applied-ai-018 commited on
Commit
78d915e
·
verified ·
1 Parent(s): 3a16979

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__init__.py +3 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py +73 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/dynkin_diagram.py +24 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py +10 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py +12 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py +9 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py +18 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py +17 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py +17 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py +22 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py +19 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py +19 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py +24 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py +16 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py +35 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_a.py +166 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_b.py +172 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_c.py +171 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_d.py +175 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_e.py +287 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_f.py +162 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_g.py +111 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/weyl_group.py +403 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/matrices/__init__.py +71 -0
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+
3
+ __all__ = ['CartanType']
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (268 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc ADDED
Binary file (781 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc ADDED
Binary file (2.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc ADDED
Binary file (793 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/root_system.cpython-310.pyc ADDED
Binary file (7.81 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_a.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_b.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_c.cpython-310.pyc ADDED
Binary file (5.33 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_d.cpython-310.pyc ADDED
Binary file (5.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_e.cpython-310.pyc ADDED
Binary file (7.12 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_f.cpython-310.pyc ADDED
Binary file (4.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/type_g.cpython-310.pyc ADDED
Binary file (3.79 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Atom, Basic
2
+
3
+
4
+ class CartanType_generator():
5
+ """
6
+ Constructor for actually creating things
7
+ """
8
+ def __call__(self, *args):
9
+ c = args[0]
10
+ if isinstance(c, list):
11
+ letter, n = c[0], int(c[1])
12
+ elif isinstance(c, str):
13
+ letter, n = c[0], int(c[1:])
14
+ else:
15
+ raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])")
16
+
17
+ if n < 0:
18
+ raise ValueError("Lie algebra rank cannot be negative")
19
+ if letter == "A":
20
+ from . import type_a
21
+ return type_a.TypeA(n)
22
+ if letter == "B":
23
+ from . import type_b
24
+ return type_b.TypeB(n)
25
+
26
+ if letter == "C":
27
+ from . import type_c
28
+ return type_c.TypeC(n)
29
+
30
+ if letter == "D":
31
+ from . import type_d
32
+ return type_d.TypeD(n)
33
+
34
+ if letter == "E":
35
+ if n >= 6 and n <= 8:
36
+ from . import type_e
37
+ return type_e.TypeE(n)
38
+
39
+ if letter == "F":
40
+ if n == 4:
41
+ from . import type_f
42
+ return type_f.TypeF(n)
43
+
44
+ if letter == "G":
45
+ if n == 2:
46
+ from . import type_g
47
+ return type_g.TypeG(n)
48
+
49
+ CartanType = CartanType_generator()
50
+
51
+
52
+ class Standard_Cartan(Atom):
53
+ """
54
+ Concrete base class for Cartan types such as A4, etc
55
+ """
56
+
57
+ def __new__(cls, series, n):
58
+ obj = Basic.__new__(cls)
59
+ obj.n = n
60
+ obj.series = series
61
+ return obj
62
+
63
+ def rank(self):
64
+ """
65
+ Returns the rank of the Lie algebra
66
+ """
67
+ return self.n
68
+
69
+ def series(self):
70
+ """
71
+ Returns the type of the Lie algebra
72
+ """
73
+ return self.series
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/dynkin_diagram.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import CartanType
2
+
3
+
4
+ def DynkinDiagram(t):
5
+ """Display the Dynkin diagram of a given Lie algebra
6
+
7
+ Works by generating the CartanType for the input, t, and then returning the
8
+ Dynkin diagram method from the individual classes.
9
+
10
+ Examples
11
+ ========
12
+
13
+ >>> from sympy.liealgebras.dynkin_diagram import DynkinDiagram
14
+ >>> print(DynkinDiagram("A3"))
15
+ 0---0---0
16
+ 1 2 3
17
+
18
+ >>> print(DynkinDiagram("B4"))
19
+ 0---0---0=>=0
20
+ 1 2 3 4
21
+
22
+ """
23
+
24
+ return CartanType(t).dynkin_diagram()
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (188 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc ADDED
Binary file (612 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc ADDED
Binary file (590 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc ADDED
Binary file (515 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc ADDED
Binary file (1.37 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc ADDED
Binary file (1.52 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc ADDED
Binary file (1.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc ADDED
Binary file (1.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc ADDED
Binary file (2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc ADDED
Binary file (913 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc ADDED
Binary file (1.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_matrix import CartanMatrix
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_CartanMatrix():
5
+ c = CartanMatrix("A3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
7
+ assert c == m
8
+ a = CartanMatrix(["G",2])
9
+ mt = Matrix(2, 2, [2, -1, -3, 2])
10
+ assert a == mt
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType, Standard_Cartan
2
+
3
+ def test_Standard_Cartan():
4
+ c = CartanType("A4")
5
+ assert c.rank() == 4
6
+ assert c.series == "A"
7
+ m = Standard_Cartan("A", 2)
8
+ assert m.rank() == 2
9
+ assert m.series == "A"
10
+ b = CartanType("B12")
11
+ assert b.rank() == 12
12
+ assert b.series == "B"
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.dynkin_diagram import DynkinDiagram
2
+
3
+ def test_DynkinDiagram():
4
+ c = DynkinDiagram("A3")
5
+ diag = "0---0---0\n1 2 3"
6
+ assert c == diag
7
+ ct = DynkinDiagram(["B", 3])
8
+ diag2 = "0---0=>=0\n1 2 3"
9
+ assert ct == diag2
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.root_system import RootSystem
2
+ from sympy.liealgebras.type_a import TypeA
3
+ from sympy.matrices import Matrix
4
+
5
+ def test_root_system():
6
+ c = RootSystem("A3")
7
+ assert c.cartan_type == TypeA(3)
8
+ assert c.simple_roots() == {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
9
+ assert c.root_space() == "alpha[1] + alpha[2] + alpha[3]"
10
+ assert c.cartan_matrix() == Matrix([[ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]])
11
+ assert c.dynkin_diagram() == "0---0---0\n1 2 3"
12
+ assert c.add_simple_roots(1, 2) == [1, 0, -1, 0]
13
+ assert c.all_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
14
+ 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1],
15
+ 6: [0, 0, 1, -1], 7: [-1, 1, 0, 0], 8: [-1, 0, 1, 0],
16
+ 9: [-1, 0, 0, 1], 10: [0, -1, 1, 0],
17
+ 11: [0, -1, 0, 1], 12: [0, 0, -1, 1]}
18
+ assert c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) == [1, 0, 0, -1]
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_A():
5
+ c = CartanType("A3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
7
+ assert m == c.cartan_matrix()
8
+ assert c.basis() == 8
9
+ assert c.roots() == 12
10
+ assert c.dimension() == 4
11
+ assert c.simple_root(1) == [1, -1, 0, 0]
12
+ assert c.highest_root() == [1, 0, 0, -1]
13
+ assert c.lie_algebra() == "su(4)"
14
+ diag = "0---0---0\n1 2 3"
15
+ assert c.dynkin_diagram() == diag
16
