applied-ai-018 commited on
Commit
3a16979
·
verified ·
1 Parent(s): 73ed65b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py +45 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py +1780 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py +641 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py +5 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py +2883 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py +120 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py +601 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py +120 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py +38 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py +852 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py +143 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py +268 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py +481 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py +664 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py +151 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py +718 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py +25 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py +199 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py +11 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py +68 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py +83 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py +413 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py +62 -0
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A geometry module for the SymPy library. This module contains all of the
3
+ entities and functions needed to construct basic geometrical data and to
4
+ perform simple informational queries.
5
+
6
+ Usage:
7
+ ======
8
+
9
+ Examples
10
+ ========
11
+
12
+ """
13
+ from sympy.geometry.point import Point, Point2D, Point3D
14
+ from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
15
+ Line3D, Segment3D, Ray3D
16
+ from sympy.geometry.plane import Plane
17
+ from sympy.geometry.ellipse import Ellipse, Circle
18
+ from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
19
+ from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
20
+ intersection, closest_points, farthest_points
21
+ from sympy.geometry.exceptions import GeometryError
22
+ from sympy.geometry.curve import Curve
23
+ from sympy.geometry.parabola import Parabola
24
+
25
+ __all__ = [
26
+ 'Point', 'Point2D', 'Point3D',
27
+
28
+ 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
29
+ 'Segment3D', 'Ray3D',
30
+
31
+ 'Plane',
32
+
33
+ 'Ellipse', 'Circle',
34
+
35
+ 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
36
+
37
+ 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
38
+ 'closest_points', 'farthest_points',
39
+
40
+ 'GeometryError',
41
+
42
+ 'Curve',
43
+
44
+ 'Parabola',
45
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.46 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc ADDED
Binary file (48.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc ADDED
Binary file (21.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc ADDED
Binary file (452 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc ADDED
Binary file (70.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc ADDED
Binary file (25.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc ADDED
Binary file (39.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc ADDED
Binary file (78 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc ADDED
Binary file (20.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py ADDED
@@ -0,0 +1,1780 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Elliptical geometrical entities.
2
+
3
+ Contains
4
+ * Ellipse
5
+ * Circle
6
+
7
+ """
8
+
9
+ from sympy.core.expr import Expr
10
+ from sympy.core.relational import Eq
11
+ from sympy.core import S, pi, sympify
12
+ from sympy.core.evalf import N
13
+ from sympy.core.parameters import global_parameters
14
+ from sympy.core.logic import fuzzy_bool
15
+ from sympy.core.numbers import Rational, oo
16
+ from sympy.core.sorting import ordered
17
+ from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
18
+ from sympy.simplify import simplify, trigsimp
19
+ from sympy.functions.elementary.miscellaneous import sqrt, Max
20
+ from sympy.functions.elementary.trigonometric import cos, sin
21
+ from sympy.functions.special.elliptic_integrals import elliptic_e
22
+ from .entity import GeometryEntity, GeometrySet
23
+ from .exceptions import GeometryError
24
+ from .line import Line, Segment, Ray2D, Segment2D, Line2D, LinearEntity3D
25
+ from .point import Point, Point2D, Point3D
26
+ from .util import idiff, find
27
+ from sympy.polys import DomainError, Poly, PolynomialError
28
+ from sympy.polys.polyutils import _not_a_coeff, _nsort
29
+ from sympy.solvers import solve
30
+ from sympy.solvers.solveset import linear_coeffs
31
+ from sympy.utilities.misc import filldedent, func_name
32
+
33
+ from mpmath.libmp.libmpf import prec_to_dps
34
+
35
+ import random
36
+
37
+ x, y = [Dummy('ellipse_dummy', real=True) for i in range(2)]
38
+
39
+
40
+ class Ellipse(GeometrySet):
41
+ """An elliptical GeometryEntity.
42
+
43
+ Parameters
44
+ ==========
45
+
46
+ center : Point, optional
47
+ Default value is Point(0, 0)
48
+ hradius : number or SymPy expression, optional
49
+ vradius : number or SymPy expression, optional
50
+ eccentricity : number or SymPy expression, optional
51
+ Two of `hradius`, `vradius` and `eccentricity` must be supplied to
52
+ create an Ellipse. The third is derived from the two supplied.
53
+
54
+ Attributes
55
+ ==========
56
+
57
+ center
58
+ hradius
59
+ vradius
60
+ area
61
+ circumference
62
+ eccentricity
63
+ periapsis
64
+ apoapsis
65
+ focus_distance
66
+ foci
67
+
68
+ Raises
69
+ ======
70
+
71
+ GeometryError
72
+ When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
73
+ as parameters.
74
+ TypeError
75
+ When `center` is not a Point.
76
+
77
+ See Also
78
+ ========
79
+
80
+ Circle
81
+
82
+ Notes
83
+ -----
84
+ Constructed from a center and two radii, the first being the horizontal
85
+ radius (along the x-axis) and the second being the vertical radius (along
86
+ the y-axis).
87
+
88
+ When symbolic value for hradius and vradius are used, any calculation that
89
+ refers to the foci or the major or minor axis will assume that the ellipse
90
+ has its major radius on the x-axis. If this is not true then a manual
91
+ rotation is necessary.
92
+
93
+ Examples
94
+ ========
95
+
96
+ >>> from sympy import Ellipse, Point, Rational
97
+ >>> e1 = Ellipse(Point(0, 0), 5, 1)
98
+ >>> e1.hradius, e1.vradius
99
+ (5, 1)
100
+ >>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
101
+ >>> e2
102
+ Ellipse(Point2D(3, 1), 3, 9/5)
103
+
104
+ """
105
+
106
+ def __contains__(self, o):
107
+ if isinstance(o, Point):
108
+ res = self.equation(x, y).subs({x: o.x, y: o.y})
109
+ return trigsimp(simplify(res)) is S.Zero
110
+ elif isinstance(o, Ellipse):
111
+ return self == o
112
+ return False
113
+
114
+ def __eq__(self, o):
115
+ """Is the other GeometryEntity the same as this ellipse?"""
116
+ return isinstance(o, Ellipse) and (self.center == o.center and
117
+ self.hradius == o.hradius and
118
+ self.vradius == o.vradius)
119
+
120
+ def __hash__(self):
121
+ return super().__hash__()
122
+
123
+ def __new__(
124
+ cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
125
+
126
+ hradius = sympify(hradius)
127
+ vradius = sympify(vradius)
128
+
129
+ if center is None:
130
+ center = Point(0, 0)
131
+ else:
132
+ if len(center) != 2:
133
+ raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
134
+ center = Point(center, dim=2)
135
+
136
+ if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
137
+ raise ValueError(filldedent('''
138
+ Exactly two arguments of "hradius", "vradius", and
139
+ "eccentricity" must not be None.'''))
140
+
141
+ if eccentricity is not None:
142
+ eccentricity = sympify(eccentricity)
143
+ if eccentricity.is_negative:
144
+ raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
145
+ elif hradius is None:
146
+ hradius = vradius / sqrt(1 - eccentricity**2)
147
+ elif vradius is None:
148
+ vradius = hradius * sqrt(1 - eccentricity**2)
149
+
150
+ if hradius == vradius:
151
+ return Circle(center, hradius, **kwargs)
152
+
153
+ if S.Zero in (hradius, vradius):
154
+ return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
155
+
156
+ if hradius.is_real is False or vradius.is_real is False:
157
+ raise GeometryError("Invalid value encountered when computing hradius / vradius.")
158
+
159
+ return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
160
+
161
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
162
+ """Returns SVG ellipse element for the Ellipse.
163
+
164
+ Parameters
165
+ ==========
166
+
167
+ scale_factor : float
168
+ Multiplication factor for the SVG stroke-width. Default is 1.
169
+ fill_color : str, optional
170
+ Hex string for fill color. Default is "#66cc99".
171
+ """
172
+
173
+ c = N(self.center)
174
+ h, v = N(self.hradius), N(self.vradius)
175
+ return (
176
+ '<ellipse fill="{1}" stroke="#555555" '
177
+ 'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
178
+ ).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
179
+
180
+ @property
181
+ def ambient_dimension(self):
182
+ return 2
183
+
184
+ @property
185
+ def apoapsis(self):
186
+ """The apoapsis of the ellipse.
187
+
188
+ The greatest distance between the focus and the contour.
189
+
190
+ Returns
191
+ =======
192
+
193
+ apoapsis : number
194
+
195
+ See Also
196
+ ========
197
+
198
+ periapsis : Returns shortest distance between foci and contour
199
+
200
+ Examples
201
+ ========
202
+
203
+ >>> from sympy import Point, Ellipse
204
+ >>> p1 = Point(0, 0)
205
+ >>> e1 = Ellipse(p1, 3, 1)
206
+ >>> e1.apoapsis
207
+ 2*sqrt(2) + 3
208
+
209
+ """
210
+ return self.major * (1 + self.eccentricity)
211
+
212
+ def arbitrary_point(self, parameter='t'):
213
+ """A parameterized point on the ellipse.
214
+
215
+ Parameters
216
+ ==========
217
+
218
+ parameter : str, optional
219
+ Default value is 't'.
220
+
221
+ Returns
222
+ =======
223
+
224
+ arbitrary_point : Point
225
+
226
+ Raises
227
+ ======
228
+
229
+ ValueError
230
+ When `parameter` already appears in the functions.
231
+
232
+ See Also
233
+ ========
234
+
235
+ sympy.geometry.point.Point
236
+
237
+ Examples
238
+ ========
239
+
240
+ >>> from sympy import Point, Ellipse
241
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
242
+ >>> e1.arbitrary_point()
243
+ Point2D(3*cos(t), 2*sin(t))
244
+
245
+ """
246
+ t = _symbol(parameter, real=True)
247
+ if t.name in (f.name for f in self.free_symbols):
248
+ raise ValueError(filldedent('Symbol %s already appears in object '
249
+ 'and cannot be used as a parameter.' % t.name))
250
+ return Point(self.center.x + self.hradius*cos(t),
251
+ self.center.y + self.vradius*sin(t))
252
+
253
+ @property
254
+ def area(self):
255
+ """The area of the ellipse.
256
+
257
+ Returns
258
+ =======
259
+
260
+ area : number
261
+
262
+ Examples
263
+ ========
264
+
265
+ >>> from sympy import Point, Ellipse
266
+ >>> p1 = Point(0, 0)
267
+ >>> e1 = Ellipse(p1, 3, 1)
268
+ >>> e1.area
269
+ 3*pi
270
+
271
+ """
272
+ return simplify(S.Pi * self.hradius * self.vradius)
273
+
274
+ @property
275
+ def bounds(self):
276
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
277
+ rectangle for the geometric figure.
278
+
279
+ """
280
+
281
+ h, v = self.hradius, self.vradius
282
+ return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
283
+
284
+ @property
285
+ def center(self):
286
+ """The center of the ellipse.
287
+
288
+ Returns
289
+ =======
290
+
291
+ center : number
292
+
293
+ See Also
294
+ ========
295
+
296
+ sympy.geometry.point.Point
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import Point, Ellipse
302
+ >>> p1 = Point(0, 0)
303
+ >>> e1 = Ellipse(p1, 3, 1)
304
+ >>> e1.center
305
+ Point2D(0, 0)
306
+
307
+ """
308
+ return self.args[0]
309
+
310
+ @property
311
+ def circumference(self):
312
+ """The circumference of the ellipse.
313
+
314
+ Examples
315
+ ========
316
+
317
+ >>> from sympy import Point, Ellipse
318
+ >>> p1 = Point(0, 0)
319
+ >>> e1 = Ellipse(p1, 3, 1)
320
+ >>> e1.circumference
321
+ 12*elliptic_e(8/9)
322
+
323
+ """
324
+ if self.eccentricity == 1:
325
+ # degenerate
326
+ return 4*self.major
327
+ elif self.eccentricity == 0:
328
+ # circle
329
+ return 2*pi*self.hradius
330
+ else:
331
+ return 4*self.major*elliptic_e(self.eccentricity**2)
332
+
333
+ @property
334
+ def eccentricity(self):
335
+ """The eccentricity of the ellipse.
336
+
337
+ Returns
338
+ =======
339
+
340
+ eccentricity : number
341
+
342
+ Examples
343
+ ========
344
+
345
+ >>> from sympy import Point, Ellipse, sqrt
346
+ >>> p1 = Point(0, 0)
347
+ >>> e1 = Ellipse(p1, 3, sqrt(2))
348
+ >>> e1.eccentricity
349
+ sqrt(7)/3
350
+
351
+ """
352
+ return self.focus_distance / self.major
353
+
354
+ def encloses_point(self, p):
355
+ """
356
+ Return True if p is enclosed by (is inside of) self.
357
+
358
+ Notes
359
+ -----
360
+ Being on the border of self is considered False.
361
+
362
+ Parameters
363
+ ==========
364
+
365
+ p : Point
366
+
367
+ Returns
368
+ =======
369
+
370
+ encloses_point : True, False or None
371
+
372
+ See Also
373
+ ========
374
+
375
+ sympy.geometry.point.Point
376
+
377
+ Examples
378
+ ========
379
+
380
+ >>> from sympy import Ellipse, S
381
+ >>> from sympy.abc import t
382
+ >>> e = Ellipse((0, 0), 3, 2)
383
+ >>> e.encloses_point((0, 0))
384
+ True
385
+ >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
386
+ False
387
+ >>> e.encloses_point((4, 0))
388
+ False
389
+
390
+ """
391
+ p = Point(p, dim=2)
392
+ if p in self:
393
+ return False
394
+
395
+ if len(self.foci) == 2:
396
+ # if the combined distance from the foci to p (h1 + h2) is less
397
+ # than the combined distance from the foci to the minor axis
398
+ # (which is the same as the major axis length) then p is inside
399
+ # the ellipse
400
+ h1, h2 = [f.distance(p) for f in self.foci]
401
+ test = 2*self.major - (h1 + h2)
402
+ else:
403
+ test = self.radius - self.center.distance(p)
404
+
405
+ return fuzzy_bool(test.is_positive)
406
+
407
+ def equation(self, x='x', y='y', _slope=None):
408
+ """
409
+ Returns the equation of an ellipse aligned with the x and y axes;
410
+ when slope is given, the equation returned corresponds to an ellipse
411
+ with a major axis having that slope.
412
+
413
+ Parameters
414
+ ==========
415
+
416
+ x : str, optional
417
+ Label for the x-axis. Default value is 'x'.
418
+ y : str, optional
419
+ Label for the y-axis. Default value is 'y'.
420
+ _slope : Expr, optional
421
+ The slope of the major axis. Ignored when 'None'.
422
+
423
+ Returns
424
+ =======
425
+
426
+ equation : SymPy expression
427
+
428
+ See Also
429
+ ========
430
+
431
+ arbitrary_point : Returns parameterized point on ellipse
432
+
433
+ Examples
434
+ ========
435
+
436
+ >>> from sympy import Point, Ellipse, pi
437
+ >>> from sympy.abc import x, y
438
+ >>> e1 = Ellipse(Point(1, 0), 3, 2)
439
+ >>> eq1 = e1.equation(x, y); eq1
440
+ y**2/4 + (x/3 - 1/3)**2 - 1
441
+ >>> eq2 = e1.equation(x, y, _slope=1); eq2
442
+ (-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
443
+
444
+ A point on e1 satisfies eq1. Let's use one on the x-axis:
445
+
446
+ >>> p1 = e1.center + Point(e1.major, 0)
447
+ >>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
448
+
449
+ When rotated the same as the rotated ellipse, about the center
450
+ point of the ellipse, it will satisfy the rotated ellipse's
451
+ equation, too:
452
+
453
+ >>> r1 = p1.rotate(pi/4, e1.center)
454
+ >>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
455
+
456
+ References
457
+ ==========
458
+
459
+ .. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
460
+ .. [2] https://en.wikipedia.org/wiki/Ellipse#Shifted_ellipse
461
+
462
+ """
463
+
464
+ x = _symbol(x, real=True)
465
+ y = _symbol(y, real=True)
466
+
467
+ dx = x - self.center.x
468
+ dy = y - self.center.y
469
+
470
+ if _slope is not None:
471
+ L = (dy - _slope*dx)**2
472
+ l = (_slope*dy + dx)**2
473
+ h = 1 + _slope**2
474
+ b = h*self.major**2
475
+ a = h*self.minor**2
476
+ return l/b + L/a - 1
477
+
478
+ else:
479
+ t1 = (dx/self.hradius)**2
480
+ t2 = (dy/self.vradius)**2
481
+ return t1 + t2 - 1
482
+
483
+ def evolute(self, x='x', y='y'):
484
+ """The equation of evolute of the ellipse.
485
+
486
+ Parameters
487
+ ==========
488
+
489
+ x : str, optional
490
+ Label for the x-axis. Default value is 'x'.
491
+ y : str, optional
492
+ Label for the y-axis. Default value is 'y'.
493
+
494
+ Returns
495
+ =======
496
+
497
+ equation : SymPy expression
498
+
499
+ Examples
500
+ ========
501
+
502
+ >>> from sympy import Point, Ellipse
503
+ >>> e1 = Ellipse(Point(1, 0), 3, 2)
504
+ >>> e1.evolute()
505
+ 2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
506
+ """
507
+ if len(self.args) != 3:
508
+ raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
509
+ x = _symbol(x, real=True)
510
+ y = _symbol(y, real=True)
511
+ t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
512
+ t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
513
+ return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
514
+
515
+ @property
516
+ def foci(self):
517
+ """The foci of the ellipse.
518
+
519
+ Notes
520
+ -----
521
+ The foci can only be calculated if the major/minor axes are known.
522
+
523
+ Raises
524
+ ======
525
+
526
+ ValueError
527
+ When the major and minor axis cannot be determined.
528
+
529
+ See Also
530
+ ========
531
+
532
+ sympy.geometry.point.Point
533
+ focus_distance : Returns the distance between focus and center
534
+
535
+ Examples
536
+ ========
537
+
538
+ >>> from sympy import Point, Ellipse
539
+ >>> p1 = Point(0, 0)
540
+ >>> e1 = Ellipse(p1, 3, 1)
541
+ >>> e1.foci
542
+ (Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
543
+
544
+ """
545
+ c = self.center
546
+ hr, vr = self.hradius, self.vradius
547
+ if hr == vr:
548
+ return (c, c)
549
+
550
+ # calculate focus distance manually, since focus_distance calls this
551
+ # routine
552
+ fd = sqrt(self.major**2 - self.minor**2)
553
+ if hr == self.minor:
554
+ # foci on the y-axis
555
+ return (c + Point(0, -fd), c + Point(0, fd))
556
+ elif hr == self.major:
557
+ # foci on the x-axis
558
+ return (c + Point(-fd, 0), c + Point(fd, 0))
559
+
560
+ @property
561
+ def focus_distance(self):
562
+ """The focal distance of the ellipse.
563
+
564
+ The distance between the center and one focus.
565
+
566
+ Returns
567
+ =======
568
+
569
+ focus_distance : number
570
+
571
+ See Also
572
+ ========
573
+
574
+ foci
575
+
576
+ Examples
577
+ ========
578
+
579
+ >>> from sympy import Point, Ellipse
580
+ >>> p1 = Point(0, 0)
581
+ >>> e1 = Ellipse(p1, 3, 1)
582
+ >>> e1.focus_distance
583
+ 2*sqrt(2)
584
+
585
+ """
586
+ return Point.distance(self.center, self.foci[0])
587
+
588
+ @property
589
+ def hradius(self):
590
+ """The horizontal radius of the ellipse.
591
+
592
+ Returns
593
+ =======
594
+
595
+ hradius : number
596
+
597
+ See Also
598
+ ========
599
+
600
+ vradius, major, minor
601
+
602
+ Examples
603
+ ========
604
+
605
+ >>> from sympy import Point, Ellipse
606
+ >>> p1 = Point(0, 0)
607
+ >>> e1 = Ellipse(p1, 3, 1)
608
+ >>> e1.hradius
609
+ 3
610
+
611
+ """
612
+ return self.args[1]
613
+
614
+ def intersection(self, o):
615
+ """The intersection of this ellipse and another geometrical entity
616
+ `o`.
617
+
618
+ Parameters
619
+ ==========
620
+
621
+ o : GeometryEntity
622
+
623
+ Returns
624
+ =======
625
+
626
+ intersection : list of GeometryEntity objects
627
+
628
+ Notes
629
+ -----
630
+ Currently supports intersections with Point, Line, Segment, Ray,
631
+ Circle and Ellipse types.
632
+
633
+ See Also
634
+ ========
635
+
636
+ sympy.geometry.entity.GeometryEntity
637
+
638
+ Examples
639
+ ========
640
+
641
+ >>> from sympy import Ellipse, Point, Line
642
+ >>> e = Ellipse(Point(0, 0), 5, 7)
643
+ >>> e.intersection(Point(0, 0))
644
+ []
645
+ >>> e.intersection(Point(5, 0))
646
+ [Point2D(5, 0)]
647
+ >>> e.intersection(Line(Point(0,0), Point(0, 1)))
648
+ [Point2D(0, -7), Point2D(0, 7)]
649
+ >>> e.intersection(Line(Point(5,0), Point(5, 1)))
650
+ [Point2D(5, 0)]
651
+ >>> e.intersection(Line(Point(6,0), Point(6, 1)))
652
+ []
653
+ >>> e = Ellipse(Point(-1, 0), 4, 3)
654
+ >>> e.intersection(Ellipse(Point(1, 0), 4, 3))
655
+ [Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
656
+ >>> e.intersection(Ellipse(Point(5, 0), 4, 3))
657
+ [Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
658
+ >>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
659
+ []
660
+ >>> e.intersection(Ellipse(Point(0, 0), 3, 4))
661
+ [Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
662
+ >>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
663
+ [Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
664
+ """
665
+ # TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
666
+
667
+ if isinstance(o, Point):
668
+ if o in self:
669
+ return [o]
670
+ else:
671
+ return []
672
+
673
+ elif isinstance(o, (Segment2D, Ray2D)):
674
+ ellipse_equation = self.equation(x, y)
675
+ result = solve([ellipse_equation, Line(
676
+ o.points[0], o.points[1]).equation(x, y)], [x, y],
677
+ set=True)[1]
678
+ return list(ordered([Point(i) for i in result if i in o]))
679
+
680
+ elif isinstance(o, Polygon):
681
+ return o.intersection(self)
682
+
683
+ elif isinstance(o, (Ellipse, Line2D)):
684
+ if o == self:
685
+ return self
686
+ else:
687
+ ellipse_equation = self.equation(x, y)
688
+ return list(ordered([Point(i) for i in solve(
689
+ [ellipse_equation, o.equation(x, y)], [x, y],
690
+ set=True)[1]]))
691
+ elif isinstance(o, LinearEntity3D):
692
+ raise TypeError('Entity must be two dimensional, not three dimensional')
693
+ else:
694
+ raise TypeError('Intersection not handled for %s' % func_name(o))
695
+
696
+ def is_tangent(self, o):
697
+ """Is `o` tangent to the ellipse?
698
+
699
+ Parameters
700
+ ==========
701
+
702
+ o : GeometryEntity
703
+ An Ellipse, LinearEntity or Polygon
704
+
705
+ Raises
706
+ ======
707
+
708
+ NotImplementedError
709
+ When the wrong type of argument is supplied.
710
+
711
+ Returns
712
+ =======
713
+
714
+ is_tangent: boolean
715
+ True if o is tangent to the ellipse, False otherwise.
716
+
717
+ See Also
718
+ ========
719
+
720
+ tangent_lines
721
+
722
+ Examples
723
+ ========
724
+
725
+ >>> from sympy import Point, Ellipse, Line
726
+ >>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
727
+ >>> e1 = Ellipse(p0, 3, 2)
728
+ >>> l1 = Line(p1, p2)
729
+ >>> e1.is_tangent(l1)
730
+ True
731
+
732
+ """
733
+ if isinstance(o, Point2D):
734
+ return False
735
+ elif isinstance(o, Ellipse):
736
+ intersect = self.intersection(o)
737
+ if isinstance(intersect, Ellipse):
738
+ return True
739
+ elif intersect:
740
+ return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
741
+ else:
742
+ return False
743
+ elif isinstance(o, Line2D):
744
+ hit = self.intersection(o)
745
+ if not hit:
746
+ return False
747
+ if len(hit) == 1:
748
+ return True
749
+ # might return None if it can't decide
750
+ return hit[0].equals(hit[1])
751
+ elif isinstance(o, Ray2D):
752
+ intersect = self.intersection(o)
753
+ if len(intersect) == 1:
754
+ return intersect[0] != o.source and not self.encloses_point(o.source)
755
+ else:
756
+ return False
757
+ elif isinstance(o, (Segment2D, Polygon)):
758
+ all_tangents = False
759
+ segments = o.sides if isinstance(o, Polygon) else [o]
760
+ for segment in segments:
761
+ intersect = self.intersection(segment)
762
+ if len(intersect) == 1:
763
+ if not any(intersect[0] in i for i in segment.points) \
764
+ and not any(self.encloses_point(i) for i in segment.points):
765
+ all_tangents = True
766
+ continue
767
+ else:
768
+ return False
769
+ else:
770
+ return all_tangents
771
+ return all_tangents
772
+ elif isinstance(o, (LinearEntity3D, Point3D)):
773
+ raise TypeError('Entity must be two dimensional, not three dimensional')
774
+ else:
775
+ raise TypeError('Is_tangent not handled for %s' % func_name(o))
776
+
777
+ @property
778
+ def major(self):
779
+ """Longer axis of the ellipse (if it can be determined) else hradius.
780
+
781
+ Returns
782
+ =======
783
+
784
+ major : number or expression
785
+
786
+ See Also
787
+ ========
788
+
789
+ hradius, vradius, minor
790
+
791
+ Examples
792
+ ========
793
+
794
+ >>> from sympy import Point, Ellipse, Symbol
795
+ >>> p1 = Point(0, 0)
796
+ >>> e1 = Ellipse(p1, 3, 1)
797
+ >>> e1.major
798
+ 3
799
+
800
+ >>> a = Symbol('a')
801
+ >>> b = Symbol('b')
802
+ >>> Ellipse(p1, a, b).major
803
+ a
804
+ >>> Ellipse(p1, b, a).major
805
+ b
806
+
807
+ >>> m = Symbol('m')
808
+ >>> M = m + 1
809
+ >>> Ellipse(p1, m, M).major
810
+ m + 1
811
+
812
+ """
813
+ ab = self.args[1:3]
814
+ if len(ab) == 1:
815
+ return ab[0]
816
+ a, b = ab
817
+ o = b - a < 0
818
+ if o == True:
819
+ return a
820
+ elif o == False:
821
+ return b
822
+ return self.hradius
823
+
824
+ @property
825
+ def minor(self):
826
+ """Shorter axis of the ellipse (if it can be determined) else vradius.
827
+
828
+ Returns
829
+ =======
830
+
831
+ minor : number or expression
832
+
833
+ See Also
834
+ ========
835
+
836
+ hradius, vradius, major
837
+
838
+ Examples
839
+ ========
840
+
841
+ >>> from sympy import Point, Ellipse, Symbol
842
+ >>> p1 = Point(0, 0)
843
+ >>> e1 = Ellipse(p1, 3, 1)
844
+ >>> e1.minor
845
+ 1
846
+
847
+ >>> a = Symbol('a')
848
+ >>> b = Symbol('b')
849
+ >>> Ellipse(p1, a, b).minor
850
+ b
851
+ >>> Ellipse(p1, b, a).minor
852
+ a
853
+
854
+ >>> m = Symbol('m')
855
+ >>> M = m + 1
856
+ >>> Ellipse(p1, m, M).minor
857
+ m
858
+
859
+ """
860
+ ab = self.args[1:3]
861
+ if len(ab) == 1:
862
+ return ab[0]
863
+ a, b = ab
864
+ o = a - b < 0
865
+ if o == True:
866
+ return a
867
+ elif o == False:
868
+ return b
869
+ return self.vradius
870
+
871
+ def normal_lines(self, p, prec=None):
872
+ """Normal lines between `p` and the ellipse.
873
+
874
+ Parameters
875
+ ==========
876
+
877
+ p : Point
878
+
879
+ Returns
880
+ =======
881
+
882
+ normal_lines : list with 1, 2 or 4 Lines
883
+
884
+ Examples
885
+ ========
886
+
887
+ >>> from sympy import Point, Ellipse
888
+ >>> e = Ellipse((0, 0), 2, 3)
889
+ >>> c = e.center
890
+ >>> e.normal_lines(c + Point(1, 0))
891
+ [Line2D(Point2D(0, 0), Point2D(1, 0))]
892
+ >>> e.normal_lines(c)
893
+ [Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
894
+
895
+ Off-axis points require the solution of a quartic equation. This
896
+ often leads to very large expressions that may be of little practical
897
+ use. An approximate solution of `prec` digits can be obtained by
898
+ passing in the desired value:
899
+
900
+ >>> e.normal_lines((3, 3), prec=2)
901
+ [Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
902
+ Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
903
+
904
+ Whereas the above solution has an operation count of 12, the exact
905
+ solution has an operation count of 2020.
906
+ """
907
+ p = Point(p, dim=2)
908
+
909
+ # XXX change True to something like self.angle == 0 if the arbitrarily
910
+ # rotated ellipse is introduced.
911
+ # https://github.com/sympy/sympy/issues/2815)
912
+ if True:
913
+ rv = []
914
+ if p.x == self.center.x:
915
+ rv.append(Line(self.center, slope=oo))
916
+ if p.y == self.center.y:
917
+ rv.append(Line(self.center, slope=0))
918
+ if rv:
919
+ # at these special orientations of p either 1 or 2 normals
920
+ # exist and we are done
921
+ return rv
922
+
923
+ # find the 4 normal points and construct lines through them with
924
+ # the corresponding slope
925
+ eq = self.equation(x, y)
926
+ dydx = idiff(eq, y, x)
927
+ norm = -1/dydx
928
+ slope = Line(p, (x, y)).slope
929
+ seq = slope - norm
930
+
931
+ # TODO: Replace solve with solveset, when this line is tested
932
+ yis = solve(seq, y)[0]
933
+ xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
934
+ if len(xeq.free_symbols) == 1:
935
+ try:
936
+ # this is so much faster, it's worth a try
937
+ xsol = Poly(xeq, x).real_roots()
938
+ except (DomainError, PolynomialError, NotImplementedError):
939
+ # TODO: Replace solve with solveset, when these lines are tested
940
+ xsol = _nsort(solve(xeq, x), separated=True)[0]
941
+ points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
942
+ else:
943
+ raise NotImplementedError(
944
+ 'intersections for the general ellipse are not supported')
945
+ slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
946
+ if prec is not None:
947
+ points = [pt.n(prec) for pt in points]
948
+ slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
949
+ return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
950
+
951
+ @property
952
+ def periapsis(self):
953
+ """The periapsis of the ellipse.
954
+
955
+ The shortest distance between the focus and the contour.
956
+
957
+ Returns
958
+ =======
959
+
960
+ periapsis : number
961
+
962
+ See Also
963
+ ========
964
+
965
+ apoapsis : Returns greatest distance between focus and contour
966
+
967
+ Examples
968
+ ========
969
+
970
+ >>> from sympy import Point, Ellipse
971
+ >>> p1 = Point(0, 0)
972
+ >>> e1 = Ellipse(p1, 3, 1)
973
+ >>> e1.periapsis
974
+ 3 - 2*sqrt(2)
975
+
976
+ """
977
+ return self.major * (1 - self.eccentricity)
978
+
979
+ @property
980
+ def semilatus_rectum(self):
981
+ """
982
+ Calculates the semi-latus rectum of the Ellipse.
983
+
984
+ Semi-latus rectum is defined as one half of the chord through a
985
+ focus parallel to the conic section directrix of a conic section.
986
+
987
+ Returns
988
+ =======
989
+
990
+ semilatus_rectum : number
991
+
992
+ See Also
993
+ ========
994
+
995
+ apoapsis : Returns greatest distance between focus and contour
996
+
997
+ periapsis : The shortest distance between the focus and the contour
998
+
999
+ Examples
1000
+ ========
1001
+
1002
+ >>> from sympy import Point, Ellipse
1003
+ >>> p1 = Point(0, 0)
1004
+ >>> e1 = Ellipse(p1, 3, 1)
1005
+ >>> e1.semilatus_rectum
1006
+ 1/3
1007
+
1008
+ References
1009
+ ==========
1010
+
1011
+ .. [1] https://mathworld.wolfram.com/SemilatusRectum.html
1012
+ .. [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
1013
+
1014
+ """
1015
+ return self.major * (1 - self.eccentricity ** 2)
1016
+
1017
+ def auxiliary_circle(self):
1018
+ """Returns a Circle whose diameter is the major axis of the ellipse.
1019
+
1020
+ Examples
1021
+ ========
1022
+
1023
+ >>> from sympy import Ellipse, Point, symbols
1024
+ >>> c = Point(1, 2)
1025
+ >>> Ellipse(c, 8, 7).auxiliary_circle()
1026
+ Circle(Point2D(1, 2), 8)
1027
+ >>> a, b = symbols('a b')
1028
+ >>> Ellipse(c, a, b).auxiliary_circle()
1029
+ Circle(Point2D(1, 2), Max(a, b))
1030
+ """
1031
+ return Circle(self.center, Max(self.hradius, self.vradius))
1032
+
1033
+ def director_circle(self):
1034
+ """
1035
+ Returns a Circle consisting of all points where two perpendicular
1036
+ tangent lines to the ellipse cross each other.
1037
+
1038
+ Returns
1039
+ =======
1040
+
1041
+ Circle
1042
+ A director circle returned as a geometric object.
1043
+
1044
+ Examples
1045
+ ========
1046
+
1047
+ >>> from sympy import Ellipse, Point, symbols
1048
+ >>> c = Point(3,8)
1049
+ >>> Ellipse(c, 7, 9).director_circle()
1050
+ Circle(Point2D(3, 8), sqrt(130))
1051
+ >>> a, b = symbols('a b')
1052
+ >>> Ellipse(c, a, b).director_circle()
1053
+ Circle(Point2D(3, 8), sqrt(a**2 + b**2))
1054
+
1055
+ References
1056
+ ==========
1057
+
1058
+ .. [1] https://en.wikipedia.org/wiki/Director_circle
1059
+
1060
+ """
1061
+ return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
1062
+
1063
+ def plot_interval(self, parameter='t'):
1064
+ """The plot interval for the default geometric plot of the Ellipse.
1065
+
1066
+ Parameters
1067
+ ==========
1068
+
1069
+ parameter : str, optional
1070
+ Default value is 't'.
1071
+
1072
+ Returns
1073
+ =======
1074
+
1075
+ plot_interval : list
1076
+ [parameter, lower_bound, upper_bound]
1077
+
1078
+ Examples
1079
+ ========
1080
+
1081
+ >>> from sympy import Point, Ellipse
1082
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
1083
+ >>> e1.plot_interval()
1084
+ [t, -pi, pi]
1085
+
1086
+ """
1087
+ t = _symbol(parameter, real=True)
1088
+ return [t, -S.Pi, S.Pi]
1089
+
1090
+ def random_point(self, seed=None):
1091
+ """A random point on the ellipse.
1092
+
1093
+ Returns
1094
+ =======
1095
+
1096
+ point : Point
1097
+
1098
+ Examples
1099
+ ========
1100
+
1101
+ >>> from sympy import Point, Ellipse
1102
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
1103
+ >>> e1.random_point() # gives some random point
1104
+ Point2D(...)
1105
+ >>> p1 = e1.random_point(seed=0); p1.n(2)
1106
+ Point2D(2.1, 1.4)
1107
+
1108
+ Notes
1109
+ =====
1110
+
1111
+ When creating a random point, one may simply replace the
1112
+ parameter with a random number. When doing so, however, the
1113
+ random number should be made a Rational or else the point
1114
+ may not test as being in the ellipse:
1115
+
1116
+ >>> from sympy.abc import t
1117
+ >>> from sympy import Rational
1118
+ >>> arb = e1.arbitrary_point(t); arb
1119
+ Point2D(3*cos(t), 2*sin(t))
1120
+ >>> arb.subs(t, .1) in e1
1121
+ False
1122
+ >>> arb.subs(t, Rational(.1)) in e1
1123
+ True
1124
+ >>> arb.subs(t, Rational('.1')) in e1
1125
+ True
1126
+
1127
+ See Also
1128
+ ========
1129
+ sympy.geometry.point.Point
1130
+ arbitrary_point : Returns parameterized point on ellipse
1131
+ """
1132
+ t = _symbol('t', real=True)
1133
+ x, y = self.arbitrary_point(t).args
1134
+ # get a random value in [-1, 1) corresponding to cos(t)
1135
+ # and confirm that it will test as being in the ellipse
1136
+ if seed is not None:
1137
+ rng = random.Random(seed)
1138
+ else:
1139
+ rng = random
1140
+ # simplify this now or else the Float will turn s into a Float
1141
+ r = Rational(rng.random())
1142
+ c = 2*r - 1
1143
+ s = sqrt(1 - c**2)
1144
+ return Point(x.subs(cos(t), c), y.subs(sin(t), s))
1145
+
1146
+ def reflect(self, line):
1147
+ """Override GeometryEntity.reflect since the radius
1148
+ is not a GeometryEntity.
1149
+
1150
+ Examples
1151
+ ========
1152
+
1153
+ >>> from sympy import Circle, Line
1154
+ >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
1155
+ Circle(Point2D(1, 0), -1)
1156
+ >>> from sympy import Ellipse, Line, Point
1157
+ >>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
1158
+ Traceback (most recent call last):
1159
+ ...
1160
+ NotImplementedError:
1161
+ General Ellipse is not supported but the equation of the reflected
1162
+ Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
1163
+ 37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
1164
+
1165
+ Notes
1166
+ =====
1167
+
1168
+ Until the general ellipse (with no axis parallel to the x-axis) is
1169
+ supported a NotImplemented error is raised and the equation whose
1170
+ zeros define the rotated ellipse is given.
1171
+
1172
+ """
1173
+
1174
+ if line.slope in (0, oo):
1175
+ c = self.center
1176
+ c = c.reflect(line)
1177
+ return self.func(c, -self.hradius, self.vradius)
1178
+ else:
1179
+ x, y = [uniquely_named_symbol(
1180
+ name, (self, line), modify=lambda s: '_' + s, real=True)
1181
+ for name in 'xy']
1182
+ expr = self.equation(x, y)
1183
+ p = Point(x, y).reflect(line)
1184
+ result = expr.subs(zip((x, y), p.args
1185
+ ), simultaneous=True)
1186
+ raise NotImplementedError(filldedent(
1187
+ 'General Ellipse is not supported but the equation '
1188
+ 'of the reflected Ellipse is given by the zeros of: ' +
1189
+ "f(%s, %s) = %s" % (str(x), str(y), str(result))))
1190
+
1191
+ def rotate(self, angle=0, pt=None):
1192
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
1193
+
1194
+ Note: since the general ellipse is not supported, only rotations that
1195
+ are integer multiples of pi/2 are allowed.
1196
+
1197
+ Examples
1198
+ ========
1199
+
1200
+ >>> from sympy import Ellipse, pi
1201
+ >>> Ellipse((1, 0), 2, 1).rotate(pi/2)
1202
+ Ellipse(Point2D(0, 1), 1, 2)
1203
+ >>> Ellipse((1, 0), 2, 1).rotate(pi)
1204
+ Ellipse(Point2D(-1, 0), 2, 1)
1205
+ """
1206
+ if self.hradius == self.vradius:
1207
+ return self.func(self.center.rotate(angle, pt), self.hradius)
1208
+ if (angle/S.Pi).is_integer:
1209
+ return super().rotate(angle, pt)
1210
+ if (2*angle/S.Pi).is_integer:
1211
+ return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
1212
+ # XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
1213
+ raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
1214
+
1215
+ def scale(self, x=1, y=1, pt=None):
1216
+ """Override GeometryEntity.scale since it is the major and minor
1217
+ axes which must be scaled and they are not GeometryEntities.
1218
+
1219
+ Examples
1220
+ ========
1221
+
1222
+ >>> from sympy import Ellipse
1223
+ >>> Ellipse((0, 0), 2, 1).scale(2, 4)
1224
+ Circle(Point2D(0, 0), 4)
1225
+ >>> Ellipse((0, 0), 2, 1).scale(2)
1226
+ Ellipse(Point2D(0, 0), 4, 1)
1227
+ """
1228
+ c = self.center
1229
+ if pt:
1230
+ pt = Point(pt, dim=2)
1231
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
1232
+ h = self.hradius
1233
+ v = self.vradius
1234
+ return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
1235
+
1236
+ def tangent_lines(self, p):
1237
+ """Tangent lines between `p` and the ellipse.
1238
+
1239
+ If `p` is on the ellipse, returns the tangent line through point `p`.
1240
+ Otherwise, returns the tangent line(s) from `p` to the ellipse, or
1241
+ None if no tangent line is possible (e.g., `p` inside ellipse).
1242
+
1243
+ Parameters
1244
+ ==========
1245
+
1246
+ p : Point
1247
+
1248
+ Returns
1249
+ =======
1250
+
1251
+ tangent_lines : list with 1 or 2 Lines
1252
+
1253
+ Raises
1254
+ ======
1255
+
1256
+ NotImplementedError
1257
+ Can only find tangent lines for a point, `p`, on the ellipse.
1258
+
1259
+ See Also
1260
+ ========
1261
+
1262
+ sympy.geometry.point.Point, sympy.geometry.line.Line
1263
+
1264
+ Examples
1265
+ ========
1266
+
1267
+ >>> from sympy import Point, Ellipse
1268
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
1269
+ >>> e1.tangent_lines(Point(3, 0))
1270
+ [Line2D(Point2D(3, 0), Point2D(3, -12))]
1271
+
1272
+ """
1273
+ p = Point(p, dim=2)
1274
+ if self.encloses_point(p):
1275
+ return []
1276
+
1277
+ if p in self:
1278
+ delta = self.center - p
1279
+ rise = (self.vradius**2)*delta.x
1280
+ run = -(self.hradius**2)*delta.y
1281
+ p2 = Point(simplify(p.x + run),
1282
+ simplify(p.y + rise))
1283
+ return [Line(p, p2)]
1284
+ else:
1285
+ if len(self.foci) == 2:
1286
+ f1, f2 = self.foci
1287
+ maj = self.hradius
1288
+ test = (2*maj -
1289
+ Point.distance(f1, p) -
1290
+ Point.distance(f2, p))
1291
+ else:
1292
+ test = self.radius - Point.distance(self.center, p)
1293
+ if test.is_number and test.is_positive:
1294
+ return []
1295
+ # else p is outside the ellipse or we can't tell. In case of the
1296
+ # latter, the solutions returned will only be valid if
1297
+ # the point is not inside the ellipse; if it is, nan will result.
1298
+ eq = self.equation(x, y)
1299
+ dydx = idiff(eq, y, x)
1300
+ slope = Line(p, Point(x, y)).slope
1301
+
1302
+ # TODO: Replace solve with solveset, when this line is tested
1303
+ tangent_points = solve([slope - dydx, eq], [x, y])
1304
+
1305
+ # handle horizontal and vertical tangent lines
1306
+ if len(tangent_points) == 1:
1307
+ if tangent_points[0][
1308
+ 0] == p.x or tangent_points[0][1] == p.y:
1309
+ return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
1310
+ else:
1311
+ return [Line(p, p + Point(0, 1)), Line(p, tangent_points[0])]
1312
+
1313
+ # others
1314
+ return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
1315
+
1316
+ @property
1317
+ def vradius(self):
1318
+ """The vertical radius of the ellipse.
