Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/11.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/12.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/mp_rank_00_model_states.pt +3 -0
- ckpts/universal/global_step80/mp_rank_01_model_states.pt +3 -0
- ckpts/universal/global_step80/mp_rank_02_model_states.pt +3 -0
- ckpts/universal/global_step80/mp_rank_03_model_states.pt +3 -0
- ckpts/universal/global_step80/mp_rank_04_model_states.pt +3 -0
- ckpts/universal/global_step80/mp_rank_05_model_states.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py +5 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py +782 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py +108 -0
- venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py +735 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/__init__.py +15 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/control_plots.py +961 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/lti.py +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py +300 -0
- venv/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py +1245 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_linearize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_models.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitutils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixutils.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/11.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07d16433be54a452375dd99d0b20bec743f3f0efe29d5e756db03197319518ed
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/12.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0062767ad6350ea8bae409af5fef764a96e09255127c18d2320e73672a910e1
|
3 |
+
size 50332749
|
ckpts/universal/global_step80/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:248c3bfb4d9333f29546bd0b9afaa0d6cec817dc341c7cecc8b6daec507db488
|
3 |
+
size 4230084
|
ckpts/universal/global_step80/mp_rank_01_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6338497930be280426064cc7abbbaf23608fce81285136bee6cee9579d29c3c7
|
3 |
+
size 4230020
|
ckpts/universal/global_step80/mp_rank_02_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ee99d500a1ab28ba1a9c1410096e9446535d2af2e6670616c1f0ef518c3b631
|
3 |
+
size 4230020
|
ckpts/universal/global_step80/mp_rank_03_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bdcf353c80c6ee0b2f296b4123df1444b6ee988fcc7039676e30366d2ae1a92
|
3 |
+
size 4230020
|
ckpts/universal/global_step80/mp_rank_04_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d10e30f538d9e1b2fb52e0d99c9e49e70d5d27d63cf8cd50157878fc1bf3eff
|
3 |
+
size 4230084
|
ckpts/universal/global_step80/mp_rank_05_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c28b496aa07ce8ce02014956f88e30108446d183cd34a4914a1fac4a20546f4b
|
3 |
+
size 4230084
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['Beam',
|
2 |
+
'Truss']
|
3 |
+
|
4 |
+
from .beam import Beam
|
5 |
+
from .truss import Truss
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (302 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc
ADDED
Binary file (120 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc
ADDED
Binary file (22.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/beam.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (207 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc
ADDED
Binary file (21.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc
ADDED
Binary file (2.65 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_beam.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import expand
|
2 |
+
from sympy.core.numbers import (Rational, pi)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.sets.sets import Interval
|
6 |
+
from sympy.simplify.simplify import simplify
|
7 |
+
from sympy.physics.continuum_mechanics.beam import Beam
|
8 |
+
from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
from sympy.physics.units import meter, newton, kilo, giga, milli
|
11 |
+
from sympy.physics.continuum_mechanics.beam import Beam3D
|
12 |
+
from sympy.geometry import Circle, Polygon, Point2D, Triangle
|
13 |
+
from sympy.core.sympify import sympify
|
14 |
+
|
15 |
+
x = Symbol('x')
|
16 |
+
y = Symbol('y')
|
17 |
+
R1, R2 = symbols('R1, R2')
|
18 |
+
|
19 |
+
|
20 |
+
def test_Beam():
|
21 |
+
E = Symbol('E')
|
22 |
+
E_1 = Symbol('E_1')
|
23 |
+
I = Symbol('I')
|
24 |
+
I_1 = Symbol('I_1')
|
25 |
+
A = Symbol('A')
|
26 |
+
|
27 |
+
b = Beam(1, E, I)
|
28 |
+
assert b.length == 1
|
29 |
+
assert b.elastic_modulus == E
|
30 |
+
assert b.second_moment == I
|
31 |
+
assert b.variable == x
|
32 |
+
|
33 |
+
# Test the length setter
|
34 |
+
b.length = 4
|
35 |
+
assert b.length == 4
|
36 |
+
|
37 |
+
# Test the E setter
|
38 |
+
b.elastic_modulus = E_1
|
39 |
+
assert b.elastic_modulus == E_1
|
40 |
+
|
41 |
+
# Test the I setter
|
42 |
+
b.second_moment = I_1
|
43 |
+
assert b.second_moment is I_1
|
44 |
+
|
45 |
+
# Test the variable setter
|
46 |
+
b.variable = y
|
47 |
+
assert b.variable is y
|
48 |
+
|
49 |
+
# Test for all boundary conditions.
|
50 |
+
b.bc_deflection = [(0, 2)]
|
51 |
+
b.bc_slope = [(0, 1)]
|
52 |
+
assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
|
53 |
+
|
54 |
+
# Test for slope boundary condition method
|
55 |
+
b.bc_slope.extend([(4, 3), (5, 0)])
|
56 |
+
s_bcs = b.bc_slope
|
57 |
+
assert s_bcs == [(0, 1), (4, 3), (5, 0)]
|
58 |
+
|
59 |
+
# Test for deflection boundary condition method
|
60 |
+
b.bc_deflection.extend([(4, 3), (5, 0)])
|
61 |
+
d_bcs = b.bc_deflection
|
62 |
+
assert d_bcs == [(0, 2), (4, 3), (5, 0)]
|
63 |
+
|
64 |
+
# Test for updated boundary conditions
|
65 |
+
bcs_new = b.boundary_conditions
|
66 |
+
assert bcs_new == {
|
67 |
+
'deflection': [(0, 2), (4, 3), (5, 0)],
|
68 |
+
'slope': [(0, 1), (4, 3), (5, 0)]}
|
69 |
+
|
70 |
+
b1 = Beam(30, E, I)
|
71 |
+
b1.apply_load(-8, 0, -1)
|
72 |
+
b1.apply_load(R1, 10, -1)
|
73 |
+
b1.apply_load(R2, 30, -1)
|
74 |
+
b1.apply_load(120, 30, -2)
|
75 |
+
b1.bc_deflection = [(10, 0), (30, 0)]
|
76 |
+
b1.solve_for_reaction_loads(R1, R2)
|
77 |
+
|
78 |
+
# Test for finding reaction forces
|
79 |
+
p = b1.reaction_loads
|
80 |
+
q = {R1: 6, R2: 2}
|
81 |
+
assert p == q
|
82 |
+
|
83 |
+
# Test for load distribution function.
|
84 |
+
p = b1.load
|
85 |
+
q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \
|
86 |
+
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
|
87 |
+
assert p == q
|
88 |
+
|
89 |
+
# Test for shear force distribution function
|
90 |
+
p = b1.shear_force()
|
91 |
+
q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
|
92 |
+
- 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
|
93 |
+
assert p == q
|
94 |
+
|
95 |
+
# Test for shear stress distribution function
|
96 |
+
p = b1.shear_stress()
|
97 |
+
q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \
|
98 |
+
- 120*SingularityFunction(x, 30, -1) \
|
99 |
+
- 2*SingularityFunction(x, 30, 0))/A
|
100 |
+
assert p==q
|
101 |
+
|
102 |
+
# Test for bending moment distribution function
|
103 |
+
p = b1.bending_moment()
|
104 |
+
q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \
|
105 |
+
- 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
|
106 |
+
assert p == q
|
107 |
+
|
108 |
+
# Test for slope distribution function
|
109 |
+
p = b1.slope()
|
110 |
+
q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \
|
111 |
+
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \
|
112 |
+
+ Rational(4000, 3)
|
113 |
+
assert p == q/(E*I)
|
114 |
+
|
115 |
+
# Test for deflection distribution function
|
116 |
+
p = b1.deflection()
|
117 |
+
q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \
|
118 |
+
+ SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \
|
119 |
+
+ SingularityFunction(x, 30, 3)/3 - 12000
|
120 |
+
assert p == q/(E*I)
|
121 |
+
|
122 |
+
# Test using symbols
|
123 |
+
l = Symbol('l')
|
124 |
+
w0 = Symbol('w0')
|
125 |
+
w2 = Symbol('w2')
|
126 |
+
a1 = Symbol('a1')
|
127 |
+
c = Symbol('c')
|
128 |
+
c1 = Symbol('c1')
|
129 |
+
d = Symbol('d')
|
130 |
+
e = Symbol('e')
|
131 |
+
f = Symbol('f')
|
132 |
+
|
133 |
+
b2 = Beam(l, E, I)
|
134 |
+
|
135 |
+
b2.apply_load(w0, a1, 1)
|
136 |
+
b2.apply_load(w2, c1, -1)
|
137 |
+
|
138 |
+
b2.bc_deflection = [(c, d)]
|
139 |
+
b2.bc_slope = [(e, f)]
|
140 |
+
|
141 |
+
# Test for load distribution function.
|
142 |
+
p = b2.load
|
143 |
+
q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
|
144 |
+
assert p == q
|
145 |
+
|
146 |
+
# Test for shear force distribution function
|
147 |
+
p = b2.shear_force()
|
148 |
+
q = -w0*SingularityFunction(x, a1, 2)/2 \
|
149 |
+
- w2*SingularityFunction(x, c1, 0)
|
150 |
+
assert p == q
|
151 |
+
|
152 |
+
# Test for shear stress distribution function
|
153 |
+
p = b2.shear_stress()
|
154 |
+
q = (-w0*SingularityFunction(x, a1, 2)/2 \
|
155 |
+
- w2*SingularityFunction(x, c1, 0))/A
|
156 |
+
assert p == q
|
157 |
+
|
158 |
+
# Test for bending moment distribution function
|
159 |
+
p = b2.bending_moment()
|
160 |
+
q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1)
|
161 |
+
assert p == q
|
162 |
+
|
163 |
+
# Test for slope distribution function
|
164 |
+
p = b2.slope()
|
165 |
+
q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
|
166 |
+
assert expand(p) == expand(q)
|
167 |
+
|
168 |
+
# Test for deflection distribution function
|
169 |
+
p = b2.deflection()
|
170 |
+
q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \
|
171 |
+
- w2*SingularityFunction(e, c1, 2)/2)/(E*I) \
|
172 |
+
+ (w0*SingularityFunction(x, a1, 5)/120 \
|
173 |
+
+ w2*SingularityFunction(x, c1, 3)/6)/(E*I) \
|
174 |
+
+ (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \
|
175 |
+
+ c*w2*SingularityFunction(e, c1, 2)/2 \
|
176 |
+
- w0*SingularityFunction(c, a1, 5)/120 \
|
177 |
+
- w2*SingularityFunction(c, c1, 3)/6)/(E*I)
|
178 |
+
assert simplify(p - q) == 0
|
179 |
+
|
180 |
+
b3 = Beam(9, E, I, 2)
|
181 |
+
b3.apply_load(value=-2, start=2, order=2, end=3)
|
182 |
+
b3.bc_slope.append((0, 2))
|
183 |
+
C3 = symbols('C3')
|
184 |
+
C4 = symbols('C4')
|
185 |
+
|
186 |
+
p = b3.load
|
187 |
+
q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \
|
188 |
+
+ 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
|
189 |
+
assert p == q
|
190 |
+
|
191 |
+
p = b3.shear_force()
|
192 |
+
q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \
|
193 |
+
- 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3
|
194 |
+
assert p == q
|
195 |
+
|
196 |
+
p = b3.shear_stress()
|
197 |
+
q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \
|
198 |
+
- 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3
|
199 |
+
assert p == q
|
200 |
+
|
201 |
+
p = b3.slope()
|
202 |
+
q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \
|
203 |
+
- SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I)
|
204 |
+
assert p == q
|
205 |
+
|
206 |
+
p = b3.deflection()
|
207 |
+
q = 2*x - (SingularityFunction(x, 2, 6)/180 \
|
208 |
+
- SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \
|
209 |
+
- SingularityFunction(x, 3, 6)/180)/(E*I)
|
210 |
+
assert p == q + C4
|
211 |
+
|
212 |
+
b4 = Beam(4, E, I, 3)
|
213 |
+
b4.apply_load(-3, 0, 0, end=3)
|
214 |
+
|
215 |
+
p = b4.load
|
216 |
+
q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
|
217 |
+
assert p == q
|
218 |
+
|
219 |
+
p = b4.shear_force()
|
220 |
+
q = 3*SingularityFunction(x, 0, 1) \
|
221 |
+
- 3*SingularityFunction(x, 3, 1)
|
222 |
+
assert p == q
|
223 |
+
|
224 |
+
p = b4.shear_stress()
|
225 |
+
q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1)
|
226 |
+
assert p == q
|
227 |
+
|
228 |
+
p = b4.slope()
|
229 |
+
q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
|
230 |
+
assert p == q/(E*I) + C3
|
231 |
+
|
232 |
+
p = b4.deflection()
|
233 |
+
q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
|
234 |
+
assert p == q/(E*I) + C3*x + C4
|
235 |
+
|
236 |
+
# can't use end with point loads
|
237 |
+
raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
|
238 |
+
with raises(TypeError):
|
239 |
+
b4.variable = 1
|
240 |
+
|
241 |
+
|
242 |
+
def test_insufficient_bconditions():
|
243 |
+
# Test cases when required number of boundary conditions
|
244 |
+
# are not provided to solve the integration constants.
|
245 |
+
L = symbols('L', positive=True)
|
246 |
+
E, I, P, a3, a4 = symbols('E I P a3 a4')
|
247 |
+
|
248 |
+
b = Beam(L, E, I, base_char='a')
|
249 |
+
b.apply_load(R2, L, -1)
|
250 |
+
b.apply_load(R1, 0, -1)
|
251 |
+
b.apply_load(-P, L/2, -1)
|
252 |
+
b.solve_for_reaction_loads(R1, R2)
|
253 |
+
|
254 |
+
p = b.slope()
|
255 |
+
q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
|
256 |
+
assert p == q/(E*I) + a3
|
257 |
+
|
258 |
+
p = b.deflection()
|
259 |
+
q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
260 |
+
assert p == q/(E*I) + a3*x + a4
|
261 |
+
|
262 |
+
b.bc_deflection = [(0, 0)]
|
263 |
+
p = b.deflection()
|
264 |
+
q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
265 |
+
assert p == q/(E*I)
|
266 |
+
|
267 |
+
b.bc_deflection = [(0, 0), (L, 0)]
|
268 |
+
p = b.deflection()
|
269 |
+
q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
|
270 |
+
assert p == q/(E*I)
|
271 |
+
|
272 |
+
|
273 |
+
def test_statically_indeterminate():
|
274 |
+
E = Symbol('E')
|
275 |
+
I = Symbol('I')
|
276 |
+
M1, M2 = symbols('M1, M2')
|
277 |
+
F = Symbol('F')
|
278 |
+
l = Symbol('l', positive=True)
|
279 |
+
|
280 |
+
b5 = Beam(l, E, I)
|
281 |
+
b5.bc_deflection = [(0, 0),(l, 0)]
|
282 |
+
b5.bc_slope = [(0, 0),(l, 0)]
|
283 |
+
|
284 |
+
b5.apply_load(R1, 0, -1)
|
285 |
+
b5.apply_load(M1, 0, -2)
|
286 |
+
b5.apply_load(R2, l, -1)
|
287 |
+
b5.apply_load(M2, l, -2)
|
288 |
+
b5.apply_load(-F, l/2, -1)
|
289 |
+
|
290 |
+
b5.solve_for_reaction_loads(R1, R2, M1, M2)
|
291 |
+
p = b5.reaction_loads
|
292 |
+
q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8}
|
293 |
+
assert p == q
|
294 |
+
|
295 |
+
|
296 |
+
def test_beam_units():
|
297 |
+
E = Symbol('E')
|
298 |
+
I = Symbol('I')
|
299 |
+
R1, R2 = symbols('R1, R2')
|
300 |
+
|
301 |
+
kN = kilo*newton
|
302 |
+
gN = giga*newton
|
303 |
+
|
304 |
+
b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4)
|
305 |
+
b.apply_load(5*kN, 2*meter, -1)
|
306 |
+
b.apply_load(R1, 0*meter, -1)
|
307 |
+
b.apply_load(R2, 8*meter, -1)
|
308 |
+
b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter)
|
309 |
+
b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
|
310 |
+
b.solve_for_reaction_loads(R1, R2)
|
311 |
+
assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}
|
312 |
+
|
313 |
+
b = Beam(3*meter, E*newton/meter**2, I*meter**4)
|
314 |
+
b.apply_load(8*kN, 1*meter, -1)
|
315 |
+
b.apply_load(R1, 0*meter, -1)
|
316 |
+
b.apply_load(R2, 3*meter, -1)
|
317 |
+
b.apply_load(12*kN*meter, 2*meter, -2)
|
318 |
+
b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
|
319 |
+
b.solve_for_reaction_loads(R1, R2)
|
320 |
+
assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)}
|
321 |
+
assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
|
322 |
+
|
323 |
+
|
324 |
+
def test_variable_moment():
|
325 |
+
E = Symbol('E')
|
326 |
+
I = Symbol('I')
|
327 |
+
|
328 |
+
b = Beam(4, E, 2*(4 - x))
|
329 |
+
b.apply_load(20, 4, -1)
|
330 |
+
R, M = symbols('R, M')
|
331 |
+
b.apply_load(R, 0, -1)
|
332 |
+
b.apply_load(M, 0, -2)
|
333 |
+
b.bc_deflection = [(0, 0)]
|
334 |
+
b.bc_slope = [(0, 0)]
|
335 |
+
b.solve_for_reaction_loads(R, M)
|
336 |
+
assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
|
337 |
+
- 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
|
338 |
+
assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
|
339 |
+
- 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
|
340 |
+
+ 40*SingularityFunction(x, 4, 1))/E).expand()
|
341 |
+
|
342 |
+
b = Beam(4, E - x, I)
|
343 |
+
b.apply_load(20, 4, -1)
|
344 |
+
R, M = symbols('R, M')
|
345 |
+
b.apply_load(R, 0, -1)
|
346 |
+
b.apply_load(M, 0, -2)
|
347 |
+
b.bc_deflection = [(0, 0)]
|
348 |
+
b.bc_slope = [(0, 0)]
|
349 |
+
b.solve_for_reaction_loads(R, M)
|
350 |
+
assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
|
351 |
+
+ 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
|
352 |
+
+ E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
|
353 |
+
+ x - 4)*SingularityFunction(x, 4, 0))/I).expand()
|
354 |
+
|
355 |
+
|
356 |
+
def test_composite_beam():
|
357 |
+
E = Symbol('E')
|
358 |
+
I = Symbol('I')
|
359 |
+
b1 = Beam(2, E, 1.5*I)
|
360 |
+
b2 = Beam(2, E, I)
|
361 |
+
b = b1.join(b2, "fixed")
|
362 |
+
b.apply_load(-20, 0, -1)
|
363 |
+
b.apply_load(80, 0, -2)
|
364 |
+
b.apply_load(20, 4, -1)
|
365 |
+
b.bc_slope = [(0, 0)]
|
366 |
+
b.bc_deflection = [(0, 0)]
|
367 |
+
assert b.length == 4
|
368 |
+
assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4))
|
369 |
+
assert b.slope().subs(x, 4) == 120.0/(E*I)
|
370 |
+
assert b.slope().subs(x, 2) == 80.0/(E*I)
|
371 |
+
assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I)
|
372 |
+
|
373 |
+
l = symbols('l', positive=True)
|
374 |
+
R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P')
|
375 |
+
b1 = Beam(2*l, E, I)
|
376 |
+
b2 = Beam(2*l, E, I)
|
377 |
+
b = b1.join(b2,"hinge")
|
378 |
+
b.apply_load(M1, 0, -2)
|
379 |
+
b.apply_load(R1, 0, -1)
|
380 |
+
b.apply_load(R2, l, -1)
|
381 |
+
b.apply_load(R3, 4*l, -1)
|
382 |
+
b.apply_load(P, 3*l, -1)
|
383 |
+
b.bc_slope = [(0, 0)]
|
384 |
+
b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)]
|
385 |
+
b.solve_for_reaction_loads(M1, R1, R2, R3)
|
386 |
+
assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)}
|
387 |
+
assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I)
|
388 |
+
assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I)
|
389 |
+
assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I)
|
390 |
+
|
391 |
+
# When beams having same second moment are joined.
|
392 |
+
b1 = Beam(2, 500, 10)
|
393 |
+
b2 = Beam(2, 500, 10)
|
394 |
+
b = b1.join(b2, "fixed")
|
395 |
+
b.apply_load(M1, 0, -2)
|
396 |
+
b.apply_load(R1, 0, -1)
|
397 |
+
b.apply_load(R2, 1, -1)
|
398 |
+
b.apply_load(R3, 4, -1)
|
399 |
+
b.apply_load(10, 3, -1)
|
400 |
+
b.bc_slope = [(0, 0)]
|
401 |
+
b.bc_deflection = [(0, 0), (1, 0), (4, 0)]
|
402 |
+
b.solve_for_reaction_loads(M1, R1, R2, R3)
|
403 |
+
assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\
|
404 |
+
- 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\
|
405 |
+
- 37*SingularityFunction(x, 4, 2)/67500
|
406 |
+
assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\
|
407 |
+
- 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\
|
408 |
+
- 37*SingularityFunction(x, 4, 3)/202500
|
409 |
+
|
410 |
+
|
411 |
+
def test_point_cflexure():
|
412 |
+
E = Symbol('E')
|
413 |
+
I = Symbol('I')
|
414 |
+
b = Beam(10, E, I)
|
415 |
+
b.apply_load(-4, 0, -1)
|
416 |
+
b.apply_load(-46, 6, -1)
|
417 |
+
b.apply_load(10, 2, -1)
|
418 |
+
b.apply_load(20, 4, -1)
|
419 |
+
b.apply_load(3, 6, 0)
|
420 |
+
assert b.point_cflexure() == [Rational(10, 3)]
|
421 |
+
|
422 |
+
|
423 |
+
def test_remove_load():
|
424 |
+
E = Symbol('E')
|
425 |
+
I = Symbol('I')
|
426 |
+
b = Beam(4, E, I)
|
427 |
+
|
428 |
+
try:
|
429 |
+
b.remove_load(2, 1, -1)
|
430 |
+
# As no load is applied on beam, ValueError should be returned.
|
431 |
+
except ValueError:
|
432 |
+
assert True
|
433 |
+
else:
|
434 |
+
assert False
|
435 |
+
|
436 |
+
b.apply_load(-3, 0, -2)
|
437 |
+
b.apply_load(4, 2, -1)
|
438 |
+
b.apply_load(-2, 2, 2, end = 3)
|
439 |
+
b.remove_load(-2, 2, 2, end = 3)
|
440 |
+
assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
|
441 |
+
assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)]
|
442 |
+
|
443 |
+
try:
|
444 |
+
b.remove_load(1, 2, -1)
