applied-ai-018 commited on
Commit
ffc1017
·
verified ·
1 Parent(s): 43e608a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  7. ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/fp32.pt +3 -0
  8. venv/lib/python3.10/site-packages/sympy/printing/__init__.py +116 -0
  9. venv/lib/python3.10/site-packages/sympy/printing/__pycache__/mathematica.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/printing/aesaracode.py +539 -0
  11. venv/lib/python3.10/site-packages/sympy/printing/c.py +747 -0
  12. venv/lib/python3.10/site-packages/sympy/printing/codeprinter.py +875 -0
  13. venv/lib/python3.10/site-packages/sympy/printing/cxx.py +169 -0
  14. venv/lib/python3.10/site-packages/sympy/printing/dot.py +294 -0
  15. venv/lib/python3.10/site-packages/sympy/printing/glsl.py +557 -0
  16. venv/lib/python3.10/site-packages/sympy/printing/gtk.py +16 -0
  17. venv/lib/python3.10/site-packages/sympy/printing/julia.py +658 -0
  18. venv/lib/python3.10/site-packages/sympy/printing/lambdarepr.py +251 -0
  19. venv/lib/python3.10/site-packages/sympy/printing/llvmjitcode.py +489 -0
  20. venv/lib/python3.10/site-packages/sympy/printing/mathematica.py +354 -0
  21. venv/lib/python3.10/site-packages/sympy/printing/octave.py +719 -0
  22. venv/lib/python3.10/site-packages/sympy/printing/precedence.py +177 -0
  23. venv/lib/python3.10/site-packages/sympy/printing/preview.py +390 -0
  24. venv/lib/python3.10/site-packages/sympy/printing/printer.py +396 -0
  25. venv/lib/python3.10/site-packages/sympy/printing/pycode.py +750 -0
  26. venv/lib/python3.10/site-packages/sympy/printing/python.py +93 -0
  27. venv/lib/python3.10/site-packages/sympy/printing/rcode.py +410 -0
  28. venv/lib/python3.10/site-packages/sympy/printing/repr.py +342 -0
  29. venv/lib/python3.10/site-packages/sympy/printing/rust.py +625 -0
  30. venv/lib/python3.10/site-packages/sympy/printing/smtlib.py +526 -0
  31. venv/lib/python3.10/site-packages/sympy/printing/str.py +1027 -0
  32. venv/lib/python3.10/site-packages/sympy/printing/tableform.py +366 -0
  33. venv/lib/python3.10/site-packages/sympy/printing/tensorflow.py +216 -0
  34. venv/lib/python3.10/site-packages/sympy/printing/theanocode.py +565 -0
  35. venv/lib/python3.10/site-packages/sympy/printing/tree.py +175 -0
  36. venv/lib/python3.10/site-packages/sympy/vector/__init__.py +47 -0
  37. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df5971a9070051d06a7fb30f6fc48ecb11967173c601666828847b77f0bf91cf
3
+ size 50332828
ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26030bf56bad0424bc62434e186e4028cd203b922fb6a2839321558bb99dfc23
3
+ size 50332749
ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32f636d35133a1b13a64fabbf8e2d9e3b8c58ea74d97cfdaf1f48258917e9cc
3
+ size 33555612
ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51d252bc74c8b7ca01fd4bafbf305b4ac34a36e0595cea15d2c1a6980eba3cfe
3
+ size 33555533
ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a808d80a8bbe3c9dedaccae4744b1b7d35ac51f6e3f65068d849d086acf424c4
3
+ size 9372
ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a29dfde7a6f36331e5a3213802f0808b04ef40cffc25a73d43259cc76947006
3
+ size 9387
ckpts/universal/global_step80/zero/4.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86613d6296174c3b637bc504ec97f826ac8c0eee949481461b096ef596a1f6bd
3
+ size 9293
venv/lib/python3.10/site-packages/sympy/printing/__init__.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Printing subsystem"""
2
+
3
+ from .pretty import pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode
4
+
5
+ from .latex import latex, print_latex, multiline_latex
6
+
7
+ from .mathml import mathml, print_mathml
8
+
9
+ from .python import python, print_python
10
+
11
+ from .pycode import pycode
12
+
13
+ from .codeprinter import print_ccode, print_fcode
14
+
15
+ from .codeprinter import ccode, fcode, cxxcode # noqa:F811
16
+
17
+ from .smtlib import smtlib_code
18
+
19
+ from .glsl import glsl_code, print_glsl
20
+
21
+ from .rcode import rcode, print_rcode
22
+
23
+ from .jscode import jscode, print_jscode
24
+
25
+ from .julia import julia_code
26
+
27
+ from .mathematica import mathematica_code
28
+
29
+ from .octave import octave_code
30
+
31
+ from .rust import rust_code
32
+
33
+ from .gtk import print_gtk
34
+
35
+ from .preview import preview
36
+
37
+ from .repr import srepr
38
+
39
+ from .tree import print_tree
40
+
41
+ from .str import StrPrinter, sstr, sstrrepr
42
+
43
+ from .tableform import TableForm
44
+
45
+ from .dot import dotprint
46
+
47
+ from .maple import maple_code, print_maple_code
48
+
49
+ __all__ = [
50
+ # sympy.printing.pretty
51
+ 'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
52
+ 'pprint_try_use_unicode',
53
+
54
+ # sympy.printing.latex
55
+ 'latex', 'print_latex', 'multiline_latex',
56
+
57
+ # sympy.printing.mathml
58
+ 'mathml', 'print_mathml',
59
+
60
+ # sympy.printing.python
61
+ 'python', 'print_python',
62
+
63
+ # sympy.printing.pycode
64
+ 'pycode',
65
+
66
+ # sympy.printing.codeprinter
67
+ 'ccode', 'print_ccode', 'cxxcode', 'fcode', 'print_fcode',
68
+
69
+ # sympy.printing.smtlib
70
+ 'smtlib_code',
71
+
72
+ # sympy.printing.glsl
73
+ 'glsl_code', 'print_glsl',
74
+
75
+ # sympy.printing.rcode
76
+ 'rcode', 'print_rcode',
77
+
78
+ # sympy.printing.jscode
79
+ 'jscode', 'print_jscode',
80
+
81
+ # sympy.printing.julia
82
+ 'julia_code',
83
+
84
+ # sympy.printing.mathematica
85
+ 'mathematica_code',
86
+
87
+ # sympy.printing.octave
88
+ 'octave_code',
89
+
90
+ # sympy.printing.rust
91
+ 'rust_code',
92
+
93
+ # sympy.printing.gtk
94
+ 'print_gtk',
95
+
96
+ # sympy.printing.preview
97
+ 'preview',
98
+
99
+ # sympy.printing.repr
100
+ 'srepr',
101
+
102
+ # sympy.printing.tree
103
+ 'print_tree',
104
+
105
+ # sympy.printing.str
106
+ 'StrPrinter', 'sstr', 'sstrrepr',
107
+
108
+ # sympy.printing.tableform
109
+ 'TableForm',
110
+
111
+ # sympy.printing.dot
112
+ 'dotprint',
113
+
114
+ # sympy.printing.maple
115
+ 'maple_code', 'print_maple_code',
116
+ ]
venv/lib/python3.10/site-packages/sympy/printing/__pycache__/mathematica.cpython-310.pyc ADDED
Binary file (24 kB). View file
 
venv/lib/python3.10/site-packages/sympy/printing/aesaracode.py ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Any
3
+
4
+ from sympy.external import import_module
5
+ from sympy.printing.printer import Printer
6
+ from sympy.utilities.iterables import is_sequence
7
+ import sympy
8
+ from functools import partial
9
+
10
+
11
+ aesara = import_module('aesara')
12
+
13
+ if aesara:
14
+ aes = aesara.scalar
15
+ aet = aesara.tensor
16
+ from aesara.tensor import nlinalg
17
+ from aesara.tensor.elemwise import Elemwise
18
+ from aesara.tensor.elemwise import DimShuffle
19
+
20
+ # `true_divide` replaced `true_div` in Aesara 2.8.11 (released 2023) to
21
+ # match NumPy
22
+ # XXX: Remove this when not needed to support older versions.
23
+ true_divide = getattr(aet, 'true_divide', None)
24
+ if true_divide is None:
25
+ true_divide = aet.true_div
26
+
27
+ mapping = {
28
+ sympy.Add: aet.add,
29
+ sympy.Mul: aet.mul,
30
+ sympy.Abs: aet.abs,
31
+ sympy.sign: aet.sgn,
32
+ sympy.ceiling: aet.ceil,
33
+ sympy.floor: aet.floor,
34
+ sympy.log: aet.log,
35
+ sympy.exp: aet.exp,
36
+ sympy.sqrt: aet.sqrt,
37
+ sympy.cos: aet.cos,
38
+ sympy.acos: aet.arccos,
39
+ sympy.sin: aet.sin,
40
+ sympy.asin: aet.arcsin,
41
+ sympy.tan: aet.tan,
42
+ sympy.atan: aet.arctan,
43
+ sympy.atan2: aet.arctan2,
44
+ sympy.cosh: aet.cosh,
45
+ sympy.acosh: aet.arccosh,
46
+ sympy.sinh: aet.sinh,
47
+ sympy.asinh: aet.arcsinh,
48
+ sympy.tanh: aet.tanh,
49
+ sympy.atanh: aet.arctanh,
50
+ sympy.re: aet.real,
51
+ sympy.im: aet.imag,
52
+ sympy.arg: aet.angle,
53
+ sympy.erf: aet.erf,
54
+ sympy.gamma: aet.gamma,
55
+ sympy.loggamma: aet.gammaln,
56
+ sympy.Pow: aet.pow,
57
+ sympy.Eq: aet.eq,
58
+ sympy.StrictGreaterThan: aet.gt,
59
+ sympy.StrictLessThan: aet.lt,
60
+ sympy.LessThan: aet.le,
61
+ sympy.GreaterThan: aet.ge,
62
+ sympy.And: aet.bitwise_and, # bitwise
63
+ sympy.Or: aet.bitwise_or, # bitwise
64
+ sympy.Not: aet.invert, # bitwise
65
+ sympy.Xor: aet.bitwise_xor, # bitwise
66
+ sympy.Max: aet.maximum, # Sympy accept >2 inputs, Aesara only 2
67
+ sympy.Min: aet.minimum, # Sympy accept >2 inputs, Aesara only 2
68
+ sympy.conjugate: aet.conj,
69
+ sympy.core.numbers.ImaginaryUnit: lambda:aet.complex(0,1),
70
+ # Matrices
71
+ sympy.MatAdd: Elemwise(aes.add),
72
+ sympy.HadamardProduct: Elemwise(aes.mul),
73
+ sympy.Trace: nlinalg.trace,
74
+ sympy.Determinant : nlinalg.det,
75
+ sympy.Inverse: nlinalg.matrix_inverse,
76
+ sympy.Transpose: DimShuffle((False, False), [1, 0]),
77
+ }
78
+
79
+
80
+ class AesaraPrinter(Printer):
81
+ """ Code printer which creates Aesara symbolic expression graphs.
82
+
83
+ Parameters
84
+ ==========
85
+
86
+ cache : dict
87
+ Cache dictionary to use. If None (default) will use
88
+ the global cache. To create a printer which does not depend on or alter
89
+ global state pass an empty dictionary. Note: the dictionary is not
90
+ copied on initialization of the printer and will be updated in-place,
91
+ so using the same dict object when creating multiple printers or making
92
+ multiple calls to :func:`.aesara_code` or :func:`.aesara_function` means
93
+ the cache is shared between all these applications.
94
+
95
+ Attributes
96
+ ==========
97
+
98
+ cache : dict
99
+ A cache of Aesara variables which have been created for SymPy
100
+ symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
101
+ :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
102
+ ensure that all references to a given symbol in an expression (or
103
+ multiple expressions) are printed as the same Aesara variable, which is
104
+ created only once. Symbols are differentiated only by name and type. The
105
+ format of the cache's contents should be considered opaque to the user.
106
+ """
107
+ printmethod = "_aesara"
108
+
109
+ def __init__(self, *args, **kwargs):
110
+ self.cache = kwargs.pop('cache', {})
111
+ super().__init__(*args, **kwargs)
112
+
113
+ def _get_key(self, s, name=None, dtype=None, broadcastable=None):
114
+ """ Get the cache key for a SymPy object.
115
+
116
+ Parameters
117
+ ==========
118
+
119
+ s : sympy.core.basic.Basic
120
+ SymPy object to get key for.
121
+
122
+ name : str
123
+ Name of object, if it does not have a ``name`` attribute.
124
+ """
125
+
126
+ if name is None:
127
+ name = s.name
128
+
129
+ return (name, type(s), s.args, dtype, broadcastable)
130
+
131
+ def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
132
+ """
133
+ Get the Aesara variable for a SymPy symbol from the cache, or create it
134
+ if it does not exist.
135
+ """
136
+
137
+ # Defaults
138
+ if name is None:
139
+ name = s.name
140
+ if dtype is None:
141
+ dtype = 'floatX'
142
+ if broadcastable is None:
143
+ broadcastable = ()
144
+
145
+ key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
146
+
147
+ if key in self.cache:
148
+ return self.cache[key]
149
+
150
+ value = aet.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
151
+ self.cache[key] = value
152
+ return value
153
+
154
+ def _print_Symbol(self, s, **kwargs):
155
+ dtype = kwargs.get('dtypes', {}).get(s)
156
+ bc = kwargs.get('broadcastables', {}).get(s)
157
+ return self._get_or_create(s, dtype=dtype, broadcastable=bc)
158
+
159
+ def _print_AppliedUndef(self, s, **kwargs):
160
+ name = str(type(s)) + '_' + str(s.args[0])
161
+ dtype = kwargs.get('dtypes', {}).get(s)
162
+ bc = kwargs.get('broadcastables', {}).get(s)
163
+ return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
164
+
165
+ def _print_Basic(self, expr, **kwargs):
166
+ op = mapping[type(expr)]
167
+ children = [self._print(arg, **kwargs) for arg in expr.args]
168
+ return op(*children)
169
+
170
+ def _print_Number(self, n, **kwargs):
171
+ # Integers already taken care of below, interpret as float
172
+ return float(n.evalf())
173
+
174
+ def _print_MatrixSymbol(self, X, **kwargs):
175
+ dtype = kwargs.get('dtypes', {}).get(X)
176
+ return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
177
+
178
+ def _print_DenseMatrix(self, X, **kwargs):
179
+ if not hasattr(aet, 'stacklists'):
180
+ raise NotImplementedError(
181
+ "Matrix translation not yet supported in this version of Aesara")
182
+
183
+ return aet.stacklists([
184
+ [self._print(arg, **kwargs) for arg in L]
185
+ for L in X.tolist()
186
+ ])
187
+
188
+ _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
189
+
190
+ def _print_MatMul(self, expr, **kwargs):
191
+ children = [self._print(arg, **kwargs) for arg in expr.args]
192
+ result = children[0]
193
+ for child in children[1:]:
194
+ result = aet.dot(result, child)
195
+ return result
196
+
197
+ def _print_MatPow(self, expr, **kwargs):
198
+ children = [self._print(arg, **kwargs) for arg in expr.args]
199
+ result = 1
200
+ if isinstance(children[1], int) and children[1] > 0:
201
+ for i in range(children[1]):
202
+ result = aet.dot(result, children[0])
203
+ else:
204
+ raise NotImplementedError('''Only non-negative integer
205
+ powers of matrices can be handled by Aesara at the moment''')
206
+ return result
207
+
208
+ def _print_MatrixSlice(self, expr, **kwargs):
209
+ parent = self._print(expr.parent, **kwargs)
210
+ rowslice = self._print(slice(*expr.rowslice), **kwargs)
211
+ colslice = self._print(slice(*expr.colslice), **kwargs)
212
+ return parent[rowslice, colslice]
213
+
214
+ def _print_BlockMatrix(self, expr, **kwargs):
215
+ nrows, ncols = expr.blocks.shape
216
+ blocks = [[self._print(expr.blocks[r, c], **kwargs)
217
+ for c in range(ncols)]
218
+ for r in range(nrows)]
219
+ return aet.join(0, *[aet.join(1, *row) for row in blocks])
220
+
221
+
222
+ def _print_slice(self, expr, **kwargs):
223
+ return slice(*[self._print(i, **kwargs)
224
+ if isinstance(i, sympy.Basic) else i
225
+ for i in (expr.start, expr.stop, expr.step)])
226
+
227
+ def _print_Pi(self, expr, **kwargs):
228
+ return 3.141592653589793
229
+
230
+ def _print_Piecewise(self, expr, **kwargs):
231
+ import numpy as np
232
+ e, cond = expr.args[0].args # First condition and corresponding value
233
+
234
+ # Print conditional expression and value for first condition
235
+ p_cond = self._print(cond, **kwargs)
236
+ p_e = self._print(e, **kwargs)
237
+
238
+ # One condition only
239
+ if len(expr.args) == 1:
240
+ # Return value if condition else NaN
241
+ return aet.switch(p_cond, p_e, np.nan)
242
+
243
+ # Return value_1 if condition_1 else evaluate remaining conditions
244
+ p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
245
+ return aet.switch(p_cond, p_e, p_remaining)
246
+
247
+ def _print_Rational(self, expr, **kwargs):
248
+ return true_divide(self._print(expr.p, **kwargs),
249
+ self._print(expr.q, **kwargs))
250
+
251
+ def _print_Integer(self, expr, **kwargs):
252
+ return expr.p
253
+
254
+ def _print_factorial(self, expr, **kwargs):
255
+ return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
256
+
257
+ def _print_Derivative(self, deriv, **kwargs):
258
+ from aesara.gradient import Rop
259
+
260
+ rv = self._print(deriv.expr, **kwargs)
261
+ for var in deriv.variables:
262
+ var = self._print(var, **kwargs)
263
+ rv = Rop(rv, var, aet.ones_like(var))
264
+ return rv
265
+
266
+ def emptyPrinter(self, expr):
267
+ return expr
268
+
269
+ def doprint(self, expr, dtypes=None, broadcastables=None):
270
+ """ Convert a SymPy expression to a Aesara graph variable.
271
+
272
+ The ``dtypes`` and ``broadcastables`` arguments are used to specify the
273
+ data type, dimension, and broadcasting behavior of the Aesara variables
274
+ corresponding to the free symbols in ``expr``. Each is a mapping from
275
+ SymPy symbols to the value of the corresponding argument to
276
+ ``aesara.tensor.var.TensorVariable``.
277
+
278
+ See the corresponding `documentation page`__ for more information on
279
+ broadcasting in Aesara.
280
+
281
+ .. __: https://aesara.readthedocs.io/en/latest/tutorial/broadcasting.html
282
+
283
+ Parameters
284
+ ==========
285
+
286
+ expr : sympy.core.expr.Expr
287
+ SymPy expression to print.
288
+
289
+ dtypes : dict
290
+ Mapping from SymPy symbols to Aesara datatypes to use when creating
291
+ new Aesara variables for those symbols. Corresponds to the ``dtype``
292
+ argument to ``aesara.tensor.var.TensorVariable``. Defaults to ``'floatX'``
293
+ for symbols not included in the mapping.
294
+
295
+ broadcastables : dict
296
+ Mapping from SymPy symbols to the value of the ``broadcastable``
297
+ argument to ``aesara.tensor.var.TensorVariable`` to use when creating Aesara
298
+ variables for those symbols. Defaults to the empty tuple for symbols
299
+ not included in the mapping (resulting in a scalar).
300
+
301
+ Returns
302
+ =======
303
+
304
+ aesara.graph.basic.Variable
305
+ A variable corresponding to the expression's value in a Aesara
306
+ symbolic expression graph.
307
+
308
+ """
309
+ if dtypes is None:
310
+ dtypes = {}
311
+ if broadcastables is None:
312
+ broadcastables = {}
313
+
314
+ return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
315
+
316
+
317
+ global_cache: dict[Any, Any] = {}
318
+
319
+
320
+ def aesara_code(expr, cache=None, **kwargs):
321
+ """
322
+ Convert a SymPy expression into a Aesara graph variable.
323
+
324
+ Parameters
325
+ ==========
326
+
327
+ expr : sympy.core.expr.Expr
328
+ SymPy expression object to convert.
329
+
330
+ cache : dict
331
+ Cached Aesara variables (see :class:`AesaraPrinter.cache
332
+ <AesaraPrinter>`). Defaults to the module-level global cache.
333
+
334
+ dtypes : dict
335
+ Passed to :meth:`.AesaraPrinter.doprint`.
336
+
337
+ broadcastables : dict
338
+ Passed to :meth:`.AesaraPrinter.doprint`.
339
+
340
+ Returns
341
+ =======
342
+
343
+ aesara.graph.basic.Variable
344
+ A variable corresponding to the expression's value in a Aesara symbolic
345
+ expression graph.
346
+
347
+ """
348
+ if not aesara:
349
+ raise ImportError("aesara is required for aesara_code")
350
+
351
+ if cache is None:
352
+ cache = global_cache
353
+
354
+ return AesaraPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
355
+
356
+
357
+ def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
358
+ r"""
359
+ Get value of ``broadcastables`` argument to :func:`.aesara_code` from
360
+ keyword arguments to :func:`.aesara_function`.
361
+
362
+ Included for backwards compatibility.
363
+
364
+ Parameters
365
+ ==========
366
+
367
+ inputs
368
+ Sequence of input symbols.
369
+
370
+ dim : int
371
+ Common number of dimensions for all inputs. Overrides other arguments
372
+ if given.
373
+
374
+ dims : dict
375
+ Mapping from input symbols to number of dimensions. Overrides
376
+ ``broadcastables`` argument if given.
377
+
378
+ broadcastables : dict
379
+ Explicit value of ``broadcastables`` argument to
380
+ :meth:`.AesaraPrinter.doprint`. If not None function will return this value unchanged.
381
+
382
+ Returns
383
+ =======
384
+ dict
385
+ Dictionary mapping elements of ``inputs`` to their "broadcastable"
386
+ values (tuple of ``bool``\ s).
387
+ """
388
+ if dim is not None:
389
+ return {s: (False,) * dim for s in inputs}
390
+
391
+ if dims is not None:
392
+ maxdim = max(dims.values())
393
+ return {
394
+ s: (False,) * d + (True,) * (maxdim - d)
395
+ for s, d in dims.items()
396
+ }
397
+
398
+ if broadcastables is not None:
399
+ return broadcastables
400
+
401
+ return {}
402
+
403
+
404
+ def aesara_function(inputs, outputs, scalar=False, *,
405
+ dim=None, dims=None, broadcastables=None, **kwargs):
406
+ """
407
+ Create a Aesara function from SymPy expressions.
408
+
409
+ The inputs and outputs are converted to Aesara variables using
410
+ :func:`.aesara_code` and then passed to ``aesara.function``.
411
+
412
+ Parameters
413
+ ==========
414
+
415
+ inputs
416
+ Sequence of symbols which constitute the inputs of the function.
417
+
418
+ outputs
419
+ Sequence of expressions which constitute the outputs(s) of the
420
+ function. The free symbols of each expression must be a subset of
421
+ ``inputs``.
422
+
423
+ scalar : bool
424
+ Convert 0-dimensional arrays in output to scalars. This will return a
425
+ Python wrapper function around the Aesara function object.
426
+
427
+ cache : dict
428
+ Cached Aesara variables (see :class:`AesaraPrinter.cache
429
+ <AesaraPrinter>`). Defaults to the module-level global cache.
430
+
431
+ dtypes : dict
432
+ Passed to :meth:`.AesaraPrinter.doprint`.
433
+
434
+ broadcastables : dict
435
+ Passed to :meth:`.AesaraPrinter.doprint`.
436
+
437
+ dims : dict
438
+ Alternative to ``broadcastables`` argument. Mapping from elements of
439
+ ``inputs`` to integers indicating the dimension of their associated
440
+ arrays/tensors. Overrides ``broadcastables`` argument if given.
441
+
442
+ dim : int
443
+ Another alternative to the ``broadcastables`` argument. Common number of
444
+ dimensions to use for all arrays/tensors.
445
+ ``aesara_function([x, y], [...], dim=2)`` is equivalent to using
446
+ ``broadcastables={x: (False, False), y: (False, False)}``.
447
+
448
+ Returns
449
+ =======
450
+ callable
451
+ A callable object which takes values of ``inputs`` as positional
452
+ arguments and returns an output array for each of the expressions
453
+ in ``outputs``. If ``outputs`` is a single expression the function will
454
+ return a Numpy array, if it is a list of multiple expressions the
455
+ function will return a list of arrays. See description of the ``squeeze``
456
+ argument above for the behavior when a single output is passed in a list.
457
+ The returned object will either be an instance of
458
+ ``aesara.compile.function.types.Function`` or a Python wrapper
459
+ function around one. In both cases, the returned value will have a
460
+ ``aesara_function`` attribute which points to the return value of
461
+ ``aesara.function``.
462
+
463
+ Examples
464
+ ========
465
+
466
+ >>> from sympy.abc import x, y, z
467
+ >>> from sympy.printing.aesaracode import aesara_function
468
+
469
+ A simple function with one input and one output:
470
+
471
+ >>> f1 = aesara_function([x], [x**2 - 1], scalar=True)
472
+ >>> f1(3)
473
+ 8.0
474
+
475
+ A function with multiple inputs and one output:
476
+
477
+ >>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
478
+ >>> f2(3, 4, 2)
479
+ 5.0
480
+
481
+ A function with multiple inputs and multiple outputs:
482
+
483
+ >>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
484
+ >>> f3(2, 3)
485
+ [13.0, -5.0]
486
+
487
+ See also
488
+ ========
489
+
490
+ dim_handling
491
+
492
+ """
493
+ if not aesara:
494
+ raise ImportError("Aesara is required for aesara_function")
495
+
496
+ # Pop off non-aesara keyword args
497
+ cache = kwargs.pop('cache', {})
498
+ dtypes = kwargs.pop('dtypes', {})
499
+
500
+ broadcastables = dim_handling(
501
+ inputs, dim=dim, dims=dims, broadcastables=broadcastables,
502
+ )
503
+
504
+ # Print inputs/outputs
505
+ code = partial(aesara_code, cache=cache, dtypes=dtypes,
506
+ broadcastables=broadcastables)
507
+ tinputs = list(map(code, inputs))
508
+ toutputs = list(map(code, outputs))
509
+
510
+ #fix constant expressions as variables
511
+ toutputs = [output if isinstance(output, aesara.graph.basic.Variable) else aet.as_tensor_variable(output) for output in toutputs]
512
+
513
+ if len(toutputs) == 1:
514
+ toutputs = toutputs[0]
515
+
516
+ # Compile aesara func
517
+ func = aesara.function(tinputs, toutputs, **kwargs)
518
+
519
+ is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
520
+
521
+ # No wrapper required
522
+ if not scalar or not any(is_0d):
523
+ func.aesara_function = func
524
+ return func
525
+
526
+ # Create wrapper to convert 0-dimensional outputs to scalars
527
+ def wrapper(*args):
528
+ out = func(*args)
529
+ # out can be array(1.0) or [array(1.0), array(2.0)]
530
+
531
+ if is_sequence(out):
532
+ return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
533
+ else:
534
+ return out[()]
535
+
536
+ wrapper.__wrapped__ = func
537
+ wrapper.__doc__ = func.__doc__
538
+ wrapper.aesara_function = func
539
+ return wrapper
venv/lib/python3.10/site-packages/sympy/printing/c.py ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ C code printer
3
+
4
+ The C89CodePrinter & C99CodePrinter converts single SymPy expressions into
5
+ single C expressions, using the functions defined in math.h where possible.
6
+
7
+ A complete code generator, which uses ccode extensively, can be found in
8
+ sympy.utilities.codegen. The codegen module can be used to generate complete
9
+ source code files that are compilable without further modifications.
10
+
11
+
12
+ """
13
+
14
+ from __future__ import annotations
15
+ from typing import Any
16
+
17
+ from functools import wraps
18
+ from itertools import chain
19
+
20
+ from sympy.core import S
21
+ from sympy.core.numbers import equal_valued
22
+ from sympy.codegen.ast import (
23
+ Assignment, Pointer, Variable, Declaration, Type,
24
+ real, complex_, integer, bool_, float32, float64, float80,
25
+ complex64, complex128, intc, value_const, pointer_const,
26
+ int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped,
27
+ none
28
+ )
29
+ from sympy.printing.codeprinter import CodePrinter, requires
30
+ from sympy.printing.precedence import precedence, PRECEDENCE
31
+ from sympy.sets.fancysets import Range
32
+
33
+ # These are defined in the other file so we can avoid importing sympy.codegen
34
+ # from the top-level 'import sympy'. Export them here as well.
35
+ from sympy.printing.codeprinter import ccode, print_ccode # noqa:F401
36
+
37
+ # dictionary mapping SymPy function to (argument_conditions, C_function).
38
+ # Used in C89CodePrinter._print_Function(self)
39
+ known_functions_C89 = {
40
+ "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
41
+ "sin": "sin",
42
+ "cos": "cos",
43
+ "tan": "tan",
44
+ "asin": "asin",
45
+ "acos": "acos",
46
+ "atan": "atan",
47
+ "atan2": "atan2",
48
+ "exp": "exp",
49
+ "log": "log",
50
+ "sinh": "sinh",
51
+ "cosh": "cosh",
52
+ "tanh": "tanh",
53
+ "floor": "floor",
54
+ "ceiling": "ceil",
55
+ "sqrt": "sqrt", # To enable automatic rewrites
56
+ }
57
+
58
+ known_functions_C99 = dict(known_functions_C89, **{
59
+ 'exp2': 'exp2',
60
+ 'expm1': 'expm1',
61
+ 'log10': 'log10',
62
+ 'log2': 'log2',
63
+ 'log1p': 'log1p',
64
+ 'Cbrt': 'cbrt',
65
+ 'hypot': 'hypot',
66
+ 'fma': 'fma',
67
+ 'loggamma': 'lgamma',
68
+ 'erfc': 'erfc',
69
+ 'Max': 'fmax',
70
+ 'Min': 'fmin',
71
+ "asinh": "asinh",
72
+ "acosh": "acosh",
73
+ "atanh": "atanh",
74
+ "erf": "erf",
75
+ "gamma": "tgamma",
76
+ })
77
+
78
+ # These are the core reserved words in the C language. Taken from:
79
+ # https://en.cppreference.com/w/c/keyword
80
+
81
+ reserved_words = [
82
+ 'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do',
83
+ 'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int',
84
+ 'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static',
85
+ 'struct', 'entry', # never standardized, we'll leave it here anyway
86
+ 'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while'
87
+ ]
88
+
89
+ reserved_words_c99 = ['inline', 'restrict']
90
+
91
+ def get_math_macros():
92
+ """ Returns a dictionary with math-related macros from math.h/cmath
93
+
94
+ Note that these macros are not strictly required by the C/C++-standard.
95
+ For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably
96
+ via a compilation flag).
97
+
98
+ Returns
99
+ =======
100
+
101
+ Dictionary mapping SymPy expressions to strings (macro names)
102
+
103
+ """
104
+ from sympy.codegen.cfunctions import log2, Sqrt
105
+ from sympy.functions.elementary.exponential import log
106
+ from sympy.functions.elementary.miscellaneous import sqrt
107
+
108
+ return {
109
+ S.Exp1: 'M_E',
110
+ log2(S.Exp1): 'M_LOG2E',
111
+ 1/log(2): 'M_LOG2E',
112
+ log(2): 'M_LN2',
113
+ log(10): 'M_LN10',
114
+ S.Pi: 'M_PI',
115
+ S.Pi/2: 'M_PI_2',
116
+ S.Pi/4: 'M_PI_4',
117
+ 1/S.Pi: 'M_1_PI',
118
+ 2/S.Pi: 'M_2_PI',
119
+ 2/sqrt(S.Pi): 'M_2_SQRTPI',
120
+ 2/Sqrt(S.Pi): 'M_2_SQRTPI',
121
+ sqrt(2): 'M_SQRT2',
122
+ Sqrt(2): 'M_SQRT2',
123
+ 1/sqrt(2): 'M_SQRT1_2',
124
+ 1/Sqrt(2): 'M_SQRT1_2'
125
+ }
126
+
127
+
128
+ def _as_macro_if_defined(meth):
129
+ """ Decorator for printer methods
130
+
131
+ When a Printer's method is decorated using this decorator the expressions printed
132
+ will first be looked for in the attribute ``math_macros``, and if present it will
133
+ print the macro name in ``math_macros`` followed by a type suffix for the type
134
+ ``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80.
135
+
136
+ """
137
+ @wraps(meth)
138
+ def _meth_wrapper(self, expr, **kwargs):
139
+ if expr in self.math_macros:
140
+ return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real))
141
+ else:
142
+ return meth(self, expr, **kwargs)
143
+
144
+ return _meth_wrapper
145
+
146
+
147
+ class C89CodePrinter(CodePrinter):
148
+ """A printer to convert Python expressions to strings of C code"""
149
+ printmethod = "_ccode"
150
+ language = "C"
151
+ standard = "C89"
152
+ reserved_words = set(reserved_words)
153
+
154
+ _default_settings: dict[str, Any] = {
155
+ 'order': None,
156
+ 'full_prec': 'auto',
157
+ 'precision': 17,
158
+ 'user_functions': {},
159
+ 'human': True,
160
+ 'allow_unknown_functions': False,
161
+ 'contract': True,
162
+ 'dereference': set(),
163
+ 'error_on_reserved': False,
164
+ 'reserved_word_suffix': '_',
165
+ }
166
+
167
+ type_aliases = {
168
+ real: float64,
169
+ complex_: complex128,
170
+ integer: intc
171
+ }
172
+
173
+ type_mappings: dict[Type, Any] = {
174
+ real: 'double',
175
+ intc: 'int',
176
+ float32: 'float',
177
+ float64: 'double',
178
+ integer: 'int',
179
+ bool_: 'bool',
180
+ int8: 'int8_t',
181
+ int16: 'int16_t',
182
+ int32: 'int32_t',
183
+ int64: 'int64_t',
184
+ uint8: 'int8_t',
185
+ uint16: 'int16_t',
186
+ uint32: 'int32_t',
187
+ uint64: 'int64_t',
188
+ }
189
+
190
+ type_headers = {
191
+ bool_: {'stdbool.h'},
192
+ int8: {'stdint.h'},
193
+ int16: {'stdint.h'},
194
+ int32: {'stdint.h'},
195
+ int64: {'stdint.h'},
196
+ uint8: {'stdint.h'},
197
+ uint16: {'stdint.h'},
198
+ uint32: {'stdint.h'},
199
+ uint64: {'stdint.h'},
200
+ }
201
+
202
+ # Macros needed to be defined when using a Type
203
+ type_macros: dict[Type, tuple[str, ...]] = {}
204
+
205
+ type_func_suffixes = {
206
+ float32: 'f',
207
+ float64: '',
208
+ float80: 'l'
209
+ }
210
+
211
+ type_literal_suffixes = {
212
+ float32: 'F',
213
+ float64: '',
214
+ float80: 'L'
215
+ }
216
+
217
+ type_math_macro_suffixes = {
218
+ float80: 'l'
219
+ }
220
+
221
+ math_macros = None
222
+
223
+ _ns = '' # namespace, C++ uses 'std::'
224
+ # known_functions-dict to copy
225
+ _kf: dict[str, Any] = known_functions_C89
226
+
227
+ def __init__(self, settings=None):
228
+ settings = settings or {}
229
+ if self.math_macros is None:
230
+ self.math_macros = settings.pop('math_macros', get_math_macros())
231
+ self.type_aliases = dict(chain(self.type_aliases.items(),
232
+ settings.pop('type_aliases', {}).items()))
233
+ self.type_mappings = dict(chain(self.type_mappings.items(),
234
+ settings.pop('type_mappings', {}).items()))
235
+ self.type_headers = dict(chain(self.type_headers.items(),
236
+ settings.pop('type_headers', {}).items()))
237
+ self.type_macros = dict(chain(self.type_macros.items(),
238
+ settings.pop('type_macros', {}).items()))
239
+ self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(),
240
+ settings.pop('type_func_suffixes', {}).items()))
241
+ self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(),
242
+ settings.pop('type_literal_suffixes', {}).items()))
243
+ self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(),
244
+ settings.pop('type_math_macro_suffixes', {}).items()))
245
+ super().__init__(settings)
246
+ self.known_functions = dict(self._kf, **settings.get('user_functions', {}))
247
+ self._dereference = set(settings.get('dereference', []))
248
+ self.headers = set()
249
+ self.libraries = set()
250
+ self.macros = set()
251
+
252
+ def _rate_index_position(self, p):
253
+ return p*5
254
+
255
+ def _get_statement(self, codestring):
256
+ """ Get code string as a statement - i.e. ending with a semicolon. """
257
+ return codestring if codestring.endswith(';') else codestring + ';'
258
+
259
+ def _get_comment(self, text):
260
+ return "/* {} */".format(text)
261
+
262
+ def _declare_number_const(self, name, value):
263
+ type_ = self.type_aliases[real]
264
+ var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const})
265
+ decl = Declaration(var)
266
+ return self._get_statement(self._print(decl))
267
+
268
+ def _format_code(self, lines):
269
+ return self.indent_code(lines)
270
+
271
+ def _traverse_matrix_indices(self, mat):
272
+ rows, cols = mat.shape
273
+ return ((i, j) for i in range(rows) for j in range(cols))
274
+
275
+ @_as_macro_if_defined
276
+ def _print_Mul(self, expr, **kwargs):
277
+ return super()._print_Mul(expr, **kwargs)
278
+
279
+ @_as_macro_if_defined
280
+ def _print_Pow(self, expr):
281
+ if "Pow" in self.known_functions:
282
+ return self._print_Function(expr)
283
+ PREC = precedence(expr)
284
+ suffix = self._get_func_suffix(real)
285
+ if equal_valued(expr.exp, -1):
286
+ literal_suffix = self._get_literal_suffix(real)
287
+ return '1.0%s/%s' % (literal_suffix, self.parenthesize(expr.base, PREC))
288
+ elif equal_valued(expr.exp, 0.5):
289
+ return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
290
+ elif expr.exp == S.One/3 and self.standard != 'C89':
291
+ return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
292
+ else:
293
+ return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base),
294
+ self._print(expr.exp))
295
+
296
+ def _print_Mod(self, expr):
297
+ num, den = expr.args
298
+ if num.is_integer and den.is_integer:
299
+ PREC = precedence(expr)
300
+ snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
301
+ # % is remainder (same sign as numerator), not modulo (same sign as
302
+ # denominator), in C. Hence, % only works as modulo if both numbers
303
+ # have the same sign
304
+ if (num.is_nonnegative and den.is_nonnegative or
305
+ num.is_nonpositive and den.is_nonpositive):
306
+ return f"{snum} % {sden}"
307
+ return f"(({snum} % {sden}) + {sden}) % {sden}"
308
+ # Not guaranteed integer
309
+ return self._print_math_func(expr, known='fmod')
310
+
311
+ def _print_Rational(self, expr):
312
+ p, q = int(expr.p), int(expr.q)
313
+ suffix = self._get_literal_suffix(real)
314
+ return '%d.0%s/%d.0%s' % (p, suffix, q, suffix)
315
+
316
+ def _print_Indexed(self, expr):
317
+ # calculate index for 1d array
318
+ offset = getattr(expr.base, 'offset', S.Zero)
319
+ strides = getattr(expr.base, 'strides', None)
320
+ indices = expr.indices
321
+
322
+ if strides is None or isinstance(strides, str):
323
+ dims = expr.shape
324
+ shift = S.One
325
+ temp = ()
326
+ if strides == 'C' or strides is None:
327
+ traversal = reversed(range(expr.rank))
328
+ indices = indices[::-1]
329
+ elif strides == 'F':
330
+ traversal = range(expr.rank)
331
+
332
+ for i in traversal:
333
+ temp += (shift,)
334
+ shift *= dims[i]
335
+ strides = temp
336
+ flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset
337
+ return "%s[%s]" % (self._print(expr.base.label),
338
+ self._print(flat_index))
339
+
340
+ def _print_Idx(self, expr):
341
+ return self._print(expr.label)
342
+
343
+ @_as_macro_if_defined
344
+ def _print_NumberSymbol(self, expr):
345
+ return super()._print_NumberSymbol(expr)
346
+
347
+ def _print_Infinity(self, expr):
348
+ return 'HUGE_VAL'
349
+
350
+ def _print_NegativeInfinity(self, expr):
351
+ return '-HUGE_VAL'
352
+
353
+ def _print_Piecewise(self, expr):
354
+ if expr.args[-1].cond != True:
355
+ # We need the last conditional to be a True, otherwise the resulting
356
+ # function may not return a result.
357
+ raise ValueError("All Piecewise expressions must contain an "
358
+ "(expr, True) statement to be used as a default "
359
+ "condition. Without one, the generated "
360
+ "expression may not evaluate to anything under "
361
+ "some condition.")
362
+ lines = []
363
+ if expr.has(Assignment):
364
+ for i, (e, c) in enumerate(expr.args):
365
+ if i == 0:
366
+ lines.append("if (%s) {" % self._print(c))
367
+ elif i == len(expr.args) - 1 and c == True:
368
+ lines.append("else {")
369
+ else:
370
+ lines.append("else if (%s) {" % self._print(c))
371
+ code0 = self._print(e)
372
+ lines.append(code0)
373
+ lines.append("}")
374
+ return "\n".join(lines)
375
+ else:
376
+ # The piecewise was used in an expression, need to do inline
377
+ # operators. This has the downside that inline operators will
378
+ # not work for statements that span multiple lines (Matrix or
379
+ # Indexed expressions).
380
+ ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
381
+ self._print(e))
382
+ for e, c in expr.args[:-1]]
383
+ last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
384
+ return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
385
+
386
+ def _print_ITE(self, expr):
387
+ from sympy.functions import Piecewise
388
+ return self._print(expr.rewrite(Piecewise, deep=False))
389
+
390
+ def _print_MatrixElement(self, expr):
391
+ return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
392
+ strict=True), expr.j + expr.i*expr.parent.shape[1])
393
+
394
+ def _print_Symbol(self, expr):
395
+ name = super()._print_Symbol(expr)
396
+ if expr in self._settings['dereference']:
397
+ return '(*{})'.format(name)
398
+ else:
399
+ return name
400
+
401
+ def _print_Relational(self, expr):
402
+ lhs_code = self._print(expr.lhs)
403
+ rhs_code = self._print(expr.rhs)
404
+ op = expr.rel_op
405
+ return "{} {} {}".format(lhs_code, op, rhs_code)
406
+
407
+ def _print_For(self, expr):
408
+ target = self._print(expr.target)
409
+ if isinstance(expr.iterable, Range):
410
+ start, stop, step = expr.iterable.args
411
+ else:
412
+ raise NotImplementedError("Only iterable currently supported is Range")
413
+ body = self._print(expr.body)
414
+ return ('for ({target} = {start}; {target} < {stop}; {target} += '
415
+ '{step}) {{\n{body}\n}}').format(target=target, start=start,
416
+ stop=stop, step=step, body=body)
417
+
418
+ def _print_sign(self, func):
419
+ return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0]))
420
+
421
+ def _print_Max(self, expr):
422
+ if "Max" in self.known_functions:
423
+ return self._print_Function(expr)
424
+ def inner_print_max(args): # The more natural abstraction of creating
425
+ if len(args) == 1: # and printing smaller Max objects is slow
426
+ return self._print(args[0]) # when there are many arguments.
427
+ half = len(args) // 2
428
+ return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % {
429
+ 'a': inner_print_max(args[:half]),
430
+ 'b': inner_print_max(args[half:])
431
+ }
432
+ return inner_print_max(expr.args)
433
+
434
+ def _print_Min(self, expr):
435
+ if "Min" in self.known_functions:
436
+ return self._print_Function(expr)
437
+ def inner_print_min(args): # The more natural abstraction of creating
438
+ if len(args) == 1: # and printing smaller Min objects is slow
439
+ return self._print(args[0]) # when there are many arguments.
440
+ half = len(args) // 2
441
+ return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % {
442
+ 'a': inner_print_min(args[:half]),
443
+ 'b': inner_print_min(args[half:])
444
+ }
445
+ return inner_print_min(expr.args)
446
+
447
+ def indent_code(self, code):
448
+ """Accepts a string of code or a list of code lines"""
449
+
450
+ if isinstance(code, str):
451
+ code_lines = self.indent_code(code.splitlines(True))
452
+ return ''.join(code_lines)
453
+
454
+ tab = " "
455
+ inc_token = ('{', '(', '{\n', '(\n')
456
+ dec_token = ('}', ')')
457
+
458
+ code = [line.lstrip(' \t') for line in code]
459
+
460
+ increase = [int(any(map(line.endswith, inc_token))) for line in code]
461
+ decrease = [int(any(map(line.startswith, dec_token))) for line in code]
462
+
463
+ pretty = []
464
+ level = 0
465
+ for n, line in enumerate(code):
466
+ if line in ('', '\n'):
467
+ pretty.append(line)
468
+ continue
469
+ level -= decrease[n]
470
+ pretty.append("%s%s" % (tab*level, line))
471
+ level += increase[n]
472
+ return pretty
473
+
474
+ def _get_func_suffix(self, type_):
475
+ return self.type_func_suffixes[self.type_aliases.get(type_, type_)]
476
+
477
+ def _get_literal_suffix(self, type_):
478
+ return self.type_literal_suffixes[self.type_aliases.get(type_, type_)]
479
+
480
+ def _get_math_macro_suffix(self, type_):
481
+ alias = self.type_aliases.get(type_, type_)
482
+ dflt = self.type_math_macro_suffixes.get(alias, '')
483
+ return self.type_math_macro_suffixes.get(type_, dflt)
484
+
485
+ def _print_Tuple(self, expr):
486
+ return '{'+', '.join(self._print(e) for e in expr)+'}'
487
+
488
+ _print_List = _print_Tuple
489
+
490
+ def _print_Type(self, type_):
491
+ self.headers.update(self.type_headers.get(type_, set()))
492
+ self.macros.update(self.type_macros.get(type_, set()))
493
+ return self._print(self.type_mappings.get(type_, type_.name))
494
+
495
+ def _print_Declaration(self, decl):
496
+ from sympy.codegen.cnodes import restrict
497
+ var = decl.variable
498
+ val = var.value
499
+ if var.type == untyped:
500
+ raise ValueError("C does not support untyped variables")
501
+
502
+ if isinstance(var, Pointer):
503
+ result = '{vc}{t} *{pc} {r}{s}'.format(
504
+ vc='const ' if value_const in var.attrs else '',
505
+ t=self._print(var.type),
506
+ pc=' const' if pointer_const in var.attrs else '',
507
+ r='restrict ' if restrict in var.attrs else '',
508
+ s=self._print(var.symbol)
509
+ )
510
+ elif isinstance(var, Variable):
511
+ result = '{vc}{t} {s}'.format(
512
+ vc='const ' if value_const in var.attrs else '',
513
+ t=self._print(var.type),
514
+ s=self._print(var.symbol)
515
+ )
516
+ else:
517
+ raise NotImplementedError("Unknown type of var: %s" % type(var))
518
+ if val != None: # Must be "!= None", cannot be "is not None"
519
+ result += ' = %s' % self._print(val)
520
+ return result
521
+
522
+ def _print_Float(self, flt):
523
+ type_ = self.type_aliases.get(real, real)
524
+ self.macros.update(self.type_macros.get(type_, set()))
525
+ suffix = self._get_literal_suffix(type_)
526
+ num = str(flt.evalf(type_.decimal_dig))
527
+ if 'e' not in num and '.' not in num:
528
+ num += '.0'
529
+ num_parts = num.split('e')
530
+ num_parts[0] = num_parts[0].rstrip('0')
531
+ if num_parts[0].endswith('.'):
532
+ num_parts[0] += '0'
533
+ return 'e'.join(num_parts) + suffix
534
+
535
+ @requires(headers={'stdbool.h'})
536
+ def _print_BooleanTrue(self, expr):
537
+ return 'true'
538
+
539
+ @requires(headers={'stdbool.h'})
540
+ def _print_BooleanFalse(self, expr):
541
+ return 'false'
542
+
543
+ def _print_Element(self, elem):
544
+ if elem.strides == None: # Must be "== None", cannot be "is None"
545
+ if elem.offset != None: # Must be "!= None", cannot be "is not None"
546
+ raise ValueError("Expected strides when offset is given")
547
+ idxs = ']['.join((self._print(arg) for arg in elem.indices))
548
+ else:
549
+ global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)])
550
+ if elem.offset != None: # Must be "!= None", cannot be "is not None"
551
+ global_idx += elem.offset
552
+ idxs = self._print(global_idx)
553
+
554
+ return "{symb}[{idxs}]".format(
555
+ symb=self._print(elem.symbol),
556
+ idxs=idxs
557
+ )
558
+
559
+ def _print_CodeBlock(self, expr):
560
+ """ Elements of code blocks printed as statements. """
561
+ return '\n'.join([self._get_statement(self._print(i)) for i in expr.args])
562
+
563
+ def _print_While(self, expr):
564
+ return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs(
565
+ apply=lambda arg: self._print(arg)))
566
+
567
+ def _print_Scope(self, expr):
568
+ return '{\n%s\n}' % self._print_CodeBlock(expr.body)
569
+
570
+ @requires(headers={'stdio.h'})
571
+ def _print_Print(self, expr):
572
+ return 'printf({fmt}, {pargs})'.format(
573
+ fmt=self._print(expr.format_string),
574
+ pargs=', '.join((self._print(arg) for arg in expr.print_args))
575
+ )
576
+
577
+ def _print_FunctionPrototype(self, expr):
578
+ pars = ', '.join((self._print(Declaration(arg)) for arg in expr.parameters))
579
+ return "%s %s(%s)" % (
580
+ tuple((self._print(arg) for arg in (expr.return_type, expr.name))) + (pars,)
581
+ )
582
+
583
+ def _print_FunctionDefinition(self, expr):
584
+ return "%s%s" % (self._print_FunctionPrototype(expr),
585
+ self._print_Scope(expr))
586
+
587
+ def _print_Return(self, expr):
588
+ arg, = expr.args
589
+ return 'return %s' % self._print(arg)
590
+
591
+ def _print_CommaOperator(self, expr):
592
+ return '(%s)' % ', '.join((self._print(arg) for arg in expr.args))
593
+
594
+ def _print_Label(self, expr):
595
+ if expr.body == none:
596
+ return '%s:' % str(expr.name)
597
+ if len(expr.body.args) == 1:
598
+ return '%s:\n%s' % (str(expr.name), self._print_CodeBlock(expr.body))
599
+ return '%s:\n{\n%s\n}' % (str(expr.name), self._print_CodeBlock(expr.body))
600
+
601
+ def _print_goto(self, expr):
602
+ return 'goto %s' % expr.label.name
603
+
604
+ def _print_PreIncrement(self, expr):
605
+ arg, = expr.args
606
+ return '++(%s)' % self._print(arg)
607
+
608
+ def _print_PostIncrement(self, expr):
609
+ arg, = expr.args
610
+ return '(%s)++' % self._print(arg)
611
+
612
+ def _print_PreDecrement(self, expr):
613
+ arg, = expr.args
614
+ return '--(%s)' % self._print(arg)
615
+
616
+ def _print_PostDecrement(self, expr):
617
+ arg, = expr.args
618
+ return '(%s)--' % self._print(arg)
619
+
620
+ def _print_struct(self, expr):
621
+ return "%(keyword)s %(name)s {\n%(lines)s}" % {
622
+ "keyword": expr.__class__.__name__, "name": expr.name, "lines": ';\n'.join(
623
+ [self._print(decl) for decl in expr.declarations] + [''])
624
+ }
625
+
626
+ def _print_BreakToken(self, _):
627
+ return 'break'
628
+
629
+ def _print_ContinueToken(self, _):
630
+ return 'continue'
631
+
632
+ _print_union = _print_struct
633
+
634
+ class C99CodePrinter(C89CodePrinter):
635
+ standard = 'C99'
636
+ reserved_words = set(reserved_words + reserved_words_c99)
637
+ type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), {
638
+ complex64: 'float complex',
639
+ complex128: 'double complex',
640
+ }.items()))
641
+ type_headers = dict(chain(C89CodePrinter.type_headers.items(), {
642
+ complex64: {'complex.h'},
643
+ complex128: {'complex.h'}
644
+ }.items()))
645
+
646
+ # known_functions-dict to copy
647
+ _kf: dict[str, Any] = known_functions_C99
648
+
649
+ # functions with versions with 'f' and 'l' suffixes:
650
+ _prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2'
651
+ ' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan'
652
+ ' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf'
653
+ ' erfc tgamma lgamma ceil floor trunc round nearbyint rint'
654
+ ' frexp ldexp modf scalbn ilogb logb nextafter copysign').split()
655
+
656
+ def _print_Infinity(self, expr):
657
+ return 'INFINITY'
658
+
659
+ def _print_NegativeInfinity(self, expr):
660
+ return '-INFINITY'
661
+
662
+ def _print_NaN(self, expr):
663
+ return 'NAN'
664
+
665
+ # tgamma was already covered by 'known_functions' dict
666
+
667
+ @requires(headers={'math.h'}, libraries={'m'})
668
+ @_as_macro_if_defined
669
+ def _print_math_func(self, expr, nest=False, known=None):
670
+ if known is None:
671
+ known = self.known_functions[expr.__class__.__name__]
672
+ if not isinstance(known, str):
673
+ for cb, name in known:
674
+ if cb(*expr.args):
675
+ known = name
676
+ break
677
+ else:
678
+ raise ValueError("No matching printer")
679
+ try:
680
+ return known(self, *expr.args)
681
+ except TypeError:
682
+ suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else ''
683
+
684
+ if nest:
685
+ args = self._print(expr.args[0])
686
+ if len(expr.args) > 1:
687
+ paren_pile = ''
688
+ for curr_arg in expr.args[1:-1]:
689
+ paren_pile += ')'
690
+ args += ', {ns}{name}{suffix}({next}'.format(
691
+ ns=self._ns,
692
+ name=known,
693
+ suffix=suffix,
694
+ next = self._print(curr_arg)
695
+ )
696
+ args += ', %s%s' % (
697
+ self._print(expr.func(expr.args[-1])),
698
+ paren_pile
699
+ )
700
+ else:
701
+ args = ', '.join((self._print(arg) for arg in expr.args))
702
+ return '{ns}{name}{suffix}({args})'.format(
703
+ ns=self._ns,
704
+ name=known,
705
+ suffix=suffix,
706
+ args=args
707
+ )
708
+
709
+ def _print_Max(self, expr):
710
+ return self._print_math_func(expr, nest=True)
711
+
712
+ def _print_Min(self, expr):
713
+ return self._print_math_func(expr, nest=True)
714
+
715
+ def _get_loop_opening_ending(self, indices):
716
+ open_lines = []
717
+ close_lines = []
718
+ loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99
719
+ for i in indices:
720
+ # C arrays start at 0 and end at dimension-1
721
+ open_lines.append(loopstart % {
722
+ 'var': self._print(i.label),
723
+ 'start': self._print(i.lower),
724
+ 'end': self._print(i.upper + 1)})
725
+ close_lines.append("}")
726
+ return open_lines, close_lines
727
+
728
+
729
+ for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma'
730
+ ' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh '
731
+ 'atanh erf erfc loggamma gamma ceiling floor').split():
732
+ setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func)
733
+
734
+
735
+ class C11CodePrinter(C99CodePrinter):
736
+
737
+ @requires(headers={'stdalign.h'})
738
+ def _print_alignof(self, expr):
739
+ arg, = expr.args
740
+ return 'alignof(%s)' % self._print(arg)
741
+
742
+
743
+ c_code_printers = {
744
+ 'c89': C89CodePrinter,
745
+ 'c99': C99CodePrinter,
746
+ 'c11': C11CodePrinter
747
+ }
venv/lib/python3.10/site-packages/sympy/printing/codeprinter.py ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Any
3
+
4
+ from functools import wraps
5
+
6
+ from sympy.core import Add, Mul, Pow, S, sympify, Float
7
+ from sympy.core.basic import Basic
8
+ from sympy.core.expr import UnevaluatedExpr
9
+ from sympy.core.function import Lambda
10
+ from sympy.core.mul import _keep_coeff
11
+ from sympy.core.sorting import default_sort_key
12
+ from sympy.core.symbol import Symbol
13
+ from sympy.functions.elementary.complexes import re
14
+ from sympy.printing.str import StrPrinter
15
+ from sympy.printing.precedence import precedence, PRECEDENCE
16
+
17
+
18
+ class requires:
19
+ """ Decorator for registering requirements on print methods. """
20
+ def __init__(self, **kwargs):
21
+ self._req = kwargs
22
+
23
+ def __call__(self, method):
24
+ def _method_wrapper(self_, *args, **kwargs):
25
+ for k, v in self._req.items():
26
+ getattr(self_, k).update(v)
27
+ return method(self_, *args, **kwargs)
28
+ return wraps(method)(_method_wrapper)
29
+
30
+
31
+ class AssignmentError(Exception):
32
+ """
33
+ Raised if an assignment variable for a loop is missing.
