Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py +45 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py +1780 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py +641 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py +5 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py +2883 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py +120 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py +601 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py +120 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py +38 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py +852 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py +143 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py +268 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py +481 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py +664 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py +151 -0
- env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py +718 -0
- env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py +25 -0
- env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py +199 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py +11 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py +68 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py +83 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py +413 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py +62 -0
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
A geometry module for the SymPy library. This module contains all of the
|
| 3 |
+
entities and functions needed to construct basic geometrical data and to
|
| 4 |
+
perform simple informational queries.
|
| 5 |
+
|
| 6 |
+
Usage:
|
| 7 |
+
======
|
| 8 |
+
|
| 9 |
+
Examples
|
| 10 |
+
========
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
from sympy.geometry.point import Point, Point2D, Point3D
|
| 14 |
+
from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
|
| 15 |
+
Line3D, Segment3D, Ray3D
|
| 16 |
+
from sympy.geometry.plane import Plane
|
| 17 |
+
from sympy.geometry.ellipse import Ellipse, Circle
|
| 18 |
+
from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
|
| 19 |
+
from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
|
| 20 |
+
intersection, closest_points, farthest_points
|
| 21 |
+
from sympy.geometry.exceptions import GeometryError
|
| 22 |
+
from sympy.geometry.curve import Curve
|
| 23 |
+
from sympy.geometry.parabola import Parabola
|
| 24 |
+
|
| 25 |
+
__all__ = [
|
| 26 |
+
'Point', 'Point2D', 'Point3D',
|
| 27 |
+
|
| 28 |
+
'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
|
| 29 |
+
'Segment3D', 'Ray3D',
|
| 30 |
+
|
| 31 |
+
'Plane',
|
| 32 |
+
|
| 33 |
+
'Ellipse', 'Circle',
|
| 34 |
+
|
| 35 |
+
'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
|
| 36 |
+
|
| 37 |
+
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
|
| 38 |
+
'closest_points', 'farthest_points',
|
| 39 |
+
|
| 40 |
+
'GeometryError',
|
| 41 |
+
|
| 42 |
+
'Curve',
|
| 43 |
+
|
| 44 |
+
'Parabola',
|
| 45 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.46 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc
ADDED
|
Binary file (48.4 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc
ADDED
|
Binary file (21.2 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc
ADDED
|
Binary file (452 Bytes). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc
ADDED
|
Binary file (70.2 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc
ADDED
|
Binary file (25.8 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc
ADDED
|
Binary file (39.3 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc
ADDED
|
Binary file (78 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc
ADDED
|
Binary file (20.2 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py
ADDED
|
@@ -0,0 +1,1780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Elliptical geometrical entities.
|
| 2 |
+
|
| 3 |
+
Contains
|
| 4 |
+
* Ellipse
|
| 5 |
+
* Circle
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from sympy.core.expr import Expr
|
| 10 |
+
from sympy.core.relational import Eq
|
| 11 |
+
from sympy.core import S, pi, sympify
|
| 12 |
+
from sympy.core.evalf import N
|
| 13 |
+
from sympy.core.parameters import global_parameters
|
| 14 |
+
from sympy.core.logic import fuzzy_bool
|
| 15 |
+
from sympy.core.numbers import Rational, oo
|
| 16 |
+
from sympy.core.sorting import ordered
|
| 17 |
+
from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
|
| 18 |
+
from sympy.simplify import simplify, trigsimp
|
| 19 |
+
from sympy.functions.elementary.miscellaneous import sqrt, Max
|
| 20 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
| 21 |
+
from sympy.functions.special.elliptic_integrals import elliptic_e
|
| 22 |
+
from .entity import GeometryEntity, GeometrySet
|
| 23 |
+
from .exceptions import GeometryError
|
| 24 |
+
from .line import Line, Segment, Ray2D, Segment2D, Line2D, LinearEntity3D
|
| 25 |
+
from .point import Point, Point2D, Point3D
|
| 26 |
+
from .util import idiff, find
|
| 27 |
+
from sympy.polys import DomainError, Poly, PolynomialError
|
| 28 |
+
from sympy.polys.polyutils import _not_a_coeff, _nsort
|
| 29 |
+
from sympy.solvers import solve
|
| 30 |
+
from sympy.solvers.solveset import linear_coeffs
|
| 31 |
+
from sympy.utilities.misc import filldedent, func_name
|
| 32 |
+
|
| 33 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
| 34 |
+
|
| 35 |
+
import random
|
| 36 |
+
|
| 37 |
+
x, y = [Dummy('ellipse_dummy', real=True) for i in range(2)]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class Ellipse(GeometrySet):
|
| 41 |
+
"""An elliptical GeometryEntity.
|
| 42 |
+
|
| 43 |
+
Parameters
|
| 44 |
+
==========
|
| 45 |
+
|
| 46 |
+
center : Point, optional
|
| 47 |
+
Default value is Point(0, 0)
|
| 48 |
+
hradius : number or SymPy expression, optional
|
| 49 |
+
vradius : number or SymPy expression, optional
|
| 50 |
+
eccentricity : number or SymPy expression, optional
|
| 51 |
+
Two of `hradius`, `vradius` and `eccentricity` must be supplied to
|
| 52 |
+
create an Ellipse. The third is derived from the two supplied.
|
| 53 |
+
|
| 54 |
+
Attributes
|
| 55 |
+
==========
|
| 56 |
+
|
| 57 |
+
center
|
| 58 |
+
hradius
|
| 59 |
+
vradius
|
| 60 |
+
area
|
| 61 |
+
circumference
|
| 62 |
+
eccentricity
|
| 63 |
+
periapsis
|
| 64 |
+
apoapsis
|
| 65 |
+
focus_distance
|
| 66 |
+
foci
|
| 67 |
+
|
| 68 |
+
Raises
|
| 69 |
+
======
|
| 70 |
+
|
| 71 |
+
GeometryError
|
| 72 |
+
When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
|
| 73 |
+
as parameters.
|
| 74 |
+
TypeError
|
| 75 |
+
When `center` is not a Point.
|
| 76 |
+
|
| 77 |
+
See Also
|
| 78 |
+
========
|
| 79 |
+
|
| 80 |
+
Circle
|
| 81 |
+
|
| 82 |
+
Notes
|
| 83 |
+
-----
|
| 84 |
+
Constructed from a center and two radii, the first being the horizontal
|
| 85 |
+
radius (along the x-axis) and the second being the vertical radius (along
|
| 86 |
+
the y-axis).
|
| 87 |
+
|
| 88 |
+
When symbolic value for hradius and vradius are used, any calculation that
|
| 89 |
+
refers to the foci or the major or minor axis will assume that the ellipse
|
| 90 |
+
has its major radius on the x-axis. If this is not true then a manual
|
| 91 |
+
rotation is necessary.
|
| 92 |
+
|
| 93 |
+
Examples
|
| 94 |
+
========
|
| 95 |
+
|
| 96 |
+
>>> from sympy import Ellipse, Point, Rational
|
| 97 |
+
>>> e1 = Ellipse(Point(0, 0), 5, 1)
|
| 98 |
+
>>> e1.hradius, e1.vradius
|
| 99 |
+
(5, 1)
|
| 100 |
+
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
|
| 101 |
+
>>> e2
|
| 102 |
+
Ellipse(Point2D(3, 1), 3, 9/5)
|
| 103 |
+
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
def __contains__(self, o):
|
| 107 |
+
if isinstance(o, Point):
|
| 108 |
+
res = self.equation(x, y).subs({x: o.x, y: o.y})
|
| 109 |
+
return trigsimp(simplify(res)) is S.Zero
|
| 110 |
+
elif isinstance(o, Ellipse):
|
| 111 |
+
return self == o
|
| 112 |
+
return False
|
| 113 |
+
|
| 114 |
+
def __eq__(self, o):
|
| 115 |
+
"""Is the other GeometryEntity the same as this ellipse?"""
|
| 116 |
+
return isinstance(o, Ellipse) and (self.center == o.center and
|
| 117 |
+
self.hradius == o.hradius and
|
| 118 |
+
self.vradius == o.vradius)
|
| 119 |
+
|
| 120 |
+
def __hash__(self):
|
| 121 |
+
return super().__hash__()
|
| 122 |
+
|
| 123 |
+
def __new__(
|
| 124 |
+
cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
|
| 125 |
+
|
| 126 |
+
hradius = sympify(hradius)
|
| 127 |
+
vradius = sympify(vradius)
|
| 128 |
+
|
| 129 |
+
if center is None:
|
| 130 |
+
center = Point(0, 0)
|
| 131 |
+
else:
|
| 132 |
+
if len(center) != 2:
|
| 133 |
+
raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
|
| 134 |
+
center = Point(center, dim=2)
|
| 135 |
+
|
| 136 |
+
if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
|
| 137 |
+
raise ValueError(filldedent('''
|
| 138 |
+
Exactly two arguments of "hradius", "vradius", and
|
| 139 |
+
"eccentricity" must not be None.'''))
|
| 140 |
+
|
| 141 |
+
if eccentricity is not None:
|
| 142 |
+
eccentricity = sympify(eccentricity)
|
| 143 |
+
if eccentricity.is_negative:
|
| 144 |
+
raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
|
| 145 |
+
elif hradius is None:
|
| 146 |
+
hradius = vradius / sqrt(1 - eccentricity**2)
|
| 147 |
+
elif vradius is None:
|
| 148 |
+
vradius = hradius * sqrt(1 - eccentricity**2)
|
| 149 |
+
|
| 150 |
+
if hradius == vradius:
|
| 151 |
+
return Circle(center, hradius, **kwargs)
|
| 152 |
+
|
| 153 |
+
if S.Zero in (hradius, vradius):
|
| 154 |
+
return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
|
| 155 |
+
|
| 156 |
+
if hradius.is_real is False or vradius.is_real is False:
|
| 157 |
+
raise GeometryError("Invalid value encountered when computing hradius / vradius.")
|
| 158 |
+
|
| 159 |
+
return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
|
| 160 |
+
|
| 161 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
| 162 |
+
"""Returns SVG ellipse element for the Ellipse.
|
| 163 |
+
|
| 164 |
+
Parameters
|
| 165 |
+
==========
|
| 166 |
+
|
| 167 |
+
scale_factor : float
|
| 168 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
| 169 |
+
fill_color : str, optional
|
| 170 |
+
Hex string for fill color. Default is "#66cc99".
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
c = N(self.center)
|
| 174 |
+
h, v = N(self.hradius), N(self.vradius)
|
| 175 |
+
return (
|
| 176 |
+
'<ellipse fill="{1}" stroke="#555555" '
|
| 177 |
+
'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
|
| 178 |
+
).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
|
| 179 |
+
|
| 180 |
+
@property
|
| 181 |
+
def ambient_dimension(self):
|
| 182 |
+
return 2
|
| 183 |
+
|
| 184 |
+
@property
|
| 185 |
+
def apoapsis(self):
|
| 186 |
+
"""The apoapsis of the ellipse.
|
| 187 |
+
|
| 188 |
+
The greatest distance between the focus and the contour.
|
| 189 |
+
|
| 190 |
+
Returns
|
| 191 |
+
=======
|
| 192 |
+
|
| 193 |
+
apoapsis : number
|
| 194 |
+
|
| 195 |
+
See Also
|
| 196 |
+
========
|
| 197 |
+
|
| 198 |
+
periapsis : Returns shortest distance between foci and contour
|
| 199 |
+
|
| 200 |
+
Examples
|
| 201 |
+
========
|
| 202 |
+
|
| 203 |
+
>>> from sympy import Point, Ellipse
|
| 204 |
+
>>> p1 = Point(0, 0)
|
| 205 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 206 |
+
>>> e1.apoapsis
|
| 207 |
+
2*sqrt(2) + 3
|
| 208 |
+
|
| 209 |
+
"""
|
| 210 |
+
return self.major * (1 + self.eccentricity)
|
| 211 |
+
|
| 212 |
+
def arbitrary_point(self, parameter='t'):
|
| 213 |
+
"""A parameterized point on the ellipse.
|
| 214 |
+
|
| 215 |
+
Parameters
|
| 216 |
+
==========
|
| 217 |
+
|
| 218 |
+
parameter : str, optional
|
| 219 |
+
Default value is 't'.
|
| 220 |
+
|
| 221 |
+
Returns
|
| 222 |
+
=======
|
| 223 |
+
|
| 224 |
+
arbitrary_point : Point
|
| 225 |
+
|
| 226 |
+
Raises
|
| 227 |
+
======
|
| 228 |
+
|
| 229 |
+
ValueError
|
| 230 |
+
When `parameter` already appears in the functions.
|
| 231 |
+
|
| 232 |
+
See Also
|
| 233 |
+
========
|
| 234 |
+
|
| 235 |
+
sympy.geometry.point.Point
|
| 236 |
+
|
| 237 |
+
Examples
|
| 238 |
+
========
|
| 239 |
+
|
| 240 |
+
>>> from sympy import Point, Ellipse
|
| 241 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
| 242 |
+
>>> e1.arbitrary_point()
|
| 243 |
+
Point2D(3*cos(t), 2*sin(t))
|
| 244 |
+
|
| 245 |
+
"""
|
| 246 |
+
t = _symbol(parameter, real=True)
|
| 247 |
+
if t.name in (f.name for f in self.free_symbols):
|
| 248 |
+
raise ValueError(filldedent('Symbol %s already appears in object '
|
| 249 |
+
'and cannot be used as a parameter.' % t.name))
|
| 250 |
+
return Point(self.center.x + self.hradius*cos(t),
|
| 251 |
+
self.center.y + self.vradius*sin(t))
|
| 252 |
+
|
| 253 |
+
@property
|
| 254 |
+
def area(self):
|
| 255 |
+
"""The area of the ellipse.
|
| 256 |
+
|
| 257 |
+
Returns
|
| 258 |
+
=======
|
| 259 |
+
|
| 260 |
+
area : number
|
| 261 |
+
|
| 262 |
+
Examples
|
| 263 |
+
========
|
| 264 |
+
|
| 265 |
+
>>> from sympy import Point, Ellipse
|
| 266 |
+
>>> p1 = Point(0, 0)
|
| 267 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 268 |
+
>>> e1.area
|
| 269 |
+
3*pi
|
| 270 |
+
|
| 271 |
+
"""
|
| 272 |
+
return simplify(S.Pi * self.hradius * self.vradius)
|
| 273 |
+
|
| 274 |
+
@property
|
| 275 |
+
def bounds(self):
|
| 276 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
| 277 |
+
rectangle for the geometric figure.
|
| 278 |
+
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
h, v = self.hradius, self.vradius
|
| 282 |
+
return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
|
| 283 |
+
|
| 284 |
+
@property
|
| 285 |
+
def center(self):
|
| 286 |
+
"""The center of the ellipse.
|
| 287 |
+
|
| 288 |
+
Returns
|
| 289 |
+
=======
|
| 290 |
+
|
| 291 |
+
center : number
|
| 292 |
+
|
| 293 |
+
See Also
|
| 294 |
+
========
|
| 295 |
+
|
| 296 |
+
sympy.geometry.point.Point
|
| 297 |
+
|
| 298 |
+
Examples
|
| 299 |
+
========
|
| 300 |
+
|
| 301 |
+
>>> from sympy import Point, Ellipse
|
| 302 |
+
>>> p1 = Point(0, 0)
|
| 303 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 304 |
+
>>> e1.center
|
| 305 |
+
Point2D(0, 0)
|
| 306 |
+
|
| 307 |
+
"""
|
| 308 |
+
return self.args[0]
|
| 309 |
+
|
| 310 |
+
@property
|
| 311 |
+
def circumference(self):
|
| 312 |
+
"""The circumference of the ellipse.
|
| 313 |
+
|
| 314 |
+
Examples
|
| 315 |
+
========
|
| 316 |
+
|
| 317 |
+
>>> from sympy import Point, Ellipse
|
| 318 |
+
>>> p1 = Point(0, 0)
|
| 319 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 320 |
+
>>> e1.circumference
|
| 321 |
+
12*elliptic_e(8/9)
|
| 322 |
+
|
| 323 |
+
"""
|
| 324 |
+
if self.eccentricity == 1:
|
| 325 |
+
# degenerate
|
| 326 |
+
return 4*self.major
|
| 327 |
+
elif self.eccentricity == 0:
|
| 328 |
+
# circle
|
| 329 |
+
return 2*pi*self.hradius
|
| 330 |
+
else:
|
| 331 |
+
return 4*self.major*elliptic_e(self.eccentricity**2)
|
| 332 |
+
|
| 333 |
+
@property
|
| 334 |
+
def eccentricity(self):
|
| 335 |
+
"""The eccentricity of the ellipse.
|
| 336 |
+
|
| 337 |
+
Returns
|
| 338 |
+
=======
|
| 339 |
+
|
| 340 |
+
eccentricity : number
|
| 341 |
+
|
| 342 |
+
Examples
|
| 343 |
+
========
|
| 344 |
+
|
| 345 |
+
>>> from sympy import Point, Ellipse, sqrt
|
| 346 |
+
>>> p1 = Point(0, 0)
|
| 347 |
+
>>> e1 = Ellipse(p1, 3, sqrt(2))
|
| 348 |
+
>>> e1.eccentricity
|
| 349 |
+
sqrt(7)/3
|
| 350 |
+
|
| 351 |
+
"""
|
| 352 |
+
return self.focus_distance / self.major
|
| 353 |
+
|
| 354 |
+
def encloses_point(self, p):
|
| 355 |
+
"""
|
| 356 |
+
Return True if p is enclosed by (is inside of) self.
|
| 357 |
+
|
| 358 |
+
Notes
|
| 359 |
+
-----
|
| 360 |
+
Being on the border of self is considered False.
|
| 361 |
+
|
| 362 |
+
Parameters
|
| 363 |
+
==========
|
| 364 |
+
|
| 365 |
+
p : Point
|
| 366 |
+
|
| 367 |
+
Returns
|
| 368 |
+
=======
|
| 369 |
+
|
| 370 |
+
encloses_point : True, False or None
|
| 371 |
+
|
| 372 |
+
See Also
|
| 373 |
+
========
|
| 374 |
+
|
| 375 |
+
sympy.geometry.point.Point
|
| 376 |
+
|
| 377 |
+
Examples
|
| 378 |
+
========
|
| 379 |
+
|
| 380 |
+
>>> from sympy import Ellipse, S
|
| 381 |
+
>>> from sympy.abc import t
|
| 382 |
+
>>> e = Ellipse((0, 0), 3, 2)
|
| 383 |
+
>>> e.encloses_point((0, 0))
|
| 384 |
+
True
|
| 385 |
+
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
|
| 386 |
+
False
|
| 387 |
+
>>> e.encloses_point((4, 0))
|
| 388 |
+
False
|
| 389 |
+
|
| 390 |
+
"""
|
| 391 |
+
p = Point(p, dim=2)
|
| 392 |
+
if p in self:
|
| 393 |
+
return False
|
| 394 |
+
|
| 395 |
+
if len(self.foci) == 2:
|
| 396 |
+
# if the combined distance from the foci to p (h1 + h2) is less
|
| 397 |
+
# than the combined distance from the foci to the minor axis
|
| 398 |
+
# (which is the same as the major axis length) then p is inside
|
| 399 |
+
# the ellipse
|
| 400 |
+
h1, h2 = [f.distance(p) for f in self.foci]
|
| 401 |
+
test = 2*self.major - (h1 + h2)
|
| 402 |
+
else:
|
| 403 |
+
test = self.radius - self.center.distance(p)
|
| 404 |
+
|
| 405 |
+
return fuzzy_bool(test.is_positive)
|
| 406 |
+
|
| 407 |
+
def equation(self, x='x', y='y', _slope=None):
|
| 408 |
+
"""
|
| 409 |
+
Returns the equation of an ellipse aligned with the x and y axes;
|
| 410 |
+
when slope is given, the equation returned corresponds to an ellipse
|
| 411 |
+
with a major axis having that slope.
|
| 412 |
+
|
| 413 |
+
Parameters
|
| 414 |
+
==========
|
| 415 |
+
|
| 416 |
+
x : str, optional
|
| 417 |
+
Label for the x-axis. Default value is 'x'.
|
| 418 |
+
y : str, optional
|
| 419 |
+
Label for the y-axis. Default value is 'y'.
|
| 420 |
+
_slope : Expr, optional
|
| 421 |
+
The slope of the major axis. Ignored when 'None'.
|
| 422 |
+
|
| 423 |
+
Returns
|
| 424 |
+
=======
|
| 425 |
+
|
| 426 |
+
equation : SymPy expression
|
| 427 |
+
|
| 428 |
+
See Also
|
| 429 |
+
========
|
| 430 |
+
|
| 431 |
+
arbitrary_point : Returns parameterized point on ellipse
|
| 432 |
+
|
| 433 |
+
Examples
|
| 434 |
+
========
|
| 435 |
+
|
| 436 |
+
>>> from sympy import Point, Ellipse, pi
|
| 437 |
+
>>> from sympy.abc import x, y
|
| 438 |
+
>>> e1 = Ellipse(Point(1, 0), 3, 2)
|
| 439 |
+
>>> eq1 = e1.equation(x, y); eq1
|
| 440 |
+
y**2/4 + (x/3 - 1/3)**2 - 1
|
| 441 |
+
>>> eq2 = e1.equation(x, y, _slope=1); eq2
|
| 442 |
+
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
|
| 443 |
+
|
| 444 |
+
A point on e1 satisfies eq1. Let's use one on the x-axis:
|
| 445 |
+
|
| 446 |
+
>>> p1 = e1.center + Point(e1.major, 0)
|
| 447 |
+
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
|
| 448 |
+
|
| 449 |
+
When rotated the same as the rotated ellipse, about the center
|
| 450 |
+
point of the ellipse, it will satisfy the rotated ellipse's
|
| 451 |
+
equation, too:
|
| 452 |
+
|
| 453 |
+
>>> r1 = p1.rotate(pi/4, e1.center)
|
| 454 |
+
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
|
| 455 |
+
|
| 456 |
+
References
|
| 457 |
+
==========
|
| 458 |
+
|
| 459 |
+
.. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
|
| 460 |
+
.. [2] https://en.wikipedia.org/wiki/Ellipse#Shifted_ellipse
|
| 461 |
+
|
| 462 |
+
"""
|
| 463 |
+
|
| 464 |
+
x = _symbol(x, real=True)
|
| 465 |
+
y = _symbol(y, real=True)
|
| 466 |
+
|
| 467 |
+
dx = x - self.center.x
|
| 468 |
+
dy = y - self.center.y
|
| 469 |
+
|
| 470 |
+
if _slope is not None:
|
| 471 |
+
L = (dy - _slope*dx)**2
|
| 472 |
+
l = (_slope*dy + dx)**2
|
| 473 |
+
h = 1 + _slope**2
|
| 474 |
+
b = h*self.major**2
|
| 475 |
+
a = h*self.minor**2
|
| 476 |
+
return l/b + L/a - 1
|
| 477 |
+
|
| 478 |
+
else:
|
| 479 |
+
t1 = (dx/self.hradius)**2
|
| 480 |
+
t2 = (dy/self.vradius)**2
|
| 481 |
+
return t1 + t2 - 1
|
| 482 |
+
|
| 483 |
+
def evolute(self, x='x', y='y'):
|
| 484 |
+
"""The equation of evolute of the ellipse.
|
| 485 |
+
|
| 486 |
+
Parameters
|
| 487 |
+
==========
|
| 488 |
+
|
| 489 |
+
x : str, optional
|
| 490 |
+
Label for the x-axis. Default value is 'x'.
|
| 491 |
+
y : str, optional
|
| 492 |
+
Label for the y-axis. Default value is 'y'.
|
| 493 |
+
|
| 494 |
+
Returns
|
| 495 |
+
=======
|
| 496 |
+
|
| 497 |
+
equation : SymPy expression
|
| 498 |
+
|
| 499 |
+
Examples
|
| 500 |
+
========
|
| 501 |
+
|
| 502 |
+
>>> from sympy import Point, Ellipse
|
| 503 |
+
>>> e1 = Ellipse(Point(1, 0), 3, 2)
|
| 504 |
+
>>> e1.evolute()
|
| 505 |
+
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
|
| 506 |
+
"""
|
| 507 |
+
if len(self.args) != 3:
|
| 508 |
+
raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
|
| 509 |
+
x = _symbol(x, real=True)
|
| 510 |
+
y = _symbol(y, real=True)
|
| 511 |
+
t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
|
| 512 |
+
t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
|
| 513 |
+
return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
|
| 514 |
+
|
| 515 |
+
@property
|
| 516 |
+
def foci(self):
|
| 517 |
+
"""The foci of the ellipse.
|
| 518 |
+
|
| 519 |
+
Notes
|
| 520 |
+
-----
|
| 521 |
+
The foci can only be calculated if the major/minor axes are known.
|
| 522 |
+
|
| 523 |
+
Raises
|
| 524 |
+
======
|
| 525 |
+
|
| 526 |
+
ValueError
|
| 527 |
+
When the major and minor axis cannot be determined.
|
| 528 |
+
|
| 529 |
+
See Also
|
| 530 |
+
========
|
| 531 |
+
|
| 532 |
+
sympy.geometry.point.Point
|
| 533 |
+
focus_distance : Returns the distance between focus and center
|
| 534 |
+
|
| 535 |
+
Examples
|
| 536 |
+
========
|
| 537 |
+
|
| 538 |
+
>>> from sympy import Point, Ellipse
|
| 539 |
+
>>> p1 = Point(0, 0)
|
| 540 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 541 |
+
>>> e1.foci
|
| 542 |
+
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
|
| 543 |
+
|
| 544 |
+
"""
|
| 545 |
+
c = self.center
|
| 546 |
+
hr, vr = self.hradius, self.vradius
|
| 547 |
+
if hr == vr:
|
| 548 |
+
return (c, c)
|
| 549 |
+
|
| 550 |
+
# calculate focus distance manually, since focus_distance calls this
|
| 551 |
+
# routine
|
| 552 |
+
fd = sqrt(self.major**2 - self.minor**2)
|
| 553 |
+
if hr == self.minor:
|
| 554 |
+
# foci on the y-axis
|
| 555 |
+
return (c + Point(0, -fd), c + Point(0, fd))
|
| 556 |
+
elif hr == self.major:
|
| 557 |
+
# foci on the x-axis
|
| 558 |
+
return (c + Point(-fd, 0), c + Point(fd, 0))
|
| 559 |
+
|
| 560 |
+
@property
|
| 561 |
+
def focus_distance(self):
|
| 562 |
+
"""The focal distance of the ellipse.
|
| 563 |
+
|
| 564 |
+
The distance between the center and one focus.
|
| 565 |
+
|
| 566 |
+
Returns
|
| 567 |
+
=======
|
| 568 |
+
|
| 569 |
+
focus_distance : number
|
| 570 |
+
|
| 571 |
+
See Also
|
| 572 |
+
========
|
| 573 |
+
|
| 574 |
+
foci
|
| 575 |
+
|
| 576 |
+
Examples
|
| 577 |
+
========
|
| 578 |
+
|
| 579 |
+
>>> from sympy import Point, Ellipse
|
| 580 |
+
>>> p1 = Point(0, 0)
|
| 581 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 582 |
+
>>> e1.focus_distance
|
| 583 |
+
2*sqrt(2)
|
| 584 |
+
|
| 585 |
+
"""
|
| 586 |
+
return Point.distance(self.center, self.foci[0])
|
| 587 |
+
|
| 588 |
+
@property
|
| 589 |
+
def hradius(self):
|
| 590 |
+
"""The horizontal radius of the ellipse.
|
| 591 |
+
|
| 592 |
+
Returns
|
| 593 |
+
=======
|
| 594 |
+
|
| 595 |
+
hradius : number
|
| 596 |
+
|
| 597 |
+
See Also
|
| 598 |
+
========
|
| 599 |
+
|
| 600 |
+
vradius, major, minor
|
| 601 |
+
|
| 602 |
+
Examples
|
| 603 |
+
========
|
| 604 |
+
|
| 605 |
+
>>> from sympy import Point, Ellipse
|
| 606 |
+
>>> p1 = Point(0, 0)
|
| 607 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 608 |
+
>>> e1.hradius
|
| 609 |
+
3
|
| 610 |
+
|
| 611 |
+
"""
|
| 612 |
+
return self.args[1]
|
| 613 |
+
|
| 614 |
+
def intersection(self, o):
|
| 615 |
+
"""The intersection of this ellipse and another geometrical entity
|
| 616 |
+
`o`.
|
| 617 |
+
|
| 618 |
+
Parameters
|
| 619 |
+
==========
|
| 620 |
+
|
| 621 |
+
o : GeometryEntity
|
| 622 |
+
|
| 623 |
+
Returns
|
| 624 |
+
=======
|
| 625 |
+
|
| 626 |
+
intersection : list of GeometryEntity objects
|
| 627 |
+
|
| 628 |
+
Notes
|
| 629 |
+
-----
|
| 630 |
+
Currently supports intersections with Point, Line, Segment, Ray,
|
| 631 |
+
Circle and Ellipse types.
|
| 632 |
+
|
| 633 |
+
See Also
|
| 634 |
+
========
|
| 635 |
+
|
| 636 |
+
sympy.geometry.entity.GeometryEntity
|
| 637 |
+
|
| 638 |
+
Examples
|
| 639 |
+
========
|
| 640 |
+
|
| 641 |
+
>>> from sympy import Ellipse, Point, Line
|
| 642 |
+
>>> e = Ellipse(Point(0, 0), 5, 7)
|
| 643 |
+
>>> e.intersection(Point(0, 0))
|
| 644 |
+
[]
|
| 645 |
+
>>> e.intersection(Point(5, 0))
|
| 646 |
+
[Point2D(5, 0)]
|
| 647 |
+
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
|
| 648 |
+
[Point2D(0, -7), Point2D(0, 7)]
|
| 649 |
+
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
|
| 650 |
+
[Point2D(5, 0)]
|
| 651 |
+
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
|
| 652 |
+
[]
|
| 653 |
+
>>> e = Ellipse(Point(-1, 0), 4, 3)
|
| 654 |
+
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
|
| 655 |
+
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
|
| 656 |
+
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
|
| 657 |
+
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
|
| 658 |
+
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
|
| 659 |
+
[]
|
| 660 |
+
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
|
| 661 |
+
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
|
| 662 |
+
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
|
| 663 |
+
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
|
| 664 |
+
"""
|
| 665 |
+
# TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
|
| 666 |
+
|
| 667 |
+
if isinstance(o, Point):
|
| 668 |
+
if o in self:
|
| 669 |
+
return [o]
|
| 670 |
+
else:
|
| 671 |
+
return []
|
| 672 |
+
|
| 673 |
+
elif isinstance(o, (Segment2D, Ray2D)):
|
| 674 |
+
ellipse_equation = self.equation(x, y)
|
| 675 |
+
result = solve([ellipse_equation, Line(
|
| 676 |
+
o.points[0], o.points[1]).equation(x, y)], [x, y],
|
| 677 |
+
set=True)[1]
|
| 678 |
+
return list(ordered([Point(i) for i in result if i in o]))
|
| 679 |
+
|
| 680 |
+
elif isinstance(o, Polygon):
|
| 681 |
+
return o.intersection(self)
|
| 682 |
+
|
| 683 |
+
elif isinstance(o, (Ellipse, Line2D)):
|
| 684 |
+
if o == self:
|
| 685 |
+
return self
|
| 686 |
+
else:
|
| 687 |
+
ellipse_equation = self.equation(x, y)
|
| 688 |
+
return list(ordered([Point(i) for i in solve(
|
| 689 |
+
[ellipse_equation, o.equation(x, y)], [x, y],
|
| 690 |
+
set=True)[1]]))
|
| 691 |
+
elif isinstance(o, LinearEntity3D):
|
| 692 |
+
raise TypeError('Entity must be two dimensional, not three dimensional')
|
| 693 |
+
else:
|
| 694 |
+
raise TypeError('Intersection not handled for %s' % func_name(o))
|
| 695 |
+
|
| 696 |
+
def is_tangent(self, o):
|
| 697 |
+
"""Is `o` tangent to the ellipse?
|
| 698 |
+
|
| 699 |
+
Parameters
|
| 700 |
+
==========
|
| 701 |
+
|
| 702 |
+
o : GeometryEntity
|
| 703 |
+
An Ellipse, LinearEntity or Polygon
|
| 704 |
+
|
| 705 |
+
Raises
|
| 706 |
+
======
|
| 707 |
+
|
| 708 |
+
NotImplementedError
|
| 709 |
+
When the wrong type of argument is supplied.
|
| 710 |
+
|
| 711 |
+
Returns
|
| 712 |
+
=======
|
| 713 |
+
|
| 714 |
+
is_tangent: boolean
|
| 715 |
+
True if o is tangent to the ellipse, False otherwise.
|
| 716 |
+
|
| 717 |
+
See Also
|
| 718 |
+
========
|
| 719 |
+
|
| 720 |
+
tangent_lines
|
| 721 |
+
|
| 722 |
+
Examples
|
| 723 |
+
========
|
| 724 |
+
|
| 725 |
+
>>> from sympy import Point, Ellipse, Line
|
| 726 |
+
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
|
| 727 |
+
>>> e1 = Ellipse(p0, 3, 2)
|
| 728 |
+
>>> l1 = Line(p1, p2)
|
| 729 |
+
>>> e1.is_tangent(l1)
|
| 730 |
+
True
|
| 731 |
+
|
| 732 |
+
"""
|
| 733 |
+
if isinstance(o, Point2D):
|
| 734 |
+
return False
|
| 735 |
+
elif isinstance(o, Ellipse):
|
| 736 |
+
intersect = self.intersection(o)
|
| 737 |
+
if isinstance(intersect, Ellipse):
|
| 738 |
+
return True
|
| 739 |
+
elif intersect:
|
| 740 |
+
return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
|
| 741 |
+
else:
|
| 742 |
+
return False
|
| 743 |
+
elif isinstance(o, Line2D):
|
| 744 |
+
hit = self.intersection(o)
|
| 745 |
+
if not hit:
|
| 746 |
+
return False
|
| 747 |
+
if len(hit) == 1:
|
| 748 |
+
return True
|
| 749 |
+
# might return None if it can't decide
|
| 750 |
+
return hit[0].equals(hit[1])
|
| 751 |
+
elif isinstance(o, Ray2D):
|
| 752 |
+
intersect = self.intersection(o)
|
| 753 |
+
if len(intersect) == 1:
|
| 754 |
+
return intersect[0] != o.source and not self.encloses_point(o.source)
|
| 755 |
+
else:
|
| 756 |
+
return False
|
| 757 |
+
elif isinstance(o, (Segment2D, Polygon)):
|
| 758 |
+
all_tangents = False
|
| 759 |
+
segments = o.sides if isinstance(o, Polygon) else [o]
|
| 760 |
+
for segment in segments:
|
| 761 |
+
intersect = self.intersection(segment)
|
| 762 |
+
if len(intersect) == 1:
|
| 763 |
+
if not any(intersect[0] in i for i in segment.points) \
|
| 764 |
+
and not any(self.encloses_point(i) for i in segment.points):
|
| 765 |
+
all_tangents = True
|
| 766 |
+
continue
|
| 767 |
+
else:
|
| 768 |
+
return False
|
| 769 |
+
else:
|
| 770 |
+
return all_tangents
|
| 771 |
+
return all_tangents
|
| 772 |
+
elif isinstance(o, (LinearEntity3D, Point3D)):
|
| 773 |
+
raise TypeError('Entity must be two dimensional, not three dimensional')
|
| 774 |
+
else:
|
| 775 |
+
raise TypeError('Is_tangent not handled for %s' % func_name(o))
|
| 776 |
+
|
| 777 |
+
@property
|
| 778 |
+
def major(self):
|
| 779 |
+
"""Longer axis of the ellipse (if it can be determined) else hradius.
|
| 780 |
+
|
| 781 |
+
Returns
|
| 782 |
+
=======
|
| 783 |
+
|
| 784 |
+
major : number or expression
|
| 785 |
+
|
| 786 |
+
See Also
|
| 787 |
+
========
|
| 788 |
+
|
| 789 |
+
hradius, vradius, minor
|
| 790 |
+
|
| 791 |
+
Examples
|
| 792 |
+
========
|
| 793 |
+
|
| 794 |
+
>>> from sympy import Point, Ellipse, Symbol
|
| 795 |
+
>>> p1 = Point(0, 0)
|
| 796 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 797 |
+
>>> e1.major
|
| 798 |
+
3
|
| 799 |
+
|
| 800 |
+
>>> a = Symbol('a')
|
| 801 |
+
>>> b = Symbol('b')
|
| 802 |
+
>>> Ellipse(p1, a, b).major
|
| 803 |
+
a
|
| 804 |
+
>>> Ellipse(p1, b, a).major
|
| 805 |
+
b
|
| 806 |
+
|
| 807 |
+
>>> m = Symbol('m')
|
| 808 |
+
>>> M = m + 1
|
| 809 |
+
>>> Ellipse(p1, m, M).major
|
| 810 |
+
m + 1
|
| 811 |
+
|
| 812 |
+
"""
|
| 813 |
+
ab = self.args[1:3]
|
| 814 |
+
if len(ab) == 1:
|
| 815 |
+
return ab[0]
|
| 816 |
+
a, b = ab
|
| 817 |
+
o = b - a < 0
|
| 818 |
+
if o == True:
|
| 819 |
+
return a
|
| 820 |
+
elif o == False:
|
| 821 |
+
return b
|
| 822 |
+
return self.hradius
|
| 823 |
+
|
| 824 |
+
@property
|
| 825 |
+
def minor(self):
|
| 826 |
+
"""Shorter axis of the ellipse (if it can be determined) else vradius.
|
| 827 |
+
|
| 828 |
+
Returns
|
| 829 |
+
=======
|
| 830 |
+
|
| 831 |
+
minor : number or expression
|
| 832 |
+
|
| 833 |
+
See Also
|
| 834 |
+
========
|
| 835 |
+
|
| 836 |
+
hradius, vradius, major
|
| 837 |
+
|
| 838 |
+
Examples
|
| 839 |
+
========
|
| 840 |
+
|
| 841 |
+
>>> from sympy import Point, Ellipse, Symbol
|
| 842 |
+
>>> p1 = Point(0, 0)
|
| 843 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 844 |
+
>>> e1.minor
|
| 845 |
+
1
|
| 846 |
+
|
| 847 |
+
>>> a = Symbol('a')
|
| 848 |
+
>>> b = Symbol('b')
|
| 849 |
+
>>> Ellipse(p1, a, b).minor
|
| 850 |
+
b
|
| 851 |
+
>>> Ellipse(p1, b, a).minor
|
| 852 |
+
a
|
| 853 |
+
|
| 854 |
+
>>> m = Symbol('m')
|
| 855 |
+
>>> M = m + 1
|
| 856 |
+
>>> Ellipse(p1, m, M).minor
|
| 857 |
+
m
|
| 858 |
+
|
| 859 |
+
"""
|
| 860 |
+
ab = self.args[1:3]
|
| 861 |
+
if len(ab) == 1:
|
| 862 |
+
return ab[0]
|
| 863 |
+
a, b = ab
|
| 864 |
+
o = a - b < 0
|
| 865 |
+
if o == True:
|
| 866 |
+
return a
|
| 867 |
+
elif o == False:
|
| 868 |
+
return b
|
| 869 |
+
return self.vradius
|
| 870 |
+
|
| 871 |
+
def normal_lines(self, p, prec=None):
|
| 872 |
+
"""Normal lines between `p` and the ellipse.
|
| 873 |
+
|
| 874 |
+
Parameters
|
| 875 |
+
==========
|
| 876 |
+
|
| 877 |
+
p : Point
|
| 878 |
+
|
| 879 |
+
Returns
|
| 880 |
+
=======
|
| 881 |
+
|
| 882 |
+
normal_lines : list with 1, 2 or 4 Lines
|
| 883 |
+
|
| 884 |
+
Examples
|
| 885 |
+
========
|
| 886 |
+
|
| 887 |
+
>>> from sympy import Point, Ellipse
|
| 888 |
+
>>> e = Ellipse((0, 0), 2, 3)
|
| 889 |
+
>>> c = e.center
|
| 890 |
+
>>> e.normal_lines(c + Point(1, 0))
|
| 891 |
+
[Line2D(Point2D(0, 0), Point2D(1, 0))]
|
| 892 |
+
>>> e.normal_lines(c)
|
| 893 |
+
[Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
|
| 894 |
+
|
| 895 |
+
Off-axis points require the solution of a quartic equation. This
|
| 896 |
+
often leads to very large expressions that may be of little practical
|
| 897 |
+
use. An approximate solution of `prec` digits can be obtained by
|
| 898 |
+
passing in the desired value:
|
| 899 |
+
|
| 900 |
+
>>> e.normal_lines((3, 3), prec=2)
|
| 901 |
+
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
|
| 902 |
+
Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
|
| 903 |
+
|
| 904 |
+
Whereas the above solution has an operation count of 12, the exact
|
| 905 |
+
solution has an operation count of 2020.
|
| 906 |
+
"""
|
| 907 |
+
p = Point(p, dim=2)
|
| 908 |
+
|
| 909 |
+
# XXX change True to something like self.angle == 0 if the arbitrarily
|
| 910 |
+
# rotated ellipse is introduced.
|
| 911 |
+
# https://github.com/sympy/sympy/issues/2815)
|
| 912 |
+
if True:
|
| 913 |
+
rv = []
|
| 914 |
+
if p.x == self.center.x:
|
| 915 |
+
rv.append(Line(self.center, slope=oo))
|
| 916 |
+
if p.y == self.center.y:
|
| 917 |
+
rv.append(Line(self.center, slope=0))
|
| 918 |
+
if rv:
|
| 919 |
+
# at these special orientations of p either 1 or 2 normals
|
| 920 |
+
# exist and we are done
|
| 921 |
+
return rv
|
| 922 |
+
|
| 923 |
+
# find the 4 normal points and construct lines through them with
|
| 924 |
+
# the corresponding slope
|
| 925 |
+
eq = self.equation(x, y)
|
| 926 |
+
dydx = idiff(eq, y, x)
|
| 927 |
+
norm = -1/dydx
|
| 928 |
+
slope = Line(p, (x, y)).slope
|
| 929 |
+
seq = slope - norm
|
| 930 |
+
|
| 931 |
+
# TODO: Replace solve with solveset, when this line is tested
|
| 932 |
+
yis = solve(seq, y)[0]
|
| 933 |
+
xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
|
| 934 |
+
if len(xeq.free_symbols) == 1:
|
| 935 |
+
try:
|
| 936 |
+
# this is so much faster, it's worth a try
|
| 937 |
+
xsol = Poly(xeq, x).real_roots()
|
| 938 |
+
except (DomainError, PolynomialError, NotImplementedError):
|
| 939 |
+
# TODO: Replace solve with solveset, when these lines are tested
|
| 940 |
+
xsol = _nsort(solve(xeq, x), separated=True)[0]
|
| 941 |
+
points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
|
| 942 |
+
else:
|
| 943 |
+
raise NotImplementedError(
|
| 944 |
+
'intersections for the general ellipse are not supported')
|
| 945 |
+
slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
|
| 946 |
+
if prec is not None:
|
| 947 |
+
points = [pt.n(prec) for pt in points]
|
| 948 |
+
slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
|
| 949 |
+
return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
|
| 950 |
+
|
| 951 |
+
@property
|
| 952 |
+
def periapsis(self):
|
| 953 |
+
"""The periapsis of the ellipse.
|
| 954 |
+
|
| 955 |
+
The shortest distance between the focus and the contour.
|
| 956 |
+
|
| 957 |
+
Returns
|
| 958 |
+
=======
|
| 959 |
+
|
| 960 |
+
periapsis : number
|
| 961 |
+
|
| 962 |
+
See Also
|
| 963 |
+
========
|
| 964 |
+
|
| 965 |
+
apoapsis : Returns greatest distance between focus and contour
|
| 966 |
+
|
| 967 |
+
Examples
|
| 968 |
+
========
|
| 969 |
+
|
| 970 |
+
>>> from sympy import Point, Ellipse
|
| 971 |
+
>>> p1 = Point(0, 0)
|
| 972 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 973 |
+
>>> e1.periapsis
|
| 974 |
+
3 - 2*sqrt(2)
|
| 975 |
+
|
| 976 |
+
"""
|
| 977 |
+
return self.major * (1 - self.eccentricity)
|
| 978 |
+
|
| 979 |
+
@property
|
| 980 |
+
def semilatus_rectum(self):
|
| 981 |
+
"""
|
| 982 |
+
Calculates the semi-latus rectum of the Ellipse.
|
| 983 |
+
|
| 984 |
+
Semi-latus rectum is defined as one half of the chord through a
|
| 985 |
+
focus parallel to the conic section directrix of a conic section.
|
| 986 |
+
|
| 987 |
+
Returns
|
| 988 |
+
=======
|
| 989 |
+
|
| 990 |
+
semilatus_rectum : number
|
| 991 |
+
|
| 992 |
+
See Also
|
| 993 |
+
========
|
| 994 |
+
|
| 995 |
+
apoapsis : Returns greatest distance between focus and contour
|
| 996 |
+
|
| 997 |
+
periapsis : The shortest distance between the focus and the contour
|
| 998 |
+
|
| 999 |
+
Examples
|
| 1000 |
+
========
|
| 1001 |
+
|
| 1002 |
+
>>> from sympy import Point, Ellipse
|
| 1003 |
+
>>> p1 = Point(0, 0)
|
| 1004 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 1005 |
+
>>> e1.semilatus_rectum
|
| 1006 |
+
1/3
|
| 1007 |
+
|
| 1008 |
+
References
|
| 1009 |
+
==========
|
| 1010 |
+
|
| 1011 |
+
.. [1] https://mathworld.wolfram.com/SemilatusRectum.html
|
| 1012 |
+
.. [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
|
| 1013 |
+
|
| 1014 |
+
"""
|
| 1015 |
+
return self.major * (1 - self.eccentricity ** 2)
|
| 1016 |
+
|
| 1017 |
+
def auxiliary_circle(self):
|
| 1018 |
+
"""Returns a Circle whose diameter is the major axis of the ellipse.
|
| 1019 |
+
|
| 1020 |
+
Examples
|
| 1021 |
+
========
|
| 1022 |
+
|
| 1023 |
+
>>> from sympy import Ellipse, Point, symbols
|
| 1024 |
+
>>> c = Point(1, 2)
|
| 1025 |
+
>>> Ellipse(c, 8, 7).auxiliary_circle()
|
| 1026 |
+
Circle(Point2D(1, 2), 8)
|
| 1027 |
+
>>> a, b = symbols('a b')
|
| 1028 |
+
>>> Ellipse(c, a, b).auxiliary_circle()
|
| 1029 |
+
Circle(Point2D(1, 2), Max(a, b))
|
| 1030 |
+
"""
|
| 1031 |
+
return Circle(self.center, Max(self.hradius, self.vradius))
|
| 1032 |
+
|
| 1033 |
+
def director_circle(self):
|
| 1034 |
+
"""
|
| 1035 |
+
Returns a Circle consisting of all points where two perpendicular
|
| 1036 |
+
tangent lines to the ellipse cross each other.
|
| 1037 |
+
|
| 1038 |
+
Returns
|
| 1039 |
+
=======
|
| 1040 |
+
|
| 1041 |
+
Circle
|
| 1042 |
+
A director circle returned as a geometric object.
|
| 1043 |
+
|
| 1044 |
+
Examples
|
| 1045 |
+
========
|
| 1046 |
+
|
| 1047 |
+
>>> from sympy import Ellipse, Point, symbols
|
| 1048 |
+
>>> c = Point(3,8)
|
| 1049 |
+
>>> Ellipse(c, 7, 9).director_circle()
|
| 1050 |
+
Circle(Point2D(3, 8), sqrt(130))
|
| 1051 |
+
>>> a, b = symbols('a b')
|
| 1052 |
+
>>> Ellipse(c, a, b).director_circle()
|
| 1053 |
+
Circle(Point2D(3, 8), sqrt(a**2 + b**2))
|
| 1054 |
+
|
| 1055 |
+
References
|
| 1056 |
+
==========
|
| 1057 |
+
|
| 1058 |
+
.. [1] https://en.wikipedia.org/wiki/Director_circle
|
| 1059 |
+
|
| 1060 |
+
"""
|
| 1061 |
+
return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
|
| 1062 |
+
|
| 1063 |
+
def plot_interval(self, parameter='t'):
|
| 1064 |
+
"""The plot interval for the default geometric plot of the Ellipse.
|
| 1065 |
+
|
| 1066 |
+
Parameters
|
| 1067 |
+
==========
|
| 1068 |
+
|
| 1069 |
+
parameter : str, optional
|
| 1070 |
+
Default value is 't'.
|
| 1071 |
+
|
| 1072 |
+
Returns
|
| 1073 |
+
=======
|
| 1074 |
+
|
| 1075 |
+
plot_interval : list
|
| 1076 |
+
[parameter, lower_bound, upper_bound]
|
| 1077 |
+
|
| 1078 |
+
Examples
|
| 1079 |
+
========
|
| 1080 |
+
|
| 1081 |
+
>>> from sympy import Point, Ellipse
|
| 1082 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
| 1083 |
+
>>> e1.plot_interval()
|
| 1084 |
+
[t, -pi, pi]
|
| 1085 |
+
|
| 1086 |
+
"""
|
| 1087 |
+
t = _symbol(parameter, real=True)
|
| 1088 |
+
return [t, -S.Pi, S.Pi]
|
| 1089 |
+
|
| 1090 |
+
def random_point(self, seed=None):
|
| 1091 |
+
"""A random point on the ellipse.
|
| 1092 |
+
|
| 1093 |
+
Returns
|
| 1094 |
+
=======
|
| 1095 |
+
|
| 1096 |
+
point : Point
|
| 1097 |
+
|
| 1098 |
+
Examples
|
| 1099 |
+
========
|
| 1100 |
+
|
| 1101 |
+
>>> from sympy import Point, Ellipse
|
| 1102 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
| 1103 |
+
>>> e1.random_point() # gives some random point
|
| 1104 |
+
Point2D(...)
|
| 1105 |
+
>>> p1 = e1.random_point(seed=0); p1.n(2)
|
| 1106 |
+
Point2D(2.1, 1.4)
|
| 1107 |
+
|
| 1108 |
+
Notes
|
| 1109 |
+
=====
|
| 1110 |
+
|
| 1111 |
+
When creating a random point, one may simply replace the
|
| 1112 |
+
parameter with a random number. When doing so, however, the
|
| 1113 |
+
random number should be made a Rational or else the point
|
| 1114 |
+
may not test as being in the ellipse:
|
| 1115 |
+
|
| 1116 |
+
>>> from sympy.abc import t
|
| 1117 |
+
>>> from sympy import Rational
|
| 1118 |
+
>>> arb = e1.arbitrary_point(t); arb
|
| 1119 |
+
Point2D(3*cos(t), 2*sin(t))
|
| 1120 |
+
>>> arb.subs(t, .1) in e1
|
| 1121 |
+
False
|
| 1122 |
+
>>> arb.subs(t, Rational(.1)) in e1
|
| 1123 |
+
True
|
| 1124 |
+
>>> arb.subs(t, Rational('.1')) in e1
|
| 1125 |
+
True
|
| 1126 |
+
|
| 1127 |
+
See Also
|
| 1128 |
+
========
|
| 1129 |
+
sympy.geometry.point.Point
|
| 1130 |
+
arbitrary_point : Returns parameterized point on ellipse
|
| 1131 |
+
"""
|
| 1132 |
+
t = _symbol('t', real=True)
|
| 1133 |
+
x, y = self.arbitrary_point(t).args
|
| 1134 |
+
# get a random value in [-1, 1) corresponding to cos(t)
|
| 1135 |
+
# and confirm that it will test as being in the ellipse
|
| 1136 |
+
if seed is not None:
|
| 1137 |
+
rng = random.Random(seed)
|
| 1138 |
+
else:
|
| 1139 |
+
rng = random
|
| 1140 |
+
# simplify this now or else the Float will turn s into a Float
|
| 1141 |
+
r = Rational(rng.random())
|
| 1142 |
+
c = 2*r - 1
|
| 1143 |
+
s = sqrt(1 - c**2)
|
| 1144 |
+
return Point(x.subs(cos(t), c), y.subs(sin(t), s))
|
| 1145 |
+
|
| 1146 |
+
def reflect(self, line):
|
| 1147 |
+
"""Override GeometryEntity.reflect since the radius
|
| 1148 |
+
is not a GeometryEntity.
|
| 1149 |
+
|
| 1150 |
+
Examples
|
| 1151 |
+
========
|
| 1152 |
+
|
| 1153 |
+
>>> from sympy import Circle, Line
|
| 1154 |
+
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
|
| 1155 |
+
Circle(Point2D(1, 0), -1)
|
| 1156 |
+
>>> from sympy import Ellipse, Line, Point
|
| 1157 |
+
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
|
| 1158 |
+
Traceback (most recent call last):
|
| 1159 |
+
...
|
| 1160 |
+
NotImplementedError:
|
| 1161 |
+
General Ellipse is not supported but the equation of the reflected
|
| 1162 |
+
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
|
| 1163 |
+
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
|
| 1164 |
+
|
| 1165 |
+
Notes
|
| 1166 |
+
=====
|
| 1167 |
+
|
| 1168 |
+
Until the general ellipse (with no axis parallel to the x-axis) is
|
| 1169 |
+
supported a NotImplemented error is raised and the equation whose
|
| 1170 |
+
zeros define the rotated ellipse is given.
|
| 1171 |
+
|
| 1172 |
+
"""
|
| 1173 |
+
|
| 1174 |
+
if line.slope in (0, oo):
|
| 1175 |
+
c = self.center
|
| 1176 |
+
c = c.reflect(line)
|
| 1177 |
+
return self.func(c, -self.hradius, self.vradius)
|
| 1178 |
+
else:
|
| 1179 |
+
x, y = [uniquely_named_symbol(
|
| 1180 |
+
name, (self, line), modify=lambda s: '_' + s, real=True)
|
| 1181 |
+
for name in 'xy']
|
| 1182 |
+
expr = self.equation(x, y)
|
| 1183 |
+
p = Point(x, y).reflect(line)
|
| 1184 |
+
result = expr.subs(zip((x, y), p.args
|
| 1185 |
+
), simultaneous=True)
|
| 1186 |
+
raise NotImplementedError(filldedent(
|
| 1187 |
+
'General Ellipse is not supported but the equation '
|
| 1188 |
+
'of the reflected Ellipse is given by the zeros of: ' +
|
| 1189 |
+
"f(%s, %s) = %s" % (str(x), str(y), str(result))))
|
| 1190 |
+
|
| 1191 |
+
def rotate(self, angle=0, pt=None):
|
| 1192 |
+
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
|
| 1193 |
+
|
| 1194 |
+
Note: since the general ellipse is not supported, only rotations that
|
| 1195 |
+
are integer multiples of pi/2 are allowed.
|
| 1196 |
+
|
| 1197 |
+
Examples
|
| 1198 |
+
========
|
| 1199 |
+
|
| 1200 |
+
>>> from sympy import Ellipse, pi
|
| 1201 |
+
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
|
| 1202 |
+
Ellipse(Point2D(0, 1), 1, 2)
|
| 1203 |
+
>>> Ellipse((1, 0), 2, 1).rotate(pi)
|
| 1204 |
+
Ellipse(Point2D(-1, 0), 2, 1)
|
| 1205 |
+
"""
|
| 1206 |
+
if self.hradius == self.vradius:
|
| 1207 |
+
return self.func(self.center.rotate(angle, pt), self.hradius)
|
| 1208 |
+
if (angle/S.Pi).is_integer:
|
| 1209 |
+
return super().rotate(angle, pt)
|
| 1210 |
+
if (2*angle/S.Pi).is_integer:
|
| 1211 |
+
return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
|
| 1212 |
+
# XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
|
| 1213 |
+
raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
|
| 1214 |
+
|
| 1215 |
+
def scale(self, x=1, y=1, pt=None):
|
| 1216 |
+
"""Override GeometryEntity.scale since it is the major and minor
|
| 1217 |
+
axes which must be scaled and they are not GeometryEntities.
|
| 1218 |
+
|
| 1219 |
+
Examples
|
| 1220 |
+
========
|
| 1221 |
+
|
| 1222 |
+
>>> from sympy import Ellipse
|
| 1223 |
+
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
|
| 1224 |
+
Circle(Point2D(0, 0), 4)
|
| 1225 |
+
>>> Ellipse((0, 0), 2, 1).scale(2)
|
| 1226 |
+
Ellipse(Point2D(0, 0), 4, 1)
|
| 1227 |
+
"""
|
| 1228 |
+
c = self.center
|
| 1229 |
+
if pt:
|
| 1230 |
+
pt = Point(pt, dim=2)
|
| 1231 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
| 1232 |
+
h = self.hradius
|
| 1233 |
+
v = self.vradius
|
| 1234 |
+
return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
|
| 1235 |
+
|
| 1236 |
+
def tangent_lines(self, p):
|
| 1237 |
+
"""Tangent lines between `p` and the ellipse.
|
| 1238 |
+
|
| 1239 |
+
If `p` is on the ellipse, returns the tangent line through point `p`.
|
| 1240 |
+
Otherwise, returns the tangent line(s) from `p` to the ellipse, or
|
| 1241 |
+
None if no tangent line is possible (e.g., `p` inside ellipse).
|
| 1242 |
+
|
| 1243 |
+
Parameters
|
| 1244 |
+
==========
|
| 1245 |
+
|
| 1246 |
+
p : Point
|
| 1247 |
+
|
| 1248 |
+
Returns
|
| 1249 |
+
=======
|
| 1250 |
+
|
| 1251 |
+
tangent_lines : list with 1 or 2 Lines
|
| 1252 |
+
|
| 1253 |
+
Raises
|
| 1254 |
+
======
|
| 1255 |
+
|
| 1256 |
+
NotImplementedError
|
| 1257 |
+
Can only find tangent lines for a point, `p`, on the ellipse.
