Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/17.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/17.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/5.attention.query_key_value.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/__init__.py +19 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__pycache__/linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/linear.py +25 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__init__.py +14 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/conv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/embedding_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/conv.py +270 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/embedding_ops.py +143 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/linear.py +81 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/__init__.py +1 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__init__.py +9 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/activation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/rnn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/activation.py +465 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py +411 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__init__.py +38 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__pycache__/functional.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py +644 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py +131 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/activation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/batchnorm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/conv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/dropout.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/embedding_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/functional_modules.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/normalization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/rnn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/activation.py +302 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/batchnorm.py +106 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py +945 -0
- venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/dropout.py +27 -0
ckpts/universal/global_step120/zero/17.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:948c39a2c96bce2cb781383f91ff3236cf3845429c695be8909682a1919d3125
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/17.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8da328f1ab9e1b0b76e1ec0db6c3e5738402f923a1e5442c0ee5418143cf4086
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa570de0a3a2d41a83493af9c6c07ffa043df0d57a26a34edf7e2b5e949f30c6
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01e2bcb4fb228f10a26f82abe36abf3bc072b8382940b7faf5fe0e75cc786803
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/5.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee95dbee1f6af25871f57f8ebc301001184176a83245c07d54ec3fa04c88188f
|
3 |
+
size 50332749
|
venv/lib/python3.10/site-packages/torch/ao/nn/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# We are exposing all subpackages to the end-user.
|
2 |
+
# Because of possible inter-dependency, we want to avoid
|
3 |
+
# the cyclic imports, thus implementing lazy version
|
4 |
+
# as per https://peps.python.org/pep-0562/
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"intrinsic",
|
10 |
+
"qat",
|
11 |
+
"quantizable",
|
12 |
+
"quantized",
|
13 |
+
"sparse",
|
14 |
+
]
|
15 |
+
|
16 |
+
def __getattr__(name):
|
17 |
+
if name in __all__:
|
18 |
+
return importlib.import_module("." + name, __name__)
|
19 |
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (207 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (215 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .linear import Linear
|
2 |
+
|
3 |
+
__all__ = ["Linear"]
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (258 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/dynamic/modules/linear.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
__all__ = ["Linear"]
|
4 |
+
|
5 |
+
class Linear(torch.ao.nn.qat.Linear):
|
6 |
+
r"""
|
7 |
+
A linear module attached with FakeQuantize modules for weight,
|
8 |
+
used for dynamic quantization aware training.
|
9 |
+
|
10 |
+
We adopt the same interface as `torch.nn.Linear`, please see
|
11 |
+
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
|
12 |
+
for documentation.
|
13 |
+
|
14 |
+
Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
|
15 |
+
default.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, in_features, out_features, bias=True,
|
19 |
+
qconfig=None, device=None, dtype=None) -> None:
|
20 |
+
super().__init__(in_features, out_features, bias, qconfig, device, dtype)
|
21 |
+
if not torch.ao.quantization.qconfig._activation_is_memoryless(qconfig):
|
22 |
+
raise ValueError(
|
23 |
+
"Dynamic QAT requires a memoryless observer." +
|
24 |
+
"This means a MovingAverage observer with averaging constant equal to 1"
|
25 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .linear import Linear
|
2 |
+
from .conv import Conv1d
|
3 |
+
from .conv import Conv2d
|
4 |
+
from .conv import Conv3d
|
5 |
+
from .embedding_ops import EmbeddingBag, Embedding
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"Linear",
|
9 |
+
"Conv1d",
|
10 |
+
"Conv2d",
|
11 |
+
"Conv3d",
|
12 |
+
"Embedding",
|
13 |
+
"EmbeddingBag",
|
14 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (442 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/conv.cpython-310.pyc
ADDED
Binary file (6.91 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/embedding_ops.cpython-310.pyc
ADDED
Binary file (5.29 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (2.84 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/conv.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.modules.utils import _single, _pair, _triple
|
4 |
+
from torch.ao.nn.intrinsic import _FusedModule
|
5 |
+
from typing import Tuple, TypeVar, Union
|
6 |
+
from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"Conv1d",
|
10 |
+
"Conv2d",
|
11 |
+
"Conv3d"
|
12 |
+
]
|
13 |
+
|
14 |
+
MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd)
|
15 |
+
|
16 |
+
class _ConvNd(nn.modules.conv._ConvNd):
|
17 |
+
|
18 |
+
_FLOAT_MODULE = MOD
|
19 |
+
|
20 |
+
def __init__(self,
|
21 |
+
in_channels: int,
|
22 |
+
out_channels: int,
|
23 |
+
kernel_size: Tuple[int, ...],
|
24 |
+
stride: Tuple[int, ...],
|
25 |
+
padding: Tuple[int, ...],
|
26 |
+
dilation: Tuple[int, ...],
|
27 |
+
transposed: bool,
|
28 |
+
output_padding: Tuple[int, ...],
|
29 |
+
groups: int,
|
30 |
+
bias: bool,
|
31 |
+
padding_mode: str,
|
32 |
+
qconfig=None,
|
33 |
+
device=None,
|
34 |
+
dtype=None) -> None:
|
35 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
36 |
+
nn.modules.conv._ConvNd.__init__(self, in_channels, out_channels, kernel_size,
|
37 |
+
stride, padding, dilation, transposed,
|
38 |
+
output_padding, groups, bias, padding_mode, **factory_kwargs)
|
39 |
+
assert qconfig, 'qconfig must be provided for QAT module'
|
40 |
+
self.qconfig = qconfig
|
41 |
+
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
|
42 |
+
|
43 |
+
def forward(self, input):
|
44 |
+
return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def from_float(cls, mod):
|
48 |
+
r"""Create a qat module from a float module
|
49 |
+
|
50 |
+
Args:
|
51 |
+
`mod`: a float module, either produced by torch.ao.quantization utilities
|
52 |
+
or directly from user
|
53 |
+
"""
|
54 |
+
assert type(mod) == cls._FLOAT_MODULE, (
|
55 |
+
"qat."
|
56 |
+
+ cls.__name__
|
57 |
+
+ ".from_float only works for "
|
58 |
+
+ cls._FLOAT_MODULE.__name__ # type: ignore[attr-defined]
|
59 |
+
)
|
60 |
+
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
61 |
+
assert mod.qconfig, 'Input float module must have a valid qconfig'
|
62 |
+
if issubclass(type(mod), _FusedModule):
|
63 |
+
mod = mod[0] # type: ignore[index]
|
64 |
+
qconfig = mod.qconfig
|
65 |
+
qat_conv = cls(mod.in_channels, mod.out_channels, mod.kernel_size,
|
66 |
+
stride=mod.stride, padding=mod.padding, dilation=mod.dilation,
|
67 |
+
groups=mod.groups, bias=mod.bias is not None,
|
68 |
+
padding_mode=mod.padding_mode, qconfig=qconfig)
|
69 |
+
qat_conv.weight = mod.weight
|
70 |
+
qat_conv.bias = mod.bias
|
71 |
+
return qat_conv
|
72 |
+
|
73 |
+
def to_float(self):
|
74 |
+
""" This works for both single qat conv, and the qat conv - relu modules
|
75 |
+
to convert the qat module to a floating point module
|
76 |
+
"""
|
77 |
+
cls = type(self)
|
78 |
+
conv = cls._FLOAT_CONV_MODULE( # type: ignore[attr-defined, operator]
|
79 |
+
self.in_channels,
|
80 |
+
self.out_channels,
|
81 |
+
self.kernel_size, # type: ignore[arg-type]
|
82 |
+
self.stride, # type: ignore[arg-type]
|
83 |
+
self.padding, # type: ignore[arg-type]
|
84 |
+
self.dilation, # type: ignore[arg-type]
|
85 |
+
self.groups,
|
86 |
+
self.bias is not None,
|
87 |
+
self.padding_mode)
|
88 |
+
conv.weight = torch.nn.Parameter(self.weight.detach())
|
89 |
+
if self.bias is not None:
|
90 |
+
conv.bias = torch.nn.Parameter(self.bias.detach())
|
91 |
+
# conv relu
|
92 |
+
if issubclass(cls, _FusedModule):
|
93 |
+
modules = [conv]
|
94 |
+
assert hasattr(cls, "_FLOAT_RELU_MODULE")
|
95 |
+
relu = cls._FLOAT_RELU_MODULE() # type: ignore[attr-defined]
|
96 |
+
modules.append(relu)
|
97 |
+
fused = cls._FLOAT_MODULE(*modules) # type: ignore[arg-type, attr-defined, operator]
|
98 |
+
fused.train(self.training)
|
99 |
+
return fused
|
100 |
+
else:
|
101 |
+
return conv
|
102 |
+
|
103 |
+
class Conv1d(_ConvNd, nn.Conv1d):
|
104 |
+
r"""
|
105 |
+
A Conv1d module attached with FakeQuantize modules for weight,
|
106 |
+
used for quantization aware training.
|
107 |
+
|
108 |
+
We adopt the same interface as :class:`~torch.nn.Conv1d`
|
109 |
+
|
110 |
+
Similar to :class:`~torch.nn.Conv2d`, with FakeQuantize modules initialized to
|
111 |
+
default.
|
112 |
+
|
113 |
+
Attributes:
|
114 |
+
weight_fake_quant: fake quant module for weight
|
115 |
+
"""
|
116 |
+
_FLOAT_MODULE = nn.Conv1d
|
117 |
+
_FLOAT_CONV_MODULE = nn.Conv1d
|
118 |
+
|
119 |
+
def __init__(self,
|
120 |
+
in_channels: int,
|
121 |
+
out_channels: int,
|
122 |
+
kernel_size: _size_1_t,
|
123 |
+
stride: _size_1_t = 1,
|
124 |
+
padding: Union[str, _size_1_t] = 0,
|
125 |
+
dilation: _size_1_t = 1,
|
126 |
+
groups: int = 1,
|
127 |
+
bias: bool = True,
|
128 |
+
padding_mode: str = 'zeros',
|
129 |
+
qconfig=None,
|
130 |
+
device=None,
|
131 |
+
dtype=None) -> None:
|
132 |
+
kernel_size_ = _single(kernel_size)
|
133 |
+
stride_ = _single(stride)
|
134 |
+
padding_ = padding if isinstance(padding, str) else _single(padding)
|
135 |
+
dilation_ = _single(dilation)
|
136 |
+
super().__init__(
|
137 |
+
in_channels,
|
138 |
+
out_channels,
|
139 |
+
kernel_size_,
|
140 |
+
stride=stride_,
|
141 |
+
padding=padding_,
|
142 |
+
dilation=dilation_,
|
143 |
+
transposed=False,
|
144 |
+
output_padding=_single(0),
|
145 |
+
groups=groups,
|
146 |
+
bias=bias,
|
147 |
+
padding_mode=padding_mode,
|
148 |
+
qconfig=qconfig,
|
149 |
+
device=device,
|
150 |
+
dtype=dtype)
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def from_float(cls, mod):
|
154 |
+
return super().from_float(cls, mod)
|
155 |
+
|
156 |
+
class Conv2d(_ConvNd, nn.Conv2d):
|
157 |
+
r"""
|
158 |
+
A Conv2d module attached with FakeQuantize modules for weight,
|
159 |
+
used for quantization aware training.
|
160 |
+
|
161 |
+
We adopt the same interface as `torch.nn.Conv2d`, please see
|
162 |
+
https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d
|
163 |
+
for documentation.
|
164 |
+
|
165 |
+
Similar to `torch.nn.Conv2d`, with FakeQuantize modules initialized to
|
166 |
+
default.
|
167 |
+
|
168 |
+
Attributes:
|
169 |
+
weight_fake_quant: fake quant module for weight
|
170 |
+
"""
|
171 |
+
_FLOAT_MODULE = nn.Conv2d
|
172 |
+
_FLOAT_CONV_MODULE = nn.Conv2d
|
173 |
+
|
174 |
+
def __init__(self,
|
175 |
+
in_channels: int,
|
176 |
+
out_channels: int,
|
177 |
+
kernel_size: _size_2_t,
|
178 |
+
stride: _size_2_t = 1,
|
179 |
+
padding: Union[str, _size_2_t] = 0,
|
180 |
+
dilation: _size_2_t = 1,
|
181 |
+
groups: int = 1,
|
182 |
+
bias: bool = True,
|
183 |
+
padding_mode: str = 'zeros',
|
184 |
+
qconfig=None,
|
185 |
+
device=None,
|
186 |
+
dtype=None) -> None:
|
187 |
+
kernel_size_ = _pair(kernel_size)
|
188 |
+
stride_ = _pair(stride)
|
189 |
+
padding_ = padding if isinstance(padding, str) else _pair(padding)
|
190 |
+
dilation_ = _pair(dilation)
|
191 |
+
super().__init__(
|
192 |
+
in_channels,
|
193 |
+
out_channels,
|
194 |
+
kernel_size_,
|
195 |
+
stride=stride_,
|
196 |
+
padding=padding_,
|
197 |
+
dilation=dilation_,
|
198 |
+
transposed=False,
|
199 |
+
output_padding=_pair(0),
|
200 |
+
groups=groups,
|
201 |
+
bias=bias,
|
202 |
+
padding_mode=padding_mode,
|
203 |
+
qconfig=qconfig,
|
204 |
+
device=device,
|
205 |
+
dtype=dtype)
|
206 |
+
|
207 |
+
def forward(self, input):
|
208 |
+
return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
|
209 |
+
|
210 |
+
@classmethod
|
211 |
+
def from_float(cls, mod):
|
212 |
+
return super().from_float(cls, mod)
|
213 |
+
|
214 |
+
class Conv3d(_ConvNd, nn.Conv3d):
|
215 |
+
r"""
|
216 |
+
A Conv3d module attached with FakeQuantize modules for weight,
|
217 |
+
used for quantization aware training.
|
218 |
+
|
219 |
+
We adopt the same interface as `torch.nn.Conv3d`, please see
|
220 |
+
https://pytorch.org/docs/stable/nn.html?highlight=conv3d#torch.nn.Conv3d
|
221 |
+
for documentation.
|
222 |
+
|
223 |
+
Similar to `torch.nn.Conv3d`, with FakeQuantize modules initialized to
|
224 |
+
default.
|
225 |
+
|
226 |
+
Attributes:
|
227 |
+
weight_fake_quant: fake quant module for weight
|
228 |
+
"""
|
229 |
+
_FLOAT_MODULE = nn.Conv3d
|
230 |
+
_FLOAT_CONV_MODULE = nn.Conv3d
|
231 |
+
|
232 |
+
def __init__(self,
|
233 |
+
in_channels: int,
|
234 |
+
out_channels: int,
|
235 |
+
kernel_size: _size_3_t,
|
236 |
+
stride: _size_3_t = 1,
|
237 |
+
padding: Union[str, _size_3_t] = 0,
|
238 |
+
dilation: _size_3_t = 1,
|
239 |
+
groups: int = 1,
|
240 |
+
bias: bool = True,
|
241 |
+
padding_mode: str = 'zeros',
|
242 |
+
qconfig=None,
|
243 |
+
device=None,
|
244 |
+
dtype=None) -> None:
|
245 |
+
kernel_size_ = _triple(kernel_size)
|
246 |
+
stride_ = _triple(stride)
|
247 |
+
padding_ = padding if isinstance(padding, str) else _triple(padding)
|
248 |
+
dilation_ = _triple(dilation)
|
249 |
+
super().__init__(
|
250 |
+
in_channels,
|
251 |
+
out_channels,
|
252 |
+
kernel_size_,
|
253 |
+
stride=stride_,
|
254 |
+
padding=padding_,
|
255 |
+
dilation=dilation_,
|
256 |
+
transposed=False,
|
257 |
+
output_padding=_triple(0),
|
258 |
+
groups=groups,
|
259 |
+
bias=bias,
|
260 |
+
padding_mode=padding_mode,
|
261 |
+
qconfig=qconfig,
|
262 |
+
device=device,
|
263 |
+
dtype=dtype)
|
264 |
+
|
265 |
+
def forward(self, input):
|
266 |
+
return self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def from_float(cls, mod):
|
270 |
+
return super().from_float(cls, mod)
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/embedding_ops.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
__all__ = ['Embedding', 'EmbeddingBag']
|
7 |
+
|
8 |
+
class Embedding(nn.Embedding):
|
9 |
+
r"""
|
10 |
+
An embedding bag module attached with FakeQuantize modules for weight,
|
11 |
+
used for quantization aware training.
|
12 |
+
|
13 |
+
We adopt the same interface as `torch.nn.Embedding`, please see
|
14 |
+
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html#torch.nn.Embedding
|
15 |
+
for documentation.
|
16 |
+
|
17 |
+
Similar to `torch.nn.Embedding`, with FakeQuantize modules initialized to
|
18 |
+
default.
|
19 |
+
|
20 |
+
Attributes:
|
21 |
+
weight: fake quant module for weight
|
22 |
+
"""
|
23 |
+
_FLOAT_MODULE = nn.Embedding
|
24 |
+
|
25 |
+
def __init__(self, num_embeddings, embedding_dim, padding_idx=None,
|
26 |
+
max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
|
27 |
+
sparse=False, _weight=None, device=None, dtype=None, qconfig=None) -> None:
|
28 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
29 |
+
super().__init__(num_embeddings, embedding_dim, padding_idx, max_norm,
|
30 |
+
norm_type, scale_grad_by_freq, sparse, _weight,
|
31 |
+
**factory_kwargs)
|
32 |
+
assert qconfig, 'qconfig must be provided for QAT module'
|
33 |
+
assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
|
34 |
+
'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
|
35 |
+
str(qconfig.weight().qscheme)
|
36 |
+
self.qconfig = qconfig
|
37 |
+
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
|
38 |
+
|
39 |
+
def forward(self, input) -> Tensor:
|
40 |
+
return F.embedding(input, self.weight_fake_quant(self.weight), self.padding_idx,
|
41 |
+
self.max_norm, self.norm_type, self.scale_grad_by_freq,
|
42 |
+
self.sparse)
|
43 |
+
|
44 |
+
@classmethod
|
45 |
+
def from_float(cls, mod):
|
46 |
+
r"""Create a qat module from a float module
|
47 |
+
|
48 |
+
Args: `mod` a float module, either produced by torch.ao.quantization utilities
|
49 |
+
or directly from user
|
50 |
+
"""
|
51 |
+
assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
|
52 |
+
cls._FLOAT_MODULE.__name__
|
53 |
+
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
54 |
+
assert mod.qconfig, 'Input float module must have a valid qconfig'
|
55 |
+
weight_qscheme = mod.qconfig.weight().qscheme # type: ignore[union-attr, operator]
|
56 |
+
assert weight_qscheme == torch.per_channel_affine_float_qparams, \
|
57 |
+
'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
|
58 |
+
str(weight_qscheme)
|
59 |
+
|
60 |
+
qconfig = mod.qconfig
|
61 |
+
qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.padding_idx,
|
62 |
+
mod.max_norm, mod.norm_type, mod.scale_grad_by_freq,
|
63 |
+
mod.sparse, mod.weight, qconfig=qconfig)
|
64 |
+
|
65 |
+
return qat_embedding_bag
|
66 |
+
|
67 |
+
def to_float(self):
|
68 |
+
embedding_bag = torch.nn.Embedding(self.num_embeddings, self.embedding_dim, self.padding_idx,
|
69 |
+
self.max_norm, self.norm_type, self.scale_grad_by_freq,
|
70 |
+
self.sparse, None)
|
71 |
+
embedding_bag.weight = torch.nn.Parameter(self.weight.detach())
|
72 |
+
embedding_bag.train(self.training)
|
73 |
+
return embedding_bag
|
74 |
+
|
75 |
+
class EmbeddingBag(nn.EmbeddingBag):
|
76 |
+
r"""
|
77 |
+
An embedding bag module attached with FakeQuantize modules for weight,
|
78 |
+
used for quantization aware training.
|
79 |
+
|
80 |
+
We adopt the same interface as `torch.nn.EmbeddingBag`, please see
|
81 |
+
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html#torch.nn.EmbeddingBag
|
82 |
+
for documentation.
|
83 |
+
|
84 |
+
Similar to `torch.nn.EmbeddingBag`, with FakeQuantize modules initialized to
|
85 |
+
default.
|
86 |
+
|
87 |
+
Attributes:
|
88 |
+
weight: fake quant module for weight
|
89 |
+
"""
|
90 |
+
_FLOAT_MODULE = nn.EmbeddingBag
|
91 |
+
|
92 |
+
def __init__(self, num_embeddings, embedding_dim, max_norm=None,
|
93 |
+
norm_type=2.0, scale_grad_by_freq=False, mode='mean',
|
94 |
+
sparse=False, _weight=None, include_last_offset=False,
|
95 |
+
padding_idx=None, qconfig=None, device=None, dtype=None) -> None:
|
96 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
97 |
+
super().__init__(num_embeddings, embedding_dim, max_norm, norm_type,
|
98 |
+
scale_grad_by_freq, mode, sparse, _weight,
|
99 |
+
include_last_offset, padding_idx, **factory_kwargs)
|
100 |
+
assert qconfig, 'qconfig must be provided for QAT module'
|
101 |
+
assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
|
102 |
+
'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
|
103 |
+
str(qconfig.weight().qscheme)
|
104 |
+
self.qconfig = qconfig
|
105 |
+
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
|
106 |
+
|
107 |
+
def forward(self, input, offsets=None, per_sample_weights=None) -> Tensor:
|
108 |
+
return F.embedding_bag(input, self.weight_fake_quant(self.weight), offsets,
|
109 |
+
self.max_norm, self.norm_type,
|
110 |
+
self.scale_grad_by_freq, self.mode, self.sparse,
|
111 |
+
per_sample_weights, self.include_last_offset,
|
112 |
+
self.padding_idx)
|
113 |
+
|
114 |
+
@classmethod
|
115 |
+
def from_float(cls, mod):
|
116 |
+
r"""Create a qat module from a float module
|
117 |
+
|
118 |
+
Args: `mod` a float module, either produced by torch.ao.quantization utilities
|
119 |
+
or directly from user
|
120 |
+
"""
|
121 |
+
assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
|
122 |
+
cls._FLOAT_MODULE.__name__
|
123 |
+
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
124 |
+
assert mod.qconfig, 'Input float module must have a valid qconfig'
|
125 |
+
weight_qscheme = mod.qconfig.weight().qscheme # type: ignore[union-attr, operator]
|
126 |
+
assert weight_qscheme == torch.per_channel_affine_float_qparams, \
|
127 |
+
'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
|
128 |
+
str(weight_qscheme)
|
129 |
+
|
130 |
+
qconfig = mod.qconfig
|
131 |
+
qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.max_norm, mod.norm_type,
|
132 |
+
mod.scale_grad_by_freq, mod.mode, mod.sparse, mod.weight,
|
133 |
+
mod.include_last_offset, mod.padding_idx, qconfig=qconfig)
|
134 |
+
|
135 |
+
return qat_embedding_bag
|
136 |
+
|
137 |
+
def to_float(self):
|
138 |
+
embedding_bag = torch.nn.EmbeddingBag(self.num_embeddings, self.embedding_dim, self.max_norm,
|
139 |
+
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
|
140 |
+
None, self.include_last_offset, self.padding_idx)
|
141 |
+
embedding_bag.weight = torch.nn.Parameter(self.weight.detach())
|
142 |
+
embedding_bag.train(self.training)
|
143 |
+
return embedding_bag
|
venv/lib/python3.10/site-packages/torch/ao/nn/qat/modules/linear.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.ao.nn.intrinsic import LinearReLU
|
5 |
+
from torch.nn.utils.parametrize import (
|
6 |
+
is_parametrized,
|
7 |
+
type_before_parametrizations,
|
8 |
+
transfer_parametrizations_and_params,
|
9 |
+
)
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"Linear"
|
13 |
+
]
|
14 |
+
|
15 |
+
class Linear(nn.Linear):
|
16 |
+
r"""
|
17 |
+
A linear module attached with FakeQuantize modules for weight,
|
18 |
+
used for quantization aware training.