34
+ """
35
+ pass
36
+
37
+
38
+ def _convert_python_lists(arg):
39
+ if isinstance(arg, list):
40
+ from sympy.codegen.abstract_nodes import List
41
+ return List(*(_convert_python_lists(e) for e in arg))
42
+ elif isinstance(arg, tuple):
43
+ return tuple(_convert_python_lists(e) for e in arg)
44
+ else:
45
+ return arg
46
+
47
+
48
+ class CodePrinter(StrPrinter):
49
+ """
50
+ The base class for code-printing subclasses.
51
+ """
52
+
53
+ _operators = {
54
+ 'and': '&&',
55
+ 'or': '||',
56
+ 'not': '!',
57
+ }
58
+
59
+ _default_settings: dict[str, Any] = {
60
+ 'order': None,
61
+ 'full_prec': 'auto',
62
+ 'error_on_reserved': False,
63
+ 'reserved_word_suffix': '_',
64
+ 'human': True,
65
+ 'inline': False,
66
+ 'allow_unknown_functions': False,
67
+ }
68
+
69
+ # Functions which are "simple" to rewrite to other functions that
70
+ # may be supported
71
+ # function_to_rewrite : (function_to_rewrite_to, iterable_with_other_functions_required)
72
+ _rewriteable_functions = {
73
+ 'cot': ('tan', []),
74
+ 'csc': ('sin', []),
75
+ 'sec': ('cos', []),
76
+ 'acot': ('atan', []),
77
+ 'acsc': ('asin', []),
78
+ 'asec': ('acos', []),
79
+ 'coth': ('exp', []),
80
+ 'csch': ('exp', []),
81
+ 'sech': ('exp', []),
82
+ 'acoth': ('log', []),
83
+ 'acsch': ('log', []),
84
+ 'asech': ('log', []),
85
+ 'catalan': ('gamma', []),
86
+ 'fibonacci': ('sqrt', []),
87
+ 'lucas': ('sqrt', []),
88
+ 'beta': ('gamma', []),
89
+ 'sinc': ('sin', ['Piecewise']),
90
+ 'Mod': ('floor', []),
91
+ 'factorial': ('gamma', []),
92
+ 'factorial2': ('gamma', ['Piecewise']),
93
+ 'subfactorial': ('uppergamma', []),
94
+ 'RisingFactorial': ('gamma', ['Piecewise']),
95
+ 'FallingFactorial': ('gamma', ['Piecewise']),
96
+ 'binomial': ('gamma', []),
97
+ 'frac': ('floor', []),
98
+ 'Max': ('Piecewise', []),
99
+ 'Min': ('Piecewise', []),
100
+ 'Heaviside': ('Piecewise', []),
101
+ 'erf2': ('erf', []),
102
+ 'erfc': ('erf', []),
103
+ 'Li': ('li', []),
104
+ 'Ei': ('li', []),
105
+ 'dirichlet_eta': ('zeta', []),
106
+ 'riemann_xi': ('zeta', ['gamma']),
107
+ }
108
+
109
+ def __init__(self, settings=None):
110
+
111
+ super().__init__(settings=settings)
112
+ if not hasattr(self, 'reserved_words'):
113
+ self.reserved_words = set()
114
+
115
+ def _handle_UnevaluatedExpr(self, expr):
116
+ return expr.replace(re, lambda arg: arg if isinstance(
117
+ arg, UnevaluatedExpr) and arg.args[0].is_real else re(arg))
118
+
119
+ def doprint(self, expr, assign_to=None):
120
+ """
121
+ Print the expression as code.
122
+
123
+ Parameters
124
+ ----------
125
+ expr : Expression
126
+ The expression to be printed.
127
+
128
+ assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
129
+ If provided, the printed code will set the expression to a variable or multiple variables
130
+ with the name or names given in ``assign_to``.
131
+ """
132
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
133
+ from sympy.codegen.ast import CodeBlock, Assignment
134
+
135
+ def _handle_assign_to(expr, assign_to):
136
+ if assign_to is None:
137
+ return sympify(expr)
138
+ if isinstance(assign_to, (list, tuple)):
139
+ if len(expr) != len(assign_to):
140
+ raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to)))
141
+ return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)])
142
+ if isinstance(assign_to, str):
143
+ if expr.is_Matrix:
144
+ assign_to = MatrixSymbol(assign_to, *expr.shape)
145
+ else:
146
+ assign_to = Symbol(assign_to)
147
+ elif not isinstance(assign_to, Basic):
148
+ raise TypeError("{} cannot assign to object of type {}".format(
149
+ type(self).__name__, type(assign_to)))
150
+ return Assignment(assign_to, expr)
151
+
152
+ expr = _convert_python_lists(expr)
153
+ expr = _handle_assign_to(expr, assign_to)
154
+
155
+ # Remove re(...) nodes due to UnevaluatedExpr.is_real always is None:
156
+ expr = self._handle_UnevaluatedExpr(expr)
157
+
158
+ # keep a set of expressions that are not strictly translatable to Code
159
+ # and number constants that must be declared and initialized
160
+ self._not_supported = set()
161
+ self._number_symbols = set()
162
+
163
+ lines = self._print(expr).splitlines()
164
+
165
+ # format the output
166
+ if self._settings["human"]:
167
+ frontlines = []
168
+ if self._not_supported:
169
+ frontlines.append(self._get_comment(
170
+ "Not supported in {}:".format(self.language)))
171
+ for expr in sorted(self._not_supported, key=str):
172
+ frontlines.append(self._get_comment(type(expr).__name__))
173
+ for name, value in sorted(self._number_symbols, key=str):
174
+ frontlines.append(self._declare_number_const(name, value))
175
+ lines = frontlines + lines
176
+ lines = self._format_code(lines)
177
+ result = "\n".join(lines)
178
+ else:
179
+ lines = self._format_code(lines)
180
+ num_syms = {(k, self._print(v)) for k, v in self._number_symbols}
181
+ result = (num_syms, self._not_supported, "\n".join(lines))
182
+ self._not_supported = set()
183
+ self._number_symbols = set()
184
+ return result
185
+
186
+ def _doprint_loops(self, expr, assign_to=None):
187
+ # Here we print an expression that contains Indexed objects, they
188
+ # correspond to arrays in the generated code. The low-level implementation
189
+ # involves looping over array elements and possibly storing results in temporary
190
+ # variables or accumulate it in the assign_to object.
191
+
192
+ if self._settings.get('contract', True):
193
+ from sympy.tensor import get_contraction_structure
194
+ # Setup loops over non-dummy indices -- all terms need these
195
+ indices = self._get_expression_indices(expr, assign_to)
196
+ # Setup loops over dummy indices -- each term needs separate treatment
197
+ dummies = get_contraction_structure(expr)
198
+ else:
199
+ indices = []
200
+ dummies = {None: (expr,)}
201
+ openloop, closeloop = self._get_loop_opening_ending(indices)
202
+
203
+ # terms with no summations first
204
+ if None in dummies:
205
+ text = StrPrinter.doprint(self, Add(*dummies[None]))
206
+ else:
207
+ # If all terms have summations we must initialize array to Zero
208
+ text = StrPrinter.doprint(self, 0)
209
+
210
+ # skip redundant assignments (where lhs == rhs)
211
+ lhs_printed = self._print(assign_to)
212
+ lines = []
213
+ if text != lhs_printed:
214
+ lines.extend(openloop)
215
+ if assign_to is not None:
216
+ text = self._get_statement("%s = %s" % (lhs_printed, text))
217
+ lines.append(text)
218
+ lines.extend(closeloop)
219
+
220
+ # then terms with summations
221
+ for d in dummies:
222
+ if isinstance(d, tuple):
223
+ indices = self._sort_optimized(d, expr)
224
+ openloop_d, closeloop_d = self._get_loop_opening_ending(
225
+ indices)
226
+
227
+ for term in dummies[d]:
228
+ if term in dummies and not ([list(f.keys()) for f in dummies[term]]
229
+ == [[None] for f in dummies[term]]):
230
+ # If one factor in the term has it's own internal
231
+ # contractions, those must be computed first.
232
+ # (temporary variables?)
233
+ raise NotImplementedError(
234
+ "FIXME: no support for contractions in factor yet")
235
+ else:
236
+
237
+ # We need the lhs expression as an accumulator for
238
+ # the loops, i.e
239
+ #
240
+ # for (int d=0; d < dim; d++){
241
+ # lhs[] = lhs[] + term[][d]
242
+ # } ^.................. the accumulator
243
+ #
244
+ # We check if the expression already contains the
245
+ # lhs, and raise an exception if it does, as that
246
+ # syntax is currently undefined. FIXME: What would be
247
+ # a good interpretation?
248
+ if assign_to is None:
249
+ raise AssignmentError(
250
+ "need assignment variable for loops")
251
+ if term.has(assign_to):
252
+ raise ValueError("FIXME: lhs present in rhs,\
253
+ this is undefined in CodePrinter")
254
+
255
+ lines.extend(openloop)
256
+ lines.extend(openloop_d)
257
+ text = "%s = %s" % (lhs_printed, StrPrinter.doprint(
258
+ self, assign_to + term))
259
+ lines.append(self._get_statement(text))
260
+ lines.extend(closeloop_d)
261
+ lines.extend(closeloop)
262
+
263
+ return "\n".join(lines)
264
+
265
+ def _get_expression_indices(self, expr, assign_to):
266
+ from sympy.tensor import get_indices
267
+ rinds, junk = get_indices(expr)
268
+ linds, junk = get_indices(assign_to)
269
+
270
+ # support broadcast of scalar
271
+ if linds and not rinds:
272
+ rinds = linds
273
+ if rinds != linds:
274
+ raise ValueError("lhs indices must match non-dummy"
275
+ " rhs indices in %s" % expr)
276
+
277
+ return self._sort_optimized(rinds, assign_to)
278
+
279
+ def _sort_optimized(self, indices, expr):
280
+
281
+ from sympy.tensor.indexed import Indexed
282
+
283
+ if not indices:
284
+ return []
285
+
286
+ # determine optimized loop order by giving a score to each index
287
+ # the index with the highest score are put in the innermost loop.
288
+ score_table = {}
289
+ for i in indices:
290
+ score_table[i] = 0
291
+
292
+ arrays = expr.atoms(Indexed)
293
+ for arr in arrays:
294
+ for p, ind in enumerate(arr.indices):
295
+ try:
296
+ score_table[ind] += self._rate_index_position(p)
297
+ except KeyError:
298
+ pass
299
+
300
+ return sorted(indices, key=lambda x: score_table[x])
301
+
302
+ def _rate_index_position(self, p):
303
+ """function to calculate score based on position among indices
304
+
305
+ This method is used to sort loops in an optimized order, see
306
+ CodePrinter._sort_optimized()
307
+ """
308
+ raise NotImplementedError("This function must be implemented by "
309
+ "subclass of CodePrinter.")
310
+
311
+ def _get_statement(self, codestring):
312
+ """Formats a codestring with the proper line ending."""
313
+ raise NotImplementedError("This function must be implemented by "
314
+ "subclass of CodePrinter.")
315
+
316
+ def _get_comment(self, text):
317
+ """Formats a text string as a comment."""
318
+ raise NotImplementedError("This function must be implemented by "
319
+ "subclass of CodePrinter.")
320
+
321
+ def _declare_number_const(self, name, value):
322
+ """Declare a numeric constant at the top of a function"""
323
+ raise NotImplementedError("This function must be implemented by "
324
+ "subclass of CodePrinter.")
325
+
326
+ def _format_code(self, lines):
327
+ """Take in a list of lines of code, and format them accordingly.
328
+
329
+ This may include indenting, wrapping long lines, etc..."""
330
+ raise NotImplementedError("This function must be implemented by "
331
+ "subclass of CodePrinter.")
332
+
333
+ def _get_loop_opening_ending(self, indices):
334
+ """Returns a tuple (open_lines, close_lines) containing lists
335
+ of codelines"""
336
+ raise NotImplementedError("This function must be implemented by "
337
+ "subclass of CodePrinter.")
338
+
339
+ def _print_Dummy(self, expr):
340
+ if expr.name.startswith('Dummy_'):
341
+ return '_' + expr.name
342
+ else:
343
+ return '%s_%d' % (expr.name, expr.dummy_index)
344
+
345
+ def _print_CodeBlock(self, expr):
346
+ return '\n'.join([self._print(i) for i in expr.args])
347
+
348
+ def _print_String(self, string):
349
+ return str(string)
350
+
351
+ def _print_QuotedString(self, arg):
352
+ return '"%s"' % arg.text
353
+
354
+ def _print_Comment(self, string):
355
+ return self._get_comment(str(string))
356
+
357
+ def _print_Assignment(self, expr):
358
+ from sympy.codegen.ast import Assignment
359
+ from sympy.functions.elementary.piecewise import Piecewise
360
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
361
+ from sympy.tensor.indexed import IndexedBase
362
+ lhs = expr.lhs
363
+ rhs = expr.rhs
364
+ # We special case assignments that take multiple lines
365
+ if isinstance(expr.rhs, Piecewise):
366
+ # Here we modify Piecewise so each expression is now
367
+ # an Assignment, and then continue on the print.
368
+ expressions = []
369
+ conditions = []
370
+ for (e, c) in rhs.args:
371
+ expressions.append(Assignment(lhs, e))
372
+ conditions.append(c)
373
+ temp = Piecewise(*zip(expressions, conditions))
374
+ return self._print(temp)
375
+ elif isinstance(lhs, MatrixSymbol):
376
+ # Here we form an Assignment for each element in the array,
377
+ # printing each one.
378
+ lines = []
379
+ for (i, j) in self._traverse_matrix_indices(lhs):
380
+ temp = Assignment(lhs[i, j], rhs[i, j])
381
+ code0 = self._print(temp)
382
+ lines.append(code0)
383
+ return "\n".join(lines)
384
+ elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or
385
+ rhs.has(IndexedBase)):
386
+ # Here we check if there is looping to be done, and if so
387
+ # print the required loops.
388
+ return self._doprint_loops(rhs, lhs)
389
+ else:
390
+ lhs_code = self._print(lhs)
391
+ rhs_code = self._print(rhs)
392
+ return self._get_statement("%s = %s" % (lhs_code, rhs_code))
393
+
394
+ def _print_AugmentedAssignment(self, expr):
395
+ lhs_code = self._print(expr.lhs)
396
+ rhs_code = self._print(expr.rhs)
397
+ return self._get_statement("{} {} {}".format(
398
+ *(self._print(arg) for arg in [lhs_code, expr.op, rhs_code])))
399
+
400
+ def _print_FunctionCall(self, expr):
401
+ return '%s(%s)' % (
402
+ expr.name,
403
+ ', '.join((self._print(arg) for arg in expr.function_args)))
404
+
405
+ def _print_Variable(self, expr):
406
+ return self._print(expr.symbol)
407
+
408
+ def _print_Symbol(self, expr):
409
+
410
+ name = super()._print_Symbol(expr)
411
+
412
+ if name in self.reserved_words:
413
+ if self._settings['error_on_reserved']:
414
+ msg = ('This expression includes the symbol "{}" which is a '
415
+ 'reserved keyword in this language.')
416
+ raise ValueError(msg.format(name))
417
+ return name + self._settings['reserved_word_suffix']
418
+ else:
419
+ return name
420
+
421
+ def _can_print(self, name):
422
+ """ Check if function ``name`` is either a known function or has its own
423
+ printing method. Used to check if rewriting is possible."""
424
+ return name in self.known_functions or getattr(self, '_print_{}'.format(name), False)
425
+
426
+ def _print_Function(self, expr):
427
+ if expr.func.__name__ in self.known_functions:
428
+ cond_func = self.known_functions[expr.func.__name__]
429
+ if isinstance(cond_func, str):
430
+ return "%s(%s)" % (cond_func, self.stringify(expr.args, ", "))
431
+ else:
432
+ for cond, func in cond_func:
433
+ if cond(*expr.args):
434
+ break
435
+ if func is not None:
436
+ try:
437
+ return func(*[self.parenthesize(item, 0) for item in expr.args])
438
+ except TypeError:
439
+ return "%s(%s)" % (func, self.stringify(expr.args, ", "))
440
+ elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
441
+ # inlined function
442
+ return self._print(expr._imp_(*expr.args))
443
+ elif expr.func.__name__ in self._rewriteable_functions:
444
+ # Simple rewrite to supported function possible
445
+ target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
446
+ if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
447
+ return self._print(expr.rewrite(target_f))
448
+ if expr.is_Function and self._settings.get('allow_unknown_functions', False):
449
+ return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args)))
450
+ else:
451
+ return self._print_not_supported(expr)
452
+
453
+ _print_Expr = _print_Function
454
+
455
+ # Don't inherit the str-printer method for Heaviside to the code printers
456
+ _print_Heaviside = None
457
+
458
+ def _print_NumberSymbol(self, expr):
459
+ if self._settings.get("inline", False):
460
+ return self._print(Float(expr.evalf(self._settings["precision"])))
461
+ else:
462
+ # A Number symbol that is not implemented here or with _printmethod
463
+ # is registered and evaluated
464
+ self._number_symbols.add((expr,
465
+ Float(expr.evalf(self._settings["precision"]))))
466
+ return str(expr)
467
+
468
+ def _print_Catalan(self, expr):
469
+ return self._print_NumberSymbol(expr)
470
+ def _print_EulerGamma(self, expr):
471
+ return self._print_NumberSymbol(expr)
472
+ def _print_GoldenRatio(self, expr):
473
+ return self._print_NumberSymbol(expr)
474
+ def _print_TribonacciConstant(self, expr):
475
+ return self._print_NumberSymbol(expr)
476
+ def _print_Exp1(self, expr):
477
+ return self._print_NumberSymbol(expr)
478
+ def _print_Pi(self, expr):
479
+ return self._print_NumberSymbol(expr)
480
+
481
+ def _print_And(self, expr):
482
+ PREC = precedence(expr)
483
+ return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC)
484
+ for a in sorted(expr.args, key=default_sort_key))
485
+
486
+ def _print_Or(self, expr):
487
+ PREC = precedence(expr)
488
+ return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC)
489
+ for a in sorted(expr.args, key=default_sort_key))
490
+
491
+ def _print_Xor(self, expr):
492
+ if self._operators.get('xor') is None:
493
+ return self._print(expr.to_nnf())
494
+ PREC = precedence(expr)
495
+ return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC)
496
+ for a in expr.args)
497
+
498
+ def _print_Equivalent(self, expr):
499
+ if self._operators.get('equivalent') is None:
500
+ return self._print(expr.to_nnf())
501
+ PREC = precedence(expr)
502
+ return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC)
503
+ for a in expr.args)
504
+
505
+ def _print_Not(self, expr):
506
+ PREC = precedence(expr)
507
+ return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
508
+
509
+ def _print_BooleanFunction(self, expr):
510
+ return self._print(expr.to_nnf())
511
+
512
+ def _print_Mul(self, expr):
513
+
514
+ prec = precedence(expr)
515
+
516
+ c, e = expr.as_coeff_Mul()
517
+ if c < 0:
518
+ expr = _keep_coeff(-c, e)
519
+ sign = "-"
520
+ else:
521
+ sign = ""
522
+
523
+ a = [] # items in the numerator
524
+ b = [] # items that are in the denominator (if any)
525
+
526
+ pow_paren = [] # Will collect all pow with more than one base element and exp = -1
527
+
528
+ if self.order not in ('old', 'none'):
529
+ args = expr.as_ordered_factors()
530
+ else:
531
+ # use make_args in case expr was something like -x -> x
532
+ args = Mul.make_args(expr)
533
+
534
+ # Gather args for numerator/denominator
535
+ for item in args:
536
+ if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
537
+ if item.exp != -1:
538
+ b.append(Pow(item.base, -item.exp, evaluate=False))
539
+ else:
540
+ if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
541
+ pow_paren.append(item)
542
+ b.append(Pow(item.base, -item.exp))
543
+ else:
544
+ a.append(item)
545
+
546
+ a = a or [S.One]
547
+
548
+ if len(a) == 1 and sign == "-":
549
+ # Unary minus does not have a SymPy class, and hence there's no
550
+ # precedence weight associated with it, Python's unary minus has
551
+ # an operator precedence between multiplication and exponentiation,
552
+ # so we use this to compute a weight.
553
+ a_str = [self.parenthesize(a[0], 0.5*(PRECEDENCE["Pow"]+PRECEDENCE["Mul"]))]
554
+ else:
555
+ a_str = [self.parenthesize(x, prec) for x in a]
556
+ b_str = [self.parenthesize(x, prec) for x in b]
557
+
558
+ # To parenthesize Pow with exp = -1 and having more than one Symbol
559
+ for item in pow_paren:
560
+ if item.base in b:
561
+ b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
562
+
563
+ if not b:
564
+ return sign + '*'.join(a_str)
565
+ elif len(b) == 1:
566
+ return sign + '*'.join(a_str) + "/" + b_str[0]
567
+ else:
568
+ return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
569
+
570
+ def _print_not_supported(self, expr):
571
+ try:
572
+ self._not_supported.add(expr)
573
+ except TypeError:
574
+ # not hashable
575
+ pass
576
+ return self.emptyPrinter(expr)
577
+
578
+ # The following can not be simply translated into C or Fortran
579
+ _print_Basic = _print_not_supported
580
+ _print_ComplexInfinity = _print_not_supported
581
+ _print_Derivative = _print_not_supported
582
+ _print_ExprCondPair = _print_not_supported
583
+ _print_GeometryEntity = _print_not_supported
584
+ _print_Infinity = _print_not_supported
585
+ _print_Integral = _print_not_supported
586
+ _print_Interval = _print_not_supported
587
+ _print_AccumulationBounds = _print_not_supported
588
+ _print_Limit = _print_not_supported
589
+ _print_MatrixBase = _print_not_supported
590
+ _print_DeferredVector = _print_not_supported
591
+ _print_NaN = _print_not_supported
592
+ _print_NegativeInfinity = _print_not_supported
593
+ _print_Order = _print_not_supported
594
+ _print_RootOf = _print_not_supported
595
+ _print_RootsOf = _print_not_supported
596
+ _print_RootSum = _print_not_supported
597
+ _print_Uniform = _print_not_supported
598
+ _print_Unit = _print_not_supported
599
+ _print_Wild = _print_not_supported
600
+ _print_WildFunction = _print_not_supported
601
+ _print_Relational = _print_not_supported
602
+
603
+
604
+ # Code printer functions. These are included in this file so that they can be
605
+ # imported in the top-level __init__.py without importing the sympy.codegen
606
+ # module.
607
+
608
+ def ccode(expr, assign_to=None, standard='c99', **settings):
609
+ """Converts an expr to a string of c code
610
+
611
+ Parameters
612
+ ==========
613
+
614
+ expr : Expr
615
+ A SymPy expression to be converted.
616
+ assign_to : optional
617
+ When given, the argument is used as the name of the variable to which
618
+ the expression is assigned. Can be a string, ``Symbol``,
619
+ ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
620
+ line-wrapping, or for expressions that generate multi-line statements.
621
+ standard : str, optional
622
+ String specifying the standard. If your compiler supports a more modern
623
+ standard you may set this to 'c99' to allow the printer to use more math
624
+ functions. [default='c89'].
625
+ precision : integer, optional
626
+ The precision for numbers such as pi [default=17].
627
+ user_functions : dict, optional
628
+ A dictionary where the keys are string representations of either
629
+ ``FunctionClass`` or ``UndefinedFunction`` instances and the values
630
+ are their desired C string representations. Alternatively, the
631
+ dictionary value can be a list of tuples i.e. [(argument_test,
632
+ cfunction_string)] or [(argument_test, cfunction_formater)]. See below
633
+ for examples.
634
+ dereference : iterable, optional
635
+ An iterable of symbols that should be dereferenced in the printed code
636
+ expression. These would be values passed by address to the function.
637
+ For example, if ``dereference=[a]``, the resulting code would print
638
+ ``(*a)`` instead of ``a``.
639
+ human : bool, optional
640
+ If True, the result is a single string that may contain some constant
641
+ declarations for the number symbols. If False, the same information is
642
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
643
+ code_text). [default=True].
644
+ contract: bool, optional
645
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
646
+ rules and the corresponding nested loops over indices are generated.
647
+ Setting contract=False will not generate loops, instead the user is
648
+ responsible to provide values for the indices in the code.
649
+ [default=True].
650
+
651
+ Examples
652
+ ========
653
+
654
+ >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function
655
+ >>> x, tau = symbols("x, tau")
656
+ >>> expr = (2*tau)**Rational(7, 2)
657
+ >>> ccode(expr)
658
+ '8*M_SQRT2*pow(tau, 7.0/2.0)'
659
+ >>> ccode(expr, math_macros={})
660
+ '8*sqrt(2)*pow(tau, 7.0/2.0)'
661
+ >>> ccode(sin(x), assign_to="s")
662
+ 's = sin(x);'
663
+ >>> from sympy.codegen.ast import real, float80
664
+ >>> ccode(expr, type_aliases={real: float80})
665
+ '8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
666
+
667
+ Simple custom printing can be defined for certain types by passing a
668
+ dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
669
+ Alternatively, the dictionary value can be a list of tuples i.e.
670
+ [(argument_test, cfunction_string)].
671
+
672
+ >>> custom_functions = {
673
+ ... "ceiling": "CEIL",
674
+ ... "Abs": [(lambda x: not x.is_integer, "fabs"),
675
+ ... (lambda x: x.is_integer, "ABS")],
676
+ ... "func": "f"
677
+ ... }
678
+ >>> func = Function('func')
679
+ >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
680
+ 'f(fabs(x) + CEIL(x))'
681
+
682
+ or if the C-function takes a subset of the original arguments:
683
+
684
+ >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [
685
+ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
686
+ ... (lambda b, e: b != 2, 'pow')]})
687
+ 'exp2(x) + pow(3, x)'
688
+
689
+ ``Piecewise`` expressions are converted into conditionals. If an
690
+ ``assign_to`` variable is provided an if statement is created, otherwise
691
+ the ternary operator is used. Note that if the ``Piecewise`` lacks a
692
+ default term, represented by ``(expr, True)`` then an error will be thrown.
693
+ This is to prevent generating an expression that may not evaluate to
694
+ anything.
695
+
696
+ >>> from sympy import Piecewise
697
+ >>> expr = Piecewise((x + 1, x > 0), (x, True))
698
+ >>> print(ccode(expr, tau, standard='C89'))
699
+ if (x > 0) {
700
+ tau = x + 1;
701
+ }
702
+ else {
703
+ tau = x;
704
+ }
705
+
706
+ Support for loops is provided through ``Indexed`` types. With
707
+ ``contract=True`` these expressions will be turned into loops, whereas
708
+ ``contract=False`` will just print the assignment expression that should be
709
+ looped over:
710
+
711
+ >>> from sympy import Eq, IndexedBase, Idx
712
+ >>> len_y = 5
713
+ >>> y = IndexedBase('y', shape=(len_y,))
714
+ >>> t = IndexedBase('t', shape=(len_y,))
715
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
716
+ >>> i = Idx('i', len_y-1)
717
+ >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
718
+ >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
719
+ 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
720
+
721
+ Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
722
+ must be provided to ``assign_to``. Note that any expression that can be
723
+ generated normally can also exist inside a Matrix:
724
+
725
+ >>> from sympy import Matrix, MatrixSymbol
726
+ >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
727
+ >>> A = MatrixSymbol('A', 3, 1)
728
+ >>> print(ccode(mat, A, standard='C89'))
729
+ A[0] = pow(x, 2);
730
+ if (x > 0) {
731
+ A[1] = x + 1;
732
+ }
733
+ else {
734
+ A[1] = x;
735
+ }
736
+ A[2] = sin(x);
737
+ """
738
+ from sympy.printing.c import c_code_printers
739
+ return c_code_printers[standard.lower()](settings).doprint(expr, assign_to)
740
+
741
+ def print_ccode(expr, **settings):
742
+ """Prints C representation of the given expression."""
743
+ print(ccode(expr, **settings))
744
+
745
+ def fcode(expr, assign_to=None, **settings):
746
+ """Converts an expr to a string of fortran code
747
+
748
+ Parameters
749
+ ==========
750
+
751
+ expr : Expr
752
+ A SymPy expression to be converted.
753
+ assign_to : optional
754
+ When given, the argument is used as the name of the variable to which
755
+ the expression is assigned. Can be a string, ``Symbol``,
756
+ ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
757
+ line-wrapping, or for expressions that generate multi-line statements.
758
+ precision : integer, optional
759
+ DEPRECATED. Use type_mappings instead. The precision for numbers such
760
+ as pi [default=17].
761
+ user_functions : dict, optional
762
+ A dictionary where keys are ``FunctionClass`` instances and values are
763
+ their string representations. Alternatively, the dictionary value can
764
+ be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
765
+ for examples.
766
+ human : bool, optional
767
+ If True, the result is a single string that may contain some constant
768
+ declarations for the number symbols. If False, the same information is
769
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
770
+ code_text). [default=True].
771
+ contract: bool, optional
772
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
773
+ rules and the corresponding nested loops over indices are generated.
774
+ Setting contract=False will not generate loops, instead the user is
775
+ responsible to provide values for the indices in the code.
776
+ [default=True].
777
+ source_format : optional
778
+ The source format can be either 'fixed' or 'free'. [default='fixed']
779
+ standard : integer, optional
780
+ The Fortran standard to be followed. This is specified as an integer.
781
+ Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77.
782
+ Note that currently the only distinction internally is between
783
+ standards before 95, and those 95 and after. This may change later as
784
+ more features are added.
785
+ name_mangling : bool, optional
786
+ If True, then the variables that would become identical in
787
+ case-insensitive Fortran are mangled by appending different number
788
+ of ``_`` at the end. If False, SymPy Will not interfere with naming of
789
+ variables. [default=True]
790
+
791
+ Examples
792
+ ========
793
+
794
+ >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor
795
+ >>> x, tau = symbols("x, tau")
796
+ >>> fcode((2*tau)**Rational(7, 2))
797
+ ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
798
+ >>> fcode(sin(x), assign_to="s")
799
+ ' s = sin(x)'
800
+
801
+ Custom printing can be defined for certain types by passing a dictionary of
802
+ "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
803
+ dictionary value can be a list of tuples i.e. [(argument_test,
804
+ cfunction_string)].
805
+
806
+ >>> custom_functions = {
807
+ ... "ceiling": "CEIL",
808
+ ... "floor": [(lambda x: not x.is_integer, "FLOOR1"),
809
+ ... (lambda x: x.is_integer, "FLOOR2")]
810
+ ... }
811
+ >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
812
+ ' CEIL(x) + FLOOR1(x)'
813
+
814
+ ``Piecewise`` expressions are converted into conditionals. If an
815
+ ``assign_to`` variable is provided an if statement is created, otherwise
816
+ the ternary operator is used. Note that if the ``Piecewise`` lacks a
817
+ default term, represented by ``(expr, True)`` then an error will be thrown.
818
+ This is to prevent generating an expression that may not evaluate to
819
+ anything.
820
+
821
+ >>> from sympy import Piecewise
822
+ >>> expr = Piecewise((x + 1, x > 0), (x, True))
823
+ >>> print(fcode(expr, tau))
824
+ if (x > 0) then
825
+ tau = x + 1
826
+ else
827
+ tau = x
828
+ end if
829
+
830
+ Support for loops is provided through ``Indexed`` types. With
831
+ ``contract=True`` these expressions will be turned into loops, whereas
832
+ ``contract=False`` will just print the assignment expression that should be
833
+ looped over:
834
+
835
+ >>> from sympy import Eq, IndexedBase, Idx
836
+ >>> len_y = 5
837
+ >>> y = IndexedBase('y', shape=(len_y,))
838
+ >>> t = IndexedBase('t', shape=(len_y,))
839
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
840
+ >>> i = Idx('i', len_y-1)
841
+ >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
842
+ >>> fcode(e.rhs, assign_to=e.lhs, contract=False)
843
+ ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
844
+
845
+ Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
846
+ must be provided to ``assign_to``. Note that any expression that can be
847
+ generated normally can also exist inside a Matrix:
848
+
849
+ >>> from sympy import Matrix, MatrixSymbol
850
+ >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
851
+ >>> A = MatrixSymbol('A', 3, 1)
852
+ >>> print(fcode(mat, A))
853
+ A(1, 1) = x**2
854
+ if (x > 0) then
855
+ A(2, 1) = x + 1
856
+ else
857
+ A(2, 1) = x
858
+ end if
859
+ A(3, 1) = sin(x)
860
+ """
861
+ from sympy.printing.fortran import FCodePrinter
862
+ return FCodePrinter(settings).doprint(expr, assign_to)
863
+
864
+
865
+ def print_fcode(expr, **settings):
866
+ """Prints the Fortran representation of the given expression.
867
+
868
+ See fcode for the meaning of the optional arguments.
869
+ """
870
+ print(fcode(expr, **settings))
871
+
872
+ def cxxcode(expr, assign_to=None, standard='c++11', **settings):
873
+ """ C++ equivalent of :func:`~.ccode`. """
874
+ from sympy.printing.cxx import cxx_code_printers
875
+ return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)
venv/lib/python3.10/site-packages/sympy/printing/cxx.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ C++ code printer
3
+ """
4
+
5
+ from itertools import chain
6
+ from sympy.codegen.ast import Type, none
7
+ from .c import C89CodePrinter, C99CodePrinter
8
+
9
+ # These are defined in the other file so we can avoid importing sympy.codegen
10
+ # from the top-level 'import sympy'. Export them here as well.
11
+ from sympy.printing.codeprinter import cxxcode # noqa:F401
12
+
13
+ # from https://en.cppreference.com/w/cpp/keyword
14
+ reserved = {
15
+ 'C++98': [
16
+ 'and', 'and_eq', 'asm', 'auto', 'bitand', 'bitor', 'bool', 'break',
17
+ 'case', 'catch,', 'char', 'class', 'compl', 'const', 'const_cast',
18
+ 'continue', 'default', 'delete', 'do', 'double', 'dynamic_cast',
19
+ 'else', 'enum', 'explicit', 'export', 'extern', 'false', 'float',
20
+ 'for', 'friend', 'goto', 'if', 'inline', 'int', 'long', 'mutable',
21
+ 'namespace', 'new', 'not', 'not_eq', 'operator', 'or', 'or_eq',
22
+ 'private', 'protected', 'public', 'register', 'reinterpret_cast',
23
+ 'return', 'short', 'signed', 'sizeof', 'static', 'static_cast',
24
+ 'struct', 'switch', 'template', 'this', 'throw', 'true', 'try',
25
+ 'typedef', 'typeid', 'typename', 'union', 'unsigned', 'using',
26
+ 'virtual', 'void', 'volatile', 'wchar_t', 'while', 'xor', 'xor_eq'
27
+ ]
28
+ }
29
+
30
+ reserved['C++11'] = reserved['C++98'][:] + [
31
+ 'alignas', 'alignof', 'char16_t', 'char32_t', 'constexpr', 'decltype',
32
+ 'noexcept', 'nullptr', 'static_assert', 'thread_local'
33
+ ]
34
+ reserved['C++17'] = reserved['C++11'][:]
35
+ reserved['C++17'].remove('register')
36
+ # TM TS: atomic_cancel, atomic_commit, atomic_noexcept, synchronized
37
+ # concepts TS: concept, requires
38
+ # module TS: import, module
39
+
40
+
41
+ _math_functions = {
42
+ 'C++98': {
43
+ 'Mod': 'fmod',
44
+ 'ceiling': 'ceil',
45
+ },
46
+ 'C++11': {
47
+ 'gamma': 'tgamma',
48
+ },
49
+ 'C++17': {
50
+ 'beta': 'beta',
51
+ 'Ei': 'expint',
52
+ 'zeta': 'riemann_zeta',
53
+ }
54
+ }
55
+
56
+ # from https://en.cppreference.com/w/cpp/header/cmath
57
+ for k in ('Abs', 'exp', 'log', 'log10', 'sqrt', 'sin', 'cos', 'tan', # 'Pow'
58
+ 'asin', 'acos', 'atan', 'atan2', 'sinh', 'cosh', 'tanh', 'floor'):
59
+ _math_functions['C++98'][k] = k.lower()
60
+
61
+
62
+ for k in ('asinh', 'acosh', 'atanh', 'erf', 'erfc'):
63
+ _math_functions['C++11'][k] = k.lower()
64
+
65
+
66
+ def _attach_print_method(cls, sympy_name, func_name):
67
+ meth_name = '_print_%s' % sympy_name
68
+ if hasattr(cls, meth_name):
69
+ raise ValueError("Edit method (or subclass) instead of overwriting.")
70
+ def _print_method(self, expr):
71
+ return '{}{}({})'.format(self._ns, func_name, ', '.join(map(self._print, expr.args)))
72
+ _print_method.__doc__ = "Prints code for %s" % k
73
+ setattr(cls, meth_name, _print_method)
74
+
75
+
76
+ def _attach_print_methods(cls, cont):
77
+ for sympy_name, cxx_name in cont[cls.standard].items():
78
+ _attach_print_method(cls, sympy_name, cxx_name)
79
+
80
+
81
+ class _CXXCodePrinterBase:
82
+ printmethod = "_cxxcode"
83
+ language = 'C++'
84
+ _ns = 'std::' # namespace
85
+
86
+ def __init__(self, settings=None):
87
+ super().__init__(settings or {})
88
+
89
+ def _print_Max(self, expr):
90
+ from sympy.functions.elementary.miscellaneous import Max
91
+ if len(expr.args) == 1:
92
+ return self._print(expr.args[0])
93
+ return "%smax(%s, %s)" % (self._ns, self._print(expr.args[0]),
94
+ self._print(Max(*expr.args[1:])))
95
+
96
+ def _print_Min(self, expr):
97
+ from sympy.functions.elementary.miscellaneous import Min
98
+ if len(expr.args) == 1:
99
+ return self._print(expr.args[0])
100
+ return "%smin(%s, %s)" % (self._ns, self._print(expr.args[0]),
101
+ self._print(Min(*expr.args[1:])))
102
+
103
+ def _print_using(self, expr):
104
+ if expr.alias == none:
105
+ return 'using %s' % expr.type
106
+ else:
107
+ raise ValueError("C++98 does not support type aliases")
108
+
109
+
110
+ class CXX98CodePrinter(_CXXCodePrinterBase, C89CodePrinter):
111
+ standard = 'C++98'
112
+ reserved_words = set(reserved['C++98'])
113
+
114
+
115
+ # _attach_print_methods(CXX98CodePrinter, _math_functions)
116
+
117
+
118
+ class CXX11CodePrinter(_CXXCodePrinterBase, C99CodePrinter):
119
+ standard = 'C++11'
120
+ reserved_words = set(reserved['C++11'])
121
+ type_mappings = dict(chain(
122
+ CXX98CodePrinter.type_mappings.items(),
123
+ {
124
+ Type('int8'): ('int8_t', {'cstdint'}),
125
+ Type('int16'): ('int16_t', {'cstdint'}),
126
+ Type('int32'): ('int32_t', {'cstdint'}),
127
+ Type('int64'): ('int64_t', {'cstdint'}),
128
+ Type('uint8'): ('uint8_t', {'cstdint'}),
129
+ Type('uint16'): ('uint16_t', {'cstdint'}),
130
+ Type('uint32'): ('uint32_t', {'cstdint'}),
131
+ Type('uint64'): ('uint64_t', {'cstdint'}),
132
+ Type('complex64'): ('std::complex<float>', {'complex'}),
133
+ Type('complex128'): ('std::complex<double>', {'complex'}),
134
+ Type('bool'): ('bool', None),
135
+ }.items()
136
+ ))
137
+
138
+ def _print_using(self, expr):
139
+ if expr.alias == none:
140
+ return super()._print_using(expr)
141
+ else:
142
+ return 'using %(alias)s = %(type)s' % expr.kwargs(apply=self._print)
143
+
144
+ # _attach_print_methods(CXX11CodePrinter, _math_functions)
145
+
146
+
147
+ class CXX17CodePrinter(_CXXCodePrinterBase, C99CodePrinter):
148
+ standard = 'C++17'
149
+ reserved_words = set(reserved['C++17'])
150
+
151
+ _kf = dict(C99CodePrinter._kf, **_math_functions['C++17'])
152
+
153
+ def _print_beta(self, expr):
154
+ return self._print_math_func(expr)
155
+
156
+ def _print_Ei(self, expr):
157
+ return self._print_math_func(expr)
158
+
159
+ def _print_zeta(self, expr):
160
+ return self._print_math_func(expr)
161
+
162
+
163
+ # _attach_print_methods(CXX17CodePrinter, _math_functions)
164
+
165
+ cxx_code_printers = {
166
+ 'c++98': CXX98CodePrinter,
167
+ 'c++11': CXX11CodePrinter,
168
+ 'c++17': CXX17CodePrinter
169
+ }
venv/lib/python3.10/site-packages/sympy/printing/dot.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.core.numbers import Integer, Rational, Float
5
+ from sympy.printing.repr import srepr
6
+
7
+ __all__ = ['dotprint']
8
+
9
+ default_styles = (
10
+ (Basic, {'color': 'blue', 'shape': 'ellipse'}),
11
+ (Expr, {'color': 'black'})
12
+ )
13
+
14
+ slotClasses = (Symbol, Integer, Rational, Float)
15
+ def purestr(x, with_args=False):
16
+ """A string that follows ```obj = type(obj)(*obj.args)``` exactly.
17
+
18
+ Parameters
19
+ ==========
20
+
21
+ with_args : boolean, optional
22
+ If ``True``, there will be a second argument for the return
23
+ value, which is a tuple containing ``purestr`` applied to each
24
+ of the subnodes.
25
+
26
+ If ``False``, there will not be a second argument for the
27
+ return.
28
+
29
+ Default is ``False``
30
+
31
+ Examples
32
+ ========
33
+
34
+ >>> from sympy import Float, Symbol, MatrixSymbol
35
+ >>> from sympy import Integer # noqa: F401
36
+ >>> from sympy.core.symbol import Str # noqa: F401
37
+ >>> from sympy.printing.dot import purestr
38
+
39
+ Applying ``purestr`` for basic symbolic object:
40
+ >>> code = purestr(Symbol('x'))
41
+ >>> code
42
+ "Symbol('x')"
43
+ >>> eval(code) == Symbol('x')
44
+ True
45
+
46
+ For basic numeric object:
47
+ >>> purestr(Float(2))
48
+ "Float('2.0', precision=53)"
49
+
50
+ For matrix symbol:
51
+ >>> code = purestr(MatrixSymbol('x', 2, 2))
52
+ >>> code
53
+ "MatrixSymbol(Str('x'), Integer(2), Integer(2))"
54
+ >>> eval(code) == MatrixSymbol('x', 2, 2)
55
+ True
56
+
57
+ With ``with_args=True``:
58
+ >>> purestr(Float(2), with_args=True)
59
+ ("Float('2.0', precision=53)", ())
60
+ >>> purestr(MatrixSymbol('x', 2, 2), with_args=True)
61
+ ("MatrixSymbol(Str('x'), Integer(2), Integer(2))",
62
+ ("Str('x')", 'Integer(2)', 'Integer(2)'))
63
+ """
64
+ sargs = ()
65
+ if not isinstance(x, Basic):
66
+ rv = str(x)
67
+ elif not x.args:
68
+ rv = srepr(x)
69
+ else:
70
+ args = x.args
71
+ sargs = tuple(map(purestr, args))
72
+ rv = "%s(%s)"%(type(x).__name__, ', '.join(sargs))
73
+ if with_args:
74
+ rv = rv, sargs
75
+ return rv
76
+
77
+
78
+ def styleof(expr, styles=default_styles):
79
+ """ Merge style dictionaries in order
80
+
81
+ Examples
82
+ ========
83
+
84
+ >>> from sympy import Symbol, Basic, Expr, S
85
+ >>> from sympy.printing.dot import styleof
86
+ >>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
87
+ ... (Expr, {'color': 'black'})]
88
+
89
+ >>> styleof(Basic(S(1)), styles)
90
+ {'color': 'blue', 'shape': 'ellipse'}
91
+
92
+ >>> x = Symbol('x')
93
+ >>> styleof(x + 1, styles) # this is an Expr
94
+ {'color': 'black', 'shape': 'ellipse'}
95
+ """
96
+ style = {}
97
+ for typ, sty in styles:
98
+ if isinstance(expr, typ):
99
+ style.update(sty)
100
+ return style
101
+
102
+
103
+ def attrprint(d, delimiter=', '):
104
+ """ Print a dictionary of attributes
105
+
106
+ Examples
107
+ ========
108
+
109
+ >>> from sympy.printing.dot import attrprint
110
+ >>> print(attrprint({'color': 'blue', 'shape': 'ellipse'}))
111
+ "color"="blue", "shape"="ellipse"
112
+ """
113
+ return delimiter.join('"%s"="%s"'%item for item in sorted(d.items()))
114
+
115
+
116
+ def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True):
117
+ """ String defining a node
118
+
119
+ Examples
120
+ ========
121
+
122
+ >>> from sympy.printing.dot import dotnode
123
+ >>> from sympy.abc import x
124
+ >>> print(dotnode(x))
125
+ "Symbol('x')_()" ["color"="black", "label"="x", "shape"="ellipse"];
126
+ """
127
+ style = styleof(expr, styles)
128
+
129
+ if isinstance(expr, Basic) and not expr.is_Atom:
130
+ label = str(expr.__class__.__name__)
131
+ else:
132
+ label = labelfunc(expr)
133
+ style['label'] = label
134
+ expr_str = purestr(expr)
135
+ if repeat:
136
+ expr_str += '_%s' % str(pos)
137
+ return '"%s" [%s];' % (expr_str, attrprint(style))
138
+
139
+
140
+ def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True):
141
+ """ List of strings for all expr->expr.arg pairs
142
+
143
+ See the docstring of dotprint for explanations of the options.
144
+
145
+ Examples
146
+ ========
147
+
148
+ >>> from sympy.printing.dot import dotedges
149
+ >>> from sympy.abc import x
150
+ >>> for e in dotedges(x+2):
151
+ ... print(e)
152
+ "Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
153
+ "Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
154
+ """
155
+ if atom(expr):
156
+ return []
157
+ else:
158
+ expr_str, arg_strs = purestr(expr, with_args=True)
159
+ if repeat:
160
+ expr_str += '_%s' % str(pos)
161
+ arg_strs = ['%s_%s' % (a, str(pos + (i,)))
162
+ for i, a in enumerate(arg_strs)]
163
+ return ['"%s" -> "%s";' % (expr_str, a) for a in arg_strs]
164
+
165
+ template = \
166
+ """digraph{
167
+
168
+ # Graph style
169
+ %(graphstyle)s
170
+
171
+ #########
172
+ # Nodes #
173
+ #########
174
+
175
+ %(nodes)s
176
+
177
+ #########
178
+ # Edges #
179
+ #########
180
+
181
+ %(edges)s
182
+ }"""
183
+
184
+ _graphstyle = {'rankdir': 'TD', 'ordering': 'out'}
185
+
186
+ def dotprint(expr,
187
+ styles=default_styles, atom=lambda x: not isinstance(x, Basic),
188
+ maxdepth=None, repeat=True, labelfunc=str, **kwargs):
189
+ """DOT description of a SymPy expression tree
190
+
191
+ Parameters
192
+ ==========
193
+
194
+ styles : list of lists composed of (Class, mapping), optional
195
+ Styles for different classes.
196
+
197
+ The default is
198
+
199
+ .. code-block:: python
200
+
201
+ (
202
+ (Basic, {'color': 'blue', 'shape': 'ellipse'}),
203
+ (Expr, {'color': 'black'})
204
+ )
205
+
206
+ atom : function, optional
207
+ Function used to determine if an arg is an atom.
208
+
209
+ A good choice is ``lambda x: not x.args``.
210
+
211
+ The default is ``lambda x: not isinstance(x, Basic)``.
212
+
213
+ maxdepth : integer, optional
214
+ The maximum depth.
215
+
216
+ The default is ``None``, meaning no limit.
217
+
218
+ repeat : boolean, optional
219
+ Whether to use different nodes for common subexpressions.
220
+
221
+ The default is ``True``.
222
+
223
+ For example, for ``x + x*y`` with ``repeat=True``, it will have
224
+ two nodes for ``x``; with ``repeat=False``, it will have one
225
+ node.
226
+
227
+ .. warning::
228
+ Even if a node appears twice in the same object like ``x`` in
229
+ ``Pow(x, x)``, it will still only appear once.
230
+ Hence, with ``repeat=False``, the number of arrows out of an
231
+ object might not equal the number of args it has.
232
+
233
+ labelfunc : function, optional
234
+ A function to create a label for a given leaf node.
235
+
236
+ The default is ``str``.
237
+
238
+ Another good option is ``srepr``.
239
+
240
+ For example with ``str``, the leaf nodes of ``x + 1`` are labeled,
241
+ ``x`` and ``1``. With ``srepr``, they are labeled ``Symbol('x')``
242
+ and ``Integer(1)``.
243
+
244
+ **kwargs : optional
245
+ Additional keyword arguments are included as styles for the graph.
246
+
247
+ Examples
248
+ ========
249
+
250
+ >>> from sympy import dotprint
251
+ >>> from sympy.abc import x
252
+ >>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE
253
+ digraph{
254
+ <BLANKLINE>
255
+ # Graph style
256
+ "ordering"="out"
257
+ "rankdir"="TD"
258
+ <BLANKLINE>
259
+ #########
260
+ # Nodes #
261
+ #########
262
+ <BLANKLINE>
263
+ "Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
264
+ "Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
265
+ "Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
266
+ <BLANKLINE>
267
+ #########
268
+ # Edges #
269
+ #########
270
+ <BLANKLINE>
271
+ "Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
272
+ "Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
273
+ }
274
+
275
+ """
276
+ # repeat works by adding a signature tuple to the end of each node for its
277
+ # position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the
278
+ # Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0].
279
+ graphstyle = _graphstyle.copy()
280
+ graphstyle.update(kwargs)
281
+
282
+ nodes = []
283
+ edges = []
284
+ def traverse(e, depth, pos=()):
285
+ nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat))
286
+ if maxdepth and depth >= maxdepth:
287
+ return
288
+ edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat))
289
+ [traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)]
290
+ traverse(expr, 0)
291
+
292
+ return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'),
293
+ 'nodes': '\n'.join(nodes),
294
+ 'edges': '\n'.join(edges)}
venv/lib/python3.10/site-packages/sympy/printing/glsl.py ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from sympy.core import Basic, S
4
+ from sympy.core.function import Lambda
5
+ from sympy.core.numbers import equal_valued
6
+ from sympy.printing.codeprinter import CodePrinter
7
+ from sympy.printing.precedence import precedence
8
+ from functools import reduce
9
+
10
+ known_functions = {
11
+ 'Abs': 'abs',
12
+ 'sin': 'sin',
13
+ 'cos': 'cos',
14
+ 'tan': 'tan',
15
+ 'acos': 'acos',
16
+ 'asin': 'asin',
17
+ 'atan': 'atan',
18
+ 'atan2': 'atan',
19
+ 'ceiling': 'ceil',
20
+ 'floor': 'floor',
21
+ 'sign': 'sign',
22
+ 'exp': 'exp',
23
+ 'log': 'log',
24
+ 'add': 'add',
25
+ 'sub': 'sub',
26
+ 'mul': 'mul',
27
+ 'pow': 'pow'
28
+ }
29
+
30
+ class GLSLPrinter(CodePrinter):
31
+ """
32
+ Rudimentary, generic GLSL printing tools.
33
+
34
+ Additional settings:
35
+ 'use_operators': Boolean (should the printer use operators for +,-,*, or functions?)
36
+ """
37
+ _not_supported: set[Basic] = set()
38
+ printmethod = "_glsl"
39
+ language = "GLSL"
40
+
41
+ _default_settings = {
42
+ 'use_operators': True,
43
+ 'zero': 0,
44
+ 'mat_nested': False,
45
+ 'mat_separator': ',\n',
46
+ 'mat_transpose': False,
47
+ 'array_type': 'float',
48
+ 'glsl_types': True,
49
+
50
+ 'order': None,
51
+ 'full_prec': 'auto',
52
+ 'precision': 9,
53
+ 'user_functions': {},
54
+ 'human': True,
55
+ 'allow_unknown_functions': False,
56
+ 'contract': True,
57
+ 'error_on_reserved': False,
58
+ 'reserved_word_suffix': '_',
59
+ }
60
+
61
+ def __init__(self, settings={}):
62
+ CodePrinter.__init__(self, settings)
63
+ self.known_functions = dict(known_functions)
64
+ userfuncs = settings.get('user_functions', {})
65
+ self.known_functions.update(userfuncs)
66
+
67
+ def _rate_index_position(self, p):
68
+ return p*5
69
+
70
+ def _get_statement(self, codestring):
71
+ return "%s;" % codestring
72
+
73
+ def _get_comment(self, text):
74
+ return "// {}".format(text)
75
+
76
+ def _declare_number_const(self, name, value):
77
+ return "float {} = {};".format(name, value)
78
+
79
+ def _format_code(self, lines):
80
+ return self.indent_code(lines)
81
+
82
+ def indent_code(self, code):
83
+ """Accepts a string of code or a list of code lines"""
84
+
85
+ if isinstance(code, str):
86
+ code_lines = self.indent_code(code.splitlines(True))
87
+ return ''.join(code_lines)
88
+
89
+ tab = " "
90
+ inc_token = ('{', '(', '{\n', '(\n')
91
+ dec_token = ('}', ')')
92
+
93
+ code = [line.lstrip(' \t') for line in code]
94
+
95
+ increase = [int(any(map(line.endswith, inc_token))) for line in code]
96
+ decrease = [int(any(map(line.startswith, dec_token))) for line in code]
97
+
98
+ pretty = []
99
+ level = 0
100
+ for n, line in enumerate(code):
101
+ if line in ('', '\n'):
102
+ pretty.append(line)
103
+ continue
104
+ level -= decrease[n]
105
+ pretty.append("%s%s" % (tab*level, line))
106
+ level += increase[n]
107
+ return pretty
108
+
109
+ def _print_MatrixBase(self, mat):
110
+ mat_separator = self._settings['mat_separator']
111
+ mat_transpose = self._settings['mat_transpose']
112
+ column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1)
113
+ A = mat.transpose() if mat_transpose != column_vector else mat
114
+
115
+ glsl_types = self._settings['glsl_types']
116
+ array_type = self._settings['array_type']
117
+ array_size = A.cols*A.rows
118
+ array_constructor = "{}[{}]".format(array_type, array_size)
119
+
120
+ if A.cols == 1:
121
+ return self._print(A[0]);
122
+ if A.rows <= 4 and A.cols <= 4 and glsl_types:
123
+ if A.rows == 1:
124
+ return "vec{}{}".format(
125
+ A.cols, A.table(self,rowstart='(',rowend=')')
126
+ )
127
+ elif A.rows == A.cols:
128
+ return "mat{}({})".format(
129
+ A.rows, A.table(self,rowsep=', ',
130
+ rowstart='',rowend='')
131
+ )
132
+ else:
133
+ return "mat{}x{}({})".format(
134
+ A.cols, A.rows,
135
+ A.table(self,rowsep=', ',
136
+ rowstart='',rowend='')
137
+ )
138
+ elif S.One in A.shape:
139
+ return "{}({})".format(
140
+ array_constructor,
141
+ A.table(self,rowsep=mat_separator,rowstart='',rowend='')
142
+ )
143
+ elif not self._settings['mat_nested']:
144
+ return "{}(\n{}\n) /* a {}x{} matrix */".format(
145
+ array_constructor,
146
+ A.table(self,rowsep=mat_separator,rowstart='',rowend=''),
147
+ A.rows, A.cols
148
+ )
149
+ elif self._settings['mat_nested']:
150
+ return "{}[{}][{}](\n{}\n)".format(
151
+ array_type, A.rows, A.cols,
152
+ A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')
153
+ )
154
+
155
+ def _print_SparseRepMatrix(self, mat):
156
+ # do not allow sparse matrices to be made dense
157
+ return self._print_not_supported(mat)
158
+
159
+ def _traverse_matrix_indices(self, mat):
160
+ mat_transpose = self._settings['mat_transpose']
161
+ if mat_transpose:
162
+ rows,cols = mat.shape
163
+ else:
164
+ cols,rows = mat.shape
165
+ return ((i, j) for i in range(cols) for j in range(rows))
166
+
167
+ def _print_MatrixElement(self, expr):
168
+ # print('begin _print_MatrixElement')
169
+ nest = self._settings['mat_nested'];
170
+ glsl_types = self._settings['glsl_types'];
171
+ mat_transpose = self._settings['mat_transpose'];
172
+ if mat_transpose:
173
+ cols,rows = expr.parent.shape
174
+ i,j = expr.j,expr.i
175
+ else:
176
+ rows,cols = expr.parent.shape
177
+ i,j = expr.i,expr.j
178
+ pnt = self._print(expr.parent)
179
+ if glsl_types and ((rows <= 4 and cols <=4) or nest):
180
+ return "{}[{}][{}]".format(pnt, i, j)
181
+ else:
182
+ return "{}[{}]".format(pnt, i + j*rows)
183
+
184
+ def _print_list(self, expr):
185
+ l = ', '.join(self._print(item) for item in expr)
186
+ glsl_types = self._settings['glsl_types']
187
+ array_type = self._settings['array_type']
188
+ array_size = len(expr)
189
+ array_constructor = '{}[{}]'.format(array_type, array_size)
190
+
191
+ if array_size <= 4 and glsl_types:
192
+ return 'vec{}({})'.format(array_size, l)
193
+ else:
194
+ return '{}({})'.format(array_constructor, l)
195
+
196
+ _print_tuple = _print_list
197
+ _print_Tuple = _print_list
198
+
199
+ def _get_loop_opening_ending(self, indices):
200
+ open_lines = []
201
+ close_lines = []
202
+ loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
203
+ for i in indices:
204
+ # GLSL arrays start at 0 and end at dimension-1
205
+ open_lines.append(loopstart % {
206
+ 'varble': self._print(i.label),
207
+ 'start': self._print(i.lower),
208
+ 'end': self._print(i.upper + 1)})
209
+ close_lines.append("}")
210
+ return open_lines, close_lines
211
+
212
+ def _print_Function_with_args(self, func, func_args):
213
+ if func in self.known_functions:
214
+ cond_func = self.known_functions[func]
215
+ func = None
216
+ if isinstance(cond_func, str):
217
+ func = cond_func
218
+ else:
219
+ for cond, func in cond_func:
220
+ if cond(func_args):
221
+ break
222
+ if func is not None:
223
+ try:
224
+ return func(*[self.parenthesize(item, 0) for item in func_args])
225
+ except TypeError:
226
+ return '{}({})'.format(func, self.stringify(func_args, ", "))
227
+ elif isinstance(func, Lambda):
228
+ # inlined function
229
+ return self._print(func(*func_args))
230
+ else:
231
+ return self._print_not_supported(func)
232
+
233
+ def _print_Piecewise(self, expr):
234
+ from sympy.codegen.ast import Assignment
235
+ if expr.args[-1].cond != True:
236
+ # We need the last conditional to be a True, otherwise the resulting
237
+ # function may not return a result.