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
17
+ 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_B():
5
+ c = CartanType("B3")
6
+ m = Matrix(3, 3, [2, -1, 0, -1, 2, -2, 0, -1, 2])
7
+ assert m == c.cartan_matrix()
8
+ assert c.dimension() == 3
9
+ assert c.roots() == 18
10
+ assert c.simple_root(3) == [0, 0, 1]
11
+ assert c.basis() == 3
12
+ assert c.lie_algebra() == "so(6)"
13
+ diag = "0---0=>=0\n1 2 3"
14
+ assert c.dynkin_diagram() == diag
15
+ assert c.positive_roots() == {1: [1, -1, 0], 2: [1, 1, 0], 3: [1, 0, -1],
16
+ 4: [1, 0, 1], 5: [0, 1, -1], 6: [0, 1, 1], 7: [1, 0, 0],
17
+ 8: [0, 1, 0], 9: [0, 0, 1]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_C():
5
+ c = CartanType("C4")
6
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -2, 2])
7
+ assert c.cartan_matrix() == m
8
+ assert c.dimension() == 4
9
+ assert c.simple_root(4) == [0, 0, 0, 2]
10
+ assert c.roots() == 32
11
+ assert c.basis() == 36
12
+ assert c.lie_algebra() == "sp(8)"
13
+ t = CartanType(['C', 3])
14
+ assert t.dimension() == 3
15
+ diag = "0---0---0=<=0\n1 2 3 4"
16
+ assert c.dynkin_diagram() == diag
17
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
18
+ 3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1],
19
+ 6: [1, 0, 0, 1], 7: [0, 1, -1, 0], 8: [0, 1, 1, 0],
20
+ 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
21
+ 12: [0, 0, 1, 1], 13: [2, 0, 0, 0], 14: [0, 2, 0, 0], 15: [0, 0, 2, 0],
22
+ 16: [0, 0, 0, 2]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+
5
+
6
+ def test_type_D():
7
+ c = CartanType("D4")
8
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, -1, 0, -1, 2, 0, 0, -1, 0, 2])
9
+ assert c.cartan_matrix() == m
10
+ assert c.basis() == 6
11
+ assert c.lie_algebra() == "so(8)"
12
+ assert c.roots() == 24
13
+ assert c.simple_root(3) == [0, 0, 1, -1]
14
+ diag = " 3\n 0\n |\n |\n0---0---0\n1 2 4"
15
+ assert diag == c.dynkin_diagram()
16
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
17
+ 3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1],
18
+ 7: [0, 1, -1, 0], 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1],
19
+ 11: [0, 0, 1, -1], 12: [0, 0, 1, 1]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_type_E():
5
+ c = CartanType("E6")
6
+ m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
7
+ -1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
8
+ -1, 2, -1, 0, 0, 0, 0, -1, 2])
9
+ assert c.cartan_matrix() == m
10
+ assert c.dimension() == 8
11
+ assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
12
+ assert c.roots() == 72
13
+ assert c.basis() == 78
14
+ diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
15
+ diag += "---".join("0" for i in range(1, 6))+"\n"
16
+ diag += "1 " + " ".join(str(i) for i in range(3, 7))
17
+ assert c.dynkin_diagram() == diag
18
+ posroots = c.positive_roots()
19
+ assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import CartanType
2
+ from sympy.matrices import Matrix
3
+ from sympy.core.backend import S
4
+
5
+ def test_type_F():
6
+ c = CartanType("F4")
7
+ m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
8
+ assert c.cartan_matrix() == m
9
+ assert c.dimension() == 4
10
+ assert c.simple_root(1) == [1, -1, 0, 0]
11
+ assert c.simple_root(2) == [0, 1, -1, 0]
12
+ assert c.simple_root(3) == [0, 0, 0, 1]
13
+ assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
14
+ assert c.roots() == 48
15
+ assert c.basis() == 52
16
+ diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
17
+ assert c.dynkin_diagram() == diag
18
+ assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
19
+ 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
20
+ 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
21
+ 12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
22
+ 16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
23
+ 19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
24
+ 22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ from sympy.liealgebras.cartan_type import CartanType
3
+ from sympy.matrices import Matrix
4
+
5
+ def test_type_G():
6
+ c = CartanType("G2")
7
+ m = Matrix(2, 2, [2, -1, -3, 2])
8
+ assert c.cartan_matrix() == m
9
+ assert c.simple_root(2) == [1, -2, 1]
10
+ assert c.basis() == 14
11
+ assert c.roots() == 12
12
+ assert c.dimension() == 3
13
+ diag = "0≡<≡0\n1 2"
14
+ assert diag == c.dynkin_diagram()
15
+ assert c.positive_roots() == {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0],
16
+ 4: [1, 0, 1], 5: [1, 1, -2], 6: [2, -1, -1]}
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.weyl_group import WeylGroup
2
+ from sympy.matrices import Matrix
3
+
4
+ def test_weyl_group():
5
+ c = WeylGroup("A3")
6
+ assert c.matrix_form('r1*r2') == Matrix([[0, 0, 1, 0], [1, 0, 0, 0],
7
+ [0, 1, 0, 0], [0, 0, 0, 1]])
8
+ assert c.generators() == ['r1', 'r2', 'r3']
9
+ assert c.group_order() == 24.0
10
+ assert c.group_name() == "S4: the symmetric group acting on 4 elements."
11
+ assert c.coxeter_diagram() == "0---0---0\n1 2 3"
12
+ assert c.element_order('r1*r2*r3') == 4
13
+ assert c.element_order('r1*r3*r2*r3') == 3
14
+ d = WeylGroup("B5")
15
+ assert d.group_order() == 3840
16
+ assert d.element_order('r1*r2*r4*r5') == 12
17
+ assert d.matrix_form('r2*r3') == Matrix([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
18
+ [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
19
+ assert d.element_order('r1*r2*r1*r3*r5') == 6
20
+ e = WeylGroup("D5")
21
+ assert e.element_order('r2*r3*r5') == 4
22
+ assert e.matrix_form('r2*r3*r5') == Matrix([[1, 0, 0, 0, 0], [0, 0, 0, 0, -1],
23
+ [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, -1, 0]])
24
+ f = WeylGroup("G2")
25
+ assert f.element_order('r1*r2*r1*r2') == 3
26
+ assert f.element_order('r2*r1*r1*r2') == 1
27
+
28
+ assert f.matrix_form('r1*r2*r1*r2') == Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
29
+ g = WeylGroup("F4")
30
+ assert g.matrix_form('r2*r3') == Matrix([[1, 0, 0, 0], [0, 1, 0, 0],
31
+ [0, 0, 0, -1], [0, 0, 1, 0]])
32
+
33
+ assert g.element_order('r2*r3') == 4
34
+ h = WeylGroup("E6")
35
+ assert h.group_order() == 51840
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_a.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.liealgebras.cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+
5
+ class TypeA(Standard_Cartan):
6
+ """
7
+ This class contains the information about
8
+ the A series of simple Lie algebras.
9
+ ====
10
+ """
11
+
12
+ def __new__(cls, n):
13
+ if n < 1:
14
+ raise ValueError("n cannot be less than 1")
15
+ return Standard_Cartan.__new__(cls, "A", n)
16
+
17
+
18
+ def dimension(self):
19
+ """Dimension of the vector space V underlying the Lie algebra
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy.liealgebras.cartan_type import CartanType
25
+ >>> c = CartanType("A4")
26
+ >>> c.dimension()
27
+ 5
28
+ """
29
+ return self.n+1
30
+
31
+
32
+ def basic_root(self, i, j):
33
+ """
34
+ This is a method just to generate roots
35
+ with a 1 iin the ith position and a -1
36
+ in the jth position.
37
+
38
+ """
39
+
40
+ n = self.n
41
+ root = [0]*(n+1)
42
+ root[i] = 1
43
+ root[j] = -1
44
+ return root
45
+
46
+ def simple_root(self, i):
47
+ """
48
+ Every lie algebra has a unique root system.
49
+ Given a root system Q, there is a subset of the
50
+ roots such that an element of Q is called a
51
+ simple root if it cannot be written as the sum
52
+ of two elements in Q. If we let D denote the
53
+ set of simple roots, then it is clear that every
54
+ element of Q can be written as a linear combination
55
+ of elements of D with all coefficients non-negative.
56
+
57
+ In A_n the ith simple root is the root which has a 1
58
+ in the ith position, a -1 in the (i+1)th position,
59
+ and zeroes elsewhere.
60
+
61
+ This method returns the ith simple root for the A series.
62
+
63
+ Examples
64
+ ========
65
+
66
+ >>> from sympy.liealgebras.cartan_type import CartanType
67
+ >>> c = CartanType("A4")
68
+ >>> c.simple_root(1)
69
+ [1, -1, 0, 0, 0]
70
+
71
+ """
72
+
73
+ return self.basic_root(i-1, i)
74
+
75
+ def positive_roots(self):
76
+ """
77
+ This method generates all the positive roots of
78
+ A_n. This is half of all of the roots of A_n;
79
+ by multiplying all the positive roots by -1 we
80
+ get the negative roots.