|
19 |
+
|
20 |
+
We adopt the same interface as `torch.nn.Linear`, please see
|
21 |
+
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
|
22 |
+
for documentation.
|
23 |
+
|
24 |
+
Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
|
25 |
+
default.
|
26 |
+
|
27 |
+
Attributes:
|
28 |
+
weight: fake quant module for weight
|
29 |
+
"""
|
30 |
+
_FLOAT_MODULE = nn.Linear
|
31 |
+
|
32 |
+
def __init__(self, in_features, out_features, bias=True,
|
33 |
+
qconfig=None, device=None, dtype=None) -> None:
|
34 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
35 |
+
super().__init__(in_features, out_features, bias, **factory_kwargs)
|
36 |
+
assert qconfig, 'qconfig must be provided for QAT module'
|
37 |
+
self.qconfig = qconfig
|
38 |
+
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
|
39 |
+
|
40 |
+
def forward(self, input):
|
41 |
+
return F.linear(input, self.weight_fake_quant(self.weight), self.bias)
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def from_float(cls, mod):
|
45 |
+
r"""Create a qat module from a float module or qparams_dict
|
46 |
+
Args: `mod` a float module, either produced by torch.ao.quantization utilities
|
47 |
+
or directly from user
|
48 |
+
"""
|
49 |
+
assert type_before_parametrizations(mod) == cls._FLOAT_MODULE, (
|
50 |
+
" qat."
|
51 |
+
+ cls.__name__
|
52 |
+
+ ".from_float only works for "
|
53 |
+
+ cls._FLOAT_MODULE.__name__
|
54 |
+
)
|
55 |
+
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
|
56 |
+
assert mod.qconfig, "Input float module must have a valid qconfig"
|
57 |
+
if type_before_parametrizations(mod) == LinearReLU:
|
58 |
+
mod = mod[0]
|
59 |
+
|
60 |
+
qconfig = mod.qconfig
|
61 |
+
qat_linear = cls(mod.in_features, mod.out_features, bias=mod.bias is not None, qconfig=qconfig)
|
62 |
+
|
63 |
+
if is_parametrized(mod, "weight"):
|
64 |
+
transfer_parametrizations_and_params(mod, qat_linear, "weight")
|
65 |
+
else:
|
66 |
+
qat_linear.weight = mod.weight
|
67 |
+
|
68 |
+
if is_parametrized(mod, "bias"):
|
69 |
+
transfer_parametrizations_and_params(mod, qat_linear, "bias")
|
70 |
+
else:
|
71 |
+
qat_linear.bias = mod.bias
|
72 |
+
|
73 |
+
return qat_linear
|
74 |
+
|
75 |
+
def to_float(self):
|
76 |
+
linear = torch.nn.Linear(self.in_features, self.out_features, self.bias is not None)
|
77 |
+
linear.weight = torch.nn.Parameter(self.weight.detach())
|
78 |
+
if self.bias is not None:
|
79 |
+
linear.bias = torch.nn.Parameter(self.bias.detach())
|
80 |
+
linear.train(self.training)
|
81 |
+
return linear
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modules import * # noqa: F403
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (215 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .activation import MultiheadAttention
|
2 |
+
from .rnn import LSTM
|
3 |
+
from .rnn import LSTMCell
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'LSTM',
|
7 |
+
'LSTMCell',
|
8 |
+
'MultiheadAttention',
|
9 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (351 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/activation.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/__pycache__/rnn.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/activation.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.jit # this is needed to avoid a circular import
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as nnF
|
5 |
+
|
6 |
+
from torch import Tensor
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"MultiheadAttention"
|
13 |
+
]
|
14 |
+
|
15 |
+
class MultiheadAttention(nn.MultiheadAttention):
|
16 |
+
_FLOAT_MODULE = nn.MultiheadAttention
|
17 |
+
|
18 |
+
r"""Quantizable implementation of the MultiheadAttention.
|
19 |
+
|
20 |
+
Note::
|
21 |
+
Please, refer to :class:`~torch.nn.MultiheadAttention` for more
|
22 |
+
information
|
23 |
+
|
24 |
+
Allows the model to jointly attend to information from different
|
25 |
+
representation subspaces.
|
26 |
+
See reference: Attention Is All You Need
|
27 |
+
|
28 |
+
The original MHA module is not quantizable.
|
29 |
+
This reimplements it by explicitly instantiating the linear layers.
|
30 |
+
|
31 |
+
.. math::
|
32 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
33 |
+
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
34 |
+
|
35 |
+
Args:
|
36 |
+
embed_dim: total dimension of the model.
|
37 |
+
num_heads: parallel attention heads.
|
38 |
+
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
39 |
+
bias: add bias as module parameter. Default: True.
|
40 |
+
add_bias_kv: add bias to the key and value sequences at dim=0.
|
41 |
+
add_zero_attn: add a new batch of zeros to the key and
|
42 |
+
value sequences at dim=1.
|
43 |
+
kdim: total number of features in key. Default: None.
|
44 |
+
vdim: total number of features in value. Default: None.
|
45 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
46 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
47 |
+
|
48 |
+
Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
|
49 |
+
to :attr:`embed_dim` such that query, key, and value have the same
|
50 |
+
number of features.
|
51 |
+
|
52 |
+
Examples::
|
53 |
+
|
54 |
+
>>> import torch.ao.nn.quantizable as nnqa
|
55 |
+
>>> multihead_attn = nnqa.MultiheadAttention(embed_dim, num_heads)
|
56 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
57 |
+
|
58 |
+
Note::
|
59 |
+
Please, follow the quantization flow to convert the quantizable MHA.
|
60 |
+
"""
|
61 |
+
__constants__ = ['batch_first']
|
62 |
+
|
63 |
+
def __init__(self, embed_dim: int, num_heads: int,
|
64 |
+
dropout: float = 0., bias: bool = True,
|
65 |
+
add_bias_kv: bool = False, add_zero_attn: bool = False,
|
66 |
+
kdim: Optional[int] = None, vdim: Optional[int] = None, batch_first: bool = False,
|
67 |
+
device=None, dtype=None) -> None:
|
68 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
69 |
+
super().__init__(embed_dim, num_heads, dropout,
|
70 |
+
bias, add_bias_kv,
|
71 |
+
add_zero_attn, kdim, vdim, batch_first,
|
72 |
+
**factory_kwargs)
|
73 |
+
self.linear_Q = nn.Linear(self.embed_dim, self.embed_dim, bias=bias, **factory_kwargs)
|
74 |
+
self.linear_K = nn.Linear(self.kdim, self.embed_dim, bias=bias, **factory_kwargs)
|
75 |
+
self.linear_V = nn.Linear(self.vdim, self.embed_dim, bias=bias, **factory_kwargs)
|
76 |
+
# for the type: ignore, see https://github.com/pytorch/pytorch/issues/58969
|
77 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias, **factory_kwargs) # type: ignore[assignment]
|
78 |
+
|
79 |
+
# Functionals
|
80 |
+
self.q_scaling_product = torch.ao.nn.quantized.FloatFunctional()
|
81 |
+
# note: importing torch.ao.nn.quantized at top creates a circular import
|
82 |
+
|
83 |
+
# Quant/Dequant
|
84 |
+
self.quant_attn_output = torch.ao.quantization.QuantStub()
|
85 |
+
self.quant_attn_output_weights = torch.ao.quantization.QuantStub()
|
86 |
+
self.dequant_q = torch.ao.quantization.DeQuantStub()
|
87 |
+
self.dequant_k = torch.ao.quantization.DeQuantStub()
|
88 |
+
self.dequant_v = torch.ao.quantization.DeQuantStub()
|
89 |
+
|
90 |
+
def _get_name(self):
|
91 |
+
return 'QuantizableMultiheadAttention'
|
92 |
+
|
93 |
+
@classmethod
|
94 |
+
def from_float(cls, other):
|
95 |
+
assert type(other) == cls._FLOAT_MODULE
|
96 |
+
assert hasattr(other, 'qconfig'), "The float module must have 'qconfig'"
|
97 |
+
# Setting the dropout to 0.0!
|
98 |
+
observed = cls(other.embed_dim, other.num_heads, other.dropout,
|
99 |
+
(other.in_proj_bias is not None),
|
100 |
+
(other.bias_k is not None),
|
101 |
+
other.add_zero_attn, other.kdim, other.vdim,
|
102 |
+
other.batch_first)
|
103 |
+
observed.bias_k = other.bias_k
|
104 |
+
observed.bias_v = other.bias_v
|
105 |
+
observed.qconfig = other.qconfig
|
106 |
+
|
107 |
+
# Set the linear weights
|
108 |
+
# for the type: ignores, see https://github.com/pytorch/pytorch/issues/58969
|
109 |
+
observed.out_proj.weight = other.out_proj.weight # type: ignore[has-type]
|
110 |
+
observed.out_proj.bias = other.out_proj.bias # type: ignore[has-type]
|
111 |
+
if other._qkv_same_embed_dim:
|
112 |
+
# Use separate params
|
113 |
+
bias = other.in_proj_bias
|
114 |
+
_start = 0
|
115 |
+
_end = _start + other.embed_dim
|
116 |
+
weight = other.in_proj_weight[_start:_end, :]
|
117 |
+
if bias is not None:
|
118 |
+
bias = torch.nn.Parameter(bias[_start:_end], bias.requires_grad)
|
119 |
+
observed.linear_Q.weight = torch.nn.Parameter(weight,
|
120 |
+
weight.requires_grad)
|
121 |
+
observed.linear_Q.bias = bias
|
122 |
+
|
123 |
+
bias = other.in_proj_bias
|
124 |
+
_start = _end
|
125 |
+
_end = _start + other.embed_dim
|
126 |
+
weight = other.in_proj_weight[_start:_end, :]
|
127 |
+
if bias is not None:
|
128 |
+
bias = torch.nn.Parameter(bias[_start:_end], bias.requires_grad)
|
129 |
+
observed.linear_K.weight = torch.nn.Parameter(weight,
|
130 |
+
weight.requires_grad)
|
131 |
+
observed.linear_K.bias = bias
|
132 |
+
|
133 |
+
bias = other.in_proj_bias
|
134 |
+
_start = _end
|
135 |
+
weight = other.in_proj_weight[_start:, :]
|
136 |
+
if bias is not None:
|
137 |
+
bias = torch.nn.Parameter(bias[_start:], bias.requires_grad)
|
138 |
+
observed.linear_V.weight = torch.nn.Parameter(weight,
|
139 |
+
weight.requires_grad)
|
140 |
+
observed.linear_V.bias = bias
|
141 |
+
else:
|
142 |
+
observed.linear_Q.weight = nn.Parameter(other.q_proj_weight)
|
143 |
+
observed.linear_K.weight = nn.Parameter(other.k_proj_weight)
|
144 |
+
observed.linear_V.weight = nn.Parameter(other.v_proj_weight)
|
145 |
+
if other.in_proj_bias is None:
|
146 |
+
observed.linear_Q.bias = None # type: ignore[assignment]
|
147 |
+
observed.linear_K.bias = None # type: ignore[assignment]
|
148 |
+
observed.linear_V.bias = None # type: ignore[assignment]
|
149 |
+
else:
|
150 |
+
observed.linear_Q.bias = nn.Parameter(other.in_proj_bias[0:other.embed_dim])
|
151 |
+
observed.linear_K.bias = nn.Parameter(other.in_proj_bias[other.embed_dim:(other.embed_dim * 2)])
|
152 |
+
observed.linear_V.bias = nn.Parameter(other.in_proj_bias[(other.embed_dim * 2):])
|
153 |
+
observed.eval()
|
154 |
+
# Explicit prepare
|
155 |
+
observed = torch.ao.quantization.prepare(observed, inplace=True)
|
156 |
+
return observed
|
157 |
+
|
158 |
+
@torch.jit.unused
|
159 |
+
def dequantize(self):
|
160 |
+
r"""Utility to convert the quantized MHA back to float.
|
161 |
+
|
162 |
+
The motivation for this is that it is not trivial to conver the weights
|
163 |
+
from the format that is used in the quantized version back to the
|
164 |
+
float.
|
165 |
+
"""
|
166 |
+
fp = self._FLOAT_MODULE(self.embed_dim, self.num_heads, self.dropout,
|
167 |
+
(self.linear_Q._weight_bias()[1] is not None),
|
168 |
+
(self.bias_k is not None),
|
169 |
+
self.add_zero_attn, self.kdim, self.vdim, self.batch_first)
|
170 |
+
assert fp._qkv_same_embed_dim == self._qkv_same_embed_dim
|
171 |
+
if self.bias_k is not None:
|
172 |
+
fp.bias_k = nn.Parameter(self.bias_k.dequantize())
|
173 |
+
if self.bias_v is not None:
|
174 |
+
fp.bias_v = nn.Parameter(self.bias_v.dequantize())
|
175 |
+
|
176 |
+
# Set the linear weights
|
177 |
+
# Note: Because the linear layers are quantized, mypy does not nkow how
|
178 |
+
# to deal with them -- might need to ignore the typing checks.
|
179 |
+
# for the type: ignore[has-type], see https://github.com/pytorch/pytorch/issues/58969
|
180 |
+
w, b = self.out_proj._weight_bias() # type: ignore[operator, has-type]
|
181 |
+
fp.out_proj.weight = nn.Parameter(w.dequantize())
|
182 |
+
if b is not None:
|
183 |
+
fp.out_proj.bias = nn.Parameter(b)
|
184 |
+
|
185 |
+
wQ, bQ = self.linear_Q._weight_bias() # type: ignore[operator]
|
186 |
+
wQ = wQ.dequantize()
|
187 |
+
wK, bK = self.linear_K._weight_bias() # type: ignore[operator]
|
188 |
+
wK = wK.dequantize()
|
189 |
+
wV, bV = self.linear_V._weight_bias() # type: ignore[operator]
|
190 |
+
wV = wV.dequantize()
|
191 |
+
if fp._qkv_same_embed_dim:
|
192 |
+
# Use separate params
|
193 |
+
_start = 0
|
194 |
+
_end = _start + fp.embed_dim
|
195 |
+
fp.in_proj_weight[_start:_end, :] = wQ
|
196 |
+
if fp.in_proj_bias is not None:
|
197 |
+
assert all(bQ == 0)
|
198 |
+
fp.in_proj_bias[_start:_end] = bQ
|
199 |
+
|
200 |
+
_start = _end
|
201 |
+
_end = _start + fp.embed_dim
|
202 |
+
fp.in_proj_weight[_start:_end, :] = wK
|
203 |
+
if fp.in_proj_bias is not None:
|
204 |
+
assert all(bK == 0)
|
205 |
+
fp.in_proj_bias[_start:_end] = bK
|
206 |
+
|
207 |
+
_start = _end
|
208 |
+
fp.in_proj_weight[_start:, :] = wV
|
209 |
+
if fp.in_proj_bias is not None:
|
210 |
+
assert all(bV == 0)
|
211 |
+
fp.in_proj_bias[_start:] = bV
|
212 |
+
else:
|
213 |
+
fp.q_proj_weight = nn.Parameter(wQ)
|
214 |
+
fp.k_proj_weight = nn.Parameter(wK)
|
215 |
+
fp.v_proj_weight = nn.Parameter(wV)
|
216 |
+
if fp.in_proj_bias is None:
|
217 |
+
self.linear_Q.bias = None
|
218 |
+
self.linear_K.bias = None
|
219 |
+
self.linear_V.bias = None
|
220 |
+
else:
|
221 |
+
fp.in_proj_bias[0:fp.embed_dim] = bQ
|
222 |
+
fp.in_proj_bias[fp.embed_dim:(fp.embed_dim * 2)] = bK
|
223 |
+
fp.in_proj_bias[(fp.embed_dim * 2):] = bV
|
224 |
+
|
225 |
+
return fp
|
226 |
+
|
227 |
+
|
228 |
+
@classmethod
|
229 |
+
def from_observed(cls, other):
|
230 |
+
# The whole flow is float -> observed -> quantized
|
231 |
+
# This class does float -> observed only
|
232 |
+
# See nn.quantized.MultiheadAttention
|
233 |
+
raise NotImplementedError("It looks like you are trying to prepare an "
|
234 |
+
"MHA module. Please, see "
|
235 |
+
"the examples on quantizable MHAs.")
|
236 |
+
|
237 |
+
def forward(self,
|
238 |
+
query: Tensor,
|
239 |
+
key: Tensor,
|
240 |
+
value: Tensor,
|
241 |
+
key_padding_mask: Optional[Tensor] = None,
|
242 |
+
need_weights: bool = True,
|
243 |
+
attn_mask: Optional[Tensor] = None,
|
244 |
+
average_attn_weights: bool = True,
|
245 |
+
is_causal: bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
246 |
+
r"""
|
247 |
+
Note::
|
248 |
+
Please, refer to :func:`~torch.nn.MultiheadAttention.forward` for more
|
249 |
+
information
|
250 |
+
|
251 |
+
Args:
|
252 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
253 |
+
See "Attention Is All You Need" for more details.
|
254 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
255 |
+
be ignored by the attention. When given a binary mask and a value is True,
|
256 |
+
the corresponding value on the attention layer will be ignored.
|
257 |
+
need_weights: output attn_output_weights.
|
258 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
259 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
260 |
+
|
261 |
+
Shape:
|
262 |
+
- Inputs:
|
263 |
+
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
264 |
+
the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``.
|
265 |
+
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
266 |
+
the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``.
|
267 |
+
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
268 |
+
the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``.
|
269 |
+
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
270 |
+
If a BoolTensor is provided, the positions with the
|
271 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
272 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
273 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
274 |
+
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
275 |
+
positions. If a BoolTensor is provided, positions with ``True``
|
276 |
+
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
277 |
+
is provided, it will be added to the attention weight.
|
278 |
+
- is_causal: If specified, applies a causal mask as attention mask. Mutually exclusive with providing attn_mask.
|
279 |
+
Default: ``False``.
|
280 |
+
- average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
281 |
+
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
282 |
+
effect when ``need_weights=True.``. Default: True (i.e. average weights across heads)
|
283 |
+
|
284 |
+
- Outputs:
|
285 |
+
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
286 |
+
E is the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``.
|
287 |
+
- attn_output_weights: If ``average_attn_weights=True``, returns attention weights averaged
|
288 |
+
across heads of shape :math:`(N, L, S)`, where N is the batch size, L is the target sequence length,
|
289 |
+
S is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
290 |
+
head of shape :math:`(N, num_heads, L, S)`.
|
291 |
+
"""
|
292 |
+
return self._forward_impl(query, key, value, key_padding_mask,
|
293 |
+
need_weights, attn_mask, average_attn_weights,
|
294 |
+
is_causal)
|
295 |
+
|
296 |
+
def _forward_impl(self,
|
297 |
+
query: Tensor,
|
298 |
+
key: Tensor,
|
299 |
+
value: Tensor,
|
300 |
+
key_padding_mask: Optional[Tensor] = None,
|
301 |
+
need_weights: bool = True,
|
302 |
+
attn_mask: Optional[Tensor] = None,
|
303 |
+
average_attn_weights: bool = True,
|
304 |
+
is_causal: bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
305 |
+
# This version will not deal with the static key/value pairs.
|
306 |
+
# Keeping it here for future changes.
|
307 |
+
#
|
308 |
+
# TODO: This method has some duplicate lines with the
|
309 |
+
# `torch.nn.functional.multi_head_attention`. Will need to refactor.
|
310 |
+
static_k = None
|
311 |
+
static_v = None
|
312 |
+
|
313 |
+
if attn_mask is not None and is_causal:
|
314 |
+
raise AssertionError("Only allow causal mask or attn_mask")
|
315 |
+
|
316 |
+
if is_causal:
|
317 |
+
raise AssertionError("causal mask not supported by AO MHA module")
|
318 |
+
|
319 |
+
if self.batch_first:
|
320 |
+
query, key, value = (x.transpose(0, 1) for x in (query, key, value))
|
321 |
+
|
322 |
+
tgt_len, bsz, embed_dim_to_check = query.size()
|
323 |
+
assert self.embed_dim == embed_dim_to_check
|
324 |
+
# allow MHA to have different sizes for the feature dimension
|
325 |
+
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
326 |
+
|
327 |
+
head_dim = self.embed_dim // self.num_heads
|
328 |
+
assert head_dim * self.num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
329 |
+
scaling = float(head_dim) ** -0.5
|
330 |
+
|
331 |
+
q = self.linear_Q(query)
|
332 |
+
k = self.linear_K(key)
|
333 |
+
v = self.linear_V(value)
|
334 |
+
|
335 |
+
q = self.q_scaling_product.mul_scalar(q, scaling)
|
336 |
+
|
337 |
+
if attn_mask is not None:
|
338 |
+
if attn_mask.dtype == torch.uint8:
|
339 |
+
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
340 |
+
attn_mask = attn_mask.to(torch.bool)
|
341 |
+
assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
|
342 |
+
f'Only float and bool types are supported for attn_mask, not {attn_mask.dtype}'
|
343 |
+
|
344 |
+
if attn_mask.dim() == 2:
|
345 |
+
attn_mask = attn_mask.unsqueeze(0)
|
346 |
+
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
347 |
+
raise RuntimeError('The size of the 2D attn_mask is not correct.')