238
+ raise ValueError("All Piecewise expressions must contain an "
239
+ "(expr, True) statement to be used as a default "
240
+ "condition. Without one, the generated "
241
+ "expression may not evaluate to anything under "
242
+ "some condition.")
243
+ lines = []
244
+ if expr.has(Assignment):
245
+ for i, (e, c) in enumerate(expr.args):
246
+ if i == 0:
247
+ lines.append("if (%s) {" % self._print(c))
248
+ elif i == len(expr.args) - 1 and c == True:
249
+ lines.append("else {")
250
+ else:
251
+ lines.append("else if (%s) {" % self._print(c))
252
+ code0 = self._print(e)
253
+ lines.append(code0)
254
+ lines.append("}")
255
+ return "\n".join(lines)
256
+ else:
257
+ # The piecewise was used in an expression, need to do inline
258
+ # operators. This has the downside that inline operators will
259
+ # not work for statements that span multiple lines (Matrix or
260
+ # Indexed expressions).
261
+ ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
262
+ self._print(e))
263
+ for e, c in expr.args[:-1]]
264
+ last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
265
+ return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
266
+
267
+ def _print_Idx(self, expr):
268
+ return self._print(expr.label)
269
+
270
+ def _print_Indexed(self, expr):
271
+ # calculate index for 1d array
272
+ dims = expr.shape
273
+ elem = S.Zero
274
+ offset = S.One
275
+ for i in reversed(range(expr.rank)):
276
+ elem += expr.indices[i]*offset
277
+ offset *= dims[i]
278
+ return "{}[{}]".format(
279
+ self._print(expr.base.label),
280
+ self._print(elem)
281
+ )
282
+
283
+ def _print_Pow(self, expr):
284
+ PREC = precedence(expr)
285
+ if equal_valued(expr.exp, -1):
286
+ return '1.0/%s' % (self.parenthesize(expr.base, PREC))
287
+ elif equal_valued(expr.exp, 0.5):
288
+ return 'sqrt(%s)' % self._print(expr.base)
289
+ else:
290
+ try:
291
+ e = self._print(float(expr.exp))
292
+ except TypeError:
293
+ e = self._print(expr.exp)
294
+ return self._print_Function_with_args('pow', (
295
+ self._print(expr.base),
296
+ e
297
+ ))
298
+
299
+ def _print_int(self, expr):
300
+ return str(float(expr))
301
+
302
+ def _print_Rational(self, expr):
303
+ return "{}.0/{}.0".format(expr.p, expr.q)
304
+
305
+ def _print_Relational(self, expr):
306
+ lhs_code = self._print(expr.lhs)
307
+ rhs_code = self._print(expr.rhs)
308
+ op = expr.rel_op
309
+ return "{} {} {}".format(lhs_code, op, rhs_code)
310
+
311
+ def _print_Add(self, expr, order=None):
312
+ if self._settings['use_operators']:
313
+ return CodePrinter._print_Add(self, expr, order=order)
314
+
315
+ terms = expr.as_ordered_terms()
316
+
317
+ def partition(p,l):
318
+ return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], []))
319
+ def add(a,b):
320
+ return self._print_Function_with_args('add', (a, b))
321
+ # return self.known_functions['add']+'(%s, %s)' % (a,b)
322
+ neg, pos = partition(lambda arg: arg.could_extract_minus_sign(), terms)
323
+ if pos:
324
+ s = pos = reduce(lambda a,b: add(a,b), (self._print(t) for t in pos))
325
+ else:
326
+ s = pos = self._print(self._settings['zero'])
327
+
328
+ if neg:
329
+ # sum the absolute values of the negative terms
330
+ neg = reduce(lambda a,b: add(a,b), (self._print(-n) for n in neg))
331
+ # then subtract them from the positive terms
332
+ s = self._print_Function_with_args('sub', (pos,neg))
333
+ # s = self.known_functions['sub']+'(%s, %s)' % (pos,neg)
334
+ return s
335
+
336
+ def _print_Mul(self, expr, **kwargs):
337
+ if self._settings['use_operators']:
338
+ return CodePrinter._print_Mul(self, expr, **kwargs)
339
+ terms = expr.as_ordered_factors()
340
+ def mul(a,b):
341
+ # return self.known_functions['mul']+'(%s, %s)' % (a,b)
342
+ return self._print_Function_with_args('mul', (a,b))
343
+
344
+ s = reduce(lambda a,b: mul(a,b), (self._print(t) for t in terms))
345
+ return s
346
+
347
+ def glsl_code(expr,assign_to=None,**settings):
348
+ """Converts an expr to a string of GLSL code
349
+
350
+ Parameters
351
+ ==========
352
+
353
+ expr : Expr
354
+ A SymPy expression to be converted.
355
+ assign_to : optional
356
+ When given, the argument is used for naming the variable or variables
357
+ to which the expression is assigned. Can be a string, ``Symbol``,
358
+ ``MatrixSymbol`` or ``Indexed`` type object. In cases where ``expr``
359
+ would be printed as an array, a list of string or ``Symbol`` objects
360
+ can also be passed.
361
+
362
+ This is helpful in case of line-wrapping, or for expressions that
363
+ generate multi-line statements. It can also be used to spread an array-like
364
+ expression into multiple assignments.
365
+ use_operators: bool, optional
366
+ If set to False, then *,/,+,- operators will be replaced with functions
367
+ mul, add, and sub, which must be implemented by the user, e.g. for
368
+ implementing non-standard rings or emulated quad/octal precision.
369
+ [default=True]
370
+ glsl_types: bool, optional
371
+ Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat``
372
+ types. The printer will instead use arrays (or nested arrays).
373
+ [default=True]
374
+ mat_nested: bool, optional
375
+ GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True``
376
+ to render matrices as nested arrays.
377
+ [default=False]
378
+ mat_separator: str, optional
379
+ By default, matrices are rendered with newlines using this separator,
380
+ making them easier to read, but less compact. By removing the newline
381
+ this option can be used to make them more vertically compact.
382
+ [default=',\n']
383
+ mat_transpose: bool, optional
384
+ GLSL's matrix multiplication implementation assumes column-major indexing.
385
+ By default, this printer ignores that convention. Setting this option to
386
+ ``True`` transposes all matrix output.
387
+ [default=False]
388
+ array_type: str, optional
389
+ The GLSL array constructor type.
390
+ [default='float']
391
+ precision : integer, optional
392
+ The precision for numbers such as pi [default=15].
393
+ user_functions : dict, optional
394
+ A dictionary where keys are ``FunctionClass`` instances and values are
395
+ their string representations. Alternatively, the dictionary value can
396
+ be a list of tuples i.e. [(argument_test, js_function_string)]. See
397
+ below for examples.
398
+ human : bool, optional
399
+ If True, the result is a single string that may contain some constant
400
+ declarations for the number symbols. If False, the same information is
401
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
402
+ code_text). [default=True].
403
+ contract: bool, optional
404
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
405
+ rules and the corresponding nested loops over indices are generated.
406
+ Setting contract=False will not generate loops, instead the user is
407
+ responsible to provide values for the indices in the code.
408
+ [default=True].
409
+
410
+ Examples
411
+ ========
412
+
413
+ >>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs
414
+ >>> x, tau = symbols("x, tau")
415
+ >>> glsl_code((2*tau)**Rational(7, 2))
416
+ '8*sqrt(2)*pow(tau, 3.5)'
417
+ >>> glsl_code(sin(x), assign_to="float y")
418
+ 'float y = sin(x);'
419
+
420
+ Various GLSL types are supported:
421
+ >>> from sympy import Matrix, glsl_code
422
+ >>> glsl_code(Matrix([1,2,3]))
423
+ 'vec3(1, 2, 3)'
424
+
425
+ >>> glsl_code(Matrix([[1, 2],[3, 4]]))
426
+ 'mat2(1, 2, 3, 4)'
427
+
428
+ Pass ``mat_transpose = True`` to switch to column-major indexing:
429
+ >>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True)
430
+ 'mat2(1, 3, 2, 4)'
431
+
432
+ By default, larger matrices get collapsed into float arrays:
433
+ >>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) ))
434
+ float[10](
435
+ 1, 2, 3, 4, 5,
436
+ 6, 7, 8, 9, 10
437
+ ) /* a 2x5 matrix */
438
+
439
+ The type of array constructor used to print GLSL arrays can be controlled
440
+ via the ``array_type`` parameter:
441
+ >>> glsl_code(Matrix([1,2,3,4,5]), array_type='int')
442
+ 'int[5](1, 2, 3, 4, 5)'
443
+
444
+ Passing a list of strings or ``symbols`` to the ``assign_to`` parameter will yield
445
+ a multi-line assignment for each item in an array-like expression:
446
+ >>> x_struct_members = symbols('x.a x.b x.c x.d')
447
+ >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=x_struct_members))
448
+ x.a = 1;
449
+ x.b = 2;
450
+ x.c = 3;
451
+ x.d = 4;
452
+
453
+ This could be useful in cases where it's desirable to modify members of a
454
+ GLSL ``Struct``. It could also be used to spread items from an array-like
455
+ expression into various miscellaneous assignments:
456
+ >>> misc_assignments = ('x[0]', 'x[1]', 'float y', 'float z')
457
+ >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=misc_assignments))
458
+ x[0] = 1;
459
+ x[1] = 2;
460
+ float y = 3;
461
+ float z = 4;
462
+
463
+ Passing ``mat_nested = True`` instead prints out nested float arrays, which are
464
+ supported in GLSL 4.3 and above.
465
+ >>> mat = Matrix([
466
+ ... [ 0, 1, 2],
467
+ ... [ 3, 4, 5],
468
+ ... [ 6, 7, 8],
469
+ ... [ 9, 10, 11],
470
+ ... [12, 13, 14]])
471
+ >>> print(glsl_code( mat, mat_nested = True ))
472
+ float[5][3](
473
+ float[]( 0, 1, 2),
474
+ float[]( 3, 4, 5),
475
+ float[]( 6, 7, 8),
476
+ float[]( 9, 10, 11),
477
+ float[](12, 13, 14)
478
+ )
479
+
480
+
481
+
482
+ Custom printing can be defined for certain types by passing a dictionary of
483
+ "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
484
+ dictionary value can be a list of tuples i.e. [(argument_test,
485
+ js_function_string)].
486
+
487
+ >>> custom_functions = {
488
+ ... "ceiling": "CEIL",
489
+ ... "Abs": [(lambda x: not x.is_integer, "fabs"),
490
+ ... (lambda x: x.is_integer, "ABS")]
491
+ ... }
492
+ >>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions)
493
+ 'fabs(x) + CEIL(x)'
494
+
495
+ If further control is needed, addition, subtraction, multiplication and
496
+ division operators can be replaced with ``add``, ``sub``, and ``mul``
497
+ functions. This is done by passing ``use_operators = False``:
498
+
499
+ >>> x,y,z = symbols('x,y,z')
500
+ >>> glsl_code(x*(y+z), use_operators = False)
501
+ 'mul(x, add(y, z))'
502
+ >>> glsl_code(x*(y+z*(x-y)**z), use_operators = False)
503
+ 'mul(x, add(y, mul(z, pow(sub(x, y), z))))'
504
+
505
+ ``Piecewise`` expressions are converted into conditionals. If an
506
+ ``assign_to`` variable is provided an if statement is created, otherwise
507
+ the ternary operator is used. Note that if the ``Piecewise`` lacks a
508
+ default term, represented by ``(expr, True)`` then an error will be thrown.
509
+ This is to prevent generating an expression that may not evaluate to
510
+ anything.
511
+
512
+ >>> from sympy import Piecewise
513
+ >>> expr = Piecewise((x + 1, x > 0), (x, True))
514
+ >>> print(glsl_code(expr, tau))
515
+ if (x > 0) {
516
+ tau = x + 1;
517
+ }
518
+ else {
519
+ tau = x;
520
+ }
521
+
522
+ Support for loops is provided through ``Indexed`` types. With
523
+ ``contract=True`` these expressions will be turned into loops, whereas
524
+ ``contract=False`` will just print the assignment expression that should be
525
+ looped over:
526
+
527
+ >>> from sympy import Eq, IndexedBase, Idx
528
+ >>> len_y = 5
529
+ >>> y = IndexedBase('y', shape=(len_y,))
530
+ >>> t = IndexedBase('t', shape=(len_y,))
531
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
532
+ >>> i = Idx('i', len_y-1)
533
+ >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
534
+ >>> glsl_code(e.rhs, assign_to=e.lhs, contract=False)
535
+ 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
536
+
537
+ >>> from sympy import Matrix, MatrixSymbol
538
+ >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
539
+ >>> A = MatrixSymbol('A', 3, 1)
540
+ >>> print(glsl_code(mat, A))
541
+ A[0][0] = pow(x, 2.0);
542
+ if (x > 0) {
543
+ A[1][0] = x + 1;
544
+ }
545
+ else {
546
+ A[1][0] = x;
547
+ }
548
+ A[2][0] = sin(x);
549
+ """
550
+ return GLSLPrinter(settings).doprint(expr,assign_to)
551
+
552
+ def print_glsl(expr, **settings):
553
+ """Prints the GLSL representation of the given expression.
554
+
555
+ See GLSLPrinter init function for settings.
556
+ """
557
+ print(glsl_code(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/gtk.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.printing.mathml import mathml
2
+ from sympy.utilities.mathml import c2p
3
+ import tempfile
4
+ import subprocess
5
+
6
+
7
+ def print_gtk(x, start_viewer=True):
8
+ """Print to Gtkmathview, a gtk widget capable of rendering MathML.
9
+
10
+ Needs libgtkmathview-bin"""
11
+ with tempfile.NamedTemporaryFile('w') as file:
12
+ file.write(c2p(mathml(x), simple=True))
13
+ file.flush()
14
+
15
+ if start_viewer:
16
+ subprocess.check_call(('mathmlviewer', file.name))
venv/lib/python3.10/site-packages/sympy/printing/julia.py ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Julia code printer
3
+
4
+ The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.
5
+
6
+ A complete code generator, which uses `julia_code` extensively, can be found
7
+ in `sympy.utilities.codegen`. The `codegen` module can be used to generate
8
+ complete source code files.
9
+
10
+ """
11
+
12
+ from __future__ import annotations
13
+ from typing import Any
14
+
15
+ from sympy.core import Mul, Pow, S, Rational
16
+ from sympy.core.mul import _keep_coeff
17
+ from sympy.core.numbers import equal_valued
18
+ from sympy.printing.codeprinter import CodePrinter
19
+ from sympy.printing.precedence import precedence, PRECEDENCE
20
+ from re import search
21
+
22
+ # List of known functions. First, those that have the same name in
23
+ # SymPy and Julia. This is almost certainly incomplete!
24
+ known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
25
+ "asin", "acos", "atan", "acot", "asec", "acsc",
26
+ "sinh", "cosh", "tanh", "coth", "sech", "csch",
27
+ "asinh", "acosh", "atanh", "acoth", "asech", "acsch",
28
+ "sinc", "atan2", "sign", "floor", "log", "exp",
29
+ "cbrt", "sqrt", "erf", "erfc", "erfi",
30
+ "factorial", "gamma", "digamma", "trigamma",
31
+ "polygamma", "beta",
32
+ "airyai", "airyaiprime", "airybi", "airybiprime",
33
+ "besselj", "bessely", "besseli", "besselk",
34
+ "erfinv", "erfcinv"]
35
+ # These functions have different names ("SymPy": "Julia"), more
36
+ # generally a mapping to (argument_conditions, julia_function).
37
+ known_fcns_src2 = {
38
+ "Abs": "abs",
39
+ "ceiling": "ceil",
40
+ "conjugate": "conj",
41
+ "hankel1": "hankelh1",
42
+ "hankel2": "hankelh2",
43
+ "im": "imag",
44
+ "re": "real"
45
+ }
46
+
47
+
48
+ class JuliaCodePrinter(CodePrinter):
49
+ """
50
+ A printer to convert expressions to strings of Julia code.
51
+ """
52
+ printmethod = "_julia"
53
+ language = "Julia"
54
+
55
+ _operators = {
56
+ 'and': '&&',
57
+ 'or': '||',
58
+ 'not': '!',
59
+ }
60
+
61
+ _default_settings: dict[str, Any] = {
62
+ 'order': None,
63
+ 'full_prec': 'auto',
64
+ 'precision': 17,
65
+ 'user_functions': {},
66
+ 'human': True,
67
+ 'allow_unknown_functions': False,
68
+ 'contract': True,
69
+ 'inline': True,
70
+ }
71
+ # Note: contract is for expressing tensors as loops (if True), or just
72
+ # assignment (if False). FIXME: this should be looked a more carefully
73
+ # for Julia.
74
+
75
+ def __init__(self, settings={}):
76
+ super().__init__(settings)
77
+ self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
78
+ self.known_functions.update(dict(known_fcns_src2))
79
+ userfuncs = settings.get('user_functions', {})
80
+ self.known_functions.update(userfuncs)
81
+
82
+
83
+ def _rate_index_position(self, p):
84
+ return p*5
85
+
86
+
87
+ def _get_statement(self, codestring):
88
+ return "%s" % codestring
89
+
90
+
91
+ def _get_comment(self, text):
92
+ return "# {}".format(text)
93
+
94
+
95
+ def _declare_number_const(self, name, value):
96
+ return "const {} = {}".format(name, value)
97
+
98
+
99
+ def _format_code(self, lines):
100
+ return self.indent_code(lines)
101
+
102
+
103
+ def _traverse_matrix_indices(self, mat):
104
+ # Julia uses Fortran order (column-major)
105
+ rows, cols = mat.shape
106
+ return ((i, j) for j in range(cols) for i in range(rows))
107
+
108
+
109
+ def _get_loop_opening_ending(self, indices):
110
+ open_lines = []
111
+ close_lines = []
112
+ for i in indices:
113
+ # Julia arrays start at 1 and end at dimension
114
+ var, start, stop = map(self._print,
115
+ [i.label, i.lower + 1, i.upper + 1])
116
+ open_lines.append("for %s = %s:%s" % (var, start, stop))
117
+ close_lines.append("end")
118
+ return open_lines, close_lines
119
+
120
+
121
+ def _print_Mul(self, expr):
122
+ # print complex numbers nicely in Julia
123
+ if (expr.is_number and expr.is_imaginary and
124
+ expr.as_coeff_Mul()[0].is_integer):
125
+ return "%sim" % self._print(-S.ImaginaryUnit*expr)
126
+
127
+ # cribbed from str.py
128
+ prec = precedence(expr)
129
+
130
+ c, e = expr.as_coeff_Mul()
131
+ if c < 0:
132
+ expr = _keep_coeff(-c, e)
133
+ sign = "-"
134
+ else:
135
+ sign = ""
136
+
137
+ a = [] # items in the numerator
138
+ b = [] # items that are in the denominator (if any)
139
+
140
+ pow_paren = [] # Will collect all pow with more than one base element and exp = -1
141
+
142
+ if self.order not in ('old', 'none'):
143
+ args = expr.as_ordered_factors()
144
+ else:
145
+ # use make_args in case expr was something like -x -> x
146
+ args = Mul.make_args(expr)
147
+
148
+ # Gather args for numerator/denominator
149
+ for item in args:
150
+ if (item.is_commutative and item.is_Pow and item.exp.is_Rational
151
+ and item.exp.is_negative):
152
+ if item.exp != -1:
153
+ b.append(Pow(item.base, -item.exp, evaluate=False))
154
+ else:
155
+ if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
156
+ pow_paren.append(item)
157
+ b.append(Pow(item.base, -item.exp))
158
+ elif item.is_Rational and item is not S.Infinity and item.p == 1:
159
+ # Save the Rational type in julia Unless the numerator is 1.
160
+ # For example:
161
+ # julia_code(Rational(3, 7)*x) --> (3 // 7) * x
162
+ # julia_code(x/3) --> x / 3 but not x * (1 // 3)
163
+ b.append(Rational(item.q))
164
+ else:
165
+ a.append(item)
166
+
167
+ a = a or [S.One]
168
+
169
+ a_str = [self.parenthesize(x, prec) for x in a]
170
+ b_str = [self.parenthesize(x, prec) for x in b]
171
+
172
+ # To parenthesize Pow with exp = -1 and having more than one Symbol
173
+ for item in pow_paren:
174
+ if item.base in b:
175
+ b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
176
+
177
+ # from here it differs from str.py to deal with "*" and ".*"
178
+ def multjoin(a, a_str):
179
+ # here we probably are assuming the constants will come first
180
+ r = a_str[0]
181
+ for i in range(1, len(a)):
182
+ mulsym = '*' if a[i-1].is_number else '.*'
183
+ r = "%s %s %s" % (r, mulsym, a_str[i])
184
+ return r
185
+
186
+ if not b:
187
+ return sign + multjoin(a, a_str)
188
+ elif len(b) == 1:
189
+ divsym = '/' if b[0].is_number else './'
190
+ return "%s %s %s" % (sign+multjoin(a, a_str), divsym, b_str[0])
191
+ else:
192
+ divsym = '/' if all(bi.is_number for bi in b) else './'
193
+ return "%s %s (%s)" % (sign + multjoin(a, a_str), divsym, multjoin(b, b_str))
194
+
195
+ def _print_Relational(self, expr):
196
+ lhs_code = self._print(expr.lhs)
197
+ rhs_code = self._print(expr.rhs)
198
+ op = expr.rel_op
199
+ return "{} {} {}".format(lhs_code, op, rhs_code)
200
+
201
+ def _print_Pow(self, expr):
202
+ powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
203
+
204
+ PREC = precedence(expr)
205
+
206
+ if equal_valued(expr.exp, 0.5):
207
+ return "sqrt(%s)" % self._print(expr.base)
208
+
209
+ if expr.is_commutative:
210
+ if equal_valued(expr.exp, -0.5):
211
+ sym = '/' if expr.base.is_number else './'
212
+ return "1 %s sqrt(%s)" % (sym, self._print(expr.base))
213
+ if equal_valued(expr.exp, -1):
214
+ sym = '/' if expr.base.is_number else './'
215
+ return "1 %s %s" % (sym, self.parenthesize(expr.base, PREC))
216
+
217
+ return '%s %s %s' % (self.parenthesize(expr.base, PREC), powsymbol,
218
+ self.parenthesize(expr.exp, PREC))
219
+
220
+
221
+ def _print_MatPow(self, expr):
222
+ PREC = precedence(expr)
223
+ return '%s ^ %s' % (self.parenthesize(expr.base, PREC),
224
+ self.parenthesize(expr.exp, PREC))
225
+
226
+
227
+ def _print_Pi(self, expr):
228
+ if self._settings["inline"]:
229
+ return "pi"
230
+ else:
231
+ return super()._print_NumberSymbol(expr)
232
+
233
+
234
+ def _print_ImaginaryUnit(self, expr):
235
+ return "im"
236
+
237
+
238
+ def _print_Exp1(self, expr):
239
+ if self._settings["inline"]:
240
+ return "e"
241
+ else:
242
+ return super()._print_NumberSymbol(expr)
243
+
244
+
245
+ def _print_EulerGamma(self, expr):
246
+ if self._settings["inline"]:
247
+ return "eulergamma"
248
+ else:
249
+ return super()._print_NumberSymbol(expr)
250
+
251
+
252
+ def _print_Catalan(self, expr):
253
+ if self._settings["inline"]:
254
+ return "catalan"
255
+ else:
256
+ return super()._print_NumberSymbol(expr)
257
+
258
+
259
+ def _print_GoldenRatio(self, expr):
260
+ if self._settings["inline"]:
261
+ return "golden"
262
+ else:
263
+ return super()._print_NumberSymbol(expr)
264
+
265
+
266
+ def _print_Assignment(self, expr):
267
+ from sympy.codegen.ast import Assignment
268
+ from sympy.functions.elementary.piecewise import Piecewise
269
+ from sympy.tensor.indexed import IndexedBase
270
+ # Copied from codeprinter, but remove special MatrixSymbol treatment
271
+ lhs = expr.lhs
272
+ rhs = expr.rhs
273
+ # We special case assignments that take multiple lines
274
+ if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
275
+ # Here we modify Piecewise so each expression is now
276
+ # an Assignment, and then continue on the print.
277
+ expressions = []
278
+ conditions = []
279
+ for (e, c) in rhs.args:
280
+ expressions.append(Assignment(lhs, e))
281
+ conditions.append(c)
282
+ temp = Piecewise(*zip(expressions, conditions))
283
+ return self._print(temp)
284
+ if self._settings["contract"] and (lhs.has(IndexedBase) or
285
+ rhs.has(IndexedBase)):
286
+ # Here we check if there is looping to be done, and if so
287
+ # print the required loops.
288
+ return self._doprint_loops(rhs, lhs)
289
+ else:
290
+ lhs_code = self._print(lhs)
291
+ rhs_code = self._print(rhs)
292
+ return self._get_statement("%s = %s" % (lhs_code, rhs_code))
293
+
294
+
295
+ def _print_Infinity(self, expr):
296
+ return 'Inf'
297
+
298
+
299
+ def _print_NegativeInfinity(self, expr):
300
+ return '-Inf'
301
+
302
+
303
+ def _print_NaN(self, expr):
304
+ return 'NaN'
305
+
306
+
307
+ def _print_list(self, expr):
308
+ return 'Any[' + ', '.join(self._print(a) for a in expr) + ']'
309
+
310
+
311
+ def _print_tuple(self, expr):
312
+ if len(expr) == 1:
313
+ return "(%s,)" % self._print(expr[0])
314
+ else:
315
+ return "(%s)" % self.stringify(expr, ", ")
316
+ _print_Tuple = _print_tuple
317
+
318
+
319
+ def _print_BooleanTrue(self, expr):
320
+ return "true"
321
+
322
+
323
+ def _print_BooleanFalse(self, expr):
324
+ return "false"
325
+
326
+
327
+ def _print_bool(self, expr):
328
+ return str(expr).lower()
329
+
330
+
331
+ # Could generate quadrature code for definite Integrals?
332
+ #_print_Integral = _print_not_supported
333
+
334
+
335
+ def _print_MatrixBase(self, A):
336
+ # Handle zero dimensions:
337
+ if S.Zero in A.shape:
338
+ return 'zeros(%s, %s)' % (A.rows, A.cols)
339
+ elif (A.rows, A.cols) == (1, 1):
340
+ return "[%s]" % A[0, 0]
341
+ elif A.rows == 1:
342
+ return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ')
343
+ elif A.cols == 1:
344
+ # note .table would unnecessarily equispace the rows
345
+ return "[%s]" % ", ".join([self._print(a) for a in A])
346
+ return "[%s]" % A.table(self, rowstart='', rowend='',
347
+ rowsep=';\n', colsep=' ')
348
+
349
+
350
+ def _print_SparseRepMatrix(self, A):
351
+ from sympy.matrices import Matrix
352
+ L = A.col_list();
353
+ # make row vectors of the indices and entries
354
+ I = Matrix([k[0] + 1 for k in L])
355
+ J = Matrix([k[1] + 1 for k in L])
356
+ AIJ = Matrix([k[2] for k in L])
357
+ return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
358
+ self._print(AIJ), A.rows, A.cols)
359
+
360
+
361
+ def _print_MatrixElement(self, expr):
362
+ return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
363
+ + '[%s,%s]' % (expr.i + 1, expr.j + 1)
364
+
365
+
366
+ def _print_MatrixSlice(self, expr):
367
+ def strslice(x, lim):
368
+ l = x[0] + 1
369
+ h = x[1]
370
+ step = x[2]
371
+ lstr = self._print(l)
372
+ hstr = 'end' if h == lim else self._print(h)
373
+ if step == 1:
374
+ if l == 1 and h == lim:
375
+ return ':'
376
+ if l == h:
377
+ return lstr
378
+ else:
379
+ return lstr + ':' + hstr
380
+ else:
381
+ return ':'.join((lstr, self._print(step), hstr))
382
+ return (self._print(expr.parent) + '[' +
383
+ strslice(expr.rowslice, expr.parent.shape[0]) + ',' +
384
+ strslice(expr.colslice, expr.parent.shape[1]) + ']')
385
+
386
+
387
+ def _print_Indexed(self, expr):
388
+ inds = [ self._print(i) for i in expr.indices ]
389
+ return "%s[%s]" % (self._print(expr.base.label), ",".join(inds))
390
+
391
+
392
+ def _print_Idx(self, expr):
393
+ return self._print(expr.label)
394
+
395
+
396
+ def _print_Identity(self, expr):
397
+ return "eye(%s)" % self._print(expr.shape[0])
398
+
399
+ def _print_HadamardProduct(self, expr):
400
+ return ' .* '.join([self.parenthesize(arg, precedence(expr))
401
+ for arg in expr.args])
402
+
403
+ def _print_HadamardPower(self, expr):
404
+ PREC = precedence(expr)
405
+ return '.**'.join([
406
+ self.parenthesize(expr.base, PREC),
407
+ self.parenthesize(expr.exp, PREC)
408
+ ])
409
+
410
+ def _print_Rational(self, expr):
411
+ if expr.q == 1:
412
+ return str(expr.p)
413
+ return "%s // %s" % (expr.p, expr.q)
414
+
415
+ # Note: as of 2022, Julia doesn't have spherical Bessel functions
416
+ def _print_jn(self, expr):
417
+ from sympy.functions import sqrt, besselj
418
+ x = expr.argument
419
+ expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
420
+ return self._print(expr2)
421
+
422
+
423
+ def _print_yn(self, expr):
424
+ from sympy.functions import sqrt, bessely
425
+ x = expr.argument
426
+ expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
427
+ return self._print(expr2)
428
+
429
+
430
+ def _print_Piecewise(self, expr):
431
+ if expr.args[-1].cond != True:
432
+ # We need the last conditional to be a True, otherwise the resulting
433
+ # function may not return a result.
434
+ raise ValueError("All Piecewise expressions must contain an "
435
+ "(expr, True) statement to be used as a default "
436
+ "condition. Without one, the generated "
437
+ "expression may not evaluate to anything under "
438
+ "some condition.")
439
+ lines = []
440
+ if self._settings["inline"]:
441
+ # Express each (cond, expr) pair in a nested Horner form:
442
+ # (condition) .* (expr) + (not cond) .* (<others>)
443
+ # Expressions that result in multiple statements won't work here.
444
+ ecpairs = ["({}) ? ({}) :".format
445
+ (self._print(c), self._print(e))
446
+ for e, c in expr.args[:-1]]
447
+ elast = " (%s)" % self._print(expr.args[-1].expr)
448
+ pw = "\n".join(ecpairs) + elast
449
+ # Note: current need these outer brackets for 2*pw. Would be
450
+ # nicer to teach parenthesize() to do this for us when needed!
451
+ return "(" + pw + ")"
452
+ else:
453
+ for i, (e, c) in enumerate(expr.args):
454
+ if i == 0:
455
+ lines.append("if (%s)" % self._print(c))
456
+ elif i == len(expr.args) - 1 and c == True:
457
+ lines.append("else")
458
+ else:
459
+ lines.append("elseif (%s)" % self._print(c))
460
+ code0 = self._print(e)
461
+ lines.append(code0)
462
+ if i == len(expr.args) - 1:
463
+ lines.append("end")
464
+ return "\n".join(lines)
465
+
466
+ def _print_MatMul(self, expr):
467
+ c, m = expr.as_coeff_mmul()
468
+
469
+ sign = ""
470
+ if c.is_number:
471
+ re, im = c.as_real_imag()
472
+ if im.is_zero and re.is_negative:
473
+ expr = _keep_coeff(-c, m)
474
+ sign = "-"
475
+ elif re.is_zero and im.is_negative:
476
+ expr = _keep_coeff(-c, m)
477
+ sign = "-"
478
+
479
+ return sign + ' * '.join(
480
+ (self.parenthesize(arg, precedence(expr)) for arg in expr.args)
481
+ )
482
+
483
+
484
+ def indent_code(self, code):
485
+ """Accepts a string of code or a list of code lines"""
486
+
487
+ # code mostly copied from ccode
488
+ if isinstance(code, str):
489
+ code_lines = self.indent_code(code.splitlines(True))
490
+ return ''.join(code_lines)
491
+
492
+ tab = " "
493
+ inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
494
+ dec_regex = ('^end$', '^elseif ', '^else$')
495
+
496
+ # pre-strip left-space from the code
497
+ code = [ line.lstrip(' \t') for line in code ]
498
+
499
+ increase = [ int(any(search(re, line) for re in inc_regex))
500
+ for line in code ]
501
+ decrease = [ int(any(search(re, line) for re in dec_regex))
502
+ for line in code ]
503
+
504
+ pretty = []
505
+ level = 0
506
+ for n, line in enumerate(code):
507
+ if line in ('', '\n'):
508
+ pretty.append(line)
509
+ continue
510
+ level -= decrease[n]
511
+ pretty.append("%s%s" % (tab*level, line))
512
+ level += increase[n]
513
+ return pretty
514
+
515
+
516
+ def julia_code(expr, assign_to=None, **settings):
517
+ r"""Converts `expr` to a string of Julia code.
518
+
519
+ Parameters
520
+ ==========
521
+
522
+ expr : Expr
523
+ A SymPy expression to be converted.
524
+ assign_to : optional
525
+ When given, the argument is used as the name of the variable to which
526
+ the expression is assigned. Can be a string, ``Symbol``,
527
+ ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
528
+ expressions that generate multi-line statements.
529
+ precision : integer, optional
530
+ The precision for numbers such as pi [default=16].
531
+ user_functions : dict, optional
532
+ A dictionary where keys are ``FunctionClass`` instances and values are
533
+ their string representations. Alternatively, the dictionary value can
534
+ be a list of tuples i.e. [(argument_test, cfunction_string)]. See
535
+ below for examples.
536
+ human : bool, optional
537
+ If True, the result is a single string that may contain some constant
538
+ declarations for the number symbols. If False, the same information is
539
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
540
+ code_text). [default=True].
541
+ contract: bool, optional
542
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
543
+ rules and the corresponding nested loops over indices are generated.
544
+ Setting contract=False will not generate loops, instead the user is
545
+ responsible to provide values for the indices in the code.
546
+ [default=True].
547
+ inline: bool, optional
548
+ If True, we try to create single-statement code instead of multiple
549
+ statements. [default=True].
550
+
551
+ Examples
552
+ ========
553
+
554
+ >>> from sympy import julia_code, symbols, sin, pi
555
+ >>> x = symbols('x')
556
+ >>> julia_code(sin(x).series(x).removeO())
557
+ 'x .^ 5 / 120 - x .^ 3 / 6 + x'
558
+
559
+ >>> from sympy import Rational, ceiling
560
+ >>> x, y, tau = symbols("x, y, tau")
561
+ >>> julia_code((2*tau)**Rational(7, 2))
562
+ '8 * sqrt(2) * tau .^ (7 // 2)'
563
+
564
+ Note that element-wise (Hadamard) operations are used by default between
565
+ symbols. This is because its possible in Julia to write "vectorized"
566
+ code. It is harmless if the values are scalars.
567
+
568
+ >>> julia_code(sin(pi*x*y), assign_to="s")
569
+ 's = sin(pi * x .* y)'
570
+
571
+ If you need a matrix product "*" or matrix power "^", you can specify the
572
+ symbol as a ``MatrixSymbol``.
573
+
574
+ >>> from sympy import Symbol, MatrixSymbol
575
+ >>> n = Symbol('n', integer=True, positive=True)
576
+ >>> A = MatrixSymbol('A', n, n)
577
+ >>> julia_code(3*pi*A**3)
578
+ '(3 * pi) * A ^ 3'
579
+
580
+ This class uses several rules to decide which symbol to use a product.
581
+ Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
582
+ A HadamardProduct can be used to specify componentwise multiplication ".*"
583
+ of two MatrixSymbols. There is currently there is no easy way to specify
584
+ scalar symbols, so sometimes the code might have some minor cosmetic
585
+ issues. For example, suppose x and y are scalars and A is a Matrix, then
586
+ while a human programmer might write "(x^2*y)*A^3", we generate:
587
+
588
+ >>> julia_code(x**2*y*A**3)
589
+ '(x .^ 2 .* y) * A ^ 3'
590
+
591
+ Matrices are supported using Julia inline notation. When using
592
+ ``assign_to`` with matrices, the name can be specified either as a string
593
+ or as a ``MatrixSymbol``. The dimensions must align in the latter case.
594
+
595
+ >>> from sympy import Matrix, MatrixSymbol
596
+ >>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
597
+ >>> julia_code(mat, assign_to='A')
598
+ 'A = [x .^ 2 sin(x) ceil(x)]'
599
+
600
+ ``Piecewise`` expressions are implemented with logical masking by default.
601
+ Alternatively, you can pass "inline=False" to use if-else conditionals.
602
+ Note that if the ``Piecewise`` lacks a default term, represented by
603
+ ``(expr, True)`` then an error will be thrown. This is to prevent
604
+ generating an expression that may not evaluate to anything.
605
+
606
+ >>> from sympy import Piecewise
607
+ >>> pw = Piecewise((x + 1, x > 0), (x, True))
608
+ >>> julia_code(pw, assign_to=tau)
609
+ 'tau = ((x > 0) ? (x + 1) : (x))'
610
+
611
+ Note that any expression that can be generated normally can also exist
612
+ inside a Matrix:
613
+
614
+ >>> mat = Matrix([[x**2, pw, sin(x)]])
615
+ >>> julia_code(mat, assign_to='A')
616
+ 'A = [x .^ 2 ((x > 0) ? (x + 1) : (x)) sin(x)]'
617
+
618
+ Custom printing can be defined for certain types by passing a dictionary of
619
+ "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
620
+ dictionary value can be a list of tuples i.e., [(argument_test,
621
+ cfunction_string)]. This can be used to call a custom Julia function.
622
+
623
+ >>> from sympy import Function
624
+ >>> f = Function('f')
625
+ >>> g = Function('g')
626
+ >>> custom_functions = {
627
+ ... "f": "existing_julia_fcn",
628
+ ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
629
+ ... (lambda x: not x.is_Matrix, "my_fcn")]
630
+ ... }
631
+ >>> mat = Matrix([[1, x]])
632
+ >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
633
+ 'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
634
+
635
+ Support for loops is provided through ``Indexed`` types. With
636
+ ``contract=True`` these expressions will be turned into loops, whereas
637
+ ``contract=False`` will just print the assignment expression that should be
638
+ looped over:
639
+
640
+ >>> from sympy import Eq, IndexedBase, Idx
641
+ >>> len_y = 5
642
+ >>> y = IndexedBase('y', shape=(len_y,))
643
+ >>> t = IndexedBase('t', shape=(len_y,))
644
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
645
+ >>> i = Idx('i', len_y-1)
646
+ >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
647
+ >>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
648
+ 'Dy[i] = (y[i + 1] - y[i]) ./ (t[i + 1] - t[i])'
649
+ """
650
+ return JuliaCodePrinter(settings).doprint(expr, assign_to)
651
+
652
+
653
+ def print_julia_code(expr, **settings):
654
+ """Prints the Julia representation of the given expression.
655
+
656
+ See `julia_code` for the meaning of the optional arguments.
657
+ """
658
+ print(julia_code(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/lambdarepr.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pycode import (
2
+ PythonCodePrinter,
3
+ MpmathPrinter,
4
+ )
5
+ from .numpy import NumPyPrinter # NumPyPrinter is imported for backward compatibility
6
+ from sympy.core.sorting import default_sort_key
7
+
8
+
9
+ __all__ = [
10
+ 'PythonCodePrinter',
11
+ 'MpmathPrinter', # MpmathPrinter is published for backward compatibility
12
+ 'NumPyPrinter',
13
+ 'LambdaPrinter',
14
+ 'NumPyPrinter',
15
+ 'IntervalPrinter',
16
+ 'lambdarepr',
17
+ ]
18
+
19
+
20
+ class LambdaPrinter(PythonCodePrinter):
21
+ """
22
+ This printer converts expressions into strings that can be used by
23
+ lambdify.
24
+ """
25
+ printmethod = "_lambdacode"
26
+
27
+
28
+ def _print_And(self, expr):
29
+ result = ['(']
30
+ for arg in sorted(expr.args, key=default_sort_key):
31
+ result.extend(['(', self._print(arg), ')'])
32
+ result.append(' and ')
33
+ result = result[:-1]
34
+ result.append(')')
35
+ return ''.join(result)
36
+
37
+ def _print_Or(self, expr):
38
+ result = ['(']
39
+ for arg in sorted(expr.args, key=default_sort_key):
40
+ result.extend(['(', self._print(arg), ')'])
41
+ result.append(' or ')
42
+ result = result[:-1]
43
+ result.append(')')
44
+ return ''.join(result)
45
+
46
+ def _print_Not(self, expr):
47
+ result = ['(', 'not (', self._print(expr.args[0]), '))']
48
+ return ''.join(result)
49
+
50
+ def _print_BooleanTrue(self, expr):
51
+ return "True"
52
+
53
+ def _print_BooleanFalse(self, expr):
54
+ return "False"
55
+
56
+ def _print_ITE(self, expr):
57
+ result = [
58
+ '((', self._print(expr.args[1]),
59
+ ') if (', self._print(expr.args[0]),
60
+ ') else (', self._print(expr.args[2]), '))'
61
+ ]
62
+ return ''.join(result)
63
+
64
+ def _print_NumberSymbol(self, expr):
65
+ return str(expr)
66
+
67
+ def _print_Pow(self, expr, **kwargs):
68
+ # XXX Temporary workaround. Should Python math printer be
69
+ # isolated from PythonCodePrinter?
70
+ return super(PythonCodePrinter, self)._print_Pow(expr, **kwargs)
71
+
72
+
73
+ # numexpr works by altering the string passed to numexpr.evaluate
74
+ # rather than by populating a namespace. Thus a special printer...
75
+ class NumExprPrinter(LambdaPrinter):
76
+ # key, value pairs correspond to SymPy name and numexpr name
77
+ # functions not appearing in this dict will raise a TypeError
78
+ printmethod = "_numexprcode"
79
+
80
+ _numexpr_functions = {
81
+ 'sin' : 'sin',
82
+ 'cos' : 'cos',
83
+ 'tan' : 'tan',
84
+ 'asin': 'arcsin',
85
+ 'acos': 'arccos',
86
+ 'atan': 'arctan',
87
+ 'atan2' : 'arctan2',
88
+ 'sinh' : 'sinh',
89
+ 'cosh' : 'cosh',
90
+ 'tanh' : 'tanh',
91
+ 'asinh': 'arcsinh',
92
+ 'acosh': 'arccosh',
93
+ 'atanh': 'arctanh',
94
+ 'ln' : 'log',
95
+ 'log': 'log',
96
+ 'exp': 'exp',
97
+ 'sqrt' : 'sqrt',
98
+ 'Abs' : 'abs',
99
+ 'conjugate' : 'conj',
100
+ 'im' : 'imag',
101
+ 're' : 'real',
102
+ 'where' : 'where',
103
+ 'complex' : 'complex',
104
+ 'contains' : 'contains',
105
+ }
106
+
107
+ module = 'numexpr'
108
+
109
+ def _print_ImaginaryUnit(self, expr):
110
+ return '1j'
111
+
112
+ def _print_seq(self, seq, delimiter=', '):
113
+ # simplified _print_seq taken from pretty.py
114
+ s = [self._print(item) for item in seq]
115
+ if s:
116
+ return delimiter.join(s)
117
+ else:
118
+ return ""
119
+
120
+ def _print_Function(self, e):
121
+ func_name = e.func.__name__
122
+
123
+ nstr = self._numexpr_functions.get(func_name, None)
124
+ if nstr is None:
125
+ # check for implemented_function
126
+ if hasattr(e, '_imp_'):
127
+ return "(%s)" % self._print(e._imp_(*e.args))
128
+ else:
129
+ raise TypeError("numexpr does not support function '%s'" %
130
+ func_name)
131
+ return "%s(%s)" % (nstr, self._print_seq(e.args))
132
+
133
+ def _print_Piecewise(self, expr):
134
+ "Piecewise function printer"
135
+ exprs = [self._print(arg.expr) for arg in expr.args]
136
+ conds = [self._print(arg.cond) for arg in expr.args]
137
+ # If [default_value, True] is a (expr, cond) sequence in a Piecewise object
138
+ # it will behave the same as passing the 'default' kwarg to select()
139
+ # *as long as* it is the last element in expr.args.
140
+ # If this is not the case, it may be triggered prematurely.
141
+ ans = []
142
+ parenthesis_count = 0
143
+ is_last_cond_True = False
144
+ for cond, expr in zip(conds, exprs):
145
+ if cond == 'True':
146
+ ans.append(expr)
147
+ is_last_cond_True = True
148
+ break
149
+ else:
150
+ ans.append('where(%s, %s, ' % (cond, expr))
151
+ parenthesis_count += 1
152
+ if not is_last_cond_True:
153
+ # See https://github.com/pydata/numexpr/issues/298
154
+ #
155
+ # simplest way to put a nan but raises
156
+ # 'RuntimeWarning: invalid value encountered in log'
157
+ #
158
+ # There are other ways to do this such as
159
+ #
160
+ # >>> import numexpr as ne
161
+ # >>> nan = float('nan')
162
+ # >>> ne.evaluate('where(x < 0, -1, nan)', {'x': [-1, 2, 3], 'nan':nan})
163
+ # array([-1., nan, nan])
164
+ #
165
+ # That needs to be handled in the lambdified function though rather
166
+ # than here in the printer.
167
+ ans.append('log(-1)')
168
+ return ''.join(ans) + ')' * parenthesis_count
169
+
170
+ def _print_ITE(self, expr):
171
+ from sympy.functions.elementary.piecewise import Piecewise
172
+ return self._print(expr.rewrite(Piecewise))
173
+
174
+ def blacklisted(self, expr):
175
+ raise TypeError("numexpr cannot be used with %s" %
176
+ expr.__class__.__name__)
177
+
178
+ # blacklist all Matrix printing
179
+ _print_SparseRepMatrix = \
180
+ _print_MutableSparseMatrix = \
181
+ _print_ImmutableSparseMatrix = \
182
+ _print_Matrix = \
183
+ _print_DenseMatrix = \
184
+ _print_MutableDenseMatrix = \
185
+ _print_ImmutableMatrix = \
186
+ _print_ImmutableDenseMatrix = \
187
+ blacklisted
188
+ # blacklist some Python expressions
189
+ _print_list = \
190
+ _print_tuple = \
191
+ _print_Tuple = \
192
+ _print_dict = \
193
+ _print_Dict = \
194
+ blacklisted
195
+
196
+ def _print_NumExprEvaluate(self, expr):
197
+ evaluate = self._module_format(self.module +".evaluate")
198
+ return "%s('%s', truediv=True)" % (evaluate, self._print(expr.expr))
199
+
200
+ def doprint(self, expr):
201
+ from sympy.codegen.ast import CodegenAST
202
+ from sympy.codegen.pynodes import NumExprEvaluate
203
+ if not isinstance(expr, CodegenAST):
204
+ expr = NumExprEvaluate(expr)
205
+ return super().doprint(expr)
206
+
207
+ def _print_Return(self, expr):
208
+ from sympy.codegen.pynodes import NumExprEvaluate
209
+ r, = expr.args
210
+ if not isinstance(r, NumExprEvaluate):
211
+ expr = expr.func(NumExprEvaluate(r))
212
+ return super()._print_Return(expr)
213
+
214
+ def _print_Assignment(self, expr):
215
+ from sympy.codegen.pynodes import NumExprEvaluate
216
+ lhs, rhs, *args = expr.args
217
+ if not isinstance(rhs, NumExprEvaluate):
218
+ expr = expr.func(lhs, NumExprEvaluate(rhs), *args)
219
+ return super()._print_Assignment(expr)
220
+
221
+ def _print_CodeBlock(self, expr):
222
+ from sympy.codegen.ast import CodegenAST
223
+ from sympy.codegen.pynodes import NumExprEvaluate
224
+ args = [ arg if isinstance(arg, CodegenAST) else NumExprEvaluate(arg) for arg in expr.args ]
225
+ return super()._print_CodeBlock(self, expr.func(*args))
226
+
227
+
228
+ class IntervalPrinter(MpmathPrinter, LambdaPrinter):
229
+ """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
230
+
231
+ def _print_Integer(self, expr):
232
+ return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr)
233
+
234
+ def _print_Rational(self, expr):
235
+ return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
236
+
237
+ def _print_Half(self, expr):
238
+ return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
239
+
240
+ def _print_Pow(self, expr):
241
+ return super(MpmathPrinter, self)._print_Pow(expr, rational=True)
242
+
243
+
244
+ for k in NumExprPrinter._numexpr_functions:
245
+ setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function)
246
+
247
+ def lambdarepr(expr, **settings):
248
+ """
249
+ Returns a string usable for lambdifying.
250
+ """
251
+ return LambdaPrinter(settings).doprint(expr)
venv/lib/python3.10/site-packages/sympy/printing/llvmjitcode.py ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Use llvmlite to create executable functions from SymPy expressions
3
+
4
+ This module requires llvmlite (https://github.com/numba/llvmlite).
5
+ '''
6
+
7
+ import ctypes
8
+
9
+ from sympy.external import import_module
10
+ from sympy.printing.printer import Printer
11
+ from sympy.core.singleton import S
12
+ from sympy.tensor.indexed import IndexedBase
13
+ from sympy.utilities.decorator import doctest_depends_on
14
+
15
+ llvmlite = import_module('llvmlite')
16
+ if llvmlite:
17
+ ll = import_module('llvmlite.ir').ir
18
+ llvm = import_module('llvmlite.binding').binding
19
+ llvm.initialize()
20
+ llvm.initialize_native_target()
21
+ llvm.initialize_native_asmprinter()
22
+
23
+
24
+ __doctest_requires__ = {('llvm_callable'): ['llvmlite']}
25
+
26
+
27
+ class LLVMJitPrinter(Printer):
28
+ '''Convert expressions to LLVM IR'''
29
+ def __init__(self, module, builder, fn, *args, **kwargs):
30
+ self.func_arg_map = kwargs.pop("func_arg_map", {})
31
+ if not llvmlite:
32
+ raise ImportError("llvmlite is required for LLVMJITPrinter")
33
+ super().__init__(*args, **kwargs)
34
+ self.fp_type = ll.DoubleType()
35
+ self.module = module
36
+ self.builder = builder
37
+ self.fn = fn
38
+ self.ext_fn = {} # keep track of wrappers to external functions
39
+ self.tmp_var = {}
40
+
41
+ def _add_tmp_var(self, name, value):
42
+ self.tmp_var[name] = value
43
+
44
+ def _print_Number(self, n):
45
+ return ll.Constant(self.fp_type, float(n))
46
+
47
+ def _print_Integer(self, expr):
48
+ return ll.Constant(self.fp_type, float(expr.p))
49
+
50
+ def _print_Symbol(self, s):
51
+ val = self.tmp_var.get(s)
52
+ if not val:
53
+ # look up parameter with name s
54
+ val = self.func_arg_map.get(s)
55
+ if not val:
56
+ raise LookupError("Symbol not found: %s" % s)
57
+ return val
58
+
59
+ def _print_Pow(self, expr):
60
+ base0 = self._print(expr.base)
61
+ if expr.exp == S.NegativeOne:
62
+ return self.builder.fdiv(ll.Constant(self.fp_type, 1.0), base0)
63
+ if expr.exp == S.Half:
64
+ fn = self.ext_fn.get("sqrt")
65
+ if not fn:
66
+ fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
67
+ fn = ll.Function(self.module, fn_type, "sqrt")
68
+ self.ext_fn["sqrt"] = fn
69
+ return self.builder.call(fn, [base0], "sqrt")
70
+ if expr.exp == 2:
71
+ return self.builder.fmul(base0, base0)
72
+
73
+ exp0 = self._print(expr.exp)
74
+ fn = self.ext_fn.get("pow")
75
+ if not fn:
76
+ fn_type = ll.FunctionType(self.fp_type, [self.fp_type, self.fp_type])
77
+ fn = ll.Function(self.module, fn_type, "pow")
78
+ self.ext_fn["pow"] = fn
79
+ return self.builder.call(fn, [base0, exp0], "pow")
80
+
81
+ def _print_Mul(self, expr):
82
+ nodes = [self._print(a) for a in expr.args]
83
+ e = nodes[0]
84
+ for node in nodes[1:]:
85
+ e = self.builder.fmul(e, node)
86
+ return e
87
+
88
+ def _print_Add(self, expr):
89
+ nodes = [self._print(a) for a in expr.args]
90
+ e = nodes[0]
91
+ for node in nodes[1:]:
92
+ e = self.builder.fadd(e, node)
93
+ return e
94
+
95
+ # TODO - assumes all called functions take one double precision argument.
96
+ # Should have a list of math library functions to validate this.
97
+ def _print_Function(self, expr):
98
+ name = expr.func.__name__
99
+ e0 = self._print(expr.args[0])
100
+ fn = self.ext_fn.get(name)
101
+ if not fn:
102
+ fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
103
+ fn = ll.Function(self.module, fn_type, name)
104
+ self.ext_fn[name] = fn
105
+ return self.builder.call(fn, [e0], name)
106
+
107
+ def emptyPrinter(self, expr):
108
+ raise TypeError("Unsupported type for LLVM JIT conversion: %s"
109
+ % type(expr))
110
+
111
+
112
+ # Used when parameters are passed by array. Often used in callbacks to
113
+ # handle a variable number of parameters.
