Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/15.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/23.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relational_noun-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_left_branch_island_simple_question-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_tough_vs_raising_2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/boolq-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/cola-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_nationality-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/gsm8k-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-astronomy-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/iwslt17-en-ar-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/lambada_mt_de-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/pile_hackernews-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_pubmed-central-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_wikipedia-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/wmt16-en-ro-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-en-km-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-en-zh-v0-greedy_until +1 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py +109 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py +170 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py +252 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/image_processing_efficientformer.py +321 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_efficientformer.py +803 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_tf_efficientformer.py +1193 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__init__.py +73 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/configuration_fuyu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/convert_fuyu_model_weights_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/image_processing_fuyu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/modeling_fuyu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/processing_fuyu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/configuration_fuyu.py +211 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/convert_fuyu_model_weights_to_hf.py +134 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/image_processing_fuyu.py +736 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/modeling_fuyu.py +358 -0
- venv/lib/python3.10/site-packages/transformers/models/fuyu/processing_fuyu.py +694 -0
- venv/lib/python3.10/site-packages/transformers/models/hubert/__init__.py +83 -0
- venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/configuration_hubert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/convert_distilhubert_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/convert_hubert_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
ckpts/universal/global_step20/zero/15.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b06a5e68fdff959c564fe2e0059f1ed8e30f41ec8853f4ddd1dab57c0969668
|
3 |
+
size 16778411
|
ckpts/universal/global_step20/zero/23.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6978ce95f91738af50ffee8d0361627c695bf9f70b281e6efb4db8fb02a2d34
|
3 |
+
size 50332843
|
lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relational_noun-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_distractor_agreement_relational_noun": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_distractor_agreement_relational_noun": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_left_branch_island_simple_question-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
6cb36bbdae7754f8832f50872c3dd511ce12547e00fa0771deb747be3355eb85
|
lm-evaluation-harness/tests/testdata/blimp_tough_vs_raising_2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_tough_vs_raising_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_tough_vs_raising_2": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
d41a9b85e4c31e445bf9b46b8642df02203ccc02b4a9b254bf76066d5c54b4b7
|
lm-evaluation-harness/tests/testdata/boolq-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"boolq": {"acc": 0.5048929663608562, "acc_stderr": 0.00874463623355505}}, "versions": {"boolq": 1}}
|
lm-evaluation-harness/tests/testdata/cola-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
e8635578ed8ee70b707a666d35e468b9321db24470f80c92080651e2bfa01751
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
a197ccc8538231404a8e43f5ed0fbbfb2c317b4da337f6e7aa9642131aeb426a
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_nationality-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
b85bc849811ccfa9971a6ee3fca7342752c314c0cb6f126e10d9ec4d0450c541
|
lm-evaluation-harness/tests/testdata/gsm8k-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"gsm8k": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"gsm8k": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-astronomy-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
bed1e47127cc2893c6aef63b9a0909cca31aa351a703da2a166b01cae03c3311
|
lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
f99a3caece11169f2a5cc951001f92027104afd25d29b2a399883bd4bf118605
|
lm-evaluation-harness/tests/testdata/iwslt17-en-ar-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"iwslt17-en-ar": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.0, "chrf_stderr": 0.0, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"iwslt17-en-ar": 0}}
|
lm-evaluation-harness/tests/testdata/lambada_mt_de-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
5ad125e1708499832b2cee8c3388f89f9c0277010fd96fbd3359039ce8105984
|
lm-evaluation-harness/tests/testdata/pile_hackernews-v1-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ec1082ee5a5326e0d57aa4e73b634937140c1de9af95f154e8ab57b05d9b422b
|
lm-evaluation-harness/tests/testdata/pile_pubmed-central-v1-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
40b39d120d99a145690444e86acc3e3e24d41e6e0538a75e26929ad84926e5e0
|
lm-evaluation-harness/tests/testdata/pile_wikipedia-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_wikipedia": {"bits_per_byte": 0.00016834722287561703, "byte_perplexity": 1.0001683613940646, "word_perplexity": 1.001084677949439}}, "versions": {"pile_wikipedia": 0}}
|
lm-evaluation-harness/tests/testdata/wmt16-en-ro-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
4be7fdda313394f19b5995b00ada1dfa3bb158ee1f020ef8d07ecea260fa60b2
|
lm-evaluation-harness/tests/testdata/wmt20-en-km-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
eb5365c46f22ffec9a157991627d6e1fd1117fccffaedfc73619e93bafb5a408
|
lm-evaluation-harness/tests/testdata/wmt20-en-zh-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
67f0333ddbcb07d7a9ac12919129a18fe4fea24e4826a11bbdde4fd5ed5ed83f
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__init__.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_efficientformer": [
|
27 |
+
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
28 |
+
"EfficientFormerConfig",
|
29 |
+
]
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_vision_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["image_processing_efficientformer"] = ["EfficientFormerImageProcessor"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_efficientformer"] = [
|
47 |
+
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"EfficientFormerForImageClassification",
|
49 |
+
"EfficientFormerForImageClassificationWithTeacher",
|
50 |
+
"EfficientFormerModel",
|
51 |
+
"EfficientFormerPreTrainedModel",
|
52 |
+
]
|
53 |
+
|
54 |
+
try:
|
55 |
+
if not is_tf_available():
|
56 |
+
raise OptionalDependencyNotAvailable()
|
57 |
+
except OptionalDependencyNotAvailable:
|
58 |
+
pass
|
59 |
+
else:
|
60 |
+
_import_structure["modeling_tf_efficientformer"] = [
|
61 |
+
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
62 |
+
"TFEfficientFormerForImageClassification",
|
63 |
+
"TFEfficientFormerForImageClassificationWithTeacher",
|
64 |
+
"TFEfficientFormerModel",
|
65 |
+
"TFEfficientFormerPreTrainedModel",
|
66 |
+
]
|
67 |
+
|
68 |
+
if TYPE_CHECKING:
|
69 |
+
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_vision_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .image_processing_efficientformer import EfficientFormerImageProcessor
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_torch_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
from .modeling_efficientformer import (
|
86 |
+
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
87 |
+
EfficientFormerForImageClassification,
|
88 |
+
EfficientFormerForImageClassificationWithTeacher,
|
89 |
+
EfficientFormerModel,
|
90 |
+
EfficientFormerPreTrainedModel,
|
91 |
+
)
|
92 |
+
try:
|
93 |
+
if not is_tf_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_tf_efficientformer import (
|
99 |
+
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
TFEfficientFormerForImageClassification,
|
101 |
+
TFEfficientFormerForImageClassificationWithTeacher,
|
102 |
+
TFEfficientFormerModel,
|
103 |
+
TFEfficientFormerPreTrainedModel,
|
104 |
+
)
|
105 |
+
|
106 |
+
else:
|
107 |
+
import sys
|
108 |
+
|
109 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc
ADDED
Binary file (6.94 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.15 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/image_processing_efficientformer.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc
ADDED
Binary file (27.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_tf_efficientformer.cpython-310.pyc
ADDED
Binary file (37.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" EfficientFormer model configuration"""
|
16 |
+
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class EfficientFormerConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
|
32 |
+
instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
|
33 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
|
34 |
+
[snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
|
41 |
+
Depth of each stage.
|
42 |
+
hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
|
43 |
+
Dimensionality of each stage.
|
44 |
+
downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
|
45 |
+
Whether or not to downsample inputs between two stages.
|
46 |
+
dim (`int`, *optional*, defaults to 448):
|
47 |
+
Number of channels in Meta3D layers
|
48 |
+
key_dim (`int`, *optional*, defaults to 32):
|
49 |
+
The size of the key in meta3D block.
|
50 |
+
attention_ratio (`int`, *optional*, defaults to 4):
|
51 |
+
Ratio of the dimension of the query and value to the dimension of the key in MSHA block
|
52 |
+
resolution (`int`, *optional*, defaults to 7)
|
53 |
+
Size of each patch
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 5):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
57 |
+
Number of attention heads for each attention layer in the 3D MetaBlock.
|
58 |
+
mlp_expansion_ratio (`int`, *optional*, defaults to 4):
|
59 |
+
Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
62 |
+
patch_size (`int`, *optional*, defaults to 16):
|
63 |
+
The size (resolution) of each patch.
|
64 |
+
num_channels (`int`, *optional*, defaults to 3):
|
65 |
+
The number of input channels.
|
66 |
+
pool_size (`int`, *optional*, defaults to 3):
|
67 |
+
Kernel size of pooling layers.
|
68 |
+
downsample_patch_size (`int`, *optional*, defaults to 3):
|
69 |
+
The size of patches in downsampling layers.
|
70 |
+
downsample_stride (`int`, *optional*, defaults to 2):
|
71 |
+
The stride of convolution kernels in downsampling layers.
|
72 |
+
downsample_pad (`int`, *optional*, defaults to 1):
|
73 |
+
Padding in downsampling layers.
|
74 |
+
drop_path_rate (`int`, *optional*, defaults to 0):
|
75 |
+
Rate at which to increase dropout probability in DropPath.
|
76 |
+
num_meta3d_blocks (`int`, *optional*, defaults to 1):
|
77 |
+
The number of 3D MetaBlocks in the last stage.
|
78 |
+
distillation (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to add a distillation head.
|
80 |
+
use_layer_scale (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether to scale outputs from token mixers.
|
82 |
+
layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
|
83 |
+
Factor by which outputs from token mixers are scaled.
|
84 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
85 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
86 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
87 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
88 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
89 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
90 |
+
The epsilon used by the layer normalization layers.
|
91 |
+
image_size (`int`, *optional*, defaults to `224`):
|
92 |
+
The size (resolution) of each image.
|
93 |
+
|
94 |
+
Example:
|
95 |
+
|
96 |
+
```python
|
97 |
+
>>> from transformers import EfficientFormerConfig, EfficientFormerModel
|
98 |
+
|
99 |
+
>>> # Initializing a EfficientFormer efficientformer-l1 style configuration
|
100 |
+
>>> configuration = EfficientFormerConfig()
|
101 |
+
|
102 |
+
>>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
|
103 |
+
>>> model = EfficientFormerModel(configuration)
|
104 |
+
|
105 |
+
>>> # Accessing the model configuration
|
106 |
+
>>> configuration = model.config
|
107 |
+
```"""
|
108 |
+
|
109 |
+
model_type = "efficientformer"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
depths: List[int] = [3, 2, 6, 4],
|
114 |
+
hidden_sizes: List[int] = [48, 96, 224, 448],
|
115 |
+
downsamples: List[bool] = [True, True, True, True],
|
116 |
+
dim: int = 448,
|
117 |
+
key_dim: int = 32,
|
118 |
+
attention_ratio: int = 4,
|
119 |
+
resolution: int = 7,
|
120 |
+
num_hidden_layers: int = 5,
|
121 |
+
num_attention_heads: int = 8,
|
122 |
+
mlp_expansion_ratio: int = 4,
|
123 |
+
hidden_dropout_prob: float = 0.0,
|
124 |
+
patch_size: int = 16,
|
125 |
+
num_channels: int = 3,
|
126 |
+
pool_size: int = 3,
|
127 |
+
downsample_patch_size: int = 3,
|
128 |
+
downsample_stride: int = 2,
|
129 |
+
downsample_pad: int = 1,
|
130 |
+
drop_path_rate: float = 0.0,
|
131 |
+
num_meta3d_blocks: int = 1,
|
132 |
+
distillation: bool = True,
|
133 |
+
use_layer_scale: bool = True,
|
134 |
+
layer_scale_init_value: float = 1e-5,
|
135 |
+
hidden_act: str = "gelu",
|
136 |
+
initializer_range: float = 0.02,
|
137 |
+
layer_norm_eps: float = 1e-12,
|
138 |
+
image_size: int = 224,
|
139 |
+
batch_norm_eps: float = 1e-05,
|
140 |
+
**kwargs,
|
141 |
+
) -> None:
|
142 |
+
super().__init__(**kwargs)
|
143 |
+
|
144 |
+
self.hidden_act = hidden_act
|
145 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
146 |
+
self.hidden_sizes = hidden_sizes
|
147 |
+
self.num_hidden_layers = num_hidden_layers
|
148 |
+
self.num_attention_heads = num_attention_heads
|
149 |
+
self.initializer_range = initializer_range
|
150 |
+
self.layer_norm_eps = layer_norm_eps
|
151 |
+
self.patch_size = patch_size
|
152 |
+
self.num_channels = num_channels
|
153 |
+
self.depths = depths
|
154 |
+
self.mlp_expansion_ratio = mlp_expansion_ratio
|
155 |
+
self.downsamples = downsamples
|
156 |
+
self.dim = dim
|
157 |
+
self.key_dim = key_dim
|
158 |
+
self.attention_ratio = attention_ratio
|
159 |
+
self.resolution = resolution
|
160 |
+
self.pool_size = pool_size
|
161 |
+
self.downsample_patch_size = downsample_patch_size
|
162 |
+
self.downsample_stride = downsample_stride
|
163 |
+
self.downsample_pad = downsample_pad
|
164 |
+
self.drop_path_rate = drop_path_rate
|
165 |
+
self.num_meta3d_blocks = num_meta3d_blocks
|
166 |
+
self.distillation = distillation
|
167 |
+
self.use_layer_scale = use_layer_scale
|
168 |
+
self.layer_scale_init_value = layer_scale_init_value
|
169 |
+
self.image_size = image_size
|
170 |
+
self.batch_norm_eps = batch_norm_eps
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Convert EfficientFormer checkpoints from the original repository.
|
17 |
+
|
18 |
+
URL: https://github.com/snap-research/EfficientFormer
|
19 |
+
"""
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import re
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import requests
|
26 |
+
import torch
|
27 |
+
from PIL import Image
|
28 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
29 |
+
|
30 |
+
from transformers import (
|
31 |
+
EfficientFormerConfig,
|
32 |
+
EfficientFormerForImageClassificationWithTeacher,
|
33 |
+
EfficientFormerImageProcessor,
|
34 |
+
)
|
35 |
+
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
|
36 |
+
|
37 |
+
|
38 |
+
def rename_key(old_name, num_meta4D_last_stage):
|
39 |
+
new_name = old_name
|
40 |
+
|
41 |
+
if "patch_embed" in old_name:
|
42 |
+
_, layer, param = old_name.split(".")
|
43 |
+
|
44 |
+
if layer == "0":
|
45 |
+
new_name = old_name.replace("0", "convolution1")
|
46 |
+
elif layer == "1":
|
47 |
+
new_name = old_name.replace("1", "batchnorm_before")
|
48 |
+
elif layer == "3":
|
49 |
+
new_name = old_name.replace("3", "convolution2")
|
50 |
+
else:
|
51 |
+
new_name = old_name.replace("4", "batchnorm_after")
|
52 |
+
|
53 |
+
if "network" in old_name and re.search(r"\d\.\d", old_name):
|
54 |
+
two_digit_num = r"\b\d{2}\b"
|
55 |
+
if bool(re.search(two_digit_num, old_name)):
|
56 |
+
match = re.search(r"\d\.\d\d.", old_name).group()
|
57 |
+
else:
|
58 |
+
match = re.search(r"\d\.\d.", old_name).group()
|
59 |
+
if int(match[0]) < 6:
|
60 |
+
trimmed_name = old_name.replace(match, "")
|
61 |
+
trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1])
|
62 |
+
new_name = "intermediate_stages." + trimmed_name
|
63 |
+
else:
|
64 |
+
trimmed_name = old_name.replace(match, "")
|
65 |
+
if int(match[2]) < num_meta4D_last_stage:
|
66 |
+
trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2])
|
67 |
+
else:
|
68 |
+
layer_index = str(int(match[2]) - num_meta4D_last_stage)
|
69 |
+
trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index)
|
70 |
+
if "norm1" in old_name:
|
71 |
+
trimmed_name = trimmed_name.replace("norm1", "layernorm1")
|
72 |
+
elif "norm2" in old_name:
|
73 |
+
trimmed_name = trimmed_name.replace("norm2", "layernorm2")
|
74 |
+
elif "fc1" in old_name:
|
75 |
+
trimmed_name = trimmed_name.replace("fc1", "linear_in")
|
76 |
+
elif "fc2" in old_name:
|
77 |
+
trimmed_name = trimmed_name.replace("fc2", "linear_out")
|
78 |
+
|
79 |
+
new_name = "last_stage." + trimmed_name
|
80 |
+
|
81 |
+
elif "network" in old_name and re.search(r".\d.", old_name):
|
82 |
+
new_name = old_name.replace("network", "intermediate_stages")
|
83 |
+
|
84 |
+
if "fc" in new_name:
|
85 |
+
new_name = new_name.replace("fc", "convolution")
|
86 |
+
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
|
87 |
+
new_name = new_name.replace("norm1", "batchnorm_before")
|
88 |
+
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
|
89 |
+
new_name = new_name.replace("norm2", "batchnorm_after")
|
90 |
+
if "proj" in new_name:
|
91 |
+
new_name = new_name.replace("proj", "projection")
|
92 |
+
if "dist_head" in new_name:
|
93 |
+
new_name = new_name.replace("dist_head", "distillation_classifier")
|
94 |
+
elif "head" in new_name:
|
95 |
+
new_name = new_name.replace("head", "classifier")
|
96 |
+
elif "patch_embed" in new_name:
|
97 |
+
new_name = "efficientformer." + new_name
|
98 |
+
elif new_name == "norm.weight" or new_name == "norm.bias":
|
99 |
+
new_name = new_name.replace("norm", "layernorm")
|
100 |
+
new_name = "efficientformer." + new_name
|
101 |
+
else:
|
102 |
+
new_name = "efficientformer.encoder." + new_name
|
103 |
+
|
104 |
+
return new_name
|
105 |
+
|
106 |
+
|
107 |
+
def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage):
|
108 |
+
for key in checkpoint.copy().keys():
|
109 |
+
val = checkpoint.pop(key)
|
110 |
+
checkpoint[rename_key(key, num_meta4D_last_stage)] = val
|
111 |
+
|
112 |
+
return checkpoint
|
113 |
+
|
114 |
+
|
115 |
+
# We will verify our results on a COCO image
|
116 |
+
def prepare_img():
|
117 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
118 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
119 |
+
|
120 |
+
return image
|
121 |
+
|
122 |
+
|
123 |
+
def convert_efficientformer_checkpoint(
|
124 |
+
checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool
|
125 |
+
):
|
126 |
+
orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
|
127 |
+
config = EfficientFormerConfig.from_json_file(efficientformer_config_file)
|
128 |
+
model = EfficientFormerForImageClassificationWithTeacher(config)
|
129 |
+
model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1])
|
130 |
+
|
131 |
+
num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1
|
132 |
+
new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage)
|
133 |
+
|
134 |
+
model.load_state_dict(new_state_dict)
|
135 |
+
model.eval()
|
136 |
+
|
137 |
+
pillow_resamplings = {
|
138 |
+
"bilinear": PILImageResampling.BILINEAR,
|
139 |
+
"bicubic": PILImageResampling.BICUBIC,
|
140 |
+
"nearest": PILImageResampling.NEAREST,
|
141 |
+
}
|
142 |
+
|
143 |
+
# prepare image
|
144 |
+
image = prepare_img()
|
145 |
+
image_size = 256
|
146 |
+
crop_size = 224
|
147 |
+
processor = EfficientFormerImageProcessor(
|
148 |
+
size={"shortest_edge": image_size},
|
149 |
+
crop_size={"height": crop_size, "width": crop_size},
|
150 |
+
resample=pillow_resamplings["bicubic"],
|
151 |
+
)
|
152 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
153 |
+
|
154 |
+
# original processing pipeline
|
155 |
+
image_transforms = Compose(
|
156 |
+
[
|
157 |
+
Resize(image_size, interpolation=pillow_resamplings["bicubic"]),
|
158 |
+
CenterCrop(crop_size),
|
159 |
+
ToTensor(),
|
160 |
+
Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
|
161 |
+
]
|
162 |
+
)
|
163 |
+
original_pixel_values = image_transforms(image).unsqueeze(0)
|
164 |
+
|
165 |
+
assert torch.allclose(original_pixel_values, pixel_values)
|
166 |
+
|
167 |
+
outputs = model(pixel_values)
|
168 |
+
logits = outputs.logits
|
169 |
+
|
170 |
+
expected_shape = (1, 1000)
|
171 |
+
|
172 |
+
if "l1" in model_name:
|
173 |
+
expected_logits = torch.Tensor(
|
174 |
+
[-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328]
|
175 |
+
)
|
176 |
+
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
|
177 |
+
assert logits.shape == expected_shape
|
178 |
+
elif "l3" in model_name:
|
179 |
+
expected_logits = torch.Tensor(
|
180 |
+
[-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127]
|
181 |
+
)
|
182 |
+
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
|
183 |
+
assert logits.shape == expected_shape
|
184 |
+
elif "l7" in model_name:
|
185 |
+
expected_logits = torch.Tensor(
|
186 |
+
[-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878]
|
187 |
+
)
|
188 |
+
assert logits.shape == expected_shape
|
189 |
+
else:
|
190 |
+
raise ValueError(
|
191 |
+
f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7"
|
192 |
+
)
|
193 |
+
|
194 |
+
# Save Checkpoints
|
195 |
+
Path(pytorch_dump_path).mkdir(exist_ok=True)
|
196 |
+
model.save_pretrained(pytorch_dump_path)
|
197 |
+
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
|
198 |
+
processor.save_pretrained(pytorch_dump_path)
|
199 |
+
print(f"Processor successfuly saved at {pytorch_dump_path}")
|
200 |
+
|
201 |
+
if push_to_hub:
|
202 |
+
print("Pushing model to the hub...")
|
203 |
+
|
204 |
+
model.push_to_hub(
|
205 |
+
repo_id=f"Bearnardd/{pytorch_dump_path}",
|
206 |
+
commit_message="Add model",
|
207 |
+
use_temp_dir=True,
|
208 |
+
)
|
209 |
+
processor.push_to_hub(
|
210 |
+
repo_id=f"Bearnardd/{pytorch_dump_path}",
|
211 |
+
commit_message="Add image processor",
|
212 |
+
use_temp_dir=True,
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
parser = argparse.ArgumentParser()
|
218 |
+
# Required parameters
|
219 |
+
parser.add_argument(
|
220 |
+
"--pytorch_model_path",
|
221 |
+
default=None,
|
222 |
+
type=str,
|
223 |
+
required=True,
|
224 |
+
help="Path to EfficientFormer pytorch checkpoint.",
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--config_file",
|
228 |
+
default=None,
|
229 |
+
type=str,
|
230 |
+
required=True,
|
231 |
+
help="The json file for EfficientFormer model config.",
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
235 |
+
)
|
236 |
+
|
237 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
|
238 |
+
parser.add_argument(
|
239 |
+
"--no-push_to_hub",
|
240 |
+
dest="push_to_hub",
|
241 |
+
action="store_false",
|
242 |
+
help="Do not push model and image processor to the hub",
|
243 |
+
)
|
244 |
+
parser.set_defaults(push_to_hub=True)
|
245 |
+
|
246 |
+
args = parser.parse_args()
|
247 |
+
convert_efficientformer_checkpoint(
|
248 |
+
checkpoint_path=args.pytorch_model_path,
|
249 |
+
efficientformer_config_file=args.config_file,
|
250 |
+
pytorch_dump_path=args.pytorch_dump_path,
|
251 |
+
push_to_hub=args.push_to_hub,
|
252 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/image_processing_efficientformer.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for EfficientFormer."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_DEFAULT_MEAN,
|
29 |
+
IMAGENET_DEFAULT_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_batched,
|
35 |
+
is_scaled_image,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class EfficientFormerImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a EfficientFormer image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
|
54 |
+
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
|
55 |
+
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
56 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
57 |
+
method.
|
58 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
59 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
60 |
+
`preprocess` method.
|
61 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
63 |
+
`preprocess` method.
|
64 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
65 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
66 |
+
method.
|
67 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
69 |
+
parameter in the `preprocess` method.
|
70 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
71 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
72 |
+
`preprocess` method.
|
73 |
+
do_normalize:
|
74 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
75 |
+
method.
|
76 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
77 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
78 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
79 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
80 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
81 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
82 |
+
"""
|
83 |
+
|
84 |
+
model_input_names = ["pixel_values"]
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
do_resize: bool = True,
|
89 |
+
size: Optional[Dict[str, int]] = None,
|
90 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
91 |
+
do_center_crop: bool = True,
|
92 |
+
do_rescale: bool = True,
|
93 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
94 |
+
crop_size: Dict[str, int] = None,
|
95 |
+
do_normalize: bool = True,
|
96 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
97 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
98 |
+
**kwargs,
|
99 |
+
) -> None:
|
100 |
+
super().__init__(**kwargs)
|
101 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
102 |
+
size = get_size_dict(size)
|
103 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
104 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
105 |
+
|
106 |
+
self.do_resize = do_resize
|
107 |
+
self.do_rescale = do_rescale
|
108 |
+
self.do_normalize = do_normalize
|
109 |
+
self.do_center_crop = do_center_crop
|
110 |
+
self.crop_size = crop_size
|
111 |
+
self.size = size
|
112 |
+
self.resample = resample
|
113 |
+
self.rescale_factor = rescale_factor
|
114 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
115 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
116 |
+
self._valid_processor_keys = [
|
117 |
+
"images",
|
118 |
+
"do_resize",
|
119 |
+
"size",
|
120 |
+
"resample",
|
121 |
+
"do_center_crop",
|
122 |
+
"crop_size",
|
123 |
+
"do_rescale",
|
124 |
+
"rescale_factor",
|
125 |
+
"do_normalize",
|
126 |
+
"image_mean",
|
127 |
+
"image_std",
|
128 |
+
"return_tensors",
|
129 |
+
"data_format",
|
130 |
+
"input_data_format",
|
131 |
+
]
|
132 |
+
|
133 |
+
def resize(
|
134 |
+
self,
|
135 |
+
image: np.ndarray,
|
136 |
+
size: Dict[str, int],
|
137 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
138 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
139 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
140 |
+
**kwargs,
|
141 |
+
) -> np.ndarray:
|
142 |
+
"""
|
143 |
+
Resize an image to `(size["height"], size["width"])`.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
image (`np.ndarray`):
|
147 |
+
Image to resize.