|
348 |
+
elif attn_mask.dim() == 3:
|
349 |
+
if list(attn_mask.size()) != [bsz * self.num_heads, query.size(0), key.size(0)]:
|
350 |
+
raise RuntimeError('The size of the 3D attn_mask is not correct.')
|
351 |
+
else:
|
352 |
+
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
353 |
+
# attn_mask's dim is 3 now.
|
354 |
+
|
355 |
+
# convert ByteTensor key_padding_mask to bool
|
356 |
+
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
357 |
+
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
358 |
+
key_padding_mask = key_padding_mask.to(torch.bool)
|
359 |
+
if self.bias_k is not None and self.bias_v is not None:
|
360 |
+
if static_k is None and static_v is None:
|
361 |
+
|
362 |
+
# Explicitly assert that bias_k and bias_v are not None
|
363 |
+
# in a way that TorchScript can understand.
|
364 |
+
bias_k = self.bias_k
|
365 |
+
assert bias_k is not None
|
366 |
+
bias_v = self.bias_v
|
367 |
+
assert bias_v is not None
|
368 |
+
|
369 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
370 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
371 |
+
if attn_mask is not None:
|
372 |
+
attn_mask = nnF.pad(attn_mask, (0, 1))
|
373 |
+
if key_padding_mask is not None:
|
374 |
+
key_padding_mask = nnF.pad(key_padding_mask, (0, 1))
|
375 |
+
else:
|
376 |
+
assert static_k is None, "bias cannot be added to static key."
|
377 |
+
assert static_v is None, "bias cannot be added to static value."
|
378 |
+
else:
|
379 |
+
assert self.bias_k is None
|
380 |
+
assert self.bias_v is None
|
381 |
+
|
382 |
+
q = q.contiguous().view(tgt_len, bsz * self.num_heads, head_dim).transpose(0, 1)
|
383 |
+
if k is not None:
|
384 |
+
k = k.contiguous().view(-1, bsz * self.num_heads, head_dim).transpose(0, 1)
|
385 |
+
if v is not None:
|
386 |
+
v = v.contiguous().view(-1, bsz * self.num_heads, head_dim).transpose(0, 1)
|
387 |
+
|
388 |
+
if static_k is not None:
|
389 |
+
assert static_k.size(0) == bsz * self.num_heads
|
390 |
+
assert static_k.size(2) == head_dim
|
391 |
+
k = static_k
|
392 |
+
|
393 |
+
if static_v is not None:
|
394 |
+
assert static_v.size(0) == bsz * self.num_heads
|
395 |
+
assert static_v.size(2) == head_dim
|
396 |
+
v = static_v
|
397 |
+
|
398 |
+
src_len = k.size(1)
|
399 |
+
|
400 |
+
if key_padding_mask is not None:
|
401 |
+
assert key_padding_mask.size(0) == bsz
|
402 |
+
assert key_padding_mask.size(1) == src_len
|
403 |
+
|
404 |
+
if self.add_zero_attn:
|
405 |
+
src_len += 1
|
406 |
+
k_zeros = torch.zeros((k.size(0), 1) + k.size()[2:])
|
407 |
+
if k.is_quantized:
|
408 |
+
k_zeros = torch.quantize_per_tensor(k_zeros, k.q_scale(), k.q_zero_point(), k.dtype)
|
409 |
+
k = torch.cat([k, k_zeros], dim=1)
|
410 |
+
v_zeros = torch.zeros((v.size(0), 1) + k.size()[2:])
|
411 |
+
if v.is_quantized:
|
412 |
+
v_zeros = torch.quantize_per_tensor(v_zeros, v.q_scale(), v.q_zero_point(), v.dtype)
|
413 |
+
v = torch.cat([v, v_zeros], dim=1)
|
414 |
+
|
415 |
+
if attn_mask is not None:
|
416 |
+
attn_mask = nnF.pad(attn_mask, (0, 1))
|
417 |
+
if key_padding_mask is not None:
|
418 |
+
key_padding_mask = nnF.pad(key_padding_mask, (0, 1))
|
419 |
+
|
420 |
+
# Leaving the quantized zone here
|
421 |
+
q = self.dequant_q(q)
|
422 |
+
k = self.dequant_k(k)
|
423 |
+
v = self.dequant_v(v)
|
424 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
425 |
+
assert list(attn_output_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
426 |
+
|
427 |
+
if attn_mask is not None:
|
428 |
+
if attn_mask.dtype == torch.bool:
|
429 |
+
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
|
430 |
+
else:
|
431 |
+
attn_output_weights += attn_mask
|
432 |
+
|
433 |
+
if key_padding_mask is not None:
|
434 |
+
attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
435 |
+
attn_output_weights = attn_output_weights.masked_fill(
|
436 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
437 |
+
float('-inf'),
|
438 |
+
)
|
439 |
+
attn_output_weights = attn_output_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
440 |
+
|
441 |
+
attn_output_weights = nnF.softmax(
|
442 |
+
attn_output_weights, dim=-1)
|
443 |
+
attn_output_weights = nnF.dropout(attn_output_weights, p=self.dropout, training=self.training)
|
444 |
+
|
445 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
446 |
+
assert list(attn_output.size()) == [bsz * self.num_heads, tgt_len, head_dim]
|
447 |
+
if self.batch_first:
|
448 |
+
attn_output = attn_output.view(bsz, tgt_len, self.embed_dim)
|
449 |
+
else:
|
450 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
|
451 |
+
|
452 |
+
# Reentering the quantized zone
|
453 |
+
attn_output = self.quant_attn_output(attn_output)
|
454 |
+
# for the type: ignore[has-type], see https://github.com/pytorch/pytorch/issues/58969
|
455 |
+
attn_output = self.out_proj(attn_output) # type: ignore[has-type]
|
456 |
+
attn_output_weights = self.quant_attn_output_weights(attn_output_weights)
|
457 |
+
|
458 |
+
if need_weights:
|
459 |
+
# average attention weights over heads
|
460 |
+
attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
461 |
+
if average_attn_weights:
|
462 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
463 |
+
return attn_output, attn_output_weights
|
464 |
+
else:
|
465 |
+
return attn_output, None
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numbers
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
"""
|
9 |
+
We will recreate all the RNN modules as we require the modules to be decomposed
|
10 |
+
into its building blocks to be able to observe.
|
11 |
+
"""
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"LSTMCell",
|
15 |
+
"LSTM"
|
16 |
+
]
|
17 |
+
|
18 |
+
class LSTMCell(torch.nn.Module):
|
19 |
+
r"""A quantizable long short-term memory (LSTM) cell.
|
20 |
+
|
21 |
+
For the description and the argument types, please, refer to :class:`~torch.nn.LSTMCell`
|
22 |
+
|
23 |
+
Examples::
|
24 |
+
|
25 |
+
>>> import torch.ao.nn.quantizable as nnqa
|
26 |
+
>>> rnn = nnqa.LSTMCell(10, 20)
|
27 |
+
>>> input = torch.randn(6, 10)
|
28 |
+
>>> hx = torch.randn(3, 20)
|
29 |
+
>>> cx = torch.randn(3, 20)
|
30 |
+
>>> output = []
|
31 |
+
>>> for i in range(6):
|
32 |
+
... hx, cx = rnn(input[i], (hx, cx))
|
33 |
+
... output.append(hx)
|
34 |
+
"""
|
35 |
+
_FLOAT_MODULE = torch.nn.LSTMCell
|
36 |
+
|
37 |
+
def __init__(self, input_dim: int, hidden_dim: int, bias: bool = True,
|
38 |
+
device=None, dtype=None) -> None:
|
39 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
40 |
+
super().__init__()
|
41 |
+
self.input_size = input_dim
|
42 |
+
self.hidden_size = hidden_dim
|
43 |
+
self.bias = bias
|
44 |
+
|
45 |
+
self.igates = torch.nn.Linear(input_dim, 4 * hidden_dim, bias=bias, **factory_kwargs)
|
46 |
+
self.hgates = torch.nn.Linear(hidden_dim, 4 * hidden_dim, bias=bias, **factory_kwargs)
|
47 |
+
self.gates = torch.ao.nn.quantized.FloatFunctional()
|
48 |
+
|
49 |
+
self.input_gate = torch.nn.Sigmoid()
|
50 |
+
self.forget_gate = torch.nn.Sigmoid()
|
51 |
+
self.cell_gate = torch.nn.Tanh()
|
52 |
+
self.output_gate = torch.nn.Sigmoid()
|
53 |
+
|
54 |
+
self.fgate_cx = torch.ao.nn.quantized.FloatFunctional()
|
55 |
+
self.igate_cgate = torch.ao.nn.quantized.FloatFunctional()
|
56 |
+
self.fgate_cx_igate_cgate = torch.ao.nn.quantized.FloatFunctional()
|
57 |
+
|
58 |
+
self.ogate_cy = torch.ao.nn.quantized.FloatFunctional()
|
59 |
+
|
60 |
+
self.initial_hidden_state_qparams: Tuple[float, int] = (1.0, 0)
|
61 |
+
self.initial_cell_state_qparams: Tuple[float, int] = (1.0, 0)
|
62 |
+
self.hidden_state_dtype: torch.dtype = torch.quint8
|
63 |
+
self.cell_state_dtype: torch.dtype = torch.quint8
|
64 |
+
|
65 |
+
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]:
|
66 |
+
if hidden is None or hidden[0] is None or hidden[1] is None:
|
67 |
+
hidden = self.initialize_hidden(x.shape[0], x.is_quantized)
|
68 |
+
hx, cx = hidden
|
69 |
+
|
70 |
+
igates = self.igates(x)
|
71 |
+
hgates = self.hgates(hx)
|
72 |
+
gates = self.gates.add(igates, hgates)
|
73 |
+
|
74 |
+
input_gate, forget_gate, cell_gate, out_gate = gates.chunk(4, 1)
|
75 |
+
|
76 |
+
input_gate = self.input_gate(input_gate)
|
77 |
+
forget_gate = self.forget_gate(forget_gate)
|
78 |
+
cell_gate = self.cell_gate(cell_gate)
|
79 |
+
out_gate = self.output_gate(out_gate)
|
80 |
+
|
81 |
+
fgate_cx = self.fgate_cx.mul(forget_gate, cx)
|
82 |
+
igate_cgate = self.igate_cgate.mul(input_gate, cell_gate)
|
83 |
+
fgate_cx_igate_cgate = self.fgate_cx_igate_cgate.add(fgate_cx, igate_cgate)
|
84 |
+
cy = fgate_cx_igate_cgate
|
85 |
+
|
86 |
+
# TODO: make this tanh a member of the module so its qparams can be configured
|
87 |
+
tanh_cy = torch.tanh(cy)
|
88 |
+
hy = self.ogate_cy.mul(out_gate, tanh_cy)
|
89 |
+
return hy, cy
|
90 |
+
|
91 |
+
def initialize_hidden(self, batch_size: int, is_quantized: bool = False) -> Tuple[Tensor, Tensor]:
|
92 |
+
h, c = torch.zeros((batch_size, self.hidden_size)), torch.zeros((batch_size, self.hidden_size))
|
93 |
+
if is_quantized:
|
94 |
+
(h_scale, h_zp) = self.initial_hidden_state_qparams
|
95 |
+
(c_scale, c_zp) = self.initial_cell_state_qparams
|
96 |
+
h = torch.quantize_per_tensor(h, scale=h_scale, zero_point=h_zp, dtype=self.hidden_state_dtype)
|
97 |
+
c = torch.quantize_per_tensor(c, scale=c_scale, zero_point=c_zp, dtype=self.cell_state_dtype)
|
98 |
+
return h, c
|
99 |
+
|
100 |
+
def _get_name(self):
|
101 |
+
return 'QuantizableLSTMCell'
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def from_params(cls, wi, wh, bi=None, bh=None):
|
105 |
+
"""Uses the weights and biases to create a new LSTM cell.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
wi, wh: Weights for the input and hidden layers
|
109 |
+
bi, bh: Biases for the input and hidden layers
|
110 |
+
"""
|
111 |
+
assert (bi is None) == (bh is None) # Either both None or both have values
|
112 |
+
input_size = wi.shape[1]
|
113 |
+
hidden_size = wh.shape[1]
|
114 |
+
cell = cls(input_dim=input_size, hidden_dim=hidden_size,
|
115 |
+
bias=(bi is not None))
|
116 |
+
cell.igates.weight = torch.nn.Parameter(wi)
|
117 |
+
if bi is not None:
|
118 |
+
cell.igates.bias = torch.nn.Parameter(bi)
|
119 |
+
cell.hgates.weight = torch.nn.Parameter(wh)
|
120 |
+
if bh is not None:
|
121 |
+
cell.hgates.bias = torch.nn.Parameter(bh)
|
122 |
+
return cell
|
123 |
+
|
124 |
+
@classmethod
|
125 |
+
def from_float(cls, other):
|
126 |
+
assert type(other) == cls._FLOAT_MODULE
|
127 |
+
assert hasattr(other, 'qconfig'), "The float module must have 'qconfig'"
|
128 |
+
observed = cls.from_params(other.weight_ih, other.weight_hh,
|
129 |
+
other.bias_ih, other.bias_hh)
|
130 |
+
observed.qconfig = other.qconfig
|
131 |
+
observed.igates.qconfig = other.qconfig
|
132 |
+
observed.hgates.qconfig = other.qconfig
|
133 |
+
return observed
|
134 |
+
|
135 |
+
|
136 |
+
class _LSTMSingleLayer(torch.nn.Module):
|
137 |
+
r"""A single one-directional LSTM layer.
|
138 |
+
|
139 |
+
The difference between a layer and a cell is that the layer can process a
|
140 |
+
sequence, while the cell only expects an instantaneous value.
|
141 |
+
"""
|
142 |
+
def __init__(self, input_dim: int, hidden_dim: int, bias: bool = True,
|
143 |
+
device=None, dtype=None) -> None:
|
144 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
145 |
+
super().__init__()
|
146 |
+
self.cell = LSTMCell(input_dim, hidden_dim, bias=bias, **factory_kwargs)
|
147 |
+
|
148 |
+
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
|
149 |
+
result = []
|
150 |
+
seq_len = x.shape[0]
|
151 |
+
for i in range(seq_len):
|
152 |
+
hidden = self.cell(x[i], hidden)
|
153 |
+
result.append(hidden[0]) # type: ignore[index]
|
154 |
+
result_tensor = torch.stack(result, 0)
|
155 |
+
return result_tensor, hidden
|
156 |
+
|
157 |
+
@classmethod
|
158 |
+
def from_params(cls, *args, **kwargs):
|
159 |
+
cell = LSTMCell.from_params(*args, **kwargs)
|
160 |
+
layer = cls(cell.input_size, cell.hidden_size, cell.bias)
|
161 |
+
layer.cell = cell
|
162 |
+
return layer
|
163 |
+
|
164 |
+
|
165 |
+
class _LSTMLayer(torch.nn.Module):
|
166 |
+
r"""A single bi-directional LSTM layer."""
|
167 |
+
def __init__(self, input_dim: int, hidden_dim: int, bias: bool = True,
|
168 |
+
batch_first: bool = False, bidirectional: bool = False,
|
169 |
+
device=None, dtype=None) -> None:
|
170 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
171 |
+
super().__init__()
|
172 |
+
self.batch_first = batch_first
|
173 |
+
self.bidirectional = bidirectional
|
174 |
+
self.layer_fw = _LSTMSingleLayer(input_dim, hidden_dim, bias=bias, **factory_kwargs)
|
175 |
+
if self.bidirectional:
|
176 |
+
self.layer_bw = _LSTMSingleLayer(input_dim, hidden_dim, bias=bias, **factory_kwargs)
|
177 |
+
|
178 |
+
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
|
179 |
+
if self.batch_first:
|
180 |
+
x = x.transpose(0, 1)
|
181 |
+
if hidden is None:
|
182 |
+
hx_fw, cx_fw = (None, None)
|
183 |
+
else:
|
184 |
+
hx_fw, cx_fw = hidden
|
185 |
+
hidden_bw: Optional[Tuple[Tensor, Tensor]] = None
|
186 |
+
if self.bidirectional:
|
187 |
+
if hx_fw is None:
|
188 |
+
hx_bw = None
|
189 |
+
else:
|
190 |
+
hx_bw = hx_fw[1]
|
191 |
+
hx_fw = hx_fw[0]
|
192 |
+
if cx_fw is None:
|
193 |
+
cx_bw = None
|
194 |
+
else:
|
195 |
+
cx_bw = cx_fw[1]
|
196 |
+
cx_fw = cx_fw[0]
|
197 |
+
if hx_bw is not None and cx_bw is not None:
|
198 |
+
hidden_bw = hx_bw, cx_bw
|
199 |
+
if hx_fw is None and cx_fw is None:
|
200 |
+
hidden_fw = None
|
201 |
+
else:
|
202 |
+
hidden_fw = torch.jit._unwrap_optional(hx_fw), torch.jit._unwrap_optional(cx_fw)
|
203 |
+
result_fw, hidden_fw = self.layer_fw(x, hidden_fw)
|
204 |
+
|
205 |
+
if hasattr(self, 'layer_bw') and self.bidirectional:
|
206 |
+
x_reversed = x.flip(0)
|
207 |
+
result_bw, hidden_bw = self.layer_bw(x_reversed, hidden_bw)
|
208 |
+
result_bw = result_bw.flip(0)
|
209 |
+
|
210 |
+
result = torch.cat([result_fw, result_bw], result_fw.dim() - 1)
|
211 |
+
if hidden_fw is None and hidden_bw is None:
|
212 |
+
h = None
|
213 |
+
c = None
|
214 |
+
elif hidden_fw is None:
|
215 |
+
(h, c) = torch.jit._unwrap_optional(hidden_bw)
|
216 |
+
elif hidden_bw is None:
|
217 |
+
(h, c) = torch.jit._unwrap_optional(hidden_fw)
|
218 |
+
else:
|
219 |
+
h = torch.stack([hidden_fw[0], hidden_bw[0]], 0) # type: ignore[list-item]
|
220 |
+
c = torch.stack([hidden_fw[1], hidden_bw[1]], 0) # type: ignore[list-item]
|
221 |
+
else:
|
222 |
+
result = result_fw
|
223 |
+
h, c = torch.jit._unwrap_optional(hidden_fw) # type: ignore[assignment]
|
224 |
+
|
225 |
+
if self.batch_first:
|
226 |
+
result.transpose_(0, 1)
|
227 |
+
|
228 |
+
return result, (h, c)
|
229 |
+
|
230 |
+
@classmethod
|
231 |
+
def from_float(cls, other, layer_idx=0, qconfig=None, **kwargs):
|
232 |
+
r"""
|
233 |
+
There is no FP equivalent of this class. This function is here just to
|
234 |
+
mimic the behavior of the `prepare` within the `torch.ao.quantization`
|
235 |
+
flow.
|
236 |
+
"""
|
237 |
+
assert hasattr(other, 'qconfig') or (qconfig is not None)
|
238 |
+
|
239 |
+
input_size = kwargs.get('input_size', other.input_size)
|
240 |
+
hidden_size = kwargs.get('hidden_size', other.hidden_size)
|
241 |
+
bias = kwargs.get('bias', other.bias)
|
242 |
+
batch_first = kwargs.get('batch_first', other.batch_first)
|
243 |
+
bidirectional = kwargs.get('bidirectional', other.bidirectional)
|
244 |
+
|
245 |
+
layer = cls(input_size, hidden_size, bias, batch_first, bidirectional)
|
246 |
+
layer.qconfig = getattr(other, 'qconfig', qconfig)
|
247 |
+
wi = getattr(other, f'weight_ih_l{layer_idx}')
|
248 |
+
wh = getattr(other, f'weight_hh_l{layer_idx}')
|
249 |
+
bi = getattr(other, f'bias_ih_l{layer_idx}', None)
|
250 |
+
bh = getattr(other, f'bias_hh_l{layer_idx}', None)
|
251 |
+
|
252 |
+
layer.layer_fw = _LSTMSingleLayer.from_params(wi, wh, bi, bh)
|
253 |
+
|
254 |
+
if other.bidirectional:
|
255 |
+
wi = getattr(other, f'weight_ih_l{layer_idx}_reverse')
|
256 |
+
wh = getattr(other, f'weight_hh_l{layer_idx}_reverse')
|
257 |
+
bi = getattr(other, f'bias_ih_l{layer_idx}_reverse', None)
|
258 |
+
bh = getattr(other, f'bias_hh_l{layer_idx}_reverse', None)
|
259 |
+
layer.layer_bw = _LSTMSingleLayer.from_params(wi, wh, bi, bh)
|
260 |
+
return layer
|
261 |
+
|
262 |
+
|
263 |
+
class LSTM(torch.nn.Module):
|
264 |
+
r"""A quantizable long short-term memory (LSTM).
|
265 |
+
|
266 |
+
For the description and the argument types, please, refer to :class:`~torch.nn.LSTM`
|
267 |
+
|
268 |
+
Attributes:
|
269 |
+
layers : instances of the `_LSTMLayer`
|
270 |
+
|
271 |
+
.. note::
|
272 |
+
To access the weights and biases, you need to access them per layer.
|
273 |
+
See examples below.
|
274 |
+
|
275 |
+
Examples::
|
276 |
+
|
277 |
+
>>> import torch.ao.nn.quantizable as nnqa
|
278 |
+
>>> rnn = nnqa.LSTM(10, 20, 2)
|
279 |
+
>>> input = torch.randn(5, 3, 10)
|
280 |
+
>>> h0 = torch.randn(2, 3, 20)
|
281 |
+
>>> c0 = torch.randn(2, 3, 20)
|
282 |
+
>>> output, (hn, cn) = rnn(input, (h0, c0))
|
283 |
+
>>> # To get the weights:
|
284 |
+
>>> # xdoctest: +SKIP
|
285 |
+
>>> print(rnn.layers[0].weight_ih)
|
286 |
+
tensor([[...]])