|
445 |
+
# As load of this magnitude was never applied at
|
446 |
+
# this position, method should return a ValueError.
|
447 |
+
except ValueError:
|
448 |
+
assert True
|
449 |
+
else:
|
450 |
+
assert False
|
451 |
+
|
452 |
+
b.remove_load(-3, 0, -2)
|
453 |
+
b.remove_load(4, 2, -1)
|
454 |
+
assert b.load == 0
|
455 |
+
assert b.applied_loads == []
|
456 |
+
|
457 |
+
|
458 |
+
def test_apply_support():
|
459 |
+
E = Symbol('E')
|
460 |
+
I = Symbol('I')
|
461 |
+
|
462 |
+
b = Beam(4, E, I)
|
463 |
+
b.apply_support(0, "cantilever")
|
464 |
+
b.apply_load(20, 4, -1)
|
465 |
+
M_0, R_0 = symbols('M_0, R_0')
|
466 |
+
b.solve_for_reaction_loads(R_0, M_0)
|
467 |
+
assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
|
468 |
+
+ 10*SingularityFunction(x, 4, 2))/(E*I))
|
469 |
+
assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
|
470 |
+
+ 10*SingularityFunction(x, 4, 3)/3)/(E*I))
|
471 |
+
|
472 |
+
b = Beam(30, E, I)
|
473 |
+
b.apply_support(10, "pin")
|
474 |
+
b.apply_support(30, "roller")
|
475 |
+
b.apply_load(-8, 0, -1)
|
476 |
+
b.apply_load(120, 30, -2)
|
477 |
+
R_10, R_30 = symbols('R_10, R_30')
|
478 |
+
b.solve_for_reaction_loads(R_10, R_30)
|
479 |
+
assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
|
480 |
+
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I)
|
481 |
+
assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
|
482 |
+
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
|
483 |
+
|
484 |
+
P = Symbol('P', positive=True)
|
485 |
+
L = Symbol('L', positive=True)
|
486 |
+
b = Beam(L, E, I)
|
487 |
+
b.apply_support(0, type='fixed')
|
488 |
+
b.apply_support(L, type='fixed')
|
489 |
+
b.apply_load(-P, L/2, -1)
|
490 |
+
R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
|
491 |
+
b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
|
492 |
+
assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
|
493 |
+
|
494 |
+
|
495 |
+
def test_max_shear_force():
|
496 |
+
E = Symbol('E')
|
497 |
+
I = Symbol('I')
|
498 |
+
|
499 |
+
b = Beam(3, E, I)
|
500 |
+
R, M = symbols('R, M')
|
501 |
+
b.apply_load(R, 0, -1)
|
502 |
+
b.apply_load(M, 0, -2)
|
503 |
+
b.apply_load(2, 3, -1)
|
504 |
+
b.apply_load(4, 2, -1)
|
505 |
+
b.apply_load(2, 2, 0, end=3)
|
506 |
+
b.solve_for_reaction_loads(R, M)
|
507 |
+
assert b.max_shear_force() == (Interval(0, 2), 8)
|
508 |
+
|
509 |
+
l = symbols('l', positive=True)
|
510 |
+
P = Symbol('P')
|
511 |
+
b = Beam(l, E, I)
|
512 |
+
R1, R2 = symbols('R1, R2')
|
513 |
+
b.apply_load(R1, 0, -1)
|
514 |
+
b.apply_load(R2, l, -1)
|
515 |
+
b.apply_load(P, 0, 0, end=l)
|
516 |
+
b.solve_for_reaction_loads(R1, R2)
|
517 |
+
assert b.max_shear_force() == (0, l*Abs(P)/2)
|
518 |
+
|
519 |
+
|
520 |
+
def test_max_bmoment():
|
521 |
+
E = Symbol('E')
|
522 |
+
I = Symbol('I')
|
523 |
+
l, P = symbols('l, P', positive=True)
|
524 |
+
|
525 |
+
b = Beam(l, E, I)
|
526 |
+
R1, R2 = symbols('R1, R2')
|
527 |
+
b.apply_load(R1, 0, -1)
|
528 |
+
b.apply_load(R2, l, -1)
|
529 |
+
b.apply_load(P, l/2, -1)
|
530 |
+
b.solve_for_reaction_loads(R1, R2)
|
531 |
+
b.reaction_loads
|
532 |
+
assert b.max_bmoment() == (l/2, P*l/4)
|
533 |
+
|
534 |
+
b = Beam(l, E, I)
|
535 |
+
R1, R2 = symbols('R1, R2')
|
536 |
+
b.apply_load(R1, 0, -1)
|
537 |
+
b.apply_load(R2, l, -1)
|
538 |
+
b.apply_load(P, 0, 0, end=l)
|
539 |
+
b.solve_for_reaction_loads(R1, R2)
|
540 |
+
assert b.max_bmoment() == (l/2, P*l**2/8)
|
541 |
+
|
542 |
+
|
543 |
+
def test_max_deflection():
|
544 |
+
E, I, l, F = symbols('E, I, l, F', positive=True)
|
545 |
+
b = Beam(l, E, I)
|
546 |
+
b.bc_deflection = [(0, 0),(l, 0)]
|
547 |
+
b.bc_slope = [(0, 0),(l, 0)]
|
548 |
+
b.apply_load(F/2, 0, -1)
|
549 |
+
b.apply_load(-F*l/8, 0, -2)
|
550 |
+
b.apply_load(F/2, l, -1)
|
551 |
+
b.apply_load(F*l/8, l, -2)
|
552 |
+
b.apply_load(-F, l/2, -1)
|
553 |
+
assert b.max_deflection() == (l/2, F*l**3/(192*E*I))
|
554 |
+
|
555 |
+
|
556 |
+
def test_Beam3D():
|
557 |
+
l, E, G, I, A = symbols('l, E, G, I, A')
|
558 |
+
R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
559 |
+
|
560 |
+
b = Beam3D(l, E, G, I, A)
|
561 |
+
m, q = symbols('m, q')
|
562 |
+
b.apply_load(q, 0, 0, dir="y")
|
563 |
+
b.apply_moment_load(m, 0, 0, dir="z")
|
564 |
+
b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
565 |
+
b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
566 |
+
b.solve_slope_deflection()
|
567 |
+
|
568 |
+
assert b.polar_moment() == 2*I
|
569 |
+
assert b.shear_force() == [0, -q*x, 0]
|
570 |
+
assert b.shear_stress() == [0, -q*x/A, 0]
|
571 |
+
assert b.axial_stress() == 0
|
572 |
+
assert b.bending_moment() == [0, 0, -m*x + q*x**2/2]
|
573 |
+
expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) +
|
574 |
+
12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) +
|
575 |
+
12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 +
|
576 |
+
3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 +
|
577 |
+
A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I))
|
578 |
+
dx, dy, dz = b.deflection()
|
579 |
+
assert dx == dz == 0
|
580 |
+
assert simplify(dy - expected_deflection) == 0
|
581 |
+
|
582 |
+
b2 = Beam3D(30, E, G, I, A, x)
|
583 |
+
b2.apply_load(50, start=0, order=0, dir="y")
|
584 |
+
b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
|
585 |
+
b2.apply_load(R1, start=0, order=-1, dir="y")
|
586 |
+
b2.apply_load(R2, start=30, order=-1, dir="y")
|
587 |
+
b2.solve_for_reaction_loads(R1, R2)
|
588 |
+
assert b2.reaction_loads == {R1: -750, R2: -750}
|
589 |
+
|
590 |
+
b2.solve_slope_deflection()
|
591 |
+
assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)]
|
592 |
+
expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \
|
593 |
+
25*x**2/(A*G) + 750*x/(A*G)
|
594 |
+
dx, dy, dz = b2.deflection()
|
595 |
+
assert dx == dz == 0
|
596 |
+
assert dy == expected_deflection
|
597 |
+
|
598 |
+
# Test for solve_for_reaction_loads
|
599 |
+
b3 = Beam3D(30, E, G, I, A, x)
|
600 |
+
b3.apply_load(8, start=0, order=0, dir="y")
|
601 |
+
b3.apply_load(9*x, start=0, order=0, dir="z")
|
602 |
+
b3.apply_load(R1, start=0, order=-1, dir="y")
|
603 |
+
b3.apply_load(R2, start=30, order=-1, dir="y")
|
604 |
+
b3.apply_load(R3, start=0, order=-1, dir="z")
|
605 |
+
b3.apply_load(R4, start=30, order=-1, dir="z")
|
606 |
+
b3.solve_for_reaction_loads(R1, R2, R3, R4)
|
607 |
+
assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700}
|
608 |
+
|
609 |
+
|
610 |
+
def test_polar_moment_Beam3D():
|
611 |
+
l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2')
|
612 |
+
I = [I1, I2]
|
613 |
+
|
614 |
+
b = Beam3D(l, E, G, I, A)
|
615 |
+
assert b.polar_moment() == I1 + I2
|
616 |
+
|
617 |
+
|
618 |
+
def test_parabolic_loads():
|
619 |
+
|
620 |
+
E, I, L = symbols('E, I, L', positive=True, real=True)
|
621 |
+
R, M, P = symbols('R, M, P', real=True)
|
622 |
+
|
623 |
+
# cantilever beam fixed at x=0 and parabolic distributed loading across
|
624 |
+
# length of beam
|
625 |
+
beam = Beam(L, E, I)
|
626 |
+
|
627 |
+
beam.bc_deflection.append((0, 0))
|
628 |
+
beam.bc_slope.append((0, 0))
|
629 |
+
beam.apply_load(R, 0, -1)
|
630 |
+
beam.apply_load(M, 0, -2)
|
631 |
+
|
632 |
+
# parabolic load
|
633 |
+
beam.apply_load(1, 0, 2)
|
634 |
+
|
635 |
+
beam.solve_for_reaction_loads(R, M)
|
636 |
+
|
637 |
+
assert beam.reaction_loads[R] == -L**3/3
|
638 |
+
|
639 |
+
# cantilever beam fixed at x=0 and parabolic distributed loading across
|
640 |
+
# first half of beam
|
641 |
+
beam = Beam(2*L, E, I)
|
642 |
+
|
643 |
+
beam.bc_deflection.append((0, 0))
|
644 |
+
beam.bc_slope.append((0, 0))
|
645 |
+
beam.apply_load(R, 0, -1)
|
646 |
+
beam.apply_load(M, 0, -2)
|
647 |
+
|
648 |
+
# parabolic load from x=0 to x=L
|
649 |
+
beam.apply_load(1, 0, 2, end=L)
|
650 |
+
|
651 |
+
beam.solve_for_reaction_loads(R, M)
|
652 |
+
|
653 |
+
# result should be the same as the prior example
|
654 |
+
assert beam.reaction_loads[R] == -L**3/3
|
655 |
+
|
656 |
+
# check constant load
|
657 |
+
beam = Beam(2*L, E, I)
|
658 |
+
beam.apply_load(P, 0, 0, end=L)
|
659 |
+
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
|
660 |
+
assert loading.xreplace({x: 5}) == 40
|
661 |
+
assert loading.xreplace({x: 15}) == 0
|
662 |
+
|
663 |
+
# check ramp load
|
664 |
+
beam = Beam(2*L, E, I)
|
665 |
+
beam.apply_load(P, 0, 1, end=L)
|
666 |
+
assert beam.load == (P*SingularityFunction(x, 0, 1) -
|
667 |
+
P*SingularityFunction(x, L, 1) -
|
668 |
+
P*L*SingularityFunction(x, L, 0))
|
669 |
+
|
670 |
+
# check higher order load: x**8 load from x=0 to x=L
|
671 |
+
beam = Beam(2*L, E, I)
|
672 |
+
beam.apply_load(P, 0, 8, end=L)
|
673 |
+
loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40})
|
674 |
+
assert loading.xreplace({x: 5}) == 40*5**8
|
675 |
+
assert loading.xreplace({x: 15}) == 0
|
676 |
+
|
677 |
+
|
678 |
+
def test_cross_section():
|
679 |
+
I = Symbol('I')
|
680 |
+
l = Symbol('l')
|
681 |
+
E = Symbol('E')
|
682 |
+
C3, C4 = symbols('C3, C4')
|
683 |
+
a, c, g, h, r, n = symbols('a, c, g, h, r, n')
|
684 |
+
|
685 |
+
# test for second_moment and cross_section setter
|
686 |
+
b0 = Beam(l, E, I)
|
687 |
+
assert b0.second_moment == I
|
688 |
+
assert b0.cross_section == None
|
689 |
+
b0.cross_section = Circle((0, 0), 5)
|
690 |
+
assert b0.second_moment == pi*Rational(625, 4)
|
691 |
+
assert b0.cross_section == Circle((0, 0), 5)
|
692 |
+
b0.second_moment = 2*n - 6
|
693 |
+
assert b0.second_moment == 2*n-6
|
694 |
+
assert b0.cross_section == None
|
695 |
+
with raises(ValueError):
|
696 |
+
b0.second_moment = Circle((0, 0), 5)
|
697 |
+
|
698 |
+
# beam with a circular cross-section
|
699 |
+
b1 = Beam(50, E, Circle((0, 0), r))
|
700 |
+
assert b1.cross_section == Circle((0, 0), r)
|
701 |
+
assert b1.second_moment == pi*r*Abs(r)**3/4
|
702 |
+
|
703 |
+
b1.apply_load(-10, 0, -1)
|
704 |
+
b1.apply_load(R1, 5, -1)
|
705 |
+
b1.apply_load(R2, 50, -1)
|
706 |
+
b1.apply_load(90, 45, -2)
|
707 |
+
b1.solve_for_reaction_loads(R1, R2)
|
708 |
+
assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9)
|
709 |
+
+ 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9)
|
710 |
+
assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9
|
711 |
+
- 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9)
|
712 |
+
q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9)
|
713 |
+
+ 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3)
|
714 |
+
assert b1.slope() == C3 + 4*q
|
715 |
+
q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2)
|
716 |
+
+ 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3)
|
717 |
+
assert b1.deflection() == C3*x + C4 + 4*q
|
718 |
+
|
719 |
+
# beam with a recatangular cross-section
|
720 |
+
b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c)))
|
721 |
+
assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c))
|
722 |
+
assert b2.second_moment == a*c**3/12
|
723 |
+
# beam with a triangular cross-section
|
724 |
+
b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h)))
|
725 |
+
assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h))
|
726 |
+
assert b3.second_moment == g*h**3/36
|
727 |
+
|
728 |
+
# composite beam
|
729 |
+
b = b2.join(b3, "fixed")
|
730 |
+
b.apply_load(-30, 0, -1)
|
731 |
+
b.apply_load(65, 0, -2)
|
732 |
+
b.apply_load(40, 0, -1)
|
733 |
+
b.bc_slope = [(0, 0)]
|
734 |
+
b.bc_deflection = [(0, 0)]
|
735 |
+
|
736 |
+
assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35))
|
737 |
+
assert b.cross_section == None
|
738 |
+
assert b.length == 35
|
739 |
+
assert b.slope().subs(x, 7) == 8400/(E*a*c**3)
|
740 |
+
assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3)
|
741 |
+
assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3)
|
742 |
+
|
743 |
+
def test_max_shear_force_Beam3D():
|
744 |
+
x = symbols('x')
|
745 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
746 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
747 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
748 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
749 |
+
assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)]
|
750 |
+
|
751 |
+
def test_max_bending_moment_Beam3D():
|
752 |
+
x = symbols('x')
|
753 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
754 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
755 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
756 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
757 |
+
assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)]
|
758 |
+
|
759 |
+
def test_max_deflection_Beam3D():
|
760 |
+
x = symbols('x')
|
761 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
762 |
+
b.apply_load(15, start=0, order=0, dir="z")
|
763 |
+
b.apply_load(12*x, start=0, order=0, dir="y")
|
764 |
+
b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
765 |
+
b.solve_slope_deflection()
|
766 |
+
c = sympify("495/14")
|
767 |
+
p = sympify("-10 + 10*sqrt(10793)/43")
|
768 |
+
q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560")
|
769 |
+
assert b.max_deflection() == [(0, 0), (10, c), (p, q)]
|
770 |
+
|
771 |
+
def test_torsion_Beam3D():
|
772 |
+
x = symbols('x')
|
773 |
+
b = Beam3D(20, 40, 21, 100, 25)
|
774 |
+
b.apply_moment_load(15, 5, -2, dir='x')
|
775 |
+
b.apply_moment_load(25, 10, -2, dir='x')
|
776 |
+
b.apply_moment_load(-5, 20, -2, dir='x')
|
777 |
+
b.solve_for_torsion()
|
778 |
+
assert b.angular_deflection().subs(x, 3) == sympify("1/40")
|
779 |
+
assert b.angular_deflection().subs(x, 9) == sympify("17/280")
|
780 |
+
assert b.angular_deflection().subs(x, 12) == sympify("53/840")
|
781 |
+
assert b.angular_deflection().subs(x, 17) == sympify("2/35")
|
782 |
+
assert b.angular_deflection().subs(x, 20) == sympify("3/56")
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/test_truss.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import Symbol, symbols
|
2 |
+
from sympy.physics.continuum_mechanics.truss import Truss
|
3 |
+
from sympy import sqrt
|
4 |
+
|
5 |
+
|
6 |
+
def test_truss():
|
7 |
+
A = Symbol('A')
|
8 |
+
B = Symbol('B')
|
9 |
+
C = Symbol('C')
|
10 |
+
AB, BC, AC = symbols('AB, BC, AC')
|
11 |
+
P = Symbol('P')
|
12 |
+
|
13 |
+
t = Truss()
|
14 |
+
assert t.nodes == []
|
15 |
+
assert t.node_labels == []
|
16 |
+
assert t.node_positions == []
|
17 |
+
assert t.members == {}
|
18 |
+
assert t.loads == {}
|
19 |
+
assert t.supports == {}
|
20 |
+
assert t.reaction_loads == {}
|
21 |
+
assert t.internal_forces == {}
|
22 |
+
|
23 |
+
# testing the add_node method
|
24 |
+
t.add_node(A, 0, 0)
|
25 |
+
t.add_node(B, 2, 2)
|
26 |
+
t.add_node(C, 3, 0)
|
27 |
+
assert t.nodes == [(A, 0, 0), (B, 2, 2), (C, 3, 0)]
|
28 |
+
assert t.node_labels == [A, B, C]
|
29 |
+
assert t.node_positions == [(0, 0), (2, 2), (3, 0)]
|
30 |
+
assert t.loads == {}
|
31 |
+
assert t.supports == {}
|
32 |
+
assert t.reaction_loads == {}
|
33 |
+
|
34 |
+
# testing the remove_node method
|
35 |
+
t.remove_node(C)
|
36 |
+
assert t.nodes == [(A, 0, 0), (B, 2, 2)]
|
37 |
+
assert t.node_labels == [A, B]
|
38 |
+
assert t.node_positions == [(0, 0), (2, 2)]
|
39 |
+
assert t.loads == {}
|
40 |
+
assert t.supports == {}
|
41 |
+
|
42 |
+
t.add_node(C, 3, 0)
|
43 |
+
|
44 |
+
# testing the add_member method
|
45 |
+
t.add_member(AB, A, B)
|
46 |
+
t.add_member(BC, B, C)
|
47 |
+
t.add_member(AC, A, C)
|
48 |
+
assert t.members == {AB: [A, B], BC: [B, C], AC: [A, C]}
|
49 |
+
assert t.internal_forces == {AB: 0, BC: 0, AC: 0}
|
50 |
+
|
51 |
+
# testing the remove_member method
|
52 |
+
t.remove_member(BC)
|
53 |
+
assert t.members == {AB: [A, B], AC: [A, C]}
|
54 |
+
assert t.internal_forces == {AB: 0, AC: 0}
|
55 |
+
|
56 |
+
t.add_member(BC, B, C)
|
57 |
+
|
58 |
+
D, CD = symbols('D, CD')
|
59 |
+
|
60 |
+
# testing the change_label methods
|
61 |
+
t.change_node_label(B, D)
|
62 |
+
assert t.nodes == [(A, 0, 0), (D, 2, 2), (C, 3, 0)]
|
63 |
+
assert t.node_labels == [A, D, C]
|
64 |
+
assert t.loads == {}
|
65 |
+
assert t.supports == {}
|
66 |
+
assert t.members == {AB: [A, D], BC: [D, C], AC: [A, C]}
|
67 |
+
|
68 |
+
t.change_member_label(BC, CD)
|
69 |
+
assert t.members == {AB: [A, D], CD: [D, C], AC: [A, C]}
|
70 |
+
assert t.internal_forces == {AB: 0, CD: 0, AC: 0}
|
71 |
+
|
72 |
+
|
73 |
+
# testing the apply_load method
|
74 |
+
t.apply_load(A, P, 90)
|
75 |
+
t.apply_load(A, P/4, 90)
|
76 |
+
t.apply_load(A, 2*P,45)
|
77 |
+
t.apply_load(D, P/2, 90)
|
78 |
+
assert t.loads == {A: [[P, 90], [P/4, 90], [2*P, 45]], D: [[P/2, 90]]}
|
79 |
+
assert t.loads[A] == [[P, 90], [P/4, 90], [2*P, 45]]
|
80 |
+
|
81 |
+
# testing the remove_load method
|
82 |
+
t.remove_load(A, P/4, 90)
|
83 |
+
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90]]}
|
84 |
+
assert t.loads[A] == [[P, 90], [2*P, 45]]
|
85 |
+
|
86 |
+
# testing the apply_support method
|
87 |
+
t.apply_support(A, "pinned")
|
88 |
+
t.apply_support(D, "roller")
|
89 |
+
assert t.supports == {A: 'pinned', D: 'roller'}
|
90 |
+
assert t.reaction_loads == {}
|
91 |
+
assert t.loads == {A: [[P, 90], [2*P, 45], [Symbol('R_A_x'), 0], [Symbol('R_A_y'), 90]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
|
92 |
+
|
93 |
+
# testing the remove_support method
|
94 |
+
t.remove_support(A)
|
95 |
+
assert t.supports == {D: 'roller'}
|
96 |
+
assert t.reaction_loads == {}
|
97 |
+
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
|
98 |
+
|
99 |
+
t.apply_support(A, "pinned")
|
100 |
+
|
101 |
+
# testing the solve method
|
102 |
+
t.solve()
|
103 |
+
assert t.reaction_loads['R_A_x'] == -sqrt(2)*P
|
104 |
+
assert t.reaction_loads['R_A_y'] == -sqrt(2)*P - P
|
105 |
+
assert t.reaction_loads['R_D_y'] == -P/2
|
106 |
+
assert t.internal_forces[AB]/P == 0
|
107 |
+
assert t.internal_forces[CD] == 0
|
108 |
+
assert t.internal_forces[AC] == 0
|
venv/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/truss.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module can be used to solve problems related
|
3 |
+
to 2D Trusses.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from cmath import inf
|
7 |
+
from sympy.core.add import Add
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.symbol import Symbol
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy import Matrix, pi
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.matrices.dense import zeros
|
14 |
+
from sympy import sin, cos
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
class Truss:
|
19 |
+
"""
|
20 |
+
A Truss is an assembly of members such as beams,
|
21 |
+
connected by nodes, that create a rigid structure.
|
22 |
+
In engineering, a truss is a structure that
|
23 |
+
consists of two-force members only.
|
24 |
+
|
25 |
+
Trusses are extremely important in engineering applications
|
26 |
+
and can be seen in numerous real-world applications like bridges.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
There is a Truss consisting of four nodes and five
|
32 |
+
members connecting the nodes. A force P acts
|
33 |
+
downward on the node D and there also exist pinned
|
34 |
+
and roller joints on the nodes A and B respectively.
|
35 |
+
|
36 |
+
.. image:: truss_example.png
|
37 |
+
|
38 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
39 |
+
>>> t = Truss()
|
40 |
+
>>> t.add_node("node_1", 0, 0)
|
41 |
+
>>> t.add_node("node_2", 6, 0)
|
42 |
+
>>> t.add_node("node_3", 2, 2)
|
43 |
+
>>> t.add_node("node_4", 2, 0)
|
44 |
+
>>> t.add_member("member_1", "node_1", "node_4")
|
45 |
+
>>> t.add_member("member_2", "node_2", "node_4")
|
46 |
+
>>> t.add_member("member_3", "node_1", "node_3")
|
47 |
+
>>> t.add_member("member_4", "node_2", "node_3")
|
48 |
+
>>> t.add_member("member_5", "node_3", "node_4")
|
49 |
+
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
50 |
+
>>> t.apply_support("node_1", type="fixed")
|
51 |
+
>>> t.apply_support("node_2", type="roller")
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self):
|
55 |
+
"""
|
56 |
+
Initializes the class
|
57 |
+
"""
|
58 |
+
self._nodes = []
|
59 |
+
self._members = {}
|
60 |
+
self._loads = {}
|
61 |
+
self._supports = {}
|
62 |
+
self._node_labels = []
|
63 |
+
self._node_positions = []
|
64 |
+
self._node_position_x = []
|
65 |
+
self._node_position_y = []
|
66 |
+
self._nodes_occupied = {}
|
67 |
+
self._reaction_loads = {}
|
68 |
+
self._internal_forces = {}
|
69 |
+
self._node_coordinates = {}
|
70 |
+
|
71 |
+
@property
|
72 |
+
def nodes(self):
|
73 |
+
"""
|
74 |
+
Returns the nodes of the truss along with their positions.