|
| 1258 |
+
|
| 1259 |
+
See Also
|
| 1260 |
+
========
|
| 1261 |
+
|
| 1262 |
+
sympy.geometry.point.Point, sympy.geometry.line.Line
|
| 1263 |
+
|
| 1264 |
+
Examples
|
| 1265 |
+
========
|
| 1266 |
+
|
| 1267 |
+
>>> from sympy import Point, Ellipse
|
| 1268 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
| 1269 |
+
>>> e1.tangent_lines(Point(3, 0))
|
| 1270 |
+
[Line2D(Point2D(3, 0), Point2D(3, -12))]
|
| 1271 |
+
|
| 1272 |
+
"""
|
| 1273 |
+
p = Point(p, dim=2)
|
| 1274 |
+
if self.encloses_point(p):
|
| 1275 |
+
return []
|
| 1276 |
+
|
| 1277 |
+
if p in self:
|
| 1278 |
+
delta = self.center - p
|
| 1279 |
+
rise = (self.vradius**2)*delta.x
|
| 1280 |
+
run = -(self.hradius**2)*delta.y
|
| 1281 |
+
p2 = Point(simplify(p.x + run),
|
| 1282 |
+
simplify(p.y + rise))
|
| 1283 |
+
return [Line(p, p2)]
|
| 1284 |
+
else:
|
| 1285 |
+
if len(self.foci) == 2:
|
| 1286 |
+
f1, f2 = self.foci
|
| 1287 |
+
maj = self.hradius
|
| 1288 |
+
test = (2*maj -
|
| 1289 |
+
Point.distance(f1, p) -
|
| 1290 |
+
Point.distance(f2, p))
|
| 1291 |
+
else:
|
| 1292 |
+
test = self.radius - Point.distance(self.center, p)
|
| 1293 |
+
if test.is_number and test.is_positive:
|
| 1294 |
+
return []
|
| 1295 |
+
# else p is outside the ellipse or we can't tell. In case of the
|
| 1296 |
+
# latter, the solutions returned will only be valid if
|
| 1297 |
+
# the point is not inside the ellipse; if it is, nan will result.
|
| 1298 |
+
eq = self.equation(x, y)
|
| 1299 |
+
dydx = idiff(eq, y, x)
|
| 1300 |
+
slope = Line(p, Point(x, y)).slope
|
| 1301 |
+
|
| 1302 |
+
# TODO: Replace solve with solveset, when this line is tested
|
| 1303 |
+
tangent_points = solve([slope - dydx, eq], [x, y])
|
| 1304 |
+
|
| 1305 |
+
# handle horizontal and vertical tangent lines
|
| 1306 |
+
if len(tangent_points) == 1:
|
| 1307 |
+
if tangent_points[0][
|
| 1308 |
+
0] == p.x or tangent_points[0][1] == p.y:
|
| 1309 |
+
return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
|
| 1310 |
+
else:
|
| 1311 |
+
return [Line(p, p + Point(0, 1)), Line(p, tangent_points[0])]
|
| 1312 |
+
|
| 1313 |
+
# others
|
| 1314 |
+
return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
|
| 1315 |
+
|
| 1316 |
+
@property
|
| 1317 |
+
def vradius(self):
|
| 1318 |
+
"""The vertical radius of the ellipse.
|
| 1319 |
+
|
| 1320 |
+
Returns
|
| 1321 |
+
=======
|
| 1322 |
+
|
| 1323 |
+
vradius : number
|
| 1324 |
+
|
| 1325 |
+
See Also
|
| 1326 |
+
========
|
| 1327 |
+
|
| 1328 |
+
hradius, major, minor
|
| 1329 |
+
|
| 1330 |
+
Examples
|
| 1331 |
+
========
|
| 1332 |
+
|
| 1333 |
+
>>> from sympy import Point, Ellipse
|
| 1334 |
+
>>> p1 = Point(0, 0)
|
| 1335 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 1336 |
+
>>> e1.vradius
|
| 1337 |
+
1
|
| 1338 |
+
|
| 1339 |
+
"""
|
| 1340 |
+
return self.args[2]
|
| 1341 |
+
|
| 1342 |
+
|
| 1343 |
+
def second_moment_of_area(self, point=None):
|
| 1344 |
+
"""Returns the second moment and product moment area of an ellipse.
|
| 1345 |
+
|
| 1346 |
+
Parameters
|
| 1347 |
+
==========
|
| 1348 |
+
|
| 1349 |
+
point : Point, two-tuple of sympifiable objects, or None(default=None)
|
| 1350 |
+
point is the point about which second moment of area is to be found.
|
| 1351 |
+
If "point=None" it will be calculated about the axis passing through the
|
| 1352 |
+
centroid of the ellipse.
|
| 1353 |
+
|
| 1354 |
+
Returns
|
| 1355 |
+
=======
|
| 1356 |
+
|
| 1357 |
+
I_xx, I_yy, I_xy : number or SymPy expression
|
| 1358 |
+
I_xx, I_yy are second moment of area of an ellise.
|
| 1359 |
+
I_xy is product moment of area of an ellipse.
|
| 1360 |
+
|
| 1361 |
+
Examples
|
| 1362 |
+
========
|
| 1363 |
+
|
| 1364 |
+
>>> from sympy import Point, Ellipse
|
| 1365 |
+
>>> p1 = Point(0, 0)
|
| 1366 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
| 1367 |
+
>>> e1.second_moment_of_area()
|
| 1368 |
+
(3*pi/4, 27*pi/4, 0)
|
| 1369 |
+
|
| 1370 |
+
References
|
| 1371 |
+
==========
|
| 1372 |
+
|
| 1373 |
+
.. [1] https://en.wikipedia.org/wiki/List_of_second_moments_of_area
|
| 1374 |
+
|
| 1375 |
+
"""
|
| 1376 |
+
|
| 1377 |
+
I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
|
| 1378 |
+
I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
|
| 1379 |
+
I_xy = 0
|
| 1380 |
+
|
| 1381 |
+
if point is None:
|
| 1382 |
+
return I_xx, I_yy, I_xy
|
| 1383 |
+
|
| 1384 |
+
# parallel axis theorem
|
| 1385 |
+
I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
|
| 1386 |
+
I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
|
| 1387 |
+
I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
|
| 1388 |
+
|
| 1389 |
+
return I_xx, I_yy, I_xy
|
| 1390 |
+
|
| 1391 |
+
|
| 1392 |
+
def polar_second_moment_of_area(self):
|
| 1393 |
+
"""Returns the polar second moment of area of an Ellipse
|
| 1394 |
+
|
| 1395 |
+
It is a constituent of the second moment of area, linked through
|
| 1396 |
+
the perpendicular axis theorem. While the planar second moment of
|
| 1397 |
+
area describes an object's resistance to deflection (bending) when
|
| 1398 |
+
subjected to a force applied to a plane parallel to the central
|
| 1399 |
+
axis, the polar second moment of area describes an object's
|
| 1400 |
+
resistance to deflection when subjected to a moment applied in a
|
| 1401 |
+
plane perpendicular to the object's central axis (i.e. parallel to
|
| 1402 |
+
the cross-section)
|
| 1403 |
+
|
| 1404 |
+
Examples
|
| 1405 |
+
========
|
| 1406 |
+
|
| 1407 |
+
>>> from sympy import symbols, Circle, Ellipse
|
| 1408 |
+
>>> c = Circle((5, 5), 4)
|
| 1409 |
+
>>> c.polar_second_moment_of_area()
|
| 1410 |
+
128*pi
|
| 1411 |
+
>>> a, b = symbols('a, b')
|
| 1412 |
+
>>> e = Ellipse((0, 0), a, b)
|
| 1413 |
+
>>> e.polar_second_moment_of_area()
|
| 1414 |
+
pi*a**3*b/4 + pi*a*b**3/4
|
| 1415 |
+
|
| 1416 |
+
References
|
| 1417 |
+
==========
|
| 1418 |
+
|
| 1419 |
+
.. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
|
| 1420 |
+
|
| 1421 |
+
"""
|
| 1422 |
+
second_moment = self.second_moment_of_area()
|
| 1423 |
+
return second_moment[0] + second_moment[1]
|
| 1424 |
+
|
| 1425 |
+
|
| 1426 |
+
def section_modulus(self, point=None):
|
| 1427 |
+
"""Returns a tuple with the section modulus of an ellipse
|
| 1428 |
+
|
| 1429 |
+
Section modulus is a geometric property of an ellipse defined as the
|
| 1430 |
+
ratio of second moment of area to the distance of the extreme end of
|
| 1431 |
+
the ellipse from the centroidal axis.
|
| 1432 |
+
|
| 1433 |
+
Parameters
|
| 1434 |
+
==========
|
| 1435 |
+
|
| 1436 |
+
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
| 1437 |
+
point is the point at which section modulus is to be found.
|
| 1438 |
+
If "point=None" section modulus will be calculated for the
|
| 1439 |
+
point farthest from the centroidal axis of the ellipse.
|
| 1440 |
+
|
| 1441 |
+
Returns
|
| 1442 |
+
=======
|
| 1443 |
+
|
| 1444 |
+
S_x, S_y: numbers or SymPy expressions
|
| 1445 |
+
S_x is the section modulus with respect to the x-axis
|
| 1446 |
+
S_y is the section modulus with respect to the y-axis
|
| 1447 |
+
A negative sign indicates that the section modulus is
|
| 1448 |
+
determined for a point below the centroidal axis.
|
| 1449 |
+
|
| 1450 |
+
Examples
|
| 1451 |
+
========
|
| 1452 |
+
|
| 1453 |
+
>>> from sympy import Symbol, Ellipse, Circle, Point2D
|
| 1454 |
+
>>> d = Symbol('d', positive=True)
|
| 1455 |
+
>>> c = Circle((0, 0), d/2)
|
| 1456 |
+
>>> c.section_modulus()
|
| 1457 |
+
(pi*d**3/32, pi*d**3/32)
|
| 1458 |
+
>>> e = Ellipse(Point2D(0, 0), 2, 4)
|
| 1459 |
+
>>> e.section_modulus()
|
| 1460 |
+
(8*pi, 4*pi)
|
| 1461 |
+
>>> e.section_modulus((2, 2))
|
| 1462 |
+
(16*pi, 4*pi)
|
| 1463 |
+
|
| 1464 |
+
References
|
| 1465 |
+
==========
|
| 1466 |
+
|
| 1467 |
+
.. [1] https://en.wikipedia.org/wiki/Section_modulus
|
| 1468 |
+
|
| 1469 |
+
"""
|
| 1470 |
+
x_c, y_c = self.center
|
| 1471 |
+
if point is None:
|
| 1472 |
+
# taking x and y as maximum distances from centroid
|
| 1473 |
+
x_min, y_min, x_max, y_max = self.bounds
|
| 1474 |
+
y = max(y_c - y_min, y_max - y_c)
|
| 1475 |
+
x = max(x_c - x_min, x_max - x_c)
|
| 1476 |
+
else:
|
| 1477 |
+
# taking x and y as distances of the given point from the center
|
| 1478 |
+
point = Point2D(point)
|
| 1479 |
+
y = point.y - y_c
|
| 1480 |
+
x = point.x - x_c
|
| 1481 |
+
|
| 1482 |
+
second_moment = self.second_moment_of_area()
|
| 1483 |
+
S_x = second_moment[0]/y
|
| 1484 |
+
S_y = second_moment[1]/x
|
| 1485 |
+
|
| 1486 |
+
return S_x, S_y
|
| 1487 |
+
|
| 1488 |
+
|
| 1489 |
+
class Circle(Ellipse):
|
| 1490 |
+
"""A circle in space.
|
| 1491 |
+
|
| 1492 |
+
Constructed simply from a center and a radius, from three
|
| 1493 |
+
non-collinear points, or the equation of a circle.
|
| 1494 |
+
|
| 1495 |
+
Parameters
|
| 1496 |
+
==========
|
| 1497 |
+
|
| 1498 |
+
center : Point
|
| 1499 |
+
radius : number or SymPy expression
|
| 1500 |
+
points : sequence of three Points
|
| 1501 |
+
equation : equation of a circle
|
| 1502 |
+
|
| 1503 |
+
Attributes
|
| 1504 |
+
==========
|
| 1505 |
+
|
| 1506 |
+
radius (synonymous with hradius, vradius, major and minor)
|
| 1507 |
+
circumference
|
| 1508 |
+
equation
|
| 1509 |
+
|
| 1510 |
+
Raises
|
| 1511 |
+
======
|
| 1512 |
+
|
| 1513 |
+
GeometryError
|
| 1514 |
+
When the given equation is not that of a circle.
|
| 1515 |
+
When trying to construct circle from incorrect parameters.
|
| 1516 |
+
|
| 1517 |
+
See Also
|
| 1518 |
+
========
|
| 1519 |
+
|
| 1520 |
+
Ellipse, sympy.geometry.point.Point
|
| 1521 |
+
|
| 1522 |
+
Examples
|
| 1523 |
+
========
|
| 1524 |
+
|
| 1525 |
+
>>> from sympy import Point, Circle, Eq
|
| 1526 |
+
>>> from sympy.abc import x, y, a, b
|
| 1527 |
+
|
| 1528 |
+
A circle constructed from a center and radius:
|
| 1529 |
+
|
| 1530 |
+
>>> c1 = Circle(Point(0, 0), 5)
|
| 1531 |
+
>>> c1.hradius, c1.vradius, c1.radius
|
| 1532 |
+
(5, 5, 5)
|
| 1533 |
+
|
| 1534 |
+
A circle constructed from three points:
|
| 1535 |
+
|
| 1536 |
+
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
|
| 1537 |
+
>>> c2.hradius, c2.vradius, c2.radius, c2.center
|
| 1538 |
+
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
|
| 1539 |
+
|
| 1540 |
+
A circle can be constructed from an equation in the form
|
| 1541 |
+
`a*x**2 + by**2 + gx + hy + c = 0`, too:
|
| 1542 |
+
|
| 1543 |
+
>>> Circle(x**2 + y**2 - 25)
|
| 1544 |
+
Circle(Point2D(0, 0), 5)
|
| 1545 |
+
|
| 1546 |
+
If the variables corresponding to x and y are named something
|
| 1547 |
+
else, their name or symbol can be supplied:
|
| 1548 |
+
|
| 1549 |
+
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
|
| 1550 |
+
Circle(Point2D(0, 0), 5)
|
| 1551 |
+
"""
|
| 1552 |
+
|
| 1553 |
+
def __new__(cls, *args, **kwargs):
|
| 1554 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
| 1555 |
+
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
|
| 1556 |
+
x = kwargs.get('x', 'x')
|
| 1557 |
+
y = kwargs.get('y', 'y')
|
| 1558 |
+
equation = args[0].expand()
|
| 1559 |
+
if isinstance(equation, Eq):
|
| 1560 |
+
equation = equation.lhs - equation.rhs
|
| 1561 |
+
x = find(x, equation)
|
| 1562 |
+
y = find(y, equation)
|
| 1563 |
+
|
| 1564 |
+
try:
|
| 1565 |
+
a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
|
| 1566 |
+
except ValueError:
|
| 1567 |
+
raise GeometryError("The given equation is not that of a circle.")
|
| 1568 |
+
|
| 1569 |
+
if S.Zero in (a, b) or a != b:
|
| 1570 |
+
raise GeometryError("The given equation is not that of a circle.")
|
| 1571 |
+
|
| 1572 |
+
center_x = -c/a/2
|
| 1573 |
+
center_y = -d/b/2
|
| 1574 |
+
r2 = (center_x**2) + (center_y**2) - e/a
|
| 1575 |
+
|
| 1576 |
+
return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
|
| 1577 |
+
|
| 1578 |
+
else:
|
| 1579 |
+
c, r = None, None
|
| 1580 |
+
if len(args) == 3:
|
| 1581 |
+
args = [Point(a, dim=2, evaluate=evaluate) for a in args]
|
| 1582 |
+
t = Triangle(*args)
|
| 1583 |
+
if not isinstance(t, Triangle):
|
| 1584 |
+
return t
|
| 1585 |
+
c = t.circumcenter
|
| 1586 |
+
r = t.circumradius
|
| 1587 |
+
elif len(args) == 2:
|
| 1588 |
+
# Assume (center, radius) pair
|
| 1589 |
+
c = Point(args[0], dim=2, evaluate=evaluate)
|
| 1590 |
+
r = args[1]
|
| 1591 |
+
# this will prohibit imaginary radius
|
| 1592 |
+
try:
|
| 1593 |
+
r = Point(r, 0, evaluate=evaluate).x
|
| 1594 |
+
except ValueError:
|
| 1595 |
+
raise GeometryError("Circle with imaginary radius is not permitted")
|
| 1596 |
+
|
| 1597 |
+
if not (c is None or r is None):
|
| 1598 |
+
if r == 0:
|
| 1599 |
+
return c
|
| 1600 |
+
return GeometryEntity.__new__(cls, c, r, **kwargs)
|
| 1601 |
+
|
| 1602 |
+
raise GeometryError("Circle.__new__ received unknown arguments")
|
| 1603 |
+
|
| 1604 |
+
def _eval_evalf(self, prec=15, **options):
|
| 1605 |
+
pt, r = self.args
|
| 1606 |
+
dps = prec_to_dps(prec)
|
| 1607 |
+
pt = pt.evalf(n=dps, **options)
|
| 1608 |
+
r = r.evalf(n=dps, **options)
|
| 1609 |
+
return self.func(pt, r, evaluate=False)
|
| 1610 |
+
|
| 1611 |
+
@property
|
| 1612 |
+
def circumference(self):
|
| 1613 |
+
"""The circumference of the circle.
|
| 1614 |
+
|
| 1615 |
+
Returns
|
| 1616 |
+
=======
|
| 1617 |
+
|
| 1618 |
+
circumference : number or SymPy expression
|
| 1619 |
+
|
| 1620 |
+
Examples
|
| 1621 |
+
========
|
| 1622 |
+
|
| 1623 |
+
>>> from sympy import Point, Circle
|
| 1624 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
| 1625 |
+
>>> c1.circumference
|
| 1626 |
+
12*pi
|
| 1627 |
+
|
| 1628 |
+
"""
|
| 1629 |
+
return 2 * S.Pi * self.radius
|
| 1630 |
+
|
| 1631 |
+
def equation(self, x='x', y='y'):
|
| 1632 |
+
"""The equation of the circle.
|
| 1633 |
+
|
| 1634 |
+
Parameters
|
| 1635 |
+
==========
|
| 1636 |
+
|
| 1637 |
+
x : str or Symbol, optional
|
| 1638 |
+
Default value is 'x'.
|
| 1639 |
+
y : str or Symbol, optional
|
| 1640 |
+
Default value is 'y'.
|
| 1641 |
+
|
| 1642 |
+
Returns
|
| 1643 |
+
=======
|
| 1644 |
+
|
| 1645 |
+
equation : SymPy expression
|
| 1646 |
+
|
| 1647 |
+
Examples
|
| 1648 |
+
========
|
| 1649 |
+
|
| 1650 |
+
>>> from sympy import Point, Circle
|
| 1651 |
+
>>> c1 = Circle(Point(0, 0), 5)
|
| 1652 |
+
>>> c1.equation()
|
| 1653 |
+
x**2 + y**2 - 25
|
| 1654 |
+
|
| 1655 |
+
"""
|
| 1656 |
+
x = _symbol(x, real=True)
|
| 1657 |
+
y = _symbol(y, real=True)
|
| 1658 |
+
t1 = (x - self.center.x)**2
|
| 1659 |
+
t2 = (y - self.center.y)**2
|
| 1660 |
+
return t1 + t2 - self.major**2
|
| 1661 |
+
|
| 1662 |
+
def intersection(self, o):
|
| 1663 |
+
"""The intersection of this circle with another geometrical entity.
|
| 1664 |
+
|
| 1665 |
+
Parameters
|
| 1666 |
+
==========
|
| 1667 |
+
|
| 1668 |
+
o : GeometryEntity
|
| 1669 |
+
|
| 1670 |
+
Returns
|
| 1671 |
+
=======
|
| 1672 |
+
|
| 1673 |
+
intersection : list of GeometryEntities
|
| 1674 |
+
|
| 1675 |
+
Examples
|
| 1676 |
+
========
|
| 1677 |
+
|
| 1678 |
+
>>> from sympy import Point, Circle, Line, Ray
|
| 1679 |
+
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
|
| 1680 |
+
>>> p4 = Point(5, 0)
|
| 1681 |
+
>>> c1 = Circle(p1, 5)
|
| 1682 |
+
>>> c1.intersection(p2)
|
| 1683 |
+
[]
|
| 1684 |
+
>>> c1.intersection(p4)
|
| 1685 |
+
[Point2D(5, 0)]
|
| 1686 |
+
>>> c1.intersection(Ray(p1, p2))
|
| 1687 |
+
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
|
| 1688 |
+
>>> c1.intersection(Line(p2, p3))
|
| 1689 |
+
[]
|
| 1690 |
+
|
| 1691 |
+
"""
|
| 1692 |
+
return Ellipse.intersection(self, o)
|
| 1693 |
+
|
| 1694 |
+
@property
|
| 1695 |
+
def radius(self):
|
| 1696 |
+
"""The radius of the circle.
|
| 1697 |
+
|
| 1698 |
+
Returns
|
| 1699 |
+
=======
|
| 1700 |
+
|
| 1701 |
+
radius : number or SymPy expression
|
| 1702 |
+
|
| 1703 |
+
See Also
|
| 1704 |
+
========
|
| 1705 |
+
|
| 1706 |
+
Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
|
| 1707 |
+
|
| 1708 |
+
Examples
|
| 1709 |
+
========
|
| 1710 |
+
|
| 1711 |
+
>>> from sympy import Point, Circle
|
| 1712 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
| 1713 |
+
>>> c1.radius
|
| 1714 |
+
6
|
| 1715 |
+
|
| 1716 |
+
"""
|
| 1717 |
+
return self.args[1]
|
| 1718 |
+
|
| 1719 |
+
def reflect(self, line):
|
| 1720 |
+
"""Override GeometryEntity.reflect since the radius
|
| 1721 |
+
is not a GeometryEntity.
|
| 1722 |
+
|
| 1723 |
+
Examples
|
| 1724 |
+
========
|
| 1725 |
+
|
| 1726 |
+
>>> from sympy import Circle, Line
|
| 1727 |
+
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
|
| 1728 |
+
Circle(Point2D(1, 0), -1)
|
| 1729 |
+
"""
|
| 1730 |
+
c = self.center
|
| 1731 |
+
c = c.reflect(line)
|
| 1732 |
+
return self.func(c, -self.radius)
|
| 1733 |
+
|
| 1734 |
+
def scale(self, x=1, y=1, pt=None):
|
| 1735 |
+
"""Override GeometryEntity.scale since the radius
|
| 1736 |
+
is not a GeometryEntity.
|
| 1737 |
+
|
| 1738 |
+
Examples
|
| 1739 |
+
========
|
| 1740 |
+
|
| 1741 |
+
>>> from sympy import Circle
|
| 1742 |
+
>>> Circle((0, 0), 1).scale(2, 2)
|
| 1743 |
+
Circle(Point2D(0, 0), 2)
|
| 1744 |
+
>>> Circle((0, 0), 1).scale(2, 4)
|
| 1745 |
+
Ellipse(Point2D(0, 0), 2, 4)
|
| 1746 |
+
"""
|
| 1747 |
+
c = self.center
|
| 1748 |
+
if pt:
|
| 1749 |
+
pt = Point(pt, dim=2)
|
| 1750 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
| 1751 |
+
c = c.scale(x, y)
|
| 1752 |
+
x, y = [abs(i) for i in (x, y)]
|
| 1753 |
+
if x == y:
|
| 1754 |
+
return self.func(c, x*self.radius)
|
| 1755 |
+
h = v = self.radius
|
| 1756 |
+
return Ellipse(c, hradius=h*x, vradius=v*y)
|
| 1757 |
+
|
| 1758 |
+
@property
|
| 1759 |
+
def vradius(self):
|
| 1760 |
+
"""
|
| 1761 |
+
This Ellipse property is an alias for the Circle's radius.
|
| 1762 |
+
|
| 1763 |
+
Whereas hradius, major and minor can use Ellipse's conventions,
|
| 1764 |
+
the vradius does not exist for a circle. It is always a positive
|
| 1765 |
+
value in order that the Circle, like Polygons, will have an
|
| 1766 |
+
area that can be positive or negative as determined by the sign
|
| 1767 |
+
of the hradius.
|
| 1768 |
+
|
| 1769 |
+
Examples
|
| 1770 |
+
========
|
| 1771 |
+
|
| 1772 |
+
>>> from sympy import Point, Circle
|
| 1773 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
| 1774 |
+
>>> c1.vradius
|
| 1775 |
+
6
|
| 1776 |
+
"""
|
| 1777 |
+
return abs(self.radius)
|
| 1778 |
+
|
| 1779 |
+
|
| 1780 |
+
from .polygon import Polygon, Triangle
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py
ADDED
|
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""The definition of the base geometrical entity with attributes common to
|
| 2 |
+
all derived geometrical entities.
|
| 3 |
+
|
| 4 |
+
Contains
|
| 5 |
+
========
|
| 6 |
+
|
| 7 |
+
GeometryEntity
|
| 8 |
+
GeometricSet
|
| 9 |
+
|
| 10 |
+
Notes
|
| 11 |
+
=====
|
| 12 |
+
|
| 13 |
+
A GeometryEntity is any object that has special geometric properties.
|
| 14 |
+
A GeometrySet is a superclass of any GeometryEntity that can also
|
| 15 |
+
be viewed as a sympy.sets.Set. In particular, points are the only
|
| 16 |
+
GeometryEntity not considered a Set.
|
| 17 |
+
|
| 18 |
+
Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
|
| 19 |
+
R3 are currently the only ambient spaces implemented.
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
from __future__ import annotations
|
| 23 |
+
|
| 24 |
+
from sympy.core.basic import Basic
|
| 25 |
+
from sympy.core.containers import Tuple
|
| 26 |
+
from sympy.core.evalf import EvalfMixin, N
|
| 27 |
+
from sympy.core.numbers import oo
|
| 28 |
+
from sympy.core.symbol import Dummy
|
| 29 |
+
from sympy.core.sympify import sympify
|
| 30 |
+
from sympy.functions.elementary.trigonometric import cos, sin, atan
|
| 31 |
+
from sympy.matrices import eye
|
| 32 |
+
from sympy.multipledispatch import dispatch
|
| 33 |
+
from sympy.printing import sstr
|
| 34 |
+
from sympy.sets import Set, Union, FiniteSet
|
| 35 |
+
from sympy.sets.handlers.intersection import intersection_sets
|
| 36 |
+
from sympy.sets.handlers.union import union_sets
|
| 37 |
+
from sympy.solvers.solvers import solve
|
| 38 |
+
from sympy.utilities.misc import func_name
|
| 39 |
+
from sympy.utilities.iterables import is_sequence
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# How entities are ordered; used by __cmp__ in GeometryEntity
|
| 43 |
+
ordering_of_classes = [
|
| 44 |
+
"Point2D",
|
| 45 |
+
"Point3D",
|
| 46 |
+
"Point",
|
| 47 |
+
"Segment2D",
|
| 48 |
+
"Ray2D",
|
| 49 |
+
"Line2D",
|
| 50 |
+
"Segment3D",
|
| 51 |
+
"Line3D",
|
| 52 |
+
"Ray3D",
|
| 53 |
+
"Segment",
|
| 54 |
+
"Ray",
|
| 55 |
+
"Line",
|
| 56 |
+
"Plane",
|
| 57 |
+
"Triangle",
|
| 58 |
+
"RegularPolygon",
|
| 59 |
+
"Polygon",
|
| 60 |
+
"Circle",
|
| 61 |
+
"Ellipse",
|
| 62 |
+
"Curve",
|
| 63 |
+
"Parabola"
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
x, y = [Dummy('entity_dummy') for i in range(2)]
|
| 68 |
+
T = Dummy('entity_dummy', real=True)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class GeometryEntity(Basic, EvalfMixin):
|
| 72 |
+
"""The base class for all geometrical entities.
|
| 73 |
+
|
| 74 |
+
This class does not represent any particular geometric entity, it only
|
| 75 |
+
provides the implementation of some methods common to all subclasses.
|
| 76 |
+
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
__slots__: tuple[str, ...] = ()
|
| 80 |
+
|
| 81 |
+
def __cmp__(self, other):
|
| 82 |
+
"""Comparison of two GeometryEntities."""
|
| 83 |
+
n1 = self.__class__.__name__
|
| 84 |
+
n2 = other.__class__.__name__
|
| 85 |
+
c = (n1 > n2) - (n1 < n2)
|
| 86 |
+
if not c:
|
| 87 |
+
return 0
|
| 88 |
+
|
| 89 |
+
i1 = -1
|
| 90 |
+
for cls in self.__class__.__mro__:
|
| 91 |
+
try:
|
| 92 |
+
i1 = ordering_of_classes.index(cls.__name__)
|
| 93 |
+
break
|
| 94 |
+
except ValueError:
|
| 95 |
+
i1 = -1
|
| 96 |
+
if i1 == -1:
|
| 97 |
+
return c
|
| 98 |
+
|
| 99 |
+
i2 = -1
|
| 100 |
+
for cls in other.__class__.__mro__:
|
| 101 |
+
try:
|
| 102 |
+
i2 = ordering_of_classes.index(cls.__name__)
|
| 103 |
+
break
|
| 104 |
+
except ValueError:
|
| 105 |
+
i2 = -1
|
| 106 |
+
if i2 == -1:
|
| 107 |
+
return c
|
| 108 |
+
|
| 109 |
+
return (i1 > i2) - (i1 < i2)
|
| 110 |
+
|
| 111 |
+
def __contains__(self, other):
|
| 112 |
+
"""Subclasses should implement this method for anything more complex than equality."""
|
| 113 |
+
if type(self) is type(other):
|
| 114 |
+
return self == other
|
| 115 |
+
raise NotImplementedError()
|
| 116 |
+
|
| 117 |
+
def __getnewargs__(self):
|
| 118 |
+
"""Returns a tuple that will be passed to __new__ on unpickling."""
|
| 119 |
+
return tuple(self.args)
|
| 120 |
+
|
| 121 |
+
def __ne__(self, o):
|
| 122 |
+
"""Test inequality of two geometrical entities."""
|
| 123 |
+
return not self == o
|
| 124 |
+
|
| 125 |
+
def __new__(cls, *args, **kwargs):
|
| 126 |
+
# Points are sequences, but they should not
|
| 127 |
+
# be converted to Tuples, so use this detection function instead.
|
| 128 |
+
def is_seq_and_not_point(a):
|
| 129 |
+
# we cannot use isinstance(a, Point) since we cannot import Point
|
| 130 |
+
if hasattr(a, 'is_Point') and a.is_Point:
|
| 131 |
+
return False
|
| 132 |
+
return is_sequence(a)
|
| 133 |
+
|
| 134 |
+
args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
|
| 135 |
+
return Basic.__new__(cls, *args)
|
| 136 |
+
|
| 137 |
+
def __radd__(self, a):
|
| 138 |
+
"""Implementation of reverse add method."""
|
| 139 |
+
return a.__add__(self)
|
| 140 |
+
|
| 141 |
+
def __rtruediv__(self, a):
|
| 142 |
+
"""Implementation of reverse division method."""
|
| 143 |
+
return a.__truediv__(self)
|
| 144 |
+
|
| 145 |
+
def __repr__(self):
|
| 146 |
+
"""String representation of a GeometryEntity that can be evaluated
|
| 147 |
+
by sympy."""
|
| 148 |
+
return type(self).__name__ + repr(self.args)
|
| 149 |
+
|
| 150 |
+
def __rmul__(self, a):
|
| 151 |
+
"""Implementation of reverse multiplication method."""
|
| 152 |
+
return a.__mul__(self)
|
| 153 |
+
|
| 154 |
+
def __rsub__(self, a):
|
| 155 |
+
"""Implementation of reverse subtraction method."""
|
| 156 |
+
return a.__sub__(self)
|
| 157 |
+
|
| 158 |
+
def __str__(self):
|
| 159 |
+
"""String representation of a GeometryEntity."""
|
| 160 |
+
return type(self).__name__ + sstr(self.args)
|
| 161 |
+
|
| 162 |
+
def _eval_subs(self, old, new):
|
| 163 |
+
from sympy.geometry.point import Point, Point3D
|
| 164 |
+
if is_sequence(old) or is_sequence(new):
|
| 165 |
+
if isinstance(self, Point3D):
|
| 166 |
+
old = Point3D(old)
|
| 167 |
+
new = Point3D(new)
|
| 168 |
+
else:
|
| 169 |
+
old = Point(old)
|
| 170 |
+
new = Point(new)
|
| 171 |
+
return self._subs(old, new)
|
| 172 |
+
|
| 173 |
+
def _repr_svg_(self):
|
| 174 |
+
"""SVG representation of a GeometryEntity suitable for IPython"""
|
| 175 |
+
|
| 176 |
+
try:
|
| 177 |
+
bounds = self.bounds
|
| 178 |
+
except (NotImplementedError, TypeError):
|
| 179 |
+
# if we have no SVG representation, return None so IPython
|
| 180 |
+
# will fall back to the next representation
|
| 181 |
+
return None
|
| 182 |
+
|
| 183 |
+
if not all(x.is_number and x.is_finite for x in bounds):
|
| 184 |
+
return None
|
| 185 |
+
|
| 186 |
+
svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
|
| 187 |
+
xmlns:xlink="http://www.w3.org/1999/xlink"
|
| 188 |
+
width="{1}" height="{2}" viewBox="{0}"
|
| 189 |
+
preserveAspectRatio="xMinYMin meet">
|
| 190 |
+
<defs>
|
| 191 |
+
<marker id="markerCircle" markerWidth="8" markerHeight="8"
|
| 192 |
+
refx="5" refy="5" markerUnits="strokeWidth">
|
| 193 |
+
<circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
|
| 194 |
+
</marker>
|
| 195 |
+
<marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
|
| 196 |
+
orient="auto" markerUnits="strokeWidth">
|
| 197 |
+
<path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
|
| 198 |
+
</marker>
|
| 199 |
+
<marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
|
| 200 |
+
orient="auto" markerUnits="strokeWidth">
|
| 201 |
+
<path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
|
| 202 |
+
</marker>
|
| 203 |
+
</defs>'''
|
| 204 |
+
|
| 205 |
+
# Establish SVG canvas that will fit all the data + small space
|
| 206 |
+
xmin, ymin, xmax, ymax = map(N, bounds)
|
| 207 |
+
if xmin == xmax and ymin == ymax:
|
| 208 |
+
# This is a point; buffer using an arbitrary size
|
| 209 |
+
xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
|
| 210 |
+
else:
|
| 211 |
+
# Expand bounds by a fraction of the data ranges
|
| 212 |
+
expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
|
| 213 |
+
widest_part = max([xmax - xmin, ymax - ymin])
|
| 214 |
+
expand_amount = widest_part * expand
|
| 215 |
+
xmin -= expand_amount
|
| 216 |
+
ymin -= expand_amount
|
| 217 |
+
xmax += expand_amount
|
| 218 |
+
ymax += expand_amount
|
| 219 |
+
dx = xmax - xmin
|
| 220 |
+
dy = ymax - ymin
|
| 221 |
+
width = min([max([100., dx]), 300])
|
| 222 |
+
height = min([max([100., dy]), 300])
|
| 223 |
+
|
| 224 |
+
scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
|
| 225 |
+
try:
|
| 226 |
+
svg = self._svg(scale_factor)
|
| 227 |
+
except (NotImplementedError, TypeError):
|
| 228 |
+
# if we have no SVG representation, return None so IPython
|
| 229 |
+
# will fall back to the next representation
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
view_box = "{} {} {} {}".format(xmin, ymin, dx, dy)
|
| 233 |
+
transform = "matrix(1,0,0,-1,0,{})".format(ymax + ymin)
|
| 234 |
+
svg_top = svg_top.format(view_box, width, height)
|
| 235 |
+
|
| 236 |
+
return svg_top + (
|
| 237 |
+
'<g transform="{}">{}</g></svg>'
|
| 238 |
+
).format(transform, svg)
|
| 239 |
+
|
| 240 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
| 241 |
+
"""Returns SVG path element for the GeometryEntity.
|
| 242 |
+
|
| 243 |
+
Parameters
|
| 244 |
+
==========
|
| 245 |
+
|
| 246 |
+
scale_factor : float
|
| 247 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
| 248 |
+
fill_color : str, optional
|
| 249 |
+
Hex string for fill color. Default is "#66cc99".
|
| 250 |
+
"""
|
| 251 |
+
raise NotImplementedError()
|
| 252 |
+
|
| 253 |
+
def _sympy_(self):
|
| 254 |
+
return self
|
| 255 |
+
|
| 256 |
+
@property
|
| 257 |
+
def ambient_dimension(self):
|
| 258 |
+
"""What is the dimension of the space that the object is contained in?"""
|
| 259 |
+
raise NotImplementedError()
|
| 260 |
+
|
| 261 |
+
@property
|
| 262 |
+
def bounds(self):
|
| 263 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
| 264 |
+
rectangle for the geometric figure.
|
| 265 |
+
|
| 266 |
+
"""
|
| 267 |
+
|
| 268 |
+
raise NotImplementedError()
|
| 269 |
+
|
| 270 |
+
def encloses(self, o):
|
| 271 |
+
"""
|
| 272 |
+
Return True if o is inside (not on or outside) the boundaries of self.
|
| 273 |
+
|
| 274 |
+
The object will be decomposed into Points and individual Entities need
|
| 275 |
+
only define an encloses_point method for their class.
|
| 276 |
+
|
| 277 |
+
See Also
|
| 278 |
+
========
|
| 279 |
+
|
| 280 |
+
sympy.geometry.ellipse.Ellipse.encloses_point
|
| 281 |
+
sympy.geometry.polygon.Polygon.encloses_point
|
| 282 |
+
|
| 283 |
+
Examples
|
| 284 |
+
========
|
| 285 |
+
|
| 286 |
+
>>> from sympy import RegularPolygon, Point, Polygon
|
| 287 |
+
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
|
| 288 |
+
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
|
| 289 |
+
>>> t2.encloses(t)
|
| 290 |
+
True
|
| 291 |
+
>>> t.encloses(t2)
|
| 292 |
+
False
|
| 293 |
+
|
| 294 |
+
"""
|
| 295 |
+
|
| 296 |
+
from sympy.geometry.point import Point
|
| 297 |
+
from sympy.geometry.line import Segment, Ray, Line
|
| 298 |
+
from sympy.geometry.ellipse import Ellipse
|
| 299 |
+
from sympy.geometry.polygon import Polygon, RegularPolygon
|
| 300 |
+
|
| 301 |
+
if isinstance(o, Point):
|
| 302 |
+
return self.encloses_point(o)
|
| 303 |
+
elif isinstance(o, Segment):
|
| 304 |
+
return all(self.encloses_point(x) for x in o.points)
|
| 305 |
+
elif isinstance(o, (Ray, Line)):
|
| 306 |
+
return False
|
| 307 |
+
elif isinstance(o, Ellipse):
|
| 308 |
+
return self.encloses_point(o.center) and \
|
| 309 |
+
self.encloses_point(
|
| 310 |
+
Point(o.center.x + o.hradius, o.center.y)) and \
|
| 311 |
+
not self.intersection(o)
|
| 312 |
+
elif isinstance(o, Polygon):
|
| 313 |
+
if isinstance(o, RegularPolygon):
|
| 314 |
+
if not self.encloses_point(o.center):
|
| 315 |
+
return False
|
| 316 |
+
return all(self.encloses_point(v) for v in o.vertices)
|
| 317 |
+
raise NotImplementedError()
|
| 318 |
+
|
| 319 |
+
def equals(self, o):
|
| 320 |
+
return self == o
|
| 321 |
+
|
| 322 |
+
def intersection(self, o):
|
| 323 |
+
"""
|
| 324 |
+
Returns a list of all of the intersections of self with o.
|
| 325 |
+
|
| 326 |
+
Notes
|
| 327 |
+
=====
|
| 328 |
+
|
| 329 |
+
An entity is not required to implement this method.
|
| 330 |
+
|
| 331 |
+
If two different types of entities can intersect, the item with
|
| 332 |
+
higher index in ordering_of_classes should implement
|
| 333 |
+
intersections with anything having a lower index.
|
| 334 |
+
|
| 335 |
+
See Also
|
| 336 |
+
========
|
| 337 |
+
|
| 338 |
+
sympy.geometry.util.intersection
|
| 339 |
+
|
| 340 |
+
"""
|
| 341 |
+
raise NotImplementedError()
|
| 342 |
+
|
| 343 |
+
def is_similar(self, other):
|
| 344 |
+
"""Is this geometrical entity similar to another geometrical entity?
|
| 345 |
+
|
| 346 |
+
Two entities are similar if a uniform scaling (enlarging or
|
| 347 |
+
shrinking) of one of the entities will allow one to obtain the other.
|
| 348 |
+
|
| 349 |
+
Notes
|
| 350 |
+
=====
|
| 351 |
+
|
| 352 |
+
This method is not intended to be used directly but rather
|
| 353 |
+
through the `are_similar` function found in util.py.
|
| 354 |
+
An entity is not required to implement this method.
|
| 355 |
+
If two different types of entities can be similar, it is only
|
| 356 |
+
required that one of them be able to determine this.
|
| 357 |
+
|
| 358 |
+
See Also
|
| 359 |
+
========
|
| 360 |
+
|
| 361 |
+
scale
|
| 362 |
+
|
| 363 |
+
"""
|
| 364 |
+
raise NotImplementedError()
|
| 365 |
+
|
| 366 |
+
def reflect(self, line):
|
| 367 |
+
"""
|
| 368 |
+
Reflects an object across a line.
|
| 369 |
+
|
| 370 |
+
Parameters
|
| 371 |
+
==========
|
| 372 |
+
|
| 373 |
+
line: Line
|
| 374 |
+
|
| 375 |
+
Examples
|
| 376 |
+
========
|
| 377 |
+
|
| 378 |
+
>>> from sympy import pi, sqrt, Line, RegularPolygon
|
| 379 |
+
>>> l = Line((0, pi), slope=sqrt(2))
|
| 380 |
+
>>> pent = RegularPolygon((1, 2), 1, 5)
|
| 381 |
+
>>> rpent = pent.reflect(l)
|
| 382 |
+
>>> rpent
|
| 383 |
+
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
|
| 384 |
+
|
| 385 |
+
>>> from sympy import pi, Line, Circle, Point
|
| 386 |
+
>>> l = Line((0, pi), slope=1)
|
| 387 |
+
>>> circ = Circle(Point(0, 0), 5)
|
| 388 |
+
>>> rcirc = circ.reflect(l)
|
| 389 |
+
>>> rcirc
|
| 390 |
+
Circle(Point2D(-pi, pi), -5)
|
| 391 |
+
|
| 392 |
+
"""
|
| 393 |
+
from sympy.geometry.point import Point
|
| 394 |
+
|
| 395 |
+
g = self
|
| 396 |
+
l = line
|
| 397 |
+
o = Point(0, 0)
|
| 398 |
+
if l.slope.is_zero:
|
| 399 |
+
v = l.args[0].y
|
| 400 |
+
if not v: # x-axis
|
| 401 |
+
return g.scale(y=-1)
|
| 402 |
+
reps = [(p, p.translate(y=2*(v - p.y))) for p in g.atoms(Point)]
|
| 403 |
+
elif l.slope is oo:
|
| 404 |
+
v = l.args[0].x
|
| 405 |
+
if not v: # y-axis
|
| 406 |
+
return g.scale(x=-1)
|
| 407 |
+
reps = [(p, p.translate(x=2*(v - p.x))) for p in g.atoms(Point)]
|
| 408 |
+
else:
|
| 409 |
+
if not hasattr(g, 'reflect') and not all(
|
| 410 |
+
isinstance(arg, Point) for arg in g.args):
|
| 411 |
+
raise NotImplementedError(
|
| 412 |
+
'reflect undefined or non-Point args in %s' % g)
|
| 413 |
+
a = atan(l.slope)
|
| 414 |
+
c = l.coefficients
|
| 415 |
+
d = -c[-1]/c[1] # y-intercept
|
| 416 |
+
# apply the transform to a single point
|
| 417 |
+
xf = Point(x, y)
|
| 418 |
+
xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
|
| 419 |
+
).rotate(a, o).translate(y=d)
|
| 420 |
+
# replace every point using that transform
|
| 421 |
+
reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
|
| 422 |
+
return g.xreplace(dict(reps))
|
| 423 |
+
|
| 424 |
+
def rotate(self, angle, pt=None):
|
| 425 |
+
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
|
| 426 |
+
|
| 427 |
+
The default pt is the origin, Point(0, 0)
|
| 428 |
+
|
| 429 |
+
See Also
|
| 430 |
+
========
|
| 431 |
+
|
| 432 |
+
scale, translate
|
| 433 |
+
|
| 434 |
+
Examples
|
| 435 |
+
========
|
| 436 |
+
|
| 437 |
+
>>> from sympy import Point, RegularPolygon, Polygon, pi
|
| 438 |
+
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
|
| 439 |
+
>>> t # vertex on x axis
|
| 440 |
+
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
|
| 441 |
+
>>> t.rotate(pi/2) # vertex on y axis now
|
| 442 |
+
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
|
| 443 |
+
|
| 444 |
+
"""
|
| 445 |
+
newargs = []
|
| 446 |
+
for a in self.args:
|
| 447 |
+
if isinstance(a, GeometryEntity):
|
| 448 |
+
newargs.append(a.rotate(angle, pt))
|
| 449 |
+
else:
|
| 450 |
+
newargs.append(a)
|
| 451 |
+
return type(self)(*newargs)
|
| 452 |
+
|
| 453 |
+
def scale(self, x=1, y=1, pt=None):
|
| 454 |
+
"""Scale the object by multiplying the x,y-coordinates by x and y.
|
| 455 |
+
|
| 456 |
+
If pt is given, the scaling is done relative to that point; the
|
| 457 |
+
object is shifted by -pt, scaled, and shifted by pt.
|
| 458 |
+
|
| 459 |
+
See Also
|
| 460 |
+
========
|
| 461 |
+
|
| 462 |
+
rotate, translate
|
| 463 |
+
|
| 464 |
+
Examples
|
| 465 |
+
========
|
| 466 |
+
|
| 467 |
+
>>> from sympy import RegularPolygon, Point, Polygon
|
| 468 |
+
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
|
| 469 |
+
>>> t
|
| 470 |
+
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
|
| 471 |
+
>>> t.scale(2)
|
| 472 |
+
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
|
| 473 |
+
>>> t.scale(2, 2)
|
| 474 |
+
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
|
| 475 |
+
|
| 476 |
+
"""
|
| 477 |
+
from sympy.geometry.point import Point
|
| 478 |
+
if pt:
|
| 479 |
+
pt = Point(pt, dim=2)
|
| 480 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
| 481 |
+
return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
|
| 482 |
+
|
| 483 |
+
def translate(self, x=0, y=0):
|
| 484 |
+
"""Shift the object by adding to the x,y-coordinates the values x and y.
|
| 485 |
+
|
| 486 |
+
See Also
|
| 487 |
+
========
|
| 488 |
+
|
| 489 |
+
rotate, scale
|
| 490 |
+
|
| 491 |
+
Examples
|
| 492 |
+
========
|
| 493 |
+
|
| 494 |
+
>>> from sympy import RegularPolygon, Point, Polygon
|
| 495 |
+
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
|
| 496 |
+
>>> t
|
| 497 |
+
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
|
| 498 |
+
>>> t.translate(2)
|
| 499 |
+
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
|
| 500 |
+
>>> t.translate(2, 2)
|
| 501 |
+
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
|
| 502 |
+
|
| 503 |
+
"""
|
| 504 |
+
newargs = []
|
| 505 |
+
for a in self.args:
|
| 506 |
+
if isinstance(a, GeometryEntity):
|
| 507 |
+
newargs.append(a.translate(x, y))
|
| 508 |
+
else:
|
| 509 |
+
newargs.append(a)
|
| 510 |
+
return self.func(*newargs)
|
| 511 |
+
|
| 512 |
+
def parameter_value(self, other, t):
|
| 513 |
+
"""Return the parameter corresponding to the given point.
|
| 514 |
+
Evaluating an arbitrary point of the entity at this parameter
|
| 515 |
+
value will return the given point.
|
| 516 |
+
|
| 517 |
+
Examples
|
| 518 |
+
========
|
| 519 |
+
|
| 520 |
+
>>> from sympy import Line, Point
|
| 521 |
+
>>> from sympy.abc import t
|
| 522 |
+
>>> a = Point(0, 0)
|
| 523 |
+
>>> b = Point(2, 2)
|
| 524 |
+
>>> Line(a, b).parameter_value((1, 1), t)
|
| 525 |
+
{t: 1/2}
|
| 526 |
+
>>> Line(a, b).arbitrary_point(t).subs(_)
|
| 527 |
+
Point2D(1, 1)
|
| 528 |
+
"""
|
| 529 |
+
from sympy.geometry.point import Point
|
| 530 |
+
if not isinstance(other, GeometryEntity):
|
| 531 |
+
other = Point(other, dim=self.ambient_dimension)
|
| 532 |
+
if not isinstance(other, Point):
|
| 533 |
+
raise ValueError("other must be a point")
|
| 534 |
+
sol = solve(self.arbitrary_point(T) - other, T, dict=True)
|
| 535 |
+
if not sol:
|
| 536 |
+
raise ValueError("Given point is not on %s" % func_name(self))
|
| 537 |
+
return {t: sol[0][T]}
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
class GeometrySet(GeometryEntity, Set):
|
| 541 |
+
"""Parent class of all GeometryEntity that are also Sets
|
| 542 |
+
(compatible with sympy.sets)
|
| 543 |
+
"""
|
| 544 |
+
__slots__ = ()
|
| 545 |
+
|
| 546 |
+
def _contains(self, other):
|
| 547 |
+
"""sympy.sets uses the _contains method, so include it for compatibility."""
|
| 548 |
+
|
| 549 |
+
if isinstance(other, Set) and other.is_FiniteSet:
|
| 550 |
+
return all(self.__contains__(i) for i in other)
|
| 551 |
+
|
| 552 |
+
return self.__contains__(other)
|
| 553 |
+
|
| 554 |
+
@dispatch(GeometrySet, Set) # type:ignore # noqa:F811
|
| 555 |
+
def union_sets(self, o): # noqa:F811
|
| 556 |
+
""" Returns the union of self and o
|
| 557 |
+
for use with sympy.sets.Set, if possible. """
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
# if its a FiniteSet, merge any points
|
| 561 |
+
# we contain and return a union with the rest
|
| 562 |
+
if o.is_FiniteSet:
|
| 563 |
+
other_points = [p for p in o if not self._contains(p)]
|
| 564 |
+
if len(other_points) == len(o):
|
| 565 |
+
return None
|
| 566 |
+
return Union(self, FiniteSet(*other_points))
|
| 567 |
+
if self._contains(o):
|
| 568 |
+
return self
|
| 569 |
+
return None
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
@dispatch(GeometrySet, Set) # type: ignore # noqa:F811
|
| 573 |
+
def intersection_sets(self, o): # noqa:F811
|
| 574 |
+
""" Returns a sympy.sets.Set of intersection objects,
|
| 575 |
+
if possible. """
|
| 576 |
+
|
| 577 |
+
from sympy.geometry.point import Point
|
| 578 |
+
|
| 579 |
+
try:
|
| 580 |
+
# if o is a FiniteSet, find the intersection directly
|
| 581 |
+
# to avoid infinite recursion
|
| 582 |
+
if o.is_FiniteSet:
|
| 583 |
+
inter = FiniteSet(*(p for p in o if self.contains(p)))
|
| 584 |
+
else:
|
| 585 |
+
inter = self.intersection(o)
|
| 586 |
+
except NotImplementedError:
|
| 587 |
+
# sympy.sets.Set.reduce expects None if an object
|
| 588 |
+
# doesn't know how to simplify
|
| 589 |
+
return None
|
| 590 |
+
|
| 591 |
+
# put the points in a FiniteSet
|
| 592 |
+
points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
|
| 593 |
+
non_points = [p for p in inter if not isinstance(p, Point)]
|
| 594 |
+
|
| 595 |
+
return Union(*(non_points + [points]))
|
| 596 |
+
|
| 597 |
+
def translate(x, y):
|
| 598 |
+
"""Return the matrix to translate a 2-D point by x and y."""
|
| 599 |
+
rv = eye(3)
|
| 600 |
+
rv[2, 0] = x
|
| 601 |
+
rv[2, 1] = y
|
| 602 |
+
return rv
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def scale(x, y, pt=None):
|
| 606 |
+
"""Return the matrix to multiply a 2-D point's coordinates by x and y.
|
| 607 |
+
|
| 608 |
+
If pt is given, the scaling is done relative to that point."""
|
| 609 |
+
rv = eye(3)
|
| 610 |
+
rv[0, 0] = x
|
| 611 |
+
rv[1, 1] = y
|
| 612 |
+
if pt:
|
| 613 |
+
from sympy.geometry.point import Point
|
| 614 |
+
pt = Point(pt, dim=2)
|
| 615 |
+
tr1 = translate(*(-pt).args)
|
| 616 |
+
tr2 = translate(*pt.args)
|
| 617 |
+
return tr1*rv*tr2
|
| 618 |
+
return rv
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
def rotate(th):
|
| 622 |
+
"""Return the matrix to rotate a 2-D point about the origin by ``angle``.
|
| 623 |
+
|
| 624 |
+
The angle is measured in radians. To Point a point about a point other
|
| 625 |
+
then the origin, translate the Point, do the rotation, and
|
| 626 |
+
translate it back:
|
| 627 |
+
|
| 628 |
+
>>> from sympy.geometry.entity import rotate, translate
|
| 629 |
+
>>> from sympy import Point, pi
|
| 630 |
+
>>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
|
| 631 |
+
>>> Point(1, 1).transform(rot_about_11)
|
| 632 |
+
Point2D(1, 1)
|
| 633 |
+
>>> Point(0, 0).transform(rot_about_11)
|
| 634 |
+
Point2D(2, 0)
|
| 635 |
+
"""
|
| 636 |
+
s = sin(th)
|
| 637 |
+
rv = eye(3)*cos(th)
|
| 638 |
+
rv[0, 1] = s
|
| 639 |
+
rv[1, 0] = -s
|
| 640 |
+
rv[2, 2] = 1
|
| 641 |
+
return rv
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Geometry Errors."""
|
| 2 |
+
|
| 3 |
+
class GeometryError(ValueError):
|
| 4 |
+
"""An exception raised by classes in the geometry module."""
|
| 5 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py
ADDED
|
@@ -0,0 +1,2883 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core import Expr, S, oo, pi, sympify
|
| 2 |
+
from sympy.core.evalf import N
|
| 3 |
+
from sympy.core.sorting import default_sort_key, ordered
|
| 4 |
+
from sympy.core.symbol import _symbol, Dummy, Symbol
|
| 5 |
+
from sympy.functions.elementary.complexes import sign
|
| 6 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
| 7 |
+
from sympy.functions.elementary.trigonometric import cos, sin, tan
|
| 8 |
+
from .ellipse import Circle
|
| 9 |
+
from .entity import GeometryEntity, GeometrySet
|
| 10 |
+
from .exceptions import GeometryError
|
| 11 |
+
from .line import Line, Segment, Ray
|
| 12 |
+
from .point import Point
|
| 13 |
+
from sympy.logic import And
|
| 14 |
+
from sympy.matrices import Matrix
|
| 15 |
+
from sympy.simplify.simplify import simplify
|
| 16 |
+
from sympy.solvers.solvers import solve
|
| 17 |
+
from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
|
| 18 |
+
from sympy.utilities.misc import as_int, func_name
|
| 19 |
+
|
| 20 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
| 21 |
+
|
| 22 |
+
import warnings
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
x, y, T = [Dummy('polygon_dummy', real=True) for i in range(3)]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class Polygon(GeometrySet):
|
| 29 |
+
"""A two-dimensional polygon.
|
| 30 |
+
|
| 31 |
+
A simple polygon in space. Can be constructed from a sequence of points
|
| 32 |
+
or from a center, radius, number of sides and rotation angle.
|
| 33 |
+
|
| 34 |
+
Parameters
|
| 35 |
+
==========
|
| 36 |
+
|
| 37 |
+
vertices
|
| 38 |
+
A sequence of points.
|
| 39 |
+
|
| 40 |
+
n : int, optional
|
| 41 |
+
If $> 0$, an n-sided RegularPolygon is created.
|
| 42 |
+
Default value is $0$.
|
| 43 |
+
|
| 44 |
+
Attributes
|
| 45 |
+
==========
|
| 46 |
+
|
| 47 |
+
area
|
| 48 |
+
angles
|
| 49 |
+
perimeter
|
| 50 |
+
vertices
|
| 51 |
+
centroid
|
| 52 |
+
sides
|
| 53 |
+
|
| 54 |
+
Raises
|
| 55 |
+
======
|
| 56 |
+
|
| 57 |
+
GeometryError
|
| 58 |
+
If all parameters are not Points.
|
| 59 |
+
|
| 60 |
+
See Also
|
| 61 |
+
========
|
| 62 |
+
|
| 63 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
|
| 64 |
+
|
| 65 |
+
Notes
|
| 66 |
+
=====
|
| 67 |
+
|
| 68 |
+
Polygons are treated as closed paths rather than 2D areas so
|
| 69 |
+
some calculations can be be negative or positive (e.g., area)
|
| 70 |
+
based on the orientation of the points.
|
| 71 |
+
|
| 72 |
+
Any consecutive identical points are reduced to a single point
|
| 73 |
+
and any points collinear and between two points will be removed
|
| 74 |
+
unless they are needed to define an explicit intersection (see examples).
|
| 75 |
+
|
| 76 |
+
A Triangle, Segment or Point will be returned when there are 3 or
|
| 77 |
+
fewer points provided.
|
| 78 |
+
|
| 79 |
+
Examples
|
| 80 |
+
========
|
| 81 |
+
|
| 82 |
+
>>> from sympy import Polygon, pi
|
| 83 |
+
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
|
| 84 |
+
>>> Polygon(p1, p2, p3, p4)
|
| 85 |
+
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
|
| 86 |
+
>>> Polygon(p1, p2)
|
| 87 |
+
Segment2D(Point2D(0, 0), Point2D(1, 0))
|
| 88 |
+
>>> Polygon(p1, p2, p5)
|
| 89 |
+
Segment2D(Point2D(0, 0), Point2D(3, 0))
|
| 90 |
+
|
| 91 |
+
The area of a polygon is calculated as positive when vertices are
|
| 92 |
+
traversed in a ccw direction. When the sides of a polygon cross the
|
| 93 |
+
area will have positive and negative contributions. The following
|
| 94 |
+
defines a Z shape where the bottom right connects back to the top
|
| 95 |
+
left.
|
| 96 |
+
|
| 97 |
+
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
|
| 98 |
+
0
|
| 99 |
+
|
| 100 |
+
When the keyword `n` is used to define the number of sides of the
|
| 101 |
+
Polygon then a RegularPolygon is created and the other arguments are
|
| 102 |
+
interpreted as center, radius and rotation. The unrotated RegularPolygon
|
| 103 |
+
will always have a vertex at Point(r, 0) where `r` is the radius of the
|
| 104 |
+
circle that circumscribes the RegularPolygon. Its method `spin` can be
|
| 105 |
+
used to increment that angle.