|
148 |
+
size (`Dict[str, int]`):
|
149 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
150 |
+
resample:
|
151 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
152 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
153 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
154 |
+
image is used. Can be one of:
|
155 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
156 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
157 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
158 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
`np.ndarray`: The resized image.
|
162 |
+
"""
|
163 |
+
size = get_size_dict(size)
|
164 |
+
|
165 |
+
if "shortest_edge" in size:
|
166 |
+
size = get_resize_output_image_size(
|
167 |
+
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
|
168 |
+
)
|
169 |
+
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
|
170 |
+
elif "height" in size and "width" in size:
|
171 |
+
size = (size["height"], size["width"])
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
|
174 |
+
return resize(
|
175 |
+
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
176 |
+
)
|
177 |
+
|
178 |
+
def preprocess(
|
179 |
+
self,
|
180 |
+
images: ImageInput,
|
181 |
+
do_resize: Optional[bool] = None,
|
182 |
+
size: Dict[str, int] = None,
|
183 |
+
resample: PILImageResampling = None,
|
184 |
+
do_center_crop: bool = None,
|
185 |
+
crop_size: int = None,
|
186 |
+
do_rescale: Optional[bool] = None,
|
187 |
+
rescale_factor: Optional[float] = None,
|
188 |
+
do_normalize: Optional[bool] = None,
|
189 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
190 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
191 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
192 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
193 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
194 |
+
**kwargs,
|
195 |
+
) -> BatchFeature:
|
196 |
+
"""
|
197 |
+
Preprocess an image or batch of images.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
images (`ImageInput`):
|
201 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
202 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
203 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
204 |
+
Whether to resize the image.
|
205 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
206 |
+
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
|
207 |
+
resizing.
|
208 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
209 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
210 |
+
an effect if `do_resize` is set to `True`.
|
211 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
212 |
+
Whether to center crop the image.
|
213 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
214 |
+
Whether to rescale the image values between [0 - 1].
|
215 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
216 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
217 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
218 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
219 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
220 |
+
Whether to normalize the image.
|
221 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
222 |
+
Image mean to use if `do_normalize` is set to `True`.
|
223 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
224 |
+
Image standard deviation to use if `do_normalize` is set to `True`.
|
225 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
226 |
+
The type of tensors to return. Can be one of:
|
227 |
+
- Unset: Return a list of `np.ndarray`.
|
228 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
229 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
230 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
231 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
232 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
233 |
+
The channel dimension format for the output image. Can be one of:
|
234 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
235 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
236 |
+
- Unset: Use the channel dimension format of the input image.
|
237 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
238 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
239 |
+
from the input image. Can be one of:
|
240 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
241 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
242 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
243 |
+
"""
|
244 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
245 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
246 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
247 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
248 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
249 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
250 |
+
resample = resample if resample is not None else self.resample
|
251 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
252 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
253 |
+
image_std = image_std if image_std is not None else self.image_std
|
254 |
+
|
255 |
+
size = size if size is not None else self.size
|
256 |
+
size_dict = get_size_dict(size)
|
257 |
+
|
258 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
259 |
+
|
260 |
+
if not is_batched(images):
|
261 |
+
images = [images]
|
262 |
+
|
263 |
+
if not valid_images(images):
|
264 |
+
raise ValueError(
|
265 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
266 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
267 |
+
)
|
268 |
+
validate_preprocess_arguments(
|
269 |
+
do_rescale=do_rescale,
|
270 |
+
rescale_factor=rescale_factor,
|
271 |
+
do_normalize=do_normalize,
|
272 |
+
image_mean=image_mean,
|
273 |
+
image_std=image_std,
|
274 |
+
do_center_crop=do_center_crop,
|
275 |
+
crop_size=crop_size,
|
276 |
+
do_resize=do_resize,
|
277 |
+
size=size,
|
278 |
+
resample=resample,
|
279 |
+
)
|
280 |
+
# All transformations expect numpy arrays.
|
281 |
+
images = [to_numpy_array(image) for image in images]
|
282 |
+
|
283 |
+
if is_scaled_image(images[0]) and do_rescale:
|
284 |
+
logger.warning_once(
|
285 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
286 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
287 |
+
)
|
288 |
+
|
289 |
+
if input_data_format is None:
|
290 |
+
# We assume that all images have the same channel dimension format.
|
291 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
292 |
+
|
293 |
+
if do_resize:
|
294 |
+
images = [
|
295 |
+
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
|
296 |
+
for image in images
|
297 |
+
]
|
298 |
+
|
299 |
+
if do_center_crop:
|
300 |
+
images = [
|
301 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
302 |
+
]
|
303 |
+
|
304 |
+
if do_rescale:
|
305 |
+
images = [
|
306 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
307 |
+
for image in images
|
308 |
+
]
|
309 |
+
|
310 |
+
if do_normalize:
|
311 |
+
images = [
|
312 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
313 |
+
for image in images
|
314 |
+
]
|
315 |
+
|
316 |
+
images = [
|
317 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
318 |
+
]
|
319 |
+
|
320 |
+
data = {"pixel_values": images}
|
321 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_efficientformer.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Snapchat Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch EfficientFormer model."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
28 |
+
from ...modeling_utils import PreTrainedModel
|
29 |
+
from ...utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
)
|
36 |
+
from .configuration_efficientformer import EfficientFormerConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
# General docstring
|
42 |
+
_CONFIG_FOR_DOC = "EfficientFormerConfig"
|
43 |
+
|
44 |
+
# Base docstring
|
45 |
+
_CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300"
|
46 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 448]
|
47 |
+
|
48 |
+
# Image classification docstring
|
49 |
+
_IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300"
|
50 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
class EfficientFormerPatchEmbeddings(nn.Module):
|
57 |
+
"""
|
58 |
+
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
|
59 |
+
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True):
|
63 |
+
super().__init__()
|
64 |
+
self.num_channels = num_channels
|
65 |
+
|
66 |
+
self.projection = nn.Conv2d(
|
67 |
+
num_channels,
|
68 |
+
embed_dim,
|
69 |
+
kernel_size=config.downsample_patch_size,
|
70 |
+
stride=config.downsample_stride,
|
71 |
+
padding=config.downsample_pad,
|
72 |
+
)
|
73 |
+
self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) if apply_norm else nn.Identity()
|
74 |
+
|
75 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
76 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
77 |
+
if num_channels != self.num_channels:
|
78 |
+
raise ValueError(
|
79 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
80 |
+
)
|
81 |
+
|
82 |
+
embeddings = self.projection(pixel_values)
|
83 |
+
embeddings = self.norm(embeddings)
|
84 |
+
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
|
88 |
+
class EfficientFormerSelfAttention(nn.Module):
|
89 |
+
def __init__(self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.num_heads = num_heads
|
93 |
+
self.key_dim = key_dim
|
94 |
+
self.attention_ratio = attention_ratio
|
95 |
+
self.scale = key_dim**-0.5
|
96 |
+
self.total_key_dim = key_dim * num_heads
|
97 |
+
self.expanded_key_dim = int(attention_ratio * key_dim)
|
98 |
+
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
|
99 |
+
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
|
100 |
+
self.qkv = nn.Linear(dim, hidden_size)
|
101 |
+
self.projection = nn.Linear(self.total_expanded_key_dim, dim)
|
102 |
+
points = list(itertools.product(range(resolution), range(resolution)))
|
103 |
+
num_points = len(points)
|
104 |
+
attention_offsets = {}
|
105 |
+
idxs = []
|
106 |
+
for point_1 in points:
|
107 |
+
for point_2 in points:
|
108 |
+
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
|
109 |
+
if offset not in attention_offsets:
|
110 |
+
attention_offsets[offset] = len(attention_offsets)
|
111 |
+
idxs.append(attention_offsets[offset])
|
112 |
+
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
113 |
+
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(num_points, num_points))
|
114 |
+
|
115 |
+
@torch.no_grad()
|
116 |
+
def train(self, mode=True):
|
117 |
+
super().train(mode)
|
118 |
+
if mode and hasattr(self, "ab"):
|
119 |
+
del self.ab
|
120 |
+
else:
|
121 |
+
self.ab = self.attention_biases[:, self.attention_bias_idxs]
|
122 |
+
|
123 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
124 |
+
batch_size, sequence_length, num_channels = hidden_states.shape
|
125 |
+
qkv = self.qkv(hidden_states)
|
126 |
+
query_layer, key_layer, value_layer = qkv.reshape(batch_size, sequence_length, self.num_heads, -1).split(
|
127 |
+
[self.key_dim, self.key_dim, self.expanded_key_dim], dim=3
|
128 |
+
)
|
129 |
+
query_layer = query_layer.permute(0, 2, 1, 3)
|
130 |
+
key_layer = key_layer.permute(0, 2, 1, 3)
|
131 |
+
value_layer = value_layer.permute(0, 2, 1, 3)
|
132 |
+
|
133 |
+
# set `model.to(torch_device)` won't change `self.ab.device`, if there is no follow-up `train` or `eval` call.
|
134 |
+
# Let's do it manually here, so users won't have to do this everytime.
|
135 |
+
if not self.training:
|
136 |
+
self.ab = self.ab.to(self.attention_biases.device)
|
137 |
+
attention_probs = (torch.matmul(query_layer, key_layer.transpose(-2, -1))) * self.scale + (
|
138 |
+
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
|
139 |
+
)
|
140 |
+
|
141 |
+
attention_probs = attention_probs.softmax(dim=-1)
|
142 |
+
|
143 |
+
context_layer = torch.matmul(attention_probs, value_layer).transpose(1, 2)
|
144 |
+
context_layer = context_layer.reshape(batch_size, sequence_length, self.total_expanded_key_dim)
|
145 |
+
context_layer = self.projection(context_layer)
|
146 |
+
|
147 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
148 |
+
|
149 |
+
return outputs
|
150 |
+
|
151 |
+
|
152 |
+
class EfficientFormerConvStem(nn.Module):
|
153 |
+
def __init__(self, config: EfficientFormerConfig, out_channels: int):
|
154 |
+
super().__init__()
|
155 |
+
|
156 |
+
self.convolution1 = nn.Conv2d(config.num_channels, out_channels // 2, kernel_size=3, stride=2, padding=1)
|
157 |
+
self.batchnorm_before = nn.BatchNorm2d(out_channels // 2, eps=config.batch_norm_eps)
|
158 |
+
|
159 |
+
self.convolution2 = nn.Conv2d(out_channels // 2, out_channels, kernel_size=3, stride=2, padding=1)
|
160 |
+
self.batchnorm_after = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
|
161 |
+
|
162 |
+
self.activation = nn.ReLU()
|
163 |
+
|
164 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
165 |
+
features = self.batchnorm_before(self.convolution1(pixel_values))
|
166 |
+
features = self.activation(features)
|
167 |
+
features = self.batchnorm_after(self.convolution2(features))
|
168 |
+
features = self.activation(features)
|
169 |
+
|
170 |
+
return features
|
171 |
+
|
172 |
+
|
173 |
+
class EfficientFormerPooling(nn.Module):
|
174 |
+
def __init__(self, pool_size: int):
|
175 |
+
super().__init__()
|
176 |
+
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
|
177 |
+
|
178 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
179 |
+
output = self.pool(hidden_states) - hidden_states
|
180 |
+
return output
|
181 |
+
|
182 |
+
|
183 |
+
class EfficientFormerDenseMlp(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
config: EfficientFormerConfig,
|
187 |
+
in_features: int,
|
188 |
+
hidden_features: Optional[int] = None,
|
189 |
+
out_features: Optional[int] = None,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
out_features = out_features or in_features
|
193 |
+
hidden_features = hidden_features or in_features
|
194 |
+
|
195 |
+
self.linear_in = nn.Linear(in_features, hidden_features)
|
196 |
+
self.activation = ACT2FN[config.hidden_act]
|
197 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
198 |
+
self.linear_out = nn.Linear(hidden_features, out_features)
|
199 |
+
|
200 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
201 |
+
hidden_states = self.linear_in(hidden_states)
|
202 |
+
hidden_states = self.activation(hidden_states)
|
203 |
+
hidden_states = self.dropout(hidden_states)
|
204 |
+
hidden_states = self.linear_out(hidden_states)
|
205 |
+
hidden_states = self.dropout(hidden_states)
|
206 |
+
|
207 |
+
return hidden_states
|
208 |
+
|
209 |
+
|
210 |
+
class EfficientFormerConvMlp(nn.Module):
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
config: EfficientFormerConfig,
|
214 |
+
in_features: int,
|
215 |
+
hidden_features: Optional[int] = None,
|
216 |
+
out_features: Optional[int] = None,
|
217 |
+
drop: float = 0.0,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
out_features = out_features or in_features
|
221 |
+
hidden_features = hidden_features or in_features
|
222 |
+
|
223 |
+
self.convolution1 = nn.Conv2d(in_features, hidden_features, 1)
|
224 |
+
self.activation = ACT2FN[config.hidden_act]
|
225 |
+
self.convolution2 = nn.Conv2d(hidden_features, out_features, 1)
|
226 |
+
self.dropout = nn.Dropout(drop)
|
227 |
+
|
228 |
+
self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps)
|
229 |
+
self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps)
|
230 |
+
|
231 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
232 |
+
hidden_state = self.convolution1(hidden_state)
|
233 |
+
hidden_state = self.batchnorm_before(hidden_state)
|
234 |
+
|
235 |
+
hidden_state = self.activation(hidden_state)
|
236 |
+
hidden_state = self.dropout(hidden_state)
|
237 |
+
hidden_state = self.convolution2(hidden_state)
|
238 |
+
|
239 |
+
hidden_state = self.batchnorm_after(hidden_state)
|
240 |
+
hidden_state = self.dropout(hidden_state)
|
241 |
+
|
242 |
+
return hidden_state
|
243 |
+
|
244 |
+
|
245 |
+
# Copied from transformers.models.convnext.modeling_convnext.drop_path
|
246 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
247 |
+
"""
|
248 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
249 |
+
|
250 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
251 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
252 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
253 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
254 |
+
argument.
|
255 |
+
"""
|
256 |
+
if drop_prob == 0.0 or not training:
|
257 |
+
return input
|
258 |
+
keep_prob = 1 - drop_prob
|
259 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
260 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
261 |
+
random_tensor.floor_() # binarize
|
262 |
+
output = input.div(keep_prob) * random_tensor
|
263 |
+
return output
|
264 |
+
|
265 |
+
|
266 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->EfficientFormer
|
267 |
+
class EfficientFormerDropPath(nn.Module):
|
268 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
269 |
+
|
270 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
271 |
+
super().__init__()
|
272 |
+
self.drop_prob = drop_prob
|
273 |
+
|
274 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
275 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
276 |
+
|
277 |
+
def extra_repr(self) -> str:
|
278 |
+
return "p={}".format(self.drop_prob)
|
279 |
+
|
280 |
+
|
281 |
+
class EfficientFormerFlat(nn.Module):
|
282 |
+
def __init__(self):
|
283 |
+
super().__init__()
|
284 |
+
|
285 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
286 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class EfficientFormerMeta3D(nn.Module):
|
291 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.token_mixer = EfficientFormerSelfAttention(
|
295 |
+
dim=config.dim,
|
296 |
+
key_dim=config.key_dim,
|
297 |
+
num_heads=config.num_attention_heads,
|
298 |
+
attention_ratio=config.attention_ratio,
|
299 |
+
resolution=config.resolution,
|
300 |
+
)
|
301 |
+
|
302 |
+
self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
303 |
+
self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
304 |
+
|
305 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
306 |
+
self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim)
|
307 |
+
|
308 |
+
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
309 |
+
self.use_layer_scale = config.use_layer_scale
|
310 |
+
if config.use_layer_scale:
|
311 |
+
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
312 |
+
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
313 |
+
|
314 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
315 |
+
self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions)
|
316 |
+
attention_output = self_attention_outputs[0]
|
317 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
318 |
+
|
319 |
+
if self.use_layer_scale:
|
320 |
+
layer_output = hidden_states + self.drop_path(
|
321 |
+
self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output
|
322 |
+
)
|
323 |
+
layer_output = layer_output + self.drop_path(
|
324 |
+
self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output))
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
layer_output = hidden_states + self.drop_path(attention_output)
|
328 |
+
layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output)))
|
329 |
+
|
330 |
+
outputs = (layer_output,) + outputs
|
331 |
+
|
332 |
+
return outputs
|
333 |
+
|
334 |
+
|
335 |
+
class EfficientFormerMeta3DLayers(nn.Module):
|
336 |
+
def __init__(self, config: EfficientFormerConfig):
|
337 |
+
super().__init__()
|
338 |
+
drop_paths = [
|
339 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
|
340 |
+
for block_idx in range(config.num_meta3d_blocks)
|
341 |
+
]
|
342 |
+
self.blocks = nn.ModuleList(
|
343 |
+
[EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths]
|
344 |
+
)
|
345 |
+
|
346 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
347 |
+
all_attention_outputs = () if output_attentions else None
|
348 |
+
|
349 |
+
for layer_module in self.blocks:
|
350 |
+
if isinstance(hidden_states, tuple):
|
351 |
+
hidden_states = hidden_states[0]
|
352 |
+
|
353 |
+
hidden_states = layer_module(hidden_states, output_attentions)
|
354 |
+
|
355 |
+
if output_attentions:
|
356 |
+
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
|
357 |
+
|
358 |
+
if output_attentions:
|
359 |
+
outputs = (hidden_states[0],) + all_attention_outputs
|
360 |
+
return outputs
|
361 |
+
|
362 |
+
return hidden_states
|
363 |
+
|
364 |
+
|
365 |
+
class EfficientFormerMeta4D(nn.Module):
|
366 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
|
367 |
+
super().__init__()
|
368 |
+
pool_size = config.pool_size if config.pool_size is not None else 3
|
369 |
+
self.token_mixer = EfficientFormerPooling(pool_size=pool_size)
|
370 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
371 |
+
self.mlp = EfficientFormerConvMlp(
|
372 |
+
config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob
|
373 |
+
)
|
374 |
+
|
375 |
+
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
376 |
+
self.use_layer_scale = config.use_layer_scale
|
377 |
+
if config.use_layer_scale:
|
378 |
+
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
379 |
+
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
380 |
+
|
381 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
382 |
+
outputs = self.token_mixer(hidden_states)
|
383 |
+
|
384 |
+
if self.use_layer_scale:
|
385 |
+
layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs)
|
386 |
+
|
387 |
+
layer_output = layer_output + self.drop_path(
|
388 |
+
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output)
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
layer_output = hidden_states + self.drop_path(outputs)
|
392 |
+
layer_output = layer_output + self.drop_path(self.mlp(layer_output))
|
393 |
+
|
394 |
+
return layer_output
|
395 |
+
|
396 |
+
|
397 |
+
class EfficientFormerMeta4DLayers(nn.Module):
|
398 |
+
def __init__(self, config: EfficientFormerConfig, stage_idx: int):
|
399 |
+
super().__init__()
|
400 |
+
num_layers = (
|
401 |
+
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
|
402 |
+
)
|
403 |
+
drop_paths = [
|
404 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
|
405 |
+
]
|
406 |
+
|
407 |
+
self.blocks = nn.ModuleList(
|
408 |
+
[
|
409 |
+
EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path)
|
410 |
+
for drop_path in drop_paths
|
411 |
+
]
|
412 |
+
)
|
413 |
+
|
414 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
415 |
+
for layer_module in self.blocks:
|
416 |
+
hidden_states = layer_module(hidden_states)
|
417 |
+
return hidden_states
|
418 |
+
|
419 |
+
|
420 |
+
class EfficientFormerIntermediateStage(nn.Module):
|
421 |
+
def __init__(self, config: EfficientFormerConfig, index: int):
|
422 |
+
super().__init__()
|
423 |
+
self.meta4D_layers = EfficientFormerMeta4DLayers(config, index)
|
424 |
+
|
425 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
426 |
+
hidden_states = self.meta4D_layers(hidden_states)
|
427 |
+
return hidden_states
|
428 |
+
|
429 |
+
|
430 |
+
class EfficientFormerLastStage(nn.Module):
|
431 |
+
def __init__(self, config: EfficientFormerConfig):
|
432 |
+
super().__init__()
|
433 |
+
self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1)
|
434 |
+
self.flat = EfficientFormerFlat()
|
435 |
+
self.meta3D_layers = EfficientFormerMeta3DLayers(config)
|
436 |
+
|
437 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
|
438 |
+
hidden_states = self.meta4D_layers(hidden_states)
|
439 |
+
hidden_states = self.flat(hidden_states)
|
440 |
+
hidden_states = self.meta3D_layers(hidden_states, output_attentions)
|
441 |
+
|
442 |
+
return hidden_states
|
443 |
+
|
444 |
+
|
445 |
+
class EfficientFormerEncoder(nn.Module):
|
446 |
+
def __init__(self, config: EfficientFormerConfig):
|
447 |
+
super().__init__()
|
448 |
+
self.config = config
|
449 |
+
num_intermediate_stages = len(config.depths) - 1
|
450 |
+
downsamples = [
|
451 |
+
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
|
452 |
+
for i in range(num_intermediate_stages)
|
453 |
+
]
|
454 |
+
intermediate_stages = []
|
455 |
+
|
456 |
+
for i in range(num_intermediate_stages):
|
457 |
+
intermediate_stages.append(EfficientFormerIntermediateStage(config, i))
|
458 |
+
if downsamples[i]:
|
459 |
+
intermediate_stages.append(
|
460 |
+
EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1])
|
461 |
+
)
|
462 |
+
|
463 |
+
self.intermediate_stages = nn.ModuleList(intermediate_stages)
|
464 |
+
self.last_stage = EfficientFormerLastStage(config)
|
465 |
+
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
hidden_states: torch.Tensor,
|
469 |
+
output_hidden_states: bool = False,
|
470 |
+
output_attentions: bool = False,
|
471 |
+
return_dict: bool = True,
|
472 |
+
) -> BaseModelOutput:
|
473 |
+
all_hidden_states = () if output_hidden_states else None
|
474 |
+
all_self_attentions = () if output_attentions else None
|
475 |
+
|
476 |
+
if output_hidden_states:
|
477 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
478 |
+
|
479 |
+
for layer_module in self.intermediate_stages:
|
480 |
+
hidden_states = layer_module(hidden_states)
|
481 |
+
if output_hidden_states:
|
482 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
483 |
+
|
484 |
+
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions)
|
485 |
+
|
486 |
+
if output_attentions:
|
487 |
+
all_self_attentions = all_self_attentions + layer_output[1:]
|
488 |
+
|
489 |
+
if output_hidden_states:
|
490 |
+
all_hidden_states = all_hidden_states + (layer_output[0],)
|
491 |
+
|
492 |
+
if not return_dict:
|
493 |
+
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
|
494 |
+
|
495 |
+
return BaseModelOutput(
|
496 |
+
last_hidden_state=layer_output[0],
|
497 |
+
hidden_states=all_hidden_states,
|
498 |
+
attentions=all_self_attentions,
|
499 |
+
)
|
500 |
+
|
501 |
+
|
502 |
+
class EfficientFormerPreTrainedModel(PreTrainedModel):
|
503 |
+
"""
|
504 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
505 |
+
models.
|
506 |
+
"""
|
507 |
+
|
508 |
+
config_class = EfficientFormerConfig
|
509 |
+
base_model_prefix = "efficientformer"
|
510 |
+
main_input_name = "pixel_values"
|
511 |
+
supports_gradient_checkpointing = False
|
512 |
+
|
513 |
+
def _init_weights(self, module: nn.Module):
|
514 |
+
"""Initialize the weights"""
|
515 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
516 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
517 |
+
if module.bias is not None:
|
518 |
+
module.bias.data.zero_()
|
519 |
+
elif isinstance(module, nn.LayerNorm):
|
520 |
+
module.bias.data.zero_()
|
521 |
+
module.weight.data.fill_(1.0)
|
522 |
+
|
523 |
+
|
524 |
+
EFFICIENTFORMER_START_DOCSTRING = r"""
|
525 |
+
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) subclass. Use it as a
|
526 |
+
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
|
527 |
+
|
528 |
+
Parameters:
|
529 |
+
config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model.
|
530 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
531 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
532 |
+
"""
|
533 |
+
|
534 |
+
EFFICIENTFORMER_INPUTS_DOCSTRING = r"""
|
535 |
+
Args:
|
536 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
537 |
+
Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See
|
538 |
+
[`ViTImageProcessor.preprocess`] for details.
|
539 |
+
output_attentions (`bool`, *optional*):
|
540 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
541 |
+
tensors for more detail.
|
542 |
+
output_hidden_states (`bool`, *optional*):
|
543 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
544 |
+
more detail.