|
287 |
+
>>> print(rnn.layers[0].weight_hh)
|
288 |
+
AssertionError: There is no reverse path in the non-bidirectional layer
|
289 |
+
"""
|
290 |
+
_FLOAT_MODULE = torch.nn.LSTM
|
291 |
+
|
292 |
+
def __init__(self, input_size: int, hidden_size: int,
|
293 |
+
num_layers: int = 1, bias: bool = True,
|
294 |
+
batch_first: bool = False, dropout: float = 0.,
|
295 |
+
bidirectional: bool = False,
|
296 |
+
device=None, dtype=None) -> None:
|
297 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
298 |
+
super().__init__()
|
299 |
+
self.input_size = input_size
|
300 |
+
self.hidden_size = hidden_size
|
301 |
+
self.num_layers = num_layers
|
302 |
+
self.bias = bias
|
303 |
+
self.batch_first = batch_first
|
304 |
+
self.dropout = float(dropout)
|
305 |
+
self.bidirectional = bidirectional
|
306 |
+
self.training = False # Default to eval mode. If we want to train, we will explicitly set to training.
|
307 |
+
num_directions = 2 if bidirectional else 1
|
308 |
+
|
309 |
+
if not isinstance(dropout, numbers.Number) or not 0 <= dropout <= 1 or \
|
310 |
+
isinstance(dropout, bool):
|
311 |
+
raise ValueError("dropout should be a number in range [0, 1] "
|
312 |
+
"representing the probability of an element being "
|
313 |
+
"zeroed")
|
314 |
+
if dropout > 0:
|
315 |
+
warnings.warn("dropout option for quantizable LSTM is ignored. "
|
316 |
+
"If you are training, please, use nn.LSTM version "
|
317 |
+
"followed by `prepare` step.")
|
318 |
+
if num_layers == 1:
|
319 |
+
warnings.warn("dropout option adds dropout after all but last "
|
320 |
+
"recurrent layer, so non-zero dropout expects "
|
321 |
+
f"num_layers greater than 1, but got dropout={dropout} "
|
322 |
+
f"and num_layers={num_layers}")
|
323 |
+
|
324 |
+
layers = [_LSTMLayer(self.input_size, self.hidden_size,
|
325 |
+
self.bias, batch_first=False,
|
326 |
+
bidirectional=self.bidirectional, **factory_kwargs)]
|
327 |
+
for layer in range(1, num_layers):
|
328 |
+
layers.append(_LSTMLayer(self.hidden_size, self.hidden_size,
|
329 |
+
self.bias, batch_first=False,
|
330 |
+
bidirectional=self.bidirectional,
|
331 |
+
**factory_kwargs))
|
332 |
+
self.layers = torch.nn.ModuleList(layers)
|
333 |
+
|
334 |
+
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
|
335 |
+
if self.batch_first:
|
336 |
+
x = x.transpose(0, 1)
|
337 |
+
|
338 |
+
max_batch_size = x.size(1)
|
339 |
+
num_directions = 2 if self.bidirectional else 1
|
340 |
+
if hidden is None:
|
341 |
+
zeros = torch.zeros(num_directions, max_batch_size,
|
342 |
+
self.hidden_size, dtype=torch.float,
|
343 |
+
device=x.device)
|
344 |
+
zeros.squeeze_(0)
|
345 |
+
if x.is_quantized:
|
346 |
+
zeros = torch.quantize_per_tensor(zeros, scale=1.0,
|
347 |
+
zero_point=0, dtype=x.dtype)
|
348 |
+
hxcx = [(zeros, zeros) for _ in range(self.num_layers)]
|
349 |
+
else:
|
350 |
+
hidden_non_opt = torch.jit._unwrap_optional(hidden)
|
351 |
+
if isinstance(hidden_non_opt[0], Tensor):
|
352 |
+
hx = hidden_non_opt[0].reshape(self.num_layers, num_directions,
|
353 |
+
max_batch_size,
|
354 |
+
self.hidden_size)
|
355 |
+
cx = hidden_non_opt[1].reshape(self.num_layers, num_directions,
|
356 |
+
max_batch_size,
|
357 |
+
self.hidden_size)
|
358 |
+
hxcx = [(hx[idx].squeeze(0), cx[idx].squeeze(0)) for idx in range(self.num_layers)]
|
359 |
+
else:
|
360 |
+
hxcx = hidden_non_opt
|
361 |
+
|
362 |
+
hx_list = []
|
363 |
+
cx_list = []
|
364 |
+
for idx, layer in enumerate(self.layers):
|
365 |
+
x, (h, c) = layer(x, hxcx[idx])
|
366 |
+
hx_list.append(torch.jit._unwrap_optional(h))
|
367 |
+
cx_list.append(torch.jit._unwrap_optional(c))
|
368 |
+
hx_tensor = torch.stack(hx_list)
|
369 |
+
cx_tensor = torch.stack(cx_list)
|
370 |
+
|
371 |
+
# We are creating another dimension for bidirectional case
|
372 |
+
# need to collapse it
|
373 |
+
hx_tensor = hx_tensor.reshape(-1, hx_tensor.shape[-2], hx_tensor.shape[-1])
|
374 |
+
cx_tensor = cx_tensor.reshape(-1, cx_tensor.shape[-2], cx_tensor.shape[-1])
|
375 |
+
|
376 |
+
if self.batch_first:
|
377 |
+
x = x.transpose(0, 1)
|
378 |
+
|
379 |
+
return x, (hx_tensor, cx_tensor)
|
380 |
+
|
381 |
+
def _get_name(self):
|
382 |
+
return 'QuantizableLSTM'
|
383 |
+
|
384 |
+
@classmethod
|
385 |
+
def from_float(cls, other, qconfig=None):
|
386 |
+
assert isinstance(other, cls._FLOAT_MODULE)
|
387 |
+
assert (hasattr(other, 'qconfig') or qconfig)
|
388 |
+
observed = cls(other.input_size, other.hidden_size, other.num_layers,
|
389 |
+
other.bias, other.batch_first, other.dropout,
|
390 |
+
other.bidirectional)
|
391 |
+
observed.qconfig = getattr(other, 'qconfig', qconfig)
|
392 |
+
for idx in range(other.num_layers):
|
393 |
+
observed.layers[idx] = _LSTMLayer.from_float(other, idx, qconfig,
|
394 |
+
batch_first=False)
|
395 |
+
|
396 |
+
# Prepare the model
|
397 |
+
if other.training:
|
398 |
+
observed.train()
|
399 |
+
observed = torch.ao.quantization.prepare_qat(observed, inplace=True)
|
400 |
+
else:
|
401 |
+
observed.eval()
|
402 |
+
observed = torch.ao.quantization.prepare(observed, inplace=True)
|
403 |
+
return observed
|
404 |
+
|
405 |
+
@classmethod
|
406 |
+
def from_observed(cls, other):
|
407 |
+
# The whole flow is float -> observed -> quantized
|
408 |
+
# This class does float -> observed only
|
409 |
+
raise NotImplementedError("It looks like you are trying to convert a "
|
410 |
+
"non-quantizable LSTM module. Please, see "
|
411 |
+
"the examples on quantizable LSTMs.")
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import functional
|
2 |
+
from .modules import * # noqa: F403
|
3 |
+
from .modules import MaxPool2d
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'BatchNorm2d',
|
7 |
+
'BatchNorm3d',
|
8 |
+
'Conv1d',
|
9 |
+
'Conv2d',
|
10 |
+
'Conv3d',
|
11 |
+
'ConvTranspose1d',
|
12 |
+
'ConvTranspose2d',
|
13 |
+
'ConvTranspose3d',
|
14 |
+
'DeQuantize',
|
15 |
+
'ELU',
|
16 |
+
'Embedding',
|
17 |
+
'EmbeddingBag',
|
18 |
+
'GroupNorm',
|
19 |
+
'Hardswish',
|
20 |
+
'InstanceNorm1d',
|
21 |
+
'InstanceNorm2d',
|
22 |
+
'InstanceNorm3d',
|
23 |
+
'LayerNorm',
|
24 |
+
'LeakyReLU',
|
25 |
+
'Linear',
|
26 |
+
'LSTM',
|
27 |
+
'MultiheadAttention',
|
28 |
+
'Quantize',
|
29 |
+
'ReLU6',
|
30 |
+
'Sigmoid',
|
31 |
+
'Softmax',
|
32 |
+
'Dropout',
|
33 |
+
'PReLU',
|
34 |
+
# Wrapper modules
|
35 |
+
'FloatFunctional',
|
36 |
+
'FXFloatFunctional',
|
37 |
+
'QFunctional',
|
38 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (670 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/__pycache__/functional.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py
ADDED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r""" Functional interface (quantized)."""
|
2 |
+
from typing import List, Optional
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
from torch.nn.modules.utils import _pair, _triple
|
8 |
+
from torch.jit.annotations import BroadcastingList2
|
9 |
+
|
10 |
+
from .modules.utils import _pair_from_first
|
11 |
+
|
12 |
+
# Although some of the functions and docstrings are mirrored from the torch.nn,
|
13 |
+
# we want to have them here for future changes.
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"avg_pool2d",
|
17 |
+
"avg_pool3d",
|
18 |
+
"adaptive_avg_pool2d",
|
19 |
+
"adaptive_avg_pool3d",
|
20 |
+
"conv1d",
|
21 |
+
"conv2d",
|
22 |
+
"conv3d",
|
23 |
+
"interpolate",
|
24 |
+
"linear",
|
25 |
+
"max_pool1d",
|
26 |
+
"max_pool2d",
|
27 |
+
"celu",
|
28 |
+
"leaky_relu",
|
29 |
+
"hardtanh",
|
30 |
+
"hardswish",
|
31 |
+
"threshold",
|
32 |
+
"elu",
|
33 |
+
"hardsigmoid",
|
34 |
+
"clamp",
|
35 |
+
"upsample",
|
36 |
+
"upsample_bilinear",
|
37 |
+
"upsample_nearest",
|
38 |
+
]
|
39 |
+
|
40 |
+
def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
41 |
+
count_include_pad=True, divisor_override=None):
|
42 |
+
r"""
|
43 |
+
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
|
44 |
+
:math:`sH \times sW` steps. The number of output features is equal to the number of
|
45 |
+
input planes.
|
46 |
+
|
47 |
+
.. note:: The input quantization parameters propagate to the output.
|
48 |
+
|
49 |
+
See :class:`~torch.ao.nn.quantized.AvgPool2d` for details and output shape.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
53 |
+
kernel_size: size of the pooling region. Can be a single number or a
|
54 |
+
tuple `(kH, kW)`
|
55 |
+
stride: stride of the pooling operation. Can be a single number or a
|
56 |
+
tuple `(sH, sW)`. Default: :attr:`kernel_size`
|
57 |
+
padding: implicit zero paddings on both sides of the input. Can be a
|
58 |
+
single number or a tuple `(padH, padW)`. Default: 0
|
59 |
+
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
60 |
+
to compute the output shape. Default: ``False``
|
61 |
+
count_include_pad: when True, will include the zero-padding in the
|
62 |
+
averaging calculation. Default: ``True``
|
63 |
+
divisor_override: if specified, it will be used as divisor, otherwise
|
64 |
+
size of the pooling region will be used. Default: None
|
65 |
+
"""
|
66 |
+
if not input.is_quantized:
|
67 |
+
raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!")
|
68 |
+
return torch.nn.functional.avg_pool2d(input, kernel_size, stride, padding,
|
69 |
+
ceil_mode, count_include_pad,
|
70 |
+
divisor_override)
|
71 |
+
|
72 |
+
def avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
73 |
+
count_include_pad=True, divisor_override=None):
|
74 |
+
r"""
|
75 |
+
Applies 3D average-pooling operation in :math:`kD \ times kH \times kW` regions by step size
|
76 |
+
:math:`sD \times sH \times sW` steps. The number of output features is equal to the number of
|
77 |
+
input planes.
|
78 |
+
|
79 |
+
.. note:: The input quantization parameters propagate to the output.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
83 |
+
kernel_size: size of the pooling region. Can be a single number or a
|
84 |
+
tuple `(kD, kH, kW)`
|
85 |
+
stride: stride of the pooling operation. Can be a single number or a
|
86 |
+
tuple `(sD, sH, sW)`. Default: :attr:`kernel_size`
|
87 |
+
padding: implicit zero paddings on both sides of the input. Can be a
|
88 |
+
single number or a tuple `(padD, padH, padW)`. Default: 0
|
89 |
+
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
90 |
+
to compute the output shape. Default: ``False``
|
91 |
+
count_include_pad: when True, will include the zero-padding in the
|
92 |
+
averaging calculation. Default: ``True``
|
93 |
+
divisor_override: if specified, it will be used as divisor, otherwise
|
94 |
+
size of the pooling region will be used. Default: None
|
95 |
+
"""
|
96 |
+
if not input.is_quantized:
|
97 |
+
raise ValueError("Input to 'quantized.avg_pool3d' must be quantized!")
|
98 |
+
return torch.nn.functional.avg_pool3d(input, kernel_size, stride, padding,
|
99 |
+
ceil_mode, count_include_pad,
|
100 |
+
divisor_override)
|
101 |
+
|
102 |
+
def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
|
103 |
+
r"""
|
104 |
+
Applies a 2D adaptive average pooling over a quantized input signal composed
|
105 |
+
of several quantized input planes.
|
106 |
+
|
107 |
+
.. note:: The input quantization parameters propagate to the output.
|
108 |
+
|
109 |
+
See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool2d` for details and output shape.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
output_size: the target output size (single integer or
|
113 |
+
double-integer tuple)
|
114 |
+
"""
|
115 |
+
if not input.is_quantized:
|
116 |
+
raise ValueError("Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!")
|
117 |
+
return torch.nn.functional.adaptive_avg_pool2d(input, output_size)
|
118 |
+
|
119 |
+
def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
|
120 |
+
r"""
|
121 |
+
Applies a 3D adaptive average pooling over a quantized input signal composed
|
122 |
+
of several quantized input planes.
|
123 |
+
|
124 |
+
.. note:: The input quantization parameters propagate to the output.
|
125 |
+
|
126 |
+
See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool3d` for details and output shape.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
output_size: the target output size (single integer or
|
130 |
+
double-integer tuple)
|
131 |
+
"""
|
132 |
+
if not input.is_quantized:
|
133 |
+
raise ValueError(
|
134 |
+
"Input to 'quantized.functional.adaptive_avg_pool3d' must be quantized!")
|
135 |
+
return torch.nn.functional.adaptive_avg_pool3d(input, output_size)
|
136 |
+
|
137 |
+
def conv1d(input, weight, bias,
|
138 |
+
stride=1, padding=0, dilation=1, groups=1,
|
139 |
+
padding_mode='zeros',
|
140 |
+
scale=1.0, zero_point=0,
|
141 |
+
dtype=torch.quint8):
|
142 |
+
r"""
|
143 |
+
Applies a 1D convolution over a quantized 1D input composed of several input
|
144 |
+
planes.
|
145 |
+
|
146 |
+
See :class:`~torch.ao.nn.quantized.Conv1d` for details and output shape.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
150 |
+
weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW)`
|
151 |
+
bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.
|
152 |
+
stride: the stride of the convolving kernel. Can be a single number or a
|
153 |
+
tuple `(sW,)`. Default: 1
|
154 |
+
padding: implicit paddings on both sides of the input. Can be a
|
155 |
+
single number or a tuple `(padW,)`. Default: 0
|
156 |
+
dilation: the spacing between kernel elements. Can be a single number or
|
157 |
+
a tuple `(dW,)`. Default: 1
|
158 |
+
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
159 |
+
number of groups. Default: 1
|
160 |
+
padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros"
|
161 |
+
scale: quantization scale for the output. Default: 1.0
|
162 |
+
zero_point: quantization zero_point for the output. Default: 0
|
163 |
+
dtype: quantization data type to use. Default: ``torch.quint8``
|
164 |
+
|
165 |
+
Examples::
|
166 |
+
|
167 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
168 |
+
>>> from torch.ao.nn.quantized import functional as qF
|
169 |
+
>>> filters = torch.randn(33, 16, 3, dtype=torch.float)
|
170 |
+
>>> inputs = torch.randn(20, 16, 50, dtype=torch.float)
|
171 |
+
>>> bias = torch.randn(33, dtype=torch.float)
|
172 |
+
>>>
|
173 |
+
>>> scale, zero_point = 1.0, 0
|
174 |
+
>>> dtype_inputs = torch.quint8
|
175 |
+
>>> dtype_filters = torch.qint8
|
176 |
+
>>>
|
177 |
+
>>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)
|
178 |
+
>>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)
|
179 |
+
>>> qF.conv1d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)
|
180 |
+
""" # noqa: E501
|
181 |
+
if padding_mode != 'zeros':
|
182 |
+
raise NotImplementedError("Only zero-padding is supported!")
|
183 |
+
if input.dtype != torch.quint8:
|
184 |
+
raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
|
185 |
+
if weight.dtype != torch.qint8:
|
186 |
+
raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
|
187 |
+
if input.ndim != 3:
|
188 |
+
raise ValueError("Input shape must be `(N, C, L)`!")
|
189 |
+
stride = _pair_from_first(stride)
|
190 |
+
padding = _pair_from_first(padding)
|
191 |
+
dilation = _pair_from_first(dilation)
|
192 |
+
|
193 |
+
packed_params = torch.ops.quantized.conv1d_prepack(
|
194 |
+
weight, bias, stride, padding, dilation, groups)
|
195 |
+
return torch.ops.quantized.conv1d(input, packed_params, scale, zero_point)
|
196 |
+
|
197 |
+
def conv2d(input, weight, bias,
|
198 |
+
stride=1, padding=0, dilation=1, groups=1,
|
199 |
+
padding_mode='zeros',
|
200 |
+
scale=1.0, zero_point=0,
|
201 |
+
dtype=torch.quint8):
|
202 |
+
r"""
|
203 |
+
Applies a 2D convolution over a quantized 2D input composed of several input
|
204 |
+
planes.
|
205 |
+
|
206 |
+
See :class:`~torch.ao.nn.quantized.Conv2d` for details and output shape.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
210 |
+
weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
|
211 |
+
bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`.
|
212 |
+
stride: the stride of the convolving kernel. Can be a single number or a
|
213 |
+
tuple `(sH, sW)`. Default: 1
|
214 |
+
padding: implicit paddings on both sides of the input. Can be a
|
215 |
+
single number or a tuple `(padH, padW)`. Default: 0
|
216 |
+
dilation: the spacing between kernel elements. Can be a single number or
|
217 |
+
a tuple `(dH, dW)`. Default: 1
|
218 |
+
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
219 |
+
number of groups. Default: 1
|
220 |
+
padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros"
|
221 |
+
scale: quantization scale for the output. Default: 1.0
|
222 |
+
zero_point: quantization zero_point for the output. Default: 0
|
223 |
+
dtype: quantization data type to use. Default: ``torch.quint8``
|
224 |
+
|
225 |
+
Examples::
|
226 |
+
|
227 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
228 |
+
>>> from torch.ao.nn.quantized import functional as qF
|
229 |
+
>>> filters = torch.randn(8, 4, 3, 3, dtype=torch.float)
|
230 |
+
>>> inputs = torch.randn(1, 4, 5, 5, dtype=torch.float)
|
231 |
+
>>> bias = torch.randn(8, dtype=torch.float)
|
232 |
+
>>>
|
233 |
+
>>> scale, zero_point = 1.0, 0
|
234 |
+
>>> dtype_inputs = torch.quint8
|
235 |
+
>>> dtype_filters = torch.qint8
|
236 |
+
>>>
|
237 |
+
>>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)
|
238 |
+
>>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)
|
239 |
+
>>> qF.conv2d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)
|
240 |
+
""" # noqa: E501
|
241 |
+
if padding_mode != 'zeros':
|
242 |
+
raise NotImplementedError("Only zero-padding is supported!")
|
243 |
+
if input.dtype != torch.quint8:
|
244 |
+
raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
|
245 |
+
if weight.dtype != torch.qint8:
|
246 |
+
raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
|
247 |
+
if input.ndim != 4:
|
248 |
+
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
249 |
+
stride = _pair(stride)
|
250 |
+
padding = _pair(padding)
|
251 |
+
dilation = _pair(dilation)
|
252 |
+
|
253 |
+
packed_params = torch.ops.quantized.conv2d_prepack(
|
254 |
+
weight, bias, stride, padding, dilation, groups)
|
255 |
+
return torch.ops.quantized.conv2d(input, packed_params, scale, zero_point)
|
256 |
+
|
257 |
+
def conv3d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1,
|
258 |
+
padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8):
|
259 |
+
r"""
|
260 |
+
Applies a 3D convolution over a quantized 3D input composed of several input
|
261 |
+
planes.
|
262 |
+
|
263 |
+
See :class:`~torch.ao.nn.quantized.Conv3d` for details and output shape.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
input: quantized input tensor of shape
|
267 |
+
:math:`(\text{minibatch} , \text{in\_channels} , iD , iH , iW)`
|
268 |
+
weight: quantized filters of shape
|
269 |
+
:math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW)`
|
270 |
+
bias: **non-quantized** bias tensor of shape
|
271 |
+
:math:`(\text{out\_channels})`. The tensor type must be `torch.float`.
|
272 |
+
stride: the stride of the convolving kernel. Can be a single number or a
|
273 |
+
tuple `(sD, sH, sW)`. Default: 1
|
274 |
+
padding: implicit paddings on both sides of the input. Can be a
|
275 |
+
single number or a tuple `(padD, padH, padW)`. Default: 0
|
276 |
+
dilation: the spacing between kernel elements. Can be a single number or
|
277 |
+
a tuple `(dD, dH, dW)`. Default: 1
|
278 |
+
groups: split input into groups, :math:`\text{in\_channels}` should be
|
279 |
+
divisible by the number of groups. Default: 1
|
280 |
+
padding_mode: the padding mode to use. Only "zeros" is supported for
|
281 |
+
quantized convolution at the moment. Default: "zeros"
|
282 |
+
scale: quantization scale for the output. Default: 1.0
|
283 |
+
zero_point: quantization zero_point for the output. Default: 0
|
284 |
+
dtype: quantization data type to use. Default: ``torch.quint8``
|
285 |
+
|
286 |
+
Examples::
|
287 |
+
|
288 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
289 |
+
>>> from torch.ao.nn.quantized import functional as qF
|
290 |
+
>>> filters = torch.randn(8, 4, 3, 3, 3, dtype=torch.float)
|
291 |
+
>>> inputs = torch.randn(1, 4, 5, 5, 5, dtype=torch.float)
|
292 |
+
>>> bias = torch.randn(8, dtype=torch.float)
|
293 |
+
>>>
|
294 |
+
>>> scale, zero_point = 1.0, 0
|
295 |
+
>>> dtype_inputs = torch.quint8
|
296 |
+
>>> dtype_filters = torch.qint8
|
297 |
+
>>>
|
298 |
+
>>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters)
|
299 |
+
>>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs)
|
300 |
+
>>> qF.conv3d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)
|
301 |
+
""" # noqa: E501
|
302 |
+
if padding_mode != 'zeros':
|
303 |
+
raise NotImplementedError("Only zero-padding is supported!")