|
| 106 |
+
|
| 107 |
+
>>> p = Polygon((0,0), 1, n=3)
|
| 108 |
+
>>> p
|
| 109 |
+
RegularPolygon(Point2D(0, 0), 1, 3, 0)
|
| 110 |
+
>>> p.vertices[0]
|
| 111 |
+
Point2D(1, 0)
|
| 112 |
+
>>> p.args[0]
|
| 113 |
+
Point2D(0, 0)
|
| 114 |
+
>>> p.spin(pi/2)
|
| 115 |
+
>>> p.vertices[0]
|
| 116 |
+
Point2D(0, 1)
|
| 117 |
+
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
__slots__ = ()
|
| 121 |
+
|
| 122 |
+
def __new__(cls, *args, n = 0, **kwargs):
|
| 123 |
+
if n:
|
| 124 |
+
args = list(args)
|
| 125 |
+
# return a virtual polygon with n sides
|
| 126 |
+
if len(args) == 2: # center, radius
|
| 127 |
+
args.append(n)
|
| 128 |
+
elif len(args) == 3: # center, radius, rotation
|
| 129 |
+
args.insert(2, n)
|
| 130 |
+
return RegularPolygon(*args, **kwargs)
|
| 131 |
+
|
| 132 |
+
vertices = [Point(a, dim=2, **kwargs) for a in args]
|
| 133 |
+
|
| 134 |
+
# remove consecutive duplicates
|
| 135 |
+
nodup = []
|
| 136 |
+
for p in vertices:
|
| 137 |
+
if nodup and p == nodup[-1]:
|
| 138 |
+
continue
|
| 139 |
+
nodup.append(p)
|
| 140 |
+
if len(nodup) > 1 and nodup[-1] == nodup[0]:
|
| 141 |
+
nodup.pop() # last point was same as first
|
| 142 |
+
|
| 143 |
+
# remove collinear points
|
| 144 |
+
i = -3
|
| 145 |
+
while i < len(nodup) - 3 and len(nodup) > 2:
|
| 146 |
+
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
|
| 147 |
+
if Point.is_collinear(a, b, c):
|
| 148 |
+
nodup.pop(i + 1)
|
| 149 |
+
if a == c:
|
| 150 |
+
nodup.pop(i)
|
| 151 |
+
else:
|
| 152 |
+
i += 1
|
| 153 |
+
|
| 154 |
+
vertices = list(nodup)
|
| 155 |
+
|
| 156 |
+
if len(vertices) > 3:
|
| 157 |
+
return GeometryEntity.__new__(cls, *vertices, **kwargs)
|
| 158 |
+
elif len(vertices) == 3:
|
| 159 |
+
return Triangle(*vertices, **kwargs)
|
| 160 |
+
elif len(vertices) == 2:
|
| 161 |
+
return Segment(*vertices, **kwargs)
|
| 162 |
+
else:
|
| 163 |
+
return Point(*vertices, **kwargs)
|
| 164 |
+
|
| 165 |
+
@property
|
| 166 |
+
def area(self):
|
| 167 |
+
"""
|
| 168 |
+
The area of the polygon.
|
| 169 |
+
|
| 170 |
+
Notes
|
| 171 |
+
=====
|
| 172 |
+
|
| 173 |
+
The area calculation can be positive or negative based on the
|
| 174 |
+
orientation of the points. If any side of the polygon crosses
|
| 175 |
+
any other side, there will be areas having opposite signs.
|
| 176 |
+
|
| 177 |
+
See Also
|
| 178 |
+
========
|
| 179 |
+
|
| 180 |
+
sympy.geometry.ellipse.Ellipse.area
|
| 181 |
+
|
| 182 |
+
Examples
|
| 183 |
+
========
|
| 184 |
+
|
| 185 |
+
>>> from sympy import Point, Polygon
|
| 186 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 187 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 188 |
+
>>> poly.area
|
| 189 |
+
3
|
| 190 |
+
|
| 191 |
+
In the Z shaped polygon (with the lower right connecting back
|
| 192 |
+
to the upper left) the areas cancel out:
|
| 193 |
+
|
| 194 |
+
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
|
| 195 |
+
>>> Z.area
|
| 196 |
+
0
|
| 197 |
+
|
| 198 |
+
In the M shaped polygon, areas do not cancel because no side
|
| 199 |
+
crosses any other (though there is a point of contact).
|
| 200 |
+
|
| 201 |
+
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
|
| 202 |
+
>>> M.area
|
| 203 |
+
-3/2
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
area = 0
|
| 207 |
+
args = self.args
|
| 208 |
+
for i in range(len(args)):
|
| 209 |
+
x1, y1 = args[i - 1].args
|
| 210 |
+
x2, y2 = args[i].args
|
| 211 |
+
area += x1*y2 - x2*y1
|
| 212 |
+
return simplify(area) / 2
|
| 213 |
+
|
| 214 |
+
@staticmethod
|
| 215 |
+
def _isright(a, b, c):
|
| 216 |
+
"""Return True/False for cw/ccw orientation.
|
| 217 |
+
|
| 218 |
+
Examples
|
| 219 |
+
========
|
| 220 |
+
|
| 221 |
+
>>> from sympy import Point, Polygon
|
| 222 |
+
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
|
| 223 |
+
>>> Polygon._isright(a, b, c)
|
| 224 |
+
True
|
| 225 |
+
>>> Polygon._isright(a, c, b)
|
| 226 |
+
False
|
| 227 |
+
"""
|
| 228 |
+
ba = b - a
|
| 229 |
+
ca = c - a
|
| 230 |
+
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
|
| 231 |
+
res = t_area.is_nonpositive
|
| 232 |
+
if res is None:
|
| 233 |
+
raise ValueError("Can't determine orientation")
|
| 234 |
+
return res
|
| 235 |
+
|
| 236 |
+
@property
|
| 237 |
+
def angles(self):
|
| 238 |
+
"""The internal angle at each vertex.
|
| 239 |
+
|
| 240 |
+
Returns
|
| 241 |
+
=======
|
| 242 |
+
|
| 243 |
+
angles : dict
|
| 244 |
+
A dictionary where each key is a vertex and each value is the
|
| 245 |
+
internal angle at that vertex. The vertices are represented as
|
| 246 |
+
Points.
|
| 247 |
+
|
| 248 |
+
See Also
|
| 249 |
+
========
|
| 250 |
+
|
| 251 |
+
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
|
| 252 |
+
|
| 253 |
+
Examples
|
| 254 |
+
========
|
| 255 |
+
|
| 256 |
+
>>> from sympy import Point, Polygon
|
| 257 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 258 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 259 |
+
>>> poly.angles[p1]
|
| 260 |
+
pi/2
|
| 261 |
+
>>> poly.angles[p2]
|
| 262 |
+
acos(-4*sqrt(17)/17)
|
| 263 |
+
|
| 264 |
+
"""
|
| 265 |
+
|
| 266 |
+
# Determine orientation of points
|
| 267 |
+
args = self.vertices
|
| 268 |
+
cw = self._isright(args[-1], args[0], args[1])
|
| 269 |
+
|
| 270 |
+
ret = {}
|
| 271 |
+
for i in range(len(args)):
|
| 272 |
+
a, b, c = args[i - 2], args[i - 1], args[i]
|
| 273 |
+
ang = Ray(b, a).angle_between(Ray(b, c))
|
| 274 |
+
if cw ^ self._isright(a, b, c):
|
| 275 |
+
ret[b] = 2*S.Pi - ang
|
| 276 |
+
else:
|
| 277 |
+
ret[b] = ang
|
| 278 |
+
return ret
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
def ambient_dimension(self):
|
| 282 |
+
return self.vertices[0].ambient_dimension
|
| 283 |
+
|
| 284 |
+
@property
|
| 285 |
+
def perimeter(self):
|
| 286 |
+
"""The perimeter of the polygon.
|
| 287 |
+
|
| 288 |
+
Returns
|
| 289 |
+
=======
|
| 290 |
+
|
| 291 |
+
perimeter : number or Basic instance
|
| 292 |
+
|
| 293 |
+
See Also
|
| 294 |
+
========
|
| 295 |
+
|
| 296 |
+
sympy.geometry.line.Segment.length
|
| 297 |
+
|
| 298 |
+
Examples
|
| 299 |
+
========
|
| 300 |
+
|
| 301 |
+
>>> from sympy import Point, Polygon
|
| 302 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 303 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 304 |
+
>>> poly.perimeter
|
| 305 |
+
sqrt(17) + 7
|
| 306 |
+
"""
|
| 307 |
+
p = 0
|
| 308 |
+
args = self.vertices
|
| 309 |
+
for i in range(len(args)):
|
| 310 |
+
p += args[i - 1].distance(args[i])
|
| 311 |
+
return simplify(p)
|
| 312 |
+
|
| 313 |
+
@property
|
| 314 |
+
def vertices(self):
|
| 315 |
+
"""The vertices of the polygon.
|
| 316 |
+
|
| 317 |
+
Returns
|
| 318 |
+
=======
|
| 319 |
+
|
| 320 |
+
vertices : list of Points
|
| 321 |
+
|
| 322 |
+
Notes
|
| 323 |
+
=====
|
| 324 |
+
|
| 325 |
+
When iterating over the vertices, it is more efficient to index self
|
| 326 |
+
rather than to request the vertices and index them. Only use the
|
| 327 |
+
vertices when you want to process all of them at once. This is even
|
| 328 |
+
more important with RegularPolygons that calculate each vertex.
|
| 329 |
+
|
| 330 |
+
See Also
|
| 331 |
+
========
|
| 332 |
+
|
| 333 |
+
sympy.geometry.point.Point
|
| 334 |
+
|
| 335 |
+
Examples
|
| 336 |
+
========
|
| 337 |
+
|
| 338 |
+
>>> from sympy import Point, Polygon
|
| 339 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 340 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 341 |
+
>>> poly.vertices
|
| 342 |
+
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
|
| 343 |
+
>>> poly.vertices[0]
|
| 344 |
+
Point2D(0, 0)
|
| 345 |
+
|
| 346 |
+
"""
|
| 347 |
+
return list(self.args)
|
| 348 |
+
|
| 349 |
+
@property
|
| 350 |
+
def centroid(self):
|
| 351 |
+
"""The centroid of the polygon.
|
| 352 |
+
|
| 353 |
+
Returns
|
| 354 |
+
=======
|
| 355 |
+
|
| 356 |
+
centroid : Point
|
| 357 |
+
|
| 358 |
+
See Also
|
| 359 |
+
========
|
| 360 |
+
|
| 361 |
+
sympy.geometry.point.Point, sympy.geometry.util.centroid
|
| 362 |
+
|
| 363 |
+
Examples
|
| 364 |
+
========
|
| 365 |
+
|
| 366 |
+
>>> from sympy import Point, Polygon
|
| 367 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 368 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 369 |
+
>>> poly.centroid
|
| 370 |
+
Point2D(31/18, 11/18)
|
| 371 |
+
|
| 372 |
+
"""
|
| 373 |
+
A = 1/(6*self.area)
|
| 374 |
+
cx, cy = 0, 0
|
| 375 |
+
args = self.args
|
| 376 |
+
for i in range(len(args)):
|
| 377 |
+
x1, y1 = args[i - 1].args
|
| 378 |
+
x2, y2 = args[i].args
|
| 379 |
+
v = x1*y2 - x2*y1
|
| 380 |
+
cx += v*(x1 + x2)
|
| 381 |
+
cy += v*(y1 + y2)
|
| 382 |
+
return Point(simplify(A*cx), simplify(A*cy))
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def second_moment_of_area(self, point=None):
|
| 386 |
+
"""Returns the second moment and product moment of area of a two dimensional polygon.
|
| 387 |
+
|
| 388 |
+
Parameters
|
| 389 |
+
==========
|
| 390 |
+
|
| 391 |
+
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
| 392 |
+
point is the point about which second moment of area is to be found.
|
| 393 |
+
If "point=None" it will be calculated about the axis passing through the
|
| 394 |
+
centroid of the polygon.
|
| 395 |
+
|
| 396 |
+
Returns
|
| 397 |
+
=======
|
| 398 |
+
|
| 399 |
+
I_xx, I_yy, I_xy : number or SymPy expression
|
| 400 |
+
I_xx, I_yy are second moment of area of a two dimensional polygon.
|
| 401 |
+
I_xy is product moment of area of a two dimensional polygon.
|
| 402 |
+
|
| 403 |
+
Examples
|
| 404 |
+
========
|
| 405 |
+
|
| 406 |
+
>>> from sympy import Polygon, symbols
|
| 407 |
+
>>> a, b = symbols('a, b')
|
| 408 |
+
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
|
| 409 |
+
>>> rectangle = Polygon(p1, p2, p3, p4)
|
| 410 |
+
>>> rectangle.second_moment_of_area()
|
| 411 |
+
(a*b**3/12, a**3*b/12, 0)
|
| 412 |
+
>>> rectangle.second_moment_of_area(p5)
|
| 413 |
+
(a*b**3/9, a**3*b/9, a**2*b**2/36)
|
| 414 |
+
|
| 415 |
+
References
|
| 416 |
+
==========
|
| 417 |
+
|
| 418 |
+
.. [1] https://en.wikipedia.org/wiki/Second_moment_of_area
|
| 419 |
+
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
I_xx, I_yy, I_xy = 0, 0, 0
|
| 423 |
+
args = self.vertices
|
| 424 |
+
for i in range(len(args)):
|
| 425 |
+
x1, y1 = args[i-1].args
|
| 426 |
+
x2, y2 = args[i].args
|
| 427 |
+
v = x1*y2 - x2*y1
|
| 428 |
+
I_xx += (y1**2 + y1*y2 + y2**2)*v
|
| 429 |
+
I_yy += (x1**2 + x1*x2 + x2**2)*v
|
| 430 |
+
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
|
| 431 |
+
A = self.area
|
| 432 |
+
c_x = self.centroid[0]
|
| 433 |
+
c_y = self.centroid[1]
|
| 434 |
+
# parallel axis theorem
|
| 435 |
+
I_xx_c = (I_xx/12) - (A*(c_y**2))
|
| 436 |
+
I_yy_c = (I_yy/12) - (A*(c_x**2))
|
| 437 |
+
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
|
| 438 |
+
if point is None:
|
| 439 |
+
return I_xx_c, I_yy_c, I_xy_c
|
| 440 |
+
|
| 441 |
+
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
|
| 442 |
+
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
|
| 443 |
+
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
|
| 444 |
+
|
| 445 |
+
return I_xx, I_yy, I_xy
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def first_moment_of_area(self, point=None):
|
| 449 |
+
"""
|
| 450 |
+
Returns the first moment of area of a two-dimensional polygon with
|
| 451 |
+
respect to a certain point of interest.
|
| 452 |
+
|
| 453 |
+
First moment of area is a measure of the distribution of the area
|
| 454 |
+
of a polygon in relation to an axis. The first moment of area of
|
| 455 |
+
the entire polygon about its own centroid is always zero. Therefore,
|
| 456 |
+
here it is calculated for an area, above or below a certain point
|
| 457 |
+
of interest, that makes up a smaller portion of the polygon. This
|
| 458 |
+
area is bounded by the point of interest and the extreme end
|
| 459 |
+
(top or bottom) of the polygon. The first moment for this area is
|
| 460 |
+
is then determined about the centroidal axis of the initial polygon.
|
| 461 |
+
|
| 462 |
+
References
|
| 463 |
+
==========
|
| 464 |
+
|
| 465 |
+
.. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
|
| 466 |
+
.. [2] https://mechanicalc.com/reference/cross-sections
|
| 467 |
+
|
| 468 |
+
Parameters
|
| 469 |
+
==========
|
| 470 |
+
|
| 471 |
+
point: Point, two-tuple of sympifyable objects, or None (default=None)
|
| 472 |
+
point is the point above or below which the area of interest lies
|
| 473 |
+
If ``point=None`` then the centroid acts as the point of interest.
|
| 474 |
+
|
| 475 |
+
Returns
|
| 476 |
+
=======
|
| 477 |
+
|
| 478 |
+
Q_x, Q_y: number or SymPy expressions
|
| 479 |
+
Q_x is the first moment of area about the x-axis
|
| 480 |
+
Q_y is the first moment of area about the y-axis
|
| 481 |
+
A negative sign indicates that the section modulus is
|
| 482 |
+
determined for a section below (or left of) the centroidal axis
|
| 483 |
+
|
| 484 |
+
Examples
|
| 485 |
+
========
|
| 486 |
+
|
| 487 |
+
>>> from sympy import Point, Polygon
|
| 488 |
+
>>> a, b = 50, 10
|
| 489 |
+
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
| 490 |
+
>>> p = Polygon(p1, p2, p3, p4)
|
| 491 |
+
>>> p.first_moment_of_area()
|
| 492 |
+
(625, 3125)
|
| 493 |
+
>>> p.first_moment_of_area(point=Point(30, 7))
|
| 494 |
+
(525, 3000)
|
| 495 |
+
"""
|
| 496 |
+
if point:
|
| 497 |
+
xc, yc = self.centroid
|
| 498 |
+
else:
|
| 499 |
+
point = self.centroid
|
| 500 |
+
xc, yc = point
|
| 501 |
+
|
| 502 |
+
h_line = Line(point, slope=0)
|
| 503 |
+
v_line = Line(point, slope=S.Infinity)
|
| 504 |
+
|
| 505 |
+
h_poly = self.cut_section(h_line)
|
| 506 |
+
v_poly = self.cut_section(v_line)
|
| 507 |
+
|
| 508 |
+
poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
|
| 509 |
+
poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
|
| 510 |
+
|
| 511 |
+
Q_x = (poly_1.centroid.y - yc)*poly_1.area
|
| 512 |
+
Q_y = (poly_2.centroid.x - xc)*poly_2.area
|
| 513 |
+
|
| 514 |
+
return Q_x, Q_y
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def polar_second_moment_of_area(self):
|
| 518 |
+
"""Returns the polar modulus of a two-dimensional polygon
|
| 519 |
+
|
| 520 |
+
It is a constituent of the second moment of area, linked through
|
| 521 |
+
the perpendicular axis theorem. While the planar second moment of
|
| 522 |
+
area describes an object's resistance to deflection (bending) when
|
| 523 |
+
subjected to a force applied to a plane parallel to the central
|
| 524 |
+
axis, the polar second moment of area describes an object's
|
| 525 |
+
resistance to deflection when subjected to a moment applied in a
|
| 526 |
+
plane perpendicular to the object's central axis (i.e. parallel to
|
| 527 |
+
the cross-section)
|
| 528 |
+
|
| 529 |
+
Examples
|
| 530 |
+
========
|
| 531 |
+
|
| 532 |
+
>>> from sympy import Polygon, symbols
|
| 533 |
+
>>> a, b = symbols('a, b')
|
| 534 |
+
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
| 535 |
+
>>> rectangle.polar_second_moment_of_area()
|
| 536 |
+
a**3*b/12 + a*b**3/12
|
| 537 |
+
|
| 538 |
+
References
|
| 539 |
+
==========
|
| 540 |
+
|
| 541 |
+
.. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
|
| 542 |
+
|
| 543 |
+
"""
|
| 544 |
+
second_moment = self.second_moment_of_area()
|
| 545 |
+
return second_moment[0] + second_moment[1]
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
def section_modulus(self, point=None):
|
| 549 |
+
"""Returns a tuple with the section modulus of a two-dimensional
|
| 550 |
+
polygon.
|
| 551 |
+
|
| 552 |
+
Section modulus is a geometric property of a polygon defined as the
|
| 553 |
+
ratio of second moment of area to the distance of the extreme end of
|
| 554 |
+
the polygon from the centroidal axis.
|
| 555 |
+
|
| 556 |
+
Parameters
|
| 557 |
+
==========
|
| 558 |
+
|
| 559 |
+
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
| 560 |
+
point is the point at which section modulus is to be found.
|
| 561 |
+
If "point=None" it will be calculated for the point farthest from the
|
| 562 |
+
centroidal axis of the polygon.
|
| 563 |
+
|
| 564 |
+
Returns
|
| 565 |
+
=======
|
| 566 |
+
|
| 567 |
+
S_x, S_y: numbers or SymPy expressions
|
| 568 |
+
S_x is the section modulus with respect to the x-axis
|
| 569 |
+
S_y is the section modulus with respect to the y-axis
|
| 570 |
+
A negative sign indicates that the section modulus is
|
| 571 |
+
determined for a point below the centroidal axis
|
| 572 |
+
|
| 573 |
+
Examples
|
| 574 |
+
========
|
| 575 |
+
|
| 576 |
+
>>> from sympy import symbols, Polygon, Point
|
| 577 |
+
>>> a, b = symbols('a, b', positive=True)
|
| 578 |
+
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
| 579 |
+
>>> rectangle.section_modulus()
|
| 580 |
+
(a*b**2/6, a**2*b/6)
|
| 581 |
+
>>> rectangle.section_modulus(Point(a/4, b/4))
|
| 582 |
+
(-a*b**2/3, -a**2*b/3)
|
| 583 |
+
|
| 584 |
+
References
|
| 585 |
+
==========
|
| 586 |
+
|
| 587 |
+
.. [1] https://en.wikipedia.org/wiki/Section_modulus
|
| 588 |
+
|
| 589 |
+
"""
|
| 590 |
+
x_c, y_c = self.centroid
|
| 591 |
+
if point is None:
|
| 592 |
+
# taking x and y as maximum distances from centroid
|
| 593 |
+
x_min, y_min, x_max, y_max = self.bounds
|
| 594 |
+
y = max(y_c - y_min, y_max - y_c)
|
| 595 |
+
x = max(x_c - x_min, x_max - x_c)
|
| 596 |
+
else:
|
| 597 |
+
# taking x and y as distances of the given point from the centroid
|
| 598 |
+
y = point.y - y_c
|
| 599 |
+
x = point.x - x_c
|
| 600 |
+
|
| 601 |
+
second_moment= self.second_moment_of_area()
|
| 602 |
+
S_x = second_moment[0]/y
|
| 603 |
+
S_y = second_moment[1]/x
|
| 604 |
+
|
| 605 |
+
return S_x, S_y
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
@property
|
| 609 |
+
def sides(self):
|
| 610 |
+
"""The directed line segments that form the sides of the polygon.
|
| 611 |
+
|
| 612 |
+
Returns
|
| 613 |
+
=======
|
| 614 |
+
|
| 615 |
+
sides : list of sides
|
| 616 |
+
Each side is a directed Segment.
|
| 617 |
+
|
| 618 |
+
See Also
|
| 619 |
+
========
|
| 620 |
+
|
| 621 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
| 622 |
+
|
| 623 |
+
Examples
|
| 624 |
+
========
|
| 625 |
+
|
| 626 |
+
>>> from sympy import Point, Polygon
|
| 627 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 628 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 629 |
+
>>> poly.sides
|
| 630 |
+
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
|
| 631 |
+
Segment2D(Point2D(1, 0), Point2D(5, 1)),
|
| 632 |
+
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
|
| 633 |
+
|
| 634 |
+
"""
|
| 635 |
+
res = []
|
| 636 |
+
args = self.vertices
|
| 637 |
+
for i in range(-len(args), 0):
|
| 638 |
+
res.append(Segment(args[i], args[i + 1]))
|
| 639 |
+
return res
|
| 640 |
+
|
| 641 |
+
@property
|
| 642 |
+
def bounds(self):
|
| 643 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
| 644 |
+
rectangle for the geometric figure.
|
| 645 |
+
|
| 646 |
+
"""
|
| 647 |
+
|
| 648 |
+
verts = self.vertices
|
| 649 |
+
xs = [p.x for p in verts]
|
| 650 |
+
ys = [p.y for p in verts]
|
| 651 |
+
return (min(xs), min(ys), max(xs), max(ys))
|
| 652 |
+
|
| 653 |
+
def is_convex(self):
|
| 654 |
+
"""Is the polygon convex?
|
| 655 |
+
|
| 656 |
+
A polygon is convex if all its interior angles are less than 180
|
| 657 |
+
degrees and there are no intersections between sides.
|
| 658 |
+
|
| 659 |
+
Returns
|
| 660 |
+
=======
|
| 661 |
+
|
| 662 |
+
is_convex : boolean
|
| 663 |
+
True if this polygon is convex, False otherwise.
|
| 664 |
+
|
| 665 |
+
See Also
|
| 666 |
+
========
|
| 667 |
+
|
| 668 |
+
sympy.geometry.util.convex_hull
|
| 669 |
+
|
| 670 |
+
Examples
|
| 671 |
+
========
|
| 672 |
+
|
| 673 |
+
>>> from sympy import Point, Polygon
|
| 674 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 675 |
+
>>> poly = Polygon(p1, p2, p3, p4)
|
| 676 |
+
>>> poly.is_convex()
|
| 677 |
+
True
|
| 678 |
+
|
| 679 |
+
"""
|
| 680 |
+
# Determine orientation of points
|
| 681 |
+
args = self.vertices
|
| 682 |
+
cw = self._isright(args[-2], args[-1], args[0])
|
| 683 |
+
for i in range(1, len(args)):
|
| 684 |
+
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
|
| 685 |
+
return False
|
| 686 |
+
# check for intersecting sides
|
| 687 |
+
sides = self.sides
|
| 688 |
+
for i, si in enumerate(sides):
|
| 689 |
+
pts = si.args
|
| 690 |
+
# exclude the sides connected to si
|
| 691 |
+
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
|
| 692 |
+
sj = sides[j]
|
| 693 |
+
if sj.p1 not in pts and sj.p2 not in pts:
|
| 694 |
+
hit = si.intersection(sj)
|
| 695 |
+
if hit:
|
| 696 |
+
return False
|
| 697 |
+
return True
|
| 698 |
+
|
| 699 |
+
def encloses_point(self, p):
|
| 700 |
+
"""
|
| 701 |
+
Return True if p is enclosed by (is inside of) self.
|
| 702 |
+
|
| 703 |
+
Notes
|
| 704 |
+
=====
|
| 705 |
+
|
| 706 |
+
Being on the border of self is considered False.
|
| 707 |
+
|
| 708 |
+
Parameters
|
| 709 |
+
==========
|
| 710 |
+
|
| 711 |
+
p : Point
|
| 712 |
+
|
| 713 |
+
Returns
|
| 714 |
+
=======
|
| 715 |
+
|
| 716 |
+
encloses_point : True, False or None
|
| 717 |
+
|
| 718 |
+
See Also
|
| 719 |
+
========
|
| 720 |
+
|
| 721 |
+
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
|
| 722 |
+
|
| 723 |
+
Examples
|
| 724 |
+
========
|
| 725 |
+
|
| 726 |
+
>>> from sympy import Polygon, Point
|
| 727 |
+
>>> p = Polygon((0, 0), (4, 0), (4, 4))
|
| 728 |
+
>>> p.encloses_point(Point(2, 1))
|
| 729 |
+
True
|
| 730 |
+
>>> p.encloses_point(Point(2, 2))
|
| 731 |
+
False
|
| 732 |
+
>>> p.encloses_point(Point(5, 5))
|
| 733 |
+
False
|
| 734 |
+
|
| 735 |
+
References
|
| 736 |
+
==========
|
| 737 |
+
|
| 738 |
+
.. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
|
| 739 |
+
|
| 740 |
+
"""
|
| 741 |
+
p = Point(p, dim=2)
|
| 742 |
+
if p in self.vertices or any(p in s for s in self.sides):
|
| 743 |
+
return False
|
| 744 |
+
|
| 745 |
+
# move to p, checking that the result is numeric
|
| 746 |
+
lit = []
|
| 747 |
+
for v in self.vertices:
|
| 748 |
+
lit.append(v - p) # the difference is simplified
|
| 749 |
+
if lit[-1].free_symbols:
|
| 750 |
+
return None
|
| 751 |
+
|
| 752 |
+
poly = Polygon(*lit)
|
| 753 |
+
|
| 754 |
+
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
|
| 755 |
+
# the last point has to be added so all sides are computed. Using Polygon.sides is
|
| 756 |
+
# not good since Segments are unordered.
|
| 757 |
+
args = poly.args
|
| 758 |
+
indices = list(range(-len(args), 1))
|
| 759 |
+
|
| 760 |
+
if poly.is_convex():
|
| 761 |
+
orientation = None
|
| 762 |
+
for i in indices:
|
| 763 |
+
a = args[i]
|
| 764 |
+
b = args[i + 1]
|
| 765 |
+
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
|
| 766 |
+
if orientation is None:
|
| 767 |
+
orientation = test
|
| 768 |
+
elif test is not orientation:
|
| 769 |
+
return False
|
| 770 |
+
return True
|
| 771 |
+
|
| 772 |
+
hit_odd = False
|
| 773 |
+
p1x, p1y = args[0].args
|
| 774 |
+
for i in indices[1:]:
|
| 775 |
+
p2x, p2y = args[i].args
|
| 776 |
+
if 0 > min(p1y, p2y):
|
| 777 |
+
if 0 <= max(p1y, p2y):
|
| 778 |
+
if 0 <= max(p1x, p2x):
|
| 779 |
+
if p1y != p2y:
|
| 780 |
+
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
|
| 781 |
+
if p1x == p2x or 0 <= xinters:
|
| 782 |
+
hit_odd = not hit_odd
|
| 783 |
+
p1x, p1y = p2x, p2y
|
| 784 |
+
return hit_odd
|
| 785 |
+
|
| 786 |
+
def arbitrary_point(self, parameter='t'):
|
| 787 |
+
"""A parameterized point on the polygon.
|
| 788 |
+
|
| 789 |
+
The parameter, varying from 0 to 1, assigns points to the position on
|
| 790 |
+
the perimeter that is that fraction of the total perimeter. So the
|
| 791 |
+
point evaluated at t=1/2 would return the point from the first vertex
|
| 792 |
+
that is 1/2 way around the polygon.
|
| 793 |
+
|
| 794 |
+
Parameters
|
| 795 |
+
==========
|
| 796 |
+
|
| 797 |
+
parameter : str, optional
|
| 798 |
+
Default value is 't'.
|
| 799 |
+
|
| 800 |
+
Returns
|
| 801 |
+
=======
|
| 802 |
+
|
| 803 |
+
arbitrary_point : Point
|
| 804 |
+
|
| 805 |
+
Raises
|
| 806 |
+
======
|
| 807 |
+
|
| 808 |
+
ValueError
|
| 809 |
+
When `parameter` already appears in the Polygon's definition.
|
| 810 |
+
|
| 811 |
+
See Also
|
| 812 |
+
========
|
| 813 |
+
|
| 814 |
+
sympy.geometry.point.Point
|
| 815 |
+
|
| 816 |
+
Examples
|
| 817 |
+
========
|
| 818 |
+
|
| 819 |
+
>>> from sympy import Polygon, Symbol
|
| 820 |
+
>>> t = Symbol('t', real=True)
|
| 821 |
+
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
|
| 822 |
+
>>> p = tri.arbitrary_point('t')
|
| 823 |
+
>>> perimeter = tri.perimeter
|
| 824 |
+
>>> s1, s2 = [s.length for s in tri.sides[:2]]
|
| 825 |
+
>>> p.subs(t, (s1 + s2/2)/perimeter)
|
| 826 |
+
Point2D(1, 1/2)
|
| 827 |
+
|
| 828 |
+
"""
|
| 829 |
+
t = _symbol(parameter, real=True)
|
| 830 |
+
if t.name in (f.name for f in self.free_symbols):
|
| 831 |
+
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
|
| 832 |
+
sides = []
|
| 833 |
+
perimeter = self.perimeter
|
| 834 |
+
perim_fraction_start = 0
|
| 835 |
+
for s in self.sides:
|
| 836 |
+
side_perim_fraction = s.length/perimeter
|
| 837 |
+
perim_fraction_end = perim_fraction_start + side_perim_fraction
|
| 838 |
+
pt = s.arbitrary_point(parameter).subs(
|
| 839 |
+
t, (t - perim_fraction_start)/side_perim_fraction)
|
| 840 |
+
sides.append(
|
| 841 |
+
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
|
| 842 |
+
perim_fraction_start = perim_fraction_end
|
| 843 |
+
return Piecewise(*sides)
|
| 844 |
+
|
| 845 |
+
def parameter_value(self, other, t):
|
| 846 |
+
if not isinstance(other,GeometryEntity):
|
| 847 |
+
other = Point(other, dim=self.ambient_dimension)
|
| 848 |
+
if not isinstance(other,Point):
|
| 849 |
+
raise ValueError("other must be a point")
|
| 850 |
+
if other.free_symbols:
|
| 851 |
+
raise NotImplementedError('non-numeric coordinates')
|
| 852 |
+
unknown = False
|
| 853 |
+
p = self.arbitrary_point(T)
|
| 854 |
+
for pt, cond in p.args:
|
| 855 |
+
sol = solve(pt - other, T, dict=True)
|
| 856 |
+
if not sol:
|
| 857 |
+
continue
|
| 858 |
+
value = sol[0][T]
|
| 859 |
+
if simplify(cond.subs(T, value)) == True:
|
| 860 |
+
return {t: value}
|
| 861 |
+
unknown = True
|
| 862 |
+
if unknown:
|
| 863 |
+
raise ValueError("Given point may not be on %s" % func_name(self))
|
| 864 |
+
raise ValueError("Given point is not on %s" % func_name(self))
|
| 865 |
+
|
| 866 |
+
def plot_interval(self, parameter='t'):
|
| 867 |
+
"""The plot interval for the default geometric plot of the polygon.
|
| 868 |
+
|
| 869 |
+
Parameters
|
| 870 |
+
==========
|
| 871 |
+
|
| 872 |
+
parameter : str, optional
|
| 873 |
+
Default value is 't'.
|
| 874 |
+
|
| 875 |
+
Returns
|
| 876 |
+
=======
|
| 877 |
+
|
| 878 |
+
plot_interval : list (plot interval)
|
| 879 |
+
[parameter, lower_bound, upper_bound]
|
| 880 |
+
|
| 881 |
+
Examples
|
| 882 |
+
========
|
| 883 |
+
|
| 884 |
+
>>> from sympy import Polygon
|
| 885 |
+
>>> p = Polygon((0, 0), (1, 0), (1, 1))
|
| 886 |
+
>>> p.plot_interval()
|
| 887 |
+
[t, 0, 1]
|
| 888 |
+
|
| 889 |
+
"""
|
| 890 |
+
t = Symbol(parameter, real=True)
|
| 891 |
+
return [t, 0, 1]
|
| 892 |
+
|
| 893 |
+
def intersection(self, o):
|
| 894 |
+
"""The intersection of polygon and geometry entity.
|
| 895 |
+
|
| 896 |
+
The intersection may be empty and can contain individual Points and
|
| 897 |
+
complete Line Segments.
|
| 898 |
+
|
| 899 |
+
Parameters
|
| 900 |
+
==========
|
| 901 |
+
|
| 902 |
+
other: GeometryEntity
|
| 903 |
+
|
| 904 |
+
Returns
|
| 905 |
+
=======
|
| 906 |
+
|
| 907 |
+
intersection : list
|
| 908 |
+
The list of Segments and Points
|
| 909 |
+
|
| 910 |
+
See Also
|
| 911 |
+
========
|
| 912 |
+
|
| 913 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
| 914 |
+
|
| 915 |
+
Examples
|
| 916 |
+
========
|
| 917 |
+
|
| 918 |
+
>>> from sympy import Point, Polygon, Line
|
| 919 |
+
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 920 |
+
>>> poly1 = Polygon(p1, p2, p3, p4)
|
| 921 |
+
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
|
| 922 |
+
>>> poly2 = Polygon(p5, p6, p7)
|
| 923 |
+
>>> poly1.intersection(poly2)
|
| 924 |
+
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
|
| 925 |
+
>>> poly1.intersection(Line(p1, p2))
|
| 926 |
+
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
|
| 927 |
+
>>> poly1.intersection(p1)
|
| 928 |
+
[Point2D(0, 0)]
|
| 929 |
+
"""
|
| 930 |
+
intersection_result = []
|
| 931 |
+
k = o.sides if isinstance(o, Polygon) else [o]
|
| 932 |
+
for side in self.sides:
|
| 933 |
+
for side1 in k:
|
| 934 |
+
intersection_result.extend(side.intersection(side1))
|
| 935 |
+
|
| 936 |
+
intersection_result = list(uniq(intersection_result))
|
| 937 |
+
points = [entity for entity in intersection_result if isinstance(entity, Point)]
|
| 938 |
+
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
|
| 939 |
+
|
| 940 |
+
if points and segments:
|
| 941 |
+
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
|
| 942 |
+
if points_in_segments:
|
| 943 |
+
for i in points_in_segments:
|
| 944 |
+
points.remove(i)
|
| 945 |
+
return list(ordered(segments + points))
|
| 946 |
+
else:
|
| 947 |
+
return list(ordered(intersection_result))
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
def cut_section(self, line):
|
| 951 |
+
"""
|
| 952 |
+
Returns a tuple of two polygon segments that lie above and below
|
| 953 |
+
the intersecting line respectively.
|
| 954 |
+
|
| 955 |
+
Parameters
|
| 956 |
+
==========
|
| 957 |
+
|
| 958 |
+
line: Line object of geometry module
|
| 959 |
+
line which cuts the Polygon. The part of the Polygon that lies
|
| 960 |
+
above and below this line is returned.
|
| 961 |
+
|
| 962 |
+
Returns
|
| 963 |
+
=======
|
| 964 |
+
|
| 965 |
+
upper_polygon, lower_polygon: Polygon objects or None
|
| 966 |
+
upper_polygon is the polygon that lies above the given line.
|
| 967 |
+
lower_polygon is the polygon that lies below the given line.
|
| 968 |
+
upper_polygon and lower polygon are ``None`` when no polygon
|
| 969 |
+
exists above the line or below the line.
|
| 970 |
+
|
| 971 |
+
Raises
|
| 972 |
+
======
|
| 973 |
+
|
| 974 |
+
ValueError: When the line does not intersect the polygon
|
| 975 |
+
|
| 976 |
+
Examples
|
| 977 |
+
========
|
| 978 |
+
|
| 979 |
+
>>> from sympy import Polygon, Line
|
| 980 |
+
>>> a, b = 20, 10
|
| 981 |
+
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
| 982 |
+
>>> rectangle = Polygon(p1, p2, p3, p4)
|
| 983 |
+
>>> t = rectangle.cut_section(Line((0, 5), slope=0))
|
| 984 |
+
>>> t
|
| 985 |
+
(Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
|
| 986 |
+
Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
|
| 987 |
+
>>> upper_segment, lower_segment = t
|
| 988 |
+
>>> upper_segment.area
|
| 989 |
+
100
|
| 990 |
+
>>> upper_segment.centroid
|
| 991 |
+
Point2D(10, 15/2)
|
| 992 |
+
>>> lower_segment.centroid
|
| 993 |
+
Point2D(10, 5/2)
|
| 994 |
+
|
| 995 |
+
References
|
| 996 |
+
==========
|
| 997 |
+
|
| 998 |
+
.. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
|
| 999 |
+
|
| 1000 |
+
"""
|
| 1001 |
+
intersection_points = self.intersection(line)
|
| 1002 |
+
if not intersection_points:
|
| 1003 |
+
raise ValueError("This line does not intersect the polygon")
|
| 1004 |
+
|
| 1005 |
+
points = list(self.vertices)
|
| 1006 |
+
points.append(points[0])
|
| 1007 |
+
|
| 1008 |
+
eq = line.equation(x, y)
|
| 1009 |
+
|
| 1010 |
+
# considering equation of line to be `ax +by + c`
|
| 1011 |
+
a = eq.coeff(x)
|
| 1012 |
+
b = eq.coeff(y)
|
| 1013 |
+
|
| 1014 |
+
upper_vertices = []
|
| 1015 |
+
lower_vertices = []
|
| 1016 |
+
# prev is true when previous point is above the line
|
| 1017 |
+
prev = True
|
| 1018 |
+
prev_point = None
|
| 1019 |
+
for point in points:
|
| 1020 |
+
# when coefficient of y is 0, right side of the line is
|
| 1021 |
+
# considered
|
| 1022 |
+
compare = eq.subs({x: point.x, y: point.y})/b if b \
|
| 1023 |
+
else eq.subs(x, point.x)/a
|
| 1024 |
+
|
| 1025 |
+
# if point lies above line
|
| 1026 |
+
if compare > 0:
|
| 1027 |
+
if not prev:
|
| 1028 |
+
# if previous point lies below the line, the intersection
|
| 1029 |
+
# point of the polygon edge and the line has to be included
|
| 1030 |
+
edge = Line(point, prev_point)
|
| 1031 |
+
new_point = edge.intersection(line)
|
| 1032 |
+
upper_vertices.append(new_point[0])
|
| 1033 |
+
lower_vertices.append(new_point[0])
|
| 1034 |
+
|
| 1035 |
+
upper_vertices.append(point)
|
| 1036 |
+
prev = True
|
| 1037 |
+
else:
|
| 1038 |
+
if prev and prev_point:
|
| 1039 |
+
edge = Line(point, prev_point)
|
| 1040 |
+
new_point = edge.intersection(line)
|
| 1041 |
+
upper_vertices.append(new_point[0])
|
| 1042 |
+
lower_vertices.append(new_point[0])
|
| 1043 |
+
lower_vertices.append(point)
|
| 1044 |
+
prev = False
|
| 1045 |
+
prev_point = point
|
| 1046 |
+
|
| 1047 |
+
upper_polygon, lower_polygon = None, None
|
| 1048 |
+
if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
|
| 1049 |
+
upper_polygon = Polygon(*upper_vertices)
|
| 1050 |
+
if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
|
| 1051 |
+
lower_polygon = Polygon(*lower_vertices)
|
| 1052 |
+
|
| 1053 |
+
return upper_polygon, lower_polygon
|
| 1054 |
+
|
| 1055 |
+
|
| 1056 |
+
def distance(self, o):
|
| 1057 |
+
"""
|
| 1058 |
+
Returns the shortest distance between self and o.
|
| 1059 |
+
|
| 1060 |
+
If o is a point, then self does not need to be convex.
|
| 1061 |
+
If o is another polygon self and o must be convex.
|
| 1062 |
+
|
| 1063 |
+
Examples
|
| 1064 |
+
========
|
| 1065 |
+
|
| 1066 |
+
>>> from sympy import Point, Polygon, RegularPolygon
|
| 1067 |
+
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
|
| 1068 |
+
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
|
| 1069 |
+
>>> poly.distance(p2)
|
| 1070 |
+
sqrt(61)
|
| 1071 |
+
"""
|
| 1072 |
+
if isinstance(o, Point):
|
| 1073 |
+
dist = oo
|
| 1074 |
+
for side in self.sides:
|
| 1075 |
+
current = side.distance(o)
|
| 1076 |
+
if current == 0:
|
| 1077 |
+
return S.Zero
|
| 1078 |
+
elif current < dist:
|
| 1079 |
+
dist = current
|
| 1080 |
+
return dist
|
| 1081 |
+
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
|
| 1082 |
+
return self._do_poly_distance(o)
|
| 1083 |
+
raise NotImplementedError()
|
| 1084 |
+
|
| 1085 |
+
def _do_poly_distance(self, e2):
|
| 1086 |
+
"""
|
| 1087 |
+
Calculates the least distance between the exteriors of two
|
| 1088 |
+
convex polygons e1 and e2. Does not check for the convexity
|
| 1089 |
+
of the polygons as this is checked by Polygon.distance.
|
| 1090 |
+
|
| 1091 |
+
Notes
|
| 1092 |
+
=====
|
| 1093 |
+
|
| 1094 |
+
- Prints a warning if the two polygons possibly intersect as the return
|
| 1095 |
+
value will not be valid in such a case. For a more through test of
|
| 1096 |
+
intersection use intersection().
|
| 1097 |
+
|
| 1098 |
+
See Also
|
| 1099 |
+
========
|
| 1100 |
+
|
| 1101 |
+
sympy.geometry.point.Point.distance
|
| 1102 |
+
|
| 1103 |
+
Examples
|
| 1104 |
+
========
|
| 1105 |
+
|
| 1106 |
+
>>> from sympy import Point, Polygon
|
| 1107 |
+
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
|
| 1108 |
+
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
|
| 1109 |
+
>>> square._do_poly_distance(triangle)
|
| 1110 |
+
sqrt(2)/2
|
| 1111 |
+
|
| 1112 |
+
Description of method used
|
| 1113 |
+
==========================
|
| 1114 |
+
|
| 1115 |
+
Method:
|
| 1116 |
+
[1] https://web.archive.org/web/20150509035744/http://cgm.cs.mcgill.ca/~orm/mind2p.html
|
| 1117 |
+
Uses rotating calipers:
|
| 1118 |
+
[2] https://en.wikipedia.org/wiki/Rotating_calipers
|
| 1119 |
+
and antipodal points:
|
| 1120 |
+
[3] https://en.wikipedia.org/wiki/Antipodal_point
|
| 1121 |
+
"""
|
| 1122 |
+
e1 = self
|
| 1123 |
+
|
| 1124 |
+
'''Tests for a possible intersection between the polygons and outputs a warning'''
|
| 1125 |
+
e1_center = e1.centroid
|
| 1126 |
+
e2_center = e2.centroid
|
| 1127 |
+
e1_max_radius = S.Zero
|
| 1128 |
+
e2_max_radius = S.Zero
|
| 1129 |
+
for vertex in e1.vertices:
|
| 1130 |
+
r = Point.distance(e1_center, vertex)
|
| 1131 |
+
if e1_max_radius < r:
|
| 1132 |
+
e1_max_radius = r
|
| 1133 |
+
for vertex in e2.vertices:
|
| 1134 |
+
r = Point.distance(e2_center, vertex)
|
| 1135 |
+
if e2_max_radius < r:
|
| 1136 |
+
e2_max_radius = r
|
| 1137 |
+
center_dist = Point.distance(e1_center, e2_center)
|
| 1138 |
+
if center_dist <= e1_max_radius + e2_max_radius:
|
| 1139 |
+
warnings.warn("Polygons may intersect producing erroneous output",
|
| 1140 |
+
stacklevel=3)
|
| 1141 |
+
|
| 1142 |
+
'''
|
| 1143 |
+
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
|
| 1144 |
+
'''
|
| 1145 |
+
e1_ymax = Point(0, -oo)
|
| 1146 |
+
e2_ymin = Point(0, oo)
|
| 1147 |
+
|
| 1148 |
+
for vertex in e1.vertices:
|
| 1149 |
+
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
|
| 1150 |
+
e1_ymax = vertex
|
| 1151 |
+
for vertex in e2.vertices:
|
| 1152 |
+
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
|
| 1153 |
+
e2_ymin = vertex
|
| 1154 |
+
min_dist = Point.distance(e1_ymax, e2_ymin)
|
| 1155 |
+
|
| 1156 |
+
'''
|
| 1157 |
+
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
|
| 1158 |
+
to which the vertex is connected as its value. The same is then done for e2.
|
| 1159 |
+
'''
|
| 1160 |
+
e1_connections = {}
|
| 1161 |
+
e2_connections = {}
|
| 1162 |
+
|
| 1163 |
+
for side in e1.sides:
|
| 1164 |
+
if side.p1 in e1_connections:
|
| 1165 |
+
e1_connections[side.p1].append(side.p2)
|
| 1166 |
+
else:
|
| 1167 |
+
e1_connections[side.p1] = [side.p2]
|
| 1168 |
+
|
| 1169 |
+
if side.p2 in e1_connections:
|
| 1170 |
+
e1_connections[side.p2].append(side.p1)
|
| 1171 |
+
else:
|
| 1172 |
+
e1_connections[side.p2] = [side.p1]
|
| 1173 |
+
|
| 1174 |
+
for side in e2.sides:
|
| 1175 |
+
if side.p1 in e2_connections:
|
| 1176 |
+
e2_connections[side.p1].append(side.p2)
|
| 1177 |
+
else:
|
| 1178 |
+
e2_connections[side.p1] = [side.p2]
|
| 1179 |
+
|
| 1180 |
+
if side.p2 in e2_connections:
|
| 1181 |
+
e2_connections[side.p2].append(side.p1)
|
| 1182 |
+
else:
|
| 1183 |
+
e2_connections[side.p2] = [side.p1]
|
| 1184 |
+
|
| 1185 |
+
e1_current = e1_ymax
|
| 1186 |
+
e2_current = e2_ymin
|
| 1187 |
+
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
|
| 1188 |
+
|
| 1189 |
+
'''
|
| 1190 |
+
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
|
| 1191 |
+
this information combined with the above produced dictionaries determines the
|
| 1192 |
+
path that will be taken around the polygons
|
| 1193 |
+
'''
|
| 1194 |
+
point1 = e1_connections[e1_ymax][0]
|
| 1195 |
+
point2 = e1_connections[e1_ymax][1]
|
| 1196 |
+
angle1 = support_line.angle_between(Line(e1_ymax, point1))
|
| 1197 |
+
angle2 = support_line.angle_between(Line(e1_ymax, point2))
|
| 1198 |
+
if angle1 < angle2:
|
| 1199 |
+
e1_next = point1
|
| 1200 |
+
elif angle2 < angle1:
|
| 1201 |
+
e1_next = point2
|
| 1202 |
+
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
|
| 1203 |
+
e1_next = point2
|
| 1204 |
+
else:
|
| 1205 |
+
e1_next = point1
|
| 1206 |
+
|
| 1207 |
+
point1 = e2_connections[e2_ymin][0]
|
| 1208 |
+
point2 = e2_connections[e2_ymin][1]
|
| 1209 |
+
angle1 = support_line.angle_between(Line(e2_ymin, point1))
|
| 1210 |
+
angle2 = support_line.angle_between(Line(e2_ymin, point2))
|
| 1211 |
+
if angle1 > angle2:
|
| 1212 |
+
e2_next = point1
|
| 1213 |
+
elif angle2 > angle1:
|
| 1214 |
+
e2_next = point2
|
| 1215 |
+
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
|
| 1216 |
+
e2_next = point2
|
| 1217 |
+
else:
|
| 1218 |
+
e2_next = point1
|
| 1219 |
+
|
| 1220 |
+
'''
|
| 1221 |
+
Loop which determines the distance between anti-podal pairs and updates the
|
| 1222 |
+
minimum distance accordingly. It repeats until it reaches the starting position.
|
| 1223 |
+
'''
|
| 1224 |
+
while True:
|
| 1225 |
+
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
|
| 1226 |
+
e2_angle = pi - support_line.angle_between(Line(
|
| 1227 |
+
e2_current, e2_next))
|
| 1228 |
+
|
| 1229 |
+
if (e1_angle < e2_angle) is True:
|
| 1230 |
+
support_line = Line(e1_current, e1_next)
|
| 1231 |
+
e1_segment = Segment(e1_current, e1_next)
|
| 1232 |
+
min_dist_current = e1_segment.distance(e2_current)
|
| 1233 |
+
|
| 1234 |
+
if min_dist_current.evalf() < min_dist.evalf():
|
| 1235 |
+
min_dist = min_dist_current
|
| 1236 |
+
|
| 1237 |
+
if e1_connections[e1_next][0] != e1_current:
|
| 1238 |
+
e1_current = e1_next
|
| 1239 |
+
e1_next = e1_connections[e1_next][0]
|
| 1240 |
+
else:
|
| 1241 |
+
e1_current = e1_next
|
| 1242 |
+
e1_next = e1_connections[e1_next][1]
|
| 1243 |
+
elif (e1_angle > e2_angle) is True:
|
| 1244 |
+
support_line = Line(e2_next, e2_current)
|
| 1245 |
+
e2_segment = Segment(e2_current, e2_next)
|
| 1246 |
+
min_dist_current = e2_segment.distance(e1_current)
|
| 1247 |
+
|
| 1248 |
+
if min_dist_current.evalf() < min_dist.evalf():
|
| 1249 |
+
min_dist = min_dist_current
|
| 1250 |
+
|
| 1251 |
+
if e2_connections[e2_next][0] != e2_current:
|
| 1252 |
+
e2_current = e2_next
|
| 1253 |
+
e2_next = e2_connections[e2_next][0]
|
| 1254 |
+
else:
|
| 1255 |
+
e2_current = e2_next
|
| 1256 |
+
e2_next = e2_connections[e2_next][1]
|
| 1257 |
+
else:
|
| 1258 |
+
support_line = Line(e1_current, e1_next)
|
| 1259 |
+
e1_segment = Segment(e1_current, e1_next)
|
| 1260 |
+
e2_segment = Segment(e2_current, e2_next)
|
| 1261 |
+
min1 = e1_segment.distance(e2_next)
|
| 1262 |
+
min2 = e2_segment.distance(e1_next)
|
| 1263 |
+
|
| 1264 |
+
min_dist_current = min(min1, min2)
|
| 1265 |
+
if min_dist_current.evalf() < min_dist.evalf():
|
| 1266 |
+
min_dist = min_dist_current
|
| 1267 |
+
|
| 1268 |
+
if e1_connections[e1_next][0] != e1_current:
|
| 1269 |
+
e1_current = e1_next
|
| 1270 |
+
e1_next = e1_connections[e1_next][0]
|
| 1271 |
+
else:
|
| 1272 |
+
e1_current = e1_next
|
| 1273 |
+
e1_next = e1_connections[e1_next][1]
|
| 1274 |
+
|
| 1275 |
+
if e2_connections[e2_next][0] != e2_current:
|
| 1276 |
+
e2_current = e2_next
|
| 1277 |
+
e2_next = e2_connections[e2_next][0]
|
| 1278 |
+
else:
|
| 1279 |
+
e2_current = e2_next
|
| 1280 |
+
e2_next = e2_connections[e2_next][1]
|
| 1281 |
+
if e1_current == e1_ymax and e2_current == e2_ymin:
|
| 1282 |
+
break
|
| 1283 |
+
return min_dist
|
| 1284 |
+
|
| 1285 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
| 1286 |
+
"""Returns SVG path element for the Polygon.
|
| 1287 |
+
|
| 1288 |
+
Parameters
|
| 1289 |
+
==========
|
| 1290 |
+
|
| 1291 |
+
scale_factor : float
|
| 1292 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
| 1293 |
+
fill_color : str, optional
|
| 1294 |
+
Hex string for fill color. Default is "#66cc99".
|
| 1295 |
+
"""
|
| 1296 |
+
verts = map(N, self.vertices)
|
| 1297 |
+
coords = ["{},{}".format(p.x, p.y) for p in verts]
|
| 1298 |
+
path = "M {} L {} z".format(coords[0], " L ".join(coords[1:]))
|
| 1299 |
+
return (
|
| 1300 |
+
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
|
| 1301 |
+
'stroke-width="{0}" opacity="0.6" d="{1}" />'
|
| 1302 |
+
).format(2. * scale_factor, path, fill_color)
|
| 1303 |
+
|
| 1304 |
+
def _hashable_content(self):
|
| 1305 |
+
|
| 1306 |
+
D = {}
|
| 1307 |
+
def ref_list(point_list):
|
| 1308 |
+
kee = {}
|
| 1309 |
+
for i, p in enumerate(ordered(set(point_list))):
|
| 1310 |
+
kee[p] = i
|
| 1311 |
+
D[i] = p
|
| 1312 |
+
return [kee[p] for p in point_list]
|
| 1313 |
+
|
| 1314 |
+
S1 = ref_list(self.args)
|
| 1315 |
+
r_nor = rotate_left(S1, least_rotation(S1))
|
| 1316 |
+
S2 = ref_list(list(reversed(self.args)))
|
| 1317 |
+
r_rev = rotate_left(S2, least_rotation(S2))
|
| 1318 |
+
if r_nor < r_rev:
|
| 1319 |
+
r = r_nor
|
| 1320 |
+
else:
|
| 1321 |
+
r = r_rev
|
| 1322 |
+
canonical_args = [ D[order] for order in r ]
|
| 1323 |
+
return tuple(canonical_args)
|
| 1324 |
+
|
| 1325 |
+
def __contains__(self, o):
|
| 1326 |
+
"""
|
| 1327 |
+
Return True if o is contained within the boundary lines of self.altitudes
|
| 1328 |
+
|
| 1329 |
+
Parameters
|
| 1330 |
+
==========
|
| 1331 |
+
|
| 1332 |
+
other : GeometryEntity
|
| 1333 |
+
|
| 1334 |
+
Returns
|
| 1335 |
+
=======
|
| 1336 |
+
|
| 1337 |
+
contained in : bool
|
| 1338 |
+
The points (and sides, if applicable) are contained in self.
|
| 1339 |
+
|
| 1340 |
+
See Also
|
| 1341 |
+
========
|
| 1342 |
+
|
| 1343 |
+
sympy.geometry.entity.GeometryEntity.encloses
|
| 1344 |
+
|
| 1345 |
+
Examples
|
| 1346 |
+
========
|
| 1347 |
+
|
| 1348 |
+
>>> from sympy import Line, Segment, Point
|
| 1349 |
+
>>> p = Point(0, 0)
|
| 1350 |
+
>>> q = Point(1, 1)
|
| 1351 |
+
>>> s = Segment(p, q*2)
|
| 1352 |
+
>>> l = Line(p, q)
|
| 1353 |
+
>>> p in q
|
| 1354 |
+
False
|
| 1355 |
+
>>> p in s
|
| 1356 |
+
True
|
| 1357 |
+
>>> q*3 in s
|
| 1358 |
+
False
|
| 1359 |
+
>>> s in l
|
| 1360 |
+
True
|
| 1361 |
+
|
| 1362 |
+
"""
|
| 1363 |
+
|
| 1364 |
+
if isinstance(o, Polygon):
|
| 1365 |
+
return self == o
|
| 1366 |
+
elif isinstance(o, Segment):
|
| 1367 |
+
return any(o in s for s in self.sides)
|
| 1368 |
+
elif isinstance(o, Point):
|
| 1369 |
+
if o in self.vertices:
|
| 1370 |
+
return True
|
| 1371 |
+
for side in self.sides:
|
| 1372 |
+
if o in side:
|
| 1373 |
+
return True
|
| 1374 |
+
|
| 1375 |
+
return False
|
| 1376 |
+
|
| 1377 |
+
def bisectors(p, prec=None):
|
| 1378 |
+
"""Returns angle bisectors of a polygon. If prec is given
|
| 1379 |
+
then approximate the point defining the ray to that precision.
|
| 1380 |
+
|
| 1381 |
+
The distance between the points defining the bisector ray is 1.
|
| 1382 |
+
|
| 1383 |
+
Examples
|
| 1384 |
+
========
|
| 1385 |
+
|
| 1386 |
+
>>> from sympy import Polygon, Point
|
| 1387 |
+
>>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
|
| 1388 |
+
>>> p.bisectors(2)
|
| 1389 |
+
{Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
|
| 1390 |
+
Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
|
| 1391 |
+
Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
|
| 1392 |
+
Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
|
| 1393 |
+
"""
|
| 1394 |
+
b = {}
|
| 1395 |
+
pts = list(p.args)
|
| 1396 |
+
pts.append(pts[0]) # close it
|
| 1397 |
+
cw = Polygon._isright(*pts[:3])
|
| 1398 |
+
if cw:
|
| 1399 |
+
pts = list(reversed(pts))
|
| 1400 |
+
for v, a in p.angles.items():
|
| 1401 |
+
i = pts.index(v)
|
| 1402 |
+
p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1])
|
| 1403 |
+
ray = Ray(p1, p2).rotate(a/2, v)
|
| 1404 |
+
dir = ray.direction
|
| 1405 |
+
ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0)))
|
| 1406 |
+
if prec is not None:
|
| 1407 |
+
ray = Ray(ray.p1, ray.p2.n(prec))
|
| 1408 |
+
b[v] = ray
|
| 1409 |
+
return b
|
| 1410 |
+
|
| 1411 |
+
|
| 1412 |
+
class RegularPolygon(Polygon):
|
| 1413 |
+
"""
|
| 1414 |
+
A regular polygon.
|
| 1415 |
+
|
| 1416 |
+
Such a polygon has all internal angles equal and all sides the same length.