81
+
82
+ Examples
83
+ ========
84
+
85
+ >>> from sympy.liealgebras.cartan_type import CartanType
86
+ >>> c = CartanType("A3")
87
+ >>> c.positive_roots()
88
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
89
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
90
+ """
91
+
92
+ n = self.n
93
+ posroots = {}
94
+ k = 0
95
+ for i in range(0, n):
96
+ for j in range(i+1, n+1):
97
+ k += 1
98
+ posroots[k] = self.basic_root(i, j)
99
+ return posroots
100
+
101
+ def highest_root(self):
102
+ """
103
+ Returns the highest weight root for A_n
104
+ """
105
+
106
+ return self.basic_root(0, self.n)
107
+
108
+ def roots(self):
109
+ """
110
+ Returns the total number of roots for A_n
111
+ """
112
+ n = self.n
113
+ return n*(n+1)
114
+
115
+ def cartan_matrix(self):
116
+ """
117
+ Returns the Cartan matrix for A_n.
118
+ The Cartan matrix matrix for a Lie algebra is
119
+ generated by assigning an ordering to the simple
120
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
121
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
122
+
123
+ Examples
124
+ ========
125
+
126
+ >>> from sympy.liealgebras.cartan_type import CartanType
127
+ >>> c = CartanType('A4')
128
+ >>> c.cartan_matrix()
129
+ Matrix([
130
+ [ 2, -1, 0, 0],
131
+ [-1, 2, -1, 0],
132
+ [ 0, -1, 2, -1],
133
+ [ 0, 0, -1, 2]])
134
+
135
+ """
136
+
137
+ n = self.n
138
+ m = 2 * eye(n)
139
+ i = 1
140
+ while i < n-1:
141
+ m[i, i+1] = -1
142
+ m[i, i-1] = -1
143
+ i += 1
144
+ m[0,1] = -1
145
+ m[n-1, n-2] = -1
146
+ return m
147
+
148
+ def basis(self):
149
+ """
150
+ Returns the number of independent generators of A_n
151
+ """
152
+ n = self.n
153
+ return n**2 - 1
154
+
155
+ def lie_algebra(self):
156
+ """
157
+ Returns the Lie algebra associated with A_n
158
+ """
159
+ n = self.n
160
+ return "su(" + str(n + 1) + ")"
161
+
162
+ def dynkin_diagram(self):
163
+ n = self.n
164
+ diag = "---".join("0" for i in range(1, n+1)) + "\n"
165
+ diag += " ".join(str(i) for i in range(1, n+1))
166
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_b.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeB(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 2:
8
+ raise ValueError("n cannot be less than 2")
9
+ return Standard_Cartan.__new__(cls, "B", n)
10
+
11
+ def dimension(self):
12
+ """Dimension of the vector space V underlying the Lie algebra
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy.liealgebras.cartan_type import CartanType
18
+ >>> c = CartanType("B3")
19
+ >>> c.dimension()
20
+ 3
21
+ """
22
+
23
+ return self.n
24
+
25
+ def basic_root(self, i, j):
26
+ """
27
+ This is a method just to generate roots
28
+ with a 1 iin the ith position and a -1
29
+ in the jth position.
30
+
31
+ """
32
+ root = [0]*self.n
33
+ root[i] = 1
34
+ root[j] = -1
35
+ return root
36
+
37
+ def simple_root(self, i):
38
+ """
39
+ Every lie algebra has a unique root system.
40
+ Given a root system Q, there is a subset of the
41
+ roots such that an element of Q is called a
42
+ simple root if it cannot be written as the sum
43
+ of two elements in Q. If we let D denote the
44
+ set of simple roots, then it is clear that every
45
+ element of Q can be written as a linear combination
46
+ of elements of D with all coefficients non-negative.
47
+
48
+ In B_n the first n-1 simple roots are the same as the
49
+ roots in A_(n-1) (a 1 in the ith position, a -1 in
50
+ the (i+1)th position, and zeroes elsewhere). The n-th
51
+ simple root is the root with a 1 in the nth position
52
+ and zeroes elsewhere.
53
+
54
+ This method returns the ith simple root for the B series.
55
+
56
+ Examples
57
+ ========
58
+
59
+ >>> from sympy.liealgebras.cartan_type import CartanType
60
+ >>> c = CartanType("B3")
61
+ >>> c.simple_root(2)
62
+ [0, 1, -1]
63
+
64
+ """
65
+ n = self.n
66
+ if i < n:
67
+ return self.basic_root(i-1, i)
68
+ else:
69
+ root = [0]*self.n
70
+ root[n-1] = 1
71
+ return root
72
+
73
+ def positive_roots(self):
74
+ """
75
+ This method generates all the positive roots of
76
+ A_n. This is half of all of the roots of B_n;
77
+ by multiplying all the positive roots by -1 we
78
+ get the negative roots.
79
+
80
+ Examples
81
+ ========
82
+
83
+ >>> from sympy.liealgebras.cartan_type import CartanType
84
+ >>> c = CartanType("A3")
85
+ >>> c.positive_roots()
86
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
87
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
88
+ """
89
+
90
+ n = self.n
91
+ posroots = {}
92
+ k = 0
93
+ for i in range(0, n-1):
94
+ for j in range(i+1, n):
95
+ k += 1
96
+ posroots[k] = self.basic_root(i, j)
97
+ k += 1
98
+ root = self.basic_root(i, j)
99
+ root[j] = 1
100
+ posroots[k] = root
101
+
102
+ for i in range(0, n):
103
+ k += 1
104
+ root = [0]*n
105
+ root[i] = 1
106
+ posroots[k] = root
107
+
108
+ return posroots
109
+
110
+ def roots(self):
111
+ """
112
+ Returns the total number of roots for B_n"
113
+ """
114
+
115
+ n = self.n
116
+ return 2*(n**2)
117
+
118
+ def cartan_matrix(self):
119
+ """
120
+ Returns the Cartan matrix for B_n.
121
+ The Cartan matrix matrix for a Lie algebra is
122
+ generated by assigning an ordering to the simple
123
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
124
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
125
+
126
+ Examples
127
+ ========
128
+
129
+ >>> from sympy.liealgebras.cartan_type import CartanType
130
+ >>> c = CartanType('B4')
131
+ >>> c.cartan_matrix()
132
+ Matrix([
133
+ [ 2, -1, 0, 0],
134
+ [-1, 2, -1, 0],
135
+ [ 0, -1, 2, -2],
136
+ [ 0, 0, -1, 2]])
137
+
138
+ """
139
+
140
+ n = self.n
141
+ m = 2* eye(n)
142
+ i = 1
143
+ while i < n-1:
144
+ m[i, i+1] = -1
145
+ m[i, i-1] = -1
146
+ i += 1
147
+ m[0, 1] = -1
148
+ m[n-2, n-1] = -2
149
+ m[n-1, n-2] = -1
150
+ return m
151
+
152
+ def basis(self):
153
+ """
154
+ Returns the number of independent generators of B_n
155
+ """
156
+
157
+ n = self.n
158
+ return (n**2 - n)/2
159
+
160
+ def lie_algebra(self):
161
+ """
162
+ Returns the Lie algebra associated with B_n
163
+ """
164
+
165
+ n = self.n
166
+ return "so(" + str(2*n) + ")"
167
+
168
+ def dynkin_diagram(self):
169
+ n = self.n
170
+ diag = "---".join("0" for i in range(1, n)) + "=>=0\n"
171
+ diag += " ".join(str(i) for i in range(1, n+1))
172
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_c.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeC(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 3:
8
+ raise ValueError("n cannot be less than 3")
9
+ return Standard_Cartan.__new__(cls, "C", n)
10
+
11
+
12
+ def dimension(self):
13
+ """Dimension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("C3")
20
+ >>> c.dimension()
21
+ 3
22
+ """
23
+ n = self.n
24
+ return n
25
+
26
+ def basic_root(self, i, j):
27
+ """Generate roots with 1 in ith position and a -1 in jth position
28
+ """
29
+ n = self.n
30
+ root = [0]*n
31
+ root[i] = 1
32
+ root[j] = -1
33
+ return root
34
+
35
+ def simple_root(self, i):
36
+ """The ith simple root for the C series
37
+
38
+ Every lie algebra has a unique root system.
39
+ Given a root system Q, there is a subset of the
40
+ roots such that an element of Q is called a
41
+ simple root if it cannot be written as the sum
42
+ of two elements in Q. If we let D denote the
43
+ set of simple roots, then it is clear that every
44
+ element of Q can be written as a linear combination
45
+ of elements of D with all coefficients non-negative.