|
304 |
+
if input.dtype != torch.quint8:
|
305 |
+
raise NotImplementedError("Only torch.quint8 is supported for activation tensor!")
|
306 |
+
if weight.dtype != torch.qint8:
|
307 |
+
raise NotImplementedError("Only torch.qint8 is supported for weight tensor!")
|
308 |
+
if input.ndim != 5:
|
309 |
+
raise ValueError("Input shape must be `(N, C, D, H, W)`!")
|
310 |
+
stride = _triple(stride)
|
311 |
+
padding = _triple(padding)
|
312 |
+
dilation = _triple(dilation)
|
313 |
+
|
314 |
+
packed_params = torch.ops.quantized.conv3d_prepack(
|
315 |
+
weight, bias, stride, padding, dilation, groups)
|
316 |
+
return torch.ops.quantized.conv3d(input, packed_params, scale, zero_point)
|
317 |
+
|
318 |
+
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
319 |
+
r"""Down/up samples the input to either the given :attr:`size` or the given
|
320 |
+
:attr:`scale_factor`
|
321 |
+
|
322 |
+
See :func:`torch.nn.functional.interpolate` for implementation details.
|
323 |
+
|
324 |
+
The input dimensions are interpreted in the form:
|
325 |
+
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
326 |
+
|
327 |
+
.. note:: The input quantization parameters propagate to the output.
|
328 |
+
|
329 |
+
.. note:: Only 2D/3D input is supported for quantized inputs
|
330 |
+
|
331 |
+
.. note:: Only the following modes are supported for the quantized inputs:
|
332 |
+
|
333 |
+
- `bilinear`
|
334 |
+
- `nearest`
|
335 |
+
|
336 |
+
Args:
|
337 |
+
input (Tensor): the input tensor
|
338 |
+
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
339 |
+
output spatial size.
|
340 |
+
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
|
341 |
+
mode (str): algorithm used for upsampling:
|
342 |
+
``'nearest'`` | ``'bilinear'``
|
343 |
+
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
344 |
+
input and output as squares rather than points.
|
345 |
+
If set to ``True``, the input and output tensors are aligned by the
|
346 |
+
center points of their corner pixels, preserving the values at the corner pixels.
|
347 |
+
If set to ``False``, the input and output tensors are aligned by the corner
|
348 |
+
points of their corner pixels, and the interpolation uses edge value padding
|
349 |
+
for out-of-boundary values, making this operation *independent* of input size
|
350 |
+
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
351 |
+
is ``'bilinear'``.
|
352 |
+
Default: ``False``
|
353 |
+
"""
|
354 |
+
if not input.is_quantized:
|
355 |
+
raise ValueError("Input to 'quantized.interpolate' must be quantized!")
|
356 |
+
return torch.nn.functional.interpolate(input, size, scale_factor, mode,
|
357 |
+
align_corners)
|
358 |
+
|
359 |
+
def linear(
|
360 |
+
input: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
|
361 |
+
scale: Optional[float] = None, zero_point: Optional[int] = None
|
362 |
+
) -> Tensor:
|
363 |
+
r"""
|
364 |
+
Applies a linear transformation to the incoming quantized data:
|
365 |
+
:math:`y = xA^T + b`.
|
366 |
+
See :class:`~torch.ao.nn.quantized.Linear`
|
367 |
+
|
368 |
+
.. note::
|
369 |
+
|
370 |
+
Current implementation packs weights on every call, which has penalty on performance.
|
371 |
+
If you want to avoid the overhead, use :class:`~torch.ao.nn.quantized.Linear`.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
input (Tensor): Quantized input of type `torch.quint8`
|
375 |
+
weight (Tensor): Quantized weight of type `torch.qint8`
|
376 |
+
bias (Tensor): None or fp32 bias of type `torch.float`
|
377 |
+
scale (double): output scale. If None, derived from the input scale
|
378 |
+
zero_point (long): output zero point. If None, derived from the input zero_point
|
379 |
+
|
380 |
+
Shape:
|
381 |
+
- Input: :math:`(N, *, in\_features)` where `*` means any number of
|
382 |
+
additional dimensions
|
383 |
+
- Weight: :math:`(out\_features, in\_features)`
|
384 |
+
- Bias: :math:`(out\_features)`
|
385 |
+
- Output: :math:`(N, *, out\_features)`
|
386 |
+
"""
|
387 |
+
if scale is None:
|
388 |
+
scale = input.q_scale()
|
389 |
+
if zero_point is None:
|
390 |
+
zero_point = input.q_zero_point()
|
391 |
+
_packed_params = torch.ops.quantized.linear_prepack(weight, bias)
|
392 |
+
return torch.ops.quantized.linear(input, _packed_params, scale, zero_point)
|
393 |
+
|
394 |
+
def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
|
395 |
+
ceil_mode=False, return_indices=False):
|
396 |
+
r"""Applies a 1D max pooling over a quantized input signal composed of
|
397 |
+
several quantized input planes.
|
398 |
+
|
399 |
+
.. note:: The input quantization parameters are propagated to the output.
|
400 |
+
|
401 |
+
See :class:`~torch.ao.nn.quantized.MaxPool1d` for details.
|
402 |
+
"""
|
403 |
+
if return_indices:
|
404 |
+
raise NotImplementedError("return_indices is not yet implemented!")
|
405 |
+
if stride is None:
|
406 |
+
stride = torch.jit.annotate(List[int], [])
|
407 |
+
return torch.nn.functional.max_pool1d(input, kernel_size, stride, padding,
|
408 |
+
dilation, ceil_mode=ceil_mode, return_indices=return_indices)
|
409 |
+
|
410 |
+
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
|
411 |
+
ceil_mode=False, return_indices=False):
|
412 |
+
r"""Applies a 2D max pooling over a quantized input signal composed of
|
413 |
+
several quantized input planes.
|
414 |
+
|
415 |
+
.. note:: The input quantization parameters are propagated to the output.
|
416 |
+
|
417 |
+
See :class:`~torch.ao.nn.quantized.MaxPool2d` for details.
|
418 |
+
"""
|
419 |
+
if return_indices:
|
420 |
+
raise NotImplementedError("return_indices is not yet implemented!")
|
421 |
+
if stride is None:
|
422 |
+
stride = torch.jit.annotate(List[int], [])
|
423 |
+
return torch.nn.functional.max_pool2d(input, kernel_size, stride, padding,
|
424 |
+
dilation, ceil_mode=ceil_mode, return_indices=return_indices)
|
425 |
+
|
426 |
+
def celu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor:
|
427 |
+
r"""celu(input, scale, zero_point, alpha=1.) -> Tensor
|
428 |
+
|
429 |
+
Applies the quantized CELU function element-wise.
|
430 |
+
|
431 |
+
.. math::
|
432 |
+
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x / \alpha) - 1))
|
433 |
+
|
434 |
+
Args:
|
435 |
+
input: quantized input
|
436 |
+
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
437 |
+
"""
|
438 |
+
if not input.is_quantized:
|
439 |
+
raise ValueError("Input to 'quantized.celu' must be quantized!")
|
440 |
+
return torch.ops.quantized.celu(input, scale, zero_point, alpha)
|
441 |
+
|
442 |
+
|
443 |
+
def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False,
|
444 |
+
scale: Optional[float] = None, zero_point: Optional[int] = None):
|
445 |
+
r"""
|
446 |
+
Quantized version of the.
|
447 |
+
leaky_relu(input, negative_slope=0.01, inplace=False, scale, zero_point) -> Tensor
|
448 |
+
|
449 |
+
Applies element-wise,
|
450 |
+
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`
|
451 |
+
|
452 |
+
Args:
|
453 |
+
input: Quantized input
|
454 |
+
negative_slope: The slope of the negative input
|
455 |
+
inplace: Inplace modification of the input tensor
|
456 |
+
scale, zero_point: Scale and zero point of the output tensor.
|
457 |
+
|
458 |
+
See :class:`~torch.nn.LeakyReLU` for more details.
|
459 |
+
"""
|
460 |
+
if scale is not None and zero_point is not None:
|
461 |
+
assert not inplace, "Cannot rescale with `inplace`"
|
462 |
+
output = torch._empty_affine_quantized(
|
463 |
+
input.shape, scale=scale, zero_point=int(zero_point), dtype=input.dtype)
|
464 |
+
torch._C._nn.leaky_relu(input, negative_slope, out=output)
|
465 |
+
return output
|
466 |
+
if inplace:
|
467 |
+
result = torch._C._nn.leaky_relu_(input, negative_slope)
|
468 |
+
else:
|
469 |
+
result = torch._C._nn.leaky_relu(input, negative_slope)
|
470 |
+
return result
|
471 |
+
|
472 |
+
def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor:
|
473 |
+
r"""This is the quantized version of :func:`~torch.nn.functional.hardtanh`.
|
474 |
+
"""
|
475 |
+
if not input.is_quantized:
|
476 |
+
raise ValueError("Input to 'quantized.hardtanh' must be quantized!")
|
477 |
+
if inplace:
|
478 |
+
return torch._C._nn.hardtanh_(input, min_val, max_val)
|
479 |
+
return torch._C._nn.hardtanh(input, min_val, max_val)
|
480 |
+
|
481 |
+
def hardswish(input: Tensor, scale: float, zero_point: int) -> Tensor:
|
482 |
+
r"""This is the quantized version of :func:`~torch.nn.functional.hardswish`.
|
483 |
+
|
484 |
+
Args:
|
485 |
+
input: quantized input
|
486 |
+
scale: quantization scale of the output tensor
|
487 |
+
zero_point: quantization zero point of the output tensor
|
488 |
+
"""
|
489 |
+
if not input.is_quantized:
|
490 |
+
raise ValueError("Input to 'quantized.hardswish' must be quantized!")
|
491 |
+
return torch._ops.ops.quantized.hardswish(input, scale, zero_point)
|
492 |
+
|
493 |
+
def threshold(input: Tensor, threshold: float, value: float) -> Tensor:
|
494 |
+
r"""Applies the quantized version of the threshold function element-wise:
|
495 |
+
|
496 |
+
.. math::
|
497 |
+
x = \begin{cases}
|
498 |
+
x & \text{if~} x > \text{threshold} \\
|
499 |
+
\text{value} & \text{otherwise}
|
500 |
+
\end{cases}
|
501 |
+
|
502 |
+
See :class:`~torch.nn.Threshold` for more details.
|
503 |
+
"""
|
504 |
+
if not input.is_quantized:
|
505 |
+
raise ValueError("Input to 'quantized.threshold' must be quantized!")
|
506 |
+
if threshold is None:
|
507 |
+
raise ValueError("Input to 'threshold' must be specified!")
|
508 |
+
if value is None:
|
509 |
+
raise ValueError("Input to 'value' must be specified!")
|
510 |
+
return torch._ops.ops.quantized.threshold(input, threshold, value)
|
511 |
+
|
512 |
+
def elu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor:
|
513 |
+
r"""This is the quantized version of :func:`~torch.nn.functional.elu`.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
input: quantized input
|
517 |
+
scale: quantization scale of the output tensor
|
518 |
+
zero_point: quantization zero point of the output tensor
|
519 |
+
alpha: the alpha constant
|
520 |
+
"""
|
521 |
+
if not input.is_quantized:
|
522 |
+
raise ValueError("Input to 'quantized.elu' must be quantized!")
|
523 |
+
return torch.ops.quantized.elu(input, scale, zero_point, alpha)
|
524 |
+
|
525 |
+
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor:
|
526 |
+
r"""This is the quantized version of :func:`~torch.nn.functional.hardsigmoid`.
|
527 |
+
"""
|
528 |
+
if not input.is_quantized:
|
529 |
+
raise ValueError("Input to 'quantized.hardsigmoid' must be quantized!")
|
530 |
+
if inplace:
|
531 |
+
return torch._C._nn.hardsigmoid_(input) # type: ignore[attr-defined]
|
532 |
+
return torch._C._nn.hardsigmoid(input)
|
533 |
+
|
534 |
+
def clamp(input: Tensor, min_: float, max_: float) -> Tensor:
|
535 |
+
r"""float(input, min\_, max\_) -> Tensor
|
536 |
+
|
537 |
+
Applies the clamp function element-wise.
|
538 |
+
See :class:`~torch.ao.nn.quantized.clamp` for more details.
|
539 |
+
|
540 |
+
Args:
|
541 |
+
input: quantized input
|
542 |
+
min_: minimum value for clamping
|
543 |
+
max_: maximum value for clamping
|
544 |
+
"""
|
545 |
+
if not input.is_quantized:
|
546 |
+
raise ValueError("Input to 'quantized.clamp' must be quantized!")
|
547 |
+
return torch.clamp(input, min_, max_)
|
548 |
+
|
549 |
+
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
550 |
+
r"""Upsamples the input to either the given :attr:`size` or the given
|
551 |
+
:attr:`scale_factor`
|
552 |
+
|
553 |
+
.. warning::
|
554 |
+
This function is deprecated in favor of
|
555 |
+
:func:`torch.ao.nn.quantized.functional.interpolate`.
|
556 |
+
This is equivalent with ``nn.quantized.functional.interpolate(...)``.
|
557 |
+
|
558 |
+
See :func:`torch.nn.functional.interpolate` for implementation details.
|
559 |
+
|
560 |
+
The input dimensions are interpreted in the form:
|
561 |
+
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
562 |
+
|
563 |
+
.. note:: The input quantization parameters propagate to the output.
|
564 |
+
|
565 |
+
.. note:: Only 2D input is supported for quantized inputs
|
566 |
+
|
567 |
+
.. note:: Only the following modes are supported for the quantized inputs:
|
568 |
+
|
569 |
+
- `bilinear`
|
570 |
+
- `nearest`
|
571 |
+
|
572 |
+
Args:
|
573 |
+
input (Tensor): quantized input tensor
|
574 |
+
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
575 |
+
output spatial size.
|
576 |
+
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to be an integer.
|
577 |
+
mode (str): algorithm used for upsampling:
|
578 |
+
``'nearest'`` | ``'bilinear'``
|
579 |
+
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
580 |
+
input and output as squares rather than points.
|
581 |
+
If set to ``True``, the input and output tensors are aligned by the
|
582 |
+
center points of their corner pixels, preserving the values at the corner pixels.
|
583 |
+
If set to ``False``, the input and output tensors are aligned by the corner
|
584 |
+
points of their corner pixels, and the interpolation uses edge value padding
|
585 |
+
for out-of-boundary values, making this operation *independent* of input size
|
586 |
+
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
587 |
+
is ``'bilinear'``.
|
588 |
+
Default: ``False``
|
589 |
+
|
590 |
+
.. warning::
|
591 |
+
With ``align_corners = True``, the linearly interpolating modes
|
592 |
+
(`bilinear`) don't proportionally align the
|
593 |
+
output and input pixels, and thus the output values can depend on the
|
594 |
+
input size. This was the default behavior for these modes up to version
|
595 |
+
0.3.1. Since then, the default behavior is ``align_corners = False``.
|
596 |
+
See :class:`~torch.nn.Upsample` for concrete examples on how this
|
597 |
+
affects the outputs.
|
598 |
+
"""
|
599 |
+
warnings.warn("nn.quantized.functional.upsample is deprecated. Use nn.quantized.functional.interpolate instead.")
|
600 |
+
return interpolate(input, size, scale_factor, mode, align_corners)
|
601 |
+
|
602 |
+
def upsample_bilinear(input, size=None, scale_factor=None):
|
603 |
+
r"""Upsamples the input, using bilinear upsampling.
|
604 |
+
|
605 |
+
.. warning::
|
606 |
+
This function is deprecated in favor of
|
607 |
+
:func:`torch.ao.nn.quantized.functional.interpolate`.
|
608 |
+
This is equivalent with
|
609 |
+
``nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)``.
|
610 |
+
|
611 |
+
.. note:: The input quantization parameters propagate to the output.
|
612 |
+
|
613 |
+
.. note:: Only 2D inputs are supported
|
614 |
+
|
615 |
+
Args:
|
616 |
+
input (Tensor): quantized input
|
617 |
+
size (int or Tuple[int, int]): output spatial size.
|
618 |
+
scale_factor (int or Tuple[int, int]): multiplier for spatial size
|
619 |
+
"""
|
620 |
+
# DeprecationWarning is ignored by default
|
621 |
+
warnings.warn("nn.quantized.functional.upsample_bilinear is deprecated. Use nn.quantized.functional.interpolate instead.")
|
622 |
+
return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True)
|
623 |
+
|
624 |
+
def upsample_nearest(input, size=None, scale_factor=None):
|
625 |
+
r"""Upsamples the input, using nearest neighbours' pixel values.
|
626 |
+
|
627 |
+
.. warning::
|
628 |
+
This function is deprecated in favor of
|
629 |
+
:func:`torch.ao.nn.quantized.functional.interpolate`.
|
630 |
+
This is equivalent with ``nn.quantized.functional.interpolate(..., mode='nearest')``.
|
631 |
+
|
632 |
+
.. note:: The input quantization parameters propagate to the output.
|
633 |
+
|
634 |
+
.. note:: Only 2D inputs are supported
|
635 |
+
|
636 |
+
Args:
|
637 |
+
input (Tensor): quantized input
|
638 |
+
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial
|
639 |
+
size.
|
640 |
+
scale_factor (int): multiplier for spatial size. Has to be an integer.
|
641 |
+
"""
|
642 |
+
# DeprecationWarning is ignored by default
|
643 |
+
warnings.warn("nn.quantized.functional.upsample_nearest is deprecated. Use nn.quantized.functional.interpolate instead.")
|
644 |
+
return interpolate(input, size, scale_factor, mode='nearest')
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# The quantized modules use `torch.nn` and `torch.ao.nn.quantizable`
|
4 |
+
# packages. However, the `quantizable` package uses "lazy imports"
|
5 |
+
# to avoid circular dependency.
|
6 |
+
# Hence we need to include it here to make sure it is resolved before
|
7 |
+
# they are used in the modules.
|
8 |
+
import torch.ao.nn.quantizable
|
9 |
+
|
10 |
+
from torch.nn.modules.pooling import MaxPool2d
|
11 |
+
|
12 |
+
from .activation import ReLU6, Hardswish, ELU, LeakyReLU, Sigmoid, Softmax, MultiheadAttention, PReLU
|
13 |
+
from .dropout import Dropout
|
14 |
+
from .batchnorm import BatchNorm2d, BatchNorm3d
|
15 |
+
from .normalization import LayerNorm, GroupNorm, InstanceNorm1d, \
|
16 |
+
InstanceNorm2d, InstanceNorm3d
|
17 |
+
from .conv import Conv1d, Conv2d, Conv3d
|
18 |
+
from .conv import ConvTranspose1d, ConvTranspose2d, ConvTranspose3d
|
19 |
+
from .linear import Linear
|
20 |
+
from .embedding_ops import Embedding, EmbeddingBag
|
21 |
+
from .rnn import LSTM
|
22 |
+
|
23 |
+
from .functional_modules import FloatFunctional, FXFloatFunctional, QFunctional
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
'BatchNorm2d',
|
27 |
+
'BatchNorm3d',
|
28 |
+
'Conv1d',
|
29 |
+
'Conv2d',
|
30 |
+
'Conv3d',
|
31 |
+
'ConvTranspose1d',
|
32 |
+
'ConvTranspose2d',
|
33 |
+
'ConvTranspose3d',
|
34 |
+
'DeQuantize',
|
35 |
+
'ELU',
|
36 |
+
'Embedding',
|
37 |
+
'EmbeddingBag',
|
38 |
+
'GroupNorm',
|
39 |
+
'Hardswish',
|
40 |
+
'InstanceNorm1d',
|
41 |
+
'InstanceNorm2d',
|
42 |
+
'InstanceNorm3d',
|
43 |
+
'LayerNorm',
|
44 |
+
'LeakyReLU',
|
45 |
+
'Linear',
|
46 |
+
'LSTM',
|
47 |
+
'MultiheadAttention',
|
48 |
+
'Quantize',
|
49 |
+
'ReLU6',
|
50 |
+
'Sigmoid',
|
51 |
+
'Softmax',
|
52 |
+
'Dropout',
|
53 |
+
'PReLU',
|
54 |
+
# Wrapper modules
|
55 |
+
'FloatFunctional',
|
56 |
+
'FXFloatFunctional',
|
57 |
+
'QFunctional',
|
58 |
+
]
|
59 |
+
|
60 |
+
class Quantize(torch.nn.Module):
|
61 |
+
r"""Quantizes an incoming tensor
|
62 |
+
|
63 |
+
Args:
|
64 |
+
`scale`: scale of the output Quantized Tensor
|
65 |
+
`zero_point`: zero_point of output Quantized Tensor
|
66 |
+
`dtype`: data type of output Quantized Tensor
|
67 |
+
`factory_kwargs`: Dictionary of kwargs used for configuring initialization
|
68 |
+
of internal buffers. Currently, `device` and `dtype` are supported.
|
69 |
+
Example: `factory_kwargs={'device': 'cuda', 'dtype': torch.float64}`
|
70 |
+
will initialize internal buffers as type `torch.float64` on the current CUDA device.
|
71 |
+
Note that `dtype` only applies to floating-point buffers.
|
72 |
+
|
73 |
+
Examples::
|
74 |
+
>>> t = torch.tensor([[1., -1.], [1., -1.]])