|
545 |
+
return_dict (`bool`, *optional*):
|
546 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
547 |
+
"""
|
548 |
+
|
549 |
+
|
550 |
+
@add_start_docstrings(
|
551 |
+
"The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.",
|
552 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
553 |
+
)
|
554 |
+
class EfficientFormerModel(EfficientFormerPreTrainedModel):
|
555 |
+
def __init__(self, config: EfficientFormerConfig):
|
556 |
+
super().__init__(config)
|
557 |
+
self.config = config
|
558 |
+
|
559 |
+
self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0])
|
560 |
+
self.encoder = EfficientFormerEncoder(config)
|
561 |
+
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
562 |
+
|
563 |
+
# Initialize weights and apply final processing
|
564 |
+
self.post_init()
|
565 |
+
|
566 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
567 |
+
@add_code_sample_docstrings(
|
568 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
569 |
+
output_type=BaseModelOutputWithPooling,
|
570 |
+
config_class=_CONFIG_FOR_DOC,
|
571 |
+
modality="vision",
|
572 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
573 |
+
)
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
pixel_values: Optional[torch.Tensor] = None,
|
577 |
+
output_attentions: Optional[bool] = None,
|
578 |
+
output_hidden_states: Optional[bool] = None,
|
579 |
+
return_dict: Optional[bool] = None,
|
580 |
+
) -> Union[tuple, BaseModelOutput]:
|
581 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
582 |
+
output_hidden_states = (
|
583 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
584 |
+
)
|
585 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
586 |
+
|
587 |
+
if pixel_values is None:
|
588 |
+
raise ValueError("You have to specify pixel_values")
|
589 |
+
|
590 |
+
embedding_output = self.patch_embed(pixel_values)
|
591 |
+
encoder_outputs = self.encoder(
|
592 |
+
embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states
|
593 |
+
)
|
594 |
+
|
595 |
+
sequence_output = encoder_outputs[0]
|
596 |
+
sequence_output = self.layernorm(sequence_output)
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
head_outputs = (sequence_output,)
|
600 |
+
return head_outputs + encoder_outputs[1:]
|
601 |
+
|
602 |
+
return BaseModelOutput(
|
603 |
+
last_hidden_state=sequence_output,
|
604 |
+
hidden_states=encoder_outputs.hidden_states,
|
605 |
+
attentions=encoder_outputs.attentions,
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
@add_start_docstrings(
|
610 |
+
"""
|
611 |
+
EfficientFormer Model transformer with an image classification head on top (a linear layer on top of the final
|
612 |
+
hidden state of the [CLS] token) e.g. for ImageNet.
|
613 |
+
""",
|
614 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
615 |
+
)
|
616 |
+
class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel):
|
617 |
+
def __init__(self, config: EfficientFormerConfig):
|
618 |
+
super().__init__(config)
|
619 |
+
|
620 |
+
self.num_labels = config.num_labels
|
621 |
+
self.efficientformer = EfficientFormerModel(config)
|
622 |
+
|
623 |
+
# Classifier head
|
624 |
+
self.classifier = (
|
625 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
626 |
+
)
|
627 |
+
|
628 |
+
# Initialize weights and apply final processing
|
629 |
+
self.post_init()
|
630 |
+
|
631 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
632 |
+
@add_code_sample_docstrings(
|
633 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
634 |
+
output_type=ImageClassifierOutput,
|
635 |
+
config_class=_CONFIG_FOR_DOC,
|
636 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
637 |
+
)
|
638 |
+
def forward(
|
639 |
+
self,
|
640 |
+
pixel_values: Optional[torch.Tensor] = None,
|
641 |
+
labels: Optional[torch.Tensor] = None,
|
642 |
+
output_attentions: Optional[bool] = None,
|
643 |
+
output_hidden_states: Optional[bool] = None,
|
644 |
+
return_dict: Optional[bool] = None,
|
645 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
646 |
+
r"""
|
647 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
648 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
649 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
650 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
651 |
+
"""
|
652 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
653 |
+
|
654 |
+
outputs = self.efficientformer(
|
655 |
+
pixel_values,
|
656 |
+
output_attentions=output_attentions,
|
657 |
+
output_hidden_states=output_hidden_states,
|
658 |
+
return_dict=return_dict,
|
659 |
+
)
|
660 |
+
|
661 |
+
sequence_output = outputs[0]
|
662 |
+
|
663 |
+
logits = self.classifier(sequence_output.mean(-2))
|
664 |
+
|
665 |
+
loss = None
|
666 |
+
if labels is not None:
|
667 |
+
if self.config.problem_type is None:
|
668 |
+
if self.num_labels == 1:
|
669 |
+
self.config.problem_type = "regression"
|
670 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
671 |
+
self.config.problem_type = "single_label_classification"
|
672 |
+
else:
|
673 |
+
self.config.problem_type = "multi_label_classification"
|
674 |
+
|
675 |
+
if self.config.problem_type == "regression":
|
676 |
+
loss_fct = MSELoss()
|
677 |
+
if self.num_labels == 1:
|
678 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
679 |
+
else:
|
680 |
+
loss = loss_fct(logits, labels)
|
681 |
+
elif self.config.problem_type == "single_label_classification":
|
682 |
+
loss_fct = CrossEntropyLoss()
|
683 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
684 |
+
elif self.config.problem_type == "multi_label_classification":
|
685 |
+
loss_fct = BCEWithLogitsLoss()
|
686 |
+
loss = loss_fct(logits, labels)
|
687 |
+
|
688 |
+
if not return_dict:
|
689 |
+
output = (logits,) + outputs[1:]
|
690 |
+
return ((loss,) + output) if loss is not None else output
|
691 |
+
|
692 |
+
return ImageClassifierOutput(
|
693 |
+
loss=loss,
|
694 |
+
logits=logits,
|
695 |
+
hidden_states=outputs.hidden_states,
|
696 |
+
attentions=outputs.attentions,
|
697 |
+
)
|
698 |
+
|
699 |
+
|
700 |
+
@dataclass
|
701 |
+
class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
|
702 |
+
"""
|
703 |
+
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
|
704 |
+
|
705 |
+
Args:
|
706 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
707 |
+
Prediction scores as the average of the cls_logits and distillation logits.
|
708 |
+
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
709 |
+
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
710 |
+
class token).
|
711 |
+
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
712 |
+
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
713 |
+
distillation token).
|
714 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
715 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
716 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
717 |
+
plus the initial embedding outputs.
|
718 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
719 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
720 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
721 |
+
the self-attention heads.
|
722 |
+
"""
|
723 |
+
|
724 |
+
logits: torch.FloatTensor = None
|
725 |
+
cls_logits: torch.FloatTensor = None
|
726 |
+
distillation_logits: torch.FloatTensor = None
|
727 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
728 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
729 |
+
|
730 |
+
|
731 |
+
@add_start_docstrings(
|
732 |
+
"""
|
733 |
+
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden
|
734 |
+
state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for
|
735 |
+
ImageNet.
|
736 |
+
|
737 |
+
<Tip warning={true}>
|
738 |
+
|
739 |
+
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
740 |
+
supported.
|
741 |
+
|
742 |
+
</Tip>
|
743 |
+
""",
|
744 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
745 |
+
)
|
746 |
+
class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel):
|
747 |
+
def __init__(self, config: EfficientFormerConfig):
|
748 |
+
super().__init__(config)
|
749 |
+
|
750 |
+
self.num_labels = config.num_labels
|
751 |
+
self.efficientformer = EfficientFormerModel(config)
|
752 |
+
|
753 |
+
# Classifier head
|
754 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
755 |
+
# Distillation head
|
756 |
+
self.distillation_classifier = (
|
757 |
+
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
758 |
+
)
|
759 |
+
|
760 |
+
# Initialize weights and apply final processing
|
761 |
+
self.post_init()
|
762 |
+
|
763 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
764 |
+
@add_code_sample_docstrings(
|
765 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
766 |
+
output_type=EfficientFormerForImageClassificationWithTeacherOutput,
|
767 |
+
config_class=_CONFIG_FOR_DOC,
|
768 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
769 |
+
)
|
770 |
+
def forward(
|
771 |
+
self,
|
772 |
+
pixel_values: Optional[torch.Tensor] = None,
|
773 |
+
output_attentions: Optional[bool] = None,
|
774 |
+
output_hidden_states: Optional[bool] = None,
|
775 |
+
return_dict: Optional[bool] = None,
|
776 |
+
) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]:
|
777 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
778 |
+
outputs = self.efficientformer(
|
779 |
+
pixel_values,
|
780 |
+
output_attentions=output_attentions,
|
781 |
+
output_hidden_states=output_hidden_states,
|
782 |
+
return_dict=return_dict,
|
783 |
+
)
|
784 |
+
|
785 |
+
sequence_output = outputs[0]
|
786 |
+
|
787 |
+
cls_logits = self.classifier(sequence_output.mean(-2))
|
788 |
+
distillation_logits = self.distillation_classifier(sequence_output.mean(-2))
|
789 |
+
|
790 |
+
# during inference, return the average of both classifier predictions
|
791 |
+
logits = (cls_logits + distillation_logits) / 2
|
792 |
+
|
793 |
+
if not return_dict:
|
794 |
+
output = (logits, cls_logits, distillation_logits) + outputs[1:]
|
795 |
+
return output
|
796 |
+
|
797 |
+
return EfficientFormerForImageClassificationWithTeacherOutput(
|
798 |
+
logits=logits,
|
799 |
+
cls_logits=cls_logits,
|
800 |
+
distillation_logits=distillation_logits,
|
801 |
+
hidden_states=outputs.hidden_states,
|
802 |
+
attentions=outputs.attentions,
|
803 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/efficientformer/modeling_tf_efficientformer.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Snapchat Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TensorFlow EfficientFormer model."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
|
23 |
+
from ...activations_tf import ACT2FN
|
24 |
+
from ...modeling_tf_outputs import (
|
25 |
+
TFBaseModelOutput,
|
26 |
+
TFBaseModelOutputWithPooling,
|
27 |
+
TFImageClassifierOutput,
|
28 |
+
)
|
29 |
+
from ...modeling_tf_utils import (
|
30 |
+
TFPreTrainedModel,
|
31 |
+
TFSequenceClassificationLoss,
|
32 |
+
get_initializer,
|
33 |
+
keras,
|
34 |
+
keras_serializable,
|
35 |
+
unpack_inputs,
|
36 |
+
)
|
37 |
+
from ...tf_utils import shape_list, stable_softmax
|
38 |
+
from ...utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
)
|
45 |
+
from .configuration_efficientformer import EfficientFormerConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
# General docstring
|
51 |
+
_CONFIG_FOR_DOC = "EfficientFormerConfig"
|
52 |
+
|
53 |
+
# Base docstring
|
54 |
+
_CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300"
|
55 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 49, 448]
|
56 |
+
|
57 |
+
# Image classification docstring
|
58 |
+
_IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300"
|
59 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281"
|
60 |
+
|
61 |
+
|
62 |
+
from ..deprecated._archive_maps import TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
63 |
+
|
64 |
+
|
65 |
+
class TFEfficientFormerPatchEmbeddings(keras.layers.Layer):
|
66 |
+
"""
|
67 |
+
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
|
68 |
+
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs
|
73 |
+
) -> None:
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.num_channels = num_channels
|
76 |
+
|
77 |
+
self.padding = keras.layers.ZeroPadding2D(padding=config.downsample_pad)
|
78 |
+
self.projection = keras.layers.Conv2D(
|
79 |
+
filters=embed_dim,
|
80 |
+
kernel_size=config.downsample_patch_size,
|
81 |
+
strides=config.downsample_stride,
|
82 |
+
padding="valid",
|
83 |
+
name="projection",
|
84 |
+
)
|
85 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
86 |
+
self.norm = (
|
87 |
+
keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
|
88 |
+
if apply_norm
|
89 |
+
else tf.identity
|
90 |
+
)
|
91 |
+
self.embed_dim = embed_dim
|
92 |
+
|
93 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
94 |
+
tf.debugging.assert_shapes(
|
95 |
+
[(pixel_values, (..., None, None, self.num_channels))],
|
96 |
+
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
|
97 |
+
)
|
98 |
+
embeddings = self.projection(self.padding(pixel_values))
|
99 |
+
embeddings = self.norm(embeddings, training=training)
|
100 |
+
return embeddings
|
101 |
+
|
102 |
+
def build(self, input_shape=None):
|
103 |
+
if self.built:
|
104 |
+
return
|
105 |
+
self.built = True
|
106 |
+
if getattr(self, "projection", None) is not None:
|
107 |
+
with tf.name_scope(self.projection.name):
|
108 |
+
self.projection.build([None, None, None, self.num_channels])
|
109 |
+
if getattr(self, "norm", None) is not None:
|
110 |
+
if hasattr(self.norm, "name"):
|
111 |
+
with tf.name_scope(self.norm.name):
|
112 |
+
self.norm.build([None, None, None, self.embed_dim])
|
113 |
+
|
114 |
+
|
115 |
+
class TFEfficientFormerSelfAttention(keras.layers.Layer):
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
dim: int,
|
119 |
+
key_dim: int,
|
120 |
+
num_heads: int,
|
121 |
+
attention_ratio: int,
|
122 |
+
resolution: int,
|
123 |
+
config: EfficientFormerConfig,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
self.num_heads = num_heads
|
129 |
+
self.key_dim = key_dim
|
130 |
+
self.attention_ratio = attention_ratio
|
131 |
+
self.scale = key_dim**-0.5
|
132 |
+
self.total_key_dim = key_dim * num_heads
|
133 |
+
self.expanded_key_dim = int(attention_ratio * key_dim)
|
134 |
+
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
|
135 |
+
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
|
136 |
+
|
137 |
+
self.qkv = keras.layers.Dense(
|
138 |
+
units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
|
139 |
+
)
|
140 |
+
self.projection = keras.layers.Dense(
|
141 |
+
units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
|
142 |
+
)
|
143 |
+
self.resolution = resolution
|
144 |
+
self.dim = dim
|
145 |
+
|
146 |
+
def build(self, input_shape: tf.TensorShape) -> None:
|
147 |
+
points = list(itertools.product(range(self.resolution), range(self.resolution)))
|
148 |
+
num_points = len(points)
|
149 |
+
attention_offsets = {}
|
150 |
+
|
151 |
+
idxs = []
|
152 |
+
|
153 |
+
for point_1 in points:
|
154 |
+
for point_2 in points:
|
155 |
+
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
|
156 |
+
if offset not in attention_offsets:
|
157 |
+
attention_offsets[offset] = len(attention_offsets)
|
158 |
+
idxs.append(attention_offsets[offset])
|
159 |
+
|
160 |
+
self.attention_biases = self.add_weight(
|
161 |
+
shape=(self.num_heads, len(attention_offsets)),
|
162 |
+
initializer=keras.initializers.zeros(),
|
163 |
+
trainable=True,
|
164 |
+
name="attention_biases",
|
165 |
+
)
|
166 |
+
self.attention_bias_idxs = self.add_weight(
|
167 |
+
shape=(num_points, num_points),
|
168 |
+
trainable=False,
|
169 |
+
dtype=tf.int32,
|
170 |
+
name="attention_bias_idxs",
|
171 |
+
)
|
172 |
+
|
173 |
+
self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points)))
|
174 |
+
|
175 |
+
if self.built:
|
176 |
+
return
|
177 |
+
self.built = True
|
178 |
+
if getattr(self, "qkv", None) is not None:
|
179 |
+
with tf.name_scope(self.qkv.name):
|
180 |
+
self.qkv.build([None, None, self.dim])
|
181 |
+
if getattr(self, "projection", None) is not None:
|
182 |
+
with tf.name_scope(self.projection.name):
|
183 |
+
self.projection.build([None, None, self.total_expanded_key_dim])
|
184 |
+
|
185 |
+
def call(
|
186 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
187 |
+
) -> Tuple[tf.Tensor]:
|
188 |
+
batch_size, sequence_length, *_ = shape_list(hidden_states)
|
189 |
+
qkv = self.qkv(inputs=hidden_states)
|
190 |
+
|
191 |
+
query_layer, key_layer, value_layer = tf.split(
|
192 |
+
tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)),
|
193 |
+
num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim],
|
194 |
+
axis=3,
|
195 |
+
)
|
196 |
+
|
197 |
+
query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3])
|
198 |
+
key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3])
|
199 |
+
value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3])
|
200 |
+
|
201 |
+
attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2]))
|
202 |
+
scale = tf.cast(self.scale, dtype=attention_probs.dtype)
|
203 |
+
attention_probs = tf.multiply(attention_probs, scale)
|
204 |
+
|
205 |
+
attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1)
|
206 |
+
attention_probs = attention_probs + attention_biases
|
207 |
+
attention_probs = stable_softmax(logits=attention_probs, axis=-1)
|
208 |
+
|
209 |
+
context_layer = tf.matmul(attention_probs, value_layer)
|
210 |
+
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
211 |
+
|
212 |
+
context_layer = tf.reshape(
|
213 |
+
tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim)
|
214 |
+
)
|
215 |
+
context_layer = self.projection(context_layer)
|
216 |
+
|
217 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
218 |
+
|
219 |
+
return outputs
|
220 |
+
|
221 |
+
|
222 |
+
class TFEfficientFormerConvStem(keras.layers.Layer):
|
223 |
+
def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs):
|
224 |
+
super().__init__(**kwargs)
|
225 |
+
|
226 |
+
self.padding = keras.layers.ZeroPadding2D(padding=1)
|
227 |
+
self.convolution1 = keras.layers.Conv2D(
|
228 |
+
filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1"
|
229 |
+
)
|
230 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
231 |
+
self.batchnorm_before = keras.layers.BatchNormalization(
|
232 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
|
233 |
+
)
|
234 |
+
|
235 |
+
self.convolution2 = keras.layers.Conv2D(
|
236 |
+
filters=out_channels,
|
237 |
+
kernel_size=3,
|
238 |
+
strides=2,
|
239 |
+
padding="valid",
|
240 |
+
name="convolution2",
|
241 |
+
)
|
242 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
243 |
+
self.batchnorm_after = keras.layers.BatchNormalization(
|
244 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
|
245 |
+
)
|
246 |
+
|
247 |
+
self.activation = keras.layers.Activation(activation=keras.activations.relu, name="activation")
|
248 |
+
self.out_channels = out_channels
|
249 |
+
self.config = config
|
250 |
+
|
251 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
252 |
+
features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training)
|
253 |
+
features = self.activation(features)
|
254 |
+
features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training)
|
255 |
+
features = self.activation(features)
|
256 |
+
return features
|
257 |
+
|
258 |
+
def build(self, input_shape=None):
|
259 |
+
if self.built:
|
260 |
+
return
|
261 |
+
self.built = True
|
262 |
+
if getattr(self, "convolution1", None) is not None:
|
263 |
+
with tf.name_scope(self.convolution1.name):
|
264 |
+
self.convolution1.build([None, None, None, self.config.num_channels])
|
265 |
+
if getattr(self, "batchnorm_before", None) is not None:
|
266 |
+
with tf.name_scope(self.batchnorm_before.name):
|
267 |
+
self.batchnorm_before.build([None, None, None, self.out_channels // 2])
|
268 |
+
if getattr(self, "convolution2", None) is not None:
|
269 |
+
with tf.name_scope(self.convolution2.name):
|
270 |
+
self.convolution2.build([None, None, None, self.out_channels // 2])
|
271 |
+
if getattr(self, "batchnorm_after", None) is not None:
|
272 |
+
with tf.name_scope(self.batchnorm_after.name):
|
273 |
+
self.batchnorm_after.build([None, None, None, self.out_channels])
|
274 |
+
if getattr(self, "activation", None) is not None:
|
275 |
+
with tf.name_scope(self.activation.name):
|
276 |
+
self.activation.build(None)
|
277 |
+
|
278 |
+
|
279 |
+
class TFEfficientFormerPooling(keras.layers.Layer):
|
280 |
+
def __init__(self, pool_size: int, **kwargs):
|
281 |
+
super().__init__(**kwargs)
|
282 |
+
self.pool = keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same")
|
283 |
+
|
284 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
285 |
+
output = self.pool(hidden_states)
|
286 |
+
output = output - hidden_states
|
287 |
+
return output
|
288 |
+
|
289 |
+
|
290 |
+
class TFEfficientFormerDenseMlp(keras.layers.Layer):
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
config: EfficientFormerConfig,
|
294 |
+
in_features: int,
|
295 |
+
hidden_features: Optional[int] = None,
|
296 |
+
out_features: Optional[int] = None,
|
297 |
+
**kwargs,
|
298 |
+
):
|
299 |
+
super().__init__(**kwargs)
|
300 |
+
out_features = out_features or in_features
|
301 |
+
hidden_features = hidden_features or in_features
|
302 |
+
|
303 |
+
self.linear_in = keras.layers.Dense(
|
304 |
+
units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in"
|
305 |
+
)
|
306 |
+
self.activation = ACT2FN[config.hidden_act]
|
307 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
308 |
+
|
309 |
+
self.linear_out = keras.layers.Dense(
|
310 |
+
units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out"
|
311 |
+
)
|
312 |
+
self.hidden_features = hidden_features
|
313 |
+
self.in_features = in_features
|
314 |
+
|
315 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
|
316 |
+
hidden_states = self.linear_in(inputs=hidden_states)
|
317 |
+
hidden_states = self.activation(hidden_states)
|
318 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
319 |
+
hidden_states = self.linear_out(inputs=hidden_states)
|
320 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
def build(self, input_shape=None):
|
325 |
+
if self.built:
|
326 |
+
return
|
327 |
+
self.built = True
|
328 |
+
if getattr(self, "linear_in", None) is not None:
|
329 |
+
with tf.name_scope(self.linear_in.name):
|
330 |
+
self.linear_in.build([None, None, self.in_features])
|
331 |
+
if getattr(self, "linear_out", None) is not None:
|
332 |
+
with tf.name_scope(self.linear_out.name):
|
333 |
+
self.linear_out.build([None, None, self.hidden_features])
|
334 |
+
|
335 |
+
|
336 |
+
class TFEfficientFormerConvMlp(keras.layers.Layer):
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
config: EfficientFormerConfig,
|
340 |
+
in_features: int,
|
341 |
+
hidden_features: Optional[int] = None,
|
342 |
+
out_features: Optional[int] = None,
|
343 |
+
drop: float = 0.0,
|
344 |
+
**kwargs,
|
345 |
+
):
|
346 |
+
super().__init__(**kwargs)
|
347 |
+
out_features = out_features or in_features
|
348 |
+
hidden_features = hidden_features or in_features
|
349 |
+
|
350 |
+
self.convolution1 = keras.layers.Conv2D(
|
351 |
+
filters=hidden_features,
|
352 |
+
kernel_size=1,
|
353 |
+
name="convolution1",
|
354 |
+
padding="valid",
|
355 |
+
)
|
356 |
+
|
357 |
+
self.activation = ACT2FN[config.hidden_act]
|
358 |
+
|
359 |
+
self.convolution2 = keras.layers.Conv2D(
|
360 |
+
filters=out_features,
|
361 |
+
kernel_size=1,
|
362 |
+
name="convolution2",
|
363 |
+
padding="valid",
|
364 |
+
)
|
365 |
+
|
366 |
+
self.dropout = keras.layers.Dropout(rate=drop)
|
367 |
+
|
368 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
369 |
+
self.batchnorm_before = keras.layers.BatchNormalization(
|
370 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
|
371 |
+
)
|
372 |
+
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
|
373 |
+
self.batchnorm_after = keras.layers.BatchNormalization(
|
374 |
+
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
|
375 |
+
)
|
376 |
+
self.hidden_features = hidden_features
|
377 |
+
self.in_features = in_features
|
378 |
+
self.out_features = out_features
|
379 |
+
|
380 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
381 |
+
hidden_state = self.convolution1(hidden_state)
|
382 |
+
hidden_state = self.batchnorm_before(hidden_state, training=training)
|
383 |
+
hidden_state = self.activation(hidden_state)
|
384 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
385 |
+
hidden_state = self.convolution2(hidden_state)
|
386 |
+
hidden_state = self.batchnorm_after(hidden_state, training=training)
|
387 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
388 |
+
return hidden_state
|
389 |
+
|
390 |
+
def build(self, input_shape=None):
|
391 |
+
if self.built:
|
392 |
+
return
|
393 |
+
self.built = True
|
394 |
+
if getattr(self, "convolution1", None) is not None:
|
395 |
+
with tf.name_scope(self.convolution1.name):
|
396 |
+
self.convolution1.build([None, None, None, self.in_features])
|
397 |
+
if getattr(self, "convolution2", None) is not None:
|
398 |
+
with tf.name_scope(self.convolution2.name):
|
399 |
+
self.convolution2.build([None, None, None, self.hidden_features])
|
400 |
+
if getattr(self, "batchnorm_before", None) is not None:
|
401 |
+
with tf.name_scope(self.batchnorm_before.name):
|
402 |
+
self.batchnorm_before.build([None, None, None, self.hidden_features])
|
403 |
+
if getattr(self, "batchnorm_after", None) is not None:
|
404 |
+
with tf.name_scope(self.batchnorm_after.name):
|
405 |
+
self.batchnorm_after.build([None, None, None, self.out_features])
|
406 |
+
|
407 |
+
|
408 |
+
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->EfficientFormer
|
409 |
+
class TFEfficientFormerDropPath(keras.layers.Layer):
|
410 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
411 |
+
References:
|
412 |
+
(1) github.com:rwightman/pytorch-image-models
|
413 |
+
"""
|
414 |
+
|
415 |
+
def __init__(self, drop_path: float, **kwargs):
|
416 |
+
super().__init__(**kwargs)
|
417 |
+
self.drop_path = drop_path
|
418 |
+
|
419 |
+
def call(self, x: tf.Tensor, training=None):
|
420 |
+
if training:
|
421 |
+
keep_prob = 1 - self.drop_path
|
422 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
423 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
424 |
+
random_tensor = tf.floor(random_tensor)
|
425 |
+
return (x / keep_prob) * random_tensor
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class TFEfficientFormerFlat(keras.layers.Layer):
|
430 |
+
def __init__(self, **kwargs):
|
431 |
+
super().__init__(**kwargs)
|
432 |
+
|
433 |
+
def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]:
|
434 |
+
batch_size, _, _, in_channels = shape_list(hidden_states)
|
435 |
+
hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels])
|
436 |
+
return hidden_states
|
437 |
+
|
438 |
+
|
439 |
+
class TFEfficientFormerMeta3D(keras.layers.Layer):
|
440 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
|
441 |
+
super().__init__(**kwargs)
|
442 |
+
|
443 |
+
self.token_mixer = TFEfficientFormerSelfAttention(
|
444 |
+
dim=config.dim,
|
445 |
+
key_dim=config.key_dim,
|
446 |
+
num_heads=config.num_attention_heads,
|
447 |
+
attention_ratio=config.attention_ratio,
|
448 |
+
resolution=config.resolution,
|
449 |
+
name="token_mixer",
|
450 |
+
config=config,
|
451 |
+
)
|
452 |
+
self.dim = dim
|
453 |
+
self.config = config
|
454 |
+
|
455 |
+
self.layernorm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1")
|
456 |
+
self.layernorm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2")
|
457 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
458 |
+
self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp")
|
459 |
+
|
460 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training' behavior.
