File size: 75,508 Bytes
78d915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
import mpmath as mp
from collections.abc import Callable


from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.function import diff
from sympy.core.expr import Expr
from sympy.core.kind import _NumberKind, UndefinedKind
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol
from sympy.core.sympify import sympify, _sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.complexes import re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta, LeviCivita
from sympy.polys import cancel
from sympy.printing import sstr
from sympy.printing.defaults import Printable
from sympy.printing.str import StrPrinter
from sympy.utilities.iterables import flatten, NotIterable, is_sequence, reshape
from sympy.utilities.misc import as_int, filldedent

from .common import (
    MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError,
    ShapeError, MatrixKind, a2idx)

from .utilities import _iszero, _is_zero_after_expand_mul, _simplify

from .determinant import (
    _find_reasonable_pivot, _find_reasonable_pivot_naive,
    _adjugate, _charpoly, _cofactor, _cofactor_matrix, _per,
    _det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix)

from .reductions import _is_echelon, _echelon_form, _rank, _rref
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize

from .eigen import (
    _eigenvals, _eigenvects,
    _bidiagonalize, _bidiagonal_decomposition,
    _is_diagonalizable, _diagonalize,
    _is_positive_definite, _is_positive_semidefinite,
    _is_negative_definite, _is_negative_semidefinite, _is_indefinite,
    _jordan_form, _left_eigenvects, _singular_values)

from .decompositions import (
    _rank_decomposition, _cholesky, _LDLdecomposition,
    _LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF,
    _singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition)

from .graph import (
    _connected_components, _connected_components_decomposition,
    _strongly_connected_components, _strongly_connected_components_decomposition)

from .solvers import (
    _diagonal_solve, _lower_triangular_solve, _upper_triangular_solve,
    _cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve,
    _pinv_solve, _solve, _solve_least_squares)

from .inverse import (
    _pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR,
    _inv, _inv_block)


class DeferredVector(Symbol, NotIterable):
    """A vector whose components are deferred (e.g. for use with lambdify).

    Examples
    ========

    >>> from sympy import DeferredVector, lambdify
    >>> X = DeferredVector( 'X' )
    >>> X
    X
    >>> expr = (X[0] + 2, X[2] + 3)
    >>> func = lambdify( X, expr)
    >>> func( [1, 2, 3] )
    (3, 6)
    """

    def __getitem__(self, i):
        if i == -0:
            i = 0
        if i < 0:
            raise IndexError('DeferredVector index out of range')
        component_name = '%s[%d]' % (self.name, i)
        return Symbol(component_name)

    def __str__(self):
        return sstr(self)

    def __repr__(self):
        return "DeferredVector('%s')" % self.name


class MatrixDeterminant(MatrixCommon):
    """Provides basic matrix determinant operations. Should not be instantiated
    directly. See ``determinant.py`` for their implementations."""

    def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
        return _det_bareiss(self, iszerofunc=iszerofunc)

    def _eval_det_berkowitz(self):
        return _det_berkowitz(self)

    def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
        return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc)

    def _eval_determinant(self): # for expressions.determinant.Determinant
        return _det(self)

    def adjugate(self, method="berkowitz"):
        return _adjugate(self, method=method)

    def charpoly(self, x='lambda', simplify=_simplify):
        return _charpoly(self, x=x, simplify=simplify)

    def cofactor(self, i, j, method="berkowitz"):
        return _cofactor(self, i, j, method=method)

    def cofactor_matrix(self, method="berkowitz"):
        return _cofactor_matrix(self, method=method)

    def det(self, method="bareiss", iszerofunc=None):
        return _det(self, method=method, iszerofunc=iszerofunc)

    def per(self):
        return _per(self)

    def minor(self, i, j, method="berkowitz"):
        return _minor(self, i, j, method=method)

    def minor_submatrix(self, i, j):
        return _minor_submatrix(self, i, j)

    _find_reasonable_pivot.__doc__       = _find_reasonable_pivot.__doc__
    _find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__
    _eval_det_bareiss.__doc__            = _det_bareiss.__doc__
    _eval_det_berkowitz.__doc__          = _det_berkowitz.__doc__
    _eval_det_lu.__doc__                 = _det_LU.__doc__
    _eval_determinant.__doc__            = _det.__doc__
    adjugate.__doc__                     = _adjugate.__doc__
    charpoly.__doc__                     = _charpoly.__doc__
    cofactor.__doc__                     = _cofactor.__doc__
    cofactor_matrix.__doc__              = _cofactor_matrix.__doc__
    det.__doc__                          = _det.__doc__
    per.__doc__                          = _per.__doc__
    minor.__doc__                        = _minor.__doc__
    minor_submatrix.__doc__              = _minor_submatrix.__doc__


class MatrixReductions(MatrixDeterminant):
    """Provides basic matrix row/column operations. Should not be instantiated
    directly. See ``reductions.py`` for some of their implementations."""

    def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
        return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify,
                with_pivots=with_pivots)

    @property
    def is_echelon(self):
        return _is_echelon(self)

    def rank(self, iszerofunc=_iszero, simplify=False):
        return _rank(self, iszerofunc=iszerofunc, simplify=simplify)

    def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
            normalize_last=True):
        return _rref(self, iszerofunc=iszerofunc, simplify=simplify,
            pivots=pivots, normalize_last=normalize_last)

    echelon_form.__doc__ = _echelon_form.__doc__
    is_echelon.__doc__   = _is_echelon.__doc__
    rank.__doc__         = _rank.__doc__
    rref.__doc__         = _rref.__doc__

    def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
        """Validate the arguments for a row/column operation.  ``error_str``
        can be one of "row" or "col" depending on the arguments being parsed."""
        if op not in ["n->kn", "n<->m", "n->n+km"]:
            raise ValueError("Unknown {} operation '{}'. Valid col operations "
                             "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))

        # define self_col according to error_str
        self_cols = self.cols if error_str == 'col' else self.rows

        # normalize and validate the arguments
        if op == "n->kn":
            col = col if col is not None else col1
            if col is None or k is None:
                raise ValueError("For a {0} operation 'n->kn' you must provide the "
                                 "kwargs `{0}` and `k`".format(error_str))
            if not 0 <= col < self_cols:
                raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))

        elif op == "n<->m":
            # we need two cols to swap. It does not matter
            # how they were specified, so gather them together and
            # remove `None`
            cols = {col, k, col1, col2}.difference([None])
            if len(cols) > 2:
                # maybe the user left `k` by mistake?
                cols = {col, col1, col2}.difference([None])
            if len(cols) != 2:
                raise ValueError("For a {0} operation 'n<->m' you must provide the "
                                 "kwargs `{0}1` and `{0}2`".format(error_str))
            col1, col2 = cols
            if not 0 <= col1 < self_cols:
                raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1))
            if not 0 <= col2 < self_cols:
                raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))

        elif op == "n->n+km":
            col = col1 if col is None else col
            col2 = col1 if col2 is None else col2
            if col is None or col2 is None or k is None:
                raise ValueError("For a {0} operation 'n->n+km' you must provide the "
                                 "kwargs `{0}`, `k`, and `{0}2`".format(error_str))
            if col == col2:
                raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
                                 "be different.".format(error_str))
            if not 0 <= col < self_cols:
                raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))
            if not 0 <= col2 < self_cols:
                raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))

        else:
            raise ValueError('invalid operation %s' % repr(op))

        return op, col, k, col1, col2

    def _eval_col_op_multiply_col_by_const(self, col, k):
        def entry(i, j):
            if j == col:
                return k * self[i, j]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def _eval_col_op_swap(self, col1, col2):
        def entry(i, j):
            if j == col1:
                return self[i, col2]
            elif j == col2:
                return self[i, col1]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
        def entry(i, j):
            if j == col:
                return self[i, j] + k * self[i, col2]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def _eval_row_op_swap(self, row1, row2):
        def entry(i, j):
            if i == row1:
                return self[row2, j]
            elif i == row2:
                return self[row1, j]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def _eval_row_op_multiply_row_by_const(self, row, k):
        def entry(i, j):
            if i == row:
                return k * self[i, j]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
        def entry(i, j):
            if i == row:
                return self[i, j] + k * self[row2, j]
            return self[i, j]
        return self._new(self.rows, self.cols, entry)

    def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
        """Performs the elementary column operation `op`.