|
75 |
+
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
|
76 |
+
>>> qm = Quantize(scale, zero_point, dtype)
|
77 |
+
>>> # xdoctest: +SKIP
|
78 |
+
>>> qt = qm(t)
|
79 |
+
>>> print(qt)
|
80 |
+
tensor([[ 1., -1.],
|
81 |
+
[ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
|
82 |
+
"""
|
83 |
+
|
84 |
+
scale: torch.Tensor
|
85 |
+
zero_point: torch.Tensor
|
86 |
+
|
87 |
+
def __init__(self, scale, zero_point, dtype, factory_kwargs=None):
|
88 |
+
factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
|
89 |
+
super().__init__()
|
90 |
+
self.register_buffer('scale', torch.tensor([scale], **factory_kwargs))
|
91 |
+
self.register_buffer('zero_point',
|
92 |
+
torch.tensor([zero_point], dtype=torch.long,
|
93 |
+
**{k: v for k, v in factory_kwargs.items() if k != 'dtype'}))
|
94 |
+
self.dtype = dtype
|
95 |
+
|
96 |
+
def forward(self, X):
|
97 |
+
return torch.quantize_per_tensor(X, float(self.scale),
|
98 |
+
int(self.zero_point), self.dtype)
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def from_float(mod):
|
102 |
+
assert hasattr(mod, 'activation_post_process')
|
103 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
104 |
+
return Quantize(scale.float().item(), zero_point.long().item(), mod.activation_post_process.dtype)
|
105 |
+
|
106 |
+
def extra_repr(self):
|
107 |
+
return f'scale={self.scale}, zero_point={self.zero_point}, dtype={self.dtype}'
|
108 |
+
|
109 |
+
|
110 |
+
class DeQuantize(torch.nn.Module):
|
111 |
+
r"""Dequantizes an incoming tensor
|
112 |
+
|
113 |
+
Examples::
|
114 |
+
>>> input = torch.tensor([[1., -1.], [1., -1.]])
|
115 |
+
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
|
116 |
+
>>> qm = Quantize(scale, zero_point, dtype)
|
117 |
+
>>> # xdoctest: +SKIP
|
118 |
+
>>> quantized_input = qm(input)
|
119 |
+
>>> dqm = DeQuantize()
|
120 |
+
>>> dequantized = dqm(quantized_input)
|
121 |
+
>>> print(dequantized)
|
122 |
+
tensor([[ 1., -1.],
|
123 |
+
[ 1., -1.]], dtype=torch.float32)
|
124 |
+
"""
|
125 |
+
|
126 |
+
def forward(self, Xq):
|
127 |
+
return Xq.dequantize()
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def from_float(mod):
|
131 |
+
return DeQuantize()
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/activation.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/batchnorm.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/conv.cpython-310.pyc
ADDED
Binary file (31.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/dropout.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/embedding_ops.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/functional_modules.cpython-310.pyc
ADDED
Binary file (8.51 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (9.41 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/normalization.cpython-310.pyc
ADDED
Binary file (6.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/rnn.cpython-310.pyc
ADDED
Binary file (2.07 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/activation.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from warnings import warn
|
3 |
+
__all__ = [
|
4 |
+
"ReLU6",
|
5 |
+
"Hardswish",
|
6 |
+
"ELU",
|
7 |
+
"LeakyReLU",
|
8 |
+
"Sigmoid",
|
9 |
+
"Softmax",
|
10 |
+
"MultiheadAttention",
|
11 |
+
"PReLU"
|
12 |
+
]
|
13 |
+
|
14 |
+
class ReLU6(torch.nn.ReLU):
|
15 |
+
r"""Applies the element-wise function:
|
16 |
+
|
17 |
+
:math:`\text{ReLU6}(x) = \min(\max(x_0, x), q(6))`, where :math:`x_0` is the
|
18 |
+
zero_point, and :math:`q(6)` is the quantized representation of number 6.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
22 |
+
|
23 |
+
Shape:
|
24 |
+
- Input: :math:`(N, *)` where `*` means, any number of additional
|
25 |
+
dimensions
|
26 |
+
- Output: :math:`(N, *)`, same shape as the input
|
27 |
+
|
28 |
+
.. image:: ../scripts/activation_images/ReLU6.png
|
29 |
+
|
30 |
+
Examples::
|
31 |
+
|
32 |
+
>>> m = nn.quantized.ReLU6()
|
33 |
+
>>> input = torch.randn(2)
|
34 |
+
>>> # xdoctest: +SKIP
|
35 |
+
>>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32)
|
36 |
+
>>> output = m(input)
|
37 |
+
"""
|
38 |
+
def __init__(self, inplace=False):
|
39 |
+
super().__init__(inplace)
|
40 |
+
self.inplace = inplace
|
41 |
+
|
42 |
+
def forward(self, input):
|
43 |
+
return torch.ops.quantized.relu6(input, self.inplace)
|
44 |
+
|
45 |
+
def _get_name(self):
|
46 |
+
return 'QuantizedReLU6'
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def from_float(mod):
|
50 |
+
return ReLU6(mod.inplace)
|
51 |
+
|
52 |
+
class Hardswish(torch.nn.Hardswish):
|
53 |
+
r"""This is the quantized version of :class:`~torch.nn.Hardswish`.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
scale: quantization scale of the output tensor
|
57 |
+
zero_point: quantization zero point of the output tensor
|
58 |
+
"""
|
59 |
+
def __init__(self, scale, zero_point, device=None, dtype=None):
|
60 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
61 |
+
super().__init__()
|
62 |
+
self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
|
63 |
+
self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))
|
64 |
+
|
65 |
+
def forward(self, input):
|
66 |
+
return torch.ops.quantized.hardswish(input, self.scale, self.zero_point)
|
67 |
+
|
68 |
+
def _get_name(self):
|
69 |
+
return 'QuantizedHardswish'
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def from_float(mod):
|
73 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
74 |
+
return Hardswish(float(scale), int(zero_point))
|
75 |
+
|
76 |
+
@classmethod
|
77 |
+
def from_reference(cls, mod, scale, zero_point):
|
78 |
+
return cls(float(scale), int(zero_point))
|
79 |
+
|
80 |
+
class ELU(torch.nn.ELU):
|
81 |
+
r"""This is the quantized equivalent of :class:`~torch.nn.ELU`.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
scale: quantization scale of the output tensor
|
85 |
+
zero_point: quantization zero point of the output tensor
|
86 |
+
alpha: the alpha constant
|
87 |
+
"""
|
88 |
+
def __init__(self, scale, zero_point, alpha=1.):
|
89 |
+
super().__init__(alpha)
|
90 |
+
self.scale = scale
|
91 |
+
self.zero_point = zero_point
|
92 |
+
|
93 |
+
def forward(self, input):
|
94 |
+
return torch.ao.nn.quantized.functional.elu(
|
95 |
+
input, self.scale, self.zero_point, self.alpha)
|
96 |
+
|
97 |
+
def _get_name(self):
|
98 |
+
return 'QuantizedELU'
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def from_float(mod):
|
102 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
103 |
+
return ELU(float(scale), int(zero_point), mod.alpha)
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def from_reference(cls, mod, scale, zero_point):
|
107 |
+
return cls(float(scale), int(zero_point), mod.alpha)
|
108 |
+
|
109 |
+
class LeakyReLU(torch.nn.LeakyReLU):
|
110 |
+
r"""This is the quantized equivalent of :class:`~torch.nn.LeakyReLU`.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
scale: quantization scale of the output tensor
|
114 |
+
zero_point: quantization zero point of the output tensor
|
115 |
+
negative_slope: Controls the angle of the negative slope. Default: 1e-2
|
116 |
+
"""
|
117 |
+
def __init__(self, scale: float, zero_point: int, negative_slope: float = 1e-2,
|
118 |
+
inplace: bool = False, device=None, dtype=None) -> None:
|
119 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
120 |
+
super().__init__(negative_slope, inplace)
|
121 |
+
self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
|
122 |
+
self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))
|
123 |
+
|
124 |
+
def forward(self, input):
|
125 |
+
return torch.ops.quantized.leaky_relu(
|
126 |
+
input, self.negative_slope, self.inplace, self.scale, self.zero_point)
|
127 |
+
|
128 |
+
def _get_name(self):
|
129 |
+
return 'QuantizedLeakyReLU'
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_float(cls, mod):
|
133 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
134 |
+
return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def from_reference(cls, mod, scale, zero_point):
|
138 |
+
return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace)
|
139 |
+
|
140 |
+
class Sigmoid(torch.nn.Sigmoid):
|
141 |
+
r"""This is the quantized equivalent of :class:`~torch.nn.Sigmoid`.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
scale: quantization scale of the output tensor
|
145 |
+
zero_point: quantization zero point of the output tensor
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(self, output_scale: float, output_zero_point: int):
|
149 |
+
super().__init__()
|
150 |
+
self.output_scale = output_scale
|
151 |
+
self.output_zero_point = output_zero_point
|
152 |
+
|
153 |
+
def forward(self, input):
|
154 |
+
return torch.ops.quantized.sigmoid(input, self.output_scale, self.output_zero_point)
|
155 |
+
|
156 |
+
@classmethod
|
157 |
+
def from_float(cls, mod):
|
158 |
+
output_scale, output_zero_point = mod.activation_post_process.calculate_qparams()
|
159 |
+
return cls(float(output_scale), int(output_zero_point))
|
160 |
+
|
161 |
+
class Softmax(torch.nn.Softmax):
|
162 |
+
r"""This is the quantized version of :class:`~torch.nn.Softmax`.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
dim: A dimension along which Softmax will be computed (so every slice along dim will sum to 1).
|
166 |
+
scale: quantization scale of the output tensor
|
167 |
+
zero_point: quantization zero point of the output tensor
|
168 |
+
"""
|
169 |
+
def __init__(self, dim=None, scale=1.0, zero_point=0):
|
170 |
+
super().__init__()
|
171 |
+
self.dim = dim
|
172 |
+
self.scale = scale
|
173 |
+
self.zero_point = zero_point
|
174 |
+
|
175 |
+
def forward(self, input):
|
176 |
+
dim = self.dim
|
177 |
+
if dim is None:
|
178 |
+
stacklevel = 3
|
179 |
+
# Note: adding the mypy ignore on _get_softmax_dim seems less bad
|
180 |
+
# than making `_get_softmax_dim` an official API.
|
181 |
+
dim = torch.nn.functional._get_softmax_dim( # type: ignore[attr-defined]
|
182 |
+
"softmax", input.dim(), stacklevel)
|
183 |
+
return torch.ops.quantized.softmax(
|
184 |
+
input, dim, self.scale, self.zero_point)
|
185 |
+
|
186 |
+
def _get_name(self):
|
187 |
+
return 'QuantizedSoftmax'
|
188 |
+
|
189 |
+
@staticmethod
|
190 |
+
def from_float(mod):
|
191 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
192 |
+
return Softmax(mod.dim, float(scale), int(zero_point))
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def from_reference(cls, mod, scale, zero_point):
|
196 |
+
return cls(mod.dim, float(scale), int(zero_point))
|
197 |
+
|
198 |
+
|
199 |
+
class MultiheadAttention(torch.ao.nn.quantizable.MultiheadAttention):
|
200 |
+
_FLOAT_MODULE = torch.ao.nn.quantizable.MultiheadAttention
|
201 |
+
|
202 |
+
def _get_name(self):
|
203 |
+
return "QuantizedMultiheadAttention"
|
204 |
+
|
205 |
+
@classmethod
|
206 |
+
def from_float(cls, other):
|
207 |
+
# The whole flow is float -> observed -> quantized
|
208 |
+
# This class does observed -> quantized only
|
209 |
+
raise NotImplementedError("It looks like you are trying to convert a "
|
210 |
+
"non-observed MHA module. Please, see "
|
211 |
+
"the examples on quantizable MHAs.")
|
212 |
+
|
213 |
+
@classmethod
|
214 |
+
def from_observed(cls, other):
|
215 |
+
converted = torch.ao.quantization.convert(other, mapping=None,
|
216 |
+
inplace=False,
|
217 |
+
remove_qconfig=True,
|
218 |
+
convert_custom_config_dict=None)
|
219 |
+
converted.__class__ = cls
|
220 |
+
# Remove the parameters for the bias_k and bias_v to quantize them
|
221 |
+
# TODO: This is a potential source of accuracy drop.
|
222 |
+
# quantized cat takes the scale and zp of the first
|
223 |
+
# element, which might lose the precision in the bias_k
|
224 |
+
# and the bias_v (which are cat'ed with k/v being first).
|
225 |
+
if converted.bias_k is not None:
|
226 |
+
bias_k = converted._parameters.pop('bias_k')
|
227 |
+
sc, zp = torch._choose_qparams_per_tensor(bias_k,
|
228 |
+
reduce_range=False)
|
229 |
+
bias_k = torch.quantize_per_tensor(bias_k, sc, zp, torch.quint8)
|
230 |
+
setattr(converted, 'bias_k', bias_k) # noqa: B010
|
231 |
+
|
232 |
+
if converted.bias_v is not None:
|
233 |
+
bias_v = converted._parameters.pop('bias_v')
|
234 |
+
sc, zp = torch._choose_qparams_per_tensor(bias_k, # type: ignore[possibly-undefined]
|
235 |
+
reduce_range=False)
|
236 |
+
bias_v = torch.quantize_per_tensor(bias_v, sc, zp, torch.quint8)
|
237 |
+
setattr(converted, 'bias_v', bias_v) # noqa: B010
|
238 |
+
|
239 |
+
del converted.in_proj_weight
|
240 |
+
del converted.in_proj_bias
|
241 |
+
|
242 |
+
return converted
|
243 |
+
|
244 |
+
class PReLU(torch.nn.Module):
|
245 |
+
r"""This is the quantized equivalent of :class:`~torch.nn.PReLU`.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
scale: quantization scale of the output tensor
|
249 |
+
zero_point: quantization zero point of the output tensor
|
250 |
+
num_parameters: number of parameters: 1, or the number of channels at input. Default: 1
|
251 |
+
"""
|
252 |
+
def __init__(self, output_scale: float, output_zero_point: int,
|
253 |
+
num_parameters: int = 1) -> None:
|
254 |
+
super().__init__()
|
255 |
+
self.num_parameters = num_parameters
|
256 |
+
self.scale = output_scale
|
257 |
+
self.zero_point = output_zero_point
|
258 |
+
w = torch.randn(num_parameters, dtype=torch.float)
|
259 |
+
qw = torch.quantize_per_tensor(w, scale=1.0, zero_point=0, dtype=torch.quint8)
|
260 |
+
self.set_weight(qw)
|
261 |
+
|
262 |
+
def set_weight(self, w: torch.Tensor) -> None:
|
263 |
+
self.weight = w
|
264 |
+
|
265 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
266 |
+
return torch.ops.quantized.prelu(input, self.weight, self.scale, self.zero_point)
|
267 |
+
|
268 |
+
def _get_name(self):
|
269 |
+
return 'QuantizedPReLU'
|
270 |
+
|
271 |
+
@classmethod
|
272 |
+
def from_float(cls, mod):
|
273 |
+
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
274 |
+
qprelu = cls(float(scale), int(zero_point), mod.num_parameters)
|
275 |
+
float_wt = mod.weight.float()
|
276 |
+
observer = mod.qconfig.weight()
|
277 |
+
observer(float_wt)
|
278 |
+
if observer.dtype != torch.quint8:
|
279 |
+
warn(
|
280 |
+
f"PReLU's weight observer should have dtype quint8 but got {observer.dtype}"
|
281 |
+
)
|
282 |
+
wt_scale, wt_zp = observer.calculate_qparams()
|
283 |
+
qweight = torch.quantize_per_tensor(
|
284 |
+
float_wt, float(wt_scale), int(wt_zp), torch.quint8)
|
285 |
+
qprelu.set_weight(qweight)
|
286 |
+
return qprelu
|
287 |
+
|
288 |
+
@classmethod
|
289 |
+
def from_reference(cls, mod, scale, zero_point):
|
290 |
+
qprelu = cls(float(scale), int(zero_point), mod.num_parameters)
|
291 |
+
float_wt = mod.weight.float()
|
292 |
+
observer = mod.qconfig.weight()
|
293 |
+
observer(float_wt)
|
294 |
+
if observer.dtype != torch.quint8:
|
295 |
+
warn(
|
296 |
+
f"PReLU's weight observer should have dtype quint8 but got {observer.dtype}"
|
297 |
+
)
|
298 |
+
wt_scale, wt_zp = observer.calculate_qparams()
|
299 |
+
qweight = torch.quantize_per_tensor(
|
300 |
+
float_wt, float(wt_scale), int(wt_zp), torch.quint8)
|
301 |
+
qprelu.set_weight(qweight)
|
302 |
+
return qprelu
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/batchnorm.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.ao.nn.intrinsic as nni
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"BatchNorm2d",
|
6 |
+
"BatchNorm3d"
|
7 |
+
]
|
8 |
+
|
9 |
+
class _BatchNorm(torch.nn.modules.batchnorm._BatchNorm):
|
10 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None:
|
11 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
12 |
+
super().__init__(num_features, eps, momentum, True, True, **factory_kwargs)
|
13 |
+
self.register_buffer('scale', torch.tensor(1.0, **factory_kwargs))
|
14 |
+
self.register_buffer('zero_point', torch.tensor(0, **factory_kwargs))
|
15 |
+
|
16 |
+
@staticmethod
|
17 |
+
def from_float(cls, mod):
|
18 |
+
activation_post_process = mod.activation_post_process
|
19 |
+
if type(mod) == cls._NNI_BN_RELU_MODULE:
|
20 |
+
mod = mod[0]
|
21 |
+
scale, zero_point = activation_post_process.calculate_qparams()
|
22 |
+
new_mod = cls(mod.num_features, mod.eps)
|
23 |
+
new_mod.weight = mod.weight
|
24 |
+
new_mod.bias = mod.bias
|
25 |
+
new_mod.running_mean = mod.running_mean
|
26 |
+
new_mod.running_var = mod.running_var
|
27 |
+
new_mod.scale = scale
|
28 |
+
new_mod.zero_point = zero_point
|
29 |
+
return new_mod
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def from_reference(cls, bn, output_scale, output_zero_point):
|
33 |
+
qbn = cls(
|
34 |
+
bn.num_features,
|
35 |
+
bn.eps,
|
36 |
+
bn.momentum,
|
37 |
+
device=bn.weight.device,
|
38 |
+
dtype=bn.weight.dtype
|
39 |
+
)
|
40 |
+
qbn.weight = bn.weight
|
41 |
+
qbn.bias = bn.bias
|
42 |
+
qbn.running_mean = bn.running_mean
|
43 |
+
qbn.running_var = bn.running_var
|
44 |
+
qbn.scale = output_scale
|
45 |
+
qbn.zero_point = output_zero_point
|
46 |
+
return qbn
|
47 |
+
|
48 |
+
class BatchNorm2d(_BatchNorm):
|
49 |
+
r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_NNI_BN_RELU_MODULE = nni.BNReLU2d
|
53 |
+
|
54 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None:
|
55 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
56 |
+
super().__init__(num_features, eps, momentum, **factory_kwargs)
|
57 |
+
|
58 |
+
def _get_name(self):
|
59 |
+
return 'QuantizedBatchNorm2d'
|
60 |
+
|
61 |
+
def _check_input_dim(self, input):
|
62 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
63 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
64 |
+
if len(input.shape) != 4:
|
65 |
+
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
66 |
+
|
67 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
68 |
+
# disabling this since this is not symbolically traceable
|
69 |
+
# self._check_input_dim(input)
|
70 |
+
return torch.ops.quantized.batch_norm2d(
|
71 |
+
input, self.weight, self.bias, self.running_mean,
|
72 |
+
self.running_var, self.eps, self.scale, self.zero_point)
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def from_float(cls, mod):
|
76 |
+
return _BatchNorm.from_float(cls, mod)
|
77 |
+
|
78 |
+
class BatchNorm3d(_BatchNorm):
|
79 |
+
r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
_NNI_BN_RELU_MODULE = nni.BNReLU3d
|
83 |
+
|
84 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
|
85 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
86 |
+
super().__init__(num_features, eps, momentum, **factory_kwargs)
|
87 |
+
|
88 |
+
def _get_name(self):
|
89 |
+
return 'QuantizedBatchNorm3d'
|
90 |
+
|
91 |
+
def _check_input_dim(self, input):
|
92 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
93 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
94 |
+
if len(input.shape) != 5:
|
95 |
+
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
96 |
+
|
97 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
98 |
+
# disabling this since this is not symbolically traceable
|
99 |
+
# self._check_input_dim(input)
|
100 |
+
return torch.ops.quantized.batch_norm3d(
|
101 |
+
input, self.weight, self.bias, self.running_mean,
|
102 |
+
self.running_var, self.eps, self.scale, self.zero_point)
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def from_float(cls, mod):
|
106 |
+
return _BatchNorm.from_float(cls, mod)
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""Quantized convolution modules."""