114
+ class LLVMJitCallbackPrinter(LLVMJitPrinter):
115
+ def __init__(self, *args, **kwargs):
116
+ super().__init__(*args, **kwargs)
117
+
118
+ def _print_Indexed(self, expr):
119
+ array, idx = self.func_arg_map[expr.base]
120
+ offset = int(expr.indices[0].evalf())
121
+ array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), offset)])
122
+ fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type))
123
+ value = self.builder.load(fp_array_ptr)
124
+ return value
125
+
126
+ def _print_Symbol(self, s):
127
+ val = self.tmp_var.get(s)
128
+ if val:
129
+ return val
130
+
131
+ array, idx = self.func_arg_map.get(s, [None, 0])
132
+ if not array:
133
+ raise LookupError("Symbol not found: %s" % s)
134
+ array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), idx)])
135
+ fp_array_ptr = self.builder.bitcast(array_ptr,
136
+ ll.PointerType(self.fp_type))
137
+ value = self.builder.load(fp_array_ptr)
138
+ return value
139
+
140
+
141
+ # ensure lifetime of the execution engine persists (else call to compiled
142
+ # function will seg fault)
143
+ exe_engines = []
144
+
145
+ # ensure names for generated functions are unique
146
+ link_names = set()
147
+ current_link_suffix = 0
148
+
149
+
150
+ class LLVMJitCode:
151
+ def __init__(self, signature):
152
+ self.signature = signature
153
+ self.fp_type = ll.DoubleType()
154
+ self.module = ll.Module('mod1')
155
+ self.fn = None
156
+ self.llvm_arg_types = []
157
+ self.llvm_ret_type = self.fp_type
158
+ self.param_dict = {} # map symbol name to LLVM function argument
159
+ self.link_name = ''
160
+
161
+ def _from_ctype(self, ctype):
162
+ if ctype == ctypes.c_int:
163
+ return ll.IntType(32)
164
+ if ctype == ctypes.c_double:
165
+ return self.fp_type
166
+ if ctype == ctypes.POINTER(ctypes.c_double):
167
+ return ll.PointerType(self.fp_type)
168
+ if ctype == ctypes.c_void_p:
169
+ return ll.PointerType(ll.IntType(32))
170
+ if ctype == ctypes.py_object:
171
+ return ll.PointerType(ll.IntType(32))
172
+
173
+ print("Unhandled ctype = %s" % str(ctype))
174
+
175
+ def _create_args(self, func_args):
176
+ """Create types for function arguments"""
177
+ self.llvm_ret_type = self._from_ctype(self.signature.ret_type)
178
+ self.llvm_arg_types = \
179
+ [self._from_ctype(a) for a in self.signature.arg_ctypes]
180
+
181
+ def _create_function_base(self):
182
+ """Create function with name and type signature"""
183
+ global link_names, current_link_suffix
184
+ default_link_name = 'jit_func'
185
+ current_link_suffix += 1
186
+ self.link_name = default_link_name + str(current_link_suffix)
187
+ link_names.add(self.link_name)
188
+
189
+ fn_type = ll.FunctionType(self.llvm_ret_type, self.llvm_arg_types)
190
+ self.fn = ll.Function(self.module, fn_type, name=self.link_name)
191
+
192
+ def _create_param_dict(self, func_args):
193
+ """Mapping of symbolic values to function arguments"""
194
+ for i, a in enumerate(func_args):
195
+ self.fn.args[i].name = str(a)
196
+ self.param_dict[a] = self.fn.args[i]
197
+
198
+ def _create_function(self, expr):
199
+ """Create function body and return LLVM IR"""
200
+ bb_entry = self.fn.append_basic_block('entry')
201
+ builder = ll.IRBuilder(bb_entry)
202
+
203
+ lj = LLVMJitPrinter(self.module, builder, self.fn,
204
+ func_arg_map=self.param_dict)
205
+
206
+ ret = self._convert_expr(lj, expr)
207
+ lj.builder.ret(self._wrap_return(lj, ret))
208
+
209
+ strmod = str(self.module)
210
+ return strmod
211
+
212
+ def _wrap_return(self, lj, vals):
213
+ # Return a single double if there is one return value,
214
+ # else return a tuple of doubles.
215
+
216
+ # Don't wrap return value in this case
217
+ if self.signature.ret_type == ctypes.c_double:
218
+ return vals[0]
219
+
220
+ # Use this instead of a real PyObject*
221
+ void_ptr = ll.PointerType(ll.IntType(32))
222
+
223
+ # Create a wrapped double: PyObject* PyFloat_FromDouble(double v)
224
+ wrap_type = ll.FunctionType(void_ptr, [self.fp_type])
225
+ wrap_fn = ll.Function(lj.module, wrap_type, "PyFloat_FromDouble")
226
+
227
+ wrapped_vals = [lj.builder.call(wrap_fn, [v]) for v in vals]
228
+ if len(vals) == 1:
229
+ final_val = wrapped_vals[0]
230
+ else:
231
+ # Create a tuple: PyObject* PyTuple_Pack(Py_ssize_t n, ...)
232
+
233
+ # This should be Py_ssize_t
234
+ tuple_arg_types = [ll.IntType(32)]
235
+
236
+ tuple_arg_types.extend([void_ptr]*len(vals))
237
+ tuple_type = ll.FunctionType(void_ptr, tuple_arg_types)
238
+ tuple_fn = ll.Function(lj.module, tuple_type, "PyTuple_Pack")
239
+
240
+ tuple_args = [ll.Constant(ll.IntType(32), len(wrapped_vals))]
241
+ tuple_args.extend(wrapped_vals)
242
+
243
+ final_val = lj.builder.call(tuple_fn, tuple_args)
244
+
245
+ return final_val
246
+
247
+ def _convert_expr(self, lj, expr):
248
+ try:
249
+ # Match CSE return data structure.
250
+ if len(expr) == 2:
251
+ tmp_exprs = expr[0]
252
+ final_exprs = expr[1]
253
+ if len(final_exprs) != 1 and self.signature.ret_type == ctypes.c_double:
254
+ raise NotImplementedError("Return of multiple expressions not supported for this callback")
255
+ for name, e in tmp_exprs:
256
+ val = lj._print(e)
257
+ lj._add_tmp_var(name, val)
258
+ except TypeError:
259
+ final_exprs = [expr]
260
+
261
+ vals = [lj._print(e) for e in final_exprs]
262
+
263
+ return vals
264
+
265
+ def _compile_function(self, strmod):
266
+ global exe_engines
267
+ llmod = llvm.parse_assembly(strmod)
268
+
269
+ pmb = llvm.create_pass_manager_builder()
270
+ pmb.opt_level = 2
271
+ pass_manager = llvm.create_module_pass_manager()
272
+ pmb.populate(pass_manager)
273
+
274
+ pass_manager.run(llmod)
275
+
276
+ target_machine = \
277
+ llvm.Target.from_default_triple().create_target_machine()
278
+ exe_eng = llvm.create_mcjit_compiler(llmod, target_machine)
279
+ exe_eng.finalize_object()
280
+ exe_engines.append(exe_eng)
281
+
282
+ if False:
283
+ print("Assembly")
284
+ print(target_machine.emit_assembly(llmod))
285
+
286
+ fptr = exe_eng.get_function_address(self.link_name)
287
+
288
+ return fptr
289
+
290
+
291
+ class LLVMJitCodeCallback(LLVMJitCode):
292
+ def __init__(self, signature):
293
+ super().__init__(signature)
294
+
295
+ def _create_param_dict(self, func_args):
296
+ for i, a in enumerate(func_args):
297
+ if isinstance(a, IndexedBase):
298
+ self.param_dict[a] = (self.fn.args[i], i)
299
+ self.fn.args[i].name = str(a)
300
+ else:
301
+ self.param_dict[a] = (self.fn.args[self.signature.input_arg],
302
+ i)
303
+
304
+ def _create_function(self, expr):
305
+ """Create function body and return LLVM IR"""
306
+ bb_entry = self.fn.append_basic_block('entry')
307
+ builder = ll.IRBuilder(bb_entry)
308
+
309
+ lj = LLVMJitCallbackPrinter(self.module, builder, self.fn,
310
+ func_arg_map=self.param_dict)
311
+
312
+ ret = self._convert_expr(lj, expr)
313
+
314
+ if self.signature.ret_arg:
315
+ output_fp_ptr = builder.bitcast(self.fn.args[self.signature.ret_arg],
316
+ ll.PointerType(self.fp_type))
317
+ for i, val in enumerate(ret):
318
+ index = ll.Constant(ll.IntType(32), i)
319
+ output_array_ptr = builder.gep(output_fp_ptr, [index])
320
+ builder.store(val, output_array_ptr)
321
+ builder.ret(ll.Constant(ll.IntType(32), 0)) # return success
322
+ else:
323
+ lj.builder.ret(self._wrap_return(lj, ret))
324
+
325
+ strmod = str(self.module)
326
+ return strmod
327
+
328
+
329
+ class CodeSignature:
330
+ def __init__(self, ret_type):
331
+ self.ret_type = ret_type
332
+ self.arg_ctypes = []
333
+
334
+ # Input argument array element index
335
+ self.input_arg = 0
336
+
337
+ # For the case output value is referenced through a parameter rather
338
+ # than the return value
339
+ self.ret_arg = None
340
+
341
+
342
+ def _llvm_jit_code(args, expr, signature, callback_type):
343
+ """Create a native code function from a SymPy expression"""
344
+ if callback_type is None:
345
+ jit = LLVMJitCode(signature)
346
+ else:
347
+ jit = LLVMJitCodeCallback(signature)
348
+
349
+ jit._create_args(args)
350
+ jit._create_function_base()
351
+ jit._create_param_dict(args)
352
+ strmod = jit._create_function(expr)
353
+ if False:
354
+ print("LLVM IR")
355
+ print(strmod)
356
+ fptr = jit._compile_function(strmod)
357
+ return fptr
358
+
359
+
360
+ @doctest_depends_on(modules=('llvmlite', 'scipy'))
361
+ def llvm_callable(args, expr, callback_type=None):
362
+ '''Compile function from a SymPy expression
363
+
364
+ Expressions are evaluated using double precision arithmetic.
365
+ Some single argument math functions (exp, sin, cos, etc.) are supported
366
+ in expressions.
367
+
368
+ Parameters
369
+ ==========
370
+
371
+ args : List of Symbol
372
+ Arguments to the generated function. Usually the free symbols in
373
+ the expression. Currently each one is assumed to convert to
374
+ a double precision scalar.
375
+ expr : Expr, or (Replacements, Expr) as returned from 'cse'
376
+ Expression to compile.
377
+ callback_type : string
378
+ Create function with signature appropriate to use as a callback.
379
+ Currently supported:
380
+ 'scipy.integrate'
381
+ 'scipy.integrate.test'
382
+ 'cubature'
383
+
384
+ Returns
385
+ =======
386
+
387
+ Compiled function that can evaluate the expression.
388
+
389
+ Examples
390
+ ========
391
+
392
+ >>> import sympy.printing.llvmjitcode as jit
393
+ >>> from sympy.abc import a
394
+ >>> e = a*a + a + 1
395
+ >>> e1 = jit.llvm_callable([a], e)
396
+ >>> e.subs(a, 1.1) # Evaluate via substitution
397
+ 3.31000000000000
398
+ >>> e1(1.1) # Evaluate using JIT-compiled code
399
+ 3.3100000000000005
400
+
401
+
402
+ Callbacks for integration functions can be JIT compiled.
403
+ >>> import sympy.printing.llvmjitcode as jit
404
+ >>> from sympy.abc import a
405
+ >>> from sympy import integrate
406
+ >>> from scipy.integrate import quad
407
+ >>> e = a*a
408
+ >>> e1 = jit.llvm_callable([a], e, callback_type='scipy.integrate')
409
+ >>> integrate(e, (a, 0.0, 2.0))
410
+ 2.66666666666667
411
+ >>> quad(e1, 0.0, 2.0)[0]
412
+ 2.66666666666667
413
+
414
+ The 'cubature' callback is for the Python wrapper around the
415
+ cubature package ( https://github.com/saullocastro/cubature )
416
+ and ( http://ab-initio.mit.edu/wiki/index.php/Cubature )
417
+
418
+ There are two signatures for the SciPy integration callbacks.
419
+ The first ('scipy.integrate') is the function to be passed to the
420
+ integration routine, and will pass the signature checks.
421
+ The second ('scipy.integrate.test') is only useful for directly calling
422
+ the function using ctypes variables. It will not pass the signature checks
423
+ for scipy.integrate.
424
+
425
+ The return value from the cse module can also be compiled. This
426
+ can improve the performance of the compiled function. If multiple
427
+ expressions are given to cse, the compiled function returns a tuple.
428
+ The 'cubature' callback handles multiple expressions (set `fdim`
429
+ to match in the integration call.)
430
+ >>> import sympy.printing.llvmjitcode as jit
431
+ >>> from sympy import cse
432
+ >>> from sympy.abc import x,y
433
+ >>> e1 = x*x + y*y
434
+ >>> e2 = 4*(x*x + y*y) + 8.0
435
+ >>> after_cse = cse([e1,e2])
436
+ >>> after_cse
437
+ ([(x0, x**2), (x1, y**2)], [x0 + x1, 4*x0 + 4*x1 + 8.0])
438
+ >>> j1 = jit.llvm_callable([x,y], after_cse)
439
+ >>> j1(1.0, 2.0)
440
+ (5.0, 28.0)
441
+ '''
442
+
443
+ if not llvmlite:
444
+ raise ImportError("llvmlite is required for llvmjitcode")
445
+
446
+ signature = CodeSignature(ctypes.py_object)
447
+
448
+ arg_ctypes = []
449
+ if callback_type is None:
450
+ for _ in args:
451
+ arg_ctype = ctypes.c_double
452
+ arg_ctypes.append(arg_ctype)
453
+ elif callback_type in ('scipy.integrate', 'scipy.integrate.test'):
454
+ signature.ret_type = ctypes.c_double
455
+ arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
456
+ arg_ctypes_formal = [ctypes.c_int, ctypes.c_double]
457
+ signature.input_arg = 1
458
+ elif callback_type == 'cubature':
459
+ arg_ctypes = [ctypes.c_int,
460
+ ctypes.POINTER(ctypes.c_double),
461
+ ctypes.c_void_p,
462
+ ctypes.c_int,
463
+ ctypes.POINTER(ctypes.c_double)
464
+ ]
465
+ signature.ret_type = ctypes.c_int
466
+ signature.input_arg = 1
467
+ signature.ret_arg = 4
468
+ else:
469
+ raise ValueError("Unknown callback type: %s" % callback_type)
470
+
471
+ signature.arg_ctypes = arg_ctypes
472
+
473
+ fptr = _llvm_jit_code(args, expr, signature, callback_type)
474
+
475
+ if callback_type and callback_type == 'scipy.integrate':
476
+ arg_ctypes = arg_ctypes_formal
477
+
478
+ # PYFUNCTYPE holds the GIL which is needed to prevent a segfault when
479
+ # calling PyFloat_FromDouble on Python 3.10. Probably it is better to use
480
+ # ctypes.c_double when returning a float rather than using ctypes.py_object
481
+ # and returning a PyFloat from inside the jitted function (i.e. let ctypes
482
+ # handle the conversion from double to PyFloat).
483
+ if signature.ret_type == ctypes.py_object:
484
+ FUNCTYPE = ctypes.PYFUNCTYPE
485
+ else:
486
+ FUNCTYPE = ctypes.CFUNCTYPE
487
+
488
+ cfunc = FUNCTYPE(signature.ret_type, *arg_ctypes)(fptr)
489
+ return cfunc
venv/lib/python3.10/site-packages/sympy/printing/mathematica.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Mathematica code printer
3
+ """
4
+
5
+ from __future__ import annotations
6
+ from typing import Any
7
+
8
+ from sympy.core import Basic, Expr, Float
9
+ from sympy.core.sorting import default_sort_key
10
+
11
+ from sympy.printing.codeprinter import CodePrinter
12
+ from sympy.printing.precedence import precedence
13
+
14
+ # Used in MCodePrinter._print_Function(self)
15
+ known_functions = {
16
+ "exp": [(lambda x: True, "Exp")],
17
+ "log": [(lambda x: True, "Log")],
18
+ "sin": [(lambda x: True, "Sin")],
19
+ "cos": [(lambda x: True, "Cos")],
20
+ "tan": [(lambda x: True, "Tan")],
21
+ "cot": [(lambda x: True, "Cot")],
22
+ "sec": [(lambda x: True, "Sec")],
23
+ "csc": [(lambda x: True, "Csc")],
24
+ "asin": [(lambda x: True, "ArcSin")],
25
+ "acos": [(lambda x: True, "ArcCos")],
26
+ "atan": [(lambda x: True, "ArcTan")],
27
+ "acot": [(lambda x: True, "ArcCot")],
28
+ "asec": [(lambda x: True, "ArcSec")],
29
+ "acsc": [(lambda x: True, "ArcCsc")],
30
+ "atan2": [(lambda *x: True, "ArcTan")],
31
+ "sinh": [(lambda x: True, "Sinh")],
32
+ "cosh": [(lambda x: True, "Cosh")],
33
+ "tanh": [(lambda x: True, "Tanh")],
34
+ "coth": [(lambda x: True, "Coth")],
35
+ "sech": [(lambda x: True, "Sech")],
36
+ "csch": [(lambda x: True, "Csch")],
37
+ "asinh": [(lambda x: True, "ArcSinh")],
38
+ "acosh": [(lambda x: True, "ArcCosh")],
39
+ "atanh": [(lambda x: True, "ArcTanh")],
40
+ "acoth": [(lambda x: True, "ArcCoth")],
41
+ "asech": [(lambda x: True, "ArcSech")],
42
+ "acsch": [(lambda x: True, "ArcCsch")],
43
+ "sinc": [(lambda x: True, "Sinc")],
44
+ "conjugate": [(lambda x: True, "Conjugate")],
45
+ "Max": [(lambda *x: True, "Max")],
46
+ "Min": [(lambda *x: True, "Min")],
47
+ "erf": [(lambda x: True, "Erf")],
48
+ "erf2": [(lambda *x: True, "Erf")],
49
+ "erfc": [(lambda x: True, "Erfc")],
50
+ "erfi": [(lambda x: True, "Erfi")],
51
+ "erfinv": [(lambda x: True, "InverseErf")],
52
+ "erfcinv": [(lambda x: True, "InverseErfc")],
53
+ "erf2inv": [(lambda *x: True, "InverseErf")],
54
+ "expint": [(lambda *x: True, "ExpIntegralE")],
55
+ "Ei": [(lambda x: True, "ExpIntegralEi")],
56
+ "fresnelc": [(lambda x: True, "FresnelC")],
57
+ "fresnels": [(lambda x: True, "FresnelS")],
58
+ "gamma": [(lambda x: True, "Gamma")],
59
+ "uppergamma": [(lambda *x: True, "Gamma")],
60
+ "polygamma": [(lambda *x: True, "PolyGamma")],
61
+ "loggamma": [(lambda x: True, "LogGamma")],
62
+ "beta": [(lambda *x: True, "Beta")],
63
+ "Ci": [(lambda x: True, "CosIntegral")],
64
+ "Si": [(lambda x: True, "SinIntegral")],
65
+ "Chi": [(lambda x: True, "CoshIntegral")],
66
+ "Shi": [(lambda x: True, "SinhIntegral")],
67
+ "li": [(lambda x: True, "LogIntegral")],
68
+ "factorial": [(lambda x: True, "Factorial")],
69
+ "factorial2": [(lambda x: True, "Factorial2")],
70
+ "subfactorial": [(lambda x: True, "Subfactorial")],
71
+ "catalan": [(lambda x: True, "CatalanNumber")],
72
+ "harmonic": [(lambda *x: True, "HarmonicNumber")],
73
+ "lucas": [(lambda x: True, "LucasL")],
74
+ "RisingFactorial": [(lambda *x: True, "Pochhammer")],
75
+ "FallingFactorial": [(lambda *x: True, "FactorialPower")],
76
+ "laguerre": [(lambda *x: True, "LaguerreL")],
77
+ "assoc_laguerre": [(lambda *x: True, "LaguerreL")],
78
+ "hermite": [(lambda *x: True, "HermiteH")],
79
+ "jacobi": [(lambda *x: True, "JacobiP")],
80
+ "gegenbauer": [(lambda *x: True, "GegenbauerC")],
81
+ "chebyshevt": [(lambda *x: True, "ChebyshevT")],
82
+ "chebyshevu": [(lambda *x: True, "ChebyshevU")],
83
+ "legendre": [(lambda *x: True, "LegendreP")],
84
+ "assoc_legendre": [(lambda *x: True, "LegendreP")],
85
+ "mathieuc": [(lambda *x: True, "MathieuC")],
86
+ "mathieus": [(lambda *x: True, "MathieuS")],
87
+ "mathieucprime": [(lambda *x: True, "MathieuCPrime")],
88
+ "mathieusprime": [(lambda *x: True, "MathieuSPrime")],
89
+ "stieltjes": [(lambda x: True, "StieltjesGamma")],
90
+ "elliptic_e": [(lambda *x: True, "EllipticE")],
91
+ "elliptic_f": [(lambda *x: True, "EllipticE")],
92
+ "elliptic_k": [(lambda x: True, "EllipticK")],
93
+ "elliptic_pi": [(lambda *x: True, "EllipticPi")],
94
+ "zeta": [(lambda *x: True, "Zeta")],
95
+ "dirichlet_eta": [(lambda x: True, "DirichletEta")],
96
+ "riemann_xi": [(lambda x: True, "RiemannXi")],
97
+ "besseli": [(lambda *x: True, "BesselI")],
98
+ "besselj": [(lambda *x: True, "BesselJ")],
99
+ "besselk": [(lambda *x: True, "BesselK")],
100
+ "bessely": [(lambda *x: True, "BesselY")],
101
+ "hankel1": [(lambda *x: True, "HankelH1")],
102
+ "hankel2": [(lambda *x: True, "HankelH2")],
103
+ "airyai": [(lambda x: True, "AiryAi")],
104
+ "airybi": [(lambda x: True, "AiryBi")],
105
+ "airyaiprime": [(lambda x: True, "AiryAiPrime")],
106
+ "airybiprime": [(lambda x: True, "AiryBiPrime")],
107
+ "polylog": [(lambda *x: True, "PolyLog")],
108
+ "lerchphi": [(lambda *x: True, "LerchPhi")],
109
+ "gcd": [(lambda *x: True, "GCD")],
110
+ "lcm": [(lambda *x: True, "LCM")],
111
+ "jn": [(lambda *x: True, "SphericalBesselJ")],
112
+ "yn": [(lambda *x: True, "SphericalBesselY")],
113
+ "hyper": [(lambda *x: True, "HypergeometricPFQ")],
114
+ "meijerg": [(lambda *x: True, "MeijerG")],
115
+ "appellf1": [(lambda *x: True, "AppellF1")],
116
+ "DiracDelta": [(lambda x: True, "DiracDelta")],
117
+ "Heaviside": [(lambda x: True, "HeavisideTheta")],
118
+ "KroneckerDelta": [(lambda *x: True, "KroneckerDelta")],
119
+ "sqrt": [(lambda x: True, "Sqrt")], # For automatic rewrites
120
+ }
121
+
122
+
123
+ class MCodePrinter(CodePrinter):
124
+ """A printer to convert Python expressions to
125
+ strings of the Wolfram's Mathematica code
126
+ """
127
+ printmethod = "_mcode"
128
+ language = "Wolfram Language"
129
+
130
+ _default_settings: dict[str, Any] = {
131
+ 'order': None,
132
+ 'full_prec': 'auto',
133
+ 'precision': 15,
134
+ 'user_functions': {},
135
+ 'human': True,
136
+ 'allow_unknown_functions': False,
137
+ }
138
+
139
+ _number_symbols: set[tuple[Expr, Float]] = set()
140
+ _not_supported: set[Basic] = set()
141
+
142
+ def __init__(self, settings={}):
143
+ """Register function mappings supplied by user"""
144
+ CodePrinter.__init__(self, settings)
145
+ self.known_functions = dict(known_functions)
146
+ userfuncs = settings.get('user_functions', {}).copy()
147
+ for k, v in userfuncs.items():
148
+ if not isinstance(v, list):
149
+ userfuncs[k] = [(lambda *x: True, v)]
150
+ self.known_functions.update(userfuncs)
151
+
152
+ def _format_code(self, lines):
153
+ return lines
154
+
155
+ def _print_Pow(self, expr):
156
+ PREC = precedence(expr)
157
+ return '%s^%s' % (self.parenthesize(expr.base, PREC),
158
+ self.parenthesize(expr.exp, PREC))
159
+
160
+ def _print_Mul(self, expr):
161
+ PREC = precedence(expr)
162
+ c, nc = expr.args_cnc()
163
+ res = super()._print_Mul(expr.func(*c))
164
+ if nc:
165
+ res += '*'
166
+ res += '**'.join(self.parenthesize(a, PREC) for a in nc)
167
+ return res
168
+
169
+ def _print_Relational(self, expr):
170
+ lhs_code = self._print(expr.lhs)
171
+ rhs_code = self._print(expr.rhs)
172
+ op = expr.rel_op
173
+ return "{} {} {}".format(lhs_code, op, rhs_code)
174
+
175
+ # Primitive numbers
176
+ def _print_Zero(self, expr):
177
+ return '0'
178
+
179
+ def _print_One(self, expr):
180
+ return '1'
181
+
182
+ def _print_NegativeOne(self, expr):
183
+ return '-1'
184
+
185
+ def _print_Half(self, expr):
186
+ return '1/2'
187
+
188
+ def _print_ImaginaryUnit(self, expr):
189
+ return 'I'
190
+
191
+
192
+ # Infinity and invalid numbers
193
+ def _print_Infinity(self, expr):
194
+ return 'Infinity'
195
+
196
+ def _print_NegativeInfinity(self, expr):
197
+ return '-Infinity'
198
+
199
+ def _print_ComplexInfinity(self, expr):
200
+ return 'ComplexInfinity'
201
+
202
+ def _print_NaN(self, expr):
203
+ return 'Indeterminate'
204
+
205
+
206
+ # Mathematical constants
207
+ def _print_Exp1(self, expr):
208
+ return 'E'
209
+
210
+ def _print_Pi(self, expr):
211
+ return 'Pi'
212
+
213
+ def _print_GoldenRatio(self, expr):
214
+ return 'GoldenRatio'
215
+
216
+ def _print_TribonacciConstant(self, expr):
217
+ expanded = expr.expand(func=True)
218
+ PREC = precedence(expr)
219
+ return self.parenthesize(expanded, PREC)
220
+
221
+ def _print_EulerGamma(self, expr):
222
+ return 'EulerGamma'
223
+
224
+ def _print_Catalan(self, expr):
225
+ return 'Catalan'
226
+
227
+
228
+ def _print_list(self, expr):
229
+ return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
230
+ _print_tuple = _print_list
231
+ _print_Tuple = _print_list
232
+
233
+ def _print_ImmutableDenseMatrix(self, expr):
234
+ return self.doprint(expr.tolist())
235
+
236
+ def _print_ImmutableSparseMatrix(self, expr):
237
+
238
+ def print_rule(pos, val):
239
+ return '{} -> {}'.format(
240
+ self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val))
241
+
242
+ def print_data():
243
+ items = sorted(expr.todok().items(), key=default_sort_key)
244
+ return '{' + \
245
+ ', '.join(print_rule(k, v) for k, v in items) + \
246
+ '}'
247
+
248
+ def print_dims():
249
+ return self.doprint(expr.shape)
250
+
251
+ return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
252
+
253
+ def _print_ImmutableDenseNDimArray(self, expr):
254
+ return self.doprint(expr.tolist())
255
+
256
+ def _print_ImmutableSparseNDimArray(self, expr):
257
+ def print_string_list(string_list):
258
+ return '{' + ', '.join(a for a in string_list) + '}'
259
+
260
+ def to_mathematica_index(*args):
261
+ """Helper function to change Python style indexing to
262
+ Pathematica indexing.
263
+
264
+ Python indexing (0, 1 ... n-1)
265
+ -> Mathematica indexing (1, 2 ... n)
266
+ """
267
+ return tuple(i + 1 for i in args)
268
+
269
+ def print_rule(pos, val):
270
+ """Helper function to print a rule of Mathematica"""
271
+ return '{} -> {}'.format(self.doprint(pos), self.doprint(val))
272
+
273
+ def print_data():
274
+ """Helper function to print data part of Mathematica
275
+ sparse array.
276
+
277
+ It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
278
+ from
279
+ https://reference.wolfram.com/language/ref/SparseArray.html
280
+
281
+ ``data`` must be formatted with rule.
282
+ """
283
+ return print_string_list(
284
+ [print_rule(
285
+ to_mathematica_index(*(expr._get_tuple_index(key))),
286
+ value)
287
+ for key, value in sorted(expr._sparse_array.items())]
288
+ )
289
+
290
+ def print_dims():
291
+ """Helper function to print dimensions part of Mathematica
292
+ sparse array.
293
+
294
+ It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
295
+ from
296
+ https://reference.wolfram.com/language/ref/SparseArray.html
297
+ """
298
+ return self.doprint(expr.shape)
299
+
300
+ return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
301
+
302
+ def _print_Function(self, expr):
303
+ if expr.func.__name__ in self.known_functions:
304
+ cond_mfunc = self.known_functions[expr.func.__name__]
305
+ for cond, mfunc in cond_mfunc:
306
+ if cond(*expr.args):
307
+ return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
308
+ elif expr.func.__name__ in self._rewriteable_functions:
309
+ # Simple rewrite to supported function possible
310
+ target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
311
+ if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
312
+ return self._print(expr.rewrite(target_f))
313
+ return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")
314
+
315
+ _print_MinMaxBase = _print_Function
316
+
317
+ def _print_LambertW(self, expr):
318
+ if len(expr.args) == 1:
319
+ return "ProductLog[{}]".format(self._print(expr.args[0]))
320
+ return "ProductLog[{}, {}]".format(
321
+ self._print(expr.args[1]), self._print(expr.args[0]))
322
+
323
+ def _print_Integral(self, expr):
324
+ if len(expr.variables) == 1 and not expr.limits[0][1:]:
325
+ args = [expr.args[0], expr.variables[0]]
326
+ else:
327
+ args = expr.args
328
+ return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"
329
+
330
+ def _print_Sum(self, expr):
331
+ return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
332
+
333
+ def _print_Derivative(self, expr):
334
+ dexpr = expr.expr
335
+ dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
336
+ return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]"
337
+
338
+
339
+ def _get_comment(self, text):
340
+ return "(* {} *)".format(text)
341
+
342
+
343
+ def mathematica_code(expr, **settings):
344
+ r"""Converts an expr to a string of the Wolfram Mathematica code
345
+
346
+ Examples
347
+ ========
348
+
349
+ >>> from sympy import mathematica_code as mcode, symbols, sin
350
+ >>> x = symbols('x')
351
+ >>> mcode(sin(x).series(x).removeO())
352
+ '(1/120)*x^5 - 1/6*x^3 + x'
353
+ """
354
+ return MCodePrinter(settings).doprint(expr)
venv/lib/python3.10/site-packages/sympy/printing/octave.py ADDED
@@ -0,0 +1,719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Octave (and Matlab) code printer
3
+
4
+ The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
5
+ It uses a subset of the Octave language for Matlab compatibility.
6
+
7
+ A complete code generator, which uses `octave_code` extensively, can be found
8
+ in `sympy.utilities.codegen`. The `codegen` module can be used to generate
9
+ complete source code files.
10
+
11
+ """
12
+
13
+ from __future__ import annotations
14
+ from typing import Any
15
+
16
+ from sympy.core import Mul, Pow, S, Rational
17
+ from sympy.core.mul import _keep_coeff
18
+ from sympy.core.numbers import equal_valued
19
+ from sympy.printing.codeprinter import CodePrinter
20
+ from sympy.printing.precedence import precedence, PRECEDENCE
21
+ from re import search
22
+
23
+ # List of known functions. First, those that have the same name in
24
+ # SymPy and Octave. This is almost certainly incomplete!
25
+ known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
26
+ "asin", "acos", "acot", "atan", "atan2", "asec", "acsc",
27
+ "sinh", "cosh", "tanh", "coth", "csch", "sech",
28
+ "asinh", "acosh", "atanh", "acoth", "asech", "acsch",
29
+ "erfc", "erfi", "erf", "erfinv", "erfcinv",
30
+ "besseli", "besselj", "besselk", "bessely",
31
+ "bernoulli", "beta", "euler", "exp", "factorial", "floor",
32
+ "fresnelc", "fresnels", "gamma", "harmonic", "log",
33
+ "polylog", "sign", "zeta", "legendre"]
34
+
35
+ # These functions have different names ("SymPy": "Octave"), more
36
+ # generally a mapping to (argument_conditions, octave_function).
37
+ known_fcns_src2 = {
38
+ "Abs": "abs",
39
+ "arg": "angle", # arg/angle ok in Octave but only angle in Matlab
40
+ "binomial": "bincoeff",
41
+ "ceiling": "ceil",
42
+ "chebyshevu": "chebyshevU",
43
+ "chebyshevt": "chebyshevT",
44
+ "Chi": "coshint",
45
+ "Ci": "cosint",
46
+ "conjugate": "conj",
47
+ "DiracDelta": "dirac",
48
+ "Heaviside": "heaviside",
49
+ "im": "imag",
50
+ "laguerre": "laguerreL",
51
+ "LambertW": "lambertw",
52
+ "li": "logint",
53
+ "loggamma": "gammaln",
54
+ "Max": "max",
55
+ "Min": "min",
56
+ "Mod": "mod",
57
+ "polygamma": "psi",
58
+ "re": "real",
59
+ "RisingFactorial": "pochhammer",
60
+ "Shi": "sinhint",
61
+ "Si": "sinint",
62
+ }
63
+
64
+
65
+ class OctaveCodePrinter(CodePrinter):
66
+ """
67
+ A printer to convert expressions to strings of Octave/Matlab code.
68
+ """
69
+ printmethod = "_octave"
70
+ language = "Octave"
71
+
72
+ _operators = {
73
+ 'and': '&',
74
+ 'or': '|',
75
+ 'not': '~',
76
+ }
77
+
78
+ _default_settings: dict[str, Any] = {
79
+ 'order': None,
80
+ 'full_prec': 'auto',
81
+ 'precision': 17,
82
+ 'user_functions': {},
83
+ 'human': True,
84
+ 'allow_unknown_functions': False,
85
+ 'contract': True,
86
+ 'inline': True,
87
+ }
88
+ # Note: contract is for expressing tensors as loops (if True), or just
89
+ # assignment (if False). FIXME: this should be looked a more carefully
90
+ # for Octave.
91
+
92
+
93
+ def __init__(self, settings={}):
94
+ super().__init__(settings)
95
+ self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
96
+ self.known_functions.update(dict(known_fcns_src2))
97
+ userfuncs = settings.get('user_functions', {})
98
+ self.known_functions.update(userfuncs)
99
+
100
+
101
+ def _rate_index_position(self, p):
102
+ return p*5
103
+
104
+
105
+ def _get_statement(self, codestring):
106
+ return "%s;" % codestring
107
+
108
+
109
+ def _get_comment(self, text):
110
+ return "% {}".format(text)
111
+
112
+
113
+ def _declare_number_const(self, name, value):
114
+ return "{} = {};".format(name, value)
115
+
116
+
117
+ def _format_code(self, lines):
118
+ return self.indent_code(lines)
119
+
120
+
121
+ def _traverse_matrix_indices(self, mat):
122
+ # Octave uses Fortran order (column-major)
123
+ rows, cols = mat.shape
124
+ return ((i, j) for j in range(cols) for i in range(rows))
125
+
126
+
127
+ def _get_loop_opening_ending(self, indices):
128
+ open_lines = []
129
+ close_lines = []
130
+ for i in indices:
131
+ # Octave arrays start at 1 and end at dimension
132
+ var, start, stop = map(self._print,
133
+ [i.label, i.lower + 1, i.upper + 1])
134
+ open_lines.append("for %s = %s:%s" % (var, start, stop))
135
+ close_lines.append("end")
136
+ return open_lines, close_lines
137
+
138
+
139
+ def _print_Mul(self, expr):
140
+ # print complex numbers nicely in Octave
141
+ if (expr.is_number and expr.is_imaginary and
142
+ (S.ImaginaryUnit*expr).is_Integer):
143
+ return "%si" % self._print(-S.ImaginaryUnit*expr)
144
+
145
+ # cribbed from str.py
146
+ prec = precedence(expr)
147
+
148
+ c, e = expr.as_coeff_Mul()
149
+ if c < 0:
150
+ expr = _keep_coeff(-c, e)
151
+ sign = "-"
152
+ else:
153
+ sign = ""
154
+
155
+ a = [] # items in the numerator
156
+ b = [] # items that are in the denominator (if any)
157
+
158
+ pow_paren = [] # Will collect all pow with more than one base element and exp = -1
159
+
160
+ if self.order not in ('old', 'none'):
161
+ args = expr.as_ordered_factors()
162
+ else:
163
+ # use make_args in case expr was something like -x -> x
164
+ args = Mul.make_args(expr)
165
+
166
+ # Gather args for numerator/denominator
167
+ for item in args:
168
+ if (item.is_commutative and item.is_Pow and item.exp.is_Rational
169
+ and item.exp.is_negative):
170
+ if item.exp != -1:
171
+ b.append(Pow(item.base, -item.exp, evaluate=False))
172
+ else:
173
+ if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
174
+ pow_paren.append(item)
175
+ b.append(Pow(item.base, -item.exp))
176
+ elif item.is_Rational and item is not S.Infinity:
177
+ if item.p != 1:
178
+ a.append(Rational(item.p))
179
+ if item.q != 1:
180
+ b.append(Rational(item.q))
181
+ else:
182
+ a.append(item)
183
+
184
+ a = a or [S.One]
185
+
186
+ a_str = [self.parenthesize(x, prec) for x in a]
187
+ b_str = [self.parenthesize(x, prec) for x in b]
188
+
189
+ # To parenthesize Pow with exp = -1 and having more than one Symbol
190
+ for item in pow_paren:
191
+ if item.base in b:
192
+ b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
193
+
194
+ # from here it differs from str.py to deal with "*" and ".*"
195
+ def multjoin(a, a_str):
196
+ # here we probably are assuming the constants will come first
197
+ r = a_str[0]
198
+ for i in range(1, len(a)):
199
+ mulsym = '*' if a[i-1].is_number else '.*'
200
+ r = r + mulsym + a_str[i]
201
+ return r
202
+
203
+ if not b:
204
+ return sign + multjoin(a, a_str)
205
+ elif len(b) == 1:
206
+ divsym = '/' if b[0].is_number else './'
207
+ return sign + multjoin(a, a_str) + divsym + b_str[0]
208
+ else:
209
+ divsym = '/' if all(bi.is_number for bi in b) else './'
210
+ return (sign + multjoin(a, a_str) +
211
+ divsym + "(%s)" % multjoin(b, b_str))
212
+
213
+ def _print_Relational(self, expr):
214
+ lhs_code = self._print(expr.lhs)
215
+ rhs_code = self._print(expr.rhs)
216
+ op = expr.rel_op
217
+ return "{} {} {}".format(lhs_code, op, rhs_code)
218
+
219
+ def _print_Pow(self, expr):
220
+ powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
221
+
222
+ PREC = precedence(expr)
223
+
224
+ if equal_valued(expr.exp, 0.5):
225
+ return "sqrt(%s)" % self._print(expr.base)
226
+
227
+ if expr.is_commutative:
228
+ if equal_valued(expr.exp, -0.5):
229
+ sym = '/' if expr.base.is_number else './'
230
+ return "1" + sym + "sqrt(%s)" % self._print(expr.base)
231
+ if equal_valued(expr.exp, -1):
232
+ sym = '/' if expr.base.is_number else './'
233
+ return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
234
+
235
+ return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
236
+ self.parenthesize(expr.exp, PREC))
237
+
238
+
239
+ def _print_MatPow(self, expr):
240
+ PREC = precedence(expr)
241
+ return '%s^%s' % (self.parenthesize(expr.base, PREC),
242
+ self.parenthesize(expr.exp, PREC))
243
+
244
+ def _print_MatrixSolve(self, expr):
245
+ PREC = precedence(expr)
246
+ return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC),
247
+ self.parenthesize(expr.vector, PREC))
248
+
249
+ def _print_Pi(self, expr):
250
+ return 'pi'
251
+
252
+
253
+ def _print_ImaginaryUnit(self, expr):
254
+ return "1i"
255
+
256
+
257
+ def _print_Exp1(self, expr):
258
+ return "exp(1)"
259
+
260
+
261
+ def _print_GoldenRatio(self, expr):
262
+ # FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)?
263
+ #return self._print((1+sqrt(S(5)))/2)
264
+ return "(1+sqrt(5))/2"
265
+
266
+
267
+ def _print_Assignment(self, expr):
268
+ from sympy.codegen.ast import Assignment
269
+ from sympy.functions.elementary.piecewise import Piecewise
270
+ from sympy.tensor.indexed import IndexedBase
271
+ # Copied from codeprinter, but remove special MatrixSymbol treatment
272
+ lhs = expr.lhs
273
+ rhs = expr.rhs
274
+ # We special case assignments that take multiple lines
275
+ if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
276
+ # Here we modify Piecewise so each expression is now
277
+ # an Assignment, and then continue on the print.
278
+ expressions = []
279
+ conditions = []
280
+ for (e, c) in rhs.args:
281
+ expressions.append(Assignment(lhs, e))
282
+ conditions.append(c)
283
+ temp = Piecewise(*zip(expressions, conditions))
284
+ return self._print(temp)
285
+ if self._settings["contract"] and (lhs.has(IndexedBase) or
286
+ rhs.has(IndexedBase)):
287
+ # Here we check if there is looping to be done, and if so
288
+ # print the required loops.
289
+ return self._doprint_loops(rhs, lhs)
290
+ else:
291
+ lhs_code = self._print(lhs)
292
+ rhs_code = self._print(rhs)
293
+ return self._get_statement("%s = %s" % (lhs_code, rhs_code))
294
+
295
+
296
+ def _print_Infinity(self, expr):
297
+ return 'inf'
298
+
299
+
300
+ def _print_NegativeInfinity(self, expr):
301
+ return '-inf'
302
+
303
+
304
+ def _print_NaN(self, expr):
305
+ return 'NaN'
306
+
307
+
308
+ def _print_list(self, expr):
309
+ return '{' + ', '.join(self._print(a) for a in expr) + '}'
310
+ _print_tuple = _print_list
311
+ _print_Tuple = _print_list
312
+ _print_List = _print_list
313
+
314
+
315
+ def _print_BooleanTrue(self, expr):
316
+ return "true"
317
+
318
+
319
+ def _print_BooleanFalse(self, expr):
320
+ return "false"
321
+
322
+
323
+ def _print_bool(self, expr):
324
+ return str(expr).lower()
325
+
326
+
327
+ # Could generate quadrature code for definite Integrals?
328
+ #_print_Integral = _print_not_supported
329
+
330
+
331
+ def _print_MatrixBase(self, A):
332
+ # Handle zero dimensions:
333
+ if (A.rows, A.cols) == (0, 0):
334
+ return '[]'
335
+ elif S.Zero in A.shape:
336
+ return 'zeros(%s, %s)' % (A.rows, A.cols)
337
+ elif (A.rows, A.cols) == (1, 1):
338
+ # Octave does not distinguish between scalars and 1x1 matrices
339
+ return self._print(A[0, 0])
340
+ return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]])
341
+ for r in range(A.rows))
342
+
343
+
344
+ def _print_SparseRepMatrix(self, A):
345
+ from sympy.matrices import Matrix
346
+ L = A.col_list();
347
+ # make row vectors of the indices and entries
348
+ I = Matrix([[k[0] + 1 for k in L]])
349
+ J = Matrix([[k[1] + 1 for k in L]])
350
+ AIJ = Matrix([[k[2] for k in L]])
351
+ return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
352
+ self._print(AIJ), A.rows, A.cols)
353
+
354
+
355
+ def _print_MatrixElement(self, expr):
356
+ return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
357
+ + '(%s, %s)' % (expr.i + 1, expr.j + 1)
358
+
359
+
360
+ def _print_MatrixSlice(self, expr):
361
+ def strslice(x, lim):
362
+ l = x[0] + 1
363
+ h = x[1]
364
+ step = x[2]
365
+ lstr = self._print(l)
366
+ hstr = 'end' if h == lim else self._print(h)
367
+ if step == 1:
368
+ if l == 1 and h == lim:
369
+ return ':'
370
+ if l == h:
371
+ return lstr
372
+ else:
373
+ return lstr + ':' + hstr
374
+ else:
375
+ return ':'.join((lstr, self._print(step), hstr))
376
+ return (self._print(expr.parent) + '(' +
377
+ strslice(expr.rowslice, expr.parent.shape[0]) + ', ' +
378
+ strslice(expr.colslice, expr.parent.shape[1]) + ')')
379
+
380
+
381
+ def _print_Indexed(self, expr):
382
+ inds = [ self._print(i) for i in expr.indices ]
383
+ return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
384
+
385
+
386
+ def _print_Idx(self, expr):
387
+ return self._print(expr.label)
388
+
389
+
390
+ def _print_KroneckerDelta(self, expr):
391
+ prec = PRECEDENCE["Pow"]
392
+ return "double(%s == %s)" % tuple(self.parenthesize(x, prec)
393
+ for x in expr.args)
394
+
395
+ def _print_HadamardProduct(self, expr):
396
+ return '.*'.join([self.parenthesize(arg, precedence(expr))
397
+ for arg in expr.args])
398
+
399
+ def _print_HadamardPower(self, expr):
400
+ PREC = precedence(expr)
401
+ return '.**'.join([
402
+ self.parenthesize(expr.base, PREC),
403
+ self.parenthesize(expr.exp, PREC)
404
+ ])
405
+
406
+ def _print_Identity(self, expr):
407
+ shape = expr.shape
408
+ if len(shape) == 2 and shape[0] == shape[1]:
409
+ shape = [shape[0]]
410
+ s = ", ".join(self._print(n) for n in shape)
411
+ return "eye(" + s + ")"
412
+
413
+ def _print_lowergamma(self, expr):
414
+ # Octave implements regularized incomplete gamma function
415
+ return "(gammainc({1}, {0}).*gamma({0}))".format(
416
+ self._print(expr.args[0]), self._print(expr.args[1]))
417
+
418
+
419
+ def _print_uppergamma(self, expr):
420
+ return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format(
421
+ self._print(expr.args[0]), self._print(expr.args[1]))
422
+
423
+
424
+ def _print_sinc(self, expr):
425
+ #Note: Divide by pi because Octave implements normalized sinc function.
426
+ return "sinc(%s)" % self._print(expr.args[0]/S.Pi)
427
+
428
+
429
+ def _print_hankel1(self, expr):
430
+ return "besselh(%s, 1, %s)" % (self._print(expr.order),
431
+ self._print(expr.argument))
432
+
433
+
434
+ def _print_hankel2(self, expr):
435
+ return "besselh(%s, 2, %s)" % (self._print(expr.order),
436
+ self._print(expr.argument))
437
+
438
+
439
+ # Note: as of 2015, Octave doesn't have spherical Bessel functions
440
+ def _print_jn(self, expr):
441
+ from sympy.functions import sqrt, besselj
442
+ x = expr.argument
443
+ expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
444
+ return self._print(expr2)
445
+
446
+
447
+ def _print_yn(self, expr):
448
+ from sympy.functions import sqrt, bessely
449
+ x = expr.argument
450
+ expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
451
+ return self._print(expr2)
452
+
453
+
454
+ def _print_airyai(self, expr):
455
+ return "airy(0, %s)" % self._print(expr.args[0])
456
+
457
+
458
+ def _print_airyaiprime(self, expr):
459
+ return "airy(1, %s)" % self._print(expr.args[0])
460
+
461
+
462
+ def _print_airybi(self, expr):
463
+ return "airy(2, %s)" % self._print(expr.args[0])
464
+
465
+
466
+ def _print_airybiprime(self, expr):
467
+ return "airy(3, %s)" % self._print(expr.args[0])
468
+
469
+
470
+ def _print_expint(self, expr):
471
+ mu, x = expr.args
472
+ if mu != 1:
473
+ return self._print_not_supported(expr)
474
+ return "expint(%s)" % self._print(x)
475
+
476
+
477
+ def _one_or_two_reversed_args(self, expr):
478
+ assert len(expr.args) <= 2
479
+ return '{name}({args})'.format(
480
+ name=self.known_functions[expr.__class__.__name__],
481
+ args=", ".join([self._print(x) for x in reversed(expr.args)])
482
+ )
483
+
484
+
485
+ _print_DiracDelta = _print_LambertW = _one_or_two_reversed_args
486
+
487
+
488
+ def _nested_binary_math_func(self, expr):
489
+ return '{name}({arg1}, {arg2})'.format(
490
+ name=self.known_functions[expr.__class__.__name__],
491
+ arg1=self._print(expr.args[0]),
492
+ arg2=self._print(expr.func(*expr.args[1:]))
493
+ )
494
+
495
+ _print_Max = _print_Min = _nested_binary_math_func
496
+
497
+
498
+ def _print_Piecewise(self, expr):
499
+ if expr.args[-1].cond != True:
500
+ # We need the last conditional to be a True, otherwise the resulting
501
+ # function may not return a result.
502
+ raise ValueError("All Piecewise expressions must contain an "
503
+ "(expr, True) statement to be used as a default "
504
+ "condition. Without one, the generated "
505
+ "expression may not evaluate to anything under "
506
+ "some condition.")
507
+ lines = []
508
+ if self._settings["inline"]:
509
+ # Express each (cond, expr) pair in a nested Horner form:
510
+ # (condition) .* (expr) + (not cond) .* (<others>)
511
+ # Expressions that result in multiple statements won't work here.
512
+ ecpairs = ["({0}).*({1}) + (~({0})).*(".format
513
+ (self._print(c), self._print(e))
514
+ for e, c in expr.args[:-1]]
515
+ elast = "%s" % self._print(expr.args[-1].expr)
516
+ pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs)
517
+ # Note: current need these outer brackets for 2*pw. Would be
518
+ # nicer to teach parenthesize() to do this for us when needed!
519
+ return "(" + pw + ")"
520
+ else:
521
+ for i, (e, c) in enumerate(expr.args):
522
+ if i == 0:
523
+ lines.append("if (%s)" % self._print(c))
524
+ elif i == len(expr.args) - 1 and c == True:
525
+ lines.append("else")
526
+ else:
527
+ lines.append("elseif (%s)" % self._print(c))
528
+ code0 = self._print(e)
529
+ lines.append(code0)
530
+ if i == len(expr.args) - 1:
531
+ lines.append("end")
532
+ return "\n".join(lines)
533
+
534
+
535
+ def _print_zeta(self, expr):
536
+ if len(expr.args) == 1:
537
+ return "zeta(%s)" % self._print(expr.args[0])
538
+ else:
539
+ # Matlab two argument zeta is not equivalent to SymPy's
540
+ return self._print_not_supported(expr)
541
+
542
+
543
+ def indent_code(self, code):
544
+ """Accepts a string of code or a list of code lines"""
545
+
546
+ # code mostly copied from ccode
547
+ if isinstance(code, str):
548
+ code_lines = self.indent_code(code.splitlines(True))
549
+ return ''.join(code_lines)
550
+
551
+ tab = " "
552
+ inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
553
+ dec_regex = ('^end$', '^elseif ', '^else$')
554
+
555
+ # pre-strip left-space from the code
556
+ code = [ line.lstrip(' \t') for line in code ]
557
+
558
+ increase = [ int(any(search(re, line) for re in inc_regex))
559
+ for line in code ]
560
+ decrease = [ int(any(search(re, line) for re in dec_regex))
561
+ for line in code ]
562
+
563
+ pretty = []
564
+ level = 0
565
+ for n, line in enumerate(code):
566
+ if line in ('', '\n'):
567
+ pretty.append(line)
568
+ continue
569
+ level -= decrease[n]
570
+ pretty.append("%s%s" % (tab*level, line))
571
+ level += increase[n]
572
+ return pretty
573
+
574
+
575
+ def octave_code(expr, assign_to=None, **settings):
576
+ r"""Converts `expr` to a string of Octave (or Matlab) code.
577
+
578
+ The string uses a subset of the Octave language for Matlab compatibility.
579
+
580
+ Parameters
581
+ ==========
582
+
583
+ expr : Expr
584
+ A SymPy expression to be converted.
585
+ assign_to : optional
586
+ When given, the argument is used as the name of the variable to which
587
+ the expression is assigned. Can be a string, ``Symbol``,
588
+ ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
589
+ expressions that generate multi-line statements.
590
+ precision : integer, optional
591
+ The precision for numbers such as pi [default=16].
592
+ user_functions : dict, optional
593
+ A dictionary where keys are ``FunctionClass`` instances and values are
594
+ their string representations. Alternatively, the dictionary value can
595
+ be a list of tuples i.e. [(argument_test, cfunction_string)]. See
596
+ below for examples.
597
+ human : bool, optional
598
+ If True, the result is a single string that may contain some constant
599
+ declarations for the number symbols. If False, the same information is
600
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
601
+ code_text). [default=True].
602
+ contract: bool, optional
603
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
604
+ rules and the corresponding nested loops over indices are generated.
605
+ Setting contract=False will not generate loops, instead the user is
606
+ responsible to provide values for the indices in the code.
607
+ [default=True].
608
+ inline: bool, optional
609
+ If True, we try to create single-statement code instead of multiple
610
+ statements. [default=True].
611
+
612
+ Examples
613
+ ========
614
+
615
+ >>> from sympy import octave_code, symbols, sin, pi
616
+ >>> x = symbols('x')
617
+ >>> octave_code(sin(x).series(x).removeO())
618
+ 'x.^5/120 - x.^3/6 + x'
619
+
620
+ >>> from sympy import Rational, ceiling
621
+ >>> x, y, tau = symbols("x, y, tau")
622
+ >>> octave_code((2*tau)**Rational(7, 2))
623
+ '8*sqrt(2)*tau.^(7/2)'
624
+
625
+ Note that element-wise (Hadamard) operations are used by default between
626
+ symbols. This is because its very common in Octave to write "vectorized"
627
+ code. It is harmless if the values are scalars.
628
+
629
+ >>> octave_code(sin(pi*x*y), assign_to="s")
630
+ 's = sin(pi*x.*y);'
631
+
632
+ If you need a matrix product "*" or matrix power "^", you can specify the
633
+ symbol as a ``MatrixSymbol``.
634
+
635
+ >>> from sympy import Symbol, MatrixSymbol
636
+ >>> n = Symbol('n', integer=True, positive=True)
637
+ >>> A = MatrixSymbol('A', n, n)
638
+ >>> octave_code(3*pi*A**3)
639
+ '(3*pi)*A^3'
640
+
641
+ This class uses several rules to decide which symbol to use a product.
642
+ Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
643
+ A HadamardProduct can be used to specify componentwise multiplication ".*"
644
+ of two MatrixSymbols. There is currently there is no easy way to specify
645
+ scalar symbols, so sometimes the code might have some minor cosmetic
646
+ issues. For example, suppose x and y are scalars and A is a Matrix, then
647
+ while a human programmer might write "(x^2*y)*A^3", we generate:
648
+
649
+ >>> octave_code(x**2*y*A**3)
650
+ '(x.^2.*y)*A^3'
651
+
652
+ Matrices are supported using Octave inline notation. When using
653
+ ``assign_to`` with matrices, the name can be specified either as a string
654
+ or as a ``MatrixSymbol``. The dimensions must align in the latter case.
655
+
656
+ >>> from sympy import Matrix, MatrixSymbol
657
+ >>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
658
+ >>> octave_code(mat, assign_to='A')
659
+ 'A = [x.^2 sin(x) ceil(x)];'
660
+
661
+ ``Piecewise`` expressions are implemented with logical masking by default.
662
+ Alternatively, you can pass "inline=False" to use if-else conditionals.
663
+ Note that if the ``Piecewise`` lacks a default term, represented by
664
+ ``(expr, True)`` then an error will be thrown. This is to prevent
665
+ generating an expression that may not evaluate to anything.
666
+
667
+ >>> from sympy import Piecewise
668
+ >>> pw = Piecewise((x + 1, x > 0), (x, True))
669
+ >>> octave_code(pw, assign_to=tau)
670
+ 'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
671
+
672
+ Note that any expression that can be generated normally can also exist
673
+ inside a Matrix:
674
+
675
+ >>> mat = Matrix([[x**2, pw, sin(x)]])
676
+ >>> octave_code(mat, assign_to='A')
677
+ 'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
678
+
679
+ Custom printing can be defined for certain types by passing a dictionary of
680
+ "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
681
+ dictionary value can be a list of tuples i.e., [(argument_test,
682
+ cfunction_string)]. This can be used to call a custom Octave function.