        `op` may be one of

            * ``"n->kn"`` (column n goes to k*n)
            * ``"n<->m"`` (swap column n and column m)
            * ``"n->n+km"`` (column n goes to column n + k*column m)

        Parameters
        ==========

        op : string; the elementary row operation
        col : the column to apply the column operation
        k : the multiple to apply in the column operation
        col1 : one column of a column swap
        col2 : second column of a column swap or column "m" in the column operation
               "n->n+km"
        """

        op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")

        # now that we've validated, we're all good to dispatch
        if op == "n->kn":
            return self._eval_col_op_multiply_col_by_const(col, k)
        if op == "n<->m":
            return self._eval_col_op_swap(col1, col2)
        if op == "n->n+km":
            return self._eval_col_op_add_multiple_to_other_col(col, k, col2)

    def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
        """Performs the elementary row operation `op`.

        `op` may be one of

            * ``"n->kn"`` (row n goes to k*n)
            * ``"n<->m"`` (swap row n and row m)
            * ``"n->n+km"`` (row n goes to row n + k*row m)

        Parameters
        ==========

        op : string; the elementary row operation
        row : the row to apply the row operation
        k : the multiple to apply in the row operation
        row1 : one row of a row swap
        row2 : second row of a row swap or row "m" in the row operation
               "n->n+km"
        """

        op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")

        # now that we've validated, we're all good to dispatch
        if op == "n->kn":
            return self._eval_row_op_multiply_row_by_const(row, k)
        if op == "n<->m":
            return self._eval_row_op_swap(row1, row2)
        if op == "n->n+km":
            return self._eval_row_op_add_multiple_to_other_row(row, k, row2)


class MatrixSubspaces(MatrixReductions):
    """Provides methods relating to the fundamental subspaces of a matrix.
    Should not be instantiated directly. See ``subspaces.py`` for their
    implementations."""

    def columnspace(self, simplify=False):
        return _columnspace(self, simplify=simplify)

    def nullspace(self, simplify=False, iszerofunc=_iszero):
        return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc)

    def rowspace(self, simplify=False):
        return _rowspace(self, simplify=simplify)

    # This is a classmethod but is converted to such later in order to allow
    # assignment of __doc__ since that does not work for already wrapped
    # classmethods in Python 3.6.
    def orthogonalize(cls, *vecs, **kwargs):
        return _orthogonalize(cls, *vecs, **kwargs)

    columnspace.__doc__   = _columnspace.__doc__
    nullspace.__doc__     = _nullspace.__doc__
    rowspace.__doc__      = _rowspace.__doc__
    orthogonalize.__doc__ = _orthogonalize.__doc__

    orthogonalize         = classmethod(orthogonalize)  # type:ignore


class MatrixEigen(MatrixSubspaces):
    """Provides basic matrix eigenvalue/vector operations.
    Should not be instantiated directly. See ``eigen.py`` for their
    implementations."""

    def eigenvals(self, error_when_incomplete=True, **flags):
        return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags)

    def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
        return _eigenvects(self, error_when_incomplete=error_when_incomplete,
                iszerofunc=iszerofunc, **flags)

    def is_diagonalizable(self, reals_only=False, **kwargs):
        return _is_diagonalizable(self, reals_only=reals_only, **kwargs)

    def diagonalize(self, reals_only=False, sort=False, normalize=False):
        return _diagonalize(self, reals_only=reals_only, sort=sort,
                normalize=normalize)

    def bidiagonalize(self, upper=True):
        return _bidiagonalize(self, upper=upper)

    def bidiagonal_decomposition(self, upper=True):
        return _bidiagonal_decomposition(self, upper=upper)

    @property
    def is_positive_definite(self):
        return _is_positive_definite(self)

    @property
    def is_positive_semidefinite(self):
        return _is_positive_semidefinite(self)

    @property
    def is_negative_definite(self):
        return _is_negative_definite(self)

    @property
    def is_negative_semidefinite(self):
        return _is_negative_semidefinite(self)

    @property
    def is_indefinite(self):
        return _is_indefinite(self)

    def jordan_form(self, calc_transform=True, **kwargs):
        return _jordan_form(self, calc_transform=calc_transform, **kwargs)

    def left_eigenvects(self, **flags):
        return _left_eigenvects(self, **flags)

    def singular_values(self):
        return _singular_values(self)

    eigenvals.__doc__                  = _eigenvals.__doc__
    eigenvects.__doc__                 = _eigenvects.__doc__
    is_diagonalizable.__doc__          = _is_diagonalizable.__doc__
    diagonalize.__doc__                = _diagonalize.__doc__
    is_positive_definite.__doc__       = _is_positive_definite.__doc__
    is_positive_semidefinite.__doc__   = _is_positive_semidefinite.__doc__
    is_negative_definite.__doc__       = _is_negative_definite.__doc__
    is_negative_semidefinite.__doc__   = _is_negative_semidefinite.__doc__
    is_indefinite.__doc__              = _is_indefinite.__doc__
    jordan_form.__doc__                = _jordan_form.__doc__
    left_eigenvects.__doc__            = _left_eigenvects.__doc__
    singular_values.__doc__            = _singular_values.__doc__
    bidiagonalize.__doc__              = _bidiagonalize.__doc__
    bidiagonal_decomposition.__doc__   = _bidiagonal_decomposition.__doc__


class MatrixCalculus(MatrixCommon):
    """Provides calculus-related matrix operations."""

    def diff(self, *args, **kwargs):
        """Calculate the derivative of each element in the matrix.
        ``args`` will be passed to the ``integrate`` function.

        Examples
        ========

        >>> from sympy import Matrix
        >>> from sympy.abc import x, y
        >>> M = Matrix([[x, y], [1, 0]])
        >>> M.diff(x)
        Matrix([
        [1, 0],
        [0, 0]])

        See Also
        ========

        integrate
        limit
        """
        # XXX this should be handled here rather than in Derivative
        from sympy.tensor.array.array_derivatives import ArrayDerivative
        kwargs.setdefault('evaluate', True)
        deriv = ArrayDerivative(self, *args, evaluate=True)
        if not isinstance(self, Basic):
            return deriv.as_mutable()
        else:
            return deriv

    def _eval_derivative(self, arg):
        return self.applyfunc(lambda x: x.diff(arg))

    def integrate(self, *args, **kwargs):
        """Integrate each element of the matrix.  ``args`` will
        be passed to the ``integrate`` function.

        Examples
        ========

        >>> from sympy import Matrix
        >>> from sympy.abc import x, y
        >>> M = Matrix([[x, y], [1, 0]])
        >>> M.integrate((x, ))
        Matrix([
        [x**2/2, x*y],
        [     x,   0]])
        >>> M.integrate((x, 0, 2))
        Matrix([
        [2, 2*y],
        [2,   0]])

        See Also
        ========

        limit
        diff
        """
        return self.applyfunc(lambda x: x.integrate(*args, **kwargs))

    def jacobian(self, X):
        """Calculates the Jacobian matrix (derivative of a vector-valued function).

        Parameters
        ==========

        ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
        X : set of x_i's in order, it can be a list or a Matrix

        Both ``self`` and X can be a row or a column matrix in any order
        (i.e., jacobian() should always work).