|
2 |
+
|
3 |
+
from typing import Optional, List, TypeVar
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.ao.nn.intrinsic as nni
|
9 |
+
import torch.ao.nn.intrinsic.qat as nniqat
|
10 |
+
|
11 |
+
from torch._ops import ops
|
12 |
+
from torch.nn.common_types import _size_1_t
|
13 |
+
from torch.nn.modules.utils import _single, _pair, _triple
|
14 |
+
from torch.nn.utils import fuse_conv_bn_weights
|
15 |
+
|
16 |
+
from .utils import _quantize_weight, WeightedQuantizedModule
|
17 |
+
|
18 |
+
__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d']
|
19 |
+
|
20 |
+
_SUPPORTED_PADDING = {
|
21 |
+
'zeros',
|
22 |
+
'reflect'
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def _reverse_repeat_padding(padding: List[int]) -> List[int]:
|
27 |
+
_reversed_padding_repeated_twice: List[int] = []
|
28 |
+
N = len(padding)
|
29 |
+
for idx in range(N):
|
30 |
+
for _ in range(2):
|
31 |
+
_reversed_padding_repeated_twice.append(padding[N - idx - 1])
|
32 |
+
return _reversed_padding_repeated_twice
|
33 |
+
|
34 |
+
|
35 |
+
class _ConvNd(WeightedQuantizedModule):
|
36 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
37 |
+
padding=0, dilation=1, groups=1, bias=True,
|
38 |
+
padding_mode='zeros', device=None, dtype=None):
|
39 |
+
# All subclasses have this signature - See PR #49702s
|
40 |
+
raise NotImplementedError
|
41 |
+
|
42 |
+
def _init(self, in_channels, out_channels, kernel_size, stride,
|
43 |
+
padding, dilation,
|
44 |
+
transposed, output_padding,
|
45 |
+
groups, bias,
|
46 |
+
padding_mode='zeros',
|
47 |
+
device=None,
|
48 |
+
dtype=None) -> None:
|
49 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
if in_channels % groups != 0:
|
53 |
+
raise ValueError('in_channels must be divisible by groups')
|
54 |
+
if out_channels % groups != 0:
|
55 |
+
raise ValueError('out_channels must be divisible by groups')
|
56 |
+
self.in_channels = in_channels
|
57 |
+
self.out_channels = out_channels
|
58 |
+
self.kernel_size = kernel_size
|
59 |
+
self.stride = stride
|
60 |
+
self.padding = padding
|
61 |
+
self.dilation = dilation
|
62 |
+
self.transposed = transposed
|
63 |
+
self.output_padding = output_padding
|
64 |
+
self.groups = groups
|
65 |
+
if padding_mode not in _SUPPORTED_PADDING:
|
66 |
+
raise ValueError(f"'padding_mode' {padding_mode} is not supported by quantized convolution")
|
67 |
+
self.padding_mode = padding_mode
|
68 |
+
# Initialize as NCHW. set_weight will internally transpose to NHWC.
|
69 |
+
if self.transposed:
|
70 |
+
weight_shape = [in_channels, out_channels // self.groups]
|
71 |
+
else:
|
72 |
+
weight_shape = [out_channels, in_channels // self.groups]
|
73 |
+
qweight = torch._empty_affine_quantized(
|
74 |
+
weight_shape + list(kernel_size),
|
75 |
+
scale=1, zero_point=0, dtype=torch.qint8,
|
76 |
+
**{k: v for k, v in factory_kwargs.items() if k != 'dtype'})
|
77 |
+
bias_float = (
|
78 |
+
torch.zeros(out_channels, dtype=torch.float,
|
79 |
+
**{k: v for k, v in factory_kwargs.items() if k != 'dtype'}) if bias else None)
|
80 |
+
|
81 |
+
self.set_weight_bias(qweight, bias_float)
|
82 |
+
self.scale = 1.0
|
83 |
+
self.zero_point = 0
|
84 |
+
|
85 |
+
def set_weight_bias(self, qweight, bias_float):
|
86 |
+
raise NotImplementedError
|
87 |
+
|
88 |
+
def bias(self):
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
def _weight_bias(self):
|
92 |
+
raise NotImplementedError
|
93 |
+
|
94 |
+
def extra_repr(self):
|
95 |
+
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
|
96 |
+
', stride={stride}, scale={scale}, zero_point={zero_point}')
|
97 |
+
if self.padding != (0,) * len(self.padding):
|
98 |
+
s += ', padding={padding}'
|
99 |
+
if self.dilation != (1,) * len(self.dilation):
|
100 |
+
s += ', dilation={dilation}'
|
101 |
+
if self.output_padding != (0,) * len(self.output_padding):
|
102 |
+
s += ', output_padding={output_padding}'
|
103 |
+
if self.groups != 1:
|
104 |
+
s += ', groups={groups}'
|
105 |
+
if self.bias() is None:
|
106 |
+
s += ', bias=False'
|
107 |
+
return s.format(**self.__dict__)
|
108 |
+
|
109 |
+
# ===== Serialization methods =====
|
110 |
+
# The special consideration here is that we have to unpack the weights into
|
111 |
+
# their regular QTensor form for serialization. Packed weights should not
|
112 |
+
# live outside the process in which they were created, rather they should be
|
113 |
+
# derived from the QTensor weight.
|
114 |
+
# self
|
115 |
+
# |--- weight : Tensor
|
116 |
+
# |--- bias : Tensor
|
117 |
+
#
|
118 |
+
# TODO: maybe change to this when https://github.com/pytorch/pytorch/pull/32958 is landed
|
119 |
+
# self
|
120 |
+
# |--- _packed_params : Conv2dPackedParamsBase or Conv3dPackedParamsBase
|
121 |
+
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
122 |
+
super()._save_to_state_dict(destination, prefix, keep_vars)
|
123 |
+
(w, b) = self._weight_bias()
|
124 |
+
destination[prefix + 'weight'] = w
|
125 |
+
destination[prefix + 'bias'] = b
|
126 |
+
destination[prefix + 'scale'] = torch.tensor(self.scale)
|
127 |
+
destination[prefix + 'zero_point'] = torch.tensor(self.zero_point)
|
128 |
+
|
129 |
+
@torch.jit.export
|
130 |
+
def __getstate__(self):
|
131 |
+
(w, b) = self._weight_bias()
|
132 |
+
return (
|
133 |
+
self.in_channels,
|
134 |
+
self.out_channels,
|
135 |
+
self.kernel_size,
|
136 |
+
self.stride,
|
137 |
+
self.padding,
|
138 |
+
self.dilation,
|
139 |
+
self.transposed,
|
140 |
+
self.output_padding,
|
141 |
+
self.groups,
|
142 |
+
self.padding_mode,
|
143 |
+
w,
|
144 |
+
b,
|
145 |
+
self.scale,
|
146 |
+
self.zero_point,
|
147 |
+
self.training
|
148 |
+
)
|
149 |
+
|
150 |
+
# ===== Deserialization methods =====
|
151 |
+
# Counterpart to the serialization methods, we must pack the serialized
|
152 |
+
# QTensor weight into its packed format for use by the FBGEMM ops.
|
153 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
154 |
+
missing_keys, unexpected_keys, error_msgs):
|
155 |
+
self.set_weight_bias(
|
156 |
+
state_dict[prefix + 'weight'], state_dict[prefix + 'bias'])
|
157 |
+
state_dict.pop(prefix + 'weight')
|
158 |
+
state_dict.pop(prefix + 'bias')
|
159 |
+
self.scale = float(state_dict[prefix + 'scale'])
|
160 |
+
state_dict.pop(prefix + 'scale')
|
161 |
+
self.zero_point = int(state_dict[prefix + 'zero_point'])
|
162 |
+
state_dict.pop(prefix + 'zero_point')
|
163 |
+
super()._load_from_state_dict(
|
164 |
+
state_dict, prefix, local_metadata, False, missing_keys,
|
165 |
+
unexpected_keys, error_msgs)
|
166 |
+
|
167 |
+
@torch.jit.export
|
168 |
+
def __setstate__(self, state):
|
169 |
+
self.in_channels = state[0]
|
170 |
+
self.out_channels = state[1]
|
171 |
+
self.kernel_size = state[2]
|
172 |
+
self.stride = state[3]
|
173 |
+
self.padding = state[4]
|
174 |
+
self.dilation = state[5]
|
175 |
+
self.transposed = state[6]
|
176 |
+
self.output_padding = state[7]
|
177 |
+
self.groups = state[8]
|
178 |
+
self.padding_mode = state[9]
|
179 |
+
self.set_weight_bias(state[10], state[11])
|
180 |
+
self.scale = state[12]
|
181 |
+
self.zero_point = state[13]
|
182 |
+
self.training = state[14]
|
183 |
+
|
184 |
+
def __deepcopy__(self, memo):
|
185 |
+
new_instance = type(self).__new__(type(self))
|
186 |
+
torch.nn.Module.__init__(new_instance)
|
187 |
+
state = self.__getstate__()
|
188 |
+
new_instance.__setstate__(state)
|
189 |
+
return new_instance
|
190 |
+
|
191 |
+
def __copy__(self):
|
192 |
+
return self.__deepcopy__({})
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def get_qconv(cls, mod, activation_post_process, weight_post_process=None):
|
196 |
+
r"""Creates a qconv object and returns it.
|
197 |
+
"""
|
198 |
+
if weight_post_process is None:
|
199 |
+
weight_post_process = mod.qconfig.weight()
|
200 |
+
weight_post_process(mod.weight)
|
201 |
+
assert weight_post_process.dtype == torch.qint8, \
|
202 |
+
'Weight observer must have a dtype of qint8'
|
203 |
+
qweight = _quantize_weight(mod.weight.float(), weight_post_process)
|
204 |
+
# the __init__ call used is the one from derived classes and not the one from _ConvNd
|
205 |
+
qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size,
|
206 |
+
mod.stride, mod.padding, mod.dilation, mod.groups,
|
207 |
+
mod.bias is not None, mod.padding_mode)
|
208 |
+
qconv.set_weight_bias(qweight, mod.bias)
|
209 |
+
if activation_post_process is None or activation_post_process.dtype == torch.float:
|
210 |
+
return qconv # dynamic quantization doesn't need scale/zero_point
|
211 |
+
else:
|
212 |
+
act_scale, act_zp = activation_post_process.calculate_qparams()
|
213 |
+
qconv.scale = float(act_scale)
|
214 |
+
qconv.zero_point = int(act_zp)
|
215 |
+
return qconv
|
216 |
+
|
217 |
+
@staticmethod
|
218 |
+
def from_float(cls, mod):
|
219 |
+
if hasattr(mod, "weight_fake_quant"):
|
220 |
+
# assert type(mod) == cls.__QAT_MODULE, " nnq." + cls.__name__ + \
|
221 |
+
# ".from_float only works for " + cls.__QAT_MODULE.__name__
|
222 |
+
if type(mod) == cls._NNIQAT_CONV_BN_MODULE:
|
223 |
+
mod.weight, mod.bias = fuse_conv_bn_weights(
|
224 |
+
mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
|
225 |
+
mod.bn.eps, mod.bn.weight, mod.bn.bias)
|
226 |
+
assert hasattr(mod, "activation_post_process"), \
|
227 |
+
"Input QAT module must have observer attached"
|
228 |
+
weight_post_process = mod.weight_fake_quant
|
229 |
+
activation_post_process = mod.activation_post_process
|
230 |
+
else:
|
231 |
+
assert type(mod) == cls._FLOAT_MODULE, \
|
232 |
+
" nnq." + cls.__name__ + ".from_float only works for " + \
|
233 |
+
cls._FLOAT_MODULE.__name__ + " but got:" + str(type(mod))
|
234 |
+
assert hasattr(mod, "qconfig"), \
|
235 |
+
"Input float module must have qconfig defined."
|
236 |
+
activation_post_process = None if not hasattr(
|
237 |
+
mod, "activation_post_process") else mod.activation_post_process
|
238 |
+
if type(mod) in [cls._NNI_CONV_RELU_MODULE, cls._NNI_CONV_ADD_MODULE, cls._NNI_CONV_ADD_RELU_MODULE]:
|
239 |
+
mod = mod[0]
|
240 |
+
weight_post_process = mod.qconfig.weight()
|
241 |
+
return cls.get_qconv(mod, activation_post_process, weight_post_process)
|
242 |
+
|
243 |
+
@classmethod
|
244 |
+
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
|
245 |
+
r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module
|
246 |
+
Args:
|
247 |
+
ref_qconv (Module): a reference quantized module, either produced by torch.ao.quantization
|
248 |
+
utilities or provided by the user
|
249 |
+
output_scale (float): scale for output Tensor
|
250 |
+
output_zero_point (int): zero point for output Tensor
|
251 |
+
"""
|
252 |
+
qconv = cls(
|
253 |
+
ref_qconv.in_channels,
|
254 |
+
ref_qconv.out_channels,
|
255 |
+
ref_qconv.kernel_size, # type: ignore[arg-type]
|
256 |
+
ref_qconv.stride, # type: ignore[arg-type]
|
257 |
+
ref_qconv.padding, # type: ignore[arg-type]
|
258 |
+
ref_qconv.dilation, # type: ignore[arg-type]
|
259 |
+
ref_qconv.groups,
|
260 |
+
ref_qconv.bias is not None, # type: ignore[arg-type]
|
261 |
+
ref_qconv.padding_mode,
|
262 |
+
device=ref_qconv.weight.device,
|
263 |
+
dtype=ref_qconv.weight.dtype)
|
264 |
+
qweight = ref_qconv.get_quantized_weight()
|
265 |
+
qconv.set_weight_bias(qweight, ref_qconv.bias)
|
266 |
+
qconv.scale = float(output_scale)
|
267 |
+
qconv.zero_point = int(output_zero_point)
|
268 |
+
return qconv
|
269 |
+
|
270 |
+
|
271 |
+
class Conv1d(_ConvNd):
|
272 |
+
r"""Applies a 1D convolution over a quantized input signal composed of
|
273 |
+
several quantized input planes.
|
274 |
+
|
275 |
+
For details on input arguments, parameters, and implementation see
|
276 |
+
:class:`~torch.nn.Conv1d`.
|
277 |
+
|
278 |
+
.. note::
|
279 |
+
Only `zeros` is supported for the :attr:`padding_mode` argument.
|
280 |
+
|
281 |
+
.. note::
|
282 |
+
Only `torch.quint8` is supported for the input data type.
|
283 |
+
|
284 |
+
|
285 |
+
Attributes:
|
286 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
287 |
+
parameter.
|
288 |
+
scale (Tensor): scalar for the output scale
|
289 |
+
zero_point (Tensor): scalar for the output zero point
|
290 |
+
|
291 |
+
See :class:`~torch.nn.Conv1d` for other attributes.
|
292 |
+
|
293 |
+
Examples::
|
294 |
+
|
295 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
296 |
+
>>> m = nn.quantized.Conv1d(16, 33, 3, stride=2)
|
297 |
+
>>> input = torch.randn(20, 16, 100)
|
298 |
+
>>> # quantize input to quint8
|
299 |
+
>>> # xdoctest: +SKIP
|
300 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0,
|
301 |
+
... dtype=torch.quint8)
|
302 |
+
>>> output = m(q_input)
|
303 |
+
|
304 |
+
"""
|
305 |
+
|
306 |
+
_FLOAT_MODULE = nn.Conv1d
|
307 |
+
_NNIQAT_CONV_BN_MODULE = nniqat.ConvBn1d
|
308 |
+
_NNI_CONV_RELU_MODULE = nni.ConvReLU1d
|
309 |
+
_NNI_CONV_ADD_MODULE: None = None
|
310 |
+
_NNI_CONV_ADD_RELU_MODULE: None = None
|
311 |
+
|
312 |
+
def __init__(self,
|
313 |
+
in_channels: int,
|
314 |
+
out_channels: int,
|
315 |
+
kernel_size: _size_1_t,
|
316 |
+
stride: _size_1_t = 1,
|
317 |
+
padding: _size_1_t = 0,
|
318 |
+
dilation: _size_1_t = 1,
|
319 |
+
groups: int = 1,
|
320 |
+
bias: bool = True,
|
321 |
+
padding_mode: str = 'zeros',
|
322 |
+
device=None,
|
323 |
+
dtype=None):
|
324 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
325 |
+
kernel_size = _single(kernel_size)
|
326 |
+
stride = _single(stride)
|
327 |
+
padding = padding if isinstance(padding, str) else _single(padding)
|
328 |
+
dilation = _single(dilation)
|
329 |
+
|
330 |
+
# Subclasses of _ConvNd needs to call _init rather than __init__. See
|
331 |
+
# discussion on PR #49702
|
332 |
+
super()._init(
|
333 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
334 |
+
False, _single(0), groups, bias, padding_mode, **factory_kwargs)
|
335 |
+
|
336 |
+
def _get_name(self):
|
337 |
+
return 'QuantizedConv1d'
|
338 |
+
|
339 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
340 |
+
if self.padding_mode == 'zeros':
|
341 |
+
self._packed_params = torch.ops.quantized.conv1d_prepack(
|
342 |
+
w, b, self.stride, self.padding, self.dilation, self.groups)
|
343 |
+
else:
|
344 |
+
self._packed_params = torch.ops.quantized.conv1d_prepack(
|
345 |
+
w, b, self.stride, _pair(0), self.dilation,
|
346 |
+
self.groups)
|
347 |
+
|
348 |
+
def _weight_bias(self):
|
349 |
+
w, b = torch.ops.quantized.conv1d_unpack(self._packed_params)
|
350 |
+
return w, b
|
351 |
+
|
352 |
+
def weight(self):
|
353 |
+
return self._weight_bias()[0]
|
354 |
+
|
355 |
+
def bias(self):
|
356 |
+
return self._weight_bias()[1]
|
357 |
+
|
358 |
+
def forward(self, input):
|
359 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
360 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
361 |
+
if len(input.shape) != 3:
|
362 |
+
raise ValueError("Input shape must be `(N, C, L)`!")
|
363 |
+
if self.padding_mode != 'zeros':
|
364 |
+
# Padding in Conv1d is stored as (p, p), need to get (p,)
|
365 |
+
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1])
|
366 |
+
input = F.pad(input, _reversed_padding_repeated_twice,
|
367 |
+
mode=self.padding_mode)
|
368 |
+
return ops.quantized.conv1d(input, self._packed_params, self.scale, self.zero_point)
|
369 |
+
|
370 |
+
@classmethod
|
371 |
+
def from_float(cls, mod):
|
372 |
+
r"""Creates a quantized module from a float module or qparams_dict.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
mod (Module): a float module, either produced by torch.ao.quantization
|
376 |
+
utilities or provided by the user
|
377 |
+
"""
|
378 |
+
return _ConvNd.from_float(cls, mod)
|
379 |
+
|
380 |
+
|
381 |
+
class Conv2d(_ConvNd):
|
382 |
+
r"""Applies a 2D convolution over a quantized input signal composed of
|
383 |
+
several quantized input planes.
|
384 |
+
|
385 |
+
For details on input arguments, parameters, and implementation see
|
386 |
+
:class:`~torch.nn.Conv2d`.
|
387 |
+
|
388 |
+
.. note::
|
389 |
+
Only `zeros` is supported for the :attr:`padding_mode` argument.
|
390 |
+
|
391 |
+
.. note::
|
392 |
+
Only `torch.quint8` is supported for the input data type.
|
393 |
+
|
394 |
+
|
395 |
+
Attributes:
|
396 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
397 |
+
parameter.
|
398 |
+
scale (Tensor): scalar for the output scale
|
399 |
+
zero_point (Tensor): scalar for the output zero point
|
400 |
+
|
401 |
+
See :class:`~torch.nn.Conv2d` for other attributes.
|
402 |
+
|
403 |
+
Examples::
|
404 |
+
|
405 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
406 |
+
>>> # With square kernels and equal stride
|
407 |
+
>>> m = nn.quantized.Conv2d(16, 33, 3, stride=2)
|
408 |
+
>>> # non-square kernels and unequal stride and with padding
|
409 |
+
>>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
410 |
+
>>> # non-square kernels and unequal stride and with padding and dilation
|
411 |
+
>>> m = nn.quantized.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
|
412 |
+
>>> input = torch.randn(20, 16, 50, 100)
|
413 |
+
>>> # quantize input to quint8
|
414 |
+
>>> # xdoctest: +SKIP
|
415 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
416 |
+
>>> output = m(q_input)
|
417 |
+
|
418 |
+
"""
|
419 |
+
_FLOAT_MODULE = nn.Conv2d
|
420 |
+
_NNIQAT_CONV_BN_MODULE = nniqat.ConvBn2d
|
421 |
+
_NNI_CONV_RELU_MODULE = nni.ConvReLU2d
|
422 |
+
_NNI_CONV_ADD_MODULE = nni.ConvAdd2d
|
423 |
+
_NNI_CONV_ADD_RELU_MODULE = nni.ConvAddReLU2d
|
424 |
+
|
425 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
426 |
+
padding=0, dilation=1, groups=1, bias=True,
|
427 |
+
padding_mode='zeros', device=None, dtype=None):
|
428 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
429 |
+
kernel_size = _pair(kernel_size)
|
430 |
+
stride = _pair(stride)
|
431 |
+
padding = _pair(padding)
|
432 |
+
dilation = _pair(dilation)
|
433 |
+
# Subclasses of _ConvNd need to call _init rather than __init__. See
|
434 |
+
# discussion on PR #49702
|
435 |
+
super()._init(
|
436 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
437 |
+
False, _pair(0), groups, bias, padding_mode, **factory_kwargs)
|
438 |
+
|
439 |
+
def _get_name(self):
|
440 |
+
return 'QuantizedConv2d'
|
441 |
+
|
442 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
443 |
+
if self.padding_mode == 'zeros':
|
444 |
+
self._packed_params = torch.ops.quantized.conv2d_prepack(
|
445 |
+
w, b, self.stride, self.padding, self.dilation, self.groups)
|
446 |
+
else:
|
447 |
+
self._packed_params = torch.ops.quantized.conv2d_prepack(
|
448 |
+
w, b, self.stride, _pair(0), self.dilation, self.groups)
|
449 |
+
|
450 |
+
def _weight_bias(self):
|
451 |
+
return self._packed_params.unpack()
|
452 |
+
|
453 |
+
def weight(self):
|
454 |
+
return self._weight_bias()[0]
|
455 |
+
|
456 |
+
def bias(self):
|
457 |
+
return self._weight_bias()[1]
|
458 |
+
|
459 |
+
def forward(self, input):
|
460 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
461 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
462 |
+
if len(input.shape) != 4:
|
463 |
+
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
464 |
+
if self.padding_mode != 'zeros':
|
465 |
+
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
|
466 |
+
input = F.pad(input, _reversed_padding_repeated_twice,
|
467 |
+
mode=self.padding_mode)
|
468 |
+
return ops.quantized.conv2d(
|
469 |
+
input, self._packed_params, self.scale, self.zero_point)
|
470 |
+
|
471 |
+
@classmethod
|
472 |
+
def from_float(cls, mod):
|
473 |
+
r"""Creates a quantized module from a float module or qparams_dict.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
mod (Module): a float module, either produced by torch.ao.quantization
|
477 |
+
utilities or provided by the user
|
478 |
+
"""
|
479 |
+
return _ConvNd.from_float(cls, mod)
|
480 |
+
|
481 |
+
|
482 |
+
class Conv3d(_ConvNd):
|
483 |
+
r"""Applies a 3D convolution over a quantized input signal composed of
|
484 |
+
several quantized input planes.
|
485 |
+
|
486 |
+
For details on input arguments, parameters, and implementation see
|
487 |
+
:class:`~torch.nn.Conv3d`.
|
488 |
+
|
489 |
+
.. note::
|
490 |
+
Only `zeros` is supported for the :attr:`padding_mode` argument.
|
491 |
+
|
492 |
+
.. note::
|
493 |
+
Only `torch.quint8` is supported for the input data type.
|
494 |
+
|
495 |
+
|
496 |
+
Attributes:
|
497 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
498 |
+
parameter.
|
499 |
+
scale (Tensor): scalar for the output scale
|
500 |
+
zero_point (Tensor): scalar for the output zero point
|
501 |
+
|
502 |
+
See :class:`~torch.nn.Conv3d` for other attributes.
