np.MAXDIMS))
670
+
671
+
672
+ class TestLoadtxtParseIntsViaFloat(_DeprecationTestCase):
673
+ # Deprecated 2022-07-03, NumPy 1.23
674
+ # This test can be removed without replacement after the deprecation.
675
+ # The tests:
676
+ # * numpy/lib/tests/test_loadtxt.py::test_integer_signs
677
+ # * lib/tests/test_loadtxt.py::test_implicit_cast_float_to_int_fails
678
+ # Have a warning filter that needs to be removed.
679
+ message = r"loadtxt\(\): Parsing an integer via a float is deprecated.*"
680
+
681
+ @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
682
+ def test_deprecated_warning(self, dtype):
683
+ with pytest.warns(DeprecationWarning, match=self.message):
684
+ np.loadtxt(["10.5"], dtype=dtype)
685
+
686
+ @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
687
+ def test_deprecated_raised(self, dtype):
688
+ # The DeprecationWarning is chained when raised, so test manually:
689
+ with warnings.catch_warnings():
690
+ warnings.simplefilter("error", DeprecationWarning)
691
+ try:
692
+ np.loadtxt(["10.5"], dtype=dtype)
693
+ except ValueError as e:
694
+ assert isinstance(e.__cause__, DeprecationWarning)
695
+
696
+
697
+ class TestScalarConversion(_DeprecationTestCase):
698
+ # 2023-01-02, 1.25.0
699
+ def test_float_conversion(self):
700
+ self.assert_deprecated(float, args=(np.array([3.14]),))
701
+
702
+ def test_behaviour(self):
703
+ b = np.array([[3.14]])
704
+ c = np.zeros(5)
705
+ with pytest.warns(DeprecationWarning):
706
+ c[0] = b
707
+
708
+
709
+ class TestPyIntConversion(_DeprecationTestCase):
710
+ message = r".*stop allowing conversion of out-of-bound.*"
711
+
712
+ @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
713
+ def test_deprecated_scalar(self, dtype):
714
+ dtype = np.dtype(dtype)
715
+ info = np.iinfo(dtype)
716
+
717
+ # Cover the most common creation paths (all end up in the
718
+ # same place):
719
+ def scalar(value, dtype):
720
+ dtype.type(value)
721
+
722
+ def assign(value, dtype):
723
+ arr = np.array([0, 0, 0], dtype=dtype)
724
+ arr[2] = value
725
+
726
+ def create(value, dtype):
727
+ np.array([value], dtype=dtype)
728
+
729
+ for creation_func in [scalar, assign, create]:
730
+ try:
731
+ self.assert_deprecated(
732
+ lambda: creation_func(info.min - 1, dtype))
733
+ except OverflowError:
734
+ pass # OverflowErrors always happened also before and are OK.
735
+
736
+ try:
737
+ self.assert_deprecated(
738
+ lambda: creation_func(info.max + 1, dtype))
739
+ except OverflowError:
740
+ pass # OverflowErrors always happened also before and are OK.
741
+
742
+
743
+ class TestDeprecatedGlobals(_DeprecationTestCase):
744
+ # Deprecated 2022-11-17, NumPy 1.24
745
+ def test_type_aliases(self):
746
+ # from builtins
747
+ self.assert_deprecated(lambda: np.bool8)
748
+ self.assert_deprecated(lambda: np.int0)
749
+ self.assert_deprecated(lambda: np.uint0)
750
+ self.assert_deprecated(lambda: np.bytes0)
751
+ self.assert_deprecated(lambda: np.str0)
752
+ self.assert_deprecated(lambda: np.object0)
753
+
754
+
755
+ @pytest.mark.parametrize("name",
756
+ ["bool", "long", "ulong", "str", "bytes", "object"])
757
+ def test_future_scalar_attributes(name):
758
+ # FutureWarning added 2022-11-17, NumPy 1.24,
759
+ assert name not in dir(np) # we may want to not add them
760
+ with pytest.warns(FutureWarning,
761
+ match=f"In the future .*{name}"):
762
+ assert not hasattr(np, name)
763
+
764
+ # Unfortunately, they are currently still valid via `np.dtype()`
765
+ np.dtype(name)
766
+ name in np.sctypeDict
767
+
768
+
769
+ # Ignore the above future attribute warning for this test.
770
+ @pytest.mark.filterwarnings("ignore:In the future:FutureWarning")
771
+ class TestRemovedGlobals:
772
+ # Removed 2023-01-12, NumPy 1.24.0
773
+ # Not a deprecation, but the large error was added to aid those who missed
774
+ # the previous deprecation, and should be removed similarly to one
775
+ # (or faster).
776
+ @pytest.mark.parametrize("name",
777
+ ["object", "bool", "float", "complex", "str", "int"])
778
+ def test_attributeerror_includes_info(self, name):
779
+ msg = f".*\n`np.{name}` was a deprecated alias for the builtin"
780
+ with pytest.raises(AttributeError, match=msg):
781
+ getattr(np, name)
782
+
783
+
784
+ class TestDeprecatedFinfo(_DeprecationTestCase):
785
+ # Deprecated in NumPy 1.25, 2023-01-16
786
+ def test_deprecated_none(self):
787
+ self.assert_deprecated(np.finfo, args=(None,))
788
+
789
+ class TestFromnumeric(_DeprecationTestCase):
790
+ # 2023-02-28, 1.25.0
791
+ def test_round_(self):
792
+ self.assert_deprecated(lambda: np.round_(np.array([1.5, 2.5, 3.5])))
793
+
794
+ # 2023-03-02, 1.25.0
795
+ def test_cumproduct(self):
796
+ self.assert_deprecated(lambda: np.cumproduct(np.array([1, 2, 3])))
797
+
798
+ # 2023-03-02, 1.25.0
799
+ def test_product(self):
800
+ self.assert_deprecated(lambda: np.product(np.array([1, 2, 3])))
801
+
802
+ # 2023-03-02, 1.25.0
803
+ def test_sometrue(self):
804
+ self.assert_deprecated(lambda: np.sometrue(np.array([True, False])))
805
+
806
+ # 2023-03-02, 1.25.0
807
+ def test_alltrue(self):
808
+ self.assert_deprecated(lambda: np.alltrue(np.array([True, False])))
809
+
810
+
811
+ class TestMathAlias(_DeprecationTestCase):
812
+ # Deprecated in Numpy 1.25, 2023-04-06
813
+ def test_deprecated_np_math(self):
814
+ self.assert_deprecated(lambda: np.math)
815
+
816
+ def test_deprecated_np_lib_math(self):
817
+ self.assert_deprecated(lambda: np.lib.math)
venv/lib/python3.10/site-packages/numpy/core/tests/test_dtype.py ADDED
@@ -0,0 +1,1906 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import operator
3
+ import pytest
4
+ import ctypes
5
+ import gc
6
+ import types
7
+ from typing import Any
8
+
9
+ import numpy as np
10
+ import numpy.dtypes
11
+ from numpy.core._rational_tests import rational
12
+ from numpy.core._multiarray_tests import create_custom_field_dtype
13
+ from numpy.testing import (
14
+ assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT,
15
+ IS_PYSTON, _OLD_PROMOTION)
16
+ from numpy.compat import pickle
17
+ from itertools import permutations
18
+ import random
19
+
20
+ import hypothesis
21
+ from hypothesis.extra import numpy as hynp
22
+
23
+
24
+
25
+ def assert_dtype_equal(a, b):
26
+ assert_equal(a, b)
27
+ assert_equal(hash(a), hash(b),
28
+ "two equivalent types do not hash to the same value !")
29
+
30
+ def assert_dtype_not_equal(a, b):
31
+ assert_(a != b)
32
+ assert_(hash(a) != hash(b),
33
+ "two different types hash to the same value !")
34
+
35
+ class TestBuiltin:
36
+ @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object,
37
+ np.compat.unicode])
38
+ def test_run(self, t):
39
+ """Only test hash runs at all."""
40
+ dt = np.dtype(t)
41
+ hash(dt)
42
+
43
+ @pytest.mark.parametrize('t', [int, float])
44
+ def test_dtype(self, t):
45
+ # Make sure equivalent byte order char hash the same (e.g. < and = on
46
+ # little endian)
47
+ dt = np.dtype(t)
48
+ dt2 = dt.newbyteorder("<")
49
+ dt3 = dt.newbyteorder(">")
50
+ if dt == dt2:
51
+ assert_(dt.byteorder != dt2.byteorder, "bogus test")
52
+ assert_dtype_equal(dt, dt2)
53
+ else:
54
+ assert_(dt.byteorder != dt3.byteorder, "bogus test")
55
+ assert_dtype_equal(dt, dt3)
56
+
57
+ def test_equivalent_dtype_hashing(self):
58
+ # Make sure equivalent dtypes with different type num hash equal
59
+ uintp = np.dtype(np.uintp)
60
+ if uintp.itemsize == 4:
61
+ left = uintp
62
+ right = np.dtype(np.uint32)
63
+ else:
64
+ left = uintp
65
+ right = np.dtype(np.ulonglong)
66
+ assert_(left == right)
67
+ assert_(hash(left) == hash(right))
68
+
69
+ def test_invalid_types(self):
70
+ # Make sure invalid type strings raise an error
71
+
72
+ assert_raises(TypeError, np.dtype, 'O3')
73
+ assert_raises(TypeError, np.dtype, 'O5')
74
+ assert_raises(TypeError, np.dtype, 'O7')
75
+ assert_raises(TypeError, np.dtype, 'b3')
76
+ assert_raises(TypeError, np.dtype, 'h4')
77
+ assert_raises(TypeError, np.dtype, 'I5')
78
+ assert_raises(TypeError, np.dtype, 'e3')
79
+ assert_raises(TypeError, np.dtype, 'f5')
80
+
81
+ if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16:
82
+ assert_raises(TypeError, np.dtype, 'g12')
83
+ elif np.dtype('g').itemsize == 12:
84
+ assert_raises(TypeError, np.dtype, 'g16')
85
+
86
+ if np.dtype('l').itemsize == 8:
87
+ assert_raises(TypeError, np.dtype, 'l4')
88
+ assert_raises(TypeError, np.dtype, 'L4')
89
+ else:
90
+ assert_raises(TypeError, np.dtype, 'l8')
91
+ assert_raises(TypeError, np.dtype, 'L8')
92
+
93
+ if np.dtype('q').itemsize == 8:
94
+ assert_raises(TypeError, np.dtype, 'q4')
95
+ assert_raises(TypeError, np.dtype, 'Q4')
96
+ else:
97
+ assert_raises(TypeError, np.dtype, 'q8')
98
+ assert_raises(TypeError, np.dtype, 'Q8')
99
+
100
+ def test_richcompare_invalid_dtype_equality(self):
101
+ # Make sure objects that cannot be converted to valid
102
+ # dtypes results in False/True when compared to valid dtypes.
103
+ # Here 7 cannot be converted to dtype. No exceptions should be raised
104
+
105
+ assert not np.dtype(np.int32) == 7, "dtype richcompare failed for =="
106
+ assert np.dtype(np.int32) != 7, "dtype richcompare failed for !="
107
+
108
+ @pytest.mark.parametrize(
109
+ 'operation',
110
+ [operator.le, operator.lt, operator.ge, operator.gt])
111
+ def test_richcompare_invalid_dtype_comparison(self, operation):
112
+ # Make sure TypeError is raised for comparison operators
113
+ # for invalid dtypes. Here 7 is an invalid dtype.
114
+
115
+ with pytest.raises(TypeError):
116
+ operation(np.dtype(np.int32), 7)
117
+
118
+ @pytest.mark.parametrize("dtype",
119
+ ['Bool', 'Bytes0', 'Complex32', 'Complex64',
120
+ 'Datetime64', 'Float16', 'Float32', 'Float64',
121
+ 'Int8', 'Int16', 'Int32', 'Int64',
122
+ 'Object0', 'Str0', 'Timedelta64',
123
+ 'UInt8', 'UInt16', 'Uint32', 'UInt32',
124
+ 'Uint64', 'UInt64', 'Void0',
125
+ "Float128", "Complex128"])
126
+ def test_numeric_style_types_are_invalid(self, dtype):
127
+ with assert_raises(TypeError):
128
+ np.dtype(dtype)
129
+
130
+ def test_remaining_dtypes_with_bad_bytesize(self):
131
+ # The np.<name> aliases were deprecated, these probably should be too
132
+ assert np.dtype("int0") is np.dtype("intp")
133
+ assert np.dtype("uint0") is np.dtype("uintp")
134
+ assert np.dtype("bool8") is np.dtype("bool")
135
+ assert np.dtype("bytes0") is np.dtype("bytes")
136
+ assert np.dtype("str0") is np.dtype("str")
137
+ assert np.dtype("object0") is np.dtype("object")
138
+
139
+ @pytest.mark.parametrize(
140
+ 'value',
141
+ ['m8', 'M8', 'datetime64', 'timedelta64',
142
+ 'i4, (2,3)f8, f4', 'a3, 3u8, (3,4)a10',
143
+ '>f', '<f', '=f', '|f',
144
+ ])
145
+ def test_dtype_bytes_str_equivalence(self, value):
146
+ bytes_value = value.encode('ascii')
147
+ from_bytes = np.dtype(bytes_value)
148
+ from_str = np.dtype(value)
149
+ assert_dtype_equal(from_bytes, from_str)
150
+
151
+ def test_dtype_from_bytes(self):
152
+ # Empty bytes object
153
+ assert_raises(TypeError, np.dtype, b'')
154
+ # Byte order indicator, but no type
155
+ assert_raises(TypeError, np.dtype, b'|')
156
+
157
+ # Single character with ordinal < NPY_NTYPES returns
158
+ # type by index into _builtin_descrs
159
+ assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool'))
160
+ assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object))
161
+
162
+ # Single character where value is a valid type code
163
+ assert_dtype_equal(np.dtype(b'f'), np.dtype('float32'))
164
+
165
+ # Bytes with non-ascii values raise errors
166
+ assert_raises(TypeError, np.dtype, b'\xff')
167
+ assert_raises(TypeError, np.dtype, b's\xff')
168
+
169
+ def test_bad_param(self):
170
+ # Can't give a size that's too small
171
+ assert_raises(ValueError, np.dtype,
172
+ {'names':['f0', 'f1'],
173
+ 'formats':['i4', 'i1'],
174
+ 'offsets':[0, 4],
175
+ 'itemsize':4})
176
+ # If alignment is enabled, the alignment (4) must divide the itemsize
177
+ assert_raises(ValueError, np.dtype,
178
+ {'names':['f0', 'f1'],
179
+ 'formats':['i4', 'i1'],
180
+ 'offsets':[0, 4],
181
+ 'itemsize':9}, align=True)
182
+ # If alignment is enabled, the individual fields must be aligned
183
+ assert_raises(ValueError, np.dtype,
184
+ {'names':['f0', 'f1'],
185
+ 'formats':['i1', 'f4'],
186
+ 'offsets':[0, 2]}, align=True)
187
+
188
+ def test_field_order_equality(self):
189
+ x = np.dtype({'names': ['A', 'B'],
190
+ 'formats': ['i4', 'f4'],
191
+ 'offsets': [0, 4]})
192
+ y = np.dtype({'names': ['B', 'A'],
193
+ 'formats': ['i4', 'f4'],
194
+ 'offsets': [4, 0]})
195
+ assert_equal(x == y, False)
196
+ # This is an safe cast (not equiv) due to the different names:
197
+ assert np.can_cast(x, y, casting="safe")
198
+
199
+ @pytest.mark.parametrize(
200
+ ["type_char", "char_size", "scalar_type"],
201
+ [["U", 4, np.str_],
202
+ ["S", 1, np.bytes_]])
203
+ def test_create_string_dtypes_directly(
204
+ self, type_char, char_size, scalar_type):
205
+ dtype_class = type(np.dtype(type_char))
206
+
207
+ dtype = dtype_class(8)
208
+ assert dtype.type is scalar_type
209
+ assert dtype.itemsize == 8*char_size
210
+
211
+ def test_create_invalid_string_errors(self):
212
+ one_too_big = np.iinfo(np.intc).max + 1
213
+ with pytest.raises(TypeError):
214
+ type(np.dtype("U"))(one_too_big // 4)
215
+
216
+ with pytest.raises(TypeError):
217
+ # Code coverage for very large numbers:
218
+ type(np.dtype("U"))(np.iinfo(np.intp).max // 4 + 1)
219
+
220
+ if one_too_big < sys.maxsize:
221
+ with pytest.raises(TypeError):
222
+ type(np.dtype("S"))(one_too_big)
223
+
224
+ with pytest.raises(ValueError):
225
+ type(np.dtype("U"))(-1)
226
+
227
+
228
+ class TestRecord:
229
+ def test_equivalent_record(self):
230
+ """Test whether equivalent record dtypes hash the same."""