|
| 1417 |
+
|
| 1418 |
+
Parameters
|
| 1419 |
+
==========
|
| 1420 |
+
|
| 1421 |
+
center : Point
|
| 1422 |
+
radius : number or Basic instance
|
| 1423 |
+
The distance from the center to a vertex
|
| 1424 |
+
n : int
|
| 1425 |
+
The number of sides
|
| 1426 |
+
|
| 1427 |
+
Attributes
|
| 1428 |
+
==========
|
| 1429 |
+
|
| 1430 |
+
vertices
|
| 1431 |
+
center
|
| 1432 |
+
radius
|
| 1433 |
+
rotation
|
| 1434 |
+
apothem
|
| 1435 |
+
interior_angle
|
| 1436 |
+
exterior_angle
|
| 1437 |
+
circumcircle
|
| 1438 |
+
incircle
|
| 1439 |
+
angles
|
| 1440 |
+
|
| 1441 |
+
Raises
|
| 1442 |
+
======
|
| 1443 |
+
|
| 1444 |
+
GeometryError
|
| 1445 |
+
If the `center` is not a Point, or the `radius` is not a number or Basic
|
| 1446 |
+
instance, or the number of sides, `n`, is less than three.
|
| 1447 |
+
|
| 1448 |
+
Notes
|
| 1449 |
+
=====
|
| 1450 |
+
|
| 1451 |
+
A RegularPolygon can be instantiated with Polygon with the kwarg n.
|
| 1452 |
+
|
| 1453 |
+
Regular polygons are instantiated with a center, radius, number of sides
|
| 1454 |
+
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
|
| 1455 |
+
vertices of the RegularPolygon must be obtained with the vertices method.
|
| 1456 |
+
|
| 1457 |
+
See Also
|
| 1458 |
+
========
|
| 1459 |
+
|
| 1460 |
+
sympy.geometry.point.Point, Polygon
|
| 1461 |
+
|
| 1462 |
+
Examples
|
| 1463 |
+
========
|
| 1464 |
+
|
| 1465 |
+
>>> from sympy import RegularPolygon, Point
|
| 1466 |
+
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
| 1467 |
+
>>> r
|
| 1468 |
+
RegularPolygon(Point2D(0, 0), 5, 3, 0)
|
| 1469 |
+
>>> r.vertices[0]
|
| 1470 |
+
Point2D(5, 0)
|
| 1471 |
+
|
| 1472 |
+
"""
|
| 1473 |
+
|
| 1474 |
+
__slots__ = ('_n', '_center', '_radius', '_rot')
|
| 1475 |
+
|
| 1476 |
+
def __new__(self, c, r, n, rot=0, **kwargs):
|
| 1477 |
+
r, n, rot = map(sympify, (r, n, rot))
|
| 1478 |
+
c = Point(c, dim=2, **kwargs)
|
| 1479 |
+
if not isinstance(r, Expr):
|
| 1480 |
+
raise GeometryError("r must be an Expr object, not %s" % r)
|
| 1481 |
+
if n.is_Number:
|
| 1482 |
+
as_int(n) # let an error raise if necessary
|
| 1483 |
+
if n < 3:
|
| 1484 |
+
raise GeometryError("n must be a >= 3, not %s" % n)
|
| 1485 |
+
|
| 1486 |
+
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
|
| 1487 |
+
obj._n = n
|
| 1488 |
+
obj._center = c
|
| 1489 |
+
obj._radius = r
|
| 1490 |
+
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
|
| 1491 |
+
return obj
|
| 1492 |
+
|
| 1493 |
+
def _eval_evalf(self, prec=15, **options):
|
| 1494 |
+
c, r, n, a = self.args
|
| 1495 |
+
dps = prec_to_dps(prec)
|
| 1496 |
+
c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)]
|
| 1497 |
+
return self.func(c, r, n, a)
|
| 1498 |
+
|
| 1499 |
+
@property
|
| 1500 |
+
def args(self):
|
| 1501 |
+
"""
|
| 1502 |
+
Returns the center point, the radius,
|
| 1503 |
+
the number of sides, and the orientation angle.
|
| 1504 |
+
|
| 1505 |
+
Examples
|
| 1506 |
+
========
|
| 1507 |
+
|
| 1508 |
+
>>> from sympy import RegularPolygon, Point
|
| 1509 |
+
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
| 1510 |
+
>>> r.args
|
| 1511 |
+
(Point2D(0, 0), 5, 3, 0)
|
| 1512 |
+
"""
|
| 1513 |
+
return self._center, self._radius, self._n, self._rot
|
| 1514 |
+
|
| 1515 |
+
def __str__(self):
|
| 1516 |
+
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
|
| 1517 |
+
|
| 1518 |
+
def __repr__(self):
|
| 1519 |
+
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
|
| 1520 |
+
|
| 1521 |
+
@property
|
| 1522 |
+
def area(self):
|
| 1523 |
+
"""Returns the area.
|
| 1524 |
+
|
| 1525 |
+
Examples
|
| 1526 |
+
========
|
| 1527 |
+
|
| 1528 |
+
>>> from sympy import RegularPolygon
|
| 1529 |
+
>>> square = RegularPolygon((0, 0), 1, 4)
|
| 1530 |
+
>>> square.area
|
| 1531 |
+
2
|
| 1532 |
+
>>> _ == square.length**2
|
| 1533 |
+
True
|
| 1534 |
+
"""
|
| 1535 |
+
c, r, n, rot = self.args
|
| 1536 |
+
return sign(r)*n*self.length**2/(4*tan(pi/n))
|
| 1537 |
+
|
| 1538 |
+
@property
|
| 1539 |
+
def length(self):
|
| 1540 |
+
"""Returns the length of the sides.
|
| 1541 |
+
|
| 1542 |
+
The half-length of the side and the apothem form two legs
|
| 1543 |
+
of a right triangle whose hypotenuse is the radius of the
|
| 1544 |
+
regular polygon.
|
| 1545 |
+
|
| 1546 |
+
Examples
|
| 1547 |
+
========
|
| 1548 |
+
|
| 1549 |
+
>>> from sympy import RegularPolygon
|
| 1550 |
+
>>> from sympy import sqrt
|
| 1551 |
+
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
|
| 1552 |
+
>>> s.length
|
| 1553 |
+
sqrt(2)
|
| 1554 |
+
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
|
| 1555 |
+
True
|
| 1556 |
+
|
| 1557 |
+
"""
|
| 1558 |
+
return self.radius*2*sin(pi/self._n)
|
| 1559 |
+
|
| 1560 |
+
@property
|
| 1561 |
+
def center(self):
|
| 1562 |
+
"""The center of the RegularPolygon
|
| 1563 |
+
|
| 1564 |
+
This is also the center of the circumscribing circle.
|
| 1565 |
+
|
| 1566 |
+
Returns
|
| 1567 |
+
=======
|
| 1568 |
+
|
| 1569 |
+
center : Point
|
| 1570 |
+
|
| 1571 |
+
See Also
|
| 1572 |
+
========
|
| 1573 |
+
|
| 1574 |
+
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
|
| 1575 |
+
|
| 1576 |
+
Examples
|
| 1577 |
+
========
|
| 1578 |
+
|
| 1579 |
+
>>> from sympy import RegularPolygon, Point
|
| 1580 |
+
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
| 1581 |
+
>>> rp.center
|
| 1582 |
+
Point2D(0, 0)
|
| 1583 |
+
"""
|
| 1584 |
+
return self._center
|
| 1585 |
+
|
| 1586 |
+
centroid = center
|
| 1587 |
+
|
| 1588 |
+
@property
|
| 1589 |
+
def circumcenter(self):
|
| 1590 |
+
"""
|
| 1591 |
+
Alias for center.
|
| 1592 |
+
|
| 1593 |
+
Examples
|
| 1594 |
+
========
|
| 1595 |
+
|
| 1596 |
+
>>> from sympy import RegularPolygon, Point
|
| 1597 |
+
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
| 1598 |
+
>>> rp.circumcenter
|
| 1599 |
+
Point2D(0, 0)
|
| 1600 |
+
"""
|
| 1601 |
+
return self.center
|
| 1602 |
+
|
| 1603 |
+
@property
|
| 1604 |
+
def radius(self):
|
| 1605 |
+
"""Radius of the RegularPolygon
|
| 1606 |
+
|
| 1607 |
+
This is also the radius of the circumscribing circle.
|
| 1608 |
+
|
| 1609 |
+
Returns
|
| 1610 |
+
=======
|
| 1611 |
+
|
| 1612 |
+
radius : number or instance of Basic
|
| 1613 |
+
|
| 1614 |
+
See Also
|
| 1615 |
+
========
|
| 1616 |
+
|
| 1617 |
+
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
|
| 1618 |
+
|
| 1619 |
+
Examples
|
| 1620 |
+
========
|
| 1621 |
+
|
| 1622 |
+
>>> from sympy import Symbol
|
| 1623 |
+
>>> from sympy import RegularPolygon, Point
|
| 1624 |
+
>>> radius = Symbol('r')
|
| 1625 |
+
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
| 1626 |
+
>>> rp.radius
|
| 1627 |
+
r
|
| 1628 |
+
|
| 1629 |
+
"""
|
| 1630 |
+
return self._radius
|
| 1631 |
+
|
| 1632 |
+
@property
|
| 1633 |
+
def circumradius(self):
|
| 1634 |
+
"""
|
| 1635 |
+
Alias for radius.
|
| 1636 |
+
|
| 1637 |
+
Examples
|
| 1638 |
+
========
|
| 1639 |
+
|
| 1640 |
+
>>> from sympy import Symbol
|
| 1641 |
+
>>> from sympy import RegularPolygon, Point
|
| 1642 |
+
>>> radius = Symbol('r')
|
| 1643 |
+
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
| 1644 |
+
>>> rp.circumradius
|
| 1645 |
+
r
|
| 1646 |
+
"""
|
| 1647 |
+
return self.radius
|
| 1648 |
+
|
| 1649 |
+
@property
|
| 1650 |
+
def rotation(self):
|
| 1651 |
+
"""CCW angle by which the RegularPolygon is rotated
|
| 1652 |
+
|
| 1653 |
+
Returns
|
| 1654 |
+
=======
|
| 1655 |
+
|
| 1656 |
+
rotation : number or instance of Basic
|
| 1657 |
+
|
| 1658 |
+
Examples
|
| 1659 |
+
========
|
| 1660 |
+
|
| 1661 |
+
>>> from sympy import pi
|
| 1662 |
+
>>> from sympy.abc import a
|
| 1663 |
+
>>> from sympy import RegularPolygon, Point
|
| 1664 |
+
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
|
| 1665 |
+
pi/4
|
| 1666 |
+
|
| 1667 |
+
Numerical rotation angles are made canonical:
|
| 1668 |
+
|
| 1669 |
+
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
|
| 1670 |
+
a
|
| 1671 |
+
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
|
| 1672 |
+
0
|
| 1673 |
+
|
| 1674 |
+
"""
|
| 1675 |
+
return self._rot
|
| 1676 |
+
|
| 1677 |
+
@property
|
| 1678 |
+
def apothem(self):
|
| 1679 |
+
"""The inradius of the RegularPolygon.
|
| 1680 |
+
|
| 1681 |
+
The apothem/inradius is the radius of the inscribed circle.
|
| 1682 |
+
|
| 1683 |
+
Returns
|
| 1684 |
+
=======
|
| 1685 |
+
|
| 1686 |
+
apothem : number or instance of Basic
|
| 1687 |
+
|
| 1688 |
+
See Also
|
| 1689 |
+
========
|
| 1690 |
+
|
| 1691 |
+
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
|
| 1692 |
+
|
| 1693 |
+
Examples
|
| 1694 |
+
========
|
| 1695 |
+
|
| 1696 |
+
>>> from sympy import Symbol
|
| 1697 |
+
>>> from sympy import RegularPolygon, Point
|
| 1698 |
+
>>> radius = Symbol('r')
|
| 1699 |
+
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
| 1700 |
+
>>> rp.apothem
|
| 1701 |
+
sqrt(2)*r/2
|
| 1702 |
+
|
| 1703 |
+
"""
|
| 1704 |
+
return self.radius * cos(S.Pi/self._n)
|
| 1705 |
+
|
| 1706 |
+
@property
|
| 1707 |
+
def inradius(self):
|
| 1708 |
+
"""
|
| 1709 |
+
Alias for apothem.
|
| 1710 |
+
|
| 1711 |
+
Examples
|
| 1712 |
+
========
|
| 1713 |
+
|
| 1714 |
+
>>> from sympy import Symbol
|
| 1715 |
+
>>> from sympy import RegularPolygon, Point
|
| 1716 |
+
>>> radius = Symbol('r')
|
| 1717 |
+
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
| 1718 |
+
>>> rp.inradius
|
| 1719 |
+
sqrt(2)*r/2
|
| 1720 |
+
"""
|
| 1721 |
+
return self.apothem
|
| 1722 |
+
|
| 1723 |
+
@property
|
| 1724 |
+
def interior_angle(self):
|
| 1725 |
+
"""Measure of the interior angles.
|
| 1726 |
+
|
| 1727 |
+
Returns
|
| 1728 |
+
=======
|
| 1729 |
+
|
| 1730 |
+
interior_angle : number
|
| 1731 |
+
|
| 1732 |
+
See Also
|
| 1733 |
+
========
|
| 1734 |
+
|
| 1735 |
+
sympy.geometry.line.LinearEntity.angle_between
|
| 1736 |
+
|
| 1737 |
+
Examples
|
| 1738 |
+
========
|
| 1739 |
+
|
| 1740 |
+
>>> from sympy import RegularPolygon, Point
|
| 1741 |
+
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
| 1742 |
+
>>> rp.interior_angle
|
| 1743 |
+
3*pi/4
|
| 1744 |
+
|
| 1745 |
+
"""
|
| 1746 |
+
return (self._n - 2)*S.Pi/self._n
|
| 1747 |
+
|
| 1748 |
+
@property
|
| 1749 |
+
def exterior_angle(self):
|
| 1750 |
+
"""Measure of the exterior angles.
|
| 1751 |
+
|
| 1752 |
+
Returns
|
| 1753 |
+
=======
|
| 1754 |
+
|
| 1755 |
+
exterior_angle : number
|
| 1756 |
+
|
| 1757 |
+
See Also
|
| 1758 |
+
========
|
| 1759 |
+
|
| 1760 |
+
sympy.geometry.line.LinearEntity.angle_between
|
| 1761 |
+
|
| 1762 |
+
Examples
|
| 1763 |
+
========
|
| 1764 |
+
|
| 1765 |
+
>>> from sympy import RegularPolygon, Point
|
| 1766 |
+
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
| 1767 |
+
>>> rp.exterior_angle
|
| 1768 |
+
pi/4
|
| 1769 |
+
|
| 1770 |
+
"""
|
| 1771 |
+
return 2*S.Pi/self._n
|
| 1772 |
+
|
| 1773 |
+
@property
|
| 1774 |
+
def circumcircle(self):
|
| 1775 |
+
"""The circumcircle of the RegularPolygon.
|
| 1776 |
+
|
| 1777 |
+
Returns
|
| 1778 |
+
=======
|
| 1779 |
+
|
| 1780 |
+
circumcircle : Circle
|
| 1781 |
+
|
| 1782 |
+
See Also
|
| 1783 |
+
========
|
| 1784 |
+
|
| 1785 |
+
circumcenter, sympy.geometry.ellipse.Circle
|
| 1786 |
+
|
| 1787 |
+
Examples
|
| 1788 |
+
========
|
| 1789 |
+
|
| 1790 |
+
>>> from sympy import RegularPolygon, Point
|
| 1791 |
+
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
| 1792 |
+
>>> rp.circumcircle
|
| 1793 |
+
Circle(Point2D(0, 0), 4)
|
| 1794 |
+
|
| 1795 |
+
"""
|
| 1796 |
+
return Circle(self.center, self.radius)
|
| 1797 |
+
|
| 1798 |
+
@property
|
| 1799 |
+
def incircle(self):
|
| 1800 |
+
"""The incircle of the RegularPolygon.
|
| 1801 |
+
|
| 1802 |
+
Returns
|
| 1803 |
+
=======
|
| 1804 |
+
|
| 1805 |
+
incircle : Circle
|
| 1806 |
+
|
| 1807 |
+
See Also
|
| 1808 |
+
========
|
| 1809 |
+
|
| 1810 |
+
inradius, sympy.geometry.ellipse.Circle
|
| 1811 |
+
|
| 1812 |
+
Examples
|
| 1813 |
+
========
|
| 1814 |
+
|
| 1815 |
+
>>> from sympy import RegularPolygon, Point
|
| 1816 |
+
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
|
| 1817 |
+
>>> rp.incircle
|
| 1818 |
+
Circle(Point2D(0, 0), 4*cos(pi/7))
|
| 1819 |
+
|
| 1820 |
+
"""
|
| 1821 |
+
return Circle(self.center, self.apothem)
|
| 1822 |
+
|
| 1823 |
+
@property
|
| 1824 |
+
def angles(self):
|
| 1825 |
+
"""
|
| 1826 |
+
Returns a dictionary with keys, the vertices of the Polygon,
|
| 1827 |
+
and values, the interior angle at each vertex.
|
| 1828 |
+
|
| 1829 |
+
Examples
|
| 1830 |
+
========
|
| 1831 |
+
|
| 1832 |
+
>>> from sympy import RegularPolygon, Point
|
| 1833 |
+
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
| 1834 |
+
>>> r.angles
|
| 1835 |
+
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
|
| 1836 |
+
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
|
| 1837 |
+
Point2D(5, 0): pi/3}
|
| 1838 |
+
"""
|
| 1839 |
+
ret = {}
|
| 1840 |
+
ang = self.interior_angle
|
| 1841 |
+
for v in self.vertices:
|
| 1842 |
+
ret[v] = ang
|
| 1843 |
+
return ret
|
| 1844 |
+
|
| 1845 |
+
def encloses_point(self, p):
|
| 1846 |
+
"""
|
| 1847 |
+
Return True if p is enclosed by (is inside of) self.
|
| 1848 |
+
|
| 1849 |
+
Notes
|
| 1850 |
+
=====
|
| 1851 |
+
|
| 1852 |
+
Being on the border of self is considered False.
|
| 1853 |
+
|
| 1854 |
+
The general Polygon.encloses_point method is called only if
|
| 1855 |
+
a point is not within or beyond the incircle or circumcircle,
|
| 1856 |
+
respectively.
|
| 1857 |
+
|
| 1858 |
+
Parameters
|
| 1859 |
+
==========
|
| 1860 |
+
|
| 1861 |
+
p : Point
|
| 1862 |
+
|
| 1863 |
+
Returns
|
| 1864 |
+
=======
|
| 1865 |
+
|
| 1866 |
+
encloses_point : True, False or None
|
| 1867 |
+
|
| 1868 |
+
See Also
|
| 1869 |
+
========
|
| 1870 |
+
|
| 1871 |
+
sympy.geometry.ellipse.Ellipse.encloses_point
|
| 1872 |
+
|
| 1873 |
+
Examples
|
| 1874 |
+
========
|
| 1875 |
+
|
| 1876 |
+
>>> from sympy import RegularPolygon, S, Point, Symbol
|
| 1877 |
+
>>> p = RegularPolygon((0, 0), 3, 4)
|
| 1878 |
+
>>> p.encloses_point(Point(0, 0))
|
| 1879 |
+
True
|
| 1880 |
+
>>> r, R = p.inradius, p.circumradius
|
| 1881 |
+
>>> p.encloses_point(Point((r + R)/2, 0))
|
| 1882 |
+
True
|
| 1883 |
+
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
|
| 1884 |
+
False
|
| 1885 |
+
>>> t = Symbol('t', real=True)
|
| 1886 |
+
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
|
| 1887 |
+
False
|
| 1888 |
+
>>> p.encloses_point(Point(5, 5))
|
| 1889 |
+
False
|
| 1890 |
+
|
| 1891 |
+
"""
|
| 1892 |
+
|
| 1893 |
+
c = self.center
|
| 1894 |
+
d = Segment(c, p).length
|
| 1895 |
+
if d >= self.radius:
|
| 1896 |
+
return False
|
| 1897 |
+
elif d < self.inradius:
|
| 1898 |
+
return True
|
| 1899 |
+
else:
|
| 1900 |
+
# now enumerate the RegularPolygon like a general polygon.
|
| 1901 |
+
return Polygon.encloses_point(self, p)
|
| 1902 |
+
|
| 1903 |
+
def spin(self, angle):
|
| 1904 |
+
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
|
| 1905 |
+
|
| 1906 |
+
See also: rotate method which moves the center.
|
| 1907 |
+
|
| 1908 |
+
>>> from sympy import Polygon, Point, pi
|
| 1909 |
+
>>> r = Polygon(Point(0,0), 1, n=3)
|
| 1910 |
+
>>> r.vertices[0]
|
| 1911 |
+
Point2D(1, 0)
|
| 1912 |
+
>>> r.spin(pi/6)
|
| 1913 |
+
>>> r.vertices[0]
|
| 1914 |
+
Point2D(sqrt(3)/2, 1/2)
|
| 1915 |
+
|
| 1916 |
+
See Also
|
| 1917 |
+
========
|
| 1918 |
+
|
| 1919 |
+
rotation
|
| 1920 |
+
rotate : Creates a copy of the RegularPolygon rotated about a Point
|
| 1921 |
+
|
| 1922 |
+
"""
|
| 1923 |
+
self._rot += angle
|
| 1924 |
+
|
| 1925 |
+
def rotate(self, angle, pt=None):
|
| 1926 |
+
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
|
| 1927 |
+
about its center.
|
| 1928 |
+
|
| 1929 |
+
>>> from sympy import Point, RegularPolygon, pi
|
| 1930 |
+
>>> t = RegularPolygon(Point(1, 0), 1, 3)
|
| 1931 |
+
>>> t.vertices[0] # vertex on x-axis
|
| 1932 |
+
Point2D(2, 0)
|
| 1933 |
+
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
|
| 1934 |
+
Point2D(0, 2)
|
| 1935 |
+
|
| 1936 |
+
See Also
|
| 1937 |
+
========
|
| 1938 |
+
|
| 1939 |
+
rotation
|
| 1940 |
+
spin : Rotates a RegularPolygon in place
|
| 1941 |
+
|
| 1942 |
+
"""
|
| 1943 |
+
|
| 1944 |
+
r = type(self)(*self.args) # need a copy or else changes are in-place
|
| 1945 |
+
r._rot += angle
|
| 1946 |
+
return GeometryEntity.rotate(r, angle, pt)
|
| 1947 |
+
|
| 1948 |
+
def scale(self, x=1, y=1, pt=None):
|
| 1949 |
+
"""Override GeometryEntity.scale since it is the radius that must be
|
| 1950 |
+
scaled (if x == y) or else a new Polygon must be returned.
|
| 1951 |
+
|
| 1952 |
+
>>> from sympy import RegularPolygon
|
| 1953 |
+
|
| 1954 |
+
Symmetric scaling returns a RegularPolygon:
|
| 1955 |
+
|
| 1956 |
+
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
|
| 1957 |
+
RegularPolygon(Point2D(0, 0), 2, 4, 0)
|
| 1958 |
+
|
| 1959 |
+
Asymmetric scaling returns a kite as a Polygon:
|
| 1960 |
+
|
| 1961 |
+
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
|
| 1962 |
+
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
|
| 1963 |
+
|
| 1964 |
+
"""
|
| 1965 |
+
if pt:
|
| 1966 |
+
pt = Point(pt, dim=2)
|
| 1967 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
| 1968 |
+
if x != y:
|
| 1969 |
+
return Polygon(*self.vertices).scale(x, y)
|
| 1970 |
+
c, r, n, rot = self.args
|
| 1971 |
+
r *= x
|
| 1972 |
+
return self.func(c, r, n, rot)
|
| 1973 |
+
|
| 1974 |
+
def reflect(self, line):
|
| 1975 |
+
"""Override GeometryEntity.reflect since this is not made of only
|
| 1976 |
+
points.
|
| 1977 |
+
|
| 1978 |
+
Examples
|
| 1979 |
+
========
|
| 1980 |
+
|
| 1981 |
+
>>> from sympy import RegularPolygon, Line
|
| 1982 |
+
|
| 1983 |
+
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
|
| 1984 |
+
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
|
| 1985 |
+
|
| 1986 |
+
"""
|
| 1987 |
+
c, r, n, rot = self.args
|
| 1988 |
+
v = self.vertices[0]
|
| 1989 |
+
d = v - c
|
| 1990 |
+
cc = c.reflect(line)
|
| 1991 |
+
vv = v.reflect(line)
|
| 1992 |
+
dd = vv - cc
|
| 1993 |
+
# calculate rotation about the new center
|
| 1994 |
+
# which will align the vertices
|
| 1995 |
+
l1 = Ray((0, 0), dd)
|
| 1996 |
+
l2 = Ray((0, 0), d)
|
| 1997 |
+
ang = l1.closing_angle(l2)
|
| 1998 |
+
rot += ang
|
| 1999 |
+
# change sign of radius as point traversal is reversed
|
| 2000 |
+
return self.func(cc, -r, n, rot)
|
| 2001 |
+
|
| 2002 |
+
@property
|
| 2003 |
+
def vertices(self):
|
| 2004 |
+
"""The vertices of the RegularPolygon.
|
| 2005 |
+
|
| 2006 |
+
Returns
|
| 2007 |
+
=======
|
| 2008 |
+
|
| 2009 |
+
vertices : list
|
| 2010 |
+
Each vertex is a Point.
|
| 2011 |
+
|
| 2012 |
+
See Also
|
| 2013 |
+
========
|
| 2014 |
+
|
| 2015 |
+
sympy.geometry.point.Point
|
| 2016 |
+
|
| 2017 |
+
Examples
|
| 2018 |
+
========
|
| 2019 |
+
|
| 2020 |
+
>>> from sympy import RegularPolygon, Point
|
| 2021 |
+
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
| 2022 |
+
>>> rp.vertices
|
| 2023 |
+
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
|
| 2024 |
+
|
| 2025 |
+
"""
|
| 2026 |
+
c = self._center
|
| 2027 |
+
r = abs(self._radius)
|
| 2028 |
+
rot = self._rot
|
| 2029 |
+
v = 2*S.Pi/self._n
|
| 2030 |
+
|
| 2031 |
+
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
|
| 2032 |
+
for k in range(self._n)]
|
| 2033 |
+
|
| 2034 |
+
def __eq__(self, o):
|
| 2035 |
+
if not isinstance(o, Polygon):
|
| 2036 |
+
return False
|
| 2037 |
+
elif not isinstance(o, RegularPolygon):
|
| 2038 |
+
return Polygon.__eq__(o, self)
|
| 2039 |
+
return self.args == o.args
|
| 2040 |
+
|
| 2041 |
+
def __hash__(self):
|
| 2042 |
+
return super().__hash__()
|
| 2043 |
+
|
| 2044 |
+
|
| 2045 |
+
class Triangle(Polygon):
|
| 2046 |
+
"""
|
| 2047 |
+
A polygon with three vertices and three sides.
|
| 2048 |
+
|
| 2049 |
+
Parameters
|
| 2050 |
+
==========
|
| 2051 |
+
|
| 2052 |
+
points : sequence of Points
|
| 2053 |
+
keyword: asa, sas, or sss to specify sides/angles of the triangle
|
| 2054 |
+
|
| 2055 |
+
Attributes
|
| 2056 |
+
==========
|
| 2057 |
+
|
| 2058 |
+
vertices
|
| 2059 |
+
altitudes
|
| 2060 |
+
orthocenter
|
| 2061 |
+
circumcenter
|
| 2062 |
+
circumradius
|
| 2063 |
+
circumcircle
|
| 2064 |
+
inradius
|
| 2065 |
+
incircle
|
| 2066 |
+
exradii
|
| 2067 |
+
medians
|
| 2068 |
+
medial
|
| 2069 |
+
nine_point_circle
|
| 2070 |
+
|
| 2071 |
+
Raises
|
| 2072 |
+
======
|
| 2073 |
+
|
| 2074 |
+
GeometryError
|
| 2075 |
+
If the number of vertices is not equal to three, or one of the vertices
|
| 2076 |
+
is not a Point, or a valid keyword is not given.
|
| 2077 |
+
|
| 2078 |
+
See Also
|
| 2079 |
+
========
|
| 2080 |
+
|
| 2081 |
+
sympy.geometry.point.Point, Polygon
|
| 2082 |
+
|
| 2083 |
+
Examples
|
| 2084 |
+
========
|
| 2085 |
+
|
| 2086 |
+
>>> from sympy import Triangle, Point
|
| 2087 |
+
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
| 2088 |
+
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
|
| 2089 |
+
|
| 2090 |
+
Keywords sss, sas, or asa can be used to give the desired
|
| 2091 |
+
side lengths (in order) and interior angles (in degrees) that
|
| 2092 |
+
define the triangle:
|
| 2093 |
+
|
| 2094 |
+
>>> Triangle(sss=(3, 4, 5))
|
| 2095 |
+
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
|
| 2096 |
+
>>> Triangle(asa=(30, 1, 30))
|
| 2097 |
+
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
|
| 2098 |
+
>>> Triangle(sas=(1, 45, 2))
|
| 2099 |
+
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
|
| 2100 |
+
|
| 2101 |
+
"""
|
| 2102 |
+
|
| 2103 |
+
def __new__(cls, *args, **kwargs):
|
| 2104 |
+
if len(args) != 3:
|
| 2105 |
+
if 'sss' in kwargs:
|
| 2106 |
+
return _sss(*[simplify(a) for a in kwargs['sss']])
|
| 2107 |
+
if 'asa' in kwargs:
|
| 2108 |
+
return _asa(*[simplify(a) for a in kwargs['asa']])
|
| 2109 |
+
if 'sas' in kwargs:
|
| 2110 |
+
return _sas(*[simplify(a) for a in kwargs['sas']])
|
| 2111 |
+
msg = "Triangle instantiates with three points or a valid keyword."
|
| 2112 |
+
raise GeometryError(msg)
|
| 2113 |
+
|
| 2114 |
+
vertices = [Point(a, dim=2, **kwargs) for a in args]
|
| 2115 |
+
|
| 2116 |
+
# remove consecutive duplicates
|
| 2117 |
+
nodup = []
|
| 2118 |
+
for p in vertices:
|
| 2119 |
+
if nodup and p == nodup[-1]:
|
| 2120 |
+
continue
|
| 2121 |
+
nodup.append(p)
|
| 2122 |
+
if len(nodup) > 1 and nodup[-1] == nodup[0]:
|
| 2123 |
+
nodup.pop() # last point was same as first
|
| 2124 |
+
|
| 2125 |
+
# remove collinear points
|
| 2126 |
+
i = -3
|
| 2127 |
+
while i < len(nodup) - 3 and len(nodup) > 2:
|
| 2128 |
+
a, b, c = sorted(
|
| 2129 |
+
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
|
| 2130 |
+
if Point.is_collinear(a, b, c):
|
| 2131 |
+
nodup[i] = a
|
| 2132 |
+
nodup[i + 1] = None
|
| 2133 |
+
nodup.pop(i + 1)
|
| 2134 |
+
i += 1
|
| 2135 |
+
|
| 2136 |
+
vertices = list(filter(lambda x: x is not None, nodup))
|
| 2137 |
+
|
| 2138 |
+
if len(vertices) == 3:
|
| 2139 |
+
return GeometryEntity.__new__(cls, *vertices, **kwargs)
|
| 2140 |
+
elif len(vertices) == 2:
|
| 2141 |
+
return Segment(*vertices, **kwargs)
|
| 2142 |
+
else:
|
| 2143 |
+
return Point(*vertices, **kwargs)
|
| 2144 |
+
|
| 2145 |
+
@property
|
| 2146 |
+
def vertices(self):
|
| 2147 |
+
"""The triangle's vertices
|
| 2148 |
+
|
| 2149 |
+
Returns
|
| 2150 |
+
=======
|
| 2151 |
+
|
| 2152 |
+
vertices : tuple
|
| 2153 |
+
Each element in the tuple is a Point
|
| 2154 |
+
|
| 2155 |
+
See Also
|
| 2156 |
+
========
|
| 2157 |
+
|
| 2158 |
+
sympy.geometry.point.Point
|
| 2159 |
+
|
| 2160 |
+
Examples
|
| 2161 |
+
========
|
| 2162 |
+
|
| 2163 |
+
>>> from sympy import Triangle, Point
|
| 2164 |
+
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
| 2165 |
+
>>> t.vertices
|
| 2166 |
+
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
|
| 2167 |
+
|
| 2168 |
+
"""
|
| 2169 |
+
return self.args
|
| 2170 |
+
|
| 2171 |
+
def is_similar(t1, t2):
|
| 2172 |
+
"""Is another triangle similar to this one.
|
| 2173 |
+
|
| 2174 |
+
Two triangles are similar if one can be uniformly scaled to the other.
|
| 2175 |
+
|
| 2176 |
+
Parameters
|
| 2177 |
+
==========
|
| 2178 |
+
|
| 2179 |
+
other: Triangle
|
| 2180 |
+
|
| 2181 |
+
Returns
|
| 2182 |
+
=======
|
| 2183 |
+
|
| 2184 |
+
is_similar : boolean
|
| 2185 |
+
|
| 2186 |
+
See Also
|
| 2187 |
+
========
|
| 2188 |
+
|
| 2189 |
+
sympy.geometry.entity.GeometryEntity.is_similar
|
| 2190 |
+
|
| 2191 |
+
Examples
|
| 2192 |
+
========
|
| 2193 |
+
|
| 2194 |
+
>>> from sympy import Triangle, Point
|
| 2195 |
+
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
| 2196 |
+
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
|
| 2197 |
+
>>> t1.is_similar(t2)
|
| 2198 |
+
True
|
| 2199 |
+
|
| 2200 |
+
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
|
| 2201 |
+
>>> t1.is_similar(t2)
|
| 2202 |
+
False
|
| 2203 |
+
|
| 2204 |
+
"""
|
| 2205 |
+
if not isinstance(t2, Polygon):
|
| 2206 |
+
return False
|
| 2207 |
+
|
| 2208 |
+
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
|
| 2209 |
+
s2 = [side.length for side in t2.sides]
|
| 2210 |
+
|
| 2211 |
+
def _are_similar(u1, u2, u3, v1, v2, v3):
|
| 2212 |
+
e1 = simplify(u1/v1)
|
| 2213 |
+
e2 = simplify(u2/v2)
|
| 2214 |
+
e3 = simplify(u3/v3)
|
| 2215 |
+
return bool(e1 == e2) and bool(e2 == e3)
|
| 2216 |
+
|
| 2217 |
+
# There's only 6 permutations, so write them out
|
| 2218 |
+
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
|
| 2219 |
+
_are_similar(s1_1, s1_3, s1_2, *s2) or \
|
| 2220 |
+
_are_similar(s1_2, s1_1, s1_3, *s2) or \
|
| 2221 |
+
_are_similar(s1_2, s1_3, s1_1, *s2) or \
|
| 2222 |
+
_are_similar(s1_3, s1_1, s1_2, *s2) or \
|
| 2223 |
+
_are_similar(s1_3, s1_2, s1_1, *s2)
|
| 2224 |
+
|
| 2225 |
+
def is_equilateral(self):
|
| 2226 |
+
"""Are all the sides the same length?
|
| 2227 |
+
|
| 2228 |
+
Returns
|
| 2229 |
+
=======
|
| 2230 |
+
|
| 2231 |
+
is_equilateral : boolean
|
| 2232 |
+
|
| 2233 |
+
See Also
|
| 2234 |
+
========
|
| 2235 |
+
|
| 2236 |
+
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
|
| 2237 |
+
is_isosceles, is_right, is_scalene
|
| 2238 |
+
|
| 2239 |
+
Examples
|
| 2240 |
+
========
|
| 2241 |
+
|
| 2242 |
+
>>> from sympy import Triangle, Point
|
| 2243 |
+
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
| 2244 |
+
>>> t1.is_equilateral()
|
| 2245 |
+
False
|
| 2246 |
+
|
| 2247 |
+
>>> from sympy import sqrt
|
| 2248 |
+
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
|
| 2249 |
+
>>> t2.is_equilateral()
|
| 2250 |
+
True
|
| 2251 |
+
|
| 2252 |
+
"""
|
| 2253 |
+
return not has_variety(s.length for s in self.sides)
|
| 2254 |
+
|
| 2255 |
+
def is_isosceles(self):
|
| 2256 |
+
"""Are two or more of the sides the same length?
|
| 2257 |
+
|
| 2258 |
+
Returns
|
| 2259 |
+
=======
|
| 2260 |
+
|
| 2261 |
+
is_isosceles : boolean
|
| 2262 |
+
|
| 2263 |
+
See Also
|
| 2264 |
+
========
|
| 2265 |
+
|
| 2266 |
+
is_equilateral, is_right, is_scalene
|
| 2267 |
+
|
| 2268 |
+
Examples
|
| 2269 |
+
========
|
| 2270 |
+
|
| 2271 |
+
>>> from sympy import Triangle, Point
|
| 2272 |
+
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
|
| 2273 |
+
>>> t1.is_isosceles()
|
| 2274 |
+
True
|
| 2275 |
+
|
| 2276 |
+
"""
|
| 2277 |
+
return has_dups(s.length for s in self.sides)
|
| 2278 |
+
|
| 2279 |
+
def is_scalene(self):
|
| 2280 |
+
"""Are all the sides of the triangle of different lengths?
|
| 2281 |
+
|
| 2282 |
+
Returns
|
| 2283 |
+
=======
|
| 2284 |
+
|
| 2285 |
+
is_scalene : boolean
|
| 2286 |
+
|
| 2287 |
+
See Also
|
| 2288 |
+
========
|
| 2289 |
+
|
| 2290 |
+
is_equilateral, is_isosceles, is_right
|
| 2291 |
+
|
| 2292 |
+
Examples
|
| 2293 |
+
========
|
| 2294 |
+
|
| 2295 |
+
>>> from sympy import Triangle, Point
|
| 2296 |
+
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
|
| 2297 |
+
>>> t1.is_scalene()
|
| 2298 |
+
True
|
| 2299 |
+
|
| 2300 |
+
"""
|
| 2301 |
+
return not has_dups(s.length for s in self.sides)
|
| 2302 |
+
|
| 2303 |
+
def is_right(self):
|
| 2304 |
+
"""Is the triangle right-angled.
|
| 2305 |
+
|
| 2306 |
+
Returns
|
| 2307 |
+
=======
|
| 2308 |
+
|
| 2309 |
+
is_right : boolean
|
| 2310 |
+
|
| 2311 |
+
See Also
|
| 2312 |
+
========
|
| 2313 |
+
|
| 2314 |
+
sympy.geometry.line.LinearEntity.is_perpendicular
|
| 2315 |
+
is_equilateral, is_isosceles, is_scalene
|
| 2316 |
+
|
| 2317 |
+
Examples
|
| 2318 |
+
========
|
| 2319 |
+
|
| 2320 |
+
>>> from sympy import Triangle, Point
|
| 2321 |
+
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
| 2322 |
+
>>> t1.is_right()
|
| 2323 |
+
True
|
| 2324 |
+
|
| 2325 |
+
"""
|
| 2326 |
+
s = self.sides
|
| 2327 |
+
return Segment.is_perpendicular(s[0], s[1]) or \
|
| 2328 |
+
Segment.is_perpendicular(s[1], s[2]) or \
|
| 2329 |
+
Segment.is_perpendicular(s[0], s[2])
|
| 2330 |
+
|
| 2331 |
+
@property
|
| 2332 |
+
def altitudes(self):
|
| 2333 |
+
"""The altitudes of the triangle.
|
| 2334 |
+
|
| 2335 |
+
An altitude of a triangle is a segment through a vertex,
|
| 2336 |
+
perpendicular to the opposite side, with length being the
|
| 2337 |
+
height of the vertex measured from the line containing the side.
|
| 2338 |
+
|
| 2339 |
+
Returns
|
| 2340 |
+
=======
|
| 2341 |
+
|
| 2342 |
+
altitudes : dict
|
| 2343 |
+
The dictionary consists of keys which are vertices and values
|
| 2344 |
+
which are Segments.
|
| 2345 |
+
|
| 2346 |
+
See Also
|
| 2347 |
+
========
|
| 2348 |
+
|
| 2349 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
|
| 2350 |
+
|
| 2351 |
+
Examples
|
| 2352 |
+
========
|
| 2353 |
+
|
| 2354 |
+
>>> from sympy import Point, Triangle
|
| 2355 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2356 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2357 |
+
>>> t.altitudes[p1]
|
| 2358 |
+
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
| 2359 |
+
|
| 2360 |
+
"""
|
| 2361 |
+
s = self.sides
|
| 2362 |
+
v = self.vertices
|
| 2363 |
+
return {v[0]: s[1].perpendicular_segment(v[0]),
|
| 2364 |
+
v[1]: s[2].perpendicular_segment(v[1]),
|
| 2365 |
+
v[2]: s[0].perpendicular_segment(v[2])}
|
| 2366 |
+
|
| 2367 |
+
@property
|
| 2368 |
+
def orthocenter(self):
|
| 2369 |
+
"""The orthocenter of the triangle.
|
| 2370 |
+
|
| 2371 |
+
The orthocenter is the intersection of the altitudes of a triangle.
|
| 2372 |
+
It may lie inside, outside or on the triangle.
|
| 2373 |
+
|
| 2374 |
+
Returns
|
| 2375 |
+
=======
|
| 2376 |
+
|
| 2377 |
+
orthocenter : Point
|
| 2378 |
+
|
| 2379 |
+
See Also
|
| 2380 |
+
========
|
| 2381 |
+
|
| 2382 |
+
sympy.geometry.point.Point
|
| 2383 |
+
|
| 2384 |
+
Examples
|
| 2385 |
+
========
|
| 2386 |
+
|
| 2387 |
+
>>> from sympy import Point, Triangle
|
| 2388 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2389 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2390 |
+
>>> t.orthocenter
|
| 2391 |
+
Point2D(0, 0)
|
| 2392 |
+
|
| 2393 |
+
"""
|
| 2394 |
+
a = self.altitudes
|
| 2395 |
+
v = self.vertices
|
| 2396 |
+
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
|
| 2397 |
+
|
| 2398 |
+
@property
|
| 2399 |
+
def circumcenter(self):
|
| 2400 |
+
"""The circumcenter of the triangle
|
| 2401 |
+
|
| 2402 |
+
The circumcenter is the center of the circumcircle.
|
| 2403 |
+
|
| 2404 |
+
Returns
|
| 2405 |
+
=======
|
| 2406 |
+
|
| 2407 |
+
circumcenter : Point
|
| 2408 |
+
|
| 2409 |
+
See Also
|
| 2410 |
+
========
|
| 2411 |
+
|
| 2412 |
+
sympy.geometry.point.Point
|
| 2413 |
+
|
| 2414 |
+
Examples
|
| 2415 |
+
========
|
| 2416 |
+
|
| 2417 |
+
>>> from sympy import Point, Triangle
|
| 2418 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2419 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2420 |
+
>>> t.circumcenter
|
| 2421 |
+
Point2D(1/2, 1/2)
|
| 2422 |
+
"""
|
| 2423 |
+
a, b, c = [x.perpendicular_bisector() for x in self.sides]
|
| 2424 |
+
return a.intersection(b)[0]
|
| 2425 |
+
|
| 2426 |
+
@property
|
| 2427 |
+
def circumradius(self):
|
| 2428 |
+
"""The radius of the circumcircle of the triangle.
|
| 2429 |
+
|
| 2430 |
+
Returns
|
| 2431 |
+
=======
|
| 2432 |
+
|
| 2433 |
+
circumradius : number of Basic instance
|
| 2434 |
+
|
| 2435 |
+
See Also
|
| 2436 |
+
========
|
| 2437 |
+
|
| 2438 |
+
sympy.geometry.ellipse.Circle.radius
|
| 2439 |
+
|
| 2440 |
+
Examples
|
| 2441 |
+
========
|
| 2442 |
+
|
| 2443 |
+
>>> from sympy import Symbol
|
| 2444 |
+
>>> from sympy import Point, Triangle
|
| 2445 |
+
>>> a = Symbol('a')
|
| 2446 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
|
| 2447 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2448 |
+
>>> t.circumradius
|
| 2449 |
+
sqrt(a**2/4 + 1/4)
|
| 2450 |
+
"""
|
| 2451 |
+
return Point.distance(self.circumcenter, self.vertices[0])
|
| 2452 |
+
|
| 2453 |
+
@property
|
| 2454 |
+
def circumcircle(self):
|
| 2455 |
+
"""The circle which passes through the three vertices of the triangle.
|
| 2456 |
+
|
| 2457 |
+
Returns
|
| 2458 |
+
=======
|
| 2459 |
+
|
| 2460 |
+
circumcircle : Circle
|
| 2461 |
+
|
| 2462 |
+
See Also
|
| 2463 |
+
========
|
| 2464 |
+
|
| 2465 |
+
sympy.geometry.ellipse.Circle
|
| 2466 |
+
|
| 2467 |
+
Examples
|
| 2468 |
+
========
|
| 2469 |
+
|
| 2470 |
+
>>> from sympy import Point, Triangle
|
| 2471 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2472 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2473 |
+
>>> t.circumcircle
|
| 2474 |
+
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
|
| 2475 |
+
|
| 2476 |
+
"""
|
| 2477 |
+
return Circle(self.circumcenter, self.circumradius)
|
| 2478 |
+
|
| 2479 |
+
def bisectors(self):
|
| 2480 |
+
"""The angle bisectors of the triangle.
|
| 2481 |
+
|
| 2482 |
+
An angle bisector of a triangle is a straight line through a vertex
|
| 2483 |
+
which cuts the corresponding angle in half.
|
| 2484 |
+
|
| 2485 |
+
Returns
|
| 2486 |
+
=======
|
| 2487 |
+
|
| 2488 |
+
bisectors : dict
|
| 2489 |
+
Each key is a vertex (Point) and each value is the corresponding
|
| 2490 |
+
bisector (Segment).
|
| 2491 |
+
|
| 2492 |
+
See Also
|
| 2493 |
+
========
|
| 2494 |
+
|
| 2495 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
| 2496 |
+
|
| 2497 |
+
Examples
|
| 2498 |
+
========
|
| 2499 |
+
|
| 2500 |
+
>>> from sympy import Point, Triangle, Segment
|
| 2501 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2502 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2503 |
+
>>> from sympy import sqrt
|
| 2504 |
+
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
|
| 2505 |
+
True
|
| 2506 |
+
|
| 2507 |
+
"""
|
| 2508 |
+
# use lines containing sides so containment check during
|
| 2509 |
+
# intersection calculation can be avoided, thus reducing
|
| 2510 |
+
# the processing time for calculating the bisectors
|
| 2511 |
+
s = [Line(l) for l in self.sides]
|
| 2512 |
+
v = self.vertices
|
| 2513 |
+
c = self.incenter
|
| 2514 |
+
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
|
| 2515 |
+
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
|
| 2516 |
+
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
|
| 2517 |
+
return {v[0]: l1, v[1]: l2, v[2]: l3}
|
| 2518 |
+
|
| 2519 |
+
@property
|
| 2520 |
+
def incenter(self):
|
| 2521 |
+
"""The center of the incircle.
|
| 2522 |
+
|
| 2523 |
+
The incircle is the circle which lies inside the triangle and touches
|
| 2524 |
+
all three sides.
|
| 2525 |
+
|
| 2526 |
+
Returns
|
| 2527 |
+
=======
|
| 2528 |
+
|
| 2529 |
+
incenter : Point
|
| 2530 |
+
|
| 2531 |
+
See Also
|
| 2532 |
+
========
|
| 2533 |
+
|
| 2534 |
+
incircle, sympy.geometry.point.Point
|
| 2535 |
+
|
| 2536 |
+
Examples
|
| 2537 |
+
========
|
| 2538 |
+
|
| 2539 |
+
>>> from sympy import Point, Triangle
|
| 2540 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2541 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2542 |
+
>>> t.incenter
|
| 2543 |
+
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
|
| 2544 |
+
|
| 2545 |
+
"""
|
| 2546 |
+
s = self.sides
|
| 2547 |
+
l = Matrix([s[i].length for i in [1, 2, 0]])
|
| 2548 |
+
p = sum(l)
|
| 2549 |
+
v = self.vertices
|
| 2550 |
+
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
|
| 2551 |
+
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
|
| 2552 |
+
return Point(x, y)
|
| 2553 |
+
|
| 2554 |
+
@property
|
| 2555 |
+
def inradius(self):
|
| 2556 |
+
"""The radius of the incircle.
|
| 2557 |
+
|
| 2558 |
+
Returns
|
| 2559 |
+
=======
|
| 2560 |
+
|
| 2561 |
+
inradius : number of Basic instance
|
| 2562 |
+
|
| 2563 |
+
See Also
|
| 2564 |
+
========
|
| 2565 |
+
|
| 2566 |
+
incircle, sympy.geometry.ellipse.Circle.radius
|
| 2567 |
+
|
| 2568 |
+
Examples
|
| 2569 |
+
========
|
| 2570 |
+
|
| 2571 |
+
>>> from sympy import Point, Triangle
|
| 2572 |
+
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
|
| 2573 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2574 |
+
>>> t.inradius
|
| 2575 |
+
1
|
| 2576 |
+
|
| 2577 |
+
"""
|
| 2578 |
+
return simplify(2 * self.area / self.perimeter)
|
| 2579 |
+
|
| 2580 |
+
@property
|
| 2581 |
+
def incircle(self):
|
| 2582 |
+
"""The incircle of the triangle.
|
| 2583 |
+
|
| 2584 |
+
The incircle is the circle which lies inside the triangle and touches
|
| 2585 |
+
all three sides.
|
| 2586 |
+
|
| 2587 |
+
Returns
|
| 2588 |
+
=======
|
| 2589 |
+
|
| 2590 |
+
incircle : Circle
|
| 2591 |
+
|
| 2592 |
+
See Also
|
| 2593 |
+
========
|
| 2594 |
+
|
| 2595 |
+
sympy.geometry.ellipse.Circle
|
| 2596 |
+
|
| 2597 |
+
Examples
|
| 2598 |
+
========
|
| 2599 |
+
|
| 2600 |
+
>>> from sympy import Point, Triangle
|
| 2601 |
+
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
|
| 2602 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2603 |
+
>>> t.incircle
|
| 2604 |
+
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
|
| 2605 |
+
|
| 2606 |
+
"""
|
| 2607 |
+
return Circle(self.incenter, self.inradius)
|
| 2608 |
+
|
| 2609 |
+
@property
|
| 2610 |
+
def exradii(self):
|
| 2611 |
+
"""The radius of excircles of a triangle.
|
| 2612 |
+
|
| 2613 |
+
An excircle of the triangle is a circle lying outside the triangle,
|
| 2614 |
+
tangent to one of its sides and tangent to the extensions of the
|
| 2615 |
+
other two.
|
| 2616 |
+
|
| 2617 |
+
Returns
|
| 2618 |
+
=======
|
| 2619 |
+
|
| 2620 |
+
exradii : dict
|
| 2621 |
+
|
| 2622 |
+
See Also
|
| 2623 |
+
========
|
| 2624 |
+
|
| 2625 |
+
sympy.geometry.polygon.Triangle.inradius
|
| 2626 |
+
|
| 2627 |
+
Examples
|
| 2628 |
+
========
|
| 2629 |
+
|
| 2630 |
+
The exradius touches the side of the triangle to which it is keyed, e.g.
|
| 2631 |
+
the exradius touching side 2 is:
|
| 2632 |
+
|
| 2633 |
+
>>> from sympy import Point, Triangle
|
| 2634 |
+
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
|
| 2635 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2636 |
+
>>> t.exradii[t.sides[2]]
|
| 2637 |
+
-2 + sqrt(10)
|
| 2638 |
+
|
| 2639 |
+
References
|
| 2640 |
+
==========
|
| 2641 |
+
|
| 2642 |
+
.. [1] https://mathworld.wolfram.com/Exradius.html
|
| 2643 |
+
.. [2] https://mathworld.wolfram.com/Excircles.html
|
| 2644 |
+
|
| 2645 |
+
"""
|
| 2646 |
+
|
| 2647 |
+
side = self.sides
|
| 2648 |
+
a = side[0].length
|
| 2649 |
+
b = side[1].length
|
| 2650 |
+
c = side[2].length
|
| 2651 |
+
s = (a+b+c)/2
|
| 2652 |
+
area = self.area
|
| 2653 |
+
exradii = {self.sides[0]: simplify(area/(s-a)),
|
| 2654 |
+
self.sides[1]: simplify(area/(s-b)),
|
| 2655 |
+
self.sides[2]: simplify(area/(s-c))}
|
| 2656 |
+
|
| 2657 |
+
return exradii
|
| 2658 |
+
|
| 2659 |
+
@property
|
| 2660 |
+
def excenters(self):
|
| 2661 |
+
"""Excenters of the triangle.
|
| 2662 |
+
|
| 2663 |
+
An excenter is the center of a circle that is tangent to a side of the
|
| 2664 |
+
triangle and the extensions of the other two sides.
|
| 2665 |
+
|
| 2666 |
+
Returns
|
| 2667 |
+
=======
|
| 2668 |
+
|
| 2669 |
+
excenters : dict
|
| 2670 |
+
|
| 2671 |
+
|
| 2672 |
+
Examples
|
| 2673 |
+
========
|
| 2674 |
+
|
| 2675 |
+
The excenters are keyed to the side of the triangle to which their corresponding
|
| 2676 |
+
excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
|
| 2677 |
+
side 0 is:
|
| 2678 |
+
|
| 2679 |
+
>>> from sympy import Point, Triangle
|
| 2680 |
+
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
|
| 2681 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2682 |
+
>>> t.excenters[t.sides[0]]
|
| 2683 |
+
Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
|
| 2684 |
+
|
| 2685 |
+
See Also
|
| 2686 |
+
========
|
| 2687 |
+
|
| 2688 |
+
sympy.geometry.polygon.Triangle.exradii
|
| 2689 |
+
|
| 2690 |
+
References
|
| 2691 |
+
==========
|
| 2692 |
+
|
| 2693 |
+
.. [1] https://mathworld.wolfram.com/Excircles.html
|
| 2694 |
+
|
| 2695 |
+
"""
|
| 2696 |
+
|
| 2697 |
+
s = self.sides
|
| 2698 |
+
v = self.vertices
|
| 2699 |
+
a = s[0].length
|
| 2700 |
+
b = s[1].length
|
| 2701 |
+
c = s[2].length
|
| 2702 |
+
x = [v[0].x, v[1].x, v[2].x]
|
| 2703 |
+
y = [v[0].y, v[1].y, v[2].y]
|
| 2704 |
+
|
| 2705 |
+
exc_coords = {
|
| 2706 |
+
"x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
|
| 2707 |
+
"x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
|
| 2708 |
+
"x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
|
| 2709 |
+
"y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
|
| 2710 |
+
"y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
|
| 2711 |
+
"y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
|
| 2712 |
+
}
|
| 2713 |
+
|
| 2714 |
+
excenters = {
|
| 2715 |
+
s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
|
| 2716 |
+
s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
|
| 2717 |
+
s[2]: Point(exc_coords["x3"], exc_coords["y3"])
|
| 2718 |
+
}
|
| 2719 |
+
|
| 2720 |
+
return excenters
|
| 2721 |
+
|
| 2722 |
+
@property
|
| 2723 |
+
def medians(self):
|
| 2724 |
+
"""The medians of the triangle.
|
| 2725 |
+
|
| 2726 |
+
A median of a triangle is a straight line through a vertex and the
|
| 2727 |
+
midpoint of the opposite side, and divides the triangle into two
|
| 2728 |
+
equal areas.
|
| 2729 |
+
|
| 2730 |
+
Returns
|
| 2731 |
+
=======
|
| 2732 |
+
|
| 2733 |
+
medians : dict
|
| 2734 |
+
Each key is a vertex (Point) and each value is the median (Segment)
|
| 2735 |
+
at that point.
|
| 2736 |
+
|
| 2737 |
+
See Also
|
| 2738 |
+
========
|
| 2739 |
+
|
| 2740 |
+
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
|
| 2741 |
+
|
| 2742 |
+
Examples
|
| 2743 |
+
========
|
| 2744 |
+
|
| 2745 |
+
>>> from sympy import Point, Triangle
|
| 2746 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2747 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2748 |
+
>>> t.medians[p1]
|
| 2749 |
+
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
| 2750 |
+
|
| 2751 |
+
"""
|
| 2752 |
+
s = self.sides
|
| 2753 |
+
v = self.vertices
|
| 2754 |
+
return {v[0]: Segment(v[0], s[1].midpoint),
|
| 2755 |
+
v[1]: Segment(v[1], s[2].midpoint),
|
| 2756 |
+
v[2]: Segment(v[2], s[0].midpoint)}
|
| 2757 |
+
|
| 2758 |
+
@property
|
| 2759 |
+
def medial(self):
|
| 2760 |
+
"""The medial triangle of the triangle.
|
| 2761 |
+
|
| 2762 |
+
The triangle which is formed from the midpoints of the three sides.
|
| 2763 |
+
|
| 2764 |
+
Returns
|
| 2765 |
+
=======
|
| 2766 |
+
|
| 2767 |
+
medial : Triangle
|
| 2768 |
+
|
| 2769 |
+
See Also
|
| 2770 |
+
========
|
| 2771 |
+
|
| 2772 |
+
sympy.geometry.line.Segment.midpoint
|
| 2773 |
+
|
| 2774 |
+
Examples
|
| 2775 |
+
========
|
| 2776 |
+
|
| 2777 |
+
>>> from sympy import Point, Triangle
|
| 2778 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2779 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2780 |
+
>>> t.medial
|
| 2781 |
+
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
|
| 2782 |
+
|
| 2783 |
+
"""
|
| 2784 |
+
s = self.sides
|
| 2785 |
+
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
|
| 2786 |
+
|
| 2787 |
+
@property
|
| 2788 |
+
def nine_point_circle(self):
|
| 2789 |
+
"""The nine-point circle of the triangle.
|
| 2790 |
+
|
| 2791 |
+
Nine-point circle is the circumcircle of the medial triangle, which
|
| 2792 |
+
passes through the feet of altitudes and the middle points of segments
|
| 2793 |
+
connecting the vertices and the orthocenter.
|
| 2794 |
+
|
| 2795 |
+
Returns
|
| 2796 |
+
=======
|
| 2797 |
+
|
| 2798 |
+
nine_point_circle : Circle
|
| 2799 |
+
|
| 2800 |
+
See also
|
| 2801 |
+
========
|
| 2802 |
+
|
| 2803 |
+
sympy.geometry.line.Segment.midpoint
|
| 2804 |
+
sympy.geometry.polygon.Triangle.medial
|
| 2805 |
+
sympy.geometry.polygon.Triangle.orthocenter
|
| 2806 |
+
|
| 2807 |
+
Examples
|
| 2808 |
+
========
|
| 2809 |
+
|
| 2810 |
+
>>> from sympy import Point, Triangle
|
| 2811 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2812 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2813 |
+
>>> t.nine_point_circle
|
| 2814 |
+
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
|
| 2815 |
+
|
| 2816 |
+
"""
|
| 2817 |
+
return Circle(*self.medial.vertices)
|
| 2818 |
+
|
| 2819 |
+
@property
|
| 2820 |
+
def eulerline(self):
|
| 2821 |
+
"""The Euler line of the triangle.
|
| 2822 |
+
|
| 2823 |
+
The line which passes through circumcenter, centroid and orthocenter.