|
461 |
+
self.drop_path = (
|
462 |
+
TFEfficientFormerDropPath(drop_path)
|
463 |
+
if drop_path > 0.0
|
464 |
+
else keras.layers.Activation("linear", name="drop_path")
|
465 |
+
)
|
466 |
+
self.config = config
|
467 |
+
|
468 |
+
def build(self, input_shape=None):
|
469 |
+
self.layer_scale_1 = None
|
470 |
+
self.layer_scale_2 = None
|
471 |
+
|
472 |
+
if self.config.use_layer_scale:
|
473 |
+
self.layer_scale_1 = self.add_weight(
|
474 |
+
shape=(self.dim,),
|
475 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
476 |
+
trainable=True,
|
477 |
+
name="layer_scale_1",
|
478 |
+
)
|
479 |
+
self.layer_scale_2 = self.add_weight(
|
480 |
+
shape=(self.dim,),
|
481 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
482 |
+
trainable=True,
|
483 |
+
name="layer_scale_2",
|
484 |
+
)
|
485 |
+
|
486 |
+
if self.built:
|
487 |
+
return
|
488 |
+
self.built = True
|
489 |
+
if getattr(self, "token_mixer", None) is not None:
|
490 |
+
with tf.name_scope(self.token_mixer.name):
|
491 |
+
self.token_mixer.build(None)
|
492 |
+
if getattr(self, "layernorm1", None) is not None:
|
493 |
+
with tf.name_scope(self.layernorm1.name):
|
494 |
+
self.layernorm1.build([None, None, self.dim])
|
495 |
+
if getattr(self, "layernorm2", None) is not None:
|
496 |
+
with tf.name_scope(self.layernorm2.name):
|
497 |
+
self.layernorm2.build([None, None, self.dim])
|
498 |
+
if getattr(self, "mlp", None) is not None:
|
499 |
+
with tf.name_scope(self.mlp.name):
|
500 |
+
self.mlp.build(None)
|
501 |
+
if getattr(self, "drop_path", None) is not None:
|
502 |
+
with tf.name_scope(self.drop_path.name):
|
503 |
+
self.drop_path.build(None)
|
504 |
+
|
505 |
+
def call(
|
506 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
507 |
+
) -> Tuple[tf.Tensor]:
|
508 |
+
self_attention_outputs = self.token_mixer(
|
509 |
+
hidden_states=self.layernorm1(hidden_states, training=training),
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
training=training,
|
512 |
+
)
|
513 |
+
|
514 |
+
attention_output = self_attention_outputs[0]
|
515 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
516 |
+
|
517 |
+
if self.config.use_layer_scale:
|
518 |
+
layer_output = hidden_states + self.drop_path(
|
519 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output,
|
520 |
+
training=training,
|
521 |
+
)
|
522 |
+
layer_output = layer_output + self.drop_path(
|
523 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
|
524 |
+
* self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
|
525 |
+
training=training,
|
526 |
+
)
|
527 |
+
else:
|
528 |
+
layer_output = hidden_states + self.drop_path(attention_output, training=training)
|
529 |
+
layer_output = layer_output + self.drop_path(
|
530 |
+
self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
|
531 |
+
training=training,
|
532 |
+
)
|
533 |
+
|
534 |
+
outputs = (layer_output,) + outputs
|
535 |
+
|
536 |
+
return outputs
|
537 |
+
|
538 |
+
|
539 |
+
class TFEfficientFormerMeta3DLayers(keras.layers.Layer):
|
540 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
541 |
+
super().__init__(**kwargs)
|
542 |
+
drop_paths = [
|
543 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
|
544 |
+
for block_idx in range(config.num_meta3d_blocks)
|
545 |
+
]
|
546 |
+
self.blocks = [
|
547 |
+
TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}")
|
548 |
+
for i, drop_path in enumerate(drop_paths)
|
549 |
+
]
|
550 |
+
|
551 |
+
def call(
|
552 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
553 |
+
) -> Tuple[tf.Tensor]:
|
554 |
+
all_attention_outputs = () if output_attentions else None
|
555 |
+
|
556 |
+
for i, layer_module in enumerate(self.blocks):
|
557 |
+
if isinstance(hidden_states, tuple):
|
558 |
+
hidden_states = hidden_states[0]
|
559 |
+
|
560 |
+
hidden_states = layer_module(
|
561 |
+
hidden_states=hidden_states, output_attentions=output_attentions, training=training
|
562 |
+
)
|
563 |
+
if output_attentions:
|
564 |
+
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
|
565 |
+
|
566 |
+
if output_attentions:
|
567 |
+
outputs = (hidden_states[0],) + all_attention_outputs
|
568 |
+
return outputs
|
569 |
+
|
570 |
+
return hidden_states
|
571 |
+
|
572 |
+
def build(self, input_shape=None):
|
573 |
+
if self.built:
|
574 |
+
return
|
575 |
+
self.built = True
|
576 |
+
if getattr(self, "blocks", None) is not None:
|
577 |
+
for layer in self.blocks:
|
578 |
+
with tf.name_scope(layer.name):
|
579 |
+
layer.build(None)
|
580 |
+
|
581 |
+
|
582 |
+
class TFEfficientFormerMeta4D(keras.layers.Layer):
|
583 |
+
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
|
584 |
+
super().__init__(**kwargs)
|
585 |
+
pool_size = config.pool_size if config.pool_size is not None else 3
|
586 |
+
self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer")
|
587 |
+
self.dim = dim
|
588 |
+
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
|
589 |
+
self.mlp = TFEfficientFormerConvMlp(
|
590 |
+
config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp"
|
591 |
+
)
|
592 |
+
|
593 |
+
self.drop_path = (
|
594 |
+
TFEfficientFormerDropPath(drop_path, name="drop_path")
|
595 |
+
if drop_path > 0.0
|
596 |
+
else keras.layers.Activation("linear", name="drop_path")
|
597 |
+
)
|
598 |
+
self.config = config
|
599 |
+
|
600 |
+
def build(self, input_shape=None):
|
601 |
+
self.layer_scale_1 = None
|
602 |
+
self.layer_scale_2 = None
|
603 |
+
|
604 |
+
if self.config.use_layer_scale:
|
605 |
+
self.layer_scale_1 = self.add_weight(
|
606 |
+
shape=(self.dim),
|
607 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
608 |
+
trainable=True,
|
609 |
+
name="layer_scale_1",
|
610 |
+
)
|
611 |
+
self.layer_scale_2 = self.add_weight(
|
612 |
+
shape=(self.dim),
|
613 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
614 |
+
trainable=True,
|
615 |
+
name="layer_scale_2",
|
616 |
+
)
|
617 |
+
|
618 |
+
if self.built:
|
619 |
+
return
|
620 |
+
self.built = True
|
621 |
+
if getattr(self, "token_mixer", None) is not None:
|
622 |
+
with tf.name_scope(self.token_mixer.name):
|
623 |
+
self.token_mixer.build(None)
|
624 |
+
if getattr(self, "mlp", None) is not None:
|
625 |
+
with tf.name_scope(self.mlp.name):
|
626 |
+
self.mlp.build(None)
|
627 |
+
if getattr(self, "drop_path", None) is not None:
|
628 |
+
with tf.name_scope(self.drop_path.name):
|
629 |
+
self.drop_path.build(None)
|
630 |
+
|
631 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
632 |
+
outputs = self.token_mixer(hidden_states)
|
633 |
+
|
634 |
+
if self.config.use_layer_scale:
|
635 |
+
layer_output = hidden_states + self.drop_path(
|
636 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs,
|
637 |
+
training=training,
|
638 |
+
)
|
639 |
+
|
640 |
+
layer_output = layer_output + self.drop_path(
|
641 |
+
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
|
642 |
+
* self.mlp(hidden_state=layer_output, training=training),
|
643 |
+
training=training,
|
644 |
+
)
|
645 |
+
|
646 |
+
else:
|
647 |
+
layer_output = hidden_states + self.drop_path(outputs, training=training)
|
648 |
+
layer_output = layer_output + self.drop_path(
|
649 |
+
self.mlp(hidden_state=layer_output, training=training), training=training
|
650 |
+
)
|
651 |
+
|
652 |
+
return layer_output
|
653 |
+
|
654 |
+
|
655 |
+
class TFEfficientFormerMeta4DLayers(keras.layers.Layer):
|
656 |
+
def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs):
|
657 |
+
super().__init__(**kwargs)
|
658 |
+
num_layers = (
|
659 |
+
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
|
660 |
+
)
|
661 |
+
drop_paths = [
|
662 |
+
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
|
663 |
+
]
|
664 |
+
|
665 |
+
self.blocks = [
|
666 |
+
TFEfficientFormerMeta4D(
|
667 |
+
config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}"
|
668 |
+
)
|
669 |
+
for i in range(len(drop_paths))
|
670 |
+
]
|
671 |
+
|
672 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
673 |
+
for layer_module in self.blocks:
|
674 |
+
hidden_states = layer_module(hidden_states=hidden_states, training=training)
|
675 |
+
return hidden_states
|
676 |
+
|
677 |
+
def build(self, input_shape=None):
|
678 |
+
if self.built:
|
679 |
+
return
|
680 |
+
self.built = True
|
681 |
+
if getattr(self, "blocks", None) is not None:
|
682 |
+
for layer in self.blocks:
|
683 |
+
with tf.name_scope(layer.name):
|
684 |
+
layer.build(None)
|
685 |
+
|
686 |
+
|
687 |
+
class TFEfficientFormerIntermediateStage(keras.layers.Layer):
|
688 |
+
def __init__(self, config: EfficientFormerConfig, index: int, **kwargs):
|
689 |
+
super().__init__(**kwargs)
|
690 |
+
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers")
|
691 |
+
|
692 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
|
693 |
+
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
|
694 |
+
return hidden_states
|
695 |
+
|
696 |
+
def build(self, input_shape=None):
|
697 |
+
if self.built:
|
698 |
+
return
|
699 |
+
self.built = True
|
700 |
+
if getattr(self, "meta4D_layers", None) is not None:
|
701 |
+
with tf.name_scope(self.meta4D_layers.name):
|
702 |
+
self.meta4D_layers.build(None)
|
703 |
+
|
704 |
+
|
705 |
+
class TFEfficientFormerLastStage(keras.layers.Layer):
|
706 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
707 |
+
super().__init__(**kwargs)
|
708 |
+
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers")
|
709 |
+
self.flat = TFEfficientFormerFlat(name="flat")
|
710 |
+
self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers")
|
711 |
+
|
712 |
+
def call(
|
713 |
+
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
|
714 |
+
) -> Tuple[tf.Tensor]:
|
715 |
+
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
|
716 |
+
hidden_states = self.flat(hidden_states=hidden_states)
|
717 |
+
hidden_states = self.meta3D_layers(
|
718 |
+
hidden_states=hidden_states, output_attentions=output_attentions, training=training
|
719 |
+
)
|
720 |
+
|
721 |
+
return hidden_states
|
722 |
+
|
723 |
+
def build(self, input_shape=None):
|
724 |
+
if self.built:
|
725 |
+
return
|
726 |
+
self.built = True
|
727 |
+
if getattr(self, "meta4D_layers", None) is not None:
|
728 |
+
with tf.name_scope(self.meta4D_layers.name):
|
729 |
+
self.meta4D_layers.build(None)
|
730 |
+
if getattr(self, "flat", None) is not None:
|
731 |
+
with tf.name_scope(self.flat.name):
|
732 |
+
self.flat.build(None)
|
733 |
+
if getattr(self, "meta3D_layers", None) is not None:
|
734 |
+
with tf.name_scope(self.meta3D_layers.name):
|
735 |
+
self.meta3D_layers.build(None)
|
736 |
+
|
737 |
+
|
738 |
+
class TFEfficientFormerEncoder(keras.layers.Layer):
|
739 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs):
|
740 |
+
super().__init__(**kwargs)
|
741 |
+
|
742 |
+
self.config = config
|
743 |
+
num_intermediate_stages = len(config.depths) - 1
|
744 |
+
downsamples = [
|
745 |
+
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
|
746 |
+
for i in range(num_intermediate_stages)
|
747 |
+
]
|
748 |
+
|
749 |
+
intermediate_stages = []
|
750 |
+
layer_count = -1
|
751 |
+
for i in range(num_intermediate_stages):
|
752 |
+
layer_count += 1
|
753 |
+
intermediate_stages.append(
|
754 |
+
TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}")
|
755 |
+
)
|
756 |
+
if downsamples[i]:
|
757 |
+
layer_count += 1
|
758 |
+
intermediate_stages.append(
|
759 |
+
TFEfficientFormerPatchEmbeddings(
|
760 |
+
config,
|
761 |
+
config.hidden_sizes[i],
|
762 |
+
config.hidden_sizes[i + 1],
|
763 |
+
name=f"intermediate_stages.{layer_count}",
|
764 |
+
)
|
765 |
+
)
|
766 |
+
self.intermediate_stages = intermediate_stages
|
767 |
+
self.last_stage = TFEfficientFormerLastStage(config, name="last_stage")
|
768 |
+
|
769 |
+
def call(
|
770 |
+
self,
|
771 |
+
hidden_states: tf.Tensor,
|
772 |
+
output_hidden_states: bool,
|
773 |
+
output_attentions: bool,
|
774 |
+
return_dict: bool,
|
775 |
+
training: bool = False,
|
776 |
+
) -> TFBaseModelOutput:
|
777 |
+
all_hidden_states = () if output_hidden_states else None
|
778 |
+
all_self_attentions = () if output_attentions else None
|
779 |
+
|
780 |
+
if output_hidden_states:
|
781 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
782 |
+
|
783 |
+
for layer_module in self.intermediate_stages:
|
784 |
+
hidden_states = layer_module(hidden_states, training=training)
|
785 |
+
|
786 |
+
if output_hidden_states:
|
787 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
788 |
+
|
789 |
+
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training)
|
790 |
+
|
791 |
+
if output_attentions:
|
792 |
+
all_self_attentions = all_self_attentions + layer_output[1:]
|
793 |
+
|
794 |
+
if output_hidden_states:
|
795 |
+
all_hidden_states = all_hidden_states + (layer_output[0],)
|
796 |
+
|
797 |
+
if not return_dict:
|
798 |
+
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
|
799 |
+
|
800 |
+
return TFBaseModelOutput(
|
801 |
+
last_hidden_state=layer_output[0],
|
802 |
+
hidden_states=all_hidden_states,
|
803 |
+
attentions=all_self_attentions,
|
804 |
+
)
|
805 |
+
|
806 |
+
def build(self, input_shape=None):
|
807 |
+
if self.built:
|
808 |
+
return
|
809 |
+
self.built = True
|
810 |
+
if getattr(self, "last_stage", None) is not None:
|
811 |
+
with tf.name_scope(self.last_stage.name):
|
812 |
+
self.last_stage.build(None)
|
813 |
+
for layer in self.intermediate_stages:
|
814 |
+
with tf.name_scope(layer.name):
|
815 |
+
layer.build(None)
|
816 |
+
|
817 |
+
|
818 |
+
@keras_serializable
|
819 |
+
class TFEfficientFormerMainLayer(keras.layers.Layer):
|
820 |
+
config_class = EfficientFormerConfig
|
821 |
+
|
822 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
|
823 |
+
super().__init__(**kwargs)
|
824 |
+
self.config = config
|
825 |
+
|
826 |
+
self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed")
|
827 |
+
self.encoder = TFEfficientFormerEncoder(config, name="encoder")
|
828 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
829 |
+
|
830 |
+
@unpack_inputs
|
831 |
+
def call(
|
832 |
+
self,
|
833 |
+
pixel_values: Optional[tf.Tensor] = None,
|
834 |
+
output_attentions: Optional[tf.Tensor] = None,
|
835 |
+
output_hidden_states: Optional[tf.Tensor] = None,
|
836 |
+
return_dict: Optional[bool] = None,
|
837 |
+
training: bool = False,
|
838 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]:
|
839 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
840 |
+
|
841 |
+
output_hidden_states = (
|
842 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
843 |
+
)
|
844 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
845 |
+
|
846 |
+
if pixel_values is None:
|
847 |
+
raise ValueError("You have to specify pixel_values")
|
848 |
+
|
849 |
+
# When running on CPU, keras.layers.Conv2D and keras.layers.AveragePool2D do not
|
850 |
+
# support channels first NCHW format. A number of blocks contain both.
|
851 |
+
# So change the input format from (batch_size, num_channels, height, width) to
|
852 |
+
# (batch_size, height, width, num_channels) here.
|
853 |
+
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
|
854 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
855 |
+
embedding_output = self.patch_embed(pixel_values, training=training)
|
856 |
+
|
857 |
+
encoder_outputs = self.encoder(
|
858 |
+
hidden_states=embedding_output,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
output_hidden_states=output_hidden_states,
|
861 |
+
return_dict=return_dict,
|
862 |
+
training=training,
|
863 |
+
)
|
864 |
+
|
865 |
+
sequence_output = encoder_outputs[0]
|
866 |
+
sequence_output = self.layernorm(sequence_output, training=training)
|
867 |
+
|
868 |
+
# Change the hidden states from (batch_size, height, width, num_channels) to
|
869 |
+
# (batch_size, num_channels, height, width).
|
870 |
+
# The hidden states are in (batch_size, height, width, num_channels)
|
871 |
+
# shape after all stages except the MB3D blocks.
|
872 |
+
if output_hidden_states:
|
873 |
+
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + (
|
874 |
+
encoder_outputs[1][-1],
|
875 |
+
)
|
876 |
+
|
877 |
+
if not return_dict:
|
878 |
+
head_outputs = (sequence_output,)
|
879 |
+
return head_outputs + encoder_outputs[1:]
|
880 |
+
|
881 |
+
return TFBaseModelOutput(
|
882 |
+
last_hidden_state=sequence_output,
|
883 |
+
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
|
884 |
+
attentions=encoder_outputs.attentions,
|
885 |
+
)
|
886 |
+
|
887 |
+
def build(self, input_shape=None):
|
888 |
+
if self.built:
|
889 |
+
return
|
890 |
+
self.built = True
|
891 |
+
if getattr(self, "patch_embed", None) is not None:
|
892 |
+
with tf.name_scope(self.patch_embed.name):
|
893 |
+
self.patch_embed.build(None)
|
894 |
+
if getattr(self, "encoder", None) is not None:
|
895 |
+
with tf.name_scope(self.encoder.name):
|
896 |
+
self.encoder.build(None)
|
897 |
+
if getattr(self, "layernorm", None) is not None:
|
898 |
+
with tf.name_scope(self.layernorm.name):
|
899 |
+
self.layernorm.build([None, None, self.config.hidden_sizes[-1]])
|
900 |
+
|
901 |
+
|
902 |
+
class TFEfficientFormerPreTrainedModel(TFPreTrainedModel):
|
903 |
+
"""
|
904 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
905 |
+
models.
|
906 |
+
"""
|
907 |
+
|
908 |
+
config_class = EfficientFormerConfig
|
909 |
+
base_model_prefix = "efficientformer"
|
910 |
+
main_input_name = "pixel_values"
|
911 |
+
|
912 |
+
|
913 |
+
EFFICIENTFORMER_START_DOCSTRING = r"""
|
914 |
+
This model is a TensorFlow
|
915 |
+
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular
|
916 |
+
TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
|
917 |
+
|
918 |
+
|
919 |
+
Parameters:
|
920 |
+
config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model.
|
921 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
922 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
923 |
+
"""
|
924 |
+
|
925 |
+
EFFICIENTFORMER_INPUTS_DOCSTRING = r"""
|
926 |
+
Args:
|
927 |
+
pixel_values ((`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
928 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
929 |
+
[`EfficientFormerImageProcessor.__call__`] for details.
|
930 |
+
output_attentions (`bool`, *optional*):
|
931 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
932 |
+
tensors for more detail.
|
933 |
+
output_hidden_states (`bool`, *optional*):
|
934 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
935 |
+
more detail.
|
936 |
+
return_dict (`bool`, *optional*):
|
937 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
938 |
+
"""
|
939 |
+
|
940 |
+
|
941 |
+
@add_start_docstrings(
|
942 |
+
"The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.",
|
943 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
944 |
+
)
|
945 |
+
class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel):
|
946 |
+
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
|
947 |
+
super().__init__(config, **kwargs)
|
948 |
+
|
949 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
950 |
+
|
951 |
+
@unpack_inputs
|
952 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
953 |
+
@add_code_sample_docstrings(
|
954 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
955 |
+
output_type=TFBaseModelOutputWithPooling,
|
956 |
+
config_class=_CONFIG_FOR_DOC,
|
957 |
+
modality="vision",
|
958 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
959 |
+
)
|
960 |
+
def call(
|
961 |
+
self,
|
962 |
+
pixel_values: Optional[tf.Tensor] = None,
|
963 |
+
output_attentions: Optional[bool] = None,
|
964 |
+
output_hidden_states: Optional[bool] = None,
|
965 |
+
return_dict: Optional[bool] = None,
|
966 |
+
training: bool = False,
|
967 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
968 |
+
outputs = self.efficientformer(
|
969 |
+
pixel_values=pixel_values,
|
970 |
+
output_attentions=output_attentions,
|
971 |
+
output_hidden_states=output_hidden_states,
|
972 |
+
return_dict=return_dict,
|
973 |
+
training=training,
|
974 |
+
)
|
975 |
+
return outputs
|
976 |
+
|
977 |
+
def build(self, input_shape=None):
|
978 |
+
if self.built:
|
979 |
+
return
|
980 |
+
self.built = True
|
981 |
+
if getattr(self, "efficientformer", None) is not None:
|
982 |
+
with tf.name_scope(self.efficientformer.name):
|
983 |
+
self.efficientformer.build(None)
|
984 |
+
|
985 |
+
|
986 |
+
@add_start_docstrings(
|
987 |
+
"""
|
988 |
+
EfficientFormer Model transformer with an image classification head on top of pooled last hidden state, e.g. for
|
989 |
+
ImageNet.
|
990 |
+
""",
|
991 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
992 |
+
)
|
993 |
+
class TFEfficientFormerForImageClassification(TFEfficientFormerPreTrainedModel, TFSequenceClassificationLoss):
|
994 |
+
def __init__(self, config: EfficientFormerConfig):
|
995 |
+
super().__init__(config)
|
996 |
+
|
997 |
+
self.num_labels = config.num_labels
|
998 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
999 |
+
|
1000 |
+
# Classifier head
|
1001 |
+
self.classifier = (
|
1002 |
+
keras.layers.Dense(config.num_labels, name="classifier")
|
1003 |
+
if config.num_labels > 0
|
1004 |
+
else keras.layers.Activation("linear", name="classifier")
|
1005 |
+
)
|
1006 |
+
self.config = config
|
1007 |
+
|
1008 |
+
@unpack_inputs
|
1009 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
1010 |
+
@add_code_sample_docstrings(
|
1011 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1012 |
+
output_type=TFImageClassifierOutput,
|
1013 |
+
config_class=_CONFIG_FOR_DOC,
|
1014 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1015 |
+
)
|
1016 |
+
def call(
|
1017 |
+
self,
|
1018 |
+
pixel_values: Optional[tf.Tensor] = None,
|
1019 |
+
labels: Optional[tf.Tensor] = None,
|
1020 |
+
output_attentions: Optional[bool] = None,
|
1021 |
+
output_hidden_states: Optional[bool] = None,
|
1022 |
+
return_dict: Optional[bool] = None,
|
1023 |
+
training: bool = False,
|
1024 |
+
) -> Union[tf.Tensor, TFImageClassifierOutput]:
|
1025 |
+
r"""
|
1026 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1027 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1028 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1029 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1030 |
+
"""
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
outputs = self.efficientformer(
|
1034 |
+
pixel_values=pixel_values,
|
1035 |
+
output_attentions=output_attentions,
|
1036 |
+
output_hidden_states=output_hidden_states,
|
1037 |
+
return_dict=return_dict,
|
1038 |
+
training=training,
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
sequence_output = outputs[0]
|
1042 |
+
|
1043 |
+
logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1044 |
+
|
1045 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1046 |
+
|
1047 |
+
if not return_dict:
|
1048 |
+
output = (logits,) + outputs[1:]
|
1049 |
+
return ((loss,) + output) if loss is not None else output
|
1050 |
+
|
1051 |
+
return TFImageClassifierOutput(
|
1052 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
def build(self, input_shape=None):
|
1056 |
+
if self.built:
|
1057 |
+
return
|
1058 |
+
self.built = True
|
1059 |
+
if getattr(self, "efficientformer", None) is not None:
|
1060 |
+
with tf.name_scope(self.efficientformer.name):
|
1061 |
+
self.efficientformer.build(None)
|
1062 |
+
if getattr(self, "classifier", None) is not None:
|
1063 |
+
if hasattr(self.classifier, "name"):
|
1064 |
+
with tf.name_scope(self.classifier.name):
|
1065 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
1066 |
+
|
1067 |
+
|
1068 |
+
@dataclass
|
1069 |
+
class TFEfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
|
1070 |
+
"""
|
1071 |
+
Args:
|
1072 |
+
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
|
1073 |
+
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1074 |
+
Prediction scores as the average of the cls_logits and distillation logits.