1319
+
1320
+ Returns
1321
+ =======
1322
+
1323
+ vradius : number
1324
+
1325
+ See Also
1326
+ ========
1327
+
1328
+ hradius, major, minor
1329
+
1330
+ Examples
1331
+ ========
1332
+
1333
+ >>> from sympy import Point, Ellipse
1334
+ >>> p1 = Point(0, 0)
1335
+ >>> e1 = Ellipse(p1, 3, 1)
1336
+ >>> e1.vradius
1337
+ 1
1338
+
1339
+ """
1340
+ return self.args[2]
1341
+
1342
+
1343
+ def second_moment_of_area(self, point=None):
1344
+ """Returns the second moment and product moment area of an ellipse.
1345
+
1346
+ Parameters
1347
+ ==========
1348
+
1349
+ point : Point, two-tuple of sympifiable objects, or None(default=None)
1350
+ point is the point about which second moment of area is to be found.
1351
+ If "point=None" it will be calculated about the axis passing through the
1352
+ centroid of the ellipse.
1353
+
1354
+ Returns
1355
+ =======
1356
+
1357
+ I_xx, I_yy, I_xy : number or SymPy expression
1358
+ I_xx, I_yy are second moment of area of an ellise.
1359
+ I_xy is product moment of area of an ellipse.
1360
+
1361
+ Examples
1362
+ ========
1363
+
1364
+ >>> from sympy import Point, Ellipse
1365
+ >>> p1 = Point(0, 0)
1366
+ >>> e1 = Ellipse(p1, 3, 1)
1367
+ >>> e1.second_moment_of_area()
1368
+ (3*pi/4, 27*pi/4, 0)
1369
+
1370
+ References
1371
+ ==========
1372
+
1373
+ .. [1] https://en.wikipedia.org/wiki/List_of_second_moments_of_area
1374
+
1375
+ """
1376
+
1377
+ I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
1378
+ I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
1379
+ I_xy = 0
1380
+
1381
+ if point is None:
1382
+ return I_xx, I_yy, I_xy
1383
+
1384
+ # parallel axis theorem
1385
+ I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
1386
+ I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
1387
+ I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
1388
+
1389
+ return I_xx, I_yy, I_xy
1390
+
1391
+
1392
+ def polar_second_moment_of_area(self):
1393
+ """Returns the polar second moment of area of an Ellipse
1394
+
1395
+ It is a constituent of the second moment of area, linked through
1396
+ the perpendicular axis theorem. While the planar second moment of
1397
+ area describes an object's resistance to deflection (bending) when
1398
+ subjected to a force applied to a plane parallel to the central
1399
+ axis, the polar second moment of area describes an object's
1400
+ resistance to deflection when subjected to a moment applied in a
1401
+ plane perpendicular to the object's central axis (i.e. parallel to
1402
+ the cross-section)
1403
+
1404
+ Examples
1405
+ ========
1406
+
1407
+ >>> from sympy import symbols, Circle, Ellipse
1408
+ >>> c = Circle((5, 5), 4)
1409
+ >>> c.polar_second_moment_of_area()
1410
+ 128*pi
1411
+ >>> a, b = symbols('a, b')
1412
+ >>> e = Ellipse((0, 0), a, b)
1413
+ >>> e.polar_second_moment_of_area()
1414
+ pi*a**3*b/4 + pi*a*b**3/4
1415
+
1416
+ References
1417
+ ==========
1418
+
1419
+ .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
1420
+
1421
+ """
1422
+ second_moment = self.second_moment_of_area()
1423
+ return second_moment[0] + second_moment[1]
1424
+
1425
+
1426
+ def section_modulus(self, point=None):
1427
+ """Returns a tuple with the section modulus of an ellipse
1428
+
1429
+ Section modulus is a geometric property of an ellipse defined as the
1430
+ ratio of second moment of area to the distance of the extreme end of
1431
+ the ellipse from the centroidal axis.
1432
+
1433
+ Parameters
1434
+ ==========
1435
+
1436
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
1437
+ point is the point at which section modulus is to be found.
1438
+ If "point=None" section modulus will be calculated for the
1439
+ point farthest from the centroidal axis of the ellipse.
1440
+
1441
+ Returns
1442
+ =======
1443
+
1444
+ S_x, S_y: numbers or SymPy expressions
1445
+ S_x is the section modulus with respect to the x-axis
1446
+ S_y is the section modulus with respect to the y-axis
1447
+ A negative sign indicates that the section modulus is
1448
+ determined for a point below the centroidal axis.
1449
+
1450
+ Examples
1451
+ ========
1452
+
1453
+ >>> from sympy import Symbol, Ellipse, Circle, Point2D
1454
+ >>> d = Symbol('d', positive=True)
1455
+ >>> c = Circle((0, 0), d/2)
1456
+ >>> c.section_modulus()
1457
+ (pi*d**3/32, pi*d**3/32)
1458
+ >>> e = Ellipse(Point2D(0, 0), 2, 4)
1459
+ >>> e.section_modulus()
1460
+ (8*pi, 4*pi)
1461
+ >>> e.section_modulus((2, 2))
1462
+ (16*pi, 4*pi)
1463
+
1464
+ References
1465
+ ==========
1466
+
1467
+ .. [1] https://en.wikipedia.org/wiki/Section_modulus
1468
+
1469
+ """
1470
+ x_c, y_c = self.center
1471
+ if point is None:
1472
+ # taking x and y as maximum distances from centroid
1473
+ x_min, y_min, x_max, y_max = self.bounds
1474
+ y = max(y_c - y_min, y_max - y_c)
1475
+ x = max(x_c - x_min, x_max - x_c)
1476
+ else:
1477
+ # taking x and y as distances of the given point from the center
1478
+ point = Point2D(point)
1479
+ y = point.y - y_c
1480
+ x = point.x - x_c
1481
+
1482
+ second_moment = self.second_moment_of_area()
1483
+ S_x = second_moment[0]/y
1484
+ S_y = second_moment[1]/x
1485
+
1486
+ return S_x, S_y
1487
+
1488
+
1489
+ class Circle(Ellipse):
1490
+ """A circle in space.
1491
+
1492
+ Constructed simply from a center and a radius, from three
1493
+ non-collinear points, or the equation of a circle.
1494
+
1495
+ Parameters
1496
+ ==========
1497
+
1498
+ center : Point
1499
+ radius : number or SymPy expression
1500
+ points : sequence of three Points
1501
+ equation : equation of a circle
1502
+
1503
+ Attributes
1504
+ ==========
1505
+
1506
+ radius (synonymous with hradius, vradius, major and minor)
1507
+ circumference
1508
+ equation
1509
+
1510
+ Raises
1511
+ ======
1512
+
1513
+ GeometryError
1514
+ When the given equation is not that of a circle.
1515
+ When trying to construct circle from incorrect parameters.
1516
+
1517
+ See Also
1518
+ ========
1519
+
1520
+ Ellipse, sympy.geometry.point.Point
1521
+
1522
+ Examples
1523
+ ========
1524
+
1525
+ >>> from sympy import Point, Circle, Eq
1526
+ >>> from sympy.abc import x, y, a, b
1527
+
1528
+ A circle constructed from a center and radius:
1529
+
1530
+ >>> c1 = Circle(Point(0, 0), 5)
1531
+ >>> c1.hradius, c1.vradius, c1.radius
1532
+ (5, 5, 5)
1533
+
1534
+ A circle constructed from three points:
1535
+
1536
+ >>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
1537
+ >>> c2.hradius, c2.vradius, c2.radius, c2.center
1538
+ (sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
1539
+
1540
+ A circle can be constructed from an equation in the form
1541
+ `a*x**2 + by**2 + gx + hy + c = 0`, too:
1542
+
1543
+ >>> Circle(x**2 + y**2 - 25)
1544
+ Circle(Point2D(0, 0), 5)
1545
+
1546
+ If the variables corresponding to x and y are named something
1547
+ else, their name or symbol can be supplied:
1548
+
1549
+ >>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
1550
+ Circle(Point2D(0, 0), 5)
1551
+ """
1552
+
1553
+ def __new__(cls, *args, **kwargs):
1554
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
1555
+ if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
1556
+ x = kwargs.get('x', 'x')
1557
+ y = kwargs.get('y', 'y')
1558
+ equation = args[0].expand()
1559
+ if isinstance(equation, Eq):
1560
+ equation = equation.lhs - equation.rhs
1561
+ x = find(x, equation)
1562
+ y = find(y, equation)
1563
+
1564
+ try:
1565
+ a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
1566
+ except ValueError:
1567
+ raise GeometryError("The given equation is not that of a circle.")
1568
+
1569
+ if S.Zero in (a, b) or a != b:
1570
+ raise GeometryError("The given equation is not that of a circle.")
1571
+
1572
+ center_x = -c/a/2
1573
+ center_y = -d/b/2
1574
+ r2 = (center_x**2) + (center_y**2) - e/a
1575
+
1576
+ return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
1577
+
1578
+ else:
1579
+ c, r = None, None
1580
+ if len(args) == 3:
1581
+ args = [Point(a, dim=2, evaluate=evaluate) for a in args]
1582
+ t = Triangle(*args)
1583
+ if not isinstance(t, Triangle):
1584
+ return t
1585
+ c = t.circumcenter
1586
+ r = t.circumradius
1587
+ elif len(args) == 2:
1588
+ # Assume (center, radius) pair
1589
+ c = Point(args[0], dim=2, evaluate=evaluate)
1590
+ r = args[1]
1591
+ # this will prohibit imaginary radius
1592
+ try:
1593
+ r = Point(r, 0, evaluate=evaluate).x
1594
+ except ValueError:
1595
+ raise GeometryError("Circle with imaginary radius is not permitted")
1596
+
1597
+ if not (c is None or r is None):
1598
+ if r == 0:
1599
+ return c
1600
+ return GeometryEntity.__new__(cls, c, r, **kwargs)
1601
+
1602
+ raise GeometryError("Circle.__new__ received unknown arguments")
1603
+
1604
+ def _eval_evalf(self, prec=15, **options):
1605
+ pt, r = self.args
1606
+ dps = prec_to_dps(prec)
1607
+ pt = pt.evalf(n=dps, **options)
1608
+ r = r.evalf(n=dps, **options)
1609
+ return self.func(pt, r, evaluate=False)
1610
+
1611
+ @property
1612
+ def circumference(self):
1613
+ """The circumference of the circle.
1614
+
1615
+ Returns
1616
+ =======
1617
+
1618
+ circumference : number or SymPy expression
1619
+
1620
+ Examples
1621
+ ========
1622
+
1623
+ >>> from sympy import Point, Circle
1624
+ >>> c1 = Circle(Point(3, 4), 6)
1625
+ >>> c1.circumference
1626
+ 12*pi
1627
+
1628
+ """
1629
+ return 2 * S.Pi * self.radius
1630
+
1631
+ def equation(self, x='x', y='y'):
1632
+ """The equation of the circle.
1633
+
1634
+ Parameters
1635
+ ==========
1636
+
1637
+ x : str or Symbol, optional
1638
+ Default value is 'x'.
1639
+ y : str or Symbol, optional
1640
+ Default value is 'y'.
1641
+
1642
+ Returns
1643
+ =======
1644
+
1645
+ equation : SymPy expression
1646
+
1647
+ Examples
1648
+ ========
1649
+
1650
+ >>> from sympy import Point, Circle
1651
+ >>> c1 = Circle(Point(0, 0), 5)
1652
+ >>> c1.equation()
1653
+ x**2 + y**2 - 25
1654
+
1655
+ """
1656
+ x = _symbol(x, real=True)
1657
+ y = _symbol(y, real=True)
1658
+ t1 = (x - self.center.x)**2
1659
+ t2 = (y - self.center.y)**2
1660
+ return t1 + t2 - self.major**2
1661
+
1662
+ def intersection(self, o):
1663
+ """The intersection of this circle with another geometrical entity.
1664
+
1665
+ Parameters
1666
+ ==========
1667
+
1668
+ o : GeometryEntity
1669
+
1670
+ Returns
1671
+ =======
1672
+
1673
+ intersection : list of GeometryEntities
1674
+
1675
+ Examples
1676
+ ========
1677
+
1678
+ >>> from sympy import Point, Circle, Line, Ray
1679
+ >>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
1680
+ >>> p4 = Point(5, 0)
1681
+ >>> c1 = Circle(p1, 5)
1682
+ >>> c1.intersection(p2)
1683
+ []
1684
+ >>> c1.intersection(p4)
1685
+ [Point2D(5, 0)]
1686
+ >>> c1.intersection(Ray(p1, p2))
1687
+ [Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
1688
+ >>> c1.intersection(Line(p2, p3))
1689
+ []
1690
+
1691
+ """
1692
+ return Ellipse.intersection(self, o)
1693
+
1694
+ @property
1695
+ def radius(self):
1696
+ """The radius of the circle.
1697
+
1698
+ Returns
1699
+ =======
1700
+
1701
+ radius : number or SymPy expression
1702
+
1703
+ See Also
1704
+ ========
1705
+
1706
+ Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
1707
+
1708
+ Examples
1709
+ ========
1710
+
1711
+ >>> from sympy import Point, Circle
1712
+ >>> c1 = Circle(Point(3, 4), 6)
1713
+ >>> c1.radius
1714
+ 6
1715
+
1716
+ """
1717
+ return self.args[1]
1718
+
1719
+ def reflect(self, line):
1720
+ """Override GeometryEntity.reflect since the radius
1721
+ is not a GeometryEntity.
1722
+
1723
+ Examples
1724
+ ========
1725
+
1726
+ >>> from sympy import Circle, Line
1727
+ >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
1728
+ Circle(Point2D(1, 0), -1)
1729
+ """
1730
+ c = self.center
1731
+ c = c.reflect(line)
1732
+ return self.func(c, -self.radius)
1733
+
1734
+ def scale(self, x=1, y=1, pt=None):
1735
+ """Override GeometryEntity.scale since the radius
1736
+ is not a GeometryEntity.
1737
+
1738
+ Examples
1739
+ ========
1740
+
1741
+ >>> from sympy import Circle
1742
+ >>> Circle((0, 0), 1).scale(2, 2)
1743
+ Circle(Point2D(0, 0), 2)
1744
+ >>> Circle((0, 0), 1).scale(2, 4)
1745
+ Ellipse(Point2D(0, 0), 2, 4)
1746
+ """
1747
+ c = self.center
1748
+ if pt:
1749
+ pt = Point(pt, dim=2)
1750
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
1751
+ c = c.scale(x, y)
1752
+ x, y = [abs(i) for i in (x, y)]
1753
+ if x == y:
1754
+ return self.func(c, x*self.radius)
1755
+ h = v = self.radius
1756
+ return Ellipse(c, hradius=h*x, vradius=v*y)
1757
+
1758
+ @property
1759
+ def vradius(self):
1760
+ """
1761
+ This Ellipse property is an alias for the Circle's radius.
1762
+
1763
+ Whereas hradius, major and minor can use Ellipse's conventions,
1764
+ the vradius does not exist for a circle. It is always a positive
1765
+ value in order that the Circle, like Polygons, will have an
1766
+ area that can be positive or negative as determined by the sign
1767
+ of the hradius.
1768
+
1769
+ Examples
1770
+ ========
1771
+
1772
+ >>> from sympy import Point, Circle
1773
+ >>> c1 = Circle(Point(3, 4), 6)
1774
+ >>> c1.vradius
1775
+ 6
1776
+ """
1777
+ return abs(self.radius)
1778
+
1779
+
1780
+ from .polygon import Polygon, Triangle
env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py ADDED
@@ -0,0 +1,641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The definition of the base geometrical entity with attributes common to
2
+ all derived geometrical entities.
3
+
4
+ Contains
5
+ ========
6
+
7
+ GeometryEntity
8
+ GeometricSet
9
+
10
+ Notes
11
+ =====
12
+
13
+ A GeometryEntity is any object that has special geometric properties.
14
+ A GeometrySet is a superclass of any GeometryEntity that can also
15
+ be viewed as a sympy.sets.Set. In particular, points are the only
16
+ GeometryEntity not considered a Set.
17
+
18
+ Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
19
+ R3 are currently the only ambient spaces implemented.
20
+
21
+ """
22
+ from __future__ import annotations
23
+
24
+ from sympy.core.basic import Basic
25
+ from sympy.core.containers import Tuple
26
+ from sympy.core.evalf import EvalfMixin, N
27
+ from sympy.core.numbers import oo
28
+ from sympy.core.symbol import Dummy
29
+ from sympy.core.sympify import sympify
30
+ from sympy.functions.elementary.trigonometric import cos, sin, atan
31
+ from sympy.matrices import eye
32
+ from sympy.multipledispatch import dispatch
33
+ from sympy.printing import sstr
34
+ from sympy.sets import Set, Union, FiniteSet
35
+ from sympy.sets.handlers.intersection import intersection_sets
36
+ from sympy.sets.handlers.union import union_sets
37
+ from sympy.solvers.solvers import solve
38
+ from sympy.utilities.misc import func_name
39
+ from sympy.utilities.iterables import is_sequence
40
+
41
+
42
+ # How entities are ordered; used by __cmp__ in GeometryEntity
43
+ ordering_of_classes = [
44
+ "Point2D",
45
+ "Point3D",
46
+ "Point",
47
+ "Segment2D",
48
+ "Ray2D",
49
+ "Line2D",
50
+ "Segment3D",
51
+ "Line3D",
52
+ "Ray3D",
53
+ "Segment",
54
+ "Ray",
55
+ "Line",
56
+ "Plane",
57
+ "Triangle",
58
+ "RegularPolygon",
59
+ "Polygon",
60
+ "Circle",
61
+ "Ellipse",
62
+ "Curve",
63
+ "Parabola"
64
+ ]
65
+
66
+
67
+ x, y = [Dummy('entity_dummy') for i in range(2)]
68
+ T = Dummy('entity_dummy', real=True)
69
+
70
+
71
+ class GeometryEntity(Basic, EvalfMixin):
72
+ """The base class for all geometrical entities.
73
+
74
+ This class does not represent any particular geometric entity, it only
75
+ provides the implementation of some methods common to all subclasses.
76
+
77
+ """
78
+
79
+ __slots__: tuple[str, ...] = ()
80
+
81
+ def __cmp__(self, other):
82
+ """Comparison of two GeometryEntities."""
83
+ n1 = self.__class__.__name__
84
+ n2 = other.__class__.__name__
85
+ c = (n1 > n2) - (n1 < n2)
86
+ if not c:
87
+ return 0
88
+
89
+ i1 = -1
90
+ for cls in self.__class__.__mro__:
91
+ try:
92
+ i1 = ordering_of_classes.index(cls.__name__)
93
+ break
94
+ except ValueError:
95
+ i1 = -1
96
+ if i1 == -1:
97
+ return c
98
+
99
+ i2 = -1
100
+ for cls in other.__class__.__mro__:
101
+ try:
102
+ i2 = ordering_of_classes.index(cls.__name__)
103
+ break
104
+ except ValueError:
105
+ i2 = -1
106
+ if i2 == -1:
107
+ return c
108
+
109
+ return (i1 > i2) - (i1 < i2)
110
+
111
+ def __contains__(self, other):
112
+ """Subclasses should implement this method for anything more complex than equality."""
113
+ if type(self) is type(other):
114
+ return self == other
115
+ raise NotImplementedError()
116
+
117
+ def __getnewargs__(self):
118
+ """Returns a tuple that will be passed to __new__ on unpickling."""
119
+ return tuple(self.args)
120
+
121
+ def __ne__(self, o):
122
+ """Test inequality of two geometrical entities."""
123
+ return not self == o
124
+
125
+ def __new__(cls, *args, **kwargs):
126
+ # Points are sequences, but they should not
127
+ # be converted to Tuples, so use this detection function instead.
128
+ def is_seq_and_not_point(a):
129
+ # we cannot use isinstance(a, Point) since we cannot import Point
130
+ if hasattr(a, 'is_Point') and a.is_Point:
131
+ return False
132
+ return is_sequence(a)
133
+
134
+ args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
135
+ return Basic.__new__(cls, *args)
136
+
137
+ def __radd__(self, a):
138
+ """Implementation of reverse add method."""
139
+ return a.__add__(self)
140
+
141
+ def __rtruediv__(self, a):
142
+ """Implementation of reverse division method."""
143
+ return a.__truediv__(self)
144
+
145
+ def __repr__(self):
146
+ """String representation of a GeometryEntity that can be evaluated
147
+ by sympy."""
148
+ return type(self).__name__ + repr(self.args)
149
+
150
+ def __rmul__(self, a):
151
+ """Implementation of reverse multiplication method."""
152
+ return a.__mul__(self)
153
+
154
+ def __rsub__(self, a):
155
+ """Implementation of reverse subtraction method."""
156
+ return a.__sub__(self)
157
+
158
+ def __str__(self):
159
+ """String representation of a GeometryEntity."""
160
+ return type(self).__name__ + sstr(self.args)
161
+
162
+ def _eval_subs(self, old, new):
163
+ from sympy.geometry.point import Point, Point3D
164
+ if is_sequence(old) or is_sequence(new):
165
+ if isinstance(self, Point3D):
166
+ old = Point3D(old)
167
+ new = Point3D(new)
168
+ else:
169
+ old = Point(old)
170
+ new = Point(new)
171
+ return self._subs(old, new)
172
+
173
+ def _repr_svg_(self):
174
+ """SVG representation of a GeometryEntity suitable for IPython"""
175
+
176
+ try:
177
+ bounds = self.bounds
178
+ except (NotImplementedError, TypeError):
179
+ # if we have no SVG representation, return None so IPython
180
+ # will fall back to the next representation
181
+ return None
182
+
183
+ if not all(x.is_number and x.is_finite for x in bounds):
184
+ return None
185
+
186
+ svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
187
+ xmlns:xlink="http://www.w3.org/1999/xlink"
188
+ width="{1}" height="{2}" viewBox="{0}"
189
+ preserveAspectRatio="xMinYMin meet">
190
+ <defs>
191
+ <marker id="markerCircle" markerWidth="8" markerHeight="8"
192
+ refx="5" refy="5" markerUnits="strokeWidth">
193
+ <circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
194
+ </marker>
195
+ <marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
196
+ orient="auto" markerUnits="strokeWidth">
197
+ <path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
198
+ </marker>
199
+ <marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
200
+ orient="auto" markerUnits="strokeWidth">
201
+ <path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
202
+ </marker>
203
+ </defs>'''
204
+
205
+ # Establish SVG canvas that will fit all the data + small space
206
+ xmin, ymin, xmax, ymax = map(N, bounds)
207
+ if xmin == xmax and ymin == ymax:
208
+ # This is a point; buffer using an arbitrary size
209
+ xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
210
+ else:
211
+ # Expand bounds by a fraction of the data ranges
212
+ expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
213
+ widest_part = max([xmax - xmin, ymax - ymin])
214
+ expand_amount = widest_part * expand
215
+ xmin -= expand_amount
216
+ ymin -= expand_amount
217
+ xmax += expand_amount
218
+ ymax += expand_amount
219
+ dx = xmax - xmin
220
+ dy = ymax - ymin
221
+ width = min([max([100., dx]), 300])
222
+ height = min([max([100., dy]), 300])
223
+
224
+ scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
225
+ try:
226
+ svg = self._svg(scale_factor)
227
+ except (NotImplementedError, TypeError):
228
+ # if we have no SVG representation, return None so IPython
229
+ # will fall back to the next representation
230
+ return None
231
+
232
+ view_box = "{} {} {} {}".format(xmin, ymin, dx, dy)
233
+ transform = "matrix(1,0,0,-1,0,{})".format(ymax + ymin)
234
+ svg_top = svg_top.format(view_box, width, height)
235
+
236
+ return svg_top + (
237
+ '<g transform="{}">{}</g></svg>'
238
+ ).format(transform, svg)
239
+
240
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
241
+ """Returns SVG path element for the GeometryEntity.
242
+
243
+ Parameters
244
+ ==========
245
+
246
+ scale_factor : float
247
+ Multiplication factor for the SVG stroke-width. Default is 1.
248
+ fill_color : str, optional
249
+ Hex string for fill color. Default is "#66cc99".
250
+ """
251
+ raise NotImplementedError()
252
+
253
+ def _sympy_(self):
254
+ return self
255
+
256
+ @property
257
+ def ambient_dimension(self):
258
+ """What is the dimension of the space that the object is contained in?"""
259
+ raise NotImplementedError()
260
+
261
+ @property
262
+ def bounds(self):
263
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
264
+ rectangle for the geometric figure.
265
+
266
+ """
267
+
268
+ raise NotImplementedError()
269
+
270
+ def encloses(self, o):
271
+ """
272
+ Return True if o is inside (not on or outside) the boundaries of self.
273
+
274
+ The object will be decomposed into Points and individual Entities need
275
+ only define an encloses_point method for their class.
276
+
277
+ See Also
278
+ ========
279
+
280
+ sympy.geometry.ellipse.Ellipse.encloses_point
281
+ sympy.geometry.polygon.Polygon.encloses_point
282
+
283
+ Examples
284
+ ========
285
+
286
+ >>> from sympy import RegularPolygon, Point, Polygon
287
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
288
+ >>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
289
+ >>> t2.encloses(t)
290
+ True
291
+ >>> t.encloses(t2)
292
+ False
293
+
294
+ """
295
+
296
+ from sympy.geometry.point import Point
297
+ from sympy.geometry.line import Segment, Ray, Line
298
+ from sympy.geometry.ellipse import Ellipse
299
+ from sympy.geometry.polygon import Polygon, RegularPolygon
300
+
301
+ if isinstance(o, Point):
302
+ return self.encloses_point(o)
303
+ elif isinstance(o, Segment):
304
+ return all(self.encloses_point(x) for x in o.points)
305
+ elif isinstance(o, (Ray, Line)):
306
+ return False
307
+ elif isinstance(o, Ellipse):
308
+ return self.encloses_point(o.center) and \
309
+ self.encloses_point(
310
+ Point(o.center.x + o.hradius, o.center.y)) and \
311
+ not self.intersection(o)
312
+ elif isinstance(o, Polygon):
313
+ if isinstance(o, RegularPolygon):
314
+ if not self.encloses_point(o.center):
315
+ return False
316
+ return all(self.encloses_point(v) for v in o.vertices)
317
+ raise NotImplementedError()
318
+
319
+ def equals(self, o):
320
+ return self == o
321
+
322
+ def intersection(self, o):
323
+ """
324
+ Returns a list of all of the intersections of self with o.
325
+
326
+ Notes
327
+ =====
328
+
329
+ An entity is not required to implement this method.
330
+
331
+ If two different types of entities can intersect, the item with
332
+ higher index in ordering_of_classes should implement
333
+ intersections with anything having a lower index.
334
+
335
+ See Also
336
+ ========
337
+
338
+ sympy.geometry.util.intersection
339
+
340
+ """
341
+ raise NotImplementedError()
342
+
343
+ def is_similar(self, other):
344
+ """Is this geometrical entity similar to another geometrical entity?
345
+
346
+ Two entities are similar if a uniform scaling (enlarging or
347
+ shrinking) of one of the entities will allow one to obtain the other.
348
+
349
+ Notes
350
+ =====
351
+
352
+ This method is not intended to be used directly but rather
353
+ through the `are_similar` function found in util.py.
354
+ An entity is not required to implement this method.
355
+ If two different types of entities can be similar, it is only
356
+ required that one of them be able to determine this.
357
+
358
+ See Also
359
+ ========
360
+
361
+ scale
362
+
363
+ """
364
+ raise NotImplementedError()
365
+
366
+ def reflect(self, line):
367
+ """
368
+ Reflects an object across a line.
369
+
370
+ Parameters
371
+ ==========
372
+
373
+ line: Line
374
+
375
+ Examples
376
+ ========
377
+
378
+ >>> from sympy import pi, sqrt, Line, RegularPolygon
379
+ >>> l = Line((0, pi), slope=sqrt(2))
380
+ >>> pent = RegularPolygon((1, 2), 1, 5)
381
+ >>> rpent = pent.reflect(l)
382
+ >>> rpent
383
+ RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
384
+
385
+ >>> from sympy import pi, Line, Circle, Point
386
+ >>> l = Line((0, pi), slope=1)
387
+ >>> circ = Circle(Point(0, 0), 5)
388
+ >>> rcirc = circ.reflect(l)
389
+ >>> rcirc
390
+ Circle(Point2D(-pi, pi), -5)
391
+
392
+ """
393
+ from sympy.geometry.point import Point
394
+
395
+ g = self
396
+ l = line
397
+ o = Point(0, 0)
398
+ if l.slope.is_zero:
399
+ v = l.args[0].y
400
+ if not v: # x-axis
401
+ return g.scale(y=-1)
402
+ reps = [(p, p.translate(y=2*(v - p.y))) for p in g.atoms(Point)]
403
+ elif l.slope is oo:
404
+ v = l.args[0].x
405
+ if not v: # y-axis
406
+ return g.scale(x=-1)
407
+ reps = [(p, p.translate(x=2*(v - p.x))) for p in g.atoms(Point)]
408
+ else:
409
+ if not hasattr(g, 'reflect') and not all(
410
+ isinstance(arg, Point) for arg in g.args):
411
+ raise NotImplementedError(
412
+ 'reflect undefined or non-Point args in %s' % g)
413
+ a = atan(l.slope)
414
+ c = l.coefficients
415
+ d = -c[-1]/c[1] # y-intercept
416
+ # apply the transform to a single point
417
+ xf = Point(x, y)
418
+ xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
419
+ ).rotate(a, o).translate(y=d)
420
+ # replace every point using that transform
421
+ reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
422
+ return g.xreplace(dict(reps))
423
+
424
+ def rotate(self, angle, pt=None):
425
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
426
+
427
+ The default pt is the origin, Point(0, 0)
428
+
429
+ See Also
430
+ ========
431
+
432
+ scale, translate
433
+
434
+ Examples
435
+ ========
436
+
437
+ >>> from sympy import Point, RegularPolygon, Polygon, pi
438
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
439
+ >>> t # vertex on x axis
440
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
441
+ >>> t.rotate(pi/2) # vertex on y axis now
442
+ Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
443
+
444
+ """
445
+ newargs = []
446
+ for a in self.args:
447
+ if isinstance(a, GeometryEntity):
448
+ newargs.append(a.rotate(angle, pt))
449
+ else:
450
+ newargs.append(a)
451
+ return type(self)(*newargs)
452
+
453
+ def scale(self, x=1, y=1, pt=None):
454
+ """Scale the object by multiplying the x,y-coordinates by x and y.
455
+
456
+ If pt is given, the scaling is done relative to that point; the
457
+ object is shifted by -pt, scaled, and shifted by pt.
458
+
459
+ See Also
460
+ ========
461
+
462
+ rotate, translate
463
+
464
+ Examples
465
+ ========
466
+
467
+ >>> from sympy import RegularPolygon, Point, Polygon
468
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
469
+ >>> t
470
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
471
+ >>> t.scale(2)
472
+ Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
473
+ >>> t.scale(2, 2)
474
+ Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
475
+
476
+ """
477
+ from sympy.geometry.point import Point
478
+ if pt:
479
+ pt = Point(pt, dim=2)
480
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
481
+ return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
482
+
483
+ def translate(self, x=0, y=0):
484
+ """Shift the object by adding to the x,y-coordinates the values x and y.
485
+
486
+ See Also
487
+ ========
488
+
489
+ rotate, scale
490
+
491
+ Examples
492
+ ========
493
+
494
+ >>> from sympy import RegularPolygon, Point, Polygon
495
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
496
+ >>> t
497
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
498
+ >>> t.translate(2)
499
+ Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
500
+ >>> t.translate(2, 2)
501
+ Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
502
+
503
+ """
504
+ newargs = []
505
+ for a in self.args:
506
+ if isinstance(a, GeometryEntity):
507
+ newargs.append(a.translate(x, y))
508
+ else:
509
+ newargs.append(a)
510
+ return self.func(*newargs)
511
+
512
+ def parameter_value(self, other, t):
513
+ """Return the parameter corresponding to the given point.
514
+ Evaluating an arbitrary point of the entity at this parameter
515
+ value will return the given point.
516
+
517
+ Examples
518
+ ========
519
+
520
+ >>> from sympy import Line, Point
521
+ >>> from sympy.abc import t
522
+ >>> a = Point(0, 0)
523
+ >>> b = Point(2, 2)
524
+ >>> Line(a, b).parameter_value((1, 1), t)
525
+ {t: 1/2}
526
+ >>> Line(a, b).arbitrary_point(t).subs(_)
527
+ Point2D(1, 1)
528
+ """
529
+ from sympy.geometry.point import Point
530
+ if not isinstance(other, GeometryEntity):
531
+ other = Point(other, dim=self.ambient_dimension)
532
+ if not isinstance(other, Point):
533
+ raise ValueError("other must be a point")
534
+ sol = solve(self.arbitrary_point(T) - other, T, dict=True)
535
+ if not sol:
536
+ raise ValueError("Given point is not on %s" % func_name(self))
537
+ return {t: sol[0][T]}
538
+
539
+
540
+ class GeometrySet(GeometryEntity, Set):
541
+ """Parent class of all GeometryEntity that are also Sets
542
+ (compatible with sympy.sets)
543
+ """
544
+ __slots__ = ()
545
+
546
+ def _contains(self, other):
547
+ """sympy.sets uses the _contains method, so include it for compatibility."""
548
+
549
+ if isinstance(other, Set) and other.is_FiniteSet:
550
+ return all(self.__contains__(i) for i in other)
551
+
552
+ return self.__contains__(other)
553
+
554
+ @dispatch(GeometrySet, Set) # type:ignore # noqa:F811
555
+ def union_sets(self, o): # noqa:F811
556
+ """ Returns the union of self and o
557
+ for use with sympy.sets.Set, if possible. """
558
+
559
+
560
+ # if its a FiniteSet, merge any points
561
+ # we contain and return a union with the rest
562
+ if o.is_FiniteSet:
563
+ other_points = [p for p in o if not self._contains(p)]
564
+ if len(other_points) == len(o):
565
+ return None
566
+ return Union(self, FiniteSet(*other_points))
567
+ if self._contains(o):
568
+ return self
569
+ return None
570
+
571
+
572
+ @dispatch(GeometrySet, Set) # type: ignore # noqa:F811
573
+ def intersection_sets(self, o): # noqa:F811
574
+ """ Returns a sympy.sets.Set of intersection objects,
575
+ if possible. """
576
+
577
+ from sympy.geometry.point import Point
578
+
579
+ try:
580
+ # if o is a FiniteSet, find the intersection directly
581
+ # to avoid infinite recursion
582
+ if o.is_FiniteSet:
583
+ inter = FiniteSet(*(p for p in o if self.contains(p)))
584
+ else:
585
+ inter = self.intersection(o)
586
+ except NotImplementedError:
587
+ # sympy.sets.Set.reduce expects None if an object
588
+ # doesn't know how to simplify
589
+ return None
590
+
591
+ # put the points in a FiniteSet
592
+ points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
593
+ non_points = [p for p in inter if not isinstance(p, Point)]
594
+
595
+ return Union(*(non_points + [points]))
596
+
597
+ def translate(x, y):
598
+ """Return the matrix to translate a 2-D point by x and y."""
599
+ rv = eye(3)
600
+ rv[2, 0] = x
601
+ rv[2, 1] = y
602
+ return rv
603
+
604
+
605
+ def scale(x, y, pt=None):
606
+ """Return the matrix to multiply a 2-D point's coordinates by x and y.
607
+
608
+ If pt is given, the scaling is done relative to that point."""
609
+ rv = eye(3)
610
+ rv[0, 0] = x
611
+ rv[1, 1] = y
612
+ if pt:
613
+ from sympy.geometry.point import Point
614
+ pt = Point(pt, dim=2)
615
+ tr1 = translate(*(-pt).args)
616
+ tr2 = translate(*pt.args)
617
+ return tr1*rv*tr2
618
+ return rv
619
+
620
+
621
+ def rotate(th):
622
+ """Return the matrix to rotate a 2-D point about the origin by ``angle``.
623
+
624
+ The angle is measured in radians. To Point a point about a point other
625
+ then the origin, translate the Point, do the rotation, and
626
+ translate it back:
627
+
628
+ >>> from sympy.geometry.entity import rotate, translate
629
+ >>> from sympy import Point, pi
630
+ >>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
631
+ >>> Point(1, 1).transform(rot_about_11)
632
+ Point2D(1, 1)
633
+ >>> Point(0, 0).transform(rot_about_11)
634
+ Point2D(2, 0)
635
+ """
636
+ s = sin(th)
637
+ rv = eye(3)*cos(th)
638
+ rv[0, 1] = s
639
+ rv[1, 0] = -s
640
+ rv[2, 2] = 1
641
+ return rv
env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Geometry Errors."""
2
+
3
+ class GeometryError(ValueError):
4
+ """An exception raised by classes in the geometry module."""
5
+ pass
env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py ADDED
@@ -0,0 +1,2883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Expr, S, oo, pi, sympify
2
+ from sympy.core.evalf import N
3
+ from sympy.core.sorting import default_sort_key, ordered
4
+ from sympy.core.symbol import _symbol, Dummy, Symbol
5
+ from sympy.functions.elementary.complexes import sign
6
+ from sympy.functions.elementary.piecewise import Piecewise
7
+ from sympy.functions.elementary.trigonometric import cos, sin, tan
8
+ from .ellipse import Circle
9
+ from .entity import GeometryEntity, GeometrySet
10
+ from .exceptions import GeometryError
11
+ from .line import Line, Segment, Ray
12
+ from .point import Point
13
+ from sympy.logic import And
14
+ from sympy.matrices import Matrix
15
+ from sympy.simplify.simplify import simplify
16
+ from sympy.solvers.solvers import solve
17
+ from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
18
+ from sympy.utilities.misc import as_int, func_name
19
+
20
+ from mpmath.libmp.libmpf import prec_to_dps
21
+
22
+ import warnings
23
+
24
+
25
+ x, y, T = [Dummy('polygon_dummy', real=True) for i in range(3)]
26
+
27
+
28
+ class Polygon(GeometrySet):
29
+ """A two-dimensional polygon.
30
+
31
+ A simple polygon in space. Can be constructed from a sequence of points
32
+ or from a center, radius, number of sides and rotation angle.
33
+
34
+ Parameters
35
+ ==========
36
+
37
+ vertices
38
+ A sequence of points.
39
+
40
+ n : int, optional
41
+ If $> 0$, an n-sided RegularPolygon is created.
42
+ Default value is $0$.
43
+
44
+ Attributes
45
+ ==========
46
+
47
+ area
48
+ angles
49
+ perimeter
50
+ vertices
51
+ centroid
52
+ sides
53
+
54
+ Raises
55
+ ======
56
+
57
+ GeometryError
58
+ If all parameters are not Points.
59
+
60
+ See Also
61
+ ========
62
+
63
+ sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
64
+
65
+ Notes
66
+ =====
67
+
68
+ Polygons are treated as closed paths rather than 2D areas so
69
+ some calculations can be be negative or positive (e.g., area)
70
+ based on the orientation of the points.
71
+
72
+ Any consecutive identical points are reduced to a single point
73
+ and any points collinear and between two points will be removed
74
+ unless they are needed to define an explicit intersection (see examples).
75
+
76
+ A Triangle, Segment or Point will be returned when there are 3 or
77
+ fewer points provided.
78
+
79
+ Examples
80
+ ========
81
+
82
+ >>> from sympy import Polygon, pi
83
+ >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
84
+ >>> Polygon(p1, p2, p3, p4)
85
+ Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
86
+ >>> Polygon(p1, p2)
87
+ Segment2D(Point2D(0, 0), Point2D(1, 0))
88
+ >>> Polygon(p1, p2, p5)
89
+ Segment2D(Point2D(0, 0), Point2D(3, 0))
90
+
91
+ The area of a polygon is calculated as positive when vertices are
92
+ traversed in a ccw direction. When the sides of a polygon cross the
93
+ area will have positive and negative contributions. The following
94
+ defines a Z shape where the bottom right connects back to the top
95
+ left.
96
+
97
+ >>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
98
+ 0
99
+
100
+ When the keyword `n` is used to define the number of sides of the
101
+ Polygon then a RegularPolygon is created and the other arguments are
102
+ interpreted as center, radius and rotation. The unrotated RegularPolygon
103
+ will always have a vertex at Point(r, 0) where `r` is the radius of the
104
+ circle that circumscribes the RegularPolygon. Its method `spin` can be
105
+ used to increment that angle.
106
+
107
+ >>> p = Polygon((0,0), 1, n=3)
108
+ >>> p
109
+ RegularPolygon(Point2D(0, 0), 1, 3, 0)
110
+ >>> p.vertices[0]
111
+ Point2D(1, 0)
112
+ >>> p.args[0]
113
+ Point2D(0, 0)
114
+ >>> p.spin(pi/2)
115
+ >>> p.vertices[0]
116
+ Point2D(0, 1)
117
+
118
+ """
119
+
120
+ __slots__ = ()
121
+
122
+ def __new__(cls, *args, n = 0, **kwargs):
123
+ if n:
124
+ args = list(args)
125
+ # return a virtual polygon with n sides
126
+ if len(args) == 2: # center, radius
127
+ args.append(n)
128
+ elif len(args) == 3: # center, radius, rotation
129
+ args.insert(2, n)
130
+ return RegularPolygon(*args, **kwargs)
131
+
132
+ vertices = [Point(a, dim=2, **kwargs) for a in args]
133
+
134
+ # remove consecutive duplicates
135
+ nodup = []
136
+ for p in vertices:
137
+ if nodup and p == nodup[-1]:
138
+ continue
139
+ nodup.append(p)
140
+ if len(nodup) > 1 and nodup[-1] == nodup[0]:
141
+ nodup.pop() # last point was same as first
142
+
143
+ # remove collinear points
144
+ i = -3
145
+ while i < len(nodup) - 3 and len(nodup) > 2:
146
+ a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
147
+ if Point.is_collinear(a, b, c):
148
+ nodup.pop(i + 1)
149
+ if a == c:
150
+ nodup.pop(i)
151
+ else:
152
+ i += 1
153
+
154
+ vertices = list(nodup)
155
+
156
+ if len(vertices) > 3:
157
+ return GeometryEntity.__new__(cls, *vertices, **kwargs)
158
+ elif len(vertices) == 3:
159
+ return Triangle(*vertices, **kwargs)
160
+ elif len(vertices) == 2:
161
+ return Segment(*vertices, **kwargs)
162
+ else:
163
+ return Point(*vertices, **kwargs)
164
+
165
+ @property
166
+ def area(self):
167
+ """
168
+ The area of the polygon.
169
+
170
+ Notes
171
+ =====
172
+
173
+ The area calculation can be positive or negative based on the
174
+ orientation of the points. If any side of the polygon crosses
175
+ any other side, there will be areas having opposite signs.
176
+
177
+ See Also
178
+ ========
179
+
180
+ sympy.geometry.ellipse.Ellipse.area
181
+
182
+ Examples
183
+ ========
184
+
185
+ >>> from sympy import Point, Polygon
186
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
187
+ >>> poly = Polygon(p1, p2, p3, p4)
188
+ >>> poly.area
189
+ 3
190
+
191
+ In the Z shaped polygon (with the lower right connecting back
192
+ to the upper left) the areas cancel out:
193
+
194
+ >>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
195
+ >>> Z.area
196
+ 0
197
+
198
+ In the M shaped polygon, areas do not cancel because no side
199
+ crosses any other (though there is a point of contact).