46
+
47
+ In C_n, the first n-1 simple roots are the same as
48
+ the roots in A_(n-1) (a 1 in the ith position, a -1
49
+ in the (i+1)th position, and zeroes elsewhere). The
50
+ nth simple root is the root in which there is a 2 in
51
+ the nth position and zeroes elsewhere.
52
+
53
+ Examples
54
+ ========
55
+
56
+ >>> from sympy.liealgebras.cartan_type import CartanType
57
+ >>> c = CartanType("C3")
58
+ >>> c.simple_root(2)
59
+ [0, 1, -1]
60
+
61
+ """
62
+
63
+ n = self.n
64
+ if i < n:
65
+ return self.basic_root(i-1,i)
66
+ else:
67
+ root = [0]*self.n
68
+ root[n-1] = 2
69
+ return root
70
+
71
+
72
+ def positive_roots(self):
73
+ """Generates all the positive roots of A_n
74
+
75
+ This is half of all of the roots of C_n; by multiplying all the
76
+ positive roots by -1 we get the negative roots.
77
+
78
+ Examples
79
+ ========
80
+
81
+ >>> from sympy.liealgebras.cartan_type import CartanType
82
+ >>> c = CartanType("A3")
83
+ >>> c.positive_roots()
84
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
85
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
86
+
87
+ """
88
+
89
+ n = self.n
90
+ posroots = {}
91
+ k = 0
92
+ for i in range(0, n-1):
93
+ for j in range(i+1, n):
94
+ k += 1
95
+ posroots[k] = self.basic_root(i, j)
96
+ k += 1
97
+ root = self.basic_root(i, j)
98
+ root[j] = 1
99
+ posroots[k] = root
100
+
101
+ for i in range(0, n):
102
+ k += 1
103
+ root = [0]*n
104
+ root[i] = 2
105
+ posroots[k] = root
106
+
107
+ return posroots
108
+
109
+ def roots(self):
110
+ """
111
+ Returns the total number of roots for C_n"
112
+ """
113
+
114
+ n = self.n
115
+ return 2*(n**2)
116
+
117
+ def cartan_matrix(self):
118
+ """The Cartan matrix for C_n
119
+
120
+ The Cartan matrix matrix for a Lie algebra is
121
+ generated by assigning an ordering to the simple
122
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
123
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.liealgebras.cartan_type import CartanType
129
+ >>> c = CartanType('C4')
130
+ >>> c.cartan_matrix()
131
+ Matrix([
132
+ [ 2, -1, 0, 0],
133
+ [-1, 2, -1, 0],
134
+ [ 0, -1, 2, -1],
135
+ [ 0, 0, -2, 2]])
136
+
137
+ """
138
+
139
+ n = self.n
140
+ m = 2 * eye(n)
141
+ i = 1
142
+ while i < n-1:
143
+ m[i, i+1] = -1
144
+ m[i, i-1] = -1
145
+ i += 1
146
+ m[0,1] = -1
147
+ m[n-1, n-2] = -2
148
+ return m
149
+
150
+
151
+ def basis(self):
152
+ """
153
+ Returns the number of independent generators of C_n
154
+ """
155
+
156
+ n = self.n
157
+ return n*(2*n + 1)
158
+
159
+ def lie_algebra(self):
160
+ """
161
+ Returns the Lie algebra associated with C_n"
162
+ """
163
+
164
+ n = self.n
165
+ return "sp(" + str(2*n) + ")"
166
+
167
+ def dynkin_diagram(self):
168
+ n = self.n
169
+ diag = "---".join("0" for i in range(1, n)) + "=<=0\n"
170
+ diag += " ".join(str(i) for i in range(1, n+1))
171
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_d.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye
3
+
4
+ class TypeD(Standard_Cartan):
5
+
6
+ def __new__(cls, n):
7
+ if n < 3:
8
+ raise ValueError("n cannot be less than 3")
9
+ return Standard_Cartan.__new__(cls, "D", n)
10
+
11
+
12
+ def dimension(self):
13
+ """Dmension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("D4")
20
+ >>> c.dimension()
21
+ 4
22
+ """
23
+
24
+ return self.n
25
+
26
+ def basic_root(self, i, j):
27
+ """
28
+ This is a method just to generate roots
29
+ with a 1 iin the ith position and a -1
30
+ in the jth position.
31
+
32
+ """
33
+
34
+ n = self.n
35
+ root = [0]*n
36
+ root[i] = 1
37
+ root[j] = -1
38
+ return root
39
+
40
+ def simple_root(self, i):
41
+ """
42
+ Every lie algebra has a unique root system.
43
+ Given a root system Q, there is a subset of the
44
+ roots such that an element of Q is called a
45
+ simple root if it cannot be written as the sum
46
+ of two elements in Q. If we let D denote the
47
+ set of simple roots, then it is clear that every
48
+ element of Q can be written as a linear combination
49
+ of elements of D with all coefficients non-negative.
50
+
51
+ In D_n, the first n-1 simple roots are the same as
52
+ the roots in A_(n-1) (a 1 in the ith position, a -1
53
+ in the (i+1)th position, and zeroes elsewhere).
54
+ The nth simple root is the root in which there 1s in
55
+ the nth and (n-1)th positions, and zeroes elsewhere.
56
+
57
+ This method returns the ith simple root for the D series.
58
+
59
+ Examples
60
+ ========
61
+
62
+ >>> from sympy.liealgebras.cartan_type import CartanType
63
+ >>> c = CartanType("D4")
64
+ >>> c.simple_root(2)
65
+ [0, 1, -1, 0]
66
+
67
+ """
68
+
69
+ n = self.n
70
+ if i < n:
71
+ return self.basic_root(i-1, i)
72
+ else:
73
+ root = [0]*n
74
+ root[n-2] = 1
75
+ root[n-1] = 1
76
+ return root
77
+
78
+
79
+ def positive_roots(self):
80
+ """
81
+ This method generates all the positive roots of
82
+ A_n. This is half of all of the roots of D_n
83
+ by multiplying all the positive roots by -1 we
84
+ get the negative roots.
85
+
86
+ Examples
87
+ ========
88
+
89
+ >>> from sympy.liealgebras.cartan_type import CartanType
90
+ >>> c = CartanType("A3")
91
+ >>> c.positive_roots()
92
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
93
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
94
+ """
95
+
96
+ n = self.n
97
+ posroots = {}
98
+ k = 0
99
+ for i in range(0, n-1):
100
+ for j in range(i+1, n):
101
+ k += 1
102
+ posroots[k] = self.basic_root(i, j)
103
+ k += 1
104
+ root = self.basic_root(i, j)
105
+ root[j] = 1
106
+ posroots[k] = root
107
+ return posroots
108
+
109
+ def roots(self):
110
+ """
111
+ Returns the total number of roots for D_n"
112
+ """
113
+
114
+ n = self.n
115
+ return 2*n*(n-1)
116
+
117
+ def cartan_matrix(self):
118
+ """
119
+ Returns the Cartan matrix for D_n.
120
+ The Cartan matrix matrix for a Lie algebra is
121
+ generated by assigning an ordering to the simple
122
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
123
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.liealgebras.cartan_type import CartanType
129
+ >>> c = CartanType('D4')
130
+ >>> c.cartan_matrix()
131
+ Matrix([
132
+ [ 2, -1, 0, 0],
133
+ [-1, 2, -1, -1],
134
+ [ 0, -1, 2, 0],
135
+ [ 0, -1, 0, 2]])
136
+
137
+ """
138
+
139
+ n = self.n
140
+ m = 2*eye(n)
141
+ i = 1
142
+ while i < n-2:
143
+ m[i,i+1] = -1
144
+ m[i,i-1] = -1
145
+ i += 1
146
+ m[n-2, n-3] = -1
147
+ m[n-3, n-1] = -1
148
+ m[n-1, n-3] = -1
149
+ m[0, 1] = -1
150
+ return m
151
+
152
+ def basis(self):
153
+ """
154
+ Returns the number of independent generators of D_n
155
+ """
156
+ n = self.n
157
+ return n*(n-1)/2
158
+
159
+ def lie_algebra(self):
160
+ """
161
+ Returns the Lie algebra associated with D_n"
162
+ """
163
+
164
+ n = self.n
165
+ return "so(" + str(2*n) + ")"
166
+
167
+ def dynkin_diagram(self):
168
+ n = self.n
169
+ diag = " "*4*(n-3) + str(n-1) + "\n"
170
+ diag += " "*4*(n-3) + "0\n"
171
+ diag += " "*4*(n-3) +"|\n"
172
+ diag += " "*4*(n-3) + "|\n"
173
+ diag += "---".join("0" for i in range(1,n)) + "\n"
174
+ diag += " ".join(str(i) for i in range(1, n-1)) + " "+str(n)
175
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_e.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import eye, Rational
3
+
4
+
5
+ class TypeE(Standard_Cartan):
6
+
7
+ def __new__(cls, n):
8
+ if n < 6 or n > 8:
9
+ raise ValueError("Invalid value of n")
10
+ return Standard_Cartan.__new__(cls, "E", n)
11
+
12
+ def dimension(self):
13
+ """Dimension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("E6")
20
+ >>> c.dimension()
21
+ 8
22
+ """
23
+
24
+ return 8
25
+
26
+ def basic_root(self, i, j):
27
+ """
28
+ This is a method just to generate roots
29
+ with a -1 in the ith position and a 1
30
+ in the jth position.