231
+ a = np.dtype([('yo', int)])
232
+ b = np.dtype([('yo', int)])
233
+ assert_dtype_equal(a, b)
234
+
235
+ def test_different_names(self):
236
+ # In theory, they may hash the same (collision) ?
237
+ a = np.dtype([('yo', int)])
238
+ b = np.dtype([('ye', int)])
239
+ assert_dtype_not_equal(a, b)
240
+
241
+ def test_different_titles(self):
242
+ # In theory, they may hash the same (collision) ?
243
+ a = np.dtype({'names': ['r', 'b'],
244
+ 'formats': ['u1', 'u1'],
245
+ 'titles': ['Red pixel', 'Blue pixel']})
246
+ b = np.dtype({'names': ['r', 'b'],
247
+ 'formats': ['u1', 'u1'],
248
+ 'titles': ['RRed pixel', 'Blue pixel']})
249
+ assert_dtype_not_equal(a, b)
250
+
251
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
252
+ def test_refcount_dictionary_setting(self):
253
+ names = ["name1"]
254
+ formats = ["f8"]
255
+ titles = ["t1"]
256
+ offsets = [0]
257
+ d = dict(names=names, formats=formats, titles=titles, offsets=offsets)
258
+ refcounts = {k: sys.getrefcount(i) for k, i in d.items()}
259
+ np.dtype(d)
260
+ refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()}
261
+ assert refcounts == refcounts_new
262
+
263
+ def test_mutate(self):
264
+ # Mutating a dtype should reset the cached hash value.
265
+ # NOTE: Mutating should be deprecated, but new API added to replace it.
266
+ a = np.dtype([('yo', int)])
267
+ b = np.dtype([('yo', int)])
268
+ c = np.dtype([('ye', int)])
269
+ assert_dtype_equal(a, b)
270
+ assert_dtype_not_equal(a, c)
271
+ a.names = ['ye']
272
+ assert_dtype_equal(a, c)
273
+ assert_dtype_not_equal(a, b)
274
+ state = b.__reduce__()[2]
275
+ a.__setstate__(state)
276
+ assert_dtype_equal(a, b)
277
+ assert_dtype_not_equal(a, c)
278
+
279
+ def test_mutate_error(self):
280
+ # NOTE: Mutating should be deprecated, but new API added to replace it.
281
+ a = np.dtype("i,i")
282
+
283
+ with pytest.raises(ValueError, match="must replace all names at once"):
284
+ a.names = ["f0"]
285
+
286
+ with pytest.raises(ValueError, match=".*and not string"):
287
+ a.names = ["f0", b"not a unicode name"]
288
+
289
+ def test_not_lists(self):
290
+ """Test if an appropriate exception is raised when passing bad values to
291
+ the dtype constructor.
292
+ """
293
+ assert_raises(TypeError, np.dtype,
294
+ dict(names={'A', 'B'}, formats=['f8', 'i4']))
295
+ assert_raises(TypeError, np.dtype,
296
+ dict(names=['A', 'B'], formats={'f8', 'i4'}))
297
+
298
+ def test_aligned_size(self):
299
+ # Check that structured dtypes get padded to an aligned size
300
+ dt = np.dtype('i4, i1', align=True)
301
+ assert_equal(dt.itemsize, 8)
302
+ dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True)
303
+ assert_equal(dt.itemsize, 8)
304
+ dt = np.dtype({'names':['f0', 'f1'],
305
+ 'formats':['i4', 'u1'],
306
+ 'offsets':[0, 4]}, align=True)
307
+ assert_equal(dt.itemsize, 8)
308
+ dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True)
309
+ assert_equal(dt.itemsize, 8)
310
+ # Nesting should preserve that alignment
311
+ dt1 = np.dtype([('f0', 'i4'),
312
+ ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
313
+ ('f2', 'i1')], align=True)
314
+ assert_equal(dt1.itemsize, 20)
315
+ dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
316
+ 'formats':['i4',
317
+ [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
318
+ 'i1'],
319
+ 'offsets':[0, 4, 16]}, align=True)
320
+ assert_equal(dt2.itemsize, 20)
321
+ dt3 = np.dtype({'f0': ('i4', 0),
322
+ 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
323
+ 'f2': ('i1', 16)}, align=True)
324
+ assert_equal(dt3.itemsize, 20)
325
+ assert_equal(dt1, dt2)
326
+ assert_equal(dt2, dt3)
327
+ # Nesting should preserve packing
328
+ dt1 = np.dtype([('f0', 'i4'),
329
+ ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
330
+ ('f2', 'i1')], align=False)
331
+ assert_equal(dt1.itemsize, 11)
332
+ dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
333
+ 'formats':['i4',
334
+ [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
335
+ 'i1'],
336
+ 'offsets':[0, 4, 10]}, align=False)
337
+ assert_equal(dt2.itemsize, 11)
338
+ dt3 = np.dtype({'f0': ('i4', 0),
339
+ 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
340
+ 'f2': ('i1', 10)}, align=False)
341
+ assert_equal(dt3.itemsize, 11)
342
+ assert_equal(dt1, dt2)
343
+ assert_equal(dt2, dt3)
344
+ # Array of subtype should preserve alignment
345
+ dt1 = np.dtype([('a', '|i1'),
346
+ ('b', [('f0', '<i2'),
347
+ ('f1', '<f4')], 2)], align=True)
348
+ assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'),
349
+ ('b', [('f0', '<i2'), ('', '|V2'),
350
+ ('f1', '<f4')], (2,))])
351
+
352
+ def test_union_struct(self):
353
+ # Should be able to create union dtypes
354
+ dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
355
+ 'offsets':[0, 0, 2]}, align=True)
356
+ assert_equal(dt.itemsize, 4)
357
+ a = np.array([3], dtype='<u4').view(dt)
358
+ a['f1'] = 10
359
+ a['f2'] = 36
360
+ assert_equal(a['f0'], 10 + 36*256*256)
361
+ # Should be able to specify fields out of order
362
+ dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
363
+ 'offsets':[4, 0, 2]}, align=True)
364
+ assert_equal(dt.itemsize, 8)
365
+ # field name should not matter: assignment is by position
366
+ dt2 = np.dtype({'names':['f2', 'f0', 'f1'],
367
+ 'formats':['<u4', '<u2', '<u2'],
368
+ 'offsets':[4, 0, 2]}, align=True)
369
+ vals = [(0, 1, 2), (3, 2**15-1, 4)]
370
+ vals2 = [(0, 1, 2), (3, 2**15-1, 4)]
371
+ a = np.array(vals, dt)
372
+ b = np.array(vals2, dt2)
373
+ assert_equal(a.astype(dt2), b)
374
+ assert_equal(b.astype(dt), a)
375
+ assert_equal(a.view(dt2), b)
376
+ assert_equal(b.view(dt), a)
377
+ # Should not be able to overlap objects with other types
378
+ assert_raises(TypeError, np.dtype,
379
+ {'names':['f0', 'f1'],
380
+ 'formats':['O', 'i1'],
381
+ 'offsets':[0, 2]})
382
+ assert_raises(TypeError, np.dtype,
383
+ {'names':['f0', 'f1'],
384
+ 'formats':['i4', 'O'],
385
+ 'offsets':[0, 3]})
386
+ assert_raises(TypeError, np.dtype,
387
+ {'names':['f0', 'f1'],
388
+ 'formats':[[('a', 'O')], 'i1'],
389
+ 'offsets':[0, 2]})
390
+ assert_raises(TypeError, np.dtype,
391
+ {'names':['f0', 'f1'],
392
+ 'formats':['i4', [('a', 'O')]],
393
+ 'offsets':[0, 3]})
394
+ # Out of order should still be ok, however
395
+ dt = np.dtype({'names':['f0', 'f1'],
396
+ 'formats':['i1', 'O'],
397
+ 'offsets':[np.dtype('intp').itemsize, 0]})
398
+
399
+ @pytest.mark.parametrize(["obj", "dtype", "expected"],
400
+ [([], ("(2)f4,"), np.empty((0, 2), dtype="f4")),
401
+ (3, "(3)f4,", [3, 3, 3]),
402
+ (np.float64(2), "(2)f4,", [2, 2]),
403
+ ([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None),
404
+ (["1", "2"], "(2)i,", None)])
405
+ def test_subarray_list(self, obj, dtype, expected):
406
+ dtype = np.dtype(dtype)
407
+ res = np.array(obj, dtype=dtype)
408
+
409
+ if expected is None:
410
+ # iterate the 1-d list to fill the array
411
+ expected = np.empty(len(obj), dtype=dtype)
412
+ for i in range(len(expected)):
413
+ expected[i] = obj[i]
414
+
415
+ assert_array_equal(res, expected)
416
+
417
+ def test_comma_datetime(self):
418
+ dt = np.dtype('M8[D],datetime64[Y],i8')
419
+ assert_equal(dt, np.dtype([('f0', 'M8[D]'),
420
+ ('f1', 'datetime64[Y]'),
421
+ ('f2', 'i8')]))
422
+
423
+ def test_from_dictproxy(self):
424
+ # Tests for PR #5920
425
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']})
426
+ assert_dtype_equal(dt, np.dtype(dt.fields))
427
+ dt2 = np.dtype((np.void, dt.fields))
428
+ assert_equal(dt2.fields, dt.fields)
429
+
430
+ def test_from_dict_with_zero_width_field(self):
431
+ # Regression test for #6430 / #2196
432
+ dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)])
433
+ dt2 = np.dtype({'names': ['val1', 'val2'],
434
+ 'formats': [(np.float32, (0,)), int]})
435
+
436
+ assert_dtype_equal(dt, dt2)
437
+ assert_equal(dt.fields['val1'][0].itemsize, 0)
438
+ assert_equal(dt.itemsize, dt.fields['val2'][0].itemsize)
439
+
440
+ def test_bool_commastring(self):
441
+ d = np.dtype('?,?,?') # raises?
442
+ assert_equal(len(d.names), 3)
443
+ for n in d.names:
444
+ assert_equal(d.fields[n][0], np.dtype('?'))
445
+
446
+ def test_nonint_offsets(self):
447
+ # gh-8059
448
+ def make_dtype(off):
449
+ return np.dtype({'names': ['A'], 'formats': ['i4'],
450
+ 'offsets': [off]})
451
+
452
+ assert_raises(TypeError, make_dtype, 'ASD')
453
+ assert_raises(OverflowError, make_dtype, 2**70)
454
+ assert_raises(TypeError, make_dtype, 2.3)
455
+ assert_raises(ValueError, make_dtype, -10)
456
+
457
+ # no errors here:
458
+ dt = make_dtype(np.uint32(0))
459
+ np.zeros(1, dtype=dt)[0].item()
460
+
461
+ def test_fields_by_index(self):
462
+ dt = np.dtype([('a', np.int8), ('b', np.float32, 3)])
463
+ assert_dtype_equal(dt[0], np.dtype(np.int8))
464
+ assert_dtype_equal(dt[1], np.dtype((np.float32, 3)))
465
+ assert_dtype_equal(dt[-1], dt[1])
466
+ assert_dtype_equal(dt[-2], dt[0])
467
+ assert_raises(IndexError, lambda: dt[-3])
468
+
469
+ assert_raises(TypeError, operator.getitem, dt, 3.0)
470
+
471
+ assert_equal(dt[1], dt[np.int8(1)])
472
+
473
+ @pytest.mark.parametrize('align_flag',[False, True])
474
+ def test_multifield_index(self, align_flag):
475
+ # indexing with a list produces subfields
476
+ # the align flag should be preserved
477
+ dt = np.dtype([
478
+ (('title', 'col1'), '<U20'), ('A', '<f8'), ('B', '<f8')
479
+ ], align=align_flag)
480
+
481
+ dt_sub = dt[['B', 'col1']]
482
+ assert_equal(
483
+ dt_sub,
484
+ np.dtype({
485
+ 'names': ['B', 'col1'],
486
+ 'formats': ['<f8', '<U20'],
487
+ 'offsets': [88, 0],
488
+ 'titles': [None, 'title'],
489
+ 'itemsize': 96
490
+ })
491
+ )
492
+ assert_equal(dt_sub.isalignedstruct, align_flag)
493
+
494
+ dt_sub = dt[['B']]
495
+ assert_equal(
496
+ dt_sub,
497
+ np.dtype({
498
+ 'names': ['B'],
499
+ 'formats': ['<f8'],
500
+ 'offsets': [88],
501
+ 'itemsize': 96
502
+ })
503
+ )
504
+ assert_equal(dt_sub.isalignedstruct, align_flag)
505
+
506
+ dt_sub = dt[[]]
507
+ assert_equal(
508
+ dt_sub,
509
+ np.dtype({
510
+ 'names': [],
511
+ 'formats': [],
512
+ 'offsets': [],
513
+ 'itemsize': 96
514
+ })
515
+ )
516
+ assert_equal(dt_sub.isalignedstruct, align_flag)
517
+
518
+ assert_raises(TypeError, operator.getitem, dt, ())
519
+ assert_raises(TypeError, operator.getitem, dt, [1, 2, 3])
520
+ assert_raises(TypeError, operator.getitem, dt, ['col1', 2])
521
+ assert_raises(KeyError, operator.getitem, dt, ['fake'])
522
+ assert_raises(KeyError, operator.getitem, dt, ['title'])
523
+ assert_raises(ValueError, operator.getitem, dt, ['col1', 'col1'])
524
+
525
+ def test_partial_dict(self):
526
+ # 'names' is missing
527
+ assert_raises(ValueError, np.dtype,
528
+ {'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1':('i4', 4)})
529
+
530
+ def test_fieldless_views(self):
531
+ a = np.zeros(2, dtype={'names':[], 'formats':[], 'offsets':[],
532
+ 'itemsize':8})
533
+ assert_raises(ValueError, a.view, np.dtype([]))
534
+
535
+ d = np.dtype((np.dtype([]), 10))
536
+ assert_equal(d.shape, (10,))
537
+ assert_equal(d.itemsize, 0)
538
+ assert_equal(d.base, np.dtype([]))
539
+
540
+ arr = np.fromiter((() for i in range(10)), [])
541
+ assert_equal(arr.dtype, np.dtype([]))
542
+ assert_raises(ValueError, np.frombuffer, b'', dtype=[])
543
+ assert_equal(np.frombuffer(b'', dtype=[], count=2),
544
+ np.empty(2, dtype=[]))
545
+
546
+ assert_raises(ValueError, np.dtype, ([], 'f8'))
547
+ assert_raises(ValueError, np.zeros(1, dtype='i4').view, [])
548
+
549
+ assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]),
550
+ np.ones(2, dtype=bool))
551
+
552
+ assert_equal(np.zeros((1, 2), dtype=[]) == a,
553
+ np.ones((1, 2), dtype=bool))
554
+
555
+ def test_nonstructured_with_object(self):
556
+ # See gh-23277, the dtype here thinks it contain objects, if the
557
+ # assert about that fails, the test becomes meaningless (which is OK)
558
+ arr = np.recarray((0,), dtype="O")
559
+ assert arr.dtype.names is None # no fields
560
+ assert arr.dtype.hasobject # but claims to contain objects
561
+ del arr # the deletion failed previously.
562
+
563
+
564
+ class TestSubarray:
565
+ def test_single_subarray(self):
566
+ a = np.dtype((int, (2)))
567
+ b = np.dtype((int, (2,)))
568
+ assert_dtype_equal(a, b)
569
+
570
+ assert_equal(type(a.subdtype[1]), tuple)
571
+ assert_equal(type(b.subdtype[1]), tuple)
572
+
573
+ def test_equivalent_record(self):
574
+ """Test whether equivalent subarray dtypes hash the same."""
575
+ a = np.dtype((int, (2, 3)))
576
+ b = np.dtype((int, (2, 3)))
577
+ assert_dtype_equal(a, b)
578
+
579
+ def test_nonequivalent_record(self):
580
+ """Test whether different subarray dtypes hash differently."""
581
+ a = np.dtype((int, (2, 3)))
582
+ b = np.dtype((int, (3, 2)))
583
+ assert_dtype_not_equal(a, b)
584
+
585
+ a = np.dtype((int, (2, 3)))
586
+ b = np.dtype((int, (2, 2)))
587
+ assert_dtype_not_equal(a, b)
588
+
589
+ a = np.dtype((int, (1, 2, 3)))
590
+ b = np.dtype((int, (1, 2)))
591
+ assert_dtype_not_equal(a, b)
592
+
593
+ def test_shape_equal(self):
594
+ """Test some data types that are equal"""
595
+ assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', tuple())))
596
+ # FutureWarning during deprecation period; after it is passed this
597
+ # should instead check that "(1)f8" == "1f8" == ("f8", 1).