683
+
684
+ >>> from sympy import Function
685
+ >>> f = Function('f')
686
+ >>> g = Function('g')
687
+ >>> custom_functions = {
688
+ ... "f": "existing_octave_fcn",
689
+ ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
690
+ ... (lambda x: not x.is_Matrix, "my_fcn")]
691
+ ... }
692
+ >>> mat = Matrix([[1, x]])
693
+ >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
694
+ 'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
695
+
696
+ Support for loops is provided through ``Indexed`` types. With
697
+ ``contract=True`` these expressions will be turned into loops, whereas
698
+ ``contract=False`` will just print the assignment expression that should be
699
+ looped over:
700
+
701
+ >>> from sympy import Eq, IndexedBase, Idx
702
+ >>> len_y = 5
703
+ >>> y = IndexedBase('y', shape=(len_y,))
704
+ >>> t = IndexedBase('t', shape=(len_y,))
705
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
706
+ >>> i = Idx('i', len_y-1)
707
+ >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
708
+ >>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
709
+ 'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
710
+ """
711
+ return OctaveCodePrinter(settings).doprint(expr, assign_to)
712
+
713
+
714
+ def print_octave_code(expr, **settings):
715
+ """Prints the Octave (or Matlab) representation of the given expression.
716
+
717
+ See `octave_code` for the meaning of the optional arguments.
718
+ """
719
+ print(octave_code(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/precedence.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module providing information about the necessity of brackets"""
2
+
3
+
4
+ # Default precedence values for some basic types
5
+ PRECEDENCE = {
6
+ "Lambda": 1,
7
+ "Xor": 10,
8
+ "Or": 20,
9
+ "And": 30,
10
+ "Relational": 35,
11
+ "Add": 40,
12
+ "Mul": 50,
13
+ "Pow": 60,
14
+ "Func": 70,
15
+ "Not": 100,
16
+ "Atom": 1000,
17
+ "BitwiseOr": 36,
18
+ "BitwiseXor": 37,
19
+ "BitwiseAnd": 38
20
+ }
21
+
22
+ # A dictionary assigning precedence values to certain classes. These values are
23
+ # treated like they were inherited, so not every single class has to be named
24
+ # here.
25
+ # Do not use this with printers other than StrPrinter
26
+ PRECEDENCE_VALUES = {
27
+ "Equivalent": PRECEDENCE["Xor"],
28
+ "Xor": PRECEDENCE["Xor"],
29
+ "Implies": PRECEDENCE["Xor"],
30
+ "Or": PRECEDENCE["Or"],
31
+ "And": PRECEDENCE["And"],
32
+ "Add": PRECEDENCE["Add"],
33
+ "Pow": PRECEDENCE["Pow"],
34
+ "Relational": PRECEDENCE["Relational"],
35
+ "Sub": PRECEDENCE["Add"],
36
+ "Not": PRECEDENCE["Not"],
37
+ "Function" : PRECEDENCE["Func"],
38
+ "NegativeInfinity": PRECEDENCE["Add"],
39
+ "MatAdd": PRECEDENCE["Add"],
40
+ "MatPow": PRECEDENCE["Pow"],
41
+ "MatrixSolve": PRECEDENCE["Mul"],
42
+ "Mod": PRECEDENCE["Mul"],
43
+ "TensAdd": PRECEDENCE["Add"],
44
+ # As soon as `TensMul` is a subclass of `Mul`, remove this:
45
+ "TensMul": PRECEDENCE["Mul"],
46
+ "HadamardProduct": PRECEDENCE["Mul"],
47
+ "HadamardPower": PRECEDENCE["Pow"],
48
+ "KroneckerProduct": PRECEDENCE["Mul"],
49
+ "Equality": PRECEDENCE["Mul"],
50
+ "Unequality": PRECEDENCE["Mul"],
51
+ }
52
+
53
+ # Sometimes it's not enough to assign a fixed precedence value to a
54
+ # class. Then a function can be inserted in this dictionary that takes
55
+ # an instance of this class as argument and returns the appropriate
56
+ # precedence value.
57
+
58
+ # Precedence functions
59
+
60
+
61
+ def precedence_Mul(item):
62
+ if item.could_extract_minus_sign():
63
+ return PRECEDENCE["Add"]
64
+ return PRECEDENCE["Mul"]
65
+
66
+
67
+ def precedence_Rational(item):
68
+ if item.p < 0:
69
+ return PRECEDENCE["Add"]
70
+ return PRECEDENCE["Mul"]
71
+
72
+
73
+ def precedence_Integer(item):
74
+ if item.p < 0:
75
+ return PRECEDENCE["Add"]
76
+ return PRECEDENCE["Atom"]
77
+
78
+
79
+ def precedence_Float(item):
80
+ if item < 0:
81
+ return PRECEDENCE["Add"]
82
+ return PRECEDENCE["Atom"]
83
+
84
+
85
+ def precedence_PolyElement(item):
86
+ if item.is_generator:
87
+ return PRECEDENCE["Atom"]
88
+ elif item.is_ground:
89
+ return precedence(item.coeff(1))
90
+ elif item.is_term:
91
+ return PRECEDENCE["Mul"]
92
+ else:
93
+ return PRECEDENCE["Add"]
94
+
95
+
96
+ def precedence_FracElement(item):
97
+ if item.denom == 1:
98
+ return precedence_PolyElement(item.numer)
99
+ else:
100
+ return PRECEDENCE["Mul"]
101
+
102
+
103
+ def precedence_UnevaluatedExpr(item):
104
+ return precedence(item.args[0]) - 0.5
105
+
106
+
107
+ PRECEDENCE_FUNCTIONS = {
108
+ "Integer": precedence_Integer,
109
+ "Mul": precedence_Mul,
110
+ "Rational": precedence_Rational,
111
+ "Float": precedence_Float,
112
+ "PolyElement": precedence_PolyElement,
113
+ "FracElement": precedence_FracElement,
114
+ "UnevaluatedExpr": precedence_UnevaluatedExpr,
115
+ }
116
+
117
+
118
+ def precedence(item):
119
+ """Returns the precedence of a given object.
120
+
121
+ This is the precedence for StrPrinter.
122
+ """
123
+ if hasattr(item, "precedence"):
124
+ return item.precedence
125
+ try:
126
+ mro = item.__class__.__mro__
127
+ except AttributeError:
128
+ return PRECEDENCE["Atom"]
129
+ for i in mro:
130
+ n = i.__name__
131
+ if n in PRECEDENCE_FUNCTIONS:
132
+ return PRECEDENCE_FUNCTIONS[n](item)
133
+ elif n in PRECEDENCE_VALUES:
134
+ return PRECEDENCE_VALUES[n]
135
+ return PRECEDENCE["Atom"]
136
+
137
+
138
+ PRECEDENCE_TRADITIONAL = PRECEDENCE.copy()
139
+ PRECEDENCE_TRADITIONAL['Integral'] = PRECEDENCE["Mul"]
140
+ PRECEDENCE_TRADITIONAL['Sum'] = PRECEDENCE["Mul"]
141
+ PRECEDENCE_TRADITIONAL['Product'] = PRECEDENCE["Mul"]
142
+ PRECEDENCE_TRADITIONAL['Limit'] = PRECEDENCE["Mul"]
143
+ PRECEDENCE_TRADITIONAL['Derivative'] = PRECEDENCE["Mul"]
144
+ PRECEDENCE_TRADITIONAL['TensorProduct'] = PRECEDENCE["Mul"]
145
+ PRECEDENCE_TRADITIONAL['Transpose'] = PRECEDENCE["Pow"]
146
+ PRECEDENCE_TRADITIONAL['Adjoint'] = PRECEDENCE["Pow"]
147
+ PRECEDENCE_TRADITIONAL['Dot'] = PRECEDENCE["Mul"] - 1
148
+ PRECEDENCE_TRADITIONAL['Cross'] = PRECEDENCE["Mul"] - 1
149
+ PRECEDENCE_TRADITIONAL['Gradient'] = PRECEDENCE["Mul"] - 1
150
+ PRECEDENCE_TRADITIONAL['Divergence'] = PRECEDENCE["Mul"] - 1
151
+ PRECEDENCE_TRADITIONAL['Curl'] = PRECEDENCE["Mul"] - 1
152
+ PRECEDENCE_TRADITIONAL['Laplacian'] = PRECEDENCE["Mul"] - 1
153
+ PRECEDENCE_TRADITIONAL['Union'] = PRECEDENCE['Xor']
154
+ PRECEDENCE_TRADITIONAL['Intersection'] = PRECEDENCE['Xor']
155
+ PRECEDENCE_TRADITIONAL['Complement'] = PRECEDENCE['Xor']
156
+ PRECEDENCE_TRADITIONAL['SymmetricDifference'] = PRECEDENCE['Xor']
157
+ PRECEDENCE_TRADITIONAL['ProductSet'] = PRECEDENCE['Xor']
158
+
159
+
160
+ def precedence_traditional(item):
161
+ """Returns the precedence of a given object according to the
162
+ traditional rules of mathematics.
163
+
164
+ This is the precedence for the LaTeX and pretty printer.
165
+ """
166
+ # Integral, Sum, Product, Limit have the precedence of Mul in LaTeX,
167
+ # the precedence of Atom for other printers:
168
+ from sympy.core.expr import UnevaluatedExpr
169
+
170
+ if isinstance(item, UnevaluatedExpr):
171
+ return precedence_traditional(item.args[0])
172
+
173
+ n = item.__class__.__name__
174
+ if n in PRECEDENCE_TRADITIONAL:
175
+ return PRECEDENCE_TRADITIONAL[n]
176
+
177
+ return precedence(item)
venv/lib/python3.10/site-packages/sympy/printing/preview.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os.path import join
3
+ import shutil
4
+ import tempfile
5
+
6
+ try:
7
+ from subprocess import STDOUT, CalledProcessError, check_output
8
+ except ImportError:
9
+ pass
10
+
11
+ from sympy.utilities.decorator import doctest_depends_on
12
+ from sympy.utilities.misc import debug
13
+ from .latex import latex
14
+
15
+ __doctest_requires__ = {('preview',): ['pyglet']}
16
+
17
+
18
+ def _check_output_no_window(*args, **kwargs):
19
+ # Avoid showing a cmd.exe window when running this
20
+ # on Windows
21
+ if os.name == 'nt':
22
+ creation_flag = 0x08000000 # CREATE_NO_WINDOW
23
+ else:
24
+ creation_flag = 0 # Default value
25
+ return check_output(*args, creationflags=creation_flag, **kwargs)
26
+
27
+
28
+ def system_default_viewer(fname, fmt):
29
+ """ Open fname with the default system viewer.
30
+
31
+ In practice, it is impossible for python to know when the system viewer is
32
+ done. For this reason, we ensure the passed file will not be deleted under
33
+ it, and this function does not attempt to block.
34
+ """
35
+ # copy to a new temporary file that will not be deleted
36
+ with tempfile.NamedTemporaryFile(prefix='sympy-preview-',
37
+ suffix=os.path.splitext(fname)[1],
38
+ delete=False) as temp_f:
39
+ with open(fname, 'rb') as f:
40
+ shutil.copyfileobj(f, temp_f)
41
+
42
+ import platform
43
+ if platform.system() == 'Darwin':
44
+ import subprocess
45
+ subprocess.call(('open', temp_f.name))
46
+ elif platform.system() == 'Windows':
47
+ os.startfile(temp_f.name)
48
+ else:
49
+ import subprocess
50
+ subprocess.call(('xdg-open', temp_f.name))
51
+
52
+
53
+ def pyglet_viewer(fname, fmt):
54
+ try:
55
+ from pyglet import window, image, gl
56
+ from pyglet.window import key
57
+ from pyglet.image.codecs import ImageDecodeException
58
+ except ImportError:
59
+ raise ImportError("pyglet is required for preview.\n visit https://pyglet.org/")
60
+
61
+ try:
62
+ img = image.load(fname)
63
+ except ImageDecodeException:
64
+ raise ValueError("pyglet preview does not work for '{}' files.".format(fmt))
65
+
66
+ offset = 25
67
+
68
+ config = gl.Config(double_buffer=False)
69
+ win = window.Window(
70
+ width=img.width + 2*offset,
71
+ height=img.height + 2*offset,
72
+ caption="SymPy",
73
+ resizable=False,
74
+ config=config
75
+ )
76
+
77
+ win.set_vsync(False)
78
+
79
+ try:
80
+ def on_close():
81
+ win.has_exit = True
82
+
83
+ win.on_close = on_close
84
+
85
+ def on_key_press(symbol, modifiers):
86
+ if symbol in [key.Q, key.ESCAPE]:
87
+ on_close()
88
+
89
+ win.on_key_press = on_key_press
90
+
91
+ def on_expose():
92
+ gl.glClearColor(1.0, 1.0, 1.0, 1.0)
93
+ gl.glClear(gl.GL_COLOR_BUFFER_BIT)
94
+
95
+ img.blit(
96
+ (win.width - img.width) / 2,
97
+ (win.height - img.height) / 2
98
+ )
99
+
100
+ win.on_expose = on_expose
101
+
102
+ while not win.has_exit:
103
+ win.dispatch_events()
104
+ win.flip()
105
+ except KeyboardInterrupt:
106
+ pass
107
+
108
+ win.close()
109
+
110
+
111
+ def _get_latex_main(expr, *, preamble=None, packages=(), extra_preamble=None,
112
+ euler=True, fontsize=None, **latex_settings):
113
+ """
114
+ Generate string of a LaTeX document rendering ``expr``.
115
+ """
116
+ if preamble is None:
117
+ actual_packages = packages + ("amsmath", "amsfonts")
118
+ if euler:
119
+ actual_packages += ("euler",)
120
+ package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p
121
+ for p in actual_packages])
122
+ if extra_preamble:
123
+ package_includes += extra_preamble
124
+
125
+ if not fontsize:
126
+ fontsize = "12pt"
127
+ elif isinstance(fontsize, int):
128
+ fontsize = "{}pt".format(fontsize)
129
+ preamble = r"""\documentclass[varwidth,%s]{standalone}
130
+ %s
131
+
132
+ \begin{document}
133
+ """ % (fontsize, package_includes)
134
+ else:
135
+ if packages or extra_preamble:
136
+ raise ValueError("The \"packages\" or \"extra_preamble\" keywords"
137
+ "must not be set if a "
138
+ "custom LaTeX preamble was specified")
139
+
140
+ if isinstance(expr, str):
141
+ latex_string = expr
142
+ else:
143
+ latex_string = ('$\\displaystyle ' +
144
+ latex(expr, mode='plain', **latex_settings) +
145
+ '$')
146
+
147
+ return preamble + '\n' + latex_string + '\n\n' + r"\end{document}"
148
+
149
+
150
+ @doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',),
151
+ disable_viewers=('evince', 'gimp', 'superior-dvi-viewer'))
152
+ def preview(expr, output='png', viewer=None, euler=True, packages=(),
153
+ filename=None, outputbuffer=None, preamble=None, dvioptions=None,
154
+ outputTexFile=None, extra_preamble=None, fontsize=None,
155
+ **latex_settings):
156
+ r"""
157
+ View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.
158
+
159
+ If the expr argument is an expression, it will be exported to LaTeX and
160
+ then compiled using the available TeX distribution. The first argument,
161
+ 'expr', may also be a LaTeX string. The function will then run the
162
+ appropriate viewer for the given output format or use the user defined
163
+ one. By default png output is generated.
164
+
165
+ By default pretty Euler fonts are used for typesetting (they were used to
166
+ typeset the well known "Concrete Mathematics" book). For that to work, you
167
+ need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the
168
+ texlive-fonts-extra package). If you prefer default AMS fonts or your
169
+ system lacks 'eulervm' LaTeX package then unset the 'euler' keyword
170
+ argument.
171
+
172
+ To use viewer auto-detection, lets say for 'png' output, issue
173
+
174
+ >>> from sympy import symbols, preview, Symbol
175
+ >>> x, y = symbols("x,y")
176
+
177
+ >>> preview(x + y, output='png')
178
+
179
+ This will choose 'pyglet' by default. To select a different one, do
180
+
181
+ >>> preview(x + y, output='png', viewer='gimp')
182
+
183
+ The 'png' format is considered special. For all other formats the rules
184
+ are slightly different. As an example we will take 'dvi' output format. If
185
+ you would run
186
+
187
+ >>> preview(x + y, output='dvi')
188
+
189
+ then 'view' will look for available 'dvi' viewers on your system
190
+ (predefined in the function, so it will try evince, first, then kdvi and
191
+ xdvi). If nothing is found, it will fall back to using a system file
192
+ association (via ``open`` and ``xdg-open``). To always use your system file
193
+ association without searching for the above readers, use
194
+
195
+ >>> from sympy.printing.preview import system_default_viewer
196
+ >>> preview(x + y, output='dvi', viewer=system_default_viewer)
197
+
198
+ If this still does not find the viewer you want, it can be set explicitly.
199
+
200
+ >>> preview(x + y, output='dvi', viewer='superior-dvi-viewer')
201
+
202
+ This will skip auto-detection and will run user specified
203
+ 'superior-dvi-viewer'. If ``view`` fails to find it on your system it will
204
+ gracefully raise an exception.
205
+
206
+ You may also enter ``'file'`` for the viewer argument. Doing so will cause
207
+ this function to return a file object in read-only mode, if ``filename``
208
+ is unset. However, if it was set, then 'preview' writes the generated
209
+ file to this filename instead.
210
+
211
+ There is also support for writing to a ``io.BytesIO`` like object, which
212
+ needs to be passed to the ``outputbuffer`` argument.
213
+
214
+ >>> from io import BytesIO
215
+ >>> obj = BytesIO()
216
+ >>> preview(x + y, output='png', viewer='BytesIO',
217
+ ... outputbuffer=obj)
218
+
219
+ The LaTeX preamble can be customized by setting the 'preamble' keyword
220
+ argument. This can be used, e.g., to set a different font size, use a
221
+ custom documentclass or import certain set of LaTeX packages.
222
+
223
+ >>> preamble = "\\documentclass[10pt]{article}\n" \
224
+ ... "\\usepackage{amsmath,amsfonts}\\begin{document}"
225
+ >>> preview(x + y, output='png', preamble=preamble)
226
+
227
+ It is also possible to use the standard preamble and provide additional
228
+ information to the preamble using the ``extra_preamble`` keyword argument.
229
+
230
+ >>> from sympy import sin
231
+ >>> extra_preamble = "\\renewcommand{\\sin}{\\cos}"
232
+ >>> preview(sin(x), output='png', extra_preamble=extra_preamble)
233
+
234
+ If the value of 'output' is different from 'dvi' then command line
235
+ options can be set ('dvioptions' argument) for the execution of the
236
+ 'dvi'+output conversion tool. These options have to be in the form of a
237
+ list of strings (see ``subprocess.Popen``).
238
+
239
+ Additional keyword args will be passed to the :func:`~sympy.printing.latex.latex` call,
240
+ e.g., the ``symbol_names`` flag.
241
+
242
+ >>> phidd = Symbol('phidd')
243
+ >>> preview(phidd, symbol_names={phidd: r'\ddot{\varphi}'})
244
+
245
+ For post-processing the generated TeX File can be written to a file by
246
+ passing the desired filename to the 'outputTexFile' keyword
247
+ argument. To write the TeX code to a file named
248
+ ``"sample.tex"`` and run the default png viewer to display the resulting
249
+ bitmap, do
250
+
251
+ >>> preview(x + y, outputTexFile="sample.tex")
252
+
253
+
254
+ """
255
+ # pyglet is the default for png
256
+ if viewer is None and output == "png":
257
+ try:
258
+ import pyglet # noqa: F401
259
+ except ImportError:
260
+ pass
261
+ else:
262
+ viewer = pyglet_viewer
263
+
264
+ # look up a known application
265
+ if viewer is None:
266
+ # sorted in order from most pretty to most ugly
267
+ # very discussable, but indeed 'gv' looks awful :)
268
+ candidates = {
269
+ "dvi": [ "evince", "okular", "kdvi", "xdvi" ],
270
+ "ps": [ "evince", "okular", "gsview", "gv" ],
271
+ "pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ],
272
+ }
273
+
274
+ for candidate in candidates.get(output, []):
275
+ path = shutil.which(candidate)
276
+ if path is not None:
277
+ viewer = path
278
+ break
279
+
280
+ # otherwise, use the system default for file association
281
+ if viewer is None:
282
+ viewer = system_default_viewer
283
+
284
+ if viewer == "file":
285
+ if filename is None:
286
+ raise ValueError("filename has to be specified if viewer=\"file\"")
287
+ elif viewer == "BytesIO":
288
+ if outputbuffer is None:
289
+ raise ValueError("outputbuffer has to be a BytesIO "
290
+ "compatible object if viewer=\"BytesIO\"")
291
+ elif not callable(viewer) and not shutil.which(viewer):
292
+ raise OSError("Unrecognized viewer: %s" % viewer)
293
+
294
+ latex_main = _get_latex_main(expr, preamble=preamble, packages=packages,
295
+ euler=euler, extra_preamble=extra_preamble,
296
+ fontsize=fontsize, **latex_settings)
297
+
298
+ debug("Latex code:")
299
+ debug(latex_main)
300
+ with tempfile.TemporaryDirectory() as workdir:
301
+ with open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh:
302
+ fh.write(latex_main)
303
+
304
+ if outputTexFile is not None:
305
+ shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile)
306
+
307
+ if not shutil.which('latex'):
308
+ raise RuntimeError("latex program is not installed")
309
+
310
+ try:
311
+ _check_output_no_window(
312
+ ['latex', '-halt-on-error', '-interaction=nonstopmode',
313
+ 'texput.tex'],
314
+ cwd=workdir,
315
+ stderr=STDOUT)
316
+ except CalledProcessError as e:
317
+ raise RuntimeError(
318
+ "'latex' exited abnormally with the following output:\n%s" %
319
+ e.output)
320
+
321
+ src = "texput.%s" % (output)
322
+
323
+ if output != "dvi":
324
+ # in order of preference
325
+ commandnames = {
326
+ "ps": ["dvips"],
327
+ "pdf": ["dvipdfmx", "dvipdfm", "dvipdf"],
328
+ "png": ["dvipng"],
329
+ "svg": ["dvisvgm"],
330
+ }
331
+ try:
332
+ cmd_variants = commandnames[output]
333
+ except KeyError:
334
+ raise ValueError("Invalid output format: %s" % output) from None
335
+
336
+ # find an appropriate command
337
+ for cmd_variant in cmd_variants:
338
+ cmd_path = shutil.which(cmd_variant)
339
+ if cmd_path:
340
+ cmd = [cmd_path]
341
+ break
342
+ else:
343
+ if len(cmd_variants) > 1:
344
+ raise RuntimeError("None of %s are installed" % ", ".join(cmd_variants))
345
+ else:
346
+ raise RuntimeError("%s is not installed" % cmd_variants[0])
347
+
348
+ defaultoptions = {
349
+ "dvipng": ["-T", "tight", "-z", "9", "--truecolor"],
350
+ "dvisvgm": ["--no-fonts"],
351
+ }
352
+
353
+ commandend = {
354
+ "dvips": ["-o", src, "texput.dvi"],
355
+ "dvipdf": ["texput.dvi", src],
356
+ "dvipdfm": ["-o", src, "texput.dvi"],
357
+ "dvipdfmx": ["-o", src, "texput.dvi"],
358
+ "dvipng": ["-o", src, "texput.dvi"],
359
+ "dvisvgm": ["-o", src, "texput.dvi"],
360
+ }
361
+
362
+ if dvioptions is not None:
363
+ cmd.extend(dvioptions)
364
+ else:
365
+ cmd.extend(defaultoptions.get(cmd_variant, []))
366
+ cmd.extend(commandend[cmd_variant])
367
+
368
+ try:
369
+ _check_output_no_window(cmd, cwd=workdir, stderr=STDOUT)
370
+ except CalledProcessError as e:
371
+ raise RuntimeError(
372
+ "'%s' exited abnormally with the following output:\n%s" %
373
+ (' '.join(cmd), e.output))
374
+
375
+
376
+ if viewer == "file":
377
+ shutil.move(join(workdir, src), filename)
378
+ elif viewer == "BytesIO":
379
+ with open(join(workdir, src), 'rb') as fh:
380
+ outputbuffer.write(fh.read())
381
+ elif callable(viewer):
382
+ viewer(join(workdir, src), fmt=output)
383
+ else:
384
+ try:
385
+ _check_output_no_window(
386
+ [viewer, src], cwd=workdir, stderr=STDOUT)
387
+ except CalledProcessError as e:
388
+ raise RuntimeError(
389
+ "'%s %s' exited abnormally with the following output:\n%s" %
390
+ (viewer, src, e.output))
venv/lib/python3.10/site-packages/sympy/printing/printer.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Printing subsystem driver
2
+
3
+ SymPy's printing system works the following way: Any expression can be
4
+ passed to a designated Printer who then is responsible to return an
5
+ adequate representation of that expression.
6
+
7
+ **The basic concept is the following:**
8
+
9
+ 1. Let the object print itself if it knows how.
10
+ 2. Take the best fitting method defined in the printer.
11
+ 3. As fall-back use the emptyPrinter method for the printer.
12
+
13
+ Which Method is Responsible for Printing?
14
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15
+
16
+ The whole printing process is started by calling ``.doprint(expr)`` on the printer
17
+ which you want to use. This method looks for an appropriate method which can
18
+ print the given expression in the given style that the printer defines.
19
+ While looking for the method, it follows these steps:
20
+
21
+ 1. **Let the object print itself if it knows how.**
22
+
23
+ The printer looks for a specific method in every object. The name of that method
24
+ depends on the specific printer and is defined under ``Printer.printmethod``.
25
+ For example, StrPrinter calls ``_sympystr`` and LatexPrinter calls ``_latex``.
26
+ Look at the documentation of the printer that you want to use.
27
+ The name of the method is specified there.
28
+
29
+ This was the original way of doing printing in sympy. Every class had
30
+ its own latex, mathml, str and repr methods, but it turned out that it
31
+ is hard to produce a high quality printer, if all the methods are spread
32
+ out that far. Therefore all printing code was combined into the different
33
+ printers, which works great for built-in SymPy objects, but not that
34
+ good for user defined classes where it is inconvenient to patch the
35
+ printers.
36
+
37
+ 2. **Take the best fitting method defined in the printer.**
38
+
39
+ The printer loops through expr classes (class + its bases), and tries
40
+ to dispatch the work to ``_print_<EXPR_CLASS>``
41
+
42
+ e.g., suppose we have the following class hierarchy::
43
+
44
+ Basic
45
+ |
46
+ Atom
47
+ |
48
+ Number
49
+ |
50
+ Rational
51
+
52
+ then, for ``expr=Rational(...)``, the Printer will try
53
+ to call printer methods in the order as shown in the figure below::
54
+
55
+ p._print(expr)
56
+ |
57
+ |-- p._print_Rational(expr)
58
+ |
59
+ |-- p._print_Number(expr)
60
+ |
61
+ |-- p._print_Atom(expr)
62
+ |
63
+ `-- p._print_Basic(expr)
64
+
65
+ if ``._print_Rational`` method exists in the printer, then it is called,
66
+ and the result is returned back. Otherwise, the printer tries to call
67
+ ``._print_Number`` and so on.
68
+
69
+ 3. **As a fall-back use the emptyPrinter method for the printer.**
70
+
71
+ As fall-back ``self.emptyPrinter`` will be called with the expression. If
72
+ not defined in the Printer subclass this will be the same as ``str(expr)``.
73
+
74
+ .. _printer_example:
75
+
76
+ Example of Custom Printer
77
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
78
+
79
+ In the example below, we have a printer which prints the derivative of a function
80
+ in a shorter form.
81
+
82
+ .. code-block:: python
83
+
84
+ from sympy.core.symbol import Symbol
85
+ from sympy.printing.latex import LatexPrinter, print_latex
86
+ from sympy.core.function import UndefinedFunction, Function
87
+
88
+
89
+ class MyLatexPrinter(LatexPrinter):
90
+ \"\"\"Print derivative of a function of symbols in a shorter form.
91
+ \"\"\"
92
+ def _print_Derivative(self, expr):
93
+ function, *vars = expr.args
94
+ if not isinstance(type(function), UndefinedFunction) or \\
95
+ not all(isinstance(i, Symbol) for i in vars):
96
+ return super()._print_Derivative(expr)
97
+
98
+ # If you want the printer to work correctly for nested
99
+ # expressions then use self._print() instead of str() or latex().
100
+ # See the example of nested modulo below in the custom printing
101
+ # method section.
102
+ return "{}_{{{}}}".format(
103
+ self._print(Symbol(function.func.__name__)),
104
+ ''.join(self._print(i) for i in vars))
105
+
106
+
107
+ def print_my_latex(expr):
108
+ \"\"\" Most of the printers define their own wrappers for print().
109
+ These wrappers usually take printer settings. Our printer does not have
110
+ any settings.
111
+ \"\"\"
112
+ print(MyLatexPrinter().doprint(expr))
113
+
114
+
115
+ y = Symbol("y")
116
+ x = Symbol("x")
117
+ f = Function("f")
118
+ expr = f(x, y).diff(x, y)
119
+
120
+ # Print the expression using the normal latex printer and our custom
121
+ # printer.
122
+ print_latex(expr)
123
+ print_my_latex(expr)
124
+
125
+ The output of the code above is::
126
+
127
+ \\frac{\\partial^{2}}{\\partial x\\partial y} f{\\left(x,y \\right)}
128
+ f_{xy}
129
+
130
+ .. _printer_method_example:
131
+
132
+ Example of Custom Printing Method
133
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
134
+
135
+ In the example below, the latex printing of the modulo operator is modified.
136
+ This is done by overriding the method ``_latex`` of ``Mod``.
137
+
138
+ >>> from sympy import Symbol, Mod, Integer, print_latex
139
+
140
+ >>> # Always use printer._print()
141
+ >>> class ModOp(Mod):
142
+ ... def _latex(self, printer):
143
+ ... a, b = [printer._print(i) for i in self.args]
144
+ ... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
145
+
146
+ Comparing the output of our custom operator to the builtin one:
147
+
148
+ >>> x = Symbol('x')
149
+ >>> m = Symbol('m')
150
+ >>> print_latex(Mod(x, m))
151
+ x \\bmod m
152
+ >>> print_latex(ModOp(x, m))
153
+ \\operatorname{Mod}{\\left(x, m\\right)}
154
+
155
+ Common mistakes
156
+ ~~~~~~~~~~~~~~~
157
+ It's important to always use ``self._print(obj)`` to print subcomponents of
158
+ an expression when customizing a printer. Mistakes include:
159
+
160
+ 1. Using ``self.doprint(obj)`` instead:
161
+
162
+ >>> # This example does not work properly, as only the outermost call may use
163
+ >>> # doprint.
164
+ >>> class ModOpModeWrong(Mod):
165
+ ... def _latex(self, printer):
166
+ ... a, b = [printer.doprint(i) for i in self.args]
167
+ ... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
168
+
169
+ This fails when the ``mode`` argument is passed to the printer:
170
+
171
+ >>> print_latex(ModOp(x, m), mode='inline') # ok
172
+ $\\operatorname{Mod}{\\left(x, m\\right)}$
173
+ >>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
174
+ $\\operatorname{Mod}{\\left($x$, $m$\\right)}$
175
+
176
+ 2. Using ``str(obj)`` instead:
177
+
178
+ >>> class ModOpNestedWrong(Mod):
179
+ ... def _latex(self, printer):
180
+ ... a, b = [str(i) for i in self.args]
181
+ ... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
182
+
183
+ This fails on nested objects:
184
+
185
+ >>> # Nested modulo.
186
+ >>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
187
+ \\operatorname{Mod}{\\left(\\operatorname{Mod}{\\left(x, m\\right)}, 7\\right)}
188
+ >>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
189
+ \\operatorname{Mod}{\\left(ModOpNestedWrong(x, m), 7\\right)}
190
+
191
+ 3. Using ``LatexPrinter()._print(obj)`` instead.
192
+
193
+ >>> from sympy.printing.latex import LatexPrinter
194
+ >>> class ModOpSettingsWrong(Mod):
195
+ ... def _latex(self, printer):
196
+ ... a, b = [LatexPrinter()._print(i) for i in self.args]
197
+ ... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
198
+
199
+ This causes all the settings to be discarded in the subobjects. As an
200
+ example, the ``full_prec`` setting which shows floats to full precision is
201
+ ignored:
202
+
203
+ >>> from sympy import Float
204
+ >>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
205
+ \\operatorname{Mod}{\\left(1.00000000000000 x, m\\right)}
206
+ >>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
207
+ \\operatorname{Mod}{\\left(1.0 x, m\\right)}
208
+
209
+ """
210
+
211
+ from __future__ import annotations
212
+ import sys
213
+ from typing import Any, Type
214
+ import inspect
215
+ from contextlib import contextmanager
216
+ from functools import cmp_to_key, update_wrapper
217
+
218
+ from sympy.core.add import Add
219
+ from sympy.core.basic import Basic
220
+
221
+ from sympy.core.function import AppliedUndef, UndefinedFunction, Function
222
+
223
+
224
+
225
+ @contextmanager
226
+ def printer_context(printer, **kwargs):
227
+ original = printer._context.copy()
228
+ try:
229
+ printer._context.update(kwargs)
230
+ yield
231
+ finally:
232
+ printer._context = original
233
+
234
+
235
+ class Printer:
236
+ """ Generic printer
237
+
238
+ Its job is to provide infrastructure for implementing new printers easily.
239
+
240
+ If you want to define your custom Printer or your custom printing method
241
+ for your custom class then see the example above: printer_example_ .
242
+ """
243
+
244
+ _global_settings: dict[str, Any] = {}
245
+
246
+ _default_settings: dict[str, Any] = {}
247
+
248
+ printmethod = None # type: str
249
+
250
+ @classmethod
251
+ def _get_initial_settings(cls):
252
+ settings = cls._default_settings.copy()
253
+ for key, val in cls._global_settings.items():
254
+ if key in cls._default_settings:
255
+ settings[key] = val
256
+ return settings
257
+
258
+ def __init__(self, settings=None):
259
+ self._str = str
260
+
261
+ self._settings = self._get_initial_settings()
262
+ self._context = {} # mutable during printing
263
+
264
+ if settings is not None:
265
+ self._settings.update(settings)
266
+
267
+ if len(self._settings) > len(self._default_settings):
268
+ for key in self._settings:
269
+ if key not in self._default_settings:
270
+ raise TypeError("Unknown setting '%s'." % key)
271
+
272
+ # _print_level is the number of times self._print() was recursively
273
+ # called. See StrPrinter._print_Float() for an example of usage
274
+ self._print_level = 0
275
+
276
+ @classmethod
277
+ def set_global_settings(cls, **settings):
278
+ """Set system-wide printing settings. """
279
+ for key, val in settings.items():
280
+ if val is not None:
281
+ cls._global_settings[key] = val
282
+
283
+ @property
284
+ def order(self):
285
+ if 'order' in self._settings:
286
+ return self._settings['order']
287
+ else:
288
+ raise AttributeError("No order defined.")
289
+
290
+ def doprint(self, expr):
291
+ """Returns printer's representation for expr (as a string)"""
292
+ return self._str(self._print(expr))
293
+
294
+ def _print(self, expr, **kwargs) -> str:
295
+ """Internal dispatcher
296
+
297
+ Tries the following concepts to print an expression:
298
+ 1. Let the object print itself if it knows how.
299
+ 2. Take the best fitting method defined in the printer.
300
+ 3. As fall-back use the emptyPrinter method for the printer.
301
+ """
302
+ self._print_level += 1
303
+ try:
304
+ # If the printer defines a name for a printing method
305
+ # (Printer.printmethod) and the object knows for itself how it
306
+ # should be printed, use that method.
307
+ if self.printmethod and hasattr(expr, self.printmethod):
308
+ if not (isinstance(expr, type) and issubclass(expr, Basic)):
309
+ return getattr(expr, self.printmethod)(self, **kwargs)
310
+
311
+ # See if the class of expr is known, or if one of its super
312
+ # classes is known, and use that print function
313
+ # Exception: ignore the subclasses of Undefined, so that, e.g.,
314
+ # Function('gamma') does not get dispatched to _print_gamma
315
+ classes = type(expr).__mro__
316
+ if AppliedUndef in classes:
317
+ classes = classes[classes.index(AppliedUndef):]
318
+ if UndefinedFunction in classes:
319
+ classes = classes[classes.index(UndefinedFunction):]
320
+ # Another exception: if someone subclasses a known function, e.g.,
321
+ # gamma, and changes the name, then ignore _print_gamma
322
+ if Function in classes:
323
+ i = classes.index(Function)
324
+ classes = tuple(c for c in classes[:i] if \
325
+ c.__name__ == classes[0].__name__ or \
326
+ c.__name__.endswith("Base")) + classes[i:]
327
+ for cls in classes:
328
+ printmethodname = '_print_' + cls.__name__
329
+ printmethod = getattr(self, printmethodname, None)
330
+ if printmethod is not None:
331
+ return printmethod(expr, **kwargs)
332
+ # Unknown object, fall back to the emptyPrinter.
333
+ return self.emptyPrinter(expr)
334
+ finally:
335
+ self._print_level -= 1
336
+
337
+ def emptyPrinter(self, expr):
338
+ return str(expr)
339
+
340
+ def _as_ordered_terms(self, expr, order=None):
341
+ """A compatibility function for ordering terms in Add. """
342
+ order = order or self.order
343
+
344
+ if order == 'old':
345
+ return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty))
346
+ elif order == 'none':
347
+ return list(expr.args)
348
+ else:
349
+ return expr.as_ordered_terms(order=order)
350
+
351
+
352
+ class _PrintFunction:
353
+ """
354
+ Function wrapper to replace ``**settings`` in the signature with printer defaults
355
+ """
356
+ def __init__(self, f, print_cls: Type[Printer]):
357
+ # find all the non-setting arguments
358
+ params = list(inspect.signature(f).parameters.values())
359
+ assert params.pop(-1).kind == inspect.Parameter.VAR_KEYWORD
360
+ self.__other_params = params
361
+
362
+ self.__print_cls = print_cls
363
+ update_wrapper(self, f)
364
+
365
+ def __reduce__(self):
366
+ # Since this is used as a decorator, it replaces the original function.
367
+ # The default pickling will try to pickle self.__wrapped__ and fail
368
+ # because the wrapped function can't be retrieved by name.
369
+ return self.__wrapped__.__qualname__
370
+
371
+ def __call__(self, *args, **kwargs):
372
+ return self.__wrapped__(*args, **kwargs)
373
+
374
+ @property
375
+ def __signature__(self) -> inspect.Signature:
376
+ settings = self.__print_cls._get_initial_settings()
377
+ return inspect.Signature(
378
+ parameters=self.__other_params + [
379
+ inspect.Parameter(k, inspect.Parameter.KEYWORD_ONLY, default=v)
380
+ for k, v in settings.items()
381
+ ],
382
+ return_annotation=self.__wrapped__.__annotations__.get('return', inspect.Signature.empty) # type:ignore
383
+ )
384
+
385
+
386
+ def print_function(print_cls):
387
+ """ A decorator to replace kwargs with the printer settings in __signature__ """
388
+ def decorator(f):
389
+ if sys.version_info < (3, 9):
390
+ # We have to create a subclass so that `help` actually shows the docstring in older Python versions.
391
+ # IPython and Sphinx do not need this, only a raw Python console.
392
+ cls = type(f'{f.__qualname__}_PrintFunction', (_PrintFunction,), {"__doc__": f.__doc__})
393
+ else:
394
+ cls = _PrintFunction
395
+ return cls(f, print_cls)
396
+ return decorator
venv/lib/python3.10/site-packages/sympy/printing/pycode.py ADDED
@@ -0,0 +1,750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Python code printers
3
+
4
+ This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code.
5
+ """
6
+ from collections import defaultdict
7
+ from itertools import chain
8
+ from sympy.core import S
9
+ from sympy.core.mod import Mod
10
+ from .precedence import precedence
11
+ from .codeprinter import CodePrinter
12
+
13
+ _kw = {
14
+ 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
15
+ 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
16
+ 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
17
+ 'with', 'yield', 'None', 'False', 'nonlocal', 'True'
18
+ }
19
+
20
+ _known_functions = {
21
+ 'Abs': 'abs',
22
+ 'Min': 'min',
23
+ 'Max': 'max',
24
+ }
25
+ _known_functions_math = {
26
+ 'acos': 'acos',
27
+ 'acosh': 'acosh',
28
+ 'asin': 'asin',
29
+ 'asinh': 'asinh',
30
+ 'atan': 'atan',
31
+ 'atan2': 'atan2',
32
+ 'atanh': 'atanh',
33
+ 'ceiling': 'ceil',
34
+ 'cos': 'cos',
35
+ 'cosh': 'cosh',
36
+ 'erf': 'erf',
37
+ 'erfc': 'erfc',
38
+ 'exp': 'exp',
39
+ 'expm1': 'expm1',
40
+ 'factorial': 'factorial',
41
+ 'floor': 'floor',
42
+ 'gamma': 'gamma',
43
+ 'hypot': 'hypot',
44
+ 'loggamma': 'lgamma',
45
+ 'log': 'log',
46
+ 'ln': 'log',
47
+ 'log10': 'log10',
48
+ 'log1p': 'log1p',
49
+ 'log2': 'log2',
50
+ 'sin': 'sin',
51
+ 'sinh': 'sinh',
52
+ 'Sqrt': 'sqrt',
53
+ 'tan': 'tan',
54
+ 'tanh': 'tanh'
55
+ } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
56
+ # radians trunc fmod fsum gcd degrees fabs]
57
+ _known_constants_math = {
58
+ 'Exp1': 'e',
59
+ 'Pi': 'pi',
60
+ 'E': 'e',
61
+ 'Infinity': 'inf',
62
+ 'NaN': 'nan',
63
+ 'ComplexInfinity': 'nan'
64
+ }
65
+
66
+ def _print_known_func(self, expr):
67
+ known = self.known_functions[expr.__class__.__name__]
68
+ return '{name}({args})'.format(name=self._module_format(known),
69
+ args=', '.join((self._print(arg) for arg in expr.args)))
70
+
71
+
72
+ def _print_known_const(self, expr):
73
+ known = self.known_constants[expr.__class__.__name__]
74
+ return self._module_format(known)
75
+
76
+
77
+ class AbstractPythonCodePrinter(CodePrinter):
78
+ printmethod = "_pythoncode"
79
+ language = "Python"
80
+ reserved_words = _kw
81
+ modules = None # initialized to a set in __init__
82
+ tab = ' '
83
+ _kf = dict(chain(
84
+ _known_functions.items(),
85
+ [(k, 'math.' + v) for k, v in _known_functions_math.items()]
86
+ ))
87
+ _kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
88
+ _operators = {'and': 'and', 'or': 'or', 'not': 'not'}
89
+ _default_settings = dict(
90
+ CodePrinter._default_settings,
91
+ user_functions={},
92
+ precision=17,
93
+ inline=True,
94
+ fully_qualified_modules=True,
95
+ contract=False,
96
+ standard='python3',
97
+ )
98
+
99
+ def __init__(self, settings=None):
100
+ super().__init__(settings)
101
+
102
+ # Python standard handler
103
+ std = self._settings['standard']
104
+ if std is None:
105
+ import sys
106
+ std = 'python{}'.format(sys.version_info.major)
107
+ if std != 'python3':
108
+ raise ValueError('Only Python 3 is supported.')
109
+ self.standard = std
110
+
111
+ self.module_imports = defaultdict(set)
112
+
113
+ # Known functions and constants handler
114
+ self.known_functions = dict(self._kf, **(settings or {}).get(
115
+ 'user_functions', {}))
116
+ self.known_constants = dict(self._kc, **(settings or {}).get(
117
+ 'user_constants', {}))
118
+
119
+ def _declare_number_const(self, name, value):
120
+ return "%s = %s" % (name, value)
121
+
122
+ def _module_format(self, fqn, register=True):
123
+ parts = fqn.split('.')
124
+ if register and len(parts) > 1:
125
+ self.module_imports['.'.join(parts[:-1])].add(parts[-1])
126
+
127
+ if self._settings['fully_qualified_modules']:
128
+ return fqn
129
+ else:
130
+ return fqn.split('(')[0].split('[')[0].split('.')[-1]
131
+
132
+ def _format_code(self, lines):
133
+ return lines
134
+
135
+ def _get_statement(self, codestring):
136
+ return "{}".format(codestring)
137
+
138
+ def _get_comment(self, text):
139
+ return " # {}".format(text)
140
+
141
+ def _expand_fold_binary_op(self, op, args):
142
+ """
143
+ This method expands a fold on binary operations.
144
+
145
+ ``functools.reduce`` is an example of a folded operation.
146
+
147
+ For example, the expression
148
+
149
+ `A + B + C + D`
150
+
151
+ is folded into
152
+
153
+ `((A + B) + C) + D`
154
+ """
155
+ if len(args) == 1:
156
+ return self._print(args[0])
157
+ else:
158
+ return "%s(%s, %s)" % (
159
+ self._module_format(op),
160
+ self._expand_fold_binary_op(op, args[:-1]),
161
+ self._print(args[-1]),
162
+ )
163
+
164
+ def _expand_reduce_binary_op(self, op, args):
165
+ """
166
+ This method expands a reductin on binary operations.
167
+
168
+ Notice: this is NOT the same as ``functools.reduce``.
169
+
170
+ For example, the expression
171
+
172
+ `A + B + C + D`
173
+
174
+ is reduced into:
175
+
176
+ `(A + B) + (C + D)`
177
+ """
178
+ if len(args) == 1:
179
+ return self._print(args[0])
180
+ else:
181
+ N = len(args)
182
+ Nhalf = N // 2
183
+ return "%s(%s, %s)" % (
184
+ self._module_format(op),
185
+ self._expand_reduce_binary_op(args[:Nhalf]),
186
+ self._expand_reduce_binary_op(args[Nhalf:]),
187
+ )
188
+
189
+ def _print_NaN(self, expr):
190
+ return "float('nan')"
191
+
192
+ def _print_Infinity(self, expr):
193
+ return "float('inf')"
194
+
195
+ def _print_NegativeInfinity(self, expr):
196
+ return "float('-inf')"
197
+
198
+ def _print_ComplexInfinity(self, expr):
199
+ return self._print_NaN(expr)
200
+
201
+ def _print_Mod(self, expr):
202
+ PREC = precedence(expr)
203
+ return ('{} % {}'.format(*(self.parenthesize(x, PREC) for x in expr.args)))
204
+
205
+ def _print_Piecewise(self, expr):
206
+ result = []
207
+ i = 0
208
+ for arg in expr.args:
209
+ e = arg.expr
210
+ c = arg.cond
211
+ if i == 0:
212
+ result.append('(')
213
+ result.append('(')
214
+ result.append(self._print(e))
215
+ result.append(')')
216
+ result.append(' if ')
217
+ result.append(self._print(c))
218
+ result.append(' else ')
219
+ i += 1
220
+ result = result[:-1]
221
+ if result[-1] == 'True':
222
+ result = result[:-2]
223
+ result.append(')')
224
+ else:
225
+ result.append(' else None)')
226
+ return ''.join(result)
227
+
228
+ def _print_Relational(self, expr):
229
+ "Relational printer for Equality and Unequality"
230
+ op = {
231
+ '==' :'equal',
232
+ '!=' :'not_equal',
233
+ '<' :'less',
234
+ '<=' :'less_equal',
235
+ '>' :'greater',
236
+ '>=' :'greater_equal',
237
+ }
238
+ if expr.rel_op in op:
239
+ lhs = self._print(expr.lhs)
240
+ rhs = self._print(expr.rhs)
241
+ return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
242
+ return super()._print_Relational(expr)
243
+
244
+ def _print_ITE(self, expr):
245
+ from sympy.functions.elementary.piecewise import Piecewise
246
+ return self._print(expr.rewrite(Piecewise))
247
+
248
+ def _print_Sum(self, expr):
249
+ loops = (
250
+ 'for {i} in range({a}, {b}+1)'.format(
251
+ i=self._print(i),
252
+ a=self._print(a),
253
+ b=self._print(b))
254
+ for i, a, b in expr.limits)
255
+ return '(builtins.sum({function} {loops}))'.format(
256
+ function=self._print(expr.function),
257
+ loops=' '.join(loops))
258
+
259
+ def _print_ImaginaryUnit(self, expr):
260
+ return '1j'
261
+
262
+ def _print_KroneckerDelta(self, expr):
263
+ a, b = expr.args
264
+
265
+ return '(1 if {a} == {b} else 0)'.format(
266
+ a = self._print(a),
267
+ b = self._print(b)
268
+ )
269
+
270
+ def _print_MatrixBase(self, expr):
271
+ name = expr.__class__.__name__
272
+ func = self.known_functions.get(name, name)
273
+ return "%s(%s)" % (func, self._print(expr.tolist()))
274
+
275
+ _print_SparseRepMatrix = \
276
+ _print_MutableSparseMatrix = \
277
+ _print_ImmutableSparseMatrix = \
278
+ _print_Matrix = \
279
+ _print_DenseMatrix = \
280
+ _print_MutableDenseMatrix = \
281
+ _print_ImmutableMatrix = \
282
+ _print_ImmutableDenseMatrix = \
283
+ lambda self, expr: self._print_MatrixBase(expr)
284
+
285
+ def _indent_codestring(self, codestring):
286
+ return '\n'.join([self.tab + line for line in codestring.split('\n')])
287
+
288
+ def _print_FunctionDefinition(self, fd):
289
+ body = '\n'.join((self._print(arg) for arg in fd.body))
290
+ return "def {name}({parameters}):\n{body}".format(
291
+ name=self._print(fd.name),
292
+ parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
293
+ body=self._indent_codestring(body)
294
+ )
295
+
296
+ def _print_While(self, whl):
297
+ body = '\n'.join((self._print(arg) for arg in whl.body))
298
+ return "while {cond}:\n{body}".format(
299
+ cond=self._print(whl.condition),
300
+ body=self._indent_codestring(body)
301
+ )
302
+
303
+ def _print_Declaration(self, decl):
304
+ return '%s = %s' % (
305
+ self._print(decl.variable.symbol),
306
+ self._print(decl.variable.value)
307
+ )
308
+
309
+ def _print_Return(self, ret):
310
+ arg, = ret.args
311
+ return 'return %s' % self._print(arg)
312
+
313
+ def _print_Print(self, prnt):
314
+ print_args = ', '.join((self._print(arg) for arg in prnt.print_args))
315
+ if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
316
+ print_args = '{} % ({})'.format(
317
+ self._print(prnt.format_string), print_args)
318
+ if prnt.file != None: # Must be '!= None', cannot be 'is not None'
319
+ print_args += ', file=%s' % self._print(prnt.file)
320
+
321
+ return 'print(%s)' % print_args
322
+
323
+ def _print_Stream(self, strm):
324
+ if str(strm.name) == 'stdout':
325
+ return self._module_format('sys.stdout')
326
+ elif str(strm.name) == 'stderr':
327
+ return self._module_format('sys.stderr')
328
+ else:
329
+ return self._print(strm.name)
330
+
331
+ def _print_NoneToken(self, arg):
332
+ return 'None'
333
+
334
+ def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'):
335
+ """Printing helper function for ``Pow``
336
+
337
+ Notes
338
+ =====
339
+
340
+ This preprocesses the ``sqrt`` as math formatter and prints division
341
+
342
+ Examples
343
+ ========
344
+
345
+ >>> from sympy import sqrt
346
+ >>> from sympy.printing.pycode import PythonCodePrinter
347
+ >>> from sympy.abc import x
348
+
349
+ Python code printer automatically looks up ``math.sqrt``.
350
+
351
+ >>> printer = PythonCodePrinter()
352
+ >>> printer._hprint_Pow(sqrt(x), rational=True)
353
+ 'x**(1/2)'
354
+ >>> printer._hprint_Pow(sqrt(x), rational=False)
355
+ 'math.sqrt(x)'
356
+ >>> printer._hprint_Pow(1/sqrt(x), rational=True)
357
+ 'x**(-1/2)'
358
+ >>> printer._hprint_Pow(1/sqrt(x), rational=False)
359
+ '1/math.sqrt(x)'
360
+ >>> printer._hprint_Pow(1/x, rational=False)
361
+ '1/x'
362
+ >>> printer._hprint_Pow(1/x, rational=True)
363
+ 'x**(-1)'
364
+
365
+ Using sqrt from numpy or mpmath
366
+
367
+ >>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt')
368
+ 'numpy.sqrt(x)'
369
+ >>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt')
370
+ 'mpmath.sqrt(x)'
371
+
372
+ See Also
373
+ ========
374
+
375
+ sympy.printing.str.StrPrinter._print_Pow
376
+ """
377
+ PREC = precedence(expr)
378
+
379
+ if expr.exp == S.Half and not rational:
380
+ func = self._module_format(sqrt)
381
+ arg = self._print(expr.base)
382
+ return '{func}({arg})'.format(func=func, arg=arg)
383
+
384
+ if expr.is_commutative and not rational:
385
+ if -expr.exp is S.Half:
386
+ func = self._module_format(sqrt)
387
+ num = self._print(S.One)
388
+ arg = self._print(expr.base)
389
+ return f"{num}/{func}({arg})"
390
+ if expr.exp is S.NegativeOne:
391
+ num = self._print(S.One)
392
+ arg = self.parenthesize(expr.base, PREC, strict=False)
393
+ return f"{num}/{arg}"
394
+
395
+
396
+ base_str = self.parenthesize(expr.base, PREC, strict=False)
397
+ exp_str = self.parenthesize(expr.exp, PREC, strict=False)
398
+ return "{}**{}".format(base_str, exp_str)
399
+
400
+
401
+ class ArrayPrinter:
402
+
403
+ def _arrayify(self, indexed):
404
+ from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
405
+ try:
406
+ return convert_indexed_to_array(indexed)
407
+ except Exception:
408
+ return indexed
409
+
410
+ def _get_einsum_string(self, subranks, contraction_indices):
411
+ letters = self._get_letter_generator_for_einsum()
412
+ contraction_string = ""
413
+ counter = 0
414
+ d = {j: min(i) for i in contraction_indices for j in i}
415
+ indices = []
416
+ for rank_arg in subranks:
417
+ lindices = []
418
+ for i in range(rank_arg):
419
+ if counter in d:
420
+ lindices.append(d[counter])
421
+ else:
422
+ lindices.append(counter)
423
+ counter += 1
424
+ indices.append(lindices)
425
+ mapping = {}
426
+ letters_free = []
427
+ letters_dum = []
428
+ for i in indices:
429
+ for j in i:
430
+ if j not in mapping:
431
+ l = next(letters)
432
+ mapping[j] = l
433
+ else:
434
+ l = mapping[j]
435
+ contraction_string += l
436
+ if j in d:
437
+ if l not in letters_dum:
438
+ letters_dum.append(l)
439
+ else:
440
+ letters_free.append(l)
441
+ contraction_string += ","
442
+ contraction_string = contraction_string[:-1]
443
+ return contraction_string, letters_free, letters_dum
444
+
445
+ def _get_letter_generator_for_einsum(self):
446
+ for i in range(97, 123):
447
+ yield chr(i)
448
+ for i in range(65, 91):
449
+ yield chr(i)
450
+ raise ValueError("out of letters")
451
+
452
+ def _print_ArrayTensorProduct(self, expr):
453
+ letters = self._get_letter_generator_for_einsum()
454
+ contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks])
455
+ return '%s("%s", %s)' % (
456
+ self._module_format(self._module + "." + self._einsum),
457
+ contraction_string,
458
+ ", ".join([self._print(arg) for arg in expr.args])
459
+ )
460
+
461
+ def _print_ArrayContraction(self, expr):
462
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
463
+ base = expr.expr
464
+ contraction_indices = expr.contraction_indices
465
+
466
+ if isinstance(base, ArrayTensorProduct):
467
+ elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
468
+ ranks = base.subranks
469
+ else:
470
+ elems = self._print(base)
471
+ ranks = [len(base.shape)]
472
+
473
+ contraction_string, letters_free, letters_dum = self._get_einsum_string(ranks, contraction_indices)
474
+
475
+ if not contraction_indices:
476
+ return self._print(base)
477
+ if isinstance(base, ArrayTensorProduct):
478
+ elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
479
+ else:
480
+ elems = self._print(base)
481
+ return "%s(\"%s\", %s)" % (
482
+ self._module_format(self._module + "." + self._einsum),
483
+ "{}->{}".format(contraction_string, "".join(sorted(letters_free))),
484
+ elems,
485
+ )
486
+
487
+ def _print_ArrayDiagonal(self, expr):
488
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
489
+ diagonal_indices = list(expr.diagonal_indices)
490
+ if isinstance(expr.expr, ArrayTensorProduct):
491
+ subranks = expr.expr.subranks
492
+ elems = expr.expr.args
493
+ else:
494
+ subranks = expr.subranks
495
+ elems = [expr.expr]
496
+ diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices)
497
+ elems = [self._print(i) for i in elems]
498
+ return '%s("%s", %s)' % (
499
+ self._module_format(self._module + "." + self._einsum),
500
+ "{}->{}".format(diagonal_string, "".join(letters_free+letters_dum)),
501
+ ", ".join(elems)
502
+ )
503
+
504
+ def _print_PermuteDims(self, expr):
505
+ return "%s(%s, %s)" % (
506
+ self._module_format(self._module + "." + self._transpose),
507
+ self._print(expr.expr),
508
+ self._print(expr.permutation.array_form),
509
+ )
510
+
511
+ def _print_ArrayAdd(self, expr):
512
+ return self._expand_fold_binary_op(self._module + "." + self._add, expr.args)
513
+
514
+ def _print_OneArray(self, expr):
515
+ return "%s((%s,))" % (
516
+ self._module_format(self._module+ "." + self._ones),
517
+ ','.join(map(self._print,expr.args))
518
+ )
519
+
520
+ def _print_ZeroArray(self, expr):
521
+ return "%s((%s,))" % (
522
+ self._module_format(self._module+ "." + self._zeros),
523
+ ','.join(map(self._print,expr.args))
524
+ )
525
+
526
+ def _print_Assignment(self, expr):
527
+ #XXX: maybe this needs to happen at a higher level e.g. at _print or
528
+ #doprint?