|
75 |
+
"""
|
76 |
+
return self._nodes
|
77 |
+
|
78 |
+
@property
|
79 |
+
def node_labels(self):
|
80 |
+
"""
|
81 |
+
Returns the node labels of the truss.
|
82 |
+
"""
|
83 |
+
return self._node_labels
|
84 |
+
|
85 |
+
@property
|
86 |
+
def node_positions(self):
|
87 |
+
"""
|
88 |
+
Returns the positions of the nodes of the truss.
|
89 |
+
"""
|
90 |
+
return self._node_positions
|
91 |
+
|
92 |
+
@property
|
93 |
+
def members(self):
|
94 |
+
"""
|
95 |
+
Returns the members of the truss along with the start and end points.
|
96 |
+
"""
|
97 |
+
return self._members
|
98 |
+
|
99 |
+
@property
|
100 |
+
def member_labels(self):
|
101 |
+
"""
|
102 |
+
Returns the members of the truss along with the start and end points.
|
103 |
+
"""
|
104 |
+
return self._member_labels
|
105 |
+
|
106 |
+
@property
|
107 |
+
def supports(self):
|
108 |
+
"""
|
109 |
+
Returns the nodes with provided supports along with the kind of support provided i.e.
|
110 |
+
pinned or roller.
|
111 |
+
"""
|
112 |
+
return self._supports
|
113 |
+
|
114 |
+
@property
|
115 |
+
def loads(self):
|
116 |
+
"""
|
117 |
+
Returns the loads acting on the truss.
|
118 |
+
"""
|
119 |
+
return self._loads
|
120 |
+
|
121 |
+
@property
|
122 |
+
def reaction_loads(self):
|
123 |
+
"""
|
124 |
+
Returns the reaction forces for all supports which are all initialized to 0.
|
125 |
+
"""
|
126 |
+
return self._reaction_loads
|
127 |
+
|
128 |
+
@property
|
129 |
+
def internal_forces(self):
|
130 |
+
"""
|
131 |
+
Returns the internal forces for all members which are all initialized to 0.
|
132 |
+
"""
|
133 |
+
return self._internal_forces
|
134 |
+
|
135 |
+
def add_node(self, label, x, y):
|
136 |
+
"""
|
137 |
+
This method adds a node to the truss along with its name/label and its location.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
==========
|
141 |
+
label: String or a Symbol
|
142 |
+
The label for a node. It is the only way to identify a particular node.
|
143 |
+
|
144 |
+
x: Sympifyable
|
145 |
+
The x-coordinate of the position of the node.
|
146 |
+
|
147 |
+
y: Sympifyable
|
148 |
+
The y-coordinate of the position of the node.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
154 |
+
>>> t = Truss()
|
155 |
+
>>> t.add_node('A', 0, 0)
|
156 |
+
>>> t.nodes
|
157 |
+
[('A', 0, 0)]
|
158 |
+
>>> t.add_node('B', 3, 0)
|
159 |
+
>>> t.nodes
|
160 |
+
[('A', 0, 0), ('B', 3, 0)]
|
161 |
+
"""
|
162 |
+
x = sympify(x)
|
163 |
+
y = sympify(y)
|
164 |
+
|
165 |
+
if label in self._node_labels:
|
166 |
+
raise ValueError("Node needs to have a unique label")
|
167 |
+
|
168 |
+
elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
|
169 |
+
raise ValueError("A node already exists at the given position")
|
170 |
+
|
171 |
+
else :
|
172 |
+
self._nodes.append((label, x, y))
|
173 |
+
self._node_labels.append(label)
|
174 |
+
self._node_positions.append((x, y))
|
175 |
+
self._node_position_x.append(x)
|
176 |
+
self._node_position_y.append(y)
|
177 |
+
self._node_coordinates[label] = [x, y]
|
178 |
+
|
179 |
+
def remove_node(self, label):
|
180 |
+
"""
|
181 |
+
This method removes a node from the truss.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
==========
|
185 |
+
label: String or Symbol
|
186 |
+
The label of the node to be removed.
|
187 |
+
|
188 |
+
Examples
|
189 |
+
========
|
190 |
+
|
191 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
192 |
+
>>> t = Truss()
|
193 |
+
>>> t.add_node('A', 0, 0)
|
194 |
+
>>> t.nodes
|
195 |
+
[('A', 0, 0)]
|
196 |
+
>>> t.add_node('B', 3, 0)
|
197 |
+
>>> t.nodes
|
198 |
+
[('A', 0, 0), ('B', 3, 0)]
|
199 |
+
>>> t.remove_node('A')
|
200 |
+
>>> t.nodes
|
201 |
+
[('B', 3, 0)]
|
202 |
+
"""
|
203 |
+
for i in range(len(self.nodes)):
|
204 |
+
if self._node_labels[i] == label:
|
205 |
+
x = self._node_position_x[i]
|
206 |
+
y = self._node_position_y[i]
|
207 |
+
|
208 |
+
if label not in self._node_labels:
|
209 |
+
raise ValueError("No such node exists in the truss")
|
210 |
+
|
211 |
+
else:
|
212 |
+
members_duplicate = self._members.copy()
|
213 |
+
for member in members_duplicate:
|
214 |
+
if label == self._members[member][0] or label == self._members[member][1]:
|
215 |
+
raise ValueError("The node given has members already attached to it")
|
216 |
+
self._nodes.remove((label, x, y))
|
217 |
+
self._node_labels.remove(label)
|
218 |
+
self._node_positions.remove((x, y))
|
219 |
+
self._node_position_x.remove(x)
|
220 |
+
self._node_position_y.remove(y)
|
221 |
+
if label in list(self._loads):
|
222 |
+
self._loads.pop(label)
|
223 |
+
if label in list(self._supports):
|
224 |
+
self._supports.pop(label)
|
225 |
+
self._node_coordinates.pop(label)
|
226 |
+
|
227 |
+
def add_member(self, label, start, end):
|
228 |
+
"""
|
229 |
+
This method adds a member between any two nodes in the given truss.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
==========
|
233 |
+
label: String or Symbol
|
234 |
+
The label for a member. It is the only way to identify a particular member.
|
235 |
+
|
236 |
+
start: String or Symbol
|
237 |
+
The label of the starting point/node of the member.
|
238 |
+
|
239 |
+
end: String or Symbol
|
240 |
+
The label of the ending point/node of the member.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
========
|
244 |
+
|
245 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
246 |
+
>>> t = Truss()
|
247 |
+
>>> t.add_node('A', 0, 0)
|
248 |
+
>>> t.add_node('B', 3, 0)
|
249 |
+
>>> t.add_node('C', 2, 2)
|
250 |
+
>>> t.add_member('AB', 'A', 'B')
|
251 |
+
>>> t.members
|
252 |
+
{'AB': ['A', 'B']}
|
253 |
+
"""
|
254 |
+
|
255 |
+
if start not in self._node_labels or end not in self._node_labels or start==end:
|
256 |
+
raise ValueError("The start and end points of the member must be unique nodes")
|
257 |
+
|
258 |
+
elif label in list(self._members):
|
259 |
+
raise ValueError("A member with the same label already exists for the truss")
|
260 |
+
|
261 |
+
elif self._nodes_occupied.get((start, end)):
|
262 |
+
raise ValueError("A member already exists between the two nodes")
|
263 |
+
|
264 |
+
else:
|
265 |
+
self._members[label] = [start, end]
|
266 |
+
self._nodes_occupied[start, end] = True
|
267 |
+
self._nodes_occupied[end, start] = True
|
268 |
+
self._internal_forces[label] = 0
|
269 |
+
|
270 |
+
def remove_member(self, label):
|
271 |
+
"""
|
272 |
+
This method removes a member from the given truss.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
==========
|
276 |
+
label: String or Symbol
|
277 |
+
The label for the member to be removed.
|
278 |
+
|
279 |
+
Examples
|
280 |
+
========
|
281 |
+
|
282 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
283 |
+
>>> t = Truss()
|
284 |
+
>>> t.add_node('A', 0, 0)
|
285 |
+
>>> t.add_node('B', 3, 0)
|
286 |
+
>>> t.add_node('C', 2, 2)
|
287 |
+
>>> t.add_member('AB', 'A', 'B')
|
288 |
+
>>> t.add_member('AC', 'A', 'C')
|
289 |
+
>>> t.add_member('BC', 'B', 'C')
|
290 |
+
>>> t.members
|
291 |
+
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
|
292 |
+
>>> t.remove_member('AC')
|
293 |
+
>>> t.members
|
294 |
+
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
|
295 |
+
"""
|
296 |
+
if label not in list(self._members):
|
297 |
+
raise ValueError("No such member exists in the Truss")
|
298 |
+
|
299 |
+
else:
|
300 |
+
self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
|
301 |
+
self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
|
302 |
+
self._members.pop(label)
|
303 |
+
self._internal_forces.pop(label)
|
304 |
+
|
305 |
+
def change_node_label(self, label, new_label):
|
306 |
+
"""
|
307 |
+
This method changes the label of a node.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
==========
|
311 |
+
label: String or Symbol
|
312 |
+
The label of the node for which the label has
|
313 |
+
to be changed.
|
314 |
+
|
315 |
+
new_label: String or Symbol
|
316 |
+
The new label of the node.
|
317 |
+
|
318 |
+
Examples
|
319 |
+
========
|
320 |
+
|
321 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
322 |
+
>>> t = Truss()
|
323 |
+
>>> t.add_node('A', 0, 0)
|
324 |
+
>>> t.add_node('B', 3, 0)
|
325 |
+
>>> t.nodes
|
326 |
+
[('A', 0, 0), ('B', 3, 0)]
|
327 |
+
>>> t.change_node_label('A', 'C')
|
328 |
+
>>> t.nodes
|
329 |
+
[('C', 0, 0), ('B', 3, 0)]
|
330 |
+
"""
|
331 |
+
if label not in self._node_labels:
|
332 |
+
raise ValueError("No such node exists for the Truss")
|
333 |
+
elif new_label in self._node_labels:
|
334 |
+
raise ValueError("A node with the given label already exists")
|
335 |
+
else:
|
336 |
+
for node in self._nodes:
|
337 |
+
if node[0] == label:
|
338 |
+
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
|
339 |
+
self._node_labels[self._node_labels.index(node[0])] = new_label
|
340 |
+
self._node_coordinates[new_label] = self._node_coordinates[label]
|
341 |
+
self._node_coordinates.pop(label)
|
342 |
+
if node[0] in list(self._supports):
|
343 |
+
self._supports[new_label] = self._supports[node[0]]
|
344 |
+
self._supports.pop(node[0])
|
345 |
+
if new_label in list(self._supports):
|
346 |
+
if self._supports[new_label] == 'pinned':
|
347 |
+
if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
|
348 |
+
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
|
349 |
+
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
|
350 |
+
self._reaction_loads.pop('R_'+str(label)+'_x')
|
351 |
+
self._reaction_loads.pop('R_'+str(label)+'_y')
|
352 |
+
self._loads[new_label] = self._loads[label]
|
353 |
+
for load in self._loads[new_label]:
|
354 |
+
if load[1] == 90:
|
355 |
+
load[0] -= Symbol('R_'+str(label)+'_y')
|
356 |
+
if load[0] == 0:
|
357 |
+
self._loads[label].remove(load)
|
358 |
+
break
|
359 |
+
for load in self._loads[new_label]:
|
360 |
+
if load[1] == 0:
|
361 |
+
load[0] -= Symbol('R_'+str(label)+'_x')
|
362 |
+
if load[0] == 0:
|
363 |
+
self._loads[label].remove(load)
|
364 |
+
break
|
365 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
|
366 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
367 |
+
self._loads.pop(label)
|
368 |
+
elif self._supports[new_label] == 'roller':
|
369 |
+
self._loads[new_label] = self._loads[label]
|
370 |
+
for load in self._loads[label]:
|
371 |
+
if load[1] == 90:
|
372 |
+
load[0] -= Symbol('R_'+str(label)+'_y')
|
373 |
+
if load[0] == 0:
|
374 |
+
self._loads[label].remove(load)
|
375 |
+
break
|
376 |
+
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
|
377 |
+
self._loads.pop(label)
|
378 |
+
else:
|
379 |
+
if label in list(self._loads):
|
380 |
+
self._loads[new_label] = self._loads[label]
|
381 |
+
self._loads.pop(label)
|
382 |
+
for member in list(self._members):
|
383 |
+
if self._members[member][0] == node[0]:
|
384 |
+
self._members[member][0] = new_label
|
385 |
+
self._nodes_occupied[(new_label, self._members[member][1])] = True
|
386 |
+
self._nodes_occupied[(self._members[member][1], new_label)] = True
|
387 |
+
self._nodes_occupied.pop((label, self._members[member][1]))
|
388 |
+
self._nodes_occupied.pop((self._members[member][1], label))
|
389 |
+
elif self._members[member][1] == node[0]:
|
390 |
+
self._members[member][1] = new_label
|
391 |
+
self._nodes_occupied[(self._members[member][0], new_label)] = True
|
392 |
+
self._nodes_occupied[(new_label, self._members[member][0])] = True
|
393 |
+
self._nodes_occupied.pop((self._members[member][0], label))
|
394 |
+
self._nodes_occupied.pop((label, self._members[member][0]))
|
395 |
+
|
396 |
+
def change_member_label(self, label, new_label):
|
397 |
+
"""
|
398 |
+
This method changes the label of a member.
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
==========
|
402 |
+
label: String or Symbol
|
403 |
+
The label of the member for which the label has
|
404 |
+
to be changed.
|
405 |
+
|
406 |
+
new_label: String or Symbol
|
407 |
+
The new label of the member.
|
408 |
+
|
409 |
+
Examples
|
410 |
+
========
|
411 |
+
|
412 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
413 |
+
>>> t = Truss()
|
414 |
+
>>> t.add_node('A', 0, 0)
|
415 |
+
>>> t.add_node('B', 3, 0)
|
416 |
+
>>> t.nodes
|
417 |
+
[('A', 0, 0), ('B', 3, 0)]
|
418 |
+
>>> t.change_node_label('A', 'C')
|
419 |
+
>>> t.nodes
|
420 |
+
[('C', 0, 0), ('B', 3, 0)]
|
421 |
+
>>> t.add_member('BC', 'B', 'C')
|
422 |
+
>>> t.members
|
423 |
+
{'BC': ['B', 'C']}
|
424 |
+
>>> t.change_member_label('BC', 'BC_new')
|
425 |
+
>>> t.members
|
426 |
+
{'BC_new': ['B', 'C']}
|
427 |
+
"""
|
428 |
+
if label not in list(self._members):
|
429 |
+
raise ValueError("No such member exists for the Truss")
|
430 |
+
|
431 |
+
else:
|
432 |
+
members_duplicate = list(self._members).copy()
|
433 |
+
for member in members_duplicate:
|
434 |
+
if member == label:
|
435 |
+
self._members[new_label] = [self._members[member][0], self._members[member][1]]
|
436 |
+
self._members.pop(label)
|
437 |
+
self._internal_forces[new_label] = self._internal_forces[label]
|
438 |
+
self._internal_forces.pop(label)
|
439 |
+
|
440 |
+
def apply_load(self, location, magnitude, direction):
|
441 |
+
"""
|
442 |
+
This method applies an external load at a particular node
|
443 |
+
|
444 |
+
Parameters
|
445 |
+
==========
|
446 |
+
location: String or Symbol
|
447 |
+
Label of the Node at which load is applied.
|
448 |
+
|
449 |
+
magnitude: Sympifyable
|
450 |
+
Magnitude of the load applied. It must always be positive and any changes in
|
451 |
+
the direction of the load are not reflected here.
|
452 |
+
|
453 |
+
direction: Sympifyable
|
454 |
+
The angle, in degrees, that the load vector makes with the horizontal
|
455 |
+
in the counter-clockwise direction. It takes the values 0 to 360,
|
456 |
+
inclusive.
|
457 |
+
|
458 |
+
Examples
|
459 |
+
========
|
460 |
+
|
461 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
462 |
+
>>> from sympy import symbols
|
463 |
+
>>> t = Truss()
|
464 |
+
>>> t.add_node('A', 0, 0)
|
465 |
+
>>> t.add_node('B', 3, 0)
|
466 |
+
>>> P = symbols('P')
|
467 |
+
>>> t.apply_load('A', P, 90)
|
468 |
+
>>> t.apply_load('A', P/2, 45)
|
469 |
+
>>> t.apply_load('A', P/4, 90)
|
470 |
+
>>> t.loads
|
471 |
+
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
472 |
+
"""
|
473 |
+
magnitude = sympify(magnitude)
|
474 |
+
direction = sympify(direction)
|
475 |
+
|
476 |
+
if location not in self.node_labels:
|
477 |
+
raise ValueError("Load must be applied at a known node")
|
478 |
+
|
479 |
+
else:
|
480 |
+
if location in list(self._loads):
|
481 |
+
self._loads[location].append([magnitude, direction])
|
482 |
+
else:
|
483 |
+
self._loads[location] = [[magnitude, direction]]
|
484 |
+
|
485 |
+
def remove_load(self, location, magnitude, direction):
|
486 |
+
"""
|
487 |
+
This method removes an already
|
488 |
+
present external load at a particular node
|
489 |
+
|
490 |
+
Parameters
|
491 |
+
==========
|
492 |
+
location: String or Symbol
|
493 |
+
Label of the Node at which load is applied and is to be removed.
|
494 |
+
|
495 |
+
magnitude: Sympifyable
|
496 |
+
Magnitude of the load applied.
|
497 |
+
|
498 |
+
direction: Sympifyable
|
499 |
+
The angle, in degrees, that the load vector makes with the horizontal
|
500 |
+
in the counter-clockwise direction. It takes the values 0 to 360,
|
501 |
+
inclusive.
|
502 |
+
|
503 |
+
Examples
|
504 |
+
========
|
505 |
+
|
506 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
507 |
+
>>> from sympy import symbols
|
508 |
+
>>> t = Truss()
|
509 |
+
>>> t.add_node('A', 0, 0)
|
510 |
+
>>> t.add_node('B', 3, 0)
|
511 |
+
>>> P = symbols('P')
|
512 |
+
>>> t.apply_load('A', P, 90)
|
513 |
+
>>> t.apply_load('A', P/2, 45)
|
514 |
+
>>> t.apply_load('A', P/4, 90)
|
515 |
+
>>> t.loads
|
516 |
+
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
|
517 |
+
>>> t.remove_load('A', P/4, 90)
|
518 |
+
>>> t.loads
|
519 |
+
{'A': [[P, 90], [P/2, 45]]}
|
520 |
+
"""
|
521 |
+
magnitude = sympify(magnitude)
|
522 |
+
direction = sympify(direction)
|
523 |
+
|
524 |
+
if location not in self.node_labels:
|
525 |
+
raise ValueError("Load must be removed from a known node")
|
526 |
+
|
527 |
+
else:
|
528 |
+
if [magnitude, direction] not in self._loads[location]:
|
529 |
+
raise ValueError("No load of this magnitude and direction has been applied at this node")
|
530 |
+
else:
|
531 |
+
self._loads[location].remove([magnitude, direction])
|
532 |
+
if self._loads[location] == []:
|
533 |
+
self._loads.pop(location)
|
534 |
+
|
535 |
+
def apply_support(self, location, type):
|
536 |
+
"""
|
537 |
+
This method adds a pinned or roller support at a particular node
|
538 |
+
|
539 |
+
Parameters
|
540 |
+
==========
|
541 |
+
|
542 |
+
location: String or Symbol
|
543 |
+
Label of the Node at which support is added.
|
544 |
+
|
545 |
+
type: String
|
546 |
+
Type of the support being provided at the node.
|
547 |
+
|
548 |
+
Examples
|
549 |
+
========
|
550 |
+
|
551 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
552 |
+
>>> t = Truss()
|
553 |
+
>>> t.add_node('A', 0, 0)
|
554 |
+
>>> t.add_node('B', 3, 0)
|
555 |
+
>>> t.apply_support('A', 'pinned')
|
556 |
+
>>> t.supports
|
557 |
+
{'A': 'pinned'}
|
558 |
+
"""
|
559 |
+
if location not in self._node_labels:
|
560 |
+
raise ValueError("Support must be added on a known node")
|
561 |
+
|
562 |
+
else:
|
563 |
+
if location not in list(self._supports):
|
564 |
+
if type == 'pinned':
|
565 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
566 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
567 |
+
elif type == 'roller':
|
568 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
569 |
+
elif self._supports[location] == 'pinned':
|
570 |
+
if type == 'roller':
|
571 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
572 |
+
elif self._supports[location] == 'roller':
|
573 |
+
if type == 'pinned':
|
574 |
+
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
575 |
+
self._supports[location] = type
|
576 |
+
|
577 |
+
def remove_support(self, location):
|
578 |
+
"""
|
579 |
+
This method removes support from a particular node
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
==========
|
583 |
+
|
584 |
+
location: String or Symbol
|
585 |
+
Label of the Node at which support is to be removed.
|
586 |
+
|
587 |
+
Examples
|
588 |
+
========
|
589 |
+
|
590 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
591 |
+
>>> t = Truss()
|
592 |
+
>>> t.add_node('A', 0, 0)
|
593 |
+
>>> t.add_node('B', 3, 0)
|
594 |
+
>>> t.apply_support('A', 'pinned')
|
595 |
+
>>> t.supports
|
596 |
+
{'A': 'pinned'}
|
597 |
+
>>> t.remove_support('A')
|
598 |
+
>>> t.supports
|
599 |
+
{}
|
600 |
+
"""
|
601 |
+
if location not in self._node_labels:
|
602 |
+
raise ValueError("No such node exists in the Truss")
|
603 |
+
|
604 |
+
elif location not in list(self._supports):
|
605 |
+
raise ValueError("No support has been added to the given node")
|
606 |
+
|
607 |
+
else:
|
608 |
+
if self._supports[location] == 'pinned':
|
609 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
|
610 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
611 |
+
elif self._supports[location] == 'roller':
|
612 |
+
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
|
613 |
+
self._supports.pop(location)
|
614 |
+
|
615 |
+
def solve(self):
|
616 |
+
"""
|
617 |
+
This method solves for all reaction forces of all supports and all internal forces
|
618 |
+
of all the members in the truss, provided the Truss is solvable.
|
619 |
+
|
620 |
+
A Truss is solvable if the following condition is met,
|
621 |
+
|
622 |
+
2n >= r + m
|
623 |
+
|
624 |
+
Where n is the number of nodes, r is the number of reaction forces, where each pinned
|
625 |
+
support has 2 reaction forces and each roller has 1, and m is the number of members.
|
626 |
+
|
627 |
+
The given condition is derived from the fact that a system of equations is solvable
|
628 |
+
only when the number of variables is lesser than or equal to the number of equations.
|
629 |
+
Equilibrium Equations in x and y directions give two equations per node giving 2n number
|
630 |
+
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
|
631 |
+
The number of variables is simply the sum of the number of reaction forces and member
|
632 |
+
forces.
|
633 |
+
|
634 |
+
.. note::
|
635 |
+
The sign convention for the internal forces present in a member revolves around whether each
|
636 |
+
force is compressive or tensile. While forming equations for each node, internal force due
|
637 |
+
to a member on the node is assumed to be away from the node i.e. each force is assumed to
|
638 |
+
be compressive by default. Hence, a positive value for an internal force implies the
|
639 |
+
presence of compressive force in the member and a negative value implies a tensile force.