598
+ with pytest.warns(FutureWarning):
599
+ assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', 1)))
600
+ assert_dtype_equal(np.dtype((int, 2)), np.dtype((int, (2,))))
601
+ assert_dtype_equal(np.dtype(('<f4', (3, 2))), np.dtype(('<f4', (3, 2))))
602
+ d = ([('a', 'f4', (1, 2)), ('b', 'f8', (3, 1))], (3, 2))
603
+ assert_dtype_equal(np.dtype(d), np.dtype(d))
604
+
605
+ def test_shape_simple(self):
606
+ """Test some simple cases that shouldn't be equal"""
607
+ assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8', (1,))))
608
+ assert_dtype_not_equal(np.dtype(('f8', (1,))), np.dtype(('f8', (1, 1))))
609
+ assert_dtype_not_equal(np.dtype(('f4', (3, 2))), np.dtype(('f4', (2, 3))))
610
+
611
+ def test_shape_monster(self):
612
+ """Test some more complicated cases that shouldn't be equal"""
613
+ assert_dtype_not_equal(
614
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
615
+ np.dtype(([('a', 'f4', (1, 2)), ('b', 'f8', (1, 3))], (2, 2))))
616
+ assert_dtype_not_equal(
617
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
618
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'i8', (1, 3))], (2, 2))))
619
+ assert_dtype_not_equal(
620
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
621
+ np.dtype(([('e', 'f8', (1, 3)), ('d', 'f4', (2, 1))], (2, 2))))
622
+ assert_dtype_not_equal(
623
+ np.dtype(([('a', [('a', 'i4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
624
+ np.dtype(([('a', [('a', 'u4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))))
625
+
626
+ def test_shape_sequence(self):
627
+ # Any sequence of integers should work as shape, but the result
628
+ # should be a tuple (immutable) of base type integers.
629
+ a = np.array([1, 2, 3], dtype=np.int16)
630
+ l = [1, 2, 3]
631
+ # Array gets converted
632
+ dt = np.dtype([('a', 'f4', a)])
633
+ assert_(isinstance(dt['a'].shape, tuple))
634
+ assert_(isinstance(dt['a'].shape[0], int))
635
+ # List gets converted
636
+ dt = np.dtype([('a', 'f4', l)])
637
+ assert_(isinstance(dt['a'].shape, tuple))
638
+ #
639
+
640
+ class IntLike:
641
+ def __index__(self):
642
+ return 3
643
+
644
+ def __int__(self):
645
+ # (a PyNumber_Check fails without __int__)
646
+ return 3
647
+
648
+ dt = np.dtype([('a', 'f4', IntLike())])
649
+ assert_(isinstance(dt['a'].shape, tuple))
650
+ assert_(isinstance(dt['a'].shape[0], int))
651
+ dt = np.dtype([('a', 'f4', (IntLike(),))])
652
+ assert_(isinstance(dt['a'].shape, tuple))
653
+ assert_(isinstance(dt['a'].shape[0], int))
654
+
655
+ def test_shape_matches_ndim(self):
656
+ dt = np.dtype([('a', 'f4', ())])
657
+ assert_equal(dt['a'].shape, ())
658
+ assert_equal(dt['a'].ndim, 0)
659
+
660
+ dt = np.dtype([('a', 'f4')])
661
+ assert_equal(dt['a'].shape, ())
662
+ assert_equal(dt['a'].ndim, 0)
663
+
664
+ dt = np.dtype([('a', 'f4', 4)])
665
+ assert_equal(dt['a'].shape, (4,))
666
+ assert_equal(dt['a'].ndim, 1)
667
+
668
+ dt = np.dtype([('a', 'f4', (1, 2, 3))])
669
+ assert_equal(dt['a'].shape, (1, 2, 3))
670
+ assert_equal(dt['a'].ndim, 3)
671
+
672
+ def test_shape_invalid(self):
673
+ # Check that the shape is valid.
674
+ max_int = np.iinfo(np.intc).max
675
+ max_intp = np.iinfo(np.intp).max
676
+ # Too large values (the datatype is part of this)
677
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_int // 4 + 1)])
678
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_int + 1)])
679
+ assert_raises(ValueError, np.dtype, [('a', 'f4', (max_int, 2))])
680
+ # Takes a different code path (fails earlier:
681
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_intp + 1)])
682
+ # Negative values
683
+ assert_raises(ValueError, np.dtype, [('a', 'f4', -1)])
684
+ assert_raises(ValueError, np.dtype, [('a', 'f4', (-1, -1))])
685
+
686
+ def test_alignment(self):
687
+ #Check that subarrays are aligned
688
+ t1 = np.dtype('(1,)i4', align=True)
689
+ t2 = np.dtype('2i4', align=True)
690
+ assert_equal(t1.alignment, t2.alignment)
691
+
692
+ def test_aligned_empty(self):
693
+ # Mainly regression test for gh-19696: construction failed completely
694
+ dt = np.dtype([], align=True)
695
+ assert dt == np.dtype([])
696
+ dt = np.dtype({"names": [], "formats": [], "itemsize": 0}, align=True)
697
+ assert dt == np.dtype([])
698
+
699
+ def test_subarray_base_item(self):
700
+ arr = np.ones(3, dtype=[("f", "i", 3)])
701
+ # Extracting the field "absorbs" the subarray into a view:
702
+ assert arr["f"].base is arr
703
+ # Extract the structured item, and then check the tuple component:
704
+ item = arr.item(0)
705
+ assert type(item) is tuple and len(item) == 1
706
+ assert item[0].base is arr
707
+
708
+ def test_subarray_cast_copies(self):
709
+ # Older versions of NumPy did NOT copy, but they got the ownership
710
+ # wrong (not actually knowing the correct base!). Versions since 1.21
711
+ # (I think) crashed fairly reliable. This defines the correct behavior
712
+ # as a copy. Keeping the ownership would be possible (but harder)
713
+ arr = np.ones(3, dtype=[("f", "i", 3)])
714
+ cast = arr.astype(object)
715
+ for fields in cast:
716
+ assert type(fields) == tuple and len(fields) == 1
717
+ subarr = fields[0]
718
+ assert subarr.base is None
719
+ assert subarr.flags.owndata
720
+
721
+
722
+ def iter_struct_object_dtypes():
723
+ """
724
+ Iterates over a few complex dtypes and object pattern which
725
+ fill the array with a given object (defaults to a singleton).
726
+
727
+ Yields
728
+ ------
729
+ dtype : dtype
730
+ pattern : tuple
731
+ Structured tuple for use with `np.array`.
732
+ count : int
733
+ Number of objects stored in the dtype.
734
+ singleton : object
735
+ A singleton object. The returned pattern is constructed so that
736
+ all objects inside the datatype are set to the singleton.
737
+ """
738
+ obj = object()
739
+
740
+ dt = np.dtype([('b', 'O', (2, 3))])
741
+ p = ([[obj] * 3] * 2,)
742
+ yield pytest.param(dt, p, 6, obj, id="<subarray>")
743
+
744
+ dt = np.dtype([('a', 'i4'), ('b', 'O', (2, 3))])
745
+ p = (0, [[obj] * 3] * 2)
746
+ yield pytest.param(dt, p, 6, obj, id="<subarray in field>")
747
+
748
+ dt = np.dtype([('a', 'i4'),
749
+ ('b', [('ba', 'O'), ('bb', 'i1')], (2, 3))])
750
+ p = (0, [[(obj, 0)] * 3] * 2)
751
+ yield pytest.param(dt, p, 6, obj, id="<structured subarray 1>")
752
+
753
+ dt = np.dtype([('a', 'i4'),
754
+ ('b', [('ba', 'O'), ('bb', 'O')], (2, 3))])
755
+ p = (0, [[(obj, obj)] * 3] * 2)
756
+ yield pytest.param(dt, p, 12, obj, id="<structured subarray 2>")
757
+
758
+
759
+ @pytest.mark.skipif(
760
+ sys.version_info >= (3, 12),
761
+ reason="Python 3.12 has immortal refcounts, this test will no longer "
762
+ "work. See gh-23986"
763
+ )
764
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
765
+ class TestStructuredObjectRefcounting:
766
+ """These tests cover various uses of complicated structured types which
767
+ include objects and thus require reference counting.
768
+ """
769
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
770
+ iter_struct_object_dtypes())
771
+ @pytest.mark.parametrize(["creation_func", "creation_obj"], [
772
+ pytest.param(np.empty, None,
773
+ # None is probably used for too many things
774
+ marks=pytest.mark.skip("unreliable due to python's behaviour")),
775
+ (np.ones, 1),
776
+ (np.zeros, 0)])
777
+ def test_structured_object_create_delete(self, dt, pat, count, singleton,
778
+ creation_func, creation_obj):
779
+ """Structured object reference counting in creation and deletion"""
780
+ # The test assumes that 0, 1, and None are singletons.
781
+ gc.collect()
782
+ before = sys.getrefcount(creation_obj)
783
+ arr = creation_func(3, dt)
784
+
785
+ now = sys.getrefcount(creation_obj)
786
+ assert now - before == count * 3
787
+ del arr
788
+ now = sys.getrefcount(creation_obj)
789
+ assert now == before
790
+
791
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
792
+ iter_struct_object_dtypes())
793
+ def test_structured_object_item_setting(self, dt, pat, count, singleton):
794
+ """Structured object reference counting for simple item setting"""
795
+ one = 1
796
+
797
+ gc.collect()
798
+ before = sys.getrefcount(singleton)
799
+ arr = np.array([pat] * 3, dt)
800
+ assert sys.getrefcount(singleton) - before == count * 3
801
+ # Fill with `1` and check that it was replaced correctly:
802
+ before2 = sys.getrefcount(one)
803
+ arr[...] = one
804
+ after2 = sys.getrefcount(one)
805
+ assert after2 - before2 == count * 3
806
+ del arr
807
+ gc.collect()
808
+ assert sys.getrefcount(one) == before2
809
+ assert sys.getrefcount(singleton) == before
810
+
811
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
812
+ iter_struct_object_dtypes())
813
+ @pytest.mark.parametrize(
814
+ ['shape', 'index', 'items_changed'],
815
+ [((3,), ([0, 2],), 2),
816
+ ((3, 2), ([0, 2], slice(None)), 4),
817
+ ((3, 2), ([0, 2], [1]), 2),
818
+ ((3,), ([True, False, True]), 2)])
819
+ def test_structured_object_indexing(self, shape, index, items_changed,
820
+ dt, pat, count, singleton):
821
+ """Structured object reference counting for advanced indexing."""
822
+ # Use two small negative values (should be singletons, but less likely
823
+ # to run into race-conditions). This failed in some threaded envs
824
+ # When using 0 and 1. If it fails again, should remove all explicit
825
+ # checks, and rely on `pytest-leaks` reference count checker only.
826
+ val0 = -4
827
+ val1 = -5
828
+
829
+ arr = np.full(shape, val0, dt)
830
+
831
+ gc.collect()
832
+ before_val0 = sys.getrefcount(val0)
833
+ before_val1 = sys.getrefcount(val1)
834
+ # Test item getting:
835
+ part = arr[index]
836
+ after_val0 = sys.getrefcount(val0)
837
+ assert after_val0 - before_val0 == count * items_changed
838
+ del part
839
+ # Test item setting:
840
+ arr[index] = val1
841
+ gc.collect()
842
+ after_val0 = sys.getrefcount(val0)
843
+ after_val1 = sys.getrefcount(val1)
844
+ assert before_val0 - after_val0 == count * items_changed
845
+ assert after_val1 - before_val1 == count * items_changed
846
+
847
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
848
+ iter_struct_object_dtypes())
849
+ def test_structured_object_take_and_repeat(self, dt, pat, count, singleton):
850
+ """Structured object reference counting for specialized functions.
851
+ The older functions such as take and repeat use different code paths
852
+ then item setting (when writing this).
853
+ """
854
+ indices = [0, 1]
855
+
856
+ arr = np.array([pat] * 3, dt)
857
+ gc.collect()
858
+ before = sys.getrefcount(singleton)
859
+ res = arr.take(indices)
860
+ after = sys.getrefcount(singleton)
861
+ assert after - before == count * 2
862
+ new = res.repeat(10)
863
+ gc.collect()
864
+ after_repeat = sys.getrefcount(singleton)
865
+ assert after_repeat - after == count * 2 * 10
866
+
867
+
868
+ class TestStructuredDtypeSparseFields:
869
+ """Tests subarray fields which contain sparse dtypes so that
870
+ not all memory is used by the dtype work. Such dtype's should
871
+ leave the underlying memory unchanged.
872
+ """
873
+ dtype = np.dtype([('a', {'names':['aa', 'ab'], 'formats':['f', 'f'],
874
+ 'offsets':[0, 4]}, (2, 3))])
875
+ sparse_dtype = np.dtype([('a', {'names':['ab'], 'formats':['f'],
876
+ 'offsets':[4]}, (2, 3))])
877
+
878
+ def test_sparse_field_assignment(self):
879
+ arr = np.zeros(3, self.dtype)
880
+ sparse_arr = arr.view(self.sparse_dtype)
881
+
882
+ sparse_arr[...] = np.finfo(np.float32).max
883
+ # dtype is reduced when accessing the field, so shape is (3, 2, 3):
884
+ assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
885
+
886
+ def test_sparse_field_assignment_fancy(self):
887
+ # Fancy assignment goes to the copyswap function for complex types:
888
+ arr = np.zeros(3, self.dtype)
889
+ sparse_arr = arr.view(self.sparse_dtype)
890
+
891
+ sparse_arr[[0, 1, 2]] = np.finfo(np.float32).max
892
+ # dtype is reduced when accessing the field, so shape is (3, 2, 3):
893
+ assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
894
+
895
+
896
+ class TestMonsterType:
897
+ """Test deeply nested subtypes."""