529
+ lhs = self._print(self._arrayify(expr.lhs))
530
+ rhs = self._print(self._arrayify(expr.rhs))
531
+ return "%s = %s" % ( lhs, rhs )
532
+
533
+ def _print_IndexedBase(self, expr):
534
+ return self._print_ArraySymbol(expr)
535
+
536
+
537
+ class PythonCodePrinter(AbstractPythonCodePrinter):
538
+
539
+ def _print_sign(self, e):
540
+ return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
541
+ f=self._module_format('math.copysign'), e=self._print(e.args[0]))
542
+
543
+ def _print_Not(self, expr):
544
+ PREC = precedence(expr)
545
+ return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
546
+
547
+ def _print_Indexed(self, expr):
548
+ base = expr.args[0]
549
+ index = expr.args[1:]
550
+ return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))
551
+
552
+ def _print_Pow(self, expr, rational=False):
553
+ return self._hprint_Pow(expr, rational=rational)
554
+
555
+ def _print_Rational(self, expr):
556
+ return '{}/{}'.format(expr.p, expr.q)
557
+
558
+ def _print_Half(self, expr):
559
+ return self._print_Rational(expr)
560
+
561
+ def _print_frac(self, expr):
562
+ return self._print_Mod(Mod(expr.args[0], 1))
563
+
564
+ def _print_Symbol(self, expr):
565
+
566
+ name = super()._print_Symbol(expr)
567
+
568
+ if name in self.reserved_words:
569
+ if self._settings['error_on_reserved']:
570
+ msg = ('This expression includes the symbol "{}" which is a '
571
+ 'reserved keyword in this language.')
572
+ raise ValueError(msg.format(name))
573
+ return name + self._settings['reserved_word_suffix']
574
+ elif '{' in name: # Remove curly braces from subscripted variables
575
+ return name.replace('{', '').replace('}', '')
576
+ else:
577
+ return name
578
+
579
+ _print_lowergamma = CodePrinter._print_not_supported
580
+ _print_uppergamma = CodePrinter._print_not_supported
581
+ _print_fresnelc = CodePrinter._print_not_supported
582
+ _print_fresnels = CodePrinter._print_not_supported
583
+
584
+
585
+ for k in PythonCodePrinter._kf:
586
+ setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
587
+
588
+ for k in _known_constants_math:
589
+ setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
590
+
591
+
592
+ def pycode(expr, **settings):
593
+ """ Converts an expr to a string of Python code
594
+
595
+ Parameters
596
+ ==========
597
+
598
+ expr : Expr
599
+ A SymPy expression.
600
+ fully_qualified_modules : bool
601
+ Whether or not to write out full module names of functions
602
+ (``math.sin`` vs. ``sin``). default: ``True``.
603
+ standard : str or None, optional
604
+ Only 'python3' (default) is supported.
605
+ This parameter may be removed in the future.
606
+
607
+ Examples
608
+ ========
609
+
610
+ >>> from sympy import pycode, tan, Symbol
611
+ >>> pycode(tan(Symbol('x')) + 1)
612
+ 'math.tan(x) + 1'
613
+
614
+ """
615
+ return PythonCodePrinter(settings).doprint(expr)
616
+
617
+
618
+ _not_in_mpmath = 'log1p log2'.split()
619
+ _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
620
+ _known_functions_mpmath = dict(_in_mpmath, **{
621
+ 'beta': 'beta',
622
+ 'frac': 'frac',
623
+ 'fresnelc': 'fresnelc',
624
+ 'fresnels': 'fresnels',
625
+ 'sign': 'sign',
626
+ 'loggamma': 'loggamma',
627
+ 'hyper': 'hyper',
628
+ 'meijerg': 'meijerg',
629
+ 'besselj': 'besselj',
630
+ 'bessely': 'bessely',
631
+ 'besseli': 'besseli',
632
+ 'besselk': 'besselk',
633
+ })
634
+ _known_constants_mpmath = {
635
+ 'Exp1': 'e',
636
+ 'Pi': 'pi',
637
+ 'GoldenRatio': 'phi',
638
+ 'EulerGamma': 'euler',
639
+ 'Catalan': 'catalan',
640
+ 'NaN': 'nan',
641
+ 'Infinity': 'inf',
642
+ 'NegativeInfinity': 'ninf'
643
+ }
644
+
645
+
646
+ def _unpack_integral_limits(integral_expr):
647
+ """ helper function for _print_Integral that
648
+ - accepts an Integral expression
649
+ - returns a tuple of
650
+ - a list variables of integration
651
+ - a list of tuples of the upper and lower limits of integration
652
+ """
653
+ integration_vars = []
654
+ limits = []
655
+ for integration_range in integral_expr.limits:
656
+ if len(integration_range) == 3:
657
+ integration_var, lower_limit, upper_limit = integration_range
658
+ else:
659
+ raise NotImplementedError("Only definite integrals are supported")
660
+ integration_vars.append(integration_var)
661
+ limits.append((lower_limit, upper_limit))
662
+ return integration_vars, limits
663
+
664
+
665
+ class MpmathPrinter(PythonCodePrinter):
666
+ """
667
+ Lambda printer for mpmath which maintains precision for floats
668
+ """
669
+ printmethod = "_mpmathcode"
670
+
671
+ language = "Python with mpmath"
672
+
673
+ _kf = dict(chain(
674
+ _known_functions.items(),
675
+ [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
676
+ ))
677
+ _kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()}
678
+
679
+ def _print_Float(self, e):
680
+ # XXX: This does not handle setting mpmath.mp.dps. It is assumed that
681
+ # the caller of the lambdified function will have set it to sufficient
682
+ # precision to match the Floats in the expression.
683
+
684
+ # Remove 'mpz' if gmpy is installed.
685
+ args = str(tuple(map(int, e._mpf_)))
686
+ return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
687
+
688
+
689
+ def _print_Rational(self, e):
690
+ return "{func}({p})/{func}({q})".format(
691
+ func=self._module_format('mpmath.mpf'),
692
+ q=self._print(e.q),
693
+ p=self._print(e.p)
694
+ )
695
+
696
+ def _print_Half(self, e):
697
+ return self._print_Rational(e)
698
+
699
+ def _print_uppergamma(self, e):
700
+ return "{}({}, {}, {})".format(
701
+ self._module_format('mpmath.gammainc'),
702
+ self._print(e.args[0]),
703
+ self._print(e.args[1]),
704
+ self._module_format('mpmath.inf'))
705
+
706
+ def _print_lowergamma(self, e):
707
+ return "{}({}, 0, {})".format(
708
+ self._module_format('mpmath.gammainc'),
709
+ self._print(e.args[0]),
710
+ self._print(e.args[1]))
711
+
712
+ def _print_log2(self, e):
713
+ return '{0}({1})/{0}(2)'.format(
714
+ self._module_format('mpmath.log'), self._print(e.args[0]))
715
+
716
+ def _print_log1p(self, e):
717
+ return '{}({})'.format(
718
+ self._module_format('mpmath.log1p'), self._print(e.args[0]))
719
+
720
+ def _print_Pow(self, expr, rational=False):
721
+ return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt')
722
+
723
+ def _print_Integral(self, e):
724
+ integration_vars, limits = _unpack_integral_limits(e)
725
+
726
+ return "{}(lambda {}: {}, {})".format(
727
+ self._module_format("mpmath.quad"),
728
+ ", ".join(map(self._print, integration_vars)),
729
+ self._print(e.args[0]),
730
+ ", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits))
731
+
732
+
733
+ for k in MpmathPrinter._kf:
734
+ setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
735
+
736
+ for k in _known_constants_mpmath:
737
+ setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
738
+
739
+
740
+ class SymPyPrinter(AbstractPythonCodePrinter):
741
+
742
+ language = "Python with SymPy"
743
+
744
+ def _print_Function(self, expr):
745
+ mod = expr.func.__module__ or ''
746
+ return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
747
+ ', '.join((self._print(arg) for arg in expr.args)))
748
+
749
+ def _print_Pow(self, expr, rational=False):
750
+ return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
venv/lib/python3.10/site-packages/sympy/printing/python.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keyword as kw
2
+ import sympy
3
+ from .repr import ReprPrinter
4
+ from .str import StrPrinter
5
+
6
+ # A list of classes that should be printed using StrPrinter
7
+ STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity",
8
+ "Pow", "Zero")
9
+
10
+
11
+ class PythonPrinter(ReprPrinter, StrPrinter):
12
+ """A printer which converts an expression into its Python interpretation."""
13
+
14
+ def __init__(self, settings=None):
15
+ super().__init__(settings)
16
+ self.symbols = []
17
+ self.functions = []
18
+
19
+ # Create print methods for classes that should use StrPrinter instead
20
+ # of ReprPrinter.
21
+ for name in STRPRINT:
22
+ f_name = "_print_%s" % name
23
+ f = getattr(StrPrinter, f_name)
24
+ setattr(PythonPrinter, f_name, f)
25
+
26
+ def _print_Function(self, expr):
27
+ func = expr.func.__name__
28
+ if not hasattr(sympy, func) and func not in self.functions:
29
+ self.functions.append(func)
30
+ return StrPrinter._print_Function(self, expr)
31
+
32
+ # procedure (!) for defining symbols which have be defined in print_python()
33
+ def _print_Symbol(self, expr):
34
+ symbol = self._str(expr)
35
+ if symbol not in self.symbols:
36
+ self.symbols.append(symbol)
37
+ return StrPrinter._print_Symbol(self, expr)
38
+
39
+ def _print_module(self, expr):
40
+ raise ValueError('Modules in the expression are unacceptable')
41
+
42
+
43
+ def python(expr, **settings):
44
+ """Return Python interpretation of passed expression
45
+ (can be passed to the exec() function without any modifications)"""
46
+
47
+ printer = PythonPrinter(settings)
48
+ exprp = printer.doprint(expr)
49
+
50
+ result = ''
51
+ # Returning found symbols and functions
52
+ renamings = {}
53
+ for symbolname in printer.symbols:
54
+ # Remove curly braces from subscripted variables
55
+ if '{' in symbolname:
56
+ newsymbolname = symbolname.replace('{', '').replace('}', '')
57
+ renamings[sympy.Symbol(symbolname)] = newsymbolname
58
+ else:
59
+ newsymbolname = symbolname
60
+
61
+ # Escape symbol names that are reserved Python keywords
62
+ if kw.iskeyword(newsymbolname):
63
+ while True:
64
+ newsymbolname += "_"
65
+ if (newsymbolname not in printer.symbols and
66
+ newsymbolname not in printer.functions):
67
+ renamings[sympy.Symbol(
68
+ symbolname)] = sympy.Symbol(newsymbolname)
69
+ break
70
+ result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n'
71
+
72
+ for functionname in printer.functions:
73
+ newfunctionname = functionname
74
+ # Escape function names that are reserved Python keywords
75
+ if kw.iskeyword(newfunctionname):
76
+ while True:
77
+ newfunctionname += "_"
78
+ if (newfunctionname not in printer.symbols and
79
+ newfunctionname not in printer.functions):
80
+ renamings[sympy.Function(
81
+ functionname)] = sympy.Function(newfunctionname)
82
+ break
83
+ result += newfunctionname + ' = Function(\'' + functionname + '\')\n'
84
+
85
+ if renamings:
86
+ exprp = expr.subs(renamings)
87
+ result += 'e = ' + printer._str(exprp)
88
+ return result
89
+
90
+
91
+ def print_python(expr, **settings):
92
+ """Print output of python() function"""
93
+ print(python(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/rcode.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ R code printer
3
+
4
+ The RCodePrinter converts single SymPy expressions into single R expressions,
5
+ using the functions defined in math.h where possible.
6
+
7
+
8
+
9
+ """
10
+
11
+ from __future__ import annotations
12
+ from typing import Any
13
+
14
+ from sympy.core.numbers import equal_valued
15
+ from sympy.printing.codeprinter import CodePrinter
16
+ from sympy.printing.precedence import precedence, PRECEDENCE
17
+ from sympy.sets.fancysets import Range
18
+
19
+ # dictionary mapping SymPy function to (argument_conditions, C_function).
20
+ # Used in RCodePrinter._print_Function(self)
21
+ known_functions = {
22
+ #"Abs": [(lambda x: not x.is_integer, "fabs")],
23
+ "Abs": "abs",
24
+ "sin": "sin",
25
+ "cos": "cos",
26
+ "tan": "tan",
27
+ "asin": "asin",
28
+ "acos": "acos",
29
+ "atan": "atan",
30
+ "atan2": "atan2",
31
+ "exp": "exp",
32
+ "log": "log",
33
+ "erf": "erf",
34
+ "sinh": "sinh",
35
+ "cosh": "cosh",
36
+ "tanh": "tanh",
37
+ "asinh": "asinh",
38
+ "acosh": "acosh",
39
+ "atanh": "atanh",
40
+ "floor": "floor",
41
+ "ceiling": "ceiling",
42
+ "sign": "sign",
43
+ "Max": "max",
44
+ "Min": "min",
45
+ "factorial": "factorial",
46
+ "gamma": "gamma",
47
+ "digamma": "digamma",
48
+ "trigamma": "trigamma",
49
+ "beta": "beta",
50
+ "sqrt": "sqrt", # To enable automatic rewrite
51
+ }
52
+
53
+ # These are the core reserved words in the R language. Taken from:
54
+ # https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words
55
+
56
+ reserved_words = ['if',
57
+ 'else',
58
+ 'repeat',
59
+ 'while',
60
+ 'function',
61
+ 'for',
62
+ 'in',
63
+ 'next',
64
+ 'break',
65
+ 'TRUE',
66
+ 'FALSE',
67
+ 'NULL',
68
+ 'Inf',
69
+ 'NaN',
70
+ 'NA',
71
+ 'NA_integer_',
72
+ 'NA_real_',
73
+ 'NA_complex_',
74
+ 'NA_character_',
75
+ 'volatile']
76
+
77
+
78
+ class RCodePrinter(CodePrinter):
79
+ """A printer to convert SymPy expressions to strings of R code"""
80
+ printmethod = "_rcode"
81
+ language = "R"
82
+
83
+ _default_settings: dict[str, Any] = {
84
+ 'order': None,
85
+ 'full_prec': 'auto',
86
+ 'precision': 15,
87
+ 'user_functions': {},
88
+ 'human': True,
89
+ 'contract': True,
90
+ 'dereference': set(),
91
+ 'error_on_reserved': False,
92
+ 'reserved_word_suffix': '_',
93
+ }
94
+ _operators = {
95
+ 'and': '&',
96
+ 'or': '|',
97
+ 'not': '!',
98
+ }
99
+
100
+ _relationals: dict[str, str] = {}
101
+
102
+ def __init__(self, settings={}):
103
+ CodePrinter.__init__(self, settings)
104
+ self.known_functions = dict(known_functions)
105
+ userfuncs = settings.get('user_functions', {})
106
+ self.known_functions.update(userfuncs)
107
+ self._dereference = set(settings.get('dereference', []))
108
+ self.reserved_words = set(reserved_words)
109
+
110
+ def _rate_index_position(self, p):
111
+ return p*5
112
+
113
+ def _get_statement(self, codestring):
114
+ return "%s;" % codestring
115
+
116
+ def _get_comment(self, text):
117
+ return "// {}".format(text)
118
+
119
+ def _declare_number_const(self, name, value):
120
+ return "{} = {};".format(name, value)
121
+
122
+ def _format_code(self, lines):
123
+ return self.indent_code(lines)
124
+
125
+ def _traverse_matrix_indices(self, mat):
126
+ rows, cols = mat.shape
127
+ return ((i, j) for i in range(rows) for j in range(cols))
128
+
129
+ def _get_loop_opening_ending(self, indices):
130
+ """Returns a tuple (open_lines, close_lines) containing lists of codelines
131
+ """
132
+ open_lines = []
133
+ close_lines = []
134
+ loopstart = "for (%(var)s in %(start)s:%(end)s){"
135
+ for i in indices:
136
+ # R arrays start at 1 and end at dimension
137
+ open_lines.append(loopstart % {
138
+ 'var': self._print(i.label),
139
+ 'start': self._print(i.lower+1),
140
+ 'end': self._print(i.upper + 1)})
141
+ close_lines.append("}")
142
+ return open_lines, close_lines
143
+
144
+ def _print_Pow(self, expr):
145
+ if "Pow" in self.known_functions:
146
+ return self._print_Function(expr)
147
+ PREC = precedence(expr)
148
+ if equal_valued(expr.exp, -1):
149
+ return '1.0/%s' % (self.parenthesize(expr.base, PREC))
150
+ elif equal_valued(expr.exp, 0.5):
151
+ return 'sqrt(%s)' % self._print(expr.base)
152
+ else:
153
+ return '%s^%s' % (self.parenthesize(expr.base, PREC),
154
+ self.parenthesize(expr.exp, PREC))
155
+
156
+
157
+ def _print_Rational(self, expr):
158
+ p, q = int(expr.p), int(expr.q)
159
+ return '%d.0/%d.0' % (p, q)
160
+
161
+ def _print_Indexed(self, expr):
162
+ inds = [ self._print(i) for i in expr.indices ]
163
+ return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds))
164
+
165
+ def _print_Idx(self, expr):
166
+ return self._print(expr.label)
167
+
168
+ def _print_Exp1(self, expr):
169
+ return "exp(1)"
170
+
171
+ def _print_Pi(self, expr):
172
+ return 'pi'
173
+
174
+ def _print_Infinity(self, expr):
175
+ return 'Inf'
176
+
177
+ def _print_NegativeInfinity(self, expr):
178
+ return '-Inf'
179
+
180
+ def _print_Assignment(self, expr):
181
+ from sympy.codegen.ast import Assignment
182
+
183
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
184
+ from sympy.tensor.indexed import IndexedBase
185
+ lhs = expr.lhs
186
+ rhs = expr.rhs
187
+ # We special case assignments that take multiple lines
188
+ #if isinstance(expr.rhs, Piecewise):
189
+ # from sympy.functions.elementary.piecewise import Piecewise
190
+ # # Here we modify Piecewise so each expression is now
191
+ # # an Assignment, and then continue on the print.
192
+ # expressions = []
193
+ # conditions = []
194
+ # for (e, c) in rhs.args:
195
+ # expressions.append(Assignment(lhs, e))
196
+ # conditions.append(c)
197
+ # temp = Piecewise(*zip(expressions, conditions))
198
+ # return self._print(temp)
199
+ #elif isinstance(lhs, MatrixSymbol):
200
+ if isinstance(lhs, MatrixSymbol):
201
+ # Here we form an Assignment for each element in the array,
202
+ # printing each one.
203
+ lines = []
204
+ for (i, j) in self._traverse_matrix_indices(lhs):
205
+ temp = Assignment(lhs[i, j], rhs[i, j])
206
+ code0 = self._print(temp)
207
+ lines.append(code0)
208
+ return "\n".join(lines)
209
+ elif self._settings["contract"] and (lhs.has(IndexedBase) or
210
+ rhs.has(IndexedBase)):
211
+ # Here we check if there is looping to be done, and if so
212
+ # print the required loops.
213
+ return self._doprint_loops(rhs, lhs)
214
+ else:
215
+ lhs_code = self._print(lhs)
216
+ rhs_code = self._print(rhs)
217
+ return self._get_statement("%s = %s" % (lhs_code, rhs_code))
218
+
219
+ def _print_Piecewise(self, expr):
220
+ # This method is called only for inline if constructs
221
+ # Top level piecewise is handled in doprint()
222
+ if expr.args[-1].cond == True:
223
+ last_line = "%s" % self._print(expr.args[-1].expr)
224
+ else:
225
+ last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr))
226
+ code=last_line
227
+ for e, c in reversed(expr.args[:-1]):
228
+ code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")"
229
+ return(code)
230
+
231
+ def _print_ITE(self, expr):
232
+ from sympy.functions import Piecewise
233
+ return self._print(expr.rewrite(Piecewise))
234
+
235
+ def _print_MatrixElement(self, expr):
236
+ return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
237
+ strict=True), expr.j + expr.i*expr.parent.shape[1])
238
+
239
+ def _print_Symbol(self, expr):
240
+ name = super()._print_Symbol(expr)
241
+ if expr in self._dereference:
242
+ return '(*{})'.format(name)
243
+ else:
244
+ return name
245
+
246
+ def _print_Relational(self, expr):
247
+ lhs_code = self._print(expr.lhs)
248
+ rhs_code = self._print(expr.rhs)
249
+ op = expr.rel_op
250
+ return "{} {} {}".format(lhs_code, op, rhs_code)
251
+
252
+ def _print_AugmentedAssignment(self, expr):
253
+ lhs_code = self._print(expr.lhs)
254
+ op = expr.op
255
+ rhs_code = self._print(expr.rhs)
256
+ return "{} {} {};".format(lhs_code, op, rhs_code)
257
+
258
+ def _print_For(self, expr):
259
+ target = self._print(expr.target)
260
+ if isinstance(expr.iterable, Range):
261
+ start, stop, step = expr.iterable.args
262
+ else:
263
+ raise NotImplementedError("Only iterable currently supported is Range")
264
+ body = self._print(expr.body)
265
+ return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start,
266
+ stop=stop-1, step=step, body=body)
267
+
268
+
269
+ def indent_code(self, code):
270
+ """Accepts a string of code or a list of code lines"""
271
+
272
+ if isinstance(code, str):
273
+ code_lines = self.indent_code(code.splitlines(True))
274
+ return ''.join(code_lines)
275
+
276
+ tab = " "
277
+ inc_token = ('{', '(', '{\n', '(\n')
278
+ dec_token = ('}', ')')
279
+
280
+ code = [ line.lstrip(' \t') for line in code ]
281
+
282
+ increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
283
+ decrease = [ int(any(map(line.startswith, dec_token)))
284
+ for line in code ]
285
+
286
+ pretty = []
287
+ level = 0
288
+ for n, line in enumerate(code):
289
+ if line in ('', '\n'):
290
+ pretty.append(line)
291
+ continue
292
+ level -= decrease[n]
293
+ pretty.append("%s%s" % (tab*level, line))
294
+ level += increase[n]
295
+ return pretty
296
+
297
+
298
+ def rcode(expr, assign_to=None, **settings):
299
+ """Converts an expr to a string of r code
300
+
301
+ Parameters
302
+ ==========
303
+
304
+ expr : Expr
305
+ A SymPy expression to be converted.
306
+ assign_to : optional
307
+ When given, the argument is used as the name of the variable to which
308
+ the expression is assigned. Can be a string, ``Symbol``,
309
+ ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
310
+ line-wrapping, or for expressions that generate multi-line statements.
311
+ precision : integer, optional
312
+ The precision for numbers such as pi [default=15].
313
+ user_functions : dict, optional
314
+ A dictionary where the keys are string representations of either
315
+ ``FunctionClass`` or ``UndefinedFunction`` instances and the values
316
+ are their desired R string representations. Alternatively, the
317
+ dictionary value can be a list of tuples i.e. [(argument_test,
318
+ rfunction_string)] or [(argument_test, rfunction_formater)]. See below
319
+ for examples.
320
+ human : bool, optional
321
+ If True, the result is a single string that may contain some constant
322
+ declarations for the number symbols. If False, the same information is
323
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
324
+ code_text). [default=True].
325
+ contract: bool, optional
326
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
327
+ rules and the corresponding nested loops over indices are generated.
328
+ Setting contract=False will not generate loops, instead the user is
329
+ responsible to provide values for the indices in the code.
330
+ [default=True].
331
+
332
+ Examples
333
+ ========
334
+
335
+ >>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function
336
+ >>> x, tau = symbols("x, tau")
337
+ >>> rcode((2*tau)**Rational(7, 2))
338
+ '8*sqrt(2)*tau^(7.0/2.0)'
339
+ >>> rcode(sin(x), assign_to="s")
340
+ 's = sin(x);'
341
+
342
+ Simple custom printing can be defined for certain types by passing a
343
+ dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
344
+ Alternatively, the dictionary value can be a list of tuples i.e.
345
+ [(argument_test, cfunction_string)].
346
+
347
+ >>> custom_functions = {
348
+ ... "ceiling": "CEIL",
349
+ ... "Abs": [(lambda x: not x.is_integer, "fabs"),
350
+ ... (lambda x: x.is_integer, "ABS")],
351
+ ... "func": "f"
352
+ ... }
353
+ >>> func = Function('func')
354
+ >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
355
+ 'f(fabs(x) + CEIL(x))'
356
+
357
+ or if the R-function takes a subset of the original arguments:
358
+
359
+ >>> rcode(2**x + 3**x, user_functions={'Pow': [
360
+ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
361
+ ... (lambda b, e: b != 2, 'pow')]})
362
+ 'exp2(x) + pow(3, x)'
363
+
364
+ ``Piecewise`` expressions are converted into conditionals. If an
365
+ ``assign_to`` variable is provided an if statement is created, otherwise
366
+ the ternary operator is used. Note that if the ``Piecewise`` lacks a
367
+ default term, represented by ``(expr, True)`` then an error will be thrown.
368
+ This is to prevent generating an expression that may not evaluate to
369
+ anything.
370
+
371
+ >>> from sympy import Piecewise
372
+ >>> expr = Piecewise((x + 1, x > 0), (x, True))
373
+ >>> print(rcode(expr, assign_to=tau))
374
+ tau = ifelse(x > 0,x + 1,x);
375
+
376
+ Support for loops is provided through ``Indexed`` types. With
377
+ ``contract=True`` these expressions will be turned into loops, whereas
378
+ ``contract=False`` will just print the assignment expression that should be
379
+ looped over:
380
+
381
+ >>> from sympy import Eq, IndexedBase, Idx
382
+ >>> len_y = 5
383
+ >>> y = IndexedBase('y', shape=(len_y,))
384
+ >>> t = IndexedBase('t', shape=(len_y,))
385
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
386
+ >>> i = Idx('i', len_y-1)
387
+ >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
388
+ >>> rcode(e.rhs, assign_to=e.lhs, contract=False)
389
+ 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
390
+
391
+ Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
392
+ must be provided to ``assign_to``. Note that any expression that can be
393
+ generated normally can also exist inside a Matrix:
394
+
395
+ >>> from sympy import Matrix, MatrixSymbol
396
+ >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
397
+ >>> A = MatrixSymbol('A', 3, 1)
398
+ >>> print(rcode(mat, A))
399
+ A[0] = x^2;
400
+ A[1] = ifelse(x > 0,x + 1,x);
401
+ A[2] = sin(x);
402
+
403
+ """
404
+
405
+ return RCodePrinter(settings).doprint(expr, assign_to)
406
+
407
+
408
+ def print_rcode(expr, **settings):
409
+ """Prints R representation of the given expression."""
410
+ print(rcode(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/repr.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A Printer for generating executable code.
3
+
4
+ The most important function here is srepr that returns a string so that the
5
+ relation eval(srepr(expr))=expr holds in an appropriate environment.
6
+ """
7
+
8
+ from __future__ import annotations
9
+ from typing import Any
10
+
11
+ from sympy.core.function import AppliedUndef
12
+ from sympy.core.mul import Mul
13
+ from mpmath.libmp import repr_dps, to_str as mlib_to_str
14
+
15
+ from .printer import Printer, print_function
16
+
17
+
18
+ class ReprPrinter(Printer):
19
+ printmethod = "_sympyrepr"
20
+
21
+ _default_settings: dict[str, Any] = {
22
+ "order": None,
23
+ "perm_cyclic" : True,
24
+ }
25
+
26
+ def reprify(self, args, sep):
27
+ """
28
+ Prints each item in `args` and joins them with `sep`.
29
+ """
30
+ return sep.join([self.doprint(item) for item in args])
31
+
32
+ def emptyPrinter(self, expr):
33
+ """
34
+ The fallback printer.
35
+ """
36
+ if isinstance(expr, str):
37
+ return expr
38
+ elif hasattr(expr, "__srepr__"):
39
+ return expr.__srepr__()
40
+ elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
41
+ l = []
42
+ for o in expr.args:
43
+ l.append(self._print(o))
44
+ return expr.__class__.__name__ + '(%s)' % ', '.join(l)
45
+ elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
46
+ return "<'%s.%s'>" % (expr.__module__, expr.__name__)
47
+ else:
48
+ return str(expr)
49
+
50
+ def _print_Add(self, expr, order=None):
51
+ args = self._as_ordered_terms(expr, order=order)
52
+ args = map(self._print, args)
53
+ clsname = type(expr).__name__
54
+ return clsname + "(%s)" % ", ".join(args)
55
+
56
+ def _print_Cycle(self, expr):
57
+ return expr.__repr__()
58
+
59
+ def _print_Permutation(self, expr):
60
+ from sympy.combinatorics.permutations import Permutation, Cycle
61
+ from sympy.utilities.exceptions import sympy_deprecation_warning
62
+
63
+ perm_cyclic = Permutation.print_cyclic
64
+ if perm_cyclic is not None:
65
+ sympy_deprecation_warning(
66
+ f"""
67
+ Setting Permutation.print_cyclic is deprecated. Instead use
68
+ init_printing(perm_cyclic={perm_cyclic}).
69
+ """,
70
+ deprecated_since_version="1.6",
71
+ active_deprecations_target="deprecated-permutation-print_cyclic",
72
+ stacklevel=7,
73
+ )
74
+ else:
75
+ perm_cyclic = self._settings.get("perm_cyclic", True)
76
+
77
+ if perm_cyclic:
78
+ if not expr.size:
79
+ return 'Permutation()'
80
+ # before taking Cycle notation, see if the last element is
81
+ # a singleton and move it to the head of the string
82
+ s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
83
+ last = s.rfind('(')
84
+ if not last == 0 and ',' not in s[last:]:
85
+ s = s[last:] + s[:last]
86
+ return 'Permutation%s' %s
87
+ else:
88
+ s = expr.support()
89
+ if not s:
90
+ if expr.size < 5:
91
+ return 'Permutation(%s)' % str(expr.array_form)
92
+ return 'Permutation([], size=%s)' % expr.size
93
+ trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size
94
+ use = full = str(expr.array_form)
95
+ if len(trim) < len(full):
96
+ use = trim
97
+ return 'Permutation(%s)' % use
98
+
99
+ def _print_Function(self, expr):
100
+ r = self._print(expr.func)
101
+ r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
102
+ return r
103
+
104
+ def _print_Heaviside(self, expr):
105
+ # Same as _print_Function but uses pargs to suppress default value for
106
+ # 2nd arg.
107
+ r = self._print(expr.func)
108
+ r += '(%s)' % ', '.join([self._print(a) for a in expr.pargs])
109
+ return r
110
+
111
+ def _print_FunctionClass(self, expr):
112
+ if issubclass(expr, AppliedUndef):
113
+ return 'Function(%r)' % (expr.__name__)
114
+ else:
115
+ return expr.__name__
116
+
117
+ def _print_Half(self, expr):
118
+ return 'Rational(1, 2)'
119
+
120
+ def _print_RationalConstant(self, expr):
121
+ return str(expr)
122
+
123
+ def _print_AtomicExpr(self, expr):
124
+ return str(expr)
125
+
126
+ def _print_NumberSymbol(self, expr):
127
+ return str(expr)
128
+
129
+ def _print_Integer(self, expr):
130
+ return 'Integer(%i)' % expr.p
131
+
132
+ def _print_Complexes(self, expr):
133
+ return 'Complexes'
134
+
135
+ def _print_Integers(self, expr):
136
+ return 'Integers'
137
+
138
+ def _print_Naturals(self, expr):
139
+ return 'Naturals'
140
+
141
+ def _print_Naturals0(self, expr):
142
+ return 'Naturals0'
143
+
144
+ def _print_Rationals(self, expr):
145
+ return 'Rationals'
146
+
147
+ def _print_Reals(self, expr):
148
+ return 'Reals'
149
+
150
+ def _print_EmptySet(self, expr):
151
+ return 'EmptySet'
152
+
153
+ def _print_UniversalSet(self, expr):
154
+ return 'UniversalSet'
155
+
156
+ def _print_EmptySequence(self, expr):
157
+ return 'EmptySequence'
158
+
159
+ def _print_list(self, expr):
160
+ return "[%s]" % self.reprify(expr, ", ")
161
+
162
+ def _print_dict(self, expr):
163
+ sep = ", "
164
+ dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()]
165
+ return "{%s}" % sep.join(dict_kvs)
166
+
167
+ def _print_set(self, expr):
168
+ if not expr:
169
+ return "set()"
170
+ return "{%s}" % self.reprify(expr, ", ")
171
+
172
+ def _print_MatrixBase(self, expr):
173
+ # special case for some empty matrices
174
+ if (expr.rows == 0) ^ (expr.cols == 0):
175
+ return '%s(%s, %s, %s)' % (expr.__class__.__name__,
176
+ self._print(expr.rows),
177
+ self._print(expr.cols),
178
+ self._print([]))
179
+ l = []
180
+ for i in range(expr.rows):
181
+ l.append([])
182
+ for j in range(expr.cols):
183
+ l[-1].append(expr[i, j])
184
+ return '%s(%s)' % (expr.__class__.__name__, self._print(l))
185
+
186
+ def _print_BooleanTrue(self, expr):
187
+ return "true"
188
+
189
+ def _print_BooleanFalse(self, expr):
190
+ return "false"
191
+
192
+ def _print_NaN(self, expr):
193
+ return "nan"
194
+
195
+ def _print_Mul(self, expr, order=None):
196
+ if self.order not in ('old', 'none'):
197
+ args = expr.as_ordered_factors()
198
+ else:
199
+ # use make_args in case expr was something like -x -> x
200
+ args = Mul.make_args(expr)
201
+
202
+ args = map(self._print, args)
203
+ clsname = type(expr).__name__
204
+ return clsname + "(%s)" % ", ".join(args)
205
+
206
+ def _print_Rational(self, expr):
207
+ return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))
208
+
209
+ def _print_PythonRational(self, expr):
210
+ return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)
211
+
212
+ def _print_Fraction(self, expr):
213
+ return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))
214
+
215
+ def _print_Float(self, expr):
216
+ r = mlib_to_str(expr._mpf_, repr_dps(expr._prec))
217
+ return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec)
218
+
219
+ def _print_Sum2(self, expr):
220
+ return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
221
+ self._print(expr.a), self._print(expr.b))
222
+
223
+ def _print_Str(self, s):
224
+ return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
225
+
226
+ def _print_Symbol(self, expr):
227
+ d = expr._assumptions_orig
228
+ # print the dummy_index like it was an assumption
229
+ if expr.is_Dummy:
230
+ d['dummy_index'] = expr.dummy_index
231
+
232
+ if d == {}:
233
+ return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
234
+ else:
235
+ attr = ['%s=%s' % (k, v) for k, v in d.items()]
236
+ return "%s(%s, %s)" % (expr.__class__.__name__,
237
+ self._print(expr.name), ', '.join(attr))
238
+
239
+ def _print_CoordinateSymbol(self, expr):
240
+ d = expr._assumptions.generator
241
+
242
+ if d == {}:
243
+ return "%s(%s, %s)" % (
244
+ expr.__class__.__name__,
245
+ self._print(expr.coord_sys),
246
+ self._print(expr.index)
247
+ )
248
+ else:
249
+ attr = ['%s=%s' % (k, v) for k, v in d.items()]
250
+ return "%s(%s, %s, %s)" % (
251
+ expr.__class__.__name__,
252
+ self._print(expr.coord_sys),
253
+ self._print(expr.index),
254
+ ', '.join(attr)
255
+ )
256
+
257
+ def _print_Predicate(self, expr):
258
+ return "Q.%s" % expr.name
259
+
260
+ def _print_AppliedPredicate(self, expr):
261
+ # will be changed to just expr.args when args overriding is removed
262
+ args = expr._args
263
+ return "%s(%s)" % (expr.__class__.__name__, self.reprify(args, ", "))
264
+
265
+ def _print_str(self, expr):
266
+ return repr(expr)
267
+
268
+ def _print_tuple(self, expr):
269
+ if len(expr) == 1:
270
+ return "(%s,)" % self._print(expr[0])
271
+ else:
272
+ return "(%s)" % self.reprify(expr, ", ")
273
+
274
+ def _print_WildFunction(self, expr):
275
+ return "%s('%s')" % (expr.__class__.__name__, expr.name)
276
+
277
+ def _print_AlgebraicNumber(self, expr):
278
+ return "%s(%s, %s)" % (expr.__class__.__name__,
279
+ self._print(expr.root), self._print(expr.coeffs()))
280
+
281
+ def _print_PolyRing(self, ring):
282
+ return "%s(%s, %s, %s)" % (ring.__class__.__name__,
283
+ self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))
284
+
285
+ def _print_FracField(self, field):
286
+ return "%s(%s, %s, %s)" % (field.__class__.__name__,
287
+ self._print(field.symbols), self._print(field.domain), self._print(field.order))
288
+
289
+ def _print_PolyElement(self, poly):
290
+ terms = list(poly.terms())
291
+ terms.sort(key=poly.ring.order, reverse=True)
292
+ return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))
293
+
294
+ def _print_FracElement(self, frac):
295
+ numer_terms = list(frac.numer.terms())
296
+ numer_terms.sort(key=frac.field.order, reverse=True)
297
+ denom_terms = list(frac.denom.terms())
298
+ denom_terms.sort(key=frac.field.order, reverse=True)
299
+ numer = self._print(numer_terms)
300
+ denom = self._print(denom_terms)
301
+ return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
302
+
303
+ def _print_FractionField(self, domain):
304
+ cls = domain.__class__.__name__
305
+ field = self._print(domain.field)
306
+ return "%s(%s)" % (cls, field)
307
+
308
+ def _print_PolynomialRingBase(self, ring):
309
+ cls = ring.__class__.__name__
310
+ dom = self._print(ring.domain)
311
+ gens = ', '.join(map(self._print, ring.gens))
312
+ order = str(ring.order)
313
+ if order != ring.default_order:
314
+ orderstr = ", order=" + order
315
+ else:
316
+ orderstr = ""
317
+ return "%s(%s, %s%s)" % (cls, dom, gens, orderstr)
318
+
319
+ def _print_DMP(self, p):
320
+ cls = p.__class__.__name__
321
+ rep = self._print(p.rep)
322
+ dom = self._print(p.dom)
323
+ if p.ring is not None:
324
+ ringstr = ", ring=" + self._print(p.ring)
325
+ else:
326
+ ringstr = ""
327
+ return "%s(%s, %s%s)" % (cls, rep, dom, ringstr)
328
+
329
+ def _print_MonogenicFiniteExtension(self, ext):
330
+ # The expanded tree shown by srepr(ext.modulus)
331
+ # is not practical.
332
+ return "FiniteExtension(%s)" % str(ext.modulus)
333
+
334
+ def _print_ExtensionElement(self, f):
335
+ rep = self._print(f.rep)
336
+ ext = self._print(f.ext)
337
+ return "ExtElem(%s, %s)" % (rep, ext)
338
+
339
+ @print_function(ReprPrinter)
340
+ def srepr(expr, **settings):
341
+ """return expr in repr form"""
342
+ return ReprPrinter(settings).doprint(expr)
venv/lib/python3.10/site-packages/sympy/printing/rust.py ADDED
@@ -0,0 +1,625 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Rust code printer
3
+
4
+ The `RustCodePrinter` converts SymPy expressions into Rust expressions.
5
+
6
+ A complete code generator, which uses `rust_code` extensively, can be found
7
+ in `sympy.utilities.codegen`. The `codegen` module can be used to generate
8
+ complete source code files.
9
+
10
+ """
11
+
12
+ # Possible Improvement
13
+ #
14
+ # * make sure we follow Rust Style Guidelines_
15
+ # * make use of pattern matching
16
+ # * better support for reference
17
+ # * generate generic code and use trait to make sure they have specific methods
18
+ # * use crates_ to get more math support
19
+ # - num_
20
+ # + BigInt_, BigUint_
21
+ # + Complex_
22
+ # + Rational64_, Rational32_, BigRational_
23
+ #
24
+ # .. _crates: https://crates.io/
25
+ # .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
26
+ # .. _num: http://rust-num.github.io/num/num/
27
+ # .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
28
+ # .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
29
+ # .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
30
+ # .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
31
+ # .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
32
+ # .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html
33
+
34
+ from __future__ import annotations
35
+ from typing import Any
36
+
37
+ from sympy.core import S, Rational, Float, Lambda
38
+ from sympy.core.numbers import equal_valued
39
+ from sympy.printing.codeprinter import CodePrinter
40
+
41
+ # Rust's methods for integer and float can be found at here :
42
+ #
43
+ # * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
44
+ # * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
45
+ #
46
+ # Function Style :
47
+ #
48
+ # 1. args[0].func(args[1:]), method with arguments
49
+ # 2. args[0].func(), method without arguments
50
+ # 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
51
+ # 4. func(args), function with arguments
52
+
53
+ # dictionary mapping SymPy function to (argument_conditions, Rust_function).
54
+ # Used in RustCodePrinter._print_Function(self)
55
+
56
+ # f64 method in Rust
57
+ known_functions = {
58
+ # "": "is_nan",
59
+ # "": "is_infinite",
60
+ # "": "is_finite",
61
+ # "": "is_normal",
62
+ # "": "classify",
63
+ "floor": "floor",
64
+ "ceiling": "ceil",
65
+ # "": "round",
66
+ # "": "trunc",
67
+ # "": "fract",
68
+ "Abs": "abs",
69
+ "sign": "signum",
70
+ # "": "is_sign_positive",
71
+ # "": "is_sign_negative",
72
+ # "": "mul_add",
73
+ "Pow": [(lambda base, exp: equal_valued(exp, -1), "recip", 2), # 1.0/x
74
+ (lambda base, exp: equal_valued(exp, 0.5), "sqrt", 2), # x ** 0.5
75
+ (lambda base, exp: equal_valued(exp, -0.5), "sqrt().recip", 2), # 1/(x ** 0.5)
76
+ (lambda base, exp: exp == Rational(1, 3), "cbrt", 2), # x ** (1/3)
77
+ (lambda base, exp: equal_valued(base, 2), "exp2", 3), # 2 ** x
78
+ (lambda base, exp: exp.is_integer, "powi", 1), # x ** y, for i32
79
+ (lambda base, exp: not exp.is_integer, "powf", 1)], # x ** y, for f64
80
+ "exp": [(lambda exp: True, "exp", 2)], # e ** x
81
+ "log": "ln",
82
+ # "": "log", # number.log(base)
83
+ # "": "log2",
84
+ # "": "log10",
85
+ # "": "to_degrees",
86
+ # "": "to_radians",
87
+ "Max": "max",
88
+ "Min": "min",
89
+ # "": "hypot", # (x**2 + y**2) ** 0.5
90
+ "sin": "sin",
91
+ "cos": "cos",
92
+ "tan": "tan",
93
+ "asin": "asin",
94
+ "acos": "acos",
95
+ "atan": "atan",
96
+ "atan2": "atan2",
97
+ # "": "sin_cos",
98
+ # "": "exp_m1", # e ** x - 1
99
+ # "": "ln_1p", # ln(1 + x)
100
+ "sinh": "sinh",
101
+ "cosh": "cosh",
102
+ "tanh": "tanh",
103
+ "asinh": "asinh",
104
+ "acosh": "acosh",
105
+ "atanh": "atanh",
106
+ "sqrt": "sqrt", # To enable automatic rewrites
107
+ }
108
+
109
+ # i64 method in Rust
110
+ # known_functions_i64 = {
111
+ # "": "min_value",
112
+ # "": "max_value",
113
+ # "": "from_str_radix",
114
+ # "": "count_ones",
115
+ # "": "count_zeros",
116
+ # "": "leading_zeros",
117
+ # "": "trainling_zeros",
118
+ # "": "rotate_left",
119
+ # "": "rotate_right",
120
+ # "": "swap_bytes",
121
+ # "": "from_be",
122
+ # "": "from_le",
123
+ # "": "to_be", # to big endian
124
+ # "": "to_le", # to little endian
125
+ # "": "checked_add",
126
+ # "": "checked_sub",
127
+ # "": "checked_mul",
128
+ # "": "checked_div",
129
+ # "": "checked_rem",
130
+ # "": "checked_neg",
131
+ # "": "checked_shl",
132
+ # "": "checked_shr",
133
+ # "": "checked_abs",
134
+ # "": "saturating_add",
135
+ # "": "saturating_sub",
136
+ # "": "saturating_mul",
137
+ # "": "wrapping_add",
138
+ # "": "wrapping_sub",
139
+ # "": "wrapping_mul",
140
+ # "": "wrapping_div",
141
+ # "": "wrapping_rem",
142
+ # "": "wrapping_neg",
143
+ # "": "wrapping_shl",
144
+ # "": "wrapping_shr",
145
+ # "": "wrapping_abs",
146
+ # "": "overflowing_add",
147
+ # "": "overflowing_sub",
148
+ # "": "overflowing_mul",
149
+ # "": "overflowing_div",
150
+ # "": "overflowing_rem",
151
+ # "": "overflowing_neg",
152
+ # "": "overflowing_shl",
153
+ # "": "overflowing_shr",
154
+ # "": "overflowing_abs",
155
+ # "Pow": "pow",
156
+ # "Abs": "abs",
157
+ # "sign": "signum",
158
+ # "": "is_positive",
159
+ # "": "is_negnative",
160
+ # }
161
+
162
+ # These are the core reserved words in the Rust language. Taken from:
163
+ # http://doc.rust-lang.org/grammar.html#keywords
164
+
165
+ reserved_words = ['abstract',
166
+ 'alignof',
167
+ 'as',
168
+ 'become',
169
+ 'box',
170
+ 'break',
171
+ 'const',
172
+ 'continue',
173
+ 'crate',
174
+ 'do',
175
+ 'else',
176
+ 'enum',
177
+ 'extern',
178
+ 'false',
179
+ 'final',
180
+ 'fn',
181
+ 'for',
182
+ 'if',
183
+ 'impl',
184
+ 'in',
185
+ 'let',
186
+ 'loop',
187
+ 'macro',
188
+ 'match',
189
+ 'mod',
190
+ 'move',
191
+ 'mut',
192
+ 'offsetof',
193
+ 'override',
194
+ 'priv',
195
+ 'proc',
196
+ 'pub',
197
+ 'pure',
198
+ 'ref',
199
+ 'return',
200
+ 'Self',
201
+ 'self',
202
+ 'sizeof',
203
+ 'static',
204
+ 'struct',
205
+ 'super',
206
+ 'trait',
207
+ 'true',
208
+ 'type',
209
+ 'typeof',
210
+ 'unsafe',
211
+ 'unsized',
212
+ 'use',
213
+ 'virtual',
214
+ 'where',
215
+ 'while',
216
+ 'yield']
217
+
218
+
219
+ class RustCodePrinter(CodePrinter):
220
+ """A printer to convert SymPy expressions to strings of Rust code"""
221
+ printmethod = "_rust_code"
222
+ language = "Rust"
223
+
224
+ _default_settings: dict[str, Any] = {
225
+ 'order': None,
226
+ 'full_prec': 'auto',
227
+ 'precision': 17,
228
+ 'user_functions': {},
229
+ 'human': True,
230
+ 'contract': True,
231
+ 'dereference': set(),
232
+ 'error_on_reserved': False,
233
+ 'reserved_word_suffix': '_',
234
+ 'inline': False,
235
+ }
236
+
237
+ def __init__(self, settings={}):
238
+ CodePrinter.__init__(self, settings)
239
+ self.known_functions = dict(known_functions)
240
+ userfuncs = settings.get('user_functions', {})
241
+ self.known_functions.update(userfuncs)
242
+ self._dereference = set(settings.get('dereference', []))
243
+ self.reserved_words = set(reserved_words)
244
+
245
+ def _rate_index_position(self, p):
246
+ return p*5
247
+
248
+ def _get_statement(self, codestring):
249
+ return "%s;" % codestring
250
+
251
+ def _get_comment(self, text):
252
+ return "// %s" % text
253
+
254
+ def _declare_number_const(self, name, value):
255
+ return "const %s: f64 = %s;" % (name, value)
256
+
257
+ def _format_code(self, lines):
258
+ return self.indent_code(lines)
259
+
260
+ def _traverse_matrix_indices(self, mat):
261
+ rows, cols = mat.shape
262
+ return ((i, j) for i in range(rows) for j in range(cols))
263
+
264
+ def _get_loop_opening_ending(self, indices):
265
+ open_lines = []
266
+ close_lines = []
267
+ loopstart = "for %(var)s in %(start)s..%(end)s {"
268
+ for i in indices:
269
+ # Rust arrays start at 0 and end at dimension-1
270
+ open_lines.append(loopstart % {
271
+ 'var': self._print(i),
272
+ 'start': self._print(i.lower),
273
+ 'end': self._print(i.upper + 1)})
274
+ close_lines.append("}")
275
+ return open_lines, close_lines
276
+
277
+ def _print_caller_var(self, expr):
278
+ if len(expr.args) > 1:
279
+ # for something like `sin(x + y + z)`,
280
+ # make sure we can get '(x + y + z).sin()'
281
+ # instead of 'x + y + z.sin()'
282
+ return '(' + self._print(expr) + ')'
283
+ elif expr.is_number:
284
+ return self._print(expr, _type=True)
285
+ else:
286
+ return self._print(expr)
287
+
288
+ def _print_Function(self, expr):
289
+ """
290
+ basic function for printing `Function`
291
+
292
+ Function Style :
293
+
294
+ 1. args[0].func(args[1:]), method with arguments
295
+ 2. args[0].func(), method without arguments
296
+ 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
297
+ 4. func(args), function with arguments
298
+ """
299
+
300
+ if expr.func.__name__ in self.known_functions:
301
+ cond_func = self.known_functions[expr.func.__name__]
302
+ func = None
303
+ style = 1
304
+ if isinstance(cond_func, str):
305
+ func = cond_func
306
+ else:
307
+ for cond, func, style in cond_func:
308
+ if cond(*expr.args):
309
+ break
310
+ if func is not None:
311
+ if style == 1:
312
+ ret = "%(var)s.%(method)s(%(args)s)" % {
313
+ 'var': self._print_caller_var(expr.args[0]),
314
+ 'method': func,
315
+ 'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else ''
316
+ }
317
+ elif style == 2:
318
+ ret = "%(var)s.%(method)s()" % {
319
+ 'var': self._print_caller_var(expr.args[0]),
320
+ 'method': func,
321
+ }
322
+ elif style == 3:
323
+ ret = "%(var)s.%(method)s()" % {
324
+ 'var': self._print_caller_var(expr.args[1]),
325
+ 'method': func,
326
+ }
327
+ else:
328
+ ret = "%(func)s(%(args)s)" % {
329
+ 'func': func,
330
+ 'args': self.stringify(expr.args, ", "),
331
+ }
332
+ return ret
333
+ elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
334
+ # inlined function
335
+ return self._print(expr._imp_(*expr.args))
336
+ elif expr.func.__name__ in self._rewriteable_functions:
337
+ # Simple rewrite to supported function possible
338
+ target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
339
+ if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
340
+ return self._print(expr.rewrite(target_f))
341
+ else:
342
+ return self._print_not_supported(expr)
343
+
344
+ def _print_Pow(self, expr):
345
+ if expr.base.is_integer and not expr.exp.is_integer:
346
+ expr = type(expr)(Float(expr.base), expr.exp)
347
+ return self._print(expr)
348
+ return self._print_Function(expr)
349
+
350
+ def _print_Float(self, expr, _type=False):
351
+ ret = super()._print_Float(expr)
352
+ if _type:
353
+ return ret + '_f64'
354
+ else:
355
+ return ret
356
+
357
+ def _print_Integer(self, expr, _type=False):
358
+ ret = super()._print_Integer(expr)
359
+ if _type:
360
+ return ret + '_i32'
361
+ else:
362
+ return ret
363
+
364
+ def _print_Rational(self, expr):
365
+ p, q = int(expr.p), int(expr.q)
366
+ return '%d_f64/%d.0' % (p, q)
367
+
368
+ def _print_Relational(self, expr):
369
+ lhs_code = self._print(expr.lhs)
370
+ rhs_code = self._print(expr.rhs)
371
+ op = expr.rel_op
372
+ return "{} {} {}".format(lhs_code, op, rhs_code)
373
+
374
+ def _print_Indexed(self, expr):
375
+ # calculate index for 1d array
376
+ dims = expr.shape
377
+ elem = S.Zero
378
+ offset = S.One
379
+ for i in reversed(range(expr.rank)):
380
+ elem += expr.indices[i]*offset
381
+ offset *= dims[i]
382
+ return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
383
+
384
+ def _print_Idx(self, expr):
385
+ return expr.label.name
386
+
387
+ def _print_Dummy(self, expr):
388
+ return expr.name
389
+
390
+ def _print_Exp1(self, expr, _type=False):
391
+ return "E"
392
+
393
+ def _print_Pi(self, expr, _type=False):
394
+ return 'PI'
395
+
396
+ def _print_Infinity(self, expr, _type=False):
397
+ return 'INFINITY'
398
+
399
+ def _print_NegativeInfinity(self, expr, _type=False):
400
+ return 'NEG_INFINITY'
401
+
402
+ def _print_BooleanTrue(self, expr, _type=False):
403
+ return "true"
404
+
405
+ def _print_BooleanFalse(self, expr, _type=False):
406
+ return "false"
407
+
408
+ def _print_bool(self, expr, _type=False):
409
+ return str(expr).lower()
410
+
411
+ def _print_NaN(self, expr, _type=False):
412
+ return "NAN"
413
+
414
+ def _print_Piecewise(self, expr):
415
+ if expr.args[-1].cond != True:
416
+ # We need the last conditional to be a True, otherwise the resulting
417
+ # function may not return a result.
418
+ raise ValueError("All Piecewise expressions must contain an "
419
+ "(expr, True) statement to be used as a default "
420
+ "condition. Without one, the generated "
421
+ "expression may not evaluate to anything under "
422
+ "some condition.")
423
+ lines = []
424
+
425
+ for i, (e, c) in enumerate(expr.args):
426
+ if i == 0:
427
+ lines.append("if (%s) {" % self._print(c))
428
+ elif i == len(expr.args) - 1 and c == True:
429
+ lines[-1] += " else {"
430
+ else:
431
+ lines[-1] += " else if (%s) {" % self._print(c)
432
+ code0 = self._print(e)
433
+ lines.append(code0)
434
+ lines.append("}")
435
+
436
+ if self._settings['inline']:
437
+ return " ".join(lines)
438
+ else:
439
+ return "\n".join(lines)
440
+
441
+ def _print_ITE(self, expr):
442
+ from sympy.functions import Piecewise
443
+ return self._print(expr.rewrite(Piecewise, deep=False))
444
+
445
+ def _print_MatrixBase(self, A):
446
+ if A.cols == 1:
447
+ return "[%s]" % ", ".join(self._print(a) for a in A)
448
+ else:
449
+ raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).")
450
+
451
+ def _print_SparseRepMatrix(self, mat):
452
+ # do not allow sparse matrices to be made dense
453
+ return self._print_not_supported(mat)
454
+
455
+ def _print_MatrixElement(self, expr):
456
+ return "%s[%s]" % (expr.parent,
457
+ expr.j + expr.i*expr.parent.shape[1])
458
+
459
+ def _print_Symbol(self, expr):
460
+
461
+ name = super()._print_Symbol(expr)
462
+
463
+ if expr in self._dereference:
464
+ return '(*%s)' % name
465
+ else:
466
+ return name
467
+
468
+ def _print_Assignment(self, expr):
469
+ from sympy.tensor.indexed import IndexedBase
470
+ lhs = expr.lhs
471
+ rhs = expr.rhs
472
+ if self._settings["contract"] and (lhs.has(IndexedBase) or
473
+ rhs.has(IndexedBase)):
474
+ # Here we check if there is looping to be done, and if so
475
+ # print the required loops.