|
| 2824 |
+
|
| 2825 |
+
Returns
|
| 2826 |
+
=======
|
| 2827 |
+
|
| 2828 |
+
eulerline : Line (or Point for equilateral triangles in which case all
|
| 2829 |
+
centers coincide)
|
| 2830 |
+
|
| 2831 |
+
Examples
|
| 2832 |
+
========
|
| 2833 |
+
|
| 2834 |
+
>>> from sympy import Point, Triangle
|
| 2835 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 2836 |
+
>>> t = Triangle(p1, p2, p3)
|
| 2837 |
+
>>> t.eulerline
|
| 2838 |
+
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
| 2839 |
+
|
| 2840 |
+
"""
|
| 2841 |
+
if self.is_equilateral():
|
| 2842 |
+
return self.orthocenter
|
| 2843 |
+
return Line(self.orthocenter, self.circumcenter)
|
| 2844 |
+
|
| 2845 |
+
def rad(d):
|
| 2846 |
+
"""Return the radian value for the given degrees (pi = 180 degrees)."""
|
| 2847 |
+
return d*pi/180
|
| 2848 |
+
|
| 2849 |
+
|
| 2850 |
+
def deg(r):
|
| 2851 |
+
"""Return the degree value for the given radians (pi = 180 degrees)."""
|
| 2852 |
+
return r/pi*180
|
| 2853 |
+
|
| 2854 |
+
|
| 2855 |
+
def _slope(d):
|
| 2856 |
+
rv = tan(rad(d))
|
| 2857 |
+
return rv
|
| 2858 |
+
|
| 2859 |
+
|
| 2860 |
+
def _asa(d1, l, d2):
|
| 2861 |
+
"""Return triangle having side with length l on the x-axis."""
|
| 2862 |
+
xy = Line((0, 0), slope=_slope(d1)).intersection(
|
| 2863 |
+
Line((l, 0), slope=_slope(180 - d2)))[0]
|
| 2864 |
+
return Triangle((0, 0), (l, 0), xy)
|
| 2865 |
+
|
| 2866 |
+
|
| 2867 |
+
def _sss(l1, l2, l3):
|
| 2868 |
+
"""Return triangle having side of length l1 on the x-axis."""
|
| 2869 |
+
c1 = Circle((0, 0), l3)
|
| 2870 |
+
c2 = Circle((l1, 0), l2)
|
| 2871 |
+
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
|
| 2872 |
+
if not inter:
|
| 2873 |
+
return None
|
| 2874 |
+
pt = inter[0]
|
| 2875 |
+
return Triangle((0, 0), (l1, 0), pt)
|
| 2876 |
+
|
| 2877 |
+
|
| 2878 |
+
def _sas(l1, d, l2):
|
| 2879 |
+
"""Return triangle having side with length l2 on the x-axis."""
|
| 2880 |
+
p1 = Point(0, 0)
|
| 2881 |
+
p2 = Point(l2, 0)
|
| 2882 |
+
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
|
| 2883 |
+
return Triangle(p1, p2, p3)
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py
ADDED
|
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (185 Bytes). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc
ADDED
|
Binary file (5.25 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc
ADDED
|
Binary file (23.6 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc
ADDED
|
Binary file (4.41 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc
ADDED
|
Binary file (1.62 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc
ADDED
|
Binary file (31.1 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc
ADDED
|
Binary file (5.34 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc
ADDED
|
Binary file (9.57 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc
ADDED
|
Binary file (15.7 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc
ADDED
|
Binary file (22.9 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc
ADDED
|
Binary file (6.49 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.containers import Tuple
|
| 2 |
+
from sympy.core.numbers import (Rational, pi)
|
| 3 |
+
from sympy.core.singleton import S
|
| 4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
| 5 |
+
from sympy.functions.elementary.hyperbolic import asinh
|
| 6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 7 |
+
from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon
|
| 8 |
+
from sympy.testing.pytest import raises, slow
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def test_curve():
|
| 12 |
+
x = Symbol('x', real=True)
|
| 13 |
+
s = Symbol('s')
|
| 14 |
+
z = Symbol('z')
|
| 15 |
+
|
| 16 |
+
# this curve is independent of the indicated parameter
|
| 17 |
+
c = Curve([2*s, s**2], (z, 0, 2))
|
| 18 |
+
|
| 19 |
+
assert c.parameter == z
|
| 20 |
+
assert c.functions == (2*s, s**2)
|
| 21 |
+
assert c.arbitrary_point() == Point(2*s, s**2)
|
| 22 |
+
assert c.arbitrary_point(z) == Point(2*s, s**2)
|
| 23 |
+
|
| 24 |
+
# this is how it is normally used
|
| 25 |
+
c = Curve([2*s, s**2], (s, 0, 2))
|
| 26 |
+
|
| 27 |
+
assert c.parameter == s
|
| 28 |
+
assert c.functions == (2*s, s**2)
|
| 29 |
+
t = Symbol('t')
|
| 30 |
+
# the t returned as assumptions
|
| 31 |
+
assert c.arbitrary_point() != Point(2*t, t**2)
|
| 32 |
+
t = Symbol('t', real=True)
|
| 33 |
+
# now t has the same assumptions so the test passes
|
| 34 |
+
assert c.arbitrary_point() == Point(2*t, t**2)
|
| 35 |
+
assert c.arbitrary_point(z) == Point(2*z, z**2)
|
| 36 |
+
assert c.arbitrary_point(c.parameter) == Point(2*s, s**2)
|
| 37 |
+
assert c.arbitrary_point(None) == Point(2*s, s**2)
|
| 38 |
+
assert c.plot_interval() == [t, 0, 2]
|
| 39 |
+
assert c.plot_interval(z) == [z, 0, 2]
|
| 40 |
+
|
| 41 |
+
assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1))
|
| 42 |
+
assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
|
| 43 |
+
1, 3).arbitrary_point(s) == \
|
| 44 |
+
Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
|
| 45 |
+
1, 3).arbitrary_point(s) == \
|
| 46 |
+
Point(-2*s + 7, 3*s + 6)
|
| 47 |
+
|
| 48 |
+
raises(ValueError, lambda: Curve((s), (s, 1, 2)))
|
| 49 |
+
raises(ValueError, lambda: Curve((x, x * 2), (1, x)))
|
| 50 |
+
|
| 51 |
+
raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point())
|
| 52 |
+
raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s))
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@slow
|
| 56 |
+
def test_free_symbols():
|
| 57 |
+
a, b, c, d, e, f, s = symbols('a:f,s')
|
| 58 |
+
assert Point(a, b).free_symbols == {a, b}
|
| 59 |
+
assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
|
| 60 |
+
assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
|
| 61 |
+
assert Ray((a, b), angle=c).free_symbols == {a, b, c}
|
| 62 |
+
assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
|
| 63 |
+
assert Line((a, b), slope=c).free_symbols == {a, b, c}
|
| 64 |
+
assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d}
|
| 65 |
+
assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
|
| 66 |
+
assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
|
| 67 |
+
{a, b, c, d}
|
| 68 |
+
assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
|
| 69 |
+
{a, b, c, d}
|
| 70 |
+
assert Circle((a, b), c).free_symbols == {a, b, c}
|
| 71 |
+
assert Circle((a, b), (c, d), (e, f)).free_symbols == \
|
| 72 |
+
{e, d, c, b, f, a}
|
| 73 |
+
assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
|
| 74 |
+
{e, b, d, f, a, c}
|
| 75 |
+
assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def test_transform():
|
| 79 |
+
x = Symbol('x', real=True)
|
| 80 |
+
y = Symbol('y', real=True)
|
| 81 |
+
c = Curve((x, x**2), (x, 0, 1))
|
| 82 |
+
cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1))
|
| 83 |
+
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
|
| 84 |
+
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
|
| 85 |
+
|
| 86 |
+
assert c.scale(2, 3, (4, 5)) == cout
|
| 87 |
+
assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts
|
| 88 |
+
assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out
|
| 89 |
+
assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
|
| 90 |
+
Curve((x + S.Half, 3*x), (x, 0, 1))
|
| 91 |
+
assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
|
| 92 |
+
Curve((x + 4, 3*x + 5), (x, 0, 1))
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def test_length():
|
| 96 |
+
t = Symbol('t', real=True)
|
| 97 |
+
|
| 98 |
+
c1 = Curve((t, 0), (t, 0, 1))
|
| 99 |
+
assert c1.length == 1
|
| 100 |
+
|
| 101 |
+
c2 = Curve((t, t), (t, 0, 1))
|
| 102 |
+
assert c2.length == sqrt(2)
|
| 103 |
+
|
| 104 |
+
c3 = Curve((t ** 2, t), (t, 2, 5))
|
| 105 |
+
assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def test_parameter_value():
|
| 109 |
+
t = Symbol('t')
|
| 110 |
+
C = Curve([2*t, t**2], (t, 0, 2))
|
| 111 |
+
assert C.parameter_value((2, 1), t) == {t: 1}
|
| 112 |
+
raises(ValueError, lambda: C.parameter_value((2, 0), t))
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def test_issue_17997():
|
| 116 |
+
t, s = symbols('t s')
|
| 117 |
+
c = Curve((t, t**2), (t, 0, 10))
|
| 118 |
+
p = Curve([2*s, s**2], (s, 0, 2))
|
| 119 |
+
assert c(2) == Point(2, 4)
|
| 120 |
+
assert p(1) == Point(2, 1)
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py
ADDED
|
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core import expand
|
| 2 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
| 3 |
+
from sympy.core.relational import Eq
|
| 4 |
+
from sympy.core.singleton import S
|
| 5 |
+
from sympy.core.symbol import (Symbol, symbols)
|
| 6 |
+
from sympy.functions.elementary.complexes import Abs
|
| 7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 8 |
+
from sympy.functions.elementary.trigonometric import sec
|
| 9 |
+
from sympy.geometry.line import Segment2D
|
| 10 |
+
from sympy.geometry.point import Point2D
|
| 11 |
+
from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point,
|
| 12 |
+
Polygon, Ray, RegularPolygon, Segment,
|
| 13 |
+
Triangle, intersection)
|
| 14 |
+
from sympy.testing.pytest import raises, slow
|
| 15 |
+
from sympy.integrals.integrals import integrate
|
| 16 |
+
from sympy.functions.special.elliptic_integrals import elliptic_e
|
| 17 |
+
from sympy.functions.elementary.miscellaneous import Max
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def test_ellipse_equation_using_slope():
|
| 21 |
+
from sympy.abc import x, y
|
| 22 |
+
|
| 23 |
+
e1 = Ellipse(Point(1, 0), 3, 2)
|
| 24 |
+
assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
|
| 25 |
+
|
| 26 |
+
e2 = Ellipse(Point(0, 0), 4, 1)
|
| 27 |
+
assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
|
| 28 |
+
|
| 29 |
+
e3 = Ellipse(Point(1, 5), 6, 2)
|
| 30 |
+
assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def test_object_from_equation():
|
| 34 |
+
from sympy.abc import x, y, a, b, c, d, e
|
| 35 |
+
assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2)
|
| 36 |
+
assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
|
| 37 |
+
assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
|
| 38 |
+
assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
|
| 39 |
+
assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
|
| 40 |
+
assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
|
| 41 |
+
assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
|
| 42 |
+
assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
|
| 43 |
+
assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3)
|
| 44 |
+
assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6)
|
| 45 |
+
assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5)
|
| 46 |
+
raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
|
| 47 |
+
raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
|
| 48 |
+
raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
|
| 49 |
+
raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
|
| 50 |
+
raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
|
| 51 |
+
raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
|
| 52 |
+
# .equation() adds 'real=True' assumption; '==' would fail if assumptions differed
|
| 53 |
+
x, y = symbols('x y', real=True)
|
| 54 |
+
eq = a*x**2 + a*y**2 + c*x + d*y + e
|
| 55 |
+
assert expand(Circle(eq).equation()*a) == eq
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@slow
|
| 59 |
+
def test_ellipse_geom():
|
| 60 |
+
x = Symbol('x', real=True)
|
| 61 |
+
y = Symbol('y', real=True)
|
| 62 |
+
t = Symbol('t', real=True)
|
| 63 |
+
y1 = Symbol('y1', real=True)
|
| 64 |
+
half = S.Half
|
| 65 |
+
p1 = Point(0, 0)
|
| 66 |
+
p2 = Point(1, 1)
|
| 67 |
+
p4 = Point(0, 1)
|
| 68 |
+
|
| 69 |
+
e1 = Ellipse(p1, 1, 1)
|
| 70 |
+
e2 = Ellipse(p2, half, 1)
|
| 71 |
+
e3 = Ellipse(p1, y1, y1)
|
| 72 |
+
c1 = Circle(p1, 1)
|
| 73 |
+
c2 = Circle(p2, 1)
|
| 74 |
+
c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
|
| 75 |
+
l1 = Line(p1, p2)
|
| 76 |
+
|
| 77 |
+
# Test creation with three points
|
| 78 |
+
cen, rad = Point(3*half, 2), 5*half
|
| 79 |
+
assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
|
| 80 |
+
assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
|
| 81 |
+
|
| 82 |
+
raises(ValueError, lambda: Ellipse(None, None, None, 1))
|
| 83 |
+
raises(ValueError, lambda: Ellipse())
|
| 84 |
+
raises(GeometryError, lambda: Circle(Point(0, 0)))
|
| 85 |
+
raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y')))
|
| 86 |
+
|
| 87 |
+
# Basic Stuff
|
| 88 |
+
assert Ellipse(None, 1, 1).center == Point(0, 0)
|
| 89 |
+
assert e1 == c1
|
| 90 |
+
assert e1 != e2
|
| 91 |
+
assert e1 != l1
|
| 92 |
+
assert p4 in e1
|
| 93 |
+
assert e1 in e1
|
| 94 |
+
assert e2 in e2
|
| 95 |
+
assert 1 not in e2
|
| 96 |
+
assert p2 not in e2
|
| 97 |
+
assert e1.area == pi
|
| 98 |
+
assert e2.area == pi/2
|
| 99 |
+
assert e3.area == pi*y1*abs(y1)
|
| 100 |
+
assert c1.area == e1.area
|
| 101 |
+
assert c1.circumference == e1.circumference
|
| 102 |
+
assert e3.circumference == 2*pi*y1
|
| 103 |
+
assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
|
| 104 |
+
assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
|
| 105 |
+
|
| 106 |
+
assert c1.minor == 1
|
| 107 |
+
assert c1.major == 1
|
| 108 |
+
assert c1.hradius == 1
|
| 109 |
+
assert c1.vradius == 1
|
| 110 |
+
|
| 111 |
+
assert Ellipse((1, 1), 0, 0) == Point(1, 1)
|
| 112 |
+
assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
|
| 113 |
+
assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
|
| 114 |
+
|
| 115 |
+
# Private Functions
|
| 116 |
+
assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
|
| 117 |
+
assert c1 in e1
|
| 118 |
+
assert (Line(p1, p2) in e1) is False
|
| 119 |
+
assert e1.__cmp__(e1) == 0
|
| 120 |
+
assert e1.__cmp__(Point(0, 0)) > 0
|
| 121 |
+
|
| 122 |
+
# Encloses
|
| 123 |
+
assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
|
| 124 |
+
assert e1.encloses(Line(p1, p2)) is False
|
| 125 |
+
assert e1.encloses(Ray(p1, p2)) is False
|
| 126 |
+
assert e1.encloses(e1) is False
|
| 127 |
+
assert e1.encloses(
|
| 128 |
+
Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
|
| 129 |
+
assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
|
| 130 |
+
assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
|
| 131 |
+
assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
|
| 132 |
+
|
| 133 |
+
assert e2.arbitrary_point() in e2
|
| 134 |
+
raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x'))
|
| 135 |
+
|
| 136 |
+
# Foci
|
| 137 |
+
f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
|
| 138 |
+
ef = Ellipse(Point(0, 0), 4, 2)
|
| 139 |
+
assert ef.foci in [(f1, f2), (f2, f1)]
|
| 140 |
+
|
| 141 |
+
# Tangents
|
| 142 |
+
v = sqrt(2) / 2
|
| 143 |
+
p1_1 = Point(v, v)
|
| 144 |
+
p1_2 = p2 + Point(half, 0)
|
| 145 |
+
p1_3 = p2 + Point(0, 1)
|
| 146 |
+
assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
|
| 147 |
+
assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))]
|
| 148 |
+
assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))]
|
| 149 |
+
assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
|
| 150 |
+
assert c1.tangent_lines(p1) == []
|
| 151 |
+
assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
|
| 152 |
+
assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
|
| 153 |
+
assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
|
| 154 |
+
assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
|
| 155 |
+
assert c1.is_tangent(e1) is True
|
| 156 |
+
assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
|
| 157 |
+
assert c1.is_tangent(
|
| 158 |
+
Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
|
| 159 |
+
assert c1.is_tangent(
|
| 160 |
+
Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
|
| 161 |
+
assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
|
| 162 |
+
|
| 163 |
+
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
|
| 164 |
+
[Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
|
| 165 |
+
Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
|
| 166 |
+
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
|
| 167 |
+
[Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
|
| 168 |
+
assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
|
| 169 |
+
[Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
|
| 170 |
+
assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
|
| 171 |
+
[Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
|
| 172 |
+
Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
|
| 173 |
+
assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \
|
| 174 |
+
[Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))),
|
| 175 |
+
Line(Point(4, 0), Point(5, 0))]
|
| 176 |
+
assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \
|
| 177 |
+
[Line(Point(0, 6), Point(0, 7)),
|
| 178 |
+
Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))]
|
| 179 |
+
|
| 180 |
+
# for numerical calculations, we shouldn't demand exact equality,
|
| 181 |
+
# so only test up to the desired precision
|
| 182 |
+
def lines_close(l1, l2, prec):
|
| 183 |
+
""" tests whether l1 and 12 are within 10**(-prec)
|
| 184 |
+
of each other """
|
| 185 |
+
return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
|
| 186 |
+
def line_list_close(ll1, ll2, prec):
|
| 187 |
+
return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
|
| 188 |
+
|
| 189 |
+
e = Ellipse(Point(0, 0), 2, 1)
|
| 190 |
+
assert e.normal_lines(Point(0, 0)) == \
|
| 191 |
+
[Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
|
| 192 |
+
assert e.normal_lines(Point(1, 0)) == \
|
| 193 |
+
[Line(Point(0, 0), Point(1, 0))]
|
| 194 |
+
assert e.normal_lines((0, 1)) == \
|
| 195 |
+
[Line(Point(0, 0), Point(0, 1))]
|
| 196 |
+
assert line_list_close(e.normal_lines(Point(1, 1), 2), [
|
| 197 |
+
Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))),
|
| 198 |
+
Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2)
|
| 199 |
+
# test the failure of Poly.intervals and checks a point on the boundary
|
| 200 |
+
p = Point(sqrt(3), S.Half)
|
| 201 |
+
assert p in e
|
| 202 |
+
assert line_list_close(e.normal_lines(p, 2), [
|
| 203 |
+
Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))),
|
| 204 |
+
Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2)
|
| 205 |
+
# be sure to use the slope that isn't undefined on boundary
|
| 206 |
+
e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
|
| 207 |
+
assert line_list_close(e.normal_lines((1, 1), 2), [
|
| 208 |
+
Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))),
|
| 209 |
+
Line(Point(1, -1), Point(2, -4))], 2)
|
| 210 |
+
# general ellipse fails except under certain conditions
|
| 211 |
+
e = Ellipse((0, 0), x, 1)
|
| 212 |
+
assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
|
| 213 |
+
raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
|
| 214 |
+
# Properties
|
| 215 |
+
major = 3
|
| 216 |
+
minor = 1
|
| 217 |
+
e4 = Ellipse(p2, minor, major)
|
| 218 |
+
assert e4.focus_distance == sqrt(major**2 - minor**2)
|
| 219 |
+
ecc = e4.focus_distance / major
|
| 220 |
+
assert e4.eccentricity == ecc
|
| 221 |
+
assert e4.periapsis == major*(1 - ecc)
|
| 222 |
+
assert e4.apoapsis == major*(1 + ecc)
|
| 223 |
+
assert e4.semilatus_rectum == major*(1 - ecc ** 2)
|
| 224 |
+
# independent of orientation
|
| 225 |
+
e4 = Ellipse(p2, major, minor)
|
| 226 |
+
assert e4.focus_distance == sqrt(major**2 - minor**2)
|
| 227 |
+
ecc = e4.focus_distance / major
|
| 228 |
+
assert e4.eccentricity == ecc
|
| 229 |
+
assert e4.periapsis == major*(1 - ecc)
|
| 230 |
+
assert e4.apoapsis == major*(1 + ecc)
|
| 231 |
+
|
| 232 |
+
# Intersection
|
| 233 |
+
l1 = Line(Point(1, -5), Point(1, 5))
|
| 234 |
+
l2 = Line(Point(-5, -1), Point(5, -1))
|
| 235 |
+
l3 = Line(Point(-1, -1), Point(1, 1))
|
| 236 |
+
l4 = Line(Point(-10, 0), Point(0, 10))
|
| 237 |
+
pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
|
| 238 |
+
|
| 239 |
+
assert intersection(e2, l4) == []
|
| 240 |
+
assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
|
| 241 |
+
assert intersection(c1, l1) == [Point(1, 0)]
|
| 242 |
+
assert intersection(c1, l2) == [Point(0, -1)]
|
| 243 |
+
assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
|
| 244 |
+
assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
|
| 245 |
+
assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
|
| 246 |
+
assert e1.intersection(l1) == [Point(1, 0)]
|
| 247 |
+
assert e2.intersection(l4) == []
|
| 248 |
+
assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
|
| 249 |
+
assert e1.intersection(Circle(Point(5, 0), 1)) == []
|
| 250 |
+
assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
|
| 251 |
+
assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
|
| 252 |
+
assert e1.intersection(Point(2, 0)) == []
|
| 253 |
+
assert e1.intersection(e1) == e1
|
| 254 |
+
assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
|
| 255 |
+
assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
|
| 256 |
+
assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
|
| 257 |
+
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
|
| 258 |
+
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
|
| 259 |
+
assert Circle((0, 0), S.Half).intersection(
|
| 260 |
+
Triangle((-1, 0), (1, 0), (0, 1))) == [
|
| 261 |
+
Point(Rational(-1, 2), 0), Point(S.Half, 0)]
|
| 262 |
+
raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
|
| 263 |
+
raises(TypeError, lambda: intersection(e2, Rational(12)))
|
| 264 |
+
raises(TypeError, lambda: Ellipse.intersection(e2, 1))
|
| 265 |
+
# some special case intersections
|
| 266 |
+
csmall = Circle(p1, 3)
|
| 267 |
+
cbig = Circle(p1, 5)
|
| 268 |
+
cout = Circle(Point(5, 5), 1)
|
| 269 |
+
# one circle inside of another
|
| 270 |
+
assert csmall.intersection(cbig) == []
|
| 271 |
+
# separate circles
|
| 272 |
+
assert csmall.intersection(cout) == []
|
| 273 |
+
# coincident circles
|
| 274 |
+
assert csmall.intersection(csmall) == csmall
|
| 275 |
+
|
| 276 |
+
v = sqrt(2)
|
| 277 |
+
t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
|
| 278 |
+
points = intersection(t1, c1)
|
| 279 |
+
assert len(points) == 4
|
| 280 |
+
assert Point(0, 1) in points
|
| 281 |
+
assert Point(0, -1) in points
|
| 282 |
+
assert Point(v/2, v/2) in points
|
| 283 |
+
assert Point(v/2, -v/2) in points
|
| 284 |
+
|
| 285 |
+
circ = Circle(Point(0, 0), 5)
|
| 286 |
+
elip = Ellipse(Point(0, 0), 5, 20)
|
| 287 |
+
assert intersection(circ, elip) in \
|
| 288 |
+
[[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
|
| 289 |
+
assert elip.tangent_lines(Point(0, 0)) == []
|
| 290 |
+
elip = Ellipse(Point(0, 0), 3, 2)
|
| 291 |
+
assert elip.tangent_lines(Point(3, 0)) == \
|
| 292 |
+
[Line(Point(3, 0), Point(3, -12))]
|
| 293 |
+
|
| 294 |
+
e1 = Ellipse(Point(0, 0), 5, 10)
|
| 295 |
+
e2 = Ellipse(Point(2, 1), 4, 8)
|
| 296 |
+
a = Rational(53, 17)
|
| 297 |
+
c = 2*sqrt(3991)/17
|
| 298 |
+
ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
|
| 299 |
+
assert e1.intersection(e2) == ans
|
| 300 |
+
e2 = Ellipse(Point(x, y), 4, 8)
|
| 301 |
+
c = sqrt(3991)
|
| 302 |
+
ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)]
|
| 303 |
+
assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
|
| 304 |
+
|
| 305 |
+
# Combinations of above
|
| 306 |
+
assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
|
| 307 |
+
|
| 308 |
+
e = Ellipse((1, 2), 3, 2)
|
| 309 |
+
assert e.tangent_lines(Point(10, 0)) == \
|
| 310 |
+
[Line(Point(10, 0), Point(1, 0)),
|
| 311 |
+
Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]
|
| 312 |
+
|
| 313 |
+
# encloses_point
|
| 314 |
+
e = Ellipse((0, 0), 1, 2)
|
| 315 |
+
assert e.encloses_point(e.center)
|
| 316 |
+
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
|
| 317 |
+
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
|
| 318 |
+
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
|
| 319 |
+
assert e.encloses_point(
|
| 320 |
+
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
|
| 321 |
+
e = Ellipse((0, 0), 2, 1)
|
| 322 |
+
assert e.encloses_point(e.center)
|
| 323 |
+
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
|
| 324 |
+
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
|
| 325 |
+
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
|
| 326 |
+
assert e.encloses_point(
|
| 327 |
+
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
|
| 328 |
+
assert c1.encloses_point(Point(1, 0)) is False
|
| 329 |
+
assert c1.encloses_point(Point(0.3, 0.4)) is True
|
| 330 |
+
|
| 331 |
+
assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
|
| 332 |
+
assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
|
| 333 |
+
assert e.rotate(pi) == e
|
| 334 |
+
assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
|
| 335 |
+
raises(NotImplementedError, lambda: e.rotate(pi/3))
|
| 336 |
+
|
| 337 |
+
# Circle rotation tests (Issue #11743)
|
| 338 |
+
# Link - https://github.com/sympy/sympy/issues/11743
|
| 339 |
+
cir = Circle(Point(1, 0), 1)
|
| 340 |
+
assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
|
| 341 |
+
assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1)
|
| 342 |
+
assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
|
| 343 |
+
assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def test_construction():
|
| 347 |
+
e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
|
| 348 |
+
assert e1.eccentricity == sqrt(3)/2
|
| 349 |
+
|
| 350 |
+
e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
|
| 351 |
+
assert e2.vradius == 1
|
| 352 |
+
|
| 353 |
+
e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
|
| 354 |
+
assert e3.hradius == 2
|
| 355 |
+
|
| 356 |
+
# filter(None, iterator) filters out anything falsey, including 0
|
| 357 |
+
# eccentricity would be filtered out in this case and the constructor would throw an error
|
| 358 |
+
e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
|
| 359 |
+
assert e4.vradius == 1
|
| 360 |
+
|
| 361 |
+
#tests for eccentricity > 1
|
| 362 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2))
|
| 363 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5)))
|
| 364 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2)))
|
| 365 |
+
|
| 366 |
+
#tests for eccentricity = 1
|
| 367 |
+
#if vradius is not defined
|
| 368 |
+
assert Ellipse(None, 1, None, 1).length == 2
|
| 369 |
+
#if hradius is not defined
|
| 370 |
+
raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1))
|
| 371 |
+
|
| 372 |
+
#tests for eccentricity < 0
|
| 373 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3))
|
| 374 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5))
|
| 375 |
+
|
| 376 |
+
def test_ellipse_random_point():
|
| 377 |
+
y1 = Symbol('y1', real=True)
|
| 378 |
+
e3 = Ellipse(Point(0, 0), y1, y1)
|
| 379 |
+
rx, ry = Symbol('rx'), Symbol('ry')
|
| 380 |
+
for ind in range(0, 5):
|
| 381 |
+
r = e3.random_point()
|
| 382 |
+
# substitution should give zero*y1**2
|
| 383 |
+
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
|
| 384 |
+
# test for the case with seed
|
| 385 |
+
r = e3.random_point(seed=1)
|
| 386 |
+
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def test_repr():
|
| 390 |
+
assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def test_transform():
|
| 394 |
+
c = Circle((1, 1), 2)
|
| 395 |
+
assert c.scale(-1) == Circle((-1, 1), 2)
|
| 396 |
+
assert c.scale(y=-1) == Circle((1, -1), 2)
|
| 397 |
+
assert c.scale(2) == Ellipse((2, 1), 4, 2)
|
| 398 |
+
|
| 399 |
+
assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
|
| 400 |
+
Ellipse(Point(-4, -10), 4, 9)
|
| 401 |
+
assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
|
| 402 |
+
Ellipse(Point(-4, -10), 4, 6)
|
| 403 |
+
assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
|
| 404 |
+
Ellipse(Point(-8, -10), 6, 9)
|
| 405 |
+
assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
|
| 406 |
+
Circle(Point(-8, -10), 6)
|
| 407 |
+
assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \
|
| 408 |
+
Circle((0, 0), 2)
|
| 409 |
+
assert Circle((0, 0), 2).translate(4, 5) == \
|
| 410 |
+
Circle((4, 5), 2)
|
| 411 |
+
assert Circle((0, 0), 2).scale(3, 3) == \
|
| 412 |
+
Circle((0, 0), 6)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def test_bounds():
|
| 416 |
+
e1 = Ellipse(Point(0, 0), 3, 5)
|
| 417 |
+
e2 = Ellipse(Point(2, -2), 7, 7)
|
| 418 |
+
c1 = Circle(Point(2, -2), 7)
|
| 419 |
+
c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
|
| 420 |
+
assert e1.bounds == (-3, -5, 3, 5)
|
| 421 |
+
assert e2.bounds == (-5, -9, 9, 5)
|
| 422 |
+
assert c1.bounds == (-5, -9, 9, 5)
|
| 423 |
+
assert c2.bounds == (-2, -2, 2, 2)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def test_reflect():
|
| 427 |
+
b = Symbol('b')
|
| 428 |
+
m = Symbol('m')
|
| 429 |
+
l = Line((0, b), slope=m)
|
| 430 |
+
t1 = Triangle((0, 0), (1, 0), (2, 3))
|
| 431 |
+
assert t1.area == -t1.reflect(l).area
|
| 432 |
+
e = Ellipse((1, 0), 1, 2)
|
| 433 |
+
assert e.area == -e.reflect(Line((1, 0), slope=0)).area
|
| 434 |
+
assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
|
| 435 |
+
raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
|
| 436 |
+
assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def test_is_tangent():
|
| 440 |
+
e1 = Ellipse(Point(0, 0), 3, 5)
|
| 441 |
+
c1 = Circle(Point(2, -2), 7)
|
| 442 |
+
assert e1.is_tangent(Point(0, 0)) is False
|
| 443 |
+
assert e1.is_tangent(Point(3, 0)) is False
|
| 444 |
+
assert e1.is_tangent(e1) is True
|
| 445 |
+
assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
|
| 446 |
+
assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
|
| 447 |
+
assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
|
| 448 |
+
assert c1.is_tangent(Circle((11, -2), 2)) is True
|
| 449 |
+
assert c1.is_tangent(Circle((7, -2), 2)) is True
|
| 450 |
+
assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
|
| 451 |
+
assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
|
| 452 |
+
assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
|
| 453 |
+
assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
|
| 454 |
+
assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
|
| 455 |
+
assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
|
| 456 |
+
assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
|
| 457 |
+
assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
|
| 458 |
+
assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
|
| 459 |
+
assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
|
| 460 |
+
assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
|
| 461 |
+
assert e1.is_tangent(Line((10, 0), (10, 10))) is False
|
| 462 |
+
assert e1.is_tangent(Line((0, 0), (1, 1))) is False
|
| 463 |
+
assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
|
| 464 |
+
assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
|
| 465 |
+
assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
|
| 466 |
+
assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
|
| 467 |
+
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
|
| 468 |
+
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
|
| 469 |
+
assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
|
| 470 |
+
assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
|
| 471 |
+
assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
|
| 472 |
+
assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
|
| 473 |
+
assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
|
| 474 |
+
assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
|
| 475 |
+
assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
|
| 476 |
+
raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
|
| 477 |
+
raises(TypeError, lambda: e1.is_tangent(Rational(5)))
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def test_parameter_value():
|
| 481 |
+
t = Symbol('t')
|
| 482 |
+
e = Ellipse(Point(0, 0), 3, 5)
|
| 483 |
+
assert e.parameter_value((3, 0), t) == {t: 0}
|
| 484 |
+
raises(ValueError, lambda: e.parameter_value((4, 0), t))
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
@slow
|
| 488 |
+
def test_second_moment_of_area():
|
| 489 |
+
x, y = symbols('x, y')
|
| 490 |
+
e = Ellipse(Point(0, 0), 5, 4)
|
| 491 |
+
I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
|
| 492 |
+
I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
|
| 493 |
+
Y = 3*sqrt(1 - x**2/5**2)
|
| 494 |
+
I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
|
| 495 |
+
assert I_yy == e.second_moment_of_area()[1]
|
| 496 |
+
assert I_xx == e.second_moment_of_area()[0]
|
| 497 |
+
assert I_xy == e.second_moment_of_area()[2]
|
| 498 |
+
#checking for other point
|
| 499 |
+
t1 = e.second_moment_of_area(Point(6,5))
|
| 500 |
+
t2 = (580*pi, 845*pi, 600*pi)
|
| 501 |
+
assert t1==t2
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
def test_section_modulus_and_polar_second_moment_of_area():
|
| 505 |
+
d = Symbol('d', positive=True)
|
| 506 |
+
c = Circle((3, 7), 8)
|
| 507 |
+
assert c.polar_second_moment_of_area() == 2048*pi
|
| 508 |
+
assert c.section_modulus() == (128*pi, 128*pi)
|
| 509 |
+
c = Circle((2, 9), d/2)
|
| 510 |
+
assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64
|
| 511 |
+
assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32))
|
| 512 |
+
|
| 513 |
+
a, b = symbols('a, b', positive=True)
|
| 514 |
+
e = Ellipse((4, 6), a, b)
|
| 515 |
+
assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4))
|
| 516 |
+
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
|
| 517 |
+
e = e.rotate(pi/2) # no change in polar and section modulus
|
| 518 |
+
assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4))
|
| 519 |
+
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
|
| 520 |
+
|
| 521 |
+
e = Ellipse((a, b), 2, 6)
|
| 522 |
+
assert e.section_modulus() == (18*pi, 6*pi)
|
| 523 |
+
assert e.polar_second_moment_of_area() == 120*pi
|
| 524 |
+
|
| 525 |
+
e = Ellipse(Point(0, 0), 2, 2)
|
| 526 |
+
assert e.section_modulus() == (2*pi, 2*pi)
|
| 527 |
+
assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi)
|
| 528 |
+
assert e.section_modulus((2, 2)) == (2*pi, 2*pi)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
def test_circumference():
|
| 532 |
+
M = Symbol('M')
|
| 533 |
+
m = Symbol('m')
|
| 534 |
+
assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
|
| 535 |
+
|
| 536 |
+
assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
|
| 537 |
+
|
| 538 |
+
# circle
|
| 539 |
+
assert Ellipse(None, 1, None, 0).circumference == 2*pi
|
| 540 |
+
|
| 541 |
+
# test numerically
|
| 542 |
+
assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def test_issue_15259():
|
| 546 |
+
assert Circle((1, 2), 0) == Point(1, 2)
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
def test_issue_15797_equals():
|
| 550 |
+
Ri = 0.024127189424130748
|
| 551 |
+
Ci = (0.0864931002830291, 0.0819863295239654)
|
| 552 |
+
A = Point(0, 0.0578591400998346)
|
| 553 |
+
c = Circle(Ci, Ri) # evaluated
|
| 554 |
+
assert c.is_tangent(c.tangent_lines(A)[0]) == True
|
| 555 |
+
assert c.center.x.is_Rational
|
| 556 |
+
assert c.center.y.is_Rational
|
| 557 |
+
assert c.radius.is_Rational
|
| 558 |
+
u = Circle(Ci, Ri, evaluate=False) # unevaluated
|
| 559 |
+
assert u.center.x.is_Float
|
| 560 |
+
assert u.center.y.is_Float
|
| 561 |
+
assert u.radius.is_Float
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def test_auxiliary_circle():
|
| 565 |
+
x, y, a, b = symbols('x y a b')
|
| 566 |
+
e = Ellipse((x, y), a, b)
|
| 567 |
+
# the general result
|
| 568 |
+
assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
|
| 569 |
+
# a special case where Ellipse is a Circle
|
| 570 |
+
assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
def test_director_circle():
|
| 574 |
+
x, y, a, b = symbols('x y a b')
|
| 575 |
+
e = Ellipse((x, y), a, b)
|
| 576 |
+
# the general result
|
| 577 |
+
assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
|
| 578 |
+
# a special case where Ellipse is a Circle
|
| 579 |
+
assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
def test_evolute():
|
| 583 |
+
#ellipse centered at h,k
|
| 584 |
+
x, y, h, k = symbols('x y h k',real = True)
|
| 585 |
+
a, b = symbols('a b')
|
| 586 |
+
e = Ellipse(Point(h, k), a, b)
|
| 587 |
+
t1 = (e.hradius*(x - e.center.x))**Rational(2, 3)
|
| 588 |
+
t2 = (e.vradius*(y - e.center.y))**Rational(2, 3)
|
| 589 |
+
E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3)
|
| 590 |
+
assert e.evolute() == E
|
| 591 |
+
#Numerical Example
|
| 592 |
+
e = Ellipse(Point(1, 1), 6, 3)
|
| 593 |
+
t1 = (6*(x - 1))**Rational(2, 3)
|
| 594 |
+
t2 = (3*(y - 1))**Rational(2, 3)
|
| 595 |
+
E = t1 + t2 - (27)**Rational(2, 3)
|
| 596 |
+
assert e.evolute() == E
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
def test_svg():
|
| 600 |
+
e1 = Ellipse(Point(1, 0), 3, 2)
|
| 601 |
+
assert e1._svg(2, "#FFAAFF") == '<ellipse fill="#FFAAFF" stroke="#555555" stroke-width="4.0" opacity="0.6" cx="1.00000000000000" cy="0" rx="3.00000000000000" ry="2.00000000000000"/>'
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import (Rational, pi)
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.core.symbol import Symbol
|
| 4 |
+
from sympy.geometry import (Circle, Ellipse, Point, Line, Parabola,
|
| 5 |
+
Polygon, Ray, RegularPolygon, Segment, Triangle, Plane, Curve)
|
| 6 |
+
from sympy.geometry.entity import scale, GeometryEntity
|
| 7 |
+
from sympy.testing.pytest import raises
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def test_entity():
|
| 11 |
+
x = Symbol('x', real=True)
|
| 12 |
+
y = Symbol('y', real=True)
|
| 13 |
+
|
| 14 |
+
assert GeometryEntity(x, y) in GeometryEntity(x, y)
|
| 15 |
+
raises(NotImplementedError, lambda: Point(0, 0) in GeometryEntity(x, y))
|
| 16 |
+
|
| 17 |
+
assert GeometryEntity(x, y) == GeometryEntity(x, y)
|
| 18 |
+
assert GeometryEntity(x, y).equals(GeometryEntity(x, y))
|
| 19 |
+
|
| 20 |
+
c = Circle((0, 0), 5)
|
| 21 |
+
assert GeometryEntity.encloses(c, Point(0, 0))
|
| 22 |
+
assert GeometryEntity.encloses(c, Segment((0, 0), (1, 1)))
|
| 23 |
+
assert GeometryEntity.encloses(c, Line((0, 0), (1, 1))) is False
|
| 24 |
+
assert GeometryEntity.encloses(c, Circle((0, 0), 4))
|
| 25 |
+
assert GeometryEntity.encloses(c, Polygon(Point(0, 0), Point(1, 0), Point(0, 1)))
|
| 26 |
+
assert GeometryEntity.encloses(c, RegularPolygon(Point(8, 8), 1, 3)) is False
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def test_svg():
|
| 30 |
+
a = Symbol('a')
|
| 31 |
+
b = Symbol('b')
|
| 32 |
+
d = Symbol('d')
|
| 33 |
+
|
| 34 |
+
entity = Circle(Point(a, b), d)
|
| 35 |
+
assert entity._repr_svg_() is None
|
| 36 |
+
|
| 37 |
+
entity = Circle(Point(0, 0), S.Infinity)
|
| 38 |
+
assert entity._repr_svg_() is None
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def test_subs():
|
| 42 |
+
x = Symbol('x', real=True)
|
| 43 |
+
y = Symbol('y', real=True)
|
| 44 |
+
p = Point(x, 2)
|
| 45 |
+
q = Point(1, 1)
|
| 46 |
+
r = Point(3, 4)
|
| 47 |
+
for o in [p,
|
| 48 |
+
Segment(p, q),
|
| 49 |
+
Ray(p, q),
|
| 50 |
+
Line(p, q),
|
| 51 |
+
Triangle(p, q, r),
|
| 52 |
+
RegularPolygon(p, 3, 6),
|
| 53 |
+
Polygon(p, q, r, Point(5, 4)),
|
| 54 |
+
Circle(p, 3),
|
| 55 |
+
Ellipse(p, 3, 4)]:
|
| 56 |
+
assert 'y' in str(o.subs(x, y))
|
| 57 |
+
assert p.subs({x: 1}) == Point(1, 2)
|
| 58 |
+
assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
|
| 59 |
+
assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
|
| 60 |
+
assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
|
| 61 |
+
assert Point(1, 2).subs({(1, 2)}) == Point(2, 2)
|
| 62 |
+
raises(ValueError, lambda: Point(1, 2).subs(1))
|
| 63 |
+
raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1,
|
| 64 |
+
2)), 1, 2))
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def test_transform():
|
| 68 |
+
assert scale(1, 2, (3, 4)).tolist() == \
|
| 69 |
+
[[1, 0, 0], [0, 2, 0], [0, -4, 1]]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def test_reflect_entity_overrides():
|
| 73 |
+
x = Symbol('x', real=True)
|
| 74 |
+
y = Symbol('y', real=True)
|
| 75 |
+
b = Symbol('b')
|
| 76 |
+
m = Symbol('m')
|
| 77 |
+
l = Line((0, b), slope=m)
|
| 78 |
+
p = Point(x, y)
|
| 79 |
+
r = p.reflect(l)
|
| 80 |
+
c = Circle((x, y), 3)
|
| 81 |
+
cr = c.reflect(l)
|
| 82 |
+
assert cr == Circle(r, -3)
|
| 83 |
+
assert c.area == -cr.area
|
| 84 |
+
|
| 85 |
+
pent = RegularPolygon((1, 2), 1, 5)
|
| 86 |
+
slope = S.ComplexInfinity
|
| 87 |
+
while slope is S.ComplexInfinity:
|
| 88 |
+
slope = Rational(*(x._random()/2).as_real_imag())
|
| 89 |
+
l = Line(pent.vertices[1], slope=slope)
|
| 90 |
+
rpent = pent.reflect(l)
|
| 91 |
+
assert rpent.center == pent.center.reflect(l)
|
| 92 |
+
rvert = [i.reflect(l) for i in pent.vertices]
|
| 93 |
+
for v in rpent.vertices:
|
| 94 |
+
for i in range(len(rvert)):
|
| 95 |
+
ri = rvert[i]
|
| 96 |
+
if ri.equals(v):
|
| 97 |
+
rvert.remove(ri)
|
| 98 |
+
break
|
| 99 |
+
assert not rvert
|
| 100 |
+
assert pent.area.equals(-rpent.area)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def test_geometry_EvalfMixin():
|
| 104 |
+
x = pi
|
| 105 |
+
t = Symbol('t')
|
| 106 |
+
for g in [
|
| 107 |
+
Point(x, x),
|
| 108 |
+
Plane(Point(0, x, 0), (0, 0, x)),
|
| 109 |
+
Curve((x*t, x), (t, 0, x)),
|
| 110 |
+
Ellipse((x, x), x, -x),
|
| 111 |
+
Circle((x, x), x),
|
| 112 |
+
Line((0, x), (x, 0)),
|
| 113 |
+
Segment((0, x), (x, 0)),
|
| 114 |
+
Ray((0, x), (x, 0)),
|
| 115 |
+
Parabola((0, x), Line((-x, 0), (x, 0))),
|
| 116 |
+
Polygon((0, 0), (0, x), (x, 0), (x, x)),
|
| 117 |
+
RegularPolygon((0, x), x, 4, x),
|
| 118 |
+
Triangle((0, 0), (x, 0), (x, x)),
|
| 119 |
+
]:
|
| 120 |
+
assert str(g).replace('pi', '3.1') == str(g.n(2))
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import Rational
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.geometry import Circle, Line, Point, Polygon, Segment
|
| 4 |
+
from sympy.sets import FiniteSet, Union, Intersection, EmptySet
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def test_booleans():
|
| 8 |
+
""" test basic unions and intersections """
|
| 9 |
+
half = S.Half
|
| 10 |
+
|
| 11 |
+
p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
| 12 |
+
p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
|
| 13 |
+
l1 = Line(Point(0,0), Point(1,1))
|
| 14 |
+
l2 = Line(Point(half, half), Point(5,5))
|
| 15 |
+
l3 = Line(p2, p3)
|
| 16 |
+
l4 = Line(p3, p4)
|
| 17 |
+
poly1 = Polygon(p1, p2, p3, p4)
|
| 18 |
+
poly2 = Polygon(p5, p6, p7)
|
| 19 |
+
poly3 = Polygon(p1, p2, p5)
|
| 20 |
+
assert Union(l1, l2).equals(l1)
|
| 21 |
+
assert Intersection(l1, l2).equals(l1)
|
| 22 |
+
assert Intersection(l1, l4) == FiniteSet(Point(1,1))
|
| 23 |
+
assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1))
|
| 24 |
+
assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet
|
| 25 |
+
assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
|
| 26 |
+
assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1)
|
| 27 |
+
assert Union(l1, FiniteSet(p1)) == l1
|
| 28 |
+
|
| 29 |
+
fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1))
|
| 30 |
+
# test the intersection of polygons
|
| 31 |
+
assert Intersection(poly1, poly2) == fs
|
| 32 |
+
# make sure if we union polygons with subsets, the subsets go away
|
| 33 |
+
assert Union(poly1, poly2, fs) == Union(poly1, poly2)
|
| 34 |
+
# make sure that if we union with a FiniteSet that isn't a subset,
|
| 35 |
+
# that the points in the intersection stop being listed
|
| 36 |
+
assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5)))
|
| 37 |
+
# intersect two polygons that share an edge
|
| 38 |
+
assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py
ADDED
|
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import (Float, Rational, oo, pi)
|
| 2 |
+
from sympy.core.relational import Eq
|
| 3 |
+
from sympy.core.singleton import S
|
| 4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
| 5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 6 |
+
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
|
| 7 |
+
from sympy.sets import EmptySet
|
| 8 |
+
from sympy.simplify.simplify import simplify
|
| 9 |
+
from sympy.functions.elementary.trigonometric import tan
|
| 10 |
+
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
|
| 11 |
+
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
|
| 12 |
+
Point2D, Line2D)
|
| 13 |
+
from sympy.geometry.line import Undecidable
|
| 14 |
+
from sympy.geometry.polygon import _asa as asa
|
| 15 |
+
from sympy.utilities.iterables import cartes
|
| 16 |
+
from sympy.testing.pytest import raises, warns
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
x = Symbol('x', real=True)
|
| 20 |
+
y = Symbol('y', real=True)
|
| 21 |
+
z = Symbol('z', real=True)
|
| 22 |
+
k = Symbol('k', real=True)
|
| 23 |
+
x1 = Symbol('x1', real=True)
|
| 24 |
+
y1 = Symbol('y1', real=True)
|
| 25 |
+
t = Symbol('t', real=True)
|
| 26 |
+
a, b = symbols('a,b', real=True)
|
| 27 |
+
m = symbols('m', real=True)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def test_object_from_equation():
|
| 31 |
+
from sympy.abc import x, y, a, b
|
| 32 |
+
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
|
| 33 |
+
assert Line(3*x + 5 * y + 1) == Line2D(
|
| 34 |
+
Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
|
| 35 |
+
assert Line(3*a + b + 18, x="a", y="b") == Line2D(
|
| 36 |
+
Point2D(0, -18), Point2D(1, -21))
|
| 37 |
+
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
|
| 38 |
+
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
|
| 39 |
+
assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D(
|
| 40 |
+
Point2D(0, -18), Point2D(1, -21))
|
| 41 |
+
# issue 22361
|
| 42 |
+
assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1))
|
| 43 |
+
assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1))
|
| 44 |
+
assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0))
|
| 45 |
+
assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
|
| 46 |
+
assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
|
| 47 |
+
raises(ValueError, lambda: Line(x / y))
|
| 48 |
+
raises(ValueError, lambda: Line(a / b, x='a', y='b'))
|
| 49 |
+
raises(ValueError, lambda: Line(y / x))
|
| 50 |
+
raises(ValueError, lambda: Line(b / a, x='a', y='b'))
|
| 51 |
+
raises(ValueError, lambda: Line((x + 1)**2 + y))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def feq(a, b):
|
| 55 |
+
"""Test if two floating point values are 'equal'."""
|
| 56 |
+
t_float = Float("1.0E-10")
|
| 57 |
+
return -t_float < a - b < t_float
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def test_angle_between():
|
| 61 |
+
a = Point(1, 2, 3, 4)
|
| 62 |
+
b = a.orthogonal_direction
|
| 63 |
+
o = a.origin
|
| 64 |
+
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
|
| 65 |
+
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
|
| 66 |
+
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
|
| 67 |
+
z = Point3D(0, 0, 0)
|
| 68 |
+
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
|
| 69 |
+
Line3D(z, Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
|
| 70 |
+
# direction of points is used to determine angle
|
| 71 |
+
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
|
| 72 |
+
Line3D(Point3D(5, 0, 0), z)) == acos(-sqrt(3) / 3)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def test_closing_angle():
|
| 76 |
+
a = Ray((0, 0), angle=0)
|
| 77 |
+
b = Ray((1, 2), angle=pi/2)
|
| 78 |
+
assert a.closing_angle(b) == -pi/2
|
| 79 |
+
assert b.closing_angle(a) == pi/2
|
| 80 |
+
assert a.closing_angle(a) == 0
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def test_smallest_angle():
|
| 84 |
+
a = Line(Point(1, 1), Point(1, 2))
|
| 85 |
+
b = Line(Point(1, 1),Point(2, 3))
|
| 86 |
+
assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def test_svg():
|
| 90 |
+
a = Line(Point(1, 1),Point(1, 2))
|
| 91 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,1.00000000000000 L 1.00000000000000,2.00000000000000" marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
|
| 92 |
+
a = Segment(Point(1, 0),Point(1, 1))
|
| 93 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,0 L 1.00000000000000,1.00000000000000" />'
|
| 94 |
+
a = Ray(Point(2, 3), Point(3, 5))
|
| 95 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 2.00000000000000,3.00000000000000 L 3.00000000000000,5.00000000000000" marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def test_arbitrary_point():
|
| 99 |
+
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
| 100 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
| 101 |
+
assert l2.arbitrary_point() in l2
|
| 102 |
+
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
|
| 103 |
+
Point(t + 1, t + 1)
|
| 104 |
+
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
|
| 105 |
+
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
|
| 106 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
|
| 107 |
+
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
|
| 108 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
|
| 109 |
+
Point3D(S.Half, S.Half, S.Half)
|
| 110 |
+
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
|
| 111 |
+
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
|
| 112 |
+
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
|
| 113 |
+
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def test_are_concurrent_2d():
|
| 117 |
+
l1 = Line(Point(0, 0), Point(1, 1))
|
| 118 |
+
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
| 119 |
+
assert Line.are_concurrent(l1) is False
|
| 120 |
+
assert Line.are_concurrent(l1, l2)
|
| 121 |
+
assert Line.are_concurrent(l1, l1, l1, l2)
|
| 122 |
+
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
|
| 123 |
+
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def test_are_concurrent_3d():
|
| 127 |
+
p1 = Point3D(0, 0, 0)
|
| 128 |
+
l1 = Line(p1, Point3D(1, 1, 1))
|
| 129 |
+
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
| 130 |
+
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
|
| 131 |
+
assert Line3D.are_concurrent(l1) is False
|
| 132 |
+
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
|
| 133 |
+
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
|
| 134 |
+
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
|
| 135 |
+
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def test_arguments():
|
| 139 |
+
"""Functions accepting `Point` objects in `geometry`
|
| 140 |
+
should also accept tuples, lists, and generators and
|
| 141 |
+
automatically convert them to points."""
|
| 142 |
+
from sympy.utilities.iterables import subsets
|
| 143 |
+
|
| 144 |
+
singles2d = ((1, 2), [1, 3], Point(1, 5))
|
| 145 |
+
doubles2d = subsets(singles2d, 2)
|
| 146 |
+
l2d = Line(Point2D(1, 2), Point2D(2, 3))
|
| 147 |
+
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
|
| 148 |
+
doubles3d = subsets(singles3d, 2)
|
| 149 |
+
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
|
| 150 |
+
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
|
| 151 |
+
doubles4d = subsets(singles4d, 2)
|
| 152 |
+
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
|
| 153 |
+
# test 2D
|
| 154 |
+
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
|
| 155 |
+
'projection', 'intersection']
|
| 156 |
+
for p in doubles2d:
|
| 157 |
+
Line2D(*p)
|
| 158 |
+
for func in test_single:
|
| 159 |
+
for p in singles2d:
|
| 160 |
+
getattr(l2d, func)(p)
|
| 161 |
+
# test 3D
|
| 162 |
+
for p in doubles3d:
|
| 163 |
+
Line3D(*p)
|
| 164 |
+
for func in test_single:
|
| 165 |
+
for p in singles3d:
|
| 166 |
+
getattr(l3d, func)(p)
|
| 167 |
+
# test 4D
|
| 168 |
+
for p in doubles4d:
|
| 169 |
+
Line(*p)
|
| 170 |
+
for func in test_single:
|
| 171 |
+
for p in singles4d:
|
| 172 |
+
getattr(l4d, func)(p)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def test_basic_properties_2d():
|
| 176 |
+
p1 = Point(0, 0)
|
| 177 |
+
p2 = Point(1, 1)
|
| 178 |
+
p10 = Point(2000, 2000)
|
| 179 |
+
p_r3 = Ray(p1, p2).random_point()
|
| 180 |
+
p_r4 = Ray(p2, p1).random_point()
|
| 181 |
+
|
| 182 |
+
l1 = Line(p1, p2)
|
| 183 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
| 184 |
+
l4 = Line(p1, Point(1, 0))
|
| 185 |
+
|
| 186 |
+
r1 = Ray(p1, Point(0, 1))
|
| 187 |
+
r2 = Ray(Point(0, 1), p1)
|
| 188 |
+
|
| 189 |
+
s1 = Segment(p1, p10)
|
| 190 |
+
p_s1 = s1.random_point()
|
| 191 |
+
|
| 192 |
+
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
|
| 193 |
+
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
|
| 194 |
+
assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
|
| 195 |
+
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
|
| 196 |
+
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
|
| 197 |
+
assert Line(p1, p2) == Line(p1, p2)
|
| 198 |
+
assert Line(p1, p2) != Line(p2, p1)
|
| 199 |
+
assert l1 != Line(Point(x1, x1), Point(y1, y1))
|
| 200 |
+
assert l1 != l3
|
| 201 |
+
assert Line(p1, p10) != Line(p10, p1)
|
| 202 |
+
assert Line(p1, p10) != p1
|
| 203 |
+
assert p1 in l1 # is p1 on the line l1?