898
+
899
+ def test1(self):
900
+ simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
901
+ 'titles': ['Red pixel', 'Blue pixel']})
902
+ a = np.dtype([('yo', int), ('ye', simple1),
903
+ ('yi', np.dtype((int, (3, 2))))])
904
+ b = np.dtype([('yo', int), ('ye', simple1),
905
+ ('yi', np.dtype((int, (3, 2))))])
906
+ assert_dtype_equal(a, b)
907
+
908
+ c = np.dtype([('yo', int), ('ye', simple1),
909
+ ('yi', np.dtype((a, (3, 2))))])
910
+ d = np.dtype([('yo', int), ('ye', simple1),
911
+ ('yi', np.dtype((a, (3, 2))))])
912
+ assert_dtype_equal(c, d)
913
+
914
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
915
+ def test_list_recursion(self):
916
+ l = list()
917
+ l.append(('f', l))
918
+ with pytest.raises(RecursionError):
919
+ np.dtype(l)
920
+
921
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
922
+ def test_tuple_recursion(self):
923
+ d = np.int32
924
+ for i in range(100000):
925
+ d = (d, (1,))
926
+ with pytest.raises(RecursionError):
927
+ np.dtype(d)
928
+
929
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
930
+ def test_dict_recursion(self):
931
+ d = dict(names=['self'], formats=[None], offsets=[0])
932
+ d['formats'][0] = d
933
+ with pytest.raises(RecursionError):
934
+ np.dtype(d)
935
+
936
+
937
+ class TestMetadata:
938
+ def test_no_metadata(self):
939
+ d = np.dtype(int)
940
+ assert_(d.metadata is None)
941
+
942
+ def test_metadata_takes_dict(self):
943
+ d = np.dtype(int, metadata={'datum': 1})
944
+ assert_(d.metadata == {'datum': 1})
945
+
946
+ def test_metadata_rejects_nondict(self):
947
+ assert_raises(TypeError, np.dtype, int, metadata='datum')
948
+ assert_raises(TypeError, np.dtype, int, metadata=1)
949
+ assert_raises(TypeError, np.dtype, int, metadata=None)
950
+
951
+ def test_nested_metadata(self):
952
+ d = np.dtype([('a', np.dtype(int, metadata={'datum': 1}))])
953
+ assert_(d['a'].metadata == {'datum': 1})
954
+
955
+ def test_base_metadata_copied(self):
956
+ d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1})))
957
+ assert_(d.metadata == {'datum': 1})
958
+
959
+ class TestString:
960
+ def test_complex_dtype_str(self):
961
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
962
+ ('rtile', '>f4', (64, 36))], (3,)),
963
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
964
+ ('bright', '>f4', (8, 36))])])
965
+ assert_equal(str(dt),
966
+ "[('top', [('tiles', ('>f4', (64, 64)), (1,)), "
967
+ "('rtile', '>f4', (64, 36))], (3,)), "
968
+ "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
969
+ "('bright', '>f4', (8, 36))])]")
970
+
971
+ # If the sticky aligned flag is set to True, it makes the
972
+ # str() function use a dict representation with an 'aligned' flag
973
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
974
+ ('rtile', '>f4', (64, 36))],
975
+ (3,)),
976
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
977
+ ('bright', '>f4', (8, 36))])],
978
+ align=True)
979
+ assert_equal(str(dt),
980
+ "{'names': ['top', 'bottom'],"
981
+ " 'formats': [([('tiles', ('>f4', (64, 64)), (1,)), "
982
+ "('rtile', '>f4', (64, 36))], (3,)), "
983
+ "[('bleft', ('>f4', (8, 64)), (1,)), "
984
+ "('bright', '>f4', (8, 36))]],"
985
+ " 'offsets': [0, 76800],"
986
+ " 'itemsize': 80000,"
987
+ " 'aligned': True}")
988
+ with np.printoptions(legacy='1.21'):
989
+ assert_equal(str(dt),
990
+ "{'names':['top','bottom'], "
991
+ "'formats':[([('tiles', ('>f4', (64, 64)), (1,)), "
992
+ "('rtile', '>f4', (64, 36))], (3,)),"
993
+ "[('bleft', ('>f4', (8, 64)), (1,)), "
994
+ "('bright', '>f4', (8, 36))]], "
995
+ "'offsets':[0,76800], "
996
+ "'itemsize':80000, "
997
+ "'aligned':True}")
998
+ assert_equal(np.dtype(eval(str(dt))), dt)
999
+
1000
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
1001
+ 'offsets': [0, 1, 2],
1002
+ 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']})
1003
+ assert_equal(str(dt),
1004
+ "[(('Red pixel', 'r'), 'u1'), "
1005
+ "(('Green pixel', 'g'), 'u1'), "
1006
+ "(('Blue pixel', 'b'), 'u1')]")
1007
+
1008
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
1009
+ 'formats': ['<u4', 'u1', 'u1', 'u1'],
1010
+ 'offsets': [0, 0, 1, 2],
1011
+ 'titles': ['Color', 'Red pixel',
1012
+ 'Green pixel', 'Blue pixel']})
1013
+ assert_equal(str(dt),
1014
+ "{'names': ['rgba', 'r', 'g', 'b'],"
1015
+ " 'formats': ['<u4', 'u1', 'u1', 'u1'],"
1016
+ " 'offsets': [0, 0, 1, 2],"
1017
+ " 'titles': ['Color', 'Red pixel', "
1018
+ "'Green pixel', 'Blue pixel'],"
1019
+ " 'itemsize': 4}")
1020
+
1021
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
1022
+ 'offsets': [0, 2],
1023
+ 'titles': ['Red pixel', 'Blue pixel']})
1024
+ assert_equal(str(dt),
1025
+ "{'names': ['r', 'b'],"
1026
+ " 'formats': ['u1', 'u1'],"
1027
+ " 'offsets': [0, 2],"
1028
+ " 'titles': ['Red pixel', 'Blue pixel'],"
1029
+ " 'itemsize': 3}")
1030
+
1031
+ dt = np.dtype([('a', '<m8[D]'), ('b', '<M8[us]')])
1032
+ assert_equal(str(dt),
1033
+ "[('a', '<m8[D]'), ('b', '<M8[us]')]")
1034
+
1035
+ def test_repr_structured(self):
1036
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
1037
+ ('rtile', '>f4', (64, 36))], (3,)),
1038
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
1039
+ ('bright', '>f4', (8, 36))])])
1040
+ assert_equal(repr(dt),
1041
+ "dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), "
1042
+ "('rtile', '>f4', (64, 36))], (3,)), "
1043
+ "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
1044
+ "('bright', '>f4', (8, 36))])])")
1045
+
1046
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
1047
+ 'offsets': [0, 1, 2],
1048
+ 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']},
1049
+ align=True)
1050
+ assert_equal(repr(dt),
1051
+ "dtype([(('Red pixel', 'r'), 'u1'), "
1052
+ "(('Green pixel', 'g'), 'u1'), "
1053
+ "(('Blue pixel', 'b'), 'u1')], align=True)")
1054
+
1055
+ def test_repr_structured_not_packed(self):
1056
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
1057
+ 'formats': ['<u4', 'u1', 'u1', 'u1'],
1058
+ 'offsets': [0, 0, 1, 2],
1059
+ 'titles': ['Color', 'Red pixel',
1060
+ 'Green pixel', 'Blue pixel']}, align=True)
1061
+ assert_equal(repr(dt),
1062
+ "dtype({'names': ['rgba', 'r', 'g', 'b'],"
1063
+ " 'formats': ['<u4', 'u1', 'u1', 'u1'],"
1064
+ " 'offsets': [0, 0, 1, 2],"
1065
+ " 'titles': ['Color', 'Red pixel', "
1066
+ "'Green pixel', 'Blue pixel'],"
1067
+ " 'itemsize': 4}, align=True)")
1068
+
1069
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
1070
+ 'offsets': [0, 2],
1071
+ 'titles': ['Red pixel', 'Blue pixel'],
1072
+ 'itemsize': 4})
1073
+ assert_equal(repr(dt),
1074
+ "dtype({'names': ['r', 'b'], "
1075
+ "'formats': ['u1', 'u1'], "
1076
+ "'offsets': [0, 2], "
1077
+ "'titles': ['Red pixel', 'Blue pixel'], "
1078
+ "'itemsize': 4})")
1079
+
1080
+ def test_repr_structured_datetime(self):
1081
+ dt = np.dtype([('a', '<M8[D]'), ('b', '<m8[us]')])
1082
+ assert_equal(repr(dt),
1083
+ "dtype([('a', '<M8[D]'), ('b', '<m8[us]')])")
1084
+
1085
+ def test_repr_str_subarray(self):
1086
+ dt = np.dtype(('<i2', (1,)))
1087
+ assert_equal(repr(dt), "dtype(('<i2', (1,)))")
1088
+ assert_equal(str(dt), "('<i2', (1,))")
1089
+
1090
+ def test_base_dtype_with_object_type(self):
1091
+ # Issue gh-2798, should not error.
1092
+ np.array(['a'], dtype="O").astype(("O", [("name", "O")]))
1093
+
1094
+ def test_empty_string_to_object(self):
1095
+ # Pull request #4722
1096
+ np.array(["", ""]).astype(object)
1097
+
1098
+ def test_void_subclass_unsized(self):
1099
+ dt = np.dtype(np.record)
1100
+ assert_equal(repr(dt), "dtype('V')")
1101
+ assert_equal(str(dt), '|V0')
1102
+ assert_equal(dt.name, 'record')
1103
+
1104
+ def test_void_subclass_sized(self):
1105
+ dt = np.dtype((np.record, 2))
1106
+ assert_equal(repr(dt), "dtype('V2')")
1107
+ assert_equal(str(dt), '|V2')
1108
+ assert_equal(dt.name, 'record16')
1109
+
1110
+ def test_void_subclass_fields(self):
1111
+ dt = np.dtype((np.record, [('a', '<u2')]))
1112
+ assert_equal(repr(dt), "dtype((numpy.record, [('a', '<u2')]))")
1113
+ assert_equal(str(dt), "(numpy.record, [('a', '<u2')])")
1114
+ assert_equal(dt.name, 'record16')
1115
+
1116
+
1117
+ class TestDtypeAttributeDeletion:
1118
+
1119
+ def test_dtype_non_writable_attributes_deletion(self):
1120
+ dt = np.dtype(np.double)
1121
+ attr = ["subdtype", "descr", "str", "name", "base", "shape",
1122
+ "isbuiltin", "isnative", "isalignedstruct", "fields",
1123
+ "metadata", "hasobject"]
1124
+
1125
+ for s in attr:
1126
+ assert_raises(AttributeError, delattr, dt, s)
1127
+
1128
+ def test_dtype_writable_attributes_deletion(self):
1129
+ dt = np.dtype(np.double)
1130
+ attr = ["names"]
1131
+ for s in attr:
1132
+ assert_raises(AttributeError, delattr, dt, s)
1133
+
1134
+
1135
+ class TestDtypeAttributes:
1136
+ def test_descr_has_trailing_void(self):
1137
+ # see gh-6359
1138
+ dtype = np.dtype({
1139
+ 'names': ['A', 'B'],
1140
+ 'formats': ['f4', 'f4'],
1141
+ 'offsets': [0, 8],
1142
+ 'itemsize': 16})
1143
+ new_dtype = np.dtype(dtype.descr)
1144
+ assert_equal(new_dtype.itemsize, 16)
1145
+
1146
+ def test_name_dtype_subclass(self):
1147
+ # Ticket #4357
1148
+ class user_def_subcls(np.void):
1149
+ pass
1150
+ assert_equal(np.dtype(user_def_subcls).name, 'user_def_subcls')
1151
+
1152
+ def test_zero_stride(self):
1153
+ arr = np.ones(1, dtype="i8")
1154
+ arr = np.broadcast_to(arr, 10)
1155
+ assert arr.strides == (0,)
1156
+ with pytest.raises(ValueError):
1157
+ arr.dtype = "i1"
1158
+
1159
+ class TestDTypeMakeCanonical:
1160
+ def check_canonical(self, dtype, canonical):
1161
+ """
1162
+ Check most properties relevant to "canonical" versions of a dtype,
1163
+ which is mainly native byte order for datatypes supporting this.
1164
+
1165
+ The main work is checking structured dtypes with fields, where we
1166
+ reproduce most the actual logic used in the C-code.
1167
+ """
1168
+ assert type(dtype) is type(canonical)
1169
+
1170
+ # a canonical DType should always have equivalent casting (both ways)
1171
+ assert np.can_cast(dtype, canonical, casting="equiv")
1172
+ assert np.can_cast(canonical, dtype, casting="equiv")
1173
+ # a canonical dtype (and its fields) is always native (checks fields):
1174
+ assert canonical.isnative
1175
+
1176
+ # Check that canonical of canonical is the same (no casting):
1177
+ assert np.result_type(canonical) == canonical
1178
+
1179
+ if not dtype.names:
1180
+ # The flags currently never change for unstructured dtypes
1181
+ assert dtype.flags == canonical.flags
1182
+ return
1183
+
1184
+ # Must have all the needs API flag set:
1185
+ assert dtype.flags & 0b10000
1186
+
1187
+ # Check that the fields are identical (including titles):
1188
+ assert dtype.fields.keys() == canonical.fields.keys()
1189
+
1190
+ def aligned_offset(offset, alignment):
1191
+ # round up offset:
1192
+ return - (-offset // alignment) * alignment
1193
+
1194
+ totalsize = 0
1195
+ max_alignment = 1
1196
+ for name in dtype.names:
1197
+ # each field is also canonical:
1198
+ new_field_descr = canonical.fields[name][0]
1199
+ self.check_canonical(dtype.fields[name][0], new_field_descr)
1200
+
1201
+ # Must have the "inherited" object related flags:
1202
+ expected = 0b11011 & new_field_descr.flags
1203
+ assert (canonical.flags & expected) == expected
1204
+
1205
+ if canonical.isalignedstruct:
1206
+ totalsize = aligned_offset(totalsize, new_field_descr.alignment)
1207
+ max_alignment = max(new_field_descr.alignment, max_alignment)
1208
+
1209
+ assert canonical.fields[name][1] == totalsize
1210
+ # if a title exists, they must match (otherwise empty tuple):
1211
+ assert dtype.fields[name][2:] == canonical.fields[name][2:]
1212
+
1213
+ totalsize += new_field_descr.itemsize
1214
+
1215
+ if canonical.isalignedstruct:
1216
+ totalsize = aligned_offset(totalsize, max_alignment)
1217
+ assert canonical.itemsize == totalsize
1218
+ assert canonical.alignment == max_alignment
1219
+
1220
+ def test_simple(self):
1221
+ dt = np.dtype(">i4")
1222
+ assert np.result_type(dt).isnative
1223
+ assert np.result_type(dt).num == dt.num
1224
+
1225
+ # dtype with empty space:
1226
+ struct_dt = np.dtype(">i4,<i1,i8,V3")[["f0", "f2"]]
1227
+ canonical = np.result_type(struct_dt)
1228
+ assert canonical.itemsize == 4+8
1229
+ assert canonical.isnative
1230
+
1231
+ # aligned struct dtype with empty space:
1232
+ struct_dt = np.dtype(">i1,<i4,i8,V3", align=True)[["f0", "f2"]]
1233
+ canonical = np.result_type(struct_dt)
1234
+ assert canonical.isalignedstruct
1235
+ assert canonical.itemsize == np.dtype("i8").alignment + 8
1236
+ assert canonical.isnative
1237
+
1238
+ def test_object_flag_not_inherited(self):
1239
+ # The following dtype still indicates "object", because its included
1240
+ # in the unaccessible space (maybe this could change at some point):
1241
+ arr = np.ones(3, "i,O,i")[["f0", "f2"]]
1242
+ assert arr.dtype.hasobject
1243
+ canonical_dt = np.result_type(arr.dtype)
1244
+ assert not canonical_dt.hasobject
1245
+
1246
+ @pytest.mark.slow
1247
+ @hypothesis.given(dtype=hynp.nested_dtypes())
1248
+ def test_make_canonical_hypothesis(self, dtype):
1249
+ canonical = np.result_type(dtype)
1250
+ self.check_canonical(dtype, canonical)
1251
+ # result_type with two arguments should always give identical results:
1252
+ two_arg_result = np.result_type(dtype, dtype)
1253
+ assert np.can_cast(two_arg_result, canonical, casting="no")
1254
+
1255
+ @pytest.mark.slow
1256
+ @hypothesis.given(
1257
+ dtype=hypothesis.extra.numpy.array_dtypes(
1258
+ subtype_strategy=hypothesis.extra.numpy.array_dtypes(),
1259
+ min_size=5, max_size=10, allow_subarrays=True))
1260
+ def test_structured(self, dtype):
1261
+ # Pick 4 of the fields at random. This will leave empty space in the
1262
+ # dtype (since we do not canonicalize it here).