200
+
201
+ >>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
202
+ >>> M.area
203
+ -3/2
204
+
205
+ """
206
+ area = 0
207
+ args = self.args
208
+ for i in range(len(args)):
209
+ x1, y1 = args[i - 1].args
210
+ x2, y2 = args[i].args
211
+ area += x1*y2 - x2*y1
212
+ return simplify(area) / 2
213
+
214
+ @staticmethod
215
+ def _isright(a, b, c):
216
+ """Return True/False for cw/ccw orientation.
217
+
218
+ Examples
219
+ ========
220
+
221
+ >>> from sympy import Point, Polygon
222
+ >>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
223
+ >>> Polygon._isright(a, b, c)
224
+ True
225
+ >>> Polygon._isright(a, c, b)
226
+ False
227
+ """
228
+ ba = b - a
229
+ ca = c - a
230
+ t_area = simplify(ba.x*ca.y - ca.x*ba.y)
231
+ res = t_area.is_nonpositive
232
+ if res is None:
233
+ raise ValueError("Can't determine orientation")
234
+ return res
235
+
236
+ @property
237
+ def angles(self):
238
+ """The internal angle at each vertex.
239
+
240
+ Returns
241
+ =======
242
+
243
+ angles : dict
244
+ A dictionary where each key is a vertex and each value is the
245
+ internal angle at that vertex. The vertices are represented as
246
+ Points.
247
+
248
+ See Also
249
+ ========
250
+
251
+ sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
252
+
253
+ Examples
254
+ ========
255
+
256
+ >>> from sympy import Point, Polygon
257
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
258
+ >>> poly = Polygon(p1, p2, p3, p4)
259
+ >>> poly.angles[p1]
260
+ pi/2
261
+ >>> poly.angles[p2]
262
+ acos(-4*sqrt(17)/17)
263
+
264
+ """
265
+
266
+ # Determine orientation of points
267
+ args = self.vertices
268
+ cw = self._isright(args[-1], args[0], args[1])
269
+
270
+ ret = {}
271
+ for i in range(len(args)):
272
+ a, b, c = args[i - 2], args[i - 1], args[i]
273
+ ang = Ray(b, a).angle_between(Ray(b, c))
274
+ if cw ^ self._isright(a, b, c):
275
+ ret[b] = 2*S.Pi - ang
276
+ else:
277
+ ret[b] = ang
278
+ return ret
279
+
280
+ @property
281
+ def ambient_dimension(self):
282
+ return self.vertices[0].ambient_dimension
283
+
284
+ @property
285
+ def perimeter(self):
286
+ """The perimeter of the polygon.
287
+
288
+ Returns
289
+ =======
290
+
291
+ perimeter : number or Basic instance
292
+
293
+ See Also
294
+ ========
295
+
296
+ sympy.geometry.line.Segment.length
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import Point, Polygon
302
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
303
+ >>> poly = Polygon(p1, p2, p3, p4)
304
+ >>> poly.perimeter
305
+ sqrt(17) + 7
306
+ """
307
+ p = 0
308
+ args = self.vertices
309
+ for i in range(len(args)):
310
+ p += args[i - 1].distance(args[i])
311
+ return simplify(p)
312
+
313
+ @property
314
+ def vertices(self):
315
+ """The vertices of the polygon.
316
+
317
+ Returns
318
+ =======
319
+
320
+ vertices : list of Points
321
+
322
+ Notes
323
+ =====
324
+
325
+ When iterating over the vertices, it is more efficient to index self
326
+ rather than to request the vertices and index them. Only use the
327
+ vertices when you want to process all of them at once. This is even
328
+ more important with RegularPolygons that calculate each vertex.
329
+
330
+ See Also
331
+ ========
332
+
333
+ sympy.geometry.point.Point
334
+
335
+ Examples
336
+ ========
337
+
338
+ >>> from sympy import Point, Polygon
339
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
340
+ >>> poly = Polygon(p1, p2, p3, p4)
341
+ >>> poly.vertices
342
+ [Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
343
+ >>> poly.vertices[0]
344
+ Point2D(0, 0)
345
+
346
+ """
347
+ return list(self.args)
348
+
349
+ @property
350
+ def centroid(self):
351
+ """The centroid of the polygon.
352
+
353
+ Returns
354
+ =======
355
+
356
+ centroid : Point
357
+
358
+ See Also
359
+ ========
360
+
361
+ sympy.geometry.point.Point, sympy.geometry.util.centroid
362
+
363
+ Examples
364
+ ========
365
+
366
+ >>> from sympy import Point, Polygon
367
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
368
+ >>> poly = Polygon(p1, p2, p3, p4)
369
+ >>> poly.centroid
370
+ Point2D(31/18, 11/18)
371
+
372
+ """
373
+ A = 1/(6*self.area)
374
+ cx, cy = 0, 0
375
+ args = self.args
376
+ for i in range(len(args)):
377
+ x1, y1 = args[i - 1].args
378
+ x2, y2 = args[i].args
379
+ v = x1*y2 - x2*y1
380
+ cx += v*(x1 + x2)
381
+ cy += v*(y1 + y2)
382
+ return Point(simplify(A*cx), simplify(A*cy))
383
+
384
+
385
+ def second_moment_of_area(self, point=None):
386
+ """Returns the second moment and product moment of area of a two dimensional polygon.
387
+
388
+ Parameters
389
+ ==========
390
+
391
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
392
+ point is the point about which second moment of area is to be found.
393
+ If "point=None" it will be calculated about the axis passing through the
394
+ centroid of the polygon.
395
+
396
+ Returns
397
+ =======
398
+
399
+ I_xx, I_yy, I_xy : number or SymPy expression
400
+ I_xx, I_yy are second moment of area of a two dimensional polygon.
401
+ I_xy is product moment of area of a two dimensional polygon.
402
+
403
+ Examples
404
+ ========
405
+
406
+ >>> from sympy import Polygon, symbols
407
+ >>> a, b = symbols('a, b')
408
+ >>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
409
+ >>> rectangle = Polygon(p1, p2, p3, p4)
410
+ >>> rectangle.second_moment_of_area()
411
+ (a*b**3/12, a**3*b/12, 0)
412
+ >>> rectangle.second_moment_of_area(p5)
413
+ (a*b**3/9, a**3*b/9, a**2*b**2/36)
414
+
415
+ References
416
+ ==========
417
+
418
+ .. [1] https://en.wikipedia.org/wiki/Second_moment_of_area
419
+
420
+ """
421
+
422
+ I_xx, I_yy, I_xy = 0, 0, 0
423
+ args = self.vertices
424
+ for i in range(len(args)):
425
+ x1, y1 = args[i-1].args
426
+ x2, y2 = args[i].args
427
+ v = x1*y2 - x2*y1
428
+ I_xx += (y1**2 + y1*y2 + y2**2)*v
429
+ I_yy += (x1**2 + x1*x2 + x2**2)*v
430
+ I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
431
+ A = self.area
432
+ c_x = self.centroid[0]
433
+ c_y = self.centroid[1]
434
+ # parallel axis theorem
435
+ I_xx_c = (I_xx/12) - (A*(c_y**2))
436
+ I_yy_c = (I_yy/12) - (A*(c_x**2))
437
+ I_xy_c = (I_xy/24) - (A*(c_x*c_y))
438
+ if point is None:
439
+ return I_xx_c, I_yy_c, I_xy_c
440
+
441
+ I_xx = (I_xx_c + A*((point[1]-c_y)**2))
442
+ I_yy = (I_yy_c + A*((point[0]-c_x)**2))
443
+ I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
444
+
445
+ return I_xx, I_yy, I_xy
446
+
447
+
448
+ def first_moment_of_area(self, point=None):
449
+ """
450
+ Returns the first moment of area of a two-dimensional polygon with
451
+ respect to a certain point of interest.
452
+
453
+ First moment of area is a measure of the distribution of the area
454
+ of a polygon in relation to an axis. The first moment of area of
455
+ the entire polygon about its own centroid is always zero. Therefore,
456
+ here it is calculated for an area, above or below a certain point
457
+ of interest, that makes up a smaller portion of the polygon. This
458
+ area is bounded by the point of interest and the extreme end
459
+ (top or bottom) of the polygon. The first moment for this area is
460
+ is then determined about the centroidal axis of the initial polygon.
461
+
462
+ References
463
+ ==========
464
+
465
+ .. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
466
+ .. [2] https://mechanicalc.com/reference/cross-sections
467
+
468
+ Parameters
469
+ ==========
470
+
471
+ point: Point, two-tuple of sympifyable objects, or None (default=None)
472
+ point is the point above or below which the area of interest lies
473
+ If ``point=None`` then the centroid acts as the point of interest.
474
+
475
+ Returns
476
+ =======
477
+
478
+ Q_x, Q_y: number or SymPy expressions
479
+ Q_x is the first moment of area about the x-axis
480
+ Q_y is the first moment of area about the y-axis
481
+ A negative sign indicates that the section modulus is
482
+ determined for a section below (or left of) the centroidal axis
483
+
484
+ Examples
485
+ ========
486
+
487
+ >>> from sympy import Point, Polygon
488
+ >>> a, b = 50, 10
489
+ >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
490
+ >>> p = Polygon(p1, p2, p3, p4)
491
+ >>> p.first_moment_of_area()
492
+ (625, 3125)
493
+ >>> p.first_moment_of_area(point=Point(30, 7))
494
+ (525, 3000)
495
+ """
496
+ if point:
497
+ xc, yc = self.centroid
498
+ else:
499
+ point = self.centroid
500
+ xc, yc = point
501
+
502
+ h_line = Line(point, slope=0)
503
+ v_line = Line(point, slope=S.Infinity)
504
+
505
+ h_poly = self.cut_section(h_line)
506
+ v_poly = self.cut_section(v_line)
507
+
508
+ poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
509
+ poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
510
+
511
+ Q_x = (poly_1.centroid.y - yc)*poly_1.area
512
+ Q_y = (poly_2.centroid.x - xc)*poly_2.area
513
+
514
+ return Q_x, Q_y
515
+
516
+
517
+ def polar_second_moment_of_area(self):
518
+ """Returns the polar modulus of a two-dimensional polygon
519
+
520
+ It is a constituent of the second moment of area, linked through
521
+ the perpendicular axis theorem. While the planar second moment of
522
+ area describes an object's resistance to deflection (bending) when
523
+ subjected to a force applied to a plane parallel to the central
524
+ axis, the polar second moment of area describes an object's
525
+ resistance to deflection when subjected to a moment applied in a
526
+ plane perpendicular to the object's central axis (i.e. parallel to
527
+ the cross-section)
528
+
529
+ Examples
530
+ ========
531
+
532
+ >>> from sympy import Polygon, symbols
533
+ >>> a, b = symbols('a, b')
534
+ >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
535
+ >>> rectangle.polar_second_moment_of_area()
536
+ a**3*b/12 + a*b**3/12
537
+
538
+ References
539
+ ==========
540
+
541
+ .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
542
+
543
+ """
544
+ second_moment = self.second_moment_of_area()
545
+ return second_moment[0] + second_moment[1]
546
+
547
+
548
+ def section_modulus(self, point=None):
549
+ """Returns a tuple with the section modulus of a two-dimensional
550
+ polygon.
551
+
552
+ Section modulus is a geometric property of a polygon defined as the
553
+ ratio of second moment of area to the distance of the extreme end of
554
+ the polygon from the centroidal axis.
555
+
556
+ Parameters
557
+ ==========
558
+
559
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
560
+ point is the point at which section modulus is to be found.
561
+ If "point=None" it will be calculated for the point farthest from the
562
+ centroidal axis of the polygon.
563
+
564
+ Returns
565
+ =======
566
+
567
+ S_x, S_y: numbers or SymPy expressions
568
+ S_x is the section modulus with respect to the x-axis
569
+ S_y is the section modulus with respect to the y-axis
570
+ A negative sign indicates that the section modulus is
571
+ determined for a point below the centroidal axis
572
+
573
+ Examples
574
+ ========
575
+
576
+ >>> from sympy import symbols, Polygon, Point
577
+ >>> a, b = symbols('a, b', positive=True)
578
+ >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
579
+ >>> rectangle.section_modulus()
580
+ (a*b**2/6, a**2*b/6)
581
+ >>> rectangle.section_modulus(Point(a/4, b/4))
582
+ (-a*b**2/3, -a**2*b/3)
583
+
584
+ References
585
+ ==========
586
+
587
+ .. [1] https://en.wikipedia.org/wiki/Section_modulus
588
+
589
+ """
590
+ x_c, y_c = self.centroid
591
+ if point is None:
592
+ # taking x and y as maximum distances from centroid
593
+ x_min, y_min, x_max, y_max = self.bounds
594
+ y = max(y_c - y_min, y_max - y_c)
595
+ x = max(x_c - x_min, x_max - x_c)
596
+ else:
597
+ # taking x and y as distances of the given point from the centroid
598
+ y = point.y - y_c
599
+ x = point.x - x_c
600
+
601
+ second_moment= self.second_moment_of_area()
602
+ S_x = second_moment[0]/y
603
+ S_y = second_moment[1]/x
604
+
605
+ return S_x, S_y
606
+
607
+
608
+ @property
609
+ def sides(self):
610
+ """The directed line segments that form the sides of the polygon.
611
+
612
+ Returns
613
+ =======
614
+
615
+ sides : list of sides
616
+ Each side is a directed Segment.
617
+
618
+ See Also
619
+ ========
620
+
621
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
622
+
623
+ Examples
624
+ ========
625
+
626
+ >>> from sympy import Point, Polygon
627
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
628
+ >>> poly = Polygon(p1, p2, p3, p4)
629
+ >>> poly.sides
630
+ [Segment2D(Point2D(0, 0), Point2D(1, 0)),
631
+ Segment2D(Point2D(1, 0), Point2D(5, 1)),
632
+ Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
633
+
634
+ """
635
+ res = []
636
+ args = self.vertices
637
+ for i in range(-len(args), 0):
638
+ res.append(Segment(args[i], args[i + 1]))
639
+ return res
640
+
641
+ @property
642
+ def bounds(self):
643
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
644
+ rectangle for the geometric figure.
645
+
646
+ """
647
+
648
+ verts = self.vertices
649
+ xs = [p.x for p in verts]
650
+ ys = [p.y for p in verts]
651
+ return (min(xs), min(ys), max(xs), max(ys))
652
+
653
+ def is_convex(self):
654
+ """Is the polygon convex?
655
+
656
+ A polygon is convex if all its interior angles are less than 180
657
+ degrees and there are no intersections between sides.
658
+
659
+ Returns
660
+ =======
661
+
662
+ is_convex : boolean
663
+ True if this polygon is convex, False otherwise.
664
+
665
+ See Also
666
+ ========
667
+
668
+ sympy.geometry.util.convex_hull
669
+
670
+ Examples
671
+ ========
672
+
673
+ >>> from sympy import Point, Polygon
674
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
675
+ >>> poly = Polygon(p1, p2, p3, p4)
676
+ >>> poly.is_convex()
677
+ True
678
+
679
+ """
680
+ # Determine orientation of points
681
+ args = self.vertices
682
+ cw = self._isright(args[-2], args[-1], args[0])
683
+ for i in range(1, len(args)):
684
+ if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
685
+ return False
686
+ # check for intersecting sides
687
+ sides = self.sides
688
+ for i, si in enumerate(sides):
689
+ pts = si.args
690
+ # exclude the sides connected to si
691
+ for j in range(1 if i == len(sides) - 1 else 0, i - 1):
692
+ sj = sides[j]
693
+ if sj.p1 not in pts and sj.p2 not in pts:
694
+ hit = si.intersection(sj)
695
+ if hit:
696
+ return False
697
+ return True
698
+
699
+ def encloses_point(self, p):
700
+ """
701
+ Return True if p is enclosed by (is inside of) self.
702
+
703
+ Notes
704
+ =====
705
+
706
+ Being on the border of self is considered False.
707
+
708
+ Parameters
709
+ ==========
710
+
711
+ p : Point
712
+
713
+ Returns
714
+ =======
715
+
716
+ encloses_point : True, False or None
717
+
718
+ See Also
719
+ ========
720
+
721
+ sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
722
+
723
+ Examples
724
+ ========
725
+
726
+ >>> from sympy import Polygon, Point
727
+ >>> p = Polygon((0, 0), (4, 0), (4, 4))
728
+ >>> p.encloses_point(Point(2, 1))
729
+ True
730
+ >>> p.encloses_point(Point(2, 2))
731
+ False
732
+ >>> p.encloses_point(Point(5, 5))
733
+ False
734
+
735
+ References
736
+ ==========
737
+
738
+ .. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
739
+
740
+ """
741
+ p = Point(p, dim=2)
742
+ if p in self.vertices or any(p in s for s in self.sides):
743
+ return False
744
+
745
+ # move to p, checking that the result is numeric
746
+ lit = []
747
+ for v in self.vertices:
748
+ lit.append(v - p) # the difference is simplified
749
+ if lit[-1].free_symbols:
750
+ return None
751
+
752
+ poly = Polygon(*lit)
753
+
754
+ # polygon closure is assumed in the following test but Polygon removes duplicate pts so
755
+ # the last point has to be added so all sides are computed. Using Polygon.sides is
756
+ # not good since Segments are unordered.
757
+ args = poly.args
758
+ indices = list(range(-len(args), 1))
759
+
760
+ if poly.is_convex():
761
+ orientation = None
762
+ for i in indices:
763
+ a = args[i]
764
+ b = args[i + 1]
765
+ test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
766
+ if orientation is None:
767
+ orientation = test
768
+ elif test is not orientation:
769
+ return False
770
+ return True
771
+
772
+ hit_odd = False
773
+ p1x, p1y = args[0].args
774
+ for i in indices[1:]:
775
+ p2x, p2y = args[i].args
776
+ if 0 > min(p1y, p2y):
777
+ if 0 <= max(p1y, p2y):
778
+ if 0 <= max(p1x, p2x):
779
+ if p1y != p2y:
780
+ xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
781
+ if p1x == p2x or 0 <= xinters:
782
+ hit_odd = not hit_odd
783
+ p1x, p1y = p2x, p2y
784
+ return hit_odd
785
+
786
+ def arbitrary_point(self, parameter='t'):
787
+ """A parameterized point on the polygon.
788
+
789
+ The parameter, varying from 0 to 1, assigns points to the position on
790
+ the perimeter that is that fraction of the total perimeter. So the
791
+ point evaluated at t=1/2 would return the point from the first vertex
792
+ that is 1/2 way around the polygon.
793
+
794
+ Parameters
795
+ ==========
796
+
797
+ parameter : str, optional
798
+ Default value is 't'.
799
+
800
+ Returns
801
+ =======
802
+
803
+ arbitrary_point : Point
804
+
805
+ Raises
806
+ ======
807
+
808
+ ValueError
809
+ When `parameter` already appears in the Polygon's definition.
810
+
811
+ See Also
812
+ ========
813
+
814
+ sympy.geometry.point.Point
815
+
816
+ Examples
817
+ ========
818
+
819
+ >>> from sympy import Polygon, Symbol
820
+ >>> t = Symbol('t', real=True)
821
+ >>> tri = Polygon((0, 0), (1, 0), (1, 1))
822
+ >>> p = tri.arbitrary_point('t')
823
+ >>> perimeter = tri.perimeter
824
+ >>> s1, s2 = [s.length for s in tri.sides[:2]]
825
+ >>> p.subs(t, (s1 + s2/2)/perimeter)
826
+ Point2D(1, 1/2)
827
+
828
+ """
829
+ t = _symbol(parameter, real=True)
830
+ if t.name in (f.name for f in self.free_symbols):
831
+ raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
832
+ sides = []
833
+ perimeter = self.perimeter
834
+ perim_fraction_start = 0
835
+ for s in self.sides:
836
+ side_perim_fraction = s.length/perimeter
837
+ perim_fraction_end = perim_fraction_start + side_perim_fraction
838
+ pt = s.arbitrary_point(parameter).subs(
839
+ t, (t - perim_fraction_start)/side_perim_fraction)
840
+ sides.append(
841
+ (pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
842
+ perim_fraction_start = perim_fraction_end
843
+ return Piecewise(*sides)
844
+
845
+ def parameter_value(self, other, t):
846
+ if not isinstance(other,GeometryEntity):
847
+ other = Point(other, dim=self.ambient_dimension)
848
+ if not isinstance(other,Point):
849
+ raise ValueError("other must be a point")
850
+ if other.free_symbols:
851
+ raise NotImplementedError('non-numeric coordinates')
852
+ unknown = False
853
+ p = self.arbitrary_point(T)
854
+ for pt, cond in p.args:
855
+ sol = solve(pt - other, T, dict=True)
856
+ if not sol:
857
+ continue
858
+ value = sol[0][T]
859
+ if simplify(cond.subs(T, value)) == True:
860
+ return {t: value}
861
+ unknown = True
862
+ if unknown:
863
+ raise ValueError("Given point may not be on %s" % func_name(self))
864
+ raise ValueError("Given point is not on %s" % func_name(self))
865
+
866
+ def plot_interval(self, parameter='t'):
867
+ """The plot interval for the default geometric plot of the polygon.
868
+
869
+ Parameters
870
+ ==========
871
+
872
+ parameter : str, optional
873
+ Default value is 't'.
874
+
875
+ Returns
876
+ =======
877
+
878
+ plot_interval : list (plot interval)
879
+ [parameter, lower_bound, upper_bound]
880
+
881
+ Examples
882
+ ========
883
+
884
+ >>> from sympy import Polygon
885
+ >>> p = Polygon((0, 0), (1, 0), (1, 1))
886
+ >>> p.plot_interval()
887
+ [t, 0, 1]
888
+
889
+ """
890
+ t = Symbol(parameter, real=True)
891
+ return [t, 0, 1]
892
+
893
+ def intersection(self, o):
894
+ """The intersection of polygon and geometry entity.
895
+
896
+ The intersection may be empty and can contain individual Points and
897
+ complete Line Segments.
898
+
899
+ Parameters
900
+ ==========
901
+
902
+ other: GeometryEntity
903
+
904
+ Returns
905
+ =======
906
+
907
+ intersection : list
908
+ The list of Segments and Points
909
+
910
+ See Also
911
+ ========
912
+
913
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
914
+
915
+ Examples
916
+ ========
917
+
918
+ >>> from sympy import Point, Polygon, Line
919
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
920
+ >>> poly1 = Polygon(p1, p2, p3, p4)
921
+ >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
922
+ >>> poly2 = Polygon(p5, p6, p7)
923
+ >>> poly1.intersection(poly2)
924
+ [Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
925
+ >>> poly1.intersection(Line(p1, p2))
926
+ [Segment2D(Point2D(0, 0), Point2D(1, 0))]
927
+ >>> poly1.intersection(p1)
928
+ [Point2D(0, 0)]
929
+ """
930
+ intersection_result = []
931
+ k = o.sides if isinstance(o, Polygon) else [o]
932
+ for side in self.sides:
933
+ for side1 in k:
934
+ intersection_result.extend(side.intersection(side1))
935
+
936
+ intersection_result = list(uniq(intersection_result))
937
+ points = [entity for entity in intersection_result if isinstance(entity, Point)]
938
+ segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
939
+
940
+ if points and segments:
941
+ points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
942
+ if points_in_segments:
943
+ for i in points_in_segments:
944
+ points.remove(i)
945
+ return list(ordered(segments + points))
946
+ else:
947
+ return list(ordered(intersection_result))
948
+
949
+
950
+ def cut_section(self, line):
951
+ """
952
+ Returns a tuple of two polygon segments that lie above and below
953
+ the intersecting line respectively.
954
+
955
+ Parameters
956
+ ==========
957
+
958
+ line: Line object of geometry module
959
+ line which cuts the Polygon. The part of the Polygon that lies
960
+ above and below this line is returned.
961
+
962
+ Returns
963
+ =======
964
+
965
+ upper_polygon, lower_polygon: Polygon objects or None
966
+ upper_polygon is the polygon that lies above the given line.
967
+ lower_polygon is the polygon that lies below the given line.
968
+ upper_polygon and lower polygon are ``None`` when no polygon
969
+ exists above the line or below the line.
970
+
971
+ Raises
972
+ ======
973
+
974
+ ValueError: When the line does not intersect the polygon
975
+
976
+ Examples
977
+ ========
978
+
979
+ >>> from sympy import Polygon, Line
980
+ >>> a, b = 20, 10
981
+ >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
982
+ >>> rectangle = Polygon(p1, p2, p3, p4)
983
+ >>> t = rectangle.cut_section(Line((0, 5), slope=0))
984
+ >>> t
985
+ (Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
986
+ Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
987
+ >>> upper_segment, lower_segment = t
988
+ >>> upper_segment.area
989
+ 100
990
+ >>> upper_segment.centroid
991
+ Point2D(10, 15/2)
992
+ >>> lower_segment.centroid
993
+ Point2D(10, 5/2)
994
+
995
+ References
996
+ ==========
997
+
998
+ .. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
999
+
1000
+ """
1001
+ intersection_points = self.intersection(line)
1002
+ if not intersection_points:
1003
+ raise ValueError("This line does not intersect the polygon")
1004
+
1005
+ points = list(self.vertices)
1006
+ points.append(points[0])
1007
+
1008
+ eq = line.equation(x, y)
1009
+
1010
+ # considering equation of line to be `ax +by + c`
1011
+ a = eq.coeff(x)
1012
+ b = eq.coeff(y)
1013
+
1014
+ upper_vertices = []
1015
+ lower_vertices = []
1016
+ # prev is true when previous point is above the line
1017
+ prev = True
1018
+ prev_point = None
1019
+ for point in points:
1020
+ # when coefficient of y is 0, right side of the line is
1021
+ # considered
1022
+ compare = eq.subs({x: point.x, y: point.y})/b if b \
1023
+ else eq.subs(x, point.x)/a
1024
+
1025
+ # if point lies above line
1026
+ if compare > 0:
1027
+ if not prev:
1028
+ # if previous point lies below the line, the intersection
1029
+ # point of the polygon edge and the line has to be included
1030
+ edge = Line(point, prev_point)
1031
+ new_point = edge.intersection(line)
1032
+ upper_vertices.append(new_point[0])
1033
+ lower_vertices.append(new_point[0])
1034
+
1035
+ upper_vertices.append(point)
1036
+ prev = True
1037
+ else:
1038
+ if prev and prev_point:
1039
+ edge = Line(point, prev_point)
1040
+ new_point = edge.intersection(line)
1041
+ upper_vertices.append(new_point[0])
1042
+ lower_vertices.append(new_point[0])
1043
+ lower_vertices.append(point)
1044
+ prev = False
1045
+ prev_point = point
1046
+
1047
+ upper_polygon, lower_polygon = None, None
1048
+ if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
1049
+ upper_polygon = Polygon(*upper_vertices)
1050
+ if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
1051
+ lower_polygon = Polygon(*lower_vertices)
1052
+
1053
+ return upper_polygon, lower_polygon
1054
+
1055
+
1056
+ def distance(self, o):
1057
+ """
1058
+ Returns the shortest distance between self and o.
1059
+
1060
+ If o is a point, then self does not need to be convex.
1061
+ If o is another polygon self and o must be convex.
1062
+
1063
+ Examples
1064
+ ========
1065
+
1066
+ >>> from sympy import Point, Polygon, RegularPolygon
1067
+ >>> p1, p2 = map(Point, [(0, 0), (7, 5)])
1068
+ >>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
1069
+ >>> poly.distance(p2)
1070
+ sqrt(61)
1071
+ """
1072
+ if isinstance(o, Point):
1073
+ dist = oo
1074
+ for side in self.sides:
1075
+ current = side.distance(o)
1076
+ if current == 0:
1077
+ return S.Zero
1078
+ elif current < dist:
1079
+ dist = current
1080
+ return dist
1081
+ elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
1082
+ return self._do_poly_distance(o)
1083
+ raise NotImplementedError()
1084
+
1085
+ def _do_poly_distance(self, e2):
1086
+ """
1087
+ Calculates the least distance between the exteriors of two
1088
+ convex polygons e1 and e2. Does not check for the convexity
1089
+ of the polygons as this is checked by Polygon.distance.
1090
+
1091
+ Notes
1092
+ =====
1093
+
1094
+ - Prints a warning if the two polygons possibly intersect as the return
1095
+ value will not be valid in such a case. For a more through test of
1096
+ intersection use intersection().
1097
+
1098
+ See Also
1099
+ ========
1100
+
1101
+ sympy.geometry.point.Point.distance
1102
+
1103
+ Examples
1104
+ ========
1105
+
1106
+ >>> from sympy import Point, Polygon
1107
+ >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
1108
+ >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
1109
+ >>> square._do_poly_distance(triangle)
1110
+ sqrt(2)/2
1111
+
1112
+ Description of method used
1113
+ ==========================
1114
+
1115
+ Method:
1116
+ [1] https://web.archive.org/web/20150509035744/http://cgm.cs.mcgill.ca/~orm/mind2p.html
1117
+ Uses rotating calipers:
1118
+ [2] https://en.wikipedia.org/wiki/Rotating_calipers
1119
+ and antipodal points:
1120
+ [3] https://en.wikipedia.org/wiki/Antipodal_point
1121
+ """
1122
+ e1 = self
1123
+
1124
+ '''Tests for a possible intersection between the polygons and outputs a warning'''
1125
+ e1_center = e1.centroid
1126
+ e2_center = e2.centroid
1127
+ e1_max_radius = S.Zero
1128
+ e2_max_radius = S.Zero
1129
+ for vertex in e1.vertices:
1130
+ r = Point.distance(e1_center, vertex)
1131
+ if e1_max_radius < r:
1132
+ e1_max_radius = r
1133
+ for vertex in e2.vertices:
1134
+ r = Point.distance(e2_center, vertex)
1135
+ if e2_max_radius < r:
1136
+ e2_max_radius = r
1137
+ center_dist = Point.distance(e1_center, e2_center)
1138
+ if center_dist <= e1_max_radius + e2_max_radius:
1139
+ warnings.warn("Polygons may intersect producing erroneous output",
1140
+ stacklevel=3)
1141
+
1142
+ '''
1143
+ Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
1144
+ '''
1145
+ e1_ymax = Point(0, -oo)
1146
+ e2_ymin = Point(0, oo)
1147
+
1148
+ for vertex in e1.vertices:
1149
+ if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
1150
+ e1_ymax = vertex
1151
+ for vertex in e2.vertices:
1152
+ if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
1153
+ e2_ymin = vertex
1154
+ min_dist = Point.distance(e1_ymax, e2_ymin)
1155
+
1156
+ '''
1157
+ Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
1158
+ to which the vertex is connected as its value. The same is then done for e2.
1159
+ '''
1160
+ e1_connections = {}
1161
+ e2_connections = {}
1162
+
1163
+ for side in e1.sides:
1164
+ if side.p1 in e1_connections:
1165
+ e1_connections[side.p1].append(side.p2)
1166
+ else:
1167
+ e1_connections[side.p1] = [side.p2]
1168
+
1169
+ if side.p2 in e1_connections:
1170
+ e1_connections[side.p2].append(side.p1)
1171
+ else:
1172
+ e1_connections[side.p2] = [side.p1]
1173
+
1174
+ for side in e2.sides:
1175
+ if side.p1 in e2_connections:
1176
+ e2_connections[side.p1].append(side.p2)
1177
+ else:
1178
+ e2_connections[side.p1] = [side.p2]
1179
+
1180
+ if side.p2 in e2_connections:
1181
+ e2_connections[side.p2].append(side.p1)
1182
+ else:
1183
+ e2_connections[side.p2] = [side.p1]
1184
+
1185
+ e1_current = e1_ymax
1186
+ e2_current = e2_ymin
1187
+ support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
1188
+
1189
+ '''
1190
+ Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
1191
+ this information combined with the above produced dictionaries determines the
1192
+ path that will be taken around the polygons
1193
+ '''
1194
+ point1 = e1_connections[e1_ymax][0]
1195
+ point2 = e1_connections[e1_ymax][1]
1196
+ angle1 = support_line.angle_between(Line(e1_ymax, point1))
1197
+ angle2 = support_line.angle_between(Line(e1_ymax, point2))
1198
+ if angle1 < angle2:
1199
+ e1_next = point1
1200
+ elif angle2 < angle1:
1201
+ e1_next = point2
1202
+ elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
1203
+ e1_next = point2
1204
+ else:
1205
+ e1_next = point1
1206
+
1207
+ point1 = e2_connections[e2_ymin][0]
1208
+ point2 = e2_connections[e2_ymin][1]
1209
+ angle1 = support_line.angle_between(Line(e2_ymin, point1))
1210
+ angle2 = support_line.angle_between(Line(e2_ymin, point2))
1211
+ if angle1 > angle2:
1212
+ e2_next = point1
1213
+ elif angle2 > angle1:
1214
+ e2_next = point2
1215
+ elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
1216
+ e2_next = point2
1217
+ else:
1218
+ e2_next = point1
1219
+
1220
+ '''
1221
+ Loop which determines the distance between anti-podal pairs and updates the
1222
+ minimum distance accordingly. It repeats until it reaches the starting position.
1223
+ '''
1224
+ while True:
1225
+ e1_angle = support_line.angle_between(Line(e1_current, e1_next))
1226
+ e2_angle = pi - support_line.angle_between(Line(
1227
+ e2_current, e2_next))
1228
+
1229
+ if (e1_angle < e2_angle) is True:
1230
+ support_line = Line(e1_current, e1_next)
1231
+ e1_segment = Segment(e1_current, e1_next)
1232
+ min_dist_current = e1_segment.distance(e2_current)
1233
+
1234
+ if min_dist_current.evalf() < min_dist.evalf():
1235
+ min_dist = min_dist_current
1236
+
1237
+ if e1_connections[e1_next][0] != e1_current:
1238
+ e1_current = e1_next
1239
+ e1_next = e1_connections[e1_next][0]
1240
+ else:
1241
+ e1_current = e1_next
1242
+ e1_next = e1_connections[e1_next][1]
1243
+ elif (e1_angle > e2_angle) is True:
1244
+ support_line = Line(e2_next, e2_current)
1245
+ e2_segment = Segment(e2_current, e2_next)
1246
+ min_dist_current = e2_segment.distance(e1_current)
1247
+
1248
+ if min_dist_current.evalf() < min_dist.evalf():
1249
+ min_dist = min_dist_current
1250
+
1251
+ if e2_connections[e2_next][0] != e2_current:
1252
+ e2_current = e2_next
1253
+ e2_next = e2_connections[e2_next][0]
1254
+ else:
1255
+ e2_current = e2_next
1256
+ e2_next = e2_connections[e2_next][1]
1257
+ else:
1258
+ support_line = Line(e1_current, e1_next)
1259
+ e1_segment = Segment(e1_current, e1_next)
1260
+ e2_segment = Segment(e2_current, e2_next)
1261
+ min1 = e1_segment.distance(e2_next)
1262
+ min2 = e2_segment.distance(e1_next)
1263
+
1264
+ min_dist_current = min(min1, min2)
1265
+ if min_dist_current.evalf() < min_dist.evalf():
1266
+ min_dist = min_dist_current
1267
+
1268
+ if e1_connections[e1_next][0] != e1_current:
1269
+ e1_current = e1_next
1270
+ e1_next = e1_connections[e1_next][0]
1271
+ else:
1272
+ e1_current = e1_next
1273
+ e1_next = e1_connections[e1_next][1]
1274
+
1275
+ if e2_connections[e2_next][0] != e2_current:
1276
+ e2_current = e2_next
1277
+ e2_next = e2_connections[e2_next][0]
1278
+ else:
1279
+ e2_current = e2_next
1280
+ e2_next = e2_connections[e2_next][1]
1281
+ if e1_current == e1_ymax and e2_current == e2_ymin:
1282
+ break
1283
+ return min_dist
1284
+
1285
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
1286
+ """Returns SVG path element for the Polygon.
1287
+
1288
+ Parameters
1289
+ ==========
1290
+
1291
+ scale_factor : float
1292
+ Multiplication factor for the SVG stroke-width. Default is 1.
1293
+ fill_color : str, optional
1294
+ Hex string for fill color. Default is "#66cc99".
1295
+ """
1296
+ verts = map(N, self.vertices)
1297
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
1298
+ path = "M {} L {} z".format(coords[0], " L ".join(coords[1:]))
1299
+ return (
1300
+ '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
1301
+ 'stroke-width="{0}" opacity="0.6" d="{1}" />'
1302
+ ).format(2. * scale_factor, path, fill_color)
1303
+
1304
+ def _hashable_content(self):
1305
+
1306
+ D = {}
1307
+ def ref_list(point_list):
1308
+ kee = {}
1309
+ for i, p in enumerate(ordered(set(point_list))):
1310
+ kee[p] = i
1311
+ D[i] = p
1312
+ return [kee[p] for p in point_list]
1313
+
1314
+ S1 = ref_list(self.args)
1315
+ r_nor = rotate_left(S1, least_rotation(S1))
1316
+ S2 = ref_list(list(reversed(self.args)))
1317
+ r_rev = rotate_left(S2, least_rotation(S2))
1318
+ if r_nor < r_rev:
1319
+ r = r_nor
1320
+ else:
1321
+ r = r_rev
1322
+ canonical_args = [ D[order] for order in r ]
1323
+ return tuple(canonical_args)
1324
+
1325
+ def __contains__(self, o):
1326
+ """
1327
+ Return True if o is contained within the boundary lines of self.altitudes
1328
+
1329
+ Parameters
1330
+ ==========
1331
+
1332
+ other : GeometryEntity
1333
+
1334
+ Returns
1335
+ =======
1336
+
1337
+ contained in : bool
1338
+ The points (and sides, if applicable) are contained in self.
1339
+
1340
+ See Also
1341
+ ========
1342
+
1343
+ sympy.geometry.entity.GeometryEntity.encloses
1344
+
1345
+ Examples
1346
+ ========
1347
+
1348
+ >>> from sympy import Line, Segment, Point
1349
+ >>> p = Point(0, 0)
1350
+ >>> q = Point(1, 1)
1351
+ >>> s = Segment(p, q*2)
1352
+ >>> l = Line(p, q)
1353
+ >>> p in q
1354
+ False
1355
+ >>> p in s
1356
+ True
1357
+ >>> q*3 in s
1358
+ False
1359
+ >>> s in l
1360
+ True
1361
+
1362
+ """
1363
+
1364
+ if isinstance(o, Polygon):
1365
+ return self == o
1366
+ elif isinstance(o, Segment):
1367
+ return any(o in s for s in self.sides)
1368
+ elif isinstance(o, Point):
1369
+ if o in self.vertices:
1370
+ return True
1371
+ for side in self.sides:
1372
+ if o in side:
1373
+ return True
1374
+
1375
+ return False
1376
+
1377
+ def bisectors(p, prec=None):
1378
+ """Returns angle bisectors of a polygon. If prec is given
1379
+ then approximate the point defining the ray to that precision.
1380
+
1381
+ The distance between the points defining the bisector ray is 1.
1382
+
1383
+ Examples
1384
+ ========
1385
+
1386
+ >>> from sympy import Polygon, Point
1387
+ >>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
1388
+ >>> p.bisectors(2)
1389
+ {Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
1390
+ Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
1391
+ Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
1392
+ Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
1393
+ """
1394
+ b = {}
1395
+ pts = list(p.args)
1396
+ pts.append(pts[0]) # close it
1397
+ cw = Polygon._isright(*pts[:3])
1398
+ if cw:
1399
+ pts = list(reversed(pts))
1400
+ for v, a in p.angles.items():
1401
+ i = pts.index(v)
1402
+ p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1])
1403
+ ray = Ray(p1, p2).rotate(a/2, v)
1404
+ dir = ray.direction
1405
+ ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0)))
1406
+ if prec is not None:
1407
+ ray = Ray(ray.p1, ray.p2.n(prec))
1408
+ b[v] = ray
1409
+ return b
1410
+
1411
+
1412
+ class RegularPolygon(Polygon):
1413
+ """
1414
+ A regular polygon.
1415
+
1416
+ Such a polygon has all internal angles equal and all sides the same length.
1417
+
1418
+ Parameters
1419
+ ==========
1420
+
1421
+ center : Point
1422
+ radius : number or Basic instance
1423
+ The distance from the center to a vertex
1424
+ n : int
1425
+ The number of sides
1426
+
1427
+ Attributes
1428
+ ==========
1429
+
1430
+ vertices
1431
+ center
1432
+ radius
1433
+ rotation
1434
+ apothem
1435
+ interior_angle
1436
+ exterior_angle
1437
+ circumcircle
1438
+ incircle
1439
+ angles
1440
+
1441
+ Raises
1442
+ ======
1443
+
1444
+ GeometryError
1445
+ If the `center` is not a Point, or the `radius` is not a number or Basic
1446
+ instance, or the number of sides, `n`, is less than three.
1447
+
1448
+ Notes
1449
+ =====
1450
+
1451
+ A RegularPolygon can be instantiated with Polygon with the kwarg n.
1452
+
1453
+ Regular polygons are instantiated with a center, radius, number of sides
1454
+ and a rotation angle. Whereas the arguments of a Polygon are vertices, the
1455
+ vertices of the RegularPolygon must be obtained with the vertices method.
1456
+
1457
+ See Also
1458
+ ========
1459
+
1460
+ sympy.geometry.point.Point, Polygon
1461
+
1462
+ Examples
1463
+ ========
1464
+
1465
+ >>> from sympy import RegularPolygon, Point
1466
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
1467
+ >>> r
1468
+ RegularPolygon(Point2D(0, 0), 5, 3, 0)
1469
+ >>> r.vertices[0]
1470
+ Point2D(5, 0)
1471
+
1472
+ """
1473
+
1474
+ __slots__ = ('_n', '_center', '_radius', '_rot')
1475
+
1476
+ def __new__(self, c, r, n, rot=0, **kwargs):
1477
+ r, n, rot = map(sympify, (r, n, rot))
1478
+ c = Point(c, dim=2, **kwargs)
1479
+ if not isinstance(r, Expr):
1480
+ raise GeometryError("r must be an Expr object, not %s" % r)
1481
+ if n.is_Number:
1482
+ as_int(n) # let an error raise if necessary
1483
+ if n < 3:
1484
+ raise GeometryError("n must be a >= 3, not %s" % n)
1485
+
1486
+ obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
1487
+ obj._n = n
1488
+ obj._center = c
1489
+ obj._radius = r
1490
+ obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
1491
+ return obj
1492
+
1493
+ def _eval_evalf(self, prec=15, **options):
1494
+ c, r, n, a = self.args
1495
+ dps = prec_to_dps(prec)
1496
+ c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)]
1497
+ return self.func(c, r, n, a)
1498
+
1499
+ @property
1500
+ def args(self):
1501
+ """
1502
+ Returns the center point, the radius,
1503
+ the number of sides, and the orientation angle.
1504
+
1505
+ Examples
1506
+ ========
1507
+
1508
+ >>> from sympy import RegularPolygon, Point
1509
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
1510
+ >>> r.args
1511
+ (Point2D(0, 0), 5, 3, 0)
1512
+ """
1513
+ return self._center, self._radius, self._n, self._rot
1514
+
1515
+ def __str__(self):
1516
+ return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
1517
+
1518
+ def __repr__(self):
1519
+ return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
1520
+
1521
+ @property
1522
+ def area(self):
1523
+ """Returns the area.