|
| 204 |
+
assert p1 not in l3
|
| 205 |
+
assert s1 in Line(p1, p10)
|
| 206 |
+
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
|
| 207 |
+
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
|
| 208 |
+
assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
|
| 209 |
+
assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
|
| 210 |
+
assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
|
| 211 |
+
assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
|
| 212 |
+
assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
|
| 213 |
+
assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
|
| 214 |
+
assert (r1 in s1) is False
|
| 215 |
+
assert Segment(p1, p2) in s1
|
| 216 |
+
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
|
| 217 |
+
assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
|
| 218 |
+
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
|
| 219 |
+
|
| 220 |
+
assert l1.slope == 1
|
| 221 |
+
assert l3.slope is oo
|
| 222 |
+
assert l4.slope == 0
|
| 223 |
+
assert Line(p1, Point(0, 1)).slope is oo
|
| 224 |
+
assert Line(r1.source, r1.random_point()).slope == r1.slope
|
| 225 |
+
assert Line(r2.source, r2.random_point()).slope == r2.slope
|
| 226 |
+
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
|
| 227 |
+
|
| 228 |
+
assert l4.coefficients == (0, 1, 0)
|
| 229 |
+
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
|
| 230 |
+
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
|
| 231 |
+
# issue 7963
|
| 232 |
+
r = Ray((0, 0), angle=x)
|
| 233 |
+
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
|
| 234 |
+
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
|
| 235 |
+
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
|
| 236 |
+
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
|
| 237 |
+
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
|
| 238 |
+
|
| 239 |
+
for ind in range(0, 5):
|
| 240 |
+
assert l3.random_point() in l3
|
| 241 |
+
|
| 242 |
+
assert p_r3.x >= p1.x and p_r3.y >= p1.y
|
| 243 |
+
assert p_r4.x <= p2.x and p_r4.y <= p2.y
|
| 244 |
+
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
|
| 245 |
+
assert hash(s1) != hash(Segment(p10, p1))
|
| 246 |
+
|
| 247 |
+
assert s1.plot_interval() == [t, 0, 1]
|
| 248 |
+
assert Line(p1, p10).plot_interval() == [t, -5, 5]
|
| 249 |
+
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def test_basic_properties_3d():
|
| 253 |
+
p1 = Point3D(0, 0, 0)
|
| 254 |
+
p2 = Point3D(1, 1, 1)
|
| 255 |
+
p3 = Point3D(x1, x1, x1)
|
| 256 |
+
p5 = Point3D(x1, 1 + x1, 1)
|
| 257 |
+
|
| 258 |
+
l1 = Line3D(p1, p2)
|
| 259 |
+
l3 = Line3D(p3, p5)
|
| 260 |
+
|
| 261 |
+
r1 = Ray3D(p1, Point3D(-1, 5, 0))
|
| 262 |
+
r3 = Ray3D(p1, p2)
|
| 263 |
+
|
| 264 |
+
s1 = Segment3D(p1, p2)
|
| 265 |
+
|
| 266 |
+
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
|
| 267 |
+
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
|
| 268 |
+
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
|
| 269 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0]
|
| 270 |
+
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
|
| 271 |
+
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
|
| 272 |
+
assert Line3D(p1, p2) != Line3D(p2, p1)
|
| 273 |
+
assert l1 != l3
|
| 274 |
+
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
|
| 275 |
+
assert r3 != r1
|
| 276 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
|
| 277 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
| 278 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity
|
| 279 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity
|
| 280 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity
|
| 281 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity
|
| 282 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity
|
| 283 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity
|
| 284 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero
|
| 285 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero
|
| 286 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero
|
| 287 |
+
assert p1 in l1
|
| 288 |
+
assert p1 not in l3
|
| 289 |
+
|
| 290 |
+
assert l1.direction_ratio == [1, 1, 1]
|
| 291 |
+
|
| 292 |
+
assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
|
| 293 |
+
# Test zdirection
|
| 294 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def test_contains():
|
| 298 |
+
p1 = Point(0, 0)
|
| 299 |
+
|
| 300 |
+
r = Ray(p1, Point(4, 4))
|
| 301 |
+
r1 = Ray3D(p1, Point3D(0, 0, -1))
|
| 302 |
+
r2 = Ray3D(p1, Point3D(0, 1, 0))
|
| 303 |
+
r3 = Ray3D(p1, Point3D(0, 0, 1))
|
| 304 |
+
|
| 305 |
+
l = Line(Point(0, 1), Point(3, 4))
|
| 306 |
+
# Segment contains
|
| 307 |
+
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
|
| 308 |
+
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
|
| 309 |
+
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
|
| 310 |
+
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
|
| 311 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
|
| 312 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
|
| 313 |
+
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
|
| 314 |
+
# Line contains
|
| 315 |
+
assert l.contains(Point(0, 1)) is True
|
| 316 |
+
assert l.contains((0, 1)) is True
|
| 317 |
+
assert l.contains((0, 0)) is False
|
| 318 |
+
# Ray contains
|
| 319 |
+
assert r.contains(p1) is True
|
| 320 |
+
assert r.contains((1, 1)) is True
|
| 321 |
+
assert r.contains((1, 3)) is False
|
| 322 |
+
assert r.contains(Segment((1, 1), (2, 2))) is True
|
| 323 |
+
assert r.contains(Segment((1, 2), (2, 5))) is False
|
| 324 |
+
assert r.contains(Ray((2, 2), (3, 3))) is True
|
| 325 |
+
assert r.contains(Ray((2, 2), (3, 5))) is False
|
| 326 |
+
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
|
| 327 |
+
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
|
| 328 |
+
assert r2.contains(Point3D(0, 0, 0)) is True
|
| 329 |
+
assert r3.contains(Point3D(0, 0, 0)) is True
|
| 330 |
+
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
|
| 331 |
+
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
|
| 332 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 333 |
+
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
|
| 334 |
+
|
| 335 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 336 |
+
assert r3.contains(Point(1.0, 1.0)) is False
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def test_contains_nonreal_symbols():
|
| 340 |
+
u, v, w, z = symbols('u, v, w, z')
|
| 341 |
+
l = Segment(Point(u, w), Point(v, z))
|
| 342 |
+
p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
|
| 343 |
+
assert l.contains(p)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def test_distance_2d():
|
| 347 |
+
p1 = Point(0, 0)
|
| 348 |
+
p2 = Point(1, 1)
|
| 349 |
+
half = S.Half
|
| 350 |
+
|
| 351 |
+
s1 = Segment(Point(0, 0), Point(1, 1))
|
| 352 |
+
s2 = Segment(Point(half, half), Point(1, 0))
|
| 353 |
+
|
| 354 |
+
r = Ray(p1, p2)
|
| 355 |
+
|
| 356 |
+
assert s1.distance(Point(0, 0)) == 0
|
| 357 |
+
assert s1.distance((0, 0)) == 0
|
| 358 |
+
assert s2.distance(Point(0, 0)) == 2 ** half / 2
|
| 359 |
+
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
|
| 360 |
+
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
|
| 361 |
+
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
|
| 362 |
+
assert Line(p1, p2).distance(Point(2, 2)) == 0
|
| 363 |
+
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
|
| 364 |
+
assert Line((0, 0), (0, 1)).distance(p1) == 0
|
| 365 |
+
assert Line((0, 0), (0, 1)).distance(p2) == 1
|
| 366 |
+
assert Line((0, 0), (1, 0)).distance(p1) == 0
|
| 367 |
+
assert Line((0, 0), (1, 0)).distance(p2) == 1
|
| 368 |
+
assert r.distance(Point(-1, -1)) == sqrt(2)
|
| 369 |
+
assert r.distance(Point(1, 1)) == 0
|
| 370 |
+
assert r.distance(Point(-1, 1)) == sqrt(2)
|
| 371 |
+
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
|
| 372 |
+
assert r.distance((1, 1)) == 0
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def test_dimension_normalization():
|
| 376 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 377 |
+
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def test_distance_3d():
|
| 381 |
+
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
|
| 382 |
+
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
|
| 383 |
+
|
| 384 |
+
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
| 385 |
+
s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
|
| 386 |
+
|
| 387 |
+
r = Ray3D(p1, p2)
|
| 388 |
+
|
| 389 |
+
assert s1.distance(p1) == 0
|
| 390 |
+
assert s2.distance(p1) == sqrt(3) / 2
|
| 391 |
+
assert s2.distance(p3) == 2 * sqrt(6) / 3
|
| 392 |
+
assert s1.distance((0, 0, 0)) == 0
|
| 393 |
+
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
|
| 394 |
+
assert s1.distance(p1) == 0
|
| 395 |
+
assert s2.distance(p1) == sqrt(3) / 2
|
| 396 |
+
assert s2.distance(p3) == 2 * sqrt(6) / 3
|
| 397 |
+
assert s1.distance((0, 0, 0)) == 0
|
| 398 |
+
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
|
| 399 |
+
# Line to point
|
| 400 |
+
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
|
| 401 |
+
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
|
| 402 |
+
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
|
| 403 |
+
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
|
| 404 |
+
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
|
| 405 |
+
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
|
| 406 |
+
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
|
| 407 |
+
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
|
| 408 |
+
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
|
| 409 |
+
# Ray to point
|
| 410 |
+
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
|
| 411 |
+
assert r.distance(Point3D(1, 1, 1)) == 0
|
| 412 |
+
assert r.distance((-1, -1, -1)) == sqrt(3)
|
| 413 |
+
assert r.distance((1, 1, 1)) == 0
|
| 414 |
+
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
|
| 415 |
+
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
|
| 416 |
+
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def test_equals():
|
| 420 |
+
p1 = Point(0, 0)
|
| 421 |
+
p2 = Point(1, 1)
|
| 422 |
+
|
| 423 |
+
l1 = Line(p1, p2)
|
| 424 |
+
l2 = Line((0, 5), slope=m)
|
| 425 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
| 426 |
+
|
| 427 |
+
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
|
| 428 |
+
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
|
| 429 |
+
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
|
| 430 |
+
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
|
| 431 |
+
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
|
| 432 |
+
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
|
| 433 |
+
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
|
| 434 |
+
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
|
| 435 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
|
| 436 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
|
| 437 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
|
| 438 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
|
| 439 |
+
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
|
| 440 |
+
Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
|
| 441 |
+
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
|
| 442 |
+
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def test_equation():
|
| 446 |
+
p1 = Point(0, 0)
|
| 447 |
+
p2 = Point(1, 1)
|
| 448 |
+
l1 = Line(p1, p2)
|
| 449 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
| 450 |
+
|
| 451 |
+
assert simplify(l1.equation()) in (x - y, y - x)
|
| 452 |
+
assert simplify(l3.equation()) in (x - x1, x1 - x)
|
| 453 |
+
assert simplify(l1.equation()) in (x - y, y - x)
|
| 454 |
+
assert simplify(l3.equation()) in (x - x1, x1 - x)
|
| 455 |
+
|
| 456 |
+
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
|
| 457 |
+
assert Line(p1, Point(0, 1)).equation() == x
|
| 458 |
+
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
|
| 459 |
+
assert Line(p2, Point(2, 1)).equation() == y - 1
|
| 460 |
+
|
| 461 |
+
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
|
| 462 |
+
).equation() == (-x + y, -x + z)
|
| 463 |
+
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
|
| 464 |
+
).equation() == (-x + y - 1, -x + z - 2)
|
| 465 |
+
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
|
| 466 |
+
).equation() == (x - 1, -y + z - 1)
|
| 467 |
+
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
|
| 468 |
+
).equation() == (y - 2, -x + z - 2)
|
| 469 |
+
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
|
| 470 |
+
).equation() == (-x + y - 1, z - 3)
|
| 471 |
+
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
|
| 472 |
+
).equation() == (x - 1, y - 2)
|
| 473 |
+
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
|
| 474 |
+
).equation() == (x - 1, z - 3)
|
| 475 |
+
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
|
| 476 |
+
).equation() == (y - 2, z - 3)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
def test_intersection_2d():
|
| 480 |
+
p1 = Point(0, 0)
|
| 481 |
+
p2 = Point(1, 1)
|
| 482 |
+
p3 = Point(x1, x1)
|
| 483 |
+
p4 = Point(y1, y1)
|
| 484 |
+
|
| 485 |
+
l1 = Line(p1, p2)
|
| 486 |
+
l3 = Line(Point(0, 0), Point(3, 4))
|
| 487 |
+
|
| 488 |
+
r1 = Ray(Point(1, 1), Point(2, 2))
|
| 489 |
+
r2 = Ray(Point(0, 0), Point(3, 4))
|
| 490 |
+
r4 = Ray(p1, p2)
|
| 491 |
+
r6 = Ray(Point(0, 1), Point(1, 2))
|
| 492 |
+
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
|
| 493 |
+
|
| 494 |
+
s1 = Segment(p1, p2)
|
| 495 |
+
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
|
| 496 |
+
s3 = Segment(Point(0, 0), Point(3, 4))
|
| 497 |
+
|
| 498 |
+
assert intersection(l1, p1) == [p1]
|
| 499 |
+
assert intersection(l1, Point(x1, 1 + x1)) == []
|
| 500 |
+
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
|
| 501 |
+
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
|
| 502 |
+
assert intersection(l3, l3) == [l3]
|
| 503 |
+
assert intersection(l3, r2) == [r2]
|
| 504 |
+
assert intersection(l3, s3) == [s3]
|
| 505 |
+
assert intersection(s3, l3) == [s3]
|
| 506 |
+
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
|
| 507 |
+
assert intersection(r2, l3) == [r2]
|
| 508 |
+
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
|
| 509 |
+
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
|
| 510 |
+
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
|
| 511 |
+
|
| 512 |
+
assert r4.intersection(s2) == [s2]
|
| 513 |
+
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
|
| 514 |
+
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
|
| 515 |
+
assert r4.intersection(Ray(p2, p1)) == [s1]
|
| 516 |
+
assert Ray(p2, p1).intersection(r6) == []
|
| 517 |
+
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
|
| 518 |
+
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
|
| 519 |
+
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
|
| 520 |
+
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
|
| 521 |
+
[Segment(Point(0, 0), Point(0, 1))]
|
| 522 |
+
|
| 523 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
| 524 |
+
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
|
| 525 |
+
assert Segment3D((1, 0), (2, 0)).intersection(
|
| 526 |
+
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
|
| 527 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
| 528 |
+
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
|
| 529 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
| 530 |
+
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
|
| 531 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
| 532 |
+
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
|
| 533 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
| 534 |
+
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
|
| 535 |
+
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
|
| 536 |
+
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
|
| 537 |
+
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
|
| 538 |
+
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
|
| 539 |
+
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
|
| 540 |
+
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
|
| 541 |
+
assert s1.intersection(s2) == [s2]
|
| 542 |
+
assert s2.intersection(s1) == [s2]
|
| 543 |
+
|
| 544 |
+
assert asa(120, 8, 52) == \
|
| 545 |
+
Triangle(
|
| 546 |
+
Point(0, 0),
|
| 547 |
+
Point(8, 0),
|
| 548 |
+
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
|
| 549 |
+
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
|
| 550 |
+
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
|
| 551 |
+
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
|
| 552 |
+
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
|
| 553 |
+
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
|
| 554 |
+
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
|
| 555 |
+
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
|
| 556 |
+
assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
|
| 557 |
+
|
| 558 |
+
# This test is disabled because it hangs after rref changes which simplify
|
| 559 |
+
# intermediate results and return a different representation from when the
|
| 560 |
+
# test was written.
|
| 561 |
+
# # 16628 - this should be fast
|
| 562 |
+
# p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
|
| 563 |
+
# p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
|
| 564 |
+
# 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
|
| 565 |
+
# /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
|
| 566 |
+
# + 1991998000*sqrt(630547164901) + 1622561172902000),
|
| 567 |
+
# (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
|
| 568 |
+
# 90004251917891999 +
|
| 569 |
+
# 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
|
| 570 |
+
# + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
|
| 571 |
+
# 8112805864510000))
|
| 572 |
+
# p2 = Point2D(Rational(497, 10), Rational(-497, 10))
|
| 573 |
+
# p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
|
| 574 |
+
# l = Line(p0, p1)
|
| 575 |
+
# s = Segment(p2, p3)
|
| 576 |
+
# n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
|
| 577 |
+
# 9803028531*sqrt(630547164901) +
|
| 578 |
+
# 33200*sqrt(255775022850776494562626))
|
| 579 |
+
# d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
|
| 580 |
+
# 630547164901) + sqrt(255775022850776494562626)
|
| 581 |
+
# assert intersection(l, s) == [
|
| 582 |
+
# Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def test_line_intersection():
|
| 586 |
+
# see also test_issue_11238 in test_matrices.py
|
| 587 |
+
x0 = tan(pi*Rational(13, 45))
|
| 588 |
+
x1 = sqrt(3)
|
| 589 |
+
x2 = x0**2
|
| 590 |
+
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
|
| 591 |
+
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
def test_intersection_3d():
|
| 595 |
+
p1 = Point3D(0, 0, 0)
|
| 596 |
+
p2 = Point3D(1, 1, 1)
|
| 597 |
+
|
| 598 |
+
l1 = Line3D(p1, p2)
|
| 599 |
+
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
| 600 |
+
|
| 601 |
+
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
|
| 602 |
+
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
| 603 |
+
|
| 604 |
+
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
| 605 |
+
|
| 606 |
+
assert intersection(l1, p1) == [p1]
|
| 607 |
+
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
|
| 608 |
+
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
|
| 609 |
+
assert intersection(l2, r2) == [r2]
|
| 610 |
+
assert intersection(l2, s1) == [s1]
|
| 611 |
+
assert intersection(r2, l2) == [r2]
|
| 612 |
+
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
|
| 613 |
+
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
|
| 614 |
+
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
|
| 615 |
+
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
|
| 616 |
+
== [Point3D(0, 0, 0)]
|
| 617 |
+
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
|
| 618 |
+
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
|
| 619 |
+
assert intersection(s1, r2) == [s1]
|
| 620 |
+
|
| 621 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
|
| 622 |
+
[Point3D(2, 2, 1)]
|
| 623 |
+
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
|
| 624 |
+
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
|
| 625 |
+
[Point3D(t, t)]
|
| 626 |
+
|
| 627 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
def test_is_parallel():
|
| 631 |
+
p1 = Point3D(0, 0, 0)
|
| 632 |
+
p2 = Point3D(1, 1, 1)
|
| 633 |
+
p3 = Point3D(x1, x1, x1)
|
| 634 |
+
|
| 635 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
| 636 |
+
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
| 637 |
+
|
| 638 |
+
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
|
| 639 |
+
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
|
| 640 |
+
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
|
| 641 |
+
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
|
| 642 |
+
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
|
| 643 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
|
| 644 |
+
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
|
| 645 |
+
Point3D(x1 + 1, x1 + 1, x1 + 1))
|
| 646 |
+
assert Line3D(p1, p2).parallel_line(p3.args) == \
|
| 647 |
+
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
|
| 648 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
def test_is_perpendicular():
|
| 652 |
+
p1 = Point(0, 0)
|
| 653 |
+
p2 = Point(1, 1)
|
| 654 |
+
|
| 655 |
+
l1 = Line(p1, p2)
|
| 656 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
| 657 |
+
l1_1 = Line(p1, Point(-x1, x1))
|
| 658 |
+
# 2D
|
| 659 |
+
assert Line.is_perpendicular(l1, l1_1)
|
| 660 |
+
assert Line.is_perpendicular(l1, l2) is False
|
| 661 |
+
p = l1.random_point()
|
| 662 |
+
assert l1.perpendicular_segment(p) == p
|
| 663 |
+
# 3D
|
| 664 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
|
| 665 |
+
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
|
| 666 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
|
| 667 |
+
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
|
| 668 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
|
| 669 |
+
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
def test_is_similar():
|
| 673 |
+
p1 = Point(2000, 2000)
|
| 674 |
+
p2 = p1.scale(2, 2)
|
| 675 |
+
|
| 676 |
+
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
|
| 677 |
+
r2 = Ray(Point(0, 0), Point(0, 1))
|
| 678 |
+
|
| 679 |
+
s1 = Segment(Point(0, 0), p1)
|
| 680 |
+
|
| 681 |
+
assert s1.is_similar(Segment(p1, p2))
|
| 682 |
+
assert s1.is_similar(r2) is False
|
| 683 |
+
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
|
| 684 |
+
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
def test_length():
|
| 688 |
+
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
|
| 689 |
+
assert Line(Point(0, 0), Point(1, 1)).length is oo
|
| 690 |
+
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
|
| 691 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
def test_projection():
|
| 695 |
+
p1 = Point(0, 0)
|
| 696 |
+
p2 = Point3D(0, 0, 0)
|
| 697 |
+
p3 = Point(-x1, x1)
|
| 698 |
+
|
| 699 |
+
l1 = Line(p1, Point(1, 1))
|
| 700 |
+
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
| 701 |
+
l3 = Line3D(p2, Point3D(1, 1, 1))
|
| 702 |
+
|
| 703 |
+
r1 = Ray(Point(1, 1), Point(2, 2))
|
| 704 |
+
|
| 705 |
+
s1 = Segment(Point2D(0, 0), Point2D(0, 1))
|
| 706 |
+
s2 = Segment(Point2D(1, 0), Point2D(2, 1/2))
|
| 707 |
+
|
| 708 |
+
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
|
| 709 |
+
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
|
| 710 |
+
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
|
| 711 |
+
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
|
| 712 |
+
assert s2.projection(s1) == EmptySet
|
| 713 |
+
assert l1.projection(p3) == p1
|
| 714 |
+
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
|
| 715 |
+
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
|
| 716 |
+
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
|
| 717 |
+
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
|
| 718 |
+
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
|
| 719 |
+
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
|
| 720 |
+
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
|
| 721 |
+
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
|
| 722 |
+
|
| 723 |
+
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
|
| 724 |
+
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
|
| 725 |
+
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
|
| 726 |
+
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
def test_perpendicular_line():
|
| 730 |
+
# 3d - requires a particular orthogonal to be selected
|
| 731 |
+
p1, p2, p3 = Point(0, 0, 0), Point(2, 3, 4), Point(-2, 2, 0)
|
| 732 |
+
l = Line(p1, p2)
|
| 733 |
+
p = l.perpendicular_line(p3)
|
| 734 |
+
assert p.p1 == p3
|
| 735 |
+
assert p.p2 in l
|
| 736 |
+
# 2d - does not require special selection
|
| 737 |
+
p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
|
| 738 |
+
l = Line(p1, p2)
|
| 739 |
+
p = l.perpendicular_line(p3)
|
| 740 |
+
assert p.p1 == p3
|
| 741 |
+
# p is directed from l to p3
|
| 742 |
+
assert p.direction.unit == (p3 - l.projection(p3)).unit
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
def test_perpendicular_bisector():
|
| 746 |
+
s1 = Segment(Point(0, 0), Point(1, 1))
|
| 747 |
+
aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
|
| 748 |
+
on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
|
| 749 |
+
|
| 750 |
+
assert s1.perpendicular_bisector().equals(aline)
|
| 751 |
+
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
|
| 752 |
+
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
def test_raises():
|
| 756 |
+
d, e = symbols('a,b', real=True)
|
| 757 |
+
s = Segment((d, 0), (e, 0))
|
| 758 |
+
|
| 759 |
+
raises(TypeError, lambda: Line((1, 1), 1))
|
| 760 |
+
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
|
| 761 |
+
raises(Undecidable, lambda: Point(2 * d, 0) in s)
|
| 762 |
+
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
|
| 763 |
+
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
|
| 764 |
+
raises(TypeError, lambda: Line3D((1, 1), 1))
|
| 765 |
+
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
|
| 766 |
+
raises(TypeError, lambda: Ray((1, 1), 1))
|
| 767 |
+
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
|
| 768 |
+
.projection(Circle(Point(0, 0), 1)))
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
def test_ray_generation():
|
| 772 |
+
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
|
| 773 |
+
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
|
| 774 |
+
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
|
| 775 |
+
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
|
| 776 |
+
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
|
| 777 |
+
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
|
| 778 |
+
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
|
| 779 |
+
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
|
| 780 |
+
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
|
| 781 |
+
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
|
| 782 |
+
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
|
| 783 |
+
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
|
| 784 |
+
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
|
| 785 |
+
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
|
| 786 |
+
Point(2, 1 + tan(4.02 * pi)))
|
| 787 |
+
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
|
| 788 |
+
|
| 789 |
+
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
|
| 790 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
|
| 791 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
def test_issue_7814():
|
| 795 |
+
circle = Circle(Point(x, 0), y)
|
| 796 |
+
line = Line(Point(k, z), slope=0)
|
| 797 |
+
_s = sqrt((y - z)*(y + z))
|
| 798 |
+
assert line.intersection(circle) == [Point2D(x + _s, z), Point2D(x - _s, z)]
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
def test_issue_2941():
|
| 802 |
+
def _check():
|
| 803 |
+
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
|
| 804 |
+
l1 = f(a, b)
|
| 805 |
+
l2 = g(c, d)
|
| 806 |
+
assert l1.intersection(l2) == l2.intersection(l1)
|
| 807 |
+
# intersect at end point
|
| 808 |
+
c, d = (-2, -2), (-2, 0)
|
| 809 |
+
a, b = (0, 0), (1, 1)
|
| 810 |
+
_check()
|
| 811 |
+
# midline intersection
|
| 812 |
+
c, d = (-2, -3), (-2, 0)
|
| 813 |
+
_check()
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
def test_parameter_value():
|
| 817 |
+
t = Symbol('t')
|
| 818 |
+
p1, p2 = Point(0, 1), Point(5, 6)
|
| 819 |
+
l = Line(p1, p2)
|
| 820 |
+
assert l.parameter_value((5, 6), t) == {t: 1}
|
| 821 |
+
raises(ValueError, lambda: l.parameter_value((0, 0), t))
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
def test_bisectors():
|
| 825 |
+
r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
| 826 |
+
r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
|
| 827 |
+
bisections = r1.bisectors(r2)
|
| 828 |
+
assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)),
|
| 829 |
+
Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
|
| 830 |
+
ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)),
|
| 831 |
+
Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))]
|
| 832 |
+
l1 = (0, 0, 0), (0, 0, 1)
|
| 833 |
+
l2 = (0, 0), (1, 0)
|
| 834 |
+
for a, b in cartes((Line, Segment, Ray), repeat=2):
|
| 835 |
+
assert a(*l1).bisectors(b(*l2)) == ans
|
| 836 |
+
|
| 837 |
+
|
| 838 |
+
def test_issue_8615():
|
| 839 |
+
a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0))
|
| 840 |
+
b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0))
|
| 841 |
+
assert a.intersection(b) == [Point3D(6, -1, 0)]
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
def test_issue_12598():
|
| 845 |
+
r1 = Ray(Point(0, 1), Point(0.98, 0.79).n(2))
|
| 846 |
+
r2 = Ray(Point(0, 0), Point(0.71, 0.71).n(2))
|
| 847 |
+
assert str(r1.intersection(r2)[0]) == 'Point2D(0.82, 0.82)'
|
| 848 |
+
l1 = Line((0, 0), (1, 1))
|
| 849 |
+
l2 = Segment((-1, 1), (0, -1)).n(2)
|
| 850 |
+
assert str(l1.intersection(l2)[0]) == 'Point2D(-0.33, -0.33)'
|
| 851 |
+
l2 = Segment((-1, 1), (-1/2, 1/2)).n(2)
|
| 852 |
+
assert not l1.intersection(l2)
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import (Rational, oo)
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.core.symbol import symbols
|
| 4 |
+
from sympy.functions.elementary.complexes import sign
|
| 5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 6 |
+
from sympy.geometry.ellipse import (Circle, Ellipse)
|
| 7 |
+
from sympy.geometry.line import (Line, Ray2D, Segment2D)
|
| 8 |
+
from sympy.geometry.parabola import Parabola
|
| 9 |
+
from sympy.geometry.point import (Point, Point2D)
|
| 10 |
+
from sympy.testing.pytest import raises
|
| 11 |
+
|
| 12 |
+
from sympy.abc import x, y
|
| 13 |
+
|
| 14 |
+
def test_parabola_geom():
|
| 15 |
+
a, b = symbols('a b')
|
| 16 |
+
p1 = Point(0, 0)
|
| 17 |
+
p2 = Point(3, 7)
|
| 18 |
+
p3 = Point(0, 4)
|
| 19 |
+
p4 = Point(6, 0)
|
| 20 |
+
p5 = Point(a, a)
|
| 21 |
+
d1 = Line(Point(4, 0), Point(4, 9))
|
| 22 |
+
d2 = Line(Point(7, 6), Point(3, 6))
|
| 23 |
+
d3 = Line(Point(4, 0), slope=oo)
|
| 24 |
+
d4 = Line(Point(7, 6), slope=0)
|
| 25 |
+
d5 = Line(Point(b, a), slope=oo)
|
| 26 |
+
d6 = Line(Point(a, b), slope=0)
|
| 27 |
+
|
| 28 |
+
half = S.Half
|
| 29 |
+
|
| 30 |
+
pa1 = Parabola(None, d2)
|
| 31 |
+
pa2 = Parabola(directrix=d1)
|
| 32 |
+
pa3 = Parabola(p1, d1)
|
| 33 |
+
pa4 = Parabola(p2, d2)
|
| 34 |
+
pa5 = Parabola(p2, d4)
|
| 35 |
+
pa6 = Parabola(p3, d2)
|
| 36 |
+
pa7 = Parabola(p2, d1)
|
| 37 |
+
pa8 = Parabola(p4, d1)
|
| 38 |
+
pa9 = Parabola(p4, d3)
|
| 39 |
+
pa10 = Parabola(p5, d5)
|
| 40 |
+
pa11 = Parabola(p5, d6)
|
| 41 |
+
d = Line(Point(3, 7), Point(2, 9))
|
| 42 |
+
pa12 = Parabola(Point(7, 8), d)
|
| 43 |
+
pa12r = Parabola(Point(7, 8).reflect(d), d)
|
| 44 |
+
|
| 45 |
+
raises(ValueError, lambda:
|
| 46 |
+
Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7))))
|
| 47 |
+
raises(ValueError, lambda:
|
| 48 |
+
Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2))))
|
| 49 |
+
raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8)))
|
| 50 |
+
|
| 51 |
+
# Basic Stuff
|
| 52 |
+
assert pa1.focus == Point(0, 0)
|
| 53 |
+
assert pa1.ambient_dimension == S(2)
|
| 54 |
+
assert pa2 == pa3
|
| 55 |
+
assert pa4 != pa7
|
| 56 |
+
assert pa6 != pa7
|
| 57 |
+
assert pa6.focus == Point2D(0, 4)
|
| 58 |
+
assert pa6.focal_length == 1
|
| 59 |
+
assert pa6.p_parameter == -1
|
| 60 |
+
assert pa6.vertex == Point2D(0, 5)
|
| 61 |
+
assert pa6.eccentricity == 1
|
| 62 |
+
assert pa7.focus == Point2D(3, 7)
|
| 63 |
+
assert pa7.focal_length == half
|
| 64 |
+
assert pa7.p_parameter == -half
|
| 65 |
+
assert pa7.vertex == Point2D(7*half, 7)
|
| 66 |
+
assert pa4.focal_length == half
|
| 67 |
+
assert pa4.p_parameter == half
|
| 68 |
+
assert pa4.vertex == Point2D(3, 13*half)
|
| 69 |
+
assert pa8.focal_length == 1
|
| 70 |
+
assert pa8.p_parameter == 1
|
| 71 |
+
assert pa8.vertex == Point2D(5, 0)
|
| 72 |
+
assert pa4.focal_length == pa5.focal_length
|
| 73 |
+
assert pa4.p_parameter == pa5.p_parameter
|
| 74 |
+
assert pa4.vertex == pa5.vertex
|
| 75 |
+
assert pa4.equation() == pa5.equation()
|
| 76 |
+
assert pa8.focal_length == pa9.focal_length
|
| 77 |
+
assert pa8.p_parameter == pa9.p_parameter
|
| 78 |
+
assert pa8.vertex == pa9.vertex
|
| 79 |
+
assert pa8.equation() == pa9.equation()
|
| 80 |
+
assert pa10.focal_length == pa11.focal_length == sqrt((a - b) ** 2) / 2 # if a, b real == abs(a - b)/2
|
| 81 |
+
assert pa11.vertex == Point(*pa10.vertex[::-1]) == Point(a,
|
| 82 |
+
a - sqrt((a - b)**2)*sign(a - b)/2) # change axis x->y, y->x on pa10
|
| 83 |
+
aos = pa12.axis_of_symmetry
|
| 84 |
+
assert aos == Line(Point(7, 8), Point(5, 7))
|
| 85 |
+
assert pa12.directrix == Line(Point(3, 7), Point(2, 9))
|
| 86 |
+
assert pa12.directrix.angle_between(aos) == S.Pi/2
|
| 87 |
+
assert pa12.eccentricity == 1
|
| 88 |
+
assert pa12.equation(x, y) == (x - 7)**2 + (y - 8)**2 - (-2*x - y + 13)**2/5
|
| 89 |
+
assert pa12.focal_length == 9*sqrt(5)/10
|
| 90 |
+
assert pa12.focus == Point(7, 8)
|
| 91 |
+
assert pa12.p_parameter == 9*sqrt(5)/10
|
| 92 |
+
assert pa12.vertex == Point2D(S(26)/5, S(71)/10)
|
| 93 |
+
assert pa12r.focal_length == 9*sqrt(5)/10
|
| 94 |
+
assert pa12r.focus == Point(-S(1)/5, S(22)/5)
|
| 95 |
+
assert pa12r.p_parameter == -9*sqrt(5)/10
|
| 96 |
+
assert pa12r.vertex == Point(S(8)/5, S(53)/10)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def test_parabola_intersection():
|
| 100 |
+
l1 = Line(Point(1, -2), Point(-1,-2))
|
| 101 |
+
l2 = Line(Point(1, 2), Point(-1,2))
|
| 102 |
+
l3 = Line(Point(1, 0), Point(-1,0))
|
| 103 |
+
|
| 104 |
+
p1 = Point(0,0)
|
| 105 |
+
p2 = Point(0, -2)
|
| 106 |
+
p3 = Point(120, -12)
|
| 107 |
+
parabola1 = Parabola(p1, l1)
|
| 108 |
+
|
| 109 |
+
# parabola with parabola
|
| 110 |
+
assert parabola1.intersection(parabola1) == [parabola1]
|
| 111 |
+
assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)]
|
| 112 |
+
assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)]
|
| 113 |
+
assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)]
|
| 114 |
+
assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)]
|
| 115 |
+
assert parabola1.intersection(Parabola(p3, l3)) == []
|
| 116 |
+
# parabola with point
|
| 117 |
+
assert parabola1.intersection(p1) == []
|
| 118 |
+
assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)]
|
| 119 |
+
assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)]
|
| 120 |
+
# parabola with line
|
| 121 |
+
assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)]
|
| 122 |
+
assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)]
|
| 123 |
+
assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)]
|
| 124 |
+
raises(TypeError, lambda: parabola1.intersection(Line(Point(0, 0, 0), Point(1, 1, 1))))
|
| 125 |
+
# parabola with segment
|
| 126 |
+
assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
|
| 127 |
+
assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)]
|
| 128 |
+
assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == []
|
| 129 |
+
# parabola with ray
|
| 130 |
+
assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
|
| 131 |
+
assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))]
|
| 132 |
+
assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == []
|
| 133 |
+
# parabola with ellipse/circle
|
| 134 |
+
assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)]
|
| 135 |
+
assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1)]
|
| 136 |
+
assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1)]
|
| 137 |
+
assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == []
|
| 138 |
+
assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == [
|
| 139 |
+
Point2D(0, -1),
|
| 140 |
+
Point2D(-4*sqrt(17)/3, Rational(59, 9)),
|
| 141 |
+
Point2D(4*sqrt(17)/3, Rational(59, 9))]
|
| 142 |
+
# parabola with unsupported type
|
| 143 |
+
raises(TypeError, lambda: parabola1.intersection(2))
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import (Rational, pi)
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.core.symbol import (Dummy, symbols)
|
| 4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 5 |
+
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
|
| 6 |
+
from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
|
| 7 |
+
from sympy.geometry.util import are_coplanar
|
| 8 |
+
from sympy.testing.pytest import raises
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def test_plane():
|
| 12 |
+
x, y, z, u, v = symbols('x y z u v', real=True)
|
| 13 |
+
p1 = Point3D(0, 0, 0)
|
| 14 |
+
p2 = Point3D(1, 1, 1)
|
| 15 |
+
p3 = Point3D(1, 2, 3)
|
| 16 |
+
pl3 = Plane(p1, p2, p3)
|
| 17 |
+
pl4 = Plane(p1, normal_vector=(1, 1, 1))
|
| 18 |
+
pl4b = Plane(p1, p2)
|
| 19 |
+
pl5 = Plane(p3, normal_vector=(1, 2, 3))
|
| 20 |
+
pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
|
| 21 |
+
pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
|
| 22 |
+
pl8 = Plane(p1, normal_vector=(0, 0, 1))
|
| 23 |
+
pl9 = Plane(p1, normal_vector=(0, 12, 0))
|
| 24 |
+
pl10 = Plane(p1, normal_vector=(-2, 0, 0))
|
| 25 |
+
pl11 = Plane(p2, normal_vector=(0, 0, 1))
|
| 26 |
+
l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
|
| 27 |
+
l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
|
| 28 |
+
l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
|
| 29 |
+
|
| 30 |
+
raises(ValueError, lambda: Plane(p1, p1, p1))
|
| 31 |
+
|
| 32 |
+
assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
|
| 33 |
+
assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
|
| 34 |
+
assert Plane(p1, p2, p3).is_coplanar(p1)
|
| 35 |
+
assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
|
| 36 |
+
assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))
|
| 37 |
+
|
| 38 |
+
assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
|
| 39 |
+
assert pl3 != pl4
|
| 40 |
+
assert pl4 == pl4b
|
| 41 |
+
assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
|
| 42 |
+
|
| 43 |
+
assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
|
| 44 |
+
assert pl3.equation(x, y, z) == x - 2*y + z
|
| 45 |
+
|
| 46 |
+
assert pl3.p1 == p1
|
| 47 |
+
assert pl4.p1 == p1
|
| 48 |
+
assert pl5.p1 == p3
|
| 49 |
+
|
| 50 |
+
assert pl4.normal_vector == (1, 1, 1)
|
| 51 |
+
assert pl5.normal_vector == (1, 2, 3)
|
| 52 |
+
|
| 53 |
+
assert p1 in pl3
|
| 54 |
+
assert p1 in pl4
|
| 55 |
+
assert p3 in pl5
|
| 56 |
+
|
| 57 |
+
assert pl3.projection(Point(0, 0)) == p1
|
| 58 |
+
p = pl3.projection(Point3D(1, 1, 0))
|
| 59 |
+
assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
|
| 60 |
+
assert p in pl3
|
| 61 |
+
|
| 62 |
+
l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
|
| 63 |
+
assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
|
| 64 |
+
assert l in pl3
|
| 65 |
+
# get a segment that does not intersect the plane which is also
|
| 66 |
+
# parallel to pl3's normal veector
|
| 67 |
+
t = Dummy()
|
| 68 |
+
r = pl3.random_point()
|
| 69 |
+
a = pl3.perpendicular_line(r).arbitrary_point(t)
|
| 70 |
+
s = Segment3D(a.subs(t, 1), a.subs(t, 2))
|
| 71 |
+
assert s.p1 not in pl3 and s.p2 not in pl3
|
| 72 |
+
assert pl3.projection_line(s).equals(r)
|
| 73 |
+
assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
|
| 74 |
+
Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
|
| 75 |
+
assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
|
| 76 |
+
Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
|
| 77 |
+
assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
|
| 78 |
+
|
| 79 |
+
assert pl3.is_parallel(pl6) is False
|
| 80 |
+
assert pl4.is_parallel(pl6)
|
| 81 |
+
assert pl3.is_parallel(Line(p1, p2))
|
| 82 |
+
assert pl6.is_parallel(l1) is False
|
| 83 |
+
|
| 84 |
+
assert pl3.is_perpendicular(pl6)
|
| 85 |
+
assert pl4.is_perpendicular(pl7)
|
| 86 |
+
assert pl6.is_perpendicular(pl7)
|
| 87 |
+
assert pl6.is_perpendicular(pl4) is False
|
| 88 |
+
assert pl6.is_perpendicular(l1) is False
|
| 89 |
+
assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
|
| 90 |
+
assert pl6.is_perpendicular((1, 1)) is False
|
| 91 |
+
|
| 92 |
+
assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
|
| 93 |
+
assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
|
| 94 |
+
assert pl6.distance(pl6.arbitrary_point(t)) == 0
|
| 95 |
+
assert pl7.distance(pl7.arbitrary_point(t)) == 0
|
| 96 |
+
assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
|
| 97 |
+
assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
|
| 98 |
+
assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
|
| 99 |
+
2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
|
| 100 |
+
assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
|
| 101 |
+
|
| 102 |
+
assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
|
| 103 |
+
assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
|
| 104 |
+
assert pl6.distance(pl6.p1) == 0
|
| 105 |
+
assert pl7.distance(pl6) == 0
|
| 106 |
+
assert pl7.distance(l1) == 0
|
| 107 |
+
assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
|
| 108 |
+
pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
|
| 109 |
+
assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
|
| 110 |
+
pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
|
| 111 |
+
assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
|
| 112 |
+
assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
|
| 113 |
+
assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
|
| 114 |
+
pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
|
| 115 |
+
assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
|
| 116 |
+
assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
|
| 117 |
+
assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
assert pl6.angle_between(pl3) == pi/2
|
| 121 |
+
assert pl6.angle_between(pl6) == 0
|
| 122 |
+
assert pl6.angle_between(pl4) == 0
|
| 123 |
+
assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
|
| 124 |
+
-asin(sqrt(3)/6)
|
| 125 |
+
assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
|
| 126 |
+
asin(sqrt(7)/3)
|
| 127 |
+
assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
|
| 128 |
+
asin(7*sqrt(246)/246)
|
| 129 |
+
|
| 130 |
+
assert are_coplanar(l1, l2, l3) is False
|
| 131 |
+
assert are_coplanar(l1) is False
|
| 132 |
+
assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
|
| 133 |
+
Point3D(1, 1, 2), Point3D(1, 2, 2))
|
| 134 |
+
assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
|
| 135 |
+
assert Plane.are_concurrent(pl3, pl4, pl5) is False
|
| 136 |
+
assert Plane.are_concurrent(pl6) is False
|
| 137 |
+
raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
|
| 138 |
+
raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
|
| 139 |
+
|
| 140 |
+
assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
|
| 141 |
+
normal_vector=(1, -2, 1))
|
| 142 |
+
|
| 143 |
+
# perpendicular_plane
|
| 144 |
+
p = Plane((0, 0, 0), (1, 0, 0))
|
| 145 |
+
# default
|
| 146 |
+
assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
|
| 147 |
+
# 1 pt
|
| 148 |
+
assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
|
| 149 |
+
Plane(Point3D(1, 0, 1), (0, 1, 0))
|
| 150 |
+
# pts as tuples
|
| 151 |
+
assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
|
| 152 |
+
Plane(Point3D(1, 0, 1), (0, 0, -1))
|
| 153 |
+
# more than two planes
|
| 154 |
+
raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))
|
| 155 |
+
|
| 156 |
+
a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
|
| 157 |
+
Z = (0, 0, 1)
|
| 158 |
+
p = Plane(a, normal_vector=Z)
|
| 159 |
+
# case 4
|
| 160 |
+
assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
|
| 161 |
+
n = Point3D(*Z)
|
| 162 |
+
# case 1
|
| 163 |
+
assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
|
| 164 |
+
# case 2
|
| 165 |
+
assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
|
| 166 |
+
Plane(Point3D(0, 0, 0), (1, 0, 0))
|
| 167 |
+
# case 1&3
|
| 168 |
+
assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
|
| 169 |
+
Plane(Point3D(0, 1, 0), (-1, 0, 0))
|
| 170 |
+
# case 2&3
|
| 171 |
+
assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
|
| 172 |
+
Plane(Point3D(0, 0, 1), (1, 0, 0))
|
| 173 |
+
|
| 174 |
+
p = Plane(a, normal_vector=(0, 0, 1))
|
| 175 |
+
assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))
|
| 176 |
+
|
| 177 |
+
assert pl6.intersection(pl6) == [pl6]
|
| 178 |
+
assert pl4.intersection(pl4.p1) == [pl4.p1]
|
| 179 |
+
assert pl3.intersection(pl6) == [
|
| 180 |
+
Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
|
| 181 |
+
assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
|
| 182 |
+
Point3D(2, Rational(8, 3), Rational(10, 3))]
|
| 183 |
+
assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
|
| 184 |
+
) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
|
| 185 |
+
assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
|
| 186 |
+
Point3D(-1, 3, 10)]
|
| 187 |
+
assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
|
| 188 |
+
assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
|
| 189 |
+
Point3D(Rational(13, 2), Rational(3, 4), 0)]
|
| 190 |
+
r = Ray(Point(2, 3), Point(4, 2))
|
| 191 |
+
assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
|
| 192 |
+
Ray3D(Point(2, 3), Point(4, 2))]
|
| 193 |
+
assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
|
| 194 |
+
assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
|
| 195 |
+
assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
|
| 196 |
+
assert pl11.intersection(pl8) == []
|
| 197 |
+
assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
|
| 198 |
+
assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
|
| 199 |
+
assert pl3.random_point() in pl3
|
| 200 |
+
assert pl3.random_point(seed=1) in pl3
|
| 201 |
+
|
| 202 |
+
# test geometrical entity using equals
|
| 203 |
+
assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
|
| 204 |
+
assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
|
| 205 |
+
pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
|
| 206 |
+
assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
|
| 207 |
+
assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
|
| 208 |
+
assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
|
| 209 |
+
assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
|
| 210 |
+
assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
|
| 211 |
+
Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
|
| 212 |
+
assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
|
| 213 |
+
Line3D(p1, direction_ratio=(0, -11, 0)))
|
| 214 |
+
assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
|
| 215 |
+
Line3D(p1, direction_ratio=(0, 11, 0)))
|
| 216 |
+
assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
|
| 217 |
+
Line3D(p1, direction_ratio=(1, -1, 0)))
|
| 218 |
+
assert pl3.random_point() in pl3
|
| 219 |
+
assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
|
| 220 |
+
# check if two plane are equals
|
| 221 |
+
assert pl6.intersection(pl6)[0].equals(pl6)
|
| 222 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
|
| 223 |
+
assert pl8.equals(pl8)
|
| 224 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
|
| 225 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
|
| 226 |
+
assert pl8.equals(p1) is False
|
| 227 |
+
|
| 228 |
+
# issue 8570
|
| 229 |
+
l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
|
| 230 |
+
Rational(-891926590718643, 1000000000000000),
|
| 231 |
+
Rational(231800966893633, 100000000000000)),
|
| 232 |
+
Point3D(Rational(50000004459633, 50000000000000),
|
| 233 |
+
Rational(-222981647679771, 250000000000000),
|
| 234 |
+
Rational(231800966893633, 100000000000000)))
|
| 235 |
+
|
| 236 |
+
p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
|
| 237 |
+
Rational(-97224357654973, 100000000000000),
|
| 238 |
+
Rational(216793600814789, 100000000000000)),
|
| 239 |
+
(-S('9.00000087501922'), -S('4.81170658872543e-13'),
|
| 240 |
+
S('0.0')))
|
| 241 |
+
|
| 242 |
+
assert str([i.n(2) for i in p2.intersection(l2)]) == \
|
| 243 |
+
'[Point3D(4.0, -0.89, 2.3)]'
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def test_dimension_normalization():
|
| 247 |
+
A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
|
| 248 |
+
b = Point(1, 1)
|
| 249 |
+
assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))
|
| 250 |
+
|
| 251 |
+
a, b = Point(0, 0), Point3D(0, 1)
|
| 252 |
+
Z = (0, 0, 1)
|
| 253 |
+
p = Plane(a, normal_vector=Z)
|
| 254 |
+
assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
|
| 255 |
+
assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
|
| 256 |
+
).intersection((2, 1)) == [Point(2, 1, 0)]
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def test_parameter_value():
|
| 260 |
+
t, u, v = symbols("t, u v")
|
| 261 |
+
p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
|
| 262 |
+
p = Plane(p1, p2, p3)
|
| 263 |
+
assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
|
| 264 |
+
assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
|
| 265 |
+
assert p.parameter_value(p1, t) == p1
|
| 266 |
+
raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
|
| 267 |
+
raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
|
| 268 |
+
raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.basic import Basic
|
| 2 |
+
from sympy.core.numbers import (I, Rational, pi)
|
| 3 |
+
from sympy.core.parameters import evaluate
|
| 4 |
+
from sympy.core.singleton import S
|
| 5 |
+
from sympy.core.symbol import Symbol
|
| 6 |
+
from sympy.core.sympify import sympify
|
| 7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 8 |
+
from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
|
| 9 |
+
from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
|
| 10 |
+
from sympy.matrices import Matrix
|
| 11 |
+
from sympy.utilities.iterables import subsets, permutations, cartes
|
| 12 |
+
from sympy.utilities.misc import Undecidable
|
| 13 |
+
from sympy.testing.pytest import raises, warns
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def test_point():
|
| 17 |
+
x = Symbol('x', real=True)
|
| 18 |
+
y = Symbol('y', real=True)
|
| 19 |
+
x1 = Symbol('x1', real=True)
|
| 20 |
+
x2 = Symbol('x2', real=True)
|
| 21 |
+
y1 = Symbol('y1', real=True)
|
| 22 |
+
y2 = Symbol('y2', real=True)
|
| 23 |
+
half = S.Half
|
| 24 |
+
p1 = Point(x1, x2)
|
| 25 |
+
p2 = Point(y1, y2)
|
| 26 |
+
p3 = Point(0, 0)
|
| 27 |
+
p4 = Point(1, 1)
|
| 28 |
+
p5 = Point(0, 1)
|
| 29 |
+
line = Line(Point(1, 0), slope=1)
|
| 30 |
+
|
| 31 |
+
assert p1 in p1
|
| 32 |
+
assert p1 not in p2
|
| 33 |
+
assert p2.y == y2
|
| 34 |
+
assert (p3 + p4) == p4
|
| 35 |
+
assert (p2 - p1) == Point(y1 - x1, y2 - x2)
|
| 36 |
+
assert -p2 == Point(-y1, -y2)
|
| 37 |
+
raises(TypeError, lambda: Point(1))
|
| 38 |
+
raises(ValueError, lambda: Point([1]))
|
| 39 |
+
raises(ValueError, lambda: Point(3, I))
|
| 40 |
+
raises(ValueError, lambda: Point(2*I, I))
|
| 41 |
+
raises(ValueError, lambda: Point(3 + I, I))
|
| 42 |
+
|
| 43 |
+
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
|
| 44 |
+
assert Point.midpoint(p3, p4) == Point(half, half)
|
| 45 |
+
assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
|
| 46 |
+
assert Point.midpoint(p2, p2) == p2
|
| 47 |
+
assert p2.midpoint(p2) == p2
|
| 48 |
+
assert p1.origin == Point(0, 0)
|
| 49 |
+
|
| 50 |
+
assert Point.distance(p3, p4) == sqrt(2)
|
| 51 |
+
assert Point.distance(p1, p1) == 0
|
| 52 |
+
assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
|
| 53 |
+
raises(TypeError, lambda: Point.distance(p1, 0))
|
| 54 |
+
raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))
|
| 55 |
+
|
| 56 |
+
# distance should be symmetric
|
| 57 |
+
assert p1.distance(line) == line.distance(p1)
|
| 58 |
+
assert p4.distance(line) == line.distance(p4)
|
| 59 |
+
|
| 60 |
+
assert Point.taxicab_distance(p4, p3) == 2
|
| 61 |
+
|
| 62 |
+
assert Point.canberra_distance(p4, p5) == 1
|
| 63 |
+
raises(ValueError, lambda: Point.canberra_distance(p3, p3))
|
| 64 |
+
|
| 65 |
+
p1_1 = Point(x1, x1)
|
| 66 |
+
p1_2 = Point(y2, y2)
|
| 67 |
+
p1_3 = Point(x1 + 1, x1)
|
| 68 |
+
assert Point.is_collinear(p3)
|
| 69 |
+
|
| 70 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 71 |
+
assert Point.is_collinear(p3, Point(p3, dim=4))
|
| 72 |
+
assert p3.is_collinear()
|
| 73 |
+
assert Point.is_collinear(p3, p4)
|
| 74 |
+
assert Point.is_collinear(p3, p4, p1_1, p1_2)
|
| 75 |
+
assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
|
| 76 |
+
assert Point.is_collinear(p3, p3, p4, p5) is False
|
| 77 |
+
|
| 78 |
+
raises(TypeError, lambda: Point.is_collinear(line))
|
| 79 |
+
raises(TypeError, lambda: p1_1.is_collinear(line))
|
| 80 |
+
|
| 81 |
+
assert p3.intersection(Point(0, 0)) == [p3]
|
| 82 |
+
assert p3.intersection(p4) == []
|
| 83 |
+
assert p3.intersection(line) == []
|
| 84 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 85 |
+
assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]
|
| 86 |
+
|
| 87 |
+
x_pos = Symbol('x', positive=True)
|
| 88 |
+
p2_1 = Point(x_pos, 0)
|
| 89 |
+
p2_2 = Point(0, x_pos)
|
| 90 |
+
p2_3 = Point(-x_pos, 0)
|
| 91 |
+
p2_4 = Point(0, -x_pos)
|
| 92 |
+
p2_5 = Point(x_pos, 5)
|
| 93 |
+
assert Point.is_concyclic(p2_1)
|
| 94 |
+
assert Point.is_concyclic(p2_1, p2_2)
|
| 95 |
+
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
|
| 96 |
+
for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
|
| 97 |
+
assert Point.is_concyclic(*pts) is False
|
| 98 |
+
assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
|
| 99 |
+
assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
|
| 100 |
+
assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False
|
| 101 |
+
|
| 102 |
+
assert p1.is_scalar_multiple(p1)
|
| 103 |
+
assert p1.is_scalar_multiple(2*p1)
|
| 104 |
+
assert not p1.is_scalar_multiple(p2)
|
| 105 |
+
assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
|
| 106 |
+
assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
|
| 107 |
+
# test when is_scalar_multiple can't be determined
|
| 108 |
+
raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))
|
| 109 |
+
|
| 110 |
+
assert Point(0, 1).orthogonal_direction == Point(1, 0)
|
| 111 |
+
assert Point(1, 0).orthogonal_direction == Point(0, 1)
|
| 112 |
+
|
| 113 |
+
assert p1.is_zero is None
|
| 114 |
+
assert p3.is_zero
|
| 115 |
+
assert p4.is_zero is False
|
| 116 |
+
assert p1.is_nonzero is None
|
| 117 |
+
assert p3.is_nonzero is False
|
| 118 |
+
assert p4.is_nonzero
|
| 119 |
+
|
| 120 |
+
assert p4.scale(2, 3) == Point(2, 3)
|
| 121 |
+
assert p3.scale(2, 3) == p3
|
| 122 |
+
|
| 123 |
+
assert p4.rotate(pi, Point(0.5, 0.5)) == p3
|
| 124 |
+
assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
|
| 125 |
+
assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
|
| 126 |
+
|
| 127 |
+
assert p4 * 5 == Point(5, 5)
|
| 128 |
+
assert p4 / 5 == Point(0.2, 0.2)
|
| 129 |
+
assert 5 * p4 == Point(5, 5)
|
| 130 |
+
|
| 131 |
+
raises(ValueError, lambda: Point(0, 0) + 10)
|
| 132 |
+
|
| 133 |
+
# Point differences should be simplified
|
| 134 |
+
assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
|
| 135 |
+
|
| 136 |
+
a, b = S.Half, Rational(1, 3)
|
| 137 |
+
assert Point(a, b).evalf(2) == \
|
| 138 |
+
Point(a.n(2), b.n(2), evaluate=False)
|
| 139 |
+
raises(ValueError, lambda: Point(1, 2) + 1)
|
| 140 |
+
|
| 141 |
+
# test project
|
| 142 |
+
assert Point.project((0, 1), (1, 0)) == Point(0, 0)
|
| 143 |
+
assert Point.project((1, 1), (1, 0)) == Point(1, 0)
|
| 144 |
+
raises(ValueError, lambda: Point.project(p1, Point(0, 0)))
|
| 145 |
+
|
| 146 |
+
# test transformations
|
| 147 |
+
p = Point(1, 0)
|
| 148 |
+
assert p.rotate(pi/2) == Point(0, 1)
|
| 149 |
+
assert p.rotate(pi/2, p) == p
|
| 150 |
+
p = Point(1, 1)
|
| 151 |
+
assert p.scale(2, 3) == Point(2, 3)
|
| 152 |
+
assert p.translate(1, 2) == Point(2, 3)
|
| 153 |
+
assert p.translate(1) == Point(2, 1)
|
| 154 |
+
assert p.translate(y=1) == Point(1, 2)
|
| 155 |
+
assert p.translate(*p.args) == Point(2, 2)
|
| 156 |
+
|
| 157 |
+
# Check invalid input for transform
|
| 158 |
+
raises(ValueError, lambda: p3.transform(p3))
|
| 159 |
+
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
|
| 160 |
+
|
| 161 |
+
# test __contains__
|
| 162 |
+
assert 0 in Point(0, 0, 0, 0)
|
| 163 |
+
assert 1 not in Point(0, 0, 0, 0)
|
| 164 |
+
|
| 165 |
+
# test affine_rank
|
| 166 |
+
assert Point.affine_rank() == -1
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def test_point3D():
|
| 170 |
+
x = Symbol('x', real=True)
|
| 171 |
+
y = Symbol('y', real=True)
|
| 172 |
+
x1 = Symbol('x1', real=True)
|
| 173 |
+
x2 = Symbol('x2', real=True)
|
| 174 |
+
x3 = Symbol('x3', real=True)
|
| 175 |
+
y1 = Symbol('y1', real=True)
|
| 176 |
+
y2 = Symbol('y2', real=True)
|
| 177 |
+
y3 = Symbol('y3', real=True)
|
| 178 |
+
half = S.Half
|
| 179 |
+
p1 = Point3D(x1, x2, x3)
|
| 180 |
+
p2 = Point3D(y1, y2, y3)
|
| 181 |
+
p3 = Point3D(0, 0, 0)
|
| 182 |
+
p4 = Point3D(1, 1, 1)
|
| 183 |
+
p5 = Point3D(0, 1, 2)
|
| 184 |
+
|
| 185 |
+
assert p1 in p1
|
| 186 |
+
assert p1 not in p2
|
| 187 |
+
assert p2.y == y2
|
| 188 |
+
assert (p3 + p4) == p4
|
| 189 |
+
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
|
| 190 |
+
assert -p2 == Point3D(-y1, -y2, -y3)
|
| 191 |
+
|
| 192 |
+
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
|
| 193 |
+
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
|
| 194 |
+
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
|
| 195 |
+
half + half*x3)
|
| 196 |
+
assert Point3D.midpoint(p2, p2) == p2
|
| 197 |
+
assert p2.midpoint(p2) == p2
|
| 198 |
+
|
| 199 |
+
assert Point3D.distance(p3, p4) == sqrt(3)
|
| 200 |
+
assert Point3D.distance(p1, p1) == 0
|
| 201 |
+
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
|
| 202 |
+
|
| 203 |
+
p1_1 = Point3D(x1, x1, x1)
|
| 204 |
+
p1_2 = Point3D(y2, y2, y2)
|
| 205 |
+
p1_3 = Point3D(x1 + 1, x1, x1)
|
| 206 |
+
Point3D.are_collinear(p3)
|
| 207 |
+
assert Point3D.are_collinear(p3, p4)
|
| 208 |
+
assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
|
| 209 |
+
assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
|
| 210 |
+
assert Point3D.are_collinear(p3, p3, p4, p5) is False
|
| 211 |
+
|
| 212 |
+
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
|
| 213 |
+
assert p3.intersection(p4) == []
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
assert p4 * 5 == Point3D(5, 5, 5)
|
| 217 |
+
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
|
| 218 |
+
assert 5 * p4 == Point3D(5, 5, 5)
|
| 219 |
+
|
| 220 |
+
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
|
| 221 |
+
|
| 222 |
+
# Test coordinate properties
|
| 223 |
+
assert p1.coordinates == (x1, x2, x3)
|
| 224 |
+
assert p2.coordinates == (y1, y2, y3)
|
| 225 |
+
assert p3.coordinates == (0, 0, 0)
|
| 226 |
+
assert p4.coordinates == (1, 1, 1)
|
| 227 |
+
assert p5.coordinates == (0, 1, 2)
|
| 228 |
+
assert p5.x == 0
|
| 229 |
+
assert p5.y == 1
|
| 230 |
+
assert p5.z == 2
|
| 231 |
+
|
| 232 |
+
# Point differences should be simplified
|
| 233 |
+
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
|
| 234 |
+
Point3D(0, -1, 1)
|
| 235 |
+
|
| 236 |
+
a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
|
| 237 |
+
assert Point3D(a, b, c).evalf(2) == \
|
| 238 |
+
Point(a.n(2), b.n(2), c.n(2), evaluate=False)
|
| 239 |
+
raises(ValueError, lambda: Point3D(1, 2, 3) + 1)
|
| 240 |
+
|
| 241 |
+
# test transformations
|
| 242 |
+
p = Point3D(1, 1, 1)
|
| 243 |
+
assert p.scale(2, 3) == Point3D(2, 3, 1)
|
| 244 |
+
assert p.translate(1, 2) == Point3D(2, 3, 1)
|
| 245 |
+
assert p.translate(1) == Point3D(2, 1, 1)
|
| 246 |
+
assert p.translate(z=1) == Point3D(1, 1, 2)
|
| 247 |
+
assert p.translate(*p.args) == Point3D(2, 2, 2)
|
| 248 |
+
|
| 249 |
+
# Test __new__
|
| 250 |
+
assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
|
| 251 |
+
|
| 252 |
+
# Test length property returns correctly
|
| 253 |
+
assert p.length == 0
|
| 254 |
+
assert p1_1.length == 0
|
| 255 |
+
assert p1_2.length == 0
|
| 256 |
+
|
| 257 |
+
# Test are_colinear type error
|
| 258 |
+
raises(TypeError, lambda: Point3D.are_collinear(p, x))
|
| 259 |
+
|
| 260 |
+
# Test are_coplanar
|
| 261 |
+
assert Point.are_coplanar()
|
| 262 |
+
assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
|
| 263 |
+
assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
|
| 264 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 265 |
+
raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
|
| 266 |
+
assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
|
| 267 |
+
assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
|
| 268 |
+
planar2 = Point3D(1, -1, 1)
|
| 269 |
+
planar3 = Point3D(-1, 1, 1)
|
| 270 |
+
assert Point3D.are_coplanar(p, planar2, planar3) == True
|
| 271 |
+
assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
|
| 272 |
+
assert Point.are_coplanar(p, planar2)
|
| 273 |
+
planar2 = Point3D(1, 1, 2)
|
| 274 |
+
planar3 = Point3D(1, 1, 3)
|
| 275 |
+
assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
|
| 276 |
+
plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
|
| 277 |
+
assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
|
| 278 |
+
|
| 279 |
+
# all 2D points are coplanar
|
| 280 |
+
assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True
|
| 281 |
+
|
| 282 |
+
# Test Intersection
|
| 283 |
+
assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
|
| 284 |
+
|
| 285 |
+
# Test Scale
|
| 286 |
+
assert planar2.scale(1, 1, 1) == planar2
|
| 287 |
+
assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
|
| 288 |
+
assert planar2.scale(1, 1, 1, p3) == planar2
|
| 289 |
+
|
| 290 |
+
# Test Transform
|
| 291 |
+
identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
|
| 292 |
+
assert p.transform(identity) == p
|
| 293 |
+
trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
|
| 294 |
+
assert p.transform(trans) == Point3D(2, 2, 2)
|
| 295 |
+
raises(ValueError, lambda: p.transform(p))
|
| 296 |
+
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
|
| 297 |
+
|
| 298 |
+
# Test Equals
|
| 299 |
+
assert p.equals(x1) == False
|
| 300 |
+
|
| 301 |
+
# Test __sub__
|
| 302 |
+
p_4d = Point(0, 0, 0, 1)
|
| 303 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 304 |
+
assert p - p_4d == Point(1, 1, 1, -1)
|
| 305 |
+
p_4d3d = Point(0, 0, 1, 0)
|
| 306 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 307 |
+
assert p - p_4d3d == Point(1, 1, 0, 0)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def test_Point2D():
|
| 311 |
+
|
| 312 |
+
# Test Distance
|
| 313 |
+
p1 = Point2D(1, 5)
|
| 314 |
+
p2 = Point2D(4, 2.5)
|
| 315 |
+
p3 = (6, 3)
|
| 316 |
+
assert p1.distance(p2) == sqrt(61)/2
|
| 317 |
+
assert p2.distance(p3) == sqrt(17)/2
|
| 318 |
+
|
| 319 |
+
# Test coordinates
|
| 320 |
+
assert p1.x == 1
|
| 321 |
+
assert p1.y == 5
|
| 322 |
+
assert p2.x == 4
|
| 323 |
+
assert p2.y == S(5)/2
|
| 324 |
+
assert p1.coordinates == (1, 5)
|
| 325 |
+
assert p2.coordinates == (4, S(5)/2)
|
| 326 |
+
|
| 327 |
+
# test bounds
|
| 328 |
+
assert p1.bounds == (1, 5, 1, 5)
|
| 329 |
+
|
| 330 |
+
def test_issue_9214():
|
| 331 |
+
p1 = Point3D(4, -2, 6)
|
| 332 |
+
p2 = Point3D(1, 2, 3)
|
| 333 |
+
p3 = Point3D(7, 2, 3)
|
| 334 |
+
|
| 335 |
+
assert Point3D.are_collinear(p1, p2, p3) is False
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def test_issue_11617():
|
| 339 |
+
p1 = Point3D(1,0,2)
|
| 340 |
+
p2 = Point2D(2,0)
|
| 341 |
+
|
| 342 |
+
with warns(UserWarning, test_stacklevel=False):
|
| 343 |
+
assert p1.distance(p2) == sqrt(5)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def test_transform():
|
| 347 |
+
p = Point(1, 1)
|
| 348 |
+
assert p.transform(rotate(pi/2)) == Point(-1, 1)
|
| 349 |
+
assert p.transform(scale(3, 2)) == Point(3, 2)
|
| 350 |
+
assert p.transform(translate(1, 2)) == Point(2, 3)
|
| 351 |
+
assert Point(1, 1).scale(2, 3, (4, 5)) == \
|
| 352 |
+
Point(-2, -7)
|
| 353 |
+
assert Point(1, 1).translate(4, 5) == \
|
| 354 |
+
Point(5, 6)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def test_concyclic_doctest_bug():
|
| 358 |
+
p1, p2 = Point(-1, 0), Point(1, 0)
|
| 359 |
+
p3, p4 = Point(0, 1), Point(-1, 2)
|
| 360 |
+
assert Point.is_concyclic(p1, p2, p3)
|
| 361 |
+
assert not Point.is_concyclic(p1, p2, p3, p4)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
def test_arguments():
|
| 365 |
+
"""Functions accepting `Point` objects in `geometry`
|
| 366 |
+
should also accept tuples and lists and
|
| 367 |
+
automatically convert them to points."""