476
+ return self._doprint_loops(rhs, lhs)
477
+ else:
478
+ lhs_code = self._print(lhs)
479
+ rhs_code = self._print(rhs)
480
+ return self._get_statement("%s = %s" % (lhs_code, rhs_code))
481
+
482
+ def indent_code(self, code):
483
+ """Accepts a string of code or a list of code lines"""
484
+
485
+ if isinstance(code, str):
486
+ code_lines = self.indent_code(code.splitlines(True))
487
+ return ''.join(code_lines)
488
+
489
+ tab = " "
490
+ inc_token = ('{', '(', '{\n', '(\n')
491
+ dec_token = ('}', ')')
492
+
493
+ code = [ line.lstrip(' \t') for line in code ]
494
+
495
+ increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
496
+ decrease = [ int(any(map(line.startswith, dec_token)))
497
+ for line in code ]
498
+
499
+ pretty = []
500
+ level = 0
501
+ for n, line in enumerate(code):
502
+ if line in ('', '\n'):
503
+ pretty.append(line)
504
+ continue
505
+ level -= decrease[n]
506
+ pretty.append("%s%s" % (tab*level, line))
507
+ level += increase[n]
508
+ return pretty
509
+
510
+
511
+ def rust_code(expr, assign_to=None, **settings):
512
+ """Converts an expr to a string of Rust code
513
+
514
+ Parameters
515
+ ==========
516
+
517
+ expr : Expr
518
+ A SymPy expression to be converted.
519
+ assign_to : optional
520
+ When given, the argument is used as the name of the variable to which
521
+ the expression is assigned. Can be a string, ``Symbol``,
522
+ ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
523
+ line-wrapping, or for expressions that generate multi-line statements.
524
+ precision : integer, optional
525
+ The precision for numbers such as pi [default=15].
526
+ user_functions : dict, optional
527
+ A dictionary where the keys are string representations of either
528
+ ``FunctionClass`` or ``UndefinedFunction`` instances and the values
529
+ are their desired C string representations. Alternatively, the
530
+ dictionary value can be a list of tuples i.e. [(argument_test,
531
+ cfunction_string)]. See below for examples.
532
+ dereference : iterable, optional
533
+ An iterable of symbols that should be dereferenced in the printed code
534
+ expression. These would be values passed by address to the function.
535
+ For example, if ``dereference=[a]``, the resulting code would print
536
+ ``(*a)`` instead of ``a``.
537
+ human : bool, optional
538
+ If True, the result is a single string that may contain some constant
539
+ declarations for the number symbols. If False, the same information is
540
+ returned in a tuple of (symbols_to_declare, not_supported_functions,
541
+ code_text). [default=True].
542
+ contract: bool, optional
543
+ If True, ``Indexed`` instances are assumed to obey tensor contraction
544
+ rules and the corresponding nested loops over indices are generated.
545
+ Setting contract=False will not generate loops, instead the user is
546
+ responsible to provide values for the indices in the code.
547
+ [default=True].
548
+
549
+ Examples
550
+ ========
551
+
552
+ >>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function
553
+ >>> x, tau = symbols("x, tau")
554
+ >>> rust_code((2*tau)**Rational(7, 2))
555
+ '8*1.4142135623731*tau.powf(7_f64/2.0)'
556
+ >>> rust_code(sin(x), assign_to="s")
557
+ 's = x.sin();'
558
+
559
+ Simple custom printing can be defined for certain types by passing a
560
+ dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
561
+ Alternatively, the dictionary value can be a list of tuples i.e.
562
+ [(argument_test, cfunction_string)].
563
+
564
+ >>> custom_functions = {
565
+ ... "ceiling": "CEIL",
566
+ ... "Abs": [(lambda x: not x.is_integer, "fabs", 4),
567
+ ... (lambda x: x.is_integer, "ABS", 4)],
568
+ ... "func": "f"
569
+ ... }
570
+ >>> func = Function('func')
571
+ >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
572
+ '(fabs(x) + x.CEIL()).f()'
573
+
574
+ ``Piecewise`` expressions are converted into conditionals. If an
575
+ ``assign_to`` variable is provided an if statement is created, otherwise
576
+ the ternary operator is used. Note that if the ``Piecewise`` lacks a
577
+ default term, represented by ``(expr, True)`` then an error will be thrown.
578
+ This is to prevent generating an expression that may not evaluate to
579
+ anything.
580
+
581
+ >>> from sympy import Piecewise
582
+ >>> expr = Piecewise((x + 1, x > 0), (x, True))
583
+ >>> print(rust_code(expr, tau))
584
+ tau = if (x > 0) {
585
+ x + 1
586
+ } else {
587
+ x
588
+ };
589
+
590
+ Support for loops is provided through ``Indexed`` types. With
591
+ ``contract=True`` these expressions will be turned into loops, whereas
592
+ ``contract=False`` will just print the assignment expression that should be
593
+ looped over:
594
+
595
+ >>> from sympy import Eq, IndexedBase, Idx
596
+ >>> len_y = 5
597
+ >>> y = IndexedBase('y', shape=(len_y,))
598
+ >>> t = IndexedBase('t', shape=(len_y,))
599
+ >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
600
+ >>> i = Idx('i', len_y-1)
601
+ >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
602
+ >>> rust_code(e.rhs, assign_to=e.lhs, contract=False)
603
+ 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
604
+
605
+ Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
606
+ must be provided to ``assign_to``. Note that any expression that can be
607
+ generated normally can also exist inside a Matrix:
608
+
609
+ >>> from sympy import Matrix, MatrixSymbol
610
+ >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
611
+ >>> A = MatrixSymbol('A', 3, 1)
612
+ >>> print(rust_code(mat, A))
613
+ A = [x.powi(2), if (x > 0) {
614
+ x + 1
615
+ } else {
616
+ x
617
+ }, x.sin()];
618
+ """
619
+
620
+ return RustCodePrinter(settings).doprint(expr, assign_to)
621
+
622
+
623
+ def print_rust_code(expr, **settings):
624
+ """Prints Rust representation of the given expression."""
625
+ print(rust_code(expr, **settings))
venv/lib/python3.10/site-packages/sympy/printing/smtlib.py ADDED
@@ -0,0 +1,526 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import typing
2
+
3
+ import sympy
4
+ from sympy.core import Add, Mul
5
+ from sympy.core import Symbol, Expr, Float, Rational, Integer, Basic
6
+ from sympy.core.function import UndefinedFunction, Function
7
+ from sympy.core.relational import Relational, Unequality, Equality, LessThan, GreaterThan, StrictLessThan, StrictGreaterThan
8
+ from sympy.functions.elementary.complexes import Abs
9
+ from sympy.functions.elementary.exponential import exp, log, Pow
10
+ from sympy.functions.elementary.hyperbolic import sinh, cosh, tanh
11
+ from sympy.functions.elementary.miscellaneous import Min, Max
12
+ from sympy.functions.elementary.piecewise import Piecewise
13
+ from sympy.functions.elementary.trigonometric import sin, cos, tan, asin, acos, atan, atan2
14
+ from sympy.logic.boolalg import And, Or, Xor, Implies, Boolean
15
+ from sympy.logic.boolalg import BooleanTrue, BooleanFalse, BooleanFunction, Not, ITE
16
+ from sympy.printing.printer import Printer
17
+ from sympy.sets import Interval
18
+
19
+
20
+ class SMTLibPrinter(Printer):
21
+ printmethod = "_smtlib"
22
+
23
+ # based on dReal, an automated reasoning tool for solving problems that can be encoded as first-order logic formulas over the real numbers.
24
+ # dReal's special strength is in handling problems that involve a wide range of nonlinear real functions.
25
+ _default_settings: dict = {
26
+ 'precision': None,
27
+ 'known_types': {
28
+ bool: 'Bool',
29
+ int: 'Int',
30
+ float: 'Real'
31
+ },
32
+ 'known_constants': {
33
+ # pi: 'MY_VARIABLE_PI_DECLARED_ELSEWHERE',
34
+ },
35
+ 'known_functions': {
36
+ Add: '+',
37
+ Mul: '*',
38
+
39
+ Equality: '=',
40
+ LessThan: '<=',
41
+ GreaterThan: '>=',
42
+ StrictLessThan: '<',
43
+ StrictGreaterThan: '>',
44
+
45
+ exp: 'exp',
46
+ log: 'log',
47
+ Abs: 'abs',
48
+ sin: 'sin',
49
+ cos: 'cos',
50
+ tan: 'tan',
51
+ asin: 'arcsin',
52
+ acos: 'arccos',
53
+ atan: 'arctan',
54
+ atan2: 'arctan2',
55
+ sinh: 'sinh',
56
+ cosh: 'cosh',
57
+ tanh: 'tanh',
58
+ Min: 'min',
59
+ Max: 'max',
60
+ Pow: 'pow',
61
+
62
+ And: 'and',
63
+ Or: 'or',
64
+ Xor: 'xor',
65
+ Not: 'not',
66
+ ITE: 'ite',
67
+ Implies: '=>',
68
+ }
69
+ }
70
+
71
+ symbol_table: dict
72
+
73
+ def __init__(self, settings: typing.Optional[dict] = None,
74
+ symbol_table=None):
75
+ settings = settings or {}
76
+ self.symbol_table = symbol_table or {}
77
+ Printer.__init__(self, settings)
78
+ self._precision = self._settings['precision']
79
+ self._known_types = dict(self._settings['known_types'])
80
+ self._known_constants = dict(self._settings['known_constants'])
81
+ self._known_functions = dict(self._settings['known_functions'])
82
+
83
+ for _ in self._known_types.values(): assert self._is_legal_name(_)
84
+ for _ in self._known_constants.values(): assert self._is_legal_name(_)
85
+ # for _ in self._known_functions.values(): assert self._is_legal_name(_) # +, *, <, >, etc.
86
+
87
+ def _is_legal_name(self, s: str):
88
+ if not s: return False
89
+ if s[0].isnumeric(): return False
90
+ return all(_.isalnum() or _ == '_' for _ in s)
91
+
92
+ def _s_expr(self, op: str, args: typing.Union[list, tuple]) -> str:
93
+ args_str = ' '.join(
94
+ a if isinstance(a, str)
95
+ else self._print(a)
96
+ for a in args
97
+ )
98
+ return f'({op} {args_str})'
99
+
100
+ def _print_Function(self, e):
101
+ if e in self._known_functions:
102
+ op = self._known_functions[e]
103
+ elif type(e) in self._known_functions:
104
+ op = self._known_functions[type(e)]
105
+ elif type(type(e)) == UndefinedFunction:
106
+ op = e.name
107
+ else:
108
+ op = self._known_functions[e] # throw KeyError
109
+
110
+ return self._s_expr(op, e.args)
111
+
112
+ def _print_Relational(self, e: Relational):
113
+ return self._print_Function(e)
114
+
115
+ def _print_BooleanFunction(self, e: BooleanFunction):
116
+ return self._print_Function(e)
117
+
118
+ def _print_Expr(self, e: Expr):
119
+ return self._print_Function(e)
120
+
121
+ def _print_Unequality(self, e: Unequality):
122
+ if type(e) in self._known_functions:
123
+ return self._print_Relational(e) # default
124
+ else:
125
+ eq_op = self._known_functions[Equality]
126
+ not_op = self._known_functions[Not]
127
+ return self._s_expr(not_op, [self._s_expr(eq_op, e.args)])
128
+
129
+ def _print_Piecewise(self, e: Piecewise):
130
+ def _print_Piecewise_recursive(args: typing.Union[list, tuple]):
131
+ e, c = args[0]
132
+ if len(args) == 1:
133
+ assert (c is True) or isinstance(c, BooleanTrue)
134
+ return self._print(e)
135
+ else:
136
+ ite = self._known_functions[ITE]
137
+ return self._s_expr(ite, [
138
+ c, e, _print_Piecewise_recursive(args[1:])
139
+ ])
140
+
141
+ return _print_Piecewise_recursive(e.args)
142
+
143
+ def _print_Interval(self, e: Interval):
144
+ if e.start.is_infinite and e.end.is_infinite:
145
+ return ''
146
+ elif e.start.is_infinite != e.end.is_infinite:
147
+ raise ValueError(f'One-sided intervals (`{e}`) are not supported in SMT.')
148
+ else:
149
+ return f'[{e.start}, {e.end}]'
150
+
151
+ # todo: Sympy does not support quantifiers yet as of 2022, but quantifiers can be handy in SMT.
152
+ # For now, users can extend this class and build in their own quantifier support.
153
+ # See `test_quantifier_extensions()` in test_smtlib.py for an example of how this might look.
154
+
155
+ # def _print_ForAll(self, e: ForAll):
156
+ # return self._s('forall', [
157
+ # self._s('', [
158
+ # self._s(sym.name, [self._type_name(sym), Interval(start, end)])
159
+ # for sym, start, end in e.limits
160
+ # ]),
161
+ # e.function
162
+ # ])
163
+
164
+ def _print_BooleanTrue(self, x: BooleanTrue):
165
+ return 'true'
166
+
167
+ def _print_BooleanFalse(self, x: BooleanFalse):
168
+ return 'false'
169
+
170
+ def _print_Float(self, x: Float):
171
+ f = x.evalf(self._precision) if self._precision else x.evalf()
172
+ return str(f).rstrip('0')
173
+
174
+ def _print_float(self, x: float):
175
+ return str(x)
176
+
177
+ def _print_Rational(self, x: Rational):
178
+ return self._s_expr('/', [x.p, x.q])
179
+
180
+ def _print_Integer(self, x: Integer):
181
+ assert x.q == 1
182
+ return str(x.p)
183
+
184
+ def _print_int(self, x: int):
185
+ return str(x)
186
+
187
+ def _print_Symbol(self, x: Symbol):
188
+ assert self._is_legal_name(x.name)
189
+ return x.name
190
+
191
+ def _print_NumberSymbol(self, x):
192
+ name = self._known_constants.get(x)
193
+ return name if name else self._print_Float(x)
194
+
195
+ def _print_UndefinedFunction(self, x):
196
+ assert self._is_legal_name(x.name)
197
+ return x.name
198
+
199
+ def _print_Exp1(self, x):
200
+ return (
201
+ self._print_Function(exp(1, evaluate=False))
202
+ if exp in self._known_functions else
203
+ self._print_NumberSymbol(x)
204
+ )
205
+
206
+ def emptyPrinter(self, expr):
207
+ raise NotImplementedError(f'Cannot convert `{repr(expr)}` of type `{type(expr)}` to SMT.')
208
+
209
+
210
+ def smtlib_code(
211
+ expr,
212
+ auto_assert=True, auto_declare=True,
213
+ precision=None,
214
+ symbol_table=None,
215
+ known_types=None, known_constants=None, known_functions=None,
216
+ prefix_expressions=None, suffix_expressions=None,
217
+ log_warn=None
218
+ ):
219
+ r"""Converts ``expr`` to a string of smtlib code.
220
+
221
+ Parameters
222
+ ==========
223
+
224
+ expr : Expr | List[Expr]
225
+ A SymPy expression or system to be converted.
226
+ auto_assert : bool, optional
227
+ If false, do not modify expr and produce only the S-Expression equivalent of expr.
228
+ If true, assume expr is a system and assert each boolean element.
229
+ auto_declare : bool, optional
230
+ If false, do not produce declarations for the symbols used in expr.
231
+ If true, prepend all necessary declarations for variables used in expr based on symbol_table.
232
+ precision : integer, optional
233
+ The ``evalf(..)`` precision for numbers such as pi.
234
+ symbol_table : dict, optional
235
+ A dictionary where keys are ``Symbol`` or ``Function`` instances and values are their Python type i.e. ``bool``, ``int``, ``float``, or ``Callable[...]``.
236
+ If incomplete, an attempt will be made to infer types from ``expr``.
237
+ known_types: dict, optional
238
+ A dictionary where keys are ``bool``, ``int``, ``float`` etc. and values are their corresponding SMT type names.
239
+ If not given, a partial listing compatible with several solvers will be used.
240
+ known_functions : dict, optional
241
+ A dictionary where keys are ``Function``, ``Relational``, ``BooleanFunction``, or ``Expr`` instances and values are their SMT string representations.
242
+ If not given, a partial listing optimized for dReal solver (but compatible with others) will be used.
243
+ known_constants: dict, optional
244
+ A dictionary where keys are ``NumberSymbol`` instances and values are their SMT variable names.
245
+ When using this feature, extra caution must be taken to avoid naming collisions between user symbols and listed constants.
246
+ If not given, constants will be expanded inline i.e. ``3.14159`` instead of ``MY_SMT_VARIABLE_FOR_PI``.
247
+ prefix_expressions: list, optional
248
+ A list of lists of ``str`` and/or expressions to convert into SMTLib and prefix to the output.
249
+ suffix_expressions: list, optional
250
+ A list of lists of ``str`` and/or expressions to convert into SMTLib and postfix to the output.
251
+ log_warn: lambda function, optional
252
+ A function to record all warnings during potentially risky operations.
253
+ Soundness is a core value in SMT solving, so it is good to log all assumptions made.
254
+
255
+ Examples
256
+ ========
257
+ >>> from sympy import smtlib_code, symbols, sin, Eq
258
+ >>> x = symbols('x')
259
+ >>> smtlib_code(sin(x).series(x).removeO(), log_warn=print)
260
+ Could not infer type of `x`. Defaulting to float.
261
+ Non-Boolean expression `x**5/120 - x**3/6 + x` will not be asserted. Converting to SMTLib verbatim.
262
+ '(declare-const x Real)\n(+ x (* (/ -1 6) (pow x 3)) (* (/ 1 120) (pow x 5)))'
263
+
264
+ >>> from sympy import Rational
265
+ >>> x, y, tau = symbols("x, y, tau")
266
+ >>> smtlib_code((2*tau)**Rational(7, 2), log_warn=print)
267
+ Could not infer type of `tau`. Defaulting to float.
268
+ Non-Boolean expression `8*sqrt(2)*tau**(7/2)` will not be asserted. Converting to SMTLib verbatim.
269
+ '(declare-const tau Real)\n(* 8 (pow 2 (/ 1 2)) (pow tau (/ 7 2)))'
270
+
271
+ ``Piecewise`` expressions are implemented with ``ite`` expressions by default.
272
+ Note that if the ``Piecewise`` lacks a default term, represented by
273
+ ``(expr, True)`` then an error will be thrown. This is to prevent
274
+ generating an expression that may not evaluate to anything.
275
+
276
+ >>> from sympy import Piecewise
277
+ >>> pw = Piecewise((x + 1, x > 0), (x, True))
278
+ >>> smtlib_code(Eq(pw, 3), symbol_table={x: float}, log_warn=print)
279
+ '(declare-const x Real)\n(assert (= (ite (> x 0) (+ 1 x) x) 3))'
280
+
281
+ Custom printing can be defined for certain types by passing a dictionary of
282
+ PythonType : "SMT Name" to the ``known_types``, ``known_constants``, and ``known_functions`` kwargs.
283
+
284
+ >>> from typing import Callable
285
+ >>> from sympy import Function, Add
286
+ >>> f = Function('f')
287
+ >>> g = Function('g')
288
+ >>> smt_builtin_funcs = { # functions our SMT solver will understand
289
+ ... f: "existing_smtlib_fcn",
290
+ ... Add: "sum",
291
+ ... }
292
+ >>> user_def_funcs = { # functions defined by the user must have their types specified explicitly
293
+ ... g: Callable[[int], float],
294
+ ... }
295
+ >>> smtlib_code(f(x) + g(x), symbol_table=user_def_funcs, known_functions=smt_builtin_funcs, log_warn=print)
296
+ Non-Boolean expression `f(x) + g(x)` will not be asserted. Converting to SMTLib verbatim.
297
+ '(declare-const x Int)\n(declare-fun g (Int) Real)\n(sum (existing_smtlib_fcn x) (g x))'
298
+ """
299
+ log_warn = log_warn or (lambda _: None)
300
+
301
+ if not isinstance(expr, list): expr = [expr]
302
+ expr = [
303
+ sympy.sympify(_, strict=True, evaluate=False, convert_xor=False)
304
+ for _ in expr
305
+ ]
306
+
307
+ if not symbol_table: symbol_table = {}
308
+ symbol_table = _auto_infer_smtlib_types(
309
+ *expr, symbol_table=symbol_table
310
+ )
311
+ # See [FALLBACK RULES]
312
+ # Need SMTLibPrinter to populate known_functions and known_constants first.
313
+
314
+ settings = {}
315
+ if precision: settings['precision'] = precision
316
+ del precision
317
+
318
+ if known_types: settings['known_types'] = known_types
319
+ del known_types
320
+
321
+ if known_functions: settings['known_functions'] = known_functions
322
+ del known_functions
323
+
324
+ if known_constants: settings['known_constants'] = known_constants
325
+ del known_constants
326
+
327
+ if not prefix_expressions: prefix_expressions = []
328
+ if not suffix_expressions: suffix_expressions = []
329
+
330
+ p = SMTLibPrinter(settings, symbol_table)
331
+ del symbol_table
332
+
333
+ # [FALLBACK RULES]
334
+ for e in expr:
335
+ for sym in e.atoms(Symbol, Function):
336
+ if (
337
+ sym.is_Symbol and
338
+ sym not in p._known_constants and
339
+ sym not in p.symbol_table
340
+ ):
341
+ log_warn(f"Could not infer type of `{sym}`. Defaulting to float.")
342
+ p.symbol_table[sym] = float
343
+ if (
344
+ sym.is_Function and
345
+ type(sym) not in p._known_functions and
346
+ type(sym) not in p.symbol_table and
347
+ not sym.is_Piecewise
348
+ ): raise TypeError(
349
+ f"Unknown type of undefined function `{sym}`. "
350
+ f"Must be mapped to ``str`` in known_functions or mapped to ``Callable[..]`` in symbol_table."
351
+ )
352
+
353
+ declarations = []
354
+ if auto_declare:
355
+ constants = {sym.name: sym for e in expr for sym in e.free_symbols
356
+ if sym not in p._known_constants}
357
+ functions = {fnc.name: fnc for e in expr for fnc in e.atoms(Function)
358
+ if type(fnc) not in p._known_functions and not fnc.is_Piecewise}
359
+ declarations = \
360
+ [
361
+ _auto_declare_smtlib(sym, p, log_warn)
362
+ for sym in constants.values()
363
+ ] + [
364
+ _auto_declare_smtlib(fnc, p, log_warn)
365
+ for fnc in functions.values()
366
+ ]
367
+ declarations = [decl for decl in declarations if decl]
368
+
369
+ if auto_assert:
370
+ expr = [_auto_assert_smtlib(e, p, log_warn) for e in expr]
371
+
372
+ # return SMTLibPrinter().doprint(expr)
373
+ return '\n'.join([
374
+ # ';; PREFIX EXPRESSIONS',
375
+ *[
376
+ e if isinstance(e, str) else p.doprint(e)
377
+ for e in prefix_expressions
378
+ ],
379
+
380
+ # ';; DECLARATIONS',
381
+ *sorted(e for e in declarations),
382
+
383
+ # ';; EXPRESSIONS',
384
+ *[
385
+ e if isinstance(e, str) else p.doprint(e)
386
+ for e in expr
387
+ ],
388
+
389
+ # ';; SUFFIX EXPRESSIONS',
390
+ *[
391
+ e if isinstance(e, str) else p.doprint(e)
392
+ for e in suffix_expressions
393
+ ],
394
+ ])
395
+
396
+
397
+ def _auto_declare_smtlib(sym: typing.Union[Symbol, Function], p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
398
+ if sym.is_Symbol:
399
+ type_signature = p.symbol_table[sym]
400
+ assert isinstance(type_signature, type)
401
+ type_signature = p._known_types[type_signature]
402
+ return p._s_expr('declare-const', [sym, type_signature])
403
+
404
+ elif sym.is_Function:
405
+ type_signature = p.symbol_table[type(sym)]
406
+ assert callable(type_signature)
407
+ type_signature = [p._known_types[_] for _ in type_signature.__args__]
408
+ assert len(type_signature) > 0
409
+ params_signature = f"({' '.join(type_signature[:-1])})"
410
+ return_signature = type_signature[-1]
411
+ return p._s_expr('declare-fun', [type(sym), params_signature, return_signature])
412
+
413
+ else:
414
+ log_warn(f"Non-Symbol/Function `{sym}` will not be declared.")
415
+ return None
416
+
417
+
418
+ def _auto_assert_smtlib(e: Expr, p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
419
+ if isinstance(e, Boolean) or (
420
+ e in p.symbol_table and p.symbol_table[e] == bool
421
+ ) or (
422
+ e.is_Function and
423
+ type(e) in p.symbol_table and
424
+ p.symbol_table[type(e)].__args__[-1] == bool
425
+ ):
426
+ return p._s_expr('assert', [e])
427
+ else:
428
+ log_warn(f"Non-Boolean expression `{e}` will not be asserted. Converting to SMTLib verbatim.")
429
+ return e
430
+
431
+
432
+ def _auto_infer_smtlib_types(
433
+ *exprs: Basic,
434
+ symbol_table: typing.Optional[dict] = None
435
+ ) -> dict:
436
+ # [TYPE INFERENCE RULES]
437
+ # X is alone in an expr => X is bool
438
+ # X in BooleanFunction.args => X is bool
439
+ # X matches to a bool param of a symbol_table function => X is bool
440
+ # X matches to an int param of a symbol_table function => X is int
441
+ # X.is_integer => X is int
442
+ # X == Y, where X is T => Y is T
443
+
444
+ # [FALLBACK RULES]
445
+ # see _auto_declare_smtlib(..)
446
+ # X is not bool and X is not int and X is Symbol => X is float
447
+ # else (e.g. X is Function) => error. must be specified explicitly.
448
+
449
+ _symbols = dict(symbol_table) if symbol_table else {}
450
+
451
+ def safe_update(syms: set, inf):
452
+ for s in syms:
453
+ assert s.is_Symbol
454
+ if (old_type := _symbols.setdefault(s, inf)) != inf:
455
+ raise TypeError(f"Could not infer type of `{s}`. Apparently both `{old_type}` and `{inf}`?")
456
+
457
+ # EXPLICIT TYPES
458
+ safe_update({
459
+ e
460
+ for e in exprs
461
+ if e.is_Symbol
462
+ }, bool)
463
+
464
+ safe_update({
465
+ symbol
466
+ for e in exprs
467
+ for boolfunc in e.atoms(BooleanFunction)
468
+ for symbol in boolfunc.args
469
+ if symbol.is_Symbol
470
+ }, bool)
471
+
472
+ safe_update({
473
+ symbol
474
+ for e in exprs
475
+ for boolfunc in e.atoms(Function)
476
+ if type(boolfunc) in _symbols
477
+ for symbol, param in zip(boolfunc.args, _symbols[type(boolfunc)].__args__)
478
+ if symbol.is_Symbol and param == bool
479
+ }, bool)
480
+
481
+ safe_update({
482
+ symbol
483
+ for e in exprs
484
+ for intfunc in e.atoms(Function)
485
+ if type(intfunc) in _symbols
486
+ for symbol, param in zip(intfunc.args, _symbols[type(intfunc)].__args__)
487
+ if symbol.is_Symbol and param == int
488
+ }, int)
489
+
490
+ safe_update({
491
+ symbol
492
+ for e in exprs
493
+ for symbol in e.atoms(Symbol)
494
+ if symbol.is_integer
495
+ }, int)
496
+
497
+ safe_update({
498
+ symbol
499
+ for e in exprs
500
+ for symbol in e.atoms(Symbol)
501
+ if symbol.is_real and not symbol.is_integer
502
+ }, float)
503
+
504
+ # EQUALITY RELATION RULE
505
+ rels = [rel for expr in exprs for rel in expr.atoms(Equality)]
506
+ rels = [
507
+ (rel.lhs, rel.rhs) for rel in rels if rel.lhs.is_Symbol
508
+ ] + [
509
+ (rel.rhs, rel.lhs) for rel in rels if rel.rhs.is_Symbol
510
+ ]
511
+ for infer, reltd in rels:
512
+ inference = (
513
+ _symbols[infer] if infer in _symbols else
514
+ _symbols[reltd] if reltd in _symbols else
515
+
516
+ _symbols[type(reltd)].__args__[-1]
517
+ if reltd.is_Function and type(reltd) in _symbols else
518
+
519
+ bool if reltd.is_Boolean else
520
+ int if reltd.is_integer or reltd.is_Integer else
521
+ float if reltd.is_real else
522
+ None
523
+ )
524
+ if inference: safe_update({infer}, inference)
525
+
526
+ return _symbols
venv/lib/python3.10/site-packages/sympy/printing/str.py ADDED
@@ -0,0 +1,1027 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A Printer for generating readable representation of most SymPy classes.
3
+ """
4
+
5
+ from __future__ import annotations
6
+ from typing import Any
7
+
8
+ from sympy.core import S, Rational, Pow, Basic, Mul, Number
9
+ from sympy.core.mul import _keep_coeff
10
+ from sympy.core.relational import Relational
11
+ from sympy.core.sorting import default_sort_key
12
+ from sympy.core.sympify import SympifyError
13
+ from sympy.utilities.iterables import sift
14
+ from .precedence import precedence, PRECEDENCE
15
+ from .printer import Printer, print_function
16
+
17
+ from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
18
+
19
+
20
+ class StrPrinter(Printer):
21
+ printmethod = "_sympystr"
22
+ _default_settings: dict[str, Any] = {
23
+ "order": None,
24
+ "full_prec": "auto",
25
+ "sympy_integers": False,
26
+ "abbrev": False,
27
+ "perm_cyclic": True,
28
+ "min": None,
29
+ "max": None,
30
+ }
31
+
32
+ _relationals: dict[str, str] = {}
33
+
34
+ def parenthesize(self, item, level, strict=False):
35
+ if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
36
+ return "(%s)" % self._print(item)
37
+ else:
38
+ return self._print(item)
39
+
40
+ def stringify(self, args, sep, level=0):
41
+ return sep.join([self.parenthesize(item, level) for item in args])
42
+
43
+ def emptyPrinter(self, expr):
44
+ if isinstance(expr, str):
45
+ return expr
46
+ elif isinstance(expr, Basic):
47
+ return repr(expr)
48
+ else:
49
+ return str(expr)
50
+
51
+ def _print_Add(self, expr, order=None):
52
+ terms = self._as_ordered_terms(expr, order=order)
53
+
54
+ prec = precedence(expr)
55
+ l = []
56
+ for term in terms:
57
+ t = self._print(term)
58
+ if t.startswith('-') and not term.is_Add:
59
+ sign = "-"
60
+ t = t[1:]
61
+ else:
62
+ sign = "+"
63
+ if precedence(term) < prec or term.is_Add:
64
+ l.extend([sign, "(%s)" % t])
65
+ else:
66
+ l.extend([sign, t])
67
+ sign = l.pop(0)
68
+ if sign == '+':
69
+ sign = ""
70
+ return sign + ' '.join(l)
71
+
72
+ def _print_BooleanTrue(self, expr):
73
+ return "True"
74
+
75
+ def _print_BooleanFalse(self, expr):
76
+ return "False"
77
+
78
+ def _print_Not(self, expr):
79
+ return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
80
+
81
+ def _print_And(self, expr):
82
+ args = list(expr.args)
83
+ for j, i in enumerate(args):
84
+ if isinstance(i, Relational) and (
85
+ i.canonical.rhs is S.NegativeInfinity):
86
+ args.insert(0, args.pop(j))
87
+ return self.stringify(args, " & ", PRECEDENCE["BitwiseAnd"])
88
+
89
+ def _print_Or(self, expr):
90
+ return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
91
+
92
+ def _print_Xor(self, expr):
93
+ return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
94
+
95
+ def _print_AppliedPredicate(self, expr):
96
+ return '%s(%s)' % (
97
+ self._print(expr.function), self.stringify(expr.arguments, ", "))
98
+
99
+ def _print_Basic(self, expr):
100
+ l = [self._print(o) for o in expr.args]
101
+ return expr.__class__.__name__ + "(%s)" % ", ".join(l)
102
+
103
+ def _print_BlockMatrix(self, B):
104
+ if B.blocks.shape == (1, 1):
105
+ self._print(B.blocks[0, 0])
106
+ return self._print(B.blocks)
107
+
108
+ def _print_Catalan(self, expr):
109
+ return 'Catalan'
110
+
111
+ def _print_ComplexInfinity(self, expr):
112
+ return 'zoo'
113
+
114
+ def _print_ConditionSet(self, s):
115
+ args = tuple([self._print(i) for i in (s.sym, s.condition)])
116
+ if s.base_set is S.UniversalSet:
117
+ return 'ConditionSet(%s, %s)' % args
118
+ args += (self._print(s.base_set),)
119
+ return 'ConditionSet(%s, %s, %s)' % args
120
+
121
+ def _print_Derivative(self, expr):
122
+ dexpr = expr.expr
123
+ dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
124
+ return 'Derivative(%s)' % ", ".join((self._print(arg) for arg in [dexpr] + dvars))
125
+
126
+ def _print_dict(self, d):
127
+ keys = sorted(d.keys(), key=default_sort_key)
128
+ items = []
129
+
130
+ for key in keys:
131
+ item = "%s: %s" % (self._print(key), self._print(d[key]))
132
+ items.append(item)
133
+
134
+ return "{%s}" % ", ".join(items)
135
+
136
+ def _print_Dict(self, expr):
137
+ return self._print_dict(expr)
138
+
139
+ def _print_RandomDomain(self, d):
140
+ if hasattr(d, 'as_boolean'):
141
+ return 'Domain: ' + self._print(d.as_boolean())
142
+ elif hasattr(d, 'set'):
143
+ return ('Domain: ' + self._print(d.symbols) + ' in ' +
144
+ self._print(d.set))
145
+ else:
146
+ return 'Domain on ' + self._print(d.symbols)
147
+
148
+ def _print_Dummy(self, expr):
149
+ return '_' + expr.name
150
+
151
+ def _print_EulerGamma(self, expr):
152
+ return 'EulerGamma'
153
+
154
+ def _print_Exp1(self, expr):
155
+ return 'E'
156
+
157
+ def _print_ExprCondPair(self, expr):
158
+ return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
159
+
160
+ def _print_Function(self, expr):
161
+ return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
162
+
163
+ def _print_GoldenRatio(self, expr):
164
+ return 'GoldenRatio'
165
+
166
+ def _print_Heaviside(self, expr):
167
+ # Same as _print_Function but uses pargs to suppress default 1/2 for
168
+ # 2nd args
169
+ return expr.func.__name__ + "(%s)" % self.stringify(expr.pargs, ", ")
170
+
171
+ def _print_TribonacciConstant(self, expr):
172
+ return 'TribonacciConstant'
173
+
174
+ def _print_ImaginaryUnit(self, expr):
175
+ return 'I'
176
+
177
+ def _print_Infinity(self, expr):
178
+ return 'oo'
179
+
180
+ def _print_Integral(self, expr):
181
+ def _xab_tostr(xab):
182
+ if len(xab) == 1:
183
+ return self._print(xab[0])
184
+ else:
185
+ return self._print((xab[0],) + tuple(xab[1:]))
186
+ L = ', '.join([_xab_tostr(l) for l in expr.limits])
187
+ return 'Integral(%s, %s)' % (self._print(expr.function), L)
188
+
189
+ def _print_Interval(self, i):
190
+ fin = 'Interval{m}({a}, {b})'
191
+ a, b, l, r = i.args
192
+ if a.is_infinite and b.is_infinite:
193
+ m = ''
194
+ elif a.is_infinite and not r:
195
+ m = ''
196
+ elif b.is_infinite and not l:
197
+ m = ''
198
+ elif not l and not r:
199
+ m = ''
200
+ elif l and r:
201
+ m = '.open'
202
+ elif l:
203
+ m = '.Lopen'
204
+ else:
205
+ m = '.Ropen'
206
+ return fin.format(**{'a': a, 'b': b, 'm': m})
207
+
208
+ def _print_AccumulationBounds(self, i):
209
+ return "AccumBounds(%s, %s)" % (self._print(i.min),
210
+ self._print(i.max))
211
+
212
+ def _print_Inverse(self, I):
213
+ return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
214
+
215
+ def _print_Lambda(self, obj):
216
+ expr = obj.expr
217
+ sig = obj.signature
218
+ if len(sig) == 1 and sig[0].is_symbol:
219
+ sig = sig[0]
220
+ return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
221
+
222
+ def _print_LatticeOp(self, expr):
223
+ args = sorted(expr.args, key=default_sort_key)
224
+ return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
225
+
226
+ def _print_Limit(self, expr):
227
+ e, z, z0, dir = expr.args
228
+ return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir)))
229
+
230
+
231
+ def _print_list(self, expr):
232
+ return "[%s]" % self.stringify(expr, ", ")
233
+
234
+ def _print_List(self, expr):
235
+ return self._print_list(expr)
236
+
237
+ def _print_MatrixBase(self, expr):
238
+ return expr._format_str(self)
239
+
240
+ def _print_MatrixElement(self, expr):
241
+ return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
242
+ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
243
+
244
+ def _print_MatrixSlice(self, expr):
245
+ def strslice(x, dim):
246
+ x = list(x)
247
+ if x[2] == 1:
248
+ del x[2]
249
+ if x[0] == 0:
250
+ x[0] = ''
251
+ if x[1] == dim:
252
+ x[1] = ''
253
+ return ':'.join((self._print(arg) for arg in x))
254
+ return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
255
+ strslice(expr.rowslice, expr.parent.rows) + ', ' +
256
+ strslice(expr.colslice, expr.parent.cols) + ']')
257
+
258
+ def _print_DeferredVector(self, expr):
259
+ return expr.name
260
+
261
+ def _print_Mul(self, expr):
262
+
263
+ prec = precedence(expr)
264
+
265
+ # Check for unevaluated Mul. In this case we need to make sure the
266
+ # identities are visible, multiple Rational factors are not combined
267
+ # etc so we display in a straight-forward form that fully preserves all
268
+ # args and their order.
269
+ args = expr.args
270
+ if args[0] is S.One or any(
271
+ isinstance(a, Number) or
272
+ a.is_Pow and all(ai.is_Integer for ai in a.args)
273
+ for a in args[1:]):
274
+ d, n = sift(args, lambda x:
275
+ isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0),
276
+ binary=True)
277
+ for i, di in enumerate(d):
278
+ if di.exp.is_Number:
279
+ e = -di.exp
280
+ else:
281
+ dargs = list(di.exp.args)
282
+ dargs[0] = -dargs[0]
283
+ e = Mul._from_args(dargs)
284
+ d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base
285
+
286
+ pre = []
287
+ # don't parenthesize first factor if negative
288
+ if n and not n[0].is_Add and n[0].could_extract_minus_sign():
289
+ pre = [self._print(n.pop(0))]
290
+
291
+ nfactors = pre + [self.parenthesize(a, prec, strict=False)
292
+ for a in n]
293
+ if not nfactors:
294
+ nfactors = ['1']
295
+
296
+ # don't parenthesize first of denominator unless singleton
297
+ if len(d) > 1 and d[0].could_extract_minus_sign():
298
+ pre = [self._print(d.pop(0))]
299
+ else:
300
+ pre = []
301
+ dfactors = pre + [self.parenthesize(a, prec, strict=False)
302
+ for a in d]
303
+
304
+ n = '*'.join(nfactors)
305
+ d = '*'.join(dfactors)
306
+ if len(dfactors) > 1:
307
+ return '%s/(%s)' % (n, d)
308
+ elif dfactors:
309
+ return '%s/%s' % (n, d)
310
+ return n
311
+
312
+ c, e = expr.as_coeff_Mul()
313
+ if c < 0:
314
+ expr = _keep_coeff(-c, e)
315
+ sign = "-"
316
+ else:
317
+ sign = ""
318
+
319
+ a = [] # items in the numerator
320
+ b = [] # items that are in the denominator (if any)
321
+
322
+ pow_paren = [] # Will collect all pow with more than one base element and exp = -1
323
+
324
+ if self.order not in ('old', 'none'):
325
+ args = expr.as_ordered_factors()
326
+ else:
327
+ # use make_args in case expr was something like -x -> x
328
+ args = Mul.make_args(expr)
329
+
330
+ # Gather args for numerator/denominator
331
+ def apow(i):
332
+ b, e = i.as_base_exp()
333
+ eargs = list(Mul.make_args(e))
334
+ if eargs[0] is S.NegativeOne:
335
+ eargs = eargs[1:]
336
+ else:
337
+ eargs[0] = -eargs[0]
338
+ e = Mul._from_args(eargs)
339
+ if isinstance(i, Pow):
340
+ return i.func(b, e, evaluate=False)
341
+ return i.func(e, evaluate=False)
342
+ for item in args:
343
+ if (item.is_commutative and
344
+ isinstance(item, Pow) and
345
+ bool(item.exp.as_coeff_Mul()[0] < 0)):
346
+ if item.exp is not S.NegativeOne:
347
+ b.append(apow(item))
348
+ else:
349
+ if (len(item.args[0].args) != 1 and
350
+ isinstance(item.base, (Mul, Pow))):
351
+ # To avoid situations like #14160
352
+ pow_paren.append(item)
353
+ b.append(item.base)
354
+ elif item.is_Rational and item is not S.Infinity:
355
+ if item.p != 1:
356
+ a.append(Rational(item.p))
357
+ if item.q != 1:
358
+ b.append(Rational(item.q))
359
+ else:
360
+ a.append(item)
361
+
362
+ a = a or [S.One]
363
+
364
+ a_str = [self.parenthesize(x, prec, strict=False) for x in a]
365
+ b_str = [self.parenthesize(x, prec, strict=False) for x in b]
366
+
367
+ # To parenthesize Pow with exp = -1 and having more than one Symbol
368
+ for item in pow_paren:
369
+ if item.base in b:
370
+ b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
371
+
372
+ if not b:
373
+ return sign + '*'.join(a_str)
374
+ elif len(b) == 1:
375
+ return sign + '*'.join(a_str) + "/" + b_str[0]
376
+ else:
377
+ return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
378
+
379
+ def _print_MatMul(self, expr):
380
+ c, m = expr.as_coeff_mmul()
381
+
382
+ sign = ""
383
+ if c.is_number:
384
+ re, im = c.as_real_imag()
385
+ if im.is_zero and re.is_negative:
386
+ expr = _keep_coeff(-c, m)
387
+ sign = "-"
388
+ elif re.is_zero and im.is_negative:
389
+ expr = _keep_coeff(-c, m)
390
+ sign = "-"
391
+
392
+ return sign + '*'.join(
393
+ [self.parenthesize(arg, precedence(expr)) for arg in expr.args]
394
+ )
395
+
396
+ def _print_ElementwiseApplyFunction(self, expr):
397
+ return "{}.({})".format(
398
+ expr.function,
399
+ self._print(expr.expr),
400
+ )
401
+
402
+ def _print_NaN(self, expr):
403
+ return 'nan'
404
+
405
+ def _print_NegativeInfinity(self, expr):
406
+ return '-oo'
407
+
408
+ def _print_Order(self, expr):
409
+ if not expr.variables or all(p is S.Zero for p in expr.point):
410
+ if len(expr.variables) <= 1:
411
+ return 'O(%s)' % self._print(expr.expr)
412
+ else:
413
+ return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
414
+ else:
415
+ return 'O(%s)' % self.stringify(expr.args, ', ', 0)
416
+
417
+ def _print_Ordinal(self, expr):
418
+ return expr.__str__()
419
+
420
+ def _print_Cycle(self, expr):
421
+ return expr.__str__()
422
+
423
+ def _print_Permutation(self, expr):
424
+ from sympy.combinatorics.permutations import Permutation, Cycle
425
+ from sympy.utilities.exceptions import sympy_deprecation_warning
426
+
427
+ perm_cyclic = Permutation.print_cyclic
428
+ if perm_cyclic is not None:
429
+ sympy_deprecation_warning(
430
+ f"""
431
+ Setting Permutation.print_cyclic is deprecated. Instead use
432
+ init_printing(perm_cyclic={perm_cyclic}).
433
+ """,
434
+ deprecated_since_version="1.6",
435
+ active_deprecations_target="deprecated-permutation-print_cyclic",
436
+ stacklevel=7,
437
+ )
438
+ else:
439
+ perm_cyclic = self._settings.get("perm_cyclic", True)
440
+
441
+ if perm_cyclic:
442
+ if not expr.size:
443
+ return '()'
444
+ # before taking Cycle notation, see if the last element is
445
+ # a singleton and move it to the head of the string
446
+ s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
447
+ last = s.rfind('(')
448
+ if not last == 0 and ',' not in s[last:]:
449
+ s = s[last:] + s[:last]
450
+ s = s.replace(',', '')
451
+ return s
452
+ else:
453
+ s = expr.support()
454
+ if not s:
455
+ if expr.size < 5:
456
+ return 'Permutation(%s)' % self._print(expr.array_form)
457
+ return 'Permutation([], size=%s)' % self._print(expr.size)
458
+ trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
459
+ use = full = self._print(expr.array_form)
460
+ if len(trim) < len(full):
461
+ use = trim
462
+ return 'Permutation(%s)' % use
463
+
464
+ def _print_Subs(self, obj):
465
+ expr, old, new = obj.args
466
+ if len(obj.point) == 1:
467
+ old = old[0]
468
+ new = new[0]
469
+ return "Subs(%s, %s, %s)" % (
470
+ self._print(expr), self._print(old), self._print(new))
471
+
472
+ def _print_TensorIndex(self, expr):
473
+ return expr._print()
474
+
475
+ def _print_TensorHead(self, expr):
476
+ return expr._print()
477
+
478
+ def _print_Tensor(self, expr):
479
+ return expr._print()
480
+
481
+ def _print_TensMul(self, expr):
482
+ # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
483
+ sign, args = expr._get_args_for_traditional_printer()
484
+ return sign + "*".join(
485
+ [self.parenthesize(arg, precedence(expr)) for arg in args]
486
+ )
487
+
488
+ def _print_TensAdd(self, expr):
489
+ return expr._print()
490
+
491
+ def _print_ArraySymbol(self, expr):
492
+ return self._print(expr.name)
493
+
494
+ def _print_ArrayElement(self, expr):
495
+ return "%s[%s]" % (
496
+ self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([self._print(i) for i in expr.indices]))
497
+
498
+ def _print_PermutationGroup(self, expr):
499
+ p = [' %s' % self._print(a) for a in expr.args]
500
+ return 'PermutationGroup([\n%s])' % ',\n'.join(p)
501
+
502
+ def _print_Pi(self, expr):
503
+ return 'pi'
504
+
505
+ def _print_PolyRing(self, ring):
506
+ return "Polynomial ring in %s over %s with %s order" % \
507
+ (", ".join((self._print(rs) for rs in ring.symbols)),
508
+ self._print(ring.domain), self._print(ring.order))
509
+
510
+ def _print_FracField(self, field):
511
+ return "Rational function field in %s over %s with %s order" % \
512
+ (", ".join((self._print(fs) for fs in field.symbols)),
513
+ self._print(field.domain), self._print(field.order))
514
+
515
+ def _print_FreeGroupElement(self, elm):
516
+ return elm.__str__()
517
+
518
+ def _print_GaussianElement(self, poly):
519
+ return "(%s + %s*I)" % (poly.x, poly.y)
520
+
521
+ def _print_PolyElement(self, poly):
522
+ return poly.str(self, PRECEDENCE, "%s**%s", "*")
523
+
524
+ def _print_FracElement(self, frac):
525
+ if frac.denom == 1:
526
+ return self._print(frac.numer)
527
+ else:
528
+ numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
529
+ denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
530
+ return numer + "/" + denom
531
+
532
+ def _print_Poly(self, expr):
533
+ ATOM_PREC = PRECEDENCE["Atom"] - 1
534
+ terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
535
+
536
+ for monom, coeff in expr.terms():
537
+ s_monom = []
538
+
539
+ for i, e in enumerate(monom):
540
+ if e > 0:
541
+ if e == 1:
542
+ s_monom.append(gens[i])
543
+ else:
544
+ s_monom.append(gens[i] + "**%d" % e)
545
+
546
+ s_monom = "*".join(s_monom)
547
+
548
+ if coeff.is_Add:
549
+ if s_monom:
550
+ s_coeff = "(" + self._print(coeff) + ")"
551
+ else:
552
+ s_coeff = self._print(coeff)
553
+ else:
554
+ if s_monom:
555
+ if coeff is S.One:
556
+ terms.extend(['+', s_monom])
557
+ continue
558
+
559
+ if coeff is S.NegativeOne:
560
+ terms.extend(['-', s_monom])
561
+ continue
562
+
563
+ s_coeff = self._print(coeff)
564
+
565
+ if not s_monom:
566
+ s_term = s_coeff
567
+ else:
568
+ s_term = s_coeff + "*" + s_monom
569
+
570
+ if s_term.startswith('-'):
571
+ terms.extend(['-', s_term[1:]])
572
+ else:
573
+ terms.extend(['+', s_term])
574
+
575
+ if terms[0] in ('-', '+'):
576
+ modifier = terms.pop(0)
577
+
578
+ if modifier == '-':
579
+ terms[0] = '-' + terms[0]
580
+
581
+ format = expr.__class__.__name__ + "(%s, %s"
582
+
583
+ from sympy.polys.polyerrors import PolynomialError
584
+
585
+ try:
586
+ format += ", modulus=%s" % expr.get_modulus()
587
+ except PolynomialError:
588
+ format += ", domain='%s'" % expr.get_domain()
589
+
590
+ format += ")"
591
+
592
+ for index, item in enumerate(gens):
593
+ if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
594
+ gens[index] = item[1:len(item) - 1]
595
+
596
+ return format % (' '.join(terms), ', '.join(gens))
597
+
598
+ def _print_UniversalSet(self, p):
599
+ return 'UniversalSet'
600
+
601
+ def _print_AlgebraicNumber(self, expr):
602
+ if expr.is_aliased:
603
+ return self._print(expr.as_poly().as_expr())
604
+ else:
605
+ return self._print(expr.as_expr())
606
+
607
+ def _print_Pow(self, expr, rational=False):
608
+ """Printing helper function for ``Pow``
609
+
610
+ Parameters
611
+ ==========
612
+
613
+ rational : bool, optional
614
+ If ``True``, it will not attempt printing ``sqrt(x)`` or
615
+ ``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
616
+ instead.
617
+
618
+ See examples for additional details
619
+
620
+ Examples
621
+ ========
622
+
623
+ >>> from sympy import sqrt, StrPrinter
624
+ >>> from sympy.abc import x
625
+
626
+ How ``rational`` keyword works with ``sqrt``:
627
+
628
+ >>> printer = StrPrinter()
629
+ >>> printer._print_Pow(sqrt(x), rational=True)
630
+ 'x**(1/2)'
631
+ >>> printer._print_Pow(sqrt(x), rational=False)
632
+ 'sqrt(x)'
633
+ >>> printer._print_Pow(1/sqrt(x), rational=True)
634
+ 'x**(-1/2)'
635
+ >>> printer._print_Pow(1/sqrt(x), rational=False)
636
+ '1/sqrt(x)'
637
+
638
+ Notes
639
+ =====
640
+
641
+ ``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
642
+ so there is no need of defining a separate printer for ``sqrt``.
643
+ Instead, it should be handled here as well.
644
+ """
645
+ PREC = precedence(expr)
646
+
647
+ if expr.exp is S.Half and not rational:
648
+ return "sqrt(%s)" % self._print(expr.base)
649
+
650
+ if expr.is_commutative:
651
+ if -expr.exp is S.Half and not rational:
652
+ # Note: Don't test "expr.exp == -S.Half" here, because that will
653
+ # match -0.5, which we don't want.
654
+ return "%s/sqrt(%s)" % tuple((self._print(arg) for arg in (S.One, expr.base)))
655
+ if expr.exp is -S.One:
656
+ # Similarly to the S.Half case, don't test with "==" here.
657
+ return '%s/%s' % (self._print(S.One),
658
+ self.parenthesize(expr.base, PREC, strict=False))
659
+
660
+ e = self.parenthesize(expr.exp, PREC, strict=False)
661
+ if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
662
+ # the parenthesized exp should be '(Rational(a, b))' so strip parens,
663
+ # but just check to be sure.