        Examples
        ========

        >>> from sympy import sin, cos, Matrix
        >>> from sympy.abc import rho, phi
        >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
        >>> Y = Matrix([rho, phi])
        >>> X.jacobian(Y)
        Matrix([
        [cos(phi), -rho*sin(phi)],
        [sin(phi),  rho*cos(phi)],
        [   2*rho,             0]])
        >>> X = Matrix([rho*cos(phi), rho*sin(phi)])
        >>> X.jacobian(Y)
        Matrix([
        [cos(phi), -rho*sin(phi)],
        [sin(phi),  rho*cos(phi)]])

        See Also
        ========

        hessian
        wronskian
        """
        if not isinstance(X, MatrixBase):
            X = self._new(X)
        # Both X and ``self`` can be a row or a column matrix, so we need to make
        # sure all valid combinations work, but everything else fails:
        if self.shape[0] == 1:
            m = self.shape[1]
        elif self.shape[1] == 1:
            m = self.shape[0]
        else:
            raise TypeError("``self`` must be a row or a column matrix")
        if X.shape[0] == 1:
            n = X.shape[1]
        elif X.shape[1] == 1:
            n = X.shape[0]
        else:
            raise TypeError("X must be a row or a column matrix")

        # m is the number of functions and n is the number of variables
        # computing the Jacobian is now easy:
        return self._new(m, n, lambda j, i: self[j].diff(X[i]))

    def limit(self, *args):
        """Calculate the limit of each element in the matrix.
        ``args`` will be passed to the ``limit`` function.

        Examples
        ========

        >>> from sympy import Matrix
        >>> from sympy.abc import x, y
        >>> M = Matrix([[x, y], [1, 0]])
        >>> M.limit(x, 2)
        Matrix([
        [2, y],
        [1, 0]])

        See Also
        ========

        integrate
        diff
        """
        return self.applyfunc(lambda x: x.limit(*args))


# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
    """A class to house deprecated matrix methods."""
    def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
        return self.charpoly(x=x)

    def berkowitz_det(self):
        """Computes determinant using Berkowitz method.

        See Also
        ========

        det
        berkowitz
        """
        return self.det(method='berkowitz')

    def berkowitz_eigenvals(self, **flags):
        """Computes eigenvalues of a Matrix using Berkowitz method.

        See Also
        ========

        berkowitz
        """
        return self.eigenvals(**flags)

    def berkowitz_minors(self):
        """Computes principal minors using Berkowitz method.

        See Also
        ========

        berkowitz
        """
        sign, minors = self.one, []

        for poly in self.berkowitz():
            minors.append(sign * poly[-1])
            sign = -sign

        return tuple(minors)

    def berkowitz(self):
        from sympy.matrices import zeros
        berk = ((1,),)
        if not self:
            return berk

        if not self.is_square:
            raise NonSquareMatrixError()

        A, N = self, self.rows
        transforms = [0] * (N - 1)

        for n in range(N, 1, -1):
            T, k = zeros(n + 1, n), n - 1

            R, C = -A[k, :k], A[:k, k]
            A, a = A[:k, :k], -A[k, k]

            items = [C]

            for i in range(0, n - 2):
                items.append(A * items[i])

            for i, B in enumerate(items):
                items[i] = (R * B)[0, 0]

            items = [self.one, a] + items

            for i in range(n):
                T[i:, i] = items[:n - i + 1]

            transforms[k - 1] = T

        polys = [self._new([self.one, -A[0, 0]])]

        for i, T in enumerate(transforms):
            polys.append(T * polys[i])

        return berk + tuple(map(tuple, polys))

    def cofactorMatrix(self, method="berkowitz"):
        return self.cofactor_matrix(method=method)

    def det_bareis(self):
        return _det_bareiss(self)

    def det_LU_decomposition(self):
        """Compute matrix determinant using LU decomposition.


        Note that this method fails if the LU decomposition itself
        fails. In particular, if the matrix has no inverse this method
        will fail.

        TODO: Implement algorithm for sparse matrices (SFF),
        http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.

        See Also
        ========


        det
        det_bareiss
        berkowitz_det
        """
        return self.det(method='lu')

    def jordan_cell(self, eigenval, n):
        return self.jordan_block(size=n, eigenvalue=eigenval)

    def jordan_cells(self, calc_transformation=True):
        P, J = self.jordan_form()
        return P, J.get_diag_blocks()

    def minorEntry(self, i, j, method="berkowitz"):
        return self.minor(i, j, method=method)

    def minorMatrix(self, i, j):
        return self.minor_submatrix(i, j)

    def permuteBkwd(self, perm):
        """Permute the rows of the matrix with the given permutation in reverse."""
        return self.permute_rows(perm, direction='backward')

    def permuteFwd(self, perm):
        """Permute the rows of the matrix with the given permutation."""
        return self.permute_rows(perm, direction='forward')


@Mul._kind_dispatcher.register(_NumberKind, MatrixKind)
def num_mat_mul(k1, k2):
    """
    Return MatrixKind. The element kind is selected by recursive dispatching.
    Do not need to dispatch in reversed order because KindDispatcher
    searches for this automatically.
    """
    # Deal with Mul._kind_dispatcher's commutativity
    # XXX: this function is called with either k1 or k2 as MatrixKind because
    # the Mul kind dispatcher is commutative. Maybe it shouldn't be. Need to
    # swap the args here because NumberKind does not have an element_kind
    # attribute.
    if not isinstance(k2, MatrixKind):
        k1, k2 = k2, k1
    elemk = Mul._kind_dispatcher(k1, k2.element_kind)
    return MatrixKind(elemk)


@Mul._kind_dispatcher.register(MatrixKind, MatrixKind)
def mat_mat_mul(k1, k2):
    """
    Return MatrixKind. The element kind is selected by recursive dispatching.
    """
    elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind)
    return MatrixKind(elemk)


class MatrixBase(MatrixDeprecated,
                 MatrixCalculus,
                 MatrixEigen,
                 MatrixCommon,
                 Printable):
    """Base class for matrix objects."""
    # Added just for numpy compatibility
    __array_priority__ = 11

    is_Matrix = True
    _class_priority = 3
    _sympify = staticmethod(sympify)
    zero = S.Zero
    one = S.One

    @property
    def kind(self) -> MatrixKind:
        elem_kinds = {e.kind for e in self.flat()}
        if len(elem_kinds) == 1:
            elemkind, = elem_kinds
        else:
            elemkind = UndefinedKind
        return MatrixKind(elemkind)

    def flat(self):
        return [self[i, j] for i in range(self.rows) for j in range(self.cols)]

    def __array__(self, dtype=object):
        from .dense import matrix2numpy
        return matrix2numpy(self, dtype=dtype)

    def __len__(self):
        """Return the number of elements of ``self``.

        Implemented mainly so bool(Matrix()) == False.
        """
        return self.rows * self.cols

    def _matrix_pow_by_jordan_blocks(self, num):
        from sympy.matrices import diag, MutableMatrix

        def jordan_cell_power(jc, n):
            N = jc.shape[0]
            l = jc[0,0]
            if l.is_zero:
                if N == 1 and n.is_nonnegative:
                    jc[0,0] = l**n
                elif not (n.is_integer and n.is_nonnegative):
                    raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
                else:
                    for i in range(N):
                        jc[0,i] = KroneckerDelta(i, n)
            else:
                for i in range(N):
                    bn = binomial(n, i)
                    if isinstance(bn, binomial):
                        bn = bn._eval_expand_func()
                    jc[0,i] = l**(n-i)*bn
            for i in range(N):
                for j in range(1, N-i):
                    jc[j,i+j] = jc [j-1,i+j-1]

        P, J = self.jordan_form()
        jordan_cells = J.get_diag_blocks()
        # Make sure jordan_cells matrices are mutable:
        jordan_cells = [MutableMatrix(j) for j in jordan_cells]
        for j in jordan_cells:
            jordan_cell_power(j, num)
        return self._new(P.multiply(diag(*jordan_cells))
                .multiply(P.inv()))

    def __str__(self):
        if S.Zero in self.shape:
            return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
        return "Matrix(%s)" % str(self.tolist())

    def _format_str(self, printer=None):
        if not printer:
            printer = StrPrinter()
        # Handle zero dimensions:
        if S.Zero in self.shape:
            return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
        if self.rows == 1:
            return "Matrix([%s])" % self.table(printer, rowsep=',\n')
        return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')

    @classmethod
    def irregular(cls, ntop, *matrices, **kwargs):
      """Return a matrix filled by the given matrices which
      are listed in order of appearance from left to right, top to
      bottom as they first appear in the matrix. They must fill the
      matrix completely.