31
+
32
+ """
33
+
34
+ root = [0]*8
35
+ root[i] = -1
36
+ root[j] = 1
37
+ return root
38
+
39
+ def simple_root(self, i):
40
+ """
41
+ Every lie algebra has a unique root system.
42
+ Given a root system Q, there is a subset of the
43
+ roots such that an element of Q is called a
44
+ simple root if it cannot be written as the sum
45
+ of two elements in Q. If we let D denote the
46
+ set of simple roots, then it is clear that every
47
+ element of Q can be written as a linear combination
48
+ of elements of D with all coefficients non-negative.
49
+
50
+ This method returns the ith simple root for E_n.
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy.liealgebras.cartan_type import CartanType
56
+ >>> c = CartanType("E6")
57
+ >>> c.simple_root(2)
58
+ [1, 1, 0, 0, 0, 0, 0, 0]
59
+ """
60
+ n = self.n
61
+ if i == 1:
62
+ root = [-0.5]*8
63
+ root[0] = 0.5
64
+ root[7] = 0.5
65
+ return root
66
+ elif i == 2:
67
+ root = [0]*8
68
+ root[1] = 1
69
+ root[0] = 1
70
+ return root
71
+ else:
72
+ if i in (7, 8) and n == 6:
73
+ raise ValueError("E6 only has six simple roots!")
74
+ if i == 8 and n == 7:
75
+ raise ValueError("E7 has only 7 simple roots!")
76
+
77
+ return self.basic_root(i - 3, i - 2)
78
+
79
+ def positive_roots(self):
80
+ """
81
+ This method generates all the positive roots of
82
+ A_n. This is half of all of the roots of E_n;
83
+ by multiplying all the positive roots by -1 we
84
+ get the negative roots.
85
+
86
+ Examples
87
+ ========
88
+
89
+ >>> from sympy.liealgebras.cartan_type import CartanType
90
+ >>> c = CartanType("A3")
91
+ >>> c.positive_roots()
92
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
93
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
94
+ """
95
+ n = self.n
96
+ if n == 6:
97
+ posroots = {}
98
+ k = 0
99
+ for i in range(n-1):
100
+ for j in range(i+1, n-1):
101
+ k += 1
102
+ root = self.basic_root(i, j)
103
+ posroots[k] = root
104
+ k += 1
105
+ root = self.basic_root(i, j)
106
+ root[i] = 1
107
+ posroots[k] = root
108
+
109
+ root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
110
+ Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
111
+ for a in range(0, 2):
112
+ for b in range(0, 2):
113
+ for c in range(0, 2):
114
+ for d in range(0, 2):
115
+ for e in range(0, 2):
116
+ if (a + b + c + d + e)%2 == 0:
117
+ k += 1
118
+ if a == 1:
119
+ root[0] = Rational(-1, 2)
120
+ if b == 1:
121
+ root[1] = Rational(-1, 2)
122
+ if c == 1:
123
+ root[2] = Rational(-1, 2)
124
+ if d == 1:
125
+ root[3] = Rational(-1, 2)
126
+ if e == 1:
127
+ root[4] = Rational(-1, 2)
128
+ posroots[k] = root
129
+
130
+ return posroots
131
+ if n == 7:
132
+ posroots = {}
133
+ k = 0
134
+ for i in range(n-1):
135
+ for j in range(i+1, n-1):
136
+ k += 1
137
+ root = self.basic_root(i, j)
138
+ posroots[k] = root
139
+ k += 1
140
+ root = self.basic_root(i, j)
141
+ root[i] = 1
142
+ posroots[k] = root
143
+
144
+ k += 1
145
+ posroots[k] = [0, 0, 0, 0, 0, 1, 1, 0]
146
+ root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
147
+ Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
148
+ for a in range(0, 2):
149
+ for b in range(0, 2):
150
+ for c in range(0, 2):
151
+ for d in range(0, 2):
152
+ for e in range(0, 2):
153
+ for f in range(0, 2):
154
+ if (a + b + c + d + e + f)%2 == 0:
155
+ k += 1
156
+ if a == 1:
157
+ root[0] = Rational(-1, 2)
158
+ if b == 1:
159
+ root[1] = Rational(-1, 2)
160
+ if c == 1:
161
+ root[2] = Rational(-1, 2)
162
+ if d == 1:
163
+ root[3] = Rational(-1, 2)
164
+ if e == 1:
165
+ root[4] = Rational(-1, 2)
166
+ if f == 1:
167
+ root[5] = Rational(1, 2)
168
+ posroots[k] = root
169
+
170
+ return posroots
171
+ if n == 8:
172
+ posroots = {}
173
+ k = 0
174
+ for i in range(n):
175
+ for j in range(i+1, n):
176
+ k += 1
177
+ root = self.basic_root(i, j)
178
+ posroots[k] = root
179
+ k += 1
180
+ root = self.basic_root(i, j)
181
+ root[i] = 1
182
+ posroots[k] = root
183
+
184
+ root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
185
+ Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
186
+ for a in range(0, 2):
187
+ for b in range(0, 2):
188
+ for c in range(0, 2):
189
+ for d in range(0, 2):
190
+ for e in range(0, 2):
191
+ for f in range(0, 2):
192
+ for g in range(0, 2):
193
+ if (a + b + c + d + e + f + g)%2 == 0:
194
+ k += 1
195
+ if a == 1:
196
+ root[0] = Rational(-1, 2)
197
+ if b == 1:
198
+ root[1] = Rational(-1, 2)
199
+ if c == 1:
200
+ root[2] = Rational(-1, 2)
201
+ if d == 1:
202
+ root[3] = Rational(-1, 2)
203
+ if e == 1:
204
+ root[4] = Rational(-1, 2)
205
+ if f == 1:
206
+ root[5] = Rational(1, 2)
207
+ if g == 1:
208
+ root[6] = Rational(1, 2)
209
+ posroots[k] = root
210
+
211
+ return posroots
212
+
213
+
214
+
215
+ def roots(self):
216
+ """
217
+ Returns the total number of roots of E_n
218
+ """
219
+
220
+ n = self.n
221
+ if n == 6:
222
+ return 72
223
+ if n == 7:
224
+ return 126
225
+ if n == 8:
226
+ return 240
227
+
228
+
229
+ def cartan_matrix(self):
230
+ """
231
+ Returns the Cartan matrix for G_2
232
+ The Cartan matrix matrix for a Lie algebra is
233
+ generated by assigning an ordering to the simple
234
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
235
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
236
+
237
+ Examples
238
+ ========
239
+
240
+ >>> from sympy.liealgebras.cartan_type import CartanType
241
+ >>> c = CartanType('A4')
242
+ >>> c.cartan_matrix()
243
+ Matrix([
244
+ [ 2, -1, 0, 0],
245
+ [-1, 2, -1, 0],
246
+ [ 0, -1, 2, -1],
247
+ [ 0, 0, -1, 2]])
248
+
249
+
250
+ """
251
+
252
+ n = self.n
253
+ m = 2*eye(n)
254
+ i = 3
255
+ while i < n-1:
256
+ m[i, i+1] = -1
257
+ m[i, i-1] = -1
258
+ i += 1
259
+ m[0, 2] = m[2, 0] = -1
260
+ m[1, 3] = m[3, 1] = -1
261
+ m[2, 3] = -1
262
+ m[n-1, n-2] = -1
263
+ return m
264
+
265
+
266
+ def basis(self):
267
+ """
268
+ Returns the number of independent generators of E_n
269
+ """
270
+
271
+ n = self.n
272
+ if n == 6:
273
+ return 78
274
+ if n == 7:
275
+ return 133
276
+ if n == 8:
277
+ return 248
278
+
279
+ def dynkin_diagram(self):
280
+ n = self.n
281
+ diag = " "*8 + str(2) + "\n"
282
+ diag += " "*8 + "0\n"
283
+ diag += " "*8 + "|\n"
284
+ diag += " "*8 + "|\n"
285
+ diag += "---".join("0" for i in range(1, n)) + "\n"
286
+ diag += "1 " + " ".join(str(i) for i in range(3, n+1))
287
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_f.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import Standard_Cartan
2
+ from sympy.core.backend import Matrix, Rational
3
+
4
+
5
+ class TypeF(Standard_Cartan):
6
+
7
+ def __new__(cls, n):
8
+ if n != 4:
9
+ raise ValueError("n should be 4")
10
+ return Standard_Cartan.__new__(cls, "F", 4)
11
+
12
+ def dimension(self):
13
+ """Dimension of the vector space V underlying the Lie algebra
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.liealgebras.cartan_type import CartanType
19
+ >>> c = CartanType("F4")
20
+ >>> c.dimension()
21
+ 4
22
+ """
23
+
24
+ return 4
25
+
26
+
27
+ def basic_root(self, i, j):
28
+ """Generate roots with 1 in ith position and -1 in jth position
29
+
30
+ """
31
+
32
+ n = self.n
33
+ root = [0]*n
34
+ root[i] = 1
35
+ root[j] = -1
36
+ return root
37
+
38
+ def simple_root(self, i):
39
+ """The ith simple root of F_4
40
+
41
+ Every lie algebra has a unique root system.