|
503 |
+
|
504 |
+
Examples::
|
505 |
+
|
506 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
507 |
+
>>> # With square kernels and equal stride
|
508 |
+
>>> m = nn.quantized.Conv3d(16, 33, 3, stride=2)
|
509 |
+
>>> # non-square kernels and unequal stride and with padding
|
510 |
+
>>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2))
|
511 |
+
>>> # non-square kernels and unequal stride and with padding and dilation
|
512 |
+
>>> m = nn.quantized.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2))
|
513 |
+
>>> input = torch.randn(20, 16, 56, 56, 56)
|
514 |
+
>>> # quantize input to quint8
|
515 |
+
>>> # xdoctest: +SKIP
|
516 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
517 |
+
>>> output = m(q_input)
|
518 |
+
|
519 |
+
"""
|
520 |
+
_FLOAT_MODULE = nn.Conv3d
|
521 |
+
_NNIQAT_CONV_BN_MODULE = nniqat.ConvBn3d
|
522 |
+
_NNI_CONV_RELU_MODULE = nni.ConvReLU3d
|
523 |
+
_NNI_CONV_ADD_MODULE: None = None
|
524 |
+
_NNI_CONV_ADD_RELU_MODULE: None = None
|
525 |
+
|
526 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
527 |
+
padding=0, dilation=1, groups=1, bias=True,
|
528 |
+
padding_mode='zeros', device=None, dtype=None):
|
529 |
+
assert padding_mode != 'reflect', "Conv3d does not support reflection padding"
|
530 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
531 |
+
kernel_size = _triple(kernel_size)
|
532 |
+
stride = _triple(stride)
|
533 |
+
padding = _triple(padding)
|
534 |
+
dilation = _triple(dilation)
|
535 |
+
# Subclasses of _ConvNd need to call _init rather than __init__. See
|
536 |
+
# discussion on PR #49702
|
537 |
+
super()._init(
|
538 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
539 |
+
False, _triple(0), groups, bias, padding_mode, **factory_kwargs)
|
540 |
+
|
541 |
+
def _get_name(self):
|
542 |
+
return 'QuantizedConv3d'
|
543 |
+
|
544 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
545 |
+
if self.padding_mode == 'zeros':
|
546 |
+
self._packed_params = torch.ops.quantized.conv3d_prepack(
|
547 |
+
w, b, self.stride, self.padding, self.dilation, self.groups)
|
548 |
+
else:
|
549 |
+
self._packed_params = torch.ops.quantized.conv3d_prepack(
|
550 |
+
w, b, self.stride, _triple(0), self.dilation, self.groups)
|
551 |
+
|
552 |
+
def _weight_bias(self):
|
553 |
+
return self._packed_params.unpack()
|
554 |
+
|
555 |
+
def weight(self):
|
556 |
+
return self._weight_bias()[0]
|
557 |
+
|
558 |
+
def bias(self):
|
559 |
+
return self._weight_bias()[1]
|
560 |
+
|
561 |
+
def forward(self, input):
|
562 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
563 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
564 |
+
if len(input.shape) != 5:
|
565 |
+
raise ValueError("Input shape must be `(N, C, D, H, W)`!")
|
566 |
+
if self.padding_mode != 'zeros':
|
567 |
+
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
|
568 |
+
input = F.pad(input, _reversed_padding_repeated_twice,
|
569 |
+
mode=self.padding_mode)
|
570 |
+
return ops.quantized.conv3d(
|
571 |
+
input, self._packed_params, self.scale, self.zero_point)
|
572 |
+
|
573 |
+
@classmethod
|
574 |
+
def from_float(cls, mod):
|
575 |
+
r"""Creates a quantized module from a float module or qparams_dict.
|
576 |
+
|
577 |
+
Args:
|
578 |
+
mod (Module): a float module, either produced by torch.ao.quantization
|
579 |
+
utilities or provided by the user
|
580 |
+
"""
|
581 |
+
return _ConvNd.from_float(cls, mod)
|
582 |
+
|
583 |
+
# === Transposed Convolutions ===
|
584 |
+
MOD = TypeVar('MOD', bound=nn.modules.conv._ConvNd)
|
585 |
+
|
586 |
+
|
587 |
+
class _ConvTransposeNd(_ConvNd):
|
588 |
+
|
589 |
+
_FLOAT_MODULE = MOD
|
590 |
+
|
591 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
592 |
+
padding, dilation, transposed, output_padding,
|
593 |
+
groups, bias, padding_mode, device=None, dtype=None):
|
594 |
+
if padding_mode != 'zeros':
|
595 |
+
raise ValueError(f'Only "zeros" padding mode is supported for {self.__class__.__name__}')
|
596 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
597 |
+
# Subclasses of _ConvNd need to call _init rather than __init__. See
|
598 |
+
# discussion on PR #49702
|
599 |
+
super()._init(
|
600 |
+
in_channels, out_channels, kernel_size, stride,
|
601 |
+
padding, dilation, transposed, output_padding,
|
602 |
+
groups, bias, padding_mode, **factory_kwargs)
|
603 |
+
|
604 |
+
def _input_padding(self, kernel_size: List[int], dilation: List[int], padding: List[int]) -> List[int]:
|
605 |
+
res = torch.jit.annotate(List[int], [])
|
606 |
+
for kdx in range(len(kernel_size)):
|
607 |
+
pad = (dilation[kdx] * (kernel_size[kdx] - 1) - padding[kdx])
|
608 |
+
res.append(pad)
|
609 |
+
return res
|
610 |
+
|
611 |
+
@classmethod
|
612 |
+
def from_float(cls, mod):
|
613 |
+
r"""Creates a quantized module from a float module or qparams_dict.
|
614 |
+
Args:
|
615 |
+
mod (Module): a float module, either produced by torch.ao.quantization
|
616 |
+
utilities or provided by the user
|
617 |
+
"""
|
618 |
+
# derived classes override cls._FLOAT_MODULE attribute
|
619 |
+
msg = ' nnq.' + cls.__name__ + '.from_float only works for ' + \
|
620 |
+
cls._FLOAT_MODULE.__name__ # type: ignore[attr-defined]
|
621 |
+
assert type(mod) == cls._FLOAT_MODULE, msg
|
622 |
+
assert hasattr(mod, 'qconfig'), \
|
623 |
+
'Input float module must have qconfig defined.'
|
624 |
+
weight_post_process = mod.qconfig.weight()
|
625 |
+
weight_post_process(mod.weight)
|
626 |
+
assert weight_post_process.dtype == torch.qint8, \
|
627 |
+
'Weight observer must have a dtype of qint8'
|
628 |
+
qweight = _quantize_weight(mod.weight.float(), weight_post_process)
|
629 |
+
# the __init__ call used is the one from derived classes and not the one from _ConvTransposeNd
|
630 |
+
qconv = cls(mod.in_channels, mod.out_channels, mod.kernel_size, # type: ignore[call-arg]
|
631 |
+
mod.stride, mod.padding, mod.output_padding, mod.groups,
|
632 |
+
mod.bias is not None, mod.dilation, mod.padding_mode)
|
633 |
+
qconv.set_weight_bias(qweight, mod.bias)
|
634 |
+
if not hasattr(mod, "activation_post_process") or mod.activation_post_process.dtype == torch.float:
|
635 |
+
return qconv # dynamic quantization doesn't need scale/zero_point
|
636 |
+
else:
|
637 |
+
act_scale, act_zp = mod.activation_post_process.calculate_qparams()
|
638 |
+
qconv.scale = float(act_scale)
|
639 |
+
qconv.zero_point = int(act_zp)
|
640 |
+
return qconv
|
641 |
+
|
642 |
+
@staticmethod
|
643 |
+
def from_reference(cls, ref_qconvt, output_scale, output_zero_point):
|
644 |
+
r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module
|
645 |
+
Args:
|
646 |
+
ref_qconvt (Module): a reference quantized module, either produced by torch.ao.quantization
|
647 |
+
utilities or provided by the user
|
648 |
+
output_scale (float): scale for output Tensor
|
649 |
+
output_zero_point (int): zero point for output Tensor
|
650 |
+
"""
|
651 |
+
qconv = cls(
|
652 |
+
ref_qconvt.in_channels,
|
653 |
+
ref_qconvt.out_channels,
|
654 |
+
ref_qconvt.kernel_size, # type: ignore[arg-type]
|
655 |
+
ref_qconvt.stride, # type: ignore[arg-type]
|
656 |
+
ref_qconvt.padding, # type: ignore[arg-type]
|
657 |
+
ref_qconvt.output_padding, # type: ignore[arg-type]
|
658 |
+
ref_qconvt.groups,
|
659 |
+
ref_qconvt.bias is not None, # type: ignore[arg-type]
|
660 |
+
ref_qconvt.dilation, # type: ignore[arg-type]
|
661 |
+
ref_qconvt.padding_mode,
|
662 |
+
device=ref_qconvt.weight.device,
|
663 |
+
dtype=ref_qconvt.weight.dtype)
|
664 |
+
qweight = ref_qconvt.get_quantized_weight()
|
665 |
+
qconv.set_weight_bias(qweight, ref_qconvt.bias)
|
666 |
+
qconv.scale = float(output_scale)
|
667 |
+
qconv.zero_point = int(output_zero_point)
|
668 |
+
return qconv
|
669 |
+
|
670 |
+
|
671 |
+
class ConvTranspose1d(_ConvTransposeNd):
|
672 |
+
r"""Applies a 1D transposed convolution operator over an input image
|
673 |
+
composed of several input planes.
|
674 |
+
For details on input arguments, parameters, and implementation see
|
675 |
+
:class:`~torch.nn.ConvTranspose1d`.
|
676 |
+
|
677 |
+
.. note:: Currently only the QNNPACK engine is implemented.
|
678 |
+
Please, set the `torch.backends.quantized.engine = 'qnnpack'`
|
679 |
+
|
680 |
+
For special notes, please, see :class:`~torch.ao.nn.quantized.Conv1d`
|
681 |
+
|
682 |
+
Attributes:
|
683 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
684 |
+
parameter.
|
685 |
+
scale (Tensor): scalar for the output scale
|
686 |
+
zero_point (Tensor): scalar for the output zero point
|
687 |
+
See :class:`~torch.nn.ConvTranspose2d` for other attributes.
|
688 |
+
|
689 |
+
Examples::
|
690 |
+
|
691 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
692 |
+
>>> torch.backends.quantized.engine = 'qnnpack'
|
693 |
+
>>> from torch.ao.nn import quantized as nnq
|
694 |
+
>>> # With square kernels and equal stride
|
695 |
+
>>> m = nnq.ConvTranspose1d(16, 33, 3, stride=2)
|
696 |
+
>>> # non-square kernels and unequal stride and with padding
|
697 |
+
>>> m = nnq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
698 |
+
>>> input = torch.randn(20, 16, 50)
|
699 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
700 |
+
>>> output = m(q_input)
|
701 |
+
>>> # exact output size can be also specified as an argument
|
702 |
+
>>> input = torch.randn(1, 16, 12)
|
703 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
704 |
+
>>> downsample = nnq.Conv1d(16, 16, 3, stride=2, padding=1)
|
705 |
+
>>> upsample = nnq.ConvTranspose1d(16, 16, 3, stride=2, padding=1)
|
706 |
+
>>> h = downsample(q_input)
|
707 |
+
>>> h.size()
|
708 |
+
torch.Size([1, 16, 6])
|
709 |
+
>>> # xdoctest: +SKIP("FIXME: output_size is not a parameter)
|
710 |
+
>>> output = upsample(h, output_size=input.size())
|
711 |
+
>>> output.size()
|
712 |
+
torch.Size([1, 16, 12])
|
713 |
+
"""
|
714 |
+
|
715 |
+
_FLOAT_MODULE = nn.ConvTranspose1d
|
716 |
+
|
717 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
718 |
+
padding=0, output_padding=0, groups=1, bias=True,
|
719 |
+
dilation=1, padding_mode='zeros', device=None, dtype=None):
|
720 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
721 |
+
kernel_size = _single(kernel_size)
|
722 |
+
stride = _single(stride)
|
723 |
+
padding = _single(padding)
|
724 |
+
dilation = _single(dilation)
|
725 |
+
output_padding = _single(output_padding)
|
726 |
+
|
727 |
+
super().__init__(
|
728 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
729 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
730 |
+
|
731 |
+
def _get_name(self):
|
732 |
+
return 'QuantizedConvTranspose1d'
|
733 |
+
|
734 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
735 |
+
self._packed_params = torch.ops.quantized.conv_transpose1d_prepack(
|
736 |
+
w, b, self.stride, self.padding, self.output_padding, self.dilation,
|
737 |
+
self.groups)
|
738 |
+
|
739 |
+
def _weight_bias(self):
|
740 |
+
w, b = torch.ops.quantized.conv_transpose1d_unpack(self._packed_params)
|
741 |
+
return w, b
|
742 |
+
|
743 |
+
def weight(self):
|
744 |
+
(w, _) = self._weight_bias()
|
745 |
+
return w
|
746 |
+
|
747 |
+
def bias(self):
|
748 |
+
(_, b) = self._weight_bias()
|
749 |
+
return b
|
750 |
+
|
751 |
+
def forward(self, input):
|
752 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
753 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
754 |
+
if len(input.shape) != 3:
|
755 |
+
raise ValueError("Input shape must be `(N, C, L)`!")
|
756 |
+
return torch.ops.quantized.conv_transpose1d(
|
757 |
+
input, self._packed_params, self.scale, self.zero_point)
|
758 |
+
|
759 |
+
@classmethod
|
760 |
+
def from_reference(cls, ref_qconvt, output_scale, output_zero_point):
|
761 |
+
return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point)
|
762 |
+
|
763 |
+
|
764 |
+
class ConvTranspose2d(_ConvTransposeNd):
|
765 |
+
r"""Applies a 2D transposed convolution operator over an input image
|
766 |
+
composed of several input planes.
|
767 |
+
For details on input arguments, parameters, and implementation see
|
768 |
+
:class:`~torch.nn.ConvTranspose2d`.
|
769 |
+
|
770 |
+
For special notes, please, see :class:`~torch.ao.nn.quantized.Conv2d`
|
771 |
+
|
772 |
+
Attributes:
|
773 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
774 |
+
parameter.
|
775 |
+
scale (Tensor): scalar for the output scale
|
776 |
+
zero_point (Tensor): scalar for the output zero point
|
777 |
+
See :class:`~torch.nn.ConvTranspose2d` for other attributes.
|
778 |
+
|
779 |
+
Examples::
|
780 |
+
|
781 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
782 |
+
>>> # QNNPACK or FBGEMM as backend
|
783 |
+
>>> torch.backends.quantized.engine = 'qnnpack'
|
784 |
+
>>> # With square kernels and equal stride
|
785 |
+
>>> import torch.ao.nn.quantized as nnq
|
786 |
+
>>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2)
|
787 |
+
>>> # non-square kernels and unequal stride and with padding
|
788 |
+
>>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
789 |
+
>>> input = torch.randn(20, 16, 50, 100)
|
790 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
791 |
+
>>> output = m(q_input)
|
792 |
+
>>> # exact output size can be also specified as an argument
|
793 |
+
>>> input = torch.randn(1, 16, 12, 12)
|
794 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
795 |
+
>>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1)
|
796 |
+
>>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
|
797 |
+
>>> h = downsample(q_input)
|
798 |
+
>>> h.size()
|
799 |
+
torch.Size([1, 16, 6, 6])
|
800 |
+
>>> # xdoctest: +SKIP("FIXME: output_size is not a parameter)
|
801 |
+
>>> output = upsample(h, output_size=input.size())
|
802 |
+
>>> output.size()
|
803 |
+
torch.Size([1, 16, 12, 12])
|
804 |
+
"""
|
805 |
+
|
806 |
+
_FLOAT_MODULE = nn.ConvTranspose2d
|
807 |
+
|
808 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
809 |
+
padding=0, output_padding=0, groups=1, bias=True,
|
810 |
+
dilation=1, padding_mode='zeros', device=None, dtype=None):
|
811 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
812 |
+
kernel_size = _pair(kernel_size)
|
813 |
+
stride = _pair(stride)
|
814 |
+
padding = _pair(padding)
|
815 |
+
dilation = _pair(dilation)
|
816 |
+
output_padding = _pair(output_padding)
|
817 |
+
|
818 |
+
super().__init__(
|
819 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
820 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
821 |
+
|
822 |
+
def _get_name(self):
|
823 |
+
return 'QuantizedConvTranspose2d'
|
824 |
+
|
825 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
826 |
+
self._packed_params = torch.ops.quantized.conv_transpose2d_prepack(
|
827 |
+
w, b, self.stride, self.padding, self.output_padding, self.dilation,
|
828 |
+
self.groups)
|
829 |
+
|
830 |
+
def _weight_bias(self):
|
831 |
+
w, b = torch.ops.quantized.conv2d_unpack(self._packed_params)
|
832 |
+
return w, b
|
833 |
+
|
834 |
+
def weight(self):
|
835 |
+
(w, _) = self._weight_bias()
|
836 |
+
return w
|
837 |
+
|
838 |
+
def bias(self):
|
839 |
+
(_, b) = self._weight_bias()
|
840 |
+
return b
|
841 |
+
|
842 |
+
def forward(self, input):
|
843 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
844 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
845 |
+
if len(input.shape) != 4:
|
846 |
+
raise ValueError("Input shape must be `(N, C, H, W)`!")
|
847 |
+
return ops.quantized.conv_transpose2d(
|
848 |
+
input, self._packed_params, self.scale, self.zero_point)
|
849 |
+
|
850 |
+
@classmethod
|
851 |
+
def from_reference(cls, ref_qconvt, output_scale, output_zero_point):
|
852 |
+
return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point)
|
853 |
+
|
854 |
+
|
855 |
+
class ConvTranspose3d(_ConvTransposeNd):
|
856 |
+
r"""Applies a 3D transposed convolution operator over an input image
|
857 |
+
composed of several input planes.
|
858 |
+
For details on input arguments, parameters, and implementation see
|
859 |
+
:class:`~torch.nn.ConvTranspose3d`.
|
860 |
+
|
861 |
+
.. note:: Currently only the FBGEMM engine is implemented.
|
862 |
+
Please, set the `torch.backends.quantized.engine = 'fbgemm'`
|
863 |
+
|
864 |
+
For special notes, please, see :class:`~torch.ao.nn.quantized.Conv3d`
|
865 |
+
|
866 |
+
Attributes:
|
867 |
+
weight (Tensor): packed tensor derived from the learnable weight
|
868 |
+
parameter.
|
869 |
+
scale (Tensor): scalar for the output scale
|
870 |
+
zero_point (Tensor): scalar for the output zero point
|
871 |
+
See :class:`~torch.nn.ConvTranspose3d` for other attributes.
|
872 |
+
|
873 |
+
Examples::
|
874 |
+
|
875 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
|
876 |
+
>>> torch.backends.quantized.engine = 'fbgemm'
|
877 |
+
>>> from torch.ao.nn import quantized as nnq
|
878 |
+
>>> # With cubic kernels and equal stride
|
879 |
+
>>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2)
|
880 |
+
>>> # non-cubic kernels and unequal stride and with padding
|
881 |
+
>>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2))
|
882 |
+
>>> input = torch.randn(20, 16, 50, 100, 100)
|
883 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
884 |
+
>>> output = m(q_input)
|
885 |
+
>>> # exact output size can be also specified as an argument
|
886 |
+
>>> input = torch.randn(1, 16, 12, 12, 12)
|
887 |
+
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
888 |
+
>>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1)
|
889 |
+
>>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1)
|
890 |
+
>>> h = downsample(q_input)
|
891 |
+
>>> h.size()
|
892 |
+
torch.Size([1, 16, 6, 6, 6])
|
893 |
+
>>> # xdoctest: +SKIP("FIXME: output_size is not a parameter)
|
894 |
+
>>> output = upsample(h, output_size=input.size())
|
895 |
+
>>> output.size()
|
896 |
+
torch.Size([1, 16, 12, 12, 12])
|
897 |
+
"""
|
898 |
+
|
899 |
+
_FLOAT_MODULE = nn.ConvTranspose3d
|
900 |
+
|
901 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
902 |
+
padding=0, output_padding=0, groups=1, bias=True,
|
903 |
+
dilation=1, padding_mode='zeros', device=None, dtype=None):
|
904 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
905 |
+
kernel_size = _triple(kernel_size)
|
906 |
+
stride = _triple(stride)
|
907 |
+
padding = _triple(padding)
|
908 |
+
dilation = _triple(dilation)
|
909 |
+
output_padding = _triple(output_padding)
|
910 |
+
|
911 |
+
super().__init__(
|
912 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
913 |
+
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
914 |
+
|
915 |
+
def _get_name(self):
|
916 |
+
return 'QuantizedConvTranspose3d'
|
917 |
+
|
918 |
+
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
|
919 |
+
self._packed_params = torch.ops.quantized.conv_transpose3d_prepack(
|
920 |
+
w, b, self.stride, self.padding, self.output_padding, self.dilation,
|
921 |
+
self.groups)
|
922 |
+
|
923 |
+
def _weight_bias(self):
|
924 |
+
w, b = torch.ops.quantized.conv3d_unpack(self._packed_params)
|
925 |
+
return w, b
|
926 |
+
|
927 |
+
def weight(self):
|
928 |
+
(w, _) = self._weight_bias()
|
929 |
+
return w
|
930 |
+
|
931 |
+
def bias(self):
|
932 |
+
(_, b) = self._weight_bias()
|
933 |
+
return b
|
934 |
+
|
935 |
+
def forward(self, input):
|
936 |
+
# Temporarily using len(shape) instead of ndim due to JIT issue
|
937 |
+
# https://github.com/pytorch/pytorch/issues/23890
|
938 |
+
if len(input.shape) != 5:
|
939 |
+
raise ValueError("Input shape must be `(N, C, T, H, W)`!")
|
940 |
+
return ops.quantized.conv_transpose3d(
|
941 |
+
input, self._packed_params, self.scale, self.zero_point)
|
942 |
+
|
943 |
+
@classmethod
|
944 |
+
def from_reference(cls, ref_qconvt, output_scale, output_zero_point):
|
945 |
+
return _ConvTransposeNd.from_reference(cls, ref_qconvt, output_scale, output_zero_point)
|
venv/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/dropout.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
__all__ = ['Dropout']
|
4 |
+
|
5 |
+
class Dropout(torch.nn.Dropout):
|
6 |
+
r"""This is the quantized equivalent of :class:`~torch.nn.Dropout`.
|
7 |
+
And this is a placeholder to enable models where fp32 tensors
|
8 |
+
had dropout to work with quantized tensors in train and eval mode.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
p: probability of an element to be zeroed
|
12 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
13 |
+
"""
|
14 |
+
|
15 |
+
def forward(self, input):
|
16 |
+
return input
|
17 |
+
|
18 |
+
def _get_name(self):
|
19 |
+
return 'QuantizedDropout'
|
20 |
+
|
21 |
+
@classmethod
|
22 |
+
def from_float(cls, mod):
|
23 |
+
return cls(mod.p, mod.inplace)
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def from_reference(cls, mod, scale, zero_point):
|
27 |
+
return cls(mod.p, mod.inplace)
|