1524
+
1525
+ Examples
1526
+ ========
1527
+
1528
+ >>> from sympy import RegularPolygon
1529
+ >>> square = RegularPolygon((0, 0), 1, 4)
1530
+ >>> square.area
1531
+ 2
1532
+ >>> _ == square.length**2
1533
+ True
1534
+ """
1535
+ c, r, n, rot = self.args
1536
+ return sign(r)*n*self.length**2/(4*tan(pi/n))
1537
+
1538
+ @property
1539
+ def length(self):
1540
+ """Returns the length of the sides.
1541
+
1542
+ The half-length of the side and the apothem form two legs
1543
+ of a right triangle whose hypotenuse is the radius of the
1544
+ regular polygon.
1545
+
1546
+ Examples
1547
+ ========
1548
+
1549
+ >>> from sympy import RegularPolygon
1550
+ >>> from sympy import sqrt
1551
+ >>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
1552
+ >>> s.length
1553
+ sqrt(2)
1554
+ >>> sqrt((_/2)**2 + s.apothem**2) == s.radius
1555
+ True
1556
+
1557
+ """
1558
+ return self.radius*2*sin(pi/self._n)
1559
+
1560
+ @property
1561
+ def center(self):
1562
+ """The center of the RegularPolygon
1563
+
1564
+ This is also the center of the circumscribing circle.
1565
+
1566
+ Returns
1567
+ =======
1568
+
1569
+ center : Point
1570
+
1571
+ See Also
1572
+ ========
1573
+
1574
+ sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
1575
+
1576
+ Examples
1577
+ ========
1578
+
1579
+ >>> from sympy import RegularPolygon, Point
1580
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
1581
+ >>> rp.center
1582
+ Point2D(0, 0)
1583
+ """
1584
+ return self._center
1585
+
1586
+ centroid = center
1587
+
1588
+ @property
1589
+ def circumcenter(self):
1590
+ """
1591
+ Alias for center.
1592
+
1593
+ Examples
1594
+ ========
1595
+
1596
+ >>> from sympy import RegularPolygon, Point
1597
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
1598
+ >>> rp.circumcenter
1599
+ Point2D(0, 0)
1600
+ """
1601
+ return self.center
1602
+
1603
+ @property
1604
+ def radius(self):
1605
+ """Radius of the RegularPolygon
1606
+
1607
+ This is also the radius of the circumscribing circle.
1608
+
1609
+ Returns
1610
+ =======
1611
+
1612
+ radius : number or instance of Basic
1613
+
1614
+ See Also
1615
+ ========
1616
+
1617
+ sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
1618
+
1619
+ Examples
1620
+ ========
1621
+
1622
+ >>> from sympy import Symbol
1623
+ >>> from sympy import RegularPolygon, Point
1624
+ >>> radius = Symbol('r')
1625
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
1626
+ >>> rp.radius
1627
+ r
1628
+
1629
+ """
1630
+ return self._radius
1631
+
1632
+ @property
1633
+ def circumradius(self):
1634
+ """
1635
+ Alias for radius.
1636
+
1637
+ Examples
1638
+ ========
1639
+
1640
+ >>> from sympy import Symbol
1641
+ >>> from sympy import RegularPolygon, Point
1642
+ >>> radius = Symbol('r')
1643
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
1644
+ >>> rp.circumradius
1645
+ r
1646
+ """
1647
+ return self.radius
1648
+
1649
+ @property
1650
+ def rotation(self):
1651
+ """CCW angle by which the RegularPolygon is rotated
1652
+
1653
+ Returns
1654
+ =======
1655
+
1656
+ rotation : number or instance of Basic
1657
+
1658
+ Examples
1659
+ ========
1660
+
1661
+ >>> from sympy import pi
1662
+ >>> from sympy.abc import a
1663
+ >>> from sympy import RegularPolygon, Point
1664
+ >>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
1665
+ pi/4
1666
+
1667
+ Numerical rotation angles are made canonical:
1668
+
1669
+ >>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
1670
+ a
1671
+ >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
1672
+ 0
1673
+
1674
+ """
1675
+ return self._rot
1676
+
1677
+ @property
1678
+ def apothem(self):
1679
+ """The inradius of the RegularPolygon.
1680
+
1681
+ The apothem/inradius is the radius of the inscribed circle.
1682
+
1683
+ Returns
1684
+ =======
1685
+
1686
+ apothem : number or instance of Basic
1687
+
1688
+ See Also
1689
+ ========
1690
+
1691
+ sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
1692
+
1693
+ Examples
1694
+ ========
1695
+
1696
+ >>> from sympy import Symbol
1697
+ >>> from sympy import RegularPolygon, Point
1698
+ >>> radius = Symbol('r')
1699
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
1700
+ >>> rp.apothem
1701
+ sqrt(2)*r/2
1702
+
1703
+ """
1704
+ return self.radius * cos(S.Pi/self._n)
1705
+
1706
+ @property
1707
+ def inradius(self):
1708
+ """
1709
+ Alias for apothem.
1710
+
1711
+ Examples
1712
+ ========
1713
+
1714
+ >>> from sympy import Symbol
1715
+ >>> from sympy import RegularPolygon, Point
1716
+ >>> radius = Symbol('r')
1717
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
1718
+ >>> rp.inradius
1719
+ sqrt(2)*r/2
1720
+ """
1721
+ return self.apothem
1722
+
1723
+ @property
1724
+ def interior_angle(self):
1725
+ """Measure of the interior angles.
1726
+
1727
+ Returns
1728
+ =======
1729
+
1730
+ interior_angle : number
1731
+
1732
+ See Also
1733
+ ========
1734
+
1735
+ sympy.geometry.line.LinearEntity.angle_between
1736
+
1737
+ Examples
1738
+ ========
1739
+
1740
+ >>> from sympy import RegularPolygon, Point
1741
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
1742
+ >>> rp.interior_angle
1743
+ 3*pi/4
1744
+
1745
+ """
1746
+ return (self._n - 2)*S.Pi/self._n
1747
+
1748
+ @property
1749
+ def exterior_angle(self):
1750
+ """Measure of the exterior angles.
1751
+
1752
+ Returns
1753
+ =======
1754
+
1755
+ exterior_angle : number
1756
+
1757
+ See Also
1758
+ ========
1759
+
1760
+ sympy.geometry.line.LinearEntity.angle_between
1761
+
1762
+ Examples
1763
+ ========
1764
+
1765
+ >>> from sympy import RegularPolygon, Point
1766
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
1767
+ >>> rp.exterior_angle
1768
+ pi/4
1769
+
1770
+ """
1771
+ return 2*S.Pi/self._n
1772
+
1773
+ @property
1774
+ def circumcircle(self):
1775
+ """The circumcircle of the RegularPolygon.
1776
+
1777
+ Returns
1778
+ =======
1779
+
1780
+ circumcircle : Circle
1781
+
1782
+ See Also
1783
+ ========
1784
+
1785
+ circumcenter, sympy.geometry.ellipse.Circle
1786
+
1787
+ Examples
1788
+ ========
1789
+
1790
+ >>> from sympy import RegularPolygon, Point
1791
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
1792
+ >>> rp.circumcircle
1793
+ Circle(Point2D(0, 0), 4)
1794
+
1795
+ """
1796
+ return Circle(self.center, self.radius)
1797
+
1798
+ @property
1799
+ def incircle(self):
1800
+ """The incircle of the RegularPolygon.
1801
+
1802
+ Returns
1803
+ =======
1804
+
1805
+ incircle : Circle
1806
+
1807
+ See Also
1808
+ ========
1809
+
1810
+ inradius, sympy.geometry.ellipse.Circle
1811
+
1812
+ Examples
1813
+ ========
1814
+
1815
+ >>> from sympy import RegularPolygon, Point
1816
+ >>> rp = RegularPolygon(Point(0, 0), 4, 7)
1817
+ >>> rp.incircle
1818
+ Circle(Point2D(0, 0), 4*cos(pi/7))
1819
+
1820
+ """
1821
+ return Circle(self.center, self.apothem)
1822
+
1823
+ @property
1824
+ def angles(self):
1825
+ """
1826
+ Returns a dictionary with keys, the vertices of the Polygon,
1827
+ and values, the interior angle at each vertex.
1828
+
1829
+ Examples
1830
+ ========
1831
+
1832
+ >>> from sympy import RegularPolygon, Point
1833
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
1834
+ >>> r.angles
1835
+ {Point2D(-5/2, -5*sqrt(3)/2): pi/3,
1836
+ Point2D(-5/2, 5*sqrt(3)/2): pi/3,
1837
+ Point2D(5, 0): pi/3}
1838
+ """
1839
+ ret = {}
1840
+ ang = self.interior_angle
1841
+ for v in self.vertices:
1842
+ ret[v] = ang
1843
+ return ret
1844
+
1845
+ def encloses_point(self, p):
1846
+ """
1847
+ Return True if p is enclosed by (is inside of) self.
1848
+
1849
+ Notes
1850
+ =====
1851
+
1852
+ Being on the border of self is considered False.
1853
+
1854
+ The general Polygon.encloses_point method is called only if
1855
+ a point is not within or beyond the incircle or circumcircle,
1856
+ respectively.
1857
+
1858
+ Parameters
1859
+ ==========
1860
+
1861
+ p : Point
1862
+
1863
+ Returns
1864
+ =======
1865
+
1866
+ encloses_point : True, False or None
1867
+
1868
+ See Also
1869
+ ========
1870
+
1871
+ sympy.geometry.ellipse.Ellipse.encloses_point
1872
+
1873
+ Examples
1874
+ ========
1875
+
1876
+ >>> from sympy import RegularPolygon, S, Point, Symbol
1877
+ >>> p = RegularPolygon((0, 0), 3, 4)
1878
+ >>> p.encloses_point(Point(0, 0))
1879
+ True
1880
+ >>> r, R = p.inradius, p.circumradius
1881
+ >>> p.encloses_point(Point((r + R)/2, 0))
1882
+ True
1883
+ >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
1884
+ False
1885
+ >>> t = Symbol('t', real=True)
1886
+ >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
1887
+ False
1888
+ >>> p.encloses_point(Point(5, 5))
1889
+ False
1890
+
1891
+ """
1892
+
1893
+ c = self.center
1894
+ d = Segment(c, p).length
1895
+ if d >= self.radius:
1896
+ return False
1897
+ elif d < self.inradius:
1898
+ return True
1899
+ else:
1900
+ # now enumerate the RegularPolygon like a general polygon.
1901
+ return Polygon.encloses_point(self, p)
1902
+
1903
+ def spin(self, angle):
1904
+ """Increment *in place* the virtual Polygon's rotation by ccw angle.
1905
+
1906
+ See also: rotate method which moves the center.
1907
+
1908
+ >>> from sympy import Polygon, Point, pi
1909
+ >>> r = Polygon(Point(0,0), 1, n=3)
1910
+ >>> r.vertices[0]
1911
+ Point2D(1, 0)
1912
+ >>> r.spin(pi/6)
1913
+ >>> r.vertices[0]
1914
+ Point2D(sqrt(3)/2, 1/2)
1915
+
1916
+ See Also
1917
+ ========
1918
+
1919
+ rotation
1920
+ rotate : Creates a copy of the RegularPolygon rotated about a Point
1921
+
1922
+ """
1923
+ self._rot += angle
1924
+
1925
+ def rotate(self, angle, pt=None):
1926
+ """Override GeometryEntity.rotate to first rotate the RegularPolygon
1927
+ about its center.
1928
+
1929
+ >>> from sympy import Point, RegularPolygon, pi
1930
+ >>> t = RegularPolygon(Point(1, 0), 1, 3)
1931
+ >>> t.vertices[0] # vertex on x-axis
1932
+ Point2D(2, 0)
1933
+ >>> t.rotate(pi/2).vertices[0] # vertex on y axis now
1934
+ Point2D(0, 2)
1935
+
1936
+ See Also
1937
+ ========
1938
+
1939
+ rotation
1940
+ spin : Rotates a RegularPolygon in place
1941
+
1942
+ """
1943
+
1944
+ r = type(self)(*self.args) # need a copy or else changes are in-place
1945
+ r._rot += angle
1946
+ return GeometryEntity.rotate(r, angle, pt)
1947
+
1948
+ def scale(self, x=1, y=1, pt=None):
1949
+ """Override GeometryEntity.scale since it is the radius that must be
1950
+ scaled (if x == y) or else a new Polygon must be returned.
1951
+
1952
+ >>> from sympy import RegularPolygon
1953
+
1954
+ Symmetric scaling returns a RegularPolygon:
1955
+
1956
+ >>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
1957
+ RegularPolygon(Point2D(0, 0), 2, 4, 0)
1958
+
1959
+ Asymmetric scaling returns a kite as a Polygon:
1960
+
1961
+ >>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
1962
+ Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
1963
+
1964
+ """
1965
+ if pt:
1966
+ pt = Point(pt, dim=2)
1967
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
1968
+ if x != y:
1969
+ return Polygon(*self.vertices).scale(x, y)
1970
+ c, r, n, rot = self.args
1971
+ r *= x
1972
+ return self.func(c, r, n, rot)
1973
+
1974
+ def reflect(self, line):
1975
+ """Override GeometryEntity.reflect since this is not made of only
1976
+ points.
1977
+
1978
+ Examples
1979
+ ========
1980
+
1981
+ >>> from sympy import RegularPolygon, Line
1982
+
1983
+ >>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
1984
+ RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
1985
+
1986
+ """
1987
+ c, r, n, rot = self.args
1988
+ v = self.vertices[0]
1989
+ d = v - c
1990
+ cc = c.reflect(line)
1991
+ vv = v.reflect(line)
1992
+ dd = vv - cc
1993
+ # calculate rotation about the new center
1994
+ # which will align the vertices
1995
+ l1 = Ray((0, 0), dd)
1996
+ l2 = Ray((0, 0), d)
1997
+ ang = l1.closing_angle(l2)
1998
+ rot += ang
1999
+ # change sign of radius as point traversal is reversed
2000
+ return self.func(cc, -r, n, rot)
2001
+
2002
+ @property
2003
+ def vertices(self):
2004
+ """The vertices of the RegularPolygon.
2005
+
2006
+ Returns
2007
+ =======
2008
+
2009
+ vertices : list
2010
+ Each vertex is a Point.
2011
+
2012
+ See Also
2013
+ ========
2014
+
2015
+ sympy.geometry.point.Point
2016
+
2017
+ Examples
2018
+ ========
2019
+
2020
+ >>> from sympy import RegularPolygon, Point
2021
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
2022
+ >>> rp.vertices
2023
+ [Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
2024
+
2025
+ """
2026
+ c = self._center
2027
+ r = abs(self._radius)
2028
+ rot = self._rot
2029
+ v = 2*S.Pi/self._n
2030
+
2031
+ return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
2032
+ for k in range(self._n)]
2033
+
2034
+ def __eq__(self, o):
2035
+ if not isinstance(o, Polygon):
2036
+ return False
2037
+ elif not isinstance(o, RegularPolygon):
2038
+ return Polygon.__eq__(o, self)
2039
+ return self.args == o.args
2040
+
2041
+ def __hash__(self):
2042
+ return super().__hash__()
2043
+
2044
+
2045
+ class Triangle(Polygon):
2046
+ """
2047
+ A polygon with three vertices and three sides.
2048
+
2049
+ Parameters
2050
+ ==========
2051
+
2052
+ points : sequence of Points
2053
+ keyword: asa, sas, or sss to specify sides/angles of the triangle
2054
+
2055
+ Attributes
2056
+ ==========
2057
+
2058
+ vertices
2059
+ altitudes
2060
+ orthocenter
2061
+ circumcenter
2062
+ circumradius
2063
+ circumcircle
2064
+ inradius
2065
+ incircle
2066
+ exradii
2067
+ medians
2068
+ medial
2069
+ nine_point_circle
2070
+
2071
+ Raises
2072
+ ======
2073
+
2074
+ GeometryError
2075
+ If the number of vertices is not equal to three, or one of the vertices
2076
+ is not a Point, or a valid keyword is not given.
2077
+
2078
+ See Also
2079
+ ========
2080
+
2081
+ sympy.geometry.point.Point, Polygon
2082
+
2083
+ Examples
2084
+ ========
2085
+
2086
+ >>> from sympy import Triangle, Point
2087
+ >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
2088
+ Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
2089
+
2090
+ Keywords sss, sas, or asa can be used to give the desired
2091
+ side lengths (in order) and interior angles (in degrees) that
2092
+ define the triangle:
2093
+
2094
+ >>> Triangle(sss=(3, 4, 5))
2095
+ Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
2096
+ >>> Triangle(asa=(30, 1, 30))
2097
+ Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
2098
+ >>> Triangle(sas=(1, 45, 2))
2099
+ Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
2100
+
2101
+ """
2102
+
2103
+ def __new__(cls, *args, **kwargs):
2104
+ if len(args) != 3:
2105
+ if 'sss' in kwargs:
2106
+ return _sss(*[simplify(a) for a in kwargs['sss']])
2107
+ if 'asa' in kwargs:
2108
+ return _asa(*[simplify(a) for a in kwargs['asa']])
2109
+ if 'sas' in kwargs:
2110
+ return _sas(*[simplify(a) for a in kwargs['sas']])
2111
+ msg = "Triangle instantiates with three points or a valid keyword."
2112
+ raise GeometryError(msg)
2113
+
2114
+ vertices = [Point(a, dim=2, **kwargs) for a in args]
2115
+
2116
+ # remove consecutive duplicates
2117
+ nodup = []
2118
+ for p in vertices:
2119
+ if nodup and p == nodup[-1]:
2120
+ continue
2121
+ nodup.append(p)
2122
+ if len(nodup) > 1 and nodup[-1] == nodup[0]:
2123
+ nodup.pop() # last point was same as first
2124
+
2125
+ # remove collinear points
2126
+ i = -3
2127
+ while i < len(nodup) - 3 and len(nodup) > 2:
2128
+ a, b, c = sorted(
2129
+ [nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
2130
+ if Point.is_collinear(a, b, c):
2131
+ nodup[i] = a
2132
+ nodup[i + 1] = None
2133
+ nodup.pop(i + 1)
2134
+ i += 1
2135
+
2136
+ vertices = list(filter(lambda x: x is not None, nodup))
2137
+
2138
+ if len(vertices) == 3:
2139
+ return GeometryEntity.__new__(cls, *vertices, **kwargs)
2140
+ elif len(vertices) == 2:
2141
+ return Segment(*vertices, **kwargs)
2142
+ else:
2143
+ return Point(*vertices, **kwargs)
2144
+
2145
+ @property
2146
+ def vertices(self):
2147
+ """The triangle's vertices
2148
+
2149
+ Returns
2150
+ =======
2151
+
2152
+ vertices : tuple
2153
+ Each element in the tuple is a Point
2154
+
2155
+ See Also
2156
+ ========
2157
+
2158
+ sympy.geometry.point.Point
2159
+
2160
+ Examples
2161
+ ========
2162
+
2163
+ >>> from sympy import Triangle, Point
2164
+ >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
2165
+ >>> t.vertices
2166
+ (Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
2167
+
2168
+ """
2169
+ return self.args
2170
+
2171
+ def is_similar(t1, t2):
2172
+ """Is another triangle similar to this one.
2173
+
2174
+ Two triangles are similar if one can be uniformly scaled to the other.
2175
+
2176
+ Parameters
2177
+ ==========
2178
+
2179
+ other: Triangle
2180
+
2181
+ Returns
2182
+ =======
2183
+
2184
+ is_similar : boolean
2185
+
2186
+ See Also
2187
+ ========
2188
+
2189
+ sympy.geometry.entity.GeometryEntity.is_similar
2190
+
2191
+ Examples
2192
+ ========
2193
+
2194
+ >>> from sympy import Triangle, Point
2195
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
2196
+ >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
2197
+ >>> t1.is_similar(t2)
2198
+ True
2199
+
2200
+ >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
2201
+ >>> t1.is_similar(t2)
2202
+ False
2203
+
2204
+ """
2205
+ if not isinstance(t2, Polygon):
2206
+ return False
2207
+
2208
+ s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
2209
+ s2 = [side.length for side in t2.sides]
2210
+
2211
+ def _are_similar(u1, u2, u3, v1, v2, v3):
2212
+ e1 = simplify(u1/v1)
2213
+ e2 = simplify(u2/v2)
2214
+ e3 = simplify(u3/v3)
2215
+ return bool(e1 == e2) and bool(e2 == e3)
2216
+
2217
+ # There's only 6 permutations, so write them out
2218
+ return _are_similar(s1_1, s1_2, s1_3, *s2) or \
2219
+ _are_similar(s1_1, s1_3, s1_2, *s2) or \
2220
+ _are_similar(s1_2, s1_1, s1_3, *s2) or \
2221
+ _are_similar(s1_2, s1_3, s1_1, *s2) or \
2222
+ _are_similar(s1_3, s1_1, s1_2, *s2) or \
2223
+ _are_similar(s1_3, s1_2, s1_1, *s2)
2224
+
2225
+ def is_equilateral(self):
2226
+ """Are all the sides the same length?
2227
+
2228
+ Returns
2229
+ =======
2230
+
2231
+ is_equilateral : boolean
2232
+
2233
+ See Also
2234
+ ========
2235
+
2236
+ sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
2237
+ is_isosceles, is_right, is_scalene
2238
+
2239
+ Examples
2240
+ ========
2241
+
2242
+ >>> from sympy import Triangle, Point
2243
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
2244
+ >>> t1.is_equilateral()
2245
+ False
2246
+
2247
+ >>> from sympy import sqrt
2248
+ >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
2249
+ >>> t2.is_equilateral()
2250
+ True
2251
+
2252
+ """
2253
+ return not has_variety(s.length for s in self.sides)
2254
+
2255
+ def is_isosceles(self):
2256
+ """Are two or more of the sides the same length?
2257
+
2258
+ Returns
2259
+ =======
2260
+
2261
+ is_isosceles : boolean
2262
+
2263
+ See Also
2264
+ ========
2265
+
2266
+ is_equilateral, is_right, is_scalene
2267
+
2268
+ Examples
2269
+ ========
2270
+
2271
+ >>> from sympy import Triangle, Point
2272
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
2273
+ >>> t1.is_isosceles()
2274
+ True
2275
+
2276
+ """
2277
+ return has_dups(s.length for s in self.sides)
2278
+
2279
+ def is_scalene(self):
2280
+ """Are all the sides of the triangle of different lengths?
2281
+
2282
+ Returns
2283
+ =======
2284
+
2285
+ is_scalene : boolean
2286
+
2287
+ See Also
2288
+ ========
2289
+
2290
+ is_equilateral, is_isosceles, is_right
2291
+
2292
+ Examples
2293
+ ========
2294
+
2295
+ >>> from sympy import Triangle, Point
2296
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
2297
+ >>> t1.is_scalene()
2298
+ True
2299
+
2300
+ """
2301
+ return not has_dups(s.length for s in self.sides)
2302
+
2303
+ def is_right(self):
2304
+ """Is the triangle right-angled.
2305
+
2306
+ Returns
2307
+ =======
2308
+
2309
+ is_right : boolean
2310
+
2311
+ See Also
2312
+ ========
2313
+
2314
+ sympy.geometry.line.LinearEntity.is_perpendicular
2315
+ is_equilateral, is_isosceles, is_scalene
2316
+
2317
+ Examples
2318
+ ========
2319
+
2320
+ >>> from sympy import Triangle, Point
2321
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
2322
+ >>> t1.is_right()
2323
+ True
2324
+
2325
+ """
2326
+ s = self.sides
2327
+ return Segment.is_perpendicular(s[0], s[1]) or \
2328
+ Segment.is_perpendicular(s[1], s[2]) or \
2329
+ Segment.is_perpendicular(s[0], s[2])
2330
+
2331
+ @property
2332
+ def altitudes(self):
2333
+ """The altitudes of the triangle.
2334
+
2335
+ An altitude of a triangle is a segment through a vertex,
2336
+ perpendicular to the opposite side, with length being the
2337
+ height of the vertex measured from the line containing the side.
2338
+
2339
+ Returns
2340
+ =======
2341
+
2342
+ altitudes : dict
2343
+ The dictionary consists of keys which are vertices and values
2344
+ which are Segments.
2345
+
2346
+ See Also
2347
+ ========
2348
+
2349
+ sympy.geometry.point.Point, sympy.geometry.line.Segment.length
2350
+
2351
+ Examples
2352
+ ========
2353
+
2354
+ >>> from sympy import Point, Triangle
2355
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2356
+ >>> t = Triangle(p1, p2, p3)
2357
+ >>> t.altitudes[p1]
2358
+ Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
2359
+
2360
+ """
2361
+ s = self.sides
2362
+ v = self.vertices
2363
+ return {v[0]: s[1].perpendicular_segment(v[0]),
2364
+ v[1]: s[2].perpendicular_segment(v[1]),
2365
+ v[2]: s[0].perpendicular_segment(v[2])}
2366
+
2367
+ @property
2368
+ def orthocenter(self):
2369
+ """The orthocenter of the triangle.
2370
+
2371
+ The orthocenter is the intersection of the altitudes of a triangle.
2372
+ It may lie inside, outside or on the triangle.
2373
+
2374
+ Returns
2375
+ =======
2376
+
2377
+ orthocenter : Point
2378
+
2379
+ See Also
2380
+ ========
2381
+
2382
+ sympy.geometry.point.Point
2383
+
2384
+ Examples
2385
+ ========
2386
+
2387
+ >>> from sympy import Point, Triangle
2388
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2389
+ >>> t = Triangle(p1, p2, p3)
2390
+ >>> t.orthocenter
2391
+ Point2D(0, 0)
2392
+
2393
+ """
2394
+ a = self.altitudes
2395
+ v = self.vertices
2396
+ return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
2397
+
2398
+ @property
2399
+ def circumcenter(self):
2400
+ """The circumcenter of the triangle
2401
+
2402
+ The circumcenter is the center of the circumcircle.
2403
+
2404
+ Returns
2405
+ =======
2406
+
2407
+ circumcenter : Point
2408
+
2409
+ See Also
2410
+ ========
2411
+
2412
+ sympy.geometry.point.Point
2413
+
2414
+ Examples
2415
+ ========
2416
+
2417
+ >>> from sympy import Point, Triangle
2418
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2419
+ >>> t = Triangle(p1, p2, p3)
2420
+ >>> t.circumcenter
2421
+ Point2D(1/2, 1/2)
2422
+ """
2423
+ a, b, c = [x.perpendicular_bisector() for x in self.sides]
2424
+ return a.intersection(b)[0]
2425
+
2426
+ @property
2427
+ def circumradius(self):
2428
+ """The radius of the circumcircle of the triangle.
2429
+
2430
+ Returns
2431
+ =======
2432
+
2433
+ circumradius : number of Basic instance
2434
+
2435
+ See Also
2436
+ ========
2437
+
2438
+ sympy.geometry.ellipse.Circle.radius
2439
+
2440
+ Examples
2441
+ ========
2442
+
2443
+ >>> from sympy import Symbol
2444
+ >>> from sympy import Point, Triangle
2445
+ >>> a = Symbol('a')
2446
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
2447
+ >>> t = Triangle(p1, p2, p3)
2448
+ >>> t.circumradius
2449
+ sqrt(a**2/4 + 1/4)
2450
+ """
2451
+ return Point.distance(self.circumcenter, self.vertices[0])
2452
+
2453
+ @property
2454
+ def circumcircle(self):
2455
+ """The circle which passes through the three vertices of the triangle.
2456
+
2457
+ Returns
2458
+ =======
2459
+
2460
+ circumcircle : Circle
2461
+
2462
+ See Also
2463
+ ========
2464
+
2465
+ sympy.geometry.ellipse.Circle
2466
+
2467
+ Examples
2468
+ ========
2469
+
2470
+ >>> from sympy import Point, Triangle
2471
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2472
+ >>> t = Triangle(p1, p2, p3)
2473
+ >>> t.circumcircle
2474
+ Circle(Point2D(1/2, 1/2), sqrt(2)/2)
2475
+
2476
+ """
2477
+ return Circle(self.circumcenter, self.circumradius)
2478
+
2479
+ def bisectors(self):
2480
+ """The angle bisectors of the triangle.
2481
+
2482
+ An angle bisector of a triangle is a straight line through a vertex
2483
+ which cuts the corresponding angle in half.
2484
+
2485
+ Returns
2486
+ =======
2487
+
2488
+ bisectors : dict
2489
+ Each key is a vertex (Point) and each value is the corresponding
2490
+ bisector (Segment).
2491
+
2492
+ See Also
2493
+ ========
2494
+
2495
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
2496
+
2497
+ Examples
2498
+ ========
2499
+
2500
+ >>> from sympy import Point, Triangle, Segment
2501
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2502
+ >>> t = Triangle(p1, p2, p3)
2503
+ >>> from sympy import sqrt
2504
+ >>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
2505
+ True
2506
+
2507
+ """
2508
+ # use lines containing sides so containment check during
2509
+ # intersection calculation can be avoided, thus reducing
2510
+ # the processing time for calculating the bisectors
2511
+ s = [Line(l) for l in self.sides]
2512
+ v = self.vertices
2513
+ c = self.incenter
2514
+ l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
2515
+ l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
2516
+ l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
2517
+ return {v[0]: l1, v[1]: l2, v[2]: l3}
2518
+
2519
+ @property
2520
+ def incenter(self):
2521
+ """The center of the incircle.
2522
+
2523
+ The incircle is the circle which lies inside the triangle and touches
2524
+ all three sides.
2525
+
2526
+ Returns
2527
+ =======
2528
+
2529
+ incenter : Point
2530
+
2531
+ See Also
2532
+ ========
2533
+
2534
+ incircle, sympy.geometry.point.Point
2535
+
2536
+ Examples
2537
+ ========
2538
+
2539
+ >>> from sympy import Point, Triangle
2540
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2541
+ >>> t = Triangle(p1, p2, p3)
2542
+ >>> t.incenter
2543
+ Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
2544
+
2545
+ """
2546
+ s = self.sides
2547
+ l = Matrix([s[i].length for i in [1, 2, 0]])
2548
+ p = sum(l)
2549
+ v = self.vertices
2550
+ x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
2551
+ y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
2552
+ return Point(x, y)
2553
+
2554
+ @property
2555
+ def inradius(self):
2556
+ """The radius of the incircle.
2557
+
2558
+ Returns
2559
+ =======
2560
+
2561
+ inradius : number of Basic instance
2562
+
2563
+ See Also
2564
+ ========
2565
+
2566
+ incircle, sympy.geometry.ellipse.Circle.radius
2567
+
2568
+ Examples
2569
+ ========
2570
+
2571
+ >>> from sympy import Point, Triangle
2572
+ >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
2573
+ >>> t = Triangle(p1, p2, p3)
2574
+ >>> t.inradius
2575
+ 1
2576
+
2577
+ """
2578
+ return simplify(2 * self.area / self.perimeter)
2579
+
2580
+ @property
2581
+ def incircle(self):
2582
+ """The incircle of the triangle.
2583
+
2584
+ The incircle is the circle which lies inside the triangle and touches
2585
+ all three sides.
2586
+
2587
+ Returns
2588
+ =======
2589
+
2590
+ incircle : Circle
2591
+
2592
+ See Also
2593
+ ========
2594
+
2595
+ sympy.geometry.ellipse.Circle
2596
+
2597
+ Examples
2598
+ ========
2599
+
2600
+ >>> from sympy import Point, Triangle
2601
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
2602
+ >>> t = Triangle(p1, p2, p3)
2603
+ >>> t.incircle
2604
+ Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
2605
+
2606
+ """
2607
+ return Circle(self.incenter, self.inradius)
2608
+
2609
+ @property
2610
+ def exradii(self):
2611
+ """The radius of excircles of a triangle.
2612
+
2613
+ An excircle of the triangle is a circle lying outside the triangle,
2614
+ tangent to one of its sides and tangent to the extensions of the
2615
+ other two.
2616
+
2617
+ Returns
2618
+ =======
2619
+
2620
+ exradii : dict
2621
+
2622
+ See Also
2623
+ ========
2624
+
2625
+ sympy.geometry.polygon.Triangle.inradius
2626
+
2627
+ Examples
2628
+ ========
2629
+
2630
+ The exradius touches the side of the triangle to which it is keyed, e.g.
2631
+ the exradius touching side 2 is:
2632
+
2633
+ >>> from sympy import Point, Triangle
2634
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
2635
+ >>> t = Triangle(p1, p2, p3)
2636
+ >>> t.exradii[t.sides[2]]
2637
+ -2 + sqrt(10)
2638
+
2639
+ References
2640
+ ==========
2641
+
2642
+ .. [1] https://mathworld.wolfram.com/Exradius.html
2643
+ .. [2] https://mathworld.wolfram.com/Excircles.html
2644
+
2645
+ """
2646
+
2647
+ side = self.sides
2648
+ a = side[0].length
2649
+ b = side[1].length
2650
+ c = side[2].length
2651
+ s = (a+b+c)/2
2652
+ area = self.area
2653
+ exradii = {self.sides[0]: simplify(area/(s-a)),
2654
+ self.sides[1]: simplify(area/(s-b)),
2655
+ self.sides[2]: simplify(area/(s-c))}
2656
+
2657
+ return exradii
2658
+
2659
+ @property
2660
+ def excenters(self):
2661
+ """Excenters of the triangle.
2662
+
2663
+ An excenter is the center of a circle that is tangent to a side of the
2664
+ triangle and the extensions of the other two sides.
2665
+
2666
+ Returns
2667
+ =======
2668
+
2669
+ excenters : dict
2670
+
2671
+
2672
+ Examples
2673
+ ========
2674
+
2675
+ The excenters are keyed to the side of the triangle to which their corresponding
2676
+ excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
2677
+ side 0 is:
2678
+
2679
+ >>> from sympy import Point, Triangle
2680
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
2681
+ >>> t = Triangle(p1, p2, p3)
2682
+ >>> t.excenters[t.sides[0]]
2683
+ Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
2684
+
2685
+ See Also
2686
+ ========
2687
+
2688
+ sympy.geometry.polygon.Triangle.exradii
2689
+
2690
+ References
2691
+ ==========
2692
+
2693
+ .. [1] https://mathworld.wolfram.com/Excircles.html
2694
+
2695
+ """
2696
+
2697
+ s = self.sides
2698
+ v = self.vertices
2699
+ a = s[0].length
2700
+ b = s[1].length
2701
+ c = s[2].length
2702
+ x = [v[0].x, v[1].x, v[2].x]
2703
+ y = [v[0].y, v[1].y, v[2].y]
2704
+
2705
+ exc_coords = {
2706
+ "x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
2707
+ "x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
2708
+ "x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
2709
+ "y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
2710
+ "y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
2711
+ "y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
2712
+ }
2713
+
2714
+ excenters = {
2715
+ s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
2716
+ s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
2717
+ s[2]: Point(exc_coords["x3"], exc_coords["y3"])
2718
+ }
2719
+
2720
+ return excenters
2721
+
2722
+ @property
2723
+ def medians(self):
2724
+ """The medians of the triangle.
2725
+
2726
+ A median of a triangle is a straight line through a vertex and the
2727
+ midpoint of the opposite side, and divides the triangle into two
2728
+ equal areas.
2729
+
2730
+ Returns
2731
+ =======
2732
+
2733
+ medians : dict
2734
+ Each key is a vertex (Point) and each value is the median (Segment)
2735
+ at that point.
2736
+
2737
+ See Also
2738
+ ========
2739
+
2740
+ sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
2741
+
2742
+ Examples
2743
+ ========
2744
+
2745
+ >>> from sympy import Point, Triangle
2746
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2747
+ >>> t = Triangle(p1, p2, p3)
2748
+ >>> t.medians[p1]
2749
+ Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
2750
+
2751
+ """
2752
+ s = self.sides
2753
+ v = self.vertices
2754
+ return {v[0]: Segment(v[0], s[1].midpoint),
2755
+ v[1]: Segment(v[1], s[2].midpoint),
2756
+ v[2]: Segment(v[2], s[0].midpoint)}
2757
+
2758
+ @property
2759
+ def medial(self):
2760
+ """The medial triangle of the triangle.
2761
+
2762
+ The triangle which is formed from the midpoints of the three sides.
2763
+
2764
+ Returns
2765
+ =======
2766
+
2767
+ medial : Triangle
2768
+
2769
+ See Also
2770
+ ========
2771
+
2772
+ sympy.geometry.line.Segment.midpoint
2773
+
2774
+ Examples
2775
+ ========
2776
+
2777
+ >>> from sympy import Point, Triangle
2778
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2779
+ >>> t = Triangle(p1, p2, p3)
2780
+ >>> t.medial
2781
+ Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
2782
+
2783
+ """
2784
+ s = self.sides
2785
+ return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
2786
+
2787
+ @property
2788
+ def nine_point_circle(self):
2789
+ """The nine-point circle of the triangle.
2790
+
2791
+ Nine-point circle is the circumcircle of the medial triangle, which
2792
+ passes through the feet of altitudes and the middle points of segments
2793
+ connecting the vertices and the orthocenter.
2794
+
2795
+ Returns
2796
+ =======
2797
+
2798
+ nine_point_circle : Circle
2799
+
2800
+ See also
2801
+ ========
2802
+
2803
+ sympy.geometry.line.Segment.midpoint
2804
+ sympy.geometry.polygon.Triangle.medial
2805
+ sympy.geometry.polygon.Triangle.orthocenter
2806
+
2807
+ Examples
2808
+ ========
2809
+
2810
+ >>> from sympy import Point, Triangle
2811
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2812
+ >>> t = Triangle(p1, p2, p3)
2813
+ >>> t.nine_point_circle
2814
+ Circle(Point2D(1/4, 1/4), sqrt(2)/4)
2815
+
2816
+ """
2817
+ return Circle(*self.medial.vertices)
2818
+
2819
+ @property
2820
+ def eulerline(self):
2821
+ """The Euler line of the triangle.
2822
+
2823
+ The line which passes through circumcenter, centroid and orthocenter.
2824
+
2825
+ Returns
2826
+ =======
2827
+
2828
+ eulerline : Line (or Point for equilateral triangles in which case all
2829
+ centers coincide)
2830
+
2831
+ Examples
2832
+ ========
2833
+
2834
+ >>> from sympy import Point, Triangle
2835
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
2836
+ >>> t = Triangle(p1, p2, p3)
2837
+ >>> t.eulerline
2838
+ Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
2839
+
2840
+ """
2841
+ if self.is_equilateral():
2842
+ return self.orthocenter
2843
+ return Line(self.orthocenter, self.circumcenter)
2844
+
2845
+ def rad(d):
2846
+ """Return the radian value for the given degrees (pi = 180 degrees)."""
2847
+ return d*pi/180
2848
+
2849
+
2850
+ def deg(r):
2851
+ """Return the degree value for the given radians (pi = 180 degrees)."""
2852
+ return r/pi*180
2853
+
2854
+
2855
+ def _slope(d):
2856
+ rv = tan(rad(d))
2857
+ return rv
2858
+
2859
+
2860
+ def _asa(d1, l, d2):
2861
+ """Return triangle having side with length l on the x-axis."""
2862
+ xy = Line((0, 0), slope=_slope(d1)).intersection(
2863
+ Line((l, 0), slope=_slope(180 - d2)))[0]
2864
+ return Triangle((0, 0), (l, 0), xy)
2865
+
2866
+
2867
+ def _sss(l1, l2, l3):
2868
+ """Return triangle having side of length l1 on the x-axis."""
2869
+ c1 = Circle((0, 0), l3)
2870
+ c2 = Circle((l1, 0), l2)
2871
+ inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
2872
+ if not inter:
2873
+ return None
2874
+ pt = inter[0]
2875
+ return Triangle((0, 0), (l1, 0), pt)
2876
+
2877
+
2878
+ def _sas(l1, d, l2):
2879
+ """Return triangle having side with length l2 on the x-axis."""