|
640 |
+
|
641 |
+
Examples
|
642 |
+
========
|
643 |
+
|
644 |
+
>>> from sympy.physics.continuum_mechanics.truss import Truss
|
645 |
+
>>> t = Truss()
|
646 |
+
>>> t.add_node("node_1", 0, 0)
|
647 |
+
>>> t.add_node("node_2", 6, 0)
|
648 |
+
>>> t.add_node("node_3", 2, 2)
|
649 |
+
>>> t.add_node("node_4", 2, 0)
|
650 |
+
>>> t.add_member("member_1", "node_1", "node_4")
|
651 |
+
>>> t.add_member("member_2", "node_2", "node_4")
|
652 |
+
>>> t.add_member("member_3", "node_1", "node_3")
|
653 |
+
>>> t.add_member("member_4", "node_2", "node_3")
|
654 |
+
>>> t.add_member("member_5", "node_3", "node_4")
|
655 |
+
>>> t.apply_load("node_4", magnitude=10, direction=270)
|
656 |
+
>>> t.apply_support("node_1", type="pinned")
|
657 |
+
>>> t.apply_support("node_2", type="roller")
|
658 |
+
>>> t.solve()
|
659 |
+
>>> t.reaction_loads
|
660 |
+
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
|
661 |
+
>>> t.internal_forces
|
662 |
+
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
|
663 |
+
"""
|
664 |
+
count_reaction_loads = 0
|
665 |
+
for node in self._nodes:
|
666 |
+
if node[0] in list(self._supports):
|
667 |
+
if self._supports[node[0]]=='pinned':
|
668 |
+
count_reaction_loads += 2
|
669 |
+
elif self._supports[node[0]]=='roller':
|
670 |
+
count_reaction_loads += 1
|
671 |
+
if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
|
672 |
+
raise ValueError("The given truss cannot be solved")
|
673 |
+
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
|
674 |
+
load_matrix = zeros(2*len(self.nodes), 1)
|
675 |
+
load_matrix_row = 0
|
676 |
+
for node in self._nodes:
|
677 |
+
if node[0] in list(self._loads):
|
678 |
+
for load in self._loads[node[0]]:
|
679 |
+
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
|
680 |
+
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
|
681 |
+
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
|
682 |
+
load_matrix_row += 2
|
683 |
+
cols = 0
|
684 |
+
row = 0
|
685 |
+
for node in self._nodes:
|
686 |
+
if node[0] in list(self._supports):
|
687 |
+
if self._supports[node[0]]=='pinned':
|
688 |
+
coefficients_matrix[row][cols] += 1
|
689 |
+
coefficients_matrix[row+1][cols+1] += 1
|
690 |
+
cols += 2
|
691 |
+
elif self._supports[node[0]]=='roller':
|
692 |
+
coefficients_matrix[row+1][cols] += 1
|
693 |
+
cols += 1
|
694 |
+
row += 2
|
695 |
+
for member in list(self._members):
|
696 |
+
start = self._members[member][0]
|
697 |
+
end = self._members[member][1]
|
698 |
+
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
|
699 |
+
start_index = self._node_labels.index(start)
|
700 |
+
end_index = self._node_labels.index(end)
|
701 |
+
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
|
702 |
+
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
|
703 |
+
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
|
704 |
+
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
|
705 |
+
coefficients_matrix[start_index*2][cols] += horizontal_component_start
|
706 |
+
coefficients_matrix[start_index*2+1][cols] += vertical_component_start
|
707 |
+
coefficients_matrix[end_index*2][cols] += horizontal_component_end
|
708 |
+
coefficients_matrix[end_index*2+1][cols] += vertical_component_end
|
709 |
+
cols += 1
|
710 |
+
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
|
711 |
+
self._reaction_loads = {}
|
712 |
+
i = 0
|
713 |
+
min_load = inf
|
714 |
+
for node in self._nodes:
|
715 |
+
if node[0] in list(self._loads):
|
716 |
+
for load in self._loads[node[0]]:
|
717 |
+
if type(load[0]) not in [Symbol, Mul, Add]:
|
718 |
+
min_load = min(min_load, load[0])
|
719 |
+
for j in range(len(forces_matrix)):
|
720 |
+
if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
|
721 |
+
if abs(forces_matrix[j]/min_load) <1E-10:
|
722 |
+
forces_matrix[j] = 0
|
723 |
+
for node in self._nodes:
|
724 |
+
if node[0] in list(self._supports):
|
725 |
+
if self._supports[node[0]]=='pinned':
|
726 |
+
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
|
727 |
+
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
|
728 |
+
i += 2
|
729 |
+
elif self._supports[node[0]]=='roller':
|
730 |
+
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
|
731 |
+
i += 1
|
732 |
+
for member in list(self._members):
|
733 |
+
self._internal_forces[member] = forces_matrix[i]
|
734 |
+
i += 1
|
735 |
+
return
|
venv/lib/python3.10/site-packages/sympy/physics/control/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel,
|
2 |
+
Feedback, MIMOFeedback, TransferFunctionMatrix, bilinear, backward_diff)
|
3 |
+
from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
|
4 |
+
step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data,
|
5 |
+
ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot,
|
6 |
+
bode_phase_plot, bode_plot)
|
7 |
+
|
8 |
+
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel',
|
9 |
+
'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix','bilinear',
|
10 |
+
'backward_diff', 'pole_zero_numerical_data',
|
11 |
+
'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot',
|
12 |
+
'impulse_response_numerical_data', 'impulse_response_plot',
|
13 |
+
'ramp_response_numerical_data', 'ramp_response_plot',
|
14 |
+
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
|
15 |
+
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
|
venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.02 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/control_plots.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/__pycache__/lti.cpython-310.pyc
ADDED
Binary file (118 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/control_plots.py
ADDED
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import I, pi
|
2 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
3 |
+
from sympy.polys.partfrac import apart
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.external import import_module
|
6 |
+
from sympy.functions import arg, Abs
|
7 |
+
from sympy.integrals.laplace import _fast_inverse_laplace
|
8 |
+
from sympy.physics.control.lti import SISOLinearTimeInvariant
|
9 |
+
from sympy.plotting.plot import LineOver1DRangeSeries
|
10 |
+
from sympy.polys.polytools import Poly
|
11 |
+
from sympy.printing.latex import latex
|
12 |
+
|
13 |
+
__all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
|
14 |
+
'step_response_numerical_data', 'step_response_plot',
|
15 |
+
'impulse_response_numerical_data', 'impulse_response_plot',
|
16 |
+
'ramp_response_numerical_data', 'ramp_response_plot',
|
17 |
+
'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
|
18 |
+
'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
|
19 |
+
|
20 |
+
matplotlib = import_module(
|
21 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
22 |
+
catch=(RuntimeError,))
|
23 |
+
|
24 |
+
numpy = import_module('numpy')
|
25 |
+
|
26 |
+
if matplotlib:
|
27 |
+
plt = matplotlib.pyplot
|
28 |
+
|
29 |
+
if numpy:
|
30 |
+
np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.
|
31 |
+
|
32 |
+
|
33 |
+
def _check_system(system):
|
34 |
+
"""Function to check whether the dynamical system passed for plots is
|
35 |
+
compatible or not."""
|
36 |
+
if not isinstance(system, SISOLinearTimeInvariant):
|
37 |
+
raise NotImplementedError("Only SISO LTI systems are currently supported.")
|
38 |
+
sys = system.to_expr()
|
39 |
+
len_free_symbols = len(sys.free_symbols)
|
40 |
+
if len_free_symbols > 1:
|
41 |
+
raise ValueError("Extra degree of freedom found. Make sure"
|
42 |
+
" that there are no free symbols in the dynamical system other"
|
43 |
+
" than the variable of Laplace transform.")
|
44 |
+
if sys.has(exp):
|
45 |
+
# Should test that exp is not part of a constant, in which case
|
46 |
+
# no exception is required, compare exp(s) with s*exp(1)
|
47 |
+
raise NotImplementedError("Time delay terms are not supported.")
|
48 |
+
|
49 |
+
|
50 |
+
def pole_zero_numerical_data(system):
|
51 |
+
"""
|
52 |
+
Returns the numerical data of poles and zeros of the system.
|
53 |
+
It is internally used by ``pole_zero_plot`` to get the data
|
54 |
+
for plotting poles and zeros. Users can use this data to further
|
55 |
+
analyse the dynamics of the system or plot using a different
|
56 |
+
backend/plotting-module.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
==========
|
60 |
+
|
61 |
+
system : SISOLinearTimeInvariant
|
62 |
+
The system for which the pole-zero data is to be computed.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
=======
|
66 |
+
|
67 |
+
tuple : (zeros, poles)
|
68 |
+
zeros = Zeros of the system. NumPy array of complex numbers.
|
69 |
+
poles = Poles of the system. NumPy array of complex numbers.
|
70 |
+
|
71 |
+
Raises
|
72 |
+
======
|
73 |
+
|
74 |
+
NotImplementedError
|
75 |
+
When a SISO LTI system is not passed.
|
76 |
+
|
77 |
+
When time delay terms are present in the system.
|
78 |
+
|
79 |
+
ValueError
|
80 |
+
When more than one free symbol is present in the system.
|
81 |
+
The only variable in the transfer function should be
|
82 |
+
the variable of the Laplace transform.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
========
|
86 |
+
|
87 |
+
>>> from sympy.abc import s
|
88 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
89 |
+
>>> from sympy.physics.control.control_plots import pole_zero_numerical_data
|
90 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
91 |
+
>>> pole_zero_numerical_data(tf1) # doctest: +SKIP
|
92 |
+
([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ])
|
93 |
+
|
94 |
+
See Also
|
95 |
+
========
|
96 |
+
|
97 |
+
pole_zero_plot
|
98 |
+
|
99 |
+
"""
|
100 |
+
_check_system(system)
|
101 |
+
system = system.doit() # Get the equivalent TransferFunction object.
|
102 |
+
|
103 |
+
num_poly = Poly(system.num, system.var).all_coeffs()
|
104 |
+
den_poly = Poly(system.den, system.var).all_coeffs()
|
105 |
+
|
106 |
+
num_poly = np.array(num_poly, dtype=np.complex128)
|
107 |
+
den_poly = np.array(den_poly, dtype=np.complex128)
|
108 |
+
|
109 |
+
zeros = np.roots(num_poly)
|
110 |
+
poles = np.roots(den_poly)
|
111 |
+
|
112 |
+
return zeros, poles
|
113 |
+
|
114 |
+
|
115 |
+
def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
|
116 |
+
zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
|
117 |
+
show=True, **kwargs):
|
118 |
+
r"""
|
119 |
+
Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.
|
120 |
+
|
121 |
+
A Pole-Zero plot is a graphical representation of a system's poles and
|
122 |
+
zeros. It is plotted on a complex plane, with circular markers representing
|
123 |
+
the system's zeros and 'x' shaped markers representing the system's poles.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
==========
|
127 |
+
|
128 |
+
system : SISOLinearTimeInvariant type systems
|
129 |
+
The system for which the pole-zero plot is to be computed.
|
130 |
+
pole_color : str, tuple, optional
|
131 |
+
The color of the pole points on the plot. Default color
|
132 |
+
is blue. The color can be provided as a matplotlib color string,
|
133 |
+
or a 3-tuple of floats each in the 0-1 range.
|
134 |
+
pole_markersize : Number, optional
|
135 |
+
The size of the markers used to mark the poles in the plot.
|
136 |
+
Default pole markersize is 10.
|
137 |
+
zero_color : str, tuple, optional
|
138 |
+
The color of the zero points on the plot. Default color
|
139 |
+
is orange. The color can be provided as a matplotlib color string,
|
140 |
+
or a 3-tuple of floats each in the 0-1 range.
|
141 |
+
zero_markersize : Number, optional
|
142 |
+
The size of the markers used to mark the zeros in the plot.
|
143 |
+
Default zero markersize is 7.
|
144 |
+
grid : boolean, optional
|
145 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
146 |
+
show_axes : boolean, optional
|
147 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
148 |
+
show : boolean, optional
|
149 |
+
If ``True``, the plot will be displayed otherwise
|
150 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
151 |
+
Defaults to True.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
========
|
155 |
+
|
156 |
+
.. plot::
|
157 |
+
:context: close-figs
|
158 |
+
:format: doctest
|
159 |
+
:include-source: True
|
160 |
+
|
161 |
+
>>> from sympy.abc import s
|
162 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
163 |
+
>>> from sympy.physics.control.control_plots import pole_zero_plot
|
164 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
165 |
+
>>> pole_zero_plot(tf1) # doctest: +SKIP
|
166 |
+
|
167 |
+
See Also
|
168 |
+
========
|
169 |
+
|
170 |
+
pole_zero_numerical_data
|
171 |
+
|
172 |
+
References
|
173 |
+
==========
|
174 |
+
|
175 |
+
.. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
|
176 |
+
|
177 |
+
"""
|
178 |
+
zeros, poles = pole_zero_numerical_data(system)
|
179 |
+
|
180 |
+
zero_real = np.real(zeros)
|
181 |
+
zero_imag = np.imag(zeros)
|
182 |
+
|
183 |
+
pole_real = np.real(poles)
|
184 |
+
pole_imag = np.imag(poles)
|
185 |
+
|
186 |
+
plt.plot(pole_real, pole_imag, 'x', mfc='none',
|
187 |
+
markersize=pole_markersize, color=pole_color)
|
188 |
+
plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
|
189 |
+
color=zero_color)
|
190 |
+
plt.xlabel('Real Axis')
|
191 |
+
plt.ylabel('Imaginary Axis')
|
192 |
+
plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)
|
193 |
+
|
194 |
+
if grid:
|
195 |
+
plt.grid()
|
196 |
+
if show_axes:
|
197 |
+
plt.axhline(0, color='black')
|
198 |
+
plt.axvline(0, color='black')
|
199 |
+
if show:
|
200 |
+
plt.show()
|
201 |
+
return
|
202 |
+
|
203 |
+
return plt
|
204 |
+
|
205 |
+
|
206 |
+
def step_response_numerical_data(system, prec=8, lower_limit=0,
|
207 |
+
upper_limit=10, **kwargs):
|
208 |
+
"""
|
209 |
+
Returns the numerical values of the points in the step response plot
|
210 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
211 |
+
is used. If the user wants to instead get an uniformly
|
212 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
213 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
214 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
215 |
+
for more details.
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
==========
|
219 |
+
|
220 |
+
system : SISOLinearTimeInvariant
|
221 |
+
The system for which the unit step response data is to be computed.
|
222 |
+
prec : int, optional
|
223 |
+
The decimal point precision for the point coordinate values.
|
224 |
+
Defaults to 8.
|
225 |
+
lower_limit : Number, optional
|
226 |
+
The lower limit of the plot range. Defaults to 0.
|
227 |
+
upper_limit : Number, optional
|
228 |
+
The upper limit of the plot range. Defaults to 10.
|
229 |
+
kwargs :
|
230 |
+
Additional keyword arguments are passed to the underlying
|
231 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
232 |
+
|
233 |
+
Returns
|
234 |
+
=======
|
235 |
+
|
236 |
+
tuple : (x, y)
|
237 |
+
x = Time-axis values of the points in the step response. NumPy array.
|
238 |
+
y = Amplitude-axis values of the points in the step response. NumPy array.
|
239 |
+
|
240 |
+
Raises
|
241 |
+
======
|
242 |
+
|
243 |
+
NotImplementedError
|
244 |
+
When a SISO LTI system is not passed.
|
245 |
+
|
246 |
+
When time delay terms are present in the system.
|
247 |
+
|
248 |
+
ValueError
|
249 |
+
When more than one free symbol is present in the system.
|
250 |
+
The only variable in the transfer function should be
|
251 |
+
the variable of the Laplace transform.
|
252 |
+
|
253 |
+
When ``lower_limit`` parameter is less than 0.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.abc import s
|
259 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
260 |
+
>>> from sympy.physics.control.control_plots import step_response_numerical_data
|
261 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
262 |
+
>>> step_response_numerical_data(tf1) # doctest: +SKIP
|
263 |
+
([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
|
264 |
+
[0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])
|
265 |
+
|
266 |
+
See Also
|
267 |
+
========
|
268 |
+
|
269 |
+
step_response_plot
|
270 |
+
|
271 |
+
"""
|
272 |
+
if lower_limit < 0:
|
273 |
+
raise ValueError("Lower limit of time must be greater "
|
274 |
+
"than or equal to zero.")
|
275 |
+
_check_system(system)
|
276 |
+
_x = Dummy("x")
|
277 |
+
expr = system.to_expr()/(system.var)
|
278 |
+
expr = apart(expr, system.var, full=True)
|
279 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
280 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
281 |
+
**kwargs).get_points()
|
282 |
+
|
283 |
+
|
284 |
+
def step_response_plot(system, color='b', prec=8, lower_limit=0,
|
285 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
286 |
+
r"""
|
287 |
+
Returns the unit step response of a continuous-time system. It is
|
288 |
+
the response of the system when the input signal is a step function.
|
289 |
+
|
290 |
+
Parameters
|
291 |
+
==========
|
292 |
+
|
293 |
+
system : SISOLinearTimeInvariant type
|
294 |
+
The LTI SISO system for which the Step Response is to be computed.
|
295 |
+
color : str, tuple, optional
|
296 |
+
The color of the line. Default is Blue.
|
297 |
+
show : boolean, optional
|
298 |
+
If ``True``, the plot will be displayed otherwise
|
299 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
300 |
+
Defaults to True.
|
301 |
+
lower_limit : Number, optional
|
302 |
+
The lower limit of the plot range. Defaults to 0.
|
303 |
+
upper_limit : Number, optional
|
304 |
+
The upper limit of the plot range. Defaults to 10.
|
305 |
+
prec : int, optional
|
306 |
+
The decimal point precision for the point coordinate values.
|
307 |
+
Defaults to 8.
|
308 |
+
show_axes : boolean, optional
|
309 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
310 |
+
grid : boolean, optional
|
311 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
312 |
+
|
313 |
+
Examples
|
314 |
+
========
|
315 |
+
|
316 |
+
.. plot::
|
317 |
+
:context: close-figs
|
318 |
+
:format: doctest
|
319 |
+
:include-source: True
|
320 |
+
|
321 |
+
>>> from sympy.abc import s
|
322 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
323 |
+
>>> from sympy.physics.control.control_plots import step_response_plot
|
324 |
+
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
|
325 |
+
>>> step_response_plot(tf1) # doctest: +SKIP
|
326 |
+
|
327 |
+
See Also
|
328 |
+
========
|
329 |
+
|
330 |
+
impulse_response_plot, ramp_response_plot
|
331 |
+
|
332 |
+
References
|
333 |
+
==========
|
334 |
+
|
335 |
+
.. [1] https://www.mathworks.com/help/control/ref/lti.step.html
|
336 |
+
|
337 |
+
"""
|
338 |
+
x, y = step_response_numerical_data(system, prec=prec,
|
339 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
340 |
+
plt.plot(x, y, color=color)
|
341 |
+
plt.xlabel('Time (s)')
|
342 |
+
plt.ylabel('Amplitude')
|
343 |
+
plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)
|
344 |
+
|
345 |
+
if grid:
|
346 |
+
plt.grid()
|
347 |
+
if show_axes:
|
348 |
+
plt.axhline(0, color='black')
|
349 |
+
plt.axvline(0, color='black')
|
350 |
+
if show:
|
351 |
+
plt.show()
|
352 |
+
return
|
353 |
+
|
354 |
+
return plt
|
355 |
+
|
356 |
+
|
357 |
+
def impulse_response_numerical_data(system, prec=8, lower_limit=0,
|
358 |
+
upper_limit=10, **kwargs):
|
359 |
+
"""
|
360 |
+
Returns the numerical values of the points in the impulse response plot
|
361 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
362 |
+
is used. If the user wants to instead get an uniformly
|
363 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
364 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
365 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
366 |
+
for more details.
|
367 |
+
|
368 |
+
Parameters
|
369 |
+
==========
|
370 |
+
|
371 |
+
system : SISOLinearTimeInvariant
|
372 |
+
The system for which the impulse response data is to be computed.
|
373 |
+
prec : int, optional
|
374 |
+
The decimal point precision for the point coordinate values.
|
375 |
+
Defaults to 8.
|
376 |
+
lower_limit : Number, optional
|
377 |
+
The lower limit of the plot range. Defaults to 0.
|
378 |
+
upper_limit : Number, optional
|
379 |
+
The upper limit of the plot range. Defaults to 10.
|
380 |
+
kwargs :
|
381 |
+
Additional keyword arguments are passed to the underlying
|
382 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
383 |
+
|
384 |
+
Returns
|
385 |
+
=======
|
386 |
+
|
387 |
+
tuple : (x, y)
|
388 |
+
x = Time-axis values of the points in the impulse response. NumPy array.
|
389 |
+
y = Amplitude-axis values of the points in the impulse response. NumPy array.
|
390 |
+
|
391 |
+
Raises
|
392 |
+
======
|
393 |
+
|
394 |
+
NotImplementedError
|
395 |
+
When a SISO LTI system is not passed.
|
396 |
+
|
397 |
+
When time delay terms are present in the system.
|
398 |
+
|
399 |
+
ValueError
|
400 |
+
When more than one free symbol is present in the system.
|
401 |
+
The only variable in the transfer function should be
|
402 |
+
the variable of the Laplace transform.
|
403 |
+
|
404 |
+
When ``lower_limit`` parameter is less than 0.
|
405 |
+
|
406 |
+
Examples
|
407 |
+
========
|
408 |
+
|
409 |
+
>>> from sympy.abc import s
|
410 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
411 |
+
>>> from sympy.physics.control.control_plots import impulse_response_numerical_data
|
412 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
413 |
+
>>> impulse_response_numerical_data(tf1) # doctest: +SKIP
|
414 |
+
([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
|
415 |
+
[0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])
|
416 |
+
|
417 |
+
See Also
|
418 |
+
========
|
419 |
+
|
420 |
+
impulse_response_plot
|
421 |
+
|
422 |
+
"""
|
423 |
+
if lower_limit < 0:
|
424 |
+
raise ValueError("Lower limit of time must be greater "
|
425 |
+
"than or equal to zero.")
|
426 |
+
_check_system(system)
|
427 |
+
_x = Dummy("x")
|
428 |
+
expr = system.to_expr()
|
429 |
+
expr = apart(expr, system.var, full=True)
|
430 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
431 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
432 |
+
**kwargs).get_points()
|
433 |
+
|
434 |
+
|
435 |
+
def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
|
436 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
437 |
+
r"""
|
438 |
+
Returns the unit impulse response (Input is the Dirac-Delta Function) of a
|
439 |
+
continuous-time system.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
==========
|
443 |
+
|
444 |
+
system : SISOLinearTimeInvariant type
|
445 |
+
The LTI SISO system for which the Impulse Response is to be computed.
|
446 |
+
color : str, tuple, optional
|
447 |
+
The color of the line. Default is Blue.
|
448 |
+
show : boolean, optional
|
449 |
+
If ``True``, the plot will be displayed otherwise
|
450 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
451 |
+
Defaults to True.
|
452 |
+
lower_limit : Number, optional
|
453 |
+
The lower limit of the plot range. Defaults to 0.
|
454 |
+
upper_limit : Number, optional
|
455 |
+
The upper limit of the plot range. Defaults to 10.
|
456 |
+
prec : int, optional
|
457 |
+
The decimal point precision for the point coordinate values.
|
458 |
+
Defaults to 8.