1263
+ field_subset = random.sample(dtype.names, k=4)
1264
+ dtype_with_empty_space = dtype[field_subset]
1265
+ assert dtype_with_empty_space.itemsize == dtype.itemsize
1266
+ canonicalized = np.result_type(dtype_with_empty_space)
1267
+ self.check_canonical(dtype_with_empty_space, canonicalized)
1268
+ # promotion with two arguments should always give identical results:
1269
+ two_arg_result = np.promote_types(
1270
+ dtype_with_empty_space, dtype_with_empty_space)
1271
+ assert np.can_cast(two_arg_result, canonicalized, casting="no")
1272
+
1273
+ # Ensure that we also check aligned struct (check the opposite, in
1274
+ # case hypothesis grows support for `align`. Then repeat the test:
1275
+ dtype_aligned = np.dtype(dtype.descr, align=not dtype.isalignedstruct)
1276
+ dtype_with_empty_space = dtype_aligned[field_subset]
1277
+ assert dtype_with_empty_space.itemsize == dtype_aligned.itemsize
1278
+ canonicalized = np.result_type(dtype_with_empty_space)
1279
+ self.check_canonical(dtype_with_empty_space, canonicalized)
1280
+ # promotion with two arguments should always give identical results:
1281
+ two_arg_result = np.promote_types(
1282
+ dtype_with_empty_space, dtype_with_empty_space)
1283
+ assert np.can_cast(two_arg_result, canonicalized, casting="no")
1284
+
1285
+
1286
+ class TestPickling:
1287
+
1288
+ def check_pickling(self, dtype):
1289
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
1290
+ buf = pickle.dumps(dtype, proto)
1291
+ # The dtype pickling itself pickles `np.dtype` if it is pickled
1292
+ # as a singleton `dtype` should be stored in the buffer:
1293
+ assert b"_DType_reconstruct" not in buf
1294
+ assert b"dtype" in buf
1295
+ pickled = pickle.loads(buf)
1296
+ assert_equal(pickled, dtype)
1297
+ assert_equal(pickled.descr, dtype.descr)
1298
+ if dtype.metadata is not None:
1299
+ assert_equal(pickled.metadata, dtype.metadata)
1300
+ # Check the reconstructed dtype is functional
1301
+ x = np.zeros(3, dtype=dtype)
1302
+ y = np.zeros(3, dtype=pickled)
1303
+ assert_equal(x, y)
1304
+ assert_equal(x[0], y[0])
1305
+
1306
+ @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object,
1307
+ np.compat.unicode, bool])
1308
+ def test_builtin(self, t):
1309
+ self.check_pickling(np.dtype(t))
1310
+
1311
+ def test_structured(self):
1312
+ dt = np.dtype(([('a', '>f4', (2, 1)), ('b', '<f8', (1, 3))], (2, 2)))
1313
+ self.check_pickling(dt)
1314
+
1315
+ def test_structured_aligned(self):
1316
+ dt = np.dtype('i4, i1', align=True)
1317
+ self.check_pickling(dt)
1318
+
1319
+ def test_structured_unaligned(self):
1320
+ dt = np.dtype('i4, i1', align=False)
1321
+ self.check_pickling(dt)
1322
+
1323
+ def test_structured_padded(self):
1324
+ dt = np.dtype({
1325
+ 'names': ['A', 'B'],
1326
+ 'formats': ['f4', 'f4'],
1327
+ 'offsets': [0, 8],
1328
+ 'itemsize': 16})
1329
+ self.check_pickling(dt)
1330
+
1331
+ def test_structured_titles(self):
1332
+ dt = np.dtype({'names': ['r', 'b'],
1333
+ 'formats': ['u1', 'u1'],
1334
+ 'titles': ['Red pixel', 'Blue pixel']})
1335
+ self.check_pickling(dt)
1336
+
1337
+ @pytest.mark.parametrize('base', ['m8', 'M8'])
1338
+ @pytest.mark.parametrize('unit', ['', 'Y', 'M', 'W', 'D', 'h', 'm', 's',
1339
+ 'ms', 'us', 'ns', 'ps', 'fs', 'as'])
1340
+ def test_datetime(self, base, unit):
1341
+ dt = np.dtype('%s[%s]' % (base, unit) if unit else base)
1342
+ self.check_pickling(dt)
1343
+ if unit:
1344
+ dt = np.dtype('%s[7%s]' % (base, unit))
1345
+ self.check_pickling(dt)
1346
+
1347
+ def test_metadata(self):
1348
+ dt = np.dtype(int, metadata={'datum': 1})
1349
+ self.check_pickling(dt)
1350
+
1351
+ @pytest.mark.parametrize("DType",
1352
+ [type(np.dtype(t)) for t in np.typecodes['All']] +
1353
+ [np.dtype(rational), np.dtype])
1354
+ def test_pickle_types(self, DType):
1355
+ # Check that DTypes (the classes/types) roundtrip when pickling
1356
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
1357
+ roundtrip_DType = pickle.loads(pickle.dumps(DType, proto))
1358
+ assert roundtrip_DType is DType
1359
+
1360
+
1361
+ class TestPromotion:
1362
+ """Test cases related to more complex DType promotions. Further promotion
1363
+ tests are defined in `test_numeric.py`
1364
+ """
1365
+ @np._no_nep50_warning()
1366
+ @pytest.mark.parametrize(["other", "expected", "expected_weak"],
1367
+ [(2**16-1, np.complex64, None),
1368
+ (2**32-1, np.complex128, np.complex64),
1369
+ (np.float16(2), np.complex64, None),
1370
+ (np.float32(2), np.complex64, None),
1371
+ (np.longdouble(2), np.complex64, np.clongdouble),
1372
+ # Base of the double value to sidestep any rounding issues:
1373
+ (np.longdouble(np.nextafter(1.7e308, 0.)),
1374
+ np.complex128, np.clongdouble),
1375
+ # Additionally use "nextafter" so the cast can't round down:
1376
+ (np.longdouble(np.nextafter(1.7e308, np.inf)),
1377
+ np.clongdouble, None),
1378
+ # repeat for complex scalars:
1379
+ (np.complex64(2), np.complex64, None),
1380
+ (np.clongdouble(2), np.complex64, np.clongdouble),
1381
+ # Base of the double value to sidestep any rounding issues:
1382
+ (np.clongdouble(np.nextafter(1.7e308, 0.) * 1j),
1383
+ np.complex128, np.clongdouble),
1384
+ # Additionally use "nextafter" so the cast can't round down:
1385
+ (np.clongdouble(np.nextafter(1.7e308, np.inf)),
1386
+ np.clongdouble, None),
1387
+ ])
1388
+ def test_complex_other_value_based(self,
1389
+ weak_promotion, other, expected, expected_weak):
1390
+ if weak_promotion and expected_weak is not None:
1391
+ expected = expected_weak
1392
+
1393
+ # This would change if we modify the value based promotion
1394
+ min_complex = np.dtype(np.complex64)
1395
+
1396
+ res = np.result_type(other, min_complex)
1397
+ assert res == expected
1398
+ # Check the same for a simple ufunc call that uses the same logic:
1399
+ res = np.minimum(other, np.ones(3, dtype=min_complex)).dtype
1400
+ assert res == expected
1401
+
1402
+ @pytest.mark.parametrize(["other", "expected"],
1403
+ [(np.bool_, np.complex128),
1404
+ (np.int64, np.complex128),
1405
+ (np.float16, np.complex64),
1406
+ (np.float32, np.complex64),
1407
+ (np.float64, np.complex128),
1408
+ (np.longdouble, np.clongdouble),
1409
+ (np.complex64, np.complex64),
1410
+ (np.complex128, np.complex128),
1411
+ (np.clongdouble, np.clongdouble),
1412
+ ])
1413
+ def test_complex_scalar_value_based(self, other, expected):
1414
+ # This would change if we modify the value based promotion
1415
+ complex_scalar = 1j
1416
+
1417
+ res = np.result_type(other, complex_scalar)
1418
+ assert res == expected
1419
+ # Check the same for a simple ufunc call that uses the same logic:
1420
+ res = np.minimum(np.ones(3, dtype=other), complex_scalar).dtype
1421
+ assert res == expected
1422
+
1423
+ def test_complex_pyscalar_promote_rational(self):
1424
+ with pytest.raises(TypeError,
1425
+ match=r".* no common DType exists for the given inputs"):
1426
+ np.result_type(1j, rational)
1427
+
1428
+ with pytest.raises(TypeError,
1429
+ match=r".* no common DType exists for the given inputs"):
1430
+ np.result_type(1j, rational(1, 2))
1431
+
1432
+ @pytest.mark.parametrize("val", [2, 2**32, 2**63, 2**64, 2*100])
1433
+ def test_python_integer_promotion(self, val):
1434
+ # If we only path scalars (mainly python ones!), the result must take
1435
+ # into account that the integer may be considered int32, int64, uint64,
1436
+ # or object depending on the input value. So test those paths!
1437
+ expected_dtype = np.result_type(np.array(val).dtype, np.array(0).dtype)
1438
+ assert np.result_type(val, 0) == expected_dtype
1439
+ # For completeness sake, also check with a NumPy scalar as second arg:
1440
+ assert np.result_type(val, np.int8(0)) == expected_dtype
1441
+
1442
+ @pytest.mark.parametrize(["other", "expected"],
1443
+ [(1, rational), (1., np.float64)])
1444
+ @np._no_nep50_warning()
1445
+ def test_float_int_pyscalar_promote_rational(
1446
+ self, weak_promotion, other, expected):
1447
+ # Note that rationals are a bit akward as they promote with float64
1448
+ # or default ints, but not float16 or uint8/int8 (which looks
1449
+ # inconsistent here). The new promotion fixes this (partially?)
1450
+ if not weak_promotion and type(other) == float:
1451
+ # The float version, checks float16 in the legacy path, which fails
1452
+ # the integer version seems to check int8 (also), so it can
1453
+ # pass.
1454
+ with pytest.raises(TypeError,
1455
+ match=r".* do not have a common DType"):
1456
+ np.result_type(other, rational)
1457
+ else:
1458
+ assert np.result_type(other, rational) == expected
1459
+
1460
+ assert np.result_type(other, rational(1, 2)) == expected
1461
+
1462
+ @pytest.mark.parametrize(["dtypes", "expected"], [
1463
+ # These promotions are not associative/commutative:
1464
+ ([np.uint16, np.int16, np.float16], np.float32),
1465
+ ([np.uint16, np.int8, np.float16], np.float32),
1466
+ ([np.uint8, np.int16, np.float16], np.float32),
1467
+ # The following promotions are not ambiguous, but cover code
1468
+ # paths of abstract promotion (no particular logic being tested)
1469
+ ([1, 1, np.float64], np.float64),
1470
+ ([1, 1., np.complex128], np.complex128),
1471
+ ([1, 1j, np.float64], np.complex128),
1472
+ ([1., 1., np.int64], np.float64),
1473
+ ([1., 1j, np.float64], np.complex128),
1474
+ ([1j, 1j, np.float64], np.complex128),
1475
+ ([1, True, np.bool_], np.int_),
1476
+ ])
1477
+ def test_permutations_do_not_influence_result(self, dtypes, expected):
1478
+ # Tests that most permutations do not influence the result. In the
1479
+ # above some uint and int combintations promote to a larger integer
1480
+ # type, which would then promote to a larger than necessary float.
1481
+ for perm in permutations(dtypes):
1482
+ assert np.result_type(*perm) == expected
1483
+
1484
+
1485
+ def test_rational_dtype():
1486
+ # test for bug gh-5719
1487
+ a = np.array([1111], dtype=rational).astype
1488
+ assert_raises(OverflowError, a, 'int8')
1489
+
1490
+ # test that dtype detection finds user-defined types
1491
+ x = rational(1)
1492
+ assert_equal(np.array([x,x]).dtype, np.dtype(rational))
1493
+
1494
+
1495
+ def test_dtypes_are_true():
1496
+ # test for gh-6294
1497
+ assert bool(np.dtype('f8'))
1498
+ assert bool(np.dtype('i8'))
1499
+ assert bool(np.dtype([('a', 'i8'), ('b', 'f4')]))
1500
+
1501
+
1502
+ def test_invalid_dtype_string():
1503
+ # test for gh-10440
1504
+ assert_raises(TypeError, np.dtype, 'f8,i8,[f8,i8]')
1505
+ assert_raises(TypeError, np.dtype, 'Fl\xfcgel')
1506
+
1507
+
1508
+ def test_keyword_argument():
1509
+ # test for https://github.com/numpy/numpy/pull/16574#issuecomment-642660971
1510
+ assert np.dtype(dtype=np.float64) == np.dtype(np.float64)
1511
+
1512
+
1513
+ def test_ulong_dtype():
1514
+ # test for gh-21063
1515
+ assert np.dtype("ulong") == np.dtype(np.uint)
1516
+
1517
+
1518
+ class TestFromDTypeAttribute:
1519
+ def test_simple(self):
1520
+ class dt:
1521
+ dtype = np.dtype("f8")
1522
+
1523
+ assert np.dtype(dt) == np.float64
1524
+ assert np.dtype(dt()) == np.float64
1525
+
1526
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
1527
+ def test_recursion(self):
1528
+ class dt:
1529
+ pass
1530
+
1531
+ dt.dtype = dt
1532
+ with pytest.raises(RecursionError):
1533
+ np.dtype(dt)
1534
+
1535
+ dt_instance = dt()
1536
+ dt_instance.dtype = dt
1537
+ with pytest.raises(RecursionError):
1538
+ np.dtype(dt_instance)
1539
+
1540
+ def test_void_subtype(self):
1541
+ class dt(np.void):
1542
+ # This code path is fully untested before, so it is unclear
1543
+ # what this should be useful for. Note that if np.void is used
1544
+ # numpy will think we are deallocating a base type [1.17, 2019-02].
1545
+ dtype = np.dtype("f,f")
1546
+
1547
+ np.dtype(dt)
1548
+ np.dtype(dt(1))
1549
+
1550
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
1551
+ def test_void_subtype_recursion(self):
1552
+ class vdt(np.void):
1553
+ pass
1554
+
1555
+ vdt.dtype = vdt
1556
+
1557
+ with pytest.raises(RecursionError):
1558
+ np.dtype(vdt)
1559
+
1560
+ with pytest.raises(RecursionError):
1561
+ np.dtype(vdt(1))
1562
+
1563
+
1564
+ class TestDTypeClasses:
1565
+ @pytest.mark.parametrize("dtype", list(np.typecodes['All']) + [rational])
1566
+ def test_basic_dtypes_subclass_properties(self, dtype):
1567
+ # Note: Except for the isinstance and type checks, these attributes
1568
+ # are considered currently private and may change.
1569
+ dtype = np.dtype(dtype)
1570
+ assert isinstance(dtype, np.dtype)
1571
+ assert type(dtype) is not np.dtype
1572
+ if dtype.type.__name__ != "rational":
1573
+ dt_name = type(dtype).__name__.lower().removesuffix("dtype")
1574
+ if dt_name == "uint" or dt_name == "int":
1575
+ # The scalar names has a `c` attached because "int" is Python
1576
+ # int and that is long...
1577
+ dt_name += "c"
1578
+ sc_name = dtype.type.__name__
1579
+ assert dt_name == sc_name.strip("_")
1580
+ assert type(dtype).__module__ == "numpy.dtypes"
1581
+
1582
+ assert getattr(numpy.dtypes, type(dtype).__name__) is type(dtype)
1583
+ else:
1584
+ assert type(dtype).__name__ == "dtype[rational]"
1585
+ assert type(dtype).__module__ == "numpy"
1586
+
1587
+ assert not type(dtype)._abstract
1588
+
1589
+ # the flexible dtypes and datetime/timedelta have additional parameters
1590
+ # which are more than just storage information, these would need to be
1591
+ # given when creating a dtype:
1592
+ parametric = (np.void, np.str_, np.bytes_, np.datetime64, np.timedelta64)
1593
+ if dtype.type not in parametric:
1594
+ assert not type(dtype)._parametric
1595
+ assert type(dtype)() is dtype
1596
+ else:
1597
+ assert type(dtype)._parametric
1598
+ with assert_raises(TypeError):
1599
+ type(dtype)()
1600
+
1601
+ def test_dtype_superclass(self):
1602
+ assert type(np.dtype) is not type
1603
+ assert isinstance(np.dtype, type)
1604
+
1605
+ assert type(np.dtype).__name__ == "_DTypeMeta"
1606
+ assert type(np.dtype).__module__ == "numpy"
1607
+ assert np.dtype._abstract
1608
+
1609
+ def test_is_numeric(self):
1610
+ all_codes = set(np.typecodes['All'])
1611
+ numeric_codes = set(np.typecodes['AllInteger'] +
1612
+ np.typecodes['AllFloat'] + '?')