2880
+ p1 = Point(0, 0)
2881
+ p2 = Point(l2, 0)
2882
+ p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
2883
+ return Triangle(p1, p2, p3)
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (185 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc ADDED
Binary file (5.25 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc ADDED
Binary file (23.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc ADDED
Binary file (4.41 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc ADDED
Binary file (1.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc ADDED
Binary file (31.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc ADDED
Binary file (5.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc ADDED
Binary file (9.57 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc ADDED
Binary file (22.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc ADDED
Binary file (6.49 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.containers import Tuple
2
+ from sympy.core.numbers import (Rational, pi)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import (Symbol, symbols)
5
+ from sympy.functions.elementary.hyperbolic import asinh
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon
8
+ from sympy.testing.pytest import raises, slow
9
+
10
+
11
+ def test_curve():
12
+ x = Symbol('x', real=True)
13
+ s = Symbol('s')
14
+ z = Symbol('z')
15
+
16
+ # this curve is independent of the indicated parameter
17
+ c = Curve([2*s, s**2], (z, 0, 2))
18
+
19
+ assert c.parameter == z
20
+ assert c.functions == (2*s, s**2)
21
+ assert c.arbitrary_point() == Point(2*s, s**2)
22
+ assert c.arbitrary_point(z) == Point(2*s, s**2)
23
+
24
+ # this is how it is normally used
25
+ c = Curve([2*s, s**2], (s, 0, 2))
26
+
27
+ assert c.parameter == s
28
+ assert c.functions == (2*s, s**2)
29
+ t = Symbol('t')
30
+ # the t returned as assumptions
31
+ assert c.arbitrary_point() != Point(2*t, t**2)
32
+ t = Symbol('t', real=True)
33
+ # now t has the same assumptions so the test passes
34
+ assert c.arbitrary_point() == Point(2*t, t**2)
35
+ assert c.arbitrary_point(z) == Point(2*z, z**2)
36
+ assert c.arbitrary_point(c.parameter) == Point(2*s, s**2)
37
+ assert c.arbitrary_point(None) == Point(2*s, s**2)
38
+ assert c.plot_interval() == [t, 0, 2]
39
+ assert c.plot_interval(z) == [z, 0, 2]
40
+
41
+ assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1))
42
+ assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
43
+ 1, 3).arbitrary_point(s) == \
44
+ Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
45
+ 1, 3).arbitrary_point(s) == \
46
+ Point(-2*s + 7, 3*s + 6)
47
+
48
+ raises(ValueError, lambda: Curve((s), (s, 1, 2)))
49
+ raises(ValueError, lambda: Curve((x, x * 2), (1, x)))
50
+
51
+ raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point())
52
+ raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s))
53
+
54
+
55
+ @slow
56
+ def test_free_symbols():
57
+ a, b, c, d, e, f, s = symbols('a:f,s')
58
+ assert Point(a, b).free_symbols == {a, b}
59
+ assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
60
+ assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
61
+ assert Ray((a, b), angle=c).free_symbols == {a, b, c}
62
+ assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
63
+ assert Line((a, b), slope=c).free_symbols == {a, b, c}
64
+ assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d}
65
+ assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
66
+ assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
67
+ {a, b, c, d}
68
+ assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
69
+ {a, b, c, d}
70
+ assert Circle((a, b), c).free_symbols == {a, b, c}
71
+ assert Circle((a, b), (c, d), (e, f)).free_symbols == \
72
+ {e, d, c, b, f, a}
73
+ assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
74
+ {e, b, d, f, a, c}
75
+ assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
76
+
77
+
78
+ def test_transform():
79
+ x = Symbol('x', real=True)
80
+ y = Symbol('y', real=True)
81
+ c = Curve((x, x**2), (x, 0, 1))
82
+ cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1))
83
+ pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
84
+ pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
85
+
86
+ assert c.scale(2, 3, (4, 5)) == cout
87
+ assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts
88
+ assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out
89
+ assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
90
+ Curve((x + S.Half, 3*x), (x, 0, 1))
91
+ assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
92
+ Curve((x + 4, 3*x + 5), (x, 0, 1))
93
+
94
+
95
+ def test_length():
96
+ t = Symbol('t', real=True)
97
+
98
+ c1 = Curve((t, 0), (t, 0, 1))
99
+ assert c1.length == 1
100
+
101
+ c2 = Curve((t, t), (t, 0, 1))
102
+ assert c2.length == sqrt(2)
103
+
104
+ c3 = Curve((t ** 2, t), (t, 2, 5))
105
+ assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2
106
+
107
+
108
+ def test_parameter_value():
109
+ t = Symbol('t')
110
+ C = Curve([2*t, t**2], (t, 0, 2))
111
+ assert C.parameter_value((2, 1), t) == {t: 1}
112
+ raises(ValueError, lambda: C.parameter_value((2, 0), t))
113
+
114
+
115
+ def test_issue_17997():
116
+ t, s = symbols('t s')
117
+ c = Curve((t, t**2), (t, 0, 10))
118
+ p = Curve([2*s, s**2], (s, 0, 2))
119
+ assert c(2) == Point(2, 4)
120
+ assert p(1) == Point(2, 1)
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import expand
2
+ from sympy.core.numbers import (Rational, oo, pi)
3
+ from sympy.core.relational import Eq
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import (Symbol, symbols)
6
+ from sympy.functions.elementary.complexes import Abs
7
+ from sympy.functions.elementary.miscellaneous import sqrt
8
+ from sympy.functions.elementary.trigonometric import sec
9
+ from sympy.geometry.line import Segment2D
10
+ from sympy.geometry.point import Point2D
11
+ from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point,
12
+ Polygon, Ray, RegularPolygon, Segment,
13
+ Triangle, intersection)
14
+ from sympy.testing.pytest import raises, slow
15
+ from sympy.integrals.integrals import integrate
16
+ from sympy.functions.special.elliptic_integrals import elliptic_e
17
+ from sympy.functions.elementary.miscellaneous import Max
18
+
19
+
20
+ def test_ellipse_equation_using_slope():
21
+ from sympy.abc import x, y
22
+
23
+ e1 = Ellipse(Point(1, 0), 3, 2)
24
+ assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
25
+
26
+ e2 = Ellipse(Point(0, 0), 4, 1)
27
+ assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
28
+
29
+ e3 = Ellipse(Point(1, 5), 6, 2)
30
+ assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
31
+
32
+
33
+ def test_object_from_equation():
34
+ from sympy.abc import x, y, a, b, c, d, e
35
+ assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2)
36
+ assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
37
+ assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
38
+ assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
39
+ assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
40
+ assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
41
+ assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
42
+ assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
43
+ assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3)
44
+ assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6)
45
+ assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5)
46
+ raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
47
+ raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
48
+ raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
49
+ raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
50
+ raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
51
+ raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
52
+ # .equation() adds 'real=True' assumption; '==' would fail if assumptions differed
53
+ x, y = symbols('x y', real=True)
54
+ eq = a*x**2 + a*y**2 + c*x + d*y + e
55
+ assert expand(Circle(eq).equation()*a) == eq
56
+
57
+
58
+ @slow
59
+ def test_ellipse_geom():
60
+ x = Symbol('x', real=True)
61
+ y = Symbol('y', real=True)
62
+ t = Symbol('t', real=True)
63
+ y1 = Symbol('y1', real=True)
64
+ half = S.Half
65
+ p1 = Point(0, 0)
66
+ p2 = Point(1, 1)
67
+ p4 = Point(0, 1)
68
+
69
+ e1 = Ellipse(p1, 1, 1)
70
+ e2 = Ellipse(p2, half, 1)
71
+ e3 = Ellipse(p1, y1, y1)
72
+ c1 = Circle(p1, 1)
73
+ c2 = Circle(p2, 1)
74
+ c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
75
+ l1 = Line(p1, p2)
76
+
77
+ # Test creation with three points
78
+ cen, rad = Point(3*half, 2), 5*half
79
+ assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
80
+ assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
81
+
82
+ raises(ValueError, lambda: Ellipse(None, None, None, 1))
83
+ raises(ValueError, lambda: Ellipse())
84
+ raises(GeometryError, lambda: Circle(Point(0, 0)))
85
+ raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y')))
86
+
87
+ # Basic Stuff
88
+ assert Ellipse(None, 1, 1).center == Point(0, 0)
89
+ assert e1 == c1
90
+ assert e1 != e2
91
+ assert e1 != l1
92
+ assert p4 in e1
93
+ assert e1 in e1
94
+ assert e2 in e2
95
+ assert 1 not in e2
96
+ assert p2 not in e2
97
+ assert e1.area == pi
98
+ assert e2.area == pi/2
99
+ assert e3.area == pi*y1*abs(y1)
100
+ assert c1.area == e1.area
101
+ assert c1.circumference == e1.circumference
102
+ assert e3.circumference == 2*pi*y1
103
+ assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
104
+ assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
105
+
106
+ assert c1.minor == 1
107
+ assert c1.major == 1
108
+ assert c1.hradius == 1
109
+ assert c1.vradius == 1
110
+
111
+ assert Ellipse((1, 1), 0, 0) == Point(1, 1)
112
+ assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
113
+ assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
114
+
115
+ # Private Functions
116
+ assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
117
+ assert c1 in e1
118
+ assert (Line(p1, p2) in e1) is False
119
+ assert e1.__cmp__(e1) == 0
120
+ assert e1.__cmp__(Point(0, 0)) > 0
121
+
122
+ # Encloses
123
+ assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
124
+ assert e1.encloses(Line(p1, p2)) is False
125
+ assert e1.encloses(Ray(p1, p2)) is False
126
+ assert e1.encloses(e1) is False
127
+ assert e1.encloses(
128
+ Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
129
+ assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
130
+ assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
131
+ assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
132
+
133
+ assert e2.arbitrary_point() in e2
134
+ raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x'))
135
+
136
+ # Foci
137
+ f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
138
+ ef = Ellipse(Point(0, 0), 4, 2)
139
+ assert ef.foci in [(f1, f2), (f2, f1)]
140
+
141
+ # Tangents
142
+ v = sqrt(2) / 2
143
+ p1_1 = Point(v, v)
144
+ p1_2 = p2 + Point(half, 0)
145
+ p1_3 = p2 + Point(0, 1)
146
+ assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
147
+ assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))]
148
+ assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))]
149
+ assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
150
+ assert c1.tangent_lines(p1) == []
151
+ assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
152
+ assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
153
+ assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
154
+ assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
155
+ assert c1.is_tangent(e1) is True
156
+ assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
157
+ assert c1.is_tangent(
158
+ Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
159
+ assert c1.is_tangent(
160
+ Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
161
+ assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
162
+
163
+ assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
164
+ [Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
165
+ Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
166
+ assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
167
+ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
168
+ assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
169
+ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
170
+ assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
171
+ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
172
+ Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
173
+ assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \
174
+ [Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))),
175
+ Line(Point(4, 0), Point(5, 0))]
176
+ assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \
177
+ [Line(Point(0, 6), Point(0, 7)),
178
+ Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))]
179
+
180
+ # for numerical calculations, we shouldn't demand exact equality,
181
+ # so only test up to the desired precision
182
+ def lines_close(l1, l2, prec):
183
+ """ tests whether l1 and 12 are within 10**(-prec)
184
+ of each other """
185
+ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
186
+ def line_list_close(ll1, ll2, prec):
187
+ return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
188
+
189
+ e = Ellipse(Point(0, 0), 2, 1)
190
+ assert e.normal_lines(Point(0, 0)) == \
191
+ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
192
+ assert e.normal_lines(Point(1, 0)) == \
193
+ [Line(Point(0, 0), Point(1, 0))]
194
+ assert e.normal_lines((0, 1)) == \
195
+ [Line(Point(0, 0), Point(0, 1))]
196
+ assert line_list_close(e.normal_lines(Point(1, 1), 2), [
197
+ Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))),
198
+ Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2)
199
+ # test the failure of Poly.intervals and checks a point on the boundary
200
+ p = Point(sqrt(3), S.Half)
201
+ assert p in e
202
+ assert line_list_close(e.normal_lines(p, 2), [
203
+ Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))),
204
+ Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2)
205
+ # be sure to use the slope that isn't undefined on boundary
206
+ e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
207
+ assert line_list_close(e.normal_lines((1, 1), 2), [
208
+ Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))),
209
+ Line(Point(1, -1), Point(2, -4))], 2)
210
+ # general ellipse fails except under certain conditions
211
+ e = Ellipse((0, 0), x, 1)
212
+ assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
213
+ raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
214
+ # Properties
215
+ major = 3
216
+ minor = 1
217
+ e4 = Ellipse(p2, minor, major)
218
+ assert e4.focus_distance == sqrt(major**2 - minor**2)
219
+ ecc = e4.focus_distance / major
220
+ assert e4.eccentricity == ecc
221
+ assert e4.periapsis == major*(1 - ecc)
222
+ assert e4.apoapsis == major*(1 + ecc)
223
+ assert e4.semilatus_rectum == major*(1 - ecc ** 2)
224
+ # independent of orientation
225
+ e4 = Ellipse(p2, major, minor)
226
+ assert e4.focus_distance == sqrt(major**2 - minor**2)
227
+ ecc = e4.focus_distance / major
228
+ assert e4.eccentricity == ecc
229
+ assert e4.periapsis == major*(1 - ecc)
230
+ assert e4.apoapsis == major*(1 + ecc)
231
+
232
+ # Intersection
233
+ l1 = Line(Point(1, -5), Point(1, 5))
234
+ l2 = Line(Point(-5, -1), Point(5, -1))
235
+ l3 = Line(Point(-1, -1), Point(1, 1))
236
+ l4 = Line(Point(-10, 0), Point(0, 10))
237
+ pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
238
+
239
+ assert intersection(e2, l4) == []
240
+ assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
241
+ assert intersection(c1, l1) == [Point(1, 0)]
242
+ assert intersection(c1, l2) == [Point(0, -1)]
243
+ assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
244
+ assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
245
+ assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
246
+ assert e1.intersection(l1) == [Point(1, 0)]
247
+ assert e2.intersection(l4) == []
248
+ assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
249
+ assert e1.intersection(Circle(Point(5, 0), 1)) == []
250
+ assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
251
+ assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
252
+ assert e1.intersection(Point(2, 0)) == []
253
+ assert e1.intersection(e1) == e1
254
+ assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
255
+ assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
256
+ assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
257
+ assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
258
+ assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
259
+ assert Circle((0, 0), S.Half).intersection(
260
+ Triangle((-1, 0), (1, 0), (0, 1))) == [
261
+ Point(Rational(-1, 2), 0), Point(S.Half, 0)]
262
+ raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
263
+ raises(TypeError, lambda: intersection(e2, Rational(12)))
264
+ raises(TypeError, lambda: Ellipse.intersection(e2, 1))
265
+ # some special case intersections
266
+ csmall = Circle(p1, 3)
267
+ cbig = Circle(p1, 5)
268
+ cout = Circle(Point(5, 5), 1)
269
+ # one circle inside of another
270
+ assert csmall.intersection(cbig) == []
271
+ # separate circles
272
+ assert csmall.intersection(cout) == []
273
+ # coincident circles
274
+ assert csmall.intersection(csmall) == csmall
275
+
276
+ v = sqrt(2)
277
+ t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
278
+ points = intersection(t1, c1)
279
+ assert len(points) == 4
280
+ assert Point(0, 1) in points
281
+ assert Point(0, -1) in points
282
+ assert Point(v/2, v/2) in points
283
+ assert Point(v/2, -v/2) in points
284
+
285
+ circ = Circle(Point(0, 0), 5)
286
+ elip = Ellipse(Point(0, 0), 5, 20)
287
+ assert intersection(circ, elip) in \
288
+ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
289
+ assert elip.tangent_lines(Point(0, 0)) == []
290
+ elip = Ellipse(Point(0, 0), 3, 2)
291
+ assert elip.tangent_lines(Point(3, 0)) == \
292
+ [Line(Point(3, 0), Point(3, -12))]
293
+
294
+ e1 = Ellipse(Point(0, 0), 5, 10)
295
+ e2 = Ellipse(Point(2, 1), 4, 8)
296
+ a = Rational(53, 17)
297
+ c = 2*sqrt(3991)/17
298
+ ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
299
+ assert e1.intersection(e2) == ans
300
+ e2 = Ellipse(Point(x, y), 4, 8)
301
+ c = sqrt(3991)
302
+ ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)]
303
+ assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
304
+
305
+ # Combinations of above
306
+ assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
307
+
308
+ e = Ellipse((1, 2), 3, 2)
309
+ assert e.tangent_lines(Point(10, 0)) == \
310
+ [Line(Point(10, 0), Point(1, 0)),
311
+ Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]
312
+
313
+ # encloses_point
314
+ e = Ellipse((0, 0), 1, 2)
315
+ assert e.encloses_point(e.center)
316
+ assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
317
+ assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
318
+ assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
319
+ assert e.encloses_point(
320
+ e.center + Point(e.hradius + Rational(1, 10), 0)) is False
321
+ e = Ellipse((0, 0), 2, 1)
322
+ assert e.encloses_point(e.center)
323
+ assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
324
+ assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
325
+ assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
326
+ assert e.encloses_point(
327
+ e.center + Point(e.hradius + Rational(1, 10), 0)) is False
328
+ assert c1.encloses_point(Point(1, 0)) is False
329
+ assert c1.encloses_point(Point(0.3, 0.4)) is True
330
+
331
+ assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
332
+ assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
333
+ assert e.rotate(pi) == e
334
+ assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
335
+ raises(NotImplementedError, lambda: e.rotate(pi/3))
336
+
337
+ # Circle rotation tests (Issue #11743)
338
+ # Link - https://github.com/sympy/sympy/issues/11743
339
+ cir = Circle(Point(1, 0), 1)
340
+ assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
341
+ assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1)
342
+ assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
343
+ assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1)
344
+
345
+
346
+ def test_construction():
347
+ e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
348
+ assert e1.eccentricity == sqrt(3)/2
349
+
350
+ e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
351
+ assert e2.vradius == 1
352
+
353
+ e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
354
+ assert e3.hradius == 2
355
+
356
+ # filter(None, iterator) filters out anything falsey, including 0
357
+ # eccentricity would be filtered out in this case and the constructor would throw an error
358
+ e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
359
+ assert e4.vradius == 1
360
+
361
+ #tests for eccentricity > 1
362
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2))
363
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5)))
364
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2)))
365
+
366
+ #tests for eccentricity = 1
367
+ #if vradius is not defined
368
+ assert Ellipse(None, 1, None, 1).length == 2
369
+ #if hradius is not defined
370
+ raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1))
371
+
372
+ #tests for eccentricity < 0
373
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3))
374
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5))
375
+
376
+ def test_ellipse_random_point():
377
+ y1 = Symbol('y1', real=True)
378
+ e3 = Ellipse(Point(0, 0), y1, y1)
379
+ rx, ry = Symbol('rx'), Symbol('ry')
380
+ for ind in range(0, 5):
381
+ r = e3.random_point()
382
+ # substitution should give zero*y1**2
383
+ assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
384
+ # test for the case with seed
385
+ r = e3.random_point(seed=1)
386
+ assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
387
+
388
+
389
+ def test_repr():
390
+ assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
391
+
392
+
393
+ def test_transform():
394
+ c = Circle((1, 1), 2)
395
+ assert c.scale(-1) == Circle((-1, 1), 2)
396
+ assert c.scale(y=-1) == Circle((1, -1), 2)
397
+ assert c.scale(2) == Ellipse((2, 1), 4, 2)
398
+
399
+ assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
400
+ Ellipse(Point(-4, -10), 4, 9)
401
+ assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
402
+ Ellipse(Point(-4, -10), 4, 6)
403
+ assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
404
+ Ellipse(Point(-8, -10), 6, 9)
405
+ assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
406
+ Circle(Point(-8, -10), 6)
407
+ assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \
408
+ Circle((0, 0), 2)
409
+ assert Circle((0, 0), 2).translate(4, 5) == \
410
+ Circle((4, 5), 2)
411
+ assert Circle((0, 0), 2).scale(3, 3) == \
412
+ Circle((0, 0), 6)
413
+
414
+
415
+ def test_bounds():
416
+ e1 = Ellipse(Point(0, 0), 3, 5)
417
+ e2 = Ellipse(Point(2, -2), 7, 7)
418
+ c1 = Circle(Point(2, -2), 7)
419
+ c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
420
+ assert e1.bounds == (-3, -5, 3, 5)
421
+ assert e2.bounds == (-5, -9, 9, 5)
422
+ assert c1.bounds == (-5, -9, 9, 5)
423
+ assert c2.bounds == (-2, -2, 2, 2)
424
+
425
+
426
+ def test_reflect():
427
+ b = Symbol('b')
428
+ m = Symbol('m')
429
+ l = Line((0, b), slope=m)
430
+ t1 = Triangle((0, 0), (1, 0), (2, 3))
431
+ assert t1.area == -t1.reflect(l).area
432
+ e = Ellipse((1, 0), 1, 2)
433
+ assert e.area == -e.reflect(Line((1, 0), slope=0)).area
434
+ assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
435
+ raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
436
+ assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1)
437
+
438
+
439
+ def test_is_tangent():
440
+ e1 = Ellipse(Point(0, 0), 3, 5)
441
+ c1 = Circle(Point(2, -2), 7)
442
+ assert e1.is_tangent(Point(0, 0)) is False
443
+ assert e1.is_tangent(Point(3, 0)) is False
444
+ assert e1.is_tangent(e1) is True
445
+ assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
446
+ assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
447
+ assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
448
+ assert c1.is_tangent(Circle((11, -2), 2)) is True
449
+ assert c1.is_tangent(Circle((7, -2), 2)) is True
450
+ assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
451
+ assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
452
+ assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
453
+ assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
454
+ assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
455
+ assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
456
+ assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
457
+ assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
458
+ assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
459
+ assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
460
+ assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
461
+ assert e1.is_tangent(Line((10, 0), (10, 10))) is False
462
+ assert e1.is_tangent(Line((0, 0), (1, 1))) is False
463
+ assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
464
+ assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
465
+ assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
466
+ assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
467
+ assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
468
+ assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
469
+ assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
470
+ assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
471
+ assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
472
+ assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
473
+ assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
474
+ assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
475
+ assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
476
+ raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
477
+ raises(TypeError, lambda: e1.is_tangent(Rational(5)))
478
+
479
+
480
+ def test_parameter_value():
481
+ t = Symbol('t')
482
+ e = Ellipse(Point(0, 0), 3, 5)
483
+ assert e.parameter_value((3, 0), t) == {t: 0}
484
+ raises(ValueError, lambda: e.parameter_value((4, 0), t))
485
+
486
+
487
+ @slow
488
+ def test_second_moment_of_area():
489
+ x, y = symbols('x, y')
490
+ e = Ellipse(Point(0, 0), 5, 4)
491
+ I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
492
+ I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
493
+ Y = 3*sqrt(1 - x**2/5**2)
494
+ I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
495
+ assert I_yy == e.second_moment_of_area()[1]
496
+ assert I_xx == e.second_moment_of_area()[0]
497
+ assert I_xy == e.second_moment_of_area()[2]
498
+ #checking for other point
499
+ t1 = e.second_moment_of_area(Point(6,5))
500
+ t2 = (580*pi, 845*pi, 600*pi)
501
+ assert t1==t2
502
+
503
+
504
+ def test_section_modulus_and_polar_second_moment_of_area():
505
+ d = Symbol('d', positive=True)
506
+ c = Circle((3, 7), 8)
507
+ assert c.polar_second_moment_of_area() == 2048*pi
508
+ assert c.section_modulus() == (128*pi, 128*pi)
509
+ c = Circle((2, 9), d/2)
510
+ assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64
511
+ assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32))
512
+
513
+ a, b = symbols('a, b', positive=True)
514
+ e = Ellipse((4, 6), a, b)
515
+ assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4))
516
+ assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
517
+ e = e.rotate(pi/2) # no change in polar and section modulus
518
+ assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4))
519
+ assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
520
+
521
+ e = Ellipse((a, b), 2, 6)
522
+ assert e.section_modulus() == (18*pi, 6*pi)
523
+ assert e.polar_second_moment_of_area() == 120*pi
524
+
525
+ e = Ellipse(Point(0, 0), 2, 2)
526
+ assert e.section_modulus() == (2*pi, 2*pi)
527
+ assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi)
528
+ assert e.section_modulus((2, 2)) == (2*pi, 2*pi)
529
+
530
+
531
+ def test_circumference():
532
+ M = Symbol('M')
533
+ m = Symbol('m')
534
+ assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
535
+
536
+ assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
537
+
538
+ # circle
539
+ assert Ellipse(None, 1, None, 0).circumference == 2*pi
540
+
541
+ # test numerically
542
+ assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
543
+
544
+
545
+ def test_issue_15259():
546
+ assert Circle((1, 2), 0) == Point(1, 2)
547
+
548
+
549
+ def test_issue_15797_equals():
550
+ Ri = 0.024127189424130748
551
+ Ci = (0.0864931002830291, 0.0819863295239654)
552
+ A = Point(0, 0.0578591400998346)
553
+ c = Circle(Ci, Ri) # evaluated
554
+ assert c.is_tangent(c.tangent_lines(A)[0]) == True
555
+ assert c.center.x.is_Rational
556
+ assert c.center.y.is_Rational
557
+ assert c.radius.is_Rational
558
+ u = Circle(Ci, Ri, evaluate=False) # unevaluated
559
+ assert u.center.x.is_Float
560
+ assert u.center.y.is_Float
561
+ assert u.radius.is_Float
562
+
563
+
564
+ def test_auxiliary_circle():
565
+ x, y, a, b = symbols('x y a b')
566
+ e = Ellipse((x, y), a, b)
567
+ # the general result
568
+ assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
569
+ # a special case where Ellipse is a Circle
570
+ assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
571
+
572
+
573
+ def test_director_circle():
574
+ x, y, a, b = symbols('x y a b')
575
+ e = Ellipse((x, y), a, b)
576
+ # the general result
577
+ assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
578
+ # a special case where Ellipse is a Circle
579
+ assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
580
+
581
+
582
+ def test_evolute():
583
+ #ellipse centered at h,k
584
+ x, y, h, k = symbols('x y h k',real = True)
585
+ a, b = symbols('a b')
586
+ e = Ellipse(Point(h, k), a, b)
587
+ t1 = (e.hradius*(x - e.center.x))**Rational(2, 3)
588
+ t2 = (e.vradius*(y - e.center.y))**Rational(2, 3)
589
+ E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3)
590
+ assert e.evolute() == E
591
+ #Numerical Example
592
+ e = Ellipse(Point(1, 1), 6, 3)
593
+ t1 = (6*(x - 1))**Rational(2, 3)
594
+ t2 = (3*(y - 1))**Rational(2, 3)
595
+ E = t1 + t2 - (27)**Rational(2, 3)
596
+ assert e.evolute() == E
597
+
598
+
599
+ def test_svg():
600
+ e1 = Ellipse(Point(1, 0), 3, 2)
601
+ assert e1._svg(2, "#FFAAFF") == '<ellipse fill="#FFAAFF" stroke="#555555" stroke-width="4.0" opacity="0.6" cx="1.00000000000000" cy="0" rx="3.00000000000000" ry="2.00000000000000"/>'
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (Rational, pi)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.geometry import (Circle, Ellipse, Point, Line, Parabola,
5
+ Polygon, Ray, RegularPolygon, Segment, Triangle, Plane, Curve)
6
+ from sympy.geometry.entity import scale, GeometryEntity
7
+ from sympy.testing.pytest import raises
8
+
9
+
10
+ def test_entity():
11
+ x = Symbol('x', real=True)
12
+ y = Symbol('y', real=True)
13
+
14
+ assert GeometryEntity(x, y) in GeometryEntity(x, y)
15
+ raises(NotImplementedError, lambda: Point(0, 0) in GeometryEntity(x, y))
16
+
17
+ assert GeometryEntity(x, y) == GeometryEntity(x, y)
18
+ assert GeometryEntity(x, y).equals(GeometryEntity(x, y))
19
+
20
+ c = Circle((0, 0), 5)
21
+ assert GeometryEntity.encloses(c, Point(0, 0))
22
+ assert GeometryEntity.encloses(c, Segment((0, 0), (1, 1)))
23
+ assert GeometryEntity.encloses(c, Line((0, 0), (1, 1))) is False
24
+ assert GeometryEntity.encloses(c, Circle((0, 0), 4))
25
+ assert GeometryEntity.encloses(c, Polygon(Point(0, 0), Point(1, 0), Point(0, 1)))
26
+ assert GeometryEntity.encloses(c, RegularPolygon(Point(8, 8), 1, 3)) is False
27
+
28
+
29
+ def test_svg():
30
+ a = Symbol('a')
31
+ b = Symbol('b')
32
+ d = Symbol('d')
33
+
34
+ entity = Circle(Point(a, b), d)
35
+ assert entity._repr_svg_() is None
36
+
37
+ entity = Circle(Point(0, 0), S.Infinity)
38
+ assert entity._repr_svg_() is None
39
+
40
+
41
+ def test_subs():
42
+ x = Symbol('x', real=True)
43
+ y = Symbol('y', real=True)
44
+ p = Point(x, 2)
45
+ q = Point(1, 1)
46
+ r = Point(3, 4)
47
+ for o in [p,
48
+ Segment(p, q),
49
+ Ray(p, q),
50
+ Line(p, q),
51
+ Triangle(p, q, r),
52
+ RegularPolygon(p, 3, 6),
53
+ Polygon(p, q, r, Point(5, 4)),
54
+ Circle(p, 3),
55
+ Ellipse(p, 3, 4)]:
56
+ assert 'y' in str(o.subs(x, y))
57
+ assert p.subs({x: 1}) == Point(1, 2)
58
+ assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
59
+ assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
60
+ assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
61
+ assert Point(1, 2).subs({(1, 2)}) == Point(2, 2)
62
+ raises(ValueError, lambda: Point(1, 2).subs(1))
63
+ raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1,
64
+ 2)), 1, 2))
65
+
66
+
67
+ def test_transform():
68
+ assert scale(1, 2, (3, 4)).tolist() == \
69
+ [[1, 0, 0], [0, 2, 0], [0, -4, 1]]
70
+
71
+
72
+ def test_reflect_entity_overrides():
73
+ x = Symbol('x', real=True)
74
+ y = Symbol('y', real=True)
75
+ b = Symbol('b')
76
+ m = Symbol('m')
77
+ l = Line((0, b), slope=m)
78
+ p = Point(x, y)
79
+ r = p.reflect(l)
80
+ c = Circle((x, y), 3)
81
+ cr = c.reflect(l)
82
+ assert cr == Circle(r, -3)
83
+ assert c.area == -cr.area
84
+
85
+ pent = RegularPolygon((1, 2), 1, 5)
86
+ slope = S.ComplexInfinity
87
+ while slope is S.ComplexInfinity:
88
+ slope = Rational(*(x._random()/2).as_real_imag())
89
+ l = Line(pent.vertices[1], slope=slope)
90
+ rpent = pent.reflect(l)
91
+ assert rpent.center == pent.center.reflect(l)
92
+ rvert = [i.reflect(l) for i in pent.vertices]
93
+ for v in rpent.vertices:
94
+ for i in range(len(rvert)):
95
+ ri = rvert[i]
96
+ if ri.equals(v):
97
+ rvert.remove(ri)
98
+ break
99
+ assert not rvert
100
+ assert pent.area.equals(-rpent.area)
101
+
102
+
103
+ def test_geometry_EvalfMixin():
104
+ x = pi
105
+ t = Symbol('t')
106
+ for g in [
107
+ Point(x, x),
108
+ Plane(Point(0, x, 0), (0, 0, x)),
109
+ Curve((x*t, x), (t, 0, x)),
110
+ Ellipse((x, x), x, -x),
111
+ Circle((x, x), x),
112
+ Line((0, x), (x, 0)),
113
+ Segment((0, x), (x, 0)),
114
+ Ray((0, x), (x, 0)),
115
+ Parabola((0, x), Line((-x, 0), (x, 0))),
116
+ Polygon((0, 0), (0, x), (x, 0), (x, x)),
117
+ RegularPolygon((0, x), x, 4, x),
118
+ Triangle((0, 0), (x, 0), (x, x)),
119
+ ]:
120
+ assert str(g).replace('pi', '3.1') == str(g.n(2))
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.core.singleton import S
3
+ from sympy.geometry import Circle, Line, Point, Polygon, Segment
4
+ from sympy.sets import FiniteSet, Union, Intersection, EmptySet
5
+
6
+
7
+ def test_booleans():
8
+ """ test basic unions and intersections """
9
+ half = S.Half
10
+
11
+ p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
12
+ p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
13
+ l1 = Line(Point(0,0), Point(1,1))
14
+ l2 = Line(Point(half, half), Point(5,5))
15
+ l3 = Line(p2, p3)
16
+ l4 = Line(p3, p4)
17
+ poly1 = Polygon(p1, p2, p3, p4)
18
+ poly2 = Polygon(p5, p6, p7)
19
+ poly3 = Polygon(p1, p2, p5)
20
+ assert Union(l1, l2).equals(l1)
21
+ assert Intersection(l1, l2).equals(l1)
22
+ assert Intersection(l1, l4) == FiniteSet(Point(1,1))
23
+ assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1))
24
+ assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet
25
+ assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
26
+ assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1)
27
+ assert Union(l1, FiniteSet(p1)) == l1
28
+
29
+ fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1))
30
+ # test the intersection of polygons
31
+ assert Intersection(poly1, poly2) == fs
32
+ # make sure if we union polygons with subsets, the subsets go away
33
+ assert Union(poly1, poly2, fs) == Union(poly1, poly2)
34
+ # make sure that if we union with a FiniteSet that isn't a subset,
35
+ # that the points in the intersection stop being listed
36
+ assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5)))
37
+ # intersect two polygons that share an edge
38
+ assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (Float, Rational, oo, pi)
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import (Symbol, symbols)
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.functions.elementary.trigonometric import (acos, cos, sin)
7
+ from sympy.sets import EmptySet
8
+ from sympy.simplify.simplify import simplify
9
+ from sympy.functions.elementary.trigonometric import tan
10
+ from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
11
+ Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
12
+ Point2D, Line2D)
13
+ from sympy.geometry.line import Undecidable
14
+ from sympy.geometry.polygon import _asa as asa
15
+ from sympy.utilities.iterables import cartes
16
+ from sympy.testing.pytest import raises, warns
17
+
18
+
19
+ x = Symbol('x', real=True)
20
+ y = Symbol('y', real=True)
21
+ z = Symbol('z', real=True)
22
+ k = Symbol('k', real=True)
23
+ x1 = Symbol('x1', real=True)
24
+ y1 = Symbol('y1', real=True)
25
+ t = Symbol('t', real=True)
26
+ a, b = symbols('a,b', real=True)
27
+ m = symbols('m', real=True)
28
+
29
+
30
+ def test_object_from_equation():
31
+ from sympy.abc import x, y, a, b
32
+ assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
33
+ assert Line(3*x + 5 * y + 1) == Line2D(
34
+ Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
35
+ assert Line(3*a + b + 18, x="a", y="b") == Line2D(
36
+ Point2D(0, -18), Point2D(1, -21))
37
+ assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
38
+ assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
39
+ assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D(
40
+ Point2D(0, -18), Point2D(1, -21))
41
+ # issue 22361
42
+ assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1))
43
+ assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1))
44
+ assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0))
45
+ assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
46
+ assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
47
+ raises(ValueError, lambda: Line(x / y))
48
+ raises(ValueError, lambda: Line(a / b, x='a', y='b'))
49
+ raises(ValueError, lambda: Line(y / x))
50
+ raises(ValueError, lambda: Line(b / a, x='a', y='b'))
51
+ raises(ValueError, lambda: Line((x + 1)**2 + y))
52
+
53
+
54
+ def feq(a, b):
55
+ """Test if two floating point values are 'equal'."""
56
+ t_float = Float("1.0E-10")
57
+ return -t_float < a - b < t_float
58
+
59
+
60
+ def test_angle_between():
61
+ a = Point(1, 2, 3, 4)
62
+ b = a.orthogonal_direction
63
+ o = a.origin
64
+ assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
65
+ Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
66
+ assert Line(a, o).angle_between(Line(b, o)) == pi / 2
67
+ z = Point3D(0, 0, 0)
68
+ assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
69
+ Line3D(z, Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
70
+ # direction of points is used to determine angle
71
+ assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
72
+ Line3D(Point3D(5, 0, 0), z)) == acos(-sqrt(3) / 3)
73
+
74
+
75
+ def test_closing_angle():
76
+ a = Ray((0, 0), angle=0)
77
+ b = Ray((1, 2), angle=pi/2)
78
+ assert a.closing_angle(b) == -pi/2
79
+ assert b.closing_angle(a) == pi/2
80
+ assert a.closing_angle(a) == 0
81
+
82
+
83
+ def test_smallest_angle():
84
+ a = Line(Point(1, 1), Point(1, 2))
85
+ b = Line(Point(1, 1),Point(2, 3))
86
+ assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5)
87
+
88
+
89
+ def test_svg():
90
+ a = Line(Point(1, 1),Point(1, 2))
91
+ assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,1.00000000000000 L 1.00000000000000,2.00000000000000" marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
92
+ a = Segment(Point(1, 0),Point(1, 1))
93
+ assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,0 L 1.00000000000000,1.00000000000000" />'
94
+ a = Ray(Point(2, 3), Point(3, 5))
95
+ assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 2.00000000000000,3.00000000000000 L 3.00000000000000,5.00000000000000" marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
96
+
97
+
98
+ def test_arbitrary_point():
99
+ l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
100
+ l2 = Line(Point(x1, x1), Point(y1, y1))
101
+ assert l2.arbitrary_point() in l2
102
+ assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
103
+ Point(t + 1, t + 1)
104
+ assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
105
+ assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
106
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
107
+ Point3D(t + 1, 2 * t + 1, 3 * t + 1)
108
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
109
+ Point3D(S.Half, S.Half, S.Half)
110
+ assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
111
+ assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
112
+ Point3D(t + 1, 2 * t + 1, 3 * t + 1)
113
+ raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
114
+
115
+
116
+ def test_are_concurrent_2d():
117
+ l1 = Line(Point(0, 0), Point(1, 1))
118
+ l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
119
+ assert Line.are_concurrent(l1) is False
120
+ assert Line.are_concurrent(l1, l2)
121
+ assert Line.are_concurrent(l1, l1, l1, l2)
122
+ assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
123
+ assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
124
+
125
+
126
+ def test_are_concurrent_3d():
127
+ p1 = Point3D(0, 0, 0)
128
+ l1 = Line(p1, Point3D(1, 1, 1))
129
+ parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
130
+ parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
131
+ assert Line3D.are_concurrent(l1) is False
132
+ assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
133
+ assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
134
+ Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
135
+ assert Line3D.are_concurrent(parallel_1, parallel_2) is False
136
+
137
+
138
+ def test_arguments():
139
+ """Functions accepting `Point` objects in `geometry`
140
+ should also accept tuples, lists, and generators and
141
+ automatically convert them to points."""
142
+ from sympy.utilities.iterables import subsets
143
+
144
+ singles2d = ((1, 2), [1, 3], Point(1, 5))
145
+ doubles2d = subsets(singles2d, 2)
146
+ l2d = Line(Point2D(1, 2), Point2D(2, 3))
147
+ singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
148
+ doubles3d = subsets(singles3d, 2)
149
+ l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
150
+ singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
151
+ doubles4d = subsets(singles4d, 2)
152
+ l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
153
+ # test 2D
154
+ test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
155
+ 'projection', 'intersection']
156
+ for p in doubles2d:
157
+ Line2D(*p)
158
+ for func in test_single:
159
+ for p in singles2d:
160
+ getattr(l2d, func)(p)
161
+ # test 3D
162
+ for p in doubles3d:
163
+ Line3D(*p)
164
+ for func in test_single:
165
+ for p in singles3d:
166
+ getattr(l3d, func)(p)
167
+ # test 4D
168
+ for p in doubles4d:
169
+ Line(*p)
170
+ for func in test_single:
171
+ for p in singles4d:
172
+ getattr(l4d, func)(p)
173
+
174
+
175
+ def test_basic_properties_2d():
176
+ p1 = Point(0, 0)
177
+ p2 = Point(1, 1)
178
+ p10 = Point(2000, 2000)
179
+ p_r3 = Ray(p1, p2).random_point()
180
+ p_r4 = Ray(p2, p1).random_point()
181
+
182
+ l1 = Line(p1, p2)
183
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
184
+ l4 = Line(p1, Point(1, 0))
185
+
186
+ r1 = Ray(p1, Point(0, 1))
187
+ r2 = Ray(Point(0, 1), p1)
188
+
189
+ s1 = Segment(p1, p10)
190
+ p_s1 = s1.random_point()
191
+
192
+ assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
193
+ assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
194
+ assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
195
+ assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
196
+ assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
197
+ assert Line(p1, p2) == Line(p1, p2)
198
+ assert Line(p1, p2) != Line(p2, p1)
199
+ assert l1 != Line(Point(x1, x1), Point(y1, y1))
200
+ assert l1 != l3
201
+ assert Line(p1, p10) != Line(p10, p1)
202
+ assert Line(p1, p10) != p1
203
+ assert p1 in l1 # is p1 on the line l1?