|
459 |
+
show_axes : boolean, optional
|
460 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
461 |
+
grid : boolean, optional
|
462 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
463 |
+
|
464 |
+
Examples
|
465 |
+
========
|
466 |
+
|
467 |
+
.. plot::
|
468 |
+
:context: close-figs
|
469 |
+
:format: doctest
|
470 |
+
:include-source: True
|
471 |
+
|
472 |
+
>>> from sympy.abc import s
|
473 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
474 |
+
>>> from sympy.physics.control.control_plots import impulse_response_plot
|
475 |
+
>>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
|
476 |
+
>>> impulse_response_plot(tf1) # doctest: +SKIP
|
477 |
+
|
478 |
+
See Also
|
479 |
+
========
|
480 |
+
|
481 |
+
step_response_plot, ramp_response_plot
|
482 |
+
|
483 |
+
References
|
484 |
+
==========
|
485 |
+
|
486 |
+
.. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html
|
487 |
+
|
488 |
+
"""
|
489 |
+
x, y = impulse_response_numerical_data(system, prec=prec,
|
490 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
491 |
+
plt.plot(x, y, color=color)
|
492 |
+
plt.xlabel('Time (s)')
|
493 |
+
plt.ylabel('Amplitude')
|
494 |
+
plt.title(f'Impulse Response of ${latex(system)}$', pad=20)
|
495 |
+
|
496 |
+
if grid:
|
497 |
+
plt.grid()
|
498 |
+
if show_axes:
|
499 |
+
plt.axhline(0, color='black')
|
500 |
+
plt.axvline(0, color='black')
|
501 |
+
if show:
|
502 |
+
plt.show()
|
503 |
+
return
|
504 |
+
|
505 |
+
return plt
|
506 |
+
|
507 |
+
|
508 |
+
def ramp_response_numerical_data(system, slope=1, prec=8,
|
509 |
+
lower_limit=0, upper_limit=10, **kwargs):
|
510 |
+
"""
|
511 |
+
Returns the numerical values of the points in the ramp response plot
|
512 |
+
of a SISO continuous-time system. By default, adaptive sampling
|
513 |
+
is used. If the user wants to instead get an uniformly
|
514 |
+
sampled response, then ``adaptive`` kwarg should be passed ``False``
|
515 |
+
and ``nb_of_points`` must be passed as additional kwargs.
|
516 |
+
Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries`
|
517 |
+
for more details.
|
518 |
+
|
519 |
+
Parameters
|
520 |
+
==========
|
521 |
+
|
522 |
+
system : SISOLinearTimeInvariant
|
523 |
+
The system for which the ramp response data is to be computed.
|
524 |
+
slope : Number, optional
|
525 |
+
The slope of the input ramp function. Defaults to 1.
|
526 |
+
prec : int, optional
|
527 |
+
The decimal point precision for the point coordinate values.
|
528 |
+
Defaults to 8.
|
529 |
+
lower_limit : Number, optional
|
530 |
+
The lower limit of the plot range. Defaults to 0.
|
531 |
+
upper_limit : Number, optional
|
532 |
+
The upper limit of the plot range. Defaults to 10.
|
533 |
+
kwargs :
|
534 |
+
Additional keyword arguments are passed to the underlying
|
535 |
+
:class:`sympy.plotting.plot.LineOver1DRangeSeries` class.
|
536 |
+
|
537 |
+
Returns
|
538 |
+
=======
|
539 |
+
|
540 |
+
tuple : (x, y)
|
541 |
+
x = Time-axis values of the points in the ramp response plot. NumPy array.
|
542 |
+
y = Amplitude-axis values of the points in the ramp response plot. NumPy array.
|
543 |
+
|
544 |
+
Raises
|
545 |
+
======
|
546 |
+
|
547 |
+
NotImplementedError
|
548 |
+
When a SISO LTI system is not passed.
|
549 |
+
|
550 |
+
When time delay terms are present in the system.
|
551 |
+
|
552 |
+
ValueError
|
553 |
+
When more than one free symbol is present in the system.
|
554 |
+
The only variable in the transfer function should be
|
555 |
+
the variable of the Laplace transform.
|
556 |
+
|
557 |
+
When ``lower_limit`` parameter is less than 0.
|
558 |
+
|
559 |
+
When ``slope`` is negative.
|
560 |
+
|
561 |
+
Examples
|
562 |
+
========
|
563 |
+
|
564 |
+
>>> from sympy.abc import s
|
565 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
566 |
+
>>> from sympy.physics.control.control_plots import ramp_response_numerical_data
|
567 |
+
>>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
|
568 |
+
>>> ramp_response_numerical_data(tf1) # doctest: +SKIP
|
569 |
+
(([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
|
570 |
+
[1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))
|
571 |
+
|
572 |
+
See Also
|
573 |
+
========
|
574 |
+
|
575 |
+
ramp_response_plot
|
576 |
+
|
577 |
+
"""
|
578 |
+
if slope < 0:
|
579 |
+
raise ValueError("Slope must be greater than or equal"
|
580 |
+
" to zero.")
|
581 |
+
if lower_limit < 0:
|
582 |
+
raise ValueError("Lower limit of time must be greater "
|
583 |
+
"than or equal to zero.")
|
584 |
+
_check_system(system)
|
585 |
+
_x = Dummy("x")
|
586 |
+
expr = (slope*system.to_expr())/((system.var)**2)
|
587 |
+
expr = apart(expr, system.var, full=True)
|
588 |
+
_y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
|
589 |
+
return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
|
590 |
+
**kwargs).get_points()
|
591 |
+
|
592 |
+
|
593 |
+
def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
|
594 |
+
upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
|
595 |
+
r"""
|
596 |
+
Returns the ramp response of a continuous-time system.
|
597 |
+
|
598 |
+
Ramp function is defined as the straight line
|
599 |
+
passing through origin ($f(x) = mx$). The slope of
|
600 |
+
the ramp function can be varied by the user and
|
601 |
+
the default value is 1.
|
602 |
+
|
603 |
+
Parameters
|
604 |
+
==========
|
605 |
+
|
606 |
+
system : SISOLinearTimeInvariant type
|
607 |
+
The LTI SISO system for which the Ramp Response is to be computed.
|
608 |
+
slope : Number, optional
|
609 |
+
The slope of the input ramp function. Defaults to 1.
|
610 |
+
color : str, tuple, optional
|
611 |
+
The color of the line. Default is Blue.
|
612 |
+
show : boolean, optional
|
613 |
+
If ``True``, the plot will be displayed otherwise
|
614 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
615 |
+
Defaults to True.
|
616 |
+
lower_limit : Number, optional
|
617 |
+
The lower limit of the plot range. Defaults to 0.
|
618 |
+
upper_limit : Number, optional
|
619 |
+
The upper limit of the plot range. Defaults to 10.
|
620 |
+
prec : int, optional
|
621 |
+
The decimal point precision for the point coordinate values.
|
622 |
+
Defaults to 8.
|
623 |
+
show_axes : boolean, optional
|
624 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
625 |
+
grid : boolean, optional
|
626 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
627 |
+
|
628 |
+
Examples
|
629 |
+
========
|
630 |
+
|
631 |
+
.. plot::
|
632 |
+
:context: close-figs
|
633 |
+
:format: doctest
|
634 |
+
:include-source: True
|
635 |
+
|
636 |
+
>>> from sympy.abc import s
|
637 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
638 |
+
>>> from sympy.physics.control.control_plots import ramp_response_plot
|
639 |
+
>>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
|
640 |
+
>>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP
|
641 |
+
|
642 |
+
See Also
|
643 |
+
========
|
644 |
+
|
645 |
+
step_response_plot, ramp_response_plot
|
646 |
+
|
647 |
+
References
|
648 |
+
==========
|
649 |
+
|
650 |
+
.. [1] https://en.wikipedia.org/wiki/Ramp_function
|
651 |
+
|
652 |
+
"""
|
653 |
+
x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
|
654 |
+
lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
|
655 |
+
plt.plot(x, y, color=color)
|
656 |
+
plt.xlabel('Time (s)')
|
657 |
+
plt.ylabel('Amplitude')
|
658 |
+
plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)
|
659 |
+
|
660 |
+
if grid:
|
661 |
+
plt.grid()
|
662 |
+
if show_axes:
|
663 |
+
plt.axhline(0, color='black')
|
664 |
+
plt.axvline(0, color='black')
|
665 |
+
if show:
|
666 |
+
plt.show()
|
667 |
+
return
|
668 |
+
|
669 |
+
return plt
|
670 |
+
|
671 |
+
|
672 |
+
def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs):
|
673 |
+
"""
|
674 |
+
Returns the numerical data of the Bode magnitude plot of the system.
|
675 |
+
It is internally used by ``bode_magnitude_plot`` to get the data
|
676 |
+
for plotting Bode magnitude plot. Users can use this data to further
|
677 |
+
analyse the dynamics of the system or plot using a different
|
678 |
+
backend/plotting-module.
|
679 |
+
|
680 |
+
Parameters
|
681 |
+
==========
|
682 |
+
|
683 |
+
system : SISOLinearTimeInvariant
|
684 |
+
The system for which the data is to be computed.
|
685 |
+
initial_exp : Number, optional
|
686 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
687 |
+
final_exp : Number, optional
|
688 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
689 |
+
freq_unit : string, optional
|
690 |
+
User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
|
691 |
+
|
692 |
+
Returns
|
693 |
+
=======
|
694 |
+
|
695 |
+
tuple : (x, y)
|
696 |
+
x = x-axis values of the Bode magnitude plot.
|
697 |
+
y = y-axis values of the Bode magnitude plot.
|
698 |
+
|
699 |
+
Raises
|
700 |
+
======
|
701 |
+
|
702 |
+
NotImplementedError
|
703 |
+
When a SISO LTI system is not passed.
|
704 |
+
|
705 |
+
When time delay terms are present in the system.
|
706 |
+
|
707 |
+
ValueError
|
708 |
+
When more than one free symbol is present in the system.
|
709 |
+
The only variable in the transfer function should be
|
710 |
+
the variable of the Laplace transform.
|
711 |
+
|
712 |
+
When incorrect frequency units are given as input.
|
713 |
+
|
714 |
+
Examples
|
715 |
+
========
|
716 |
+
|
717 |
+
>>> from sympy.abc import s
|
718 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
719 |
+
>>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
|
720 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
721 |
+
>>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP
|
722 |
+
([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
|
723 |
+
[-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])
|
724 |
+
|
725 |
+
See Also
|
726 |
+
========
|
727 |
+
|
728 |
+
bode_magnitude_plot, bode_phase_numerical_data
|
729 |
+
|
730 |
+
"""
|
731 |
+
_check_system(system)
|
732 |
+
expr = system.to_expr()
|
733 |
+
freq_units = ('rad/sec', 'Hz')
|
734 |
+
if freq_unit not in freq_units:
|
735 |
+
raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
|
736 |
+
|
737 |
+
_w = Dummy("w", real=True)
|
738 |
+
if freq_unit == 'Hz':
|
739 |
+
repl = I*_w*2*pi
|
740 |
+
else:
|
741 |
+
repl = I*_w
|
742 |
+
w_expr = expr.subs({system.var: repl})
|
743 |
+
|
744 |
+
mag = 20*log(Abs(w_expr), 10)
|
745 |
+
|
746 |
+
x, y = LineOver1DRangeSeries(mag,
|
747 |
+
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
|
748 |
+
|
749 |
+
return x, y
|
750 |
+
|
751 |
+
|
752 |
+
def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
|
753 |
+
color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs):
|
754 |
+
r"""
|
755 |
+
Returns the Bode magnitude plot of a continuous-time system.
|
756 |
+
|
757 |
+
See ``bode_plot`` for all the parameters.
|
758 |
+
"""
|
759 |
+
x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
|
760 |
+
final_exp=final_exp, freq_unit=freq_unit)
|
761 |
+
plt.plot(x, y, color=color, **kwargs)
|
762 |
+
plt.xscale('log')
|
763 |
+
|
764 |
+
|
765 |
+
plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
|
766 |
+
plt.ylabel('Magnitude (dB)')
|
767 |
+
plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)
|
768 |
+
|
769 |
+
if grid:
|
770 |
+
plt.grid(True)
|
771 |
+
if show_axes:
|
772 |
+
plt.axhline(0, color='black')
|
773 |
+
plt.axvline(0, color='black')
|
774 |
+
if show:
|
775 |
+
plt.show()
|
776 |
+
return
|
777 |
+
|
778 |
+
return plt
|
779 |
+
|
780 |
+
|
781 |
+
def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
782 |
+
"""
|
783 |
+
Returns the numerical data of the Bode phase plot of the system.
|
784 |
+
It is internally used by ``bode_phase_plot`` to get the data
|
785 |
+
for plotting Bode phase plot. Users can use this data to further
|
786 |
+
analyse the dynamics of the system or plot using a different
|
787 |
+
backend/plotting-module.
|
788 |
+
|
789 |
+
Parameters
|
790 |
+
==========
|
791 |
+
|
792 |
+
system : SISOLinearTimeInvariant
|
793 |
+
The system for which the Bode phase plot data is to be computed.
|
794 |
+
initial_exp : Number, optional
|
795 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
796 |
+
final_exp : Number, optional
|
797 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
798 |
+
freq_unit : string, optional
|
799 |
+
User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units.
|
800 |
+
phase_unit : string, optional
|
801 |
+
User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
|
802 |
+
|
803 |
+
Returns
|
804 |
+
=======
|
805 |
+
|
806 |
+
tuple : (x, y)
|
807 |
+
x = x-axis values of the Bode phase plot.
|
808 |
+
y = y-axis values of the Bode phase plot.
|
809 |
+
|
810 |
+
Raises
|
811 |
+
======
|
812 |
+
|
813 |
+
NotImplementedError
|
814 |
+
When a SISO LTI system is not passed.
|
815 |
+
|
816 |
+
When time delay terms are present in the system.
|
817 |
+
|
818 |
+
ValueError
|
819 |
+
When more than one free symbol is present in the system.
|
820 |
+
The only variable in the transfer function should be
|
821 |
+
the variable of the Laplace transform.
|
822 |
+
|
823 |
+
When incorrect frequency or phase units are given as input.
|
824 |
+
|
825 |
+
Examples
|
826 |
+
========
|
827 |
+
|
828 |
+
>>> from sympy.abc import s
|
829 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
830 |
+
>>> from sympy.physics.control.control_plots import bode_phase_numerical_data
|
831 |
+
>>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
|
832 |
+
>>> bode_phase_numerical_data(tf1) # doctest: +SKIP
|
833 |
+
([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
|
834 |
+
[-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])
|
835 |
+
|
836 |
+
See Also
|
837 |
+
========
|
838 |
+
|
839 |
+
bode_magnitude_plot, bode_phase_numerical_data
|
840 |
+
|
841 |
+
"""
|
842 |
+
_check_system(system)
|
843 |
+
expr = system.to_expr()
|
844 |
+
freq_units = ('rad/sec', 'Hz')
|
845 |
+
phase_units = ('rad', 'deg')
|
846 |
+
if freq_unit not in freq_units:
|
847 |
+
raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
|
848 |
+
if phase_unit not in phase_units:
|
849 |
+
raise ValueError('Only "rad" and "deg" are accepted phase units.')
|
850 |
+
|
851 |
+
_w = Dummy("w", real=True)
|
852 |
+
if freq_unit == 'Hz':
|
853 |
+
repl = I*_w*2*pi
|
854 |
+
else:
|
855 |
+
repl = I*_w
|
856 |
+
w_expr = expr.subs({system.var: repl})
|
857 |
+
|
858 |
+
if phase_unit == 'deg':
|
859 |
+
phase = arg(w_expr)*180/pi
|
860 |
+
else:
|
861 |
+
phase = arg(w_expr)
|
862 |
+
|
863 |
+
x, y = LineOver1DRangeSeries(phase,
|
864 |
+
(_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()
|
865 |
+
|
866 |
+
return x, y
|
867 |
+
|
868 |
+
|
869 |
+
def bode_phase_plot(system, initial_exp=-5, final_exp=5,
|
870 |
+
color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
871 |
+
r"""
|
872 |
+
Returns the Bode phase plot of a continuous-time system.
|
873 |
+
|
874 |
+
See ``bode_plot`` for all the parameters.
|
875 |
+
"""
|
876 |
+
x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
|
877 |
+
final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit)
|
878 |
+
plt.plot(x, y, color=color, **kwargs)
|
879 |
+
plt.xscale('log')
|
880 |
+
|
881 |
+
plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
|
882 |
+
plt.ylabel('Phase (%s)' % phase_unit)
|
883 |
+
plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)
|
884 |
+
|
885 |
+
if grid:
|
886 |
+
plt.grid(True)
|
887 |
+
if show_axes:
|
888 |
+
plt.axhline(0, color='black')
|
889 |
+
plt.axvline(0, color='black')
|
890 |
+
if show:
|
891 |
+
plt.show()
|
892 |
+
return
|
893 |
+
|
894 |
+
return plt
|
895 |
+
|
896 |
+
|
897 |
+
def bode_plot(system, initial_exp=-5, final_exp=5,
|
898 |
+
grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs):
|
899 |
+
r"""
|
900 |
+
Returns the Bode phase and magnitude plots of a continuous-time system.
|
901 |
+
|
902 |
+
Parameters
|
903 |
+
==========
|
904 |
+
|
905 |
+
system : SISOLinearTimeInvariant type
|
906 |
+
The LTI SISO system for which the Bode Plot is to be computed.
|
907 |
+
initial_exp : Number, optional
|
908 |
+
The initial exponent of 10 of the semilog plot. Defaults to -5.
|
909 |
+
final_exp : Number, optional
|
910 |
+
The final exponent of 10 of the semilog plot. Defaults to 5.
|
911 |
+
show : boolean, optional
|
912 |
+
If ``True``, the plot will be displayed otherwise
|
913 |
+
the equivalent matplotlib ``plot`` object will be returned.
|
914 |
+
Defaults to True.
|
915 |
+
prec : int, optional
|
916 |
+
The decimal point precision for the point coordinate values.
|
917 |
+
Defaults to 8.
|
918 |
+
grid : boolean, optional
|
919 |
+
If ``True``, the plot will have a grid. Defaults to True.
|
920 |
+
show_axes : boolean, optional
|
921 |
+
If ``True``, the coordinate axes will be shown. Defaults to False.
|
922 |
+
freq_unit : string, optional
|
923 |
+
User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
|
924 |
+
phase_unit : string, optional
|
925 |
+
User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
|
926 |
+
|
927 |
+
Examples
|
928 |
+
========
|
929 |
+
|
930 |
+
.. plot::
|
931 |
+
:context: close-figs
|
932 |
+
:format: doctest
|
933 |
+
:include-source: True
|
934 |
+
|
935 |
+
>>> from sympy.abc import s
|
936 |
+
>>> from sympy.physics.control.lti import TransferFunction
|
937 |
+
>>> from sympy.physics.control.control_plots import bode_plot
|
938 |
+
>>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
|
939 |
+
>>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP
|
940 |
+
|
941 |
+
See Also
|
942 |
+
========
|
943 |
+
|
944 |
+
bode_magnitude_plot, bode_phase_plot
|
945 |
+
|
946 |
+
"""
|
947 |
+
plt.subplot(211)
|
948 |
+
mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
|
949 |
+
show=False, grid=grid, show_axes=show_axes,
|
950 |
+
freq_unit=freq_unit, **kwargs)
|
951 |
+
mag.title(f'Bode Plot of ${latex(system)}$', pad=20)
|
952 |
+
mag.xlabel(None)
|
953 |
+
plt.subplot(212)
|
954 |
+
bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
|
955 |
+
show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, **kwargs).title(None)
|
956 |
+
|
957 |
+
if show:
|
958 |
+
plt.show()
|
959 |
+
return
|
960 |
+
|
961 |
+
return plt
|
venv/lib/python3.10/site-packages/sympy/physics/control/lti.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc
ADDED
Binary file (53.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/test_control_plots.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import isclose
|
2 |
+
from sympy.core.numbers import I
|
3 |
+
from sympy.core.symbol import Dummy
|
4 |
+
from sympy.functions.elementary.complexes import (Abs, arg)
|
5 |
+
from sympy.functions.elementary.exponential import log
|
6 |
+
from sympy.abc import s, p, a
|
7 |
+
from sympy.external import import_module
|
8 |
+
from sympy.physics.control.control_plots import \
|
9 |
+
(pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data,
|
10 |
+
step_response_plot, impulse_response_numerical_data,
|
11 |
+
impulse_response_plot, ramp_response_numerical_data,
|
12 |
+
ramp_response_plot, bode_magnitude_numerical_data,
|
13 |
+
bode_phase_numerical_data, bode_plot)
|
14 |
+
from sympy.physics.control.lti import (TransferFunction,
|
15 |
+
Series, Parallel, TransferFunctionMatrix)
|
16 |
+
from sympy.testing.pytest import raises, skip
|
17 |
+
|
18 |
+
matplotlib = import_module(
|
19 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
20 |
+
catch=(RuntimeError,))
|
21 |
+
|
22 |
+
numpy = import_module('numpy')
|
23 |
+
|
24 |
+
tf1 = TransferFunction(1, p**2 + 0.5*p + 2, p)
|
25 |
+
tf2 = TransferFunction(p, 6*p**2 + 3*p + 1, p)
|
26 |
+
tf3 = TransferFunction(p, p**3 - 1, p)
|
27 |
+
tf4 = TransferFunction(10, p**3, p)
|
28 |
+
tf5 = TransferFunction(5, s**2 + 2*s + 10, s)
|
29 |
+
tf6 = TransferFunction(1, 1, s)
|
30 |
+
tf7 = TransferFunction(4*s*3 + 9*s**2 + 0.1*s + 11, 8*s**6 + 9*s**4 + 11, s)
|
31 |
+
tf8 = TransferFunction(5, s**2 + (2+I)*s + 10, s)
|
32 |
+
|
33 |
+
ser1 = Series(tf4, TransferFunction(1, p - 5, p))
|
34 |
+
ser2 = Series(tf3, TransferFunction(p, p + 2, p))
|
35 |
+
|
36 |
+
par1 = Parallel(tf1, tf2)
|
37 |
+
par2 = Parallel(tf1, tf2, tf3)
|
38 |
+
|
39 |
+
|
40 |
+
def _to_tuple(a, b):
|
41 |
+
return tuple(a), tuple(b)
|
42 |
+
|
43 |
+
def _trim_tuple(a, b):
|
44 |
+
a, b = _to_tuple(a, b)
|
45 |
+
return tuple(a[0: 2] + a[len(a)//2 : len(a)//2 + 1] + a[-2:]), \
|
46 |
+
tuple(b[0: 2] + b[len(b)//2 : len(b)//2 + 1] + b[-2:])
|
47 |
+
|
48 |
+
def y_coordinate_equality(plot_data_func, evalf_func, system):
|
49 |
+
"""Checks whether the y-coordinate value of the plotted
|
50 |
+
data point is equal to the value of the function at a
|
51 |
+
particular x."""