      Examples
      ========

      >>> from sympy import ones, Matrix
      >>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
      ...   ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
      Matrix([
        [1, 2, 2, 2, 3, 3],
        [1, 2, 2, 2, 3, 3],
        [4, 2, 2, 2, 5, 5],
        [6, 6, 7, 7, 5, 5]])
      """
      ntop = as_int(ntop)
      # make sure we are working with explicit matrices
      b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
          for i in matrices]
      q = list(range(len(b)))
      dat = [i.rows for i in b]
      active = [q.pop(0) for _ in range(ntop)]
      cols = sum([b[i].cols for i in active])
      rows = []
      while any(dat):
          r = []
          for a, j in enumerate(active):
              r.extend(b[j][-dat[j], :])
              dat[j] -= 1
              if dat[j] == 0 and q:
                  active[a] = q.pop(0)
          if len(r) != cols:
            raise ValueError(filldedent('''
                Matrices provided do not appear to fill
                the space completely.'''))
          rows.append(r)
      return cls._new(rows)

    @classmethod
    def _handle_ndarray(cls, arg):
        # NumPy array or matrix or some other object that implements
        # __array__. So let's first use this method to get a
        # numpy.array() and then make a Python list out of it.
        arr = arg.__array__()
        if len(arr.shape) == 2:
            rows, cols = arr.shape[0], arr.shape[1]
            flat_list = [cls._sympify(i) for i in arr.ravel()]
            return rows, cols, flat_list
        elif len(arr.shape) == 1:
            flat_list = [cls._sympify(i) for i in arr]
            return arr.shape[0], 1, flat_list
        else:
            raise NotImplementedError(
                "SymPy supports just 1D and 2D matrices")

    @classmethod
    def _handle_creation_inputs(cls, *args, **kwargs):
        """Return the number of rows, cols and flat matrix elements.

        Examples
        ========

        >>> from sympy import Matrix, I

        Matrix can be constructed as follows:

        * from a nested list of iterables

        >>> Matrix( ((1, 2+I), (3, 4)) )
        Matrix([
        [1, 2 + I],
        [3,     4]])

        * from un-nested iterable (interpreted as a column)

        >>> Matrix( [1, 2] )
        Matrix([
        [1],
        [2]])

        * from un-nested iterable with dimensions

        >>> Matrix(1, 2, [1, 2] )
        Matrix([[1, 2]])

        * from no arguments (a 0 x 0 matrix)

        >>> Matrix()
        Matrix(0, 0, [])

        * from a rule

        >>> Matrix(2, 2, lambda i, j: i/(j + 1) )
        Matrix([
        [0,   0],
        [1, 1/2]])

        See Also
        ========
        irregular - filling a matrix with irregular blocks
        """
        from sympy.matrices import SparseMatrix
        from sympy.matrices.expressions.matexpr import MatrixSymbol
        from sympy.matrices.expressions.blockmatrix import BlockMatrix

        flat_list = None

        if len(args) == 1:
            # Matrix(SparseMatrix(...))
            if isinstance(args[0], SparseMatrix):
                return args[0].rows, args[0].cols, flatten(args[0].tolist())

            # Matrix(Matrix(...))
            elif isinstance(args[0], MatrixBase):
                return args[0].rows, args[0].cols, args[0].flat()

            # Matrix(MatrixSymbol('X', 2, 2))
            elif isinstance(args[0], Basic) and args[0].is_Matrix:
                return args[0].rows, args[0].cols, args[0].as_explicit().flat()

            elif isinstance(args[0], mp.matrix):
                M = args[0]
                flat_list = [cls._sympify(x) for x in M]
                return M.rows, M.cols, flat_list

            # Matrix(numpy.ones((2, 2)))
            elif hasattr(args[0], "__array__"):
                return cls._handle_ndarray(args[0])

            # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
            elif is_sequence(args[0]) \
                    and not isinstance(args[0], DeferredVector):
                dat = list(args[0])
                ismat = lambda i: isinstance(i, MatrixBase) and (
                    evaluate or
                    isinstance(i, BlockMatrix) or
                    isinstance(i, MatrixSymbol))
                raw = lambda i: is_sequence(i) and not ismat(i)
                evaluate = kwargs.get('evaluate', True)


                if evaluate:

                    def make_explicit(x):
                        """make Block and Symbol explicit"""
                        if isinstance(x, BlockMatrix):
                            return x.as_explicit()
                        elif isinstance(x, MatrixSymbol) and all(_.is_Integer for _ in x.shape):
                            return x.as_explicit()
                        else:
                            return x

                    def make_explicit_row(row):
                        # Could be list or could be list of lists
                        if isinstance(row, (list, tuple)):
                            return [make_explicit(x) for x in row]
                        else:
                            return make_explicit(row)

                    if isinstance(dat, (list, tuple)):
                        dat = [make_explicit_row(row) for row in dat]

                if dat in ([], [[]]):
                    rows = cols = 0
                    flat_list = []
                elif not any(raw(i) or ismat(i) for i in dat):
                    # a column as a list of values
                    flat_list = [cls._sympify(i) for i in dat]
                    rows = len(flat_list)
                    cols = 1 if rows else 0
                elif evaluate and all(ismat(i) for i in dat):
                    # a column as a list of matrices
                    ncol = {i.cols for i in dat if any(i.shape)}
                    if ncol:
                        if len(ncol) != 1:
                            raise ValueError('mismatched dimensions')
                        flat_list = [_ for i in dat for r in i.tolist() for _ in r]
                        cols = ncol.pop()
                        rows = len(flat_list)//cols
                    else:
                        rows = cols = 0
                        flat_list = []
                elif evaluate and any(ismat(i) for i in dat):
                    ncol = set()
                    flat_list = []
                    for i in dat:
                        if ismat(i):
                            flat_list.extend(
                                [k for j in i.tolist() for k in j])
                            if any(i.shape):
                                ncol.add(i.cols)
                        elif raw(i):
                            if i:
                                ncol.add(len(i))
                                flat_list.extend([cls._sympify(ij) for ij in i])
                        else:
                            ncol.add(1)
                            flat_list.append(i)
                        if len(ncol) > 1:
                            raise ValueError('mismatched dimensions')
                    cols = ncol.pop()
                    rows = len(flat_list)//cols
                else:
                    # list of lists; each sublist is a logical row
                    # which might consist of many rows if the values in
                    # the row are matrices
                    flat_list = []
                    ncol = set()
                    rows = cols = 0
                    for row in dat:
                        if not is_sequence(row) and \
                                not getattr(row, 'is_Matrix', False):
                            raise ValueError('expecting list of lists')

                        if hasattr(row, '__array__'):
                            if 0 in row.shape:
                                continue
                        elif not row:
                            continue

                        if evaluate and all(ismat(i) for i in row):
                            r, c, flatT = cls._handle_creation_inputs(
                                [i.T for i in row])
                            T = reshape(flatT, [c])
                            flat = \
                                [T[i][j] for j in range(c) for i in range(r)]
                            r, c = c, r
                        else:
                            r = 1
                            if getattr(row, 'is_Matrix', False):
                                c = 1
                                flat = [row]
                            else:
                                c = len(row)
                                flat = [cls._sympify(i) for i in row]
                        ncol.add(c)
                        if len(ncol) > 1:
                            raise ValueError('mismatched dimensions')
                        flat_list.extend(flat)
                        rows += r
                    cols = ncol.pop() if ncol else 0

        elif len(args) == 3:
            rows = as_int(args[0])
            cols = as_int(args[1])

            if rows < 0 or cols < 0:
                raise ValueError("Cannot create a {} x {} matrix. "
                                 "Both dimensions must be positive".format(rows, cols))

            # Matrix(2, 2, lambda i, j: i+j)
            if len(args) == 3 and isinstance(args[2], Callable):
                op = args[2]
                flat_list = []
                for i in range(rows):
                    flat_list.extend(
                        [cls._sympify(op(cls._sympify(i), cls._sympify(j)))
                         for j in range(cols)])

            # Matrix(2, 2, [1, 2, 3, 4])
            elif len(args) == 3 and is_sequence(args[2]):
                flat_list = args[2]
                if len(flat_list) != rows * cols:
                    raise ValueError(
                        'List length should be equal to rows*columns')
                flat_list = [cls._sympify(i) for i in flat_list]


        # Matrix()
        elif len(args) == 0:
            # Empty Matrix
            rows = cols = 0
            flat_list = []

        if flat_list is None:
            raise TypeError(filldedent('''
                Data type not understood; expecting list of lists
                or lists of values.'''))

        return rows, cols, flat_list

    def _setitem(self, key, value):
        """Helper to set value at location given by key.