204
+ assert p1 not in l3
205
+ assert s1 in Line(p1, p10)
206
+ assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
207
+ assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
208
+ assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
209
+ assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
210
+ assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
211
+ assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
212
+ assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
213
+ assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
214
+ assert (r1 in s1) is False
215
+ assert Segment(p1, p2) in s1
216
+ assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
217
+ assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
218
+ assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
219
+
220
+ assert l1.slope == 1
221
+ assert l3.slope is oo
222
+ assert l4.slope == 0
223
+ assert Line(p1, Point(0, 1)).slope is oo
224
+ assert Line(r1.source, r1.random_point()).slope == r1.slope
225
+ assert Line(r2.source, r2.random_point()).slope == r2.slope
226
+ assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
227
+
228
+ assert l4.coefficients == (0, 1, 0)
229
+ assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
230
+ assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
231
+ # issue 7963
232
+ r = Ray((0, 0), angle=x)
233
+ assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
234
+ assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
235
+ assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
236
+ assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
237
+ assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
238
+
239
+ for ind in range(0, 5):
240
+ assert l3.random_point() in l3
241
+
242
+ assert p_r3.x >= p1.x and p_r3.y >= p1.y
243
+ assert p_r4.x <= p2.x and p_r4.y <= p2.y
244
+ assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
245
+ assert hash(s1) != hash(Segment(p10, p1))
246
+
247
+ assert s1.plot_interval() == [t, 0, 1]
248
+ assert Line(p1, p10).plot_interval() == [t, -5, 5]
249
+ assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
250
+
251
+
252
+ def test_basic_properties_3d():
253
+ p1 = Point3D(0, 0, 0)
254
+ p2 = Point3D(1, 1, 1)
255
+ p3 = Point3D(x1, x1, x1)
256
+ p5 = Point3D(x1, 1 + x1, 1)
257
+
258
+ l1 = Line3D(p1, p2)
259
+ l3 = Line3D(p3, p5)
260
+
261
+ r1 = Ray3D(p1, Point3D(-1, 5, 0))
262
+ r3 = Ray3D(p1, p2)
263
+
264
+ s1 = Segment3D(p1, p2)
265
+
266
+ assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
267
+ assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
268
+ assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
269
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0]
270
+ assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
271
+ assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
272
+ assert Line3D(p1, p2) != Line3D(p2, p1)
273
+ assert l1 != l3
274
+ assert l1 != Line3D(p3, Point3D(y1, y1, y1))
275
+ assert r3 != r1
276
+ assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
277
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
278
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity
279
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity
280
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity
281
+ assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity
282
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity
283
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity
284
+ assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero
285
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero
286
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero
287
+ assert p1 in l1
288
+ assert p1 not in l3
289
+
290
+ assert l1.direction_ratio == [1, 1, 1]
291
+
292
+ assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
293
+ # Test zdirection
294
+ assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
295
+
296
+
297
+ def test_contains():
298
+ p1 = Point(0, 0)
299
+
300
+ r = Ray(p1, Point(4, 4))
301
+ r1 = Ray3D(p1, Point3D(0, 0, -1))
302
+ r2 = Ray3D(p1, Point3D(0, 1, 0))
303
+ r3 = Ray3D(p1, Point3D(0, 0, 1))
304
+
305
+ l = Line(Point(0, 1), Point(3, 4))
306
+ # Segment contains
307
+ assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
308
+ assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
309
+ assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
310
+ assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
311
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
312
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
313
+ Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
314
+ # Line contains
315
+ assert l.contains(Point(0, 1)) is True
316
+ assert l.contains((0, 1)) is True
317
+ assert l.contains((0, 0)) is False
318
+ # Ray contains
319
+ assert r.contains(p1) is True
320
+ assert r.contains((1, 1)) is True
321
+ assert r.contains((1, 3)) is False
322
+ assert r.contains(Segment((1, 1), (2, 2))) is True
323
+ assert r.contains(Segment((1, 2), (2, 5))) is False
324
+ assert r.contains(Ray((2, 2), (3, 3))) is True
325
+ assert r.contains(Ray((2, 2), (3, 5))) is False
326
+ assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
327
+ assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
328
+ assert r2.contains(Point3D(0, 0, 0)) is True
329
+ assert r3.contains(Point3D(0, 0, 0)) is True
330
+ assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
331
+ assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
332
+ with warns(UserWarning, test_stacklevel=False):
333
+ assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
334
+
335
+ with warns(UserWarning, test_stacklevel=False):
336
+ assert r3.contains(Point(1.0, 1.0)) is False
337
+
338
+
339
+ def test_contains_nonreal_symbols():
340
+ u, v, w, z = symbols('u, v, w, z')
341
+ l = Segment(Point(u, w), Point(v, z))
342
+ p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
343
+ assert l.contains(p)
344
+
345
+
346
+ def test_distance_2d():
347
+ p1 = Point(0, 0)
348
+ p2 = Point(1, 1)
349
+ half = S.Half
350
+
351
+ s1 = Segment(Point(0, 0), Point(1, 1))
352
+ s2 = Segment(Point(half, half), Point(1, 0))
353
+
354
+ r = Ray(p1, p2)
355
+
356
+ assert s1.distance(Point(0, 0)) == 0
357
+ assert s1.distance((0, 0)) == 0
358
+ assert s2.distance(Point(0, 0)) == 2 ** half / 2
359
+ assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
360
+ assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
361
+ assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
362
+ assert Line(p1, p2).distance(Point(2, 2)) == 0
363
+ assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
364
+ assert Line((0, 0), (0, 1)).distance(p1) == 0
365
+ assert Line((0, 0), (0, 1)).distance(p2) == 1
366
+ assert Line((0, 0), (1, 0)).distance(p1) == 0
367
+ assert Line((0, 0), (1, 0)).distance(p2) == 1
368
+ assert r.distance(Point(-1, -1)) == sqrt(2)
369
+ assert r.distance(Point(1, 1)) == 0
370
+ assert r.distance(Point(-1, 1)) == sqrt(2)
371
+ assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
372
+ assert r.distance((1, 1)) == 0
373
+
374
+
375
+ def test_dimension_normalization():
376
+ with warns(UserWarning, test_stacklevel=False):
377
+ assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
378
+
379
+
380
+ def test_distance_3d():
381
+ p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
382
+ p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
383
+
384
+ s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
385
+ s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
386
+
387
+ r = Ray3D(p1, p2)
388
+
389
+ assert s1.distance(p1) == 0
390
+ assert s2.distance(p1) == sqrt(3) / 2
391
+ assert s2.distance(p3) == 2 * sqrt(6) / 3
392
+ assert s1.distance((0, 0, 0)) == 0
393
+ assert s2.distance((0, 0, 0)) == sqrt(3) / 2
394
+ assert s1.distance(p1) == 0
395
+ assert s2.distance(p1) == sqrt(3) / 2
396
+ assert s2.distance(p3) == 2 * sqrt(6) / 3
397
+ assert s1.distance((0, 0, 0)) == 0
398
+ assert s2.distance((0, 0, 0)) == sqrt(3) / 2
399
+ # Line to point
400
+ assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
401
+ assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
402
+ assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
403
+ assert Line3D(p1, p2).distance((2, 2, 2)) == 0
404
+ assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
405
+ assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
406
+ assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
407
+ assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
408
+ assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
409
+ # Ray to point
410
+ assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
411
+ assert r.distance(Point3D(1, 1, 1)) == 0
412
+ assert r.distance((-1, -1, -1)) == sqrt(3)
413
+ assert r.distance((1, 1, 1)) == 0
414
+ assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
415
+ assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
416
+ assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
417
+
418
+
419
+ def test_equals():
420
+ p1 = Point(0, 0)
421
+ p2 = Point(1, 1)
422
+
423
+ l1 = Line(p1, p2)
424
+ l2 = Line((0, 5), slope=m)
425
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
426
+
427
+ assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
428
+ assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
429
+ assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
430
+ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
431
+ assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
432
+ assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
433
+ assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
434
+ assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
435
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
436
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
437
+ assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
438
+ assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
439
+ assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
440
+ Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
441
+ assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
442
+ assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
443
+
444
+
445
+ def test_equation():
446
+ p1 = Point(0, 0)
447
+ p2 = Point(1, 1)
448
+ l1 = Line(p1, p2)
449
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
450
+
451
+ assert simplify(l1.equation()) in (x - y, y - x)
452
+ assert simplify(l3.equation()) in (x - x1, x1 - x)
453
+ assert simplify(l1.equation()) in (x - y, y - x)
454
+ assert simplify(l3.equation()) in (x - x1, x1 - x)
455
+
456
+ assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
457
+ assert Line(p1, Point(0, 1)).equation() == x
458
+ assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
459
+ assert Line(p2, Point(2, 1)).equation() == y - 1
460
+
461
+ assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
462
+ ).equation() == (-x + y, -x + z)
463
+ assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
464
+ ).equation() == (-x + y - 1, -x + z - 2)
465
+ assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
466
+ ).equation() == (x - 1, -y + z - 1)
467
+ assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
468
+ ).equation() == (y - 2, -x + z - 2)
469
+ assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
470
+ ).equation() == (-x + y - 1, z - 3)
471
+ assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
472
+ ).equation() == (x - 1, y - 2)
473
+ assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
474
+ ).equation() == (x - 1, z - 3)
475
+ assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
476
+ ).equation() == (y - 2, z - 3)
477
+
478
+
479
+ def test_intersection_2d():
480
+ p1 = Point(0, 0)
481
+ p2 = Point(1, 1)
482
+ p3 = Point(x1, x1)
483
+ p4 = Point(y1, y1)
484
+
485
+ l1 = Line(p1, p2)
486
+ l3 = Line(Point(0, 0), Point(3, 4))
487
+
488
+ r1 = Ray(Point(1, 1), Point(2, 2))
489
+ r2 = Ray(Point(0, 0), Point(3, 4))
490
+ r4 = Ray(p1, p2)
491
+ r6 = Ray(Point(0, 1), Point(1, 2))
492
+ r7 = Ray(Point(0.5, 0.5), Point(1, 1))
493
+
494
+ s1 = Segment(p1, p2)
495
+ s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
496
+ s3 = Segment(Point(0, 0), Point(3, 4))
497
+
498
+ assert intersection(l1, p1) == [p1]
499
+ assert intersection(l1, Point(x1, 1 + x1)) == []
500
+ assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
501
+ assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
502
+ assert intersection(l3, l3) == [l3]
503
+ assert intersection(l3, r2) == [r2]
504
+ assert intersection(l3, s3) == [s3]
505
+ assert intersection(s3, l3) == [s3]
506
+ assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
507
+ assert intersection(r2, l3) == [r2]
508
+ assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
509
+ assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
510
+ assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
511
+
512
+ assert r4.intersection(s2) == [s2]
513
+ assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
514
+ assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
515
+ assert r4.intersection(Ray(p2, p1)) == [s1]
516
+ assert Ray(p2, p1).intersection(r6) == []
517
+ assert r4.intersection(r7) == r7.intersection(r4) == [r7]
518
+ assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
519
+ assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
520
+ assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
521
+ [Segment(Point(0, 0), Point(0, 1))]
522
+
523
+ assert Segment3D((0, 0), (3, 0)).intersection(
524
+ Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
525
+ assert Segment3D((1, 0), (2, 0)).intersection(
526
+ Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
527
+ assert Segment3D((0, 0), (3, 0)).intersection(
528
+ Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
529
+ assert Segment3D((0, 0), (3, 0)).intersection(
530
+ Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
531
+ assert Segment3D((0, 0), (3, 0)).intersection(
532
+ Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
533
+ assert Segment3D((0, 0), (3, 0)).intersection(
534
+ Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
535
+ assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
536
+ assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
537
+ assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
538
+ assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
539
+ assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
540
+ assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
541
+ assert s1.intersection(s2) == [s2]
542
+ assert s2.intersection(s1) == [s2]
543
+
544
+ assert asa(120, 8, 52) == \
545
+ Triangle(
546
+ Point(0, 0),
547
+ Point(8, 0),
548
+ Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
549
+ 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
550
+ assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
551
+ assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
552
+ assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
553
+ assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
554
+ assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
555
+ assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
556
+ assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
557
+
558
+ # This test is disabled because it hangs after rref changes which simplify
559
+ # intermediate results and return a different representation from when the
560
+ # test was written.
561
+ # # 16628 - this should be fast
562
+ # p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
563
+ # p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
564
+ # 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
565
+ # /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
566
+ # + 1991998000*sqrt(630547164901) + 1622561172902000),
567
+ # (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
568
+ # 90004251917891999 +
569
+ # 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
570
+ # + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
571
+ # 8112805864510000))
572
+ # p2 = Point2D(Rational(497, 10), Rational(-497, 10))
573
+ # p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
574
+ # l = Line(p0, p1)
575
+ # s = Segment(p2, p3)
576
+ # n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
577
+ # 9803028531*sqrt(630547164901) +
578
+ # 33200*sqrt(255775022850776494562626))
579
+ # d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
580
+ # 630547164901) + sqrt(255775022850776494562626)
581
+ # assert intersection(l, s) == [
582
+ # Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
583
+
584
+
585
+ def test_line_intersection():
586
+ # see also test_issue_11238 in test_matrices.py
587
+ x0 = tan(pi*Rational(13, 45))
588
+ x1 = sqrt(3)
589
+ x2 = x0**2
590
+ x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
591
+ assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
592
+
593
+
594
+ def test_intersection_3d():
595
+ p1 = Point3D(0, 0, 0)
596
+ p2 = Point3D(1, 1, 1)
597
+
598
+ l1 = Line3D(p1, p2)
599
+ l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
600
+
601
+ r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
602
+ r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
603
+
604
+ s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
605
+
606
+ assert intersection(l1, p1) == [p1]
607
+ assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
608
+ assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
609
+ assert intersection(l2, r2) == [r2]
610
+ assert intersection(l2, s1) == [s1]
611
+ assert intersection(r2, l2) == [r2]
612
+ assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
613
+ assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
614
+ Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
615
+ assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
616
+ == [Point3D(0, 0, 0)]
617
+ assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
618
+ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
619
+ assert intersection(s1, r2) == [s1]
620
+
621
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
622
+ [Point3D(2, 2, 1)]
623
+ assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
624
+ assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
625
+ [Point3D(t, t)]
626
+
627
+ assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
628
+
629
+
630
+ def test_is_parallel():
631
+ p1 = Point3D(0, 0, 0)
632
+ p2 = Point3D(1, 1, 1)
633
+ p3 = Point3D(x1, x1, x1)
634
+
635
+ l2 = Line(Point(x1, x1), Point(y1, y1))
636
+ l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
637
+
638
+ assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
639
+ assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
640
+ assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
641
+ assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
642
+ assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
643
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
644
+ assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
645
+ Point3D(x1 + 1, x1 + 1, x1 + 1))
646
+ assert Line3D(p1, p2).parallel_line(p3.args) == \
647
+ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
648
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
649
+
650
+
651
+ def test_is_perpendicular():
652
+ p1 = Point(0, 0)
653
+ p2 = Point(1, 1)
654
+
655
+ l1 = Line(p1, p2)
656
+ l2 = Line(Point(x1, x1), Point(y1, y1))
657
+ l1_1 = Line(p1, Point(-x1, x1))
658
+ # 2D
659
+ assert Line.is_perpendicular(l1, l1_1)
660
+ assert Line.is_perpendicular(l1, l2) is False
661
+ p = l1.random_point()
662
+ assert l1.perpendicular_segment(p) == p
663
+ # 3D
664
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
665
+ Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
666
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
667
+ Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
668
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
669
+ Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
670
+
671
+
672
+ def test_is_similar():
673
+ p1 = Point(2000, 2000)
674
+ p2 = p1.scale(2, 2)
675
+
676
+ r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
677
+ r2 = Ray(Point(0, 0), Point(0, 1))
678
+
679
+ s1 = Segment(Point(0, 0), p1)
680
+
681
+ assert s1.is_similar(Segment(p1, p2))
682
+ assert s1.is_similar(r2) is False
683
+ assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
684
+ assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
685
+
686
+
687
+ def test_length():
688
+ s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
689
+ assert Line(Point(0, 0), Point(1, 1)).length is oo
690
+ assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
691
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
692
+
693
+
694
+ def test_projection():
695
+ p1 = Point(0, 0)
696
+ p2 = Point3D(0, 0, 0)
697
+ p3 = Point(-x1, x1)
698
+
699
+ l1 = Line(p1, Point(1, 1))
700
+ l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
701
+ l3 = Line3D(p2, Point3D(1, 1, 1))
702
+
703
+ r1 = Ray(Point(1, 1), Point(2, 2))
704
+
705
+ s1 = Segment(Point2D(0, 0), Point2D(0, 1))
706
+ s2 = Segment(Point2D(1, 0), Point2D(2, 1/2))
707
+
708
+ assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
709
+ assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
710
+ assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
711
+ assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
712
+ assert s2.projection(s1) == EmptySet
713
+ assert l1.projection(p3) == p1
714
+ assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
715
+ assert l1.projection(Ray(p1, Point(-1, 1))) == p1
716
+ assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
717
+ assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
718
+ assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
719
+ assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
720
+ assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
721
+ assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
722
+
723
+ assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
724
+ assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
725
+ assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
726
+ assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
727
+
728
+
729
+ def test_perpendicular_line():
730
+ # 3d - requires a particular orthogonal to be selected
731
+ p1, p2, p3 = Point(0, 0, 0), Point(2, 3, 4), Point(-2, 2, 0)
732
+ l = Line(p1, p2)
733
+ p = l.perpendicular_line(p3)
734
+ assert p.p1 == p3
735
+ assert p.p2 in l
736
+ # 2d - does not require special selection
737
+ p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
738
+ l = Line(p1, p2)
739
+ p = l.perpendicular_line(p3)
740
+ assert p.p1 == p3
741
+ # p is directed from l to p3
742
+ assert p.direction.unit == (p3 - l.projection(p3)).unit
743
+
744
+
745
+ def test_perpendicular_bisector():
746
+ s1 = Segment(Point(0, 0), Point(1, 1))
747
+ aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
748
+ on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
749
+
750
+ assert s1.perpendicular_bisector().equals(aline)
751
+ assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
752
+ assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
753
+
754
+
755
+ def test_raises():
756
+ d, e = symbols('a,b', real=True)
757
+ s = Segment((d, 0), (e, 0))
758
+
759
+ raises(TypeError, lambda: Line((1, 1), 1))
760
+ raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
761
+ raises(Undecidable, lambda: Point(2 * d, 0) in s)
762
+ raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
763
+ raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
764
+ raises(TypeError, lambda: Line3D((1, 1), 1))
765
+ raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
766
+ raises(TypeError, lambda: Ray((1, 1), 1))
767
+ raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
768
+ .projection(Circle(Point(0, 0), 1)))
769
+
770
+
771
+ def test_ray_generation():
772
+ assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
773
+ assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
774
+ assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
775
+ assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
776
+ assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
777
+ assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
778
+ assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
779
+ assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
780
+ assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
781
+ assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
782
+ assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
783
+ Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
784
+ 2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
785
+ assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
786
+ Point(2, 1 + tan(4.02 * pi)))
787
+ assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
788
+
789
+ assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
790
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
791
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
792
+
793
+
794
+ def test_issue_7814():
795
+ circle = Circle(Point(x, 0), y)
796
+ line = Line(Point(k, z), slope=0)
797
+ _s = sqrt((y - z)*(y + z))
798
+ assert line.intersection(circle) == [Point2D(x + _s, z), Point2D(x - _s, z)]
799
+
800
+
801
+ def test_issue_2941():
802
+ def _check():
803
+ for f, g in cartes(*[(Line, Ray, Segment)] * 2):
804
+ l1 = f(a, b)
805
+ l2 = g(c, d)
806
+ assert l1.intersection(l2) == l2.intersection(l1)
807
+ # intersect at end point
808
+ c, d = (-2, -2), (-2, 0)
809
+ a, b = (0, 0), (1, 1)
810
+ _check()
811
+ # midline intersection
812
+ c, d = (-2, -3), (-2, 0)
813
+ _check()
814
+
815
+
816
+ def test_parameter_value():
817
+ t = Symbol('t')
818
+ p1, p2 = Point(0, 1), Point(5, 6)
819
+ l = Line(p1, p2)
820
+ assert l.parameter_value((5, 6), t) == {t: 1}
821
+ raises(ValueError, lambda: l.parameter_value((0, 0), t))
822
+
823
+
824
+ def test_bisectors():
825
+ r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
826
+ r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
827
+ bisections = r1.bisectors(r2)
828
+ assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)),
829
+ Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
830
+ ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)),
831
+ Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))]
832
+ l1 = (0, 0, 0), (0, 0, 1)
833
+ l2 = (0, 0), (1, 0)
834
+ for a, b in cartes((Line, Segment, Ray), repeat=2):
835
+ assert a(*l1).bisectors(b(*l2)) == ans
836
+
837
+
838
+ def test_issue_8615():
839
+ a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0))
840
+ b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0))
841
+ assert a.intersection(b) == [Point3D(6, -1, 0)]
842
+
843
+
844
+ def test_issue_12598():
845
+ r1 = Ray(Point(0, 1), Point(0.98, 0.79).n(2))
846
+ r2 = Ray(Point(0, 0), Point(0.71, 0.71).n(2))
847
+ assert str(r1.intersection(r2)[0]) == 'Point2D(0.82, 0.82)'
848
+ l1 = Line((0, 0), (1, 1))
849
+ l2 = Segment((-1, 1), (0, -1)).n(2)
850
+ assert str(l1.intersection(l2)[0]) == 'Point2D(-0.33, -0.33)'
851
+ l2 = Segment((-1, 1), (-1/2, 1/2)).n(2)
852
+ assert not l1.intersection(l2)
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (Rational, oo)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.complexes import sign
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.geometry.ellipse import (Circle, Ellipse)
7
+ from sympy.geometry.line import (Line, Ray2D, Segment2D)
8
+ from sympy.geometry.parabola import Parabola
9
+ from sympy.geometry.point import (Point, Point2D)
10
+ from sympy.testing.pytest import raises
11
+
12
+ from sympy.abc import x, y
13
+
14
+ def test_parabola_geom():
15
+ a, b = symbols('a b')
16
+ p1 = Point(0, 0)
17
+ p2 = Point(3, 7)
18
+ p3 = Point(0, 4)
19
+ p4 = Point(6, 0)
20
+ p5 = Point(a, a)
21
+ d1 = Line(Point(4, 0), Point(4, 9))
22
+ d2 = Line(Point(7, 6), Point(3, 6))
23
+ d3 = Line(Point(4, 0), slope=oo)
24
+ d4 = Line(Point(7, 6), slope=0)
25
+ d5 = Line(Point(b, a), slope=oo)
26
+ d6 = Line(Point(a, b), slope=0)
27
+
28
+ half = S.Half
29
+
30
+ pa1 = Parabola(None, d2)
31
+ pa2 = Parabola(directrix=d1)
32
+ pa3 = Parabola(p1, d1)
33
+ pa4 = Parabola(p2, d2)
34
+ pa5 = Parabola(p2, d4)
35
+ pa6 = Parabola(p3, d2)
36
+ pa7 = Parabola(p2, d1)
37
+ pa8 = Parabola(p4, d1)
38
+ pa9 = Parabola(p4, d3)
39
+ pa10 = Parabola(p5, d5)
40
+ pa11 = Parabola(p5, d6)
41
+ d = Line(Point(3, 7), Point(2, 9))
42
+ pa12 = Parabola(Point(7, 8), d)
43
+ pa12r = Parabola(Point(7, 8).reflect(d), d)
44
+
45
+ raises(ValueError, lambda:
46
+ Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7))))
47
+ raises(ValueError, lambda:
48
+ Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2))))
49
+ raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8)))
50
+
51
+ # Basic Stuff
52
+ assert pa1.focus == Point(0, 0)
53
+ assert pa1.ambient_dimension == S(2)
54
+ assert pa2 == pa3
55
+ assert pa4 != pa7
56
+ assert pa6 != pa7
57
+ assert pa6.focus == Point2D(0, 4)
58
+ assert pa6.focal_length == 1
59
+ assert pa6.p_parameter == -1
60
+ assert pa6.vertex == Point2D(0, 5)
61
+ assert pa6.eccentricity == 1
62
+ assert pa7.focus == Point2D(3, 7)
63
+ assert pa7.focal_length == half
64
+ assert pa7.p_parameter == -half
65
+ assert pa7.vertex == Point2D(7*half, 7)
66
+ assert pa4.focal_length == half
67
+ assert pa4.p_parameter == half
68
+ assert pa4.vertex == Point2D(3, 13*half)
69
+ assert pa8.focal_length == 1
70
+ assert pa8.p_parameter == 1
71
+ assert pa8.vertex == Point2D(5, 0)
72
+ assert pa4.focal_length == pa5.focal_length
73
+ assert pa4.p_parameter == pa5.p_parameter
74
+ assert pa4.vertex == pa5.vertex
75
+ assert pa4.equation() == pa5.equation()
76
+ assert pa8.focal_length == pa9.focal_length
77
+ assert pa8.p_parameter == pa9.p_parameter
78
+ assert pa8.vertex == pa9.vertex
79
+ assert pa8.equation() == pa9.equation()
80
+ assert pa10.focal_length == pa11.focal_length == sqrt((a - b) ** 2) / 2 # if a, b real == abs(a - b)/2
81
+ assert pa11.vertex == Point(*pa10.vertex[::-1]) == Point(a,
82
+ a - sqrt((a - b)**2)*sign(a - b)/2) # change axis x->y, y->x on pa10
83
+ aos = pa12.axis_of_symmetry
84
+ assert aos == Line(Point(7, 8), Point(5, 7))
85
+ assert pa12.directrix == Line(Point(3, 7), Point(2, 9))
86
+ assert pa12.directrix.angle_between(aos) == S.Pi/2
87
+ assert pa12.eccentricity == 1
88
+ assert pa12.equation(x, y) == (x - 7)**2 + (y - 8)**2 - (-2*x - y + 13)**2/5
89
+ assert pa12.focal_length == 9*sqrt(5)/10
90
+ assert pa12.focus == Point(7, 8)
91
+ assert pa12.p_parameter == 9*sqrt(5)/10
92
+ assert pa12.vertex == Point2D(S(26)/5, S(71)/10)
93
+ assert pa12r.focal_length == 9*sqrt(5)/10
94
+ assert pa12r.focus == Point(-S(1)/5, S(22)/5)
95
+ assert pa12r.p_parameter == -9*sqrt(5)/10
96
+ assert pa12r.vertex == Point(S(8)/5, S(53)/10)
97
+
98
+
99
+ def test_parabola_intersection():
100
+ l1 = Line(Point(1, -2), Point(-1,-2))
101
+ l2 = Line(Point(1, 2), Point(-1,2))
102
+ l3 = Line(Point(1, 0), Point(-1,0))
103
+
104
+ p1 = Point(0,0)
105
+ p2 = Point(0, -2)
106
+ p3 = Point(120, -12)
107
+ parabola1 = Parabola(p1, l1)
108
+
109
+ # parabola with parabola
110
+ assert parabola1.intersection(parabola1) == [parabola1]
111
+ assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)]
112
+ assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)]
113
+ assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)]
114
+ assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)]
115
+ assert parabola1.intersection(Parabola(p3, l3)) == []
116
+ # parabola with point
117
+ assert parabola1.intersection(p1) == []
118
+ assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)]
119
+ assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)]
120
+ # parabola with line
121
+ assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)]
122
+ assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)]
123
+ assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)]
124
+ raises(TypeError, lambda: parabola1.intersection(Line(Point(0, 0, 0), Point(1, 1, 1))))
125
+ # parabola with segment
126
+ assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
127
+ assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)]
128
+ assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == []
129
+ # parabola with ray
130
+ assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
131
+ assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))]
132
+ assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == []
133
+ # parabola with ellipse/circle
134
+ assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)]
135
+ assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1)]
136
+ assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1)]
137
+ assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == []
138
+ assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == [
139
+ Point2D(0, -1),
140
+ Point2D(-4*sqrt(17)/3, Rational(59, 9)),
141
+ Point2D(4*sqrt(17)/3, Rational(59, 9))]
142
+ # parabola with unsupported type
143
+ raises(TypeError, lambda: parabola1.intersection(2))
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (Rational, pi)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import (Dummy, symbols)
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import (asin, cos, sin)
6
+ from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
7
+ from sympy.geometry.util import are_coplanar
8
+ from sympy.testing.pytest import raises
9
+
10
+
11
+ def test_plane():
12
+ x, y, z, u, v = symbols('x y z u v', real=True)
13
+ p1 = Point3D(0, 0, 0)
14
+ p2 = Point3D(1, 1, 1)
15
+ p3 = Point3D(1, 2, 3)
16
+ pl3 = Plane(p1, p2, p3)
17
+ pl4 = Plane(p1, normal_vector=(1, 1, 1))
18
+ pl4b = Plane(p1, p2)
19
+ pl5 = Plane(p3, normal_vector=(1, 2, 3))
20
+ pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
21
+ pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
22
+ pl8 = Plane(p1, normal_vector=(0, 0, 1))
23
+ pl9 = Plane(p1, normal_vector=(0, 12, 0))
24
+ pl10 = Plane(p1, normal_vector=(-2, 0, 0))
25
+ pl11 = Plane(p2, normal_vector=(0, 0, 1))
26
+ l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
27
+ l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
28
+ l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
29
+
30
+ raises(ValueError, lambda: Plane(p1, p1, p1))
31
+
32
+ assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
33
+ assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
34
+ assert Plane(p1, p2, p3).is_coplanar(p1)
35
+ assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
36
+ assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))
37
+
38
+ assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
39
+ assert pl3 != pl4
40
+ assert pl4 == pl4b
41
+ assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
42
+
43
+ assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
44
+ assert pl3.equation(x, y, z) == x - 2*y + z
45
+
46
+ assert pl3.p1 == p1
47
+ assert pl4.p1 == p1
48
+ assert pl5.p1 == p3
49
+
50
+ assert pl4.normal_vector == (1, 1, 1)
51
+ assert pl5.normal_vector == (1, 2, 3)
52
+
53
+ assert p1 in pl3
54
+ assert p1 in pl4
55
+ assert p3 in pl5
56
+
57
+ assert pl3.projection(Point(0, 0)) == p1
58
+ p = pl3.projection(Point3D(1, 1, 0))
59
+ assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
60
+ assert p in pl3
61
+
62
+ l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
63
+ assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
64
+ assert l in pl3
65
+ # get a segment that does not intersect the plane which is also
66
+ # parallel to pl3's normal veector
67
+ t = Dummy()
68
+ r = pl3.random_point()
69
+ a = pl3.perpendicular_line(r).arbitrary_point(t)
70
+ s = Segment3D(a.subs(t, 1), a.subs(t, 2))
71
+ assert s.p1 not in pl3 and s.p2 not in pl3
72
+ assert pl3.projection_line(s).equals(r)
73
+ assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
74
+ Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
75
+ assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
76
+ Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
77
+ assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
78
+
79
+ assert pl3.is_parallel(pl6) is False
80
+ assert pl4.is_parallel(pl6)
81
+ assert pl3.is_parallel(Line(p1, p2))
82
+ assert pl6.is_parallel(l1) is False
83
+
84
+ assert pl3.is_perpendicular(pl6)
85
+ assert pl4.is_perpendicular(pl7)
86
+ assert pl6.is_perpendicular(pl7)
87
+ assert pl6.is_perpendicular(pl4) is False
88
+ assert pl6.is_perpendicular(l1) is False
89
+ assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
90
+ assert pl6.is_perpendicular((1, 1)) is False
91
+
92
+ assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
93
+ assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
94
+ assert pl6.distance(pl6.arbitrary_point(t)) == 0
95
+ assert pl7.distance(pl7.arbitrary_point(t)) == 0
96
+ assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
97
+ assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
98
+ assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
99
+ 2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
100
+ assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
101
+
102
+ assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
103
+ assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
104
+ assert pl6.distance(pl6.p1) == 0
105
+ assert pl7.distance(pl6) == 0
106
+ assert pl7.distance(l1) == 0
107
+ assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
108
+ pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
109
+ assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
110
+ pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
111
+ assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
112
+ assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
113
+ assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
114
+ pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
115
+ assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
116
+ assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
117
+ assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
118
+
119
+
120
+ assert pl6.angle_between(pl3) == pi/2
121
+ assert pl6.angle_between(pl6) == 0
122
+ assert pl6.angle_between(pl4) == 0
123
+ assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
124
+ -asin(sqrt(3)/6)
125
+ assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
126
+ asin(sqrt(7)/3)
127
+ assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
128
+ asin(7*sqrt(246)/246)
129
+
130
+ assert are_coplanar(l1, l2, l3) is False
131
+ assert are_coplanar(l1) is False
132
+ assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
133
+ Point3D(1, 1, 2), Point3D(1, 2, 2))
134
+ assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
135
+ assert Plane.are_concurrent(pl3, pl4, pl5) is False
136
+ assert Plane.are_concurrent(pl6) is False
137
+ raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
138
+ raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
139
+
140
+ assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
141
+ normal_vector=(1, -2, 1))
142
+
143
+ # perpendicular_plane
144
+ p = Plane((0, 0, 0), (1, 0, 0))
145
+ # default
146
+ assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
147
+ # 1 pt
148
+ assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
149
+ Plane(Point3D(1, 0, 1), (0, 1, 0))
150
+ # pts as tuples
151
+ assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
152
+ Plane(Point3D(1, 0, 1), (0, 0, -1))
153
+ # more than two planes
154
+ raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))
155
+
156
+ a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
157
+ Z = (0, 0, 1)
158
+ p = Plane(a, normal_vector=Z)
159
+ # case 4
160
+ assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
161
+ n = Point3D(*Z)
162
+ # case 1
163
+ assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
164
+ # case 2
165
+ assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
166
+ Plane(Point3D(0, 0, 0), (1, 0, 0))
167
+ # case 1&3
168
+ assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
169
+ Plane(Point3D(0, 1, 0), (-1, 0, 0))
170
+ # case 2&3
171
+ assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
172
+ Plane(Point3D(0, 0, 1), (1, 0, 0))
173
+
174
+ p = Plane(a, normal_vector=(0, 0, 1))
175
+ assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))
176
+
177
+ assert pl6.intersection(pl6) == [pl6]
178
+ assert pl4.intersection(pl4.p1) == [pl4.p1]
179
+ assert pl3.intersection(pl6) == [
180
+ Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
181
+ assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
182
+ Point3D(2, Rational(8, 3), Rational(10, 3))]
183
+ assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
184
+ ) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
185
+ assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
186
+ Point3D(-1, 3, 10)]
187
+ assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
188
+ assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
189
+ Point3D(Rational(13, 2), Rational(3, 4), 0)]
190
+ r = Ray(Point(2, 3), Point(4, 2))
191
+ assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
192
+ Ray3D(Point(2, 3), Point(4, 2))]
193
+ assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
194
+ assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
195
+ assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
196
+ assert pl11.intersection(pl8) == []
197
+ assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
198
+ assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
199
+ assert pl3.random_point() in pl3
200
+ assert pl3.random_point(seed=1) in pl3
201
+
202
+ # test geometrical entity using equals
203
+ assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
204
+ assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
205
+ pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
206
+ assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
207
+ assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
208
+ assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
209
+ assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
210
+ assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
211
+ Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
212
+ assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
213
+ Line3D(p1, direction_ratio=(0, -11, 0)))
214
+ assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
215
+ Line3D(p1, direction_ratio=(0, 11, 0)))
216
+ assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
217
+ Line3D(p1, direction_ratio=(1, -1, 0)))
218
+ assert pl3.random_point() in pl3
219
+ assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
220
+ # check if two plane are equals
221
+ assert pl6.intersection(pl6)[0].equals(pl6)
222
+ assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
223
+ assert pl8.equals(pl8)
224
+ assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
225
+ assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
226
+ assert pl8.equals(p1) is False
227
+
228
+ # issue 8570
229
+ l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
230
+ Rational(-891926590718643, 1000000000000000),
231
+ Rational(231800966893633, 100000000000000)),
232
+ Point3D(Rational(50000004459633, 50000000000000),
233
+ Rational(-222981647679771, 250000000000000),
234
+ Rational(231800966893633, 100000000000000)))
235
+
236
+ p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
237
+ Rational(-97224357654973, 100000000000000),
238
+ Rational(216793600814789, 100000000000000)),
239
+ (-S('9.00000087501922'), -S('4.81170658872543e-13'),
240
+ S('0.0')))
241
+
242
+ assert str([i.n(2) for i in p2.intersection(l2)]) == \
243
+ '[Point3D(4.0, -0.89, 2.3)]'
244
+
245
+
246
+ def test_dimension_normalization():
247
+ A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
248
+ b = Point(1, 1)
249
+ assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))
250
+
251
+ a, b = Point(0, 0), Point3D(0, 1)
252
+ Z = (0, 0, 1)
253
+ p = Plane(a, normal_vector=Z)
254
+ assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
255
+ assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
256
+ ).intersection((2, 1)) == [Point(2, 1, 0)]
257
+
258
+
259
+ def test_parameter_value():
260
+ t, u, v = symbols("t, u v")
261
+ p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
262
+ p = Plane(p1, p2, p3)
263
+ assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
264
+ assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
265
+ assert p.parameter_value(p1, t) == p1
266
+ raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
267
+ raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
268
+ raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.numbers import (I, Rational, pi)
3
+ from sympy.core.parameters import evaluate
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import Symbol
6
+ from sympy.core.sympify import sympify
7
+ from sympy.functions.elementary.miscellaneous import sqrt
8
+ from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
9
+ from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
10
+ from sympy.matrices import Matrix
11
+ from sympy.utilities.iterables import subsets, permutations, cartes
12
+ from sympy.utilities.misc import Undecidable
13
+ from sympy.testing.pytest import raises, warns
14
+
15
+
16
+ def test_point():
17
+ x = Symbol('x', real=True)
18
+ y = Symbol('y', real=True)
19
+ x1 = Symbol('x1', real=True)
20
+ x2 = Symbol('x2', real=True)
21
+ y1 = Symbol('y1', real=True)
22
+ y2 = Symbol('y2', real=True)
23
+ half = S.Half
24
+ p1 = Point(x1, x2)
25
+ p2 = Point(y1, y2)
26
+ p3 = Point(0, 0)
27
+ p4 = Point(1, 1)
28
+ p5 = Point(0, 1)
29
+ line = Line(Point(1, 0), slope=1)
30
+
31
+ assert p1 in p1
32
+ assert p1 not in p2
33
+ assert p2.y == y2
34
+ assert (p3 + p4) == p4
35
+ assert (p2 - p1) == Point(y1 - x1, y2 - x2)
36
+ assert -p2 == Point(-y1, -y2)
37
+ raises(TypeError, lambda: Point(1))
38
+ raises(ValueError, lambda: Point([1]))
39
+ raises(ValueError, lambda: Point(3, I))
40
+ raises(ValueError, lambda: Point(2*I, I))
41
+ raises(ValueError, lambda: Point(3 + I, I))
42
+
43
+ assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
44
+ assert Point.midpoint(p3, p4) == Point(half, half)
45
+ assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
46
+ assert Point.midpoint(p2, p2) == p2
47
+ assert p2.midpoint(p2) == p2
48
+ assert p1.origin == Point(0, 0)
49
+
50
+ assert Point.distance(p3, p4) == sqrt(2)
51
+ assert Point.distance(p1, p1) == 0
52
+ assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
53
+ raises(TypeError, lambda: Point.distance(p1, 0))
54
+ raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))
55
+
56
+ # distance should be symmetric
57
+ assert p1.distance(line) == line.distance(p1)
58
+ assert p4.distance(line) == line.distance(p4)
59
+
60
+ assert Point.taxicab_distance(p4, p3) == 2
61
+
62
+ assert Point.canberra_distance(p4, p5) == 1
63
+ raises(ValueError, lambda: Point.canberra_distance(p3, p3))
64
+
65
+ p1_1 = Point(x1, x1)
66
+ p1_2 = Point(y2, y2)
67
+ p1_3 = Point(x1 + 1, x1)
68
+ assert Point.is_collinear(p3)
69
+
70
+ with warns(UserWarning, test_stacklevel=False):
71
+ assert Point.is_collinear(p3, Point(p3, dim=4))
72
+ assert p3.is_collinear()
73
+ assert Point.is_collinear(p3, p4)
74
+ assert Point.is_collinear(p3, p4, p1_1, p1_2)
75
+ assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
76
+ assert Point.is_collinear(p3, p3, p4, p5) is False
77
+
78
+ raises(TypeError, lambda: Point.is_collinear(line))
79
+ raises(TypeError, lambda: p1_1.is_collinear(line))
80
+
81
+ assert p3.intersection(Point(0, 0)) == [p3]
82
+ assert p3.intersection(p4) == []
83
+ assert p3.intersection(line) == []
84
+ with warns(UserWarning, test_stacklevel=False):
85
+ assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]
86
+
87
+ x_pos = Symbol('x', positive=True)
88
+ p2_1 = Point(x_pos, 0)
89
+ p2_2 = Point(0, x_pos)
90
+ p2_3 = Point(-x_pos, 0)
91
+ p2_4 = Point(0, -x_pos)
92
+ p2_5 = Point(x_pos, 5)
93
+ assert Point.is_concyclic(p2_1)
94
+ assert Point.is_concyclic(p2_1, p2_2)
95
+ assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
96
+ for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
97
+ assert Point.is_concyclic(*pts) is False
98
+ assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
99
+ assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
100
+ assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False
101
+
102
+ assert p1.is_scalar_multiple(p1)
103
+ assert p1.is_scalar_multiple(2*p1)
104
+ assert not p1.is_scalar_multiple(p2)
105
+ assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
106
+ assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
107
+ # test when is_scalar_multiple can't be determined
108
+ raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))
109
+
110
+ assert Point(0, 1).orthogonal_direction == Point(1, 0)
111
+ assert Point(1, 0).orthogonal_direction == Point(0, 1)
112
+
113
+ assert p1.is_zero is None
114
+ assert p3.is_zero
115
+ assert p4.is_zero is False
116
+ assert p1.is_nonzero is None
117
+ assert p3.is_nonzero is False
118
+ assert p4.is_nonzero
119
+
120
+ assert p4.scale(2, 3) == Point(2, 3)
121
+ assert p3.scale(2, 3) == p3
122
+
123
+ assert p4.rotate(pi, Point(0.5, 0.5)) == p3
124
+ assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
125
+ assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
126
+
127
+ assert p4 * 5 == Point(5, 5)
128
+ assert p4 / 5 == Point(0.2, 0.2)
129
+ assert 5 * p4 == Point(5, 5)
130
+
131
+ raises(ValueError, lambda: Point(0, 0) + 10)
132
+
133
+ # Point differences should be simplified
134
+ assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
135
+
136
+ a, b = S.Half, Rational(1, 3)
137
+ assert Point(a, b).evalf(2) == \
138
+ Point(a.n(2), b.n(2), evaluate=False)
139
+ raises(ValueError, lambda: Point(1, 2) + 1)
140
+
141
+ # test project
142
+ assert Point.project((0, 1), (1, 0)) == Point(0, 0)
143
+ assert Point.project((1, 1), (1, 0)) == Point(1, 0)
144
+ raises(ValueError, lambda: Point.project(p1, Point(0, 0)))
145
+
146
+ # test transformations
147
+ p = Point(1, 0)
148
+ assert p.rotate(pi/2) == Point(0, 1)
149
+ assert p.rotate(pi/2, p) == p
150
+ p = Point(1, 1)
151
+ assert p.scale(2, 3) == Point(2, 3)
152
+ assert p.translate(1, 2) == Point(2, 3)
153
+ assert p.translate(1) == Point(2, 1)
154
+ assert p.translate(y=1) == Point(1, 2)
155
+ assert p.translate(*p.args) == Point(2, 2)
156
+
157
+ # Check invalid input for transform
158
+ raises(ValueError, lambda: p3.transform(p3))
159
+ raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
160
+
161
+ # test __contains__
162
+ assert 0 in Point(0, 0, 0, 0)
163
+ assert 1 not in Point(0, 0, 0, 0)
164
+
165
+ # test affine_rank
166
+ assert Point.affine_rank() == -1
167
+
168
+
169
+ def test_point3D():
170
+ x = Symbol('x', real=True)
171
+ y = Symbol('y', real=True)
172
+ x1 = Symbol('x1', real=True)
173
+ x2 = Symbol('x2', real=True)
174
+ x3 = Symbol('x3', real=True)
175
+ y1 = Symbol('y1', real=True)
176
+ y2 = Symbol('y2', real=True)
177
+ y3 = Symbol('y3', real=True)
178
+ half = S.Half
179
+ p1 = Point3D(x1, x2, x3)
180
+ p2 = Point3D(y1, y2, y3)
181
+ p3 = Point3D(0, 0, 0)
182
+ p4 = Point3D(1, 1, 1)
183
+ p5 = Point3D(0, 1, 2)
184
+
185
+ assert p1 in p1
186
+ assert p1 not in p2
187
+ assert p2.y == y2
188
+ assert (p3 + p4) == p4
189
+ assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
190
+ assert -p2 == Point3D(-y1, -y2, -y3)
191
+
192
+ assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
193
+ assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
194
+ assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
195
+ half + half*x3)
196
+ assert Point3D.midpoint(p2, p2) == p2
197
+ assert p2.midpoint(p2) == p2
198
+
199
+ assert Point3D.distance(p3, p4) == sqrt(3)
200
+ assert Point3D.distance(p1, p1) == 0
201
+ assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
202
+
203
+ p1_1 = Point3D(x1, x1, x1)
204
+ p1_2 = Point3D(y2, y2, y2)
205
+ p1_3 = Point3D(x1 + 1, x1, x1)
206
+ Point3D.are_collinear(p3)
207
+ assert Point3D.are_collinear(p3, p4)
208
+ assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
209
+ assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
210
+ assert Point3D.are_collinear(p3, p3, p4, p5) is False
211
+
212
+ assert p3.intersection(Point3D(0, 0, 0)) == [p3]
213
+ assert p3.intersection(p4) == []
214
+
215
+
216
+ assert p4 * 5 == Point3D(5, 5, 5)
217
+ assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
218
+ assert 5 * p4 == Point3D(5, 5, 5)
219
+
220
+ raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
221
+
222
+ # Test coordinate properties
223
+ assert p1.coordinates == (x1, x2, x3)
224
+ assert p2.coordinates == (y1, y2, y3)
225
+ assert p3.coordinates == (0, 0, 0)
226
+ assert p4.coordinates == (1, 1, 1)
227
+ assert p5.coordinates == (0, 1, 2)
228
+ assert p5.x == 0
229
+ assert p5.y == 1
230
+ assert p5.z == 2
231
+
232
+ # Point differences should be simplified
233
+ assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
234
+ Point3D(0, -1, 1)
235
+
236
+ a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
237
+ assert Point3D(a, b, c).evalf(2) == \
238
+ Point(a.n(2), b.n(2), c.n(2), evaluate=False)
239
+ raises(ValueError, lambda: Point3D(1, 2, 3) + 1)
240
+
241
+ # test transformations
242
+ p = Point3D(1, 1, 1)
243
+ assert p.scale(2, 3) == Point3D(2, 3, 1)
244
+ assert p.translate(1, 2) == Point3D(2, 3, 1)
245
+ assert p.translate(1) == Point3D(2, 1, 1)
246
+ assert p.translate(z=1) == Point3D(1, 1, 2)
247
+ assert p.translate(*p.args) == Point3D(2, 2, 2)
248
+
249
+ # Test __new__
250
+ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
251
+
252
+ # Test length property returns correctly
253
+ assert p.length == 0
254
+ assert p1_1.length == 0
255
+ assert p1_2.length == 0
256
+
257
+ # Test are_colinear type error
258
+ raises(TypeError, lambda: Point3D.are_collinear(p, x))
259
+
260
+ # Test are_coplanar
261
+ assert Point.are_coplanar()
262
+ assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
263
+ assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
264
+ with warns(UserWarning, test_stacklevel=False):
265
+ raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
266
+ assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
267
+ assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
268
+ planar2 = Point3D(1, -1, 1)
269
+ planar3 = Point3D(-1, 1, 1)
270
+ assert Point3D.are_coplanar(p, planar2, planar3) == True
271
+ assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
272
+ assert Point.are_coplanar(p, planar2)
273
+ planar2 = Point3D(1, 1, 2)
274
+ planar3 = Point3D(1, 1, 3)
275
+ assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
276
+ plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
277
+ assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
278
+
279
+ # all 2D points are coplanar
280
+ assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True
281
+
282
+ # Test Intersection
283
+ assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
284
+
285
+ # Test Scale
286
+ assert planar2.scale(1, 1, 1) == planar2
287
+ assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
288
+ assert planar2.scale(1, 1, 1, p3) == planar2
289
+
290
+ # Test Transform
291
+ identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
292
+ assert p.transform(identity) == p
293
+ trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
294
+ assert p.transform(trans) == Point3D(2, 2, 2)
295
+ raises(ValueError, lambda: p.transform(p))
296
+ raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
297
+
298
+ # Test Equals
299
+ assert p.equals(x1) == False
300
+
301
+ # Test __sub__
302
+ p_4d = Point(0, 0, 0, 1)
303
+ with warns(UserWarning, test_stacklevel=False):
304
+ assert p - p_4d == Point(1, 1, 1, -1)
305
+ p_4d3d = Point(0, 0, 1, 0)
306
+ with warns(UserWarning, test_stacklevel=False):
307
+ assert p - p_4d3d == Point(1, 1, 0, 0)
308
+
309
+
310
+ def test_Point2D():
311
+
312
+ # Test Distance
313
+ p1 = Point2D(1, 5)
314
+ p2 = Point2D(4, 2.5)
315
+ p3 = (6, 3)
316
+ assert p1.distance(p2) == sqrt(61)/2
317
+ assert p2.distance(p3) == sqrt(17)/2
318
+
319
+ # Test coordinates
320
+ assert p1.x == 1
321
+ assert p1.y == 5
322
+ assert p2.x == 4
323
+ assert p2.y == S(5)/2
324
+ assert p1.coordinates == (1, 5)
325
+ assert p2.coordinates == (4, S(5)/2)
326
+
327
+ # test bounds
328
+ assert p1.bounds == (1, 5, 1, 5)
329
+
330
+ def test_issue_9214():
331
+ p1 = Point3D(4, -2, 6)
332
+ p2 = Point3D(1, 2, 3)
333
+ p3 = Point3D(7, 2, 3)
334
+
335
+ assert Point3D.are_collinear(p1, p2, p3) is False
336
+
337
+
338
+ def test_issue_11617():
339
+ p1 = Point3D(1,0,2)
340
+ p2 = Point2D(2,0)
341
+
342
+ with warns(UserWarning, test_stacklevel=False):
343
+ assert p1.distance(p2) == sqrt(5)
344
+
345
+
346
+ def test_transform():
347
+ p = Point(1, 1)
348
+ assert p.transform(rotate(pi/2)) == Point(-1, 1)
349
+ assert p.transform(scale(3, 2)) == Point(3, 2)
350
+ assert p.transform(translate(1, 2)) == Point(2, 3)
351
+ assert Point(1, 1).scale(2, 3, (4, 5)) == \
352
+ Point(-2, -7)
353
+ assert Point(1, 1).translate(4, 5) == \
354
+ Point(5, 6)
355
+
356
+
357
+ def test_concyclic_doctest_bug():
358
+ p1, p2 = Point(-1, 0), Point(1, 0)
359
+ p3, p4 = Point(0, 1), Point(-1, 2)
360
+ assert Point.is_concyclic(p1, p2, p3)
361
+ assert not Point.is_concyclic(p1, p2, p3, p4)
362
+
363
+
364
+ def test_arguments():
365
+ """Functions accepting `Point` objects in `geometry`
366
+ should also accept tuples and lists and
367
+ automatically convert them to points."""