1613
+ non_numeric_codes = all_codes - numeric_codes
1614
+
1615
+ for code in numeric_codes:
1616
+ assert type(np.dtype(code))._is_numeric
1617
+
1618
+ for code in non_numeric_codes:
1619
+ assert not type(np.dtype(code))._is_numeric
1620
+
1621
+ @pytest.mark.parametrize("int_", ["UInt", "Int"])
1622
+ @pytest.mark.parametrize("size", [8, 16, 32, 64])
1623
+ def test_integer_alias_names(self, int_, size):
1624
+ DType = getattr(numpy.dtypes, f"{int_}{size}DType")
1625
+ sctype = getattr(numpy, f"{int_.lower()}{size}")
1626
+ assert DType.type is sctype
1627
+ assert DType.__name__.lower().removesuffix("dtype") == sctype.__name__
1628
+
1629
+ @pytest.mark.parametrize("name",
1630
+ ["Half", "Float", "Double", "CFloat", "CDouble"])
1631
+ def test_float_alias_names(self, name):
1632
+ with pytest.raises(AttributeError):
1633
+ getattr(numpy.dtypes, name + "DType") is numpy.dtypes.Float16DType
1634
+
1635
+
1636
+ class TestFromCTypes:
1637
+
1638
+ @staticmethod
1639
+ def check(ctype, dtype):
1640
+ dtype = np.dtype(dtype)
1641
+ assert_equal(np.dtype(ctype), dtype)
1642
+ assert_equal(np.dtype(ctype()), dtype)
1643
+
1644
+ def test_array(self):
1645
+ c8 = ctypes.c_uint8
1646
+ self.check( 3 * c8, (np.uint8, (3,)))
1647
+ self.check( 1 * c8, (np.uint8, (1,)))
1648
+ self.check( 0 * c8, (np.uint8, (0,)))
1649
+ self.check(1 * (3 * c8), ((np.uint8, (3,)), (1,)))
1650
+ self.check(3 * (1 * c8), ((np.uint8, (1,)), (3,)))
1651
+
1652
+ def test_padded_structure(self):
1653
+ class PaddedStruct(ctypes.Structure):
1654
+ _fields_ = [
1655
+ ('a', ctypes.c_uint8),
1656
+ ('b', ctypes.c_uint16)
1657
+ ]
1658
+ expected = np.dtype([
1659
+ ('a', np.uint8),
1660
+ ('b', np.uint16)
1661
+ ], align=True)
1662
+ self.check(PaddedStruct, expected)
1663
+
1664
+ def test_bit_fields(self):
1665
+ class BitfieldStruct(ctypes.Structure):
1666
+ _fields_ = [
1667
+ ('a', ctypes.c_uint8, 7),
1668
+ ('b', ctypes.c_uint8, 1)
1669
+ ]
1670
+ assert_raises(TypeError, np.dtype, BitfieldStruct)
1671
+ assert_raises(TypeError, np.dtype, BitfieldStruct())
1672
+
1673
+ def test_pointer(self):
1674
+ p_uint8 = ctypes.POINTER(ctypes.c_uint8)
1675
+ assert_raises(TypeError, np.dtype, p_uint8)
1676
+
1677
+ def test_void_pointer(self):
1678
+ self.check(ctypes.c_void_p, np.uintp)
1679
+
1680
+ def test_union(self):
1681
+ class Union(ctypes.Union):
1682
+ _fields_ = [
1683
+ ('a', ctypes.c_uint8),
1684
+ ('b', ctypes.c_uint16),
1685
+ ]
1686
+ expected = np.dtype(dict(
1687
+ names=['a', 'b'],
1688
+ formats=[np.uint8, np.uint16],
1689
+ offsets=[0, 0],
1690
+ itemsize=2
1691
+ ))
1692
+ self.check(Union, expected)
1693
+
1694
+ def test_union_with_struct_packed(self):
1695
+ class Struct(ctypes.Structure):
1696
+ _pack_ = 1
1697
+ _fields_ = [
1698
+ ('one', ctypes.c_uint8),
1699
+ ('two', ctypes.c_uint32)
1700
+ ]
1701
+
1702
+ class Union(ctypes.Union):
1703
+ _fields_ = [
1704
+ ('a', ctypes.c_uint8),
1705
+ ('b', ctypes.c_uint16),
1706
+ ('c', ctypes.c_uint32),
1707
+ ('d', Struct),
1708
+ ]
1709
+ expected = np.dtype(dict(
1710
+ names=['a', 'b', 'c', 'd'],
1711
+ formats=['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
1712
+ offsets=[0, 0, 0, 0],
1713
+ itemsize=ctypes.sizeof(Union)
1714
+ ))
1715
+ self.check(Union, expected)
1716
+
1717
+ def test_union_packed(self):
1718
+ class Struct(ctypes.Structure):
1719
+ _fields_ = [
1720
+ ('one', ctypes.c_uint8),
1721
+ ('two', ctypes.c_uint32)
1722
+ ]
1723
+ _pack_ = 1
1724
+ class Union(ctypes.Union):
1725
+ _pack_ = 1
1726
+ _fields_ = [
1727
+ ('a', ctypes.c_uint8),
1728
+ ('b', ctypes.c_uint16),
1729
+ ('c', ctypes.c_uint32),
1730
+ ('d', Struct),
1731
+ ]
1732
+ expected = np.dtype(dict(
1733
+ names=['a', 'b', 'c', 'd'],
1734
+ formats=['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
1735
+ offsets=[0, 0, 0, 0],
1736
+ itemsize=ctypes.sizeof(Union)
1737
+ ))
1738
+ self.check(Union, expected)
1739
+
1740
+ def test_packed_structure(self):
1741
+ class PackedStructure(ctypes.Structure):
1742
+ _pack_ = 1
1743
+ _fields_ = [
1744
+ ('a', ctypes.c_uint8),
1745
+ ('b', ctypes.c_uint16)
1746
+ ]
1747
+ expected = np.dtype([
1748
+ ('a', np.uint8),
1749
+ ('b', np.uint16)
1750
+ ])
1751
+ self.check(PackedStructure, expected)
1752
+
1753
+ def test_large_packed_structure(self):
1754
+ class PackedStructure(ctypes.Structure):
1755
+ _pack_ = 2
1756
+ _fields_ = [
1757
+ ('a', ctypes.c_uint8),
1758
+ ('b', ctypes.c_uint16),
1759
+ ('c', ctypes.c_uint8),
1760
+ ('d', ctypes.c_uint16),
1761
+ ('e', ctypes.c_uint32),
1762
+ ('f', ctypes.c_uint32),
1763
+ ('g', ctypes.c_uint8)
1764
+ ]
1765
+ expected = np.dtype(dict(
1766
+ formats=[np.uint8, np.uint16, np.uint8, np.uint16, np.uint32, np.uint32, np.uint8 ],
1767
+ offsets=[0, 2, 4, 6, 8, 12, 16],
1768
+ names=['a', 'b', 'c', 'd', 'e', 'f', 'g'],
1769
+ itemsize=18))
1770
+ self.check(PackedStructure, expected)
1771
+
1772
+ def test_big_endian_structure_packed(self):
1773
+ class BigEndStruct(ctypes.BigEndianStructure):
1774
+ _fields_ = [
1775
+ ('one', ctypes.c_uint8),
1776
+ ('two', ctypes.c_uint32)
1777
+ ]
1778
+ _pack_ = 1
1779
+ expected = np.dtype([('one', 'u1'), ('two', '>u4')])
1780
+ self.check(BigEndStruct, expected)
1781
+
1782
+ def test_little_endian_structure_packed(self):
1783
+ class LittleEndStruct(ctypes.LittleEndianStructure):
1784
+ _fields_ = [
1785
+ ('one', ctypes.c_uint8),
1786
+ ('two', ctypes.c_uint32)
1787
+ ]
1788
+ _pack_ = 1
1789
+ expected = np.dtype([('one', 'u1'), ('two', '<u4')])
1790
+ self.check(LittleEndStruct, expected)
1791
+
1792
+ def test_little_endian_structure(self):
1793
+ class PaddedStruct(ctypes.LittleEndianStructure):
1794
+ _fields_ = [
1795
+ ('a', ctypes.c_uint8),
1796
+ ('b', ctypes.c_uint16)
1797
+ ]
1798
+ expected = np.dtype([
1799
+ ('a', '<B'),
1800
+ ('b', '<H')
1801
+ ], align=True)
1802
+ self.check(PaddedStruct, expected)
1803
+
1804
+ def test_big_endian_structure(self):
1805
+ class PaddedStruct(ctypes.BigEndianStructure):
1806
+ _fields_ = [
1807
+ ('a', ctypes.c_uint8),
1808
+ ('b', ctypes.c_uint16)
1809
+ ]
1810
+ expected = np.dtype([
1811
+ ('a', '>B'),
1812
+ ('b', '>H')
1813
+ ], align=True)
1814
+ self.check(PaddedStruct, expected)
1815
+
1816
+ def test_simple_endian_types(self):
1817
+ self.check(ctypes.c_uint16.__ctype_le__, np.dtype('<u2'))
1818
+ self.check(ctypes.c_uint16.__ctype_be__, np.dtype('>u2'))
1819
+ self.check(ctypes.c_uint8.__ctype_le__, np.dtype('u1'))
1820
+ self.check(ctypes.c_uint8.__ctype_be__, np.dtype('u1'))
1821
+
1822
+ all_types = set(np.typecodes['All'])
1823
+ all_pairs = permutations(all_types, 2)
1824
+
1825
+ @pytest.mark.parametrize("pair", all_pairs)
1826
+ def test_pairs(self, pair):
1827
+ """
1828
+ Check that np.dtype('x,y') matches [np.dtype('x'), np.dtype('y')]
1829
+ Example: np.dtype('d,I') -> dtype([('f0', '<f8'), ('f1', '<u4')])
1830
+ """
1831
+ # gh-5645: check that np.dtype('i,L') can be used
1832
+ pair_type = np.dtype('{},{}'.format(*pair))
1833
+ expected = np.dtype([('f0', pair[0]), ('f1', pair[1])])
1834
+ assert_equal(pair_type, expected)
1835
+
1836
+
1837
+ class TestUserDType:
1838
+ @pytest.mark.leaks_references(reason="dynamically creates custom dtype.")
1839
+ def test_custom_structured_dtype(self):
1840
+ class mytype:
1841
+ pass
1842
+
1843
+ blueprint = np.dtype([("field", object)])
1844
+ dt = create_custom_field_dtype(blueprint, mytype, 0)
1845
+ assert dt.type == mytype
1846
+ # We cannot (currently) *create* this dtype with `np.dtype` because
1847
+ # mytype does not inherit from `np.generic`. This seems like an
1848
+ # unnecessary restriction, but one that has been around forever:
1849
+ assert np.dtype(mytype) == np.dtype("O")
1850
+
1851
+ def test_custom_structured_dtype_errors(self):
1852
+ class mytype:
1853
+ pass
1854
+
1855
+ blueprint = np.dtype([("field", object)])
1856
+
1857
+ with pytest.raises(ValueError):
1858
+ # Tests what happens if fields are unset during creation
1859
+ # which is currently rejected due to the containing object
1860
+ # (see PyArray_RegisterDataType).
1861
+ create_custom_field_dtype(blueprint, mytype, 1)
1862
+
1863
+ with pytest.raises(RuntimeError):
1864
+ # Tests that a dtype must have its type field set up to np.dtype
1865
+ # or in this case a builtin instance.
1866
+ create_custom_field_dtype(blueprint, mytype, 2)
1867
+
1868
+
1869
+ class TestClassGetItem:
1870
+ def test_dtype(self) -> None:
1871
+ alias = np.dtype[Any]
1872
+ assert isinstance(alias, types.GenericAlias)
1873
+ assert alias.__origin__ is np.dtype
1874
+
1875
+ @pytest.mark.parametrize("code", np.typecodes["All"])
1876
+ def test_dtype_subclass(self, code: str) -> None:
1877
+ cls = type(np.dtype(code))
1878
+ alias = cls[Any]
1879
+ assert isinstance(alias, types.GenericAlias)
1880
+ assert alias.__origin__ is cls
1881
+
1882
+ @pytest.mark.parametrize("arg_len", range(4))
1883
+ def test_subscript_tuple(self, arg_len: int) -> None:
1884
+ arg_tup = (Any,) * arg_len
1885
+ if arg_len == 1:
1886
+ assert np.dtype[arg_tup]
1887
+ else:
1888
+ with pytest.raises(TypeError):
1889
+ np.dtype[arg_tup]
1890
+
1891
+ def test_subscript_scalar(self) -> None:
1892
+ assert np.dtype[Any]
1893
+
1894
+
1895
+ def test_result_type_integers_and_unitless_timedelta64():
1896
+ # Regression test for gh-20077. The following call of `result_type`
1897
+ # would cause a seg. fault.
1898
+ td = np.timedelta64(4)
1899
+ result = np.result_type(0, td)
1900
+ assert_dtype_equal(result, td.dtype)
1901
+
1902
+
1903
+ def test_creating_dtype_with_dtype_class_errors():
1904
+ # Regression test for #25031, calling `np.dtype` with itself segfaulted.
1905
+ with pytest.raises(TypeError, match="Cannot convert np.dtype into a"):
1906
+ np.array(np.ones(10), dtype=np.dtype)
venv/lib/python3.10/site-packages/numpy/core/tests/test_errstate.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ import sysconfig
3
+
4
+ import numpy as np
5
+ from numpy.testing import assert_, assert_raises, IS_WASM
6
+
7
+ # The floating point emulation on ARM EABI systems lacking a hardware FPU is
8
+ # known to be buggy. This is an attempt to identify these hosts. It may not
9
+ # catch all possible cases, but it catches the known cases of gh-413 and
10
+ # gh-15562.
11
+ hosttype = sysconfig.get_config_var('HOST_GNU_TYPE')
12
+ arm_softfloat = False if hosttype is None else hosttype.endswith('gnueabi')
13
+
14
+ class TestErrstate:
15
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
16
+ @pytest.mark.skipif(arm_softfloat,
17
+ reason='platform/cpu issue with FPU (gh-413,-15562)')
18
+ def test_invalid(self):
19
+ with np.errstate(all='raise', under='ignore'):
20
+ a = -np.arange(3)
21
+ # This should work
22
+ with np.errstate(invalid='ignore'):
23
+ np.sqrt(a)
24
+ # While this should fail!
25
+ with assert_raises(FloatingPointError):
26
+ np.sqrt(a)
27
+
28
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
29
+ @pytest.mark.skipif(arm_softfloat,
30
+ reason='platform/cpu issue with FPU (gh-15562)')
31
+ def test_divide(self):
32
+ with np.errstate(all='raise', under='ignore'):
33
+ a = -np.arange(3)
34
+ # This should work
35
+ with np.errstate(divide='ignore'):
36
+ a // 0
37
+ # While this should fail!
38
+ with assert_raises(FloatingPointError):
39
+ a // 0
40
+ # As should this, see gh-15562
41
+ with assert_raises(FloatingPointError):
42
+ a // a
43
+
44
+ def test_errcall(self):
45
+ def foo(*args):
46
+ print(args)
47
+
48
+ olderrcall = np.geterrcall()
49
+ with np.errstate(call=foo):
50
+ assert_(np.geterrcall() is foo, 'call is not foo')
51
+ with np.errstate(call=None):
52
+ assert_(np.geterrcall() is None, 'call is not None')
53
+ assert_(np.geterrcall() is olderrcall, 'call is not olderrcall')
54
+
55
+ def test_errstate_decorator(self):
56
+ @np.errstate(all='ignore')
57
+ def foo():
58
+ a = -np.arange(3)
59
+ a // 0
60
+
61
+ foo()
venv/lib/python3.10/site-packages/numpy/core/tests/test_extint128.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import contextlib
3
+ import operator
4
+ import pytest
5
+
6
+ import numpy as np
7
+ import numpy.core._multiarray_tests as mt
8
+
9
+ from numpy.testing import assert_raises, assert_equal
10
+
11
+
12
+ INT64_MAX = np.iinfo(np.int64).max
13
+ INT64_MIN = np.iinfo(np.int64).min
14
+ INT64_MID = 2**32
15
+
16
+ # int128 is not two's complement, the sign bit is separate
17
+ INT128_MAX = 2**128 - 1
18
+ INT128_MIN = -INT128_MAX
19
+ INT128_MID = 2**64
20
+
21
+ INT64_VALUES = (
22
+ [INT64_MIN + j for j in range(20)] +
23
+ [INT64_MAX - j for j in range(20)] +
24
+ [INT64_MID + j for j in range(-20, 20)] +
25
+ [2*INT64_MID + j for j in range(-20, 20)] +
26
+ [INT64_MID//2 + j for j in range(-20, 20)] +
27
+ list(range(-70, 70))
28
+ )
29
+
30
+ INT128_VALUES = (
31
+ [INT128_MIN + j for j in range(20)] +
32
+ [INT128_MAX - j for j in range(20)] +
33
+ [INT128_MID + j for j in range(-20, 20)] +
34
+ [2*INT128_MID + j for j in range(-20, 20)] +
35
+ [INT128_MID//2 + j for j in range(-20, 20)] +
36
+ list(range(-70, 70)) +
37
+ [False] # negative zero
38
+ )
39
+
40
+ INT64_POS_VALUES = [x for x in INT64_VALUES if x > 0]
41
+
42
+
43
+ @contextlib.contextmanager
44
+ def exc_iter(*args):
45
+ """
46
+ Iterate over Cartesian product of *args, and if an exception is raised,
47
+ add information of the current iterate.