42
+ Given a root system Q, there is a subset of the
43
+ roots such that an element of Q is called a
44
+ simple root if it cannot be written as the sum
45
+ of two elements in Q. If we let D denote the
46
+ set of simple roots, then it is clear that every
47
+ element of Q can be written as a linear combination
48
+ of elements of D with all coefficients non-negative.
49
+
50
+ Examples
51
+ ========
52
+
53
+ >>> from sympy.liealgebras.cartan_type import CartanType
54
+ >>> c = CartanType("F4")
55
+ >>> c.simple_root(3)
56
+ [0, 0, 0, 1]
57
+
58
+ """
59
+
60
+ if i < 3:
61
+ return self.basic_root(i-1, i)
62
+ if i == 3:
63
+ root = [0]*4
64
+ root[3] = 1
65
+ return root
66
+ if i == 4:
67
+ root = [Rational(-1, 2)]*4
68
+ return root
69
+
70
+ def positive_roots(self):
71
+ """Generate all the positive roots of A_n
72
+
73
+ This is half of all of the roots of F_4; by multiplying all the
74
+ positive roots by -1 we get the negative roots.
75
+
76
+ Examples
77
+ ========
78
+
79
+ >>> from sympy.liealgebras.cartan_type import CartanType
80
+ >>> c = CartanType("A3")
81
+ >>> c.positive_roots()
82
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
83
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
84
+
85
+ """
86
+
87
+ n = self.n
88
+ posroots = {}
89
+ k = 0
90
+ for i in range(0, n-1):
91
+ for j in range(i+1, n):
92
+ k += 1
93
+ posroots[k] = self.basic_root(i, j)
94
+ k += 1
95
+ root = self.basic_root(i, j)
96
+ root[j] = 1
97
+ posroots[k] = root
98
+
99
+ for i in range(0, n):
100
+ k += 1
101
+ root = [0]*n
102
+ root[i] = 1
103
+ posroots[k] = root
104
+
105
+ k += 1
106
+ root = [Rational(1, 2)]*n
107
+ posroots[k] = root
108
+ for i in range(1, 4):
109
+ k += 1
110
+ root = [Rational(1, 2)]*n
111
+ root[i] = Rational(-1, 2)
112
+ posroots[k] = root
113
+
114
+ posroots[k+1] = [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)]
115
+ posroots[k+2] = [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)]
116
+ posroots[k+3] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
117
+ posroots[k+4] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(-1, 2)]
118
+
119
+ return posroots
120
+
121
+
122
+ def roots(self):
123
+ """
124
+ Returns the total number of roots for F_4
125
+ """
126
+ return 48
127
+
128
+ def cartan_matrix(self):
129
+ """The Cartan matrix for F_4
130
+
131
+ The Cartan matrix matrix for a Lie algebra is
132
+ generated by assigning an ordering to the simple
133
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
134
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
135
+
136
+ Examples
137
+ ========
138
+
139
+ >>> from sympy.liealgebras.cartan_type import CartanType
140
+ >>> c = CartanType('A4')
141
+ >>> c.cartan_matrix()
142
+ Matrix([
143
+ [ 2, -1, 0, 0],
144
+ [-1, 2, -1, 0],
145
+ [ 0, -1, 2, -1],
146
+ [ 0, 0, -1, 2]])
147
+ """
148
+
149
+ m = Matrix( 4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0,
150
+ -1, 2, -1, 0, 0, -1, 2])
151
+ return m
152
+
153
+ def basis(self):
154
+ """
155
+ Returns the number of independent generators of F_4
156
+ """
157
+ return 52
158
+
159
+ def dynkin_diagram(self):
160
+ diag = "0---0=>=0---0\n"
161
+ diag += " ".join(str(i) for i in range(1, 5))
162
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/type_g.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from .cartan_type import Standard_Cartan
4
+ from sympy.core.backend import Matrix
5
+
6
+ class TypeG(Standard_Cartan):
7
+
8
+ def __new__(cls, n):
9
+ if n != 2:
10
+ raise ValueError("n should be 2")
11
+ return Standard_Cartan.__new__(cls, "G", 2)
12
+
13
+
14
+ def dimension(self):
15
+ """Dimension of the vector space V underlying the Lie algebra
16
+
17
+ Examples
18
+ ========
19
+
20
+ >>> from sympy.liealgebras.cartan_type import CartanType
21
+ >>> c = CartanType("G2")
22
+ >>> c.dimension()
23
+ 3
24
+ """
25
+ return 3
26
+
27
+ def simple_root(self, i):
28
+ """The ith simple root of G_2
29
+
30
+ Every lie algebra has a unique root system.
31
+ Given a root system Q, there is a subset of the
32
+ roots such that an element of Q is called a
33
+ simple root if it cannot be written as the sum
34
+ of two elements in Q. If we let D denote the
35
+ set of simple roots, then it is clear that every
36
+ element of Q can be written as a linear combination
37
+ of elements of D with all coefficients non-negative.
38
+
39
+ Examples
40
+ ========
41
+
42
+ >>> from sympy.liealgebras.cartan_type import CartanType
43
+ >>> c = CartanType("G2")
44
+ >>> c.simple_root(1)
45
+ [0, 1, -1]
46
+
47
+ """
48
+ if i == 1:
49
+ return [0, 1, -1]
50
+ else:
51
+ return [1, -2, 1]
52
+
53
+ def positive_roots(self):
54
+ """Generate all the positive roots of A_n
55
+
56
+ This is half of all of the roots of A_n; by multiplying all the
57
+ positive roots by -1 we get the negative roots.
58
+
59
+ Examples
60
+ ========
61
+
62
+ >>> from sympy.liealgebras.cartan_type import CartanType
63
+ >>> c = CartanType("A3")
64
+ >>> c.positive_roots()
65
+ {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
66
+ 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
67
+
68
+ """
69
+
70
+ roots = {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0], 4: [1, 0, 1],
71
+ 5: [1, 1, -2], 6: [2, -1, -1]}
72
+ return roots
73
+
74
+ def roots(self):
75
+ """
76
+ Returns the total number of roots of G_2"
77
+ """
78
+ return 12
79
+
80
+ def cartan_matrix(self):
81
+ """The Cartan matrix for G_2
82
+
83
+ The Cartan matrix matrix for a Lie algebra is
84
+ generated by assigning an ordering to the simple
85
+ roots, (alpha[1], ...., alpha[l]). Then the ijth
86
+ entry of the Cartan matrix is (<alpha[i],alpha[j]>).