        Examples
        ========

        >>> from sympy import Matrix, I, zeros, ones
        >>> m = Matrix(((1, 2+I), (3, 4)))
        >>> m
        Matrix([
        [1, 2 + I],
        [3,     4]])
        >>> m[1, 0] = 9
        >>> m
        Matrix([
        [1, 2 + I],
        [9,     4]])
        >>> m[1, 0] = [[0, 1]]

        To replace row r you assign to position r*m where m
        is the number of columns:

        >>> M = zeros(4)
        >>> m = M.cols
        >>> M[3*m] = ones(1, m)*2; M
        Matrix([
        [0, 0, 0, 0],
        [0, 0, 0, 0],
        [0, 0, 0, 0],
        [2, 2, 2, 2]])

        And to replace column c you can assign to position c:

        >>> M[2] = ones(m, 1)*4; M
        Matrix([
        [0, 0, 4, 0],
        [0, 0, 4, 0],
        [0, 0, 4, 0],
        [2, 2, 4, 2]])
        """
        from .dense import Matrix

        is_slice = isinstance(key, slice)
        i, j = key = self.key2ij(key)
        is_mat = isinstance(value, MatrixBase)
        if isinstance(i, slice) or isinstance(j, slice):
            if is_mat:
                self.copyin_matrix(key, value)
                return
            if not isinstance(value, Expr) and is_sequence(value):
                self.copyin_list(key, value)
                return
            raise ValueError('unexpected value: %s' % value)
        else:
            if (not is_mat and
                    not isinstance(value, Basic) and is_sequence(value)):
                value = Matrix(value)
                is_mat = True
            if is_mat:
                if is_slice:
                    key = (slice(*divmod(i, self.cols)),
                           slice(*divmod(j, self.cols)))
                else:
                    key = (slice(i, i + value.rows),
                           slice(j, j + value.cols))
                self.copyin_matrix(key, value)
            else:
                return i, j, self._sympify(value)
            return

    def add(self, b):
        """Return self + b."""
        return self + b

    def condition_number(self):
        """Returns the condition number of a matrix.

        This is the maximum singular value divided by the minimum singular value

        Examples
        ========

        >>> from sympy import Matrix, S
        >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
        >>> A.condition_number()
        100

        See Also
        ========

        singular_values
        """

        if not self:
            return self.zero
        singularvalues = self.singular_values()
        return Max(*singularvalues) / Min(*singularvalues)

    def copy(self):
        """
        Returns the copy of a matrix.

        Examples
        ========

        >>> from sympy import Matrix
        >>> A = Matrix(2, 2, [1, 2, 3, 4])
        >>> A.copy()
        Matrix([
        [1, 2],
        [3, 4]])

        """
        return self._new(self.rows, self.cols, self.flat())

    def cross(self, b):
        r"""
        Return the cross product of ``self`` and ``b`` relaxing the condition
        of compatible dimensions: if each has 3 elements, a matrix of the
        same type and shape as ``self`` will be returned. If ``b`` has the same
        shape as ``self`` then common identities for the cross product (like
        `a \times b = - b \times a`) will hold.

        Parameters
        ==========
            b : 3x1 or 1x3 Matrix

        See Also
        ========

        dot
        multiply
        multiply_elementwise
        """
        from sympy.matrices.expressions.matexpr import MatrixExpr

        if not isinstance(b, (MatrixBase, MatrixExpr)):
            raise TypeError(
                "{} must be a Matrix, not {}.".format(b, type(b)))

        if not (self.rows * self.cols == b.rows * b.cols == 3):
            raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
                             ((self.rows, self.cols), (b.rows, b.cols)))
        else:
            return self._new(self.rows, self.cols, (
                (self[1] * b[2] - self[2] * b[1]),
                (self[2] * b[0] - self[0] * b[2]),
                (self[0] * b[1] - self[1] * b[0])))

    @property
    def D(self):
        """Return Dirac conjugate (if ``self.rows == 4``).

        Examples
        ========

        >>> from sympy import Matrix, I, eye
        >>> m = Matrix((0, 1 + I, 2, 3))
        >>> m.D
        Matrix([[0, 1 - I, -2, -3]])
        >>> m = (eye(4) + I*eye(4))
        >>> m[0, 3] = 2
        >>> m.D
        Matrix([
        [1 - I,     0,      0,      0],
        [    0, 1 - I,      0,      0],
        [    0,     0, -1 + I,      0],
        [    2,     0,      0, -1 + I]])

        If the matrix does not have 4 rows an AttributeError will be raised
        because this property is only defined for matrices with 4 rows.

        >>> Matrix(eye(2)).D
        Traceback (most recent call last):
        ...
        AttributeError: Matrix has no attribute D.

        See Also
        ========

        sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation
        sympy.matrices.common.MatrixCommon.H: Hermite conjugation
        """
        from sympy.physics.matrices import mgamma
        if self.rows != 4:
            # In Python 3.2, properties can only return an AttributeError
            # so we can't raise a ShapeError -- see commit which added the
            # first line of this inline comment. Also, there is no need
            # for a message since MatrixBase will raise the AttributeError
            raise AttributeError
        return self.H * mgamma(0)

    def dot(self, b, hermitian=None, conjugate_convention=None):
        """Return the dot or inner product of two vectors of equal length.
        Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
        must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
        A scalar is returned.

        By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
        complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
        to compute the hermitian inner product.

        Possible kwargs are ``hermitian`` and ``conjugate_convention``.

        If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
        the conjugate of the first vector (``self``) is used.  If ``"right"``
        or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.

        Examples
        ========

        >>> from sympy import Matrix
        >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        >>> v = Matrix([1, 1, 1])
        >>> M.row(0).dot(v)
        6
        >>> M.col(0).dot(v)
        12
        >>> v = [3, 2, 1]
        >>> M.row(0).dot(v)
        10

        >>> from sympy import I
        >>> q = Matrix([1*I, 1*I, 1*I])
        >>> q.dot(q, hermitian=False)
        -3

        >>> q.dot(q, hermitian=True)
        3

        >>> q1 = Matrix([1, 1, 1*I])
        >>> q.dot(q1, hermitian=True, conjugate_convention="maths")
        1 - 2*I
        >>> q.dot(q1, hermitian=True, conjugate_convention="physics")
        1 + 2*I


        See Also
        ========

        cross
        multiply
        multiply_elementwise
        """
        from .dense import Matrix

        if not isinstance(b, MatrixBase):
            if is_sequence(b):
                if len(b) != self.cols and len(b) != self.rows:
                    raise ShapeError(
                        "Dimensions incorrect for dot product: %s, %s" % (
                            self.shape, len(b)))
                return self.dot(Matrix(b))
            else:
                raise TypeError(
                    "`b` must be an ordered iterable or Matrix, not %s." %
                    type(b))

        if (1 not in self.shape) or (1 not in b.shape):
            raise ShapeError
        if len(self) != len(b):
            raise ShapeError(
                "Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))

        mat = self
        n = len(mat)
        if mat.shape != (1, n):
            mat = mat.reshape(1, n)
        if b.shape != (n, 1):
            b = b.reshape(n, 1)

        # Now ``mat`` is a row vector and ``b`` is a column vector.

        # If it so happens that only conjugate_convention is passed
        # then automatically set hermitian to True. If only hermitian
        # is true but no conjugate_convention is not passed then
        # automatically set it to ``"maths"``

        if conjugate_convention is not None and hermitian is None:
            hermitian = True
        if hermitian and conjugate_convention is None:
            conjugate_convention = "maths"

        if hermitian == True:
            if conjugate_convention in ("maths", "left", "math"):
                mat = mat.conjugate()
            elif conjugate_convention in ("physics", "right"):
                b = b.conjugate()
            else:
                raise ValueError("Unknown conjugate_convention was entered."
                                 " conjugate_convention must be one of the"
                                 " following: math, maths, left, physics or right.")
        return (mat * b)[0]

    def dual(self):
        """Returns the dual of a matrix.