|
1075 |
+
cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1076 |
+
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
|
1077 |
+
class token).
|
1078 |
+
distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
|
1079 |
+
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
|
1080 |
+
distillation token).
|
1081 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when
|
1082 |
+
`config.output_hidden_states=True`):
|
1083 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1084 |
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
|
1085 |
+
the initial embedding outputs.
|
1086 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when
|
1087 |
+
`config.output_attentions=True`):
|
1088 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1089 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
1090 |
+
the self-attention heads.
|
1091 |
+
"""
|
1092 |
+
|
1093 |
+
logits: tf.Tensor = None
|
1094 |
+
cls_logits: tf.Tensor = None
|
1095 |
+
distillation_logits: tf.Tensor = None
|
1096 |
+
hidden_states: Optional[Tuple[tf.Tensor]] = None
|
1097 |
+
attentions: Optional[Tuple[tf.Tensor]] = None
|
1098 |
+
|
1099 |
+
|
1100 |
+
@add_start_docstrings(
|
1101 |
+
"""
|
1102 |
+
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden
|
1103 |
+
state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
|
1104 |
+
|
1105 |
+
.. warning::
|
1106 |
+
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
|
1107 |
+
supported.
|
1108 |
+
""",
|
1109 |
+
EFFICIENTFORMER_START_DOCSTRING,
|
1110 |
+
)
|
1111 |
+
class TFEfficientFormerForImageClassificationWithTeacher(TFEfficientFormerPreTrainedModel):
|
1112 |
+
def __init__(self, config: EfficientFormerConfig) -> None:
|
1113 |
+
super().__init__(config)
|
1114 |
+
|
1115 |
+
self.num_labels = config.num_labels
|
1116 |
+
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
|
1117 |
+
|
1118 |
+
# Classifier heads
|
1119 |
+
self.classifier = (
|
1120 |
+
keras.layers.Dense(config.num_labels, name="classifier")
|
1121 |
+
if config.num_labels > 0
|
1122 |
+
else keras.layers.Activation("linear", name="classifier")
|
1123 |
+
)
|
1124 |
+
self.distillation_classifier = (
|
1125 |
+
keras.layers.Dense(config.num_labels, name="distillation_classifier")
|
1126 |
+
if config.num_labels > 0
|
1127 |
+
else keras.layers.Activation("linear", name="distillation_classifier")
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
@unpack_inputs
|
1131 |
+
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
|
1132 |
+
@add_code_sample_docstrings(
|
1133 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1134 |
+
output_type=TFEfficientFormerForImageClassificationWithTeacherOutput,
|
1135 |
+
config_class=_CONFIG_FOR_DOC,
|
1136 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1137 |
+
)
|
1138 |
+
def call(
|
1139 |
+
self,
|
1140 |
+
pixel_values: Optional[tf.Tensor] = None,
|
1141 |
+
output_attentions: Optional[bool] = None,
|
1142 |
+
output_hidden_states: Optional[bool] = None,
|
1143 |
+
return_dict: Optional[bool] = None,
|
1144 |
+
training: bool = False,
|
1145 |
+
) -> Union[tuple, TFEfficientFormerForImageClassificationWithTeacherOutput]:
|
1146 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1147 |
+
|
1148 |
+
if training:
|
1149 |
+
raise Exception(
|
1150 |
+
"This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported."
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
outputs = self.efficientformer(
|
1154 |
+
pixel_values=pixel_values,
|
1155 |
+
output_attentions=output_attentions,
|
1156 |
+
output_hidden_states=output_hidden_states,
|
1157 |
+
return_dict=return_dict,
|
1158 |
+
training=training,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
sequence_output = outputs[0]
|
1162 |
+
|
1163 |
+
cls_logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1164 |
+
distillation_logits = self.distillation_classifier(tf.reduce_mean(sequence_output, axis=-2))
|
1165 |
+
logits = (cls_logits + distillation_logits) / 2
|
1166 |
+
|
1167 |
+
if not return_dict:
|
1168 |
+
output = (logits, cls_logits, distillation_logits) + outputs[1:]
|
1169 |
+
return output
|
1170 |
+
|
1171 |
+
return TFEfficientFormerForImageClassificationWithTeacherOutput(
|
1172 |
+
logits=logits,
|
1173 |
+
cls_logits=cls_logits,
|
1174 |
+
distillation_logits=distillation_logits,
|
1175 |
+
hidden_states=outputs.hidden_states,
|
1176 |
+
attentions=outputs.attentions,
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
def build(self, input_shape=None):
|
1180 |
+
if self.built:
|
1181 |
+
return
|
1182 |
+
self.built = True
|
1183 |
+
if getattr(self, "efficientformer", None) is not None:
|
1184 |
+
with tf.name_scope(self.efficientformer.name):
|
1185 |
+
self.efficientformer.build(None)
|
1186 |
+
if getattr(self, "classifier", None) is not None:
|
1187 |
+
if hasattr(self.classifier, "name"):
|
1188 |
+
with tf.name_scope(self.classifier.name):
|
1189 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
1190 |
+
if getattr(self, "distillation_classifier", None) is not None:
|
1191 |
+
if hasattr(self.distillation_classifier, "name"):
|
1192 |
+
with tf.name_scope(self.distillation_classifier.name):
|
1193 |
+
self.distillation_classifier.build([None, None, self.config.hidden_sizes[-1]])
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 AdeptAI and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_vision_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["image_processing_fuyu"] = ["FuyuImageProcessor"]
|
31 |
+
_import_structure["processing_fuyu"] = ["FuyuProcessor"]
|
32 |
+
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_fuyu"] = [
|
41 |
+
"FuyuForCausalLM",
|
42 |
+
"FuyuPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_fuyu import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP, FuyuConfig
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_vision_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .image_processing_fuyu import FuyuImageProcessor
|
56 |
+
from .processing_fuyu import FuyuProcessor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_fuyu import (
|
65 |
+
FuyuForCausalLM,
|
66 |
+
FuyuPreTrainedModel,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/configuration_fuyu.cpython-310.pyc
ADDED
Binary file (7.93 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/convert_fuyu_model_weights_to_hf.cpython-310.pyc
ADDED
Binary file (2.95 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/image_processing_fuyu.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/modeling_fuyu.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/__pycache__/processing_fuyu.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/configuration_fuyu.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Fuyu model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ..auto import CONFIG_MAPPING
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class FuyuConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an
|
31 |
+
Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
+
with the defaults will yield a similar configuration to that of the
|
33 |
+
[adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b).
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 262144):
|
41 |
+
Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FuyuForCausalLM`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 16384):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 36):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
|
52 |
+
The non-linear activation function (function or string) in the decoder.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 16384):
|
54 |
+
The maximum sequence length that this model might ever be used with.
|
55 |
+
image_size (`int`, *optional*, defaults to 300):
|
56 |
+
The input image size.
|
57 |
+
patch_size (`int`, *optional*, defaults to 30):
|
58 |
+
The input vision transformer encoding patch size.
|
59 |
+
num_channels (`int`, *optional*, defaults to 3):
|
60 |
+
The input image number of channels.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings
|
68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether to tie input and output embeddings.
|
70 |
+
rope_theta (`float`, *optional*, defaults to 25000.0):
|
71 |
+
The base period of the RoPE embeddings.
|
72 |
+
rope_scaling (`Dict`, *optional*):
|
73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
74 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
75 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
76 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
77 |
+
these scaling strategies behave:
|
78 |
+
https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
79 |
+
experimental feature, subject to breaking API changes in future versions.
|
80 |
+
qk_layernorm (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether or not to normalize the Queries and Keys after projecting the hidden states
|
82 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
83 |
+
The dropout ratio after applying the MLP to the hidden states.
|
84 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
85 |
+
The dropout ratio after computing the attention scores.
|
86 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
87 |
+
Percentage of the query and keys which will have rotary embedding.
|
88 |
+
|
89 |
+
pad_token_id (`int`, *optional*):
|
90 |
+
The id of the *padding* token.
|
91 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
92 |
+
The id of the *beginning-of-sequence* token.
|
93 |
+
eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
|
94 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
95 |
+
text_config (`dict`, *optional*):
|
96 |
+
Dictionary of configuration options used to initialize the `language``[`Aut`].
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from transformers import FuyuConfig
|
100 |
+
|
101 |
+
>>> # Initializing a Fuyu fuyu-7b style configuration
|
102 |
+
>>> configuration = FuyuConfig()
|
103 |
+
```"""
|
104 |
+
|
105 |
+
model_type = "fuyu"
|
106 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=262144,
|
111 |
+
hidden_size=4096,
|
112 |
+
intermediate_size=16384,
|
113 |
+
num_hidden_layers=36,
|
114 |
+
num_attention_heads=64,
|
115 |
+
hidden_act="relu2",
|
116 |
+
max_position_embeddings=16384,
|
117 |
+
image_size=300,
|
118 |
+
patch_size=30,
|
119 |
+
num_channels=3,
|
120 |
+
initializer_range=0.02,
|
121 |
+
layer_norm_eps=1e-5,
|
122 |
+
use_cache=True,
|
123 |
+
tie_word_embeddings=False,
|
124 |
+
rope_theta=25000.0,
|
125 |
+
rope_scaling=None,
|
126 |
+
qk_layernorm=True,
|
127 |
+
hidden_dropout=0.0,
|
128 |
+
attention_dropout=0.0,
|
129 |
+
partial_rotary_factor=0.5,
|
130 |
+
pad_token_id=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=2,
|
133 |
+
text_config=None,
|
134 |
+
**kwargs,
|
135 |
+
):
|
136 |
+
if text_config is None:
|
137 |
+
text_config = {
|
138 |
+
"vocab_size": vocab_size,
|
139 |
+
"max_position_embeddings": max_position_embeddings,
|
140 |
+
"hidden_size": hidden_size,
|
141 |
+
"intermediate_size": intermediate_size,
|
142 |
+
"num_hidden_layers": num_hidden_layers,
|
143 |
+
"num_attention_heads": num_attention_heads,
|
144 |
+
"hidden_act": hidden_act,
|
145 |
+
"initializer_range": initializer_range,
|
146 |
+
"layer_norm_eps": layer_norm_eps,
|
147 |
+
"use_cache": use_cache,
|
148 |
+
"rope_theta": rope_theta,
|
149 |
+
"rope_scaling": rope_scaling,
|
150 |
+
"qk_layernorm": qk_layernorm,
|
151 |
+
"hidden_dropout": hidden_dropout,
|
152 |
+
"attention_dropout": attention_dropout,
|
153 |
+
"partial_rotary_factor": partial_rotary_factor,
|
154 |
+
"pad_token_id": pad_token_id,
|
155 |
+
"bos_token_id": bos_token_id,
|
156 |
+
"eos_token_id": eos_token_id,
|
157 |
+
"tie_word_embeddings": tie_word_embeddings,
|
158 |
+
}
|
159 |
+
logger.info("text_config is None. initializing the text model with default values.")
|
160 |
+
text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon"
|
161 |
+
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
|
162 |
+
|
163 |
+
self.vocab_size = vocab_size
|
164 |
+
self.max_position_embeddings = max_position_embeddings
|
165 |
+
self.image_size = image_size
|
166 |
+
self.patch_size = patch_size
|
167 |
+
self.num_channels = num_channels
|
168 |
+
self.hidden_size = hidden_size
|
169 |
+
self.intermediate_size = intermediate_size
|
170 |
+
self.num_hidden_layers = num_hidden_layers
|
171 |
+
self.num_attention_heads = num_attention_heads
|
172 |
+
self.hidden_act = hidden_act
|
173 |
+
self.initializer_range = initializer_range
|
174 |
+
self.layer_norm_eps = layer_norm_eps
|
175 |
+
self.use_cache = use_cache
|
176 |
+
self.rope_theta = rope_theta
|
177 |
+
self.rope_scaling = rope_scaling
|
178 |
+
self.qk_layernorm = qk_layernorm
|
179 |
+
self.hidden_dropout = hidden_dropout
|
180 |
+
self.attention_dropout = attention_dropout
|
181 |
+
self.partial_rotary_factor = partial_rotary_factor
|
182 |
+
self._rope_scaling_validation()
|
183 |
+
|
184 |
+
super().__init__(
|
185 |
+
pad_token_id=pad_token_id,
|
186 |
+
bos_token_id=bos_token_id,
|
187 |
+
eos_token_id=eos_token_id,
|
188 |
+
tie_word_embeddings=tie_word_embeddings,
|
189 |
+
**kwargs,
|
190 |
+
)
|
191 |
+
|
192 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
193 |
+
def _rope_scaling_validation(self):
|
194 |
+
"""
|
195 |
+
Validate the `rope_scaling` configuration.
|
196 |
+
"""
|
197 |
+
if self.rope_scaling is None:
|
198 |
+
return
|
199 |
+
|
200 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
201 |
+
raise ValueError(
|
202 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
203 |
+
)
|
204 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
205 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
206 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
207 |
+
raise ValueError(
|
208 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
209 |
+
)
|
210 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
211 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/convert_fuyu_model_weights_to_hf.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
import flatdict
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import FuyuConfig, FuyuForCausalLM, LlamaTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
try:
|
26 |
+
from transformers import LlamaTokenizerFast
|
27 |
+
|
28 |
+
tokenizer_class = LlamaTokenizerFast
|
29 |
+
except ImportError as e:
|
30 |
+
warnings.warn(e)
|
31 |
+
warnings.warn(
|
32 |
+
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
|
33 |
+
)
|
34 |
+
tokenizer_class = LlamaTokenizer
|
35 |
+
|
36 |
+
"""
|
37 |
+
Sample usage: # TODO fix clone links from persimmon to fuyu
|
38 |
+
```
|
39 |
+
git clone https://github.com/adept-ai-labs/adept-inference
|
40 |
+
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
|
41 |
+
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar
|
42 |
+
python src/transformers/models/fuyu/convert_fuyu_weights_to_hf.py --input_dir /path/to/downloaded/fuyu/weights/ --output_dir /output/path
|
43 |
+
```
|
44 |
+
|
45 |
+
Thereafter, models can be loaded via:
|
46 |
+
|
47 |
+
```py
|
48 |
+
from transformers import FuyuForCausalLM, FuyuTokenizer
|
49 |
+
|
50 |
+
model = FuyuForCausalLM.from_pretrained("/output/path")
|
51 |
+
tokenizer = FuyuTokenizer.from_pretrained("/output/path")
|
52 |
+
```
|
53 |
+
|
54 |
+
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
|
55 |
+
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
KEYS_TO_MODIFY_MAPPING = {
|
60 |
+
"self_attention": "self_attn",
|
61 |
+
"language_model.encoder": "language_model.model",
|
62 |
+
"word_embeddings_for_head": "language_model.lm_head",
|
63 |
+
"language_model.embedding.word_embeddings": "language_model.model.embed_tokens",
|
64 |
+
"vit_encoder.linear_encoder": "vision_embed_tokens",
|
65 |
+
}
|
66 |
+
|
67 |
+
KEYS_TO_REMOVE = {
|
68 |
+
"rotary_emb.inv_freq",
|
69 |
+
"image_patch_projection",
|
70 |
+
"image_patch_projection.weight",
|
71 |
+
"image_patch_projection.bias",
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
def rename_state_dict(state_dict):
|
76 |
+
model_state_dict = {}
|
77 |
+
for key, value in state_dict.items():
|
78 |
+
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
|
79 |
+
if key_to_modify in key:
|
80 |
+
key = key.replace(key_to_modify, new_key)
|
81 |
+
# if KEYS_TO_REMOVE in key:
|
82 |
+
if key in KEYS_TO_REMOVE:
|
83 |
+
continue
|
84 |
+
model_state_dict[key] = value
|
85 |
+
return model_state_dict
|
86 |
+
|
87 |
+
|
88 |
+
def convert_fuyu_checkpoint(pytorch_dump_folder_path, ada_lib_path, pt_model_path, safe_serialization=False):
|
89 |
+
sys.path.insert(0, ada_lib_path)
|
90 |
+
model_state_dict_base = torch.load(pt_model_path, map_location="cpu")
|
91 |
+
state_dict = flatdict.FlatDict(model_state_dict_base["model"], ".")
|
92 |
+
state_dict = rename_state_dict(state_dict)
|
93 |
+
|
94 |
+
transformers_config = FuyuConfig()
|
95 |
+
model = FuyuForCausalLM(transformers_config).to(torch.bfloat16)
|
96 |
+
model.load_state_dict(state_dict)
|
97 |
+
model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)
|
98 |
+
transformers_config.save_pretrained(pytorch_dump_folder_path)
|
99 |
+
|
100 |
+
|
101 |
+
def main():
|
102 |
+
parser = argparse.ArgumentParser()
|
103 |
+
parser.add_argument(
|
104 |
+
"--input_dir",
|
105 |
+
help="Location of Fuyu weights, which contains tokenizer.model and model folders",
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--pt_model_path",
|
109 |
+
help="Location of Fuyu `model_optim_rng.pt`",
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--output_dir",
|
113 |
+
help="Location to write HF model and tokenizer",
|
114 |
+
)
|
115 |
+
parser.add_argument(
|
116 |
+
"--ada_lib_path",
|
117 |
+
help="Location of original source code from adept to deserialize .pt checkpoint",
|
118 |
+
)
|
119 |
+
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
|
120 |
+
args = parser.parse_args()
|
121 |
+
spm_path = os.path.join(args.input_dir, "adept_vocab.model")
|
122 |
+
|
123 |
+
convert_fuyu_checkpoint(
|
124 |
+
pytorch_dump_folder_path=args.output_dir,
|
125 |
+
pt_model_path=args.pt_model_path,
|
126 |
+
safe_serialization=args.safe_serialization,
|
127 |
+
ada_lib_path=args.ada_lib_path,
|
128 |
+
)
|
129 |
+
tokenizer = tokenizer_class(spm_path, bos_token="|ENDOFTEXT|", eos_token="|ENDOFTEXT|")
|
130 |
+
tokenizer.save_pretrained(args.output_dir)
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/image_processing_fuyu.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Fuyu."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from ...image_transforms import (
|
24 |
+
pad,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
ChannelDimension,
|
30 |
+
ImageInput,
|
31 |
+
PILImageResampling,
|
32 |
+
get_image_size,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_scaled_image,
|
35 |
+
is_valid_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
validate_preprocess_arguments,
|
39 |
+
)
|
40 |
+
from ...utils import (
|
41 |
+
TensorType,
|
42 |
+
is_torch_available,
|
43 |
+
is_torch_device,
|
44 |
+
is_torch_dtype,
|
45 |
+
logging,
|
46 |
+
requires_backends,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
if is_torch_available():
|
51 |
+
import torch
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
|
57 |
+
def make_list_of_list_of_images(
|
58 |
+
images: Union[List[List[ImageInput]], List[ImageInput], ImageInput],
|
59 |
+
) -> List[List[ImageInput]]:
|
60 |
+
if is_valid_image(images):
|
61 |
+
return [[images]]
|
62 |
+
|
63 |
+
if isinstance(images, list) and all(isinstance(image, list) for image in images):
|
64 |
+
return images
|
65 |
+
|
66 |
+
if isinstance(images, list):
|
67 |
+
return [make_list_of_images(image) for image in images]
|
68 |
+
|
69 |
+
raise ValueError("images must be a list of list of images or a list of images or an image.")
|
70 |
+
|
71 |
+
|
72 |
+
class FuyuBatchFeature(BatchFeature):
|
73 |
+
"""
|
74 |
+
BatchFeature class for Fuyu image processor and processor.
|
75 |
+
|
76 |
+
The outputs dictionary from the processors contains a mix of tensors and lists of tensors.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
80 |
+
"""
|
81 |
+
Convert the inner content to tensors.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
tensor_type (`str` or [`~utils.TensorType`], *optional*):
|
85 |
+
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
|
86 |
+
`None`, no modification is done.
|
87 |
+
"""
|
88 |
+
if tensor_type is None:
|
89 |
+
return self
|
90 |
+
|
91 |
+
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type=tensor_type)
|
92 |
+
|
93 |
+
def _convert_tensor(elem):
|
94 |
+
if is_tensor(elem):
|
95 |
+
return elem
|
96 |
+
return as_tensor(elem)
|
97 |
+
|
98 |
+
def _safe_convert_tensor(elem):
|
99 |
+
try:
|
100 |
+
return _convert_tensor(elem)
|
101 |
+
except: # noqa E722
|
102 |
+
if key == "overflowing_values":
|
103 |
+
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
104 |
+
raise ValueError(
|
105 |
+
"Unable to create tensor, you should probably activate padding "
|
106 |
+
"with 'padding=True' to have batched tensors with the same length."
|
107 |
+
)
|
108 |
+
|
109 |
+
# Do the tensor conversion in batch
|
110 |
+
for key, value in self.items():
|
111 |
+
if isinstance(value, list) and isinstance(value[0], list):
|
112 |
+
# List[List[Any]] -> List[List[Tensor]]
|
113 |
+
self[key] = [[_safe_convert_tensor(elem) for elem in elems] for elems in value]
|
114 |
+
elif isinstance(value, list):
|
115 |
+
# List[Any] -> List[Tensor]
|
116 |
+
self[key] = [_safe_convert_tensor(elem) for elem in value]
|
117 |
+
else:
|
118 |
+
# Any -> Tensor
|
119 |
+
self[key] = _safe_convert_tensor(value)
|
120 |
+
return self
|
121 |
+
|
122 |
+
def to(self, *args, **kwargs) -> "BatchFeature":
|
123 |
+
"""
|
124 |
+
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
|
125 |
+
different `dtypes` and sending the `BatchFeature` to a different `device`.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
args (`Tuple`):
|
129 |
+
Will be passed to the `to(...)` function of the tensors.
|
130 |
+
kwargs (`Dict`, *optional*):
|
131 |
+
Will be passed to the `to(...)` function of the tensors.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
[`BatchFeature`]: The same instance after modification.
|
135 |
+
"""
|
136 |
+
requires_backends(self, ["torch"])
|
137 |
+
import torch # noqa
|
138 |
+
|
139 |
+
new_data = {}
|
140 |
+
device = kwargs.get("device")
|
141 |
+
# Check if the args are a device or a dtype
|
142 |
+
if device is None and len(args) > 0:
|
143 |
+
# device should be always the first argument
|
144 |
+
arg = args[0]
|
145 |
+
if is_torch_dtype(arg):
|
146 |
+
# The first argument is a dtype
|
147 |
+
pass
|
148 |
+
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
149 |
+
device = arg
|
150 |
+
else:
|
151 |
+
# it's something else
|
152 |
+
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
153 |
+
|
154 |
+
def _to(elem):
|
155 |
+
# check if v is a floating point
|
156 |
+
if torch.is_floating_point(elem):
|
157 |
+
# cast and send to device
|
158 |
+
return elem.to(*args, **kwargs)
|
159 |
+
if device is not None:
|
160 |
+
return elem.to(device=device)
|
161 |
+
|
162 |
+
return elem
|
163 |
+
|
164 |
+
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
165 |
+
for k, v in self.items():
|
166 |
+
if isinstance(v, list) and isinstance(v[0], list):
|
167 |
+
# Data structure is a list of lists
|
168 |
+
new_v = []
|
169 |
+
for elems in v:
|
170 |
+
new_v.append([_to(elem) for elem in elems])
|
171 |
+
new_data[k] = new_v
|
172 |
+
elif isinstance(v, list):
|
173 |
+
# Data structure is a list
|
174 |
+
new_data[k] = [_to(elem) for elem in v]
|
175 |
+
else:
|
176 |
+
new_data[k] = _to(v)
|
177 |
+
self.data = new_data
|
178 |
+
return self
|
179 |
+
|
180 |
+
|
181 |
+
class FuyuImageProcessor(BaseImageProcessor):
|
182 |
+
"""
|
183 |
+
This class should handle the image processing part before the main FuyuForCausalLM. In particular, it should
|
184 |
+
handle:
|
185 |
+
|
186 |
+
- Processing Images:
|
187 |
+
Taking a batch of images as input. If the images are variable-sized, it resizes them based on the desired patch
|
188 |
+
dimensions. The image output is always img_h, img_w of (1080, 1920)
|
189 |
+
|
190 |
+
Then, it patches up these images using the patchify_image function.