87
+
88
+ Examples
89
+ ========
90
+
91
+ >>> from sympy.liealgebras.cartan_type import CartanType
92
+ >>> c = CartanType("G2")
93
+ >>> c.cartan_matrix()
94
+ Matrix([
95
+ [ 2, -1],
96
+ [-3, 2]])
97
+
98
+ """
99
+
100
+ m = Matrix( 2, 2, [2, -1, -3, 2])
101
+ return m
102
+
103
+ def basis(self):
104
+ """
105
+ Returns the number of independent generators of G_2
106
+ """
107
+ return 14
108
+
109
+ def dynkin_diagram(self):
110
+ diag = "0≡<≡0\n1 2"
111
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/weyl_group.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from .cartan_type import CartanType
4
+ from mpmath import fac
5
+ from sympy.core.backend import Matrix, eye, Rational, igcd
6
+ from sympy.core.basic import Atom
7
+
8
+ class WeylGroup(Atom):
9
+
10
+ """
11
+ For each semisimple Lie group, we have a Weyl group. It is a subgroup of
12
+ the isometry group of the root system. Specifically, it's the subgroup
13
+ that is generated by reflections through the hyperplanes orthogonal to
14
+ the roots. Therefore, Weyl groups are reflection groups, and so a Weyl
15
+ group is a finite Coxeter group.
16
+
17
+ """
18
+
19
+ def __new__(cls, cartantype):
20
+ obj = Atom.__new__(cls)
21
+ obj.cartan_type = CartanType(cartantype)
22
+ return obj
23
+
24
+ def generators(self):
25
+ """
26
+ This method creates the generating reflections of the Weyl group for
27
+ a given Lie algebra. For a Lie algebra of rank n, there are n
28
+ different generating reflections. This function returns them as
29
+ a list.
30
+
31
+ Examples
32
+ ========
33
+
34
+ >>> from sympy.liealgebras.weyl_group import WeylGroup
35
+ >>> c = WeylGroup("F4")
36
+ >>> c.generators()
37
+ ['r1', 'r2', 'r3', 'r4']
38
+ """
39
+ n = self.cartan_type.rank()
40
+ generators = []
41
+ for i in range(1, n+1):
42
+ reflection = "r"+str(i)
43
+ generators.append(reflection)
44
+ return generators
45
+
46
+ def group_order(self):
47
+ """
48
+ This method returns the order of the Weyl group.
49
+ For types A, B, C, D, and E the order depends on
50
+ the rank of the Lie algebra. For types F and G,
51
+ the order is fixed.
52
+
53
+ Examples
54
+ ========
55
+
56
+ >>> from sympy.liealgebras.weyl_group import WeylGroup
57
+ >>> c = WeylGroup("D4")
58
+ >>> c.group_order()
59
+ 192.0
60
+ """
61
+ n = self.cartan_type.rank()
62
+ if self.cartan_type.series == "A":
63
+ return fac(n+1)
64
+
65
+ if self.cartan_type.series in ("B", "C"):
66
+ return fac(n)*(2**n)
67
+
68
+ if self.cartan_type.series == "D":
69
+ return fac(n)*(2**(n-1))
70
+
71
+ if self.cartan_type.series == "E":
72
+ if n == 6:
73
+ return 51840
74
+ if n == 7:
75
+ return 2903040
76
+ if n == 8:
77
+ return 696729600
78
+ if self.cartan_type.series == "F":
79
+ return 1152
80
+
81
+ if self.cartan_type.series == "G":
82
+ return 12
83
+
84
+ def group_name(self):
85
+ """
86
+ This method returns some general information about the Weyl group for
87
+ a given Lie algebra. It returns the name of the group and the elements
88
+ it acts on, if relevant.
89
+ """
90
+ n = self.cartan_type.rank()
91
+ if self.cartan_type.series == "A":
92
+ return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements."
93
+
94
+ if self.cartan_type.series in ("B", "C"):
95
+ return "The hyperoctahedral group acting on " + str(2*n) + " elements."
96
+
97
+ if self.cartan_type.series == "D":
98
+ return "The symmetry group of the " + str(n) + "-dimensional demihypercube."
99
+
100
+ if self.cartan_type.series == "E":
101
+ if n == 6:
102
+ return "The symmetry group of the 6-polytope."
103
+
104
+ if n == 7:
105
+ return "The symmetry group of the 7-polytope."
106
+
107
+ if n == 8:
108
+ return "The symmetry group of the 8-polytope."
109
+
110
+ if self.cartan_type.series == "F":
111
+ return "The symmetry group of the 24-cell, or icositetrachoron."
112
+
113
+ if self.cartan_type.series == "G":
114
+ return "D6, the dihedral group of order 12, and symmetry group of the hexagon."
115
+
116
+ def element_order(self, weylelt):
117
+ """
118
+ This method returns the order of a given Weyl group element, which should
119
+ be specified by the user in the form of products of the generating
120
+ reflections, i.e. of the form r1*r2 etc.
121
+
122
+ For types A-F, this method current works by taking the matrix form of
123
+ the specified element, and then finding what power of the matrix is the
124
+ identity. It then returns this power.
125
+
126
+ Examples
127
+ ========
128
+
129
+ >>> from sympy.liealgebras.weyl_group import WeylGroup
130
+ >>> b = WeylGroup("B4")
131
+ >>> b.element_order('r1*r4*r2')
132
+ 4
133
+ """
134
+ n = self.cartan_type.rank()
135
+ if self.cartan_type.series == "A":
136
+ a = self.matrix_form(weylelt)
137
+ order = 1
138
+ while a != eye(n+1):
139
+ a *= self.matrix_form(weylelt)
140
+ order += 1
141
+ return order
142
+
143
+ if self.cartan_type.series == "D":
144
+ a = self.matrix_form(weylelt)
145
+ order = 1
146
+ while a != eye(n):
147
+ a *= self.matrix_form(weylelt)
148
+ order += 1
149
+ return order
150
+
151
+ if self.cartan_type.series == "E":
152
+ a = self.matrix_form(weylelt)
153
+ order = 1
154
+ while a != eye(8):
155
+ a *= self.matrix_form(weylelt)
156
+ order += 1
157
+ return order
158
+
159
+ if self.cartan_type.series == "G":
160
+ elts = list(weylelt)
161
+ reflections = elts[1::3]
162
+ m = self.delete_doubles(reflections)
163
+ while self.delete_doubles(m) != m:
164
+ m = self.delete_doubles(m)
165
+ reflections = m
166
+ if len(reflections) % 2 == 1:
167
+ return 2
168
+
169
+ elif len(reflections) == 0:
170
+ return 1
171
+
172
+ else:
173
+ if len(reflections) == 1:
174
+ return 2
175
+ else:
176
+ m = len(reflections) // 2
177
+ lcm = (6 * m)/ igcd(m, 6)
178
+ order = lcm / m
179
+ return order
180
+
181
+
182
+ if self.cartan_type.series == 'F':
183
+ a = self.matrix_form(weylelt)
184
+ order = 1
185
+ while a != eye(4):
186
+ a *= self.matrix_form(weylelt)
187
+ order += 1
188
+ return order
189
+
190
+
191
+ if self.cartan_type.series in ("B", "C"):
192
+ a = self.matrix_form(weylelt)
193
+ order = 1
194
+ while a != eye(n):
195
+ a *= self.matrix_form(weylelt)
196
+ order += 1
197
+ return order
198
+
199
+ def delete_doubles(self, reflections):
200
+ """
201
+ This is a helper method for determining the order of an element in the
202
+ Weyl group of G2. It takes a Weyl element and if repeated simple reflections
203
+ in it, it deletes them.
204
+ """
205
+ counter = 0
206
+ copy = list(reflections)
207
+ for elt in copy:
208
+ if counter < len(copy)-1:
209
+ if copy[counter + 1] == elt:
210
+ del copy[counter]
211
+ del copy[counter]
212
+ counter += 1
213
+
214
+
215
+ return copy
216
+
217
+
218
+ def matrix_form(self, weylelt):
219
+ """
220
+ This method takes input from the user in the form of products of the
221
+ generating reflections, and returns the matrix corresponding to the
222
+ element of the Weyl group. Since each element of the Weyl group is
223
+ a reflection of some type, there is a corresponding matrix representation.