        A dual of a matrix is:

        ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`

        Since the levicivita method is anti_symmetric for any pairwise
        exchange of indices, the dual of a symmetric matrix is the zero
        matrix. Strictly speaking the dual defined here assumes that the
        'matrix' `M` is a contravariant anti_symmetric second rank tensor,
        so that the dual is a covariant second rank tensor.

        """
        from sympy.matrices import zeros

        M, n = self[:, :], self.rows
        work = zeros(n)
        if self.is_symmetric():
            return work

        for i in range(1, n):
            for j in range(1, n):
                acum = 0
                for k in range(1, n):
                    acum += LeviCivita(i, j, 0, k) * M[0, k]
                work[i, j] = acum
                work[j, i] = -acum

        for l in range(1, n):
            acum = 0
            for a in range(1, n):
                for b in range(1, n):
                    acum += LeviCivita(0, l, a, b) * M[a, b]
            acum /= 2
            work[0, l] = -acum
            work[l, 0] = acum

        return work

    def _eval_matrix_exp_jblock(self):
        """A helper function to compute an exponential of a Jordan block
        matrix

        Examples
        ========

        >>> from sympy import Symbol, Matrix
        >>> l = Symbol('lamda')

        A trivial example of 1*1 Jordan block:

        >>> m = Matrix.jordan_block(1, l)
        >>> m._eval_matrix_exp_jblock()
        Matrix([[exp(lamda)]])

        An example of 3*3 Jordan block:

        >>> m = Matrix.jordan_block(3, l)
        >>> m._eval_matrix_exp_jblock()
        Matrix([
        [exp(lamda), exp(lamda), exp(lamda)/2],
        [         0, exp(lamda),   exp(lamda)],
        [         0,          0,   exp(lamda)]])

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
        """
        size = self.rows
        l = self[0, 0]
        exp_l = exp(l)

        bands = {i: exp_l / factorial(i) for i in range(size)}

        from .sparsetools import banded
        return self.__class__(banded(size, bands))


    def analytic_func(self, f, x):
        """
        Computes f(A) where A is a Square Matrix
        and f is an analytic function.

        Examples
        ========

        >>> from sympy import Symbol, Matrix, S, log

        >>> x = Symbol('x')
        >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
        >>> f = log(x)
        >>> m.analytic_func(f, x)
        Matrix([
        [     0, log(2)],
        [log(2),      0]])

        Parameters
        ==========

        f : Expr
            Analytic Function
        x : Symbol
            parameter of f

        """

        f, x = _sympify(f), _sympify(x)
        if not self.is_square:
            raise NonSquareMatrixError
        if not x.is_symbol:
            raise ValueError("{} must be a symbol.".format(x))
        if x not in f.free_symbols:
            raise ValueError(
                "{} must be a parameter of {}.".format(x, f))
        if x in self.free_symbols:
            raise ValueError(
                "{} must not be a parameter of {}.".format(x, self))

        eigen = self.eigenvals()
        max_mul = max(eigen.values())
        derivative = {}
        dd = f
        for i in range(max_mul - 1):
            dd = diff(dd, x)
            derivative[i + 1] = dd
        n = self.shape[0]
        r = self.zeros(n)
        f_val = self.zeros(n, 1)
        row = 0

        for i in eigen:
            mul = eigen[i]
            f_val[row] = f.subs(x, i)
            if f_val[row].is_number and not f_val[row].is_complex:
                raise ValueError(
                    "Cannot evaluate the function because the "
                    "function {} is not analytic at the given "
                    "eigenvalue {}".format(f, f_val[row]))
            val = 1
            for a in range(n):
                r[row, a] = val
                val *= i
            if mul > 1:
                coe = [1 for ii in range(n)]
                deri = 1
                while mul > 1:
                    row = row + 1
                    mul -= 1
                    d_i = derivative[deri].subs(x, i)
                    if d_i.is_number and not d_i.is_complex:
                        raise ValueError(
                            "Cannot evaluate the function because the "
                            "derivative {} is not analytic at the given "
                            "eigenvalue {}".format(derivative[deri], d_i))
                    f_val[row] = d_i
                    for a in range(n):
                        if a - deri + 1 <= 0:
                            r[row, a] = 0
                            coe[a] = 0
                            continue
                        coe[a] = coe[a]*(a - deri + 1)
                        r[row, a] = coe[a]*pow(i, a - deri)
                    deri += 1
            row += 1
        c = r.solve(f_val)
        ans = self.zeros(n)
        pre = self.eye(n)
        for i in range(n):
            ans = ans + c[i]*pre
            pre *= self
        return ans


    def exp(self):
        """Return the exponential of a square matrix.

        Examples
        ========

        >>> from sympy import Symbol, Matrix

        >>> t = Symbol('t')
        >>> m = Matrix([[0, 1], [-1, 0]]) * t
        >>> m.exp()
        Matrix([
        [    exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
        [I*exp(I*t)/2 - I*exp(-I*t)/2,      exp(I*t)/2 + exp(-I*t)/2]])
        """
        if not self.is_square:
            raise NonSquareMatrixError(
                "Exponentiation is valid only for square matrices")
        try:
            P, J = self.jordan_form()
            cells = J.get_diag_blocks()
        except MatrixError:
            raise NotImplementedError(
                "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")

        blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
        from sympy.matrices import diag
        eJ = diag(*blocks)
        # n = self.rows
        ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None)
        if all(value.is_real for value in self.values()):
            return type(self)(re(ret))
        else:
            return type(self)(ret)

    def _eval_matrix_log_jblock(self):
        """Helper function to compute logarithm of a jordan block.

        Examples
        ========

        >>> from sympy import Symbol, Matrix
        >>> l = Symbol('lamda')

        A trivial example of 1*1 Jordan block:

        >>> m = Matrix.jordan_block(1, l)
        >>> m._eval_matrix_log_jblock()
        Matrix([[log(lamda)]])

        An example of 3*3 Jordan block:

        >>> m = Matrix.jordan_block(3, l)
        >>> m._eval_matrix_log_jblock()
        Matrix([
        [log(lamda),    1/lamda, -1/(2*lamda**2)],
        [         0, log(lamda),         1/lamda],
        [         0,          0,      log(lamda)]])
        """
        size = self.rows
        l = self[0, 0]

        if l.is_zero:
            raise MatrixError(
                'Could not take logarithm or reciprocal for the given '
                'eigenvalue {}'.format(l))

        bands = {0: log(l)}
        for i in range(1, size):
            bands[i] = -((-l) ** -i) / i

        from .sparsetools import banded
        return self.__class__(banded(size, bands))

    def log(self, simplify=cancel):
        """Return the logarithm of a square matrix.

        Parameters
        ==========

        simplify : function, bool
            The function to simplify the result with.

            Default is ``cancel``, which is effective to reduce the
            expression growing for taking reciprocals and inverses for
            symbolic matrices.