|
191 |
+
|
192 |
+
- Creating Image Input IDs:
|
193 |
+
For each patch, a placeholder ID is given to identify where these patches belong in a token sequence. For
|
194 |
+
variable-sized images, each line of patches is terminated with a newline ID.
|
195 |
+
|
196 |
+
- Image Patch Indices:
|
197 |
+
For each image patch, the code maintains an index where these patches should be inserted in a token stream.
|
198 |
+
|
199 |
+
|
200 |
+
Args:
|
201 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
202 |
+
Whether to resize the image to `size`.
|
203 |
+
size (`Dict[str, int]`, *optional*, defaults to `{"height": 1080, "width": 1920}`):
|
204 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
205 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
206 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
207 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
208 |
+
Whether to pad the image to `size`.
|
209 |
+
padding_value (`float`, *optional*, defaults to 1.0):
|
210 |
+
The value to pad the image with.
|
211 |
+
padding_mode (`str`, *optional*, defaults to `"constant"`):
|
212 |
+
The padding mode to use when padding the image.
|
213 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
214 |
+
Whether to normalize the image.
|
215 |
+
image_mean (`float`, *optional*, defaults to 0.5):
|
216 |
+
The mean to use when normalizing the image.
|
217 |
+
image_std (`float`, *optional*, defaults to 0.5):
|
218 |
+
The standard deviation to use when normalizing the image.
|
219 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
220 |
+
Whether to rescale the image.
|
221 |
+
rescale_factor (`float`, *optional*, defaults to `1 / 255`):
|
222 |
+
The factor to use when rescaling the image.
|
223 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 30, "width": 30}`):
|
224 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
|
225 |
+
"""
|
226 |
+
|
227 |
+
model_input_names = [
|
228 |
+
"images",
|
229 |
+
"image_input_ids",
|
230 |
+
"image_patches",
|
231 |
+
"image_patch_indices_per_batch",
|
232 |
+
"image_patch_indices_per_subsequence",
|
233 |
+
]
|
234 |
+
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
do_resize: bool = True,
|
238 |
+
size: Optional[Dict[str, int]] = None,
|
239 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
240 |
+
do_pad: bool = True,
|
241 |
+
padding_value: float = 1.0,
|
242 |
+
padding_mode: str = "constant",
|
243 |
+
do_normalize: bool = True,
|
244 |
+
image_mean: Union[float, List[float]] = 0.5,
|
245 |
+
image_std: Union[float, List[float]] = 0.5,
|
246 |
+
do_rescale: bool = True,
|
247 |
+
rescale_factor: float = 1 / 255,
|
248 |
+
patch_size: Optional[Dict[str, int]] = None,
|
249 |
+
**kwargs,
|
250 |
+
):
|
251 |
+
super().__init__(**kwargs)
|
252 |
+
self.do_resize = do_resize
|
253 |
+
self.size = size if size is not None else {"height": 1080, "width": 1920}
|
254 |
+
self.resample = resample
|
255 |
+
self.do_pad = do_pad
|
256 |
+
self.padding_value = padding_value
|
257 |
+
self.padding_mode = padding_mode
|
258 |
+
self.do_normalize = do_normalize
|
259 |
+
self.image_mean = image_mean
|
260 |
+
self.image_std = image_std
|
261 |
+
self.do_rescale = do_rescale
|
262 |
+
self.rescale_factor = rescale_factor
|
263 |
+
self.patch_size = patch_size if patch_size is not None else {"height": 30, "width": 30}
|
264 |
+
self._valid_processor_keys = [
|
265 |
+
"images",
|
266 |
+
"do_resize",
|
267 |
+
"size",
|
268 |
+
"resample",
|
269 |
+
"do_pad",
|
270 |
+
"padding_value",
|
271 |
+
"padding_mode",
|
272 |
+
"do_normalize",
|
273 |
+
"image_mean",
|
274 |
+
"image_std",
|
275 |
+
"do_rescale",
|
276 |
+
"rescale_factor",
|
277 |
+
"patch_size",
|
278 |
+
"return_tensors",
|
279 |
+
"data_format",
|
280 |
+
"input_data_format",
|
281 |
+
]
|
282 |
+
|
283 |
+
def resize(
|
284 |
+
self,
|
285 |
+
image: np.ndarray,
|
286 |
+
size: Dict[str, int],
|
287 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
288 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
289 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
290 |
+
**kwargs,
|
291 |
+
) -> np.ndarray:
|
292 |
+
"""
|
293 |
+
Resize an image to `(size["height"], size["width"])`.
|
294 |
+
|
295 |
+
Args:
|
296 |
+
image (`np.ndarray`):
|
297 |
+
Image to resize.
|
298 |
+
size (`Dict[str, int]`):
|
299 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
300 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
301 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
302 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
303 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
304 |
+
image is used. Can be one of:
|
305 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
306 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
307 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
308 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
309 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
310 |
+
from the input image. Can be one of:
|
311 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
312 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
313 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
`np.ndarray`: The resized image.
|
317 |
+
"""
|
318 |
+
image_height, image_width = get_image_size(image, input_data_format)
|
319 |
+
target_height, target_width = size["height"], size["width"]
|
320 |
+
|
321 |
+
if image_width <= target_width and image_height <= target_height:
|
322 |
+
return image
|
323 |
+
|
324 |
+
height_scale_factor = target_height / image_height
|
325 |
+
width_scale_factor = target_width / image_width
|
326 |
+
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
|
327 |
+
|
328 |
+
new_height = int(image_height * optimal_scale_factor)
|
329 |
+
new_width = int(image_width * optimal_scale_factor)
|
330 |
+
|
331 |
+
scaled_image = resize(
|
332 |
+
image=image,
|
333 |
+
size=(new_height, new_width),
|
334 |
+
resample=resample,
|
335 |
+
data_format=data_format,
|
336 |
+
input_data_format=input_data_format,
|
337 |
+
**kwargs,
|
338 |
+
)
|
339 |
+
return scaled_image
|
340 |
+
|
341 |
+
def pad_image(
|
342 |
+
self,
|
343 |
+
image: np.ndarray,
|
344 |
+
size: Dict[str, int],
|
345 |
+
mode: str = "constant",
|
346 |
+
constant_values: float = 1.0,
|
347 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
348 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
349 |
+
) -> np.ndarray:
|
350 |
+
"""
|
351 |
+
Pad an image to `(size["height"], size["width"])`.
|
352 |
+
|
353 |
+
Args:
|
354 |
+
image (`np.ndarray`):
|
355 |
+
Image to pad.
|
356 |
+
size (`Dict[str, int]`):
|
357 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
358 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
359 |
+
The data format of the output image. If unset, the same format as the input image is used.
|
360 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
361 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
362 |
+
"""
|
363 |
+
image_height, image_width = get_image_size(image, input_data_format)
|
364 |
+
target_height, target_width = size["height"], size["width"]
|
365 |
+
padding_top = 0
|
366 |
+
padding_left = 0
|
367 |
+
padding_bottom = target_height - image_height
|
368 |
+
padding_right = target_width - image_width
|
369 |
+
padded_image = pad(
|
370 |
+
image,
|
371 |
+
padding=((padding_top, padding_bottom), (padding_left, padding_right)),
|
372 |
+
mode=mode,
|
373 |
+
constant_values=constant_values,
|
374 |
+
data_format=data_format,
|
375 |
+
input_data_format=input_data_format,
|
376 |
+
)
|
377 |
+
return padded_image
|
378 |
+
|
379 |
+
def preprocess(
|
380 |
+
self,
|
381 |
+
images,
|
382 |
+
do_resize: Optional[bool] = None,
|
383 |
+
size: Optional[Dict[str, int]] = None,
|
384 |
+
resample: Optional[PILImageResampling] = None,
|
385 |
+
do_pad: Optional[bool] = None,
|
386 |
+
padding_value: Optional[float] = None,
|
387 |
+
padding_mode: Optional[str] = None,
|
388 |
+
do_normalize: Optional[bool] = None,
|
389 |
+
image_mean: Optional[float] = None,
|
390 |
+
image_std: Optional[float] = None,
|
391 |
+
do_rescale: Optional[bool] = None,
|
392 |
+
rescale_factor: Optional[float] = None,
|
393 |
+
patch_size: Optional[Dict[str, int]] = None,
|
394 |
+
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
395 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
396 |
+
return_tensors: Optional[TensorType] = None,
|
397 |
+
):
|
398 |
+
"""
|
399 |
+
|
400 |
+
Utility function to preprocess the images and extract necessary information about original formats.
|
401 |
+
|
402 |
+
Args:
|
403 |
+
images (`ImageInput`):
|
404 |
+
Images to preprocess. Expects a single image, a list or images or a list of lists of images. Pixel
|
405 |
+
values range from 0 to 255, or between 0 and 1 if `do_rescale` is `False`.
|
406 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
407 |
+
Whether to resize the image to `size`.
|
408 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
409 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
410 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
411 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
412 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
413 |
+
Whether to pad the image to `size`.
|
414 |
+
padding_value (`float`, *optional*, defaults to `self.padding_value`):
|
415 |
+
The value to pad the image with.
|
416 |
+
padding_mode (`str`, *optional*, defaults to `self.padding_mode`):
|
417 |
+
The padding mode to use when padding the image.
|
418 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
419 |
+
Whether to normalize the image.
|
420 |
+
image_mean (`float`, *optional*, defaults to `self.image_mean`):
|
421 |
+
The mean to use when normalizing the image.
|
422 |
+
image_std (`float`, *optional*, defaults to `self.image_std`):
|
423 |
+
The standard deviation to use when normalizing the image.
|
424 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
425 |
+
Whether to rescale the image.
|
426 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
427 |
+
The factor to use when rescaling the image.
|
428 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
|
429 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
|
430 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
431 |
+
The type of tensors to return. Can be one of:
|
432 |
+
- Unset: Return a list of `np.ndarray`.
|
433 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
434 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
435 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
436 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
437 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
438 |
+
The channel dimension format of the output image. Can be one of:
|
439 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
440 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
441 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
442 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
443 |
+
from the input image. Can be one of:
|
444 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
445 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
446 |
+
"""
|
447 |
+
|
448 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
449 |
+
size = size if size is not None else self.size
|
450 |
+
resample = resample if resample is not None else self.resample
|
451 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
452 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
453 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
454 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
455 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
456 |
+
image_std = image_std if image_std is not None else self.image_std
|
457 |
+
padding_value = padding_value if padding_value is not None else self.padding_value
|
458 |
+
padding_mode = padding_mode if padding_mode is not None else self.padding_mode
|
459 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
460 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
461 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
462 |
+
|
463 |
+
if isinstance(images, list) and any(isinstance(elem, list) and len(elem) >= 2 for elem in images):
|
464 |
+
raise ValueError("Multiple images for a single sample are not yet supported.")
|
465 |
+
|
466 |
+
batch_images = make_list_of_list_of_images(images)
|
467 |
+
|
468 |
+
validate_preprocess_arguments(
|
469 |
+
do_rescale=do_rescale,
|
470 |
+
rescale_factor=rescale_factor,
|
471 |
+
do_normalize=do_normalize,
|
472 |
+
image_mean=image_mean,
|
473 |
+
image_std=image_std,
|
474 |
+
do_pad=do_pad,
|
475 |
+
size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
|
476 |
+
do_resize=do_resize,
|
477 |
+
size=size,
|
478 |
+
resample=resample,
|
479 |
+
)
|
480 |
+
# All transformations expect numpy arrays.
|
481 |
+
batch_images = [[to_numpy_array(image) for image in images] for images in batch_images]
|
482 |
+
|
483 |
+
if is_scaled_image(batch_images[0][0]) and do_rescale:
|
484 |
+
logger.warning_once(
|
485 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
486 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
487 |
+
)
|
488 |
+
|
489 |
+
if input_data_format is None:
|
490 |
+
# We assume that all images have the same channel dimension format.
|
491 |
+
input_data_format = infer_channel_dimension_format(batch_images[0][0])
|
492 |
+
|
493 |
+
original_image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
|
494 |
+
|
495 |
+
if do_resize:
|
496 |
+
batch_images = [
|
497 |
+
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
|
498 |
+
for images in batch_images
|
499 |
+
]
|
500 |
+
|
501 |
+
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
|
502 |
+
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
|
503 |
+
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
|
504 |
+
|
505 |
+
# scale_h is the same as scale_w
|
506 |
+
image_scale_factors = [
|
507 |
+
[resized_size[0] / original_size[0]]
|
508 |
+
for original_size, resized_size in zip(original_image_sizes, image_sizes)
|
509 |
+
]
|
510 |
+
|
511 |
+
if do_pad:
|
512 |
+
batch_images = [
|
513 |
+
[
|
514 |
+
self.pad_image(
|
515 |
+
image,
|
516 |
+
size=size,
|
517 |
+
mode=padding_mode,
|
518 |
+
constant_values=padding_value,
|
519 |
+
input_data_format=input_data_format,
|
520 |
+
)
|
521 |
+
for image in images
|
522 |
+
]
|
523 |
+
for images in batch_images
|
524 |
+
]
|
525 |
+
|
526 |
+
if do_rescale:
|
527 |
+
batch_images = [
|
528 |
+
[self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) for image in images]
|
529 |
+
for images in batch_images
|
530 |
+
]
|
531 |
+
|
532 |
+
if do_normalize:
|
533 |
+
batch_images = [
|
534 |
+
[
|
535 |
+
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
536 |
+
for image in images
|
537 |
+
]
|
538 |
+
for images in batch_images
|
539 |
+
]
|
540 |
+
|
541 |
+
if data_format is not None:
|
542 |
+
batch_images = [
|
543 |
+
[to_channel_dimension_format(image, data_format, input_data_format) for image in images]
|
544 |
+
for images in batch_images
|
545 |
+
]
|
546 |
+
|
547 |
+
data = {
|
548 |
+
"images": batch_images,
|
549 |
+
"image_unpadded_heights": image_unpadded_heights,
|
550 |
+
"image_unpadded_widths": image_unpadded_widths,
|
551 |
+
"image_scale_factors": image_scale_factors,
|
552 |
+
}
|
553 |
+
return FuyuBatchFeature(data=data, tensor_type=return_tensors)
|
554 |
+
|
555 |
+
def get_num_patches(self, image_height: int, image_width: int, patch_size: Dict[str, int] = None) -> int:
|
556 |
+
"""
|
557 |
+
Calculate number of patches required to encode an image.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
image_height (`int`):
|
561 |
+
Height of the image.
|
562 |
+
image_width (`int`):
|
563 |
+
Width of the image.
|
564 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
|
565 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
|
566 |
+
"""
|
567 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
568 |
+
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
|
569 |
+
|
570 |
+
if image_height % patch_height != 0:
|
571 |
+
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
|
572 |
+
if image_width % patch_width != 0:
|
573 |
+
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
|
574 |
+
|
575 |
+
num_patches_per_dim_h = image_height // patch_height
|
576 |
+
num_patches_per_dim_w = image_width // patch_width
|
577 |
+
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
|
578 |
+
return num_patches
|
579 |
+
|
580 |
+
def patchify_image(self, image: "torch.Tensor", patch_size: Optional[Dict[str, int]] = None) -> "torch.Tensor":
|
581 |
+
"""
|
582 |
+
Convert an image into a tensor of patches.
|
583 |
+
|
584 |
+
Args:
|
585 |
+
image (`torch.Tensor`):
|
586 |
+
Image to convert. Shape: [batch, channels, height, width]
|
587 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
|
588 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
|
589 |
+
"""
|
590 |
+
requires_backends(self, ["torch"])
|
591 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
592 |
+
patch_height, patch_width = patch_size["height"], patch_size["width"]
|
593 |
+
|
594 |
+
# TODO refer to https://github.com/ArthurZucker/transformers/blob/0f0a3fe5ca5697ee58faeb5b53f049af720b5e98/src/transformers/models/vit_mae/modeling_vit_mae.py#L871
|
595 |
+
# torch implementation is faster but does not handle non-squares
|
596 |
+
|
597 |
+
batch_size, channels, _, _ = image.shape
|
598 |
+
unfolded_along_height = image.unfold(2, patch_height, patch_height)
|
599 |
+
patches = unfolded_along_height.unfold(3, patch_width, patch_width)
|
600 |
+
patches = patches.contiguous()
|
601 |
+
patches = patches.view(batch_size, channels, -1, patch_height, patch_width)
|
602 |
+
patches = patches.permute(0, 2, 3, 4, 1)
|
603 |
+
patches = patches.reshape(batch_size, -1, channels * patch_height * patch_width)
|
604 |
+
return patches
|
605 |
+
|
606 |
+
def preprocess_with_tokenizer_info(
|
607 |
+
self,
|
608 |
+
image_input: "torch.Tensor",
|
609 |
+
image_present: "torch.Tensor",
|
610 |
+
image_unpadded_h: "torch.Tensor",
|
611 |
+
image_unpadded_w: "torch.Tensor",
|
612 |
+
image_placeholder_id: int,
|
613 |
+
image_newline_id: int,
|
614 |
+
variable_sized: bool,
|
615 |
+
patch_size: Optional[Dict[str, int]] = None,
|
616 |
+
) -> FuyuBatchFeature:
|
617 |
+
"""Process images for model input. In particular, variable-sized images are handled here.
|
618 |
+
|
619 |
+
Args:
|
620 |
+
image_input (`torch.Tensor` of shape [batch_size, subsequence_size, num_channels, height, width]):
|
621 |
+
Tensor of images padded to model input size.
|
622 |
+
image_present (`torch.Tensor` of shape [batch_size, subsequence_size, num_images]):
|
623 |
+
Tensor of 1s and 0s indicating whether an image is present.
|
624 |
+
image_unpadded_h (`torch.Tensor` of shape [batch_size, subsequence_size]):
|
625 |
+
Tensor of unpadded image heights.
|
626 |
+
image_unpadded_w (`torch.Tensor` of shape [batch_size, subsequence_size]):
|
627 |
+
Tensor of unpadded image widths.
|
628 |
+
image_placeholder_id (int):
|
629 |
+
The id of the image placeholder token. Comes from an associated tokenizer.
|
630 |
+
image_newline_id (int):
|
631 |
+
The id of the image newline token. Comes from an associated tokenizer.
|
632 |
+
variable_sized (bool):
|
633 |
+
Whether to process images as variable-sized.
|
634 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
|
635 |
+
Size of the patches.
|
636 |
+
"""
|
637 |
+
requires_backends(self, ["torch"])
|
638 |
+
|
639 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
640 |
+
patch_height, patch_width = patch_size["height"], patch_size["width"]
|
641 |
+
|
642 |
+
# Only images that are present.
|
643 |
+
images: List[List[torch.Tensor]] = []
|
644 |
+
batch_image_patches: List[List[torch.Tensor]] = []
|
645 |
+
# Image input ids for every subsequence, including ones with no image present.
|
646 |
+
batch_image_input_ids: List[List[torch.Tensor]] = []
|
647 |
+
for batch_index in range(image_input.shape[0]):
|
648 |
+
image_input_ids = []
|
649 |
+
image_patches = []
|
650 |
+
for subseq_index in range(image_input.shape[1]):
|
651 |
+
if image_present[batch_index, subseq_index]:
|
652 |
+
image = image_input[batch_index, subseq_index]
|
653 |
+
image_height, image_width = image.shape[1], image.shape[2]
|
654 |
+
if variable_sized:
|
655 |
+
# The min() is required here due to floating point issues:
|
656 |
+
# math.ceil(torch.tensor(300).cuda() / 30) == 11
|
657 |
+
new_h = min(
|
658 |
+
image_height,
|
659 |
+
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
|
660 |
+
)
|
661 |
+
new_w = min(
|
662 |
+
image_width,
|
663 |
+
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
|
664 |
+
)
|
665 |
+
image = image[:, :new_h, :new_w]
|
666 |
+
image_height, image_width = new_h, new_w
|
667 |
+
|
668 |
+
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
|
669 |
+
tensor_of_image_ids = torch.full(
|
670 |
+
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
|
671 |
+
)
|
672 |
+
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
|
673 |
+
assert num_patches == patches.shape[0]
|
674 |
+
|
675 |
+
if variable_sized:
|
676 |
+
# Now terminate each line with |NEWLINE|.
|
677 |
+
tensor_of_image_ids = tensor_of_image_ids.reshape(-1, image_width // patch_width)
|
678 |
+
newline_ids = torch.full(
|
679 |
+
[tensor_of_image_ids.shape[0], 1],
|
680 |
+
image_newline_id,
|
681 |
+
dtype=torch.int32,
|
682 |
+
device=image_input.device,
|
683 |
+
)
|
684 |
+
tensor_of_image_ids = torch.cat([tensor_of_image_ids, newline_ids], dim=1)
|
685 |
+
tensor_of_image_ids = tensor_of_image_ids.reshape(-1)
|
686 |
+
|
687 |
+
images.append([image])
|
688 |
+
image_input_ids.append(tensor_of_image_ids)
|
689 |
+
image_patches.append(patches)
|
690 |
+
else:
|
691 |
+
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
|
692 |
+
|
693 |
+
batch_image_input_ids.append(image_input_ids)
|
694 |
+
batch_image_patches.append(image_patches)
|
695 |
+
|
696 |
+
# Create image_patch_input_indices, where non-negative values correspond to image patches to be inserted in
|
697 |
+
# the stream.
|
698 |
+
image_patch_indices_per_batch: List[List[torch.Tensor]] = []
|
699 |
+
image_patch_indices_per_subsequence: List[List[torch.Tensor]] = []
|
700 |
+
|
701 |
+
for sample_image_input_ids in batch_image_input_ids:
|
702 |
+
index_offset = 0
|
703 |
+
per_batch_indices = []
|
704 |
+
per_subsequence_indices = []
|
705 |
+
for subseq_image_input_ids in sample_image_input_ids:
|
706 |
+
# Indices of image patches.
|
707 |
+
patches_mask = subseq_image_input_ids == image_placeholder_id
|
708 |
+
num_patches = torch.count_nonzero(patches_mask)
|
709 |
+
indices = torch.arange(num_patches, dtype=torch.int64, device=subseq_image_input_ids.device).type_as(
|
710 |
+
subseq_image_input_ids
|
711 |
+
)
|
712 |
+
|
713 |
+
# Place those indices in the image input ids token stream, with -1 representing non-index tokens.
|
714 |
+
indices_in_stream_per_batch = torch.full_like(subseq_image_input_ids, -1)
|
715 |
+
indices_in_stream_per_subsequence = torch.full_like(subseq_image_input_ids, -1)
|
716 |
+
patches_inds = torch.nonzero(patches_mask, as_tuple=True)[0]
|
717 |
+
|
718 |
+
indices_in_stream_per_batch[patches_inds] = indices + index_offset
|
719 |
+
indices_in_stream_per_subsequence[patches_inds] = indices
|
720 |
+
|
721 |
+
per_batch_indices.append(indices_in_stream_per_batch)
|
722 |
+
per_subsequence_indices.append(indices_in_stream_per_subsequence)
|
723 |
+
index_offset += num_patches
|
724 |
+
|
725 |
+
image_patch_indices_per_batch.append(per_batch_indices)
|
726 |
+
image_patch_indices_per_subsequence.append(per_subsequence_indices)
|
727 |
+
|
728 |
+
return FuyuBatchFeature(
|
729 |
+
data={
|
730 |
+
"images": images,
|
731 |
+
"image_input_ids": batch_image_input_ids,
|
732 |
+
"image_patches": batch_image_patches,
|
733 |
+
"image_patch_indices_per_batch": image_patch_indices_per_batch,
|
734 |
+
"image_patch_indices_per_subsequence": image_patch_indices_per_subsequence,
|
735 |
+
}
|
736 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/modeling_fuyu.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Fuyu model."""