|
| 368 |
+
|
| 369 |
+
singles2d = ((1,2), [1,2], Point(1,2))
|
| 370 |
+
singles2d2 = ((1,3), [1,3], Point(1,3))
|
| 371 |
+
doubles2d = cartes(singles2d, singles2d2)
|
| 372 |
+
p2d = Point2D(1,2)
|
| 373 |
+
singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
|
| 374 |
+
doubles3d = subsets(singles3d, 2)
|
| 375 |
+
p3d = Point3D(1,2,3)
|
| 376 |
+
singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
|
| 377 |
+
doubles4d = subsets(singles4d, 2)
|
| 378 |
+
p4d = Point(1,2,3,4)
|
| 379 |
+
|
| 380 |
+
# test 2D
|
| 381 |
+
test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
|
| 382 |
+
test_double = ['is_concyclic', 'is_collinear']
|
| 383 |
+
for p in singles2d:
|
| 384 |
+
Point2D(p)
|
| 385 |
+
for func in test_single:
|
| 386 |
+
for p in singles2d:
|
| 387 |
+
getattr(p2d, func)(p)
|
| 388 |
+
for func in test_double:
|
| 389 |
+
for p in doubles2d:
|
| 390 |
+
getattr(p2d, func)(*p)
|
| 391 |
+
|
| 392 |
+
# test 3D
|
| 393 |
+
test_double = ['is_collinear']
|
| 394 |
+
for p in singles3d:
|
| 395 |
+
Point3D(p)
|
| 396 |
+
for func in test_single:
|
| 397 |
+
for p in singles3d:
|
| 398 |
+
getattr(p3d, func)(p)
|
| 399 |
+
for func in test_double:
|
| 400 |
+
for p in doubles3d:
|
| 401 |
+
getattr(p3d, func)(*p)
|
| 402 |
+
|
| 403 |
+
# test 4D
|
| 404 |
+
test_double = ['is_collinear']
|
| 405 |
+
for p in singles4d:
|
| 406 |
+
Point(p)
|
| 407 |
+
for func in test_single:
|
| 408 |
+
for p in singles4d:
|
| 409 |
+
getattr(p4d, func)(p)
|
| 410 |
+
for func in test_double:
|
| 411 |
+
for p in doubles4d:
|
| 412 |
+
getattr(p4d, func)(*p)
|
| 413 |
+
|
| 414 |
+
# test evaluate=False for ops
|
| 415 |
+
x = Symbol('x')
|
| 416 |
+
a = Point(0, 1)
|
| 417 |
+
assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
|
| 418 |
+
a = Point(0, 1)
|
| 419 |
+
assert a/10.0 == Point(0, 0.1, evaluate=False)
|
| 420 |
+
a = Point(0, 1)
|
| 421 |
+
assert a*10.0 == Point(0.0, 10.0, evaluate=False)
|
| 422 |
+
|
| 423 |
+
# test evaluate=False when changing dimensions
|
| 424 |
+
u = Point(.1, .2, evaluate=False)
|
| 425 |
+
u4 = Point(u, dim=4, on_morph='ignore')
|
| 426 |
+
assert u4.args == (.1, .2, 0, 0)
|
| 427 |
+
assert all(i.is_Float for i in u4.args[:2])
|
| 428 |
+
# and even when *not* changing dimensions
|
| 429 |
+
assert all(i.is_Float for i in Point(u).args)
|
| 430 |
+
|
| 431 |
+
# never raise error if creating an origin
|
| 432 |
+
assert Point(dim=3, on_morph='error')
|
| 433 |
+
|
| 434 |
+
# raise error with unmatched dimension
|
| 435 |
+
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
|
| 436 |
+
# test unknown on_morph
|
| 437 |
+
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
|
| 438 |
+
# test invalid expressions
|
| 439 |
+
raises(TypeError, lambda: Point(Basic(), Basic()))
|
| 440 |
+
|
| 441 |
+
def test_unit():
|
| 442 |
+
assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def test_dot():
|
| 446 |
+
raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
def test__normalize_dimension():
|
| 450 |
+
assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
|
| 451 |
+
Point(1, 2), Point(3, 4)]
|
| 452 |
+
assert Point._normalize_dimension(
|
| 453 |
+
Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
|
| 454 |
+
Point(1, 2, 0), Point(3, 4, 0)]
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def test_issue_22684():
|
| 458 |
+
# Used to give an error
|
| 459 |
+
with evaluate(False):
|
| 460 |
+
Point(1, 2)
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def test_direction_cosine():
|
| 464 |
+
p1 = Point3D(0, 0, 0)
|
| 465 |
+
p2 = Point3D(1, 1, 1)
|
| 466 |
+
|
| 467 |
+
assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
|
| 468 |
+
assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
|
| 469 |
+
assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]
|
| 470 |
+
|
| 471 |
+
assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
|
| 472 |
+
assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
|
| 473 |
+
assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]
|
| 474 |
+
|
| 475 |
+
assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
|
| 476 |
+
assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
|
| 477 |
+
assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]
|
| 478 |
+
|
| 479 |
+
assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
|
| 480 |
+
assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
|
| 481 |
+
assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py
ADDED
|
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.numbers import (Float, Rational, oo, pi)
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
| 4 |
+
from sympy.functions.elementary.complexes import Abs
|
| 5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 6 |
+
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
|
| 7 |
+
from sympy.functions.elementary.trigonometric import tan
|
| 8 |
+
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
|
| 9 |
+
Polygon, Ray, RegularPolygon, Segment, Triangle,
|
| 10 |
+
are_similar, convex_hull, intersection, Line, Ray2D)
|
| 11 |
+
from sympy.testing.pytest import raises, slow, warns
|
| 12 |
+
from sympy.core.random import verify_numerically
|
| 13 |
+
from sympy.geometry.polygon import rad, deg
|
| 14 |
+
from sympy.integrals.integrals import integrate
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def feq(a, b):
|
| 18 |
+
"""Test if two floating point values are 'equal'."""
|
| 19 |
+
t_float = Float("1.0E-10")
|
| 20 |
+
return -t_float < a - b < t_float
|
| 21 |
+
|
| 22 |
+
@slow
|
| 23 |
+
def test_polygon():
|
| 24 |
+
x = Symbol('x', real=True)
|
| 25 |
+
y = Symbol('y', real=True)
|
| 26 |
+
q = Symbol('q', real=True)
|
| 27 |
+
u = Symbol('u', real=True)
|
| 28 |
+
v = Symbol('v', real=True)
|
| 29 |
+
w = Symbol('w', real=True)
|
| 30 |
+
x1 = Symbol('x1', real=True)
|
| 31 |
+
half = S.Half
|
| 32 |
+
a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
|
| 33 |
+
t = Triangle(a, b, c)
|
| 34 |
+
assert Polygon(Point(0, 0)) == Point(0, 0)
|
| 35 |
+
assert Polygon(a, Point(1, 0), b, c) == t
|
| 36 |
+
assert Polygon(Point(1, 0), b, c, a) == t
|
| 37 |
+
assert Polygon(b, c, a, Point(1, 0)) == t
|
| 38 |
+
# 2 "remove folded" tests
|
| 39 |
+
assert Polygon(a, Point(3, 0), b, c) == t
|
| 40 |
+
assert Polygon(a, b, Point(3, -1), b, c) == t
|
| 41 |
+
# remove multiple collinear points
|
| 42 |
+
assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
|
| 43 |
+
Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
|
| 44 |
+
Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
|
| 45 |
+
Point(15, -3), Point(15, 10), Point(15, 15)) == \
|
| 46 |
+
Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
|
| 47 |
+
|
| 48 |
+
p1 = Polygon(
|
| 49 |
+
Point(0, 0), Point(3, -1),
|
| 50 |
+
Point(6, 0), Point(4, 5),
|
| 51 |
+
Point(2, 3), Point(0, 3))
|
| 52 |
+
p2 = Polygon(
|
| 53 |
+
Point(6, 0), Point(3, -1),
|
| 54 |
+
Point(0, 0), Point(0, 3),
|
| 55 |
+
Point(2, 3), Point(4, 5))
|
| 56 |
+
p3 = Polygon(
|
| 57 |
+
Point(0, 0), Point(3, 0),
|
| 58 |
+
Point(5, 2), Point(4, 4))
|
| 59 |
+
p4 = Polygon(
|
| 60 |
+
Point(0, 0), Point(4, 4),
|
| 61 |
+
Point(5, 2), Point(3, 0))
|
| 62 |
+
p5 = Polygon(
|
| 63 |
+
Point(0, 0), Point(4, 4),
|
| 64 |
+
Point(0, 4))
|
| 65 |
+
p6 = Polygon(
|
| 66 |
+
Point(-11, 1), Point(-9, 6.6),
|
| 67 |
+
Point(-4, -3), Point(-8.4, -8.7))
|
| 68 |
+
p7 = Polygon(
|
| 69 |
+
Point(x, y), Point(q, u),
|
| 70 |
+
Point(v, w))
|
| 71 |
+
p8 = Polygon(
|
| 72 |
+
Point(x, y), Point(v, w),
|
| 73 |
+
Point(q, u))
|
| 74 |
+
p9 = Polygon(
|
| 75 |
+
Point(0, 0), Point(4, 4),
|
| 76 |
+
Point(3, 0), Point(5, 2))
|
| 77 |
+
p10 = Polygon(
|
| 78 |
+
Point(0, 2), Point(2, 2),
|
| 79 |
+
Point(0, 0), Point(2, 0))
|
| 80 |
+
p11 = Polygon(Point(0, 0), 1, n=3)
|
| 81 |
+
p12 = Polygon(Point(0, 0), 1, 0, n=3)
|
| 82 |
+
|
| 83 |
+
r = Ray(Point(-9, 6.6), Point(-9, 5.5))
|
| 84 |
+
#
|
| 85 |
+
# General polygon
|
| 86 |
+
#
|
| 87 |
+
assert p1 == p2
|
| 88 |
+
assert len(p1.args) == 6
|
| 89 |
+
assert len(p1.sides) == 6
|
| 90 |
+
assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
|
| 91 |
+
assert p1.area == 22
|
| 92 |
+
assert not p1.is_convex()
|
| 93 |
+
assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
|
| 94 |
+
).is_convex() is False
|
| 95 |
+
# ensure convex for both CW and CCW point specification
|
| 96 |
+
assert p3.is_convex()
|
| 97 |
+
assert p4.is_convex()
|
| 98 |
+
dict5 = p5.angles
|
| 99 |
+
assert dict5[Point(0, 0)] == pi / 4
|
| 100 |
+
assert dict5[Point(0, 4)] == pi / 2
|
| 101 |
+
assert p5.encloses_point(Point(x, y)) is None
|
| 102 |
+
assert p5.encloses_point(Point(1, 3))
|
| 103 |
+
assert p5.encloses_point(Point(0, 0)) is False
|
| 104 |
+
assert p5.encloses_point(Point(4, 0)) is False
|
| 105 |
+
assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
|
| 106 |
+
assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
|
| 107 |
+
assert p5.plot_interval('x') == [x, 0, 1]
|
| 108 |
+
assert p5.distance(
|
| 109 |
+
Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
|
| 110 |
+
assert p5.distance(
|
| 111 |
+
Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
|
| 112 |
+
with warns(UserWarning, \
|
| 113 |
+
match="Polygons may intersect producing erroneous output"):
|
| 114 |
+
Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
|
| 115 |
+
Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
|
| 116 |
+
assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
|
| 117 |
+
assert hash(p1) == hash(p2)
|
| 118 |
+
assert hash(p7) == hash(p8)
|
| 119 |
+
assert hash(p3) != hash(p9)
|
| 120 |
+
assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
|
| 121 |
+
assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
|
| 122 |
+
assert p5 != Point(0, 4)
|
| 123 |
+
assert Point(0, 1) in p5
|
| 124 |
+
assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
|
| 125 |
+
Point(0, 0)
|
| 126 |
+
raises(ValueError, lambda: Polygon(
|
| 127 |
+
Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
|
| 128 |
+
assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
|
| 129 |
+
assert p10.area == 0
|
| 130 |
+
assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
|
| 131 |
+
assert p11 == p12
|
| 132 |
+
assert p11.vertices[0] == Point(1, 0)
|
| 133 |
+
assert p11.args[0] == Point(0, 0)
|
| 134 |
+
p11.spin(pi/2)
|
| 135 |
+
assert p11.vertices[0] == Point(0, 1)
|
| 136 |
+
#
|
| 137 |
+
# Regular polygon
|
| 138 |
+
#
|
| 139 |
+
p1 = RegularPolygon(Point(0, 0), 10, 5)
|
| 140 |
+
p2 = RegularPolygon(Point(0, 0), 5, 5)
|
| 141 |
+
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
|
| 142 |
+
1), Point(1, 1)))
|
| 143 |
+
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
|
| 144 |
+
raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
|
| 145 |
+
|
| 146 |
+
assert p1 != p2
|
| 147 |
+
assert p1.interior_angle == pi*Rational(3, 5)
|
| 148 |
+
assert p1.exterior_angle == pi*Rational(2, 5)
|
| 149 |
+
assert p2.apothem == 5*cos(pi/5)
|
| 150 |
+
assert p2.circumcenter == p1.circumcenter == Point(0, 0)
|
| 151 |
+
assert p1.circumradius == p1.radius == 10
|
| 152 |
+
assert p2.circumcircle == Circle(Point(0, 0), 5)
|
| 153 |
+
assert p2.incircle == Circle(Point(0, 0), p2.apothem)
|
| 154 |
+
assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
|
| 155 |
+
p2.spin(pi / 10)
|
| 156 |
+
dict1 = p2.angles
|
| 157 |
+
assert dict1[Point(0, 5)] == 3 * pi / 5
|
| 158 |
+
assert p1.is_convex()
|
| 159 |
+
assert p1.rotation == 0
|
| 160 |
+
assert p1.encloses_point(Point(0, 0))
|
| 161 |
+
assert p1.encloses_point(Point(11, 0)) is False
|
| 162 |
+
assert p2.encloses_point(Point(0, 4.9))
|
| 163 |
+
p1.spin(pi/3)
|
| 164 |
+
assert p1.rotation == pi/3
|
| 165 |
+
assert p1.vertices[0] == Point(5, 5*sqrt(3))
|
| 166 |
+
for var in p1.args:
|
| 167 |
+
if isinstance(var, Point):
|
| 168 |
+
assert var == Point(0, 0)
|
| 169 |
+
else:
|
| 170 |
+
assert var in (5, 10, pi / 3)
|
| 171 |
+
assert p1 != Point(0, 0)
|
| 172 |
+
assert p1 != p5
|
| 173 |
+
|
| 174 |
+
# while spin works in place (notice that rotation is 2pi/3 below)
|
| 175 |
+
# rotate returns a new object
|
| 176 |
+
p1_old = p1
|
| 177 |
+
assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
|
| 178 |
+
assert p1 == p1_old
|
| 179 |
+
|
| 180 |
+
assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
|
| 181 |
+
assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
|
| 182 |
+
assert p1.scale(2, 2) == \
|
| 183 |
+
RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
|
| 184 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
|
| 185 |
+
Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
|
| 186 |
+
|
| 187 |
+
assert repr(p1) == str(p1)
|
| 188 |
+
|
| 189 |
+
#
|
| 190 |
+
# Angles
|
| 191 |
+
#
|
| 192 |
+
angles = p4.angles
|
| 193 |
+
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
| 194 |
+
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
| 195 |
+
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
| 196 |
+
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
| 197 |
+
|
| 198 |
+
angles = p3.angles
|
| 199 |
+
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
| 200 |
+
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
| 201 |
+
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
| 202 |
+
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
| 203 |
+
|
| 204 |
+
#
|
| 205 |
+
# Triangle
|
| 206 |
+
#
|
| 207 |
+
p1 = Point(0, 0)
|
| 208 |
+
p2 = Point(5, 0)
|
| 209 |
+
p3 = Point(0, 5)
|
| 210 |
+
t1 = Triangle(p1, p2, p3)
|
| 211 |
+
t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
|
| 212 |
+
t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
|
| 213 |
+
s1 = t1.sides
|
| 214 |
+
assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
|
| 215 |
+
raises(GeometryError, lambda: Triangle(Point(0, 0)))
|
| 216 |
+
|
| 217 |
+
# Basic stuff
|
| 218 |
+
assert Triangle(p1, p1, p1) == p1
|
| 219 |
+
assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
|
| 220 |
+
assert t1.area == Rational(25, 2)
|
| 221 |
+
assert t1.is_right()
|
| 222 |
+
assert t2.is_right() is False
|
| 223 |
+
assert t3.is_right()
|
| 224 |
+
assert p1 in t1
|
| 225 |
+
assert t1.sides[0] in t1
|
| 226 |
+
assert Segment((0, 0), (1, 0)) in t1
|
| 227 |
+
assert Point(5, 5) not in t2
|
| 228 |
+
assert t1.is_convex()
|
| 229 |
+
assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
|
| 230 |
+
|
| 231 |
+
assert t1.is_equilateral() is False
|
| 232 |
+
assert t2.is_equilateral()
|
| 233 |
+
assert t3.is_equilateral() is False
|
| 234 |
+
assert are_similar(t1, t2) is False
|
| 235 |
+
assert are_similar(t1, t3)
|
| 236 |
+
assert are_similar(t2, t3) is False
|
| 237 |
+
assert t1.is_similar(Point(0, 0)) is False
|
| 238 |
+
assert t1.is_similar(t2) is False
|
| 239 |
+
|
| 240 |
+
# Bisectors
|
| 241 |
+
bisectors = t1.bisectors()
|
| 242 |
+
assert bisectors[p1] == Segment(
|
| 243 |
+
p1, Point(Rational(5, 2), Rational(5, 2)))
|
| 244 |
+
assert t2.bisectors()[p2] == Segment(
|
| 245 |
+
Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
|
| 246 |
+
p4 = Point(0, x1)
|
| 247 |
+
assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
|
| 248 |
+
ic = (250 - 125*sqrt(2))/50
|
| 249 |
+
assert t1.incenter == Point(ic, ic)
|
| 250 |
+
|
| 251 |
+
# Inradius
|
| 252 |
+
assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
|
| 253 |
+
assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
|
| 254 |
+
assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
|
| 255 |
+
|
| 256 |
+
# Exradius
|
| 257 |
+
assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
|
| 258 |
+
|
| 259 |
+
# Excenters
|
| 260 |
+
assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
|
| 261 |
+
|
| 262 |
+
# Circumcircle
|
| 263 |
+
assert t1.circumcircle.center == Point(2.5, 2.5)
|
| 264 |
+
|
| 265 |
+
# Medians + Centroid
|
| 266 |
+
m = t1.medians
|
| 267 |
+
assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
|
| 268 |
+
assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
| 269 |
+
assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
|
| 270 |
+
assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
|
| 271 |
+
assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
|
| 272 |
+
|
| 273 |
+
# Nine-point circle
|
| 274 |
+
assert t1.nine_point_circle == Circle(Point(2.5, 0),
|
| 275 |
+
Point(0, 2.5), Point(2.5, 2.5))
|
| 276 |
+
assert t1.nine_point_circle == Circle(Point(0, 0),
|
| 277 |
+
Point(0, 2.5), Point(2.5, 2.5))
|
| 278 |
+
|
| 279 |
+
# Perpendicular
|
| 280 |
+
altitudes = t1.altitudes
|
| 281 |
+
assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
| 282 |
+
assert altitudes[p2].equals(s1[0])
|
| 283 |
+
assert altitudes[p3] == s1[2]
|
| 284 |
+
assert t1.orthocenter == p1
|
| 285 |
+
t = S('''Triangle(
|
| 286 |
+
Point(100080156402737/5000000000000, 79782624633431/500000000000),
|
| 287 |
+
Point(39223884078253/2000000000000, 156345163124289/1000000000000),
|
| 288 |
+
Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
|
| 289 |
+
assert t.orthocenter == S('''Point(-780660869050599840216997'''
|
| 290 |
+
'''79471538701955848721853/80368430960602242240789074233100000000000000,'''
|
| 291 |
+
'''20151573611150265741278060334545897615974257/16073686192120448448157'''
|
| 292 |
+
'''8148466200000000000)''')
|
| 293 |
+
|
| 294 |
+
# Ensure
|
| 295 |
+
assert len(intersection(*bisectors.values())) == 1
|
| 296 |
+
assert len(intersection(*altitudes.values())) == 1
|
| 297 |
+
assert len(intersection(*m.values())) == 1
|
| 298 |
+
|
| 299 |
+
# Distance
|
| 300 |
+
p1 = Polygon(
|
| 301 |
+
Point(0, 0), Point(1, 0),
|
| 302 |
+
Point(1, 1), Point(0, 1))
|
| 303 |
+
p2 = Polygon(
|
| 304 |
+
Point(0, Rational(5)/4), Point(1, Rational(5)/4),
|
| 305 |
+
Point(1, Rational(9)/4), Point(0, Rational(9)/4))
|
| 306 |
+
p3 = Polygon(
|
| 307 |
+
Point(1, 2), Point(2, 2),
|
| 308 |
+
Point(2, 1))
|
| 309 |
+
p4 = Polygon(
|
| 310 |
+
Point(1, 1), Point(Rational(6)/5, 1),
|
| 311 |
+
Point(1, Rational(6)/5))
|
| 312 |
+
pt1 = Point(half, half)
|
| 313 |
+
pt2 = Point(1, 1)
|
| 314 |
+
|
| 315 |
+
'''Polygon to Point'''
|
| 316 |
+
assert p1.distance(pt1) == half
|
| 317 |
+
assert p1.distance(pt2) == 0
|
| 318 |
+
assert p2.distance(pt1) == Rational(3)/4
|
| 319 |
+
assert p3.distance(pt2) == sqrt(2)/2
|
| 320 |
+
|
| 321 |
+
'''Polygon to Polygon'''
|
| 322 |
+
# p1.distance(p2) emits a warning
|
| 323 |
+
with warns(UserWarning, \
|
| 324 |
+
match="Polygons may intersect producing erroneous output"):
|
| 325 |
+
assert p1.distance(p2) == half/2
|
| 326 |
+
|
| 327 |
+
assert p1.distance(p3) == sqrt(2)/2
|
| 328 |
+
|
| 329 |
+
# p3.distance(p4) emits a warning
|
| 330 |
+
with warns(UserWarning, \
|
| 331 |
+
match="Polygons may intersect producing erroneous output"):
|
| 332 |
+
assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def test_convex_hull():
|
| 336 |
+
p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
|
| 337 |
+
Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
|
| 338 |
+
Point(4, -1), Point(6, 2)]
|
| 339 |
+
ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
|
| 340 |
+
#test handling of duplicate points
|
| 341 |
+
p.append(p[3])
|
| 342 |
+
|
| 343 |
+
#more than 3 collinear points
|
| 344 |
+
another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
|
| 345 |
+
Point(-45, -24)]
|
| 346 |
+
ch2 = Segment(another_p[0], another_p[1])
|
| 347 |
+
|
| 348 |
+
assert convex_hull(*another_p) == ch2
|
| 349 |
+
assert convex_hull(*p) == ch
|
| 350 |
+
assert convex_hull(p[0]) == p[0]
|
| 351 |
+
assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
|
| 352 |
+
|
| 353 |
+
# no unique points
|
| 354 |
+
assert convex_hull(*[p[-1]]*3) == p[-1]
|
| 355 |
+
|
| 356 |
+
# collection of items
|
| 357 |
+
assert convex_hull(*[Point(0, 0), \
|
| 358 |
+
Segment(Point(1, 0), Point(1, 1)), \
|
| 359 |
+
RegularPolygon(Point(2, 0), 2, 4)]) == \
|
| 360 |
+
Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def test_encloses():
|
| 364 |
+
# square with a dimpled left side
|
| 365 |
+
s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
|
| 366 |
+
Point(S.Half, S.Half))
|
| 367 |
+
# the following is True if the polygon isn't treated as closing on itself
|
| 368 |
+
assert s.encloses(Point(0, S.Half)) is False
|
| 369 |
+
assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
|
| 370 |
+
assert s.encloses(Point(Rational(3, 4), S.Half)) is True
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def test_triangle_kwargs():
|
| 374 |
+
assert Triangle(sss=(3, 4, 5)) == \
|
| 375 |
+
Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
|
| 376 |
+
assert Triangle(asa=(30, 2, 30)) == \
|
| 377 |
+
Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
|
| 378 |
+
assert Triangle(sas=(1, 45, 2)) == \
|
| 379 |
+
Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
|
| 380 |
+
assert Triangle(sss=(1, 2, 5)) is None
|
| 381 |
+
assert deg(rad(180)) == 180
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def test_transform():
|
| 385 |
+
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
|
| 386 |
+
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
|
| 387 |
+
assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
|
| 388 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
|
| 389 |
+
Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
|
| 390 |
+
# Checks for symmetric scaling
|
| 391 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
|
| 392 |
+
RegularPolygon(Point2D(0, 0), 2, 4, 0)
|
| 393 |
+
|
| 394 |
+
def test_reflect():
|
| 395 |
+
x = Symbol('x', real=True)
|
| 396 |
+
y = Symbol('y', real=True)
|
| 397 |
+
b = Symbol('b')
|
| 398 |
+
m = Symbol('m')
|
| 399 |
+
l = Line((0, b), slope=m)
|
| 400 |
+
p = Point(x, y)
|
| 401 |
+
r = p.reflect(l)
|
| 402 |
+
dp = l.perpendicular_segment(p).length
|
| 403 |
+
dr = l.perpendicular_segment(r).length
|
| 404 |
+
|
| 405 |
+
assert verify_numerically(dp, dr)
|
| 406 |
+
|
| 407 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
|
| 408 |
+
== Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
|
| 409 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
|
| 410 |
+
== Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
|
| 411 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
|
| 412 |
+
== Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
|
| 413 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
|
| 414 |
+
== Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
|
| 415 |
+
|
| 416 |
+
def test_bisectors():
|
| 417 |
+
p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
| 418 |
+
p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
|
| 419 |
+
q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
|
| 420 |
+
poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
|
| 421 |
+
t = Triangle(p1, p2, p3)
|
| 422 |
+
assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
|
| 423 |
+
assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
|
| 424 |
+
Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
|
| 425 |
+
assert q.bisectors()[Point2D(-1, 5)] == \
|
| 426 |
+
Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
|
| 427 |
+
2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
|
| 428 |
+
2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
|
| 429 |
+
assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
|
| 430 |
+
Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
|
| 431 |
+
|
| 432 |
+
def test_incenter():
|
| 433 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
|
| 434 |
+
== Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
|
| 435 |
+
|
| 436 |
+
def test_inradius():
|
| 437 |
+
assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
|
| 438 |
+
|
| 439 |
+
def test_incircle():
|
| 440 |
+
assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
|
| 441 |
+
== Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
|
| 442 |
+
|
| 443 |
+
def test_exradii():
|
| 444 |
+
t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
|
| 445 |
+
assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
|
| 446 |
+
|
| 447 |
+
def test_medians():
|
| 448 |
+
t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
| 449 |
+
assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
|
| 450 |
+
|
| 451 |
+
def test_medial():
|
| 452 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
|
| 453 |
+
== Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
|
| 454 |
+
|
| 455 |
+
def test_nine_point_circle():
|
| 456 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
|
| 457 |
+
== Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
|
| 458 |
+
|
| 459 |
+
def test_eulerline():
|
| 460 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
|
| 461 |
+
== Line(Point2D(0, 0), Point2D(S.Half, S.Half))
|
| 462 |
+
assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
|
| 463 |
+
== Point2D(5, 5*sqrt(3)/3)
|
| 464 |
+
assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
|
| 465 |
+
== Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
|
| 466 |
+
|
| 467 |
+
def test_intersection():
|
| 468 |
+
poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
| 469 |
+
poly2 = Polygon(Point(0, 1), Point(-5, 0),
|
| 470 |
+
Point(0, -4), Point(0, Rational(1, 5)),
|
| 471 |
+
Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
|
| 472 |
+
|
| 473 |
+
assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
|
| 474 |
+
Segment(Point(0, Rational(1, 5)), Point(0, 0)),
|
| 475 |
+
Segment(Point(1, 0), Point(0, 1))]
|
| 476 |
+
assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
|
| 477 |
+
Segment(Point(0, 0), Point(0, Rational(1, 5))),
|
| 478 |
+
Segment(Point(1, 0), Point(0, 1))]
|
| 479 |
+
assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
|
| 480 |
+
assert poly1.intersection(Point(-12, -43)) == []
|
| 481 |
+
assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
|
| 482 |
+
Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
|
| 483 |
+
assert poly2.intersection(Line((-12, 12), (12, 12))) == []
|
| 484 |
+
assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
|
| 485 |
+
Point(0, 1))]
|
| 486 |
+
assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
|
| 487 |
+
Point(0, 0)]
|
| 488 |
+
assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
|
| 489 |
+
Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
|
| 490 |
+
assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
|
| 491 |
+
Segment(Point(0, -4), Point(0, Rational(1, 5))),
|
| 492 |
+
Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
|
| 493 |
+
Segment(Point(0, 1), Point(-5, 0)),
|
| 494 |
+
Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
|
| 495 |
+
Segment(Point(1, 0), Point(0, 1))]
|
| 496 |
+
assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
|
| 497 |
+
== [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
|
| 498 |
+
assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
def test_parameter_value():
|
| 502 |
+
t = Symbol('t')
|
| 503 |
+
sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
|
| 504 |
+
assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
|
| 505 |
+
q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
|
| 506 |
+
assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
|
| 507 |
+
|
| 508 |
+
raises(ValueError, lambda: sq.parameter_value((5, 6), t))
|
| 509 |
+
raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def test_issue_12966():
|
| 513 |
+
poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
|
| 514 |
+
Point(10, 5), Point(10, 0))
|
| 515 |
+
t = Symbol('t')
|
| 516 |
+
pt = poly.arbitrary_point(t)
|
| 517 |
+
DELTA = 5/poly.perimeter
|
| 518 |
+
assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
|
| 519 |
+
Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
|
| 520 |
+
Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def test_second_moment_of_area():
|
| 524 |
+
x, y = symbols('x, y')
|
| 525 |
+
# triangle
|
| 526 |
+
p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
|
| 527 |
+
p = (0, 0)
|
| 528 |
+
# equation of hypotenuse
|
| 529 |
+
eq_y = (1-x/4)*2
|
| 530 |
+
I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
|
| 531 |
+
I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
|
| 532 |
+
I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
|
| 533 |
+
|
| 534 |
+
triangle = Polygon(p1, p2, p3)
|
| 535 |
+
|
| 536 |
+
assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
|
| 537 |
+
assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
|
| 538 |
+
assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
|
| 539 |
+
|
| 540 |
+
# rectangle
|
| 541 |
+
p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
|
| 542 |
+
I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
|
| 543 |
+
I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
|
| 544 |
+
I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
|
| 545 |
+
|
| 546 |
+
rectangle = Polygon(p1, p2, p3, p4)
|
| 547 |
+
|
| 548 |
+
assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
|
| 549 |
+
assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
|
| 550 |
+
assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
r = RegularPolygon(Point(0, 0), 5, 3)
|
| 554 |
+
assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def test_first_moment():
|
| 558 |
+
a, b = symbols('a, b', positive=True)
|
| 559 |
+
# rectangle
|
| 560 |
+
p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
| 561 |
+
assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
|
| 562 |
+
assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
|
| 563 |
+
|
| 564 |
+
p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
|
| 565 |
+
assert p1.first_moment_of_area() == (4500, 6000)
|
| 566 |
+
|
| 567 |
+
# triangle
|
| 568 |
+
p2 = Polygon((0, 0), (a, 0), (a/2, b))
|
| 569 |
+
assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
|
| 570 |
+
assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
|
| 571 |
+
|
| 572 |
+
p2 = Polygon((0, 0), (12, 0), (12, 30))
|
| 573 |
+
assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
def test_section_modulus_and_polar_second_moment_of_area():
|
| 577 |
+
a, b = symbols('a, b', positive=True)
|
| 578 |
+
x, y = symbols('x, y')
|
| 579 |
+
rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
|
| 580 |
+
assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
|
| 581 |
+
assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
|
| 582 |
+
|
| 583 |
+
convex = RegularPolygon((0, 0), 1, 6)
|
| 584 |
+
assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
|
| 585 |
+
assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
|
| 586 |
+
|
| 587 |
+
concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
|
| 588 |
+
assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
|
| 589 |
+
assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
def test_cut_section():
|
| 593 |
+
# concave polygon
|
| 594 |
+
p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
|
| 595 |
+
l = Line((0, 0), (Rational(9, 2), 3))
|
| 596 |
+
p1 = p.cut_section(l)[0]
|
| 597 |
+
p2 = p.cut_section(l)[1]
|
| 598 |
+
assert p1 == Polygon(
|
| 599 |
+
Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
|
| 600 |
+
Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
|
| 601 |
+
Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
|
| 602 |
+
assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
|
| 603 |
+
Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
|
| 604 |
+
Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
|
| 605 |
+
|
| 606 |
+
# convex polygon
|
| 607 |
+
p = RegularPolygon(Point2D(0, 0), 6, 6)
|
| 608 |
+
s = p.cut_section(Line((0, 0), slope=1))
|
| 609 |
+
assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
|
| 610 |
+
Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
|
| 611 |
+
assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
|
| 612 |
+
Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
|
| 613 |
+
|
| 614 |
+
# case where line does not intersects but coincides with the edge of polygon
|
| 615 |
+
a, b = 20, 10
|
| 616 |
+
t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
| 617 |
+
p = Polygon(t1, t2, t3, t4)
|
| 618 |
+
p1, p2 = p.cut_section(Line((0, b), slope=0))
|
| 619 |
+
assert p1 == None
|
| 620 |
+
assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
| 621 |
+
|
| 622 |
+
p3, p4 = p.cut_section(Line((0, 0), slope=0))
|
| 623 |
+
assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
| 624 |
+
assert p4 == None
|
| 625 |
+
|
| 626 |
+
# case where the line does not intersect with a polygon at all
|
| 627 |
+
raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
|
| 628 |
+
|
| 629 |
+
def test_type_of_triangle():
|
| 630 |
+
# Isoceles triangle
|
| 631 |
+
p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
|
| 632 |
+
assert p1.is_isosceles() == True
|
| 633 |
+
assert p1.is_scalene() == False
|
| 634 |
+
assert p1.is_equilateral() == False
|
| 635 |
+
|
| 636 |
+
# Scalene triangle
|
| 637 |
+
p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
|
| 638 |
+
assert p2.is_isosceles() == False
|
| 639 |
+
assert p2.is_scalene() == True
|
| 640 |
+
assert p2.is_equilateral() == False
|
| 641 |
+
|
| 642 |
+
# Equilateral triagle
|
| 643 |
+
p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
|
| 644 |
+
assert p3.is_isosceles() == True
|
| 645 |
+
assert p3.is_scalene() == False
|
| 646 |
+
assert p3.is_equilateral() == True
|
| 647 |
+
|
| 648 |
+
def test_do_poly_distance():
|
| 649 |
+
# Non-intersecting polygons
|
| 650 |
+
square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
|
| 651 |
+
triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
|
| 652 |
+
assert square1._do_poly_distance(triangle1) == sqrt(2)/2
|
| 653 |
+
|
| 654 |
+
# Polygons which sides intersect
|
| 655 |
+
square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
|
| 656 |
+
with warns(UserWarning, \
|
| 657 |
+
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
| 658 |
+
assert square1._do_poly_distance(square2) == 0
|
| 659 |
+
|
| 660 |
+
# Polygons which bodies intersect
|
| 661 |
+
triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
|
| 662 |
+
with warns(UserWarning, \
|
| 663 |
+
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
| 664 |
+
assert triangle2._do_poly_distance(square1) == 0
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core.function import (Derivative, Function)
|
| 2 |
+
from sympy.core.singleton import S
|
| 3 |
+
from sympy.core.symbol import Symbol
|
| 4 |
+
from sympy.functions import exp, cos, sin, tan, cosh, sinh
|
| 5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 6 |
+
from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\
|
| 7 |
+
intersection, centroid, Point3D, Line3D
|
| 8 |
+
from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar
|
| 9 |
+
from sympy.solvers.solvers import solve
|
| 10 |
+
from sympy.testing.pytest import raises
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def test_idiff():
|
| 14 |
+
x = Symbol('x', real=True)
|
| 15 |
+
y = Symbol('y', real=True)
|
| 16 |
+
t = Symbol('t', real=True)
|
| 17 |
+
f = Function('f')
|
| 18 |
+
g = Function('g')
|
| 19 |
+
# the use of idiff in ellipse also provides coverage
|
| 20 |
+
circ = x**2 + y**2 - 4
|
| 21 |
+
ans = -3*x*(x**2/y**2 + 1)/y**3
|
| 22 |
+
assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3)
|
| 23 |
+
assert ans == idiff(circ, [y], x, 3)
|
| 24 |
+
assert idiff(circ, y, x, 3) == ans
|
| 25 |
+
explicit = 12*x/sqrt(-x**2 + 4)**5
|
| 26 |
+
assert ans.subs(y, solve(circ, y)[0]).equals(explicit)
|
| 27 |
+
assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)]
|
| 28 |
+
assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1
|
| 29 |
+
assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1)
|
| 30 |
+
assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x)
|
| 31 |
+
assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x)
|
| 32 |
+
assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x)
|
| 33 |
+
# this should be fast
|
| 34 |
+
fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10))
|
| 35 |
+
assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \
|
| 36 |
+
2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def test_intersection():
|
| 40 |
+
assert intersection(Point(0, 0)) == []
|
| 41 |
+
raises(TypeError, lambda: intersection(Point(0, 0), 3))
|
| 42 |
+
assert intersection(
|
| 43 |
+
Segment((0, 0), (2, 0)),
|
| 44 |
+
Segment((-1, 0), (1, 0)),
|
| 45 |
+
Line((0, 0), (0, 1)), pairwise=True) == [
|
| 46 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
| 47 |
+
assert intersection(
|
| 48 |
+
Line((0, 0), (0, 1)),
|
| 49 |
+
Segment((0, 0), (2, 0)),
|
| 50 |
+
Segment((-1, 0), (1, 0)), pairwise=True) == [
|
| 51 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
| 52 |
+
assert intersection(
|
| 53 |
+
Line((0, 0), (0, 1)),
|
| 54 |
+
Segment((0, 0), (2, 0)),
|
| 55 |
+
Segment((-1, 0), (1, 0)),
|
| 56 |
+
Line((0, 0), slope=1), pairwise=True) == [
|
| 57 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def test_convex_hull():
|
| 61 |
+
raises(TypeError, lambda: convex_hull(Point(0, 0), 3))
|
| 62 |
+
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
|
| 63 |
+
assert convex_hull(*points, **{"polygon": False}) == (
|
| 64 |
+
[Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)],
|
| 65 |
+
[Point2D(-5, -2), Point2D(15, -4)])
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def test_centroid():
|
| 69 |
+
p = Polygon((0, 0), (10, 0), (10, 10))
|
| 70 |
+
q = p.translate(0, 20)
|
| 71 |
+
assert centroid(p, q) == Point(20, 40)/3
|
| 72 |
+
p = Segment((0, 0), (2, 0))
|
| 73 |
+
q = Segment((0, 0), (2, 2))
|
| 74 |
+
assert centroid(p, q) == Point(1, -sqrt(2) + 2)
|
| 75 |
+
assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2
|
| 76 |
+
assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def test_farthest_points_closest_points():
|
| 80 |
+
from sympy.core.random import randint
|
| 81 |
+
from sympy.utilities.iterables import subsets
|
| 82 |
+
|
| 83 |
+
for how in (min, max):
|
| 84 |
+
if how == min:
|
| 85 |
+
func = closest_points
|
| 86 |
+
else:
|
| 87 |
+
func = farthest_points
|
| 88 |
+
|
| 89 |
+
raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0)))
|
| 90 |
+
|
| 91 |
+
# 3rd pt dx is close and pt is closer to 1st pt
|
| 92 |
+
p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)]
|
| 93 |
+
# 3rd pt dx is close and pt is closer to 2nd pt
|
| 94 |
+
p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)]
|
| 95 |
+
# 3rd pt dx is close and but pt is not closer
|
| 96 |
+
p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)]
|
| 97 |
+
# 3rd pt dx is not closer and it's closer to 2nd pt
|
| 98 |
+
p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)]
|
| 99 |
+
# 3rd pt dx is not closer and it's closer to 1st pt
|
| 100 |
+
p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)]
|
| 101 |
+
# duplicate point doesn't affect outcome
|
| 102 |
+
dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)]
|
| 103 |
+
# symbolic
|
| 104 |
+
x = Symbol('x', positive=True)
|
| 105 |
+
s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))]
|
| 106 |
+
|
| 107 |
+
for points in (p1, p2, p3, p4, p5, dup, s):
|
| 108 |
+
d = how(i.distance(j) for i, j in subsets(set(points), 2))
|
| 109 |
+
ans = a, b = list(func(*points))[0]
|
| 110 |
+
assert a.distance(b) == d
|
| 111 |
+
assert ans == _ordered_points(ans)
|
| 112 |
+
|
| 113 |
+
# if the following ever fails, the above tests were not sufficient
|
| 114 |
+
# and the logical error in the routine should be fixed
|
| 115 |
+
points = set()
|
| 116 |
+
while len(points) != 7:
|
| 117 |
+
points.add(Point2D(randint(1, 100), randint(1, 100)))
|
| 118 |
+
points = list(points)
|
| 119 |
+
d = how(i.distance(j) for i, j in subsets(points, 2))
|
| 120 |
+
ans = a, b = list(func(*points))[0]
|
| 121 |
+
assert a.distance(b) == d
|
| 122 |
+
assert ans == _ordered_points(ans)
|
| 123 |
+
|
| 124 |
+
# equidistant points
|
| 125 |
+
a, b, c = (
|
| 126 |
+
Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2))
|
| 127 |
+
ans = {_ordered_points((i, j))
|
| 128 |
+
for i, j in subsets((a, b, c), 2)}
|
| 129 |
+
assert closest_points(b, c, a) == ans
|
| 130 |
+
assert farthest_points(b, c, a) == ans
|
| 131 |
+
|
| 132 |
+
# unique to farthest
|
| 133 |
+
points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
|
| 134 |
+
assert farthest_points(*points) == {
|
| 135 |
+
(Point2D(-5, 2), Point2D(15, 4))}
|
| 136 |
+
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
|
| 137 |
+
assert farthest_points(*points) == {
|
| 138 |
+
(Point2D(-5, -2), Point2D(15, -4))}
|
| 139 |
+
assert farthest_points((1, 1), (0, 0)) == {
|
| 140 |
+
(Point2D(0, 0), Point2D(1, 1))}
|
| 141 |
+
raises(ValueError, lambda: farthest_points((1, 1)))
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def test_are_coplanar():
|
| 145 |
+
a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
|
| 146 |
+
b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
|
| 147 |
+
c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
|
| 148 |
+
d = Line(Point2D(0, 3), Point2D(1, 5))
|
| 149 |
+
|
| 150 |
+
assert are_coplanar(a, b, c) == False
|
| 151 |
+
assert are_coplanar(a, d) == False
|
env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py
ADDED
|
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility functions for geometrical entities.
|
| 2 |
+
|
| 3 |
+
Contains
|
| 4 |
+
========
|
| 5 |
+
intersection
|
| 6 |
+
convex_hull
|
| 7 |
+
closest_points
|
| 8 |
+
farthest_points
|
| 9 |
+
are_coplanar
|
| 10 |
+
are_similar
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from collections import deque
|
| 15 |
+
from math import sqrt as _sqrt
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from .entity import GeometryEntity
|
| 19 |
+
from .exceptions import GeometryError
|
| 20 |
+
from .point import Point, Point2D, Point3D
|
| 21 |
+
from sympy.core.containers import OrderedSet
|
| 22 |
+
from sympy.core.exprtools import factor_terms
|
| 23 |
+
from sympy.core.function import Function, expand_mul
|
| 24 |
+
from sympy.core.sorting import ordered
|
| 25 |
+
from sympy.core.symbol import Symbol
|
| 26 |
+
from sympy.core.singleton import S
|
| 27 |
+
from sympy.polys.polytools import cancel
|
| 28 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
| 29 |
+
from sympy.utilities.iterables import is_sequence
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def find(x, equation):
|
| 33 |
+
"""
|
| 34 |
+
Checks whether a Symbol matching ``x`` is present in ``equation``
|
| 35 |
+
or not. If present, the matching symbol is returned, else a
|
| 36 |
+
ValueError is raised. If ``x`` is a string the matching symbol
|
| 37 |
+
will have the same name; if ``x`` is a Symbol then it will be
|
| 38 |
+
returned if found.
|
| 39 |
+
|
| 40 |
+
Examples
|
| 41 |
+
========
|
| 42 |
+
|
| 43 |
+
>>> from sympy.geometry.util import find
|
| 44 |
+
>>> from sympy import Dummy
|
| 45 |
+
>>> from sympy.abc import x
|
| 46 |
+
>>> find('x', x)
|
| 47 |
+
x
|
| 48 |
+
>>> find('x', Dummy('x'))
|
| 49 |
+
_x
|
| 50 |
+
|
| 51 |
+
The dummy symbol is returned since it has a matching name:
|
| 52 |
+
|
| 53 |
+
>>> _.name == 'x'
|
| 54 |
+
True
|
| 55 |
+
>>> find(x, Dummy('x'))
|
| 56 |
+
Traceback (most recent call last):
|
| 57 |
+
...
|
| 58 |
+
ValueError: could not find x
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
free = equation.free_symbols
|
| 62 |
+
xs = [i for i in free if (i.name if isinstance(x, str) else i) == x]
|
| 63 |
+
if not xs:
|
| 64 |
+
raise ValueError('could not find %s' % x)
|
| 65 |
+
if len(xs) != 1:
|
| 66 |
+
raise ValueError('ambiguous %s' % x)
|
| 67 |
+
return xs[0]
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _ordered_points(p):
|
| 71 |
+
"""Return the tuple of points sorted numerically according to args"""
|
| 72 |
+
return tuple(sorted(p, key=lambda x: x.args))
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def are_coplanar(*e):
|
| 76 |
+
""" Returns True if the given entities are coplanar otherwise False
|
| 77 |
+
|
| 78 |
+
Parameters
|
| 79 |
+
==========
|
| 80 |
+
|
| 81 |
+
e: entities to be checked for being coplanar
|
| 82 |
+
|
| 83 |
+
Returns
|
| 84 |
+
=======
|
| 85 |
+
|
| 86 |
+
Boolean
|
| 87 |
+
|
| 88 |
+
Examples
|
| 89 |
+
========
|
| 90 |
+
|
| 91 |
+
>>> from sympy import Point3D, Line3D
|
| 92 |
+
>>> from sympy.geometry.util import are_coplanar
|
| 93 |
+
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
|
| 94 |
+
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
|
| 95 |
+
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
|
| 96 |
+
>>> are_coplanar(a, b, c)
|
| 97 |
+
False
|
| 98 |
+
|
| 99 |
+
"""
|
| 100 |
+
from .line import LinearEntity3D
|
| 101 |
+
from .plane import Plane
|
| 102 |
+
# XXX update tests for coverage
|
| 103 |
+
|
| 104 |
+
e = set(e)
|
| 105 |
+
# first work with a Plane if present
|
| 106 |
+
for i in list(e):
|
| 107 |
+
if isinstance(i, Plane):
|
| 108 |
+
e.remove(i)
|
| 109 |
+
return all(p.is_coplanar(i) for p in e)
|
| 110 |
+
|
| 111 |
+
if all(isinstance(i, Point3D) for i in e):
|
| 112 |
+
if len(e) < 3:
|
| 113 |
+
return False
|
| 114 |
+
|
| 115 |
+
# remove pts that are collinear with 2 pts
|
| 116 |
+
a, b = e.pop(), e.pop()
|
| 117 |
+
for i in list(e):
|
| 118 |
+
if Point3D.are_collinear(a, b, i):
|
| 119 |
+
e.remove(i)
|
| 120 |
+
|
| 121 |
+
if not e:
|
| 122 |
+
return False
|
| 123 |
+
else:
|
| 124 |
+
# define a plane
|
| 125 |
+
p = Plane(a, b, e.pop())
|
| 126 |
+
for i in e:
|
| 127 |
+
if i not in p:
|
| 128 |
+
return False
|
| 129 |
+
return True
|
| 130 |
+
else:
|
| 131 |
+
pt3d = []
|
| 132 |
+
for i in e:
|
| 133 |
+
if isinstance(i, Point3D):
|
| 134 |
+
pt3d.append(i)
|
| 135 |
+
elif isinstance(i, LinearEntity3D):
|
| 136 |
+
pt3d.extend(i.args)
|
| 137 |
+
elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
|
| 138 |
+
# all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
|
| 139 |
+
for p in i.args:
|
| 140 |
+
if isinstance(p, Point):
|
| 141 |
+
pt3d.append(Point3D(*(p.args + (0,))))
|
| 142 |
+
return are_coplanar(*pt3d)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def are_similar(e1, e2):
|
| 146 |
+
"""Are two geometrical entities similar.
|
| 147 |
+
|
| 148 |
+
Can one geometrical entity be uniformly scaled to the other?
|
| 149 |
+
|
| 150 |
+
Parameters
|
| 151 |
+
==========
|
| 152 |
+
|
| 153 |
+
e1 : GeometryEntity
|
| 154 |
+
e2 : GeometryEntity
|
| 155 |
+
|
| 156 |
+
Returns
|
| 157 |
+
=======
|
| 158 |
+
|
| 159 |
+
are_similar : boolean
|
| 160 |
+
|
| 161 |
+
Raises
|
| 162 |
+
======
|
| 163 |
+
|
| 164 |
+
GeometryError
|
| 165 |
+
When `e1` and `e2` cannot be compared.
|
| 166 |
+
|
| 167 |
+
Notes
|
| 168 |
+
=====
|
| 169 |
+
|
| 170 |
+
If the two objects are equal then they are similar.
|
| 171 |
+
|
| 172 |
+
See Also
|
| 173 |
+
========
|
| 174 |
+
|
| 175 |
+
sympy.geometry.entity.GeometryEntity.is_similar
|
| 176 |
+
|
| 177 |
+
Examples
|
| 178 |
+
========
|
| 179 |
+
|
| 180 |
+
>>> from sympy import Point, Circle, Triangle, are_similar
|
| 181 |
+
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
|
| 182 |
+
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
| 183 |
+
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
|
| 184 |
+
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
|
| 185 |
+
>>> are_similar(t1, t2)
|
| 186 |
+
True
|
| 187 |
+
>>> are_similar(t1, t3)
|
| 188 |
+
False
|
| 189 |
+
|
| 190 |
+
"""
|
| 191 |
+
if e1 == e2:
|
| 192 |
+
return True
|
| 193 |
+
is_similar1 = getattr(e1, 'is_similar', None)
|
| 194 |
+
if is_similar1:
|
| 195 |
+
return is_similar1(e2)
|
| 196 |
+
is_similar2 = getattr(e2, 'is_similar', None)
|
| 197 |
+
if is_similar2:
|
| 198 |
+
return is_similar2(e1)
|
| 199 |
+
n1 = e1.__class__.__name__
|
| 200 |
+
n2 = e2.__class__.__name__
|
| 201 |
+
raise GeometryError(
|
| 202 |
+
"Cannot test similarity between %s and %s" % (n1, n2))
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def centroid(*args):
|
| 206 |
+
"""Find the centroid (center of mass) of the collection containing only Points,
|
| 207 |
+
Segments or Polygons. The centroid is the weighted average of the individual centroid
|
| 208 |
+
where the weights are the lengths (of segments) or areas (of polygons).
|
| 209 |
+
Overlapping regions will add to the weight of that region.
|
| 210 |
+
|
| 211 |
+
If there are no objects (or a mixture of objects) then None is returned.
|
| 212 |
+
|
| 213 |
+
See Also
|
| 214 |
+
========
|
| 215 |
+
|
| 216 |
+
sympy.geometry.point.Point, sympy.geometry.line.Segment,
|
| 217 |
+
sympy.geometry.polygon.Polygon
|
| 218 |
+
|
| 219 |
+
Examples
|
| 220 |
+
========
|
| 221 |
+
|
| 222 |
+
>>> from sympy import Point, Segment, Polygon
|
| 223 |
+
>>> from sympy.geometry.util import centroid
|
| 224 |
+
>>> p = Polygon((0, 0), (10, 0), (10, 10))
|
| 225 |
+
>>> q = p.translate(0, 20)
|
| 226 |
+
>>> p.centroid, q.centroid
|
| 227 |
+
(Point2D(20/3, 10/3), Point2D(20/3, 70/3))
|
| 228 |
+
>>> centroid(p, q)
|
| 229 |
+
Point2D(20/3, 40/3)
|
| 230 |
+
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
|
| 231 |
+
>>> centroid(p, q)
|
| 232 |
+
Point2D(1, 2 - sqrt(2))
|
| 233 |
+
>>> centroid(Point(0, 0), Point(2, 0))
|
| 234 |
+
Point2D(1, 0)
|
| 235 |
+
|
| 236 |
+
Stacking 3 polygons on top of each other effectively triples the
|
| 237 |
+
weight of that polygon:
|
| 238 |
+
|
| 239 |
+
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
|
| 240 |
+
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
|
| 241 |
+
>>> centroid(p, q)
|
| 242 |
+
Point2D(3/2, 1/2)
|
| 243 |
+
>>> centroid(p, p, p, q) # centroid x-coord shifts left
|
| 244 |
+
Point2D(11/10, 1/2)
|
| 245 |
+
|
| 246 |
+
Stacking the squares vertically above and below p has the same
|
| 247 |
+
effect:
|
| 248 |
+
|
| 249 |
+
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
|
| 250 |
+
Point2D(11/10, 1/2)
|
| 251 |
+
|
| 252 |
+
"""
|
| 253 |
+
from .line import Segment
|
| 254 |
+
from .polygon import Polygon
|
| 255 |
+
if args:
|
| 256 |
+
if all(isinstance(g, Point) for g in args):
|
| 257 |
+
c = Point(0, 0)
|
| 258 |
+
for g in args:
|
| 259 |
+
c += g
|
| 260 |
+
den = len(args)
|
| 261 |
+
elif all(isinstance(g, Segment) for g in args):
|
| 262 |
+
c = Point(0, 0)
|
| 263 |
+
L = 0
|
| 264 |
+
for g in args:
|
| 265 |
+
l = g.length
|
| 266 |
+
c += g.midpoint*l
|
| 267 |
+
L += l
|
| 268 |
+
den = L
|
| 269 |
+
elif all(isinstance(g, Polygon) for g in args):
|
| 270 |
+
c = Point(0, 0)
|
| 271 |
+
A = 0
|
| 272 |
+
for g in args:
|
| 273 |
+
a = g.area
|
| 274 |
+
c += g.centroid*a
|
| 275 |
+
A += a
|
| 276 |
+
den = A
|
| 277 |
+
c /= den
|
| 278 |
+
return c.func(*[i.simplify() for i in c.args])
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def closest_points(*args):
|
| 282 |
+
"""Return the subset of points from a set of points that were
|
| 283 |
+
the closest to each other in the 2D plane.