        Examples
        ========

        >>> from sympy import S, Matrix

        Examples for positive-definite matrices:

        >>> m = Matrix([[1, 1], [0, 1]])
        >>> m.log()
        Matrix([
        [0, 1],
        [0, 0]])

        >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
        >>> m.log()
        Matrix([
        [     0, log(2)],
        [log(2),      0]])

        Examples for non positive-definite matrices:

        >>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
        >>> m.log()
        Matrix([
        [         I*pi/2, log(2) - I*pi/2],
        [log(2) - I*pi/2,          I*pi/2]])

        >>> m = Matrix(
        ...     [[0, 0, 0, 1],
        ...      [0, 0, 1, 0],
        ...      [0, 1, 0, 0],
        ...      [1, 0, 0, 0]])
        >>> m.log()
        Matrix([
        [ I*pi/2,       0,       0, -I*pi/2],
        [      0,  I*pi/2, -I*pi/2,       0],
        [      0, -I*pi/2,  I*pi/2,       0],
        [-I*pi/2,       0,       0,  I*pi/2]])
        """
        if not self.is_square:
            raise NonSquareMatrixError(
                "Logarithm is valid only for square matrices")

        try:
            if simplify:
                P, J = simplify(self).jordan_form()
            else:
                P, J = self.jordan_form()

            cells = J.get_diag_blocks()
        except MatrixError:
            raise NotImplementedError(
                "Logarithm is implemented only for matrices for which "
                "the Jordan normal form can be computed")

        blocks = [
            cell._eval_matrix_log_jblock()
            for cell in cells]
        from sympy.matrices import diag
        eJ = diag(*blocks)

        if simplify:
            ret = simplify(P * eJ * simplify(P.inv()))
            ret = self.__class__(ret)
        else:
            ret = P * eJ * P.inv()

        return ret

    def is_nilpotent(self):
        """Checks if a matrix is nilpotent.

        A matrix B is nilpotent if for some integer k, B**k is
        a zero matrix.

        Examples
        ========

        >>> from sympy import Matrix
        >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
        >>> a.is_nilpotent()
        True

        >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
        >>> a.is_nilpotent()
        False
        """
        if not self:
            return True
        if not self.is_square:
            raise NonSquareMatrixError(
                "Nilpotency is valid only for square matrices")
        x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s)
        p = self.charpoly(x)
        if p.args[0] == x ** self.rows:
            return True
        return False

    def key2bounds(self, keys):
        """Converts a key with potentially mixed types of keys (integer and slice)
        into a tuple of ranges and raises an error if any index is out of ``self``'s
        range.

        See Also
        ========

        key2ij
        """
        islice, jslice = [isinstance(k, slice) for k in keys]
        if islice:
            if not self.rows:
                rlo = rhi = 0
            else:
                rlo, rhi = keys[0].indices(self.rows)[:2]
        else:
            rlo = a2idx(keys[0], self.rows)
            rhi = rlo + 1
        if jslice:
            if not self.cols:
                clo = chi = 0
            else:
                clo, chi = keys[1].indices(self.cols)[:2]
        else:
            clo = a2idx(keys[1], self.cols)
            chi = clo + 1
        return rlo, rhi, clo, chi

    def key2ij(self, key):
        """Converts key into canonical form, converting integers or indexable
        items into valid integers for ``self``'s range or returning slices
        unchanged.

        See Also
        ========

        key2bounds
        """
        if is_sequence(key):
            if not len(key) == 2:
                raise TypeError('key must be a sequence of length 2')
            return [a2idx(i, n) if not isinstance(i, slice) else i
                    for i, n in zip(key, self.shape)]
        elif isinstance(key, slice):
            return key.indices(len(self))[:2]
        else:
            return divmod(a2idx(key, len(self)), self.cols)

    def normalized(self, iszerofunc=_iszero):
        """Return the normalized version of ``self``.

        Parameters
        ==========

        iszerofunc : Function, optional
            A function to determine whether ``self`` is a zero vector.
            The default ``_iszero`` tests to see if each element is
            exactly zero.

        Returns
        =======

        Matrix
            Normalized vector form of ``self``.
            It has the same length as a unit vector. However, a zero vector
            will be returned for a vector with norm 0.

        Raises
        ======

        ShapeError
            If the matrix is not in a vector form.

        See Also
        ========

        norm
        """
        if self.rows != 1 and self.cols != 1:
            raise ShapeError("A Matrix must be a vector to normalize.")
        norm = self.norm()
        if iszerofunc(norm):
            out = self.zeros(self.rows, self.cols)
        else:
            out = self.applyfunc(lambda i: i / norm)
        return out

    def norm(self, ord=None):
        """Return the Norm of a Matrix or Vector.

        In the simplest case this is the geometric size of the vector
        Other norms can be specified by the ord parameter


        =====  ============================  ==========================
        ord    norm for matrices             norm for vectors
        =====  ============================  ==========================
        None   Frobenius norm                2-norm
        'fro'  Frobenius norm                - does not exist
        inf    maximum row sum               max(abs(x))
        -inf   --                            min(abs(x))
        1      maximum column sum            as below
        -1     --                            as below
        2      2-norm (largest sing. value)  as below
        -2     smallest singular value       as below
        other  - does not exist              sum(abs(x)**ord)**(1./ord)
        =====  ============================  ==========================

        Examples
        ========

        >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
        >>> x = Symbol('x', real=True)
        >>> v = Matrix([cos(x), sin(x)])
        >>> trigsimp( v.norm() )
        1
        >>> v.norm(10)
        (sin(x)**10 + cos(x)**10)**(1/10)
        >>> A = Matrix([[1, 1], [1, 1]])
        >>> A.norm(1) # maximum sum of absolute values of A is 2
        2
        >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
        2
        >>> A.norm(-2) # Inverse spectral norm (smallest singular value)
        0
        >>> A.norm() # Frobenius Norm
        2
        >>> A.norm(oo) # Infinity Norm
        2
        >>> Matrix([1, -2]).norm(oo)
        2
        >>> Matrix([-1, 2]).norm(-oo)
        1

        See Also
        ========

        normalized
        """
        # Row or Column Vector Norms
        vals = list(self.values()) or [0]
        if S.One in self.shape:
            if ord in (2, None):  # Common case sqrt(<x, x>)
                return sqrt(Add(*(abs(i) ** 2 for i in vals)))

            elif ord == 1:  # sum(abs(x))
                return Add(*(abs(i) for i in vals))

            elif ord is S.Infinity:  # max(abs(x))
                return Max(*[abs(i) for i in vals])

            elif ord is S.NegativeInfinity:  # min(abs(x))
                return Min(*[abs(i) for i in vals])

            # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
            # Note that while useful this is not mathematically a norm
            try:
                return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
            except (NotImplementedError, TypeError):
                raise ValueError("Expected order to be Number, Symbol, oo")

        # Matrix Norms
        else:
            if ord == 1:  # Maximum column sum
                m = self.applyfunc(abs)
                return Max(*[sum(m.col(i)) for i in range(m.cols)])

            elif ord == 2:  # Spectral Norm
                # Maximum singular value
                return Max(*self.singular_values())

            elif ord == -2:
                # Minimum singular value
                return Min(*self.singular_values())

            elif ord is S.Infinity:   # Infinity Norm - Maximum row sum
                m = self.applyfunc(abs)
                return Max(*[sum(m.row(i)) for i in range(m.rows)])

            elif (ord is None or isinstance(ord,
                                            str) and ord.lower() in
                ['f', 'fro', 'frobenius', 'vector']):
                # Reshape as vector and send back to norm function
                return self.vec().norm(ord=2)

            else:
                raise NotImplementedError("Matrix Norms under development")

    def print_nonzero(self, symb="X"):
        """Shows location of non-zero entries for fast shape lookup.

        Examples
        ========

        >>> from sympy import Matrix, eye
        >>> m = Matrix(2, 3, lambda i, j: i*3+j)
        >>> m
        Matrix([
        [0, 1, 2],
        [3, 4, 5]])
        >>> m.print_nonzero()
        [ XX]
        [XXX]
        >>> m = eye(4)
        >>> m.print_nonzero("x")
        [x   ]
        [ x  ]
        [  x ]
        [   x]

        """
        s = []
        for i in range(self.rows):
            line = []
            for j in range(self.cols):
                if self[i, j] == 0:
                    line.append(" ")
                else:
                    line.append(str(symb))
            s.append("[%s]" % ''.join(line))
        print('\n'.join(s))

    def project(self, v):
        """Return the projection of ``self`` onto the line containing ``v``.