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from ...modeling_outputs import CausalLMOutputWithPast
|
23 |
+
from ...modeling_utils import PreTrainedModel
|
24 |
+
from ...models.auto.modeling_auto import AutoModelForCausalLM
|
25 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
26 |
+
from .configuration_fuyu import FuyuConfig
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
_CONFIG_FOR_DOC = "FuyuConfig"
|
32 |
+
|
33 |
+
|
34 |
+
FUYU_START_DOCSTRING = r"""
|
35 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
36 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
37 |
+
etc.)
|
38 |
+
|
39 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
40 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
41 |
+
and behavior.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
config ([`FuyuConfig`]):
|
45 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
46 |
+
load the weights associated with the model, only the configuration. Check out the
|
47 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
@add_start_docstrings(
|
52 |
+
"The bare Fuyu Model outputting raw hidden-states without any specific head on top.",
|
53 |
+
FUYU_START_DOCSTRING,
|
54 |
+
)
|
55 |
+
class FuyuPreTrainedModel(PreTrainedModel):
|
56 |
+
config_class = FuyuConfig
|
57 |
+
base_model_prefix = "fuyu"
|
58 |
+
supports_gradient_checkpointing = True
|
59 |
+
_no_split_modules = []
|
60 |
+
_skip_keys_device_placement = "past_key_values"
|
61 |
+
|
62 |
+
def _init_weights(self, module):
|
63 |
+
std = self.config.initializer_range
|
64 |
+
if isinstance(module, nn.Linear):
|
65 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
66 |
+
if module.bias is not None:
|
67 |
+
module.bias.data.zero_()
|
68 |
+
elif isinstance(module, nn.Embedding):
|
69 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
70 |
+
if module.padding_idx is not None:
|
71 |
+
module.weight.data[module.padding_idx].zero_()
|
72 |
+
|
73 |
+
|
74 |
+
FUYU_INPUTS_DOCSTRING = r"""
|
75 |
+
Args:
|
76 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
77 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
78 |
+
it.
|
79 |
+
|
80 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
81 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
82 |
+
|
83 |
+
[What are input IDs?](../glossary#input-ids)
|
84 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
85 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
86 |
+
|
87 |
+
- 1 for tokens that are **not masked**,
|
88 |
+
- 0 for tokens that are **masked**.
|
89 |
+
|
90 |
+
[What are attention masks?](../glossary#attention-mask)
|
91 |
+
|
92 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
93 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
94 |
+
|
95 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
96 |
+
`past_key_values`).
|
97 |
+
|
98 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
99 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
100 |
+
information on the default strategy.
|
101 |
+
|
102 |
+
- 1 indicates the head is **not masked**,
|
103 |
+
- 0 indicates the head is **masked**.
|
104 |
+
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*):
|
105 |
+
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the
|
106 |
+
hidden size of the model.
|
107 |
+
image_patches_indices (`torch.LongTensor` of shape `(batch_size, num_total_patches + number_of_newline_tokens + number_of_text_tokens, patch_size_ x patch_size x num_channels )`, *optional*):
|
108 |
+
Indices indicating at which position the image_patches have to be inserted in input_embeds.
|
109 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
110 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
111 |
+
config.n_positions - 1]`.
|
112 |
+
|
113 |
+
[What are position IDs?](../glossary#position-ids)
|
114 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
115 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
116 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
117 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
118 |
+
|
119 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
120 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
121 |
+
|
122 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
123 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
124 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
125 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
126 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
127 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
128 |
+
model's internal embedding lookup matrix.
|
129 |
+
use_cache (`bool`, *optional*):
|
130 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
131 |
+
`past_key_values`).
|
132 |
+
output_attentions (`bool`, *optional*):
|
133 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
134 |
+
tensors for more detail.
|
135 |
+
output_hidden_states (`bool`, *optional*):
|
136 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
137 |
+
more detail.
|
138 |
+
return_dict (`bool`, *optional*):
|
139 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
140 |
+
"""
|
141 |
+
|
142 |
+
|
143 |
+
@add_start_docstrings(
|
144 |
+
"Fuyu Model with a language modeling head on top for causal language model conditioned on image patches and text.",
|
145 |
+
FUYU_START_DOCSTRING,
|
146 |
+
)
|
147 |
+
class FuyuForCausalLM(FuyuPreTrainedModel):
|
148 |
+
def __init__(self, config: FuyuConfig):
|
149 |
+
super().__init__(config)
|
150 |
+
self.padding_idx = config.pad_token_id
|
151 |
+
self.vocab_size = config.vocab_size
|
152 |
+
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
|
153 |
+
|
154 |
+
self.vision_embed_tokens = nn.Linear(
|
155 |
+
config.patch_size * config.patch_size * config.num_channels, config.hidden_size
|
156 |
+
)
|
157 |
+
|
158 |
+
self.gradient_checkpointing = False
|
159 |
+
# Initialize weights and apply final processing
|
160 |
+
self.post_init()
|
161 |
+
|
162 |
+
def get_input_embeddings(self):
|
163 |
+
return self.language_model.get_input_embeddings()
|
164 |
+
|
165 |
+
def set_input_embeddings(self, value):
|
166 |
+
self.language_model.set_input_embeddings(value)
|
167 |
+
|
168 |
+
def gather_continuous_embeddings(
|
169 |
+
self,
|
170 |
+
word_embeddings: torch.Tensor,
|
171 |
+
continuous_embeddings: List[torch.Tensor],
|
172 |
+
image_patch_input_indices: torch.Tensor,
|
173 |
+
) -> torch.Tensor:
|
174 |
+
"""This function places the continuous_embeddings into the word_embeddings at the locations
|
175 |
+
indicated by image_patch_input_indices. Different batch elements can have different numbers of continuous
|
176 |
+
embeddings.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
word_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
180 |
+
Tensor of word embeddings.
|
181 |
+
continuous_embeddings (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
|
182 |
+
Tensor of continuous embeddings. The length of the list is the batch size. Each entry is shape
|
183 |
+
[num_image_embeddings, hidden], and num_image_embeddings needs to match the number of non-negative
|
184 |
+
indices in image_patch_input_indices for that batch element.
|
185 |
+
image_patch_input_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
186 |
+
Tensor of indices of the image patches in the input_ids tensor.
|
187 |
+
"""
|
188 |
+
if not (word_embeddings.shape[0] == len(continuous_embeddings)):
|
189 |
+
raise ValueError(
|
190 |
+
f"Batch sizes must match! Got {len(continuous_embeddings)=} and {word_embeddings.shape[0]=}"
|
191 |
+
)
|
192 |
+
|
193 |
+
output_embeddings = word_embeddings.clone()
|
194 |
+
for batch_idx in range(word_embeddings.shape[0]):
|
195 |
+
# First, find the positions of all the non-negative values in image_patch_input_indices, those are the
|
196 |
+
# positions in word_embeddings that we want to replace with content from continuous_embeddings.
|
197 |
+
dst_indices = torch.nonzero(image_patch_input_indices[batch_idx] >= 0, as_tuple=True)[0]
|
198 |
+
# Next look up those indices in image_patch_input_indices to find the indices in continuous_embeddings that we
|
199 |
+
# want to use to replace the values in word_embeddings.
|
200 |
+
src_indices = image_patch_input_indices[batch_idx][dst_indices]
|
201 |
+
# Check if we have more indices than embeddings. Note that we could have fewer indices if images got truncated.
|
202 |
+
if src_indices.shape[0] > continuous_embeddings[batch_idx].shape[0]:
|
203 |
+
raise ValueError(
|
204 |
+
f"Number of continuous embeddings {continuous_embeddings[batch_idx].shape=} does not match "
|
205 |
+
f"number of continuous token ids {src_indices.shape=} in batch element {batch_idx}."
|
206 |
+
)
|
207 |
+
output_embeddings[batch_idx, dst_indices] = continuous_embeddings[batch_idx][src_indices]
|
208 |
+
return output_embeddings
|
209 |
+
|
210 |
+
@add_start_docstrings_to_model_forward(FUYU_INPUTS_DOCSTRING)
|
211 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
input_ids: torch.LongTensor = None,
|
215 |
+
image_patches: torch.Tensor = None, # [batch_size, num_total_patches, patch_size_ x patch_size x num_channels ]
|
216 |
+
image_patches_indices: torch.Tensor = None,
|
217 |
+
attention_mask: Optional[torch.Tensor] = None,
|
218 |
+
position_ids: Optional[torch.LongTensor] = None,
|
219 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
220 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
221 |
+
use_cache: Optional[bool] = None,
|
222 |
+
labels: Optional[torch.Tensor] = None,
|
223 |
+
output_attentions: Optional[bool] = None,
|
224 |
+
output_hidden_states: Optional[bool] = None,
|
225 |
+
return_dict: Optional[bool] = None,
|
226 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
227 |
+
r"""
|
228 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
229 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
230 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
231 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
|
235 |
+
Examples:
|
236 |
+
|
237 |
+
```python
|
238 |
+
>>> from transformers import FuyuProcessor, FuyuForCausalLM
|
239 |
+
>>> from PIL import Image
|
240 |
+
>>> import requests
|
241 |
+
|
242 |
+
>>> processor = FuyuProcessor.from_pretrained("adept/fuyu-8b")
|
243 |
+
>>> model = FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
|
244 |
+
|
245 |
+
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
|
246 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
247 |
+
>>> prompt = "Generate a coco-style caption.\n"
|
248 |
+
|
249 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
250 |
+
>>> outputs = model(**inputs)
|
251 |
+
|
252 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=7)
|
253 |
+
>>> generation_text = processor.batch_decode(generated_ids[:, -7:], skip_special_tokens=True)
|
254 |
+
>>> print(generation_text[0])
|
255 |
+
A blue bus parked on the side of a road.
|
256 |
+
```"""
|
257 |
+
|
258 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
259 |
+
output_hidden_states = (
|
260 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
261 |
+
)
|
262 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
263 |
+
|
264 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
265 |
+
|
266 |
+
if input_ids is not None and inputs_embeds is not None:
|
267 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
268 |
+
elif input_ids is not None:
|
269 |
+
batch_size, seq_length = input_ids.shape
|
270 |
+
elif inputs_embeds is not None:
|
271 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
272 |
+
else:
|
273 |
+
raise ValueError("You have to specify either input_is or inputs_embeds")
|
274 |
+
|
275 |
+
seq_length_with_past = seq_length
|
276 |
+
past_key_values_length = 0
|
277 |
+
|
278 |
+
if past_key_values is not None:
|
279 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
280 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
281 |
+
|
282 |
+
if position_ids is None:
|
283 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
284 |
+
position_ids = torch.arange(
|
285 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
286 |
+
)
|
287 |
+
position_ids = position_ids.unsqueeze(0)
|
288 |
+
|
289 |
+
if inputs_embeds is None:
|
290 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
291 |
+
if image_patches is not None and past_key_values is None:
|
292 |
+
patch_embeddings = [
|
293 |
+
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
|
294 |
+
.squeeze(0)
|
295 |
+
.to(inputs_embeds.device)
|
296 |
+
for patch in image_patches
|
297 |
+
]
|
298 |
+
inputs_embeds = self.gather_continuous_embeddings(
|
299 |
+
word_embeddings=inputs_embeds,
|
300 |
+
continuous_embeddings=patch_embeddings,
|
301 |
+
image_patch_input_indices=image_patches_indices,
|
302 |
+
)
|
303 |
+
|
304 |
+
outputs = self.language_model(
|
305 |
+
inputs_embeds=inputs_embeds,
|
306 |
+
attention_mask=attention_mask,
|
307 |
+
position_ids=position_ids,
|
308 |
+
past_key_values=past_key_values,
|
309 |
+
output_attentions=output_attentions,
|
310 |
+
output_hidden_states=output_hidden_states,
|
311 |
+
labels=labels,
|
312 |
+
use_cache=use_cache,
|
313 |
+
return_dict=return_dict,
|
314 |
+
)
|
315 |
+
|
316 |
+
return outputs
|
317 |
+
|
318 |
+
def prepare_inputs_for_generation(
|
319 |
+
self,
|
320 |
+
input_ids,
|
321 |
+
past_key_values=None,
|
322 |
+
attention_mask=None,
|
323 |
+
inputs_embeds=None,
|
324 |
+
image_patches=None,
|
325 |
+
image_patches_indices=None,
|
326 |
+
**kwargs,
|
327 |
+
):
|
328 |
+
if past_key_values:
|
329 |
+
input_ids = input_ids[:, -1:]
|
330 |
+
|
331 |
+
position_ids = kwargs.get("position_ids", None)
|
332 |
+
if attention_mask is not None and position_ids is None:
|
333 |
+
# create position_ids on the fly for batch generation
|
334 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
335 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
336 |
+
if past_key_values:
|
337 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
338 |
+
|
339 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
340 |
+
if inputs_embeds is not None and past_key_values is None:
|
341 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
342 |
+
else:
|
343 |
+
model_inputs = {"input_ids": input_ids}
|
344 |
+
|
345 |
+
if image_patches_indices is not None:
|
346 |
+
model_inputs["image_patches_indices"] = image_patches_indices
|
347 |
+
|
348 |
+
model_inputs.update(
|
349 |
+
{
|
350 |
+
"position_ids": position_ids,
|
351 |
+
"past_key_values": past_key_values,
|
352 |
+
"use_cache": kwargs.get("use_cache"),
|
353 |
+
"attention_mask": attention_mask,
|
354 |
+
"image_patches_indices": image_patches_indices if past_key_values is None else None,
|
355 |
+
"image_patches": image_patches if past_key_values is None else None,
|
356 |
+
}
|
357 |
+
)
|
358 |
+
return model_inputs
|
venv/lib/python3.10/site-packages/transformers/models/fuyu/processing_fuyu.py
ADDED
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for GIT
|
17 |
+
"""
|
18 |
+
import re
|
19 |
+
from typing import Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
from ...tokenization_utils_base import PaddingStrategy, TruncationStrategy
|
25 |
+
from ...utils import TensorType, is_torch_available, logging, requires_backends
|
26 |
+
|
27 |
+
|
28 |
+
if is_torch_available():
|
29 |
+
from .image_processing_fuyu import FuyuBatchFeature
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
if is_torch_available():
|
36 |
+
import torch
|
37 |
+
|
38 |
+
|
39 |
+
TEXT_REPR_BBOX_OPEN = "<box>"
|
40 |
+
TEXT_REPR_BBOX_CLOSE = "</box>"
|
41 |
+
TEXT_REPR_POINT_OPEN = "<point>"
|
42 |
+
TEXT_REPR_POINT_CLOSE = "</point>"
|
43 |
+
|
44 |
+
TOKEN_BBOX_OPEN_STRING = "<0x00>" # <bbox>
|
45 |
+
TOKEN_BBOX_CLOSE_STRING = "<0x01>" # </bbox>
|
46 |
+
TOKEN_POINT_OPEN_STRING = "<0x02>" # <point>
|
47 |
+
TOKEN_POINT_CLOSE_STRING = "<0x03>" # </point>
|
48 |
+
BEGINNING_OF_ANSWER_STRING = "<0x04>" # <boa>
|
49 |
+
|
50 |
+
|
51 |
+
def full_unpacked_stream_to_tensor(
|
52 |
+
all_bi_tokens_to_place: List[int],
|
53 |
+
full_unpacked_stream: List["torch.Tensor"],
|
54 |
+
fill_value: int,
|
55 |
+
batch_size: int,
|
56 |
+
new_seq_len: int,
|
57 |
+
offset: int,
|
58 |
+
) -> "torch.Tensor":
|
59 |
+
"""Takes an unpacked stream of tokens (i.e. a list of tensors, one for each item in the batch) and does
|
60 |
+
the required padding to create a single tensor for the batch of shape batch_size x new_seq_len.
|
61 |
+
"""
|
62 |
+
|
63 |
+
assert len(all_bi_tokens_to_place) == batch_size
|
64 |
+
assert len(full_unpacked_stream) == batch_size
|
65 |
+
|
66 |
+
# Create padded tensors for the full batch.
|
67 |
+
new_padded_tensor = torch.full(
|
68 |
+
[batch_size, new_seq_len],
|
69 |
+
fill_value=fill_value,
|
70 |
+
dtype=full_unpacked_stream[0].dtype,
|
71 |
+
device=full_unpacked_stream[0].device,
|
72 |
+
)
|
73 |
+
|
74 |
+
# Place each batch entry into the batch tensor.
|
75 |
+
for bi in range(batch_size):
|
76 |
+
tokens_to_place = all_bi_tokens_to_place[bi]
|
77 |
+
new_padded_tensor[bi, :tokens_to_place] = full_unpacked_stream[bi][offset : tokens_to_place + offset]
|
78 |
+
|
79 |
+
return new_padded_tensor
|
80 |
+
|
81 |
+
|
82 |
+
def construct_full_unpacked_stream(
|
83 |
+
num_real_text_tokens: Union[List[List[int]], "torch.Tensor"],
|
84 |
+
input_stream: "torch.Tensor",
|
85 |
+
image_tokens: List[List["torch.Tensor"]],
|
86 |
+
batch_size: int,
|
87 |
+
num_sub_sequences: int,
|
88 |
+
) -> List["torch.Tensor"]:
|
89 |
+
"""Takes an input_stream tensor of shape B x S x ?. For each subsequence, adds any required
|
90 |
+
padding to account for images and then unpacks the subsequences to create a single sequence per item in the batch.
|
91 |
+
Returns a list of tensors, one for each item in the batch."""
|
92 |
+
|
93 |
+
all_bi_stream = []
|
94 |
+
|
95 |
+
for batch_index in range(batch_size):
|
96 |
+
all_si_stream = []
|
97 |
+
|
98 |
+
# First, construct full token stream (including image placeholder tokens) and loss mask for each subsequence
|
99 |
+
# and append to lists. We use lists rather than tensors because each subsequence is variable-sized.
|
100 |
+
# TODO Remove this logic in a subsequent release since subsequences are not supported.
|
101 |
+
image_adjustment = image_tokens[batch_index][0]
|
102 |
+
subsequence_stream = torch.cat([image_adjustment, input_stream[batch_index, 0]], dim=0)
|
103 |
+
num_real_tokens = image_adjustment.shape[0] + num_real_text_tokens[batch_index][0]
|
104 |
+
all_si_stream.append(subsequence_stream[:num_real_tokens])
|
105 |
+
all_bi_stream.append(torch.cat(all_si_stream, dim=0))
|
106 |
+
|
107 |
+
return all_bi_stream
|
108 |
+
|
109 |
+
|
110 |
+
def _replace_string_repr_with_token_tags(prompt: str) -> str:
|
111 |
+
prompt = prompt.replace(TEXT_REPR_POINT_OPEN, TOKEN_POINT_OPEN_STRING)
|
112 |
+
prompt = prompt.replace(TEXT_REPR_POINT_CLOSE, TOKEN_POINT_CLOSE_STRING)
|
113 |
+
prompt = prompt.replace(TEXT_REPR_BBOX_OPEN, TOKEN_BBOX_OPEN_STRING)
|
114 |
+
prompt = prompt.replace(TEXT_REPR_BBOX_CLOSE, TOKEN_BBOX_CLOSE_STRING)
|
115 |
+
return prompt
|
116 |
+
|
117 |
+
|
118 |
+
def _segment_prompt_into_text_token_conversions(prompt: str) -> List:
|
119 |
+
"""
|
120 |
+
Given a string prompt, converts the prompt into a list of TextTokenConversions.
|
121 |
+
"""
|
122 |
+
# Wherever, we notice the [TOKEN_OPEN_STRING, TOKEN_CLOSE_STRING], we split the prompt
|
123 |
+
prompt_text_list: List = []
|
124 |
+
regex_pattern = re.compile(
|
125 |
+
f"({TOKEN_BBOX_OPEN_STRING}|{TOKEN_BBOX_CLOSE_STRING}|{TOKEN_POINT_OPEN_STRING}|{TOKEN_POINT_CLOSE_STRING})"
|
126 |
+
)
|
127 |
+
# Split by the regex pattern
|
128 |
+
prompt_split = regex_pattern.split(prompt)
|
129 |
+
for i, elem in enumerate(prompt_split):
|
130 |
+
if len(elem) == 0 or elem in [
|
131 |
+
TOKEN_BBOX_OPEN_STRING,
|
132 |
+
TOKEN_BBOX_CLOSE_STRING,
|
133 |
+
TOKEN_POINT_OPEN_STRING,
|
134 |
+
TOKEN_POINT_CLOSE_STRING,
|
135 |
+
]:
|
136 |
+
continue
|
137 |
+
prompt_text_list.append(
|
138 |
+
(elem, i > 1 and prompt_split[i - 1] in [TOKEN_BBOX_OPEN_STRING, TOKEN_POINT_OPEN_STRING])
|
139 |
+
)
|
140 |
+
return prompt_text_list
|
141 |
+
|
142 |
+
|
143 |
+
def _transform_coordinates_and_tokenize(prompt: str, scale_factor: float, tokenizer) -> List[int]:
|
144 |
+
"""
|
145 |
+
This function transforms the prompt in the following fashion:
|
146 |
+
- <box> <point> and </box> </point> to their respective token mappings
|
147 |
+
- extract the coordinates from the tag
|
148 |
+
- transform the coordinates into the transformed image space
|
149 |
+
- return the prompt tokens with the transformed coordinates and new tags
|
150 |
+
|
151 |
+
Bounding boxes and points MUST be in the following format: <box>y1, x1, y2, x2</box> <point>x, y</point> The spaces
|
152 |
+
and punctuation added above are NOT optional.
|
153 |
+
"""
|
154 |
+
# Make a namedtuple that stores "text" and "is_bbox"
|
155 |
+
|
156 |
+
# We want to do the following: Tokenize the code normally -> when we see a point or box, tokenize using the tokenize_within_tag function
|
157 |
+
# When point or box close tag, continue tokenizing normally
|
158 |
+
# First, we replace the point and box tags with their respective tokens
|
159 |
+
prompt = _replace_string_repr_with_token_tags(prompt)
|
160 |
+
# Tokenize the prompt
|
161 |
+
# Convert prompt into a list split
|
162 |
+
prompt_text_list = _segment_prompt_into_text_token_conversions(prompt)
|
163 |
+
transformed_prompt_tokens: List[int] = []
|
164 |
+
for elem in prompt_text_list:
|
165 |
+
if elem[1]:
|
166 |
+
# This is a location, we need to tokenize it
|
167 |
+
within_tag_tokenized = _transform_within_tags(elem[0], scale_factor, tokenizer)
|
168 |
+
# Surround the text with the open and close tags
|
169 |
+
transformed_prompt_tokens.extend(within_tag_tokenized)
|
170 |
+
else:
|
171 |
+
transformed_prompt_tokens.extend(tokenizer(elem[0], add_special_tokens=False).input_ids)
|
172 |
+
return transformed_prompt_tokens
|
173 |
+
|
174 |
+
|
175 |
+
def _transform_within_tags(text: str, scale_factor: float, tokenizer) -> List[int]:
|
176 |
+
"""
|
177 |
+
Given a bounding box of the fashion <box>1, 2, 3, 4</box> | <point>1, 2</point> This function is responsible for
|
178 |
+
converting 1, 2, 3, 4 into tokens of 1 2 3 4 without any commas.
|
179 |
+
"""
|
180 |
+
# Convert the text into a list of strings.
|
181 |
+
num_int_strs = text.split(",")
|
182 |
+
if len(num_int_strs) == 2:
|
183 |
+
# If there are any open or close tags, remove them.
|
184 |
+
token_space_open_string = tokenizer.vocab[TOKEN_POINT_OPEN_STRING]
|
185 |
+
token_space_close_string = tokenizer.vocab[TOKEN_POINT_CLOSE_STRING]
|
186 |
+
else:
|
187 |
+
token_space_open_string = tokenizer.vocab[TOKEN_BBOX_OPEN_STRING]
|
188 |
+
token_space_close_string = tokenizer.vocab[TOKEN_BBOX_CLOSE_STRING]
|
189 |
+
|
190 |
+
# Remove all spaces from num_ints
|
191 |
+
num_ints = [float(num.strip()) for num in num_int_strs]
|
192 |
+
# scale to transformed image siz
|
193 |
+
if len(num_ints) == 2:
|
194 |
+
num_ints_translated = scale_point_to_transformed_image(x=num_ints[0], y=num_ints[1], scale_factor=scale_factor)
|
195 |
+
elif len(num_ints) == 4:
|
196 |
+
num_ints_translated = scale_bbox_to_transformed_image(
|
197 |
+
top=num_ints[0],
|
198 |
+
left=num_ints[1],
|
199 |
+
bottom=num_ints[2],
|
200 |
+
right=num_ints[3],
|
201 |
+
scale_factor=scale_factor,
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
raise ValueError(f"Invalid number of ints: {len(num_ints)}")
|
205 |
+
# Tokenize the text, skipping the
|
206 |
+
tokens = [tokenizer.vocab[str(num)] for num in num_ints_translated]
|
207 |
+
return [token_space_open_string] + tokens + [token_space_close_string]
|
208 |
+
|
209 |
+
|
210 |
+
def _tokenize_prompts_with_image_and_batch(
|
211 |
+
tokenizer,
|
212 |
+
prompts: List[List[str]],
|
213 |
+
scale_factors: Optional[List[List["torch.Tensor"]]],
|
214 |
+
max_tokens_to_generate: int,
|
215 |
+
max_position_embeddings: int,
|
216 |
+
add_BOS: bool, # Same issue with types as above
|
217 |
+
add_beginning_of_answer_token: bool,
|
218 |
+
) -> Tuple["torch.Tensor", "torch.Tensor"]:
|
219 |
+
"""
|
220 |
+
Given a set of prompts and number of tokens to generate:
|
221 |
+
- tokenize prompts
|
222 |
+
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
|
223 |
+
- pad all the sequences to this length so we can convert them into a 3D tensor.