224
+ This method uses the standard representation for all the generating
225
+ reflections.
226
+
227
+ Examples
228
+ ========
229
+
230
+ >>> from sympy.liealgebras.weyl_group import WeylGroup
231
+ >>> f = WeylGroup("F4")
232
+ >>> f.matrix_form('r2*r3')
233
+ Matrix([
234
+ [1, 0, 0, 0],
235
+ [0, 1, 0, 0],
236
+ [0, 0, 0, -1],
237
+ [0, 0, 1, 0]])
238
+
239
+ """
240
+ elts = list(weylelt)
241
+ reflections = elts[1::3]
242
+ n = self.cartan_type.rank()
243
+ if self.cartan_type.series == 'A':
244
+ matrixform = eye(n+1)
245
+ for elt in reflections:
246
+ a = int(elt)
247
+ mat = eye(n+1)
248
+ mat[a-1, a-1] = 0
249
+ mat[a-1, a] = 1
250
+ mat[a, a-1] = 1
251
+ mat[a, a] = 0
252
+ matrixform *= mat
253
+ return matrixform
254
+
255
+ if self.cartan_type.series == 'D':
256
+ matrixform = eye(n)
257
+ for elt in reflections:
258
+ a = int(elt)
259
+ mat = eye(n)
260
+ if a < n:
261
+ mat[a-1, a-1] = 0
262
+ mat[a-1, a] = 1
263
+ mat[a, a-1] = 1
264
+ mat[a, a] = 0
265
+ matrixform *= mat
266
+ else:
267
+ mat[n-2, n-1] = -1
268
+ mat[n-2, n-2] = 0
269
+ mat[n-1, n-2] = -1
270
+ mat[n-1, n-1] = 0
271
+ matrixform *= mat
272
+ return matrixform
273
+
274
+ if self.cartan_type.series == 'G':
275
+ matrixform = eye(3)
276
+ for elt in reflections:
277
+ a = int(elt)
278
+ if a == 1:
279
+ gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
280
+ matrixform *= gen1
281
+ else:
282
+ gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)],
283
+ [Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
284
+ [Rational(-1, 3), Rational(2, 3), Rational(2, 3)]])
285
+ matrixform *= gen2
286
+ return matrixform
287
+
288
+ if self.cartan_type.series == 'F':
289
+ matrixform = eye(4)
290
+ for elt in reflections:
291
+ a = int(elt)
292
+ if a == 1:
293
+ mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
294
+ matrixform *= mat
295
+ elif a == 2:
296
+ mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
297
+ matrixform *= mat
298
+ elif a == 3:
299
+ mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])
300
+ matrixform *= mat
301
+ else:
302
+
303
+ mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)],
304
+ [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)],
305
+ [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)],
306
+ [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]])
307
+ matrixform *= mat
308
+ return matrixform
309
+
310
+ if self.cartan_type.series == 'E':
311
+ matrixform = eye(8)
312
+ for elt in reflections:
313
+ a = int(elt)
314
+ if a == 1:
315
+ mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4),
316
+ Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)],
317
+ [Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4),
318
+ Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)],
319
+ [Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4),
320
+ Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
321
+ [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4),
322
+ Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
323
+ [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
324
+ Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
325
+ [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
326
+ Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)],
327
+ [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
328
+ Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)],
329
+ [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
330
+ Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]])
331
+ matrixform *= mat
332
+ elif a == 2:
333
+ mat = eye(8)
334
+ mat[0, 0] = 0
335
+ mat[0, 1] = -1
336
+ mat[1, 0] = -1
337
+ mat[1, 1] = 0
338
+ matrixform *= mat
339
+ else:
340
+ mat = eye(8)
341
+ mat[a-3, a-3] = 0
342
+ mat[a-3, a-2] = 1
343
+ mat[a-2, a-3] = 1
344
+ mat[a-2, a-2] = 0
345
+ matrixform *= mat
346
+ return matrixform
347
+
348
+
349
+ if self.cartan_type.series in ("B", "C"):
350
+ matrixform = eye(n)
351
+ for elt in reflections:
352
+ a = int(elt)
353
+ mat = eye(n)
354
+ if a == 1:
355
+ mat[0, 0] = -1
356
+ matrixform *= mat
357
+ else:
358
+ mat[a - 2, a - 2] = 0
359
+ mat[a-2, a-1] = 1
360
+ mat[a - 1, a - 2] = 1
361
+ mat[a -1, a - 1] = 0
362
+ matrixform *= mat
363
+ return matrixform
364
+
365
+
366
+
367
+ def coxeter_diagram(self):
368
+ """
369
+ This method returns the Coxeter diagram corresponding to a Weyl group.
370
+ The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram
371
+ by deleting all arrows; the Coxeter diagram is the undirected graph.
372
+ The vertices of the Coxeter diagram represent the generating reflections
373
+ of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order
374
+ $m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order
375
+ $m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there
376
+ are three edges, the order $m(i, j)$ is 6.
377
+
378
+ Examples
379
+ ========
380
+
381
+ >>> from sympy.liealgebras.weyl_group import WeylGroup
382
+ >>> c = WeylGroup("B3")
383
+ >>> print(c.coxeter_diagram())
384
+ 0---0===0
385
+ 1 2 3
386
+ """
387
+ n = self.cartan_type.rank()
388
+ if self.cartan_type.series in ("A", "D", "E"):
389
+ return self.cartan_type.dynkin_diagram()
390
+
391
+ if self.cartan_type.series in ("B", "C"):
392
+ diag = "---".join("0" for i in range(1, n)) + "===0\n"
393
+ diag += " ".join(str(i) for i in range(1, n+1))
394
+ return diag
395
+
396
+ if self.cartan_type.series == "F":
397
+ diag = "0---0===0---0\n"
398
+ diag += " ".join(str(i) for i in range(1, 5))
399
+ return diag
400
+
401
+ if self.cartan_type.series == "G":
402
+ diag = "0≡≡≡0\n1 2"
403
+ return diag
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__init__.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module that handles matrices.
2
+
3
+ Includes functions for fast creating matrices like zero, one/eye, random
4
+ matrix, etc.
5
+ """
6
+ from .common import ShapeError, NonSquareMatrixError, MatrixKind
7
+ from .dense import (
8
+ GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
9
+ list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
10
+ randMatrix, rot_axis1, rot_axis2, rot_axis3, rot_ccw_axis1,
11
+ rot_ccw_axis2, rot_ccw_axis3, rot_givens,
12
+ symarray, wronskian, zeros)
13
+ from .dense import MutableDenseMatrix
14
+ from .matrices import DeferredVector, MatrixBase
15
+
16
+ MutableMatrix = MutableDenseMatrix
17
+ Matrix = MutableMatrix
18
+
19
+ from .sparse import MutableSparseMatrix
20
+ from .sparsetools import banded
21
+ from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
22
+
23
+ ImmutableMatrix = ImmutableDenseMatrix
24
+ SparseMatrix = MutableSparseMatrix
25
+
26
+ from .expressions import (
27
+ MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
28
+ Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
29
+ Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
30
+ hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
31
+ diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
32
+ DotProduct, kronecker_product, KroneckerProduct,
33
+ PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per)
34
+
35
+ from .utilities import dotprodsimp
36
+
37
+ __all__ = [
38
+ 'ShapeError', 'NonSquareMatrixError', 'MatrixKind',
39
+
40
+ 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
41
+ 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
42
+ 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
43
+ 'wronskian', 'zeros', 'rot_ccw_axis1', 'rot_ccw_axis2', 'rot_ccw_axis3',
44
+ 'rot_givens',
45
+
46
+ 'MutableDenseMatrix',
47
+
48
+ 'DeferredVector', 'MatrixBase',
49
+
50
+ 'Matrix', 'MutableMatrix',
51
+
52
+ 'MutableSparseMatrix',
53
+
54
+ 'banded',
55
+
56
+ 'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
57
+
58
+ 'ImmutableMatrix', 'SparseMatrix',
59
+
60
+ 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
61
+ 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
62
+ 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
63
+ 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
64
+ 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
65
+ 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
66
+ 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
67
+ 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet',
68
+ 'Permanent', 'per',
69
+
70
+ 'dotprodsimp',
71
+ ]