|
52 |
+
x, y = plot_data_func(system)
|
53 |
+
x, y = _trim_tuple(x, y)
|
54 |
+
y_exp = tuple(evalf_func(system, x_i) for x_i in x)
|
55 |
+
return all(Abs(y_exp_i - y_i) < 1e-8 for y_exp_i, y_i in zip(y_exp, y))
|
56 |
+
|
57 |
+
|
58 |
+
def test_errors():
|
59 |
+
if not matplotlib:
|
60 |
+
skip("Matplotlib not the default backend")
|
61 |
+
|
62 |
+
# Invalid `system` check
|
63 |
+
tfm = TransferFunctionMatrix([[tf6, tf5], [tf5, tf6]])
|
64 |
+
expr = 1/(s**2 - 1)
|
65 |
+
raises(NotImplementedError, lambda: pole_zero_plot(tfm))
|
66 |
+
raises(NotImplementedError, lambda: pole_zero_numerical_data(expr))
|
67 |
+
raises(NotImplementedError, lambda: impulse_response_plot(expr))
|
68 |
+
raises(NotImplementedError, lambda: impulse_response_numerical_data(tfm))
|
69 |
+
raises(NotImplementedError, lambda: step_response_plot(tfm))
|
70 |
+
raises(NotImplementedError, lambda: step_response_numerical_data(expr))
|
71 |
+
raises(NotImplementedError, lambda: ramp_response_plot(expr))
|
72 |
+
raises(NotImplementedError, lambda: ramp_response_numerical_data(tfm))
|
73 |
+
raises(NotImplementedError, lambda: bode_plot(tfm))
|
74 |
+
|
75 |
+
# More than 1 variables
|
76 |
+
tf_a = TransferFunction(a, s + 1, s)
|
77 |
+
raises(ValueError, lambda: pole_zero_plot(tf_a))
|
78 |
+
raises(ValueError, lambda: pole_zero_numerical_data(tf_a))
|
79 |
+
raises(ValueError, lambda: impulse_response_plot(tf_a))
|
80 |
+
raises(ValueError, lambda: impulse_response_numerical_data(tf_a))
|
81 |
+
raises(ValueError, lambda: step_response_plot(tf_a))
|
82 |
+
raises(ValueError, lambda: step_response_numerical_data(tf_a))
|
83 |
+
raises(ValueError, lambda: ramp_response_plot(tf_a))
|
84 |
+
raises(ValueError, lambda: ramp_response_numerical_data(tf_a))
|
85 |
+
raises(ValueError, lambda: bode_plot(tf_a))
|
86 |
+
|
87 |
+
# lower_limit > 0 for response plots
|
88 |
+
raises(ValueError, lambda: impulse_response_plot(tf1, lower_limit=-1))
|
89 |
+
raises(ValueError, lambda: step_response_plot(tf1, lower_limit=-0.1))
|
90 |
+
raises(ValueError, lambda: ramp_response_plot(tf1, lower_limit=-4/3))
|
91 |
+
|
92 |
+
# slope in ramp_response_plot() is negative
|
93 |
+
raises(ValueError, lambda: ramp_response_plot(tf1, slope=-0.1))
|
94 |
+
|
95 |
+
# incorrect frequency or phase unit
|
96 |
+
raises(ValueError, lambda: bode_plot(tf1,freq_unit = 'hz'))
|
97 |
+
raises(ValueError, lambda: bode_plot(tf1,phase_unit = 'degree'))
|
98 |
+
|
99 |
+
|
100 |
+
def test_pole_zero():
|
101 |
+
if not numpy:
|
102 |
+
skip("NumPy is required for this test")
|
103 |
+
|
104 |
+
def pz_tester(sys, expected_value):
|
105 |
+
z, p = pole_zero_numerical_data(sys)
|
106 |
+
z_check = numpy.allclose(z, expected_value[0])
|
107 |
+
p_check = numpy.allclose(p, expected_value[1])
|
108 |
+
return p_check and z_check
|
109 |
+
|
110 |
+
exp1 = [[], [-0.24999999999999994+1.3919410907075054j, -0.24999999999999994-1.3919410907075054j]]
|
111 |
+
exp2 = [[0.0], [-0.25+0.3227486121839514j, -0.25-0.3227486121839514j]]
|
112 |
+
exp3 = [[0.0], [-0.5000000000000004+0.8660254037844395j,
|
113 |
+
-0.5000000000000004-0.8660254037844395j, 0.9999999999999998+0j]]
|
114 |
+
exp4 = [[], [5.0, 0.0, 0.0, 0.0]]
|
115 |
+
exp5 = [[-5.645751311064592, -0.5000000000000008, -0.3542486889354093],
|
116 |
+
[-0.24999999999999986+1.3919410907075052j,
|
117 |
+
-0.24999999999999986-1.3919410907075052j, -0.2499999999999998+0.32274861218395134j,
|
118 |
+
-0.2499999999999998-0.32274861218395134j]]
|
119 |
+
exp6 = [[], [-1.1641600331447917-3.545808351896439j,
|
120 |
+
-0.8358399668552097+2.5458083518964383j]]
|
121 |
+
|
122 |
+
assert pz_tester(tf1, exp1)
|
123 |
+
assert pz_tester(tf2, exp2)
|
124 |
+
assert pz_tester(tf3, exp3)
|
125 |
+
assert pz_tester(ser1, exp4)
|
126 |
+
assert pz_tester(par1, exp5)
|
127 |
+
assert pz_tester(tf8, exp6)
|
128 |
+
|
129 |
+
|
130 |
+
def test_bode():
|
131 |
+
if not numpy:
|
132 |
+
skip("NumPy is required for this test")
|
133 |
+
|
134 |
+
def bode_phase_evalf(system, point):
|
135 |
+
expr = system.to_expr()
|
136 |
+
_w = Dummy("w", real=True)
|
137 |
+
w_expr = expr.subs({system.var: I*_w})
|
138 |
+
return arg(w_expr).subs({_w: point}).evalf()
|
139 |
+
|
140 |
+
def bode_mag_evalf(system, point):
|
141 |
+
expr = system.to_expr()
|
142 |
+
_w = Dummy("w", real=True)
|
143 |
+
w_expr = expr.subs({system.var: I*_w})
|
144 |
+
return 20*log(Abs(w_expr), 10).subs({_w: point}).evalf()
|
145 |
+
|
146 |
+
def test_bode_data(sys):
|
147 |
+
return y_coordinate_equality(bode_magnitude_numerical_data, bode_mag_evalf, sys) \
|
148 |
+
and y_coordinate_equality(bode_phase_numerical_data, bode_phase_evalf, sys)
|
149 |
+
|
150 |
+
assert test_bode_data(tf1)
|
151 |
+
assert test_bode_data(tf2)
|
152 |
+
assert test_bode_data(tf3)
|
153 |
+
assert test_bode_data(tf4)
|
154 |
+
assert test_bode_data(tf5)
|
155 |
+
|
156 |
+
|
157 |
+
def check_point_accuracy(a, b):
|
158 |
+
return all(isclose(a_i, b_i, rel_tol=10e-12) for \
|
159 |
+
a_i, b_i in zip(a, b))
|
160 |
+
|
161 |
+
|
162 |
+
def test_impulse_response():
|
163 |
+
if not numpy:
|
164 |
+
skip("NumPy is required for this test")
|
165 |
+
|
166 |
+
def impulse_res_tester(sys, expected_value):
|
167 |
+
x, y = _to_tuple(*impulse_response_numerical_data(sys,
|
168 |
+
adaptive=False, nb_of_points=10))
|
169 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
170 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
171 |
+
return x_check and y_check
|
172 |
+
|
173 |
+
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
174 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
175 |
+
(0.0, 0.544019738507865, 0.01993849743234938, -0.31140243360893216, -0.022852779906491996, 0.1778306498155759,
|
176 |
+
0.01962941084328499, -0.1013115194573652, -0.014975541213105696, 0.0575789724730714))
|
177 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
178 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.1666666675, 0.08389223412935855,
|
179 |
+
0.02338051973475047, -0.014966807776379383, -0.034645954223054234, -0.040560075735512804,
|
180 |
+
-0.037658628907103885, -0.030149507719590022, -0.021162090730736834, -0.012721292737437523))
|
181 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
182 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (4.369893391586999e-09, 1.1750333000630964,
|
183 |
+
3.2922404058312473, 9.432290008148343, 28.37098083007151, 86.18577464367974, 261.90356653762115,
|
184 |
+
795.6538758627842, 2416.9920942096983, 7342.159505206647))
|
185 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
186 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 6.17283950617284, 24.69135802469136,
|
187 |
+
55.555555555555564, 98.76543209876544, 154.320987654321, 222.22222222222226, 302.46913580246917,
|
188 |
+
395.0617283950618, 500.0))
|
189 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
190 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, -0.10455606138085417,
|
191 |
+
0.06757671513476461, -0.03234567568833768, 0.013582514927757873, -0.005273419510705473,
|
192 |
+
0.0019364083003354075, -0.000680070134067832, 0.00022969845960406913, -7.476094359583917e-05))
|
193 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
194 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
195 |
+
(-6.016699583000218e-09, 0.35039802056107394, 3.3728423827689884, 12.119846079276684,
|
196 |
+
25.86101014293389, 29.352480635282088, -30.49475907497664, -273.8717189554019, -863.2381702029659,
|
197 |
+
-1747.0262164682233))
|
198 |
+
exp7 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335,
|
199 |
+
4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779,
|
200 |
+
8.88888888888889, 10.0), (0.0, 18.934638095560974, 5346.93244680907, 1384609.8718249386,
|
201 |
+
358161126.65801865, 92645770015.70108, 23964739753087.42, 6198974342083139.0, 1.603492601616059e+18,
|
202 |
+
4.147764422869658e+20))
|
203 |
+
|
204 |
+
assert impulse_res_tester(tf1, exp1)
|
205 |
+
assert impulse_res_tester(tf2, exp2)
|
206 |
+
assert impulse_res_tester(tf3, exp3)
|
207 |
+
assert impulse_res_tester(tf4, exp4)
|
208 |
+
assert impulse_res_tester(tf5, exp5)
|
209 |
+
assert impulse_res_tester(tf7, exp6)
|
210 |
+
assert impulse_res_tester(ser1, exp7)
|
211 |
+
|
212 |
+
|
213 |
+
def test_step_response():
|
214 |
+
if not numpy:
|
215 |
+
skip("NumPy is required for this test")
|
216 |
+
|
217 |
+
def step_res_tester(sys, expected_value):
|
218 |
+
x, y = _to_tuple(*step_response_numerical_data(sys,
|
219 |
+
adaptive=False, nb_of_points=10))
|
220 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
221 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
222 |
+
return x_check and y_check
|
223 |
+
|
224 |
+
exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
225 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
226 |
+
(-1.9193285738516863e-08, 0.42283495488246126, 0.7840485977945262, 0.5546841805655717,
|
227 |
+
0.33903033806932087, 0.4627251747410237, 0.5909907598988051, 0.5247213989553071,
|
228 |
+
0.4486997874319281, 0.4839358435839171))
|
229 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
230 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
231 |
+
(0.0, 0.13728409095645816, 0.19474559355325086, 0.1974909129243011, 0.16841657696573073,
|
232 |
+
0.12559777736159378, 0.08153828016664713, 0.04360471317348958, 0.015072994568868221,
|
233 |
+
-0.003636420058445484))
|
234 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
235 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
236 |
+
(0.0, 0.6314542141914303, 2.9356520038101035, 9.37731009663807, 28.452300356688376,
|
237 |
+
86.25721933273988, 261.9236645044672, 795.6435410577224, 2416.9786984578764, 7342.154119725917))
|
238 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
239 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
240 |
+
(0.0, 2.286236899862826, 18.28989519890261, 61.72839629629631, 146.31916159122088, 285.7796124828532,
|
241 |
+
493.8271703703705, 784.1792566529494, 1170.553292729767, 1666.6667))
|
242 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
243 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
244 |
+
(-3.999999997894577e-09, 0.6720357068882895, 0.4429938256137113, 0.5182010838004518,
|
245 |
+
0.4944139147159695, 0.5016379853883338, 0.4995466896527733, 0.5001154784851325,
|
246 |
+
0.49997448824584123, 0.5000039745919259))
|
247 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
248 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
249 |
+
(-1.5433688493882158e-09, 0.3428705539937336, 1.1253619102202777, 3.1849962651016517,
|
250 |
+
9.47532757182671, 28.727231099148135, 87.29426924860557, 265.2138681048606, 805.6636260007757,
|
251 |
+
2447.387582370878))
|
252 |
+
|
253 |
+
assert step_res_tester(tf1, exp1)
|
254 |
+
assert step_res_tester(tf2, exp2)
|
255 |
+
assert step_res_tester(tf3, exp3)
|
256 |
+
assert step_res_tester(tf4, exp4)
|
257 |
+
assert step_res_tester(tf5, exp5)
|
258 |
+
assert step_res_tester(ser2, exp6)
|
259 |
+
|
260 |
+
|
261 |
+
def test_ramp_response():
|
262 |
+
if not numpy:
|
263 |
+
skip("NumPy is required for this test")
|
264 |
+
|
265 |
+
def ramp_res_tester(sys, num_points, expected_value, slope=1):
|
266 |
+
x, y = _to_tuple(*ramp_response_numerical_data(sys,
|
267 |
+
slope=slope, adaptive=False, nb_of_points=num_points))
|
268 |
+
x_check = check_point_accuracy(x, expected_value[0])
|
269 |
+
y_check = check_point_accuracy(y, expected_value[1])
|
270 |
+
return x_check and y_check
|
271 |
+
|
272 |
+
exp1 = ((0.0, 2.0, 4.0, 6.0, 8.0, 10.0), (0.0, 0.7324667795033895, 1.9909720978650398,
|
273 |
+
2.7956587704217783, 3.9224897567931514, 4.85022655284895))
|
274 |
+
exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445,
|
275 |
+
5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0),
|
276 |
+
(2.4360213402019326e-08, 0.10175320182493253, 0.33057612497658406, 0.5967937263298935,
|
277 |
+
0.8431511866718248, 1.0398805391471613, 1.1776043125035738, 1.2600994825747305, 1.2981042689274653,
|
278 |
+
1.304684417610106))
|
279 |
+
exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
280 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.9329040468771836e-08,
|
281 |
+
0.34686634635794555, 2.9998828170537903, 12.33303690737476, 40.993913948137795, 127.84145222317912,
|
282 |
+
391.41713691996, 1192.0006858708389, 3623.9808672503405, 11011.728034546572))
|
283 |
+
exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
284 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.9051973784484078, 30.483158055174524,
|
285 |
+
154.32098765432104, 487.7305288827924, 1190.7483615302544, 2469.1358024691367, 4574.3789056546275,
|
286 |
+
7803.688462124678, 12500.0))
|
287 |
+
exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
288 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 3.8844361856975635, 9.141792069209865,
|
289 |
+
14.096349157657231, 19.09783068994694, 24.10179770390321, 29.09907319114121, 34.10040420185154,
|
290 |
+
39.09983919254265, 44.10006013058409))
|
291 |
+
exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555,
|
292 |
+
6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.1111111111111112, 2.2222222222222223,
|
293 |
+
3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0))
|
294 |
+
|
295 |
+
assert ramp_res_tester(tf1, 6, exp1)
|
296 |
+
assert ramp_res_tester(tf2, 10, exp2, 1.2)
|
297 |
+
assert ramp_res_tester(tf3, 10, exp3, 1.5)
|
298 |
+
assert ramp_res_tester(tf4, 10, exp4, 3)
|
299 |
+
assert ramp_res_tester(tf5, 10, exp5, 9)
|
300 |
+
assert ramp_res_tester(tf6, 10, exp6)
|
venv/lib/python3.10/site-packages/sympy/physics/control/tests/test_lti.py
ADDED
@@ -0,0 +1,1245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.function import Function
|
3 |
+
from sympy.core.mul import Mul
|
4 |
+
from sympy.core.numbers import (I, Rational, oo)
|
5 |
+
from sympy.core.power import Pow
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.symbol import symbols
|
8 |
+
from sympy.functions.elementary.exponential import exp
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.matrices.dense import eye
|
11 |
+
from sympy.polys.polytools import factor
|
12 |
+
from sympy.polys.rootoftools import CRootOf
|
13 |
+
from sympy.simplify.simplify import simplify
|
14 |
+
from sympy.core.containers import Tuple
|
15 |
+
from sympy.matrices import ImmutableMatrix, Matrix
|
16 |
+
from sympy.physics.control import (TransferFunction, Series, Parallel,
|
17 |
+
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback,
|
18 |
+
bilinear, backward_diff)
|
19 |
+
from sympy.testing.pytest import raises
|
20 |
+
|
21 |
+
a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn, T = symbols('a, x, b, s, g, d, p, k,\
|
22 |
+
a0:3, b0:3, tau, zeta, wn, T')
|
23 |
+
TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
24 |
+
TF2 = TransferFunction(k, 1, s)
|
25 |
+
TF3 = TransferFunction(a2*p - s, a2*s + p, s)
|
26 |
+
|
27 |
+
|
28 |
+
def test_TransferFunction_construction():
|
29 |
+
tf = TransferFunction(s + 1, s**2 + s + 1, s)
|
30 |
+
assert tf.num == (s + 1)
|
31 |
+
assert tf.den == (s**2 + s + 1)
|
32 |
+
assert tf.args == (s + 1, s**2 + s + 1, s)
|
33 |
+
|
34 |
+
tf1 = TransferFunction(s + 4, s - 5, s)
|
35 |
+
assert tf1.num == (s + 4)
|
36 |
+
assert tf1.den == (s - 5)
|
37 |
+
assert tf1.args == (s + 4, s - 5, s)
|
38 |
+
|
39 |
+
# using different polynomial variables.
|
40 |
+
tf2 = TransferFunction(p + 3, p**2 - 9, p)
|
41 |
+
assert tf2.num == (p + 3)
|
42 |
+
assert tf2.den == (p**2 - 9)
|
43 |
+
assert tf2.args == (p + 3, p**2 - 9, p)
|
44 |
+
|
45 |
+
tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
46 |
+
assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p)
|
47 |
+
|
48 |
+
# no pole-zero cancellation on its own.
|
49 |
+
tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
50 |
+
assert tf4.den == (s - 1)*(s + 5)
|
51 |
+
assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s)
|
52 |
+
|
53 |
+
tf4_ = TransferFunction(p + 2, p + 2, p)
|
54 |
+
assert tf4_.args == (p + 2, p + 2, p)
|
55 |
+
|
56 |
+
tf5 = TransferFunction(s - 1, 4 - p, s)
|
57 |
+
assert tf5.args == (s - 1, 4 - p, s)
|
58 |
+
|
59 |
+
tf5_ = TransferFunction(s - 1, s - 1, s)
|
60 |
+
assert tf5_.args == (s - 1, s - 1, s)
|
61 |
+
|
62 |
+
tf6 = TransferFunction(5, 6, s)
|
63 |
+
assert tf6.num == 5
|
64 |
+
assert tf6.den == 6
|
65 |
+
assert tf6.args == (5, 6, s)
|
66 |
+
|
67 |
+
tf6_ = TransferFunction(1/2, 4, s)
|
68 |
+
assert tf6_.num == 0.5
|
69 |
+
assert tf6_.den == 4
|
70 |
+
assert tf6_.args == (0.500000000000000, 4, s)
|
71 |
+
|
72 |
+
tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s)
|
73 |
+
tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p)
|
74 |
+
assert not tf7 == tf8
|
75 |
+
|
76 |
+
tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
77 |
+
tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s)
|
78 |
+
assert tf7_ == tf8_
|
79 |
+
assert -(-tf7_) == tf7_ == -(-(-(-tf7_)))
|
80 |
+
|
81 |
+
tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s)
|
82 |
+
assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s)
|
83 |
+
|
84 |
+
tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
85 |
+
tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p)
|
86 |
+
assert tf10.args == (d + p**3, a + d*s + g*s**2, p)
|
87 |
+
assert tf10_ == tf10
|
88 |
+
|
89 |
+
tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s)
|
90 |
+
assert tf11.num == (a0 + a1*s)
|
91 |
+
assert tf11.den == (b0 + b1*s + b2*s**2)
|
92 |
+
assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s)
|
93 |
+
|
94 |
+
# when just the numerator is 0, leave the denominator alone.
|
95 |
+
tf12 = TransferFunction(0, p**2 - p + 1, p)
|
96 |
+
assert tf12.args == (0, p**2 - p + 1, p)
|
97 |
+
|
98 |
+
tf13 = TransferFunction(0, 1, s)
|
99 |
+
assert tf13.args == (0, 1, s)
|
100 |
+
|
101 |
+
# float exponents
|
102 |
+
tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s)
|
103 |
+
assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s)
|
104 |
+
|
105 |
+
tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p)
|
106 |
+
assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p)
|
107 |
+
|
108 |
+
omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i')
|
109 |
+
tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s)
|
110 |
+
assert tf18.num == k_i/s + k_o*s + k_p
|
111 |
+
assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s)
|
112 |
+
|
113 |
+
# ValueError when denominator is zero.
|
114 |
+
raises(ValueError, lambda: TransferFunction(4, 0, s))
|
115 |
+
raises(ValueError, lambda: TransferFunction(s, 0, s))
|
116 |
+
raises(ValueError, lambda: TransferFunction(0, 0, s))
|
117 |
+
|
118 |
+
raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s))
|
119 |
+
|
120 |
+
raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3))
|
121 |
+
raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4))
|
122 |
+
raises(TypeError, lambda: TransferFunction(3, 4, 8))
|
123 |
+
|
124 |
+
|
125 |
+
def test_TransferFunction_functions():
|
126 |
+
# classmethod from_rational_expression
|
127 |
+
expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False)
|
128 |
+
expr_2 = s/0
|
129 |
+
expr_3 = (p*s**2 + 5*s)/(s + 1)**3
|
130 |
+
expr_4 = 6
|
131 |
+
expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2))
|
132 |
+
expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9))
|
133 |
+
tf = TransferFunction(s + 1, s**2 + 2, s)
|
134 |
+
delay = exp(-s/tau)
|
135 |
+
expr_7 = delay*tf.to_expr()
|
136 |
+
H1 = TransferFunction.from_rational_expression(expr_7, s)
|
137 |
+
H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s)
|
138 |
+
expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False)
|
139 |
+
|
140 |
+
assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s)
|
141 |
+
raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2))
|
142 |
+
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3))
|
143 |
+
assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s)
|
144 |
+
assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p)
|
145 |
+
raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4))
|
146 |
+
assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s)
|
147 |
+
assert TransferFunction.from_rational_expression(expr_5, s) == \
|
148 |
+
TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s)
|
149 |
+
assert TransferFunction.from_rational_expression(expr_6, s) == \
|
150 |
+
TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s)
|
151 |
+
assert H1 == H2
|
152 |
+
assert TransferFunction.from_rational_expression(expr_8, s) == \
|
153 |
+
TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s)
|
154 |
+
|
155 |
+
# explicitly cancel poles and zeros.
|
156 |
+
tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s)
|
157 |
+
a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s)
|
158 |
+
assert tf0.simplify() == simplify(tf0) == a
|
159 |
+
|
160 |
+
tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
161 |
+
b = TransferFunction(p + 3, p + 5, p)
|
162 |
+
assert tf1.simplify() == simplify(tf1) == b
|
163 |
+
|
164 |
+
# expand the numerator and the denominator.
|
165 |
+
G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
166 |
+
G2 = TransferFunction(1, -3, p)
|
167 |
+
c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p)
|
168 |
+
d = (b0*s**s + b1*p**s)*(b2*s*p + p**p)
|
169 |
+
e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p)
|
170 |
+
f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s
|
171 |
+
g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s
|
172 |
+
G3 = TransferFunction(c, d, s)
|
173 |
+
G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p)
|
174 |
+
|
175 |
+
assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s)
|
176 |
+
assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p)
|
177 |
+
assert G2.expand() == G2
|
178 |
+
assert G3.expand() == TransferFunction(e, f, s)
|
179 |
+
assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p)
|
180 |
+
|
181 |
+
# purely symbolic polynomials.
|
182 |
+
p1 = a1*s + a0
|
183 |
+
p2 = b2*s**2 + b1*s + b0
|
184 |
+
SP1 = TransferFunction(p1, p2, s)
|
185 |
+
expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s)
|
186 |
+
expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s)
|
187 |
+
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_
|
188 |
+
assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1
|
189 |
+
assert expect1_.evalf() == expect1
|
190 |
+
|
191 |
+
c1, d0, d1, d2 = symbols('c1, d0:3')
|
192 |
+
p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0
|
193 |
+
SP2 = TransferFunction(p3, p4, p)
|
194 |
+
expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p)
|
195 |
+
expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p)
|
196 |
+
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_
|
197 |
+
assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2
|
198 |
+
assert expect2_.evalf() == expect2
|
199 |
+
|
200 |
+
SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s)
|
201 |
+
expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s)
|
202 |
+
expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s)
|
203 |
+
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_
|
204 |
+
assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3
|
205 |
+
assert expect3_.evalf() == expect3
|
206 |
+
|
207 |
+
SP4 = TransferFunction(s - a1*p**3, a0*s + p, p)
|
208 |
+
expect4 = TransferFunction(7.0*p**3 + s, p - s, p)
|
209 |
+
expect4_ = TransferFunction(7*p**3 + s, p - s, p)
|
210 |
+
assert SP4.subs({a0: -1, a1: -7}) == expect4_
|
211 |
+
assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4
|
212 |
+
assert expect4_.evalf() == expect4
|
213 |
+
|
214 |
+
# Low-frequency (or DC) gain.
|
215 |
+
assert tf0.dc_gain() == 1
|
216 |
+
assert tf1.dc_gain() == Rational(3, 5)
|
217 |
+
assert SP2.dc_gain() == 0
|
218 |
+
assert expect4.dc_gain() == -1
|
219 |
+
assert expect2_.dc_gain() == 0
|
220 |
+
assert TransferFunction(1, s, s).dc_gain() == oo
|
221 |
+
|
222 |
+
# Poles of a transfer function.
|
223 |
+
tf_ = TransferFunction(x**3 - k, k, x)
|
224 |
+
_tf = TransferFunction(k, x**4 - k, x)
|
225 |
+
TF_ = TransferFunction(x**2, x**10 + x + x**2, x)
|
226 |
+
_TF = TransferFunction(x**10 + x + x**2, x**2, x)
|
227 |
+
assert G1.poles() == [I, I, -I, -I]
|
228 |
+
assert G2.poles() == []
|
229 |
+
assert tf1.poles() == [-5, 1]
|
230 |
+
assert expect4_.poles() == [s]
|
231 |
+
assert SP4.poles() == [-a0*s]
|
232 |
+
assert expect3.poles() == [-0.25*p]
|
233 |
+
assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I])
|
234 |
+
assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I])
|
235 |
+
assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))]
|
236 |
+
assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
237 |
+
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
238 |
+
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
239 |
+
raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles())
|
240 |
+
|
241 |
+
# Stability of a transfer function.
|
242 |
+
q, r = symbols('q, r', negative=True)
|
243 |
+
t = symbols('t', positive=True)
|
244 |
+
TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s)
|
245 |
+
stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s)
|
246 |
+
stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s)
|
247 |
+
|
248 |
+
assert G1.is_stable() is False
|
249 |
+
assert G2.is_stable() is True
|
250 |
+
assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve.