|
224 |
+
"""
|
225 |
+
|
226 |
+
# If not tool use, tranform the coordinates while tokenizing
|
227 |
+
if scale_factors is not None:
|
228 |
+
transformed_prompt_tokens = []
|
229 |
+
for prompt_seq, scale_factor_seq in zip(prompts, scale_factors):
|
230 |
+
transformed_prompt_tokens.append(
|
231 |
+
[
|
232 |
+
_transform_coordinates_and_tokenize(prompt, scale_factor.item(), tokenizer)
|
233 |
+
for prompt, scale_factor in zip(prompt_seq, scale_factor_seq)
|
234 |
+
]
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
transformed_prompt_tokens = [[tokenizer.tokenize(prompt) for prompt in prompt_seq] for prompt_seq in prompts]
|
238 |
+
|
239 |
+
prompts_tokens = transformed_prompt_tokens
|
240 |
+
|
241 |
+
if add_BOS:
|
242 |
+
bos_token = tokenizer.vocab["<s>"]
|
243 |
+
else:
|
244 |
+
bos_token = tokenizer.vocab["|ENDOFTEXT|"]
|
245 |
+
prompts_tokens = [[[bos_token] + x for x in prompt_seq] for prompt_seq in prompts_tokens]
|
246 |
+
if add_beginning_of_answer_token:
|
247 |
+
boa = tokenizer.vocab[BEGINNING_OF_ANSWER_STRING]
|
248 |
+
# Only add bbox open token to the last subsequence since that is what will be completed
|
249 |
+
for token_seq in prompts_tokens:
|
250 |
+
token_seq[-1].append(boa)
|
251 |
+
|
252 |
+
# Now we have a list of list of tokens which each list has a different
|
253 |
+
# size. We want to extend this list to:
|
254 |
+
# - incorporate the tokens that need to be generated
|
255 |
+
# - make all the sequences equal length.
|
256 |
+
# Get the prompts length.
|
257 |
+
|
258 |
+
prompts_length = [[len(x) for x in prompts_tokens_seq] for prompts_tokens_seq in prompts_tokens]
|
259 |
+
# Get the max prompts length.
|
260 |
+
max_prompt_len: int = np.max(prompts_length)
|
261 |
+
# Number of tokens in the each sample of the batch.
|
262 |
+
samples_length = min(max_prompt_len + max_tokens_to_generate, max_position_embeddings)
|
263 |
+
if max_prompt_len + max_tokens_to_generate > max_position_embeddings:
|
264 |
+
logger.warning(
|
265 |
+
f"Max subsequence prompt length of {max_prompt_len} + max tokens to generate {max_tokens_to_generate}",
|
266 |
+
f"exceeds context length of {max_position_embeddings}. Will generate as many tokens as possible.",
|
267 |
+
)
|
268 |
+
# Now update the list of list to be of the same size: samples_length.
|
269 |
+
for prompt_tokens_seq, prompts_length_seq in zip(prompts_tokens, prompts_length):
|
270 |
+
for prompt_tokens, prompt_length in zip(prompt_tokens_seq, prompts_length_seq):
|
271 |
+
if len(prompt_tokens) > samples_length:
|
272 |
+
raise ValueError("Length of subsequence prompt exceeds sequence length.")
|
273 |
+
padding_size = samples_length - prompt_length
|
274 |
+
prompt_tokens.extend([tokenizer.vocab["|ENDOFTEXT|"]] * padding_size)
|
275 |
+
|
276 |
+
# Now we are in a structured format, we can convert to tensors.
|
277 |
+
prompts_tokens_tensor = torch.tensor(prompts_tokens, dtype=torch.int64)
|
278 |
+
prompts_length_tensor = torch.tensor(prompts_length, dtype=torch.int64)
|
279 |
+
|
280 |
+
return prompts_tokens_tensor, prompts_length_tensor
|
281 |
+
|
282 |
+
|
283 |
+
# Simplified assuming self.crop_top = self.padding_top = 0
|
284 |
+
def original_to_transformed_h_coords(original_coords, scale_h):
|
285 |
+
return np.round(original_coords * scale_h).astype(np.int32)
|
286 |
+
|
287 |
+
|
288 |
+
# Simplified assuming self.crop_left = self.padding_left = 0
|
289 |
+
def original_to_transformed_w_coords(original_coords, scale_w):
|
290 |
+
return np.round(original_coords * scale_w).astype(np.int32)
|
291 |
+
|
292 |
+
|
293 |
+
def scale_point_to_transformed_image(x: float, y: float, scale_factor: float) -> List[int]:
|
294 |
+
x_scaled = original_to_transformed_w_coords(np.array([x / 2]), scale_factor)[0]
|
295 |
+
y_scaled = original_to_transformed_h_coords(np.array([y / 2]), scale_factor)[0]
|
296 |
+
return [x_scaled, y_scaled]
|
297 |
+
|
298 |
+
|
299 |
+
def scale_bbox_to_transformed_image(
|
300 |
+
top: float, left: float, bottom: float, right: float, scale_factor: float
|
301 |
+
) -> List[int]:
|
302 |
+
top_scaled = original_to_transformed_w_coords(np.array([top / 2]), scale_factor)[0]
|
303 |
+
left_scaled = original_to_transformed_h_coords(np.array([left / 2]), scale_factor)[0]
|
304 |
+
bottom_scaled = original_to_transformed_w_coords(np.array([bottom / 2]), scale_factor)[0]
|
305 |
+
right_scaled = original_to_transformed_h_coords(np.array([right / 2]), scale_factor)[0]
|
306 |
+
return [top_scaled, left_scaled, bottom_scaled, right_scaled]
|
307 |
+
|
308 |
+
|
309 |
+
class FuyuProcessor(ProcessorMixin):
|
310 |
+
r"""
|
311 |
+
Constructs a Fuyu processor which wraps a Fuyu image processor and a Llama tokenizer into a single processor.
|
312 |
+
|
313 |
+
[`FuyuProcessor`] offers all the functionalities of [`FuyuImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
314 |
+
[`~FuyuProcessor.__call__`] and [`~FuyuProcessor.decode`] for more information.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
image_processor ([`FuyuImageProcessor`]):
|
318 |
+
The image processor is a required input.
|
319 |
+
tokenizer ([`LlamaTokenizerFast`]):
|
320 |
+
The tokenizer is a required input.
|
321 |
+
"""
|
322 |
+
|
323 |
+
attributes = ["image_processor", "tokenizer"]
|
324 |
+
image_processor_class = "FuyuImageProcessor"
|
325 |
+
tokenizer_class = "AutoTokenizer"
|
326 |
+
|
327 |
+
def __init__(self, image_processor, tokenizer):
|
328 |
+
super().__init__(image_processor=image_processor, tokenizer=tokenizer)
|
329 |
+
self.image_processor = image_processor
|
330 |
+
self.tokenizer = tokenizer
|
331 |
+
self.max_tokens_to_generate = 10
|
332 |
+
self.max_position_embeddings = 16384 # TODO Can't derive this from model files: where to set it?
|
333 |
+
self.pad_token_id = 0
|
334 |
+
self.dummy_image_index = -1
|
335 |
+
|
336 |
+
def _left_pad_inputs_with_attention_mask(self, model_inputs: List[Dict], return_attention_mask: bool):
|
337 |
+
max_length_input_ids = max(entry["input_ids"].shape[1] for entry in model_inputs)
|
338 |
+
max_length_image_patch_indices = max(entry["image_patches_indices"].shape[1] for entry in model_inputs)
|
339 |
+
|
340 |
+
batched_inputs = {"input_ids": [], "image_patches": [], "image_patches_indices": [], "attention_mask": []}
|
341 |
+
|
342 |
+
for entry in model_inputs:
|
343 |
+
for key, tensor in entry.items():
|
344 |
+
if key == "input_ids":
|
345 |
+
num_padding_tokens = max_length_input_ids - tensor.shape[1]
|
346 |
+
padded_input_ids = torch.cat(
|
347 |
+
[
|
348 |
+
torch.full((tensor.shape[0], num_padding_tokens), self.pad_token_id, dtype=torch.long),
|
349 |
+
tensor,
|
350 |
+
],
|
351 |
+
dim=1,
|
352 |
+
)
|
353 |
+
batched_inputs[key].append(padded_input_ids)
|
354 |
+
|
355 |
+
attention_mask = torch.cat(
|
356 |
+
[torch.zeros(tensor.shape[0], num_padding_tokens, dtype=torch.long), torch.ones_like(tensor)],
|
357 |
+
dim=1,
|
358 |
+
)
|
359 |
+
batched_inputs["attention_mask"].append(attention_mask)
|
360 |
+
|
361 |
+
elif key == "image_patches":
|
362 |
+
# For image_patches, we don't pad but just append them to the list.
|
363 |
+
batched_inputs[key].append(tensor)
|
364 |
+
|
365 |
+
else: # for image_patches_indices
|
366 |
+
num_padding_indices = max_length_image_patch_indices - tensor.shape[1]
|
367 |
+
padded_indices = torch.cat(
|
368 |
+
[
|
369 |
+
torch.full(
|
370 |
+
(tensor.shape[0], num_padding_indices), self.dummy_image_index, dtype=torch.long
|
371 |
+
),
|
372 |
+
tensor,
|
373 |
+
],
|
374 |
+
dim=1,
|
375 |
+
)
|
376 |
+
batched_inputs[key].append(padded_indices)
|
377 |
+
batched_keys = ["input_ids", "image_patches_indices"]
|
378 |
+
if return_attention_mask:
|
379 |
+
batched_keys.append("attention_mask")
|
380 |
+
for key in batched_keys:
|
381 |
+
batched_inputs[key] = torch.cat(batched_inputs[key], dim=0)
|
382 |
+
|
383 |
+
return batched_inputs
|
384 |
+
|
385 |
+
def get_sample_encoding(
|
386 |
+
self,
|
387 |
+
prompts,
|
388 |
+
scale_factors,
|
389 |
+
image_unpadded_heights,
|
390 |
+
image_unpadded_widths,
|
391 |
+
image_placeholder_id,
|
392 |
+
image_newline_id,
|
393 |
+
tensor_batch_images,
|
394 |
+
):
|
395 |
+
image_present = torch.ones(1, 1, 1)
|
396 |
+
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
|
397 |
+
image_input=tensor_batch_images,
|
398 |
+
image_present=image_present,
|
399 |
+
image_unpadded_h=image_unpadded_heights,
|
400 |
+
image_unpadded_w=image_unpadded_widths,
|
401 |
+
image_placeholder_id=image_placeholder_id,
|
402 |
+
image_newline_id=image_newline_id,
|
403 |
+
variable_sized=True,
|
404 |
+
)
|
405 |
+
# FIXME max_tokens_to_generate is embedded into this processor's call.
|
406 |
+
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
|
407 |
+
tokenizer=self.tokenizer,
|
408 |
+
prompts=prompts,
|
409 |
+
scale_factors=scale_factors,
|
410 |
+
max_tokens_to_generate=self.max_tokens_to_generate,
|
411 |
+
max_position_embeddings=self.max_position_embeddings,
|
412 |
+
add_BOS=True,
|
413 |
+
add_beginning_of_answer_token=True,
|
414 |
+
)
|
415 |
+
image_padded_unpacked_tokens = construct_full_unpacked_stream(
|
416 |
+
num_real_text_tokens=prompts_length,
|
417 |
+
input_stream=prompt_tokens,
|
418 |
+
image_tokens=model_image_input["image_input_ids"],
|
419 |
+
batch_size=1,
|
420 |
+
num_sub_sequences=self.subsequence_length,
|
421 |
+
)
|
422 |
+
# Construct inputs for image patch indices.
|
423 |
+
unpacked_image_patch_indices_per_batch = construct_full_unpacked_stream(
|
424 |
+
num_real_text_tokens=prompts_length,
|
425 |
+
input_stream=torch.full_like(prompt_tokens, -1),
|
426 |
+
image_tokens=model_image_input["image_patch_indices_per_batch"],
|
427 |
+
batch_size=1,
|
428 |
+
num_sub_sequences=self.subsequence_length,
|
429 |
+
)
|
430 |
+
max_prompt_length = max(x.shape[-1] for x in image_padded_unpacked_tokens)
|
431 |
+
max_seq_len_batch = min(max_prompt_length + self.max_tokens_to_generate, self.max_position_embeddings)
|
432 |
+
tokens_to_place = min(max_seq_len_batch, max(0, image_padded_unpacked_tokens[0].shape[0]))
|
433 |
+
|
434 |
+
# Use same packing logic for the image patch indices.
|
435 |
+
image_patch_input_indices = full_unpacked_stream_to_tensor(
|
436 |
+
all_bi_tokens_to_place=[tokens_to_place],
|
437 |
+
full_unpacked_stream=unpacked_image_patch_indices_per_batch,
|
438 |
+
fill_value=-1,
|
439 |
+
batch_size=1,
|
440 |
+
new_seq_len=max_seq_len_batch,
|
441 |
+
offset=0,
|
442 |
+
)
|
443 |
+
image_patches_tensor = torch.stack([img[0] for img in model_image_input["image_patches"]])
|
444 |
+
batch_encoding = {
|
445 |
+
"input_ids": image_padded_unpacked_tokens[0].unsqueeze(0),
|
446 |
+
"image_patches": image_patches_tensor,
|
447 |
+
"image_patches_indices": image_patch_input_indices,
|
448 |
+
}
|
449 |
+
return batch_encoding
|
450 |
+
|
451 |
+
def __call__(
|
452 |
+
self,
|
453 |
+
text=None,
|
454 |
+
images=None,
|
455 |
+
add_special_tokens: bool = True,
|
456 |
+
return_attention_mask: bool = True,
|
457 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
458 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
459 |
+
max_length: Optional[int] = None,
|
460 |
+
stride: int = 0,
|
461 |
+
pad_to_multiple_of: Optional[int] = None,
|
462 |
+
return_overflowing_tokens: bool = False,
|
463 |
+
return_special_tokens_mask: bool = False,
|
464 |
+
return_offsets_mapping: bool = False,
|
465 |
+
return_token_type_ids: bool = False,
|
466 |
+
return_length: bool = False,
|
467 |
+
verbose: bool = True,
|
468 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
469 |
+
**kwargs,
|
470 |
+
) -> "FuyuBatchFeature":
|
471 |
+
"""
|
472 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
473 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to
|
474 |
+
encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
|
475 |
+
FuyuImageProcessor's [`~FuyuImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
476 |
+
of the above two methods for more information.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
text (`str`, `List[str]`):
|
480 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
481 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
482 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
483 |
+
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
|
484 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
485 |
+
tensor. Both channels-first and channels-last formats are supported.
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
|
489 |
+
|
490 |
+
- **input_ids** -- Tensor of token ids to be fed to a model. Returned when `text` is not `None`.
|
491 |
+
- **image_patches** -- List of Tensor of image patches. Returned when `images` is not `None`.
|
492 |
+
- **image_patches_indices** -- Tensor of indices where patch embeddings have to be inserted by the model.
|
493 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model when
|
494 |
+
`return_attention_mask=True`.
|
495 |
+
"""
|
496 |
+
requires_backends(self, ["torch"])
|
497 |
+
|
498 |
+
# --- Check input validity ---
|
499 |
+
if not return_attention_mask:
|
500 |
+
raise ValueError("`return_attention_mask=False` is not supported for this model.")
|
501 |
+
if text is None and images is None:
|
502 |
+
raise ValueError("You have to specify either text or images. Both cannot be None.")
|
503 |
+
if text is not None and images is None:
|
504 |
+
logger.warning("You are processing a text with no associated image. Make sure it is intended.")
|
505 |
+
self.current_processor = self.tokenizer
|
506 |
+
text_encoding = self.tokenizer(
|
507 |
+
text=text,
|
508 |
+
add_special_tokens=add_special_tokens,
|
509 |
+
padding=padding,
|
510 |
+
truncation=truncation,
|
511 |
+
max_length=max_length,
|
512 |
+
stride=stride,
|
513 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
514 |
+
return_attention_mask=return_attention_mask,
|
515 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
516 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
517 |
+
return_offsets_mapping=return_offsets_mapping,
|
518 |
+
return_token_type_ids=return_token_type_ids,
|
519 |
+
return_length=return_length,
|
520 |
+
verbose=verbose,
|
521 |
+
return_tensors=return_tensors,
|
522 |
+
**kwargs,
|
523 |
+
)
|
524 |
+
return text_encoding
|
525 |
+
|
526 |
+
if text is None and images is not None:
|
527 |
+
logger.warning("You are processing an image with no associated text. Make sure it is intended.")
|
528 |
+
prompts = [[""]]
|
529 |
+
if text is not None and images is not None:
|
530 |
+
if isinstance(text, str):
|
531 |
+
prompts = [[text]]
|
532 |
+
elif isinstance(text, list):
|
533 |
+
prompts = [[text_seq] for text_seq in text]
|
534 |
+
|
535 |
+
# --- Preprocess images using self.image_processor ---
|
536 |
+
|
537 |
+
# FIXME - We hard code "pt" here because the rest of the processing assumes torch tensors
|
538 |
+
image_encoding = self.image_processor.preprocess(images, return_tensors="pt")
|
539 |
+
batch_images = image_encoding["images"]
|
540 |
+
image_unpadded_heights = image_encoding["image_unpadded_heights"]
|
541 |
+
image_unpadded_widths = image_encoding["image_unpadded_widths"]
|
542 |
+
scale_factors = image_encoding["image_scale_factors"]
|
543 |
+
self.subsequence_length = 1 # Each batch contains only one sequence.
|
544 |
+
self.batch_size = len(batch_images)
|
545 |
+
|
546 |
+
# --- Use self.tokenizer to get the ids of special tokens to insert into image ids ---
|
547 |
+
|
548 |
+
image_placeholder_id = self.tokenizer("|SPEAKER|", add_special_tokens=False)["input_ids"][1]
|
549 |
+
image_newline_id = self.tokenizer("|NEWLINE|", add_special_tokens=False)["input_ids"][1]
|
550 |
+
tensor_batch_images = torch.stack([img[0] for img in batch_images]).unsqueeze(1)
|
551 |
+
|
552 |
+
# --- Use self.image_processor again to obtain the full token ids and batch inputs ---
|
553 |
+
all_encodings = []
|
554 |
+
|
555 |
+
for prompt, scale_factor, image_unpadded_height, image_unpadded_width, tensor_batch_image in zip(
|
556 |
+
prompts, scale_factors, image_unpadded_heights, image_unpadded_widths, tensor_batch_images
|
557 |
+
):
|
558 |
+
sample_encoding = self.get_sample_encoding(
|
559 |
+
prompts=[prompt],
|
560 |
+
scale_factors=[scale_factor],
|
561 |
+
image_unpadded_heights=torch.tensor([image_unpadded_height]),
|
562 |
+
image_unpadded_widths=torch.tensor([image_unpadded_width]),
|
563 |
+
image_placeholder_id=image_placeholder_id,
|
564 |
+
image_newline_id=image_newline_id,
|
565 |
+
tensor_batch_images=tensor_batch_image.unsqueeze(0),
|
566 |
+
)
|
567 |
+
all_encodings.append(sample_encoding)
|
568 |
+
batch_encoding = self._left_pad_inputs_with_attention_mask(
|
569 |
+
model_inputs=all_encodings, return_attention_mask=return_attention_mask
|
570 |
+
)
|
571 |
+
return FuyuBatchFeature(data=batch_encoding)
|
572 |
+
|
573 |
+
def post_process_box_coordinates(self, outputs, target_sizes=None):
|
574 |
+
"""
|
575 |
+
Transforms raw coordinates detected by [`FuyuForCausalLM`] to the original images' coordinate space.
|
576 |
+
Coordinates will be returned in "box" format, with the following pattern:
|
577 |
+
`<box>top, left, bottom, right</box>`
|
578 |
+
|
579 |
+
Point coordinates are not supported yet.
|
580 |
+
|
581 |
+
Args:
|
582 |
+
outputs ([`GenerateOutput`]):
|
583 |
+
Raw outputs from `generate`.
|
584 |
+
target_sizes (`torch.Tensor`, *optional*):
|
585 |
+
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
|
586 |
+
the batch. If set, found coordinates in the output sequence are rescaled to the target sizes. If left
|
587 |
+
to None, coordinates will not be rescaled.
|
588 |
+
|
589 |
+
Returns:
|
590 |
+
`GenerateOutput`: Same output type returned by `generate`, with output token ids replaced with
|
591 |
+
boxed and possible rescaled coordinates.
|
592 |
+
"""
|
593 |
+
|
594 |
+
def scale_factor_to_fit(original_size, target_size=None):
|
595 |
+
height, width = original_size
|
596 |
+
if target_size is None:
|
597 |
+
max_height = self.image_processor.size["height"]
|
598 |
+
max_width = self.image_processor.size["width"]
|
599 |
+
else:
|
600 |
+
max_height, max_width = target_size
|
601 |
+
if width <= max_width and height <= max_height:
|
602 |
+
return 1.0
|
603 |
+
return min(max_height / height, max_width / width)
|
604 |
+
|
605 |
+
def find_delimiters_pair(tokens, start_token, end_token):
|
606 |
+
start_id = self.tokenizer.convert_tokens_to_ids(start_token)
|
607 |
+
end_id = self.tokenizer.convert_tokens_to_ids(end_token)
|
608 |
+
|
609 |
+
starting_positions = (tokens == start_id).nonzero(as_tuple=True)[0]
|
610 |
+
ending_positions = (tokens == end_id).nonzero(as_tuple=True)[0]
|
611 |
+
|
612 |
+
if torch.any(starting_positions) and torch.any(ending_positions):
|
613 |
+
return (starting_positions[0], ending_positions[0])
|
614 |
+
return (None, None)
|
615 |
+
|
616 |
+
def tokens_to_boxes(tokens, original_size):
|
617 |
+
while (pair := find_delimiters_pair(tokens, TOKEN_BBOX_OPEN_STRING, TOKEN_BBOX_CLOSE_STRING)) != (
|
618 |
+
None,
|
619 |
+
None,
|
620 |
+
):
|
621 |
+
start, end = pair
|
622 |
+
if end != start + 5:
|
623 |
+
continue
|
624 |
+
|
625 |
+
# Retrieve transformed coordinates from tokens
|
626 |
+
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
|
627 |
+
|
628 |
+
# Scale back to original image size and multiply by 2
|
629 |
+
scale = scale_factor_to_fit(original_size)
|
630 |
+
top, left, bottom, right = [2 * int(float(c) / scale) for c in coords]
|
631 |
+
|
632 |
+
# Replace the IDs so they get detokenized right
|
633 |
+
replacement = f" {TEXT_REPR_BBOX_OPEN}{top}, {left}, {bottom}, {right}{TEXT_REPR_BBOX_CLOSE}"
|
634 |
+
replacement = self.tokenizer.tokenize(replacement)[1:]
|
635 |
+
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
|
636 |
+
replacement = torch.tensor(replacement).to(tokens)
|
637 |
+
|
638 |
+
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
|
639 |
+
return tokens
|
640 |
+
|
641 |
+
def tokens_to_points(tokens, original_size):
|
642 |
+
while (pair := find_delimiters_pair(tokens, TOKEN_POINT_OPEN_STRING, TOKEN_POINT_CLOSE_STRING)) != (
|
643 |
+
None,
|
644 |
+
None,
|
645 |
+
):
|
646 |
+
start, end = pair
|
647 |
+
if end != start + 3:
|
648 |
+
continue
|
649 |
+
|
650 |
+
# Retrieve transformed coordinates from tokens
|
651 |
+
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
|
652 |
+
|
653 |
+
# Scale back to original image size and multiply by 2
|
654 |
+
scale = scale_factor_to_fit(original_size)
|
655 |
+
x, y = [2 * int(float(c) / scale) for c in coords]
|
656 |
+
|
657 |
+
# Replace the IDs so they get detokenized right
|
658 |
+
replacement = f" {TEXT_REPR_POINT_OPEN}{x}, {y}{TEXT_REPR_POINT_CLOSE}"
|
659 |
+
replacement = self.tokenizer.tokenize(replacement)[1:]
|
660 |
+
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
|
661 |
+
replacement = torch.tensor(replacement).to(tokens)
|
662 |
+
|
663 |
+
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
|
664 |
+
return tokens
|
665 |
+
|
666 |
+
if target_sizes is None:
|
667 |
+
target_sizes = ((self.image_processor.size["height"], self.image_processor.size["width"]),) * len(outputs)
|
668 |
+
elif target_sizes.shape[1] != 2:
|
669 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
670 |
+
|
671 |
+
if len(outputs) != len(target_sizes):
|
672 |
+
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
|
673 |
+
|
674 |
+
results = []
|
675 |
+
for seq, size in zip(outputs, target_sizes):
|
676 |
+
seq = tokens_to_boxes(seq, size)
|
677 |
+
seq = tokens_to_points(seq, size)
|
678 |
+
results.append(seq)
|
679 |
+
|
680 |
+
return results
|
681 |
+
|
682 |
+
def batch_decode(self, *args, **kwargs):
|
683 |
+
"""
|
684 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
685 |
+
refer to the docstring of this method for more information.
|
686 |
+
"""
|
687 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
688 |
+
|
689 |
+
def decode(self, *args, **kwargs):
|
690 |
+
"""
|
691 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
692 |
+
the docstring of this method for more information.
|
693 |
+
"""
|
694 |
+
return self.tokenizer.decode(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/hubert/__init__.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_torch_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["modeling_hubert"] = [
|
28 |
+
"HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
29 |
+
"HubertForCTC",
|
30 |
+
"HubertForSequenceClassification",
|
31 |
+
"HubertModel",
|
32 |
+
"HubertPreTrainedModel",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_tf_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_tf_hubert"] = [
|
43 |
+
"TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
44 |
+
"TFHubertForCTC",
|
45 |
+
"TFHubertModel",
|
46 |
+
"TFHubertPreTrainedModel",
|
47 |
+
]
|
48 |
+
|
49 |
+
if TYPE_CHECKING:
|
50 |
+
from .configuration_hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_torch_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
from .modeling_hubert import (
|
59 |
+
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
60 |
+
HubertForCTC,
|
61 |
+
HubertForSequenceClassification,
|
62 |
+
HubertModel,
|
63 |
+
HubertPreTrainedModel,
|
64 |
+
)
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_tf_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .modeling_tf_hubert import (
|
73 |
+
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
74 |
+
TFHubertForCTC,
|
75 |
+
TFHubertModel,
|
76 |
+
TFHubertPreTrainedModel,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
else:
|
81 |
+
import sys
|
82 |
+
|
83 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.26 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/configuration_hubert.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/convert_distilhubert_original_s3prl_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.91 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/hubert/__pycache__/convert_hubert_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.18 kB). View file
|
|