48
+ """
49
+
50
+ value = [None]
51
+
52
+ def iterate():
53
+ for v in itertools.product(*args):
54
+ value[0] = v
55
+ yield v
56
+
57
+ try:
58
+ yield iterate()
59
+ except Exception:
60
+ import traceback
61
+ msg = "At: %r\n%s" % (repr(value[0]),
62
+ traceback.format_exc())
63
+ raise AssertionError(msg)
64
+
65
+
66
+ def test_safe_binop():
67
+ # Test checked arithmetic routines
68
+
69
+ ops = [
70
+ (operator.add, 1),
71
+ (operator.sub, 2),
72
+ (operator.mul, 3)
73
+ ]
74
+
75
+ with exc_iter(ops, INT64_VALUES, INT64_VALUES) as it:
76
+ for xop, a, b in it:
77
+ pyop, op = xop
78
+ c = pyop(a, b)
79
+
80
+ if not (INT64_MIN <= c <= INT64_MAX):
81
+ assert_raises(OverflowError, mt.extint_safe_binop, a, b, op)
82
+ else:
83
+ d = mt.extint_safe_binop(a, b, op)
84
+ if c != d:
85
+ # assert_equal is slow
86
+ assert_equal(d, c)
87
+
88
+
89
+ def test_to_128():
90
+ with exc_iter(INT64_VALUES) as it:
91
+ for a, in it:
92
+ b = mt.extint_to_128(a)
93
+ if a != b:
94
+ assert_equal(b, a)
95
+
96
+
97
+ def test_to_64():
98
+ with exc_iter(INT128_VALUES) as it:
99
+ for a, in it:
100
+ if not (INT64_MIN <= a <= INT64_MAX):
101
+ assert_raises(OverflowError, mt.extint_to_64, a)
102
+ else:
103
+ b = mt.extint_to_64(a)
104
+ if a != b:
105
+ assert_equal(b, a)
106
+
107
+
108
+ def test_mul_64_64():
109
+ with exc_iter(INT64_VALUES, INT64_VALUES) as it:
110
+ for a, b in it:
111
+ c = a * b
112
+ d = mt.extint_mul_64_64(a, b)
113
+ if c != d:
114
+ assert_equal(d, c)
115
+
116
+
117
+ def test_add_128():
118
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
119
+ for a, b in it:
120
+ c = a + b
121
+ if not (INT128_MIN <= c <= INT128_MAX):
122
+ assert_raises(OverflowError, mt.extint_add_128, a, b)
123
+ else:
124
+ d = mt.extint_add_128(a, b)
125
+ if c != d:
126
+ assert_equal(d, c)
127
+
128
+
129
+ def test_sub_128():
130
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
131
+ for a, b in it:
132
+ c = a - b
133
+ if not (INT128_MIN <= c <= INT128_MAX):
134
+ assert_raises(OverflowError, mt.extint_sub_128, a, b)
135
+ else:
136
+ d = mt.extint_sub_128(a, b)
137
+ if c != d:
138
+ assert_equal(d, c)
139
+
140
+
141
+ def test_neg_128():
142
+ with exc_iter(INT128_VALUES) as it:
143
+ for a, in it:
144
+ b = -a
145
+ c = mt.extint_neg_128(a)
146
+ if b != c:
147
+ assert_equal(c, b)
148
+
149
+
150
+ def test_shl_128():
151
+ with exc_iter(INT128_VALUES) as it:
152
+ for a, in it:
153
+ if a < 0:
154
+ b = -(((-a) << 1) & (2**128-1))
155
+ else:
156
+ b = (a << 1) & (2**128-1)
157
+ c = mt.extint_shl_128(a)
158
+ if b != c:
159
+ assert_equal(c, b)
160
+
161
+
162
+ def test_shr_128():
163
+ with exc_iter(INT128_VALUES) as it:
164
+ for a, in it:
165
+ if a < 0:
166
+ b = -((-a) >> 1)
167
+ else:
168
+ b = a >> 1
169
+ c = mt.extint_shr_128(a)
170
+ if b != c:
171
+ assert_equal(c, b)
172
+
173
+
174
+ def test_gt_128():
175
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
176
+ for a, b in it:
177
+ c = a > b
178
+ d = mt.extint_gt_128(a, b)
179
+ if c != d:
180
+ assert_equal(d, c)
181
+
182
+
183
+ @pytest.mark.slow
184
+ def test_divmod_128_64():
185
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
186
+ for a, b in it:
187
+ if a >= 0:
188
+ c, cr = divmod(a, b)
189
+ else:
190
+ c, cr = divmod(-a, b)
191
+ c = -c
192
+ cr = -cr
193
+
194
+ d, dr = mt.extint_divmod_128_64(a, b)
195
+
196
+ if c != d or d != dr or b*d + dr != a:
197
+ assert_equal(d, c)
198
+ assert_equal(dr, cr)
199
+ assert_equal(b*d + dr, a)
200
+
201
+
202
+ def test_floordiv_128_64():
203
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
204
+ for a, b in it:
205
+ c = a // b
206
+ d = mt.extint_floordiv_128_64(a, b)
207
+
208
+ if c != d:
209
+ assert_equal(d, c)
210
+
211
+
212
+ def test_ceildiv_128_64():
213
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
214
+ for a, b in it:
215
+ c = (a + b - 1) // b
216
+ d = mt.extint_ceildiv_128_64(a, b)
217
+
218
+ if c != d:
219
+ assert_equal(d, c)
venv/lib/python3.10/site-packages/numpy/core/tests/test_function_base.py ADDED
@@ -0,0 +1,446 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ from numpy import (
3
+ logspace, linspace, geomspace, dtype, array, sctypes, arange, isnan,
4
+ ndarray, sqrt, nextafter, stack, errstate
5
+ )
6
+ from numpy.testing import (
7
+ assert_, assert_equal, assert_raises, assert_array_equal, assert_allclose,
8
+ )
9
+
10
+
11
+ class PhysicalQuantity(float):
12
+ def __new__(cls, value):
13
+ return float.__new__(cls, value)
14
+
15
+ def __add__(self, x):
16
+ assert_(isinstance(x, PhysicalQuantity))
17
+ return PhysicalQuantity(float(x) + float(self))
18
+ __radd__ = __add__
19
+
20
+ def __sub__(self, x):
21
+ assert_(isinstance(x, PhysicalQuantity))
22
+ return PhysicalQuantity(float(self) - float(x))
23
+
24
+ def __rsub__(self, x):
25
+ assert_(isinstance(x, PhysicalQuantity))
26
+ return PhysicalQuantity(float(x) - float(self))
27
+
28
+ def __mul__(self, x):
29
+ return PhysicalQuantity(float(x) * float(self))
30
+ __rmul__ = __mul__
31
+
32
+ def __div__(self, x):
33
+ return PhysicalQuantity(float(self) / float(x))
34
+
35
+ def __rdiv__(self, x):
36
+ return PhysicalQuantity(float(x) / float(self))
37
+
38
+
39
+ class PhysicalQuantity2(ndarray):
40
+ __array_priority__ = 10
41
+
42
+
43
+ class TestLogspace:
44
+
45
+ def test_basic(self):
46
+ y = logspace(0, 6)
47
+ assert_(len(y) == 50)
48
+ y = logspace(0, 6, num=100)
49
+ assert_(y[-1] == 10 ** 6)
50
+ y = logspace(0, 6, endpoint=False)
51
+ assert_(y[-1] < 10 ** 6)
52
+ y = logspace(0, 6, num=7)
53
+ assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6])
54
+
55
+ def test_start_stop_array(self):
56
+ start = array([0., 1.])
57
+ stop = array([6., 7.])
58
+ t1 = logspace(start, stop, 6)
59
+ t2 = stack([logspace(_start, _stop, 6)
60
+ for _start, _stop in zip(start, stop)], axis=1)
61
+ assert_equal(t1, t2)
62
+ t3 = logspace(start, stop[0], 6)
63
+ t4 = stack([logspace(_start, stop[0], 6)
64
+ for _start in start], axis=1)
65
+ assert_equal(t3, t4)
66
+ t5 = logspace(start, stop, 6, axis=-1)
67
+ assert_equal(t5, t2.T)
68
+
69
+ @pytest.mark.parametrize("axis", [0, 1, -1])
70
+ def test_base_array(self, axis: int):
71
+ start = 1
72
+ stop = 2
73
+ num = 6
74
+ base = array([1, 2])
75
+ t1 = logspace(start, stop, num=num, base=base, axis=axis)
76
+ t2 = stack(
77
+ [logspace(start, stop, num=num, base=_base) for _base in base],
78
+ axis=(axis + 1) % t1.ndim,
79
+ )
80
+ assert_equal(t1, t2)
81
+
82
+ @pytest.mark.parametrize("axis", [0, 1, -1])
83
+ def test_stop_base_array(self, axis: int):
84
+ start = 1
85
+ stop = array([2, 3])
86
+ num = 6
87
+ base = array([1, 2])
88
+ t1 = logspace(start, stop, num=num, base=base, axis=axis)
89
+ t2 = stack(
90
+ [logspace(start, _stop, num=num, base=_base)
91
+ for _stop, _base in zip(stop, base)],
92
+ axis=(axis + 1) % t1.ndim,
93
+ )
94
+ assert_equal(t1, t2)
95
+
96
+ def test_dtype(self):
97
+ y = logspace(0, 6, dtype='float32')
98
+ assert_equal(y.dtype, dtype('float32'))
99
+ y = logspace(0, 6, dtype='float64')
100
+ assert_equal(y.dtype, dtype('float64'))
101
+ y = logspace(0, 6, dtype='int32')
102
+ assert_equal(y.dtype, dtype('int32'))
103
+
104
+ def test_physical_quantities(self):
105
+ a = PhysicalQuantity(1.0)
106
+ b = PhysicalQuantity(5.0)
107
+ assert_equal(logspace(a, b), logspace(1.0, 5.0))
108
+
109
+ def test_subclass(self):
110
+ a = array(1).view(PhysicalQuantity2)
111
+ b = array(7).view(PhysicalQuantity2)
112
+ ls = logspace(a, b)
113
+ assert type(ls) is PhysicalQuantity2
114
+ assert_equal(ls, logspace(1.0, 7.0))
115
+ ls = logspace(a, b, 1)
116
+ assert type(ls) is PhysicalQuantity2
117
+ assert_equal(ls, logspace(1.0, 7.0, 1))
118
+
119
+
120
+ class TestGeomspace:
121
+
122
+ def test_basic(self):
123
+ y = geomspace(1, 1e6)
124
+ assert_(len(y) == 50)
125
+ y = geomspace(1, 1e6, num=100)
126
+ assert_(y[-1] == 10 ** 6)
127
+ y = geomspace(1, 1e6, endpoint=False)
128
+ assert_(y[-1] < 10 ** 6)
129
+ y = geomspace(1, 1e6, num=7)
130
+ assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6])
131
+
132
+ y = geomspace(8, 2, num=3)
133
+ assert_allclose(y, [8, 4, 2])
134
+ assert_array_equal(y.imag, 0)
135
+
136
+ y = geomspace(-1, -100, num=3)
137
+ assert_array_equal(y, [-1, -10, -100])
138
+ assert_array_equal(y.imag, 0)
139
+
140
+ y = geomspace(-100, -1, num=3)
141
+ assert_array_equal(y, [-100, -10, -1])
142
+ assert_array_equal(y.imag, 0)
143
+
144
+ def test_boundaries_match_start_and_stop_exactly(self):
145
+ # make sure that the boundaries of the returned array exactly
146
+ # equal 'start' and 'stop' - this isn't obvious because
147
+ # np.exp(np.log(x)) isn't necessarily exactly equal to x
148
+ start = 0.3
149
+ stop = 20.3
150
+
151
+ y = geomspace(start, stop, num=1)
152
+ assert_equal(y[0], start)
153
+
154
+ y = geomspace(start, stop, num=1, endpoint=False)
155
+ assert_equal(y[0], start)
156
+
157
+ y = geomspace(start, stop, num=3)
158
+ assert_equal(y[0], start)
159
+ assert_equal(y[-1], stop)
160
+
161
+ y = geomspace(start, stop, num=3, endpoint=False)
162
+ assert_equal(y[0], start)
163
+
164
+ def test_nan_interior(self):
165
+ with errstate(invalid='ignore'):
166
+ y = geomspace(-3, 3, num=4)
167
+
168
+ assert_equal(y[0], -3.0)
169
+ assert_(isnan(y[1:-1]).all())
170
+ assert_equal(y[3], 3.0)
171
+
172
+ with errstate(invalid='ignore'):
173
+ y = geomspace(-3, 3, num=4, endpoint=False)
174
+
175
+ assert_equal(y[0], -3.0)
176
+ assert_(isnan(y[1:]).all())
177
+
178
+ def test_complex(self):
179
+ # Purely imaginary
180
+ y = geomspace(1j, 16j, num=5)
181
+ assert_allclose(y, [1j, 2j, 4j, 8j, 16j])
182
+ assert_array_equal(y.real, 0)
183
+
184
+ y = geomspace(-4j, -324j, num=5)
185
+ assert_allclose(y, [-4j, -12j, -36j, -108j, -324j])
186
+ assert_array_equal(y.real, 0)
187
+
188
+ y = geomspace(1+1j, 1000+1000j, num=4)
189
+ assert_allclose(y, [1+1j, 10+10j, 100+100j, 1000+1000j])
190
+
191
+ y = geomspace(-1+1j, -1000+1000j, num=4)
192
+ assert_allclose(y, [-1+1j, -10+10j, -100+100j, -1000+1000j])
193
+
194
+ # Logarithmic spirals
195
+ y = geomspace(-1, 1, num=3, dtype=complex)
196
+ assert_allclose(y, [-1, 1j, +1])
197
+
198
+ y = geomspace(0+3j, -3+0j, 3)
199
+ assert_allclose(y, [0+3j, -3/sqrt(2)+3j/sqrt(2), -3+0j])
200
+ y = geomspace(0+3j, 3+0j, 3)
201
+ assert_allclose(y, [0+3j, 3/sqrt(2)+3j/sqrt(2), 3+0j])
202
+ y = geomspace(-3+0j, 0-3j, 3)
203
+ assert_allclose(y, [-3+0j, -3/sqrt(2)-3j/sqrt(2), 0-3j])
204
+ y = geomspace(0+3j, -3+0j, 3)
205
+ assert_allclose(y, [0+3j, -3/sqrt(2)+3j/sqrt(2), -3+0j])
206
+ y = geomspace(-2-3j, 5+7j, 7)
207
+ assert_allclose(y, [-2-3j, -0.29058977-4.15771027j,
208
+ 2.08885354-4.34146838j, 4.58345529-3.16355218j,
209
+ 6.41401745-0.55233457j, 6.75707386+3.11795092j,
210
+ 5+7j])
211
+
212
+ # Type promotion should prevent the -5 from becoming a NaN
213
+ y = geomspace(3j, -5, 2)
214
+ assert_allclose(y, [3j, -5])
215
+ y = geomspace(-5, 3j, 2)
216
+ assert_allclose(y, [-5, 3j])
217
+
218
+ def test_dtype(self):
219
+ y = geomspace(1, 1e6, dtype='float32')
220
+ assert_equal(y.dtype, dtype('float32'))
221
+ y = geomspace(1, 1e6, dtype='float64')
222
+ assert_equal(y.dtype, dtype('float64'))
223
+ y = geomspace(1, 1e6, dtype='int32')
224
+ assert_equal(y.dtype, dtype('int32'))
225
+
226
+ # Native types
227
+ y = geomspace(1, 1e6, dtype=float)
228
+ assert_equal(y.dtype, dtype('float_'))
229
+ y = geomspace(1, 1e6, dtype=complex)
230
+ assert_equal(y.dtype, dtype('complex'))
231
+
232
+ def test_start_stop_array_scalar(self):
233
+ lim1 = array([120, 100], dtype="int8")
234
+ lim2 = array([-120, -100], dtype="int8")
235
+ lim3 = array([1200, 1000], dtype="uint16")
236
+ t1 = geomspace(lim1[0], lim1[1], 5)
237
+ t2 = geomspace(lim2[0], lim2[1], 5)
238
+ t3 = geomspace(lim3[0], lim3[1], 5)
239
+ t4 = geomspace(120.0, 100.0, 5)
240
+ t5 = geomspace(-120.0, -100.0, 5)
241
+ t6 = geomspace(1200.0, 1000.0, 5)
242
+
243
+ # t3 uses float32, t6 uses float64
244
+ assert_allclose(t1, t4, rtol=1e-2)
245
+ assert_allclose(t2, t5, rtol=1e-2)
246
+ assert_allclose(t3, t6, rtol=1e-5)
247
+
248
+ def test_start_stop_array(self):
249
+ # Try to use all special cases.