664
+ if e.startswith('(Rational'):
665
+ return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
666
+ return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
667
+
668
+ def _print_UnevaluatedExpr(self, expr):
669
+ return self._print(expr.args[0])
670
+
671
+ def _print_MatPow(self, expr):
672
+ PREC = precedence(expr)
673
+ return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
674
+ self.parenthesize(expr.exp, PREC, strict=False))
675
+
676
+ def _print_Integer(self, expr):
677
+ if self._settings.get("sympy_integers", False):
678
+ return "S(%s)" % (expr)
679
+ return str(expr.p)
680
+
681
+ def _print_Integers(self, expr):
682
+ return 'Integers'
683
+
684
+ def _print_Naturals(self, expr):
685
+ return 'Naturals'
686
+
687
+ def _print_Naturals0(self, expr):
688
+ return 'Naturals0'
689
+
690
+ def _print_Rationals(self, expr):
691
+ return 'Rationals'
692
+
693
+ def _print_Reals(self, expr):
694
+ return 'Reals'
695
+
696
+ def _print_Complexes(self, expr):
697
+ return 'Complexes'
698
+
699
+ def _print_EmptySet(self, expr):
700
+ return 'EmptySet'
701
+
702
+ def _print_EmptySequence(self, expr):
703
+ return 'EmptySequence'
704
+
705
+ def _print_int(self, expr):
706
+ return str(expr)
707
+
708
+ def _print_mpz(self, expr):
709
+ return str(expr)
710
+
711
+ def _print_Rational(self, expr):
712
+ if expr.q == 1:
713
+ return str(expr.p)
714
+ else:
715
+ if self._settings.get("sympy_integers", False):
716
+ return "S(%s)/%s" % (expr.p, expr.q)
717
+ return "%s/%s" % (expr.p, expr.q)
718
+
719
+ def _print_PythonRational(self, expr):
720
+ if expr.q == 1:
721
+ return str(expr.p)
722
+ else:
723
+ return "%d/%d" % (expr.p, expr.q)
724
+
725
+ def _print_Fraction(self, expr):
726
+ if expr.denominator == 1:
727
+ return str(expr.numerator)
728
+ else:
729
+ return "%s/%s" % (expr.numerator, expr.denominator)
730
+
731
+ def _print_mpq(self, expr):
732
+ if expr.denominator == 1:
733
+ return str(expr.numerator)
734
+ else:
735
+ return "%s/%s" % (expr.numerator, expr.denominator)
736
+
737
+ def _print_Float(self, expr):
738
+ prec = expr._prec
739
+ if prec < 5:
740
+ dps = 0
741
+ else:
742
+ dps = prec_to_dps(expr._prec)
743
+ if self._settings["full_prec"] is True:
744
+ strip = False
745
+ elif self._settings["full_prec"] is False:
746
+ strip = True
747
+ elif self._settings["full_prec"] == "auto":
748
+ strip = self._print_level > 1
749
+ low = self._settings["min"] if "min" in self._settings else None
750
+ high = self._settings["max"] if "max" in self._settings else None
751
+ rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
752
+ if rv.startswith('-.0'):
753
+ rv = '-0.' + rv[3:]
754
+ elif rv.startswith('.0'):
755
+ rv = '0.' + rv[2:]
756
+ if rv.startswith('+'):
757
+ # e.g., +inf -> inf
758
+ rv = rv[1:]
759
+ return rv
760
+
761
+ def _print_Relational(self, expr):
762
+
763
+ charmap = {
764
+ "==": "Eq",
765
+ "!=": "Ne",
766
+ ":=": "Assignment",
767
+ '+=': "AddAugmentedAssignment",
768
+ "-=": "SubAugmentedAssignment",
769
+ "*=": "MulAugmentedAssignment",
770
+ "/=": "DivAugmentedAssignment",
771
+ "%=": "ModAugmentedAssignment",
772
+ }
773
+
774
+ if expr.rel_op in charmap:
775
+ return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
776
+ self._print(expr.rhs))
777
+
778
+ return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
779
+ self._relationals.get(expr.rel_op) or expr.rel_op,
780
+ self.parenthesize(expr.rhs, precedence(expr)))
781
+
782
+ def _print_ComplexRootOf(self, expr):
783
+ return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
784
+ expr.index)
785
+
786
+ def _print_RootSum(self, expr):
787
+ args = [self._print_Add(expr.expr, order='lex')]
788
+
789
+ if expr.fun is not S.IdentityFunction:
790
+ args.append(self._print(expr.fun))
791
+
792
+ return "RootSum(%s)" % ", ".join(args)
793
+
794
+ def _print_GroebnerBasis(self, basis):
795
+ cls = basis.__class__.__name__
796
+
797
+ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
798
+ exprs = "[%s]" % ", ".join(exprs)
799
+
800
+ gens = [ self._print(gen) for gen in basis.gens ]
801
+ domain = "domain='%s'" % self._print(basis.domain)
802
+ order = "order='%s'" % self._print(basis.order)
803
+
804
+ args = [exprs] + gens + [domain, order]
805
+
806
+ return "%s(%s)" % (cls, ", ".join(args))
807
+
808
+ def _print_set(self, s):
809
+ items = sorted(s, key=default_sort_key)
810
+
811
+ args = ', '.join(self._print(item) for item in items)
812
+ if not args:
813
+ return "set()"
814
+ return '{%s}' % args
815
+
816
+ def _print_FiniteSet(self, s):
817
+ from sympy.sets.sets import FiniteSet
818
+ items = sorted(s, key=default_sort_key)
819
+
820
+ args = ', '.join(self._print(item) for item in items)
821
+ if any(item.has(FiniteSet) for item in items):
822
+ return 'FiniteSet({})'.format(args)
823
+ return '{{{}}}'.format(args)
824
+
825
+ def _print_Partition(self, s):
826
+ items = sorted(s, key=default_sort_key)
827
+
828
+ args = ', '.join(self._print(arg) for arg in items)
829
+ return 'Partition({})'.format(args)
830
+
831
+ def _print_frozenset(self, s):
832
+ if not s:
833
+ return "frozenset()"
834
+ return "frozenset(%s)" % self._print_set(s)
835
+
836
+ def _print_Sum(self, expr):
837
+ def _xab_tostr(xab):
838
+ if len(xab) == 1:
839
+ return self._print(xab[0])
840
+ else:
841
+ return self._print((xab[0],) + tuple(xab[1:]))
842
+ L = ', '.join([_xab_tostr(l) for l in expr.limits])
843
+ return 'Sum(%s, %s)' % (self._print(expr.function), L)
844
+
845
+ def _print_Symbol(self, expr):
846
+ return expr.name
847
+ _print_MatrixSymbol = _print_Symbol
848
+ _print_RandomSymbol = _print_Symbol
849
+
850
+ def _print_Identity(self, expr):
851
+ return "I"
852
+
853
+ def _print_ZeroMatrix(self, expr):
854
+ return "0"
855
+
856
+ def _print_OneMatrix(self, expr):
857
+ return "1"
858
+
859
+ def _print_Predicate(self, expr):
860
+ return "Q.%s" % expr.name
861
+
862
+ def _print_str(self, expr):
863
+ return str(expr)
864
+
865
+ def _print_tuple(self, expr):
866
+ if len(expr) == 1:
867
+ return "(%s,)" % self._print(expr[0])
868
+ else:
869
+ return "(%s)" % self.stringify(expr, ", ")
870
+
871
+ def _print_Tuple(self, expr):
872
+ return self._print_tuple(expr)
873
+
874
+ def _print_Transpose(self, T):
875
+ return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
876
+
877
+ def _print_Uniform(self, expr):
878
+ return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
879
+
880
+ def _print_Quantity(self, expr):
881
+ if self._settings.get("abbrev", False):
882
+ return "%s" % expr.abbrev
883
+ return "%s" % expr.name
884
+
885
+ def _print_Quaternion(self, expr):
886
+ s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
887
+ a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
888
+ return " + ".join(a)
889
+
890
+ def _print_Dimension(self, expr):
891
+ return str(expr)
892
+
893
+ def _print_Wild(self, expr):
894
+ return expr.name + '_'
895
+
896
+ def _print_WildFunction(self, expr):
897
+ return expr.name + '_'
898
+
899
+ def _print_WildDot(self, expr):
900
+ return expr.name
901
+
902
+ def _print_WildPlus(self, expr):
903
+ return expr.name
904
+
905
+ def _print_WildStar(self, expr):
906
+ return expr.name
907
+
908
+ def _print_Zero(self, expr):
909
+ if self._settings.get("sympy_integers", False):
910
+ return "S(0)"
911
+ return "0"
912
+
913
+ def _print_DMP(self, p):
914
+ try:
915
+ if p.ring is not None:
916
+ # TODO incorporate order
917
+ return self._print(p.ring.to_sympy(p))
918
+ except SympifyError:
919
+ pass
920
+
921
+ cls = p.__class__.__name__
922
+ rep = self._print(p.rep)
923
+ dom = self._print(p.dom)
924
+ ring = self._print(p.ring)
925
+
926
+ return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
927
+
928
+ def _print_DMF(self, expr):
929
+ return self._print_DMP(expr)
930
+
931
+ def _print_Object(self, obj):
932
+ return 'Object("%s")' % obj.name
933
+
934
+ def _print_IdentityMorphism(self, morphism):
935
+ return 'IdentityMorphism(%s)' % morphism.domain
936
+
937
+ def _print_NamedMorphism(self, morphism):
938
+ return 'NamedMorphism(%s, %s, "%s")' % \
939
+ (morphism.domain, morphism.codomain, morphism.name)
940
+
941
+ def _print_Category(self, category):
942
+ return 'Category("%s")' % category.name
943
+
944
+ def _print_Manifold(self, manifold):
945
+ return manifold.name.name
946
+
947
+ def _print_Patch(self, patch):
948
+ return patch.name.name
949
+
950
+ def _print_CoordSystem(self, coords):
951
+ return coords.name.name
952
+
953
+ def _print_BaseScalarField(self, field):
954
+ return field._coord_sys.symbols[field._index].name
955
+
956
+ def _print_BaseVectorField(self, field):
957
+ return 'e_%s' % field._coord_sys.symbols[field._index].name
958
+
959
+ def _print_Differential(self, diff):
960
+ field = diff._form_field
961
+ if hasattr(field, '_coord_sys'):
962
+ return 'd%s' % field._coord_sys.symbols[field._index].name
963
+ else:
964
+ return 'd(%s)' % self._print(field)
965
+
966
+ def _print_Tr(self, expr):
967
+ #TODO : Handle indices
968
+ return "%s(%s)" % ("Tr", self._print(expr.args[0]))
969
+
970
+ def _print_Str(self, s):
971
+ return self._print(s.name)
972
+
973
+ def _print_AppliedBinaryRelation(self, expr):
974
+ rel = expr.function
975
+ return '%s(%s, %s)' % (self._print(rel),
976
+ self._print(expr.lhs),
977
+ self._print(expr.rhs))
978
+
979
+
980
+ @print_function(StrPrinter)
981
+ def sstr(expr, **settings):
982
+ """Returns the expression as a string.
983
+
984
+ For large expressions where speed is a concern, use the setting
985
+ order='none'. If abbrev=True setting is used then units are printed in
986
+ abbreviated form.
987
+
988
+ Examples
989
+ ========
990
+
991
+ >>> from sympy import symbols, Eq, sstr
992
+ >>> a, b = symbols('a b')
993
+ >>> sstr(Eq(a + b, 0))
994
+ 'Eq(a + b, 0)'
995
+ """
996
+
997
+ p = StrPrinter(settings)
998
+ s = p.doprint(expr)
999
+
1000
+ return s
1001
+
1002
+
1003
+ class StrReprPrinter(StrPrinter):
1004
+ """(internal) -- see sstrrepr"""
1005
+
1006
+ def _print_str(self, s):
1007
+ return repr(s)
1008
+
1009
+ def _print_Str(self, s):
1010
+ # Str does not to be printed same as str here
1011
+ return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
1012
+
1013
+
1014
+ @print_function(StrReprPrinter)
1015
+ def sstrrepr(expr, **settings):
1016
+ """return expr in mixed str/repr form
1017
+
1018
+ i.e. strings are returned in repr form with quotes, and everything else
1019
+ is returned in str form.
1020
+
1021
+ This function could be useful for hooking into sys.displayhook
1022
+ """
1023
+
1024
+ p = StrReprPrinter(settings)
1025
+ s = p.doprint(expr)
1026
+
1027
+ return s
venv/lib/python3.10/site-packages/sympy/printing/tableform.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.containers import Tuple
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.core.sympify import SympifyError
5
+
6
+ from types import FunctionType
7
+
8
+
9
+ class TableForm:
10
+ r"""
11
+ Create a nice table representation of data.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import TableForm
17
+ >>> t = TableForm([[5, 7], [4, 2], [10, 3]])
18
+ >>> print(t)
19
+ 5 7
20
+ 4 2
21
+ 10 3
22
+
23
+ You can use the SymPy's printing system to produce tables in any
24
+ format (ascii, latex, html, ...).
25
+
26
+ >>> print(t.as_latex())
27
+ \begin{tabular}{l l}
28
+ $5$ & $7$ \\
29
+ $4$ & $2$ \\
30
+ $10$ & $3$ \\
31
+ \end{tabular}
32
+
33
+ """
34
+
35
+ def __init__(self, data, **kwarg):
36
+ """
37
+ Creates a TableForm.
38
+
39
+ Parameters:
40
+
41
+ data ...
42
+ 2D data to be put into the table; data can be
43
+ given as a Matrix
44
+
45
+ headings ...
46
+ gives the labels for rows and columns:
47
+
48
+ Can be a single argument that applies to both
49
+ dimensions:
50
+
51
+ - None ... no labels
52
+ - "automatic" ... labels are 1, 2, 3, ...
53
+
54
+ Can be a list of labels for rows and columns:
55
+ The labels for each dimension can be given
56
+ as None, "automatic", or [l1, l2, ...] e.g.
57
+ ["automatic", None] will number the rows
58
+
59
+ [default: None]
60
+
61
+ alignments ...
62
+ alignment of the columns with:
63
+
64
+ - "left" or "<"
65
+ - "center" or "^"
66
+ - "right" or ">"
67
+
68
+ When given as a single value, the value is used for
69
+ all columns. The row headings (if given) will be
70
+ right justified unless an explicit alignment is
71
+ given for it and all other columns.
72
+
73
+ [default: "left"]
74
+
75
+ formats ...
76
+ a list of format strings or functions that accept
77
+ 3 arguments (entry, row number, col number) and
78
+ return a string for the table entry. (If a function
79
+ returns None then the _print method will be used.)
80
+
81
+ wipe_zeros ...
82
+ Do not show zeros in the table.
83
+
84
+ [default: True]
85
+
86
+ pad ...
87
+ the string to use to indicate a missing value (e.g.
88
+ elements that are None or those that are missing
89
+ from the end of a row (i.e. any row that is shorter
90
+ than the rest is assumed to have missing values).
91
+ When None, nothing will be shown for values that
92
+ are missing from the end of a row; values that are
93
+ None, however, will be shown.
94
+
95
+ [default: None]
96
+
97
+ Examples
98
+ ========
99
+
100
+ >>> from sympy import TableForm, Symbol
101
+ >>> TableForm([[5, 7], [4, 2], [10, 3]])
102
+ 5 7
103
+ 4 2
104
+ 10 3
105
+ >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic')
106
+ | 1 2 3
107
+ ---------
108
+ 1 | .
109
+ 2 | . .
110
+ 3 | . . .
111
+ >>> TableForm([[Symbol('.'*(j if not i%2 else 1)) for i in range(3)]
112
+ ... for j in range(4)], alignments='rcl')
113
+ .
114
+ . . .
115
+ .. . ..
116
+ ... . ...
117
+ """
118
+ from sympy.matrices.dense import Matrix
119
+
120
+ # We only support 2D data. Check the consistency:
121
+ if isinstance(data, Matrix):
122
+ data = data.tolist()
123
+ _h = len(data)
124
+
125
+ # fill out any short lines
126
+ pad = kwarg.get('pad', None)
127
+ ok_None = False
128
+ if pad is None:
129
+ pad = " "
130
+ ok_None = True
131
+ pad = Symbol(pad)
132
+ _w = max(len(line) for line in data)
133
+ for i, line in enumerate(data):
134
+ if len(line) != _w:
135
+ line.extend([pad]*(_w - len(line)))
136
+ for j, lj in enumerate(line):
137
+ if lj is None:
138
+ if not ok_None:
139
+ lj = pad
140
+ else:
141
+ try:
142
+ lj = S(lj)
143
+ except SympifyError:
144
+ lj = Symbol(str(lj))
145
+ line[j] = lj
146
+ data[i] = line
147
+ _lines = Tuple(*[Tuple(*d) for d in data])
148
+
149
+ headings = kwarg.get("headings", [None, None])
150
+ if headings == "automatic":
151
+ _headings = [range(1, _h + 1), range(1, _w + 1)]
152
+ else:
153
+ h1, h2 = headings
154
+ if h1 == "automatic":
155
+ h1 = range(1, _h + 1)
156
+ if h2 == "automatic":
157
+ h2 = range(1, _w + 1)
158
+ _headings = [h1, h2]
159
+
160
+ allow = ('l', 'r', 'c')
161
+ alignments = kwarg.get("alignments", "l")
162
+
163
+ def _std_align(a):
164
+ a = a.strip().lower()
165
+ if len(a) > 1:
166
+ return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a)
167
+ else:
168
+ return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a)
169
+ std_align = _std_align(alignments)
170
+ if std_align in allow:
171
+ _alignments = [std_align]*_w
172
+ else:
173
+ _alignments = []
174
+ for a in alignments:
175
+ std_align = _std_align(a)
176
+ _alignments.append(std_align)
177
+ if std_align not in ('l', 'r', 'c'):
178
+ raise ValueError('alignment "%s" unrecognized' %
179
+ alignments)
180
+ if _headings[0] and len(_alignments) == _w + 1:
181
+ _head_align = _alignments[0]
182
+ _alignments = _alignments[1:]
183
+ else:
184
+ _head_align = 'r'
185
+ if len(_alignments) != _w:
186
+ raise ValueError(
187
+ 'wrong number of alignments: expected %s but got %s' %
188
+ (_w, len(_alignments)))
189
+
190
+ _column_formats = kwarg.get("formats", [None]*_w)
191
+
192
+ _wipe_zeros = kwarg.get("wipe_zeros", True)
193
+
194
+ self._w = _w
195
+ self._h = _h
196
+ self._lines = _lines
197
+ self._headings = _headings
198
+ self._head_align = _head_align
199
+ self._alignments = _alignments
200
+ self._column_formats = _column_formats
201
+ self._wipe_zeros = _wipe_zeros
202
+
203
+ def __repr__(self):
204
+ from .str import sstr
205
+ return sstr(self, order=None)
206
+
207
+ def __str__(self):
208
+ from .str import sstr
209
+ return sstr(self, order=None)
210
+
211
+ def as_matrix(self):
212
+ """Returns the data of the table in Matrix form.
213
+
214
+ Examples
215
+ ========
216
+
217
+ >>> from sympy import TableForm
218
+ >>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic')
219
+ >>> t
220
+ | 1 2
221
+ --------
222
+ 1 | 5 7
223
+ 2 | 4 2
224
+ 3 | 10 3
225
+ >>> t.as_matrix()
226
+ Matrix([
227
+ [ 5, 7],
228
+ [ 4, 2],
229
+ [10, 3]])
230
+ """
231
+ from sympy.matrices.dense import Matrix
232
+ return Matrix(self._lines)
233
+
234
+ def as_str(self):
235
+ # XXX obsolete ?
236
+ return str(self)
237
+
238
+ def as_latex(self):
239
+ from .latex import latex
240
+ return latex(self)
241
+
242
+ def _sympystr(self, p):
243
+ """
244
+ Returns the string representation of 'self'.
245
+
246
+ Examples
247
+ ========
248
+
249
+ >>> from sympy import TableForm
250
+ >>> t = TableForm([[5, 7], [4, 2], [10, 3]])
251
+ >>> s = t.as_str()
252
+
253
+ """
254
+ column_widths = [0] * self._w
255
+ lines = []
256
+ for line in self._lines:
257
+ new_line = []
258
+ for i in range(self._w):
259
+ # Format the item somehow if needed:
260
+ s = str(line[i])
261
+ if self._wipe_zeros and (s == "0"):
262
+ s = " "
263
+ w = len(s)
264
+ if w > column_widths[i]:
265
+ column_widths[i] = w
266
+ new_line.append(s)
267
+ lines.append(new_line)
268
+
269
+ # Check heading:
270
+ if self._headings[0]:
271
+ self._headings[0] = [str(x) for x in self._headings[0]]
272
+ _head_width = max([len(x) for x in self._headings[0]])
273
+
274
+ if self._headings[1]:
275
+ new_line = []
276
+ for i in range(self._w):
277
+ # Format the item somehow if needed:
278
+ s = str(self._headings[1][i])
279
+ w = len(s)
280
+ if w > column_widths[i]:
281
+ column_widths[i] = w
282
+ new_line.append(s)
283
+ self._headings[1] = new_line
284
+
285
+ format_str = []
286
+
287
+ def _align(align, w):
288
+ return '%%%s%ss' % (
289
+ ("-" if align == "l" else ""),
290
+ str(w))
291
+ format_str = [_align(align, w) for align, w in
292
+ zip(self._alignments, column_widths)]
293
+ if self._headings[0]:
294
+ format_str.insert(0, _align(self._head_align, _head_width))
295
+ format_str.insert(1, '|')
296
+ format_str = ' '.join(format_str) + '\n'
297
+
298
+ s = []
299
+ if self._headings[1]:
300
+ d = self._headings[1]
301
+ if self._headings[0]:
302
+ d = [""] + d
303
+ first_line = format_str % tuple(d)
304
+ s.append(first_line)
305
+ s.append("-" * (len(first_line) - 1) + "\n")
306
+ for i, line in enumerate(lines):
307
+ d = [l if self._alignments[j] != 'c' else
308
+ l.center(column_widths[j]) for j, l in enumerate(line)]
309
+ if self._headings[0]:
310
+ l = self._headings[0][i]
311
+ l = (l if self._head_align != 'c' else
312
+ l.center(_head_width))
313
+ d = [l] + d
314
+ s.append(format_str % tuple(d))
315
+ return ''.join(s)[:-1] # don't include trailing newline
316
+
317
+ def _latex(self, printer):
318
+ """
319
+ Returns the string representation of 'self'.
320
+ """
321
+ # Check heading:
322
+ if self._headings[1]:
323
+ new_line = []
324
+ for i in range(self._w):
325
+ # Format the item somehow if needed:
326
+ new_line.append(str(self._headings[1][i]))
327
+ self._headings[1] = new_line
328
+
329
+ alignments = []
330
+ if self._headings[0]:
331
+ self._headings[0] = [str(x) for x in self._headings[0]]
332
+ alignments = [self._head_align]
333
+ alignments.extend(self._alignments)
334
+
335
+ s = r"\begin{tabular}{" + " ".join(alignments) + "}\n"
336
+
337
+ if self._headings[1]:
338
+ d = self._headings[1]
339
+ if self._headings[0]:
340
+ d = [""] + d
341
+ first_line = " & ".join(d) + r" \\" + "\n"
342
+ s += first_line
343
+ s += r"\hline" + "\n"
344
+ for i, line in enumerate(self._lines):
345
+ d = []
346
+ for j, x in enumerate(line):
347
+ if self._wipe_zeros and (x in (0, "0")):
348
+ d.append(" ")
349
+ continue
350
+ f = self._column_formats[j]
351
+ if f:
352
+ if isinstance(f, FunctionType):
353
+ v = f(x, i, j)
354
+ if v is None:
355
+ v = printer._print(x)
356
+ else:
357
+ v = f % x
358
+ d.append(v)
359
+ else:
360
+ v = printer._print(x)
361
+ d.append("$%s$" % v)
362
+ if self._headings[0]:
363
+ d = [self._headings[0][i]] + d
364
+ s += " & ".join(d) + r" \\" + "\n"
365
+ s += r"\end{tabular}"
366
+ return s
venv/lib/python3.10/site-packages/sympy/printing/tensorflow.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.external.importtools import version_tuple
2
+ from collections.abc import Iterable
3
+
4
+ from sympy.core.mul import Mul
5
+ from sympy.core.singleton import S
6
+ from sympy.codegen.cfunctions import Sqrt
7
+ from sympy.external import import_module
8
+ from sympy.printing.precedence import PRECEDENCE
9
+ from sympy.printing.pycode import AbstractPythonCodePrinter, ArrayPrinter
10
+ import sympy
11
+
12
+ tensorflow = import_module('tensorflow')
13
+
14
+ class TensorflowPrinter(ArrayPrinter, AbstractPythonCodePrinter):
15
+ """
16
+ Tensorflow printer which handles vectorized piecewise functions,
17
+ logical operators, max/min, and relational operators.
18
+ """
19
+ printmethod = "_tensorflowcode"
20
+
21
+ mapping = {
22
+ sympy.Abs: "tensorflow.math.abs",
23
+ sympy.sign: "tensorflow.math.sign",
24
+
25
+ # XXX May raise error for ints.
26
+ sympy.ceiling: "tensorflow.math.ceil",
27
+ sympy.floor: "tensorflow.math.floor",
28
+ sympy.log: "tensorflow.math.log",
29
+ sympy.exp: "tensorflow.math.exp",
30
+ Sqrt: "tensorflow.math.sqrt",
31
+ sympy.cos: "tensorflow.math.cos",
32
+ sympy.acos: "tensorflow.math.acos",
33
+ sympy.sin: "tensorflow.math.sin",
34
+ sympy.asin: "tensorflow.math.asin",
35
+ sympy.tan: "tensorflow.math.tan",
36
+ sympy.atan: "tensorflow.math.atan",
37
+ sympy.atan2: "tensorflow.math.atan2",
38
+ # XXX Also may give NaN for complex results.
39
+ sympy.cosh: "tensorflow.math.cosh",
40
+ sympy.acosh: "tensorflow.math.acosh",
41
+ sympy.sinh: "tensorflow.math.sinh",
42
+ sympy.asinh: "tensorflow.math.asinh",
43
+ sympy.tanh: "tensorflow.math.tanh",
44
+ sympy.atanh: "tensorflow.math.atanh",
45
+
46
+ sympy.re: "tensorflow.math.real",
47
+ sympy.im: "tensorflow.math.imag",
48
+ sympy.arg: "tensorflow.math.angle",
49
+
50
+ # XXX May raise error for ints and complexes
51
+ sympy.erf: "tensorflow.math.erf",
52
+ sympy.loggamma: "tensorflow.math.lgamma",
53
+
54
+ sympy.Eq: "tensorflow.math.equal",
55
+ sympy.Ne: "tensorflow.math.not_equal",
56
+ sympy.StrictGreaterThan: "tensorflow.math.greater",
57
+ sympy.StrictLessThan: "tensorflow.math.less",
58
+ sympy.LessThan: "tensorflow.math.less_equal",
59
+ sympy.GreaterThan: "tensorflow.math.greater_equal",
60
+
61
+ sympy.And: "tensorflow.math.logical_and",
62
+ sympy.Or: "tensorflow.math.logical_or",
63
+ sympy.Not: "tensorflow.math.logical_not",
64
+ sympy.Max: "tensorflow.math.maximum",
65
+ sympy.Min: "tensorflow.math.minimum",
66
+
67
+ # Matrices
68
+ sympy.MatAdd: "tensorflow.math.add",
69
+ sympy.HadamardProduct: "tensorflow.math.multiply",
70
+ sympy.Trace: "tensorflow.linalg.trace",
71
+
72
+ # XXX May raise error for integer matrices.
73
+ sympy.Determinant : "tensorflow.linalg.det",
74
+ }
75
+
76
+ _default_settings = dict(
77
+ AbstractPythonCodePrinter._default_settings,
78
+ tensorflow_version=None
79
+ )
80
+
81
+ def __init__(self, settings=None):
82
+ super().__init__(settings)
83
+
84
+ version = self._settings['tensorflow_version']
85
+ if version is None and tensorflow:
86
+ version = tensorflow.__version__
87
+ self.tensorflow_version = version
88
+
89
+ def _print_Function(self, expr):
90
+ op = self.mapping.get(type(expr), None)
91
+ if op is None:
92
+ return super()._print_Basic(expr)
93
+ children = [self._print(arg) for arg in expr.args]
94
+ if len(children) == 1:
95
+ return "%s(%s)" % (
96
+ self._module_format(op),
97
+ children[0]
98
+ )
99
+ else:
100
+ return self._expand_fold_binary_op(op, children)
101
+
102
+ _print_Expr = _print_Function
103
+ _print_Application = _print_Function
104
+ _print_MatrixExpr = _print_Function
105
+ # TODO: a better class structure would avoid this mess:
106
+ _print_Relational = _print_Function
107
+ _print_Not = _print_Function
108
+ _print_And = _print_Function
109
+ _print_Or = _print_Function
110
+ _print_HadamardProduct = _print_Function
111
+ _print_Trace = _print_Function
112
+ _print_Determinant = _print_Function
113
+
114
+ def _print_Inverse(self, expr):
115
+ op = self._module_format('tensorflow.linalg.inv')
116
+ return "{}({})".format(op, self._print(expr.arg))
117
+
118
+ def _print_Transpose(self, expr):
119
+ version = self.tensorflow_version
120
+ if version and version_tuple(version) < version_tuple('1.14'):
121
+ op = self._module_format('tensorflow.matrix_transpose')
122
+ else:
123
+ op = self._module_format('tensorflow.linalg.matrix_transpose')
124
+ return "{}({})".format(op, self._print(expr.arg))
125
+
126
+ def _print_Derivative(self, expr):
127
+ variables = expr.variables
128
+ if any(isinstance(i, Iterable) for i in variables):
129
+ raise NotImplementedError("derivation by multiple variables is not supported")
130
+ def unfold(expr, args):
131
+ if not args:
132
+ return self._print(expr)
133
+ return "%s(%s, %s)[0]" % (
134
+ self._module_format("tensorflow.gradients"),
135
+ unfold(expr, args[:-1]),
136
+ self._print(args[-1]),
137
+ )
138
+ return unfold(expr.expr, variables)
139
+
140
+ def _print_Piecewise(self, expr):
141
+ version = self.tensorflow_version
142
+ if version and version_tuple(version) < version_tuple('1.0'):
143
+ tensorflow_piecewise = "tensorflow.select"
144
+ else:
145
+ tensorflow_piecewise = "tensorflow.where"
146
+
147
+ from sympy.functions.elementary.piecewise import Piecewise
148
+ e, cond = expr.args[0].args
149
+ if len(expr.args) == 1:
150
+ return '{}({}, {}, {})'.format(
151
+ self._module_format(tensorflow_piecewise),
152
+ self._print(cond),
153
+ self._print(e),
154
+ 0)
155
+
156
+ return '{}({}, {}, {})'.format(
157
+ self._module_format(tensorflow_piecewise),
158
+ self._print(cond),
159
+ self._print(e),
160
+ self._print(Piecewise(*expr.args[1:])))
161
+
162
+ def _print_Pow(self, expr):
163
+ # XXX May raise error for
164
+ # int**float or int**complex or float**complex
165
+ base, exp = expr.args
166
+ if expr.exp == S.Half:
167
+ return "{}({})".format(
168
+ self._module_format("tensorflow.math.sqrt"), self._print(base))
169
+ return "{}({}, {})".format(
170
+ self._module_format("tensorflow.math.pow"),
171
+ self._print(base), self._print(exp))
172
+
173
+ def _print_MatrixBase(self, expr):
174
+ tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
175
+ data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
176
+ return "%s(%s)" % (
177
+ self._module_format(tensorflow_f),
178
+ data,
179
+ )
180
+
181
+ def _print_MatMul(self, expr):
182
+ from sympy.matrices.expressions import MatrixExpr
183
+ mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
184
+ args = [arg for arg in expr.args if arg not in mat_args]
185
+ if args:
186
+ return "%s*%s" % (
187
+ self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
188
+ self._expand_fold_binary_op(
189
+ "tensorflow.linalg.matmul", mat_args)
190
+ )
191
+ else:
192
+ return self._expand_fold_binary_op(
193
+ "tensorflow.linalg.matmul", mat_args)
194
+
195
+ def _print_MatPow(self, expr):
196
+ return self._expand_fold_binary_op(
197
+ "tensorflow.linalg.matmul", [expr.base]*expr.exp)
198
+
199
+ def _print_CodeBlock(self, expr):
200
+ # TODO: is this necessary?
201
+ ret = []
202
+ for subexpr in expr.args:
203
+ ret.append(self._print(subexpr))
204
+ return "\n".join(ret)
205
+
206
+ _module = "tensorflow"
207
+ _einsum = "linalg.einsum"
208
+ _add = "math.add"
209
+ _transpose = "transpose"
210
+ _ones = "ones"
211
+ _zeros = "zeros"
212
+
213
+
214
+ def tensorflow_code(expr, **settings):
215
+ printer = TensorflowPrinter(settings)
216
+ return printer.doprint(expr)
venv/lib/python3.10/site-packages/sympy/printing/theanocode.py ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. deprecated:: 1.8
3
+
4
+ ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
5
+ Aesara. Use ``sympy.printing.aesaracode`` instead. See
6
+ :ref:`theanocode-deprecated` for more information.
7
+
8
+ """
9
+ from __future__ import annotations
10
+ from typing import Any
11
+
12
+ from sympy.external import import_module
13
+ from sympy.printing.printer import Printer
14
+ from sympy.utilities.iterables import is_sequence
15
+ import sympy
16
+ from functools import partial
17
+
18
+ from sympy.utilities.decorator import doctest_depends_on
19
+ from sympy.utilities.exceptions import sympy_deprecation_warning
20
+
21
+ theano = import_module('theano')
22
+
23
+ if theano:
24
+ ts = theano.scalar
25
+ tt = theano.tensor
26
+ from theano.sandbox import linalg as tlinalg
27
+
28
+ mapping = {
29
+ sympy.Add: tt.add,
30
+ sympy.Mul: tt.mul,
31
+ sympy.Abs: tt.abs_,
32
+ sympy.sign: tt.sgn,
33
+ sympy.ceiling: tt.ceil,
34
+ sympy.floor: tt.floor,
35
+ sympy.log: tt.log,
36
+ sympy.exp: tt.exp,
37
+ sympy.sqrt: tt.sqrt,
38
+ sympy.cos: tt.cos,
39
+ sympy.acos: tt.arccos,
40
+ sympy.sin: tt.sin,
41
+ sympy.asin: tt.arcsin,
42
+ sympy.tan: tt.tan,
43
+ sympy.atan: tt.arctan,
44
+ sympy.atan2: tt.arctan2,
45
+ sympy.cosh: tt.cosh,
46
+ sympy.acosh: tt.arccosh,
47
+ sympy.sinh: tt.sinh,
48
+ sympy.asinh: tt.arcsinh,
49
+ sympy.tanh: tt.tanh,
50
+ sympy.atanh: tt.arctanh,
51
+ sympy.re: tt.real,
52
+ sympy.im: tt.imag,
53
+ sympy.arg: tt.angle,
54
+ sympy.erf: tt.erf,
55
+ sympy.gamma: tt.gamma,
56
+ sympy.loggamma: tt.gammaln,
57
+ sympy.Pow: tt.pow,
58
+ sympy.Eq: tt.eq,
59
+ sympy.StrictGreaterThan: tt.gt,
60
+ sympy.StrictLessThan: tt.lt,
61
+ sympy.LessThan: tt.le,
62
+ sympy.GreaterThan: tt.ge,
63
+ sympy.And: tt.and_,
64
+ sympy.Or: tt.or_,
65
+ sympy.Max: tt.maximum, # SymPy accept >2 inputs, Theano only 2
66
+ sympy.Min: tt.minimum, # SymPy accept >2 inputs, Theano only 2
67
+ sympy.conjugate: tt.conj,
68
+ sympy.core.numbers.ImaginaryUnit: lambda:tt.complex(0,1),
69
+ # Matrices
70
+ sympy.MatAdd: tt.Elemwise(ts.add),
71
+ sympy.HadamardProduct: tt.Elemwise(ts.mul),
72
+ sympy.Trace: tlinalg.trace,
73
+ sympy.Determinant : tlinalg.det,
74
+ sympy.Inverse: tlinalg.matrix_inverse,
75
+ sympy.Transpose: tt.DimShuffle((False, False), [1, 0]),
76
+ }
77
+
78
+
79
+ class TheanoPrinter(Printer):
80
+ """ Code printer which creates Theano symbolic expression graphs.
81
+
82
+ Parameters
83
+ ==========
84
+
85
+ cache : dict
86
+ Cache dictionary to use. If None (default) will use
87
+ the global cache. To create a printer which does not depend on or alter
88
+ global state pass an empty dictionary. Note: the dictionary is not
89
+ copied on initialization of the printer and will be updated in-place,
90
+ so using the same dict object when creating multiple printers or making
91
+ multiple calls to :func:`.theano_code` or :func:`.theano_function` means
92
+ the cache is shared between all these applications.
93
+
94
+ Attributes
95
+ ==========
96
+
97
+ cache : dict
98
+ A cache of Theano variables which have been created for SymPy
99
+ symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
100
+ :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
101
+ ensure that all references to a given symbol in an expression (or
102
+ multiple expressions) are printed as the same Theano variable, which is
103
+ created only once. Symbols are differentiated only by name and type. The
104
+ format of the cache's contents should be considered opaque to the user.
105
+ """
106
+ printmethod = "_theano"
107
+
108
+ def __init__(self, *args, **kwargs):
109
+ self.cache = kwargs.pop('cache', {})
110
+ super().__init__(*args, **kwargs)
111
+
112
+ def _get_key(self, s, name=None, dtype=None, broadcastable=None):
113
+ """ Get the cache key for a SymPy object.
114
+
115
+ Parameters
116
+ ==========
117
+
118
+ s : sympy.core.basic.Basic
119
+ SymPy object to get key for.
120
+
121
+ name : str
122
+ Name of object, if it does not have a ``name`` attribute.
123
+ """
124
+
125
+ if name is None:
126
+ name = s.name
127
+
128
+ return (name, type(s), s.args, dtype, broadcastable)
129
+
130
+ def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
131
+ """
132
+ Get the Theano variable for a SymPy symbol from the cache, or create it
133
+ if it does not exist.
134
+ """
135
+
136
+ # Defaults
137
+ if name is None:
138
+ name = s.name
139
+ if dtype is None:
140
+ dtype = 'floatX'
141
+ if broadcastable is None:
142
+ broadcastable = ()
143
+
144
+ key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
145
+
146
+ if key in self.cache:
147
+ return self.cache[key]
148
+
149
+ value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
150
+ self.cache[key] = value
151
+ return value
152
+
153
+ def _print_Symbol(self, s, **kwargs):
154
+ dtype = kwargs.get('dtypes', {}).get(s)
155
+ bc = kwargs.get('broadcastables', {}).get(s)
156
+ return self._get_or_create(s, dtype=dtype, broadcastable=bc)
157
+
158
+ def _print_AppliedUndef(self, s, **kwargs):
159
+ name = str(type(s)) + '_' + str(s.args[0])
160
+ dtype = kwargs.get('dtypes', {}).get(s)
161
+ bc = kwargs.get('broadcastables', {}).get(s)
162
+ return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
163
+
164
+ def _print_Basic(self, expr, **kwargs):
165
+ op = mapping[type(expr)]
166
+ children = [self._print(arg, **kwargs) for arg in expr.args]
167
+ return op(*children)
168
+
169
+ def _print_Number(self, n, **kwargs):
170
+ # Integers already taken care of below, interpret as float
171
+ return float(n.evalf())
172
+
173
+ def _print_MatrixSymbol(self, X, **kwargs):
174
+ dtype = kwargs.get('dtypes', {}).get(X)
175
+ return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
176
+
177
+ def _print_DenseMatrix(self, X, **kwargs):
178
+ if not hasattr(tt, 'stacklists'):
179
+ raise NotImplementedError(
180
+ "Matrix translation not yet supported in this version of Theano")
181
+
182
+ return tt.stacklists([
183
+ [self._print(arg, **kwargs) for arg in L]
184
+ for L in X.tolist()
185
+ ])
186
+
187
+ _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
188
+
189
+ def _print_MatMul(self, expr, **kwargs):
190
+ children = [self._print(arg, **kwargs) for arg in expr.args]
191
+ result = children[0]
192
+ for child in children[1:]:
193
+ result = tt.dot(result, child)
194
+ return result
195
+
196
+ def _print_MatPow(self, expr, **kwargs):
197
+ children = [self._print(arg, **kwargs) for arg in expr.args]
198
+ result = 1
199
+ if isinstance(children[1], int) and children[1] > 0:
200
+ for i in range(children[1]):
201
+ result = tt.dot(result, children[0])
202
+ else:
203
+ raise NotImplementedError('''Only non-negative integer
204
+ powers of matrices can be handled by Theano at the moment''')
205
+ return result
206
+
207
+ def _print_MatrixSlice(self, expr, **kwargs):
208
+ parent = self._print(expr.parent, **kwargs)
209
+ rowslice = self._print(slice(*expr.rowslice), **kwargs)
210
+ colslice = self._print(slice(*expr.colslice), **kwargs)
211
+ return parent[rowslice, colslice]
212
+
213
+ def _print_BlockMatrix(self, expr, **kwargs):
214
+ nrows, ncols = expr.blocks.shape
215
+ blocks = [[self._print(expr.blocks[r, c], **kwargs)
216
+ for c in range(ncols)]
217
+ for r in range(nrows)]
218
+ return tt.join(0, *[tt.join(1, *row) for row in blocks])
219
+
220
+
221
+ def _print_slice(self, expr, **kwargs):
222
+ return slice(*[self._print(i, **kwargs)
223
+ if isinstance(i, sympy.Basic) else i
224
+ for i in (expr.start, expr.stop, expr.step)])
225
+
226
+ def _print_Pi(self, expr, **kwargs):
227
+ return 3.141592653589793
228
+
229
+ def _print_Exp1(self, expr, **kwargs):
230
+ return ts.exp(1)
231
+
232
+ def _print_Piecewise(self, expr, **kwargs):
233
+ import numpy as np
234
+ e, cond = expr.args[0].args # First condition and corresponding value
235
+
236
+ # Print conditional expression and value for first condition
237
+ p_cond = self._print(cond, **kwargs)
238
+ p_e = self._print(e, **kwargs)
239
+
240
+ # One condition only
241
+ if len(expr.args) == 1:
242
+ # Return value if condition else NaN
243
+ return tt.switch(p_cond, p_e, np.nan)
244
+
245
+ # Return value_1 if condition_1 else evaluate remaining conditions
246
+ p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
247
+ return tt.switch(p_cond, p_e, p_remaining)
248
+
249
+ def _print_Rational(self, expr, **kwargs):
250
+ return tt.true_div(self._print(expr.p, **kwargs),
251
+ self._print(expr.q, **kwargs))
252
+
253
+ def _print_Integer(self, expr, **kwargs):
254
+ return expr.p
255
+
256
+ def _print_factorial(self, expr, **kwargs):
257
+ return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
258
+
259
+ def _print_Derivative(self, deriv, **kwargs):
260
+ rv = self._print(deriv.expr, **kwargs)
261
+ for var in deriv.variables:
262
+ var = self._print(var, **kwargs)
263
+ rv = tt.Rop(rv, var, tt.ones_like(var))
264
+ return rv
265
+
266
+ def emptyPrinter(self, expr):
267
+ return expr
268
+
269
+ def doprint(self, expr, dtypes=None, broadcastables=None):
270
+ """ Convert a SymPy expression to a Theano graph variable.
271
+
272
+ The ``dtypes`` and ``broadcastables`` arguments are used to specify the
273
+ data type, dimension, and broadcasting behavior of the Theano variables
274
+ corresponding to the free symbols in ``expr``. Each is a mapping from
275
+ SymPy symbols to the value of the corresponding argument to
276
+ ``theano.tensor.Tensor``.
277
+
278
+ See the corresponding `documentation page`__ for more information on
279
+ broadcasting in Theano.
280
+
281
+ .. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html
282
+
283
+ Parameters
284
+ ==========
285
+
286
+ expr : sympy.core.expr.Expr
287
+ SymPy expression to print.
288
+
289
+ dtypes : dict
290
+ Mapping from SymPy symbols to Theano datatypes to use when creating
291
+ new Theano variables for those symbols. Corresponds to the ``dtype``
292
+ argument to ``theano.tensor.Tensor``. Defaults to ``'floatX'``
293
+ for symbols not included in the mapping.
294
+
295
+ broadcastables : dict
296
+ Mapping from SymPy symbols to the value of the ``broadcastable``
297
+ argument to ``theano.tensor.Tensor`` to use when creating Theano
298
+ variables for those symbols. Defaults to the empty tuple for symbols
299
+ not included in the mapping (resulting in a scalar).
300
+
301
+ Returns
302
+ =======
303
+
304
+ theano.gof.graph.Variable
305
+ A variable corresponding to the expression's value in a Theano
306
+ symbolic expression graph.
307
+
308
+ """
309
+ if dtypes is None:
310
+ dtypes = {}
311
+ if broadcastables is None:
312
+ broadcastables = {}
313
+
314
+ return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
315
+
316
+
317
+ global_cache: dict[Any, Any] = {}
318
+
319
+
320
+ def theano_code(expr, cache=None, **kwargs):
321
+ """
322
+ Convert a SymPy expression into a Theano graph variable.
323
+
324
+ .. deprecated:: 1.8
325
+
326
+ ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
327
+ Aesara. Use ``sympy.printing.aesaracode`` instead. See
328
+ :ref:`theanocode-deprecated` for more information.
329
+
330
+ Parameters
331
+ ==========
332
+
333
+ expr : sympy.core.expr.Expr
334
+ SymPy expression object to convert.
335
+
336
+ cache : dict
337
+ Cached Theano variables (see :class:`TheanoPrinter.cache
338
+ <TheanoPrinter>`). Defaults to the module-level global cache.
339
+
340
+ dtypes : dict
341
+ Passed to :meth:`.TheanoPrinter.doprint`.
342
+
343
+ broadcastables : dict
344
+ Passed to :meth:`.TheanoPrinter.doprint`.
345
+
346
+ Returns
347
+ =======
348
+
349
+ theano.gof.graph.Variable
350
+ A variable corresponding to the expression's value in a Theano symbolic
351
+ expression graph.
352
+
353
+ """
354
+ sympy_deprecation_warning(
355
+ """
356
+ sympy.printing.theanocode is deprecated. Theano has been renamed to
357
+ Aesara. Use sympy.printing.aesaracode instead.""",
358
+ deprecated_since_version="1.8",
359
+ active_deprecations_target='theanocode-deprecated')
360
+
361
+ if not theano:
362
+ raise ImportError("theano is required for theano_code")
363
+
364
+ if cache is None:
365
+ cache = global_cache
366
+
367
+ return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
368
+
369
+
370
+ def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
371
+ r"""
372
+ Get value of ``broadcastables`` argument to :func:`.theano_code` from
373
+ keyword arguments to :func:`.theano_function`.
374
+
375
+ Included for backwards compatibility.
376
+
377
+ Parameters
378
+ ==========
379
+
380
+ inputs
381
+ Sequence of input symbols.
382
+
383
+ dim : int
384
+ Common number of dimensions for all inputs. Overrides other arguments
385
+ if given.
386
+
387
+ dims : dict
388
+ Mapping from input symbols to number of dimensions. Overrides
389
+ ``broadcastables`` argument if given.
390
+
391
+ broadcastables : dict
392
+ Explicit value of ``broadcastables`` argument to
393
+ :meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged.
394
+
395
+ Returns
396
+ =======
397
+ dict
398
+ Dictionary mapping elements of ``inputs`` to their "broadcastable"
399
+ values (tuple of ``bool``\ s).
400
+ """
401
+ if dim is not None:
402
+ return {s: (False,) * dim for s in inputs}
403
+
404
+ if dims is not None:
405
+ maxdim = max(dims.values())
406
+ return {
407
+ s: (False,) * d + (True,) * (maxdim - d)
408
+ for s, d in dims.items()
409
+ }
410
+
411
+ if broadcastables is not None:
412
+ return broadcastables
413
+
414
+ return {}
415
+
416
+
417
+ @doctest_depends_on(modules=('theano',))
418
+ def theano_function(inputs, outputs, scalar=False, *,
419
+ dim=None, dims=None, broadcastables=None, **kwargs):
420
+ """
421
+ Create a Theano function from SymPy expressions.
422
+
423
+ .. deprecated:: 1.8
424
+
425
+ ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
426
+ Aesara. Use ``sympy.printing.aesaracode`` instead. See
427
+ :ref:`theanocode-deprecated` for more information.
428
+
429
+ The inputs and outputs are converted to Theano variables using
430
+ :func:`.theano_code` and then passed to ``theano.function``.
431
+
432
+ Parameters
433
+ ==========
434
+
435
+ inputs
436
+ Sequence of symbols which constitute the inputs of the function.
437
+
438
+ outputs
439
+ Sequence of expressions which constitute the outputs(s) of the
440
+ function. The free symbols of each expression must be a subset of
441
+ ``inputs``.
442
+
443
+ scalar : bool
444
+ Convert 0-dimensional arrays in output to scalars. This will return a
445
+ Python wrapper function around the Theano function object.
446
+
447
+ cache : dict
448
+ Cached Theano variables (see :class:`TheanoPrinter.cache
449
+ <TheanoPrinter>`). Defaults to the module-level global cache.
450
+
451
+ dtypes : dict
452
+ Passed to :meth:`.TheanoPrinter.doprint`.
453
+
454
+ broadcastables : dict
455
+ Passed to :meth:`.TheanoPrinter.doprint`.
456
+
457
+ dims : dict
458
+ Alternative to ``broadcastables`` argument. Mapping from elements of
459
+ ``inputs`` to integers indicating the dimension of their associated
460
+ arrays/tensors. Overrides ``broadcastables`` argument if given.
461
+
462
+ dim : int
463
+ Another alternative to the ``broadcastables`` argument. Common number of
464
+ dimensions to use for all arrays/tensors.
465
+ ``theano_function([x, y], [...], dim=2)`` is equivalent to using
466
+ ``broadcastables={x: (False, False), y: (False, False)}``.
467
+
468
+ Returns
469
+ =======
470
+ callable
471
+ A callable object which takes values of ``inputs`` as positional
472
+ arguments and returns an output array for each of the expressions
473
+ in ``outputs``. If ``outputs`` is a single expression the function will
474
+ return a Numpy array, if it is a list of multiple expressions the
475
+ function will return a list of arrays. See description of the ``squeeze``
476
+ argument above for the behavior when a single output is passed in a list.
477
+ The returned object will either be an instance of
478
+ ``theano.compile.function_module.Function`` or a Python wrapper
479
+ function around one. In both cases, the returned value will have a
480
+ ``theano_function`` attribute which points to the return value of
481
+ ``theano.function``.
482
+
483
+ Examples
484
+ ========
485
+
486
+ >>> from sympy.abc import x, y, z
487
+ >>> from sympy.printing.theanocode import theano_function
488
+
489
+ A simple function with one input and one output:
490
+
491
+ >>> f1 = theano_function([x], [x**2 - 1], scalar=True)
492
+ >>> f1(3)
493
+ 8.0
494
+
495
+ A function with multiple inputs and one output:
496
+
497
+ >>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
498
+ >>> f2(3, 4, 2)
499
+ 5.0
500
+
501
+ A function with multiple inputs and multiple outputs:
502
+
503
+ >>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
504
+ >>> f3(2, 3)
505
+ [13.0, -5.0]
506
+
507
+ See also
508
+ ========
509
+
510
+ dim_handling
511
+
512
+ """
513
+ sympy_deprecation_warning(
514
+ """
515
+ sympy.printing.theanocode is deprecated. Theano has been renamed to Aesara. Use sympy.printing.aesaracode instead""",
516
+ deprecated_since_version="1.8",
517
+ active_deprecations_target='theanocode-deprecated')
518
+
519
+ if not theano:
520
+ raise ImportError("theano is required for theano_function")
521
+
522
+ # Pop off non-theano keyword args
523
+ cache = kwargs.pop('cache', {})
524
+ dtypes = kwargs.pop('dtypes', {})
525
+
526
+ broadcastables = dim_handling(
527
+ inputs, dim=dim, dims=dims, broadcastables=broadcastables,
528
+ )
529
+
530
+ # Print inputs/outputs
531
+ code = partial(theano_code, cache=cache, dtypes=dtypes,
532
+ broadcastables=broadcastables)
533
+ tinputs = list(map(code, inputs))
534
+ toutputs = list(map(code, outputs))
535
+
536
+ #fix constant expressions as variables
537
+ toutputs = [output if isinstance(output, theano.Variable) else tt.as_tensor_variable(output) for output in toutputs]
538
+
539
+ if len(toutputs) == 1:
540
+ toutputs = toutputs[0]
541
+
542
+ # Compile theano func
543
+ func = theano.function(tinputs, toutputs, **kwargs)
544
+
545
+ is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
546
+
547
+ # No wrapper required
548
+ if not scalar or not any(is_0d):
549
+ func.theano_function = func
550
+ return func
551
+
552
+ # Create wrapper to convert 0-dimensional outputs to scalars
553
+ def wrapper(*args):
554
+ out = func(*args)
555
+ # out can be array(1.0) or [array(1.0), array(2.0)]
556
+
557
+ if is_sequence(out):
558
+ return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
559
+ else:
560
+ return out[()]
561
+
562
+ wrapper.__wrapped__ = func
563
+ wrapper.__doc__ = func.__doc__
564
+ wrapper.theano_function = func
565
+ return wrapper
venv/lib/python3.10/site-packages/sympy/printing/tree.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def pprint_nodes(subtrees):
2
+ """
3
+ Prettyprints systems of nodes.
4
+
5
+ Examples
6
+ ========
7
+
8
+ >>> from sympy.printing.tree import pprint_nodes
9
+ >>> print(pprint_nodes(["a", "b1\\nb2", "c"]))
10
+ +-a
11
+ +-b1
12
+ | b2
13
+ +-c
14
+
15
+ """
16
+ def indent(s, type=1):
17
+ x = s.split("\n")
18
+ r = "+-%s\n" % x[0]
19
+ for a in x[1:]:
20
+ if a == "":
21
+ continue
22
+ if type == 1:
23
+ r += "| %s\n" % a
24
+ else:
25
+ r += " %s\n" % a
26
+ return r
27
+ if not subtrees:
28
+ return ""
29
+ f = ""
30
+ for a in subtrees[:-1]:
31
+ f += indent(a)
32
+ f += indent(subtrees[-1], 2)
33
+ return f
34
+
35
+
36
+ def print_node(node, assumptions=True):
37
+ """
38
+ Returns information about the "node".
39
+
40
+ This includes class name, string representation and assumptions.
41
+
42
+ Parameters
43
+ ==========
44
+
45
+ assumptions : bool, optional
46
+ See the ``assumptions`` keyword in ``tree``
47
+ """
48
+ s = "%s: %s\n" % (node.__class__.__name__, str(node))
49
+
50
+ if assumptions:
51
+ d = node._assumptions
52
+ else:
53
+ d = None
54
+
55
+ if d:
56
+ for a in sorted(d):
57
+ v = d[a]
58
+ if v is None:
59
+ continue
60
+ s += "%s: %s\n" % (a, v)
61
+
62
+ return s
63
+
64
+
65
+ def tree(node, assumptions=True):
66
+ """
67
+ Returns a tree representation of "node" as a string.
68
+
69
+ It uses print_node() together with pprint_nodes() on node.args recursively.
70
+
71
+ Parameters
72
+ ==========
73
+
74
+ asssumptions : bool, optional
75
+ The flag to decide whether to print out all the assumption data
76
+ (such as ``is_integer`, ``is_real``) associated with the
77
+ expression or not.
78
+
79
+ Enabling the flag makes the result verbose, and the printed
80
+ result may not be determinisitic because of the randomness used
81
+ in backtracing the assumptions.
82
+
83
+ See Also
84
+ ========
85
+
86
+ print_tree
87
+
88
+ """
89
+ subtrees = []
90
+ for arg in node.args:
91
+ subtrees.append(tree(arg, assumptions=assumptions))
92
+ s = print_node(node, assumptions=assumptions) + pprint_nodes(subtrees)
93
+ return s
94
+
95
+
96
+ def print_tree(node, assumptions=True):
97
+ """
98
+ Prints a tree representation of "node".
99
+
100
+ Parameters
101
+ ==========
102
+
103
+ asssumptions : bool, optional
104
+ The flag to decide whether to print out all the assumption data
105
+ (such as ``is_integer`, ``is_real``) associated with the
106
+ expression or not.
107
+
108
+ Enabling the flag makes the result verbose, and the printed
109
+ result may not be determinisitic because of the randomness used
110
+ in backtracing the assumptions.
111
+
112
+ Examples
113
+ ========
114
+
115
+ >>> from sympy.printing import print_tree
116
+ >>> from sympy import Symbol
117
+ >>> x = Symbol('x', odd=True)
118
+ >>> y = Symbol('y', even=True)
119
+
120
+ Printing with full assumptions information:
121
+
122
+ >>> print_tree(y**x)
123
+ Pow: y**x
124
+ +-Symbol: y
125
+ | algebraic: True
126
+ | commutative: True
127
+ | complex: True
128
+ | even: True
129
+ | extended_real: True
130
+ | finite: True
131
+ | hermitian: True
132
+ | imaginary: False
133
+ | infinite: False
134
+ | integer: True
135
+ | irrational: False
136
+ | noninteger: False
137
+ | odd: False
138
+ | rational: True
139
+ | real: True
140
+ | transcendental: False
141
+ +-Symbol: x
142
+ algebraic: True
143
+ commutative: True
144
+ complex: True
145
+ even: False
146
+ extended_nonzero: True
147
+ extended_real: True
148
+ finite: True
149
+ hermitian: True
150
+ imaginary: False
151
+ infinite: False
152
+ integer: True
153
+ irrational: False
154
+ noninteger: False
155
+ nonzero: True
156
+ odd: True
157
+ rational: True
158
+ real: True
159
+ transcendental: False
160
+ zero: False
161
+
162
+ Hiding the assumptions:
163
+
164
+ >>> print_tree(y**x, assumptions=False)
165
+ Pow: y**x
166
+ +-Symbol: y
167
+ +-Symbol: x
168
+
169
+ See Also
170
+ ========
171
+
172
+ tree
173
+
174
+ """
175
+ print(tree(node, assumptions=assumptions))
venv/lib/python3.10/site-packages/sympy/vector/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.vector.coordsysrect import CoordSys3D
2
+ from sympy.vector.vector import (Vector, VectorAdd, VectorMul,
3
+ BaseVector, VectorZero, Cross, Dot, cross, dot)
4
+ from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul,
5
+ BaseDyadic, DyadicZero)
6
+ from sympy.vector.scalar import BaseScalar
7
+ from sympy.vector.deloperator import Del
8
+ from sympy.vector.functions import (express, matrix_to_vector,
9
+ laplacian, is_conservative,
10
+ is_solenoidal, scalar_potential,
11
+ directional_derivative,
12
+ scalar_potential_difference)
13
+ from sympy.vector.point import Point
14
+ from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
15
+ SpaceOrienter, QuaternionOrienter)
16
+ from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
17
+ from sympy.vector.implicitregion import ImplicitRegion
18
+ from sympy.vector.parametricregion import (ParametricRegion, parametric_region_list)
19
+ from sympy.vector.integrals import (ParametricIntegral, vector_integrate)
20
+
21
+ __all__ = [
22
+ 'Vector', 'VectorAdd', 'VectorMul', 'BaseVector', 'VectorZero', 'Cross',
23
+ 'Dot', 'cross', 'dot',
24
+
25
+ 'Dyadic', 'DyadicAdd', 'DyadicMul', 'BaseDyadic', 'DyadicZero',
26
+
27
+ 'BaseScalar',
28
+
29
+ 'Del',
30
+
31
+ 'CoordSys3D',
32
+
33
+ 'express', 'matrix_to_vector', 'laplacian', 'is_conservative',
34
+ 'is_solenoidal', 'scalar_potential', 'directional_derivative',
35
+ 'scalar_potential_difference',
36
+
37
+ 'Point',
38
+
39
+ 'AxisOrienter', 'BodyOrienter', 'SpaceOrienter', 'QuaternionOrienter',
40
+
41
+ 'Gradient', 'Divergence', 'Curl', 'Laplacian', 'gradient', 'curl',
42
+ 'divergence',
43
+
44
+ 'ParametricRegion', 'parametric_region_list', 'ImplicitRegion',
45
+
46
+ 'ParametricIntegral', 'vector_integrate',
47
+ ]
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.76 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc ADDED
Binary file (31.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc ADDED
Binary file (3.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc ADDED
Binary file (8.98 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc ADDED
Binary file (6.07 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc ADDED
Binary file (9.76 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc ADDED
Binary file (12.3 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc ADDED
Binary file (6.39 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc ADDED
Binary file (2.36 kB). View file
 
venv/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc ADDED
Binary file (18.1 kB). View file