|
251 |
+
assert expect2.is_stable() is False
|
252 |
+
assert expect1.is_stable() is True
|
253 |
+
assert stable_tf.is_stable() is True
|
254 |
+
assert stable_tf_.is_stable() is True
|
255 |
+
assert TF_.is_stable() is False
|
256 |
+
assert expect4_.is_stable() is None # no assumption provided for the only pole 's'.
|
257 |
+
assert SP4.is_stable() is None
|
258 |
+
|
259 |
+
# Zeros of a transfer function.
|
260 |
+
assert G1.zeros() == [1, 1]
|
261 |
+
assert G2.zeros() == []
|
262 |
+
assert tf1.zeros() == [-3, 1]
|
263 |
+
assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 -
|
264 |
+
sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14]
|
265 |
+
assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2,
|
266 |
+
-(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2]
|
267 |
+
assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0),
|
268 |
+
1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125])
|
269 |
+
assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2,
|
270 |
+
-k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2]
|
271 |
+
assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2),
|
272 |
+
CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6),
|
273 |
+
CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)]
|
274 |
+
raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros())
|
275 |
+
|
276 |
+
# negation of TF.
|
277 |
+
tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s)
|
278 |
+
tf3 = TransferFunction(-3*p + 3, 1 - p, p)
|
279 |
+
assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s)
|
280 |
+
assert -tf3 == TransferFunction(3*p - 3, 1 - p, p)
|
281 |
+
|
282 |
+
# taking power of a TF.
|
283 |
+
tf4 = TransferFunction(p + 4, p - 3, p)
|
284 |
+
tf5 = TransferFunction(s**2 + 1, 1 - s, s)
|
285 |
+
expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s)
|
286 |
+
expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p)
|
287 |
+
assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1
|
288 |
+
assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2
|
289 |
+
assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s)
|
290 |
+
assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p)
|
291 |
+
assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
292 |
+
|
293 |
+
raises(ValueError, lambda: tf4**(s**2 + s - 1))
|
294 |
+
raises(ValueError, lambda: tf5**s)
|
295 |
+
raises(ValueError, lambda: tf4**tf5)
|
296 |
+
|
297 |
+
# SymPy's own functions.
|
298 |
+
tf = TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
299 |
+
tf6 = TransferFunction(s + p, p**2 - 5, s)
|
300 |
+
assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s)
|
301 |
+
assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1
|
302 |
+
# subs & xreplace
|
303 |
+
assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s)
|
304 |
+
assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s)
|
305 |
+
assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s)
|
306 |
+
raises(TypeError, lambda: tf3.xreplace({p: exp(2)}))
|
307 |
+
assert tf3.subs(p, exp(2)) == tf3
|
308 |
+
|
309 |
+
tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
310 |
+
assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k)
|
311 |
+
assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s)
|
312 |
+
|
313 |
+
# Conversion to Expr with to_expr()
|
314 |
+
tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s)
|
315 |
+
tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s)
|
316 |
+
tf10 = TransferFunction(0, 1, s)
|
317 |
+
tf11 = TransferFunction(1, 1, s)
|
318 |
+
assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False)
|
319 |
+
assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False)
|
320 |
+
assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False)
|
321 |
+
assert tf11.to_expr() == Pow(1, -1, evaluate=False)
|
322 |
+
|
323 |
+
def test_TransferFunction_addition_and_subtraction():
|
324 |
+
tf1 = TransferFunction(s + 6, s - 5, s)
|
325 |
+
tf2 = TransferFunction(s + 3, s + 1, s)
|
326 |
+
tf3 = TransferFunction(s + 1, s**2 + s + 1, s)
|
327 |
+
tf4 = TransferFunction(p, 2 - p, p)
|
328 |
+
|
329 |
+
# addition
|
330 |
+
assert tf1 + tf2 == Parallel(tf1, tf2)
|
331 |
+
assert tf3 + tf1 == Parallel(tf3, tf1)
|
332 |
+
assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3)
|
333 |
+
assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3)
|
334 |
+
|
335 |
+
c = symbols("c", commutative=False)
|
336 |
+
raises(ValueError, lambda: tf1 + Matrix([1, 2, 3]))
|
337 |
+
raises(ValueError, lambda: tf2 + c)
|
338 |
+
raises(ValueError, lambda: tf3 + tf4)
|
339 |
+
raises(ValueError, lambda: tf1 + (s - 1))
|
340 |
+
raises(ValueError, lambda: tf1 + 8)
|
341 |
+
raises(ValueError, lambda: (1 - p**3) + tf1)
|
342 |
+
|
343 |
+
# subtraction
|
344 |
+
assert tf1 - tf2 == Parallel(tf1, -tf2)
|
345 |
+
assert tf3 - tf2 == Parallel(tf3, -tf2)
|
346 |
+
assert -tf1 - tf3 == Parallel(-tf1, -tf3)
|
347 |
+
assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3)
|
348 |
+
|
349 |
+
raises(ValueError, lambda: tf1 - Matrix([1, 2, 3]))
|
350 |
+
raises(ValueError, lambda: tf3 - tf4)
|
351 |
+
raises(ValueError, lambda: tf1 - (s - 1))
|
352 |
+
raises(ValueError, lambda: tf1 - 8)
|
353 |
+
raises(ValueError, lambda: (s + 5) - tf2)
|
354 |
+
raises(ValueError, lambda: (1 + p**4) - tf1)
|
355 |
+
|
356 |
+
|
357 |
+
def test_TransferFunction_multiplication_and_division():
|
358 |
+
G1 = TransferFunction(s + 3, -s**3 + 9, s)
|
359 |
+
G2 = TransferFunction(s + 1, s - 5, s)
|
360 |
+
G3 = TransferFunction(p, p**4 - 6, p)
|
361 |
+
G4 = TransferFunction(p + 4, p - 5, p)
|
362 |
+
G5 = TransferFunction(s + 6, s - 5, s)
|
363 |
+
G6 = TransferFunction(s + 3, s + 1, s)
|
364 |
+
G7 = TransferFunction(1, 1, s)
|
365 |
+
|
366 |
+
# multiplication
|
367 |
+
assert G1*G2 == Series(G1, G2)
|
368 |
+
assert -G1*G5 == Series(-G1, G5)
|
369 |
+
assert -G2*G5*-G6 == Series(-G2, G5, -G6)
|
370 |
+
assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6)
|
371 |
+
assert G3*G4 == Series(G3, G4)
|
372 |
+
assert (G1*G2)*-(G5*G6) == \
|
373 |
+
Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6))
|
374 |
+
assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6))
|
375 |
+
|
376 |
+
c = symbols("c", commutative=False)
|
377 |
+
raises(ValueError, lambda: G3 * Matrix([1, 2, 3]))
|
378 |
+
raises(ValueError, lambda: G1 * c)
|
379 |
+
raises(ValueError, lambda: G3 * G5)
|
380 |
+
raises(ValueError, lambda: G5 * (s - 1))
|
381 |
+
raises(ValueError, lambda: 9 * G5)
|
382 |
+
|
383 |
+
raises(ValueError, lambda: G3 / Matrix([1, 2, 3]))
|
384 |
+
raises(ValueError, lambda: G6 / 0)
|
385 |
+
raises(ValueError, lambda: G3 / G5)
|
386 |
+
raises(ValueError, lambda: G5 / 2)
|
387 |
+
raises(ValueError, lambda: G5 / s**2)
|
388 |
+
raises(ValueError, lambda: (s - 4*s**2) / G2)
|
389 |
+
raises(ValueError, lambda: 0 / G4)
|
390 |
+
raises(ValueError, lambda: G5 / G6)
|
391 |
+
raises(ValueError, lambda: -G3 /G4)
|
392 |
+
raises(ValueError, lambda: G7 / (1 + G6))
|
393 |
+
raises(ValueError, lambda: G7 / (G5 * G6))
|
394 |
+
raises(ValueError, lambda: G7 / (G7 + (G5 + G6)))
|
395 |
+
|
396 |
+
|
397 |
+
def test_TransferFunction_is_proper():
|
398 |
+
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
399 |
+
G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
400 |
+
G2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
401 |
+
G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
402 |
+
G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
403 |
+
assert G1.is_proper
|
404 |
+
assert G2.is_proper
|
405 |
+
assert G3.is_proper
|
406 |
+
assert not G4.is_proper
|
407 |
+
|
408 |
+
|
409 |
+
def test_TransferFunction_is_strictly_proper():
|
410 |
+
omega_o, zeta, tau = symbols('omega_o, zeta, tau')
|
411 |
+
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
412 |
+
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
413 |
+
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
414 |
+
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
415 |
+
assert not tf1.is_strictly_proper
|
416 |
+
assert not tf2.is_strictly_proper
|
417 |
+
assert tf3.is_strictly_proper
|
418 |
+
assert not tf4.is_strictly_proper
|
419 |
+
|
420 |
+
|
421 |
+
def test_TransferFunction_is_biproper():
|
422 |
+
tau, omega_o, zeta = symbols('tau, omega_o, zeta')
|
423 |
+
tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o)
|
424 |
+
tf2 = TransferFunction(tau - s**3, tau + p**4, tau)
|
425 |
+
tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p)
|
426 |
+
tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
427 |
+
assert tf1.is_biproper
|
428 |
+
assert tf2.is_biproper
|
429 |
+
assert not tf3.is_biproper
|
430 |
+
assert not tf4.is_biproper
|
431 |
+
|
432 |
+
|
433 |
+
def test_Series_construction():
|
434 |
+
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
435 |
+
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
436 |
+
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
437 |
+
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
438 |
+
inp = Function('X_d')(s)
|
439 |
+
out = Function('X')(s)
|
440 |
+
|
441 |
+
s0 = Series(tf, tf2)
|
442 |
+
assert s0.args == (tf, tf2)
|
443 |
+
assert s0.var == s
|
444 |
+
|
445 |
+
s1 = Series(Parallel(tf, -tf2), tf2)
|
446 |
+
assert s1.args == (Parallel(tf, -tf2), tf2)
|
447 |
+
assert s1.var == s
|
448 |
+
|
449 |
+
tf3_ = TransferFunction(inp, 1, s)
|
450 |
+
tf4_ = TransferFunction(-out, 1, s)
|
451 |
+
s2 = Series(tf, Parallel(tf3_, tf4_), tf2)
|
452 |
+
assert s2.args == (tf, Parallel(tf3_, tf4_), tf2)
|
453 |
+
|
454 |
+
s3 = Series(tf, tf2, tf4)
|
455 |
+
assert s3.args == (tf, tf2, tf4)
|
456 |
+
|
457 |
+
s4 = Series(tf3_, tf4_)
|
458 |
+
assert s4.args == (tf3_, tf4_)
|
459 |
+
assert s4.var == s
|
460 |
+
|
461 |
+
s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4)
|
462 |
+
assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4)
|
463 |
+
|
464 |
+
s7 = Series(tf, tf2)
|
465 |
+
assert s0 == s7
|
466 |
+
assert not s0 == s2
|
467 |
+
|
468 |
+
raises(ValueError, lambda: Series(tf, tf3))
|
469 |
+
raises(ValueError, lambda: Series(tf, tf2, tf3, tf4))
|
470 |
+
raises(ValueError, lambda: Series(-tf3, tf2))
|
471 |
+
raises(TypeError, lambda: Series(2, tf, tf4))
|
472 |
+
raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2))
|
473 |
+
raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4])))
|
474 |
+
|
475 |
+
|
476 |
+
def test_MIMOSeries_construction():
|
477 |
+
tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
478 |
+
tf_2 = TransferFunction(a2*p - s, a2*s + p, s)
|
479 |
+
tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
480 |
+
|
481 |
+
tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]])
|
482 |
+
tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]])
|
483 |
+
tfm_3 = TransferFunctionMatrix([[-tf_3]])
|
484 |
+
tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]])
|
485 |
+
tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p)
|
486 |
+
|
487 |
+
s8 = MIMOSeries(tfm_2, tfm_1)
|
488 |
+
assert s8.args == (tfm_2, tfm_1)
|
489 |
+
assert s8.var == s
|
490 |
+
assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1)
|
491 |
+
|
492 |
+
s9 = MIMOSeries(tfm_3, tfm_2, tfm_1)
|
493 |
+
assert s9.args == (tfm_3, tfm_2, tfm_1)
|
494 |
+
assert s9.var == s
|
495 |
+
assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1)
|
496 |
+
|
497 |
+
s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
498 |
+
assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1)
|
499 |
+
assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1)
|
500 |
+
|
501 |
+
# arg cannot be empty tuple.
|
502 |
+
raises(ValueError, lambda: MIMOSeries())
|
503 |
+
|
504 |
+
# arg cannot contain SISO as well as MIMO systems.
|
505 |
+
raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1))
|
506 |
+
|
507 |
+
# for all the adjacent transfer function matrices:
|
508 |
+
# no. of inputs of first TFM must be equal to the no. of outputs of the second TFM.
|
509 |
+
raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1))
|
510 |
+
|
511 |
+
# all the TFMs must use the same complex variable.
|
512 |
+
raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5))
|
513 |
+
|
514 |
+
# Number or expression not allowed in the arguments.
|
515 |
+
raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3))
|
516 |
+
raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3))
|
517 |
+
raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3))
|
518 |
+
|
519 |
+
|
520 |
+
def test_Series_functions():
|
521 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
522 |
+
tf2 = TransferFunction(k, 1, s)
|
523 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
524 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
525 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
526 |
+
|
527 |
+
assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \
|
528 |
+
== Series(tf1, Series(tf2, tf3))
|
529 |
+
assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3))
|
530 |
+
assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5)
|
531 |
+
assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5)
|
532 |
+
assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5)
|
533 |
+
assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5)
|
534 |
+
assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5)
|
535 |
+
assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5))
|
536 |
+
assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5)))
|
537 |
+
assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3)
|
538 |
+
assert -tf1*tf2 == Series(-tf1, tf2)
|
539 |
+
assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2))
|
540 |
+
raises(ValueError, lambda: tf1*tf2*tf4)
|
541 |
+
raises(ValueError, lambda: tf1*(tf2 - tf4))
|
542 |
+
raises(ValueError, lambda: tf3*Matrix([1, 2, 3]))
|
543 |
+
|
544 |
+
# evaluate=True -> doit()
|
545 |
+
assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \
|
546 |
+
TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
547 |
+
assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \
|
548 |
+
TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s)
|
549 |
+
assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \
|
550 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
551 |
+
assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit()
|
552 |
+
|
553 |
+
assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \
|
554 |
+
TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
555 |
+
assert Series(-tf1, -tf2, -tf3).doit() == \
|
556 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
557 |
+
assert -Series(tf1, tf2, tf3).doit() == \
|
558 |
+
TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
559 |
+
assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \
|
560 |
+
TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s)
|
561 |
+
|
562 |
+
assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s)
|
563 |
+
assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
564 |
+
TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
565 |
+
|
566 |
+
S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3))
|
567 |
+
assert S1.is_proper
|
568 |
+
assert not S1.is_strictly_proper
|
569 |
+
assert S1.is_biproper
|
570 |
+
|
571 |
+
S2 = Series(tf1, tf2, tf3)
|
572 |
+
assert S2.is_proper
|
573 |
+
assert S2.is_strictly_proper
|
574 |
+
assert not S2.is_biproper
|
575 |
+
|
576 |
+
S3 = Series(tf1, -tf2, Parallel(tf1, -tf3))
|
577 |
+
assert S3.is_proper
|
578 |
+
assert S3.is_strictly_proper
|
579 |
+
assert not S3.is_biproper
|
580 |
+
|
581 |
+
|
582 |
+
def test_MIMOSeries_functions():
|
583 |
+
tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]])
|
584 |
+
tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]])
|
585 |
+
tfm3 = TransferFunctionMatrix([[-TF1]])
|
586 |
+
tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]])
|
587 |
+
tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]])
|
588 |
+
tfm6 = TransferFunctionMatrix([[-TF3], [TF1]])
|
589 |
+
tfm7 = TransferFunctionMatrix([[TF1], [-TF2]])
|
590 |
+
|
591 |
+
assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6)
|
592 |
+
assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6)
|
593 |
+
assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7)
|
594 |
+
assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5)
|
595 |
+
assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4))
|
596 |
+
|
597 |
+
raises(ValueError, lambda: tfm1*tfm2 + TF1)
|
598 |
+
raises(TypeError, lambda: tfm1*tfm2 + a0)
|
599 |
+
raises(TypeError, lambda: tfm4*tfm6 - (s - 1))
|
600 |
+
raises(TypeError, lambda: tfm4*-tfm6 - 8)
|
601 |
+
raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2)
|
602 |
+
|
603 |
+
# Shape criteria.
|
604 |
+
|
605 |
+
raises(TypeError, lambda: -tfm1*tfm2 + tfm4)
|
606 |
+
raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5)
|
607 |
+
raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5)
|
608 |
+
|
609 |
+
assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1)
|
610 |
+
assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1)
|
611 |
+
|
612 |
+
# Multiplication of a Series object with a SISO TF not allowed.
|
613 |
+
|
614 |
+
raises(ValueError, lambda: tfm4*tfm5*TF1)
|
615 |
+
raises(TypeError, lambda: tfm4*tfm5*a1)
|
616 |
+
raises(TypeError, lambda: tfm4*-tfm5*(s - 2))
|
617 |
+
raises(TypeError, lambda: tfm5*tfm4*9)
|
618 |
+
raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4)
|
619 |
+
|
620 |
+
# Transfer function matrix in the arguments.
|
621 |
+
assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit()
|
622 |
+
== TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2,
|
623 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),),
|
624 |
+
(TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
625 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),))))
|
626 |
+
|
627 |
+
# doit() should not cancel poles and zeros.
|
628 |
+
mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]])
|
629 |
+
mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]])
|
630 |
+
tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s)
|
631 |
+
assert (MIMOSeries(tm_2, tm_1).doit()
|
632 |
+
== TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),)))
|
633 |
+
assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),))
|
634 |
+
|
635 |
+
# calling doit() will expand the internal Series and Parallel objects.
|
636 |
+
assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True)
|
637 |
+
== MIMOSeries(-tfm3, -tfm2, tfm1).doit()
|
638 |
+
== TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2,
|
639 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),),
|
640 |
+
(TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2),
|
641 |
+
(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),))))
|
642 |
+
assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True)
|
643 |
+
== MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit()
|
644 |
+
== TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \
|
645 |
+
k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \
|
646 |
+
TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix))
|
647 |
+
|
648 |
+
|
649 |
+
def test_Parallel_construction():
|
650 |
+
tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s)
|
651 |
+
tf2 = TransferFunction(a2*p - s, a2*s + p, s)
|
652 |
+
tf3 = TransferFunction(a0*p + p**a1 - s, p, p)
|
653 |
+
tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
654 |
+
inp = Function('X_d')(s)
|
655 |
+
out = Function('X')(s)
|
656 |
+
|
657 |
+
p0 = Parallel(tf, tf2)
|
658 |
+
assert p0.args == (tf, tf2)
|
659 |
+
assert p0.var == s
|
660 |
+
|
661 |
+
p1 = Parallel(Series(tf, -tf2), tf2)
|
662 |
+
assert p1.args == (Series(tf, -tf2), tf2)
|
663 |
+
assert p1.var == s
|
664 |
+
|
665 |
+
tf3_ = TransferFunction(inp, 1, s)
|
666 |
+
tf4_ = TransferFunction(-out, 1, s)
|
667 |
+
p2 = Parallel(tf, Series(tf3_, -tf4_), tf2)
|
668 |
+
assert p2.args == (tf, Series(tf3_, -tf4_), tf2)
|
669 |
+
|
670 |
+
p3 = Parallel(tf, tf2, tf4)
|
671 |
+
assert p3.args == (tf, tf2, tf4)
|
672 |
+
|
673 |
+
p4 = Parallel(tf3_, tf4_)
|
674 |
+
assert p4.args == (tf3_, tf4_)
|
675 |
+
assert p4.var == s
|
676 |
+
|
677 |
+
p5 = Parallel(tf, tf2)
|
678 |
+
assert p0 == p5
|
679 |
+
assert not p0 == p1
|
680 |
+
|
681 |
+
p6 = Parallel(tf2, tf4, Series(tf2, -tf4))
|
682 |
+
assert p6.args == (tf2, tf4, Series(tf2, -tf4))
|
683 |
+
|
684 |
+
p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4)
|
685 |
+
assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4)
|
686 |
+
|
687 |
+
raises(ValueError, lambda: Parallel(tf, tf3))
|
688 |
+
raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4))
|
689 |
+
raises(ValueError, lambda: Parallel(-tf3, tf4))
|
690 |
+
raises(TypeError, lambda: Parallel(2, tf, tf4))
|
691 |
+
raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2))
|
692 |
+
raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4])))
|
693 |
+
|
694 |
+
|
695 |
+
def test_MIMOParallel_construction():
|
696 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
697 |
+
tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]])
|
698 |
+
tfm3 = TransferFunctionMatrix([[TF1]])
|
699 |
+
tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]])
|
700 |
+
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]])
|
701 |
+
tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]])
|
702 |
+
tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p)
|
703 |
+
|
704 |
+
p8 = MIMOParallel(tfm1, tfm2)
|
705 |
+
assert p8.args == (tfm1, tfm2)
|
706 |
+
assert p8.var == s
|
707 |
+
assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1)
|
708 |
+
|
709 |
+
p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2)
|
710 |
+
assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2)
|
711 |
+
assert p9.var == s
|
712 |
+
assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1)
|
713 |
+
|
714 |
+
p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
715 |
+
assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2)
|
716 |
+
assert p10.var == s
|
717 |
+
assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1)
|
718 |
+
|
719 |
+
p11 = MIMOParallel(tfm2, tfm1, tfm4)
|
720 |
+
assert p11.args == (tfm2, tfm1, tfm4)
|
721 |
+
assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1)
|
722 |
+
|
723 |
+
p12 = MIMOParallel(tfm6, tfm5)
|
724 |
+
assert p12.args == (tfm6, tfm5)
|
725 |
+
assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2)
|
726 |
+
|
727 |
+
p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
728 |
+
assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4)
|
729 |
+
assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1)