        Examples
        ========

        >>> from sympy import Matrix, S, sqrt
        >>> V = Matrix([sqrt(3)/2, S.Half])
        >>> x = Matrix([[1, 0]])
        >>> V.project(x)
        Matrix([[sqrt(3)/2, 0]])
        >>> V.project(-x)
        Matrix([[sqrt(3)/2, 0]])
        """
        return v * (self.dot(v) / v.dot(v))

    def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
              colsep=', ', align='right'):
        r"""
        String form of Matrix as a table.

        ``printer`` is the printer to use for on the elements (generally
        something like StrPrinter())

        ``rowstart`` is the string used to start each row (by default '[').

        ``rowend`` is the string used to end each row (by default ']').

        ``rowsep`` is the string used to separate rows (by default a newline).

        ``colsep`` is the string used to separate columns (by default ', ').

        ``align`` defines how the elements are aligned. Must be one of 'left',
        'right', or 'center'.  You can also use '<', '>', and '^' to mean the
        same thing, respectively.

        This is used by the string printer for Matrix.

        Examples
        ========

        >>> from sympy import Matrix, StrPrinter
        >>> M = Matrix([[1, 2], [-33, 4]])
        >>> printer = StrPrinter()
        >>> M.table(printer)
        '[  1, 2]\n[-33, 4]'
        >>> print(M.table(printer))
        [  1, 2]
        [-33, 4]
        >>> print(M.table(printer, rowsep=',\n'))
        [  1, 2],
        [-33, 4]
        >>> print('[%s]' % M.table(printer, rowsep=',\n'))
        [[  1, 2],
        [-33, 4]]
        >>> print(M.table(printer, colsep=' '))
        [  1 2]
        [-33 4]
        >>> print(M.table(printer, align='center'))
        [ 1 , 2]
        [-33, 4]
        >>> print(M.table(printer, rowstart='{', rowend='}'))
        {  1, 2}
        {-33, 4}
        """
        # Handle zero dimensions:
        if S.Zero in self.shape:
            return '[]'
        # Build table of string representations of the elements
        res = []
        # Track per-column max lengths for pretty alignment
        maxlen = [0] * self.cols
        for i in range(self.rows):
            res.append([])
            for j in range(self.cols):
                s = printer._print(self[i, j])
                res[-1].append(s)
                maxlen[j] = max(len(s), maxlen[j])
        # Patch strings together
        align = {
            'left': 'ljust',
            'right': 'rjust',
            'center': 'center',
            '<': 'ljust',
            '>': 'rjust',
            '^': 'center',
        }[align]
        for i, row in enumerate(res):
            for j, elem in enumerate(row):
                row[j] = getattr(elem, align)(maxlen[j])
            res[i] = rowstart + colsep.join(row) + rowend
        return rowsep.join(res)

    def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
        return _rank_decomposition(self, iszerofunc=iszerofunc,
                simplify=simplify)

    def cholesky(self, hermitian=True):
        raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')

    def LDLdecomposition(self, hermitian=True):
        raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')

    def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None,
            rankcheck=False):
        return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc,
                rankcheck=rankcheck)

    def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None,
            rankcheck=False):
        return _LUdecomposition_Simple(self, iszerofunc=iszerofunc,
                simpfunc=simpfunc, rankcheck=rankcheck)

    def LUdecompositionFF(self):
        return _LUdecompositionFF(self)

    def singular_value_decomposition(self):
        return _singular_value_decomposition(self)

    def QRdecomposition(self):
        return _QRdecomposition(self)

    def upper_hessenberg_decomposition(self):
        return _upper_hessenberg_decomposition(self)

    def diagonal_solve(self, rhs):
        return _diagonal_solve(self, rhs)

    def lower_triangular_solve(self, rhs):
        raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')

    def upper_triangular_solve(self, rhs):
        raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')

    def cholesky_solve(self, rhs):
        return _cholesky_solve(self, rhs)

    def LDLsolve(self, rhs):
        return _LDLsolve(self, rhs)

    def LUsolve(self, rhs, iszerofunc=_iszero):
        return _LUsolve(self, rhs, iszerofunc=iszerofunc)

    def QRsolve(self, b):
        return _QRsolve(self, b)

    def gauss_jordan_solve(self, B, freevar=False):
        return _gauss_jordan_solve(self, B, freevar=freevar)

    def pinv_solve(self, B, arbitrary_matrix=None):
        return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix)

    def solve(self, rhs, method='GJ'):
        return _solve(self, rhs, method=method)

    def solve_least_squares(self, rhs, method='CH'):
        return _solve_least_squares(self, rhs, method=method)

    def pinv(self, method='RD'):
        return _pinv(self, method=method)

    def inv_mod(self, m):
        return _inv_mod(self, m)

    def inverse_ADJ(self, iszerofunc=_iszero):
        return _inv_ADJ(self, iszerofunc=iszerofunc)

    def inverse_BLOCK(self, iszerofunc=_iszero):
        return _inv_block(self, iszerofunc=iszerofunc)

    def inverse_GE(self, iszerofunc=_iszero):
        return _inv_GE(self, iszerofunc=iszerofunc)

    def inverse_LU(self, iszerofunc=_iszero):
        return _inv_LU(self, iszerofunc=iszerofunc)

    def inverse_CH(self, iszerofunc=_iszero):
        return _inv_CH(self, iszerofunc=iszerofunc)

    def inverse_LDL(self, iszerofunc=_iszero):
        return _inv_LDL(self, iszerofunc=iszerofunc)

    def inverse_QR(self, iszerofunc=_iszero):
        return _inv_QR(self, iszerofunc=iszerofunc)

    def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False):
        return _inv(self, method=method, iszerofunc=iszerofunc,
                try_block_diag=try_block_diag)

    def connected_components(self):
        return _connected_components(self)

    def connected_components_decomposition(self):
        return _connected_components_decomposition(self)

    def strongly_connected_components(self):
        return _strongly_connected_components(self)

    def strongly_connected_components_decomposition(self, lower=True):
        return _strongly_connected_components_decomposition(self, lower=lower)

    _sage_ = Basic._sage_

    rank_decomposition.__doc__     = _rank_decomposition.__doc__
    cholesky.__doc__               = _cholesky.__doc__
    LDLdecomposition.__doc__       = _LDLdecomposition.__doc__
    LUdecomposition.__doc__        = _LUdecomposition.__doc__
    LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__
    LUdecompositionFF.__doc__      = _LUdecompositionFF.__doc__
    singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__
    QRdecomposition.__doc__        = _QRdecomposition.__doc__
    upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__

    diagonal_solve.__doc__         = _diagonal_solve.__doc__
    lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
    upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
    cholesky_solve.__doc__         = _cholesky_solve.__doc__
    LDLsolve.__doc__               = _LDLsolve.__doc__
    LUsolve.__doc__                = _LUsolve.__doc__
    QRsolve.__doc__                = _QRsolve.__doc__
    gauss_jordan_solve.__doc__     = _gauss_jordan_solve.__doc__
    pinv_solve.__doc__             = _pinv_solve.__doc__
    solve.__doc__                  = _solve.__doc__
    solve_least_squares.__doc__    = _solve_least_squares.__doc__

    pinv.__doc__                   = _pinv.__doc__
    inv_mod.__doc__                = _inv_mod.__doc__
    inverse_ADJ.__doc__            = _inv_ADJ.__doc__
    inverse_GE.__doc__             = _inv_GE.__doc__
    inverse_LU.__doc__             = _inv_LU.__doc__
    inverse_CH.__doc__             = _inv_CH.__doc__
    inverse_LDL.__doc__            = _inv_LDL.__doc__
    inverse_QR.__doc__             = _inv_QR.__doc__
    inverse_BLOCK.__doc__          = _inv_block.__doc__
    inv.__doc__                    = _inv.__doc__

    connected_components.__doc__   = _connected_components.__doc__
    connected_components_decomposition.__doc__ = \
        _connected_components_decomposition.__doc__
    strongly_connected_components.__doc__   = \
        _strongly_connected_components.__doc__
    strongly_connected_components_decomposition.__doc__ = \
        _strongly_connected_components_decomposition.__doc__