|
| 284 |
+
|
| 285 |
+
Parameters
|
| 286 |
+
==========
|
| 287 |
+
|
| 288 |
+
args
|
| 289 |
+
A collection of Points on 2D plane.
|
| 290 |
+
|
| 291 |
+
Notes
|
| 292 |
+
=====
|
| 293 |
+
|
| 294 |
+
This can only be performed on a set of points whose coordinates can
|
| 295 |
+
be ordered on the number line. If there are no ties then a single
|
| 296 |
+
pair of Points will be in the set.
|
| 297 |
+
|
| 298 |
+
Examples
|
| 299 |
+
========
|
| 300 |
+
|
| 301 |
+
>>> from sympy import closest_points, Triangle
|
| 302 |
+
>>> Triangle(sss=(3, 4, 5)).args
|
| 303 |
+
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
|
| 304 |
+
>>> closest_points(*_)
|
| 305 |
+
{(Point2D(0, 0), Point2D(3, 0))}
|
| 306 |
+
|
| 307 |
+
References
|
| 308 |
+
==========
|
| 309 |
+
|
| 310 |
+
.. [1] https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
|
| 311 |
+
|
| 312 |
+
.. [2] Sweep line algorithm
|
| 313 |
+
https://en.wikipedia.org/wiki/Sweep_line_algorithm
|
| 314 |
+
|
| 315 |
+
"""
|
| 316 |
+
p = [Point2D(i) for i in set(args)]
|
| 317 |
+
if len(p) < 2:
|
| 318 |
+
raise ValueError('At least 2 distinct points must be given.')
|
| 319 |
+
|
| 320 |
+
try:
|
| 321 |
+
p.sort(key=lambda x: x.args)
|
| 322 |
+
except TypeError:
|
| 323 |
+
raise ValueError("The points could not be sorted.")
|
| 324 |
+
|
| 325 |
+
if not all(i.is_Rational for j in p for i in j.args):
|
| 326 |
+
def hypot(x, y):
|
| 327 |
+
arg = x*x + y*y
|
| 328 |
+
if arg.is_Rational:
|
| 329 |
+
return _sqrt(arg)
|
| 330 |
+
return sqrt(arg)
|
| 331 |
+
else:
|
| 332 |
+
from math import hypot
|
| 333 |
+
|
| 334 |
+
rv = [(0, 1)]
|
| 335 |
+
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
|
| 336 |
+
i = 2
|
| 337 |
+
left = 0
|
| 338 |
+
box = deque([0, 1])
|
| 339 |
+
while i < len(p):
|
| 340 |
+
while left < i and p[i][0] - p[left][0] > best_dist:
|
| 341 |
+
box.popleft()
|
| 342 |
+
left += 1
|
| 343 |
+
|
| 344 |
+
for j in box:
|
| 345 |
+
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
|
| 346 |
+
if d < best_dist:
|
| 347 |
+
rv = [(j, i)]
|
| 348 |
+
elif d == best_dist:
|
| 349 |
+
rv.append((j, i))
|
| 350 |
+
else:
|
| 351 |
+
continue
|
| 352 |
+
best_dist = d
|
| 353 |
+
box.append(i)
|
| 354 |
+
i += 1
|
| 355 |
+
|
| 356 |
+
return {tuple([p[i] for i in pair]) for pair in rv}
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
def convex_hull(*args, polygon=True):
|
| 360 |
+
"""The convex hull surrounding the Points contained in the list of entities.
|
| 361 |
+
|
| 362 |
+
Parameters
|
| 363 |
+
==========
|
| 364 |
+
|
| 365 |
+
args : a collection of Points, Segments and/or Polygons
|
| 366 |
+
|
| 367 |
+
Optional parameters
|
| 368 |
+
===================
|
| 369 |
+
|
| 370 |
+
polygon : Boolean. If True, returns a Polygon, if false a tuple, see below.
|
| 371 |
+
Default is True.
|
| 372 |
+
|
| 373 |
+
Returns
|
| 374 |
+
=======
|
| 375 |
+
|
| 376 |
+
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where
|
| 377 |
+
``L`` and ``U`` are the lower and upper hulls, respectively.
|
| 378 |
+
|
| 379 |
+
Notes
|
| 380 |
+
=====
|
| 381 |
+
|
| 382 |
+
This can only be performed on a set of points whose coordinates can
|
| 383 |
+
be ordered on the number line.
|
| 384 |
+
|
| 385 |
+
See Also
|
| 386 |
+
========
|
| 387 |
+
|
| 388 |
+
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
|
| 389 |
+
|
| 390 |
+
Examples
|
| 391 |
+
========
|
| 392 |
+
|
| 393 |
+
>>> from sympy import convex_hull
|
| 394 |
+
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
|
| 395 |
+
>>> convex_hull(*points)
|
| 396 |
+
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
|
| 397 |
+
>>> convex_hull(*points, **dict(polygon=False))
|
| 398 |
+
([Point2D(-5, 2), Point2D(15, 4)],
|
| 399 |
+
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
|
| 400 |
+
|
| 401 |
+
References
|
| 402 |
+
==========
|
| 403 |
+
|
| 404 |
+
.. [1] https://en.wikipedia.org/wiki/Graham_scan
|
| 405 |
+
|
| 406 |
+
.. [2] Andrew's Monotone Chain Algorithm
|
| 407 |
+
(A.M. Andrew,
|
| 408 |
+
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
|
| 409 |
+
https://web.archive.org/web/20210511015444/http://geomalgorithms.com/a10-_hull-1.html
|
| 410 |
+
|
| 411 |
+
"""
|
| 412 |
+
from .line import Segment
|
| 413 |
+
from .polygon import Polygon
|
| 414 |
+
p = OrderedSet()
|
| 415 |
+
for e in args:
|
| 416 |
+
if not isinstance(e, GeometryEntity):
|
| 417 |
+
try:
|
| 418 |
+
e = Point(e)
|
| 419 |
+
except NotImplementedError:
|
| 420 |
+
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
|
| 421 |
+
if isinstance(e, Point):
|
| 422 |
+
p.add(e)
|
| 423 |
+
elif isinstance(e, Segment):
|
| 424 |
+
p.update(e.points)
|
| 425 |
+
elif isinstance(e, Polygon):
|
| 426 |
+
p.update(e.vertices)
|
| 427 |
+
else:
|
| 428 |
+
raise NotImplementedError(
|
| 429 |
+
'Convex hull for %s not implemented.' % type(e))
|
| 430 |
+
|
| 431 |
+
# make sure all our points are of the same dimension
|
| 432 |
+
if any(len(x) != 2 for x in p):
|
| 433 |
+
raise ValueError('Can only compute the convex hull in two dimensions')
|
| 434 |
+
|
| 435 |
+
p = list(p)
|
| 436 |
+
if len(p) == 1:
|
| 437 |
+
return p[0] if polygon else (p[0], None)
|
| 438 |
+
elif len(p) == 2:
|
| 439 |
+
s = Segment(p[0], p[1])
|
| 440 |
+
return s if polygon else (s, None)
|
| 441 |
+
|
| 442 |
+
def _orientation(p, q, r):
|
| 443 |
+
'''Return positive if p-q-r are clockwise, neg if ccw, zero if
|
| 444 |
+
collinear.'''
|
| 445 |
+
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
|
| 446 |
+
|
| 447 |
+
# scan to find upper and lower convex hulls of a set of 2d points.
|
| 448 |
+
U = []
|
| 449 |
+
L = []
|
| 450 |
+
try:
|
| 451 |
+
p.sort(key=lambda x: x.args)
|
| 452 |
+
except TypeError:
|
| 453 |
+
raise ValueError("The points could not be sorted.")
|
| 454 |
+
for p_i in p:
|
| 455 |
+
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
|
| 456 |
+
U.pop()
|
| 457 |
+
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
|
| 458 |
+
L.pop()
|
| 459 |
+
U.append(p_i)
|
| 460 |
+
L.append(p_i)
|
| 461 |
+
U.reverse()
|
| 462 |
+
convexHull = tuple(L + U[1:-1])
|
| 463 |
+
|
| 464 |
+
if len(convexHull) == 2:
|
| 465 |
+
s = Segment(convexHull[0], convexHull[1])
|
| 466 |
+
return s if polygon else (s, None)
|
| 467 |
+
if polygon:
|
| 468 |
+
return Polygon(*convexHull)
|
| 469 |
+
else:
|
| 470 |
+
U.reverse()
|
| 471 |
+
return (U, L)
|
| 472 |
+
|
| 473 |
+
def farthest_points(*args):
|
| 474 |
+
"""Return the subset of points from a set of points that were
|
| 475 |
+
the furthest apart from each other in the 2D plane.
|
| 476 |
+
|
| 477 |
+
Parameters
|
| 478 |
+
==========
|
| 479 |
+
|
| 480 |
+
args
|
| 481 |
+
A collection of Points on 2D plane.
|
| 482 |
+
|
| 483 |
+
Notes
|
| 484 |
+
=====
|
| 485 |
+
|
| 486 |
+
This can only be performed on a set of points whose coordinates can
|
| 487 |
+
be ordered on the number line. If there are no ties then a single
|
| 488 |
+
pair of Points will be in the set.
|
| 489 |
+
|
| 490 |
+
Examples
|
| 491 |
+
========
|
| 492 |
+
|
| 493 |
+
>>> from sympy.geometry import farthest_points, Triangle
|
| 494 |
+
>>> Triangle(sss=(3, 4, 5)).args
|
| 495 |
+
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
|
| 496 |
+
>>> farthest_points(*_)
|
| 497 |
+
{(Point2D(0, 0), Point2D(3, 4))}
|
| 498 |
+
|
| 499 |
+
References
|
| 500 |
+
==========
|
| 501 |
+
|
| 502 |
+
.. [1] https://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
|
| 503 |
+
|
| 504 |
+
.. [2] Rotating Callipers Technique
|
| 505 |
+
https://en.wikipedia.org/wiki/Rotating_calipers
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
def rotatingCalipers(Points):
|
| 510 |
+
U, L = convex_hull(*Points, **{"polygon": False})
|
| 511 |
+
|
| 512 |
+
if L is None:
|
| 513 |
+
if isinstance(U, Point):
|
| 514 |
+
raise ValueError('At least two distinct points must be given.')
|
| 515 |
+
yield U.args
|
| 516 |
+
else:
|
| 517 |
+
i = 0
|
| 518 |
+
j = len(L) - 1
|
| 519 |
+
while i < len(U) - 1 or j > 0:
|
| 520 |
+
yield U[i], L[j]
|
| 521 |
+
# if all the way through one side of hull, advance the other side
|
| 522 |
+
if i == len(U) - 1:
|
| 523 |
+
j -= 1
|
| 524 |
+
elif j == 0:
|
| 525 |
+
i += 1
|
| 526 |
+
# still points left on both lists, compare slopes of next hull edges
|
| 527 |
+
# being careful to avoid divide-by-zero in slope calculation
|
| 528 |
+
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
|
| 529 |
+
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
|
| 530 |
+
i += 1
|
| 531 |
+
else:
|
| 532 |
+
j -= 1
|
| 533 |
+
|
| 534 |
+
p = [Point2D(i) for i in set(args)]
|
| 535 |
+
|
| 536 |
+
if not all(i.is_Rational for j in p for i in j.args):
|
| 537 |
+
def hypot(x, y):
|
| 538 |
+
arg = x*x + y*y
|
| 539 |
+
if arg.is_Rational:
|
| 540 |
+
return _sqrt(arg)
|
| 541 |
+
return sqrt(arg)
|
| 542 |
+
else:
|
| 543 |
+
from math import hypot
|
| 544 |
+
|
| 545 |
+
rv = []
|
| 546 |
+
diam = 0
|
| 547 |
+
for pair in rotatingCalipers(args):
|
| 548 |
+
h, q = _ordered_points(pair)
|
| 549 |
+
d = hypot(h.x - q.x, h.y - q.y)
|
| 550 |
+
if d > diam:
|
| 551 |
+
rv = [(h, q)]
|
| 552 |
+
elif d == diam:
|
| 553 |
+
rv.append((h, q))
|
| 554 |
+
else:
|
| 555 |
+
continue
|
| 556 |
+
diam = d
|
| 557 |
+
|
| 558 |
+
return set(rv)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def idiff(eq, y, x, n=1):
|
| 562 |
+
"""Return ``dy/dx`` assuming that ``eq == 0``.
|
| 563 |
+
|
| 564 |
+
Parameters
|
| 565 |
+
==========
|
| 566 |
+
|
| 567 |
+
y : the dependent variable or a list of dependent variables (with y first)
|
| 568 |
+
x : the variable that the derivative is being taken with respect to
|
| 569 |
+
n : the order of the derivative (default is 1)
|
| 570 |
+
|
| 571 |
+
Examples
|
| 572 |
+
========
|
| 573 |
+
|
| 574 |
+
>>> from sympy.abc import x, y, a
|
| 575 |
+
>>> from sympy.geometry.util import idiff
|
| 576 |
+
|
| 577 |
+
>>> circ = x**2 + y**2 - 4
|
| 578 |
+
>>> idiff(circ, y, x)
|
| 579 |
+
-x/y
|
| 580 |
+
>>> idiff(circ, y, x, 2).simplify()
|
| 581 |
+
(-x**2 - y**2)/y**3
|
| 582 |
+
|
| 583 |
+
Here, ``a`` is assumed to be independent of ``x``:
|
| 584 |
+
|
| 585 |
+
>>> idiff(x + a + y, y, x)
|
| 586 |
+
-1
|
| 587 |
+
|
| 588 |
+
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
|
| 589 |
+
``y`` in a list.
|
| 590 |
+
|
| 591 |
+
>>> idiff(x + a + y, [y, a], x)
|
| 592 |
+
-Derivative(a, x) - 1
|
| 593 |
+
|
| 594 |
+
See Also
|
| 595 |
+
========
|
| 596 |
+
|
| 597 |
+
sympy.core.function.Derivative: represents unevaluated derivatives
|
| 598 |
+
sympy.core.function.diff: explicitly differentiates wrt symbols
|
| 599 |
+
|
| 600 |
+
"""
|
| 601 |
+
if is_sequence(y):
|
| 602 |
+
dep = set(y)
|
| 603 |
+
y = y[0]
|
| 604 |
+
elif isinstance(y, Symbol):
|
| 605 |
+
dep = {y}
|
| 606 |
+
elif isinstance(y, Function):
|
| 607 |
+
pass
|
| 608 |
+
else:
|
| 609 |
+
raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
|
| 610 |
+
|
| 611 |
+
f = {s: Function(s.name)(x) for s in eq.free_symbols
|
| 612 |
+
if s != x and s in dep}
|
| 613 |
+
|
| 614 |
+
if isinstance(y, Symbol):
|
| 615 |
+
dydx = Function(y.name)(x).diff(x)
|
| 616 |
+
else:
|
| 617 |
+
dydx = y.diff(x)
|
| 618 |
+
|
| 619 |
+
eq = eq.subs(f)
|
| 620 |
+
derivs = {}
|
| 621 |
+
for i in range(n):
|
| 622 |
+
# equation will be linear in dydx, a*dydx + b, so dydx = -b/a
|
| 623 |
+
deq = eq.diff(x)
|
| 624 |
+
b = deq.xreplace({dydx: S.Zero})
|
| 625 |
+
a = (deq - b).xreplace({dydx: S.One})
|
| 626 |
+
yp = factor_terms(expand_mul(cancel((-b/a).subs(derivs)), deep=False))
|
| 627 |
+
if i == n - 1:
|
| 628 |
+
return yp.subs([(v, k) for k, v in f.items()])
|
| 629 |
+
derivs[dydx] = yp
|
| 630 |
+
eq = dydx - yp
|
| 631 |
+
dydx = dydx.diff(x)
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
def intersection(*entities, pairwise=False, **kwargs):
|
| 635 |
+
"""The intersection of a collection of GeometryEntity instances.
|
| 636 |
+
|
| 637 |
+
Parameters
|
| 638 |
+
==========
|
| 639 |
+
entities : sequence of GeometryEntity
|
| 640 |
+
pairwise (keyword argument) : Can be either True or False
|
| 641 |
+
|
| 642 |
+
Returns
|
| 643 |
+
=======
|
| 644 |
+
intersection : list of GeometryEntity
|
| 645 |
+
|
| 646 |
+
Raises
|
| 647 |
+
======
|
| 648 |
+
NotImplementedError
|
| 649 |
+
When unable to calculate intersection.
|
| 650 |
+
|
| 651 |
+
Notes
|
| 652 |
+
=====
|
| 653 |
+
The intersection of any geometrical entity with itself should return
|
| 654 |
+
a list with one item: the entity in question.
|
| 655 |
+
An intersection requires two or more entities. If only a single
|
| 656 |
+
entity is given then the function will return an empty list.
|
| 657 |
+
It is possible for `intersection` to miss intersections that one
|
| 658 |
+
knows exists because the required quantities were not fully
|
| 659 |
+
simplified internally.
|
| 660 |
+
Reals should be converted to Rationals, e.g. Rational(str(real_num))
|
| 661 |
+
or else failures due to floating point issues may result.
|
| 662 |
+
|
| 663 |
+
Case 1: When the keyword argument 'pairwise' is False (default value):
|
| 664 |
+
In this case, the function returns a list of intersections common to
|
| 665 |
+
all entities.
|
| 666 |
+
|
| 667 |
+
Case 2: When the keyword argument 'pairwise' is True:
|
| 668 |
+
In this case, the functions returns a list intersections that occur
|
| 669 |
+
between any pair of entities.
|
| 670 |
+
|
| 671 |
+
See Also
|
| 672 |
+
========
|
| 673 |
+
|
| 674 |
+
sympy.geometry.entity.GeometryEntity.intersection
|
| 675 |
+
|
| 676 |
+
Examples
|
| 677 |
+
========
|
| 678 |
+
|
| 679 |
+
>>> from sympy import Ray, Circle, intersection
|
| 680 |
+
>>> c = Circle((0, 1), 1)
|
| 681 |
+
>>> intersection(c, c.center)
|
| 682 |
+
[]
|
| 683 |
+
>>> right = Ray((0, 0), (1, 0))
|
| 684 |
+
>>> up = Ray((0, 0), (0, 1))
|
| 685 |
+
>>> intersection(c, right, up)
|
| 686 |
+
[Point2D(0, 0)]
|
| 687 |
+
>>> intersection(c, right, up, pairwise=True)
|
| 688 |
+
[Point2D(0, 0), Point2D(0, 2)]
|
| 689 |
+
>>> left = Ray((1, 0), (0, 0))
|
| 690 |
+
>>> intersection(right, left)
|
| 691 |
+
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
|
| 692 |
+
|
| 693 |
+
"""
|
| 694 |
+
if len(entities) <= 1:
|
| 695 |
+
return []
|
| 696 |
+
|
| 697 |
+
# entities may be an immutable tuple
|
| 698 |
+
entities = list(entities)
|
| 699 |
+
for i, e in enumerate(entities):
|
| 700 |
+
if not isinstance(e, GeometryEntity):
|
| 701 |
+
entities[i] = Point(e)
|
| 702 |
+
|
| 703 |
+
if not pairwise:
|
| 704 |
+
# find the intersection common to all objects
|
| 705 |
+
res = entities[0].intersection(entities[1])
|
| 706 |
+
for entity in entities[2:]:
|
| 707 |
+
newres = []
|
| 708 |
+
for x in res:
|
| 709 |
+
newres.extend(x.intersection(entity))
|
| 710 |
+
res = newres
|
| 711 |
+
return res
|
| 712 |
+
|
| 713 |
+
# find all pairwise intersections
|
| 714 |
+
ans = []
|
| 715 |
+
for j in range(len(entities)):
|
| 716 |
+
for k in range(j + 1, len(entities)):
|
| 717 |
+
ans.extend(intersection(entities[j], entities[k]))
|
| 718 |
+
return list(ordered(set(ans)))
|
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .cartan_type import CartanType
|
| 2 |
+
|
| 3 |
+
def CartanMatrix(ct):
|
| 4 |
+
"""Access the Cartan matrix of a specific Lie algebra
|
| 5 |
+
|
| 6 |
+
Examples
|
| 7 |
+
========
|
| 8 |
+
|
| 9 |
+
>>> from sympy.liealgebras.cartan_matrix import CartanMatrix
|
| 10 |
+
>>> CartanMatrix("A2")
|
| 11 |
+
Matrix([
|
| 12 |
+
[ 2, -1],
|
| 13 |
+
[-1, 2]])
|
| 14 |
+
|
| 15 |
+
>>> CartanMatrix(['C', 3])
|
| 16 |
+
Matrix([
|
| 17 |
+
[ 2, -1, 0],
|
| 18 |
+
[-1, 2, -1],
|
| 19 |
+
[ 0, -2, 2]])
|
| 20 |
+
|
| 21 |
+
This method works by returning the Cartan matrix
|
| 22 |
+
which corresponds to Cartan type t.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
return CartanType(ct).cartan_matrix()
|
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .cartan_type import CartanType
|
| 2 |
+
from sympy.core.basic import Atom
|
| 3 |
+
|
| 4 |
+
class RootSystem(Atom):
|
| 5 |
+
"""Represent the root system of a simple Lie algebra
|
| 6 |
+
|
| 7 |
+
Every simple Lie algebra has a unique root system. To find the root
|
| 8 |
+
system, we first consider the Cartan subalgebra of g, which is the maximal
|
| 9 |
+
abelian subalgebra, and consider the adjoint action of g on this
|
| 10 |
+
subalgebra. There is a root system associated with this action. Now, a
|
| 11 |
+
root system over a vector space V is a set of finite vectors Phi (called
|
| 12 |
+
roots), which satisfy:
|
| 13 |
+
|
| 14 |
+
1. The roots span V
|
| 15 |
+
2. The only scalar multiples of x in Phi are x and -x
|
| 16 |
+
3. For every x in Phi, the set Phi is closed under reflection
|
| 17 |
+
through the hyperplane perpendicular to x.
|
| 18 |
+
4. If x and y are roots in Phi, then the projection of y onto
|
| 19 |
+
the line through x is a half-integral multiple of x.
|
| 20 |
+
|
| 21 |
+
Now, there is a subset of Phi, which we will call Delta, such that:
|
| 22 |
+
1. Delta is a basis of V
|
| 23 |
+
2. Each root x in Phi can be written x = sum k_y y for y in Delta
|
| 24 |
+
|
| 25 |
+
The elements of Delta are called the simple roots.
|
| 26 |
+
Therefore, we see that the simple roots span the root space of a given
|
| 27 |
+
simple Lie algebra.
|
| 28 |
+
|
| 29 |
+
References
|
| 30 |
+
==========
|
| 31 |
+
|
| 32 |
+
.. [1] https://en.wikipedia.org/wiki/Root_system
|
| 33 |
+
.. [2] Lie Algebras and Representation Theory - Humphreys
|
| 34 |
+
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __new__(cls, cartantype):
|
| 38 |
+
"""Create a new RootSystem object
|
| 39 |
+
|
| 40 |
+
This method assigns an attribute called cartan_type to each instance of
|
| 41 |
+
a RootSystem object. When an instance of RootSystem is called, it
|
| 42 |
+
needs an argument, which should be an instance of a simple Lie algebra.
|
| 43 |
+
We then take the CartanType of this argument and set it as the
|
| 44 |
+
cartan_type attribute of the RootSystem instance.
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
obj = Atom.__new__(cls)
|
| 48 |
+
obj.cartan_type = CartanType(cartantype)
|
| 49 |
+
return obj
|
| 50 |
+
|
| 51 |
+
def simple_roots(self):
|
| 52 |
+
"""Generate the simple roots of the Lie algebra
|
| 53 |
+
|
| 54 |
+
The rank of the Lie algebra determines the number of simple roots that
|
| 55 |
+
it has. This method obtains the rank of the Lie algebra, and then uses
|
| 56 |
+
the simple_root method from the Lie algebra classes to generate all the
|
| 57 |
+
simple roots.
|
| 58 |
+
|
| 59 |
+
Examples
|
| 60 |
+
========
|
| 61 |
+
|
| 62 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 63 |
+
>>> c = RootSystem("A3")
|
| 64 |
+
>>> roots = c.simple_roots()
|
| 65 |
+
>>> roots
|
| 66 |
+
{1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
|
| 67 |
+
|
| 68 |
+
"""
|
| 69 |
+
n = self.cartan_type.rank()
|
| 70 |
+
roots = {}
|
| 71 |
+
for i in range(1, n+1):
|
| 72 |
+
root = self.cartan_type.simple_root(i)
|
| 73 |
+
roots[i] = root
|
| 74 |
+
return roots
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def all_roots(self):
|
| 78 |
+
"""Generate all the roots of a given root system
|
| 79 |
+
|
| 80 |
+
The result is a dictionary where the keys are integer numbers. It
|
| 81 |
+
generates the roots by getting the dictionary of all positive roots
|
| 82 |
+
from the bases classes, and then taking each root, and multiplying it
|
| 83 |
+
by -1 and adding it to the dictionary. In this way all the negative
|
| 84 |
+
roots are generated.
|
| 85 |
+
|
| 86 |
+
"""
|
| 87 |
+
alpha = self.cartan_type.positive_roots()
|
| 88 |
+
keys = list(alpha.keys())
|
| 89 |
+
k = max(keys)
|
| 90 |
+
for val in keys:
|
| 91 |
+
k += 1
|
| 92 |
+
root = alpha[val]
|
| 93 |
+
newroot = [-x for x in root]
|
| 94 |
+
alpha[k] = newroot
|
| 95 |
+
return alpha
|
| 96 |
+
|
| 97 |
+
def root_space(self):
|
| 98 |
+
"""Return the span of the simple roots
|
| 99 |
+
|
| 100 |
+
The root space is the vector space spanned by the simple roots, i.e. it
|
| 101 |
+
is a vector space with a distinguished basis, the simple roots. This
|
| 102 |
+
method returns a string that represents the root space as the span of
|
| 103 |
+
the simple roots, alpha[1],...., alpha[n].
|
| 104 |
+
|
| 105 |
+
Examples
|
| 106 |
+
========
|
| 107 |
+
|
| 108 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 109 |
+
>>> c = RootSystem("A3")
|
| 110 |
+
>>> c.root_space()
|
| 111 |
+
'alpha[1] + alpha[2] + alpha[3]'
|
| 112 |
+
|
| 113 |
+
"""
|
| 114 |
+
n = self.cartan_type.rank()
|
| 115 |
+
rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
|
| 116 |
+
return rs
|
| 117 |
+
|
| 118 |
+
def add_simple_roots(self, root1, root2):
|
| 119 |
+
"""Add two simple roots together
|
| 120 |
+
|
| 121 |
+
The function takes as input two integers, root1 and root2. It then
|
| 122 |
+
uses these integers as keys in the dictionary of simple roots, and gets
|
| 123 |
+
the corresponding simple roots, and then adds them together.
|
| 124 |
+
|
| 125 |
+
Examples
|
| 126 |
+
========
|
| 127 |
+
|
| 128 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 129 |
+
>>> c = RootSystem("A3")
|
| 130 |
+
>>> newroot = c.add_simple_roots(1, 2)
|
| 131 |
+
>>> newroot
|
| 132 |
+
[1, 0, -1, 0]
|
| 133 |
+
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
alpha = self.simple_roots()
|
| 137 |
+
if root1 > len(alpha) or root2 > len(alpha):
|
| 138 |
+
raise ValueError("You've used a root that doesn't exist!")
|
| 139 |
+
a1 = alpha[root1]
|
| 140 |
+
a2 = alpha[root2]
|
| 141 |
+
newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
|
| 142 |
+
return newroot
|
| 143 |
+
|
| 144 |
+
def add_as_roots(self, root1, root2):
|
| 145 |
+
"""Add two roots together if and only if their sum is also a root
|
| 146 |
+
|
| 147 |
+
It takes as input two vectors which should be roots. It then computes
|
| 148 |
+
their sum and checks if it is in the list of all possible roots. If it
|
| 149 |
+
is, it returns the sum. Otherwise it returns a string saying that the
|
| 150 |
+
sum is not a root.
|
| 151 |
+
|
| 152 |
+
Examples
|
| 153 |
+
========
|
| 154 |
+
|
| 155 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 156 |
+
>>> c = RootSystem("A3")
|
| 157 |
+
>>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
|
| 158 |
+
[1, 0, 0, -1]
|
| 159 |
+
>>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
|
| 160 |
+
'The sum of these two roots is not a root'
|
| 161 |
+
|
| 162 |
+
"""
|
| 163 |
+
alpha = self.all_roots()
|
| 164 |
+
newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
|
| 165 |
+
if newroot in alpha.values():
|
| 166 |
+
return newroot
|
| 167 |
+
else:
|
| 168 |
+
return "The sum of these two roots is not a root"
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def cartan_matrix(self):
|
| 172 |
+
"""Cartan matrix of Lie algebra associated with this root system
|
| 173 |
+
|
| 174 |
+
Examples
|
| 175 |
+
========
|
| 176 |
+
|
| 177 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 178 |
+
>>> c = RootSystem("A3")
|
| 179 |
+
>>> c.cartan_matrix()
|
| 180 |
+
Matrix([
|
| 181 |
+
[ 2, -1, 0],
|
| 182 |
+
[-1, 2, -1],
|
| 183 |
+
[ 0, -1, 2]])
|
| 184 |
+
"""
|
| 185 |
+
return self.cartan_type.cartan_matrix()
|
| 186 |
+
|
| 187 |
+
def dynkin_diagram(self):
|
| 188 |
+
"""Dynkin diagram of the Lie algebra associated with this root system
|
| 189 |
+
|
| 190 |
+
Examples
|
| 191 |
+
========
|
| 192 |
+
|
| 193 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
| 194 |
+
>>> c = RootSystem("A3")
|
| 195 |
+
>>> print(c.dynkin_diagram())
|
| 196 |
+
0---0---0
|
| 197 |
+
1 2 3
|
| 198 |
+
"""
|
| 199 |
+
return self.cartan_type.dynkin_diagram()
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .core import dispatch
|
| 2 |
+
from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
|
| 3 |
+
MDNotImplementedError)
|
| 4 |
+
|
| 5 |
+
__version__ = '0.4.9'
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
'dispatch',
|
| 9 |
+
|
| 10 |
+
'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
|
| 11 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .utils import _toposort, groupby
|
| 2 |
+
|
| 3 |
+
class AmbiguityWarning(Warning):
|
| 4 |
+
pass
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def supercedes(a, b):
|
| 8 |
+
""" A is consistent and strictly more specific than B """
|
| 9 |
+
return len(a) == len(b) and all(map(issubclass, a, b))
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def consistent(a, b):
|
| 13 |
+
""" It is possible for an argument list to satisfy both A and B """
|
| 14 |
+
return (len(a) == len(b) and
|
| 15 |
+
all(issubclass(aa, bb) or issubclass(bb, aa)
|
| 16 |
+
for aa, bb in zip(a, b)))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def ambiguous(a, b):
|
| 20 |
+
""" A is consistent with B but neither is strictly more specific """
|
| 21 |
+
return consistent(a, b) and not (supercedes(a, b) or supercedes(b, a))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def ambiguities(signatures):
|
| 25 |
+
""" All signature pairs such that A is ambiguous with B """
|
| 26 |
+
signatures = list(map(tuple, signatures))
|
| 27 |
+
return {(a, b) for a in signatures for b in signatures
|
| 28 |
+
if hash(a) < hash(b)
|
| 29 |
+
and ambiguous(a, b)
|
| 30 |
+
and not any(supercedes(c, a) and supercedes(c, b)
|
| 31 |
+
for c in signatures)}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def super_signature(signatures):
|
| 35 |
+
""" A signature that would break ambiguities """
|
| 36 |
+
n = len(signatures[0])
|
| 37 |
+
assert all(len(s) == n for s in signatures)
|
| 38 |
+
|
| 39 |
+
return [max([type.mro(sig[i]) for sig in signatures], key=len)[0]
|
| 40 |
+
for i in range(n)]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def edge(a, b, tie_breaker=hash):
|
| 44 |
+
""" A should be checked before B
|
| 45 |
+
|
| 46 |
+
Tie broken by tie_breaker, defaults to ``hash``
|
| 47 |
+
"""
|
| 48 |
+
if supercedes(a, b):
|
| 49 |
+
if supercedes(b, a):
|
| 50 |
+
return tie_breaker(a) > tie_breaker(b)
|
| 51 |
+
else:
|
| 52 |
+
return True
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def ordering(signatures):
|
| 57 |
+
""" A sane ordering of signatures to check, first to last
|
| 58 |
+
|
| 59 |
+
Topoological sort of edges as given by ``edge`` and ``supercedes``
|
| 60 |
+
"""
|
| 61 |
+
signatures = list(map(tuple, signatures))
|
| 62 |
+
edges = [(a, b) for a in signatures for b in signatures if edge(a, b)]
|
| 63 |
+
edges = groupby(lambda x: x[0], edges)
|
| 64 |
+
for s in signatures:
|
| 65 |
+
if s not in edges:
|
| 66 |
+
edges[s] = []
|
| 67 |
+
edges = {k: [b for a, b in v] for k, v in edges.items()}
|
| 68 |
+
return _toposort(edges)
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
from typing import Any
|
| 3 |
+
|
| 4 |
+
import inspect
|
| 5 |
+
|
| 6 |
+
from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
|
| 7 |
+
|
| 8 |
+
# XXX: This parameter to dispatch isn't documented and isn't used anywhere in
|
| 9 |
+
# sympy. Maybe it should just be removed.
|
| 10 |
+
global_namespace: dict[str, Any] = {}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
|
| 14 |
+
""" Dispatch function on the types of the inputs
|
| 15 |
+
|
| 16 |
+
Supports dispatch on all non-keyword arguments.
|
| 17 |
+
|
| 18 |
+
Collects implementations based on the function name. Ignores namespaces.
|
| 19 |
+
|
| 20 |
+
If ambiguous type signatures occur a warning is raised when the function is
|
| 21 |
+
defined suggesting the additional method to break the ambiguity.
|
| 22 |
+
|
| 23 |
+
Examples
|
| 24 |
+
--------
|
| 25 |
+
|
| 26 |
+
>>> from sympy.multipledispatch import dispatch
|
| 27 |
+
>>> @dispatch(int)
|
| 28 |
+
... def f(x):
|
| 29 |
+
... return x + 1
|
| 30 |
+
|
| 31 |
+
>>> @dispatch(float)
|
| 32 |
+
... def f(x): # noqa: F811
|
| 33 |
+
... return x - 1
|
| 34 |
+
|
| 35 |
+
>>> f(3)
|
| 36 |
+
4
|
| 37 |
+
>>> f(3.0)
|
| 38 |
+
2.0
|
| 39 |
+
|
| 40 |
+
Specify an isolated namespace with the namespace keyword argument
|
| 41 |
+
|
| 42 |
+
>>> my_namespace = dict()
|
| 43 |
+
>>> @dispatch(int, namespace=my_namespace)
|
| 44 |
+
... def foo(x):
|
| 45 |
+
... return x + 1
|
| 46 |
+
|
| 47 |
+
Dispatch on instance methods within classes
|
| 48 |
+
|
| 49 |
+
>>> class MyClass(object):
|
| 50 |
+
... @dispatch(list)
|
| 51 |
+
... def __init__(self, data):
|
| 52 |
+
... self.data = data
|
| 53 |
+
... @dispatch(int)
|
| 54 |
+
... def __init__(self, datum): # noqa: F811
|
| 55 |
+
... self.data = [datum]
|
| 56 |
+
"""
|
| 57 |
+
types = tuple(types)
|
| 58 |
+
|
| 59 |
+
def _(func):
|
| 60 |
+
name = func.__name__
|
| 61 |
+
|
| 62 |
+
if ismethod(func):
|
| 63 |
+
dispatcher = inspect.currentframe().f_back.f_locals.get(
|
| 64 |
+
name,
|
| 65 |
+
MethodDispatcher(name))
|
| 66 |
+
else:
|
| 67 |
+
if name not in namespace:
|
| 68 |
+
namespace[name] = Dispatcher(name)
|
| 69 |
+
dispatcher = namespace[name]
|
| 70 |
+
|
| 71 |
+
dispatcher.add(types, func, on_ambiguity=on_ambiguity)
|
| 72 |
+
return dispatcher
|
| 73 |
+
return _
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def ismethod(func):
|
| 77 |
+
""" Is func a method?
|
| 78 |
+
|
| 79 |
+
Note that this has to work as the method is defined but before the class is
|
| 80 |
+
defined. At this stage methods look like functions.
|
| 81 |
+
"""
|
| 82 |
+
signature = inspect.signature(func)
|
| 83 |
+
return signature.parameters.get('self', None) is not None
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from warnings import warn
|
| 4 |
+
import inspect
|
| 5 |
+
from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
|
| 6 |
+
from .utils import expand_tuples
|
| 7 |
+
import itertools as itl
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class MDNotImplementedError(NotImplementedError):
|
| 11 |
+
""" A NotImplementedError for multiple dispatch """
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
### Functions for on_ambiguity
|
| 15 |
+
|
| 16 |
+
def ambiguity_warn(dispatcher, ambiguities):
|
| 17 |
+
""" Raise warning when ambiguity is detected
|
| 18 |
+
|
| 19 |
+
Parameters
|
| 20 |
+
----------
|
| 21 |
+
dispatcher : Dispatcher
|
| 22 |
+
The dispatcher on which the ambiguity was detected
|
| 23 |
+
ambiguities : set
|
| 24 |
+
Set of type signature pairs that are ambiguous within this dispatcher
|
| 25 |
+
|
| 26 |
+
See Also:
|
| 27 |
+
Dispatcher.add
|
| 28 |
+
warning_text
|
| 29 |
+
"""
|
| 30 |
+
warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class RaiseNotImplementedError:
|
| 34 |
+
"""Raise ``NotImplementedError`` when called."""
|
| 35 |
+
|
| 36 |
+
def __init__(self, dispatcher):
|
| 37 |
+
self.dispatcher = dispatcher
|
| 38 |
+
|
| 39 |
+
def __call__(self, *args, **kwargs):
|
| 40 |
+
types = tuple(type(a) for a in args)
|
| 41 |
+
raise NotImplementedError(
|
| 42 |
+
"Ambiguous signature for %s: <%s>" % (
|
| 43 |
+
self.dispatcher.name, str_signature(types)
|
| 44 |
+
))
|
| 45 |
+
|
| 46 |
+
def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
|
| 47 |
+
"""
|
| 48 |
+
If super signature for ambiguous types is duplicate types, ignore it.
|
| 49 |
+
Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
|
| 50 |
+
|
| 51 |
+
Parameters
|
| 52 |
+
----------
|
| 53 |
+
dispatcher : Dispatcher
|
| 54 |
+
The dispatcher on which the ambiguity was detected
|
| 55 |
+
ambiguities : set
|
| 56 |
+
Set of type signature pairs that are ambiguous within this dispatcher
|
| 57 |
+
|
| 58 |
+
See Also:
|
| 59 |
+
Dispatcher.add
|
| 60 |
+
ambiguity_warn
|
| 61 |
+
"""
|
| 62 |
+
for amb in ambiguities:
|
| 63 |
+
signature = tuple(super_signature(amb))
|
| 64 |
+
if len(set(signature)) == 1:
|
| 65 |
+
continue
|
| 66 |
+
dispatcher.add(
|
| 67 |
+
signature, RaiseNotImplementedError(dispatcher),
|
| 68 |
+
on_ambiguity=ambiguity_register_error_ignore_dup
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
###
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
_unresolved_dispatchers: set[Dispatcher] = set()
|
| 75 |
+
_resolve = [True]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def halt_ordering():
|
| 79 |
+
_resolve[0] = False
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def restart_ordering(on_ambiguity=ambiguity_warn):
|
| 83 |
+
_resolve[0] = True
|
| 84 |
+
while _unresolved_dispatchers:
|
| 85 |
+
dispatcher = _unresolved_dispatchers.pop()
|
| 86 |
+
dispatcher.reorder(on_ambiguity=on_ambiguity)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class Dispatcher:
|
| 90 |
+
""" Dispatch methods based on type signature
|
| 91 |
+
|
| 92 |
+
Use ``dispatch`` to add implementations
|
| 93 |
+
|
| 94 |
+
Examples
|
| 95 |
+
--------
|
| 96 |
+
|
| 97 |
+
>>> from sympy.multipledispatch import dispatch
|
| 98 |
+
>>> @dispatch(int)
|
| 99 |
+
... def f(x):
|
| 100 |
+
... return x + 1
|
| 101 |
+
|
| 102 |
+
>>> @dispatch(float)
|
| 103 |
+
... def f(x): # noqa: F811
|
| 104 |
+
... return x - 1
|
| 105 |
+
|
| 106 |
+
>>> f(3)
|
| 107 |
+
4
|
| 108 |
+
>>> f(3.0)
|
| 109 |
+
2.0
|
| 110 |
+
"""
|
| 111 |
+
__slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
|
| 112 |
+
|
| 113 |
+
def __init__(self, name, doc=None):
|
| 114 |
+
self.name = self.__name__ = name
|
| 115 |
+
self.funcs = {}
|
| 116 |
+
self._cache = {}
|
| 117 |
+
self.ordering = []
|
| 118 |
+
self.doc = doc
|
| 119 |
+
|
| 120 |
+
def register(self, *types, **kwargs):
|
| 121 |
+
""" Register dispatcher with new implementation
|
| 122 |
+
|
| 123 |
+
>>> from sympy.multipledispatch.dispatcher import Dispatcher
|
| 124 |
+
>>> f = Dispatcher('f')
|
| 125 |
+
>>> @f.register(int)
|
| 126 |
+
... def inc(x):
|
| 127 |
+
... return x + 1
|
| 128 |
+
|
| 129 |
+
>>> @f.register(float)
|
| 130 |
+
... def dec(x):
|
| 131 |
+
... return x - 1
|
| 132 |
+
|
| 133 |
+
>>> @f.register(list)
|
| 134 |
+
... @f.register(tuple)
|
| 135 |
+
... def reverse(x):
|
| 136 |
+
... return x[::-1]
|
| 137 |
+
|
| 138 |
+
>>> f(1)
|
| 139 |
+
2
|
| 140 |
+
|
| 141 |
+
>>> f(1.0)
|
| 142 |
+
0.0
|
| 143 |
+
|
| 144 |
+
>>> f([1, 2, 3])
|
| 145 |
+
[3, 2, 1]
|
| 146 |
+
"""
|
| 147 |
+
def _(func):
|
| 148 |
+
self.add(types, func, **kwargs)
|
| 149 |
+
return func
|
| 150 |
+
return _
|
| 151 |
+
|
| 152 |
+
@classmethod
|
| 153 |
+
def get_func_params(cls, func):
|
| 154 |
+
if hasattr(inspect, "signature"):
|
| 155 |
+
sig = inspect.signature(func)
|
| 156 |
+
return sig.parameters.values()
|
| 157 |
+
|
| 158 |
+
@classmethod
|
| 159 |
+
def get_func_annotations(cls, func):
|
| 160 |
+
""" Get annotations of function positional parameters
|
| 161 |
+
"""
|
| 162 |
+
params = cls.get_func_params(func)
|
| 163 |
+
if params:
|
| 164 |
+
Parameter = inspect.Parameter
|
| 165 |
+
|
| 166 |
+
params = (param for param in params
|
| 167 |
+
if param.kind in
|
| 168 |
+
(Parameter.POSITIONAL_ONLY,
|
| 169 |
+
Parameter.POSITIONAL_OR_KEYWORD))
|
| 170 |
+
|
| 171 |
+
annotations = tuple(
|
| 172 |
+
param.annotation
|
| 173 |
+
for param in params)
|
| 174 |
+
|
| 175 |
+
if not any(ann is Parameter.empty for ann in annotations):
|
| 176 |
+
return annotations
|
| 177 |
+
|
| 178 |
+
def add(self, signature, func, on_ambiguity=ambiguity_warn):
|
| 179 |
+
""" Add new types/method pair to dispatcher
|
| 180 |
+
|
| 181 |
+
>>> from sympy.multipledispatch import Dispatcher
|
| 182 |
+
>>> D = Dispatcher('add')
|
| 183 |
+
>>> D.add((int, int), lambda x, y: x + y)
|
| 184 |
+
>>> D.add((float, float), lambda x, y: x + y)
|
| 185 |
+
|
| 186 |
+
>>> D(1, 2)
|
| 187 |
+
3
|
| 188 |
+
>>> D(1, 2.0)
|
| 189 |
+
Traceback (most recent call last):
|
| 190 |
+
...
|
| 191 |
+
NotImplementedError: Could not find signature for add: <int, float>
|
| 192 |
+
|
| 193 |
+
When ``add`` detects a warning it calls the ``on_ambiguity`` callback
|
| 194 |
+
with a dispatcher/itself, and a set of ambiguous type signature pairs
|
| 195 |
+
as inputs. See ``ambiguity_warn`` for an example.
|
| 196 |
+
"""
|
| 197 |
+
# Handle annotations
|
| 198 |
+
if not signature:
|
| 199 |
+
annotations = self.get_func_annotations(func)
|
| 200 |
+
if annotations:
|
| 201 |
+
signature = annotations
|
| 202 |
+
|
| 203 |
+
# Handle union types
|
| 204 |
+
if any(isinstance(typ, tuple) for typ in signature):
|
| 205 |
+
for typs in expand_tuples(signature):
|
| 206 |
+
self.add(typs, func, on_ambiguity)
|
| 207 |
+
return
|
| 208 |
+
|
| 209 |
+
for typ in signature:
|
| 210 |
+
if not isinstance(typ, type):
|
| 211 |
+
str_sig = ', '.join(c.__name__ if isinstance(c, type)
|
| 212 |
+
else str(c) for c in signature)
|
| 213 |
+
raise TypeError("Tried to dispatch on non-type: %s\n"
|
| 214 |
+
"In signature: <%s>\n"
|
| 215 |
+
"In function: %s" %
|
| 216 |
+
(typ, str_sig, self.name))
|
| 217 |
+
|
| 218 |
+
self.funcs[signature] = func
|
| 219 |
+
self.reorder(on_ambiguity=on_ambiguity)
|
| 220 |
+
self._cache.clear()
|
| 221 |
+
|
| 222 |
+
def reorder(self, on_ambiguity=ambiguity_warn):
|
| 223 |
+
if _resolve[0]:
|
| 224 |
+
self.ordering = ordering(self.funcs)
|
| 225 |
+
amb = ambiguities(self.funcs)
|
| 226 |
+
if amb:
|
| 227 |
+
on_ambiguity(self, amb)
|
| 228 |
+
else:
|
| 229 |
+
_unresolved_dispatchers.add(self)
|
| 230 |
+
|
| 231 |
+
def __call__(self, *args, **kwargs):
|
| 232 |
+
types = tuple([type(arg) for arg in args])
|
| 233 |
+
try:
|
| 234 |
+
func = self._cache[types]
|
| 235 |
+
except KeyError:
|
| 236 |
+
func = self.dispatch(*types)
|
| 237 |
+
if not func:
|
| 238 |
+
raise NotImplementedError(
|
| 239 |
+
'Could not find signature for %s: <%s>' %
|
| 240 |
+
(self.name, str_signature(types)))
|
| 241 |
+
self._cache[types] = func
|
| 242 |
+
try:
|
| 243 |
+
return func(*args, **kwargs)
|
| 244 |
+
|
| 245 |
+
except MDNotImplementedError:
|
| 246 |
+
funcs = self.dispatch_iter(*types)
|
| 247 |
+
next(funcs) # burn first
|
| 248 |
+
for func in funcs:
|
| 249 |
+
try:
|
| 250 |
+
return func(*args, **kwargs)
|
| 251 |
+
except MDNotImplementedError:
|
| 252 |
+
pass
|
| 253 |
+
raise NotImplementedError("Matching functions for "
|
| 254 |
+
"%s: <%s> found, but none completed successfully"
|
| 255 |
+
% (self.name, str_signature(types)))
|
| 256 |
+
|
| 257 |
+
def __str__(self):
|
| 258 |
+
return "<dispatched %s>" % self.name
|
| 259 |
+
__repr__ = __str__
|
| 260 |
+
|
| 261 |
+
def dispatch(self, *types):
|
| 262 |
+
""" Deterimine appropriate implementation for this type signature
|
| 263 |
+
|
| 264 |
+
This method is internal. Users should call this object as a function.
|
| 265 |
+
Implementation resolution occurs within the ``__call__`` method.
|
| 266 |
+
|
| 267 |
+
>>> from sympy.multipledispatch import dispatch
|
| 268 |
+
>>> @dispatch(int)
|
| 269 |
+
... def inc(x):
|
| 270 |
+
... return x + 1
|
| 271 |
+
|
| 272 |
+
>>> implementation = inc.dispatch(int)
|
| 273 |
+
>>> implementation(3)
|
| 274 |
+
4
|
| 275 |
+
|
| 276 |
+
>>> print(inc.dispatch(float))
|
| 277 |
+
None
|
| 278 |
+
|
| 279 |
+
See Also:
|
| 280 |
+
``sympy.multipledispatch.conflict`` - module to determine resolution order
|
| 281 |
+
"""
|
| 282 |
+
|
| 283 |
+
if types in self.funcs:
|
| 284 |
+
return self.funcs[types]
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
return next(self.dispatch_iter(*types))
|
| 288 |
+
except StopIteration:
|
| 289 |
+
return None
|
| 290 |
+
|
| 291 |
+
def dispatch_iter(self, *types):
|
| 292 |
+
n = len(types)
|
| 293 |
+
for signature in self.ordering:
|
| 294 |
+
if len(signature) == n and all(map(issubclass, types, signature)):
|
| 295 |
+
result = self.funcs[signature]
|
| 296 |
+
yield result
|
| 297 |
+
|
| 298 |
+
def resolve(self, types):
|
| 299 |
+
""" Deterimine appropriate implementation for this type signature
|
| 300 |
+
|
| 301 |
+
.. deprecated:: 0.4.4
|
| 302 |
+
Use ``dispatch(*types)`` instead
|
| 303 |
+
"""
|
| 304 |
+
warn("resolve() is deprecated, use dispatch(*types)",
|
| 305 |
+
DeprecationWarning)
|
| 306 |
+
|
| 307 |
+
return self.dispatch(*types)
|
| 308 |
+
|
| 309 |
+
def __getstate__(self):
|
| 310 |
+
return {'name': self.name,
|
| 311 |
+
'funcs': self.funcs}
|
| 312 |
+
|
| 313 |
+
def __setstate__(self, d):
|
| 314 |
+
self.name = d['name']
|
| 315 |
+
self.funcs = d['funcs']
|
| 316 |
+
self.ordering = ordering(self.funcs)
|
| 317 |
+
self._cache = {}
|
| 318 |
+
|
| 319 |
+
@property
|
| 320 |
+
def __doc__(self):
|
| 321 |
+
docs = ["Multiply dispatched method: %s" % self.name]
|
| 322 |
+
|
| 323 |
+
if self.doc:
|
| 324 |
+
docs.append(self.doc)
|
| 325 |
+
|
| 326 |
+
other = []
|
| 327 |
+
for sig in self.ordering[::-1]:
|
| 328 |
+
func = self.funcs[sig]
|
| 329 |
+
if func.__doc__:
|
| 330 |
+
s = 'Inputs: <%s>\n' % str_signature(sig)
|
| 331 |
+
s += '-' * len(s) + '\n'
|
| 332 |
+
s += func.__doc__.strip()
|
| 333 |
+
docs.append(s)
|
| 334 |
+
else:
|
| 335 |
+
other.append(str_signature(sig))
|
| 336 |
+
|
| 337 |
+
if other:
|
| 338 |
+
docs.append('Other signatures:\n ' + '\n '.join(other))
|
| 339 |
+
|
| 340 |
+
return '\n\n'.join(docs)
|
| 341 |
+
|
| 342 |
+
def _help(self, *args):
|
| 343 |
+
return self.dispatch(*map(type, args)).__doc__
|
| 344 |
+
|
| 345 |
+
def help(self, *args, **kwargs):
|
| 346 |
+
""" Print docstring for the function corresponding to inputs """
|
| 347 |
+
print(self._help(*args))
|
| 348 |
+
|
| 349 |
+
def _source(self, *args):
|
| 350 |
+
func = self.dispatch(*map(type, args))
|
| 351 |
+
if not func:
|
| 352 |
+
raise TypeError("No function found")
|
| 353 |
+
return source(func)
|
| 354 |
+
|
| 355 |
+
def source(self, *args, **kwargs):
|
| 356 |
+
""" Print source code for the function corresponding to inputs """
|
| 357 |
+
print(self._source(*args))
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def source(func):
|
| 361 |
+
s = 'File: %s\n\n' % inspect.getsourcefile(func)
|
| 362 |
+
s = s + inspect.getsource(func)
|
| 363 |
+
return s
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class MethodDispatcher(Dispatcher):
|
| 367 |
+
""" Dispatch methods based on type signature
|
| 368 |
+
|
| 369 |
+
See Also:
|
| 370 |
+
Dispatcher
|
| 371 |
+
"""
|
| 372 |
+
|
| 373 |
+
@classmethod
|
| 374 |
+
def get_func_params(cls, func):
|
| 375 |
+
if hasattr(inspect, "signature"):
|
| 376 |
+
sig = inspect.signature(func)
|
| 377 |
+
return itl.islice(sig.parameters.values(), 1, None)
|
| 378 |
+
|
| 379 |
+
def __get__(self, instance, owner):
|
| 380 |
+
self.obj = instance
|
| 381 |
+
self.cls = owner
|
| 382 |
+
return self
|
| 383 |
+
|
| 384 |
+
def __call__(self, *args, **kwargs):
|
| 385 |
+
types = tuple([type(arg) for arg in args])
|
| 386 |
+
func = self.dispatch(*types)
|
| 387 |
+
if not func:
|
| 388 |
+
raise NotImplementedError('Could not find signature for %s: <%s>' %
|
| 389 |
+
(self.name, str_signature(types)))
|
| 390 |
+
return func(self.obj, *args, **kwargs)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def str_signature(sig):
|
| 394 |
+
""" String representation of type signature
|
| 395 |
+
|
| 396 |
+
>>> from sympy.multipledispatch.dispatcher import str_signature
|
| 397 |
+
>>> str_signature((int, float))
|
| 398 |
+
'int, float'
|
| 399 |
+
"""
|
| 400 |
+
return ', '.join(cls.__name__ for cls in sig)
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
def warning_text(name, amb):
|
| 404 |
+
""" The text for ambiguity warnings """
|
| 405 |
+
text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
|
| 406 |
+
text += "The following signatures may result in ambiguous behavior:\n"
|
| 407 |
+
for pair in amb:
|
| 408 |
+
text += "\t" + \
|
| 409 |
+
', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
|
| 410 |
+
text += "\n\nConsider making the following additions:\n\n"
|
| 411 |
+
text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
|
| 412 |
+
+ ')\ndef %s(...)' % name for s in amb])
|
| 413 |
+
return text
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py
ADDED
|
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (193 Bytes). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc
ADDED
|
Binary file (7.39 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.multipledispatch.conflict import (supercedes, ordering, ambiguities,
|
| 2 |
+
ambiguous, super_signature, consistent)
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class A: pass
|
| 6 |
+
class B(A): pass
|
| 7 |
+
class C: pass
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def test_supercedes():
|
| 11 |
+
assert supercedes([B], [A])
|
| 12 |
+
assert supercedes([B, A], [A, A])
|
| 13 |
+
assert not supercedes([B, A], [A, B])
|
| 14 |
+
assert not supercedes([A], [B])
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def test_consistent():
|
| 18 |
+
assert consistent([A], [A])
|
| 19 |
+
assert consistent([B], [B])
|
| 20 |
+
assert not consistent([A], [C])
|
| 21 |
+
assert consistent([A, B], [A, B])
|
| 22 |
+
assert consistent([B, A], [A, B])
|
| 23 |
+
assert not consistent([B, A], [B])
|
| 24 |
+
assert not consistent([B, A], [B, C])
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def test_super_signature():
|
| 28 |
+
assert super_signature([[A]]) == [A]
|
| 29 |
+
assert super_signature([[A], [B]]) == [B]
|
| 30 |
+
assert super_signature([[A, B], [B, A]]) == [B, B]
|
| 31 |
+
assert super_signature([[A, A, B], [A, B, A], [B, A, A]]) == [B, B, B]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def test_ambiguous():
|
| 35 |
+
assert not ambiguous([A], [A])
|
| 36 |
+
assert not ambiguous([A], [B])
|
| 37 |
+
assert not ambiguous([B], [B])
|
| 38 |
+
assert not ambiguous([A, B], [B, B])
|
| 39 |
+
assert ambiguous([A, B], [B, A])
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def test_ambiguities():
|
| 43 |
+
signatures = [[A], [B], [A, B], [B, A], [A, C]]
|
| 44 |
+
expected = {((A, B), (B, A))}
|
| 45 |
+
result = ambiguities(signatures)
|
| 46 |
+
assert set(map(frozenset, expected)) == set(map(frozenset, result))
|
| 47 |
+
|
| 48 |
+
signatures = [[A], [B], [A, B], [B, A], [A, C], [B, B]]
|
| 49 |
+
expected = set()
|
| 50 |
+
result = ambiguities(signatures)
|
| 51 |
+
assert set(map(frozenset, expected)) == set(map(frozenset, result))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def test_ordering():
|
| 55 |
+
signatures = [[A, A], [A, B], [B, A], [B, B], [A, C]]
|
| 56 |
+
ord = ordering(signatures)
|
| 57 |
+
assert ord[0] == (B, B) or ord[0] == (A, C)
|
| 58 |
+
assert ord[-1] == (A, A) or ord[-1] == (A, C)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def test_type_mro():
|
| 62 |
+
assert super_signature([[object], [type]]) == [type]
|