|
730 |
+
|
731 |
+
# arg cannot be empty tuple.
|
732 |
+
raises(TypeError, lambda: MIMOParallel(()))
|
733 |
+
|
734 |
+
# arg cannot contain SISO as well as MIMO systems.
|
735 |
+
raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1))
|
736 |
+
|
737 |
+
# all TFMs must have same shapes.
|
738 |
+
raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4))
|
739 |
+
|
740 |
+
# all TFMs must be using the same complex variable.
|
741 |
+
raises(ValueError, lambda: MIMOParallel(tfm3, tfm7))
|
742 |
+
|
743 |
+
# Number or expression not allowed in the arguments.
|
744 |
+
raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4))
|
745 |
+
raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2))
|
746 |
+
|
747 |
+
|
748 |
+
def test_Parallel_functions():
|
749 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
750 |
+
tf2 = TransferFunction(k, 1, s)
|
751 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
752 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
753 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
754 |
+
|
755 |
+
assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3)
|
756 |
+
assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5)
|
757 |
+
assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5)
|
758 |
+
assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3))
|
759 |
+
assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3))
|
760 |
+
assert -tf1 - tf2 == Parallel(-tf1, -tf2)
|
761 |
+
assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2))
|
762 |
+
assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1)
|
763 |
+
assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5)
|
764 |
+
assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5)
|
765 |
+
assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5)
|
766 |
+
assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3)
|
767 |
+
assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5))
|
768 |
+
raises(ValueError, lambda: tf1 + tf2 + tf4)
|
769 |
+
raises(ValueError, lambda: tf1 - tf2*tf4)
|
770 |
+
raises(ValueError, lambda: tf3 + Matrix([1, 2, 3]))
|
771 |
+
|
772 |
+
# evaluate=True -> doit()
|
773 |
+
assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \
|
774 |
+
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
775 |
+
assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \
|
776 |
+
Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \
|
777 |
+
(-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \
|
778 |
+
2*s*wn*zeta + wn**2)**2, s)
|
779 |
+
assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \
|
780 |
+
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \
|
781 |
+
, (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
782 |
+
assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit()
|
783 |
+
|
784 |
+
assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \
|
785 |
+
TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
786 |
+
assert Parallel(-tf1, -tf2, -tf3).doit() == \
|
787 |
+
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
788 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
789 |
+
assert -Parallel(tf1, tf2, tf3).doit() == \
|
790 |
+
TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \
|
791 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
792 |
+
assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \
|
793 |
+
TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \
|
794 |
+
+ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
795 |
+
|
796 |
+
assert Parallel(tf1, tf2).rewrite(TransferFunction) == \
|
797 |
+
TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s)
|
798 |
+
assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \
|
799 |
+
TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \
|
800 |
+
wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
801 |
+
|
802 |
+
assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3)
|
803 |
+
|
804 |
+
P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
|
805 |
+
assert P1.is_proper
|
806 |
+
assert not P1.is_strictly_proper
|
807 |
+
assert P1.is_biproper
|
808 |
+
|
809 |
+
P2 = Parallel(tf1, -tf2, -tf3)
|
810 |
+
assert P2.is_proper
|
811 |
+
assert not P2.is_strictly_proper
|
812 |
+
assert P2.is_biproper
|
813 |
+
|
814 |
+
P3 = Parallel(tf1, -tf2, Series(tf1, tf3))
|
815 |
+
assert P3.is_proper
|
816 |
+
assert not P3.is_strictly_proper
|
817 |
+
assert P3.is_biproper
|
818 |
+
|
819 |
+
|
820 |
+
def test_MIMOParallel_functions():
|
821 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
822 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
823 |
+
|
824 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]])
|
825 |
+
tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]])
|
826 |
+
tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]])
|
827 |
+
tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]])
|
828 |
+
tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]])
|
829 |
+
tfm6 = TransferFunctionMatrix([[-TF2]])
|
830 |
+
tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]])
|
831 |
+
|
832 |
+
assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3)
|
833 |
+
assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3)
|
834 |
+
assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1))
|
835 |
+
assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1))
|
836 |
+
assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2)
|
837 |
+
assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1)
|
838 |
+
raises(ValueError, lambda: tfm1 + tfm2 + TF2)
|
839 |
+
raises(TypeError, lambda: tfm1 - tfm2 - a1)
|
840 |
+
raises(TypeError, lambda: tfm2 - tfm3 - (s - 1))
|
841 |
+
raises(TypeError, lambda: -tfm3 - tfm2 - 9)
|
842 |
+
raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2)
|
843 |
+
# All TFMs must use the same complex var. tfm7 uses 'p'.
|
844 |
+
raises(ValueError, lambda: tfm3 - tfm2 - tfm7)
|
845 |
+
raises(ValueError, lambda: tfm2 - tfm1 + tfm7)
|
846 |
+
# (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape.
|
847 |
+
raises(TypeError, lambda: tfm1 + tfm2 + tfm4)
|
848 |
+
raises(TypeError, lambda: (tfm1 - tfm2) - tfm4)
|
849 |
+
|
850 |
+
assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2))
|
851 |
+
assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3))
|
852 |
+
assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3))
|
853 |
+
raises(ValueError, lambda: (tfm4 + tfm5)*TF1)
|
854 |
+
raises(TypeError, lambda: (tfm2 - tfm3)*a2)
|
855 |
+
raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6))
|
856 |
+
raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0)
|
857 |
+
raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3))
|
858 |
+
|
859 |
+
# (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape.
|
860 |
+
raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5)
|
861 |
+
# (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape.
|
862 |
+
raises(ValueError, lambda: (tfm1 - tfm2)*tfm5)
|
863 |
+
|
864 |
+
# TFM in the arguments.
|
865 |
+
assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit()
|
866 |
+
== MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix)
|
867 |
+
== TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \
|
868 |
+
(TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \
|
869 |
+
(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),))))
|
870 |
+
|
871 |
+
|
872 |
+
def test_Feedback_construction():
|
873 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
874 |
+
tf2 = TransferFunction(k, 1, s)
|
875 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
876 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
877 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
878 |
+
tf6 = TransferFunction(s - p, p + s, p)
|
879 |
+
|
880 |
+
f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3)
|
881 |
+
assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1)
|
882 |
+
assert f1.sys1 == TransferFunction(1, 1, s)
|
883 |
+
assert f1.sys2 == Series(tf1, tf2, tf3)
|
884 |
+
assert f1.var == s
|
885 |
+
|
886 |
+
f2 = Feedback(tf1, tf2*tf3)
|
887 |
+
assert f2.args == (tf1, Series(tf2, tf3), -1)
|
888 |
+
assert f2.sys1 == tf1
|
889 |
+
assert f2.sys2 == Series(tf2, tf3)
|
890 |
+
assert f2.var == s
|
891 |
+
|
892 |
+
f3 = Feedback(tf1*tf2, tf5)
|
893 |
+
assert f3.args == (Series(tf1, tf2), tf5, -1)
|
894 |
+
assert f3.sys1 == Series(tf1, tf2)
|
895 |
+
|
896 |
+
f4 = Feedback(tf4, tf6)
|
897 |
+
assert f4.args == (tf4, tf6, -1)
|
898 |
+
assert f4.sys1 == tf4
|
899 |
+
assert f4.var == p
|
900 |
+
|
901 |
+
f5 = Feedback(tf5, TransferFunction(1, 1, s))
|
902 |
+
assert f5.args == (tf5, TransferFunction(1, 1, s), -1)
|
903 |
+
assert f5.var == s
|
904 |
+
assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf.
|
905 |
+
|
906 |
+
f6 = Feedback(TransferFunction(1, 1, p), tf4)
|
907 |
+
assert f6.args == (TransferFunction(1, 1, p), tf4, -1)
|
908 |
+
assert f6.var == p
|
909 |
+
|
910 |
+
f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p))
|
911 |
+
assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1)
|
912 |
+
assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6))
|
913 |
+
|
914 |
+
# denominator can't be a Parallel instance
|
915 |
+
raises(TypeError, lambda: Feedback(tf1, tf2 + tf3))
|
916 |
+
raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3])))
|
917 |
+
raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1))
|
918 |
+
raises(TypeError, lambda: Feedback(1, 1))
|
919 |
+
# raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s)))
|
920 |
+
raises(ValueError, lambda: Feedback(tf2, tf4*tf5))
|
921 |
+
raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1
|
922 |
+
raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero
|
923 |
+
raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var`
|
924 |
+
|
925 |
+
|
926 |
+
def test_Feedback_functions():
|
927 |
+
tf = TransferFunction(1, 1, s)
|
928 |
+
tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s)
|
929 |
+
tf2 = TransferFunction(k, 1, s)
|
930 |
+
tf3 = TransferFunction(a2*p - s, a2*s + p, s)
|
931 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
932 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
933 |
+
tf6 = TransferFunction(s - p, p + s, p)
|
934 |
+
|
935 |
+
assert tf / (tf + tf1) == Feedback(tf, tf1)
|
936 |
+
assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3)
|
937 |
+
assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3)
|
938 |
+
assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf)
|
939 |
+
assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5)
|
940 |
+
assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5))
|
941 |
+
assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6)
|
942 |
+
assert tf5 / (tf + tf5) == Feedback(tf5, tf)
|
943 |
+
|
944 |
+
raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3))
|
945 |
+
raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5)
|
946 |
+
raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4))
|
947 |
+
|
948 |
+
assert Feedback(tf, tf1*tf2*tf3).doit() == \
|
949 |
+
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \
|
950 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s)
|
951 |
+
assert Feedback(tf, tf1*tf2*tf3).sensitivity == \
|
952 |
+
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
953 |
+
assert Feedback(tf1, tf2*tf3).doit() == \
|
954 |
+
TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \
|
955 |
+
(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
956 |
+
assert Feedback(tf1, tf2*tf3).sensitivity == \
|
957 |
+
1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
958 |
+
assert Feedback(tf1*tf2, tf5).doit() == \
|
959 |
+
TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
960 |
+
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
961 |
+
assert Feedback(tf1*tf2, tf5, 1).sensitivity == \
|
962 |
+
1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1)
|
963 |
+
assert Feedback(tf4, tf6).doit() == \
|
964 |
+
TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
965 |
+
assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \
|
966 |
+
TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p)
|
967 |
+
assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s)
|
968 |
+
|
969 |
+
assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \
|
970 |
+
TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \
|
971 |
+
(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s)
|
972 |
+
assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \
|
973 |
+
TransferFunction(p, a0*p + p + p**a1 - s, p)
|
974 |
+
|
975 |
+
|
976 |
+
def test_MIMOFeedback_construction():
|
977 |
+
tf1 = TransferFunction(1, s, s)
|
978 |
+
tf2 = TransferFunction(s, s**3 - 1, s)
|
979 |
+
tf3 = TransferFunction(s, s + 1, s)
|
980 |
+
tf4 = TransferFunction(s, s**2 + 1, s)
|
981 |
+
|
982 |
+
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
983 |
+
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
984 |
+
tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]])
|
985 |
+
|
986 |
+
f1 = MIMOFeedback(tfm_1, tfm_2)
|
987 |
+
assert f1.args == (tfm_1, tfm_2, -1)
|
988 |
+
assert f1.sys1 == tfm_1
|
989 |
+
assert f1.sys2 == tfm_2
|
990 |
+
assert f1.var == s
|
991 |
+
assert f1.sign == -1
|
992 |
+
assert -(-f1) == f1
|
993 |
+
|
994 |
+
f2 = MIMOFeedback(tfm_2, tfm_1, 1)
|
995 |
+
assert f2.args == (tfm_2, tfm_1, 1)
|
996 |
+
assert f2.sys1 == tfm_2
|
997 |
+
assert f2.sys2 == tfm_1
|
998 |
+
assert f2.var == s
|
999 |
+
assert f2.sign == 1
|
1000 |
+
|
1001 |
+
f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2))
|
1002 |
+
assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1)
|
1003 |
+
assert f3.sys1 == tfm_1
|
1004 |
+
assert f3.sys2 == MIMOSeries(tfm_3, tfm_2)
|
1005 |
+
assert f3.var == s
|
1006 |
+
assert f3.sign == -1
|
1007 |
+
|
1008 |
+
mat = Matrix([[1, 1/s], [0, 1]])
|
1009 |
+
sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s)
|
1010 |
+
f4 = MIMOFeedback(sys1, controller)
|
1011 |
+
assert f4.args == (sys1, controller, -1)
|
1012 |
+
assert f4.sys1 == f4.sys2 == sys1
|
1013 |
+
|
1014 |
+
|
1015 |
+
def test_MIMOFeedback_errors():
|
1016 |
+
tf1 = TransferFunction(1, s, s)
|
1017 |
+
tf2 = TransferFunction(s, s**3 - 1, s)
|
1018 |
+
tf3 = TransferFunction(s, s - 1, s)
|
1019 |
+
tf4 = TransferFunction(s, s**2 + 1, s)
|
1020 |
+
tf5 = TransferFunction(1, 1, s)
|
1021 |
+
tf6 = TransferFunction(-1, s - 1, s)
|
1022 |
+
|
1023 |
+
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
1024 |
+
tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]])
|
1025 |
+
tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
1026 |
+
tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]])
|
1027 |
+
tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]])
|
1028 |
+
# tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I
|
1029 |
+
tfm_6 = TransferFunctionMatrix([[-tf3]])
|
1030 |
+
tfm_7 = TransferFunctionMatrix([[tf3, tf4]])
|
1031 |
+
|
1032 |
+
# Unsupported Types
|
1033 |
+
raises(TypeError, lambda: MIMOFeedback(tf1, tf2))
|
1034 |
+
raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3))
|
1035 |
+
# Shape Errors
|
1036 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1))
|
1037 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7))
|
1038 |
+
# sign not 1/-1
|
1039 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2))
|
1040 |
+
# Non-Invertible Systems
|
1041 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1))
|
1042 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5))
|
1043 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1))
|
1044 |
+
# Variable not same in both the systems
|
1045 |
+
tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p)
|
1046 |
+
raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1))
|
1047 |
+
|
1048 |
+
|
1049 |
+
def test_MIMOFeedback_functions():
|
1050 |
+
tf1 = TransferFunction(1, s, s)
|
1051 |
+
tf2 = TransferFunction(s, s - 1, s)
|
1052 |
+
tf3 = TransferFunction(1, 1, s)
|
1053 |
+
tf4 = TransferFunction(-1, s - 1, s)
|
1054 |
+
|
1055 |
+
tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s)
|
1056 |
+
tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]])
|
1057 |
+
tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]])
|
1058 |
+
tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]])
|
1059 |
+
|
1060 |
+
# sensitivity, doit(), rewrite()
|
1061 |
+
F_1 = MIMOFeedback(tfm_2, tfm_3)
|
1062 |
+
F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1)
|
1063 |
+
|
1064 |
+
assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]])
|
1065 |
+
assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1),
|
1066 |
+
(2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]])
|
1067 |
+
|
1068 |
+
assert F_1.doit() == \
|
1069 |
+
TransferFunctionMatrix(((TransferFunction(1, 2*s, s),
|
1070 |
+
TransferFunction(1, 2, s)), (TransferFunction(1, 2, s),
|
1071 |
+
TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix)
|
1072 |
+
assert F_2.doit(cancel=False, expand=True) == \
|
1073 |
+
TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s),
|
1074 |
+
TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1075 |
+
assert F_2.doit(cancel=False) == \
|
1076 |
+
TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \
|
1077 |
+
(-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
1078 |
+
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1079 |
+
assert F_2.doit() == \
|
1080 |
+
TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s),
|
1081 |
+
TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s))))
|
1082 |
+
assert F_2.doit(expand=True) == \
|
1083 |
+
TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)),
|
1084 |
+
(TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s))))
|
1085 |
+
|
1086 |
+
assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating.
|
1087 |
+
|
1088 |
+
|
1089 |
+
def test_TransferFunctionMatrix_construction():
|
1090 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
1091 |
+
tf4 = TransferFunction(a0*p + p**a1 - s, p, p)
|
1092 |
+
|
1093 |
+
tfm3_ = TransferFunctionMatrix([[-TF3]])
|
1094 |
+
assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1)
|
1095 |
+
assert tfm3_.args == Tuple(Tuple(Tuple(-TF3)))
|
1096 |
+
assert tfm3_.var == s
|
1097 |
+
|
1098 |
+
tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]])
|
1099 |
+
assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2)
|
1100 |
+
assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5)))
|
1101 |
+
assert tfm5.var == s
|
1102 |
+
|
1103 |
+
tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]])
|
1104 |
+
assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2)
|
1105 |
+
assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2)))
|
1106 |
+
assert tfm7.var == s
|
1107 |
+
|
1108 |
+
# all transfer functions will use the same complex variable. tf4 uses 'p'.
|
1109 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]]))
|
1110 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]]))
|
1111 |
+
|
1112 |
+
# length of all the lists in the TFM should be equal.
|
1113 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]]))
|
1114 |
+
raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]]))
|
1115 |
+
|
1116 |
+
# lists should only support transfer functions in them.
|
1117 |
+
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]]))
|
1118 |
+
raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]]))
|
1119 |
+
|
1120 |
+
# `arg` should strictly be nested list of TransferFunction
|
1121 |
+
raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5]))
|
1122 |
+
raises(ValueError, lambda: TransferFunctionMatrix([TF1]))
|
1123 |
+
|
1124 |
+
def test_TransferFunctionMatrix_functions():
|
1125 |
+
tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s)
|
1126 |
+
|
1127 |
+
# Classmethod (from_matrix)
|
1128 |
+
|
1129 |
+
mat_1 = ImmutableMatrix([
|
1130 |
+
[s*(s + 1)*(s - 3)/(s**4 + 1), 2],
|
1131 |
+
[p, p*(s + 1)/(s*(s**1 + 1))]
|
1132 |
+
])
|
1133 |
+
mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]])
|
1134 |
+
mat_3 = ImmutableMatrix([[1, 2], [3, 4]])
|
1135 |
+
assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \
|
1136 |
+
TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)],
|
1137 |
+
[TransferFunction(p, 1, s), TransferFunction(p, s, s)]])
|
1138 |
+
assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \
|
1139 |
+
TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]])
|
1140 |
+
assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \
|
1141 |
+
TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)],
|
1142 |
+
[TransferFunction(3, 1, p), TransferFunction(4, 1, p)]])
|
1143 |
+
|
1144 |
+
# Negating a TFM
|
1145 |
+
|
1146 |
+
tfm1 = TransferFunctionMatrix([[TF1], [TF2]])
|
1147 |
+
assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]])
|
1148 |
+
|
1149 |
+
tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]])
|
1150 |
+
assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]])
|
1151 |
+
|
1152 |
+
# subs()
|
1153 |
+
|
1154 |
+
H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s)
|
1155 |
+
H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]])
|
1156 |
+
assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
1157 |
+
assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]])
|
1158 |
+
assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var`
|
1159 |
+
assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]])
|
1160 |
+
assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]])
|
1161 |
+
assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]])
|
1162 |
+
assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]])
|
1163 |
+
|
1164 |
+
# transpose()
|
1165 |
+
|
1166 |
+
assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]])
|
1167 |
+
assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]])
|
1168 |
+
assert H_1.transpose().transpose() == H_1
|
1169 |
+
assert H_2.transpose().transpose() == H_2
|
1170 |
+
|
1171 |
+
# elem_poles()
|
1172 |
+
|
1173 |
+
assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []],
|
1174 |
+
[[], [0]]]
|
1175 |
+
assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]]
|
1176 |
+
assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]],
|
1177 |
+
[[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]]
|
1178 |
+
|
1179 |
+
# elem_zeros()
|
1180 |
+
|
1181 |
+
assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]]
|
1182 |
+
assert H_2.elem_zeros() == [[[0], [0]]]
|
1183 |
+
assert tfm2.elem_zeros() == [[[], [], [a2*p]],
|
1184 |
+
[[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]]
|
1185 |
+
|
1186 |
+
# doit()
|
1187 |
+
|
1188 |
+
H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]])
|
1189 |
+
H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]])
|
1190 |
+
|
1191 |
+
assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]])
|
1192 |
+
assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]])
|
1193 |
+
|
1194 |
+
# _flat()
|
1195 |
+
|
1196 |
+
assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)]
|
1197 |
+
assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)]
|
1198 |
+
assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]
|
1199 |
+
assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]
|
1200 |
+
|
1201 |
+
# evalf()
|
1202 |
+
|
1203 |
+
assert H_1.evalf() == \
|
1204 |
+
TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s))))
|
1205 |
+
assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \
|
1206 |
+
TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s),
|
1207 |
+
TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),))
|
1208 |
+
|
1209 |
+
# simplify()
|
1210 |
+
|
1211 |
+
H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s),
|
1212 |
+
TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]])
|
1213 |
+
|
1214 |
+
assert H_5.simplify() == simplify(H_5) == \
|
1215 |
+
TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),))
|
1216 |
+
|
1217 |
+
# expand()
|
1218 |
+
|
1219 |
+
assert (H_1.expand()
|
1220 |
+
== TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)),
|
1221 |
+
(TransferFunction(p, 1, s), TransferFunction(p, s, s)))))
|
1222 |
+
assert H_5.expand() == \
|
1223 |
+
TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
|
1224 |
+
|
1225 |
+
def test_TransferFunction_bilinear():
|
1226 |
+
# simple transfer function, e.g. ohms law
|
1227 |
+
tf = TransferFunction(1, a*s+b, s)
|
1228 |
+
numZ, denZ = bilinear(tf, T)
|
1229 |
+
# discretized transfer function with coefs from tf.bilinear()
|
1230 |
+
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
1231 |
+
# corresponding tf with manually calculated coefs
|
1232 |
+
tf_test_manual = TransferFunction(s*T+T, s*(T*b+2*a)+T*b-2*a, s)
|
1233 |
+
|
1234 |
+
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|
1235 |
+
|
1236 |
+
def test_TransferFunction_backward_diff():
|
1237 |
+
# simple transfer function, e.g. ohms law
|
1238 |
+
tf = TransferFunction(1, a*s+b, s)
|
1239 |
+
numZ, denZ = backward_diff(tf, T)
|
1240 |
+
# discretized transfer function with coefs from tf.bilinear()
|
1241 |
+
tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s)
|
1242 |
+
# corresponding tf with manually calculated coefs
|
1243 |
+
tf_test_manual = TransferFunction(s*T, s*(T*b+a)-a, s)
|
1244 |
+
|
1245 |
+
assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/body.cpython-310.pyc
ADDED
Binary file (18.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (23.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc
ADDED
Binary file (79.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc
ADDED
Binary file (8.77 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc
ADDED
Binary file (25.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/method.cpython-310.pyc
ADDED
Binary file (1.59 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/models.cpython-310.pyc
ADDED
Binary file (5.58 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc
ADDED
Binary file (8.46 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/__pycache__/system.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_lagrange2.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_linearize.cpython-310.pyc
ADDED
Binary file (9.15 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/mechanics/tests/__pycache__/test_models.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitutils.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixutils.cpython-310.pyc
ADDED
Binary file (7.39 kB). View file
|
|