368
+
369
+ singles2d = ((1,2), [1,2], Point(1,2))
370
+ singles2d2 = ((1,3), [1,3], Point(1,3))
371
+ doubles2d = cartes(singles2d, singles2d2)
372
+ p2d = Point2D(1,2)
373
+ singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
374
+ doubles3d = subsets(singles3d, 2)
375
+ p3d = Point3D(1,2,3)
376
+ singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
377
+ doubles4d = subsets(singles4d, 2)
378
+ p4d = Point(1,2,3,4)
379
+
380
+ # test 2D
381
+ test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
382
+ test_double = ['is_concyclic', 'is_collinear']
383
+ for p in singles2d:
384
+ Point2D(p)
385
+ for func in test_single:
386
+ for p in singles2d:
387
+ getattr(p2d, func)(p)
388
+ for func in test_double:
389
+ for p in doubles2d:
390
+ getattr(p2d, func)(*p)
391
+
392
+ # test 3D
393
+ test_double = ['is_collinear']
394
+ for p in singles3d:
395
+ Point3D(p)
396
+ for func in test_single:
397
+ for p in singles3d:
398
+ getattr(p3d, func)(p)
399
+ for func in test_double:
400
+ for p in doubles3d:
401
+ getattr(p3d, func)(*p)
402
+
403
+ # test 4D
404
+ test_double = ['is_collinear']
405
+ for p in singles4d:
406
+ Point(p)
407
+ for func in test_single:
408
+ for p in singles4d:
409
+ getattr(p4d, func)(p)
410
+ for func in test_double:
411
+ for p in doubles4d:
412
+ getattr(p4d, func)(*p)
413
+
414
+ # test evaluate=False for ops
415
+ x = Symbol('x')
416
+ a = Point(0, 1)
417
+ assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
418
+ a = Point(0, 1)
419
+ assert a/10.0 == Point(0, 0.1, evaluate=False)
420
+ a = Point(0, 1)
421
+ assert a*10.0 == Point(0.0, 10.0, evaluate=False)
422
+
423
+ # test evaluate=False when changing dimensions
424
+ u = Point(.1, .2, evaluate=False)
425
+ u4 = Point(u, dim=4, on_morph='ignore')
426
+ assert u4.args == (.1, .2, 0, 0)
427
+ assert all(i.is_Float for i in u4.args[:2])
428
+ # and even when *not* changing dimensions
429
+ assert all(i.is_Float for i in Point(u).args)
430
+
431
+ # never raise error if creating an origin
432
+ assert Point(dim=3, on_morph='error')
433
+
434
+ # raise error with unmatched dimension
435
+ raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
436
+ # test unknown on_morph
437
+ raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
438
+ # test invalid expressions
439
+ raises(TypeError, lambda: Point(Basic(), Basic()))
440
+
441
+ def test_unit():
442
+ assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)
443
+
444
+
445
+ def test_dot():
446
+ raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
447
+
448
+
449
+ def test__normalize_dimension():
450
+ assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
451
+ Point(1, 2), Point(3, 4)]
452
+ assert Point._normalize_dimension(
453
+ Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
454
+ Point(1, 2, 0), Point(3, 4, 0)]
455
+
456
+
457
+ def test_issue_22684():
458
+ # Used to give an error
459
+ with evaluate(False):
460
+ Point(1, 2)
461
+
462
+
463
+ def test_direction_cosine():
464
+ p1 = Point3D(0, 0, 0)
465
+ p2 = Point3D(1, 1, 1)
466
+
467
+ assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
468
+ assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
469
+ assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]
470
+
471
+ assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
472
+ assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
473
+ assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]
474
+
475
+ assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
476
+ assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
477
+ assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]
478
+
479
+ assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
480
+ assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
481
+ assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (Float, Rational, oo, pi)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.complexes import Abs
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.functions.elementary.trigonometric import (acos, cos, sin)
7
+ from sympy.functions.elementary.trigonometric import tan
8
+ from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
9
+ Polygon, Ray, RegularPolygon, Segment, Triangle,
10
+ are_similar, convex_hull, intersection, Line, Ray2D)
11
+ from sympy.testing.pytest import raises, slow, warns
12
+ from sympy.core.random import verify_numerically
13
+ from sympy.geometry.polygon import rad, deg
14
+ from sympy.integrals.integrals import integrate
15
+
16
+
17
+ def feq(a, b):
18
+ """Test if two floating point values are 'equal'."""
19
+ t_float = Float("1.0E-10")
20
+ return -t_float < a - b < t_float
21
+
22
+ @slow
23
+ def test_polygon():
24
+ x = Symbol('x', real=True)
25
+ y = Symbol('y', real=True)
26
+ q = Symbol('q', real=True)
27
+ u = Symbol('u', real=True)
28
+ v = Symbol('v', real=True)
29
+ w = Symbol('w', real=True)
30
+ x1 = Symbol('x1', real=True)
31
+ half = S.Half
32
+ a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
33
+ t = Triangle(a, b, c)
34
+ assert Polygon(Point(0, 0)) == Point(0, 0)
35
+ assert Polygon(a, Point(1, 0), b, c) == t
36
+ assert Polygon(Point(1, 0), b, c, a) == t
37
+ assert Polygon(b, c, a, Point(1, 0)) == t
38
+ # 2 "remove folded" tests
39
+ assert Polygon(a, Point(3, 0), b, c) == t
40
+ assert Polygon(a, b, Point(3, -1), b, c) == t
41
+ # remove multiple collinear points
42
+ assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
43
+ Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
44
+ Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
45
+ Point(15, -3), Point(15, 10), Point(15, 15)) == \
46
+ Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
47
+
48
+ p1 = Polygon(
49
+ Point(0, 0), Point(3, -1),
50
+ Point(6, 0), Point(4, 5),
51
+ Point(2, 3), Point(0, 3))
52
+ p2 = Polygon(
53
+ Point(6, 0), Point(3, -1),
54
+ Point(0, 0), Point(0, 3),
55
+ Point(2, 3), Point(4, 5))
56
+ p3 = Polygon(
57
+ Point(0, 0), Point(3, 0),
58
+ Point(5, 2), Point(4, 4))
59
+ p4 = Polygon(
60
+ Point(0, 0), Point(4, 4),
61
+ Point(5, 2), Point(3, 0))
62
+ p5 = Polygon(
63
+ Point(0, 0), Point(4, 4),
64
+ Point(0, 4))
65
+ p6 = Polygon(
66
+ Point(-11, 1), Point(-9, 6.6),
67
+ Point(-4, -3), Point(-8.4, -8.7))
68
+ p7 = Polygon(
69
+ Point(x, y), Point(q, u),
70
+ Point(v, w))
71
+ p8 = Polygon(
72
+ Point(x, y), Point(v, w),
73
+ Point(q, u))
74
+ p9 = Polygon(
75
+ Point(0, 0), Point(4, 4),
76
+ Point(3, 0), Point(5, 2))
77
+ p10 = Polygon(
78
+ Point(0, 2), Point(2, 2),
79
+ Point(0, 0), Point(2, 0))
80
+ p11 = Polygon(Point(0, 0), 1, n=3)
81
+ p12 = Polygon(Point(0, 0), 1, 0, n=3)
82
+
83
+ r = Ray(Point(-9, 6.6), Point(-9, 5.5))
84
+ #
85
+ # General polygon
86
+ #
87
+ assert p1 == p2
88
+ assert len(p1.args) == 6
89
+ assert len(p1.sides) == 6
90
+ assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
91
+ assert p1.area == 22
92
+ assert not p1.is_convex()
93
+ assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
94
+ ).is_convex() is False
95
+ # ensure convex for both CW and CCW point specification
96
+ assert p3.is_convex()
97
+ assert p4.is_convex()
98
+ dict5 = p5.angles
99
+ assert dict5[Point(0, 0)] == pi / 4
100
+ assert dict5[Point(0, 4)] == pi / 2
101
+ assert p5.encloses_point(Point(x, y)) is None
102
+ assert p5.encloses_point(Point(1, 3))
103
+ assert p5.encloses_point(Point(0, 0)) is False
104
+ assert p5.encloses_point(Point(4, 0)) is False
105
+ assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
106
+ assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
107
+ assert p5.plot_interval('x') == [x, 0, 1]
108
+ assert p5.distance(
109
+ Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
110
+ assert p5.distance(
111
+ Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
112
+ with warns(UserWarning, \
113
+ match="Polygons may intersect producing erroneous output"):
114
+ Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
115
+ Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
116
+ assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
117
+ assert hash(p1) == hash(p2)
118
+ assert hash(p7) == hash(p8)
119
+ assert hash(p3) != hash(p9)
120
+ assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
121
+ assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
122
+ assert p5 != Point(0, 4)
123
+ assert Point(0, 1) in p5
124
+ assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
125
+ Point(0, 0)
126
+ raises(ValueError, lambda: Polygon(
127
+ Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
128
+ assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
129
+ assert p10.area == 0
130
+ assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
131
+ assert p11 == p12
132
+ assert p11.vertices[0] == Point(1, 0)
133
+ assert p11.args[0] == Point(0, 0)
134
+ p11.spin(pi/2)
135
+ assert p11.vertices[0] == Point(0, 1)
136
+ #
137
+ # Regular polygon
138
+ #
139
+ p1 = RegularPolygon(Point(0, 0), 10, 5)
140
+ p2 = RegularPolygon(Point(0, 0), 5, 5)
141
+ raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
142
+ 1), Point(1, 1)))
143
+ raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
144
+ raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
145
+
146
+ assert p1 != p2
147
+ assert p1.interior_angle == pi*Rational(3, 5)
148
+ assert p1.exterior_angle == pi*Rational(2, 5)
149
+ assert p2.apothem == 5*cos(pi/5)
150
+ assert p2.circumcenter == p1.circumcenter == Point(0, 0)
151
+ assert p1.circumradius == p1.radius == 10
152
+ assert p2.circumcircle == Circle(Point(0, 0), 5)
153
+ assert p2.incircle == Circle(Point(0, 0), p2.apothem)
154
+ assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
155
+ p2.spin(pi / 10)
156
+ dict1 = p2.angles
157
+ assert dict1[Point(0, 5)] == 3 * pi / 5
158
+ assert p1.is_convex()
159
+ assert p1.rotation == 0
160
+ assert p1.encloses_point(Point(0, 0))
161
+ assert p1.encloses_point(Point(11, 0)) is False
162
+ assert p2.encloses_point(Point(0, 4.9))
163
+ p1.spin(pi/3)
164
+ assert p1.rotation == pi/3
165
+ assert p1.vertices[0] == Point(5, 5*sqrt(3))
166
+ for var in p1.args:
167
+ if isinstance(var, Point):
168
+ assert var == Point(0, 0)
169
+ else:
170
+ assert var in (5, 10, pi / 3)
171
+ assert p1 != Point(0, 0)
172
+ assert p1 != p5
173
+
174
+ # while spin works in place (notice that rotation is 2pi/3 below)
175
+ # rotate returns a new object
176
+ p1_old = p1
177
+ assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
178
+ assert p1 == p1_old
179
+
180
+ assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
181
+ assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
182
+ assert p1.scale(2, 2) == \
183
+ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
184
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
185
+ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
186
+
187
+ assert repr(p1) == str(p1)
188
+
189
+ #
190
+ # Angles
191
+ #
192
+ angles = p4.angles
193
+ assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
194
+ assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
195
+ assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
196
+ assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
197
+
198
+ angles = p3.angles
199
+ assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
200
+ assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
201
+ assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
202
+ assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
203
+
204
+ #
205
+ # Triangle
206
+ #
207
+ p1 = Point(0, 0)
208
+ p2 = Point(5, 0)
209
+ p3 = Point(0, 5)
210
+ t1 = Triangle(p1, p2, p3)
211
+ t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
212
+ t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
213
+ s1 = t1.sides
214
+ assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
215
+ raises(GeometryError, lambda: Triangle(Point(0, 0)))
216
+
217
+ # Basic stuff
218
+ assert Triangle(p1, p1, p1) == p1
219
+ assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
220
+ assert t1.area == Rational(25, 2)
221
+ assert t1.is_right()
222
+ assert t2.is_right() is False
223
+ assert t3.is_right()
224
+ assert p1 in t1
225
+ assert t1.sides[0] in t1
226
+ assert Segment((0, 0), (1, 0)) in t1
227
+ assert Point(5, 5) not in t2
228
+ assert t1.is_convex()
229
+ assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
230
+
231
+ assert t1.is_equilateral() is False
232
+ assert t2.is_equilateral()
233
+ assert t3.is_equilateral() is False
234
+ assert are_similar(t1, t2) is False
235
+ assert are_similar(t1, t3)
236
+ assert are_similar(t2, t3) is False
237
+ assert t1.is_similar(Point(0, 0)) is False
238
+ assert t1.is_similar(t2) is False
239
+
240
+ # Bisectors
241
+ bisectors = t1.bisectors()
242
+ assert bisectors[p1] == Segment(
243
+ p1, Point(Rational(5, 2), Rational(5, 2)))
244
+ assert t2.bisectors()[p2] == Segment(
245
+ Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
246
+ p4 = Point(0, x1)
247
+ assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
248
+ ic = (250 - 125*sqrt(2))/50
249
+ assert t1.incenter == Point(ic, ic)
250
+
251
+ # Inradius
252
+ assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
253
+ assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
254
+ assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
255
+
256
+ # Exradius
257
+ assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
258
+
259
+ # Excenters
260
+ assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
261
+
262
+ # Circumcircle
263
+ assert t1.circumcircle.center == Point(2.5, 2.5)
264
+
265
+ # Medians + Centroid
266
+ m = t1.medians
267
+ assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
268
+ assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
269
+ assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
270
+ assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
271
+ assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
272
+
273
+ # Nine-point circle
274
+ assert t1.nine_point_circle == Circle(Point(2.5, 0),
275
+ Point(0, 2.5), Point(2.5, 2.5))
276
+ assert t1.nine_point_circle == Circle(Point(0, 0),
277
+ Point(0, 2.5), Point(2.5, 2.5))
278
+
279
+ # Perpendicular
280
+ altitudes = t1.altitudes
281
+ assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
282
+ assert altitudes[p2].equals(s1[0])
283
+ assert altitudes[p3] == s1[2]
284
+ assert t1.orthocenter == p1
285
+ t = S('''Triangle(
286
+ Point(100080156402737/5000000000000, 79782624633431/500000000000),
287
+ Point(39223884078253/2000000000000, 156345163124289/1000000000000),
288
+ Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
289
+ assert t.orthocenter == S('''Point(-780660869050599840216997'''
290
+ '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
291
+ '''20151573611150265741278060334545897615974257/16073686192120448448157'''
292
+ '''8148466200000000000)''')
293
+
294
+ # Ensure
295
+ assert len(intersection(*bisectors.values())) == 1
296
+ assert len(intersection(*altitudes.values())) == 1
297
+ assert len(intersection(*m.values())) == 1
298
+
299
+ # Distance
300
+ p1 = Polygon(
301
+ Point(0, 0), Point(1, 0),
302
+ Point(1, 1), Point(0, 1))
303
+ p2 = Polygon(
304
+ Point(0, Rational(5)/4), Point(1, Rational(5)/4),
305
+ Point(1, Rational(9)/4), Point(0, Rational(9)/4))
306
+ p3 = Polygon(
307
+ Point(1, 2), Point(2, 2),
308
+ Point(2, 1))
309
+ p4 = Polygon(
310
+ Point(1, 1), Point(Rational(6)/5, 1),
311
+ Point(1, Rational(6)/5))
312
+ pt1 = Point(half, half)
313
+ pt2 = Point(1, 1)
314
+
315
+ '''Polygon to Point'''
316
+ assert p1.distance(pt1) == half
317
+ assert p1.distance(pt2) == 0
318
+ assert p2.distance(pt1) == Rational(3)/4
319
+ assert p3.distance(pt2) == sqrt(2)/2
320
+
321
+ '''Polygon to Polygon'''
322
+ # p1.distance(p2) emits a warning
323
+ with warns(UserWarning, \
324
+ match="Polygons may intersect producing erroneous output"):
325
+ assert p1.distance(p2) == half/2
326
+
327
+ assert p1.distance(p3) == sqrt(2)/2
328
+
329
+ # p3.distance(p4) emits a warning
330
+ with warns(UserWarning, \
331
+ match="Polygons may intersect producing erroneous output"):
332
+ assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
333
+
334
+
335
+ def test_convex_hull():
336
+ p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
337
+ Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
338
+ Point(4, -1), Point(6, 2)]
339
+ ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
340
+ #test handling of duplicate points
341
+ p.append(p[3])
342
+
343
+ #more than 3 collinear points
344
+ another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
345
+ Point(-45, -24)]
346
+ ch2 = Segment(another_p[0], another_p[1])
347
+
348
+ assert convex_hull(*another_p) == ch2
349
+ assert convex_hull(*p) == ch
350
+ assert convex_hull(p[0]) == p[0]
351
+ assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
352
+
353
+ # no unique points
354
+ assert convex_hull(*[p[-1]]*3) == p[-1]
355
+
356
+ # collection of items
357
+ assert convex_hull(*[Point(0, 0), \
358
+ Segment(Point(1, 0), Point(1, 1)), \
359
+ RegularPolygon(Point(2, 0), 2, 4)]) == \
360
+ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
361
+
362
+
363
+ def test_encloses():
364
+ # square with a dimpled left side
365
+ s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
366
+ Point(S.Half, S.Half))
367
+ # the following is True if the polygon isn't treated as closing on itself
368
+ assert s.encloses(Point(0, S.Half)) is False
369
+ assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
370
+ assert s.encloses(Point(Rational(3, 4), S.Half)) is True
371
+
372
+
373
+ def test_triangle_kwargs():
374
+ assert Triangle(sss=(3, 4, 5)) == \
375
+ Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
376
+ assert Triangle(asa=(30, 2, 30)) == \
377
+ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
378
+ assert Triangle(sas=(1, 45, 2)) == \
379
+ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
380
+ assert Triangle(sss=(1, 2, 5)) is None
381
+ assert deg(rad(180)) == 180
382
+
383
+
384
+ def test_transform():
385
+ pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
386
+ pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
387
+ assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
388
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
389
+ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
390
+ # Checks for symmetric scaling
391
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
392
+ RegularPolygon(Point2D(0, 0), 2, 4, 0)
393
+
394
+ def test_reflect():
395
+ x = Symbol('x', real=True)
396
+ y = Symbol('y', real=True)
397
+ b = Symbol('b')
398
+ m = Symbol('m')
399
+ l = Line((0, b), slope=m)
400
+ p = Point(x, y)
401
+ r = p.reflect(l)
402
+ dp = l.perpendicular_segment(p).length
403
+ dr = l.perpendicular_segment(r).length
404
+
405
+ assert verify_numerically(dp, dr)
406
+
407
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
408
+ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
409
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
410
+ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
411
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
412
+ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
413
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
414
+ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
415
+
416
+ def test_bisectors():
417
+ p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
418
+ p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
419
+ q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
420
+ poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
421
+ t = Triangle(p1, p2, p3)
422
+ assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
423
+ assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
424
+ Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
425
+ assert q.bisectors()[Point2D(-1, 5)] == \
426
+ Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
427
+ 2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
428
+ 2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
429
+ assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
430
+ Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
431
+
432
+ def test_incenter():
433
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
434
+ == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
435
+
436
+ def test_inradius():
437
+ assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
438
+
439
+ def test_incircle():
440
+ assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
441
+ == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
442
+
443
+ def test_exradii():
444
+ t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
445
+ assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
446
+
447
+ def test_medians():
448
+ t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
449
+ assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
450
+
451
+ def test_medial():
452
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
453
+ == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
454
+
455
+ def test_nine_point_circle():
456
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
457
+ == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
458
+
459
+ def test_eulerline():
460
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
461
+ == Line(Point2D(0, 0), Point2D(S.Half, S.Half))
462
+ assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
463
+ == Point2D(5, 5*sqrt(3)/3)
464
+ assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
465
+ == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
466
+
467
+ def test_intersection():
468
+ poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
469
+ poly2 = Polygon(Point(0, 1), Point(-5, 0),
470
+ Point(0, -4), Point(0, Rational(1, 5)),
471
+ Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
472
+
473
+ assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
474
+ Segment(Point(0, Rational(1, 5)), Point(0, 0)),
475
+ Segment(Point(1, 0), Point(0, 1))]
476
+ assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
477
+ Segment(Point(0, 0), Point(0, Rational(1, 5))),
478
+ Segment(Point(1, 0), Point(0, 1))]
479
+ assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
480
+ assert poly1.intersection(Point(-12, -43)) == []
481
+ assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
482
+ Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
483
+ assert poly2.intersection(Line((-12, 12), (12, 12))) == []
484
+ assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
485
+ Point(0, 1))]
486
+ assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
487
+ Point(0, 0)]
488
+ assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
489
+ Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
490
+ assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
491
+ Segment(Point(0, -4), Point(0, Rational(1, 5))),
492
+ Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
493
+ Segment(Point(0, 1), Point(-5, 0)),
494
+ Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
495
+ Segment(Point(1, 0), Point(0, 1))]
496
+ assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
497
+ == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
498
+ assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
499
+
500
+
501
+ def test_parameter_value():
502
+ t = Symbol('t')
503
+ sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
504
+ assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
505
+ q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
506
+ assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
507
+
508
+ raises(ValueError, lambda: sq.parameter_value((5, 6), t))
509
+ raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
510
+
511
+
512
+ def test_issue_12966():
513
+ poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
514
+ Point(10, 5), Point(10, 0))
515
+ t = Symbol('t')
516
+ pt = poly.arbitrary_point(t)
517
+ DELTA = 5/poly.perimeter
518
+ assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
519
+ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
520
+ Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
521
+
522
+
523
+ def test_second_moment_of_area():
524
+ x, y = symbols('x, y')
525
+ # triangle
526
+ p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
527
+ p = (0, 0)
528
+ # equation of hypotenuse
529
+ eq_y = (1-x/4)*2
530
+ I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
531
+ I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
532
+ I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
533
+
534
+ triangle = Polygon(p1, p2, p3)
535
+
536
+ assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
537
+ assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
538
+ assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
539
+
540
+ # rectangle
541
+ p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
542
+ I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
543
+ I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
544
+ I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
545
+
546
+ rectangle = Polygon(p1, p2, p3, p4)
547
+
548
+ assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
549
+ assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
550
+ assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
551
+
552
+
553
+ r = RegularPolygon(Point(0, 0), 5, 3)
554
+ assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
555
+
556
+
557
+ def test_first_moment():
558
+ a, b = symbols('a, b', positive=True)
559
+ # rectangle
560
+ p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
561
+ assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
562
+ assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
563
+
564
+ p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
565
+ assert p1.first_moment_of_area() == (4500, 6000)
566
+
567
+ # triangle
568
+ p2 = Polygon((0, 0), (a, 0), (a/2, b))
569
+ assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
570
+ assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
571
+
572
+ p2 = Polygon((0, 0), (12, 0), (12, 30))
573
+ assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
574
+
575
+
576
+ def test_section_modulus_and_polar_second_moment_of_area():
577
+ a, b = symbols('a, b', positive=True)
578
+ x, y = symbols('x, y')
579
+ rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
580
+ assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
581
+ assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
582
+
583
+ convex = RegularPolygon((0, 0), 1, 6)
584
+ assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
585
+ assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
586
+
587
+ concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
588
+ assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
589
+ assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
590
+
591
+
592
+ def test_cut_section():
593
+ # concave polygon
594
+ p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
595
+ l = Line((0, 0), (Rational(9, 2), 3))
596
+ p1 = p.cut_section(l)[0]
597
+ p2 = p.cut_section(l)[1]
598
+ assert p1 == Polygon(
599
+ Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
600
+ Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
601
+ Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
602
+ assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
603
+ Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
604
+ Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
605
+
606
+ # convex polygon
607
+ p = RegularPolygon(Point2D(0, 0), 6, 6)
608
+ s = p.cut_section(Line((0, 0), slope=1))
609
+ assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
610
+ Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
611
+ assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
612
+ Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
613
+
614
+ # case where line does not intersects but coincides with the edge of polygon
615
+ a, b = 20, 10
616
+ t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
617
+ p = Polygon(t1, t2, t3, t4)
618
+ p1, p2 = p.cut_section(Line((0, b), slope=0))
619
+ assert p1 == None
620
+ assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
621
+
622
+ p3, p4 = p.cut_section(Line((0, 0), slope=0))
623
+ assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
624
+ assert p4 == None
625
+
626
+ # case where the line does not intersect with a polygon at all
627
+ raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
628
+
629
+ def test_type_of_triangle():
630
+ # Isoceles triangle
631
+ p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
632
+ assert p1.is_isosceles() == True
633
+ assert p1.is_scalene() == False
634
+ assert p1.is_equilateral() == False
635
+
636
+ # Scalene triangle
637
+ p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
638
+ assert p2.is_isosceles() == False
639
+ assert p2.is_scalene() == True
640
+ assert p2.is_equilateral() == False
641
+
642
+ # Equilateral triagle
643
+ p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
644
+ assert p3.is_isosceles() == True
645
+ assert p3.is_scalene() == False
646
+ assert p3.is_equilateral() == True
647
+
648
+ def test_do_poly_distance():
649
+ # Non-intersecting polygons
650
+ square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
651
+ triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
652
+ assert square1._do_poly_distance(triangle1) == sqrt(2)/2
653
+
654
+ # Polygons which sides intersect
655
+ square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
656
+ with warns(UserWarning, \
657
+ match="Polygons may intersect producing erroneous output", test_stacklevel=False):
658
+ assert square1._do_poly_distance(square2) == 0
659
+
660
+ # Polygons which bodies intersect
661
+ triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
662
+ with warns(UserWarning, \
663
+ match="Polygons may intersect producing erroneous output", test_stacklevel=False):
664
+ assert triangle2._do_poly_distance(square1) == 0
env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative, Function)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.functions import exp, cos, sin, tan, cosh, sinh
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\
7
+ intersection, centroid, Point3D, Line3D
8
+ from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar
9
+ from sympy.solvers.solvers import solve
10
+ from sympy.testing.pytest import raises
11
+
12
+
13
+ def test_idiff():
14
+ x = Symbol('x', real=True)
15
+ y = Symbol('y', real=True)
16
+ t = Symbol('t', real=True)
17
+ f = Function('f')
18
+ g = Function('g')
19
+ # the use of idiff in ellipse also provides coverage
20
+ circ = x**2 + y**2 - 4
21
+ ans = -3*x*(x**2/y**2 + 1)/y**3
22
+ assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3)
23
+ assert ans == idiff(circ, [y], x, 3)
24
+ assert idiff(circ, y, x, 3) == ans
25
+ explicit = 12*x/sqrt(-x**2 + 4)**5
26
+ assert ans.subs(y, solve(circ, y)[0]).equals(explicit)
27
+ assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)]
28
+ assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1
29
+ assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1)
30
+ assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x)
31
+ assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x)
32
+ assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x)
33
+ # this should be fast
34
+ fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10))
35
+ assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \
36
+ 2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3
37
+
38
+
39
+ def test_intersection():
40
+ assert intersection(Point(0, 0)) == []
41
+ raises(TypeError, lambda: intersection(Point(0, 0), 3))
42
+ assert intersection(
43
+ Segment((0, 0), (2, 0)),
44
+ Segment((-1, 0), (1, 0)),
45
+ Line((0, 0), (0, 1)), pairwise=True) == [
46
+ Point(0, 0), Segment((0, 0), (1, 0))]
47
+ assert intersection(
48
+ Line((0, 0), (0, 1)),
49
+ Segment((0, 0), (2, 0)),
50
+ Segment((-1, 0), (1, 0)), pairwise=True) == [
51
+ Point(0, 0), Segment((0, 0), (1, 0))]
52
+ assert intersection(
53
+ Line((0, 0), (0, 1)),
54
+ Segment((0, 0), (2, 0)),
55
+ Segment((-1, 0), (1, 0)),
56
+ Line((0, 0), slope=1), pairwise=True) == [
57
+ Point(0, 0), Segment((0, 0), (1, 0))]
58
+
59
+
60
+ def test_convex_hull():
61
+ raises(TypeError, lambda: convex_hull(Point(0, 0), 3))
62
+ points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
63
+ assert convex_hull(*points, **{"polygon": False}) == (
64
+ [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)],
65
+ [Point2D(-5, -2), Point2D(15, -4)])
66
+
67
+
68
+ def test_centroid():
69
+ p = Polygon((0, 0), (10, 0), (10, 10))
70
+ q = p.translate(0, 20)
71
+ assert centroid(p, q) == Point(20, 40)/3
72
+ p = Segment((0, 0), (2, 0))
73
+ q = Segment((0, 0), (2, 2))
74
+ assert centroid(p, q) == Point(1, -sqrt(2) + 2)
75
+ assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2
76
+ assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3
77
+
78
+
79
+ def test_farthest_points_closest_points():
80
+ from sympy.core.random import randint
81
+ from sympy.utilities.iterables import subsets
82
+
83
+ for how in (min, max):
84
+ if how == min:
85
+ func = closest_points
86
+ else:
87
+ func = farthest_points
88
+
89
+ raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0)))
90
+
91
+ # 3rd pt dx is close and pt is closer to 1st pt
92
+ p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)]
93
+ # 3rd pt dx is close and pt is closer to 2nd pt
94
+ p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)]
95
+ # 3rd pt dx is close and but pt is not closer
96
+ p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)]
97
+ # 3rd pt dx is not closer and it's closer to 2nd pt
98
+ p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)]
99
+ # 3rd pt dx is not closer and it's closer to 1st pt
100
+ p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)]
101
+ # duplicate point doesn't affect outcome
102
+ dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)]
103
+ # symbolic
104
+ x = Symbol('x', positive=True)
105
+ s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))]
106
+
107
+ for points in (p1, p2, p3, p4, p5, dup, s):
108
+ d = how(i.distance(j) for i, j in subsets(set(points), 2))
109
+ ans = a, b = list(func(*points))[0]
110
+ assert a.distance(b) == d
111
+ assert ans == _ordered_points(ans)
112
+
113
+ # if the following ever fails, the above tests were not sufficient
114
+ # and the logical error in the routine should be fixed
115
+ points = set()
116
+ while len(points) != 7:
117
+ points.add(Point2D(randint(1, 100), randint(1, 100)))
118
+ points = list(points)
119
+ d = how(i.distance(j) for i, j in subsets(points, 2))
120
+ ans = a, b = list(func(*points))[0]
121
+ assert a.distance(b) == d
122
+ assert ans == _ordered_points(ans)
123
+
124
+ # equidistant points
125
+ a, b, c = (
126
+ Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2))
127
+ ans = {_ordered_points((i, j))
128
+ for i, j in subsets((a, b, c), 2)}
129
+ assert closest_points(b, c, a) == ans
130
+ assert farthest_points(b, c, a) == ans
131
+
132
+ # unique to farthest
133
+ points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
134
+ assert farthest_points(*points) == {
135
+ (Point2D(-5, 2), Point2D(15, 4))}
136
+ points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
137
+ assert farthest_points(*points) == {
138
+ (Point2D(-5, -2), Point2D(15, -4))}
139
+ assert farthest_points((1, 1), (0, 0)) == {
140
+ (Point2D(0, 0), Point2D(1, 1))}
141
+ raises(ValueError, lambda: farthest_points((1, 1)))
142
+
143
+
144
+ def test_are_coplanar():
145
+ a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
146
+ b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
147
+ c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
148
+ d = Line(Point2D(0, 3), Point2D(1, 5))
149
+
150
+ assert are_coplanar(a, b, c) == False
151
+ assert are_coplanar(a, d) == False
env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py ADDED
@@ -0,0 +1,718 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utility functions for geometrical entities.
2
+
3
+ Contains
4
+ ========
5
+ intersection
6
+ convex_hull
7
+ closest_points
8
+ farthest_points
9
+ are_coplanar
10
+ are_similar
11
+
12
+ """
13
+
14
+ from collections import deque
15
+ from math import sqrt as _sqrt
16
+
17
+
18
+ from .entity import GeometryEntity
19
+ from .exceptions import GeometryError
20
+ from .point import Point, Point2D, Point3D
21
+ from sympy.core.containers import OrderedSet
22
+ from sympy.core.exprtools import factor_terms
23
+ from sympy.core.function import Function, expand_mul
24
+ from sympy.core.sorting import ordered
25
+ from sympy.core.symbol import Symbol
26
+ from sympy.core.singleton import S
27
+ from sympy.polys.polytools import cancel
28
+ from sympy.functions.elementary.miscellaneous import sqrt
29
+ from sympy.utilities.iterables import is_sequence
30
+
31
+
32
+ def find(x, equation):
33
+ """
34
+ Checks whether a Symbol matching ``x`` is present in ``equation``
35
+ or not. If present, the matching symbol is returned, else a
36
+ ValueError is raised. If ``x`` is a string the matching symbol
37
+ will have the same name; if ``x`` is a Symbol then it will be
38
+ returned if found.
39
+
40
+ Examples
41
+ ========
42
+
43
+ >>> from sympy.geometry.util import find
44
+ >>> from sympy import Dummy
45
+ >>> from sympy.abc import x
46
+ >>> find('x', x)
47
+ x
48
+ >>> find('x', Dummy('x'))
49
+ _x
50
+
51
+ The dummy symbol is returned since it has a matching name:
52
+
53
+ >>> _.name == 'x'
54
+ True
55
+ >>> find(x, Dummy('x'))
56
+ Traceback (most recent call last):
57
+ ...
58
+ ValueError: could not find x
59
+ """
60
+
61
+ free = equation.free_symbols
62
+ xs = [i for i in free if (i.name if isinstance(x, str) else i) == x]
63
+ if not xs:
64
+ raise ValueError('could not find %s' % x)
65
+ if len(xs) != 1:
66
+ raise ValueError('ambiguous %s' % x)
67
+ return xs[0]
68
+
69
+
70
+ def _ordered_points(p):
71
+ """Return the tuple of points sorted numerically according to args"""
72
+ return tuple(sorted(p, key=lambda x: x.args))
73
+
74
+
75
+ def are_coplanar(*e):
76
+ """ Returns True if the given entities are coplanar otherwise False
77
+
78
+ Parameters
79
+ ==========
80
+
81
+ e: entities to be checked for being coplanar
82
+
83
+ Returns
84
+ =======
85
+
86
+ Boolean
87
+
88
+ Examples
89
+ ========
90
+
91
+ >>> from sympy import Point3D, Line3D
92
+ >>> from sympy.geometry.util import are_coplanar
93
+ >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
94
+ >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
95
+ >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
96
+ >>> are_coplanar(a, b, c)
97
+ False
98
+
99
+ """
100
+ from .line import LinearEntity3D
101
+ from .plane import Plane
102
+ # XXX update tests for coverage
103
+
104
+ e = set(e)
105
+ # first work with a Plane if present
106
+ for i in list(e):
107
+ if isinstance(i, Plane):
108
+ e.remove(i)
109
+ return all(p.is_coplanar(i) for p in e)
110
+
111
+ if all(isinstance(i, Point3D) for i in e):
112
+ if len(e) < 3:
113
+ return False
114
+
115
+ # remove pts that are collinear with 2 pts
116
+ a, b = e.pop(), e.pop()
117
+ for i in list(e):
118
+ if Point3D.are_collinear(a, b, i):
119
+ e.remove(i)
120
+
121
+ if not e:
122
+ return False
123
+ else:
124
+ # define a plane
125
+ p = Plane(a, b, e.pop())
126
+ for i in e:
127
+ if i not in p:
128
+ return False
129
+ return True
130
+ else:
131
+ pt3d = []
132
+ for i in e:
133
+ if isinstance(i, Point3D):
134
+ pt3d.append(i)
135
+ elif isinstance(i, LinearEntity3D):
136
+ pt3d.extend(i.args)
137
+ elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
138
+ # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
139
+ for p in i.args:
140
+ if isinstance(p, Point):
141
+ pt3d.append(Point3D(*(p.args + (0,))))
142
+ return are_coplanar(*pt3d)
143
+
144
+
145
+ def are_similar(e1, e2):
146
+ """Are two geometrical entities similar.
147
+
148
+ Can one geometrical entity be uniformly scaled to the other?
149
+
150
+ Parameters
151
+ ==========
152
+
153
+ e1 : GeometryEntity
154
+ e2 : GeometryEntity
155
+
156
+ Returns
157
+ =======
158
+
159
+ are_similar : boolean
160
+
161
+ Raises
162
+ ======
163
+
164
+ GeometryError
165
+ When `e1` and `e2` cannot be compared.
166
+
167
+ Notes
168
+ =====
169
+
170
+ If the two objects are equal then they are similar.
171
+
172
+ See Also
173
+ ========
174
+
175
+ sympy.geometry.entity.GeometryEntity.is_similar
176
+
177
+ Examples
178
+ ========
179
+
180
+ >>> from sympy import Point, Circle, Triangle, are_similar
181
+ >>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
182
+ >>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
183
+ >>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
184
+ >>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
185
+ >>> are_similar(t1, t2)
186
+ True
187
+ >>> are_similar(t1, t3)
188
+ False
189
+
190
+ """
191
+ if e1 == e2:
192
+ return True
193
+ is_similar1 = getattr(e1, 'is_similar', None)
194
+ if is_similar1:
195
+ return is_similar1(e2)
196
+ is_similar2 = getattr(e2, 'is_similar', None)
197
+ if is_similar2:
198
+ return is_similar2(e1)
199
+ n1 = e1.__class__.__name__
200
+ n2 = e2.__class__.__name__
201
+ raise GeometryError(
202
+ "Cannot test similarity between %s and %s" % (n1, n2))
203
+
204
+
205
+ def centroid(*args):
206
+ """Find the centroid (center of mass) of the collection containing only Points,
207
+ Segments or Polygons. The centroid is the weighted average of the individual centroid
208
+ where the weights are the lengths (of segments) or areas (of polygons).
209
+ Overlapping regions will add to the weight of that region.
210
+
211
+ If there are no objects (or a mixture of objects) then None is returned.
212
+
213
+ See Also
214
+ ========
215
+
216
+ sympy.geometry.point.Point, sympy.geometry.line.Segment,
217
+ sympy.geometry.polygon.Polygon
218
+
219
+ Examples
220
+ ========
221
+
222
+ >>> from sympy import Point, Segment, Polygon
223
+ >>> from sympy.geometry.util import centroid
224
+ >>> p = Polygon((0, 0), (10, 0), (10, 10))
225
+ >>> q = p.translate(0, 20)
226
+ >>> p.centroid, q.centroid
227
+ (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
228
+ >>> centroid(p, q)
229
+ Point2D(20/3, 40/3)
230
+ >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
231
+ >>> centroid(p, q)
232
+ Point2D(1, 2 - sqrt(2))
233
+ >>> centroid(Point(0, 0), Point(2, 0))
234
+ Point2D(1, 0)
235
+
236
+ Stacking 3 polygons on top of each other effectively triples the
237
+ weight of that polygon:
238
+
239
+ >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
240
+ >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
241
+ >>> centroid(p, q)
242
+ Point2D(3/2, 1/2)
243
+ >>> centroid(p, p, p, q) # centroid x-coord shifts left
244
+ Point2D(11/10, 1/2)
245
+
246
+ Stacking the squares vertically above and below p has the same
247
+ effect:
248
+
249
+ >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
250
+ Point2D(11/10, 1/2)
251
+
252
+ """
253
+ from .line import Segment
254
+ from .polygon import Polygon
255
+ if args:
256
+ if all(isinstance(g, Point) for g in args):
257
+ c = Point(0, 0)
258
+ for g in args:
259
+ c += g
260
+ den = len(args)
261
+ elif all(isinstance(g, Segment) for g in args):
262
+ c = Point(0, 0)
263
+ L = 0
264
+ for g in args:
265
+ l = g.length
266
+ c += g.midpoint*l
267
+ L += l
268
+ den = L
269
+ elif all(isinstance(g, Polygon) for g in args):
270
+ c = Point(0, 0)
271
+ A = 0
272
+ for g in args:
273
+ a = g.area
274
+ c += g.centroid*a
275
+ A += a
276
+ den = A
277
+ c /= den
278
+ return c.func(*[i.simplify() for i in c.args])
279
+
280
+
281
+ def closest_points(*args):
282
+ """Return the subset of points from a set of points that were
283
+ the closest to each other in the 2D plane.