250
+ start = array([1.e0, 32., 1j, -4j, 1+1j, -1])
251
+ stop = array([1.e4, 2., 16j, -324j, 10000+10000j, 1])
252
+ t1 = geomspace(start, stop, 5)
253
+ t2 = stack([geomspace(_start, _stop, 5)
254
+ for _start, _stop in zip(start, stop)], axis=1)
255
+ assert_equal(t1, t2)
256
+ t3 = geomspace(start, stop[0], 5)
257
+ t4 = stack([geomspace(_start, stop[0], 5)
258
+ for _start in start], axis=1)
259
+ assert_equal(t3, t4)
260
+ t5 = geomspace(start, stop, 5, axis=-1)
261
+ assert_equal(t5, t2.T)
262
+
263
+ def test_physical_quantities(self):
264
+ a = PhysicalQuantity(1.0)
265
+ b = PhysicalQuantity(5.0)
266
+ assert_equal(geomspace(a, b), geomspace(1.0, 5.0))
267
+
268
+ def test_subclass(self):
269
+ a = array(1).view(PhysicalQuantity2)
270
+ b = array(7).view(PhysicalQuantity2)
271
+ gs = geomspace(a, b)
272
+ assert type(gs) is PhysicalQuantity2
273
+ assert_equal(gs, geomspace(1.0, 7.0))
274
+ gs = geomspace(a, b, 1)
275
+ assert type(gs) is PhysicalQuantity2
276
+ assert_equal(gs, geomspace(1.0, 7.0, 1))
277
+
278
+ def test_bounds(self):
279
+ assert_raises(ValueError, geomspace, 0, 10)
280
+ assert_raises(ValueError, geomspace, 10, 0)
281
+ assert_raises(ValueError, geomspace, 0, 0)
282
+
283
+
284
+ class TestLinspace:
285
+
286
+ def test_basic(self):
287
+ y = linspace(0, 10)
288
+ assert_(len(y) == 50)
289
+ y = linspace(2, 10, num=100)
290
+ assert_(y[-1] == 10)
291
+ y = linspace(2, 10, endpoint=False)
292
+ assert_(y[-1] < 10)
293
+ assert_raises(ValueError, linspace, 0, 10, num=-1)
294
+
295
+ def test_corner(self):
296
+ y = list(linspace(0, 1, 1))
297
+ assert_(y == [0.0], y)
298
+ assert_raises(TypeError, linspace, 0, 1, num=2.5)
299
+
300
+ def test_type(self):
301
+ t1 = linspace(0, 1, 0).dtype
302
+ t2 = linspace(0, 1, 1).dtype
303
+ t3 = linspace(0, 1, 2).dtype
304
+ assert_equal(t1, t2)
305
+ assert_equal(t2, t3)
306
+
307
+ def test_dtype(self):
308
+ y = linspace(0, 6, dtype='float32')
309
+ assert_equal(y.dtype, dtype('float32'))
310
+ y = linspace(0, 6, dtype='float64')
311
+ assert_equal(y.dtype, dtype('float64'))
312
+ y = linspace(0, 6, dtype='int32')
313
+ assert_equal(y.dtype, dtype('int32'))
314
+
315
+ def test_start_stop_array_scalar(self):
316
+ lim1 = array([-120, 100], dtype="int8")
317
+ lim2 = array([120, -100], dtype="int8")
318
+ lim3 = array([1200, 1000], dtype="uint16")
319
+ t1 = linspace(lim1[0], lim1[1], 5)
320
+ t2 = linspace(lim2[0], lim2[1], 5)
321
+ t3 = linspace(lim3[0], lim3[1], 5)
322
+ t4 = linspace(-120.0, 100.0, 5)
323
+ t5 = linspace(120.0, -100.0, 5)
324
+ t6 = linspace(1200.0, 1000.0, 5)
325
+ assert_equal(t1, t4)
326
+ assert_equal(t2, t5)
327
+ assert_equal(t3, t6)
328
+
329
+ def test_start_stop_array(self):
330
+ start = array([-120, 120], dtype="int8")
331
+ stop = array([100, -100], dtype="int8")
332
+ t1 = linspace(start, stop, 5)
333
+ t2 = stack([linspace(_start, _stop, 5)
334
+ for _start, _stop in zip(start, stop)], axis=1)
335
+ assert_equal(t1, t2)
336
+ t3 = linspace(start, stop[0], 5)
337
+ t4 = stack([linspace(_start, stop[0], 5)
338
+ for _start in start], axis=1)
339
+ assert_equal(t3, t4)
340
+ t5 = linspace(start, stop, 5, axis=-1)
341
+ assert_equal(t5, t2.T)
342
+
343
+ def test_complex(self):
344
+ lim1 = linspace(1 + 2j, 3 + 4j, 5)
345
+ t1 = array([1.0+2.j, 1.5+2.5j, 2.0+3j, 2.5+3.5j, 3.0+4j])
346
+ lim2 = linspace(1j, 10, 5)
347
+ t2 = array([0.0+1.j, 2.5+0.75j, 5.0+0.5j, 7.5+0.25j, 10.0+0j])
348
+ assert_equal(lim1, t1)
349
+ assert_equal(lim2, t2)
350
+
351
+ def test_physical_quantities(self):
352
+ a = PhysicalQuantity(0.0)
353
+ b = PhysicalQuantity(1.0)
354
+ assert_equal(linspace(a, b), linspace(0.0, 1.0))
355
+
356
+ def test_subclass(self):
357
+ a = array(0).view(PhysicalQuantity2)
358
+ b = array(1).view(PhysicalQuantity2)
359
+ ls = linspace(a, b)
360
+ assert type(ls) is PhysicalQuantity2
361
+ assert_equal(ls, linspace(0.0, 1.0))
362
+ ls = linspace(a, b, 1)
363
+ assert type(ls) is PhysicalQuantity2
364
+ assert_equal(ls, linspace(0.0, 1.0, 1))
365
+
366
+ def test_array_interface(self):
367
+ # Regression test for https://github.com/numpy/numpy/pull/6659
368
+ # Ensure that start/stop can be objects that implement
369
+ # __array_interface__ and are convertible to numeric scalars
370
+
371
+ class Arrayish:
372
+ """
373
+ A generic object that supports the __array_interface__ and hence
374
+ can in principle be converted to a numeric scalar, but is not
375
+ otherwise recognized as numeric, but also happens to support
376
+ multiplication by floats.
377
+
378
+ Data should be an object that implements the buffer interface,
379
+ and contains at least 4 bytes.
380
+ """
381
+
382
+ def __init__(self, data):
383
+ self._data = data
384
+
385
+ @property
386
+ def __array_interface__(self):
387
+ return {'shape': (), 'typestr': '<i4', 'data': self._data,
388
+ 'version': 3}
389
+
390
+ def __mul__(self, other):
391
+ # For the purposes of this test any multiplication is an
392
+ # identity operation :)
393
+ return self
394
+
395
+ one = Arrayish(array(1, dtype='<i4'))
396
+ five = Arrayish(array(5, dtype='<i4'))
397
+
398
+ assert_equal(linspace(one, five), linspace(1, 5))
399
+
400
+ def test_denormal_numbers(self):
401
+ # Regression test for gh-5437. Will probably fail when compiled
402
+ # with ICC, which flushes denormals to zero
403
+ for ftype in sctypes['float']:
404
+ stop = nextafter(ftype(0), ftype(1)) * 5 # A denormal number
405
+ assert_(any(linspace(0, stop, 10, endpoint=False, dtype=ftype)))
406
+
407
+ def test_equivalent_to_arange(self):
408
+ for j in range(1000):
409
+ assert_equal(linspace(0, j, j+1, dtype=int),
410
+ arange(j+1, dtype=int))
411
+
412
+ def test_retstep(self):
413
+ for num in [0, 1, 2]:
414
+ for ept in [False, True]:
415
+ y = linspace(0, 1, num, endpoint=ept, retstep=True)
416
+ assert isinstance(y, tuple) and len(y) == 2
417
+ if num == 2:
418
+ y0_expect = [0.0, 1.0] if ept else [0.0, 0.5]
419
+ assert_array_equal(y[0], y0_expect)
420
+ assert_equal(y[1], y0_expect[1])
421
+ elif num == 1 and not ept:
422
+ assert_array_equal(y[0], [0.0])
423
+ assert_equal(y[1], 1.0)
424
+ else:
425
+ assert_array_equal(y[0], [0.0][:num])
426
+ assert isnan(y[1])
427
+
428
+ def test_object(self):
429
+ start = array(1, dtype='O')
430
+ stop = array(2, dtype='O')
431
+ y = linspace(start, stop, 3)
432
+ assert_array_equal(y, array([1., 1.5, 2.]))
433
+
434
+ def test_round_negative(self):
435
+ y = linspace(-1, 3, num=8, dtype=int)
436
+ t = array([-1, -1, 0, 0, 1, 1, 2, 3], dtype=int)
437
+ assert_array_equal(y, t)
438
+
439
+ def test_any_step_zero_and_not_mult_inplace(self):
440
+ # any_step_zero is True, _mult_inplace is False
441
+ start = array([0.0, 1.0])
442
+ stop = array([2.0, 1.0])
443
+ y = linspace(start, stop, 3)
444
+ assert_array_equal(y, array([[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]]))
445
+
446
+
venv/lib/python3.10/site-packages/numpy/core/tests/test_getlimits.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Test functions for limits module.
2
+
3
+ """
4
+ import warnings
5
+ import numpy as np
6
+ import pytest
7
+ from numpy.core import finfo, iinfo
8
+ from numpy import half, single, double, longdouble
9
+ from numpy.testing import assert_equal, assert_, assert_raises
10
+ from numpy.core.getlimits import _discovered_machar, _float_ma
11
+
12
+ ##################################################
13
+
14
+ class TestPythonFloat:
15
+ def test_singleton(self):
16
+ ftype = finfo(float)
17
+ ftype2 = finfo(float)
18
+ assert_equal(id(ftype), id(ftype2))
19
+
20
+ class TestHalf:
21
+ def test_singleton(self):
22
+ ftype = finfo(half)
23
+ ftype2 = finfo(half)
24
+ assert_equal(id(ftype), id(ftype2))
25
+
26
+ class TestSingle:
27
+ def test_singleton(self):
28
+ ftype = finfo(single)
29
+ ftype2 = finfo(single)
30
+ assert_equal(id(ftype), id(ftype2))
31
+
32
+ class TestDouble:
33
+ def test_singleton(self):
34
+ ftype = finfo(double)
35
+ ftype2 = finfo(double)
36
+ assert_equal(id(ftype), id(ftype2))
37
+
38
+ class TestLongdouble:
39
+ def test_singleton(self):
40
+ ftype = finfo(longdouble)
41
+ ftype2 = finfo(longdouble)
42
+ assert_equal(id(ftype), id(ftype2))
43
+
44
+ def assert_finfo_equal(f1, f2):
45
+ # assert two finfo instances have the same attributes
46
+ for attr in ('bits', 'eps', 'epsneg', 'iexp', 'machep',
47
+ 'max', 'maxexp', 'min', 'minexp', 'negep', 'nexp',
48
+ 'nmant', 'precision', 'resolution', 'tiny',
49
+ 'smallest_normal', 'smallest_subnormal'):
50
+ assert_equal(getattr(f1, attr), getattr(f2, attr),
51
+ f'finfo instances {f1} and {f2} differ on {attr}')
52
+
53
+ def assert_iinfo_equal(i1, i2):
54
+ # assert two iinfo instances have the same attributes
55
+ for attr in ('bits', 'min', 'max'):
56
+ assert_equal(getattr(i1, attr), getattr(i2, attr),
57
+ f'iinfo instances {i1} and {i2} differ on {attr}')
58
+
59
+ class TestFinfo:
60
+ def test_basic(self):
61
+ dts = list(zip(['f2', 'f4', 'f8', 'c8', 'c16'],
62
+ [np.float16, np.float32, np.float64, np.complex64,
63
+ np.complex128]))
64
+ for dt1, dt2 in dts:
65
+ assert_finfo_equal(finfo(dt1), finfo(dt2))
66
+
67
+ assert_raises(ValueError, finfo, 'i4')
68
+
69
+ def test_regression_gh23108(self):
70
+ # np.float32(1.0) and np.float64(1.0) have the same hash and are
71
+ # equal under the == operator
72
+ f1 = np.finfo(np.float32(1.0))
73
+ f2 = np.finfo(np.float64(1.0))
74
+ assert f1 != f2
75
+
76
+ def test_regression_gh23867(self):
77
+ class NonHashableWithDtype:
78
+ __hash__ = None
79
+ dtype = np.dtype('float32')
80
+
81
+ x = NonHashableWithDtype()
82
+ assert np.finfo(x) == np.finfo(x.dtype)
83
+
84
+
85
+ class TestIinfo:
86
+ def test_basic(self):
87
+ dts = list(zip(['i1', 'i2', 'i4', 'i8',
88
+ 'u1', 'u2', 'u4', 'u8'],
89
+ [np.int8, np.int16, np.int32, np.int64,
90
+ np.uint8, np.uint16, np.uint32, np.uint64]))
91
+ for dt1, dt2 in dts:
92
+ assert_iinfo_equal(iinfo(dt1), iinfo(dt2))
93
+
94
+ assert_raises(ValueError, iinfo, 'f4')
95
+
96
+ def test_unsigned_max(self):
97
+ types = np.sctypes['uint']
98
+ for T in types:
99
+ with np.errstate(over="ignore"):
100
+ max_calculated = T(0) - T(1)
101
+ assert_equal(iinfo(T).max, max_calculated)
102
+
103
+ class TestRepr:
104
+ def test_iinfo_repr(self):
105
+ expected = "iinfo(min=-32768, max=32767, dtype=int16)"
106
+ assert_equal(repr(np.iinfo(np.int16)), expected)
107
+
108
+ def test_finfo_repr(self):
109
+ expected = "finfo(resolution=1e-06, min=-3.4028235e+38," + \
110
+ " max=3.4028235e+38, dtype=float32)"
111
+ assert_equal(repr(np.finfo(np.float32)), expected)
112
+
113
+
114
+ def test_instances():
115
+ # Test the finfo and iinfo results on numeric instances agree with
116
+ # the results on the corresponding types
117
+
118
+ for c in [int, np.int16, np.int32, np.int64]:
119
+ class_iinfo = iinfo(c)
120
+ instance_iinfo = iinfo(c(12))
121
+
122
+ assert_iinfo_equal(class_iinfo, instance_iinfo)
123
+
124
+ for c in [float, np.float16, np.float32, np.float64]:
125
+ class_finfo = finfo(c)
126
+ instance_finfo = finfo(c(1.2))
127
+ assert_finfo_equal(class_finfo, instance_finfo)
128
+
129
+ with pytest.raises(ValueError):
130
+ iinfo(10.)
131
+
132
+ with pytest.raises(ValueError):
133
+ iinfo('hi')
134
+
135
+ with pytest.raises(ValueError):
136
+ finfo(np.int64(1))
137
+
138
+
139
+ def assert_ma_equal(discovered, ma_like):
140
+ # Check MachAr-like objects same as calculated MachAr instances
141
+ for key, value in discovered.__dict__.items():
142
+ assert_equal(value, getattr(ma_like, key))
143
+ if hasattr(value, 'shape'):
144
+ assert_equal(value.shape, getattr(ma_like, key).shape)
145
+ assert_equal(value.dtype, getattr(ma_like, key).dtype)
146
+
147
+
148
+ def test_known_types():
149
+ # Test we are correctly compiling parameters for known types
150
+ for ftype, ma_like in ((np.float16, _float_ma[16]),
151
+ (np.float32, _float_ma[32]),
152
+ (np.float64, _float_ma[64])):
153
+ assert_ma_equal(_discovered_machar(ftype), ma_like)
154
+ # Suppress warning for broken discovery of double double on PPC
155
+ with np.errstate(all='ignore'):
156
+ ld_ma = _discovered_machar(np.longdouble)
157
+ bytes = np.dtype(np.longdouble).itemsize
158
+ if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
159
+ # 80-bit extended precision
160
+ assert_ma_equal(ld_ma, _float_ma[80])
161
+ elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
162
+ # IEE 754 128-bit
163
+ assert_ma_equal(ld_ma, _float_ma[128])
164
+
165
+
166
+ def test_subnormal_warning():
167
+ """Test that the subnormal is zero warning is not being raised."""
168
+ with np.errstate(all='ignore'):
169
+ ld_ma = _discovered_machar(np.longdouble)
170
+ bytes = np.dtype(np.longdouble).itemsize
171
+ with warnings.catch_warnings(record=True) as w:
172
+ warnings.simplefilter('always')
173
+ if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
174
+ # 80-bit extended precision
175
+ ld_ma.smallest_subnormal
176
+ assert len(w) == 0
177
+ elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
178
+ # IEE 754 128-bit
179
+ ld_ma.smallest_subnormal
180
+ assert len(w) == 0
181
+ else:
182
+ # Double double
183
+ ld_ma.smallest_subnormal
184
+ # This test may fail on some platforms
185
+ assert len(w) == 0
186
+
187
+
188
+ def test_plausible_finfo():
189
+ # Assert that finfo returns reasonable results for all types
190
+ for ftype in np.sctypes['float'] + np.sctypes['complex']:
191
+ info = np.finfo(ftype)
192
+ assert_(info.nmant > 1)
193
+ assert_(info.minexp < -1)
194
+ assert_(info.maxexp > 1)