284
+
285
+ Parameters
286
+ ==========
287
+
288
+ args
289
+ A collection of Points on 2D plane.
290
+
291
+ Notes
292
+ =====
293
+
294
+ This can only be performed on a set of points whose coordinates can
295
+ be ordered on the number line. If there are no ties then a single
296
+ pair of Points will be in the set.
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import closest_points, Triangle
302
+ >>> Triangle(sss=(3, 4, 5)).args
303
+ (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
304
+ >>> closest_points(*_)
305
+ {(Point2D(0, 0), Point2D(3, 0))}
306
+
307
+ References
308
+ ==========
309
+
310
+ .. [1] https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
311
+
312
+ .. [2] Sweep line algorithm
313
+ https://en.wikipedia.org/wiki/Sweep_line_algorithm
314
+
315
+ """
316
+ p = [Point2D(i) for i in set(args)]
317
+ if len(p) < 2:
318
+ raise ValueError('At least 2 distinct points must be given.')
319
+
320
+ try:
321
+ p.sort(key=lambda x: x.args)
322
+ except TypeError:
323
+ raise ValueError("The points could not be sorted.")
324
+
325
+ if not all(i.is_Rational for j in p for i in j.args):
326
+ def hypot(x, y):
327
+ arg = x*x + y*y
328
+ if arg.is_Rational:
329
+ return _sqrt(arg)
330
+ return sqrt(arg)
331
+ else:
332
+ from math import hypot
333
+
334
+ rv = [(0, 1)]
335
+ best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
336
+ i = 2
337
+ left = 0
338
+ box = deque([0, 1])
339
+ while i < len(p):
340
+ while left < i and p[i][0] - p[left][0] > best_dist:
341
+ box.popleft()
342
+ left += 1
343
+
344
+ for j in box:
345
+ d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
346
+ if d < best_dist:
347
+ rv = [(j, i)]
348
+ elif d == best_dist:
349
+ rv.append((j, i))
350
+ else:
351
+ continue
352
+ best_dist = d
353
+ box.append(i)
354
+ i += 1
355
+
356
+ return {tuple([p[i] for i in pair]) for pair in rv}
357
+
358
+
359
+ def convex_hull(*args, polygon=True):
360
+ """The convex hull surrounding the Points contained in the list of entities.
361
+
362
+ Parameters
363
+ ==========
364
+
365
+ args : a collection of Points, Segments and/or Polygons
366
+
367
+ Optional parameters
368
+ ===================
369
+
370
+ polygon : Boolean. If True, returns a Polygon, if false a tuple, see below.
371
+ Default is True.
372
+
373
+ Returns
374
+ =======
375
+
376
+ convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where
377
+ ``L`` and ``U`` are the lower and upper hulls, respectively.
378
+
379
+ Notes
380
+ =====
381
+
382
+ This can only be performed on a set of points whose coordinates can
383
+ be ordered on the number line.
384
+
385
+ See Also
386
+ ========
387
+
388
+ sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
389
+
390
+ Examples
391
+ ========
392
+
393
+ >>> from sympy import convex_hull
394
+ >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
395
+ >>> convex_hull(*points)
396
+ Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
397
+ >>> convex_hull(*points, **dict(polygon=False))
398
+ ([Point2D(-5, 2), Point2D(15, 4)],
399
+ [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
400
+
401
+ References
402
+ ==========
403
+
404
+ .. [1] https://en.wikipedia.org/wiki/Graham_scan
405
+
406
+ .. [2] Andrew's Monotone Chain Algorithm
407
+ (A.M. Andrew,
408
+ "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
409
+ https://web.archive.org/web/20210511015444/http://geomalgorithms.com/a10-_hull-1.html
410
+
411
+ """
412
+ from .line import Segment
413
+ from .polygon import Polygon
414
+ p = OrderedSet()
415
+ for e in args:
416
+ if not isinstance(e, GeometryEntity):
417
+ try:
418
+ e = Point(e)
419
+ except NotImplementedError:
420
+ raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
421
+ if isinstance(e, Point):
422
+ p.add(e)
423
+ elif isinstance(e, Segment):
424
+ p.update(e.points)
425
+ elif isinstance(e, Polygon):
426
+ p.update(e.vertices)
427
+ else:
428
+ raise NotImplementedError(
429
+ 'Convex hull for %s not implemented.' % type(e))
430
+
431
+ # make sure all our points are of the same dimension
432
+ if any(len(x) != 2 for x in p):
433
+ raise ValueError('Can only compute the convex hull in two dimensions')
434
+
435
+ p = list(p)
436
+ if len(p) == 1:
437
+ return p[0] if polygon else (p[0], None)
438
+ elif len(p) == 2:
439
+ s = Segment(p[0], p[1])
440
+ return s if polygon else (s, None)
441
+
442
+ def _orientation(p, q, r):
443
+ '''Return positive if p-q-r are clockwise, neg if ccw, zero if
444
+ collinear.'''
445
+ return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
446
+
447
+ # scan to find upper and lower convex hulls of a set of 2d points.
448
+ U = []
449
+ L = []
450
+ try:
451
+ p.sort(key=lambda x: x.args)
452
+ except TypeError:
453
+ raise ValueError("The points could not be sorted.")
454
+ for p_i in p:
455
+ while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
456
+ U.pop()
457
+ while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
458
+ L.pop()
459
+ U.append(p_i)
460
+ L.append(p_i)
461
+ U.reverse()
462
+ convexHull = tuple(L + U[1:-1])
463
+
464
+ if len(convexHull) == 2:
465
+ s = Segment(convexHull[0], convexHull[1])
466
+ return s if polygon else (s, None)
467
+ if polygon:
468
+ return Polygon(*convexHull)
469
+ else:
470
+ U.reverse()
471
+ return (U, L)
472
+
473
+ def farthest_points(*args):
474
+ """Return the subset of points from a set of points that were
475
+ the furthest apart from each other in the 2D plane.
476
+
477
+ Parameters
478
+ ==========
479
+
480
+ args
481
+ A collection of Points on 2D plane.
482
+
483
+ Notes
484
+ =====
485
+
486
+ This can only be performed on a set of points whose coordinates can
487
+ be ordered on the number line. If there are no ties then a single
488
+ pair of Points will be in the set.
489
+
490
+ Examples
491
+ ========
492
+
493
+ >>> from sympy.geometry import farthest_points, Triangle
494
+ >>> Triangle(sss=(3, 4, 5)).args
495
+ (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
496
+ >>> farthest_points(*_)
497
+ {(Point2D(0, 0), Point2D(3, 4))}
498
+
499
+ References
500
+ ==========
501
+
502
+ .. [1] https://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
503
+
504
+ .. [2] Rotating Callipers Technique
505
+ https://en.wikipedia.org/wiki/Rotating_calipers
506
+
507
+ """
508
+
509
+ def rotatingCalipers(Points):
510
+ U, L = convex_hull(*Points, **{"polygon": False})
511
+
512
+ if L is None:
513
+ if isinstance(U, Point):
514
+ raise ValueError('At least two distinct points must be given.')
515
+ yield U.args
516
+ else:
517
+ i = 0
518
+ j = len(L) - 1
519
+ while i < len(U) - 1 or j > 0:
520
+ yield U[i], L[j]
521
+ # if all the way through one side of hull, advance the other side
522
+ if i == len(U) - 1:
523
+ j -= 1
524
+ elif j == 0:
525
+ i += 1
526
+ # still points left on both lists, compare slopes of next hull edges
527
+ # being careful to avoid divide-by-zero in slope calculation
528
+ elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
529
+ (L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
530
+ i += 1
531
+ else:
532
+ j -= 1
533
+
534
+ p = [Point2D(i) for i in set(args)]
535
+
536
+ if not all(i.is_Rational for j in p for i in j.args):
537
+ def hypot(x, y):
538
+ arg = x*x + y*y
539
+ if arg.is_Rational:
540
+ return _sqrt(arg)
541
+ return sqrt(arg)
542
+ else:
543
+ from math import hypot
544
+
545
+ rv = []
546
+ diam = 0
547
+ for pair in rotatingCalipers(args):
548
+ h, q = _ordered_points(pair)
549
+ d = hypot(h.x - q.x, h.y - q.y)
550
+ if d > diam:
551
+ rv = [(h, q)]
552
+ elif d == diam:
553
+ rv.append((h, q))
554
+ else:
555
+ continue
556
+ diam = d
557
+
558
+ return set(rv)
559
+
560
+
561
+ def idiff(eq, y, x, n=1):
562
+ """Return ``dy/dx`` assuming that ``eq == 0``.
563
+
564
+ Parameters
565
+ ==========
566
+
567
+ y : the dependent variable or a list of dependent variables (with y first)
568
+ x : the variable that the derivative is being taken with respect to
569
+ n : the order of the derivative (default is 1)
570
+
571
+ Examples
572
+ ========
573
+
574
+ >>> from sympy.abc import x, y, a
575
+ >>> from sympy.geometry.util import idiff
576
+
577
+ >>> circ = x**2 + y**2 - 4
578
+ >>> idiff(circ, y, x)
579
+ -x/y
580
+ >>> idiff(circ, y, x, 2).simplify()
581
+ (-x**2 - y**2)/y**3
582
+
583
+ Here, ``a`` is assumed to be independent of ``x``:
584
+
585
+ >>> idiff(x + a + y, y, x)
586
+ -1
587
+
588
+ Now the x-dependence of ``a`` is made explicit by listing ``a`` after
589
+ ``y`` in a list.
590
+
591
+ >>> idiff(x + a + y, [y, a], x)
592
+ -Derivative(a, x) - 1
593
+
594
+ See Also
595
+ ========
596
+
597
+ sympy.core.function.Derivative: represents unevaluated derivatives
598
+ sympy.core.function.diff: explicitly differentiates wrt symbols
599
+
600
+ """
601
+ if is_sequence(y):
602
+ dep = set(y)
603
+ y = y[0]
604
+ elif isinstance(y, Symbol):
605
+ dep = {y}
606
+ elif isinstance(y, Function):
607
+ pass
608
+ else:
609
+ raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
610
+
611
+ f = {s: Function(s.name)(x) for s in eq.free_symbols
612
+ if s != x and s in dep}
613
+
614
+ if isinstance(y, Symbol):
615
+ dydx = Function(y.name)(x).diff(x)
616
+ else:
617
+ dydx = y.diff(x)
618
+
619
+ eq = eq.subs(f)
620
+ derivs = {}
621
+ for i in range(n):
622
+ # equation will be linear in dydx, a*dydx + b, so dydx = -b/a
623
+ deq = eq.diff(x)
624
+ b = deq.xreplace({dydx: S.Zero})
625
+ a = (deq - b).xreplace({dydx: S.One})
626
+ yp = factor_terms(expand_mul(cancel((-b/a).subs(derivs)), deep=False))
627
+ if i == n - 1:
628
+ return yp.subs([(v, k) for k, v in f.items()])
629
+ derivs[dydx] = yp
630
+ eq = dydx - yp
631
+ dydx = dydx.diff(x)
632
+
633
+
634
+ def intersection(*entities, pairwise=False, **kwargs):
635
+ """The intersection of a collection of GeometryEntity instances.
636
+
637
+ Parameters
638
+ ==========
639
+ entities : sequence of GeometryEntity
640
+ pairwise (keyword argument) : Can be either True or False
641
+
642
+ Returns
643
+ =======
644
+ intersection : list of GeometryEntity
645
+
646
+ Raises
647
+ ======
648
+ NotImplementedError
649
+ When unable to calculate intersection.
650
+
651
+ Notes
652
+ =====
653
+ The intersection of any geometrical entity with itself should return
654
+ a list with one item: the entity in question.
655
+ An intersection requires two or more entities. If only a single
656
+ entity is given then the function will return an empty list.
657
+ It is possible for `intersection` to miss intersections that one
658
+ knows exists because the required quantities were not fully
659
+ simplified internally.
660
+ Reals should be converted to Rationals, e.g. Rational(str(real_num))
661
+ or else failures due to floating point issues may result.
662
+
663
+ Case 1: When the keyword argument 'pairwise' is False (default value):
664
+ In this case, the function returns a list of intersections common to
665
+ all entities.
666
+
667
+ Case 2: When the keyword argument 'pairwise' is True:
668
+ In this case, the functions returns a list intersections that occur
669
+ between any pair of entities.
670
+
671
+ See Also
672
+ ========
673
+
674
+ sympy.geometry.entity.GeometryEntity.intersection
675
+
676
+ Examples
677
+ ========
678
+
679
+ >>> from sympy import Ray, Circle, intersection
680
+ >>> c = Circle((0, 1), 1)
681
+ >>> intersection(c, c.center)
682
+ []
683
+ >>> right = Ray((0, 0), (1, 0))
684
+ >>> up = Ray((0, 0), (0, 1))
685
+ >>> intersection(c, right, up)
686
+ [Point2D(0, 0)]
687
+ >>> intersection(c, right, up, pairwise=True)
688
+ [Point2D(0, 0), Point2D(0, 2)]
689
+ >>> left = Ray((1, 0), (0, 0))
690
+ >>> intersection(right, left)
691
+ [Segment2D(Point2D(0, 0), Point2D(1, 0))]
692
+
693
+ """
694
+ if len(entities) <= 1:
695
+ return []
696
+
697
+ # entities may be an immutable tuple
698
+ entities = list(entities)
699
+ for i, e in enumerate(entities):
700
+ if not isinstance(e, GeometryEntity):
701
+ entities[i] = Point(e)
702
+
703
+ if not pairwise:
704
+ # find the intersection common to all objects
705
+ res = entities[0].intersection(entities[1])
706
+ for entity in entities[2:]:
707
+ newres = []
708
+ for x in res:
709
+ newres.extend(x.intersection(entity))
710
+ res = newres
711
+ return res
712
+
713
+ # find all pairwise intersections
714
+ ans = []
715
+ for j in range(len(entities)):
716
+ for k in range(j + 1, len(entities)):
717
+ ans.extend(intersection(entities[j], entities[k]))
718
+ return list(ordered(set(ans)))
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import CartanType
2
+
3
+ def CartanMatrix(ct):
4
+ """Access the Cartan matrix of a specific Lie algebra
5
+
6
+ Examples
7
+ ========
8
+
9
+ >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
10
+ >>> CartanMatrix("A2")
11
+ Matrix([
12
+ [ 2, -1],
13
+ [-1, 2]])
14
+
15
+ >>> CartanMatrix(['C', 3])
16
+ Matrix([
17
+ [ 2, -1, 0],
18
+ [-1, 2, -1],
19
+ [ 0, -2, 2]])
20
+
21
+ This method works by returning the Cartan matrix
22
+ which corresponds to Cartan type t.
23
+ """
24
+
25
+ return CartanType(ct).cartan_matrix()
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .cartan_type import CartanType
2
+ from sympy.core.basic import Atom
3
+
4
+ class RootSystem(Atom):
5
+ """Represent the root system of a simple Lie algebra
6
+
7
+ Every simple Lie algebra has a unique root system. To find the root
8
+ system, we first consider the Cartan subalgebra of g, which is the maximal
9
+ abelian subalgebra, and consider the adjoint action of g on this
10
+ subalgebra. There is a root system associated with this action. Now, a
11
+ root system over a vector space V is a set of finite vectors Phi (called
12
+ roots), which satisfy:
13
+
14
+ 1. The roots span V
15
+ 2. The only scalar multiples of x in Phi are x and -x
16
+ 3. For every x in Phi, the set Phi is closed under reflection
17
+ through the hyperplane perpendicular to x.
18
+ 4. If x and y are roots in Phi, then the projection of y onto
19
+ the line through x is a half-integral multiple of x.
20
+
21
+ Now, there is a subset of Phi, which we will call Delta, such that:
22
+ 1. Delta is a basis of V
23
+ 2. Each root x in Phi can be written x = sum k_y y for y in Delta
24
+
25
+ The elements of Delta are called the simple roots.
26
+ Therefore, we see that the simple roots span the root space of a given
27
+ simple Lie algebra.
28
+
29
+ References
30
+ ==========
31
+
32
+ .. [1] https://en.wikipedia.org/wiki/Root_system
33
+ .. [2] Lie Algebras and Representation Theory - Humphreys
34
+
35
+ """
36
+
37
+ def __new__(cls, cartantype):
38
+ """Create a new RootSystem object
39
+
40
+ This method assigns an attribute called cartan_type to each instance of
41
+ a RootSystem object. When an instance of RootSystem is called, it
42
+ needs an argument, which should be an instance of a simple Lie algebra.
43
+ We then take the CartanType of this argument and set it as the
44
+ cartan_type attribute of the RootSystem instance.
45
+
46
+ """
47
+ obj = Atom.__new__(cls)
48
+ obj.cartan_type = CartanType(cartantype)
49
+ return obj
50
+
51
+ def simple_roots(self):
52
+ """Generate the simple roots of the Lie algebra
53
+
54
+ The rank of the Lie algebra determines the number of simple roots that
55
+ it has. This method obtains the rank of the Lie algebra, and then uses
56
+ the simple_root method from the Lie algebra classes to generate all the
57
+ simple roots.
58
+
59
+ Examples
60
+ ========
61
+
62
+ >>> from sympy.liealgebras.root_system import RootSystem
63
+ >>> c = RootSystem("A3")
64
+ >>> roots = c.simple_roots()
65
+ >>> roots
66
+ {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
67
+
68
+ """
69
+ n = self.cartan_type.rank()
70
+ roots = {}
71
+ for i in range(1, n+1):
72
+ root = self.cartan_type.simple_root(i)
73
+ roots[i] = root
74
+ return roots
75
+
76
+
77
+ def all_roots(self):
78
+ """Generate all the roots of a given root system
79
+
80
+ The result is a dictionary where the keys are integer numbers. It
81
+ generates the roots by getting the dictionary of all positive roots
82
+ from the bases classes, and then taking each root, and multiplying it
83
+ by -1 and adding it to the dictionary. In this way all the negative
84
+ roots are generated.
85
+
86
+ """
87
+ alpha = self.cartan_type.positive_roots()
88
+ keys = list(alpha.keys())
89
+ k = max(keys)
90
+ for val in keys:
91
+ k += 1
92
+ root = alpha[val]
93
+ newroot = [-x for x in root]
94
+ alpha[k] = newroot
95
+ return alpha
96
+
97
+ def root_space(self):
98
+ """Return the span of the simple roots
99
+
100
+ The root space is the vector space spanned by the simple roots, i.e. it
101
+ is a vector space with a distinguished basis, the simple roots. This
102
+ method returns a string that represents the root space as the span of
103
+ the simple roots, alpha[1],...., alpha[n].
104
+
105
+ Examples
106
+ ========
107
+
108
+ >>> from sympy.liealgebras.root_system import RootSystem
109
+ >>> c = RootSystem("A3")
110
+ >>> c.root_space()
111
+ 'alpha[1] + alpha[2] + alpha[3]'
112
+
113
+ """
114
+ n = self.cartan_type.rank()
115
+ rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
116
+ return rs
117
+
118
+ def add_simple_roots(self, root1, root2):
119
+ """Add two simple roots together
120
+
121
+ The function takes as input two integers, root1 and root2. It then
122
+ uses these integers as keys in the dictionary of simple roots, and gets
123
+ the corresponding simple roots, and then adds them together.
124
+
125
+ Examples
126
+ ========
127
+
128
+ >>> from sympy.liealgebras.root_system import RootSystem
129
+ >>> c = RootSystem("A3")
130
+ >>> newroot = c.add_simple_roots(1, 2)
131
+ >>> newroot
132
+ [1, 0, -1, 0]
133
+
134
+ """
135
+
136
+ alpha = self.simple_roots()
137
+ if root1 > len(alpha) or root2 > len(alpha):
138
+ raise ValueError("You've used a root that doesn't exist!")
139
+ a1 = alpha[root1]
140
+ a2 = alpha[root2]
141
+ newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
142
+ return newroot
143
+
144
+ def add_as_roots(self, root1, root2):
145
+ """Add two roots together if and only if their sum is also a root
146
+
147
+ It takes as input two vectors which should be roots. It then computes
148
+ their sum and checks if it is in the list of all possible roots. If it
149
+ is, it returns the sum. Otherwise it returns a string saying that the
150
+ sum is not a root.
151
+
152
+ Examples
153
+ ========
154
+
155
+ >>> from sympy.liealgebras.root_system import RootSystem
156
+ >>> c = RootSystem("A3")
157
+ >>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
158
+ [1, 0, 0, -1]
159
+ >>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
160
+ 'The sum of these two roots is not a root'
161
+
162
+ """
163
+ alpha = self.all_roots()
164
+ newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
165
+ if newroot in alpha.values():
166
+ return newroot
167
+ else:
168
+ return "The sum of these two roots is not a root"
169
+
170
+
171
+ def cartan_matrix(self):
172
+ """Cartan matrix of Lie algebra associated with this root system
173
+
174
+ Examples
175
+ ========
176
+
177
+ >>> from sympy.liealgebras.root_system import RootSystem
178
+ >>> c = RootSystem("A3")
179
+ >>> c.cartan_matrix()
180
+ Matrix([
181
+ [ 2, -1, 0],
182
+ [-1, 2, -1],
183
+ [ 0, -1, 2]])
184
+ """
185
+ return self.cartan_type.cartan_matrix()
186
+
187
+ def dynkin_diagram(self):
188
+ """Dynkin diagram of the Lie algebra associated with this root system
189
+
190
+ Examples
191
+ ========
192
+
193
+ >>> from sympy.liealgebras.root_system import RootSystem
194
+ >>> c = RootSystem("A3")
195
+ >>> print(c.dynkin_diagram())
196
+ 0---0---0
197
+ 1 2 3
198
+ """
199
+ return self.cartan_type.dynkin_diagram()
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .core import dispatch
2
+ from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
3
+ MDNotImplementedError)
4
+
5
+ __version__ = '0.4.9'
6
+
7
+ __all__ = [
8
+ 'dispatch',
9
+
10
+ 'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
11
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .utils import _toposort, groupby
2
+
3
+ class AmbiguityWarning(Warning):
4
+ pass
5
+
6
+
7
+ def supercedes(a, b):
8
+ """ A is consistent and strictly more specific than B """
9
+ return len(a) == len(b) and all(map(issubclass, a, b))
10
+
11
+
12
+ def consistent(a, b):
13
+ """ It is possible for an argument list to satisfy both A and B """
14
+ return (len(a) == len(b) and
15
+ all(issubclass(aa, bb) or issubclass(bb, aa)
16
+ for aa, bb in zip(a, b)))
17
+
18
+
19
+ def ambiguous(a, b):
20
+ """ A is consistent with B but neither is strictly more specific """
21
+ return consistent(a, b) and not (supercedes(a, b) or supercedes(b, a))
22
+
23
+
24
+ def ambiguities(signatures):
25
+ """ All signature pairs such that A is ambiguous with B """
26
+ signatures = list(map(tuple, signatures))
27
+ return {(a, b) for a in signatures for b in signatures
28
+ if hash(a) < hash(b)
29
+ and ambiguous(a, b)
30
+ and not any(supercedes(c, a) and supercedes(c, b)
31
+ for c in signatures)}
32
+
33
+
34
+ def super_signature(signatures):
35
+ """ A signature that would break ambiguities """
36
+ n = len(signatures[0])
37
+ assert all(len(s) == n for s in signatures)
38
+
39
+ return [max([type.mro(sig[i]) for sig in signatures], key=len)[0]
40
+ for i in range(n)]
41
+
42
+
43
+ def edge(a, b, tie_breaker=hash):
44
+ """ A should be checked before B
45
+
46
+ Tie broken by tie_breaker, defaults to ``hash``
47
+ """
48
+ if supercedes(a, b):
49
+ if supercedes(b, a):
50
+ return tie_breaker(a) > tie_breaker(b)
51
+ else:
52
+ return True
53
+ return False
54
+
55
+
56
+ def ordering(signatures):
57
+ """ A sane ordering of signatures to check, first to last
58
+
59
+ Topoological sort of edges as given by ``edge`` and ``supercedes``
60
+ """
61
+ signatures = list(map(tuple, signatures))
62
+ edges = [(a, b) for a in signatures for b in signatures if edge(a, b)]
63
+ edges = groupby(lambda x: x[0], edges)
64
+ for s in signatures:
65
+ if s not in edges:
66
+ edges[s] = []
67
+ edges = {k: [b for a, b in v] for k, v in edges.items()}
68
+ return _toposort(edges)
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Any
3
+
4
+ import inspect
5
+
6
+ from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
7
+
8
+ # XXX: This parameter to dispatch isn't documented and isn't used anywhere in
9
+ # sympy. Maybe it should just be removed.
10
+ global_namespace: dict[str, Any] = {}
11
+
12
+
13
+ def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
14
+ """ Dispatch function on the types of the inputs
15
+
16
+ Supports dispatch on all non-keyword arguments.
17
+
18
+ Collects implementations based on the function name. Ignores namespaces.
19
+
20
+ If ambiguous type signatures occur a warning is raised when the function is
21
+ defined suggesting the additional method to break the ambiguity.
22
+
23
+ Examples
24
+ --------
25
+
26
+ >>> from sympy.multipledispatch import dispatch
27
+ >>> @dispatch(int)
28
+ ... def f(x):
29
+ ... return x + 1
30
+
31
+ >>> @dispatch(float)
32
+ ... def f(x): # noqa: F811
33
+ ... return x - 1
34
+
35
+ >>> f(3)
36
+ 4
37
+ >>> f(3.0)
38
+ 2.0
39
+
40
+ Specify an isolated namespace with the namespace keyword argument
41
+
42
+ >>> my_namespace = dict()
43
+ >>> @dispatch(int, namespace=my_namespace)
44
+ ... def foo(x):
45
+ ... return x + 1
46
+
47
+ Dispatch on instance methods within classes
48
+
49
+ >>> class MyClass(object):
50
+ ... @dispatch(list)
51
+ ... def __init__(self, data):
52
+ ... self.data = data
53
+ ... @dispatch(int)
54
+ ... def __init__(self, datum): # noqa: F811
55
+ ... self.data = [datum]
56
+ """
57
+ types = tuple(types)
58
+
59
+ def _(func):
60
+ name = func.__name__
61
+
62
+ if ismethod(func):
63
+ dispatcher = inspect.currentframe().f_back.f_locals.get(
64
+ name,
65
+ MethodDispatcher(name))
66
+ else:
67
+ if name not in namespace:
68
+ namespace[name] = Dispatcher(name)
69
+ dispatcher = namespace[name]
70
+
71
+ dispatcher.add(types, func, on_ambiguity=on_ambiguity)
72
+ return dispatcher
73
+ return _
74
+
75
+
76
+ def ismethod(func):
77
+ """ Is func a method?
78
+
79
+ Note that this has to work as the method is defined but before the class is
80
+ defined. At this stage methods look like functions.
81
+ """
82
+ signature = inspect.signature(func)
83
+ return signature.parameters.get('self', None) is not None
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from warnings import warn
4
+ import inspect
5
+ from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
6
+ from .utils import expand_tuples
7
+ import itertools as itl
8
+
9
+
10
+ class MDNotImplementedError(NotImplementedError):
11
+ """ A NotImplementedError for multiple dispatch """
12
+
13
+
14
+ ### Functions for on_ambiguity
15
+
16
+ def ambiguity_warn(dispatcher, ambiguities):
17
+ """ Raise warning when ambiguity is detected
18
+
19
+ Parameters
20
+ ----------
21
+ dispatcher : Dispatcher
22
+ The dispatcher on which the ambiguity was detected
23
+ ambiguities : set
24
+ Set of type signature pairs that are ambiguous within this dispatcher
25
+
26
+ See Also:
27
+ Dispatcher.add
28
+ warning_text
29
+ """
30
+ warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
31
+
32
+
33
+ class RaiseNotImplementedError:
34
+ """Raise ``NotImplementedError`` when called."""
35
+
36
+ def __init__(self, dispatcher):
37
+ self.dispatcher = dispatcher
38
+
39
+ def __call__(self, *args, **kwargs):
40
+ types = tuple(type(a) for a in args)
41
+ raise NotImplementedError(
42
+ "Ambiguous signature for %s: <%s>" % (
43
+ self.dispatcher.name, str_signature(types)
44
+ ))
45
+
46
+ def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
47
+ """
48
+ If super signature for ambiguous types is duplicate types, ignore it.
49
+ Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
50
+
51
+ Parameters
52
+ ----------
53
+ dispatcher : Dispatcher
54
+ The dispatcher on which the ambiguity was detected
55
+ ambiguities : set
56
+ Set of type signature pairs that are ambiguous within this dispatcher
57
+
58
+ See Also:
59
+ Dispatcher.add
60
+ ambiguity_warn
61
+ """
62
+ for amb in ambiguities:
63
+ signature = tuple(super_signature(amb))
64
+ if len(set(signature)) == 1:
65
+ continue
66
+ dispatcher.add(
67
+ signature, RaiseNotImplementedError(dispatcher),
68
+ on_ambiguity=ambiguity_register_error_ignore_dup
69
+ )
70
+
71
+ ###
72
+
73
+
74
+ _unresolved_dispatchers: set[Dispatcher] = set()
75
+ _resolve = [True]
76
+
77
+
78
+ def halt_ordering():
79
+ _resolve[0] = False
80
+
81
+
82
+ def restart_ordering(on_ambiguity=ambiguity_warn):
83
+ _resolve[0] = True
84
+ while _unresolved_dispatchers:
85
+ dispatcher = _unresolved_dispatchers.pop()
86
+ dispatcher.reorder(on_ambiguity=on_ambiguity)
87
+
88
+
89
+ class Dispatcher:
90
+ """ Dispatch methods based on type signature
91
+
92
+ Use ``dispatch`` to add implementations
93
+
94
+ Examples
95
+ --------
96
+
97
+ >>> from sympy.multipledispatch import dispatch
98
+ >>> @dispatch(int)
99
+ ... def f(x):
100
+ ... return x + 1
101
+
102
+ >>> @dispatch(float)
103
+ ... def f(x): # noqa: F811
104
+ ... return x - 1
105
+
106
+ >>> f(3)
107
+ 4
108
+ >>> f(3.0)
109
+ 2.0
110
+ """
111
+ __slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
112
+
113
+ def __init__(self, name, doc=None):
114
+ self.name = self.__name__ = name
115
+ self.funcs = {}
116
+ self._cache = {}
117
+ self.ordering = []
118
+ self.doc = doc
119
+
120
+ def register(self, *types, **kwargs):
121
+ """ Register dispatcher with new implementation
122
+
123
+ >>> from sympy.multipledispatch.dispatcher import Dispatcher
124
+ >>> f = Dispatcher('f')
125
+ >>> @f.register(int)
126
+ ... def inc(x):
127
+ ... return x + 1
128
+
129
+ >>> @f.register(float)
130
+ ... def dec(x):
131
+ ... return x - 1
132
+
133
+ >>> @f.register(list)
134
+ ... @f.register(tuple)
135
+ ... def reverse(x):
136
+ ... return x[::-1]
137
+
138
+ >>> f(1)
139
+ 2
140
+
141
+ >>> f(1.0)
142
+ 0.0
143
+
144
+ >>> f([1, 2, 3])
145
+ [3, 2, 1]
146
+ """
147
+ def _(func):
148
+ self.add(types, func, **kwargs)
149
+ return func
150
+ return _
151
+
152
+ @classmethod
153
+ def get_func_params(cls, func):
154
+ if hasattr(inspect, "signature"):
155
+ sig = inspect.signature(func)
156
+ return sig.parameters.values()
157
+
158
+ @classmethod
159
+ def get_func_annotations(cls, func):
160
+ """ Get annotations of function positional parameters
161
+ """
162
+ params = cls.get_func_params(func)
163
+ if params:
164
+ Parameter = inspect.Parameter
165
+
166
+ params = (param for param in params
167
+ if param.kind in
168
+ (Parameter.POSITIONAL_ONLY,
169
+ Parameter.POSITIONAL_OR_KEYWORD))
170
+
171
+ annotations = tuple(
172
+ param.annotation
173
+ for param in params)
174
+
175
+ if not any(ann is Parameter.empty for ann in annotations):
176
+ return annotations
177
+
178
+ def add(self, signature, func, on_ambiguity=ambiguity_warn):
179
+ """ Add new types/method pair to dispatcher
180
+
181
+ >>> from sympy.multipledispatch import Dispatcher
182
+ >>> D = Dispatcher('add')
183
+ >>> D.add((int, int), lambda x, y: x + y)
184
+ >>> D.add((float, float), lambda x, y: x + y)
185
+
186
+ >>> D(1, 2)
187
+ 3
188
+ >>> D(1, 2.0)
189
+ Traceback (most recent call last):
190
+ ...
191
+ NotImplementedError: Could not find signature for add: <int, float>
192
+
193
+ When ``add`` detects a warning it calls the ``on_ambiguity`` callback
194
+ with a dispatcher/itself, and a set of ambiguous type signature pairs
195
+ as inputs. See ``ambiguity_warn`` for an example.
196
+ """
197
+ # Handle annotations
198
+ if not signature:
199
+ annotations = self.get_func_annotations(func)
200
+ if annotations:
201
+ signature = annotations
202
+
203
+ # Handle union types
204
+ if any(isinstance(typ, tuple) for typ in signature):
205
+ for typs in expand_tuples(signature):
206
+ self.add(typs, func, on_ambiguity)
207
+ return
208
+
209
+ for typ in signature:
210
+ if not isinstance(typ, type):
211
+ str_sig = ', '.join(c.__name__ if isinstance(c, type)
212
+ else str(c) for c in signature)
213
+ raise TypeError("Tried to dispatch on non-type: %s\n"
214
+ "In signature: <%s>\n"
215
+ "In function: %s" %
216
+ (typ, str_sig, self.name))
217
+
218
+ self.funcs[signature] = func
219
+ self.reorder(on_ambiguity=on_ambiguity)
220
+ self._cache.clear()
221
+
222
+ def reorder(self, on_ambiguity=ambiguity_warn):
223
+ if _resolve[0]:
224
+ self.ordering = ordering(self.funcs)
225
+ amb = ambiguities(self.funcs)
226
+ if amb:
227
+ on_ambiguity(self, amb)
228
+ else:
229
+ _unresolved_dispatchers.add(self)
230
+
231
+ def __call__(self, *args, **kwargs):
232
+ types = tuple([type(arg) for arg in args])
233
+ try:
234
+ func = self._cache[types]
235
+ except KeyError:
236
+ func = self.dispatch(*types)
237
+ if not func:
238
+ raise NotImplementedError(
239
+ 'Could not find signature for %s: <%s>' %
240
+ (self.name, str_signature(types)))
241
+ self._cache[types] = func
242
+ try:
243
+ return func(*args, **kwargs)
244
+
245
+ except MDNotImplementedError:
246
+ funcs = self.dispatch_iter(*types)
247
+ next(funcs) # burn first
248
+ for func in funcs:
249
+ try:
250
+ return func(*args, **kwargs)
251
+ except MDNotImplementedError:
252
+ pass
253
+ raise NotImplementedError("Matching functions for "
254
+ "%s: <%s> found, but none completed successfully"
255
+ % (self.name, str_signature(types)))
256
+
257
+ def __str__(self):
258
+ return "<dispatched %s>" % self.name
259
+ __repr__ = __str__
260
+
261
+ def dispatch(self, *types):
262
+ """ Deterimine appropriate implementation for this type signature
263
+
264
+ This method is internal. Users should call this object as a function.
265
+ Implementation resolution occurs within the ``__call__`` method.
266
+
267
+ >>> from sympy.multipledispatch import dispatch
268
+ >>> @dispatch(int)
269
+ ... def inc(x):
270
+ ... return x + 1
271
+
272
+ >>> implementation = inc.dispatch(int)
273
+ >>> implementation(3)
274
+ 4
275
+
276
+ >>> print(inc.dispatch(float))
277
+ None
278
+
279
+ See Also:
280
+ ``sympy.multipledispatch.conflict`` - module to determine resolution order
281
+ """
282
+
283
+ if types in self.funcs:
284
+ return self.funcs[types]
285
+
286
+ try:
287
+ return next(self.dispatch_iter(*types))
288
+ except StopIteration:
289
+ return None
290
+
291
+ def dispatch_iter(self, *types):
292
+ n = len(types)
293
+ for signature in self.ordering:
294
+ if len(signature) == n and all(map(issubclass, types, signature)):
295
+ result = self.funcs[signature]
296
+ yield result
297
+
298
+ def resolve(self, types):
299
+ """ Deterimine appropriate implementation for this type signature
300
+
301
+ .. deprecated:: 0.4.4
302
+ Use ``dispatch(*types)`` instead
303
+ """
304
+ warn("resolve() is deprecated, use dispatch(*types)",
305
+ DeprecationWarning)
306
+
307
+ return self.dispatch(*types)
308
+
309
+ def __getstate__(self):
310
+ return {'name': self.name,
311
+ 'funcs': self.funcs}
312
+
313
+ def __setstate__(self, d):
314
+ self.name = d['name']
315
+ self.funcs = d['funcs']
316
+ self.ordering = ordering(self.funcs)
317
+ self._cache = {}
318
+
319
+ @property
320
+ def __doc__(self):
321
+ docs = ["Multiply dispatched method: %s" % self.name]
322
+
323
+ if self.doc:
324
+ docs.append(self.doc)
325
+
326
+ other = []
327
+ for sig in self.ordering[::-1]:
328
+ func = self.funcs[sig]
329
+ if func.__doc__:
330
+ s = 'Inputs: <%s>\n' % str_signature(sig)
331
+ s += '-' * len(s) + '\n'
332
+ s += func.__doc__.strip()
333
+ docs.append(s)
334
+ else:
335
+ other.append(str_signature(sig))
336
+
337
+ if other:
338
+ docs.append('Other signatures:\n ' + '\n '.join(other))
339
+
340
+ return '\n\n'.join(docs)
341
+
342
+ def _help(self, *args):
343
+ return self.dispatch(*map(type, args)).__doc__
344
+
345
+ def help(self, *args, **kwargs):
346
+ """ Print docstring for the function corresponding to inputs """
347
+ print(self._help(*args))
348
+
349
+ def _source(self, *args):
350
+ func = self.dispatch(*map(type, args))
351
+ if not func:
352
+ raise TypeError("No function found")
353
+ return source(func)
354
+
355
+ def source(self, *args, **kwargs):
356
+ """ Print source code for the function corresponding to inputs """
357
+ print(self._source(*args))
358
+
359
+
360
+ def source(func):
361
+ s = 'File: %s\n\n' % inspect.getsourcefile(func)
362
+ s = s + inspect.getsource(func)
363
+ return s
364
+
365
+
366
+ class MethodDispatcher(Dispatcher):
367
+ """ Dispatch methods based on type signature
368
+
369
+ See Also:
370
+ Dispatcher
371
+ """
372
+
373
+ @classmethod
374
+ def get_func_params(cls, func):
375
+ if hasattr(inspect, "signature"):
376
+ sig = inspect.signature(func)
377
+ return itl.islice(sig.parameters.values(), 1, None)
378
+
379
+ def __get__(self, instance, owner):
380
+ self.obj = instance
381
+ self.cls = owner
382
+ return self
383
+
384
+ def __call__(self, *args, **kwargs):
385
+ types = tuple([type(arg) for arg in args])
386
+ func = self.dispatch(*types)
387
+ if not func:
388
+ raise NotImplementedError('Could not find signature for %s: <%s>' %
389
+ (self.name, str_signature(types)))
390
+ return func(self.obj, *args, **kwargs)
391
+
392
+
393
+ def str_signature(sig):
394
+ """ String representation of type signature
395
+
396
+ >>> from sympy.multipledispatch.dispatcher import str_signature
397
+ >>> str_signature((int, float))
398
+ 'int, float'
399
+ """
400
+ return ', '.join(cls.__name__ for cls in sig)
401
+
402
+
403
+ def warning_text(name, amb):
404
+ """ The text for ambiguity warnings """
405
+ text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
406
+ text += "The following signatures may result in ambiguous behavior:\n"
407
+ for pair in amb:
408
+ text += "\t" + \
409
+ ', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
410
+ text += "\n\nConsider making the following additions:\n\n"
411
+ text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
412
+ + ')\ndef %s(...)' % name for s in amb])
413
+ return text
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc ADDED
Binary file (7.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.multipledispatch.conflict import (supercedes, ordering, ambiguities,
2
+ ambiguous, super_signature, consistent)
3
+
4
+
5
+ class A: pass
6
+ class B(A): pass
7
+ class C: pass
8
+
9
+
10
+ def test_supercedes():
11
+ assert supercedes([B], [A])
12
+ assert supercedes([B, A], [A, A])
13
+ assert not supercedes([B, A], [A, B])
14
+ assert not supercedes([A], [B])
15
+
16
+
17
+ def test_consistent():
18
+ assert consistent([A], [A])
19
+ assert consistent([B], [B])
20
+ assert not consistent([A], [C])
21
+ assert consistent([A, B], [A, B])
22
+ assert consistent([B, A], [A, B])
23
+ assert not consistent([B, A], [B])
24
+ assert not consistent([B, A], [B, C])
25
+
26
+
27
+ def test_super_signature():
28
+ assert super_signature([[A]]) == [A]
29
+ assert super_signature([[A], [B]]) == [B]
30
+ assert super_signature([[A, B], [B, A]]) == [B, B]
31
+ assert super_signature([[A, A, B], [A, B, A], [B, A, A]]) == [B, B, B]
32
+
33
+
34
+ def test_ambiguous():
35
+ assert not ambiguous([A], [A])
36
+ assert not ambiguous([A], [B])
37
+ assert not ambiguous([B], [B])
38
+ assert not ambiguous([A, B], [B, B])
39
+ assert ambiguous([A, B], [B, A])
40
+
41
+
42
+ def test_ambiguities():
43
+ signatures = [[A], [B], [A, B], [B, A], [A, C]]
44
+ expected = {((A, B), (B, A))}
45
+ result = ambiguities(signatures)
46
+ assert set(map(frozenset, expected)) == set(map(frozenset, result))
47
+
48
+ signatures = [[A], [B], [A, B], [B, A], [A, C], [B, B]]
49
+ expected = set()
50
+ result = ambiguities(signatures)
51
+ assert set(map(frozenset, expected)) == set(map(frozenset, result))
52
+
53
+
54
+ def test_ordering():
55
+ signatures = [[A, A], [A, B], [B, A], [B, B], [A, C]]
56
+ ord = ordering(signatures)
57
+ assert ord[0] == (B, B) or ord[0] == (A, C)
58
+ assert ord[-1] == (A, A) or ord[-1] == (A, C)
59
+
60
+
61
+ def test_type_mro():
62
+ assert super_signature([[object], [type]]) == [type]